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Abstract. The privacy policies of an online social network play an
important role in determining user involvement and satisfaction, and
in turn site profit and success. In this paper, we develop a game the-
oretic framework to model the relationship between the set of privacy
options offered by a social network site and the sharing decisions of its
users within these constraints. We model the site and the users in this sce-
nario as the leader and followers, respectively, in a Stackelberg game. We
formally establish the conditions under which this game reaches a Nash
equilibrium in pure strategies and provide an approximation algorithm
for the site to determine a discrete set of privacy options to maximize
payoff. We validate hypotheses in our model on data collected from a
mock-social network of users’ privacy preferences both within and out-
side the context of peer influence, and demonstrate that the qualitative
assumptions of our model are well-founded.

1 Introduction

At its core, an online social network (SN) is an infrastructure for user-generated
shared content. Users have the ability to exercise control over their individual
channels in the network, by deciding which content to share and with whom to
share it. The SN site benefits from shared content in important ways. Shared
content attracts new users, deepens the involvement of existing users, strengthens
the community, and can be leveraged for monetization.

Individual behavior online, like individual behavior offline, is also subject
to social norms and peer influence [12,15,24]. Notions of what is appropriate
in content sharing online is defined comparatively, so that subtle shifts in local
behavior may have much farther-reaching consequences for the network as a
whole. In sum, unlike the SN site which is ultimately a business operating with
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a business model, users are individuals with more complex incentives, concerns
and considerations operating voluntarily within the constraints of the SN.

Questions related to privacy in SNs have gained increasing interest over the
last few years as the ubiquity of social media has become apparent and anecdotes
of repercussions for over-disclosure more available. Many users are now aware of
the risks associated with revelation online and concerned with protecting per-
sonal information from widespread dissemination. Advocates of fine-grained pri-
vacy policies argue that detailed user management of privacy settings for shared
content can avert some of the potential risks users face in online SNs [20,28].
Users can sort their data into categories to be shared with certain individuals in
the network (i.e., friends, friends of friends, groups, everyone). SNs like Facebook
and Google+ have implemented this model, allowing users to create narrower
social circles from among their list of friends and to define which content is shared
with whom. Unfortunately, studies have also shown that users often do not take
advantage of finely-tuned options available to them. The majority of users on
both Facebook and Twitter maintain the default privacy settings established by
the site [12,19], which tend to be more permissive than users would like [23].

In this work, we focus on the topic of privacy, from the perspectives of both
the SN site and its users. We seek to determine an optimal discrete set of privacy
options to be made available to users for content sharing. We define optimality
here from the perspective of the site, taking into account user satisfaction. Intu-
itively, the site is to choose a set of options for users’ shared content in order
to maximize sharing. Yet, the site should allow users to maintain a level of con-
trol over their content without being overwhelmed by too many or too complex
privacy settings from which to choose.

We model the conflicting yet complementary goals of the SN site and its
users as a Stackelberg game whereby the leader (the site) moves first in setting
the privacy options to be made available to user-members for shared content.
Followers (users) respond by selecting privacy settings from among these options.
Payoff to the site can be expressed in terms of amount of shared content and
total user happiness. Payoff to each user depends on how closely the available
options approximate his ideal sharing preferences, which is in turn a function
of an inherent comfort and peer influences. We formally present this two-level
game as well as a characterization of its convergence to a Nash equilibrium in
pure strategies under certain simplifying assumptions. We develop an agent-
based model to approximate optimal strategies on arbitrary network graphs and
validate model assumptions with a study of 60 individuals, run over a mock-SN.

The remainder of this paper is organized as follows. The next section reviews
related work, followed by our problem statement, succeeded by an overview of our
model in Sect. 4. Section 5 presents approximation algorithms, and Sect. 6 dis-
cusses the experimental study we carried out. We conclude the paper in Sect. 7.

2 Related Work

The scale and gravity of privacy and security risks associated with online social
networks have led to a rich body of work addressing a wide spectrum of these
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issues. By sharing their personal information, users in SNs become vulnerable
to attacks from other users, the SN itself, third-party applications linked to
their SN profiles, or other outside attackers able to de-anonymize user data
published by the SN site. See [2,18] for recent reviews. These attacks may take
the form of identity theft [12], scraping and harvesting [21], social phishing [17],
or automated social engineering [3]. The risk of a breach of privacy in some form
is particularly salient for users who are not closely monitoring their privacy
settings or leaving privacy settings at their default values.

As a means of mediating some of these risks, there is a growing literature
using machine learning to determine individual default privacy settings. PriMa
[31] and Privacy Wizard [8] are examples of supervised learning algorithms which
look at the behavior and preferences of a user, the behavior and preferences of
his peer group or related users, and offer a classification of default settings for
different types of shared content. We see this work as complementary to ours
in that it does not suggest a method for the determining the privacy settings
from which a user may choose, but rather once these options are in place, gives
a method for selecting defaults amongst them which may most closely match a
user’s preferences.

This work is related in general to the body of work on game theory in social
networks, both offline and online. Fundamental research efforts exploring cooper-
ation in structured human populations include [23,26,38]. In the realm of online
social networks, game theoretic models have been implemented for the study
of the evolution of various social dilemmas and associated changes in network
structure [9,16,25].

Most closely related to our work is the subset of this research concerning
agent-based decision-making related to privacy and security in online social net-
works. Chen and colleagues model users’ disclosure of personal attributes as a
weighted evolutionary game and discuss the relationship between network topol-
ogy and revelation in environments with varying level of risk [5].

In a series of papers considering the circumstances of deception in online
SNs, Squicciarini et al. characterize a user’s willingness to release, withhold or lie
about information as a function of risk, reward and peer pressure within different
game-theoretic frameworks [29,33]. They describe the relationship between a site
and its users, determining that in the in the presence of a binding agreement
to cooperate (strong guarantees on privacy), most users will agree to share real
identifying information in return for registration in the system [34]. Authors also
use a game theory to model of collective privacy management for photo sharing
in SNs [32,35]. Their approach proposes automated privacy settings for shared
images based on an extended notion of content co-ownership.

To the best of our knowledge, a game-theoretic approach to determining the
privacy policy of an online SN has not been considered before in the literature.

In a previous work [11], we tackled the simpler question of determining a
mandatory lower-bound on shared content. That is, we have addressed the SN
site’s decision of selecting the minimum amount of shared personal information
which should be required of user with an active account in the network. For
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example, Facebook requires all users with a personal account to give a first
name, last name, valid email address, password, gender and birth date. In fact,
Facebook institutes further sharing requirements on various elements of a user’s
profile, e.g., a user’s cover photo is always public [6].

3 Problem Statement

We assume a captive social network site, wherein users share pieces of per-
sonal content freely within the network and possibly with selected subgroups
of network users, according to a set of privacy options for shared content made
available by the site to its users.

We assume the site benefits when users share as freely as possible and it
is of course incentivized to create options that promote the widest distribution
of posted content. The site, however, must also be wary to consider users who
are inherently more cautious about public sharing. A site requiring all shared
content to be public, for example, may lure some users to post publicly who
might otherwise have only shared with a narrower group, i.e., “friends only”.
But in other cases, this policy might have a detrimental effect for the site, as
users may choose not to post at all. In any case, if the privacy setting a user
would prefer for a piece of content is not presented the user will experience some
degree of dissatisfaction in having to select an alternative. Figure 1 illustrates
the problem space.

Users react to the options offered by choosing what to disclose and with
whom. Examples of these settings in practice may include “visible to only me”,
“share with specific individuals”, “share with friends”, “share with my net-
work”and “public”. We abstract away from the details of how privacy options

Fig. 1. There is a natural push and pull between a SN site and its users with regard
to sharing policies.
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are presented to users, and map them to real values on the interval [0, 1]. The
granularity of these options should be fine enough to meet users’ needs, but
coarse enough to be manageable in implementation for both the users and the
SN site.

We formulate the site’s utility as a function of user happiness and shared
content, so that minimally the site would like to make sure that no user is
unable to share content as freely as he would like due to a lack of available
sharing options. In fact, the site would stand to profit by pushing users toward
the upper boundary of their sharing comfort, and having a carefully chosen set
of options may enable this to happen.

We model each user’s utility function as a weighted sum of discomfort and
peer pressure. Specifically, each user will act to minimize the difference between
his selected privacy setting and his personal comfort level, and the difference
between his selected privacy setting and the average privacy settings of his peers.
The intuition is that users have an inherent degree of disclosure they feel most
comfortable with, but are also influenced by their peers when making sharing
decisions [7,14]. Since these two dimensions may not be considered equally for all
users, we introduce weights to capture interpersonal differences in susceptibility
to peer pressure. Precisely, we offer the option of including weights on either
the peer pressure or personal comfort components of the user’s utility function
allowing customization of the model for non-homogeneous users and an oppor-
tunity to strengthen the model in the presence of additional information on user
behavior, which the site may learn through observation.

4 Model Overview

We define two optimization problems: one for the SN user and one for the SN
site. The optimal solutions to these problems determine the behavior of the user
and site regarding privacy policies.

4.1 User Model

Our user model extends the model presented in [11] for the modeling of a lower-
bound on information disclosure for membership in the SN. The motivations and
actions of users with respect to content sharing in this framework are consistent
with this prior work, but will be enacted within the constraints of the site’s
problem which is significantly different.

Assume a SN is represented by a graph G = (V,E), where V is a set of users
(represented by vertices in the graph) and E is the set of social connections
(edges) between them. For the remainder of this paper, assume |V | = N . Users
post information to the SN for reasons known only to themselves. Unlike in [30],
we assume users who are perfectly honest, but may choose to omit (or keep pri-
vate) a certain amount of information. Previous work has observed [10,30] that
users have distinct sharing behaviors for different types of information, depend-
ing on the “social” value of such information (e.g., users are more willing to share
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their gender than their phone number). Assume there are M types of informa-
tion. Since it is nontrivial to specify what a piece of information corresponds to
in a SN, we will abstract away from any specific characterization of information,
and assume User i ∈ V accumulates postable information of type j at a rate of
βj
i (t) (given in bits per second). Each user chooses a proportion (probability) of

information of type j to share, denoted by xj
i (t) ∈ [0, 1].

In general, users do not change their privacy policy frequently [22], and thus
we can consider a simplified problem in which we attempt to find optimal values
for (fixed) xj

i (i ∈ {1, . . . , N}, j ∈ {1, . . . , M}). To do this, we define optimality
in terms of:

1. Peer Pressure (and reputation),
2. Comfort level

Comfort level in the context of privacy and information disclosure refers to
the degree of disclosure users feel comfortable with. This notion, often used to
characterize information sharing in online sites (e.g. [1,7]), is also adopted in our
model. Users reaching their optimal comfort level wish not to change any of their
information sharing practices. Reputation and peer pressure are self-explanatory,
and are combined in a single dimension as they are highly correlated [30].

Without loss of generality, focus on one information type, xi ∈ [0, 1]. To
model peer pressure, we assume that individuals are encouraged to behave in
accordance with the norms of their social group. Thus for User i, we define:

x̄−i =

∑
j∈NG(i) vijxj

VG(i)

where vij ≥ 0 and
VG(i) =

∑

j

vij (1)

is the weighted neighborhood size of i in G. If vij = 1 for all j, then VG(i) =
|NG(i)|, the size of the neighborhood of i in G. The neighborhood may be defined
in terms of the social graph of the user, or it may be a more restrictive subset of
peers with whom the user actively interacts. Let the peer pressure function for
User i be given by:

Pi(x) = vifP (x − x̄−i) (2)

where fP is a concave function with maximum at 0 and vi ≥ 0 is the subjective
weight User i places on the peer pressure function. Thus, the payoff Pi(x) is
maximized as xi approaches x̄−i.

We note that an alternate and equally reasonable approach to defining Pi(x)
is as:

P̃i(x) =
∑

j∈NG(i)

vijfP (x − xj) (3)
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where vij ≥ 0. In this case, User i attempts to minimize a weighted function of
the difference in privacy levels from all of his neighbors simultaneously.

Estimated weights on the link between User i and User j might be obtained,
for example, as a function of the frequency and type of online interactions
between them. This formulation increases the complexity of the problem and
ultimately makes computation more cumbersome, but allows a richer model
when more detailed information about users’ relationships and peer influence is
present.

By similar argument, assume that User i has a sharing level x+
i at which he

is happiest. The comfort function fC(z) for User i is given by:

Ci(x) = wifC(x − x+
i )

for wi ≥ 0, which can be thought of as a user’s tendency to act in preference to his
own comfort rather than in response peer pressure. Here again, fC is concave with
maximum at 0, so that the comfort of User i is maximized as xi approaches x+

i .
In practice x+

i may be difficult to determine for an unknown User i. However,
we assume that based on user demographics, as well as observed overall user
behavior for a mass of users, either at the individual or group level, it is possible
to infer of x+

i , or at least an expected value E[x+
i ] within a tolerated window of

error.
Thus, the total objective function for User i is:

Ji(xi;x−i) = Pi(xi)+Ci(xi) = vifP

(

xi −
∑

j∈NG(i) xj

|NG(i)|

)

+wifC(xi −x+
i ) (4)

or, the weighted variant:

J̃i(xi;x−i) = P̃i(xi) + Ci(xi) =
∑

j∈NG(i)

vijfP (xi − xj) + wifC(xi − x+
i ). (5)

Here, x−i indicates the privacy choices of all other users besides i and we write
Ji(xi;x−i) to indicate that User i’s utility is a function not only of his own
decisions, but also of the decisions of the other users.

When fP and fC are concave, the following proposition holds [27]:

Proposition 1. Assume that each xi is constrained to lie in a convex set Xi ⊆
[0, 1] for i = 1, . . . , N . There is at least one value x∗

i for each User i so that every
user’s objective function is simultaneously maximized and (x∗

1, . . . , x
∗
N ) is a Nash

Equilibrium for the multi-player game defined by any combination of objective
functions J1, . . . , JN or J̃1, . . . , J̃N . ��
By similar reasoning, the preceding proposition can be extended to the case of
multiple independent information types. In this case for each j = 1, . . . , M there
is an equilibrium solution xj∗

i i = 1, . . . , N . Correlated payoffs for information
sharing among information types are beyond the scope of the current work.
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In general, in this case, each user would have an information sharing strategy xi ∈
[0, 1]M and a corresponding multi-dimensional payoff function. The existence
of a Nash equilibrium would be guaranteed for convex functions with convex
constraints.

4.2 Site Model for the Determination of a Discrete Set of Privacy
Options for Shared Content

For the remainder of this paper, we will assume a user objective function of the
form J̃i and fix fC(z) = fP (z) = −z2, which is concave with maximum at zero.
Furthermore, and for notational simplicity, we will consider the minimizing form
of the problem in which User i minimizes −J̃i.

Assume the site offers a discrete set of privacy settings l1, . . . , lK ∈ [0, 1]. Each
user must choose from among these options for each piece of shared content. This
is equivalent to choosing a generic privacy policy within a social network. Let
l be the vector of these options. Define:

yij =

{
1 Player i chooses privacy level j

0 otherwise
(6)

these binary variables indicate the privacy levels of each player. Naturally we
require: ∑

j

yij = 1 (7)

Let y be the matrix of yij values. Furthermore:

xi(y; l) =
K∑

j=1

yij lj

For given values yij (i = 1, . . . , N and j = 1, . . . , K), the payoff to Player i is:

Hi(y; l) =
∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2 (8)

Note, this is simply −J̃i. Then the net payoff to the site is:

J(y; l) =
∑

i

⎛

⎝
∑

j

πjyij − λHi

⎞

⎠ , (9)

where πj is the benefit the site receives for a piece of content shared with privacy
setting j and λ is the weight applied to the payoff of the users; i.e., the weight
the site places on user happiness. When y is determined endogenously by the
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players, then the site’s bi-level combinatorial optimization problem is:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
l

J(y; l) =
∑

i

⎛

⎝
∑

j

πjyij − λHi

⎞

⎠

s.t. l1, . . . , lK ∈ [0, 1]
lj ≤ lj+1 j = 1, . . . K − 1

∀i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi(y; l) = min
yi

∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2

s.t. xi =
K∑

j=1

yij lj

∑

j

yij = 1

yij ∈ {0, 1}

(10)

In this problem, each User i must decide the value of yij independently of all
other users, while being simultaneously affected by her choice. It is clear that
the sub-game has a solution in mixed strategies from Proposition 1, but what is
less clear is whether it has a solution in pure strategies.

Consider the user game-theoretic sub-problem:

∀i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi(y; l) = min
yi

∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2

s.t. xi =
K∑

j=1

yij lj

∑

j

yij = 1

yij ∈ {0, 1}
Define the energy function:

H0(y; l) =
∑

i∈V

∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2 (11)

It is straightforward to see there is a y∗ that minimizes H0(y; l). We characterize
the conditions under which this y∗ is a Nash Equilibrium in pure strategies for
the players. Suppose the optimal solution y∗ yields x∗

i with x∗
i = lj for some

j ∈ {1, . . . , K}. If User i chooses to deviate from this strategy, then her change
in payoff is:

ΔHi = H∗
i −Hi =

∑

j∈N(i)

vij
[
(x∗

i − x∗
j )

2 − (xi − x∗
j )

2
]
+wi

[
(x∗

i − x+
i )2 − (xi − x+

i )2
]

(12)
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while:

ΔHj = H∗
j − Hj = vji

[
(x∗

j − x∗
i )

2 − (x∗
j − xi)2

]
= vji

[
(x∗

i − x∗
j )

2 − (xi − x∗
j )

2
]

(13)
for each j ∈ N(i). Under a symmetric weight assumption (i.e., vij = vji), we
have:

ΔH0 =
∑

i∈V

ΔHi = 2
∑

j∈N(i)

[vij(x∗
i − x∗

j )
2 − (xi − x∗

j )
2]+

wi[(x∗
i − x+

i )2 − (xi − x+
i )2] (14)

Let:

A =
∑

j∈N(i)

vij
[
(x∗

i − x∗
j )

2 − (xi − x∗
j )

2
]

B = wi

[
(x∗

i − x+
i )2 − (xi − x+

i )2
]

Then ΔHi = A + B and ΔH0 = 2A + B. The fact that y∗ is a minimizer for
H0 implies that ΔH0 ≤ 0 otherwise, y∗ could not have been a minimizer. Thus
2A+B ≤ 0. For a rational Player i a change in strategy make sense if (and only
if) A + B > 0. There are four cases to consider:

Case 1: If A ≤ 0 and B ≥ 0, and since 2A + B ≤ 0 and A + B > 0, we have
|A| < |B| ≤ 2|A|. That is, Player i has benefitted by moving closer to her
comfort value, sacrificing reputation. If this is not the case, then there is no
rational reason for Player i to change strategies.

Case 2: If A,B ≤ 0, then immediately ΔHi ≤ 0 and Player i has not benefitted
from changing.

Case 3: If A ≥ 0 and B ≤ 0, then 2A + B ≤ 0 implies |B| ≥ |A| which implies
A + B ≤ 0 and thus Player i would not change to this alternate strategy.

Case 4: If A,B ≥ 0, then 2A + B ≥ 0 and y∗ was either not a minimum or (in
the case when A = B = 0) not a unique minimum.

It follows that only Case 1 prevents a global minimizer for H0 from being a
Nash equilibrium. For wi ≈ 0 we have |B| ≈ 0 and in this case, we see necessarily
that A ≤ 0. Thus the energy minimizing solution is a Nash equilibrium. The
following theorem follows naturally from this analysis:

Theorem 1. For any set of comfort values
{
x+
i

}N

i=1
and fixed privacy levels

l = 〈l1, . . . , lK〉 there is an ε ≥ 0 so that if wi ≤ ε for i = 1, . . . N , then there is
a pure strategy Nash equilibrium for the following game:
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∀i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi(y; l) = min
yi

∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2

s.t. xi =
K∑

j=1

yij lj

∑

j

yij = 1

yij ∈ {0, 1}

(15)

��
Remark 1. The results in Theorem 1 can be generalized to a game of the form:

∀i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi(y; l) = min
yi

∑

j∈N(i)

vijfP (xi − xj) + wifC(xi − x+
i )

s.t. xi =
K∑

j=1

yij lj

∑

j

yij = 1

yij ∈ {0, 1}
for appropriately chosen convex functions fC and fP with minima at 0. Moreover,
for wi ≈ 0 the bi-level problem is simply a bi-level combinatorial optimization
problem.

Remark 2. If wi � 0, then the player will conform more closely to her comfort
level and for extremely high values of wi (for i = 1, . . . , N) there is again a pure
strategy Nash equilibrium computed by finding the lk value as close as possi-
ble to Player i’s comfort level. Thus, settings with no pure strategy equilibria
occur when the Players have values wi large enough to prevent a pure strategy
equilibrium consistent with social conformity, but not large enough to cause all
players to follow their own comfort signal.

5 An Approximation Algorithm for Arbitrary
Graphs - A Simulation

We have characterized the circumstances under which there exists a pure strategy
Nash equilibrium for the bi-level optimization problem which describes the site’s
task of choosing a discrete set of privacy settings to optimize its payoff. Namely,
this equilibrium exists in cases of extremely weak or extremely strong comfort
level effects. Even in the case that such an equilibrium exists, we anticipate
that finding the solution explicitly is NP-hard. Bi-level optimization problems
are NP-hard [13], and even evaluating a solution for optimality is NP-hard [36].
Accordingly, an alternate approach in which we find an approximate solution is
needed.
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We argue that an approximation algorithm is also a more realistic approach
in practice, since real SNs do not typically have the sharing comfort level for
each individual user or potentially weighted influences amongst users’ peers a
priori. These parameters of the model are inferred through observation of user
behavior under varying constraints, often using similar techniques to those we
employ in the sequel; that is a site analyzes users’ responses to minor alterations
in its policies and recalibrates accordingly.

Here, we present a two-part algorithm for approximately computing the users’
and site’s utility functions on an arbitrary graphs in order to determine a discrete
set of privacy settings beyond the determined lower bound to be made available
to users in the SN. The Player Algorithm uses fictitious play simulating the con-
vergence of the players’ strategies to a strategy vector dependent on the players’
personal comfort levels and the fixed set of privacy options determined by the SN
site. Note, from Theorem 1, this may in fact be a pure strategy Nash equilibrium
under appropriate assumptions.

To determine the full set l of privacy settings to be offered to users, the Site
Algorithm wraps around the Player Algorithm as follows. The site lets l1 = 0.
Since players are captive to the site in this model, all players adopt strategy l1.
The level of unhappiness each player experiences for being forced to choose l1
is calculated. Next, the site makes available a second option 12 = 11 + δ. The
Player Algorithm uses fictitious play to simulate the convergence of each player’s
strategy to either 11 or 12. A corresponding payoff for the site is calculated.
Provided that there is at least one user whose comfort level for sharing is greater
than l1 and δ is small enough, the addition of option l2 will increase the site’s
payoff. The site moves l2 up by increments of δ, monitoring users’ responses at
each move, recalculating the corresponding site payoff and stopping when this
payoff starts to decrease. Intuitively, when l2 moves too far above individuals’
comfort levels, users will become increasingly unhappy and eventually revert
back to sharing at l1 rather than l2. The local optimum achieved here is taken
as l2 ∈ l. Following this, the site makes available a third option l3 = l2 + δ and
allows players to converge on strategies from the set of three options available,
incrementing l3 as before until a local optimum is achieved. At this time, l3 is
added to l. This heuristic is repeated and the set l of privacy options grows by
one as each local optimum is discovered until no further gains in site payoff or
user happiness can be achieved, which is guaranteed to occur at a value no higher
than the comfort level of the site’s most privacy-lenient user. Pseudocode for the
Player Algorithm and Site Algorithm are given in Figs. 2 and 3, respectively.

Figure 4 visualizes a well-known, real-world social network of members of a
karate club [39]. In the absence of any constraints instituted by the site, equiv-
alently in the case that each user may select his optimal privacy setting for a
given piece of content, the trajectories of users’ selections are guided by inherent
personal comfort with sharing and the influence of their peers. Immediate neigh-
bors in the graph are considered peers. We simulate the trajectory of privacy
selections for member-users of the karate club network, first given the player
algorithm described above in the unconstrained case, namely assuming that
users have access to the complete set of options on the interval [0, 1]. Figure 5
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Fig. 2. PlayerAlgorithm Fig. 3. Site Algorithm

Fig. 4. A visualisation of the karate club network.

Fig. 5. A visualisation of players’ strategies over time, initialised randomly, according
to the user model
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illustrates players’ strategies over time. Strategies are initialized as user’s indi-
vidual sharing comfort levels and comfort levels are selected uniformly randomly
from the interval [0, 1]. Notice that in this case, the vector of user strategies con-
verges to equilibrium, as guaranteed by Proposition 1.

As described, the site’s approximation algorithm influences the user model
by iteratively choosing a discrete set of options to be made available to users,
simulating user behavior given those constraints, and then adjusting the set of
options by small increments until local optima are discovered. A visualization of
site payoff during this process simulated over the karate club network is given in
Fig. 6. Local optima occur at x = {0.4, 0.6, 0.72, 0.88}, so the site determines the
set of privacy options as l1 = 0.4, l2 = 0.6, l3 = 0.72, l4 = 0.88 and l5 = 1. User
comforts are the same as those given in Fig. 5, and we choose δ = 0.04. Note
that the choice of δ may indicate a site’s willingness to offer a finer granularity of
privacy options to its users. A greater value of δ will lead to the discovery of fewer
local optima, while smaller delta will yield more. This choice may also depend
on the initial set of user comforts and the site business model. To this extent,
the general algorithm we present here is the framework for a more personalized
algorithm representative of a site’s policies, practices and user base.

0.2 0.4 0.6 0.8 1.0
Privacy Setting

15

10

5

5

10

Site Payoff

Fig. 6. Site payoff as privacy options are iteratively made available

6 Experimental Results

We designed and executed experiments to evaluate two of our key assumptions
with a user study involving 60 participants in a simulated social network. First,
our core model assumes that users’ sharing decisions are influenced by a weighted
sum of peer influence and personal comfort. We aim to determine whether pos-
tulated effects peer influence may be observed, even in a simulated context.
Second, we seek to determine whether the iterative approach we take in our
approximation algorithm may be assumed to in fact approximate the optimal
discrete set of privacy options offered by the site. Hypothesizing that it will, we
expect to rule out the notion that iterative presentation of an increased number
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Fig. 7. Sample screenshot from Phase 2

of sharing options will significantly alter or confuse optimal individual prefer-
ences. Put more simply, users will not change their decision if they are offered an
(optimal) set of privacy options l in one shot verses if l is iteratively built. These
two assumptions are at the core of our user model and site model, respectively,
and therefore validating them gives confidence in theoretical findings.

Subjects were presented with a series of images and asked to select a privacy
setting for each, to be uploaded to social media. We organized the study in three
distinct “phases”.

1. In Phase 1 of our experiment, subjects were shown 15 images and given
five sharing options from which to choose for each, i.e., “only me”, “selected
friends”, “friends”, “my network” and “public”.

2. In Phase 2, subjects were shown the same images again and asked to choose
from amongst the same options, but with the addition of the privacy selections
of four of the subject’s”friends” listed next to each image (see Fig. 7 for a
sample screenshot). In attempt to create a more realistic sense of friendship
between the subject and the simulated users, we endowed each simulated
user with a profile page including demographic information, photos and other
personal details and hyperlinked these profile pages throughout. Subjects were
divided into several subgroups and treated to three variations of peer pressure
in which friends’ selections were skewed towards more private (skew-down),
more public (skew-up) or random. In Sect. 6.1, we compare the selections
of each user in Phase 1 (which we take as a baseline) with their selections
in Phase 2. We expect that users may be influenced to increase their privacy
restrictions when seeing that their peers are sharing more conservatively than
they are, while on the other hand users may feel comfortable sharing more
freely when their friends do the same.
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3. Phase 3 was designed to test whether the iterative addition of privacy options
(see Sect. 5) would influence users’ ultimate privacy selections. Assuming a
fixed set of options (i.e., l1 =“only me”, l2 =“selected friends”, l3 =“friends”,
l4 =“my network”, l5 =“public”), we iteratively presented subjects with a
subset of photos from Phase 1 and Phase 2. At first, subjects were offered
only l1 and l2 as privacy settings, next l1, l2 and l3, subsequently l1 through
l4, and finally l1 through l5. Variants of Phase 3 incorporating skew-down,
skew-up and random peer pressure, implemented identically as in Phase 2,
were also included for subsets of participants. In Sect. 6.2, we compare the
selections of each user in Phase 2 with the their selections in the final iteration
of Phase 3.

Participants in our study were 68% female and 32% male, with mean age
25.6 and standard deviation 2.98. In an initial survey preceding the experiment
100% of subjects claimed to have an account with at least one social media
site, with 92% asserting that they maintain at least one “comprehensive” social
media profile. On average, subjects claimed to participate in 3.4 different social
networks, including Facebook, Instagram, Twitter, LinkedIn, Pinterest, Google+
and Vine.

6.1 Experimental Results: Peer Pressure Effects on Privacy
Preferences

With respect to peer pressure, subjects were queried during the initial survey
on several points related to privacy and peer pressure in content sharing. Over
half (54.7%) of subjects admitted to sometimes, often or always posting content
with one privacy setting and later changing their mind and revising this setting,
with 70% of these subjects citing peer pressure as the reason for the revision.

In Table 1, we present the results of a one-factor analysis of variance
(ANOVA) on change from baseline privacy selections for users treated with skew-
down, skew-up or random peer influence in Phase 2. To quantify privacy options,
we let l1 = 1, l2 = 2, l3 = 3, l4 = 4 and l5 = 5. For each subject, for each image,
we let change from baseline be defined as (value of selection in Phase 2)-(value
of selection in Phase 1). Note that a significant change in user sharing is detected
in both subgroups subjected to a consistent peer pressure in either direction of
more or less sharing. As might be expected, no significant change in sharing is
detected in the random pressure control group. Of note, the most statistically
significant change is observed when users are exposed to skew-down peer pres-
sure, that is, when participants observe a change of their friends’ privacy settings
toward more conservative choices. This finding is consistent with the participants
response of change of settings mentioned above, and also in line with existing
research in this field [4,37], which has shown how users may change their mind
with respect to sharing and may tend to be more conservative once they see the
“network” behavior or reactions to their choices.

Follow-on ANOVA analyses blocking on subjects and images also give insight
into more subtle user behavior dynamics. In both the skew-up and skew-down
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groups, subject effects (i.e., the affect a subject’s identity had on output privacy
settings) were highly significant (p ≈ 0). This finding is intuitive and serves
as strong justification for the inclusion of the parameter vi in Eq. 2. That is,
we must consider individual differences in susceptibility to peer pressure when
implementing this type of model. Interestingly, an image effect was present in one
of the experimental groups as well. Specifically, a significant effect was observed
when image number was treated as an input in the skew-up group (p = 0.0013)
but not for skew-down (p = 0.1887). When considered alongside the strength of
skew-down peer pressure effects noted in Table 1, we suggest that these finding
may again indicate users’ readiness to make more conservative sharing choices
for all photos, but hesitance to share more freely for specific images they would
prefer to keep private, even when influenced to do so.

Table 1. Change from baseline after exposure to peer influence (Phase 2)

Subjects Average Change p-Value

Skew-Down 17 -0.305 0.0067

Skew-Up 19 +0.192 0.049

Random 17 -0.086 0.375

6.2 Experimental Results: Iterative Approximation of Privacy
Preferences

We have argued that using an approximation algorithm is both necessary and
realistic, in the context of our bi-level optimization problem describing the site’s
task of choosing an optimal set of privacy options to offer its users. We here
seek to validate the notion that an iterative approach like the one we take in
our proposed algorithm does not disturb players’ optimal privacy selections as
determined in the theoretical case. Following we present the results of Phase 3
of the experiment, as described above.

For this analysis, we again separate study participants into subgroups by the
peer pressure to which they were exposed, if any. Table 2 gives the results of a
one-factor analysis of variance (ANOVA) on change from Phase 2 privacy selec-
tions for users treated with skew-down, skew-up or random peer influence. As a
control group for this Phase, we keep a subset of subjects away from any expo-
sure to peer pressure (that is, these subjects did not participate in Phase 2) and
compare their results for Phase 3 with their Phase 1 baseline selections. Findings
here indicate no significant change in users’ final privacy selections due to the
iterative nature of presentation of the options in any of the experimental groups,
validating the approximation-algorithm approach as a reasonable alternative for
modelling user behavior in cases that closed-form solutions are intractable.

We note here that Phase 3 studies user behavior given that options l1, l2 and
so forth are presented additively one by one. The approximation algorithm as it
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Table 2. Change from Phase 2 selections in the iterated model (Phase 3)

Subjects Average Change p-Value

No Peer Pressure 7 0.086 0.774

Skew-Down 17 -0.28 0.19

Skew-Up 19 -0.2 0.282

Random 17 -0.117 0.527

presented is deployed accordingly, but also includes a routine for the selection
of the set of values {li} making very small, incremental changes to each li and
monitoring users’ responses throughout.

7 Conclusion

In this paper, we have presented a model for privacy decision-making in the
context of online social networks. We have modeled the site’s role in setting
privacy policies that can help to retain users while also optimizing the site’s
payoff. Our work lays the foundation for further game-theoretic modeling of
privacy-related behaviors in online SNs toward the better understanding of the
interplay and repercussions of site and user choices.

As future work, we will refine the outlined approximation algorithm, with
particular focus on how incremental privacy boundaries could actually be offered
to end users. We also plan to investigate how changes to the social network
topology and user attitudes towards privacy over time may affect this game.
Finally, we plan to carry out more extensive user studies to validate our findings.
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