
A Security Game Model for Environment
Protection in the Presence of an Alarm System

Nicola Basilico1(B), Giuseppe De Nittis2, and Nicola Gatti2

1 Department of Computer Science, University of Milan, Milan, Italy
nicola.basilico@unimi.it

2 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

Abstract. We propose, to the best of our knowledge, the first Security
Game where a Defender is supported by a spatially uncertain alarm sys-
tem which non–deterministically generates signals once a target is under
attack. Spatial uncertainty is common when securing large environments,
e.g., for wildlife protection. We show that finding the equilibrium for this
game is FNP–hard even in the zero–sum case and we provide both an
exact algorithm and a heuristic algorithm to deal with it. Without false
positives and missed detections, the best patrolling strategy reduces to
stay in a place, wait for a signal, and respond to it at best. This strategy
is optimal even with non–negligible missed detection rates.

1 Introduction

Security Games model the task of protecting physical environments as a non–
cooperative game between a Defender and an Attacker [12]. Usually taking place
under a Stackelberg (a.k.a. leader–follower) paradigm [18], they have been shown
to outperform other approaches such as, e.g., MDPs [16] and they have been
employed in a number of on–the–field systems [9,13]. Recent research lines aim
at refining the models by incorporating features from real–world applications,
e.g., in [1,20] the Attacker may have different observation models and limited
planning capabilities, in [6] realistic aspects of infrastructures to be protected
are taken into account. Patrolling is one of the recently studied applications
where the Defender controls mobile resources (such as patrolling robots) and
the Attacker aims at compromising some locations denoted as targets [2]. Equi-
librium strategies prescribe how the Defender should schedule resources in time
to maximize its expected utility.

Infrastructures and environments that need to be surveilled are usually char-
acterized by the presence of locally installed sensory systems. Detection sensors
are able to gather measurements about suspicious events that an alarm sys-
tem can process to generate alarm signals. These physical devices often present
some degree of inaccuracy, such as false positives rates or missed detections
rates. Alarm signals are spatially uncertain, meaning that they do not precisely
localize the detected event, but provide a probabilistic belief over the locations

c© Springer International Publishing Switzerland 2015
MHR Khouzani et al. (Eds.): GameSec 2015, LNCS 9406, pp. 192–207, 2015.
DOI: 10.1007/978-3-319-25594-1 11

A Security Game Model for Environment Protection 193

potentially under attack. Spatial uncertainty is common when dealing with com-
plex infrastructures or large open environments, where a broad area surveillance
activity, in which an attack is detected but only approximately localized, triggers
a local investigation activity, where guards have to find and clear the attack. A
similar approach is adopted in a number of real–world problems where cheap and
spatially uncertain sensors cover the targets to be protected. In [10], the prob-
lem of poaching of endangered species is studied and a device to help rangers
against this threat is proposed. The introduction of cheap wide–range sensors,
affordable by the conservation agencies, could significantly improve the behavior
of the rangers, giving them information about the areas in which a potential
attack is occurring. Other applications include UAVs surveillance [4], wildfires
detection with CCD cameras [14] and monitoring agricultural fields [11]. In [21]
a system for surveillance based on wireless sensor networks is proposed.

To the best of our knowledge, [8] is the only work integrating sensors in
Security Games. It assumes sensors with no spatial uncertainty in detecting
attacks on single targets. When no false positives are possible, an easy variation
of the algorithm for the case without sensors [2] can be used, while, when false
positives are present, the problem is computationally intractable.

Contributions. In this paper, we propose the first Security Game model that
integrates a spatially uncertain alarm system in game–theoretic settings for
patrolling. Each alarm signal carries the information about the set of targets that
can be under attack and is described by a probability of being generated when
each target is attacked. Moreover, the Defender can control only one patroller.
We show that finding the equilibrium is FNP–hard even in the zero–sum case
and we give an exact exponential–time algorithm and a heuristic algorithm to
deal with it. When no false positives and no missed detections are present, the
optimal Defender strategy is to stay in a fixed location, wait for a signal, and
respond to it at best. This strategy keeps being optimal even when non–negligible
missed detection rates are allowed. Finally, we experimentally evaluate the scal-
ability of our exact algorithm and we compare it with respect to the heuristic
one in terms of solution quality.

2 Problem Formulation

Basic patrolling security game models [2,19] are turn–based extensive–form
games with infinite horizon and imperfect information between two agents: an
Attacker A and a Defender D. The environment to be patrolled is formally
described by an undirected connected graph G = (V,E). Each edge (i, j) ∈ E
requires one turn to be traversed, while we denote with ω∗

i,j the temporal cost (in
turns) of the shortest path between any i and j ∈ V . We denote by T ⊆ V the
subset of vertices called targets that have some value for D and A. Each target
t ∈ T is characterized by a value π(t) ∈ (0, 1] and a penetration time d(t) ∈ N

measuring the number of turns needed to complete an attack over t. At each
turn of the game, agents A and D play simultaneously: if A has not attacked
in the previous turns, it can observe the position of D in the graph and decides

194 N. Basilico et al.

whether to attack a target1 or to wait for a turn, while D has no information
about the actions undertaken by A in previous turns and decides the next vertex
to patrol among all those adjacent to the current one. If D patrols a target t
that is under attack of A before d(t), A is captured. The game is constant sum
(then equivalent to a zero sum game): if A is captured, D receives a utility of 1
and A receives 0, while, if an attack over t has success, D receives 1 − π(t) and
A receives π(t); finally, if A waits forever, D receives 1 and A receives 0. The
appropriate solution concept is the leader–follower equilibrium. The game being
constant sum, the best leader’s strategy is its maxmin/minmax strategy.

Our Patrolling Game (PG) extends the above model introducing a spatial
uncertain alarm system available to D. The system is defined as a tuple (S, p)
where S = {s1, · · · , sm} is a set of m ≥ 1 signals and p : S × T → [0, 1] is a
function that specifies the probability of having the system generating a signal
s given that target t has been attacked. With a slight abuse of notation, for a
signal s we define T (s) = {t ∈ T | p(s | t) > 0} and, similarly, for a target t we
have S(t) = {s ∈ S | p(s | t) > 0}. In this work, we initially assume that the
alarm system is not affected by false positives, i.e. a signal is generated but no
attack has occurred, or missed detections, i.e. the signal is not generated even
though an attack has occurred. In our model, at each turn, before deciding its
next move, agent D can observe whether or not a signal has been generated by
the alarm system.

We observe that, since no false positive and no missed detection are present,
D will always receive a signal as soon as A starts an attack. This allows us to
identify, in our game model, a number of subgames, each in which D is in a
given vertex v and an attack is started. The solution to our PG can be safely
found by, at first, finding the best strategies of D in responding to a signal from
any v ∈ V and, subsequently, on the basis of such signal–response strategies, by
finding the best patrolling strategy over G. In Sect. 3 , we present algorithms to
find the best signal–response strategies, while, in Sect. 4, we focus on the best
patrolling strategies.

3 Finding the Best Signal–Response Strategy

We study the subgame in which D is in a vertex v and A decides to attack. We
call it Signal–Response Game given v (SRG–v). The actions available to A are
given by T and its strategy σA

v is defined as a probability distribution over T . We
denote with σD

v,s the generic strategy of D when it is at v and receives a signal
s and we discuss below the problem of defining the space of actions available
to D. We denote with gv the expected utility of A, the expected utility of D is
1 − gv. We show that, independently of how we define the space of actions of D,
the problem of finding the best σD

v = (σD
v,s1

, . . . , σD
v,sm

) is FNP–hard [5]. We do
this by assessing the complexity of its decision version.

1 As is customary, we assume that A can instantly reach the target of its attack. This
assumption can be easily relaxed as shown in [3].

A Security Game Model for Environment Protection 195

Definition 1. k–SRG–v
INSTANCE: an instance of SRG–v as defined above;
QUESTION: is there σD such that gv ≤ k?

Theorem 1. k–SRG–v is NP–hard.

Proof. Let us consider the following reduction from HAMILTONIAN–PATH.
Given an instance of HAMILTONIAN–PATH GH = (VH , EH), we build an
instance for k–SRG–v as:

– V = VH ∪ {v};
– E = EH ∪ {(v, h),∀h ∈ VH};
– T = VH ;
– d(t) = |VH |;
– π(t) = 1, for all t ∈ T ;
– S = {s};
– p(s | t) = 1, for all t ∈ T ;
– k = 0.

If gs ≤ 0, then there must exist a path starting from v and visiting all the targets
in T by d = |VH |. Given the edge costs and penetration times assigned in the
above construction, the path must visit each target exactly once. Therefore, since
T = VH , the game’s value is less or equal than zero if and only if GH admits an
Hamiltonian path. This concludes the proof. �
Given that an SRG–v is a subgame of the PG, it follows that finding the best
strategy of D in PG is FNP–hard. Since computing maxmin/minmax strategies
can be done in polynomial time in the size of the payoffs matrix by means of
linear programming, the difficulty of SRG–v resides in the generation of the
payoffs matrix whose size is in the worst case exponential in the size of the
graph (unless P = NP).

Now we focus on the problem of defining the set of actions available to D
when it is in v and receives signal s. We define a generic route r as a sequence of
vertices visited by D. We denote with r(i) the i–th vertex visited along r and with
Ar(r(i)) =

∑i−1
h=0 ω∗

r(h),r(h+1) the time needed by D to visit r(i) starting from
r(0). We restrict our attention on a subset of routes, that we call covering routes,
with the following properties: r(0) = v (i.e., the starting vertex is v), ∀i ≥ 1 it
holds r(i) ∈ T (s), where s is the signal generated by the alarm system (i.e.,
only targets potentially under attack are visited) and ∀i ≥ 1 it holds Ar(r(i)) ≤
d(r(i)) (i.e., all the targets are visited within their penetration times) with D
moving on the shortest paths between each pair of targets. Notice that a covering
route r may visit a strict subset of T (s). The set of actions available to D is
given by all the covering routes. Given a covering route r, with a slight abuse
of notation, we define the covering set T (r) as the set of targets visited along
r and we denote with c(r) the temporal cost of the corresponding path, that is
c(r) = Ar(r(|T (r)|)). Notice that in the worst case the number of covering routes
is O(|T (s)||T (s)|), but using all of them may be unnecessary since some covering

196 N. Basilico et al.

routes will never be played by D due to strategy domination and therefore they
can be safely discarded [15]. We introduce two definitions of dominance that we
use below.

Definition 2 (Intra–Set Dominance). Given two different covering routes
r, r′ for (v, s) such that T (r) = T (r′), if c(r) ≤ c(r′) then r dominates r′.

Definition 3 (Inter–Set Dominance). Given two different covering routes
r, r′ for (v, s), if T (r) ⊃ T (r′) then r dominates r′.

Definition 2 suggests that we can safely use only one route per covering set.
Covering sets suffice for computing the payoffs matrix of the game and in
the worst case are O(2|T (s)|), with a remarkable reduction of the search space
w.r.t. O(|T (s)||T (s)|). However, any algorithm working directly with covering sets
instead of covering routes should also decide whether or not a set of targets is a
covering one: this problem is hard.

Definition 4. COV–SET
INSTANCE: a graph G = (V,E), a target set T with penetration times d, and a
starting vertex v;
QUESTION: is T a covering set for some covering route r?

By trivially adapting the same reduction for Theorem1 we can state the
following theorem.

Theorem 2. COV–SET is NP–complete.

Computing a covering route for a given set of targets (or deciding that no cover-
ing route exists) is not doable in polynomial time unless P
= NP. In addition,
Theorem 2 suggests that no algorithm for COV–SET can have complexity better
than O(2|T (s)|) unless there is a better algorithm for HAMILTONIAN–PATH
than the best algorithm known in the literature. This seems to suggest that
enumerating all the possible subsets of targets and, for each of them, checking
whether or not it is covering requires a complexity worse than O(2|T (s)|). Sur-
prisingly, we show in the next section that there is an algorithm with complexity
O(2|T (s)|) (neglecting polynomial terms) to enumerate all and only the cover-
ing sets and, for each of them, one covering route. Therefore, the complexity of
our algorithm matches (neglecting polynomial terms) the complexity of the best
known algorithm for HAMILTONIAN–PATH.

Definition 3 suggests that we can reduce further the set of actions available
to D. Given a covering set Q (where Q = T (r) for some r), we say that Q is
maximal if there is no route r′ such that Q ⊂ T (r′). In the best case, when
there is a route covering all the targets, the number of maximal covering sets
is 1, while the number of covering sets is 2|T (s)|, thus considering only maximal
covering sets allows an exponential reduction of the payoffs matrix. In the worst
case, when all the possible subsets of |T (s)|/2 targets are maximal covering
sets, the number of maximal covering sets is O(2|T (s)|−2), while the number of
covering sets is O(2|T (s)|−1), allowing a reduction of the payoffs matrix by a

A Security Game Model for Environment Protection 197

factor of 2. Furthermore, if we knew a priori that Q is a maximal covering set
we could avoid to search for covering routes for any set of targets that strictly
contains Q. When designing an algorithm to solve this problem, Definition 3
could then be exploited to introduce some kind of pruning technique for saving
average compute time. However, the following result shows that deciding whether
a covering set is maximal is hard.

Definition 5. MAX–COV–SET
INSTANCE: a graph G = (V,E), a target set (T, d), a starting vertex v, and a
covering set T ′ ⊂ T ;
QUESTION: is T ′ maximal?

Theorem 3. MAX–COV–SET is in co–NP and no polynomial time for it exists
unless P = NP.

Proof. Any covering route r such that T (r) ⊃ T ′ is a NO certificate for MAX–
COV–SET, placing it in co–NP. (Notice that, due to Theorem 2, having a cover-
ing set would not suffice given that we cannot verify in polynomial time whether
it is actually covering unless P = NP.)

Let us suppose we have a polynomial–time algorithm for MAX–COV–SET,
called A. Then (since P ⊆ NP ∩ co-NP) we have a polynomial algorithm for
the complement problem, i.e., deciding whether all the covering routes for T ′

are dominated. Let us consider the following algorithm: given an instance for
COV–SET specified by graph G = (V,E), a set of target T with penetration
times d, and a starting vertex v:

1. assign to targets in T a lexicographic order t1, t2, . . . , t|T |;
2. for every t ∈ T , verify if {t} is a covering set in O(n) time by comparing ω∗

v,t

and d(t); if at least one is not a covering set, then output NO and terminate;
otherwise set T̂ = {t1} and k = 2;

3. apply algorithm A on the following instance: graph G = (V,E), target set
{T̂ ∪{tk}, d̂} (where d̂ is d restricted to T̂ ∪{tk}), start vertex v, and covering
set T̂ ;

4. if A’s output is YES (that is, T̂ is not maximal) then set T̂ = T̂ ∪ {tk},
k = k + 1 and restart from step 3; if A’s output is NO and k = |T | then
output YES; if A’s output is NO and k < |T | then output NO;

Thus, the existence of A would imply the existence of a polynomial algorithm for
COV–SET which (under P
= NP) would contradict Theorem2. This concludes
the proof. �
Nevertheless, we show in the following section that there is an algorithm enu-
merating all and only the maximal covering sets and one route for each of them
(which potentially leads to an exponential reduction of the time needed for solv-
ing the linear program) with only an additional polynomial cost w.r.t. the enu-
meration of all the covering sets and therefore, neglecting polynomial terms, has
a complexity O(2|T (s)|).

198 N. Basilico et al.

3.1 Computing D’s actions

Here we provide an algorithm to find the set of actions available to D when
it is in v and receives signal s. Let us denote Ck

v,t a collection of covering sets
Qk

v,ts such that Qk
v,t has cardinality k and admits a covering route r whose

starting vertex is v and whose last vertex is t. Each Qk
v,t is associated with a

cost c(Qk
v,t) representing the temporal cost of the shortest covering route for

Qk
v,t that specifies t as the k–th target to visit. Upon this basic structure, our

algorithm iteratively computes covering sets collections and costs for increasing
cardinalities, that is from k = 1 possibly up to k = |T | including one target
at each iteration. Using a dynamic programming approach, we assume to have
solved up to cardinality k − 1 and we specify how to complete the task for
cardinality k. Detailed steps are reported in Algorithm 1, while in the following
we provide an intuitive description. Given Qk−1

v,t , we can compute a set of targets
Q+ (Line 6) such that for each target t′ ∈ Q+, t′
∈ Qk−1

v,t and, if t′ is appended to
the shortest covering route for Qk−1

v,t , it will be visited before d(t′). If Q+ is not
empty, for each t′ ∈ Q+, we extend Qk−1

v,t (Line 8) by including it and naming the
resulting covering set as Qk

v,t′ since it has cardinality k and we know it admits a
covering route with last vertex t′. Such route is obtainable by appending t′ to the
covering route for Qk−1

v,t and has cost c(Qk−1
v,t) + ω∗

t,t′ . This value is assumed to
be the cost of the extended covering set. (In Line 9 we make use of a procedure
Search(Q,C) which outputs Q if Q ∈ C and ∅ otherwise). If such extended
covering set is not present in collection Ck

v,t′ or is already present with a higher
cost (Line 10), then collection and cost are updated (Lines 11 and 12). After
the iteration for cardinality k is completed, for each covering set Q in collection
Ck

v,t, c(Q) represents the temporal cost of the shortest covering route with t as
last target.

Algorithm 1. ComputeCovSets Basic(v, s)
1: ∀t ∈ T (s), k ∈ {2, . . . , |T (s)|}, C1

v,t = {t}, Ck
v,t = ∅

2: ∀t ∈ T (s), c({t}) = ω∗
v,t, c(∅) = ∞

3: for all k ∈ {2 . . . |T (s)|} do
4: for all t ∈ T (s) do

5: for all Qk−1
v,t ∈ Ck−1

v,t do

6: Q+ = {t′ ∈ T (s) \ Qk−1
v,t | c(Qk−1

v,t) + ω∗
t,t′ ≤ d(t′)}

7: for all t′ ∈ Q+ do

8: Qk
v,t′ = Qk−1

v,t ∪ {t′}
9: U = Search(Qk

v,t′ , Ck
v,t′)

10: if c(U) > c(Qk−1
v,t) + ω∗

t,t′ then

11: Ck
v,t′ = Ck

v,t′ ∪ {Qk
v,t′}

12: c(Qk
v,t′) = c(Qk−1

v,t) + ω∗
t,t′

13: end if
14: end for
15: end for
16: end for
17: end for

A Security Game Model for Environment Protection 199

After Algorithm 1 completed its execution, for any arbitrary T ′ ⊆ T we can
easily obtain the temporal cost of its shortest covering route as

c∗(T ′) = min
Q∈Y|T ′|

c(Q)

where Y|T ′| = ∪t∈T {Search(T ′, C|T ′|
v,t)} (notice that if T ′ is not a covering set

then c∗(T ′) = ∞). Algorithm 1 is dubbed “basic” because it does not specify
how to carry out two sub–tasks we describe in the following.

The first one is the annotation of dominated covering sets. Each time Lines
11 and 12 are executed, a covering set is added to some collection. Let us call
it Q and assume it has cardinality k. Each time a new Q has to be included
at cardinality k, we mark all the covering sets at cardinality k − 1 that are
dominated by Q (as per Definition 3). The sets that can be dominated are in
the worst case |Q|, each of them has to be searched in collection Ck−1

v,t for each
feasible terminal t and, if found, marked as dominated. The number of terminal
targets and the cardinality of Q are at most n and the Search procedure can
be efficiently executed in O(|T (s)|) using a binary tree approach. Therefore,
dominated covering sets can be annotated with a O(|T (s)|3) extra cost at each
iteration of Algorithm 1. We can only mark and not delete dominated covering
sets since they can generate non–dominated ones.

The second task is the generation of routes. Algorithm 1 focuses on covering
sets and does not maintain a list of corresponding routes. In fact, to build the
payoffs matrix for SRG–v we do not strictly need covering routes since covering
sets would suffice to determine payoffs. However, we do need them operatively
since D should know in which order targets have to be covered to physically play
an action. This task can be accomplished by maintaining an additional list of
routes where each route is obtained by appending terminal vertex t′ to the route
stored for Qk−1

v,t when set Qk−1
v,t ∪ {t′} is included in its corresponding collection.

At the end of the algorithm only routes that correspond to non–dominated
covering sets are filtered out. Maintaining such a list introduces a O(1) cost.

Algorithm 1, in the worst case, has to compute covering sets up to cardinality
|T (s)|. The number of operations is then bounded by

∑|T (s)|
i=1

(|T (s)|
i−1

)
i(|T (s)|−1)

which is O(|T (s)|22|T (s)|). With annotations of dominances and routes generation
the whole algorithm yields a worst case complexity of O(|T (s)|52|T (s)|).

3.2 A Heuristic Algorithm

We know that no polynomial–time algorithm solves exactly the COV–SET prob-
lem (unless NP = P) and therefore any exact algorithm of our problem cannot
scale to tackle large settings. In this section, we focus on the design of a heuristic
algorithm that can be used for very large instances of patrolling games with spa-
tially uncertain alarms. We note that even if we had a polynomial–time approx-
imation algorithm for COV–SET we would need to call the algorithm O(2|T (s)|)
times, one per set of targets, and therefore we would not have a polynomial–time
approximation algorithm for our problem. This is why we do not focus on the
design of approximation algorithms for COV–SET.

200 N. Basilico et al.

Our heuristic algorithm works as follows. Given v and s, for each target
t ∈ T (s) such that w∗

v,t ≤ d(t) we generate a covering route r with r(0) = v and
r(1) = t. Thus, D has at least one covering route per target (that can be covered
in time from v). Each route r is expanded by inserting a target t′
∈ T (s) \ T (r)
after position p and shifting each target that was at position i > p in r at position
i + 1. The pair (t′, p) that determines the next expansion is chosen as the pair
maximizing a heuristic function hr(t′, p) among all the pairs leading to covering
routes (i.e., insertions that make Ar(t′′) > d(t′′) for some t′′ are excluded). Route
r is repeatedly expanded in greedy fashion until no insertion is possible. As a
result, our algorithm generates at most |T (s)| covering routes.

The heuristic function is defined as hr : {T (s) \ T (r)} × {1 . . . |T (r)|} → Z,
where hr(t′, p) evaluates the cost of expanding r by inserting target t′ after the
p–th position of r. The basic idea (inspired by [17]) is to adopt a conserva-
tive approach, trying to preserve feasibility. Given a route r, let us define the
possible forward shift of r as the minimum temporal margin in r between the
arrival at a target t and d(t): PFS(r) = mint∈T (r)(d(t) − Ar(t)). The extra
mileage er(t′, p) for inserting target t′ after position p is the additional travel-
ing cost to be paid: er(t′, p) = (Ar(r(t′)) + ω∗

r(p),t′ + ω∗
t′,r(p+1)) − Ar(r(p + 1)).

The advance time that such insertion gets with respect to d(t′) is defined as:
ar(t′, p) = d(t′) − (Ar(r(p)) + ω∗

r(p),t′). Finally, hr(t′, p) is defined as: hr(t′, p) =
min{ar(t′, p); (PFS(r) − er(t′, p))}.

We partition the set T (s) in two sets Ttight and Tlarge where t ∈ Ttight if
d(t) < δ · ω∗

v,t and t ∈ Tlarge otherwise (δ ∈ R is a parameter). The previous
inequality is a non–binding choice we made to discriminate targets with a tight
penetration time from those with a large one. Initially, we insert all the tight
targets and only subsequently we insert the non–tight targets. It can be easily
observed that our heuristic algorithm runs in O(|T (s)|3) given that heuristic hr

can be computed in O(|T (s)|2).

3.3 Solving SRG–v

Now we can formulate the problem of computing the equilibrium signal response
strategy for D. Let us denote with σD

v,s(r) the probability with which D plays
route r under signal s and with Rv,s the set of all the routes available to D
generated by some algorithm. We introduce function UA(r, t) returning π(t) if r
is not a route covering t and 0 otherwise. The best D strategy (maxmin strategy)
can be found by solving the following linear mathematical programming problem:

min gv s.t.
∑

s∈S(t)

p(s | t)
∑

r∈Rv,s

σ
D
v,s(r)UA(r, t) ≤ gv ∀t ∈ T

∑

r∈Rv,s

σ
D
v,s(r) = 1 ∀s ∈ S

σ
D
v,s(r) ≥ 0 ∀r ∈ Rv,s, s ∈ S

A Security Game Model for Environment Protection 201

4 Finding the Best Patrolling Strategy

We now focus on the problem of finding the best patrolling strategy given that we
know (from Sect. 3.3) the best signal–response strategy for each vertex v in which
D can place. Given the current vertex of D and the sequence of the last, say n,
vertices visited by D (where n is a tradeoff between effectiveness of the solution
and computational effort), a patrolling strategy is usually defined as a random-
ization over the next adjacent vertices [2]. We define v∗ = arg minv∈V {gv}, where
gv is the value returned by the optimization problem described in Sect. 3.3, as the
vertex that guarantees the maximum expected utility to D over all the SRG–vs.
We show that the maxmin equilibrium strategy in PG prescribes that D places
at v∗, waits for a signal, and responds to it.

Theorem 4. Without false positives and missed detections, if ∀t ∈ T we have
that |S(t)| ≥ 1, then any patrolling strategy is dominated by the placement in v∗.

Proof. Any patrolling strategy different from the placement in v∗ should neces-
sarily visit a vertex v′
= v∗. Since the alarm system is not affected by missed
detections, every attack will raise a signal which, in turn, will raise a response
yielding a utility of gx where x is the current position of D at the moment
of the attack. Since A can observe the current position of D before attacking,
x = arg maxv∈P {gv} where P is the set of the vertices patrolled by D. Obviously,
for any P ⊇ {v∗} we would have that gx ≥ gv∗ and therefore placing at v∗ and
waiting for signal is the best strategy for D. �

4.1 Computing the Best Placement

Under the absence of false positives and missed detections, Theorem 4 simplifies
the computation of the patrolling strategy by reducing it to the problem of
finding v∗. To such aim, we must solve SRG–v for each possible starting vertex
v and select the one with maximum expected utility for D. Since all the vertices
are possible starting points, we should face this difficult problem (see Theorem1)
|V | times, computing, for each signal, the covering routes from all the vertices.
To avoid this issue, we ask whether there exists an algorithm that in the worst
case allows us to consider a number of iterations, such that solving the problem
for a given node v could help us finding the solution for another node v′. So,
considering a specific set of targets, we wonder whether a solution for COV–SET
with starting vertex v can be used to derive, in polynomial time, a solution to
COV–SET for another starting vertex v′. To answer this question, we need to
encode an instance of COV–SET in a different way, embedding the selection of
the starting node in the structure of the graph. More precisely, we represent
an instance of COV–SET I = 〈G = (V,E), T, d, v〉 with the equivalent instance
I ′ = 〈G′ = (V ′, E′), c′, T, d′, v̂〉 defined in the following way:

– V ′ = V ∪ {v̂}, E′ = E ∪ {(v̂, vi),∀vi ∈ V }
– c′ is a weight function such that c(e) = 1 if e ∈ E ∪ {(v̂, v}) and c(e) = M

otherwise (M is a big constant);
– d′(t) = d(t) + 1, ∀t ∈ T .

202 N. Basilico et al.

With v̂ we denote the dummy vertex that is always the starting node. We
highlight the fact that, under this new encoding scheme, changing the starting
vertex translates to rewriting the weights of c. Following the approach of [7], we
can show that even the locally modified version of this problem, where a single
weight is updated, is hard.

Definition 6. LM–COV–ROUTE (Locally modified)
INSTANCE: a graph G = (V,E), a set of targets T with penetration times d,
two weight functions c1 and c2 that coincide except for one edge, and a covering
route r1 such that, under c1, T (r1) = T .
QUESTION: is T a covering set under c2?

Theorem 5. lm–COV–ROUTE is NP–complete.

Proof. Let us consider the Restricted Hamiltonian Circuit problem (RHC) which
is known to be NP–complete. RHC is defined as follows: given a graph GH =
(VH , EH) and an Hamiltonian path P = {h1, . . . , hn} for GH such that hi ∈ VH

and (h1, hn) /∈ EH , find an Hamiltonian circuit for GH . From such instance
of RHC, following the approach of [7], we build the following instance for lm–
COV–ROUTE:

– V = T = VH ∪ {vs, vt};
– E = {(vs, h1), (vs, hn−1)} ∪ {(vt, u)|(u, hn−1) ∈ EH} ∪ EH where EH is the

complete set of edges obtained by augmenting EH ;
– d(vs) = 0, d(vt) = n + 1, d(t) = n for any t ∈ T ;
– c1(e) = 1 if e ∈ E ∪ {(vs, h1), (vs, hn−1)} ∪ {(vt, u)|(u, hn−1) ∈ EH}, c1(e) =

(1 + ε) otherwise (for any ε > 0);
– c1 = c2 except for c2(vs, h1) = 1 + ε;
– r1 = 〈vs, h1, · · · , hn, vt〉.
It is easy to verify that GH admits a Hamiltonian circuit if and only if T admits
a covering route under c2. �
This shows that iteratively applying Algorithm1 to SRG–v for each starting
vertex v is the best we can do.

4.2 Robustness to Missed Detections

A deeper analysis of Theorem 4 can show that its scope does include cases where
missed detections are present up to a non–negligible extent. For such cases,
placement–based strategies keep being optimal even in the case when the alarm
systems fails in detecting an attack. We encode the occurrence of this robust-
ness property in the following proposition, which we shall prove by a series of
examples.

Proposition 1. There exist Patrolling Games where staying in a vertex, waiting
for a signal, and responding to it is the optimal patrolling strategy for D even
with a missed detection rate α = 0.5.

A Security Game Model for Environment Protection 203

Fig. 1. Two examples proving Proposition 1.

Proof. The expected utility for D given by the placement in v∗ is (1−α)(1−gv∗),
where (1−α) is the probability with which the alarm system correctly generates
a signal upon an attack and (1 − gv∗) denotes D’s payoff when placed in v∗.
A non–placement–based patrolling strategy will prescribe, by definition, to move
between at least two vertices. From this simple consideration, we observe that an
upper bound to the expected utility of any non–placement strategy is entailed by
the case where D alternately patrols vertices v∗ and v∗

2 , where v∗
2 is the second

best vertex in which D can statically place. Such scenario give us an upper bound
over the expected utility of non–placement strategies, namely 1 − gv∗

2
. It follows

that a sufficient condition for the placement in v∗ being optimal is given by the
following inequality:

(1 − α)(1 − gv∗) > (1 − gv∗
2
) (1)

To prove Proposition 1, it then suffices to provide a Patrolling Game instance
where Eq. 1 holds under some non–null missed detection rate α. In Fig. 1(a)
and (b), we report two of such examples. The depicted settings have unitary
edges except where explicitly indicated. For both, without missed detections, the
best patrolling strategy is a placement v∗ = 4. When allowing missed detections,
in Fig. 1(a) it holds that gv∗ = 0 and gv∗

2
= 0.75, where v∗ = 4 and v∗

2 = 1. Thus,
by Eq. 1, placement v∗ = 4 is the optimal strategy for α ≤ 0.25. Under the same
reasoning scheme, in Fig. 1(b) we have that gv∗ = 0 and gv∗

2
= 0.5, making the

placement v∗ = 4 optimal for any α ≤ 0.5. �

5 Experimental Evaluation

We evaluate the scalability of Algorithm 1 and the quality of the solution
returned by our heuristic algorithm for a set of instances of SRG–v. We do
not include results on the evaluation of the algorithm to solve completely a PG,
given that it trivially requires asymptotically |V | times the effort required by
the resolution of a single instance of SRG–v.

Testbed. In real deployment scenarios, the model parameters should be derived
from the particular features that characterize the particular setting one must
deal with. Besides the graph topology, which depends on the environment, tar-
get values and deadlines can be derived from available statistics or manually

204 N. Basilico et al.

assigned by domain experts. The need of such process to derive model parame-
ters makes building a large dataset of realistic instances not an easy task. In
fact, such task would deserve a separate treatment by its own. On the other
side, by means of a preliminary experimental evaluation, we observed how com-
pletely random instances are very likely of being not significant. Indeed, very
frequently the variance of the compute time among completely random gener-
ated instances is excessively large. For these reasons, we decided to use a random
generator where some parameters can be fixed while others are randomly chosen.
We restricted our attention to basic, but significant, instances with all–targets
graphs, arc costs set to 1, penetration times to |T (s)|−1, and the number of arcs
is drawn from a normal distribution with mean ε, said edge density and defined
as ε = |E|/ |T (s)|(|T (s)|−1)

2 (other parameters are randomly generated from uni-
form distributions, unless otherwise specified). Instances constructed with such
mechanism include hard ones since the existence of a covering route over T (s)
would imply the existence of an Hamiltonian path on the graph. We explore two
parameter dimensions: the number of targets |T | and ε. Algorithms are developed
in MATLAB and run on a 2.33 GHz LINUX machine.

Exact Algorithm Scalability. Table 1 shows the total compute time required
to solve instances with a single signal, that can be generated by any target under
attack. Table 2 refers to instances with multiple signals, where the targets covered
by a signal and the probability that a target triggers a signal are randomly chosen
according to a uniform distribution (in this second table |T | is fixed to 16). Values
are averages over 100 random instances and give insights on the computation
effort along the considered dimensions. The results show that the problem is
computationally challenging even for a small number of targets and signals.

Table 1. Compute times (in seconds) for single–signal instances.

Table 2. Compute times (in seconds) for multi–signal instances.

A Security Game Model for Environment Protection 205

6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Number of targets

R
at

io
s

LP (time)
LP (n. iterations)
LP + CCS (time)
n. covsets
LP/CCS (time G

R
)

LP/CCS (time G)

Fig. 2. Ratios evaluating dominances.

Figure 2 shows the impact of discarding dominated actions from the game. It
depicts the trend of some performance ratios for different metrics. We shall call
G the complete game including all D’s dominated actions and GR the reduced
game; CCS will denote the full version of Algorithm1 and LP will denote the
linear program to solve SRG–v. Each instance has edge density ε = .25 and is
solved for a random starting vertex v; we report average ratios for 100 instances.
“n. covsets” is the ratio between the number of covering sets in GR and in G.
Dominated actions constitute a large percentage, increasing with the number
of targets. This result indicates that the structure of the problem has some
redundancy. LP times (iterations) report the ratio between GR and G for the time
(iterations) required to solve the minmax linear program. A relative gain directly
proportional to the percentage of dominated covering sets is observable (LP has
less variables and constraints). A similar trend is not visible when considering
the same ratio for the total time which includes CCS. Indeed, the time needed
by CCS largely exceed LP’s and removal of dominated actions determines a
polynomial additional cost which can be seen in the slightly increasing trend of
the curve. The relative gap between LP and CCS compute times can be assessed
by looking at the LP/CCS curve: when more targets are considered the time
taken by LP is negligible w.r.t. CCS’s. This shows that removing dominated
actions is useful, allowing a small improvement in the average case, and assuring
an exponential improvement in the worst case.

Heuristic Solution Quality. Figure 3 reports the performance of the heuristic
algorithm (here we set δ = 2) in terms of D’s expected utility ratio (1−gv)/(1−
ĝv), where gv is the expected utility of A at the equilibrium considering all the
covering sets and ĝv is the expected utility of A at the equilibrium when covering
sets are generated by our heuristic algorithm. The performance of our heuristic
algorithm is well characterized by ε, providing fairly good approximations for
ε > 0.25, the ratio going to 1 as |T | increases, because there are more edges
and, consequently, there is a higher probability for the heuristics to find longer
routes. The figure suggests that assessing the membership of our problem to the
APX class could be an interesting problem.

206 N. Basilico et al.

6 8 10 12 14 16 18
0.5

0.6

0.7

0.8

0.9

1

Number of targets

H
eu

ris
tic

 /
O

pt
im

al

ε = .25
ε = .5
ε = .75
ε = 1

Fig. 3. Optimal vs heuristic algorithms.

6 Conclusions and Future Research

In this paper, to the best of our knowledge, we provide the first Security Game
for large environments surveillance, e.g. for wildlife protection, that can exploit
an alarm system with spatially uncertain signals. We propose a simple model
of alarm systems that can be widely adopted with every specific technology
and we include it in the state–of–art patrolling models obtaining a new security
game model. We show that the problem of finding the best patrolling strategy to
respond to a given alarm signal is FNP–hard even when the game is zero sum.
Then, we provide an exponential–time exact algorithm to find the best patrolling
strategy to respond to a given alarm signal. We provide also a heuristic algo-
rithm returning approximate solutions to deal with very large game instances.
Furthermore, we show that if every target is alarmed and no missed detections
are present, then the best patrolling strategy prescribes that the patroller stays
in a given place waiting for a alarm signal. We show that such a strategy may be
optimal even for missed detection rates up to 50 %. Finally, we experimentally
evaluate our algorithms in terms of scalability (for the exact algorithm) and
approximation ratio (for the heuristic algorithm).

In future works, we shall study the membership (or not) of our problem to
APX class, design approximation algorithms with theoretical guarantees and
investigate the impact of missed detections and false positives.

References

1. An, B., Brown, M., Vorobeychik, Y., Tambe, M.: Security games with surveillance
cost and optimal timing of attack execution. In: AAMAS, pp. 223–230 (2013)

2. Basilico, N., Gatti, N., Amigoni, F.: Patrolling security games: definition and algo-
rithms for solving large instances with single patroller and single intruder. Artif.
Intell. 184–185, 78–123 (2012)

A Security Game Model for Environment Protection 207

3. Basilico, N., Gatti, N., Rossi, T.: Capturing augmented sensing capabilities and
intrusion delay in patrolling-intrusion games. In: IEEE Symposium on Computa-
tional Intelligence and Games, CIG 2009, pp. 186–193, September 2009

4. Basilico, N., Carpin, S., Chung, T.: Distributed online patrolling with multi-agent
teams of sentinels and searchers. In: DARS (2014)

5. Bellare, M., Goldwasser, S.: The complexity of decision versus search. SIAM J.
Comput. 23(1), 97–119 (1994)

6. Blum, A., Haghtalab, N., Procaccia, A.D.: Lazy defenders are almost optimal
against diligent attackers. In: AAAI, pp. 573–579 (2014)

7. Böckenhauer, H.J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G.,
Widmayer, P.: Reusing optimal tsp solutions for locally modified input instances.
In: IFIP TCS, pp. 251–270 (2006)

8. Munoz de Cote, E., Stranders, R., Basilico, N., Gatti, N., Jennings, N.: Introducing
alarms in adversarial patrolling games. In: AAMAS, pp. 1275–1276 (2013)

9. Delle Fave, F.M., Jiang, A., Yin, Z., Zhang, C., Tambe, M., Kraus, S., Sullivan,
J.P.: Game-theoretic patrolling with dynamic execution uncertainty and a case
study on a real transit system. JAIR 50, 321–367 (2014)

10. Ford, B.J., Kar, D., Fave, F.M.D., Yang, R., Tambe, M.: PAWS: adaptive
game-theoretic patrolling for wildlife protection. In: International conference on
Autonomous Agents and Multi-Agent Systems, AAMAS 2014, Paris, France, 5–9
May 2014, pp. 1641–1642 (2014)

11. Garcia-Sanchez, A.J., Garcia-Sanchez, F., Garcia-Haro, J.: Wireless sensor net-
work deployment for integrating video-surveillance and data-monitoring in preci-
sion agriculture over distributed crops. Comput. Electron. Agric. 75(2), 288–303
(2011)

12. Jain, M., An, B., Tambe, M.: An overview of recent application trends at the
AAMAS conference: security, sustainability, and safety. AI Mag. 33(3), 14–28
(2012)

13. Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., Ordóñez, F.:
Software assistants for randomized patrol planning for the lax airport police and
the federal air marshal service. Interfaces 40(4), 267–290 (2010)

14. Ko, B.C., Park, J.O., Nam, J.Y.: Spatiotemporal bag-of-features for early wildfire
smoke detection. Image Vis. Comput. 31(10), 786–795 (2013)

15. Osborne, M.J.: An Introduction to Game Theory, vol. 3. Oxford University Press,
New York (2004)

16. Paruchuri, P., Tambe, M., Ordóñez, F., Kraus, S.: Security in multiagent systems
by policy randomization. In: AAMAS, pp. 273–280 (2006)

17. Savelsbergh, M.W.: Local search in routing problems with time windows. Ann.
Oper. Res. 4(1), 285–305 (1985)

18. Von Stengel, B., Zamir, S.: Leadership with commitment to mixed strategies (2004)
19. Vorobeychik, Y., An, B., Tambe, M., Singh, S.P.: Computing solutions in infinite-

horizon discounted adversarial patrolling games. In: Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling, ICAPS
2014, Portsmouth, New Hampshire, USA, 21–26 June 2014 (2014)

20. Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation
for wildlife protection against illegal poachers. In: International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (2014)

21. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw.
52(12), 2292–2330 (2008)

	A Security Game Model for Environment Protection in the Presence of an Alarm System
	1 Introduction
	2 Problem Formulation
	3 Finding the Best Signal--Response Strategy
	3.1 Computing D's actions
	3.2 A Heuristic Algorithm
	3.3 Solving SRG--v

	4 Finding the Best Patrolling Strategy
	4.1 Computing the Best Placement
	4.2 Robustness to Missed Detections

	5 Experimental Evaluation
	6 Conclusions and Future Research
	References

