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Preface

Computers and IT infrastructure play ever-increasing roles in our daily lives. The
technological trend toward higher computational power and ubiquitous connectivity
can also give rise to new risks and threats. To ensure economic growth and prosperity,
nations, corporations, and individuals constantly need to reason about how to protect
their sensitive assets.

Security is hard: it is a multifaceted problem that requires a careful appreciation of
many complexities regarding the underlying computation and communication tech-
nologies and their interaction and interdependencies with other infrastructure and
services. Besides these technical aspects, security provision also intrinsically depends
on human behavior, economic concerns, and social factors. Indeed, the systems whose
security is concerned are typically heterogeneous, large-scale, complex, dynamic,
interactive, and decentralized in nature.

Game and decision theory has emerged as a valuable systematic framework with
powerful analytical tools in dealing with the intricacies involved in making sound and
sensible security decisions. For instance, game theory provides methodical approaches
to account for interdependencies of security decisions, the role of hidden and asym-
metric information, the perception of risks and costs in human behavior, the incentives/
limitations of the attackers, and much more. Combined with our classic approach to
computer and network security, and drawing from various fields such as economic,
social, and behavioral sciences, game and decision theory is playing a fundamental role
in the development of the pillars of the “science of security.”

Since its inception in 2010, GameSec has annually attracted original research in both
theoretical and practical aspects of decision making for security and privacy. The past
editions of the conference took place in Berlin (2010), College Park (2011), Budapest
(2012), FortWorth (2013), and Los Angeles (2014). This year (2015), it was hosted for
the first time in the UK, in the heart of London.

We received 37 submissions this year from which, 16 full-length and five short
papers we selected after a thorough review process by an international panel of scholars
and researchers in this field. Each paper typically received three reviews assessing the
relevance, novelty, original contribution, and technical soundness of the paper. The
topics of accepted papers include applications of game theory in network security,
economics of cybersecurity investment and risk management, learning and behavioral
models for security and privacy, algorithm design for efficient computation, and
investigation of trust and uncertainty, among others.

We would like to thank Springer for its continued support of the GameSec con-
ference and for publishing the proceedings as part of their Lecture Notes in Computer
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Series (LNCS) with special thanks to Anna Kramer. We anticipate that researchers in
the area of decision making for cybersecurity and the larger community of computer
and network security will benefit from this edition.

November 2015 MHR Khouzani
Emmanouil Panaousis
George Theodorakopoulos
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A Game-Theoretic Approach to IP Address
Randomization in Decoy-Based Cyber Defense

Andrew Clark!®) | Kun Sun?, Linda Bushnell®, and Radha Poovendran?
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3 Network Security Lab, Department of Electrical Engineering,
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Abstract. Networks of decoy nodes protect cyber systems by distract-
ing and misleading adversaries. Decoy defenses can be further enhanced
by randomizing the space of node IP addresses, thus preventing an adver-
sary from identifying and blacklisting decoy nodes over time. The decoy-
based defense results in a time-varying interaction between the adversary,
who attempts to identify and target real nodes, and the system, which
deploys decoys and randomizes the address space in order to protect the
identity of the real node. In this paper, we present a game-theoretic frame-
work for modeling the strategic interaction between an external adversary
and a network of decoy nodes. Our framework consists of two components.
First, we model and study the interaction between the adversary and a
single decoy node. We analyze the case where the adversary attempts to
identify decoy nodes by examining the timing of node responses, as well
as the case where the adversary identifies decoys via differences in pro-
tocol implementations between decoy and real nodes. Second, we formu-
late games with an adversary who attempts to find a real node in a net-
work consisting of real and decoy nodes, where the time to detect whether
a node is real or a decoy is derived from the equilibria of the games in
first component. We derive the optimal policy of the system to random-
ize the IP address space in order to avoid detection of the real node, and
prove that there is a unique threshold-based Stackelberg equilibrium for
the game. Through simulation study, we find that the game between a
single decoy and an adversary mounting timing-based attacks has a pure-
strategy Nash equilibrium, while identification of decoy nodes via protocol
implementation admits only mixed-strategy equilibria.

1 Introduction

Cyber systems are increasingly targeted by sophisticated attacks, which monitor
the system over a period of time, identify vulnerabilities, and mount efficient and

This work was supported by ARO grant W911NF-12-1-0448.

© Springer International Publishing Switzerland 2015
MHR Khouzani et al. (Eds.): GameSec 2015, LNCS 9406, pp. 321, 2015.
DOI: 10.1007/978-3-319-25594-1_1



4 A. Clark et al.

effective attacks that are tailored to those vulnerabilities. An emerging approach
to thwarting such attacks is through a mowving target defense, which proactively
varies the system protocol, operating system, and software configurations over
time, thus rendering vulnerabilities observed by the adversary obsolete before
the attack takes place.

One class of moving target defense consists of networks of virtual nodes,
which are created and managed by the system and include both real nodes that
implement services such as web servers and databases, as well as decoy nodes
whose only purpose is to mislead the adversary [18]. If the real and decoy nodes
have valid TP addresses that are visible to an external adversary, then the adver-
sary may mount attacks on decoy nodes instead of the real node, wasting the
resources of the adversary and providing information to the system regarding the
goals and capabilities of the adversary. In order to maximize the probability that
the adversary interacts with a decoy node instead of a real node, the decoy nodes
should outnumber the real nodes in the network. When the number of decoys
is large, however, the amount of memory and CPU time that can be allocated
to each decoy is constrained, thus limiting the performance and functionality of
each decoy.

While limiting the functionality of decoy nodes reduces their memory and
processing cost, it also enables the adversary to detect decoys by observing devia-
tions of the timing and content of node responses from their expected values [16].
Once a decoy node has been detected, its IP address is added to the adversary’s
blacklist and the decoy is not contacted again by the adversary. By querying
and blacklisting decoy nodes over a period of time, the adversary can eventually
eliminate all decoys from consideration and mount attacks on the real node. The
time required to blacklist the decoy nodes depends on the amount of time needed
to identify a node as real or a decoy, which is a function of the resources given
to each decoy.

The effectiveness of decoy-based defenses can be further improved by peri-
odically randomizing the IP address space [3]. IP randomization renders any
blacklist obsolete, effectively forcing the adversary to re-scan all network nodes.
This randomization, however, will also terminate higher-layer protocols such
as TCP on the real nodes, which depend on a stable IP address and must be
reestablished at a cost of extra latency to valid users [1]. Randomization of the IP
address space should therefore be performed based on a trade-off between the
performance degradation of valid users and the security benefit of mitigating
attacks.

The security benefit of IP randomization and decoy-based defenses depends
on the behavior of the adversary. The ability of the decoy nodes to mislead the
adversary is determined by the adversary’s strategy for detecting decoy nodes.
Similarly, frequent IP randomization increases the latency of real users and hence
is only warranted when the adversary scans a large number of nodes. Modeling
and design of address randomization in decoy-based defenses should therefore
incorporate the strategic interaction between an intelligent adversary and the
system defense. Currently, however, no such analytical approach exists.
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In this paper, we present a game-theoretic framework for modeling and design
of decoy-based moving target defenses with IP randomization. Our modeling
framework has two components, namely, the interaction between a single virtual
node (real or decoy) and an adversary attempting to determine whether the node
is real or a decoy, as well as the interaction between an adversary and a network
of virtual nodes. These two components are interrelated, since the equilibria of
the interaction games between a single virtual node and an adversary determine
the time required for an adversary to detect a decoy node, and hence the rate
at which an adversary can scan the network and identify real nodes. We make
the following specific contributions:

— We develop game-theoretic models for two mechanisms used by adversaries
to detect decoy nodes. In the timing-based mechanism, the adversary exploits
the increased response times of resource-limited decoy nodes to detect decoys.
In the fingerprinting-based mechanism, the adversary initiates a communica-
tion protocol with a node and, based on the responses, determines whether
the node has fully implemented the protocol, or is a decoy with a partial
implementation of the protocol.

— In the case of timing-based detection of a single decoy, we formulate a two-
player game between an adversary who chooses the number of probe messages
to send and a system that chooses the response time of the decoy subject
to resource constraints. The utility of the system is equal to the total time
spent by the adversary to query the network. We develop an efficient iterative
procedure that converges to a mixed-strategy Nash equilibrium of the game.

— We present a game-theoretic model of decoy detection via protocol finger-
printing, in which we introduce protocol finite state machines as a modeling
methodology for decoy detection. Under our approach, the system decides
which states to implement, while the adversary attempts to drive the proto-
col to a state that has not been implemented in order to detect the decoy. We
introduce algorithms for computing Nash equilibria of this interaction, which
determine the optimal number of high- and low-interaction decoy nodes to be
deployed.

— At the network level, we formulate a two-player Stackelberg game, in which the
system (leader) chooses an IP address randomization policy, and the adver-
sary (follower) chooses a rate at which to scan nodes after observing the
randomization policy. We prove that the unique Stackelberg equilibrium of
the game is achieved when both players follow threshold-based strategies. For
the attacker, the trade-off is between the cost of scanning and the benefit of
identifying and attacking the real node.

— We investigate the performance of the system under our framework through
simulation study. For the timing-based game, we find that a pure strategy
Nash equilibrium exists in all considered cases. For the fingerprinting game,
we compute a mixed-strategy equilibrium, implying that at equilibrium the
system should contain both high-interaction nodes that implement the full
protocol and low-interaction nodes that only implement a subset of protocol
states.
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The paper is organized as follows. We discuss related work in Sect. 2. The
system and adversary models are presented in Sect. 3. Our game-theoretic formu-
lation for the interaction between the adversary and a single decoy node is given
in Sect.4. The interaction between an adversary scanning the decoy network
and the system deciding when to randomize is considered in Sect. 5. Simulation
results are contained in Sect. 6. Section 7 concludes the paper.

2 Related Work

Moving target defense is currently an active area of research aimed at prevent-
ing adversaries from gathering system information and launching attacks against
specific vulnerabilities [13]. Moving target defense mechanisms in the literature
include software diversity [9] and memory address layout randomization [10].
These approaches are distinct from decoy generation and IP address randomiza-
tion and hence are orthogonal from our line of work.

Decoy networks are typically created using network virtualization packages
such as honeyd [17]. Empirical studies on detection of decoys have focused on
protocol fingerprinting, by identifying differences between the protocols simu-
lated by decoys and the actual protocol specifications, including differences in
IP fragmentation and implementation of TCP [11,22]. Decoy nodes can also be
detected due to their longer response times, caused by lack of memory, CPU, and
bandwidth resources [16]. The existing studies on decoy networks, however, have
focused on empirical evaluation of specific vulnerabilities of widely-used decoy
systems, rather than a broader analytical framework for design of dynamic decoy
networks.

IP address space randomization has been proposed as a defense against scan-
ning worms [1,3]. In [21], a framework for deciding when to randomize the TP
address space in the presence of hitlist worms, based on a given estimate of
whether the system is in a secure or insecure state, was proposed. A decision-
theoretic approach to IP randomization in decoy networks was recently presented
in [8], but this approach was concerned with the optimal system response to a
given adversary strategy rather than the interaction between an intelligent adver-
sary and the system. Furthermore, the work of [8] only considered timing-based
attacks on decoy networks, and did not consider fingerprinting attacks.

Game-theoretic techniques have been used to model and mitigate a variety of
network security threats [2]. A dynamic game-theoretic approach to designing a
moving target defense configuration to maximize the uncertainty of the adversary
was proposed in [26]. The method of [26], however, does not consider the timing of
changes in the attack surface, and hence is complementary to our approach. The
FlipIt game was formulated in [24] to model the timing of host takeover attacks;
the Fliplt game does not, however, consider the presence of decoy resources.

In [6], platform randomization was formulated as a game, in which the goal of
the system is to maximize the time until the platform is compromised by choosing
a probability distribution over the space of available platforms. A game-theoretic
approach to stochastic routing, in which packets are proactively allocated among
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multiple paths to minimize predictability, was proposed in [4]. In [12], game-
theoretic methods for spatiotemporal address space randomization were intro-
duced. While these approaches consider metrics such as time to compromise the
system that are intuitively similar to our approach, the formulations are funda-
mentally different and hence the resulting algorithms are not directly applicable
to our problem. To the best of our knowledge, game-theoretic approaches for
decoy-based moving-target defenses are not present in the existing literature.

3 Model and Preliminaries

In this section, we present the models of the virtual network and the adversary.

3.1 Virtual Network Model

We consider a network consisting of n virtual nodes, including one real node
and (n — 1) decoy nodes. Let m = (1 — 1) denote the fraction of nodes that are
decoys. Decoy and real nodes have valid IP addresses that are chosen at random
from a space of M > n addresses, and hence decoy and real nodes cannot
be distinguished based on the IP address. The assumption M >> n ensures
that there is sufficient entropy in the IP address space for randomization to be
effective. Decoy nodes are further classified as either high-interaction decoys,
which implement the full operating system including application-layer services
such as HTTP and FTP servers and SQL databases, and low-interaction decoys,
which implement only partial versions of network and transport layer protocols
such as IP, TCP, UDP, and ICMP [18].

Decoy nodes respond to messages from nodes outside the network. The decoy
responses are determined by a configuration assigned to each decoy. Each possi-
ble configuration represents a different device (e.g., printer, PC, or server) and
operating system that can be simulated by the decoy. Decoy nodes in the same
network may have different configurations. Due to limited computation resources
assigned to them, decoys will have longer communication delays than real nodes.
The additional delay depends on the system CPU time and memory allocated to
the decoy. Decoy node configurations can be randomized using software obfus-
cation techniques [15].

Based on models of service-oriented networks such as web servers, we assume
that real nodes receive connection requests from valid users according to an
M/G/1 queuing model [5]. Under this model, the service time of each incoming
user is identically distributed and independent of both the service times of the
other users and the number of users currently in the queue.

Since valid users have knowledge of the IP address of the real node, connec-
tions to decoy nodes are assumed to originate from errors or adversarial scanning.
Decoy nodes will respond to suspicious, possibly adversarial queries in order to
distract the adversary and delay the adversary from identifying and targeting
the real node.
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The virtual network is managed by a hypervisor, which creates, configures,
and removes decoy nodes [7]. The hypervisor is assumed to be trusted and
immune to compromise by the adversary. In addition to managing the decoy
nodes, the hypervisor also assigns IP addresses to the nodes. In particular, the
hypervisor can assign a new, uniformly random IP address to each node at any
time. By choosing the new IP addresses to be independent of the previous IP
addresses, the hypervisor prevents the adversary from targeting a node over a
period of time based on its IP address. All IP addresses are assumed to be
randomized simultaneously; generalizations to randomization policies that only
update a subset of IP addresses at each time step are a direction for future
work. Any communication sessions between valid users and the real node will
be terminated when randomization occurs. Upon termination, the server sends
the updated IP address to each authorized client. Each valid user must then
reconnect to the real node, incurring an additional latency that depends on the
connection migration protocol [23].

3.2 Adversary Model

We consider an external adversary with knowledge of the IP address space. The
goal of the adversary is to determine the IP address of the real node in order
to mount further targeted attacks. The adversary is assumed to know the set
of possible IP addresses, if necessary by compromising firewalls or proxies, and
attempts to identify the real node by sending query messages to IP addresses
within this space. Based on the response characteristics, the adversary can eval-
uate whether a node is real or a decoy based on either timing analysis or protocol
fingerprinting, as described below.

In timing-based blacklisting of nodes, an adversary exploits the response
timing differences between real nodes and decoys. Since the decoy nodes have
fewer CPU and memory resources than the real node, their response times will
be longer. This longer delay can be used for detection. We assume that the
adversary knows the response time distribution of a typical real node, which can
be compared with response times of possible decoys for detection.

Protocol fingerprinting exploits the fact that the decoy nodes do not actually
implement an operating system, but instead simulate an operating system using
a prespecified configuration. As a result, differences between the decoys’ behavior
and the ideal behavior of the operating system allow the adversary to identify the
decoy. Typical fingerprints include protocol versions, such as the sequence and
acknowledgment numbers in TCP packets, the TCP options that are enabled,
and the maximum segment size [25].

4 Modeling Interaction with Single Decoy

In this section, we provide a game-theoretic formulation for the interaction
between the adversary and a single decoy node. We present a game-theoretic
formulation for two attack types. First, we consider an adversary who attempts
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to identify decoy nodes through timing analysis. We then model detection based
on fingerprinting techniques.

4.1 Timing-Based Decoy Detection Game

In timing-based detection, the adversary sends a sequence of probe packets (such
as ICMP echo messages) and observes the delays of the responses from the
node [16]. Let Zy denote the delay of the response to the k-th probe packet.
Based on the response times, the adversary decides whether the node is real or
a decoy.

We let H; denote the event that the response is from a real node and
Hy denote the event that the response is from a decoy. The response times
are assumed to be independent and exponentially distributed [16] with mean
w1 = 1/A; for real nodes and py = 1/)\¢ for decoys, where A\ and Ao repre-
sent the response rates of the real and decoy nodes, respectively. Note that the
exponential response time is for a single query, while the M/G/1 assumption of
Sect. 3.1 concerns the total length of a session between a valid user and the real
node. The number of queries made by the adversary is denoted Q.

The adversary’s utility function consists of three components, namely, the
amount of time spent querying the node, the probability of falsely identifying a
decoy as the real node (false positive), and the probability of falsely identifying
the real node as a decoy (false negative). We let Prp and Ppy denote the
probabilities of false positive and false negative, respectively. The expected time
spent querying is equal to (mug + (1 — m)u1)Q, where 7 denotes the fraction of
decoy nodes.

The action space of the adversary consists of the number of times @ that
the virtual node is queried, so that @) € Z>o. We assume that the adversary
makes the same number of queries @) to each node, corresponding to a pre-
designed, non-adaptive scanning strategy that does not consider feedback from
past interactions. The system’s action space consists of the mean of the decoy
response time g € [0, 00).

The payoff of the adversary is equal to the total time required to scan the
entire network. The expected utility of the adversary is given by

Ua(Q, po) = —(mpo + (1 — m)p1)@Q
—mcppPrp(Q, po) — (1 = m)ern Prn(Q, 1o), (1)

where cpp and cpy denote the delays arising from false positive and false neg-
ative, respectively. The first term of (1) is the expected time to query a node.
The second term is the additional time spent querying decoy nodes after a false
positive occurs, which causes the adversary to attempt additional, time-intensive
attacks on the decoys. The third term is the additional time spent querying decoy
nodes after a false negative, when an adversary mistakes a real node for a decoy
and scanning the rest of the network.

The cost of a given response rate is the additional delay experienced by the
real nodes. Assuming that requests to the real node occur at rate 6 and the
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network has a total capacity of ¢ with variance o2, which is determined by the
bandwidth, CPU, and memory constraints of the physical device, this delay is

0,2

equal to g(pg) = 2(170/(621/%)) + c—ll/uov based on the assumption that the real
node is an M/G/1 system [20, Chap. 8.5] (the M/G/1 assumption follows from
the assumption of a single real node; generalization to M/G/m networks with
m real nodes is a direction of future work). The payoff of the system is equal to

Us(Q, po) = (pom + (1 = m)p1)Q + merp Prp(Q, o)
+(1 = m)ern Prn (@, po) — 9(po)- (2)

The utility of the system is the total time spent by the adversary scanning the
network, which increase the security of the real node.

In what follows, we introduce an algorithm for computing the Nash equi-
librium of the timing-based interaction game. We first introduce a two-player
zero-sum game with equivalent Nash equilibrium strategies. We then prove con-
cavity of the utility functions of each player, implying that a unique equilibrium
exists that can be computed using fictitious play.

Proposition 1. Define the utility function

Ua(Q, po) = —7110Q — (1 — m)p1Q — weppPrp(Q, o)
—(1 = m)ernPrn(Q, po) + g(10)-(3)

Then a pair of strategies (Q*, ) is a Nash equilibrium for the two-player game
between a player 1 with utility function Ua and a player 2 with utility function
Us if and only if it is the Nash equilibrium of a two-player game where player 1
has utility function U and player 2 has utility function Ug.

Proof. Let (Q*, 1) be a Nash equilibrium for the game with utility functions Ua,
Us. The fact that pf is a best response to @* for the game with utility functions
U4 and Ug follows trivially from the fact that Ug is the system’s utility function
in both cases. If Q* satisfies Uz (Q*, wh) > ﬁA(Q,MS) for all @ > 0, then

Ua(Q*,15) + (1) = Ua(Q, 1) + g(1y),

and hence U (Q", 13) = Ua(Q, ), since Ua (@, o) = Ua(Q, o) + glto) for all
(Q, o). Thus Q* is the best response to pf under utility function Ua. The proof
of the converse is similar.

By Proposition 1, it suffices to find a Nash equilibrium of the equivalent zero-
sum game with adversary and system utilities Us and Usg, respectively. As a
first step, we prove two lemmas regarding the structure of U4 and Ug.

Lemma 1. Let € > 0. Then there exists Q and a convez function f R—=R
such that | f(Q) — Ua(Q, po)| < € for all Q > Q.

Proof. Define f(Q) = —(mpo+(1—7)p1)Q —crpPrp(Q, pto) —crn Prn(Q, o) +
9(10). The first two terms are linear in @ and hence convex, while the last
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term does not depend on @. In computing the probability of false positive, we
first observe that the maximum-likelihood decision rule for the adversary is to
decide that the node is real if p1cppPi(Z1, ..., Zq) > pocrnFPo(Z1, ..., Zg) and
that the node is a decoy otherwise. Under the exponential assumption, this is
equivalent to

Q
A c
Qlog =L — (N —/\O)ZZ]- > log Hotrn

A Crp
0 =1 HiCFrP

Hence the probability of false positive is equal to

Q
A c
Prp(@) = Pr {Qlos 3 — (= X) 3 Z; > log “ 2 | Hy

=1 H1CFP

Rearranging terms yields

— logh —log),  logfecEs H
A — Ao QO —Xo) )7

Prp(Q) = Pr <Z< -

where Z = % Z?:l Z;. B
By the Central Limit Theorem, Z can be approximated by an N (uq, u2/Q)-

Gaussian random variable for @ sufficiently large. Letting x = %, the

probability of false positive is equal to Pr(X < /Q(zX\o — 1)) where X is an
N(0,1)-Gaussian random variable, so that

1 VQ(zAo—1) 72
Prp = — exp| —— | dz.
re vV 277 /—oo P ( 2 >

Differentiating with respect to @) yields

x)\o -1 1 ( Q(l‘)\o — 1)2>

——exp| —————" ),
var 2/ 2

which is increasing in @) since x\g < 1. Hence the probability of false positive can

be approximated by a convex function for @ sufficiently large. The derivation
for the probability of false negative is similar.

Approximate concavity of U, implies that the best response of the adversary
can be computed by enumerating the values of Ua(Q, po) for Q < Q, and using
convex optimization to find the optimal value when Q > Q.

The following lemma establishes concavity of the system utility function Ug
as a function of ug for a given T. The concavity of Ug enables efficient compu-
tation of the Nash equilibrium.
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Lemma 2. The function Ug is concave as a function of ug.

Proof. Tt suffices to show that each term of Ug in Eq. (2) is concave. The first
term of Ug is linear in pg and therefore concave. The second derivative test
implies that g(uo) is convex as a function of g, and hence —g(ug) is concave. By
the analysis of Lemma 1, in proving the concavity of the false positive probability,

it is enough to show that Pr (X < wQ VT ) is concave as a function of .

Ho
The derivative of ﬁ with respect to pg is equal to

?10 (% _ 1) — (log po — log ju1) (i)
(22-1)

which is decreasing in pg. Hence the derivative of the false positive probability
is equal to

)

jo(Z‘l’—1)—(10guo;10gu1)(,}1)exp _(””Tom—\/@) |
(i 1)

2
which is monotonically decreasing in pg and hence concave.

Fictitious play can be used to find the Nash equilibrium of the interaction
between the adversary and the network. The algorithm to do so proceeds in
iterations. At each iteration m, there are probability distributions p’y and p@
defined by the prior interactions between the system and adversary. The system
chooses fip in order to maximize E,, (Us(ko)) = > pA(Q)Us(Q, po), while
the adversary chooses Q to maximize Epm (U (Q)) = [;° P& (110)Ua(Q, tt0) dpso-
The strategies of the system and adversary at each iteration can be computed
efficiently due to the concavity of Ugs and the approximate convexity of Ujg.
Convergence is implied by the following proposition.

Proposition 2. The fictitious play procedure converges to a mixzed-strategy Nash
equilibrium.

Proof. Since the utility functions satisfy U (Q, 1) +Us(Q, o) = 0, the iterative
procedure implies converge to a mixed-strategy Nash equilibrium [19, pg. 297].
Furthermore, by Proposition 1, the mixed-strategy equilibrium is also an NE for
the game with utility functions U, and Usg.

4.2 Fingerprinting-Based Decoy Detection Game

Operating system fingerprinting techniques aim to differentiate between real
and decoy nodes by exploiting differences between the simulated protocols of
the decoy and the true protocol specifications. In order to quantify the strate-
gies of the adversary and the system, we model the protocol to be simulated
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(e.g., TCP) as a finite state machine F, defined by a set of states S, a set
of inputs I, and a set of outputs O. The transition function é : I x S — §
determines the next state of the system as a function of the input and current
state, while the output is determined by a function f : I x S — O. We write
F=(51,0,0,f).

The real and decoy protocols are defined by finite state machines Fr =
(SR, IR, OR, 5R7 fR) and -7:D = (SD, ID, OD7 5D7 fD) The goal of the decoy
protocol is to emulate the real system while minimizing the number of states
required. Under this model, the adversary chooses a state s € Sr and attempts to
determine whether that state is implemented correctly in the decoy, i.e., whether
the output o corresponding to an input 4 satisfies 0 = fr(s,%). In order to reach
state s, the adversary must send a sequence of d inputs, where d, denotes the
minimum number of state transitions required to reach the state s from the
initial state sq.

The system’s action space is defined by the set of states Sp, while the adver-
sary’s action space is the set s that the adversary attempts to reach. The choice of
s will determine the sequence of messages sent by the adversary. The adversary’s
utility function is therefore given by

Ua(s,Sp) = —ds — crpPrp(s,Sp) — crnPrn(s,Sp).

We note that the real node implements the state s correctly for all s € Si, and
hence the probability of false negative is zero. Furthermore, we assume that the
decoy returns the correct output at state s with probability 1 if s € Sp and
returns the correct output with probability 0 otherwise. Hence the adversary’s
utility function is

UA(S, SD) = —ds — 1(8 S SD)CFP, (4)

where 1(-) denotes the indicator function.

For the system, the utility function is equal to the total time spent by the
adversary querying a decoy node, minus the memory cost of the decoys. This
utility is equal to

Us(S,SD):d5+1(S€SD)CFP—CD(SD), (5)

where ¢p(Sp) is the cost of implementing a set of states. In order to avoid
state space explosion for the system, we restrict the defender to strategies that
implement all states within k steps of the initial state, where k € {0,...,|Sp|}.
Intuitively, a strategy that implements a state s € Sp but does not implement
a state s’ € Sp with dys < ds may be suboptimal, because the protocol may
reach state s before state s’, thus enabling the adversary to identify the decoy
in fewer steps.

A fictitious play algorithm for computing a mixed-strategy equilibrium is
as follows. Probability distributions 7§ and 7g', which represent the empirical
frequency of each strategy of the adversary and system up to iteration m, are
maintained. At the m-th iteration, the strategies k* = argmaxEgn (k) and

s* = argmax {E;m(s)} are computed and the corresponding entries of a7t
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1 . . . . .
and wg"+ are incremented. Since there is an equivalent zero-sum game with

adversary utility function 0A(s) =ds+1(s € Sp)crp — cp(Sp), the empirical
frequencies of each player converge to the mixed strategy equilibrium [19].

5 Characterization of Optimal IP Address Randomization
Strategy by Network

In this section, we present a game-theoretic formulation for the interaction
between the virtual network, which decides when to randomize the IP address
space, and the adversary, which decides the scanning strategy. The optimal ran-
domization policy of the network and the probability of detecting the real node
at equilibrium are derived.

5.1 Game Formulation

We consider a game in which the adversary chooses a scanning strategy, deter-
mined by the number of simultaneous connections «. The parameter « is
bounded above by aupnesz, which is chosen by the hypervisor to limit the total
number of connections and hence avoid overutilization of the system CPU. The
adversary incurs a cost w for maintaining each connection with a node. The
number of nodes scanned by the adversary per unit time, denoted A4, is given
by A = %, where 7 is the time required to scan each node. The parameter 7
depends on the detection method employed by the adversary, and is equal to the
Nash equilibrium detection time of Sect. 4.1 if timing-based detection is used or
the Nash equilibrium detection time of Sect. 4.2 if fingerprint-based detection is
used.

At each time ¢, the system decides whether to randomize the IP address
space; we let t = 0 denote the time when the previous randomization took place.
Let R denote the time when randomization occurs. The system incurs two costs
of randomization, namely, the probability that the adversary detects the real
node and the number of connections that are terminated due to randomization.
Since the real and decoy nodes cannot be distinguished based on IP addresses
alone, the probability of detection at time ¢ is equal to the fraction of nodes that
are scanned up to time ¢, %.

The cost resulting from terminating connections is equal to the delay [ result-
ing from migrating each connection to the real node’s new IP address; TCP
migration mechanisms typically have cost that is linear in the number of con-
nections [23]. The cost of breaking real connections is therefore equal to SY (¢),
where Y'(¢) is equal to the number of connections to the real node, so that the
utility function of the system is given by Ug(a, R) = —E (%R + Y (R)).

For the adversary, the utility is equal to the detection probability, minus
the cost of maintaining each connection, for a utility function of Ua(a, R) =
E (%R — wa). The resulting game has Stackelberg structure, since the system
first chooses the randomization policy, and the adversary then chooses a scanning
rate based on the randomization policy.
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5.2 Optimal Strategy of the System

The information set of the system is equal to the current number of valid sessions
Y (t) and the fraction of decoy nodes scanned by the adversary D(t) at time t.
The goal of the system is to choose a randomization time R in order to minimize
its cost function, which can be expressed as the optimization problem

minimize E(D(R) + Y (R))
o )

where R is a random variable. The randomization policy can be viewed as a
mapping from the information space (Y (t), D(t)) at time ¢ to a {0,1} variable,
with 1 corresponding to randomizing at time ¢ and 0 corresponding to not ran-
domizing at time t. Define L; to be the number of decoy nodes that have been
scanned during the time interval [0, ¢].

The number of active sessions Y (¢) follows an M/G/1 queuing model with
known arrival rate ¢ and average service time 1/¢. We let 1/¢; denote the
expected time for the next session with the real node to terminate, given that a
time ¢ has elapsed since the last termination. In what follows, we assume that ¢;
is monotonically increasing in ¢; this is consistent with the M/M/1 and M/D/1
queuing models. The following theorem, which generalizes [8, Theorem 1] from
an M/M/1 to an M/G/1 queuing model, describes the optimal strategy of the
system.

Theorem 1. The optimal policy of the system is to randomize immediately at
time t if and only if Ly = n, Y(t) = 0, or %qﬁ + 6¢p — B > 0, and to wait
otherwise.

Proof. In an optimal stopping problem of the form (6), the optimal policy is to
randomize at a time t satisfying

D(t) + BY (1) = sup {E(D(¥') + BY (/)| D(), Y (1)) : ¥ > t}.

If L; = n, then the address space must be randomized to avoid detection of the
real node. If Y'(t) = 0, then it is optimal to randomize since D(t) is increasing
as a function of t.

Suppose that Ly < n and Y (¢) > 0. Let &,&,... denote the times when
connections terminate. We prove by induction that, for each I, ¢ € [§_1,&]
implies that E(D(¢') + 8Y (¢)|Y (¢)) > D(t) + BY (¢). First, consider I = 1,
with & = ¢. Then if ¢/ € [§,&), D) + BY (t') > D(t) + BY (), since D is
nondecreasing in time and no connections have terminated since time t. At time
&1, we have that

B(D(&) + BY (&)Y (1)) = S'B(&) @
FA(1) + CBE) ) )
—(Z45c) o+ av() - Q
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and so E(D(&) + BY (&)|Y (1)) < D(t) + BY () iff 2¢ + 8¢ — 3 > 0.

Now, suppose that the result holds up to (I — 1). By a similar argument,
E(D(&-1)+8Y (§-1)Y () <E(D(t')+ Y (") |Y(t)) for all t' € [§_1,&). The
condition

E(D(&-1) + BY (&-1)[Y (1)) < E(D(&) + BY (&)Y (1))
holds iff 2¢ + 3¢ — 3 > 0.

This result implies that a threshold-based policy is optimal for randomization
over a broad class of real node dynamics.

5.3 Optimal Strategy of the Adversary
The optimal scanning rate is the solution to

maximize E(D(R) — wa)

s.t. o E [O, amaz] (10)

which is a trade-off between the probability of identifying the real node and the
adversary’s cost of bandwidth.

The scanning rate is assumed to be constant and chosen based on the ran-
domization policy of the system.

Since the scanning process is random, the detection probability at the time
of randomization, D(R), is equal to the fraction of the network scanned at time
R, 2 R. Based on Theorem 1, the detection probability is given as

D(R)Z {TanTOa (%+5C)¢<ﬂ (11)

0, else

where Tp is the time for the number of connections to go to 0. Hence the value
of « that maximizes D(R) is a = 7n — 5¢. The overall utility of the adversary

is equal to S(mn — ¢)(mn)E(Ty) — w(B1n — BC).

Proposition 3. Let o* = min {amqz, 570 (% — %)} Then the unique Stackel-

berg equilibrium of the network interaction game is for the adversary to choose
« based on

* J—
_ {a , B(Th) —wmn >0 (12)

10, else

Proof. The proof follows from Theorem 1 and the fact that the adversary’s utility
is negative unless the condition E(Ty) — wrn holds.

Proposition 3 indicates that the adversary follows a threshold decision rule, in
which the adversary scans the system at the rate a* if the expected time before
randomization, Ty, exceeds the expected time to scan the entire network, 7n.
The adversary can determine the optimal scanning rate over a period of time
by initially scanning at a low rate and incrementally increasing the rate until
randomization occurs, signifying that the threshold scanning rate o* has been
found.
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6 Simulation Study

A numerical study was performed using Matlab, consisting of three components.
First, we studied the timing-based detection game of Sect.4.1. Second, we con-
sidered the fingerprinting-based detection game of Sect.4.2. Third, we analyzed
the network-level interaction of Sect. 5.

For the timing-based detection game, we considered a network of 100 nodes,
with 1 real node and 99 decoy nodes. The real nodes were assumed to have
mean response time of 1, while the response time of the decoys varied in the
range [1,1.25]. The parameter «, representing the amount of real traffic, was
set equal to 0, while the capacity ¢ of the virtual network was equal to 1. The
trade-off parameter v took values from 1 to 5, while the number of queries by
the adversary ranged from 7T'=1 to T = 50.

We observed that the timing-based detection game converged to a pure-
strategy Nash equilibrium in each simulated case. Figure 1(a) shows the mean
response time of the decoy nodes as a function of the trade-off parameter, . As
the cost of delays to the real nodes increases, the response time of the decoys
increases as well. For lower values of +, it is optimal for the real and decoy nodes
to have the same response time.

For detection via system fingerprinting, we considered a state machine of
diameter 4, consistent with the simplified TCP state machine of [14], implying
that there are 5 possible strategies in the game of Sect.4.2. We considered a
cost of 0.2 for the system and adversary, so that the normalized cost of imple-
menting the entire state machine was equal to 1. Figure 1(b) shows a histogram
representing the mixed strategy of the system. The mixed strategy indicates that
roughly half of the decoy nodes should implement only the first level of states
in the state diagram, while the remaining half should implement the entire state
machine, for this particular choice of the parameter values. This suggests an opti-
mal allocation of half high-interaction and half low-interaction decoys, leading
to a resource-expensive strategy.

In studying the network-level interaction between the system and adversary,
we considered a network of n = 100 virtual nodes with detection time 7 = 5 based
on the previous simulation results. The trade-off parameter 3 = 0.1. The real
node was assumed to serve users according to an M/M/1 process with arrival rate
¢ = 0.4 and service rate ¢ = 2. The cost of each connection to the adversary was
set at w = 2. Figure 1(c) shows the probability of detection for the adversary as
a function of the number of simultaneous connections initiated by the adversary.
The probability of detection increases linearly until the threshold is reached;
beyond the threshold, the system randomizes as soon as the scanning begins
and the probability of detection is 0. Furthermore, as the rate of connection
requests to the real node, quantified by the parameter (, increases, the cost
of randomization for the real node increases, leading to longer waiting times
between randomization and higher probability of detection.

As shown in Fig. 1(d), the number of dropped connections due to randomiza-
tion is zero when ( is small, since the optimal strategy for the system is to wait
until all connections terminate. As ( approaches the capacity of the real node,
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Fig. 1. Numerical results based on our proposed game-theoretic framework. (a) The
timing-based detection game of Sect.4.1 converged to a pure-strategy equilibrium in
all experimental studies. The pure strategy of the system is shown as a function of
the trade-off parameter, v. A larger value of v results in a slower response rate due to
increased delay to the real nodes. (b) Histogram of the mixed strategy of the system
for the fingerprinting game of Sect.4.2 using the TCP state machine. The optimal
strategy is to implement only the initial states of the protocol and the entire protocol
with roughly equal probability. (¢) Detection probability as a function of the number of
simultaneous connections by the adversary. The detection probability increases before
dropping to zero when the randomization threshold is reached. (d) Number of dropped
connections when the number of adversary connections a = 5. The number of dropped
connections is initially zero, as the adversary scanning rate is below threshold, and
then increases as the rate of connection to the real node approaches the capacity of the
real node.

the number of dropped connections increases. The effectiveness of the decoy,
described by the time 7 required to detect the decoy, enables the system to
operate for larger values of ¢ (i.e., higher activity by the real nodes) without
dropping connections.
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7 Conclusion

We studied the problem of IP randomization in decoy-based moving target
defense by formulating a game-theoretic framework. We considered two aspects
of the design of decoy networks. First, we presented an analytical approach
to modeling detection of nodes via timing-based analysis and protocol finger-
printing and identified decoy design strategies as equilibria of two-player games.
For the fingerprinting attack, our approach was based on a finite state machine
model of the protocol being fingerprinted, in which the adversary attempts to
identify states of the protocol that the system has not implemented. Second,
we formulated the interaction between an adversary scanning a virtual network
and the hypervisor determining when to randomize the IP address space as a
two-player Stackelberg game between the system and adversary. We proved that
there exists a unique Stackelberg equilibrium to the interaction game in which
the system randomizes only if the scanning rate crosses a specific threshold.
Simulation study results showed that the timing-based game consistently has a
pure-strategy Nash equilibrium with value that depends on the trade-off between
detection probability and cost, while the fingerprinting game has a mixed strat-
egy equilibrium, suggesting that networks should consist of a mixture of high-
and low-interaction decoys.

While our current approach incorporates the equilibria of the single-node
interaction games as parameters in the network-level game, a direction of future
work will be to compute joint strategies at both the individual node and network
level simultaneously. An additional direction of future work will be to investi-
gate dynamic game structures, in which the utilities of the players, as well as
parameters such as the number of nodes and the system resource constraints,
change over time. We will also investigate “soft blacklisting” techniques, in which
an adversary adaptively increases the delays when responding to requests from
suspected adversaries, at both the real and decoy nodes. Finally, modeling the
ability of decoys to gather information on the goals and capabilities of the adver-
sary is a direction of future work.
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Abstract. Cyber insurance has been recently shown to be a promis-
ing mechanism to mitigate losses from cyber incidents, including data
breaches, business interruption, and network damage. A robust cyber
insurance policy can reduce the number of successful cyber attacks by
incentivizing the adoption of preventative measures and the implemen-
tation of best practices of the users. To achieve these goals, we first
establish a cyber insurance model that takes into account the complex
interactions between users, attackers and the insurer. A games-in-games
framework nests a zero-sum game in a moral-hazard game problem to
provide a holistic view of the cyber insurance and enable a systematic
design of robust insurance policy. In addition, the proposed framework
naturally captures a privacy-preserving mechanism through the infor-
mation asymmetry between the insurer and the user in the model. We
develop analytical results to characterize the optimal insurance policy
and use network virus infection as a case study to demonstrate the risk-
sharing mechanism in computer networks.

Keywords: Cyber insurance - Incomplete information game - Bilevel
optimization problem - Moral hazards - Cyber attacks

1 Introduction

Cyber insurance is a promising solution that can be used to mitigate losses
from a variety of cyber incidents, including data breaches, business interruption,
and network damage. A robust cyber insurance policy could help reduce the
number of successful cyber attacks by incentivizing the adoption of preventative
measures in return for more coverage and the implementation of best practices
by basing premiums on an insureds level of self-protection. Different from the
traditional insurance paradigm, cyber insurance is used to reduce risk that is not
created by nature but by intelligent attacks who deliberately inflict damage on
the network. Another important feature of cyber insurance is the uncertainties
related to the risk of the attack and the assessment of the damage. To address
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these challenges, a robust cyber insurance framework is needed to design policies
to induce desirable user behaviors and mitigate losses from known and unknown
attacks.

In this paper, we propose a game-theoretic model that extends the insurance
framework to cyber security, and captures the interactions between users, insur-
ance company and attackers. The proposed game model is established based on
a recent game-in-games concept [1] in which one game is nested in another game
to provide an enriched game-theoretic model to capture complex interactions. In
our framework, a zero-sum game is used to capture the conflicting goals between
an attacker and a defender where the defender aims to protect the system for the
worst-case attack. In addition, a moral-hazard type of leader-follower game with
incomplete information is used to model the interactions between the insurer and
the user. The user has a complete information of his action while the insurer can-
not directly observe it but indirectly measures the loss as a consequence of his
security strategy. The zero-sum game is nested in the incomplete information
game to constitute a bilevel problem which provides a holistic framework for
designing insurance policy by taking into account the cyber attack models and
the rational behaviors of the users.

The proposed framework naturally captures a privacy-preserving mechanism
through the information asymmetry between the insurer and the user in the
model. The insurance policy designed by the insurer in the framework does
not require constant monitoring of users’ online activities, but instead, only on
the measurement of risks. This mechanism prevents the insurer from acquiring
knowledge of users’ preferences and types so that the privacy of the users is
protected. The major contributions of the paper are three-fold. They are sum-
marized as follows:

(i) We propose a new game-theoretic framework that incorporates attack mod-
els, and user privacy.

(ii) We holistically capture the interactions between users, attackers, and the
insurer to develop incentive mechanisms for users to adopt protection mech-
anisms to mitigate cyber risks.

(iii) The analysis of our framework provides a theoretic guideline for designing
robust insurance policy to maintain a good network condition.

1.1 Related Works

The challenges of cyber security are not only technical issues but also economic
and policy issues [2]. Recently, the use of cyber insurance to enhance the level
of security in cyber-physical systems has been studied [3,4]. While these works
deal with externality effects of cyber security in networks, few of them take into
account in the model the cyber attack from a malicious adversary to distinguish
from classical insurance models. In [5], the authors have considered direct and
indirect losses, respectively due to cyber attacks and indirect infections from
other nodes in the network. However, the cyber attacks are taken as random
inputs rather than a strategic adversary. The moral hazard model in economics
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literature [6,7] deal with hidden actions from an agent, and aims to address
the question: How does a principal design the agent’s wage contract in order to
maximize his effort? This framework is related to insurance markets, and has
been used to model cyber insurance [8] as a solution for mitigate losses from
cyber attacks. In addition, in [9], the authors have studied a security invest-
ment problem in a network with externality effect. Each node determines his
security investment level and competes with a strategic attacker. Their model
does not focus on the insurance policies and hidden-action framework. In this
work, we enrich the moral-hazard type of economic frameworks by incorporating
attack models, and provide a holistic viewpoint towards cyber insurance and a
systematic approach to design insurance policies.

Other works in the literature such as the robust network framework pre-
sented in [10] deal with strategic attacker model over networks. However, the
network effect is modeled as a simple influence graph, and the stimulus of the
good behavior of the network users is based on a global information known to
every player. In [11], the authors propose a generic framework to model cyber-
insurance problem. Moreover, the authors compare existing models and explain
how these models can fit into their unifying framework. Nevertheless, many
aspects, like the attacker model and the network effect, have not been ana-
lyzed in depth. In [12], the authors propose a mechanism design approach to the
security investment problem, and present a message exchange process through
which users converge to an equilibrium where they make investments in security
at a socially optimal level. This paper has not yet taken into account both the
network effect (topology) and the cyber attacker strategy.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. 2, we describe the general framework of
cyber moral hazard by first introducing the players and the interactions between
them, and second, by defining the influence graph that models the network effect.
In Sect.3, we analyze the framework for a class of problems with separable
utility functions. In addition, we use a case study to demonstrate the analysis
of an insurance policy for the case of virus infection over a large-scale computer
networks. The paper is concluded in Sect. 4.

2 Game-Theoretic Model for Cyber Insurance

In this section, we introduce the cyber insurance model between a user ¢ and an
insurance company I (Player I). A user ¢ invests or allocates a; € [0, 1] resources
for his own protection to defense against attacks. When a; = 1, the user employs
maximum amount of resources, e.g., investment in firewalls, frequent change of
passwords, and virus scan of attached files for defense. When a; = 0, the user
does not invest resources for protection, which corresponds to behaviors such as
reckless response to phishing emails, minimum investment in cyber protection,
or infrequent patching of operating systems. The protection level a; can also
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be interpreted as the probability that user ¢ invokes a protection scheme. User
i can be attacked with probability ¢; € [0,1]. The security level of user i, Z;,
depends on a; and ¢;. To capture the dependency, we let Z; = p;(a;, q;), where
pi : [0,1]> — Ry is a continuous function that quantifies the security level of
user . An insurance company cannot observe the action of the user, i.e., the
action a; if user i. However, it can observe a measurable risk associated with the
protection level of user i. We let a random variable X; denote the risk of user 4
that can be observed by the insurance company, described by

Xi = QZ(ZZ,GZ), (1)

where 6; is a random variable with probability density function g; that captures
the uncertainties in the measurement or system parameters. The risk X; can
be measured in dollars. For example, a data breach due to the compromise of
a server can be a consequence of low security level at the user end [13]. The
economic loss of the data breach can be represented as random variable X;
measured in dollars. The magnitude of the loss depends on the content and the
significance of the data, and the extent of the breach. The variations in these
parameters are captured by the random variable 6;. The information structure
of the model is depicted in Fig. 1.

qi 02

7.
a; b l Gi > X

Fig. 1. Hlustration of the information structure of the two-person cyber insurance
system model: user ¢ determines protection level a; and an attacker chooses attack
probability ¢;. The security level Z; is assessed using function p;. The cyber risk X;
for user ¢ is measured by the insurance company.

Note that the insurer cannot directly observe the actions of the attack and
the user. Instead, he can measure an outcome as a result of the action pair.
This type of framework falls into a class of moral hazard models proposed by
Holmstrom in [6,7]. One important implication of the incomplete information
of the insurer is on privacy. The user’s decision a; can often be related to per-
sonal habits and behaviors, which can be used to infer private information (e.g.,
online activities and personal preferences). This framework naturally captures a
privacy-preserving mechanism in which the insurer is assumed to be uncertain
about the user and his type. Depending on the choice of random variable 6;, the
level of uncertainties can vary, and hence 6; can be used to determine the level
of privacy of a user.
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Player I measures the risk and pays the amount s;(X;) for the losses, where
s; + Ry — Ry is the payment function that reduces the risk of the user i if
he is insured by Player I. Hence the effective loss to the user is denoted by
& = X, — si(X;), and hence user i aims to minimize a cost function U; that
depends on &;, a; and ¢; given by U;(&;, a;, q;), where U; : Ry x [0,1]> — R, is a
continuous function monotonically increasing in ¢ and ¢;, and decreasing in a;.
The function captures the fact that a higher investment in the protection and
careful usage of the network on the user side will lead to a lower cost, while a
higher intensity of attack will lead to a higher cost. Therefore, given payment
policy s;, the interactions between an attacker and a defender can be captured by
a zero-sum game in which the user minimizes U; while the attacker maximizes it:

(UG-1) Jnin | max, ElUi (&, ai, a:)]- (2)
Here, the expectation is taken with respect to the statistics of #;. The minimax
problem can also be interpreted as a worst-case solution for a user who deploys
best security strategies by anticipating the worst-case attack scenarios. From the
attacker side, he aims to maximize the damage under the best-effort protection
of the user, i.e.,

(UG-2) Jhax mmin ElUi (&, ai, ¢:))- (3)

The two problems described by (UG-1) and (UG-2) constitute a zero-sum

game on at the user level. For a given insurance policy s;, user ¢ chooses protec-

tion level af € A;(s;) with the worst-case attack ¢f € Q;(s;). Here, A4; and Q;

are set-valued functions that yield a set of saddle-point equilibria in response to
s;, i.e., af and ¢; satisfy the following

E[U;(&,a;, q:)] < E[Ui(&i, a7, q7)] < E[Us(&, a4, 47)], (4)

for all a;,¢; € [0, 1]. In addition, in the case that A;(s;), and Q;(s;) are singleton
sets, the zero-sum game admits a unique saddlepoint equilibrium strategy pair
(af, qF) for every s;. We will use a shorthand notation val to denote the value of
the zero-sum game, i.e.,

E[Uz(ﬁuafﬂf)] = Val[E[Ui(ghaivqi)L (5)

and arg val to denote the strategy pairs that achieve the game value, i.e.,

(a7, q;) € arg val[E[U;(&;, ai, q:)]- (6)

The outcome of the zero-sum game will influence the decision of the insur-
ance company in choosing payment rules. The goal of the insurance company
is twofold. One is to minimize the payment to the user, and the other is to
reduce the risk of the user. These two objectives well aligned if the payment
policy s; is an increasing function in X;, and we choose cost function V' (s;(X;)),
where V : Ry — R, is a continuous and increasing function. Therefore, with
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these assumptions, Player I aims to find an optimal policy among a class of
admissible policies S; to solve the following problem:

(IP) min E[V(s;(X3))]

5,€S;

s.t. Saddle-Point (6).

This problem is a bilevel problem in which the insurance company can be viewed
as the leader who announces his insurance policy, while the user behaves as a
follower who reacts to the insurer. This relationship is depicted in Fig.2. One
important feature of the game here is that the insurer cannot directly observe
the action a; of the follower, but its state X;. This class of problem differs
from the classical complete information Stackelberg games and the signaling
games where the leader (or the sender) has the complete information whereas
the follower (or the receiver) has incomplete information. In this case the leader
(the insurance company) has incomplete information while the follower (the user)
has complete information. The game structure illustrated in Fig. 2 has a games-
in-games structure. A zero-sum game between a user and a defender is nested
in a bilevel game problem between a user and the insurer.

It is also important to note that user i pays Player I a subscription fee
T € Ry, to be insured. The incentive for user ¢ to buy insurance is when the
average cost at equilibrium under the insurance is lower the cost incurred without
insurance. Therefore, user i participates in the insurance program when

E[Ui(&, ai, ;)] = T. (7)

Bilevel Game Problem

Insurer’s Problem (IP)

SI
\ 4
User’s Game (UG)
User L | Attacker
(UG1) UG2)
\4 v
a i qi

Fig. 2. The bilevel structure of the two-person cyber insurance game. The problem
has a games-in-games structure. The user and the attacker interact through a zero-
sum game while the insurer and the user interact in a bilevel game in which the user
has complete information but the leader does not.
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It can bee seen that the insurance policy plays an important role in the partic-
ipation decision of the user. If the amount of payment from the insurer is low,
then the user tends not to be insured. On the other hand, if the payment is high,
then the risk for the insurer will be high and the user may behave recklessly in
the cyber space, as have been shown in Peltzman’s effect [14].

3 Analysis of the Cyber Insurance Model

The formal framework introduced in Sect. 2 provides the basis for analysis and
design of cyber insurance to reduce risks for the Internet users. One challenge in
the analysis of the model comes from the information asymmetry between the
user and the insurer, and the information structure illustrated in Fig. 1. Since the
cost functions in (UG-1), (UG-2), and (IP) are expressed explicitly as a function
of X;, the optimization problems can be simplified by taking expectations with
respect to the sufficient statistics of X;. Let f; be the probability density function
of X;. Clearly, f; is a transformation from the density function g; (associated with
the random variable 6;) under the mapping G;. In addition, f; also depends on the
action pair (a;, g;) through the variable Z;. Therefore, we can write f;(z;;ai,q;)
to capture the parametrization of the density function. To this end, the insurer’s
bilevel problem (IP) can be rewritten as follows:

(IP’) min / V(si(xi)) fi(zi, a7, q7 )dw;
8i€S; z,€ER4

st. (aj,q]) = arg val [/ Ui(x; — Si(xi)7ai7Qi)fi(xi7aia%)dxi‘| .
z, ERL

Under the regularity conditions (i.e., continuity, differentiability and measur-
ability), the saddle-point solution (a},¢}) can be characterized by the first-order
conditions:

oU;
i — 5i(x3), a4, qs) fi(xss as, @
/[a< (00), 05, 00) s 00,4
ofi
+Ui(z; — Si(xi)aaiv%)%fi(zi;aini) dx; =0, (8)

and

o,
Ty — Si\Tq), A4, 4q; fi Ti; A, 4G4
/m&[aqi( (1), a5 45) fo(is s )

of;
+U;(x; — si(xs), ai, qi)ai‘gfi(xi; ainz‘)] dx; =0, 9)

In addition, with the assumption that f; and U; are both strictly convex in
a; and strictly concave in ¢;, the zero-sum game for a given s; admits a unique
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saddle-point equilibrium [15]. Using Lagrangian methods from vector-space opti-

mization [16], we can form a Lagrangian function with multipliers A;, u;R4 as
follows:

L(8iy i, Giy @i Niy i) = / V(si(x:)) fils, @i, qi)dz; +
wi€R+

oU;
>\i/ { S — si(ms), i, q) fi(wis ag, s
s, 6ai( (i) ) fi( )

of;
+Ui(z; — si(x;), as, qz‘)aTJ:fi(Ii; a;, Q1):| dx; +

oU;
Mi/ {8 (i = si(®i), ai, @) fi(wis aq, qi)
z, ERL qi

ofi
+Ui(z; — si(xi), aq, Qi)ait;fi(xﬁ ai,(h)] dz;.
7
The insurer’s bilevel problem can thus be rewritten as a one-level optimization
problem with Lagrange function £:

(IP’) max mi

n LS5, iy Qiy @iy Ay i)
Nistii 51€81,0:€[0,1],0:€[0,1] (83, 11 045 43 M )

Generally speaking, this Lagrangian is not simple to study but, as we see in the
next section, several assumptions of the utility functions will help us to obtain
the characterization of the optimal payment policies for the insurer.

3.1 Separable Utilities

One main assumption about player utility function is that it is separable into
his variables, i.e.:

Vie{l,...,N}, Ui(&,ai,q) = Hi(&) + ci(ai, ;).

In fact, the protection investment a; induces a direct cost ¢;(a;,q;) on user i.
This cost function is strictly increasing in a;. Moreover, each player is typically
risk-averse, and H; is assumed to be increasing and concave. We give general
results considering this particular case of separable utilities.

Following the first-order conditions (8) for user 4, we obtain

I dfi dc;
(s — 8i(xq)) 57— (w5504, @s) + 5— (a4, ) fa(ws504,¢) | dwg = 0.
/xieuh[ (z s(:v))aai(x a q)+aai(a @) fi(ziai, q;) | dw

As we have gg? (asy qi) > 0, the last equality is equivalent to:

Hz(!Ez - Sz(xz)) of;
—g%i(auql‘) day

(mi;ai,%‘) = fi(wiQGiaQi)



30 Y. Hayel and Q. Zhu

Similarly, following (9), we obtain

Ofi ac;
Hi(x; — s;(x;))=—(xi; a4, q;) + =— (a4, q;) fi(xs; 05, ¢;) | dx; = 0,

and arrive at

Hi(z; — si(x)) Ofi

- gg (ai,qi) O

(w35 ai,q:) = fixs; ai, qi).

Therefore, we arrive at the following proposition:

Proposition 1. The saddle-point strategy pair (a;,q;) satisfies the following
relationship for every x; € R,.:

Ofi(zisai,qgi) 9ci(ai,q:)

da; da;
. = - 10
Ofi(zisai,qgi) 9ci(ai,qi) ( )
9g; 0q;

It can be seen that the saddle-point strategy pair depends on the state xz;. For
different risk, the user will invest accordingly to protect his computer system.

3.2 Case Study: Cyber Insurance Under Infection Dynamics

We consider a possible virus or worm that propagates into a network. Each
computer can be infected by this worm and we assume that if a node is infected,
it induces a time window in which the node is vulnerable to serious cyber-attacks.
The propagation dynamics follow a Susceptible-Infected-Susceptible (SIS) type
infection dynamics [17] such that the time duration a node is infected follows an
exponential distribution with parameter v that depends on a and g. Note that
we remove index ¢ for the convenience of notations. Indeed, when a computer is
infected, it is vulnerable to serious cyber-attacks. These can cause an outbreak
of the machine and of the network globally. We thus assume that the parameter
~ is increasing in a (resp. decreasing in ¢) meaning that more protection (resp.
more attacks) reduces (resp. increases) the remaining time the node/computer
is infected. Then, the action of the node decreases his risk whereas the action of
the attacker increases the risk. We make also the following assumptions:

— The cost function is convex, i.e., the user is absolute risk-averse: V¢,
H(E) = e

— The cost function c¢(a,q) = a — ¢ is bi-linear;

— X follows an exponential distribution with parameter v(a,q), ie., X ~
exp(y(a, ¢)). This random variable may represent the time duration a node is
infected under an SIS epidemic process.

— The insurance policy is assumed to be linear in X, i.e., sX, where s € [0, 1].
Hence the residual risk to the user is £ = (1 — s)X.
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Without loss of generality, we denote v as a single constant when the notation
does not lead to confusion. We thus have the following density function for the
outcome:

Vo€ Ry, f(zla,q) = v(a,q)e D7,
Then, we obtain
Vo€ Ry, fa(zla,q) =vae 7" (1 —72),

where by abuse of notation we denote v := ~(
average amount of damage is [F(X) = 7(; 7=
node is given by:

a,q) and 7y, = g—;’(a,q). The
4. The expected utility of the

BU(X,a.0) = [ [H(s 50) + cla.0)] lola o)
= c(a,q) + /0 H(z(1-3))f(z|a,q)dz,
—cla g Ooemc(l—s)—x% -
- ( aq)+ q/o d 9

:aqurg/ e r=)=8l g,
qJo

We assume that a > gr(1 — s) then:

a
EU(X,a,q) =a—q+ ———.
(X,a,9) =a e —

We can observe that the optimal protection level of the node depends in a non-
linear fashion of the cyber-attack level. For a given action of the attacker ¢ and
a contract s, the best action a*(s, q) for the node protection level is:

a*(s,q) = argmin FU (X, a,q) = q(1 — s)r + v/q(1 — s)r.
a
Given the best protection, we can obtain the saddle point solution:

* ok ’I"(l*S)
R R S Pk

If a player does not subscribe to cyber insurance, i.e., s = 0, then his best
action becomes

a*(0) = qr +/qr.

Hence, its expected cost is:

= " +a"(0) = qr +2/qr + 1 = (1 + /q7)*.
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If the player decides to be insured, then s > 0, i.e., part of his damage is covered
and he has to pay a flat rate T for the participation. Then, his best action
becomes a*(s) that depends on his coverage level s, and his expected cost is:

+a"(s)+T =qr(l—s)+2y/qr(1—s)+1+T,
(a9,

Proposition 2. If the cyber insurance is too expensive, i.e. T > Tyax = qr +
2./qr, then the player will not subscribe to the cyber insurance independent of
the coverage level s.

Sketch of Proof. This proposition comes from the equivalence of IEU' > IEU°
with T' > gr + 2,/qr. In this case, independent of the coverage level s, we have
EU® > IEU°, which implies that the node will not choose to pay the cyber
insurance for any coverage level s.

Proposition 3. For the subscription fee T < qr+2,/qr, there exists a minimum
coverage s°(T) such that, for any coverage level s € [s°(T), 1], the player will
subscribe to the cyber-insurance. This minimum coverage is equal to:

o) —1 - (VIIVIP T -1 ?
N .

Sketch of Proof. The function IEU? is strictly decreasing in s and lim,_.q IEU® >
FEU. T < qr + 2,/qr, then IEU! < IEU°. Hence, for a given T < qr +
2./qr, there exists a unique s°(7T") such that EUS (T = EU°, Moreover, for any
s € [s%T),1], we have IEU® < IEUY, then the player will subscribe to cyber
insurance. By comparing the expressions of the expected utility functions, we
obtain the following solution:

sO(T):l— I+ g?-T-1 2
Var

We observe in Fig.3 that for a same price T, for the node to subscribe to
insurance, the level of cyber attack has to be sufficiently high. If we consider
a competition framework in which the cyber insurer cannot change its price T,
then for a fixed price, a higher cyber attack level leads to less minimum coverage
accepted by the node. This shows that cyber attack plays an important role in
insurance policy as it increases the willingness of the users to be insured.

The loss probability is defined as the probability that the damage covered by
the insurance exceeds the price paid by the subscriber. We then define this loss of
profit by L(T) := IP(s°(T)X (s°(T)) > T), and obtain the following expression
of the loss as:
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L(T) = exp (—q“ @) +vall - s”(T»rT) |

qs°(T)

As we can see in Fig. 4, the loss is not monotone in the price, and a small
price does not guarantee a profit (no loss) for the insurance company. One goal of
the extended version of this work is to study the property of this loss depending
onT.

Fig. 3. Minimum coverage so depending on the price 7" and cyber-attack level ¢ with
a risk-averse coefficient r = 2.

1

Loss probability
o
3}

Fig. 4. Loss probability depending on the price T.
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Conclusion

In this paper, we describe a game-theoretic framework for studying cyber
insurance. We have taken into account complex interactions between users,
insurer and attackers. The framework incorporates attack models, and natu-
rally provides privacy-preserving mechanisms through the information asym-
metry between the players. This work provides a first step towards a holistic
understanding of cyber insurance and the design of optimal insurance policies.
We would extend this framework to capture network effects, and address the
algorithmic and design issues in cyber insurance.
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Abstract. Interdicting the flow of illegal goods (such as drugs and
ivory) is a major security concern for many countries. The massive scale
of these networks, however, forces defenders to make judicious use of
their limited resources. While existing solutions model this problem as a
Network Security Game (NSG), they do not consider humans’ bounded
rationality. Previous human behavior modeling works in Security Games,
however, make use of large training datasets that are unrealistic in real-
world situations; the ability to effectively test many models is constrained
by the time-consuming and complex nature of field deployments. In addi-
tion, there is an implicit assumption in these works that a model’s
prediction accuracy strongly correlates with the performance of its
corresponding defender strategy (referred to as predictive reliability).
If the assumption of predictive reliability does not hold, then this could
lead to substantial losses for the defender. In the following paper, we (1)
first demonstrate that predictive reliability is indeed strong for previ-
ous Stackelberg Security Game experiments. We also run our own set of
human subject experiments in such a way that models are restricted to
learning on dataset sizes representative of real-world constraints. In the
analysis on that data, we demonstrate that (2) predictive reliability is
extremely weak for NSGs. Following that discovery, however, we identify
(3) key factors that influence predictive reliability results: the training
set’s exposed attack surface and graph structure.

1 Introduction

By mathematically optimizing and randomizing the allocation of defender
resources, Security Games provide a useful tool that has been successfully applied
to protect various infrastructures such as ports, airports, and metro lines [16].
Network Security Games (NSGs), a type of Security Game, can be applied to
interdict the flow of goods in smuggling networks (e.g., illegal drugs, ivory) or
defend road networks from terrorist attacks (e.g., truck bombs). In compari-
son to previous work in Security Games [15], however, the number of possible
actions for both attacker and defender grow exponentially for NSGs; novel scal-
ing techniques have been developed to address this challenge by Jain et al. [10]
for perfectly rational attackers.

© Springer International Publishing Switzerland 2015
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While early work in Security Games relied on the assumption of perfect adver-
sary rationality, more recent work has shifted away towards modeling adversary
bounded rationality [1,5,11,14]. In the effort to model human decision mak-
ing, many human behavior models are being developed. As more Security Game
applications are being deployed and used by security agencies [7,15], it becomes
increasingly important to validate these models against real-world data to bet-
ter ensure that these and future applications don’t cause substantial losses (e.g.,
loss of property, life) for the defender. In efforts to generate real-world data, pre-
vious work [7,15] has demonstrated that field experiments are time-consuming
and complex to organize for all parties involved; the amount of field experiments
that can be feasibly conducted is grossly limited. Thus, in real-world situations,
we will have limited field data.

By analyzing the prediction accuracy of many models on an existing large
dataset of human subject experiments, previous works [1,5] empirically ana-
lyze which models most closely resemble human decision making for Stackelberg
(SSG) and Opportunistic Security Games. While these works demonstrate the
superiority of some models in terms of prediction accuracy and fitting perfor-
mance, they do not address the larger, implicit question of how the models’
corresponding strategies would perform when played against human subjects
(i.e., average defender expected utility). We do not know how well the predic-
tion accuracy of a model will correlate with its actual performance if we were
to generate a defender strategy that was based on such a model; informally
defined, predictive reliability refers to the percentage of strong correlations
between a model’s prediction accuracy and the model’s actual performance. It is
also unknown whether the prediction accuracy analysis approach will be suitable,
especially for NSGs, in situations where we have limited field data from which to
learn the models. As previously discussed, the amount of field experiments that
can be conducted (and thus the amount of training data available for learning)
is limited; it is important to know whether the model with superior prediction
accuracy will actually result in higher defender gains than a model with worse
prediction accuracy (especially when training data is limited). This raises the
following question for NSG research: “Without the ability to collect very large
amounts of data for training different bounded rationality models and without
the ability to conduct very large amounts of tests to compare the performance of
these models in action, how do we ensure high predictive reliability and choose
the most promising models?”

We first lay the groundwork for determining whether our proposed construct
of predictive reliability is valid in SSGs. As such, we first (i) conduct an empirical
evaluation of predictive reliability in SSGs in situations where there is a large
amount of training data. We then (ii) evaluate predictive reliability for NSGs.
In this study, we use NSG human subject data from the lab and train our
models on enough data such that prediction accuracies converge'. Following

1 In other words, to simulate real-world scenarios, we do not assume the presence of
very large amounts of data, but nonetheless, there is a sufficient amount of NSG
data included in our study to at least see a stable prediction made by our different
behavior models.
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this primary analysis, we then examine the various factors that may influence
predictive reliability. We propose a metric called Exposed Attack Surface (EAS)
which is related to the degree of choice available to the attacker for a given
training set. We then (iii) examine the effects of EAS on predictive reliability,
and (iv) investigate which graph features influence predictive reliability.

Our primary analysis shows that (i) predictive reliability is strong for an SSG
dataset where there is sufficient training data, (ii) even though there is sufficient
training data (at least to see our models’ prediction accuracies converge), pre-
dictive reliability is poor for NSGs. In our analysis to discover which factors have
the most influence on predictive reliability, we find that (iii) a training set with a
higher EAS score results in better predictive reliability than a training set with
a lower EAS score. Note that this finding is independent of the training set’s
size (both training sets are of the same size). While it won’t always be possible
to obtain training data with a large exposed attack surface, if we do have it, we
can be more confident in the predictive reliability of our models. In addition,
we find that (iv) there is a strong correlation between poor predictive reliability
and whether a graph has both a low to moderate number of intermediate nodes
and a low to moderate number of outgoing edges from source nodes.

2 Background: Network Security Games

This paper will address zero-sum Network Security Games (NSGs). For a table
of notations used in this paper, see Table 1. In NSGs, there is a network (shown
in Fig. 1) which is a graph ¢ containing a set of nodes/vertices V' (the dots/circles
in the figure) and a set of edges E (the arrows in the figure, labelled 1-6). In the
network, there is a set of target nodes, denoted by T' C V. While the defender

Table 1. Notations used in this paper

g(V, E) | General directed graph
Set of paths in graph g

k Number of defender resources
X Set of defender allocations, X = {X1,X2, ..., Xn}
X, it" defender allocation X; = {X;.} Ve, X;. € {0,1}

A Set of attacker paths, A = {A1,A42, ..., Ap}

Aj jt" attacker path A; = {A;.} Ve, Aj. € {0,1}

t; Target t in the graph g such that the attacker takes path j to
attack t

T (t;) The reward obtained for a successful attack on target ¢ by taking
path j s.t. A; N X; = 0 where Aj is the attacker’s selected
path to attack target ¢t and X, is the selected defender

allocation
T Defender’s mixed strategy over X
T; Probability of choosing defender pure strategy X,

EUg4(z) | Defender’s expected utility from playing =

Zij Function that refers to whether a defender allocation X;
intersects with an attacker path Aj. If there is an
intersection, returns 1. Else, 0
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attempts to allocate her limited resources to protect these target nodes, the
attacker can observe the defender’s patrolling strategy and then attack one of
the target nodes based on that observation.

Attacker Strategies. The attacker can start at a source node s € S (where
S C V is the set of all source nodes in the network) and chooses a sequence of
nodes and edges leading to a single target node ¢ € T. The attacker’s decision
corresponds to a single path j € J and is referred to as the attacker’s path choice
A; € A where A is the set of all possible paths that the attacker can choose.

Defender Strategies. The defender can allocate

her k resources to any subset of edges in the graph; )
each allocation is referred to as a pure strategy 1 \
for the defender, denoted by X;. There are (‘f |) 3 4

defender pure strategies in total, and we denote ——5
this set of pure strategies by X. Then, a defender’s 5 6

mized strategy is defined as a probability distribu-

tion over all pure strategies of the defender, denoted

by = {z;}}Y,, where z; is the probability that

the defender will follow the pure strategy X; and Fig. 1. Example graph

Defender and Attacker Utilities. An attack is successful if the attacker’s
path choice does not contain any edges in common with the defender’s allo-
cation (X; N A; = (), and the attacker will receive a reward 7 (¢;) while the
defender receives a penalty of -7 (t;). Here, t; is the target node on the path
A;. Conversely, if the attack is unsuccessful (i.e., the attacker’s path intersected
with the defender’s allocation), both attacker and defender receive a payoff of 0.

Finally, the defender’s expected utility of executing a mixed strategy x given
an attacker path A; can be computed as shown in Eq.1 where the term p;(z)
(defined in Eq. 2) refers to the probability that the adversary will be caught when
choosing path A; to attack target node ¢;. In zero-sum games, the attacker’s
expected utility for choosing path A; is equal to the opposite of the defender’s
expected utility, i.e., EUq(x, A;) = —EUq(z, A;).

EUa(z, Aj) = =T (t;) - (1 = pj(2)) (1)

In Eq. 2, z; is an integer which indicates if the defender’s pure strategy X;
intersects with the attacker path A; (z;; = 1) or not (z;; = 0).

pi(x) = Y zw; (2)

X, eX

3 Related Work

Human bounded rationality has received considerable attention in Security
Game research [1,5,11,14]. The goal of these works was to accurately model
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human decision making such that it could be harnessed to generate defender
strategies that lead to higher expected utilities for the defender. For the devel-
oped models and corresponding defender mixed strategies, some of these works
conducted human subject experiments to validate the quality of their mod-
els [1,11,14]. Often in this research, different models’ prediction accuracies are
tested against human subjects, and the one that is most accurate is then used
to generate defender strategies against human subjects [11,14]. However, these
works do not evaluate whether or not the other models’ prediction accuracies
correlated with their actual performance (i.e., predictive reliability). In other
words, prediction accuracy is used as a proxy for the defender’s actual perfor-
mance, but it has not been well established that this is a reasonable proxy to
use. In order to evaluate predictive reliability for SSGs, we obtained the human
subject experiment data from Nguyen et al. [14] and evaluated predictive relia-
bility on this data between the Quantal Response (QR) and Subjective Utility
Quantal Response (SUQR) models.

As yet another type of Security Game, NSG research covers a wide variety
of applications and domains. NSGs have been applied to curbing the illegal
smuggling of nuclear material [13], protecting maritime assets such as ports and
ferries [15], studying ways to minimize road network disruptions [2], deterring
fare evasion in public transit systems [4], and the assignment of checkpoints to
urban road networks [9,17]. Although our NSG models most closely resemble
the model used by Jain et al. [9,10], the primary difference is that we are not
limited to modeling perfectly rational attackers.

In most NSG research, there is a basic assumption that the attacker is per-
fectly rational, but as demonstrated in work in Behavioral Game Theory by
Camerer et al., humans do not behave with perfect rationality [3]. Gutfraind
et al. [8] address one type of boundedly rational adversary, an unreactive Markov-
ian evader, in their work. Even though the evader (i.e., attacker) is unreactive
to the defender’s actions, the relaxation of the rational adversary assumption
still results in an NP-hard problem. Positing that humans will rely on heuristics
due to the complex nature of solving an NSG, Yang et al. [18] address bounded
rationality in a non-zero sum NSG setting by modeling the adversary’s stochastic
decision making with the Quantal Response (QR) model and various heuristic
based variants of the QR model. While they demonstrated that attacker behav-
ior is better captured with human behavior models, their work is limited to
using one defender resource in generating defender strategies and only focused
on much smaller networks. In order to adequately defend larger networks, like
those modeled in previous work by Jain et al. [10] and the ones presented in
this work, multiple defender resources are required. For the behavior models we
present, multiple defender resources are supported in a zero-sum setting.

4 Adversary Behavioral Models

We now present an overview of all the adversary behavioral models which are
studied in this paper.
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4.1 The Perfectly Rational Model

In NSG literature, the adversary is often assumed to be perfectly rational and
will always maximize his expected utility. In other words, the adversary will
choose the optimal attack path that gives him the highest expected utility, i.e.,
Aopt = argmax y EUq(z, Aj).

4.2 The Quantal Response Model

The Quantal Response (QR) model for NSGs was first introduced by Yang et al.
[18]. However, their formulation only works under the assumption that there is
one defender resource available, and as a result, we present a revised version of
the QR model for a zero-sum NSG with multiple defender resources. In short,
QR predicts the probability that the adversary will choose a path A;, which is
presented as the following:

AEU ()
NEU® (z
ZAkeAe i)

where A is the parameter that governs the adversary’s rationality. For example,
A = 0.0 indicates that the adversary chooses each path uniformly randomly. On
the other hand, A = co means that the adversary is perfectly rational. Intuitively,
there is a higher probability that the adversary will follow a path with higher
expected utility.

gi(Alz) = 3)

4.3 The Subjective Utility Quantal Response Model

Unlike QR, the Subjective Utility Quantal Response (SUQR) model [14] models
the attacker’s expected utility calculation as a weighted sum of decision factors
such as reward and path coverage. As demonstrated by Nguyen et al. [14] for
SSGs and Abbasi et al. [1] for Opportunistic Security Games (OSGs), SUQR
performs better than QR for attack prediction accuracy. As such, we present an
NSG adaptation of SUQR as shown in Eq.4. Specifically, SUQR predicts the
probability that the adversary chooses a path A; as the following:

ew1p; () +w2T ()
Qj(w|x) = ZA A ew1pk () +w2 T (ty) (4)
k

where (w7,ws) are parameters corresponding to an attacker’s preferences (i.e.,
weights) on the game features: the probability of capture p;(x) and the reward
for a successful attack 7 (t;).
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4.4 The SUQR Graph-Aware Model

The previous models, designed for traditional Stackelberg Games, do not account
for the unique features of Network Security Games. As such, we present some
NSG-specific features that can be incorporated into the existing SUQR model in
the form of additional parameters. Each of these features is computed for each
path A; € A.

Path length simply refers to the number of edges in a path A;, and the
corresponding weight is referred to as w3 in Eq.5. This model will henceforth
be referred to as GSUQRI1 (i.e., Graph-SUQR w/ 1 parameter). Yang et al. [18]
also made use of path length as one of the tested QR heuristics.

eW1pj(x)+WQT(tj)+W3‘Aj‘
gj(wlz) = S aea ew1Pk(®)Fw2 T (tk)+ws| Akl (5)
k

We also compute the maximum total degree (weight w4) of a path. This is
an aggregate measure (maximum) of the path’s nodes’ indegrees (i.e., number
of edges coming into the node) 4+ outdegrees (i.e., number of edges leaving the
node). We refer to this measure as MTO. A low value for this corresponds
to simple paths with little connections to other areas of the graph; a high value
corresponds to a path with one or more nodes that are highly connected to other
paths. The resultant ¢; function is shown in Eq. 6, and this model is henceforth
referred to as GSUQR2.

ewlpj(x)+w27(tj)+w3|Aj [+wsMTO;

gj(wlz) = S . g P @ o T (@)l Ak [Fwi MT O (6)
k

5 Defender Strategy Generation

In this section, we present the approach used to generate defender strategies for
the boundedly rational adversary models.? Because the strategy space for NSGs
can grow exponentially large, we address this by adapting a piecewise linear
approximation approach, PASAQ), first introduced by Yang et al. [19]. Note that
while we only show the PASAQ formulation as generating defender strategies for
the QR model, we also adapted it for the SUQR, GSUQR1, and GSUQR2 mod-
els as well. Whereas the original PASAQ algorithm worked for SSGs involving
independent targets and coverages, this paper has adopted PASAQ for NSGs,
where non-independent path coverage probabilities (p;(x)) must be taken into
account. PASAQ works by performing a binary search to solve a non-linear
fractional objective function. Determining whether the current solution is feasi-
ble, however, is a non-convex problem, and this feasibility checking problem is
expressed as an inequality in Eq. 7, where 7 is the current binary search solution,

2 The algorithm to generate a Maximin strategy can be found in [10].
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x* is the optimal defender mixed strategy, and EUy(z), the defender’s expected
utility given an adversary following the QR model, is defined in Eq. 8.3

r < EUg(x") (7)

ZA cA e?Ua(@47) EUq(x, Aj)
> tea NEUq(2,4;) (8)

EUq4(z) =

After rewriting Eq.7 as a minimization function and further expansion,
we obtain two non-linear functions f(j)()(p;(z))=e*1"Ps@IT ) and
f) P (pj(x)=(1 — pj(x))e*1=Pi@ENT®) which are to be approximated. To do
so, we divide the range p;(z) € [0,1] into S segments (with endpoints [#z1, £,
s =1...5]) and will henceforth refer to each segment that contains a portion of
pj(z) as {pjs,s =1...S}. For example pjo refers to the second segment of p;(z)
which is located in the interval [ and ] Our piecewise approximation follows the

same set of conditions from [19]: each pjé [0,5]Vs=1...Sand p; = Z 1 Djs-
In addition, any p;, > 0 only if pj» = Vs < 8;in other words, pj.g can be non-
zero only when all previous partitions are completely filled (i.e., S) Enforcing
these conditions ensures that each p;, is a valid partition of p; (a;) Following the
definition from [19], the piecewise linear functions are represented using {p;s}.

The S+1 segment end points of f;l)(pj (7)) can be represented as {(3, f;l)(g)),
=0...S} and the slopes of each segment as {~;5,s=1...S}. Starting from f;l) (0),

we denote the piecewise linear approximation of f;l)(pj(a;)) as L;l) (pj(x)):

Li(pi(x) = £V (0) + ZWJS
. 9)
_ €>\T(tj) 4 Z'Yjspjs

s=1

The approximation of function f;2)(pj(x)) is performed similarly (slopes
denoted as {f;s,5=1...S}) and yields L;Z)(pj(x)).

S
L3(pj(2) = T 4> " p1japs (10)

s=1

3 Details on the binary search algorithm can be found in Yang et al.’s original PASAQ
formulation [19].
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Given the definition of these two piecewise linear approximations, the follow-
ing system of equations details the solution feasibility checking function (invoked
during the binary search):

S
Ifcllgl (ex\T(tj) + Z’YJSPJS)T (11)
T AjeA s=1
S
+ Z T(tj)(eAT(tj) + ZUjspjs) (12)
AjEA s=1

s.t Z z; <1 (13)

X;eX

S
pi(x) =Y pjs (14)
s=1
pi(x) = zjx; (15)
X, eX
1
bjsg Sp]s,Vj,SZ].S*]. (16)
pj(s+1) Sbjs,Vj,S:]....S—]. (17)
1

ngjsgg,Vj,SZI...S (18)
bjs € {0,1},Vj,s=1...5 1 (19)
Zij € {07 1},VZ,j (20)

where b;, is an auxiliary integer variable that is equal to 0 only if p;, < %
(Eq. 16). Equation 17 enforces that p;(s41) is positive only if b;; = 1. In other
words, b;, indicates whether or not p;, = % and thus enforces our previously
described conditions on the piecewise linear approximation (ensuring each pj, is
a valid partition). As demonstrated in [19], given a small enough binary search
threshold e and sufficiently large number of segments S, PASAQ is arbitrarily
close to the optimal solution.

6 Human Subject Experiments

6.1 Experimental Overview

In order to test the effectiveness of these algorithms against human adversaries,
we ran a series of experiments on Amazon Mechanical Turk (AMT). Even though
we run these (effectively speaking) laboratory experiments, our goal is to collect
this data in such a way as to simulate field conditions where there is limited
data.*

4 For a more detailed discussion of human subject experiment design considerations,
such as steps taken to reduce sources of bias, please see the online appendix at:
http://teamcore.usc.edu/people/benjamin/Ford15_GameSecAppendix.pdf.
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Each participant was presented with a set of fifteen graphs in which they nav-
igated a path from a source node to a destination node through using a series of
intermediate nodes. Participants that successfully attacked a destination (with-
out getting caught on an edge) received the corresponding reward; participants
that got caught on an edge received zero points for that round. At the end of the
experiment, participants received $1.50 plus the number of points they received
(in cents) during the experiment. To avoid learning effects and other sources of
bias, we took the following steps: randomized the order in which graphs were pre-
sented to participants, withheld success feedback until the end of the experiment,
only allowed participants to participate in the experiment once, and finally, we
divided participants into separate subject pools such that each participant only
played against a single defender strategy and played on each of the fifteen graphs
exactly once. Due to the inevitability of some participants playing randomly (thus
confounding any behavioral analysis we may conduct), we included a set of valida-
tion rounds such that if participants chose a path that was covered by the defender
100 % of the time, we would drop their data from the analysis.

6.2 Experiment Data Composition

Participants and Dataset Sizes. In our experiments, all eligible AMT partic-
ipants satisfied a set of requirements. They must have participated in more than
1000 prior AMT experiments with an approval rate of > 95 %, and we required
that all participants were first-time players in this set of experiments. Out of 551
participants, 157 failed to complete all graphs or did not pass both validation
rounds. The remainder, 394, successfully completed all rounds and passed both
validation rounds, and we used only their data in the following data analyses.

Graph Design and Generation. To ensure our findings were not limited to
a single set of homogeneous graphs, we generated three sets of random geomet-
ric graphs. Eppstein et al. demonstrated that geometric graphs were a suitable
analogue to real-world road networks due to road networks’ non-planar connec-
tivity properties [6]. Each set was assigned a predefined neighborhood radius
(r), corresponding to the maximum distance between two nodes for an edge to
exist, and a predefined number of intermediate nodes (v;). Set 1, a set of sparse
random geometric graphs, had r = 0.2, v; = 10, and was required to have at
least 15 edges. Set 2, a set of densely connected graphs, had » = 0.6 and v; =
4. Set 3, a set of intermediately connected graphs, had r = 0.4 and v; = 7. In
addition, all sets were generated with a set of common constraints; each graph
was constrained to have no more than 30 edges, exactly two source nodes, and
exactly three destination nodes (with reward values 3, 5, and 8).

For each set, we generated 100 unique random geometric graphs. For each
graph, we first randomly placed the nodes in a 2-D region (a unit square), and
edges were drawn between nodes that were, at most, a 2-norm distance r away
from each other. During post-processing, invalid connections, such as edges con-
necting source nodes to other source nodes, were removed. After the set was
generated, we computed a Maximin, QR, and SUQR strategy for each graph
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and computed a distance score. This distance score measured the 1-norm dis-
tance between the probability distributions (i.e., the mixed strategies) for two
sets of strategies: QR and SUQR, and Maximin and SUQR; graphs with dis-
tinctly different defender strategies (in terms of the coverage probabilities on
paths) would receive a high distance score. The five graphs with the highest
distance scores were kept for the final set.

Model Parameter Learning. The full experiment set consists of eight sub-
ject pools. For the purposes of learning the model parameters for the human
behavior models, however, we divided the experiment set into three separate
experiment sets. The first experiment set consists solely of the Maximin subject
pool (no model learning required). The latter two experiment sets are defined
by the training dataset used to train the models (e.g., the experiment data from
the Maximin subject pool). As was done in previous work on applying human
behavior models to Security Games [1,11,14,18], we use Maximum Likelihood
Estimation (MLE) to learn the parameter values (i.e., weights) for each behav-
ior model. Because training data may be limited in the real-world, we limit the
scope of each training dataset to contain data from only one subject pool. Unlike
previous work in NSGs by Yang et al. [18], where one set of weights was learned
across all graphs (i.e., an aggregate weight), we found that the log-likelihood was
highest when weights were learned individually for each graph.

Experiment Set Composition. As mentioned previously, the experiments
are divided into three separate experiment sets. Each combination of coverage
strategy x graph set was assigned to their own subject pool. Prior to running
these experiments, however, we had no training data on which to learn weights
for the behavior models. Thus, the first experiment set, experiment set 1, only
contains a coverage strategy generated by the Maximin algorithm.

Experiment set 2 contains coverage strategies generated by the corresponding
PASAQ algorithms for the QR (Eq.3), SUQR (Eq.4), GSUQR1 (Eq.5), and
GSUQR2 (Eq.6) models. For the models used to generate these strategies, we
used the Maximin dataset as the training dataset to learn each model’s weights.
To help differentiate from the datasets in experiment set 3, we will refer to the
datasets collected in experiment set 2 as QR-M, SUQR-M, GSUQR1-M, and
GSUQR2-M.

Experiment set 3 also contains coverage strategies generated for the QR
(Eq.3), SUQR (Eq.4), and GSUQRI1 (Eq.5) models. Instead of learning on
Maximin data, however, we instead learn on GSUQR1-M data (from experiment
set 2). As we will demonstrate later, learning from a non-Maximin dataset has a
substantial positive impact on predictive reliability. As was done for experiment
set 2, we will refer to the datasets collected in experiment set 3 as QR-S, SUQR-S,
and GSUQRI-S.

6.3 Data Analysis Metrics

The following section discusses the various metrics used throughout our data
analysis. First, we will introduce three metrics for computing model prediction
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accuracy (the degree to which a model correctly predicted attacker behavior).
Next, we will introduce our proposed predictive reliability metric, which mea-
sures the degree to which models’ predictions correspond to their actual perfor-
mances. Finally, we introduce our last proposed metric, Exposed Attack Surface,
which measures the number of unique path choices available to the attacker.

Model Prediction Accuracy. In previous empirical analyses [1,5] and in our
own analysis, prediction accuracy measures are key to understanding the relative
performance of behavior models; accuracy measures seek to answer the question
“How well does this model predict human behavior?” Computed over all paths for
each model x graph X coverage strategy combination, prediction accuracy quan-
tifies the degree to which a model’s predictions of attacker behavior were correct.

Regardless of a graph’s size or coverage strategy, however, only a few paths
have an actual probability of attack (g;) > 6 %; most paths in most graphs
are attacked with very low frequency. When looking at all paths in a graph,
the average absolute prediction error (AAE) is 3%, regardless of the behavior
model making the prediction. It appears that the error “outliers” are actually
the primary values of interest. In other words, because there is no discriminatory
power with the average, we instead analyze the maximum absolute prediction
error (MAE) (Eq.21) for each model, where g € G is a graph in the experiment
set, ¢ is the behavior model (along with its weights) being evaluated, g; is the
behavior model ¢’s predicted attack proportion on path A; given defender mixed
strategy z, and ¢; is the actual attack proportion on path A;.

MAE(g,x,¢) = max 9 — gl (21)
J

As mentioned previously, only a few paths in a graph have some substantial
probability of being attacked. Over all eight datasets, on average (across all
graphs), 70% of all attacks occurred on only three paths (per graph). Thus,
it is prudent to also analyze a model’s prediction accuracy on these so-called
“favored” paths.

Definition 1. A path A; is defined as a favored path Ay; if its actual proba-
bility of attack (q;) is > 10 %.

Similar to MAE but instead only over the favored paths Ay; C A; in a graph,
we compute the maximum absolute error over favored paths (referred to as
FMAE). Since this subset of paths does not suffer from excessive skewing, it is
appropriate to also analyze the average absolute error (FAAE) over the set of
favored paths A¢;.

Predictive Reliability. Now that we’ve introduced our prediction accuracy
metrics, we turn our attention to the primary focus of our paper: predictive
reliability - the degree to which models’ prediction accuracies correspond with
their corresponding strategies’ performances in experiments. If predictive reli-
ability is poor, then models chosen on the basis of having the best prediction
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accuracy may not perform the best when tested against actual humans; when
field-deployment resources are limited, those resources should not be wasted on
models that end up performing very poorly in the field!

After all human subject experiments have been conducted (we refer to the
whole set of attack data as Ag), we can compute predictive reliability. Put sim-
ply, predictive reliability is the percentage of strong Pearson correlations. These
correlations are computed separately for each combination of graph (g € G), pre-
diction accuracy metric (PAM), and testing dataset (Te € Ay). For a given g,
PAM, and Te, we compute the Pearson correlation over all models’ (1) predic-
tion accuracy on Te (using PAM), and (2) actual defender utility on the model’s
corresponding attack data (e.g., for model QR trained on Maximin, compute on
the QR-M dataset). Note that if a model was trained on Te or if the model’s
corresponding attack data is T'e, it is omitted from the Pearson correlation for
that combination of g, PAM, and Te.

Definition 2. Predictive reliability is defined as the percentage of correla-
tions between actual utility values and prediction accuracies that are both (1)
strong (magnitude > 0.70), and (2) in the desired direction (negative: as error
decreases, actual utility increases). In other words, predictive reliability corre-
sponds to the percentage of strong correlations (correlation < -0.70).

Exposed Attack Surface. We now introduce our second proposed metric,
Exposed Attack Surface (EAS). While early discussion of attack surface expo-
sure was done by Manadhata et al. [12], more recently, Kar et al. [11] applied
this concept to Repeated Stackelberg Security Games to improve the defender’s
utility against human subjects. EAS measures the number of unique attacker
choices (i.e., paths) for a graph x strategy combination. To phrase this metric
as a question, “Given a coverage strategy and graph, how many paths in the
graph have a unique combination of path coverage and reward?” Referring to
Fig.2 as an example, there are three separate paths to target 5. While two of
these paths have the same path coverage of {0.2, 0.2} (one attack surface), the
other path has 0 path coverage (the second attack surface). Finally, the path to
target 8 constitutes the last attack surface; the example figure’s EAS score is 3.
Although there are four paths in Fig. 2, two of these paths are equivalent to each
other (i.e., same reward and coverage) and thus there are only three unique path
choices (i.e., the EAS score) for the attacker.

Definition 3. Exposed Attack Surface is defined as the number of unique
combinations of reward T (t;) and path coverage probability p;(x) over all paths
A in a graph g.

When computing this metric for a dataset dy,¢ € Dg g, we take the sum of
EAS scores for each graph x coverage strategy (corresponding to a model ¢)
combination. To illustrate the simple (but important) intuition behind EAS, we
present two extreme cases: (1) consider a training dataset that consists of a single
graph X coverage strategy such that the graph’s EAS score is one; all paths to
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the single target have identical coverage (i.e., one unique path choice). When
attempting to learn model parameters, it would be impossible to differentiate
between attacker choices; obviously, this training set with a low EAS score is
ill-suited for use in model learning. (2) In contrast, a training dataset with a
high EAS score implies that there are many distinguishable attacker choices.
Attacker choices over these many unique paths provide information about their
preferences such that we can more effectively train a model; we hypothesize that
a training dataset that contains more information about attacker preferences
(i.e., one with high EAS) is superior to one that provides less information (i.e.,
low EAS).

7 Predictive Reliability Analysis

After defining predictive reliability in the previous section (Sect.6.3), we now
evaluate predictive reliability in previous work by Nguyen et al. [14] for SSGs,
and then follow up with an evaluation of predictive reliability in our work for

NSGs.

7.1 SSG Experiment

In this prior work on Stackelberg Security Games (SSGs), participants in human
subject experiments were asked to play a game called “The Guards and Trea-
sures”. For one experiment, participants in each round (for 11 rounds total)
picked one of 24 targets based on its defender coverage probability, reward and
penalty to the attacker, and reward and penalty to the defender. For each of
these rounds, five coverage strategies were generated: three corresponding to
other defender strategy algorithms and two corresponding to the QR and SUQR
human behavior models whose weights were learned from a prior dataset con-
sisting of 330 data points. While the previous work demonstrated that SUQR’s
prediction accuracy was better than QR, and SUQR had the best corresponding
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strategy performance compared to other algorithms, it was an implicit assump-
tion that the behavior model with the best prediction accuracy would also per-
form the best in human subject experiments. If predictive reliability was actually
poor, then it could have been the case that QR and its strategy would have per-
formed the best in experiments.

7.2 SSG Predictive Reliability

For the following analysis, we confirmed that predictive reliability was strong
for this SSG experiment; prediction accuracy was reliably correlated with actual
performance. In the dataset we obtained from Ngyuen et al. [14] (which contained
human subject attack data), we computed the predictive reliability over the QR
and SUQR models. Because there were only two models in this correlation, the
correlation output was either -1 (i.e., supports good predictive reliability) or +1
(i.e., supports poor predictive reliability). This analysis was done across 11 differ-
ent rounds and for each of the three non-QR/SUQR test datasets. In Table 2, we
show the predictive reliability of the QR and SUQR models in this SSG dataset.
When MAE was used as the error metric for each model, predictive reliability
was 91 %. In other words, 91 % of correlations corresponded to prediction error
being strongly inversely related to actual performance.

Table 2. Guards and treasures predictive reliability

MAE | AAE
Predictive reliability | 91 % | 85 %

7.3 NSG Predictive Reliability

In the following predictive reliability evaluation analysis for NSGs, we demon-
strate that while predictive reliability is strong for SSGs, it is weak for NSGs; in
an NSG setting, model prediction accuracy does not consistently correspond to
actual performance.

We computed the predictive reliability on the NSG dataset using the three
different error metrics: Maximum Absolute Error (MAE), Favored Path Max-
imum Absolute Error (FMAE), and Favored Path Average Absolute Error
(FAAE). Table3 displays the predictive reliability analysis results. While the
predictive reliability results for the SSG dataset were strong, it is surprising
that predictive reliability is extremely poor for this NSG dataset. This result
certainly serves as a cautionary note against relying solely on prediction accu-
racy (as in previous work [1,5]) to identify the best human behavior models;
with weak predictive reliability, even the best model in terms of prediction accu-
racy may actually perform very poorly when its corresponding strategy is tested
against human subjects (either in the lab or in field experiments).
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Table 3. NSG predictive reliability

MAE | FMAE | FAAE
Predictive reliability |23% [24% |22%

7.4 Training Set Size

While the predictive reliability for NSGs is poor, an obvious question to ask is
“Was there enough training data?” For any learning task, it is important to have
sufficient training data. While we do not have nearly as much training data (33
data points) as the prior SSG experiments (330 data points), it is important
to ensure that our training set size is sufficiently large for reliable training.
In this analysis, we examine the effects of training set size on the Maximum
Absolute Error (MAE) rates of each NSG model. While we expect MAE to be
unstable when there is very little data in the training set, as we add more data
to the training set, we expect the error rates to eventually stabilize. It is at
this stabilization point (marked by a training set size) that we can conclude
whether we have trained our models on enough data or not. For example, if
the stabilization point is at 48 data points, it would indicate that our current
training set size (33) is not large enough, and any poor predictive reliability (as
was previously demonstrated to be the case) could easily be explained by this
deficiency in training set size.

As such, the following analysis illustrates the MAE rates of all six NSG
models as a function of changes in the size of the training set. In Figs. 3, 4,
and 5, we show the results of this analysis on Graphs 7, 9, and 11 (respectively),
where MAE is computed on the GSUQR2 testing set. Each line corresponds to
a different model (e.g., QR-M refers to QR trained with Maximin data, SUQR-S
refers to SUQR trained with GSUQRI1 data), the Y-Axis displays the different
MAE rates (higher is worse), and the X-Axis displays the change in training
set size. While all the models appear to have different error rates and rates of
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Fig. 3. MAE as a function of training set size (GSUQR2 testing set, graph 7)
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Fig. 5. MAE as a function of training set size (GSUQR2 testing set, graph 11)

convergence, most of the models appear to converge by the time 33 data points
are introduced into the training set. Thus, we conclude that we have trained our
models with a sufficient number of data points, and the poor predictive reliability
results cannot be attributed to the size of the training set.

8 Predictive Reliability Factors

8.1 Training Set Feature: EAS

In the following analysis for our NSG dataset, we quantify the key difference
in our experiment’s two training sets: Exposed Attack Surface (EAS), and we
demonstrate that having a higher EAS score can lead to substantial improve-
ments in predictive reliability. Note that both training sets in this analysis are
of the same size.
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Fig. 6. Predictive reliability as a function of training set and error metric

Training Set Comparison. As discussed in Sect. 6.2, the full experiment set
is comprised of three separate experiment sets. Experiment set 2 consists of
models trained on Maximin data (from experiment set 1), and experiment set 3
consists of models trained on GSUQR1-M data (from experiment set 2). We
computed predictive reliability scores as a function of training set (either Max-
imin or GSUQR1-M) and prediction accuracy metric (Maximum Absolute Error
(MAE), Favored Path Maximum Absolute Error (FMAE), and Favored Path
Average Absolute Error (FAAE)), and we show those results in Fig.6. As is
clear, there must be a significant difference in the two training sets; split solely
on their training set, the predictive reliability doubles when models are trained
on the GSUQRI-M dataset! While their sizes are roughly the same (about 47
participants), we examine one key difference in these datasets: exposed attack
surface.

Exposed Attack Surface Analysis. Exposed Attack Surface (EAS), as
defined in Sect. 6.3, refers to the number of unique combinations of reward 7 (t;)
and path coverage probability p;(z) over all paths A in a graph g. Since we
are interested in computing this score for an entire dataset (consisting of 15
graphs g € G), we compute the sum of EAS scores across all graphs. Table4
shows the sum of each training dataset’s EAS score. While the Maximin dataset
had 50 unique Exposed Attack Surfaces, the GSUQR1-M dataset had 86 unique
Exposed Attack Surfaces. This is not surprising, as a Maximin strategy’s only
goal is to conservatively minimize the attacker expected utility across all paths;
for 11 out of 15 graphs in the Maximin dataset, the EAS score is equal to 3 (the
minimum given three targets of different reward value). In contrast, an SUQR-
based strategy seeks to actively predict which paths an attacker will choose
(based on a linear combination of path coverage, reward, and potentially other
factors), and as a result, the resultant defender coverage strategy is more varied
(and thus only 3 out of 15 graphs have the minimum EAS score of 3).
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Table 4. Training dataset comparison: sum of exposed attack surfaces

EAS-sum | Maximin | GSUQR1-M
50 86

Based on this line of reasoning, we can view the EAS metric as a measure
of dataset diversity. Since a diverse dataset would necessarily give more unique
choices for attackers to make, we are able to obtain more information on which
choices are favored or not favored by attackers. A higher EAS score could indicate
that a dataset is better for training than another dataset; indeed, our current
results strongly suggest that when there is a substantial difference in EAS-Sum
scores, there will also be a substantial difference in predictive reliability. However,
these results do not mean that a high EAS score will result in 100 % predictive
reliability; if able to train on two datasets of equal size, it will likely improve
predictive reliability to train on the dataset with the higher EAS score.

9 Graph Features and Their Impacts on Predictive
Reliability

In addition to training set features, we also investigated the impacts that a
graph’s features may have on predictive reliability. For example, some graphs
may be inherently more difficult to make predictions on than others, and it
would be useful to characterize the factors that add to this complexity. Because
this analysis is evaluating how a graph’s features impact predictive reliability,
the predictive reliability will be computed on a per graph basis. Figure 7 shows
the predictive reliability scores for each graph, where each bin of three bars
corresponds to a single graph, each bar corresponds to a prediction error metric,
and the Y-axis corresponds to predictive reliability. As can be seen, the predictive
reliability varies greatly as a function of the graph g. As such, it is logical to
investigate what graph features could have led to such significant differences in
predictive reliability.

We analyzed the correlation between a graph’s features and the predictive
reliability score for that graph. Initially, we tested many different features such
as graph size (i.e., the number of paths in the graph), number of edges, number
of intermediate nodes, average path length, and the average in-degree (incoming
edges) and out-degree (outgoing edges) of source, destination, and intermediate
nodes. What we found, however, is that none of these had a strong, direct cor-
relation with predictive reliability. For example, the lack of a strong correlation
between graph size and predictive reliability states: “A graph’s size does not
impact the ability to make reliable predictions”.

Upon further investigation, we found one interesting relationship: there is a
strong correlation (40.72) between poor predictive reliability and graphs with
both a low to moderate average out-degree for source nodes (<3) and a low to
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Fig. 7. Predictive reliability as a function of graph

moderate number of intermediate nodes (<6). While we could not find a cor-
relation among the other features’ values and the average out-degree of source
nodes, we did find a strong correlation between the number of intermediate nodes
and the average in-degree of destination nodes (-0.75). Informally stated, as the
number of intermediate nodes increases, the number of edges going into desti-
nation nodes decrease. This balance is perhaps due to the edge limit imposed
during graph creation. Regardless, when there are less edges going into destina-
tion nodes (due to many intermediate nodes), it is likely easier for the defender to
allocate resources which, in turn, reduces the number of good attack options for
the attacker. If the attacker does not have many good attack options to choose
from, they may act in a way that it is easier to predict by human behavior
models.

10 Conclusion

Interdicting the flow of illegal goods (such as drugs and ivory) is a major secu-
rity concern for many countries. However, the massive scale of these networks
forces defenders to make judicious use of their limited resources. While existing
solutions model this problem as a Network Security Game (NSG), they do not
consider humans’ bounded rationality. While existing techniques for modeling
human behavior make use of large training datasets, this is unrealistic in real-
world situations; the ability to effectively test many models is constrained by
the time-consuming and complex nature of field deployments. In addition, there
is an implicit assumption in these works that a model’s prediction accuracy
strongly correlates with the performance of its corresponding defender strategy
(referred to as predictive reliability). If the assumption of predictive reliability
does not hold, then this could lead to substantial losses for the defender. In
this paper, we (1) first demonstrated that predictive reliability was strong for
previous Stackelberg Security Game experiments. We also ran our own set of
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human subject experiments in such a way that models were restricted to learn-
ing on dataset sizes representative of real-world constraints. In the analysis on
that data, we demonstrated that (2) predictive reliability was extremely weak
for NSGs. Following that discovery, however, we identified (3) key factors that
influenced predictive reliability results: exposed attack surface of the training
data and graph structure.
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Abstract. Increasing concern about insider threats, cyber-espionage,
and other types of attacks which involve a high degree of stealthiness
has renewed the desire to better understand the timing of actions to
audit, clean, or otherwise mitigate such attacks. However, to the best of
our knowledge, the modern literature on games shares a common lim-
itation: the assumption that the cost and effectiveness of the players’
actions are time-independent. In practice, however, the cost and suc-
cess probability of attacks typically vary with time, and adversaries may
only attack when an opportunity is present (e.g., when a vulnerability
has been discovered).

In this paper, we propose and study a model which captures dynamic
environments. More specifically, we study the problem faced by a
defender who has deployed a new service or resource, which must be pro-
tected against cyber-attacks. We assume that adversaries discover vul-
nerabilities according to a given vulnerability-discovery process which is
modeled as an arbitrary function of time. Attackers and defenders know
that each found vulnerability has a basic lifetime, i.e., the likelihood that
a vulnerability is still exploitable at a later date is subject to the efforts
by ethical hackers who may rediscover the vulnerability and render it
useless for attackers. At the same time, the defender may invest in miti-
gation efforts to lower the impact of an exploited vulnerability. Attackers
therefore face the dilemma to either exploit a vulnerability immediately,
or wait for the defender to let its guard down. The latter choice leaves
the risk to come away empty-handed.

We develop two versions of our model, i.e., a continuous-time and a
discrete-time model, and conduct an analytic and numeric analysis to
take first steps towards actionable guidelines for sound security invest-
ments in dynamic contested environments.
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1 Introduction

Since at least the Cold War era there has been a considerable interest in the study
of games of timing to understand when to act in security-relevant decision-making
scenarios [1]. The recent rise of insider threats, cyber-espionage, and other types of
attacks which involve a high degree of stealthiness has renewed the desire to bet-
ter understand the timing of actions to audit, clean, or otherwise mitigate such
attacks. However, to the best of our knowledge, the modern literature on games
and decision-theoretic approaches (including the Fliplt model [3,31]) shares a
common limitation: the assumption that the cost and effectiveness of the play-
ers’ actions are time-independent. For example, in the Fliplt model and its deriv-
atives (see section on related work), an adversary may make a move at any time
for exactly the same fixed cost, and these moves always succeed.

In practice, the cost and success probability of attacks typically vary with
time. Moreover, an adversary may only attack when an opportunity is present
(e.g., when a vulnerability has been discovered). These observations motivate
the development of games of timing which take into account the dynamic envi-
ronment of contested computing resources. Defenders need to develop an opti-
mal defensive strategy which considers the nature of vulnerability discovery by
adversaries. At the same time, the attacker faces the decision-making dilemma
on when to exploit an identified vulnerability.

For example, the black hat community knew already for a long time that
Microsoft would stop supporting Windows XP in April 2014, which would sig-
nificantly lower the defense and mitigation effort for this software product.!
Security professionals conjectured that attackers would begin stockpiling vul-
nerabilities to exploit them more profitably. However, under what circumstances
is such behavior optimal for the attacker, when there is a risk that the vulner-
ability is rediscovered by an internal security team or external ethical hackers
before the planned time of exploitation [22,35]7

In this paper, we propose and study a model which captures dynamic envi-
ronments. More specifically, we study the problem faced by a defender who
has deployed a new service or resource, which must be protected against cyber-
attacks. We assume that adversaries discover vulnerabilities according to a given
vulnerability-discovery process which is modeled as an arbitrary function of time.
Attackers and defenders know that each found vulnerability has a basic lifetime,
i.e., the likelihood that a vulnerability is still exploitable at a later date is sub-
ject to the efforts by ethical hackers who may rediscover the vulnerability and
render it useless for attackers. At the same time, the defender may invest in
mitigation efforts to lower the impact of an exploited vulnerability. Attackers
therefore face the dilemma to either exploit a vulnerability immediately, or wait
for the defender to let its guard down. The latter choice leaves the risk to come
away empty-handed.

! In July 2011, Microsoft made the announcement that support for the operating
system will end in 2014. Note that previously Microsoft already stopped the so-
called full mainstream support for Windows XP in April 2009.
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We develop two versions of our model, i.e., a continuous-time and a discrete-
time model, to increase the applicability of our work. We provide fundamental
constraints on the shape of equilibria for both models, and give necessary and suf-
ficient conditions for the existence of non-waiting equilibria in terms of the shape
of the vulnerability discovery function. We further provide numerical results to
illustrate important properties of our findings.

The remainder of this paper is organized as follows. In Sect. 2, we summarize
related theoretical and behavioral work on security games of timing. In Sect. 3, we
introduce our game-theoretic model including players and the decision-making
environment. In Sect. 4, we derive theoretical results for our model. In Sect. 5,
we present numerical examples. Finally, in Sect.6, we discuss our results and
offer concluding remarks.

2 Related Work

2.1 Security Economics and Games of Timing

The economics of security decision-making is a rapidly expanding field covering
theoretical, applied, and behavioral research. Theoretical work utilizes diverse
game-theoretic and decision-theoretic approaches, and addresses abstract as well
as applied scenarios. A central research question has been how to optimally deter-
mine security investments [7,11,25,32], e.g., by selecting from different canonical
defense actions (i.e., protection, mitigation, risk-transfer) [12,19], and how such
investments are influenced by the actions of strategic attackers [6,30]. Another
frequently addressed aspect has been the consideration of interdependence of
security decision-making and the propagation of risks [4,8,13,14]. Recent sur-
veys summarize these research efforts in great detail [2,15,20].

An often overlooked but critical decision dimension for successfully secur-
ing resources is the consideration of when to act to successfully thwart attacks.
Scholars have studied such time-related aspects of tactical security choices since
the cold-war era by primarily focusing on zero-sum games called games of tim-
ing [1]. The theoretical contributions on some subclasses of these games have
been surveyed by [27].

Recently, the question of the optimal timing of security decisions has again
become a lively research topic with the development of the Fliplt game [3,31].
In the following, we discuss Fliplt as well as theoretical and behavioral follow-up
research.

2.2 Theoretical Analyses of Fliplt

The Fliplt model identifies optimal timing-related security choices under tar-
geted attacks [3,31]. In Fliplt, two players compete for a resource that generates
a payoff to the current owner. Players can make costly moves (i.e., “flips”) to
take ownership of the resource, however, they have to make moves under incom-
plete information about the current state of possession. In the original Fliplt
papers, equilibria and dominant strategies for simple cases of interaction are
studied [3,31].
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In follow-up research, Pham and Cid studied a version of Fliplt with periodic
strategies with random phase. They also considered the impact of a move to
check the state of the game (i.e., audit) [26].

Laszka et al. study games of timing with non-covert defender moves. They
consider also non-instantaneous attacker moves, and different types of adver-
saries, e.g., targeting and non-targeting attackers [18]. A follow-up paper further
generalizes the results of this line of research [17].

The previous papers considered Fliplt with one resource. This limitation has
been addressed with the strategic analysis of the game with multiple contested
resources [16]. Similarly, an extension of the game has been proposed with mul-
tiple defenders [24].

Feng et al. [5] and Hu et al. [10] study games with multiple layers in which
in addition to external adversaries the actions of insiders (who may trade infor-
mation to the attacker for a profit) need to be considered. Hu et al. [10] study
the scenario in a dynamic game framework.

Zhang et al. [34] study the Fliplt game with resource constraints on both
players.

Drawing on the setup of Fliplt, Wellman and Prakash develop a discrete-
time model with multiple, ordered states in which attackers may compromise
a server through cumulative acquisition of knowledge rather than in a one-shot
takeover [33].

2.3 Behavioral Studies of Fliplt

Nochenson and Grossklags describe and analyze two experiments which draw from
the theoretical model of the Fliplt game [21]. They conduct a Mechanical Turk
experiment with over 300 participants in which each participant is matched with
a computerized opponent in several fast-paced rounds of the Fliplt game. Prelim-
inary analysis of this experiment shows that participant performance improves
over time (however, older participants improve less than younger ones). They also
found significant performance differences with regards to gender and a measure of
the desire for deep reasoning about a problem (i.e., need for cognition).

In follow-up work, Reitter et al. contrast two experiments where the feed-
back to the human decision maker in the decision-environment is varied between
visual feedback with history, and temporal feedback without history. The authors
study the human strategies and develop a model backed by a cognitive architec-
ture, which described human heuristics that practically implement risk-taking
preference in timing decisions [28].

Grossklags and Reitter extend these preliminary works with an in-depth
analysis of the experimental data of these previous studies [9]. In particular,
they study the interaction effects between the psychometric measures including
also the general propensity of risk taking with task experience and how those
factors explain task performance.

The behavioral studies will help to develop theoretical models which take
the imperfections of human decision-making into account. Likewise, theoreti-
cal studies of rational behavior serve as an important comparison baseline for
experimentally generated human data or measurements from the field.
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3 Model

Our model captures the motivational aspects of timing, as it pertains to the
discovery, repair, and exploitation of software vulnerabilities. The salient features
of our model may be enumerated as follows.

1. The life cycle of a software product is finite with a known end time ¢t = T'.

2. The rate of vulnerability discovery V'(t) is an arbitrary function of time, spec-
ified as an exogenous parameter. We make this modeling choice to maximize
applicability for varieties of software products and services that may differ in
quality, attention, and life cycle.?

3. The lifetime of a vulnerability decays at a fixed rate A without action by
either player. This choice is made to account for the fact that unknown vul-
nerabilities are often repaired by chance only, so that one might reasonably
assume they die with some fixed probability in a unit of time.?

4. The defender’s security investment d(t) is a function of time, and serves to
mitigate losses when a vulnerability is exploited.

5. The timing of vulnerability exploitation a(t) is chosen by an attacker for
optimal exploitation dependent on the defender’s security investments.

To further extend the applicability of our model, we describe and analyze
two distinct versions — one with continuous time, and one with discrete time. In
the continuous version of the model, attackers and defenders choose strategies
as continuous functions of time, and the payoffs are determined by integrat-
ing expected losses over the range of all time. In the discrete version, time is
divided into a finite number of steps; attackers and defenders choose an action
at each time step, and the payoffs are determined by summing the expected out-
comes over all time periods. Both versions of the game adhere to the paradigms
described above.

We begin by describing the game’s players and their respective choices. We
then proceed to describe the environment. Finally we discuss the consequences
from a configuration of choices. Whenever applicable, we separate the specifica-
tion and discussion according to either the continuous or the discrete model. For
reference, a list of symbols used in this paper may be found in Table 1.

2 A small number of studies investigate the social utility of vulnerability discovery.
On the one hand, Rescorla studied the ICAT dataset of 1,675 vulnerabilities and
found very weak or no evidence of vulnerability depletion. He thus suggested that
the vulnerability discovery efforts might not provide much social benefit [29]. On the
other hand, this conclusion is challenged by Ozment and Schechter, who showed that
the pool of vulnerabilities in the foundational code of OpenBSD is being depleted
[22,23]. Zhao et al. present evidence that the number of discovered vulnerabilities is
declining for a majority of public company-specific vulnerability bounty programs
on HackerOne [36].

Unsurprisingly, statistical evidence is lacking regarding how often defenders and
attackers discover the same vulnerabilities. However, empirical research by Ozment
about the ethical hacker community found that vulnerability rediscovery is common
in the OpenBSD vulnerability discovery history [22].
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Table 1. List of Symbols

Symbol | Description
R scaling factor between security costs and losses
A vulnerability repair rate
Continuous-time Model
T end time
V(t) | vulnerability discovery rate at time ¢
d(t) |defender’s security investment at time ¢
a(t) |attacker’s waiting time before exploiting a vulnerability discovered at
time ¢
Discrete-time Model
K number of time periods
V (k) |expected number of vulnerabilities discovered in time period k
d(k) |defender’s security investment in time period k
a(k) |attacker’s waiting time before exploiting a vulnerability discovered in
time period k

3.1 Players and Choices

Our game has two players, a defender and an attacker. The defender’s objective is
to mitigate damages from vulnerability exploitation through security investment,
while the attacker’s objective is to maximally exploit vulnerabilities as they are
discovered. Neither the attacker nor the defender control the rate of vulnerability
discovery V(t), which is an exogenous function of time.

We may construe the defender’s investments quite broadly, in ways other than
monetary investments. For example, we may understand them as a measure of
strictness in policy enforcement, which can be optimized to minimize usability
loss.

On the attacker side, it is interesting to note that we would obtain the same
results if we modeled the game as one containing several attackers, where each
attacker randomly finds vulnerabilities according to a given rate, and then inde-
pendently chooses the timing of their exploitation. However, for the sake of clear
exposition, we frame the interaction as a two-player game with a single attacker.

Continuous-Time Model. In the continuous-time model over a time interval
[0,T], the defender chooses a continuous function d(t) : [0,7] — Rx>o which
specifies the level of her security investment at each time ¢. The attacker chooses
a continuous function a(t) : [0,T] — Rx>( which specifies how long to wait before
exploiting a vulnerability discovered at time ¢.

Discrete-Time Model. In the discrete-time model with discrete time periods
0,1,..., K, the defender chooses a function d(k) : {0,1,..., K} — Rxq spec-
ifying her security investment level at each distinct time period. The attacker
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chooses a function a(k) : {0,1,..., K} — Z>( specifying how many discrete time
steps to wait before launching an attack using a vulnerability discovered in the
k" time period.

3.2 Environment

Here we construe the environment primarily as the security state of a software
system over a finite period of time. More specifically, the rate of vulnerability
discovery by attackers, V(t), is a function of time, specified as an exogenous
parameter. We anticipate that this modeling choice increases the applicability
for different types of software products and services that may differ in quality,
attention, and life cycle.

The fixing of vulnerabilities, on the other hand, follows a random process
as defenders eventually rediscover vulnerabilities which have been found by the
attacker. More specifically, we assume that the lifetime of a vulnerability follows
an exponential distribution (parameterized by ) without action by either player.
The net effect of this eventual rediscovery is that an attacker who learns of
a vulnerability at one time, cannot simply wait indefinitely for the defender’s
security investment to lapse.

Continuous-Time Model. In the continuous-time model, the vulnerability
function has the form V'(¢) : [0,7] — R>¢. The interpretation is that V(¢) gives
the precise rate at which vulnerabilities are being discovered by the attacker for
each moment of time. In terms of our analysis and computation, we will obtain
the expected number of vulnerabilities discovered during any fixed time interval
by integrating V' (t) with respect to ¢t over that time interval.

The vulnerability repair process is determined by an exponential decay func-
tion of the form e~*7. This function determines the probability that a vulnerabil-
ity still remains exploitable 7 time after its discovery. The structured formulation
guarantees that this exploit probability decays at a constant rate of \. An approx-
imate interpretation is that in each unit of time, a constant fraction of its exploit
probability is lost.

Discrete-Time Model. In the discrete-time model, the vulnerability function
has the form V (k) : {0,1,..., K} — R>¢. Here, V (k) gives directly the expected
number of vulnerabilities discovered during the time period k. Computation-
ally, we may obtain the expected number of vulnerabilities discovered over any
sequence of time periods by summing V' (k) over those periods.

To capture the analogous fixed rate reduction phenomenon for vulnerability
repair in the discrete-time model, we use a geometric distribution function of the
form (1 — A)7, which gives us the probability that a vulnerability is not repaired
in 7 number of time periods after its discovery. The interpretation is that a A
fraction of a vulnerability’s exploit potential is lost in each time period.
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3.3 Consequences

Suppose that both defender and attacker have simultaneously chosen their strate-
gies for defense d and wait times a, respectively. The consequences for the
defender involve both the defense costs and the loss from vulnerability exploita-
tion. We construe the defense function in terms of direct costs, while the amount
of loss resulting from an attack is inversely proportional to the defense rate,
scaled by a fixed constant R.

On the attacker’s side, we are only concerned with the gain from maximally
exploiting the vulnerabilities. Thus, the overall structure is that the defender’s
payoff is always negative, while the attacker’s payoff is always positive. The sum
of payoffs related to vulnerability exploitation is zero; but the game itself is not
zero-sum, unless the defender abstains from any defensive investment (i.e., when
d=0).

Continuous-Time Model. In the continuous-time model, the defender’s
objective is to minimize her total losses over the course of the time interval
[0,T]. The defender’s costs over this time interval may be easily computed as

/t _TO d(t)dt,

while her losses depend in part on the waiting time of an attacker. If the attacker
immediately exploits a vulnerability discovered at time t, the expected loss per
unit time due to vulnerabilities discovered around time ¢ may be expressed as

R
)

On the other hand, if the attacker instead waits for some time a(t) before
exploiting a vulnerability discovered at time ¢, then we must account for both
the decay in vulnerability exploitability as well as adjust the timing relative to
the defense investment. In this case, the expected loss per unit of time due to
vulnerabilities discovered around time ¢ will be given by

e—)\a(t) R )
d(t+a(t))

Putting everything together along with the vulnerability discovery function,
the defender’s total payoff in the continuous-time model is given by

1

Ug=— /t ’ (d(t) + V(t)e—ka“)RM) dt;

=0

(1)
while the attacker’s payoff is given by

T
_ o Halt) 1
U, = /t v Rt a ™ 2)
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Discrete-Time Model. In the discrete-time model, the defender’s objective is
to minimize her total losses over the course of the time stages {0, 1,..., K}. The
defender’s costs are computed as a sum

K
> d(k),
k=0

while losses depend on the waiting time of an attacker. Suppose that an attacker
waits for a(k) time periods before exploiting a vulnerability discovered in time
period k; then, the defender’s losses due to vulnerabilities discovered in time

step k will be given by
R

d(k +a(k))
Assembling everything together, the payoff for the defender in the discrete-
time model is given by

(1—x)a®

K
R
Uy=— d(k) +V(k 1—“(’“)); 3
: §<(>+ m- 3)
while the payoff for the attacker is given by
K R
U= V(k)Q1 = ek 4

4 Analysis

In this section, we analyze the model to find applicable consequences for the
software vulnerability scenario. We will primarily focus on Nash equilibrium
configurations, in which each player is responding optimally in the current
context.

We begin by giving a result in the continuous-time model that constrains the
attacker’s strategy at the temporal boundaries.

Proposition 1. If V(0) > 0, then every equilibrium in the continuous-time
model satisfies a(0) = 0 and a(T) = 0. In words, the attacker should never wait
to attack at either the beginning or the end of the game.

Proof. Suppose a(0) > 0. Since there is no previous time at which the attacker
may have discovered a vulnerability, the defender may safely choose d(0) = 0
as an optimal investment. However, if the attacker knew d(0) = 0, she would
rather prefer not to wait, in order to cause maximum damage in case a vulnera-
bility were found at that time. This contradiction shows a(0) > 0 cannot be an
equilibrium if V' (0) > 0.

The second part of the proposition is more trivially deduced since it would
not benefit the attacker to wait longer because there is no time remaining at the
end of the game. In fact, for this reason more generally, the attacker’s strategy
in equilibrium must satisfy the constraint a(t) < 7T — t. O
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Our second result constrains the attacker’s strategy in any pure-strategy equi-
librium. These conditions are considerably more restrictive than those in the
continuous-time case. They tell us that if there is an ubiquitous risk of vulner-
ability discovery, then there can be no pure-strategy equilibrium in which the
attacker uses any positive wait times.

Proposition 2. IfV (k) > 0 for each time period k, then for every pure-strategy
equilibrium in the discrete-time game, we have a(k) = 0 for each k =0,1,..., K.
In words, if the attacker uses any positive wait time in the discrete-time game,
then it must be part of a mized strategy.

Proof. We prove the result by induction on the number of time periods. When
k = 0, the claimed result is perfectly analogous to the continuous-time model’s
result from the previous proposition. Obviously, there can be no previous vulner-
ability discovery. If the attacker waits to attack in round 0, then the defender can
optimally save herself the trouble of making any security investment in round 0
(i.e., d(0) = 0). But if V(0) > 0, then this configuration is clearly not an optimal
response configuration for the attacker.

But now that we know a(0) = 0, a very similar argument also holds for
k = 1. We do not have any vulnerabilities from the one earlier round, because
the attacker did not wait in round 0. If the attacker now waits in round 1, the
defender may optimally choose not to invest in security protection in this round
(i.e., d(1) = 0). But this configuration is not optimal for the attacker and so
cannot be part of an equilibrium. The argument can now be iterated inductively
fork=2,..., K. a

The crux of these two results is that the attacker may only optimally wait to
attack in a given time period if there is some attack probability arising from a
previous time period. In the continuous case, this implies only that the attacker
cannot wait at the beginning of the game, because continuously increasing the
wait time from ¢ = 0 can still lead to positive attack probability at every point
in time. On the discrete side, however, this observation precludes having any
simple optimal attack strategy in which the attacker waits at all.

The next two propositions give necessary and sufficient conditions for “never
waiting” to be the attacker’s strategy in an equilibrium. In both the continuous-
time model and the discrete-time model, the conditions involve only a simple
relation between the vulnerability discovery function V and the discovery rate .

Proposition 3. In the continuous-time model, there exists an equilibrium in
which the attacker mever waits before attacking if the vulnerability function
satisfies
V(t+a) _ax
— L >N 5
Vi) — (5)

for every t € [0,T] and a € [0,T —t].
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Proof. Suppose that the attacker never waits. Let us consider the defender’s
best response to this strategy. Simplifying Eq. (1), the defender’s utility function

becomes
[} (roeviggs )

This utility is maximized by choosing d(t) at each time ¢ to minimize the

cost plus risk. Setting
d R
i H=| =
. <x + V(%) - ) 0

and solving for z, we obtain the optimal d(t) as
d(t) = vV (¢)R. (6)

Now, the part of the equilibrium condition that says a(t) = 0 is the attacker’s
best response function implies that for every ¢ and a, we have
V()R S V(t)Re™2®
dt) = d(t+a) -~
Incorporating the defender’s strategy and simplifying, we obtain
d(t + (l) > e—)xa
d(t)
VV(E+a)R S
V)R
V(t + CL) > 6—2)\(1
V() ~ ’

e

Now conversely, suppose that

V(t + CL) > 672)«1'
Vi)
Let d(t v/V(t)R be the defender’s investment strategy. Because the
sequence of mequahtles above is reversible, we have that a(t) is a best response

to d(t); and we have already showed that d(t) is a best response to a(t). So there
exists an equilibrium in which the attacker never waits. a

The following proposition gives an analogous result for the discrete-time model.

Proposition 4. In the discrete-time model, there is an equilibrium in which the
attacker never waits before attacking if the vulnerability function satisfies

V(k+a)
V (k)

for every k €{0,...,K —1} anda € {1,..., K — k}.

> (1—- ) (7)
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Proof. Suppose that the attacker never waits. Let us consider the defender’s best
response to this strategy. Simplifying Equation(3), the defender’s utility function
becomes

—ké (d(kz) + V(k>di)> .

This utility is maximized by choosing d(k) at each step k to minimize the
cost plus risk, giving
d(k) = \/V(k)R. 8)

To say that a(k) = 0 is the attacker’s best response function now implies
that for every k and a, we have
V(E)R S V(E)R(1 —\)“
dk) — dik+a)

Incorporating the defender’s strategy and simplifying, we obtain

d(k+ a) u
“agy U
V(k+a)R > (1— A

V(k)R
V(k + a) 2a

The argument that the condition implies existence of an equilibrium is anal-
ogous to the continuous version. a

5 Numerical Examples

In this section, we present numerical examples to illustrate our model and
our theoretical results, focusing on the vulnerability-discovery function and
the defender’s equilibrium strategy. For these numerical examples, we use the
discrete-time version of our model.

First, in Figs.1 and 2, we study two example vulnerability functions with
the corresponding equilibrium defense strategies. In the first example (Fig. 1), the
vulnerability discovery rate grows and decays exponentially. More formally, the
vulnerability discovery rate in this example is given by the following formula:

_ (k—33)2

Vik)= e "m0, (9)

In the second example (Fig. 2), the vulnerability discovery rate grows and decays
linearly (i.e., according to an affine function). In both cases, we let R = 1,
K =100, and A = 0.3.
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Fig. 1. Example based on exponentially growing and decaying vulnerability discovery
rate with the corresponding equilibrium defense strategy.
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Fig. 2. Example based on linearly growing and decaying vulnerability discovery rate
with the corresponding equilibrium defense strategy.

We can see that, in both examples, the rise and fall of the defender’s security
investment is dampened compared to those of the vulnerability functions. How-
ever, the security investments are very far from being constant, which indicates
that dynamic environments play an important role in determining equilibrium
investments.

Second, in Fig. 3, we study the condition given by Proposition 4. Recall that
Proposition 4 establishes a threshold on the maximum rate of decrease in vulner-
ability discovery such that the attacker never waiting is an equilibrium. In Fig. 3,
for various values of A, we plot vulnerability discovery functions that decrease
with this maximum rate.

Firstly, in Fig. 3(a), we can see that if A = 0, then the vulnerability discovery
rate has to be constant in order for the attacker not waiting to be an equilibrium.
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Fig. 3. Threshold vulnerability functions V' (k) for Proposition 4 with various values
of A.

The explanation for this corner case is that A = 0 means that the attacker
can stockpile vulnerabilities without taking any risk; hence, the attacker will
wait only if security investments are constant over time, which implies that
the vulnerability discovery rate must also be constant for the equilibrium to
exist. Secondly, in Figs.3(b), (c), and (d), we see that the higher the value of
A, the more steeply the vulnerability discovery rate may decrease. Again, the
explanation for this is that higher values of A mean higher risk for stockpiling
vulnerabilities; hence, the higher X is, the more steeply the discovery rate can
decrease without the attacker opting to wait.

6 Conclusion

The recent rise of attacks involving a high degree of stealthiness has sparked
considerable interest in games of timing for security. However, to the best of
our knowledge, the previously proposed models in the recent literature share
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a common limitation: the assumption that the cost and effectiveness of the
attackers’ actions are time-independent. In this paper, we proposed and stud-
ied a model which captures dynamic environments, i.e., in which the attackers’
actions depend on the availability of exploitable vulnerabilities. More specifi-
cally, we assumed that attackers discover vulnerabilities according to a given
vulnerability-discovery process, which we modeled as an arbitrary function of
time. Based on this assumption, we formulated a two-player game of timing
between a defender, who tries to protect a service or resource through security
investments, and an attacker, who can choose when to exploit a vulnerabil-
ity. The most interesting novel feature of our model is the attacker’s dilemma:
whether to wait in hope of exploiting the vulnerability at a time when secu-
rity is lower, but risking that the vulnerability is rediscovered and fixed in the
meantime.

In our theoretical analysis, we primarily focused on characterizing equilib-
ria in which the attacker does not stockpile vulnerabilities (i.e., never waits to
exploit a vulnerability). The question of vulnerability stockpiling is interesting
in many practical scenarios, most importantly in the case of software products
that are widely used even after their end of official support. Our results relate the
vulnerability discovery process to the rate of repairing vulnerabilities, and hence
provide guidelines for finding vulnerability repair rates that will not lead to a
vulnerability stockpiling equilibrium in practice. In our numerical examples, we
considered multiple specific vulnerability functions, and studied the correspond-
ing equilibrium strategies.

There are multiple directions for extending our current work. Firstly, we
plan to provide a theoretical characterization of the game’s equilibria in the case
when the attacker does not stockpile vulnerabilities (i.e., when never waiting is
not an equilibrium). Secondly, we plan to study and characterize the Stackelberg
equilibria of our game. In our current work, we assume that the defender and
the attacker choose their strategies at the same time, which captures scenarios
with uninformed players. However, in [17], it was shown — for a different timing-
game model — that a defender can substantially decrease its losses by publicly
committing to a strategy and letting the attacker choose its strategy in response.
We expect that a similar result holds for the model presented in this paper as
well.
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Abstract. We examine a Fliplt game in which there are multiple
resources which a monolithic attacker is trying to compromise. This
extension to Fliplt was considered in a paper in GameSec 2014, and
was there called FlipThem. Our analysis of such a situation is focused
on the situation where the attacker’s goal is to compromise a threshold
of the resources. We use our game theoretic model to enable a defender
to choose the correct configuration of resources (number of resources and
the threshold) so as to ensure that it makes no sense for a rational adver-
sary to try to attack the system. This selection is made on the basis of
the relative costs of the attacker and the defender.

1 Introduction

At its heart security is a game played between an attacker and a defender; thus
it is not surprising that there have been many works which look at computer
security from the point of view of game theory [1,9,12,15]. One particularly
interesting example is the Fliplt game developed by van Dijk et al. [16]. In FlipIt
the attacker and defender are competing to control a resource. Both players
are given just a single button each. The attacker gets control of the resource
by pressing her button, whilst the defender can regain control by pressing his
button. Pressing the button has a cost for each player, and owning the resource
has a gain.

In this work we examine the Fliplt game in the situation where the defender
has multiple resources, and the attacker is trying to obtain control of as many of
these resources as possible. This was partially considered before in the paper [7],
who introduced a variant of Fliplt called FlipThem in which the defender has
control of multiple resources. Instead of flipping the state of a single resource
from good to bad, the attacker is trying to flip the states of multiple resources.
In [7] the authors examine the simplest situations in which an attacker “wins”
if he has control of all resources, and a defender “wins” if she has control of
at least one resource. Thus using the terminology of secret sharing schemes the
paper [7] considers only the full threshold situation.

In this paper we study non-full threshold cases. This is motivated by a number
of potential application scenarios which we now outline:
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— Large web sites usually have multiple servers responding to user requests so
as to maintain high availability and response times. An APT attack on a web
site may try to knock out a proportion of the servers so as to reduce the
owners quality of service below an acceptable level.

— Large networks contain multiple paths between different nodes; again to pro-
tect against attacks. An attacker will not usually be successful if he knocks
out a single path, however knocking out all paths is overkill. There will be
a proportion of the paths which will result in a degradation of the network
connectivity which the attacker may want to achieve.

— In many computer systems multiple credentials are needed to access a main
resource. Thus an attacker only needs to obtain enough credentials to compro-
mise a main resource. Thus modelling attacks on credentials (e.g. passwords,
certificates, etc.) should really examine the case of multiple credentials in the
non-full threshold case.

— Multi-party Computation (MPC) has always used threshold adversaries; an
external attacker trying to compromise a system protected with MPC technol-
ogy will only be interested in obtaining a threshold break above the tolerance
limit of the MPC system. In such a situation however one is interested in proac-
tively secure MPC systems, since when modelled by FlipThem a defender may
regain control of a compromised party.

— Related to the last point is that of fault tolerance. It is well known that Byzan-
tine agreement is not possible if more than n/3 of the parties are compromised.
Thus an adversary who simply wants to inject errors into a network protected
by some Byzantine agreement protocol only needs to compromise more than
n/3 of the servers.

Thus we examine variants of the FlipThem game of [7] in which an attacker is
trying to obtain control of at least ¢ of the resources. We call this the (n,t)-
FlipThem game.

Our main results are to examine Nash equilibria in the case of stochastic
models of play. These are models in which the players strategies are defined by
some random process. The random process defines, for each player, the next time
point at which it will make a play (with time being considered as continuous).
In all of the models we consider, we think of an attacker’s play as being to
attack a single resource; in the case of a stealthy defender the machine to attack
at a given point in time will be random, whereas in the case of a non-stealthy
defender the attacker will always attack a non-compromised resource. For the
defender we allow two possible moves; in the first type the defender gains control
of all resources with a single play. This models the situation where a defender
might reset and reinstall a whole cloud infrastructure in one go, or reset all
credentials/passwords in a given move; we call this a full reset. In the second
type of move the defender needs to select a single resource to reset. Just like in the
case of the attacker, the defender can do this in two ways depending on whether
the attacker is stealthy or not. We call this type of defender move a single reset.
This paper introduces continuous time Markov chains as a method of finding
the benefit functions and calculating Nash equilibria of the two player partial
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threshold multi-party Fliplt game, FlipThem. For full reset, it finds that the
equilibria depend solely on the threshold of the resources and the costs of play,
not the number of resources involved. As the cost for the attacker increases the
necessary amount of servers (threshold) required for the defender to maximise
his benefit decreases. For single reset, the analysis is harder by hand. However,
using numerical methods, one can find analogous results.

1.1 Prior Work

The Fliplt game has attracted attention as it focuses on the situation where
the attacker always gets in; building on the modern appreciation that perimeter
defence on its own is no longer enough. For example the paper [2] examines the
Fliplt game as applied to various different situations in computer security; for
example password reset strategies, key management, cloud auditing and virtual
machine refresh methodologies.

Despite its simplicity the Fliplt game is rather complex in terms of the pos-
sible different attacker and defender strategies, and can be modified in various
ways. In the original FlipIt game both the attacker and the defender are ‘stealthy’
in the sense that neither knows if the other controls the resource before they exe-
cute a button press. In [13] the authors introduce a new mechanism where by a
player can test who controls the resource. The idea being to model the situation
whereby investigating whether a breach has occured is less costly than clearing
up after a breach. Thus a ‘peek’/‘probe’ at the resource state costs less than
taking control of the resource. The paper [13] then moves onto discuss situations
where a resource becomes hardened over time; meaning that every time a player
moves on a resource he already controls, part of the move consists of making it
harder for the opponent to regain control of the resource. An example would be
a system administrator resetting the system to regain control and then patching
the system so the attacker can not use the same method of infiltration.

One can think of the ‘peek’/‘probe’ at the resource state from [13] as a way
of removing the stealthiness from the Fliplt game. In [8] a different approach
is proposed in which defender moves are not stealthy, i.e. an attacker knows if
the defender controls the resource. This is introduced to model situations such
as password resetting, in which an attacker knows when the password is reset
(as he is no longer able to login), but the defender may not notice that their
password is compromised. As well as this non-stealthy mode of operation the
paper also introduces the idea of a defender trying to defend against multiple
(independent) attackers.

The main prior work related to the current paper is that of Laszka et al. [7].
They consider the same situation as us of multiple resources being attacked by a
single monolithic adversary. However, their work has a number of distinct differ-
ences. Firstly, and most importantly, they focus on the case where an attacker
wins if he controls all resources, and the defender wins when he controls one
resource. We on the other hand examine a general threshold structure. Secondly,
the paper of Laszka et al. considers two types of strategies defined by periodic
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and non-arithmetic renewal processes!. The paper establishes some basis facts
on these strategies, but does not consider constructing full benefit functions for
either of these strategies and nor does it find analytic Nash equilibria for the
strategies. This is due to the analytic difficulty in obtaining such formulae.

Given this (relatively) negative result the paper moves onto consider-
ing strategies arising from Markov processes. They develop a model for two
resources, considering discrete time steps and set up a linear programming solu-
tion that becomes more complicated as the finite time horizon extends. We on
the other hand are able to obtain simpler analytic formulae by considering a
continous Markov process. This is because in [7] when constructing the Markov
chain, they consider the state space to be the inter-arrival times of each resource
with respect to the attacker.

In our paper we set up the state space to be the number of resources com-
promised at a specific (continuous) time. Thus moving from discrete to continu-
ous time, and Markov to Stochastic processes simplifies the analysis somewhat.
Without this simplification the paper [7] looks at two specific examples; trying
to find the optimal strategy of the attacker given the strategy of the defender,
and then the optimal flip rates that maximise the benefit at the defender side
given that the attacker plays optimally. Finally they briefly mention how to find
a Nash equilibrium, stating there is a simple iterative algorithm to find one but
they state that algorithm will not converge for the majority of cases.

The paper [17] also considers a number of extensions of the FlipIt paper, and
much like that of Laszka et al. comments on the difficulty of obtaining analytic
solutions to the Nash equilibrium. Therefore, they adopt a simulation based
method. The attackers probability of compromising increases progressively with
probing, while the defender uses a moving-target technique to erase attacker
progress. The paper extends the model to multiple resources and considers a
time dependent ‘reimage’ initiated by the defender, much like our full reset play
of the defender described above. In addition [17], much like our own work, sets
up a situation of asymmetric stealth in that the attacker can always tell when the
defender has moved however the defender does not know when the attacker has
compromised the resource but finds this out when he has probes the resource.

Having multiple resources which an attacker needs to compromise also models
the situation of a moving target defence and a number of game theoretic works
are devoted to other aspects of moving target defence including [3,18]. Since these
works are not directly related to our own work we do not discuss them here.

2 The Multi-party Fliplt Model

Our basic multi-party Fliplt game, or FlipThem game, consists of a defender who
is trying to protect against an attacker getting control of n different resources.
It may help the reader to notice how at each point our game degenerates to the
FlipIt game when n = 1.

1" A renewal process is called non-arithmetic if there is no positive real number d > 0
such that the inter-arrival times are all the integer multiples of d.
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At a given point in time the attacker will control a given threshold k& of the
resources. The attacker is deemed to be “in control”, or have won, if k exceeds
some value t. For example in a denial-of-service attack on a web site, the web-site
may still be able to function even if 2/3 of the servers are down, thus we will
set t = 2-n/3. In the case of an attacker trying to disrupt a consensus building
network protocol, i.e. an instantiation of the problem of Byzantine agreement,
the value of ¢ would be n/3. In the case of a multi-party computation protocol the
threshold ¢ would correspond to the underlying threshold tolerated by the MPC
protocol; e.g. t =n/3,t = n/2 or t = n. Note, in the case of MPC protocols, the
ability of the defender to reset all resources is a common defence against mobile
adversaries, and is thus related to what is called pro-active security in the MPC
community [11].

The variable Dp is the multiplicative factor of the defender’s benefit (i.e.
the benefit obtained per unit time), the same for the attacker’s Ag. The values
are potentially distinct, since the defender could gain more (or less) than the
attacker for being in control of the system for an amount of time. The values D,
and A, are respectively the defender and attacker’s cost per action they perform.

We set d = & to be the ratio of the defender’s cost and benefit. Similarly for

the attacker a = A . We then consider the ratio p = § = 1‘2 D’Z Much of

our analysis will depend on whether p is large or small; which itself depends on
the relative ratios of the benefit/costs of the attacker and defender. With each
application scenario being different. A game where the costs are normalized in
this way we shall call a “normalized game”.

For each time period for which the attacker obtains control of ¢ or more of the
resources it obtains a given benefit, whereas for each time period that he does
not have such control the defender obtains a benefit. In the normalized game
we assume the attacker’s benefit lies in [0, 1] and is the proportion of time that
he controls the resource; whilst the defenders benefit is the proportion of time
in which they control the resource. Thus in the normalized game the benefits
always sum to one.

In all games the utility for the attacker is their benefit minus their cost of play-
ing (i.e. the cost of pushing the buttons), with the utility for the defender obtained
in the same manner. Therefore, the game is non-zero sum. The attacker (resp.
defenders) goal is to derive a strategy which maximises their respective utility.

In one basic normalised “Single Reset” game the defender has a set of n but-
tons; there is one button on each resource which when pressed will return that
resource to the defenders control, or do nothing if the resource is already under
the defenders control. Pressing the resource’s button costs the defender a given
value, which in the normalized game is the value d. In another normalised “Full
Reset” game addition there is a “master button” which simultaneously returns all
resources to the defenders control. Pressing the master button costs the defender
a value which we shall denote by D,,, the value of which depends on n, the number
of resources. The reason for having a master button is to capture the case when
resetting the entire system in one go is simpler than resetting each resource indi-
vidually. In particular we assume that d < D,,. To simplify our games we assume
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that the defender does not have access to the master button and the individual
resource buttons in a single game. This property could be relaxed which would
result in a much more complex analysis than that given here.

The attacker has a set of n buttons, one for each resource. When the attacker
presses a resources button it will allow the adversary control of that resource,
or again do nothing if the resource is already under the attackers control. The
cost to the attacker of pressing one of its buttons is a in the normalized game.

As can be inferred from the above discussion we do not assume that the
defender knows whether it controls a resource, nor do we assume that an attacker
knows whether it controls a resource at a given time point. This situation is called
the two-way stealthy situation, if we assume a defender is not stealthy (but the
attacker is) we are said to be in a one-way stealthy situation.

Throughout the paper we model a number of games. We denote
FlipThem?(n,t, d, p) to be the game of partial threshold FlipThem. By abuse
of notation we also think of FlipThem™(n, ¢, d, p) as a function which returns
all the rates of play strategy pairs for the defender and attacker that are Nash
Equilibria where R € {F,S}. Here we denote by F the full reset game and S the
single reset game, both to be described in detail in later sections. The variables
n, t, d p and € denote the number of resources, the threshold, the defender’s cost
of play, the ratio between the attacker’s and defender’s cost and the lowest rate
of play in the defender’s strategy space (e, oc] respectively. Having € > 0 recog-
nises the fact that the defender will never actually set the reset rate to 0. It also
ensures that the benefit functions are well defined for all valid attacker-defender
strategy pairs. We will not treat the choice of our € to be strategic, it will be a
very small number, close to zero to represent that even when the attacker has
given up (plays a rate of zero) the defender will not.

We also use a function OthRV’E(cL 7T,p) to answer the following question:
Given the ratio p of costs of play between the attacker and defender and a
limit N for the number of resources the defender can own, what is the best set
up for the defender in order to maximise their benefit function? The function
Optﬁ’e(d, T, p) plays the first game FlipThem™ (n,t,d, p) for all n and all ¢ sub-

ject to some constraint space 72. The function Opt?e(d, T, p) then finds the
values of n and ¢ which produce the greatest possible benefit for the defender.

3 Obtaining Nash Equilibria in Continuous Time
for a Stochastic Process

In this section we analyse various different cases of our basic game FlipThemZz
(n,t,d, p). To explain the basic analysis techniques in a simple example; we first
examine the game FlipThemg:(n7 n,d, p). In this game the defender can perform
a full reset and the attacker is trying to compromise all n servers (i.e. the full
threshold case). We also, again for initial simplicity and exposition purposes,
assume that the defender could decide not to play, i.e. ¢ = 0. A moments thought

2 For example t < n, or t < n/2, or n —t > B for some bound B.
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will reveal in practice that such a strategy is not realistic. In the later sub-
sections we remove these two simplifying assumptions and examine other cases.
In particular in Sect. 3.3 when we consider defender performing single resets, the
analysis becomes more complex.

3.1 Simple Example, FlipThemf;(n,n, d, p): Full Threshold,
Full Reset

We first consider a simple example of our framework in which the time an
attacker takes to successfully compromise an individual resource follows an expo-
nential distribution with rate A, and the defender performs a full reset, and thus
regains control of all resources, at intervals with lengths given by an exponential
distribution with rate pu. An alternative description is that individual resources
are compromised on at the arrival times of a Poisson process with rate A\, and
the state is reset at the arrival times of a Poisson process with rate u.

In this context we think of the attacker as being stealthy, i.e. the defender
does not know how many resources are compromised when he does a full reset.
A moment’s thought will also reveal that in this situation it makes no difference
if the defender is stealthy or not; if the defender is not stealthy then the attacker
will always pick an uncompromised resource to attack, whereas if the defender
is stealthy then the attacker is more likely to compromise an uncompromised
resource by picking one which he knows he controlled the longest time ago. Thus
an attacker simply attacks each resource in turn, given some specific ordering.

We model the number of resources compromised by the attacker at time 7
as a family of random variables X = {X(7) : 7 > 0} in the finite space S =
{0,...,n}. Since both the defender and attacker follow memoryless strategies
(with memoryless exponential random variables determining the times between
changes of state) the process X is a continuous time Markov chain. Following
the analysis of continuous time Markov chains in Grimmet et al. [5], for such a
process there exists an |S| x |S| generator matrix G with entries {g;; : 4,5 € S}
such that

. . 1+gii-h+o(h), if j=1
PrX(r+h)=j| X(r)=i]=4 9" (h), it g =4,
gij - h+o(h), it j#i.

The generator matrix G for continuous time Markov chains replaces the transi-
tion matrix P for discrete time Markov chains; entry g;; for ¢ # j is the “rate”
of transition from state ¢ to state j. Summing equation (3.1) over j implies that
> jes 9ij = 0, so that g;; = — 3., gi;; < 0. Basic theory [5] tells us that when
the chain arrives in state ¢ it remains there for an amount of time following
a Exponential(—g;;) distribution, then jumps to state j # i with probability
—9ij/ Yii-

Considering our specific example with the defender using full reset, we can
consider our model as a “birth-reset process” (by analogy with a “birth-death
process”) in which
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X-h+o(h), if j=i+1,
-h h), it 7=0,
PrX(r ) =5 | X(r) =i = {4 et
1=(A+p)-hto(n), if j=i,
o(h), otherwise.

Thus, gio = i, giit1 = A, gii = —(u+ A) and g;; = 0 otherwise. From this the
generator matrix can be constructed:

- A 0 0... 0 0

W=+ A 0... 0 0

B0 —(u+NA... 0 0
G=1| . : . . :

L 0 0 O...—(p+X) A

uo 0 0 0... 0  —pu

Thus when the state is ¢ € {1,...,n — 1} the system will jump to either state
i-+1 with probability A/(A+u) (when the attacker compromises another resource
before reset occurs) or to state 0 with probability p/(A+p) (when the reset occurs
before another resource is compromised). Clearly the chain is never going to
settle in one state; it will continue to randomly fluctuate between various states
depending on the rates of play p and A. However further theory [5] indicates
that the long run proportion of time the system spends in each state is given by
the stationary distribution, a row vector m = (m, ..., 7, ) such that 7G = 0 and
Z?:O T = 1.
Using our specific generator matrix G it can be shown that

(N e
T = , R , .
pEA (A2 () (A"

This tells us the proportion of time spent in each state. We therefore obtain the
benefit functions of

Bp(,\) =Dp - (1 —m,) = De -
and
ﬁz(ua)‘):ABﬂ-n_Ac)\

where 7, is the benefit function of the defender and 3, is the benefit function
of the attacker. We can then normalise 57, and 3, such that

_ b A

N=L2 =17, —dop=1—-—"— —

d-p

and

/ n
ﬁA(M,)‘):BiA:ﬂ-n_a')\:Ai_a')ﬁ
Ap
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where Bp is the normalized benefit function of the defender and (34 is the nor-
malized benefit function of the attacker.

Recall that in this model, when the defender plays he is resetting all resources
at once. Therefore, the normalized cost of the defenders move d is likely to depend
on n, the number of resources. We represent this by setting d = D,,.

Using the stationary distribution described above the benefit functions for
the normalized game are

A" A”

ﬁD(/-Lv)‘) =1- (N+>\)n —Dp-p and ﬁA(M7/\) = (u_’_)\)n —a- A (2)
We are assuming that both players are rational, in that they are both interested
in maximising their benefit functions, and will therefore choose a rate (A or p)
to maximise their benefit given the behaviour of their opponent. A pair of rates
at which each player is playing optimally against the other is called a Nash
equilibrium [10]. At such a point neither player can increase their benefit by
changing their rate; we are looking for pairs (A*, u*) such that

Bp(u*, A ):lfrel%)iﬁD(ﬂvA ) and  Ba(p”, A ):Ané?ﬁ Ba(p”, A).

Note that p* = A* = 0 is an equilibrium of the game defined by Eq. (2). This
is an artefact of assuming the existence of a unique distribution for all p, A,
where as when A = pu = 0 the Markov chain never makes any transitions. In
later sections we will bound p below to remove this solution and for now we will
search for non-trivial solutions.

Differentiating the defender’s benefit function Sp with respect to pu and solv-
ing for p gives at most one non-negative real solution, given by

0= 5

If A< L then this is positive, and checking the second derivative confirms this

corresponds to a maximum. If A > D then Bﬁ—i < 0 for all p > 0 and so the
optimal rate for the defender is u = 0. Hence the best response of the defender
is given by

ntl ’B‘" Aif A< &
0 if A>F-.
We now calculate

04 n-p-A"E

o\ (u+)\)n+1 o

A closed form solution for A which equates this to 0 is not easy to calculate
directly. However, plugging in fi(A*) we see that \* must be either 0 or satisfy
ne ) - ()

(A(A*) + A)tt

—a=0. (3)
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If it were the case that A* > £~ then fi(A*) = 0 and there are no solutions to this

equation. Note that this indicates that no equilibrium exists when the attacker’s

rate is too high — the intuition for this is if the attacker’s rate is sufficiently

high, the defender ceases to defend, and thus the attacker can do just as well
n

by reducing their rate. Thus at any equilibrium we must have A* < -, and

therefore pu* = a(A*) = "%/ % Plugging this back into Eq. (3) we see that
either )
n-D n-a-DN™

n * — s A* — n 4
(Dn+a)”+1’ /’l’ /’L( ) (Dn+a)n+17 ( )
or u* = A* = 0. The non-zero solution will only correspond to a Nash equilibrium
if Ba(p*, A*) > Ba(u*,0) = 0, since otherwise A\* is not a best response against
w*. Note that this is the case if

A=

)" . Dn n
ie ifa/Dy <1/(n—1).

In the game FlipThemOF(n,n,Dn,p) we have defined p to be the ratio
between the attacker and defender’s costs, so that p = a/D,,. Therefore, the
game FlipThem? (n,n, D,, p) returns the list {(0,0)} for all p > 1/(n — 1). If
p < 1/(n—1) we have a further equilibrium (p*, \*) such that the game returns
the list {(0,0), (1*, \*)} where

W=D, A+ p)tl _Dn-(l—l—p)"*l_u/p'
The attacker’s cost per move is independent of n, which implies that the defender
will be successful, assuming nD—Wi is a decreasing function of n, as long as n is
large enough. Thus for the defender to always win we require the cost of a full
reset to be a sublinear function of the number of resources.

In the case of resetting a cloud or web service this might be a reasonable
assumption, but in the case of requiring n users to reset their passwords it is
likely that the cost is a superlinear function as opposed to sublinear due to the
social cost in needing to implement such a password policy.

3.2 FlipThemf(n,t, d, p): (n,t)-Threshold, Full Reset

We now generalize the previous easy case to the threshold case
FlipThemZ—(mt,d, p), i.e. we treat the number of servers which the attacker
has to compromise as a parameter ¢, and in addition we bound the defenders
strategy away from zero. Thus the defender not playing at all is not considered
a valid strategy®. Much of the prior analysis carries through, since we are still
assuming the defender performs a full reset on his turn. Thus the stationary

3 Of course if the attacker decides not to play that is considered a good thing.
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distribution is once more,

( u M_)\k—l /1')\"_1 P )
™= ey ey ,
ft A (1 + A)F (A" ()"

The (normalized) benefit functions are now derived from the ratio of times which
the attacker has compromised at least ¢ resources, which simplifies due to the
formula for geometric series:

o N
A)=1-— E - D, -
/BD(Nv ) M+/\ u+)\z+1 y
)\t
=1-————-D, pu.
G+ V) g

Ait,, —a- A Note
. . . . (H+)\)

that these benefit functions are identical to those in the full threshold case of
the previous section, but with n replaced by t¢. If we were still considering the
lower bound for the defender’s rate of play € to be zero the conclusions would be
as before, but with the modification that we use t instead of n. Since we are now
considering the more realistic assumption that ¢ > 0 the analysis gets slightly
more involved, but remains similar to that above. In particular

Using the same analysis, the attacker’s benefit is 84 (u, \) =

A 9Bp £

t
N=1-(—") —D, 4 and - _D,.
/BD(N7 ) ()\+IJ/> M an a,U/ ()\+M)t+1

_1
This derivative is decreasing in p, and 0 at A- (ﬁ) - 1} . It follows imme-

diately that Sp is a unimodal function of u, so that the maximising p value in

le, 00) i given by
,&()\):min{g)\- [(x.tpn)tll”}} (5)

As above, we have that

LAY Ba _ top- AT
ﬁA(ﬂ,)\)—(W> —a-A and Y _(/\Jru)t“_a. (6)

Thus for a particular value of i the maximising A must either be 0 or be a root of
the derivative. However, explicitly solving for A does not appear to be possible,
but we note that

aQﬁA t-,u-)\t_Q
oO\2 = (/\Jr‘u)tJrQ'[M'(t_l)_Q')\]

9Ba
o’

is equal to —a when A = 0 and asymptotes to —a as A — oo

so that the first derivative,
ﬁA

is increasing when A < p - (¢ — 1)/2 then
decreasing. Since
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we have the derivative increasing from —a to a maximum when A = p- (¢t —1)/2
9Ba

then decreasing back to —a. The maximal value of %3* is given by
4-t-(t—1)1
4t - )
JIE (t + 1)t+1

which is positive only if p is sufficiently small. As a function of A, G4 therefore
initially decreases (from 0), has a period of increase only if u is sufficiently small,
then decreases again. It follows that 4 has at most one non-zero maximum,
which occurs in the region (i - (t — 1)/2,00) once the derivative is decreasing,
and this fixed point maximises 54 (p, A) on A € [0, 00) if and only if S4(p, A) > 0;
otherwise the best response must be A = 0. We use these insights to explore Nash
equilibria directly. First consider the existence of a Nash equilibrium (u*, \*)
with u* > e. Note that if A* were equal to 0 then this would force u* =€, so it
must be the case that p* = i(\*) and %i)‘\“(u*, A*) = 0. It follows from (5) and

(6) that
t- /.t* . /\*tfl t =T
a ()\* + M*)Hl n 2* . Dn

t t-p
N - L
a Dy, - (1 + p)t+t

and hence

Dy (14 )T )

We have checked necessary conditions so far, but have still not verified that this
A* does correspond to a maximum of 34. As observed above, the necessary and
sufficient condition is that

1+p—p-t
0< AN = —/————.
614(/1' ) (1 + p)t+1
Thus an equilibrium of this form exists when
1 t-p
< — d p=——1—"7"-——
pP<i_q 8and H Dn'(1+p)t+1>€

Therefore, if the ratio p of the attacker’s cost and defender’s cost is less than t_%
then the game FlipThemE}- (n,t,d, p) returns the list consisting of two pairs, the
trivial equilibrium of no play (from the attacker, the defender plays at minimal
rate €) and an equilibrium at
t-p t
B D, + o)t Dy (L+py+t 1V /p
Note that if the maximal value of the derivative of 34 is non-positive then no
stationary point of 34 exists, and so A will be 0. By removing all local maxima
of the attacker’s payoff function we really would expect the attacker to just stop
playing; i.e. this would be the perfect defenders strategy. From (7) we see that
by taking
4-t-(t—1)1
I k) i ©)
a-(t+ 1)t
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61 N=3 —N=4
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Fig. 1. Number of resources used by the defender to maximise his benefit given a
specific p

we can ensure there is only the trivial equilibrium. Note that a simpler lower
bound on €, which trivially implies the one above, is to take ¢ > ﬁ. Note
that choosing a sufficiently high € in this way is very conservative. The rate of
decrease of 84 is —a at A = 0 and as A — o0, so by insisting there is no local
maximum at all we ensure 34 stays well away from 0.

Picking € to force out the attacker only makes sense if the defender’s benefit is
actually maximised. It might be the case that stopping the attacker completely is
not economically viable. Therefore, in such a case € should be chosen to be very
small, close to zero and the other equilibria in Eq. (8) should be used; implying
that p* is less than the right hand side of Eq. (9). Thus an expected amount of
attacker success may be tolerated if completely eliminating such success comes
at too much of a price. Recall our function Optﬁjﬁe(d, p). If we fix e = 0.01/d
and set 7 = {¢t < n}, and run this programmatically for p from 0 to 1, Fig. 1
shows the smallest n < N that maximises the defenders benefit for various V.
Recall that the attacker will not play if p > 1/t — 1, meaning that as p increases
the level of threshold decreases and therefore the number of servers required
decrease. The optimum defender’s benefit occurring when ¢ = n. This explains
the step down in Fig. 1.

We end this section by examining the classic case of a threshold situation
in which the required threshold is a constant fraction of the total number of
resources. Suppose we have ¢ = - n for some constant v € (0, 1]. We have shown
that the attacker will not play if %f > ﬁ =T As expected we see that if
the attacker needs to compromise fewer resources, then the attacker’s cost per
resource needs to be greater for them not to play. It is intuitively obvious that
the smaller the threshold the more likely the attacker will play (and succeed).

3.3 FlipThem‘eS (n,t,d, p): (n,t)-Threshold, Single Reset

So far we have set up the model such that the defender can reset the whole
system regaining full control whereas the attacker compromises each resource
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individually. We now consider the game FlipThemf(n, t,d, p). The defender can
reset a single machine at any specific time. Consider the situation at any time
point where the number of resources compromised is k& out of n. Assume the
defender is going to reset a resource. There are multiple strategies they could
employ, they could pick a resource which they have not reset recently, or pick
a random resource, or pick a resource in a given secret sequence. Here we will
assume the players pick resources uniformly at random. Thus the probability of
resetting a compromised resource is %, and that of wastefully resetting a non-
compromised resource 1 — % Letting the defender’s and attacker’s rate of play
be p and A respectively, it is not hard to see that our generating matrix now
becomes

= A 0 o ... 0 0 0
g _lptol)d) (oA 0 ... 0 0 0
0 24 _@utln=n) m=2x 0 0
G=| . N " "
0 0 0 0 .. Du_ ((-Duty A
0 0 0 0 ... O I —
We then solve for the stationary distribution 7 = (mg, 71, ..., Tp—1,Tn), by solv-

ing 7G = 0, and it can be shown by induction that

k k
= n!- A% .7 :(Z)-)\ -0
(n—k)! - Kkl pk Tk
Recall, that we also need to utilize the constraint ZLO m; = 1, which implies
that we have my = " 30 that we obtain the stationary distribution

ESVE

1 n
- n M A - n 1 ... : n k - Ak ... - - An 1 A’” .
™ 7( R (,u ,n uwt ’(kz) I N X! ,

Once again, this gives us the proportion of time spent in each state. We assume
here that the costs and benefits have already been normalised and do not depend
on n the number of resouces. Constructing these benefit functions gives

o)) =1-3 jm—d~u=1—-§j(.>-u"—’-x'—d-u,
D( ) P (N'i-)\)n — 7

- 1 ~ (n n—i i
514(#7/\):27%—@')\:%_)\)"'2(2.)'# A —a-A

i=t 1=t
We want to find the Nash Equilibria for these benefit functions. A point at which
neither player can increase their benefit by changing their rate. We want to find
pairs (u*, \*) such that
ﬂD(,u*7 A*) = Inax ﬂD(,uv )\*) and ﬂA(/L*7 A*) = Imax ﬂA(,u*v )\)7
lLG( AER L

€,00)
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where € is the lowest rate we can expect the defender to play in order to ensure
the stationary distributions and hence benefit functions are well defined for all
valid (i, ). Differentiating the defender’s and attacker’s functions with respect
to p and A respectively gives,

0Bp nl-p?=t. )\

ou - (t—1)! (n—t)!- (u+ )"+l —d, (10)

85A n!. ,unftJrl AL
= —a. (11)
o\ =1 (n—0)! (p+ N+t
Closed form solutions for p and A which equate to 0 are not easy to calculate
directly. The second derivative of the attackers benefit with respect to A is

n! - 'un—t+1 3 )\t—2

(tfl)!'(nft)!.(qu)\)nJrz'[M'(t_l)—/\-(n+2—t)].

Thus, 83'% is increasing when

po(t—1)

A
< n+2—t’

then decreasing. Since % is —a at A = 0 and asymptotes to —a as A — o0

_ p(t=1)

o= and

we have the derivative increasing from —a to a maximum when A

then decreasing back to —a. The maximal value of % is given by

nl-(t— 1)1
(42— )2 p

—a (12)

which is positive only if p is sufficiently small. As a function of X\, 54 therefore
initially decreases (from 0), has a period of increase only if y is sufficiently small,
then decreases again. It follows that 54 has at most one non-zero maximum

which occurs in the region
u@—U’m
n+2—t

once the derivative is decreasing, and this fixed point maximises B4 (i, \) on
A € [0,00) if and only if S4(p, A) > 0; otherwise the best response must be
A = 0. First, like the full reset case, we consider the existence of a Nash Equi-
librium (p, A) with g > e. Since both derivatives (10) and (11) are hard to solve
analytically for general n, we used a numerical method utilizing the Maple alge-
bra system to solve for a specific n. The method for solving starts with defining
the benefit functions in terms of y and A\, we then differentiate the derivatives
as above and solve for i and A for the defender and attacker, respectively. This
provides 2 generic solutions of the form

i(A) = RootOf(f(A)) and A(u) = RootOf(g(s))
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where f and g are polynomials. We then put these solutions back into the deriv-
atives to give

OBp(uAw) o 9B, N)
ou o\

Solving these with respect to p and A respectively gives solutions for p* and A\*
a

with respect to the costs d and a. From this we can consider the ratio p = 3
between the attacker’s and defender’s costs of play. A table can be constructed
to show the ratios at which both the defender and attacker will and won’t play
for various p. Recall that even if the attacker is not playing, the defender must
still play at some rate € in order to ensure control of the system. In order to
calculate the defender’s benefit given a specific p we must calculate the lowest
rate of play for the defender when the attacker is not playing. From Eq. (12),
% is never positive if
nl-(t—1)1
vt (n+2—-1)t2-a

w>

Meaning no stationary point exists for the attackers benefit. From this we can
see that by taking
|. _1)\t—1
> nl-(t—1)
Tntl.(n+2-t)t"2-qa

we can ensure there is no equilibrium with * = € and A # 0. Recall that p = 4,
so that

n!-(t—1)1
€ >
ittt (n+2-t)t2-p-d

This shows that if p is large enough, € will be small meaning the likely strategy
for the attacker will be no play, A = 0. So the benefit for the defender will be

nl-(t—1)"

N=1—-€e-d=1-— .
ﬁD(€7 ) € tn+1'(n+2_t)t72,p

However, having p large enough to ensure € is small enough is an unrealistic
assumption and choosing € like this becomes a strategic choice. As it was for
the full reset case, it is also very conservative and could be expensive for the
defender. We therefore fix our € > 0 to be very small, close to zero before the
game. We now want to ask the following question: Given the costs of play for both
defender and attacker and a limit N for the number of resources the defender
can own, what is the best set up for the defender in order to maximise their
benefit function? i.e. given p and N we are looking for the pairs such that

5D(n ’ ) ngnj%fiitxgnﬂD(n’ )
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where 7, (n,t) = Bp(p*, \*) is the Nash equilibrium for the specific number of
resources n and threshold ¢. Recall we defined this game to be Opt}s\,,e(d, 7,p).
We turn to the method of numerical programming for this problem. Obviously,
since the lowest rate of play e for the defender is chosen arbitrarily before the
game is played, if the equilibrium played is the trivial equilibrium then the
defenders benefit is Bp(e,0) =1 —€- d.

When running Opt}sv76(d, T,p), each round of FlipThem? (n,t,d, p) played
has three possible outcomes.

— If p is so small the defender will not even play at the minimal rate e.

— If p is “mid-size” the defender and attacker both play the non-trivial equilib-
rium (p*, \*).

— If p is large the attacker does not play and the trivial equilibrium (e,0) is
played.

6 —— Minimum number of resources ‘
e
3
2
=
2
2 4
=}
)
e}
g
3
Z l—
2
0.2 0.4 0.6 0.8 1 1.2
Ratio p

Fig. 2. Number of resources used by the defender to maximise his benefit given a
specific p, for 7T = {t <n} and N = 7.
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Fig.3. Number of resources used by the defender to maximise his benefit given a
specific p, for T = {t <n/2} and N = 7.
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We experimentally examined two scenarios, both in which we fix e = 0.01/d. In
the first scenario we take 7 = {t < n} and N = 7, in this case the function
Opt'}svye(d, T, p) outputs valid configurations for relatively small values of p, see
Fig. 2. Interestingly the output best game for a maximum defenders benefit is
always a full threshold game. In the second scenario we take 7 = {t < n/2},
and again N = 7. The results are given in Fig. 3. In this case small values of p
result in games for which the defender will not play, for larger values of p we end
up requiring more servers.
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Abstract. Stealthy attacks are a major threat to cyber security. In prac-
tice, both attackers and defenders have resource constraints that could
limit their capabilities. Hence, to develop robust defense strategies, a
promising approach is to utilize game theory to understand the funda-
mental trade-offs involved. Previous works in this direction, however,
mainly focus on the single-node case without considering strict resource
constraints. In this paper, a game-theoretic model for protecting a sys-
tem of multiple nodes against stealthy attacks is proposed. We consider
the practical setting where the frequencies of both attack and defense are
constrained by limited resources, and an asymmetric feedback structure
where the attacker can fully observe the states of nodes while largely
hiding its actions from the defender. We characterize the best response
strategies for both attacker and defender, and study the Nash Equilibria
of the game. We further study a sequential game where the defender first
announces its strategy and the attacker then responds accordingly, and
design an algorithm that finds a nearly optimal strategy for the defender
to commit to.

Keywords: Stealthy attacks - Resource constraints - Game theory

1 Introduction

The landscape of cyber security is constantly evolving in response to increas-
ingly sophisticated cyber attacks. In recent years, Advanced Persistent Threats
(APT) [1] is becoming a major concern to cyber security. APT attacks have
several distinguishing properties that render traditional defense mechanism less
effective. First, they are often launched by incentive driven entities with specific
targets. Second, they are persistent in achieving the goals, and may involve mul-
tiple stages or continuous operations over a long period of time. Third, they are
highly adaptive and stealthy, and often operate in a “low-and-slow” fashion [7]
to avoid of being detected. In fact, some notorious attacks remained undetected
for months or longer [2,6]. Hence, traditional intrusion detection and prevention
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techniques that target one-shot and known attack types are insufficient in the
face of long-lasting and stealthy attacks.

Moreover, since the last decade, it has been increasingly realized that security
failures in information systems are often caused by the misunderstanding of
incentives of the entities involved in the system instead of the lack of proper
technical mechanisms [5,17]. To this end, game theoretical models have been
extensively applied to cyber security [4,9-11,13,16,19]. Game theory provides
a proper framework to systematically reason about the strategic behavior of
each side, and gives insights to the design of cost-effective defense strategies.
Traditional game models, however, fail to capture the persistent and stealthy
behavior of advanced attacks. Further, they often model the cost of defense (or
attack) as part of the utility functions of the players, while ignoring the strict
resource constraints during the play of the game. For a large system with many
components, ignoring such constraints can lead to either over-provision or under-
provision of resources and revenue loss.

In this paper, we study a two-player non-zero-sum game that explicitly mod-
els stealth attacks with resource constraints. We consider a system with IV inde-
pendent nodes (or components), an attacker, and a defender. Over a continuous
time horizon, the attacker (defender) determines when to attack (recapture) a
node, subject to a unit cost per action that varies over nodes. At any time t,
a node is either compromised or protected, depending on whether the player
that makes the last move (i.e., action) towards it before ¢ is the attacker or the
defender. A player obtains a value for each node under its control per unit time,
which again may vary over nodes. The total payoff to a player is then the total
value of the nodes under its control over the entire time horizon minus the total
cost incurred, and we are interested in the long-term time average payoffs.

To model stealthy attacks, we assume that the defender gets no feedback
about the attacker during the game. On the other hand, the defender’s moves
are fully observable to the attacker. This is a reasonable assumption in many
cyber security settings, as the attacker can often observe and learn the defender’s
behavior before taking actions. Moreover, we explicitly model their resource con-
straints by placing an upper bound on the frequency of moves (over all the nodes)
for each player. We consider both Nash Equilibrum and Sequential Equilibrum
for this game model. In the latter case, we assume that the defender is the
leader that first announces its strategy, and the attacker then responds with
its best strategy. The sequential setting is often relevant in cyber security, and
can provide a higher payoff to the defender compared with Nash Equilibrum.
To simplify the analysis, we assume that the set of nodes are independent in
the sense that the proper functioning of one node does not depend on other
nodes, which serves as a first-order approximation of the more general setting of
interdependent nodes to be considered in our future work.

Our model is an extension of the asymmetric version of the Fliplt game con-
sidered in [15]. The Fliplt game [20] is a two-player non-zero-sum game recently
proposed in response to an APT attack towards RSA Data Security [3]. In the
FlipIt game, a single critical resource (a node in our model) is considered. Each
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player obtains control over the resource by “flipping” it subject to a cost. Dur-
ing the play of the game, each player obtains delayed and possibly incomplete
feedback on the other player’s previous moves. A player’s strategy is then when
to move over a time horizon, and the solution of the game heavily depends on
the class of strategies adopted and the feedback structure of the game. In par-
ticular, a full analysis of Nash Equilibria has only been obtained for two special
cases, when both players employ a periodic strategy [20], and when the attacker
is stealthy and the defender is observable as in our model [15]. However, both
works consider a single node and there is no resource constraint. The multi-
node setting together with the resource constraints impose significant challenges
in characterizing both Nash and Sequential Equilibria. A different multi-node
extension of the Fliplt game is considered in [14] where the attacker needs to
compromise either all the nodes (AND model) or a single node (OR model) to
take over a system. However, only preliminary analytic results are provided.

Our game model can be applied in various settings. One example is key
rotation. Consider a system with multiple nodes, e.g., multiple communication
links or multiple servers, that are protected by different keys. From time to
time, the attacker may compromise some of the keys, e.g., by leveraging zero-
day vulnerabilities and system specific knowledge, while remaining undetected
from the defender. A common practice is to periodically generate fresh keys by a
trusted key-management service, without knowing when they are compromised.
On the other hand, the attacker can easily detect the expiration of a key (at
an ignorable cost compared with re-compromising it). Both key rotation and
compromise incurs a cost, and there is a constraint on the frequency of moves
at each side. There are other examples where our extension of the Fliplt game
can be useful, such as password reset and virtual-machine refresh [8,15,20].

We have made following contributions in this paper.

— We propose a two-player game model with multiple independent nodes, an
overt defender, and a stealthy attacker where both players have strict resource
constraints in terms of the frequency of protection/attack actions across all
the nodes.

— We prove that the periodic strategy is a best-response strategy for the
defender against a non-adaptive i.i.d. strategy of the attacker, and vice versa,
for general distributions of attack times.

— For the above pair of strategies, we fully characterize the set of Nash Equi-
libria of our game, and show that there is always one (and maybe more)
equilibrium, for the case when the attack times are deterministic.

— We further consider the sequential game with the defender as the leader
and the attacker as the follower. We design a dynamic programming based
algorithm that identifies a nearly optimal strategy (in the sense of subgame
perfect equilibrium) for the defender to commit to.

The remainder of this paper is organized as follows. We present our game-
theoretic model in Sect. 2, and study best-response strategies of both players in



96 M. Zhang et al.

Sect. 3. Analysis of Nash Equilibria of the game is provided in Sect.4, and the
sequential game is studied in Sect. 5. In Sect. 6, we present numerical result, and
we conclude the paper in Sect. 7.

2 Game Model

In this section, we discuss our two-player game model including its information
structure, the action spaces of both attacker and defender, and their payoffs.
Our game model extends the single node model in [15] to multiple nodes and
includes a resource constraint to each player.

2.1 Basic Model

In our game-theoretical model, there are two players and N independent nodes'.
The player who is the lawful user/owner of the N nodes is called the defender,
while the other player is called the attacker. The game starts at time ¢t = 0 and
goes to any time ¢ = T. We assume that time is continuous. A player can make
a move at any time instance subject to a cost per move. At any time ¢, a node is
under the control of the player that makes the last move towards the node before
t (see Fig.1). Each attack towards node i incurs a cost of C{* to the attacker,
and it takes a random period of time w; to succeed. On the other hand, when
the defender makes a move to protect node i, which incurs a cost of C2, node
i is recovered immediately even if the attack is still in process. Each node ¢ has
a value r; that represents the benefit that the attacker receives from node i per
unit of time when node ¢ is compromised.

In addition to the move cost, we introduce a strict resource constraint for each
player, which is a practical assumption but has been ignored in most prior works
on security games. In particular, we place an upper bound on the average amount
of resource that is available to each player at any time (to be formally defined
below). As typical security games, we assume that r;, C{*, CP, the distribution
of w;, and the budget constraints are all common knowledge of the game, that is,
they are known to both players. For instance, they can be learned from history
data and domain knowledge. Without loss of generality, all nodes are assumed to
be protected at time t = 0. Table 1 summarizes the notations used in the paper.

As in [15], we consider an asymmetric feedback model where the attacker’s
moves are stealthy, while the defenders’ moves are observable. More specifically,
at any time, the attacker knows the full history of moves by the defender, as well
as the state of each node, while the defender has no idea about whether a node
is compromised or not. Let «; j denote the time period the attacker waits from
the latest time when node i is recovered, to the time when the attacker starts
its k-th attack against node 4, which can be a random variable in general. The
attacker’s action space is then all the possible selections of {«; 1 }. Since the set
of nodes are independent, we can assume «;  to be independent across ¢ without

! The terms “components” and “nodes” are interchangeable in this paper.
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Fig. 1. Game model
Table 1. List of notations
Symbol | Meaning
T Time horizon
N Number of nodes
T Value per unit of time of compromising node ¢
w; Attack time for node ¢
cA Attacker’s move cost for node ¢
cp Defender’s move cost for node ¢
Qi g Attacker’s waiting time in its k-th move for node ¢
Xik Time between the (k—1)-th and the k-th defense for node i
B Budget to the defender, greater than 0
M Budget to the attacker, greater than 0
m; Frequency of defenses for node i
Di Probability of immediate attack on node i once it recovers
L; Number of defense moves for node i

loss of generality. However, they may be correlated across k in general, as the
attacker can employ a time-correlated strategy. On the contrary, the defender’s
strategy is to determine the time intervals between its (k — 1)-th move and k-th
move for each node ¢ and k, denoted as X ;.

In this paper, we focus on non-adaptive (but possibly randomized) strate-
gies, that is, neither the attacker nor the defender changes its strategy based on
feedback received during the game. Therefore, the values of «; ; and X;; can
be determined by the corresponding player before the game starts. Note that
assuming non-adaptive strategies is not a limitation for the defender since it
does not get any feedback during the game anyway. Interestingly, it turns out
not to be a big limitation on the attacker either. As we will show in Sect. 3, peri-
odic defense is a best-response strategy against any non-adaptive i.i.d. attacks
(formally defined in Definition 2) and vice versa. Note that when the defender’s
strategy is periodic, the attacker can predict defender’s moves before the game
starts so there is no need to be adaptive.
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2.2 Defender’s Problem

Consider a fixed period of time T and let L; denote the total number of defense
moves towards node ¢ during 7T'. L; is a random variable in general. The total
amount of time when node ¢ is compromised is then T — Z£=1 min(oy , +
w;, Xi k). Moreover, the cost for defending node i is L;CP. The defender’s pay-
off is then defined as the total loss (non-positive) minus the total defense cost
over all the nodes. Given the attacker’s strategy {c; x}, the defender faces the
following optimization problem:

N — (T — 251:1 min(ai,k + wi7Xi,k)) Ty — LZCP

max F
{Xix},Li ; T

N Li
s.t. Z T < Bw.p.l (1)
=1
L;
> Xk <T wp.lVi
k=1

The first constraint requires that the average number of nodes that can be pro-
tected at any time is upper bounded by a constant B. The second constraint
defines the feasible set of X ;. Since T is given, the expectation in the objective
function can be moved into the summation in the numerator.

2.3 Attacker’s Problem

We again let L; denote the total number of defense moves towards node 7 in T'.
The total cost of attacking i is then (Zé’zl Lo, <x,,) CA where 14, cx,, =1
if ajp < Xyk and 1q, , <x,, = 0 otherwise. It is important to note that when
o > X, the attacker actually gives up its k-th attack against node i (this
is possible as the attacker can observe when the defender moves). Given the
defender’s strategy, the attacker’s problem can be formulated as follows, where
M is an upper bound on the average number of nodes that the attacker can
attack at any time instance.

N Li 3 Li
max E Z (T = >y min(e g, +wi, Xig)) -1 — Qi Loy <Xin) * CzA
Qi k P T
N 1 T
st. E Y T/ v (t)dt| < M (2)
i=1 0

where v;(t) = 1 if the attacker is attacking node 7 at time t and v;(t) = 0 other-
wise. Note that we make the assumption that the attacker has to keep consuming
resources when the attack is in progress instead of making an instantaneous move
like the defender; hence it has a different form of budget constraint. On the other



A Game Theoretic Model for Defending Against Stealthy Attacks 99

hand, we assume that C’l-A captures the total cost for each attack on node i, which
is independent of the attack time. We further have the following equation:

T L;
/ v (t)dt = (min(oy g + wi, X ) — min(oy g, Xi k) (3)
0 k=1

Putting (3) into (2) and moving the expectation inside, the attacker’s problem
becomes

i T-r; — B[, min(ey , +wi, X 1)) i — B0, Plaig < X)) - Cf
max
ik T
5.3 PRy minte s, Xe) = min(en X)) _ )
=1 T

3 Best Responses

In this section, we analyze the best-response strategies for both players. Our
main result is that when the attacker employs a non-adaptive i.i.d. strategy, a
periodic strategy is a best response for the defender, and vice versa. To prove
this result, however, we have provided characterization of best responses in more
general settings. In this and following sections, we have omitted most proofs to
save space. All the missing proofs can be found in our online technical report [21].

3.1 Defender’s Best Response

We first show that for the defender’s problem (1), an optimal deterministic
strategy is also optimal in general. We then provide a sufficient condition for a
deterministic strategy to be optimal against any non-adaptive attacks. Finally,
we show that periodic defense is optimal against non-adaptive i.i.d. attacks.

Lemma 1. Suppose X[, and L7 are the optimal solutions of (1) among all
deterministic strategies, then they are also optimal among all the strategies
including both deterministic and randomized strategies.

According to the lemma, it suffices to consider defender’s strategies where both
X and L, are deterministic.

Definition 1. For a given L;, we define a set X; including all deterministic
defense strategies with the following properties:

1. 251:1 Xiw=T;
2. Fai,k+wi (Xiyk) = Fai,j+wi (Xi;j) Vk’j7

where Fo, , 4w, () is the CDF of r.v. a; i + w;.
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Note that X; can be an empty set in general due to the randomness of
o, + w;. The following lemma shows that when X is non-empty for all ¢, any
strategy that belongs to X; is the defender’s best deterministic strategy against
a non-adaptive attacker.

Lemma 2. For any given set of {L;} with Zf\;l LT < B, if X; # 0 Vi, then any
set of {X; 1} that belongs to X; is the defender’s best deterministic strategy.

Lemma 2 gives a sufficient condition for a deterministic defense strategy to be
optimal. The main idea of the proof is to show that the defender’s payoff for
each node ¢ is concave with respect to X; ;. The optimality then follows from
the KKT conditions. Intuitively, the defender tries to equalize its expected loss
in each period in a deterministic way, which gives the defender the most stable
system to avoid a big loss in any particular period. We then show that a periodic
defense is sufficient when the attacker employs a non-adaptive i.i.d. strategy
formally defined below.

Definition 2. An attack strategy is called non-adaptive i.i.d. if it is non-
adaptive, and «; j is independent across i and is i.1.d. across k.

Theorem 1. A periodical strategy is the best response for the defender if the
attacker employs a non-adaptive i.1.d. strategy.

According to the theorem, the periodic strategy gives the defender the most
stable system when the attacker adopts the non-adaptive i.i.d. strategy. Since
the attacker’s waiting time a; ; does not change with time, a fixed defense inter-
val provides the same expected payoff between every two consecutive moves.
Moreover, since the defender’s problem is a convex optimization problem, the
optimal defending frequency for a given attack strategy can be easily determined
by solving the convex program.

3.2 Attacker’s Best Response

We first analyze the attacker’s best response against any deterministic defense
strategies, then show that the non-adaptive i.i.d. strategy is the best response
against periodic defense.

Lemma 3. When defense strategies are deterministic, the attacker’s best
response (among non-adaptive strategies) must satisfy the following condition

0 w.p. p;
ol = b 5)
>Xix wp. l—pig

Proof Sketch: The main idea of the proof is to divide the problem (4) into
Zivzl L; independent sub-problems, one for each node and a single period,
where each subproblem has a similar target function and a budget M, ; where

Z?;l 251:1 M; , = M. Due to the independence of nodes, it suffices to prove
the lemma for any of these sub-problems.
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Lemma 3 implies that for each node i, the attacker’s best strategy is to either
attack node ¢ immediately after it realizes the node’s recovery, or gives up the
attack until the defender’s next move. There is no incentive for the attacker
to wait a small amount of time to attack a node before the defender’s next
move. The constraint M actually determines the probability that the attacker
will attack immediately. If M is large enough, the attacker will never wait
after defender’s each move. We then find the attacker’s best responses when
the defender employs the periodic strategy.

Theorem 2. When the defender employs periodical strategy, the non-adaptive
.4.d. strategy is the attacker’s best response among all non-adaptive strategies.

3.3 Simplified Optimization Problems

According to Theorems 1 and 2, periodic defense and non-adaptive i.i.d. attack
can form a pair of best-response strategies with respect to each other. Consider

such pair of strategies. Let m; & Li = ﬁ? and let p; denote the probability

T )
that «; = 0,Vk. The optimization problems to the defender and the attacker
can then be simplified as follows.

Defender’s problem:

maxz [(E[min (w, %)]pﬂ"i - CiD> -m; —pﬂ’z}

(2

maxipi . <m(1 — E[min(w;, %)} my) — c;“m,;>

(3

s.t. Z E[min(w;, mi)] “myops <M (7)

i=0 v

We observe that the defender’s problem is a continuous convex optimization
problem (see the discussion in Sect.3.1), and the attacker’s problem is a frac-
tional knapsack problem. Therefore, the best response strategy of each side can
be easily determined. Also, the time period T disappears in both problems.

4 Nash Equilibria

In this section, we study the set of Nash Equilibria of the simplified game as
discussed in Sect. 3.3 where the defender employs a periodic strategy, and the
attacker employs a non-adaptive i.i.d. strategy. We further assume that the
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attack time w; is deterministic for all 7. We show that this game always has a
Nash equilibrium and may have multiple equilibria of different values.
We first observe that for deterministic w;, when m; > wi,, the defender’s

payoff becomes —m;CP, which is maximized when m; = wi Therefore, it suffices
i

to consider m; < wi Thus, the optimization problems to the defender and the
attacker can be further simplified as follows.
For a given p, the defender aims at maximizing its payoff:

N
max > [mi(riwipi — CP) — piri]
foi=1

N
i=1

1

%

On the other hand, for a given m, the attacker aims at maximizing its payoft:

maXE:pZ r; — my( nwl—i—CA)]

N
Zmiwipi <M 9)
i=1

For a pair of strategies (m,p), the payoff to the defender is Uy(m,p) =
Zivzl[mi(piriwi — OP) — p;7;], while the payoff to the attacker is U,(m,p) =
ZZN:l pilri — mi(riw; + CA)]. A pair of strategies (m*,p*) is called a (pure
strategy) Nash Equilibrium (NE) if for any pair of strategies (m,p), we have
Ua(m*,p*) > Ug(m,p*) and U, (m*, p*) > U,(m™, p). In the following, we assume
that C* > 0 and C? > 0. The cases where C* = 0 or C = 0 or both exhibit
slightly different structures, but can be analyzed using the same approach. With-

out loss of genemhty7 we assume r; > 0 and -<1 for all i. Note that if r; = 0,

ficient of m; in Uy (defined below) is always negatlve and there is no need to
protect node z.
Let u;(p) = piriw; — CP denote the coefficient of m; in Uy, and p;(m) £

ri—m; (r w,

+07) . Note that for a given p, the defender tends to protect more a
component with higher p;(p), while for a given m, the attacker will attack a
component more frequently with higher p;(m). When m and p are clear from
the context, we simply let u; and p; denote u;(p) and p;(m), respectively.

To find the set of NEs of our game, a key observation is that if there is
a full allocation of defense budget B to m such that p;(m) is a constant for
all 4, any full allocation of the attack budget M gives the attacker the same
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payoff. Among these allocations, if there is further an assignment of p such
that p;(p) is a constant for all 4, then the defender also has no incentive to
deviate from m; hence (m,p) forms an NE. The main challenge, however, is
that such an assignment of p does not always exist for the whole set of nodes.
Moreover, there are NEs that do not fully utilize the defense or attack budget
as we show below. To characterize the set of NEs, we first prove the following
properties satisfied by any NE of the game. For a given strategy (m,p), we
define p*(p) £ max; ui(p), p*(m) £ min; pi(m), F(p) = {i: pi(p) = p*(p)}, and
D(m,p) & {i € F : p;(m) = p*(m)}. We omit m and p when they are clear from
the context.

Lemma 4. If (m,p) is an NE, we have:

1.Yig F,m; =0,p; =1, p; = o0;

2. Vie F\D,m; € [0 =1;
. ) cpP
3. Vie D,m; € [0,71“”:;0?],])1»6 [=—,1].

TiW;

Ty
) wiri+cf } » Di

Lemma 5. If (m,p) forms an NE, then fori € D,j € F\D and k ¢ F, we have
riw; — CP > rjw; — CP > rpwy — CF.

According to the above lemma, to find all the equilibria of the game, it suffices
to sort all the nodes by a non-increasing order of 7;w; — CP, and consider each
F}, consisting of the first A nodes such that rpw, — C’}? > Thy1Whel — C,?H,
and each subset Dy C F} consisting of the first & < h nodes in the list. In the
following, we assume such an ordering of nodes. Consider a given pair of F' and
D C F. By Lemma4 and the definitions of F' and D, the following conditions
are satisfied by any NE with F(p) = F and D(m,p) = D.

T .
ce0,— 1 1pi=1,Yi € F\D; 11
mi€ 0. el = LY € P 1)
mi €[0,———],p; € [g 1, Vi € D; (12)
3 b wzrl + C;4 7p1 T’Z’LU,L, b )

Zmi SBaZmiwipi < M; (13)

iEF i€F
pi=p" Vi € Fy o opp < pt Vi & F; (14)
pi = p", Vi € D; pi > p" Vi g D. (15)

The following theorem provides a full characterization of the set of NEs of
the game.

Theorem 3. Any pair of strategies (m,p) with F(p) = F and D(m,p) = D is
an NE iff it is a solution to one of the following sets of constraints in addition
to (10) to (15).
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ZieFmi:B; p*zof

ZiEF m; = B; P* > 07. ZiEF m;w;p; = M;

Yoiepmi=DB; p*>0;p;=1,Vie€F;

ZiGFmi<B; p*=0; F=Fn;p"=0;

ZieFmi <B;u*=0;, F=Fn;p">0; ZieFmiwipi =M;
pmy < B;p*=0; F=Fy;p*>0;,p;=1VicF.

S G Lo do =

i€
In the following, NEs that fall into each of the six cases considered above are
named as Type 1-Type 6 NEs, respectively. The next theorem shows that our
game has at least one equilibrium and may have more than one NE.

Theorem 4. The attacker-defender game always has a pure strategy Nash Equi-
librium, and may have more than one NE of different payoffs to the defender.

Proof. The proof of the first part is given in [21]. To show the second part,
consider the following example with two nodes where 1 = ry = 1,w; = 2, ws =
1,CP =1/5,0P =4/5,C{+ =1,C5' =7/2,B=1/3, and M = 1/5. It is easy to
check that m = (1/6,1/6) and p = (3/20,9/10) is a Type 2 NE, and m = (1/3,0)
and p = (p1,1) with p; € [1/5,3/10] are all Type 1 NEs, and all these NEs have
different payoffs to the defender. a

5 Sequential Game

In this section, we study a sequential version of the simplified game considered
in the last section. In the simultaneous game we considered in the previous
section, neither the defender nor the attacker can learn the opponent’s strategy
in advance. While this is a reasonable assumption for the defender, an advanced
attacker can often observe and learn defender’s strategy before launching attacks.
It therefore makes sense to consider the setting where the defender first commits
to a strategy and makes it public, the attacker then responds accordingly. Such a
sequential game can actually provide defender higher payoff comparing to a Nash
Equilibrium since it gives the defender the opportunity of deterring the attacker
from moving. We again focus on non-adaptive strategies, and further assume
that at ¢t = 0, the leader (defender) has determined its strategy, and the follower
(attacker) has learned the defender’s strategy and determined its own strategy in
response. In addition, the players do not change their strategies thereafter. Our
objective is to identify the best sequential strategy for the defender to commit
to, in the sense of subgame perfect equilibrium [18] defined as follows. We again
focus on the case where w; is deterministic for all 4.

Definition 3. A pair of strategies (m*,p*) is a subgame perfect equilibrium of
the simplified game (8) and (9) if m* is the optimal solution of
N
max 3" [mi(rawip} — CP) ~ piri]
i=1

N
s.t. Zmi <B (16)
i=1

1
Wi

2
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where pf is the optimal solution of

A
maprZ T mi riw; +C1 )]
DPi i1
N

Zmiwipi S M (17)
i=1

Note that in a subgame perfect equilibrium, p; is still the optimal solution
of (9) as in a Nash Equilibrium. However, defender’s best strategy m} is not
necessarily optimal with respect to (8). Due to the multi-node setting and the
resource constraints, it is very challenging to identify an exact subgame per-
fect equilibrium strategy for the defender. To this end, we propose a dynamic
programming based algorithm that finds a nearly optimal defense strategy.

Remark 1. Since for any given defense strategy {m;}, the attacker’s problem

(17) is a fractional knapsack problem, the optimal p;, Vi has the following form:

A
Sort the set of nodes by p;(m;) = M non-increasingly, then there is

an index k such that p; = 1 for the first k nodes and p; < 1 for the k+1-th node,
and p; = 0 for the rest nodes. However, if p; = p; for some ¢ # j, the optimal
attack strategy is not unique. When this happens, we assume that the attacker
always breaks ties in favor of the defender, a common practice in Stackelberg
security games [12].

Before we present our algorithm to the problem, we first establish the fol-
lowing structural properties on the subgame perfect equilibria of the game.

Lemma 6. In any subgame perfect equilibrium (m,p), the set of nodes can
be partitioned into the following four disjoint sets according to the attack and
defense strategies applied:

2. D={im; >0, 0<p; <1};
3. F= {2|ml >0, p; = 0},’

Moreover, they satisfy the following properties:

1. FUDUEUG={ili=1,...,n} and |D| <1
2. pp>pr>pjforVieF, keD, jekE

Since the set D has at most one element, we use mgy to represent m;,i € D
for simplicity, and let pg = p(my). If D is empty, we pick any node ¢ in F' with
minimum p; and treat it as a node in D.

Lemma 7. For any given nonnegative pg, the optimal solution for (16)-(17)
satisfy the following properties:
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riw; —CP >0Vie FUEUD
m; = m] VjeFE

ng—w

B — ZZEEmZ mq > 0.

.U"f*\?@%@t‘

where m; = my(pa) and m;(-) is the reverse function of p;(+)

Remark 2. If pg < 0, the defender can give less budget to the corresponding
node to bring pg down to 0. In any case, the payoffs from nodes in set D and F
are 0 since the attacker will give up attacking the nodes in set D and E. Thus,
the defender has more budget to defend the nodes in set F' and G which brings
him more payoffs. Therefore we only need to consider nonnegative pq.

Lemma 8. For any nonnegative pq, there exists an optimal solution for (16)-
(17) such that Vi € F, there are at most two m; < m; and all the other m; = m;

From the above lemmas, we can establish the following results about the
structure of the optimal solution for (16)—(17).

Proposition 1. For any nonnegative pg, there exists an optimal solution
{m;}1, such that

1. Vi € F, there are at most two m; < m; and all the other m; = my;;
2. mq =myg;

3. Vie E, m; =m;;

4. Yie G, m; =0.

According to Proposition 1, for any nonnegative pg, once the set allocation
is determined, the value of m; can be immediately determined for all the nodes
except the two fractional nodes in set F. Further, for the two fractional nodes,
their m; can be found using linear programming as discussed below. From these
observations, we can convert (16), (17) to (18) for any given nonnegative pgq, d,

f1 and fg .

2
m I,{,laXE F.G Z [ (riw; — i — 1| + Z my, (rywy, — Cﬁ) B Tfj]
Pym gy M fg, 25 1 i€F\{f1,f2} =

— Zm— — ZmiCiD + mq(prawg — C’dD) —prq

icG  icE
s.t. Z m+mf1+mf2+2mi+md§3
i€F\{f1,f2} i€E

Z Wi, +wpmyp, +wp,my, +pwgmg < M
1€F\{f1,f2}
0<my, <y, 0<my, <My, 0<p<1 (18)

Note that, the set allocation is part of the decision variables in (18).
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We then propose the following algorithm to the defender’s problem (see Algo-
rithm 1). The algorithm iterates over nonnegative pq (with a step size pgep) (lines
3-10). For each pg, it iterates over all possible node d in set D, and all possible
nodes f1, fo with fractional assignment in set F' (lines 5-8). Given pg, d, f1, fa,
the best set allocation (together with m; for all ¢ and p) are determined using
dynamic programming as explained below (lines 6-7), where we first assume that
B, M, m; and w; have been rounded to integers for all 7. The loss of performance
due to rounding will be discussed later.

Consider any pg, node d is in set D, and nodes fi, fo with frictional assign-
ment in set F. Let SEQ(i,b,m,d, f1, fo,ind) denote the maximum payoff of
the defender considering only node 1 to node i (excluding nodes d, f; and
f2), for given budgets b and m for the two constraints in (18), respectively.
The ind is a boolean variable that indicates whether the second constraint
of (18) is tight for node 1 to i. If ind is True, it means all the budget m is
used up for node 1 to i. ind is False meaning that there is still budget m
available for the attacker. Here, 0 < b < B and 0 < m < M. The value
of SEQ(i,b,m,d, f1, f2,ind) is determined recursively as follows. If b < 0 or
m < 0, the value is set to —oo. If node ¢ is one of d, fi; and fo, we simply set
SEQ(i,b,m,d, f1, fa,ind) = SEQ(i — 1,b,m,d, f1, f2,ind). Otherwise, we have
the following recurrence equation, where the three cases refer to the maximum
payoff when putting nodes i in set F', E, and G, respectively.

SEQ(i,b,m,d, f1, f2,ind)
= max { SEQ(i — 1,b— 7, m — wimi, d, fi, fo, ind) + i (ryw; = CP) =74,

SEQ(i— 1,b =i, m,d, fi, fz,ind) — ,CP, SEQ(i — 1,b,m,d, f1, fa,ind) = r.}  (19)

Meanwhile, if ind is False, node i can be allocated to set E only if r; —m; (r;w; +
C{') < 0. Otherwise, there is still available budget for the attacker to attack other
nodes with reward greater than 0 which violates the structure of the greedy
solution for (17). Also, if ind is False, it means m is not used up. Thus we
should return —oco if ind is False, ¢ > 0 and m = 0.

Moreover, we let SEQ(0,b,m,d, f1, f2,ind) denote the maximum defense
payoff when only nodes in d, fi, and fo are considered. If ind is True, the
following linear program in (20) determines the optimal values of p, my, and
my, for given budgets b and m:

2

s 3 g (rgyws, = OF) =y, ]+ ma(prawa = CF) = pra
i7I2 j=1

stmy +mp, +mg < b
MpWe +mpwp, <m (20)
myp, <My, Mmyp, Sy,

m—mygpWyr —Mf,

b= Wi g
wqmq
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If ind is False, we must have p = 1. The optimal values of my, and my, are
determined by (21):

2
max Z[mfj (rywy, — Cij) —rp,] + ma(rgwg — CP) —rq
LT PRLLLY P J=1
st.myg +myp, +mg < b (21)

mpwp +mpwe <M= Wamg

myg Sy, My, <y,

Algorithm 1. Sequential Strategy for Defender

1: Initialize pgtep

2! Pmas — min{p: > wym;(p) < M}

3: for pg < 0 to pmax With step size pgiep do
4: m; — m;(pg) for all ¢

5 for d, f1, fo — 1tondo

6: valg,f, 1, < SEQ(n,B,M,d, f1, f2, True)
7 "ual(’i’fl’f2 — SEQ(n,B,M,d, f1, f2, False)
8: end for

9:  Cap(pa) « maxa,s, r,{vala 5, valy ¢ g}

10: end for

11: Oy = maxy, {Cap(pa)}

Since the dynamic program searches for all the possible solutions that satisfy
Proposition 1, Cyp(pa) gives us the optimal solution of (16)—(17) for any given
nonnegative pg. Algorithm 1 then computes the optimal solution by searching
all the nonnegative py. Note that d, f; and fs can be equal to include the case
that there is only one or zero node in set F'. The minimum possible value of
p is 0 (explained in Remark2). The maximum possible value of p is min{p :
Yo wimg(p) < M}. For larger p, the sum of all w;m; will be less than M. In
this case, all the nodes will be in set F' and p; = 1 Vi, which makes (16)—(17) a
simple knapsack problem that can be easily solved.

Additionally, since the dynamic program searches over all feasible integer val-
ues, we use a simple rounding technique to guarantee it is implementable. Before

the execution of SEQ(n, B, M,d, f1, f2,ind), we set m; «— L%J, w; — L%J for
all 4 and B « L%J, M — L%J where § is an adjustable parameter. Intuitively,
by making ¢ and pste, small enough, Algorithm1 can find a strategy that is
arbitrarily close to the subgame perfect equilibrium strategy of the defender.

Formally, we can establish the following result.

Theorem 5. Let Cyyy denote the payoffs of the strategy found by Algorithm 1,
and C* the optimal payoffs. Then for any € > 0, Algorithm 1 can ensure that
l%ﬁjl < 1+ € with a total time complexity of O(”SEBSM), where B and M are

values before rounding.
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Note that both Cy;y and C* are non-positive. The details can be found in
our online technical report [21].

6 Numerical Result

In this section, we present numerical results for our game models. For the illus-
trations, we assume that all the attack times w; are deterministic as in Sects. 4
and 5. We study the payoffs of both attacker and defender and their strategies
in both Nash Equilibrium and subgame perfect equilibrium in a two-node set-
ting, and study the impact of various parameters including resource constraints
B, M, and the unit value r;. We further study the payoffs and strategies for
both players in subgame perfect equilibrium in a five-node setting, and study
the impact of various parameters.

We first study the impact of the resource constraints M, B, and the unit
value ry on the payoffs for the two node setting in Fig. 2. In the figure, we have
plotted both Type 1 and Type 5 NE? and subgame perfect equilibrium. Type 5
NE only occurs when M is small as shown in Fig. 2(a), while Type 1 NE appears
when B is small as shown in Fig. 2(b), which is expected since B is fully utilized
in a Type 1 NE while M is fully utilized in a Type 5 NE. When the defense
budget B becomes large, the summation of m; does not necessarily equal to B
and thus Type 1 NE disappears. Similarly, the Type 5 NE disappears for large
attack budget M. In Fig.2(c) and (d), we vary the unit value of node 1, r1. At
the beginning, the defender protects node 2 only since ws > wy. As r; becomes
larger and larger, the defender starts to change its strategy by protecting node 1
instead of node 2 in NE Type 1. On the other hand, since node 1 is fully protected
by the defender and the defender gives up defending node 2, the attacker begins
to attack node 2 with probability 1, and uses the rest budget to attack node 1
with probability less than 1, due to the high defending frequency and limited
resources M. We further observe that in both the simultaneous game and the
sequential game, the value of m; increases along with the increase of 71, while
the value of mo decreases at the same time. This implies that the defender
tends to protect the nodes with higher values more frequently. In addition, the
subgame perfect equilibrium always bring the defender higher payoffs compared
with Nash Equilibrium, which is expected.

Moreover, it interesting to observe that under the Type 5 NE, the attacker’s
payoff decreases for a larger M as shown in Fig.2(a). This is because the
defender’s budget B is not fully utilized in Type 5 NE, and the defender can
use more budget to protect both nodes when M increases. The increase of
the attacker’s payoff by having a larger M is canceled by the increase of the
defender’s move frequency m; and msy. We also note that the Type 5 NE is less
preferable for the defender in Fig. 2(c) when ry is small and favors defender as
rq increases, which tells us that the defender may prefer different types of NEs
under different scenarios and so does the attacker.

2 There are also Type 2 NE, which are omitted for the sake of clarify.
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Fig. 2. The effects of varying resource constraints, where in all the figures, ro = 1, w1 =
1.7,ws = 1.6,CP = 0.5,C2 = 0.6,C* = 1,C4 = 1.5, and r; = 2 in (a) and (b),
B =0.31n (a), (¢), and (d), and M = 0.1 in (b), (c), and (d).
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We then study the effects of varying M and r; on both players’ payoffs
and strategies in the sequential game for the five-node setting. In Fig. 3(a), the
parameters of all the nodes are the same except ;. We vary the attacker’s budget
M from 0 to 1. When M = 0, the defender can set m; for all i to arbitrary small
(but positive) values, so that the attacker is unable to attack any node, leading
to a zero payoff for both players. As M becomes larger, the attacker’s payoff
increases, while the defender’s payoff decreases, and the defender tends to defend
the nodes with higher values more frequently, as shown in Fig. 3(a)(lower). After
a certain point, the defender gives up some nodes and protects higher value
nodes more often. This is because with a very large M, the attacker is able to
attack all the nodes with high probability, so that defending all the nodes with
small m; is less effective than defending high value nodes with large m,;. This
result implies that the attacker’s resource constraint has a significant impact
on the defender’s behavior and when M is large, protecting high value nodes
more frequently and giving up several low value nodes is more beneficial for the
defender compared to defending all the nodes with low frequency.

In Fig. 3(b), we vary r; while setting other parameters to be the same for all
the nodes. Since all the nodes other than node 1 are identical, they have the same
m; as shown in Fig. 3(b)(lower). We observe that the defender protects node 1
less frequently when 7 is smaller than the unit value of other nodes. When
71 becomes larger, the defender defends node 1 more frequently, which tells us
the defender should protect the nodes with higher values more frequently in the
subgame perfect equilibrium when all the other parameters are the same.

7 Conclusion

In this paper, we propose a two-player non-zero-sum game for protecting a sys-
tem of multiple components against a stealthy attacker where the defender’s
behavior is fully observable, and both players have strict resource constraints.
We prove that periodic defense and non-adaptive i.i.d. attack are a pair of best-
response strategies with respect to each other. For this pair of strategies, we
characterize the set of Nash Equilibria of the game, and show that there is
always one (and maybe more) equilibrium, for the case when the attack times
are deterministic. We further study the sequential game where the defender first
publicly announces its strategy, and design an algorithm that can identify a
strategy that is arbitrarily close to the subgame perfect equilibrium strategy for
the defender.
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Abstract. Stackelberg Security Games (SSGs) model scenarios where
a defender implements a randomized security policy, while an attacker
observes the policy and selects an optimal attack strategy. Applications
of SSG include critical infrastructure protection and dynamic defense
of computer networks. Current work focuses on centralized algorithms
for computing stochastic, mixed-strategy equilibria and translating those
equilibria into security policies, which correspond to deciding which sub-
set of targets (e.g., infrastructure components or network nodes) are
defended at each time step. In this paper, we develop distributed strate-
gies for multiple, resource-constrained agents to achieve the same equilib-
rium utility as these centralized policies. Under our approach, each agent
moves from defending its current target to defending a new target with
a precomputed rate, provided that the current target is not defended by
any other agent. We analyze this strategy via a passivity-based approach
and formulate sufficient conditions for the probability distribution of the
set of defended targets to converge to a Stackelberg equilibrium. We then
derive bounds on the deviation between the utility of the system prior to
convergence and the optimal Stackelberg equilibrium utility, and show
that this deviation is determined by the convergence rate of the dis-
tributed dynamics. We formulate the problem of selecting a minimum-
mobility security policy to achieve a desired convergence rate, as well
as the problem of maximizing the convergence rate subject to mobility
constraints, and prove that both formulations are convex. Our approach
is illustrated and compared to an existing integer programming-based
centralized technique through a numerical study.
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1 Introduction

Intelligent and persistent adversaries typically observe a targeted system and its
security policies over a period of time, and then mount efficient attacks tailored
to the weaknesses of the observed policies. These attacks have been analyzed
within the framework of Stackelberg Security Games (SSG), where the defender
(leader) selects a policy in order to maximize its utility under the best response
strategy of the adversary (follower) [1,2]. Applications of SSGs include defense
of critical infrastructures [3,4] and intrusion detection in computer networks [5].
In both of these applications, the security policy corresponds to defending a set
of targets, including ports, checkpoints, or computer network nodes.

The security of the system targeted in an SSG can be further improved
through randomized policies, in which the set of nodes or locations that are
guarded varies over time with a probability distribution that is chosen by the
defender [2—4,6]. An attacker with knowledge of the probability distribution, but
not the outcome of the randomized policy at each time step, will have greater
uncertainty of the system state and reduced effectiveness of the attack.

Current work in SSGs focuses on centralized computation of the Stackelberg
equilibria against different types of attackers, including rational, min-max, and
bounded rational [6] attackers, under complete, incomplete, or uncertain infor-
mation. In scenarios including patrolling and intrusion defense, however, security
policies are implemented by distributed agents (e.g., multi-robot patrols, or mal-
ware filters in intrusion detection). These agents have limitations on computation,
communication, and ability to move between targets. Currently, however, com-
putationally efficient distributed strategies for resource-constrained defenders to
achieve the same Stackelberg equilibria as centralized mechanisms are lacking.

In this paper, we developed distributed strategies for multiple defenders that
guarantee convergence to a stochastic Stackelberg equilibrium distribution while
minimizing the cost of movement. We propose a distributed strategy in which
each defender first checks if a neighboring target is undefended, and then transi-
tions to defending that with a certain probability if it is undefended. Since each
defender only needs to know whether the neighboring targets are defended, the
proposed policy can be implemented with only local communication. We analyze
our approach by introducing nonlinear continuous dynamics, where each state
variable is equal to the probability that a corresponding target is guarded by
at least one defender, that approximate our proposed strategy. We show that,
under this mapping, the Stackelberg equilibrium is achieved if and only if the
continuous dynamics converge to a fixed point corresponding to the Stackelberg
equilibrium. We develop sufficient conditions for convergence of these nonlinear
dynamics via a passivity-based approach.

We derive bounds on the utility of an adversary with partial information as
a function of the convergence rate of the dynamics, which we characterize as a
passivity index. We then formulate the problem of maximizing the convergence
rate, subject to mobility constraints, and prove that the formulation is convex,
leading to efficient algorithms for computing the optimal policy. Our approach is
validated and compared with an existing integer programming-based approach
via numerical study.
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The paper is organized as follows. In Sect.2, we review related works on
Stackelberg security games. In Sect. 3, the defenders and attacker models are
introduced, and a zero-sum game is formulated between multiple defenders and
an attacker. In Sect. 4, we propose a distributed defender strategy and prove
convergence to the desired Stackelberg equilibrium. Section 5 bounds the utility
of the attacker using the convergence rate of the dynamics and presents a convex
optimization approach for maximizing the convergence rate. Section 6 presents
our simulation results. Section 7 concludes the paper.

2 Related Work

Stackelberg Security Games (SSGs) have been gaining increasing attention in the
security community in application including the defense of critical infrastructures
such as airports [3,7], large interconnected computer networks [5,8] and protec-
tion of location privacy [9,10]. In particular, stochastic Stackelberg games have
been used to design randomized security policies instead of deterministic policies
that can be learned by the attacker with certainty.

Computing the Stackelberg equilibria has been studied in the existing liter-
atures [11,12]. Computation of mixed-strategy Stackelberg equilibria against a
worst-case (minimax or zero-sum) attacker was considered in [7]. Randomized
security policies against bounded rational adversaries were proposed in [11].
When the defender has partial or uncertain information on the adversary’s goals
and capabilities, a repeated Stackelberg framework was proposed to model the
learning and adaptation of the defender strategy over time [12]. In [13], a human
adversary with bounded rationality was modeled as the quantal response (QR)
in which the rationality of the adversary is characterized by a positive parame-
ter A, with perfect rationality and worst-case (minimax) behavior as the two
extremes. Games when the defender is uncertain about the behavioral mod-
els of the attacker has been studied. In [6], a monotonic maximin solution was
proposed that guarantees utility bound for the defender against a class of QR
adversaries. These existing works focus on computing the Stackelberg equilibria,
where optimization framework including mixed-integer programming has been
used for the computation.

Centralized algorithms for choosing which targets to defend over time to
achieve a Stackelberg equilibrium have received significant recent attention [14,
15], leading to deployment in harbor patrols [4] and mass transit security [3,16].
In [14], randomized patrolling of a one-dimensional perimeter by multiple robots
was considered, where all robots are governed by a parameter p determining
to move forward or back. In [15], a game when the attacker not only has the
knowledge of the randomized policy but also the current location of the defender
was analyzed, leading to attacker’s strategy being function of the defense policy
and the previous moves of the defender. In these works, mixed integer linear
programming techniques were proposed to compute the defender strategy, which
provide guaranteed optimality but require a centralized entity with worst-case
exponential complexity in the number of defenders, time steps, and targets.
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In the present paper, we instead consider a set of defenders who choose their
strategies in a distributed manner in order to approximate the equilibrium of a
one-shot SSG.

3 Model and Game Formulation

In this section, we present the defender and adversary models. We then formulate
a Stackelberg game modeling the behavior of the adversary and defenders.

3.1 Defender Model

We assume that there are n targets and m defenders where m < n. The targets
are represented as nodes on a complete graph, and each defender is located at one
node in the graph at each time ¢. We model the constrained mobility of defenders
and physical distances between nodes by assigning a cost d;; of traversing from
target ¢ to target j. The cost of traversing may not be symmetric (d;; # dji).
Each defender is able to communicate with other defender to obtain information
regarding whether any target is currently occupied by another defender. We
define S; to be the set of targets that is defended at time ¢.

3.2 Adversary Model

We consider an adversary whose goal is to successfully penetrate the system by
attacking one or more targets over time. If the adversary attacks target i at time ¢,
the adversary will collect the reward r; > 0 if no defender is present at the target
at time ¢. If at least one defender is present at target ¢ at time ¢, the adversary will
pay the cost ¢; > 0. Both reward and cost values are known to the defenders and
the adversary.

We consider two types of adversaries with different levels of available infor-
mation. The first type of adversary is able to observe the fraction of time that a
target is occupied by at least one defender for all targets but is unable to observe
the current locations of defenders. The second type of adversary is able to observe
exact location of one or more defenders at a sequence of times t; < tg < --- <t
and plan the attack strategy at time ¢ > t; based on these observations.

3.3 Game Formulation

We consider a Stackelberg game where the defenders first choose the fraction of
time that each target will be occupied by at least one defender. The adversary
then observes the chosen fraction of time and decides to either attack a specific
target, or not attack any target. The goal of the adversary is to maximize its
expected utility, defined as the expected reward minus the expected cost of
detection. The goal of the defender is to minimize the best-case expected utility
of the adversary, leading to a zero-sum formulation.
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To formally define the game, we denote x; as the fraction of time that target 7 is
occupied by at least one defender. If the adversary decides to attack target i, then
the expected utility of attacking ¢, denoted Uy,q, (7)), is given as

Uadv(xi) = (1 - l‘i)’l”i — X;C; = —(’I"i + ci)xi “+7r; (1)

Let z; be the adversary’s chosen probability of attacking target i. Writing x
and z as the vectors of defender and adversary probabilities, respectively, the
expected utility of the adversary can be written as

Uwdv(x,2) = —xT(C + R)z + 1" Rz (2)

where C' and R are n X n diagonal matrices with Cj; = ¢; and R;; = r;. Given x,
the adversary obtains the best-response strategy z by solving the linear program

maximize —x? (C + R)z + 1T Rz

y (3)
s.t. 1Tz§1,0§zi§1,i:1,...,n

We note that the adversary can maximize its utility by selecting z; = 1 for
some 1 satisfying

i € argmax {(x'(C+R)+1"R); :j=1,...,n}

and z; = 0 otherwise. Hence, without loss of generality we assume that the
adversary selects a best-response strategy z* with this structure, implying that
the expected utility of the adversary is given by

o) = max{_max {—(ri + o)+ 71}, 0} (@

which is a piecewise linear function in x.
The Stackelberg equilibrium x* of the defender can then be obtained as the
solution to the optimization problem

minimize U}, (x)
X (5)
s.t. 17x <m,z; €0,1]

where the constraint 17x < m reflects the fact that there are m defenders.
Equation (5) is a piecewise linear optimization problem, and hence is convex.
In the following section, we will discuss how to design the mobility patterns of
defenders to achieve the computed x* in a distributed manner.

4 Passivity-Based Distributed Defense Strategy

In this section, we present the proposed distributed patrolling strategy of the
defenders. We define continuous dynamics that approximate the probability that
each target is defended at time ¢, and show that convergence of the continuous
dynamics to the distribution x* is equivalent to convergence of the time-averaged
defender positions to the Stackelberg equilibrium. We formulate sufficient condi-
tions for convergence of the continuous dynamics via a passivity-based approach.
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4.1 Distributed Defender Strategy

Our proposed distributed patrolling strategy is as follows. Each defender decides
whether to move to a different target according to an i.i.d. Poisson process with
rate . At time ¢, the defender at target i selects a target j # ¢ uniformly at
random and sends a query message to determine if there is already a defender at
target j. If so, then the defender remains at target ¢. If not, the defender moves
to target j with probability p;;.

This defender strategy can be modeled via nonlinear continuous dynamics.
Let x;(t) denote the probability that at least one defender guards target ¢ at
time ¢. For ¢ > 0 sufficiently small, we then have

2i(t+0) = i(t) + (1L — 24(t) Y yopjiw;(t) — > ¥0pijai(t)(1 — z;(t)).
J#i J#i
This approximation makes the simplifying assumption that the events i € S;

and j ¢ S; are independent for ¢ # j. Dividing by § and taking the limit as
6 — 0 yields

Bi(t) = (L= 2i(1) D Qi (t) — ws(1) Y Qij (1 — (1)), (6)
J#i J#i
where Q);; = p;;v. The following lemma establishes that under the dynamics
(6), the number total expected number of defended targets is equal to m at each
time step, and the probability that each target is defended is within the interval
[0,1].

Lemma 1. If z;(0) € [0,1] for all i and 17x(0) = m, then x;(t) € [0,1] and
1Tx(t) =m for allt > 0.

Proof. To show that x (t) [0,1] for all £ > 0 when z;(0) € [0, 1], let
= inf {¢t: x;(¢) ¢ [0,1] for some i}.

By continuity, z;(t*) € {0,1} for some ¢ and z;(t) € [0, 1] for all j # i. Suppose
without loss of generality that x;(t*) = 0. Then

T (t*> = ZjS.’L‘j(t) >0
J#i
implying that z;(t) € [0,1] within a neighborhood of ¢* and contradicting the

definition of t*. Hence z;(t) € [0,1] for all ¢ and ¢ > 0.
Now, we have that

17%(t) =) [ 1= 2:(t) > Quim;(t) —wi(t) Y Qi; (1 — x; (t))]

i=1 i i

= Z [Z (Quiz; (1) — Qugmi(1)) + Y (Qijwi(t)a; (1) — jSivz‘(t)mj(t))] =0,

i=1 | j#i i

implying that 17x(¢) is constant.
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4.2 Passivity-Based Convergence Analysis

We now derive conditions on the matrix @ to ensure that, for any initial distri-
bution x(0), the dynamics (6) satisfy lims_, . x(¢) = x*. If this condition holds,
then the time-averaged distribution satisfies 4 fOT x(t) dt — x*, and hence the
Stackelberg equilibrium is achieved.

By inspection of (6), convergence to x* occurs only if

(1—a}) D Quw; =7 ) Qij(1 —a5)
J#i J#i
for all i. Defining D* to be a diagonal matrix with D}, = z}, this necessary
condition can be written in matrix form as

(D*(Q - Q") +Q")x" = D*Q1. (7)

In order to develop sufficient conditions for convergence to x*, we introduce
a decomposition of the dynamics (6) into a negative feedback interconnection
between two passive dynamical systems. Recall that a dynamical system X is out-
put feedback passive if there exists a positive semidefinite function V' such that

V(t) < py()Ty(t) + u(t)Ty(t) (8)

for all input u and output y for all time ¢. If p = 0, then the system is called
passive, and the system is called strictly passive if p < 0. The parameter p is
defined as the output feedback passivity index of the system [17].

Define %x(t) = x(t) — x*, and let two input-output dynamical systems be
given by

Q-Q")+QMu?(t) (10)

where Rln(l) = ZjeN(i) jSxj(t) and Rout(i) = ZjeN(i) Qi]‘(l —.’L‘i(t)). By
inspection, the trajectory of &;(t) in the negative feedback interconnection
between (X7) and (Xs), shown in Fig. 1, is equivalent to the trajectory of &;(¢)
under the dynamics (6).

The decomposition of Fig.1 can be interpreted as follows. The top block
represents the change in the probability that each target ¢ is defended, based
on the current probability that target i is defended. The input signal from the
bottom block can be interpreted as the rate at which defenders from other targets
move to target 1.

A standard result states that the negative feedback interconnection between
two strictly passive systems is globally asymptotically stable [17], which in this
case implies that x(t) converges asymptotically to x*. Hence, it suffices to derive
conditions under which systems (X) and (X3) are strictly passive. We now present
sufficient conditions for strict passivity of (X7) and (Xs2), starting with (X7).
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Fig. 1. Decomposition of the patrol dynamics as negative feedback interconnection
between passive systems.

Proposition 1. The system (%) is passive from input u™ (t) to output y(t).
If max; {min{Q;;, Qi;}} > 0 for all i, then (X1) is strictly passive.

Proof. Consider the storage function V(%) = 1%7%. We have

V() = = > (Rin(i) + Rous(i))2? + (u™) %,

g

Since the output y(") is given by y(I)(t) = %, it suffices to show that Ry, (i) +
Rout(7) > 0 for all feasible x. We have

Rin(i) + Rout (i) = Z [Qjiz; + Qi (1 — ;)] (11)

Since z; € [0,1], each term of (11) is bounded below by min{Q;;, Qi;} > 0.
Hence the system (%) satisfies V(%) < (u")Ty, implying passivity. Further-
more, if the condition max; {min {Q;;, Q;;}} =: k > 0 holds for all 4, then

V(%) < —kxTx + (u) Ty,
implying strict passivity.

The condition max; {min {Q;;, Qi;}} > 0 implies that, for target ¢, there
exists at least one target j such that defenders will transition to target ¢ from
target j, and vice versa, with positive probability.

For the system (X3), define matrix K = (D*(Q — Q™) + Q7T), so that y(?) =
—Ku®. If —u”Ku > 0 for all u, then passivity of the bottom block would be
guaranteed. On the other hand, since the diagonal entries of K are all 0, the
matrix K is neither positive- nor negative-definite. The following proposition
gives a weaker sufficient condition.

Proposition 2. Define P =1 — %11T. If PKP <0 for all u, then the system
(%) satisfies uly >0 for all u satisfying 17u = 0.

Proof. Suppose that 17u = 0. Then Pu = u, since P projects any vector onto
the subspace orthogonal to 1, and hence u” Ku = u” PK Pu. The inequality
PKP <0 then implies that u”y = u” Ku < 0.
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Combining the conditions for passivity of (X) and (X5) with the fact that
17%(t) = 0 (Lemma ) yields the following sufficient condition for convergence
to the desired distribution x*.

Theorem 1. If the conditions

Kx* = D*Q1 (12)
J
PTK“LTKTP <0 (14)

hold, then the vector of probabilities x(t) converges to x* ast — oo. There exists
at least one realization of Q with Q;; > 0 for all i # j and Qi = 0 that satisfies

(12)~(14).

Proof. Condition (12) implies that the equilibrium of the dynamics (6) corre-
sponds to the Stackelberg equilibrium x*. Conditions (13) and (14) establish
strict passivity of (X7) (Propositionl) and passivity of (X2) (Proposition 2),
respectively, when the trajectory satisfies 17%(t) = 0 and z;(¢) € [0,1] for all
¢ and t, which is guaranteed by Lemma 1. Hence the overall system is globally
asymptotically stable with equilibrium x*. It remains to show that there is a
feasible matrix @ that satisfies the conditions (12)—(14).

The proof constructs a matrix ) such that K+TKT = (%llT — I) for some
¢ > 0. By construction, %P(K + KTYP=—(P3 <0, since P > 0.

For this choice of KJFQKT, the identities K+TKT =((2117 — ) and Kx* =
D*Q1 are equivalent to

z;Qij + (1 —27)Qij +2;Q5 + (1 —27)Qju = Vi#j (15)

> a1l —2))Qi = Zx x3)Qji Vi (16)
J

Define ) ) ) )
Tij = 1 * s + 1 * + )
-z —x; T
and let Q;; = ﬁ Substitution of Q;; and @Q;; into (15) yields
K ) J

e, O-w o mC L (-a)

g (1fx)+% -2 mpr(l—a7) e (1—x):<:’

implying that (15) holds. Furthermore,

2 (1= 2)Qy = (1~ 27)Qji,
Ti]‘
and hence (16) holds as well.
Observe that under this choice of @, Q;; > 0 for all 4, j, and condition (13)
is satisfied as well.
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While there may be multiple matrices @ satisfying conditions (12)—(14),
and hence guaranteeing convergence to x*, the corresponding dynamics of each
defender may lead to a high cost associated with moving between distant targets.
The problem of selecting the values of ) that minimize the total movement can
be formulated as

minimize 337, 377 dijQijai (1 — x7)

Q,K

s.t. K =D*(Q - QT) + QT
P(K+KT)P<0 (17)
Kx* = D*Q1

Qij 20Vi#j, Qi =0Vi

max; {min {Q;;, Qi;}} > 0 Vi
The objective function >, Z?:l dijQijx; (1 — x7) can be interpreted as the
total movement cost to maintain the Stackelberg equilibrium x* once the equi-
librium is reached. Equation (17) can be reformulated as a standard-form semi-
definite program and solved in polynomial time. Furthermore, the procedure
described in Theorem 1 can be used to construct a feasible solution to (17) in
O(n?) time when the number of targets is large.

5 Mitigating Side Information of Adversary

In this section, we analyze the performance of our approach against an adver-
sary with knowledge of the defender positions at a previous time period. We first
bound the deviation between the utility of an adversary with partial information
and the Stackelberg equilibrium utility. Our bound is a function of the conver-
gence rate of the dynamics (6). We then formulate the problem of maximizing
the convergence rate subject to mobility constraints, as well as the problem of
selecting the least-costly patrolling strategy to achieve a desired convergence
rate.

5.1 Deviation from Stackelberg Equilibrium

An adversary who observes the defender positions at time ¢’ can estimate the
probability z;(¢) that target ¢ is defended at time ¢ > ¢’ via the dynamics (6).
The adversary then computes the optimal strategy z(¢)*, where z;(t)* is the
probability of attacking target i at time ¢, by solving the optimization problem
max {—x(t)T(C+ R)z+1TRz : 1Tz = 1,z > 0}.

The deviation of the resulting utility from the Stackelberg equilibrium is
given by

E(t) = [2(8) (e (8) + (1 — a5 (0)ry) — 2 (e + (1= 25)ry)].
J
The following theorem provides an upper bound on E(t) as a function of the
convergence rate.
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Theorem 2. The expression E(t) satisfies
E(t) < 2max{Jejlla;(t) — 23] + [rjlla; (8) — 23]} + max|e; — ] D lay(t) — ).
J
(18)
Proof. Letting o (x;(t)) = ¢;x;(t) +rj(1 — z;(t)),

E(t) = Z [ (25 (8))(25(8)" = 27 + 27) — zja;(2F)]
= Z [ (25 (8)) (25 ()" = 27) + 25 (e (25 (8)) — e (2F))]- (19)

Considering the two terms of the inner summation in (19) separately, we first
have that 3 a;(z;(¢))(2;(¢)" — z7) is equal to a;(z;(t)) — a;(2;(t)), where j is
the target attacked by the adversary in the best-response to distribution x(t)
and ¢ is the target attacked by the adversary in the best-response to x*. We then
have

a;(z;(t)) — ai(wi(t)) = cja;(t) +ri(1 — () = cizi(t) —ri(l — (1))
= ¢y (t) — (1) — cidii(t) + ridi(t)
+cjzi + ri(l— x;) —cal —ri(l—2xf)
< Cj.’i‘j(f) - ’f‘j:i‘j (t) - Ciii‘i(t) + ’l"ii'i(t) (20)
<lejlles = @3] + |rjllx; — 23] (21)
+ leillwi — x| + |rif lws — 27
where (20) follows from the fact that i is a best-response to x* and (21) follows
from the triangle inequality. Taking an upper bound over 4 and j yields the first
term of (18).
Now, consider the second term of E(t). We have

aj(zi(t)—a;(x}) = cjo;(t)+(1—z;(t))rj—c;a;—rj(1-x7) = (cj—rj)(w;(t)—x]).
Hence
D 2y (1) — ale}) = D 25 e = ry) (1) — )

< max [e; — 7] > lwy(t) — 3,
i

the second term of (18).

Theorem 1 implies that the deviation between the optimal adversary utility
at time t and the Stackelberg equilibrium is determined by the convergence
rate. The convergence rate can be bounded via a Lyapunov-type argument. As
a preliminary, we have the following standard result.
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Proposition 3. [17] Let V(z) be a continuously differentiable function such
that

all||* < V(z) < ealf]* (22)
V(x) < —cslla* (23)

over a domain D C R™. Suppose & = f(x) satisfies f(0) = 0. Then

oot = (2) " ep (-2 Y=o

A bound on the convergence rate can then be derived via the passivity analy-
sis of Sect. 4.

Proposition 4. Define K, = PT(K"‘TKT)P, where P = (I — 2117), and sup-
pose that K, < 0. Denote the eigenvalues of K, as 0 > =Xy > --- > =X,_1 and
associated eigenvector of \; as q;. Then, the deviation ||x(t) — x*||2 satisfies

[ (t) = x*[2 < exp (=A1). (24)

Proof. Let V(x) = %f{ch. In the notation of Proposition 3, we have a = 2 and

c1 = ¢z = 5. We will bound V(%) as a function of ||%[|2. Any % such that 17% = 0
satisfies X = PX. Then, from the passivity analysis in Proposition 1, we have

K+ KT
V(%) <*TK& =%7PT +2 Px = £TK %
which can be upper bounded as
(@) n—1 n—1
$TK% > —hi(al %) < -0 ) % qiqf %

© _\ZTPTPg = — ) |[%]?

where (a) is from eigen decomposition, (b) is from the orthogonality of eigen-
vectors for symmetric matrices, and (c¢) is from the idempotent property of the
projection matrix. Substituting —A; as ¢ from Proposition 3, we obtain the
desired bound.

The proof of Proposition4 implies that V(%) < —A\;x7%, implying that A,
is a passivity index [17] for the system (X). Proposition 4 shows that maximiz-
ing over the convergence rate is equivalent to maximizing |A1|, which will be
considered in the following section.
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5.2 Optimizing the Convergence Rate

The problem of maximizing the convergence rate subject to the mobility con-
straint can be formulated as

maximize s

Q,K,s
s.t. K=D"(Q-QT)+0QT
Kx* = D*Q1
Qij >0Vi#j, Qu=0Vi (25)

i1 2y Qi < d
man {mln {Q]’i, Q”}} >0 V’L
P(EE2) Pt sP < 0,520

The first four constraints are from (17). The last constraint ensures the negative
semi-definiteness of the matrix P(K + K )P and maximization of |\;|, as shown
in the following proposition.

Proposition 5. Denote the eigenvalues of P(K + KT)P as 0,A1,...,A\n_1
ordered such that Ay > Ao > -+ > \,_1, and let q; denote the eigenvector
associated with eigenvalue \;. If P(K + KT)P + sP <0, then A\ < —s.

Proof. Let Kp = P(K + KT)P. Then the matrix Kp + sP can be rewritten as
Kp+sP = PKpP + sPIP = P(Kp + sI)P (26)

by the idempotent property of P. If P(Kp+sI)P < 0, then xT P(Kp+sI)Px <0
for all x. Letting X = Px, we have

%T(Kp+sx <0

for all % that satisfies 17% = 0. In particular, choose X = ¢;, which satisfies the
condition 17¢; from the orthogonality of eigenvectors of a symmetric matrix.
Then ¢f (Kp + I)q1 = A1 + s <0, and hence \; < —s.

By Proposition 5, the constraints P(K + KT)P + sP and s > 0 ensure the
negative semidefiniteness of P(K + KT)P and maximizing s will result in s* =
[A1]. The formulated optimization problem is a semidefinite program and can be
solved efficiently in polynomial time as in the case of (17).

An alternative optimization is minimizing the patrol cost for a given conver-
gence rate \. This optimization problem can be formulated as

minimize Z?:l Z?:1 dijQijxi (1 — x;‘)

QK

st K=D"(Q-Q")+QT
P(E25) PaP <0 @7
Kx* = D*Q1

Qij Z0Vi#7j, Qi =0V
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which is also convex. This optimization problem is always feasible by the same
argument given in Theorem 1, since given a A > 0, one can set ( = A in the
proof of Theorem 1 and construct a matrix () that satisfies the constraint of
(27). This optimization problem returns the least costly patrolling policy given
a security constraint of achieving a desired convergence rate to the Stackelberg
equilibrium.

6 Numerical Study

In this section, we conduct a numerical study via Matlab on a patrolling applica-
tion. The formulated optimization problems were solved using cvx. We consider
a network with 30 targets deployed uniformly at random in a square of size 10.
The mobility cost d;; was set as the Euclidean distance between target ¢ and j.
The number of defenders was set to 5. The diagonal reward and cost matrices
R and C were randomly generated where the reward and cost values r; and ¢;
were chosen uniformly in the interval (0, 10).

We first obtained a Stackelberg equilibrium x* by solving the convex opti-
mization problem (5), and solved for @ for a set of convergence rates A by solving
the optimization problem (27) where the movement cost is minimized for a given
convergence rate. The adversary’s utility at the Stackelberg equilibrium was 3.56.

Convergence of x(t) to the Stackelberg equilibrium x* under the continuous
dynamics (6) is shown in Fig. 2(a). The initial positions were chosen at random
among 30 targets. We observe that x(t) converges to x* exponentially with differ-
ing convergence rates as shown in Proposition 4. Figure 2(b) shows the maximum

Maximum Adversary’s utility with partial information
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Fig. 2. (a) Figure illustrating the convergence of x(¢) to x*. Metric for deviation from
the Stackelberg equilibrium was ||x(t) —x*|| with @ matrices obtained with varying A by
solving optimization problem (27). (b) Maximum adversary’s utility with information
of the initial locations of defenders. The maximum utility of the adversary decays
exponentially, with the maximum utility being the reward value of the target that is
not covered by a defender initially.
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utility of the adversary over time when the adversary observes the positions of
defenders at time ¢ = 0. The maximum utility of the adversary at time ¢t = 0
is shown to be 9.5 which is the maximum reward value of targets that are not
guarded by defender at time ¢ = 0. Maximum adversary’s utility converges to
the defender’s utility at Stackelberg equilibrium. The maximum utility of the
adversary also decays exponentially with higher convergence rate of (6) offering
faster decay of the adversary’s utility as observed in Theorem 2.

Our proposed approach is compared with the integer programming-based
technique, denoted Raptor, for centralized computation of patrol routes devel-
oped in [16] as shown in Fig. 3. Each data point represents an average over 15
independent and random trials with different cost and reward matrices, as well
as target locations. The number of defenders was set to 3. For our approach,
the minimum patrolling cost was obtained from the optimization problem (27),
while the movement cost of Raptor is the minimum cost to transition between
two sets of patroller locations sampled randomly with distribution x*. Our app-
roach is able to achieve comparable mobility cost to Raptor with a convergence
rate of A\ = 1073. We observe that under our approach, as the number of targets
increases, the minimum movement cost increases, with the rate of increase pro-
portional to the convergence rate while Raptor’s minimum patrolling cost stays
relatively constant as the number of targets increase.

Comparison of Minimum Patrolling Cost with Raptor
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Fig. 3. Minimum patrolling cost with different convergence rate A and Raptor [16].
The number of defenders was set to 3. It is shown that our approach is able to achieve
comparable mobility cost to Raptor with a convergence rate of A = 10~3. Under our
approach, the minimum movement cost grows in a linear manner as the number of
targets grows, and the slope of the line is proportional to the convergence rate A.
Raptor’s minimum patrolling cost remains relatively constant as the number of targets
grows.
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7 Conclusions and Future Work

Stackelberg security games are a modeling framework for scenarios in which a
defender chooses a randomized security policy, and an adversary observes the
distribution of the randomized policy and selects an attack accordingly. In this
paper, we developed a strategy for a team of defenders to implement a stochas-
tic Stackelberg equilibrium security policy. Under our proposed strategy, each
defender selects a target according to a precomputed probability distribution at
each time step and moves to that target if the target is currently unoccupied.
We formulated sufficient conditions, via a passivity-based approach, for a cho-
sen probability distribution to guarantee convergence to the desired Stackelberg
equilibrium.

We analyzed the behavior of an intelligent adversary who observes the pre-
vious positions of the set of defenders and selects an attack strategy based on
these positions and the knowledge of the defender strategies. We proved that the
additional impact of the attack provided by knowledge of the defender positions
can be bounded as a function of the convergence rate of the defenders to the
Stackelberg equilibrum. Under the passivity framework, this convergence rate
is interpreted as a passivity index. We formulated the problem of selecting the
minimum-cost (in terms of defender movement) strategy to achieve a desired con-
vergence rate, as well as the problem of selecting the fastest-converging defender
strategy under mobility constraint, as semidefinite programs, enabling efficient
computation of the optimal patrols for each defender. Numerical results verified
that both the deviation from the Stackelberg equilibrium and the adversary’s
utility decayed exponentially over time. The numerical study also suggested that
the minimum patrolling cost increased linearly in the number of targets for a
fixed number of defenders.

The approach presented in this paper assumes a set of identical defenders that
are capable of moving between any two targets within a desired time. A direction
of future research is to generalize the approach to heterogeneous defenders who
require multiple time steps to move between distant targets, reflecting a deploy-
ment over a wide geographical area. We will also extend the proposed approach
to arbitrary topologies with mobility constraint of defenders and numerically
evaluate the approach with real-world data including the transit network used
in [16]. In addition, we will investigate incorporating Bayesian framework where
both the defender and the adversary have prior distribution of each other’s utility
and initial locations and develop approximation algorithms to solve the Bayesian
Stackelberg game.
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Abstract. Game-theoretic analysis has emerged as an important
method for making resource allocation decisions in both infrastructure
protection and cyber security domains. However, static equilibrium mod-
els defined based on inputs from domain experts have weaknesses; they
can be inaccurate, and they do not adapt over time as the situation (and
adversary) evolves. In cases where there are frequent interactions with an
attacker, using learning to adapt to an adversary revealed behavior may
lead to better solutions in the long run. However, learning approaches
need a lot of data, may perform poorly at the start, and may not be able
to take advantage of expert analysis. We explore ways to combine equi-
librium analysis with online learning methods with the goal of gaining
the advantages of both approaches. We present several hybrid methods
that combine these techniques in different ways, and empirically evalu-
ated the performance of these methods in a game that models a border
patrolling scenario.
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1 Introduction

Game theory has become an important paradigm for modeling resource allo-
cation problems in security [23]. Deciding how to deploy limited resources is a
core problem in security, and game theoretic models are particularly useful for
finding randomized policies that make it difficult for attackers to exploit pre-
dictable patterns in the security. There are several examples of successful deci-
sion support systems that have been developed using this methodology, including
the ARMOR system for airport security [19], the IRIS tool for scheduling Fed-
eral Air Marshals [24], and the PROTECT system for scheduling Coast Guard
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patrols [22]. All of these examples focus primarily on terrorism, where attacks
are very infrequent, the adversaries are highly sophisticated, and the stakes of
individual events are extremely high. These factors all lead to constructing game
models based mostly on inputs from domain experts.

There are many other security domains that are characterized by much more
frequent interactions with lower stakes for individual events. These types of
domains include border security, cyber security, and urban policing. When there
is enough observable data about the actual behavior of attackers, it makes sense
to use this data to construct and continually improve the models used for decision
making.

However, pure learning/data-driven approaches also have drawbacks: they
are entirely reactive, and cannot anticipate adversaries’ reactions, they can-
not easily incorporate additional information from experts or intelligence, and
they can suffer from very poor initial performance during the initial data collec-
tion/exploration phase.

We introduce hybrid methods that seek to combine the best features of model-
based equilibrium analysis and data-driven machine learning for security games
with frequent interactions. By using analysis of (imperfect) game models we
can warm-start the learning process, avoiding problems with initial poor perfor-
mance. Using learning allows us to achieve better long-term performance because
we are not limited by inaccuracies in a specified model, and we can also adapt
to changes in adversary behaviors over time.

The primary motivating domain for our approach is border security, though
we believe that our methods are relevant to many other domains with similar
features. Border security is a major national security issue in the United States
and many other countries around the world. The Customs and Border Protection
agency (CBP) is charged with enforcing border security in the United States. The
U.S. has thousands of miles of land and sea borders, so CBP faces a very large-
scale resource allocation problem when they decide how to allocate infrastructure
and patrolling resources to detect and apprehend illegal border crossings. They
also have a large amount of data available to inform these resource allocation
decisions; in particular, detailed information is available about all apprehensions,
including times and precise locations. In principle, this data allows CBP to
identify patterns of activity and adopt risk-based resource allocation policies
that deploy mobile resources to the areas with the greatest threat/activity levels.
The shift to a more data-driven, risk-based strategy for deploying border patrol
resources is a major element of the most CBP strategy plan [1].

We study a game with repeated interactions between an attacker and a
defender that is designed to capture several of the main features of the border
patrol problem. For this model we introduce several hybrid solution techniques
that combine Stackelberg equilibrium analysis with online learning methods
drawn from the literature on multi-armed bandits. We also introduce variations
of these methods for the realistic case where the defender is allowed to allocate
multiple patrolling resources in each round (similar to the case of combinatorial
multi-armed bandits). We perform an empirical evaluation of our hybrid meth-
ods to show the tradeoffs between equilibrium methods and learning methods,
and how our hybrid methods can mitigate these tradeoffs.
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2 Related Work

There are several lines of work in the area of security games that acknowl-
edge that the game models and assumption about adversary behaviors are
only approximations. These models typically focus on finding equilibrium solu-
tions that are robust to some type approximation error. For example, several
works have focused on robustness to errors in estimating payoffs, including both
Bayesian and interval models of uncertainty [15,16]. Other works have focused
on uncertainty about the surveillance capabilities of the attacker [2,3,9,28], or
about the behavior of humans who may act with bounded rationality [20,21,27].
Finally, some recent works have combined multiple types of uncertainty in the
same model [18].

Our approach is not focused on simply making equilibrium solutions more
robust to modeling error, but on integrating equilibrium models with learning
methods based on repeated interactions with an attacker. The learning meth-
ods we use are drawn from the literature on online learning in multi-armed
bandits (MAB), where the focus is on balancing exploration and exploitation.
One well-known method for learning a policy for a MAB with fixed distribu-
tions is UCB [4], which has also been modified into Sliding-window UCB [13]
for situations with varying underlying distributions. The algorithms that most
closely fit our setting are for the adversarial MAB problem, where there are no
assumptions about the arms having a fixed distribution of rewards, but instead
an adversary can arbitrarily modify the rewards. The EXP3 method is one of
the most common learning methods for this case [5]. There have been several
other recent works that have considered using learning in the context of security
games [6,17,26,30], but these have not considered combining learning with equi-
librium models. The most closely related work that considers combining learning
and equilibrium models is in Poker, where implicit agent models have been pro-
posed that adopt online learning to select among a portfolio of strategies [7,8].

3 Game Model

We introduce a game model that captures several important features of resource
allocation for border patrol [1]. The core of the model is similar to the standard
Stackelberg security game setting [14,23]. The border is represented by a set of
K distinct zones, which represent the possible locations where an attacker can
attempt to enter the country illegally. There is a defender (i.e., border patrol),
denoted by ©, who can allocate d resources to patrol a subset of the K zones;
there are not enough resources to patrol every area all of the time. The attackers,
denoted by ¥, attempt to cross the border without being detected by avoiding
the patrolling agents.

An important difference between our model and the standard security game
model is that we consider this a repeated game between the attacker and defender
that plays out in a series of rounds. This models the frequent interactions over
time between CBP and organized criminal groups that smuggle people, drugs,
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and other contraband across the border. Each round ¢ € 1... N in the game cor-
responds to a time period (e.g., a shift) for which the defender assigns resources
to protect d out of the K zones. Attackers attempt to cross in each round, and
each individual attacker selects a single zone to cross at.

The utilities in the game are not zero-sum, but follow the standard security
game assumption that the defender prefers to patrol zones that are attacked
and the attacker prefers to cross in zones that are not patrolled. More precisely,
we assume that for any zone the defender receives payoff &€ = 1 if an attacker
chooses the zone and it is patrolled by a resource, and z& = 0 if it is not
selected or not patrolled. We assume that the attacker has a zone preference
vector ¥ = (v¥,...,v%), which describes his payoff for crossing a zome if it is
not patrolled. This vector can represent how easy/difficult it is to cross a zone
because of specific conditions in the terrain (i.e., without the risk of being caught,
an attacker would prefer an easy crossing near a city, rather than a dangerous
crossing over miles of open desert). If the attacker is apprehended in zone j, he
suffers penalty of 7¥ = 0.5; hence, his payoff is atgj = ij — 0.5. The goal of each
player is to maximize the sum of payoffs obtained over all rounds of the game.

An important characteristic of the border patrol domain is limited observ-
ability. In particular, the border patrol only gathers reliable information about
the illegal entrants they actually apprehend; they do not observe the complete
strategy of all attackers.! In our model, we capture this by revealing to the
defender only the attackers that are apprehended (i.e., the attacker chooses a
zone where the defender currently has a resource patrolling). The defender does
not observe the attackers that choose zones that are not patrolled. This leads to
a classic exploration vs. exploitation problem, since the defender may need to
explore zones that appear to be suboptimal based on the current information to
learn more about the attacker’s strategy. In a long run of the game we overcome
the possibility of high, unnoticed immigrant flows in an unpatrolled zone by an
extra exploration, which we use in the defender strategies.

As a simplifying assumption, we assume that the attacker observes the whole
patrol history of the defender in all zones but does not know the defender strat-
egy vector. At time ¢, the attacker knows the number of previous rounds in which
the defender protected zone j further denoted h; = ¢ * (t—1). This can be justi-
fied in part by the domain, since border patrol agents are more easily observable
(i.e., they are uniformed, drive in marked vehicles, etc.), and smuggling organi-
zations are known to use surveillance to learn border patrolling strategies. We
also assume the attackers to cooperate and form a gang or a cartel and thus
share fully the gained information about the patrols. However, it also allows us
to more easily define a simple but realistic adaptive strategy for the attackers to
follow in our model based on fictitious play. We describe this behavior in more
detail later on.

We do not generally assume that the defender knows the attacker’s payoffs
(i.e., zone preferences). However, when we consider equilibrium solutions we will

! This is sometimes described as the problem of estimating the total flow of traffic,
rather than just the known or observed flow based on detections and apprehensions.
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assume that the defender is able to estimate with some uncertainty the payoffs for
the attacker. Formally, the defender will have an approximation of the attacker’s
preference vector v'?, such that |v;I' - v;“?| < € for each j and some e known to
both players.

In Fig. 1 we present an example of border patrol game, where the defender
chooses first a zone to patrol and then the attacker chooses a zone to cross
without knowing which specific zone the defender is currently patrolling. There
is the zone preference vector v¥ and patrol history vector 2% at round 100. In
this example the attacker is apprehended because she chose the same zone as the
defender. If the attacker had chosen zone 1 he would have successfully crossed
the border because the defender does not patrol it.

Attacker w attacker chooses one zone to cross
t =100
patrol history vector h{()“ hé““ héo“ hj““ hé“() hé“() h%“() hé““
zone preference vector vy | vk | vy | vy | vy | vy | vy | vy |

attacker is apprehended in zone 2

defender allocates d resources to patrol d zones

Defendero

Fig. 1. Border patrol game example

3.1 Attacker Behavior Model

Our main focus in this work will be on designing effective policies for the defender
against an adaptive adversary. While there are many ways that the attackers can
be modeled as learning and adapting to the defender policy, here we will focus on
one simple but natural strategy. We assume that the attackers adapt based on a
version of the well-known fictitious play learning policy (e.g., [12]). In fictitious
play the player forms beliefs about the opponent strategy and behaves rationally
with respect to these beliefs. The standard model of fictitious play assumes the
opponent plays a stationary mixed strategy, so the player forms his beliefs about
opponent’s strategy based on the empirical frequencies of the opponent’s play.
We define an adversarial attacker as an attacker who attacks the zone that
maximizes his expected payoff under the assumption that the defender plays a

mixed strategy corresponding his normalized patrol history: j* = arg max; (v]q’ -

¥ *cz) This type of the attacker strategy can be seen as the worst-case strategy
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compared to some naive attacker strategies, which we also successfully tested our
proposed algorithm against. Algorithms for minimizing regret in the adversarial
bandit setting are designed to be efficient against any adversary and therefore we
expect the proposed combined algorithms to be effective against any attacker’s
strategy.

We also want to evaluate robustness of the designed strategies to rapid
changes of the attacker’s behavior. In the real world, these can be introduced by
new criminal organization starting operations in the area, or by changes in the
demand or tactics used by an organization, such as the adoption of a new smug-
gling route. Therefore, we introduce also an adversarial attacker with changes,
which differs form the basic adversarial attacker in having variable preference
vector x¥ that rapidly changes at several points in the game. The defender is
not informed about these changes or the time when it happens.

4 Background

4.1 Stackelberg Security Game

Our model of the border patrolling problem is similar to the standard Stackel-
berg security game model, as described in [14]. The game has two players, the
defender © and the attacker ¥. In our model the defender represents the Office
of Border Patrol (OBP) and the attacker represents a group of illegal immigrants
or a criminal smuggling organization. In security games we usually do not have
individuals playing against each other but rather groups of people who have
similar or same goal. These groups can represent terrorists, hackers, etc. on the
attacker side and officers, authorities, security units etc. on the defender side.
These groups use a joint strategy so we can think of the group as an individual
player with several resources. The defender has a set of pure strategies, denoted
oo € Yo and the attacker has a set of pure strategies, denoted oy € Xy. We
consider a mixed strategy, which allows playing a probability distribution over
all pure strategies, denoted dg € Ag for the defender and oy € Ay for the
attacker. We define payoffs for the players over all possible joint pure strategy
outcomes by 2¢ : Yy x Yo — R for the defender and 2y : Yo x Yy — R for
the attacker. The payoffs for the mixed strategies are computed based on the
expectations over pure strategy outcomes.

An important concept in Stackelberg security games is the idea of a leader
and a follower. This concept is the main difference from the normal-form game.
The defender is considered to be the leader and the attacker is the follower. The
leader plays first, and then the attacker is able to fully observe the defender
strategy before acting. This is quite a strong assumption and it represents very
adversarial and intelligent attacker who can fully observe the defender’s strategy
before deciding how to act. In our model we assume less intelligent attacker who
does not know the exact defender strategy as described in Sect.3. Formally
we can describe the attacker’s strategy as a function which chooses a mixed
distribution over pure strategies for any defender’s strategy: Fy : Ag — Ay.
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4.2 Stackelberg Equilibrium

Stackelberg equilibrium is a strategy profile where no player can gain by unilat-
erally deviating to another strategy for the case where the leader moves first, and
the follower plays a best response. We follow the standard definition of Stackel-
berg equilibrium (SE) for security games [14]. This version of Stackelberg equi-
librium is known as strong Stackelberg equilibrium. The strong SE assumes that
in cases of indifference between targets the follower chooses the optimal strat-
egy for the leader. A strong SE exists in every Stackelberg game. The leader
can motivate the desired strong equilibrium by choosing a strategy, which is
arbitrary close to the equilibrium. This makes the follower strictly better off for
playing the preferred strategy.

4.3 Nash Equilibrium

Nash equilibrium is a basic concept in game theory for players who move simul-
taneously. A profile of strategies form a Nash equilibrium if the defender plays
a best response s* that holds 2 (s, s_;) > 2(s;, s_;) for all strategies s; € S©
and the attacker plays a best response s* that holds z%¥ (s}, s_;) > 2¥(s;,5_;)
for all strategies s; € SY.

The relationship between strong Stackelberg equilibrium and Nash equilib-
rium is described in detail in [29]. The authors show that Nash equilibria are
interchangeable in security games, avoiding equilibrium selection problems. They
also prove that under the SSAS (Subsets of Schedules Are Schedules) restriction
on security games, any Stackelberg strategy is also a Nash equilibrium strategy;
and furthermore, this strategy is unique in a class of real-world security games.

5 Defender Strategies

The problem the defender faces closely resembles the multi-armed bandit prob-
lem, in which each arm represents one of the zones. Therefore, we first explain
the online learning algorithms designed for this problem and then we explain
how we combine them with game-theoretic solutions.

5.1 Online Learning with One Resource

First we focus on the problem with a single defender resource (d = 1). The
defender’s problem then directly corresponds to the adversarial multi-armed ban-
dit problem. A standard algorithm for optimizing cumulative reward in this set-
ting is Ezponential-weight algorithm for Exploration and Ezploitation (EXP3),
which was introduced in [5]. The algorithm estimates the cumulative sum s(4) of
all past rewards the player could have received in each zone using the important
sampling correction. If zone i is selected with probability p; and reward r is
received, the estimate of the sum is updated by s(i) = s(i) + -. This ensures
that s(i) is an unbiased estimate of the real cumulative sum for that zone.
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The defender then chooses actions proportionally to the exponential of this
cumulative reward estimate. We use the numerically more stable formulation
introduced by [11]. Formally, a given zone 4 is protected with probability:
1—
o _ v X
Pe = S0 % TR (1)
JEK

where 7 represents the amount of random exploration in the algorithm.

5.2 Online Learning with Multiple Resources

When computing the strategy for multiple defenders (d > 1), we could consider
each combination of allocations of the resources to be a separate action in a
multi-armed bandit problem. It would require the algorithm to learn the quality
of each of the exponentially many allocations independently. However, thanks to
the clear structure of payoffs from individual zones, the problem can be solved
more efficiently as a combinatorial multi-armed bandit problem. We solve it
using the COMB-EXP-1 algorithm introduced in [10] and presented here as
Algorithm 1.

COMB-EXP-1 algorithm

Initialization: Start with the distribution go(i) = & and set n =
for t=1,...,N do

1. Sample d actions from vector p;—1 = dgi—1.

2. Obtain the reward vector X;(t) for all chosen actions 1.

3. Set X;(t) = ;ii((i? for all chosen actions i and X;(t) = 0 for all other not

2dlog K
KN

chosen actions.

4. Update (i) = q¢—1(i) exp (—nX;(t)).

5. Compute ¢; as a projection of ; to P = {zx e R* : Y, i = 1,2, < 1}
using KL divergence.

end

Algorithm 1. Combinatorial EXP3 learning algorithm

The algorithm starts with a uniform distribution over all zones ¢¢. In each
round, it samples d distinct zones from this distribution using the Algorithm 1, so
that the probability of protecting each zone is p; (line 1). It protects the selected
zones and receives reward for each of the selected zones (line 2). It computes the
loss vector rescaled by importance sampling (line 3) and updates the probability
of protecting individual zones using the exponential weighting (line 4). After
the update, vector ¢; may not represent a correct probability and not sum to
one. Therefore, it must be projected back to the simplex of valid probability
distributions (line 5).

Similar to the non-combinatorial EXP3 algorithm, the COMB-EXP-1 algo-
rithm can be numerically unstable if some zone is played with very small prob-
ability (p;(i) — 0). We prevent this instability in our implementation by adding
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an uniform vector with very small values (10~7) to the strategy vector ¢, which
bounds the scaled losses X.

Combinatorial Sampling. On line 1, Algorithm 1 samples d zones so that
each zone 7 is protected with probability p(i). We use combinatorial sampling as
introduced in [25]. From vector p we create a new cumulative sum vector. For
each integer j € (1,K), let S; = >, . p;. Based on that we define a disjoint
partition of interval [0,d) as I; = [S;,S; + p;). Interval I; represents zone j.
To sample d zones, we generate single random number y from interval [0, 1)
uniformly at random. The selected zones correspond to the intervals that contain
points y,y+1,...,y+ (d—1). Since each zone is covered with probability at most
1, no two of these points will be part of the same interval and the probability of
hitting interval ¢ is p;. In Fig. 2 there is an example of combinatorial sampling,
where we have 6 zones z,...,26 and 3 resources (defenders). We generate a
random number y and sample the intervals created by cumulation from the
probability vector p.

random number y € [0,1) p=1{0.4,0.8,0.6,0.2,0.4,0.6} d=3

0 Yy 1 y+1 2 y+2 3

chosen zones are zo, z3 and zg

Fig. 2. Combinatorial sampling example

Projection Heuristic. The COMB-EXP-1 algorithm requires projection using
KL-divergence on line 5. This projection defines a distribution ¢ € P which has
the minimal KL-divergence from vector g.
_ : _ _ N p(i)
q = argmin K'L(p, q) KL(p,q) = »_ p(i)log == (2)
peP i€l K q(7)

We are not aware of a computationally efficient algorithm for computing such
projection. Therefore, we propose a heuristic algorithm H;, where we decrease
all values greater than 1/d to 1/d and normalize all other values in the vector to
sum to (1 — a/d), where a is the number of values in the original vector greater
than 1/d and d is the number of resources.
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We compare our heuristic to another heuristic H, where we redistribute the
difference value from value in a vector greater than 1/d uniformly among other
values. In 10000 experiments with randomly generated vectors and with different
numbers of resources d, heuristic H; was always better than Hs. Further, we tried
to randomly perturb the vectors returned by H; by small amounts in individual
zones, while still ensuring the perturbed vector belongs to P and we were able
to find a better value in less than 1% of cases. We conclude that Hj is a good
approximation of the projection and we use it in the experimental evaluation.

6 Combined Algorithms

In this section we propose four algorithms that combine the online learning
algorithms described above with a (possibly inaccurate) game-theoretic solution.
The main idea is to start the learning algorithm with some prior information,
but allow the algorithms to learn close to optimal solutions even if the initial
information is inaccurate.

6.1 Combined Algorithm 1

The EXP3 algorithm described in Sect. 5.1 computes the values s(j) that esti-
mate the cumulative rewards for each zone j. We can initialize the EXP3 algo-
rithm by initializing these values. If both players knew the exact preference
vector of the attacker, their optimal static strategy would be the Nash equi-
librium (NE) of the game. Due to the security games utility restrictions, this
equilibrium is unique [29]. If the attacker was playing an equilibrium attacking
zone j with probability NE; for 7 rounds, the cumulative rewards obtainable
in individual zones would be s"(j) = NE; * 7. By using this initialization for
the values s(j) in EXP3, it starts from a state similar to the state where it has
played 7 rounds of the game against the optimal attacker. Since the defender
does not have access to the exact preference vector, we compute the approximate
Nash equilibrium strategy based on his inaccurate estimate. Algorithm COMB1
than uses it for initialization of s(i) as described above, but otherwise runs the
standard EXP3 algorithm.

Combinatorial COMBI1. Combinatorial version of the COMBI1 algorithms
is also based on the intuition of initialization by the estimated equilibrium
play. Since COMB-EXP-1 uses the current strategy vector instead of cumulative
rewards, we use the defender’s strategy for initialization. The algorithms for com-
puting the equilibrium for security games with multiple defender resources, such
as [14], directly output the strategy in the form of a coverage vector representing
the probability that each zone will be covered. Let Stackelberg equilibrium (SE)
be this coverage vector, than the initial distribution for COMB-EXP-1 is:

. T 1—7
qo(1) = QSE T (3)
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where T is the parameter which sets how confident we are about the Stackelberg
equilibrium strategy. The basic setting is 7 = 0.9. After initializing the online
learning algorithm we continue playing standard combinatorial EXP3.

6.2 Combined Algorithm 2

In this combined algorithm, instead of initializing the learning algorithm as if
it played based on the equilibrium strategy before the games starts, it actually
plays the estimated equilibrium strategy for the first 7" rounds of the game.
Even though the actions are selected based on the equilibrium in these rounds,
EXP3 learns form the observed apprehensions. In order to also learn about the
zones that are never played in the equilibrium strategy, we add 10 % uniform
exploration to the strategy.

EXP3 learns by computing the vector of estimates s. This vector is computed
from the beginning of the game no matter which strategy the defender uses. For
finding the point where to switch from first stage to the second we compute the
EXP3 payoff virtually while playing the estimated Nash equilibria. Virtual EXP3
payoff is computed using the importance sampling correction. It gives higher
payoff for a strategy with higher probability of visiting a particular zone. If the
probability of EXP3 protecting a particular zone with positive payoff is higher
than the probability in Nash equilibrium vector, we get a relatively higher payoff
for EXP3 than for the NE strategy. In this manner we prioritize the strategy
that has the higher estimated payoff. The defender gets covered payoff 1 and
uncovered payoff 0 and virtual EXP3 defender covered and uncovered payoff is

el et
2>t) = L x1 () ==L %0 (4)
K3 K3
where e! is the probability of playing zone i in round ¢ by playing EXP3 and n!
is the probability of playing zone ¢ in round ¢ by the estimated Nash equilibrium
strategy.

We compute the total payoff for both strategies as the sum over all rounds
played so far. The algorithm switches to the EXP3 learning algorithm if the
cumulative payoff of virtually playing EXP3 exceeds the actual cumulative
reward obtained by playing the Nash equilibrium with the additional explo-
ration.

Combinatorial COMB2. Combinatorial COMB2 algorithm is analogous to
the standard COMB2 algorithm. We use the estimated Stackelberg equilibrium
strategy for multiple resources with 10 % extra exploration and combinatorial
EXP3 algorithm. We start with SE strategy and compute virtually expected
payoff for playing EXP3. Once the virtual EXP3 payoff becomes greater than
actual payoff by playing SE with extra exploration we switch to EXP3 algorithm
and use the standard updates.
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6.3 Combined Algorithm 3

The third combined algorithm is based on a similar concept to the previous one,
but in this case we continually switch between two strategies based on which one
has the higher current estimated payoff. One of these strategies is based on the
estimated equilibrium, and the other is a learning policy. For the strategy we
are currently playing we store the total actual payoff and for the other strategy
we compute the payoff in the same way we did for virtual play of EXP3 in
the previous algorithm. Similar to above, for virtually playing NE strategy the
defender gets covered and uncovered payoff
nt
o) =—Lx1 2)=—-1x0 (5)
K3 K3

Let Xfl g be the estimated cumulative payoff of an algorithms, COMB3 plays
the estimated Nash equilibria with exploration if ng pg < )_(I(?,E or we play
EXP3 if X8y py > X p.

The EXP3 algorithm learns using the expected payoff vector s from all pre-
viously played rounds including those rounds when the defender played the NE
strategy with exploration.

Combinatorial COMB3. Analogously to the non-combinatorial COMB3 algo-
rithm, combinatorial COMB3 algorithm is a generalization of previous combi-
natorial COMB2 algorithm. In this COMBS3 algorithm we enable the switching
between the two strategies arbitrary according to the highest payoff. We com-
pute the virtual SE strategy payoff while playing combinatorial EXP3 algorithm
and vice versa.

6.4 Combined Algorithm 4

With this algorithm, the defender uses several estimated Nash equilibria corre-
sponding to random modifications of the attacker preference vector by at most €.
This models the scenario of building a model based on the input of multiple
domain experts, rather than a single expert. There is extra exploration of 10 %
added to each estimated Nash equilibrium. The main idea is that some of these
random variations may be a more accurate estimate of the true preference vec-
tor and the algorithm can learn which one from the interaction. COMB4 starts
playing with one of the strategies and in parallel computes the expected payoffs
for the other estimated Nash strategies and for the EXP3 learning algorithm.
In each round, we select an action based on the strategy with the highest cur-
rent estimate of the cumulative payoff. In our model we did experiments with 3
estimated Nash equilibria (NE).

Combinatorial COMBA4. The combinatorial version of this algorithm is prac-
tically the same as the non-combinatorial version. The only difference is that
the equilibria are computed for multiple defender resources and the learning
algorithm is also combinatorial.
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7 Experiments

If not otherwise specified, we consider a game model where K = 8 (8 zones)
and N = 1000 (1000 rounds). In the border patrol domain we can consider 1
round as 1 day, so a 1000 round game represents approximately 3 years. All the
experiments are run 1000 times to get reliable results. In each of these runs,
we generated a new preference vector for the attacker. Each value is i.i.d. and
comes from range (0, 1). We compute the estimated preference vector known to
the defender by adding a random number from interval (—e¢, €) to each entry.
The exploration parameter 7y for the learning algorithms has been hand-tuned
to v = 0.2, i.e., 20 % exploration.

7.1 Imprecise Stackelberg Equilibrium Strategy

We test the influence of different lev-
els of error (¢) in the zone preference
vector on the performance of the esti-
mated SSE. In Fig. 3 we show apprehen-
sion rates for different levels of error.
We observe the performance of the SSE
strategy for e € [0,0.2]. The adversarial
attacker can learn the strategy and over
time the apprehension rate decreases. In
particular, for higher values of € there is

a large decrease in performance. For € > SR e
0.15 we get even worse performance than

for playing a random defender strategy, Fig.3. SSE strategies with different
which has the expected payoff 12.5%. levels of error against an adversarial
For SSE with no error the performance attacker

is still very good even after the attacker

learns the strategy. In our further experiments we focus on error 0.1, for which
the game theoretic strategy is better than random, but there is still room for
improvement. The widest mean 95 % confidence interval in these experiments is
+0.56 % for error 0.1.

Apprehension rate in %

7.2 Performance of Combined Algorithms with One Resource

We compare the performance of the EXP3 learning algorithm, Stackelberg equi-
librium strategy (SSE), and Stackelberg equilibrium strategy with error (which
is used in the COMB algorithms). For each graph we compute a 95 % confidence
interval and provide a mean interval width across all rounds.

In Fig.4 we use two styles of result visualization to better understand the
behavior of the algorithms. One is a moving average of apprehensions in 20
rounds (a,b) and the other is the mean apprehension rate from the beginning
of the game (c,d). The moving average better represents the immediate perfor-
mance of the algorithm and the cumulative performance captures the overall
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Fig. 4. COMB algorithms with 0.1 error against adversarial attacker

performance of the algorithm. Figure4a shows the same experiment as Fig. 4b
and c shows the same experiment as Fig.4d. The COMB algorithms use the
imprecise game-theoretic solution with error € = 0.1.

In Fig. 4c the COMB algorithms have the widest confidence interval £0.39 %
and for EXP3 algorithm the width of interval is 40.30 %. The mean reward of
SSE with error decreases with the attacker learning the strategy. SSE without
error gives a very good, stable performance. COMBI1 has better but similar
performance to EXP3. This comes from the nature of COMBI1 algorithm, which
is an initialized EXP3. COMB2 algorithm starts with playing SSE with error plus
some extra exploration and then switches permanently to EXP3. We can see that
this switch occurs close to the intersection of SSE with error and EXP3 algorithm
which is a desired feature of COMB2 algorithm. COMB3 outperforms COMB2,
which is caused by better adaptability to the intelligent attacker. COMB4 has
the best performance out of all COMB algorithms and also outperforms EXP3
algorithm. COMB2, COMB3 and especially COMBA4 algorithms have very good
performance for the first half of the game (up to round 500) and outperform
EXP3 and SSE with error. At the end of our game COMB algorithms and EXP3
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algorithm have similar performance, which is caused by the attacker learning the
defender strategy, also the COMB algorithms tend to play EXP3 later in the
game.

In games against the adversarial attacker with changes in Fig.4d COMB
algorithms have the maximal width of confidence interval £0.32 % and for EXP3
algorithm the width of interval is +0.26 %. This figure shows one of the main
advantages of the learning algorithm. If we assume that we are not able to detect
a change in the attacker payoff and therefore to compute the appropriate game-
theoretic solution, we can intuitively expect a poor performance by playing this
game-theoretic strategy. In these figures the changes in the attacker’s preference
vector are highlighted every 200 rounds by black horizontal lines.

The SSE with error strategy and the SSE strategy have almost same per-
formance after the first change in the attacker zone preference vector, because
the equilibria are computed for the initial zone preference vector and after the
change they have no relation to the real preference vector of the attacker. We
can see that COMB algorithms can successfully adapt to these changes in less
than 200 rounds and even slightly outperform EXP3 algorithm in the whole run.
At the beginning of our game all COMB algorithms are better than the EXP3
algorithm. The COMB algorithms can adapt to these changes because they make
use of EXP3 algorithm and can switch to it in case they need to. So the COMB
algorithms retain the desired property of learning algorithms.

In order to separate the behavior of the learning algorithms from the effects
of the error in the computed equilibrium, we further evaluate the combined
algorithms with precise game-theoretic solution. Figure ba presents experiments
against the adversarial attacker. The widest confidence interval for COMB algo-
rithm is 40.39 % and for EXP3 the width is £0.29 %. In this figure we do not
visualize COMB4 since it is identical to COMB3 in this case. The COMB2
and COMBS3 algorithms get even better than the SSE strategy, because for the
attacker it is more difficult to learn the defender strategy if it is not static.
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Fig. 5. COMB algorithms with no error against adversarial attacker
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This is partly caused by the extra exploration in the COMB algorithm playing
SSE, which can confuse the attacker. The attacker learns quite fast against a
static defender strategy vector SSE. One can observe that even though COMB2
and COMB3 outperform the SSE strategy for a short period of time, it then
drops substantially in performance due to the attacker eventually learning the
strategy. The apprehension rate of the COMB algorithms decreases under the
SSE strategy even though they use this SSE strategy, because there is the extra
10 % exploration added to SSE strategy. Nevertheless we can see that COMB
algorithms significantly outperform EXP3 algorithm for the first half of the game
and then they all converge to a similar performance.

In Fig.5b we test the COMB algorithms using the precise game-theoretic
solution against the adversarial attacker with changes. For COMB algorithms
the widest interval is £0.32% and for EXP3 algorithm the width of interval is
+0.26 %. The COMB algorithms can react well to changes in the attacker strat-
egy because of the learning algorithm part. If the defender has a precise SSE
strategy he might prefer playing it instead of any other strategy in the case of
the adversarial attacker however if there are some changes in the attacker payoff
matrix the defender would be better off by playing some more sophisticated algo-
rithm like EXP3 or preferably one of the proposed COMB algorithms, because
these can adapt to the changes in the attacker behavior over time.

Now we focus on the convergence of the Apprehension rate against adversarial attacker
algorithms in a substantially longer time ™
window. Figure 6 presents the COMB algo-
rithms using game-theoretic solution with
error against adversarial attacker for 10000
rounds. This experiment is done 100 times
for each setting. The maximal mean width
of confidence intervals for COMB algo- 5/ -
rithms is 0.99% and the width of confi- e
dence interval for EXP3 is 0.92 %. We can L ‘ I
see that COMB algorithms and EXP3 algo- v o w e
rithm converge to the same performance
quite quickly. Playing precise Stackelberg Fig. 6. Convergence of COMB algo-
equilibrium strategy has the best perfor- rithms against adversarial attacker
mance however the SSE strategy with 0.1
error gives quite poor results. The precise SSE strategy performance increases
during the time, which is caused by the attacker learning more precisely the
defender strategy and therefore there are more ties in the attacker strategy
which the attacker breaks in favor of the defender.
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7.3 Combinatorial Combined Algorithms

In this section we focus on the combinatorial case where the defender uses mul-
tiple resources so he can patrol d zones in each round where d > 1. We test
combinatorial variants of COMB algorithms which use combinatorial variant of
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EXP3 as described in Sect. 5.2. For brevity, we continue to refer to the combi-
natorial variant as EXP3. The experiments are done for a larger game model
with 20 zones (K = 20). We compare the strategies in models with 2, 4, 6 and
8 defender resources (d = 2,4,6,8). These experiments are run 1000 times for
each setting and each game has 1000 rounds.

In Fig. 7 there are 4 COMB algorithms, SSE with error and SSE without error
strategies. The widest mean confidence interval in all the figures is £0.36 %. We
observe in Fig. 7a that EXP3 outperforms the COMB algorithms, which is caused
by poor performance of the SSE with error strategy. The EXP3 algorithm gives
almost 2 times better performance than SSE with error strategy, because there
are too few defenders for too many zones and even a small error in the SSE
strategy causes a low apprehension rate. Due to this fact, the COMB algorithms
have worse performance than EXP3.

When we increase the number of defenders to 4 in Fig. 7b, SSE with error does
better and so do the COMB algorithms. COMB3 outperforms EXP3 algorithm
after the half of the game and COMB4 does even better than COMB3, which
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Fig. 7. COMB algorithms against adversarial attacker, 0.1 error in SSE, varying
number of defenders
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comes from the nature of the algorithms. One can observe interesting peaks
of the performance curves at the beginning of the game, which are caused by
increasing the number of defenders. The attacker needs time to learn effectively
against multiple defenders and at the beginning he plays poorly. However by
the steepness of the algorithms curves we can see that the attacker learns very
quickly after playing very badly at the beginning. These described features are
even stronger with increasing number of defenders in Fig. 7c and d.

The SSE strategy with error approaches even more closely the performance
of EXP3 algorithm because the more defenders there are, the less the error
in the SSE strategy vector matters. The defender still chooses the zones with
high probabilities even though there are some errors, because these 0.1 errors
cannot decrease the real values too much to not be chosen. For the last figure
with 8 defenders the SSE with error strategy even outperforms EXP3 algorithm.
Nevertheless COMB3 and especially COMB4 algorithms have very strong per-
formance and approach to SSE strategy performance. COMB1 and COMB2 have
obvious drawbacks in the limited use of SSE with error strategy. COMBI1 use
the game-theoretic strategy only to initialize EXP3 and then cannot make use of
it anymore and similarly for COMB2 algorithm, which uses the game-theoretic
strategy at the beginning and then permanently switches to EXP3 algorithm.

8 Conclusion

We argue that security games with frequent interactions between defenders
and attackers require a different approach than the more classical application
domains for security games, such as preventing terrorist attacks. Game theoretic
models generally require a lot of assumptions about the opponent’s motivations
and rationality, which are inherently imprecise, and may even change during the
course of a long-term interaction. Therefore, it may be more efficient to learn
the optimal strategy from the interaction. However, the standard methods for
online learning in adversarial environment do not provide ways to incorporate
the possibly imprecise knowledge available about the domain.

We propose learning algorithms that are able to take into consideration
imprecise domain knowledge that can even become completely invalid at any
point during the game. We further show how to efficiently extend these algo-
rithms to allow for the combinatorial case with multiple defender resources. We
show that these algorithms achieve significant improvement on the performance
of learning algorithms in the initial stages of the game as well as significant
improvement to using only an imprecise game theoretic model in the long run.
On the other hand, especially in the combinatorial case, it may be better to
use the EXP3 learning algorithm without any knowledge if we expect the per-
formance of imprecise game theoretic solution to be very low. With increasing
quality of this solution it is quickly beneficial to use the proposed COMB3 or
COMBA algorithm. Even in the cases where EXP3 outperforms the COMB algo-
rithms, the COMB algorithms still have a very good performance due to using
EXP3 as their main component. In a sufficiently long time period all of the
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COMB algorithms converge to long-run performance of the EXP3 algorithm,
and they retain the theoretical guarantees that make EXP3 attractive in adver-
sarial settings.

Future work could focus on a formal analysis of the proposed combined algo-
rithms. For example, it may be possible to derive and prove improved regret
bounds which would provide further guarantees on the algorithm performance.
Another direction for future work is bringing defender action preferences into
the game model, which would better reflect real-world applications.
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Abstract. We consider a class of interdependent security games where
the security risk experienced by a player depends on her own investment
in security as well as the investments of other players. In contrast to much
of the existing work that considers risk neutral players in such games,
we investigate the impacts of behavioral probability weighting by play-
ers while making security investment decisions. This weighting captures
the transformation of objective probabilities into perceived probabilities,
which influence the decisions of individuals in uncertain environments.
We show that the Nash equilibria that arise after incorporating proba-
bility weightings have much richer structural properties and equilibrium
risk profiles than in risk neutral environments. We provide comprehen-
sive discussions of these effects on the properties of equilibria and the
social optimum when the players have homogeneous weighting parame-
ters, including comparative statics results. We further characterize the
existence and uniqueness of pure Nash equilibria in Total Effort games
with heterogeneous players.

1 Introduction

Interdependent security games are a class of strategic games where multiple selfish
players choose personal investments in security, and the security risk faced by a
player depends on the investments of other players in the society [18,20]. These
games serve as abstract frameworks that capture various forms of risk externalities
that users face in networked environments. There is a large body of literature on
this class of problems starting from the early works by Varian [30] and Kunreuther
and Heal [18]; a comprehensive recent survey can be found in [20].

The risk faced by individuals in these settings is often manifested as the prob-
ability of a successful attack, and this probability is a function of the investment
by the individual and the externalities due to the investments by other interact-
ing individuals. The system-wide landscape of security investments in this setting
will be a function of the decisions that individuals make under this notion of risk.
Much of the work in interdependent security games considers players who are
risk neutral, or are risk averse in the sense of classical expected utility theory [20].
On the other hand, there is a rich literature in decision theory and behavioral
economics which concerns itself with decision making under risk with findings
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that suggest consistent and significant deviations in human behavior from the
predictions of classical expected utility theory [2,5]. One of the most impor-
tant deviations is the way individuals perceive the probability of an uncertain
outcome (e.g., cyber attack). In particular, empirical studies show that individ-
uals tend to overweight small probabilities and underweight large probabilities.
Thus, the objective (i.e., true) probabilities are typically transformed in a highly
nonlinear fashion into perceived probabilities, which are then used for decision
making [8,16].

While there have been some studies highlighting the significance of biases and
irrationalities in human decision making in information security domains [1,6],
theoretical analyses of relevant deviations from classical notions of rational
behavior are scarce in the literature on interdependent security games.! Empir-
ical investigations [7,27] are also limited in this context.

In this paper, our goal is to study the effects of behavioral probability weight-
ing of players on their equilibrium strategies in three fundamental interdependent
security game models: Total Effort, Weakest Link and Best Shot games. Each
of these games captures a certain manifestation of risk (i.e., probability of suc-
cessful attack) as a function of investment by the players, and is motivated by
practical scenarios as discussed in [9]. In the Total Effort game, the probability
of a successful attack depends on the average of the security investments by the
players. As an example, an attacker might want to slow down the transfer of a
file in a peer-to-peer file sharing system, while the speed is determined by the
sum of efforts of several participating machines. In the Weakest Link game, the
society is only as secure as the least secure player, while in the Best Shot game,
the player with the maximum investment must be successfully attacked for the
attack on other players to be successful. Weakest link externalities are prevalent
in computer security domains; successful breach of one subsystem often increases
the vulnerability of other subsystems, such as by giving the attacker increasing
access to otherwise restricted parts. Best shot externalities often arise in cyber
systems with built in redundancies. In order to disrupt a certain functionality of
the target system, the attack must successfully compromise all the entities that
are responsible for maintaining that functionality.

These game-theoretic models were first introduced in [30], and were subse-
quently extended in [9,10] to cases where players can also purchase (static) cyber
insurance in addition to investing in security. All three models are instances
where the nature of externalities is positive? as the investment by a player

! In a related class of security games known as Stackelberg security games with two

players, one attacker and one defender, there have been recent studies [4,13,17,31,32]
that incorporate behavioral decision theoretic models, including prospect theory and
quantal response equilibrium. However, this class of games is very different from
interdependent security games [20], which is the focus of the current work.
Both positive and negative externalities have been studied in the literature. Negative
externalities capture settings where more investment by others makes a player more
vulnerable, and this is usually the case where the attack is targeted towards indi-
viduals who have invested less in security. Most of the literature in security games
has focused on positive externalities [20].



152 A .R. Hota and S. Sundaram

(weakly) improves the security of the everyone in the society (by reducing the
attack probability). The fact that the players’ utility functions in these games
are coupled through the shared probability of successful attack motivates our
focus on studying the effects of behavioral probability weighting.?

We model the nonlinear probability weightings of players using the weight-
ing function due to Prelec [26], whose properties we discuss in the next section.
We first characterize the pure Nash equilibria (PNE) in Total Effort games; we
compare the (structural) properties of the equilibrium under behavioral proba-
bility weighting to the equilibria that arise under risk neutral [9] and classical
expected utility maximization behavior [15]. We then examine how the intensity
of probability weighting affects the probability of successful attack at equilib-
rium. We carry out a similar analysis for the social welfare maximizing solution
in the Total Effort game, and Nash equilibria in Weakest Link and Best Shot
games. Subsequently, we prove general existence and uniqueness results in Total
Effort games when the probability weighting parameters and cost parameters
are heterogeneous (player-specific) under certain conditions on the number of
players.

2 Probability Weighting

As discussed in the previous section, our focus in this paper will be on under-
standing the effects of nonlinear weighting of objective probabilities by individ-
uals while making decisions under risk. Such weightings have been comprehen-
sively studied in the behavioral economics and psychology literature [5], and have
certain fundamental characteristics, including (i) possibility effect: overweighting
of probabilities very close to 0, (ii) certainty effect: underweighting of probabil-
ities very close to 1, and (iii) diminishing sensitivity from the end points 0 and
1. These characteristics are usually captured by an inverse S-shaped weighting
function. After the initial advancements in the development of prospect theory
and rank dependent utility theory, various parametric forms of weighting func-
tions were proposed, most prominently by Kahneman and Tversky [29], Gonzalez
and Wu [8], and Prelec [26]. All of these parametric weighting functions exhibit
the qualitative and analytical characteristics (i) to (iii) described above.

In this paper, we consider the one parameter probability weighting function
due to Prelec.* If the objective (i.e., true) probability of an outcome is x, the
weighting function is given by

w(z) = exp(=(=In(z))*),  z€[0,1], (1)

3 There are also various behavioral characteristics that affect the perceived values
of gains and losses [12,16]. However, as the values of the gains and losses are not
strategy-dependent in the games that we consider here, behavioral value functions
would not affect the equilibria that arise.

4 While we focus on the Prelec weighting function here, many of our results will also
hold under a broader class of weighting functions with similar qualitative properties
as the Prelec weighting function.
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Fig. 1. Shape of the probability weighting function. The quantity x is the objective
probability of failure, and w(x) is the corresponding perceived probability of failure.

where exp() is the exponential function. The parameter o € (0,1] controls the
curvature of the weighting function as illustrated in Fig.1. For a = 1, we have
w(x) = x, i.e., the weighting function is linear. As o decreases away from 1, w(x)
becomes increasingly nonlinear, with an inverse S-shape. For smaller a, the func-
tion w(z) has a sharper overweighting of low probabilities and underweighting
of high probabilities.

Remark 1. The probability weighting function w(z) in (1) has the following
properties.

1. w(0) =0, w(l) =1, and w(L

)=t
2. w(x) is concave for z € [0, <], and ¢ convex for z € [1,1].
t =

3. w'(z) attains its minimum E In other words w'(z) =0at z =1
The minimum value of w'(z) is w'(1) = a.
4. w'(e) = 00 as € — 0, and w'(1 — )—> as € — 0.

3 Interdependent Security Games

As discussed in the introduction, in interdependent security games, a player
makes her security investment decision independently, while the probability of
successful attack on the player depends on the strategies of other players. We
denote the number of players by n, and denote the investment in security by
player i as s;, where s; € [0, 1]. Following the conventional game theoretic nota-
tion, we use s_; to denote the investment profile of all players other than i. The
formulation that we consider here has the following characteristics. The objective
probability of a successful attack on the system is given by f(s;,s—;) € [0,1],
for some function f. Player ¢ incurs a cost-per-unit of security investment of
b; € R>q, and if the system experiences a successful attack, player ¢ incurs a loss
of L; € Rsg. The expected utility of a player (under the true probabilities of
successful attack) is then

Eu; = —L;if(si,5-:) — bis. (2)
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In settings that model positive externalities, as is the focus in the current paper,
f (s, 5—;) is nonincreasing in both s; and s_;, and usually assumed to be convex
in s; for analytical tractability.

In this work, we consider three canonical models of interdependent security
games with positive externalities, initially presented in [9,10]. The models differ
in the attack probability function f(s;,s_;) as described below.

~ Total Effort: f(si,s—i) =1— (30 si).
— Weakest Link: f(s;,s—;) =1 —min]_; s;.
— Best Shot: f(s;,s—;) =1 —max]" s;.

In [9,10], the authors additionally considered the possibility of players invest-
ing in insurance to reduce the magnitude of loss. In order to isolate the effects of
nonlinear probability weighting, we do not consider insurance here. To establish
a baseline, the following proposition describes the main results from [9] regard-
ing the properties of Nash equilibria in the three security games defined above
with homogeneous risk neutral players (without self-insurance). We will com-
pare these results with the equilibria under nonlinear probability weighting in
subsequent sections.

Proposition 1. Consider a set of N risk neutral players with homogeneous cost
parameters (b and L).

1. Total Effort: There is a unique symmetric PNE except for the special case
where NTb =1.If NTb < 1, then each player invests to fully protect herself,
i.e., st =1,ie€{1,2,...,N}. Otherwise szTb >1, sf=0.

2. Weakest Link: At any PNE, aoll players have identical security investment. If
% > 1, then s = 0 for every player i. Otherwise, any investment s; € [0, 1]
can constitute a PNE.

3. Best Shot: If% > 1, then s} = 0 for every player i at the PNE. Otherwise,
there is no symmetric PNE, and at most one player has a nonzero investment

of 1, while all other players free ride without making any security investment.

We make two preliminary observations regarding the above equilibria in
games with risk neutral players. First, in the Total Effort game, the best response
of a player is independent of the decisions of other players and only depends on
her cost parameters, i.e., the interdependence has no impact on her strategy.
Secondly, in both Total Effort and Best Shot games, the PNE causes the sys-
tem to be either fully secure from attack, or to be fully unprotected. We will
show that under behavioral probability weighting, both the best response and
the equilibria have much richer structural properties and vary more smoothly
with the parameters of the game.

4 Total Effort Game with Probability Weighting:
Homogeneous Players

First we characterize the pure Nash equilibria in a Total Effort security game
when the number of players is sufficiently large and players are homogeneous
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in their weighting functions and cost parameters. Unlike the risk neutral case
described in Proposition 1, the best response in this case will be potentially
discontinuous in the strategies of other players. Furthermore, for a sufficiently
large number of players, we show that there always exists an interior equilibrium.
This equilibrium is not necessarily unique, and in fact, can coexist with an
equilibrium where all players invest 1.

With probability weighting, the expected utility of player ¢ under investment
s; € 10,1] is given by

Eu;(si, s—;) = —Lw <1 — Sz_;;”) — bs;,

where 5_; = Zj £S5 18 the total investment in security by all players other
than 4. The function w is the Prelec weighting function defined in (1). The
marginal utility is given by

aEUZ L ’ Si +S_;
= — 1——— | —b.
9s; N ( N ) ®)
The solutions of 8587” = 0 satisfy the first order condition of optimality, and are

therefore candidate solutions for players’ best responses and the PNE. Note that
(1 — H%) is the objective attack probability faced by the players (without

probability weighting). For a given strategy profile of other players, player i’s
strategy can change the objective attack probability in the interval X' (5_;) :=

{1 — 1+J‘\§,’i,1 — g&"]. In other words, when the number of players is N, each

player can directly change the probability of successful attack by at most %

Recall from Remark1 that the minimum value of w'(z) for z € [0,1] is a.
Therefore, if a > b, from (3) we have %% > 0 for s; € [0,1], and investing 1
is the only best response of player i irresplective of the strategies of the other
players. Therefore, the only PNE strategy profile for a > % is when each player
invests 1 in security. Note that in the special case where o =1 (i.e., w(x) = z),
this reduces to the risk-neutral strategy profile given in Proposition 1.

Now suppose a < %. In this case, the first order condition w'(z) = % has
two distinct interior solutions corresponding to objective attack probabilities
X< i and Xo > %, as illustrated in Fig. 2. It is easy to see that as the number
of players N increases, X5 — X7 increases while % decreases.

In the following proposition, we characterize the PNE for sufficiently large N
such that X, — X7 > % This condition implies that at a given strategy profile
of other players, X (5_;) does not simultaneously contain both X; and Xs,. This
makes the analysis more tractable, and is a reasonable assumption for networked

environments where the number of players is large.

Proposition 2. Consider a Total Effort security game with homogeneous play-

ers with probability weighting parameter a < %. Let N be sufficiently large so
Nb

that X9 > % + X1, where X;,j = 1,2 are solutions to the equation w'(x) = 5

Then,



156 A .R. Hota and S. Sundaram
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Fig. 2. Interior solutions of w'(m) = % are denoted by X; and Xs. In this example,
Nfb = 0.8 and is shown by the horizontal line. The weighting parameter is o = 0.4.

1. any strategy profile with (1 — sﬁ%) = X5 is a PNE,

2. any strategy profile with (1 — %) = X, is not a PNE, and

3. there exists a PNE with all players investing 1 if and only if
(a) X1 > %, or

(b) X1 < % and w() > L.
Proof. Part 1. Consider any strategy profile s* = {si,...,sy} with
1- 5‘4_%) = X5. The best response of each player i is obtained by solving
the following optimization problem:
T+ 5",
—Lw(1l— ——"| —bax. 4
zy w(-T) - ®

At z = s}, the player satisfies the first order condition of optimality % B]E"’ =

*’U)(XQ)*Z)—O Foranyx<s , we have X =1 — 2=t > ¥, and agsi =
Lw'(X) —b > 0since X5 > 1. As a result, no « < s} would satisfy the first
order necessary condition of optimality. On the other hand, for any = > s}, we
have X =1 — z+]\§[” < X5. However, from our assumption that Xo > i + Xq,
we would have X = 1 — % > X. Therefore, 8&7’ < 0 for any x > s}
As a result, z = s} is the only candidate for optimal investment, and 1t also
satisfies the second order sufficient condition since w”(X3) > 0 as X3 > 1. This
concludes the proof.

Part 2. Consider any strategy profile s* = {s7,..., sy} with (1 — t\f‘) =

X;. For any > s}, we have X =1 — % < X;. Since X1 < 1, w/(X) > 4t

(see Fig. 2). Thus aEul > 0 for any s; > s} As aresult, s; = 1 is also a candidate
solution for the utlhty maximization problem of player 1, along with s;. However
we show that for Prelec weighting functions, a player would always prefer to
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1+s_7

invest s; = 1 over s; = s}. To simplify the notation, define Y7 =1 — . Note

that X1 — Y1 = (1 — s}). Now we compute

Eu;(1,8*;) — Eu;(s;,s*;) = —Lw(Y1) — b+ Lw(X1) + bs}
= L(w(X1) —w(Y1)) = b(1 = s7)
= L(w(X1) —w(Y7)) —bN(X; — Y1)
_ B w(Xy) —w(Y1) Nb
S e

> 106 - ) [u/(60) = 7| =

where the inequality is due to the fact that w(z) is concave for « € [0, 1], and
Y1<X;< %, with equality at o = 1. Therefore, between the potential interior
solution s that satisfies the first order condition and the boundary solution
s; = 1, the player will always prefer the boundary solution. Since X; > 0, there
always exists a player with s} < 1 which would prefer to invest 1, and therefore
the strategy profile is not a PNE.

Part 3. Suppose X; > % and all players other than player ¢ are investing 1.
Then player i’s investment can vary the objective probability of successful attack
in the range [0, N] and in this region, %sui > 0. As a result, investing s; = 1 is
the only best response for player 1. Thus s*=1{1,...,1} is a PNE.

On the other hand, suppose X; < + Con51der a strategy proﬁle where all
players other than i are investing 1, i.e. sty ={s1 =1,...,87 1 = Ls; ;| =
1,...,8% = 1}. The following three strategies satisfy the first order necessary
condition of optimality of the utility maximization problem (4), and thus are
candidates for best responses: (i) sf =1 as 85 st=1>0, (ii) 57 =1 - NX; as
%E;:i si=1-Nx, = $w'(X1)—b =0, and (iii) s} = 0 as %E;:?‘ =£uw'($)-b<
0 (from Fig. 2 and the fact that X; < +).

From our analysis in Case 2, we know that the player would always prefer
to invest 1 over investing s; = 1 — NX;. Therefore, a necessary and sufficient
condition for all players investing 1 to be a PNE is Eu;(1,s*;) > Eu;(0,s;).
Since

*_
s7=0

1
Eu,(1,8*;) — Eu,;(0,8*;) = 7b+Lw(N)
we have the equivalent condition that s* = {1,...,1} is a PNE if and only if
w(%) > % Otherwise, player ¢ would achieve greater utility by investing 0, and
therefore, all players investing 1 is not a PNE. a

Discussion: The above proposition completely characterizes the pure Nash
equilibria in Total Effort security games with homogeneous nonlinear proba-
bility weighting for a sufficiently large number of players. It is instructive to
compare this set of equﬂibria with the ones for risk neutral players given in
Proposition 1. When b > @, there always exists an interior PNE corresponding
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to a (true) probability of successful attack equal to Xs. As the number of players
N increases, the probability of successful attack X5 gradually increases to 1 (by
the definition of X5 and Fig. 2). This is in contrast to the situation with risk neu-
tral players (o = 1), where the probability of successful attack jumps suddenly
from 0 to 1 once the number of players increases beyond a certain point.

Secondly, under behavioral probability weighting, there can also be an equi-
librium where all players invest 1 (under the conditions described in the third
part of the above result). This is a consequence of overweighting of small prob-
abilities; individual players with a < 1 do not find it profitable to reduce their
investments (“free-ride” ), since the resulting small increase of attack probability
is perceived to be much larger.

In the next subsection, we discuss how the attack probabilities at PNE are
affected by the weighting parameter «, and then analyze the social optimum in
the Total Effort game.

4.1 Comparative Statics

Consider two Total Effort games where the parameters IV, b and L are the same
across the two games. The first game has homogeneous players with weighting
parameter «q, and the second game has homogeneous players with weighting
parameter ag, where a; < as < %. By Proposition 2, both games have an
interior PNE, with corresponding true probability of successful attack equal to
X3} and X2, respectively. Note that for i € {1,2}, X4 > 1 and is the solution to
the equation w(z) = &2, where w;(z) be the Prelec function (1) with weighting
parameter «;, for i € {1,2}. As we illustrate in Fig. 3 for oy = 0.4 and ap = 0.8,
w) () is initially smaller than wj(z) as @ starts to increase from %, until the
quantity z = X (which depends on the values of a; and «ag) at which wj(x) =
wh(z). For z > X, w)(z) > wh(x). We first formally prove this observation via

the following lemma and proposition.
Lemma 1. The function
g9(x) = (= In(x))**~* exp[(=In(z))*™ = (=In(z))**], a1 <az <1,
is strictly decreasing in x € [é, 1].
Proof. We compute

g'(x) = exp((=In(x))™ — (= In(x))*)

x |(aa1(=In(a)) 7 — (12(—hl(x))oQ_l)_?l(_hl(],‘))O‘Q_O‘l
—(a2 _ a1)<_ ln(m))az—al—lé

=~ exp((~ In(@)* — (~In(2))*)(~ In(x))">

X [(a1(—=1In(z))* — a1 — ag(—In(x))*? + ag).
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2

15

dw(x)/dx

0.5

When z > 1, (=In(z)) < 1 and thus 1 > (—In(z))** > (—In(x))*2. As a result,
1—(=1In(z))* < 1—(—In(z))*2. Since a1 < g, this implies a1 (— In(z))* —ag >
az(—In(2))*2 — ay. Therefore, ¢'(z) < 0 over = € [1,1]. O

Proposition 3. Consider two Prelec weighting functions wy and wo with para-
meters a1 and ag, respectively and let aq < a2 Then there exists a unique
X>1 such, that (i) w}(X) = wy(X), i) for x € [1,X], wi(z) < wh(z), and iii)
for z € [X,1], w)(z) > wh(z).

Proof. The first derivative of the Prelec weighting function is given by w'(z) =
w(z)2(—In(x))*"!. Therefore, if at a given x, w}(x) = wh(z), we have

wi(x)aq (—In(z))* = wa(z)as(—In(z))*?
o wa(e)(=Ina))

ag  wi(2)(=In(z))n

= — = (= In(2))"*" " exp((= In(2))™ — (= In(2))**) = g().

(&%)

From the definition of g(z), g(£) = 1 > 2. Furthermore, as x — 1, ¢'(z) — —o0.

e
As aresult, g(x) becomes smaller than &% for some z < 1. Thus there exists X at
which w] (z) = wj(z). The uniqueness of X follows from the strict monotonicity
of g(z) as proved in Lemma 1.

In order to prove the second and third parts of the lemma, it suffices to
show that w{(X) > wjy(X). Therefore, we compute w”(z), which after some
calculations yields

w'(z)

w”(z) = 14 In(z) + a((—In(z))* — 1)].

—zln(z)

From the previous discussion, a;(—In(z ))”‘1 — a1 > as(—In(z))*® — ag, and

w”(x) > 0 for z > L. Therefore at X, w{(X) > wf(X). This concludes the
proof. O
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The above proposition (illustrated in Fig.3) shows that if §2 > w/(X),
then We have X < X3i < Xj whenever a; < 3. On the other hand, when
g < b < w/(X), we have X > XJ > X2. Since the attack probability at the

1nter10r equilibrium is equal to X&, we have the following result.

Proposition 4. Consider two Total Effort security games with homogeneous
players. The players have weighting parameter oy in the first game and as in
the second game with oy < cip. Let X be the intersection point defined in Propo-
sition 3 for a1 and ag. If % > w'(X), then the true probability of successful
attack at the interior PNE z's larger in the game where players have weighting
parameter as. Similarly, zf Mo w!(X), then the investments by players with
weighting parameter oy Tesults in higher probability of successful attack at the
interior PNE. If % = w'(X), both games have identical attack probability at the
interior PNE.

Discussion: The above result shows that when the attack probability is close
to 1, the players view security investments to be highly beneficial in terms of
reducing the perceived attack probabilities (due to significant underweighting
of probabilities closer to 1). This effect is more pronounced in players with a
smaller « (as shown in Fig. 1), and as a result, the attack probability at the PNE
is smaller compared to a game where players have higher . On the other hand,
when the quantity Nfb is smaller, the attack probability at the interior solution is
more moderate and the players with smaller o do not find the perceived reduction
of attack probability beneficial enough to make a high investment compared to
players with larger o. Therefore, the nature of probability weighting plays a key
role in shaping the attack probability at the PNE.

4.2 Social Optimum

We define the social welfare of the Total Effort game as the sum of the utilities of
the individual players, as is commonly defined in the game theory literature [24].
Formally, for a given strategy profile s, the social welfare function is defined as

U(s) = —NLuw <1 T 152) szz (5)

Noting that the social welfare function only depends on the aggregate invest-
ment, we denote with some abuse of notation

VU (5) = —N[Lw(1 — 5) + bg], (6)

where 5 is the average security investment by the players. As a result, the social
welfare optimization performed by the social planner is independent of the num-
ber of players in the system. In fact, the optimal solution to the problem of the
central planner is the same as the optimal investment when there is a single
player in the game. In the following result, we discuss how the optimal invest-
ment under a central planner depends on the weighting parameter a and the
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cost parameters b and L. Subsequently, the following result will also be helpful
in characterizing the nature of Nash equilibria in Weakest Link and Best Shot
games.
The marginal of the social welfare function (6) is

10

N(?Ts =Lw'(1—3s)—b, (7)
where we use s as the average security investment instead of s for notational
convenience. Similar to the discussion prior to Proposition 2, if % < «, then
%—i’ > 0 for s € [0,1], and as a result, the optimal investment is 1. Therefore we
focus on the case where % > «; in this case, there are two solutions to w'(x) = %,
denoted as X; < % and Xo > % as before. We will need the following lemma for

our analysis.
Lemma 2. Let z be such that w'(z) = @

and (iii) for x> z, w'(z) > 2

T

. Then (i) z is unique, (i) z > 1

Proof. For the Prelec weighting function,

W' (z) = w(x)%(— In(z))*L.

At any 2z with w'(z) = @, we must have a(—1In(z))*"! = 1. Since a < 1,

we must have —In(z) < 1 or equivalently z > 1. Furthermore, (—In(z))*~! is
strictly increasing in x for o < 1. As a result, there is a unique x = z at which
a(—lrll(z))‘”‘*l =1, and for z > z, w'(x) > @ Similarly, w'(z) < @ for
x € [E?Z]' O

Proposition 5. Let z be as defined in Lemma 2.

1. If 2 < w/(2), the socially optimal average investment is 1.

2. Otherwise, the socially optimal average investment is 1 — Xo, where w'(Xz) =
b

T
Proof. Since % is finite, from (7) we have %—f > 0 at s = 0 and therefore investing
0 in security is not a utility maximizer. So we have three candidate solutions for
utility maximization, s1 =1 — X1, sg =1— X5 or s3 = 1.

From the analysis in Part 2 of Proposition2 with 5%, = 0 and N = 1, we
have Eu(1) > Eu(l — X;). Therefore, between the potential interior solution
s1 = 1 — X; that satisfies the first order condition and the boundary solution
s3 = 1, the player will always prefer the boundary solution.

Now, to compare the utilities at the solutions s; and 1, we compute

%(@(1) —¥(sz)) = Lw(l — s3) — b(1 — s2)
-2 |52 - ]
wll =)

—L(l—SQ)[ —w/(1—52)}.

1—52
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From our discussion in Lemma 2, if % = w'(l — s9) < w'(z), the player would
prefer to invest 1, and otherwise will prefer to invest ss. g

5 Weakest Link and Best Shot Games

The Nash equilibrium strategies in Weakest Link and Best Shot games have very
special properties, as the security level of the entire system is determined by the
investment of a single player (the one with the smallest and largest investment,
respectively). As a result, the levels of investment at the equilibria often depend
on the optimal investment by a single user (i.e., investment in a game with
N = 1), which we analyzed in the previous subsection. We first characterize the
PNE in Weakest Link games.

Proposition 6. Consider a Weakest Link game with homogeneous players hav-
ing probability weighting parameter o € (0,1]. Then at any PNE, all players
have identical investment. If © > w'(z), where z is as defined in Lemma 2, then
there is a continuum of pure Nash equilibria with attack probability greater than
or equal to Xo. When % < w'(z), then there are additional equilibria (including
the ones in the previous case) with attack probabilities less than %

Proof. The first part of the statement is easy to see, as no player prefers to
invest more than the current minimum level of investment. In fact, if at a given
strategy profile, no player can improve her utility by unilaterally deviating to a
lower investment level, then the strategy profile is a PNE.

When % > w'(z), our result in Proposition5 states that a single player
investing in isolation would prefer to invest s* = 1 — X3 where X, > % is the
interior solution to the first order condition w’(z) = %. Now suppose all players
have identical security investment s < s*, i.e., the objective attack probability
X > Xs. Since for each player w’(x) > % for x > X>, no player would unilaterally
deviate to make a lower investment. Therefore, any investment less than s* by
all the players would result in a PNE.

When £ < w/(z), the optimal investment when N = 1 is 1 since Eu(1) >
Eu(l — X2). Therefore, some very low attack probabilities (such as with invest-
ment s =1 —¢,e — 0 where Eu(s) > Eu(l — X3)) can be supported at a PNE,
in addition to the set of equilibria with attack probabilities greater than Xs. O

Discussion: The main differences of the above result compared to the equi-
libria in Weakest Link games without probability weighting (Proposition 1) are
twofold. First, for large enough %, the only possible equilibrium in the risk neu-
tral case is when all players invest 0, while under probability weighting, there is a
range of possible equilibrium investments. Secondly, for smaller values of %(< 1),
any investment level by the players can give rise to a PNE for risk neutral players,
while that is no longer the case with behavioral probability weighting. However,
at the social optimum of Weakest Link games, the investment level chosen by the
central planner will coincide with the optimal investment stated in Proposition 5.
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Proposition 7. Consider a Best Shot game with players having identical cost
and weighting parameters. Then at any PNE, at most one player can have a
nonzero investment with investment level according to Proposition 5, and the
rest of the players invest zero.

Discussion: Recall that the structure of the PNE was similar in homogeneous
Best Shot games without probability weighting, with at most one player having
nonzero investment. However, the nonzero investment level was at one of the
boundary points, either 0 or 1, and as a result, the equilibrium was either entirely
protected or vulnerable (Proposition 1). With probability weighting, the nonzero
equilibrium investment is one of the interior solutions when £ > w’(2), and the
investment level gradually decreases as % increases. Finally, note that the social

optimum solution coincides with the PNE in Best Shot games.

6 Total Effort Game with Heterogeneous Players

In this section, we consider Total Effort games with player-specific weighting
parameters «; and cost parameters % We first prove the existence of a PNE
in games with a sufficiently large number of players, and subsequently give a
constructive proof of uniqueness of PNE.

In the rest of the analysis, we denote the weighting function of player 4

as w;(x), and denote the solutions of wi(z) = j\g", if any, as X{ < % and

Xt > %, respectively. Now we are ready to state our assumptions on the number
of players, which are sufficient conditions for our results to hold.

Assumption 1. Let the number of players N be large enough such that for every
player i,

1. o; < T

2. X4 - Xi> L,
3. Xi <% and
4

The above conditions are guaranteed to be simultaneously satisfied for a suf-
ficiently large number of players due to the properties of the weighting functions.
Recall from our discussion in Proposition 2 that for homogeneous players, the
last two of the above assumptions are necessary and sufficient to ensure that all
players investing 1 is not an equilibrium.

Proposition 8. Consider a Total Effort game where player i has player-specific
weighting parameter a; and cost ratio % Let the number of players satisfy

Assumption 1. Then there exists a PNE of the game.

Proof. We show that the best response of a player is unique, continuous and is
an affine decreasing function of the total security investment by other players.
The result will then follow from Brouwer’s fixed point theorem. Our analysis of
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the best response of a player holds for every player i, and therefore we drop the
subscript in the rest of proof.

Let y € [0, N — 1] be the total security investment by all other players. For
a given y, the investment of the player can only change the true probability
of successful attack within the interval X'(y) := [1 — 5% 1 — 2], the length of
which is % Under Assumption 1, this interval might fall mto one of four different
cases. As y increases from 0, we gradually go through each of the cases, starting
from either Case 1 or Case 2.

Case 1:X2<1—1+Ty

In this case, the interval X (y) lies to the right of X5. Therefore, for any
attack probability z € X (y), £w’(z) > b (from Fig. 2). Thus, alE—S“ s=z > 0 and
consequently, b(y) = 1 this case.

Case2:171+Ty§X2§17%

In this case, X5 € X(y), and therefore, the player has a feasible investment
strategy s* = N(1 — X5) — y at which the first order condition is satisfied
with equality. By identical arguments as in Part 1 of Proposition 2, the player
is only going to invest at the interior solution s*. The second requirement of
Assumption 1 ensures that Xy ¢ X(y), and as result, the utility function remains
concave, and therefore the best response is unique for any given .

Since the optimal solution s* must have the property that 1 — % = Xo,
it is continuous and linearly decreasing in y, with boundary values at 1 and 0
respectively for y = N(1 — X3) — 1 and y = N(1 — X3).

Case 3: X1<1—1+TyandX2>l—%

In this case, the interval X' (y) lies in the region between X; and Xs. There-
fore, for any objective failure probability x € X(y), ‘%ES:“ < 0. As a result,
b(y) = 0.

Case 4: 1 - L <X;<1-%

In this case, there are three candidate solutions for utility maximization,
s=1,8=N(1—-X;)—y and s = 0, analogous to the candidate solutions in
Part 3 of Proposition 2. We have X = 1— % as the objective failure probability
resulting from the strategies of the players. From an identical analysis as in Part
2 of Proposition 2 with §_; = y, we conclude that the player would always prefer
to invest 1 over investing s* = N(1 — X;) — y. This leads to the possibility that
the best response might have a discontinuous jump from 0 to 1 at some value of
y in this region. However, we show that under the third and fourth conditions
of Assumption 1, the player would always prefer to invest 0 over investing 1.

We compute

Eu(l,y) — Eu(0,y) = L -w(l - g) w(l — 1‘|'ZU>] b

I N N
=L w()\+]if)—w(>\)] —b
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where A =1 — % The last inequality follows because the function h(\) £
wA+ &) — ( ) s a strictly decreasing function of A for A € [0, X;]. Indeed,
h’()\)*w()\Jr ) —w'(A\) <0, asw(/\)>w(X1)—T,andw(>\+N)<%,
as X1 < A+ 4 < Xy. Therefore, if w(4) < L, the player would always prefer to
invest 0 over investing 1, regardless of the value of y. Furthermore, since X; < %,
and 1 — ¥ = % at y = N — 1, the best response remains at 0 in this region of y.
Combining the analysis in all four cases together, the best response of any
player is unique and continuous in the strategies of the other players, regardless
of the value of a; € (0,1] and 2-. In addition, the strategy space of each player is
[0, 1], which is compact and convex Therefore, a PNE always exists by Brouwer’s
fixed point theorem. O

In the following result, we establish the uniqueness of the PNE.

Proposition 9. Consider a Total Effort game where each player i has player-
specific weighting parameter c; and cost ratio % Let the number of players
N satisfy Assumption 1. Then all PNE have the same objective probability of
successful attack.

Proof. Without loss of generality, let players be ordered such that Xi < X2 <
X3 <...< XY, where X} is the largest solution to w}(z) = ]\g’ note that such
a solutlon is guaranteed by the first requirement of Assumptlonl We present
a numerical illustration in Fig.4. Note that this ordering does not necessarily
mean that the corresponding «;’s or cost ratios form a monotonic sequence.
Under Assumption 1, no objective attack probability X < X1 would be a PNE,
since there would always exist a player with positive investment who would prefer
to reduce her investment.

Now suppose there are two PNEs with different corresponding probabilities
of successful attack. Consider the strategy profile with the smaller attack prob-
ability, denoted X*. Note that we ruled out the possibility of X* < X3 above.
There are two exhaustive cases: either X} < X* < X, 1 for some player 1, or
X! = X* for some player [.

Let X} < X* < Xé‘H for some player [. By the definition of the quantities
X3, we have wi(X*) < % for i € {{+1,...,N}, and therefore, sf = 0 for
i€{l+1,...,N}. Similarly, wj(X*) > J and s} = 1 for i € {1,...,1}. In this
case, X* =1— % Now at the second PNE with objective attack probability
Y* > X*, the players in {1, ...,{} would continue to invest 1, with the possibility
of more players investing nonzero amounts if Y* > X%H. But then the objective

attack probability X = 1 — ZTS would decrease from X*, contradicting the
assumption that Y* > X*.

The proof of the case where X* = X} for some player [ follows identical
arguments, and therefore we omit its presentation. O

7 Discussion and Conclusion

In this paper, we studied a class of interdependent security games where the
players exhibit certain behavioral attributes vis-a-vis their perception of attack
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Fig. 4. First order conditions for heterogeneous players. The horizontal lines represent
the quantities A]ibbl , while the curved lines represent wj(z), which depends on the player
specific weighting parameter «;. The quantity X5 represents the largest solution to the

equation wj(z) = J%.
:

probabilities while making security investment decisions. In particular, we con-
sidered the parametric form of probability weighting function proposed by
Prelec [26], which is commonly used in behavioral decision theory settings,
including prospect theory. We analyzed the properties of pure Nash equilibria
(PNE) in three canonical interdependent security game models, (i) Total Effort,
(ii) Weakest Link, and (iii) Best Shot games.

We first considered the Total Effort game with players having homogeneous
weighting functions and cost parameters, and characterized the PNE strategies
under a sufficiently large number of players. The equilibria with nonlinear prob-
ability weightings have much richer structural properties than the corresponding
equilibria for risk-neutral players. There are only two types of equilibria with risk
neutral players; one where the probability of successful attack is 1 (completely
undefended), and the other where the probability is 0 (completely defended)
with an abrupt transition to the latter as the number of players increase. How-
ever under behavioral probability weighting, there exist interior equilibria where
the attack probability lies between 0 and 1. Furthermore, the equilibrium attack
probability gradually increases to 1 with respect to certain cost parameters and
the number of players. In addition to the interior equilibrium, there might coex-
ist equilibria where players invest to fully secure themselves. In these equilibria,
overweighting of low probabilities disincentivizes individuals from reducing their
investments, since the perceived increase in attack probability due to reduced
investment is much larger.

We also obtained interesting comparative statics results on the effect of the
weighting parameter on the magnitude of the attack probability at equilibrium.
If the probability of successful attack is sufficiently high, then players whose
weighting functions are closer to linear prefer to invest relatively less in security,
while players who exhibit a large underweighting of probabilities closer to 1
(certainty effect) prefer to invest more. This is due to the fact that the perceived
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reduction in attack probability is larger for the latter players. However, if the
attack probability is only moderately high, we observe the opposite behavior; the
attack probability at the equilibrium with highly nonlinear weighting functions
is larger compared to the attack probability at equilibrium with players who
more accurately perceive the true probabilities.

We subsequently analyzed the social welfare maximizing investment profiles
in Total Effort games, which also had implications for the equilibria in Weakest
Link and Best Shot games. In Weakest Link games, there often arise a multitude
of equilibria with a continuum of attack probabilities, while in Best Shot games,
at most one player makes a nonzero investment at any PNE. The investment
levels at the equilibria in both these games have a more smooth variation in the
game parameters compared to the investments by risk neutral players.

Finally, we analyzed Total Effort games where players have heterogeneous
cost and weighting parameters, and established the existence of PNE and unique-
ness of the corresponding attack probability when the number of players is
sufficiently large. We leave a more comprehensive discussion on the effects of
heterogeneity in weighting parameters for future work, in addition to several
other future directions that we discuss below.

Future Work: There are several directions in which this line of investigation can
be extended.

Cyber Insurance: The dichotomy between investing in security (to potentially
reduce likelihood of attack) and purchasing cyber insurance (to decrease the
magnitude of loss) has received considerable attention among information secu-
rity researchers [3,23,25]. However, in practice, the market for cyber insurance
has seen limited growth despite growing awareness in the industry about various
security risks. Further analysis of behavioral risk preferences (such as probability
weighting, loss aversion and reference dependence) of decision makers in the con-
text of cyber insurance could potentially uncover important phenomena which
is not easily captured in models that only consider the classical expected util-
ity maximization framework. The work in [15] is a step in this direction, where
the authors investigate the strategies of risk averse players (with concave utility
functions) in Weakest Link security games in the presence of market insurance.

Network Structure: In this paper, we have only considered extreme forms of
network effects between players, as only the average, the highest, or the lowest
investment levels decide the overall failure probabilities. Analyzing the effects
of probability weighting and other forms of deviations from classical expected
utility maximization behavior in models that consider richer networked environ-
ments [19,21,22,28] is a challenging future direction.

Inefficiency of Equilibria: Selfish behavior by users often leads to reduced welfare
and increased attack probability at equilibrium in interdependent security games
with positive externalities. While there is prior work in the literature on price
of anarchy [14] and price of uncertainty [11] of the current class of security
games, investigating the effects of (behavioral) risk preferences of users, including
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probability weighting, on the inefficiency of equilibria remains an important
avenue for future research.

Ezxperimental Investigations: Finally, the results obtained in this paper com-
pliments and further motivates experimental/empirical investigations of human
decision making in the context of information security and privacy.
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Abstract. Recent research on Green Security Games (GSG), i.e., secu-
rity games for the protection of wildlife, forest and fisheries, relies on the
promise of an abundance of available data in these domains to learn adver-
sary behavioral models and determine game payoffs. This research sug-
gests that adversary behavior models (capturing bounded rationality) can
be learned from real-world data on where adversaries have attacked, and
that game payoffs can be determined precisely from data on animal densi-
ties. However, previous work has, as yet, failed to demonstrate the useful-
ness of these behavioral models in capturing adversary behaviors based on
real-world data in GSGs. Previous work has also been unable to address
situations where available data is insufficient to accurately estimate behav-
ioral models or to obtain the required precision in the payoff values.

In addressing these limitations, as our first contribution, this paper,
for the first time, provides validation of the aforementioned adversary
behavioral models based on real-world data from a wildlife park in
Uganda. Our second contribution addresses situations where real-world
data is not precise enough to determine exact payoffs in GSG, by pro-
viding the first algorithm to handle payoff uncertainty in the presence
of adversary behavioral models. This algorithm is based on the notion
of minimax regret. Furthermore, in scenarios where the data is not even
sufficient to learn adversary behaviors, our third contribution is to pro-
vide a novel algorithm to address payoff uncertainty assuming a perfectly
rational attacker (instead of relying on a behavioral model); this algo-
rithm allows for a significant scaleup for large security games. Finally, to
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reduce the problems due to paucity of data, given mobile sensors such
as Unmanned Aerial Vehicles (UAV), we introduce new payoff elicitation
strategies to strategically reduce uncertainty.

1 Introduction

Following the successful deployments of Stackelberg Security Games (SSG) for
infrastructure protection [1,13,24], recent research on security games has focused
on Green Security Games (GSG) [4,7,21,27]. Generally, this research attempts to
optimally allocate limited security resources in a vast geographical area against
environmental crime, e.g., improving the effectiveness of protection of wildlife or
fisheries [4,27].

Research in GSGs has differentiated itself from work in SSGs (which often
focused on counter-terrorism), not only in terms of the domains of application
but also in terms of the amounts of data available. In particular, prior research
on SSGs could not claim the presence of large amounts of adversary data [24].
In contrast, GSGs are founded on the promise of an abundance of adversary
data (about where the adversaries attacked in the past) that can be used to
accurately learn adversary behavior models which capture their bounded ratio-
nality [4,7,27]. Furthermore, GSG research assumes that available domain data
such as animal/fish density is sufficient to help determine payoff values pre-
cisely. However, there remain four key shortcomings in GSGs related to these
assumptions about data. First, despite proposing different adversary behavioral
models (e.g., Quantal Response [28]), GSG research has yet to evaluate these
models on any real-world data. Second, the amount of real-world data available
is not always present in abundance, introducing different types of uncertainties
in GSGs. In particular, in some GSG domains, there is a significant need to
handle uncertainty in both the defender and the adversary’s payoffs since infor-
mation on key domain features, e.g., animal density, terrain, etc. that contribute
to the payoffs is not precisely known. Third, in some GSG domains, we may even
lack sufficient attack data to learn an adversary behavior model, and simulta-
neously must handle the aforementioned payoff uncertainty. Finally, defenders
have access to mobile sensors such as UAVs to elicit information over multiple
targets at once to reduce payoff uncertainty, yet previous work has not provided
efficient techniques to exploit such sensors for payoff elicitation [17].

In this paper, we address these challenges by proposing four key contribu-
tions. As our first contribution, we provide the first results demonstrating the
usefulness of behavioral models in SSGs using real-world data from a wildlife
park. To address the second limitation of uncertainty over payoff values, our sec-
ond contribution is ARROW (i.e., Algorithm for Reducing Regret to Oppose
Wildlife crime), a novel security game algorithm that can solve the behav-
ioral minimazx regret problem. MiniMax Regret (MMR) is a robust approach
for handling uncertainty that finds the solution which minimizes the maximum
regret (i.e., solution quality loss) with respect to a given uncertainty set [8].
A key advantage of using MMR is that it produces less conservative solutions
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than the standard maximin approach [17]. ARROW is the first algorithm to
compute MMR in the presence of an adversary behavioral model; it is also
the first to handle payoff uncertainty in both players’ payoffs in SSGs. How-
ever, jointly handling of adversary bounded rationality and payoff uncertainty
creates the challenge of solving a non-convex optimization problem; ARROW
provides an efficient solution to this problem. (Note that we primarily assume a
zero-sum game as done in some prior GSG research; however as discussed our
key techniques generalize to non-zero sum games as well.)

Our third contribution addresses situations where we do not even have data
to learn a behavior model. Specifically, we propose ARROW-Perfect, a novel
MMR-based algorithm to handle uncertainty in both players’ payoffs, assuming a
perfectly rational adversary without any requirement of data for learning.
ARROW-Perfect exploits the adversary’s perfect rationality as well as extreme
points of payoff uncertainty sets to gain significant additional efficiency over
ARROW.

Another significant advantage of MMR is that it is very useful in guiding
the preference elicitation process for learning information about the payoffs [3].
We exploit this advantage by presenting two new elicitation heuristics which
select multiple targets at a time for reducing payoff uncertainty, leveraging the
multi-target-elicitation capability of sensors (e.g., UAVSs) available in green secu-
rity domains. Lastly, we conduct extensive experiments, including evaluations of
ARROW based on data from a wildlife park.

2 Background and Related Work

Stackelberg Security Games: In SSGs, the defender attempts to protect a
set of T targets from an attack by an adversary by optimally allocating a set of
R resources (R < T') [24]. The key assumption here is that the defender commits
to a (mized) strategy first and the adversary can observe that strategy and then
attacks a target. Denote by x = {z;} the defender’s strategy where x; is the
coverage probability at target t, the set of feasible strategies is X ={x:0<z; <
1,z < R}.' If the adversary attacks ¢ when the defender is not protecting
it, the adversary receives a reward R{, otherwise, the adversary gets a penalty
P2, Conversely, the defender receives a penalty PZ in the former case and a
reward R{ in the latter case. Let (R®P2) and (R P9) be the payoff vectors.
The players’ expected utilities at ¢ is computed as:

U‘?(X7 Raa Pa) = xtPta + (1 - th)R? (1)
Ud(x,RY, PY) = 2, R 4+ (1 — ;) P (2)
Boundedly Rational Attacker: In SSGs, attacker bounded rationality is often

modeled via behavior models such as Quantal Response (QR) [14,15]. QR pre-
dicts the adversary’s probability of attacking ¢, denoted by q¢(x, R?,P?) (as

! The true mixed strategy would be a probability assighment to each pure strategy,
where a pure strategy is an assignment of R resources to T" targets. However, that is
equivalent to the set X described here, which is a more compact representation [12].
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shown in Eq. 3 where the parameter A governs the adversary’s rationality). Intu-
itively, the higher the expected utility at a target is, the more likely that the
adversary will attack that target.

eAUi (x,R®,P?)

dt (X, Ra’ Pa) - Zt’ eAU?/ (x,R=,P2) (3)

The recent SUQR model (Subjective Utility Quantal Response) is shown to
provide the best performance among behavior models in security games [18].
SUQR builds on the QR model by integrating the following subjective utility
function into QR instead of the expected utility:

U2(x, R?, P?) = wya; + waRY + ws P (4)

where (w1, ws,ws) are parameters indicating the importance of the three target
features for the adversary. The adversary’s probability of attacking ¢ is then

predicted as: )

. R® pa Ut (x,R* P 5

X, 5 = =

qt( ) Et/ eU?(x,Ra,Pa) ( )
In fact, SUQR is motivated by the lens model which suggested that evaluation of
adversaries over targets is based on a linear combination of multiple observable
features [5]. One key advantage of these behavioral models is that they can be
used to predict attack frequency for multiple attacks by the adversary, wherein

the attacking probability is a normalization of attack frequency.

Payoff Uncertainty: One key approach to modeling payoff uncertainty is to
express the adversary’s payoffs as lying within specific intervals [10]: for each
target t, we have RY € [R%, (1), R% .. (t)] and PP € [P%,.(t), P%..(t)]. Let I
denote the set of payoff intervals at all targets. An MMR-based solution was
introduced in previous work to address payoff uncertainty in SSGs; yet it had
two weaknesses: (i) this MMR-based solution is unable to handle uncertainty
in both players’ payoffs since it assumes that the defender’s payoffs are exactly
known; and (ii) it has failed to address payoff uncertainty in the context of
adversary behavioral models [17].

Green Security Games: This paper focuses on wildlife protection — many
species such as rhinos and tigers are in danger of extinction from poaching
[16,22]. To protect wildlife, game-theoretic approaches have been advocated to
generate ranger patrols [27] wherein the forest area is divided into a grid where
each cell is a target. These ranger patrols are designed to counter poachers
(whose behaviors are modeled using SUQR) that attempt to capture animals
by setting snares. A similar system has also been developed for protecting fish-
eries [4]. Unfortunately, this previous work in wildlife protection [27] has four
weaknesses as discussed in Sect. 1.
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3 Behavioral Modeling Validation

Our first contribution addresses the first limitation of previous work mentioned in
Sect. 1: understanding the extent to which existing behavior models capture real-
world behavior data from green security domains. We used a real-world patrol
and poaching dataset from Uganda Wildlife Authority supported by Wildlife
Conservation Society. This dataset was collected from 1-year patrols in the Queen
Elizabeth national park.?

3.1 Dataset Description

Our dataset had different types of observations (poacher sighting, animal sight-
ing, etc.) with 40,611 observations in total recorded by rangers at various loca-
tions in the park. The latitude and longitude of the location corresponding to
each observation was recorded using a GPS device, thus providing reliable data.
Each observation has a feature that specified the total count of the category
of observation recorded, for example, number and type of animals sighted or
poaching attacks identified, at a particular location. The date and time for a
particular patrol was also present in the dataset. We discretized the park area
into 2423 grid cells, with each grid cell corresponding to a 1 km x 1 km area
within the park. After the discretization, each observation fell within one of the
2423 target cells and we therefore aggregated the animal densities and the num-
ber of poaching attacks within each target cell. We considered attack data from
the year 2012 in our analysis, which has 2352 attacks in total.

Gaussian Smoothing of Animal Densities: Animal density at each tar-
get is computed based on the patrols conducted by the rangers and are thus
observations at a particular instant of time. Animal density also has a spatial
component, meaning that it is unlikely to change abruptly between grid cells.
Therefore, to account for movement of animals over a few kilometers in gen-
eral, we do a blurring of the current recording of animal densities over the cells.
To obtain the spatial spread based on recordings of animal sightings, we use
Gaussian smoothing; more specifically we use a Gaussian Kernel of size 5 x 5
with ¢ = 2.5 to smoothen out the animal densities over all the grid cells.

Distance as a Feature: In addition to animal density, the poachers’ payoffs
should take into account the distance (or effort) the poacher takes in reaching
the grid cell. Therefore, we also use distance as a feature of our SUQR models.
Here, the subjective utility function (Eq.4) is extended to include the distance
feature: U?()g R2 P?) = wizy + wo R} + w3 P + wy Py where @, is the distance
from the attacker current position to target ¢. For calculating distance, we took a
set of 10 entry points based on geographical considerations. The distance to each
target location is computed as the minimum over the distances to this target
from the 10 entry points.

2 This is the preliminary work on modeling poachers’ behaviors. Further study on
building more complex behavioral models would be a new interesting research topic
for future work.
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3.2 Learning Results

We compare the performance of 13 behavioral models® as follows (Fig.1):
(i) SUQR-3, which corresponds to SUQR, with three features (coverage prob-
ability as discussed in Sect. 2, poacher reward which is considered to be same as
the animal density and poacher penalty which is kept uniform over all targets);
(ii) SUQR-4, which corresponds to SUQR with four features (coverage prob-
ability, animal density, poacher penalty and distance to the target location);
(iii) QR; (iv) eight versions of the e-optimal model, a bounded rationality
model [20] where the adversary chooses to attack any one of the targets with an
utility value which is within € of the optimal target’s utility, with equal proba-
bility; (v) a random adversary model; and (vi) a perfectly rational model.

1 1
g _
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o 08 };{/‘ 0 08 //
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_g 0.6 / g 0.6 —+—Epsilon=50
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(a) All Models (b) e-optimal (various values of €) vs SUQR-4

Fig. 1. ROC plots on Uganda dataset

From the 2352 total attacks in our dataset, we randomly sampled (10 times)
20 % of the attack data for testing and trained the three models: SUQR-3, SUQR-
4 and QR on the remaining 80 % data. For each train-test split, we trained our
behavioral models to learn their parameters, which are used to get probabilities
of attack on each grid cell in the test set. Thus, for each grid cell, we get the
actual label (whether the target was attacked or not) along with our predicted
probability of attack on the cell. Using these labels and the predicted probabil-
ities, we plotted a Receiver Operating Characteristic (ROC) curve (in Fig. 1) to
analyze the performance of the various models.

The result shows that the perfectly rational model, that deterministically
classifies which target gets attacked (unlike SUQR/QR which give probabilities
of attack on all targets), achieves an extremely poor prediction accuracy. We also
observe that the e*-optimal model performs worse than QR and SUQR models
(Fig. 1(a)). Here, by e*-optimal model, we mean the model corresponding to

3 Models involving cognitive hierarchies [26] are not applicable in Stackelberg games
given that attacker plays knowing the defender’s actual strategy.
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the e that generates the best prediction (Fig.1(b)). In our case, the best value
of € is 250. For the e-optimal model, no matter what € we choose, the curves
from the e-optimal method never gets above the SUQR-4 curve, demonstrating
that SUQR-4 is a better model than e-optimal. Furthermore, SUQR~4 (Area
Under the Curve (AUC) = 0.73) performs better than both QR (AUC = 0.67)
and SUQR-3 (AUC = 0.67), thus highlighting the importance of distance as a
feature in the adversary’s utility. Thus, SUQR-4 provides the highest prediction
accuracy and thus will be our model of choice in the rest of the paper.

In summary, comparing many different models shows for the first time sup-
port for SUQR from real-world data in the context of GSGs. The SUQR-4
model convincingly beats QR, e—optimal, perfect-rationality and the random
model, thus showing the validity of using SUQR in predicting adversary behav-
iors in GSGs.

4 Behavioral Minimax Regret (MMRy,)

While we can learn a behavioral model from real-world data, we may not always
have access to data to precisely compute animal density. For example, given
limited numbers of rangers, they may have patrolled and collected wildlife data
from only a small portion of a national park, and thus payoffs in other areas of
the park may remain uncertain. Also, due to the dynamic changes (e.g., animal
migration), players’ payoffs may become uncertain in the next season. Hence, this
paper introduces our new MMR-based robust algorithm, ARROW, to handle
payoff uncertainty in GSGs, taking into account adversary behavioral models.
Here, we primarily focus on zero-sum games as motivated by recent work in
green security domains [4,9], and earlier major SSG applications that use zero-
sum games [23,29]). In addition, we use a model inspired by SUQR-4 as the
adversary’s behavioral model, given its high prediction accuracy presented in
Sect. 3. More specifically, the subjective utility function in Eq. (4) is extended
to: U?(x, R?,P?) = wyzs + wa Ry + w3 P + wsP; where &, is some other feature
(e.g., distance) of target ¢. In fact, our methods generalize to non-zero-sum games
with a general class of QR (see Online Appendix A).*

We now formulate MMR), with uncertain payoffs for both players in zero-sum
SSG with a boundedly rational attacker.

Definition 1. Given (R?,P?), the defender’s behavioral regret is the loss
in her utility for playing a strategy x instead of the optimal strategy, which is
represented as follows:

Ry (x, R*, P*) = max F(x', R*, P*) - F(x, R*, P*) (6)
x'€

where F(x,R*, P*) = 3 & (x,R* PY)U}(x, R4, PY) (7)

* Online Appendix: https://www.dropbox.com/s/620aqtingsul8ys/Appendix.pdf?
d1=0.
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Table 1. A 2-target, 1-resource game.

Targets | Attacker reward | Attacker penalty
1 2, 3] (-2, 0]
2 [5, 7] [—10, —9]

Behavioral regret measures the distance in terms of utility loss from the defender
strategy x to the optimal strategy given the attacker payoffs. Here, F(x, R?, P?)
is the defender’s utility (which is non-convex fractional in x) for playing x where
the attacker payoffs, whose response follows SUQR, are (R?, P?). The defender’s
payoffs in zero-sum games are RY = —P? and P9 = —R2. In addition, the
attacking probability, q(x, R?,P?), is given by Eq.5. When the payoffs are
uncertain, if the defender plays a strategy x, she receives different behavioral
regrets w.r.t to different payoff instances within the uncertainty intervals. Thus,
she could receive a behavioral max regret which is defined as follows:

Definition 2. Given payoff intervals I, the behavioral max regret for the
defender to play a strategy x is the maximum behavioral regret over all payoff
instances:

MR I = R?, P? 8
b(xu ) (R?S%ele(X? ) ) ( )

Definition 3. Given payoff intervals I, the behavioral minimax regret prob-
lem attempts to find the defender optimal strategy that minimizes the MRy, she
recetves:
MMRy(I) = min MRy, (x, 1) (9)
xeX

Intuitively, behavorial minimax regret ensures that the defender’s strategy min-
imizes the loss in the solution quality over the uncertainty of all possible payoff
realizations.

Ezxample 1. In the 2-target zero-sum game as shown in Table 1, each target is
associated with uncertainty intervals of the attacker’s reward and penalty. For
example, if the adversary successfully attacks Target 1, he obtains a reward
which belongs to the interval [2,3]. Otherwise, he receives a penalty which lies
within the interval [—2,0]. The attacker’s response, assumed to follow SUQR,
is defined by the parameters (wq; = —10.0,wy = 2.0,w3 = 0.2,w4 = 0.0). Then
the defender’s optimal mixed strategy generated by behavioral MMR (Eq.9)
corresponding to this SUQR model is x = {0.35,0.65}. The attacker payoff values
which give the defender the maximum regret w.r.t this behavioral MMR strategy
are (3.0,0.0) and (5.0, —10.0) at Target 1 and 2 respectively. In particular, the
defender obtains an expected utility of —0.14 for playing x against this payoff
instance. On the other hand, she would receive a utility of 2.06 if playing the
optimal strategy x’ = {0.48,0.52} against this payoff instance. As a result, the
defender gets a maximum regret of 2.20.
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5 ARROW Algorithm: Boundedly Rational Attacker

Algorithm 1 presents the outline of ARROW to solve the MMR;, problem
in Eq.9. Essentiallyy ARROW’s two novelties compared to previous work
[17] — addressing uncertainty in both players’ payoffs and a boundedly rational
attacker — lead to two new computational challenges: (1) uncertainty in defender
payoffs makes the defender’s expected utility at every target ¢ non-convex in x
and (R4, P9) (Eq.2); and (2) the SUQR model is in the form of a logit function
which is non-convex. These two non-convex functions are combined when calcu-
lating the defender’s utility (Eq.7) — which is then used in computing MMR;,
(Eq.9), making it computationally expensive. Overall, MMR;, can be reformu-
lated as minimizing the max regret r such that r is no less than the behavioral
regrets over all payoff instances within the intervals:

min 7 (10)
xeX,reR

st.r>F(x',R*P?*) - F(x,R*P?),VR*P)elx €X

In (10), the set of (non-convex) constraints is infinite since X and I are con-
tinuous. One practical approach to optimization with large constraint sets is
constraint sampling [6], coupled with constraint generation [2]. Following this
approach, ARROW samples a subset of constraints in Problem (10) and gradu-
ally expands this set by adding violated constraints to the relaxed problem until
convergence to the optimal MMRy, solution.

Specifically, ARROW begins by sampling pairs (R?,P?) of the adversary
payoffs uniformly from I. The corresponding optimal strategies for the defender
given these payoff samples, denoted x’, are then computed using the PASAQ
algorithm [28] to obtain a finite set S of sampled constraints (Line 2). These
sampled constraints are then used to solve the corresponding relazed MMR}, pro-
gram (line 4) using the R.ARROW algorithm (described in Sect. 5.1) — we call
this problem relaxzed MMR}, as it only has samples of constraints in (10). We thus
obtain the optimal solution (b, x*) which provides a lower bound (Ib) on the true
MMR},. Then constraint generation is applied to determine violated constraints

Algorithm 1. ARROW Outline

1 Initialize S = ¢, ub = 00,lb =0 ;

2 Randomly generate sample (x',R*,P?), S = SU {x, (R*,P?)};

3 while ub > [b do

4 Call R.ARROW to compute relaxed MMRy, w.r.t S. Let x* be its optimal
solution with objective value [b;

5 Call M. ARROW to compute MRy, (x*,I). Let the optimal solution be
(x"*,R>*, P®*) with objective value ub;
6 | S=SU{x’*,R™ P>}

~

return (b, x*);
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(if any). This uses the M. ARROW algorithm (described in Sect. 5.2) which com-
putes MRy, (x* I) — the optimal regret of x* which is an upper bound (ub) on the
true MMRy,. If ub > 1b, the optimal solution of M.ARROW, {'*, R®* P#*} pro-
vides the maximally violated constraint (line 5), which is added to S. Otherwise,
x* is the minimax optimal strategy and lb=ub=MMRy(I).

5.1 R.ARROW: Compute Relaxed MMR,,

The first step of ARROW is to solve the relaxed MMR} problem using
R.ARROW. This relaxed MMR}j, problem is non-convex. Thus, R.ARROW
presents two key ideas for efficiency: (1) binary search (which iteratively searches
the defender’s utility space to find the optimal solution) to remove the fractional
terms (i.e., the attacking probabilities in Eq.5) in relaxed MMRy,; and (2) it
then applies piecewise-linear approximation to linearize the non-convex terms of
the resulting decision problem at each binary search step (as explained below).
Overall, relaxed MMR}, can be represented as follows:

min _r (11)
xeX,reR

s.t.r > F(x"k, Rak pak) _F(x, R** P**) vk =1... K

where (x"¥, R&% P2k) is the k' sample in S (i.e., the payoff sample set as
described in Algorithm 1) where k = 1... K and K is the total number of samples
in S. In addition, r is the defender’s max regret for playing x against sample set
S. Finally, F(x*¥, R*¥ P2k) is the defender’s optimal utility for every sample of
attacker payoffs (R2% P2K) where x"¥ is the corresponding defender’s optimal
strategy (which can be obtained via PASAQ [28]). The term F(x, R&k Pak)
which is included in relaxed MMR}y,’s constraints, is non-convex and fractional
in x (Eq. 7), making (11) non-convex and fractional. We now detail the two key
ideas of R.ARROW.

Binary Search. In each binary search step, given a value of r, R.ARROW tries
to solve the decision problem (P1) that determines if there exists a defender
strategy x such that the defender’s regret for playing x against any payoff sample
in S is no greater than r.

(P1) : 3x s.t. > F(x"*, R®K PN _ Fx, R¥K P**) Vk=1...K?

We present the following Proposition 1 showing that (P1) can be converted into
the non-fractional optimization problem (P2) (as shown below) of which the
optimal solution is used to determine the feasibility of (P1):

(P2): min v

xeX,veER

s.bv > Zt [F(X/’k, Ra’k, Pa’k)frfU?’k(X)] eU?(X,Ra.k,pa,k)7Vk -1 K

where UM (x) = — [xtPta’k +(1- xt)Rf’k} is the defender’s expected utility at
target ¢ given x and the k** payoff sample.
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Proposition 1. Suppose that (v*,x*) is the optimal solution of (P2). If v* <0,
then x* is a feasible solution of the decision problem (P1). Otherwise, (P1) is
infeasible.

The proof of Proposition1 is in Online Appendix B. Given that the decision
problem (P1) is now converted into the optimization problem (P2), as the next
step, we attempt to solve (P2) using piecewise linear approximation.

Piecewise Linear Approximation. Although (P2) is non-fractional, its con-
straints are non-convex. We use a piecewise linear approximation for the RHS
of the constraints in (P2) which is in the form of Y, ffi(z;) where the term
fE(z4) is a non-convex function of x; (recall that x; is the defender’s coverage
probability at target t). The feasible region of the defender’s coverage x; for all
t, [0,1], is then divided into M equal segments {[0, ﬁ], [ﬁ, %] ey [MAzl , 1}}
where M is given. The values of ff(x;) are then approximated by using the seg-
ments connecting pairs of consecutive points (%, ftk(%)) and (M, 1k (—)) for
i=1...M as follows:

ft Ty) +Z O‘f Lt (12)

where at is the slope of the i*" segment which can be determined based on
the two extreme points of the segment. Also, z;; refers to the portion of the
defender’s coverage at target ¢t belonging to the zth segment, i.e., ;=) , Ty ;.

Ezample 2. When the number of segments M = 5, it means that we divide [0, 1]
into 5 segments {[O, %], [%, %], [%, g], [%, %], [%, 1]} Suppose that the defender’s
coverage at target t is x; = 0.3, since % < xp < %, we obtain the portions
of x; that belongs to each segment is z;; = %, 2o = 0.1, and @43 = 44 =
715 = 0 respectively. Then each non-linear term fF(z;) is approximated as
fE(@e) = fF(0)+ 1 | +0.1af , where the slopes of the 1°* and 2" segments are

aﬁl =5 [ftk (%) — ftk(O)] and ozf,Q =5 [ftk (%) — [k (%)] respectively.

By using the approximations of ff(z;) for all k and ¢, we can reformulate (P2)
as the MILP (P2’) which can be solved by the solver CPLEX:

(P2’): min v (13)
> k ko Vk=1...
stou>) fFO)+Y D afwVk=1...K (14)
1 ‘
Zmzt,igR,ngt?igM,Vtzl...T,z:l...M (15)
arigp Soea V=1 Ti=1...M -1 (16)
:vm-H§zt,i,Vt:1...T,i:1...M—1 (17)
i€ {0,1}Vt=1...Ti=1...M—1 (18)

where z;; is an auxiliary integer variable which ensures that the portions of z;
satisfies xy,; = ﬁ if 2; > 37 (206 = 1) or @511 = 0if 2 < 57 (25 = 0)
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(constraints (15-18)). Constraints (14) are piecewise linear approximations of
constraints in (P2). In addition, constraint (15) guarantees that the resource
allocation condition, ), z; < R, holds true and the piecewise segments 0 <
Ty < ﬁ

Finally, we provide Theorem 1 showing that R.ARROW guarantees a solution
bound on computing relaxed MMRj,. The proof of Theorem 1 is in the Online

Appendix C.

Theorem 1. R.ARROW provides an O (6 + ﬁ)—optimal solution of relazed
MMRy, where € is the tolerance of binary search and M is the number of piecewise
segments.

5.2 M.ARROW: Compute MR,

Given the optimal solution x* returned by R.ARROW, the second step of
ARROW is to compute MRy, of x* using MLARROW (line 5 in Algorithm 1).
The problem of computing MRy, can be represented as the following non-convex
maximization problem:

max F(x',R*, P?) — F(x*,R*,P?) (19)
x'eX,(Ra,P2)cl
Overall, it is difficult to apply the same techniques used in R.ARROW for
M.ARROW since it is a subtraction of two non-convex fractional functions,
F(x',R? P?) and F(x*, R® P?). Therefore, we use local search with multiple
starting points which allows us to reach different local optima.

6 ARROW-Perfect Algorithm: Perfectly Rational
Attacker

While ARROW incorporates an adversary behavioral model, it may not be
applicable for green security domains where there may be a further paucity of
data in which not only payoffs are uncertain but also parameters of the behav-
ioral model are difficult to learn accurately. Therefore, we introduce a novel
MMR-based algorithm, ARROW-Perfect, to handle uncertainty in both play-
ers’ payoffs assuming a perfectly rational attacker. In general, ARROW-Perfect
follows the same constraint sampling and constraint generation methodology as
ARROW. Yet, by leveraging the property that the attacker’s optimal response
is a pure strategy (given a perfectly rational attacker) and the game is zero-sum,
we obtain the exact optimal solutions for computing both relaxed MMR and
max regret in polynomial time (while we cannot provide such guarantees for a
boundedly rational attacker). In this case, we call the new algorithms for comput-
ing relaxed MMR and max regret: R.ARROW-Perfect and M.ARROW-Perfect
respectively.
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6.1 R.ARROW-Perfect: Compute Relaxed MMR

In zero-sum games, when the attacker is perfectly rational, the defender’s
utility for playing a strategy x w.r.t the payoff sample (R&k Pak) is
equal to F(X,Ra’k,Pa’k) = ng(x, Ra’k,Pa’k) if the attacker attacks tar-
get t. Since the adversary is perfectly rational, therefore, F(x, Ra’k,Pa’k) =
— max; U? (x,Ra’k,Pa’k), we can reformulate the relaxed MMR in (11) as the
following linear minimization problem:

min 7 (20)
xeX,reR

st.r > F(x" R¥, P*¥) 4 U (x, R**, P**) Vk=1...K,Vt=1...T (21)

where F(X' ’k,Ra’k,Pa’k) is the defender’s optimal utility against a perfectly
rational attacker w.r.t payoff sample (Ra’k, Pa’k) and x"¥ is the corresponding
optimal strategy which is the Maximin solution. In addition, constraint (21)
ensures that the regret r > F(x"*, R** P®X) 4+ max, U2 (x, R*¥, P>¥) for all
payoff samples. This linear program can be solved exactly in polynomial time
using any linear solver, e.g., CPLEX.

6.2 M.ARROW-Perfect: Compute Max Regret

Computing max regret (MR) in zero-sum games presents challenges that pre-
vious work [17] can not handle since the defender’s payoffs are uncertain while
[17] assumes these payoff values are known. In this work, we propose a new
exact algorithm, M.ARROW-Perfect, to compute MR in polynomial time by
exploiting insights of zero-sum games.

In zero-sum games with a perfectly rational adversary, Strong Stackelberg
Equilibrium is equivalent to Maximin solution [30]. Thus, given the strategy x*
returned by relaxed MMR, max regret in (19) can be reformulated as follows:

max v —F(x*,R? P?) (22)
x'eX,(Ra,P2)el,v
st v < — [z, Pf+ (1 —z})RY], Vit (23)

where v is the Maximin/SSE utility for the defender against the attacker payoff
(R®,P?). Moreover, the defender’s utility for playing x* can be computed as
F(x*,R?,P?) = — [:E;fP]‘.‘ +(1- xj)R?] if the adversary attacks target j. Thus,
we divide the attacker payoff space into T subspaces such that within the j**
subspace, the adversary always attacks target j against the defender strategy x*,
for all j =1...T. By solving these T sub-max regret problems corresponding to
this division, our final global optimal solution of max regret will be the maximum
of all T' sub-optimal solutions.

Next, we will explain how to solve these sub-max regret problems. Given the

4t attacker payoff sub-space, we obtain the j** sub-max regret problem as:

o o, G 0= @
stov < =[x, PP+ (1 — a})RY],Vt (25)

v PP+ (1 —2f) R > oy P + (1 — x )R, Vt (26)
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where constraints (26) ensures that the adversary attacks target j against the
defender strategy x*. Here, constraints (25) are non-convex for all targets. We
provide the following proposition which allows us to linearize constraints (25)
for all targets but j.

Proposition 2. Given target j, the lower bounds of the attacker’s payoffs at all
targets except j, {R% .. (1), P%..(t )}#j, are optimal solutions of{R P“}t# for

min

the j*" sub-maz regret problem.

The proof of Proposition 2 is in Online Appendix D. Now, only constraint (25)
w.r.t target j remains non-convex for which we provide further steps to simplify
it. Given the defender strategy x’, we define the attack set as including all targets
with the attacker’s highest expected utility: I'(x’) = {t : U?(x/,R?,P?) =
maxy Ud (x/,R?,P?)}. We provide the following observations based on which
we can determine the optimal value of the attacker’s reward at target j, R}, for
the sub-max regret problem (24-26) (according to the Proposition 3 below):

Observation 1. If x' is the optimal solution of computing the j* sub-maz
regret in (24-26), target j belongs to the attack set I'(x').

Since x’ is the Maximin or SSE solution w.r.t attacker payoffs (R?,P?), the
corresponding attack set I'(x’) has the maximal size [11]. In other words, if a
target ¢ belongs to the attack set of any defender strategy w.r.t (R?,P?), then
t € I'(x"). In (24-26), because target j belongs to the attack set I'(x*), we obtain
je ).

Observation 2. If x' is the optimal solution of computing the j* sub-maz
regret in (24-26), the defender’s coverage at target j: x; > 7.

Since j € I'(x’) according to Observation 1, the defender utility for playing x’
is equal to v = —[z}P{ + (1 — 2}) R{]. Furthermore, the max regret in (24) is
always not less than zero, meaning that v > — [a:;ija +(1- .Z‘;)R?] Thus, we
obtain 1:; >z}

Proposition 3. Given target j, the upper bound of the attacker’s reward at j,
R ..(3), is an optimal solution of the attacker reward RS for the Gt sub-max

max
regret problem.

Proof. Suppose that Rf < Ry, .. (j) is optimal in (24-26) and x’ is the corre-

sponding defender optimal strategy, then v = [x’ P+ (1 —aj )R“] accord-
ing to the Observationl. We then replace R Wlth Rﬂnax(j) Whlle other
rewards/penalties and x’ remain the same. Since R} < R ,.(j), this new

solution is also feasible for (24-26) and target j still belongs to I'(x’). There-
fore, the corresponding utility of the defender for playing x’ will be equal to
- [a:;Pa (1—2a%) Ry, .. (J j)]. Since R} < R},..(j) and 2; > 27 (Observation 2),

max max

the following 1nequahty holds true:
- [x;—P;—l (1 -y )Ramaa:( )} + [(m}kpa (1 —Z; )Rﬁiax( )] (27)
= —[25 PP+ (L= RY] + (25 B + (1=af) Rf] + [2 — 7] [Rfaw () — B]] (28)
=[5 P+ (=) RS ] + (2 P + (1 =) R7] - (29)



184 T.H. Nguyen et al.

This inequality indicates that the defender’s regret w.r.t R%, .. () (the LHS of the
inequality) is no less than w.r.t 2 (the RHS of the inequality). Therefore, Ry, (1)
is an optimal solution of the attacker’s reward at target j for (24-26). ]

Based on the Proposition 2 & 3 and the Observation 1, the j** sub-max regret
(24-26) is simplified to the following optimization problem:

U P+ () R, () (30)
st.v=— [:L'/-Pl-l (1 - ) mafc(])] (31)
v < = [@ P () + (1= 2) Ry (D], VE# (32)
C—(1—a})R%q.(J
Phaali) 2 P > max{P;m< j), S Ei reeld )} (3)
J
where C' = maxy»j 27 P, (t) + (1 — x7)R%,;,,(t) is a constant. In addition, con-

straints (31-32) refer to constraint (25) (where constraint (31) is a result of
Observation 1) and constraints (33) is equivalent to constraint (26). The only
remaining non-convex term is xP;' in constraint (31). We then alleviate the
computational cost incurred based on Theorem 2 which shows that if the attack
set I'(x’) is known beforehand, we can convert (30-33) into a simple optimization
problem which is straightforward to solve.

Theorem 2. Given the attack set I'(x'), the j*" sub-maz regret problem (30
33) can be represented as the following optimization problem on the variable v
only:

b
max v + c:)}—lJ—rd (34)
s.t. v € [ly, Uy (35)

where v is the defender utility for playing x' in (30-33).

The proof of Theorem 2 is in Online Appendix E. The constants (a, b, ¢, d, I, uy)
are determined based on the attack set I'(x’), the attacker’s payoffs
(R (), P (D)}, and RY, .. (j), and the number of the defender resources
R. Here, the total number of possible attack sets I'(x’) is maximally T sets
according to the property that RY > R¢ for all ¢t € I'(x') and ¢/ ¢ I'(x)
[11]. Therefore, we can iterate over all these possible attack sets and solve the
corresponding optimization problems in (34-35). The optimal solution of each
sub-max regret problem (30-33) will be the maximum over optimal solutions of
(34-35). The final optimal solution of the max regret problem (22) will be the
maximum over optimal solutions of all these sub-max regret problems.

In summary, we provide the M.ARROW-Perfect algorithm to exactly com-
pute max regret of playing the strategy x* against a perfectly rational attacker
in zero-sum games by exploiting the insight of extreme points of the uncertainty
intervals as well as attack sets. Furthermore, we provide Theorem 3 (its proof is
in the Online Appendix F) showing that the computational complexity of solving
max regret is polynomial.
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Algorithm 2. Elicitation process

Input: budget: B, regret barrier: §, uncertainty intervals: I;
Initialize regret r = 400, cost ¢ =0 ;
while ¢ < B and r > 6 do

(r,x*, (x"*,R*»*,P®*)) = ARROW(I);

P = calculatePath(x*, (x"*, R®* , P**));

I = collectInformationUAV(P); ¢ = updateCost(P);

N 0 s W N

return (r,x*);

Theorem 3. M.ARROW-Perfect provides an optimal solution for computing
mazx regret against a perfectly rational attacker in O(T3) time.

7 UAV Planning for Payoff Elicitation (PE)

Our final contribution is to provide PE heuristics to select the best UAV path to
reduce uncertainty in payoffs, given any adversary behavioral model. Despite the
limited availability of mobile sensors in conservation areas (many of them being
in developing countries), these UAVs may still be used to collect accurate imagery
of these areas periodically, e.g., every six months to reduce payoff uncertainty.
Since the UAV availability is limited, it is important to determine the best UAV
paths such that reducing payoff uncertainty at targets on these paths could help
reducing the defender’s regret the most. While a UAV visits multiple targets to
collect data, planning an optimal path (which considers all possible outcomes
of reducing uncertainty) is computationally expensive. Thus, we introduce the
current solution-based algorithm which evaluates a UAV path based solely on
the MMRy, solution given current intervals.®

We first present a general elicitation process for UAV planning (Algorithm 2).
The input includes the defender’s initial budget B (e.g., limited time availability
of UAVs), the regret barrier § which indicates how much regret (utility loss) the
defender is willing to sacrifice, and the uncertainty intervals I. The elicitation
process consists of multiple rounds of flying a UAV and stops when the UAV
cost exceeds B or the defender’s regret is less than §. At each round, ARROW
is applied to compute the optimal MMRy, solution given current I; ARROW
then outputs the regret r, the optimal strategy x*, and the corresponding most
unfavorable strategy and payoffs (x"*, R®* P®*) which provide the defender’s
max regret (line 4). Then the best UAV path is selected based on these outputs
(line 5). Finally, the defender controls the UAV to collect data at targets on that
path to obtain new intervals and then updates the UAV flying cost (line 6).

The key aspects of Algorithm 2 are in lines 4 and 5 where the MMRy, solution
is computed by ARROW and the current solution heuristic is used to determine
the best UAV path. In this heuristic, the preference value of a target t, denoted

5 A similar idea was introduced in [2] although in a very different domain without
UAV paths.
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pr(t), is measured as the distance in the defender utility between x* and the
most unfavorable strategy x"* against attacker payoffs (R** P®*) at that tar-
get, which can be computed as follows: pr(t) =q,(x* R P2 Ud(x* R4 P9)—
as (x"* R2* P2 Ud (x"* RY P9) where RY = —P2* and P9 =—R* Intuitively,
targets with higher preference values play a more important role in reducing the
defender’s regret. We use the sum of preference values of targets to determine
the best UAV path based on the two heuristics: Greedy heuristic: The cho-
sen path consists of targets which are iteratively selected with the maximum pr
value and then the best neighboring target. MCINF Heuristic: We represent
this problem as a Min Cost Network Flow (MCNF) where the cost of choos-
ing a target t is —pr(¢). For example, there is a grid of four cells (1,2, t3,%4)
(Fig. 2(a)) where each cell is associated with its preference value, namely (pr(1),
pr(2),pr(3),pr(4)). Suppose that a UAV covers a path of two cells every time it
flies and its entry locations (where the UAV takes off or land) can be at any cell.
The MCNF for UAV planning is shown in Fig. 2(b) which has two layers where
each cell ¢; has four copies (¢}, 2 3 t}) with edge costs c(t}, t2) =c(t3,t})=—pr(i).
The connectivity between these two layers corresponds to the grid connectivity.
There are Source and Sink nodes which determine the UAV entry locations. The
edge costs between the layers and between the Source or Sink to the layers are
set to zero.

t t,
G|t
(a) Grid

Fig. 2. Min cost network flow

8 Experimental Results

We use CPLEX for our algorithms and Fmincon of MATLAB on a 2.3 GHz/4
GB RAM machine. Key comparison results are statistically significant under
bootstrap-t (a = 0.05 ) [25]. More results are in the Online Appendix G.

8.1 Synthetic Data

We first conduct experiments using synthetic data to simulate a wildlife protec-
tion area. The area is divided into a grid where each cell is a target, and we
create different payoff structures for these cells. Each data point in our results
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is averaged over 40 payoff structures randomly generated by GAMUT [19]. The
attacker reward /defender penalty refers to the animal density while the attacker
penalty/defender reward refers to, for example, the amount of snares that are
confiscated by the defender [27]. Here, the defender’s regret indicates the animal
loss and thus can be used as a measure for the defender’s patrolling effectiveness.
Upper and lower bounds for payoff intervals are generated randomly from [—14,
—1] for penalties and [1, 14] for rewards with an interval size of 4.0.

Solution Quality of ARROW. The results are shown in Fig.3 where the
x-axis is the grid size (number of targets) and the y-axis is the defender’s
max regret. First, we demonstrate the importance of handling the attacker’s
bounded rationality in ARROW by comparing solution quality (in terms of the
defender’s regret) of ARROW with ARROW-Perfect and Maximin. Figure 3(a)
shows that the defender’s regret significantly increases when playing ARROW-
Perfect and Maximin strategies compared to playing ARROW strategies, which
demonstrates the importance of behavioral MMR.

Second, we examine how ARROW’s parameters influence the MMR}, solu-
tion quality; which we show later affects its runtime-solution quality tradeoff.
We examine if the defender’s regret significantly increases if (i) the number
of starting points in M.LARROW decreases (i.e., ARROW with 20 (ARROW-
20), 5 (ARROW-5) and 1 (ARROW-1) starting points for M.ARROW and 40
iterations to iteratively add 40 payoff samples into the set S), or (ii) when
ARROW only uses RARROW (without M.LARROW) to solve relaxed MMRj,
(i.e., RARROW with 50 (R.ARROW-50) and 100 (R.ARROW-100) uniformly
random payoff samples). Figure 3(b) shows that the number of starting points in
M.ARROW does not have a significant impact on solution quality. In particular,
ARROW-1’s solution quality is approximately the same as ARROW-20 after 40
iterations. This result shows that the shortcoming of local search in M.ARROW
(where solution quality depends on the number of starting points) is compen-
sated by a sufficient number (e.g., 40) of iterations in ARROW. Furthermore, as
R.ARROW-50 and R.ARROW-100 only solve relaxed MMRy,, they both lead to
much higher regret. Thus, it is important to include M.ARROW in ARROW.

WARROW MARROW-Perfect OIMaximin ® ARROW-20 ARROW-5
O ARROW-1 R.ARROW-50

1
12 7 | BR.ARROW-100 .
6 \N%| N
10 =5 V N
g o \
6 23 N
= N
4 2 N
> 1 N
0 N%Z
0 i i
5x6 5x8 5x10
Sx4 5XG#Targetssx8 5x10 X #Targets ) X
(a) ARROW regret (b) Influence of parameters

Fig. 3. Solution quality of ARROW
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o N = [«)] [o]

5x8 5x10 0

5x4 X 1 2 3 4
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(a) Runtime vs #Targets (b) Runtime vs Regret

Fig. 4. Runtime performance of ARROW

Runtime Performance of ARROW. Figure4(a) shows the runtime of
ARROW with different parameter settings. In all settings, ARROW’s run-
time linearly increases in the number of targets. Further, Fig.3(a) shows that
ARROW-1 obtains approximately the same solution quality as ARROW-20
while running significantly faster (Fig. 4(a)). This result shows that one starting
point of M. ARROW might be adequate for solving MMR}, in considering the
trade-off between runtime performance and solution quality. Figure 4(b) plots the
trade-off between runtime and the defender’s regret in 40 iterations of ARROW-
20 for 2040 targets which shows a useful anytime profile.

Runtime Performance of ARROW-
Perfect. Figure 5 shows the runtime BARROW-Perfect &ARROW Nonlinear
performance of ARROW-Perfect com-
pared to ARROW and a non-linear
solver (i.e., fmincon of Matlab) to
compute MMR of the perfectly ratio-
nal attacker case. While the run-
time of both ARROW and non-linear
solver increase quickly w.r.t the num- 25 50 100 200 400 800
. #Targets
ber of targets (e.g., it takes them
approximately 20 min to solve a 200-
target game on average), ARROW-
Perfect’s runtime slightly increases
and reaches 53 s to solve a 800-target game on average. This result shows that
ARROW-Perfect is scalable for large security games.

= =
wn o [

Runtime (hundred secs)

o

Fig. 5. Runtime performance of ARROW-
Perfect

Payoff Elicitation. We evaluate our PE strategies using synthetic data of 5 x 5-
target (target = 2 x 2 km cell) games. The UAV path length is 3 cells and the
budget for flying a UAV is set to 5 rounds of flying. We assume the uncertainty
interval is reduced by half after each round. Our purpose is to examine how
the defender’s regret is reduced over different rounds. The empirical results are
shown in Fig. 6 where the x-axis is the number of rounds and the y-axis is the
regret obtained after each round (Fig.6(a)) or the accumulative runtime of the



Making the Most of Our Regrets: Regret-Based Solutions 189
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Fig. 6. UAV planning: uncertainty reduction over rounds
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Fig. 7. Real world max regret comparison

elicitation process over rounds (Fig. 6(b)). We compare three heuristics: (1) ran-
domly choosing a path (Random) (2) Greedy, and (3) MCNF. Figure 6 shows
that the defender’s regret is reduced significantly by using Greedy and MCNF
in comparison with Random. As mentioned, the difference are statistically sig-
nificant (o = 0.05). Also, both Greedy and MCNF run as quickly as Random.

8.2 Real-World Data

Lastly, we use our wildlife dataset from Uganda (Sect. 3) to analyze the effective-
ness of past patrols conducted by rangers (in the wildlife park) compared with
the patrol strategies generated by ARROW. We choose multiple subsets of 50
grid cells each, randomly sampled from the 2423 grid cells for our analysis. Before
these wildlife areas were patrolled, there was uncertainty in the features values
in those areas. We simulate these conditions faced by real world patrollers by
introducing uncertainty intervals in the real-world payoffs. In our experiments,
we impose uncertainty intervals on the animal density for each target, though
two cases: a small and a large interval of sizes 5 and 10 respectively. Figure 7(a)
and (b) show the comparison of the max regret achieved by ARROW and real
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world patrols for 10 such subsets, under the above mentioned cases of payoff
uncertainty intervals. The x-axis refers to 10 different random subsets and the
y-axis is the corresponding max regret. These figures clearly show that ARROW
generates patrols with significantly less regret as compared to real-world patrols.

9 Summary

Whereas previous work in GSGs had assumed that there was an abundance of
data in these domains, such data is not always available. To address such sit-
uations, we provide four main contributions: (1) for the first time, we compare
key behavioral models, e.g., SUQR/QR on real-world data and show SUQR’s
usefulness in predicting adversary decisions; (2) we propose a novel algorithm,
ARROW, to solve the MMR}, problem addressing both the attacker’s bounded
rationality and payoff uncertainty (when there is sufficient data to learn adver-
sary behavioral models); (3) we present a new scalable MMR-based algorithm,
ARROW-Perfect, to address payoff uncertainty against a perfectly rational
attacker (when learning behavioral models is infeasible), and (4) we introduce
new PE strategies for mobile sensors, e.g., UAV to reduce payoff uncertainty.
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Abstract. We propose, to the best of our knowledge, the first Security
Game where a Defender is supported by a spatially uncertain alarm sys-
tem which non—deterministically generates signals once a target is under
attack. Spatial uncertainty is common when securing large environments,
e.g., for wildlife protection. We show that finding the equilibrium for this
game is FANP-hard even in the zero—sum case and we provide both an
exact algorithm and a heuristic algorithm to deal with it. Without false
positives and missed detections, the best patrolling strategy reduces to
stay in a place, wait for a signal, and respond to it at best. This strategy
is optimal even with non—negligible missed detection rates.

1 Introduction

Security Games model the task of protecting physical environments as a non—
cooperative game between a Defender and an Attacker [12]. Usually taking place
under a Stackelberg (a.k.a. leader—follower) paradigm [18], they have been shown
to outperform other approaches such as, e.g., MDPs [16] and they have been
employed in a number of on-the—field systems [9,13]. Recent research lines aim
at refining the models by incorporating features from real-world applications,
e.g., in [1,20] the Attacker may have different observation models and limited
planning capabilities, in [6] realistic aspects of infrastructures to be protected
are taken into account. Patrolling is one of the recently studied applications
where the Defender controls mobile resources (such as patrolling robots) and
the Attacker aims at compromising some locations denoted as targets [2]. Equi-
librium strategies prescribe how the Defender should schedule resources in time
to maximize its expected utility.

Infrastructures and environments that need to be surveilled are usually char-
acterized by the presence of locally installed sensory systems. Detection sensors
are able to gather measurements about suspicious events that an alarm sys-
tem can process to generate alarm signals. These physical devices often present
some degree of inaccuracy, such as false positives rates or missed detections
rates. Alarm signals are spatially uncertain, meaning that they do not precisely
localize the detected event, but provide a probabilistic belief over the locations
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potentially under attack. Spatial uncertainty is common when dealing with com-
plex infrastructures or large open environments, where a broad area surveillance
activity, in which an attack is detected but only approximately localized, triggers
a local investigation activity, where guards have to find and clear the attack. A
similar approach is adopted in a number of real-world problems where cheap and
spatially uncertain sensors cover the targets to be protected. In [10], the prob-
lem of poaching of endangered species is studied and a device to help rangers
against this threat is proposed. The introduction of cheap wide-range sensors,
affordable by the conservation agencies, could significantly improve the behavior
of the rangers, giving them information about the areas in which a potential
attack is occurring. Other applications include UAVs surveillance [4], wildfires
detection with CCD cameras [14] and monitoring agricultural fields [11]. In [21]
a system for surveillance based on wireless sensor networks is proposed.

To the best of our knowledge, [8] is the only work integrating sensors in
Security Games. It assumes sensors with no spatial uncertainty in detecting
attacks on single targets. When no false positives are possible, an easy variation
of the algorithm for the case without sensors [2] can be used, while, when false
positives are present, the problem is computationally intractable.

Contributions. In this paper, we propose the first Security Game model that
integrates a spatially uncertain alarm system in game—theoretic settings for
patrolling. Each alarm signal carries the information about the set of targets that
can be under attack and is described by a probability of being generated when
each target is attacked. Moreover, the Defender can control only one patroller.
We show that finding the equilibrium is FAP-hard even in the zero—sum case
and we give an exact exponential-time algorithm and a heuristic algorithm to
deal with it. When no false positives and no missed detections are present, the
optimal Defender strategy is to stay in a fixed location, wait for a signal, and
respond to it at best. This strategy keeps being optimal even when non—negligible
missed detection rates are allowed. Finally, we experimentally evaluate the scal-
ability of our exact algorithm and we compare it with respect to the heuristic
one in terms of solution quality.

2 Problem Formulation

Basic patrolling security game models [2,19] are turn-based extensive—form
games with infinite horizon and imperfect information between two agents: an
Attacker A and a Defender D. The environment to be patrolled is formally
described by an undirected connected graph G = (V| E). Each edge (i,j) € E
requires one turn to be traversed, while we denote with w; ; the temporal cost (in
turns) of the shortest path between any i and j € V. We denote by T' C V the
subset of vertices called targets that have some value for D and A. Each target
t € T is characterized by a value w(t) € (0,1] and a penetration time d(t) € N
measuring the number of turns needed to complete an attack over t. At each
turn of the game, agents A and D play simultaneously: if A has not attacked
in the previous turns, it can observe the position of D in the graph and decides
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whether to attack a target! or to wait for a turn, while D has no information
about the actions undertaken by A in previous turns and decides the next vertex
to patrol among all those adjacent to the current one. If D patrols a target ¢
that is under attack of A before d(t), A is captured. The game is constant sum
(then equivalent to a zero sum game): if A is captured, D receives a utility of 1
and A receives 0, while, if an attack over ¢ has success, D receives 1 — 7 (t) and
A receives m(t); finally, if A waits forever, D receives 1 and A receives 0. The
appropriate solution concept is the leader—follower equilibrium. The game being
constant sum, the best leader’s strategy is its maxmin/minmax strategy.

Our Patrolling Game (PG) extends the above model introducing a spatial
uncertain alarm system available to D. The system is defined as a tuple (5, p)
where S = {s1,-++ ,8m} is aset of m > 1 signalsand p : S x T — [0,1] is a
function that specifies the probability of having the system generating a signal
s given that target t has been attacked. With a slight abuse of notation, for a
signal s we define T'(s) = {t € T | p(s | t) > 0} and, similarly, for a target ¢ we
have S(t) = {s € S | p(s | t) > 0}. In this work, we initially assume that the
alarm system is not affected by false positives, i.e. a signal is generated but no
attack has occurred, or missed detections, i.e. the signal is not generated even
though an attack has occurred. In our model, at each turn, before deciding its
next move, agent D can observe whether or not a signal has been generated by
the alarm system.

We observe that, since no false positive and no missed detection are present,
D will always receive a signal as soon as A starts an attack. This allows us to
identify, in our game model, a number of subgames, each in which D is in a
given vertex v and an attack is started. The solution to our PG can be safely
found by, at first, finding the best strategies of D in responding to a signal from
any v € V and, subsequently, on the basis of such signal-response strategies, by
finding the best patrolling strategy over G. In Sect. 3 , we present algorithms to
find the best signal-response strategies, while, in Sect. 4, we focus on the best
patrolling strategies.

3 Finding the Best Signal-Response Strategy

We study the subgame in which D is in a vertex v and A decides to attack. We
call it Signal-Response Game given v (SRG—v). The actions available to A are
given by T and its strategy o;* is defined as a probability distribution over 7. We
denote with 05 , the generic strategy of D when it is at v and receives a signal
s and we discuss below the problem of defining the space of actions available
to D. We denote with g, the expected utility of A, the expected utility of D is
1 — g,. We show that, independently of how we define the space of actions of D,
the problem of finding the best 0 = (o7,,,..., 00, ) is FN'P-hard [5]. We do
this by assessing the complexity of its decision version.

! As is customary, we assume that A can instantly reach the target of its attack. This
assumption can be easily relaxed as shown in [3].
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Definition 1. k-SRG-v
INSTANCE: an instance of SRG—v as defined above;
QUESTION: is there oP such that g, < k?

Theorem 1. k-SRG—v is N'P-hard.

Proof. Let us consider the following reduction from HAMILTONIAN-PATH.
Given an instance of HAMILTONIAN-PATH Gy = (Vg,Eg), we build an
instance for k-SRG—v as:

- V:VHU{U};

- E=FEyU{(v,h),Yh € Vg};
- T =Vy;

= d(t) = |Vul;

— m(t) =1, for all t € T}
- S ={sh

- p(s|t)=1, forallteT,;
- k=0.

If g5 < 0, then there must exist a path starting from v and visiting all the targets
in T by d = |Vy|. Given the edge costs and penetration times assigned in the
above construction, the path must visit each target exactly once. Therefore, since
T = Vpy, the game’s value is less or equal than zero if and only if G admits an
Hamiltonian path. This concludes the proof. ([l

Given that an SRG—v is a subgame of the PG, it follows that finding the best
strategy of D in PG is FNP-hard. Since computing maxmin/minmax strategies
can be done in polynomial time in the size of the payoffs matrix by means of
linear programming, the difficulty of SRG-v resides in the generation of the
payoffs matrix whose size is in the worst case exponential in the size of the
graph (unless P = N'P).

Now we focus on the problem of defining the set of actions available to D
when it is in v and receives signal s. We define a generic route r as a sequence of
vertices visited by D. We denote with r(7) the i—th vertex visited along r and with
A (r(@)) = 2;10 Wy ) r(ne1y the time needed by D to visit r(i) starting from
r(0). We restrict our attention on a subset of routes, that we call covering routes,
with the following properties: 7(0) = v (i.e., the starting vertex is v), Vi > 1 it
holds r(i) € T(s), where s is the signal generated by the alarm system (i.e.,
only targets potentially under attack are visited) and Vi > 1 it holds A, (r(7)) <
d(r(i)) (i-e., all the targets are visited within their penetration times) with D
moving on the shortest paths between each pair of targets. Notice that a covering
route r may visit a strict subset of T'(s). The set of actions available to D is
given by all the covering routes. Given a covering route r, with a slight abuse
of notation, we define the covering set T(r) as the set of targets visited along
r and we denote with ¢(r) the temporal cost of the corresponding path, that is
c(r) = A.(r(|T(r)])). Notice that in the worst case the number of covering routes
is O(|T(s)|T(*)!), but using all of them may be unnecessary since some covering
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routes will never be played by D due to strategy domination and therefore they
can be safely discarded [15]. We introduce two definitions of dominance that we
use below.

Definition 2 (Intra—Set Dominance). Given two different covering routes
r,r’ for (v, s) such that T'(r) = T(r'), if ¢(r) < ¢(r’) then r dominates r’.

Definition 3 (Inter—Set Dominance). Given two different covering routes
ryr’ for (v,s), if T(r) D T(r') then r dominates r’.

Definition 2 suggests that we can safely use only one route per covering set.
Covering sets suffice for computing the payoffs matrix of the game and in
the worst case are O(2!7()]), with a remarkable reduction of the search space
w.r.t. O(|T(s)[IT)]). However, any algorithm working directly with covering sets
instead of covering routes should also decide whether or not a set of targets is a
covering one: this problem is hard.

Definition 4. COV-SET

INSTANCE: a graph G = (V, E), a target set T with penetration times d, and a
starting vertex v;

QUESTION: is T a covering set for some covering route r?

By trivially adapting the same reduction for Theorem 1 we can state the
following theorem.

Theorem 2. COV-SET is N'P-complete.

Computing a covering route for a given set of targets (or deciding that no cover-
ing route exists) is not doable in polynomial time unless P # NP. In addition,
Theorem 2 suggests that no algorithm for COV-SET can have complexity better
than O(2/7®)!) unless there is a better algorithm for HAMILTONIAN-PATH
than the best algorithm known in the literature. This seems to suggest that
enumerating all the possible subsets of targets and, for each of them, checking
whether or not it is covering requires a complexity worse than O(2|T(S)‘). Sur-
prisingly, we show in the next section that there is an algorithm with complexity
O(21T™)) (neglecting polynomial terms) to enumerate all and only the cover-
ing sets and, for each of them, one covering route. Therefore, the complexity of
our algorithm matches (neglecting polynomial terms) the complexity of the best
known algorithm for HAMILTONTAN-PATH.

Definition 3 suggests that we can reduce further the set of actions available
to D. Given a covering set @ (where @ = T'(r) for some r), we say that @ is
mazximal if there is no route r’ such that @ C T(r’). In the best case, when
there is a route covering all the targets, the number of maximal covering sets
is 1, while the number of covering sets is 2/7()! thus considering only maximal
covering sets allows an exponential reduction of the payoffs matrix. In the worst
case, when all the possible subsets of |T'(s)|/2 targets are maximal covering
sets, the number of maximal covering sets is O(2/7(9)I=2) while the number of
covering sets is O(2/7()I=1) allowing a reduction of the payoffs matrix by a
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factor of 2. Furthermore, if we knew a priori that @ is a maximal covering set
we could avoid to search for covering routes for any set of targets that strictly
contains ). When designing an algorithm to solve this problem, Definition 3
could then be exploited to introduce some kind of pruning technique for saving
average compute time. However, the following result shows that deciding whether
a covering set is maximal is hard.

Definition 5. MAX-COV-SET

INSTANCE: a graph G = (V, E), a target set (T,d), a starting vertez v, and a
covering set T' C T}

QUESTION: is T" mazximal?

Theorem 3. MAX-COV-SET is in co-NP and no polynomial time for it exists
unless P = N'P.

Proof. Any covering route r such that T'(r) D T" is a NO certificate for MAX—
COV-SET, placing it in co-NP. (Notice that, due to Theorem 2, having a cover-
ing set would not suffice given that we cannot verify in polynomial time whether
it is actually covering unless P = N'P.)

Let us suppose we have a polynomial-time algorithm for MAX-COV-SET,
called A. Then (since P € NP N co-NP) we have a polynomial algorithm for
the complement problem, i.e., deciding whether all the covering routes for 7’
are dominated. Let us consider the following algorithm: given an instance for
COV-SET specified by graph G = (V, E), a set of target T' with penetration
times d, and a starting vertex v:

1. assign to targets in T a lexicographic order #1, %2, ..., |7;

2. for every t € T, verify if {t} is a covering set in O(n) time by comparing Wy t
and d(t); if at least one is not a covering set, then output NO and terminate;
otherwise set T'= {t1} and k = 2;

3. apply algorithm A on the following instance: graph G = (V, E), target set
{TU{ty},d} (where d is d restricted to T'U{t;}), start vertex v, and covering
set T;

4. if A’s output is YES (that is, 7' is not maximal) then set 7' = T U {t3},
k = k + 1 and restart from step 3; if A’s output is NO and k& = |T| then
output YES; if A’s output is NO and k < |T'| then output NO;

Thus, the existence of A would imply the existence of a polynomial algorithm for
COV-SET which (under P # N'P) would contradict Theorem 2. This concludes
the proof. (I

Nevertheless, we show in the following section that there is an algorithm enu-
merating all and only the maximal covering sets and one route for each of them
(which potentially leads to an exponential reduction of the time needed for solv-
ing the linear program) with only an additional polynomial cost w.r.t. the enu-
meration of all the covering sets and therefore, neglecting polynomial terms, has
a complexity O(2!T()]).
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3.1 Computing D’s actions

Here we provide an algorithm to find the set of actions available to D when
it is in v and receives signal s. Let us denote C’kt a collection of covering sets

k S such that Q has cardinality & and admits a covering route r whose
starting vertex is v and whose last vertex is ¢. Each ij’t is associated with a
cost c(QF +) representing the temporal cost of the shortest covering route for
Qv,t that speciﬁes t as the k—th target to visit. Upon this basic structure, our
algorithm iteratively computes covering sets collections and costs for increasing
cardinalities, that is from k = 1 possibly up to k = |T| including one target
at each iteration. Using a dynamic programming approach, we assume to have
solved up to cardinality & — 1 and we specify how to complete the task for
cardinality k. Detailed steps are reported in Algorithm 1, while in the following
we provide an intuitive description. Given QU ., we can compute a set of targets
Q7 (Line 6) such that for each target teQt, t' ¢ Q’Z;l and, if ¢’ is appended to
the shortest covering route for it will be visited before d(¢'). If Q% is not
empty, for each t € Q*, we extend Q*7' (Line 8) by including it and naming the
resulting covering set as Q¥ v since it has cardinality k and we know it admits a
covering route with last vertex ¢. Such route 15 obtainable by appending ¢’ to the
covering route for Qk_ and has cost c(Q ) + wi . This value is assumed to

vt7

v,t
be the cost of the extended covering set. (In Line 9 we make use of a procedure
Search(Q,C) which outputs @ if @ € C and @ otherwise). If such extended
covering set is not present in collection C 4 Or is already present with a higher
cost (Line 10), then collection and cost are updated (Lines 11 and 12). After
the iteration for cardinality k is completed, for each covering set ) in collection
Cffﬁt, ¢(Q) represents the temporal cost of the shortest covering route with ¢ as

last target.

Algorithm 1. ComputeCovSets_Basic(v, s)
LVt € T(s),k €{2,...,|T(s)[}, CL, = {t}, C¥, =0
2: Vt € T(s), c({t}) = w} ,, c(B) = o0

3: for all k € {2...|T(s)|} do

4: for all t € T(s) do

5: for all QX3! € CF' do

6: QY ={' e T()\ Q' 1 (@) +wi < d(t)}
7: for all t' € QJr do

8: f, = + U {t }

9: = Search(Qﬂ o f,,)

10: if ¢(U) > c(Q") + wj s then
11: ch=05,u{Ql )

12: e(QF ) =) + Wy
13: end if

14: end for

15: end for

16: end for

17: end for
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After Algorithm 1 completed its execution, for any arbitrary 77 C T we can
easily obtain the temporal cost of its shortest covering route as

(T = leﬁ%riw e(Q)

where Y|p/| = UteT{Search(T’,Cﬁl‘)} (notice that if 77 is not a covering set
then ¢*(T") = oo). Algorithm 1 is dubbed “basic” because it does not specify
how to carry out two sub—tasks we describe in the following.

The first one is the annotation of dominated covering sets. Each time Lines
11 and 12 are executed, a covering set is added to some collection. Let us call
it @ and assume it has cardinality k. Each time a new @ has to be included
at cardinality k£, we mark all the covering sets at cardinality k& — 1 that are
dominated by @ (as per Definition 3). The sets that can be dominated are in
the worst case |@)|, each of them has to be searched in collection Cff;l for each
feasible terminal ¢ and, if found, marked as dominated. The number of terminal
targets and the cardinality of @) are at most n and the Search procedure can
be efficiently executed in O(|T(s)|) using a binary tree approach. Therefore,
dominated covering sets can be annotated with a O(|T(s)|*) extra cost at each
iteration of Algorithm 1. We can only mark and not delete dominated covering
sets since they can generate non-dominated ones.

The second task is the generation of routes. Algorithm 1 focuses on covering
sets and does not maintain a list of corresponding routes. In fact, to build the
payoffs matrix for SRG—v we do not strictly need covering routes since covering
sets would suffice to determine payoffs. However, we do need them operatively
since D should know in which order targets have to be covered to physically play
an action. This task can be accomplished by maintaining an additional list of
routes where each route is obtained by appending terminal vertex ¢’ to the route
stored for Qf;l when set 5;1 U {t'} is included in its corresponding collection.
At the end of the algorithm only routes that correspond to non-dominated
covering sets are filtered out. Maintaining such a list introduces a O(1) cost.

Algorithm 1, in the worst case, has to compute covering sets up to cardinality
|T'(s)|. The number of operations is then bounded by Zg(ls)l (TE‘?‘)Z(\T(SM -1)
which is O(|T'(s)|*217()]). With annotations of dominances and routes generation
the whole algorithm yields a worst case complexity of O(|T(s)[?217()).

3.2 A Heuristic Algorithm

We know that no polynomial-time algorithm solves exactly the COV-SET prob-
lem (unless NP = P) and therefore any exact algorithm of our problem cannot
scale to tackle large settings. In this section, we focus on the design of a heuristic
algorithm that can be used for very large instances of patrolling games with spa-
tially uncertain alarms. We note that even if we had a polynomial-time approx-
imation algorithm for COV-SET we would need to call the algorithm O(2!7(=)I)
times, one per set of targets, and therefore we would not have a polynomial-time
approximation algorithm for our problem. This is why we do not focus on the
design of approximation algorithms for COV-SET.
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Our heuristic algorithm works as follows. Given v and s, for each target
t € T(s) such that wy , < d(t) we generate a covering route r with r(0) = v and
r(1) = t. Thus, D has at least one covering route per target (that can be covered
in time from v). Each route r is expanded by inserting a target ' & T'(s) \ T'(r)
after position p and shifting each target that was at position ¢ > p in r at position
i + 1. The pair (t/,p) that determines the next expansion is chosen as the pair
maximizing a heuristic function h,.(¢',p) among all the pairs leading to covering
routes (i.e., insertions that make A, (") > d(t") for some ¢ are excluded). Route
r is repeatedly expanded in greedy fashion until no insertion is possible. As a
result, our algorithm generates at most |T'(s)| covering routes.

The heuristic function is defined as h, : {T'(s) \ T'(r)} x {1...|T(r)|} — Z,
where h,.(t',p) evaluates the cost of expanding r by inserting target ¢' after the
p—th position of r. The basic idea (inspired by [17]) is to adopt a conserva-
tive approach, trying to preserve feasibility. Given a route r, let us define the
possible forward shift of r as the minimum temporal margin in r between the
arrival at a target ¢ and d(t): PFS(r) = minsep)(d(t) — A.(t)). The extra
mileage e, (t',p) for inserting target ¢ after position p is the additional travel-
ing cost to be paid: e,.(t',p) = (A.(r(t")) + W T w;“,ﬂ,(pﬂ)) — A (r(p+1)).
The advance time that such insertion gets with respect to d(t') is defined as:
ar(t',p) = d(t') — (Ar(r(p)) + wy, ) Finally, ke (t',p) is defined as: he.(t',p) =
min{a,.(t',p); (PFS(r) —e.(t',p))}.

We partition the set T'(s) in two sets Tijgnt and Tjarge Where t € Tigp, if
d(t) < 0w}, and t € Tjqrge otherwise (6 € R is a parameter). The previous
inequality is a non—binding choice we made to discriminate targets with a tight
penetration time from those with a large one. Initially, we insert all the tight
targets and only subsequently we insert the non-tight targets. It can be easily

observed that our heuristic algorithm runs in O(|T'(s)|*) given that heuristic A,
can be computed in O(|T(s)|*).

3.3 Solving SRG—v

Now we can formulate the problem of computing the equilibrium signal response
strategy for D. Let us denote with 05 <(r) the probability with which D plays
route r under signal s and with R, the set of all the routes available to D
generated by some algorithm. We introduce function U4 (r, t) returning 7 (¢) if r
is not a route covering ¢ and 0 otherwise. The best D strategy (maxmin strategy)
can be found by solving the following linear mathematical programming problem:

min g, s.t.
ST op(slt) D ol (NUa(rt) < gu vteT
sES(t) rE€Ry,s
Z ofs(r):l Vs e S
TERy,s

ol (r)>0Vr€Rys,s€S
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4 Finding the Best Patrolling Strategy

We now focus on the problem of finding the best patrolling strategy given that we
know (from Sect. 3.3) the best signal-response strategy for each vertex v in which
D can place. Given the current vertex of D and the sequence of the last, say n,
vertices visited by D (where n is a tradeoff between effectiveness of the solution
and computational effort), a patrolling strategy is usually defined as a random-
ization over the next adjacent vertices [2]. We define v* = arg min, .y {g, }, where
gy is the value returned by the optimization problem described in Sect. 3.3, as the
vertex that guarantees the maximum expected utility to D over all the SRG—vs.
We show that the maxmin equilibrium strategy in PG prescribes that D places
at v*, waits for a signal, and responds to it.

Theorem 4. Without false positives and missed detections, if Vt € T we have
that |S(t)| > 1, then any patrolling strategy is dominated by the placement in v*.

Proof. Any patrolling strategy different from the placement in v* should neces-
sarily visit a vertex v’ # v*. Since the alarm system is not affected by missed
detections, every attack will raise a signal which, in turn, will raise a response
yielding a utility of g, where = is the current position of D at the moment
of the attack. Since A can observe the current position of D before attacking,
x = arg max,c p{ g, } where P is the set of the vertices patrolled by D. Obviously,
for any P D {v*} we would have that g, > g,~ and therefore placing at v* and
waiting for signal is the best strategy for D. ]

4.1 Computing the Best Placement

Under the absence of false positives and missed detections, Theorem 4 simplifies
the computation of the patrolling strategy by reducing it to the problem of
finding v*. To such aim, we must solve SRG—v for each possible starting vertex
v and select the one with maximum expected utility for D. Since all the vertices
are possible starting points, we should face this difficult problem (see Theorem 1)
|V| times, computing, for each signal, the covering routes from all the vertices.
To avoid this issue, we ask whether there exists an algorithm that in the worst
case allows us to consider a number of iterations, such that solving the problem
for a given node v could help us finding the solution for another node v’. So,
considering a specific set of targets, we wonder whether a solution for COV-SET
with starting vertex v can be used to derive, in polynomial time, a solution to
COV-SET for another starting vertex v’. To answer this question, we need to
encode an instance of COV-SET in a different way, embedding the selection of
the starting node in the structure of the graph. More precisely, we represent
an instance of COV-SET I = (G = (V, E), T, d,v) with the equivalent instance
I'=(G'=(V',E"),c,T,d, ) defined in the following way:

- V' =Vu{s}, E' = EU{(d,v;),Yv; € V}

— ( is a weight function such that c(e) = 1 if e € EU {(0,v}) and c(e) = M
otherwise (M is a big constant);

- d'{t)=d(t)+1,vVteT.
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With © we denote the dummy vertex that is always the starting node. We
highlight the fact that, under this new encoding scheme, changing the starting
vertex translates to rewriting the weights of ¢. Following the approach of [7], we
can show that even the locally modified version of this problem, where a single
weight is updated, is hard.

Definition 6. LM—COV-ROUTE (Locally modified)
INSTANCE: a graph G = (V,E), a set of targets T with penetration times d,
two weight functions ¢y and co that coincide except for one edge, and a covering

route r1 such that, under c;, T(r1) =T.
QUESTION: is T a covering set under co?

Theorem 5. LM—COV-ROUTE is N'P—-complete.

Proof. Let us consider the Restricted Hamiltonian Circuit problem (RHC) which
is known to be AP—complete. RHC is defined as follows: given a graph Gy =
(Vi, Ef) and an Hamiltonian path P = {hy,..., h,} for Gg such that h; € Vi
and (h1,h,) ¢ Fg, find an Hamiltonian circuit for Gg. From such instance
of RHC, following the approach of [7], we build the following instance for LM—
COV-ROUTE:

-V =T=VyU{vs,v: };

— E = {(vs, 1), (v, hn—1)} U {(vs, w)|(u, hyu—1) € Ex} U Ey where Ej is the
complete set of edges obtained by augmenting Eg;

— d(vs) =0, d(vt) =n+1,d(t) =n for any t € T}

—c(e)=1if e € EU{(vs,h1), (s, hn—1)} U{(vt,w)|(u, hn—1) € En}, c1(e) =
(1 + €) otherwise (for any € > 0);

— ¢1 = ¢g except for ca(vs, h1) =1+ ¢

=11 = Vs, hy, -+ Ry, vy).

It is easy to verify that Gy admits a Hamiltonian circuit if and only if T" admits
a covering route under cs. O

This shows that iteratively applying Algorithm1 to SRG—v for each starting
vertex v is the best we can do.

4.2 Robustness to Missed Detections

A deeper analysis of Theorem 4 can show that its scope does include cases where
missed detections are present up to a non—negligible extent. For such cases,
placement—based strategies keep being optimal even in the case when the alarm
systems fails in detecting an attack. We encode the occurrence of this robust-
ness property in the following proposition, which we shall prove by a series of
examples.

Proposition 1. There exist Patrolling Games where staying in a vertex, waiting
for a signal, and responding to it is the optimal patrolling strategy for D even
with a missed detection rate o = 0.5.
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(a) Equation 1 holds for o < 0.25 (b) Equation 1 holds for o < 0.5

Fig. 1. Two examples proving Proposition 1.

Proof. The expected utility for D given by the placement in v* is (1 —a)(1—gy,+),
where (1 —«) is the probability with which the alarm system correctly generates
a signal upon an attack and (1 — g,~) denotes D’s payoff when placed in v*.
A non—placement—based patrolling strategy will prescribe, by definition, to move
between at least two vertices. From this simple consideration, we observe that an
upper bound to the expected utility of any non—placement strategy is entailed by
the case where D alternately patrols vertices v* and v3, where v3 is the second
best vertex in which D can statically place. Such scenario give us an upper bound
over the expected utility of non—placement strategies, namely 1 — g,. It follows
that a sufficient condition for the placement in v* being optimal is given by the
following inequality:

(1_a)<1_gv*)><1_gv§) (1)

To prove Proposition 1, it then suffices to provide a Patrolling Game instance
where Eq.1 holds under some non—null missed detection rate «. In Fig.1(a)
and (b), we report two of such examples. The depicted settings have unitary
edges except where explicitly indicated. For both, without missed detections, the
best patrolling strategy is a placement v* = 4. When allowing missed detections,
in Fig. 1(a) it holds that g,~ = 0 and g,; = 0.75, where v* = 4 and v3 = 1. Thus,
by Eq. 1, placement v* = 4 is the optimal strategy for o < 0.25. Under the same
reasoning scheme, in Fig. 1(b) we have that g, = 0 and g,; = 0.5, making the
placement v* = 4 optimal for any o < 0.5. (]

5 Experimental Evaluation

We evaluate the scalability of Algorithm 1 and the quality of the solution
returned by our heuristic algorithm for a set of instances of SRG—v. We do
not include results on the evaluation of the algorithm to solve completely a PG,
given that it trivially requires asymptotically |V| times the effort required by
the resolution of a single instance of SRG—v.

Testbed. In real deployment scenarios, the model parameters should be derived
from the particular features that characterize the particular setting one must
deal with. Besides the graph topology, which depends on the environment, tar-
get values and deadlines can be derived from available statistics or manually
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assigned by domain experts. The need of such process to derive model parame-
ters makes building a large dataset of realistic instances not an easy task. In
fact, such task would deserve a separate treatment by its own. On the other
side, by means of a preliminary experimental evaluation, we observed how com-
pletely random instances are very likely of being not significant. Indeed, very
frequently the variance of the compute time among completely random gener-
ated instances is excessively large. For these reasons, we decided to use a random
generator where some parameters can be fixed while others are randomly chosen.
We restricted our attention to basic, but significant, instances with all-targets
graphs, arc costs set to 1, penetration times to |T'(s)| — 1, and the number of arcs
is drawn from a normal distribution with mean ¢, said edge density and defined
as e = |E|/ w (other parameters are randomly generated from uni-
form distributions, unless otherwise specified). Instances constructed with such
mechanism include hard ones since the existence of a covering route over T'(s)
would imply the existence of an Hamiltonian path on the graph. We explore two
parameter dimensions: the number of targets |T'| and e. Algorithms are developed
in MATLAB and run on a 2.33 GHz LINUX machine.

Exact Algorithm Scalability. Table 1 shows the total compute time required
to solve instances with a single signal, that can be generated by any target under
attack. Table 2 refers to instances with multiple signals, where the targets covered
by a signal and the probability that a target triggers a signal are randomly chosen
according to a uniform distribution (in this second table |T'| is fixed to 16). Values
are averages over 100 random instances and give insights on the computation
effort along the considered dimensions. The results show that the problem is
computationally challenging even for a small number of targets and signals.

Table 1. Compute times (in seconds) for single—signal instances.

Q 6 [ 8 |10 12 14 16 18

.25 10.07|0.34| 1.91 | 11.54 | 82.26 | 439.92 |4068.8
.5 10.07(0.38( 4.04 | 53.14 | 536.7 | 4545.4 |> 5000
.75 10.09]0.96{11.99| 114.3 | 935.74 |7276.62|> 7000
1 ]0.14|1.86|17.46/143.05{1073.19|7964.49| > 8000

€

Table 2. Compute times (in seconds) for multi-signal instances.

5 (10 15

2 - 17.83] 510.61
3 - | 33 | 769.3

4 0.55|35.35|1066.76
5 0.72|52.43|1373.32
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Fig. 2. Ratios evaluating dominances.

Figure 2 shows the impact of discarding dominated actions from the game. It
depicts the trend of some performance ratios for different metrics. We shall call
G the complete game including all D’s dominated actions and Ggr the reduced
game; CCS will denote the full version of Algorithm 1 and LP will denote the
linear program to solve SRG—v. Each instance has edge density ¢ = .25 and is
solved for a random starting vertex v; we report average ratios for 100 instances.
“n. covsets” is the ratio between the number of covering sets in Gg and in G.
Dominated actions constitute a large percentage, increasing with the number
of targets. This result indicates that the structure of the problem has some
redundancy. LP times (iterations) report the ratio between Gr and G for the time
(iterations) required to solve the minmax linear program. A relative gain directly
proportional to the percentage of dominated covering sets is observable (LP has
less variables and constraints). A similar trend is not visible when considering
the same ratio for the total time which includes CCS. Indeed, the time needed
by CCS largely exceed LP’s and removal of dominated actions determines a
polynomial additional cost which can be seen in the slightly increasing trend of
the curve. The relative gap between LP and CCS compute times can be assessed
by looking at the LP/CCS curve: when more targets are considered the time
taken by LP is negligible w.r.t. CCS’s. This shows that removing dominated
actions is useful, allowing a small improvement in the average case, and assuring
an exponential improvement in the worst case.

Heuristic Solution Quality. Figure 3 reports the performance of the heuristic
algorithm (here we set § = 2) in terms of D’s expected utility ratio (1—g,)/(1—
Jv), where g, is the expected utility of A at the equilibrium considering all the
covering sets and g, is the expected utility of A at the equilibrium when covering
sets are generated by our heuristic algorithm. The performance of our heuristic
algorithm is well characterized by e, providing fairly good approximations for
e > 0.25, the ratio going to 1 as |T| increases, because there are more edges
and, consequently, there is a higher probability for the heuristics to find longer
routes. The figure suggests that assessing the membership of our problem to the
APX class could be an interesting problem.
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Fig. 3. Optimal vs heuristic algorithms.

6 Conclusions and Future Research

In this paper, to the best of our knowledge, we provide the first Security Game
for large environments surveillance, e.g. for wildlife protection, that can exploit
an alarm system with spatially uncertain signals. We propose a simple model
of alarm systems that can be widely adopted with every specific technology
and we include it in the state—of-art patrolling models obtaining a new security
game model. We show that the problem of finding the best patrolling strategy to
respond to a given alarm signal is FAP-hard even when the game is zero sum.
Then, we provide an exponential-time exact algorithm to find the best patrolling
strategy to respond to a given alarm signal. We provide also a heuristic algo-
rithm returning approximate solutions to deal with very large game instances.
Furthermore, we show that if every target is alarmed and no missed detections
are present, then the best patrolling strategy prescribes that the patroller stays
in a given place waiting for a alarm signal. We show that such a strategy may be
optimal even for missed detection rates up to 50 %. Finally, we experimentally
evaluate our algorithms in terms of scalability (for the exact algorithm) and
approximation ratio (for the heuristic algorithm).

In future works, we shall study the membership (or not) of our problem to
APX class, design approximation algorithms with theoretical guarantees and
investigate the impact of missed detections and false positives.
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Abstract. The privacy policies of an online social network play an
important role in determining user involvement and satisfaction, and
in turn site profit and success. In this paper, we develop a game the-
oretic framework to model the relationship between the set of privacy
options offered by a social network site and the sharing decisions of its
users within these constraints. We model the site and the users in this sce-
nario as the leader and followers, respectively, in a Stackelberg game. We
formally establish the conditions under which this game reaches a Nash
equilibrium in pure strategies and provide an approximation algorithm
for the site to determine a discrete set of privacy options to maximize
payoff. We validate hypotheses in our model on data collected from a
mock-social network of users’ privacy preferences both within and out-
side the context of peer influence, and demonstrate that the qualitative
assumptions of our model are well-founded.

1 Introduction

At its core, an online social network (SN) is an infrastructure for user-generated
shared content. Users have the ability to exercise control over their individual
channels in the network, by deciding which content to share and with whom to
share it. The SN site benefits from shared content in important ways. Shared
content attracts new users, deepens the involvement of existing users, strengthens
the community, and can be leveraged for monetization.

Individual behavior online, like individual behavior offline, is also subject
to social norms and peer influence [12,15,24]. Notions of what is appropriate
in content sharing online is defined comparatively, so that subtle shifts in local
behavior may have much farther-reaching consequences for the network as a
whole. In sum, unlike the SN site which is ultimately a business operating with
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a business model, users are individuals with more complex incentives, concerns
and considerations operating voluntarily within the constraints of the SN.

Questions related to privacy in SNs have gained increasing interest over the
last few years as the ubiquity of social media has become apparent and anecdotes
of repercussions for over-disclosure more available. Many users are now aware of
the risks associated with revelation online and concerned with protecting per-
sonal information from widespread dissemination. Advocates of fine-grained pri-
vacy policies argue that detailed user management of privacy settings for shared
content can avert some of the potential risks users face in online SNs [20,28].
Users can sort their data into categories to be shared with certain individuals in
the network (i.e., friends, friends of friends, groups, everyone). SNs like Facebook
and Google+ have implemented this model, allowing users to create narrower
social circles from among their list of friends and to define which content is shared
with whom. Unfortunately, studies have also shown that users often do not take
advantage of finely-tuned options available to them. The majority of users on
both Facebook and Twitter maintain the default privacy settings established by
the site [12,19], which tend to be more permissive than users would like [23].

In this work, we focus on the topic of privacy, from the perspectives of both
the SN site and its users. We seek to determine an optimal discrete set of privacy
options to be made available to users for content sharing. We define optimality
here from the perspective of the site, taking into account user satisfaction. Intu-
itively, the site is to choose a set of options for users’ shared content in order
to maximize sharing. Yet, the site should allow users to maintain a level of con-
trol over their content without being overwhelmed by too many or too complex
privacy settings from which to choose.

We model the conflicting yet complementary goals of the SN site and its
users as a Stackelberg game whereby the leader (the site) moves first in setting
the privacy options to be made available to user-members for shared content.
Followers (users) respond by selecting privacy settings from among these options.
Payoff to the site can be expressed in terms of amount of shared content and
total user happiness. Payoff to each user depends on how closely the available
options approximate his ideal sharing preferences, which is in turn a function
of an inherent comfort and peer influences. We formally present this two-level
game as well as a characterization of its convergence to a Nash equilibrium in
pure strategies under certain simplifying assumptions. We develop an agent-
based model to approximate optimal strategies on arbitrary network graphs and
validate model assumptions with a study of 60 individuals, run over a mock-SN.

The remainder of this paper is organized as follows. The next section reviews
related work, followed by our problem statement, succeeded by an overview of our
model in Sect. 4. Section 5 presents approximation algorithms, and Sect.6 dis-
cusses the experimental study we carried out. We conclude the paper in Sect. 7.

2 Related Work

The scale and gravity of privacy and security risks associated with online social
networks have led to a rich body of work addressing a wide spectrum of these
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issues. By sharing their personal information, users in SNs become vulnerable
to attacks from other users, the SN itself, third-party applications linked to
their SN profiles, or other outside attackers able to de-anonymize user data
published by the SN site. See [2,18] for recent reviews. These attacks may take
the form of identity theft [12], scraping and harvesting [21], social phishing [17],
or automated social engineering [3]. The risk of a breach of privacy in some form
is particularly salient for users who are not closely monitoring their privacy
settings or leaving privacy settings at their default values.

As a means of mediating some of these risks, there is a growing literature
using machine learning to determine individual default privacy settings. PriMa
[31] and Privacy Wizard [8] are examples of supervised learning algorithms which
look at the behavior and preferences of a user, the behavior and preferences of
his peer group or related users, and offer a classification of default settings for
different types of shared content. We see this work as complementary to ours
in that it does not suggest a method for the determining the privacy settings
from which a user may choose, but rather once these options are in place, gives
a method for selecting defaults amongst them which may most closely match a
user’s preferences.

This work is related in general to the body of work on game theory in social
networks, both offline and online. Fundamental research efforts exploring cooper-
ation in structured human populations include [23,26,38]. In the realm of online
social networks, game theoretic models have been implemented for the study
of the evolution of various social dilemmas and associated changes in network
structure [9,16,25].

Most closely related to our work is the subset of this research concerning
agent-based decision-making related to privacy and security in online social net-
works. Chen and colleagues model users’ disclosure of personal attributes as a
weighted evolutionary game and discuss the relationship between network topol-
ogy and revelation in environments with varying level of risk [5].

In a series of papers considering the circumstances of deception in online
SNs, Squicciarini et al. characterize a user’s willingness to release, withhold or lie
about information as a function of risk, reward and peer pressure within different
game-theoretic frameworks [29,33]. They describe the relationship between a site
and its users, determining that in the in the presence of a binding agreement
to cooperate (strong guarantees on privacy), most users will agree to share real
identifying information in return for registration in the system [34]. Authors also
use a game theory to model of collective privacy management for photo sharing
in SNs [32,35]. Their approach proposes automated privacy settings for shared
images based on an extended notion of content co-ownership.

To the best of our knowledge, a game-theoretic approach to determining the
privacy policy of an online SN has not been considered before in the literature.

In a previous work [11], we tackled the simpler question of determining a
mandatory lower-bound on shared content. That is, we have addressed the SN
site’s decision of selecting the minimum amount of shared personal information
which should be required of user with an active account in the network. For
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example, Facebook requires all users with a personal account to give a first
name, last name, valid email address, password, gender and birth date. In fact,
Facebook institutes further sharing requirements on various elements of a user’s
profile, e.g., a user’s cover photo is always public [6].

3 Problem Statement

We assume a captive social network site, wherein users share pieces of per-
sonal content freely within the network and possibly with selected subgroups
of network users, according to a set of privacy options for shared content made
available by the site to its users.

We assume the site benefits when users share as freely as possible and it
is of course incentivized to create options that promote the widest distribution
of posted content. The site, however, must also be wary to consider users who
are inherently more cautious about public sharing. A site requiring all shared
content to be public, for example, may lure some users to post publicly who
might otherwise have only shared with a narrower group, i.e., “friends only”.
But in other cases, this policy might have a detrimental effect for the site, as
users may choose not to post at all. In any case, if the privacy setting a user
would prefer for a piece of content is not presented the user will experience some
degree of dissatisfaction in having to select an alternative. Figure1 illustrates
the problem space.

Users react to the options offered by choosing what to disclose and with
whom. Examples of these settings in practice may include “visible to only me”,
“share with specific individuals”, “share with friends”, “share with my net-
work”and “public”. We abstract away from the details of how privacy options

Site policies alter user behavior.

Users decide sharing g
policies based on
personal comfort and X

the behavior of their The social network site offers a set of privacy
network contacts. options from which users may choose.

:

=

mytweetbook.com

External pressures
alter site policies.

User feedback alters site policies.

Fig. 1. There is a natural push and pull between a SN site and its users with regard
to sharing policies.
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are presented to users, and map them to real values on the interval [0, 1]. The
granularity of these options should be fine enough to meet users’ needs, but
coarse enough to be manageable in implementation for both the users and the
SN site.

We formulate the site’s utility as a function of user happiness and shared
content, so that minimally the site would like to make sure that no user is
unable to share content as freely as he would like due to a lack of available
sharing options. In fact, the site would stand to profit by pushing users toward
the upper boundary of their sharing comfort, and having a carefully chosen set
of options may enable this to happen.

We model each user’s utility function as a weighted sum of discomfort and
peer pressure. Specifically, each user will act to minimize the difference between
his selected privacy setting and his personal comfort level, and the difference
between his selected privacy setting and the average privacy settings of his peers.
The intuition is that users have an inherent degree of disclosure they feel most
comfortable with, but are also influenced by their peers when making sharing
decisions [7,14]. Since these two dimensions may not be considered equally for all
users, we introduce weights to capture interpersonal differences in susceptibility
to peer pressure. Precisely, we offer the option of including weights on either
the peer pressure or personal comfort components of the user’s utility function
allowing customization of the model for non-homogeneous users and an oppor-
tunity to strengthen the model in the presence of additional information on user
behavior, which the site may learn through observation.

4 Model Overview

We define two optimization problems: one for the SN user and one for the SN
site. The optimal solutions to these problems determine the behavior of the user
and site regarding privacy policies.

4.1 User Model

Our user model extends the model presented in [11] for the modeling of a lower-
bound on information disclosure for membership in the SN. The motivations and
actions of users with respect to content sharing in this framework are consistent
with this prior work, but will be enacted within the constraints of the site’s
problem which is significantly different.

Assume a SN is represented by a graph G = (V| E), where V is a set of users
(represented by vertices in the graph) and E is the set of social connections
(edges) between them. For the remainder of this paper, assume |V| = N. Users
post information to the SN for reasons known only to themselves. Unlike in [30],
we assume users who are perfectly honest, but may choose to omit (or keep pri-
vate) a certain amount of information. Previous work has observed [10,30] that
users have distinct sharing behaviors for different types of information, depend-
ing on the “social” value of such information (e.g., users are more willing to share
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their gender than their phone number). Assume there are M types of informa-
tion. Since it is nontrivial to specify what a piece of information corresponds to
in a SN, we will abstract away from any specific characterization of information,
and assume User ¢ € V accumulates postable information of type j at a rate of
B (t) (given in bits per second). Each user chooses a proportion (probability) of
information of type j to share, denoted by xf (t) € 10,1].

In general, users do not change their privacy policy frequently [22], and thus
we can consider a simplified problem in which we attempt to find optimal values
for (fixed) ] (i € {1,...,N}, j € {1,...,M}). To do this, we define optimality
in terms of:

1. Peer Pressure (and reputation),
2. Comfort level

Comfort level in the context of privacy and information disclosure refers to
the degree of disclosure users feel comfortable with. This notion, often used to
characterize information sharing in online sites (e.g. [1,7]), is also adopted in our
model. Users reaching their optimal comfort level wish not to change any of their
information sharing practices. Reputation and peer pressure are self-explanatory,
and are combined in a single dimension as they are highly correlated [30].

Without loss of generality, focus on one information type, z; € [0,1]. To
model peer pressure, we assume that individuals are encouraged to behave in
accordance with the norms of their social group. Thus for User ¢, we define:

2 jeNg (i) VisTi
Ve (i)

;=

where v;; > 0 and

Vel(i) = Z”ij (1)

is the weighted neighborhood size of i in G. If v;; = 1 for all j, then V(i) =
| Ng (%), the size of the neighborhood of 7 in G. The neighborhood may be defined
in terms of the social graph of the user, or it may be a more restrictive subset of
peers with whom the user actively interacts. Let the peer pressure function for
User ¢ be given by:

Pi(z) = vifp(z —T) (2)

where fp is a concave function with maximum at 0 and v; > 0 is the subjective
weight User ¢ places on the peer pressure function. Thus, the payoff P;(x) is
maximized as x; approaches Z_;.

We note that an alternate and equally reasonable approach to defining P;(x)

| Px)= Y wyfele—a)) (3)

JENG (i)
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where v;; > 0. In this case, User i attempts to minimize a weighted function of
the difference in privacy levels from all of his neighbors simultaneously.

Estimated weights on the link between User ¢ and User j might be obtained,
for example, as a function of the frequency and type of online interactions
between them. This formulation increases the complexity of the problem and
ultimately makes computation more cumbersome, but allows a richer model
when more detailed information about users’ relationships and peer influence is
present.

By similar argument, assume that User ¢ has a sharing level x;r at which he
is happiest. The comfort function fe(z) for User i is given by:

Ci(z) = wifo(z — )

for w; > 0, which can be thought of as a user’s tendency to act in preference to his
own comfort rather than in response peer pressure. Here again, fc is concave with
maximum at 0, so that the comfort of User i is maximized as z; approaches xj'

In practice ;U;r may be difficult to determine for an unknown User i. However,
we assume that based on user demographics, as well as observed overall user
behavior for a mass of users, either at the individual or group level, it is possible
to infer of x}", or at least an expected value E[z]] within a tolerated window of
error.

Thus, the total objective function for User 1 is:

ZjeNg(i) Lj

Ji(wis ;) = Pi(wi) + Ci(x:) = vifp (:z:z ~INe(i)]

>+wkm—ﬁ)@

or, the weighted variant:

Jiwi; ) = Pi(wi) + Cia) = Z vijfp(ei — ;) + wifo(z: —f).  (5)
JENG()

Here, x_; indicates the privacy choices of all other users besides i and we write
Ji(z;;x—;) to indicate that User i’s utility is a function not only of his own
decisions, but also of the decisions of the other users.

When fp and fo are concave, the following proposition holds [27]:

Proposition 1. Assume that each x; is constrained to lie in a convex set X; C
[0,1] fori=1,...,N. There is at least one value x; for each Useri so that every
user’s objective function is simultaneously mazimized and (x7,...,x%) is a Nash
FEquilibrium for the multi-player game defined by any combination of objective
functions Ji,...,Jn or Ji,...,Jn. O

By similar reasoning, the preceding proposition can be extended to the case of
multiple independent information types. In this case for each j = 1,..., M there
is an equilibrium solution z7 ¢ = 1,..., N. Correlated payoffs for information

sharing among information types are beyond the scope of the current work.
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In general, in this case, each user would have an information sharing strategy x; €
[0,1]™ and a corresponding multi-dimensional payoff function. The existence
of a Nash equilibrium would be guaranteed for convex functions with convex
constraints.

4.2 Site Model for the Determination of a Discrete Set of Privacy
Options for Shared Content

For the remainder of this paper, we will assume a user objective function of the
form J; and fix fo(z) = fp(z) = —22, which is concave with maximum at zero.
Furthermore, and for notational simplicity, we will consider the minimizing form
of the problem in which User ¢ minimizes —J;.

Assume the site offers a discrete set of privacy settings l1,...,lx € [0, 1]. Each
user must choose from among these options for each piece of shared content. This
is equivalent to choosing a generic privacy policy within a social network. Let
1 be the vector of these options. Define:

(6)

1 Player ¢ chooses privacy level j
Yij = .
0 otherwise

these binary variables indicate the privacy levels of each player. Naturally we
require:
Z yij =1 (7)
J

Let y be the matrix of y;; values. Furthermore:

K
zi(yi) = il
j=1
For given values y;; (i=1,...,N and j =1,..., K), the payoff to Player 1 is:

Hi(y;1) = Z vij (i — 27)? + wi(w; — x))? (8)
JEN(7)

Note, this is simply —J;. Then the net payoff to the site is:

J(Y;I)ZZ Zﬂ—jyij_)\Hi ; 9)

i

where 7; is the benefit the site receives for a piece of content shared with privacy
setting 7 and A is the weight applied to the payoff of the users; i.e., the weight
the site places on user happiness. When y is determined endogenously by the
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players, then the site’s bi-level combinatorial optimization problem is:

HllaJX J y, = Z Zﬂjyz] H;

s.t. ll,...,lKG [0,1]
<l j=1,...K—-1

Hi(y; 1) = min Z Uij(l‘i - Ij)z + wz(ac, - l‘j)Q
Vi jen( (10)
K
Vi Zyj J

j=1

> vy=1

J
Yij € {O, 1}

In this problem, each User i must decide the value of y;; independently of all
other users, while being simultaneously affected by her choice. It is clear that
the sub-game has a solution in mixed strategies from Proposition 1, but what is
less clear is whether it has a solution in pure strategies.

Consider the user game-theoretic sub-problem:

Hi(y;D) =min > v — 2;)° + wilw; — 27)°
©JENG)

K
. s.t. T; = Zyijlj
Vi —
j=1
D vy =1
J

Yij € {0, 1}

Define the energy function:

=Y > vle )2+ wi(z; — ) (11)

i€V jEN(1)

Tt is straightforward to see there is a y* that minimizes Hy(y;1). We characterize
the conditions under which this y* is a Nash Equilibrium in pure strategies for
the players. Suppose the optimal solution y* yields z} with z7 = [; for some
j€{1,...,K}. If User i chooses to deviate from this strategy, then her change
in payoff is:

AHy = H; —H; = Y vy [(@F =) = (20 — 25)?] +ws [ (@} — )2 = (2 —2)?] (12)
JEN()
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while:

AH, = H; — Hy = v, (o] )2 — (0 — 2] = vy [(a5 — )" — (w— )]
(13)
for each j € N(i). Under a symmetric weight assumption (i.e., v;; = vj;), we

have:

AHy =Y AH; =2 Y [v(z} —a3)* = (2 — 2)*)+
iev JEN(7)
wil(z; —af)? — (zi—2f)?] (1)

Let:

A= Z Vij [(ij — x;)Q — (z; — x;‘)Q]
JEN(9)
B=uw; [(z] —x})* — (&i —a])?]
Then AH; = A+ B and AHy = 2A + B. The fact that y* is a minimizer for
Hy implies that AHy < 0 otherwise, y* could not have been a minimizer. Thus
2A+ B < 0. For a rational Player i a change in strategy make sense if (and only
if) A+ B > 0. There are four cases to consider:

Case 1: If A< 0 and B > 0, and since 2A + B < 0 and A+ B > 0, we have
|A| < |B| < 2|A|. That is, Player ¢ has benefitted by moving closer to her
comfort value, sacrificing reputation. If this is not the case, then there is no
rational reason for Player i to change strategies.

Case 2: If A, B <0, then immediately AH; < 0 and Player ¢ has not benefitted
from changing.

Case 3: If A >0 and B <0, then 24 + B < 0 implies |B| > |A| which implies
A+ B <0 and thus Player ¢ would not change to this alternate strategy.
Case 4: If A, B > 0, then 24 + B > 0 and y* was either not a minimum or (in

the case when A = B = 0) not a unique minimum.

It follows that only Case 1 prevents a global minimizer for Hy from being a
Nash equilibrium. For w; ~ 0 we have |B| ~ 0 and in this case, we see necessarily
that A < 0. Thus the energy minimizing solution is a Nash equilibrium. The
following theorem follows naturally from this analysis:

Theorem 1. For any set of comfort values {xj'}jvzl and fized privacy levels
1={(ly,...,lk) there is an € > 0 so that if w; <€ fori=1,...N, then there is
a pure strateqy Nash equilibrium for the following game:
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Hi(y;D) =min Y vz — 2;)° + wilw; — 27)?
Vi jENG)

K
Vi ;yﬂ y (15)
> vi=1
J

Yij € {0, 1}

O

Remark 1. The results in Theorem 1 can be generalized to a game of the form:

Hi(y;1) = min > wvigfe(ei —x) +wifo(z — )
" jENG)

K
. s.t. xXr; = Zyijlj
Vi —
=1
D vi=1
J

Yij € {0, 1}

for appropriately chosen convex functions fc and fp with minima at 0. Moreover,
for w; ~ 0 the bi-level problem is simply a bi-level combinatorial optimization
problem.

Remark 2. If w; > 0, then the player will conform more closely to her comfort
level and for extremely high values of w; (for i = 1,..., N) there is again a pure
strategy Nash equilibrium computed by finding the I value as close as possi-
ble to Player i’s comfort level. Thus, settings with no pure strategy equilibria
occur when the Players have values w; large enough to prevent a pure strategy
equilibrium consistent with social conformity, but not large enough to cause all
players to follow their own comfort signal.

5 An Approximation Algorithm for Arbitrary
Graphs - A Simulation

We have characterized the circumstances under which there exists a pure strategy
Nash equilibrium for the bi-level optimization problem which describes the site’s
task of choosing a discrete set of privacy settings to optimize its payoff. Namely,
this equilibrium exists in cases of extremely weak or extremely strong comfort
level effects. Even in the case that such an equilibrium exists, we anticipate
that finding the solution explicitly is NP-hard. Bi-level optimization problems
are NP-hard [13], and even evaluating a solution for optimality is NP-hard [36].
Accordingly, an alternate approach in which we find an approximate solution is
needed.
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We argue that an approximation algorithm is also a more realistic approach
in practice, since real SNs do not typically have the sharing comfort level for
each individual user or potentially weighted influences amongst users’ peers a
priori. These parameters of the model are inferred through observation of user
behavior under varying constraints, often using similar techniques to those we
employ in the sequel; that is a site analyzes users’ responses to minor alterations
in its policies and recalibrates accordingly.

Here, we present a two-part algorithm for approximately computing the users’
and site’s utility functions on an arbitrary graphs in order to determine a discrete
set of privacy settings beyond the determined lower bound to be made available
to users in the SN. The Player Algorithm uses fictitious play simulating the con-
vergence of the players’ strategies to a strategy vector dependent on the players’
personal comfort levels and the fixed set of privacy options determined by the SN
site. Note, from Theorem 1, this may in fact be a pure strategy Nash equilibrium
under appropriate assumptions.

To determine the full set 1 of privacy settings to be offered to users, the Site
Algorithm wraps around the Player Algorithm as follows. The site lets I; = 0.
Since players are captive to the site in this model, all players adopt strategy [;.
The level of unhappiness each player experiences for being forced to choose [
is calculated. Next, the site makes available a second option 1o = 1; + 4. The
Player Algorithm uses fictitious play to simulate the convergence of each player’s
strategy to either 1; or 1. A corresponding payoff for the site is calculated.
Provided that there is at least one user whose comfort level for sharing is greater
than I; and § is small enough, the addition of option Il will increase the site’s
payoff. The site moves ls up by increments of §, monitoring users’ responses at
each move, recalculating the corresponding site payoff and stopping when this
payoff starts to decrease. Intuitively, when l> moves too far above individuals’
comfort levels, users will become increasingly unhappy and eventually revert
back to sharing at [; rather than l5. The local optimum achieved here is taken
as lo € 1. Following this, the site makes available a third option I3 = I + ¢ and
allows players to converge on strategies from the set of three options available,
incrementing I3 as before until a local optimum is achieved. At this time, I3 is
added to 1. This heuristic is repeated and the set 1 of privacy options grows by
one as each local optimum is discovered until no further gains in site payoff or
user happiness can be achieved, which is guaranteed to occur at a value no higher
than the comfort level of the site’s most privacy-lenient user. Pseudocode for the
Player Algorithm and Site Algorithm are given in Figs. 2 and 3, respectively.

Figure4 visualizes a well-known, real-world social network of members of a
karate club [39]. In the absence of any constraints instituted by the site, equiv-
alently in the case that each user may select his optimal privacy setting for a
given piece of content, the trajectories of users’ selections are guided by inherent
personal comfort with sharing and the influence of their peers. Immediate neigh-
bors in the graph are considered peers. We simulate the trajectory of privacy
selections for member-users of the karate club network, first given the player
algorithm described above in the unconstrained case, namely assuming that
users have access to the complete set of options on the interval [0, 1]. Figure5
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Player Algorithm

1.

Initialize z;(0) (: = 1,...,N),
t=0

Site Algorithm

1. Initialize I1 = 0,1 = {l1}

2. Run the Player Algorithm to
obtain x*
=1

> e

. while [; <1

li=1li—1+ 0l
Run the Player Algorithm

2. while t < Thax {1,1;} to obtain y*
3. t:=t+1 7. if Js({l, li},y*) —
4. for each i € {1,...,N} Js({Lli—1},x*) <0
5. Minimize H;(y;l) to ob- 8. Add [; to1
tain y; 9. else
6. zi(t+1) :=y; () 10. i=i+1
7. end 11. end
8. end 12. end

Fig. 2. PlayerAlgorithm

Fig. 3. Site Algorithm

Fig. 4. A visualisation of the karate club network.
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Fig. 5. A visualisation of players’ strategies over time, initialised randomly, according
to the user model
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illustrates players’ strategies over time. Strategies are initialized as user’s indi-
vidual sharing comfort levels and comfort levels are selected uniformly randomly
from the interval [0, 1]. Notice that in this case, the vector of user strategies con-
verges to equilibrium, as guaranteed by Proposition 1.

As described, the site’s approximation algorithm influences the user model
by iteratively choosing a discrete set of options to be made available to users,
simulating user behavior given those constraints, and then adjusting the set of
options by small increments until local optima are discovered. A visualization of
site payoff during this process simulated over the karate club network is given in
Fig. 6. Local optima occur at = {0.4,0.6,0.72,0.88}, so the site determines the
set of privacy options as [; = 0.4, [ = 0.6, I3 =0.72, [, = 0.88 and l5 = 1. User
comforts are the same as those given in Fig.5, and we choose § = 0.04. Note
that the choice of § may indicate a site’s willingness to offer a finer granularity of
privacy options to its users. A greater value of § will lead to the discovery of fewer
local optima, while smaller delta will yield more. This choice may also depend
on the initial set of user comforts and the site business model. To this extent,
the general algorithm we present here is the framework for a more personalized
algorithm representative of a site’s policies, practices and user base.

Site Payoff

o Privacy Setting

//0,2 04 0.6 0.8
_s

Fig. 6. Site payoff as privacy options are iteratively made available

6 Experimental Results

We designed and executed experiments to evaluate two of our key assumptions
with a user study involving 60 participants in a simulated social network. First,
our core model assumes that users’ sharing decisions are influenced by a weighted
sum of peer influence and personal comfort. We aim to determine whether pos-
tulated effects peer influence may be observed, even in a simulated context.
Second, we seek to determine whether the iterative approach we take in our
approximation algorithm may be assumed to in fact approximate the optimal
discrete set of privacy options offered by the site. Hypothesizing that it will, we
expect to rule out the notion that iterative presentation of an increased number
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Directions: For each of photo, select the sharing option you prefer from the choices offered. The
selections of a few of your friends are listed alongside each image.

" —Q Maggie: Selected Friends Only Me

//;ﬂ&\ Todd: P-\l?lic sgmed Friends

Ben: Public Friends

Tania: Friends My Network
Public

Shawn: My Network Only Me

Todd: Selected Friends Selected Friends

Tania: Public Friends

Cynthia: Friends My Network
Public

Fig. 7. Sample screenshot from Phase 2

of sharing options will significantly alter or confuse optimal individual prefer-
ences. Put more simply, users will not change their decision if they are offered an
(optimal) set of privacy options 1 in one shot verses if 1 is iteratively built. These
two assumptions are at the core of our user model and site model, respectively,
and therefore validating them gives confidence in theoretical findings.

Subjects were presented with a series of images and asked to select a privacy
setting for each, to be uploaded to social media. We organized the study in three
distinct “phases”.

1. In Phase 1 of our experiment, subjects were shown 15 images and given
five sharing options from which to choose for each, i.e., “only me”, “selected
friends”, “friends”, “my network” and “public”.

2. In Phase 2, subjects were shown the same images again and asked to choose
from amongst the same options, but with the addition of the privacy selections
of four of the subject’s”friends” listed next to each image (see Fig.7 for a
sample screenshot). In attempt to create a more realistic sense of friendship
between the subject and the simulated users, we endowed each simulated
user with a profile page including demographic information, photos and other
personal details and hyperlinked these profile pages throughout. Subjects were
divided into several subgroups and treated to three variations of peer pressure
in which friends’ selections were skewed towards more private (skew-down),
more public (skew-up) or random. In Sect.6.1, we compare the selections
of each user in Phase 1 (which we take as a baseline) with their selections
in Phase 2. We expect that users may be influenced to increase their privacy
restrictions when seeing that their peers are sharing more conservatively than
they are, while on the other hand users may feel comfortable sharing more
freely when their friends do the same.
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3. Phase 3 was designed to test whether the iterative addition of privacy options
(see Sect.5) would influence users’ ultimate privacy selections. Assuming a
fixed set of options (i.e., I; =“only me”, lo =“selected friends”, I3 =“friends”,
l4 =“my network”, l5 =“public”), we iteratively presented subjects with a
subset of photos from Phase 1 and Phase 2. At first, subjects were offered
only /7 and Iy as privacy settings, next [y, ls and [3, subsequently [y through
ly, and finally Iy through l5. Variants of Phase 3 incorporating skew-down,
skew-up and random peer pressure, implemented identically as in Phase 2,
were also included for subsets of participants. In Sect. 6.2, we compare the
selections of each user in Phase 2 with the their selections in the final iteration
of Phase 3.

Participants in our study were 68 % female and 32 % male, with mean age
25.6 and standard deviation 2.98. In an initial survey preceding the experiment
100% of subjects claimed to have an account with at least one social media
site, with 92 % asserting that they maintain at least one “comprehensive” social
media profile. On average, subjects claimed to participate in 3.4 different social
networks, including Facebook, Instagram, Twitter, LinkedIn, Pinterest, Google+
and Vine.

6.1 Experimental Results: Peer Pressure Effects on Privacy
Preferences

With respect to peer pressure, subjects were queried during the initial survey
on several points related to privacy and peer pressure in content sharing. Over
half (54.7 %) of subjects admitted to sometimes, often or always posting content
with one privacy setting and later changing their mind and revising this setting,
with 70 % of these subjects citing peer pressure as the reason for the revision.

In Tablel, we present the results of a one-factor analysis of variance
(ANOVA) on change from baseline privacy selections for users treated with skew-
down, skew-up or random peer influence in Phase 2. To quantify privacy options,
welet I; = 1,1, =2,13 =3, 14 =4 and [5 = 5. For each subject, for each image,
we let change from baseline be defined as (value of selection in Phase 2)-(value
of selection in Phase 1). Note that a significant change in user sharing is detected
in both subgroups subjected to a consistent peer pressure in either direction of
more or less sharing. As might be expected, no significant change in sharing is
detected in the random pressure control group. Of note, the most statistically
significant change is observed when users are exposed to skew-down peer pres-
sure, that is, when participants observe a change of their friends’ privacy settings
toward more conservative choices. This finding is consistent with the participants
response of change of settings mentioned above, and also in line with existing
research in this field [4,37], which has shown how users may change their mind
with respect to sharing and may tend to be more conservative once they see the
“network” behavior or reactions to their choices.

Follow-on ANOVA analyses blocking on subjects and images also give insight
into more subtle user behavior dynamics. In both the skew-up and skew-down
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groups, subject effects (i.e., the affect a subject’s identity had on output privacy
settings) were highly significant (p = 0). This finding is intuitive and serves
as strong justification for the inclusion of the parameter v; in Eq.2. That is,
we must consider individual differences in susceptibility to peer pressure when
implementing this type of model. Interestingly, an image effect was present in one
of the experimental groups as well. Specifically, a significant effect was observed
when image number was treated as an input in the skew-up group (p = 0.0013)
but not for skew-down (p = 0.1887). When considered alongside the strength of
skew-down peer pressure effects noted in Table 1, we suggest that these finding
may again indicate users’ readiness to make more conservative sharing choices
for all photos, but hesitance to share more freely for specific images they would
prefer to keep private, even when influenced to do so.

Table 1. Change from baseline after exposure to peer influence (Phase 2)

Subjects | Average Change | p-Value
Skew-Down | 17 -0.305 0.0067
Skew-Up 19 +0.192 0.049
Random 17 -0.086 0.375

6.2 Experimental Results: Iterative Approximation of Privacy
Preferences

We have argued that using an approximation algorithm is both necessary and
realistic, in the context of our bi-level optimization problem describing the site’s
task of choosing an optimal set of privacy options to offer its users. We here
seek to validate the notion that an iterative approach like the one we take in
our proposed algorithm does not disturb players’ optimal privacy selections as
determined in the theoretical case. Following we present the results of Phase 3
of the experiment, as described above.

For this analysis, we again separate study participants into subgroups by the
peer pressure to which they were exposed, if any. Table 2 gives the results of a
one-factor analysis of variance (ANOVA) on change from Phase 2 privacy selec-
tions for users treated with skew-down, skew-up or random peer influence. As a
control group for this Phase, we keep a subset of subjects away from any expo-
sure to peer pressure (that is, these subjects did not participate in Phase 2) and
compare their results for Phase 3 with their Phase 1 baseline selections. Findings
here indicate no significant change in users’ final privacy selections due to the
iterative nature of presentation of the options in any of the experimental groups,
validating the approximation-algorithm approach as a reasonable alternative for
modelling user behavior in cases that closed-form solutions are intractable.

We note here that Phase 3 studies user behavior given that options I, I and
so forth are presented additively one by one. The approximation algorithm as it
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Table 2. Change from Phase 2 selections in the iterated model (Phase 3)

Subjects | Average Change | p-Value
No Peer Pressure | 7 0.086 0.774
Skew-Down 17 -0.28 0.19
Skew-Up 19 -0.2 0.282
Random 17 -0.117 0.527

225

presented is deployed accordingly, but also includes a routine for the selection
of the set of values {I;} making very small, incremental changes to each I; and
monitoring users’ responses throughout.

7 Conclusion

In this paper, we have presented a model for privacy decision-making in the
context of online social networks. We have modeled the site’s role in setting
privacy policies that can help to retain users while also optimizing the site’s
payoff. Our work lays the foundation for further game-theoretic modeling of
privacy-related behaviors in online SNs toward the better understanding of the
interplay and repercussions of site and user choices.

As future work, we will refine the outlined approximation algorithm, with
particular focus on how incremental privacy boundaries could actually be offered
to end users. We also plan to investigate how changes to the social network
topology and user attitudes towards privacy over time may affect this game.
Finally, we plan to carry out more extensive user studies to validate our findings.
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