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Preface

Computers and IT infrastructure play ever-increasing roles in our daily lives. The
technological trend toward higher computational power and ubiquitous connectivity
can also give rise to new risks and threats. To ensure economic growth and prosperity,
nations, corporations, and individuals constantly need to reason about how to protect
their sensitive assets.

Security is hard: it is a multifaceted problem that requires a careful appreciation of
many complexities regarding the underlying computation and communication tech-
nologies and their interaction and interdependencies with other infrastructure and
services. Besides these technical aspects, security provision also intrinsically depends
on human behavior, economic concerns, and social factors. Indeed, the systems whose
security is concerned are typically heterogeneous, large-scale, complex, dynamic,
interactive, and decentralized in nature.

Game and decision theory has emerged as a valuable systematic framework with
powerful analytical tools in dealing with the intricacies involved in making sound and
sensible security decisions. For instance, game theory provides methodical approaches
to account for interdependencies of security decisions, the role of hidden and asym-
metric information, the perception of risks and costs in human behavior, the incentives/
limitations of the attackers, and much more. Combined with our classic approach to
computer and network security, and drawing from various fields such as economic,
social, and behavioral sciences, game and decision theory is playing a fundamental role
in the development of the pillars of the “science of security.”

Since its inception in 2010, GameSec has annually attracted original research in both
theoretical and practical aspects of decision making for security and privacy. The past
editions of the conference took place in Berlin (2010), College Park (2011), Budapest
(2012), FortWorth (2013), and Los Angeles (2014). This year (2015), it was hosted for
the first time in the UK, in the heart of London.

We received 37 submissions this year from which, 16 full-length and five short
papers we selected after a thorough review process by an international panel of scholars
and researchers in this field. Each paper typically received three reviews assessing the
relevance, novelty, original contribution, and technical soundness of the paper. The
topics of accepted papers include applications of game theory in network security,
economics of cybersecurity investment and risk management, learning and behavioral
models for security and privacy, algorithm design for efficient computation, and
investigation of trust and uncertainty, among others.

We would like to thank Springer for its continued support of the GameSec con-
ference and for publishing the proceedings as part of their Lecture Notes in Computer



Series (LNCS) with special thanks to Anna Kramer. We anticipate that researchers in
the area of decision making for cybersecurity and the larger community of computer
and network security will benefit from this edition.

November 2015 MHR Khouzani
Emmanouil Panaousis

George Theodorakopoulos

VI Preface
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A Game-Theoretic Approach to IP Address
Randomization in Decoy-Based Cyber Defense

Andrew Clark1(B), Kun Sun2, Linda Bushnell3, and Radha Poovendran3

1 Department of Electrical and Computer Engineering,
Worcester Polytechnic Institute, Worcester, MA 01609, USA

aclark@wpi.edu
2 Department of Computer Science, College of William and Mary,

Williamsburg, VA 23187, USA
ksun@wm.edu

3 Network Security Lab, Department of Electrical Engineering,
University of Washington, Seattle, WA 98195, USA

{lb2,rp3}@uw.edu

Abstract. Networks of decoy nodes protect cyber systems by distract-
ing and misleading adversaries. Decoy defenses can be further enhanced
by randomizing the space of node IP addresses, thus preventing an adver-
sary from identifying and blacklisting decoy nodes over time. The decoy-
based defense results in a time-varying interaction between the adversary,
who attempts to identify and target real nodes, and the system, which
deploys decoys and randomizes the address space in order to protect the
identity of the real node. In this paper, we present a game-theoretic frame-
work for modeling the strategic interaction between an external adversary
and a network of decoy nodes. Our framework consists of two components.
First, we model and study the interaction between the adversary and a
single decoy node. We analyze the case where the adversary attempts to
identify decoy nodes by examining the timing of node responses, as well
as the case where the adversary identifies decoys via differences in pro-
tocol implementations between decoy and real nodes. Second, we formu-
late games with an adversary who attempts to find a real node in a net-
work consisting of real and decoy nodes, where the time to detect whether
a node is real or a decoy is derived from the equilibria of the games in
first component. We derive the optimal policy of the system to random-
ize the IP address space in order to avoid detection of the real node, and
prove that there is a unique threshold-based Stackelberg equilibrium for
the game. Through simulation study, we find that the game between a
single decoy and an adversary mounting timing-based attacks has a pure-
strategy Nash equilibrium, while identification of decoy nodes via protocol
implementation admits only mixed-strategy equilibria.

1 Introduction

Cyber systems are increasingly targeted by sophisticated attacks, which monitor
the system over a period of time, identify vulnerabilities, and mount efficient and

This work was supported by ARO grant W911NF-12-1-0448.

c© Springer International Publishing Switzerland 2015
MHR Khouzani et al. (Eds.): GameSec 2015, LNCS 9406, pp. 3–21, 2015.
DOI: 10.1007/978-3-319-25594-1 1



4 A. Clark et al.

effective attacks that are tailored to those vulnerabilities. An emerging approach
to thwarting such attacks is through a moving target defense, which proactively
varies the system protocol, operating system, and software configurations over
time, thus rendering vulnerabilities observed by the adversary obsolete before
the attack takes place.

One class of moving target defense consists of networks of virtual nodes,
which are created and managed by the system and include both real nodes that
implement services such as web servers and databases, as well as decoy nodes
whose only purpose is to mislead the adversary [18]. If the real and decoy nodes
have valid IP addresses that are visible to an external adversary, then the adver-
sary may mount attacks on decoy nodes instead of the real node, wasting the
resources of the adversary and providing information to the system regarding the
goals and capabilities of the adversary. In order to maximize the probability that
the adversary interacts with a decoy node instead of a real node, the decoy nodes
should outnumber the real nodes in the network. When the number of decoys
is large, however, the amount of memory and CPU time that can be allocated
to each decoy is constrained, thus limiting the performance and functionality of
each decoy.

While limiting the functionality of decoy nodes reduces their memory and
processing cost, it also enables the adversary to detect decoys by observing devia-
tions of the timing and content of node responses from their expected values [16].
Once a decoy node has been detected, its IP address is added to the adversary’s
blacklist and the decoy is not contacted again by the adversary. By querying
and blacklisting decoy nodes over a period of time, the adversary can eventually
eliminate all decoys from consideration and mount attacks on the real node. The
time required to blacklist the decoy nodes depends on the amount of time needed
to identify a node as real or a decoy, which is a function of the resources given
to each decoy.

The effectiveness of decoy-based defenses can be further improved by peri-
odically randomizing the IP address space [3]. IP randomization renders any
blacklist obsolete, effectively forcing the adversary to re-scan all network nodes.
This randomization, however, will also terminate higher-layer protocols such
as TCP on the real nodes, which depend on a stable IP address and must be
reestablished at a cost of extra latency to valid users [1]. Randomization of the IP
address space should therefore be performed based on a trade-off between the
performance degradation of valid users and the security benefit of mitigating
attacks.

The security benefit of IP randomization and decoy-based defenses depends
on the behavior of the adversary. The ability of the decoy nodes to mislead the
adversary is determined by the adversary’s strategy for detecting decoy nodes.
Similarly, frequent IP randomization increases the latency of real users and hence
is only warranted when the adversary scans a large number of nodes. Modeling
and design of address randomization in decoy-based defenses should therefore
incorporate the strategic interaction between an intelligent adversary and the
system defense. Currently, however, no such analytical approach exists.
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In this paper, we present a game-theoretic framework for modeling and design
of decoy-based moving target defenses with IP randomization. Our modeling
framework has two components, namely, the interaction between a single virtual
node (real or decoy) and an adversary attempting to determine whether the node
is real or a decoy, as well as the interaction between an adversary and a network
of virtual nodes. These two components are interrelated, since the equilibria of
the interaction games between a single virtual node and an adversary determine
the time required for an adversary to detect a decoy node, and hence the rate
at which an adversary can scan the network and identify real nodes. We make
the following specific contributions:

– We develop game-theoretic models for two mechanisms used by adversaries
to detect decoy nodes. In the timing-based mechanism, the adversary exploits
the increased response times of resource-limited decoy nodes to detect decoys.
In the fingerprinting-based mechanism, the adversary initiates a communica-
tion protocol with a node and, based on the responses, determines whether
the node has fully implemented the protocol, or is a decoy with a partial
implementation of the protocol.

– In the case of timing-based detection of a single decoy, we formulate a two-
player game between an adversary who chooses the number of probe messages
to send and a system that chooses the response time of the decoy subject
to resource constraints. The utility of the system is equal to the total time
spent by the adversary to query the network. We develop an efficient iterative
procedure that converges to a mixed-strategy Nash equilibrium of the game.

– We present a game-theoretic model of decoy detection via protocol finger-
printing, in which we introduce protocol finite state machines as a modeling
methodology for decoy detection. Under our approach, the system decides
which states to implement, while the adversary attempts to drive the proto-
col to a state that has not been implemented in order to detect the decoy. We
introduce algorithms for computing Nash equilibria of this interaction, which
determine the optimal number of high- and low-interaction decoy nodes to be
deployed.

– At the network level, we formulate a two-player Stackelberg game, in which the
system (leader) chooses an IP address randomization policy, and the adver-
sary (follower) chooses a rate at which to scan nodes after observing the
randomization policy. We prove that the unique Stackelberg equilibrium of
the game is achieved when both players follow threshold-based strategies. For
the attacker, the trade-off is between the cost of scanning and the benefit of
identifying and attacking the real node.

– We investigate the performance of the system under our framework through
simulation study. For the timing-based game, we find that a pure strategy
Nash equilibrium exists in all considered cases. For the fingerprinting game,
we compute a mixed-strategy equilibrium, implying that at equilibrium the
system should contain both high-interaction nodes that implement the full
protocol and low-interaction nodes that only implement a subset of protocol
states.
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The paper is organized as follows. We discuss related work in Sect. 2. The
system and adversary models are presented in Sect. 3. Our game-theoretic formu-
lation for the interaction between the adversary and a single decoy node is given
in Sect. 4. The interaction between an adversary scanning the decoy network
and the system deciding when to randomize is considered in Sect. 5. Simulation
results are contained in Sect. 6. Section 7 concludes the paper.

2 Related Work

Moving target defense is currently an active area of research aimed at prevent-
ing adversaries from gathering system information and launching attacks against
specific vulnerabilities [13]. Moving target defense mechanisms in the literature
include software diversity [9] and memory address layout randomization [10].
These approaches are distinct from decoy generation and IP address randomiza-
tion and hence are orthogonal from our line of work.

Decoy networks are typically created using network virtualization packages
such as honeyd [17]. Empirical studies on detection of decoys have focused on
protocol fingerprinting, by identifying differences between the protocols simu-
lated by decoys and the actual protocol specifications, including differences in
IP fragmentation and implementation of TCP [11,22]. Decoy nodes can also be
detected due to their longer response times, caused by lack of memory, CPU, and
bandwidth resources [16]. The existing studies on decoy networks, however, have
focused on empirical evaluation of specific vulnerabilities of widely-used decoy
systems, rather than a broader analytical framework for design of dynamic decoy
networks.

IP address space randomization has been proposed as a defense against scan-
ning worms [1,3]. In [21], a framework for deciding when to randomize the IP
address space in the presence of hitlist worms, based on a given estimate of
whether the system is in a secure or insecure state, was proposed. A decision-
theoretic approach to IP randomization in decoy networks was recently presented
in [8], but this approach was concerned with the optimal system response to a
given adversary strategy rather than the interaction between an intelligent adver-
sary and the system. Furthermore, the work of [8] only considered timing-based
attacks on decoy networks, and did not consider fingerprinting attacks.

Game-theoretic techniques have been used to model and mitigate a variety of
network security threats [2]. A dynamic game-theoretic approach to designing a
moving target defense configuration to maximize the uncertainty of the adversary
was proposed in [26]. The method of [26], however, does not consider the timing of
changes in the attack surface, and hence is complementary to our approach. The
FlipIt game was formulated in [24] to model the timing of host takeover attacks;
the FlipIt game does not, however, consider the presence of decoy resources.

In [6], platform randomization was formulated as a game, in which the goal of
the system is to maximize the time until the platform is compromised by choosing
a probability distribution over the space of available platforms. A game-theoretic
approach to stochastic routing, in which packets are proactively allocated among
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multiple paths to minimize predictability, was proposed in [4]. In [12], game-
theoretic methods for spatiotemporal address space randomization were intro-
duced. While these approaches consider metrics such as time to compromise the
system that are intuitively similar to our approach, the formulations are funda-
mentally different and hence the resulting algorithms are not directly applicable
to our problem. To the best of our knowledge, game-theoretic approaches for
decoy-based moving-target defenses are not present in the existing literature.

3 Model and Preliminaries

In this section, we present the models of the virtual network and the adversary.

3.1 Virtual Network Model

We consider a network consisting of n virtual nodes, including one real node
and (n − 1) decoy nodes. Let π =

(
1 − 1

n

)
denote the fraction of nodes that are

decoys. Decoy and real nodes have valid IP addresses that are chosen at random
from a space of M � n addresses, and hence decoy and real nodes cannot
be distinguished based on the IP address. The assumption M � n ensures
that there is sufficient entropy in the IP address space for randomization to be
effective. Decoy nodes are further classified as either high-interaction decoys,
which implement the full operating system including application-layer services
such as HTTP and FTP servers and SQL databases, and low-interaction decoys,
which implement only partial versions of network and transport layer protocols
such as IP, TCP, UDP, and ICMP [18].

Decoy nodes respond to messages from nodes outside the network. The decoy
responses are determined by a configuration assigned to each decoy. Each possi-
ble configuration represents a different device (e.g., printer, PC, or server) and
operating system that can be simulated by the decoy. Decoy nodes in the same
network may have different configurations. Due to limited computation resources
assigned to them, decoys will have longer communication delays than real nodes.
The additional delay depends on the system CPU time and memory allocated to
the decoy. Decoy node configurations can be randomized using software obfus-
cation techniques [15].

Based on models of service-oriented networks such as web servers, we assume
that real nodes receive connection requests from valid users according to an
M/G/1 queuing model [5]. Under this model, the service time of each incoming
user is identically distributed and independent of both the service times of the
other users and the number of users currently in the queue.

Since valid users have knowledge of the IP address of the real node, connec-
tions to decoy nodes are assumed to originate from errors or adversarial scanning.
Decoy nodes will respond to suspicious, possibly adversarial queries in order to
distract the adversary and delay the adversary from identifying and targeting
the real node.
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The virtual network is managed by a hypervisor, which creates, configures,
and removes decoy nodes [7]. The hypervisor is assumed to be trusted and
immune to compromise by the adversary. In addition to managing the decoy
nodes, the hypervisor also assigns IP addresses to the nodes. In particular, the
hypervisor can assign a new, uniformly random IP address to each node at any
time. By choosing the new IP addresses to be independent of the previous IP
addresses, the hypervisor prevents the adversary from targeting a node over a
period of time based on its IP address. All IP addresses are assumed to be
randomized simultaneously; generalizations to randomization policies that only
update a subset of IP addresses at each time step are a direction for future
work. Any communication sessions between valid users and the real node will
be terminated when randomization occurs. Upon termination, the server sends
the updated IP address to each authorized client. Each valid user must then
reconnect to the real node, incurring an additional latency that depends on the
connection migration protocol [23].

3.2 Adversary Model

We consider an external adversary with knowledge of the IP address space. The
goal of the adversary is to determine the IP address of the real node in order
to mount further targeted attacks. The adversary is assumed to know the set
of possible IP addresses, if necessary by compromising firewalls or proxies, and
attempts to identify the real node by sending query messages to IP addresses
within this space. Based on the response characteristics, the adversary can eval-
uate whether a node is real or a decoy based on either timing analysis or protocol
fingerprinting, as described below.

In timing-based blacklisting of nodes, an adversary exploits the response
timing differences between real nodes and decoys. Since the decoy nodes have
fewer CPU and memory resources than the real node, their response times will
be longer. This longer delay can be used for detection. We assume that the
adversary knows the response time distribution of a typical real node, which can
be compared with response times of possible decoys for detection.

Protocol fingerprinting exploits the fact that the decoy nodes do not actually
implement an operating system, but instead simulate an operating system using
a prespecified configuration. As a result, differences between the decoys’ behavior
and the ideal behavior of the operating system allow the adversary to identify the
decoy. Typical fingerprints include protocol versions, such as the sequence and
acknowledgment numbers in TCP packets, the TCP options that are enabled,
and the maximum segment size [25].

4 Modeling Interaction with Single Decoy

In this section, we provide a game-theoretic formulation for the interaction
between the adversary and a single decoy node. We present a game-theoretic
formulation for two attack types. First, we consider an adversary who attempts
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to identify decoy nodes through timing analysis. We then model detection based
on fingerprinting techniques.

4.1 Timing-Based Decoy Detection Game

In timing-based detection, the adversary sends a sequence of probe packets (such
as ICMP echo messages) and observes the delays of the responses from the
node [16]. Let Zk denote the delay of the response to the k-th probe packet.
Based on the response times, the adversary decides whether the node is real or
a decoy.

We let H1 denote the event that the response is from a real node and
H0 denote the event that the response is from a decoy. The response times
are assumed to be independent and exponentially distributed [16] with mean
μ1 = 1/λ1 for real nodes and μ0 = 1/λ0 for decoys, where λ1 and λ0 repre-
sent the response rates of the real and decoy nodes, respectively. Note that the
exponential response time is for a single query, while the M/G/1 assumption of
Sect. 3.1 concerns the total length of a session between a valid user and the real
node. The number of queries made by the adversary is denoted Q.

The adversary’s utility function consists of three components, namely, the
amount of time spent querying the node, the probability of falsely identifying a
decoy as the real node (false positive), and the probability of falsely identifying
the real node as a decoy (false negative). We let PFP and PFN denote the
probabilities of false positive and false negative, respectively. The expected time
spent querying is equal to (πμ0 + (1 − π)μ1)Q, where π denotes the fraction of
decoy nodes.

The action space of the adversary consists of the number of times Q that
the virtual node is queried, so that Q ∈ Z≥0. We assume that the adversary
makes the same number of queries Q to each node, corresponding to a pre-
designed, non-adaptive scanning strategy that does not consider feedback from
past interactions. The system’s action space consists of the mean of the decoy
response time μ0 ∈ [0,∞).

The payoff of the adversary is equal to the total time required to scan the
entire network. The expected utility of the adversary is given by

UA(Q,μ0) = −(πμ0 + (1 − π)μ1)Q
−πcFP PFP (Q,μ0) − (1 − π)cFNPFN (Q,μ0), (1)

where cFP and cFN denote the delays arising from false positive and false neg-
ative, respectively. The first term of (1) is the expected time to query a node.
The second term is the additional time spent querying decoy nodes after a false
positive occurs, which causes the adversary to attempt additional, time-intensive
attacks on the decoys. The third term is the additional time spent querying decoy
nodes after a false negative, when an adversary mistakes a real node for a decoy
and scanning the rest of the network.

The cost of a given response rate is the additional delay experienced by the
real nodes. Assuming that requests to the real node occur at rate θ and the
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network has a total capacity of c with variance σ2, which is determined by the
bandwidth, CPU, and memory constraints of the physical device, this delay is
equal to g(μ0) = σ2θ

2(1−θ/(c−1/μ0))
+ 1

c−1/μ0
, based on the assumption that the real

node is an M/G/1 system [20, Chap. 8.5] (the M/G/1 assumption follows from
the assumption of a single real node; generalization to M/G/m networks with
m real nodes is a direction of future work). The payoff of the system is equal to

US(Q,μ0) = (μ0π + (1 − π)μ1)Q + πcFP PFP (Q,μ0)
+(1 − π)cFNPFN (Q,μ0) − g(μ0). (2)

The utility of the system is the total time spent by the adversary scanning the
network, which increase the security of the real node.

In what follows, we introduce an algorithm for computing the Nash equi-
librium of the timing-based interaction game. We first introduce a two-player
zero-sum game with equivalent Nash equilibrium strategies. We then prove con-
cavity of the utility functions of each player, implying that a unique equilibrium
exists that can be computed using fictitious play.

Proposition 1. Define the utility function

ŨA(Q,μ0) = −πμ0Q − (1 − π)μ1Q − πcFP PFP (Q,μ0)
−(1 − π)cFNPFN (Q,μ0) + g(μ0).(3)

Then a pair of strategies (Q∗, μ∗
0) is a Nash equilibrium for the two-player game

between a player 1 with utility function ŨA and a player 2 with utility function
US if and only if it is the Nash equilibrium of a two-player game where player 1
has utility function UA and player 2 has utility function US.

Proof. Let (Q∗, μ∗
0) be a Nash equilibrium for the game with utility functions ŨA,

US . The fact that μ∗
0 is a best response to Q∗ for the game with utility functions

UA and US follows trivially from the fact that US is the system’s utility function
in both cases. If Q∗ satisfies ŨA(Q∗, μ∗

0) ≥ ŨA(Q,μ∗
0) for all Q > 0, then

ŨA(Q∗, μ∗
0) + g(μ∗

0) ≥ ŨA(Q,μ∗
0) + g(μ∗

0),

and hence UA(Q∗, μ∗
0) ≥ UA(Q,μ∗

0), since UA(Q,μ0) = ŨA(Q,μ0)+ g(μ0) for all
(Q,μ0). Thus Q∗ is the best response to μ∗

0 under utility function UA. The proof
of the converse is similar.

By Proposition 1, it suffices to find a Nash equilibrium of the equivalent zero-
sum game with adversary and system utilities ŨA and US , respectively. As a
first step, we prove two lemmas regarding the structure of ŨA and US .

Lemma 1. Let ε > 0. Then there exists Q̂ and a convex function f̂ : R → R

such that |f̂(Q) − ŨA(Q,μ0)| < ε for all Q > Q̂.

Proof. Define f(Q) = −(πμ0+(1−π)μ1)Q−cFP PFP (Q,μ0)−cFNPFN (Q,μ0)+
g(μ0). The first two terms are linear in Q and hence convex, while the last



A Game-Theoretic Approach to IP Address Randomization 11

term does not depend on Q. In computing the probability of false positive, we
first observe that the maximum-likelihood decision rule for the adversary is to
decide that the node is real if μ1cFP P1(Z1, . . . , ZQ) > μ0cFNP0(Z1, . . . , ZQ) and
that the node is a decoy otherwise. Under the exponential assumption, this is
equivalent to

Q log
λ1

λ0
− (λ1 − λ0)

Q∑

j=1

Zj > log
μ0cFN

μ1cFP
.

Hence the probability of false positive is equal to

PFP (Q) = Pr

⎛

⎝Q log
λ1

λ0
− (λ1 − λ0)

Q∑

j=1

Zj > log
μ0cFN

μ1cFP

∣
∣H0

⎞

⎠ .

Rearranging terms yields

PFP (Q) = Pr

(

Z <
log λ1 − log λ0

λ1 − λ0
−

log μ0cFN

μ1cFP

Q(λ1 − λ0)

∣
∣H0

)

,

where Z = 1
Q

∑Q
j=1 Zj .

By the Central Limit Theorem, Z can be approximated by an N(μ0, μ
2
0/Q)-

Gaussian random variable for Q sufficiently large. Letting x = log λ1−log λ0
λ1−λ0

, the
probability of false positive is equal to Pr(X <

√
Q(xλ0 − 1)) where X is an

N(0, 1)-Gaussian random variable, so that

PFP =
1√
2π

∫ √
Q(xλ0−1)

−∞
exp

(
−x2

2

)
dx.

Differentiating with respect to Q yields

xλ0 − 1√
2π

1
2
√

Q
exp

(
−Q(xλ0 − 1)2

2

)
,

which is increasing in Q since xλ0 < 1. Hence the probability of false positive can
be approximated by a convex function for Q sufficiently large. The derivation
for the probability of false negative is similar.

Approximate concavity of UA implies that the best response of the adversary
can be computed by enumerating the values of UA(Q,μ0) for Q < Q̂, and using
convex optimization to find the optimal value when Q ≥ Q̂.

The following lemma establishes concavity of the system utility function US

as a function of μ0 for a given T . The concavity of US enables efficient compu-
tation of the Nash equilibrium.
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Lemma 2. The function US is concave as a function of μ0.

Proof. It suffices to show that each term of US in Eq. (2) is concave. The first
term of US is linear in μ0 and therefore concave. The second derivative test
implies that g(μ0) is convex as a function of μ0, and hence −g(μ0) is concave. By
the analysis of Lemma 1, in proving the concavity of the false positive probability,
it is enough to show that Pr

(
X < x

√
Q

μ0
− √

T
)

is concave as a function of μ0.
The derivative of x

μ0
with respect to μ0 is equal to

1
μ0

(
μ0
μ1

− 1
)

− (log μ0 − log μ1)
(

1
μ1

)

(
μ0
μ1

− 1
)2 ,

which is decreasing in μ0. Hence the derivative of the false positive probability
is equal to

1
μ0

(
μ0
μ1

− 1
)

− (log μ0 − log μ1)
(

1
μ1

)

(
μ0
μ1

− 1
)2 exp

⎛

⎝−
(

x
√

Q
μ0

− √
Q

)

2

⎞

⎠

2

,

which is monotonically decreasing in μ0 and hence concave.

Fictitious play can be used to find the Nash equilibrium of the interaction
between the adversary and the network. The algorithm to do so proceeds in
iterations. At each iteration m, there are probability distributions pm

A and pm
S

defined by the prior interactions between the system and adversary. The system
chooses μ0 in order to maximize EpA

(US(μ0)) =
∑

Q pm
A (Q)US(Q,μ0), while

the adversary chooses Q to maximize Epm
S

(UA(Q)) =
∫ ∞
0

pm
S (μ0)UA(Q,μ0) dμ0.

The strategies of the system and adversary at each iteration can be computed
efficiently due to the concavity of US and the approximate convexity of UA.
Convergence is implied by the following proposition.

Proposition 2. The fictitious play procedure converges to a mixed-strategy Nash
equilibrium.

Proof. Since the utility functions satisfy ŨA(Q,μ0)+US(Q,μ0) = 0, the iterative
procedure implies converge to a mixed-strategy Nash equilibrium [19, pg. 297].
Furthermore, by Proposition 1, the mixed-strategy equilibrium is also an NE for
the game with utility functions UA and US .

4.2 Fingerprinting-Based Decoy Detection Game

Operating system fingerprinting techniques aim to differentiate between real
and decoy nodes by exploiting differences between the simulated protocols of
the decoy and the true protocol specifications. In order to quantify the strate-
gies of the adversary and the system, we model the protocol to be simulated
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(e.g., TCP) as a finite state machine F , defined by a set of states S, a set
of inputs I, and a set of outputs O. The transition function δ : I × S → S
determines the next state of the system as a function of the input and current
state, while the output is determined by a function f : I × S → O. We write
F = (S, I,O, δ, f).

The real and decoy protocols are defined by finite state machines FR =
(SR, IR, OR, δR, fR) and FD = (SD, ID, OD, δD, fD). The goal of the decoy
protocol is to emulate the real system while minimizing the number of states
required. Under this model, the adversary chooses a state s ∈ SR and attempts to
determine whether that state is implemented correctly in the decoy, i.e., whether
the output o corresponding to an input i satisfies o = fR(s, i). In order to reach
state s, the adversary must send a sequence of ds inputs, where ds denotes the
minimum number of state transitions required to reach the state s from the
initial state s0.

The system’s action space is defined by the set of states SD, while the adver-
sary’s action space is the set s that the adversary attempts to reach. The choice of
s will determine the sequence of messages sent by the adversary. The adversary’s
utility function is therefore given by

UA(s, SD) = −dS − cFP PFP (s, SD) − cFNPFN (s, SD).

We note that the real node implements the state s correctly for all s ∈ SR, and
hence the probability of false negative is zero. Furthermore, we assume that the
decoy returns the correct output at state s with probability 1 if s ∈ SD and
returns the correct output with probability 0 otherwise. Hence the adversary’s
utility function is

UA(s, SD) = −ds − 1(s ∈ SD)cFP , (4)

where 1(·) denotes the indicator function.
For the system, the utility function is equal to the total time spent by the

adversary querying a decoy node, minus the memory cost of the decoys. This
utility is equal to

US(s, SD) = ds + 1(s ∈ SD)cFP − cD(SD), (5)

where cD(SD) is the cost of implementing a set of states. In order to avoid
state space explosion for the system, we restrict the defender to strategies that
implement all states within k steps of the initial state, where k ∈ {0, . . . , |SD|}.
Intuitively, a strategy that implements a state s ∈ SD but does not implement
a state s′ ∈ SD with ds′ < ds may be suboptimal, because the protocol may
reach state s before state s′, thus enabling the adversary to identify the decoy
in fewer steps.

A fictitious play algorithm for computing a mixed-strategy equilibrium is
as follows. Probability distributions πm

A and πm
S , which represent the empirical

frequency of each strategy of the adversary and system up to iteration m, are
maintained. At the m-th iteration, the strategies k∗ = arg maxEπm

A
(k) and

s∗ = arg max {Eπm
S

(s)} are computed and the corresponding entries of πm+1
A
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and πm+1
S are incremented. Since there is an equivalent zero-sum game with

adversary utility function ŨA(s) = ds + 1(s ∈ SD)cFP − cD(SD), the empirical
frequencies of each player converge to the mixed strategy equilibrium [19].

5 Characterization of Optimal IP Address Randomization
Strategy by Network

In this section, we present a game-theoretic formulation for the interaction
between the virtual network, which decides when to randomize the IP address
space, and the adversary, which decides the scanning strategy. The optimal ran-
domization policy of the network and the probability of detecting the real node
at equilibrium are derived.

5.1 Game Formulation

We consider a game in which the adversary chooses a scanning strategy, deter-
mined by the number of simultaneous connections α. The parameter α is
bounded above by αmax, which is chosen by the hypervisor to limit the total
number of connections and hence avoid overutilization of the system CPU. The
adversary incurs a cost ω for maintaining each connection with a node. The
number of nodes scanned by the adversary per unit time, denoted Δ, is given
by Δ = α

τ , where τ is the time required to scan each node. The parameter τ
depends on the detection method employed by the adversary, and is equal to the
Nash equilibrium detection time of Sect. 4.1 if timing-based detection is used or
the Nash equilibrium detection time of Sect. 4.2 if fingerprint-based detection is
used.

At each time t, the system decides whether to randomize the IP address
space; we let t = 0 denote the time when the previous randomization took place.
Let R denote the time when randomization occurs. The system incurs two costs
of randomization, namely, the probability that the adversary detects the real
node and the number of connections that are terminated due to randomization.
Since the real and decoy nodes cannot be distinguished based on IP addresses
alone, the probability of detection at time t is equal to the fraction of nodes that
are scanned up to time t, Δt

n .
The cost resulting from terminating connections is equal to the delay β result-

ing from migrating each connection to the real node’s new IP address; TCP
migration mechanisms typically have cost that is linear in the number of con-
nections [23]. The cost of breaking real connections is therefore equal to βY (t),
where Y (t) is equal to the number of connections to the real node, so that the
utility function of the system is given by US(α,R) = −E

(
α
τnR + βY (R)

)
.

For the adversary, the utility is equal to the detection probability, minus
the cost of maintaining each connection, for a utility function of UA(α,R) =
E

(
α
τnR − ωα

)
. The resulting game has Stackelberg structure, since the system

first chooses the randomization policy, and the adversary then chooses a scanning
rate based on the randomization policy.
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5.2 Optimal Strategy of the System

The information set of the system is equal to the current number of valid sessions
Y (t) and the fraction of decoy nodes scanned by the adversary D(t) at time t.
The goal of the system is to choose a randomization time R in order to minimize
its cost function, which can be expressed as the optimization problem

minimize E(D(R) + βY (R))
R

(6)

where R is a random variable. The randomization policy can be viewed as a
mapping from the information space (Y (t),D(t)) at time t to a {0, 1} variable,
with 1 corresponding to randomizing at time t and 0 corresponding to not ran-
domizing at time t. Define Lt to be the number of decoy nodes that have been
scanned during the time interval [0, t].

The number of active sessions Y (t) follows an M/G/1 queuing model with
known arrival rate ζ and average service time 1/φ. We let 1/φt denote the
expected time for the next session with the real node to terminate, given that a
time t has elapsed since the last termination. In what follows, we assume that φt

is monotonically increasing in t; this is consistent with the M/M/1 and M/D/1
queuing models. The following theorem, which generalizes [8, Theorem 1] from
an M/M/1 to an M/G/1 queuing model, describes the optimal strategy of the
system.

Theorem 1. The optimal policy of the system is to randomize immediately at
time t if and only if Lt = n, Y (t) = 0, or Δ

n φ + βζφ − β > 0, and to wait
otherwise.

Proof. In an optimal stopping problem of the form (6), the optimal policy is to
randomize at a time t satisfying

D(t) + βY (t) = sup {E(D(t′) + βY (t′)|D(t), Y (t)) : t′ ≥ t}.

If Lt = n, then the address space must be randomized to avoid detection of the
real node. If Y (t) = 0, then it is optimal to randomize since D(t) is increasing
as a function of t.

Suppose that Lt < n and Y (t) > 0. Let ξ1, ξ2, . . . denote the times when
connections terminate. We prove by induction that, for each l, t′ ∈ [ξl−1, ξl]
implies that E(D(t′) + βY (t′)|Y (t)) > D(t) + βY (t). First, consider l = 1,
with ξ0 = t. Then if t′ ∈ [ξ0, ξ1), D(t′) + βY (t′) > D(t) + βY (t), since D is
nondecreasing in time and no connections have terminated since time t. At time
ξ1, we have that

E(D(ξ1) + βY (ξ1)|Y (t)) =
Δ

n
E(ξ1) (7)

+β(Y (t) + ζE(ξ1) − 1) (8)

=
(

Δ

n
+ βζ

)
φ + βY (t) − β (9)
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and so E(D(ξ1) + βY (ξ1)|Y (t)) < D(t) + βY (t) iff Δ
n φ + βζφ − β > 0.

Now, suppose that the result holds up to (l − 1). By a similar argument,
E(D(ξl−1) + βY (ξl−1)|Y (t)) < E(D(t′) + βY (t′)|Y (t)) for all t′ ∈ [ξl−1, ξl). The
condition

E(D(ξl−1) + βY (ξl−1)|Y (t)) < E(D(ξl) + βY (ξl)|Y (t))

holds iff Δ
n φ + βζφ − β > 0.

This result implies that a threshold-based policy is optimal for randomization
over a broad class of real node dynamics.

5.3 Optimal Strategy of the Adversary

The optimal scanning rate is the solution to

maximize E(D(R) − ωα)
s.t. α ∈ [0, αmax] (10)

which is a trade-off between the probability of identifying the real node and the
adversary’s cost of bandwidth.

The scanning rate is assumed to be constant and chosen based on the ran-
domization policy of the system.

Since the scanning process is random, the detection probability at the time
of randomization, D(R), is equal to the fraction of the network scanned at time
R, α

τnR. Based on Theorem 1, the detection probability is given as

D(R) =
{

α
τnT0,

(
α
τn + βζ

)
φ < β

0, else (11)

where T0 is the time for the number of connections to go to 0. Hence the value
of α that maximizes D(R) is α = βτn − βζ. The overall utility of the adversary
is equal to β(τn − ζ)(τn)E(T0) − ω(βτn − βζ).

Proposition 3. Let α∗ = min {αmax, βτn
(

1
φ − 1

ζ

)
}. Then the unique Stackel-

berg equilibrium of the network interaction game is for the adversary to choose
α based on

α =
{

α∗, E(T0) − ωτn > 0
0, else (12)

Proof. The proof follows from Theorem 1 and the fact that the adversary’s utility
is negative unless the condition E(T0) − ωτn holds.

Proposition 3 indicates that the adversary follows a threshold decision rule, in
which the adversary scans the system at the rate α∗ if the expected time before
randomization, T0, exceeds the expected time to scan the entire network, τn.
The adversary can determine the optimal scanning rate over a period of time
by initially scanning at a low rate and incrementally increasing the rate until
randomization occurs, signifying that the threshold scanning rate α∗ has been
found.
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6 Simulation Study

A numerical study was performed using Matlab, consisting of three components.
First, we studied the timing-based detection game of Sect. 4.1. Second, we con-
sidered the fingerprinting-based detection game of Sect. 4.2. Third, we analyzed
the network-level interaction of Sect. 5.

For the timing-based detection game, we considered a network of 100 nodes,
with 1 real node and 99 decoy nodes. The real nodes were assumed to have
mean response time of 1, while the response time of the decoys varied in the
range [1, 1.25]. The parameter α, representing the amount of real traffic, was
set equal to 0, while the capacity c of the virtual network was equal to 1. The
trade-off parameter γ took values from 1 to 5, while the number of queries by
the adversary ranged from T = 1 to T = 50.

We observed that the timing-based detection game converged to a pure-
strategy Nash equilibrium in each simulated case. Figure 1(a) shows the mean
response time of the decoy nodes as a function of the trade-off parameter, γ. As
the cost of delays to the real nodes increases, the response time of the decoys
increases as well. For lower values of γ, it is optimal for the real and decoy nodes
to have the same response time.

For detection via system fingerprinting, we considered a state machine of
diameter 4, consistent with the simplified TCP state machine of [14], implying
that there are 5 possible strategies in the game of Sect. 4.2. We considered a
cost of 0.2 for the system and adversary, so that the normalized cost of imple-
menting the entire state machine was equal to 1. Figure 1(b) shows a histogram
representing the mixed strategy of the system. The mixed strategy indicates that
roughly half of the decoy nodes should implement only the first level of states
in the state diagram, while the remaining half should implement the entire state
machine, for this particular choice of the parameter values. This suggests an opti-
mal allocation of half high-interaction and half low-interaction decoys, leading
to a resource-expensive strategy.

In studying the network-level interaction between the system and adversary,
we considered a network of n = 100 virtual nodes with detection time τ = 5 based
on the previous simulation results. The trade-off parameter β = 0.1. The real
node was assumed to serve users according to an M/M/1 process with arrival rate
ζ = 0.4 and service rate φ = 2. The cost of each connection to the adversary was
set at ω = 2. Figure 1(c) shows the probability of detection for the adversary as
a function of the number of simultaneous connections initiated by the adversary.
The probability of detection increases linearly until the threshold is reached;
beyond the threshold, the system randomizes as soon as the scanning begins
and the probability of detection is 0. Furthermore, as the rate of connection
requests to the real node, quantified by the parameter ζ, increases, the cost
of randomization for the real node increases, leading to longer waiting times
between randomization and higher probability of detection.

As shown in Fig. 1(d), the number of dropped connections due to randomiza-
tion is zero when ζ is small, since the optimal strategy for the system is to wait
until all connections terminate. As ζ approaches the capacity of the real node,
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Fig. 1. Numerical results based on our proposed game-theoretic framework. (a) The
timing-based detection game of Sect. 4.1 converged to a pure-strategy equilibrium in
all experimental studies. The pure strategy of the system is shown as a function of
the trade-off parameter, γ. A larger value of γ results in a slower response rate due to
increased delay to the real nodes. (b) Histogram of the mixed strategy of the system
for the fingerprinting game of Sect. 4.2 using the TCP state machine. The optimal
strategy is to implement only the initial states of the protocol and the entire protocol
with roughly equal probability. (c) Detection probability as a function of the number of
simultaneous connections by the adversary. The detection probability increases before
dropping to zero when the randomization threshold is reached. (d) Number of dropped
connections when the number of adversary connections α = 5. The number of dropped
connections is initially zero, as the adversary scanning rate is below threshold, and
then increases as the rate of connection to the real node approaches the capacity of the
real node.

the number of dropped connections increases. The effectiveness of the decoy,
described by the time τ required to detect the decoy, enables the system to
operate for larger values of ζ (i.e., higher activity by the real nodes) without
dropping connections.
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7 Conclusion

We studied the problem of IP randomization in decoy-based moving target
defense by formulating a game-theoretic framework. We considered two aspects
of the design of decoy networks. First, we presented an analytical approach
to modeling detection of nodes via timing-based analysis and protocol finger-
printing and identified decoy design strategies as equilibria of two-player games.
For the fingerprinting attack, our approach was based on a finite state machine
model of the protocol being fingerprinted, in which the adversary attempts to
identify states of the protocol that the system has not implemented. Second,
we formulated the interaction between an adversary scanning a virtual network
and the hypervisor determining when to randomize the IP address space as a
two-player Stackelberg game between the system and adversary. We proved that
there exists a unique Stackelberg equilibrium to the interaction game in which
the system randomizes only if the scanning rate crosses a specific threshold.
Simulation study results showed that the timing-based game consistently has a
pure-strategy Nash equilibrium with value that depends on the trade-off between
detection probability and cost, while the fingerprinting game has a mixed strat-
egy equilibrium, suggesting that networks should consist of a mixture of high-
and low-interaction decoys.

While our current approach incorporates the equilibria of the single-node
interaction games as parameters in the network-level game, a direction of future
work will be to compute joint strategies at both the individual node and network
level simultaneously. An additional direction of future work will be to investi-
gate dynamic game structures, in which the utilities of the players, as well as
parameters such as the number of nodes and the system resource constraints,
change over time. We will also investigate “soft blacklisting” techniques, in which
an adversary adaptively increases the delays when responding to requests from
suspected adversaries, at both the real and decoy nodes. Finally, modeling the
ability of decoys to gather information on the goals and capabilities of the adver-
sary is a direction of future work.
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Abstract. Cyber insurance has been recently shown to be a promis-
ing mechanism to mitigate losses from cyber incidents, including data
breaches, business interruption, and network damage. A robust cyber
insurance policy can reduce the number of successful cyber attacks by
incentivizing the adoption of preventative measures and the implemen-
tation of best practices of the users. To achieve these goals, we first
establish a cyber insurance model that takes into account the complex
interactions between users, attackers and the insurer. A games-in-games
framework nests a zero-sum game in a moral-hazard game problem to
provide a holistic view of the cyber insurance and enable a systematic
design of robust insurance policy. In addition, the proposed framework
naturally captures a privacy-preserving mechanism through the infor-
mation asymmetry between the insurer and the user in the model. We
develop analytical results to characterize the optimal insurance policy
and use network virus infection as a case study to demonstrate the risk-
sharing mechanism in computer networks.

Keywords: Cyber insurance · Incomplete information game · Bilevel
optimization problem · Moral hazards · Cyber attacks

1 Introduction

Cyber insurance is a promising solution that can be used to mitigate losses
from a variety of cyber incidents, including data breaches, business interruption,
and network damage. A robust cyber insurance policy could help reduce the
number of successful cyber attacks by incentivizing the adoption of preventative
measures in return for more coverage and the implementation of best practices
by basing premiums on an insureds level of self-protection. Different from the
traditional insurance paradigm, cyber insurance is used to reduce risk that is not
created by nature but by intelligent attacks who deliberately inflict damage on
the network. Another important feature of cyber insurance is the uncertainties
related to the risk of the attack and the assessment of the damage. To address
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these challenges, a robust cyber insurance framework is needed to design policies
to induce desirable user behaviors and mitigate losses from known and unknown
attacks.

In this paper, we propose a game-theoretic model that extends the insurance
framework to cyber security, and captures the interactions between users, insur-
ance company and attackers. The proposed game model is established based on
a recent game-in-games concept [1] in which one game is nested in another game
to provide an enriched game-theoretic model to capture complex interactions. In
our framework, a zero-sum game is used to capture the conflicting goals between
an attacker and a defender where the defender aims to protect the system for the
worst-case attack. In addition, a moral-hazard type of leader-follower game with
incomplete information is used to model the interactions between the insurer and
the user. The user has a complete information of his action while the insurer can-
not directly observe it but indirectly measures the loss as a consequence of his
security strategy. The zero-sum game is nested in the incomplete information
game to constitute a bilevel problem which provides a holistic framework for
designing insurance policy by taking into account the cyber attack models and
the rational behaviors of the users.

The proposed framework naturally captures a privacy-preserving mechanism
through the information asymmetry between the insurer and the user in the
model. The insurance policy designed by the insurer in the framework does
not require constant monitoring of users’ online activities, but instead, only on
the measurement of risks. This mechanism prevents the insurer from acquiring
knowledge of users’ preferences and types so that the privacy of the users is
protected. The major contributions of the paper are three-fold. They are sum-
marized as follows:

(i) We propose a new game-theoretic framework that incorporates attack mod-
els, and user privacy.

(ii) We holistically capture the interactions between users, attackers, and the
insurer to develop incentive mechanisms for users to adopt protection mech-
anisms to mitigate cyber risks.

(iii) The analysis of our framework provides a theoretic guideline for designing
robust insurance policy to maintain a good network condition.

1.1 Related Works

The challenges of cyber security are not only technical issues but also economic
and policy issues [2]. Recently, the use of cyber insurance to enhance the level
of security in cyber-physical systems has been studied [3,4]. While these works
deal with externality effects of cyber security in networks, few of them take into
account in the model the cyber attack from a malicious adversary to distinguish
from classical insurance models. In [5], the authors have considered direct and
indirect losses, respectively due to cyber attacks and indirect infections from
other nodes in the network. However, the cyber attacks are taken as random
inputs rather than a strategic adversary. The moral hazard model in economics
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literature [6,7] deal with hidden actions from an agent, and aims to address
the question: How does a principal design the agent’s wage contract in order to
maximize his effort? This framework is related to insurance markets, and has
been used to model cyber insurance [8] as a solution for mitigate losses from
cyber attacks. In addition, in [9], the authors have studied a security invest-
ment problem in a network with externality effect. Each node determines his
security investment level and competes with a strategic attacker. Their model
does not focus on the insurance policies and hidden-action framework. In this
work, we enrich the moral-hazard type of economic frameworks by incorporating
attack models, and provide a holistic viewpoint towards cyber insurance and a
systematic approach to design insurance policies.

Other works in the literature such as the robust network framework pre-
sented in [10] deal with strategic attacker model over networks. However, the
network effect is modeled as a simple influence graph, and the stimulus of the
good behavior of the network users is based on a global information known to
every player. In [11], the authors propose a generic framework to model cyber-
insurance problem. Moreover, the authors compare existing models and explain
how these models can fit into their unifying framework. Nevertheless, many
aspects, like the attacker model and the network effect, have not been ana-
lyzed in depth. In [12], the authors propose a mechanism design approach to the
security investment problem, and present a message exchange process through
which users converge to an equilibrium where they make investments in security
at a socially optimal level. This paper has not yet taken into account both the
network effect (topology) and the cyber attacker strategy.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. 2, we describe the general framework of
cyber moral hazard by first introducing the players and the interactions between
them, and second, by defining the influence graph that models the network effect.
In Sect. 3, we analyze the framework for a class of problems with separable
utility functions. In addition, we use a case study to demonstrate the analysis
of an insurance policy for the case of virus infection over a large-scale computer
networks. The paper is concluded in Sect. 4.

2 Game-Theoretic Model for Cyber Insurance

In this section, we introduce the cyber insurance model between a user i and an
insurance company I (Player I). A user i invests or allocates ai ∈ [0, 1] resources
for his own protection to defense against attacks. When ai = 1, the user employs
maximum amount of resources, e.g., investment in firewalls, frequent change of
passwords, and virus scan of attached files for defense. When ai = 0, the user
does not invest resources for protection, which corresponds to behaviors such as
reckless response to phishing emails, minimum investment in cyber protection,
or infrequent patching of operating systems. The protection level ai can also
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be interpreted as the probability that user i invokes a protection scheme. User
i can be attacked with probability qi ∈ [0, 1]. The security level of user i, Zi,
depends on ai and qi. To capture the dependency, we let Zi = pi(ai, qi), where
pi : [0, 1]2 → R+ is a continuous function that quantifies the security level of
user i. An insurance company cannot observe the action of the user, i.e., the
action ai if user i. However, it can observe a measurable risk associated with the
protection level of user i. We let a random variable Xi denote the risk of user i
that can be observed by the insurance company, described by

Xi := Gi(Zi, θi), (1)

where θi is a random variable with probability density function gi that captures
the uncertainties in the measurement or system parameters. The risk Xi can
be measured in dollars. For example, a data breach due to the compromise of
a server can be a consequence of low security level at the user end [13]. The
economic loss of the data breach can be represented as random variable Xi

measured in dollars. The magnitude of the loss depends on the content and the
significance of the data, and the extent of the breach. The variations in these
parameters are captured by the random variable θi. The information structure
of the model is depicted in Fig. 1.

Fig. 1. Illustration of the information structure of the two-person cyber insurance
system model: user i determines protection level ai and an attacker chooses attack
probability qi. The security level Zi is assessed using function pi. The cyber risk Xi

for user i is measured by the insurance company.

Note that the insurer cannot directly observe the actions of the attack and
the user. Instead, he can measure an outcome as a result of the action pair.
This type of framework falls into a class of moral hazard models proposed by
Holmstrom in [6,7]. One important implication of the incomplete information
of the insurer is on privacy. The user’s decision ai can often be related to per-
sonal habits and behaviors, which can be used to infer private information (e.g.,
online activities and personal preferences). This framework naturally captures a
privacy-preserving mechanism in which the insurer is assumed to be uncertain
about the user and his type. Depending on the choice of random variable θi, the
level of uncertainties can vary, and hence θi can be used to determine the level
of privacy of a user.
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Player I measures the risk and pays the amount si(Xi) for the losses, where
si : R+ → R+ is the payment function that reduces the risk of the user i if
he is insured by Player I. Hence the effective loss to the user is denoted by
ξi = Xi − si(Xi), and hence user i aims to minimize a cost function Ui that
depends on ξi, ai and qi given by Ui(ξi, ai, qi), where Ui : R+ × [0, 1]2 → R+ is a
continuous function monotonically increasing in ξ and qi, and decreasing in ai.
The function captures the fact that a higher investment in the protection and
careful usage of the network on the user side will lead to a lower cost, while a
higher intensity of attack will lead to a higher cost. Therefore, given payment
policy si, the interactions between an attacker and a defender can be captured by
a zero-sum game in which the user minimizes Ui while the attacker maximizes it:

(UG-1) min
ai∈[0,1]

max
qi∈[0,1]

E[Ui(ξi, ai, qi)]. (2)

Here, the expectation is taken with respect to the statistics of θi. The minimax
problem can also be interpreted as a worst-case solution for a user who deploys
best security strategies by anticipating the worst-case attack scenarios. From the
attacker side, he aims to maximize the damage under the best-effort protection
of the user, i.e.,

(UG-2) max
qi∈[0,1]

min
ai∈[0,1]

E[Ui(ξi, ai, qi)]. (3)

The two problems described by (UG-1) and (UG-2) constitute a zero-sum
game on at the user level. For a given insurance policy si, user i chooses protec-
tion level a∗

i ∈ Ai(si) with the worst-case attack q∗
i ∈ Qi(si). Here, Ai and Qi

are set-valued functions that yield a set of saddle-point equilibria in response to
si, i.e., a∗

i and q∗
i satisfy the following

E[Ui(ξi, a
∗
i , qi)] ≤ E[Ui(ξi, a

∗
i , q

∗
i )] ≤ E[Ui(ξi, ai, q

∗
i )], (4)

for all ai, qi ∈ [0, 1]. In addition, in the case that Ai(si), and Qi(si) are singleton
sets, the zero-sum game admits a unique saddlepoint equilibrium strategy pair
(a∗

i , q
∗
i ) for every si. We will use a shorthand notation val to denote the value of

the zero-sum game, i.e.,

E[Ui(ξi, a
∗
i , q

∗
i )] = val[E[Ui(ξi, ai, qi)], (5)

and arg val to denote the strategy pairs that achieve the game value, i.e.,

(a∗
i , q

∗
i ) ∈ arg val[E[Ui(ξi, ai, qi)]. (6)

The outcome of the zero-sum game will influence the decision of the insur-
ance company in choosing payment rules. The goal of the insurance company
is twofold. One is to minimize the payment to the user, and the other is to
reduce the risk of the user. These two objectives well aligned if the payment
policy si is an increasing function in Xi, and we choose cost function V (si(Xi)),
where V : R+ → R+ is a continuous and increasing function. Therefore, with
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these assumptions, Player I aims to find an optimal policy among a class of
admissible policies Si to solve the following problem:

(IP) min
si∈Si

E[V (si(Xi))]

s.t. Saddle-Point (6).

This problem is a bilevel problem in which the insurance company can be viewed
as the leader who announces his insurance policy, while the user behaves as a
follower who reacts to the insurer. This relationship is depicted in Fig. 2. One
important feature of the game here is that the insurer cannot directly observe
the action ai of the follower, but its state Xi. This class of problem differs
from the classical complete information Stackelberg games and the signaling
games where the leader (or the sender) has the complete information whereas
the follower (or the receiver) has incomplete information. In this case the leader
(the insurance company) has incomplete information while the follower (the user)
has complete information. The game structure illustrated in Fig. 2 has a games-
in-games structure. A zero-sum game between a user and a defender is nested
in a bilevel game problem between a user and the insurer.

It is also important to note that user i pays Player I a subscription fee
T ∈ R++ to be insured. The incentive for user i to buy insurance is when the
average cost at equilibrium under the insurance is lower the cost incurred without
insurance. Therefore, user i participates in the insurance program when

E[Ui(ξi, a
∗
i , q

∗
i )] ≥ T. (7)

Fig. 2. The bilevel structure of the two-person cyber insurance game. The problem
has a games-in-games structure. The user and the attacker interact through a zero-
sum game while the insurer and the user interact in a bilevel game in which the user
has complete information but the leader does not.
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It can bee seen that the insurance policy plays an important role in the partic-
ipation decision of the user. If the amount of payment from the insurer is low,
then the user tends not to be insured. On the other hand, if the payment is high,
then the risk for the insurer will be high and the user may behave recklessly in
the cyber space, as have been shown in Peltzman’s effect [14].

3 Analysis of the Cyber Insurance Model

The formal framework introduced in Sect. 2 provides the basis for analysis and
design of cyber insurance to reduce risks for the Internet users. One challenge in
the analysis of the model comes from the information asymmetry between the
user and the insurer, and the information structure illustrated in Fig. 1. Since the
cost functions in (UG-1), (UG-2), and (IP) are expressed explicitly as a function
of Xi, the optimization problems can be simplified by taking expectations with
respect to the sufficient statistics of Xi. Let fi be the probability density function
of Xi. Clearly, fi is a transformation from the density function gi (associated with
the random variable θi) under the mapping Gi. In addition, fi also depends on the
action pair (ai, qi) through the variable Zi. Therefore, we can write fi(xi; ai, qi)
to capture the parametrization of the density function. To this end, the insurer’s
bilevel problem (IP) can be rewritten as follows:

(IP’) min
si∈Si

∫

xi∈R+

V (si(xi))fi(xi, a
∗
i , q

∗
i )dxi

s.t. (a∗
i , q

∗
i ) = arg val

[∫

xi∈R+

Ui(xi − si(xi), ai, qi)fi(xi, ai, qi)dxi

]

.

Under the regularity conditions (i.e., continuity, differentiability and measur-
ability), the saddle-point solution (a∗

i , q
∗
i ) can be characterized by the first-order

conditions:
∫

xi∈R+

[
∂Ui

∂ai
(xi − si(xi), ai, qi)fi(xi; ai, qi)

+Ui(xi − si(xi), ai, qi)
∂fi

∂ai
fi(xi; ai, qi)

]
dxi = 0, (8)

and
∫

xi∈R+

[
∂Ui

∂qi
(xi − si(xi), ai, qi)fi(xi; ai, qi)

+Ui(xi − si(xi), ai, qi)
∂fi

∂qi
fi(xi; ai, qi)

]
dxi = 0, (9)

In addition, with the assumption that fi and Ui are both strictly convex in
ai and strictly concave in qi, the zero-sum game for a given si admits a unique
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saddle-point equilibrium [15]. Using Lagrangian methods from vector-space opti-
mization [16], we can form a Lagrangian function with multipliers λi, μiR+ as
follows:

L(si, μi, ai, qi;λi, μi) =
∫

xi∈R+

V (si(xi))fi(xi, ai, qi)dxi +

λi

∫

xi∈R+

[
∂Ui

∂ai
(xi − si(xi), ai, qi)fi(xi; ai, qi)

+Ui(xi − si(xi), ai, qi)
∂fi

∂ai
fi(xi; ai, qi)

]
dxi +

μi

∫

xi∈R+

[
∂Ui

∂qi
(xi − si(xi), ai, qi)fi(xi; ai, qi)

+Ui(xi − si(xi), ai, qi)
∂fi

∂qi
fi(xi; ai, qi)

]
dxi.

The insurer’s bilevel problem can thus be rewritten as a one-level optimization
problem with Lagrange function L:

(IP’) max
λi,μi

min
si∈Si,ai∈[0,1],qi∈[0,1]

L(si, μi, ai, qi;λi, μi).

Generally speaking, this Lagrangian is not simple to study but, as we see in the
next section, several assumptions of the utility functions will help us to obtain
the characterization of the optimal payment policies for the insurer.

3.1 Separable Utilities

One main assumption about player utility function is that it is separable into
his variables, i.e.:

∀i ∈ {1, . . . , N}, Ui(ξi, ai, qi) = Hi(ξi) + ci(ai, qi).

In fact, the protection investment ai induces a direct cost ci(ai, qi) on user i.
This cost function is strictly increasing in ai. Moreover, each player is typically
risk-averse, and Hi is assumed to be increasing and concave. We give general
results considering this particular case of separable utilities.

Following the first-order conditions (8) for user i, we obtain

∫

xi∈R+

[
Hi(xi − si(xi))

∂fi

∂ai
(xi; ai, qi) +

∂ci

∂ai
(ai, qi)fi(xi; ai, qi)

]
dxi = 0.

As we have ∂ci
∂ai

(ai, qi) > 0, the last equality is equivalent to:

Hi(xi − si(xi))
− ∂ci

∂ai
(ai, qi)

∂fi

∂ai
(xi; ai, qi) = fi(xi; ai, qi)
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Similarly, following (9), we obtain

∫

xi∈R+

[
Hi(xi − si(xi))

∂fi

∂qi
(xi; ai, qi) +

∂ci

∂qi
(ai, qi)fi(xi; ai, qi)

]
dxi = 0,

and arrive at

Hi(xi − si(xi))
−∂ci

∂qi
(ai, qi)

∂fi

∂qi
(xi; ai, qi) = fi(xi; ai, qi).

Therefore, we arrive at the following proposition:

Proposition 1. The saddle-point strategy pair (ai, qi) satisfies the following
relationship for every xi ∈ R+:

∂fi(xi;ai,qi)
∂ai

∂fi(xi;ai,qi)
∂qi

=
∂ci(ai,qi)

∂ai

∂ci(ai,qi)
∂qi

(10)

It can be seen that the saddle-point strategy pair depends on the state xi. For
different risk, the user will invest accordingly to protect his computer system.

3.2 Case Study: Cyber Insurance Under Infection Dynamics

We consider a possible virus or worm that propagates into a network. Each
computer can be infected by this worm and we assume that if a node is infected,
it induces a time window in which the node is vulnerable to serious cyber-attacks.
The propagation dynamics follow a Susceptible-Infected-Susceptible (SIS) type
infection dynamics [17] such that the time duration a node is infected follows an
exponential distribution with parameter γ that depends on a and q. Note that
we remove index i for the convenience of notations. Indeed, when a computer is
infected, it is vulnerable to serious cyber-attacks. These can cause an outbreak
of the machine and of the network globally. We thus assume that the parameter
γ is increasing in a (resp. decreasing in q) meaning that more protection (resp.
more attacks) reduces (resp. increases) the remaining time the node/computer
is infected. Then, the action of the node decreases his risk whereas the action of
the attacker increases the risk. We make also the following assumptions:

– The cost function is convex, i.e., the user is absolute risk-averse: ∀ξ,
H(ξ) = erξ;

– The cost function c(a, q) = a − q is bi-linear;
– X follows an exponential distribution with parameter γ(a, q), i.e., X ∼

exp(γ(a, q)). This random variable may represent the time duration a node is
infected under an SIS epidemic process.

– The insurance policy is assumed to be linear in X, i.e., sX, where s ∈ [0, 1].
Hence the residual risk to the user is ξ = (1 − s)X.
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Without loss of generality, we denote γ as a single constant when the notation
does not lead to confusion. We thus have the following density function for the
outcome:

∀x ∈ IR+, f(x|a, q) = γ(a, q)e−γ(a,q)x.

Then, we obtain

∀x ∈ IR+, fa(x|a, q) = γae−γx (1 − γx) ,

where by abuse of notation we denote γ := γ(a, q) and γa := ∂γ
∂a (a, q). The

average amount of damage is IE(X) = 1
γ(a,q) := q

a . The expected utility of the
node is given by:

IEU(X, a, q) =
∫ ∞

0

[H(x − sx) + c(a, q)] f(x|a, q)dx,

= c(a, q) +
∫ ∞

0

H(x(1 − s))f(x|a, q)dx,

= c(a, q) +
a

q

∫ ∞

0

erx(1−s)−x a
q dx,

= a − q +
a

q

∫ ∞

0

ex[r(1−s)− a
q ]dx,

We assume that a > qr(1 − s) then:

IEU(X, a, q) = a − q +
a

a − qr(1 − s)
.

We can observe that the optimal protection level of the node depends in a non-
linear fashion of the cyber-attack level. For a given action of the attacker q and
a contract s, the best action a∗(s, q) for the node protection level is:

a∗(s, q) = arg min
a

IEU(X, a, q) = q(1 − s)r +
√

q(1 − s)r.

Given the best protection, we can obtain the saddle point solution:

a∗ = q∗ =
r(1 − s)

(1 − r(1 − s))2
.

If a player does not subscribe to cyber insurance, i.e., s = 0, then his best
action becomes

a∗(0) = qr +
√

qr.

Hence, its expected cost is:

IEU0 =
a∗(0)

a∗(0) − qr
+ a∗(0) = qr + 2

√
qr + 1 = (1 +

√
qr)2.
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If the player decides to be insured, then s > 0, i.e., part of his damage is covered
and he has to pay a flat rate T for the participation. Then, his best action
becomes a∗(s) that depends on his coverage level s, and his expected cost is:

IEUs =
a∗(s)

a∗(s) − qr(1 − s)
+ a∗(s) + T = qr(1 − s) + 2

√
qr(1 − s) + 1 + T,

= (1 +
√

qr(1 − s))2 + T.

Proposition 2. If the cyber insurance is too expensive, i.e. T ≥ Tmax := qr +
2
√

qr, then the player will not subscribe to the cyber insurance independent of
the coverage level s.

Sketch of Proof. This proposition comes from the equivalence of IEU1 ≥ IEU0

with T ≥ qr + 2
√

qr. In this case, independent of the coverage level s, we have
IEUs ≥ IEU0, which implies that the node will not choose to pay the cyber
insurance for any coverage level s.

Proposition 3. For the subscription fee T < qr+2
√

qr, there exists a minimum
coverage s0(T ) such that, for any coverage level s ∈ [s0(T ), 1], the player will
subscribe to the cyber-insurance. This minimum coverage is equal to:

s0(T ) = 1 −
(√

(1 +
√

qr)2 − T − 1√
qr

)2

.

Sketch of Proof. The function IEUs is strictly decreasing in s and lims→0 IEUs >
IEU0. If T < qr + 2

√
qr, then IEU1 < IEU0. Hence, for a given T < qr +

2
√

qr, there exists a unique s0(T ) such that IEUs0(T ) = IEU0. Moreover, for any
s ∈ [s0(T ), 1], we have IEUs < IEU0, then the player will subscribe to cyber
insurance. By comparing the expressions of the expected utility functions, we
obtain the following solution:

s0(T ) = 1 −
(√

(1 +
√

qr)2 − T − 1√
qr

)2

.

We observe in Fig. 3 that for a same price T , for the node to subscribe to
insurance, the level of cyber attack has to be sufficiently high. If we consider
a competition framework in which the cyber insurer cannot change its price T ,
then for a fixed price, a higher cyber attack level leads to less minimum coverage
accepted by the node. This shows that cyber attack plays an important role in
insurance policy as it increases the willingness of the users to be insured.

The loss probability is defined as the probability that the damage covered by
the insurance exceeds the price paid by the subscriber. We then define this loss of
profit by L(T ) := IP (s0(T )X(s0(T )) > T ), and obtain the following expression
of the loss as:



Attack-Aware Cyber Insurance for Risk Sharing in Computer Networks 33

L(T ) = exp

(

−q(1 − s0(T ))r +
√

q(1 − s0(T ))r
qs0(T )

T

)

.

As we can see in Fig. 4, the loss is not monotone in the price, and a small
price does not guarantee a profit (no loss) for the insurance company. One goal of
the extended version of this work is to study the property of this loss depending
on T .
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Fig. 3. Minimum coverage s0 depending on the price T and cyber-attack level q with
a risk-averse coefficient r = 2.
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4 Conclusion

In this paper, we describe a game-theoretic framework for studying cyber
insurance. We have taken into account complex interactions between users,
insurer and attackers. The framework incorporates attack models, and natu-
rally provides privacy-preserving mechanisms through the information asym-
metry between the players. This work provides a first step towards a holistic
understanding of cyber insurance and the design of optimal insurance policies.
We would extend this framework to capture network effects, and address the
algorithmic and design issues in cyber insurance.
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Abstract. Interdicting the flow of illegal goods (such as drugs and
ivory) is a major security concern for many countries. The massive scale
of these networks, however, forces defenders to make judicious use of
their limited resources. While existing solutions model this problem as a
Network Security Game (NSG), they do not consider humans’ bounded
rationality. Previous human behavior modeling works in Security Games,
however, make use of large training datasets that are unrealistic in real-
world situations; the ability to effectively test many models is constrained
by the time-consuming and complex nature of field deployments. In addi-
tion, there is an implicit assumption in these works that a model’s
prediction accuracy strongly correlates with the performance of its
corresponding defender strategy (referred to as predictive reliability).
If the assumption of predictive reliability does not hold, then this could
lead to substantial losses for the defender. In the following paper, we (1)
first demonstrate that predictive reliability is indeed strong for previ-
ous Stackelberg Security Game experiments. We also run our own set of
human subject experiments in such a way that models are restricted to
learning on dataset sizes representative of real-world constraints. In the
analysis on that data, we demonstrate that (2) predictive reliability is
extremely weak for NSGs. Following that discovery, however, we identify
(3) key factors that influence predictive reliability results: the training
set’s exposed attack surface and graph structure.

1 Introduction

By mathematically optimizing and randomizing the allocation of defender
resources, Security Games provide a useful tool that has been successfully applied
to protect various infrastructures such as ports, airports, and metro lines [16].
Network Security Games (NSGs), a type of Security Game, can be applied to
interdict the flow of goods in smuggling networks (e.g., illegal drugs, ivory) or
defend road networks from terrorist attacks (e.g., truck bombs). In compari-
son to previous work in Security Games [15], however, the number of possible
actions for both attacker and defender grow exponentially for NSGs; novel scal-
ing techniques have been developed to address this challenge by Jain et al. [10]
for perfectly rational attackers.
c© Springer International Publishing Switzerland 2015
MHR Khouzani et al. (Eds.): GameSec 2015, LNCS 9406, pp. 35–56, 2015.
DOI: 10.1007/978-3-319-25594-1 3
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While early work in Security Games relied on the assumption of perfect adver-
sary rationality, more recent work has shifted away towards modeling adversary
bounded rationality [1,5,11,14]. In the effort to model human decision mak-
ing, many human behavior models are being developed. As more Security Game
applications are being deployed and used by security agencies [7,15], it becomes
increasingly important to validate these models against real-world data to bet-
ter ensure that these and future applications don’t cause substantial losses (e.g.,
loss of property, life) for the defender. In efforts to generate real-world data, pre-
vious work [7,15] has demonstrated that field experiments are time-consuming
and complex to organize for all parties involved; the amount of field experiments
that can be feasibly conducted is grossly limited. Thus, in real-world situations,
we will have limited field data.

By analyzing the prediction accuracy of many models on an existing large
dataset of human subject experiments, previous works [1,5] empirically ana-
lyze which models most closely resemble human decision making for Stackelberg
(SSG) and Opportunistic Security Games. While these works demonstrate the
superiority of some models in terms of prediction accuracy and fitting perfor-
mance, they do not address the larger, implicit question of how the models’
corresponding strategies would perform when played against human subjects
(i.e., average defender expected utility). We do not know how well the predic-
tion accuracy of a model will correlate with its actual performance if we were
to generate a defender strategy that was based on such a model; informally
defined, predictive reliability refers to the percentage of strong correlations
between a model’s prediction accuracy and the model’s actual performance. It is
also unknown whether the prediction accuracy analysis approach will be suitable,
especially for NSGs, in situations where we have limited field data from which to
learn the models. As previously discussed, the amount of field experiments that
can be conducted (and thus the amount of training data available for learning)
is limited; it is important to know whether the model with superior prediction
accuracy will actually result in higher defender gains than a model with worse
prediction accuracy (especially when training data is limited). This raises the
following question for NSG research: “Without the ability to collect very large
amounts of data for training different bounded rationality models and without
the ability to conduct very large amounts of tests to compare the performance of
these models in action, how do we ensure high predictive reliability and choose
the most promising models?”

We first lay the groundwork for determining whether our proposed construct
of predictive reliability is valid in SSGs. As such, we first (i) conduct an empirical
evaluation of predictive reliability in SSGs in situations where there is a large
amount of training data. We then (ii) evaluate predictive reliability for NSGs.
In this study, we use NSG human subject data from the lab and train our
models on enough data such that prediction accuracies converge1. Following

1 In other words, to simulate real-world scenarios, we do not assume the presence of
very large amounts of data, but nonetheless, there is a sufficient amount of NSG
data included in our study to at least see a stable prediction made by our different
behavior models.
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this primary analysis, we then examine the various factors that may influence
predictive reliability. We propose a metric called Exposed Attack Surface (EAS)
which is related to the degree of choice available to the attacker for a given
training set. We then (iii) examine the effects of EAS on predictive reliability,
and (iv) investigate which graph features influence predictive reliability.

Our primary analysis shows that (i) predictive reliability is strong for an SSG
dataset where there is sufficient training data, (ii) even though there is sufficient
training data (at least to see our models’ prediction accuracies converge), pre-
dictive reliability is poor for NSGs. In our analysis to discover which factors have
the most influence on predictive reliability, we find that (iii) a training set with a
higher EAS score results in better predictive reliability than a training set with
a lower EAS score. Note that this finding is independent of the training set’s
size (both training sets are of the same size). While it won’t always be possible
to obtain training data with a large exposed attack surface, if we do have it, we
can be more confident in the predictive reliability of our models. In addition,
we find that (iv) there is a strong correlation between poor predictive reliability
and whether a graph has both a low to moderate number of intermediate nodes
and a low to moderate number of outgoing edges from source nodes.

2 Background: Network Security Games

This paper will address zero-sum Network Security Games (NSGs). For a table
of notations used in this paper, see Table 1. In NSGs, there is a network (shown
in Fig. 1) which is a graph g containing a set of nodes/vertices V (the dots/circles
in the figure) and a set of edges E (the arrows in the figure, labelled 1–6). In the
network, there is a set of target nodes, denoted by T ⊂ V . While the defender

Table 1. Notations used in this paper

g(V, E) General directed graph

J Set of paths in graph g

k Number of defender resources

X Set of defender allocations, X = {X1,X2, ..., Xn}
Xi ith defender allocation Xi = {Xie} ∀e, Xie ∈ {0, 1}
A Set of attacker paths, A = {A1,A2, ..., Am}
Aj jth attacker path Aj = {Aje} ∀e, Aje ∈ {0, 1}
tj Target t in the graph g such that the attacker takes path j to

attack t

T (tj) The reward obtained for a successful attack on target t by taking

path j s.t. Aj ∩ Xi = ∅ where Aj is the attacker’s selected

path to attack target t and Xi is the selected defender

allocation

x Defender’s mixed strategy over X

xi Probability of choosing defender pure strategy Xi

EUd(x) Defender’s expected utility from playing x

zij Function that refers to whether a defender allocation Xi

intersects with an attacker path Aj . If there is an

intersection, returns 1. Else, 0
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attempts to allocate her limited resources to protect these target nodes, the
attacker can observe the defender’s patrolling strategy and then attack one of
the target nodes based on that observation.

Attacker Strategies. The attacker can start at a source node s ∈ S (where
S ⊂ V is the set of all source nodes in the network) and chooses a sequence of
nodes and edges leading to a single target node t ∈ T . The attacker’s decision
corresponds to a single path j ∈ J and is referred to as the attacker’s path choice
Aj ∈ A where A is the set of all possible paths that the attacker can choose.

Fig. 1. Example graph

Defender Strategies. The defender can allocate
her k resources to any subset of edges in the graph;
each allocation is referred to as a pure strategy
for the defender, denoted by Xi. There are

(|E|
k

)

defender pure strategies in total, and we denote
this set of pure strategies by X. Then, a defender’s
mixed strategy is defined as a probability distribu-
tion over all pure strategies of the defender, denoted
by x = {xi}N

i=1, where xi is the probability that
the defender will follow the pure strategy Xi and∑

i xi = 1.

Defender and Attacker Utilities. An attack is successful if the attacker’s
path choice does not contain any edges in common with the defender’s allo-
cation (Xi ∩ Aj = ∅), and the attacker will receive a reward T (tj) while the
defender receives a penalty of -T (tj). Here, tj is the target node on the path
Aj . Conversely, if the attack is unsuccessful (i.e., the attacker’s path intersected
with the defender’s allocation), both attacker and defender receive a payoff of 0.

Finally, the defender’s expected utility of executing a mixed strategy x given
an attacker path Aj can be computed as shown in Eq. 1 where the term pj(x)
(defined in Eq. 2) refers to the probability that the adversary will be caught when
choosing path Aj to attack target node tj . In zero-sum games, the attacker’s
expected utility for choosing path Aj is equal to the opposite of the defender’s
expected utility, i.e., EUa(x,Aj) = −EUd(x,Aj).

EUd(x,Aj) = −T (tj) · (1 − pj(x)) (1)

In Eq. 2, zij is an integer which indicates if the defender’s pure strategy Xi

intersects with the attacker path Aj (zij = 1) or not (zij = 0).

pj(x) =
∑

Xi∈X

zijxi (2)

3 Related Work

Human bounded rationality has received considerable attention in Security
Game research [1,5,11,14]. The goal of these works was to accurately model
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human decision making such that it could be harnessed to generate defender
strategies that lead to higher expected utilities for the defender. For the devel-
oped models and corresponding defender mixed strategies, some of these works
conducted human subject experiments to validate the quality of their mod-
els [1,11,14]. Often in this research, different models’ prediction accuracies are
tested against human subjects, and the one that is most accurate is then used
to generate defender strategies against human subjects [11,14]. However, these
works do not evaluate whether or not the other models’ prediction accuracies
correlated with their actual performance (i.e., predictive reliability). In other
words, prediction accuracy is used as a proxy for the defender’s actual perfor-
mance, but it has not been well established that this is a reasonable proxy to
use. In order to evaluate predictive reliability for SSGs, we obtained the human
subject experiment data from Nguyen et al. [14] and evaluated predictive relia-
bility on this data between the Quantal Response (QR) and Subjective Utility
Quantal Response (SUQR) models.

As yet another type of Security Game, NSG research covers a wide variety
of applications and domains. NSGs have been applied to curbing the illegal
smuggling of nuclear material [13], protecting maritime assets such as ports and
ferries [15], studying ways to minimize road network disruptions [2], deterring
fare evasion in public transit systems [4], and the assignment of checkpoints to
urban road networks [9,17]. Although our NSG models most closely resemble
the model used by Jain et al. [9,10], the primary difference is that we are not
limited to modeling perfectly rational attackers.

In most NSG research, there is a basic assumption that the attacker is per-
fectly rational, but as demonstrated in work in Behavioral Game Theory by
Camerer et al., humans do not behave with perfect rationality [3]. Gutfraind
et al. [8] address one type of boundedly rational adversary, an unreactive Markov-
ian evader, in their work. Even though the evader (i.e., attacker) is unreactive
to the defender’s actions, the relaxation of the rational adversary assumption
still results in an NP-hard problem. Positing that humans will rely on heuristics
due to the complex nature of solving an NSG, Yang et al. [18] address bounded
rationality in a non-zero sum NSG setting by modeling the adversary’s stochastic
decision making with the Quantal Response (QR) model and various heuristic
based variants of the QR model. While they demonstrated that attacker behav-
ior is better captured with human behavior models, their work is limited to
using one defender resource in generating defender strategies and only focused
on much smaller networks. In order to adequately defend larger networks, like
those modeled in previous work by Jain et al. [10] and the ones presented in
this work, multiple defender resources are required. For the behavior models we
present, multiple defender resources are supported in a zero-sum setting.

4 Adversary Behavioral Models

We now present an overview of all the adversary behavioral models which are
studied in this paper.
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4.1 The Perfectly Rational Model

In NSG literature, the adversary is often assumed to be perfectly rational and
will always maximize his expected utility. In other words, the adversary will
choose the optimal attack path that gives him the highest expected utility, i.e.,
Aopt = argmaxAj

EUa(x,Aj).

4.2 The Quantal Response Model

The Quantal Response (QR) model for NSGs was first introduced by Yang et al.
[18]. However, their formulation only works under the assumption that there is
one defender resource available, and as a result, we present a revised version of
the QR model for a zero-sum NSG with multiple defender resources. In short,
QR predicts the probability that the adversary will choose a path Aj , which is
presented as the following:

qj(λ|x) =
eλEUa

j (x)

∑
Ak∈A eλEUa

k (x)
(3)

where λ is the parameter that governs the adversary’s rationality. For example,
λ = 0.0 indicates that the adversary chooses each path uniformly randomly. On
the other hand, λ = ∞ means that the adversary is perfectly rational. Intuitively,
there is a higher probability that the adversary will follow a path with higher
expected utility.

4.3 The Subjective Utility Quantal Response Model

Unlike QR, the Subjective Utility Quantal Response (SUQR) model [14] models
the attacker’s expected utility calculation as a weighted sum of decision factors
such as reward and path coverage. As demonstrated by Nguyen et al. [14] for
SSGs and Abbasi et al. [1] for Opportunistic Security Games (OSGs), SUQR
performs better than QR for attack prediction accuracy. As such, we present an
NSG adaptation of SUQR as shown in Eq. 4. Specifically, SUQR predicts the
probability that the adversary chooses a path Aj as the following:

qj(ω|x) =
eω1pj(x)+ω2T (tj)

∑
Ak∈A eω1pk(x)+ω2T (tk)

(4)

where (ω1, ω2) are parameters corresponding to an attacker’s preferences (i.e.,
weights) on the game features: the probability of capture pj(x) and the reward
for a successful attack T (tj).
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4.4 The SUQR Graph-Aware Model

The previous models, designed for traditional Stackelberg Games, do not account
for the unique features of Network Security Games. As such, we present some
NSG-specific features that can be incorporated into the existing SUQR model in
the form of additional parameters. Each of these features is computed for each
path Aj ∈ A.

Path length simply refers to the number of edges in a path Aj , and the
corresponding weight is referred to as ω3 in Eq. 5. This model will henceforth
be referred to as GSUQR1 (i.e., Graph-SUQR w/ 1 parameter). Yang et al. [18]
also made use of path length as one of the tested QR heuristics.

qj(ω|x) =
eω1pj(x)+ω2T (tj)+ω3|Aj |

∑
Ak∈A eω1pk(x)+ω2T (tk)+ω3|Ak| (5)

We also compute the maximum total degree (weight ω4) of a path. This is
an aggregate measure (maximum) of the path’s nodes’ indegrees (i.e., number
of edges coming into the node) + outdegrees (i.e., number of edges leaving the
node). We refer to this measure as MTO. A low value for this corresponds
to simple paths with little connections to other areas of the graph; a high value
corresponds to a path with one or more nodes that are highly connected to other
paths. The resultant qj function is shown in Eq. 6, and this model is henceforth
referred to as GSUQR2.

qj(ω|x) =
eω1pj(x)+ω2T (tj)+ω3|Aj |+ω4MTOj

∑
Ak∈A eω1pk(x)+ω2T (tk)+ω3|Ak|+ω4MTOk

(6)

5 Defender Strategy Generation

In this section, we present the approach used to generate defender strategies for
the boundedly rational adversary models.2 Because the strategy space for NSGs
can grow exponentially large, we address this by adapting a piecewise linear
approximation approach, PASAQ, first introduced by Yang et al. [19]. Note that
while we only show the PASAQ formulation as generating defender strategies for
the QR model, we also adapted it for the SUQR, GSUQR1, and GSUQR2 mod-
els as well. Whereas the original PASAQ algorithm worked for SSGs involving
independent targets and coverages, this paper has adopted PASAQ for NSGs,
where non-independent path coverage probabilities (pj(x)) must be taken into
account. PASAQ works by performing a binary search to solve a non-linear
fractional objective function. Determining whether the current solution is feasi-
ble, however, is a non-convex problem, and this feasibility checking problem is
expressed as an inequality in Eq. 7, where r is the current binary search solution,

2 The algorithm to generate a Maximin strategy can be found in [10].
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x∗ is the optimal defender mixed strategy, and EUd(x), the defender’s expected
utility given an adversary following the QR model, is defined in Eq. 8.3

r ≤ EUd(x∗) (7)

EUd(x) =

∑
Aj∈A eλEUa(x,Aj)EUd(x,Aj)

∑
Aj∈A eλEUa(x,Aj)

(8)

After rewriting Eq. 7 as a minimization function and further expansion,
we obtain two non-linear functions f(j)(1)(pj(x))=eλ(1−pj(x))T (tj) and
f(j)(2)(pj(x))=(1 − pj(x))eλ(1−pj(x))T (tj) which are to be approximated. To do
so, we divide the range pj(x) ∈ [0, 1] into S segments (with endpoints [ s−1

S , s
S ,

s = 1 . . . S]) and will henceforth refer to each segment that contains a portion of
pj(x) as {pjs, s = 1 . . . S}. For example, pj2 refers to the second segment of pj(x)
which is located in the interval [ 1S and 2

S ]. Our piecewise approximation follows the
same set of conditions from [19]: each pjs ∈ [0, 1

S ]∀s = 1 . . . S and pj =
∑S

s=1 pjs.
In addition, any pjs > 0 only if pjs′ = 1

S ,∀s′ < s; in other words, pjs can be non-
zero only when all previous partitions are completely filled (i.e., = 1

S ). Enforcing
these conditions ensures that each pjs is a valid partition of pj(x). Following the
definition from [19], the piecewise linear functions are represented using {pjs}.
The S+1 segment end points of f

(1)
j (pj(x)) can be represented as {( s

S , f
(1)
j ( s

S )),

s=0. . . S} and the slopes of each segment as {γjs,s=1. . . S}. Starting from f
(1)
j (0),

we denote the piecewise linear approximation of f
(1)
j (pj(x)) as L

(1)
j (pj(x)):

L1
j (pj(x)) = f

(1)
j (0) +

S∑

s=1

γjspjs

= eλT (tj) +
S∑

s=1

γjspjs

(9)

The approximation of function f
(2)
j (pj(x)) is performed similarly (slopes

denoted as {μjs,s=1. . . S}) and yields L
(2)
j (pj(x)).

L2
j (pj(x)) = eλT (tj) +

S∑

s=1

μjspjs (10)

3 Details on the binary search algorithm can be found in Yang et al.’s original PASAQ
formulation [19].
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Given the definition of these two piecewise linear approximations, the follow-
ing system of equations details the solution feasibility checking function (invoked
during the binary search):

min
x,b

∑

Aj∈A

(eλT (tj) +
S∑

s=1

γjspjs)r (11)

+
∑

Aj∈A

T (tj)(eλT (tj) +
S∑

s=1

μjspjs) (12)

s.t
∑

Xi∈X

xi ≤ 1 (13)

pj(x) =
S∑

s=1

pjs (14)

pj(x) =
∑

Xi∈X

zijxi (15)

bjs
1
S

≤ pjs,∀j, s = 1 . . . S − 1 (16)

pj(s+1) ≤ bjs,∀j, s = 1 . . . S − 1 (17)

0 ≤ pjs ≤ 1
S

,∀j, s = 1 . . . S (18)

bjs ∈ {0, 1},∀j, s = 1 . . . S − 1 (19)
zij ∈ {0, 1},∀i, j (20)

where bjs is an auxiliary integer variable that is equal to 0 only if pjs < 1
S

(Eq. 16). Equation 17 enforces that pj(s+1) is positive only if bjs = 1. In other
words, bjs indicates whether or not pjs = 1

S and thus enforces our previously
described conditions on the piecewise linear approximation (ensuring each pjs is
a valid partition). As demonstrated in [19], given a small enough binary search
threshold ε and sufficiently large number of segments S, PASAQ is arbitrarily
close to the optimal solution.

6 Human Subject Experiments

6.1 Experimental Overview

In order to test the effectiveness of these algorithms against human adversaries,
we ran a series of experiments on Amazon Mechanical Turk (AMT). Even though
we run these (effectively speaking) laboratory experiments, our goal is to collect
this data in such a way as to simulate field conditions where there is limited
data.4

4 For a more detailed discussion of human subject experiment design considerations,
such as steps taken to reduce sources of bias, please see the online appendix at:
http://teamcore.usc.edu/people/benjamin/Ford15 GameSecAppendix.pdf.

http://teamcore.usc.edu/people/benjamin/Ford15_GameSecAppendix.pdf
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Each participant was presented with a set of fifteen graphs in which they nav-
igated a path from a source node to a destination node through using a series of
intermediate nodes. Participants that successfully attacked a destination (with-
out getting caught on an edge) received the corresponding reward; participants
that got caught on an edge received zero points for that round. At the end of the
experiment, participants received $1.50 plus the number of points they received
(in cents) during the experiment. To avoid learning effects and other sources of
bias, we took the following steps: randomized the order in which graphs were pre-
sented to participants, withheld success feedback until the end of the experiment,
only allowed participants to participate in the experiment once, and finally, we
divided participants into separate subject pools such that each participant only
played against a single defender strategy and played on each of the fifteen graphs
exactly once. Due to the inevitability of some participants playing randomly (thus
confounding any behavioral analysis we may conduct), we included a set of valida-
tion rounds such that if participants chose a path that was covered by the defender
100 % of the time, we would drop their data from the analysis.

6.2 Experiment Data Composition

Participants and Dataset Sizes. In our experiments, all eligible AMT partic-
ipants satisfied a set of requirements. They must have participated in more than
1000 prior AMT experiments with an approval rate of ≥ 95 %, and we required
that all participants were first-time players in this set of experiments. Out of 551
participants, 157 failed to complete all graphs or did not pass both validation
rounds. The remainder, 394, successfully completed all rounds and passed both
validation rounds, and we used only their data in the following data analyses.

Graph Design and Generation. To ensure our findings were not limited to
a single set of homogeneous graphs, we generated three sets of random geomet-
ric graphs. Eppstein et al. demonstrated that geometric graphs were a suitable
analogue to real-world road networks due to road networks’ non-planar connec-
tivity properties [6]. Each set was assigned a predefined neighborhood radius
(r), corresponding to the maximum distance between two nodes for an edge to
exist, and a predefined number of intermediate nodes (vi). Set 1, a set of sparse
random geometric graphs, had r = 0.2, vi = 10, and was required to have at
least 15 edges. Set 2, a set of densely connected graphs, had r = 0.6 and vi =
4. Set 3, a set of intermediately connected graphs, had r = 0.4 and vi = 7. In
addition, all sets were generated with a set of common constraints; each graph
was constrained to have no more than 30 edges, exactly two source nodes, and
exactly three destination nodes (with reward values 3, 5, and 8).

For each set, we generated 100 unique random geometric graphs. For each
graph, we first randomly placed the nodes in a 2-D region (a unit square), and
edges were drawn between nodes that were, at most, a 2-norm distance r away
from each other. During post-processing, invalid connections, such as edges con-
necting source nodes to other source nodes, were removed. After the set was
generated, we computed a Maximin, QR, and SUQR strategy for each graph
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and computed a distance score. This distance score measured the 1-norm dis-
tance between the probability distributions (i.e., the mixed strategies) for two
sets of strategies: QR and SUQR, and Maximin and SUQR; graphs with dis-
tinctly different defender strategies (in terms of the coverage probabilities on
paths) would receive a high distance score. The five graphs with the highest
distance scores were kept for the final set.

Model Parameter Learning. The full experiment set consists of eight sub-
ject pools. For the purposes of learning the model parameters for the human
behavior models, however, we divided the experiment set into three separate
experiment sets. The first experiment set consists solely of the Maximin subject
pool (no model learning required). The latter two experiment sets are defined
by the training dataset used to train the models (e.g., the experiment data from
the Maximin subject pool). As was done in previous work on applying human
behavior models to Security Games [1,11,14,18], we use Maximum Likelihood
Estimation (MLE) to learn the parameter values (i.e., weights) for each behav-
ior model. Because training data may be limited in the real-world, we limit the
scope of each training dataset to contain data from only one subject pool. Unlike
previous work in NSGs by Yang et al. [18], where one set of weights was learned
across all graphs (i.e., an aggregate weight), we found that the log-likelihood was
highest when weights were learned individually for each graph.

Experiment Set Composition. As mentioned previously, the experiments
are divided into three separate experiment sets. Each combination of coverage
strategy × graph set was assigned to their own subject pool. Prior to running
these experiments, however, we had no training data on which to learn weights
for the behavior models. Thus, the first experiment set, experiment set 1, only
contains a coverage strategy generated by the Maximin algorithm.

Experiment set 2 contains coverage strategies generated by the corresponding
PASAQ algorithms for the QR (Eq. 3), SUQR (Eq. 4), GSUQR1 (Eq. 5), and
GSUQR2 (Eq. 6) models. For the models used to generate these strategies, we
used the Maximin dataset as the training dataset to learn each model’s weights.
To help differentiate from the datasets in experiment set 3, we will refer to the
datasets collected in experiment set 2 as QR-M, SUQR-M, GSUQR1-M, and
GSUQR2-M.

Experiment set 3 also contains coverage strategies generated for the QR
(Eq. 3), SUQR (Eq. 4), and GSUQR1 (Eq. 5) models. Instead of learning on
Maximin data, however, we instead learn on GSUQR1-M data (from experiment
set 2). As we will demonstrate later, learning from a non-Maximin dataset has a
substantial positive impact on predictive reliability. As was done for experiment
set 2, we will refer to the datasets collected in experiment set 3 as QR-S, SUQR-S,
and GSUQR1-S.

6.3 Data Analysis Metrics

The following section discusses the various metrics used throughout our data
analysis. First, we will introduce three metrics for computing model prediction
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accuracy (the degree to which a model correctly predicted attacker behavior).
Next, we will introduce our proposed predictive reliability metric, which mea-
sures the degree to which models’ predictions correspond to their actual perfor-
mances. Finally, we introduce our last proposed metric, Exposed Attack Surface,
which measures the number of unique path choices available to the attacker.

Model Prediction Accuracy. In previous empirical analyses [1,5] and in our
own analysis, prediction accuracy measures are key to understanding the relative
performance of behavior models; accuracy measures seek to answer the question
“How well does this model predict human behavior?” Computed over all paths for
each model × graph × coverage strategy combination, prediction accuracy quan-
tifies the degree to which a model’s predictions of attacker behavior were correct.

Regardless of a graph’s size or coverage strategy, however, only a few paths
have an actual probability of attack (qj) > 6 %; most paths in most graphs
are attacked with very low frequency. When looking at all paths in a graph,
the average absolute prediction error (AAE) is 3 %, regardless of the behavior
model making the prediction. It appears that the error “outliers” are actually
the primary values of interest. In other words, because there is no discriminatory
power with the average, we instead analyze the maximum absolute prediction
error (MAE) (Eq. 21) for each model, where g ∈ G is a graph in the experiment
set, φ is the behavior model (along with its weights) being evaluated, qj is the
behavior model φ’s predicted attack proportion on path Aj given defender mixed
strategy x, and q̂j is the actual attack proportion on path Aj .

MAE(g, x, φ) = max
Aj∈A

|qj − q̂j | (21)

As mentioned previously, only a few paths in a graph have some substantial
probability of being attacked. Over all eight datasets, on average (across all
graphs), 70 % of all attacks occurred on only three paths (per graph). Thus,
it is prudent to also analyze a model’s prediction accuracy on these so-called
“favored” paths.

Definition 1. A path Aj is defined as a favored path Afj if its actual proba-
bility of attack (qj) is ≥ 10%.

Similar to MAE but instead only over the favored paths Afj ⊂ Aj in a graph,
we compute the maximum absolute error over favored paths (referred to as
FMAE). Since this subset of paths does not suffer from excessive skewing, it is
appropriate to also analyze the average absolute error (FAAE) over the set of
favored paths Afj .

Predictive Reliability. Now that we’ve introduced our prediction accuracy
metrics, we turn our attention to the primary focus of our paper: predictive
reliability - the degree to which models’ prediction accuracies correspond with
their corresponding strategies’ performances in experiments. If predictive reli-
ability is poor, then models chosen on the basis of having the best prediction
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accuracy may not perform the best when tested against actual humans; when
field-deployment resources are limited, those resources should not be wasted on
models that end up performing very poorly in the field!

After all human subject experiments have been conducted (we refer to the
whole set of attack data as Ad), we can compute predictive reliability. Put sim-
ply, predictive reliability is the percentage of strong Pearson correlations. These
correlations are computed separately for each combination of graph (g ∈ G), pre-
diction accuracy metric (PAM), and testing dataset (Te ∈ Ad). For a given g,
PAM , and Te, we compute the Pearson correlation over all models’ (1) predic-
tion accuracy on Te (using PAM), and (2) actual defender utility on the model’s
corresponding attack data (e.g., for model QR trained on Maximin, compute on
the QR-M dataset). Note that if a model was trained on Te or if the model’s
corresponding attack data is Te, it is omitted from the Pearson correlation for
that combination of g, PAM , and Te.

Definition 2. Predictive reliability is defined as the percentage of correla-
tions between actual utility values and prediction accuracies that are both (1)
strong (magnitude > 0.70), and (2) in the desired direction (negative: as error
decreases, actual utility increases). In other words, predictive reliability corre-
sponds to the percentage of strong correlations (correlation < -0.70).

Exposed Attack Surface. We now introduce our second proposed metric,
Exposed Attack Surface (EAS). While early discussion of attack surface expo-
sure was done by Manadhata et al. [12], more recently, Kar et al. [11] applied
this concept to Repeated Stackelberg Security Games to improve the defender’s
utility against human subjects. EAS measures the number of unique attacker
choices (i.e., paths) for a graph × strategy combination. To phrase this metric
as a question, “Given a coverage strategy and graph, how many paths in the
graph have a unique combination of path coverage and reward?” Referring to
Fig. 2 as an example, there are three separate paths to target 5. While two of
these paths have the same path coverage of {0.2, 0.2} (one attack surface), the
other path has 0 path coverage (the second attack surface). Finally, the path to
target 8 constitutes the last attack surface; the example figure’s EAS score is 3.
Although there are four paths in Fig. 2, two of these paths are equivalent to each
other (i.e., same reward and coverage) and thus there are only three unique path
choices (i.e., the EAS score) for the attacker.

Definition 3. Exposed Attack Surface is defined as the number of unique
combinations of reward T (tj) and path coverage probability pj(x) over all paths
A in a graph g.

When computing this metric for a dataset dφ,G ∈ DΦ,G, we take the sum of
EAS scores for each graph × coverage strategy (corresponding to a model φ)
combination. To illustrate the simple (but important) intuition behind EAS, we
present two extreme cases: (1) consider a training dataset that consists of a single
graph × coverage strategy such that the graph’s EAS score is one; all paths to



48 B. Ford et al.

Fig. 2. Example graph 2

the single target have identical coverage (i.e., one unique path choice). When
attempting to learn model parameters, it would be impossible to differentiate
between attacker choices; obviously, this training set with a low EAS score is
ill-suited for use in model learning. (2) In contrast, a training dataset with a
high EAS score implies that there are many distinguishable attacker choices.
Attacker choices over these many unique paths provide information about their
preferences such that we can more effectively train a model; we hypothesize that
a training dataset that contains more information about attacker preferences
(i.e., one with high EAS) is superior to one that provides less information (i.e.,
low EAS).

7 Predictive Reliability Analysis

After defining predictive reliability in the previous section (Sect. 6.3), we now
evaluate predictive reliability in previous work by Nguyen et al. [14] for SSGs,
and then follow up with an evaluation of predictive reliability in our work for
NSGs.

7.1 SSG Experiment

In this prior work on Stackelberg Security Games (SSGs), participants in human
subject experiments were asked to play a game called “The Guards and Trea-
sures”. For one experiment, participants in each round (for 11 rounds total)
picked one of 24 targets based on its defender coverage probability, reward and
penalty to the attacker, and reward and penalty to the defender. For each of
these rounds, five coverage strategies were generated: three corresponding to
other defender strategy algorithms and two corresponding to the QR and SUQR
human behavior models whose weights were learned from a prior dataset con-
sisting of 330 data points. While the previous work demonstrated that SUQR’s
prediction accuracy was better than QR, and SUQR had the best corresponding
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strategy performance compared to other algorithms, it was an implicit assump-
tion that the behavior model with the best prediction accuracy would also per-
form the best in human subject experiments. If predictive reliability was actually
poor, then it could have been the case that QR and its strategy would have per-
formed the best in experiments.

7.2 SSG Predictive Reliability

For the following analysis, we confirmed that predictive reliability was strong
for this SSG experiment; prediction accuracy was reliably correlated with actual
performance. In the dataset we obtained from Ngyuen et al. [14] (which contained
human subject attack data), we computed the predictive reliability over the QR
and SUQR models. Because there were only two models in this correlation, the
correlation output was either -1 (i.e., supports good predictive reliability) or +1
(i.e., supports poor predictive reliability). This analysis was done across 11 differ-
ent rounds and for each of the three non-QR/SUQR test datasets. In Table 2, we
show the predictive reliability of the QR and SUQR models in this SSG dataset.
When MAE was used as the error metric for each model, predictive reliability
was 91 %. In other words, 91 % of correlations corresponded to prediction error
being strongly inversely related to actual performance.

Table 2. Guards and treasures predictive reliability

MAE AAE

Predictive reliability 91 % 85 %

7.3 NSG Predictive Reliability

In the following predictive reliability evaluation analysis for NSGs, we demon-
strate that while predictive reliability is strong for SSGs, it is weak for NSGs; in
an NSG setting, model prediction accuracy does not consistently correspond to
actual performance.

We computed the predictive reliability on the NSG dataset using the three
different error metrics: Maximum Absolute Error (MAE), Favored Path Max-
imum Absolute Error (FMAE), and Favored Path Average Absolute Error
(FAAE). Table 3 displays the predictive reliability analysis results. While the
predictive reliability results for the SSG dataset were strong, it is surprising
that predictive reliability is extremely poor for this NSG dataset. This result
certainly serves as a cautionary note against relying solely on prediction accu-
racy (as in previous work [1,5]) to identify the best human behavior models;
with weak predictive reliability, even the best model in terms of prediction accu-
racy may actually perform very poorly when its corresponding strategy is tested
against human subjects (either in the lab or in field experiments).
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Table 3. NSG predictive reliability

MAE FMAE FAAE

Predictive reliability 23 % 24 % 22%

7.4 Training Set Size

While the predictive reliability for NSGs is poor, an obvious question to ask is
“Was there enough training data?” For any learning task, it is important to have
sufficient training data. While we do not have nearly as much training data (33
data points) as the prior SSG experiments (330 data points), it is important
to ensure that our training set size is sufficiently large for reliable training.
In this analysis, we examine the effects of training set size on the Maximum
Absolute Error (MAE) rates of each NSG model. While we expect MAE to be
unstable when there is very little data in the training set, as we add more data
to the training set, we expect the error rates to eventually stabilize. It is at
this stabilization point (marked by a training set size) that we can conclude
whether we have trained our models on enough data or not. For example, if
the stabilization point is at 48 data points, it would indicate that our current
training set size (33) is not large enough, and any poor predictive reliability (as
was previously demonstrated to be the case) could easily be explained by this
deficiency in training set size.

As such, the following analysis illustrates the MAE rates of all six NSG
models as a function of changes in the size of the training set. In Figs. 3, 4,
and 5, we show the results of this analysis on Graphs 7, 9, and 11 (respectively),
where MAE is computed on the GSUQR2 testing set. Each line corresponds to
a different model (e.g., QR-M refers to QR trained with Maximin data, SUQR-S
refers to SUQR trained with GSUQR1 data), the Y-Axis displays the different
MAE rates (higher is worse), and the X-Axis displays the change in training
set size. While all the models appear to have different error rates and rates of

Fig. 3. MAE as a function of training set size (GSUQR2 testing set, graph 7)
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Fig. 4. MAE as a function of training set size (GSUQR2 testing set, graph 9)

Fig. 5. MAE as a function of training set size (GSUQR2 testing set, graph 11)

convergence, most of the models appear to converge by the time 33 data points
are introduced into the training set. Thus, we conclude that we have trained our
models with a sufficient number of data points, and the poor predictive reliability
results cannot be attributed to the size of the training set.

8 Predictive Reliability Factors

8.1 Training Set Feature: EAS

In the following analysis for our NSG dataset, we quantify the key difference
in our experiment’s two training sets: Exposed Attack Surface (EAS), and we
demonstrate that having a higher EAS score can lead to substantial improve-
ments in predictive reliability. Note that both training sets in this analysis are
of the same size.
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Fig. 6. Predictive reliability as a function of training set and error metric

Training Set Comparison. As discussed in Sect. 6.2, the full experiment set
is comprised of three separate experiment sets. Experiment set 2 consists of
models trained on Maximin data (from experiment set 1), and experiment set 3
consists of models trained on GSUQR1-M data (from experiment set 2). We
computed predictive reliability scores as a function of training set (either Max-
imin or GSUQR1-M) and prediction accuracy metric (Maximum Absolute Error
(MAE), Favored Path Maximum Absolute Error (FMAE), and Favored Path
Average Absolute Error (FAAE)), and we show those results in Fig. 6. As is
clear, there must be a significant difference in the two training sets; split solely
on their training set, the predictive reliability doubles when models are trained
on the GSUQR1-M dataset! While their sizes are roughly the same (about 47
participants), we examine one key difference in these datasets: exposed attack
surface.

Exposed Attack Surface Analysis. Exposed Attack Surface (EAS), as
defined in Sect. 6.3, refers to the number of unique combinations of reward T (tj)
and path coverage probability pj(x) over all paths A in a graph g. Since we
are interested in computing this score for an entire dataset (consisting of 15
graphs g ∈ G), we compute the sum of EAS scores across all graphs. Table 4
shows the sum of each training dataset’s EAS score. While the Maximin dataset
had 50 unique Exposed Attack Surfaces, the GSUQR1-M dataset had 86 unique
Exposed Attack Surfaces. This is not surprising, as a Maximin strategy’s only
goal is to conservatively minimize the attacker expected utility across all paths;
for 11 out of 15 graphs in the Maximin dataset, the EAS score is equal to 3 (the
minimum given three targets of different reward value). In contrast, an SUQR-
based strategy seeks to actively predict which paths an attacker will choose
(based on a linear combination of path coverage, reward, and potentially other
factors), and as a result, the resultant defender coverage strategy is more varied
(and thus only 3 out of 15 graphs have the minimum EAS score of 3).
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Table 4. Training dataset comparison: sum of exposed attack surfaces

EAS-sum Maximin GSUQR1-M

50 86

Based on this line of reasoning, we can view the EAS metric as a measure
of dataset diversity. Since a diverse dataset would necessarily give more unique
choices for attackers to make, we are able to obtain more information on which
choices are favored or not favored by attackers. A higher EAS score could indicate
that a dataset is better for training than another dataset; indeed, our current
results strongly suggest that when there is a substantial difference in EAS-Sum
scores, there will also be a substantial difference in predictive reliability. However,
these results do not mean that a high EAS score will result in 100 % predictive
reliability; if able to train on two datasets of equal size, it will likely improve
predictive reliability to train on the dataset with the higher EAS score.

9 Graph Features and Their Impacts on Predictive
Reliability

In addition to training set features, we also investigated the impacts that a
graph’s features may have on predictive reliability. For example, some graphs
may be inherently more difficult to make predictions on than others, and it
would be useful to characterize the factors that add to this complexity. Because
this analysis is evaluating how a graph’s features impact predictive reliability,
the predictive reliability will be computed on a per graph basis. Figure 7 shows
the predictive reliability scores for each graph, where each bin of three bars
corresponds to a single graph, each bar corresponds to a prediction error metric,
and the Y-axis corresponds to predictive reliability. As can be seen, the predictive
reliability varies greatly as a function of the graph g. As such, it is logical to
investigate what graph features could have led to such significant differences in
predictive reliability.

We analyzed the correlation between a graph’s features and the predictive
reliability score for that graph. Initially, we tested many different features such
as graph size (i.e., the number of paths in the graph), number of edges, number
of intermediate nodes, average path length, and the average in-degree (incoming
edges) and out-degree (outgoing edges) of source, destination, and intermediate
nodes. What we found, however, is that none of these had a strong, direct cor-
relation with predictive reliability. For example, the lack of a strong correlation
between graph size and predictive reliability states: “A graph’s size does not
impact the ability to make reliable predictions”.

Upon further investigation, we found one interesting relationship: there is a
strong correlation (+0.72) between poor predictive reliability and graphs with
both a low to moderate average out-degree for source nodes (<3) and a low to
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Fig. 7. Predictive reliability as a function of graph

moderate number of intermediate nodes (≤6). While we could not find a cor-
relation among the other features’ values and the average out-degree of source
nodes, we did find a strong correlation between the number of intermediate nodes
and the average in-degree of destination nodes (-0.75). Informally stated, as the
number of intermediate nodes increases, the number of edges going into desti-
nation nodes decrease. This balance is perhaps due to the edge limit imposed
during graph creation. Regardless, when there are less edges going into destina-
tion nodes (due to many intermediate nodes), it is likely easier for the defender to
allocate resources which, in turn, reduces the number of good attack options for
the attacker. If the attacker does not have many good attack options to choose
from, they may act in a way that it is easier to predict by human behavior
models.

10 Conclusion

Interdicting the flow of illegal goods (such as drugs and ivory) is a major secu-
rity concern for many countries. However, the massive scale of these networks
forces defenders to make judicious use of their limited resources. While existing
solutions model this problem as a Network Security Game (NSG), they do not
consider humans’ bounded rationality. While existing techniques for modeling
human behavior make use of large training datasets, this is unrealistic in real-
world situations; the ability to effectively test many models is constrained by
the time-consuming and complex nature of field deployments. In addition, there
is an implicit assumption in these works that a model’s prediction accuracy
strongly correlates with the performance of its corresponding defender strategy
(referred to as predictive reliability). If the assumption of predictive reliability
does not hold, then this could lead to substantial losses for the defender. In
this paper, we (1) first demonstrated that predictive reliability was strong for
previous Stackelberg Security Game experiments. We also ran our own set of



Beware the Soothsayer: From Attack Prediction Accuracy 55

human subject experiments in such a way that models were restricted to learn-
ing on dataset sizes representative of real-world constraints. In the analysis on
that data, we demonstrated that (2) predictive reliability was extremely weak
for NSGs. Following that discovery, however, we identified (3) key factors that
influenced predictive reliability results: exposed attack surface of the training
data and graph structure.

Acknowledgments. This research was supported by MURI Grant W911NF-11-1-
0332 and by CREATE under grant number 2010-ST-061-RE0001.

References

1. Abbasi, Y.D., Short, M., Sinha, A., Sintov, N., Zhang, C., Tambe, M.: Human
adversaries in opportunistic crime security games: evaluating competing bounded
rationality models. In: 3rd Conference on Advances in Cognitive Systems (2015)
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1 Introduction

Since at least the Cold War era there has been a considerable interest in the study
of games of timing to understand when to act in security-relevant decision-making
scenarios [1]. The recent rise of insider threats, cyber-espionage, and other types of
attacks which involve a high degree of stealthiness has renewed the desire to bet-
ter understand the timing of actions to audit, clean, or otherwise mitigate such
attacks. However, to the best of our knowledge, the modern literature on games
and decision-theoretic approaches (including the FlipIt model [3,31]) shares a
common limitation: the assumption that the cost and effectiveness of the play-
ers’ actions are time-independent. For example, in the FlipIt model and its deriv-
atives (see section on related work), an adversary may make a move at any time
for exactly the same fixed cost, and these moves always succeed.

In practice, the cost and success probability of attacks typically vary with
time. Moreover, an adversary may only attack when an opportunity is present
(e.g., when a vulnerability has been discovered). These observations motivate
the development of games of timing which take into account the dynamic envi-
ronment of contested computing resources. Defenders need to develop an opti-
mal defensive strategy which considers the nature of vulnerability discovery by
adversaries. At the same time, the attacker faces the decision-making dilemma
on when to exploit an identified vulnerability.

For example, the black hat community knew already for a long time that
Microsoft would stop supporting Windows XP in April 2014, which would sig-
nificantly lower the defense and mitigation effort for this software product.1

Security professionals conjectured that attackers would begin stockpiling vul-
nerabilities to exploit them more profitably. However, under what circumstances
is such behavior optimal for the attacker, when there is a risk that the vulner-
ability is rediscovered by an internal security team or external ethical hackers
before the planned time of exploitation [22,35]?

In this paper, we propose and study a model which captures dynamic envi-
ronments. More specifically, we study the problem faced by a defender who
has deployed a new service or resource, which must be protected against cyber-
attacks. We assume that adversaries discover vulnerabilities according to a given
vulnerability-discovery process which is modeled as an arbitrary function of time.
Attackers and defenders know that each found vulnerability has a basic lifetime,
i.e., the likelihood that a vulnerability is still exploitable at a later date is sub-
ject to the efforts by ethical hackers who may rediscover the vulnerability and
render it useless for attackers. At the same time, the defender may invest in
mitigation efforts to lower the impact of an exploited vulnerability. Attackers
therefore face the dilemma to either exploit a vulnerability immediately, or wait
for the defender to let its guard down. The latter choice leaves the risk to come
away empty-handed.

1 In July 2011, Microsoft made the announcement that support for the operating
system will end in 2014. Note that previously Microsoft already stopped the so-
called full mainstream support for Windows XP in April 2009.
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We develop two versions of our model, i.e., a continuous-time and a discrete-
time model, to increase the applicability of our work. We provide fundamental
constraints on the shape of equilibria for both models, and give necessary and suf-
ficient conditions for the existence of non-waiting equilibria in terms of the shape
of the vulnerability discovery function. We further provide numerical results to
illustrate important properties of our findings.

The remainder of this paper is organized as follows. In Sect. 2, we summarize
related theoretical and behavioral work on security games of timing. In Sect. 3, we
introduce our game-theoretic model including players and the decision-making
environment. In Sect. 4, we derive theoretical results for our model. In Sect. 5,
we present numerical examples. Finally, in Sect. 6, we discuss our results and
offer concluding remarks.

2 Related Work

2.1 Security Economics and Games of Timing

The economics of security decision-making is a rapidly expanding field covering
theoretical, applied, and behavioral research. Theoretical work utilizes diverse
game-theoretic and decision-theoretic approaches, and addresses abstract as well
as applied scenarios. A central research question has been how to optimally deter-
mine security investments [7,11,25,32], e.g., by selecting from different canonical
defense actions (i.e., protection, mitigation, risk-transfer) [12,19], and how such
investments are influenced by the actions of strategic attackers [6,30]. Another
frequently addressed aspect has been the consideration of interdependence of
security decision-making and the propagation of risks [4,8,13,14]. Recent sur-
veys summarize these research efforts in great detail [2,15,20].

An often overlooked but critical decision dimension for successfully secur-
ing resources is the consideration of when to act to successfully thwart attacks.
Scholars have studied such time-related aspects of tactical security choices since
the cold-war era by primarily focusing on zero-sum games called games of tim-
ing [1]. The theoretical contributions on some subclasses of these games have
been surveyed by [27].

Recently, the question of the optimal timing of security decisions has again
become a lively research topic with the development of the FlipIt game [3,31].
In the following, we discuss FlipIt as well as theoretical and behavioral follow-up
research.

2.2 Theoretical Analyses of FlipIt

The FlipIt model identifies optimal timing-related security choices under tar-
geted attacks [3,31]. In FlipIt, two players compete for a resource that generates
a payoff to the current owner. Players can make costly moves (i.e., “flips”) to
take ownership of the resource, however, they have to make moves under incom-
plete information about the current state of possession. In the original FlipIt
papers, equilibria and dominant strategies for simple cases of interaction are
studied [3,31].
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In follow-up research, Pham and Cid studied a version of FlipIt with periodic
strategies with random phase. They also considered the impact of a move to
check the state of the game (i.e., audit) [26].

Laszka et al. study games of timing with non-covert defender moves. They
consider also non-instantaneous attacker moves, and different types of adver-
saries, e.g., targeting and non-targeting attackers [18]. A follow-up paper further
generalizes the results of this line of research [17].

The previous papers considered FlipIt with one resource. This limitation has
been addressed with the strategic analysis of the game with multiple contested
resources [16]. Similarly, an extension of the game has been proposed with mul-
tiple defenders [24].

Feng et al. [5] and Hu et al. [10] study games with multiple layers in which
in addition to external adversaries the actions of insiders (who may trade infor-
mation to the attacker for a profit) need to be considered. Hu et al. [10] study
the scenario in a dynamic game framework.

Zhang et al. [34] study the FlipIt game with resource constraints on both
players.

Drawing on the setup of FlipIt, Wellman and Prakash develop a discrete-
time model with multiple, ordered states in which attackers may compromise
a server through cumulative acquisition of knowledge rather than in a one-shot
takeover [33].

2.3 Behavioral Studies of FlipIt

Nochenson and Grossklags describe and analyze two experiments which draw from
the theoretical model of the FlipIt game [21]. They conduct a Mechanical Turk
experiment with over 300 participants in which each participant is matched with
a computerized opponent in several fast-paced rounds of the FlipIt game. Prelim-
inary analysis of this experiment shows that participant performance improves
over time (however, older participants improve less than younger ones). They also
found significant performance differences with regards to gender and a measure of
the desire for deep reasoning about a problem (i.e., need for cognition).

In follow-up work, Reitter et al. contrast two experiments where the feed-
back to the human decision maker in the decision-environment is varied between
visual feedback with history, and temporal feedback without history. The authors
study the human strategies and develop a model backed by a cognitive architec-
ture, which described human heuristics that practically implement risk-taking
preference in timing decisions [28].

Grossklags and Reitter extend these preliminary works with an in-depth
analysis of the experimental data of these previous studies [9]. In particular,
they study the interaction effects between the psychometric measures including
also the general propensity of risk taking with task experience and how those
factors explain task performance.

The behavioral studies will help to develop theoretical models which take
the imperfections of human decision-making into account. Likewise, theoreti-
cal studies of rational behavior serve as an important comparison baseline for
experimentally generated human data or measurements from the field.
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3 Model

Our model captures the motivational aspects of timing, as it pertains to the
discovery, repair, and exploitation of software vulnerabilities. The salient features
of our model may be enumerated as follows.

1. The life cycle of a software product is finite with a known end time t = T .
2. The rate of vulnerability discovery V (t) is an arbitrary function of time, spec-

ified as an exogenous parameter. We make this modeling choice to maximize
applicability for varieties of software products and services that may differ in
quality, attention, and life cycle.2

3. The lifetime of a vulnerability decays at a fixed rate λ without action by
either player. This choice is made to account for the fact that unknown vul-
nerabilities are often repaired by chance only, so that one might reasonably
assume they die with some fixed probability in a unit of time.3

4. The defender’s security investment d(t) is a function of time, and serves to
mitigate losses when a vulnerability is exploited.

5. The timing of vulnerability exploitation a(t) is chosen by an attacker for
optimal exploitation dependent on the defender’s security investments.

To further extend the applicability of our model, we describe and analyze
two distinct versions – one with continuous time, and one with discrete time. In
the continuous version of the model, attackers and defenders choose strategies
as continuous functions of time, and the payoffs are determined by integrat-
ing expected losses over the range of all time. In the discrete version, time is
divided into a finite number of steps; attackers and defenders choose an action
at each time step, and the payoffs are determined by summing the expected out-
comes over all time periods. Both versions of the game adhere to the paradigms
described above.

We begin by describing the game’s players and their respective choices. We
then proceed to describe the environment. Finally we discuss the consequences
from a configuration of choices. Whenever applicable, we separate the specifica-
tion and discussion according to either the continuous or the discrete model. For
reference, a list of symbols used in this paper may be found in Table 1.

2 A small number of studies investigate the social utility of vulnerability discovery.
On the one hand, Rescorla studied the ICAT dataset of 1,675 vulnerabilities and
found very weak or no evidence of vulnerability depletion. He thus suggested that
the vulnerability discovery efforts might not provide much social benefit [29]. On the
other hand, this conclusion is challenged by Ozment and Schechter, who showed that
the pool of vulnerabilities in the foundational code of OpenBSD is being depleted
[22,23]. Zhao et al. present evidence that the number of discovered vulnerabilities is
declining for a majority of public company-specific vulnerability bounty programs
on HackerOne [36].

3 Unsurprisingly, statistical evidence is lacking regarding how often defenders and
attackers discover the same vulnerabilities. However, empirical research by Ozment
about the ethical hacker community found that vulnerability rediscovery is common
in the OpenBSD vulnerability discovery history [22].
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Table 1. List of Symbols

Symbol Description

R scaling factor between security costs and losses

λ vulnerability repair rate

Continuous-time Model

T end time

V (t) vulnerability discovery rate at time t

d(t) defender’s security investment at time t

a(t) attacker’s waiting time before exploiting a vulnerability discovered at
time t

Discrete-time Model

K number of time periods

V (k) expected number of vulnerabilities discovered in time period k

d(k) defender’s security investment in time period k

a(k) attacker’s waiting time before exploiting a vulnerability discovered in
time period k

3.1 Players and Choices

Our game has two players, a defender and an attacker. The defender’s objective is
to mitigate damages from vulnerability exploitation through security investment,
while the attacker’s objective is to maximally exploit vulnerabilities as they are
discovered. Neither the attacker nor the defender control the rate of vulnerability
discovery V (t), which is an exogenous function of time.

We may construe the defender’s investments quite broadly, in ways other than
monetary investments. For example, we may understand them as a measure of
strictness in policy enforcement, which can be optimized to minimize usability
loss.

On the attacker side, it is interesting to note that we would obtain the same
results if we modeled the game as one containing several attackers, where each
attacker randomly finds vulnerabilities according to a given rate, and then inde-
pendently chooses the timing of their exploitation. However, for the sake of clear
exposition, we frame the interaction as a two-player game with a single attacker.

Continuous-Time Model. In the continuous-time model over a time interval
[0, T ], the defender chooses a continuous function d(t) : [0, T ] → R≥0 which
specifies the level of her security investment at each time t. The attacker chooses
a continuous function a(t) : [0, T ] → R≥0 which specifies how long to wait before
exploiting a vulnerability discovered at time t.

Discrete-Time Model. In the discrete-time model with discrete time periods
0, 1, . . . ,K, the defender chooses a function d(k) : {0, 1, . . . ,K} → R≥0 spec-
ifying her security investment level at each distinct time period. The attacker
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chooses a function a(k) : {0, 1, . . . ,K} → Z≥0 specifying how many discrete time
steps to wait before launching an attack using a vulnerability discovered in the
kth time period.

3.2 Environment

Here we construe the environment primarily as the security state of a software
system over a finite period of time. More specifically, the rate of vulnerability
discovery by attackers, V (t), is a function of time, specified as an exogenous
parameter. We anticipate that this modeling choice increases the applicability
for different types of software products and services that may differ in quality,
attention, and life cycle.

The fixing of vulnerabilities, on the other hand, follows a random process
as defenders eventually rediscover vulnerabilities which have been found by the
attacker. More specifically, we assume that the lifetime of a vulnerability follows
an exponential distribution (parameterized by λ) without action by either player.
The net effect of this eventual rediscovery is that an attacker who learns of
a vulnerability at one time, cannot simply wait indefinitely for the defender’s
security investment to lapse.

Continuous-Time Model. In the continuous-time model, the vulnerability
function has the form V (t) : [0, T ] → R≥0. The interpretation is that V (t) gives
the precise rate at which vulnerabilities are being discovered by the attacker for
each moment of time. In terms of our analysis and computation, we will obtain
the expected number of vulnerabilities discovered during any fixed time interval
by integrating V (t) with respect to t over that time interval.

The vulnerability repair process is determined by an exponential decay func-
tion of the form e−λτ . This function determines the probability that a vulnerabil-
ity still remains exploitable τ time after its discovery. The structured formulation
guarantees that this exploit probability decays at a constant rate of λ. An approx-
imate interpretation is that in each unit of time, a constant fraction of its exploit
probability is lost.

Discrete-Time Model. In the discrete-time model, the vulnerability function
has the form V (k) : {0, 1, . . . ,K} → R≥0. Here, V (k) gives directly the expected
number of vulnerabilities discovered during the time period k. Computation-
ally, we may obtain the expected number of vulnerabilities discovered over any
sequence of time periods by summing V (k) over those periods.

To capture the analogous fixed rate reduction phenomenon for vulnerability
repair in the discrete-time model, we use a geometric distribution function of the
form (1−λ)τ , which gives us the probability that a vulnerability is not repaired
in τ number of time periods after its discovery. The interpretation is that a λ
fraction of a vulnerability’s exploit potential is lost in each time period.
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3.3 Consequences

Suppose that both defender and attacker have simultaneously chosen their strate-
gies for defense d and wait times a, respectively. The consequences for the
defender involve both the defense costs and the loss from vulnerability exploita-
tion. We construe the defense function in terms of direct costs, while the amount
of loss resulting from an attack is inversely proportional to the defense rate,
scaled by a fixed constant R.

On the attacker’s side, we are only concerned with the gain from maximally
exploiting the vulnerabilities. Thus, the overall structure is that the defender’s
payoff is always negative, while the attacker’s payoff is always positive. The sum
of payoffs related to vulnerability exploitation is zero; but the game itself is not
zero-sum, unless the defender abstains from any defensive investment (i.e., when
d ≡ 0).

Continuous-Time Model. In the continuous-time model, the defender’s
objective is to minimize her total losses over the course of the time interval
[0, T ]. The defender’s costs over this time interval may be easily computed as

∫ T

t=0

d(t)dt,

while her losses depend in part on the waiting time of an attacker. If the attacker
immediately exploits a vulnerability discovered at time t, the expected loss per
unit time due to vulnerabilities discovered around time t may be expressed as

R

d(t)
.

On the other hand, if the attacker instead waits for some time a(t) before
exploiting a vulnerability discovered at time t, then we must account for both
the decay in vulnerability exploitability as well as adjust the timing relative to
the defense investment. In this case, the expected loss per unit of time due to
vulnerabilities discovered around time t will be given by

e−λa(t) R

d(t + a(t))
.

Putting everything together along with the vulnerability discovery function,
the defender’s total payoff in the continuous-time model is given by

Ud = −
∫ T

t=0

(
d(t) + V (t)e−λa(t)R

1
d(t + a(t))

)
dt; (1)

while the attacker’s payoff is given by

Ua =
∫ T

t=0

V (t)e−λa(t)R
1

d(t + a(t))
dt. (2)
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Discrete-Time Model. In the discrete-time model, the defender’s objective is
to minimize her total losses over the course of the time stages {0, 1, . . . ,K}. The
defender’s costs are computed as a sum

K∑

k=0

d(k),

while losses depend on the waiting time of an attacker. Suppose that an attacker
waits for a(k) time periods before exploiting a vulnerability discovered in time
period k; then, the defender’s losses due to vulnerabilities discovered in time
step k will be given by

(1 − λ)a(k) R

d(k + a(k))
.

Assembling everything together, the payoff for the defender in the discrete-
time model is given by

Ud = −
K∑

k=0

(
d(k) + V (k)(1 − λ)a(k) R

d(k + a(k))

)
; (3)

while the payoff for the attacker is given by

Ua =
K∑

k=0

V (k)(1 − λ)a(k) R

d(k + a(k))
. (4)

4 Analysis

In this section, we analyze the model to find applicable consequences for the
software vulnerability scenario. We will primarily focus on Nash equilibrium
configurations, in which each player is responding optimally in the current
context.

We begin by giving a result in the continuous-time model that constrains the
attacker’s strategy at the temporal boundaries.

Proposition 1. If V (0) > 0, then every equilibrium in the continuous-time
model satisfies a(0) = 0 and a(T ) = 0. In words, the attacker should never wait
to attack at either the beginning or the end of the game.

Proof. Suppose a(0) > 0. Since there is no previous time at which the attacker
may have discovered a vulnerability, the defender may safely choose d(0) = 0
as an optimal investment. However, if the attacker knew d(0) = 0, she would
rather prefer not to wait, in order to cause maximum damage in case a vulnera-
bility were found at that time. This contradiction shows a(0) > 0 cannot be an
equilibrium if V (0) > 0.

The second part of the proposition is more trivially deduced since it would
not benefit the attacker to wait longer because there is no time remaining at the
end of the game. In fact, for this reason more generally, the attacker’s strategy
in equilibrium must satisfy the constraint a(t) ≤ T − t. ��
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Our second result constrains the attacker’s strategy in any pure-strategy equi-
librium. These conditions are considerably more restrictive than those in the
continuous-time case. They tell us that if there is an ubiquitous risk of vulner-
ability discovery, then there can be no pure-strategy equilibrium in which the
attacker uses any positive wait times.

Proposition 2. If V (k) > 0 for each time period k, then for every pure-strategy
equilibrium in the discrete-time game, we have a(k) = 0 for each k = 0, 1, . . . , K.
In words, if the attacker uses any positive wait time in the discrete-time game,
then it must be part of a mixed strategy.

Proof. We prove the result by induction on the number of time periods. When
k = 0, the claimed result is perfectly analogous to the continuous-time model’s
result from the previous proposition. Obviously, there can be no previous vulner-
ability discovery. If the attacker waits to attack in round 0, then the defender can
optimally save herself the trouble of making any security investment in round 0
(i.e., d(0) = 0). But if V (0) > 0, then this configuration is clearly not an optimal
response configuration for the attacker.

But now that we know a(0) = 0, a very similar argument also holds for
k = 1. We do not have any vulnerabilities from the one earlier round, because
the attacker did not wait in round 0. If the attacker now waits in round 1, the
defender may optimally choose not to invest in security protection in this round
(i.e., d(1) = 0). But this configuration is not optimal for the attacker and so
cannot be part of an equilibrium. The argument can now be iterated inductively
for k = 2, . . . , K. ��
The crux of these two results is that the attacker may only optimally wait to
attack in a given time period if there is some attack probability arising from a
previous time period. In the continuous case, this implies only that the attacker
cannot wait at the beginning of the game, because continuously increasing the
wait time from t = 0 can still lead to positive attack probability at every point
in time. On the discrete side, however, this observation precludes having any
simple optimal attack strategy in which the attacker waits at all.

The next two propositions give necessary and sufficient conditions for “never
waiting” to be the attacker’s strategy in an equilibrium. In both the continuous-
time model and the discrete-time model, the conditions involve only a simple
relation between the vulnerability discovery function V and the discovery rate λ.

Proposition 3. In the continuous-time model, there exists an equilibrium in
which the attacker never waits before attacking if the vulnerability function
satisfies

V (t + a)
V (t)

≥ e−2λa (5)

for every t ∈ [0, T ] and a ∈ [0, T − t].
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Proof. Suppose that the attacker never waits. Let us consider the defender’s
best response to this strategy. Simplifying Eq. (1), the defender’s utility function
becomes

−
∫ T

0

(
d(t) + V (t)

R

d(t)

)
dt.

This utility is maximized by choosing d(t) at each time t to minimize the
cost plus risk. Setting

d

dx

(
x + V (t)

R

x

)
= 0

and solving for x, we obtain the optimal d(t) as

d(t) =
√

V (t)R. (6)

Now, the part of the equilibrium condition that says a(t) = 0 is the attacker’s
best response function implies that for every t and a, we have

V (t)R
d(t)

≥ V (t)Re−λa

d(t + a)
.

Incorporating the defender’s strategy and simplifying, we obtain

d(t + a)
d(t)

≥ e−λa

√
V (t + a)R
√

V (t)R
≥ e−λa

V (t + a)
V (t)

≥ e−2λa.

Now conversely, suppose that

V (t + a)
V (t)

≥ e−2λa.

Let d(t) =
√

V (t)R be the defender’s investment strategy. Because the
sequence of inequalities above is reversible, we have that a(t) is a best response
to d(t); and we have already showed that d(t) is a best response to a(t). So there
exists an equilibrium in which the attacker never waits. ��
The following proposition gives an analogous result for the discrete-time model.

Proposition 4. In the discrete-time model, there is an equilibrium in which the
attacker never waits before attacking if the vulnerability function satisfies

V (k + a)
V (k)

≥ (1 − λ)2a (7)

for every k ∈ {0, . . . , K − 1} and a ∈ {1, . . . , K − k}.



68 B. Johnson et al.

Proof. Suppose that the attacker never waits. Let us consider the defender’s best
response to this strategy. Simplifying Equation(3), the defender’s utility function
becomes

−
K∑

k=0

(
d(k) + V (k)

R

d(k)

)
.

This utility is maximized by choosing d(k) at each step k to minimize the
cost plus risk, giving

d(k) =
√

V (k)R. (8)

To say that a(k) = 0 is the attacker’s best response function now implies
that for every k and a, we have

V (k)R
d(k)

≥ V (k)R(1 − λ)a

d(k + a)
.

Incorporating the defender’s strategy and simplifying, we obtain

d(k + a)
d(k)

≥ (1 − λ)a

√
V (k + a)R
√

V (k)R
≥ (1 − λ)a

V (k + a)
V (k)

≥ (1 − λ)2a.

The argument that the condition implies existence of an equilibrium is anal-
ogous to the continuous version. ��

5 Numerical Examples

In this section, we present numerical examples to illustrate our model and
our theoretical results, focusing on the vulnerability-discovery function and
the defender’s equilibrium strategy. For these numerical examples, we use the
discrete-time version of our model.

First, in Figs. 1 and 2, we study two example vulnerability functions with
the corresponding equilibrium defense strategies. In the first example (Fig. 1), the
vulnerability discovery rate grows and decays exponentially. More formally, the
vulnerability discovery rate in this example is given by the following formula:

V (k) = e− (k−33)2

200 . (9)

In the second example (Fig. 2), the vulnerability discovery rate grows and decays
linearly (i.e., according to an affine function). In both cases, we let R = 1,
K = 100, and λ = 0.3.
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(a) Vulnerability discovery rate as a
function of time

0 50 100

0

0.5

1

Time period k

S
ec

u
ri

ty
in

v
es

tm
en

t
d
(k

)

(b) Defender’s equilibrium security in-
vestment as a function of time

Fig. 1. Example based on exponentially growing and decaying vulnerability discovery
rate with the corresponding equilibrium defense strategy.
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(a) Vulnerability discovery rate as a
function of time
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(b) Defender’s equilibrium security in-
vestment as a function of time

Fig. 2. Example based on linearly growing and decaying vulnerability discovery rate
with the corresponding equilibrium defense strategy.

We can see that, in both examples, the rise and fall of the defender’s security
investment is dampened compared to those of the vulnerability functions. How-
ever, the security investments are very far from being constant, which indicates
that dynamic environments play an important role in determining equilibrium
investments.

Second, in Fig. 3, we study the condition given by Proposition 4. Recall that
Proposition 4 establishes a threshold on the maximum rate of decrease in vulner-
ability discovery such that the attacker never waiting is an equilibrium. In Fig. 3,
for various values of λ, we plot vulnerability discovery functions that decrease
with this maximum rate.

Firstly, in Fig. 3(a), we can see that if λ = 0, then the vulnerability discovery
rate has to be constant in order for the attacker not waiting to be an equilibrium.
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(b) λ = 0.01
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(c) λ = 0.02
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(d) λ = 0.05

Fig. 3. Threshold vulnerability functions V (k) for Proposition 4 with various values
of λ.

The explanation for this corner case is that λ = 0 means that the attacker
can stockpile vulnerabilities without taking any risk; hence, the attacker will
wait only if security investments are constant over time, which implies that
the vulnerability discovery rate must also be constant for the equilibrium to
exist. Secondly, in Figs. 3(b), (c), and (d), we see that the higher the value of
λ, the more steeply the vulnerability discovery rate may decrease. Again, the
explanation for this is that higher values of λ mean higher risk for stockpiling
vulnerabilities; hence, the higher λ is, the more steeply the discovery rate can
decrease without the attacker opting to wait.

6 Conclusion

The recent rise of attacks involving a high degree of stealthiness has sparked
considerable interest in games of timing for security. However, to the best of
our knowledge, the previously proposed models in the recent literature share
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a common limitation: the assumption that the cost and effectiveness of the
attackers’ actions are time-independent. In this paper, we proposed and stud-
ied a model which captures dynamic environments, i.e., in which the attackers’
actions depend on the availability of exploitable vulnerabilities. More specifi-
cally, we assumed that attackers discover vulnerabilities according to a given
vulnerability-discovery process, which we modeled as an arbitrary function of
time. Based on this assumption, we formulated a two-player game of timing
between a defender, who tries to protect a service or resource through security
investments, and an attacker, who can choose when to exploit a vulnerabil-
ity. The most interesting novel feature of our model is the attacker’s dilemma:
whether to wait in hope of exploiting the vulnerability at a time when secu-
rity is lower, but risking that the vulnerability is rediscovered and fixed in the
meantime.

In our theoretical analysis, we primarily focused on characterizing equilib-
ria in which the attacker does not stockpile vulnerabilities (i.e., never waits to
exploit a vulnerability). The question of vulnerability stockpiling is interesting
in many practical scenarios, most importantly in the case of software products
that are widely used even after their end of official support. Our results relate the
vulnerability discovery process to the rate of repairing vulnerabilities, and hence
provide guidelines for finding vulnerability repair rates that will not lead to a
vulnerability stockpiling equilibrium in practice. In our numerical examples, we
considered multiple specific vulnerability functions, and studied the correspond-
ing equilibrium strategies.

There are multiple directions for extending our current work. Firstly, we
plan to provide a theoretical characterization of the game’s equilibria in the case
when the attacker does not stockpile vulnerabilities (i.e., when never waiting is
not an equilibrium). Secondly, we plan to study and characterize the Stackelberg
equilibria of our game. In our current work, we assume that the defender and
the attacker choose their strategies at the same time, which captures scenarios
with uninformed players. However, in [17], it was shown – for a different timing-
game model – that a defender can substantially decrease its losses by publicly
committing to a strategy and letting the attacker choose its strategy in response.
We expect that a similar result holds for the model presented in this paper as
well.
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network security and privacy. ACM Comput. Surv. 45(3), 25:1–25:39 (2013)

21. Nochenson, A., Grossklags, J.: A behavioral investigation of the FlipIt game. In:
12th Workshop on the Economics of Information Security (WEIS) (2013)



Games of Timing for Security in Dynamic Environments 73

22. Ozment, A.: The likelihood of vulnerability rediscovery and the social utility of
vulnerability hunting. In: Proceedings of the 4th Workshop on the Economics of
Information Security (WEIS) (2005)

23. Ozment, A., Schechter, S.: Milk or wine: does software security improve with age?
In: Proceedings of the 15th USENIX Security Symposium (2006)

24. Pal, R., Huang, X., Zhang, Y., Natarajan, S., Hui, P.: On security monitoring in
sdns: a strategic outlook

25. Panaousis, E., Fielder, A., Malacaria, P., Hankin, C., Smeraldi, F.: Cybersecurity
games and investments: a decision support approach. In: Poovendran, R., Saad, W.
(eds.) GameSec 2014. LNCS, vol. 8840, pp. 266–286. Springer, Heidelberg (2014)

26. Pham, V., Cid, C.: Are we compromised? modelling security assessment games. In:
Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 234–247.
Springer, Heidelberg (2012)

27. Radzik, T.: Results and problems in games of timing. In: Lecture Notes-Monograph
Series. Statistics, Probability and Game Theory: Papers in Honor of David Black-
well, vol. 30, pp. 269–292 (1996)

28. Reitter, D., Grossklags, J., Nochenson, A.: Risk-seeking in a continuous game of
timing. In: Proceedings of the 13th International Conference on Cognitive Modeling
(ICCM), pp. 397–403 (2013)

29. Rescorla, E.: Is finding security holes a good idea? IEEE Secur. Priv. 3(1), 14–19
(2005)

30. Schechter, S.E., Smith, M.D.: How much security is enough to stop a thief? In:
Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 122–137. Springer, Heidelberg
(2003)

31. Van Dijk, M., Juels, A., Oprea, A., Rivest, R.: Flipit: the game of “stealthy
takeover”. J. Crypt. 26(4), 655–713 (2013)

32. Varian, H.: System reliability and free riding. In: Camp, J., Lewis, S. (eds.) Eco-
nomics of Information Security, pp. 1–15. Kluwer Academic Publishers, Dordrecht
(2004)

33. Wellman, M.P., Prakash, A.: Empirical game-theoretic analysis of an adaptive
cyber-defense scenario (preliminary report). In: Poovendran, R., Saad, W. (eds.)
GameSec 2014. LNCS, vol. 8840, pp. 43–58. Springer, Heidelberg (2014)

34. Zhang, M., Zheng, Z., Shroff, N.: Stealthy attacks and observable defenses: a game
theoretic model under strict resource constraints. In: Proceedings of the IEEE
Global Conference on Signal and Information Processing (GlobalSIP), pp. 813–
817 (2014)

35. Zhao, M., Grossklags, J., Chen, K.: An exploratory study of white hat behaviors
in a web vulnerability disclosure program. In: Proceedings of the ACM Workshop
on Security Information Workers, pp. 51–58 (2014)

36. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discov-
ery ecosystems. In: Proceedings of the 22nd ACM Conference on Computer and
Communications Security (CCS) (2015)



Threshold FlipThem: When the Winner Does
Not Need to Take All

David Leslie1, Chris Sherfield2, and Nigel P. Smart2(B)

1 Department Mathematics and Statistics,
University of Lancaster, Lancaster, UK

d.leslie@lancaster.ac.uk
2 Department of Computer Science, University of Bristol, Bristol, UK

c.sherfield@bristol.ac.uk, nigel@cs.bris.ac.uk

Abstract. We examine a FlipIt game in which there are multiple
resources which a monolithic attacker is trying to compromise. This
extension to FlipIt was considered in a paper in GameSec 2014, and
was there called FlipThem. Our analysis of such a situation is focused
on the situation where the attacker’s goal is to compromise a threshold
of the resources. We use our game theoretic model to enable a defender
to choose the correct configuration of resources (number of resources and
the threshold) so as to ensure that it makes no sense for a rational adver-
sary to try to attack the system. This selection is made on the basis of
the relative costs of the attacker and the defender.

1 Introduction

At its heart security is a game played between an attacker and a defender; thus
it is not surprising that there have been many works which look at computer
security from the point of view of game theory [1,9,12,15]. One particularly
interesting example is the FlipIt game developed by van Dijk et al. [16]. In FlipIt
the attacker and defender are competing to control a resource. Both players
are given just a single button each. The attacker gets control of the resource
by pressing her button, whilst the defender can regain control by pressing his
button. Pressing the button has a cost for each player, and owning the resource
has a gain.

In this work we examine the FlipIt game in the situation where the defender
has multiple resources, and the attacker is trying to obtain control of as many of
these resources as possible. This was partially considered before in the paper [7],
who introduced a variant of FlipIt called FlipThem in which the defender has
control of multiple resources. Instead of flipping the state of a single resource
from good to bad, the attacker is trying to flip the states of multiple resources.
In [7] the authors examine the simplest situations in which an attacker “wins”
if he has control of all resources, and a defender “wins” if she has control of
at least one resource. Thus using the terminology of secret sharing schemes the
paper [7] considers only the full threshold situation.

In this paper we study non-full threshold cases. This is motivated by a number
of potential application scenarios which we now outline:
c© Springer International Publishing Switzerland 2015
MHR Khouzani et al. (Eds.): GameSec 2015, LNCS 9406, pp. 74–92, 2015.
DOI: 10.1007/978-3-319-25594-1 5
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– Large web sites usually have multiple servers responding to user requests so
as to maintain high availability and response times. An APT attack on a web
site may try to knock out a proportion of the servers so as to reduce the
owners quality of service below an acceptable level.

– Large networks contain multiple paths between different nodes; again to pro-
tect against attacks. An attacker will not usually be successful if he knocks
out a single path, however knocking out all paths is overkill. There will be
a proportion of the paths which will result in a degradation of the network
connectivity which the attacker may want to achieve.

– In many computer systems multiple credentials are needed to access a main
resource. Thus an attacker only needs to obtain enough credentials to compro-
mise a main resource. Thus modelling attacks on credentials (e.g. passwords,
certificates, etc.) should really examine the case of multiple credentials in the
non-full threshold case.

– Multi-party Computation (MPC) has always used threshold adversaries; an
external attacker trying to compromise a system protected with MPC technol-
ogy will only be interested in obtaining a threshold break above the tolerance
limit of the MPC system. In such a situation however one is interested in proac-
tively secure MPC systems, since when modelled by FlipThem a defender may
regain control of a compromised party.

– Related to the last point is that of fault tolerance. It is well known that Byzan-
tine agreement is not possible if more than n/3 of the parties are compromised.
Thus an adversary who simply wants to inject errors into a network protected
by some Byzantine agreement protocol only needs to compromise more than
n/3 of the servers.

Thus we examine variants of the FlipThem game of [7] in which an attacker is
trying to obtain control of at least t of the resources. We call this the (n, t)-
FlipThem game.

Our main results are to examine Nash equilibria in the case of stochastic
models of play. These are models in which the players strategies are defined by
some random process. The random process defines, for each player, the next time
point at which it will make a play (with time being considered as continuous).
In all of the models we consider, we think of an attacker’s play as being to
attack a single resource; in the case of a stealthy defender the machine to attack
at a given point in time will be random, whereas in the case of a non-stealthy
defender the attacker will always attack a non-compromised resource. For the
defender we allow two possible moves; in the first type the defender gains control
of all resources with a single play. This models the situation where a defender
might reset and reinstall a whole cloud infrastructure in one go, or reset all
credentials/passwords in a given move; we call this a full reset. In the second
type of move the defender needs to select a single resource to reset. Just like in the
case of the attacker, the defender can do this in two ways depending on whether
the attacker is stealthy or not. We call this type of defender move a single reset.
This paper introduces continuous time Markov chains as a method of finding
the benefit functions and calculating Nash equilibria of the two player partial
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threshold multi-party FlipIt game, FlipThem. For full reset, it finds that the
equilibria depend solely on the threshold of the resources and the costs of play,
not the number of resources involved. As the cost for the attacker increases the
necessary amount of servers (threshold) required for the defender to maximise
his benefit decreases. For single reset, the analysis is harder by hand. However,
using numerical methods, one can find analogous results.

1.1 Prior Work

The FlipIt game has attracted attention as it focuses on the situation where
the attacker always gets in; building on the modern appreciation that perimeter
defence on its own is no longer enough. For example the paper [2] examines the
FlipIt game as applied to various different situations in computer security; for
example password reset strategies, key management, cloud auditing and virtual
machine refresh methodologies.

Despite its simplicity the FlipIt game is rather complex in terms of the pos-
sible different attacker and defender strategies, and can be modified in various
ways. In the original FlipIt game both the attacker and the defender are ‘stealthy’
in the sense that neither knows if the other controls the resource before they exe-
cute a button press. In [13] the authors introduce a new mechanism where by a
player can test who controls the resource. The idea being to model the situation
whereby investigating whether a breach has occured is less costly than clearing
up after a breach. Thus a ‘peek’/‘probe’ at the resource state costs less than
taking control of the resource. The paper [13] then moves onto discuss situations
where a resource becomes hardened over time; meaning that every time a player
moves on a resource he already controls, part of the move consists of making it
harder for the opponent to regain control of the resource. An example would be
a system administrator resetting the system to regain control and then patching
the system so the attacker can not use the same method of infiltration.

One can think of the ‘peek’/‘probe’ at the resource state from [13] as a way
of removing the stealthiness from the FlipIt game. In [8] a different approach
is proposed in which defender moves are not stealthy, i.e. an attacker knows if
the defender controls the resource. This is introduced to model situations such
as password resetting, in which an attacker knows when the password is reset
(as he is no longer able to login), but the defender may not notice that their
password is compromised. As well as this non-stealthy mode of operation the
paper also introduces the idea of a defender trying to defend against multiple
(independent) attackers.

The main prior work related to the current paper is that of Laszka et al. [7].
They consider the same situation as us of multiple resources being attacked by a
single monolithic adversary. However, their work has a number of distinct differ-
ences. Firstly, and most importantly, they focus on the case where an attacker
wins if he controls all resources, and the defender wins when he controls one
resource. We on the other hand examine a general threshold structure. Secondly,
the paper of Laszka et al. considers two types of strategies defined by periodic
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and non-arithmetic renewal processes1. The paper establishes some basis facts
on these strategies, but does not consider constructing full benefit functions for
either of these strategies and nor does it find analytic Nash equilibria for the
strategies. This is due to the analytic difficulty in obtaining such formulae.

Given this (relatively) negative result the paper moves onto consider-
ing strategies arising from Markov processes. They develop a model for two
resources, considering discrete time steps and set up a linear programming solu-
tion that becomes more complicated as the finite time horizon extends. We on
the other hand are able to obtain simpler analytic formulae by considering a
continous Markov process. This is because in [7] when constructing the Markov
chain, they consider the state space to be the inter-arrival times of each resource
with respect to the attacker.

In our paper we set up the state space to be the number of resources com-
promised at a specific (continuous) time. Thus moving from discrete to continu-
ous time, and Markov to Stochastic processes simplifies the analysis somewhat.
Without this simplification the paper [7] looks at two specific examples; trying
to find the optimal strategy of the attacker given the strategy of the defender,
and then the optimal flip rates that maximise the benefit at the defender side
given that the attacker plays optimally. Finally they briefly mention how to find
a Nash equilibrium, stating there is a simple iterative algorithm to find one but
they state that algorithm will not converge for the majority of cases.

The paper [17] also considers a number of extensions of the FlipIt paper, and
much like that of Laszka et al. comments on the difficulty of obtaining analytic
solutions to the Nash equilibrium. Therefore, they adopt a simulation based
method. The attackers probability of compromising increases progressively with
probing, while the defender uses a moving-target technique to erase attacker
progress. The paper extends the model to multiple resources and considers a
time dependent ‘reimage’ initiated by the defender, much like our full reset play
of the defender described above. In addition [17], much like our own work, sets
up a situation of asymmetric stealth in that the attacker can always tell when the
defender has moved however the defender does not know when the attacker has
compromised the resource but finds this out when he has probes the resource.

Having multiple resources which an attacker needs to compromise also models
the situation of a moving target defence and a number of game theoretic works
are devoted to other aspects of moving target defence including [3,18]. Since these
works are not directly related to our own work we do not discuss them here.

2 The Multi-party FlipIt Model

Our basic multi-party FlipIt game, or FlipThem game, consists of a defender who
is trying to protect against an attacker getting control of n different resources.
It may help the reader to notice how at each point our game degenerates to the
FlipIt game when n = 1.
1 A renewal process is called non-arithmetic if there is no positive real number d > 0

such that the inter-arrival times are all the integer multiples of d.
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At a given point in time the attacker will control a given threshold k of the
resources. The attacker is deemed to be “in control”, or have won, if k exceeds
some value t. For example in a denial-of-service attack on a web site, the web-site
may still be able to function even if 2/3 of the servers are down, thus we will
set t = 2 · n/3. In the case of an attacker trying to disrupt a consensus building
network protocol, i.e. an instantiation of the problem of Byzantine agreement,
the value of t would be n/3. In the case of a multi-party computation protocol the
threshold t would correspond to the underlying threshold tolerated by the MPC
protocol; e.g. t = n/3, t = n/2 or t = n. Note, in the case of MPC protocols, the
ability of the defender to reset all resources is a common defence against mobile
adversaries, and is thus related to what is called pro-active security in the MPC
community [11].

The variable DB is the multiplicative factor of the defender’s benefit (i.e.
the benefit obtained per unit time), the same for the attacker’s AB . The values
are potentially distinct, since the defender could gain more (or less) than the
attacker for being in control of the system for an amount of time. The values Dc

and Ac are respectively the defender and attacker’s cost per action they perform.
We set d = Dc

DB
to be the ratio of the defender’s cost and benefit. Similarly for

the attacker, a = Ac

AB
. We then consider the ratio ρ = a

d = Ac·DB

AB ·DC
. Much of

our analysis will depend on whether ρ is large or small; which itself depends on
the relative ratios of the benefit/costs of the attacker and defender. With each
application scenario being different. A game where the costs are normalized in
this way we shall call a “normalized game”.

For each time period for which the attacker obtains control of t or more of the
resources it obtains a given benefit, whereas for each time period that he does
not have such control the defender obtains a benefit. In the normalized game
we assume the attacker’s benefit lies in [0, 1] and is the proportion of time that
he controls the resource; whilst the defenders benefit is the proportion of time
in which they control the resource. Thus in the normalized game the benefits
always sum to one.

In all games the utility for the attacker is their benefit minus their cost of play-
ing (i.e. the cost of pushing the buttons), with the utility for the defender obtained
in the same manner. Therefore, the game is non-zero sum. The attacker (resp.
defenders) goal is to derive a strategy which maximises their respective utility.

In one basic normalised “Single Reset” game the defender has a set of n but-
tons; there is one button on each resource which when pressed will return that
resource to the defenders control, or do nothing if the resource is already under
the defenders control. Pressing the resource’s button costs the defender a given
value, which in the normalized game is the value d. In another normalised “Full
Reset” game addition there is a “master button” which simultaneously returns all
resources to the defenders control. Pressing the master button costs the defender
a value which we shall denote by Dn, the value of which depends on n, the number
of resources. The reason for having a master button is to capture the case when
resetting the entire system in one go is simpler than resetting each resource indi-
vidually. In particular we assume that d ≤ Dn. To simplify our games we assume
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that the defender does not have access to the master button and the individual
resource buttons in a single game. This property could be relaxed which would
result in a much more complex analysis than that given here.

The attacker has a set of n buttons, one for each resource. When the attacker
presses a resources button it will allow the adversary control of that resource,
or again do nothing if the resource is already under the attackers control. The
cost to the attacker of pressing one of its buttons is a in the normalized game.

As can be inferred from the above discussion we do not assume that the
defender knows whether it controls a resource, nor do we assume that an attacker
knows whether it controls a resource at a given time point. This situation is called
the two-way stealthy situation, if we assume a defender is not stealthy (but the
attacker is) we are said to be in a one-way stealthy situation.

Throughout the paper we model a number of games. We denote
FlipThemR

ε (n, t, d, ρ) to be the game of partial threshold FlipThem. By abuse
of notation we also think of FlipThemR

ε (n, t, d, ρ) as a function which returns
all the rates of play strategy pairs for the defender and attacker that are Nash
Equilibria where R ∈ {F ,S}. Here we denote by F the full reset game and S the
single reset game, both to be described in detail in later sections. The variables
n, t, d ρ and ε denote the number of resources, the threshold, the defender’s cost
of play, the ratio between the attacker’s and defender’s cost and the lowest rate
of play in the defender’s strategy space (ε,∞] respectively. Having ε > 0 recog-
nises the fact that the defender will never actually set the reset rate to 0. It also
ensures that the benefit functions are well defined for all valid attacker-defender
strategy pairs. We will not treat the choice of our ε to be strategic, it will be a
very small number, close to zero to represent that even when the attacker has
given up (plays a rate of zero) the defender will not.

We also use a function OptR
N,ε(d, T , ρ) to answer the following question:

Given the ratio ρ of costs of play between the attacker and defender and a
limit N for the number of resources the defender can own, what is the best set
up for the defender in order to maximise their benefit function? The function
OptR

N,ε(d, T , ρ) plays the first game FlipThemR
ε (n, t, d, ρ) for all n and all t sub-

ject to some constraint space T 2. The function OptR
N,ε(d, T , ρ) then finds the

values of n and t which produce the greatest possible benefit for the defender.

3 Obtaining Nash Equilibria in Continuous Time
for a Stochastic Process

In this section we analyse various different cases of our basic game FlipThemR
ε

( n, t, d, ρ). To explain the basic analysis techniques in a simple example; we first
examine the game FlipThemF

0 (n, n, d, ρ). In this game the defender can perform
a full reset and the attacker is trying to compromise all n servers (i.e. the full
threshold case). We also, again for initial simplicity and exposition purposes,
assume that the defender could decide not to play, i.e. ε = 0. A moments thought

2 For example t ≤ n, or t ≤ n/2, or n − t ≥ B for some bound B.
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will reveal in practice that such a strategy is not realistic. In the later sub-
sections we remove these two simplifying assumptions and examine other cases.
In particular in Sect. 3.3 when we consider defender performing single resets, the
analysis becomes more complex.

3.1 Simple Example, FlipThemF
0 (n, n, d, ρ): Full Threshold,

Full Reset

We first consider a simple example of our framework in which the time an
attacker takes to successfully compromise an individual resource follows an expo-
nential distribution with rate λ, and the defender performs a full reset, and thus
regains control of all resources, at intervals with lengths given by an exponential
distribution with rate μ. An alternative description is that individual resources
are compromised on at the arrival times of a Poisson process with rate λ, and
the state is reset at the arrival times of a Poisson process with rate μ.

In this context we think of the attacker as being stealthy, i.e. the defender
does not know how many resources are compromised when he does a full reset.
A moment’s thought will also reveal that in this situation it makes no difference
if the defender is stealthy or not; if the defender is not stealthy then the attacker
will always pick an uncompromised resource to attack, whereas if the defender
is stealthy then the attacker is more likely to compromise an uncompromised
resource by picking one which he knows he controlled the longest time ago. Thus
an attacker simply attacks each resource in turn, given some specific ordering.

We model the number of resources compromised by the attacker at time τ
as a family of random variables X = {X(τ) : τ ≥ 0} in the finite space S =
{0, . . . , n}. Since both the defender and attacker follow memoryless strategies
(with memoryless exponential random variables determining the times between
changes of state) the process X is a continuous time Markov chain. Following
the analysis of continuous time Markov chains in Grimmet et al. [5], for such a
process there exists an |S| × |S| generator matrix G with entries {gij : i, j ∈ S}
such that

Pr[X(τ + h) = j | X(τ) = i] =

{
1 + gii · h + o(h), if j = i,

gij · h + o(h), if j �= i.

The generator matrix G for continuous time Markov chains replaces the transi-
tion matrix P for discrete time Markov chains; entry gij for i �= j is the “rate”
of transition from state i to state j. Summing equation (3.1) over j implies that∑

j∈S gij = 0, so that gii = −∑
j �=i gij ≤ 0. Basic theory [5] tells us that when

the chain arrives in state i it remains there for an amount of time following
a Exponential(−gii) distribution, then jumps to state j �= i with probability
−gij/gii.

Considering our specific example with the defender using full reset, we can
consider our model as a “birth-reset process” (by analogy with a “birth–death
process”) in which
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Pr[X(τ + h) = j | X(τ) = i] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ · h + o(h), if j = i + 1,

μ · h + o(h), if j = 0,

1 − (λ + μ) · h + o(h), if j = i,

o(h), otherwise.

Thus, gi0 = μ, gi,i+1 = λ, gii = −(μ + λ) and gij = 0 otherwise. From this the
generator matrix can be constructed:

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ λ 0 0 . . . 0 0
μ −(μ + λ) λ 0 . . . 0 0
μ 0 −(μ + λ) λ . . . 0 0
...

...
...

...
. . .

...
...

μ 0 0 0 . . . −(μ + λ) λ
μ 0 0 0 . . . 0 −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus when the state is i ∈ {1, . . . , n − 1} the system will jump to either state
i+1 with probability λ/(λ+μ) (when the attacker compromises another resource
before reset occurs) or to state 0 with probability μ/(λ+μ) (when the reset occurs
before another resource is compromised). Clearly the chain is never going to
settle in one state; it will continue to randomly fluctuate between various states
depending on the rates of play μ and λ. However further theory [5] indicates
that the long run proportion of time the system spends in each state is given by
the stationary distribution, a row vector π = (π0, . . . , πn) such that πG = 0 and∑n

i=0 πi = 1.
Using our specific generator matrix G it can be shown that

π =
(

μ

μ + λ
,

μ · λ

(μ + λ)2
, . . . ,

μ · λn−1

(μ + λ)n
,

λn

(μ + λ)n

)
. (1)

This tells us the proportion of time spent in each state. We therefore obtain the
benefit functions of

β′
D(μ, λ) = DB · (1 − πn) − Dc · μ

and

β′
A(μ, λ) = AB · πn − Ac · λ

where β′
D is the benefit function of the defender and β′

A is the benefit function
of the attacker. We can then normalise β′

D and β′
A such that

βD(μ, λ) =
β′

D

DB
= 1 − πn − d · μ = 1 − λn

(μ + λ)n
− d · μ

and

βA(μ, λ) =
β′

A

AB
= πn − a · λ =

λn

(μ + λ)n
− a · λ,
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where βD is the normalized benefit function of the defender and βA is the nor-
malized benefit function of the attacker.

Recall that in this model, when the defender plays he is resetting all resources
at once. Therefore, the normalized cost of the defenders move d is likely to depend
on n, the number of resources. We represent this by setting d = Dn.

Using the stationary distribution described above the benefit functions for
the normalized game are

βD(μ, λ) = 1 − λn

(μ + λ)n
− Dn · μ and βA(μ, λ) =

λn

(μ + λ)n
− a · λ. (2)

We are assuming that both players are rational, in that they are both interested
in maximising their benefit functions, and will therefore choose a rate (λ or μ)
to maximise their benefit given the behaviour of their opponent. A pair of rates
at which each player is playing optimally against the other is called a Nash
equilibrium [10]. At such a point neither player can increase their benefit by
changing their rate; we are looking for pairs (λ∗, μ∗) such that

βD(μ∗, λ∗) = max
μ∈R+

βD(μ, λ∗) and βA(μ∗, λ∗) = max
λ∈R+

βA(μ∗, λ).

Note that μ∗ = λ∗ = 0 is an equilibrium of the game defined by Eq. (2). This
is an artefact of assuming the existence of a unique distribution for all μ, λ,
where as when λ = μ = 0 the Markov chain never makes any transitions. In
later sections we will bound μ below to remove this solution and for now we will
search for non-trivial solutions.

Differentiating the defender’s benefit function βD with respect to μ and solv-
ing for μ gives at most one non-negative real solution, given by

μ̂(λ) = n+1

√
nλn

Dn
− λ

If λ < n
Dn

then this is positive, and checking the second derivative confirms this
corresponds to a maximum. If λ ≥ n

Dn
then ∂βD

∂μ < 0 for all μ ≥ 0 and so the
optimal rate for the defender is μ = 0. Hence the best response of the defender
is given by

μ̂(λ) =

{
n+1

√
nλn

Dn
− λ if λ < n

Dn

0 if λ ≥ n
Dn

.

We now calculate

∂βA

∂λ
=

n · μ · λn−1

(μ + λ)n+1
− a.

A closed form solution for λ which equates this to 0 is not easy to calculate
directly. However, plugging in μ̂(λ∗) we see that λ∗ must be either 0 or satisfy

n · μ̂(λ∗) · (λ∗)n−1

(μ̂(λ∗) + λ∗)n+1
− a = 0. (3)
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If it were the case that λ∗ ≥ n
Dn

then μ̂(λ∗) = 0 and there are no solutions to this
equation. Note that this indicates that no equilibrium exists when the attacker’s
rate is too high — the intuition for this is if the attacker’s rate is sufficiently
high, the defender ceases to defend, and thus the attacker can do just as well
by reducing their rate. Thus at any equilibrium we must have λ∗ < n

Dn
, and

therefore μ∗ = μ̂(λ∗) = n+1

√
n(λ∗)n

Dn
. Plugging this back into Eq. (3) we see that

either

λ∗ =
n · Dn

n

(Dn + a)n+1
, μ∗ = μ̂(λ∗) =

n · a · Dn−1
n

(Dn + a)n+1
, (4)

or μ∗ = λ∗ = 0. The non-zero solution will only correspond to a Nash equilibrium
if βA(μ∗, λ∗) ≥ βA(μ∗, 0) = 0, since otherwise λ∗ is not a best response against
μ∗. Note that this is the case if

0 <
(λ∗)n

(μ∗ + λ∗)n
− a · λ∗ =

(Dn)n

(Dn + a)n+1
(Dn + a · (1 − n))

i.e. if a/DN < 1/(n − 1).
In the game FlipThemF

0 (n, n,Dn, ρ) we have defined ρ to be the ratio
between the attacker and defender’s costs, so that ρ = a/Dn. Therefore, the
game FlipThemF

0 (n, n,Dn, ρ) returns the list {(0, 0)} for all ρ > 1/(n − 1). If
ρ < 1/(n − 1) we have a further equilibrium (μ∗, λ∗) such that the game returns
the list {(0, 0), (μ∗, λ∗)} where

μ∗ =
n · ρ

Dn · (1 + ρ)n+1
, λ∗ =

n

Dn · (1 + ρ)n+1
= μ∗/ρ.

The attacker’s cost per move is independent of n, which implies that the defender
will be successful, assuming Dn

n−1 is a decreasing function of n, as long as n is
large enough. Thus for the defender to always win we require the cost of a full
reset to be a sublinear function of the number of resources.

In the case of resetting a cloud or web service this might be a reasonable
assumption, but in the case of requiring n users to reset their passwords it is
likely that the cost is a superlinear function as opposed to sublinear due to the
social cost in needing to implement such a password policy.

3.2 FlipThemF
ε (n, t, d, ρ): (n,t)-Threshold, Full Reset

We now generalize the previous easy case to the threshold case
FlipThemF

ε (n, t, d, ρ), i.e. we treat the number of servers which the attacker
has to compromise as a parameter t, and in addition we bound the defenders
strategy away from zero. Thus the defender not playing at all is not considered
a valid strategy3. Much of the prior analysis carries through, since we are still
assuming the defender performs a full reset on his turn. Thus the stationary

3 Of course if the attacker decides not to play that is considered a good thing.
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distribution is once more,

π =
(

μ

μ + λ
, . . . ,

μ · λk−1

(μ + λ)k
, . . . ,

μ · λn−1

(μ + λ)n
,

λn

(μ + λ)n

)
.

The (normalized) benefit functions are now derived from the ratio of times which
the attacker has compromised at least t resources, which simplifies due to the
formula for geometric series:

βD(μ, λ) = 1 − λn

(μ + λ)n
−

n−1∑

i=t

μ · λi

(μ + λ)i+1
− Dn · μ

= 1 − λt

(μ + λ)t
− Dn · μ.

Using the same analysis, the attacker’s benefit is βA(μ, λ) = λt

(μ+λ)t − a · λ. Note
that these benefit functions are identical to those in the full threshold case of
the previous section, but with n replaced by t. If we were still considering the
lower bound for the defender’s rate of play ε to be zero the conclusions would be
as before, but with the modification that we use t instead of n. Since we are now
considering the more realistic assumption that ε > 0 the analysis gets slightly
more involved, but remains similar to that above. In particular

βD(μ, λ) = 1 −
(

λ

λ + μ

)t

− Dn · μ, and
∂βD

∂μ
=

t · λt

(λ + μ)t+1
− Dn.

This derivative is decreasing in μ, and 0 at λ ·
[(

t
λ·Dn

) 1
t+1 − 1

]
. It follows imme-

diately that βD is a unimodal function of μ, so that the maximising μ value in
[ε,∞) is given by

μ̂(λ) = min

{

ε, λ ·
[(

t

λ · Dn

) 1
t+1

− 1

]}

. (5)

As above, we have that

βA(μ, λ) =
(

λ

μ + λ

)t

− a · λ and
∂βA

∂λ
=

t · μ · λt−1

(λ + μ)t+1
− a. (6)

Thus for a particular value of μ the maximising λ must either be 0 or be a root of
the derivative. However, explicitly solving for λ does not appear to be possible,
but we note that

∂2βA

∂λ2
=

t · μ · λt−2

(λ + μ)t+2
· [μ · (t − 1) − 2 · λ]

so that the first derivative, ∂βA

∂λ , is increasing when λ < μ · (t − 1)/2 then
decreasing. Since ∂βA

∂λ is equal to −a when λ = 0 and asymptotes to −a as λ → ∞
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we have the derivative increasing from −a to a maximum when λ = μ · (t − 1)/2
then decreasing back to −a. The maximal value of ∂βA

∂λ is given by

4 · t · (t − 1)t−1

μ · (t + 1)t+1
− a, (7)

which is positive only if μ is sufficiently small. As a function of λ, βA therefore
initially decreases (from 0), has a period of increase only if μ is sufficiently small,
then decreases again. It follows that βA has at most one non-zero maximum,
which occurs in the region (μ · (t − 1)/2,∞) once the derivative is decreasing,
and this fixed point maximises βA(μ, λ) on λ ∈ [0,∞) if and only if βA(μ, λ) > 0;
otherwise the best response must be λ = 0. We use these insights to explore Nash
equilibria directly. First consider the existence of a Nash equilibrium (μ∗, λ∗)
with μ∗ > ε. Note that if λ∗ were equal to 0 then this would force μ∗ = ε, so it
must be the case that μ∗ = μ̂(λ∗) and ∂βA

∂λ (μ∗, λ∗) = 0. It follows from (5) and
(6) that

a =
t · μ∗ · λ∗t−1

(λ∗ + μ∗)t+1
= Dn ·

[(
t

λ∗ · Dn

) 1
t+1

− 1

]

and hence
λ∗ =

t

Dn · (1 + ρ)t+1
, μ∗ =

t · ρ

Dn · (1 + ρ)t+1
. (8)

We have checked necessary conditions so far, but have still not verified that this
λ∗ does correspond to a maximum of βA. As observed above, the necessary and
sufficient condition is that

0 < βA(μ∗, λ∗) =
1 + ρ − ρ · t

(1 + ρ)t+1
.

Thus an equilibrium of this form exists when

ρ <
1

t − 1
and μ∗ =

t · ρ

Dn · (1 + ρ)t+1
> ε.

Therefore, if the ratio ρ of the attacker’s cost and defender’s cost is less than 1
t−1

then the game FlipThemF
ε (n, t, d, ρ) returns the list consisting of two pairs, the

trivial equilibrium of no play (from the attacker, the defender plays at minimal
rate ε) and an equilibrium at

μ∗ =
t · ρ

Dn · (1 + ρ)t+1
, λ∗ =

t

Dn · (1 + ρ)t+1
= μ∗/ρ.

Note that if the maximal value of the derivative of βA is non-positive then no
stationary point of βA exists, and so λ will be 0. By removing all local maxima
of the attacker’s payoff function we really would expect the attacker to just stop
playing; i.e. this would be the perfect defenders strategy. From (7) we see that
by taking

ε ≥ 4 · t · (t − 1)t−1

a · (t + 1)t+1
(9)
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Fig. 1. Number of resources used by the defender to maximise his benefit given a
specific ρ

we can ensure there is only the trivial equilibrium. Note that a simpler lower
bound on ε, which trivially implies the one above, is to take ε ≥ 4

a·(t+1) . Note
that choosing a sufficiently high ε in this way is very conservative. The rate of
decrease of βA is −a at λ = 0 and as λ → ∞, so by insisting there is no local
maximum at all we ensure βA stays well away from 0.

Picking ε to force out the attacker only makes sense if the defender’s benefit is
actually maximised. It might be the case that stopping the attacker completely is
not economically viable. Therefore, in such a case ε should be chosen to be very
small, close to zero and the other equilibria in Eq. (8) should be used; implying
that μ∗ is less than the right hand side of Eq. (9). Thus an expected amount of
attacker success may be tolerated if completely eliminating such success comes
at too much of a price. Recall our function OptF

N,T ,ε(d, ρ). If we fix ε = 0.01/d
and set T = {t ≤ n}, and run this programmatically for ρ from 0 to 1, Fig. 1
shows the smallest n ≤ N that maximises the defenders benefit for various N .
Recall that the attacker will not play if ρ > 1/t − 1, meaning that as ρ increases
the level of threshold decreases and therefore the number of servers required
decrease. The optimum defender’s benefit occurring when t = n. This explains
the step down in Fig. 1.

We end this section by examining the classic case of a threshold situation
in which the required threshold is a constant fraction of the total number of
resources. Suppose we have t = γ ·n for some constant γ ∈ (0, 1]. We have shown
that the attacker will not play if a·ρ

Dn
≥ 1

t−1 = 1
γ·n−1 . As expected we see that if

the attacker needs to compromise fewer resources, then the attacker’s cost per
resource needs to be greater for them not to play. It is intuitively obvious that
the smaller the threshold the more likely the attacker will play (and succeed).

3.3 FlipThemS
ε (n, t, d, ρ): (n,t)-Threshold, Single Reset

So far we have set up the model such that the defender can reset the whole
system regaining full control whereas the attacker compromises each resource
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individually. We now consider the game FlipThemS
ε (n, t, d, ρ). The defender can

reset a single machine at any specific time. Consider the situation at any time
point where the number of resources compromised is k out of n. Assume the
defender is going to reset a resource. There are multiple strategies they could
employ, they could pick a resource which they have not reset recently, or pick
a random resource, or pick a resource in a given secret sequence. Here we will
assume the players pick resources uniformly at random. Thus the probability of
resetting a compromised resource is k

n , and that of wastefully resetting a non-
compromised resource 1 − k

n . Letting the defender’s and attacker’s rate of play
be μ and λ respectively, it is not hard to see that our generating matrix now
becomes

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ λ 0 0 . . . 0 0 0
μ
n − (μ+(n−1)·λ)

n
(n−1)·λ

n 0 . . . 0 0 0
0 2·μ

n − (2·μ+(n−2)·λ)
n

(n−2)·λ
n . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . (n−1)·μ
n − ((n−1)·μ+λ)

n
λ
n

0 0 0 0 . . . 0 μ −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We then solve for the stationary distribution π = (π0, π1, . . . , πn−1, πn), by solv-
ing πG = 0, and it can be shown by induction that

πk =
n! · λk · π0

(n − k)! · k! · μk
=

(
n
k

) · λk · π0

μk
.

Recall, that we also need to utilize the constraint
∑n

i=0 πi = 1, which implies
that we have π0 = μn

(μ+λ)n so that we obtain the stationary distribution

π =
1

(μ + λ)n

(
μn, n · λ · μn−1, . . . ,

(
n

k

)
· μn−k · λk, . . . , n · μ · λn−1, λn

)
.

Once again, this gives us the proportion of time spent in each state. We assume
here that the costs and benefits have already been normalised and do not depend
on n the number of resouces. Constructing these benefit functions gives

βD(μ, λ) = 1 −
n∑

i=t

πi − d · μ = 1 − 1
(μ + λ)n

·
n∑

i=t

(
n

i

)
· μn−i · λi − d · μ,

βA(μ, λ) =
n∑

i=t

πi − a · λ =
1

(μ + λ)n
·

n∑

i=t

(
n

i

)
· μn−i · λi − a · λ

We want to find the Nash Equilibria for these benefit functions. A point at which
neither player can increase their benefit by changing their rate. We want to find
pairs (μ∗, λ∗) such that

βD(μ∗, λ∗) = max
μ∈(ε,∞)

βD(μ, λ∗) and βA(μ∗, λ∗) = max
λ∈R+

βA(μ∗, λ),
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where ε is the lowest rate we can expect the defender to play in order to ensure
the stationary distributions and hence benefit functions are well defined for all
valid (μ, λ). Differentiating the defender’s and attacker’s functions with respect
to μ and λ respectively gives,

∂βD

∂μ
=

n! · μn−t · λt

(t − 1)! · (n − t)! · (μ + λ)n+1
− d, (10)

∂βA

∂λ
=

n! · μn−t+1 · λt−1

(t − 1)! · (n − t)! · (μ + λ)n+1
− a. (11)

Closed form solutions for μ and λ which equate to 0 are not easy to calculate
directly. The second derivative of the attackers benefit with respect to λ is

n! · μn−t+1 · λt−2

(t − 1)! · (n − t)! · (μ + λ)n+2
· [μ · (t − 1) − λ · (n + 2 − t)].

Thus, ∂βA

∂λ is increasing when

λ <
μ · (t − 1)
n + 2 − t

,

then decreasing. Since ∂βA

∂λ is −a at λ = 0 and asymptotes to −a as λ → ∞
we have the derivative increasing from −a to a maximum when λ = μ·(t−1)

n+2−t and
then decreasing back to −a. The maximal value of ∂βA

∂λ is given by

n! · (t − 1)t−1

tn+1 · (n + 2 − t)t−2 · μ
− a (12)

which is positive only if μ is sufficiently small. As a function of λ, βA therefore
initially decreases (from 0), has a period of increase only if μ is sufficiently small,
then decreases again. It follows that βA has at most one non-zero maximum
which occurs in the region

(
μ(t − 1)
n + 2 − t

,∞
)

once the derivative is decreasing, and this fixed point maximises βA(μ, λ) on
λ ∈ [0,∞) if and only if βA(μ, λ) > 0; otherwise the best response must be
λ = 0. First, like the full reset case, we consider the existence of a Nash Equi-
librium (μ, λ) with μ > ε. Since both derivatives (10) and (11) are hard to solve
analytically for general n, we used a numerical method utilizing the Maple alge-
bra system to solve for a specific n. The method for solving starts with defining
the benefit functions in terms of μ and λ, we then differentiate the derivatives
as above and solve for μ and λ for the defender and attacker, respectively. This
provides 2 generic solutions of the form

μ̂(λ) = RootOf(f(λ)) and λ̂(μ) = RootOf(g(μ))
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where f and g are polynomials. We then put these solutions back into the deriv-
atives to give

∂βD(μ, λ̂(μ))
∂μ

and
∂βA(μ̂(λ), λ)

∂λ

Solving these with respect to μ and λ respectively gives solutions for μ∗ and λ∗

with respect to the costs d and a. From this we can consider the ratio ρ = a
d

between the attacker’s and defender’s costs of play. A table can be constructed
to show the ratios at which both the defender and attacker will and won’t play
for various ρ. Recall that even if the attacker is not playing, the defender must
still play at some rate ε in order to ensure control of the system. In order to
calculate the defender’s benefit given a specific ρ we must calculate the lowest
rate of play for the defender when the attacker is not playing. From Eq. (12),
∂βA

∂λ is never positive if

μ >
n! · (t − 1)t−1

tn+1 · (n + 2 − t)t−2 · a

Meaning no stationary point exists for the attackers benefit. From this we can
see that by taking

ε ≥ n! · (t − 1)t−1

tn+1 · (n + 2 − t)t−2 · a

we can ensure there is no equilibrium with μ∗ = ε and λ �= 0. Recall that ρ = a
d ,

so that

ε ≥ n! · (t − 1)t−1

tn+1 · (n + 2 − t)t−2 · ρ · d

This shows that if ρ is large enough, ε will be small meaning the likely strategy
for the attacker will be no play, λ = 0. So the benefit for the defender will be

βD(ε, 0) = 1 − ε · d = 1 − n! · (t − 1)t−1

tn+1 · (n + 2 − t)t−2 · ρ
.

However, having ρ large enough to ensure ε is small enough is an unrealistic
assumption and choosing ε like this becomes a strategic choice. As it was for
the full reset case, it is also very conservative and could be expensive for the
defender. We therefore fix our ε > 0 to be very small, close to zero before the
game. We now want to ask the following question: Given the costs of play for both
defender and attacker and a limit N for the number of resources the defender
can own, what is the best set up for the defender in order to maximise their
benefit function? i.e. given ρ and N we are looking for the pairs such that

β∗
D(n∗, t∗) = max

n≤N,t≤n
β∗

D(n, t)
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where β∗
D(n, t) = βD(μ∗, λ∗) is the Nash equilibrium for the specific number of

resources n and threshold t. Recall we defined this game to be OptS
N,ε(d, T , ρ).

We turn to the method of numerical programming for this problem. Obviously,
since the lowest rate of play ε for the defender is chosen arbitrarily before the
game is played, if the equilibrium played is the trivial equilibrium then the
defenders benefit is βD(ε, 0) = 1 − ε · d.

When running OptS
N,ε(d, T , ρ), each round of FlipThemS

ε (n, t, d, ρ) played
has three possible outcomes.

– If ρ is so small the defender will not even play at the minimal rate ε.
– If ρ is “mid-size” the defender and attacker both play the non-trivial equilib-

rium (μ∗, λ∗).
– If ρ is large the attacker does not play and the trivial equilibrium (ε, 0) is

played.

Fig. 2. Number of resources used by the defender to maximise his benefit given a
specific ρ, for T = {t ≤ n} and N = 7.

Fig. 3. Number of resources used by the defender to maximise his benefit given a
specific ρ, for T = {t < n/2} and N = 7.
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We experimentally examined two scenarios, both in which we fix ε = 0.01/d. In
the first scenario we take T = {t ≤ n} and N = 7, in this case the function
OptS

N,ε(d, T , ρ) outputs valid configurations for relatively small values of ρ, see
Fig. 2. Interestingly the output best game for a maximum defenders benefit is
always a full threshold game. In the second scenario we take T = {t < n/2},
and again N = 7. The results are given in Fig. 3. In this case small values of ρ
result in games for which the defender will not play, for larger values of ρ we end
up requiring more servers.
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Abstract. Stealthy attacks are a major threat to cyber security. In prac-
tice, both attackers and defenders have resource constraints that could
limit their capabilities. Hence, to develop robust defense strategies, a
promising approach is to utilize game theory to understand the funda-
mental trade-offs involved. Previous works in this direction, however,
mainly focus on the single-node case without considering strict resource
constraints. In this paper, a game-theoretic model for protecting a sys-
tem of multiple nodes against stealthy attacks is proposed. We consider
the practical setting where the frequencies of both attack and defense are
constrained by limited resources, and an asymmetric feedback structure
where the attacker can fully observe the states of nodes while largely
hiding its actions from the defender. We characterize the best response
strategies for both attacker and defender, and study the Nash Equilibria
of the game. We further study a sequential game where the defender first
announces its strategy and the attacker then responds accordingly, and
design an algorithm that finds a nearly optimal strategy for the defender
to commit to.

Keywords: Stealthy attacks · Resource constraints · Game theory

1 Introduction

The landscape of cyber security is constantly evolving in response to increas-
ingly sophisticated cyber attacks. In recent years, Advanced Persistent Threats
(APT) [1] is becoming a major concern to cyber security. APT attacks have
several distinguishing properties that render traditional defense mechanism less
effective. First, they are often launched by incentive driven entities with specific
targets. Second, they are persistent in achieving the goals, and may involve mul-
tiple stages or continuous operations over a long period of time. Third, they are
highly adaptive and stealthy, and often operate in a “low-and-slow” fashion [7]
to avoid of being detected. In fact, some notorious attacks remained undetected
for months or longer [2,6]. Hence, traditional intrusion detection and prevention
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techniques that target one-shot and known attack types are insufficient in the
face of long-lasting and stealthy attacks.

Moreover, since the last decade, it has been increasingly realized that security
failures in information systems are often caused by the misunderstanding of
incentives of the entities involved in the system instead of the lack of proper
technical mechanisms [5,17]. To this end, game theoretical models have been
extensively applied to cyber security [4,9–11,13,16,19]. Game theory provides
a proper framework to systematically reason about the strategic behavior of
each side, and gives insights to the design of cost-effective defense strategies.
Traditional game models, however, fail to capture the persistent and stealthy
behavior of advanced attacks. Further, they often model the cost of defense (or
attack) as part of the utility functions of the players, while ignoring the strict
resource constraints during the play of the game. For a large system with many
components, ignoring such constraints can lead to either over-provision or under-
provision of resources and revenue loss.

In this paper, we study a two-player non-zero-sum game that explicitly mod-
els stealth attacks with resource constraints. We consider a system with N inde-
pendent nodes (or components), an attacker, and a defender. Over a continuous
time horizon, the attacker (defender) determines when to attack (recapture) a
node, subject to a unit cost per action that varies over nodes. At any time t,
a node is either compromised or protected, depending on whether the player
that makes the last move (i.e., action) towards it before t is the attacker or the
defender. A player obtains a value for each node under its control per unit time,
which again may vary over nodes. The total payoff to a player is then the total
value of the nodes under its control over the entire time horizon minus the total
cost incurred, and we are interested in the long-term time average payoffs.

To model stealthy attacks, we assume that the defender gets no feedback
about the attacker during the game. On the other hand, the defender’s moves
are fully observable to the attacker. This is a reasonable assumption in many
cyber security settings, as the attacker can often observe and learn the defender’s
behavior before taking actions. Moreover, we explicitly model their resource con-
straints by placing an upper bound on the frequency of moves (over all the nodes)
for each player. We consider both Nash Equilibrum and Sequential Equilibrum
for this game model. In the latter case, we assume that the defender is the
leader that first announces its strategy, and the attacker then responds with
its best strategy. The sequential setting is often relevant in cyber security, and
can provide a higher payoff to the defender compared with Nash Equilibrum.
To simplify the analysis, we assume that the set of nodes are independent in
the sense that the proper functioning of one node does not depend on other
nodes, which serves as a first-order approximation of the more general setting of
interdependent nodes to be considered in our future work.

Our model is an extension of the asymmetric version of the FlipIt game con-
sidered in [15]. The FlipIt game [20] is a two-player non-zero-sum game recently
proposed in response to an APT attack towards RSA Data Security [3]. In the
FlipIt game, a single critical resource (a node in our model) is considered. Each
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player obtains control over the resource by “flipping” it subject to a cost. Dur-
ing the play of the game, each player obtains delayed and possibly incomplete
feedback on the other player’s previous moves. A player’s strategy is then when
to move over a time horizon, and the solution of the game heavily depends on
the class of strategies adopted and the feedback structure of the game. In par-
ticular, a full analysis of Nash Equilibria has only been obtained for two special
cases, when both players employ a periodic strategy [20], and when the attacker
is stealthy and the defender is observable as in our model [15]. However, both
works consider a single node and there is no resource constraint. The multi-
node setting together with the resource constraints impose significant challenges
in characterizing both Nash and Sequential Equilibria. A different multi-node
extension of the FlipIt game is considered in [14] where the attacker needs to
compromise either all the nodes (AND model) or a single node (OR model) to
take over a system. However, only preliminary analytic results are provided.

Our game model can be applied in various settings. One example is key
rotation. Consider a system with multiple nodes, e.g., multiple communication
links or multiple servers, that are protected by different keys. From time to
time, the attacker may compromise some of the keys, e.g., by leveraging zero-
day vulnerabilities and system specific knowledge, while remaining undetected
from the defender. A common practice is to periodically generate fresh keys by a
trusted key-management service, without knowing when they are compromised.
On the other hand, the attacker can easily detect the expiration of a key (at
an ignorable cost compared with re-compromising it). Both key rotation and
compromise incurs a cost, and there is a constraint on the frequency of moves
at each side. There are other examples where our extension of the FlipIt game
can be useful, such as password reset and virtual-machine refresh [8,15,20].

We have made following contributions in this paper.

– We propose a two-player game model with multiple independent nodes, an
overt defender, and a stealthy attacker where both players have strict resource
constraints in terms of the frequency of protection/attack actions across all
the nodes.

– We prove that the periodic strategy is a best-response strategy for the
defender against a non-adaptive i.i.d. strategy of the attacker, and vice versa,
for general distributions of attack times.

– For the above pair of strategies, we fully characterize the set of Nash Equi-
libria of our game, and show that there is always one (and maybe more)
equilibrium, for the case when the attack times are deterministic.

– We further consider the sequential game with the defender as the leader
and the attacker as the follower. We design a dynamic programming based
algorithm that identifies a nearly optimal strategy (in the sense of subgame
perfect equilibrium) for the defender to commit to.

The remainder of this paper is organized as follows. We present our game-
theoretic model in Sect. 2, and study best-response strategies of both players in
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Sect. 3. Analysis of Nash Equilibria of the game is provided in Sect. 4, and the
sequential game is studied in Sect. 5. In Sect. 6, we present numerical result, and
we conclude the paper in Sect. 7.

2 Game Model

In this section, we discuss our two-player game model including its information
structure, the action spaces of both attacker and defender, and their payoffs.
Our game model extends the single node model in [15] to multiple nodes and
includes a resource constraint to each player.

2.1 Basic Model

In our game-theoretical model, there are two players and N independent nodes1.
The player who is the lawful user/owner of the N nodes is called the defender,
while the other player is called the attacker. The game starts at time t = 0 and
goes to any time t = T . We assume that time is continuous. A player can make
a move at any time instance subject to a cost per move. At any time t, a node is
under the control of the player that makes the last move towards the node before
t (see Fig. 1). Each attack towards node i incurs a cost of CA

i to the attacker,
and it takes a random period of time wi to succeed. On the other hand, when
the defender makes a move to protect node i, which incurs a cost of CD

i , node
i is recovered immediately even if the attack is still in process. Each node i has
a value ri that represents the benefit that the attacker receives from node i per
unit of time when node i is compromised.

In addition to the move cost, we introduce a strict resource constraint for each
player, which is a practical assumption but has been ignored in most prior works
on security games. In particular, we place an upper bound on the average amount
of resource that is available to each player at any time (to be formally defined
below). As typical security games, we assume that ri, C

A
i , CD

i , the distribution
of wi, and the budget constraints are all common knowledge of the game, that is,
they are known to both players. For instance, they can be learned from history
data and domain knowledge. Without loss of generality, all nodes are assumed to
be protected at time t = 0. Table 1 summarizes the notations used in the paper.

As in [15], we consider an asymmetric feedback model where the attacker’s
moves are stealthy, while the defenders’ moves are observable. More specifically,
at any time, the attacker knows the full history of moves by the defender, as well
as the state of each node, while the defender has no idea about whether a node
is compromised or not. Let αi,k denote the time period the attacker waits from
the latest time when node i is recovered, to the time when the attacker starts
its k-th attack against node i, which can be a random variable in general. The
attacker’s action space is then all the possible selections of {αi,k}. Since the set
of nodes are independent, we can assume αi,k to be independent across i without

1 The terms “components” and “nodes” are interchangeable in this paper.
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Fig. 1. Game model

Table 1. List of notations

Symbol Meaning

T Time horizon
N Number of nodes
ri Value per unit of time of compromising node i

wi Attack time for node i

CA
i Attacker’s move cost for node i

CD
i Defender’s move cost for node i

αi,k Attacker’s waiting time in its k-th move for node i

Xi,k Time between the (k−1)-th and the k-th defense for node i

B Budget to the defender, greater than 0
M Budget to the attacker, greater than 0
mi Frequency of defenses for node i

pi Probability of immediate attack on node i once it recovers
Li Number of defense moves for node i

loss of generality. However, they may be correlated across k in general, as the
attacker can employ a time-correlated strategy. On the contrary, the defender’s
strategy is to determine the time intervals between its (k − 1)-th move and k-th
move for each node i and k, denoted as Xi,k.

In this paper, we focus on non-adaptive (but possibly randomized) strate-
gies, that is, neither the attacker nor the defender changes its strategy based on
feedback received during the game. Therefore, the values of αi,k and Xi,k can
be determined by the corresponding player before the game starts. Note that
assuming non-adaptive strategies is not a limitation for the defender since it
does not get any feedback during the game anyway. Interestingly, it turns out
not to be a big limitation on the attacker either. As we will show in Sect. 3, peri-
odic defense is a best-response strategy against any non-adaptive i.i.d. attacks
(formally defined in Definition 2) and vice versa. Note that when the defender’s
strategy is periodic, the attacker can predict defender’s moves before the game
starts so there is no need to be adaptive.
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2.2 Defender’s Problem

Consider a fixed period of time T and let Li denote the total number of defense
moves towards node i during T . Li is a random variable in general. The total
amount of time when node i is compromised is then T − ∑Li

k=1 min(αi,k +
wi,Xi,k). Moreover, the cost for defending node i is LiC

D
i . The defender’s pay-

off is then defined as the total loss (non-positive) minus the total defense cost
over all the nodes. Given the attacker’s strategy {αi,k}, the defender faces the
following optimization problem:

max
{Xi,k},Li

E

⎡

⎣
N∑

i=1

−
(
T − ∑Li

k=1 min(αi,k + wi,Xi,k)
)

· ri − LiC
D
i

T

⎤

⎦

s.t.
N∑

i=1

Li

T
≤ B w.p.1 (1)

Li∑

k=1

Xi,k ≤ T w.p.1 ∀i

The first constraint requires that the average number of nodes that can be pro-
tected at any time is upper bounded by a constant B. The second constraint
defines the feasible set of Xi,k. Since T is given, the expectation in the objective
function can be moved into the summation in the numerator.

2.3 Attacker’s Problem

We again let Li denote the total number of defense moves towards node i in T .
The total cost of attacking i is then (

∑Li

k=1 1αi,k<Xi,k
) ·CA

i , where 1αi,k<Xi,k
= 1

if αi,k < Xi,k and 1αi,k<Xi,k
= 0 otherwise. It is important to note that when

αi,k ≥ Xi,k, the attacker actually gives up its k-th attack against node i (this
is possible as the attacker can observe when the defender moves). Given the
defender’s strategy, the attacker’s problem can be formulated as follows, where
M is an upper bound on the average number of nodes that the attacker can
attack at any time instance.

max
αi,k

E

[
N∑

i=1

(T − ∑Li

k=1 min(αi,k + wi,Xi,k)) · ri − (
∑Li

k=1 1αi,k<Xi,k
) · CA

i

T

]

s.t. E

[
N∑

i=1

1
T

∫ T

0

vi(t)dt

]

≤ M (2)

where vi(t) = 1 if the attacker is attacking node i at time t and vi(t) = 0 other-
wise. Note that we make the assumption that the attacker has to keep consuming
resources when the attack is in progress instead of making an instantaneous move
like the defender; hence it has a different form of budget constraint. On the other
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hand, we assume that CA
i captures the total cost for each attack on node i, which

is independent of the attack time. We further have the following equation:

∫ T

0

vi(t)dt =
Li∑

k=1

(min(αi,k + wi,Xi,k) − min(αi,k,Xi,k)) (3)

Putting (3) into (2) and moving the expectation inside, the attacker’s problem
becomes

max
αi,k

N∑

i=1

T · ri − E[
∑Li

k=1 min(αi,k + wi, Xi,k)] · ri − E[
∑Li

k=1 P (αi,k < Xi,k)] · CA
i

T

s.t.
N∑

i=1

E[
∑Li

k=1 min(αi,k + wi, Xi,k) − min(αi,k, Xi,k)]

T
≤ M. (4)

3 Best Responses

In this section, we analyze the best-response strategies for both players. Our
main result is that when the attacker employs a non-adaptive i.i.d. strategy, a
periodic strategy is a best response for the defender, and vice versa. To prove
this result, however, we have provided characterization of best responses in more
general settings. In this and following sections, we have omitted most proofs to
save space. All the missing proofs can be found in our online technical report [21].

3.1 Defender’s Best Response

We first show that for the defender’s problem (1), an optimal deterministic
strategy is also optimal in general. We then provide a sufficient condition for a
deterministic strategy to be optimal against any non-adaptive attacks. Finally,
we show that periodic defense is optimal against non-adaptive i.i.d. attacks.

Lemma 1. Suppose X�
i,k and L�

i are the optimal solutions of (1) among all
deterministic strategies, then they are also optimal among all the strategies
including both deterministic and randomized strategies.

According to the lemma, it suffices to consider defender’s strategies where both
Xi,k and Li,k are deterministic.

Definition 1. For a given Li, we define a set Xi including all deterministic
defense strategies with the following properties:

1.
∑Li

k=1 Xi,k = T ;
2. Fαi,k+wi

(Xi,k) = Fαi,j+wi
(Xi,j) ∀k, j,

where Fαi,k+wi
(·) is the CDF of r.v. αi,k + wi.
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Note that Xi can be an empty set in general due to the randomness of
αi,k + wi. The following lemma shows that when Xi is non-empty for all i, any
strategy that belongs to Xi is the defender’s best deterministic strategy against
a non-adaptive attacker.

Lemma 2. For any given set of {Li} with
∑N

i=1
Li

T ≤ B, if Xi �= ∅ ∀i, then any
set of {Xi,k} that belongs to Xi is the defender’s best deterministic strategy.

Lemma 2 gives a sufficient condition for a deterministic defense strategy to be
optimal. The main idea of the proof is to show that the defender’s payoff for
each node i is concave with respect to Xi,k. The optimality then follows from
the KKT conditions. Intuitively, the defender tries to equalize its expected loss
in each period in a deterministic way, which gives the defender the most stable
system to avoid a big loss in any particular period. We then show that a periodic
defense is sufficient when the attacker employs a non-adaptive i.i.d. strategy
formally defined below.

Definition 2. An attack strategy is called non-adaptive i.i.d. if it is non-
adaptive, and αi,k is independent across i and is i.i.d. across k.

Theorem 1. A periodical strategy is the best response for the defender if the
attacker employs a non-adaptive i.i.d. strategy.

According to the theorem, the periodic strategy gives the defender the most
stable system when the attacker adopts the non-adaptive i.i.d. strategy. Since
the attacker’s waiting time αi,k does not change with time, a fixed defense inter-
val provides the same expected payoff between every two consecutive moves.
Moreover, since the defender’s problem is a convex optimization problem, the
optimal defending frequency for a given attack strategy can be easily determined
by solving the convex program.

3.2 Attacker’s Best Response

We first analyze the attacker’s best response against any deterministic defense
strategies, then show that the non-adaptive i.i.d. strategy is the best response
against periodic defense.

Lemma 3. When defense strategies are deterministic, the attacker’s best
response (among non-adaptive strategies) must satisfy the following condition

α�
i,k =

{
0 w.p. pi,k

≥ Xi,k w.p. 1 − pi,k

(5)

Proof Sketch: The main idea of the proof is to divide the problem (4) into∑N
i=1 Li independent sub-problems, one for each node and a single period,

where each subproblem has a similar target function and a budget Mi,k where
∑N

i=1

∑Li

k=1 Mi,k = M . Due to the independence of nodes, it suffices to prove
the lemma for any of these sub-problems.
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Lemma 3 implies that for each node i, the attacker’s best strategy is to either
attack node i immediately after it realizes the node’s recovery, or gives up the
attack until the defender’s next move. There is no incentive for the attacker
to wait a small amount of time to attack a node before the defender’s next
move. The constraint M actually determines the probability that the attacker
will attack immediately. If M is large enough, the attacker will never wait
after defender’s each move. We then find the attacker’s best responses when
the defender employs the periodic strategy.

Theorem 2. When the defender employs periodical strategy, the non-adaptive
i.i.d. strategy is the attacker’s best response among all non-adaptive strategies.

3.3 Simplified Optimization Problems

According to Theorems 1 and 2, periodic defense and non-adaptive i.i.d. attack
can form a pair of best-response strategies with respect to each other. Consider
such pair of strategies. Let mi � Li

T = 1
Xi,k

, and let pi denote the probability
that αi,k = 0,∀k. The optimization problems to the defender and the attacker
can then be simplified as follows.
Defender’s problem:

max
mi

N∑

i=1

[(
E[min (wi,

1
mi

)]piri − CD
i

)
· mi − piri

]

s.t.

N∑

i=1

mi ≤ B (6)

Attacker’s problem:

max
pi

N∑

i=0

pi ·
(

ri(1 − E[min(wi,
1

mi
)] · mi) − CA

i mi

)

s.t.

N∑

i=0

E[min(wi,
1

mi
)] · mi · pi ≤ M (7)

We observe that the defender’s problem is a continuous convex optimization
problem (see the discussion in Sect. 3.1), and the attacker’s problem is a frac-
tional knapsack problem. Therefore, the best response strategy of each side can
be easily determined. Also, the time period T disappears in both problems.

4 Nash Equilibria

In this section, we study the set of Nash Equilibria of the simplified game as
discussed in Sect. 3.3 where the defender employs a periodic strategy, and the
attacker employs a non-adaptive i.i.d. strategy. We further assume that the
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attack time wi is deterministic for all i. We show that this game always has a
Nash equilibrium and may have multiple equilibria of different values.

We first observe that for deterministic wi, when mi ≥ 1
wi

, the defender’s
payoff becomes −miC

D
i , which is maximized when mi = 1

wi
. Therefore, it suffices

to consider mi ≤ 1
wi

. Thus, the optimization problems to the defender and the
attacker can be further simplified as follows.

For a given p, the defender aims at maximizing its payoff:

max
mi

N∑

i=1

[mi(riwipi − CD
i ) − piri]

s.t.
N∑

i=1

mi ≤ B (8)

0 ≤ mi ≤ 1
wi

,∀i

On the other hand, for a given m, the attacker aims at maximizing its payoff:

max
pi

N∑

i=1

pi[ri − mi(riwi + CA
i )]

s.t.
N∑

i=1

miwipi ≤ M (9)

0 ≤ pi ≤ 1,∀i

For a pair of strategies (m, p), the payoff to the defender is Ud(m, p) =∑N
i=1[mi(piriwi − CD

i ) − piri], while the payoff to the attacker is Ua(m, p) =
∑N

i=1 pi[ri − mi(riwi + CA
i )]. A pair of strategies (m∗, p∗) is called a (pure

strategy) Nash Equilibrium (NE) if for any pair of strategies (m, p), we have
Ud(m∗, p∗) ≥ Ud(m, p∗) and Ua(m∗, p∗) ≥ Ua(m∗, p). In the following, we assume
that CA

i > 0 and CD
i > 0. The cases where CA

i = 0 or CD
i = 0 or both exhibit

slightly different structures, but can be analyzed using the same approach. With-
out loss of generality, we assume ri > 0 and CD

i

riwi
≤ 1 for all i. Note that if ri = 0,

then node i can be safely excluded from the game, while if CD
i

riwi
> 1, the coef-

ficient of mi in Ud (defined below) is always negative and there is no need to
protect node i.

Let μi(p) � piriwi − CD
i denote the coefficient of mi in Ud, and ρi(m) �

ri−mi(riwi+CA
i )

miwi
. Note that for a given p, the defender tends to protect more a

component with higher μi(p), while for a given m, the attacker will attack a
component more frequently with higher ρi(m). When m and p are clear from
the context, we simply let μi and ρi denote μi(p) and ρi(m), respectively.

To find the set of NEs of our game, a key observation is that if there is
a full allocation of defense budget B to m such that ρi(m) is a constant for
all i, any full allocation of the attack budget M gives the attacker the same
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payoff. Among these allocations, if there is further an assignment of p such
that μi(p) is a constant for all i, then the defender also has no incentive to
deviate from m; hence (m, p) forms an NE. The main challenge, however, is
that such an assignment of p does not always exist for the whole set of nodes.
Moreover, there are NEs that do not fully utilize the defense or attack budget
as we show below. To characterize the set of NEs, we first prove the following
properties satisfied by any NE of the game. For a given strategy (m, p), we
define μ∗(p) � maxi μi(p), ρ∗(m) � mini ρi(m), F (p) � {i : μi(p) = μ∗(p)}, and
D(m, p) � {i ∈ F : ρi(m) = ρ∗(m)}. We omit m and p when they are clear from
the context.

Lemma 4. If (m, p) is an NE, we have:

1. ∀i �∈ F,mi = 0, pi = 1, ρi = ∞;
2. ∀i ∈ F\D,mi ∈ [0, ri

wiri+CA
i

], pi = 1;

3. ∀i ∈ D,mi ∈ [0, ri

wiri+CA
i

], pi ∈ [ CD
i

riwi
, 1].

Lemma 5. If (m, p) forms an NE, then for i ∈ D, j ∈ F\D and k �∈ F , we have
riwi − CD

i ≥ rjwj − CD
j > rkwk − CD

k .

According to the above lemma, to find all the equilibria of the game, it suffices
to sort all the nodes by a non-increasing order of riwi − CD

i , and consider each
Fh consisting of the first h nodes such that rhwh − CD

h > rh+1wh+1 − CD
h+1,

and each subset Dk ⊆ Fh consisting of the first k ≤ h nodes in the list. In the
following, we assume such an ordering of nodes. Consider a given pair of F and
D ⊆ F . By Lemma 4 and the definitions of F and D, the following conditions
are satisfied by any NE with F (p) = F and D(m, p) = D.

mi = 0, pi = 1,∀i �∈ F ; (10)

mi ∈ [0,
ri

wiri + CA
i

], pi = 1,∀i ∈ F\D; (11)

mi ∈ [0,
ri

wiri + CA
i

], pi ∈ [
CD

i

riwi
, 1],∀i ∈ D; (12)

∑

i∈F

mi ≤ B,
∑

i∈F

miwipi ≤ M ; (13)

μi = μ∗,∀i ∈ F ; μi < μ∗,∀i �∈ F ; (14)
ρi = ρ∗,∀i ∈ D; ρi > ρ∗,∀i �∈ D. (15)

The following theorem provides a full characterization of the set of NEs of
the game.

Theorem 3. Any pair of strategies (m, p) with F (p) = F and D(m, p) = D is
an NE iff it is a solution to one of the following sets of constraints in addition
to (10) to (15).
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1.
∑

i∈F mi = B; ρ∗ = 0;
2.

∑
i∈F mi = B; ρ∗ > 0;

∑
i∈F miwipi = M ;

3.
∑

i∈F mi = B; ρ∗ > 0; pi = 1,∀i ∈ F ;
4.

∑
i∈F mi < B; μ∗ = 0; F = FN ; ρ∗ = 0;

5.
∑

i∈F mi < B; μ∗ = 0; F = FN ; ρ∗ > 0;
∑

i∈F miwipi = M ;
6.

∑
i∈F mi < B; μ∗ = 0; F = FN ; ρ∗ > 0; pi = 1,∀i ∈ F .

In the following, NEs that fall into each of the six cases considered above are
named as Type 1–Type 6 NEs, respectively. The next theorem shows that our
game has at least one equilibrium and may have more than one NE.

Theorem 4. The attacker-defender game always has a pure strategy Nash Equi-
librium, and may have more than one NE of different payoffs to the defender.

Proof. The proof of the first part is given in [21]. To show the second part,
consider the following example with two nodes where r1 = r2 = 1, w1 = 2, w2 =
1, CD

1 = 1/5, CD
2 = 4/5, CA

1 = 1, CA
2 = 7/2, B = 1/3, and M = 1/5. It is easy to

check that m = (1/6, 1/6) and p = (3/20, 9/10) is a Type 2 NE, and m = (1/3, 0)
and p = (p1, 1) with p1 ∈ [1/5, 3/10] are all Type 1 NEs, and all these NEs have
different payoffs to the defender. 
�

5 Sequential Game

In this section, we study a sequential version of the simplified game considered
in the last section. In the simultaneous game we considered in the previous
section, neither the defender nor the attacker can learn the opponent’s strategy
in advance. While this is a reasonable assumption for the defender, an advanced
attacker can often observe and learn defender’s strategy before launching attacks.
It therefore makes sense to consider the setting where the defender first commits
to a strategy and makes it public, the attacker then responds accordingly. Such a
sequential game can actually provide defender higher payoff comparing to a Nash
Equilibrium since it gives the defender the opportunity of deterring the attacker
from moving. We again focus on non-adaptive strategies, and further assume
that at t = 0, the leader (defender) has determined its strategy, and the follower
(attacker) has learned the defender’s strategy and determined its own strategy in
response. In addition, the players do not change their strategies thereafter. Our
objective is to identify the best sequential strategy for the defender to commit
to, in the sense of subgame perfect equilibrium [18] defined as follows. We again
focus on the case where wi is deterministic for all i.

Definition 3. A pair of strategies (m�, p�) is a subgame perfect equilibrium of
the simplified game (8) and (9) if m� is the optimal solution of

max
mi

N∑

i=1

[mi(riwip
�
i − CD

i ) − p�
i ri]

s.t.

N∑

i=1

mi ≤ B (16)

0 ≤ mi ≤ 1
wi

,∀i
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where p�
i is the optimal solution of

max
pi

N∑

i=1

pi[ri − mi(riwi + CA
i )]

s.t.

N∑

i=1

miwipi ≤ M (17)

0 ≤ pi ≤ 1,∀i

Note that in a subgame perfect equilibrium, p�
i is still the optimal solution

of (9) as in a Nash Equilibrium. However, defender’s best strategy m�
i is not

necessarily optimal with respect to (8). Due to the multi-node setting and the
resource constraints, it is very challenging to identify an exact subgame per-
fect equilibrium strategy for the defender. To this end, we propose a dynamic
programming based algorithm that finds a nearly optimal defense strategy.

Remark 1. Since for any given defense strategy {mi}, the attacker’s problem
(17) is a fractional knapsack problem, the optimal pi,∀i has the following form:
Sort the set of nodes by ρi(mi) = ri−mi(riwi+CA

i )
miwi

non-increasingly, then there is
an index k such that pi = 1 for the first k nodes, and pi ≤ 1 for the k+1-th node,
and pi = 0 for the rest nodes. However, if ρi = ρj for some i �= j, the optimal
attack strategy is not unique. When this happens, we assume that the attacker
always breaks ties in favor of the defender, a common practice in Stackelberg
security games [12].

Before we present our algorithm to the problem, we first establish the fol-
lowing structural properties on the subgame perfect equilibria of the game.

Lemma 6. In any subgame perfect equilibrium (m, p), the set of nodes can
be partitioned into the following four disjoint sets according to the attack and
defense strategies applied:

1. F = {i|mi > 0, pi = 1}
2. D = {i|mi > 0, 0 < pi < 1};
3. E = {i|mi > 0, pi = 0};
4. G = {i|mi = 0, pi = 1}.
Moreover, they satisfy the following properties:

1. F ∪ D ∪ E ∪ G = {i|i = 1, ..., n} and |D| ≤ 1
2. ρi ≥ ρk ≥ ρj for ∀i ∈ F, k ∈ D, j ∈ E

Since the set D has at most one element, we use md to represent mi, i ∈ D
for simplicity, and let ρd = ρ(md). If D is empty, we pick any node i in F with
minimum ρi and treat it as a node in D.

Lemma 7. For any given nonnegative ρd, the optimal solution for (16)–(17)
satisfy the following properties:



106 M. Zhang et al.

1. riwi − CD
i > 0 ∀i ∈ F ∪ E ∪ D

2. mi ≤ mi ∀i ∈ F
3. mj = mj ∀j ∈ E
4. mi ≤ 1

wi
∀i

5. B − ∑
i∈E mi − md > 0.

where mi = mi(ρd) and mi(·) is the reverse function of ρi(·)
Remark 2. If ρd < 0, the defender can give less budget to the corresponding
node to bring ρd down to 0. In any case, the payoffs from nodes in set D and E
are 0 since the attacker will give up attacking the nodes in set D and E. Thus,
the defender has more budget to defend the nodes in set F and G which brings
him more payoffs. Therefore we only need to consider nonnegative ρd.

Lemma 8. For any nonnegative ρd, there exists an optimal solution for (16)–
(17) such that ∀i ∈ F , there are at most two mi < mi and all the other mi = mi

From the above lemmas, we can establish the following results about the
structure of the optimal solution for (16)–(17).

Proposition 1. For any nonnegative ρd, there exists an optimal solution
{mi}n

i=1 such that

1. ∀i ∈ F , there are at most two mi < mi and all the other mi = mi;
2. md = md;
3. ∀i ∈ E, mi = mi;
4. ∀i ∈ G, mi = 0.

According to Proposition 1, for any nonnegative ρd, once the set allocation
is determined, the value of mi can be immediately determined for all the nodes
except the two fractional nodes in set F . Further, for the two fractional nodes,
their mi can be found using linear programming as discussed below. From these
observations, we can convert (16), (17) to (18) for any given nonnegative ρd, d,
f1 and f2.

max
p,mf1 ,mf2 ,E,F,G

∑

i∈F\{f1,f2}
[mi(riwi − CD

i ) − ri] +
2∑

j=1

[mfj
(rfj

wfj
− CD

fj
) − rfj

]

−
∑

i∈G

ri −
∑

i∈E

miC
D
i + md(prdwd − CD

d ) − prd

s.t.
∑

i∈F\{f1,f2}
mi + mf1 + mf2 +

∑

i∈E

mi + md ≤ B

∑

i∈F\{f1,f2}
wimi + wf1mf1 + wf2mf2 + pwdmd ≤ M

0 ≤ mf1 ≤ m1, 0 ≤ mf2 ≤ m2, 0 ≤ p ≤ 1 (18)

Note that, the set allocation is part of the decision variables in (18).
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We then propose the following algorithm to the defender’s problem (see Algo-
rithm1). The algorithm iterates over nonnegative ρd (with a step size ρstep) (lines
3–10). For each ρd, it iterates over all possible node d in set D, and all possible
nodes f1, f2 with fractional assignment in set F (lines 5–8). Given ρd, d, f1, f2,
the best set allocation (together with mi for all i and p) are determined using
dynamic programming as explained below (lines 6–7), where we first assume that
B, M , mi and wi have been rounded to integers for all i. The loss of performance
due to rounding will be discussed later.

Consider any ρd, node d is in set D, and nodes f1, f2 with frictional assign-
ment in set F . Let SEQ(i, b,m, d, f1, f2, ind) denote the maximum payoff of
the defender considering only node 1 to node i (excluding nodes d, f1 and
f2), for given budgets b and m for the two constraints in (18), respectively.
The ind is a boolean variable that indicates whether the second constraint
of (18) is tight for node 1 to i. If ind is True, it means all the budget m is
used up for node 1 to i. ind is False meaning that there is still budget m
available for the attacker. Here, 0 ≤ b ≤ B and 0 ≤ m ≤ M . The value
of SEQ(i, b,m, d, f1, f2, ind) is determined recursively as follows. If b < 0 or
m < 0, the value is set to −∞. If node i is one of d, f1 and f2, we simply set
SEQ(i, b,m, d, f1, f2, ind) = SEQ(i − 1, b,m, d, f1, f2, ind). Otherwise, we have
the following recurrence equation, where the three cases refer to the maximum
payoff when putting nodes i in set F , E, and G, respectively.

SEQ(i, b, m, d, f1, f2, ind)

= max
{

SEQ(i − 1, b − mi, m − wimi, d, f1, f2, ind) + mi(riwi − CD
i ) − ri,

SEQ(i − 1, b − mi, m, d, f1, f2, ind) − miC
D
i , SEQ(i − 1, b, m, d, f1, f2, ind) − ri

}
(19)

Meanwhile, if ind is False, node i can be allocated to set E only if ri−mi(riwi+
CA

i ) ≤ 0. Otherwise, there is still available budget for the attacker to attack other
nodes with reward greater than 0 which violates the structure of the greedy
solution for (17). Also, if ind is False, it means m is not used up. Thus we
should return −∞ if ind is False, i > 0 and m = 0.

Moreover, we let SEQ(0, b,m, d, f1, f2, ind) denote the maximum defense
payoff when only nodes in d, f1, and f2 are considered. If ind is True, the
following linear program in (20) determines the optimal values of p, mf1 and
mf2 for given budgets b and m:

max
mfi

,mf2

2∑

j=1

[mfj
(rfj

wfj
− CD

fj
) − rfj

] + md(prdwd − CD
d ) − prd

s.t.mf1 + mf2 + md ≤ b

mf1wf1 + mf2wf2 ≤ m (20)
mf1 ≤ mf1 , mf2 ≤ mf2

p =
m − mf1wf1 − mf2wf2

wdmd
≤ 1
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If ind is False, we must have p = 1. The optimal values of mf1 and mf2 are
determined by (21):

max
mfi

,mf2

2∑

j=1

[mfj
(rfj

wfj
− CD

fj
) − rfj

] + md(rdwd − CD
d ) − rd

s.t.mf1 + mf2 + md ≤ b (21)
mf1wf1 + mf2wf2 ≤ m − wdmd

mf1 ≤ mf1 , mf2 ≤ mf2

Algorithm 1. Sequential Strategy for Defender
1: Initialize ρstep

2: ρmax ← min{ρ :
∑n

i=1 wimi(ρ) ≤ M}
3: for ρd ← 0 to ρmax with step size ρstep do
4: mi ← mi(ρd) for all i
5: for d, f1, f2 ← 1 to n do
6: vald,f1,f2 ← SEQ(n,B,M, d, f1, f2, T rue)
7: val′d,f1,f2

← SEQ(n,B,M, d, f1, f2, False)
8: end for
9: Cdp(ρd) ← maxd,f1,f2{vald,f1,f2 , val′d,f1,f2

}
10: end for
11: C�

alg ← maxρd
{Cdp(ρd)}

Since the dynamic program searches for all the possible solutions that satisfy
Proposition 1, Cdp(ρd) gives us the optimal solution of (16)–(17) for any given
nonnegative ρd. Algorithm 1 then computes the optimal solution by searching
all the nonnegative ρd. Note that d, f1 and f2 can be equal to include the case
that there is only one or zero node in set F . The minimum possible value of
ρ is 0 (explained in Remark 2). The maximum possible value of ρ is min{ρ :∑n

i=1 wimi(ρ) ≤ M}. For larger ρ, the sum of all wimi will be less than M . In
this case, all the nodes will be in set F and pi = 1 ∀i, which makes (16)–(17) a
simple knapsack problem that can be easily solved.

Additionally, since the dynamic program searches over all feasible integer val-
ues, we use a simple rounding technique to guarantee it is implementable. Before
the execution of SEQ(n,B,M, d, f1, f2, ind), we set mi ← ⌊

mi

δ

⌋
, wi ← ⌊

wi

δ

⌋
for

all i and B ← ⌊
B
δ

⌋
, M ← ⌊

M
δ

⌋
where δ is an adjustable parameter. Intuitively,

by making δ and ρstep small enough, Algorithm 1 can find a strategy that is
arbitrarily close to the subgame perfect equilibrium strategy of the defender.
Formally, we can establish the following result.

Theorem 5. Let Calg denote the payoffs of the strategy found by Algorithm1,
and C� the optimal payoffs. Then for any ε > 0, Algorithm1 can ensure that
|Calg|
|C�| ≤ 1 + ε with a total time complexity of O(n8BM

ε3 ), where B and M are
values before rounding.
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Note that both Calg and C� are non-positive. The details can be found in
our online technical report [21].

6 Numerical Result

In this section, we present numerical results for our game models. For the illus-
trations, we assume that all the attack times wi are deterministic as in Sects. 4
and 5. We study the payoffs of both attacker and defender and their strategies
in both Nash Equilibrium and subgame perfect equilibrium in a two-node set-
ting, and study the impact of various parameters including resource constraints
B, M , and the unit value ri. We further study the payoffs and strategies for
both players in subgame perfect equilibrium in a five-node setting, and study
the impact of various parameters.

We first study the impact of the resource constraints M , B, and the unit
value r1 on the payoffs for the two node setting in Fig. 2. In the figure, we have
plotted both Type 1 and Type 5 NE2 and subgame perfect equilibrium. Type 5
NE only occurs when M is small as shown in Fig. 2(a), while Type 1 NE appears
when B is small as shown in Fig. 2(b), which is expected since B is fully utilized
in a Type 1 NE while M is fully utilized in a Type 5 NE. When the defense
budget B becomes large, the summation of mi does not necessarily equal to B
and thus Type 1 NE disappears. Similarly, the Type 5 NE disappears for large
attack budget M . In Fig. 2(c) and (d), we vary the unit value of node 1, r1. At
the beginning, the defender protects node 2 only since w2 > w1. As r1 becomes
larger and larger, the defender starts to change its strategy by protecting node 1
instead of node 2 in NE Type 1. On the other hand, since node 1 is fully protected
by the defender and the defender gives up defending node 2, the attacker begins
to attack node 2 with probability 1, and uses the rest budget to attack node 1
with probability less than 1, due to the high defending frequency and limited
resources M . We further observe that in both the simultaneous game and the
sequential game, the value of m1 increases along with the increase of r1, while
the value of m2 decreases at the same time. This implies that the defender
tends to protect the nodes with higher values more frequently. In addition, the
subgame perfect equilibrium always bring the defender higher payoffs compared
with Nash Equilibrium, which is expected.

Moreover, it interesting to observe that under the Type 5 NE, the attacker’s
payoff decreases for a larger M as shown in Fig. 2(a). This is because the
defender’s budget B is not fully utilized in Type 5 NE, and the defender can
use more budget to protect both nodes when M increases. The increase of
the attacker’s payoff by having a larger M is canceled by the increase of the
defender’s move frequency m1 and m2. We also note that the Type 5 NE is less
preferable for the defender in Fig. 2(c) when r1 is small and favors defender as
r1 increases, which tells us that the defender may prefer different types of NEs
under different scenarios and so does the attacker.
2 There are also Type 2 NE, which are omitted for the sake of clarify.
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Fig. 2. The effects of varying resource constraints, where in all the figures, r2 = 1, w1 =
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Fig. 3. The effects of varying resource constraints and r1, where w = [2 2 2 2 2],
CD = CA = [1 1 1 1 1], B = 0.5, r = [5 4 3 2 1] in (a), r = [r1 1 1 1 1] and M = 0.3
in (b).
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We then study the effects of varying M and r1 on both players’ payoffs
and strategies in the sequential game for the five-node setting. In Fig. 3(a), the
parameters of all the nodes are the same except ri. We vary the attacker’s budget
M from 0 to 1. When M = 0, the defender can set mi for all i to arbitrary small
(but positive) values, so that the attacker is unable to attack any node, leading
to a zero payoff for both players. As M becomes larger, the attacker’s payoff
increases, while the defender’s payoff decreases, and the defender tends to defend
the nodes with higher values more frequently, as shown in Fig. 3(a)(lower). After
a certain point, the defender gives up some nodes and protects higher value
nodes more often. This is because with a very large M , the attacker is able to
attack all the nodes with high probability, so that defending all the nodes with
small mi is less effective than defending high value nodes with large mi. This
result implies that the attacker’s resource constraint has a significant impact
on the defender’s behavior and when M is large, protecting high value nodes
more frequently and giving up several low value nodes is more beneficial for the
defender compared to defending all the nodes with low frequency.

In Fig. 3(b), we vary r1 while setting other parameters to be the same for all
the nodes. Since all the nodes other than node 1 are identical, they have the same
mi as shown in Fig. 3(b)(lower). We observe that the defender protects node 1
less frequently when r1 is smaller than the unit value of other nodes. When
r1 becomes larger, the defender defends node 1 more frequently, which tells us
the defender should protect the nodes with higher values more frequently in the
subgame perfect equilibrium when all the other parameters are the same.

7 Conclusion

In this paper, we propose a two-player non-zero-sum game for protecting a sys-
tem of multiple components against a stealthy attacker where the defender’s
behavior is fully observable, and both players have strict resource constraints.
We prove that periodic defense and non-adaptive i.i.d. attack are a pair of best-
response strategies with respect to each other. For this pair of strategies, we
characterize the set of Nash Equilibria of the game, and show that there is
always one (and maybe more) equilibrium, for the case when the attack times
are deterministic. We further study the sequential game where the defender first
publicly announces its strategy, and design an algorithm that can identify a
strategy that is arbitrarily close to the subgame perfect equilibrium strategy for
the defender.
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Abstract. Stackelberg Security Games (SSGs) model scenarios where
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gies for multiple, resource-constrained agents to achieve the same equilib-
rium utility as these centralized policies. Under our approach, each agent
moves from defending its current target to defending a new target with
a precomputed rate, provided that the current target is not defended by
any other agent. We analyze this strategy via a passivity-based approach
and formulate sufficient conditions for the probability distribution of the
set of defended targets to converge to a Stackelberg equilibrium. We then
derive bounds on the deviation between the utility of the system prior to
convergence and the optimal Stackelberg equilibrium utility, and show
that this deviation is determined by the convergence rate of the dis-
tributed dynamics. We formulate the problem of selecting a minimum-
mobility security policy to achieve a desired convergence rate, as well
as the problem of maximizing the convergence rate subject to mobility
constraints, and prove that both formulations are convex. Our approach
is illustrated and compared to an existing integer programming-based
centralized technique through a numerical study.
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1 Introduction

Intelligent and persistent adversaries typically observe a targeted system and its
security policies over a period of time, and then mount efficient attacks tailored
to the weaknesses of the observed policies. These attacks have been analyzed
within the framework of Stackelberg Security Games (SSG), where the defender
(leader) selects a policy in order to maximize its utility under the best response
strategy of the adversary (follower) [1,2]. Applications of SSGs include defense
of critical infrastructures [3,4] and intrusion detection in computer networks [5].
In both of these applications, the security policy corresponds to defending a set
of targets, including ports, checkpoints, or computer network nodes.

The security of the system targeted in an SSG can be further improved
through randomized policies, in which the set of nodes or locations that are
guarded varies over time with a probability distribution that is chosen by the
defender [2–4,6]. An attacker with knowledge of the probability distribution, but
not the outcome of the randomized policy at each time step, will have greater
uncertainty of the system state and reduced effectiveness of the attack.

Current work in SSGs focuses on centralized computation of the Stackelberg
equilibria against different types of attackers, including rational, min-max, and
bounded rational [6] attackers, under complete, incomplete, or uncertain infor-
mation. In scenarios including patrolling and intrusion defense, however, security
policies are implemented by distributed agents (e.g., multi-robot patrols, or mal-
ware filters in intrusion detection). These agents have limitations on computation,
communication, and ability to move between targets. Currently, however, com-
putationally efficient distributed strategies for resource-constrained defenders to
achieve the same Stackelberg equilibria as centralized mechanisms are lacking.

In this paper, we developed distributed strategies for multiple defenders that
guarantee convergence to a stochastic Stackelberg equilibrium distribution while
minimizing the cost of movement. We propose a distributed strategy in which
each defender first checks if a neighboring target is undefended, and then transi-
tions to defending that with a certain probability if it is undefended. Since each
defender only needs to know whether the neighboring targets are defended, the
proposed policy can be implemented with only local communication. We analyze
our approach by introducing nonlinear continuous dynamics, where each state
variable is equal to the probability that a corresponding target is guarded by
at least one defender, that approximate our proposed strategy. We show that,
under this mapping, the Stackelberg equilibrium is achieved if and only if the
continuous dynamics converge to a fixed point corresponding to the Stackelberg
equilibrium. We develop sufficient conditions for convergence of these nonlinear
dynamics via a passivity-based approach.

We derive bounds on the utility of an adversary with partial information as
a function of the convergence rate of the dynamics, which we characterize as a
passivity index. We then formulate the problem of maximizing the convergence
rate, subject to mobility constraints, and prove that the formulation is convex,
leading to efficient algorithms for computing the optimal policy. Our approach is
validated and compared with an existing integer programming-based approach
via numerical study.
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The paper is organized as follows. In Sect. 2, we review related works on
Stackelberg security games. In Sect. 3, the defenders and attacker models are
introduced, and a zero-sum game is formulated between multiple defenders and
an attacker. In Sect. 4, we propose a distributed defender strategy and prove
convergence to the desired Stackelberg equilibrium. Section 5 bounds the utility
of the attacker using the convergence rate of the dynamics and presents a convex
optimization approach for maximizing the convergence rate. Section 6 presents
our simulation results. Section 7 concludes the paper.

2 Related Work

Stackelberg Security Games (SSGs) have been gaining increasing attention in the
security community in application including the defense of critical infrastructures
such as airports [3,7], large interconnected computer networks [5,8] and protec-
tion of location privacy [9,10]. In particular, stochastic Stackelberg games have
been used to design randomized security policies instead of deterministic policies
that can be learned by the attacker with certainty.

Computing the Stackelberg equilibria has been studied in the existing liter-
atures [11,12]. Computation of mixed-strategy Stackelberg equilibria against a
worst-case (minimax or zero-sum) attacker was considered in [7]. Randomized
security policies against bounded rational adversaries were proposed in [11].
When the defender has partial or uncertain information on the adversary’s goals
and capabilities, a repeated Stackelberg framework was proposed to model the
learning and adaptation of the defender strategy over time [12]. In [13], a human
adversary with bounded rationality was modeled as the quantal response (QR)
in which the rationality of the adversary is characterized by a positive parame-
ter λ, with perfect rationality and worst-case (minimax) behavior as the two
extremes. Games when the defender is uncertain about the behavioral mod-
els of the attacker has been studied. In [6], a monotonic maximin solution was
proposed that guarantees utility bound for the defender against a class of QR
adversaries. These existing works focus on computing the Stackelberg equilibria,
where optimization framework including mixed-integer programming has been
used for the computation.

Centralized algorithms for choosing which targets to defend over time to
achieve a Stackelberg equilibrium have received significant recent attention [14,
15], leading to deployment in harbor patrols [4] and mass transit security [3,16].
In [14], randomized patrolling of a one-dimensional perimeter by multiple robots
was considered, where all robots are governed by a parameter p determining
to move forward or back. In [15], a game when the attacker not only has the
knowledge of the randomized policy but also the current location of the defender
was analyzed, leading to attacker’s strategy being function of the defense policy
and the previous moves of the defender. In these works, mixed integer linear
programming techniques were proposed to compute the defender strategy, which
provide guaranteed optimality but require a centralized entity with worst-case
exponential complexity in the number of defenders, time steps, and targets.
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In the present paper, we instead consider a set of defenders who choose their
strategies in a distributed manner in order to approximate the equilibrium of a
one-shot SSG.

3 Model and Game Formulation

In this section, we present the defender and adversary models. We then formulate
a Stackelberg game modeling the behavior of the adversary and defenders.

3.1 Defender Model

We assume that there are n targets and m defenders where m ≤ n. The targets
are represented as nodes on a complete graph, and each defender is located at one
node in the graph at each time t. We model the constrained mobility of defenders
and physical distances between nodes by assigning a cost dij of traversing from
target i to target j. The cost of traversing may not be symmetric (dij �= dji).
Each defender is able to communicate with other defender to obtain information
regarding whether any target is currently occupied by another defender. We
define St to be the set of targets that is defended at time t.

3.2 Adversary Model

We consider an adversary whose goal is to successfully penetrate the system by
attacking one or more targets over time. If the adversary attacks target i at time t,
the adversary will collect the reward ri ≥ 0 if no defender is present at the target
at time t. If at least one defender is present at target i at time t, the adversary will
pay the cost ci ≥ 0. Both reward and cost values are known to the defenders and
the adversary.

We consider two types of adversaries with different levels of available infor-
mation. The first type of adversary is able to observe the fraction of time that a
target is occupied by at least one defender for all targets but is unable to observe
the current locations of defenders. The second type of adversary is able to observe
exact location of one or more defenders at a sequence of times t1 < t2 < · · · < tk
and plan the attack strategy at time t > tk based on these observations.

3.3 Game Formulation

We consider a Stackelberg game where the defenders first choose the fraction of
time that each target will be occupied by at least one defender. The adversary
then observes the chosen fraction of time and decides to either attack a specific
target, or not attack any target. The goal of the adversary is to maximize its
expected utility, defined as the expected reward minus the expected cost of
detection. The goal of the defender is to minimize the best-case expected utility
of the adversary, leading to a zero-sum formulation.
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To formally define the game, we denote xi as the fraction of time that target i is
occupied by at least one defender. If the adversary decides to attack target i, then
the expected utility of attacking i, denoted Uadv(i), is given as

Uadv(xi) = (1 − xi)ri − xici = −(ri + ci)xi + ri (1)

Let zi be the adversary’s chosen probability of attacking target i. Writing x
and z as the vectors of defender and adversary probabilities, respectively, the
expected utility of the adversary can be written as

Uadv(x, z) = −xT (C + R)z + 1T Rz (2)

where C and R are n×n diagonal matrices with Cii = ci and Rii = ri. Given x,
the adversary obtains the best-response strategy z by solving the linear program

maximize −xT (C + R)z + 1T Rz
y
s.t. 1T z ≤ 1, 0 ≤ zi ≤ 1, i = 1, . . . , n

(3)

We note that the adversary can maximize its utility by selecting zi = 1 for
some i satisfying

i ∈ arg max {(xT (C + R) + 1T R)j : j = 1, . . . , n}
and zj = 0 otherwise. Hence, without loss of generality we assume that the
adversary selects a best-response strategy z∗ with this structure, implying that
the expected utility of the adversary is given by

U∗
adv(x) = max{ max

i=1,...,n
{−(ri + ci)xi + ri}, 0} (4)

which is a piecewise linear function in x.
The Stackelberg equilibrium x∗ of the defender can then be obtained as the

solution to the optimization problem

minimize U∗
adv(x)

x
s.t. 1Tx ≤ m,xi ∈ [0, 1]

(5)

where the constraint 1Tx ≤ m reflects the fact that there are m defenders.
Equation (5) is a piecewise linear optimization problem, and hence is convex.
In the following section, we will discuss how to design the mobility patterns of
defenders to achieve the computed x∗ in a distributed manner.

4 Passivity-Based Distributed Defense Strategy

In this section, we present the proposed distributed patrolling strategy of the
defenders. We define continuous dynamics that approximate the probability that
each target is defended at time t, and show that convergence of the continuous
dynamics to the distribution x∗ is equivalent to convergence of the time-averaged
defender positions to the Stackelberg equilibrium. We formulate sufficient condi-
tions for convergence of the continuous dynamics via a passivity-based approach.
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4.1 Distributed Defender Strategy

Our proposed distributed patrolling strategy is as follows. Each defender decides
whether to move to a different target according to an i.i.d. Poisson process with
rate γ. At time t, the defender at target i selects a target j �= i uniformly at
random and sends a query message to determine if there is already a defender at
target j. If so, then the defender remains at target i. If not, the defender moves
to target j with probability pij .

This defender strategy can be modeled via nonlinear continuous dynamics.
Let xi(t) denote the probability that at least one defender guards target i at
time t. For δ > 0 sufficiently small, we then have

xi(t + δ) = xi(t) + (1 − xi(t))
∑

j �=i

γδpjixj(t) −
∑

j �=i

γδpijxi(t)(1 − xj(t)).

This approximation makes the simplifying assumption that the events i ∈ St

and j /∈ St are independent for i �= j. Dividing by δ and taking the limit as
δ → 0 yields

ẋi(t) = (1 − xi(t))
∑

j �=i

Qjixj(t) − xi(t)
∑

j �=i

Qij(1 − xj(t)), (6)

where Qij = pijγ. The following lemma establishes that under the dynamics
(6), the number total expected number of defended targets is equal to m at each
time step, and the probability that each target is defended is within the interval
[0,1].

Lemma 1. If xi(0) ∈ [0, 1] for all i and 1Tx(0) = m, then xi(t) ∈ [0, 1] and
1Tx(t) = m for all t ≥ 0.

Proof. To show that xi(t) ∈ [0, 1] for all t ≥ 0 when xi(0) ∈ [0, 1], let

t∗ = inf {t : xi(t) /∈ [0, 1] for some i}.

By continuity, xi(t∗) ∈ {0, 1} for some i and xj(t) ∈ [0, 1] for all j �= i. Suppose
without loss of generality that xi(t∗) = 0. Then

ẋi(t∗) =
∑

j �=i

Qjixj(t) ≥ 0,

implying that xi(t) ∈ [0, 1] within a neighborhood of t∗ and contradicting the
definition of t∗. Hence xi(t) ∈ [0, 1] for all i and t ≥ 0.

Now, we have that

1T ẋ(t) =

n∑

i=1

⎡

⎣(1 − xi(t))
∑

j �=i

Qjixj(t) − xi(t)
∑

j �=i

Qij(1 − xj(t))

⎤

⎦

=
n∑

i=1

⎡

⎣
∑

j �=i

(Qjixj(t) − Qijxi(t)) +
∑

j �=i

(Qijxi(t)xj(t) − Qjixi(t)xj(t))

⎤

⎦ = 0,

implying that 1Tx(t) is constant.
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4.2 Passivity-Based Convergence Analysis

We now derive conditions on the matrix Q to ensure that, for any initial distri-
bution x(0), the dynamics (6) satisfy limt→∞ x(t) = x∗. If this condition holds,
then the time-averaged distribution satisfies 1

T

∫ T

0
x(t) dt → x∗, and hence the

Stackelberg equilibrium is achieved.
By inspection of (6), convergence to x∗ occurs only if

(1 − x∗
i )

∑

j �=i

Qjix
∗
j = x∗

i

∑

j �=i

Qij(1 − x∗
j )

for all i. Defining D∗ to be a diagonal matrix with D∗
ii = x∗

i , this necessary
condition can be written in matrix form as

(D∗(Q − QT ) + QT )x∗ = D∗Q1. (7)

In order to develop sufficient conditions for convergence to x∗, we introduce
a decomposition of the dynamics (6) into a negative feedback interconnection
between two passive dynamical systems. Recall that a dynamical system Σ is out-
put feedback passive if there exists a positive semidefinite function V such that

V̇ (t) ≤ ρy(t)T y(t) + u(t)T y(t) (8)

for all input u and output y for all time t. If ρ = 0, then the system is called
passive, and the system is called strictly passive if ρ < 0. The parameter ρ is
defined as the output feedback passivity index of the system [17].

Define x̂(t) = x(t) − x∗, and let two input-output dynamical systems be
given by

(Σ1)

{
˙̂xi(t) = −(Rin(i) + Rout(i))x̂i(t) + u

(1)
i (t)

y
(1)
i (t) = x̂i(t)

(9)

(Σ2) : y(2)(t) = −(D∗(Q − QT ) + QT )u(2)(t) (10)

where Rin(i) =
∑

j∈N(i) Qjixj(t) and Rout(i) =
∑

j∈N(i) Qij(1 − xi(t)). By
inspection, the trajectory of x̂j(t) in the negative feedback interconnection
between (Σ1) and (Σ2), shown in Fig. 1, is equivalent to the trajectory of x̂j(t)
under the dynamics (6).

The decomposition of Fig. 1 can be interpreted as follows. The top block
represents the change in the probability that each target i is defended, based
on the current probability that target i is defended. The input signal from the
bottom block can be interpreted as the rate at which defenders from other targets
move to target i.

A standard result states that the negative feedback interconnection between
two strictly passive systems is globally asymptotically stable [17], which in this
case implies that x(t) converges asymptotically to x∗. Hence, it suffices to derive
conditions under which systems (Σ1) and (Σ2) are strictly passive. We now present
sufficient conditions for strict passivity of (Σ1) and (Σ2), starting with (Σ1).
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-

Fig. 1. Decomposition of the patrol dynamics as negative feedback interconnection
between passive systems.

Proposition 1. The system (Σ1) is passive from input u(1)(t) to output y(1)(t).
If maxj {min {Qji, Qij}} > 0 for all i, then (Σ1) is strictly passive.

Proof. Consider the storage function V (x̂) = 1
2 x̂

T x̂. We have

V̇ (x̂) = −
∑

i

(Rin(i) + Rout(i))x̂2
i + (u(1))T x̂.

Since the output y(1) is given by y(1)(t) = x̂, it suffices to show that Rin(i) +
Rout(i) > 0 for all feasible x. We have

Rin(i) + Rout(i) =
∑

i

[Qjixj + Qij(1 − xj)]. (11)

Since xj ∈ [0, 1], each term of (11) is bounded below by min {Qji, Qij} ≥ 0.
Hence the system (Σ1) satisfies V̇ (x̂) ≤ (u(1))Ty, implying passivity. Further-
more, if the condition maxj {min {Qji, Qij}} =: k > 0 holds for all i, then

V̇ (x̂) < −kx̂T x̂ + (u(1))Ty,

implying strict passivity.

The condition maxj {min {Qji, Qij}} > 0 implies that, for target i, there
exists at least one target j such that defenders will transition to target i from
target j, and vice versa, with positive probability.

For the system (Σ2), define matrix K = (D∗(Q − QT ) + QT ), so that y(2) =
−Ku(2). If −uT Ku ≥ 0 for all u, then passivity of the bottom block would be
guaranteed. On the other hand, since the diagonal entries of K are all 0, the
matrix K is neither positive- nor negative-definite. The following proposition
gives a weaker sufficient condition.

Proposition 2. Define P = I − 1
n11

T . If PKP ≤ 0 for all u, then the system
(Σ2) satisfies uTy ≥ 0 for all u satisfying 1Tu = 0.

Proof. Suppose that 1Tu = 0. Then Pu = u, since P projects any vector onto
the subspace orthogonal to 1, and hence uT Ku = uT PKPu. The inequality
PKP ≤ 0 then implies that uTy = uT Ku ≤ 0.
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Combining the conditions for passivity of (Σ1) and (Σ2) with the fact that
1T x̂(t) = 0 (Lemma 1) yields the following sufficient condition for convergence
to the desired distribution x∗.

Theorem 1. If the conditions

Kx∗ = D∗Q1 (12)
max

j
{min {Qji, Qij}} > 0 ∀i (13)

PT K + KT

2
P ≤ 0 (14)

hold, then the vector of probabilities x(t) converges to x∗ as t → ∞. There exists
at least one realization of Q with Qij ≥ 0 for all i �= j and Qii = 0 that satisfies
(12)–(14).

Proof. Condition (12) implies that the equilibrium of the dynamics (6) corre-
sponds to the Stackelberg equilibrium x∗. Conditions (13) and (14) establish
strict passivity of (Σ1) (Proposition 1) and passivity of (Σ2) (Proposition 2),
respectively, when the trajectory satisfies 1T x̂(t) = 0 and xi(t) ∈ [0, 1] for all
i and t, which is guaranteed by Lemma 1. Hence the overall system is globally
asymptotically stable with equilibrium x∗. It remains to show that there is a
feasible matrix Q that satisfies the conditions (12)–(14).

The proof constructs a matrix Q such that K+KT

2 = ζ( 1
n11

T − I) for some
ζ ≥ 0. By construction, 1

2P (K + KT )P = −ζP 3 ≤ 0, since P ≥ 0.
For this choice of K+KT

2 , the identities K+KT

2 = ζ( 1
n11

T − I) and Kx∗ =
D∗Q1 are equivalent to

x∗
i Qij + (1 − x∗

j )Qij + x∗
jQji + (1 − x∗

i )Qji = ζ ∀i �= j (15)
∑

j

x∗
i (1 − x∗

j )Qij =
∑

j

x∗
j (1 − x∗

i )Qji ∀i (16)

Define
τij =

1
1 − x∗

j

+
1
x∗

i

+
1

1 − x∗
i

+
1
x∗

j

,

and let Qij = ζ
τijx∗

i (1−x∗
j )

. Substitution of Qij and Qji into (15) yields

x∗
i ζ

τijx∗
i (1 − x∗

j )
+

(1 − x∗
j )ζ

τijx∗
i (1 − x∗

j )
+

x∗
jζ

τijx∗
j (1 − x∗

i )
+

(1 − x∗
i )ζ

τijx∗
j (1 − x∗

i )
= ζ,

implying that (15) holds. Furthermore,

x∗
i (1 − x∗

j )Qij =
γ

τij
x∗

j (1 − x∗
i )Qji,

and hence (16) holds as well.
Observe that under this choice of Q, Qij ≥ 0 for all i, j, and condition (13)

is satisfied as well.



122 P. Lee et al.

While there may be multiple matrices Q satisfying conditions (12)–(14),
and hence guaranteeing convergence to x∗, the corresponding dynamics of each
defender may lead to a high cost associated with moving between distant targets.
The problem of selecting the values of Q that minimize the total movement can
be formulated as

minimize
∑n

i=1

∑n
j=1 dijQijx

∗
i (1 − x∗

j )
Q,K
s.t. K = D∗(Q − QT ) + QT

P (K + KT )P ≤ 0
Kx∗ = D∗Q1
Qij ≥ 0 ∀i �= j, Qii = 0 ∀i
maxj {min {Qji, Qij}} > 0 ∀i

(17)

The objective function
∑n

i=1

∑n
j=1 dijQijx

∗
i (1 − x∗

j ) can be interpreted as the
total movement cost to maintain the Stackelberg equilibrium x∗ once the equi-
librium is reached. Equation (17) can be reformulated as a standard-form semi-
definite program and solved in polynomial time. Furthermore, the procedure
described in Theorem 1 can be used to construct a feasible solution to (17) in
O(n2) time when the number of targets is large.

5 Mitigating Side Information of Adversary

In this section, we analyze the performance of our approach against an adver-
sary with knowledge of the defender positions at a previous time period. We first
bound the deviation between the utility of an adversary with partial information
and the Stackelberg equilibrium utility. Our bound is a function of the conver-
gence rate of the dynamics (6). We then formulate the problem of maximizing
the convergence rate subject to mobility constraints, as well as the problem of
selecting the least-costly patrolling strategy to achieve a desired convergence
rate.

5.1 Deviation from Stackelberg Equilibrium

An adversary who observes the defender positions at time t′ can estimate the
probability xi(t) that target i is defended at time t > t′ via the dynamics (6).
The adversary then computes the optimal strategy z(t)∗, where zi(t)∗ is the
probability of attacking target i at time t, by solving the optimization problem
max {−x(t)T (C + R)z + 1T Rz : 1T z = 1, z ≥ 0}.

The deviation of the resulting utility from the Stackelberg equilibrium is
given by

E(t) =
∑

j

[zj(t)∗(cjxj(t) + (1 − xj(t))rj) − z∗
j (x∗

jcj + (1 − x∗
j )rj)].

The following theorem provides an upper bound on E(t) as a function of the
convergence rate.
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Theorem 2. The expression E(t) satisfies

E(t) ≤ 2max
j

{|cj ||xj(t) − x∗
j | + |rj ||xj(t) − x∗

j |} + max
j

|cj − rj |
∑

j

|xj(t) − x∗
j |.

(18)

Proof. Letting αj(xj(t)) = cjxj(t) + rj(1 − xj(t)),

E(t) =
∑

j

[αj(xj(t))(zj(t)∗ − z∗
j + z∗

j ) − z∗
j αj(x∗

j )]

=
∑

j

[αj(xj(t))(zj(t)∗ − z∗
j ) + z∗

j (αj(xj(t)) − αj(x∗
j ))]. (19)

Considering the two terms of the inner summation in (19) separately, we first
have that

∑
j αj(xj(t))(zj(t)∗ − z∗

j ) is equal to αj(xj(t)) − αi(xi(t)), where j is
the target attacked by the adversary in the best-response to distribution x(t)
and i is the target attacked by the adversary in the best-response to x∗. We then
have

αj(xj(t)) − αi(xi(t)) = cjxj(t) + rj(1 − xj(t)) − cixi(t) − ri(1 − xi(t))
= cj x̂j(t) − rj x̂j(t) − cix̂i(t) + rix̂i(t)

+ cjx
∗
j + rj(1 − x∗

j ) − cix
∗
i − ri(1 − x∗

i )
≤ cj x̂j(t) − rj x̂j(t) − cix̂i(t) + rix̂i(t) (20)
≤ |cj ||xj − x∗

j | + |rj ||xj − x∗
j | (21)

+ |ci||xi − x∗
i | + |ri||xi − x∗

i |
where (20) follows from the fact that i is a best-response to x∗ and (21) follows
from the triangle inequality. Taking an upper bound over i and j yields the first
term of (18).

Now, consider the second term of E(t). We have

αj(xj(t))−αj(x∗
j ) = cjxj(t)+(1−xj(t))rj−cjx

∗
j−rj(1−x∗

j ) = (cj−rj)(xj(t)−x∗
j ).

Hence
∑

j

z∗
j (αj(xj(t)) − α(x∗

j )) =
∑

j

z∗
j (cj − rj)(xj(t) − x∗

j )

≤ max
i

|ci − ri|
∑

j

|xj(t) − x∗
j |,

the second term of (18).

Theorem 1 implies that the deviation between the optimal adversary utility
at time t and the Stackelberg equilibrium is determined by the convergence
rate. The convergence rate can be bounded via a Lyapunov-type argument. As
a preliminary, we have the following standard result.
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Proposition 3. [17] Let V (x) be a continuously differentiable function such
that

c1||x||a ≤ V (x) ≤ c2||x||a (22)
V̇ (x) ≤ −c3||x||a (23)

over a domain D ⊂ R
n. Suppose ẋ = f(x) satisfies f(0) = 0. Then

||x(t)|| ≤
(

c2
c1

)1/a

exp
(

− c3
c2a

)
||x(0)||.

A bound on the convergence rate can then be derived via the passivity analy-
sis of Sect. 4.

Proposition 4. Define Kp = PT (K+KT

2 )P , where P = (I − 1
n11

T ), and sup-
pose that Kp ≤ 0. Denote the eigenvalues of Kp as 0 ≥ −λ1 ≥ · · · ≥ −λn−1 and
associated eigenvector of λi as qi. Then, the deviation ||x(t) − x∗||2 satisfies

||x(t) − x∗||2 ≤ exp (−λ1). (24)

Proof. Let V (x̂) = 1
2 x̂

T x̂. In the notation of Proposition 3, we have a = 2 and
c1 = c2 = 1

2 . We will bound V̇ (x̂) as a function of ||x̂||2. Any x̂ such that 1T x̂ = 0
satisfies x̂ = P x̂. Then, from the passivity analysis in Proposition 1, we have

V̇ (x̂) ≤ x̂T Kx̂ = x̂T PT K + KT

2
P x̂ = x̂T Kpx̂

which can be upper bounded as

x̂T Kpx̂
(a)
=

n−1∑

i=1

−λi(qT
i x̂)2 ≤ −λ1

n−1∑

i=1

x̂TqiqT
i x̂

(b)
= −λ1

n−1∑

i=1

x̂T (I − 1
n
11T )x̂ = −λ1x̂T P x̂

(c)
= −λ1x̂T PT P x̂ = −λ1||x̂||2

where (a) is from eigen decomposition, (b) is from the orthogonality of eigen-
vectors for symmetric matrices, and (c) is from the idempotent property of the
projection matrix. Substituting −λ1 as c3 from Proposition 3, we obtain the
desired bound.

The proof of Proposition 4 implies that V̇ (x̂) ≤ −λ1x̂T x̂, implying that λ1

is a passivity index [17] for the system (Σ1). Proposition 4 shows that maximiz-
ing over the convergence rate is equivalent to maximizing |λ1|, which will be
considered in the following section.
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5.2 Optimizing the Convergence Rate

The problem of maximizing the convergence rate subject to the mobility con-
straint can be formulated as

maximize s
Q,K, s
s.t. K = D∗(Q − QT ) + QT

Kx∗ = D∗Q1
Qij ≥ 0 ∀i �= j, Qii = 0 ∀i∑n

i=1

∑n
j=1 dijQij ≤ d

maxj {min {Qji, Qij}} > 0 ∀i

P
(

K+KT

2

)
P + sP ≤ 0, s ≥ 0

(25)

The first four constraints are from (17). The last constraint ensures the negative
semi-definiteness of the matrix P (K +KT )P and maximization of |λ1|, as shown
in the following proposition.

Proposition 5. Denote the eigenvalues of P (K + KT )P as 0, λ1, . . . , λn−1

ordered such that λ1 ≥ λ2 ≥ · · · ≥ λn−1, and let qi denote the eigenvector
associated with eigenvalue λi. If P (K + KT )P + sP ≤ 0, then λ1 ≤ −s.

Proof. Let KP = P (K + KT )P . Then the matrix KP + sP can be rewritten as

KP + sP = PKP P + sPIP = P (KP + sI)P (26)

by the idempotent property of P . If P (KP +sI)P ≤ 0, then xT P (KP +sI)Px ≤ 0
for all x. Letting x̂ = Px, we have

x̂T (KP + sI)x̂ ≤ 0

for all x̂ that satisfies 1T x̂ = 0. In particular, choose x̂ = q1, which satisfies the
condition 1T q1 from the orthogonality of eigenvectors of a symmetric matrix.
Then qT

1 (KP + I)q1 = λ1 + s ≤ 0, and hence λ1 ≤ −s.
By Proposition 5, the constraints P (K + KT )P + sP and s ≥ 0 ensure the

negative semidefiniteness of P (K + KT )P and maximizing s will result in s∗ =
|λ1|. The formulated optimization problem is a semidefinite program and can be
solved efficiently in polynomial time as in the case of (17).

An alternative optimization is minimizing the patrol cost for a given conver-
gence rate λ. This optimization problem can be formulated as

minimize
∑n

i=1

∑n
j=1 dijQijx

∗
i (1 − x∗

j )
Q,K
s.t. K = D∗(Q − QT ) + QT

P
(

K+KT

2

)
P + λP ≤ 0

Kx∗ = D∗Q1
Qij ≥ 0 ∀i �= j, Qii = 0 ∀i

(27)
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which is also convex. This optimization problem is always feasible by the same
argument given in Theorem 1, since given a λ > 0, one can set ζ = λ in the
proof of Theorem1 and construct a matrix Q that satisfies the constraint of
(27). This optimization problem returns the least costly patrolling policy given
a security constraint of achieving a desired convergence rate to the Stackelberg
equilibrium.

6 Numerical Study

In this section, we conduct a numerical study via Matlab on a patrolling applica-
tion. The formulated optimization problems were solved using cvx. We consider
a network with 30 targets deployed uniformly at random in a square of size 10.
The mobility cost dij was set as the Euclidean distance between target i and j.
The number of defenders was set to 5. The diagonal reward and cost matrices
R and C were randomly generated where the reward and cost values ri and ci

were chosen uniformly in the interval (0, 10).
We first obtained a Stackelberg equilibrium x∗ by solving the convex opti-

mization problem (5), and solved for Q for a set of convergence rates λ by solving
the optimization problem (27) where the movement cost is minimized for a given
convergence rate. The adversary’s utility at the Stackelberg equilibrium was 3.56.

Convergence of x(t) to the Stackelberg equilibrium x∗ under the continuous
dynamics (6) is shown in Fig. 2(a). The initial positions were chosen at random
among 30 targets. We observe that x(t) converges to x∗ exponentially with differ-
ing convergence rates as shown in Proposition 4. Figure 2(b) shows the maximum
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Fig. 2. (a) Figure illustrating the convergence of x(t) to x∗. Metric for deviation from
the Stackelberg equilibrium was ||x(t)−x∗|| with Q matrices obtained with varying λ by
solving optimization problem (27). (b) Maximum adversary’s utility with information
of the initial locations of defenders. The maximum utility of the adversary decays
exponentially, with the maximum utility being the reward value of the target that is
not covered by a defender initially.
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utility of the adversary over time when the adversary observes the positions of
defenders at time t = 0. The maximum utility of the adversary at time t = 0
is shown to be 9.5 which is the maximum reward value of targets that are not
guarded by defender at time t = 0. Maximum adversary’s utility converges to
the defender’s utility at Stackelberg equilibrium. The maximum utility of the
adversary also decays exponentially with higher convergence rate of (6) offering
faster decay of the adversary’s utility as observed in Theorem 2.

Our proposed approach is compared with the integer programming-based
technique, denoted Raptor, for centralized computation of patrol routes devel-
oped in [16] as shown in Fig. 3. Each data point represents an average over 15
independent and random trials with different cost and reward matrices, as well
as target locations. The number of defenders was set to 3. For our approach,
the minimum patrolling cost was obtained from the optimization problem (27),
while the movement cost of Raptor is the minimum cost to transition between
two sets of patroller locations sampled randomly with distribution x∗. Our app-
roach is able to achieve comparable mobility cost to Raptor with a convergence
rate of λ = 10−3. We observe that under our approach, as the number of targets
increases, the minimum movement cost increases, with the rate of increase pro-
portional to the convergence rate while Raptor’s minimum patrolling cost stays
relatively constant as the number of targets increase.
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Fig. 3. Minimum patrolling cost with different convergence rate λ and Raptor [16].
The number of defenders was set to 3. It is shown that our approach is able to achieve
comparable mobility cost to Raptor with a convergence rate of λ = 10−3. Under our
approach, the minimum movement cost grows in a linear manner as the number of
targets grows, and the slope of the line is proportional to the convergence rate λ.
Raptor’s minimum patrolling cost remains relatively constant as the number of targets
grows.
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7 Conclusions and Future Work

Stackelberg security games are a modeling framework for scenarios in which a
defender chooses a randomized security policy, and an adversary observes the
distribution of the randomized policy and selects an attack accordingly. In this
paper, we developed a strategy for a team of defenders to implement a stochas-
tic Stackelberg equilibrium security policy. Under our proposed strategy, each
defender selects a target according to a precomputed probability distribution at
each time step and moves to that target if the target is currently unoccupied.
We formulated sufficient conditions, via a passivity-based approach, for a cho-
sen probability distribution to guarantee convergence to the desired Stackelberg
equilibrium.

We analyzed the behavior of an intelligent adversary who observes the pre-
vious positions of the set of defenders and selects an attack strategy based on
these positions and the knowledge of the defender strategies. We proved that the
additional impact of the attack provided by knowledge of the defender positions
can be bounded as a function of the convergence rate of the defenders to the
Stackelberg equilibrum. Under the passivity framework, this convergence rate
is interpreted as a passivity index. We formulated the problem of selecting the
minimum-cost (in terms of defender movement) strategy to achieve a desired con-
vergence rate, as well as the problem of selecting the fastest-converging defender
strategy under mobility constraint, as semidefinite programs, enabling efficient
computation of the optimal patrols for each defender. Numerical results verified
that both the deviation from the Stackelberg equilibrium and the adversary’s
utility decayed exponentially over time. The numerical study also suggested that
the minimum patrolling cost increased linearly in the number of targets for a
fixed number of defenders.

The approach presented in this paper assumes a set of identical defenders that
are capable of moving between any two targets within a desired time. A direction
of future research is to generalize the approach to heterogeneous defenders who
require multiple time steps to move between distant targets, reflecting a deploy-
ment over a wide geographical area. We will also extend the proposed approach
to arbitrary topologies with mobility constraint of defenders and numerically
evaluate the approach with real-world data including the transit network used
in [16]. In addition, we will investigate incorporating Bayesian framework where
both the defender and the adversary have prior distribution of each other’s utility
and initial locations and develop approximation algorithms to solve the Bayesian
Stackelberg game.

References

1. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing
games for security: an efficient exact algorithm for solving Bayesian Stackelberg
games. In: Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems, vol. 2, pp. 895–902 (2008)



Distributed Stochastic Stackelberg Strategies 129

2. Manshaei, M.H., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.-P.: Game theory
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Abstract. Game-theoretic analysis has emerged as an important
method for making resource allocation decisions in both infrastructure
protection and cyber security domains. However, static equilibrium mod-
els defined based on inputs from domain experts have weaknesses; they
can be inaccurate, and they do not adapt over time as the situation (and
adversary) evolves. In cases where there are frequent interactions with an
attacker, using learning to adapt to an adversary revealed behavior may
lead to better solutions in the long run. However, learning approaches
need a lot of data, may perform poorly at the start, and may not be able
to take advantage of expert analysis. We explore ways to combine equi-
librium analysis with online learning methods with the goal of gaining
the advantages of both approaches. We present several hybrid methods
that combine these techniques in different ways, and empirically evalu-
ated the performance of these methods in a game that models a border
patrolling scenario.

Keywords: Game theory · Security games · Online learning · Stackel-
berg game · Stackelberg equilibrium · Nash equilibrium · Border patrol ·
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1 Introduction

Game theory has become an important paradigm for modeling resource allo-
cation problems in security [23]. Deciding how to deploy limited resources is a
core problem in security, and game theoretic models are particularly useful for
finding randomized policies that make it difficult for attackers to exploit pre-
dictable patterns in the security. There are several examples of successful deci-
sion support systems that have been developed using this methodology, including
the ARMOR system for airport security [19], the IRIS tool for scheduling Fed-
eral Air Marshals [24], and the PROTECT system for scheduling Coast Guard
c© Springer International Publishing Switzerland 2015
MHR Khouzani et al. (Eds.): GameSec 2015, LNCS 9406, pp. 130–149, 2015.
DOI: 10.1007/978-3-319-25594-1 8



Combining Online Learning and Equilibrium Computation 131

patrols [22]. All of these examples focus primarily on terrorism, where attacks
are very infrequent, the adversaries are highly sophisticated, and the stakes of
individual events are extremely high. These factors all lead to constructing game
models based mostly on inputs from domain experts.

There are many other security domains that are characterized by much more
frequent interactions with lower stakes for individual events. These types of
domains include border security, cyber security, and urban policing. When there
is enough observable data about the actual behavior of attackers, it makes sense
to use this data to construct and continually improve the models used for decision
making.

However, pure learning/data-driven approaches also have drawbacks: they
are entirely reactive, and cannot anticipate adversaries’ reactions, they can-
not easily incorporate additional information from experts or intelligence, and
they can suffer from very poor initial performance during the initial data collec-
tion/exploration phase.

We introduce hybrid methods that seek to combine the best features of model-
based equilibrium analysis and data-driven machine learning for security games
with frequent interactions. By using analysis of (imperfect) game models we
can warm-start the learning process, avoiding problems with initial poor perfor-
mance. Using learning allows us to achieve better long-term performance because
we are not limited by inaccuracies in a specified model, and we can also adapt
to changes in adversary behaviors over time.

The primary motivating domain for our approach is border security, though
we believe that our methods are relevant to many other domains with similar
features. Border security is a major national security issue in the United States
and many other countries around the world. The Customs and Border Protection
agency (CBP) is charged with enforcing border security in the United States. The
U.S. has thousands of miles of land and sea borders, so CBP faces a very large-
scale resource allocation problem when they decide how to allocate infrastructure
and patrolling resources to detect and apprehend illegal border crossings. They
also have a large amount of data available to inform these resource allocation
decisions; in particular, detailed information is available about all apprehensions,
including times and precise locations. In principle, this data allows CBP to
identify patterns of activity and adopt risk-based resource allocation policies
that deploy mobile resources to the areas with the greatest threat/activity levels.
The shift to a more data-driven, risk-based strategy for deploying border patrol
resources is a major element of the most CBP strategy plan [1].

We study a game with repeated interactions between an attacker and a
defender that is designed to capture several of the main features of the border
patrol problem. For this model we introduce several hybrid solution techniques
that combine Stackelberg equilibrium analysis with online learning methods
drawn from the literature on multi-armed bandits. We also introduce variations
of these methods for the realistic case where the defender is allowed to allocate
multiple patrolling resources in each round (similar to the case of combinatorial
multi-armed bandits). We perform an empirical evaluation of our hybrid meth-
ods to show the tradeoffs between equilibrium methods and learning methods,
and how our hybrid methods can mitigate these tradeoffs.
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2 Related Work

There are several lines of work in the area of security games that acknowl-
edge that the game models and assumption about adversary behaviors are
only approximations. These models typically focus on finding equilibrium solu-
tions that are robust to some type approximation error. For example, several
works have focused on robustness to errors in estimating payoffs, including both
Bayesian and interval models of uncertainty [15,16]. Other works have focused
on uncertainty about the surveillance capabilities of the attacker [2,3,9,28], or
about the behavior of humans who may act with bounded rationality [20,21,27].
Finally, some recent works have combined multiple types of uncertainty in the
same model [18].

Our approach is not focused on simply making equilibrium solutions more
robust to modeling error, but on integrating equilibrium models with learning
methods based on repeated interactions with an attacker. The learning meth-
ods we use are drawn from the literature on online learning in multi-armed
bandits (MAB), where the focus is on balancing exploration and exploitation.
One well-known method for learning a policy for a MAB with fixed distribu-
tions is UCB [4], which has also been modified into Sliding-window UCB [13]
for situations with varying underlying distributions. The algorithms that most
closely fit our setting are for the adversarial MAB problem, where there are no
assumptions about the arms having a fixed distribution of rewards, but instead
an adversary can arbitrarily modify the rewards. The EXP3 method is one of
the most common learning methods for this case [5]. There have been several
other recent works that have considered using learning in the context of security
games [6,17,26,30], but these have not considered combining learning with equi-
librium models. The most closely related work that considers combining learning
and equilibrium models is in Poker, where implicit agent models have been pro-
posed that adopt online learning to select among a portfolio of strategies [7,8].

3 Game Model

We introduce a game model that captures several important features of resource
allocation for border patrol [1]. The core of the model is similar to the standard
Stackelberg security game setting [14,23]. The border is represented by a set of
K distinct zones, which represent the possible locations where an attacker can
attempt to enter the country illegally. There is a defender (i.e., border patrol),
denoted by Θ, who can allocate d resources to patrol a subset of the K zones;
there are not enough resources to patrol every area all of the time. The attackers,
denoted by Ψ , attempt to cross the border without being detected by avoiding
the patrolling agents.

An important difference between our model and the standard security game
model is that we consider this a repeated game between the attacker and defender
that plays out in a series of rounds. This models the frequent interactions over
time between CBP and organized criminal groups that smuggle people, drugs,
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and other contraband across the border. Each round t ∈ 1 . . . N in the game cor-
responds to a time period (e.g., a shift) for which the defender assigns resources
to protect d out of the K zones. Attackers attempt to cross in each round, and
each individual attacker selects a single zone to cross at.

The utilities in the game are not zero-sum, but follow the standard security
game assumption that the defender prefers to patrol zones that are attacked
and the attacker prefers to cross in zones that are not patrolled. More precisely,
we assume that for any zone the defender receives payoff xΘ

c = 1 if an attacker
chooses the zone and it is patrolled by a resource, and xΘ

u = 0 if it is not
selected or not patrolled. We assume that the attacker has a zone preference
vector xΨ

u = 〈vΨ
1 , . . . , vΨ

K〉, which describes his payoff for crossing a zone if it is
not patrolled. This vector can represent how easy/difficult it is to cross a zone
because of specific conditions in the terrain (i.e., without the risk of being caught,
an attacker would prefer an easy crossing near a city, rather than a dangerous
crossing over miles of open desert). If the attacker is apprehended in zone j, he
suffers penalty of πΨ = 0.5; hence, his payoff is xΨ

c,j = vΨ
j − 0.5. The goal of each

player is to maximize the sum of payoffs obtained over all rounds of the game.
An important characteristic of the border patrol domain is limited observ-

ability. In particular, the border patrol only gathers reliable information about
the illegal entrants they actually apprehend; they do not observe the complete
strategy of all attackers.1 In our model, we capture this by revealing to the
defender only the attackers that are apprehended (i.e., the attacker chooses a
zone where the defender currently has a resource patrolling). The defender does
not observe the attackers that choose zones that are not patrolled. This leads to
a classic exploration vs. exploitation problem, since the defender may need to
explore zones that appear to be suboptimal based on the current information to
learn more about the attacker’s strategy. In a long run of the game we overcome
the possibility of high, unnoticed immigrant flows in an unpatrolled zone by an
extra exploration, which we use in the defender strategies.

As a simplifying assumption, we assume that the attacker observes the whole
patrol history of the defender in all zones but does not know the defender strat-
egy vector. At time t, the attacker knows the number of previous rounds in which
the defender protected zone j further denoted ht

j = ct
j ∗(t−1). This can be justi-

fied in part by the domain, since border patrol agents are more easily observable
(i.e., they are uniformed, drive in marked vehicles, etc.), and smuggling organi-
zations are known to use surveillance to learn border patrolling strategies. We
also assume the attackers to cooperate and form a gang or a cartel and thus
share fully the gained information about the patrols. However, it also allows us
to more easily define a simple but realistic adaptive strategy for the attackers to
follow in our model based on fictitious play. We describe this behavior in more
detail later on.

We do not generally assume that the defender knows the attacker’s payoffs
(i.e., zone preferences). However, when we consider equilibrium solutions we will

1 This is sometimes described as the problem of estimating the total flow of traffic,
rather than just the known or observed flow based on detections and apprehensions.
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assume that the defender is able to estimate with some uncertainty the payoffs for
the attacker. Formally, the defender will have an approximation of the attacker’s
preference vector v′Ψ , such that |vΨ

j − v′Ψ
j | < ε for each j and some ε known to

both players.
In Fig. 1 we present an example of border patrol game, where the defender

chooses first a zone to patrol and then the attacker chooses a zone to cross
without knowing which specific zone the defender is currently patrolling. There
is the zone preference vector vΨ and patrol history vector h100 at round 100. In
this example the attacker is apprehended because she chose the same zone as the
defender. If the attacker had chosen zone 1 he would have successfully crossed
the border because the defender does not patrol it.

Attacker

DefenderΘ

Ψ

zone preference vector vΨ
1 vΨ

2 vΨ
3 vΨ

4 vΨ
5 vΨ

6 vΨ
7 vΨ

8

patrol history vector h100
1 h100

2 h100
3 h100

4 h100
5 h100

6 h100
7 h100

8

attacker chooses one zone to cross

t = 100

defender allocates d resources to patrol d zones

*
attacker is apprehended in zone 2

Fig. 1. Border patrol game example

3.1 Attacker Behavior Model

Our main focus in this work will be on designing effective policies for the defender
against an adaptive adversary. While there are many ways that the attackers can
be modeled as learning and adapting to the defender policy, here we will focus on
one simple but natural strategy. We assume that the attackers adapt based on a
version of the well-known fictitious play learning policy (e.g., [12]). In fictitious
play the player forms beliefs about the opponent strategy and behaves rationally
with respect to these beliefs. The standard model of fictitious play assumes the
opponent plays a stationary mixed strategy, so the player forms his beliefs about
opponent’s strategy based on the empirical frequencies of the opponent’s play.
We define an adversarial attacker as an attacker who attacks the zone that
maximizes his expected payoff under the assumption that the defender plays a
mixed strategy corresponding his normalized patrol history: jt = arg maxj(vΨ

j −
πΨ ∗ct

j). This type of the attacker strategy can be seen as the worst-case strategy
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compared to some naive attacker strategies, which we also successfully tested our
proposed algorithm against. Algorithms for minimizing regret in the adversarial
bandit setting are designed to be efficient against any adversary and therefore we
expect the proposed combined algorithms to be effective against any attacker’s
strategy.

We also want to evaluate robustness of the designed strategies to rapid
changes of the attacker’s behavior. In the real world, these can be introduced by
new criminal organization starting operations in the area, or by changes in the
demand or tactics used by an organization, such as the adoption of a new smug-
gling route. Therefore, we introduce also an adversarial attacker with changes,
which differs form the basic adversarial attacker in having variable preference
vector xΨ

u , that rapidly changes at several points in the game. The defender is
not informed about these changes or the time when it happens.

4 Background

4.1 Stackelberg Security Game

Our model of the border patrolling problem is similar to the standard Stackel-
berg security game model, as described in [14]. The game has two players, the
defender Θ and the attacker Ψ . In our model the defender represents the Office
of Border Patrol (OBP) and the attacker represents a group of illegal immigrants
or a criminal smuggling organization. In security games we usually do not have
individuals playing against each other but rather groups of people who have
similar or same goal. These groups can represent terrorists, hackers, etc. on the
attacker side and officers, authorities, security units etc. on the defender side.
These groups use a joint strategy so we can think of the group as an individual
player with several resources. The defender has a set of pure strategies, denoted
σΘ ∈ ΣΘ and the attacker has a set of pure strategies, denoted σΨ ∈ ΣΨ . We
consider a mixed strategy, which allows playing a probability distribution over
all pure strategies, denoted δΘ ∈ ΔΘ for the defender and δΨ ∈ ΔΨ for the
attacker. We define payoffs for the players over all possible joint pure strategy
outcomes by ΩΘ : ΣΨ × ΣΘ → R for the defender and ΩΨ : ΣΘ × ΣΨ → R for
the attacker. The payoffs for the mixed strategies are computed based on the
expectations over pure strategy outcomes.

An important concept in Stackelberg security games is the idea of a leader
and a follower. This concept is the main difference from the normal-form game.
The defender is considered to be the leader and the attacker is the follower. The
leader plays first, and then the attacker is able to fully observe the defender
strategy before acting. This is quite a strong assumption and it represents very
adversarial and intelligent attacker who can fully observe the defender’s strategy
before deciding how to act. In our model we assume less intelligent attacker who
does not know the exact defender strategy as described in Sect. 3. Formally
we can describe the attacker’s strategy as a function which chooses a mixed
distribution over pure strategies for any defender’s strategy: FΨ : ΔΘ → ΔΨ .
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4.2 Stackelberg Equilibrium

Stackelberg equilibrium is a strategy profile where no player can gain by unilat-
erally deviating to another strategy for the case where the leader moves first, and
the follower plays a best response. We follow the standard definition of Stackel-
berg equilibrium (SE) for security games [14]. This version of Stackelberg equi-
librium is known as strong Stackelberg equilibrium. The strong SE assumes that
in cases of indifference between targets the follower chooses the optimal strat-
egy for the leader. A strong SE exists in every Stackelberg game. The leader
can motivate the desired strong equilibrium by choosing a strategy, which is
arbitrary close to the equilibrium. This makes the follower strictly better off for
playing the preferred strategy.

4.3 Nash Equilibrium

Nash equilibrium is a basic concept in game theory for players who move simul-
taneously. A profile of strategies form a Nash equilibrium if the defender plays
a best response s∗ that holds xΘ(s∗

i , s−i) ≥ xΘ(si, s−i) for all strategies si ∈ SΘ
i

and the attacker plays a best response s∗ that holds xΨ (s∗
i , s−i) ≥ xΨ (si, s−i)

for all strategies si ∈ SΨ
i .

The relationship between strong Stackelberg equilibrium and Nash equilib-
rium is described in detail in [29]. The authors show that Nash equilibria are
interchangeable in security games, avoiding equilibrium selection problems. They
also prove that under the SSAS (Subsets of Schedules Are Schedules) restriction
on security games, any Stackelberg strategy is also a Nash equilibrium strategy;
and furthermore, this strategy is unique in a class of real-world security games.

5 Defender Strategies

The problem the defender faces closely resembles the multi-armed bandit prob-
lem, in which each arm represents one of the zones. Therefore, we first explain
the online learning algorithms designed for this problem and then we explain
how we combine them with game-theoretic solutions.

5.1 Online Learning with One Resource

First we focus on the problem with a single defender resource (d = 1). The
defender’s problem then directly corresponds to the adversarial multi-armed ban-
dit problem. A standard algorithm for optimizing cumulative reward in this set-
ting is Exponential-weight algorithm for Exploration and Exploitation (EXP3),
which was introduced in [5]. The algorithm estimates the cumulative sum s(i) of
all past rewards the player could have received in each zone using the important
sampling correction. If zone i is selected with probability pi and reward r is
received, the estimate of the sum is updated by s(i) = s(i) + r

pi
. This ensures

that s(i) is an unbiased estimate of the real cumulative sum for that zone.



Combining Online Learning and Equilibrium Computation 137

The defender then chooses actions proportionally to the exponential of this
cumulative reward estimate. We use the numerically more stable formulation
introduced by [11]. Formally, a given zone i is protected with probability:

pΘ
i =

1 − γ
∑

j∈K

e(s(j)−s(i)) γ
K

+
γ

K
, (1)

where γ represents the amount of random exploration in the algorithm.

5.2 Online Learning with Multiple Resources

When computing the strategy for multiple defenders (d > 1), we could consider
each combination of allocations of the resources to be a separate action in a
multi-armed bandit problem. It would require the algorithm to learn the quality
of each of the exponentially many allocations independently. However, thanks to
the clear structure of payoffs from individual zones, the problem can be solved
more efficiently as a combinatorial multi-armed bandit problem. We solve it
using the COMB-EXP-1 algorithm introduced in [10] and presented here as
Algorithm 1.

COMB-EXP-1 algorithm

Initialization: Start with the distribution q0(i) = 1
K

and set η =
√

2d logK
KN

for t = 1, ..., N do
1. Sample d actions from vector pt−1 = dqt−1.
2. Obtain the reward vector Xi(t) for all chosen actions i.

3. Set X̄i(t) = 1−Xi(t)
pt−1(i)

for all chosen actions i and X̄i(t) = 0 for all other not

chosen actions.
4. Update q̄t(i) = qt−1(i) exp (−ηX̄i(t)).
5. Compute qt as a projection of q̄t to P = {x ∈ R

K :
∑

i xi = 1, xi ≤ 1
d
}

using KL divergence.
end

Algorithm 1. Combinatorial EXP3 learning algorithm

The algorithm starts with a uniform distribution over all zones q0. In each
round, it samples d distinct zones from this distribution using the Algorithm1, so
that the probability of protecting each zone is pi (line 1). It protects the selected
zones and receives reward for each of the selected zones (line 2). It computes the
loss vector rescaled by importance sampling (line 3) and updates the probability
of protecting individual zones using the exponential weighting (line 4). After
the update, vector qt may not represent a correct probability and not sum to
one. Therefore, it must be projected back to the simplex of valid probability
distributions (line 5).

Similar to the non-combinatorial EXP3 algorithm, the COMB-EXP-1 algo-
rithm can be numerically unstable if some zone is played with very small prob-
ability (pt(i) → 0). We prevent this instability in our implementation by adding
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an uniform vector with very small values (10−7) to the strategy vector q, which
bounds the scaled losses X̄.

Combinatorial Sampling. On line 1, Algorithm1 samples d zones so that
each zone i is protected with probability p(i). We use combinatorial sampling as
introduced in [25]. From vector p we create a new cumulative sum vector. For
each integer j ∈ (1,K), let Sj =

∑
i<j pi. Based on that we define a disjoint

partition of interval [0, d) as Ij = [Sj , Sj + pj). Interval Ij represents zone j.
To sample d zones, we generate single random number y from interval [0, 1)
uniformly at random. The selected zones correspond to the intervals that contain
points y, y+1, ..., y+(d−1). Since each zone is covered with probability at most
1, no two of these points will be part of the same interval and the probability of
hitting interval i is pi. In Fig. 2 there is an example of combinatorial sampling,
where we have 6 zones z1, ..., z6 and 3 resources (defenders). We generate a
random number y and sample the intervals created by cumulation from the
probability vector p.

z1 z2 z3 z4 z5 z6

3210

random number y ∈ [0, 1)

yy + 1 y + 2
| | | || | |

chosen zones are z2, z3 and z6

d = 3p = {0.4, 0.8, 0.6, 0.2, 0.4, 0.6}

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Fig. 2. Combinatorial sampling example

Projection Heuristic. The COMB-EXP-1 algorithm requires projection using
KL-divergence on line 5. This projection defines a distribution q ∈ P which has
the minimal KL-divergence from vector q̄.

q = arg min
p∈P

KL(p, q̄) KL(p, q) =
∑

i∈1...K

p(i) log
p(i)
q(i)

(2)

We are not aware of a computationally efficient algorithm for computing such
projection. Therefore, we propose a heuristic algorithm H1, where we decrease
all values greater than 1/d to 1/d and normalize all other values in the vector to
sum to (1 − a/d), where a is the number of values in the original vector greater
than 1/d and d is the number of resources.
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We compare our heuristic to another heuristic H2 where we redistribute the
difference value from value in a vector greater than 1/d uniformly among other
values. In 10000 experiments with randomly generated vectors and with different
numbers of resources d, heuristic H1 was always better than H2. Further, we tried
to randomly perturb the vectors returned by H1 by small amounts in individual
zones, while still ensuring the perturbed vector belongs to P and we were able
to find a better value in less than 1% of cases. We conclude that H1 is a good
approximation of the projection and we use it in the experimental evaluation.

6 Combined Algorithms

In this section we propose four algorithms that combine the online learning
algorithms described above with a (possibly inaccurate) game-theoretic solution.
The main idea is to start the learning algorithm with some prior information,
but allow the algorithms to learn close to optimal solutions even if the initial
information is inaccurate.

6.1 Combined Algorithm 1

The EXP3 algorithm described in Sect. 5.1 computes the values s(j) that esti-
mate the cumulative rewards for each zone j. We can initialize the EXP3 algo-
rithm by initializing these values. If both players knew the exact preference
vector of the attacker, their optimal static strategy would be the Nash equi-
librium (NE) of the game. Due to the security games utility restrictions, this
equilibrium is unique [29]. If the attacker was playing an equilibrium attacking
zone j with probability NEj for τ rounds, the cumulative rewards obtainable
in individual zones would be sinit(j) = NEj ∗ τ . By using this initialization for
the values s(j) in EXP3, it starts from a state similar to the state where it has
played τ rounds of the game against the optimal attacker. Since the defender
does not have access to the exact preference vector, we compute the approximate
Nash equilibrium strategy based on his inaccurate estimate. Algorithm COMB1
than uses it for initialization of s(i) as described above, but otherwise runs the
standard EXP3 algorithm.

Combinatorial COMB1. Combinatorial version of the COMB1 algorithms
is also based on the intuition of initialization by the estimated equilibrium
play. Since COMB-EXP-1 uses the current strategy vector instead of cumulative
rewards, we use the defender’s strategy for initialization. The algorithms for com-
puting the equilibrium for security games with multiple defender resources, such
as [14], directly output the strategy in the form of a coverage vector representing
the probability that each zone will be covered. Let Stackelberg equilibrium (SE)
be this coverage vector, than the initial distribution for COMB-EXP-1 is:

q0(i) =
τ

d
SE +

1 − τ

K
(3)



140 R. Kĺıma et al.

where τ is the parameter which sets how confident we are about the Stackelberg
equilibrium strategy. The basic setting is τ = 0.9. After initializing the online
learning algorithm we continue playing standard combinatorial EXP3.

6.2 Combined Algorithm 2

In this combined algorithm, instead of initializing the learning algorithm as if
it played based on the equilibrium strategy before the games starts, it actually
plays the estimated equilibrium strategy for the first T rounds of the game.
Even though the actions are selected based on the equilibrium in these rounds,
EXP3 learns form the observed apprehensions. In order to also learn about the
zones that are never played in the equilibrium strategy, we add 10% uniform
exploration to the strategy.

EXP3 learns by computing the vector of estimates s. This vector is computed
from the beginning of the game no matter which strategy the defender uses. For
finding the point where to switch from first stage to the second we compute the
EXP3 payoff virtually while playing the estimated Nash equilibria. Virtual EXP3
payoff is computed using the importance sampling correction. It gives higher
payoff for a strategy with higher probability of visiting a particular zone. If the
probability of EXP3 protecting a particular zone with positive payoff is higher
than the probability in Nash equilibrium vector, we get a relatively higher payoff
for EXP3 than for the NE strategy. In this manner we prioritize the strategy
that has the higher estimated payoff. The defender gets covered payoff 1 and
uncovered payoff 0 and virtual EXP3 defender covered and uncovered payoff is

x̄Θ
c (t) =

et
i

nt
i

∗ 1 x̄Θ
u (t) =

et
i

nt
i

∗ 0 (4)

where et
i is the probability of playing zone i in round t by playing EXP3 and nt

i

is the probability of playing zone i in round t by the estimated Nash equilibrium
strategy.

We compute the total payoff for both strategies as the sum over all rounds
played so far. The algorithm switches to the EXP3 learning algorithm if the
cumulative payoff of virtually playing EXP3 exceeds the actual cumulative
reward obtained by playing the Nash equilibrium with the additional explo-
ration.

Combinatorial COMB2. Combinatorial COMB2 algorithm is analogous to
the standard COMB2 algorithm. We use the estimated Stackelberg equilibrium
strategy for multiple resources with 10% extra exploration and combinatorial
EXP3 algorithm. We start with SE strategy and compute virtually expected
payoff for playing EXP3. Once the virtual EXP3 payoff becomes greater than
actual payoff by playing SE with extra exploration we switch to EXP3 algorithm
and use the standard updates.
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6.3 Combined Algorithm 3

The third combined algorithm is based on a similar concept to the previous one,
but in this case we continually switch between two strategies based on which one
has the higher current estimated payoff. One of these strategies is based on the
estimated equilibrium, and the other is a learning policy. For the strategy we
are currently playing we store the total actual payoff and for the other strategy
we compute the payoff in the same way we did for virtual play of EXP3 in
the previous algorithm. Similar to above, for virtually playing NE strategy the
defender gets covered and uncovered payoff

x̄Θ
c (t) =

nt
i

et
i

∗ 1 x̄Θ
u (t) =

nt
i

et
i

∗ 0 (5)

Let X̄Θ
Alg be the estimated cumulative payoff of an algorithms, COMB3 plays

the estimated Nash equilibria with exploration if X̄Θ
EXP3 < X̄Θ

NE or we play
EXP3 if X̄Θ

EXP3 > X̄Θ
NE .

The EXP3 algorithm learns using the expected payoff vector s from all pre-
viously played rounds including those rounds when the defender played the NE
strategy with exploration.

Combinatorial COMB3. Analogously to the non-combinatorial COMB3 algo-
rithm, combinatorial COMB3 algorithm is a generalization of previous combi-
natorial COMB2 algorithm. In this COMB3 algorithm we enable the switching
between the two strategies arbitrary according to the highest payoff. We com-
pute the virtual SE strategy payoff while playing combinatorial EXP3 algorithm
and vice versa.

6.4 Combined Algorithm 4

With this algorithm, the defender uses several estimated Nash equilibria corre-
sponding to random modifications of the attacker preference vector by at most ε.
This models the scenario of building a model based on the input of multiple
domain experts, rather than a single expert. There is extra exploration of 10%
added to each estimated Nash equilibrium. The main idea is that some of these
random variations may be a more accurate estimate of the true preference vec-
tor and the algorithm can learn which one from the interaction. COMB4 starts
playing with one of the strategies and in parallel computes the expected payoffs
for the other estimated Nash strategies and for the EXP3 learning algorithm.
In each round, we select an action based on the strategy with the highest cur-
rent estimate of the cumulative payoff. In our model we did experiments with 3
estimated Nash equilibria (NE).

Combinatorial COMB4. The combinatorial version of this algorithm is prac-
tically the same as the non-combinatorial version. The only difference is that
the equilibria are computed for multiple defender resources and the learning
algorithm is also combinatorial.
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7 Experiments

If not otherwise specified, we consider a game model where K = 8 (8 zones)
and N = 1000 (1000 rounds). In the border patrol domain we can consider 1
round as 1 day, so a 1000 round game represents approximately 3 years. All the
experiments are run 1000 times to get reliable results. In each of these runs,
we generated a new preference vector for the attacker. Each value is i.i.d. and
comes from range (0, 1). We compute the estimated preference vector known to
the defender by adding a random number from interval (−ε, ε) to each entry.
The exploration parameter γ for the learning algorithms has been hand-tuned
to γ = 0.2, i.e., 20% exploration.

7.1 Imprecise Stackelberg Equilibrium Strategy
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Fig. 3. SSE strategies with different
levels of error against an adversarial
attacker

We test the influence of different lev-
els of error (ε) in the zone preference
vector on the performance of the esti-
mated SSE. In Fig. 3 we show apprehen-
sion rates for different levels of error.
We observe the performance of the SSE
strategy for ε ∈ [0, 0.2]. The adversarial
attacker can learn the strategy and over
time the apprehension rate decreases. In
particular, for higher values of ε there is
a large decrease in performance. For ε ≥
0.15 we get even worse performance than
for playing a random defender strategy,
which has the expected payoff 12.5%.
For SSE with no error the performance
is still very good even after the attacker
learns the strategy. In our further experiments we focus on error 0.1, for which
the game theoretic strategy is better than random, but there is still room for
improvement. The widest mean 95% confidence interval in these experiments is
±0.56% for error 0.1.

7.2 Performance of Combined Algorithms with One Resource

We compare the performance of the EXP3 learning algorithm, Stackelberg equi-
librium strategy (SSE), and Stackelberg equilibrium strategy with error (which
is used in the COMB algorithms). For each graph we compute a 95 % confidence
interval and provide a mean interval width across all rounds.

In Fig. 4 we use two styles of result visualization to better understand the
behavior of the algorithms. One is a moving average of apprehensions in 20
rounds (a,b) and the other is the mean apprehension rate from the beginning
of the game (c,d). The moving average better represents the immediate perfor-
mance of the algorithm and the cumulative performance captures the overall
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(b) moving averages visualization
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(c) adversarial attacker
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(d) adversarial attacker w/ changes

Fig. 4. COMB algorithms with 0.1 error against adversarial attacker

performance of the algorithm. Figure 4a shows the same experiment as Fig. 4b
and c shows the same experiment as Fig. 4d. The COMB algorithms use the
imprecise game-theoretic solution with error ε = 0.1.

In Fig. 4c the COMB algorithms have the widest confidence interval ±0.39%
and for EXP3 algorithm the width of interval is ±0.30%. The mean reward of
SSE with error decreases with the attacker learning the strategy. SSE without
error gives a very good, stable performance. COMB1 has better but similar
performance to EXP3. This comes from the nature of COMB1 algorithm, which
is an initialized EXP3. COMB2 algorithm starts with playing SSE with error plus
some extra exploration and then switches permanently to EXP3. We can see that
this switch occurs close to the intersection of SSE with error and EXP3 algorithm
which is a desired feature of COMB2 algorithm. COMB3 outperforms COMB2,
which is caused by better adaptability to the intelligent attacker. COMB4 has
the best performance out of all COMB algorithms and also outperforms EXP3
algorithm. COMB2, COMB3 and especially COMB4 algorithms have very good
performance for the first half of the game (up to round 500) and outperform
EXP3 and SSE with error. At the end of our game COMB algorithms and EXP3
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algorithm have similar performance, which is caused by the attacker learning the
defender strategy, also the COMB algorithms tend to play EXP3 later in the
game.

In games against the adversarial attacker with changes in Fig. 4d COMB
algorithms have the maximal width of confidence interval ±0.32% and for EXP3
algorithm the width of interval is ±0.26%. This figure shows one of the main
advantages of the learning algorithm. If we assume that we are not able to detect
a change in the attacker payoff and therefore to compute the appropriate game-
theoretic solution, we can intuitively expect a poor performance by playing this
game-theoretic strategy. In these figures the changes in the attacker’s preference
vector are highlighted every 200 rounds by black horizontal lines.

The SSE with error strategy and the SSE strategy have almost same per-
formance after the first change in the attacker zone preference vector, because
the equilibria are computed for the initial zone preference vector and after the
change they have no relation to the real preference vector of the attacker. We
can see that COMB algorithms can successfully adapt to these changes in less
than 200 rounds and even slightly outperform EXP3 algorithm in the whole run.
At the beginning of our game all COMB algorithms are better than the EXP3
algorithm. The COMB algorithms can adapt to these changes because they make
use of EXP3 algorithm and can switch to it in case they need to. So the COMB
algorithms retain the desired property of learning algorithms.

In order to separate the behavior of the learning algorithms from the effects
of the error in the computed equilibrium, we further evaluate the combined
algorithms with precise game-theoretic solution. Figure 5a presents experiments
against the adversarial attacker. The widest confidence interval for COMB algo-
rithm is ±0.39% and for EXP3 the width is ±0.29%. In this figure we do not
visualize COMB4 since it is identical to COMB3 in this case. The COMB2
and COMB3 algorithms get even better than the SSE strategy, because for the
attacker it is more difficult to learn the defender strategy if it is not static.
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Fig. 5. COMB algorithms with no error against adversarial attacker
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This is partly caused by the extra exploration in the COMB algorithm playing
SSE, which can confuse the attacker. The attacker learns quite fast against a
static defender strategy vector SSE. One can observe that even though COMB2
and COMB3 outperform the SSE strategy for a short period of time, it then
drops substantially in performance due to the attacker eventually learning the
strategy. The apprehension rate of the COMB algorithms decreases under the
SSE strategy even though they use this SSE strategy, because there is the extra
10% exploration added to SSE strategy. Nevertheless we can see that COMB
algorithms significantly outperform EXP3 algorithm for the first half of the game
and then they all converge to a similar performance.

In Fig. 5b we test the COMB algorithms using the precise game-theoretic
solution against the adversarial attacker with changes. For COMB algorithms
the widest interval is ±0.32% and for EXP3 algorithm the width of interval is
±0.26%. The COMB algorithms can react well to changes in the attacker strat-
egy because of the learning algorithm part. If the defender has a precise SSE
strategy he might prefer playing it instead of any other strategy in the case of
the adversarial attacker however if there are some changes in the attacker payoff
matrix the defender would be better off by playing some more sophisticated algo-
rithm like EXP3 or preferably one of the proposed COMB algorithms, because
these can adapt to the changes in the attacker behavior over time.
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Fig. 6. Convergence of COMB algo-
rithms against adversarial attacker

Now we focus on the convergence of the
algorithms in a substantially longer time
window. Figure 6 presents the COMB algo-
rithms using game-theoretic solution with
error against adversarial attacker for 10000
rounds. This experiment is done 100 times
for each setting. The maximal mean width
of confidence intervals for COMB algo-
rithms is 0.99% and the width of confi-
dence interval for EXP3 is 0.92%. We can
see that COMB algorithms and EXP3 algo-
rithm converge to the same performance
quite quickly. Playing precise Stackelberg
equilibrium strategy has the best perfor-
mance however the SSE strategy with 0.1
error gives quite poor results. The precise SSE strategy performance increases
during the time, which is caused by the attacker learning more precisely the
defender strategy and therefore there are more ties in the attacker strategy
which the attacker breaks in favor of the defender.

7.3 Combinatorial Combined Algorithms

In this section we focus on the combinatorial case where the defender uses mul-
tiple resources so he can patrol d zones in each round where d > 1. We test
combinatorial variants of COMB algorithms which use combinatorial variant of
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EXP3 as described in Sect. 5.2. For brevity, we continue to refer to the combi-
natorial variant as EXP3. The experiments are done for a larger game model
with 20 zones (K = 20). We compare the strategies in models with 2, 4, 6 and
8 defender resources (d = 2, 4, 6, 8). These experiments are run 1000 times for
each setting and each game has 1000 rounds.

In Fig. 7 there are 4 COMB algorithms, SSE with error and SSE without error
strategies. The widest mean confidence interval in all the figures is ±0.36%. We
observe in Fig. 7a that EXP3 outperforms the COMB algorithms, which is caused
by poor performance of the SSE with error strategy. The EXP3 algorithm gives
almost 2 times better performance than SSE with error strategy, because there
are too few defenders for too many zones and even a small error in the SSE
strategy causes a low apprehension rate. Due to this fact, the COMB algorithms
have worse performance than EXP3.

When we increase the number of defenders to 4 in Fig. 7b, SSE with error does
better and so do the COMB algorithms. COMB3 outperforms EXP3 algorithm
after the half of the game and COMB4 does even better than COMB3, which
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Fig. 7. COMB algorithms against adversarial attacker, 0.1 error in SSE, varying
number of defenders
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comes from the nature of the algorithms. One can observe interesting peaks
of the performance curves at the beginning of the game, which are caused by
increasing the number of defenders. The attacker needs time to learn effectively
against multiple defenders and at the beginning he plays poorly. However by
the steepness of the algorithms curves we can see that the attacker learns very
quickly after playing very badly at the beginning. These described features are
even stronger with increasing number of defenders in Fig. 7c and d.

The SSE strategy with error approaches even more closely the performance
of EXP3 algorithm because the more defenders there are, the less the error
in the SSE strategy vector matters. The defender still chooses the zones with
high probabilities even though there are some errors, because these 0.1 errors
cannot decrease the real values too much to not be chosen. For the last figure
with 8 defenders the SSE with error strategy even outperforms EXP3 algorithm.
Nevertheless COMB3 and especially COMB4 algorithms have very strong per-
formance and approach to SSE strategy performance. COMB1 and COMB2 have
obvious drawbacks in the limited use of SSE with error strategy. COMB1 use
the game-theoretic strategy only to initialize EXP3 and then cannot make use of
it anymore and similarly for COMB2 algorithm, which uses the game-theoretic
strategy at the beginning and then permanently switches to EXP3 algorithm.

8 Conclusion

We argue that security games with frequent interactions between defenders
and attackers require a different approach than the more classical application
domains for security games, such as preventing terrorist attacks. Game theoretic
models generally require a lot of assumptions about the opponent’s motivations
and rationality, which are inherently imprecise, and may even change during the
course of a long-term interaction. Therefore, it may be more efficient to learn
the optimal strategy from the interaction. However, the standard methods for
online learning in adversarial environment do not provide ways to incorporate
the possibly imprecise knowledge available about the domain.

We propose learning algorithms that are able to take into consideration
imprecise domain knowledge that can even become completely invalid at any
point during the game. We further show how to efficiently extend these algo-
rithms to allow for the combinatorial case with multiple defender resources. We
show that these algorithms achieve significant improvement on the performance
of learning algorithms in the initial stages of the game as well as significant
improvement to using only an imprecise game theoretic model in the long run.
On the other hand, especially in the combinatorial case, it may be better to
use the EXP3 learning algorithm without any knowledge if we expect the per-
formance of imprecise game theoretic solution to be very low. With increasing
quality of this solution it is quickly beneficial to use the proposed COMB3 or
COMB4 algorithm. Even in the cases where EXP3 outperforms the COMB algo-
rithms, the COMB algorithms still have a very good performance due to using
EXP3 as their main component. In a sufficiently long time period all of the
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COMB algorithms converge to long-run performance of the EXP3 algorithm,
and they retain the theoretical guarantees that make EXP3 attractive in adver-
sarial settings.

Future work could focus on a formal analysis of the proposed combined algo-
rithms. For example, it may be possible to derive and prove improved regret
bounds which would provide further guarantees on the algorithm performance.
Another direction for future work is bringing defender action preferences into
the game model, which would better reflect real-world applications.
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Abstract. We consider a class of interdependent security games where
the security risk experienced by a player depends on her own investment
in security as well as the investments of other players. In contrast to much
of the existing work that considers risk neutral players in such games,
we investigate the impacts of behavioral probability weighting by play-
ers while making security investment decisions. This weighting captures
the transformation of objective probabilities into perceived probabilities,
which influence the decisions of individuals in uncertain environments.
We show that the Nash equilibria that arise after incorporating proba-
bility weightings have much richer structural properties and equilibrium
risk profiles than in risk neutral environments. We provide comprehen-
sive discussions of these effects on the properties of equilibria and the
social optimum when the players have homogeneous weighting parame-
ters, including comparative statics results. We further characterize the
existence and uniqueness of pure Nash equilibria in Total Effort games
with heterogeneous players.

1 Introduction

Interdependent security games are a class of strategic games where multiple selfish
players choose personal investments in security, and the security risk faced by a
player depends on the investments of other players in the society [18,20]. These
games serve as abstract frameworks that capture various forms of risk externalities
that users face in networked environments. There is a large body of literature on
this class of problems starting from the early works by Varian [30] and Kunreuther
and Heal [18]; a comprehensive recent survey can be found in [20].

The risk faced by individuals in these settings is often manifested as the prob-
ability of a successful attack, and this probability is a function of the investment
by the individual and the externalities due to the investments by other interact-
ing individuals. The system-wide landscape of security investments in this setting
will be a function of the decisions that individuals make under this notion of risk.
Much of the work in interdependent security games considers players who are
risk neutral, or are risk averse in the sense of classical expected utility theory [20].
On the other hand, there is a rich literature in decision theory and behavioral
economics which concerns itself with decision making under risk with findings
c© Springer International Publishing Switzerland 2015
MHR Khouzani et al. (Eds.): GameSec 2015, LNCS 9406, pp. 150–169, 2015.
DOI: 10.1007/978-3-319-25594-1 9
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that suggest consistent and significant deviations in human behavior from the
predictions of classical expected utility theory [2,5]. One of the most impor-
tant deviations is the way individuals perceive the probability of an uncertain
outcome (e.g., cyber attack). In particular, empirical studies show that individ-
uals tend to overweight small probabilities and underweight large probabilities.
Thus, the objective (i.e., true) probabilities are typically transformed in a highly
nonlinear fashion into perceived probabilities, which are then used for decision
making [8,16].

While there have been some studies highlighting the significance of biases and
irrationalities in human decision making in information security domains [1,6],
theoretical analyses of relevant deviations from classical notions of rational
behavior are scarce in the literature on interdependent security games.1 Empir-
ical investigations [7,27] are also limited in this context.

In this paper, our goal is to study the effects of behavioral probability weight-
ing of players on their equilibrium strategies in three fundamental interdependent
security game models: Total Effort, Weakest Link and Best Shot games. Each
of these games captures a certain manifestation of risk (i.e., probability of suc-
cessful attack) as a function of investment by the players, and is motivated by
practical scenarios as discussed in [9]. In the Total Effort game, the probability
of a successful attack depends on the average of the security investments by the
players. As an example, an attacker might want to slow down the transfer of a
file in a peer-to-peer file sharing system, while the speed is determined by the
sum of efforts of several participating machines. In the Weakest Link game, the
society is only as secure as the least secure player, while in the Best Shot game,
the player with the maximum investment must be successfully attacked for the
attack on other players to be successful. Weakest link externalities are prevalent
in computer security domains; successful breach of one subsystem often increases
the vulnerability of other subsystems, such as by giving the attacker increasing
access to otherwise restricted parts. Best shot externalities often arise in cyber
systems with built in redundancies. In order to disrupt a certain functionality of
the target system, the attack must successfully compromise all the entities that
are responsible for maintaining that functionality.

These game-theoretic models were first introduced in [30], and were subse-
quently extended in [9,10] to cases where players can also purchase (static) cyber
insurance in addition to investing in security. All three models are instances
where the nature of externalities is positive2 as the investment by a player
1 In a related class of security games known as Stackelberg security games with two

players, one attacker and one defender, there have been recent studies [4,13,17,31,32]
that incorporate behavioral decision theoretic models, including prospect theory and
quantal response equilibrium. However, this class of games is very different from
interdependent security games [20], which is the focus of the current work.

2 Both positive and negative externalities have been studied in the literature. Negative
externalities capture settings where more investment by others makes a player more
vulnerable, and this is usually the case where the attack is targeted towards indi-
viduals who have invested less in security. Most of the literature in security games
has focused on positive externalities [20].



152 A.R. Hota and S. Sundaram

(weakly) improves the security of the everyone in the society (by reducing the
attack probability). The fact that the players’ utility functions in these games
are coupled through the shared probability of successful attack motivates our
focus on studying the effects of behavioral probability weighting.3

We model the nonlinear probability weightings of players using the weight-
ing function due to Prelec [26], whose properties we discuss in the next section.
We first characterize the pure Nash equilibria (PNE) in Total Effort games; we
compare the (structural) properties of the equilibrium under behavioral proba-
bility weighting to the equilibria that arise under risk neutral [9] and classical
expected utility maximization behavior [15]. We then examine how the intensity
of probability weighting affects the probability of successful attack at equilib-
rium. We carry out a similar analysis for the social welfare maximizing solution
in the Total Effort game, and Nash equilibria in Weakest Link and Best Shot
games. Subsequently, we prove general existence and uniqueness results in Total
Effort games when the probability weighting parameters and cost parameters
are heterogeneous (player-specific) under certain conditions on the number of
players.

2 Probability Weighting

As discussed in the previous section, our focus in this paper will be on under-
standing the effects of nonlinear weighting of objective probabilities by individ-
uals while making decisions under risk. Such weightings have been comprehen-
sively studied in the behavioral economics and psychology literature [5], and have
certain fundamental characteristics, including (i) possibility effect: overweighting
of probabilities very close to 0, (ii) certainty effect: underweighting of probabil-
ities very close to 1, and (iii) diminishing sensitivity from the end points 0 and
1. These characteristics are usually captured by an inverse S-shaped weighting
function. After the initial advancements in the development of prospect theory
and rank dependent utility theory, various parametric forms of weighting func-
tions were proposed, most prominently by Kahneman and Tversky [29], Gonzalez
and Wu [8], and Prelec [26]. All of these parametric weighting functions exhibit
the qualitative and analytical characteristics (i) to (iii) described above.

In this paper, we consider the one parameter probability weighting function
due to Prelec.4 If the objective (i.e., true) probability of an outcome is x, the
weighting function is given by

w(x) = exp(−(− ln(x))α), x ∈ [0, 1], (1)

3 There are also various behavioral characteristics that affect the perceived values
of gains and losses [12,16]. However, as the values of the gains and losses are not
strategy-dependent in the games that we consider here, behavioral value functions
would not affect the equilibria that arise.

4 While we focus on the Prelec weighting function here, many of our results will also
hold under a broader class of weighting functions with similar qualitative properties
as the Prelec weighting function.
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Fig. 1. Shape of the probability weighting function. The quantity x is the objective
probability of failure, and w(x) is the corresponding perceived probability of failure.

where exp() is the exponential function. The parameter α ∈ (0, 1] controls the
curvature of the weighting function as illustrated in Fig. 1. For α = 1, we have
w(x) = x, i.e., the weighting function is linear. As α decreases away from 1, w(x)
becomes increasingly nonlinear, with an inverse S-shape. For smaller α, the func-
tion w(x) has a sharper overweighting of low probabilities and underweighting
of high probabilities.

Remark 1. The probability weighting function w(x) in (1) has the following
properties.

1. w(0) = 0, w(1) = 1, and w( 1e ) = 1
e .

2. w(x) is concave for x ∈ [0, 1
e ], and convex for x ∈ [1e , 1].

3. w′(x) attains its minimum at x = 1
e . In other words, w′′(x) = 0 at x = 1

e .
The minimum value of w′(x) is w′( 1e ) = α.

4. w′(ε) → ∞ as ε → 0, and w′(1 − ε) → ∞ as ε → 0.

3 Interdependent Security Games

As discussed in the introduction, in interdependent security games, a player
makes her security investment decision independently, while the probability of
successful attack on the player depends on the strategies of other players. We
denote the number of players by n, and denote the investment in security by
player i as si, where si ∈ [0, 1]. Following the conventional game theoretic nota-
tion, we use s−i to denote the investment profile of all players other than i. The
formulation that we consider here has the following characteristics. The objective
probability of a successful attack on the system is given by f(si, s−i) ∈ [0, 1],
for some function f . Player i incurs a cost-per-unit of security investment of
bi ∈ R≥0, and if the system experiences a successful attack, player i incurs a loss
of Li ∈ R>0. The expected utility of a player (under the true probabilities of
successful attack) is then

Eui = −Lif(si, s−i) − bisi. (2)
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In settings that model positive externalities, as is the focus in the current paper,
f(si, s−i) is nonincreasing in both si and s−i, and usually assumed to be convex
in si for analytical tractability.

In this work, we consider three canonical models of interdependent security
games with positive externalities, initially presented in [9,10]. The models differ
in the attack probability function f(si, s−i) as described below.

– Total Effort: f(si, s−i) = 1 − 1
N (

∑n
i=1 si).

– Weakest Link: f(si, s−i) = 1 − minn
i=1 si.

– Best Shot: f(si, s−i) = 1 − maxn
i=1 si.

In [9,10], the authors additionally considered the possibility of players invest-
ing in insurance to reduce the magnitude of loss. In order to isolate the effects of
nonlinear probability weighting, we do not consider insurance here. To establish
a baseline, the following proposition describes the main results from [9] regard-
ing the properties of Nash equilibria in the three security games defined above
with homogeneous risk neutral players (without self-insurance). We will com-
pare these results with the equilibria under nonlinear probability weighting in
subsequent sections.

Proposition 1. Consider a set of N risk neutral players with homogeneous cost
parameters (b and L).

1. Total Effort: There is a unique symmetric PNE except for the special case
where Nb

L = 1. If Nb
L < 1, then each player invests to fully protect herself,

i.e., s∗
i = 1, i ∈ {1, 2, . . . , N}. Otherwise if Nb

L > 1, s∗
i = 0.

2. Weakest Link: At any PNE, all players have identical security investment. If
b
L > 1, then s∗

i = 0 for every player i. Otherwise, any investment s∗
i ∈ [0, 1]

can constitute a PNE.
3. Best Shot: If b

L > 1, then s∗
i = 0 for every player i at the PNE. Otherwise,

there is no symmetric PNE, and at most one player has a nonzero investment
of 1, while all other players free ride without making any security investment.

We make two preliminary observations regarding the above equilibria in
games with risk neutral players. First, in the Total Effort game, the best response
of a player is independent of the decisions of other players and only depends on
her cost parameters, i.e., the interdependence has no impact on her strategy.
Secondly, in both Total Effort and Best Shot games, the PNE causes the sys-
tem to be either fully secure from attack, or to be fully unprotected. We will
show that under behavioral probability weighting, both the best response and
the equilibria have much richer structural properties and vary more smoothly
with the parameters of the game.

4 Total Effort Game with Probability Weighting:
Homogeneous Players

First we characterize the pure Nash equilibria in a Total Effort security game
when the number of players is sufficiently large and players are homogeneous
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in their weighting functions and cost parameters. Unlike the risk neutral case
described in Proposition 1, the best response in this case will be potentially
discontinuous in the strategies of other players. Furthermore, for a sufficiently
large number of players, we show that there always exists an interior equilibrium.
This equilibrium is not necessarily unique, and in fact, can coexist with an
equilibrium where all players invest 1.

With probability weighting, the expected utility of player i under investment
si ∈ [0, 1] is given by

Eui(si, s−i) = −Lw

(
1 − si + s̄−i

N

)
− bsi,

where s̄−i =
∑

j �=i sj is the total investment in security by all players other
than i. The function w is the Prelec weighting function defined in (1). The
marginal utility is given by

∂Eui

∂si
=

L

N
w′

(
1 − si + s̄−i

N

)
− b. (3)

The solutions of ∂Eui

∂si
= 0 satisfy the first order condition of optimality, and are

therefore candidate solutions for players’ best responses and the PNE. Note that(
1 − si+s̄−i

N

)
is the objective attack probability faced by the players (without

probability weighting). For a given strategy profile of other players, player i’s
strategy can change the objective attack probability in the interval X (s̄−i) :=[
1 − 1+s̄−i

N , 1 − s̄−i

N

]
. In other words, when the number of players is N , each

player can directly change the probability of successful attack by at most 1
N .

Recall from Remark 1 that the minimum value of w′(x) for x ∈ [0, 1] is α.
Therefore, if α > Nb

L , from (3) we have ∂Eui

∂si
> 0 for si ∈ [0, 1], and investing 1

is the only best response of player i irrespective of the strategies of the other
players. Therefore, the only PNE strategy profile for α > Nb

L is when each player
invests 1 in security. Note that in the special case where α = 1 (i.e., w(x) = x),
this reduces to the risk-neutral strategy profile given in Proposition 1.

Now suppose α < Nb
L . In this case, the first order condition w′(x) = Nb

L has
two distinct interior solutions corresponding to objective attack probabilities
X1 < 1

e and X2 > 1
e , as illustrated in Fig. 2. It is easy to see that as the number

of players N increases, X2 − X1 increases while 1
N decreases.

In the following proposition, we characterize the PNE for sufficiently large N
such that X2 − X1 > 1

N . This condition implies that at a given strategy profile
of other players, X (s̄−i) does not simultaneously contain both X1 and X2. This
makes the analysis more tractable, and is a reasonable assumption for networked
environments where the number of players is large.

Proposition 2. Consider a Total Effort security game with homogeneous play-
ers with probability weighting parameter α < Nb

L . Let N be sufficiently large so
that X2 > 1

N + X1, where Xj , j = 1, 2 are solutions to the equation w′(x) = Nb
L .

Then,
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Fig. 2. Interior solutions of w′(x) = Nb
L

are denoted by X1 and X2. In this example,
Nb
L

= 0.8 and is shown by the horizontal line. The weighting parameter is α = 0.4.

1. any strategy profile with
(
1 − si+s̄−i

N

)
= X2 is a PNE,

2. any strategy profile with
(
1 − si+s̄−i

N

)
= X1 is not a PNE, and

3. there exists a PNE with all players investing 1 if and only if
(a) X1 ≥ 1

N , or
(b) X1 < 1

N and w( 1
N ) > b

L .

Proof. Part 1. Consider any strategy profile s∗ = {s∗
1, . . . , s

∗
N} with(

1 − s∗
i +s̄∗

−i

N

)
= X2. The best response of each player i is obtained by solving

the following optimization problem:

max
x∈[0,1]

−Lw

(
1 − x + s̄∗

−i

N

)
− bx. (4)

At x = s∗
i , the player satisfies the first order condition of optimality ∂Eui

∂si
=

L
N w′(X2) − b = 0. For any x < s∗

i , we have X = 1 − x+s̄−i

N > X2 and ∂Eui

∂si
=

L
N w′(X) − b > 0 since X2 > 1

e . As a result, no x < s∗
i would satisfy the first

order necessary condition of optimality. On the other hand, for any x > s∗
i , we

have X = 1 − x+s̄−i

N < X2. However, from our assumption that X2 > 1
N + X1,

we would have X = 1 − x+s̄−i

N > X1. Therefore, ∂Eui

∂si
< 0 for any x > s∗

i .
As a result, x = s∗

i is the only candidate for optimal investment, and it also
satisfies the second order sufficient condition since w′′(X2) > 0 as X2 > 1

e . This
concludes the proof.

Part 2. Consider any strategy profile s∗ = {s∗
1, . . . , s

∗
N} with

(
1 − s∗

i +s̄∗
−i

N

)
=

X1. For any x > s∗
i , we have X = 1 − x+s̄−i

N < X1. Since X1 < 1
e , w′(X) > Nb

L

(see Fig. 2). Thus ∂Eui

∂si
> 0 for any si > s∗

i . As a result, si = 1 is also a candidate
solution for the utility maximization problem of player i, along with s∗

i . However
we show that for Prelec weighting functions, a player would always prefer to
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invest si = 1 over si = s∗
i . To simplify the notation, define Y1 = 1 − 1+s̄∗

−i

N . Note
that X1 − Y1 = 1

N (1 − s∗
1). Now we compute

Eui(1, s∗
−i) − Eui(s∗

i , s
∗
−i) = −Lw(Y1) − b + Lw(X1) + bs∗

i

= L(w(X1) − w(Y1)) − b(1 − s∗
i )

= L(w(X1) − w(Y1)) − bN(X1 − Y1)

= L(X1 − Y1)
[
w(X1) − w(Y1)

(X1 − Y1)
− Nb

L

]

≥ L(X1 − Y1)
[
w′(X1) − Nb

L

]
= 0,

where the inequality is due to the fact that w(x) is concave for x ∈ [0, 1
e ], and

Y1 < X1 < 1
e , with equality at α = 1. Therefore, between the potential interior

solution s∗
i that satisfies the first order condition and the boundary solution

si = 1, the player will always prefer the boundary solution. Since X1 > 0, there
always exists a player with s∗

i < 1 which would prefer to invest 1, and therefore
the strategy profile is not a PNE.

Part 3. Suppose X1 ≥ 1
N and all players other than player i are investing 1.

Then player i’s investment can vary the objective probability of successful attack
in the range

[
0, 1

N

]
, and in this region, ∂Eui

∂si
> 0. As a result, investing si = 1 is

the only best response for player 1. Thus s∗ = {1, . . . , 1} is a PNE.
On the other hand, suppose X1 < 1

N . Consider a strategy profile where all
players other than i are investing 1, i.e., s∗

−i = {s∗
1 = 1, . . . , s∗

i−1 = 1, s∗
i+1 =

1, . . . , s∗
N = 1}. The following three strategies satisfy the first order necessary

condition of optimality of the utility maximization problem (4), and thus are
candidates for best responses: (i) s∗

i = 1 as ∂Eui

∂si
|s∗

i =1 > 0, (ii) s∗
i = 1 − NX1 as

∂Eui

∂si
|s∗

i =1−NX1 = L
N w′(X1)−b = 0, and (iii) s∗

i = 0 as ∂Eui

∂si
|s∗

i =0 = L
N w′( 1

N )−b <

0 (from Fig. 2 and the fact that X1 < 1
N ).

From our analysis in Case 2, we know that the player would always prefer
to invest 1 over investing si = 1 − NX1. Therefore, a necessary and sufficient
condition for all players investing 1 to be a PNE is Eui(1, s∗

−i) > Eui(0, s∗
−i).

Since

Eui(1, s∗
−i) − Eui(0, s∗

−i) = −b + Lw(
1
N

),

we have the equivalent condition that s∗ = {1, . . . , 1} is a PNE if and only if
w( 1

N ) > b
L . Otherwise, player i would achieve greater utility by investing 0, and

therefore, all players investing 1 is not a PNE. ��
Discussion: The above proposition completely characterizes the pure Nash
equilibria in Total Effort security games with homogeneous nonlinear proba-
bility weighting for a sufficiently large number of players. It is instructive to
compare this set of equilibria with the ones for risk neutral players given in
Proposition 1. When Nb

L > α, there always exists an interior PNE corresponding
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to a (true) probability of successful attack equal to X2. As the number of players
N increases, the probability of successful attack X2 gradually increases to 1 (by
the definition of X2 and Fig. 2). This is in contrast to the situation with risk neu-
tral players (α = 1), where the probability of successful attack jumps suddenly
from 0 to 1 once the number of players increases beyond a certain point.

Secondly, under behavioral probability weighting, there can also be an equi-
librium where all players invest 1 (under the conditions described in the third
part of the above result). This is a consequence of overweighting of small prob-
abilities; individual players with α < 1 do not find it profitable to reduce their
investments (“free-ride”), since the resulting small increase of attack probability
is perceived to be much larger.

In the next subsection, we discuss how the attack probabilities at PNE are
affected by the weighting parameter α, and then analyze the social optimum in
the Total Effort game.

4.1 Comparative Statics

Consider two Total Effort games where the parameters N , b and L are the same
across the two games. The first game has homogeneous players with weighting
parameter α1, and the second game has homogeneous players with weighting
parameter α2, where α1 < α2 < Nb

L . By Proposition 2, both games have an
interior PNE, with corresponding true probability of successful attack equal to
X1

2 and X2
2 , respectively. Note that for i ∈ {1, 2}, Xi

2 > 1
e , and is the solution to

the equation w′
i(x) = Nb

L , where wi(x) be the Prelec function (1) with weighting
parameter αi, for i ∈ {1, 2}. As we illustrate in Fig. 3 for α1 = 0.4 and α2 = 0.8,
w′

1(x) is initially smaller than w′
2(x) as x starts to increase from 1

e , until the
quantity x = X̄ (which depends on the values of α1 and α2) at which w′

1(x) =
w′

2(x). For x > X̄, w′
1(x) > w′

2(x). We first formally prove this observation via
the following lemma and proposition.

Lemma 1. The function

g(x) = (− ln(x))α2−α1 exp[(− ln(x))α1 − (− ln(x))α2 ], α1 < α2 < 1,

is strictly decreasing in x ∈ [1e , 1].

Proof. We compute

g′(x) = exp((− ln(x))α1 − (− ln(x))α2)

×
[
(α1(− ln(x))α1−1 − α2(− ln(x))α2−1)

−1
x

(− ln(x))α2−α1

−(α2 − α1)(− ln(x))α2−α1−1 1
x

]

= − 1
x

exp((− ln(x))α1 − (− ln(x))α2)(− ln(x))α2−α1−1

× [(α1(− ln(x))α1 − α1 − α2(− ln(x))α2 + α2].
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Fig. 3. w′(x) for two different weighting parameters, α = 0.4 and α = 0.8. At x = X̄,
w′

1(x) = w′
2(x).

When x > 1
e , (− ln(x)) < 1 and thus 1 > (− ln(x))α1 > (− ln(x))α2 . As a result,

1−(− ln(x))α1 < 1−(− ln(x))α2 . Since α1 < α2, this implies α1(− ln(x))α1−α1 >
α2(− ln(x))α2 − α2. Therefore, g′(x) < 0 over x ∈ [1e , 1]. ��

Proposition 3. Consider two Prelec weighting functions w1 and w2 with para-
meters α1 and α2, respectively and let α1 < α2. Then there exists a unique
X̄ > 1

e such that (i) w′
1(X̄) = w′

2(X̄), ii) for x ∈ [1e , X̄], w′
1(x) < w′

2(x), and iii)
for x ∈ [X̄, 1], w′

1(x) > w′
2(x).

Proof. The first derivative of the Prelec weighting function is given by w′(x) =
w(x)α

x (− ln(x))α−1. Therefore, if at a given x, w′
1(x) = w′

2(x), we have

w1(x)α1(− ln(x))α1 = w2(x)α2(− ln(x))α2

=⇒ α1

α2
=

w2(x)(− ln(x))α2

w1(x)(− ln(x))α1

=⇒ α1

α2
= (− ln(x))α2−α1 exp((− ln(x))α1 − (− ln(x))α2) = g(x).

From the definition of g(x), g(1e ) = 1 > α1
α2

. Furthermore, as x → 1, g′(x) → −∞.
As a result, g(x) becomes smaller than α1

α2
for some x < 1. Thus there exists X̄ at

which w′
1(x) = w′

2(x). The uniqueness of X̄ follows from the strict monotonicity
of g(x) as proved in Lemma 1.

In order to prove the second and third parts of the lemma, it suffices to
show that w′′

1 (X̄) > w′′
2 (X̄). Therefore, we compute w′′(x), which after some

calculations yields

w′′(x) =
w′(x)

−x ln(x)
[1 + ln(x) + α((− ln(x))α − 1)].

From the previous discussion, α1(− ln(x))α1 − α1 > α2(− ln(x))α2 − α2, and
w′′(x) > 0 for x > 1

e . Therefore at X̄, w′′
1 (X̄) > w′′

2 (X̄). This concludes the
proof. ��
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The above proposition (illustrated in Fig. 3) shows that if Nb
L > w′(X̄),

then we have X̄ < X1
2 < X2

2 whenever α1 < α2. On the other hand, when
α2 < Nb

L < w′(X̄), we have X̄ > X1
2 > X2

2 . Since the attack probability at the
interior equilibrium is equal to Xi

2, we have the following result.

Proposition 4. Consider two Total Effort security games with homogeneous
players. The players have weighting parameter α1 in the first game and α2 in
the second game with α1 < α2. Let X̄ be the intersection point defined in Propo-
sition 3 for α1 and α2. If Nb

L > w′(X̄), then the true probability of successful
attack at the interior PNE is larger in the game where players have weighting
parameter α2. Similarly, if Nb

L < w′(X̄), then the investments by players with
weighting parameter α1 results in higher probability of successful attack at the
interior PNE. If Nb

L = w′(X̄), both games have identical attack probability at the
interior PNE.

Discussion: The above result shows that when the attack probability is close
to 1, the players view security investments to be highly beneficial in terms of
reducing the perceived attack probabilities (due to significant underweighting
of probabilities closer to 1). This effect is more pronounced in players with a
smaller α (as shown in Fig. 1), and as a result, the attack probability at the PNE
is smaller compared to a game where players have higher α. On the other hand,
when the quantity Nb

L is smaller, the attack probability at the interior solution is
more moderate and the players with smaller α do not find the perceived reduction
of attack probability beneficial enough to make a high investment compared to
players with larger α. Therefore, the nature of probability weighting plays a key
role in shaping the attack probability at the PNE.

4.2 Social Optimum

We define the social welfare of the Total Effort game as the sum of the utilities of
the individual players, as is commonly defined in the game theory literature [24].
Formally, for a given strategy profile s, the social welfare function is defined as

Ψ(s) = −NLw

(

1 −
∑N

i=1 si

N

)

− b

N∑

i=1

si. (5)

Noting that the social welfare function only depends on the aggregate invest-
ment, we denote with some abuse of notation

Ψ(s̄) = −N [Lw(1 − s̄) + bs̄], (6)

where s̄ is the average security investment by the players. As a result, the social
welfare optimization performed by the social planner is independent of the num-
ber of players in the system. In fact, the optimal solution to the problem of the
central planner is the same as the optimal investment when there is a single
player in the game. In the following result, we discuss how the optimal invest-
ment under a central planner depends on the weighting parameter α and the
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cost parameters b and L. Subsequently, the following result will also be helpful
in characterizing the nature of Nash equilibria in Weakest Link and Best Shot
games.

The marginal of the social welfare function (6) is

1
N

∂Ψ

∂s
= Lw′(1 − s) − b, (7)

where we use s as the average security investment instead of s̄ for notational
convenience. Similar to the discussion prior to Proposition 2, if b

L < α, then
∂Ψ
∂s > 0 for s ∈ [0, 1], and as a result, the optimal investment is 1. Therefore we
focus on the case where b

L > α; in this case, there are two solutions to w′(x) = b
L ,

denoted as X1 < 1
e and X2 > 1

e as before. We will need the following lemma for
our analysis.

Lemma 2. Let z be such that w′(z) = w(z)
z . Then (i) z is unique, (ii) z > 1

e

and (iii) for x > z, w′(x) > w(x)
x .

Proof. For the Prelec weighting function,

w′(x) = w(x)
α

x
(− ln(x))α−1.

At any z with w′(z) = w(z)
z , we must have α(− ln(z))α−1 = 1. Since α < 1,

we must have − ln(z) < 1 or equivalently z > 1
e . Furthermore, (− ln(x))α−1 is

strictly increasing in x for α < 1. As a result, there is a unique x = z at which
α(− ln(z))α−1 = 1, and for x > z, w′(x) > w(x)

x . Similarly, w′(x) < w(x)
x for

x ∈ [
1
e , z

]
. ��

Proposition 5. Let z be as defined in Lemma 2.

1. If b
L < w′(z), the socially optimal average investment is 1.

2. Otherwise, the socially optimal average investment is 1−X2, where w′(X2) =
b
L .

Proof. Since b
L is finite, from (7) we have ∂Ψ

∂s > 0 at s = 0 and therefore investing
0 in security is not a utility maximizer. So we have three candidate solutions for
utility maximization, s1 = 1 − X1, s2 = 1 − X2 or s3 = 1.

From the analysis in Part 2 of Proposition 2 with s̄∗
−i = 0 and N = 1, we

have Eu(1) > Eu(1 − X1). Therefore, between the potential interior solution
s1 = 1 − X1 that satisfies the first order condition and the boundary solution
s3 = 1, the player will always prefer the boundary solution.

Now, to compare the utilities at the solutions s2 and 1, we compute

1
N

(Ψ(1) − Ψ(s2)) = Lw(1 − s2) − b(1 − s2)

= L(1 − s2)
[
w(1 − s2)

1 − s2
− b

L

]

= L(1 − s2)
[
w(1 − s2)

1 − s2
− w′(1 − s2)

]
.
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From our discussion in Lemma 2, if b
L = w′(1 − s2) < w′(z), the player would

prefer to invest 1, and otherwise will prefer to invest s2. ��

5 Weakest Link and Best Shot Games

The Nash equilibrium strategies in Weakest Link and Best Shot games have very
special properties, as the security level of the entire system is determined by the
investment of a single player (the one with the smallest and largest investment,
respectively). As a result, the levels of investment at the equilibria often depend
on the optimal investment by a single user (i.e., investment in a game with
N = 1), which we analyzed in the previous subsection. We first characterize the
PNE in Weakest Link games.

Proposition 6. Consider a Weakest Link game with homogeneous players hav-
ing probability weighting parameter α ∈ (0, 1]. Then at any PNE, all players
have identical investment. If b

L > w′(z), where z is as defined in Lemma 2, then
there is a continuum of pure Nash equilibria with attack probability greater than
or equal to X2. When b

L < w′(z), then there are additional equilibria (including
the ones in the previous case) with attack probabilities less than 1

e .

Proof. The first part of the statement is easy to see, as no player prefers to
invest more than the current minimum level of investment. In fact, if at a given
strategy profile, no player can improve her utility by unilaterally deviating to a
lower investment level, then the strategy profile is a PNE.

When b
L > w′(z), our result in Proposition 5 states that a single player

investing in isolation would prefer to invest s∗ = 1 − X2 where X2 > 1
e is the

interior solution to the first order condition w′(x) = b
L . Now suppose all players

have identical security investment s ≤ s∗, i.e., the objective attack probability
X ≥ X2. Since for each player w′(x) > b

L for x > X2, no player would unilaterally
deviate to make a lower investment. Therefore, any investment less than s∗ by
all the players would result in a PNE.

When b
L < w′(z), the optimal investment when N = 1 is 1 since Eu(1) >

Eu(1 − X2). Therefore, some very low attack probabilities (such as with invest-
ment s = 1 − ε, ε → 0 where Eu(s) > Eu(1 − X2)) can be supported at a PNE,
in addition to the set of equilibria with attack probabilities greater than X2. ��
Discussion: The main differences of the above result compared to the equi-
libria in Weakest Link games without probability weighting (Proposition 1) are
twofold. First, for large enough b

L , the only possible equilibrium in the risk neu-
tral case is when all players invest 0, while under probability weighting, there is a
range of possible equilibrium investments. Secondly, for smaller values of b

L (< 1),
any investment level by the players can give rise to a PNE for risk neutral players,
while that is no longer the case with behavioral probability weighting. However,
at the social optimum of Weakest Link games, the investment level chosen by the
central planner will coincide with the optimal investment stated in Proposition 5.
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Proposition 7. Consider a Best Shot game with players having identical cost
and weighting parameters. Then at any PNE, at most one player can have a
nonzero investment with investment level according to Proposition 5, and the
rest of the players invest zero.

Discussion: Recall that the structure of the PNE was similar in homogeneous
Best Shot games without probability weighting, with at most one player having
nonzero investment. However, the nonzero investment level was at one of the
boundary points, either 0 or 1, and as a result, the equilibrium was either entirely
protected or vulnerable (Proposition 1). With probability weighting, the nonzero
equilibrium investment is one of the interior solutions when b

L > w′(z), and the
investment level gradually decreases as b

L increases. Finally, note that the social
optimum solution coincides with the PNE in Best Shot games.

6 Total Effort Game with Heterogeneous Players

In this section, we consider Total Effort games with player-specific weighting
parameters αi and cost parameters bi

Li
. We first prove the existence of a PNE

in games with a sufficiently large number of players, and subsequently give a
constructive proof of uniqueness of PNE.

In the rest of the analysis, we denote the weighting function of player i
as wi(x), and denote the solutions of w′

i(x) = Nbi
Li

, if any, as Xi
1 < 1

e and
Xi

2 > 1
e , respectively. Now we are ready to state our assumptions on the number

of players, which are sufficient conditions for our results to hold.

Assumption 1. Let the number of players N be large enough such that for every
player i,

1. αi < Nbi
Li

,
2. Xi

2 − Xi
1 > 1

N ,
3. Xi

1 < 1
N and

4. wi( 1
N ) < bi

Li
.

The above conditions are guaranteed to be simultaneously satisfied for a suf-
ficiently large number of players due to the properties of the weighting functions.
Recall from our discussion in Proposition 2 that for homogeneous players, the
last two of the above assumptions are necessary and sufficient to ensure that all
players investing 1 is not an equilibrium.

Proposition 8. Consider a Total Effort game where player i has player-specific
weighting parameter αi and cost ratio bi

Li
. Let the number of players satisfy

Assumption 1. Then there exists a PNE of the game.

Proof. We show that the best response of a player is unique, continuous and is
an affine decreasing function of the total security investment by other players.
The result will then follow from Brouwer’s fixed point theorem. Our analysis of
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the best response of a player holds for every player i, and therefore we drop the
subscript in the rest of proof.

Let y ∈ [0, N − 1] be the total security investment by all other players. For
a given y, the investment of the player can only change the true probability
of successful attack within the interval X (y) :=

[
1 − 1+y

N , 1 − y
N

]
, the length of

which is 1
N . Under Assumption 1, this interval might fall into one of four different

cases. As y increases from 0, we gradually go through each of the cases, starting
from either Case 1 or Case 2.

Case 1: X2 < 1 − 1+y
N

In this case, the interval X (y) lies to the right of X2. Therefore, for any
attack probability x ∈ X (y), L

N w′(x) > b (from Fig. 2). Thus, ∂Eu
∂s |s=x > 0 and

consequently, b(y) = 1 this case.
Case 2: 1 − 1+y

N ≤ X2 ≤ 1 − y
N

In this case, X2 ∈ X (y), and therefore, the player has a feasible investment
strategy s∗ = N(1 − X2) − y at which the first order condition is satisfied
with equality. By identical arguments as in Part 1 of Proposition 2, the player
is only going to invest at the interior solution s∗. The second requirement of
Assumption 1 ensures that X1 /∈ X (y), and as result, the utility function remains
concave, and therefore the best response is unique for any given y.

Since the optimal solution s∗ must have the property that 1 − s∗+y
N = X2,

it is continuous and linearly decreasing in y, with boundary values at 1 and 0
respectively for y = N(1 − X2) − 1 and y = N(1 − X2).

Case 3: X1 < 1 − 1+y
N and X2 > 1 − y

N
In this case, the interval X (y) lies in the region between X1 and X2. There-

fore, for any objective failure probability x ∈ X (y), ∂Eu
∂s < 0. As a result,

b(y) = 0.
Case 4: 1 − 1+y

N ≤ X1 ≤ 1 − y
N

In this case, there are three candidate solutions for utility maximization,
s = 1, s = N(1 − X1) − y and s = 0, analogous to the candidate solutions in
Part 3 of Proposition 2. We have X = 1− s+y

N as the objective failure probability
resulting from the strategies of the players. From an identical analysis as in Part
2 of Proposition 2 with s̄−i = y, we conclude that the player would always prefer
to invest 1 over investing s∗ = N(1 − X1) − y. This leads to the possibility that
the best response might have a discontinuous jump from 0 to 1 at some value of
y in this region. However, we show that under the third and fourth conditions
of Assumption 1, the player would always prefer to invest 0 over investing 1.

We compute

Eu(1, y) − Eu(0, y) = L

[
w(1 − y

N
) − w(1 − 1 + y

N
)
]

− b

= L

[
w(λ +

1
N

) − w(λ)
]

− b

≤ L

[
w(

1
N

) − w(0)
]

− b,
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where λ = 1 − 1+y
N . The last inequality follows because the function h(λ) �

w(λ + 1
N ) − w(λ) is a strictly decreasing function of λ for λ ∈ [0,X1]. Indeed,

h′(λ) = w′(λ + 1
N ) − w′(λ) < 0, as w′(λ) ≥ w′(X1) = Nb

L , and w′(λ + 1
N ) < Nb

L ,
as X1 < λ+ 1

N < X2. Therefore, if w( 1
N ) < b

L , the player would always prefer to
invest 0 over investing 1, regardless of the value of y. Furthermore, since X1 < 1

N ,
and 1 − y

N = 1
N at y = N − 1, the best response remains at 0 in this region of y.

Combining the analysis in all four cases together, the best response of any
player is unique and continuous in the strategies of the other players, regardless
of the value of αi ∈ (0, 1] and bi

Li
. In addition, the strategy space of each player is

[0, 1], which is compact and convex. Therefore, a PNE always exists by Brouwer’s
fixed point theorem. ��

In the following result, we establish the uniqueness of the PNE.

Proposition 9. Consider a Total Effort game where each player i has player-
specific weighting parameter αi and cost ratio bi

Li
. Let the number of players

N satisfy Assumption 1. Then all PNE have the same objective probability of
successful attack.

Proof. Without loss of generality, let players be ordered such that X1
2 ≤ X2

2 ≤
X3

2 ≤ . . . ≤ XN
2 , where Xi

2 is the largest solution to w′
i(x) = Nbi

Li
; note that such

a solution is guaranteed by the first requirement of Assumption 1. We present
a numerical illustration in Fig. 4. Note that this ordering does not necessarily
mean that the corresponding αi’s or cost ratios form a monotonic sequence.
Under Assumption 1, no objective attack probability X < X1

2 would be a PNE,
since there would always exist a player with positive investment who would prefer
to reduce her investment.

Now suppose there are two PNEs with different corresponding probabilities
of successful attack. Consider the strategy profile with the smaller attack prob-
ability, denoted X∗. Note that we ruled out the possibility of X∗ < X1

2 above.
There are two exhaustive cases: either X l

2 < X∗ < X l+1
2 for some player l, or

X l
2 = X∗ for some player l.

Let X l
2 < X∗ < X l+1

2 for some player l. By the definition of the quantities
Xi

2, we have w′
i(X

∗) < Nbi
Li

for i ∈ {l + 1, . . . , N}, and therefore, s∗
i = 0 for

i ∈ {l + 1, . . . , N}. Similarly, w′
i(X

∗) > Nbi
Li

and s∗
i = 1 for i ∈ {1, . . . , l}. In this

case, X∗ = 1 − l
N . Now at the second PNE with objective attack probability

Y ∗ > X∗, the players in {1, . . . , l} would continue to invest 1, with the possibility
of more players investing nonzero amounts if Y ∗ ≥ X l+1

2 . But then the objective
attack probability X = 1 −

∑
i si

N would decrease from X∗, contradicting the
assumption that Y ∗ > X∗.

The proof of the case where X∗ = X l
2 for some player l follows identical

arguments, and therefore we omit its presentation. ��

7 Discussion and Conclusion

In this paper, we studied a class of interdependent security games where the
players exhibit certain behavioral attributes vis-a-vis their perception of attack
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Fig. 4. First order conditions for heterogeneous players. The horizontal lines represent
the quantities Nbi

Li
, while the curved lines represent w′

i(x), which depends on the player

specific weighting parameter αi. The quantity Xi
2 represents the largest solution to the

equation w′
i(x) = Nbi

Li
.

probabilities while making security investment decisions. In particular, we con-
sidered the parametric form of probability weighting function proposed by
Prelec [26], which is commonly used in behavioral decision theory settings,
including prospect theory. We analyzed the properties of pure Nash equilibria
(PNE) in three canonical interdependent security game models, (i) Total Effort,
(ii) Weakest Link, and (iii) Best Shot games.

We first considered the Total Effort game with players having homogeneous
weighting functions and cost parameters, and characterized the PNE strategies
under a sufficiently large number of players. The equilibria with nonlinear prob-
ability weightings have much richer structural properties than the corresponding
equilibria for risk-neutral players. There are only two types of equilibria with risk
neutral players; one where the probability of successful attack is 1 (completely
undefended), and the other where the probability is 0 (completely defended)
with an abrupt transition to the latter as the number of players increase. How-
ever under behavioral probability weighting, there exist interior equilibria where
the attack probability lies between 0 and 1. Furthermore, the equilibrium attack
probability gradually increases to 1 with respect to certain cost parameters and
the number of players. In addition to the interior equilibrium, there might coex-
ist equilibria where players invest to fully secure themselves. In these equilibria,
overweighting of low probabilities disincentivizes individuals from reducing their
investments, since the perceived increase in attack probability due to reduced
investment is much larger.

We also obtained interesting comparative statics results on the effect of the
weighting parameter on the magnitude of the attack probability at equilibrium.
If the probability of successful attack is sufficiently high, then players whose
weighting functions are closer to linear prefer to invest relatively less in security,
while players who exhibit a large underweighting of probabilities closer to 1
(certainty effect) prefer to invest more. This is due to the fact that the perceived
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reduction in attack probability is larger for the latter players. However, if the
attack probability is only moderately high, we observe the opposite behavior; the
attack probability at the equilibrium with highly nonlinear weighting functions
is larger compared to the attack probability at equilibrium with players who
more accurately perceive the true probabilities.

We subsequently analyzed the social welfare maximizing investment profiles
in Total Effort games, which also had implications for the equilibria in Weakest
Link and Best Shot games. In Weakest Link games, there often arise a multitude
of equilibria with a continuum of attack probabilities, while in Best Shot games,
at most one player makes a nonzero investment at any PNE. The investment
levels at the equilibria in both these games have a more smooth variation in the
game parameters compared to the investments by risk neutral players.

Finally, we analyzed Total Effort games where players have heterogeneous
cost and weighting parameters, and established the existence of PNE and unique-
ness of the corresponding attack probability when the number of players is
sufficiently large. We leave a more comprehensive discussion on the effects of
heterogeneity in weighting parameters for future work, in addition to several
other future directions that we discuss below.

Future Work: There are several directions in which this line of investigation can
be extended.

Cyber Insurance: The dichotomy between investing in security (to potentially
reduce likelihood of attack) and purchasing cyber insurance (to decrease the
magnitude of loss) has received considerable attention among information secu-
rity researchers [3,23,25]. However, in practice, the market for cyber insurance
has seen limited growth despite growing awareness in the industry about various
security risks. Further analysis of behavioral risk preferences (such as probability
weighting, loss aversion and reference dependence) of decision makers in the con-
text of cyber insurance could potentially uncover important phenomena which
is not easily captured in models that only consider the classical expected util-
ity maximization framework. The work in [15] is a step in this direction, where
the authors investigate the strategies of risk averse players (with concave utility
functions) in Weakest Link security games in the presence of market insurance.

Network Structure: In this paper, we have only considered extreme forms of
network effects between players, as only the average, the highest, or the lowest
investment levels decide the overall failure probabilities. Analyzing the effects
of probability weighting and other forms of deviations from classical expected
utility maximization behavior in models that consider richer networked environ-
ments [19,21,22,28] is a challenging future direction.

Inefficiency of Equilibria: Selfish behavior by users often leads to reduced welfare
and increased attack probability at equilibrium in interdependent security games
with positive externalities. While there is prior work in the literature on price
of anarchy [14] and price of uncertainty [11] of the current class of security
games, investigating the effects of (behavioral) risk preferences of users, including
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probability weighting, on the inefficiency of equilibria remains an important
avenue for future research.

Experimental Investigations: Finally, the results obtained in this paper com-
pliments and further motivates experimental/empirical investigations of human
decision making in the context of information security and privacy.
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Abstract. Recent research on Green Security Games (GSG), i.e., secu-
rity games for the protection of wildlife, forest and fisheries, relies on the
promise of an abundance of available data in these domains to learn adver-
sary behavioral models and determine game payoffs. This research sug-
gests that adversary behavior models (capturing bounded rationality) can
be learned from real-world data on where adversaries have attacked, and
that game payoffs can be determined precisely from data on animal densi-
ties. However, previous work has, as yet, failed to demonstrate the useful-
ness of these behavioral models in capturing adversary behaviors based on
real-world data in GSGs. Previous work has also been unable to address
situations where available data is insufficient to accurately estimate behav-
ioral models or to obtain the required precision in the payoff values.

In addressing these limitations, as our first contribution, this paper,
for the first time, provides validation of the aforementioned adversary
behavioral models based on real-world data from a wildlife park in
Uganda. Our second contribution addresses situations where real-world
data is not precise enough to determine exact payoffs in GSG, by pro-
viding the first algorithm to handle payoff uncertainty in the presence
of adversary behavioral models. This algorithm is based on the notion
of minimax regret. Furthermore, in scenarios where the data is not even
sufficient to learn adversary behaviors, our third contribution is to pro-
vide a novel algorithm to address payoff uncertainty assuming a perfectly
rational attacker (instead of relying on a behavioral model); this algo-
rithm allows for a significant scaleup for large security games. Finally, to
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reduce the problems due to paucity of data, given mobile sensors such
as Unmanned Aerial Vehicles (UAV), we introduce new payoff elicitation
strategies to strategically reduce uncertainty.

1 Introduction

Following the successful deployments of Stackelberg Security Games (SSG) for
infrastructure protection [1,13,24], recent research on security games has focused
on Green Security Games (GSG) [4,7,21,27]. Generally, this research attempts to
optimally allocate limited security resources in a vast geographical area against
environmental crime, e.g., improving the effectiveness of protection of wildlife or
fisheries [4,27].

Research in GSGs has differentiated itself from work in SSGs (which often
focused on counter-terrorism), not only in terms of the domains of application
but also in terms of the amounts of data available. In particular, prior research
on SSGs could not claim the presence of large amounts of adversary data [24].
In contrast, GSGs are founded on the promise of an abundance of adversary
data (about where the adversaries attacked in the past) that can be used to
accurately learn adversary behavior models which capture their bounded ratio-
nality [4,7,27]. Furthermore, GSG research assumes that available domain data
such as animal/fish density is sufficient to help determine payoff values pre-
cisely. However, there remain four key shortcomings in GSGs related to these
assumptions about data. First, despite proposing different adversary behavioral
models (e.g., Quantal Response [28]), GSG research has yet to evaluate these
models on any real-world data. Second, the amount of real-world data available
is not always present in abundance, introducing different types of uncertainties
in GSGs. In particular, in some GSG domains, there is a significant need to
handle uncertainty in both the defender and the adversary’s payoffs since infor-
mation on key domain features, e.g., animal density, terrain, etc. that contribute
to the payoffs is not precisely known. Third, in some GSG domains, we may even
lack sufficient attack data to learn an adversary behavior model, and simulta-
neously must handle the aforementioned payoff uncertainty. Finally, defenders
have access to mobile sensors such as UAVs to elicit information over multiple
targets at once to reduce payoff uncertainty, yet previous work has not provided
efficient techniques to exploit such sensors for payoff elicitation [17].

In this paper, we address these challenges by proposing four key contribu-
tions. As our first contribution, we provide the first results demonstrating the
usefulness of behavioral models in SSGs using real-world data from a wildlife
park. To address the second limitation of uncertainty over payoff values, our sec-
ond contribution is ARROW (i.e., Algorithm for Reducing Regret to Oppose
Wildlife crime), a novel security game algorithm that can solve the behav-
ioral minimax regret problem. MiniMax Regret (MMR) is a robust approach
for handling uncertainty that finds the solution which minimizes the maximum
regret (i.e., solution quality loss) with respect to a given uncertainty set [8].
A key advantage of using MMR is that it produces less conservative solutions
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than the standard maximin approach [17]. ARROW is the first algorithm to
compute MMR in the presence of an adversary behavioral model; it is also
the first to handle payoff uncertainty in both players’ payoffs in SSGs. How-
ever, jointly handling of adversary bounded rationality and payoff uncertainty
creates the challenge of solving a non-convex optimization problem; ARROW
provides an efficient solution to this problem. (Note that we primarily assume a
zero-sum game as done in some prior GSG research; however as discussed our
key techniques generalize to non-zero sum games as well.)

Our third contribution addresses situations where we do not even have data
to learn a behavior model. Specifically, we propose ARROW-Perfect, a novel
MMR-based algorithm to handle uncertainty in both players’ payoffs, assuming a
perfectly rational adversary without any requirement of data for learning.
ARROW-Perfect exploits the adversary’s perfect rationality as well as extreme
points of payoff uncertainty sets to gain significant additional efficiency over
ARROW.

Another significant advantage of MMR is that it is very useful in guiding
the preference elicitation process for learning information about the payoffs [3].
We exploit this advantage by presenting two new elicitation heuristics which
select multiple targets at a time for reducing payoff uncertainty, leveraging the
multi-target-elicitation capability of sensors (e.g., UAVs) available in green secu-
rity domains. Lastly, we conduct extensive experiments, including evaluations of
ARROW based on data from a wildlife park.

2 Background and Related Work

Stackelberg Security Games: In SSGs, the defender attempts to protect a
set of T targets from an attack by an adversary by optimally allocating a set of
R resources (R < T ) [24]. The key assumption here is that the defender commits
to a (mixed) strategy first and the adversary can observe that strategy and then
attacks a target. Denote by x = {xt} the defender’s strategy where xt is the
coverage probability at target t, the set of feasible strategies is X={x : 0≤xt ≤
1,

∑
t xt ≤ R}.1 If the adversary attacks t when the defender is not protecting

it, the adversary receives a reward Ra
t , otherwise, the adversary gets a penalty

P a
t . Conversely, the defender receives a penalty P d

t in the former case and a
reward Rd

t in the latter case. Let (Ra,Pa) and (Rd,Pd) be the payoff vectors.
The players’ expected utilities at t is computed as:

Ua
t (x,Ra,Pa) = xtP

a
t + (1 − xt)Ra

t (1)

Ud
t (x,Rd,Pd) = xtR

d
t + (1 − xt)P d

t (2)

Boundedly Rational Attacker: In SSGs, attacker bounded rationality is often
modeled via behavior models such as Quantal Response (QR) [14,15]. QR pre-
dicts the adversary’s probability of attacking t, denoted by qt(x,Ra,Pa) (as
1 The true mixed strategy would be a probability assignment to each pure strategy,

where a pure strategy is an assignment of R resources to T targets. However, that is
equivalent to the set X described here, which is a more compact representation [12].
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shown in Eq. 3 where the parameter λ governs the adversary’s rationality). Intu-
itively, the higher the expected utility at a target is, the more likely that the
adversary will attack that target.

qt(x,Ra,Pa) =
eλUa

t (x,Ra,Pa)

∑
t′ eλUa

t′ (x,Ra,Pa)
(3)

The recent SUQR model (Subjective Utility Quantal Response) is shown to
provide the best performance among behavior models in security games [18].
SUQR builds on the QR model by integrating the following subjective utility
function into QR instead of the expected utility:

Ûa
t (x,Ra,Pa) = w1xt + w2R

a
t + w3P

a
t (4)

where (w1, w2, w3) are parameters indicating the importance of the three target
features for the adversary. The adversary’s probability of attacking t is then
predicted as:

q̂t(x,Ra,Pa) =
eÛ

a
t (x,Ra,Pa)

∑
t′ eÛ

a
t (x,Ra,Pa)

(5)

In fact, SUQR is motivated by the lens model which suggested that evaluation of
adversaries over targets is based on a linear combination of multiple observable
features [5]. One key advantage of these behavioral models is that they can be
used to predict attack frequency for multiple attacks by the adversary, wherein
the attacking probability is a normalization of attack frequency.

Payoff Uncertainty: One key approach to modeling payoff uncertainty is to
express the adversary’s payoffs as lying within specific intervals [10]: for each
target t, we have Ra

t ∈ [Ra
min(t), Ra

max(t)] and P a
t ∈ [P a

min(t), P a
max(t)]. Let I

denote the set of payoff intervals at all targets. An MMR-based solution was
introduced in previous work to address payoff uncertainty in SSGs; yet it had
two weaknesses: (i) this MMR-based solution is unable to handle uncertainty
in both players’ payoffs since it assumes that the defender’s payoffs are exactly
known; and (ii) it has failed to address payoff uncertainty in the context of
adversary behavioral models [17].

Green Security Games: This paper focuses on wildlife protection — many
species such as rhinos and tigers are in danger of extinction from poaching
[16,22]. To protect wildlife, game-theoretic approaches have been advocated to
generate ranger patrols [27] wherein the forest area is divided into a grid where
each cell is a target. These ranger patrols are designed to counter poachers
(whose behaviors are modeled using SUQR) that attempt to capture animals
by setting snares. A similar system has also been developed for protecting fish-
eries [4]. Unfortunately, this previous work in wildlife protection [27] has four
weaknesses as discussed in Sect. 1.
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3 Behavioral Modeling Validation

Our first contribution addresses the first limitation of previous work mentioned in
Sect. 1: understanding the extent to which existing behavior models capture real-
world behavior data from green security domains. We used a real-world patrol
and poaching dataset from Uganda Wildlife Authority supported by Wildlife
Conservation Society. This dataset was collected from 1-year patrols in the Queen
Elizabeth national park.2

3.1 Dataset Description

Our dataset had different types of observations (poacher sighting, animal sight-
ing, etc.) with 40, 611 observations in total recorded by rangers at various loca-
tions in the park. The latitude and longitude of the location corresponding to
each observation was recorded using a GPS device, thus providing reliable data.
Each observation has a feature that specified the total count of the category
of observation recorded, for example, number and type of animals sighted or
poaching attacks identified, at a particular location. The date and time for a
particular patrol was also present in the dataset. We discretized the park area
into 2423 grid cells, with each grid cell corresponding to a 1 km × 1 km area
within the park. After the discretization, each observation fell within one of the
2423 target cells and we therefore aggregated the animal densities and the num-
ber of poaching attacks within each target cell. We considered attack data from
the year 2012 in our analysis, which has 2352 attacks in total.

Gaussian Smoothing of Animal Densities: Animal density at each tar-
get is computed based on the patrols conducted by the rangers and are thus
observations at a particular instant of time. Animal density also has a spatial
component, meaning that it is unlikely to change abruptly between grid cells.
Therefore, to account for movement of animals over a few kilometers in gen-
eral, we do a blurring of the current recording of animal densities over the cells.
To obtain the spatial spread based on recordings of animal sightings, we use
Gaussian smoothing; more specifically we use a Gaussian Kernel of size 5 × 5
with σ = 2.5 to smoothen out the animal densities over all the grid cells.

Distance as a Feature: In addition to animal density, the poachers’ payoffs
should take into account the distance (or effort) the poacher takes in reaching
the grid cell. Therefore, we also use distance as a feature of our SUQR models.
Here, the subjective utility function (Eq. 4) is extended to include the distance
feature: Ûa

t (x,Ra,Pa) = w1xt + w2R
a
t + w3P

a
t + w4Φt where Φt is the distance

from the attacker current position to target t. For calculating distance, we took a
set of 10 entry points based on geographical considerations. The distance to each
target location is computed as the minimum over the distances to this target
from the 10 entry points.
2 This is the preliminary work on modeling poachers’ behaviors. Further study on

building more complex behavioral models would be a new interesting research topic
for future work.
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3.2 Learning Results

We compare the performance of 13 behavioral models3 as follows (Fig. 1):
(i) SUQR-3, which corresponds to SUQR with three features (coverage prob-
ability as discussed in Sect. 2, poacher reward which is considered to be same as
the animal density and poacher penalty which is kept uniform over all targets);
(ii) SUQR-4, which corresponds to SUQR with four features (coverage prob-
ability, animal density, poacher penalty and distance to the target location);
(iii) QR; (iv) eight versions of the ε-optimal model, a bounded rationality
model [20] where the adversary chooses to attack any one of the targets with an
utility value which is within ε of the optimal target’s utility, with equal proba-
bility; (v) a random adversary model; and (vi) a perfectly rational model.

(a) All Models (b) ε-optimal (various values of ε) vs SUQR-4

Fig. 1. ROC plots on Uganda dataset

From the 2352 total attacks in our dataset, we randomly sampled (10 times)
20% of the attack data for testing and trained the three models: SUQR-3, SUQR-
4 and QR on the remaining 80% data. For each train-test split, we trained our
behavioral models to learn their parameters, which are used to get probabilities
of attack on each grid cell in the test set. Thus, for each grid cell, we get the
actual label (whether the target was attacked or not) along with our predicted
probability of attack on the cell. Using these labels and the predicted probabil-
ities, we plotted a Receiver Operating Characteristic (ROC) curve (in Fig. 1) to
analyze the performance of the various models.

The result shows that the perfectly rational model, that deterministically
classifies which target gets attacked (unlike SUQR/QR which give probabilities
of attack on all targets), achieves an extremely poor prediction accuracy. We also
observe that the ε∗-optimal model performs worse than QR and SUQR models
(Fig. 1(a)). Here, by ε∗-optimal model, we mean the model corresponding to

3 Models involving cognitive hierarchies [26] are not applicable in Stackelberg games
given that attacker plays knowing the defender’s actual strategy.
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the ε that generates the best prediction (Fig. 1(b)). In our case, the best value
of ε is 250. For the ε-optimal model, no matter what ε we choose, the curves
from the ε-optimal method never gets above the SUQR-4 curve, demonstrating
that SUQR-4 is a better model than ε-optimal. Furthermore, SUQR-4 (Area
Under the Curve (AUC) = 0.73) performs better than both QR (AUC = 0.67)
and SUQR-3 (AUC = 0.67), thus highlighting the importance of distance as a
feature in the adversary’s utility. Thus, SUQR-4 provides the highest prediction
accuracy and thus will be our model of choice in the rest of the paper.

In summary, comparing many different models shows for the first time sup-
port for SUQR from real-world data in the context of GSGs. The SUQR-4
model convincingly beats QR, ε−optimal, perfect-rationality and the random
model, thus showing the validity of using SUQR in predicting adversary behav-
iors in GSGs.

4 Behavioral Minimax Regret (MMRb)

While we can learn a behavioral model from real-world data, we may not always
have access to data to precisely compute animal density. For example, given
limited numbers of rangers, they may have patrolled and collected wildlife data
from only a small portion of a national park, and thus payoffs in other areas of
the park may remain uncertain. Also, due to the dynamic changes (e.g., animal
migration), players’ payoffs may become uncertain in the next season. Hence, this
paper introduces our new MMR-based robust algorithm, ARROW, to handle
payoff uncertainty in GSGs, taking into account adversary behavioral models.
Here, we primarily focus on zero-sum games as motivated by recent work in
green security domains [4,9], and earlier major SSG applications that use zero-
sum games [23,29]). In addition, we use a model inspired by SUQR-4 as the
adversary’s behavioral model, given its high prediction accuracy presented in
Sect. 3. More specifically, the subjective utility function in Eq. (4) is extended
to: Ûa

t (x,Ra,Pa) = w1xt +w2R
a
t +w3P

a
t +w4Φt where Φt is some other feature

(e.g., distance) of target t. In fact, our methods generalize to non-zero-sum games
with a general class of QR (see Online Appendix A).4

We now formulate MMRb with uncertain payoffs for both players in zero-sum
SSG with a boundedly rational attacker.

Definition 1. Given (Ra,Pa), the defender’s behavioral regret is the loss
in her utility for playing a strategy x instead of the optimal strategy, which is
represented as follows:

Rb(x,Ra,Pa) = max
x′∈X

F(x′,Ra,Pa) − F(x,Ra,Pa) (6)

where F(x,Ra,Pa) =
∑

t
q̂t(x,Ra,Pa)Ud

t (x,Rd,Pd) (7)

4 Online Appendix: https://www.dropbox.com/s/620aqtinqsul8ys/Appendix.pdf?
dl=0.

https://www.dropbox.com/s/620aqtinqsul8ys/Appendix.pdf?dl=0
https://www.dropbox.com/s/620aqtinqsul8ys/Appendix.pdf?dl=0
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Table 1. A 2-target, 1-resource game.

Targets Attacker reward Attacker penalty

1 [2, 3] [−2, 0]

2 [5, 7] [−10, −9]

Behavioral regret measures the distance in terms of utility loss from the defender
strategy x to the optimal strategy given the attacker payoffs. Here, F(x,Ra,Pa)
is the defender’s utility (which is non-convex fractional in x) for playing x where
the attacker payoffs, whose response follows SUQR, are (Ra,Pa). The defender’s
payoffs in zero-sum games are Rd = −Pa and Pd = −Ra. In addition, the
attacking probability, q̂t(x,Ra,Pa), is given by Eq. 5. When the payoffs are
uncertain, if the defender plays a strategy x, she receives different behavioral
regrets w.r.t to different payoff instances within the uncertainty intervals. Thus,
she could receive a behavioral max regret which is defined as follows:

Definition 2. Given payoff intervals I, the behavioral max regret for the
defender to play a strategy x is the maximum behavioral regret over all payoff
instances:

MRb(x, I) = max
(Ra,Pa)∈I

Rb(x,Ra,Pa) (8)

Definition 3. Given payoff intervals I, the behavioral minimax regret prob-
lem attempts to find the defender optimal strategy that minimizes the MRb she
receives:

MMRb(I) = min
x∈X

MRb(x, I) (9)

Intuitively, behavorial minimax regret ensures that the defender’s strategy min-
imizes the loss in the solution quality over the uncertainty of all possible payoff
realizations.

Example 1. In the 2-target zero-sum game as shown in Table 1, each target is
associated with uncertainty intervals of the attacker’s reward and penalty. For
example, if the adversary successfully attacks Target 1, he obtains a reward
which belongs to the interval [2, 3]. Otherwise, he receives a penalty which lies
within the interval [−2, 0]. The attacker’s response, assumed to follow SUQR,
is defined by the parameters (w1 = −10.0, w2 = 2.0, w3 = 0.2, w4 = 0.0). Then
the defender’s optimal mixed strategy generated by behavioral MMR (Eq. 9)
corresponding to this SUQR model is x = {0.35, 0.65}. The attacker payoff values
which give the defender the maximum regret w.r.t this behavioral MMR strategy
are (3.0, 0.0) and (5.0,−10.0) at Target 1 and 2 respectively. In particular, the
defender obtains an expected utility of −0.14 for playing x against this payoff
instance. On the other hand, she would receive a utility of 2.06 if playing the
optimal strategy x′ = {0.48, 0.52} against this payoff instance. As a result, the
defender gets a maximum regret of 2.20.
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5 ARROW Algorithm: Boundedly Rational Attacker

Algorithm 1 presents the outline of ARROW to solve the MMRb problem
in Eq. 9. Essentially, ARROW’s two novelties compared to previous work
[17] — addressing uncertainty in both players’ payoffs and a boundedly rational
attacker — lead to two new computational challenges: (1) uncertainty in defender
payoffs makes the defender’s expected utility at every target t non-convex in x
and (Rd,Pd) (Eq. 2); and (2) the SUQR model is in the form of a logit function
which is non-convex. These two non-convex functions are combined when calcu-
lating the defender’s utility (Eq. 7) — which is then used in computing MMRb

(Eq. 9), making it computationally expensive. Overall, MMRb can be reformu-
lated as minimizing the max regret r such that r is no less than the behavioral
regrets over all payoff instances within the intervals:

min
x∈X,r∈R

r (10)

s.t. r ≥ F(x′,Ra,Pa) − F(x,Ra,Pa),∀(Ra,Pa) ∈ I,x′ ∈ X

In (10), the set of (non-convex) constraints is infinite since X and I are con-
tinuous. One practical approach to optimization with large constraint sets is
constraint sampling [6], coupled with constraint generation [2]. Following this
approach, ARROW samples a subset of constraints in Problem (10) and gradu-
ally expands this set by adding violated constraints to the relaxed problem until
convergence to the optimal MMRb solution.

Specifically, ARROW begins by sampling pairs (Ra,Pa) of the adversary
payoffs uniformly from I. The corresponding optimal strategies for the defender
given these payoff samples, denoted x′, are then computed using the PASAQ
algorithm [28] to obtain a finite set S of sampled constraints (Line 2). These
sampled constraints are then used to solve the corresponding relaxed MMRb pro-
gram (line 4) using the R.ARROW algorithm (described in Sect. 5.1) — we call
this problem relaxed MMRb as it only has samples of constraints in (10). We thus
obtain the optimal solution (lb,x∗) which provides a lower bound (lb) on the true
MMRb. Then constraint generation is applied to determine violated constraints

Algorithm 1. ARROW Outline
1 Initialize S = φ, ub = ∞, lb = 0 ;
2 Randomly generate sample (x′,Ra,Pa), S = S ∪ {x′, (Ra,Pa)};
3 while ub > lb do
4 Call R.ARROW to compute relaxed MMRb w.r.t S. Let x∗ be its optimal

solution with objective value lb;
5 Call M.ARROW to compute MRb(x

∗, I). Let the optimal solution be
(x′,∗,Ra,∗,Pa,∗) with objective value ub;

6 S = S ∪ {x′,∗,Ra,∗,Pa,∗};

7 return (lb,x∗);
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(if any). This uses the M.ARROW algorithm (described in Sect. 5.2) which com-
putes MRb(x∗, I) — the optimal regret of x∗ which is an upper bound (ub) on the
true MMRb. If ub>lb, the optimal solution of M.ARROW, {x′,∗,Ra,∗,Pa,∗}, pro-
vides the maximally violated constraint (line 5), which is added to S. Otherwise,
x∗ is the minimax optimal strategy and lb=ub=MMRb(I).

5.1 R.ARROW: Compute Relaxed MMRb

The first step of ARROW is to solve the relaxed MMRb problem using
R.ARROW. This relaxed MMRb problem is non-convex. Thus, R.ARROW
presents two key ideas for efficiency: (1) binary search (which iteratively searches
the defender’s utility space to find the optimal solution) to remove the fractional
terms (i.e., the attacking probabilities in Eq. 5) in relaxed MMRb; and (2) it
then applies piecewise-linear approximation to linearize the non-convex terms of
the resulting decision problem at each binary search step (as explained below).
Overall, relaxed MMRb can be represented as follows:

min
x∈X,r∈R

r (11)

s.t. r ≥ F(x′,k,Ra,k,Pa,k) − F(x,Ra,k,Pa,k),∀k = 1 . . . K

where (x′,k,Ra,k,Pa,k) is the kth sample in S (i.e., the payoff sample set as
described in Algorithm 1) where k = 1 . . . K and K is the total number of samples
in S. In addition, r is the defender’s max regret for playing x against sample set
S. Finally, F(x′,k,Ra,k,Pa,k) is the defender’s optimal utility for every sample of
attacker payoffs (Ra,k,Pa,k) where x′,k is the corresponding defender’s optimal
strategy (which can be obtained via PASAQ [28]). The term F(x,Ra,k,Pa,k),
which is included in relaxed MMRb’s constraints, is non-convex and fractional
in x (Eq. 7), making (11) non-convex and fractional. We now detail the two key
ideas of R.ARROW.

Binary Search. In each binary search step, given a value of r, R.ARROW tries
to solve the decision problem (P1) that determines if there exists a defender
strategy x such that the defender’s regret for playing x against any payoff sample
in S is no greater than r.

(P1) : ∃x s.t. r ≥ F(x′,k,Ra,k,Pa,k) − F(x,Ra,k,Pa,k),∀k = 1 . . . K?

We present the following Proposition 1 showing that (P1) can be converted into
the non-fractional optimization problem (P2) (as shown below) of which the
optimal solution is used to determine the feasibility of (P1):

(P2): min
x∈X,v∈R

v

s.t. v ≥
∑

t

[
F(x′,k,Ra,k,Pa,k)−r−Ud,k

t (x)
]
eÛ

a
t (x,R

a,k,Pa,k), ∀k = 1 . . . K

where Ud,k
t (x) = −

[
xtP

a,k
t + (1 − xt)R

a,k
t

]
is the defender’s expected utility at

target t given x and the kth payoff sample.
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Proposition 1. Suppose that (v∗,x∗) is the optimal solution of (P2). If v∗ ≤ 0,
then x∗ is a feasible solution of the decision problem (P1). Otherwise, (P1) is
infeasible.

The proof of Proposition 1 is in Online Appendix B. Given that the decision
problem (P1) is now converted into the optimization problem (P2), as the next
step, we attempt to solve (P2) using piecewise linear approximation.

Piecewise Linear Approximation. Although (P2) is non-fractional, its con-
straints are non-convex. We use a piecewise linear approximation for the RHS
of the constraints in (P2) which is in the form of

∑
t fk

t (xt) where the term
fk

t (xt) is a non-convex function of xt (recall that xt is the defender’s coverage
probability at target t). The feasible region of the defender’s coverage xt for all
t, [0, 1], is then divided into M equal segments

{[
0, 1

M

]
,
[

1
M , 2

M

]
, . . . ,

[
M−1

M , 1
]}

where M is given. The values of fk
t (xt) are then approximated by using the seg-

ments connecting pairs of consecutive points
(
i−1
M , fk

t

(
i−1
M

))
and

(
i

M , fk
t

(
i

M

))
for

i = 1 . . . M as follows:

fk
t (xt)≈fk

t (0)+
∑M

i=1
αk

t,ixt,i (12)

where αk
t,i is the slope of the ith segment which can be determined based on

the two extreme points of the segment. Also, xt,i refers to the portion of the
defender’s coverage at target t belonging to the ith segment, i.e., xt =

∑
i xt,i.

Example 2. When the number of segments M = 5, it means that we divide [0, 1]
into 5 segments

{[
0, 1

5

]
,
[
1
5 , 2

5

]
,
[
2
5 , 3

5

]
,
[
3
5 , 4

5

]
,
[
4
5 , 1

]}
. Suppose that the defender’s

coverage at target t is xt = 0.3, since 1
5 < xt < 2

5 , we obtain the portions
of xt that belongs to each segment is xt,1 = 1

5 , xt,2 = 0.1, and xt,3 = xt,4 =
xt,5 = 0 respectively. Then each non-linear term fk

t (xt) is approximated as
fk

t (xt)≈fk
t (0)+ 1

5αk
t,1 + 0.1αk

t,2 where the slopes of the 1st and 2nd segments are
αk

t,1 = 5
[
fk

t

(
1
5

) − fk
t (0)

]
and αk

t,2 = 5
[
fk

t

(
2
5

) − fk
t

(
1
5

)]
respectively.

By using the approximations of fk
t (xt) for all k and t, we can reformulate (P2)

as the MILP (P2’) which can be solved by the solver CPLEX:

(P2’): min
xt,i,zt,i,v

v (13)

s.t. v ≥
∑

t
fk

t (0) +
∑

t

∑

i
αk

t,ixt,i,∀k = 1 . . . K (14)
∑

t,i
xt,i ≤ R, 0 ≤ xt,i ≤ 1

M
,∀t = 1 . . . T, i = 1 . . . M (15)

zt,i
1
M

≤ xt,i,∀t = 1 . . . T, i = 1 . . . M − 1 (16)

xt,i+1 ≤ zt,i,∀t = 1 . . . T, i = 1 . . . M − 1 (17)
zt,i ∈ {0, 1},∀t = 1 . . . T, i = 1 . . . M − 1 (18)

where zt,i is an auxiliary integer variable which ensures that the portions of xt

satisfies xt,i = 1
M if xt ≥ i

M (zt,i = 1) or xt,i+1 = 0 if xt < i
M (zt,i = 0)
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(constraints (15–18)). Constraints (14) are piecewise linear approximations of
constraints in (P2). In addition, constraint (15) guarantees that the resource
allocation condition,

∑
t xt ≤ R, holds true and the piecewise segments 0 ≤

xt,i ≤ 1
M .

Finally, we provide Theorem1 showing that R.ARROW guarantees a solution
bound on computing relaxed MMRb. The proof of Theorem 1 is in the Online
Appendix C.

Theorem 1. R.ARROW provides an O
(
ε + 1

M

)
-optimal solution of relaxed

MMRb where ε is the tolerance of binary search and M is the number of piecewise
segments.

5.2 M.ARROW: Compute MRb

Given the optimal solution x∗ returned by R.ARROW, the second step of
ARROW is to compute MRb of x∗ using M.ARROW (line 5 in Algorithm 1).
The problem of computing MRb can be represented as the following non-convex
maximization problem:

max
x′∈X,(Ra,Pa)∈I

F(x′,Ra,Pa) − F(x∗,Ra,Pa) (19)

Overall, it is difficult to apply the same techniques used in R.ARROW for
M.ARROW since it is a subtraction of two non-convex fractional functions,
F(x′,Ra,Pa) and F(x∗,Ra,Pa). Therefore, we use local search with multiple
starting points which allows us to reach different local optima.

6 ARROW-Perfect Algorithm: Perfectly Rational
Attacker

While ARROW incorporates an adversary behavioral model, it may not be
applicable for green security domains where there may be a further paucity of
data in which not only payoffs are uncertain but also parameters of the behav-
ioral model are difficult to learn accurately. Therefore, we introduce a novel
MMR-based algorithm, ARROW-Perfect, to handle uncertainty in both play-
ers’ payoffs assuming a perfectly rational attacker. In general, ARROW-Perfect
follows the same constraint sampling and constraint generation methodology as
ARROW. Yet, by leveraging the property that the attacker’s optimal response
is a pure strategy (given a perfectly rational attacker) and the game is zero-sum,
we obtain the exact optimal solutions for computing both relaxed MMR and
max regret in polynomial time (while we cannot provide such guarantees for a
boundedly rational attacker). In this case, we call the new algorithms for comput-
ing relaxed MMR and max regret: R.ARROW-Perfect and M.ARROW-Perfect
respectively.
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6.1 R.ARROW-Perfect: Compute Relaxed MMR

In zero-sum games, when the attacker is perfectly rational, the defender’s
utility for playing a strategy x w.r.t the payoff sample (Ra,k,Pa,k) is
equal to F

(
x,Ra,k,Pa,k

)
= −Ua

t

(
x,Ra,k,Pa,k

)
if the attacker attacks tar-

get t. Since the adversary is perfectly rational, therefore, F
(
x,Ra,k,Pa,k

)
=

−maxt Ua
t

(
x,Ra,k,Pa,k

)
, we can reformulate the relaxed MMR in (11) as the

following linear minimization problem:

min
x∈X,r∈R

r (20)

s.t. r ≥ F
(
x′,k,Ra,k,Pa,k

)
+ Ua

t

(
x,Ra,k,Pa,k

)
,∀k = 1 . . . K,∀t = 1 . . . T (21)

where F
(
x′,k,Ra,k,Pa,k

)
is the defender’s optimal utility against a perfectly

rational attacker w.r.t payoff sample
(
Ra,k,Pa,k

)
and x′,k is the corresponding

optimal strategy which is the Maximin solution. In addition, constraint (21)
ensures that the regret r ≥ F

(
x′,k,Ra,k,Pa,k

)
+ maxt Ua

t

(
x,Ra,k,Pa,k

)
for all

payoff samples. This linear program can be solved exactly in polynomial time
using any linear solver, e.g., CPLEX.

6.2 M.ARROW-Perfect: Compute Max Regret

Computing max regret (MR) in zero-sum games presents challenges that pre-
vious work [17] can not handle since the defender’s payoffs are uncertain while
[17] assumes these payoff values are known. In this work, we propose a new
exact algorithm, M.ARROW-Perfect, to compute MR in polynomial time by
exploiting insights of zero-sum games.

In zero-sum games with a perfectly rational adversary, Strong Stackelberg
Equilibrium is equivalent to Maximin solution [30]. Thus, given the strategy x∗

returned by relaxed MMR, max regret in (19) can be reformulated as follows:

max
x′∈X,(Ra,Pa)∈I,v

v − F(x∗,Ra,Pa) (22)

s.t. v ≤ − [x′
tP

a
t + (1 − x′

t)R
a
t ] ,∀t (23)

where v is the Maximin/SSE utility for the defender against the attacker payoff
(Ra,Pa). Moreover, the defender’s utility for playing x∗ can be computed as
F(x∗,Ra,Pa) = − [

x∗
jP

a
j + (1 − x∗

j )R
a
j

]
if the adversary attacks target j. Thus,

we divide the attacker payoff space into T subspaces such that within the jth

subspace, the adversary always attacks target j against the defender strategy x∗,
for all j = 1 . . . T . By solving these T sub-max regret problems corresponding to
this division, our final global optimal solution of max regret will be the maximum
of all T sub-optimal solutions.

Next, we will explain how to solve these sub-max regret problems. Given the
jth attacker payoff sub-space, we obtain the jth sub-max regret problem as:

max
x′∈X,(Ra,Pa)∈I,v

v + (x∗
jP

a
j + (1 − x∗

j )R
a
j ) (24)

s.t. v ≤ −[x′
tP

a
t + (1 − x′

t)R
a
t ],∀t (25)

x∗
jP

a
j + (1 − x∗

j )R
a
j ≥ x∗

t P
a
t + (1 − x∗

t )R
a
t ,∀t (26)
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where constraints (26) ensures that the adversary attacks target j against the
defender strategy x∗. Here, constraints (25) are non-convex for all targets. We
provide the following proposition which allows us to linearize constraints (25)
for all targets but j.

Proposition 2. Given target j, the lower bounds of the attacker’s payoffs at all
targets except j, {Ra

min(t), P a
min(t)}t�=j, are optimal solutions of

{
Ra

j , P a
j

}
t�=j

for

the jth sub-max regret problem.

The proof of Proposition 2 is in Online Appendix D. Now, only constraint (25)
w.r.t target j remains non-convex for which we provide further steps to simplify
it. Given the defender strategy x′, we define the attack set as including all targets
with the attacker’s highest expected utility: Γ (x′) = {t : Ua

t (x′,Ra,Pa) =
maxt′ Ua

t′ (x′,Ra,Pa)}. We provide the following observations based on which
we can determine the optimal value of the attacker’s reward at target j, Ra

j , for
the sub-max regret problem (24–26) (according to the Proposition 3 below):

Observation 1. If x′ is the optimal solution of computing the jth sub-max
regret in (24–26), target j belongs to the attack set Γ (x′).

Since x′ is the Maximin or SSE solution w.r.t attacker payoffs (Ra,Pa), the
corresponding attack set Γ (x′) has the maximal size [11]. In other words, if a
target t belongs to the attack set of any defender strategy w.r.t (Ra,Pa), then
t ∈ Γ (x′). In (24–26), because target j belongs to the attack set Γ (x∗), we obtain
j ∈ Γ (x′).

Observation 2. If x′ is the optimal solution of computing the jth sub-max
regret in (24–26), the defender’s coverage at target j: x′

j ≥ x∗
j .

Since j ∈ Γ (x′) according to Observation 1, the defender utility for playing x′

is equal to v = −[x′
jP

a
j + (1 − x′

j)R
a
j ]. Furthermore, the max regret in (24) is

always not less than zero, meaning that v ≥ − [
x∗

jP
a
j + (1 − x∗

j )R
a
j

]
. Thus, we

obtain x′
j ≥ x∗

j .

Proposition 3. Given target j, the upper bound of the attacker’s reward at j,
Ra

max(j), is an optimal solution of the attacker reward Ra
j for the jth sub-max

regret problem.

Proof. Suppose that Ra
j < Ra

max(j) is optimal in (24–26) and x′ is the corre-
sponding defender optimal strategy, then v = −[x′

jP
a
j + (1 − x′

j)R
a
j ] accord-

ing to the Observation 1. We then replace Ra
j with Ra

max(j) while other
rewards/penalties and x′ remain the same. Since Ra

j < Ra
max(j), this new

solution is also feasible for (24–26) and target j still belongs to Γ (x′). There-
fore, the corresponding utility of the defender for playing x′ will be equal to
− [

x′
jP

a
j + (1 − x′

j)R
a
max(j)

]
. Since Ra

j < Ra
max(j) and x′

j ≥ x∗
j (Observation 2),

the following inequality holds true:

− [
x′

jP
a
j + (1 − x′

j)R
a
max(j)

]
+

[
(x∗

jP
a
j + (1 − x∗

j )R
a
max(j)

]
(27)

= −[
x′

jP
a
j +(1−x′

j)R
a
j

]
+

[
(x∗

jP
a
j +(1−x∗

j )R
a
j

]
+

[
x′

j −x∗
j

] [
Ra

max(j)−Ra
j

]
(28)

≥ −[
x′

jP
a
j +(1−x′

j)R
a
j

]
+

[
(x∗

jP
a
j +(1−x∗

j )R
a
j

]
. (29)
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This inequality indicates that the defender’s regret w.r.t Ra
max(j) (the LHS of the

inequality) is no less than w.r.t Ra
j (the RHS of the inequality). Therefore, Ra

max(j)
is an optimal solution of the attacker’s reward at target j for (24–26). �
Based on the Proposition 2 & 3 and the Observation 1, the jth sub-max regret
(24–26) is simplified to the following optimization problem:

max
x′∈X,Pa

j ,v
v + (x∗

jP
a
j + (1 − x∗

j )R
a
max(j)) (30)

s.t. v = − [
x′

jP
a
j + (1 − x′

j)R
a
max(j)

]
(31)

v ≤ − [x′
tP

a
min(t) + (1 − x′

t)R
a
min(t)] ,∀t �= j (32)

P a
max(j) ≥ P a

j ≥ max

{

P a
min(j),

C − (1 − x∗
j )R

a
max(j)

x∗
j

}

(33)

where C = maxt�=j x∗
t P

a
min(t) + (1 − x∗

t )R
a
min(t) is a constant. In addition, con-

straints (31–32) refer to constraint (25) (where constraint (31) is a result of
Observation 1) and constraints (33) is equivalent to constraint (26). The only
remaining non-convex term is x′

jP
a
j in constraint (31). We then alleviate the

computational cost incurred based on Theorem2 which shows that if the attack
set Γ (x′) is known beforehand, we can convert (30–33) into a simple optimization
problem which is straightforward to solve.

Theorem 2. Given the attack set Γ (x′), the jth sub-max regret problem (30–
33) can be represented as the following optimization problem on the variable v
only:

max
v

v +
av + b

cv + d
(34)

s.t. v ∈ [lv, uv]. (35)

where v is the defender utility for playing x′ in (30–33).

The proof of Theorem2 is in Online Appendix E. The constants (a, b, c, d, lv, uv)
are determined based on the attack set Γ (x′), the attacker’s payoffs
{Ra

min(t), P a
min(t)}t�=j and Ra

max(j), and the number of the defender resources
R. Here, the total number of possible attack sets Γ (x′) is maximally T sets
according to the property that Ra

t > Ra
t′ for all t ∈ Γ (x′) and t′ /∈ Γ (x′)

[11]. Therefore, we can iterate over all these possible attack sets and solve the
corresponding optimization problems in (34–35). The optimal solution of each
sub-max regret problem (30–33) will be the maximum over optimal solutions of
(34–35). The final optimal solution of the max regret problem (22) will be the
maximum over optimal solutions of all these sub-max regret problems.

In summary, we provide the M.ARROW-Perfect algorithm to exactly com-
pute max regret of playing the strategy x∗ against a perfectly rational attacker
in zero-sum games by exploiting the insight of extreme points of the uncertainty
intervals as well as attack sets. Furthermore, we provide Theorem3 (its proof is
in the Online Appendix F) showing that the computational complexity of solving
max regret is polynomial.
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Algorithm 2. Elicitation process
1 Input: budget: B, regret barrier: δ, uncertainty intervals: I;
2 Initialize regret r = +∞, cost c = 0 ;
3 while c < B and r > δ do
4 (r,x∗, (x′,∗,Ra,∗,Pa,∗)) = ARROW(I);
5 P = calculatePath(x∗, (x′,∗,Ra,∗,Pa,∗));
6 I = collectInformationUAV(P); c = updateCost(P);

7 return (r,x∗);

Theorem 3. M.ARROW-Perfect provides an optimal solution for computing
max regret against a perfectly rational attacker in O(T 3) time.

7 UAV Planning for Payoff Elicitation (PE)

Our final contribution is to provide PE heuristics to select the best UAV path to
reduce uncertainty in payoffs, given any adversary behavioral model. Despite the
limited availability of mobile sensors in conservation areas (many of them being
in developing countries), these UAVs may still be used to collect accurate imagery
of these areas periodically, e.g., every six months to reduce payoff uncertainty.
Since the UAV availability is limited, it is important to determine the best UAV
paths such that reducing payoff uncertainty at targets on these paths could help
reducing the defender’s regret the most. While a UAV visits multiple targets to
collect data, planning an optimal path (which considers all possible outcomes
of reducing uncertainty) is computationally expensive. Thus, we introduce the
current solution-based algorithm which evaluates a UAV path based solely on
the MMRb solution given current intervals.5

We first present a general elicitation process for UAV planning (Algorithm2).
The input includes the defender’s initial budget B (e.g., limited time availability
of UAVs), the regret barrier δ which indicates how much regret (utility loss) the
defender is willing to sacrifice, and the uncertainty intervals I. The elicitation
process consists of multiple rounds of flying a UAV and stops when the UAV
cost exceeds B or the defender’s regret is less than δ. At each round, ARROW
is applied to compute the optimal MMRb solution given current I; ARROW
then outputs the regret r, the optimal strategy x∗, and the corresponding most
unfavorable strategy and payoffs (x′,∗,Ra,∗,Pa,∗) which provide the defender’s
max regret (line 4). Then the best UAV path is selected based on these outputs
(line 5). Finally, the defender controls the UAV to collect data at targets on that
path to obtain new intervals and then updates the UAV flying cost (line 6).

The key aspects of Algorithm 2 are in lines 4 and 5 where the MMRb solution
is computed by ARROW and the current solution heuristic is used to determine
the best UAV path. In this heuristic, the preference value of a target t, denoted

5 A similar idea was introduced in [2] although in a very different domain without
UAV paths.
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pr(t), is measured as the distance in the defender utility between x∗ and the
most unfavorable strategy x′,∗ against attacker payoffs (Ra,∗,Pa,∗) at that tar-
get, which can be computed as follows: pr(t)= q̂t(x∗,Ra,∗,Pa,∗)Ud

t (x
∗,Rd,Pd)−

q̂t(x′,∗,Ra,∗,Pa,∗)Ud
t (x

′,∗,Rd,Pd) where Rd=−Pa,∗ and Pd=−Ra,∗. Intuitively,
targets with higher preference values play a more important role in reducing the
defender’s regret. We use the sum of preference values of targets to determine
the best UAV path based on the two heuristics: Greedy heuristic: The cho-
sen path consists of targets which are iteratively selected with the maximum pr
value and then the best neighboring target. MCNF Heuristic: We represent
this problem as a Min Cost Network Flow (MCNF) where the cost of choos-
ing a target t is −pr(t). For example, there is a grid of four cells (t1, t2, t3, t4)
(Fig. 2(a)) where each cell is associated with its preference value, namely (pr(1),
pr(2), pr(3), pr(4)). Suppose that a UAV covers a path of two cells every time it
flies and its entry locations (where the UAV takes off or land) can be at any cell.
The MCNF for UAV planning is shown in Fig. 2(b) which has two layers where
each cell ti has four copies (t1i, t

2
i, t

3
i, t

4
i ) with edge costs c(t1i, t

2
i )=c(t3i , t

4
i )=−pr(i).

The connectivity between these two layers corresponds to the grid connectivity.
There are Source and Sink nodes which determine the UAV entry locations. The
edge costs between the layers and between the Source or Sink to the layers are
set to zero.

Fig. 2. Min cost network flow

8 Experimental Results

We use CPLEX for our algorithms and Fmincon of MATLAB on a 2.3 GHz/4
GB RAM machine. Key comparison results are statistically significant under
bootstrap-t (α = 0.05 ) [25]. More results are in the Online Appendix G.

8.1 Synthetic Data

We first conduct experiments using synthetic data to simulate a wildlife protec-
tion area. The area is divided into a grid where each cell is a target, and we
create different payoff structures for these cells. Each data point in our results
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is averaged over 40 payoff structures randomly generated by GAMUT [19]. The
attacker reward/defender penalty refers to the animal density while the attacker
penalty/defender reward refers to, for example, the amount of snares that are
confiscated by the defender [27]. Here, the defender’s regret indicates the animal
loss and thus can be used as a measure for the defender’s patrolling effectiveness.
Upper and lower bounds for payoff intervals are generated randomly from [−14,
−1] for penalties and [1, 14] for rewards with an interval size of 4.0.

Solution Quality of ARROW. The results are shown in Fig. 3 where the
x-axis is the grid size (number of targets) and the y-axis is the defender’s
max regret. First, we demonstrate the importance of handling the attacker’s
bounded rationality in ARROW by comparing solution quality (in terms of the
defender’s regret) of ARROW with ARROW-Perfect and Maximin. Figure 3(a)
shows that the defender’s regret significantly increases when playing ARROW-
Perfect and Maximin strategies compared to playing ARROW strategies, which
demonstrates the importance of behavioral MMR.

Second, we examine how ARROW’s parameters influence the MMRb solu-
tion quality; which we show later affects its runtime-solution quality tradeoff.
We examine if the defender’s regret significantly increases if (i) the number
of starting points in M.ARROW decreases (i.e., ARROW with 20 (ARROW-
20), 5 (ARROW-5) and 1 (ARROW-1) starting points for M.ARROW and 40
iterations to iteratively add 40 payoff samples into the set S), or (ii) when
ARROW only uses R.ARROW (without M.ARROW) to solve relaxed MMRb

(i.e., R.ARROW with 50 (R.ARROW-50) and 100 (R.ARROW-100) uniformly
random payoff samples). Figure 3(b) shows that the number of starting points in
M.ARROW does not have a significant impact on solution quality. In particular,
ARROW-1’s solution quality is approximately the same as ARROW-20 after 40
iterations. This result shows that the shortcoming of local search in M.ARROW
(where solution quality depends on the number of starting points) is compen-
sated by a sufficient number (e.g., 40) of iterations in ARROW. Furthermore, as
R.ARROW-50 and R.ARROW-100 only solve relaxed MMRb, they both lead to
much higher regret. Thus, it is important to include M.ARROW in ARROW.

(a) ARROW regret (b) Influence of parameters

Fig. 3. Solution quality of ARROW
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(a) Runtime vs #Targets (b) Runtime vs Regret

Fig. 4. Runtime performance of ARROW

Runtime Performance of ARROW. Figure 4(a) shows the runtime of
ARROW with different parameter settings. In all settings, ARROW’s run-
time linearly increases in the number of targets. Further, Fig. 3(a) shows that
ARROW-1 obtains approximately the same solution quality as ARROW-20
while running significantly faster (Fig. 4(a)). This result shows that one starting
point of M.ARROW might be adequate for solving MMRb in considering the
trade-off between runtime performance and solution quality. Figure 4(b) plots the
trade-off between runtime and the defender’s regret in 40 iterations of ARROW-
20 for 20–40 targets which shows a useful anytime profile.

Fig. 5. Runtime performance of ARROW-
Perfect

Runtime Performance of ARROW-
Perfect. Figure 5 shows the runtime
performance of ARROW-Perfect com-
pared to ARROW and a non-linear
solver (i.e., fmincon of Matlab) to
compute MMR of the perfectly ratio-
nal attacker case. While the run-
time of both ARROW and non-linear
solver increase quickly w.r.t the num-
ber of targets (e.g., it takes them
approximately 20 min to solve a 200-
target game on average), ARROW-
Perfect’s runtime slightly increases
and reaches 53 s to solve a 800-target game on average. This result shows that
ARROW-Perfect is scalable for large security games.

Payoff Elicitation. We evaluate our PE strategies using synthetic data of 5×5-
target (target = 2 × 2 km cell) games. The UAV path length is 3 cells and the
budget for flying a UAV is set to 5 rounds of flying. We assume the uncertainty
interval is reduced by half after each round. Our purpose is to examine how
the defender’s regret is reduced over different rounds. The empirical results are
shown in Fig. 6 where the x-axis is the number of rounds and the y-axis is the
regret obtained after each round (Fig. 6(a)) or the accumulative runtime of the
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(a) Solution quality (b) Runtime performance

Fig. 6. UAV planning: uncertainty reduction over rounds

(a) Small interval (b) Larger interval

Fig. 7. Real world max regret comparison

elicitation process over rounds (Fig. 6(b)). We compare three heuristics: (1) ran-
domly choosing a path (Random) (2) Greedy, and (3) MCNF. Figure 6 shows
that the defender’s regret is reduced significantly by using Greedy and MCNF
in comparison with Random. As mentioned, the difference are statistically sig-
nificant (α = 0.05). Also, both Greedy and MCNF run as quickly as Random.

8.2 Real-World Data

Lastly, we use our wildlife dataset from Uganda (Sect. 3) to analyze the effective-
ness of past patrols conducted by rangers (in the wildlife park) compared with
the patrol strategies generated by ARROW. We choose multiple subsets of 50
grid cells each, randomly sampled from the 2423 grid cells for our analysis. Before
these wildlife areas were patrolled, there was uncertainty in the features values
in those areas. We simulate these conditions faced by real world patrollers by
introducing uncertainty intervals in the real-world payoffs. In our experiments,
we impose uncertainty intervals on the animal density for each target, though
two cases: a small and a large interval of sizes 5 and 10 respectively. Figure 7(a)
and (b) show the comparison of the max regret achieved by ARROW and real
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world patrols for 10 such subsets, under the above mentioned cases of payoff
uncertainty intervals. The x-axis refers to 10 different random subsets and the
y-axis is the corresponding max regret. These figures clearly show that ARROW
generates patrols with significantly less regret as compared to real-world patrols.

9 Summary

Whereas previous work in GSGs had assumed that there was an abundance of
data in these domains, such data is not always available. To address such sit-
uations, we provide four main contributions: (1) for the first time, we compare
key behavioral models, e.g., SUQR/QR on real-world data and show SUQR’s
usefulness in predicting adversary decisions; (2) we propose a novel algorithm,
ARROW, to solve the MMRb problem addressing both the attacker’s bounded
rationality and payoff uncertainty (when there is sufficient data to learn adver-
sary behavioral models); (3) we present a new scalable MMR-based algorithm,
ARROW-Perfect, to address payoff uncertainty against a perfectly rational
attacker (when learning behavioral models is infeasible), and (4) we introduce
new PE strategies for mobile sensors, e.g., UAV to reduce payoff uncertainty.
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Abstract. We propose, to the best of our knowledge, the first Security
Game where a Defender is supported by a spatially uncertain alarm sys-
tem which non–deterministically generates signals once a target is under
attack. Spatial uncertainty is common when securing large environments,
e.g., for wildlife protection. We show that finding the equilibrium for this
game is FNP–hard even in the zero–sum case and we provide both an
exact algorithm and a heuristic algorithm to deal with it. Without false
positives and missed detections, the best patrolling strategy reduces to
stay in a place, wait for a signal, and respond to it at best. This strategy
is optimal even with non–negligible missed detection rates.

1 Introduction

Security Games model the task of protecting physical environments as a non–
cooperative game between a Defender and an Attacker [12]. Usually taking place
under a Stackelberg (a.k.a. leader–follower) paradigm [18], they have been shown
to outperform other approaches such as, e.g., MDPs [16] and they have been
employed in a number of on–the–field systems [9,13]. Recent research lines aim
at refining the models by incorporating features from real–world applications,
e.g., in [1,20] the Attacker may have different observation models and limited
planning capabilities, in [6] realistic aspects of infrastructures to be protected
are taken into account. Patrolling is one of the recently studied applications
where the Defender controls mobile resources (such as patrolling robots) and
the Attacker aims at compromising some locations denoted as targets [2]. Equi-
librium strategies prescribe how the Defender should schedule resources in time
to maximize its expected utility.

Infrastructures and environments that need to be surveilled are usually char-
acterized by the presence of locally installed sensory systems. Detection sensors
are able to gather measurements about suspicious events that an alarm sys-
tem can process to generate alarm signals. These physical devices often present
some degree of inaccuracy, such as false positives rates or missed detections
rates. Alarm signals are spatially uncertain, meaning that they do not precisely
localize the detected event, but provide a probabilistic belief over the locations

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25594-1 11
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potentially under attack. Spatial uncertainty is common when dealing with com-
plex infrastructures or large open environments, where a broad area surveillance
activity, in which an attack is detected but only approximately localized, triggers
a local investigation activity, where guards have to find and clear the attack. A
similar approach is adopted in a number of real–world problems where cheap and
spatially uncertain sensors cover the targets to be protected. In [10], the prob-
lem of poaching of endangered species is studied and a device to help rangers
against this threat is proposed. The introduction of cheap wide–range sensors,
affordable by the conservation agencies, could significantly improve the behavior
of the rangers, giving them information about the areas in which a potential
attack is occurring. Other applications include UAVs surveillance [4], wildfires
detection with CCD cameras [14] and monitoring agricultural fields [11]. In [21]
a system for surveillance based on wireless sensor networks is proposed.

To the best of our knowledge, [8] is the only work integrating sensors in
Security Games. It assumes sensors with no spatial uncertainty in detecting
attacks on single targets. When no false positives are possible, an easy variation
of the algorithm for the case without sensors [2] can be used, while, when false
positives are present, the problem is computationally intractable.

Contributions. In this paper, we propose the first Security Game model that
integrates a spatially uncertain alarm system in game–theoretic settings for
patrolling. Each alarm signal carries the information about the set of targets that
can be under attack and is described by a probability of being generated when
each target is attacked. Moreover, the Defender can control only one patroller.
We show that finding the equilibrium is FNP–hard even in the zero–sum case
and we give an exact exponential–time algorithm and a heuristic algorithm to
deal with it. When no false positives and no missed detections are present, the
optimal Defender strategy is to stay in a fixed location, wait for a signal, and
respond to it at best. This strategy keeps being optimal even when non–negligible
missed detection rates are allowed. Finally, we experimentally evaluate the scal-
ability of our exact algorithm and we compare it with respect to the heuristic
one in terms of solution quality.

2 Problem Formulation

Basic patrolling security game models [2,19] are turn–based extensive–form
games with infinite horizon and imperfect information between two agents: an
Attacker A and a Defender D. The environment to be patrolled is formally
described by an undirected connected graph G = (V,E). Each edge (i, j) ∈ E
requires one turn to be traversed, while we denote with ω∗

i,j the temporal cost (in
turns) of the shortest path between any i and j ∈ V . We denote by T ⊆ V the
subset of vertices called targets that have some value for D and A. Each target
t ∈ T is characterized by a value π(t) ∈ (0, 1] and a penetration time d(t) ∈ N

measuring the number of turns needed to complete an attack over t. At each
turn of the game, agents A and D play simultaneously: if A has not attacked
in the previous turns, it can observe the position of D in the graph and decides
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whether to attack a target1 or to wait for a turn, while D has no information
about the actions undertaken by A in previous turns and decides the next vertex
to patrol among all those adjacent to the current one. If D patrols a target t
that is under attack of A before d(t), A is captured. The game is constant sum
(then equivalent to a zero sum game): if A is captured, D receives a utility of 1
and A receives 0, while, if an attack over t has success, D receives 1 − π(t) and
A receives π(t); finally, if A waits forever, D receives 1 and A receives 0. The
appropriate solution concept is the leader–follower equilibrium. The game being
constant sum, the best leader’s strategy is its maxmin/minmax strategy.

Our Patrolling Game (PG) extends the above model introducing a spatial
uncertain alarm system available to D. The system is defined as a tuple (S, p)
where S = {s1, · · · , sm} is a set of m ≥ 1 signals and p : S × T → [0, 1] is a
function that specifies the probability of having the system generating a signal
s given that target t has been attacked. With a slight abuse of notation, for a
signal s we define T (s) = {t ∈ T | p(s | t) > 0} and, similarly, for a target t we
have S(t) = {s ∈ S | p(s | t) > 0}. In this work, we initially assume that the
alarm system is not affected by false positives, i.e. a signal is generated but no
attack has occurred, or missed detections, i.e. the signal is not generated even
though an attack has occurred. In our model, at each turn, before deciding its
next move, agent D can observe whether or not a signal has been generated by
the alarm system.

We observe that, since no false positive and no missed detection are present,
D will always receive a signal as soon as A starts an attack. This allows us to
identify, in our game model, a number of subgames, each in which D is in a
given vertex v and an attack is started. The solution to our PG can be safely
found by, at first, finding the best strategies of D in responding to a signal from
any v ∈ V and, subsequently, on the basis of such signal–response strategies, by
finding the best patrolling strategy over G. In Sect. 3 , we present algorithms to
find the best signal–response strategies, while, in Sect. 4, we focus on the best
patrolling strategies.

3 Finding the Best Signal–Response Strategy

We study the subgame in which D is in a vertex v and A decides to attack. We
call it Signal–Response Game given v (SRG–v). The actions available to A are
given by T and its strategy σA

v is defined as a probability distribution over T . We
denote with σD

v,s the generic strategy of D when it is at v and receives a signal
s and we discuss below the problem of defining the space of actions available
to D. We denote with gv the expected utility of A, the expected utility of D is
1 − gv. We show that, independently of how we define the space of actions of D,
the problem of finding the best σD

v = (σD
v,s1

, . . . , σD
v,sm

) is FNP–hard [5]. We do
this by assessing the complexity of its decision version.

1 As is customary, we assume that A can instantly reach the target of its attack. This
assumption can be easily relaxed as shown in [3].



A Security Game Model for Environment Protection 195

Definition 1. k–SRG–v
INSTANCE: an instance of SRG–v as defined above;
QUESTION: is there σD such that gv ≤ k?

Theorem 1. k–SRG–v is NP–hard.

Proof. Let us consider the following reduction from HAMILTONIAN–PATH.
Given an instance of HAMILTONIAN–PATH GH = (VH , EH), we build an
instance for k–SRG–v as:

– V = VH ∪ {v};
– E = EH ∪ {(v, h),∀h ∈ VH};
– T = VH ;
– d(t) = |VH |;
– π(t) = 1, for all t ∈ T ;
– S = {s};
– p(s | t) = 1, for all t ∈ T ;
– k = 0.

If gs ≤ 0, then there must exist a path starting from v and visiting all the targets
in T by d = |VH |. Given the edge costs and penetration times assigned in the
above construction, the path must visit each target exactly once. Therefore, since
T = VH , the game’s value is less or equal than zero if and only if GH admits an
Hamiltonian path. This concludes the proof. �
Given that an SRG–v is a subgame of the PG, it follows that finding the best
strategy of D in PG is FNP–hard. Since computing maxmin/minmax strategies
can be done in polynomial time in the size of the payoffs matrix by means of
linear programming, the difficulty of SRG–v resides in the generation of the
payoffs matrix whose size is in the worst case exponential in the size of the
graph (unless P = NP).

Now we focus on the problem of defining the set of actions available to D
when it is in v and receives signal s. We define a generic route r as a sequence of
vertices visited by D. We denote with r(i) the i–th vertex visited along r and with
Ar(r(i)) =

∑i−1
h=0 ω∗

r(h),r(h+1) the time needed by D to visit r(i) starting from
r(0). We restrict our attention on a subset of routes, that we call covering routes,
with the following properties: r(0) = v (i.e., the starting vertex is v), ∀i ≥ 1 it
holds r(i) ∈ T (s), where s is the signal generated by the alarm system (i.e.,
only targets potentially under attack are visited) and ∀i ≥ 1 it holds Ar(r(i)) ≤
d(r(i)) (i.e., all the targets are visited within their penetration times) with D
moving on the shortest paths between each pair of targets. Notice that a covering
route r may visit a strict subset of T (s). The set of actions available to D is
given by all the covering routes. Given a covering route r, with a slight abuse
of notation, we define the covering set T (r) as the set of targets visited along
r and we denote with c(r) the temporal cost of the corresponding path, that is
c(r) = Ar(r(|T (r)|)). Notice that in the worst case the number of covering routes
is O(|T (s)||T (s)|), but using all of them may be unnecessary since some covering
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routes will never be played by D due to strategy domination and therefore they
can be safely discarded [15]. We introduce two definitions of dominance that we
use below.

Definition 2 (Intra–Set Dominance). Given two different covering routes
r, r′ for (v, s) such that T (r) = T (r′), if c(r) ≤ c(r′) then r dominates r′.

Definition 3 (Inter–Set Dominance). Given two different covering routes
r, r′ for (v, s), if T (r) ⊃ T (r′) then r dominates r′.

Definition 2 suggests that we can safely use only one route per covering set.
Covering sets suffice for computing the payoffs matrix of the game and in
the worst case are O(2|T (s)|), with a remarkable reduction of the search space
w.r.t. O(|T (s)||T (s)|). However, any algorithm working directly with covering sets
instead of covering routes should also decide whether or not a set of targets is a
covering one: this problem is hard.

Definition 4. COV–SET
INSTANCE: a graph G = (V,E), a target set T with penetration times d, and a
starting vertex v;
QUESTION: is T a covering set for some covering route r?

By trivially adapting the same reduction for Theorem1 we can state the
following theorem.

Theorem 2. COV–SET is NP–complete.

Computing a covering route for a given set of targets (or deciding that no cover-
ing route exists) is not doable in polynomial time unless P 
= NP. In addition,
Theorem 2 suggests that no algorithm for COV–SET can have complexity better
than O(2|T (s)|) unless there is a better algorithm for HAMILTONIAN–PATH
than the best algorithm known in the literature. This seems to suggest that
enumerating all the possible subsets of targets and, for each of them, checking
whether or not it is covering requires a complexity worse than O(2|T (s)|). Sur-
prisingly, we show in the next section that there is an algorithm with complexity
O(2|T (s)|) (neglecting polynomial terms) to enumerate all and only the cover-
ing sets and, for each of them, one covering route. Therefore, the complexity of
our algorithm matches (neglecting polynomial terms) the complexity of the best
known algorithm for HAMILTONIAN–PATH.

Definition 3 suggests that we can reduce further the set of actions available
to D. Given a covering set Q (where Q = T (r) for some r), we say that Q is
maximal if there is no route r′ such that Q ⊂ T (r′). In the best case, when
there is a route covering all the targets, the number of maximal covering sets
is 1, while the number of covering sets is 2|T (s)|, thus considering only maximal
covering sets allows an exponential reduction of the payoffs matrix. In the worst
case, when all the possible subsets of |T (s)|/2 targets are maximal covering
sets, the number of maximal covering sets is O(2|T (s)|−2), while the number of
covering sets is O(2|T (s)|−1), allowing a reduction of the payoffs matrix by a
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factor of 2. Furthermore, if we knew a priori that Q is a maximal covering set
we could avoid to search for covering routes for any set of targets that strictly
contains Q. When designing an algorithm to solve this problem, Definition 3
could then be exploited to introduce some kind of pruning technique for saving
average compute time. However, the following result shows that deciding whether
a covering set is maximal is hard.

Definition 5. MAX–COV–SET
INSTANCE: a graph G = (V,E), a target set (T, d), a starting vertex v, and a
covering set T ′ ⊂ T ;
QUESTION: is T ′ maximal?

Theorem 3. MAX–COV–SET is in co–NP and no polynomial time for it exists
unless P = NP.

Proof. Any covering route r such that T (r) ⊃ T ′ is a NO certificate for MAX–
COV–SET, placing it in co–NP. (Notice that, due to Theorem 2, having a cover-
ing set would not suffice given that we cannot verify in polynomial time whether
it is actually covering unless P = NP.)

Let us suppose we have a polynomial–time algorithm for MAX–COV–SET,
called A. Then (since P ⊆ NP ∩ co-NP) we have a polynomial algorithm for
the complement problem, i.e., deciding whether all the covering routes for T ′

are dominated. Let us consider the following algorithm: given an instance for
COV–SET specified by graph G = (V,E), a set of target T with penetration
times d, and a starting vertex v:

1. assign to targets in T a lexicographic order t1, t2, . . . , t|T |;
2. for every t ∈ T , verify if {t} is a covering set in O(n) time by comparing ω∗

v,t

and d(t); if at least one is not a covering set, then output NO and terminate;
otherwise set T̂ = {t1} and k = 2;

3. apply algorithm A on the following instance: graph G = (V,E), target set
{T̂ ∪{tk}, d̂} (where d̂ is d restricted to T̂ ∪{tk}), start vertex v, and covering
set T̂ ;

4. if A’s output is YES (that is, T̂ is not maximal) then set T̂ = T̂ ∪ {tk},
k = k + 1 and restart from step 3; if A’s output is NO and k = |T | then
output YES; if A’s output is NO and k < |T | then output NO;

Thus, the existence of A would imply the existence of a polynomial algorithm for
COV–SET which (under P 
= NP) would contradict Theorem2. This concludes
the proof. �
Nevertheless, we show in the following section that there is an algorithm enu-
merating all and only the maximal covering sets and one route for each of them
(which potentially leads to an exponential reduction of the time needed for solv-
ing the linear program) with only an additional polynomial cost w.r.t. the enu-
meration of all the covering sets and therefore, neglecting polynomial terms, has
a complexity O(2|T (s)|).
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3.1 Computing D’s actions

Here we provide an algorithm to find the set of actions available to D when
it is in v and receives signal s. Let us denote Ck

v,t a collection of covering sets
Qk

v,ts such that Qk
v,t has cardinality k and admits a covering route r whose

starting vertex is v and whose last vertex is t. Each Qk
v,t is associated with a

cost c(Qk
v,t) representing the temporal cost of the shortest covering route for

Qk
v,t that specifies t as the k–th target to visit. Upon this basic structure, our

algorithm iteratively computes covering sets collections and costs for increasing
cardinalities, that is from k = 1 possibly up to k = |T | including one target
at each iteration. Using a dynamic programming approach, we assume to have
solved up to cardinality k − 1 and we specify how to complete the task for
cardinality k. Detailed steps are reported in Algorithm 1, while in the following
we provide an intuitive description. Given Qk−1

v,t , we can compute a set of targets
Q+ (Line 6) such that for each target t′ ∈ Q+, t′ 
∈ Qk−1

v,t and, if t′ is appended to
the shortest covering route for Qk−1

v,t , it will be visited before d(t′). If Q+ is not
empty, for each t′ ∈ Q+, we extend Qk−1

v,t (Line 8) by including it and naming the
resulting covering set as Qk

v,t′ since it has cardinality k and we know it admits a
covering route with last vertex t′. Such route is obtainable by appending t′ to the
covering route for Qk−1

v,t and has cost c(Qk−1
v,t ) + ω∗

t,t′ . This value is assumed to
be the cost of the extended covering set. (In Line 9 we make use of a procedure
Search(Q,C) which outputs Q if Q ∈ C and ∅ otherwise). If such extended
covering set is not present in collection Ck

v,t′ or is already present with a higher
cost (Line 10), then collection and cost are updated (Lines 11 and 12). After
the iteration for cardinality k is completed, for each covering set Q in collection
Ck

v,t, c(Q) represents the temporal cost of the shortest covering route with t as
last target.

Algorithm 1. ComputeCovSets Basic(v, s)
1: ∀t ∈ T (s), k ∈ {2, . . . , |T (s)|}, C1

v,t = {t}, Ck
v,t = ∅

2: ∀t ∈ T (s), c({t}) = ω∗
v,t, c(∅) = ∞

3: for all k ∈ {2 . . . |T (s)|} do
4: for all t ∈ T (s) do

5: for all Qk−1
v,t ∈ Ck−1

v,t do

6: Q+ = {t′ ∈ T (s) \ Qk−1
v,t | c(Qk−1

v,t ) + ω∗
t,t′ ≤ d(t′)}

7: for all t′ ∈ Q+ do

8: Qk
v,t′ = Qk−1

v,t ∪ {t′}
9: U = Search(Qk

v,t′ , Ck
v,t′ )

10: if c(U) > c(Qk−1
v,t ) + ω∗

t,t′ then

11: Ck
v,t′ = Ck

v,t′ ∪ {Qk
v,t′}

12: c(Qk
v,t′ ) = c(Qk−1

v,t ) + ω∗
t,t′

13: end if
14: end for
15: end for
16: end for
17: end for
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After Algorithm 1 completed its execution, for any arbitrary T ′ ⊆ T we can
easily obtain the temporal cost of its shortest covering route as

c∗(T ′) = min
Q∈Y|T ′|

c(Q)

where Y|T ′| = ∪t∈T {Search(T ′, C|T ′|
v,t )} (notice that if T ′ is not a covering set

then c∗(T ′) = ∞). Algorithm 1 is dubbed “basic” because it does not specify
how to carry out two sub–tasks we describe in the following.

The first one is the annotation of dominated covering sets. Each time Lines
11 and 12 are executed, a covering set is added to some collection. Let us call
it Q and assume it has cardinality k. Each time a new Q has to be included
at cardinality k, we mark all the covering sets at cardinality k − 1 that are
dominated by Q (as per Definition 3). The sets that can be dominated are in
the worst case |Q|, each of them has to be searched in collection Ck−1

v,t for each
feasible terminal t and, if found, marked as dominated. The number of terminal
targets and the cardinality of Q are at most n and the Search procedure can
be efficiently executed in O(|T (s)|) using a binary tree approach. Therefore,
dominated covering sets can be annotated with a O(|T (s)|3) extra cost at each
iteration of Algorithm 1. We can only mark and not delete dominated covering
sets since they can generate non–dominated ones.

The second task is the generation of routes. Algorithm 1 focuses on covering
sets and does not maintain a list of corresponding routes. In fact, to build the
payoffs matrix for SRG–v we do not strictly need covering routes since covering
sets would suffice to determine payoffs. However, we do need them operatively
since D should know in which order targets have to be covered to physically play
an action. This task can be accomplished by maintaining an additional list of
routes where each route is obtained by appending terminal vertex t′ to the route
stored for Qk−1

v,t when set Qk−1
v,t ∪ {t′} is included in its corresponding collection.

At the end of the algorithm only routes that correspond to non–dominated
covering sets are filtered out. Maintaining such a list introduces a O(1) cost.

Algorithm 1, in the worst case, has to compute covering sets up to cardinality
|T (s)|. The number of operations is then bounded by

∑|T (s)|
i=1

(|T (s)|
i−1

)
i(|T (s)|−1)

which is O(|T (s)|22|T (s)|). With annotations of dominances and routes generation
the whole algorithm yields a worst case complexity of O(|T (s)|52|T (s)|).

3.2 A Heuristic Algorithm

We know that no polynomial–time algorithm solves exactly the COV–SET prob-
lem (unless NP = P) and therefore any exact algorithm of our problem cannot
scale to tackle large settings. In this section, we focus on the design of a heuristic
algorithm that can be used for very large instances of patrolling games with spa-
tially uncertain alarms. We note that even if we had a polynomial–time approx-
imation algorithm for COV–SET we would need to call the algorithm O(2|T (s)|)
times, one per set of targets, and therefore we would not have a polynomial–time
approximation algorithm for our problem. This is why we do not focus on the
design of approximation algorithms for COV–SET.
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Our heuristic algorithm works as follows. Given v and s, for each target
t ∈ T (s) such that w∗

v,t ≤ d(t) we generate a covering route r with r(0) = v and
r(1) = t. Thus, D has at least one covering route per target (that can be covered
in time from v). Each route r is expanded by inserting a target t′ 
∈ T (s) \ T (r)
after position p and shifting each target that was at position i > p in r at position
i + 1. The pair (t′, p) that determines the next expansion is chosen as the pair
maximizing a heuristic function hr(t′, p) among all the pairs leading to covering
routes (i.e., insertions that make Ar(t′′) > d(t′′) for some t′′ are excluded). Route
r is repeatedly expanded in greedy fashion until no insertion is possible. As a
result, our algorithm generates at most |T (s)| covering routes.

The heuristic function is defined as hr : {T (s) \ T (r)} × {1 . . . |T (r)|} → Z,
where hr(t′, p) evaluates the cost of expanding r by inserting target t′ after the
p–th position of r. The basic idea (inspired by [17]) is to adopt a conserva-
tive approach, trying to preserve feasibility. Given a route r, let us define the
possible forward shift of r as the minimum temporal margin in r between the
arrival at a target t and d(t): PFS(r) = mint∈T (r)(d(t) − Ar(t)). The extra
mileage er(t′, p) for inserting target t′ after position p is the additional travel-
ing cost to be paid: er(t′, p) = (Ar(r(t′)) + ω∗

r(p),t′ + ω∗
t′,r(p+1)) − Ar(r(p + 1)).

The advance time that such insertion gets with respect to d(t′) is defined as:
ar(t′, p) = d(t′) − (Ar(r(p)) + ω∗

r(p),t′). Finally, hr(t′, p) is defined as: hr(t′, p) =
min{ar(t′, p); (PFS(r) − er(t′, p))}.

We partition the set T (s) in two sets Ttight and Tlarge where t ∈ Ttight if
d(t) < δ · ω∗

v,t and t ∈ Tlarge otherwise (δ ∈ R is a parameter). The previous
inequality is a non–binding choice we made to discriminate targets with a tight
penetration time from those with a large one. Initially, we insert all the tight
targets and only subsequently we insert the non–tight targets. It can be easily
observed that our heuristic algorithm runs in O(|T (s)|3) given that heuristic hr

can be computed in O(|T (s)|2).

3.3 Solving SRG–v

Now we can formulate the problem of computing the equilibrium signal response
strategy for D. Let us denote with σD

v,s(r) the probability with which D plays
route r under signal s and with Rv,s the set of all the routes available to D
generated by some algorithm. We introduce function UA(r, t) returning π(t) if r
is not a route covering t and 0 otherwise. The best D strategy (maxmin strategy)
can be found by solving the following linear mathematical programming problem:

min gv s.t.
∑

s∈S(t)

p(s | t)
∑

r∈Rv,s

σ
D
v,s(r)UA(r, t) ≤ gv ∀t ∈ T

∑

r∈Rv,s

σ
D
v,s(r) = 1 ∀s ∈ S

σ
D
v,s(r) ≥ 0 ∀r ∈ Rv,s, s ∈ S
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4 Finding the Best Patrolling Strategy

We now focus on the problem of finding the best patrolling strategy given that we
know (from Sect. 3.3) the best signal–response strategy for each vertex v in which
D can place. Given the current vertex of D and the sequence of the last, say n,
vertices visited by D (where n is a tradeoff between effectiveness of the solution
and computational effort), a patrolling strategy is usually defined as a random-
ization over the next adjacent vertices [2]. We define v∗ = arg minv∈V {gv}, where
gv is the value returned by the optimization problem described in Sect. 3.3, as the
vertex that guarantees the maximum expected utility to D over all the SRG–vs.
We show that the maxmin equilibrium strategy in PG prescribes that D places
at v∗, waits for a signal, and responds to it.

Theorem 4. Without false positives and missed detections, if ∀t ∈ T we have
that |S(t)| ≥ 1, then any patrolling strategy is dominated by the placement in v∗.

Proof. Any patrolling strategy different from the placement in v∗ should neces-
sarily visit a vertex v′ 
= v∗. Since the alarm system is not affected by missed
detections, every attack will raise a signal which, in turn, will raise a response
yielding a utility of gx where x is the current position of D at the moment
of the attack. Since A can observe the current position of D before attacking,
x = arg maxv∈P {gv} where P is the set of the vertices patrolled by D. Obviously,
for any P ⊇ {v∗} we would have that gx ≥ gv∗ and therefore placing at v∗ and
waiting for signal is the best strategy for D. �

4.1 Computing the Best Placement

Under the absence of false positives and missed detections, Theorem 4 simplifies
the computation of the patrolling strategy by reducing it to the problem of
finding v∗. To such aim, we must solve SRG–v for each possible starting vertex
v and select the one with maximum expected utility for D. Since all the vertices
are possible starting points, we should face this difficult problem (see Theorem1)
|V | times, computing, for each signal, the covering routes from all the vertices.
To avoid this issue, we ask whether there exists an algorithm that in the worst
case allows us to consider a number of iterations, such that solving the problem
for a given node v could help us finding the solution for another node v′. So,
considering a specific set of targets, we wonder whether a solution for COV–SET
with starting vertex v can be used to derive, in polynomial time, a solution to
COV–SET for another starting vertex v′. To answer this question, we need to
encode an instance of COV–SET in a different way, embedding the selection of
the starting node in the structure of the graph. More precisely, we represent
an instance of COV–SET I = 〈G = (V,E), T, d, v〉 with the equivalent instance
I ′ = 〈G′ = (V ′, E′), c′, T, d′, v̂〉 defined in the following way:

– V ′ = V ∪ {v̂}, E′ = E ∪ {(v̂, vi),∀vi ∈ V }
– c′ is a weight function such that c(e) = 1 if e ∈ E ∪ {(v̂, v}) and c(e) = M

otherwise (M is a big constant);
– d′(t) = d(t) + 1, ∀t ∈ T .
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With v̂ we denote the dummy vertex that is always the starting node. We
highlight the fact that, under this new encoding scheme, changing the starting
vertex translates to rewriting the weights of c. Following the approach of [7], we
can show that even the locally modified version of this problem, where a single
weight is updated, is hard.

Definition 6. LM–COV–ROUTE (Locally modified)
INSTANCE: a graph G = (V,E), a set of targets T with penetration times d,
two weight functions c1 and c2 that coincide except for one edge, and a covering
route r1 such that, under c1, T (r1) = T .
QUESTION: is T a covering set under c2?

Theorem 5. lm–COV–ROUTE is NP–complete.

Proof. Let us consider the Restricted Hamiltonian Circuit problem (RHC) which
is known to be NP–complete. RHC is defined as follows: given a graph GH =
(VH , EH) and an Hamiltonian path P = {h1, . . . , hn} for GH such that hi ∈ VH

and (h1, hn) /∈ EH , find an Hamiltonian circuit for GH . From such instance
of RHC, following the approach of [7], we build the following instance for lm–
COV–ROUTE:

– V = T = VH ∪ {vs, vt};
– E = {(vs, h1), (vs, hn−1)} ∪ {(vt, u)|(u, hn−1) ∈ EH} ∪ EH where EH is the

complete set of edges obtained by augmenting EH ;
– d(vs) = 0, d(vt) = n + 1, d(t) = n for any t ∈ T ;
– c1(e) = 1 if e ∈ E ∪ {(vs, h1), (vs, hn−1)} ∪ {(vt, u)|(u, hn−1) ∈ EH}, c1(e) =

(1 + ε) otherwise (for any ε > 0);
– c1 = c2 except for c2(vs, h1) = 1 + ε;
– r1 = 〈vs, h1, · · · , hn, vt〉.
It is easy to verify that GH admits a Hamiltonian circuit if and only if T admits
a covering route under c2. �
This shows that iteratively applying Algorithm1 to SRG–v for each starting
vertex v is the best we can do.

4.2 Robustness to Missed Detections

A deeper analysis of Theorem 4 can show that its scope does include cases where
missed detections are present up to a non–negligible extent. For such cases,
placement–based strategies keep being optimal even in the case when the alarm
systems fails in detecting an attack. We encode the occurrence of this robust-
ness property in the following proposition, which we shall prove by a series of
examples.

Proposition 1. There exist Patrolling Games where staying in a vertex, waiting
for a signal, and responding to it is the optimal patrolling strategy for D even
with a missed detection rate α = 0.5.
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Fig. 1. Two examples proving Proposition 1.

Proof. The expected utility for D given by the placement in v∗ is (1−α)(1−gv∗),
where (1−α) is the probability with which the alarm system correctly generates
a signal upon an attack and (1 − gv∗) denotes D’s payoff when placed in v∗.
A non–placement–based patrolling strategy will prescribe, by definition, to move
between at least two vertices. From this simple consideration, we observe that an
upper bound to the expected utility of any non–placement strategy is entailed by
the case where D alternately patrols vertices v∗ and v∗

2 , where v∗
2 is the second

best vertex in which D can statically place. Such scenario give us an upper bound
over the expected utility of non–placement strategies, namely 1 − gv∗

2
. It follows

that a sufficient condition for the placement in v∗ being optimal is given by the
following inequality:

(1 − α)(1 − gv∗) > (1 − gv∗
2
) (1)

To prove Proposition 1, it then suffices to provide a Patrolling Game instance
where Eq. 1 holds under some non–null missed detection rate α. In Fig. 1(a)
and (b), we report two of such examples. The depicted settings have unitary
edges except where explicitly indicated. For both, without missed detections, the
best patrolling strategy is a placement v∗ = 4. When allowing missed detections,
in Fig. 1(a) it holds that gv∗ = 0 and gv∗

2
= 0.75, where v∗ = 4 and v∗

2 = 1. Thus,
by Eq. 1, placement v∗ = 4 is the optimal strategy for α ≤ 0.25. Under the same
reasoning scheme, in Fig. 1(b) we have that gv∗ = 0 and gv∗

2
= 0.5, making the

placement v∗ = 4 optimal for any α ≤ 0.5. �

5 Experimental Evaluation

We evaluate the scalability of Algorithm 1 and the quality of the solution
returned by our heuristic algorithm for a set of instances of SRG–v. We do
not include results on the evaluation of the algorithm to solve completely a PG,
given that it trivially requires asymptotically |V | times the effort required by
the resolution of a single instance of SRG–v.

Testbed. In real deployment scenarios, the model parameters should be derived
from the particular features that characterize the particular setting one must
deal with. Besides the graph topology, which depends on the environment, tar-
get values and deadlines can be derived from available statistics or manually
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assigned by domain experts. The need of such process to derive model parame-
ters makes building a large dataset of realistic instances not an easy task. In
fact, such task would deserve a separate treatment by its own. On the other
side, by means of a preliminary experimental evaluation, we observed how com-
pletely random instances are very likely of being not significant. Indeed, very
frequently the variance of the compute time among completely random gener-
ated instances is excessively large. For these reasons, we decided to use a random
generator where some parameters can be fixed while others are randomly chosen.
We restricted our attention to basic, but significant, instances with all–targets
graphs, arc costs set to 1, penetration times to |T (s)|−1, and the number of arcs
is drawn from a normal distribution with mean ε, said edge density and defined
as ε = |E|/ |T (s)|(|T (s)|−1)

2 (other parameters are randomly generated from uni-
form distributions, unless otherwise specified). Instances constructed with such
mechanism include hard ones since the existence of a covering route over T (s)
would imply the existence of an Hamiltonian path on the graph. We explore two
parameter dimensions: the number of targets |T | and ε. Algorithms are developed
in MATLAB and run on a 2.33 GHz LINUX machine.

Exact Algorithm Scalability. Table 1 shows the total compute time required
to solve instances with a single signal, that can be generated by any target under
attack. Table 2 refers to instances with multiple signals, where the targets covered
by a signal and the probability that a target triggers a signal are randomly chosen
according to a uniform distribution (in this second table |T | is fixed to 16). Values
are averages over 100 random instances and give insights on the computation
effort along the considered dimensions. The results show that the problem is
computationally challenging even for a small number of targets and signals.

Table 1. Compute times (in seconds) for single–signal instances.

Table 2. Compute times (in seconds) for multi–signal instances.
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Fig. 2. Ratios evaluating dominances.

Figure 2 shows the impact of discarding dominated actions from the game. It
depicts the trend of some performance ratios for different metrics. We shall call
G the complete game including all D’s dominated actions and GR the reduced
game; CCS will denote the full version of Algorithm1 and LP will denote the
linear program to solve SRG–v. Each instance has edge density ε = .25 and is
solved for a random starting vertex v; we report average ratios for 100 instances.
“n. covsets” is the ratio between the number of covering sets in GR and in G.
Dominated actions constitute a large percentage, increasing with the number
of targets. This result indicates that the structure of the problem has some
redundancy. LP times (iterations) report the ratio between GR and G for the time
(iterations) required to solve the minmax linear program. A relative gain directly
proportional to the percentage of dominated covering sets is observable (LP has
less variables and constraints). A similar trend is not visible when considering
the same ratio for the total time which includes CCS. Indeed, the time needed
by CCS largely exceed LP’s and removal of dominated actions determines a
polynomial additional cost which can be seen in the slightly increasing trend of
the curve. The relative gap between LP and CCS compute times can be assessed
by looking at the LP/CCS curve: when more targets are considered the time
taken by LP is negligible w.r.t. CCS’s. This shows that removing dominated
actions is useful, allowing a small improvement in the average case, and assuring
an exponential improvement in the worst case.

Heuristic Solution Quality. Figure 3 reports the performance of the heuristic
algorithm (here we set δ = 2) in terms of D’s expected utility ratio (1−gv)/(1−
ĝv), where gv is the expected utility of A at the equilibrium considering all the
covering sets and ĝv is the expected utility of A at the equilibrium when covering
sets are generated by our heuristic algorithm. The performance of our heuristic
algorithm is well characterized by ε, providing fairly good approximations for
ε > 0.25, the ratio going to 1 as |T | increases, because there are more edges
and, consequently, there is a higher probability for the heuristics to find longer
routes. The figure suggests that assessing the membership of our problem to the
APX class could be an interesting problem.
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6 Conclusions and Future Research

In this paper, to the best of our knowledge, we provide the first Security Game
for large environments surveillance, e.g. for wildlife protection, that can exploit
an alarm system with spatially uncertain signals. We propose a simple model
of alarm systems that can be widely adopted with every specific technology
and we include it in the state–of–art patrolling models obtaining a new security
game model. We show that the problem of finding the best patrolling strategy to
respond to a given alarm signal is FNP–hard even when the game is zero sum.
Then, we provide an exponential–time exact algorithm to find the best patrolling
strategy to respond to a given alarm signal. We provide also a heuristic algo-
rithm returning approximate solutions to deal with very large game instances.
Furthermore, we show that if every target is alarmed and no missed detections
are present, then the best patrolling strategy prescribes that the patroller stays
in a given place waiting for a alarm signal. We show that such a strategy may be
optimal even for missed detection rates up to 50 %. Finally, we experimentally
evaluate our algorithms in terms of scalability (for the exact algorithm) and
approximation ratio (for the heuristic algorithm).

In future works, we shall study the membership (or not) of our problem to
APX class, design approximation algorithms with theoretical guarantees and
investigate the impact of missed detections and false positives.
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Abstract. The privacy policies of an online social network play an
important role in determining user involvement and satisfaction, and
in turn site profit and success. In this paper, we develop a game the-
oretic framework to model the relationship between the set of privacy
options offered by a social network site and the sharing decisions of its
users within these constraints. We model the site and the users in this sce-
nario as the leader and followers, respectively, in a Stackelberg game. We
formally establish the conditions under which this game reaches a Nash
equilibrium in pure strategies and provide an approximation algorithm
for the site to determine a discrete set of privacy options to maximize
payoff. We validate hypotheses in our model on data collected from a
mock-social network of users’ privacy preferences both within and out-
side the context of peer influence, and demonstrate that the qualitative
assumptions of our model are well-founded.

1 Introduction

At its core, an online social network (SN) is an infrastructure for user-generated
shared content. Users have the ability to exercise control over their individual
channels in the network, by deciding which content to share and with whom to
share it. The SN site benefits from shared content in important ways. Shared
content attracts new users, deepens the involvement of existing users, strengthens
the community, and can be leveraged for monetization.

Individual behavior online, like individual behavior offline, is also subject
to social norms and peer influence [12,15,24]. Notions of what is appropriate
in content sharing online is defined comparatively, so that subtle shifts in local
behavior may have much farther-reaching consequences for the network as a
whole. In sum, unlike the SN site which is ultimately a business operating with
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a business model, users are individuals with more complex incentives, concerns
and considerations operating voluntarily within the constraints of the SN.

Questions related to privacy in SNs have gained increasing interest over the
last few years as the ubiquity of social media has become apparent and anecdotes
of repercussions for over-disclosure more available. Many users are now aware of
the risks associated with revelation online and concerned with protecting per-
sonal information from widespread dissemination. Advocates of fine-grained pri-
vacy policies argue that detailed user management of privacy settings for shared
content can avert some of the potential risks users face in online SNs [20,28].
Users can sort their data into categories to be shared with certain individuals in
the network (i.e., friends, friends of friends, groups, everyone). SNs like Facebook
and Google+ have implemented this model, allowing users to create narrower
social circles from among their list of friends and to define which content is shared
with whom. Unfortunately, studies have also shown that users often do not take
advantage of finely-tuned options available to them. The majority of users on
both Facebook and Twitter maintain the default privacy settings established by
the site [12,19], which tend to be more permissive than users would like [23].

In this work, we focus on the topic of privacy, from the perspectives of both
the SN site and its users. We seek to determine an optimal discrete set of privacy
options to be made available to users for content sharing. We define optimality
here from the perspective of the site, taking into account user satisfaction. Intu-
itively, the site is to choose a set of options for users’ shared content in order
to maximize sharing. Yet, the site should allow users to maintain a level of con-
trol over their content without being overwhelmed by too many or too complex
privacy settings from which to choose.

We model the conflicting yet complementary goals of the SN site and its
users as a Stackelberg game whereby the leader (the site) moves first in setting
the privacy options to be made available to user-members for shared content.
Followers (users) respond by selecting privacy settings from among these options.
Payoff to the site can be expressed in terms of amount of shared content and
total user happiness. Payoff to each user depends on how closely the available
options approximate his ideal sharing preferences, which is in turn a function
of an inherent comfort and peer influences. We formally present this two-level
game as well as a characterization of its convergence to a Nash equilibrium in
pure strategies under certain simplifying assumptions. We develop an agent-
based model to approximate optimal strategies on arbitrary network graphs and
validate model assumptions with a study of 60 individuals, run over a mock-SN.

The remainder of this paper is organized as follows. The next section reviews
related work, followed by our problem statement, succeeded by an overview of our
model in Sect. 4. Section 5 presents approximation algorithms, and Sect. 6 dis-
cusses the experimental study we carried out. We conclude the paper in Sect. 7.

2 Related Work

The scale and gravity of privacy and security risks associated with online social
networks have led to a rich body of work addressing a wide spectrum of these
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issues. By sharing their personal information, users in SNs become vulnerable
to attacks from other users, the SN itself, third-party applications linked to
their SN profiles, or other outside attackers able to de-anonymize user data
published by the SN site. See [2,18] for recent reviews. These attacks may take
the form of identity theft [12], scraping and harvesting [21], social phishing [17],
or automated social engineering [3]. The risk of a breach of privacy in some form
is particularly salient for users who are not closely monitoring their privacy
settings or leaving privacy settings at their default values.

As a means of mediating some of these risks, there is a growing literature
using machine learning to determine individual default privacy settings. PriMa
[31] and Privacy Wizard [8] are examples of supervised learning algorithms which
look at the behavior and preferences of a user, the behavior and preferences of
his peer group or related users, and offer a classification of default settings for
different types of shared content. We see this work as complementary to ours
in that it does not suggest a method for the determining the privacy settings
from which a user may choose, but rather once these options are in place, gives
a method for selecting defaults amongst them which may most closely match a
user’s preferences.

This work is related in general to the body of work on game theory in social
networks, both offline and online. Fundamental research efforts exploring cooper-
ation in structured human populations include [23,26,38]. In the realm of online
social networks, game theoretic models have been implemented for the study
of the evolution of various social dilemmas and associated changes in network
structure [9,16,25].

Most closely related to our work is the subset of this research concerning
agent-based decision-making related to privacy and security in online social net-
works. Chen and colleagues model users’ disclosure of personal attributes as a
weighted evolutionary game and discuss the relationship between network topol-
ogy and revelation in environments with varying level of risk [5].

In a series of papers considering the circumstances of deception in online
SNs, Squicciarini et al. characterize a user’s willingness to release, withhold or lie
about information as a function of risk, reward and peer pressure within different
game-theoretic frameworks [29,33]. They describe the relationship between a site
and its users, determining that in the in the presence of a binding agreement
to cooperate (strong guarantees on privacy), most users will agree to share real
identifying information in return for registration in the system [34]. Authors also
use a game theory to model of collective privacy management for photo sharing
in SNs [32,35]. Their approach proposes automated privacy settings for shared
images based on an extended notion of content co-ownership.

To the best of our knowledge, a game-theoretic approach to determining the
privacy policy of an online SN has not been considered before in the literature.

In a previous work [11], we tackled the simpler question of determining a
mandatory lower-bound on shared content. That is, we have addressed the SN
site’s decision of selecting the minimum amount of shared personal information
which should be required of user with an active account in the network. For
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example, Facebook requires all users with a personal account to give a first
name, last name, valid email address, password, gender and birth date. In fact,
Facebook institutes further sharing requirements on various elements of a user’s
profile, e.g., a user’s cover photo is always public [6].

3 Problem Statement

We assume a captive social network site, wherein users share pieces of per-
sonal content freely within the network and possibly with selected subgroups
of network users, according to a set of privacy options for shared content made
available by the site to its users.

We assume the site benefits when users share as freely as possible and it
is of course incentivized to create options that promote the widest distribution
of posted content. The site, however, must also be wary to consider users who
are inherently more cautious about public sharing. A site requiring all shared
content to be public, for example, may lure some users to post publicly who
might otherwise have only shared with a narrower group, i.e., “friends only”.
But in other cases, this policy might have a detrimental effect for the site, as
users may choose not to post at all. In any case, if the privacy setting a user
would prefer for a piece of content is not presented the user will experience some
degree of dissatisfaction in having to select an alternative. Figure 1 illustrates
the problem space.

Users react to the options offered by choosing what to disclose and with
whom. Examples of these settings in practice may include “visible to only me”,
“share with specific individuals”, “share with friends”, “share with my net-
work”and “public”. We abstract away from the details of how privacy options

Fig. 1. There is a natural push and pull between a SN site and its users with regard
to sharing policies.
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are presented to users, and map them to real values on the interval [0, 1]. The
granularity of these options should be fine enough to meet users’ needs, but
coarse enough to be manageable in implementation for both the users and the
SN site.

We formulate the site’s utility as a function of user happiness and shared
content, so that minimally the site would like to make sure that no user is
unable to share content as freely as he would like due to a lack of available
sharing options. In fact, the site would stand to profit by pushing users toward
the upper boundary of their sharing comfort, and having a carefully chosen set
of options may enable this to happen.

We model each user’s utility function as a weighted sum of discomfort and
peer pressure. Specifically, each user will act to minimize the difference between
his selected privacy setting and his personal comfort level, and the difference
between his selected privacy setting and the average privacy settings of his peers.
The intuition is that users have an inherent degree of disclosure they feel most
comfortable with, but are also influenced by their peers when making sharing
decisions [7,14]. Since these two dimensions may not be considered equally for all
users, we introduce weights to capture interpersonal differences in susceptibility
to peer pressure. Precisely, we offer the option of including weights on either
the peer pressure or personal comfort components of the user’s utility function
allowing customization of the model for non-homogeneous users and an oppor-
tunity to strengthen the model in the presence of additional information on user
behavior, which the site may learn through observation.

4 Model Overview

We define two optimization problems: one for the SN user and one for the SN
site. The optimal solutions to these problems determine the behavior of the user
and site regarding privacy policies.

4.1 User Model

Our user model extends the model presented in [11] for the modeling of a lower-
bound on information disclosure for membership in the SN. The motivations and
actions of users with respect to content sharing in this framework are consistent
with this prior work, but will be enacted within the constraints of the site’s
problem which is significantly different.

Assume a SN is represented by a graph G = (V,E), where V is a set of users
(represented by vertices in the graph) and E is the set of social connections
(edges) between them. For the remainder of this paper, assume |V | = N . Users
post information to the SN for reasons known only to themselves. Unlike in [30],
we assume users who are perfectly honest, but may choose to omit (or keep pri-
vate) a certain amount of information. Previous work has observed [10,30] that
users have distinct sharing behaviors for different types of information, depend-
ing on the “social” value of such information (e.g., users are more willing to share
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their gender than their phone number). Assume there are M types of informa-
tion. Since it is nontrivial to specify what a piece of information corresponds to
in a SN, we will abstract away from any specific characterization of information,
and assume User i ∈ V accumulates postable information of type j at a rate of
βj
i (t) (given in bits per second). Each user chooses a proportion (probability) of

information of type j to share, denoted by xj
i (t) ∈ [0, 1].

In general, users do not change their privacy policy frequently [22], and thus
we can consider a simplified problem in which we attempt to find optimal values
for (fixed) xj

i (i ∈ {1, . . . , N}, j ∈ {1, . . . , M}). To do this, we define optimality
in terms of:

1. Peer Pressure (and reputation),
2. Comfort level

Comfort level in the context of privacy and information disclosure refers to
the degree of disclosure users feel comfortable with. This notion, often used to
characterize information sharing in online sites (e.g. [1,7]), is also adopted in our
model. Users reaching their optimal comfort level wish not to change any of their
information sharing practices. Reputation and peer pressure are self-explanatory,
and are combined in a single dimension as they are highly correlated [30].

Without loss of generality, focus on one information type, xi ∈ [0, 1]. To
model peer pressure, we assume that individuals are encouraged to behave in
accordance with the norms of their social group. Thus for User i, we define:

x̄−i =

∑
j∈NG(i) vijxj

VG(i)

where vij ≥ 0 and
VG(i) =

∑

j

vij (1)

is the weighted neighborhood size of i in G. If vij = 1 for all j, then VG(i) =
|NG(i)|, the size of the neighborhood of i in G. The neighborhood may be defined
in terms of the social graph of the user, or it may be a more restrictive subset of
peers with whom the user actively interacts. Let the peer pressure function for
User i be given by:

Pi(x) = vifP (x − x̄−i) (2)

where fP is a concave function with maximum at 0 and vi ≥ 0 is the subjective
weight User i places on the peer pressure function. Thus, the payoff Pi(x) is
maximized as xi approaches x̄−i.

We note that an alternate and equally reasonable approach to defining Pi(x)
is as:

P̃i(x) =
∑

j∈NG(i)

vijfP (x − xj) (3)
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where vij ≥ 0. In this case, User i attempts to minimize a weighted function of
the difference in privacy levels from all of his neighbors simultaneously.

Estimated weights on the link between User i and User j might be obtained,
for example, as a function of the frequency and type of online interactions
between them. This formulation increases the complexity of the problem and
ultimately makes computation more cumbersome, but allows a richer model
when more detailed information about users’ relationships and peer influence is
present.

By similar argument, assume that User i has a sharing level x+
i at which he

is happiest. The comfort function fC(z) for User i is given by:

Ci(x) = wifC(x − x+
i )

for wi ≥ 0, which can be thought of as a user’s tendency to act in preference to his
own comfort rather than in response peer pressure. Here again, fC is concave with
maximum at 0, so that the comfort of User i is maximized as xi approaches x+

i .
In practice x+

i may be difficult to determine for an unknown User i. However,
we assume that based on user demographics, as well as observed overall user
behavior for a mass of users, either at the individual or group level, it is possible
to infer of x+

i , or at least an expected value E[x+
i ] within a tolerated window of

error.
Thus, the total objective function for User i is:

Ji(xi;x−i) = Pi(xi)+Ci(xi) = vifP

(

xi −
∑

j∈NG(i) xj

|NG(i)|

)

+wifC(xi −x+
i ) (4)

or, the weighted variant:

J̃i(xi;x−i) = P̃i(xi) + Ci(xi) =
∑

j∈NG(i)

vijfP (xi − xj) + wifC(xi − x+
i ). (5)

Here, x−i indicates the privacy choices of all other users besides i and we write
Ji(xi;x−i) to indicate that User i’s utility is a function not only of his own
decisions, but also of the decisions of the other users.

When fP and fC are concave, the following proposition holds [27]:

Proposition 1. Assume that each xi is constrained to lie in a convex set Xi ⊆
[0, 1] for i = 1, . . . , N . There is at least one value x∗

i for each User i so that every
user’s objective function is simultaneously maximized and (x∗

1, . . . , x
∗
N ) is a Nash

Equilibrium for the multi-player game defined by any combination of objective
functions J1, . . . , JN or J̃1, . . . , J̃N . ��
By similar reasoning, the preceding proposition can be extended to the case of
multiple independent information types. In this case for each j = 1, . . . , M there
is an equilibrium solution xj∗

i i = 1, . . . , N . Correlated payoffs for information
sharing among information types are beyond the scope of the current work.
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In general, in this case, each user would have an information sharing strategy xi ∈
[0, 1]M and a corresponding multi-dimensional payoff function. The existence
of a Nash equilibrium would be guaranteed for convex functions with convex
constraints.

4.2 Site Model for the Determination of a Discrete Set of Privacy
Options for Shared Content

For the remainder of this paper, we will assume a user objective function of the
form J̃i and fix fC(z) = fP (z) = −z2, which is concave with maximum at zero.
Furthermore, and for notational simplicity, we will consider the minimizing form
of the problem in which User i minimizes −J̃i.

Assume the site offers a discrete set of privacy settings l1, . . . , lK ∈ [0, 1]. Each
user must choose from among these options for each piece of shared content. This
is equivalent to choosing a generic privacy policy within a social network. Let
l be the vector of these options. Define:

yij =

{
1 Player i chooses privacy level j

0 otherwise
(6)

these binary variables indicate the privacy levels of each player. Naturally we
require: ∑

j

yij = 1 (7)

Let y be the matrix of yij values. Furthermore:

xi(y; l) =
K∑

j=1

yij lj

For given values yij (i = 1, . . . , N and j = 1, . . . , K), the payoff to Player i is:

Hi(y; l) =
∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2 (8)

Note, this is simply −J̃i. Then the net payoff to the site is:

J(y; l) =
∑

i

⎛

⎝
∑

j

πjyij − λHi

⎞

⎠ , (9)

where πj is the benefit the site receives for a piece of content shared with privacy
setting j and λ is the weight applied to the payoff of the users; i.e., the weight
the site places on user happiness. When y is determined endogenously by the
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players, then the site’s bi-level combinatorial optimization problem is:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
l

J(y; l) =
∑

i

⎛

⎝
∑

j

πjyij − λHi

⎞

⎠

s.t. l1, . . . , lK ∈ [0, 1]
lj ≤ lj+1 j = 1, . . . K − 1

∀i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi(y; l) = min
yi

∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2

s.t. xi =
K∑

j=1

yij lj

∑

j

yij = 1

yij ∈ {0, 1}

(10)

In this problem, each User i must decide the value of yij independently of all
other users, while being simultaneously affected by her choice. It is clear that
the sub-game has a solution in mixed strategies from Proposition 1, but what is
less clear is whether it has a solution in pure strategies.

Consider the user game-theoretic sub-problem:

∀i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi(y; l) = min
yi

∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2

s.t. xi =
K∑

j=1

yij lj

∑

j

yij = 1

yij ∈ {0, 1}
Define the energy function:

H0(y; l) =
∑

i∈V

∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2 (11)

It is straightforward to see there is a y∗ that minimizes H0(y; l). We characterize
the conditions under which this y∗ is a Nash Equilibrium in pure strategies for
the players. Suppose the optimal solution y∗ yields x∗

i with x∗
i = lj for some

j ∈ {1, . . . , K}. If User i chooses to deviate from this strategy, then her change
in payoff is:

ΔHi = H∗
i −Hi =

∑

j∈N(i)

vij
[
(x∗

i − x∗
j )

2 − (xi − x∗
j )

2
]
+wi

[
(x∗

i − x+
i )2 − (xi − x+

i )2
]

(12)
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while:

ΔHj = H∗
j − Hj = vji

[
(x∗

j − x∗
i )

2 − (x∗
j − xi)2

]
= vji

[
(x∗

i − x∗
j )

2 − (xi − x∗
j )

2
]

(13)
for each j ∈ N(i). Under a symmetric weight assumption (i.e., vij = vji), we
have:

ΔH0 =
∑

i∈V

ΔHi = 2
∑

j∈N(i)

[vij(x∗
i − x∗

j )
2 − (xi − x∗

j )
2]+

wi[(x∗
i − x+

i )2 − (xi − x+
i )2] (14)

Let:

A =
∑

j∈N(i)

vij
[
(x∗

i − x∗
j )

2 − (xi − x∗
j )

2
]

B = wi

[
(x∗

i − x+
i )2 − (xi − x+

i )2
]

Then ΔHi = A + B and ΔH0 = 2A + B. The fact that y∗ is a minimizer for
H0 implies that ΔH0 ≤ 0 otherwise, y∗ could not have been a minimizer. Thus
2A+B ≤ 0. For a rational Player i a change in strategy make sense if (and only
if) A + B > 0. There are four cases to consider:

Case 1: If A ≤ 0 and B ≥ 0, and since 2A + B ≤ 0 and A + B > 0, we have
|A| < |B| ≤ 2|A|. That is, Player i has benefitted by moving closer to her
comfort value, sacrificing reputation. If this is not the case, then there is no
rational reason for Player i to change strategies.

Case 2: If A,B ≤ 0, then immediately ΔHi ≤ 0 and Player i has not benefitted
from changing.

Case 3: If A ≥ 0 and B ≤ 0, then 2A + B ≤ 0 implies |B| ≥ |A| which implies
A + B ≤ 0 and thus Player i would not change to this alternate strategy.

Case 4: If A,B ≥ 0, then 2A + B ≥ 0 and y∗ was either not a minimum or (in
the case when A = B = 0) not a unique minimum.

It follows that only Case 1 prevents a global minimizer for H0 from being a
Nash equilibrium. For wi ≈ 0 we have |B| ≈ 0 and in this case, we see necessarily
that A ≤ 0. Thus the energy minimizing solution is a Nash equilibrium. The
following theorem follows naturally from this analysis:

Theorem 1. For any set of comfort values
{
x+
i

}N

i=1
and fixed privacy levels

l = 〈l1, . . . , lK〉 there is an ε ≥ 0 so that if wi ≤ ε for i = 1, . . . N , then there is
a pure strategy Nash equilibrium for the following game:
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∀i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi(y; l) = min
yi

∑

j∈N(i)

vij(xi − xj)2 + wi(xi − x+
i )2

s.t. xi =
K∑

j=1

yij lj

∑

j

yij = 1

yij ∈ {0, 1}

(15)

��
Remark 1. The results in Theorem 1 can be generalized to a game of the form:

∀i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi(y; l) = min
yi

∑

j∈N(i)

vijfP (xi − xj) + wifC(xi − x+
i )

s.t. xi =
K∑

j=1

yij lj

∑

j

yij = 1

yij ∈ {0, 1}
for appropriately chosen convex functions fC and fP with minima at 0. Moreover,
for wi ≈ 0 the bi-level problem is simply a bi-level combinatorial optimization
problem.

Remark 2. If wi � 0, then the player will conform more closely to her comfort
level and for extremely high values of wi (for i = 1, . . . , N) there is again a pure
strategy Nash equilibrium computed by finding the lk value as close as possi-
ble to Player i’s comfort level. Thus, settings with no pure strategy equilibria
occur when the Players have values wi large enough to prevent a pure strategy
equilibrium consistent with social conformity, but not large enough to cause all
players to follow their own comfort signal.

5 An Approximation Algorithm for Arbitrary
Graphs - A Simulation

We have characterized the circumstances under which there exists a pure strategy
Nash equilibrium for the bi-level optimization problem which describes the site’s
task of choosing a discrete set of privacy settings to optimize its payoff. Namely,
this equilibrium exists in cases of extremely weak or extremely strong comfort
level effects. Even in the case that such an equilibrium exists, we anticipate
that finding the solution explicitly is NP-hard. Bi-level optimization problems
are NP-hard [13], and even evaluating a solution for optimality is NP-hard [36].
Accordingly, an alternate approach in which we find an approximate solution is
needed.
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We argue that an approximation algorithm is also a more realistic approach
in practice, since real SNs do not typically have the sharing comfort level for
each individual user or potentially weighted influences amongst users’ peers a
priori. These parameters of the model are inferred through observation of user
behavior under varying constraints, often using similar techniques to those we
employ in the sequel; that is a site analyzes users’ responses to minor alterations
in its policies and recalibrates accordingly.

Here, we present a two-part algorithm for approximately computing the users’
and site’s utility functions on an arbitrary graphs in order to determine a discrete
set of privacy settings beyond the determined lower bound to be made available
to users in the SN. The Player Algorithm uses fictitious play simulating the con-
vergence of the players’ strategies to a strategy vector dependent on the players’
personal comfort levels and the fixed set of privacy options determined by the SN
site. Note, from Theorem 1, this may in fact be a pure strategy Nash equilibrium
under appropriate assumptions.

To determine the full set l of privacy settings to be offered to users, the Site
Algorithm wraps around the Player Algorithm as follows. The site lets l1 = 0.
Since players are captive to the site in this model, all players adopt strategy l1.
The level of unhappiness each player experiences for being forced to choose l1
is calculated. Next, the site makes available a second option 12 = 11 + δ. The
Player Algorithm uses fictitious play to simulate the convergence of each player’s
strategy to either 11 or 12. A corresponding payoff for the site is calculated.
Provided that there is at least one user whose comfort level for sharing is greater
than l1 and δ is small enough, the addition of option l2 will increase the site’s
payoff. The site moves l2 up by increments of δ, monitoring users’ responses at
each move, recalculating the corresponding site payoff and stopping when this
payoff starts to decrease. Intuitively, when l2 moves too far above individuals’
comfort levels, users will become increasingly unhappy and eventually revert
back to sharing at l1 rather than l2. The local optimum achieved here is taken
as l2 ∈ l. Following this, the site makes available a third option l3 = l2 + δ and
allows players to converge on strategies from the set of three options available,
incrementing l3 as before until a local optimum is achieved. At this time, l3 is
added to l. This heuristic is repeated and the set l of privacy options grows by
one as each local optimum is discovered until no further gains in site payoff or
user happiness can be achieved, which is guaranteed to occur at a value no higher
than the comfort level of the site’s most privacy-lenient user. Pseudocode for the
Player Algorithm and Site Algorithm are given in Figs. 2 and 3, respectively.

Figure 4 visualizes a well-known, real-world social network of members of a
karate club [39]. In the absence of any constraints instituted by the site, equiv-
alently in the case that each user may select his optimal privacy setting for a
given piece of content, the trajectories of users’ selections are guided by inherent
personal comfort with sharing and the influence of their peers. Immediate neigh-
bors in the graph are considered peers. We simulate the trajectory of privacy
selections for member-users of the karate club network, first given the player
algorithm described above in the unconstrained case, namely assuming that
users have access to the complete set of options on the interval [0, 1]. Figure 5
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Fig. 2. PlayerAlgorithm Fig. 3. Site Algorithm

Fig. 4. A visualisation of the karate club network.

Fig. 5. A visualisation of players’ strategies over time, initialised randomly, according
to the user model
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illustrates players’ strategies over time. Strategies are initialized as user’s indi-
vidual sharing comfort levels and comfort levels are selected uniformly randomly
from the interval [0, 1]. Notice that in this case, the vector of user strategies con-
verges to equilibrium, as guaranteed by Proposition 1.

As described, the site’s approximation algorithm influences the user model
by iteratively choosing a discrete set of options to be made available to users,
simulating user behavior given those constraints, and then adjusting the set of
options by small increments until local optima are discovered. A visualization of
site payoff during this process simulated over the karate club network is given in
Fig. 6. Local optima occur at x = {0.4, 0.6, 0.72, 0.88}, so the site determines the
set of privacy options as l1 = 0.4, l2 = 0.6, l3 = 0.72, l4 = 0.88 and l5 = 1. User
comforts are the same as those given in Fig. 5, and we choose δ = 0.04. Note
that the choice of δ may indicate a site’s willingness to offer a finer granularity of
privacy options to its users. A greater value of δ will lead to the discovery of fewer
local optima, while smaller delta will yield more. This choice may also depend
on the initial set of user comforts and the site business model. To this extent,
the general algorithm we present here is the framework for a more personalized
algorithm representative of a site’s policies, practices and user base.

0.2 0.4 0.6 0.8 1.0
Privacy Setting

15

10

5

5

10

Site Payoff

Fig. 6. Site payoff as privacy options are iteratively made available

6 Experimental Results

We designed and executed experiments to evaluate two of our key assumptions
with a user study involving 60 participants in a simulated social network. First,
our core model assumes that users’ sharing decisions are influenced by a weighted
sum of peer influence and personal comfort. We aim to determine whether pos-
tulated effects peer influence may be observed, even in a simulated context.
Second, we seek to determine whether the iterative approach we take in our
approximation algorithm may be assumed to in fact approximate the optimal
discrete set of privacy options offered by the site. Hypothesizing that it will, we
expect to rule out the notion that iterative presentation of an increased number
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Fig. 7. Sample screenshot from Phase 2

of sharing options will significantly alter or confuse optimal individual prefer-
ences. Put more simply, users will not change their decision if they are offered an
(optimal) set of privacy options l in one shot verses if l is iteratively built. These
two assumptions are at the core of our user model and site model, respectively,
and therefore validating them gives confidence in theoretical findings.

Subjects were presented with a series of images and asked to select a privacy
setting for each, to be uploaded to social media. We organized the study in three
distinct “phases”.

1. In Phase 1 of our experiment, subjects were shown 15 images and given
five sharing options from which to choose for each, i.e., “only me”, “selected
friends”, “friends”, “my network” and “public”.

2. In Phase 2, subjects were shown the same images again and asked to choose
from amongst the same options, but with the addition of the privacy selections
of four of the subject’s”friends” listed next to each image (see Fig. 7 for a
sample screenshot). In attempt to create a more realistic sense of friendship
between the subject and the simulated users, we endowed each simulated
user with a profile page including demographic information, photos and other
personal details and hyperlinked these profile pages throughout. Subjects were
divided into several subgroups and treated to three variations of peer pressure
in which friends’ selections were skewed towards more private (skew-down),
more public (skew-up) or random. In Sect. 6.1, we compare the selections
of each user in Phase 1 (which we take as a baseline) with their selections
in Phase 2. We expect that users may be influenced to increase their privacy
restrictions when seeing that their peers are sharing more conservatively than
they are, while on the other hand users may feel comfortable sharing more
freely when their friends do the same.
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3. Phase 3 was designed to test whether the iterative addition of privacy options
(see Sect. 5) would influence users’ ultimate privacy selections. Assuming a
fixed set of options (i.e., l1 =“only me”, l2 =“selected friends”, l3 =“friends”,
l4 =“my network”, l5 =“public”), we iteratively presented subjects with a
subset of photos from Phase 1 and Phase 2. At first, subjects were offered
only l1 and l2 as privacy settings, next l1, l2 and l3, subsequently l1 through
l4, and finally l1 through l5. Variants of Phase 3 incorporating skew-down,
skew-up and random peer pressure, implemented identically as in Phase 2,
were also included for subsets of participants. In Sect. 6.2, we compare the
selections of each user in Phase 2 with the their selections in the final iteration
of Phase 3.

Participants in our study were 68% female and 32% male, with mean age
25.6 and standard deviation 2.98. In an initial survey preceding the experiment
100% of subjects claimed to have an account with at least one social media
site, with 92% asserting that they maintain at least one “comprehensive” social
media profile. On average, subjects claimed to participate in 3.4 different social
networks, including Facebook, Instagram, Twitter, LinkedIn, Pinterest, Google+
and Vine.

6.1 Experimental Results: Peer Pressure Effects on Privacy
Preferences

With respect to peer pressure, subjects were queried during the initial survey
on several points related to privacy and peer pressure in content sharing. Over
half (54.7%) of subjects admitted to sometimes, often or always posting content
with one privacy setting and later changing their mind and revising this setting,
with 70% of these subjects citing peer pressure as the reason for the revision.

In Table 1, we present the results of a one-factor analysis of variance
(ANOVA) on change from baseline privacy selections for users treated with skew-
down, skew-up or random peer influence in Phase 2. To quantify privacy options,
we let l1 = 1, l2 = 2, l3 = 3, l4 = 4 and l5 = 5. For each subject, for each image,
we let change from baseline be defined as (value of selection in Phase 2)-(value
of selection in Phase 1). Note that a significant change in user sharing is detected
in both subgroups subjected to a consistent peer pressure in either direction of
more or less sharing. As might be expected, no significant change in sharing is
detected in the random pressure control group. Of note, the most statistically
significant change is observed when users are exposed to skew-down peer pres-
sure, that is, when participants observe a change of their friends’ privacy settings
toward more conservative choices. This finding is consistent with the participants
response of change of settings mentioned above, and also in line with existing
research in this field [4,37], which has shown how users may change their mind
with respect to sharing and may tend to be more conservative once they see the
“network” behavior or reactions to their choices.

Follow-on ANOVA analyses blocking on subjects and images also give insight
into more subtle user behavior dynamics. In both the skew-up and skew-down
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groups, subject effects (i.e., the affect a subject’s identity had on output privacy
settings) were highly significant (p ≈ 0). This finding is intuitive and serves
as strong justification for the inclusion of the parameter vi in Eq. 2. That is,
we must consider individual differences in susceptibility to peer pressure when
implementing this type of model. Interestingly, an image effect was present in one
of the experimental groups as well. Specifically, a significant effect was observed
when image number was treated as an input in the skew-up group (p = 0.0013)
but not for skew-down (p = 0.1887). When considered alongside the strength of
skew-down peer pressure effects noted in Table 1, we suggest that these finding
may again indicate users’ readiness to make more conservative sharing choices
for all photos, but hesitance to share more freely for specific images they would
prefer to keep private, even when influenced to do so.

Table 1. Change from baseline after exposure to peer influence (Phase 2)

Subjects Average Change p-Value

Skew-Down 17 -0.305 0.0067

Skew-Up 19 +0.192 0.049

Random 17 -0.086 0.375

6.2 Experimental Results: Iterative Approximation of Privacy
Preferences

We have argued that using an approximation algorithm is both necessary and
realistic, in the context of our bi-level optimization problem describing the site’s
task of choosing an optimal set of privacy options to offer its users. We here
seek to validate the notion that an iterative approach like the one we take in
our proposed algorithm does not disturb players’ optimal privacy selections as
determined in the theoretical case. Following we present the results of Phase 3
of the experiment, as described above.

For this analysis, we again separate study participants into subgroups by the
peer pressure to which they were exposed, if any. Table 2 gives the results of a
one-factor analysis of variance (ANOVA) on change from Phase 2 privacy selec-
tions for users treated with skew-down, skew-up or random peer influence. As a
control group for this Phase, we keep a subset of subjects away from any expo-
sure to peer pressure (that is, these subjects did not participate in Phase 2) and
compare their results for Phase 3 with their Phase 1 baseline selections. Findings
here indicate no significant change in users’ final privacy selections due to the
iterative nature of presentation of the options in any of the experimental groups,
validating the approximation-algorithm approach as a reasonable alternative for
modelling user behavior in cases that closed-form solutions are intractable.

We note here that Phase 3 studies user behavior given that options l1, l2 and
so forth are presented additively one by one. The approximation algorithm as it
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Table 2. Change from Phase 2 selections in the iterated model (Phase 3)

Subjects Average Change p-Value

No Peer Pressure 7 0.086 0.774

Skew-Down 17 -0.28 0.19

Skew-Up 19 -0.2 0.282

Random 17 -0.117 0.527

presented is deployed accordingly, but also includes a routine for the selection
of the set of values {li} making very small, incremental changes to each li and
monitoring users’ responses throughout.

7 Conclusion

In this paper, we have presented a model for privacy decision-making in the
context of online social networks. We have modeled the site’s role in setting
privacy policies that can help to retain users while also optimizing the site’s
payoff. Our work lays the foundation for further game-theoretic modeling of
privacy-related behaviors in online SNs toward the better understanding of the
interplay and repercussions of site and user choices.

As future work, we will refine the outlined approximation algorithm, with
particular focus on how incremental privacy boundaries could actually be offered
to end users. We also plan to investigate how changes to the social network
topology and user attitudes towards privacy over time may affect this game.
Finally, we plan to carry out more extensive user studies to validate our findings.
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and Christopher Kiekintveld4

1 Department of Computer Science, Agent Technology Center,
Czech Technical University in Prague, Prague, Czech Republic

{karel.durkota,viliam.lisy}@agents.fel.cvut.cz
2 Department of Computing Science, University of Alberta, Edmonton, Canada

3 Department of Computer Science, Aarhus University, Aarhus, Denmark
bosansky@cs.au.dk

4 Computer Science Department, University of Texas at El Paso, El Paso, USA
cdkiekintveld@utep.edu

Abstract. We study the problem of network security hardening, in
which a network administrator decides what security measures to use to
best improve the security of the network. Specifically, we focus on deploy-
ing decoy services or hosts called honeypots. We model the problem as
a general-sum extensive-form game with imperfect information and seek
a solution in the form of Stackelberg Equilibrium. The defender seeks
the optimal randomized honeypot deployment in a specific computer
network, while the attacker chooses the best response as a contingency
attack policy from a library of possible attacks compactly represented
by attack graphs. Computing an exact Stackelberg Equilibrium using
standard mixed-integer linear programming has a limited scalability in
this game. We propose a set of approximate solution methods and ana-
lyze the trade-off between the computation time and the quality of the
strategies calculated.

1 Introduction

Networked computer systems support a wide range of critical functions in both
civilian and military domains. Securing this infrastructure is extremely costly
and there is a need for new automated decision support systems that aid human
network administrators to detect and prevent the attacks. We focus on network
security hardening problems in which a network administrator (defender) reduces
the risk of attacks on the network by setting up honeypots (HPs) (fake hosts
or services) in their network [30]. Legitimate users do not interact with HPs;
hence, the HPs act as decoys and distract attackers from the real hosts. HPs can
also send intrusion detection alarms to the administrator, and/or gather detailed
information the attacker’s activity [13,29]. Believable HPs, however, are costly
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to set up and maintain. Moreover, a well-informed attacker anticipates the use of
HPs and tries to avoid them. To capture the strategic interactions, we model the
problem of deciding which services to deploy as honeypots using a game-theoretic
framework.

Our game-theoretic model is motivated in part by the success of Stackelberg
models used in the physical security domains [33]. One challenge in network secu-
rity domains is to efficiently represent the complex space of possible attack strate-
gies, we make use of a compact representation of strategies for attacking com-
puter networks called attack graphs. Some recent game-theoretic models have also
used attack graphs [12,19], but these models had unrealistic assumptions that the
attacker has perfect information about the original network structure. The major
new feature we introduce here is the ability to model the imperfect information
that the attacker has about the original network (i.e., the network structure before
it is modified by adding honeypots). Imperfect information of the attacker about
the network have been proposed before [8,28], however, the existing models use
very abstract one step attack actions which do not allow the rich analysis of the
impact of honeypots on attacker’s decision making presented here.

Attack graphs (AGs) compactly represent a rich space of sequential attacks
for compromising a specific computer network. AGs can be automatically gen-
erated based on known vulnerability databases [15,26] and they are used in
the network security to identify the minimal subset of vulnerabilities/sensors
to be fixed/placed to prevent all known attacks [24,32], or to calculate security
risk measures (e.g., the probability of a successful attack) [14,25]. We use AGs
as a compact representation of an attack plan library, from which the rational
attacker chooses the optimal contingency plan.

The defender in our model selects which types of fake services or hosts to
add to the network as honeypots in order to minimize the trade-off between
the costs for deploying HPs and reducing the probability of successful attacks.
We assume that the attacker knows the overall number of HPs, but does not
know which types of services the defender actually allocated as HPs. This is in
contrast to previous work [12], where the authors assumed a simplified version
to our game, where the attacker knows the types of services containing HPs. The
uncertainty in the existing model is only about which specific service/computer is
real among the services/computers of the same type. Our model captures more
general (and realistic) assumptions about the knowledge attackers have when
planning attacks, and we show that the previous perfect information assumptions
can lead to significantly lower solution quality.

Generalizing the network hardening models to include imperfect information
greatly increases the computational challenge in solving the models, since the
models must now consider the space of all networks the attacker believes are
possible, which can grow exponentially. Computing Stackelberg equilibria with
stochastic events and imperfect information is generally NP-hard [18] and algo-
rithms that compute the optimal solution in this class of games typically do
not scale to real-world settings [7]. Therefore we (1) present a novel collection of
polynomial time algorithms that compute approximate solutions by relaxing cer-
tain aspects of the game, (2) experimentally show that the strategies computed
in the approximated models are often very close to the optimal strategies in the
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original model, and (3) propose novel algorithms to compute upper bounds on
the expected utility of the defender in the original game to allow the evaluation
of the strategies computed by the approximate models even in large games.

2 Background and Definitions

We define a computer network over a set of host types T , such as firewalls,
workstations, etc. Two hosts are of the same type if they run the same services,
have the same vulnerabilities and connectivity in the network and have the same
value for the players (i.e., a collection of identical workstations is modeled as a
single type). All hosts of the same type present the same attack surface, so
they can be represented only once in an attack graph. Formally, a computer
network x ∈ N

T
0 contains xt hosts of type t ∈ T . An example network instance

is depicted in Fig. 1a, where, e.g., host type WS1 represents 20 workstations of
the same type. We first define attack graphs for the case where attackers have
perfect information about the network.

Attack Graph. There are multiple representations of AGs common in the liter-
ature. Dependency AGs are more compact and allow more efficient analysis than
the alternatives [21]. Formally, they are a directed AND/OR graph consisting
of fact nodes and action nodes. Fact nodes represent logical statements about
the network and action nodes correspond to the attacker’s atomic actions. Every
action a has preconditions, set of facts that must be true in order to preform
the action, and effects, set of facts that become true if action succeeds, in which
case the attacker obtains the rewards of corresponding facts. Moreover, action a
has probability of being performed successfully pa ∈ [0, 1], cost ca ∈ R

+ that the
attacker pays regardless whether the action succeeded or not, and a set of host
types τa ⊆ T that action a interacts with. The first time the attacker interacts
with a type t ∈ T , a specific host of that type is selected with a uniform proba-
bility. Since we assume a rational attacker, future actions on the same host type
interact with the same host. Interacting with different host of the same type (1)
has no additional benefit for the attacker as rewards are defined based on the
types and (2) can only increases the probability of interacting with a honeypot
and ending the game. The attacker can terminate the attack any time. We use
the common monotonicity assumption [1,23,26] that once a fact becomes true
during an attack, it can never become false again as an effect of any action.

Fig. 1. Simple (a) business-like and (b) chain network topology.
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AGs can be automatically generated using various tools. We use the Mul-
VAL [27] to construct dependency AGs from information automatically collected
using network scanning tools, such as Nessus1 or OpenVAS2. These AGs con-
sist of an attacker’s atomic actions, e.g., exploit actions for each vulnerability
of each host, pivoting “hop” actions between the hosts that are reachable from
each other, etc. Previous works (e.g., [31]) show that probabilistic metrics can be
extracted from the Common Vulnerability Scoring System [22], National Vulner-
ability Database [2], historical data, red team exercises, or be directly specified
by the network administrator.

Attack Policy. In order to fully characterize the attacker’s attack, for a given
AG we compute a contingent attack policy (AP), which defines an action from
the set of applicable actions according to the AG for each situation that may arise
during an attack. This plan specifies not only the actions likely to be executed
by a rational attacker, but also the order of their execution. Linear plans that
may be provided by classical planners (e.g., [5,21]) are not sufficient as they
cannot represent attacker’s behavior after action failures. The optimal AP is the
AP with maximal expected reward for the attacker. See [12] for more details on
the attack graphs and attack policies and explanatory examples.

3 Imperfect Information HP Allocation Game

A real attacker does not know the network topology deployed in the company,
but may have prior beliefs about the set of networks that the organization would
realistically deploy. We assume that the attacker’s prior belief about the set
of networks that the organization is likely to deploy is common knowledge to
both players. However, the attacker may know a subset of host types used by
the organization, we refer to as a basis of a network, e.g., server, workstation,
etc. To capture the set of networks we model the game as an extensive-form
game with a specific structure. Nature selects a network from the set of possible
networks (extensions of the basis network) with the probabilities corresponding
to the prior attacker’s beliefs about the likelihood of the different networks. The
defender observes the actual network and hardens it by adding honeypots to
it. Different networks selected by nature and hardened by the defender may
lead to networks that look identical to the attacker. The attacker observes the
network resulting from the choices of both, nature and the defender, and attacks
it optimally based on the attack graph for the observed network. We explain
each stage of this three stage game in more detail for the simple example in
Fig. 2.

3.1 Nature Actions

For the set of host types T , total number of hosts n ∈ N and basis net-
work b ∈ N

T
0 , we generate set of possible networks X including all possible

1 http://www.nessus.org
2 http://www.openvas.org

http://www.nessus.org
http://www.openvas.org
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Fig. 2. Simple game tree with |T | = 3 host types, basis b = (1, 0, 1), number of hosts
n = 3 and k = 1 HP. The defender’s costs for HPs are ch1 = 4 and ch3 = 1. The attacker’s
attack action 1 (resp. 3) exploits vulnerability of host type 1 (resp. 3), costs c1 = 8
(resp. c3 = 4); reward is r1 = 40 (resp. r3 = 10); and success probability p1 = 0.2
(resp. p3 = 0.4). The action’s probabilities of interacting with honeypot (h) depend on
defender’s honeypot allocations and probabilities of succeeding (s) and failing (f) are
accordingly normalized. Attacker’s action 0 denotes the attacker ends his attack, which
leads to the terminal state. In the chance nodes (except the one in the root) nature
chooses weather the previous action: interacts with the HP (h), did not interact with
HP and succeeded (s) or failed (f) with the given probabilities.

combinations of assigning n hosts into T host types that contain basis in it
(∀x ∈ X : ∀t ∈ T : xt ≥ bt). E.g., in Fig. 2 the set of types is T = {D,W,S}
(e.g., database, workstation, server), and the network basis is b = (1, 0, 1), a data-
base and a server. Nature selects a network x ∈ X = {(2, 0, 1), (1, 1, 1), (1, 0, 2)}
with uniform probability δx = 1

3 .

3.2 Defender’s Actions

Each network x ∈ X the defender further extends by adding k honeypots of types
from T . Formally, set of all defender’s actions is Y = {y ∈ N

T
0 |∑t∈T yt = k}.

Performing action y ∈ Y on network x ∈ X results in network z = (x, y), where
each host type t consist of xt real hosts and yt HPs. The attacker’s action on host
type t interacts with a honeypot with probability ht = yt

xt+yt
. Let Z = X × Y

be the set of all networks created as fusion of x ∈ X with y ∈ Y . We also define
ch
t ∈ R+ to be the cost that the defender pays for adding and maintaining a HP

of type t. In the example in Fig. 2 the defender adds k = 1 HP and set of the
defender’s actions is Y = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Extending each network
x ∈ X by every choice from Y results in |Z| = 9 different networks.
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3.3 Attacker’s Actions

The attacker observes the number of hosts of each type, but not whether they
are real or honeypots. The attacker’s imperfect observation is modeled using
information sets I that form a partition over the networks in Z. Networks in an
information set are indistinguishable for the attacker. Two networks z = (x, y)
and z′ = (x′, y′) belong to the same information set I ∈ I if and only if ∀t ∈ T :
xt + yt = x′

t + y′
t holds. Networks z, z′ ∈ I have the same attack graph structure

and differ only in the success probabilities and probabilities of interacting with a
honeypot, therefore, they produce the same set of attack policies. Let SI denote
the set of valid attack policies in information set I. We also define I(z) (resp.
I(x, y)) to be a function that for a given network z (resp. (x, y)) returns the
information set I ∈ I such that z ∈ I (resp. (x, y) ∈ I). Executing the AP
s ∈ SI leads to the terminal state of the game. In the example in Fig. 2, the
attacker observes 6 different information sets, three singletons (contain only one
network), e.g., {((2, 0, 1), (1, 0, 0))}, and three information sets that contain two
networks (denoted with dashed lines), e.g., I1 = {z1 = ((2, 0, 1), (0, 0, 1)), z2 =
((1, 0, 2), (1, 0, 0))}. An example of AP is: perform action 3 in I1; if it succeeds,
continue with action 1 and if fails then 0.

3.4 Players’ Utilities

The players utilities in terminal state l ∈ L with path P from the root of the
game tree to l is computed based on three components: Rl - the sum of the
rewards

∑
t∈T s rt for successfully compromising host types T s ⊆ T along P ;

Cl - the sum of the performed action costs by the attacker along P , and Hl -
the defender’s cost for allocating the HPs along P . The defender’s utility is then
ud(l) = −Rl − Hl and attacker’s utility is ua(l) = Rl − Cl. Utility for an attack
policy is expected utility of the terminal states. Although we assume that Rl is
a zero-sum component in the utility, due to player private costs Hl and Cl the
game is general-sum.

In our example in Fig. 2, utilities are at the leaf of the game tree labeled with
two values. The value at the top is the defender’s utility and at the bottom is
the attacker’s utility in that terminal state. We demonstrate the player’s utility
computations for the terminal state, the bold one in Fig. 2, we refer as to l1. The
three components are as follows: Rl1 = r1 = 40 (only action 1 succeeded), Cl1 =
c1 + c3 = 12 (attempted actions were 1 and 3) and Hl1 = ch

3 = 1 (for allocating
HP in as type t = 3); thus the attacker’s utility is ua(l1) = Rl1 − Cl1 = 28 and
the defender’s ud(l1) = −Rl1 − Hl1 = −41.

3.5 Solution Concepts

Formally, we define the Stackelberg solution concept, where the leader (the
defender in our case) commits to a publicly known strategy and the follower
(the attacker in our case) plays a best response to the strategy of the leader.
The motivated attacker may be aware of the defender’s use of game-theoretic
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approach, in which case the attacker can compute or learn from past experi-
ences the defender’s strategy and optimize against it. We follow the standard
assumption of breaking the ties in favor of the leader (often termed as Strong
Stackelberg Equilibrium, (SSE); e.g. [11,33]).

We follow the standard definition of strategies in extensive-form games.
A pure strategy πi ∈ Πi for player i ∈ {d, a} is an action selection for every
information set in the game (Πi denotes the set of all pure strategies). Mixed
strategy σi ∈ Σi for player i is a probability distribution over the pure strategies
and Σi is the set of all mixed strategies. We overload the notation for the utility
function and use ui(σi, σ−i) to denote the expected utility for player i if the
players are following the strategies in σ = (σi, σ−i). Best response pure strategy
for player i against the strategy of the opponent σ−i, denoted BRi(σ−i) ∈ Πi, is
such that ∀σi ∈ Σi : ui(σi, σ−i) ≤ ui(BRi(σ−i), σ−i). Let d denote the defender
and a the attacker, then Stackelberg equilibrium is a strategy profile

(σd, πa) = arg max
σ′
d∈Σd;π′

a∈BRa(σ′
d)

ud(σ′
d, π

′
a).

In our game, the defender chooses honeypot types to deploy in each network
x ∈ X and the attacker chooses pure strategy πa ∈ Πa = ×I∈ISI , an attack
policy to follow in each information set I ∈ I.

4 Game Approximations

The general cases of computing Stackelberg equilibria of imperfect information
games with stochastic events is NP-hard [18]. The state-of-the-art algorithm
for solving this general class of games uses mixed-integer linear programming
and the sequence-form representation of strategies [7]. Our case of attack graph
games is also hard because the size of the game tree representation is exponential
in natural parameters that characterize the size of a network (number of host
types T , number of hosts n, or number of honeypots k), which further limits the
scalability of algorithms. We focus here on a collection of approximations that
find strategies close to SSE in polynomial time w.r.t. the size of the game tree.
We present the general idea of several approximation methods first, and discuss
the specific details of new algorithms in the next section.

4.1 Perfect Information Game Approximation

A straightforward game approximation is to remove the attacker’s uncertainty
about the actions of nature and the defender, which results in a perfect informa-
tion (PI) game. Although the authors in [18] showed that in general the PI game
with chance nodes is still NP-hard to solve, the structure of our game allows us
to find a solution in polynomial time. The nature acts only once and only at the
beginning of game. After nature’s move the game is a PI game without chance
nodes, which can be solved in polynomial time w.r.t. the size of the game [18]. To
solve the separate subgames, we use the algorithm proposed in [12]. It computes
the defender’s utility for each of the defender’s actions followed by attacker’s best



Approximations of Imperfect Information Games 235

response. Next, the algorithm selects the best action to be played in each sub-
game by selecting the action with maximal utility for the defender. In Sect. 5.2
we discuss the algorithm that computes the optimal attack policy.

4.2 Zero-Sum Game Approximation

In [17] the authors showed that under certain conditions approximating the
general sum (GS) game as a zero-sum (ZS) game can provide an optimal strategy
for the GS game. In this section we use a similar idea for constructing ZS game
approximations, for which we compute a NE that coincides with SSE in ZS
games. A NE can be found in polynomial time in the size of the game tree using
the LP from [16].

Recall that in our game the defender’s utility is ud(l) = −Rl − Hl and the
attacker’s utility is ua(l) = Rl − Cl for terminal state l ∈ L. In the payoff
structure Rl is a ZS component and the smaller |Hl −Cl|, the closer our game is
to a ZS game. We propose four ZS game approximations: (ZS1) players consider
only the expected rewards of the attack policy ud(l) = −Rl; (ZS2) consider only
the attacker’s utility ud(l) = −Rl +Cl; (ZS3) consider only the defender’s utility
ud(l) = −Rl − Hl; and (ZS4) keep the player’s original utilities with motivation
to harm the opponent ud(l) = −Rl − Hl + Cl.

We also avoid generating the exponential number of attack policies by using
a single oracle algorithm (Sect. 5.1). This algorithm has two subroutines: (i)
computing a SSE of a ZS game and (ii) finding the attacker’s best response
strategy to the defender’s strategy. The attacker’s best response strategy we
find by translating the problem into the Partially Observable Markov Decision
Process (POMDP), explained in Sect. 5.2.

4.3 Commitment to Correlated Equilibrium

The main motivation for this approximation is the concept of correlated equilib-
ria and an extension of the Stackelberg equilibrium, in which the leader commits
to a correlated strategy. It means that the leader not only commits to a mixed
strategy but also to signal the follower an action the follower should take such
that the follower has no incentive to deviate. This concept has been used in
normal-form games [10] and stochastic games [18]. By allowing such a richer set
of strategies, the leader can gain at least the same utility as in the standard
Stackelberg solution concept.

Unfortunately, computing commitments to correlated strategies is again an
NP-hard problem in general extensive-form games with imperfect information
and chance nodes (follows from Theorem 1.3 in [34]). Moreover, the improvement
of the expected utility value for the leader can be arbitrarily large if commitments
to correlated strategies are allowed [18]. On the other hand, we can exploit these
ideas and the linear program for computing the Stackelberg equilibrium [10], and
modify it for the specific structure of our games. This results in a novel linear
program for computing an upper bound on the expected value of the leader in
a Stackelberg equilibrium in our game in Sect. 5.3.
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5 Algorithms

5.1 Single Oracle

The single oracle (SO) algorithm is an adaptation of the double oracle algorithm
introduced in [6]. It is often used when one player’s action space is very large (in
our case the attacker’s). The SO algorithm uses the concept of a restricted game
Ĝ, which contains only a subset of the attacker’s actions from the full game G.

In iteration m the SO algorithm consists of the following steps: (i) compute
SSE strategy profile (σ̂m

d , π̂m
a ) (if m = 1 then σ̂1

d is a strategy where the defender
plays every action with uniform probability) of the restricted game Ĝ and com-
pute the attacker’s best response πm

a = BRa(σ̂m
d ) in the full game G. If all

actions from πm
a are included in the restricted game Ĝ, the algorithm returns

strategy profile (σ̂m
d , π̂m

a ) as a SSE of the full game G. Otherwise, (ii) it extends
the restricted game Ĝ by including the attacker’s policies played in π̂m

a and goto
(i) with incremented iteration counter m. Initially Ĝ contains all nature’s and
the defender’s actions and none of the attacker’s actions. We use this algorithm
to solve all four variants of the ZS approximations proposed in Sect. 4.2. We
refer to this approach as SOZS.

The SO algorithm is also well defined for GS games and can be directly
applied to the original game. However, it does not guarantee that the computed
SSE of the Ĝ is also the SSE of G. The reason is that the algorithm can converge
prematurely and Ĝ may not contain all the attacker’s policies played in SSE in G.
Nevertheless, the algorithm may find a good strategy in a short time. We apply
this algorithm to our GS game and use mixed integer linear program (MILP)
formulation ([7]), to compute the SSE of Ĝ in each iteration. Finding a solution
for a MILP is an NP-complete problem, so this algorithm is not polynomial. We
refer to this approach as SOGS.

5.2 Attacker’s Optimal Attack Policy

The attacker’s best response πa = BRa(σd) to the defender’s strategy σd is
computed by decomposing the problem into the subproblems of computing the
optimal AP for each of the attacker’s information set separately. We can do that
because subgames of any two informations sets do not interleave (do not have
any common state). We calculate the probability distribution of the networks
in an information set based on σd, which is the attacker’s prior belief about
the probabilities about the states in the information set. The networks in an
information set produce the same attack graph structure. However, the actions
may have different probabilities of interacting with the honeypots depending on
the defender’s honeypot deployment on the path to that network.

Single Network. First, we describe an existing algorithm that finds the optimal
AP for a single AG for a network, introduced in [12]. The algorithm translates
the problem of finding the optimal AP of an AG into a (restricted) finite horizon
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Markov Decision Process (MDP) and uses backward induction to solve it. A state
in the MDP is represented by: (i) the set of executable attack actions α in
that state (according to the AG), (ii) the set of compromised host types and
(iii) the set of host types that the attacker interacted with so far. In each state the
attacker can execute an action from α. Each action has a probabilistic outcome
of either succeeding (s), failing (f), or interacting with a honeypot (h), described
in detail in [12]. After each action, the sets that represent the MDP state are
updated based on the AG, the performed action and its outcome (e.g., the actions
that became executable are added to α, the performed action and actions no
longer needed are removed, etc.), which represents a new MDP state. If the
action successfully compromises a host type t, reward rt is assigned to that
transition. The MDP can be directly incorporated into the game tree, where the
attacker chooses an action/transition in each of his states and stochastic events
are modeled as chance nodes. The rewards are summed and presented in the
terminal states of the game. The authors propose several pruning to generate
only promising and needed part of the MDP such as branch and bound and
sibling-class theorem and speed-up techniques, such as dynamic programming,
which we also adopt.

Multiple Networks. The previous algorithm assumes that the MDP states can
be perfectly observed. One of our contributions in this paper is an extension of
the existing algorithm that finds the optimal AP for a set of networks with a prior
probability distribution over them. The attacker has imperfect observation about
the networks. We translate the problem into a POMDP. Instead of computing
the backward induction algorithm on single MDP, we compute it concurrently
in all MDPs, one per network in the information set. In Fig. 2 we show a part of
the POMDP for information set I1, which consists of two MDPs, one for network
z1 and another for z2.

The same action in different MDPs may have different transition probabil-
ities, so we use Bayes rule to update the probability distribution among the
MDPs based on the action probabilities. Let J be the number of MDPs and let
βj(o) be the probability that the attacker is in state o in MDP j ∈ {1, . . . , J}.
Performing action a leads to state o′ with probability Pj(o, o′, a). The updated
probability of being in j-th MDP given state o′ is βj(o′) = Pj(o,o′,a)βj(o)∑J

j′=1 Pj′ (o,o′,a)βj′ (o)
.

This algorithm returns the policy with the highest expected reward given the
probability distribution over the networks. During the optimal AP computation,
we use similar pruning techniques to those described in [12].

5.3 Linear Program for Upper Bounds

In [10] the authors present a LP that computes SSE of a matrix (or normal-
form) game in polynomial time. The LP finds the probability distribution over
the outcomes in the matrix with maximal utility for the defender under the
condition that the attacker plays a best response. We represent our game as a
collection of matrix games, one for each of the attacker’s IS, and formulate it as
a one LP problem.
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Formally, for each attacker’s information set I ∈ I we construct a matrix
game MI where the defender chooses network z ∈ I (more precisely an action
y ∈ Y that leads to network z ∈ I) and the attacker chooses an AP s ∈ SI for
information set I. The outcomes in the matrix game coincide with the outcomes
in the original extensive-form game. The LP formulation follows:

max
∑

x∈X

∑

y∈Y

∑

s∈SI(x,y)

pxysud(x, y, s) (1a)

s.t. :(∀I ∈ I, s, s′ ∈ SI) :
∑

(x,y)∈I

pxysua(x, y, s) ≥
∑

(x,y)∈I

pxysua(x, y, s′) (1b)

(∀x ∈ X, y ∈ Y ) :
∑

x∈X

∑

y∈Y

∑

s∈SI(x,y)

pxys = 1 (1c)

(∀x ∈ X, y ∈ Y, s ∈ SI(x,y)) : pxys ≥ 0 (1d)

(∀x ∈ X) :
∑

y∈Y

∑

s∈SI(x,y)

pxys = δx, (1e)

where the only variables are pxys, which can be interpreted as probability that
natures play x, the defender plays y and the attacker is recommended to play
s. The objective is to maximize the defender’s expected utility. Constraint 1b
ensures that the attacker is recommended (and therefore plays) best response.
It states that deviation from the recommended action s by playing any other
action s′ does not increase the attacker’s expected utility. Equations 1c and 1d
are standard probability constraints and 1e restricts the probabilities of the
outcomes to be coherent with the probabilities of the chance node.

We demonstrate our approach on game in Fig. 3a. The game consists of two
ISs: I1 = {z11, z23} and I2 = {z12, z24} each corresponds to a matrix game in
Fig. 3b. The defender’s actions y1 and y3 lead to I1 and y2 and y4 lead to I2. The
attacker’s attack policies are SI1 = {s1, s2} and SI2 = {s3, s4}. The probabilities
of the terminal states of the game tree correspond to the outcome probabilities
in the matrix games (px,y,s). Moreover, the probabilities p111, p112, p123 and p124
sum to δ1, as they root from nature’s action x1 played with probability δ1. The
same holds for the other IS.

Fig. 3. The extensive-form game in (a) translated into two normal-form games in (b).
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This LP has weaker restrictions on the solution compared to the MILP for-
mulation for SSE [7] since it does not restrict the attacker to play a pure best
response strategy. The objective is to maximize the defender’s utility, as in the
MILP. Therefore, it does not exclude any SSE of the game. The value of this
LP, referred to as SSEUB, is an upper bound on the defender’s expected utility
when playing an SSE.

The drawback of formulating our game as a LP is that it requires finding all
(exponential many) AP for each network in advance. We reduce this number by
considering only rationalizable (in [4]) APs for each information set. An AP is
rationalizable if and only if it is the attacker’s best response to some belief about
the networks in an IS. The set of all rationalizable APs is called Closed Under
Rational Behaviour (CURB) set [3]. By considering only the CURB set for the
attacker, we do not exclude any SSE with the following rationale. Any AP that
is in SSE is the set of attacker best responses, so it must be rationalizable and
therefore it must be in the CURB set.

From the LP result we extract the defender’s strategy as a marginal probability
for each defender’s action: the probability that defender plays action y ∈ Y in state
x ∈ X is

∑
s∈SI(x,y)

Pxys. We will refer to this mixed strategy as σCCE
d and to the

defender’s utility in the strategy profile ud(σCSE
d , BRa(σCSE

d )) as CSE.

CURB for Multiple Networks. We further extend the best response algo-
rithms to compute the CURB set. We use the incremental pruning algorithm [9],
a variant of the backward induction algorithm that in every attacker decision
state propagates the CURB set of attack policies for the part of the POMDP
that begins in that decision state. Let A be a set of actions in a decision state
o. The algorithm is defined recursively as follows. (i) Explore each action a ∈ A
in state o and obtain the CURB set of policies Sa for the part of the POMDP
after the action a; (ii) for every action a ∈ A extend each policy sb ∈ Sa to begin
with action a in the current state o and then continue with policy sb; (iii) return
the CURB set from the union of all policies ∪a∈ASa for state o. In step (iii) we
use the standard feasibility linear program to check whether policy sb is in the
CURB set by finding if there exists a probability distribution between MDPs
where sb yields the highest utility among ∪a∈ASa \ sj , as described in [3,9].

6 Experiments

We experimentally evaluate and compare our proposed approximation models
and the corresponding algorithms. Namely we examine: (i) Perfect informa-
tion (PI) approximation solved with backward induction (Sect. 4.1), (ii) the ZS
approximation games solved with SO algorithm, which we refer to as to SOZS1
through SOZS4 (number corresponds to the variant of the ZS approximation),
(iii) SO algorithm applied on GS game (SOGS), and (iv) Correlated Stackelberg
Equilibrium (CSE) (Sect. 5.3). We also compute the defender’s upper bound
utility SSEUB and use it as reference point to evaluate the strategies found by
the other approximations.
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The structure of the experimental section is as follows: in Sect. 6.1 we describe
networks we use to generate the action graph game, in Sect. 6.2 we discuss an
issue of combinatorially large CURB sets for one of the networks, in Sect. 6.3 we
analyze the scalability of the approximated models, in Sect. 6.4 we analyze the
quality of the strategies found by the approximated models and in Sect. 6.5 we
analyze how the strategies calculated by the approximated models of ZS games
depend on how close the games are to being zero-sum. In Sect. 6.6 we investigate
the defender’s regret for imprecisely modeling the attack graph, and conclude
with a case-study analysis in Sect. 6.7.

6.1 Networks and Attack Graphs

We use three different computer network topologies. Two of them are depicted in
Fig. 1, small business (Fig. 1a) and chain network (Fig. 1b). Connections between
the host types in the network topology correspond to pivoting actions for the
attacker in the attack graph (from the compromised host the attacker can fur-
ther attack the connected host types). We vary the number of vulnerabilities
of each host type, which is reflected in the attack graph as an attack action
per vulnerability. We generate the actions’ success probabilities pa using the
MulVAL that uses Common Vulnerability Scoring System. Action costs ca are
drawn randomly in the range from 1 to 100, and host type values rt and the cost
for honeypot ch

t of host type t are listed in Table 1. We assume that the more
valuable a host type is the more expensive it is to add a HP of that type. We
derive honeypot costs linearly from the host values with a factor of 0.02. The
basis network b for the business and chain network consists of the black host
types in Fig. 1. We scale each network by adding the remaining depicted host
types and then by additional workstations. We also scale the total number of
hosts n in the network and the number of honeypots k. Each parameter increases
combinatorially the size of the game.

The third network topology is the unstructured network, where each host
type is directly connection only to the internet (not among each other). The
attack graph consists of one attack action t per host type T , which attacker
can perform at any time. For the unstructured network we create diverse attack
graphs by drawing: host types values uniformly from rt ∈ [500, 1500], action
success probabilities uniformly from pt ∈ [0.05, 0.95] and action costs uniformly
from ct ∈ [1, rtpt]. We restrict the action costs from above with rtpt to avoid the
situations where an action is not worth performing for the attacker, in which
case the attack graph can be reduced to a problem with |T |− 1 types. The basis
network b consists of two randomly chosen host types.

Table 1. Host type values and costs for deploying them as honeypots.

Host type t Database Firewall WSn Server

Value of host type rt 5000 500 1000 2500

Cost for deploying HP of host type cht 100 10 20 50
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All experiments were run on a 2-core 2.6 GHz processor with 32 GB memory
limitation and 2 h of runtime.

6.2 Analytical Approach for CURB for Unstructured Network

The incremental pruning algorithm described in Sect. 5.3 generates a very large
number of attack policies in the CURB set for the unstructured network. In order
to be able to compute the upper bound for solution quality for larger game and in
order to understand the complexities hidden in CURB computation, we analyze
this structure of the curb for this simplest network structure formally. In Fig. 4a
we show an example of the attacker’s utilities for the policies in a CURB set
generated for an information set with two networks. Recall ht = yt

xt+yt
is the

probability that action that interacts with host type t (in this case action t)
will interact with a honeypot. On the x-axis is probability distribution space
between two networks, one with ht = 0 (yt = 0 and xt > 0) and other with
ht = 1 (yt > 0 and xt = 0). The y-axis is the attacker’s utility for each attack
policy in the CURB. The algorithm generates the attack policies known as zero
optimal area policies (ZAOPs) [20], denoted with dashed lines in the figure. A
policy is ZAOP if and only if it is an optimal policy at a single point in the
probability space (dashed policies in Fig. 4a). The property of ZAOP is that
there is always another policy in the CURB set with strictly larger undominated
area. It raises two questions: (i) can we remove ZAOPs from the CURB set and
(ii) how to detect them. Recall that in SSE the attacker breaks ties in favour
of the defender. Therefore, we can discard ZAOP as long as we keep the best
option for the defender.

Further analysis showed that ZAOPs occur when ht = 1− ct
ptrt

(at probability
0.69 and 0.99 in Fig. 4a). It is because the expected reward of action t at that
point is pt(1 − ht)rt − ct = ptrt

ct
ptrt

− ct = 0, which means that the attacker
is indifferent whether to perform action t or not. The algorithm at probability
ht = 1 − ct

ptrt
generates the set of attack policies with all possible combinations

where the attacker can perform action t in the attack policy. Let P (t) be the
probability that the attacker performs action t in an attack policy. The defender’s
utility for action t is −rtpt(1 − ht)P (t) = −ctP (t). Because the attacker breaks
ties in favour of the defender, at ht = 1 − ct

ptrt
the attacker will choose not to

perform action t and we can keep only the policy that does not contain action t.
Furthermore, we categorize each action t based on ht to one of three classes:

to class A if ht = 0, to class B if 0 < ht < 1− ct
ptrt

and to class C if 1− ct
ptrt

< ht.
In an optimal attack policy: (i) all actions from A are performed first and any
of their orderings yield the same expected utility for the attacker, (ii) all actions
from B are performed and their order is in increasing order of pt(1−ht)rt−ct

ht

ratios, and (iii) none of the actions from C are performed, as they yield negative
expected reward for the attacker. We partition all probability distributions into
regions ht = 1 − ct

ptrt
and in each region we assign actions to the classes. We

find the set of optimal attack policies for each region. The attack policies in one
region differ from each other in ordering of the actions in B.
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Fig. 4. (a) Attack policies from a CURB set for an information set for the unstructured
network. (b) Probability space partitioning by action belonging into the categories.

In Fig. 4b we show an example of the probability distribution space of three
networks in an information set. The probabilities that actions 1, 2 and 3 interact
with a honeypot represent a point (h1, h2, h3). We partition the probability space
and assign each action to a class. In all experiments we use this approach to
generate the CURB set without ZAOPs in games for unstructured networks.

6.3 Scalability

In this section we compare the runtimes of the algorithms. We present the mean
runtimes (x-axis in logarithmic scale) for each algorithm on business (Fig. 5a),
chain (Fig. 5b top) and unstructured (Fig. 5b bottom) with of 5 runs (the run-
times were almost the same for each run). We increased the number of host types
T , number of hosts n and number of honeypots k. The missing data indicate
that the algorithm did not finish within a 2 h lime limit. From ZS approximations
we show only SOZS4 since the others (SOZS1, SOZS2 and SOZS3) had almost
identical runtimes.

From the results we see that least scalable are SOGS and CSE approach. SOGS
is very slow due to the computation time of the MILP. Surprisingly, in some cases
the algorithm solved more complex game (in Fig. 5b T = 7, n = 7, k = 3)
and not the simpler game (in Fig. 5b T = 7, n = 7, k = 1). The reason is that
the more complex game requires 3 iterations to converge, while the simpler games
required over 5 iterations, after which the restricted game became too large to
solve the MILP. The CSE algorithm was the second worst. The bottle-neck is
in the incremental pruning algorithm subroutine, which took on average 91 % of
the total runtime for the business network and 80 % for the chain network. In the
unstructured network the problem specific CURB computation took only about
4 % of total runtime. The algorithms for ZS1–ZS4 and PI approximation showed
the best scalability. Further scaling was prohibited due to memory restrictions.
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Fig. 5. Comparison of approximations scalability for (a) business, and (b top) chain
and (b bottom) unstructured network. In (c), (d) and (e) we compare the defender’s
upper bound of relative regret of strategies computed with approximation algorithms
business, chain and unstructured network, respectively.

6.4 Solution Quality

In this section we analyze the quality of the strategy that each approximation
algorithm found. We use the concept of relative regret to capture the relative
difference in the defender’s utilities for using one strategy instead of another.
Formally, the relative regret of strategy σd w.r.t. the optimal strategy σ∗

d is
ρ(σd, σ

∗
d) = ud(σ

∗
d,BRa(σ

∗
d))−ud(σd,BRa(σd))

ud(σ∗
d,BRa(σ∗

d))
. The higher the regret ρ(σd, σ

∗
d) the

worse strategy σd is compared to strategy σ∗
d for the defender. We calculate the

defender’s upper bound for relative regret ρ̄ by comparing the utilities of the
computed strategies to SSEUB. Notice that the results are overestimation of the
worst-case relative regrets for the defender. In Fig. 5 we show the means and
standard errors ρ̄ of 200 runs for the business network (Fig. 5c), chain network
(Fig. 5d) and unstructured network (Fig. 5e), with T = 5, n = 5 and k = 2.
In each instance we altered the number of vulnerabilities of the host types and
host type values. The action costs ci we draw randomly from [1, 100] and action
success probabilities pi from [0, 1].

The CSE algorithm computed the best strategies with lowest ρ̄. The SOGS is
second best in all networks except unstructured. Unfortunately, these algorithms
are least scalable. The strategies computed with SOZS algorithm are within
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reasonable quality. In the business network SOZS4 performed the best among the
ZS approximations and in the chain network the computed strategies were almost
as good as the best strategies computed with the CSE algorithm. However, in the
unstructured network it performed worse. In ZS4 approximations the defender’s
utility is augmented to prefer outcomes with expensive attack policies for the
attacker. Therefore, the ZS4 approximation works well for networks where long
attack policies are produced. In chain networks the database is the furthest
from the internet and in the unstructured network is the closest. PI algorithm
computed the worst strategies in all networks. Because of the good tradeoff
between scalability and quality of the produces strategies, we decided to further
analyze the strategies computed with SOZS4 algorithm.

6.5 Quality of ZS Approximations

The zero sum approximations rely on a zero-sum assumption not actually sat-
isfied in the game. It is natural to expect that the more this assumption is
violated in the solved game, the lower the solution quality will be. In order to
better understand this tradeoff, we analyze the dependence of the quality of the
strategy computed with SOZS4 algorithm on the amount of zero-sumness of the
original game. We define a game’s zero-sumness as ū = 1

|L|
∑

l∈L(|ud(l)+ua(l)|),
where L is the set of all terminal states of the game.

In Fig. 6 we show the upper bound for relative regret ρ̄ on the y-axis for the
strategies computed by SOZS4 and amount of game zero-sumness ū on the x-axis
for 300 randomly generated game instances for the business network (Fig. 6a),
chain network (Fig. 6b) and unstructured network (Fig. 6c) with T = 5, n = 5
and k = 2. In each instance we randomly chose the attacker’s action costs ca ∈
[1, 500] and honeypot costs ch

t ∈ [0, 0.1rt], while host type values rt were fixed.
We also show the means and the standard errors of the instances partitioned by
step sizes of 50 for ū.

We show that the games with low zero-sumness can be approximated as zero-
sum games and the computed strategies have low relative regret for the defender.
For example, in a general sum game with ū = 250 the defender computes a
strategy at most 6 % worse than the optimal strategy.

Fig. 6. The defender’s relative regret dependence on game zero-sumness (computed as
average ua(l) + ud(l)) for (a) business, (b) chain and (c) unstructured networks.
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6.6 Sensitivity Analysis

The defender’s optimal strategy depends on the attack graph structure, the
action costs, success probabilities and rewards. In real-world scenarios the
defender can only estimate these values. We analyze the defender’s strategy
sensitivity computed with SOZS4 to perturbations in action costs, probabilities
and rewards in attack graphs.

We generate the defender’s estimate of the attack graph by perturbing the
original attack graph actions as follows: (i) action success probability are chosen
uniformly from the interval [pa − δp, pa + δp] restricted to [0.05, 0.95] to prevent
it becoming impossible or infallible, (ii) action costs are chosen uniformly from
interval [ca(1 − δc), ca(1 + δc)], and (iii) rewards for host t from uniformly from
the interval [rt(1 − δr), rt(1 + δr)], where pa, ca and rt are the original values
and δp, δc and δr is the amount of perturbation. The action probabilities are
perturbed absolutely (by ±δp), but the costs and rewards are perturbed relative
to their original value (by ±δcca and ±δrrf ). The intuition behind this is that
the higher the cost or reward values the larger the errors the defender could have
made while estimating them, which cannot be assumed for the probabilities.

Fig. 7. The defender’s utility regret for per-
turbed action success probabilities, action
costs, and host type values.

We compute (i) the defender’s
strategy σd on the game with the
original attack graphs and (ii) the
defender’s strategy σp

d on the game
with the perturbed attack graph.
Figure 7 presents the dependence
of the relative regret ρ(σd, σ

p
d) on

the perturbations of each parame-
ter individually (δp, δc, δr) and alto-
gether (δa). The results suggest that
the regret depends significantly on
the action success probabilities and
the least on the action costs. E.g.,
the error of 20 % (δa = 0.2) in
the action probabilities results in a
strategy with 25 % lower expected
utility for the defender than the
strategy computed based on the
true values. The same imprecision in action costs or host type rewards result
in only 5 % lower utility.

6.7 Case Study

In order to understand what types of errors individual approximations make, we
analyze the differences in strategies computed by the algorithms on a specific
game for business network with T = 5, n = 5 and k = 2. The network basis is
b = (1, 0, 1, 0, 1), where the elements correspond to the number of databases, fire-
walls, WS1, WS2 and servers, respectively. There are |X| = 15 possible networks,
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Table 2. Algorithm comparison for the case-study.

Algorithm SSEUB CSE SOGS SOZS1 SOZS2 SOZS3 SOZS4 PI

Defender’s utility −643 −645 −654 −689 −665 −676 −656 −699

Runtime [s] 2.9 3.2 6027 1.3 1.5 1.3 1.5 1.4

each selected with probability δx = 1
15 . The defender can deploy honeypots in

|Y | = 15 ways and with honeypot costs as showed in Table 1. There are 225
network settings partitioned into 70 information sets for the attacker. Table 2
presents the comparison of the strategy qualities computed with the algorithms
and their runtime in seconds. The upper bound for the defender’s optimal utility
is SSEUB = −643. The best strategy was computed with CSE algorithm with
utility ud = −645. Although the difference between the utilities is very small,
it suggests that the CSE strategy in not necessary optimal. We compare the
strategies of the other algorithms to the CSE strategy.

SOGS computed the second best strategy (ud = −654) and failed to com-
pute the optimal strategy because the restricted game lacks strategies played by
attacker in SSE. For example, both strategies from SOGS and CSE in the net-
work x1 = (3, 0, 1, 0, 1) play y1 = (0, 0, 1, 0, 1) (adds a WS1 and a server as HPs)
with probability 1. The attacker aims to attack the most valuable host (database)
either via WS1 (policy s1) or server (policy s2). Both have the same probability
of interacting with a honeypot 0.5 and a rational attacker will choose s2 to com-
promise the server as well. Attack policy s2 leads to a terminal state with the
defender’s expected utility −600. The strategy from CSE, in contrast to strategy
from SOGS, additionally plays y2 = (1, 0, 0, 0, 1) in network x2 = (2, 0, 2, 0, 1)
with probability 0.037, which leads to the same information set as action y1 in x1.
The attacker’s uncertainty between the two states in the information set changes
his optimal attack policy from s2 to s1 for that information set. Attacking via
the WS1 host type has a lower probability of interacting with the HP than via
a server, which yields the defender expected utility −538, since the server will
not be compromised. The restricted game in SOGS algorithm did not contain
strategy s1, so the computed strategy did not play y2 in x2 at all.

The PI strategy has the lowest defender’s utility as it does not exploit the
attacker’s imperfect information at all. In this game the defender always adds a
server host type as a honeypot to try to stop the attacker at the beginning. The
second honeypot is added by a simple rule: (i) if the database can be compro-
mised only via server and WS1, add honeypot of WS1 host type, otherwise (ii)
as a database host type.

SOZS4 computed the best strategy among the ZS approximations. However,
each of them have certain drawbacks. In SOZS1 and SOZS2 the defender ignores
his costs for deploying the honeypots; these strategies often add database hosts
as honeypots, which is in fact the most expensive honeypot to deploy. In SOZS2
and SOZS4 the defender prefers outcomes where the attacker has expensive
attack policies. They often deploy honeypots with motivation for the attacker
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to have an expensive costs for attack policies (e.g., a strategy computed with
SOZS2 adds database as a honeypot in 74 % while the strategy from CSE only in
43 %). Strategies computed with SOZS3 and SOZS4 are difficult to analyze. The
strategies often miss the precise probability distribution between the networks
where the attacker is indifferent between the attack policies and therefore chooses
the one in favour for the defender. There is no general error they make in placing
the honeypots as with the previous strategies.

7 Conclusion

We study a class of attack graph games which models the problem of optimally
hardening a computer network against a strategic attacker. Previous work on
attack graph games has made simplifying assumptions that the attacker has per-
fect information about the original structure of the network, before any actions
are taken to harden the network. We consider the much more realistic case where
the attacker only observes the current network, but is uncertain about how the
network has been modified by the defender. We show that modeling imperfect
information in this domain has a substantial impact on the optimal strategies
for the game.

Unfortunately, modeling the imperfect information in attack graph games
leads to even larger and more computationally challenging games. We introduce
and evaluate several different approaches for solving these games approximately.
One of the most interesting approaches uses a relaxation of the optimal MILP
solution method into an LP by removing the constraint that attackers play pure
strategies. This results in a polynomial method for finding upper bounds on the
defender’s utility that are shown to be quite tight in our experiments. We are
able to use this upper bound to evaluate the other approximation techniques on
relatively large games. For games that are close to zero-sum games, the zero-sum
approximations provide a good tradeoff between scalability and solution quality,
while the best overall solution quality is given the by the LP relaxation method.
Several of these methods should generalize well to other classes of imperfect
information games, including other types of security games.
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Abstract. We often hear of measures that promote traditional security
concepts such as ‘defence in depth’ or ‘compartmentalisation’. One aspect
that has been largely ignored in computer security is that of ‘deterrence’.
This may be due to difficulties in applying common notions of strategic
deterrence, such as attribution — resulting in previous work focusing on
the role that deterrence plays in large-scale cyberwar or other esoteric
possibilities. In this paper, we focus on the operational and tactical roles
of deterrence in providing everyday security for individuals. As such, the
challenge changes: from one of attribution to one of understanding the
role of attacker beliefs and the constraints on attackers and defenders.
To this end, we demonstrate the role deterrence can play as part of the
security of individuals against the low-focus, low-skill attacks that per-
vade the Internet. Using commonly encountered problems of spam email
and the security of wireless networks as examples, we demonstrate how
different notions of deterrence can complement well-developed models of
defence, as well as provide insights into how individuals can overcome con-
flicting security advice. We use dynamic games of incomplete information,
in the form of screening and signalling games, as models of users employ-
ing deterrence. We find multiple equilibria that demonstrate aspects of
deterrence within specific bounds of utility, and show that there are sce-
narios where the employment of deterrence changes the game such that
the attacker is led to conclude that the best move is not to play.

1 Introduction

When seeking advice on computer security, any combination of the terms ‘com-
puter’ and ‘security’ will produce myriad results from academics, businesses
looking to sell products, governments at local and national levels, ‘hackers’ (of
the black- and white-hatted varieties), and bloggers; these results are often then
moderated by input from friends, family and colleagues. From this conflicting
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guidance emerge the choices and decisions made by individuals. This can be
further complicated by a lack of knowledge or evidence of utility, as some topics
are still a matter of active discussion among even the most knowledgeable of
practitioners.

Recent years have seen the emergence of security economics, which seeks to
augment such discussions with the insight that these failures are often not the
result of engineering challenges, but of economic challenges: misaligned incen-
tives, information asymmetries, and externalities [15]. Given this landscape,
what can be asked (and expected) of those who lack a technical background,
technical staff, and a security budget? This is the question posed by many small
businesses and home users, who often must make security decisions based upon
their limited resources (with respect to time and money) and their ability to
search related terms, digesting the information that appears in (at best) the
first few hits. The answer is important, as it is precisely these decisions that
affect us all: we all deal with the results of these failures [15].

In examining the source of much of our modern concept of cyber security —
the doctrine of the military, an entity whose primary role is security — we
see that the concepts that lead to security are well-defined, but multi-faceted.
With respect to current research and practice, many concepts have been widely
adopted as paradigms for cyber security [20]: “defence in depth”, “compartmen-
talisation”, etc. However, one aspect of security that has been largely ignored
(outside of military doctrine) is the “first line of defence”: deterrence [2,14]. In
examining the role deterrence might play for individuals, we move towards a
principled discussion of deterrence through the lens of information security eco-
nomics. We conclude that, for a set of adversaries that can be defined in the
economic context of utility, deterrence as an aspect of a comprehensive security
stance is rational, contributory, and quantifiable against specific actor groups.

Section 2 introduces the various concepts at play: the notion of deterrence, the
problems of signalling and screening in economics, and conceptual scenarios that
are employed to provide context. Section 3 presents two concepts of deterrence
as information asymmetries, formed as games of imperfect information. Section 4
provides a discussion of related work, placing this contribution within the broader
context of deterrence and security economics. Finally, Sect. 5 summarises the
contribution of this paper.

2 Background

2.1 Concepts of Deterrence

The concept of deterrence has a long history in our collective consciousness,
primarily confined to our notions of national security. Throughout the Cold
War, our collective security relied on a deterrence strategy of Mutually Assured
Destruction (MAD) [14], with much being written on the topic of strategic deter-
rence: even our definition of the word is linked to this notion, including quali-
fiers such as “especially deterring a nuclear attack by the capacity or threat of
retaliating” [7]. This emphasis on the threat of retaliation would seem to be an
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unnecessary deviation in concept from the simple act of deterring, where to deter
is “to discourage or restrain from acting or proceeding” or “to prevent; check;
arrest” [6]. We will refer to ‘deterrence’ in the context of deterring attacks, using
the more general notion without emphasis on retaliation (requiring attribution)
that is embodied in the former definition. One may argue that this is where the
concept of deterrence in cyberspace has been stymied, as attribution is a known
hard problem [14]. In decoupling attribution from deterrence, we examine the
latter in a sense not possible when the concepts are intertwined.

In conjunction with this line of thought is the movement from concepts of
strategic deterrence towards deterrence that results from more commonplace
interactions: the deterrence that leads to the everyday security of individuals. In
this spirit, Morral and Jackson [16] consider deterrence at the strategic, opera-
tional and tactical levels. In [16], strategic deterrence is defined by reducing the
net expected utility of a particular means (e.g. attack) for a group to achieve their
objective against another group. This is differentiated from operational deter-
rence by an emphasis on specific operations (or classes of operations), ideally
leading to abandonment for that particular operation. Tactical deterrence then
refers to the alteration of net utility after the attack is initiated. These definitions
map nicely to current concepts of cyber security: strategically deterring attacks
against internet users via the installation of various technical protections and
procedures; operationally deterring against malware via the use of antivirus; and
tactically thwarting the exfiltration of information from a machine via the use of
a firewall. This also highlights the obvious links between deterrence and broader
security, in that being secure can be a deterrent itself. Morral and Jackson [16]
offer interesting insights regarding the nature and role of deterrence in these
contexts, with relevance to information technologies and cyber deterrence. One
point involves the role of complexity; all else being equal (regarding the utility
of the target to the attacker, or other factors such as accessibility), a more com-
plex attack is less appealing to an attacker. The resulting increase in complexity
gives rise to an increase in observable signatures, resources expended, etc. —
all of which lead to a less attractive target. This is tempered with the caveat
that the deterrence cannot be trivial to overcome, no matter the likelihood of
engagement by the attacker.

Bunn [4] considers the distinction between deterrence and dissuasion: dis-
suasion is related to the aim to convince a potential adversary from engaging
at all. Using the above example of deterrence measures, dissuasion would be
akin to laws against malware-writing and campaigns to warn potential attackers
of computer misuse. Relevant to this discussion is the distinction between some-
thing that is more closely related to the psychological with respect to dissuasion,
against measures that may have a more distinct technical aspect of deterrence.
Bunn additionally contributes the notion that one deters someone from doing
something, implying that actors and actions are of importance when consider-
ing deterrence. This leads one to conclude that deterrence will manifest itself
differently given different scenarios; this is a central tenet of our contribution.
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Fig. 1. The Agent–Principal model of deterrence enacted through screening and sig-
nalling. In screening, the principal moves first via a screening action {s, ¬s} in an
attempt to classify the agent’s type (e.g. a viable or non-viable target). The agent may
choose to respond {r, ¬r}, potentially betraying their type. In signalling, the agent
moves first, broadly signalling {d, ¬d}, which may or may not be indicative of their
type. The principal, observing this signal, chooses to react {a, ¬a}. The arrows differ-
entiate a directed action by the defender to the attacker (in screening), and the broader
action visible to all parties, including other defenders and non-players (in signalling).

2.2 Information Asymmetries in Security

One increasingly popular view of security is that of an information asymmetry
between two entities: a user, who has the ability to take some action to secure
themself against attack, and therefore has information regarding the state of
security; and an attacker, who seeks to identify targets for exploitation, but
lacks information regarding the security of any given user. Information asymme-
tries arise when two entities engage in a transaction with each having access to
different levels of information; they are a common source of market failures [21],
which arise when inefficiencies in markets lead to suboptimal operation, such as
one side gaining a distinct advantage in the marketplace. In our construct, the
market for security is represented by this interaction between the attacker and
the user; this differs from other characterisations that focus on the information
asymmetry between users and security products, e.g. [3].

As with other forms of security, we can formally describe deterrence in terms
of information asymmetry. We define this market as having an agent and a
principal where the user (as the agent) has more information regarding their
security level than the attacker (the principal). In this case, the information
that is asymmetric is the type of the user, who might (through various actions
undertaken prior to this point) be of type ‘secure’ (ts), or type ‘unsecure’ (tu).

Short of resolution through regulation (a factor for computer security, but
something that thus far failed to resolve this market), there are two primary
means of dealing with information asymmetries [21]: screening and signalling.
Figure 1 depicts these concepts as sets of moves between agents and principals.
We consider each in turn.

Screening involves the principal moving first to resolve the asymmetry via
an action that (potentially) prompts a response from the agent. The goal of
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the principal is to separate the agents into groups depending on their type (in
this case, secure and unsecure users). Examples of such actions include pings to
determine the reachability of devices and services on the network, or operating
system fingerprinting using tools such as NMAP.1 Note that this is not an ‘attack’
as such, and is perhaps best considered reconnaissance — movement by the
principal to gather more information (e.g. reachability of IPs, or patch level
of operating systems). However, the results of the screening could certainly be
employed in, and contribute to, an attack. In the following, we will use email
phishing scams to discuss deterrence in this light, as an example of tactical
deterrence of an ‘attack’ in progress.

Signalling involves the agent moving first via an observable action, prompting
the principal to make a decision as to their type and react accordingly. The agent
may be honest or dishonest regarding their type, forcing the principal to react
based on belief. A good example from cyber security is the bug bounty offered by
software providers to indicate the security of their systems. Here, poor software
would not be able to offer such a bounty lest the software provider go bankrupt.
Therefore the existence of such a scheme both signals to consumers that the
software is of high quality, and increases that quality through the awards that
are made — which, in turn, prompts further bugs to be found. We will look at
the role of ‘weak’ security mechanisms, such as SSID hiding and MAC filtering,
as signals of security that have an operational deterrence effect.

2.3 Adversary Scenarios

Having established the notion of deterrence as an information asymmetry, we
now construct two adversarial scenarios corresponding to our concepts of opera-
tional and tactical deterrence. As a starting point, we consider attackers as falling
on a spectrum, as postulated by Schneier [18]. Schneier characterises attackers
along two axes: focus (interest in a specific victim) and skill (technical ability,
such as use of existing scripts/tools vice development). Schneier maintains that
the majority of attacks are “low-skill and low-focus — people using common
hacking tools against thousands of networks world-wide” [18]. It is precisely
these kinds of attacks on which we will focus our attention.

In the first scenario we consider a phishing scam, where the attacker (as the
principal) moves first. The user, as the agent, drives the beliefs of the attacker
through their response (or lack thereof). This is depicted in the upper part of
Fig. 1. Using the construct of [12], we frame the scenario as an attacker send-
ing spam emails to unwitting users in order to examine tactical deterrence.
In [12], Herley conjectures that attackers who profit from attacks that depend
on economies of scale (such as the infamous Nigerian scams) face the same
economic and technological challenges as other disciplines. In constructing the
scam, attackers must overcome statistical problems such as thresholding and
binary classification when selecting victims, and therefore must weigh various
1 The “Network Mapper”. See http://nmap.org/ for a discussion on using NMAP for

operating system fingerprinting.

http://nmap.org/
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Fig. 2. Extensive form of the deterrence screening game.

aspects in order to make the attack profitable. Herley shows how success for an
attacker depends on the density of viable users, d, as a fraction of viable victims
M within a population N , d = M/N . With each attack costing the attacker
C and yielding a net profit of G, it is obvious that, as the density d is small,
it is important for the attacker that C is kept low and that G is maximised.
To this extent, the attacker must use some criterion to select those to attack,
which Herley terms ‘viability’. Therefore, in order to identify d, the attacker
utilises a ‘viability score’ x to separate users into a class {viable, non-viable}.
Herley provides two insights regarding the role of beliefs in such attacks that
has implications to deterrence. First, binary classification of users is as much
a problem for attack as for defence. Thus, as the attacker’s ability to separate
viable from non-viable targets decreases, the effect on the true positive rate tp
versus the effect on false positive rate fp can lead to dramatic shifts in the action
of the attacker. Second, optimism on the part of the attacker does not pay, as
over-estimation can quickly lead to unprofitability due to the non-zero cost of
carrying out the attack. Thus, it is to the attacker’s benefit to reduce costs and
to be conservative in the choice of thresholding x, which drives both tp and fp.

The second scenario covers operational deterrence, and uses the example of an
attacker attempting to undermine wireless connections. This network could be
the responsibility of a small business proprietor utilising wireless connectivity
for their business network, or a home user in a densely occupied space such
as an apartment building in a large city. The key to this scenario is that the
proprietor or user, acting as the agent, has a wireless network which they seek
to secure from eavesdropping and unauthorised use by an attacker, acting as
the principal. The security level of the user (‘secure’ or ‘insecure’) will serve
to distinguish types of users, corresponding to the user having taken steps to
protect against attacks against information disclosure or unauthorised use (e.g.
having enabled WPA2 security). In this case, the attacker is assumed to be
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capable of employing ‘standard’ measures against the network — attempt to
connect to the network, sniff and read message traffic (with proximity to the
network), and potentially manipulate and retransmit any packets transmitted
in the clear. The attacker is not assumed to be capable of breaking the WPA2
key, although the goal of the user in this context will be to deter the attacker
from attempting such an attack in the first place (perhaps due to the user not
using a sufficiently secure password, or wanting to minimise the log of failed
attempts). As such, the user will seek to employ methods that are widely cited
as recommended practices despite being ‘weak’ security — SSID suppression and
MAC filtering — as ‘signals’ of security to dissuade attacks. We will demonstrate
how modelling this scenario as a signalling game indicates that such methods
have utility in this context. This is depicted in the lower half of Fig. 1.

3 Deterrence as an Information Asymmetry

3.1 Deterrence as Screening: An Example of Tactical Deterrence

We first look at the concept of tactical deterrence (deterrence of an ‘attack’ that
is underway) though the lens of a screening game, using Herley’s construct of the
Nigerian scammer [12]. The game as conceived is depicted in Fig. 2, and unfolds
as follows.

1. Player ‘Nature’ moves, allocating the distribution of the types of users ts and
tu. We assume a distribution of Player 1 types (p, 1 − p) but that neither
player observes the realisation of this random variable, as this is reliant on
the nature of the scam.

2. Player 2 (the attacker/spammer) makes the first move, not knowing the type
of Player 1 (a given victim/user). Player 2 chooses to initiate a screening
action s at a cost cs (the spamming email), or chooses not to engage (¬s)
and thus incurs no cost. This is done according to a belief p that Player 2
holds regarding the type of Player 1. It is assumed in this case that cs is
relatively small, but this is not necessarily the case in other scenarios.

3. Player 1’s recognition of the scam then dictates their type, as either type
secure (ts) or of type unsecure (tu). As a result, Player 1 may choose to
respond or not to respond to the screening action and this choice may or may
not be indicative of their type. Choosing not to respond has no loss or gain —
a payoff of 0. Note that, following this exchange, Player 1’s type is inferred
by both players and the game unfolds similar to that of a game of complete
information.

4. For simplicity in this game, the payoff for Player 2 is modelled as capturing
l (Player 1’s ‘loss’) upon successfully generating a response from an unsecure
user, while Player 1 incurs the same loss −l if unsecure and responding to the
scam. Alternatively, a secure Player 1 exacts a benefit β from the scammer
(the consumption of attacker resources that are not employed elsewhere; a
‘social benefit’), while Player 2 loses that benefit along with the plus cost of
screen −cs − β if prompting a response that does not result in a payoff (due
to missing out on the potential profit from another user).
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Table 1. Ex ante expected payoffs for the deterrence screening game of Fig. 2.

s ¬s

r (p(β + l) − l, l − p(β + l) − cs) (0, 0)

¬r (0,−cs) (0, 0)

We make the simplifying assumption that, in getting a user type tu to respond,
the ruse is played out and the attacker captures l. As such, we are not considering
instances in which an unsecure user engages but the transaction is thwarted (they
instead appear as ts users, with β < l).

The payoffs for a distribution of players p are provided in Table 1. We see
that the strategy for Player 2 hinges on the value of p: if Player 2 believes Player
1 to be of type tu (p = 0), it is beneficial for Player 2 to attempt the game as
long as l � cs (as presumably would be the case for a spam email). In fact, as
p → 0 if the spammer is able to push the marginal cost of the attack cs = 0,
the strategy to attack is weakly dominant for the attacker. At the other end, as
p → 1 the payoffs for secure players are either positive or 0, while Player 2 has
only losses (assuming β ≥ 0). In this case, a strictly dominant strategy emerges
in which the attacker avoids loss by not incurring any cost; Player 2 chooses not
to engage in the game by choosing not to screen in the first place, forming a
pure Nash equilibrium at (¬s,−), p = 1.

Between these extremes (0 < p < 1), we find the attacker decision driven by
both p and potential lost benefit β. In order for the scam to be viable, the attacker
must believe that both the attack cost and potential for failed followthrough are
sufficiently low to justify the effort of identifying unsecure users (cs ≤ l−p(β+ l)
for p < 1). As it is to the attacker’s benefit for this distribution to be in their
favour (p < 1

2 ), as education with respect to such scams grows (e.g. p increases)
attackers must also carefully consider cs. However, even with more unsecure
than secure players, as β → l the ability for the scam to be profitable is quickly
constrained by the potential payout and the attacker’s cost (cs ≤ l − 2pl for
p < 1

2 ). The attacker relies on Player 1 to find β < l
p − l so as not to invoke a

response from a secure user (e.g. one who does not complete the transaction),
resulting in the consumption of resources for no gain. As well as introducing the
potential deterrent of secure users purposefully engaging in the scam in order
to consume resources, this threat of engaging with a non-viable target speaks to
the heart of Herley’s finding: it is to the attacker’s best interest to utilise devices
in order to identify the most gullible. As per [12], optimism on the part of the
attacker is not a viable long-term strategy.

At this point, our findings are mere restatements of the results of [12]. We see
evidence to support the conclusion that “at very low densities certain attacks
pose no economic threat to anyone, even though there may be many viable
targets” [12]. As shown, the belief of the attacker is critical; as viable target
density decreases the attacker’s belief that a potential target is secure rationally
rises, leading to an attacker trade-space that must consider attacker costs and
user benefit — with an increase in either quickly pushing the equilibrium towards
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Fig. 3. Extensive form of the deterrence signalling game.

deterrence (¬s,−). We next look at a more complex game in which Player 1
moves first to signal their type and thus deter the attack at the onset. This
will serve to account for the actions Player 1 might take in a more interactive
defensive posture.

3.2 Deterrence as Signalling: An Example of Operational
Deterrence

We now examine operational deterrence (in which a class of operations is deterred,
but not the attackers themselves) within the context of a signalling game, as
depicted in Fig. 3. This construct is based upon the concept of actions signalling
a particular security level (secure or unsecure) for the purpose of deterring an
attack. Using our conceptual scenario of a wireless network, we examine the
employment of ‘weak’ security constructs (such as SSID hiding) as a means to
signal that a user is secure. This game proceeds as follows.

1. Player ‘Nature’ moves, allocating the distribution of the types of users. As
the real distribution of secure versus unsecure users is scenario-specific, we
represent this as a probability λ of being secure (ts), and a corresponding
probability of (1 − λ) of being unsecure (tu).

2. Player 1 (the agent) then chooses to send (d) or not to send (¬d) a ‘message’ —
that is, chooses to deter (e.g. hiding the SSID) or not — with the former
action implying a cost that differs between types of user. Thus, the action
costs secure users a low amount cd, while unsecure users will incur a higher
cost of cd. In this model, messages have no meaningful effect on security; the
question to be addressed is whether they can nevertheless deter attacks.

3. Player 2 (the principal) observes the message (deterrent) and subsequently
chooses to attack or not attack, a or ¬a. Attacking incurs a cost of attack,
ca. Attacking a user of type tu will be assumed to succeed, resulting in a gain
of l (Player 1’s loss); whereas attacking a user of type ts will be assumed to
succeed only with some small probability α, resulting in a gain of αl. At any
point the attacker chooses not to attack (¬a), the resulting cost is 0.
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We assume a difference in the cost to the secure user ts and to the unsecure
user tu to send this signal, in which the latter is significantly higher (tu � ts).
The cost for an unsecure user to act secure (without actually being secure) war-
rants such a distinction, with experience costs being the primary differentiator.
For instance, setting up wireless security on a modern home router can often
be accomplished through a single action, as manufacturers seek to improve user
experience. We can identify ‘secure’ users as those with experience enough to
either use such mechanisms or by virtue of their own knowledge of how to do
this themselves, and ‘unsecure’ users who may simply plug in the device and
take no action — and who, presumably, are so due to a lack of understanding
that would impose significant awareness costs if they were to only hide their
SSID, but not implement any further security.

One important aspect of this type of game is Player 2’s inability to discern
the type of the user. As such, the best that Player 2 can do is to form a set of
beliefs as to which type of agent (ts or tu) they are playing. This is represented
by the value p, corresponding to the belief probability that a message d (that is,
deterrent action) corresponds to a user of type ts, and the corresponding belief
probability (1 − p) it indicates a player of type tu. The belief probability q (and
(1 − q)) serves the same function for ¬d.

We now analyse this game for equilibria, which for such games is defined
by Perfect Bayesian Nash Equilibria (PBNE). Here, multiple conditions have to
be met for a strategy profile to be in equilibrium: players must have a belief
(probability distribution) as to the node reached any time they make a decision;
players must act optimally given their beliefs and the continuation of the game;
and beliefs are determined by Bayes’ rule on the equilibrium path (as well as
those off the path where possible). There are three types of equilibria that can
come into play in such games:

– Separating equilibria, where a message (the deterrence action) perfectly sepa-
rates the types of users.

– Hybrid equilibria, where a user type may receive the same expected utility
from multiple actions and therefore randomise their response.

– Pooling equilibria, whereby one or both types find it profitable to take the
same action (deter or not deter).

We start by examining for a separating equilibrium, noting that two types
of such equilibria are possible: secure users deter, while unsecure users do not;
and unsecure users deter, while secure users do not. Looking first at the latter,
we note that this corresponds to beliefs of p = 0 and q = 1. We examine the
utilities to Player 2 and see that, given these beliefs, we examine the strategy
for Player 2 and find a likely course of action to be a in the case of seeing d, in
that

E[UPlayer2(d, a)] ≥ E[UPlayer2(d,¬a)] ⇒ l − ca ≥ 0

where l > ca.
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Likewise, Player 2 may attack upon seeing ¬d according to the value of
l > ca

α :

E[UPlayer2(¬d, a)] ≥ E[UPlayer2(¬d,¬a)] ⇒ αl − ca ≥ 0

However, in this instance we see that there exists a profitable deviation by Player 1.
Given a by Player 2, while a type ts player has no motivation to deviate (since
−αl > −αl − cd), a player of type tu finds it beneficial to switch and play ¬d as
−l > −l − cd. As such, a separating equilibrium cannot exist in this case since
a profitable deviation exists. In general, we can see from the game that, due to
the symmetry of the payoff to Player 2 in the case of tu, Player 1 of this type will
always find it profitable to deviate and play ¬d when p = 0 and q = 1 due to the
cost of deterrence.

Looking now at the case where secure users deter and unsecure users do not,
we employ beliefs p = 1 and q = 0. In this instance it is beneficial for Player 2
to refrain from attack upon seeing the signal d, as when p = 1,

E[UPlayer2(d,¬a)] ≥ E[UPlayer2(d, a)] ⇒ 0 ≥ αl − ca

where ca ≥ αl.
Likewise, consistent with q = 0, Player 2 finds the best move to be a upon

failing to see a deterrent, as long as the gain from attack (e.g. Player 1’s loss) is
more than the cost of attack, l > ca:

E[UPlayer2(d, a)] ≥ E[UPlayer2(¬d,¬a)] ⇒ l − ca ≥ 0

Examining for deviation, we consider types ts and see that a deviation to
¬d may be desirable, since −αl > −αl − cd. While in this case Player 1 would
no longer incur the additional cost of deterring cd, consistent with belief q = 0,
Player 2 should now respond with a since l − ca > 0. As such, deviation is
only profitable for Player 1 if −αl > −cd; that is, the potential loss (with small
probability α) is greater than the cost to deter.

Looking now at type tu players, we see that in any event a switch from
¬d to d is going to incur an additional cost cd. As such, we can conclude that
such an equilibrium exists under the condition cd

α < l < cd. Put another way,
this equilibrium exists as long as it is inexpensive for secure users to implement
a deterrence mechanism (specifically, less than αl), and the cost to unsecure
users is greater than their loss l (given attacker beliefs p = 1 and q = 0). The
meaning of this result is somewhat nuanced and requires further exposition; as
such, the implication will be further discussed in Sect. 5. For now, we note that
an equilibrium exists under these beliefs and conditions.

Considering hybrid equilibria, we note that the existence of such equilibria
would require that actions exist between d and ¬d such that the payoff is the
same for one of the user types ts or tu. We can see from the game’s construct that
no such equilibrium exists. This is due to the cost of deterring which, despite
presumably being small (at least for the case of secure users), changes the pay-
off function for Player 1. It is important to note that if the cost of deterrence
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to Player 1 or Player 2 reduces towards 0, this game becomes somewhat sym-
metric in its payoffs and multiple hybrid equilibria become possible. In such an
instance the best course of action for the attacker is to randomise their attacks.
Such a game would more closely follow the notion of a ‘Cheap Talk’ game [8],
and arguably may have correspondence to current reality. However, we point
out that the asymmetry induced serves to strengthen the case for deterrence
measures having utility in a comprehensive defensive posture — but only when
they impose an attacker cost that is non-negligible. This is consistent with the
conceptualisation of deterrence presented by Morral and Jackson in [16].

We now examine the possibility of pooling equilibria, and first consider the
case of an equilibrium at d under the assumption that both player types benefit
from deterring. Consistent with the belief upon seeing d that p = λ:

E[(U(d, a)] = λ(αl − ca) + (1 − λ)(l − ca) = l + λαl − λl − ca

while

E[U(d,¬a)] = 0

Therefore we can see this will hold in instances where λ > ca−l
αl−l , rendering

this possibility plausible with Player 2 playing ¬a. However, as we now look at
potential deviation, we see that Player 1 has a potential profit in both instances:
type ts players can find a profitable deviation with 0 > −cd, as can type tu
players with 0 > −cd. Put another way, Player 1 can get the same amount of
payoff (security) without incurring the cost of deterring (consistent with the idea
that deterrents have no security value themselves).

Considering now Player 2’s move given these potential deviations, we com-
pare the cost of ¬a and a under the belief q = λ and find that Player 2 attacks
only as:

E[(U(d, a)] ≥ E[U(d,¬a)] ⇒ l − λαl − λl − ca ≥ 0

Therefore, Player 2 would only change from ¬a to a in the event that
λ > ca−l

αl−l , which is inconsistent with the belief stated previously. Given this,
Player 1 has found a profitable deviation and so we can conclude that a pooling
equilibrium does not exist at this point.

Next, we examine the possibility of pooling equilibria existing at ¬d (both
players finding it beneficial not to deter), noting that the attacker’s a posteriori
belief in this case must now be q = 1 − λ. Upon seeing a play of ¬d, it is always
to the benefit of Player 1 to play a (as αl − ca > 0 and l − ca > 0), with the
consideration that

E[U(¬d, a) ≥ E[U(¬d,¬a) ⇒ 2λca − ca + l(α − λα − λ) ≥ 0

We see that this indeed holds in the event that λ < 1
2 (or α

α+1 > λ), with
Player 1 payoffs of −αl for ts and −l for type tu. Put another way, this is true
only when the distribution of unsecure users is dominant, or the probability of
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success against a secure user is much greater than the instances of secure users.
Examining now for deviation, we see in both cases that the payoff for Player 1
is reduced in each case (secure and unsecure users), as each faces the same
potential loss and additionally incurs the cost of deterring. Therefore, a pooling
equilibrium potentially exists whereby Player 1 chooses not to deter and Player 2
chooses to attack, with the beliefs p = λ, q = 1 − λ, and λ < 1

2 .
Finally, using the same approach, it is straightforward to show that another

potential pooling equilibrium exists, with both types of Player 1 choosing not to
deter and Player 2 choosing not to attack, as

E[U(¬d,¬a) ≥ E[U(¬d, a) ⇒ 0 > 2λca − ca + l(α − λα − λ)

when λ > 1
2 , all else being the same.

Discussion on the realism of these beliefs is saved for Sect. 3.3; for now, we
summarise that we have identified the following potential equilibria:

– A separating equilibrium when cd
α < l < cd, with

(P1s(d), P1u(¬d), P2d(¬a), P2¬d(a), p = 1, q = 0).

– A pooling equilibrium when λ < 1
2 , with

(P1s(¬d), P1u(¬d), P2d(a), P2¬d(a), p = λ, q = (1 − λ)).

– A pooling equilibrium when λ > 1
2 , with

(P1s(¬d), P1u(¬d), P2d(¬a), P2¬d(¬a), p = λ, q = (1 − λ)).

3.3 Discussion

Starting with the screening game, the salient question that emerges is: how do
we represent shifting attacker beliefs? In [12], Herley touches on this through
the notion that the attacker would employ a series of one or more observables
for which they can base a value for x in an attempt to classify the victim. We
can think of x as now encompassing the necessary information for the choice of
belief of the attacker. In this particular scenario since there is only one move
by each player this is fully based upon the response of Player 1 to Player 2’s
screening message s, such that the choice of Player 1 to respond (r) or not to
respond (¬r) corresponds to a belief p = 1 or p = 0, respectively. However, in
other scenarios we can conceive of how this might be a combination of positive
observables o+ and negative observables o−, such that these observations raise
or lower the overall value of x and affect the attacker’s assessment of viability.
In this construct, we can now think of o− observables as taking on the role of
deterrents. Since the value Player 2 assigns to x is directly tied to the true and
false positive rates of their classifier, this affects the risk to the attacker, who as
noted cannot afford optimism. Minimising the value Player 2 assigns to x will
result in two inter-related effects that will contribute to unprofitability: as a given
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assessment x is decreased (via such negative observables), the associated user is
more likely to be placed into the category of ‘not viable’ and thus not subject to
attack; and as the perceived set of viable users becomes smaller, attackers are
faced with having to find ways to increase true positive and reduce false positive
rates, or be faced with decreased attacker profits in the ways described in [12].
This rests not on the user type actually being secure or unsecure (i.e. the ‘truth’
of Player 1’s response), but rather on the belief of the attacker. The response
(or lack thereof) represents a single measurement upon which the attacker must
infer viability.

We could conceive of a more general game, in which multiple measures beyond
a single exchange result in complex screening scenarios (e.g. multiple emails)
using the notion of positive and negative observables. Such a construct could be
useful in characterising activities such as ‘reconnaissance’ leading to an attack,
port probing (reporting open ports or services running on those ports), infor-
mation contained within a DNS response that may lead the attacker to believe
the system is up to date or of a specific type, or system fingerprinting (reporting
specific patch levels, installed applications, etc.).

The separating equilibrium in the signalling version of our deterrence game
tells us exactly what we might expect: there is a benefit for players to deter, as
it conveys belief that the user’s type is ts. Note that for a user of type tu playing
d is off the equilibrium path, and so no information can be ascertained. In fact,
due to this equilibrium, such a move is likely to swing the belief of the attacker
towards inferring that the user is of type ts and refrain from attack, thereby
providing a type tu player the best outcome. This equilibrium required beliefs
that seeing a deterrent indicated security, and likewise not seeing such deterrents
indicated a lack of security; we claim that this is a reasonable assumption, given
the abundance of websites advocating such measures. Users who have taken the
time to acquire such devices and follow recommendations on their set-up have
likely completed true security tasks as well, such as setting up WPA2 encryption.
Additionally, this result requires the constraint that ca ≥ αl, such that the
expected result of attacking a secure player is less than the cost to attack. This
is in line with accepted notions of security.

This result shows that the deterrent must also meet the requirement that
cd
α < l < cd, so that the cost of deterring for an unsecure user is higher than the
expected loss. This may or may not hold, depending on the conceptualisation
employed in the game analysis: in our scenario of a wireless user, someone with
a lack of equipment, or improper or unusable equipment, might have a hardware
investment to overcome. A lack of technical expertise might result in a user
finding that developing an understanding of what an SSID is, or how to find
a MAC address and set up filtering, to simply be too burdensome — more so
than having to cancel a credit card and deal with the removal of a few charges.
This strays into aspects such as time valuation and technical expertise, which
is clearly going to vary based on the specifics of the scenario. However, for two
users with similar routers — one of whom has set up security, and the other who
has simply plugged in out-of-the-box — this becomes more reliant on the user’s
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perceptions and how they value their time. We note that, as the deterrence costs
converge cd → cd, the asymmetry in payoffs between deterring and not deterring
disappears, and Player 1 becomes agnostic (as discussed in Sect. 3.2). This leads
to various hybrid equilibria in which secure players are attacked. As cd → cd → 0,
this will only hold if the value of the loss decreases as well, and thus nothing
of value is being protected. Thus, one result that can be interpreted from this
inquiry is that as such ‘security’ mechanisms become more user-friendly, they
may also lose value in their utility to signal security if they don’t result in a
sufficient cost to the attacker; this is again consistent with accepted concepts of
deterrence.

Turning to the pooling equilibrium, we see that the nature of the equilibrium
depends on the distribution of secure users λ. Hard metrics of this type are often
scarce and difficult to estimate reliably. Fortunately, some empirical research for
the wireless network security scenario exists, placing the occurrence of secure
routers at 61 % in 2006 [13]. While such analyses are fraught with difficulty and
only temporally relevant, this result allows us to assert that instances of secure
router set-up are (at least somewhat) more common than not. We can now place
a value on our a posteriori beliefs (e.g. λ = 0.61), and find that our first pooling
equilibrium is unlikely to hold as it was dependent on λ < 1

2 . However, this
distribution is consistent with our second equilibrium, in which neither Player 1
type is deterred but Player 2 chose not to attack. This reflects a belief held by
Player 2 that secure players are more prevalent (backed by empirical evidence),
and that the likelihood of successful attack is small.

All of these outcomes naturally rely on the attacker incurring a sufficient cost
ca ≥ αl, as with a small ca the attacker becomes indifferent to various plays (since
they incur little or no cost). As ca → 0, we again expect a number of hybrid
equilibria situations, leading to probabilistic attack strategies. This results in
interesting ramifications, especially as network-sniffing software reduces this to
a point-and-click exercise.

Combining these results, we can see that changing the outcome of the game
involves changing one or more of the salient parameters. Focusing first on costs,
we see that in the screening game the key inequality is between the attacker cost
(cs) and the potential payout (l) or benefit (β). In the signalling case, while a
sufficient attacker cost (ca ≥ αl) must still exist, the key cost relationship shifts
to the defender cost (cd or cd) and payout (l), driving a similar inequality that
is also conditioned on the attacker’s success probability (α). In both cases, this
finding reinforces our current notions of security — and forms the basis for much
of the effort to combat such crimes. In the case of spamming, efforts in the form
of botnet take-down, capture, fines and jail time dominate; probabilistic costs
which the attacker must consider within cs, and when considered explicitly are
a confirmation of the role law enforcement in a specific country/region has in
deterrence. In the case of signalling, the focus within wireless security has been
towards improving usability, and thereby lowering user costs. These respective
costs represent government and industry actions in response to these issues.
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Ultimately, in both of these games it is the perpetuation of the information
asymmetry that is of benefit to the user. This of course stands to reason: the less
the attacker can determine of the user’s security, the greater the benefit to the
user’s security. What additionally becomes clear through this analysis is that the
effect of such mechanisms can be either direct, by signalling the type or viability
of a victim, or indirect, leaving the attacker without actionable information. It
is here that the user (defender) appears to have the most direct impact on the
resulting security, regardless of prior investment or external constructs. Most
directly, in the case of screening the action (or inaction) of the defender provides
the conditions to drive a binary attacker belief (p = 1 or p = 0), and, coupled
with the threat of a failed engagement, forces equilibrium. It is this adherence to
recommended ‘good practice’ that sets attacker beliefs, and one could conceive
different scenarios in which continued iterations require the defender to contin-
ually follow such advice (as characterised by the ‘the user is the weakest link’
ethos). This reinforces the findings of [12] that it is the small, gullible minority
who respond to spam that enables the perpetuation of such scams by allowing
attackers to believe it is profitable, given its low cost of entry.

In the case of signalling, while by the construct of the game the signal itself
(i.e. SSID hiding) fails to have any security impact, the equilibrium found indi-
cates that the value it provides is in affecting attacker belief. This may help
explain the continued endorsement of the practice despite widespread under-
standing that it does little to affect wireless security, and would appear to pro-
vide the justification of heeding such advice. Again, this appears to perpetuate
the continued adherence to security guidance even if it has dubious contribution
to the actual security stance — as long as the good advice is also followed, and
the rest ‘looks like’ security and comes at a sufficiently low cost.

Naturally, these results only hold in specific circumstances. In these games,
Player 1 has knowledge of their type, which may not be the case in many cir-
cumstances (or is arguably more likely only in that a ‘secure’ type would iden-
tify as such, with all others falling into the ‘unsecure’ category). Additionally,
these results are in the presence of attacks at scale, as wholly different con-
structs (with different utilities) are required for examination of directed, focused
attacks. Given these conditions, from these results we come to the conclusion
foreshadowed by the title of the paper: in both cases of games constructed here,
there exists a deterrence outcome in which the winning move is not to play.

4 Related Work

The work described in this paper is intertwined with the wider literature on
deterrence, cyber security, and adversarial behaviour, although to the authors’
knowledge it is the first to tackle the concept of deterrence from the operational
and tactical level in cyberspace.

The role of game theory as the construct for examining deterrence is well
studied. Relevant to this work is that of Robbins et al. [17], in which they
present an extension of the 1960’s US–USSR game-theoretic model for strategic
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nuclear deterrence. Their concept of decision criteria being in the “mind’s eye”
of the adversary and leading to probability assessments has synergy with the
signalling game as defined in this paper. Other attempts at defining deterrence
mathematically have also employed game-theoretic constructs to measure reduc-
tions in intent to attack [19], although it is not clear how this is to be employed
when the potential target set is not specifically known. Generally, the inter-
play between adversary belief manipulation and cost–benefit realisation are the
common themes in definitions of deterrence [4,16].

Attempts to define cyber deterrence typically stem from these traditional mil-
itary concepts of strategic deterrence. Much of this literature is focused around
cyber attack and notions of ‘cyberwar’ likened to approaches deterrence in the
nuclear era; there is no lack of examples of such treatments [9]. Regarding the
role of deterrence as a part of the larger concept of cyber defence, Jabbour
and Ratazzi [14] discuss deterrence as a combination of denial, increased costs
and decreased benefits, noting that the first of these aspects (denial) relies on a
defence-dominated environment — which cyberspace is not. This links the sec-
ond and third aspects (increased costs and decreased benefits) to the notions
of assurance and avoidance, but the authors do not specify how this might be
exacted or quantified. While this characterisation soundly dismisses the notion
that deterrence can be thought of exclusively in traditional terms of ‘Mutually
Assured Destruction (MAD)’ or retaliatory action, it doesn’t reach the level of
describing how this could be measurably performed — noting only that it will
vary with the domain and application.

In the field of security economics, research involving deterrence has thus far
focused primarily on the role it plays to dissuade large-scale malicious behav-
iour. Previous treatments have included deterrence of employee behaviour with
regards to information security (to include employee knowledge of the secu-
rity mechanisms in play) [11], as well as the application of various theories
of deterrence with respect to combatting specific cyber crimes, such as online
fraud [1]. These contributions represent a growing trend towards examining
deterrence in various perspectives outside of war, but retain the emphasis on
larger-scale engagements (e.g. many potential bad actors) and are generally
abstracted beyond specific interactions between actors.

Grossklags et al. [10] investigate the application of static game-theoretic mod-
els to cyber security problems. This scope permits the authors to investigate
security concerns ranging from redundant network defence, software vulnerabil-
ity introduction, and insider threats. The primary focus is in the analysis of the
trade-off between ‘security’ and ‘insurance’ measures in these instances, and on
decisions regarding approach rather than allocation. As such, their results lead
to conclusions regarding the role of centralised policy planning and organisa-
tional structure in defensive posturing. Differences in approach and emphasis
aside, our work follows the same vein of utilising such models to provide insights
to enhance development, planning and decision-making processes.

Finally, the contribution of Cremonini and Nizovstev [5] examines the role
of security investment on attacker decisions. While never using the term ‘deter-
rence’ to describe this concept, the authors examine the duality of the security



When the Winning Move is Not to Play 267

contribution (“ability to withstand attacks of a given intensity”) and the behav-
ioural contribution (“change in attacker’s perception of the target in question”)
present in any given security investment; as with our work, they rely on the
presence of alternative targets. Cremonini and Nizovstev argue that this second
component is often ignored, and develop a model in four scenarios to capture
this effect — the fourth of which is an incomplete, asymmetric information game
of similar construct to our operational deterrence model. With their focus on the
investment aspects, Cremonini and Nizovstev come to the conclusion that the
magnitude of the behavioural contribution can greatly exceed that of the direct
investment. Additionally, they find that in the incomplete, asymmetric informa-
tion case attacker treatment of each target is the same, and thus this behavioural
component is removed. They argue that this lack of “transparency” in favour
of “opacity” is a benefit for the less secure, at the detriment of the more secure
users who as a result are disincentivized to invest in security. It is this phe-
nomenon to which they attribute the failure of econometrics such as Annual
Loss Expectancy (ALE) to properly capture the security investment, as it fails
to account for such indirect contribution and may lead to underinvestment or
misallocation of resources.

The model of [5] shares many common themes and concepts with our con-
struct, with both drawing conclusions along complementary lines. In addition to
considering the role of screening within potential behavioural contributions, our
model most identifies a concrete example of such a mechanism. This addresses a
concern of Cremonini and Nizovstev [5] as to what can “serve as a credible sig-
nal of strong inner security and not undermine that security at the same time”.
In addition, our construct further extends the discussion of ‘transparency’ and
‘opacity’ to more fully characterise instances (in the form of game equilibria)
where the role of belief can be observed. In the instance that the signal is not
seen as an indicator of security, the two resulting pooling equilibria are then
driven by the attacker beliefs (and therefore can be considered to be related
to the prior probabilities). The first equilibrium is analogous to the findings of
Cremonini and Nizovstev, where ‘opacity’ leads to each defender being attacked
equally when λ < 1

2 . We also find that in the case that the distribution shifts
toward secure users (λ > 1

2 ) another equilibrium is possible, whereby the situa-
tion flips such that everyone benefits as the attacker chooses not to move. This
result is not considered by Cremonini and Nizovstev, although it serves to sup-
port their conclusions regarding the role of the behavioural component within
security. In addition, we also find that when the cost of signalling by a less secure
player is sufficiently expensive (coupled with attacker beliefs regarding the role of
such signals) a ‘transparent’ environment with a separating equilibrium emerges,
which clearly benefits investment in security. Through a more descriptive treat-
ment of signalling by user types within this environment, we complement [5]
with a description that relates cost to loss l and loss probability α. This allows
the actions of both low and high security users to be more granular with respect
to the desired outcome. As such, our construct suggests that the behavioural
component to security and its benefit is indeed still present in these cases, and
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is reliant on attacker beliefs. These findings further bolster the arguments made
in the conclusion of [5] regarding the rejection of ‘security through obscurity’
and the role of layered defence.

5 Conclusions

We have demonstrated the explanatory power gained by treating the concept
of deterrence as an information asymmetry, which is then modelled as a set
of games: a screening game, where the attacker moves first and attempts to
identify targets for attack, and a signalling game in which the user undertakes
measures to attempt to deter potential attackers. In both cases, we showed how
the propagation of the asymmetry through the action (or inaction) of the user
provided security benefits that can be measured in terms of utility.

We do not attempt to make an argument for deterrence to replace security
(to, for example, forgo WPA2 encryption and merely hide one’s SSID). In fact,
the results show that such constructs have no value in the absence of secure
users. Notably, this construct has relevance only to low focus, low skill attacks.
As such, they operate as part of a filter for the ‘background noise’ of internet
attacks, but as noted don’t hold for directed attacks. The model as presented
is highly simplified in its consideration of the cost to the attacker and the user.
In addition to the various parameters of the model that may vary from case to
case, there are assumptions (such as the equality in the loss of Player 1 and the
gain of Player 2) that would be far more complex in reality.

We plan to further investigate the effects of more detailed modelling; however,
it is the authors’ belief that the value of such concepts lie not in more complex
models, but in their explanatory power to describe alternative and complemen-
tary concepts of security. As such, such models are expected to have an impact
on the formation of requirements and the approaches to security engineering
that result from such insights. Movement from the existing paradigms require
that we think differently about security throughout the engineering life cycle,
and expand our ability to conceptualise and quantify our approaches.
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Abstract. We show that Rational Proofs do not satisfy basic compo-
sitional properties in the case where a large number of “computation
problems” are outsourced. We show that a “fast” incorrect answer is
more remunerable for the prover, by allowing him to solve more prob-
lems and collect more rewards. We present an enhanced definition of
Rational Proofs that removes the economic incentive for this strategy
and we present a protocol that achieves it for some uniform bounded-
depth circuits.

1 Introduction

The problem of securely outsourcing data and computation has received wide-
spread attention due to the rise of cloud computing: a paradigm where businesses
lease computing resources from a service (the cloud provider) rather than main-
tain their own computing infrastructure. Small mobile devices, such as smart
phones and netbooks, also rely on remote servers to store and perform compu-
tation on data that is too large to fit in the device.

It is by now well recognized that these new scenarios have introduced new
security problems that need to be addressed. When data is stored remotely,
outside our control, how can we be sure of its integrity? Even more interestingly,
how do we check that the results of outsourced computation on this remotely
stored data are correct. And how do perform these tests while preserving the
efficiency of the client (i.e. avoid retrieving the whole data, and having the client
perform the computation) which was the initial reason data and computations
were outsourced.

Verifiable Outsourced Computation is a very active research area in Cryptog-
raphy and Network Security (see [8] for a survey), with the goal of designing
protocols where it is impossible (under suitable cryptographic assumptions) for
a provider to “cheat” in the above scenarios. While much progress has been done
in this area, we are still far from solutions that can be deployed in practice.

A different approach is to consider a model where “cheating” might actually
be possible, but the provider would have no motivation to do so. In other words
while cryptographic protocols prevent any adversary from cheating, one considers
protocols that work against rational adversaries whose motivation is to maximize
a well defined utility function.
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Previous Work. An earlier work in this line is [3] where the authors describe
a system based on a scheme of rewards [resp. penalties] that the client assesses
to the server for computing the function correctly [resp. incorrectly]. However
in this system checking the computation may require re-executing it, something
that the client does only on a randomized subset of cases, hoping that the penalty
is sufficient to incentivize the server to perform honestly. Morever the scheme
might require an “infinite” budget for the rewards, and has no way to “enforce”
payment of penalties from cheating servers. For these reasons the best application
scenario of this approach is the incentivization of volunteer computing schemes
(such as SETI@Home or Folding@Home), where the rewards are non-fungible
“points” used for “social-status”.

Because verification is performed by re-executing the computation, in this
approach the client is “efficient” (i.e. does “less” work than the server) only in
an amortized sense, where the cost of the subset of executions verified by the
client is offset by the total number of computations performed by the server.
This implies that the server must perform many executions for the client.

Another approach, instead, is the concept of Rational Proofs introduced by
Azar and Micali in [1] and refined in subsequent papers [2,6]. This model cap-
tures, more accurately, real-world financial “pay-for-service” transactions, typi-
cal of cloud computing contractual arrangements, and security holds for a single
“stand-alone” execution.

In a Rational Proof, given a function f and an input x, the server returns
the value y = f(x), and (possibly) some auxiliary information, to the client. The
client will in turn pay the server for its work with a reward which is a function of
the messages sent by the server and some randomness chosen by the client. The
crucial property is that this reward is maximized in expectation when the server
returns the correct value y. Clearly a rational prover who is only interested in
maximizing his reward, will always answer correctly.

The most striking feature of Rational Proofs is their simplicity. For example
in [1], Azar and Micali show single-message Rational Proofs for any problem in
#P , where an (exponential-time) prover convinces a (poly-time) verifier of the
number of satisfying assignment of a Boolean formula.

For the case of “real-life” computations, where the Prover is polynomial and
the Verifier is as efficient as possible, Azar and Micali in [2] show d-round Ratio-
nal Proofs for functions computed by (uniform) Boolean circuits of depth d, for
d = O(log n) (which can be collapsed to a single round under some well-defined
computational assumption as shown in [6]). The problem of rational proofs for
any polynomial-time computable function remains tantalizingly open.

Our Results. Motivated by the problem of volunteer computation, our first
result is to show that the definition of Rational Proofs in [1,2] does not satisfy
a basic compositional property which would make them applicable in that sce-
nario. Consider the case where a large number of “computation problems” are
outsourced. Assume that solving each problem takes time T . Then in a time
interval of length T , the honest prover can only solve and receive the reward
for a single problem. On the other hand a dishonest prover, can answer up to
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T problems, for example by answering at random, a strategy that takes O(1)
time. To assure that answering correctly is a rational strategy, we need that at
the end of the T -time interval the reward of the honest prover be larger than
the reward of the dishonest one. But this is not necessarily the case: for some
of the protocols in [1,2,6] we can show that a “fast” incorrect answer is more
remunerable for the prover, by allowing him to solve more problems and collect
more rewards.

The next questions, therefore, was to come up with a definition and a pro-
tocol that achieves rationality both in the stand-alone case, and in the composi-
tion described above. We first present an enhanced definition of Rational Proofs
that removes the economic incentive for the strategy of fast incorrect answers,
and then we present a protocol that achieves it for the case of some (uniform)
bounded-depth circuits.

2 Rational Proofs

In the following we will adopt a “concrete-security” version of the “asymptotic”
definitions and theorems in [2,6]. We assume the reader is familiar with the
notion of interactive proofs [7].

Definition 1 (Rational Proof). A function f : {0, 1}n → {0, 1}n admits a
rational proof if there exists an interactive proof (P, V ) and a randomized reward
function rew : {0, 1}∗ → R≥0 such that

1. (Rational completeness) For any input x ∈ {0, 1}n, Pr[out((P, V )(x)) =
f(x)] = 1.

2. For every prover P̃ , and for any input x ∈ {0, 1}n there exists a δP̃ (x) ≥ 0
such that E[rew((P̃ , V )(x))] + δP̃ (x) ≤ E[rew((P, V )(x))].

The expectations and the probabilities are taken over the random coins of the
prover and verifier.

Let εP̃ = Pr[out((P, V )(x)) �= f(x)]. Following [6] we define the reward gap as

Δ(x) = minP ∗:εP∗=1[δP ∗(x)]

i.e. the minimum reward gap over the provers that always report the incorrect
value. It is easy to see that for arbitrary prover P̃ we have δP̃ (x) ≥ εP̃ · Δ(x).
Therefore it suffices to prove that a protocol has a strictly positive reward gap
Δ(x) for all x.

Examples of Rational Proofs. For concreteness here we show the protocol
for a single threshold gate (readers are referred to [1,2,6] for more examples).

Let Gn,k(x1, . . . , xn) be a threshold gate with n Boolean inputs, that evalu-
ates to 1 if at least k of the input bits are 1. The protocol in [2] to evaluate this
gate goes as follows. The Prover announces the number m̃ of input bits equal
to 1, which allows the Verifier to compute Gn,k(x1, . . . , xn). The Verifier select
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a random index i ∈ [1..n] and looks at input bit b = xi and rewards the Prover
using Brier’s Rule BSR(p̃, b) where p̃ = m̃/n i.e. the probability claimed by the
Prover that a randomly selected input bit be 1. Then

BSR(p̃, 1) = 2p̃ − p̃2 − (1 − p̃)2 + 1 = 2p̃(2 − p̃)

BSR(p̃, 0) = 2(1 − p̃) − p̃2 − (1 − p̃)2 + 1 = 2(1 − p̃2)

Let m be the true number of input bits equal to 1, and p = m/n the correspond-
ing probability, then the expected reward of the Prover is

pBSR(p̃, 1) + (1 − p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover announces
the correct result. Moreover one can see that when the Prover announces a wrong
m̃ his reward goes down by 2(p − p̃)2 ≥ 2/n2. In other words for all n-bit input
x, we have Δ(x) = 2/n2 and if a dishonest Prover P̃ cheats with probability εP̃
then δP̃ > 2εP̃ /n2.

3 Profit vs. Reward

Let us now define the profit of the Prover as the difference between the reward
paid by the verifier and the cost incurred by the Prover to compute f and engage
in the protocol. As already pointed out in [2,6] the definition of Rational Proof
is sufficiently robust to also maximize the profit of the honest prover and not
the reward. Indeed consider the case of a “lazy” prover P̃ that does not evaluate
the function: even if P̃ collects a “small” reward, his total profit might still be
higher than the profit of the honest prover P .

Set R(x) = E[rew((P, V )(x))], R̃(x) = E[rew((P̃ , V )(x))] and C(x) [resp.
C̃(x)] the cost for P [resp. P̃ ] to engage in the protocol. Then we want

R(x) − C(x) ≥ R̃(x) − C̃(x) =⇒ δP̃ (x) ≥ C(x) − C̃(x)

In general this is not true (see for example the previous protocol), but it is always
possible to change the reward by a multiplier M . Note that if M ≥ C(x)/δP̃ (x)
then we have that

M(R(x) − R̃(x)) ≥ C(x) ≥ C(x) − C̃(x)

as desired. Therefore by using the multiplier M in the reward, the honest prover
P maximizes its profit against all provers P̃ except those for which δP̃ (x) ≤
C(x)/M , i.e. those who report the incorrect result with a “small” probability
εP̃ (x) ≤ C(x)

MΔ(x) .
We note that M might be bounded from above, by budget considerations

(i.e. the need to keep the total reward MR(x) ≤ B for some budget B). This
point out to the importance of a large reward gap Δ(x) since the larger Δ(x) is,
the smaller the probability of a cheating prover P̃ to report an incorrect result
must be, in order for P̃ to achieve an higher profit than P .
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Example. In the above protocol we can assume that the cost of the honest
prover is C(x) = n, and we know that Δ(x) = n2. Therefore the profit of
the honest prover is maximized against all the provers that report an incorrect
result with probability larger than n3/M , which can be made sufficiently small
by choosing the appropriate multiplier.

Remark 1. If we are interested in an asymptotic treatment, it is important to
notice that as long as Δ(x) ≥ 1/poly(|x|) then it is possible to keep a polynomial
reward budget, and maximize the honest prover profit against all provers who
cheat with a substantial probability εP̃ ≥ 1/poly′(|x|).

4 Sequential Composition

We now present the main results of our work. First we informally describe our
notion of sequential composition of rational proof, via a motivating example
and show that the protocols in [1,2,6] do not satisfy it. Then we present our
definition of sequential rational proofs, and a protocol that achieves it for circuits
of bounded depth.

4.1 Motivating Example

Consider the protocol in the previous section for the computation of the func-
tion Gn,k(·). Assume that the honest execution of the protocol (including the
computation of Gn,k(·)) has cost C = n.

Assume now that we are given a sequence of n inputs x(1), . . . , x(i), . . . where
each x(i) is an n-bit string. In the following let mi be the Hamming weight of
x(i) and pi = mi/n.

Therefore the honest prover investing C = n cost, will be able to execute the
protocol only once, say on input x(i). By setting p = p̃ = pi in Eq. 1, we see that
P obtains reward

R(x(i)) = 2(p2i − pi + 1) ≤ 2

Consider instead a prover P̃ which in the execution of the protocol outputs a
random value m̃ ∈ [0..n]. The expected reward of P̃ on any input x(i) is (by
setting p = pi and p̃ = m/n in Eq. 1 and taking expectations):

R̃(x(i)) = E
m,b

[BSR(
m

n
, b)]

=
1

n + 1

n∑

m=0

E
b
[BSR(

m

n
, b]

=
1

n + 1

n∑

m=0

(2(2pi · m

n
− m2

n2
− pi + 1))

= 2 − 2n + 1
3n

> 1 for n > 1.
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Therefore by “solving” just two computations P̃ earns more than P . Moreover
t the strategy of P̃ has cost 1 and therefore it earns more than P by investing a
lot less cost1.

Note that “scaling” the reward by a multiplier M does not help in this case,
since both the honest and dishonest prover’s rewards would be multiplied by the
same multipliers, without any effect on the above scenario.

We have therefore shown a rational strategy, where cheating many times and
collecting many rewards is more profitable than collecting a single reward for an
honest computation.

4.2 Sequentially Composable Rational Proofs

The above counterexample motivates the following Definition which formalizes
that the reward of the honest prover P must always be larger than the total
reward of any prover P̃ that invests less computation cost than P .

Technically this is not trivial to do, since it is not possible to claim the above
for any prover P̃ and any sequence of inputs, because it is possible that for a
given input x̃, the prover P̃ has “hardwired” the correct value ỹ = f(x̃) and can
compute it without investing any work. We therefore propose a definition that
holds for inputs randomly chosen according to a given probability distribution
D, and we allow for the possibility that the reward of a dishonest prover can
be “negligibly” larger than the reward of the honest prover (for example if P̃ is
lucky and such “hardwired” inputs are selected by D).

Definition 2 (Sequential Rational Proof). A rational proof (P, V ) for a
function f : {0, 1}n → {0, 1}n is ε-sequentially composable for an input distrib-
ution D, if for every prover P̃ , and every sequence of inputs x, x1, . . . , xk ∈ D
such that C(x) ≥ ∑k

i=1 C̃(xi) we have that
∑

i R̃(xi) − R ≤ ε.

A few sufficient conditions for sequential composability follow.

Lemma 1. Let (P, V ) be a rational proof. If for every input x it holds that
R(x) = R and C(x) = C for constants R and C, and the following inequality
holds for every P̃ �= P and input x ∈ D:

R̃(x)
R

≤ C̃(x)
C

+ ε

then (P, V ) is kRε-sequentially composable for D.

Proof. It suffices to observe that, for any k inputs x1, ..., xk, the inequality above
implies

k∑

i=1

R̃(xi) ≤ R[
k∑

i=1

(
C̃(xi)

C
+ ε)] ≤ R + kRε

where the last inequality holds whenever
∑k

i=1 C̃(xi) ≤ C as in Definition 2.
1 If we think of cost as time, then in the same time interval in which P solves one

problem, P̃ can solve up to n problems, earning a lot more money, by answering fast
and incorrectly.
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Corollary 1. Let (P, V ) and rew be respectively an interactive proof and a
reward function as in Definition 1; if rew can only assume the values 0 and
R for some constant R, let p̃x = Pr[rew((P̃ , V )(x)) = R]. If for x ∈ D

p̃x ≤ C̃(x)
C

+ ε

then (P, V ) is kRε-sequentially composable for D.

Proof. Observe that R̃(x) = p̃x · R and then apply Lemma 1.

4.3 Sequential Rational Proofs in the PCP Model

We now describe a rational proof appeared in [2] and prove that is sequentially
composable. The protocol assumes the existence of a trusted memory storage
to which both Prover and Verifier have access, to realize the so-called “PCP”
(Probabilistically Checkable Proof) model. In this model, the Prover writes a
very long proof of correctness, that the verifier checks only in a few randomly
selected positions. The trusted memory is needed to make sure that the prover
is “committed” to the proof before the verifier starts querying it.

The following protocol for proofs on a binary logical circuit C appeared in [2].
The Prover writes all the (alleged) values αw for every wire w ∈ C, on the trusted
memory location. The Verifier samples a single random gate value to check its
correctness and determines the reward accordingly:

1. The Prover writes the vector {αw}w∈C
2. The Verifier samples a random gate g ∈ C.

– The Verifier reads αgout
, αgL

, αgR
, with gout, gL, gR being respectively the

output, left and right input wires of g; the verifier checks that αgout
=

g(αgL
, αgR

);
– If g in an input gate the Verifier also checks that αgL

, αgR
correspond to

the correct input values;
The Verifier pays R if both checks are satisfied, otherwise it pays 0.

Theorem 1 ([2]). The protocol above is a rational proof for any boolean function
in P ||NP , the class of all languages decidable by a polynomial time machine that
can make non-adaptive queries to NP .

We will now show a cost model where the rational proof above is sequentially
composable. We will assume that the cost for any prover is given by the number
of gates he writes. Thus, for any input x, the costs for honest and dishonest
provers are respectively C(x) = S, where S = |C|, and C̃(x) = s̃ where s̃ is the
number of gates written by the dishonest prover. Observe that in this model a
dishonest prover may not write all the S gates, and that not all of the s̃ gates
have to be correct. Let σ ≤ s̃ the number of correct gates written by P̃ .
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Theorem 2. In the cost model above the PCP protocol in [2] is sequentially
composable.

Proof. Observe that the probability p̃x that P̃ �= P earns R is such that

p̃x =
σ

S
≤ s̃

S
=

C̃

C

Applying Corollary 1 completes the proof.

The above cost model, basically says that the cost of writing down a gate dom-
inates everything else, in particular the cost of computing that gate. In other
cost models a proof of sequential composition may not be as straightforward.
Assume, for example, that the honest prover pays $1 to compute the value of a
single gate while writing down that gate is “free”. Now p̃x is still equal to σ

S but
to prove that this is smaller than C̃

C we need some additional assumption that
limits the ability for P̃ to “guess” the right value of a gate without computing
it (which we will discuss in the next Section).

4.4 Sequential Composition and the Unique Inner State
Assumption

Definition 2 for sequential rational proofs requires a relationship between the
reward earned by the prover and the amount of “work” the prover invested to
produce that result. The intuition is that to produce the correct result, the prover
must run the computation and incur its full cost. Unfortunately this intuition
is difficult, if not downright impossible, to formalize. Indeed for a specific input
x a “dishonest” prover P̃ could have the correct y = f(x) value “hardwired”
and could answer correctly without having to perform any computation at all.
Similarly, for certain inputs x, x′ and a certain function f , a prover P̃ after
computing y = f(x) might be able to “recycle” some of the computation effort
(by saving some state) and compute y′ = f(x′) incurring a much smaller cost
than computing it from scratch.

A way to circumvent this problem was suggested in [3] under the name of
Unique Inner State Assumption: the idea is to assume a distribution D over the
input space. When inputs x are chosen according to D, then we assume that
computing f requires cost C from any party: this can be formalized by saying
that if a party invests C̃ = γC effort (for γ ≤ 1), then it computes the correct
value only with probability negligibly close to γ (since a party can always have
a “mixed” strategy in which with probability γ it runs the correct computation
and with probability 1 − γ does something else, like guessing at random).

Assumption 1. We say that the (C, ε)-Unique Inner State Assumption holds
for a function f and a distribution D if for any algorithm P̃ with cost C̃ = γC,
the probability that on input x ∈ D, P̃ outputs f(x) is at most γ + (1 − γ)ε.
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Note that the assumption implicitly assumes a “large” output space for f (since
a random guess of the output of f will be correct with probability 2−n where n
is the binary length of f(x)).

More importantly, note that Assumption 1 immediately yields our notion of
sequential composability, if the Verifier can detect if the Prover is lying or not.
Assume, as a mental experiment for now, that given input x, the Prover claims
that ỹ = f(x) and the Verifier checks by recomputing y = f(x) and paying a
reward of R to the Prover if y = ỹ and 0 otherwise. Clearly this is not a very
useful protocol, since the Verifier is not saving any computation effort by talking
to the Prover. But it is sequentially composable according to our definition, since
p̃x, the probability that P̃ collects R, is equal to the probability that P̃ computes
f(x) correctly, and by using Assumption 1 we have that

p̃x = γ + (1 − γ)ε ≤ C̃

C
+ ε

satisfying Corollary 1.
To make this a useful protocol we adopt a strategy from [3], which also uses

this idea of verification by recomputing. Instead of checking every execution, we
check only a random subset of them, and therefore we can amortize the Verifier’s
effort over a large number of computations. Fix a parameter m. The prover sends
to the verifier the values ỹj which are claimed to be the result of computing f
over m inputs x1, . . . , xm. The verifier chooses one index i randomly between
1 and m, and computes yi = f(xi). If yi = ỹi the verifier pays R, otherwise it
pays 0.

Let T be the total cost by the honest prover to compute m instances: cleary
T = mC. Let T̃ = ΣiC̃i be the total effort invested by P̃ , by investing C̃i on the
computation of xi. In order to satisfy Corollary 1 we need that p̃x, the probability
that P̃ collects R, be less than T̃ /T + ε.

Let γi = C̃i/C, then under Assumption 1 we have that ỹi is correct with
probability at most γi + (1 − γi)ε. Therefore if we set γ =

∑
i γi/m we have

p̃x =
1
m

∑

i

[γi + (1 − γi)ε] = γ + (1 − γ)ε ≤ γ + ε

But note that γ = T̃ /T as desired since

T̃ =
∑

i

C̃i =
∑

i

γiC = T
∑

i

γi/m

Efficiency of the Verifier. If our notion of “efficient Verifier” is a verifier who
runs in time o(C) where C is the time to compute f , then in the above protocol
m must be sufficiently large to amortize the cost of computing one execution
over many (in particular a constant – in the input size n – value of m would
not work). In our “concrete analysis” treatment, if we requests that the Verifier
runs in time δC for an “efficiency” parameter δ ≤ 1, then we need m ≥ δ−1.
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Therefore we are still in need of a protocol which has an efficient Verifier,
and would still works for the “stand-alone” case (m = 1) but also for the case
of sequential composability over any number m of executions.

5 Our Protocol

We now present a protocol that works for functions f : {0, 1}n → {0, 1}n

expressed by an arithmetic circuit C of size C and depth d and fan-in 2, given
as a common input to both Prover and Verifier together with the input x.

Intuitively the idea is for the Prover to provide the Verifier with the output
value y and its two “children” yL, yR in the gate, i.e. the two input values of the
last output gate G. The Verifier checks that G(yL, yR) = y, and then asks the
Prover to verify that yL or yR (chosen a random) is correct, by recursing on the
above test. The protocol description follows.

1. The Prover evaluates the circuit on x and sends the output value y1 to the
Verifier.

2. Repeat r times: The Verifier identifies the root gate g1 and then invokes
Round(1, g1, y1),

where the procedure Round(i, gi, yi) is defined for 1 ≤ i ≤ d as follows:

1. The Prover sends the value of the input wires z0i and z1i of gi to the Verifier.
2. The Verifiers performs the following

– Check that yi is the result of the operation of gate gi on inputs z0i and z1i .
If not STOP and pay a reward of 0.

– If i = d (i.e. if the inputs to gi are input wires), check that the values of z0i
and z1i are equal to the corresponding bits of x. Pay reward R to Merlin
if this is the case, nothing otherwise.

– If i < d, choose a random bit b, send it to Merlin and invoke Round(i +
1, gb

i+1, z
b
i ) where gb

i+1 is the child gate of gi whose output is zb
i .

5.1 Efficiency

The protocol runs at most in d rounds. In each round, the Prover sends a constant
number of bits representing the values of specific input and output wires; The
Verifier sends at most one bit per round, the choice of the child gate. Thus the
communication complexity is O(d) bits.

The computation of the Verifier in each round is: (i) computing the result of
a gate and checking for bit equality; (ii) sampling a child. Gate operations and
equality are O(1) per round. We assume our circuits are T -uniform, which allows
the Verifier to select the correct gate in time T (n)2. Thus the Verifier runs in
O(rd · T (n)) with r = O(log C).
2 We point out that the Prover can provide the Verifier with the requested gate and

then the Verifier can use the uniformity of the circuit to check that the Prover has
given him the correct gate at each level in time O(T (n)).
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5.2 Proofs of (Stand-Alone) Rationality

Theorem 3. The protocol in Sect. 5 for r = 1 is a Rational Proof according to
Definition 1.

We prove the above theorem by showing that for every input x the reward gap
Δ(x) is positive.

Proof. Let P̃ a prover that always reports ỹ �= y1 = f(x) at Round 1.
Let us proceed by induction on the depth d of the circuit. If d = 1 then there

is no possibility for P̃ to cheat successfully, and its reward is 0.
Assume d > 1. We can think of the binary circuit C as composed by two

subcircuits CL and CR and the output gate g1 such that f(x) = g1(CL(x), CR(x)).
The respective depths dL, dR of these subcircuits are such that 0 ≤ dL, dR ≤
d − 1 and max(dL, dR) = d − 1. After sending ỹ, the protocol requires that P̃
sends output values for CL(x) and CR(x); let us denote these claimed values
respectively with ỹL and ỹR. Notice that at least one of these alleged values will
be different from the respective correct subcircuit output: if it were otherwise,
V would reject immediately as g(ỹL, ỹR) = f(x) �= ỹ. Thus at most one of the
two values ỹL, ỹR is equal to the output of the corresponding subcircuit. The
probability that the P̃ cheats successfully is:

Pr[V accepts] ≤ 1
2

· (Pr[V accepts on CL] + Pr[V acceptson CR]) (2)

≤ 1
2

· (1 − 2−max(dL,dR)) +
1
2

(3)

≤ 1
2

· (1 − 2−d+1) +
1
2

(4)

= 1 − 2−d (5)

At Eq. 3 we used the inductive hypothesis and the fact that all probabilities are
at most 1.

Therefore the expected reward of P̃ is R̃ ≤ R(1 − 2−d) and the reward gap
is Δ(x) = 2−dR (see Remark 2 or an explanation of the equality sign).

The following useful corollary follows from the proof above.

Corollary 2. If the protocol described in Sect. 5 is repeated r ≥ 1 times a prover
can cheat with probability at most (1 − 2−d)r.

Remark 2. We point out that one can always build a prover strategy P ∗ which
always answers incorrectly and achieves exactly the reward R∗ = R(1 − 2−d).
This prover outputs an incorrect ỹ and then computes one of the subcircuits that
results in one of the input values (so that at least one of the inputs is correct).
This will allow him to recursively answer with values z0i and z1i where one of the
two is correct, and therefore be caught only with probability 2−d.

Remark 3. In order to have a non-negligible reward gap (see Remark 1) we
need to limit ourselves to circuits of depth d = O(log n).
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5.3 Proof of Sequential Composability

General Sufficient Conditions for Sequential Composability

Lemma 2. Let C be a circuit of depth d. If the (C, ε) Unique Inner State
Assumption (see Assumption 1) holds for the function f computed by C, and
input distribution D, then the protocol presented above with r repetitions is a
kεR-sequentially composable Rational Proof for C for D if the following inequal-
ity holds

(1 − 2−d)r ≤ 1
C

Proof. Let γ = C̃
C . Consider x ∈ D and prover P̃ which invests effort C̃ ≤ C.

Under Assumption 1, P̃ gives the correct outputs with probability γ+ε – assume
that in this case P̃ collects the reward R. If P̃ gives an incorrect output we
know (following Corollary 2) that he collects the reward R with probability at
most (1 − 2−d)r which by hypothesis is less than γ. So either way we have that
R̃ ≤ (γ + ε)R and therefore applying Lemma1 concludes the proof.

The problem with the above Lemma is that it requires a large value of r for
the result to be true resulting in an inefficient Verifier. In the following sections
we discuss two approaches that will allows us to prove sequential composability
even for an efficient Verifier:

– Limiting the class of provers we can handle in our security proof;
– Limiting the class of functions/circuits.

Limiting the Strategy of the Prover: Non-adaptive Provers. In proving
sequential composability it is useful to find a connection between the amount
of work done by a dishonest prover and its probability of cheating. The more a
dishonest prover works, the higher its probability of cheating. This is true for our
protocol, since the more “subcircuits” the prover computes correctly, the higher
is the probability of convincing the verifier of an incorrect output becomes. The
question then is: how can a prover with an “effort budget” to spend maximize
its probability of success in our protocol?

As we discussed in Remark 2, there is an adaptive strategy for the P̃ to max-
imize its probability of success: compute one subcircuit correctly at every round
of the protocol. We call this strategy “adaptive”, because the prover allocates
its “effort budget” C̃ on the fly during the execution of the rational proof. Con-
versely a non-adaptive prover P̃ uses C̃ to compute some subcircuits in C before
starting the protocol. Clearly an adaptive prover strategy is more powerful, than
a non-adaptive one (since the adaptive prover can direct its computation effort
where it matters most, i.e. where the Verifier “checks” the computation).

Is it possible to limit the Prover to a non-adaptive strategy? This could be
achieved by imposing some “timing” constraints to the execution of the proto-
col: to prevent the prover from performing large computations while interacting
with the Verifier, the latter could request that prover’s responses be delivered
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“immediately”, and if a delay happens then the Verifier will not pay the reward.
Similar timing constraints have been used before in the cryptographic litera-
ture, e.g. see the notion of timing assumptions in the concurrent zero-knowledge
protocols in [5].

Therefore in the rest of this subsection we assume that non-adaptive strate-
gies are the only rational ones and proceed in analyzing our protocol under the
assumption that the prover is adopting a non-adaptive strategy.

Consider a prover P̃ with effort budget C̃ < C. A DFS (for “depth first
search”) prover uses its effort budget C̃ to compute a whole subcircuit of size
C̃ and maximal depth dDFS . Call this subcircuit CDFS . P̃ can answer correctly
any verifier’s query about a gate in CDFS . During the interaction with V , the
behavior of a DFS prover is as follows:

– At the beginning of the protocol send an arbitrary output value y1.
– During procedure Round(i, gi, yi):

• If gi ∈ CDFS then P̃ sends the two correct inputs z0i and z1i .
• If gi �∈ CDFS and neither of gi’s input gate belongs to CDFS then P̃ sends

two arbitrary z0i and z1i that are consistent with yi, i.e. gi(z0i , z1i ) = yi.
• gi �∈ CDFS and one of gi’s input gates belongs to CDFS , then P̃ will send

the correct wire known to him and another arbitrary value consistent with
yi as above.

Lemma 3 (Advantage of a DFS Prover). In one repetition of the protocol
above, a DFS prover with effort budget C̃ investment has probability of cheating
p̃DFS bounded by

p̃DFS ≤ 1 − 2−dDFS

The proof of Lemma 3 follows easily from the proof of the stand-alone rationality
of our protocol (see Theorem 3).

If a DFS prover focuses on maximizing the depth of a computed subcircuit
given a certain investment, BFS provers allot their resources to compute all sub-
circuits rooted at a certain height. A BFS prover with effort budget C̃ computes
the value of all gates up to the maximal height possible dBFS . Note that dBFS

is a function of the circuit C and of the effort C̃. Let CBFS be the collection
of gates computed by the BFS prover. The interaction of a BFS prover with V
throughout the protocol resembles that of the DFS prover outlined above:

– At the beginning of the protocol send an arbitrary output value y1.
– During procedure Round(i, gi, yi):

• If gi ∈ CBFS then P̃ sends the two correct inputs z0i and z1i .
• If gi �∈ CBFS and neither of gi’s input gate belongs to CBFS then P̃ sends

two arbitrary z0i and z1i that are consistent with yi, i.e. gi(z0i , z1i ) = yi.
• gi �∈ CBFS and both gi’s input gates belong to CDFS , then P̃ will send one

of the correct wires known to him and another arbitrary value consistent
with yi as above.
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As before, it is not hard to see that the probability of successful cheating by a
BFS prover can be bounded as follows:

Lemma 4 (Advantage of a BFS Prover). In one repetition of the proto-
col above, a BFS prover with effort budget C̃ has probability of cheating p̃BFS

bounded by
p̃ ≤ 1 − 2−dBFS

BFS and DFS provers are both special cases of the general non-adaptive strategy
which allots its investment C̃ among a general collection of subcircuits C. The
interaction with V of such a prover is analogous to that of a BFS/DFS prover
but with a collection of computed subcircuits not constrained by any specific
height. We now try to formally define what the success probability of such a
prover is.

Definition 3 (Path Experiment). Consider a circuit C and a collection C
of subcircuits of C. Perform the following experiment: starting from the output
gate, flip a unbiased coin and choose the “left” subcircuit or the “right” subcircuit
at random with probability 1/2. Continue until the random path followed by the
experiment reaches a computed gate in C. Let i be the height of this gate, which is
the output of the experiment. Define with Πi the probability that this experiment
outputs i.

The proof of the following Lemma is a generalization of the proof of security of
our scheme. Once the “verification path” chosen by the Verifier enters a fully
computed subcircuit at height i (which happens with probability ΠC

i ), the prob-
ability of success of the Prover is bounded by (1 − 2−i)

Lemma 5 (Advantage of a Non Adaptive Prover). In one repetition of
the protocol above, a generic prover with effort budget C̃ used to compute a
collection C of subcircuits, has probability of cheating p̃C bounded by

p̃C ≤
d∑

i=0

Πi(1 − 2−i)

where Πi-s are defined as in Definition 3.

Limiting the Class of Functions: Regular Circuits. Lemma 5 still does
not produce a clear bound on the probability of success of a cheating prover.
The reason is that it is not obvious how to bound the probabilities ΠC

i that arise
from the computed subcircuits C since those depends in non-trivial ways from
the topology of the circuit C.

We now present a type of circuits for which it can be shown that the BFS
strategy is optimal. The restriction on the circuit is surprisingly simple: we call
them regular circuits. In the next section we show examples of interesting func-
tions that admit regular circuits.
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Definition 4 (Regular Circuit). A circuit C is said to be regular if the fol-
lowing conditions hold:

– C is layered;
– every gate has fan-in 2;
– the inputs of every gate are the outputs of two distinct gates.

The following lemma states that, in regular circuits, we can bound the advantage
of any prover investing C̃ by looking at the advantage of a BFS prover with the
same investment.

Lemma 6 (A Bound for Provers’ Advantage in Regular Circuits). Let
P̃ be a prover investing C̃. Let C be the circuit being computed and δ = dBFS(C, C̃).
In one repetition of the protocol above, the advantage of P̃ is bounded by

p̃ ≤ p̃BFS = 1 − 2−δ

Proof. Let C be the family of subcircuits computed by P̃ with effort C̃. As
pointed out above the probability of success for P̃ is

p̃ ≤
d∑

i=0

ΠC
i (1 − 2−i)

Consider now a prover P̃ ′ which uses C̃ effort to compute a different collection
of subcircuits C′

defined as follows:

– Remove a gate from a subcircuit of height j in C: this produces two subcircuits
of height j − 1. This is true because of the regularity of the circuit: since the
inputs of every gate are the outputs of two distinct gates, when removing a
gate of height j this will produce two subcircuits of height j − 1;

– Use that computation to “join” two subcircuits of height k into a single sub-
circuit of height k + 1. Again we are using the regularity of the circuit here:
since the circuit is layered, the only way to join two subcircuits into a single
computed subcircuit is to take two subcircuits of the same height.

What happens to the probability p̃′ of success of P̃ ′? Let 	 be the number of
possible paths generated by the experiment above with C. Then the probability of
entering a computed subcircuit at height j decreases by 1/	 and that probability
weight goes to entering at height j − 1. Similarly the probability of entering at
height k goes down by 2/	 and that probability weight is shifted to entering at
height k + 1. Therefore

p̃′ ≤
∑

i�=j,j−1,k,k+1

Πi(1 − 2−i)

+ (Πj − 1
	
)(1 − 2−j) + (Πj−1 +

1
	
)(1 − 2−j+1)

+ (Πk − 2
	
)(1 − 2−k) + (Πk+1 +

2
	
)(1 − 2−k−1)
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= p̃ +
1

	2j
− 1

	2j−1
+

1
	2k−1

− 1
	2k

= p̃ +
2k − 2k+1 + 2j+1 − 2j

	2j+k
= p̃ +

2j − 2k

	2j+k

Note that p̃′ increases if j > k which means that it’s better to take “com-
putation” away from tall computed subcircuits to make them shorter, and use
the saved computation to increase the height of shorter computed subtrees, and
therefore that the probability is maximized when all the subtrees are of the same
height, i.e. by the BFS strategy which has probability of success p̃BFS = 1−2−δ.

The above Lemma, therefore, yields the following.

Theorem 4. Let C be a regular circuit of size C. If the (C, ε) Unique Inner
State Assumption (see Assumption 1) holds for the function f computed by C,
and input distribution D, then the protocol presented above with r repetitions is
a kεR-sequentially composable Rational Proof for C for D if the prover follows a
non-adaptive strategy and the following inequality holds for all C̃

(1 − 2−δ)r ≤ C̃

C

where δ = dBFS(C, C̃).

Proof. Let γ = C̃
C . Consider x ∈ D and prover P̃ which invests effort C̃ ≤ C.

Under Assumption 1, P̃ gives the correct outputs with probability γ+ε – assume
that in this case P̃ collects the reward R.

If P̃ gives an incorrect output we can invoke Lemma 6 and conclude that he
collects reward R with probability at most (1 − 2−δ)r which by hypothesis is
less than γ. So either way we have that R̃ ≤ (γ + ε)R and therefore applying
Lemma 1 concludes the proof.

6 Results for FFT Circuits

In this section we apply the previous results to the problem of computing FFT
circuits, and by extension to polynomial evaluations.

6.1 FFT Circuit for Computing a Single Coefficient

The Fast Fourier Transform is an almost ubiquitous computational problem that
appears in many applications, including many of the volunteer computations
that motivated our work. As described in [4] a circuit to compute the FFT of a
vector of n input elements, consists of log n levels, where each level comprises n/2
butterflies gates. The output of the circuit is also a vector of n input elements.

Let us focus on the circuit that computes a single element of the output
vector: it has log n levels, and at level i it has n/2i butterflies gates. Moreover
the circuit is regular, according to Definition 4.
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Theorem 5. Under the (C, ε)-unique inner state assumption for input distribu-
tion D, the protocol in Sect. 5, when repeated r = O(1) times, yields sequentially
composable rational proofs for the FFT, under input distribution D and assuming
non-adaptive prover strategies.

Proof. Since the circuit is regular we can prove sequential composability by
invoking Theorem 4 and proving that for r = O(1), the following inequality
holds

p̃ = (1 − 2−δ)r ≤ C̃

C

where δ = dBFS(C, C̃).
But for any δ̃ < d, the structure of the FFT circuit implies that the number

of gates below height δ̃ is C̃δ̃ = Θ(C(1 − 2−δ̃)). Thus the inequality above can
be satisfied with r = Θ(1).

6.2 Mixed Strategies for Verification

One of the typical uses of the FFT is to change representation for polynomials.
Given a polynomial P (x) of degree n − 1 we can represent it as a vector of n
coefficients [a0, . . . , an−1] or as a vector of n points [P (ω0), . . . , P (ωn−1)]. If ωi

are the complext n-root of unity, the FFT is the algorithm that goes from one
representation to the other in O(n log n) time, rather than the obvious O(n2).

In this section we consider the following problem: given two polynomial P,Q
of degree n − 1 in point representation, compute the inner product of the coef-
ficients of P,Q. A fan-in two circuit computing this function could be built as
follows:

– two parallel FFT subcircuits computing the coefficient representation of P,Q
(log n-depth and n log n) size total for the 2 circuits);

– a subcircuit where at the first level the i-degree coefficients are multiplied
with each other, and then all these products are added by a binary tree of
additions O(log n)-depth and O(n) size);

Note that this circuit is regular, and has depth 2 log n+1 and size n log n+n+1.
Consider a prover P̃ who pays C̃ < n log n effort. Then, since the BFS strat-

egy is optimal, the probability of convincing the Verifier of a wrong result of the
FFT is (1− 2−d̃)r where d̃ = c log n with c ≤ 1. Note also that C̃

C < 1. Therefore
with r = O(nc) repetitions, the probability of success can be made smaller than
C̃
C . The Verifier’s complexity is O(nc log n) = o(n log n).

If C̃ ≥ n log n then the analysis above fails since d̃ > log n. Here we observe
that in order for P̃ to earn a larger reward than P , it must be that P has run at
least k = O(log n) executions (since it is possible to find k + 1 inputs such that
(k + 1)C̃ ≤ kC only if k > log n).

Assume for a moment that the prover always executes the same strategy
with the same running time. In this case we can use a “mixed” strategy for
verification:
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– The Verifier pays the Prover only after k executions. Each execution is verified
as above (with nc repetitions);

– Additionally the Verifier uses the “check by re-execution” (from Sect. 4.4)
strategy every k executions (verifiying one execution by recomputing it);

– The Verifier pays R if all the checks are satisfied, 0 otherwise;
– The Verifier’s complexity is O(knc log n + n log n) = o(kn log n) – the latter

being the complexity of computing k instances.

Notice that there are many plausible ways to assume that the expected cost C̃
remains the same through the k + 1 proofs, for example by assuming that the
Prover can be “resetted” at the beginning of each execution and made oblivious
of the previous interactions.

7 Conclusion

Rational Proofs are a promising approach to the problem of verifying computa-
tions in a rational model, where the prover is not malicious, but only motivated
by the goal of maximizing its utility function. We showed that Rational Proofs
do not satisfy basic compositional properties in the case where a large number
of “computation problems” are outsourced, e.g. volunteered computations. We
showed that a “fast” incorrect answer is more remunerable for the prover, by
allowing him to solve more problems and collect more rewards. We presented
an enhanced definition of Rational Proofs that removes the economic incentive
for this strategy and we presented a protocol that achieves it for some uniform
bounded-depth circuits.

One thing to point out is that our protocol has two additional advantages:

– the honest Prover is always guaranteed a fixed reward R, as opposed to some
of the protocols in [1,2] where the reward is a random variable even for the
honest prover;

– Our protocol is the first example of a rational proof for arithmetic circuits.

Our work leaves many interesting research directions to explore:

– Is it possible to come up with a protocol that works for any bounded-depth
circuit, and not circuits with special “topological” conditions such as the ones
imposed by our results?

– Our results hold for “non-adaptive” prover strategies, though that seems more
a proof artifact to simplify the analysis, than a technical requirement. Is it
possible to lift that restriction?

– Are there other circuits which, like the FFT one, satisfy our notions and
requirements?

– What about rational proofs for arbitrary poly-time computations? Even if the
simpler stand-alone case?
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Abstract. Access to the cloud has the potential to provide scalable
and cost effective enhancements of physical devices through the use
of advanced computational processes run on apparently limitless cyber
infrastructure. On the other hand, cyber-physical systems and cloud-
controlled devices are subject to numerous design challenges; among
them is that of security. In particular, recent advances in adversary tech-
nology pose Advanced Persistent Threats (APTs) which may stealthily
and completely compromise a cyber system. In this paper, we design a
framework for the security of cloud-based systems that specifies when
a device should trust commands from the cloud which may be com-
promised. This interaction can be considered as a game between three
players: a cloud defender/administrator, an attacker, and a device. We
use traditional signaling games to model the interaction between the
cloud and the device, and we use the recently proposed FlipIt game
to model the struggle between the defender and attacker for control of
the cloud. Because attacks upon the cloud can occur without knowl-
edge of the defender, we assume that strategies in both games are picked
according to prior commitment. This framework requires a new equi-
librium concept, which we call Gestalt Equilibrium, a fixed-point that
expresses the interdependence of the signaling and FlipIt games. We
present the solution to this fixed-point problem under certain parame-
ter cases, and illustrate an example application of cloud control of an
unmanned vehicle. Our results contribute to the growing understanding
of cloud-controlled systems.

1 Introduction

Advances in computation and information analysis have expanded the capabil-
ities of the physical plants and devices in cyber-physical systems (CPS)[4,13].
Fostered by advances in cloud computing, CPS have garnered significant atten-
tion from both industry and academia. Access to the cloud gives administra-
tors the opportunity to build virtual machines that provide to computational
resources with precision, scalability, and accessibility.

Despite the advantages that cloud computing provides, it also has some draw-
backs. They include - but are not limited to - accountability, virtualization, and
security and privacy concerns. In this paper, we focus especially on providing
c© Springer International Publishing Switzerland 2015
MHR Khouzani et al. (Eds.): GameSec 2015, LNCS 9406, pp. 289–308, 2015.
DOI: 10.1007/978-3-319-25594-1 16
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accurate signals to a cloud-connected device and deciding whether to accept
those signals in the face of security challenges.

Recently, system designers face security challenges in the form of Advanced
Persistent Threats (APTs) [19]. APTs arise from sophisticated attackers who can
infer a user’s cryptographic key or leverage zero-day vulnerabilities in order to
completely compromise a system without detection by the system administrator
[16]. This type of stealthy and complete compromise has demanded new types
of models [6,20] for prediction and design.

In this paper, we propose a model in which a device decides whether to trust
commands from a cloud which is vulnerable to APTs and may fall under adver-
sarial control. We synthesize a mathematical framework that enables devices
controlled by the cloud to intelligently decide whether to obey commands from
the possibly-compromised cloud or to rely on their own lower-level control.

We model the cyber layer of the cloud-based system using the recently pro-
posed FlipIt game [6,20]. This game is especially suited for studying systems
under APTs. We model the interaction between the cloud and the connected
device using a signaling game, which provides a framework for modeling dynamic
interactions in which one player operates based on a belief about the private infor-
mation of the other. A significant body of research has utilized this framework for
security [7–9,15,21]. The signaling and FlipIt games are coupled, because the
outcome of the FlipIt game determines the likelihood of benign and malicious
attackers in the robotic signaling game. Because the attacker is able to compro-
mise the cloud without detection by the defender, we consider the strategies of the
attacker and defender to be chosen with prior commitment. The circular depen-
dence in our game requires a new equilibrium concept which we call a Gestalt
equilibrium1. We specify the parameter cases under which the Gestalt equilibrium
varies, and solve a case study of the game to give an idea of how the Gestalt equilib-
rium can be found in general. Our proposed framework has versatile applications
to different cloud-connected systems such as urban traffic control, drone delivery,
design of smart homes, etc. We study one particular application in this paper:ef
control of an unmanned vehicle under the threat of a compromised cloud.

Our contributions are summarized as follows:

(i) We model the interaction of the attacker, defender/cloud administrator, and
cloud-connected device by introducing a novel game consisting of two coupled
games: a traditional signaling game and the recently proposed FlipIt game.

(ii) We provide a general framework by which a device connected to a cloud
can decide whether to follow its own limited control ability or to trust the
signal of a possibly-malicious cloud.

(iii) We propose a new equilibrium definition for this combined game: Gestalt
equilibrium, which involves a fixed-point in the mappings between the two
component games.

(iv) Finally, we apply our framework to the problem of unmanned vehicle
control.

1 Gestalt is a noun which means something that is composed of multiple arts and yet
is different from the combination of the parts [2].
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In the sections that follow, we first outline the system model, then describe
the equilibrium concept. Next, we use this concept to find the equilibria of the
game under selected parameter regimes. Finally, we apply our results to the
control of an unmanned vehicle. In each of these sections, we first consider the
signaling game, then consider the FlipIt game, and last discuss the synthesis
of the two games. Finally, we conclude the paper and suggest areas for future
research.

2 System Model

We model a cloud-based system in which a cloud is subject to APTs. In this
model, an attacker, denoted by A, capable of APTs can pay an attack cost to
completely compromise the cloud without knowledge of the cloud defender. The
defender, or cloud administrator, denoted by D, does not observe these attacks,
but has the capability to pay a cost to reclaim control of the cloud. The cloud
transmits a message to a robot or other device, denoted by R. The device may
follow this command, but it is also equipped with an on-board control system
for autonomous operation. It may elect to use its autonomous operation system
rather than obey commands from the cloud.

This scenario involves two games: the FlipIt game introduced in [20], and the
well-known signaling game. The FlipIt game takes place between the attacker
and cloud defender, while the signaling game takes place between the possibly-
compromized cloud and the device. For brevity, denote the FlipIt game by GF,
the signaling game by GS, and the combined game - call it CloudControl - by
GCC as shown in Fig. 1. In the next subsections, we formalize this game model.

2.1 Cloud-Device Signaling Game

Let θ denote the type of the cloud. Denote compromized and safe types of clouds
by θA and θD in the set Θ. Denote the probabilities that θ = θA and that θ = θD
by p and 1 − p. Signaling games typically give these probabilities apriori, but in
CloudControl they are determined by the equilibrium of the FlipIt game GF.

Let mH and mL denote messages of high and low risk, respectively, and
let m ∈ M = {mH ,mL} represent a message in general. After R receives the
message, it chooses an action, a ∈ A = {aT , aN}, where aT represents trusting
the cloud and aN represents not trusting the cloud.

For the device R, let uS
R : Θ × M × A → UR, where UR ⊂ R. uS

R is a
utility function such that uS

R (θ,m, a) gives the device’s utility when the type
is θ, the message is m, and the action is a. Let uS

A : M × A → UA ⊂ R and
uS

D : M × A → UD ⊂ R be utility functions for the attacker and defender. Note
that these players only receive utility in GS if their own type controls the cloud
in GF, so that type is not longer a necessary argument for uS

A and uS
D.

Denote the strategy of R by σS
R : A → [0, 1], such that σS

R (a |m) gives the
mixed-strategy probability that R plays action a when the message is m. The
role of the sender may be played by A or D depending on the state of the cloud,
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determined by GF. Let σS
A : M → [0, 1] denote the strategy that A plays when

she controls the cloud, so that σS
A (m) gives the probability that A sends message

m. (The superscript S specifies that this strategy concerns the signaling game.)
Similarly, let σS

D : M → [0, 1] denote the strategy played by D when he controls
the cloud. Then σS

D (m) gives the probability that D sends message m. Let ΓS
R,

ΓS
A, and ΓS

D denote the sets of mixed strategies for each player.
For X ∈ {D,A}, define functions ūS

X : ΓS
R × ΓS

X → UX , such that
ūS

X
(
σS

R, σS
X

)
gives the expected utility to sender X when he or she plays mixed-

strategy σS
X and the receiver plays mixed-strategy σS

R. Equation (1) gives ūS
X .

ūS
X

(
σS

R, σS
X

)
=

∑

a∈A

∑

m∈M

uS
X (m,a) σS

R (a |m) σS
X (m) , X ∈ {A,D} (1)

Next, let μ : Θ → [0, 1] represent the belief of R, such that μ (θ |m) gives the
likelihood with which R believes that a sender who issues message m is of type θ.
Then define ūS

R : ΓS
R → UR such that ūS

R
(
σS

R |m,μ (• |m)
)

gives the expected
utility for R when it has belief μ, the message is m, and it plays strategy σS

R.
ūS

R is given by

ūS
R

(
σS

R |m,μ
)

=
∑

θ∈Θ

∑

a∈A

uS
R (θ,m, a) μR (θ |m) σS

R (a |m) . (2)

The expected utilities to the sender and receiver will determine their incen-
tives to control the cloud in the game GF described in the next subsection.

2.2 FlipIt Game for Cloud Control

The basic version of FlipIt [20]2 is played in continuous time. Assume that the
defender controls the resource - here, the cloud - at t = 0. Moves for both players
obtain control of the cloud if it is under the other player’s control. In this paper,
we limit our analysis to periodic strategies, in which the moves of the attacker
and the moves of the defender are both spaced equally apart, and their phases
are chosen randomly from a uniform distribution. Let fA ∈ R+ and fD ∈ R+

(where R+ represents non-negative real numbers) denote the attack and renewal
frequencies, respectively.

Players benefit from controlling the cloud, and incur costs from moving. Let
wX (t) denote the average proportion of the time that player X ∈ {D,A} has
controlled the cloud up to time t. Denote the number of moves up to t per
unit time of player X by zX (t). Let αD and αA represent the costs of each
defender and attacker move. In the original formulation of FlipIt, the authors
consider a fixed benefit for controlling the cloud. In our formulation, the benefit
depends on the equilibrium outcomes of the signaling game GS. Denote these

2 See [20] for a more comprehensive definition of the players, time, game state, and
moves in FlipIt. Here, we move on to describing aspects of our game important for
analyzing GCC.
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Fig. 1. The CloudControl game. The FlipIt game models the interaction between
an attacker and a cloud administrator for control of the cloud. The outcome of this
game determines the type of the cloud in a signaling game in which the cloud conveys
commands to the robot or device. The device then decides whether to accept these
commands or rely on its own lower-level control. The FlipIt and signaling games are
played concurrently.

equilibrium utilities of D and A by ūS∗
D and ūS∗

A . These give the expected benefit
of controlling the cloud. Finally, let uF

D (t) and uF
A (t) denote the time-averaged

benefit of D and A up to time t in GF. Then

uF
X (t) = ūS∗

X wX (t) − αX zX (t) , X ∈ {D,A} , (3)

and, as time continues to evolve, the average benefits over all time become

lim inf
t→∞ ūS∗

X wX (t) − αX zX (t) , X ∈ {D,A} . (4)

We next express these expected utilities over all time as a function of periodic
strategies that D and A employ. Let ūF

X : R+ × R+ → R, X ∈ {D,A} be
expected utility functions such that ūF

D (fD, fA) and ūF
A (fD, fA) give the average

utility to D and A, respectively, when they play with frequencies fD and fA. If
fD ≥ fA > 0, it can be shown that

ūF
D (fD, fA) = ūS∗

D

(
1 − fA

2fD

)
− αDfD, (5)

ūF
A (fD, fA) = ūS∗

A
fA
2fD

− αAfA, (6)
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while if 0 ≤ fD < fA, then

ūF
D (fD, fA) = ūS∗

D
fD
2fA

− αDfD, (7)

ūF
A (fD, fA) = ūS∗

A

(
1 − fD

2fA

)
− αAfA, (8)

and if fA = 0, we have

ūF
A (fD, fA) = 0, ūF

D (fD, fA) = ūS∗
D − αDfD. (9)

Equations (5)–(9) with Eq. (1) for ūS
X , X ∈ {D,A} and Eq. (2) for ūS

R will
be main ingredients in our equilibrium concept in the next section.

3 Solution Concept

In this section, we develop a new equilibrium concept for our CloudControl game
GCC. We study the equilibria of the FlipIt and signaling games individually,
and then show how they can be related through a fixed-point equation in order
to obtain an overall equilibrium for GCC.

3.1 Signaling Game Equilibrium

Signaling games are a class of dynamic Bayesian games. Applying the concept
of perfect Bayesian equilibrium (as it e.g., [10]) to GS, we have Definition 1.

Definition 1. Let the functions ūS
X

(
σS

R, σS
X

)
, X ∈ {D,A} and ūS

R
(
σS

R
)

be for-
mulated according to Eqs. (1) and (2), respectively. Then a perfect Bayesian
equilibrium of the signaling game GS is a strategy profile

(
σS∗

D , σS∗
A , σS∗

R
)

and
posterior beliefs μ (• |m) such that

∀X ∈ {D,A} , σS∗
X (•) ∈ arg max

σS
X

ūS
X

(
σS∗

R , σS
X

)
, (10)

∀m ∈ M, σS∗
R (• |m) ∈ arg max

σS
R

ūS
R

(
σS

R |m,μ (• |m)
)
, (11)

μ (θ |m) =
1 {θ = θA} σS∗

A (m) p + 1 {θ = θD} σS∗
D (m) (1 − p)

σS∗
A (m) p + σS∗

D (m) (1 − p)
, (12)

if σS∗
A (m) p + σS∗

D (m) (1 − p) �= 0, and

μ (θ |m) = any distribution on Θ, (13)

if σS∗
A (m) p + σS∗

D (m) (1 − p) = 0.
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Next, let ūS∗
D , ūS∗

A , and ūS∗
R be the utilities for the defender, attacker,

and device, respectively, when they play according to a strategy profile(
σS∗

D , σS∗
A , σS∗

R
)

and belief μ (• |m) that satisfy the conditions for a perfect
Bayesian equilibrium. Define a set-valued mapping TS : [0, 1] → 2UD×UA such
that TS (p;GS) gives the set of equilibrium utilities of the defender and attacker
when the prior probabilities are p and 1 − p and the signaling game utilities are
parameterized by GS

3. We have
{(

ūS∗
D , ūS∗

A
)}

= TS (p;GS) . (14)

We will employ TS as part of the definition of an overall equilibrium for GCC

after examining the equilibrium of the FlipIt game.

3.2 FlipIt Game Equilibrium

The appropriate equilibrium concept for the FlipIt game, when A and D are
restricted to periodic strategies, is Nash equilibrium [14]. Definition 2 applies the
concept of Nash Equilibrim to GF.

Definition 2. A Nash equilibrium of the game GF is a strategy profile (f∗
D, f∗

A)
such that

f∗
D ∈ arg max

fD
ūF

D (fD, f∗
A) , (15)

f∗
A ∈ arg max

fA
ūF

D (f∗
D, fA) , (16)

where ūF
D and ūF

A are computed by Eqs. (5) and (6) if fD ≥ fA and Eqs. (7) and (8)
if fD ≤ fA.

To find an overall equilibrium of GCC, we are interested in the proportion
of time that A and D control the cloud. As before, denote these proportions by
p and 1 − p, respectively. These proportions (as in [6]) can be found from the
equilibrium frequencies by

p =

⎧
⎪⎨

⎪⎩

0, if fA = 0
fA
2fD

, if fD ≥ fA > 0
1 − fD

2fA
, if fA > fD ≥ 0

(17)

Let GF parameterize the FlipIt game. Now, we can define a mapping TF :
UD×UA → [0, 1] such that the expression TF

(
ūS∗

D , ūS∗
A ;GF

)
gives the proportion

of time that the attacker controls the cloud in equilibrium from the values of
controlling the cloud for the defender and the attacker. This mapping gives

p = TF
(
ūS∗

D , ūS∗
A ;GF

)
. (18)

3 Since R does not take part in GS, it is not necessary to include ūS∗
R as an output of

the mapping.
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In addition to interpreting p as the proportion of time that the attacker
controls the cloud, we can view it as the likelihood that, at any random time,
the cloud will be controlled by the attacker. Of course, this is precisely the value
p of interest in GS. Clearly, GF and GS are coupled by Eqs. (14) and (18).
These two equations specify the overall equilibrium for the CloudControl game
GCC through a fixed-point equation, which we describe next.

3.3 Gestalt Equilibrium of GCC

When the CloudControl game GCC is in equilibrium the mapping from the
parameters of GS to that game’s equilibrium and the mapping from the para-
meters of GF to that game’s equilibrium are simultaneously satisfied as shown in
Fig. 2. Definition 3 formalizes this equilibrium, which we call Gestalt equilibrium.

T F ūS∗
D , ūS∗

A ;GF

)

T S (p;GS)

p

ūS∗
D

ūS∗
A

Fig. 2. GS and GF interact because the utilities in the FlipIt game are derived from
the output of the signaling game, and the output of the FlipIt game is used to define
prior probabilities in the signaling game. We call the fixed-point of the composition of
these two relationships a Gestalt equilibrium.

Definition 3 (Gestalt Equilibrium). The cloud control ratio p† ∈ [0, 1] and
equilibrium signaling game utilities ūS†

D and ūS†
A constitute a Gestalt equilibrium

of the game GCC composed of coupled games GS and GF if the two components
of Eq. (19) are simultaneously satisfied.

(
ūS†

D , ūS†
A

)
∈ TS

(
p†;GS

)
, p† = TF

(
ūS†

D , ūS†
A ;GF

)
(19)

In short, the signaling game utilities
(
ūS†

D , ūS†
A

)
must satisfy the fixed-point

equation (
ūS†

D , ūS†
A

)
∈ TS

(
TF

(
ūS†

D , ūS†
A ;GF

)
;GS

)
(20)

In this equilibrium, A receives ūF
A according to Eq. (6), Eq. (8), or Eq. (9), D

receives ūF
D according to Eq. (5), Eq. (7), or Eq. (9), and R receives ūS

R according
to Eq. (2).
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Solving for the equilibrium of GCC requires a fixed-point equation essentially
because the games GF and GS are played according to prior committment.
Prior commitment specifies that players in GS do not know the outcome of GF.
This structure prohibits us from using a sequential concept such as sub-game
perfection and suggests instead a fixed-point equation.

4 Analysis

In this section, we analyze the game proposed in Sect. 2 based on our solution
concept in Sect. 3. First, we analyze the signaling game and calculate the cor-
responding equilibria. Then, we solve the FlipIt game for different values of
expected payoffs resulting from signaling game. Finally, we describe the solution
of the combined game.

4.1 Signaling Game Analysis

The premise of GCC allows us to make some basic assumptions about the utility
parameters that simplifies the search for equilibria. We expect these assumptions
to be true across many different contexts.

(A1) uR(θD,mL, aT ) > uR(θD,mL, aN ): It is beneficial for the receiver to trust
a low risk message from the defender.

(A2) uR(θA,mH , aT ) < uR(θA,mH , aN ): It is harmful for the receiver to trust
a high risk message from the attacker.

(A3) ∀m,m′ ∈ M, uA(m,aT ) > uA(m′, aN ) and ∀m,m′ ∈ M ,uD(m,aT ) >
uD(m′, aN ): Both types of sender prefer that either of their messages is
trusted rather than that either of their messages is rejected.

(A4) uA(mH , aT ) > uA(mL, aT ): The attacker prefers an outcome in which the
receiver trusts his high risk message to an outcome in which the receiver
trusts his low risk message.

Pooling equilibria of the signaling game differ depending on the prior prob-
abilities p and 1 − p. Specifically, the messages on which A and D pool and the
equilibrium action of R depend on quantities in Eqs. (21) and (22) which we call
trust benefits.

TBH (p) =
p [uR (θA,mH , aT ) − uR (θA,mH , aN )]

+ (1 − p) [uR (θD,mH , aT ) − uR (θD,mH , aN )] (21)

TBL (p) =
p [uR (θA,mL, aT ) − uR (θA,mL, aN )]

+ (1 − p) [uR (θD,mL, aT ) − uR (θD,mL, aN )] (22)

TBH (p) and TBL (p) give the benefit of trusting (compared to not trust-
ing) high and low messages, respectively, when the prior probability is p. These
quantities specify whether R will trust a message that it receives in a pooling
equilibrium. If TBH (p) (respectively, TBL (p)) is positive, then, in equilibrium,
R will trust all messages when the senders pool on mH (respectively, mL).
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A : mH D : mH R : aT

A : mL D : mL R : aT

A : mH D : mH R : aT

A : mL D : mL R : aN

A : mH D : mH R : aN

A : mL D : mL R : aN

A : mH D : mH R : aN

A : mL D : mL R : aT

TBH (p)

TBL (p)

uD (mL, aT )
≤ uD (mH , aT )

uD (mL, aT )
≥ uD (mH , aT )

uR (θA, mL, aT ) ≤ uR (θA, mL, aN)
uR (θD, mH , aT ) ≤ uR (θD, mH , aN)

Fig. 3. The four quadrants represent parameter regions of GS. The regions vary based
on the types of pooling equilibria that they support. For instance, quadrant IV supports
a pooling equilibrium in which A and D both send mH and R plays aN , as well as
a pooling equilibrium in which A and D both send mL and R plays aT . The shaded
regions denote special equilibria that occur under further parameter restrictions.

We illustrate the different possible combinations of TBH (p) and TBL (p) in
the quadrants of Fig. 3. The labeled messages and actions for the sender and
receiver, respectively, in each quadrant denote these pooling equilibria. These
pooling equilibria apply throughout each entire quadrant. Note that we have not
listed the requirements on belief μ here. These are addressed in the Appendix A.2,
and become especially important for various equilibrium refinement procedures.

The shaded regions of Fig. 3 denote additional special equilibria which only
occur under the additional parameter constraints listed within the regions. (The
geometrical shapes of the shaded regions are not meaningful, but their overlap
and location relative to the four quadrants are accurate.) The dotted and uni-
formly shaded zones contain equilibria similar to those already denoted in the
equilibria for each quadrant, except that they do not require restrictions on μ.
The zone with horizontal bars denotes the game’s only separating equilibrium.
It is a rather unproductive one for D and A, since their messages are not trusted.
(See the derivation in Appendix A.1.) The equilibria depicted in Fig. 3 will become
the basis of analyzing the mapping TS (p;GS), which will be crucial for forming
our fixed-point equation that defines the Gestalt equilibrium. Before studying this
mapping, however, we first analyze the equilibria of the FlipIt game on its own.

4.2 FlipIt Analysis

In this subsection, we calculate the Nash equilibrium in the FlipIt game. Equa-
tions (5)–(9) represent both players’ utilities in FlipIt game. The solution of
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this game is similar to what has presented in [6,20], except that the reward of
controlling the resource may vary. To calculate Nash equilibrium, we normalize
both players’ benefit with respect to the reward of controlling the resource. For
different cases, the frequencies of move at Nash equilibrium are:

• αD
ūS∗

D
<

αA
ūS∗

A
and ūS∗

A , ūS∗
D > 0:

f∗
D =

ūS∗
A

2αA
, f∗

A =
αD
2α2

A
× (ūS∗

A )2

ūS∗
D

, (23)

• αD
ūS∗

D
>

αA
ūS∗

A
and ūS∗

A , ūS∗
D > 0:

f∗
D =

αA
2α2

D
× (ūS∗

D )2

ūS∗
A

, f∗
A =

ūS∗
D

2αD
, (24)

• αD
ūS∗

D
=

αA
ūS∗

A
and ūS∗

A , ūS∗
D > 0:

f∗
D =

ūS∗
A

2αA
, f∗

A =
ūS∗

D
2αD

, (25)

• ūS∗
A ≤ 0:

f∗
D = f∗

A = 0, (26)

• ūS∗
A > 0 and ūS∗

D ≤ 0:

f∗
D = 0 f∗

A = 0+. (27)

In the case that ūS∗
A ≤ 0, the attacker has no incentive to attack the cloud.

In this case, the defender need not move since we assume that she controls the
cloud initially. In the case that ūS∗

A > 0 and ūS∗
D ≤ 0, only the attacker has

an incentive to control the cloud. We use f∗
A = 0+ to signify that the attacker

moves only once. Since the defender never moves, the attacker’s single move is
enough to retain control of the cloud at all times.

Next, we put together the analysis of GS and GF in order to study the
Gestalt equilibria of the entire game.

4.3 GCC Analysis

To identify the Gestalt Equilibrium of GCC, it is necessary to examine the map-
ping TS (p;GS) for all p ∈ [0, 1]. As noted in Sect. 4.1, this mapping depends
on TBH (p) and TBL (p). From assumptions A1-A4, it is possible to verify
that (TBL (0) , TBH (0)) must fall in Quadrant I or Quadrant IV and that
(TBL (1) , TBH (1)) must lie in Quadrant III or Quadrant IV. There are numer-
ous ways in which the set (TBL (p) , TBH (p)) , p ∈ [0, 1] can transverse different
parameter regions. Rather than enumerating all of them, we consider one here.
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TBH (p)

TBL (p)

5 10

5

5

10

10

uR (θD, mH , aT ) = 3
uR (θD, mL, aT ) = 5

uR (θA, mH , aT ) = −8
uR (θA, mL, aT ) = 1

uD (mH , aT ) = 4
uD (mL, aT ) = 3
uA (mH , aT ) = 6
uA (mL, aT ) = 2

uR (θD, mH , aN ) = 1
uR (θD, mL, aN) = 0
uR (θA, mH , aN) = 1
uR (θA, mL, aN) = 0
uD (mH , aN) = −2
uD (mL, aN) = −1
uA (mH , aN) = −5
uA (mL, aN) = −1

A : mH D : mH R : aT

A : mL D : mL R : aT

Fig. 4. For the parameter values overlayed on the figure, as p ranges from 0 to 1,
TBH (p) and TBL (p) move from Quadrant I to Quadrant IV. The equilibria supported
in each of these quadrants, as well as the equilibria supported on the interface between
them, are presented in Table 1.

Consider parameters such that TBL (0) , TBH (0) > 0 and TBL (1) > 0 but
TBH (1) < 04. This leads to an L that will traverse from Quadrant I to Quad-
rant IV. Let us also assume that uD (mL, aT ) < uD (mH , aT ), so that Equi-
librium 5 is not feasible. In Fig. 4, we give specific values of parameters that
satisfy these conditions, and we plot (TBL (p) , TBH (p)) for p ∈ [0, 1]. Then,
in Table 1, we give the equilibria in each region that the line segment traverses.
The equilibrium numbers refer to the derivations in the AppendixA.2.

If p is such that the signaling game is played in Quadrant I, then both
senders prefer pooling on mH . By the first mover advantage, they will select
Equilibrium 8. On the border between Quadrants I and IV, A and D both prefer
an equilibrium in which R plays aT . If they pool on mL, this is guaranteed. If
they pool on mH , however, R receives equal utility for playing aT and aN ; thus,
the senders cannot guarantee that the receiver will play aT . Here, we assume
that the senders maximize their worst-case utility, and thus pool on mL. This is
Equilibrium 3. Finally, in Quadrant IV, both senders prefer to be trusted, and
so select Equilibrium 3. From the table, we can see that the utilities will have a
jump at the border between Quadrants I and IV. The solid line in Fig. 5 plots
the ratio ūS∗

A /ūS∗
D of the utilities as a function of p.

4 These parameters must satisfy uR (θD, mH , aT ) > uR (θD, mH , aN ) and
uR (θA, mL, aT ) > uR (θA, mL, aN ). Here, we give them specific values in order
to plot the data.
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Table 1. Signaling game equilibria by region for a game that traverses between Quad-
rant I and Quadrant IV. Some of the equilibria are feasible only for constrained beliefs
μ, specified in Appendix A.2. We argue that the equilibria in each region marked by
(*) will be selected.

Region Equilibria

Quadrant I
Equilibrium 3: Pool on mL; µ constrained;R plays aT

*Equilibrium 8: Pool on mH ; µ unconstrained;R plays aT

TBH (p) = 0 Axis

*Equilibrium 3: Pool on mL; µ constrained;R plays aT

Equilibrium 8: Pool on mH ; µ unconstrained;R plays aT

Equilibrium 6: Pool on mH ; µ constrained;R plays aN

Quadrant IV
*Equilibrium 3: Pool on mL; µ constrained;R plays aT

Equilibrium 6: Pool on mH ; µ constrained;R plays aN

Fig. 5. TF and TS are combined on a single set of axis. In TS (the solid line), the
independent variable is on the horizontal axis. In TF (the dashed line), the independent
variable is on the vertical axis. The intersection of the two curves represents the Gestalt
equilibrium.

Next, consider the mapping p = TF
(
ūS∗

D , ūS∗
A

)
. As we have noted, p depends

only on the ratio ūS∗
A /ūS∗

D
5. Indeed, it is continuous in that ratio when the

outcome at the endpoints is appropriately defined. This mapping is represented
by the dashed line in Fig. 5, with the independent variable on the vertical axis.

We seek a fixed-point, in which p = TF
(
ūS∗

D , ūS∗
A

)
and

(
ūS∗

D , ūS∗
A

)
= TS (p).

This shown by the intersection of the solid and dashed curves plotted in Fig. 5.

5 When ūS∗
A = ūS∗

D = 0, we define that ratio to be equal to zero, since this will yield
fA = 0 and p = 0, as in Eqs. (9) and (17). When ūS∗

D = 0 and ūS∗
A > 0, it is

convenient to consider the ratio to be positively infinite since this is consistent with
p → 1.
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At these points, the mappings between the signaling and the FlipIt games are
mutually satisfied, and we have a Gestalt equilibrium.6

5 Cloud Control Application

In this section, we describe one possible application of our model: a cyber-
physical system composed of autonomous vehicles with some on-board con-
trol but also with the ability to trust commands from the cloud. Access to the
cloud can offer automated vehicles several benefits [12]. First, it allows access to
massive computational resources - i.e., infrastructure as a service (IaaS ). (See
[5].) Second, it allows access to large datasets. These datasets can offer super-
additive benefits to the sensing capabilities of the vehicle itself, as in the case of
the detailed road and terrain maps that automated cars such as those created
by Google and Delphi combine with data collected by lidar, radar and vision-
based cameras [1,11]. Third, interfacing with the cloud allows access to data
collected or processed by humans through crowd-sourcing applications; consider,
for instance, location-based services [17,18] that feature recommendations from
other users. Finally, the cloud can allow vehicles to collectively learn through
experience [12].

Attackers may attempt to influence cloud control of the vehicle through sev-
eral means. In one type of attack, adversaries may be able to steal or infer cryp-
tographic keys that allow them authorization into the network. These attacks
are of the complete compromise and stealth types that are studied in the FlipIt
framework [6,20] and thus are appropriate for a CloudControl game. FlipIt
also provides the ability to model zero-day exploits, vulnerabilities for which a
patch is not currently available. Each of these types of attacks on the cloud pose
threats to unmanned vehicle security and involve the complete compromise and
steathiness that motivate the FlipIt framework.

5.1 Dynamic Model for Cloud Controlled Unmanned Vehicles

In this subsection, we use a dynamic model of an autonomous car to illustrate one
specific context in which a cloud-connected device could be making a decision
of whether to trust the commands that it would receive or to follow its own
on-board control.

We consider a car moving in two-dimensional space with a fixed speed v0 but
with steering that can be controlled. (See Fig. 6, which illustrates the “bicycle
model” of steering control from [3].) For simplicity, assume that we are interested
in the car’s deviation from a straight line. (This line might, e.g., run along the

6 Note that this example featured a discontinuity in signaling game utilities on the
border between equilibrium regions. Interestingly, even when the pooling equilibria
differ between regions, it is possible that the equilibrium on the border admits a
mixed strategy that provides continuity between the different equilibria in the two
regions, and thus makes TS continuous. This could allow GCC to have multiple
Gestalt equilibria.
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z (t)

θ (t)δ (t)

Fig. 6. A bicycle model is a type of representation of vehicle steering control. Here,
δ (t) is used to denote the angle between the orientation of the front wheel and the
heading θ (t). The deviation of the vehicle from a straight line is given by z (t)

center of the proper driving lane.) Let z (t) denote the car’s vertical distance
from the horizontal line, and let θ (t) denote the heading of the car at time t.
The state of the car can be represented by a two-dimensional vector w (t) �
[
z (t) θ (t)

]T . Let δ (t) denote the angle between the orientation of the front
wheel - which implements steering - and the orientation of the length of the car.
We can consider δ (t) to be the input to the system. Finally, let y (t) represent
a vector of outputs available to the car’s control system. The self-driving cars
of both Google and Delphi employ radar, lidar, and vision-based cameras for
localization. Assume that these allow accurate measurement of both states, such
that y1 (t) = z (t) and y2 (t) = θ (t). If the car stays near w (t) =

[
0 0

]T , then
we can approximate the system with a linear model. Let a and b denote the
distances from the rear wheel to the center of gravity and the rear wheel to the
front wheel of the car, respectively. Then the linearized system is given in [3] by
the equations:

d

dt

[
z (t)
θ (t)

]
=

[
0 v0
0 0

] [
z (t)
θ (t)

]
+

[
av0
b
v0
b

]
δ (t) , (28)

[
y1 (t)
y2 (t)

]
=

[
1 0
0 1

] [
z (t)
θ (t)

]
(29)

5.2 Control of Unmanned Vehicle

Assume that the unmanned car has some capacity for automatic control with-
out the help of the cloud, but that the cloud typically provides more advanced
navigation.

Specifically, consider a control system onboard the unmanned vehicle
designed to return it to the equilibrium w (t) =

[
0 0

]T . Because the car has
access to both of the states, it can implement a state-feedback control. Consider
a linear, time-invariant control of the form

δcar (t) = − [
k1 k2

]
[

z (t)
θ (t)

]
. (30)
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This proportional control results in the closed-loop system

d

dt

[
z (t)
θ (t)

]
=

([
0 v0
0 0

]
−

[
av0
b
v0
b

]
[
k1 k2

]
) [

z (t)
θ (t)

]
(31)

The unmanned car R may also elect to obtain data or computational
resources from the cloud. Typically, this additional access would improve the
control of the car. The cloud administrator (defender D), however, may issue
faulty commands or there may be a breakdown in communication of the desired
signals. In addition, the cloud may be compromised by A in a way that is stealthy.
Because of these factors, R sometimes benefits from rejecting the cloud’s com-
mand and relying on its own navigational abilities. Denote the command issued
by the cloud at time t by δcloud (t) ∈ δA (t) , δD (t), depending on who controls
the cloud. With this command, the system is given by

d

dt

[
z (t)
θ (t)

]
=

[
0 v0
0 0

] [
z (t)
θ (t)

]
+

[
av0
b
v0
b

]
δcloud (t) . (32)

5.3 Filter for High Risk Cloud Commands

In cloud control of an unmanned vehicle, the self-navigation state feedback input
given by δcar (t) in Eq. (30) represents the control that is expected by the vehicle
given its state. If the signal from the cloud differs significantly from the signal
given by the self-navigation system, then the vehicle may classify the message
as “high-risk.” Specifically, define a difference threshold τ , and let

m =

{
mH , if |δcloud (t) − δcar (t)| > τ

mL, if |δcloud (t) − δcar (t)| ≤ τ
(33)

Equation (33) translates the actual command from the cloud (controlled by D
or A) into a message in the cloud signaling game.

Equations (31) and (32) give the dynamics of the unmanned car electing to
trust and not trust the cloud. Based on these equations, Fig. 7 illustrates the
combined self-navigating and cloud controlled system for vehicle control.

6 Conclusion and Future Work

In this paper, we have proposed a general framework for the interaction between
an attacker, cloud administrator/defender, and cloud-connected device. We have
described the struggle for control of the cloud using the FlipIt game and the
interaction between the cloud and the connected device using a traditional sig-
naling game. Because these two games are played by prior commitment, they
are coupled. We have defined a new equilibrium concept - i.e., Gestalt equilib-
rium, which defines a solution to the combined game using a fixed-point equa-
tion. After illustrating various parameter regions under which the game may be
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A

B
∑

−k

δA

δD

δcar

d
dt

w (t) w (t)

σS
R

p
FlipIt

Fig. 7. Block-diagram model for unmanned vehicle navigation control. At any time,
the vehicle uses strategy σS

R to decide whether to follow its own control or the control
signal from the cloud, which may be δA or δD, depending on the probabilities p, 1 − p
with which A and D control the cloud. Its own control signal, δcar, is obtained via
feedback control.

played, we solved the game in a sample parameter region. Finally, we showed
how the framework may be applied to unmanned vehicle control.

Several directions remain open for future work. First, the physical compo-
nent of the cyber-physical system can be further examined. Tools from optimal
control such as the linear-quadratic regulator could offer a rigorous framework
for defining the costs associated with the physical dynamic system, which in turn
would define the payoffs of the signaling game. Second, future work could search
for conditions under which a Gestalt equilibrium of the CloudControl game is
guaranteed to exist. Finally, devices that use this framework should be equipped
to learn online. Towards that end, a learning algorithm could be developed that
is guaranteed to converge to the Gestalt equilibrium. Together with the frame-
work developed in the present paper, these directions would help to advance our
ability to secure cloud-connected and cyber-physical systems.

A Derivation of Signaling Game Equilibria

In this appendix, we solve for the equilibria of GS.

A.1 Separating Equilibria

First, we search for separating equilibria of GS. In separating equilibria, R knows
with certainty the type of the cloud.
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D plays mL and A plays mH. If D plays mL (as a pure strategy) and A plays
mH , then the receiver rejects any mH according to assumption A2. The best
action for A is to deviate to mL. Thus, this is not an equilibrium.

D plays mH and A plays mL. If D plays mH and A plays mL, the
R’s best response depends on the utility parameters. If uS

R (θA,mL, aT ) ≤
uS

R (θA,mL, aN ) and uS
R (θD,mH , aT ) ≤ uS

R (θD,mH , aN ), then R plays aN in
response to both messages. There is no incentive to deviate. Denote this sepa-
rating equilibrium as Equilibrium #2.

If uS
R (θA,mL, aT ) ≤ uS

R (θA,mL, aN ) and uS
R (θD,mH , aT ) >

uS
R (θD,mH , aN ), then aN is within the set of best responses to mL, whereas

aT is the unique best response to mH . Assuming that he prefers to certainty
receive a higher utility, A deviates to mH .

If uS
R (θA,mL, aT ) > uS

R (θA,mL, aN ) and uS
R (θD,mH , aT ) ≤

uS
R (θD,mH , aN ), then aN is within the set of best responses to mH , whereas aT

is the unique best response to mL. Thus, D deviates to mL.
If uS

R (θA,mL, aT ) > uS
R (θA,mL, aN ) and uS

R (θD,mH , aT ) >
uS

R (θD,mH , aN ), then R plays aT in response to both messages. We have
assumed, however, that A prefers to be trusted on mH compared to being trusted
on mL (A4), so A deviates and this is not an equilibrium.

A.2 Pooling Equilibria

Next, we search for pooling equilibria of GS. In pooling equilibria, R relies only
on the prior probabilities p and 1 − p in order to form his belief about the type
of the cloud. The existence of pooling equilibria depend essentially on the trust
benefits TBH (p) and TBL (p) .

Pooling on mL. If TBL (p) < 0, then R’s best response is aN . This will only
be an equilibrium if his best response to mH would also be aN . This is the case
only when the belief satisfies

μ (θA |mH) uR (θA,mH , aT ) + (1 − μ (θA |mH)) uR (θD,mH , aT )
≤ μ (θA |mH) uR (θA,mH , aN ) + (1 − μ (θA |mH)) uR (θD,mH , aN ) (34)

Moreover, this can only be an equilibrium when neither A nor D have an incen-
tive to deviate: i.e., when

uS
A (mH , aN ) ≤ uS

A (mL, aN ) and uS
D (mH , aN ) ≤ uS

D (mL, aN ) (35)

If these conditions are satisfied, then denote this equilibrium by Equilibrium #1.
If TBL (p) ≥ 0, then R’s best response us aT . Whether this represents

an equilibrium depends on if A or D have incentives to deviate from mL. If
uS

D (mH , aT ) ≤ uS
D (mL, aT ) and uS

A (mH , aT ) ≤ uS
A (mL, aT ), then neither has

an incentive to deviate. This is Equilibrium #5. If one of these inequalities does
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not hold, then the player who prefers mH to mL will deviate if R would play aT

in response to the deviation. The equilibrium condition is narrowed to when the
belief makes R not trust mH ; when Eq. (34) is satisfied. Call this Equilibrium
#3.

Pooling on mH. The pattern of equilibria for pooling on mH follows a similar
structure to the pattern of equilibria for pooling on mL.

If TBH (p) < 0, then R’s best response is aN . This will only be an equilibrium
if his best response to mL would also be aN . This is the case only when the belief
satisfies

μ (θA |mL) uR (θA,mL, aT ) + (1 − μ (θA |mL)) uR (θD,mL, aT )
≤ μ (θA |mL)uR (θA,mL, aN ) + (1 − μ (θA |mL)) uR (θD,mL, aN ) (36)

To guarantee that A and D do not deviate, we require

uS
A (mH , aN ) ≥ uS

A (mL, aN ) anduS
D (mH , aN ) ≥ uS

D (mL, aN ) (37)

If these conditions are satisfied, then we have Equilibrium #6.
If TBH ≥ 0, then R’s best response is aT . If uS

D (mH , aT ) ≥ uS
D (mL, aT )

and uS
A (mH , aT ) ≥ uS

A (mL, aT ), then neither A nor D have an incentive to
deviate. Call this Equilibrium #8. If one of these inequalities does not hold,
then the belief must satisfy Eq. (36) for an equilibrium to be sustained. Denote
this equilibrium by Equilibrium #7.
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Abstract. This paper deals with computational aspects of attack trees,
more precisely, evaluating the expected adversarial utility in the failure-
free game, where the adversary is allowed to re-run failed atomic attacks
an unlimited number of times. It has been shown by Buldas and Lenin
that exact evaluation of this utility is an NP-complete problem, so a com-
putationally feasible approximation is needed. In this paper we consider a
genetic approach for this challenge. Since genetic algorithms depend on a
number of non-trivial parameters, we face a multi-objective optimization
problem and we consider several heuristic criteria to solve it.

1 Introduction

Hierarchical methods for security assessment have been used for several decades
already. Called fault trees and applied to analyze general security-critical systems
in early 1980-s [1], they were adjusted for information systems and called threat
logic trees by Weiss in 1991 [2]. In the late 1990-s, the method was popularized
by Schneier under the name attack trees [3].

There are several ways attack trees can be used in security assessment. The
simplest way is purely descriptional. Such an approach is limited only to quali-
tative assessment of security. Based on such an assessment, it is difficult to talk
about optimal level of security or return of security investments. Already the
first descriptions of attack trees introduced computational aspects [2,3]. The
framework for a sound formal model for such computations was introduced in
2005 by Mauw and Oostdijk [4].

Most of the earlier studies focus on the analysis of a single parameter only.
A substantial step forward was taken by Buldas et al. [5] who introduced the idea
of game-theoretic modeling of the adversarial decision making process based on
several interconnected parameters like the cost, risks and penalties associated
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with different atomic attacks. Their approach was later refined by Jürgenson
and Willemson [6] to achieve compliance with Mauw-Oostdijk framework [7].
However, increase in the model precision was accompanied by significant drop in
computational efficiency. To compensate for that, a genetic algorithm approach
was proposed by Jürgenson and Willemson [8]. It was later shown by Lenin,
Willemson and Sari that this approach is flexible enough to allow extensions like
attacker models [9].

Buldas and Stepanenko [10] introduced the upper bound ideology by point-
ing out that in order to verify the security of the system, it is not necessary to
compute the exact adversarial utility but only upper bounds. Buldas and Lenin
further improved the fully adaptive model by eliminating the force failure states
and suggested the new model called the failure-free model [11]. The model more
closely followed the upper bounds ideology originally introduced by Buldas et al.
[10] and turned out to be computationally somewhat easier to analyze. It has
been shown that finding the optimal strategy is (still) an NP-complete problem,
hence looking for a good heuristic approximation is an important goal. Addition-
ally, one of the goals of the paper is to find empirical evidence for the rational
choice of the parameters of the genetic algorithm.

The paper has the following structure. First, Sect. 2 defines the required
terms. Section 3 presents and evaluates our genetic algorithms. These algorithms
are improved with adaptiveness in Sect. 4. Finally, Sect. 5 draws some conclu-
sions.

2 Definitions

Let X = {X1,X2, . . . ,Xn} be the set of all possible atomic attacks and F be a
monotone Boolean function corresponding to the considered attack tree.

Definition 1 (Attack Suite). Attack suite σ ⊆ X is a set of atomic attacks
which have been chosen by the adversary to be launched and used to try to achieve
the attacker’s goal. Also known as individual.

Definition 2 (Satisfying Attack Suite). A satisfying attack suite σ evaluates
F to true when all the atomic attacks from the attack suite σ have been evaluated
to true. Also known as live individual.

Definition 3 (Satisfiability Game). By a satisfiability game we mean a single-
player game in which the player’s goal is to satisfy a monotone Boolean function
F (x1, x2, . . . , xk) by picking variables xi one at a time and assigning xi = 1.
Each time the player picks the variable xi he pays some amount of expenses Ei,
which is modeled as a random variable. With a certain probability pi the move
xi succeeds. The game ends when the condition F ≡ 1 is satisfied and the player
wins the prize P ∈ R, or when the condition F ≡ 0 is satisfied, meaning the loss
of the game, or when the player stops playing. Thus we can define three common
types of games:
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1. SAT Game Without Repetitions - the type of a game where a player can
perform a move only once.

2. SAT Game With Repetitions - the type of a game where a player can re-run
failed moves an arbitrary number of times.

3. Failure-Free SAT Game - the type of a game in which all success probabilities
are equal to 1. It has been shown that any game with repetitions is equivalent
to a failure-free game [11, Thm. 5].

3 Genetic Approximations for the Failure-Free
Satisfiability Games

The whole family of satisfiability games tries to maximize expected adversarial
profit by solving an optimization problem: given a monotone Boolean function
F(x1, x2, . . . , xn) optimize the utility function U(xi1 , xi2 , . . . , xin) over the set
of all satisfying assignments fulfilling a set of model-specific conditions (in some
specific cases). The models for the SAT games without move repetitions and the
failure-free SAT games differ only by their corresponding utility functions, as in
both cases the order in which atomic attacks are launched by an adversary is
irrelevant. On the contrary, models for SAT games with repetitions (e.g. [12])
consider strategic adversarial behavior in the case of which the order in which the
atomic attacks are launched does matter. In this paper we focus on the genetic
approximations suitable to be applied to the SAT games without repetitions, as
well as the failure-free SAT games. The suggested algorithm is practically vali-
dated by the example of the computational model for the failure-free SAT game.

3.1 Genetic Algorithm (GA)

A genetic algorithm is typically characterized by the set of the following parame-
ters: a genetic representation of chromosomes or individuals (feasible solutions
for the optimization problem), a population of encoded solutions, fitness func-
tion which evaluates the optimality of the solutions, genetic operators (selection,
crossover, mutation) that generate a new population from the existing one, and
control parameters (population size, crossover rate, mutation rate, condition
under which the reproduction process terminates).

The reproduction process, as well as the condition, under which reproduction
terminates is identical to the one described in [9]. We refer the readers to this
paper for further details. An individual is any feasible solution to the considered
optimization problem. Thus, for the SAT games a solution is any of the satisfy-
ing attack suites. We have chosen linear binary representation of individuals to
facilitate the robustness of the crossover and mutation operations. The algorithm
used to generate individuals is shown in Algorithm 1.

We allow duplicate entries to be present in the population for the sake of
maintaining genetic variation and keep the population size constant throughout
the reproduction process. It is well known in the field of genetic algorithms that
genetic variation directly influences the chances of premature convergence – thus
increasing genetic variation in the population is one of the design goals.
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Algorithm 1: Recursive individual generation algorithm
Data: The root of a propositional directed acyclic graph (PDAG) representing

a monotone Boolean function. An empty individual with all bits set to 0.
Result: Live individual.

if the root is a leaf then
get the index of the leaf;
set corresponding individual’s bit to 1;

end
else if the root is an AND node then

forall children of the root do
recursive call: child considered as root parameter;

end
end
else if the root is an OR node then

choose at least one child;
forall chosen children do

recursive call: child considered as root parameter;
end

end

The choice of the population size is important – too small population does
not contain enough genetic variation to maintain the exploration capabilities, too
big population already contains enough genetic variation to efficiently explore
the search space and only results in the performance overhead in the crossover
operator. This means that there exists an optimal population size corresponding
to the minimal population size capable of producing the best result. Thus the
optimal size of the population sets the lower bound of reasonable choice for the
population size and the upper bound is solely based on performance consider-
ations – what is the reasonable time the analysts would agree to wait for the
analysis to produce the result. If the population size is suboptimal, there is a
high risk to converge to suboptimal solutions and if the population is bigger
than the optimal size it does not add anything, except for the increase in the
time required to run the analysis. If the optimal population in some certain case
is k% of the size of the attack tree (the number of leaves in an attack tree),
then any population size greater than k% and capable of producing the result
in reasonable time, would suit to be used for analysis.

All the following computations were made with PC/Intel Core i5-4590 CPU
@ 3.30 GHz, 8 GB RAM, Windows 8.1 (64 bit) operating system. Figure 1 on the
left demonstrates the effect of the population size on the result in the case of a
single attack tree. Measurements were taken for the attack tree with 100 leaves
using uniform crossover operator and mutation rate 0.1.

We have conducted experiments on the set of attack trees of different sizes
(ranging from 10 to 100 leaves with steps of size 3) and observed that there is no
obvious relation between the size of the analyzed tree and the optimal population
size. Apart from the size of the tree, the optimal population size might depend
on, at the very least, the structure of the tree itself. Measurements were taken
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with the same crossover operator and mutation rate. Figure 2 shows how many
trees (%) from the conducted experiment the considered population size would
fit. It can be seen that, in general, the population size equal to 180 % of the size
of the tree would fit every considered attack tree. The population size 200 %,
chosen by Jürgenson and Willemson in [8] for their ApproxTree model, was a
reasonable choice.

Lenin, Willemson and Sari have shown that the crossover operations take
90–99% of the time required to run the analysis [9]. Figure 3 shows the time
measurement for the suggested GA, depending on the size of the population.

The fitness function is the model-specific utility function for the correspond-
ing type of the security game. For further details we refer the reader to the
detailed descriptions of the security games [7–11].
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Fig. 3. Population size effect on GA execution time.



316 A. Lenin et al.

The power of GA arises from crossover which causes randomized but still
structured exchange of genetic material between individuals in assumption that
‘good’ individuals will produce even better ones. The crossover rate controls
the probability at which individuals are subjected to crossover. Individuals, not
subjected to crossover, remain unmodified. The higher the crossover rate is,
the quicker the new solutions get introduced into the population. At the same
time, chances increase for the solutions to get disrupted faster than selection
can exploit them. The selection operator selects individuals for crossing and
its role is to direct the search towards promising solutions. We have chosen to
disable parent selection entirely thus defaulting to crossing every individual with
every other individual in the population (crossover rate equal to 1), as scalable
selection pressure comes along with the selection mechanisms after reproduction.

Notable crossover techniques include the single-point, the two-point, and the
uniform crossover types. Figures 4 and 5 demonstrate the differences between the
convergence speeds resulting from using various crossover operators. It can be
seen that the considered crossover operators do not have any major differences
nor effect on the convergence speed of the GA.
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two point crossover

Our choice fell upon using the uniform crossover – this enables a more
exploratory approach to crossover than the traditional exploitative approach,
resulting in a more complete exploration of the search space with maintaining
the exchange of good information. The algorithm for the crossover operator is
shown in Algorithm 2.

The role of the mutation operator is to restore lost or unexplored genetic
material into the population thus increasing the genetic variance and preventing
premature convergence to suboptimal solutions. The mutation rate controls the
rate at which ‘genes’ are subjected to mutation. High levels of mutation rate
turn GA into a random search algorithm, while too low levels of mutation rates
are unable to restore genetic material efficiently enough, thus the algorithm risks
converging to suboptimal solutions. Typically the mutation rate is kept rather
small, in the range 0.005 − 0.05.

In our implementation of the genetic algorithm, the mutation operator is
a part of the crossover operation, mutating the genes, having same value in
the corresponding positions in both parent individuals. The uniform crossover
randomly picks corresponding bits in the parent individuals to be used in the
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Algorithm 2: The uniform crossover operation
Data: The population of individuals represented as a sorted set.
Result: The population with new added individuals, created during the

crossover operation.

initialize a new set of individuals;
forall individual i in the population do

forall individual j different from i do
new individual := the result of cross operation between individuals i
and j ;
if new individual is alive then

add the new individual to the set of new individuals;
end

end
end
add the set of new individuals to the population;

new individual, and thus in the case bits are different, this already provides
sufficient genetic variation. However, in the case when bits have the same value
this yields just a single choice and in order to increase the genetic variation
(compared to its parents) we mutate just these bits. Figure 6 demonstrates the
mutation rate effect on the utility function for the case of a specific attack tree
with 100-leaves with initial population of 50 individuals. It shows that when
the mutation rate exceeds value 0.1 GA turns into a random search algorithm,
thus it is reasonable to keep the mutation rate rather small. We have conducted
similar experiments on a larger set of attack trees and the results have shown
that the optimal value for the mutation rate is not necessarily small – in some
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cases the optimal mutation rate was 0.6 or even higher. This means that the
optimal value for the mutation rate cannot be set from the very beginning –
it highly depends on the structure of the fitness landscape. However, it is still
reasonable to follow the general rule of thumb to keep the mutation rate small,
assuming that this should work for the majority of the cases.

It is important to determine the practical applicability boundaries for the
suggested method. By practical applicability we mean the maximal size of the
attack tree, which the computational method is capable of analyzing in reason-
able time set to two hours. Extrapolating the time consumption curve in Fig. 7
we have come to a conclusion that theoretically the suggested GA is capable of
analyzing attack trees containing up to 800 leaves in reasonable time. This is a
major advancement compared to the ApproxTree model [8] which would take
more than 900 hours to complete such a task.

The execution time complexity estimations for GA are outlined in Table 1.
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Table 1. GA execution time complexity estimations

Case Approximation polynomial R2 coefficient

Worst 1.68 · 10−5n3 − 0.003n2 + 0.7015n− 23.03 0.99

Average 1.41 · 10−5n3 − 0.001n2 + 0.25n− 8.81 0.99

Best 1.26 · 10−5n3 + 1.62 · 10−5n2 + 0.047n− 2.55 0.99

For comparison, the execution time complexity of the ApproxTree model [8]
was estimated to be O(n4), where n is the number of leaves in the attack tree.
This difference comes from the fact that ApproxTree runs for a fixed number of
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generations, whereas the computations presented in this paper run until local
convergence, as well as the fact that the utility function used in ApproxTree is
considerably more complex compared to the corresponding utility function used
in the Failure-Free model.

4 Adaptive Genetic Algorithm (AGA)

We compare the genetic algorithm suggested in Sect. 3 to the adaptive genetic
approach described in [13]. The authors suggest to adaptively vary the values
of crossover and mutation rates, depending on the fitness values of the solu-
tions in the population. High fitness solutions are ‘protected’ and solutions with
subaverage fitness are totally disrupted. It was suggested to detect whether the
algorithm is converging to an optimum by evaluating the difference between the
maximal and the average fitness values in the population fmax− f̄ which is likely
to be less for the population which is converging to an optimum solution than for
a population scattered across the solution space. Thus the corresponding values
of the mutation and crossover rates are increased when the algorithm is con-
verging to an optimum and decreased when the population gets too scattered.
The authors concluded that the performance of AGA is in general superior to
the performance of GA but varies considerably from problem to problem. In this
paper we apply the suggested method to the problem of the security games.

In the case of the adaptive genetic algorithm, the crossover and mutation rate
parameters are assigned their initial values and are changed adaptively during
the runtime of the algorithm and the only parameter which remains fixed is
the population size. Similarly to the GA there exists an optimal population size
corresponding to the minimal population size capable of producing the maximal
result. Figure 8 shows the result corresponding to the computations using various
population sizes in the experiment setup similar to the one for GA. In the case
of GA the maximal value was stable with the increase in the population size,
however in the case of AGA some fluctuations are present. Figure 9 shows how
many trees (%) from the conducted experiment the considered population size
would fit. It can be seen that, in general, the population size equal to 200 % of the
size of the tree would fit every considered attack tree. Based on these observations
we can say that AGA seems to be more robust, but less stable, compared to GA
and requires bigger population sizes in order to produce optimal results for the
majority of the cases.

Similarly to the GA, we estimate the maximal size of the attack tree which
AGA is capable of analyzing within reasonable timeframe set to two hours.
Extrapolating the time consumption curve with the most extreme values trimmed
out in Fig. 10 we have come to a conclusion that theoretically AGA is capable
of analyzing attack trees containing up to 26000 leaves in reasonable timeframe,
which is approximately 32 times more efficient compared to GA.

The execution time complexity estimations for AGA are outlined in Table 2.
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Table 2. AGA execution time complexity estimations

Case Approximation polynomial R2 coefficient

Worst 3.985x3 − 0.0001x2 + 0.0358x− 1.1970 0.90

Average 3.5731x3 − 0.0001x2 + 0.0267x− 0.8786 0.94

Best 3.1892x3 − 0.0001x2 + 0.0192x− 0.6115 0.96

5 Conclusions

This paper addressed the problem of efficient approximation of attack tree eval-
uation of the failure-free game. We considered the genetic approach to approxi-
mation, since it is known to have worked on similar problems previously. How-
ever, genetic algorithms depend on various loosely connected parameters (e.g.
crossover and mutation operators and their corresponding rates). Selecting them
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all simultaneously is a non-trivial task requiring a dedicated assessment effort
for each particular problem type. The current paper presents the first system-
atic study of GA parameter optimization for the attack tree evaluation. We have
conducted a series of experiments and collected heuristic evidence for optimal
parameter selection.

The second contribution of the paper is the application of adaptive genetic
algorithms (AGA) to the problem domain of attack tree computations. It turns
out that AGA converges generally faster than GA and provides similar level of
accuracy, but with the price of potentially larger population sizes. Since usually
there are no major technical obstacles to increasing the population, we conclude
that AGA should be preferred to plain GA in the considered application domain.
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Abstract. In this paper, we investigate the interactions between a ser-
vice provider (SP) and a client, where the client does not have complete
information about the security conditions of the service provider. The
environment includes several resources of the service provider, a client
who sends requests to the service provider, and the signal generated by
the service provider and delivered to the client. By taking into account
potential attacks on the service provider, we develop an extended sig-
naling game model, where the prior probability of the signaling game is
determined by the outcome of a normal form game between an attacker
and the service provider as a defender. Our results show different equi-
libria of the game as well as conditions under which these equilibria
can take place. This will eventually help the defender to select the best
defense mechanism against potential attacks, given his knowledge about
the type of the attacker.

Keywords: Network security · Computation outsourcing · Game
theory · Signaling game

1 Introduction

Increasing the amount of generated data raises new challenges for processing
data in large scale. The idea of outsourcing computational jobs is proposed to
overcome the complexity and cost for applications that rely on big data process-
ing. This trend is accelerated with the introduction of Cloud Computing. Cloud
computing provides computational services that enable ubiquitous, inexpensive
and on-demand access to vastly shared resources. This paradigm eliminates the
requirements for setting up high-cost computing infrastructure and storage sys-
tems, making it more beneficial for clients with the limited storage and compu-
tational capacity [1]. Despite the huge benefits of this platform, it faces several
challenges. Security issues are among the biggest challenges that hinder the ubiq-
uitous adaption of cloud computing [2].
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Although SPs aim to secure their infrastructure against threats, but pro-
viding a full security has not been possible at least up to now [3]. As a result,
it is likely that the providers face attackers. This issue becomes worse for the
client who cannot detect whether SP is compromised or not. All of these entities
including the service provider, the client, and the attacker are rational decision
makers who aim to make the best decisions. When there are rational entities
who face different choices, and the outcome of an entity’s choice depends crit-
ically on the actions of other participants, we can use game theory to model
their behaviors. As an example of applying this framework to the cloud security,
authors in [4] used this tool for identifying untrustworthy cloud users. In [5], the
effect of interdependency in a public cloud platform has been investigated with
a game-theoretic framework. Also, as the providers have the economic incen-
tive to return guessed results instead of performing the computation completely,
auditing is an important issue in the data outsourcing. Nix et al. in [8] pro-
posed a game theory-based approach to query verification on outsourced data.
They proved that the incentive for cloud to cheat an outsourcing service could
be reduced under their proposed structure. In [9], Pham et al. also addressed
the auditing problem on the outsourced data and provided a general approach
based on game theory for optimal contract design. Authors in these works con-
sidered the cheating or lazy behavior of the SPs, but ignored the probability of
generating incorrect results because of compromised resources by attackers.

In contrast to the related works, in this paper, we model and analyze the
behavior of the SP and his client in the presence of an attacker by using game-
theoretic techniques. Our focus in this work is on the client side to make the best
strategic decision. The client outsources his computation to a SP and receives the
computational results as a service. This SP may be under attack. Subsequently,
the returned results to the client may be incorrect. We model the interaction
between the SP and the attacker with a normal form game. In this regard,
the client faces with a safe or compromised SP. He should decide whether to
rely on the provided service by SP or not. He should make this decision under
incomplete information, as the type of the SP is not observable by the client.
We are interested in modeling all these interactions by using a suitable game
model. Signaling game, due to its special properties, is highly consistent with
our purpose. In this game, the client receives signal (service) from a SP who
has two types, e.g. legitimate and compromised. The prior probability of the
signaling game can be derived from the game between the SP and the attacker.
The composition of these games defines an extended form of signaling game.
To the best of our knowledge, this is the first work that adopts a signaling
game approach to model the interaction of the SP and the client in the presence
of an attacker who attacks the SP. Although our model is proposed for cloud
computing platform, it is generally applicable to other situations in which a
client interacts with a SP exposed to the attacks.

The paper is structured as follows. In Sect. 2, we describe our system model.
Then, we discuss and analyze our game models in Sect. 3. In Sect. 4, we analyze
the proposed signaling game and derive all possible Nash equilibria. Finally,
Sect. 5 summarizes the conclusion and proposes future works.
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Fig. 1. System model: Service provider interacts with his client. In addition, the SP
interacts with an attacker who tries to compromise the cloud resources.

2 System Model

In this paper, we focus on a system model depicted in Fig. 1. We assume a service
provider (SP) provides the desired services to the clients. As we have mentioned
in the previous section, the SP may be threatened by different attacks. To this
end, we assume that there is an attacker in this system who tries to compromise
the SP resources. The SP acts as a defender against him and employs defense
mechanism. We model the interaction between the SP and the attacker as a
two-player normal form game. The strategy space of these players consists of
resources they select; the SP for processing the client requests and the attacker
for compromising and maybe generating the wrong answer for the client. We will
describe this game in the next section in more details for the purpose of deriving
the probability of a successful attack. The client as another entity in this system
participates in a separated game from the previous one. The client sends his
computation to the SP and receives a service. This service is in the form of a
signal. The client is aware of the probability of the attacks, but he does not know
the selected SP is compromised by an attacker or not. Therefore, he participates
in a dynamic game with either a compromised or a safe SP. The client should
decide to trust the received signal from the SP or not. Different types of SP
can play different strategies in these dynamic games. As a result of the above
descriptions, we need a game to model the uncertainty of the client about the
SP type as well as the dynamic nature of the SP and the client movements.
Signaling game is a good choice for this purpose. In our game model which is
an extended form of signaling game, the prior probability of the game is derived
from the game between the SP and the attacker. Since signaling game is a game
with incomplete information is useful for modeling the client uncertainty about
the SP type. In addition, the received service by the client is in the form of a
signal, which is compatible with this game model. The mentioned dynamic games
between the client and the safe/compromised SP are merged to form different
signals which are sent by different types of the SP.
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The mentioned system with these entities and interactions can be found in
many contexts. For example, when an unmanned aerial vehicle, also known as
drone, outsources his computation to a SP, because of its limited computational
resources. Drone acts according to the received service from the SP. But, it seems
that relying on the received service is not the best action in all situations. Espe-
cially, when the SP is exposed to the various attacks and rely on the wrong signal
has irreparable damage for drones. Cognitive Radio (CR) is another example.
Dynamic spectrum assignment to the secondary users by CR should be done in
a way that does not create harmful interference to primary licensed users. Simi-
lar to the drone example, CR devices can overcome their limited computational
capacity in determining idle bands with computational outsourcing [6]. Despite
these advantages, the cloud may be subject to attacks with the objective of cre-
ating interference. Given these risks, secondary user may face the same question
for relying on the results obtained from the cloud. Sensor nodes in a Wireless
Sensor Network (WSN) can utilize the vast computational capacity of cloud
computing in the same way [7]. In this scenario as previous ones, it is probable
that the computational results are incorrect and the user should be more careful
about his decision whether to trust the cloud or not.

In the forementioned scenarios, clients have common concerns about the
received outcomes. Can they trust the returned result? More importantly, in
what situations, they should apply an auditing approach to investigate the results
and under which conditions, it is better to trust? We will investigate and answer
these questions along this paper.

3 Game Model

In this section, we will model the interactions between the mentioned individuals
in the previous section using game theory. We employ two different game models
for this purpose. The first game, which is a normal form one, models the scenario
where a malicious agent attacks the SP. We will describe and analyze it in detail
in Sect. 3.1. Since the SP can be under attack or not, the client faces two types
of SPs. In Sect. 3.2, we will illustrate the relation between the client and each
type of the SP using two different dynamic games. In Sect. 3.3, we will describe
how we can merge these three games to form an extended form of a signaling
game.

3.1 Attacker-Defender (AD) Game Model

An SP has several resources which can be used for processing the client requests.
The SP should decide about the selected resources for computation. Simultane-
ously, the attacker determines his attack target. We model this interaction using
a parametric normal form game. We start with a cloud with two resources and
extend our analysis to N resources. Under the assumption of two resources, the
strategy sets of both the attacker and defender as well as payoff values is shown
in Table 1, we named AD-game.
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Table 1. Strategic form of the security game between an attacker and the SP as a
defender in a cloud computing with two resources.

D↓ A→ R1 R2

R1 D11,A11 D12,A12

R2 D21,A21 D22,A22

We now analyze AD-game for finding its Nash Equilibria (NE). This calcula-
tion is valuable as we use it for finding the probability of the successful attacks.
If the SP selects Ri, the best response for the attacker is to attack the same
resource. It is obvious that the defender prefers to select the other resource,
except that one has been chosen by the attacker. Given this, we conclude that:
D21 ≥ D11, D12 ≥ D22, A11 ≥ A12 and A22 ≥ A21. Therefore, there is no pure
strategy Nash equilibrium for this game.

We now compute the mixed Nash equilibrium of this game. For simplicity
in the mixed NE closed form representation, we define the following notations,
δiD and δiA, in which δiD = Dji − Dii and δiA = Aii − Aij , where i, j = {1, 2}.
Suppose the attacker randomizes over Ri resource with PiA and the probabil-
ity of defending the same resource is equal to PiD. The closed form of these
probabilities are equal to the following equations at the mixed-NE:

PiA =
δjD

∑2
k=1 δkD

, where i ∈ {1, 2}; j �= i (1)

PiD =
δjA

∑2
k=1 δkA

, where i ∈ {1, 2}; j �= i (2)

The client will get a service from a compromised SP when both the attacker
and the defender select the same resource. We represent the probability of this
event by θ, which is calculated in (3). The value of θ is important for both the
attacker and the defender, and is more valuable for a client who gets the service
from the SP. The larger values of θ indicate a risky cloud.

θ =
2∑

i=1

(PiD × PiA) =
∑2

i=1(δiD × δiA)

(
∑2

i=1 δiD) × (
∑2

i=1 δiA)
(3)

The above calculations can be extended to a cloud with N resources. We call
this game as Extended-AD game. For simplicity, we assume that the attacker
just selects one resource for the attack, but the following calculations can be
extended to include any m < N resources. Since the attacker does not know
which resource consists of the result, there is no difference between them for
him. Additionally, the SP doesn’t have any information about the target of the
attacker. In this regard, we assume the same values for all Dji, ∀ j �= i, and in
the same way, the equal values for all Aij , ∀ j �= i, where i, j ∈ {1, 2, ...,N}.
Under these assumptions, we can conclude that there is no pure strategy NE
in this game. Values of the PiD and PiA in the mixed NE as well as θ can be
calculated by the following equations:
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PiA =

∏N
j=1,j �=i δjD∑

{i1,i2,···,iN−1}∈S(δi1D × · · · × δi(N−1)D )
(4)

PiD =

∏N
j=1,j �=i δjA∑

{i1,i2,···,iN−1}∈S(δi1A × · · · × δi(N−1)A)
(5)

θ =
N∑

i=1

(PiD × PiA) (6)

where S is the all (N − 1)-combinations of �N�, �N� = {1, 2, · · ·,N}.

3.2 Service Provider-Client (SPC) Game Model

As discussed before, cloud resources may be compromised with probability θ. It is
noticeable that the client does not know the SP is compromised or not. Therefore,
the client may face a compromised cloud or a safe one. In this subsection, we
examine the interactions between the client and each type of SP using dynamic
games. In the next subsection, we will show how these interactions can merge
to form a single game model. We begin with the game model between the client
and the safe SP.

The SP first performs the required computation on the data. He can allo-
cate enough and precise computational resources for these calculations. He has
another choice in which uses the low precise computational resources, or maybe
he is a lazy SP and returns the guessed result instead of the accurate one. It
can cause the incorrect result generated. Therefor, in the first step, the SP takes
one of the two choices: h or l as represented in Fig. 2. Depending on the chosen
strategy by the provider, the returned result to the client can be correct or incor-
rect. We show the probabilities of data correctness with pC and p

′
C for h and l

strategies, respectively. pI and p
′
I also stand for the probabilities of generating

false results. Obviously, pI = 1 − pC , p
′
I = 1 − p

′
C and pC ≥ p

′
C . Following the

chance move, the SP acts again as a player and sends the computed result as a
service to the client. In our model, we suppose that the SP strategy space con-
sists of two actions, but in general, the number of signals can be more than two.
Once the client receives the signal, he should make the final decision to trust
or not. These strategies are shown with T and N in the extended tree form.
Depending on the SP and the client choices, the payoff values for both of them
will determine.

Now, we investigate the game in the presence of an attacker. The attacker
knows the possibility for generating false result by the SP. Also, he may ignore
the changing the results, as this raises the probability of attacher detection by
the defender. Additionally, his purpose could be the access to resources for eaves-
dropping, not changing the results. So, he should decide to change the computa-
tional results or leave them without any manipulation. Given this information,
we define two actions for this attacker dilemma, that is shown with m and nm
in Fig. 3. Note that the probability of chance move is equal to qC and q

′
C in this

case. Similar to the safe cloud case, the client is the final player.
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Fig. 2. A dynamic game model for a safe cloud.

Fig. 3. A dynamic game model for a compromised cloud.

3.3 Service Provider-Client Signaling (S-SPC) Game

In the previous subsection, we have described the interaction between a safe
SP and the client in one hand and the interaction between the client and the
compromised SP, on the other hand. Now, we are interested in modeling all
of the interactions in the previous parts by a game. We require a two-player
game which is able to model the uncertainty of the client about the type of the
SP. In addition, this game must be a dynamic one, in which the client makes
the decision after receiving a signal from the SP. Given these requirements, it
seems signaling game can be a good choice. Signaling game is a non-cooperative
dynamic game of incomplete information with two players wherein one player
has private information [10].

Our model as a singling game is represented in Fig. 4. In this game, Nature
as the first mover chooses type of the SP. It chooses either type under attach (A)
or safe (NA) with probability θ and 1−θ, respectively. This value is gained from
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Fig. 4. A signaling game model with two different types of the service provider.

Table 2. Signaling game notations

Notation Description

A Cloud is under attack
NA Cloud is safe
T Trust to received signal
N Do not trust to received signal
θ The probability of the successful attack (θ ∈ [0, 1])

m(i) Sending signal by SP type i, m(i) ∈ {X, Y }, i ∈ {A, NA}
a(j) The client’s action in response to received signal j, a(j) ∈ {T, N}, j ∈

{X, Y }
p Client’s belief at the upper information set where the SP is under attack

(p ∈ [0, 1])

q Client’s belief at the lower information set where the SP is under attack
(q ∈ [0, 1])

Dijk Client’s payoff, where SP’s type is i and signal j is sent and client plays
action k where i ∈ {A, NA}, j ∈ {X, Y } and k ∈ {T, N}

Cijk SP’s payoff, where SP type is i and signal j is sent and client plays action
k, where i ∈ {A, NA}, j ∈ {X, Y } and k ∈ {T, N}

the Extended AD-game. After that, selected SP type sends either X or Y signal.
The other used notations in this figure are summarized in Table 2. Given the
type of the SP, he, and the client choose their actions according to the extensive
forms which is shown in Figs. 2 and 3. In this regard and after the action selected
by the client, the payoff values for the SP and the client can be calculated. For
instance, DNAXT in the signaling game, is the client’s payoff value when SP type
NA sends the signal X and the client chooses the strategy T . The value of this
payoff and other outcomes can be calculated using the payoff values of Figs. 2
and 3 as described in the following equations, where j ∈ {X,Y } and k ∈ {T,N}:
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Table 3. Separating equilibria and their conditions.

BNE Separating BNE Profile Conditions

SE1 ((X, Y ), (T, T ), p = 1, q = 0)
DAXT ≥ DAXN , DNAY T ≥ DNAY N

CAXT ≥ CAY T , CNAY T ≥ CNAXT

SE2 ((X, Y ), (T, N), p = 1, q = 0)
DAXT ≥ DAXN , DNAY T ≤ DNAY N

CAXT ≥ CAY N , CNAY N ≥ CNAXT

SE3 ((X, Y ), (N, T ), p = 1, q = 0)
DAXT ≤ DAXN , DNAY T ≥ DNAY N

CAXN ≥ CAY T , CNAY T ≥ CNAXN

SE4 ((X, Y ), (N, N), p = 1, q = 0)
DAXT ≤ DAXN , DNAY T ≤ DNAY N

CAXN ≥ CAY N , CNAY N ≥ CNAXN

SE5 ((Y, X), (T, T ), p = 0, q = 1)
DAY T ≥ DAY N , DNAXT ≥ DNAXN

CAY T ≥ CAXT , CNAXT ≥ CNAY T

SE6 ((Y, X), (N, T ), p = 0, q = 1)
DAY T ≤ DAY N , DNAXT ≥ DNAXN

CAY T ≥ CAXN , CNAXN ≥ CNAY T

SE7 ((Y, X), (T, N), p = 0, q = 1)
DAY T ≥ DAY N , DNAXT ≤ DNAXN

CAY N ≥ CAXT , CNAXT ≥ CNAY N

SE8 ((Y, X), (N, N), p = 0, q = 1)
DAY T ≤ DAY N , DNAXT ≤ DNAXN

CAY N ≥ CAY N , CNAXN ≥ CNAY N

CNAjk = pC(ChCjk − ChIjk) + p
′
C(ClCjk − ClIjk) + ChIjk + ClIjk (7)

DNAjk = pC(DhCjk − DhIjk) + p
′
C(DlCjk − DlIjk) + DhIjk + DlIjk (8)

CAjk = qC(CnmCjk − CnmIjk) + q
′
C(CmCjk − CmIjk) + CnmIjk + CmIjk (9)

DAjk = qC(DnmCjk − DnmIjk) + q
′
C(DmCjk − DmIjk) + DnmIjk + DmIjk (10)

4 Game Analysis

In this section, we analyze the signaling game for finding the pure strategy
Bayesian Nash Equilibria (BNE).

4.1 Service Provider-Client Signaling Game’s Equilibria

In the following, we examine the signaling game for the existence and properties
of any pure strategy BNE. Basically, in non-Bayesian games, a strategy profile is
a NE if every strategy in that profile is a best response to every other strategy.
But, in Bayesian games, players are seeking to maximize their expected payoff,
given their beliefs about the other players [10].

For the defined signaling game in Fig. 4, a pure strategy BNE profile is deter-
mined as tuple ((m(A), m(NA)), (a(X), a(Y )), p, q). It consists of the pair of
strategies chosen by each type of the first player (SP), the actions taken by the
second player (client) in response to the each signal and the client’s beliefs. In
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each signaling game, two types of BNE are possible, called pooling and separat-
ing, which are defined as follows:

Definition 1 (Pooling equilibrium [10]): A BNE is a pooling equilibrium if the
first player sends the same signal, regardless of his type.

Definition 2 (Separating equilibrium [10]): A BNE is a separating equilibrium if
the first player sends different signals, depending on his type.

For example in our defined signaling game presented in Fig. 4, if m(A) = m(NA)
at a given BNE, it represents a pooling equilibrium. In contrast, a BNE in which
m(A) �= m(NA) is a separating equilibrium.

Separating Equilibria. In this part, we examine the conditions under which
our signaling game has separating equilibria. According to Definition 2, this
occurs when m(A) = X and m(NA) = Y or m(A) = Y and m(NA) = X
in Fig. 4. We first analyze the case in which equilibria contain strategy (X,Y ).
This means the SP type A chooses strategy X and other type selects Y . In this
situation, the client chooses T in response to X if this choice is more beneficial
for him rather than choosing strategy N . In other words, his gained payoff for
action T , i.e., DAXT , be greater than or equal to DAXN . Otherwise, he plays
action N . Similarly, the client will play T in response to signal Y sent by SP
type NA, when DNAY T ≥ DNAYN . In each case, we must check whether any
type of the SP deviates from selected strategy, his payoff would increase or not.
If deviation causes increasing the SP’s payoffs, this strategy profile will not be
an equilibrium. These conditions must be checked for other strategy profiles. All
the separating equilibria and their conditions are given in Table 3. Recall that
the values of payoffs can be calculated by Eqs. (7)–(10).

Pooling Equilibria. As Definition 1 states, pooling equilibria occur either
m(A) = m(NA) = X or m(A) = m(NA) = Y . In both cases, the selected
strategy by the client depends on the expected payoff he obtains by playing that
strategy. In the earlier case, m(A) = X and m(NA) = X, the client will play T if
this action results in an expected payoff greater than or equal to expected payoff
for playing N , i.e., p×DAXT +(1−p)×DNA1T ≥ p×DAXN +(1−p)×DNAXN

Depending on the value of payoffs appeared in this inequality, the value of p will
be determined. Since action X is on the equilibrium path, the value of p will be
equal to θ.

Without loss of generality, we assume that the client’s payoffs in Eqs. (8)
and (10), have the following relations: DiCjT > DiIjN > DiCjN > DiIjT , i ∈
{nm,m, h, l} and j ∈ {X,Y }. These relative relations can be true because of the
following reasons. The client gains the greatest payoff value when the signal is
correct and he trusts. The lowest payoff value belongs to the case he trusts the
wrong signal. Additionally, he audits the received signal via another approach
even when the signal is correct but he does not trust. Therefore, he should pay
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the auditing cost. In addition, assume that the sum of correctness probabilities
in the case of the safe SP be greater than the same one in the presence of an
attacker, i.e., (pC + p

′
C) > (qC + q

′
C). With these assumptions, we can conclude

that:

p ≤ (DNAXT − DNAXN )
(DAXN − DNAXN ) + (DNAXT − DAXT )

=: F1

We now should determine the beliefs and actions for the off-equilibrium path
of sending signal Y by the SP. Similarly, the client will play T if the expected
payoff for choosing this strategy is greater than or equal to expected payoff for
playing N . Given the above assumptions, we will have:

q ≤ (DNAY T − DNAYN )
(DAYN − DNAYN ) + (DNAY T − DAY T )

=: F2.

Similar to separating equilibria, we perform the calculations to obtain the con-
ditions in which there exist pooling equilibria. This is summarized in Table 4.

Table 4. Pooling equilibria and their conditions.

BNE Pooling BNE Profile Conditions

PE1 ((X, X), (T, T ), p = θ ≤ F1, q ≤ F2) CAXT ≥ CAY T , CNAXT ≥ CNAY T

PE2 ((X, X), (T, N), p = θ ≤ F1, q ≥ F2) CAXT ≥ CAY N , CNAXT ≥ CNAY N

PE3 ((X, X), (N, T ), p = θ ≥ F1, q ≤ F2) CAXN ≥ CAY T , CNAXN ≥ CNAY T

PE4 ((X, X), (N, N), p = θ ≥ F1, q ≥ F2) CAXN ≥ CAY N , CNAXN ≥ CNAY N

PE5 ((Y, Y ), (T, T ), p ≤ F2, q = θ ≤ F2) CAXT ≤ CAY T , CNAXT ≤ CNAY T

PE6 ((Y, Y ), (T, N), p ≤ F2, q = θ ≥ F1) CAXT ≤ CAY N , CNAXT ≤ CNAY N

PE7 ((Y, Y ), (N, T ), p ≥ F2, q = θ ≤ F1) CAXN ≤ CAY T , CNAXN ≤ CNAY T

PE8 ((Y, Y ), (N, N), p ≥ F2, q = θ ≥ F1) CAXN ≤ CAY N , CNAXN ≤ CNAY N

F1 := DNAXT−DNAXN
DAXN−DNAXN+DNAXT−DAXT

, F2 := DNAY T−DNAY N
DA2N−DNAY N+DNAY T−DAY T

5 Conclusion

In this paper, we have investigated a client’s security concern where he outsources
his computational tasks to a service provider. In this scenario, the SP might be
compromised by different types of attackers. Consequently, the client involves
in a dilemma whether to trust the received results from the service provider
or not. To address this problem we have modeled the interactions between the
service provider and the attacker as well as the relation between the client and
the provider by two different game models. We have first defined and analyzed
a normal form game for the interaction between the service provider and an
attacker. Then, we employed the obtained NE of the first game to define the
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prior probability of the second game (i.e., the prior probability of the Nature),
which is a signaling game. We have analyzed this extended signaling game and
determined potential equilibria.

For future work, we will evaluate the mixed strategy BNE in the extended
signaling game. We can also examine how updating the client’s beliefs can affect
his decision when the signaling game becomes repeated. Furthermore, we plan
to investigate our game model using real case studies.

Acknowledgement. The authors would like to thank Amin Mohammadi for his con-
structive feedback and insightful suggestions on the primary version of the proposed
model and notations.
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Abstract. Until twenty years ago, the application of game theory (GT)
was mostly limited to toy examples. Today, as a result of major techno-
logical and algorithmic advances, researchers use game-theoretical mod-
els to motivate complex security decisions relating to real-life security
problems. This requires models that are an accurate reflection of reality.
This paper presents a biased bird’s-eye view of the security-related GT
research of the past decade. It presents this research as a move towards
increasingly accurate and comprehensive models. We discuss the need
for adversarial modeling as well as the internalization of externalities
due to security interdependencies. Finally, we identify three promising
directions for future research: relaxing common game-theoretical assump-
tions, creating models that model interdependencies as well as a strategic
adversary and modelling interdependencies between attackers.

1 Introduction

Ever since its inception by von Neumann and Morgenstern in 1944 [33], GT has
been recognized as a tool with great potential for motivating security related
decisions. While initial studies were by necessity restricted to highly stylized
representations of e.g. warfare and disarmament inspections [4], the advent of
(powerful) computers and computer networks has enabled us to examine more
complex models as well as a plethora of new applications. Research at the inter-
section of computer science (CS), security and GT is addressing previously non-
existent security problems in cyberspace, and is leveraging the computational
power of modern technology to apply GT concepts to security problems with an
ever-increasing number of players, attacker types and strategy space sizes.

This process of increasing sophistication and applicability is one that all
mathematized sciences go through [33]. A glance at recent literature shows that
GT has mostly outgrown the stage where (elementary) applications only serve to
corroborate its foundations. Current research seeks to apply GT to complicated
situations that occur in real life, guiding decision making in a principled manner
[43]. In the field of security, where decisions are still often made in a rather ad-hoc
fashion and the amount of information and variables to take into consideration
is becoming too much for domain experts to handle, such a formal guide can be
of immense value [1].

c© Springer International Publishing Switzerland 2015
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Correctly assessing model adequacy has proved itself a difficult task. Because
of the quirks of human behavior, it is unlikely that we will ever be able to fully
close the gap between model and reality of security-related interactions. Identi-
fying useful abstractions is an ongoing effort that has captivated GT researchers
for decades, and that now receives more and more attention of the security com-
munity. Where security-related GT research used to focus on the development
of scalable algorithms and exploring the applicability of classic concepts from
GT to novel problems, contemporary research increasingly covers ideas from
behavioral GT and improvements to standard models.

This paper presents an opinionated view of the history of and motivation
for using GT to make security decisions. It presents ‘single-player’ decision-
theoretical models (Sect. 2) as the ancestor of current GT decision making. We
divide and discuss GT decision models in three categories based on the number
and nature of participating players. The first category contains attacker-defender
games, which are games between a single malicious and a single benevolent player
(Sect. 3). The second category contains interdependent games, which involve
two or more non-malicious entities whose decisions influence each other’s utility
(Sect. 4). The third category contains all other security-related games (Sect. 5).
We then discuss three interesting research directions that will lead to models
of security problems as complex interdependent games with multiple behavioral
attackers and defenders (Sect. 6).

Contribution. There already exist excellent recent review papers on the subject
of security and GT. Manshaei et al. [31] provide a structured and comprehen-
sive overview of game-theoretical models of security and privacy in communi-
cation networks, but do not really discuss security interdependencies. Laszka,
Felegyhazi, and Buttyán [26] complements this work by giving a comprehensive
overview of interdependent (investment) security games. Both papers offer sig-
nificant technical detail. This paper is more introductory, is not comprehensive
and does not offer comparable detail. Our main objective to provide the reader
with a manageable high-level overview of the GT models that are being used
to model security problems and to motivate their use. We focus on how models
are changing, and seek to convince the reader of the importance of modeling
interdependencies.

Remarks

– The way in which we present material is biased; non-game-theoretical models
are hardly something of the past, and we do not know the future. Presenting
modern risk management strategies as ancestral to attacker-defender games,
some of which are over half a century old, is historically incorrect. Instead
of being an objective or comprehensive reference work, we aim to present
the recent history of game-theoretical security-related research in a way that
should spark discussion and that may influence how its reader looks at past,
current and future research.
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– This paper focuses on cybersecurity, which is gaining more and more attention
from policymakers, the general public and the scientific community.1 However,
the concepts presented are not limited to this application.

2 The Decision-Theoretical Approach

Economists have a long history of studying risk and reward, generally using
decision-theoretic techniques that allow economic entities to maximize their
expected gain. Per the law of the instrument, they often model the threat posed
by external parties as an ‘operational risk’ [7]. This approach fails to incorpo-
rate the effect of the entity’s policy on the behavior of the external parties. In
game-theoretical terms, firms are playing a one-player game, and the external
party is modelled as part of the game rules.

It is important to realize that non-game-theoretical models are still used and
studied today, maybe even more so than game-theoretical approaches [9]. One
popular application of single-player models seems to be the study of security
investment decisions [18]. One-player models are also still used for motivating
decisions that are more convincingly strategical in nature than security invest-
ment, such as when to deploy cyber resources like zero-day exploits [5].

3 Attacker-Defender Games

In contrast to decision-theoretical models, attacker-defender games (ADGs)
explicitly include malevolent parties as players, able to make strategic decisions.
This section contains a short motivation for this approach (Sect. 3.1), followed
by an enumeration of some of the most popular ADG models (Sect. 3.2).

3.1 Motivation

The basic argument for ADGs is that attackers are people or organizations. They
are capable of making strategic decisions in real life, which makes it inappropriate
to model them as an unchanging presence. Regardless of the true strategic nature
of an opponent, assuming random and constant attacker behavior might still be
a reasonable assumption if nothing is known about how the attacker operates
or what her preferences are. In most security-related interactions, this is not the
case.
1 The 2015 version of Panama Institute’s yearly cost of data breach study shows (•)

an increased number of data breaches resulting from attacks by malicious attackers
(47 % versus 37 % in 2013), (•) a 23 % increase in total cost of data breach since
2013, and (•) shows that attacks have increased in frequency as well as in the cost to
remediate the consequences [12,13]. ENISA, the European Union Agency for Net-
work and Information Security, sees a 25 % increase in the number of data breaches in
2014 compared to 2013 and refers to 2014 as “the year of the data breach’ [16]. They
list nearly all cyber threats, such as denial of service attacks and cyber espionage,
as increasing.
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Firstly, cyberattackers are, in an important sense, becoming predictable [11].
In the past 15 years, there has been a shift from ‘hacking for fame’ and ‘hacking
for fun’ to profit-driven attacks [28]. The cyber-crime economy has transformed
from an unorganized reputation-based economy to an organized cash economy
[17,32]. This new focus on financial gain is evidenced by increased financial
damages associated with a successful cyberattack [13].

Secondly, many attackers seem to act approximately rational, even those
that are not only motivated by financial gain. An example of this is given by
Tambe [43], who convincingly argues that even terrorist groups such as Al-Qaeda
are (approximately) rational in the game-theoretical sense (i.e. they act as if
optimizing expected utility).

Thirdly, attacker rationality and our knowledge of attacker preferences do
not have to be perfect for a GT analysis to be useful. Many GT models allow us
to express uncertainty over the attackers’ type. Even if we can give only a rough
estimate of attacker preferences, stochastic game-theoretical models can be an
improvement over one-player games. Concepts from behavioural GT can allow
us to account for attacker irrationality.

3.2 Models and Applications

The class of ADGs comprises all two-player games between an attacker and
a defender. The goal of the attacker varies but is always malicious; examples
include preventing the legitimate use of a computer network and the successful
execution of a terrorist attack. The goal of the defender is simply to minimize
her expected damages by taking defensive measures. The single attacker and
defender in ADGs do not have to represent individual people, and in fact typi-
cally represent multiple entities [1]. A wide variety of game models and solution
concepts are employed, although the simultaneous-move game and Nash equi-
librium (NE) remain very popular. While the ADG ‘framework’ might seem
rather restrictive, a large fraction of the games considered in security-related
GT falls within this category. The ADG model is being used to model a large
variety of security-related topics including arms control, (anti-)jamming games,
botnet defense, intrusion detection, (security) auditing and advanced persistent
threats [14].

Stackelberg Security Games (SSGs). One very actively studied class of games
within the ADG category that does not use the NE is the class of so-called
security games or SSGs [24,43].2 In SSGs, the defender has a fixed number of
security resources (e.g. police patrols or blockades) that she needs to deploy
to a (larger) number of targets. The defender’s strategy consists of assigning
resources to schedules, which are subsets of targets. The attacker observes the
defender’s strategy and then attacks a single target. There are always unpro-
tected targets, but the attacker does not know which ones, because she only
2 We think this is a confusing name, because there are a lot of security-related games

that are not security games.
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observes the defender’s (stochastic) strategy, not her action. Both attacker and
defender have two utilities for each target – one for the case where the target is
attacked, and one where it is not.

More so than any other class of game-theoretical models, SSGs have repeat-
edly demonstrated their usefulness in real-world applications [43]. An early exam-
ple of a deployed system is ARMOR, a software assistant agent that allocates
checkpoints to the roadways entering the Los Angeles International Airport and
canine patrols within the airport terminals to minimize the probability of a suc-
cessful terrorist attack [37,38]. Since then, many more applications have been
explored, including the allocation of air marshals to flights, scheduling inspection
checkpoints on the roads of a large city and wildlife protection. Many of these
have actually been deployed.

References. For a recent survey of network security and privacy ADGs we refer
to Manshaei et al. [31], who classify the literature into six categories based on
the problem that they model. Roy et al. [42] give a more concise overview of
network security-related work; they classify games according to the underlying
game model (cooperative, non-cooperative, static, . . .), which is perhaps shallow
but nevertheless interesting. Alpcan and Başar [1] is a good book on GT and
network security. We could not find a recent, comprehensive survey on the work
on SSGs, although the book by Prof. Tambe [43] and the Teamcore website3 are
a good place to start.

4 Interdependent Games

Interdependent security gamess (ISGs) are games that explicitly model multiple
players in the defending role. This approach has the advantage that it can include
interdependencies between the decisions of multiple defenders.

4.1 Motivation

In real life, decisions are not made in a vacuum and can have influences that
extend beyond the decision maker herself. Indeed, the difference between ADGs
and single-player games is that they account for the strategic interdependency
that exists between attacker and defender. This section shows that interdepen-
dencies also exist between defenders.

Central in this discussion is the concept of externalities [26], which result
from interdependencies. In the context of game theory and security, the term
externality refers to the impact that the decision of an individual or firm has
on other actors, and for which there is no compensation. There exist both nega-
tive externalities (actions that harm the others, such as pollution) and positive
externalities (actions that benefit the others). Externalities can sometimes be
internalized by compensating for them (e. g. by making polluters liable for the
harm that they inflict on others).
3 http://teamcore.usc.edu

http://teamcore.usc.edu
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Connectivity. The connected nature of computerized systems is an important
cause for interdependencies. The way in which networked systems are often set
up has the effect that if an attacker is able to breach one defender, she is able to
easily access or harm other connected defenders. Consequently, an investment in
security by one defender increases the security of other defenders as a positive
externality. Consider the following examples:

– Some viruses spread through email. As the people surrounding you become
more conscious about security, the likelihood of you receiving and being
infected by the virus decreases regardless of your own strategy.

– Computers infected by a virus often become part of a botnet that inflicts harm
on third parties by sending spam or executing DDoS attacks. Removing the
virus causes the attacks on the third parties to stop.

– Some of the material that people share with you on social networks may be
considered private. Activating two-factor authentication decreases the chance
of your account being compromised, decreasing the chance of someone violat-
ing your friends’ privacy.

Logical Interdependencies. There exists a logical interdependence between oth-
erwise unrelated systems because they run the same software [36]. One effect of
this interdependency can be that using popular software makes you a popular
target for attackers [30] (negative externality). Logical interdependencies also
cause security risk correlation, because exploits targeting popular software can
affect millions of computers (see e. g. Heartbleed4 and Shellshock/Bashdoor).
This can be important when modeling security insurance. Correlation of risk has
been identified as one of the main causes of the unfortunate state of the security
insurance market [8].

Strategic Interdependence. Attackers often do not just pick their targets randomly
(Sect. 3). If one firm increases its security level to make it more resistant to attacks,
this can cause other firms to be targeted instead (negative externality).

Poorly Aligned Incentives. It is well-known that positive externalities gener-
ally leads to social inefficiency (underinvestment) and free-riding (players avoid
investing, expecting others to protect them). However, the case for cybersecurity
is especially bad because the externalities are often large. The actors who are in
the best position to prevent risk, are often not the ones who are liable or under
attack [3].

Poorly aligned incentives are exemplified by ingress filtering. Ingress filtering
is a denial-of-service (DoS) prevention technique where attack traffic gets dis-
carded by routers close to the perpetrators, such as a router controlled by the
perpetrator’s ISP. Here, an investment by the ISP in filtering technology is of
limited benefit to the ISP itself, but of great benefit to the target of the DoS
4 http://heartbleed.com

http://heartbleed.com
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attack. We say that the incentives of the victim and the ISP are ‘poorly aligned’.
It is a well-known result that poorly aligned incentives among defenders are at
the root of security issues at least as often as technical factors [2,3]. The detri-
ments associated with them are often exacerbated by information asymmetry.

Noncyber. Note that although the effect of externalities in cyberspace is larger
than in most other domains, there also exist security externalities outside of
cyberspace. E.g., Kunreuther and Heal [25] pointed out the interdependencies
that used to exist between airports, because there was no time to check the bags
of passengers transferring flights. Ayres and Levitt [6] provide another example
by showing that unobservable precautions provide positive externalities, since
criminals cannot determine a priori who is protected. In their investigation this
precaution took the form of the Lojack, a hidden radio transmitter used for
retrieving stolen vehicles.

4.2 Models

We consider interdependent security games to be games in which there are mul-
tiple selfish but nonmalicious players that can protect themselves from attack
and whose decisions do not influence only their own utility, but also the utility of
other players. These influences should be indirect, so we do not consider games
where the players are adversarial to be interdependent games. This definition is
more general than the common definition in literature, which is usually specific
to security investment and risk minimization [25,26]. We refer to the latter as
interdependent investment security games.

Interdependent investment security games are relatively new. They were
introduced by economists Kunreuther and Heal [25] in 2003. In this work, Kun-
reuther and Heal show that the positive externalities associated with security
investment generally lead to an underinvestment in security due to free riding.
Similar findings are made by Varian [44], who argues that security should be
treated as a common good.

An important aspect that is missing from the model of Kunreuther and Heal
[25] and derivative models is that of the source of the risk. This has been observed
by a few researchers. Chan, Ceyko, and Ortiz [10] introduce interdependent
defense (IDD) games as an adaptation of Kunreuther’s model that does account
for the deliberate nature of attacker’s actions, but they treat security investment
as a binary choice that leads to perfect defense. Lou, Smith, and Vorobeychik
[29] present a more general model, in which each defender has to protect multiple
resources instead of just one resource that can be perfectly protected.

References. Laszka, Felegyhazi, and Buttyán [26] present a comprehensive survey
of interdependent investment security games. They restrict themselves to those
games where defenders’ strategic decisions are related to security investments
and risk minimization.
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5 Other Games

Although many security-related games fit in one of the two categories discussed
in the previous sections, a large body of security-related literature does not. We
do not have the space for a comprehensive discussion, so instead make just a few
observations.

– Some games do not consider parties to be malicious or benevolent, but instead
consider a number of ‘neutral’ strategic entities that can take offensive or other
actions based on whichever one benefits them most. E.g., Johnson, Laszka, and
Grossklags [21] consider a two-player game between Bitcoin mining pools of
varying size that have to make a binary choice between attacking the other
party or investing in increased computing power.

– There is a substantial body of work considering self-organizing wireless ad-
hoc networks, such as wireless sensor networks, mobile ad-hoc networks and
vehicular ad-hoc networks (VANETs). There, every node is usually considered
to be a player. The work in this area is often security-related because of the
specifics of the scenario being modelled, e. g. because the purpose of the
VANET is to communicate safety-related information.5

– Some games do model multiple attackers. However, in the absence of interde-
pendencies between attackers these games generally reduce to ADGs. E.g., Yang
et al. [46] model poaching using a single defender and a population of poachers.
Poachers respond to the rangers’ patrolling strategy independently; potential
collaboration between poachers is explicitly not considered. The strategic con-
siderations of the defender are therefore equivalent to those in a Bayesian SSG.
As another example, Laszka, Johnson, and Grossklags [27] consider defense
against covert cyberattacks by a targeted attacker and a large group of non-
targeted attackers. Because every non-targeted attacker attacks a large number
of targets with negligible probability, the influence of a single defender’s strat-
egy on the strategy of such an attacker is negligible. Their game reduces to an
ADG played between the defender and the targetted attacker.

– Interesting work is being done at the intersection of cryptography and GT.
One stream of research studies applications of cryptographic methods to GT;
specifically, how secure cryptographic multi-party computation methods can
eliminate the need for a trusted mediator in game-theoretical mechanism
design [15,23]. Another stream of research studies how the game-theoretic
concept or rationality and selfishness could replace or add to the assumption
of benevolence or malevolence in in cryptographic protocols for secret sharing
and multi-party computation [15,20,23]. Because of impossibility results or
because the classical GT concepts are not always a good fit for the crypto-
graphic setting, some new GT concepts such as the computationally robust
(Nash) equilibrium [19] and the rational foresighted player (for secret shar-
ing) [35] have been proposed. These new concepts may also prove useful for
applications of GT that are not cryptography-related.

5 These games do not fit our definition of interdependent game because there is no
attack or attacker.
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6 Future Directions

The previous sections have motivated why we should model attacks as originat-
ing from a strategic adversary (Sect. 3) and why we should consider interde-
pendency effects between non-malicious entities (Sect. 4). This section identifies
three promising directions for future research.

Relaxing Assumptions. Applying GT to real-life problems requires relaxing some
of the assumptions that are common in game-theoretical models. There is already
a lot of work being done in this area in the context of SSGs. E.g., the SSG model
has been extended to account for imperfect execution and observation [49], to
account for interdependencies and coordination between assets [45] and to be
robust to deviations from optimal attacker behavior [39,40]. Novel models try to
explicitly account for the irrationality of attackers, e. g. by relaxing the expected
utility assumption by accounting for risk aversion [41] or by using concepts from
behavioral GT such as prospect theory [47,48], the quantal response equilibrium
[34,47] and subjective expected utility [34]. There are even new human behavior
models being proposed [22].

ISGs with Strategic Adversaries. Curiously, while the community surrounding
ADGs advocates the importance of strategical adversaries, this concept is gener-
ally ignored in the context of ISGs. Conversely, ISGs take into account external-
ities, which are ignored by ADGs. We think that models such as those of Chan,
Ceyko, and Ortiz [10] and Lou, Smith, and Vorobeychik [29] that combine ISGs
with strategical adversaries could be a great improvement over both ISGs and
ADGs. The current absence of such models may be due to the fact that ISGs are
often studed in a more economical context, whereas ADGs are more popular in
CS, even though both approaches are often used to model similar applications.

Interdependent Attackers. The success of a cyberattack usually depends not on
the efforts of a single attacker but instead on the efforts of multiple parties.
ADGs represent all of these parties as a single player. As is the case for the
defending player, such an abstraction is only appropriate when the incentives of
the attacking parties are perfectly aligned.

A classic motivation for defining a single abstract ‘attacker’ instead of multi-
ple interdependent attackers, is that defenders have only vague, limited knowl-
edge of attackers’ preferences [1]. Ironically, the same argument was used against
ADGs in favor of the single-player approach (Sect. 2). In our opinion ADG mod-
els are often used as a golden hammer even when enough information is available
to warrant a more detailed approach.

For the case of cybersecurity, there is evidence that cybercrime has organized
itself in criminal networks in which individual malefactors take on highly special-
ized roles [32]. Consider exploit kits like Blackhole, software that booby-traps
hacked Web sites to serve malware and that is updated on a regular basis to
abuse new vulnerabilities in browsers. Parties that want to construct a botnet
or perform some other malicious activity can buy or rent such an exploit kit,
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which saves them the effort from looking for vulnerabilities themselves. The ven-
dors of exploit kits in turn usually do not look for vulnerabilities themselves, but
buy them from non-malicious but amoral hackers who sell them to the highest
bidder.

The rich structure of attacker’s markets seems hard to reconcile with the
omnipresence of the ADG model, because valuable information and decision
strategies are lost. By modeling the structure of criminal interaction, we can
study the efficacy of strategies such as outbidding exploit kit vendors. If we also
consider multiple defenders, we can model cooperation to take out the common
adversary, the exploit vendor.

7 Conclusion

This paper has argued that the focus of current security-related GT research is
on producing models that reflect reality more accurately, so that they can bet-
ter guide us in making security-related decisions. Through a birds-eye view of
current literature, it has shown that we do not shy away from increased model
complexity when attempting to model different kinds of uncertainty, the quirks
of human psychology or other aspects of real-life interaction that classical GT
does not accurately reflect. We have seen that games with multiple strategic
defenders and one or more strategic attacker have received almost no atten-
tion, and have contrasted this with evidence that shows that interdependencies
between defenders and to a lesser extent attackers are necessary to explain the
current state of security and cybersecurity.

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven.
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Abstract. Many decision problems ask for optimal behaviour in (often
competitive) situations, where optimality is understood as maximal rev-
enue. The axiomatic approach of von Neumann and Morgenstern estab-
lishes the existence of suitable revenue functions, assuming an ordered
revenue space. A prominent materialization of this is game theory, where
utility functions map actions of several players onto comparable pay-
offs, typically real numbers. Inspired by an application of that theory
to risk management in utility networks, we observed that the usual
game-theoretic models are inapplicable due to intrinsic randomness of
the effects that an action has. This uncertainty comes from physical and
environmental factors that affect the game-play outside of any players
influence. To tackle such scenarios, we introduce games in which the pay-
offs are entire probability distributions (rather than numbers). Towards
a sound decision theory, we define a total ordering on a restricted subset
of probability distribution functions, and demonstrate how optimal deci-
sions and even basic game theory can be (re)established over abstract
revenue spaces of probability distributions. Our results belong to the cat-
egory of risk control, and are applicable to contemporary security risk
management, where decisions must be made under uncertainty and the
effects of management actions are almost never deterministic.

1 Introduction

Traditional decision and game theory quantifies decisions in terms of scalar-
valued utility functions that admit a sound definition of optimality for a decision.
Following the usual axiomatic approach (see [5, Sect. 2.2] for example), one
starts from a (total) ordering on the space of rewards and extends this ordering
to the space of probability distributions that represent (randomized) actions.
Practically, this extension usually boils down to defining a mapping from the
action space into a totally ordered set (typically a subset of R), in which different
actions can be weighed against each other on grounds of their expected revenue.
This approach implicitly assumes that revenues, hereafter called payoffs, are
crisp and certain. Reality, however, is neither crisp nor certain in most practically
c© Springer International Publishing Switzerland 2015
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interesting cases. Uncertainty can occur in various ways, such as in the player’s
moves or in the revenues themselves. Imprecise playing is captured by concepts
like the trembling-hands equilibrium and related. A straightforward mean to
handle uncertain payoffs is by taking their average (first moment), taken over the
payoff distribution function, which restores things back to the standard setting
where everything is crisp. In general, casting uncertainty into crisp values seems
unavoidable, since the entire existence of utility functions (upon which games are
defined) rests on a totally ordered revenue space, whereas the space of probability
distributions cannot be ordered. Thus, the axiomatic approach of von Neumann
and Morgenstern [3] (and hence all that builds upon it) would fail when the
payoffs are probability distributions.

In this work, we show how we can nevertheless define games in which payoffs
are probability distribution functions, by imposing some mild restrictions that
admit the construction of a total ordering on a (useful) subset of probability
distributions. In this way, we can define games that fully account for uncertain
payoffs without simplifying random variables into scalars.

In brief, we achieve the following: (1) we construct a total ordering on a subset
of the space of payoff probability distributions, (2) we show how this ordering
can be decided algorithmically, and (3) we transfer solution concepts like the
Nash equilibrium to this new setting, thus making the entirety of game-theory
applicable to cases where the revenues are intrinsically random rather than crisp.

This work is inspired by an attempt to apply game-theory to risk management
in large utility or SCADA (supervisory control and data acquisition) networks.
As an example, take a water supply infrastructure: such an infrastructure is
composed from pipes (the utility network), with an additional control layer on
top of the utility network (the SCADA network) that manages and monitors the
supply. Given the intrinsic complexity and influence on environmental factors,
a utility infrastructure will never react entirely deterministic on any change to
its configuration parameters. That is, anything that a risk control strategy would
prescribe towards optimal utility network provisioning would result in somewhat
random effects. Thus, the problem of risk management essentially is a control
problem over a system with partially random dynamics (where determinism
arises only to the extent where effects obey known laws and models of physics).

Such uncertainty is an intrinsic property of many other kinds of infrastruc-
tures too (like power supply that depends on the momentarily consumption by
private households, gas supply, etc.). The problem is particularly relevant in mat-
ters of social risk response, where risk communication as part of a risk manage-
ment strategy is done towards “controlling” the public opinion and trust. Here,
socio-economic effects that may be much less understood than physical dynam-
ics determine the effect (payoff) of an action, which turns the game-theoretic
models inevitably into ones that assign random payoffs to their participants.

Somewhat surprisingly, the existing notions and variations of games, includ-
ing trembling hands equilibria, disturbed games, stochastic games, etc. seemingly
do not consider the full spectrum of possible uncertainty being extended to the
payoffs. As a typical example of games with imperfect information, let us look
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at Bayesian games: these consider a classical notion of uncertainty where the
player is unaware about the competitor’s decisions and/or the current state of
the game. The resolution is based on each player working with beliefs that can
be updated (in a Bayesian fashion) over repetitions of the game; and the equi-
librium would take the beliefs into account. Although such beliefs are more than
common in security modeling, their role is entirely different there in the sense
of concerning the effects of an action, rather than being a hypothesis about the
payoffs or the opponent’s moves. In the context of risk management, the pay-
off structure is determined by the infrastructure that we seek to protect, and
hypotheses about the attacker’s actions are exactly the presumed action space
of the opponent (whereas the actual move is usually unobservable, as its con-
sequence is mostly noticeably after the damage has happened). Thus, Bayesian
games (or more generally, games with imperfect information), do not accurately
capture uncertain outcomes of an action as we investigate, as the uncertainty in
these known cases comes from different ways of playing the game. Our use-case,
however, is actions whose consequences are intrinsically uncertain, and especially
not drawn from a number of known possible cases that nature selects at random.

The need to consider actions with random outcomes is further substantiated
by an inspection of the foundations of game-theoretic decision-making, which
requires a total ordering on the revenues that would no longer be available.
Therefore, and to the best of our knowledge, this work appears novel relative
to the existing decision-theoretic literature, in the sense of presenting a so far
widely unexplored new approach to working with uncertainty. Our vehicle will be
nonstandard analysis and the hyperreal numbers, which we did not find elsewhere
used in the relevant literature. Most closely related to our work is the theory
of stochastic orders [7,8], which, however, offers a variety of odering relations
on random variables that are somewhat application-specific, and not generally
applicable or recommendable for game-theoretic risk management purposes. Our
theory partially adds to this area, where we exhibit some explicit relations below.

This work is organized as follows: Sect. 2 introduces the necessary concepts
and preliminary results to construct a total ordering on payoffs that are random
variables. Since the construction of games is only the last step based on this
fundament, we assume the reader to be familiar with the basic concepts of game-
theory at this point. Section 3 defines the ordering relation and gives details on
how the ordering can be decided efficiently (algorithmically). Section 4 shows how
(and why) games can soundly be defined on top of our ordering relation. Section 5
discusses practical aspects of computation, especially aiming at applications on
which we elaborate in Sect. 6. Section 7 draws conclusions and discusses open
directions for future research.

2 Preliminaries and Notation

We denote sets and random variables by upper-case letters like X, and write
supp(X) to mean the support of X (roughly speaking, the set of events that
occur with nonzero probability). Distribution functions are written as upper-
case letters, e.g. F , with the respective density being denoted by the according
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lower-case letter, e.g., f . The symbol X ∼ F means that X has distribution
function F . Scalar values, e.g., realizations of a random variable, are denoted
by lower-case letters like x. Calligraphic letters denote sets (families) of sets.
Vectors and sequences are printed as bold characters.

Let R∞ be the set of all infinite sequences a = (an)n∈N over R. On R∞, we
can define per-element additions and multiplications in the sense of (an)n∈N +
(bn)n∈N = (an + bn)n∈N and (an)n∈N · (bn)n∈N = (an · bn)n∈N. Obviously, the
structure (R∞,+, ·) is a ring, but not a field, since there is no multiplicative
inverse for the nonzero element (1, 0, 0, . . .) ∈ R∞. It can be cast into a field
that is even totally ordered, by partitioning R∞ appropriately and resorting
to equivalence classes. To this end, we take a family U of subsets of N with
the following properties: (i) ∅ /∈ U , (ii) (A ⊂ B,A ∈ U) =⇒ B ∈ U and
(iii) A,B ∈ U =⇒ A ∩ B ∈ U . We call such a set an ultrafilter.

On R∞, we can use U to define the equivalence relation a ∼ b ⇐⇒
{i ∈ N : ai = bi} ∈ U on R∞ and define the set of hyperreal numbers (w.r.t.
U) as ∗R = {[a]U : a ∈ R∞}. Likewise, U also induces a total ordering on ∗R
by defining a 	 b ⇐⇒ {i ∈ N : ai ≤ bi} ∈ U . On the set ∗R, the above oper-
ations + and · inherit the necessary properties to make (∗R, +, ·, 	) a totally
ordered field (for example, the aforementioned element (1, 0, 0, . . .) would under
any U be equivalent to the neutral element).

On the field ∗R, one can soundly define a full-fledged calculus, which is
nowadays known as nonstandard analysis [6]. Unfortunately, the existence of U
can be proven only nonconstructively (as a consequence of Zorn’s lemma applied
to the Fréchet filter {U ⊆ N : U is cofinite}), but it can be shown that our
results are in fact invariant to the particular U . Thus, existence of U is fully
sufficient, even though we lack an explicit representation and cannot practically
do arithmetic in lack of U .

3 Optimal Actions with Random Effects

To follow the common construction of games, we first need a sound understand-
ing of optimality when the objects under comparison are random variables. So,
let X ∼ FX , Y ∼ FY be two random variables with respective distribution func-
tions. As a technical condition, suppose that X,Y ≥ 1 have finite moments
of all orders, so that FX and FY are uniquely characterized by their sequence of
moments (E(Xn))n∈N and (E(Y n))n∈N (by virtue of a Taylor-series expansion of
the respective characteristic functions of X and Y ). Existence and finiteness of
all moments is immediately assured when X and Y have compact supports; an
assumption that we will adopt throughout the rest of this work. This is indeed
a mild restriction, since any probability distribution with infinite support can
be approximated by another distribution with compact support up to arbitrary
(fixed) precision.

More importantly, the representation of a random variable by its sequence
of moments makes the sequence x = (E(Xn))n∈N ∈∗ R a natural hyperreal
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representative of the random variable X. Since ∗R is totally ordered, this order-
ing automatically applies to the random variables themselves, so the following
notation is well-defined.

Definition 1. We prefer a random variable X over a random variable Y if the
sequence of its moments diverges slower. Formally:
X 	 Y : ⇐⇒ x = (E(Xn))n∈N 	 (E(Y n))n∈N = y on ∗R.

Assuming that the supports of X and Y are both compact subsets of [1, ∞),
it is not hard to show that for any two such random variables with continuous
distribution functions, the moment sequences will eventually diverge in the sense
that there is a finite index n0 for which E(Xn) ≤ E(Y n) whenever n ≥ n0. The
same conclusion is analogously obtained for discrete random variables. Indeed,
it is the “overlapping” support that determines which moment sequence grows
asymptotically faster. This has a twofold positive effect, since (i) every ultrafilter
must contain the (cofinite) set {n ∈ N : n ≥ n0}, and (ii) the decision of whether
X 	 Y or Y 	 X can be made only by comparing the supports of X and Y . The
first of these two observations tells us that the particular ultrafilter U is indeed
irrelevant for the ordering relation, and the second observation gives us a handy
tool to decide the ordering efficiently.

Let us collect our findings so far as a lemma:

Lemma 1. Let F be the set of probability distributions that are compactly sup-
ported on R+, and assume that all measures in F are absolutely continuous w.r.t.
the Lebesgue measure. On F , there exists a total ordering 	 that can be decided
efficiently. The same assertion holds when all measures in F are absolutely con-
tinuous w.r.t. the counting measure.

Throughout the rest of this work, let thus F be the set as defined in Lemma 1.

Proof (Sketch; cf. [4]). The proof is merely a compilation of facts stated up to here:
let two random variables X ∼ FX and Y ∼ FY have their distribution functions be
represented by the respective sequence of moments. Whichever support “extends”
in magnitude over the other has a faster growing sequence of moments (here, we
use the hypothesis that all measures admit density functions as implied by their
absolute continuity). Without loss of generality, assume that max(supp(X)) ≤
max(supp(Y )), and note that this inequality is trivial to check when the supports
of X and Y are known. Then, the set {n ∈ N : E(Xn) ≥ E(Y n)} is cofinite and
must therefore be contained in every ultrafilter U on R. Thus, the total ordering
induced by U applies to X and Y in a way that is in fact independent of the par-
ticular U .

The 	-relation also enjoys a physical meaning that will be useful in our
application to risk management in Sect. 6. If one of the distributions is strongly
skewed but has a fat tail, a crucial issue of the ≺-relation is exposed. Figure 1a
shows two possible distributions according to two possible actions i1, i2 ∈ PS1,
with random effects captured by the distributions F1, F2, respectively. Action
i1 ∈ PS1 gives the right-skewed distribution F1 that leads to lower damage on
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average, compared to the more narrow distribution F2 arising from taking the
alternative move i2 ∈ PS1 in the game. Here, the overlap of supports would
clearly make F2 preferable over F1, although F1 appears to be the better choice
for obvious reasons.

This counter-intuitive outcome can be avoided by fixing an acceptance thresh-
old 0 < α < 1, and cutting off the payoff distributions at the α-quantile. Besides
correcting the paradoxical 	-preference of actions, observe that this also puts
infinitely supported distributions directly into our set F . This procedure is not
only a handy tool but agrees with common practice in risk management. Further-
more, if the distributions are estimated from observed data, this helps avoiding
results influenced by outliers.

(a) Distributions F2 � F1 (b) Truncated distributions F̂1 � F̂2

Fig. 1. Correcting paradoxical comparisons by quantile-based approximations

The practical determination of α is a yet open issue, even the decision about
whether or not a tail-cut is advisable. If a practical risk acceptance threshold
is available, then one could set the α-quantile to a value so that the expected
damage above the α-quantile is less than the acceptable residual risk (which is
usually covered by insurances).

Asking for a physical interpretation of the 	-relation, it is not difficult (cf.
[4]) to establish the following result:

Theorem 1. Let X ∼ F1, Y ∼ F2, where F1, F2 ∈ F . If F1 	 F2, then there
exists a threshold x0 ∈ supp(X) ∪ supp(Y ) so that for every x ≥ x0, we have
Pr(X1 > x) ≤ Pr(X2 > x).

Proof (Sketch). This easily follows from the observation that X 	 Y cannot
hold unless at some point x0, we must have fX ≤ fY . Integrating from x0 until
∞ then establishes the claim.

From a purely theoretical viewpoint, Theorem1 exhibits the standard sto-
chastic ordering [7,8] as a subset of 	. Other orders, such as stochastic integral
orders, conversely, include 	 as a special case.
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4 Games with Probability-Distribution-Valued Payoffs

Towards defining game-theory on grounds of the ordering 	, note that the order-
ing induces a topology on ∗R, so that we can soundly speak about continuous
payoff functions. In a matrix game, we would have two players with finite pure
strategy spaces PS1, PS2, and a payoff structure A that is now a matrix of
random variables from F . During the game-play, each player takes its actions at
random, which determines a row and column for the payoff distribution Fij ∈ F .
Thus, the payoff matrix is A ∈ Fn×m, where n = |PS1| ,m = |PS2|. Repeat-
ing the game, each round delivers a different random payoff Rij ∼ Fij whose
distribution is conditional on the chosen scenario i ∈ PS1, j ∈ PS2. Thus, we
have the function Fij(r) = Pr(Rij ≤ r|i, j). By playing mixed strategies, the
distribution of the overall expected random payoff R is obtained from the law
of total probability by

(F (p, q))(r) = Pr(R ≤ r) =
∑

i,j

Pr(Rij ≤ r|i, j) · Pr(i, j) = pTAq, (1)

when p, q are the mixed strategies (discrete distributions) supported on PS1, PS2

and the player’s moves are stochastically independent (e.g., no signalling).
Unlike classical repeated games, where a mixed strategy is chosen to optimize

the expected payoff per repetition of the game, Eq. (1) optimizes the “expected
payoff distribution” F (p, q) for every repetition of the game. It is in that sense
static, as it resembles the way in which a normal game rewards the players by
numeric payoffs, whereas our form of game rewards the players with a random
revenue following an optimal distribution “on average”.

Let us illustrate this with a little example: consider a museum director
(player 1) intending to prevent his two most expensive paintings from theft
by player 2. He thus instructs a guard to check the rooms with these pictures,
i.e. PS1 = {1, 2}. Similarly the intruder is assumed to make its way towards
these rooms and PS2 = {1, 2}. Obviously, the damage for the museum is low
if they coordinate (depending on how the thief entered, maybe a broken door),
so the loss distributions F11 and F22 could be an exponential distribution with
small mean. Otherwise, the loss might be enormous and distributions F12 and
F21 could Gamma distributed around 100,000. For each attack of player 2 they
choose a scenario (i, j) and hence a random variable Rij ∼ Fij .

In standard game theory with real-valued utility functions, the existence of
Nash-equilibria is assured in this situation:

Theorem 2 ([1,2]). If for a game in normal form, the strategy spaces are non-
empty compact subsets of a metric space, and the utility-functions are continuous
(w.r.t the metric), then at least one Nash-equilibrium in mixed strategies exists.

Using the properties of hyperreal numbers it can be concluded that F (p, q) as
a function of the mixed strategies is continuous w.r.t. the ordering topology on
F . Thus, Theorem2 applies [4] and delivers the following result:
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Theorem 3. Every finite game whose payoffs are random variables that are
compactly supported on R+ has at least one Nash-equilibrium in mixed strategies.

We stress that the assumptions on F made by Theorem 1 imply that in the game,
we never combine continuous and discrete probability distributions in the same
payoff structure, as a mix of the two would yield singular distributions w.r.t. the
Lebesgue measure. This restriction avoids pathological cases in which we would
attempt to compare categorial outcomes to continuous outcomes (although a
comparison between discrete and continuous random variables is indeed theo-
retically possible using the moment sequence representation).

As for the meaning of Nash-equilibria under our setting, recall that we
assumed the payoffs to be supported on the nonnegative real line R+. This,
in connection with Theorem 1 means that an 	-optimal behavior will favour
strategies whose effects are concentrated closer to zero. Since the payoffs in risk
management are considered as damage, optimizing our behavior in terms of 	
as an equilibrium gives us a loss distribution whose mass accumulates in the
closest possible proximity of “zero damage”.

A slight catch in our construction is the loss of the straightforward definitions
for zero-sum games or similar. For example, x = (E(Xn))n∈N may represent a
distribution for the random payoff X, but −x = (−E(Xn))n∈N certainly does not
correspond to any probability distribution any more. Thus, the usual definition
of two-person zero-sum games by taking the opponent’s revenue negative does
not transfer to our generalized setting here (not surprisingly at a second glance,
since adding opposite random payoffs will not necessarily add up to zero in every
round).

5 Practical and Algorithmic Aspects

So far, everything as been established nonconstructively, so let us turn to ques-
tions of how to put things to practice here. For that sake, we go back to the
ordering relation and work our way forward up to how Nash-equilibria can be
computed. Observe that our setting is generalized in the sense that we deal with
distributions rather than real numbers, but also restricted, since the represen-
tatives (hyperreal numbers) have an arithmetic in which we cannot practically
carry out any operations in lack of an explicit ultrafilter U . We will show how
to bypass this difficulty when computing equilibria.

5.1 Modeling Payoffs and Deciding �
Since the payoff distribution models have not been restricted beyond assum-
ing compact support, a practical obstacle is first the question where to get the
distribution models from. A simple solution is learning the payoff models from
available data by kernel density estimation using the Epanechnikov kernel (this
one is our choice here as it is compactly supported, thus making the resulting
kernel density estimator also compactly supported). More precisely, consider a
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fixed scenario (i, j) ∈ PS1 × PS2, for which we seek to model the payoff dis-
tribution Fij in the game-matrix A. Using the Epanechnikov kernel function
K(u) = 3

4 (1 − u2)I{|u|≤1}(u) (where I is an indicator function), the density
function fij for the payoff distribution Fij can be estimated from historial/past
recorded payoffs r1, r2, r3, . . . , rk

f̂ij(r) =
1

k · h

k∑

i=1

K

(
r − xi

h

)
, (2)

where h is the bandwidth parameter, whose estimation is commonly up to var-
ious heuristics known from statistics (e.g., the software suite R (www.r-project.
org) has several such methods implemented). A known theoretical necessary con-
straint on h is given by Nadaraja’s theorem [9] that assures convergence of f̂ij(r)
in probability towards an (unknown) uniformly continuous limiting distribution,
provided that h(n) = c

nα for (any) two constants c > 0 and 0 < α < 1/2.
If a sufficient lot of data is available on the effects of the actions (i, j) ∈ PS1×

PS2, then (2) supplies us with a compactly supported probability measure that
is directly usable to decide the ordering relation 	 on two such distributions as
follows: let f̂X and f̂Y (both representing different scenarios (i1, j1) ∈ PS1×PS2

and (i2, j2) ∈ PS1 × PS2) be given, and write X ∼ F̂X , Y ∼ F̂Y for the random
variables and respective empirical distribution functions. Assume that f̂X was
constructed from n1 (ordered) data points x1 ≤ . . . ≤ xn1 ∈ R and f̂Y arose
from n2 (ordered) data points y1 ≤ y2 ≤ . . . ≤ yn2 ∈ R. Equation (2) implies
the supports to be supp(X) =

⋃n1
i=1[xi − h1, xi + h1] and supp(Y ) =

⋃n1
i=1[yi −

h2, yi + h2].
Deciding whether X 	 Y or Y 	 X is then a trivial matter of looking

which support overlaps the other (in which case the respective moment sequences
ultimately exceed one another). The algorithm is simple:

1. i ← n1, j ← n2.
2. if i = 0 or xi + h1 < yj + h2 then return “X 	 Y ”.
3. else if j = 0 or xi + h1 > yj + h2 then return “Y 	 X”.
4. else, abandon the two points by setting i ← i − 1, j ← j − 1 and go back to

step 2.

The conditions i = 0 or j = 0 are meant to cover cases in which all
observations from one model have been used up, in which case this would be
the 	-optimal one. This means that the decision of 	 on models of the form
(2) is meaningful only between models that are based on equal amounts of
observations.

5.2 Computing Nash-Equilibria

One limitation induced by our use of hyperreal calculus is the inability to do
arbitrary arithmetic in F being a subset of ∗R, as we lack an explicit model of
the necessary ultrafilter U . As a consequence, most of the (more sophisticated)

www.r-project.org
www.r-project.org
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algorithms to compute Nash equilibria are inapplicable, but fictitious play (FP)
remains doable. Leaving the full details of FP aside here, the important observa-
tion is that the algorithm merely requires selecting a 	-maximum or -minimum
from a finite set, which is easy and efficient by the above procedure to decide 	.
As in ordinary FP players iteratively choose a best response to optimize their
payoff (i.e. find the optimal payoff distribution) and estimate their mixture based
on these choices.

The remaining details and foundations of calculus that establish the conver-
gence of FP are inherited from the reals to the hyperreals, so that fictitious play
is guaranteed to converge under known conditions. However, a subtle issue must
be stressed here: the theoretical argument to lift convergence of FP from games
over R to games over ∗R is the transfer principle (more generally, �Los’ theorem).
This delivers a first-order logic formulation of convergence in terms of stating
success of FP along a sequence of hyperreal integers. Unfortunately, as an inspec-
tion of the original convergence proof of J. Robinson [6] reveals, convergence sets
in after an (in the hyperreal sense) infinite (hyper)integer number of iterations.
Thus, FP cannot be used as usual to solve these games (although in theory, it
perfectly works). To bypass this theoretical obstacle, we must approximate a
distribution being represented by an infinitude of moments, by a finite vector of
moments or other quantities that help us decide preferences on distributions. In
any case, the approximation should become more accurate at the tails of the dis-
tribution, to retain the ordering as good as possible. A promising candidate for
continuous payoff distributions are polynomial approximations, say Taylor-series
expansions. The theoretical details of this are subject of ongoing investigations
and will be reported in a follow-up article (this will be “part two” of [4]).

In our case, the FP process is applied to the two-person matrix game with
payoff structures (A,−A), although −A when defined over the hyperreals does
not correspond to a proper payoff structure in our setting. Intuitively, this issue
can be resolved by switching to a strategically equivalent game in which all pay-
offs are strictly positive (w.r.t. the ordering on ∗R) by shifting all payoffs in the
matrix −A by a sufficiently large amount towards becoming positive. In any
case, however, since the convergence is established within the set of hyperreal
numbers, the arguments that establish the proof of convergence remain intact
(although they do not directly deliver a practical algorithm unlike over the reals).
Therefore, FP converges towards an equilibrium (p∗, q∗), with the “value” of the
game being given by (1) as the distribution F (p∗, q∗)(r), although the correspon-
dence of the relevant mathematical objects to physical entities (payoffs, players,
etc.) is lost.

6 Applications to Risk Management

As announced in the introduction, this work has been motivated by an applica-
tion of game-theory to risk management in utility networks. In these settings,
the“payoff” from the game is usually quantified in terms of expected damage,
so that we seek to take actions towards minimizing the damage w.r.t. 	-relation
while an attacker tries to maximize it.
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The physical interpretation of the 	-relation given in Theorem 1 in Sect. 3 is
particularly relevant for risk management due to its interpretation: if F1 	 F2,
then “extreme problems” are less likely to occur under F1 than under F2. A slight
refinement to Theorem 1 applies if the distributions are cut off, in which case
the “extreme problems” refer only to events up to a likelihood of at most 1 − α.

Another way of looking at the meaning of 	 in risk management can be
derived from the moment sequences: for distributions in F , the decision can
be made on the average damage (first moment). Upon equal first moments,
the 	-preferred action is the one whose outcome is more certain in the sense
of having less variance (second moment). If the first two moments between X
and Y agree, then the better action is the one whose effect-distribution is more
skewed towards lower damage, etc. (Fig. 1 shows an example of that case). Our
discussion following Theorem3 further substantiates the positive effect for risk
management, as equilibria in the 	-sense leads to random effects with more likely
less damage (the probability mass assigned by F (p∗, q∗) under the equilibrium
(p∗, q∗)is by the optimization somewhat squeezed towards zero, since the damage
is never negative).

Compiling the usual benchmarks of risk management, say the common quan-
titative formula “risk = damage × likelihood”, is a simple matter of computing
moments from the payoff distribution as given by (1). Going beyond the above
rule of thumb is then a mere matter of computing higher order moments or other
quantities of interest from the equilibrium payoff distribution F (p∗, q∗).

7 Conclusions and Outlook

Various directions have been left unexplored in this work, such as details and
issues of comparing random variables of different nature (discrete vs. continuous)
that live in the same metric space (where a comparison could be meaningful).
Furthermore, comparing deterministic to random outcomes is another aspect
to receive attention along future research. Further generalizations are possible
(and most likely relevant for practical applications) in the area of extreme value
modeling. Payoff distributions with fat tails that model extreme, perhaps even
catastrophic, effects of certain actions usually violate our assumption on com-
pactness (and hence boundedness) of the support. It is indeed possible to gen-
eralize the 	-relation to such distributions, but this extension comes at the cost
of loosing the simple decidability procedure as described in Sect. 5.1. Further
practical issues (limitations) arise from the restriction to avoid algebra beyond
using the ordering to compute equilibria. Better versions of fictitious play or
the exploration of alternative techniques to compute Nash equilibria inside the
hyperreals are more intricate issues of future considerations.
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Abstract. Businesses (retailers) often offer personalized advertisements
(coupons) to individuals (consumers). While proving a customized shop-
ping experience, such coupons can provoke strong reactions from con-
sumers who feel their privacy has been violated. Existing models for
privacy try to quantify privacy risk but do not capture the subjective
experience and heterogeneous expression of privacy-sensitivity. We use a
Markov decision process (MDP) model for this problem. Our model cap-
tures different consumer privacy sensitivities via a time-varying state,
different coupon types via an action set for the retailer, and a cost for
perceived privacy violations that depends on the action and state. The
simplest version of our model has two states (“Normal” and “Alerted”),
two coupons (targeted and untargeted), and consumer behavior dynam-
ics known to the retailer. We show that the optimal coupon-offering strat-
egy for a retailer that wishes to minimize its expected discounted cost
is a stationary threshold-based policy. The threshold is a function of all
model parameters: the retailer offers a targeted coupon if their belief that
the consumer is in the “Alerted” state is below the threshold. We extend
our model and results to consumers with multiple privacy-sensitivity
states as well as coupon-dependent state transition probabilities.

Keywords: Privacy · Markov decision processes · Retailer-consumer
interaction · Optimal policies

1 Introduction

Programs such as retailer “loyalty cards” allow companies to automatically track
a customer’s financial transactions, purchasing behavior, and preferences. They
can then use this information to offer customized incentives, such as discounts on
related goods. Consumers may benefit from retailer’s knowledge by using more
of these targeted discounts or coupons while shopping. However, the coupon offer
may imply that the retailer has learned something sensitive or private about the
consumer (for example, a pregnancy [1]) – such violations may make consumers
skittish about purchasing from such retailers.
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However, modeling the privacy-sensitivity of a consumer is not always straight-
forward: widely-studied models for quantifying privacy risk using differential
privacy [2] or information theory [3] do not capture the subjective experience
and heterogeneous expression of consumer privacy. We introduce a framework
to model the consumer-retailer interaction problem and better understand how
retailers can develop coupon-offering policies that balances their revenue objec-
tives while being sensitive to consumer privacy concerns. The main challenge for
the retailer is that the consumer’s responses to coupons are not known a priori ;
furthermore, consumers do not “add noise” to their purchasing behavior as a
mechanism to stay private. Rather, the offer of a coupon may provoke a reaction
from the consumer, ranging from “indifferent” through “partially concerned” to
“creeped out.” This reaction is mediated by the consumer’s sensitivity level to
privacy violations, and it is these levels that we seek to model via a Markov deci-
sion process. In particular, the sensitivity of the consumers are often revealed
indirectly to the retailer through their purchasing patterns. We capture these
aspects in our model and summarize our main contributions below.

Main Contributions: We propose a partially-observed Markov decision process
(POMDP) model for this problem in which the consumer’s state encodes their
privacy sensitivity, and the retailer can offer different levels of privacy-violating
coupons. The simplest instance of our model is one with two states for the con-
sumer, denoted as “Normal” and “Alerted,” and two types of coupons: untar-
geted low privacy (LP) or targeted high privacy (HP). At each time, the retailer
may offer a coupon and the consumer transitions from one state to another
according to a Markov chain that is independent of the offered coupon. The
retailer suffers a cost that depends both on the type of coupon offered and the
state of the consumer. The costs reflect the advantage of offering targeted HP
coupons relative to untargeted LP ones while simultaneously capturing the risk
of doing so when the consumer is already “Alerted”.

Under the assumption that the retailer (via surveys or prior knowledge)
knows the statistics of the consumer Markov process, i.e., the likelihoods of
becoming “Alerted” and staying “Alerted”, and a belief about the initial con-
sumer state, we study the problem of determining the optimal coupon-offering
policy that the retailer should adopt to minimize the long-term discounted costs
of offering coupons. We show that the optimal stationary policy exists and it
is a threshold on the probability of the consumer being alerted; this threshold
is a function of all the model parameters. The simple model above is extended
to multiple consumer states and coupon-dependent transitions. We model the
latter via two Markov processes for the consumer, one for each type (HP or LP)
of coupon such that a persnickety consumer who is easily “Alerted” will be more
likely to do so when offered an HP (relative to LP) coupon. Our structural result
(a stationary optimal policy) holds for multiple states and coupon-dependent
transitions. While the MDP model used in this paper is simple, its application
to the problem of privacy cost minimization with privacy-sensitive consumers is
novel. In the conclusion we describe several other interesting avenues for future
work. Our results use many fundamental tools and techniques from the theory of
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MDPs through appropriate and meaningful problem modeling. We briefly review
the related literature in consumer privacy studies as well as MDPs.

Related Work: Several economic studies have examined consumer’s attitudes
towards privacy via surveys and data analysis including studies on the benefits
and costs of using private data (e.g., Aquisti and Grossklags in [4]). On the other
hand, formal methods such as differential privacy are finding use in modeling the
value of private data for market design [5] and for the problem of partitioning
goods with private valuation function amongst the agents [6]. In these models
the goal is to elicit private information from individuals. Venkitasubramaniam [7]
recently used an MDP model to study data sharing in control systems with time-
varying state. He explicitly quantifies privacy risk in terms of equivocation, an
information-theoretic measure, and his objective is to minimize the weighted sum
of the utility (benefit) that the system achieves by sharing data (e.g., with a data
collector) and the privacy risk. In our work we do not quantify privacy risk directly;
instead the retailer learns about the privacy-sensitivity of the consumer indirectly
through the cost feedback. Our MDP’s state space is the privacy sensitivity of the
consumer. To the best of our knowledge, models capturing this aspect of consumer-
retailer interactions and the related privacy issues have not been studied before;
in particular, our work focuses on explicitly considering the consequence to the
retailer of the consumers’ awareness of privacy violations.

Markov decision processes (MDPs) have been widely used for decades across
many fields [8]; in particular, our formal model is related to problems in con-
trol with communication constraints [9,10] where state estimation has a cost.
However, our costs are action and state dependent and we consider a different
optimization problem. Classical state-search problems [11,12] also have optimal
threshold policies; however the retailer’s objective in our model is to minimize
cost, and not necessarily estimate the consumer state. Our model is most simi-
lar to Ross’s model of product quality control with deterioration [13], which was
more recently used by Laourine and Tong to study the Gilbert-Elliot channel
in wireless communications [14], in which the channel has two states and the
transmitter has two actions (to transmit or not). We cannot apply their results
directly due to our different cost structure, but use ideas from their proofs.
Furthermore, we go beyond these works to study privacy-utility tradeoffs in
consumer-retailer interactions with more than two states and action-dependent
transition probabilities. We apply more general MDP analysis tools to address
our formal behavioral model for privacy-sensitive consumers.

2 System Model

We model interactions between a retailer and a consumer via a discrete-time
system (see Fig. 1). At each time t, the consumer has a discrete-valued state
and the retailer may offer one of two coupons: high privacy risk (HP) or low
privacy risk (LP). The consumer responds by imposing a cost on the retailer
that depends on the coupon offered and its own state. For example, a consumer
who is “alerted” (privacy-aware) may respond to an HP coupon by refusing to
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shop at the retailer. The retailer’s goal is to decide which type of coupon to offer
at each time t to minimize its cost.

2.1 Consumer Model

Modeling Assumption 1 (Consumer’s State). We assume the consumer
is in one of a finite set of states that determine their response to coupons – each
state corresponds to a type of consumer behavior in terms of purchasing. The
consumer’s state evolves according to a Markov process.

For this paper, we primarily focus on the two-state case; the consumer may be
Normal or Alerted. Later we will extend this model to multiple consumer states.
The consumer state at time t is denoted by Gt ∈ {Normal,Alerted}. If a consumer
is in Normal state, the consumer is very likely to use coupons to make purchases.
However, in the Alerted state, the consumer is less likely to use coupons, since
it is more cautious about revealing information to the retailer. The evolution
of the consumer state is modeled as an infinite-horizon discrete time Markov
chain (Fig. 1). The consumer starts out in a random initial state unknown to
the retailer and the transition of the consumer state is independent of the action
of the retailer. A belief state is a probability distribution over possible states in
which the consumer could be. The belief of the consumer being in Alerted state
at time t is denoted by pt. We define λN,A = Pr[Gt = Alerted|Gt−1 = Normal]
to be the transition probability from Normal state to Alerted state and λA,A =
Pr[Gt = Alerted|Gt−1 = Alerted] to be the probability of staying in Alerted state
when the previous state is also Alerted. The transition matrix Λ of the Markov
chain can be written as

Λ =
(

1 − λN,A λN,A

1 − λA,A λA,A

)
. (1)

We assume the transition probabilities are known to the retailer; this may come
from statistical analysis such as a survey of consumer attitudes. The one step
transition function, defined by T (pt) = (1 − pt)λN,A + ptλA,A, represents the
belief that the consumer is in Alerted state at time t + 1 given pt, the Alerted
state belief at time t.

Modeling Assumption 2 (State Transitions). Consumers have an inertia
in that they tend to stay in the same state. Moreover, once consumers feel their
privacy is violated, it will take some time for them to come back to Normal state.

To guarantee Assumption 2 we consider transition matrices in (1) satisfying
λA,A ≥ 1 − λA,A, 1 − λN,A ≥ λN,A, and λN,A ≥ 1 − λA,A. Thus, by combining
the above three inequalities, we have λA,A ≥ λN,A.

2.2 Retailer Model

At each time t, the retailer can take an action by offering a coupon to the
consumer. We define the action at time t to be ut ∈ {HP, LP}, where HP denotes
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Fig. 1. Markov state transition model for a two-state consumer.

offering a high privacy risk coupon (e.g. a targeted coupon) and LP denotes
offering a low privacy risk coupon (e.g. a generic coupon). The retailer’s utility
is modeled by a cost (negative revenue) which depends on both the consumer’s
state and the type of coupon being offered. If the retailer offers an LP coupon,
it suffers a cost CL independent of the consumer’s state: offering LP coupons
does not reveal anything about the state. However, if the retailer offers an HP
coupon, then the cost is CHN or CHA depending on whether the consumer’s
state is Normal or Alerted. Offering an HP (high privacy risk, targeted) coupon
to a Normal consumer should incur a low cost (high reward), but offering an HP
coupon to an Alerted consumer should incur a high cost (low reward) since an
Alerted consumer is privacy-sensitive. Thus, we assume CHN ≤ CL ≤ CHA.

Under these conditions, the retailer’s objective is to choose ut at each time t
to minimize the total cost incurred over the entire time horizon. The HP coupon
reveals information about the state through the cost, but is risky if the consumer
is alerted, creating a tension between cost minimization and acquiring state
information.

2.3 The Minimum Cost Function

We define C(pt, ut) to be the expected cost acquired from an individual consumer
at time t where pt is the probability that the consumer is in Alerted state and
ut is the retailer’s action:

C(pt, ut) =
{

CL if ut = LP
(1 − pt)CHN + ptCHA if ut = HP

. (2)

Since the retailer knows the consumer state from the incurred cost only when an
HP coupon is offered, the state of the consumer may not be directly observable
to the retailer. Therefore, the problem is actually a Partially Observable Markov
Decision Process (POMDP) [15].

We model the cost of violating a consumer’s privacy as a short term effect.
We adopt a discounted cost model with discount factor β ∈ (0, 1). At each time
t, the retailer has to choose which action ut to take in order to minimize the
expected discounted cost over infinite time horizon. A policy π for the retailer
is a rule that selects a coupon to offer at each time. Given that the belief of
the consumer being in Alerted state at time t is pt and the policy is π, the
infinite-horizon discounted cost starting from t is
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V π,t
β (pt) = Eπ

[ ∞∑

i=t

βiC(pi, Ai)|pt

]

, (3)

where Eπ indicates the expectation over the policy π. The objective of the retailer
is equivalent to minimizing the discounted cost over all possible policies. We
define the minimum cost function starting from time t over all policies to be

V t
β (pt) = min

π
V π,t

β (pt) for all pt ∈ [0, 1]. (4)

We define pt+1 to be the belief of the consumer being in Alerted state at time
t + 1. The minimum cost function V t

β (pt) satisfies the Bellman equation [15]:

V t
β (pt) = min

ut∈{HP,LP}
{V t

β,ut
(pt)} (5)

V t
β,ut

(pt) = βtC(pt, ut) + V t+1
β (pt+1|pt, ut). (6)

An optimal policy is stationary if it is a deterministic function of states, i.e.,
the optimal action at a particular state is the optimal action in this state at
all times. We define P = {[0, 1]} to be the belief space and U = {LP,HP} to
be the action space. In the context of our model, the optimal stationary policy
is a deterministic function mapping P into U . Since the problem is an infinite-
horizon, finite state, and finite action MDP with discounted cost, there exists an
optimal stationary policy [16] π∗ such that starting from time t,

V t
β (pt) = V π∗,t

β (pt). (7)

We only consider the optimal stationary policy because it is tractable and
achieves the same minimum cost as any optimal non-stationary policy.

By (5) and (6), the minimum cost function evolves as follows: if an HP coupon
is offered at time t, the retailer can perfectly infer the consumer state based on
the incurred cost. Therefore,

V t
β,HP(pt) = βtC(pt,HP) + (1 − pt)V t+1

β (λN,A) + ptV
t+1
β (λA,A). (8)

If an LP coupon is offered at time t, the retailer cannot infer the consumer state
from the cost since both Normal and Alerted consumer impose the same cost CL.
Hence, the discounted cost function can be written as

V t
β,LP(pt) = βtC(pt, LP) + V t+1

β (pt+1) = βtCL + V t+1
β (T (pt)). (9)

Correspondingly, the minimum cost function is given by

V t
β (pt) = min{V t

β,LP(pt), V t
β,HP(pt)}. (10)

3 Optimal Stationary Policies

The first main result is a theorem providing the optimal stationary policy for
the two-state basic model in Sect. 2.
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Fig. 2. Discounted cost from by using different decision policies

Theorem 1. There exists a threshold τ ∈ [0, 1] such that the following policy is
optimal:

π∗(pt) =
{
LP if τ ≤ pt ≤ 1
HP if 0 ≤ pt ≤ τ

. (11)

More precisely, assume that δ = CHA − CHN + β(Vβ(λA,A) − V (λN,A)),

τ =

{
CL−(1−β)(CHN+βVβ(λN,A))

(1−β)δ T (τ) ≥ τ
CL+βλN,A(CHA+βVβ(λA,A))−(1−β(1−λN,A))(CHN+βVβ(λN,A))

(1−(λA,A−λN,A)β)δ T (τ) < τ
,

(12)
where for λN,A ≥ τ ,

Vβ(λN,A) = Vβ(λA,A) = CL/(1 − β) (13)

and for λN,A < τ ,

Vβ(λN,A) = (1 − λN,A)[CHN + βVβ(λN,A)] + λN,A[CHA + βVβ(λA,A)], (14)
Vβ(λA,A) = min

n≥0
{G(n)}, (15)

where

G(n) =
CL

1−βn

1−β + βn[T̄n(λA,A)(CHN + C(λN,A)) + Tn(λA,A)CHA]

1 − βn+1[T̄n(λA,A) λN,Aβ
1−(1−λN,A)β + Tn(λA,A)]

, (16)

Tn(λA,A) =
(λA,A − λN,A)n+1(1 − λA,A) + λN,A

1 − (λA,A − λN,A)
(17)

T̄n(λA,A) = 1 − Tn(λA,A) (18)

C(λN,A) = β
(1 − λN,A)CHN + λN,ACHA

1 − (1 − λN,A)β
. (19)

The full proof of Theorem1 is in the extended version of this paper [17]. We
illustrate our policy’s performance by comparing its discounted cost to two other
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Fig. 3. Threshold τ vs. β for different values of λA,A and λN,A
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Fig. 4. Threshold τ vs. β for different values of λA,A and λN,A

policies: a greedy policy which minimize the instantaneous cost at each decision
epoch and a lazy policy which the retailer only offers LP coupons. Figure 2 shows
the discounted cost averaged over 1000 independent MDPs versus the time t for
these different decision policies. The illustration demonstrates that the proposed
threshold policy performs better than the greedy policy and the lazy policy.

Figure 3a shows the optimal threshold τ as a function of λN,A for three fixed
choices of λA,A. The threshold increases when λN,A is small because the con-
sumer is less likely to transition from Normal to Alerted so the retailer can more
safely offer an HP coupon. When λN,A gets larger, the consumer is more likely
to transition from Normal to Alerted, so the retailer is more conservative and
decreases the threshold for offering an LP coupon. When λN,A ≥ κ, the retailer
uses κ as the threshold for offering an HP coupon. With increasing λA,A, the
threshold τ decreases. On the other hand, for fixed CHN and CHA, Fig. 3b shows
that the threshold τ increases as the cost of offering an LP coupon increases, mak-
ing it more desirable to take a risk and offer an HP coupon. Figure 4 shows the
relationship between the discount factor β and the threshold τ as functions of
transition probabilities. Figure 4a shows that τ increases as β increases. When β
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is small, the retailer values the present rewards more than future rewards so it is
conservative in offering HP coupons to avoid low costs. Figure 4b shows that the
threshold is high when λA,A is large or λN,A is small. A high λA,A value indicates
that a consumer is more likely to remain in Alerted state. The retailer is willing
to play aggressively since once the consumer is in alerted state, it can take a
very long time to transition back to Normal state. A low λN,A value implies that
the consumer is not very privacy sensitive. Thus, the retailer tends to offer HP
coupons to reduce cost. One can also observe in Fig. 4b that the threshold τ
equals to κ after λN,A exceeds the ratio κ. This is consistent with results shown
in Fig. 3.

4 Consumer with Multi-level Alerted States

We extend our model to multiple Alerted states: suppose the consumer state
at time t is Gt ∈ {Normal,Alerted1, . . .AlertedK}, where a consumer in Alertedk

state is even more cautious about targeted coupons than one in Alertedk−1 state.
Define the transition matrix

Λ =

⎛

⎜
⎜
⎜
⎝

λN,N λN,A1 . . . λN,AK

λA1,N λA1,A1 . . . λA1,AK

...
...

. . .
...

λAK ,N λAK ,A1 . . . λAK ,AK

⎞

⎟
⎟
⎟
⎠

. (20)

We denote ēi to be the ith row of the transition matrix (20). At each time t, the
retailer can offer either an HP or an LP coupon. We define CHN , CHA1 , . . . , CHAK

to be the costs of the retailer when an HP coupon is offered while the state of
the consumer is Normal, Alerted1, . . . ,AlertedK , respectively. If an LP coupon is
offered, no matter in which state, the retailer gets a cost of CL. We assume
that CHAK

≥ · · · ≥ CHA1 ≥ CL ≥ CHN . The belief of the consumer being in
Normal, Alerted1, . . . ,AlertedK state at time t is defined by pN,t, pA1,t, . . . , pAK ,t,
respectively. The expected cost at time t has the following expression:

C(p̄t, ut) =
{

CL if ut = LP
p̄T

t C̄ if ut = HP
, (21)

where p̄t = (pN,t, pA1,t, . . . , pAK ,t)T and C̄ = (CHN , CHA1 , . . . , CHAK
)T . Assume

that the retailer has perfect information about the belief of the consumer state,
the cost function evolves as follows: by using an LP coupon at time t,

V t
β,LP(p̄t) = βtCL + V t+1

β (p̄t+1) = βtCL + V t+1
β (T (p̄t)), (22)

where T (p̄t) = p̄T
t Λ is the one step Markov transition function. By using an HP

coupon at time t,

V t
β,HP(p̄t) = βtp̄T

t C̄ + p̄T
t

⎛

⎜
⎜
⎜
⎝

V t+1
β (ē1)

V t+1
β (ē2)

...
V t+1

β (ēK+1)

⎞

⎟
⎟
⎟
⎠

. (23)



Incentive Schemes for Privacy-Sensitive Consumers 367

Fig. 5. Optimal policy region for three-state consumer.

Therefore, the minimum cost function is given by (10). In this problem, since
the instantaneous costs are nondecreasing with states when the action is fixed
and the evolution of belief state is the same for both LP and HP, the existence
of an optimal stationary policy with threshold property for finite many states is
guaranteed by Proposition 2 in [18]. The optimal stationary policy for a three-
state consumer model is illustrated in Fig. 5. For fixed costs, the plot shows
the partition of the belief space based on the optimal actions and reveals that
offering an HP coupon is optimal when pN,t is high.

5 Consumers with Coupon-Dependent Transition

Generally, consumers’ reactions to HP and LP coupons are different. To be more
specific, a consumer is likely to feel less comfortable when being offered a coupon
on medication (HP) than food (LP). Thus, we assume that the Markov transition
probabilities are dependent on the coupon offered. If an LP\HP coupon is offered,
the state transition follows the Markov chain

ΛLP =
(

1 − λN,A λN,A

1 − λA,A λA,A

)
, ΛHP =

(
1 − λ′

N,A λ′
N,A

1 − λ′
A,A λ′

A,A

)
, (24)

respectively. According to the model in Sect. 2, λA,A > λN,A, λ′
A,A > λ′

N,A.
Moreover, we assume that offering an HP coupon will increase the probability
of transition to or staying at Alerted state. Therefore, λ′

A,A > λA,A and λ′
N,A >

λN,A. The minimum cost function evolves as follows:

V t
β,HP(pt) = βtC(pt,HP) + (1 − pt)V t+1

β (λ′
N,A) + ptV

t+1
β (λ′

A,A)

V t
β,LP(pt) = βtCL + V t+1

β (pt+1) = βtCL + V t+1
β (T (pt)),

where T (pt) = λN,A(1−pt)+λA,Apt is the one step transition defined in Sect. 2.

Theorem 2. Given action dependent transition matrices ΛLP and ΛHP, the
optimal stationary policy has threshold structure.

A full proof of Theorem2 is in the extended version of this paper [17]. Figure 6
shows the effect of costs on the threshold τ . The threshold for offering an HP
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Fig. 6. Optimal τ with/without coupon dependent transition probabilities.

coupon to a consumer with coupon dependent transition probabilities is lower
than our original model without coupon-dependent transition probabilities. The
retailer can only offer an LP coupon with certain combination of costs; we call
this the LP-only region. It can be seen that the LP-only region for the coupon-
independent transition case is smaller than that for the coupon-dependent tran-
sition case since for the latter, the likelihood of being in an Alerted state is higher
for the same costs.

6 Conclusion

We proposed a POMDP model to capture the interactions between a retailer and
a privacy-sensitive consumer in the context of personalized shopping. The retailer
seeks to minimize the expected discounted cost of violating the consumer’s pri-
vacy. We showed that the optimal coupon-offering policy is a stationary policy
that takes the form of an explicit threshold that depends on the model parame-
ters. In summary, the retailer offers an HP coupon when the Normal to Alerted
transition probability is low or the probability of staying in Alerted state is
high. Furthermore, the threshold optimal policy also holds for consumers whose
privacy sensitivity can be captured via multiple alerted states as well as for the
case in which consumers exhibit coupon-dependent transition. Our work suggests
several interesting directions for future work: cases where retailer has additional
uncertainty about the state, for example due to randomness in the received costs,
game theoretic models to study the interaction between the retailer and strate-
gic consumers, and more generally, understanding the tension between acquiring
information about the consumers and maximizing revenue.
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