
The Self-Adaptive Context Learning Pattern:
Overview and Proposal

Jérémy Boes(B), Julien Nigon, Nicolas Verstaevel,
Marie-Pierre Gleizes, and Frédéric Migeon

SMAC Team, IRIT, 118 rte de Narbonne, Toulouse, France
{boes,jnigon,verstaev,gleizes,migeon}@irit.fr

http://irit.fr/SMAC/

Abstract. Over the years, our research group has designed and devel-
oped many self-adaptive multi-agent systems to tackle real-world com-
plex problems, such as robot control and heat engine optimization. A
recurrent key feature of these systems is the ability to learn how to han-
dle the context they are plunged in, in other words to map the current
state of their perceptions to actions and effects. This paper presents the
pattern enabling the dynamic and interactive learning of the mapping
between context and actions by our multi-agent systems.

Keywords: Self-organisation · Context · Learning · Adaptation · Multi-
agent system · Cooperation · Machine learning

1 Introduction

Real-world problems offer challenging properties, such as non-linear dynamics,
distributed information, noisy data, and unpredictable behaviours. These prop-
erties are often quoted as key features of complexity [10]. Dealing with the com-
plexity of the real world is an active research field. Complexity implies that
models are insufficient. Systems designed for real-world have to be able to learn
and self-adapt, they cannot rely on predefined models.

Thanks to their natural distribution and flexibility, self-organizing Multi-
Agent Systems (MAS) are one of the most promising approaches [14]. A good
way to design MASs for this type of problems is to decompose the problem
following its organisation [13]. For many applications, such as bio-process control
[19], engine optimization [3], learning in robotics [17], and user satisfaction in
ambient systems [9], this decomposition leads to a crucial sub-problem: mapping
the current state of the context with actions and their effects. Context is a word
used in many domains and each domain comes with its own definition. There is
several proposals for a definition of what context is [2]. In the field of problem
solving, Brezillon [5] defines the context as “what constrains a step of a problem
solving without intervening in it explicitly”. This paper stems from the field of
multi-agent systems. Agents are autonomous entities with a local perception of
their environment. In this paper the context refers in this paper to all information
c© Springer International Publishing Switzerland 2015
H. Christiansen et al. (Eds.): CONTEXT 2015, LNAI 9405, pp. 91–104, 2015.
DOI: 10.1007/978-3-319-25591-0 7



92 J. Boes et al.

which is external to the activity of an agent and affects its activity. It describes
the environment as the agent sees it [9].

In general a system is coupled to its environment by a cycle of observation-
action. For instance for a self-adaptive system plunged in a dynamic environ-
ment, the observations become the inputs of the system and the actions its
outputs. The goal of the system is to find an adequate action for the current
state of inputs coming from the environment. This current state of inputs is the
context. This is a mapping problem, where the current context must be mapped
to an action.

When we solved the context mapping sub-problem in different applications,
we have highlighted a recurrent pattern. This pattern is an abstraction of the core
of several adaptive systems applied to various real-world problems and sharing
the context mapping sub-problem. This recurrent pattern is named Self-Adaptive
Context-Learning Pattern (SACL) in this paper. It is composed of an Adap-
tation Mechanism coupled with an Exploitation Mechanism. The Adaptation
Mechanism feeds the Exploitation Mechanism with information about possible
actions in the current context, while the Exploitation Mechanism is in charge of
finding the most adequate action. Both mechanisms can be implemented using
different approaches. In this paper, we propose an implementation of the Adap-
tation Mechanism based on adaptive multi-agent systems. This implementation
is composed of a set of adaptive agents. Each agent represents the effects of a
given action in a given context, the three of them being learned at runtime, in
interaction with both the Exploitation Mechanism and the environment.

First, Sect. 2 details motivations and the structure of the Self-Adaptive
Context-Learning (SACL) pattern. Section 3 proposes an implementation of the
Adaptation Mechanism based on the AMAS approach. Section 4 shows how the
Self-Adaptive Context-Learning pattern and AMAS4CL are used in two of the
aforementioned applications. Finally, Sect. 5 explores an interesting relation with
schema learning, before Sect. 6 concludes with some perspectives.

2 Self-Adaptive Context-Learning Pattern

The Self-Adaptive Context-Learning Pattern is composed of an Exploitation
Mechanism and an Adaptation Mechanism both in interaction with the envi-
ronment. The SACL environment is every entity which is outside SACL but
affects its behaviour. So a distinction has to be done between SACL environ-
ment and the local environment of an agent (see Sect. 3). These entities can be
data coming from sensors, messages from other software, effectors or systems to
control. The data perceived by the pattern are called percepts. The Exploita-
tion Mechanism is the acting entity. It has to decide and apply the action which
has to be performed by a controlled system in the current context. Its deci-
sion is based on its own knowledge, including constraints from the application
domain, and additional information provided by the Adaptation Mechanism.
The function of the Adaptation Mechanism is to build, maintain, and provide
reliable and useful knowledge about the current context and possible actions.



The Self-Adaptive Context Learning Pattern 93

Fig. 1. The Self-Adaptive Context Learning Pattern

To gather this knowledge the Adaptation Mechanism has to correlate the activ-
ity of the Exploitation Mechanism to the observation of the environment. In
order to acquire and to keep this knowledge up-to-date with the dynamics of the
Exploitation Mechanism and the environment, the Adaptation Mechanism has
to learn and self-adapt.

The Adaptation Mechanism and the Exploitation Mechanism are coupled
entities and form a control system (Fig. 1). Adaptation Mechanism acquires
(arrow 1) and provides information (arrow 3) about actions (arrow 2) made
by the Exploitation Mechanism relatively to the context, while the Exploita-
tion Mechanism relies on the information given by the Adaptation Mechanism
to make these actions. Moreover, the Exploitation Mechanism sends feedback
(arrow 4) to the Adaptation Mechanism to indicate whether or not the previous
received information was useful. This usefulness is computed from its perceptions
(arrow 5). The feedback includes two information: the last action done by the
Exploitation Mechanism, and a binary qualitative evaluation of the usefulness
of the previous received information.

3 AMAS4CL

The law of requisite variety states that the complexity of a control system must
be greater or equal to the complexity of the controlled system [1]. This means
that to control a complex system, one has to build an even more complex sys-
tem. Hence, to deal with real world complexity, the SACL pattern has to be
implemented with approaches able to generate and handle complex behaviours.
Our proposal for an implementation of the Adaptation Mechanism is based on
such an approach, called Adaptive Multi-Agent Systems (AMAS). It relies on the
cooperative self-organisation of agents, and is called AMAS for Context Learning
(AMAS4CL).



94 J. Boes et al.

3.1 Adaptive Multi-Agent Systems

The Adaptive Multi-Agent Systems (AMAS) approach aims at solving problems
in dynamic non-linear environments. This requires learning and self-adaptation.
The approach uses the self-organisation of agents as a mean to learn and self-
adapt. This self-organisation is a process driven by cooperation principles [16].
The approach relies upon the classification of interactions between a system and
its environment from Kalenka [11]. An interaction can be:

– Cooperative, i.e. helpful for both the agent and the environment ;
– Neutral, i.e. without consequences for the environment or the agent ;
– Antinomic, i.e. detrimental to the agent and/or the environment.

In the AMAS approach, an agent is said to be in a cooperative state if all its
interactions with its environment are cooperative, otherwise it is said to be in
a Non-Cooperative Situation (NCS). An agent in a cooperative state executes
its nominal behaviour, the behaviour that makes it fulfill its task. When the
agent detects a NCS, a specific behaviour is triggered instead of the nominal
behaviour. An agent is designed to be aware of several types of NCSs:

– Incomprehension if the agent is unable to extract any information from its
perceived signals ;

– Ambiguity if the agent can interpret its perceived signals in several ways;
– Incompetence if the decision process of the agent cannot be applied to its

current internal representations and perceptions;
– Improductivity if the decision process of the agent leads to no action;
– Conflict if the agent estimates that its action is antinomic with its environment

(including other agents);
– Uselessness if the agent estimates that its action has no effect on its environ-

ment (including other agents).

It has been shown that if all the agents of a MAS are in a cooperative state, then
the MAS is functionally adequate, i.e. it is properly fulfilling its task [6]. Hence,
the challenge is to design agents able to eliminate NCSs, in order to reach a
cooperative state, and to always try to stay in this state despite changes in their
environment. To solve the NCSs the agent changes the way it interacts with its
own environment. These changes can be of three types (or any combination of
them):

– Tuning: the agent adjusts internal parameters ;
– Reorganisation: the agent changes the way it interacts with its neighborhood,

i.e. it stops interacting with a given neighbor, or it starts interacting with a
new neighbor, or it updates the importance given to its existing neighbors.

– Openness: the agent creates one or several other agents, or deletes itself.

These behaviours are applied locally by the agents, but they have an impact on
activity of the whole system. Hence, they are self-organisation mechanisms.

Applying this approach to the problem of context learning leads to a spe-
cific type of agents, called Context Agents. They are created at runtime, and
self-adapt on-the fly. These agents are the core of our proposition for an imple-
mentation of the Adaptation Mechanism of the SACL pattern, described in the
next section.



The Self-Adaptive Context Learning Pattern 95

3.2 AMAS4CL Agents

AMAS4CL has two types of agents: Context Agents and a Head Agent.
The Head Agent is a unique agent created at the beginning allowing interac-

tions between the Exploitation Mechanism and the inner agents in AMAS4CL. It
is basically a doorman allowing messages to come in and come out. Its behaviour,
described in the Sect. 3.3, enables the interoperability of the Adaptive Mecha-
nism with any kind of Exploitation Mechanism. Although this agent performs no
control over the system, its observatory position enables it to detect and repair
some NCSs (see Sect. 3.4).

AMAS4CL starts with no seed, no predefined Context Agent. They are all
created at runtime (see Sect. 3.4). A Context Agent has a tripartite structure:
<context, action, appreciation>. The first part, the context, is a set of intervals
called validity ranges. There is one validity range for each percept of the Context
Agent.

Definition 1. A validity range rp, associated to the percept p, is valid if vp ∈ rp;
where vp is the current value of p.

By definition, a Context Agent is valid if all its validity ranges are valid. When
a Context Agent is valid, it sends an action proposition to the Head Agent.
The action is a modification of the environment. For instance, it can be the
incrementation or decrementation of a variable. It can also be a high level action,
such as “go forward” for a robot. It is domain dependent.

The appreciation is an estimation of the effect of an action at the cre-
ation of the Context Agent. It may be for example the expected effects of the
action on the environment, the estimated gain following a given measure, a rel-
evance score, or a combination of these, etc. A Context Agent has to adjust this
appreciation. For this, it possesses an evaluation function determining after a
proposal if the appreciation is wrong or inexact. Wrong means that the differ-
ence between the estimated appreciation and the observed effect is unacceptable
(from the designer point of view) whereas inexact means that the error is tolera-
ble. Because the appreciation depends on the application domain, the estimation
function is given by the designer.

A Context Agent can be seen as a tile delimited by its validity ranges. When
a Context Agent sends a proposition, it basically says: “here is what I think of
this action in the current context”. The Exploitation Mechanism receives several
propositions and uses them to decide what is the best action to be applied. This
is detailed in Sect. 3.3.

3.3 Nominal Behaviour

The nominal behaviour is the behaviour enabling the agent to perform its tasks
in a cooperative situation [4]. According to the AMAS approach, we can model
the nominal behaviour of an agent through a Perception-Decision-Action cycle.



96 J. Boes et al.

Nominal Behaviour of Context Agents:

– Perception:
– 1: Receives from the environment a set of variable values (percepts).
– 2: Receives the feedback from the Exploitation Mechanism. This

feedback is composed of a binary qualitative information about the
information provided by AMAS4CL at the previous decision cycle
(ENOUGH/NOT ENOUGH) and the last action performed by the
Exploitation Mechanism.

– Decision and Action:
– 1: The Context Agent checks whether it is valid or not by comparing the

current set of variable values to its context.
– 2: If the Context Agent is valid, it sends an action proposition associated

with the appreciation of this action to the Head Agent.

Nominal Behaviour of Head Agent:

– Perception:
– 1: Receives the feedback from the Exploitation Mechanism.
– 2: Receives action propositions from Context Agents.

– Decision and Action:
– 1: Gathers all the action propositions and sends them to the Exploitation

Mechanism.
– 2: Forward the feedback from the Exploitation Mechanism only to the

Context Agents that had proposed the action contained in the feedback.

There are several cases where these behaviours fail. These cases are NCS. To
solve them, the agents have to self-adapt, i.e. to modify their behaviour. This is
detailed in the next section.

3.4 Non-Cooperative Situations

NCS are described in two parts: the detection of the NCS, and its resolution.
These mechanisms of detection-resolution are completing the behaviour of Con-
text Agents.

NCS 1: Conflict of a Context Agent (wrong Appreciation)

– Detection: Thanks to the feedback from the Exploitation Mechanism, a Con-
text Agent knows when its action is being applied. When its action is being
applied, the Context Agent observes the effects of the action, to check if its
appreciation is correct. If the agent evaluates that it has given wrong informa-
tion to the the Exploitation Mechanism, it is a conflict NCS. The interaction
between the Context Agent and the Exploitation Mechanism is flawed and
prevents one of them to fulfill its task.

– Resolution: The Context Agent estimates that it should not have been valid.
To solve this NCS, the Context Agent reduces its validity ranges to avoid to
make a proposal in a context where it is unable to give a good appreciation.



The Self-Adaptive Context Learning Pattern 97

NCS 2: Conflict of a Context Agent (inexact Appreciation)

– Detection: This NCS is similar to the conflict NCS of wrong appreciation.
If a Context Agent considers that its appreciation is inexact, it is also conflict
NCS. The inexactitude of the appreciation prevents an optimal activity of the
Exploitation Mechanism.

– Resolution: This NCS is less harmful, the Context Agent estimates it
was still right to make a proposal, it only needs to give a more accurate
appreciation. Thus, the agent does not change its validity ranges, but adjusts
its appreciation, using information from the feedback of the Exploitation
Mechanism and from the observation of the environment.

NCS 3: Uselessness of a Context Agent

– Detection: Sometimes, after successive adjustments of their ranges, Context
Agents may have one or more range greatly reduced. If this range becomes
smaller than a user-defined critical size (for instance: zero, or very close to
zero), the Context Agent considers itself as useless, since it has no chance of
being valid again.

– Resolution: The agent self-destroys.

NCS 4: Improductivity of the Head Agent

– Detection: If the Head Agent receives a feedback containing an action that
was not proposed at the previous step, the decision leads the agent to forward
it to no one. It is an NCS of improductivity. It occurs when no proposal
was received by the Head Agent (for instance, at the start, when there is no
Context Agent in the system), or when none of the proposed actions were
applied by the Exploitation Mechanism. This NCS means the Exploitation
Mechanism had to explore by executing a new action. This exploration is
domain dependant.

– Resolution: If the Head Agent had received proposals with the action con-
tained in the feedback earlier in its lifetime, it requests the Context Agents
that had sent it to expand their validity ranges toward the current context.
If nobody is able to do that (Context Agents may reject this request if the
adjustment is too big), the Head Agent creates a new Context Agent with the
new action received in the feedback, and initializes it with the current context
and a first appreciation that depends on the domain.

4 Applications

This section gives examples on how the context-learning pattern is used to solve
real-world problems. We focus on two different applications: ALEX, a multi-
agent system that learns from demonstrations to control robotic devices and
ESCHER, a multi-agent system for multi-criteria optimization.



98 J. Boes et al.

4.1 ALEX

Service robotic deals with the design of robotic devices whose objectives are to
provide adequate services to their users. User needs are multiple, dynamic and
sometimes contradictory. Providing a natural way to automatically adapt the
behaviour of robotic devices to user needs is a challenging task. The complexity
comes with the lack of way to evaluate user satisfaction without evaluating a
particular objective. A good way to handle this challenge is to use Learning from
Demonstrations, a paradigm to dynamically learn new behaviours from demon-
strations performed by a human tutor. With this approach, each action per-
formed by a user on a device is seen as a feedback. Through the natural process
of demonstration, the user not only shows that the current device behaviour is
not satisfying him, but also provides the adequate action to perform. Adaptive
Learner by EXperiments (ALEX) [17] is a multi-agent system designed to face
this challenge.

System Overview. Our approach considers each robotic device as an
autonomous agent in interaction with other components, humans and the envi-
ronment through sensors [18]. An instance of ALEX is associated with each
robotic device composing the system (basically one by effector). For example
in the case of a two wheeled rover, each wheel has its own controlling system.
ALEX receives a set of signals coming from sensors and the activity of the human
tutor performing the demonstration. The tutor can perform at runtime a demon-
stration by providing to ALEX the adequate action to perform. The problem is
then to map the current state of sensors to the activity of the user in order to
be proactive the next time a similar situation occurs and the tutor provided no
action. ALEX is built on the SACL pattern and AMAS4CL (Fig. 2).

AMAS4CL
Feedback

Adaptive Learner by EXperiments

Action : Confidence

V
al

ue
s

A
ct

io
n

Exploitation
Mechanism

Robotic 
Device

Tutor

A
ct

io
n

Sensors

Fig. 2. ALEX is based on the Self-Adaptive Context-Learning Pattern using
AMAS4CL



The Self-Adaptive Context Learning Pattern 99

Fig. 3. Number of collected boxes each 5 min. The step 0 corresponds to the reference
score.

AMAS4CL must provide to the Exploitation Mechanism the adequate action
to satisfy the tutor. However, tutor satisfaction is not directly observable and it
is difficult to correlate the effect of an action on tutor satisfaction without evalu-
ating an a priori known objective. The appreciation part of Context Agents is a
dynamically built confidence value. This confidence value is increased each time
a Context Agent is activated and proposes the same action as the tutor’s, and
is decreased otherwise. Each Context Agent dynamically manages its confidence
value thanks to the feedback from the Exploitation Mechanism. Then, at each
decision cycle, the action proposed by the activated Context Agent with the
utmost confidence is sent to the Exploitation Mechanism. More information on
the implementation of this confidence value can be found on previous works [9].

Results. ALEX has been tested both on simulation and on a real Arduino based
robot [18]. The experiment is a collecting task involving a two wheeled rover
inside an arena. A user performs a five minutes demonstration of a collecting
task allowing the rover to learn the desired behaviour. The number of collected
artifact is computed during the demonstration and this score is compared to
the score performed by the rover. Experiments have shown that ALEX increases
system capacity to perform this task: the rover often collects more artifacts than
the user (see Fig. 3) [18].

4.2 ESCHER

ESCHER, for Emergent Self-organized Control for Heat Engine calibRation, is
a multi-agent system able to learn in real-time how to control another system. It
was used to find the best control for heat engines in order to calibrate them [3].
The main problem is to find which action will increase the satisfaction of a set
of user-defined criteria, regarding the current state of the controlled system. In
other words, the problem includes the mapping of the controlled system state-
space with actions and their effects, hence the use of the SACL pattern.



100 J. Boes et al.

A
ct

io
ns

ESCHER

AMAS4CL
Feedback

Actions/Forecast Controller 
Agent

SACL Module 1

Values

SACL Module 2
Values

SACL Module N
Values

Variable
Agents

&
Criterion
Agents

Controlled SystemUser-defined
Control Criteria

Observations

Fig. 4. ESCHER is based on the Self-Adaptive Context-Learning Pattern using
AMAS4CL

System Overview. The environment of ESCHER is composed of the Con-
trolled System along with the user’s criteria for the control, such as setpoints,
thresholds, and optimization needs. ESCHER performs closed-loop control, while
simultaneously learning from its interactions with the environment. This learning
is handled by several distributed SACL modules, implemented with AMAS4CL.

Figure 4 shows an overview of ESCHER. There is one SACL module per
input of the Controlled System. The Exploitation Mechanism of each module is
an agent called Controller Agent, in charge of applying the most adequate action
on its associated input of the Controlled System. Along with SACL modules,
ESCHER includes an internal representation of its environment in the form of
Variable Agents and Criteria Agents. There is one Variable Agent per input and
output of the Controlled System. A Criterion Agent represents an optimization
need, a threshold to meet, or a setpoint to reach. A Criterion Agent expresses
its satisfaction in the form of a critical level: the lower the better, zero means
the criterion represented by the agent is fully satisfied.

ESCHER works with continuous systems and has an explicit representation
of criteria. This has led to the following characteristics for the Context Agents
of AMAS4CL instances:

– The context part of a Context Agent is a set of adaptive range trackers, a
specific tool to learn value ranges with simple binary feedback;

– The action part is a modification of an input (+δ or −δ);
– The appreciation part is a set of forecasts about the variation of the critical

levels.

Controller Agents receive action proposals with their expected effects on the cri-
teria satisfaction, and select the most adequate action to apply, meanwhile send-
ing appropriate feedback to the Context Agents. When no proposal is received,



The Self-Adaptive Context Learning Pattern 101

Fig. 5. An engine optimization performed by ESCHER

a Controller Agent applies a new action, chosen randomly. When no received pro-
posal includes an adequate action, it does the same, but excluding actions known
for their bad effects. There are several additional NCSs to the four of AMAS4CL.
In particular, Context Agents are able to adjust their proposed action.

Results. ESCHER has been experimented on both artificial and real cases. Here
are only presented the results of an experiment on a real 125 cc monocylinder
fuel engine. More detailed results can be found in [3] and will be published in
future papers. The goal of this experiment is to perform a classical optimization
of the engine: maximizing the torque, minimizing the fuel consumption, and
meeting pollution thresholds. ESCHER controls three parameters: the injected
mass of fuel, the ignition advance, and the start of injection. Thus, there are
three instances of SACL/AMAS4CL.

Figure 5 shows the evolution of the outputs of the engine over time: the
Indicated Mean Effective Pressure (IMEP, an image of the torque), the fuel con-
sumption, and the two considered pollutants: hydrocarbons and carbon monox-
ide. At the beginning, ESCHER has no Context Agent. Controller Agents make
mistakes: during the first dozen of lifecycles, the IMEP drops, and the fuel con-
sumption rises. After a while, ESCHER has acquired enough knowledge and



102 J. Boes et al.

is able to maximize the IMEP and to minimize the fuel consumption. During
the optimization process, pollutants sometimes rise over their threshold. But, in
the end, ESCHER finds a configuration where IMEP and fuel consumption are
optimized, and pollutants under their respective threshold. The obtained result
is equivalent to the calibration, which currently is only manually performed by
experts with full knowledge of this particular engine.

5 Related Work

AMAS4CL learns without any global evaluation function about it activity, but
only local evaluation functions at the level of agent. Thus, every approach using
objective or global evaluation functions (like neural networks or genetic algo-
rithms) are considered as not related.

SACL pattern was designed from the beginning as a self-organized, bottom-
up approach to solve real-world problems. The Context Agents structure, asso-
ciating context/action/prediction, does not try to mimic nature, human brain
or way of thinking. At opposite, other work gets inspiration from human behav-
iour to build intelligent artificial systems and propose some patterns which have
interesting similarities with AMAS4CL.

Drescher proposed the schema mechanism [8] as a way to reproduce the
cognitive development of human during infancy as it was described by Piaget.
The main part of this approach is the notion of schemas. Each schema asserts
that a specific result will be obtained in a specific context by the application of
a specific action. This is similar to our Context Agent structure (Fig. 6).

Context Result
Action

Context Appreciation
Action

Schema :

Context 
Agent:

Fig. 6. Schema and Context Agent structures

Schema mechanism is able to learn about its environment by three means:
induction (creating new schemas to express regularity in the environment),
abstraction (creating new actions as a combination of primitive actions) and
conceptual invention(creating new elements to represent unknown state of the
world). As AMAS4CL, schema mechanism does not use any objective function
and can learn with very few specifications about the environment. Some of the
limitations of the schema mechanism were improved by later works, in particular
(but not restricted to) the intense need for resource by Chaput [7] and Perotto
[15], or the difficulty to handle a continuous environment [12].

Even if AMAS4CL and constructivist learning approach share some prop-
erties, their learning strategies are strongly different. It is interesting that two



The Self-Adaptive Context Learning Pattern 103

approaches, one starting from a representation of the child’s cognitive develop-
ment, and the based on cooperative interactions between agents, stemming from
system theory, converge towards a similar structure for information-carrying
entities (schema and Context Agent).

6 Conclusion

This paper presents the Self Adaptive Context Learning Pattern designed to
handle real-world non-linear problems. This pattern relies on two parts: the
Exploitation Mechanism which acts on the environment, and the Adaptation
Mechanism which provides information to the Exploitation Mechanism. The
Adaptation Mechanism acquires and adjusts these information by the observa-
tion of the environment.

AMAS4CL is a multi-agent system which enables this adaptation, through
the use of cooperative agents. By minimizing the need of assumptions on the
studied system, the approach is generic and was used in a wide variety of complex
real-world problems, like complex systems control [3], robotics [18], or ambient
systems [9].

The ability to handle real-world complexity could be achieved by a better
understanding of the context, and by efficient mapping between current con-
text and relevant information for the Exploitation Mechanism. But, in dynamic
environments, a static mapping is somewhat limited. The SACL pattern and its
implementation brings an adaptive approach to handle this problem.

Several works are currently underway using AMAS4CL, in the fields of net-
works control, generation of complex system models and human user behav-
iour understanding. These works are opportunities to improve AMAS4CL.
Future work includes formalisation of AMAS4CL and comparison with other
approaches, such as schema learning.

References

1. Ross Ashby, W.: An Introduction to Cybernetics. Chapman & Hall, London (1956)
2. Bazire, M., Brézillon, P.: Understanding context before using it. In: Dey, A.K.,

Leake, D.B., Kokinov, B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol.
3554, pp. 29–40. Springer, Heidelberg (2005)

3. Boes, J., Migeon, F., Glize, P., Salvy, E.: Model-free optimization of an engine
control unit thanks to self-adaptive multi-agent systems. In: ERTS2, Toulouse,
SIA/3AF/SEE, pp. 350–359 (2014)

4. Bonjean, N., Mefteh, W., Gleizes, M.-P., Maurel, C., Migeon, F.: Adelfe 2.0. In:
Cossentino, M., Hilaire, V., Molesini, A., Seidita, V. (eds.) Handbook on Agent-
Oriented Design Processes, pp. 19–63. Springer, Heidelberg (2014)

5. Brézillon, P.: Context in problem solving: a survey. Knowl. Eng. Rev. 14(01), 47–80
(1999)

6. Capera, D., Georgé, J.-P., Gleizes, M.-P., Glize, P.: The amas theory for complex
problem solving based on self-organizing cooperative agents. In: Proceedings of the
Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WET ICE 2003, pp. 383–388 (2003)



104 J. Boes et al.

7. Chaput, H.H., Kuipers, B., Miikkulainen, R.: Constructivist learning: a neural
implementation of the schema mechanism. In: Proceedings of the Workshop on
Self-Organizing Maps (WSOM 2003) (2003)

8. Drescher, G.L.: Made-Up Minds: A Constructivist Approach to Artificial Intelli-
gence. MIT Press, Cambridge (1991)

9. Guivarch, V., Camps, V., Péninou, A.: AMADEUS: an adaptive multi-agent system
to learn a user’s recurring actions in ambient systems. Adv. Distrib. Comput. Artif.
Intell. J., Special Issue 1(3), 1–10 (2012)

10. Heylighen, F., Bates, J., Maack, M.N.: Encyclopedia of Library and Information
Sciences. Taylor & Francis, London (2008)

11. Kalenka, S.: Modelling social interaction attitudes in multi-agent systems. Ph.D.
thesis, Citeseer (2001)

12. Mazac, S., Armetta, F., Hassas, S.: On bootstrapping sensori-motor patterns for a
constructivist learning system in continuous environments. In: Alife 14: Fourteenth
International Conference on the Synthesis and Simulation of Living Systems (2014)

13. Noel, V., Zambonelli, F.: Engineering emergence in multi-agent systems: following
the problem organisation. In: 2014 International Conference on High Performance
Computing & Simulation (HPCS), pp. 444–451. IEEE (2014)

14. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton.
Agents Multi-Agent Syst. 11(3), 387–434 (2005)

15. Perotto, F.S., Vicari, R., Alvares, L.O.: An autonomous intelligent agent archi-
tecture based on constructivist AI. In: Bramer, M., Devedzic, V. (eds.) Artificial
Intelligence Applications and Innovations. IFIP, vol. 154, pp. 103–115. Springer,
New York (2004)

16. Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A.: Self-organising systems.
In: Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A. (eds.) Self-organising
Software, pp. 7–32. Springer, Heidelberg (2011)

17. Verstaevel, N., Régis, C., Gleizes, M.-P., Robert, F.: Principles and experimenta-
tions of self-organizing embedded agents allowing learning from demonstration in
ambient robotic. Procedia Comput. Sci. 52, 194–201 (2015). The 6th International
Conference on Ambient Systems, Networks and Technologies (ANT 2015)

18. Verstaevel, N., Régis, C., Guivarch, V., Gleizes, M.-P., Robert, F.: Extreme sensi-
tive robotic a context-aware ubiquitous learning. In: ICAART, INSTICC, vol. 1,
pp. 242–248 (2015)

19. Videau, S., Bernon, C., Glize, P., Uribelarrea, J.-L.: Controlling bioprocesses using
cooperative self-organizing agents. In: Demazeau, Y., Pĕchoucĕk, M., Corchado,
J.M., Bajo Pérez, J. (eds.) Advances on Practical Applications of Agents and
Multiagent Systems. AISC, vol. 88, pp. 141–150. Springer, Heidelberg (2011)


	The Self-Adaptive Context Learning Pattern: Overview and Proposal
	1 Introduction
	2 Self-Adaptive Context-Learning Pattern
	3 AMAS4CL
	3.1 Adaptive Multi-Agent Systems
	3.2 AMAS4CL Agents
	3.3 Nominal Behaviour
	3.4 Non-Cooperative Situations

	4 Applications
	4.1 ALEX
	4.2 ESCHER

	5 Related Work
	6 Conclusion
	References


