
Understanding Context with CONTEXTVIEWER –
Tool for Visualization and Initial Preprocessing

of Mobile Sensors Data

Szymon Bobek(B), Sebastian Dziadzio, Pawe�l Jaciów,
Mateusz Ślażyński, and Grzegorz J. Nalepa

AGH University of Science and Technology,
Al. A. Mickiewicza 30, 30-059 Krakow, Poland

{szymon.bobek,gjn}@agh.edu.pl

Abstract. Mobile context-aware systems are becoming more and more
popular due to the rapid evolution of personal mobile devices. The vari-
ety of sensors that are available on such devices allow building intelli-
gent applications that adapt automatically to user preferences and needs.
Together with a growth of such self-adaptable systems, number of tools
for collecting, visualising and modelling context were developed. How-
ever, there is still a need for tools and methods that will support building
mobile context-aware systems at the very early stage of development.
Such solutions should provide mechanisms for collecting, visualising and
initial preprocessing of data to allow better understanding of processes,
patterns and dynamics of mobile contextual data. In this paper we pro-
pose ContextViewer– a toolkit that aims at providing such mecha-
nisms. It is a part of a methodology for building context-aware systems
that besides ContextViewer includes also modelling methods and run-
time environment for executing models.

1 Introduction

According to Dey [1] context can be defined as any information that can be
used to characterise a situation of an entity. Such a general definition allows
to treat different types of information as context, but also makes it difficult to
model and process by context-aware systems (CAS). Over the last decade several
frameworks supporting this task were proposed [2]. They provide mechanism for
building context-aware applications which include collecting, visualising, mod-
elling and processing contextual data. However, most of the available solutions
were crafted for the needs of stationary environments. This assumes that the
contextual information is dominated by the user activities within the system,
like websites visited, applications ran1. Although such approach seems sufficient

This work was funded by the National Science Centre, Poland as a part of the
KnowMe project (registration number 2014/13/N/ST6/01786).

1 Exceptions here are systems that use eye tracking for user profile discovery, or EEG
signal analysis for brain-computer interactions. This types of systems however, are
beyond the scope of this paper.

c© Springer International Publishing Switzerland 2015
H. Christiansen et al. (Eds.): CONTEXT 2015, LNAI 9405, pp. 77–90, 2015.
DOI: 10.1007/978-3-319-25591-0 6



78 S. Bobek et al.

for most of the desktop context-aware systems, it cannot be considered valid in
mobile systems which use dynamic and time-dependant data.

Such systems are equipped with a variety of sensors like accelerometers, gyro-
scopes, mobile network providers, GPS, etc., which deliver huge amounts of infor-
mation in a streaming manner. This information changes very fast in the short
time perspective which is mainly caused by the nature of the streaming data
itself, but also in the long time perspective, which reflects changes in the user
habits and routines (phenomena known in the literature as concept drift [3]).
It is very difficult to efficiently model system that process such data without
prior knowledge about patterns within the data and correlations between con-
text providers.

Machine learning methods provide mechanisms that allow for automated
discovery of knowledge from large amounts of data. However, applying machine
learning algorithm to context-aware system is not always straightforward. Choos-
ing appropriate algorithm, its parameters, and input attributes (feature set) is
non trivial task, which requires a lot of experiments and preliminary data analy-
sis. Therefore, the comprehensive approach is needed that will provide tools and
methods supporting the designer of mobile CAS in understanding the context
at the very early stage of development.

As a response to this need, we proposed ContextViewer – a web applica-
tion that allows for visualising and initial preprocessing of contextual information
from mobile devices. It is integrated with AWARE2 – one of the most popular
framework for logging, sharing and reusing mobile contextual data. It allows
for basic semantization of raw sensor data and provides bindings with machine
learning software like WEKA3 and ProM4 to allow direct and immediate analy-
sis of context. ContextViewer is a part of a larger toolkit which consists of
ContextSimulator 5 and HeaRTDroid6. These tools provide respectively
an lightweight simulation framework, and rule-based runtime for prototyping,
testing and deployment of mobile context-aware applications.

The rest of the paper is organised as follows. Comparison of available frame-
works for context management and motivation for our work was presented in
Sect. 2. In Sect. 3 a detailed description of ContextViewer tool was pro-
vided. The remaining parts of the toolkit for building mobile context-aware
systems that ContextViewer can be combined with, were briefly discussed
in Sect. 4. In Sect. 5 an use-case scenario was presented. Summary and future
work plans were enclosed in Sect. 6.
2 See http://awareframework.com.
3 See https://weka.waikato.ac.nz/.
4 See http://www.processmining.org/prom/start.
5 See http://glados.kis.agh.edu.pl/doku.php?id=pub:software:contextsimulator:start
for details.

6 See https://bitbucket.org/sbobek/heartdroid for details.

http://awareframework.com
https://weka.waikato.ac.nz/
http://www.processmining.org/prom/start
http://glados.kis.agh.edu.pl/doku.php?id=pub:software:contextsimulator:start
https://bitbucket.org/sbobek/heartdroid


Understanding Context with ContextViewer 79

2 Overview of Context-Management Frameworks and
Motivation

Context management frameworks can be divided into four groups:

1. frameworks that offer collecting, storing and distributing context within the
system,

2. frameworks that provide visualisation of selected contextual information,
3. frameworks for modelling and processing context,
4. hybrid approaches that combine features of former three.

Systems that allow for collecting and storing contextual information are one
of the most popular tools for building context-aware applications. They provide
basic programistic interface for accessing context in a real time, as well as mech-
anisms for storing historical data. Examples of such frameworks are SDCF [4],
AWARE, JCAF [5], SCOUT [6], and ContextDriod [7]. These frameworks do not
provide any mechanisms for visualisation nor preprocessing of data. They serve
as a middleware between the physical sensors or native API and the context-
aware application. They usually store the data locally to preserve the privacy
issues, but some of them like AWARE provides mechanisms for synchroniza-
tion with external databases. This allows to transfer complex data analysis from
mobile devices to the more powerful machines, integrate the knowledge from
many sources and exchange this knowledge between the mobile devices in the
distributed manner.

The other type of context-management frameworks are systems which focus
on the visualisation of selected contextual data. In most cases these systems are
commercial applications like: Ubidots7 or Valarm8. However there are also open
source solutions like Nimbits9 and Freeboard10. The visualisation frameworks
give more insight into the raw contextual data by plotting them on diagrams,
or augmenting them on the map. They do not provide any tools for automated
analysis of data, nor any runtime. Exception here is the Ubidots and Nimbits
framework, which allows for including simple rule-based triggers that are fired
when a context defined by some preconditions is met. These frameworks are
mostly designed as cloud-based solutions which communicate with many mobile
devices and provide web interface for visualising data.

Frameworks that support modelling context-aware systems and provide run-
time environments for executing contextual models form the third class of con-
text management systems. One of the most popular runtime for stationary
context-aware application is ContextToolkit [8]. It supports rule-based mod-
elling language and execution runtime. Other examples of rule-based frameworks
crafted especially for the needs of mobile environments are Context Engine [9],

7 See http://ubidots.com/.
8 See https://play.google.com/store/apps/details?id=net.valarm.android.pro.
9 See http://nimbits.com/.

10 See https://freeboard.io/.

http://ubidots.com/
https://play.google.com/store/apps/details?id=net.valarm.android.pro
http://nimbits.com/
https://freeboard.io/


80 S. Bobek et al.

SWAN [10] and HeaRTDroid [11]. The last one is used by us as a part of the
runtime environment.

Different approach for modelling and executing context models was presented
by Brezillon et.al. [12]. They proposed a structure called Contextual Graph. It
is a directed acyclic graph that represents the actions to undertake according to
the context. The action nodes represent actions to undertake to achieve a goal
while the event nodes become as explained above, contextual nodes describing
the possible contextual issues of a given event.

The last group of context-management frameworks are hybrid solutions like
CoBrA [13] for building smart meeting rooms, GAIA [14] for active spaces or
SOCAM [15] and mobileGaia [16] – middlewares architecture for building per-
vasive systems. They combine features of frameworks for collecting storing and
distributing context with features of frameworks for modelling and processing
context. They do not provide tools for visualisation and data analysis. What
is more, they are usually built for very narrow, specific solutions, and can not
be considered as frameworks for more general purpose than initially assumed.
The exception is MUSIC [17] framework – an open platform for development
of self-adaptive mobile applications, which includes a methodology, tools and
middleware.

A comprehensive comparison of all the frameworks and tools discussed in this
section was presented in Table 1. It is worth noting that the solution proposed
by us (bolded rows in the table) covers all the features that we distinguished
important for the context management toolkit.

Although there exist numerous of such solutions, they all approach the issue
of building context-aware systems in a standard manner, which begins with a
modelling phase. However, mobile context-aware system are not yet well estab-
lished field and there is still a lot of research ongoing in the area of context
modelling, automated extraction of knowledge from multiple sources, uncer-
tainty handling, etc. Therefore, in our work we aim at providing tools that
will support the initial phase of the design of mobile context-aware systems
which precedes the modelling phase. During this initial phase, the designer (or
researcher) should be able to understand the contextual data that later will
be modelled. This involves visualisation of this data, but also semantization of
raw sensor streams and integration with most common machine learning soft-
ware like WEKA of ProM for deep analysis. To achieve this task we designed
and implemented ContextViewer and integrated it with AWARE – one of
the most popular framework for building mobile context-aware systems. Con-
textViewer is part of software bundle for building context-aware systems that
includes ContextSimulator and HeaRTDroidsystems for simulation, test-
ing and deploying context-aware solutions on mobile platforms. In the next
section the architecture and capabilities of ContextViewer are described.

3 Understanding Context with ContextViewer

ContextViewer is a tool for making Aware framework data easy to browse
and process. It consists of four main modules implementing corresponding func-
tionalities:



Understanding Context with ContextViewer 81

T
a
b
le

1
.
C
o
m
p
a
ri
so
n
o
f
av
a
il
a
b
le

fr
a
m
ew

o
rk
s
fo
r
co
n
te
x
t
m
a
n
a
g
em

en
t

F
ra

m
e
w
o
rk

F
e
a
tu

re
s

C
o
n
te

x
t

a
c
q
u
i-

si
ti
o
n

S
to

ra
g
e

C
o
n
te

x
t

d
is
tr
ib

u
ti
o
n

C
o
n
te

x
t

v
is
u
-

a
li
sa

ti
o
n

C
o
n
te

x
t

se
m
a
n
-

ti
z
a
ti
o
n

C
o
n
te

x
t

a
n
a
ly
si
s

M
o
d
e
ll
in

g
S
im

u
la
ti
o
n

R
u
n
ti
m

e
D
e
si
g
n
e
d

fo
r

m
o
b
il
e

A
W

A
R

E
y
e
s

y
e
s

y
e
s

n
o

n
o

n
o

n
o

n
o

n
o

y
e
s

S
D
C
F

y
e
s

y
e
s

n
o

n
o

n
o

n
o

n
o

n
o

n
o

y
e
s

J
C
A
F

y
e
s

y
e
s

n
o

n
o

n
o

n
o

n
o

n
o

n
o

y
e
s

S
C
O
U
T

y
e
s

y
e
s

y
e
s

n
o

n
o

n
o

n
o

n
o

y
e
s

y
e
s

C
o
n
te

x
tD

ro
id

n
o

n
o

n
o

n
o

n
o

n
o

y
e
s

n
o

y
e
s

y
e
s

C
o
n
te

x
tT

o
o
lk
it

n
o

n
o

n
o

n
o

n
o

n
o

y
e
s

n
o

y
e
s

n
o

G
im

b
a
l

n
o

n
o

n
o

p
a
rt
ia
ll
y

n
o

n
o

y
e
s

n
o

y
e
s

y
e
s

C
o
n
te

x
tu

a
l
G
ra

p
h
s

n
o

n
o

n
o

m
o
d
e
l
o
n
ly

n
o

n
o

y
e
s

y
e
s

y
e
s

n
o

S
W

A
N

n
o

ru
n
ti
m

e

h
is
to

ry

n
o

n
o

n
o

n
o

y
e
s

n
o

y
e
s

y
e
s

C
o
n
te

x
t
E
n
g
in

e
n
o

n
o

n
o

n
o

n
o

n
o

y
e
s

n
o

y
e
s

y
e
s

H
e
a
R
T
D

r
o
id

n
o

r
u
n
t
im

e

h
is
t
o
r
y

n
o

n
o

v
ia

ru
le
s

n
o

y
e
s

n
o

y
e
s

y
e
s

U
b
id

o
ts

n
o
t
d
ir
e
c
t

y
e
s

n
o

y
e
s

ru
le
s

b
a
si
c

b
a
si
c
ru

le
s

n
o

b
a
si
c

y
e
s

V
a
la
rm

n
o
t
d
ir
e
c
t

y
e
s

n
o

y
e
s

n
o

y
e
s

n
o

n
o

n
o

y
e
s

N
im

b
it
s

n
o
t
d
ir
e
c
t

y
e
s

n
o

y
e
s

ru
le
s

b
a
si
c

b
a
si
c
ru

le
s

n
o

b
a
si
c

y
e
s

F
re

e
b
o
a
rd

n
o
t
d
ir
e
c
t

y
e
s

n
o

y
e
s

ru
le
s

b
a
si
c

n
o

n
o

n
o

y
e
s

C
o
n
t
e
x
t
S
im

u
la

t
o
r

n
o

n
o

n
o

n
o

n
o

n
o

n
o

y
e
s

n
o

y
e
s

C
o
n
t
e
x
t
V

ie
w
e
r

n
o

n
o

n
o

y
e
s

y
e
s

y
e
s

n
o

n
o

n
o

y
e
s

C
o
B
rA

y
e
s

n
o

y
e
s

m
o
d
e
l
o
n
ly

o
n
to

lo
g
y

n
o

y
e
s

n
o

y
e
s

n
o

G
A
IA

y
e
s

n
o

y
e
s

m
o
d
e
l
o
n
ly

o
n
to

lo
g
y

n
o

y
e
s

n
o

y
e
s

n
o

M
o
b
il
e
G
a
ia

y
e
s

n
o

y
e
s

m
o
d
e
l
o
n
ly

o
n
to

lo
g
y

n
o

y
e
s

n
o

y
e
s

y
e
s

S
O
C
A
M

y
e
s

n
o

y
e
s

m
o
d
e
l
o
n
ly

o
n
to

lo
g
y

n
o

y
e
s

n
o

y
e
s

y
e
s

M
U
S
IC

y
e
s

y
e
s

y
e
s

m
o
d
e
l
o
n
ly

o
n
to

lo
g
y

n
o

y
e
s

y
e
s

y
e
s

y
e
s



82 S. Bobek et al.

1. Contextual data visualization module – that aims at transforming raw Aware
data to an intuitive graphical form. With it, instead of browsing database
tables, user can inspect the data visually using only few intuitive controls.

2. Basic semantisation module – that is responsible for basic semantization of
contextual data by translating raw sensor information into human readible
concepts.

3. Machine learning module– which enables pattern discovery in contextual
data. It includes WEKA data mining tool integration component and process
mining component based on ProM tool.

The following section describes in details the architecture and implementa-
tion of these modules.

3.1 Architecture of ContextViewer

ContextViewer is a web application developed using Google Web Toolkit
(GWT). GWT is an open source project that makes creating JavaScript front-
end applications in Java possible.

Front-end of ContextViewer, referred later as a client-side application,
is received over a network by users where it runs as JavaScript in their web
browsers. At some point, the client-side needs to interact with a backend server.
For example when loading or processing data. The so-called server-side of Con-
textViewer is based on Java Servlets. Client communicates with the server
via HTTP, sending requests and receiving updates. The communication is done
using remote procedure calls (RPC). The concept of ContextViewer’s archi-
tecture is presented in Fig. 1. There is also an external contextual data provider,
which is the Aware framework.

The client-side code implements everything that is responsible for displaying
context data in an end user’s web browser. Simple mechanisms for browsing the
data are available for the user. Handling his or her input allows for changing
display dynamically to match new conditions. The main goal of this part of
ContextViewer is to transform sensors’ data from tables with numbers or
codes to its intuitive graphical representation. For example, numerical latitude
and longitude are represented as a marker on a map using Google Maps API.
For each mobile sensor type used there is a class for storing its context data.
It is possible to easily add components for additional sensor types. There are
methods for invoking interaction with the server, sending requests and receiving
and handling results or answers. It is worth noting that to change appearance of
ContextViewer’s client one mostly needs only to edit included Cascade Style
Sheet (CSS) file or to replace graphics to be displayed.

The server-side code implements servlets for handling a database, exporting
data to ARFF and running a process mining tool. The main goal of this part
of ContextViewer is to process the context data. Mobile sensors context
data is stored in a MySQL database. Servlet loads data from a user-specified
interval and sends it back to the client. Attribute-Relation File Format (ARFF)
is a file type for use with Weka machine learning software. It is created by



Understanding Context with ContextViewer 83

Fig. 1. The concept of ContextViewer’s architecture

invoking a Python script on the server-side. Servlet allows the user to download
generated file for further data mining in Weka at his or her workstation. Process
mining is performed with ProM Tools. Servlet sends result to the client where
it is displayed.

There are some requirements for ContextViewer to run. On the client-side,
the end user’s browser must have JavaScript enabled in order for the application
to work and display correctly. To run the server-side code, ContextViewer
must be deployed to a web engine. Currently, it is working with Apache Tomcat.
Besides that, the server must have Java JRE 7, Python 3 and ProM 6 installed.

3.2 Visualization of Contextual Data

Visual inspection is an effective means to understanding context data. It can
give useful insights concerning the data format, structure, and meaning. Since
ContextViewer was initially designed as a visualization tool, it provides the
user with several tools for data visualization. The user interface offers two inter-
active display modes: graphical and textual. The former is aimed to give a quick
overview of collected data in an accessible form, while the latter offers a more
detailed outline.



84 S. Bobek et al.

Fig. 2. ContextViewer user interface in graphical display mode

The graphical mode (Fig. 2) was designed to be maximally clean and intu-
itive. It is divided into three isolated sections, reflecting tiers of context data. The
rightmost section presents low level information about the device: screen state,
battery level, and network information. The middle section provides higher-level
information about the device (running applications, notifications) and its sur-
roundings (weather, activity recognition). The last section is a map marking
the device geographical location. Users can easily interact with the application -
change the device and date, use a slider to quickly run through the data, point
to any icon to get more information, or play with a fully functional GoogleMaps
plugin (including StreetView).

While in the text mode, ContextViewer lets users specify a shorter time
interval with a slider and then simply displays the relevant data in tables. There
are eight subsections: location, activity, weather, screen, applications, battery,
wifi, and network. Although the scope of presented data is similar, the text mode
is far more verbose. Take battery data for example: in graphical mode, only the
battery level and adaptor status (plugged/unplugged) is presented, while the
text mode includes precise measurements of voltage and temperature, as well as
information about battery health, status, charges and discharges, all accurate to
milliseconds. Location data are additionally plotted on a map, but now in form
of splines reflecting device movement within selected time period, as opposed to
a single point in graphical mode.



Understanding Context with ContextViewer 85

3.3 Basic Semantization of Contextual Data

Although data visualization is certainly a useful feature, the true power of Con-
textViewer lies in its semantization capabilities. Users can control and tweak
the process by modifying the configuration file. It is a simple JSON file defining
the mapping between unprocessed data from AWARE database and higher-level
abstractions. Take GPS data for example. Raw values of latitude and longitude
are not especially meaningful in modelling device environment or its owner’s
behaviour. The configuration file allows to define and label interesting areas
such as workplace, home, city centre, as shown in Listing 1.1. The data is then
translated accordingly.

Listing 1.1. An excerpt of the configuration file

{
"label": "Work",

"vertices": [

{ "latitude":50.066459, "longitude":19.926258 },
{ "latitude":50.061400, "longitude":19.924912 },
{ "latitude":50.067130, "longitude":19.897875 },
{ "latitude":50.071567, "longitude":19.900858 }

]

}

Time can be another example - Unix timestamp doesn’t carry much informa-
tion about context, but with ContextViewer we can get extract information
about time of the day, day of the week, season etc. The config file is fully cus-
tomizable, well-documented and easily extendable. The output is a CSV, ARFF,
or XES file, which can be easily loaded into WEKA, R, Python or ProM to per-
form data mining or process extraction.

3.4 Process Mining and Pattern Discovery in Contextual Data

One of ContextViewer’s modules enables process mining in contextual data.
Firstly, data from an end user-specified interval is loaded. Next, on the server-side
of ContextViewer, an external tool’s algorithm detects some kind of business
process based on given data log. Finally, the graph visualization that resulted
from the analysis is returned to the user via RPC and is displayed in the client-
side application. Figure 3 shows sample output graph in ContextViewer.

The external process mining tool invoked by ContextViewer’s server-side
servlet is ProM Tools [18]. ProM is a framework supports a huge variety of
process mining methods in the form of plug-ins. It is free of charge, implemented
in Java and cross-platform.

Currently used version of the tool is ProM 6. A servlet invokes its methods
in a batch mode using a prepared script. ProM loads the data from a XES file,
generates a graph visualization of discovered process and saves it into a PNG file.
Before that, contextual data is converted from MySQL tables to XES (XML-
based standard for event logs, [19]) file accepted by ProM.



86 S. Bobek et al.

Fig. 3. Sample process discovered with ProM, visualising user transportation routines

In the following section the runtime environment was presented which allows
to test and evaluate models discovered with WEKA and ProM.

4 Context Simulation and Processing

Results provided by the ContextViewer are used to perform data analysis in
WEKA or ProM, but can not be directly executed on the device. In order to
allow this, system designer has to implement a related functions on the mobile-
platform’s side. This task could be too laborious, particularly in the phase of
prototyping. Therefore, to make the whole process as seamless as possible, tools
for simulating and processing data according to the declarative model provided
by system designer has to be provided. This section describes ContextSimu-
lator and HeaRTDroidtools, created specifically to fulfil these requirement.

4.1 ContextSimulator

The simplest way to simulate device’s sensors is to reuse the historical data
that was already acquired and used earlier to perform the semantization on the
server’s side. ContextSimulator is a tool implemented in Java, that fetches
the required parts of the ContextViewer’s database and performs the simu-
lation based on them. It allows system designer to repeat the series of sensors’
readings in the controlled manner, first by choosing the speed of the simula-
tion and secondly by dynamic allocation of the sensors, e.g. some of the can be
turned off in order to check the robustness of the system. ContextSimulator
was designed to extends the capabilities of the AWARE framework and therefore
it is easily integrable with the existing ContextViewer’s projects.

4.2 HEARTDROID

In order to semantically process data on the device, the toolkit was enriched
with the HeaRTDroidinference engine — a rule-based environment designed



Understanding Context with ContextViewer 87

to meet requirements of the modern mobile platforms The most distinctive
features of the engine are usage of the XTT2 knowledge representation method,
which renders the knowledge as a graph of the interconnected decision tables and
straightforward integration with the Android platform. The XTT2 representa-
tion is formally founded in the ALSF(FD) logic [20]. HeaRTDroidwas success-
fully deployed in mobile context-aware application supporting the on-line threat
monitoring system for urban environments [21].

The input of the HeaRTDroidconsists of the XTT2 textual representation
written in HMR— a declarative modelling language based on the Prolog syntax.
The model itself has to include all the types and attributes used in the conditional
and decisive parts of the rules, which are specified in the latter section of the same
file as parts of the formally defined schemes; all these elements together specify
clean and unambiguous semantics of the computations performed by HeaRT-
Droid. The basic example of the HMR rule, which has semantics described by
the natural language sentence: “if day attribute has value sat or sun, then set
the value of the today to weekend value”, is presented below:

xrule Today/1: [day in [sat,sun]] ==> [today set weekend].

More advanced modelling features of the HMR language allow handling of
uncertain data (for example to represent sensors’ unreliability) by usage of the
certainty factors associated with the elements of the model [22] and aggregating
historical data to perform statistical tests on them in the conditional part of
the rules. There exist also two types of statements connecting model with the
application’s logic: (1) callbacks, which are used to set value of the attribute as
a result of the code written in Java, (2) actions, which execute specified Java
code, after the associated rule’s decisional part is performed.

The following section describes briefly how the entire bundle of Con-
textViewer, ContextSimulator and HeaRTDroidcan be used for the
understanding of context and basic prototyping task.

5 Use Case Scenario

The use case scenario presented in this section was prepared using data from
one month, collected with AWARE framework with LG Nexus 5 mobile phone.
For the sake of simplicity and space limitation we will describe only one simple
model extracted from this data with ContextViewer. The objective of the
model was to minimize energy consumption of the mobile network provider.
There are four different levels of connectivity quality available on mobile devices
(in descending order with respect to quality): LTE, 4G, 3G and Edge. This
connectivity levels corresponds to the energy consumption levels, with LTE being
most energy consuming and Edge less energy consuming.

The initial analysis of data in ContextViewer panel revealed that there
are three main location that the user is present during a day: Home, Work
or in-between, called Commuting. It was also noted that the day of the user
is relatively regular, therefore it is enough to partition it into: Morning, Day,



88 S. Bobek et al.

Fig. 4. Decision tree for prediction of mobile network usage with respect to user loca-
tion, time and activity.

ε
ε

ε
ε

ε
ε

ε
ε
ε ε

ε
ε
ε
ε

ε

Fig. 5. XTT2 model for energy saving with respect to predicted mobile network usage.
The model is based on the decision tree presented in Fig. 4

Afternoon, Evening and Night periods. More analysis of the network usage data
allow to distinguish the thresholds for the usage for the: None, Low, Medium
and High values. Also the activity of the user was defined based on the speed
provided by the GPS sensor. All of this information was serialised into the JSON
format used by the systematization module, in a form presented in the Listing 1.1
and exported to ARFF format. The decision tree generated with a WEKA is
shown in Fig. 4.

The decision tree can be later transformed into the XTT2 tables as presented
in Fig. 5 and evaluated with HeaRTDroidand ContextSimulator tools.

6 Summary and Future Work

In this paper we presented a toolkit for visualising and understanding context,
which supports also rapid prototyping tasks. It is a bundle of tools integrated
with AWARE – a framework designed for researched and developers for collect-
ing, logging, and reusing context related information from mobile devices11. It
provides also an integration with WEKA and ProM machine learning software.
We focused on the phase that precedes the design and prototyping stages in a
software development cycle. Our approach aim at providing tools that will allow
the designer to understand the domain which alter will be modelled with appro-
priate methods. Although this approach could seem not scalable when we assume
that the manual analysis has to be performed for every user separately, it should
not be considered as a modelling phase in the development cycle. The analysis
11 It is worth noting, that our work was has been acknowledged ad referenced on the

AWARE framework website.



Understanding Context with ContextViewer 89

performed with ContextViewer and Weka or ProM reveals information on
the higher level of abstraction like: which attributes are good/bad for particular
use-cases, what discretization ranges are good/bad for semantization purposes,
what places (how many) users usually visit, etc. This phase should give the
designer better insight into the data and allow to experiment and rapidly proto-
type fragments of software that later will be deployed in a real-life application,
possibly with an usage of automated methods.

For the future work we plan to develop tools that will automatically gener-
ate XTT2 rule models used by HeaRTDroidfrom the ContextViewer sys-
tematization configuration file. This will allow to reuse the information already
provided by the designer/research into the ContextViewer and speed up the
prototyping process.

References

1. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7
(2001)

2. Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile
devices. Comput. Sci. Inf. Syst. 11(1), 171–193 (2014)

3. Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman &
Hall/CRC, Boca Raton (2010)

4. Atzmueller, M., Hilgenberg, K.: Towards capturing social interactions with sdcf:
an extensible framework for mobile sensing and ubiquitous data collection. In:
Proceedings of 4th International Workshop on Modeling Social Media. ACM Press
(2013)

5. Bardram, J.E.: The java context awareness framework (JCAF) - a service
infrastructure and programming framework for context-aware applications. In:
Schmidt, A., Want, R., Gellersen, H.-W. (eds.) PERVASIVE 2005. LNCS, vol.
3468, pp. 98–115. Springer, Heidelberg (2005)

6. Woensel, W.V., Casteleyn, S., Troyer, O.D.: A Framework for Decentralized,
Context-Aware Mobile Applications Using Semantic Web Technology (2009)

7. van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: ContextDroid: an
expression-based context framework for android. In: Proceedings of PhoneSense
2010, November 2010

8. Dey, A.K.: Providing architectural support for building context-aware applications.
Ph.D. thesis, Atlanta, GA, USA (2000). AAI9994400

9. Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P.: An extensi-
ble, self contained, layered approach to context acquisition. In: Proceedings of the
Third International Workshop on Middleware for Pervasive Mobile and Embedded
Computing. M-MPAC 2011, pp. 6:1–6:7. ACM, New York (2011)

10. Palmer, N., Kemp, R., Kielmann, T., Bal, H.: Swan-song: a flexible context expres-
sion language for smartphones. In: Proceedings of the Third International Work-
shop on Sensing Applications on Mobile Phones. PhoneSense 2012, pp. 12:1–12:5.
ACM, New York (2012)

11. Bobek, S., Ślażyński, M., Nalepa, G.J.: Capturing dynamics of mobile context-
aware systems with rules and statistical analysis of historical data. In: Rutkowski,
L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M.
(eds.) ICAISC 2015. LNCS, vol. 9120, pp. 578–590. Springer, Heidelberg (2015)



90 S. Bobek et al.

12. Brezillon, P., Pasquier, L., Pomerol, J.C.: Reasoning with contextual graphs. Eur.
J. Oper. Res. 136(2), 290–298 (2002)

13. Chen, H., Finin, T.W., Joshi, A.: Semantic web in the context broker architecture.
In: PerCom, pp. 277–286. IEEE Computer Society (2004)

14. Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.: Use of ontolo-
gies in a pervasive computing environment. Knowl. Eng. Rev. 18(3), 209–220
(2003)

15. Gu, T., Pung, H.K., Zhang, D.Q., Wang, X.H.: A middleware for building context-
aware mobile services. In: Proceedings of IEEE Vehicular Technology Conference
(VTC) (2004)

16. Chetan, S., Al-Muhtadi, J., Campbell, R., Mickunas, M.D.: Mobile gaia: a mid-
dleware for ad-hoc pervasive computing. In: Consumer Communications and Net-
working Conference, 2005. CCNC. 2005 Second IEEE, pp. 223–228. IEEE, January
2005

17. Floch, J., Fra, C., Fricke, R., Geihs, K., Wagner, M., Lorenzo, J., Soladana, E.,
Mehlhase, S., Paspallis, N., Rahnama, H., Ruiz, P., Scholz, U.: Playing music -
building context-aware and self-adaptive mobile applications. Softw. Pract. Exp.
43(3), 359–388 (2013)

18. van der Aalst, W.M., van Dongen, B.F., Günther, C.W., Mans, R., De Medeiros,
A.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H., Weijters, A.: Prom 4.0: com-
prehensive support for real process analysis. In: Yakovlev, A., Kleijn, J. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)

19. Günther, C.W., Verbeek, H.: Xes-standard definition (2014)
20. Lig ↪eza, A., Nalepa, G.J.: A study of methodological issues in design and develop-

ment of rule-based systems: proposal of a new approach. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 1(2), 117–137 (2011)

21. Bobek, S., Nalepa, G.J., Lig ↪eza, A., Adrian, W.T., Kaczor, K.: Mobile context-
based framework for threat monitoring in urban environment with social threat
monitor. Multimedia Tools and Appl. (2014)

22. Bobek, S., Nalepa, G.J.: Incomplete and uncertain data handling in context-aware
rule-based systems with modified certainty factors algebra. In: Bikakis, A., Fodor,
P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 157–167. Springer,
Heidelberg (2014)


	Understanding Context with CONTEXTVIEWER -- Tool for Visualization and Initial Preprocessing of Mobile Sensors Data
	1 Introduction
	2 Overview of Context-Management Frameworks and Motivation
	3 Understanding Context with ContextViewer
	3.1 Architecture of ContextViewer
	3.2 Visualization of Contextual Data
	3.3 Basic Semantization of Contextual Data
	3.4 Process Mining and Pattern Discovery in Contextual Data

	4 Context Simulation and Processing
	4.1 ContextSimulator
	4.2 HEARTDROID

	5 Use Case Scenario
	6 Summary and Future Work
	References


