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Abstract. This paper studies the logical context-sensitivity of Aris-
totelian diagrams. I propose a new account of measuring this type of
context-sensitivity, and illustrate it by means of a small-scale exam-
ple. Next, I turn toward a more large-scale case study, based on Aris-
totelian diagrams for the categorical statements with subject negation.
On the practical side, I describe an interactive application that can help
to explain and illustrate the phenomenon of context-sensitivity in this
particular case study. On the theoretical side, I show that applying the
proposed measure of context-sensitivity leads to a number of precise yet
highly intuitive results.
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1 Introduction

Aristotelian diagrams are compact visual representations of the elements of some
logical or conceptual field, and the logical relations holding between them. With-
out a doubt, the oldest and most widely known example is the so-called ‘square
of oppositions’ [32]. The history of Aristotelian diagrams is well-documented:
their origins can be traced back to the logical works of Aristotle, and they have
been used extensively by medieval and modern authors such as William of Sher-
wood [23], John Buridan [36], John N. Keynes [22], George Boole and Gottlob
Frege [33]. In contemporary research, Aristotelian diagrams have been used in
various subbranches of logic, such as modal logic [4], intuitionistic logic [29],
epistemic logic [24], dynamic logic [9] and deontic logic [28], and also even in
metalogical investigations [12]. Furthermore, because of the ubiquity of the log-
ical relations that they visualize, these diagrams are also often used in fields
outside of pure logic, such as cognitive science [2,30,34], linguistics [1,17,41,43],
philosophy [27,44], law [20,31,45] and computer science [10,13,15]. In sum,
then, it seems fair to conclude that Aristotelian diagrams have come to serve
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“as a kind of lingua franca” [19, p. 81] for a highly interdisciplinary commu-
nity of researchers who are all concerned, in some way or another, with logical
reasoning.

Logical geometry systematically investigates Aristotelian diagrams as objects
of independent interest (regardless of their role as lingua franca), for example,
in terms of their information content [42]. One of the major insights to come
out of these investigations is that Aristotelian diagrams are context-sensitive:
the exact details of an Aristotelian diagram are highly dependent on the precise
logical system with respect to which this diagram is constructed.1 Although this
logical context-sensitivity has numerous and far-reaching consequences, it seems
to be relatively unknown—or at least insufficiently appreciated—by contempo-
rary researchers working on Aristotelian diagrams.

The main aim of this paper is therefore to further illustrate and study the
context-sensitivity of Aristotelian diagrams. We will consider a single 8-formula
fragment (consisting of the categorical statements with subject negation), and
study the Aristotelian diagrams that it gives rise to in various logical systems.
This context-sensitivity can be concretely illustrated by means of an online avail-
able application, which allows users to define their own logical system (by select-
ing the axioms they want to ‘activate’), and instantaneously shows them how
their choices affect the resulting Aristotelian diagram. Although this application
was primarily developed for broadly pedagogical purposes, it has also played an
important heuristic role in more theoretical investigations, for example, concern-
ing the relation between logical strength and context-sensitivity.

It might be objected that the terms ‘context’ and ‘context-sensitive’ are used
here in a highly abstract fashion, since the relevant contexts here are logical
systems, which can be seen as mere lists of axioms. Indeed, the context-sensitivity
of an Aristotelian diagram (with respect to the background logic that is being
used) seems to be of a fundamentally different nature than the more canonical
cases of context-sensitivity, such as the deictic words ‘I’, ‘you’, ‘now’, ‘here’, etc.
(with respect to context of utterance), or the words ‘to know’ and ‘knowledge’
(with respect to epistemic standards) [38]. However, this objection fails to take
into account that the acceptance or rejection of a certain axiom is often itself
the manifestation of a substantial position in some philosophical or empirical
debate. Consider, for example, the formulas Kp and ¬KKp (where Kϕ stands
for ‘the agent knows that ϕ’). The Aristotelian relation holding between these
formulas depends on the background logic: they are contradictory in the system
S4, but subcontrary in the system T. However, these two systems only differ
from each other with respect to whether the positive introspection principle for
knowledge (Kϕ → KKϕ) is accepted as an axiom, and thus reflect different
positions in the epistemological debate on the nature of knowledge [47].

1 Strictly speaking, the term ‘context-sensitive’ does not apply to the Aristotelian dia-
gram itself, but to the fragment of formulas occurring in that diagram. Throughout
this paper, however, I will be using this term both in a strict sense (as applying to
fragments of formulas) and in a looser sense (as applying to Aristotelian diagrams).
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The paper is organized as follows. Section 2 introduces some basic notions
that will be used throughout the paper, and proposes a new account of mea-
suring the logical context-sensitivity of Aristotelian diagrams. The next three
sections deal with a single fragment of 8 formulas, and the Aristotelian dia-
grams it gives rise to under various logical systems. First, Sect. 3 introduces the
fragment and the various logical systems, and discusses their conceptual and
historical importance. Next, Sect. 4 describes the interactive application that
was developed to illustrate the context-sensitivity of this 8-formula fragment.
Finally, Sect. 5 shows how the context-sensitivity measure proposed in Sect. 2
can be applied to the 8-formula fragment, and analyzes the results of this appli-
cation. To conclude, Sect. 6 wraps things up, and mentions some questions for
further research.

2 Measuring Logical Context-Sensitivity

We begin by introducing the central notions that will be studied in this paper:

Definition 1. Let S be a logical system, which is assumed to have connectives
expressing classical negation (¬), conjunction (∧) and implication (→), and a
model-theoretic semantics (|=). The Aristotelian relations for S are defined as
follows: two formulas ϕ and ψ are said to be

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
S-contrary iff S |= ¬(ϕ ∧ ψ) and S �|= ¬(¬ϕ ∧ ¬ψ),
S-subcontrary iff S �|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
in S-subalternation iff S |= ϕ → ψ and S �|= ψ → ϕ.

Definition 2. Let S be a logical system as specified in Definition 1 and let F
be a fragment of S-contingent and pairwise non-S-equivalent formulas that is
closed under negation.2 An Aristotelian diagram for F in S is a diagram that
visualizes an edge-labeled graph G. The vertices of G 0 are the formulas of F ,
and the edges of G are labeled by the Aristotelian relations holding between those
formulas, i.e. if ϕ,ψ ∈ F stand in some Aristotelian relation in S, then this is
visualized according to the code in Fig. 1(a).

Definition 1 is a formalized version of the traditional perspective on the Aris-
totelian relations, according to which two formulas are, for example, contrary iff
they cannot be true together, but can be false together. Note that the seemingly
absolute statement “ϕ and ψ can be false together” corresponds to the statement
“there exists an S-model that satisfies ¬ϕ ∧ ¬ψ” (formally: S �|= ¬(¬ϕ ∧ ¬ψ)),
which refers to the logical system S, and is thus logic-dependent. The restric-
tions made in Definition 2 (S-contingent, pairwise non-equivalent, closed under
negation) are motivated by historical as well as technical reasons (see [42, Sub-
sect. 2.1] for details). Figure 1(b) shows a typical example of an Aristotelian

2 So for all distinct ϕ, ψ ∈ F , it holds that S �|= ϕ, S �|= ¬ϕ, S �|= ϕ ↔ ψ, and there
exists a ϕ′ ∈ F such that S |= ϕ′ ↔ ¬ϕ.
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Fig. 1. (a) Code for visualizing the Aristotelian relations, (b) an Aristotelian square
in CPL, and (c) its Boolean closure.

diagram, viz. a square for 4 formulas from classical propositional logic (CPL),
and Fig. 1(c) shows this square’s Boolean closure, i.e. the Aristotelian diagram
that consists of all contingent Boolean combinations of formulas in the square.

In its theoretical study of Aristotelian diagrams, logical geometry makes
extensive use of bitstrings. Bitstrings are representations of formulas that allow
us to easily determine the Aristotelian relations holding between these formulas.
A systematic technique for assigning bitstrings to any given finite fragment F
of formulas in any logical system S is described in detail in [11]; here we will
focus on those aspects that are relevant for our current purposes. We define the
partition ΠS(F):={∧

ϕ∈F ±ϕ} − {⊥} (where +ϕ = ϕ and −ϕ = ¬ϕ),3 and note
that every formula ϕ ∈ F is S-equivalent to a disjunction of elements of ΠS(F),
viz. ϕ ≡S

∨{α ∈ ΠS(F) | S |= α → ϕ}.4 The number |ΠS(F)| is the number of
bit positions, i.e. the bitstring length, that is required to represent the formulas
of F by means of bitstrings. If D is an Aristotelian diagram for the fragment F in
the system S, then the Boolean closure of D contains 2|ΠS(F)| −2 formulas. Con-
sider, for example, the fragment F :={p∧q,¬p∧¬q, p∨q, ¬p∨¬q} of CPL-formulas,
and its Aristotelian diagram, which is the square in Fig. 1(b). It can be shown
that ΠCPL(F) = {p∧ q,¬p∧¬q, p xor q}, and hence, the Boolean closure of the
square in Fig. 1(b) should be a diagram containing 2|ΠCPL(F)| − 2 = 23 − 2 = 6
formulas, which is exactly the hexagon in Fig. 1(c).

If a fragment F contains only S-contingent and pairwise non-S-equivalent
formulas, and is closed under negation, then the relation between the fragment’s
size (i.e. |F|) and the bitstring length required to represent it (i.e. |ΠS(F)|) can
be characterized as follows: 	log2(|F| + 2)
 ≤ |ΠS(F)| ≤ 2

|F|
2 [11, Subsect. 3.3].

Defining the n-range to be the set Rn:={x ∈ N | 	log2(n + 2)
 ≤ x ≤ 2
n
2 }, this

can trivially be reformulated as follows: if F contains the formulas appearing in

3 The set ΠS(F) is called a ‘partition’ because its elements are (i) jointly exhaustive
(S |= ∨ΠS(F)), and (ii) mutually exclusive (S |= ¬(α∧β) for distinct α, β ∈ ΠS(F)).

4 The bitstring representation of ϕ is meant to keep track which formulas of ΠS(F)
enter into this disjunction. For example, if ΠS(F) = {α1, α2, α3, α4}, then ϕ is
represented by the bitstring 1011 iff ϕ ≡S α1 ∨ α3 ∨ α4.
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some Aristotelian diagram, then |ΠS(F)| ∈ R|F| (informally: F can be repre-
sented by bitstrings of length � ∈ R|F|). Furthermore, it can be shown that all
values in the n-range Rn will be ‘needed’ at some point, in the sense that for
every � ∈ Rn, there exists a fragment/logic pair whose representation requires
bitstrings of length exactly �. Formally:

for all � ∈ Rn, there exists a fragment F (such that |F| ≤ n) and
there exists a logical system S such that |ΠS(F)| = �.

Note that in order to reach every � ∈ Rn, the statement above allows us to
choose specific values for both the ‘fragment parameter’ and the ‘logical system
parameter’ (cf. the existential quantification over F as well as S). This observa-
tion leads to the following proposal to measure the context-sensitivity of a given
Aristotelian diagram/fragment with respect to a set S of logical systems.

Proposal. The logical context-sensitivity of a given fragment F with respect to
some set S of logical systems is positively correlated to the number of values in
the |F|-range that are reached if

1. the ‘fragment parameter’ is fixed to F , and
2. the ‘logical system parameter’ varies within S.

This proposal has two limiting cases:

– F is minimally context-sensitive with respect to S.
This means that for all logical systems S,T ∈ S, it holds that |ΠS(F)| =
|ΠT(F)|. This is equivalent to there being some � ∈ R|F| such that for all
logical systems S ∈ S, it holds that |ΠS(F)| = �. Informally: by fixing the
fragment parameter to F , only a single value in the |F|-range is reached.

– F is maximally context-sensitive with respect to S.
This means that for all � ∈ R|F|, there exists a logical system S ∈ S such that
|ΠS(F)| = �. Informally: even though the fragment parameter is fixed to F ,
varying the logical system parameter within S suffices to reach all values in
the |F|-range. In other words, all bitstring lengths that might theoretically be
necessary to represent fragments of the same size as F , are already needed to
represent F itself, under the different logical systems in S.5

To illustrate this account of context-sensitivity, we will consider the case of
4-formula fragments, i.e. the case of Aristotelian squares. Note that the 4-range
is R4 = {3, 4}, which means that every Aristotelian square (regardless of the for-
mulas it contains, regardless of the logical system in which it is constructed) can
be represented by bitstrings of length either 3 or 4. Now consider the specific 4-
formula fragment F† := {all(A,B), some(A,B), all(A,¬B), some(A,¬B)}.
Informally, these formulas read as “all As are B”, “some As are B”, “all As

5 Note the subtly different quantification patterns corresponding to these two limiting
cases: minimal context-sensitivity corresponds to ∃� ∈ R|F| : ∀S ∈ S : |ΠS(F)| = �,
while maximal context-sensitivity corresponds to ∀� ∈ R|F| : ∃S ∈ S : |ΠS(F)| = �.
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Fig. 2. (a) ‘Classical’ square for F† in SYL, (b) ‘degenerated’ square for F† in FOL.
Each square is decorated with both F† and its bitstring representation.

are not B” and “some As are not B”, respectively,6 and they can be interpreted
in various ‘reasonable’ logical systems, such as FOL (contemporary first-order
logic) and SYL (i.e. FOL + ∃xAx).7 It is shown in [11, Sect. 4] that

– ΠFOL(F†) = {all(A,B)∧some(A,B), some(A,B)∧some(A,¬B), all(A,¬B)∧
some(A,¬B), all(A,B) ∧ all(A,¬B)},

– ΠSYL(F†) = {all(A,B), some(A,B) ∧ some(A,¬B), all(A,¬B)},

and hence |ΠFOL(F†)| = 4 and |ΠSYL(F†)| = 3. This shows that for all � ∈
R4 = {3, 4}, there exists a logical system S ∈ S† := {FOL,SYL} such that
|ΠS(F†)| = �, and hence, the fragment F† is maximally context-sensitive with
respect to S†. This context-sensitivity can also clearly be seen in the Aristotelian
diagrams themselves: in SYL, the fragment F† gives rise to a ‘classical’ square
of opposition, which is shown in Fig. 2(a) and can be represented by bitstrings
of length 3, whereas in FOL, the same fragment gives rise to a ‘degenerated’
square or “X of opposition” [3, p. 13], which is shown in Fig. 2(b) and can be
represented by bitstrings of length 4.

3 Categorical Statements and Subject-Negation

At the end of the previous section, I introduced the fragment F†, and showed it
to be maximally context-sensitive with respect to the reasonable logical systems
in S†. The next three sections of this paper will be devoted to studying and
illustrating the context-sensitivity of a larger fragment F‡ (which includes F†

itself) with respect to a larger set of logical systems S‡ (which includes S† itself).
I start by introducing the fragment F‡ and the logical systems in S‡.

The statements in the original fragment F† are categorical statements, which
are of the form quantifier(subject, predicate). They are among the oldest sen-
tences to be studied from a logical perspective [32], and traditionally, they
6 As is well-known, in the language of first-order logic, these formulas can be formalized

as ∀x(Ax → Bx), ∃x(Ax ∧ Bx), ∀x(Ax → ¬Bx) and ∃x(Ax ∧ ¬Bx), respectively.
7 Later in the paper, I will have more to say about when exactly a logical system can

be considered ‘reasonable’ for a given fragment.
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Fig. 3. (a) Aristotelian square for F‡ − F† in FOL({A2}), (b) Aristotelian octagon for
F‡ in FOL({A1, A2, A3, A4}).

are classified according to their quantity and quality. With respect to quan-
tity, we distinguish between universal and particular statements, whose quan-
tifiers are all and some, respectively. With respect to quality, we distinguish
between affirmative and negative statements, whose predicates are of the form
B and ¬B, respectively. The traditional classification according to quality is thus
exclusively based on whether the statements’ predicates are negated. Over the
course of history, however, logicians have also become interested in the effects of
subject negation [7,8,16,21,22,25,35,37], thereby obtaining the new statements
all(¬A,B), some(¬A,B), all(¬A,¬B), some(¬A,¬B). The 8-formula fragment
F‡ is defined to contain exactly these 4 new statements, together with the 4
original statements of F†. It thus trivially holds that F† ⊆ F‡.

The 4 new statements can themselves be used to construct a second Aris-
totelian square. Figure 3(a) shows this square, as constructed in the logical sys-
tem FOL({A2}), which will be described below. Note that this square is classi-
cal (i.e. not degenerated) iff the underlying logic contains ∃x¬Ax as an axiom,
which is analogous to the first square (for F†) being classical iff the underly-
ing logic contains ∃xAx as an axiom. More interestingly, we can also consider
Aristotelian diagrams for the entire 8-formula fragment F‡. Some authors have
proposed an octagon [16,21,22], while others have made use of a cube [8,25,37].
In the current paper, the fragment F‡ will always be visualized by means of
an octagon. Figure 3(b) shows this octagon, as constructed in the logical system
FOL({A1, A2, A3, A4}), which will also be described below. Because of the logi-
cal context-sensitivity of Aristotelian diagrams, other logical systems will lead to
other versions of this octagon. I will therefore now introduce the various logical
systems in which the Aristotelian octagon for F‡ will be constructed.

The logical systems that will be relevant for our purposes all consist of
first-order logic (FOL), with additional axioms coming from the set AX :=
{A1, A2, A3, A4, A5, A6}, which contains the following statements:
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A1 ∃xAx A3 ∃xBx A5 ∃x¬(Ax ↔ Bx)
A2 ∃x¬Ax A4 ∃x¬Bx A6 ∃x¬(Ax ↔ ¬Bx)

For any set A ⊆ AX , let FOL(A) be the logical system that is obtained by
adding the formulas in A as axioms to FOL. We will be interested in the set
of logical systems S‡ := {FOL(A) | A ⊆ AX}. Note that all the statements in
AX are independent of each other, in the sense that there exist no A ⊆ AX
and α ∈ AX − A such that α is derivable in FOL(A) (in which case we would
have FOL(A) = FOL(A ∪ {α})); this means that the logical systems in S‡ are
all distinct from each other, and hence S‡ contains exactly |℘(AX )| = 2|AX| =
26 = 64 distinct logical systems. The weakest system in S‡ is FOL(∅), i.e. FOL
itself, while the strongest system in S‡ is FOL(AX ). Finally, note that since
FOL = FOL(∅) and SYL = FOL({A1}), it holds that S† = {FOL,SYL} ⊆ S‡.

All the logical systems in S‡ are ‘reasonable’ to a certain degree, in the sense
that all of their axioms have been defended by various logicians in relation to
substantial philosophical and psychological debates. To begin with, note that all
systems in S‡ are extensions of the system FOL of first-order logic, which is itself
by far the most widely used logical system today. Next, the statements A1–A4
can all be seen as (partial) interpretations of the traditional existential import
principle. According to its most cautious interpretation [5,40], this principle
states that the predicate occuring in the first argument position of a categor-
ical statement should not have an empty extension, which is captured by A1.
However, another interpretation is that all predicates should have non-empty
extensions, regardless of whether they occur in the categorical statement’s first
or second argument position [39]; this means that both A1 and A3 should be
accepted as axioms. Furthermore, based on psychological considerations, authors
such as Seuren [39] have argued that just as a predicate’s extension should not be
allowed to be empty, it should not be allowed to encompass the entire universe
either; this means that A2 and/or A4 should be accepted as axioms. The most
liberal interpretation of the existential import principle, then, which is held by
authors such as Keynes [22], Johnson [21] and Hacker [16], takes this principle
to state that all of A1, A2, A3 and A4 should be accepted as axioms.

Finally, the statements A5 and A6 have been defended by Reichenbach [37].
Informally, the former states that the predicates A and B should not be perfect
synonyms, while the latter states that A and B should not be perfect antonyms.
More precisely, these statements impose a strict correlation between syntactic
differences and semantic differences. For example, A5 states that since there is
a syntactic difference between the predicates A and B (viz. they are symbolized
using different letters), there should also be a semantic difference between them
(viz. they should have different extensions). A similar principle is at work in
Wittgenstein’s version of predicate logic, in which distinct variables are taken to
have distinct values [46,48].8 From a more empirical perspective, principles such

8 For example, in this system, the sentence ‘there are at least two As’ would not be
formalized as ∃x∃y(Ax ∧ Ay ∧ x �= y), but simply as ∃x∃y(Ax ∧ Ay): the syntactic
difference between the variables x and y suffices to indicate that there is also a
semantic difference between them, i.e. that they have distinct values.
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Fig. 4. Screenshot: the Aristotelian diagram for F‡ in the system FOL({A1, A3, A5}).

as A5 and A6 seem to be related to linguistic work on language evolution and
language acquisition, in which it is often assumed that humans have an (innate)
tendency to avoid perfect synonyms as much as possible [6,18,26].

4 An Interactive Illustration

Earlier research on the logical context-sensitivity of Aristotelian diagrams has
focused on (families of) logics such as epistemic logic [14] and metalogic [12]. In
contrast to these more advanced case studies, the fragment F‡ and the logics
in S‡ presented in this paper are quite elementary, which renders them particu-
larly suitable for explaining the phenomenon of context-sensitivity to a broader
audience. In order to support and facilitate this pedagogical goal, an interactive
application has been created and made available online, at the following location:
http://www.logicalgeometry.org/octagon context.html.

The application was developed using the XML-based Scalable Vector Graph-
ics format (for the graphical aspects) and JavaScript (for the interactivity). The
user interface has been kept very simple: the screen is vertically divided into a
left half and a right half. The left half shows the Aristotelian diagram for F‡,
based on the logical system that is currently ‘activated’. The right half contains
6 ‘axiom buttons’ and 3 ‘auxiliary buttons’. The former correspond exactly to
the statements in AX , and each of them can be activated or deactivated. In this
way, the user can select any of the logical systems FOL(A) ∈ S‡, by activating
exactly the axiom buttons corresponding to the statements in A. As the user
activates or deactivates a particular axiom (and thus goes from one logical sys-
tem to another one), she can immediately observe the effects of this change on
the Aristotelian diagram for F‡ on the left half of the screen. For example, the
screenshot in Fig. 4 shows that the user has activated the axiom buttons corre-
sponding to A1, A3 and A5, and hence the application shows the Aristotelian
diagram for F‡ in the system FOL({A1, A3, A5}).

http://www.logicalgeometry.org/octagon_context.html
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Fig. 5. Screenshot: the Aristotelian diagram for F‡ in the system
FOL({A1, A2, A3, A4}), its bitstring representation, and a popup window show-
ing the formulas of ΠFOL({A1,A2,A3,A4})(F‡) (in simplified form).

In addition to the 6 axiom buttons, the right half of the screen also con-
tains 3 auxiliary buttons. The first button allows the user to decide whether
the bitstring representations of the F‡-formulas should be shown next to these
formulas. Recall that the bitstring representation of a given formula depends
on the logical system that is currently activated; for example, a single formula
might correspond to a bitstring of length 6 in one logical system, and to a bit-
string of length 9 in another logical system. Consequently, if the ‘show bitstrings’
button is switched on and the user activates or deactivates a particular axiom
(and thus goes from one logical system to another one), this will not only affect
the Aristotelian diagram for F‡ itself, but also the bitstring representations of
the formulas in that diagram. In this way, the user can easily experiment with
the various logical systems in S‡, and explore which systems give rise to which
kinds of bitstrings, etc. Finally, there are two buttons that launch popup win-
dows showing the bitstring semantics, i.e. the formulas in ΠS(F‡), with respect
to which the bitstrings for F‡ are defined (where S ∈ S‡ is the logical system
that is currently activated). Recall from Sect. 2 that these formulas are formally
defined as conjunctions of (negations of) the formulas in F‡; however, in many
cases, these long conjunctions can be simplified to equivalent, but much shorter
formulas. One button shows the bitstring semantics in normal form (i.e. as the
original conjunctions), while the other one shows it in simplified form.

For example, the screenshot in Fig. 5 shows that the user has activated the
axiom buttons corresponding to A1, A2, A3 and A4, and hence the application
shows the Aristotelian diagram for F‡ in the system FOL({A1, A2, A3, A4})—
also see Fig. 3(b). Furthermore, the ‘show bitstrings’ button has been switched
on, so the formulas of F‡ are shown together with their bitstring representations.
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Since |ΠFOL({A1,A2,A3,A4})(F‡)| = 7, these are bitstrings of length 7. Finally,
clicking the ‘show bitstring semantics in simplified form’ button has launched a
popup window showing the 7 (simplified) formulas in ΠFOL({A1,A2,A3,A4})(F‡).

5 Theoretical Analysis

Making use of the application described in the previous section, it can easily be
observed that each of the 64 logical systems in S‡ gives rise to a different Aris-
totelian diagram for F‡.9 This can be explained by noting that the octagon for
F‡ contains exactly 6 squares,10 and each square corresponds exactly to a state-
ment in AX : the square is classical (i.e. not degenerated) iff the corresponding
statement is an axiom in the logical system with respect to which the octagon is
defined. For example, the octagon for F‡ with respect to FOL({A1, A2, A3, A4})
in Fig. 3(b) contains 4 classical squares (viz. those corresponding to A1, A2, A3
and A4) and 2 degenerated ones (viz. those corresponding to A5 and A6). Fur-
thermore, note that this precise correspondence between the 6 squares inside the
octagon for F‡ and the 6 statements A1–A6 further corroborates the claim that
A1–A6 are the most natural axioms to consider when studying F‡.

The fact that each logical system in S‡ gives rise to a different Aristotelian
diagram for F‡ is already a powerful illustration of the context-sensitivity of
F‡ with respect to S‡. To assess this context-sensitivity in a mathematically
more precise way, we will now make use of the account proposed in Sect. 2.
Since |F‡| = 8, we are interested in the 8-range, which is easily calculated to
be R8 = {4, 5, . . . , 15, 16}. Recall that this intuitively means that every possible
Aristotelian octagon (regardless of the formulas it contains, regardless of the log-
ical system in which it is constructed) can be represented by bitstrings of length
between 4 and 16 (inclusive). Again making use of the application described in
the previous section, we obtain Table 1.11

For example, the cell on the uppermost row and rightmost column of Table 1
tells us that if we are working in the system FOL({A1, A2, A3, A4}), the fragment
F‡ can be represented by bitstrings of length 7 (also see Fig. 5).

Comparing Table 1 with the 8-range, several observations can be made. First
of all, note that even though the logical systems in S‡ all give rise to different
Aristotelian diagrams for F‡, it is not the case that they all give rise to different
bitstring lengths (which is impossible, since |S‡| = 64 > 13 = |R8|). It turns
out that only 8 bitstring lengths are required to represent F‡ under the various
systems in S‡, viz. 16, 12, 10, 9, 8, 7, 6 and 5. Since 8

|R8| = 8
13 ≈ 0.62, this

9 We already encountered a similar situation in Sect. 2, where it was shown that each
system in F† gives rise to a different Aristotelian square for F†; see Fig. 2.

10 An Aristotelian octagon can be seen as consisting of 4 pairs of contradictory for-
mulas (PCDs), and a square as 2 PCDs. The number of squares inside an octagon
thus equals the number of ways in which one can select 2 PCDs out of 4 (without
replacement), which is

(
4
2

)
= 4!

2!2!
= 6.

11 For reasons of space, a logical system such as FOL({A1, A2, A3}) is abbreviated as
‘123’, and the bitstring length |ΠS(F‡)| as �S.
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Table 1. The 64 logical systems in S‡ and the corresponding bitstring lengths.

S �S S �S S �S S �S S �S S �S S �S S �S

∅ 16 13 10 46 10 235 9 234 8 356 8 1356 7 1234 7

1 12 14 10 35 10 246 9 146 8 456 8 1346 7 23456 6

2 12 15 10 36 10 134 8 236 8 3456 7 1345 7 13456 6

3 12 16 10 12 9 135 8 245 8 2456 7 1256 7 12456 6

4 12 23 10 34 9 123 8 156 8 2356 7 1246 7 12356 6

5 12 24 10 56 9 124 8 256 8 2346 7 1245 7 12346 6

6 12 25 10 136 9 125 8 345 8 2345 7 1236 7 12345 6

45 10 26 10 145 9 126 8 346 8 1456 7 1235 7 123456 5

means that of all the bitstring lengths that might theoretically be necessary to
represent an arbitrary 8-formula fragment with respect to an arbitrary logical
system, about 62 % is already necessary to represent the particular fragment F‡

with respect to the particular logical systems in S‡.
In terms of extreme values, we see that the highest value in the 8-range is

reached, i.e. there is a system S ∈ S‡ such that |ΠS(F‡)| = 16, viz. S = FOL(∅).
By contrast, the lowest value in the 8-range is not reached, i.e. there is no S ∈ S‡

such that |ΠS(F‡)| = 4. In other words, even though there exist some 8-formula
fragment F and some logical system S such that |ΠS(F)| = 4, we cannot take
F = F‡ and S ∈ S‡.12 Note, however, that the second lowest value in the 8-
range is reached by some system in S‡, since |ΠFOL(AX )(F‡)| = 5. The weakest
logical system FOL(∅) thus yields the highest bitstring length (16), while the
strongest logical system FOL(AX ) yields the lowest (attainable) bitstring length
(5). This suggests an inverse correlation between logical strength and bitstring
length: stronger logical systems yield shorter bitstrings. The intuitive explana-
tion of this inverse correlation is based on the fact that bitstring length is itself
positively correlated to the size of the Boolean closure (cf. Sect. 2): a stronger
logical system can prove more formulas in the Boolean closure of F‡ to be equiv-
alent to each other, so this Boolean closure will contain fewer formulas (up to
logical equivalence), which in turn means that the bitstrings will be shorter.

In order to make this inverse correlation more precise, note that for logical
systems S ∈ S‡, the logical strength of S can be taken to be simply the number
of statements in AX that are axioms of S. In other words, for A,B ⊆ AX , we
say that FOL(A) is stronger than FOL(B) iff |A| > |B|. The inverse correlation
between logical strength and bitstring length can now be expressed as follows:

for all A,B ⊆ AX : if |A| < |B|, then |ΠFOL(A)(F‡)| ≥ |ΠFOL(B)(F‡)| (InvCor)

12 There certainly do exist systems S such that |ΠS(F‡)| = 4. This is the case, for
example, for the system S∗ that is obtained by adding to FOL(AX ) the additional
axiom all(A, B)∨all(A, ¬B)∨all(¬A, B)∨all(¬A, ¬B). Note, however, that S∗ /∈ S‡,
and, more importantly, S∗ is far less reasonable than any of the systems in S‡.
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The truth of (InvCor) can be checked by means of Table 1. Furthermore, note
that we almost have an even stricter version of this inverse correlation princi-
ple, in the sense that for almost all sets A,B ⊆ AX , the comparison operator
≥ in the consequent of (InvCor) can be replaced by >. As can be verified
by means of Table 1, the only counterexamples to this stricter claim involve
A ∈ {{A1, A2}, {A3, A4}, {A5, A6}} and B ∈ {{A1, A3, A6}, {A1, A4, A5}, {A2,
A3, A5}, {A2, A4, A6}}, in which case we have |A| = 2 < 3 = |B| and yet
|ΠFOL(A)(F‡)| = 9 = |ΠFOL(B)(F‡)|.

6 Conclusion

This paper has studied the logical context-sensitivity of Aristotelian diagrams,
focusing on the fragment F‡ of categorical statements with subject negation,
and the set S‡ of logical systems based on the axioms in AX . I have described
an interactive application that can help to illustrate the context-sensitivity of
F‡ with respect to S‡. On the theoretical side, I have proposed a new account
to measure the context-sensitivity of Aristotelian diagrams, and shown that it
leads to precise yet highly intuitive results in the case of F‡ and S‡. In future
work, this account will be applied to other fragments and logical systems.
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