
Representing and Communicating Context
in Multiagent Systems

Sonia Rode and Roy M. Turner(B)

School of Computing and Information Science,
University of Maine, Orono, ME 04469, USA

{sonia.rode,rturner}@maine.edu

Abstract. Context-aware agents operating in a cooperative multiagent
system (MAS) can benefit from establishing a shared view of their con-
text, since this increases coherence and consistency in the system’s behav-
ior. To this end, agents must share contextual knowledge with each other.
In our prior work on context-mediated behavior, agents used frame-based
contextual schemas (c-schemas) to explicitly represent and reason about
context. While an expressively rich approach, the lack of formal structure
poses problems for mutual understanding of c-schemas among agents in
a MAS. As we are interested MASs with heterogeneous agents, not only
will agents represent c-schemas in idiosyncratic ways, but the set of c-
schemas known by each agent will differ. In this paper we propose a new,
related representation of contextual knowledge using description logic
and a shared ontology, and we present a technique for communicating
contextual knowledge while respecting bandwidth limitations.

Keywords: Multiagent systems · Communicating contextual knowl-
edge · Context representation

1 Introduction

Multiagent systems (MASs) are groups of intelligent agents that interact, usually
to carry out a set of goals. They are of interest for a variety of tasks, from
autonomous exploration to data collection (e.g., [6]) to e-commerce. A MAS
may be cooperative, in which case the agents work together to achieve common
goals, or the individual agents may be self-interested and each work to satisfy
their own goals, which may or may not align with some global set of goals.

While a great deal of work has been done on the problem of ensuring that
individual agents behave appropriately for their context, much of it reported
in this conference series, much less has focused on agents working in a MAS.
However, context-appropriate behavior is just as important for an agent in a
MAS, and it is important that the MAS as a whole behaves appropriately for
its context.

The problem is more difficult than for a single agent. The contexts of indi-
vidual agents now always include other agents, which may be unpredictable to

c© Springer International Publishing Switzerland 2015
H. Christiansen et al. (Eds.): CONTEXT 2015, LNAI 9405, pp. 257–270, 2015.
DOI: 10.1007/978-3-319-25591-0 19



258 S. Rode and R.M. Turner

some extent and which are themselves behaving in ways influenced by their own
contexts. There is also the opportunity for agents to gather information from
others to better understand their context, but at the cost of added complexity,
effort, and time.

While we could focus only on agent-level context recognition and hope that
globally-appropriate behavior will emerge from the interactions of the agents,
this suffers from problems similar to agent-level control of planning in multia-
gent systems, primarily a lack of global coherence. Instead, the MAS, or at least
a subset of its agents, should attempt to share information about the context
to arrive at a shared, more complete “partial global context” (to borrow from
partial global planning [7]). The individual agents, as well as any control mech-
anisms for the MAS as a whole, can then take the shared context into account
when determining how to achieve individual goals, organize the agents, assign
tasks, and coordinate agents’ actions.

The ability to reason and communicate about the context implies that the
context is explicitly represented. It also implies that there is a message protocol
for communicating about the context, and that there is a way for different agents
to represent contexts and agree on the meaning of contextual knowledge. This
implies that there exists a representation language for contextual knowledge as
well as a shared ontology that the agents can refer to for terms’ meanings.

In earlier work [18], we described an approach to multiagent context-
appropriate behavior that we called distributed context-mediated behavior, which
we refer to here as multiagent context-mediated behavior, or MASCon.1 This app-
roach relies on agents communicating about their perceived context, knowledge,
goals, and percepts in order to arrive at a representation of the MAS’s global con-
text (the context representation, or CoRe). The process involves context represen-
tation, local context assessment, communication, and a distributed assessment of
the global context.

This paper focuses on the communication aspects of MASCon, including how
contextual knowledge is represented to facilitate communication (and reasoning)
about context. We focus first on representation, and describe the description
logic-based representation of contexts and contextual knowledge, an ontology for
contextual knowledge, and how that knowledge is represented as c-schemas. The
c-schemas themselves can be viewed collectively as forming a kind of ontology for
contexts. We then discuss context-related communication in MASCon. Part of
this involves a message protocol for communicating about context that attempts
to minimize bandwidth needed, (synergistic with any data compression that
might be used) which is a key concern for some domains (e.g., a MAS consisting
of underwater vehicles). The other part is deciding what to communicate about
the context in order for agents to arrive at a shared understanding.

1 The name seems appropriate, since just as a mascon is a concentration of mass that
affects (e.g.) a satellite’s orbit, our approach relies on a concentration of contextual
knowledge to affect a MAS’s behavior.



Representing and Communicating Context in Multiagent Systems 259

2 Representation Language

Agents need a shared language and ontology in order to communicate about any-
thing, not just their context, and there has been much work on both in artificial
intelligence, especially in the area of multiagent systems. Unfortunately, most
work on knowledge representation and ontologies has not focused on contextual
knowledge per se, but rather on domain and problem-solving (e.g., planning)
knowledge. This is largely because context has seldom been considered as a
first-order concept, but instead has been treated implicitly.

Context has been considered a first-order concept in some formal logic work,
especially in the context community (e.g., [4,8,12]), and in some non-logical
approaches (e.g., [3,9]). Our previous work has also addressed this by creating
explicit representations for contexts (c-schemas) and for the contextual knowl-
edge they must contain [17].

Unfortunately, our prior work lacked a formal representation language, and
the ontology and semantics were idiosyncratic to each project and somewhat ad
hoc. This is problematic if agents are to interact with others that may not have
the same designers or reasoning mechanisms, such as would be the case in some
open multiagent systems (e.g., autonomous oceanographic sampling networks
[6]). In addition, the representation was frame-based, which has some beneficial
properties, especially knowledge clustering, but for which there are no really
good, widely-accepted reasoning mechanisms as there are, say, for formal logic.

What is needed, then, is an ontology for contextual knowledge and a way to
represent it for communication that has a well-defined, formal basis, for which
there are tractable reasoning mechanisms, and that is amenable to being related
to a shared ontology.

For these reasons, we are now basing our contextual knowledge represen-
tation on description logic [1], a widely-used formalism in multiagent systems
and the semantic web [2]. There has been other work on representing contextual
knowledge as description logic, for example the work of Wang et al. [19], which
was based on the Web Ontology Language (OWL). However, since their repre-
sentation of context does not include guidance for behavior, it is not sufficient
for our purposes.

We assume that most readers will have some familiarity with description
logic (DL), and only a quick overview is presented here to allow others to under-
stand terms in the rest of the paper. DL is a set of languages based around
the idea of sets of individuals, restrictions on set membership, operators, and
subsumption. A description of a set of individuals is termed a concept, for exam-
ple, AUV (autonomous underwater vehicle). Concepts are viewed as having roles
that can be used to restrict the individuals that are members of the set; for
example, (AND AUV (SOME hasColor Yellow))2 would denote the set of yellow
AUVs. This example also shows an operator, conjunction, and the existential
quantifier.

2 Sometimes written AUV � ∃ hasColor.Yellow.



260 S. Rode and R.M. Turner

Determining subsumption is the primary inference type in DL: if A and B
are concepts (i.e., descriptions of sets), then A is said to subsume B if B ⊆ A.
For example, the atomic concept AUV subsumes the more restricted description
above for yellow AUVs. Although relatively straightforward, for some description
logics, subsumption checking is intractable in the worst case.

The particular DL we use in our work is a version of the language L1 as
specified by Teege [15], which allows concept union, concept intersection, existen-
tial role restriction, minimum cardinality role restriction, and role composition.
Axioms can be defined using these operators and used as concept definitions. The
operators provide sufficient expressive power for our purposes. The L1 language
has the property of structural subsumption, which means that the subsumption
test on concepts always reduces to subsumption tests of single clauses. A clause
is a description that cannot be further decomposed into a conjunction. The rea-
son we require structural subsumption is to allow for an efficient algorithm for
communicating contexts, which will be discussed in detail later.3

The version of L1 we use adds datatypes, equivalent to the way one of the
Web Ontology Language (OWL) variants, OWL-DL [13], uses them. Datatype
roles are permitted, which are similar to regular roles but with data values
(e.g., integers, strings, etc.) as opposed to concepts as the fillers. This does
not interfere with the use of structural subsumption in our algorithm. For our
purposes, datatype roles are treated like regular roles, and we consider that a
data value “subsumes” another whenever the two values are of the same type.

A concept such as Yellow or AUV is an atomic concept. These concepts live
in an ontology, an isa hierarchy that directly shows the set–subset relationships
between the concepts. Figure 1 shows a portion of the ontology we use in this
project, for example (with subtrees not shown for some concepts).

OceanFloor

AbstractThing

PrescriptiveContextualKnowledge

ProceduralContextualKnowledge

AttentionFocusingContextualKnowledge

StandingOrders

EventHandlingKnowledge

ContextualKnowledge

DescriptiveContextualKnowledge

PredictedContextualKnowledge

ContextDependentSemantics

Action

AbortMission

Communicate

Navigate

PositionFix

Sample

Search

Goto

MaintainPosition

Transit

Thing

AUV
PhysicalThing

Sensor

Mine

Effector

OceanThing

OceanSurface

WaterColumn

Vehicle

Submarine

Ship

Fig. 1. A portion of the ontology. Thing is the top-level concept. Some subtrees are
hidden to save space.

3 Structural subsumption is weaker than logical subsumption [1].



Representing and Communicating Context in Multiagent Systems 261

All concept definitions as well as all axioms in DL belong to what is called the
reasoner’s terminological box, or TBox. In the case of this project, all agents will
have some common knowledge in their TBoxes, that is, their shared knowledge,
including the ontology, will mostly reside there.

3 Contextual Knowledge

There are two main concerns when explicitly representing knowledge about con-
texts: representing the contexts themselves, and representing the kinds of con-
textual knowledge they can contain.

MASCon, like all of our projects based on context-mediated behavior, repre-
sents contexts as knowledge structures called contextual schemas, or c-schemas.
In the past, these have been frame-like structures with roles defining the kinds
of knowledge being represented: knowledge for handling unanticipated events,
for modifying goal priorities, and so forth. In this project, we have largely done
away with this frame-like nature. Instead, c-schemas are primarily containers for
description logic statements (concept descriptions and axioms) that apply in the
represented context (cf. Guha’s [10] microtheories).

A c-schema contains several types of knowledge about the represented con-
text, each of which is best represented as a type of knowledge in its own right,
i.e., a concept in the ontology. This allows the reasoner to easily determine
what the knowledge is and how it is meant to be applied in the situation. Some
researchers in the pervasive computing community (e.g., [19]) have also devel-
oped ontologies for context, but the kinds of contextual information used in
that community tend to be only a subset of what is needed for context-sensitive
behavior in agent-based and multiagent based systems.

We can broadly classify the needed contextual knowledge as being either
descriptive or prescriptive. The former describes the features expected in the
context, that is, the features of situations that are instances of the context. This
knowledge is used in assessing the context, and it can be used to generate predic-
tions about unseen features of the situation and to help understand newly-seen
features. Part of descriptive knowledge is also any context-dependent seman-
tics, for example, what a fuzzy logic or description logic concept might mean in
the context that is different from its normal meaning. Prescriptive knowledge
tells the agent how to behave in the context. There are several kinds: knowl-
edge about goals and their context-appropriate priority, ways to achieve goals in
the context, how to recognize and handle unanticipated events, and how to set
non-goal-based behavioral parameters appropriately (e.g., sonar status, recom-
mended depth envelope, etc.). In the case of multiagent systems, actions would
also include such things as how/when/what to communicate, how to organize
the group of agents, authority relationships, if any, and so forth.

Each kind of contextual knowledge is present in the agents’ shared ontology,
as shown in Fig. 1 (StandingOrder represents behavioral parameter settings).
This allows agents to communicate about the contents of c-schemas without
the problem of being misunderstood. The definitions of concepts in the ontol-
ogy contain not just their name, but also their roles and their definitions in



262 S. Rode and R.M. Turner

Fig. 2. Some definitions of contextual knowledge concepts

terms of other concepts. Figure 2 shows some of the definitions for our contextual
knowledge.

The actual concept descriptions in a c-schema will make use of these con-
cepts; for example, the description:

(AND EventHandlingKnowledge (SOME handlesEvent PowerFailure)

(SOME hasImportance High)

(SOME respondsWithAction AbortMission))

describes a piece of event-handling knowledge telling an AUV that is suffering a
power failure that the event is very important and can best be handled in this
context by aborting the mission.

Within a c-schema, a piece of contextual knowledge (an assertion) is associ-
ated with a name that is unique across all of the agent’s knowledge. For shared
(“prototype”) c-schemas that are part of the MAS’s common knowledge, all
agents know these unique names. We require this to reduce bandwidth via our
message protocol (see below).

In addition to a name, each assertion can also have associated metadata that
is not part of the DL description. This is useful for knowledge that would be
inconvenient or impossible to represent using the description logic in use. For
example, we would like each concept within a c-schema to have an associated
certainty factor (CF) representing the agent’s certainty that the concept occurs



Representing and Communicating Context in Multiagent Systems 263

or is relevant to the context; this is used by MASCon in context assessment,
making predictions, etc. However, if the CFs were represented as part of the
assertion, then they would be taken into account during subsumption, causing
subsumption that would otherwise succeed to instead fail due solely to differing
CFs. Consequently, CFs are represented as metadata.

Figure 3 shows an example of part of a contextual schema in our approach,
in this case, one that represents being in the context of performing a sampling
mission. The names of the pieces of contextual knowledge are unimportant for
our purposes, but note that each piece has a description and a piece of metadata,
the certainty factor. The c-schema predicts (or matches) that the mission area is
large (BSM-1) and that the agent has a sampling mission active (BSM-2). What
“large” (Broad) means is also defined in terms of a fuzzy membership function
(BSM-3). This is one way in which the semantics of terms used by the agent
are context-dependent in our approach. The c-schema also suggests a behavioral
parameter setting that is appropriate for the context (a “standing order”), i.e.,
that obstacle sensitivity should be High (BSM-4). The portion shown also con-
tains some event-handling knowledge about sensor failures as well as some action
information.

Fig. 3. Part of the contextual schema BroadSamplingMissionCtx (Format: label(CF):
description)



264 S. Rode and R.M. Turner

Conceptually, contextual schemas themselves are part of the ontology. Each
c-schema describes a concept corresponding to a context, or set of situations. C-
schemas exist within generalization/specialization hierarchies in much the same
way concepts are related an ontology. For example, the context “in a harbor” is
a generalization of “in Portsmouth Harbor”. In addition, agents share knowledge
about c-schemas representing prototype contexts.

However, c-schemas are different than other concept descriptions. First, they
contain a significant amount of knowledge that is not in the form of DL roles
(e.g., metadata, information to index other related c-schemas, etc.). Second,
although they do have specialization/generalization relationships, these can rep-
resent other c-schemas that they were derived from or that they can be found
from (in memory) instead of true subclass relationships. Third, unlike an ontol-
ogy, both the set of c-schemas and their relationships to one another are expected
to change relatively frequently as an agent experiences new situations that lead
to creating new c-schemas or modifying existing ones. And fourth, unlike ontol-
ogy concepts, many c-schemas will be idiosyncratic to particular agents, since
not all agents will experience the same contexts as they operate.

For these reasons, we treat c-schemas differently than other parts of an agent’s
ontology. An agent has a separate c-schema memory that changes over time as it
gains experience. The schema memory is assumed to organize c-schemas in gen-
eralization/specialization hierarchies that can be traversed based on features of
the situation to find c-schema(s) matching the situation [17,18]. Such a memory
is essentially a set of dynamic discrimination networks that change based on the
memory’s contents. As an agent gains experience, it will create and store new
c-schemas in this memory, and it may learn new connections between existing
c-schemas. Shared prototype c-schemas are considered fixed across the agents,
corresponding in some ways to a shared “upper ontology”. However, how c-
schemas are indexed in agents’ memory and any idiosyncratic c-schemas derived
from the prototypes will likely differ from agent to agent.

4 Communicating About Context

In MASCon, agents communicate about their context during distributed context
assessment as well as when deciding what the context means in terms of their
behavior. If only the prototype contexts were considered, communication would
be trivial: just an identifier for the shared c-schema would need to be sent.
However, it is more likely over time, as agents learn new contexts, that agents
will each believe that the current situation is an instance of one of their own
known idiosyncratic contexts.

We do not want the agents just to send the complete contents of such c-
schemas to others. One reason is bandwidth. In many domains of interest, band-
width is quite limited; for example, in the underwater vehicle domain, maximum
bandwidth is on the order of 60 kbit/s or less [14]. Consequently, saving band-
width is critical for MASs operating in those environments. The second reason
is a matter of focus. If all information is sent, then the other agent has to try to



Representing and Communicating Context in Multiagent Systems 265

match a large amount of knowledge against all of its own c-schemas; if we can
provide some commonality, then the receiver can focus immediately on its own
c-schema and the differences between it and what was sent.

In our approach, an agent makes use of its shared contextual knowledge, rep-
resented as prototypical c-schemas, to communicate only what is needed to allow
the recipient to regenerate the idiosyncratic contexts from its own prototypical
contextual schemas. This is reminiscent of earlier work on the agent communi-
cation language COLA [16], which also was concerned with limiting bandwidth
by appeal to shared knowledge. While at the current time we are focused on
communicating contextual knowledge, our approach is not incompatible with a
COLA-based communication system.

There are two major problems to be addressed for agents communicating
about contextual knowledge. The first is what message protocol to use when
exchanging messages. The second is determining what to send.

4.1 Message Protocol

MASCon’s message protocol focuses on the different kinds of relationships
between knowledge in an idiosyncratic context and in prototype ancestors. Com-
municating about an idiosyncratic context will require multiple messages, since
the prototypical context will have to be identified, then differences from it will
need to be communicated. Which message types are sent is determined by the
algorithms described in the next section.

Figure 4 shows the grammar for our message protocol. Strings on the right-
hand side of <ck-code> are abbreviations for our six types of contextual knowl-
edge: predicted context features, context-dependent semantics, standing orders,

Fig. 4. The message protocol



266 S. Rode and R.M. Turner

Fig. 5. Two partially-matching pieces of contextual knowledge

event-handling knowledge, attention-focusing knowledge, and procedural
knowledge.

When an idiosyncratic context K contains some of the same contextual knowl-
edge as a prototype ancestor (shared) c-schema P, an ALL-MSG, ALL-EX-MSG, or
SOME-MSG is used. Suppose P has three pieces of event-handling knowledge with
identifiers p1, p2, and p3. Then the message

ALL EHK P 0.9 0.8 0.7
that K has all the event-handling knowledge from P. The float values are the
certainty factors for the three pieces of knowledge in K. The ordering of the cer-
tainty factors in the message correspond to the order in which the event-handling
knowledge is found in P. In contrast, the message

ALL EHK P EXCEPT p2 0.9 0.7
means that K includes all the event-handling knowledge from P except p2. We
can refer to the pieces of knowledge by name, as we can rely on their order, since
the representations of the prototypes are known to both the sender and receiver
as shared knowledge. Alternatively, the message

SOME p1 p3 0.9 0.7
has the same meaning as the ALL-EX message, and is the better choice in this
case because it is shorter.

Up to this point, we have been concerned with the case in which K may not
match P exactly, but some or most of its corresponding contextual knowledge
does match. However, corresponding pieces of contextual knowledge may only
partially match in many cases. This case is handled by the MOD-MSG message
type.

The two descriptions of AttentionFocusingKnowledge shown in Fig. 5 have
some role restrictions in common and some that differ. If we suppose that
rm-afk-1 belongs to a prototypical c-schema, we can use a MOD-MSG to express
sm-afk-1. The <dl-difference>+ part of a MOD-MSG message will describe the
differences between rm-afk-1 and sm-afk-1 and allow for the agent receiving
the message to reconstruct sm-afk-1.

A NEW-MSG message, which sends a verbatim description of knowledge, is
used as a last resort when none of the other message types can capture a piece
of knowledge. The circumstances in which a NEW-MSG is used are outlined in the
next section.



Representing and Communicating Context in Multiagent Systems 267

4.2 Deciding What to Send

We have devised an algorithm by which agents can generate a set of messages
to completely describe an idiosyncratic context. The algorithm, which assumes
an agent can correctly retrieve the prototypical ancestor(s) of an idiosyncratic
context, is divided into two phases. The first phase generates message types
ALL-MSG, ALL-EX-MSG, and SOME-MSG, which are the message types that deal with
direct matches between idiosyncratic and prototypical knowledge. The second
phase generates message types MOD-MSG and NEW-MSG, which cover all the rest.
Both parts of the algorithm require a DL reasoning engine.

Direct Match Algorithm. Let CI be an idiosyncratic c-schema and CP be
the set of its prototype ancestors, and let cki refer to a piece of knowledge in CI .
To find direct matches for contextual knowledge in CI , the DL reasoner is used
to look for concept synonyms in the combined knowledge of CP for each cki.

Our goal is to partition the set of directly matched cki into subsets, where
each subset is covered by a single message from the types ALL-MSG, ALL-EX-MSG,
or SOME-MSG, such that the total number of bytes of the messages is mini-
mized. Unfortunately, this is an exponential-time problem. Consequently, we use
a greedy algorithm to approximate this partitioning. The algorithm repeatedly
loops through the six contextual knowledge types until all the direct matches
have been handled by a message. It finds the prototype context with the most
unhandled direct matches of the current knowledge type, and uses this prototype
context as a reference point to create a message covering this knowledge. Thus
at each iteration we pick a subset and produce a message for it. The messages
that cover each subset in the partition can then be sent, with their certainty
factors based on the idiosyncratic context CI .

Computing Differences. In addition to messages for the directly-matching
contextual knowledge, the agent must send messages for the rest of the knowl-
edge in the idiosyncratic c-schema CI . These messages will have to be of types
MOD-MSG or NEW-MSG, each covering a single piece of knowledge cki. Let MI =
{cki|cki has no direct matches}. The algorithm iterates through each cki ∈ MI ,
determining which message type to use.

The algorithm attempts first to use a MOD-MSG message, since that should be
shorter than using a NEW-MSG message. To do this, it checks to see if there is a
piece of knowledge ckp from CP that can be used as a point of reference for cki.
The differences between ckp and cki are then expressed in the <dl-difference>+
portion of the MOD-MSG message.

Our algorithm for computing differences between cki and ckp makes use of the
DL subtraction operation [15]. If B and A are two DL concepts and A subsumes
B, then the subtraction (difference) operation, B −A, gives a new concept such
that each piece of information in B that is present in A is removed. For DLs with
structural subsumption, a simple implementation of this operator is possible.

In our case, we can find the differences even if the one concept does not
subsume the other, since we know that the two are both of the same Contextual
Knowledge type: they contain the same restriction clauses and only differ in the



268 S. Rode and R.M. Turner

role ranges for the clauses. Consider again the two pieces of knowledge shown
in Fig. 5, where rm-afk-1 corresponds to ckp and sm-afk-1 is cki. The MOD-MSG
message expressing sm-afk-1 is

MODIFIES rm-afk-1 (SOME hasImportance Medium)

(AND Abort

(SOME hasObject seaFloor)) 0.89

Rules outline how the recipient can reconstruct sm-afk-1 based on the mes-
sage contents. Let d be a description in the <dl-difference>+ portion of a
MOD-MSG M, p be the description of the <ck-code> in M, and type(p) be the
ContextualKnowledge subclass to which p belongs. Then d is interpreted as
follows:

1. If d is a restriction on role r, a required role of type(p), d is meant to replace
the restriction on role r found in p.

2. If d is a restriction on any other role, it is meant to be anded to p.
3. If d is a conjunction containing a primitive base concept, let g be a superclass

of d such that g is found in p. Then d is meant to replace each instance of g
in p.

4. If d is of any other form, it is an error.

Sometimes it is not possible to create a MOD-MSG message for two pieces of dif-
fering contextual knowledge, for example in the case where the only Contextual
Knowledge type in common is ContextualKnowlege itself. The rules for recon-
structing a MOD-MSG allow successful creation of a MOD-MSG referencing any ckp
that is the same ContextualKnowledge bottom-level type as cki. However in
some cases all possible ckp for cki will have no subsuming role ranges for the
required roles. In this case the MOD-MSG produced will contain all the conjoined
clauses from cki, which is essentially the same as what is contained in a NEW-MSG.
In this case, the NEW-MSG is shorter than using MOD-MSG and referencing a piece
of prototypical knowledge.

5 Evaluation

The message generation algorithms have been implemented and tested using
a randomly generated c-schema hierarchy. This was done to avoid accruing the
extensive domain knowledge of the AUV domain needed to create a set of realistic
contexts, which is not the focus of this work. Instead, well-structured contexts
were generated based on the ontology.

The context-generation mechanism is implemented in Common Lisp and uses
the reasoner RACER [11] for DL inference. The program first reads the descrip-
tion of the ontology, stored as an OWL ontology file. To create a complete
c-schema, several pieces of each ContextualKnowledge type are generated and
combined. To create a piece of contextual knowledge, for each role in its defini-
tion, a suitable concept is chosen as the value. If there are unfilled roles in that
concept, then the process continues recursively.



Representing and Communicating Context in Multiagent Systems 269

A small number of c-schemas were created to serve as prototype contexts
and placed in a context hierarchy. Idiosyncratic contexts were then generated
by choosing prototypes as parents, then combining and randomly modifying
their knowledge. Modifications included replacing concepts with their siblings or
descendants and adding role restrictions.

For a preliminary evaluation, twenty idiosyncratic c-schemas were generated
from four prototype c-schemas. The message generation procedure was run on
each idiosyncratic c-schema, and the resulting messages were processed by a
message receiver procedure that implemented the rules for interpreting messages.
The c-schema produced by the receiver procedure matched the original c-schema
each time. Further evaluation will be aimed at comparing the number of bytes
of the generated messages to the minimum number of bytes required to encode
the c-schema to determine the effectiveness of bandwidth-reducing heuristics.

6 Conclusion and Future Work

This paper describes an approach to context representation and communica-
tion to support multiagent context assessment by allowing agents to share their
individually-known contexts with each other in an efficient manner. An ontology
for contextual knowledge, represented using description logic, has been devel-
oped, and the representation of contexts themselves as c-schemas is also very
much like an ontology. A message protocol and algorithms to support its use
have been developed to allow an agent to decide which pieces of contextual
knowledge it needs to send and how to send them.

The work reported is at an early stage, and so at this point, evaluation has
been limited. The next step is to perform much more extensive evaluation to
determine strengths/weaknesses of the approach and to quantify the efficiency
of context communication in this approach.

Beyond representation and communication in MASCon, we are working on
the problem of how agents can negotiate to come to an agreement on their
shared context. To arrive at a consensus, agents must be able to evaluate others’
knowledge based on their own. Our DL representation facilitates many pos-
sible techniques for an agent to compare pieces of knowledge. After receiving
a contextual knowledge message, an agent can look for concept ancestors and
descendants in its own evoked c-schemas, where ancestors represent more general
and descendants represent more specialized knowledge. This can help an agent
determine what aspects of the received knowledge it agrees with. An agent can
also find the least common subsumer [5] of two knowledge descriptions, which
finds the largest set of commonalities between two descriptions. In addition to
techniques for evaluating knowledge, we are extending the message protocol to
include message types for negotiation. Messages will be added for agreeing and
disagreeing about received contextual knowledge and reasons for disagreement.



270 S. Rode and R.M. Turner

References

1. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284(5),
28–37 (2001)

3. Brezillon, P., Pasquier, L., Pomerol, J.C.: Reasoning with contextual graphs. Eur.
J. Oper. Res. 136(2), 290–298 (2002)

4. Buvač, S.: Quantificational logic of context. In: Working Notes of the IJCAI 1995
Workshop on Modelling Context in Knowledge Representation and Reasoning
(1995)

5. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in
description logics. In: AAAI, pp. 754–760 (1992)

6. Curtin, T., Bellingham, J., Catipovic, J., Webb, D.: Autonomous oceanographic
sampling networks. Oceanography 6(3), 86–94 (1993)

7. Durfee, E.H., Lesser, V.R.: Using partial global plans to coordinate distributed
problem solvers. In: IJCAI, pp. 875–883 (1987)

8. Giunchiglia, F.: Contextual reasoning. Epistemologia 16, 345–364 (1993)
9. Gonzalez, A.J., Stensrud, B.S., Barrett, G.: Formalizing context-based reasoning:

a modeling paradigm for representing tactical human behavior. Int. J. Intell. Syst.
23(7), 822–847 (2008)

10. Guha, R.: Contexts: a formalization and some applications. Ph.D. thesis, Stanford
University (1991)

11. Haarslev, V., Möller, R.: RACER system description. In: Leitsch, A., Nipkow, T.,
Goré, R.P. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer,
Heidelberg (2001)

12. McCarthy, J.: Notes on formalizing context. In: IJCAI, pp. 555–560 (1993)
13. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview.

Technical report, W3C, W3C Recommendation, February 2004. www.w3.org/TR/
owl-features

14. Song, H., Hodgkiss, W.: Efficient use of bandwidth for underwater acoustic com-
munication. J. Acoust. Soc. Am. 134(2), 905–908 (2013)

15. Teege, G.: Making the difference: a subtraction operation for description logics.
KR 94, 540–550 (1994)

16. Turner, E.H., Chappell, S.G., Valcourt, S.A., Dempsey, M.J.: COLA: a language
to support communication between multiple cooperating vehicles. In: Proceedings
of the Symposium on AUV Technology (AUV 1994), pp. 309–316. IEEE (1994)

17. Turner, R.M.: Context-mediated behavior. In: Brézillon, P., Gonzalez, A. (eds.)
Context in Computing: A Cross-Disciplinary Approach for Modeling the Real
World Through Contextual Reasoning, pp. 523–540. Springer, New York (2014)

18. Turner, R.M., Rode, S., Gagne, D.: Toward distributed context-mediated behav-
ior for multiagent systems. In: Brézillon, P., Blackburn, P., Dapoigny, R. (eds.)
CONTEXT 2013. LNCS, vol. 8175, pp. 222–234. Springer, Heidelberg (2013)

19. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling
and reasoning using OWL. In: Proceedings of the Second IEEE Annual Conference
on Pervasive Computing and Communications, pp. 18–22 (2004)

www.w3.org/TR/owl-features
www.w3.org/TR/owl-features

	Representing and Communicating Context in Multiagent Systems
	1 Introduction
	2 Representation Language
	3 Contextual Knowledge
	4 Communicating About Context
	4.1 Message Protocol
	4.2 Deciding What to Send

	5 Evaluation
	6 Conclusion and Future Work
	References


