
Chapter 30
Numerical Solution of Stochastic Differential
Equations

Stochastic differential equations (SDEs) including the geometric Brownian motion
are widely used in natural sciences and engineering. In finance they are used to
model movements of risky asset prices and interest rates. The solutions of SDEs
are of a different character compared with the solutions of classical ordinary and
partial differential equations in the sense that the solutions of SDEs are stochastic
processes. Thus it is a nontrivial matter to measure the efficiency of a given
algorithm for finding numerical solutions. In this chapter we introduce two methods
for numerically solving stochastic differential equations. For more details consult
[50, 92].

30.1 Discretization of Stochastic Differential Equations

Given an SDE

dXt D a.t; Xt/ dt C b.t; Xt/ dWt ; X0 D x0

defined on a time interval Œt0; T�, we consider its corresponding time discretization

YnC1 D Yn C a.tn; Yn/ �n C b.tn; Yn/ �Wn ; n D 0; 1; � � � ; N � 1

where t0 < t1 < � � � < tN D T, �n D tnC1 � tn, �Wn D WtnC1
� Wtn , and study

iterative algorithms to find numerical solutions.
To plot a sample path for Yt on an interval t 2 Œt0; T� we plot a piecewise linear

function defined by

Yt D Ytn C t � tn
tnC1 � tn

.YtnC1
� Ytn / ; tn � t � tnC1 ;

which reflects the nondifferentiability of a sample path of Xt .
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Definition 30.1 (Strong Convergence) Let ı D maxn jtnC1 � tnj. Suppose that an
SDE for Xt has a discrete solution Yn such that there exists ı0 > 0, � > 0 and K > 0

for which

EŒjXT � YN j� � Kı� for every 0 < ı < ı0 :

Then we say that Y converges to X in the strong sense and call � the order of strong
convergence.

Definition 30.2 (Weak Convergence) Let ı D maxn jtnC1 � tnj. Suppose that an
SDE for Xt has a discrete solution Yn such that there exists ı0 > 0, ˇ > 0 and K > 0

for which

jEŒg.XT/� � EŒg.YN/�j � Kıˇ for every 0 < ı < ı0

for an arbitrary nice function g such as a polynomial or a piecewise linear function.
Then we say that Y converges to X in the weak sense and call ˇ the order of weak
convergence.

Remark 30.1 (i) If we take g.x/ D x and g.x/ D .x � EŒXT �/2 in the previous
definition of weak convergence, we can obtain the average and variance of XT ,
respectively.

(ii) Let �.x/ be a convex function. Then, by Jensen’s inequality we haveEŒ�.X/� �
�.EŒX�/. If we take �.x/ D jxj, then we obtain

EŒjXT � YN j� � jEŒXT � YN �j D jEŒXT � � EŒYN �j :

(iii) In many applications we need not find the values of Xt for all 0 � t � T.
For example, to compute the price of a European option where CT denotes the
payoff function at maturity T it suffices to know CT.XT/. That is, it is enough
to consider the weak convergence speed.

(iv) Since the root mean square of �Wn is not ı but ı1=2, the discrete approximate
solution of an SDE has a smaller order of convergence than the discrete
approximate solution of an ordinary differential equation, in general.

(v) Consider a computer simulation for strong convergence where t0 D 0. We
take the time step ı D T

N , and obtain a discrete solution Y and its values at T,

denoted by Yj
T , 1 � j � J, and compute

".ı/ D 1

J

JX

jD1

jXj
T � Yj

N j

and finally plot the graph of � log ".ı/ against � log ı for the values ı D
2�3; 2�4; 2�5, and so on.
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From now on we treat only the case when the functions a and b do not depend
on t.

30.2 Stochastic Taylor Series

In this section we present the Taylor series expansion of a stochastic process given
by an SDE dXt D a.t; Xt/dt C b.t; Xt/dWt. If a.t; x/ D a.t/ and b.t; x/ D 0, then we
have the usual Taylor series expansion. In the following discussion, for the sake of
notational simplicity, we consider the case when a.t; x/ and b.t; x/ are functions of
x only.

30.2.1 Taylor Series for an Ordinary Differential Equation

Given a sufficiently smooth function a.x/ W R ! R, we consider a one-dimensional
autonomous ordinary differential equation d

dt Xt D a.Xt/ on the time interval Œt0; T�

which has a solution Xt with an initial data Xt0 . We may rewrite the equation as

Xt D Xt0 C
Z t

t0

a.Xs/ ds : (30.1)

Given a C1 function f W R ! R, we have

d

dt
.f .Xt// D f 0.Xt/

d

dt
Xt D a.Xt/

@

@x
f .Xt/

by the chain rule. If we let L be a differential operator defined by

L D a.x/
@

@x
;

then

d

dt
. f .Xt// D Lf .Xt/ :

Equivalently,

f .Xt/ D f .Xt0 / C
Z t

t0

L f .Xs/ ds : (30.2)
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If we substitute f .x/ D a.x/ in (30.2), then we obtain

a.Xt/ D a.Xt0/ C
Z t

t0

L a.Xs/ ds : (30.3)

Substituting (30.3) back into (30.1), we have

Xt D Xt0 C
Z t

t0

�
a.Xt0 / C

Z s

t0

La.Xz/dz

�
ds

D Xt0 C a.Xt0 / .t � t0/ C
Z t

t0

Z s

t0

La.Xz/ dz ds : (30.4)

Similarly, if we substitute f D La in (30.2) then we obtain

La.Xt/ D La.Xt0/ C
Z t

t0

L2a.Xu/ du ; (30.5)

and, by substituting (30.5) back into (30.4), we obtain

Xt D Xt0 C a.Xt0/

Z t

t0

ds C
Z t

t0

Z s

t0

�
La.Xt0/ C

Z z

t0

L2a.Xu/du

�
dz ds

D Xt0 C a.Xt0/ .t � t0/ C 1

2
La.Xt0 / .t � t0/

2 C R.t0I t/ ; (30.6)

where

R.t0I t/ D
Z t

t0

Z s

t0

Z z

t0

L2a.Xu/ du dz ds :

The idea is to keep on substituting the nth order approximation of Xt into the original
equation (30.1) to obtain the .n C 1/-st order approximation.

30.2.2 Taylor Series for a Stochastic Differential Equation

Now we consider the Taylor series expansion for an SDE

dXt D a.Xt/ dt C b.Xt/ dWt : (30.7)
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By Itô’s lemma, we have

f .Xt/ D f .Xt0 / C
Z t

t0

�
a.Xs/

@f

@x
.Xs/ C 1

2
b2.Xs/

@2f

@x2
.Xs/

�
ds

C
Z t

t0

b.Xs/
@f

@x
.Xs/ dWs

D f .Xt0 / C
Z t

t0

L0f .Xs/ ds C
Z t

t0

L1f .Xs/ dWs (30.8)

where

L0 D a
@

@x
C 1

2
b2 @2

@x2
; L1 D b

@

@x
:

If we take f .x/ D x in (30.8), we have

L0f D a ; L1f D b

and recover the original equation (30.7) rewritten in the integral form as

Xt D Xt0 C
Z t

t0

a.Xs/ ds C
Z t

t0

b.Xs/ dWs : (30.9)

We take

f D a ; f D b

in (30.8) and obtain

a.Xt/ D a.Xt0/ C
Z t

t0

L0a.Xs/ ds C
Z t

t0

L1a.Xs/ dWs (30.10)

and

b.Xt/ D b.Xt0/ C
Z t

t0

L0b.Xs/ ds C
Z t

t0

L1b.Xs/ dWs : (30.11)

We substitute (30.10) and (30.11) into (30.9), and obtain

Xt D Xt0 C
Z t

t0

�
a.Xt0 / C

Z s

t0

L0a.Xu/ du C
Z s

t0

L1a.Xu/ dWu

�
ds

C
Z t

t0

�
b.Xt0 / C

Z s

t0

L0b.Xu/ du C
Z s

t0

L1b.Xu/ dWu

�
dWs

D Xt0 C a.Xt0 / .t � t0/ C b.Xt0/ .Wt � Wt0 / C R.t0I t/ (30.12)
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where

R.t0I t/ D
Z t

t0

Z s

t0

L0a.Xu/ du ds C
Z t

t0

Z s

t0

L1a.Xu/ dWu ds

C
Z t

t0

Z s

t0

L0b.Xu/ du dWs C
Z t

t0

Z s

t0

L1b.Xu/ dWu dWs :

From (30.8) we have

f .Xt/ D f .Xt0 / C L0f .Xt0 /

Z t

t0

ds C L1f .Xt0 /

Z t

t0

dWs

C c.Xt0 /

Z t

t0

Z s2

t0

dWs1dWs2 C R. f ; t0I t/

where

c.x/ D b.x/
˚
b.x/f 00.x/ C b0.x/f 0.x/

�
: (30.13)

Note that

Z t

t0

Z s2

t0

dWs1dWs2 D
Z t

t0

.Ws2 � Wt0 / dWs2

D
Z t

t0

Ws2 dWs2 � Wt0

Z t

t0

dWs2

D 1

2
fW2

t � W2
t0 � .t � t0/g � Wt0 .Wt � Wt0 /

D 1

2
f.Wt � Wt0 /

2 � .t � t0/g :

Hence (30.13) becomes

f .Xt/ D f .Xt0 / C L0f .Xt0 /.t � t0/ C L1f .Xt0 /.Wt � Wt0 /

C1

2
c.Xt0 /f.Wt � Wt0 /

2 � .t � t0/g C R. f ; t0I t/ : (30.14)

If we take f .x/ D x in (30.14), then

Xt D Xt0 C a.Xt0/ .t � t0/ C b.Xt0 / .Wt � Wt0 /

C1

2
b.Xt0 /b

0.Xt0 /f.Wt � Wt0 /
2 � .t � t0/g C R. f ; t0I t/: (30.15)
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30.3 The Euler Scheme

Consider an SDE

dXt D a.Xt/ dt C b.Xt/ dWt ; X0 D x0

defined on the time interval Œt0; T�. Here, for the sake of notational simplicity, we
consider the case when a.t; x/ and b.t; x/ are functions of x only. The Euler scheme
is a numerical method based on the approximation given by (30.12), after truncation
of the remainder term R.t0I t/, to find a numerical solution of

YnC1 D Yn C a.Yn/�n C b.Yn/�Wn ; n D 0; 1; : : : ; N � 1

at 0 D t0 < t1 < � � � < tN D T, where Y0 D x0, �n D tnC1 �tn, �Wn D WtnC1
�Wtn .

The increment �Wn has normal distribution with average 0 and variance �n. The
increments �Wn are independent of each other and obtained by random number
generators in computer simulations.

If a and b are bounded and Lipschitz continuous, then the Euler scheme has
strong order � D 0:5. On the other hand, the strong order of a discretized numerical
solution of an ordinary differential equation is equal to 1. The weak order of the
Euler scheme is equal to ˇ D 1.

In Fig. 30.1 is plotted the speed of numerical approximation by the Euler scheme
for geometric Brownian motion

dSt D � St dt C � St dWt

with � D 0:5, � D 0:6. The points .n; � log "n/, 4 � n � 10, are plotted. In this
case, since we have a closed form solution, we can compare the numerical solution
obtained by the Euler scheme with the theoretical solution, where we take time step
ı D 2�n, 4 � n � 10, and sample size 104.

In the case of strong convergence the error satisfies " � Kı� , and hence we have

� log2 " � � log2 K C � n :

Thus the slope of the regression line is approximately equal to � if we plot � log2 "

for each n. In the case of weak convergence the slope is approximately equal to ˇ. In
Fig. 30.1 we observe that the slope in the first graph is close to 0:5 and in the second
graph the slope is approximately equal to 1, and thus the speed of convergence to
zero is exponential.
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Fig. 30.1 The Euler Scheme: speeds of strong convergence (left) and weak convergence (right)
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Fig. 30.2 The Milstein Scheme: speeds of strong convergence (left) and weak convergence (right)

30.4 The Milstein Scheme

The Milstein scheme is a numerical method based on the approximation given
by (30.15), after truncation of the remainder term R. f ; t0I t/, to find a numerical
solution of

YnC1 D Yn C a.Yn/�n C b.Yn/�Wn C 1

2
b.Yn/ b0.Yn/

˚
.�Wn/2 � �n

�

for n D 0; 1; : : : ; N � 1 at 0 D t0 < t1 < � � � < tN D T, where b0.x/ denotes the
derivative of b.x/ with respect to x. It was named after Grigori N. Milstein [69].

If EŒ.X0/2� < 1 and if a and b are twice continuously differentiable and
the second order derivatives are Lipschitz continuous, then the order of strong
convergence of the Milstein scheme is � D 1:0. The order of weak convergence
is also ˇ D 1:0.

Figure 30.2 displays numerical results from the Milstein scheme for geometric
Brownian motion with � D 0:5, � D 0:6. The sample size is 104. Observe that the
slopes are approximately equal to 1 in both cases.
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30.5 Computer Experiments

Simulation 30.1 (Euler Scheme: Weak Convergence)
We test the speed of weak convergence of the Euler scheme for solving the

geometric Brownian motion when we take g.x/ D .x � EŒXT �/2.

T = 1;

N = [2^4,2^5,2^6,2^7,2^8,2^9,2^10];

J = 10^4;

mu = 0.5;

sigma = 0.6;

X_0 = 10;

X_T=zeros(1,J);

Y_N=zeros(1,J);

for n=1:length(N)

dt = T/N(n);

for j=1:J

W(1) = 0;

Y(1) = X_0;

for i=1:N(n)

dW = sqrt(dt)*randn;

W(i+1) = W(i) + dW;

Y(i+1) = Y(i) + mu*Y(i)*dt + sigma*Y(i)*dW;

end

Y_N(j) = Y(N(n)+1);

X_T(j) = X_0*exp((mu - 0.5*sigma^2)*T + sigma*W(N(n)+1));

%epsilon(n) = abs(mean(X_T) - mean(Y_T));

epsilon(n) = abs(var(X_T) - var(Y_N));

end

end

line_fit = polyfit(log(N)/log(2),-log(epsilon)/log(2),1)

plot(log(N)/log(2),-log(epsilon)/log(2),’+’)

hold on

plot(log(N)/log(2),line_fit(1)*log(N)/log(2) + line_fit(2), ’:’)

Simulation 30.2 (Milstein Scheme: Strong Convergence)
We test the speed of strong convergence of the Milstein scheme for solving the

geometric Brownian motion.

T = 1;

N = [2^4,2^5,2^6,2^7,2^8,2^9,2^10];

J = 10^4;

Error=zeros(1,J);

mu = 0.5;

sigma = 0.6;

X_0 = 10;

for n=1:length(N)

dt = T/N(n);

t = [0:dt:T];

for j=1:J
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W(1) = 0;

Y(1) = X_0;

for i=1:N(n)

dW = sqrt(dt)*randn;

W(i+1) = W(i)+dW;

Y(i+1) =Y(i)+mu*Y(i)*dt+sigma*Y(i)*dW+sigma^2/2*Y(i)*(dW^2-dt);

end

X_T = X_0*exp((mu - 0.5*sigma^2)*T + sigma*W(N(n)+1));

Error(j) = abs(X_T - Y(N(n)+1));

end

epsilon(n) = mean(Error);

end

line_fit = polyfit(log(N)/log(2),-log(epsilon)/log(2),1)

plot(log(N)/log(2),-log(epsilon)/log(2),’+’)

hold on

plot(log(N)/log(2),line_fit(1)*log(N)/log(2) + line_fit(2), ’:’)

Exercises

30.1 Let ıt D T
L and ti D i ıt. Consider the geometric Brownian motion

S.tiC1/ � S.ti/

S.ti/
D � ıt C �

p
ıt Yi

where �; � are positive constants and Y0; Y1; Y2; : : : are independent standard
normal variables.

(i) What is the distribution of log

�
S.t/

S0

�
? Justify your answer.

(ii) Find

lim
ıt!0C

1

ıt
E

� �
S.tiC1/ � S.ti/

S.ti/

�2 �
:

30.2 Compare the exact solution obtained in Problem 12.3 for the SDE

dXt D dt C 2
p

Xt dWt

with a numerical solution obtained by the Milstein scheme.

30.3 Compare the exact solution obtained in Problem 12.4 for the SDE

dXt D �Xt.2 log Xt C 1/dt C 2Xt

p� log Xt dWt

with a numerical solution obtained by the Milstein scheme.
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