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Preface

This book is an introduction to stochastic analysis and quantitative finance, includ-
ing theoretical and computational methods, for advanced undergraduate and gradu-
ate students in mathematics and business, but not excluding practitioners in finance
industry. The book is designed for readers who want to have a deeper understanding
of the delicate theory of quantitative finance by doing computer simulations in
addition to theoretical study. Topics include stochastic calculus, option pricing,
optimal portfolio investment, and interest rate models. Also included are simula-
tions of stochastic phenomena, numerical solutions of the Black–Scholes–Merton
equation, Monte Carlo methods, and time series. Basic measure theory is used as a
tool to describe probabilistic phenomena. The level of familiarity with computer
programming is kept to a minimum. To make the book accessible to a wider
audience, some background mathematical facts are included in the first part of the
book and also in the appendices.

Financial contracts are divided into two groups: The first group consists of
primary assets such as shares of stock, bonds, commodities, and foreign currencies.
The second group contains financial derivatives such as options and futures on the
underlying assets belonging to the first group. A financial derivative is a contract
that promises payment in cash or delivery of an asset contingent on the behavior of
the underlying asset in the future. The goal of this book is to present mathematical
methods for finding how much one should pay for a financial derivative. To
understand the option pricing theory we need ideas from various disciplines ranging
over pure and applied mathematics, not to mention finance itself. We try to bridge
the gap between mathematics and finance by using diagrams, graphs and simulations
in addition to rigorous theoretical exposition. Simulations in this book are not only
used as the computational method in quantitative finance, but can also facilitate an
intuitive and deeper understanding of theoretical concepts.

Since the publications by Black, Scholes and Merton on option pricing in 1973,
the theory of stochastic calculus, developed by Itô, has become the foundation for
a new field called quantitative finance. In this book stochastic calculus is presented
starting from the theoretical foundation. After introducing some fundamental ideas
in quantitative finance in Part I, we present mathematical prerequisites such as
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Lebesgue integration, basic probability theory, conditional expectation and stochas-
tic processes in Part II. After that, fundamental properties of Brownian motion,
the Girsanov theorem and the reflection principle are given in Part III. In Part IV
we introduce the Itô integral and Itô’s lemma, and then present the Feynman–Kac
theorem. In Part V we present three methods for pricing options: the binomial tree
method, the Black–Scholes–Merton partial differential equation, and the martingale
method. In Part VI we analyze more examples of the martingale method, and
study exotic options, American options and numeraire. In Part VII the variance
minimization method for optimal portfolio investment is introduced for a discrete
time model. In Part VIII some interest rate models are introduced and used in
pricing bonds. In Part IX the Newton–Raphson method of finding implied volatility,
time series models for estimating volatility, Monte Carlo methods for option
prices, numerical solution of the Black–Scholes–Merton equation, and numerical
solution of stochastic differential equations are introduced. In the appendices some
mathematical prerequisites are presented which are necessary to understand the
material in the main chapters, such as point set topology, linear algebra, ordinary
differential equations, and partial differential equations. The graphs and diagrams
in this book were plotted by the author using MATLAB and Adobe Illustrator, and
the simulations were done using MATLAB.

Comments from the readers are welcome. For corrections and updates please
check author’s homepage http://shannon.kaist.ac.kr/choe/ or send an email.

This work was partially supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT and Future Planning (NRF-2015R1A2A2A01006176).

Geon H. Choe

http://shannon.kaist.ac.kr/choe/
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Fig. 11.4 Speed of L2-convergence in Itô formula with f .t; x/ D sin x . . . . . . 182
Fig. 11.5 Sample paths of geometric Brownian motion with the

average S D S0e�t and the pdf’s for St . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Fig. 12.1 Sample paths of the Ornstein–Uhlenbeck process . . . . . . . . . . . . . . . . . 207
Fig. 12.2 Sample paths of the Brownian bridge from 0 to 0 . . . . . . . . . . . . . . . . . 211
Fig. 12.3 A numerical solution of dXt D 2WtdWt C dt and the

exact solution Xt D W2
t C X0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Fig. 12.4 Brownian bridge: sample paths of the process
Yt D .T � t/

R t
0

1
T�s dWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Fig. 12.5 Brownian bridge: sample paths of the SDE
dYt D 1

T�t .b � Yt/ dt C dWt, Y0 D a and YT D b, for
0 � t � T D 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Fig. 13.1 The Feynman–Kac Theorem: Expectation of the final
value is the present value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Fig. 13.2 Derivation of the Kolmogorov backward equation . . . . . . . . . . . . . . . . 230

Fig. 14.1 A one period binomial tree and real probabilities. . . . . . . . . . . . . . . . . . 240
Fig. 14.2 Prices of risk-free and risky assets in the one period

binomial tree model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Fig. 14.3 A single-period binomial tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Fig. 14.4 A multiperiod binomial tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Fig. 14.5 Payoff of a European call option in a binomial tree . . . . . . . . . . . . . . . 244
Fig. 14.6 The first step in the binomial tree method .. . . . . . . . . . . . . . . . . . . . . . . . . 245
Fig. 14.7 Pricing of a European call option by a binomial tree . . . . . . . . . . . . . . 245
Fig. 14.8 Convergence to the Black–Scholes–Merton price . . . . . . . . . . . . . . . . . 253

Fig. 15.1 Adjustment of 	t in discrete time hedging . . . . . . . . . . . . . . . . . . . . . . . . 257



xx List of Figures

Fig. 15.2 Domain and a boundary condition for a payoff of a
European call option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Fig. 15.3 Price of a European call option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Fig. 15.4 Price of a European put option.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Fig. 15.5 Prices of European call and put options as functions

of asset price with different times to expiration.. . . . . . . . . . . . . . . . . . . 264
Fig. 15.6 Prices of European call and put options as functions

of time to expiry with different strike prices . . . . . . . . . . . . . . . . . . . . . . . 264
Fig. 15.7 Delta of European call and put options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Fig. 15.8 Gamma of European call and put options . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Fig. 15.9 Rho of European call and put options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Fig. 15.10 Vega of European call and put options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Fig. 15.11 Theta of European call and put options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Fig. 15.12 Boundary condition for the Laplace transformation of

a European call price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Fig. 15.13 Readjustment of the bank deposit in discrete time hedging . . . . . . . 273
Fig. 15.14 In-the money option: delta hedging using a portfolio

… D �V C D C	S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Fig. 15.15 Out-of-the-money option: delta hedging using a

portfolio… D �V C D C	S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Fig. 15.16 Boundary condition for the price of a European put . . . . . . . . . . . . . . . 278

Fig. 16.1 Time discretization for discounted bond price zDt . . . . . . . . . . . . . . . . . . 283
Fig. 16.2 Convergence to the Black–Scholes–Merton price . . . . . . . . . . . . . . . . . 292
Fig. 16.3 Convergence to the Black–Scholes–Merton formula

for Delta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Fig. 17.1 Payoffs of cash-or-nothing call and put . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Fig. 17.2 Payoffs of asset-or-nothing call and put . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Fig. 17.3 Price of a cash-or-nothing call option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Fig. 17.4 Boundary conditions of a cash-or-nothing call option .. . . . . . . . . . . . 304
Fig. 17.5 Difference of two European call options . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Fig. 17.6 Approximation of a cash-or-nothing call option .. . . . . . . . . . . . . . . . . . 307
Fig. 17.7 Difference of two binary call options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Fig. 17.8 Delta of a cash-or-nothing call option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Fig. 17.9 Difference of two binary options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Fig. 17.10 d2 as a function of strike price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Fig. 17.11 Delta of an at-the-money digital option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Fig. 18.1 An asset price path for Asian option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Fig. 18.2 A knock-out barrier option with five sample asset paths . . . . . . . . . . 325
Fig. 18.3 A double barrier option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Fig. 18.4 Boundary and final conditions for an up-and-out call

barrier option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Fig. 18.5 Price of a down-and-out put option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Fig. 19.1 Optimal exercise boundary for an American put option .. . . . . . . . . . 339



List of Figures xxi

Fig. 19.2 The price P of an American put option when the asset
price St takes the boundary price S�

t at time t . . . . . . . . . . . . . . . . . . . . . . 340

Fig. 20.1 A risk-free asset and a risky asset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Fig. 20.2 Lines representing portfolios for 
12 D 1 and

for 
12 D �1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Fig. 20.3 Curves representing portfolios for 0 < 
12 < 1 and

for �1 < 
12 < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Fig. 20.4 Portfolio consisting of a risk-free asset and a risky asset . . . . . . . . . . 359
Fig. 20.5 Attainable portfolios of three risky assets, and the

image of the triangle w1 C w2 C w3 D 1, w1;w2;w3 � 0 . . . . . . . . . 359
Fig. 20.6 Two optimization problems: Find the maximum of

expected return when �0 is given, or find the minimum
of variance when �0 is given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Fig. 20.7 Minimum variance line, asymptotes and a tangent line . . . . . . . . . . . 366
Fig. 20.8 The first asset dominates the second asset . . . . . . . . . . . . . . . . . . . . . . . . . 367
Fig. 20.9 The efficient frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Fig. 20.10 A portfolio with a risk-free asset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Fig. 20.11 The capital market line and the market portfolio . . . . . . . . . . . . . . . . . . 371
Fig. 20.12 The relation between the beta coefficient and expected return .. . . 374

Fig. 21.1 Partition of time interval for total utility . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Fig. 21.2 Sample paths of optimal portfolio Xt with power

utility for 0 � t � T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Fig. 21.3 The proportion of spending h.t/1=.��1/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Fig. 21.4 Optimal consumption and portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Fig. 21.5 Optimal portfolio Xt with log utility for 0 � t < 1 . . . . . . . . . . . . . . . 389

Fig. 22.1 Yield to maturity when the bond price is given . . . . . . . . . . . . . . . . . . . . 404
Fig. 22.2 Pdf’s of

R T
0

rtdt and exp.� R T
0

rtdt/ in the Vasicek model . . . . . . . . . 419

Fig. 22.3 Pdf’s of
R T
0

rtdt and exp.� R T
0

rtdt/ in the CIR model . . . . . . . . . . . . . 419

Fig. 23.1 Sample paths of the interest rate in the Vasicek model . . . . . . . . . . . . 424
Fig. 23.2 B.�/=� as a decreasing function of � in the Vasicek model . . . . . . . 426
Fig. 23.3 Term structure of interest rates in the Vasicek model . . . . . . . . . . . . . . 426
Fig. 23.4 Bond price by the Vasicek model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Fig. 23.5 Sample paths of the interest rate in the CIR model . . . . . . . . . . . . . . . . 428
Fig. 23.6 Pdf’s of rt in the CIR model: r0 D 0:01 and r0 D 0:3 . . . . . . . . . . . . . 429
Fig. 23.7 Term structure of interest rates in the CIR model . . . . . . . . . . . . . . . . . . 430
Fig. 23.8 Bond price by the CIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Fig. 23.9 Volatility decreases as � increases in the Hull–White model. . . . . . 434
Fig. 23.10 Delta hedging in the derivation of the fundamental

equation for pricing interest rate derivatives . . . . . . . . . . . . . . . . . . . . . . . 438
Fig. 23.11 Limit of the pdf of rt in the CIR model with 2˛Nr D �2 . . . . . . . . . . . 441

Fig. 24.1 The bank deposit and a risky asset price . . . . . . . . . . . . . . . . . . . . . . . . . . . 444



xxii List of Figures

Fig. 24.2 The discounted bank deposit and a discounted risky
asset price when the risky asset is a numeraire . . . . . . . . . . . . . . . . . . . . 444

Fig. 25.1 Solution of f .x�/ D 0 by the bisection method . . . . . . . . . . . . . . . . . . . . 460
Fig. 25.2 Solution of f .x�/ D 0 by the Newton–Raphson method . . . . . . . . . . 460
Fig. 25.3 Efficiency of the bisection method and the Newton method . . . . . . 462
Fig. 25.4 The call price C.�/ and its first and second order

derivatives for 0 � � � 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Fig. 25.5 Convergence of �n to �� as n ! 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Fig. 26.1 Demand and price (left), and supply and price (right) . . . . . . . . . . . . . 470
Fig. 26.2 The cobweb model for supply and demand . . . . . . . . . . . . . . . . . . . . . . . . 470
Fig. 26.3 Cobweb models: convergent and divergent cases . . . . . . . . . . . . . . . . . . 472
Fig. 26.4 The AR(2) model: time series xt (left) and

autocorrelation function (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Fig. 26.5 The GARCH(1,1) model: time series for ut (left)

and �2t (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Fig. 27.1 Estimation of  by using random numbers . . . . . . . . . . . . . . . . . . . . . . . . 488
Fig. 27.2 Estimation of � .p/, p D 6, by the Monte Carlo method . . . . . . . . . . 489
Fig. 27.3 Plane structure determined by three-dimensional

points obtained from a linear congruential generator .. . . . . . . . . . . . . 491
Fig. 27.4 The histogram for the distribution of U1 C � � � C U12 � 6 . . . . . . . . 492
Fig. 27.5 Generation of normally distributed random points by

the Box–Muller algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Fig. 27.6 Generation of normally distributed random points by

the Marsaglia algorithm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Fig. 28.1 A pair of sample paths of geometric Brown motion
obtained by antithetic variate method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Fig. 28.2 Payoffs of European call options and the
corresponding antithetic variates for various values of K . . . . . . . . . 505

Fig. 28.3 Comparison of the standard Monte Carlo method and
the control variate method for computing Asian option price . . . . . 508

Fig. 29.1 A grid for a finite difference method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Fig. 29.2 FTCS: Taking average on the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Fig. 29.3 Heat equation with initial condition given by Dirac

delta: FTCS with � < 1
2

and � > 1
2
, and BTCS

with � > 1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Fig. 29.4 Heat equation with u.x; 0/ D sin x: FTCS with � � 1

2
,

FTCS with � > 1
2
, and BTCS with � > 1

2
. . . . . . . . . . . . . . . . . . . . . . . . . . 523

Fig. 29.5 BTCS: Taking average on the grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
Fig. 29.6 Time average on the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
Fig. 29.7 Price of a European put option by FTCS . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Fig. 29.8 Price of a binary put option by BTCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530



List of Figures xxiii

Fig. 29.9 Price of a down-and-out put option by Crank–Nicolson . . . . . . . . . . 533

Fig. 30.1 The Euler Scheme: speeds of strong convergence
(left) and weak convergence (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

Fig. 30.2 The Milstein Scheme: speeds of strong convergence
(left) and weak convergence (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

Fig. B.1 The line of best fit and the least squares method.. . . . . . . . . . . . . . . . . . 559

Fig. D.1 A domain and a boundary condition for a diffusion equation .. . . . 581

Fig. F.1 Polynomial fitting of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

Fig. 1 The closed convex cone K in the proof of Farkas’ lemma . . . . . . . . 604
Fig. 2 Straddle and the antithetic variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634





List of Tables

Table 2.1 Comparison of forward and futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 2.2 Comparison of two portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 4.1 Comparison of probability theory and Lebesgue integral . . . . . . . . . 42

Table 7.1 Limiting behaviors of geometric Brownian motion
depending on the signs of � and � � 1

2
�2 . . . . . . . . . . . . . . . . . . . . . . . . . 127
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Chapter 1
Fundamental Concepts

A stock exchange is an organization of brokers and financial companies which
has the purpose of providing the facilities for trade of company stocks and other
financial instruments. Trade on an exchange is by members only. In Europe, stock
exchanges are often called bourses. The trading of stocks on stock exchanges,
physical or electronic, is called the stock market.

A portfolio is a collection of financial assets such as government bonds, stocks,
commodities and financial derivatives. Mathematically speaking, an asset is a time-
indexed sequence of random variables, and a portfolio is a linear combination of
assets. For example, consider a bank deposit with value 1 at time t D 0 and Bt at
time t and a stock with price St at time t per share. Then a portfolio consisting of
a units of bond with value Bt at t and b shares of stock with value St at t has value
aBt C bSt at t if there is no trading before or at t. The coefficients a and b can be
negative, which means borrowing bonds or stocks from someone else. A contingent
claim is a claim that can be made depending on whether one or more specified
outcomes occur.

In this chapter we briefly introduce three fundamental concepts in financial
mathematics: risk, time value of money, and the no arbitrage principle.

1.1 Risk

Risk is the possibility of exposure to uncertain losses in the future. It is different
from danger. Investment in stock is said to be risky not dangerous. Investors prefer
less risky investment if all other conditions are identical. The basic principle of
investment is that the payoff should be large if the risk level is high. To reduce risk
in investment, it is better to diversify: Don’t put all your eggs in one basket, as the
proverb says. For that purpose, we usually construct a portfolio consisting of assets
which are not strongly correlated or even negatively correlated.
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4 1 Fundamental Concepts

There are several different types of risk. First, credit risk is the risk of not
receiving back loan from the borrower. Second, market risk is the risk caused by
unexpected asset price movement. Finally, operational risk means the risks from
malfunctioning of a computer system, or fraudulent activity of employees, etc.

Risk management refers to management activities to protect asset values from
the risks in investment. Regulating agencies are concerned with risk management
of the whole financial system as well as individual financial companies. If financial
derivatives are used as tools for excessive speculation, financial crisis can occur.

When we completely eliminate the risk in an investment, we call it hedging.
Consult [5] for the viewpoint that probability is a tool for understanding risks in
investment. For general risks caused by natural catastrophes consult [105].

1.2 Time Value of Money

A dollar today is usually worth more than a dollar in the future due to the opportunity
to lend it and receive interest or to invest in a business and make profit. When there
is inflation, a dollar in the future has less purchasing power than a dollar today.
Furthermore, there is credit risk: receiving money in the future rather than now has
uncertainty in recovering the money. Time value of money is expressed the in terms
of interest rate. For example, $100 today, invested for one year at a 3% interest rate,
will be $103 one year from now. Interest rates are usually positive, however, zero
or negative interest rates are possible, especially in a time of deflation or economic
recession. As an economic policy, the central bank in a country may lower its interest
rate to stimulate the national economy. Throughout the book the risk-free interest
rate is assumed to be positive unless stated otherwise.

1.3 No Arbitrage Principle

An opportunity to make a profit without risking any future loss is called an arbitrage,
which exists as a result of market inefficiencies. An arbitrage trade means a
transaction generating risk-free profit by buying and selling related assets with no
net investment of cash. For example, if the price of a product is $10 in New York,
but in Los Angeles, the same product is selling for $15, and if someone buys the
merchandise in New York and sells it in Los Angeles, he/she can profit from the
difference without any risk. When expenses such as transportation cost and taxes
are considered there might be no overall profit to the arbitrager, and no arbitrage
exists in this case. If the market functions perfectly, there would be no arbitrage
opportunities. All the participants in the financial market look for any possibility of
arbitrage and make riskless profit if there exists one. Arbitrage chances only last for
a very short period of time. Once an arbitrage opportunity is exploited, there would
be no remaining arbitrage opportunity for others.



1.4 Arbitrage Free Market 5

The concept of arbitrage may be defined in a formal and precise way in the
following simple model of the financial market in which we consider only two time
points t D 0 and t D T > 0. The values of a portfolio V at t D 0 and t D T are
denoted by V0 and VT , respectively. At t D 0, which represents the present time, all
asset values and portfolio values are known and there is no uncertainty. The asset
prices other than the risk-free bank deposit at time T are unknown and random, and
hence a portfolio value VT containing a risky asset is a random variable.

Definition 1.1 (Arbitrage) We say that there exists an arbitrage if there is a
portfolio V satisfying one of the following conditions:

(i) V0 D 0, and VT � 0 with probability one and VT > 0 with positive probability,
or

(ii) V0 < 0, and VT � 0 with probability one.

See also Definition 1.2. In more general cases, we assume that there exists a
generally accepted concept of arbitrage even when it is not stated explicitly. The no
arbitrage principle means that one cannot create positive value out of nothing, i.e.,
there is no free lunch.

1.4 Arbitrage Free Market

Consider a one-period model of a financial market which is observed at times t D 0

and t D T. Assume that there are N assets with prices S1t ; : : : ; S
N
t at t D 0;T.

All the prices of N assets are already known at t D 0, and S1T ; : : : ; S
N
T are random.

Uncertainty in the financial market at T is modelled using a finite number of possible
future states. Suppose that there are M states at time T, which is represented by
a sample space � D f!1; : : : ; !Mg. The probability that the future state is !j is
equal to pj > 0, 1 � i � M, p1 C � � � C pM D 1, and Si

T takes one of the values
Si

T.!1/; : : : ; S
i
T.!M/ depending on the future state. Let

St D

2

6
4

S1t
:::

SN
t

3

7
5

and define the matrix of securities by

D D

2

6
4

S1T.!1/ � � � S1T.!M/
:::

:::

SN
T .!1/ � � � SN

T .!M/

3

7
5 :
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An interpretation of D is given by the diagram

jth state
#

ith asset !
2

4 Dij

3

5

i.e., the entry Dij represents the value (including dividend payments) of the ith asset
in the jth state at time T. Let v � w denote the scalar product of v;w. A portfolio V�t
of securities is defined by � � St where

� D

2

6
4

1
:::

N

3

7
5 2 R

N

and i is the number of units of the ith asset held in the portfolio. It is assumed to be
constant over the time interval Œ0;T�. If i > 0, then the investor has a long position
in the ith asset and will receive cash flow iDij at time T depending on the outcome.
If i < 0 for some i, then we have a short position in the ith asset, i.e., we borrow i

unit of Si at t D 0 and have the obligation to return it at time T. We assume that any
investor can take short and long positions in arbitrary amounts of securities. That is,
even though in the real financial market the values i are integers, we assume that
i are real numbers in our mathematical model. With abuse of language, � is also
called a portfolio since there is a one-to-one correspondence between the collections
of V�t and �. The total value of the portfolio defined by � is equal to

V�t D
NX

iD1
iS

i
t D � � St

for t D 0;T. In particular, for t D T, the cash flow of the portfolio in the jth state is

V�T .!j/ D
NX

iD1
iS

i
T.!j/ D

NX

iD1
iDij :

Now the definition of arbitrage given in Definition 1.1 can be restated as follows:

Definition 1.2 (Arbitrage Portfolio) Let d1; : : : ;dM denote the columns of D. An
arbitrage portfolio is a portfolio � satisfying one of the following conditions:

(i) � � S0 D 0 (zero cost), and � � dj � 0 for all j (no loss) and � � dk > 0 for some
k (possibility of profit),

or
(ii) � � S0 < 0, and � � dj � 0 for all j.
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If there does not exist any arbitrage portfolio, we say that the market is arbitrage
free.

The second case can be reduced to the first one if an investor can buy risk-free
bonds and lock in a profit in the following way: Buy risk-free bonds using the
borrowed money �� � S0 > 0 and receive erT.�� � S0/ at time T, making a risk-free
profit of

erT.�� � S0/ � .�� � S0/ > 0

where r > 0 is the risk-free interest rate. An efficient market does not allow arbitrage
opportunities to last for long.

Definition 1.3 (Arrow–Debreu Security) If a security � i
t , 1 � i � M, satisfies the

condition that � i
T.!i/ D 1 and � i

T.!j/ D 0 for j 6D i, then it is called an Arrow–
Debreu security.

A contingent claim at time T can be expressed as a linear combination of the
Arrow–Debreu securities if they exist. A portfolio � D .1; : : : ; 1/ consisting of one
unit of each Arrow–Debreu security is a risk-free asset that pays 1 in any future
state. It may be regarded as a bond. The difference of prices of � at times 0 and T
is regarded as interest payment.

Definition 1.4 (State Price Vector) A column vector D . 1; : : : ;  M/
t is called

a state price vector if  i > 0 for every i, 1 � i � M, and

S0 D D : (1.1)

Equivalently, there exist positive constants  1; : : : ;  M such that

Si
0 D  1S

i
T.!1/C � � � C  MSi

T.!M/ (1.2)

for every 1 � i � N, or

S0 D  1d1 C � � � C  MdM : (1.3)

Remark 1.1 Note that (1.2) implies that the asset price today is equal to a weighted
average of its future values, with weights given by the state price vector  . The
weights  i, 1 � i � M, are called the state prices, and  i is the value of one unit of
the Arrow–Debreu security � i at time 0, i.e.,  i D � i

0, 1 � i � M.

Throughout the rest of the section we use the notation .x1; : : : ; xn/ � 0 to mean
that xi � 0 for every i, 1 � i � n. Similarly, .x1; : : : ; xn/ > 0 means that xi > 0

for every i, 1 � i � n. The following fact implies that asset prices and cash-flows
satisfy certain relations in a no-arbitrage financial world.

Theorem 1.1 A market is arbitrage free if and only if there exists a state price
vector.
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Proof (() Suppose that there exists an arbitrage portfolio � . Then either it satisfies
(i) or (ii) in Definition 1.2. In the first case the condition that � � dj � 0 for all j
is equivalent to the condition that � tD � 0 with at least one of its entries being
positive. Since  > 0, we have

0 D � � S0 D � � .D / D � t.D / D .� tD/ > 0 ;

and thus we have a contradiction. Now we consider the second case. The condition
that � � dj � 0 for all j is equivalent to the condition that � tD � 0. Since  > 0, we
have

0 > � � S0 D � � .D / D � t.D / D .� tD/ � 0 ;

and thus we have a contradiction as well.
()) Let

R
MC1
C D fx D .x0; x1; : : : ; xn/ 2 R

MC1 W x � 0g ;

and let

W D f.�� � S0;� � d1; : : : ;� � dM/ 2 R
MC1 W � 2 R

Ng :

Let zD be an N 	 .M C 1/ matrix with its columns given by �S0;d1; : : : ;dM. Then
W D f�t zD W � 2 R

Ng. Since an arbitrage portfolio does not exist by the assumption,
the subspace W and the cone R

MC1
C intersect only at the origin .0; : : : ; 0/. For, if

there exists (a portfolio) � 2 R
N such that � t zD � 0 and � t zD 6D 0, then either (i)

� � S0 � 0, � � dj � 0 for every j, and there exists 1 � j � M such that � � dj > 0,
or (ii) � � S0 < 0, � � dj D 0 for every j, both of which are impossible.

Hence there exists � D .�0; �1; : : : ; �M/ 2 R
MC1 and a hyperplane

H D fx 2 R
MC1 W � � x D 0g

that separates RMC1
C n f0g and W in such a way that W � H and � � x > 0 for every

x 2 R
MC1
C n f0g, which holds if and only if �j > 0 for every j.

Since W is contained in H, for every � 2 R
N we have

��0� � S0 C
MX

jD1
�j� � dj D 0 ;

which implies that

��0S0 C
MX

jD1
�jdj D 0 ;
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or

S0 D
MX

jD1

�j

�0
dj D

MX

jD1
 jdj

where  j D �j=�0 > 0, 1 � j � M. ut
For more details of the proof, consult [1, 29]. For an equivalent version, see

Corollary 1.1.

Definition 1.5 (Complete Market) If a contingent claim at time T is expressed as
a linear combination of the assets traded in the market, we say that the claim is
replicated, or hedged . If any contingent claim at T can be replicated, then we say
that the market is complete.

Theorem 1.2 The market is complete if and only if the rank of the matrix D of
securities is equal to M.

Proof ()) Let � i
t , 1 � i � M, be the Arrow–Debreu securities. Since the market

is complete, there exist aij, 1 � i � N, 1 � j � M, such that

8
<̂

:̂

�1T D a11S1T C � � � C aN1SN
T

:::
:::

:::

�M
T D a1MS1T C � � � C aNMSN

T

Let A D Œaij�1�i�N;1�j�M . Thus, if the future is in state !j, then

2

6
4

�1T .!j/
:::

�M
T .!j/

3

7
5 D At

2

6
4

S1T.!j/
:::

SN
T .!j/

3

7
5 ;

and hence

2

6
4

�1T.!1/ � � � �1T .!M/
:::

:::

�M
T .!1/ � � � �M

T .!M/

3

7
5 D At

2

6
4

S1T.!1/ � � � S1T.!M/
:::

:::

SN
T .!1/ � � � SN

T .!M/

3

7
5 :

Since � i
T.!j/ D 0 or 1 depending on whether i D j or not, we have

I D AtD (1.4)

where I denotes the M 	 M identity matrix. Hence

M D rank.I/ � minfrank.At/; rank.D/g � minfN;Mg ;
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and thus M � N. Since rank.D/ � rank.I/ D M from (1.4), and since D is an
N 	 M matrix, we conclude that rank.D/ D M.

(() To prove that the market is complete, it suffices to find a matrix A D Œaij�

satisfying (1.4). Taking the transposes of (1.4), we have I D DtA. ut
Note that if the market is complete then N � M. For more information, consult

[1, 2, 9, 24, 29]. For continuous time market models the conditions for no-arbitrage
and completeness are essentially the same, even though the necessary mathematical
techniques are sophisticated. Interested readers are referred to [8].

1.5 Risk-Neutral Pricing and Martingale Measures

Theorem 1.3 Let  D . 1; : : : ;  M/ be a state price vector. Assume that there
exists a risk-free security, i.e., a risk-free bond, S0 such that S00 D 1 and S0T D 1C r
regardless of future state, where r > 0 is a constant that is regarded as the risk-free
interest rate. Then

MX

jD1
 j D 1

1C r
:

Proof Since

S00 D  1S
0
T.!1/C � � � C  MS0T.!M/ ;

we have

1 D  1.1C r/C � � � C  M.1C r/ ;

and the proof is complete. ut
Definition 1.6 (Risk-Neutral Probability or Martingale Measure) Let

p�
j D  j

PM
kD1  k

D .1C r/ j > 0 ; 1 � j � M :

Then the positive constants p�
1 ; : : : ; p

�
M add up to 1, and define a probability on the

future states !1; : : : ; !M , which is called a risk-neutral probability or a martingale
measure. It is not a real probability, but a formal probability representing the
coefficients of a convex linear combination of given values.
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We can rewrite (1.2) as

Si
0 D

MX

kD1
p�

k

Si
T.!k/

1C r
D 1

1C r
E

�ŒSi
T � (1.5)

where E
� denotes the expectation under the martingale measure .p�

1 ; : : : ; p
�
M/. The

idea given in (1.5) is called the risk-neutral pricing of financial claims, and is the
central theme for the rest of the book.

Remark 1.2 The state prices  i, 1 � i � M, are the prices at time t D 0 of the
Arrow–Debreu securities � j, 1 � j � M. To see why, note that

�
j
0 D E

�
�

1

1C r
�

j
T

�

D 1

1C r

MX

kD1
p�

k �
j
T.!k/ D 1

1C r
p�

j D  j :

This is why  is called the state price vector.

Corollary 1.1 The following statements are equivalent:

(i) There exists a state price vector.
(ii) There exists a martingale measure.

(iii) The market is arbitrage-free.

Proof Use Theorem 1.1. ut
Theorem 1.4 (Uniqueness of Martingale Measure) Suppose that the market is
arbitrage-free. Then the market is complete if and only if there exists a unique
martingale measure.

Proof ()) Recall that M � N and rank.D/ D M. Since D is an N 	 M matrix,
and since rank.D/Cnullity.D/ D M, we have nullity.D/ D 0. Suppose that there
exist two distinct state price vectors and �. Since they are solutions of (1.1), we
have D. ��/ D 0, and hence Dx D 0 for some x 6D 0, which is a contradiction.

(() Let  > 0 be the unique price. If the market were not complete, then
rank.D/ < M, and hence there exists 0 6D v 2 R

M such that Dv D 0. Hence
D. C ˛v/ D D C ˛Dv D S0 and  C ˛v > 0 for j˛j < ı and ı > 0

sufficiently small. If we choose ˛ 6D 0, then  C˛v is another state price vector,
which contradicts the assumption. ut

1.6 The One Period Binomial Tree Model

Consider the case when N D 2 and D D 2. There are two future states: up state !u

and down state !d. Let C be any contingent claim with cash flows Cu in state !u

and Cd in state !d at time T. (See Fig. 1.1.) If there are no arbitrage opportunities,
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Fig. 1.1 The one period
binomial tree and the
risk-neutral probabilities

*

*

Fig. 1.2 The one period
binomial tree and the
risk-neutral probabilities

*

*

then there exists a martingale measure .p�
u ; p

�
d / such that the price C0 at time 0 is

given by

C0 D 1

1C r
E

�ŒCT � D 1

1C r

�
p�

u Cu C p�
d Cd

�
: (1.6)

To see why, note that C can be replicated by a linear combination of two given
assets, each of which has price given by (1.5). (See Exercise 1.2(i), which shows
that the market is complete.)

We assume that the market consists of a risky asset S and a risk-free asset B such
as a bond. Furthermore, ST has values uS0 and dS0 where 0 < d < u depending on
whether the future state is up or down. (See Fig. 1.2.)

Then, by (1.5) or (1.6) we have

S0 D 1

1C r
E

�ŒST � D 1

1C r

�
p�

u uS0 C p�
d dS0

�
(1.7)

and

B0 D 1

1C r
E

�ŒCT � D 1

1C r

�
p�

u .1C r/B0 C p�
d .1C r/B0

� D B0 : (1.8)

We obtain no new information from (1.8). From (1.7), we have

1C r D p�
u u C p�

d d : (1.9)

Since p�
u C p�

d D 1, we finally obtain

p�
u D 1C r � d

u � d
and p�

u D u � .1C r/

u � d
:

Thus p�
u > 0 and p�

d > 0 if and only if d < 1Cr < u. Note that p�
u > 0 and p�

d > 0 is
the condition for the existence of a martingale measure. Also note that the inequality
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d < 1 C r < u is the no arbitrage condition since if d < u � 1 C r, for example,
then every investor would buy the risk-free asset B making a risk-free profit that is
at least the maximum possible profit from investment in the risky asset S. For more
information, consult [77]. The one period binomial tree model is extended to the
multiperiod binomial tree model in Chap. 14.

1.7 Models in Finance

Why do we need new financial models in addition to existing ones? A model
reflects only some aspects of reality. Information obtained from a model is a
shadow on the cave wall. The real financial market represented by a model can
change over time, and models should be updated constantly. Technological advances
allow better models, and increased computing power enables us to develop more
computationally intensive models. New models are needed constantly, and are
invented for new problems and techniques.

The more the better. A model is an approximation, and parameters in the model
are not precisely known. Some models are practically oriented, while others give
insights. A model should be stable under small perturbations. A slightly modified
model of a classical model (e.g. the Black–Scholes–Merton differential equation)
should produce a result that is close to a conventional solution. Using a modification
of an existing classical model, we can test the existing model. Different models
provide different viewpoints. A practitioner chooses a useful and convenient model.

Exercises

1.1 (Farkas’ Lemma) We are given M C 1 vectors d0;d1; : : : ;dM in R
N . Then

exactly one of following two statements is true:

(i) There exist nonnegative constants �1; : : : ; �M such that

d0 D �1d1 C � � � C �MdM :

(ii) There exists a � 2 R
N such that

� � d0 < 0 and � � dj � 0

for every 1 � j � M :
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1.2 Consider the binomial tree model in Sect. 1.6.

(i) Find a condition under which there exists a unique solution .a; b/ such that

�
Cu D aS1T.!u/C bS2T.!u/

Cd D aS1T.!d/C bS2T.!d/
:

(ii) Let B denote the risk-free bond. For d < u, show that there exists a unique
solution .a; b/ such that

�
Cu D aST.!u/C bBT.!u/

Cd D aST.!d/C bBT.!d/
:



Chapter 2
Financial Derivatives

Financial assets are divided into two categories: The first group consists of
primary assets including shares of a stock company, bonds issued by companies
or governments, foreign currencies, and commodities such as crude oil, metal and
agricultural products. The second group consists of financial contracts that promise
some future payment of cash or future delivery of the primary assets contingent on
an event in the future date. The event specified in the financial contract is usually
defined in terms of the behavior of an asset belonging to the first category, and such
an asset is called an underlying asset or simply an underlying. The financial assets
belonging to the second category are called derivatives since their values are derived
from the values of the underlying asset belonging to the first category. Securities are
tradable financial instruments such as stocks and bonds.

How much should one pay for a financial derivative? The price of a financial
derivative depends upon the underlying asset, and that is why it is called a derivative.
The buyer of a financial contract is said to hold the long position, and the seller the
short position.

Short selling means selling securities one does not own. A trader borrows the
securities from someone else and sells them in the market. At some stage one must
buy back the securities so they can be returned to the lender. The short-seller must
pay dividends and other benefits the owner of the securities would normally receive.

2.1 Forward Contracts and Futures

A forward contract is an agreement to buy or sell an asset on a specified future date,
called the maturity date, for the forward price specified at the time the contract is
initiated. There is no initial payment at the time the contract is signed, and there is
no daily settlement during the lifetime of the contract except at the end of the life of
the contract. At the maturity date, one party buys the asset for the agreed price from

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_2
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Table 2.1 Comparison of forward and futures

Forward Futures

Private contract between two parties Traded on an exchange

Not standardized Standardized

Settled at end of contract Settled daily

Delivery or final settlement Usually closed out prior to maturity

Credit risk exists Practically no credit risk

the other party. The buyer expects that the asset price will increase, while the seller
hopes that it will decrease in the future.

A futures contract is the same as a forward contract except that futures are traded
on exchanges and the exchange specifies certain standard features of the contract
and a particular form of settlement. No money changes hands initially. However,
futures contracts are settled daily, and on each day the difference between the price
of the previous day and the present day is calculated and given to the appropriate
party. Futures are available on a wide range of underlyings, and they are traded on
an exchange. We need to specify what can be delivered, where it can be delivered,
and when it can be delivered. A margin is cash or marketable securities deposited as
collateral by an investor with his or her broker. The balance in the margin account
is adjusted to reflect daily settlement. Margins minimize the risk of a default on
a contract either by a buyer when the price falls or a seller when the price rises.
Closing out a futures position involves entering into an offsetting trade and most
futures contracts are closed out before maturity. If a futures contract is not closed out
before maturity, it is usually settled by delivering the underlying asset. See Table 2.1.
Forward and futures prices are equal if the interest rate is constant. For the proof,
consult [41].

2.2 Options

An option is a financial contact that allows the option holder (or a buyer) a right to
ask the issuer (or writer or seller) to do what is stated in the contract. The issuer has
the obligation to do the work. For example, there are options on the right to sell or
buy a stock at a fixed price, called an exercise price or a strike price, at a fixed date,
called the expiry date or maturity date. A relatively recent type of option is on credit
risk for a bond issued by a company. If the company is in good shape and the default
risk level is low, then the issuer of the option on credit risk can make a substantial
profit. On the other hand, if default risk level is high, then the issuer of the option is
exposed to a high level of loss.

Options have financial values derived from underlying assets such as stocks,
bonds and foreign exchange, and hence they are called derivatives. European options
can be exercised only at expiry date, while American options can be exercised before
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Fig. 2.1 Payoffs of a European call (left) and a European put (right)

Fig. 2.2 Payoffs of a European straddle (left) and a European strangle (right)

or at expiry date. The value of an option if it can be exercised immediately is called
its intrinsic value. Standardized options are traded at a regulated exchange, while
over-the-counter (OTC) options are customized, and not traded on exchanges.

A call option gives the holder the right to buy an underlying asset at a strike price
(or exercise price), and a put option gives the holder the right to sell. In Fig. 2.1
payoff functions at the expiry date T of a European call option and a European put
option are plotted as functions of asset price ST . A call option is insurance for an
asset we plan to buy in the future, and a put option is insurance for an asset we
already own.

European call options are bought when at expiry date the underlying asset price is
expected to rise above the exercise price, and European put options are bought when
underlying asset price is expected to fall below the exercise price. If we expect that
the asset price will rise or fall above or below the exercise price and buy a call
option and a put option of the same expiry date T and exercise price K, then that
is equivalent to buying one option, called a straddle, with a payoff given on the left
in Fig. 2.2. Therefore, its price is given by the sum of the prices of a European call
option and a European put option. Since the set of all payoffs of European options
of the same expiry date is a vector space, by taking linear combinations of several
payoffs we can construct a new option as seen in the previous example.

If we expect that the asset price will move sufficiently far away from the strike
price at expiry date, it is preferable to buy an option with a payoff, called a strangle
given on the right in Fig. 2.2. In this case, the payoff is zero if the asset price at
expiry date is between K1 and K2. Hence its price is the sum of prices of a put
option with strike price K1 and a call option with strike price K2.
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Fig. 2.3 Payoff of a
European spread option

-

Fig. 2.4 Payoff of a butterfly

Fig. 2.5 A butterfly as a sum
of two long calls and two
contracts of a short call

+

+

If we expect that at expiry date the asset price will rise above the exercise price
but not too much, then it is preferable to buy an option, called a spread , which is a
combination of two or more options (both calls or both puts) on the same underlying
asset with different strikes. Buying a spread option is equivalent to buying a call
option of strike K1 and selling a call option of strike K2. See Fig. 2.3. Therefore,
the price of a spread is the difference between the prices of a European call option
with exercise price K1 and a European call option with exercise price K2. From the
viewpoint of the seller of the option, the maximum of possible loss is bounded.

A European option called a butterfly has a payoff given in Fig. 2.4. To find its
price, we first express the given payoff as a linear combination of payoffs of other
options with their prices known. For example, we take three European call options
with strike prices K1 < 1

2
.K1 C K2/ < K2. We buy two call options, one with strike

K1 and one with strike K2, and sell two contracts of a call option with strike price
1
2
.K1CK2/. In other words, long two calls with strike prices K1 and K2, respectively,

and short two contracts of a call with strike price 1
2
.K1 C K2/. See Fig. 2.5 where a

butterfly is decomposed into a sum of long and short positions.
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Simple options are called vanilla1 options, and complicated options are called
exotic options. There are many exotic options, and new varieties are being invented.

2.3 Put-Call Parity

The put-call parity is an equality which describes a relationship between a European
put option and a European call option of the same expiry date and strike price. Thus,
if we know the price of a call, we can find the price of a put with the same expiry
date and exercise price, and vice versa.

Let fStgt�0 be the price process of the underlying asset S. Suppose that we buy
a European call option on S with expiry date T and exercise price K and sell a
European put option with the same expiry date and exercise price. Then the overall
payoff at time T is given by

maxfST � K; 0g � maxfK � ST ; 0g D ST � K :

See the graph in Fig. 2.6 and also Fig. 2.1.

Theorem 2.1 (Put-Call Parity) Let r � 0 be a risk-free interest rate. Let Ct and
Pt respectively denote the prices of European call and put options at time t on the
underlying asset St with expiry date T and exercise price K. Then

C0 � P0 D S0 � Ke�rT :

Fig. 2.6 Payoff when we buy
a European call option and
sell a put option

1Vanilla is an orchid with runners climbing up a tree. Its pods contain fragrant material. Although
natural vanilla is expensive, synthesized vanilla fragrance is widely used, and thus the word
‘vanilla’ is a synonym for ‘common’.
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Table 2.2 Comparison of two portfolios

Time 0 T

…1 Call option and bank deposit Ke�rT maxfST � K; 0g C K

…2 Put option and a share of stock S0 maxfK � ST ; 0g C ST

Proof We will construct portfolios …1
t and …2

t with equal payoff at maturity. The
portfolio …1 consists of a call and risk-free deposit Ke�rT at t D 0. Its payoff at T
is equal to

…1
T D maxfST � K; 0g C K D maxfST ;Kg :

The portfolio…2 consists of a put and a share of the stock. Its payoff is equal to

…2
T D maxfK � ST ; 0g C ST D maxfK; STg :

See Table 2.2. Define a new portfolio …3
t D …1

t �…2
t . Since …3

T D …1
T �…2

T D 0

with probability 1, the no arbitrage principle implies that …3
0 D 0, and hence …1

0 �
…2
0 D 0. Hence C0 C Ke�rT D P0 C S0. ut

Remark 2.1 The put-call parity makes sense even in the following extreme cases:

(i) If K D 0, then holding a call option is equivalent to owning a share of the stock,
and hence C0 D S0. Since it is impossible for the asset price to fall below 0,
the put option has no value. Hence P0 D 0.

(ii) If T D 0, i.e., the option is exercised immediately, then we have C0 D
maxfS0 � K; 0g and P0 D maxfK � S0; 0g.

(iii) If Ct and Pt denote the European call and put option prices at time 0 < t < T,
then we have

Ct � Pt D St � Ke�r.T�t/ ;

where T � t is called the time to expiry.

2.4 Relations Among Option Pricing Methods

In the rest of book we study several different methods for option pricing: First,
the binomial tree method for discrete time models where the underlying asset can
move only upward and downward, second, the partial differential equation approach
introduced by F. Black, M. Scholes and R. Merton, and third, the martingale
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Numerical Solution
(Sect. 29.3)

Numerical Analysis
(Chap. 29) Black–Scholes–Merton Equation

(Theorem 15.1)

Binomial Tree Method
(Sect. 14.3)

Limit as t 0
(Theorem 14.1) Black–Scholes–Merton Formula

(Theorem 15.2)

Martingale Method
(Sect. 16.3)

BTCS
(Remark 29.3)

Discrete Time

Approximation by
Monte Carlo Integration

(Chap. 28)

Continuous Time

Feynman–Kac Theorem
(Theorem 13.2)

Feynman–Kac Theorem
(Sect. 16.4)

Fig. 2.7 Logical relations among option pricing methods

method that is most sophisticated mathematically and is the theoretical basis for
the Monte Carlo method. The Girsanov theorem is at the center of the method. The
logical relations among them are presented in Fig. 2.7. The N-period binomial tree
method has a solution which converges to the Black–Scholes–Merton formula as
N ! 1 for some special choice of parameters as mentioned in Sect. 14.4. The
partial differential equation approach is combined with numerical methods when it
is hard to find closed form solutions. The Feynman–Kac theorem provides the bridge
between the partial differential equations approach and the martingale method.

Exercises

2.1 Write down the formula for a payoff of a portfolio consisting of a short position
on an asset and a call option on the same asset. (Hint: Consult the graph for a payoff
in Fig. 2.8.)

2.2 Show that a call option is insurance for a short position while a put option is
insurance for a long position.
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Fig. 2.8 Sum of a short position on an asset and a call option

2.3 Express a strangle as a linear combination of other options.

2.4 Using Fig. 2.5 as a hint, express the price of the given butterfly option as a sum
of prices of calls and a put.
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Chapter 3
The Lebesgue Integral

Given an abstract set �, how do we measure the size of one of its subsets A?
When � has finite or countably infinite elements, it is natural to count the number
of elements in A. However, if A is an uncountable set, we need a rigorous and
systematic method. In many interesting cases there is no logical way to measure the
sizes of all the subsets of �, however, we define the concept of size for sufficiently
many subsets. Subsets whose sizes can be determined are called measurable subsets,
and the collection of these measurable subsets is called a �-algebra where the set
operations such as union and intersection resemble operations on numbers such as
addition and multiplication. After measures are introduced we define the Lebesgue
integral.

3.1 Measures

When a set is endowed with two operations which resemble the addition and the
multiplication of numbers, we call the set an algebra or a field. If the set under
consideration is given by a collection of subsets of a given set, then the operations
are usually given by set union and set intersection.

Definition 3.1 (Algebra) A collection F0 of subsets of a set � is called an algebra
on � if it satisfies the following conditions:

(i) ;; � 2 F0 .
(ii) If A 2 F0 , then X n A 2 F0 .

(iii) If A;B 2 F0 , then A [ B 2 F0 .

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_3
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26 3 The Lebesgue Integral

Definition 3.2 (�-Algebra) A collection F of subsets of a set � is called a
�-algebra on� if it satisfies the following conditions:

(i) ;; � 2 F .
(ii) If A 2 F , then X n A 2 F .

(iii) If A1;A2;A3; : : : 2 F , then
S1

nD1 An 2 F . A subset belonging to F is called an
F -measurable subset.

Remark 3.1

(i) A �-algebra is an algebra.
(ii) A �-algebra is not necessarily closed under uncountable unions. The prefix �

indicates ‘countable’, just as ˙ represents countable summation.
(iii) If P D fB1; : : : ;Bkg is a finite partition of �, then there exists an associated

�-algebra F whose measurable subsets are unions of some subsets in P . More
precisely, if A 2 F then A D C1 [ � � � [ Ck where Ci D Bi or Ci D ; for
1 � i � k.

(iv) If F� is a �-algebra for every � 2 � , then
T
�2� F� is also a �-algebra.

(v) For a collection S of subsets of a given set � there exists the smallest �-
algebra among all the sub-�-algebras containing S, which is denoted by �.S/
and called the �-algebra generated by S.

(vi) When a �-algebra F is given on �, we call it a measurable space and write
.�;F/.More than one �-algebra may be defined on the same set �.

(v) Let X W � ! R
1 be a function on a measurable space .�;F/. Then

the smallest sub-�-algebra generated by subsets of the form X�1.B/, where
B � R

1 are Borel subsets, is called the sub-�-algebra generated by X and
denoted by �.X/.

Definition 3.3 (Measure) A measure is a rule which assigns a nonnegative number
or C1 to each measurable subset. More precisely, a measure P on .�;F/ is a
function

P W F ! Œ0;C1/ [ fC1g

satisfying the following conditions:

(i) P.;/ D 0.
(ii) If A1;A2;A3; : : : 2 F are pairwise disjoint, then

P

� 1[

nD1
An

�

D
1X

nD1
P.An/ :

When P.�/ D 1, then P is called a probability measure.

When a measure � is defined on .�;F/, we call � a measure space, and
write .�;F ;P/ or .�;P/. If P is a probability measure, then .�;F ;P/ is called
a probability measure space, or a probability space.
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Example 3.1 In R
n a set of the form Œa1; b1�	� � �	Œan; bn� is called an n-dimensional

rectangle. Consider the collection R of n-dimensional rectangles. Using the concept
of volume, define �R W R ! Œ0;C1/[ fC1g by

�R.Œa1; b1� 	 � � � 	 Œan; bn�/ D .b1 � a1/ 	 � � � 	 .bn � an/ :

Let B0 be the �-algebra generated by R. Then we can extend �R to a measure �0
defined on B0. (We call B0 the Borel �-algebra, and a measurable set belonging to
B0 a Borel set.) Next, extend the �-algebra B0 by including all the subsets N � A
such that�0.A/ D 0, and form a new �-algebra B. Also extend�0 to B as a measure
on B, which is denoted by �. The extended measure � is called Lebesgue measure.
If A 2 B and �.A/ D 0 and if B � A, then B 2 B and �.B/ D 0. Such a measure is
said to be complete.

Fact 3.1 (Monotonicity of Measure) Consider a sequence of measurable subsets
A1;A2;A3; � � � in a probability measure space .�;F ;P/.
(i) If A1 
 A2 
 A3 
 � � � , then

lim
n!1P.An/ D P

� 1\

nD1
An

�

:

(ii) If A1 � A2 � A3 � � � � , then

lim
n!1P.An/ D P

� 1[

nD1
An

�

:

Example 3.2 (Binary Expansion) Consider an infinite product � D Q1
1 f0; 1g.

Elements of � are infinitely long binary sequences ! D .!1; !2; !3 : : :/ where
!i D 0 or 1. By the binary expansion a real number belonging to the unit interval
can be written as

P1
iD1 ai2

�i, ai 2 f0; 1g, which is identified with a sequence
.a1; a2; a3; : : :/ 2 �. Define a cylinder subset of length n by

Œa1; : : : ; an� D f! 2 � W !1 D a1; : : : ; !n D ang :

The collection of all cylinder sets is denoted by R. For 0 � p � 1 define the set
function �p W R ! Œ0;1/ by

�p.Œa1; : : : ; an�/ D pk.1 � p/n�k

where k is the number of times that the symbol ‘0’ appears in the string a1; : : : ; an.
Then the Kolmogorov Extension Theorem implies that �p extends to the �-algebra
generated by R, which is still denoted by �p.
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Fig. 3.1 The intersection of
A and B

Ω

Fact 3.2 (Kolmogorov Extension Theorem) If � is a function defined on the
collection of all cylinder subsets satisfying the consistency conditions such as
�.Œa1; : : : ; an�1�/ D P

a �.Œa1; : : : ; an�1; a�/, then it can be extended to a measure
on the �-algebra generated by the cylinder subsets.

Definition 3.4 (Conditional Measure) Given a measurable subset A of positive
measure on a probability space .�;F ;P/, define a new measure PA by

PA.B/ D P.B \ A/

P.A/
:

Then PA is called a conditional measure, usually denoted by P. � jA/, i.e., P.BjA/ D
PA.B/. See Fig. 3.1. Or, we may define a �-algebra on A by FA D fB 2 F W B � Ag,
and define a probability measure PA on .A;FA/ by PA.B/ D P.B/=P.A/.

Definition 3.5 Let .�;P/ be a probability space. Suppose that a statement H
depends on ! 2 �, i.e., H is true or false depending !. If there exists an A such
that P.� n A/ D 0 and if H holds for every ! 2 A, then we say that H holds almost
everywhere or for almost every ! with respect to P. In probability theory we say
that H holds almost surely, or with probability 1.

3.2 Simple Functions

Definition 3.6 (Measurable Function) A function X W .�;F/ ! R is said to be
measurable if

X�1..a; b// 2 F for every a < b :

Some other equivalent conditions are

X�1..�1; a�/ 2 F for every a ;

X�1..�1; a// 2 F for every a ;

X�1..a;C1// 2 F for every a ;

X�1.Œa;C1// 2 F for every a :

(See Fig. 3.2.) In probability theory a measurable function is called a random
variable.
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Fig. 3.2 Inverse image of an
interval .a; b/ under X

Ω

Fig. 3.3 A simple function
on a measurable space

Ω

Definition 3.7 (Indicator Function) Let A � �. A function 1A W � ! R
1 defined

by 1A.!/ D 1 for ! 2 A and 1A.!/ D 0 for ! 62 A is called an indicator function.
If A is a measurable subset, then 1A is a measurable function.

Remark 3.2 If �-algebras F and G satisfy G � F , i.e., there are additional
measurable subsets in F , then a G-measurable function is also F -measurable. A
function is more likely to be measurable with respect to a larger �-algebra.

Definition 3.8 (Simple Function) A measurable function s W � ! R is called a
simple function if it takes finitely many values, i.e., it is of the form

s.!/ D
nX

iD1
ci1Ai.!/

where Ai is a measurable set and ci is constant for 1 � i � n. We may assume
that Ai are pairwise disjoint. See Fig. 3.3. Note that a simple function is a linear
combination of indicator functions.

3.3 The Lebesgue Integral

H. Lebesgue in the early 1900s invented a new integration technique, which
extended the classical Riemann integral in the sense that the domain of integrand for
the new method can be an arbitrary set, not necessarily a subset of a Euclidean space.
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In contrast to the partitioning of the x-axis for the Riemann integral, the Lebesgue
integral partitions the y-axis. In the Lebesgue integral the concept corresponding to
length, area, or volume in Euclidean spaces is measure. One of the advantages of
the Lebesgue integral is that the operations of taking integral and taking limit can
be done interchangeably.

When the Lebesgue integral was first invented, it was regarded as an unneces-
sarily abstract mathematical concept compared to Riemann integral, but in 1933
A.N. Kolmogorov used it in his book [52] to build an axiomatic foundation for
probability theory, and the Lebesgue integral has become the language of probability
theory. However, there exists a linguistic gap between real analysis, which is the area
built upon the Lebesgue integral, and probability theory, and both disciplines still
have their own terminology. For example, a measurable function in real analysis
corresponds to a random variable in probability theory. Consult Table 4.1.

Now we find the average of a function defined on� with respect to a measure P.
We consider only measurable functions to define Lebesgue integration. Let X � 0 be
a bounded measurable function on X, in other words, there exists a constant M > 0

such that 0 � X.!/ < M for all ! 2 �. Put

An;k D X�1
��

k � 1
2n

M;
k

2n
M

��

:

From the fact that X is a measurable function, it can be easily seen that An;k is a
measurable set, whose size can be measured by a measure P. Note that the sequence
of simple functions

2n
X

kD1

k

2n
M1An;k

converges to X everywhere uniformly as n ! 1. The limit of

2n
X

kD1

k

2n
M 	 P.An;k/

is called the Lebesgue integral of X on .�;P/, and is denoted by

Z

�

X dP :

(See Fig. 3.4.) In probability theory this Lebesgue integral is called the expectation,
and denoted by EŒX� or EPŒX�. For more details see Sect. 4.1.

In defining a Riemann integral of a continuous function the domain is a subset of
a Euclidean space such as an interval or a rectangle, and we partition the domain
which is usually represented by a horizontal axis or a horizontal plane. On the
other hand, in Lebesgue theory the domain of a function under consideration is
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Fig. 3.4 Partition of a
domain for a Lebesgue
integral

Ω

not necessarily a subset of a Euclidean space and it is not possible to partition the
domain in a natural way, and hence the vertical real axis representing the function
values is partitioned. That is, the vertical axis is partitioned into sufficiently short
intervals, and their inverse images are used to partition the domain of the function.
Since the function is measurable, the inverse images are measurable subsets, and
their sizes are measured by a given measure defined on the domain.

A real-valued function X can be written as

X D XC � X�

where XC D max.X; 0/ � 0 and X� D max.�X; 0/ � 0, and we define the integral
of X by

Z

�

X dP D
Z

�

XC dP �
Z

�

X� dP :

Let 1A denote the indicator function of a measurable subset A. Then 1A is a
measurable function, and for an arbitrary measure P we have

Z

�

1A dP D P.A/ :

If two measurable sets A1 and A2 satisfy P.A14A2/ D 0, then from the viewpoint
of measure theory they may be regarded as the same sets, and we say that A1 D A2
modulo measure zero sets. When the integral of a measurable function X is finite,
then X is said to be integrable. If the values of two measurable functions are different
only on a subset of measure 0, then two functions have the same integral.

Example 3.3 For a finite or countably infinite set � D f!1; : : : ; !n; : : :g we define
its �-algebra as the collection of all subsets of �. Note that every function is
measurable on�. If a measure P on � is given by P.f!ig/ D pi for every i, then

Z

�

X dP D
X

i

piX.!i/ :
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Such a measure is said to be discrete. It is a probability measure if and only ifP
i pi D 1.

The smallest �-algebra on a Euclidean space generated by open subsets is called
the Borel �-algebra, on which Borel measure is defined. If we extend the Borel �-
algebra by including all the subsets of Borel measure zero subsets, then it is called
a completion, and the corresponding extension of Borel measure is called Lebesgue
measure. From the practical point of view, Lebesgue measure is an extension of
the concept of volume in Euclidean space to subsets of irregular shape. On a
finite closed interval the Riemann integral of a continuous function is equal to the
Lebesgue integral.

Remark 3.3 Consider a measure � on the real line R. If a measurable function
˛.x/ � 0 satisfies

�.A/ D
Z

A
˛.x/ dx

for every measurable set A � R where dx denotes Lebesgue measure, then � is
called an absolutely continuous measure, and we write d� D ˛ dx. In this case, for
any measurable function f W R ! R we have

Z

R

f .x/ d� D
Z

R

f .x/˛.x/ dx :

Here some of important properties of the Lebesgue integral.

Fact 3.3 (Monotone Convergence Theorem) Let 0 � X1 � X2 � � � � be a
monotonically increasing sequence of measurable functions on a measure space
.�;P/. Then

Z

�

lim
n!1 Xn dP D lim

n!1

Z

�

Xn dP :

Fact 3.4 (Fatou’s Lemma) Let Xn � 0, n � 1, be a sequence of measurable
functions on a measure space .�;P/. Then

Z

�

lim inf
n!1 Xn dP � lim inf

n!1

Z

�

Xn dP :

Fact 3.5 (Lebesgue Dominated Convergence Theorem) Let Xn, n � 1, be
a sequence of measurable functions on a measure space .�;P/. Suppose that
limn!1 Xn.!/ exists at every ! 2 �, and that there exists an integrable function
Y � 0 such that jXn.!/j � Y.!/ for every n. Then

Z

�

lim
n!1 Xn dP D lim

n!1

Z

�

Xn dP :
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Definition 3.9 (Lebesgue Space)

(i) For 1 � p < 1 define the Lp-norm jj � jjp and the Lebesgue space Lp by

jjXjjp D
�Z

�

jXjp dP

�1=p

;

and

Lp.�;P/ D ˚
X W jjXjjp < 1	

:

Then Lp.�;P/ is a vector space, and jj � jjp is a norm. If P.�/ < 1 and 1 �
r < p, then Lp.�/ � Lr.�/, and hence Lp.�/ � L1.�/ for p � 1. For p D 1
define

jjXjj1 D min f0 � K < 1 W jX.!/j � K for almost every !g

L1.X;P/ D fX W jjXjj1 < 1g :

For every 1 � p � 1 the normed space Lp is complete.

Definition 3.10 (Convergence)

(i) A sequence of functions Xn 2 Lp is said to converge in Lp to some X 2 Lp if

lim
n!1 jjXn � Xjjp D 0 :

(ii) A sequence of measurable functions Yn converges in probability (or, in
measure) to Y if for every " > 0 we have

lim
n!1P.f! W jYn.!/ � Y.!/j > "g/ D 0 :

Example 3.4 Take � D .0; 1�. Let An D .0; 1n �, n � 1. Define a sequence of
indicator functions Xn D n 	 1An , n � 1. Then Xn converges to 0 as n ! 1 at
every point, but jjXn � 0jj1 D 1 and jjXn � 0jj2 D p

n ! 1.

Now we compare various modes of convergence.

Fact 3.6 For 1 � p < 1 the following statements hold:

(i) If Xn converges to X in Lp, then Xn converges to X in probability.
(ii) If Xn converges to X in probability, and if jXnj � Y for every n for some Y 2 Lp,

then Xn converges to X in Lp.
(iii) If Xn;X 2 Lp and if Xn converges to X almost everywhere, then the Lp-

convergence of Xn to X is equivalent to jjXnjjp ! jjXjjp .
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Fact 3.7 Assume that P.�/ < 1.

(i) For 1 � p � 1, if Xn converges to X in Lp, then Xn converges to X in
probability.

(ii) If Xn.!/ converges to X.!/ at almost every !, then Xn converges to X in
probability.

Fact 3.8 Let 1 � p � 1. If Xn converges to X in Lp, then there exists an increasing
sequence of natural numbers fnkg1

kD1 such that Xnk .!/ converges to X.!/ for almost
every ! as k ! 1.

3.4 Inequalities

Definition 3.11 (Convex Function) A function � W R ! R is said to be convex if

�

� nX

iD1
�ixi

�

�
nX

iD1
�i�.xi/

for �1; : : : ; �n � 0 such that
Pn

iD1 �i D 1 and for x1; : : : ; xn 2 R. If the inequality
is in the opposite direction, then it is called a concave function. If � is convex, then
�� is concave. Convex and concave functions are continuous. A linear combination
of the form

Pn
iD1 �ixi,

Pn
iD1 �i D 1, �i � 0, is called a convex linear combination

of xi.

Fact 3.9 (Jensen’s Inequality) Let X W � ! R be a measurable function on a
probability measure space .�;P/. If � W R ! R is convex and � ı X is integrable,
then

�

�Z

�

X dP

�

�
Z

�

�.X.!// dP :

(See Fig. 3.5.) For a concave function the inequality is in the opposite direction.

Fig. 3.5 Composition of a
random variable X and a
function �

Ω
x y

φ

φ
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Example 3.5 Since �.x/ D jxj is a convex function, we have

ˇ
ˇ
ˇ
ˇ

Z

�

X dP

ˇ
ˇ
ˇ
ˇ �

Z

�

jX.!/j dP :

Example 3.6 Since �.x/ D 1

x
is a convex function on .0;1/, we have

1

EŒX�
� E

�
1

X

�

for X > 0.

Example 3.7 Since �.x/ D log x is a concave function on .0;1/, we have

E Œlog X� � logEŒX�

for X > 0. Now we consider a special case. In Example 3.3 we choose X.!i/ D 1=pi

for every 1 � i � n, and hence EŒX� D n and

�
nX

iD1
pi log pi � log n

by Jensen’s inequality.

Example 3.8 Take a convex function �.x/ D maxfx � K; 0g for a constant K, then
we have

maxfEŒX� � K; 0g � EŒmaxfX � K; 0g�

for a random variable X. In option pricing theory, X is the asset price at expiry date
and � is the payoff of a European call option with strike price K.

Fact 3.10 (Hölder’s Inequality) Let X;Y be measurable functions on a measure
space .�;P/ such that X 2 Lp, Y 2 Lq, XY 2 L1. If p; q satisfy 1 � p � 1,
1 � q � 1, 1p C 1

q D 1, then

jjXYjj1 � jjXjjp jjYjjq :

Equality holds if and only if there exist two constants C1 � 0 and C2 � 0, not both
zero, such that for almost every ! 2 �

C1jX.!/jp D C2jY.!/jq :

Hölder’s inequality for p D 2 is called the Cauchy–Schwarz inequality.
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Fact 3.11 (Minkowski’s Inequality) For p � 1 we have

jjX C Yjjp � jjXjjp C jjYjjp :

For 1 < p < 1 a necessary and sufficient condition for equality is that there exist
constants C1 � 0 and C2 � 0, not both 0, such that for almost every ! we have
C1 X.!/ D C2 Y.!/. For p D 1 a necessary and sufficient condition for equality
is that there exists a measurable function Z � 0 such that X.!/Z.!/ D Y.!/ for
almost every ! satisfying X.!/Y.!/ 6D 0.

Minkowski’s inequality implies that an Lp space is a normed space.

Fact 3.12 (Chebyshev’s Inequality) If p � 1 and X 2 Lp.�;P/, then for every
" > 0 we have

P.f! W jX.!/j > "g/ � 1

"p

Z

�

jXjp dP :

3.5 The Radon–Nikodym Theorem

Definition 3.12 (i) A measure P on � is discrete if there is a countable set B � �

such that P.Bc/ D 0. (ii) A measure P on � is continuous if P.f!g/ D 0 for any
single element ! 2 �. Clearly, if P is continuous, then a countable set A satisfies
P.A/ D 0.

Let X � 0 be an integrable function on a probability measure space .�;F ;P/.
For arbitrary A 2 F define

Q.A/ D
Z

A
X dP D EŒ1AX� : (3.1)

Then Q is a measure on .�;F/. If EŒX� D 1, then Q is a probability measure. If
P.A/ D 0, then Q.A/ D 0.

Definition 3.13 (Absolute Continuity)

(i) Given two measures P and Q on a measurable space .�;F/, we say that Q is
absolutely continuous with respect to P if P.A/ D 0 implies Q.A/ D 0, and
write Q � P. Here is an equivalent condition for absolute continuity: for every
" > 0 there exists a ı > 0 such that P.A/ < ı implies Q.A/ < ". If Q by
Q.A/ D EŒ1AX� as in (3.1), then Q � P. Theorem 3.13 states that the converse
is also true.

(ii) If Q � P and also if P � Q, then we say that P and Q are equivalent, and
write Q � P.

A measure � on R is absolutely continuous (with respect to Lebesgue measure)
if there exists an integrable function f .x/ � 0 such that d� D f dx where dx is
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Lebesgue measure. Note that f is the Radon–Nikodym derivative of � with respect
to Lebesgue measure. An absolutely continuous measure is continuous. A measure
� on R is singular continuous (with respect to Lebesgue measure) if � is continuous
and there is a set A of Lebesgue measure zero such that �.Ac/ D 0. A measure �
can be decomposed into a sum � D �ac C �sc C �d, the components respectively
representing the absolutely continuous part, singular continuous part and discrete
part of �. If � is absolutely continuous, then � D �ac, i.e., �sc D 0 and �d D 0. For
an example of an uncountable subset of Lebesgue measure zero, see Exercise 3.8.

Theorem 3.13 (Radon–Nikodym) Let P and Q be two finite measures on a
measurable space .�;F/. If Q � P, then there exists a nonnegative measurable
function X W � ! R

1 such that for arbitrary A 2 F we have

Q.A/ D
Z

A
X dP :

We write X D dQ
dP and call it the Radon–Nikodym derivative of Q with respect to P.

Remark 3.4

(i) If P andQ are probability measures, then for any measurable function X W � !
R
1 we have

E
QŒX� D E

P

�

X
dQ

dP

�

where E
P and E

Q denote integrals with respect to P and Q, respectively.
(ii) We say that two measures are equivalent when P.A/ D 0 if and only if Q.A/ D

0. In this case we have

dP

dQ
D
�

dQ

dP

��1
:

(iv) The Radon–Nikodym Theorem is an essential concept in the martingale
method for option pricing. Instead of the real world probability distribution
P for the stock price movement we find an equivalent probability distribution
Q and compute the expectation.

3.6 Computer Experiments

Simulation 3.1 (Cantor Set)
We try to visualize the Cantor set in Exercise 3.8, and see why its Lebesgue

measure is equal to 0. In the following we generate random sequences of 0’s and 2’s
in the ternary expansion of the real numbers belonging to the unit interval, and plot
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0 0.2 0.4 0.6 0.8 1

0 0.0370 0.0741 0.1111

Fig. 3.6 The probability distribution supported by the Cantor set

the distribution that is supported by the Cantor set. See Fig. 3.6 where the bottom
graph is the nine times magnification of a part of the top one. Observe the fractal
nature of the Cantor set.

digits % Check the number of decimal digits in computation.

k = 20; % number of ternary digits in the ternary expansion

M = 100000; % number of sample points for the histogram

Cantor = zeros(M,1);

for i=1:M

for j=1:k

Cantor(i) = (Cantor(i) + 2.0*randi([0,1]))/3.0;

end

end

histogram(Cantor,3^7); % Choose the number of bins.

Remark 3.5 Sample points with many significant digits will result in a good
resolution when plotting the histogram representing the Cantor set, even in the case
when there are many bins. However, too much precision in numerical experiments
slows down the computation. If we construct numerically a point x0 D Pk

iD1 ai3
�i

belonging to the Cantor set within an error bound 10�D by specifying the first k
ternary digits, we have 10�D � 3�k, i.e., D � log10 3 	 k. If there are N bins, then
10�D � N�1, i.e., D � log10 N. In Simulation 3.1 we take D D 5, N D 37, k D 20.
By default, the number of decimal digits in numerical computation is thirty two.
(For numerical experiments with singular continuous measures, consult [21].)
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Exercises

3.1 Let X W � ! R
1 be a function defined on a measurable space .�;F/.

(i) Show that �.X C ˛/ D �.X/ for any constant ˛.
(ii) Show that �.ˇX/ D �.X/ for any constant ˇ 6D 0.

(iii) Let � W R
1 ! R

1 be a continuous function. Show that �.�.X// is a sub-�-
algebra of �.X/. For example, �.X2/ is a sub-�-algebra of �.X/.

3.2 Let � D fa; b; cg and consider a �-algebra F D ffa; bg; fcg;;; �g. Prove that
a function X W � ! R

1 is F -measurable if and only if X.a/ D X.b/.

3.3 Let� be a measurable space. Let f ; g W � ! R be measurable functions. Show
that for every measurable subset A the function h.x/ defined by h.x/ D f .x/ for
x 2 A, and h.x/ D g.x/ for x 62 A, is measurable.

3.4 Let .�;A/ be a measurable space and let B be a sub-�-algebra of A. Show that
if X is measurable with respect to B, then it is also measurable with respect to A.

3.5 Let .�;F ;P/ be a probability measure space and let A1;A2;A3; : : : be a
sequence of measurable subsets such that

P1
nD1 P.An/ < 1 and let Bn D S1

kDn Ak.
Prove that P

�T1
nD1 Bn

� D 0.

3.6 Let .�;F ;P/ be a probability measure space and let A1;A2;A3; : : : be a
sequence of measurable subsets with P.An/ D 1 for all n � 1. Show that
P
�T1

nD1 An
� D 1.

3.7 Let A � Œ0; 1� be a set defined by

A D
� 1X

nD1

an

2n

ˇ
ˇ
ˇ
ˇ an D 0; 1; n � 1; and an D 0 except for finitely many n




:

Find the Lebesgue measure of A.

3.8 Define the Cantor set A � Œ0; 1� by

A D
� 1X

nD1

an

3n
D .0:a1a2a3 : : :/3

ˇ
ˇ
ˇ
ˇ an D 0; 2; n � 1




:

(See Simulation 3.1.)

(i) Show that 1
4

2 A. (Hint: Find the ternary expansion of 1
4
.)

(ii) Find the Lebesgue measure of A.
(iii) Show that A has uncountably many points.
(iii) Explain how to construct a singular continuous measure using the one-to-one

correspondence � W A ! Œ0; 1� defined by

�..0:a1a2a3 : : :/3/ D .0:b1b2b3 : : :/2
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where .0:b1b2b3 : : :/2 D P1
nD1 bn2

�n, bi D ai

2
2 f0; 1g, i � 1. (We ignore the

set of all numbers with multiple representations, which has measure zero.)

3.9 Prove that for any measurable function X � 0 defined on a measurable space
� there exists a monotonically increasing sequence of simple functions sn � 0 such
that limn!1 sn.!/ D X.!/ for every ! 2 �.

3.10 Let Xn � 0, n � 1, be a sequence of random variables on a probability space
.�;P/ such that

Z

�

Xn dP <
1

2n

for n � 1. Show that Xn converges to 0 almost everywhere.

3.11 Compute the limit of

Z n

0

�
1� x

n

�n
ex=2 dx :

3.12 Consider a sequence of functions on Œ0; 1� defined by

fn D 1Œ j2�k ;. jC1/2�k� ; n D j C 2k ; 0 � j < 2k :

Show that fn converges to 0 in probability, but not pointwise.

3.13 Let .�;P/ be a probability measure space. Suppose that X � 0 and Y � 0 are
measurable functions on � such that XY � 1. Show that

Z

�

X dP
Z

�

Y dP � 1 :

(For an example in finance, see Example 4.4.)

3.14 Suppose that 0 � X 2 L1.�;P/. Prove that for every " > 0 there exists a
ı > 0 such that

R
E X d� < " whenever P.E/ < ı.



Chapter 4
Basic Probability Theory

When H. Lebesgue invented the Lebesgue integral, it was regarded as an abstract
concept without applications. It was A.N. Kolmogorov [52] who first showed how
to formulate rigorous axiomatic probability theory based on Lebesgue integration.

4.1 Measure and Probability

There is a linguistic gap between terminologies in Lebesgue integral theory and
probability theory. To compare the definitions, a measure in Lebesgue integral
theory is called probability, a measure space is a sample space, a measurable subset
is an event, a �-algebra means a �-field, a measurable function corresponds to a
random variable, and a Lebesgue integral is called an expectation. The characteristic
function �E of a subset E is called an indicator function, and denoted by 1E. In set
theory, the domain of a function is usually denoted by X, and a variable denoted
by x, however, in probability theory a probability measure space is denoted by �
and the values of a random variable X denoted by x.1 If we may repeat, a random
variable is a function.

Once we get used to two different sets of notations, we find them convenient
in practice. While in real analysis such expressions as ‘almost everywhere’ or ‘for
almost every point’ are used, in probability theory more intuitive expressions such
as ‘almost surely’ or ‘with probability 1’ are used. Consult Table 4.1.

More confusing is the fact that in probability theory a Fourier transform is called
a characteristic function. In this case, the Fourier transform of a random variable

1In probability theory a random variable is the most important object of study, and its values are
regarded as unknown, so the most prestigious and mysterious symbol ‘X’ is reserved to denote a
random variable.

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
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Table 4.1 Comparison of
terminology and notation

Probability theory Lebesgue integral

Sample space � Measure space X

! 2 � x 2 X

� -field F � -algebra A
Event A Measurable set A

Random variable X Measurable function f

fX � xg f �1..�1; ˛�/

Probability P Measure �

Indicator function 1A Characteristic function �A

Expectation EŒX� Lebesgue integral
R

X f d�

Almost surely, with probability 1 For almost every point

Conditional probability P.�jA/ Conditional measure �A

X W � ! R is defined by

EŒeitX � D
Z

�

eitX.!/ dP.!/ ; �1 < t < 1

where i denotes a complex number satisfying i2 D �1. (We may define the Fourier
transform by using e�itX.!/.)

For an event A of positive probability, we define the conditional probability
P.BjA/ that the event B occurs on the condition that the event A occurs by

P.BjA/ D P.A \ B/

P.A/
:

The conditional probability measure PA is defined by PA.B/ D P.BjA/.
Definition 4.1 Given a probability measure space .�;F ;P/, a measurable function
X W .�;F/ ! R is called a random variable. We define a probability measure �X

on R by

�X.A/ D P.X�1.A//

where A is a Borel measurable subset of R. If there exists an fX � 0 on R such that

Z

A
fX.x/ dx D �X.A/

for every A, we call fX the probability density function, or pdf for short, of X.

Note that �X.A/ is the probability that a value of X belongs to A, i.e., �X.A/ D
Pr.X 2 A/. The probability measure �X has all the information on the distribution
of the values of X, and we focus our attention on �X instead of �.
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Fig. 4.1 An abstract model
of a probability density
function

Ω

Example 4.1 (Coin Tossing) To solve a given problem we may choose any conve-
nient probability space. For example, when we consider the problem of tossing a
coin once, if we let H denote heads, T tails, then we may take � D �1 D fH;Tg.
However, in the problem of tossing a coin twice or tossing two coins once, we take
� D �2 D fHH;HT;TH;TTg. Even in the first problem of tossing a coin once, it
is possible to use �2, but it is simpler and more convenient to use �1. For example,
suppose that a random variable X takes the value X D 1 if a coin turns up heads
and takes the value X D �1 if a coin turn up tails. In the case of employing �2 we
define X.HH/ D X.HT/ D 1, X.TH/ D X.TT/ D �1, which is more complicated
than the case of �1 with X.H/ D 1, X.T/ D �1.

In Fig. 4.1 the probability of a subset of � on the left is equal to the integral of
the probability density function on an interval Œa; b� on the right. The mapping X is
a probability preserving transformation. In the diagram it is intuitive to regard the
random variable X as a function that measures the level of the domain�.

For a measurable function h W R ! R we have
Z

�

h.X.!// dP.!/ D
Z 1

�1
h.x/ d�X.x/ :

If we take h.x/ D jxjp, then

EŒ jXjp� D
Z

!

jX.!/jp dP.!/ D
Z 1

�1
jxjp d�X.x/ :

The expectation or mean of X is defined by

EŒX� D
Z 1

�1
x d�X.x/ ;
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and its variance is defined by

�2.X/ D EŒ.X � EŒX�/2� D
Z 1

�1
.x � EŒX�/2 d�X.x/ :

The square root of the variance is called the standard deviation, and denoted by � . If
two random variables X and Y have the same distribution, in other words, if �X and
�Y are equal on R, then they have the same probabilistic properties. For example,
their expectations are equal.

Example 4.2 (Coin Tossing) To model coin tossing we take� D fH;Tg and define
a �-algebra F D f;; �; fHg; fTgg, and a probability measure P by P.fHg/ D p,
P.fTg/ D 1�p where the probability of obtaining heads and tails are equal to p and
1 � p, respectively. Define a random variable X W � ! R by X.H/ D 0, X.T/ D 1.
Then EŒX� D EŒX2� D p 	 0C .1� p/	 1 D 1� p and Var.X/ D EŒX2��EŒX�2 D
1 � p � .1 � p/2 D p � p2.

Example 4.3 If the values of a random variable X W � ! R are uniformly
distributed in the interval Œa; b�, then the probability density function of X is given by

fX.x/ D 1

b � a
1Œa;b�.x/ D

8
ˆ̂
<

ˆ̂
:

1

b � a
; x 2 Œa; b� ;

0; x 62 Œa; b� :
See Fig. 4.2. Note that EŒX� D R 1

0
x dx D 1

2
and Var.X/ D EŒX2� � EŒX�2 D

R 1
0

x2dx � . 1
2
/2 D 1

3
� 1

4
D 1

12
.

Example 4.4 (Siegel’s Paradox) We consider a seemingly contradictory fact on
exchange rate between two currencies. Let X represent the future exchange rate
between US dollar and euro, i.e., if a dollar will be equal to X euro in the future then
Jensen’s inequality in Theorem 3.9 implies 1

EŒX� � E

1
X

�
where 1=X represents the

Fig. 4.2 A model of a
uniformly distributed random
variable in the interval Œa; b�

(  )

Ω
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exchange rate for converting one euro into dollars. Note that 1=EŒX� 6D EŒ1=X� in
general.

For a concrete example, consider a case when the present exchange rate
1:00 (EUR/USD) changes to either X D 2:00 (EUR/USD) with probability 1

2
or

X D 0:50 (EUR/USD) with probability 1
2

in a year. The opposite exchange rate 1=X
is currently 1:00 (USD/EUR) and in a year it will change to 0:50 (USD/EUR) or
2:00 (USD/EUR) with probability 1

2
. Hence

EŒX� D 1

2
	 2:00C 1

2
	 0:50 D 1:25 (EUR/USD) ;

E

�
1

X

�

D 1

2
	 0:50C 1

2
	 2:00 D 1:25 (USD/EUR) :

The exchange rate will rise 1:25 times in a year whether we exchange euro with USD
or do the opposite. In other words, we have the same expected return in any case,
which is called Siegel’s paradox. It is not a paradox, but seems to be counterintuitive
at first glance. Of course, if the exchange rate at future date is determined, one side
gains profit while the other side suffers loss.

Example 4.5 (Payoff of an Option) Figure 4.3 illustrates the payoff .ST � K/C of
a European call option as a composite of a random variable ST W � ! Œ0;1/

representing the stock price at time T and a function

.x � K/C D maxfx � K; 0g W Œ0;1/ ! Œ0;1/ :

The new composite function is again a random variable.

Example 4.6 If X is a random variable with normal probability distribution with
mean 0 and variance �2, then

EŒX2n� D .2n/Š

2nnŠ
�2n

and EŒX2nC1� D 0 for every n � 0.

Fig. 4.3 Payoff of a
European call option,
.ST � K/C, as a composite
function

Ω

( x   K )- +

( S    K )- +
T

0 0

K
}

x y
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4.2 Characteristic Functions

Definition 4.2 (Cumulative Distribution Function) Given a random variable X,
its cumulative distribution function (cdf for short) is defined by

F.x/ D Pr.X � x/ ; �1 < x < 1 :

If a cumulative distribution function satisfies

F.x/ D
Z x

�1
f .t/ dt ; �1 < x < 1 ;

for some integrable function f � 0, then f .x/ is called a probability density function
(pdf for short) for X.

If a probability density function f .x/ is continuous at x, then F0.x/ D f .x/
since PfX < x C ıxg � PfX < xg � fX.x/ ıx for small ıx > 0. A cumulative
distribution function is monotonically increasing, and satisfies limx!�1 F.x/ D 0

and limx!1 F.x/ D 1. A cumulative distribution function F is continuous from
the right, i.e., F.x/ D limh!0C F.x C h/. Furthermore, we have P.X < c/ D
limx!c� F.x/.

Example 4.7 The probability density function f .x/ of the standard normal distribu-
tion is given by

f .x/ D 1p
2

e�x2=2

and a standard normal random variable X has the cumulative distribution function

N.x/ D P.X � x/ D
Z x

�1
1p
2

e�t2=2 dt :

(See Figs. 4.4 and 4.5.)

Definition 4.3 (Fourier Transform) For an integrable function f .x/ on R, its
Fourier transform yf is defined by yf .t/ D R1

�1 f .x/e�itx dx, t 2 R, where i2 D �1. It
is continuous on the real line.

Fig. 4.4 Probability density
function of the standard
normal distribution

−4 −2 0 2 4
0

0.2

0.4



4.2 Characteristic Functions 47

Fig. 4.5 Cumulative
distribution function of the
standard normal distribution

−4 −2 0 2 4
0

0.5

1

Definition 4.4 (Characteristic Function) The characteristic function �X of a
random variable X is defined by

�X.t/ D EŒeitX � ; �1 < t < 1 ;

where i D p�1. Note that X need not be continuous for the expectation to exist.
For example, the characteristic function of a binomial distribution B(n,k) defined by
Pr.X D k/ D �n

k

�
pk.1 � p/k is given by �.t/ D . peit C .1 � p//n. For a continuous

random variable X with its pdf fX the characteristic function is the Fourier transform
of fX , i.e.,

�X.t/ D
Z 1

�1
eitxfX.x/ dx ; �1 < t < 1 :

(In probability theory it is more common to use eitx instead of e�itx.)

Theorem 4.1 The following facts are known:

(i) �X.0/ D 1,
(ii) j�X.t/j � 1,

(iii) �X.t/ is continuous,
(iv) �aCbX.t/ D eiat�X.bt/,
(v) �0

X.0/ D i�,
(vi) �00

X.0/ D �EŒX2� D ��2 � �2, and
(vii) the Fourier inversion formula holds, i.e.,

fX.x/ D 1

2

Z 1

�1
e�ixt�X.t/ dt :

Remark 4.1

(i) The power series expansion of the characteristic function is given by

�X.t/ D
1X

nD0

inEŒXn�

nŠ
tn :
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(ii) The characteristic function of a random variable completely determines the
distribution of X. More precisely, if X and Y have the same characteristic
function, then their probability distributions are identical due to the Fourier
inversion formula.

Example 4.8 If X is normally distributed with mean 0 and variance �2, then

EŒX2k� D �2k.2k/Š

2kkŠ
;

and hence

�X.t/ D
1X

kD0

i2k
EŒX2k�

.2k/Š
t2k D

1X

kD0

i2k�2k.2k/Š

.2k/Š2kkŠ
t2k D

1X

kD0

.��2/k
2kkŠ

t2k D e��2t2=2 :

(If X has mean �, then �X.t/ D eit�e��2t2=2.) Thus

Z 1

�1
eitx 1p

2
e�x2=2dx D e�t2=2

for t 2 R where the left-hand side is equal to the characteristic function of the
standard normal distribution. Since the both sides are real, by taking complex
conjugates, we also have

Z 1

�1
e�itx 1p

2
e�x2=2dx D e�t2=2 :

Remark 4.2 Let Xn, n � 1, and X be random variables with their cumulative
distribution functions FXn and FX satisfying

lim
n!1�Xn.t/ D �X.t/ ; �1 < t < 1 :

Then limn!1 FXn.x/ D FX.x/ at the points x where FX is continuous.

Remark 4.3 Define log z D log jzj C iArg.z/, � < Arg.z/ <  . Then for
jz � 1j < 1 we have the power series expansion log z D .z � 1/ � 1

2
.z � 1/2 C � � � .

Since

�X.t/ D �X.0/C �0
X.0/t C �00

X.0/

2
t2 C � � �

D 1C i�t � �2 C �2

2
t2 C � � � ;
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we have

log�X.t/ D
�

i�t � �2 C �2

2
t2 C � � �

�

� 1

2

�

i�t � �2 C �2

2
t2 C � � �

�2
C � � �

D i�t � �2

2
t2 C � � � ;

and hence

log�X.t/ � i�t

t2
D ��

2

2
C � � � :

Theorem 4.2 If Xn, n � 1, are normal random variables with mean �n and
variance �2n and if Xn converges to X in L2, then X is also normally distributed
with mean � D limn!1 �n and variance �2 D limn!1 �2n under the assumption
that the limits exist.

Proof Since the characteristic functions of Xn converge everywhere to a limit that is
also a characteristic function of a normal variable, the sequence Xn itself converges
to a normal variable. ut
Definition 4.5 (Moment Generating Function) The moment generating function
of a random variable X is defined for u in a neighborhood of 0 by

MX.u/ D EŒeuX �

if the expectation exists. Depending on X, the expectation may not exist for large
real values of u. Note that

MX.0/ D 1

and

MX.u/ D 1C m1u C m2

2Š
u2 C m3

3Š
u3 C � � � C mk

kŠ
uk C � � �

where mk D EŒXk� and the power series converges. If the kth moment mk grows too
fast then the power series may not converge to a finite limit. If X � 0, the moment
generating function is essentially the Laplace transform of the probability density
function. Note that u need not be real. If u is purely imaginary, then we obtain the
characteristic function in Definition 4.4.
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Example 4.9 Let Z be a standard normal variable and take u D aCib 2 C, a; b 2 R.
Then

EŒeuZ � D
Z 1

�1
euz 1p

2
e�z2=2dz

D ea2=2
Z 1

�1
eibz 1p

2
e�.z�a/2=2dz .take y D z � a/

D ea2=2eiab
Z 1

�1
eiby 1p

2
e�y2=2dy

D ea2=2eiabe�b2=2

D eu2=2 :

In general, for X � N.�; �2/ we have

EŒeuX � D e�uC 1
2 �

2u2 :

4.3 Independent Random Variables

Definition 4.6 (Independence of Events) If measurable sets (or events) A1; : : : ;An

satisfy

P.A1 \ � � � \ An/ D P.A1/ � � �P.An/ ;

then A1; : : :An are said to be independent. A collection of infinitely many mea-
surable subsets fA�g�2� is said to be independent if any finitely many subsets
A�1 ; : : : ;A�n are independent.

If two events A1 and A2 are independent, then the pairs A1 and Ac
2, Ac

1 and A2, Ac
1

and Ac
2 are independent where Ac

i denotes the complement of Ai, i D 1; 2.

Definition 4.7 (Independence of Random Variables) Let Xi W � ! R, i � 1, be
random variables. If fX�1

i .Bi/g1
iD1 are independent for arbitrary Borel measurable

subsets Bi � R, then Xi are said to be independent.

Since the collection of all intervals generates the Borel measurable subsets of
R, it is sufficient to apply the above criterion only with intervals for Bi. The same
comment holds in similar situations.

Definition 4.8 (Independence of �-Algebras)

(i) Let Fi, 1 � i � n, be sub-�-algebras. If A1; : : : ;An are independent for any
choice of A1 2 F1; : : : ;An 2 Fn, then we say that F1; : : : ;Fn are independent.
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(ii) Given a random variable X and a sub-�-algebra F , if X�1.B/ and A are
independent for arbitrary Borel subset B � R and A 2 F , then X and F are
said to be independent.

Let �.X/ denote the smallest �-algebra containing all the subsets of the form
X�1.B/ where B � R is an arbitrary Borel set. Then the independence of X and F
is equivalent to the independence of �.X/ and F . Similarly, for random variables
X˛, ˛ 2 A, let �.fX˛ W ˛ 2 Ag/ denote the smallest �-algebra containing all the
�-algebras �.X˛/.

Lemma 4.1 Suppose that random variables X and Y are independent. For arbitrary
Borel measurable functions f W R ! R and g W R ! R, the random variables f .X/
and g.Y/ are independent.

Proof Use �. f .X// � �.X/ and �.g.Y// � �.Y/. ut
Example 4.10 Suppose that random variables X and Y are independent.

(i) For constants ˛ and ˇ we take f .x/ D ˛x C ˇ. Then we see that ˛X C ˇ and
Y are independent.

(ii) X � EŒX� and Y � EŒY� are independent.
(iii) Take f .x/ D maxfx; 0g. Then XC D maxfX; 0g and Y are independent.

Theorem 4.3 Suppose that X1; : : : ;Xn are independent random variables.

(i) For an arbitrary Borel measurable Bi � R we have

P.X1 2 B1; : : : ;Xn 2 Bn/ D P.X1 2 B1/ 	 � � � 	 P.Xn 2 Bn/ :

(ii) If �1 < EŒXi� < 1 for every i, then

EŒX1 � � � Xn� D EŒX1� 	 � � � 	 EŒXn� :

(iii) If EŒX2i � < 1 for every i, then

Var.X1 C � � � C Xn/ D Var.X1/C � � � C Var.Xn/

where Var denotes variance.

Proof For the sake of notational convenience we prove only the case n D 2.

(i) Use

P.X1 2 B1;X2 2 B2/ D P.X�1
1 .B1/ \ X�1

2 .B2// D P.X�1
1 .B1//P.X

�1
2 .B2// :

(ii) In part (i) we take X1 D P
i ˛i1Ai , X2 D P

i ˇi1Bj , and obtain

EŒX1X2� D
X

i;j

˛iˇjP.Ai \ Bj/ D
X

i

˛iP.Ai/
X

j

ˇjP.Bj/ D EŒX1�EŒX2� :
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For the general case, approximate the given random variables by sequences of
simple functions and take the limits.

(iii) Note that

Var.X1 C X2/

D EŒ.X1 � EŒX1�C X2 � EŒX2�/
2�

D EŒ.X1 � EŒX1�/
2�C EŒ.X2 � EŒX2�/

2�C 2EŒ.X1 � EŒX1�/.X2 � EŒX2�/� :

By Example 4.10(ii) and the part (ii) of the above theorem,

EŒ.X1 � EŒX1�/.X2 � EŒX2�/� D EŒX1 � EŒX1��EŒX2 � EŒX2�� D 0 :

Thus Var.X1 C X2/ D EŒ.X1 � EŒX1�/2�C EŒ.X2 � EŒX2�/2�. ut
Definition 4.9 (Joint Probability) For random variables Xi, 1 � i � n, on
a probability space �, we define a random vector .X1; : : : ;Xn/ W � ! R

n

by .X1; : : : ;Xn/.!/ D .X1.!/; : : : ;Xn.!//, ! 2 �. The corresponding joint
probability density function fX1;:::;Xn W Rn ! R is given by

Z
� � �
Z

A
fX1;:::;Xn.x1; : : : ; xn/ dx1 � � � dxn D P..X1; : : : ;Xn/

�1.A// :

The characteristic function for a random vector X D .X1; : : : ;Xn/ is defined by the
n-dimensional Fourier transform

�X.t/ D E

eit�X� D

Z 1

�1
� � �
Z 1

�1
eit�xfX1;:::;Xn.x1; : : : ; xn/ dx1 � � � dxn

where t � x D t1x1 C � � � C tnxn and t � X D t1X1 C � � � C tnXn.

Definition 4.10 (Jointly Normal Distribution) The random variables X1; : : : ;Xn

are jointly normal with a covariance matrix † if their joint pdf is given by

f .x/ D 1

.2/n=2.det†/1=2
exp

�
� 1

2
.x ��/t†�1.x � �/

�

where

† D EŒ.X � �/t.X ��/�

D

2

6
4

Cov.X1;X1/ � � � Cov.X1;Xn/
:::

:::

Cov.Xn;X1/ � � � Cov.Xn;Xn/

3

7
5
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and

x D .x1; : : : ; xn/ ; � D .�1; : : : ; �n/ and X D .X1; : : : ;Xn/ :

In this case, we write X � N.�; †/. Note that EŒXi� D �i, 1 � i � n, and that † is
symmetric and nonnegative definite.

Remark 4.4

(i) Here is a generalization of the jointly normal distribution. The variables
X1; : : : ;Xn are said to be jointly normal in the extended sense if there exists
a (not necessarily invertible) symmetric and nonnegative definite n 	 n matrix
C and a vector � D .�1; : : : ; �n/ satisfying

�X.x1; : : : ; xn/ D exp
�

� 1

2

nX

j;kD1
cjkxjxk C i

nX

jD1
�jxj

�
: (4.1)

This condition (4.1) is satisfied if we choose C D †�1 in Definition 4.10.
It is equivalent to the statement that any linear combination of X1; : : : ;Xn is
normal. When X1; : : : ;Xn are jointly normal, and X1 and Xj are uncorrelated for
2 � j � n, then X1 is independent of X2; : : : ;Xn.

(ii) Suppose that Xn is normal for n � 1 and that Xn converges to X in L2. Then X
is normal. For the proof, consult [74].

Theorem 4.4 (Independent Random Variables) Let X and Y be random vari-
ables with their probability density functions fX and fY , respectively. If fX;Y.x; y/ D
fX.x/fY.y/, then X and Y are independent. Conversely, if X;Y are independent, then
the probability density function of the two-dimensional random variable .X;Y/ W
� ! R

2, denoted by fX;Y, is given by fX;Y.x; y/ D fX.x/fY.y/.

Proof First, if fX;Y.x; y/ D fX.x/fY.y/, then for any Borel subsets B1;B2 we have

X�1.B1/\ Y�1.B2/ D .X;Y/�1.B1 	 B2/ :

Hence

P.X�1.B1/\ Y�1.B2// D
“

B1�B2

fX;Y.x; y/ dx dy

D
Z

B2

�Z

B1

fX.x/ dx

�

fY.y/ dy

D P.X�1.B1//P.Y�1.B1// :
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Next, for any pair of real numbers a; b, let A D .�1; a/ 	 .�1; b/. Then, by
definition,

P..X;Y/ 2 A/ D
“

A

fX;Y.x; y/ dx dy :

By the independence,

P..X;Y/ 2 A/ D P.X 2 .�1; a//P.Y 2 .�1; b//

D
Z a

�1
fX.x/dx

Z b

�1
fY.y/dy

D
Z a

�1

Z b

�1
fX.x/fY.y/ dxdy :

Hence fX;Y.x; y/ D fX.x/fY.y/. ut
Definition 4.11 (Convolution) Let f and g be two integrable functions on R. Then
their convolution f � g is defined by

. f � g/.x/ D
Z 1

�1
f .x � y/g.y/dy :

It can be shown that

f � g D g � f

and

f � .g � h/ D . f � g/ � h :

Theorem 4.5 (Sum of Random Variables) Let X and Y be independent random
variables with probability density functions fX and fY , respectively. Then the
probability density function of X C Y, denoted by fXCY, is given by the convolution,
i.e., fXCY D fX � fY .

Proof First, we present a heuristic proof. Let FX.x/ D P.X � x/ and let �1 <

� � � < yi < yiC1 < � � � < 1 be a partition of .�1;1/ such that supi ıi is sufficiently
small where ıi D yiC1 � yi > 0. Then

P.X C Y � a/ �
X

i

P.X � a � yijyi � Y < yiC1/ 	 P.yi � Y < yiC1/

D
X

i

P.X � a � yi/ 	 P.yi � Y < yiC1/

�
X

i

FX.a � yi/fY.yi/ıyi :
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Fig. 4.6 Sum of two
independent random variables

Ω

(See Fig. 4.6.) By letting supi ıi ! 0, we obtain

P.X C Y � a/ D
Z 1

�1
FX.a � y/fY.y/ dy :

Taking the derivatives of both sides with respect to a, we have

fXCY.a/ D
Z 1

�1
fX.a � y/fY.y/ dy D fX � fY.a/ :

We used the fact that FX is sufficiently smooth.
A more mathematically rigorous proof goes as follows: Since the joint probabil-

ity density function of .X;Y/ is equal to fX.x/fY.y/, we have

P.X C Y � a/ D
Z 1

�1

Z a�y

�1
fX.x/fY.y/ dxdy :

Differentiating both sides with respect to a, we obtain

fXCY.a/ D
Z 1

�1
fX.a � y/fY.y/ dy :

ut

Remark 4.5 Let �X , �Y and �XCY denote the characteristic function of X, Y and
X C Y, respectively. If X and Y are independent, then �XCY.t/ D �X.t/ �Y.t/. For, if
we let fX , fY and fXCY denote the probability density functions of X, Y and X C Y,
respectively, then

�XCY.t/ D bfXCY D 1fX � fY D bfX bfY D �X.t/ �Y.t/

by Theorem 4.5. This can be shown directly since

�XCY.t/ D EŒeit.XCY/� D EŒeitX �EŒeitY � D �X.t/ �Y .t/ :
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Example 4.11 Let U1;U2 be independent and uniformly distributed in Œ0; 1�. Then
the pdf fV of V D U1 C U2 is given by

fV.x/ D
8
<

:

x; x 2 Œ0; 1� ;
2 � x; x 2 .1; 2� ;
0; x 62 Œ0; 2� :

We can prove this fact by computing the convolution f � f where f .x/ D 1 on Œ0; 1�
and f .x/ D 0 elsewhere. See also Exercise 4.20.

Example 4.12 Let X1;X2 be two independent normally distributed random variables
with means �1 and �2 and variances �1 and �2, respectively. Then X1 C X2 is also
normally distributed with mean �1 C �2 and variance �1 C �2. To prove the fact it
suffices to compute the convolution of two normal density functions fX1 and fX2 . For
notational simplicity, consider the case �1 D �2 D 0 and �1 D �2 D 1. Then

. fX1 � fX2/.z/ D 1

2

Z 1

�1
e�.z�t/2=2e�t2=2dt

D 1

2
e�z2=4

Z 1

�1
e�.t�z=2/2dt

D 1

2
e�z2=4

Z 1

�1
e�t2dt

D 1

2
e�z2=4p

D 1p
2 	 2e�z2=.2�2/ ;

which implies that X1 C X2 is also normal with mean 0 and variance 2. In general,
if Xi are independent normal variables with mean �i and variance �2i for 1 � i � n,
then Sn D X1C� � �CXn is normally distributed with mean�1C� � �C�n and variance
�21 C � � � C �2n .

4.4 Change of Variables

Theorem 4.6 (Composition) If h.x/ is a differentiable and monotone function, and
if a random variable X has a continuous probability density function fX.x/, then the
probability density function of Y D h.X/ is given by

fY.y/ D 1

jh0.h�1.y//j fX.h
�1.y//

where h0 denotes the derivative of h. See Fig. 4.7.
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Fig. 4.7 A new probability
density function obtained by
change of variables

Ω

X
h

Y

Proof First, consider the case when h is monotonically increasing. Since

Pr.a � X � x/ D Pr.h.a/ � Y � h.x// ;

we have

Z x

a
fX.x/ dx D

Z h.x/

h.a/
fY.y/ dy :

By differentiating with respect to x, we have

fX.x/ D fY.h.x//h
0.x/ :

Now substitute x D h�1.y/. For the case when h is decreasing, note that

Z x

a
fX.x/ dx D

Z h.a/

h.x/
fY.y/ dy D �

Z h.x/

h.a/
fY.y/ dy :

ut

Example 4.13 If a random variable X has a probability density function fX.x/, let us
find the probability density function fY.y/ of Y D aX C b where a > 0. Note that
for arbitrary y we have

Z y

�1
fY.y/ dy D P.aX C b � y/ D P

�

X � y � b

a

�

D
Z .y�b/=a

�1
fX.x/ dx :

By differentiating with respect to y, we obtain fY.y/ D 1
a fX.

y�b
a /. For a standard

normal variable X, the pdf of Y D aX C b is given by

fY.y/ D 1

�
fX
�y � �

�

�
D 1p

2�
exp

�

� .x � �/2

2�2

�

:
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Example 4.14 Let U be uniformly distributed in Œ0; 1�, i.e.,

fU.x/ D
�
1; u 2 .0; 1� ;
0; u 62 .0; 1� :

Consider Y D p
U, i.e., h.x/ D p

x in Theorem 4.6. Then

fY.y/ D 2y ; 0 � y � 1 :

Example 4.15 Let X be uniformly distributed in .0; 1�, and define Y D � log X by
choosing h.x/ D � ln x. Since h0.x/ D � 1

x and x D e�y,

fY.y/ D e�y; y � 0 :

Example 4.16 (Lognormal Distribution) If X is normally distributed with mean �
and variance �2, then Y D eX has the probability density function given by

fY.y/ D 1

�y
p
2

exp

�

� .log y � �/2

2�2

�

; y > 0 :

It can be shown that EŒY� D e�C�2=2 and Var.Y/ D e2�C�2.e�2 � 1/. (For the proof
see Exercise 4.8.) See Fig. 4.8 for the graph for � D 0, � D 1.

Example 4.17 (Geometric Brownian Motion) This example is a special case of
Example 4.16. Suppose that an asset price St at time t � 0 is given by

St D S0e.�� 1
2 �

2/tC�Wt

where a Brownian motion Wt, t � 0, is normally distributed with mean 0 and
variance t. (See Chap. 7 for the definition of a Brownian motion.) Put Y D St. Since
log Y D log S0 C .� � 1

2
�2/t C �Wt, we see that X D log Y is normally distributed

with mean log S0C.�� 1
2
�2/t and variance �2t. Hence the pdf of Y D eX is given by

fY.y/ D 1

�y
p
2t

exp

�

� .log y � log S0 � .� � 1
2
�2/t/2

2�2t

�

;

Fig. 4.8 The probability
density function of exp X
when X � N.0; 1/

0 1 2 3 4 5
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and hence

EŒSt� D elog S0C.�� 1
2 �

2/tC 1
2 �

2t D S0e
�t ;

Var.St/ D S20e
2�t.e�

2t � 1/

by Example 4.16. This result will be used in Sect. 16.2.

Remark 4.6

(i) If X has a pdf fX.x/, and if y D h.x/ is differentiable but not necessarily one-to-
one, then Y D h.X/ has its pdf given by

fY.y/ D
X

h.z/Dy

1

jh0.z/j fX.z/

where the symbol
P

represents the summation over z satisfying h.z/ D y.
(ii) For two-dimensional examples and applications, see Exercises 4.15, 4.16 and

Theorems 27.2, 27.3.

Example 4.18 (Square of the Standard Normal Variable) Suppose that X is the
standard normal variable, i.e.,

fX.x/ D 1p
2

e�x2=2 :

Let us find the pdf of Y D X2 on Œ0;1/. Since h.x/ D x2, we have h�1.y/ D ˙p
y

for y � 0 and

fY.y/ D 1

j � 2
p

yj fX.�p
y/C 1

j2pyj fX.
p

y/ D 1p
2y

e�y=2 :

For y < 0, clearly fY.y/ D 0.

Theorem 4.7 (Uniform Distribution) Let X be a random variable with its cumu-
lative distribution function F. Assume that F is invertible. Then F.X/ is uniformly
distributed in Œ0; 1�. (See Fig. 4.9.)

Proof Since

Pr.F.X/ � x/ D Pr.X � F�1.x// D F.F�1.x// D x ;

we have

Pr.a � F.X/ � b/ D Pr.F.X/ � b/� Pr.F.X/ � a/ D b � a

and F.X/ is uniformly distributed in Œ0; 1�. ut
For a computer experiment, see Simulations 4.1 and 4.2.
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Fig. 4.9 The composite
random variable F.X/

Ω

4.5 The Law of Large Numbers

In this section the symbol � denotes an average not a measure.

Theorem 4.8 (Weak Law of Large Numbers) Let Xn, n � 1, be a sequence of
independent and identically distributed random variables with EŒXn� D � and

Var.Xn/ D �2. Put Sn D X1 C � � � C Xn. Then
1

n
Sn converges to � in probability as

n ! 1. In other words, for every " > 0 we have

lim
n!1P

� ˇˇ
ˇ
ˇ
Sn

n
� �

ˇ
ˇ
ˇ
ˇ > "

�

D 0 :

Proof Since Sn
n � � D 1

n .X1 C � � � C Xn/ � �, the characteristic function is equal
to e�i�t

�
�X1.

t
n /
�n

, and its logarithm is equal to t .log�X1.
t
n / � i� t

n /=.
t
n /, which

converges to 0 as n ! 1. Hence the characteristic function of Sn
n � � converges

to 1, which is the characteristic function of the constant random variable X D 0.
The cdf of X is given by

FX.x/ D
�
1; x � 0 ;

0; x < 0 :

Choose " > 0. By continuity, we have

lim
n!1 Pr

�
Sn

n
� � � �"

�

D FX.�"/ D 0

and

lim
n!1 Pr

�
Sn

n
� � � "

�

D FX."/ D 1 :

Hence the proof is complete. ut
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Remark 4.7 With an additional condition that Xn are square-integrable, the proof of
Theorem 4.8 is simple. Using Chebyshev’s inequality for p D 2, we obtain

P

� ˇˇ
ˇ
ˇ
1

n

nX

jD1
.Xj � �/

ˇ
ˇ
ˇ
ˇ > "

�

� 1

n2"2

nX

jD1
EŒ.Xj � �/2� D �2

n"2

and let n ! 1, completing the proof.

Theorem 4.9 (Strong Law of Large Numbers) Let Xn, n � 1, be a sequence
of independent and identically distributed random variables with EŒXn� D �. Put
Sn D X1 C � � � C Xn. Then 1

n Sn converges to � almost surely as n ! 1.

Proof Consult [31]. ut
Let A1;A2;A3; : : : be a sequence of events in a probability space .�;P/. Let

lim sup An D T1
kD1

S1
nDk An. Note that ! 2 lim sup An if and only if ! 2 An for

infinitely many n.

Theorem 4.10 (Borel–Cantelli Lemma) Let An, n � 1, be a sequence of
events.

(i) If
P1

nD1 P.An/ < 1, then P.lim sup An/ D 0.
(ii) If An are independent and if

P1
nD1 P.An/ D 1, then P.lim sup An/ D 1.

Proof

(i) For each k � 1, we have

P.lim sup An/ � P

�[

n�k

An

�
�

1X

nDk

P.An/ ! 0 :

(ii) If P.An/ D 1 for infinitely many n, then it is obvious that the statement is
true. Assume that P.An/ < 1 for every n � N for some N. Recall the fact thatQ

n.1 � an/ D 0 if and only if
P

n an D 1 where 0 � an < 1 for every n. For
each k, we have

P

�
� n

1[

nDk

An

�
D P

� 1\

nDk

.� n An/
�

D
1Y

nDk

.1 � P.An// D 0 :

We use the independence of the complements of A1;A2;A3; : : : for the second
equality. Hence P.

S1
nDk An/ D 1 for every k. ut

For example, if a fair coin is tossed n times, then the probability of the event An

that heads comes up every time is 2�n. Since
P1

1 P.An/ < 1, we conclude that
tails will eventually come up with probability 1.



62 4 Basic Probability Theory

4.6 The Central Limit Theorem

Definition 4.12 (Convergence in Distribution) A sequence of random variables
fXng1

nD1 converges in distribution to a random variable X if

lim
n!1P fXn � xg D P fX � xg

at all points where the cumulative distribution function of X is continuous. If Xn

converges to X in distribution, we write Xn
D�! X. It is known that if fXng1

nD1
converges almost surely to X as n ! 1, then Xn

D�! X.

Theorem 4.11 (Central Limit Theorem) Let fXng1
nD1 be independent, identically

distributed L2-random variables with EŒXn� D � and Var.Xn/ D �2 for n � 1. Put
Sn D X1 C � � � C Xn. Then

lim
n!1P

�
Sn � n�

�
p

n
� x

�

D N.x/ ; �1 < x < 1

where N.x/ is the cumulative distribution function for the normal distribution
defined in Example 4.7. In other words, Sn�n�

�
p

n
converges in distribution to a standard

normal variable Z.

Proof Here is a sketch of the proof. Put S�
n D .Sn � n�/=.�

p
n/. Then

�S�

n
.t/ D exp

��in�t

�
p

n

�

�Sn

�
t

�
p

n

�

D exp

��in�t

�
p

n

��

�X1

�
t

�
p

n

��n

:

The logarithm of the leftmost side is

n

�

log�X1

�
t

�
p

n

�

� i�
t

�
p

n

�

D t2

�2

log�X1 .
t

�
p

n
/� i� t

�
p

n

. t
�

p
n
/2

;

which converges to t2

�2
.� �2

2
/ D � t2

2
by the power series expansion given in

Remark 4.3. Hence

lim
n!1�S�

n
D e�t2=2 ;

which is the characteristic function of the standard normal distribution. (Consult
Example 4.8.) ut

The Central Limit Theorem states that if we take n samples, not necessarily
normally distributed, with average � and standard deviation � , then the average
of sample Sn=n is approximately normally distributed with average � and standard
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deviation �=
p

n for sufficiently large n. This idea is behind the Monte Carlo
integration method for option pricing.

4.7 Statistical Ideas

Definition 4.13 (Covariance) The covariance Cov.X;Y/ between two random
variables X and Y is defined by

Cov.X;Y/ D E Œ .X � EŒX�/ .Y � EŒY�/ � :

Theorem 4.12 For random variables X,Y,Z,Xi,Yj the following facts hold:

(i) Cov.X;Y/ D Cov.Y;X/.
(ii) Cov.X;X/ D Var.X/.

(iii) Cov.X;Y/ D EŒXY� � EŒX�EŒY�.
(iv) Cov.X C Y;Z/ D Cov.X;Z/C Cov.Y;Z/.
(v) Cov.

P
i Xi;

P
j Yj/ D P

i

P
j Cov.Xi;Yj/.

(vi) For a constant a, Cov.X; aY/ D a Cov.X;Y/.
(vii) For a constant b, Cov.X; b/ D 0.

(viii) If X and Y are independent then Cov.X;Y/ D 0 since Cov.X;Y/ D EŒXY� �
EŒX�EŒY�.

Definition 4.14 (Correlation) The correlation coefficient 
.X;Y/ for random
variables X and Y with Var.X/ > 0 and Var.Y/ > 0 is defined by


.X;Y/ D Cov.X;Y/
p

Var.X/Var.Y/
:

By the Cauchy–Schwarz inequality we have �1 � 
.X;Y/ � 1.

Theorem 4.13 Given a random variable X with Var.X/ > 0, and constants a 6D 0,
b, we define Y D aX C b. Then


.X;Y/ D
�
1; a > 0 ;

�1; a < 0 :

Proof Note that

Cov.X;Y/ D aCov.X;X/C Cov.X; b/ D aVar.X/

and

Var.Y/ D Var.aX C b/ D Var.aX/ D a2Var.X/ :

Now use the fact Var.X/ > and Var.Y/ > 0 to find 
.X;Y/. ut
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Example 4.19

(i) Let U be a random variable uniformly distributed in Œ0; 1�. Then U and 1 � U
have negative covariance since

Cov.U; 1 � U/ D Cov.U; 1/� Cov.U;U/ D 0 � Var.U/ D � 1

12

by Example 4.3.
(ii) If Z is a standard normal variable, then Cov.Z;�Z/ D �Var.Z/ D �1.

Remark 4.8

(i) For X1;X2 2 L2.�;P/ on a probability space .�;P/, note that Cov.X1;X2/ D
0 if and only if X1 � �11 and X2 � �21 are orthogonal where �i D EŒXi�,
i D 1; 2, and 1 is the constant function equal to 1 on�.

(ii) Define

Y D X2 � EŒX2X1�

EŒX21 �
X1 :

Then EŒYX1� D 0 since EŒX2X1�
EŒX21 �

X1 is the component of X2 in the direction of X1.

(iii) Let X1, X2 be random variables with mean �i and variance �2i > 0, i D 1; 2,
and the correlation coefficient 
. Define

Y D X2 � 
�2
�1

X1 :

Then Cov.Y;X1/ D 0 since EŒY� D �2 � 
 �2
�1
�1 and since

Cov.Y;X1/ D EŒ.X2 � 

�2

�1
X1/X1� � .�2 � 
�2

�1
�1/�1

D EŒX1X2� � 

�2

�1
EŒX21 � � .�2 � 
�2

�1
�1/�1

D .
�1�2 C �1�2/ � 
�2
�1
.�21 C �21/ � .�2 � 


�2

�1
�1/�1

D 0 :

Remark 4.9 If jointly normal variables X1; : : : ;Xn are uncorrelated, i.e.,
Cov.Xi;Xj/ D 0 for i 6D j, then † D diag.�21 ; : : : ; �

2
n / is a diagonal matrix

where �2i D Var.Xi/, and

f .x1; : : : ; xn/ D
nY

iD1

1p
2�i

exp

�

� 1

2�2i
.xi � �i/

2

�

:

Since the joint pdf is the product of individual densities for Xi, we conclude that
X1; : : : ;Xn are independent. (See Theorem 4.4.)
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Remark 4.10 For jointly normal variables X1; : : : ;Xn and an m	n matrix A D .aij/,
it can be shown that the linear combinations Yi D Pn

jD1 aijXj, 1 � i � m, are
jointly normal. Since independent normal variables are jointly normal, their linear
combinations are jointly normal.

Theorem 4.14 Using uncorrelated standard normal variables Z1 and Z2, we can
construct a pair of correlated normal variables X1 and X2 with a given correlation

 through the linear transformation given by

8
<

:

X1 D Z1

X2 D 
Z1 Cp
1 � 
2Z2

Proof Note that

Var.X2/ D 
2Var.Z1/C .1 � 
2/Var.Z2/C 2

p
1� 
2 Cov.Z1;Z2/ D 1 ;

and the correlation Corr.X1;X2/ is equal to

Corr.Z1; 
Z1 C
p
1 � 
2Z2/ D 
Corr.Z1;Z1/C

p
1 � 
2 Corr.Z1;Z2// D 
 :

Now use Remark 4.10 to prove that X1 and X2 are normal variables. ut
Example 4.20 Using a pair of independent standard normal variables Z1 and Z2,
two correlated normal variables X1 and X2 with 
.X1;X2/ D �0:5 are constructed.
Fig. 4.10 shows .Z1;Z2/ and .X1;X2/ in the left and right panels, respectively.
Consult Simulation 4.4.

Z
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Z
2
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-2
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X
1

-4 -2 0 2 4

X
2

-4

-2

0

2

4

Fig. 4.10 Scatter plots for independent standard normal variables Z1 and Z2 (left), and negatively
correlated normal variables X1 and X2 (right)



66 4 Basic Probability Theory

Definition 4.15 (Skewness and Kurtosis) Let X be a random variable with mean
� and variance �2.

(i) The skewness of X is defined by E

h�
X��
�

�3i
.

(ii) The kurtosis of X is defined by E

h�
X��
�

�4i
.

Example 4.21 A normal variable with mean � and variance �2 has skewness 0 and
kurtosis 3.

Definition 4.16 (�2-Distribution) For independent standard normal variables
Z1; : : : ;Zn, the sum X D Z21 C � � � C Z2n is said to have the chi-squared distribution
denoted by X � �2.n/. Its probability density function is given by

f .x/ D 1

2n=2� . n
2
/
e�x=2xn=2�1 ; x > 0 ;

where � denotes the gamma function. The mean and variance of the �2.n/-
distribution are k and 2k, respectively. For n D 1 see Example 4.18, and for n D 2

see Exercise 4.24. For the graph of f .x/ for 1 � n � 6, see Fig. 4.11.

Definition 4.17 (Noncentral �2-Distribution) For independent normal variables
Y1; : : : ;Yn with mean �i and variance 1, 1 � i � n, the sum X D Y21 C � � � C Y2n
is said to have the noncentral chi-squared distribution with noncentrality parameter
� D �21 C � � � C �2n. Its probability density function is given by

f .x/ D e��=2
0F1

�

I n

2
I �x

4

�
1

2n=2� . n
2
/
e�x=2xn=2�1 ; x > 0 ;

x
0 2 4 6 8 10

f(
x)

0

0.2

0.4

0.6

χ2-distribution

n=1
n=2
n=3
n=4
n=5
n=6

Fig. 4.11 Probability density functions of �2.n/ for 1 � n � 6
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x
0 2 4 6 8 10

f(
x)

0

0.1

0.2

0.3

Noncentral χ2-distribution

n=2, λ=1
n=2, λ=2
n=2, λ=3
n=5, λ=1
n=5, λ=2
n=5, λ=3

Fig. 4.12 Probability density functions of noncentral �2.n/ for n D 2; 5 and � D 1; 2; 3

where pFq is the hypergeometric function defined by

pFq.a1; : : : ; apI b1; : : : ; bqI x/ D
1X

kD0

.a1/k � � � .ap/k

.b1/k � � � .bq/k

xk

kŠ

where .a/k D a.a C 1/ � � � .a C k � 1/. The mean and variance are given by n C �

and 2n C 4�. Consult [72]. For the graph of f .x/, see Fig. 4.12 and Simulation 4.5.
For an example in interest rate modeling see Theorem 23.4.

4.8 Computer Experiments

Simulation 4.1 (Uniform Distribution)
Let FX.x/ be the cumulative distribution function of X. We check that FX.X/ has

the uniform distribution by plotting its probability density function. In Fig. 4.13 we
choose X with the standard normal distribution. (See Theorem 4.7.)

N = 20; % number of bins

Sample=10^4; % number of samples

width = 1/N

bin = zeros(1,N); % a zero matrix of size 1 x N

for i=1:Sample

j_bin=ceil(normcdf(randn)/width);

bin(j_bin)=bin(j_bin)+1;

end

x = 0:width:1;
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Fig. 4.13 Uniform
distribution of FX.X/
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y = ones(1,N+1);

mid_points = 0+width/2:width:1; % middle points of bins

bar(mid_points,bin/Sample/width, 1, ’w’)

hold on

plot(x,y)

Simulation 4.2 (Equally Spaced Points in the Unit Interval)
Let FX.x/ be the cdf of X. Generate N random values x1; : : : ; xN of X. Sort them in

ascending order, which are written as y1 < y2 < � � � < yN . Since FX.x1/; : : : ;FX.xN/

are approximately uniformly distributed for large N by Theorem 4.7, so are
FX.y1/; : : : ;FX.yN/ since they are a rearrangement of FX.x1/; : : : ;FX.xN/. Note that

FX.y1/ < FX.y2/ < � � � < FX.yN/

since FX is monotonically increasing. Hence the sequence is close to the equally
spaced points 1

NC1 < � � � < N
NC1 , and hence FX.yi/ is close to i

NC1 . Therefore, if
we plot the points .FX.yi/;

i
NC1 / they are concentrated along the diagonal of the unit

square. For a scatter plot of one hundred points for the standard normal distribution,
see Fig. 4.14.

N = 100; % number of points

X = randn(N,1);

Y = sort(X);

U = 1/(N+1):1/(N+1):N/(N+1);

V = normcdf(Y); % the normal cdf

x = 0:0.01:1;

plot(x,x)

hold on

plot(V,U,’o’)
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Fig. 4.14 Equally spaced
points along the diagonal
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Fig. 4.15
A quantile-quantile plot for
the standard normal
distribution
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Simulation 4.3 (Quantile-Quantile Plot)
Let FX.x/ be the cumulative distribution function of X. Generate N values of

X, and sort them in the increasing order. Sort them into an increasing sequence
y1 < y2 < � � � < yN . Since FX.y1/ < FX.y2/ < � � � < FX.yN/ are more or less
uniformly distributed, they are close to 1

NC1 ;
2

NC1 ; : : : ;
N

NC1 , respectively, and hence
FX.yi/ is close to i

NC1 . Therefore, if we plot the points
�
yi;F�1

X

�
i

NC1
��

, then they
are scattered around the straight line y D x, �1 < x < 1. For a scatter plot of one
hundred points for the standard normal distribution, see Fig. 4.15.

N = 100; % number of points

X = randn(N,1);

Y = sort(X);

U = 1/(N+1):1/(N+1):N/(N+1);

V = norminv(U); % inverse of the normal cdf

x = -4:0.1:4;

plot(x,x)

hold on

plot(Y,V,’o’)
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Simulation 4.4 (Correlated Normal Variables)
We plot the ordered pairs .Z1;Z2/ and .X1;X2/ as in Example 4.20.

N = 5000; % number of points

Z1 = randn(N,1);

Z2 = randn(N,1);

CorrelationZ1Z2 = corr(Z1,Z2)

rho = -0.5;

X1 = Z1;

X2 = rho*Z1 + sqrt(1-rho^2)*Z2;

CorrelationX1X2 = corr(X1,X2)

figure(1)

plot(Z1,Z2,’.’);

hold off;

figure(2)

plot(X1,X2,’.’)

We have the following output:

CorrelationZ1Z2 = 0.0088

CorrelationX1X2 = -0.4897

Simulation 4.5 (Noncentral �2-Distribution)
We plot the pdf of the noncentral �2-distribution for various values of k and �.

For the output see Fig. 4.12.

for k = 2:3:5

for lambda = 1:1:3

x = 0:0.1:10;

y = ncx2pdf(x,k,lambda);

plot(x,y,’color’,hsv2rgb([(k+lambda)/7 1 1]))

hold on;

end

end

Exercises

4.1 Let .�;P/ be a probability space, and let X � 0 be a random variable. Show
that EŒX� < 1 if and only if

P1
jD0 P.fX � jg/ < 1.

4.2 Let X be a random variable taking values ˙1 with probability 1
2

for each value.
Show that if we choose �.x/ D x2 in Jensen’s inequality then we have a strict
inequality.

4.3 For a random variable X satisfying P.X D a/ D 1 find the cumulative
distribution function F.x/.
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Fig. 4.16 The composite
random variable F�1.U/

Ω

4.4 Let U be a random variable uniformly distributed in Œ0; 1�. Show that
EŒe

p
U� D 2.

4.5 Let N denote the cdf of the standard normal distribution. Prove that N.˛/ C
N.�˛/ D 1.

4.6 Let X be a random variable with its cumulative distribution function F.x/.
Assume that F is invertible. Show that if U is uniformly distributed in Œ0; 1�, then
the cumulative distribution function of F�1.U/ is F. In other words, F�1.U/ and
X are identically distributed. (See Fig. 4.16.) (For an application, see Exercise 27.2.
See also Exercise 28.1.)

4.7

(i) Let t > 0 and f .x/ D 1p
2 t

exp
�
� x2

2t

�
. Show

R1
�1 x4f .x/ dx D 3t2 by direct

computation.
(ii) Suppose that X is normally distributed with mean � and variance �2. Find the

moment generating function EŒe�X �, and thus evaluate EŒX4�. What is EŒX2k�?

4.8 Let X be a normal variable with mean � and variance �2. Show that the mean
and the variance of eX are given by e�C�2=2 and e2�C�2.e�2 � 1/, respectively. For
example, for a standard normal variable Z we have EŒeZ � D p

e.

4.9 Let Z denote a standard normal variable. For a real constant ˛, show that e˛Z 2
Lp for every 1 � p < 1.

4.10 Let Z denote a standard normal variable. For 0 < ˛ < 1
2
, show that

E

h
e˛Z2

i
D 1p

1 � 2˛
:

4.11 Calculate the Fourier transform of the step function 1Œ�n;n�. Discuss its
behavior as n ! 1.
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4.12 Let U1; : : : ;U12 be independent random variables uniformly distributed in the
unit interval. Compute the kurtosis of Y D U1 C � � � C U12 � 6.

4.13 Suppose that a random variable X is uniformly distributed in Œ�1; 1�. Find the
probability distribution of Y D X2 on Œ0; 1�. (Hint: Note that fX D 1

2
	 1Œ�1;1�. For

y 62 .0; 1�, fY.y/ D 0.)

4.14 Let X and Y be independent standard normal variables. Show that tan�1 � Y
X

�
is

uniformly distributed in .�
2
; 
2
/.

4.15 Suppose that .X;Y/ is a continuous two-dimensional random vector with
probability density function fX;Y.x; y/. Prove that, if .V;W/ D ˆ.X;Y/ for some
bijective differentiable mappingˆ W R2 ! R

2, then

fV;W.v;w/ D fX;Y.ˆ
�1.v;w//

1

jJˆ.ˆ�1.v;w//j
where Jˆ denotes the Jacobian of ˆ.

4.16 Suppose that a two-dimensional random vector .X;Y/ is uniformly distributed
on the disk D D f.x; y/ W x2 C y2 � a2g. Let .R; ‚/ be the random vector given by
the polar coordinates of .X;Y/. Show that

(i) R and ‚ are independent,
(ii) R has the pdf given by fR.r/ D 2r=a2, 0 < r < a, and

(iii) ‚ is uniformly distributed in .0; 2/.

(Hint: Modify the proof of Theorem 27.3.)

4.17 Find a pair of random variables X;Y which are not independent but
Cov.X;Y/ D 0.

4.18 Find a pair of standard normal variables with correlation �1 � 
 � 1.
(Hint: First, generate a pair of independent standard normal variables Z1;Z2.

Define X1;X2 by linear combinations of Z1;Z2.)

4.19 Let X � 0 be a square-integrable random variable.

(i) Show that if X has continuous distribution, then

EŒX2� D 2

Z 1

0

tP.X > t/ dt :

(ii) Show that if X has discrete distribution, then

EŒX2� D
1X

kD1
.2k C 1/P.X > k/ :
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4.20 Let U1; : : : ;Un be independent random variables uniformly distributed in
Œ0; 1�, and let Sn D U1 C � � � C Un. Show that the pdf of Sn is given by

fSn.x/ D f �n.x/ D 1

.n � 1/Š
X

0�k�x

.�1/kC.n; k/.x � k/n�1

for 0 < x < n, and fSn.x/ D 0 elsewhere. Plot the graph of fSn.x/.

4.21 (Product of Random Variables) Let X, Y be independent random variables
with their probability density functions fX and fY , respectively. Prove that the
probability density function of XY is given by

fXY.a/ D
Z 1

�1
1

jyj fX

�
a

y

�

fY.y/ dy :

(Hint: See Fig. 4.17.)

4.22 Suppose that U, V are independent and uniformly distributed in Œ0; 1�.

(i) Prove that fUV.x/ D � log x for 0 � a � 1, and fUV .x/ D 0 elsewhere.
(ii) Find the cumulative distribution function for X D UV . (Hint: See Fig. 4.18.)

4.23 Let † be a nonnegative-definite symmetric matrix with an eigenvalue decom-
position † D PDPt where D D diag.�1; : : : ; �n/ is a diagonal matrix whose
diagonal entries are eigenvalues of † arranged in decreasing order and the columns
of P are given by the eigenvectors v1; : : : ; vn of † corresponding to �1; : : : ; �n,
respectively. Let

p
D D diag.

p
�1; : : : ;

p
�n/ and Z � N.0; I/.

(i) Let X D �C P
p

DZ. Show that X � N.�; †/.
(ii) Let X D P

p
DZ. Show that X D p

�1v1Z1 C � � � C p
�nvnZn.

-

Ω

Fig. 4.17 The product of two independent random variables X and Y
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Fig. 4.18 The cumulative
distribution function for the
product of two independent
uniformly distributed random
variables
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4.24

(i) Show that the pdf of the chi-squared distribution for k D 2 is given by f .x/ D
1
2
e�x=2, x � 0.

(ii) Find the pdf of the chi-squared distribution for k D 3.



Chapter 5
Conditional Expectation

The concept of conditional expectation will be developed in three stages. First, we
define the conditional expectation on a given event, EŒXjA�, and next define the
conditional expectation with respect to a sub-�-algebra, EŒXjG�, then finally the
conditional expectation with respect to a random variable, EŒXjY�. Recall that a
sub-�-algebra represents a collection of currently available information.

5.1 Conditional Expectation Given an Event

For measurable subsets A and B, P.A/ > 0, define the conditional probability of B
given A by

P.BjA/ D P.A \ B/

P.A/
:

(See also Definition 3.4.)

Definition 5.1 (Conditional Expectation) Consider a random variable X on a
probability space .�;F ;P/ and an event A 2 F of positive measure. The
conditional expectation of X given A, denoted by EŒXjA�, is defined by

EŒXjA� D
R

A X dP

P.A/
D EŒ1AX�

P.A/
:

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_5
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Fig. 5.1 Conditional
expectation of X given an
event A

Ω

In other words, EŒXjA� is the average of X on a set A. (See Fig. 5.1.) If a random
variable X is given by X D 1B for a measurable set B, we have

EŒXjA� D P.A \ B/

P.A/
D P.BjA/ ; (5.1)

which is an extension of the concept of conditional probability.

5.2 Conditional Expectation with Respect to a � -Algebra

As a motivation, we first consider a sample space � which is a disjoint union
� D A1 [ � � � [ An of measurable subsets A1; : : : ;An of positive measure. Let G
be the �-algebra generated by A1; : : : ;An, then G is a sub-�-algebra of F . Note that
if B 2 G and P.B/ > 0, then B is a union of at least one subset from the collection
A1; : : : ;An. If a subset B of Ai has positive measure, then B D Ai. Sometimes
G is denoted by �.fA1; : : : ;Ang/. In this case, a new random variable EŒXjG� is
defined by

EŒXjG�.!/ D EŒXjAi� ; ! 2 Ai :

In other words,

EŒXjG� D
nX

iD1
EŒXjAi� 1Ai :

(See Fig. 5.2.) Note that EŒXjG� is G-measurable and for B 2 G we have

Z

B
EŒXjG� dP D

Z

B
X dP :
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Fig. 5.2 Conditional
expectation when a
probability space is
decomposed into subsets of
positive measure

X

Ω

Fig. 5.3 Comparison of
EŒXjA�, EŒXjB�, EŒXjA � B�
where B 	 A

Ω

The idea can be easily extended to the case when the sample space is a countable
union of pairwise disjoint subsets.

Now consider a general sub-�-algebra G where the probability space need not be
a disjoint union of countably many subsets. In this case, even if we define the value
of the function EŒXjG� on a sufficiently small size subset A 2 G it is necessary that
we define on a further smaller size subset B 2 G such that B � A, and with the
property that

1

P.B/

Z

B
EŒXjG� dP D 1

P.B/

Z

B
X dP D EŒXjB� :

More precisely, if A D B [ .A � B/, then the average of the averages EŒXjB� and
EŒXjA � B� on B and A � B, respectively, should be equal to EŒXjA�. (See Fig. 5.3.)
If there exists a C � B such that C 2 G and P.C/ > 0, then this procedure should
be repeated. In general, such a procedure continues forever and does not come to an
end, and hence we have to define EŒXjG� in an abstract way in what follows.
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Definition 5.2 (Conditional Expectation) Let F be a �-algebra on �, and G a
sub-�-algebra of F . If X is an F -measurable random variable on a probability space
.�;F ;P/, and if there exists a G-measurable random variable Y such that

Z

A
Y dP D

Z

A
X dP

for every A 2 G, then Y is called the conditional expectation of X with respect to G
and denoted by EŒXjG�.
Theorem 5.1 The conditional expectation Y in Definition 5.2 exists and is unique.

Proof Given a random variable X, let XC D maxfX; 0g, X� D maxf�X; 0g, then
X D XC � X�. For a sub-�-algebra G define Q W G ! Œ0;1/ by

Q.A/ D
Z

A
XC dP ; A 2 G :

Then Q is a measure on G. Since Q is absolutely continuous with respect to the
measure PjG , the restriction of P W F ! Œ0;1/ to G, by the Radon–Nikodym
theorem there exists a G-measurable random variable YC satisfying

Z

A
XC dP D Q.A/ D

Z

A
YC dP ; A 2 G :

Similarly for X� there exists a G-measurable random variable Y� satisfying

Z

A
X� dP D

Z

A
Y� dP ; A 2 G :

Now let Y D YC � Y�, then Y is G-measurable and satisfies

Z

A
X dP D

Z

A
Y dP ; A 2 G :

To show the uniqueness, suppose that there exist G-measurable random variables
Y1 and Y2 satisfying

Z

A
X dP D

Z

A
Y1 dP D

Z

A
Y2 dP

for every A 2 G. Hence
R

A.Y1 � Y2/ dP D 0 for every A 2 G, thus Y1 � Y2 D 0, i.e.,
Y1 D Y2 modulo P-measure zero subsets. ut
Example 5.1 (Binary Expansion) Let � D Q1

1 f0; 1g, a convenient choice for the
fair coin tossing problem, identified with the unit interval via the binary expansion
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of real numbers. (See also Example 3.2.) For a cylinder subset

Œa1; : : : ; an� D f.x1x2x3 : : :/ W xi D ai; 1 � i � ng

define its size by �.Œa1; : : : ; an�/ D 2�n. Then the set function � is extended to
a probability measure, also denoted by �, defined on the �-algebra generated by
the cylinder sets. (If we regard � as a measure on the unit interval, it is Lebesgue
measure.)

Now let Fn be the sub-�-algebra generated by cylinder sets Œa1; : : : ; an�. (From
the perspective of the unit interval,Fn is the sub-�-algebra generated by the intervals
Œ.i � 1/ 	 2�n; i 	 2�n/, 1 � i � 2n.) An F -measurable function is of the form
�.x1; x2; x3; : : :/, xi 2 f0; 1g, i � 1, and an Fn-measurable function is of the form
�.x1; : : : ; xn/, xi 2 f0; 1g, which does not depend on the variables xnC1; xnC2; : : :.
Hence EŒ�jFn� D �.x1; : : : ; xn/ for some function � W Qn

1f0; 1g ! R. With abuse of
notation, we may write

EŒ�jFn�.x1; : : : ; xn/ D
Z

� � �
Z
�.x1; : : : ; xn; xnC1; : : :/ dxnC1 � � � dx1

where integration is done over
Q1

nC1f0; 1g.

Theorem 5.2 (Conditional Expectation) For a given measure space .�;F ;P/,
let G and H be sub-�-algebras of a �-algebra F . Then the following facts hold:

(i) (Linearity) EŒaX C bYjG� D aEŒXjG�C bEŒYjG� for any constants a; b.
(ii) (Average of average) EŒEŒXjG�� D EŒX�.

(iii) (Taking out what is known) If X is G-measurable and XY is integrable, then
EŒXYjG� D X EŒYjG�.

(iv) (Independence) If X and G are independent, then EŒXjG� D EŒX�.
(v) (Tower property) If H � G, then EŒEŒXjG� jH� D EŒXjH�. Hence, if H D G,

the conditional expectation is a projection, i.e., EŒEŒXjG� jG� D EŒXjG�.
(vi) (Positivity) If X � 0, then EŒXjG� � 0.

Proof

(i) Use the fact that for every A 2 G
Z

A
.aEŒXjG�C bEŒYjG�/dP D a

Z

A
EŒXjG�dP C b

Z

A
EŒYjG�dP

D a
Z

A
XdP C b

Z

A
YdP

D
Z

A
.aX C bY/dP :

(ii) For a proof choose A D � in the definition of conditional expectation. For
another proof take H D f;; �g in item (v) and use EŒ � jH� D EŒ � �.
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(iii) First, consider the case when X D 1A for A 2 G. For any B 2 G we have

Z

B
1AEŒYjG�dP D

Z

A\B
EŒYjG�dP D

Z

A\B
YdP D

Z

B
1AYdP ;

and hence

1AEŒYjG� D EŒ1AYjG� :

This holds for simple functions which are linear combinations of indicator
functions by item (i). Next, use the fact that a measurable function can be
approximated by a convergent sequence of simple functions.

(iv) Since X and G are independent, if we let 0 D a0 < a1 < a2 < � � � be a partition
of the real line that is the range of X, then for any A 2 G we have

P.X�1.Œai; aiC1�/ \ A/ D P.X�1.Œai; aiC1�//P.A/ :

Hence
Z

A
XdP D lim

X

i

aiP.X
�1.Œai; aiC1�/ \ A/

D lim
X

i

aiP.X
�1.Œai; aiC1�//P.A/

D EŒX�P.A/

D
Z

A
EŒX� dP :

(v) Note that for any B 2 G we have

Z

B
EŒXjG� dP D

Z

B
X dP

and that for any B 2 H we have

Z

B
EŒXjH� dP D

Z

B
X dP :

Thus if H � G then for any B 2 H we have

Z

B
EŒXjG� dP D

Z

B
EŒXjH� dP :
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By the definition of conditional expectation we conclude

EŒEŒXjG�jH� D EŒXjH� :

(vi) For each n � 1, let An D f! W EŒXjG�.!/ � � 1
n g. If X � 0, then An 2 G. Put

A D S1
nD1 An. Then A D fEŒXjG� < 0g and

0 �
Z

An

X dP D
Z

An

EŒXjG�P � �1
n
P.An/

and P.An/ D 0. By Fact 3.1(ii) we conclude that P.A/ D 0. ut
The following is Jensen’s inequality for conditional expectation.

Theorem 5.3 Let X be a random variable on a probability space .�;F ;P/. Let G
be a sub-�-algebra of F , and let � W R ! R be convex. If X and �ıX are integrable,
then

� .EŒXjG�/ � EŒ�.X/jG� :

For a concave function the inequality is in the opposite direction.

Proof Note that

�.x0/ D supfax0 C b W ay C b � �. y/ for all y 2 Rg

for each x0. Since aX C b � �.X/ for a; b such that ay C b � �. y/ for y 2 R, we
have

aEŒXjG�C b D EŒaX C bjG� � EŒ�.X/jG� :

Now use the fact that the supremum of the left-hand side is equal to � .EŒXjG�/. ut
Corollary 5.1 Let X be a random variable on a probability space .�;F ;P/. Let G
be a sub-�-algebra of F . If jXjp is integrable for 1 � p < 1, then

jjEŒXjG� jjp � jjXjjp :

In other words, the linear transformation

EŒ � jG� W Lp.�;F/ ! Lp.�;G/ � Lp.�;F/

has norm 1, and hence is continuous.

Proof Take a convex function �.x/ D jxjp. By Jensen’s inequality we obtain

jEŒXjG�jp � EŒ jXjpjG�
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Fig. 5.4 Conditional
expectation as an orthogonal
projection
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Ω, F 

G

G

and

EŒjEŒXjG�jp� � EŒEŒ jXjpjG�� D EŒ jXjp� :

Now take the pth root of the both sides. It is clear that the norm is less than or equal
to 1. Since EŒ 1 jG� D 1 we conclude that the norm is equal to 1. ut

Recall that if G is a sub-�-algebra of F , then L2.�;G/ is a subspace of L2.�;F/.
Define an inner product for X;Y 2 L2.�;F/ by EŒXY�, which is equal to

R
� XYdP.

Theorem 5.4 Let G be a sub-�-algebra of F . Then the linear transformation

EŒ � jG� W L2.�;F/ ! L2.�;G/ � L2.�;F/

is an orthogonal projection onto L2.�;G/. (See Fig. 5.4.)

Proof To show that EŒXjG� and X � EŒXjG� are orthogonal, we use

EŒEŒXjG�.X � EŒXjG�/� D EŒEŒXjG�X� � EŒEŒXjG�EŒXjG��
D EŒEŒXjG�X� � EŒEŒEŒXjG�XjG��
D EŒEŒXjG�X� � EŒEŒXjG�X�
D 0 :

Since EŒXjG� is measurable with respect to G, Theorem 5.2(iii) implies that

EŒXjG�EŒXjG� D EŒEŒXjG�XjG� ;

from which we obtain the second equality in the above. To prove the third equality
we use Theorem 5.2(ii). ut

Corollary 5.2 Let G be a sub-�-algebra of F . Let X be an F -measurable random
variable such that EŒX2� < 1. Then

EŒEŒXjG�2� � EŒX2� :
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Fig. 5.5 Conditional
expectation with respect to a
sub-� -algebra G on
� D f!1; !2; !3g x
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Proof Either we use the preceding theorem, or apply Jensen’s inequality EŒXjG�2 �
EŒX2jG�, which implies EŒEŒXjG�2� � EŒEŒX2jG�� D EŒX2�. ut
Example 5.2 A probability measure space .�;F ;P/ is given by

� D f!1; !2; !3g ; F D �.f!1g; f!2g; f!3g/

with a probability measure P defined by P.f!ig/ D 1
3
, 1 � i � 3. If a random

variable X is defined by

X.!1/ D x1 ; X.!2/ D x2 ; X.!3/ D x3

and if a sub-�-algebra G is given by

G D �.f!1; !2g; f!3g/ D f;; �; f!1; !2g; f!3gg ;

then

EŒXjG�.!/ D
�
1
2
.x1 C x2/; ! 2 f!1; !2g

x3; ! 2 f!3g :

(See Fig. 5.5. Note that if a random variable Y is measurable with respect to G, then
Y.!1/ D Y.!2/.) Since

X.!/� EŒXjG�.!/ D
8
<

:

1
2
.x1 � x2/; ! D !1
1
2
.�x1 C x2/; ! D !2
0; ! D !3 ;

the expectation of the product of EŒXjG� and X � EŒXjG� is zero, and they are
orthogonal to each other.

Remark 5.1 If EŒX2� < 1, then

EŒX � EŒXjG��2 D min
Y2L2.�;G;P/

EŒX � Y�2 :
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Hence EŒXjG� is the best approximation based on the information contained in G
from the viewpoint of the least squares method in L2.�;F/.

5.3 Conditional Expectation with Respect to a Random
Variable

Definition 5.3 (Conditional Expectation) On a probability measure space
.�;F ;P/ we are given F -measurable random variables X and Y. We assume
that X is integrable. Define the conditional expectation of X with respect to Y,
denoted by EŒXjY�, by

EŒXjY� D EŒXj�.Y/� :

Then EŒXjY� is measurable with respect to �.Y/, and satisfies

Z

fa�Y�bg
EŒXjY� dP D

Z

fa�Y�bg
X dP

for an arbitrary interval Œa; b� � R.

Remark 5.2 The conditional expectation of a random variable given an event is a
constant. However, the conditional expectation with respect to a sub-�-algebra or a
random variable is again a random variable.

Theorem 5.5 If the conditions given in Definition 5.3 are satisfied, then EŒXjY� is
a function of Y. More precisely, there exists a measurable function f W R

1 ! R
1

such that

EŒXjY� D f ı Y :

Proof We sketch the proof. First, consider the case when Y is a simple function of
the form

Y D
nX

iD1
yi 	 1Ai

where yi are distinct and the subsets Ai D Y�1. yi/ are pairwise disjoint. Then for
! 2 Ai we have EŒXjY�.!/ D EŒXjAi�. Hence

EŒXjY� D
nX

iD1
EŒXjAi� 	 1Ai :
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Therefore if we take a measurable function f satisfying f . yi/ D EŒXjAi� for every i,
then EŒXjY� D f ı Y.

For the general case when Y is continuous, choose a sequence of partitions

�1 < � � � < y.n/i�1 < y.n/i < y.n/iC1 < � � � < C1

such that ıy.n/i D y.n/iC1 � y.n/i ! 0 as n ! 1, and approximate Y by a sequence of
simple functions

Yn D
nX

iD1
y.n/i 	 1

A
.n/
i

where

A.n/i D Y�1.Œ y.n/i ; y.n/iC1// ;

and find EŒXjYn� D fn ı Yn, and finally take the limit of fn as n ! 1. ut
Remark 5.3 In Fig. 5.6 we are given two random variables X and Y. We assume that
the subset A D f y � Y � y C ıyg has sufficiently small measure, in other words,
ıy � 0. If ! 2 A, then EŒXjY�.!/ is approximated by EŒXjA�. The inverse images
under Y of short intervals are represented by horizontal strips in the sample space
�, and they generate the �-algebra �.Y/. In the limiting case we regard the widths
of these strips as being equal to 0, and the strips are treated as line segments. Since
EŒXjY� is measurable with respect to �.Y/, EŒXjY� is constant on each strip. Since
each strip is identified with a point y on the real line via Y, we can define f naturally.
Usually, instead of f . y/ we use the notation EŒXjY D y� and regard it as a function
of y. Strictly speaking, EŒXjY D y� is a function defined on� satisfying

EŒXjY D y� D EŒXjY�ˇˇf!WY.!/Dyg :

Fig. 5.6 Conditional
expectation of X with respect
to Y

yΩ

δ     
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5.4 Computer Experiments

Simulation 5.1 (Monty Hall Problem)
In a game show there are three closed doors: only one door has a car behind it,

and behind the others, goats. A guest chooses one door and can have the car if the
present exists when the door is opened. Suppose that the guest picks a door, say
Door 1. Before checking what is behind Door 1, the host opens another door, say
Door 3, and shows there is a goat and asks if the guest wants to switch the doors,
i.e., to choose Door 2 instead of Door 1. Does it make sense for the guest to choose
Door 2? The host knows what is behind the doors, and opens a door with a goat.
Prove that the guest should switch the doors to have a better chance of winning the
prize.

If the guest sticks with the first choice, then the probability of having chosen the
door with a car is 1

3
. On the other hand, if the door is switched then the probability

increases to 2
3
. Here is why: Let C denote the door behind which there is a car, X the

first choice made by the guest, H the door opened by the host. Since

P.C D 2;X D 1;H D 3/

D P.C D 2jX D 1;H D 3/P.H D 3jX D 1/P.X D 1/ ;

and since

P.C D 2;X D 1;H D 3/

D P.H D 3jC D 2;X D 1/P.C D 2jX D 1/P.X D 1/ ;

we have

P.C D 2jX D 1;H D 3/P.H D 3jX D 1/

D P.H D 3jC D 2;X D 1/P.C D 2jX D 1/ ;

and finally

P.C D 2jX D 1;H D 3/

D P.H D 3jC D 2;X D 1/P.C D 2jX D 1/

P.H D 3jX D 1/

D 1 	 1
3

1
2

	 1
3

C 1 	 1
3

C 0 	 1
3

D 2

3
:
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N = 1000; % number of trials

prize = randi([0,2],N,1);

% N random integers from the set {0,1,2} for the location of the car

% Doors are numbered 0,1,2.

first = randi([0,2],N,1);

% N random integers from the set {0,1,2} representing the first choice made

second = zeros(N,1);

% the second choice to be made by switching

for i = 1:N

if first(i) == prize(i)

k=randi([1,2],1,1); % Randomly choose 1 or 2.

% The host opens the door with number mod((3-k) + first(i),3)

% out of two remaining doors without prize.

second(i) = mod( k + first(i),3); % The guest switches the doors.

else

second(i) = prize(i);

% Switching the doors always wins a prize in this case.

end

end

n = 0; % number of right answers;

for i = 1:N

if prize(i) == second(i)

n = n + 1;

end

end

fprintf(’Probability of winning if door is switched = %f\n’,n/N)

Exercises

5.1 Let � D fa; b; cg and let X W � ! R
1 be a random variable defined by

X.a/ D 0, X.b/ D X.c/ D 1.

(i) What is the �-algebra generated by X?
(ii) If Y is defined by Y.a/ D 0, Y.b/ D 1, Y.c/ D 2, then what is EŒXjY�?

(iii) Prove or disprove EŒX� D EŒEŒXjY� �.
5.2 Let � D fa; b; c; dg and let F be the �-algebra consisting of all the subsets of
�. And let G be the sub-�-algebra generated by fa; bg and fc; dg.

(i) List all of the measurable subsets belonging to G.
(ii) Let Z W � ! R

1 a function defined by Z.a/ D Z.b/ D Z.c/ D Z.d/ D 1.
Is Z measurable with respect to G?

(iii) Suppose that Y W � ! R
1 is a G-measurable function such that Y.a/ D 5.

What are the possible values of Y.b/?
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(iv) Let X W � ! R
1 be a random variable defined by X.a/ D 0, X.b/ D X.c/ D 3

and X.d/ D 1. Let H be the sub-�-algebra generated by X. List all the elements
of H.

(v) Let X be the random variable given in (iv). Let W W � ! R
1 be a random

variable defined by W.a/ D 10, W.b/ D W.c/ D W.d/ D 20. Find EŒWjX�.
5.3 Let� D fuu; ud; du; ddg and let F be the �-algebra consisting of all the subsets
of �. Let X W � ! R

1 be a random variable defined by X.uu/ D 5, X.ud/ D
X.du/ D 3 and X.dd/ D 1.

(i) What is the sub-�-algebra generated by X?
(ii) Let Y W � ! R

1 be a random variable defined by Y.uu/ D 1, Y.uu/ D
Y.du/ D Y.ud/ D �1. Find EŒYjX�.

(iii) Prove or disprove .EŒYjX�/2 D EŒY2jX�.
5.4 Let � D Œ0; 1� with P the Lebesgue measure on Œ0; 1�. Suppose that X and Y
are random variables on .�;P/, and Y.!/ D !.1 � !/. Find EŒXjY�. (We assume
that all the integrals under consideration exist.)

5.5 Show that Example 5.2 can be interpreted as a linear algebra problem. (Hint:
First, note that L2.�;F ;P/ is identified with R

3, and L2.�;G;P/ with f.a; a; b/ W
a; b 2 Rg. Let T W R3 ! R

3 be a linear transformation defined by T.x1; x2; x3/ D
. 1
2
.x1 C x2/;

1
2
.x1 C x2/; x3/. Its associated matrix is given by

M D

2

6
4

1
2

1
2
0

1
2

1
2
0

0 0 1

3

7
5

Note that the conditional expectation operator can be identified with T. Since M is
real symmetric, it has real eigenvectors which are orthogonal. More precisely, there
exist eigenvalues 0 and 1 with corresponding eigenspaces H0 and H1 respectively,
where H0 is spanned by .1;�1; 0/, and H1 is spanned by .1; 1; 0/ and .0; 0; 1/. The
conditional expectation EŒ � jG� can be identified with T which is the orthogonal
projection to H1.)

5.6 Suppose that X and Y have the joint density fX;Y.x; y/ D x C y for any x; y 2
Œ0; 1� and fX;Y.x; y/ D 0 otherwise. Find EŒXjY�.
5.7 For two random variables X and Y, define the conditional variance of X given
Y by

Var.XjY/ D EŒ.X � EŒXjY�/2jY� :
Show that

Var.XjY/ D EŒX2jY� � EŒXjY�2
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and

Var.X/ D EŒVar.XjY/�C Var.EŒXjY�/ :

5.8 (Bayes’ Rule)

(i) Let B1; : : : ;Bn be a partition of a probability space .�;P/ such that P.Bi/ > 0,
1 � i � n, and take A � �, P.A/ > 0. Prove that

P.BijA/ D P.AjBi/P.Bi/Pn
kD1 P.AjBk/P.Bk/

for 1 � i � n :

(ii) Consider a test of a certain disease caused by a virus which infects one out of a
thousand people on average. The test method is effective, but not perfect. For a
person who has already been infected there is 95% chance of detection, and for
a healthy person there is 1% probability of false alarm. Suppose that a person,
who is not yet known to be infected or not, has a positive test result. What is the
probability of his being truly infected?



Chapter 6
Stochastic Processes

We collect and analyze sequential data from nature or society in the form of
numerical sequences which are indexed by the passage of time, and try to predict
what will happen next. Due to uncertainty of payoff in financial investment before
maturity date, the theory of stochastic processes, a mathematical discipline which
studies a sequence of random variables, has become the language of mathematical
finance.

6.1 Stochastic Processes

Definition 6.1 (Filtration) Let � be a measurable space with a �-algebra F .
Consider a collection of sub-�-algebras fFtgt2I of F , indexed by I � R. (For
example, I D f0; 1; : : : ; ng, I D N, I D Œ0;T� and I D R. The parameter or
index t represents time in general.) If Fs � Ft � F for s; t 2 I such that s � t,
then fFtgt2I is called a filtration. Unless stated otherwise, we assume that 0 is the
smallest element in I and F0 D f;; �g.

A filtration is interpreted as a monotone increment of information as time passes
by. As an example, consider the game of twenty questions. One of the players of the
game is chosen as ‘answerer’, and the remaining players ask him/her up to twenty
questions. The answerer chooses an object that is not revealed to other players until
they correctly guess the answer. The answerer can answer ‘Yes’ or ‘No’, and after
twenty questions are asked, the players present their guess. To model the game
mathematically, we define the sample space � as the set of all objects in the world
and after each question is asked we increase the information on the object ! 2 �.
Each question Xn is something like ‘Is ! alive?’, or ‘Is ! visible?’, and it may be
regarded as a random variable Xn W � ! f0; 1g depending on the correctness of
the guess. Depending on whether the answer to the question is correct or incorrect,
we have Xn D 0 or 1, respectively. A wise player would ask questions in such a
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way that f! W Xn.!/ D 0g and f! W Xn.!/ D 1g have comparable probabilities.
After n questions we obtain information Xi D 0 or 1, 1 � i � n, which defines a
partition of �, or equivalently a �-algebra Fn D �.fX1; : : : ;Xng/. As n increases,
Fn also increases, and we see that Fn, 1 � n � 20, is a filtration. If we don’t ask a
wise question, i.e., if we don’t define Xn wisely, then some subsets among 2n subsets
are empty and some others are too big, containing many objects, thus making the
game difficult to win. If we ask twenty reasonable questions, the sample space is
partitioned into 220 � 1; 000; 000 subsets, and each subset contains one and only
one object in the world, corresponding to almost all the words in a dictionary, and
we can find the correct answer.

Definition 6.2 (Stochastic Process)

(i) A stochastic process is a sequence of random variables Xt W � ! R

parameterized by time t belonging to an index set I � R. In other words,
when a stochastic process X W I 	� ! R is given, X.t; �/ D Xt W � ! R is a
measurable mapping for each t 2 I.

(ii) If I is a discrete set, then a process fXtgt2I is called a discrete time stochastic
process, and if I is an interval then fXtgt2I is called a continuous time stochastic
process.

(iii) For each ! 2 � the mapping t 7! Xt.!/ is called a sample path.
(iv) If almost all sample paths of a continuous time process are continuous, then

we call the process a continuous process.
(v) The filtration Ft generated by a process Xt, i.e., Ft D � .fXs W 0 � s � tg/ is

called a natural filtration for Xt.

Definition 6.3 (Adapted Process) Consider a filtration fFtgt2I and a stochastic
process fXtgt2A. If Xt is measurable with respect to Ft for every t, then fXtgt2I is
said to be adapted to the filtration fFtgt2I .

Definition 6.4 (Markov Property) Let fXtg be a stochastic process and let Ft D
�.fXu W 0 � u � tg/ be the sub-�-algebra determined by the history of the process
up to time t, i.e., Ft is generated by X�1

u .B/ where 0 � u � t and B is an arbitrary
Borel subset of R. We say that fXtg has the Markov property if for every 0 � s � t
the conditional probability of Xt given Fs is the same as the conditional probability
of Xt given Xs, i.e.,

P.Xt � yjFs/ D P.Xt � yjXs/

with probability 1. In other words, if the present state of the process, Xs, is known,
then its future movement is independent of its past history Fs. A stochastic process
with the Markov property is called a Markov process. The transition probability of
a Markov process fXtg is defined by

P.Xt 2 . y; y C dy/jXs D x/
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which is the conditional probability of the process at time t to be found in a very
short interval . y; y C dy/ given the condition that Xs D x.

Example 6.1 (Random Walk) Let Zn, n � 1, be a sequence of independent and
identically distributed random variables defined on a probability space .�;F ;P/
such that P.Zn D 1/ D p and P.Zn D �1/ D 1 � p for some 0 � p � 1. A one-
dimensional random walk X0;X1;X2; : : : is defined by X0 D 0, Xn D Z1 C � � � C Zn,
n � 1. Let F0 be the trivial �-algebra f;; �g and let Fn D �.Z1; : : : ;Zn/ be the
sub-�-algebra generated by Z1; : : : ;Zn. If p D 1

2
, the process fXngn�0 is called a

symmetric random walk.

Example 6.2 (Coin Tossing) Take

� D
1Y

nD1
f0; 1g D f! D !1!2!3 � � � j!n D 0; 1g

which is the set of all possible outcomes of coin tossing with the symbols 0 and
1 representing heads and tails, respectively, and may be identified with the unit
interval via the binary representation ! D P1

nD1 !n2
�n. Define Zn.!/ D .�1/!n .

Then Fn is the �-algebra generated by the blocks or the cylinder sets of length n
defined by

Œa1; : : : ; an� D f! W !1 D a1; : : : ; !n D ang

whose probability is equal to pk.1 � p/n�k where k is the number of 0’s among
a1; : : : ; an. Then by the Kolmogorov Extension Theorem we obtain a probability
measure on arbitrary measurable subsets of �. If we regard � as the unit interval,
then Fn is generated by subintervals of the form Œ i�1

2n ;
i
2n /, 1 � i � 2n. If p D 1

2
, we

have a fair coin tossing and the probability measure on Œ0; 1� is Lebesgue measure.
If p 6D 1

2
, the coin is biased and the corresponding measure on Œ0; 1� is singular. For

more information on singular measures, consult [21].

6.2 Predictable Processes

We cannot receive information that influences the financial market and act on it
simultaneously. There should be some time lag, however short, before we decide
on an investment strategy. This idea is reflected in the definition of predictability or
previsibility of a stochastic process.

Definition 6.5 (Predictable Process)

(i) (Discrete time) If a stochastic process fXng1
nD0 is adapted to a filtration fFng1

nD0,
and if Xn is measurable with respect to Fn�1 for every n � 1, then fXng1

nD0 is
said to be predictable.
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(ii) (Continuous time) If a process fXtgt�0 is adapted to a filtration fFtgt�0, and if
Xt is measurable with respect to a sub-�-algebra Ft� defined by

Ft� D �
� [

0�s<t

Fs

�

for every t, then fXtgt�0 is said to be predictable.

Example 6.3

(i) (Discrete time) Let S D fs1; s2; : : :g be a set of symbols and let � D Q1
nD1 S

be the set of all infinite sequences of the symbols in S. Let Fn be a �-algebra
on � generated by the cylinder sets of the form

Œa1; : : : ; an� D f.si1 ; si2 ; : : :/ 2 � W sik D ak; 1 � k � ng :

Note that fXng is adapted to fFng if and only if Xn is of the form

Xn.si1 ; : : : ; sin ; : : :/ D Xn.si1 ; : : : ; sin/

as a function defined on
Qn

iD1 S, i.e., its values depend only on the first n
coordinates. Also note that Xn is predictable if and only if Xn is of the form

Xn.si1 ; : : : ; sin�1 ; : : :/ D Xn.si1 ; : : : ; sin�1 /

as a function defined on
Qn�1

iD1 S, i.e., its values depend only on the first n � 1

coordinates.
(ii) (Continuous time) It is known that a continuous process is predictable. For

example, a Brownian motion is predictable.

Example 6.4 Take � D f!1; !2g where !i W Œ0;1/ ! R is a function to be
specified later, and define Xt W � ! R by Xt.!i/ D !i.t/ for t � 0. Let Ft denote the
�-algebra �.fXsg0�s�t/ generated by fXs W 0 � s � tg. Then fFtgt�0 is a filtration
and Xt is a stochastic process adapted to Ft. (See Fig. 6.1.) In the following examples
we choose constants a < b and fix t0 > 0.

Fig. 6.1 Predictability
Ω x

X tω

ω
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Fig. 6.2 Predictable, not predictable, and predictable processes (left to right)

(i) Let !1.t/ D a and !2.t/ D b for t � 0. Note that F0 D f;; �g, Ft D
f;; �; f!1g; f!2gg for t > 0. To check whether fXtgt�0 is predictable, it suffices
to observe that Xt is measurable with respect to Ft� for t > 0. This holds true
since for t > 0 we have Ft� D Ft D f;; �; f!1g; f!2gg.

(ii) Let !1.t/ D a for t � 0 and,

!2.t/ D
�

a; 0 � t < t0 ;
b; t � t0 :

(See the middle graph in Fig. 6.2.) Note that Ft D f;; �g for 0 � t < t0, and
Ft D f;; �; f!1g; f!2gg for t � t0. Since Ft0� D f;; �g, Xt0 is not measurable
with respect to Ft0�. Thus fXtgt�0 is not predictable.

(iii) Let !1.t/ D a for t � 0 and

!2.t/ D
�

a; 0 � t � t0 ;
b; t > t0 :

(See the right graph in Fig. 6.2.) Note that Ft D f;; �g for 0 � t � t0 and
Ft D f;; �; f!1g; f!2gg for t > t0. Hence Ft� D Ft for t � 0, and Xt is
predictable.

6.3 Martingales

Definition 6.6 (Martingale) Suppose that a stochastic process fXtgt2I is adapted to
a filtration fFtgt2I , and that Xt is integrable for every t, i.e., EŒ jXtj � < 1. If

Xs D EŒXtjFs�

for arbitrary s � t, then fXtgt2I is called a martingale with respect to fFtgt2I . If

Xs � EŒXtjFs�
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for s � t, then it is called a submartingale, and if

Xs � EŒXtjFs�

for s � t, then it is a supermartingale..

A martingale is both a submartingale and a supermartingale. A stochastic process
that is both a submartingale and a supermartingale is a martingale.

Remark 6.1 If a martingale fXngn�0 is increasing, i.e., Xn � XnC1 for n � 0, then it
is constant. For the proof, first note that

EŒXn � Xn�1jFn�1� D EŒXnjFn�1� � EŒXn�1jFn�1� D Xn�1 � Xn�1 D 0 :

Since Xn � Xn�1 � 0, we have Xn � Xn�1 D 0, and hence

Xn D Xn�1 D � � � D X1 D X0 :

Since X0 D EŒX1jF0�, Xn is the constant X0 for n � 0.

Theorem 6.1 If fXtgt�0 is a martingale with respect to a filtration fFtgt�0, F0 D
f;; �g, then EŒXt� D EŒX0� for every t.

Proof For 0 � s � t, we have

EŒXt� D EŒXtjF0� D EŒEŒXtjFs�jF0� D EŒXsjF0� D EŒXs� :

Now take s D 0. ut
Example 6.5 Let Xn; n � 0; be the symmetric random walk in Example 6.1. Since,
for j D k ˙ 1,

P.XnC1 D jjXn D k/ D P.k C ZnC1 D jjXn D k/

D P.ZnC1 D j � kjXn D k/

D P.ZnC1 D j � k/ D 1

2
;

we have

EŒXnC1jXn D k� D EŒk C ZnC1jXn D k� D k C EŒZnC1jXn D k� D k :

Hence EŒXnC1jXn D k� D Xn on the subset f! 2 � W Xn D kg for every k. Thus
EŒXnC1jFn� D Xn and fXngn�0 is a martingale. See Fig. 6.3 where the probability
space � is partitioned into the subsets f! 2 � W Xn D kg, �n � k � n, for n � 1.
Note that the averages of XnC1 over those subsets are equal to the values of Xn.
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F

Ω

Fig. 6.3 Martingale property of the symmetric random walk

Remark 6.2 The name ‘martingale’ came from an old French gambling game called
‘martingale’. We bet one dollar that the first flip of a coin comes up heads. If it does
not come up with heads then we stop, having won one dollar. Otherwise, we bet
two dollars that the second toss comes up heads. If it does, then the net gain is
one dollar, and we stop. Otherwise, we have lost three dollars and this time we bet
22 D 4 dollars that the third flip is a head. And so on. If the first n � 1 flips all
come up tails, then we have lost

Pn�1
jD0 2j D .2n � 1/ dollars and we bet 2n dollars

on the nth toss. Since the coin will eventually come up heads with probability 1, we
are guaranteed to win one dollar. This works if we have an infinite amount of funds.
See also Example 6.13.

Theorem 6.2 If Xt is a martingale and � is a convex function, then �.X/ is a
submartingale if �.Xt/ is integrable for every t.

Proof By Theorem 5.3, EŒ�.Xt/jFs� � �.EŒXtjFs�/, s < t, almost surely for a
stochastic process Xt. If Xt is a martingale, then �.EŒXtjFs�/ D �.Xs/, s < t, almost
surely. ut
Example 6.6 Let Xt be a martingale. Then jXtj, X2t , XC D maxfX; 0g and eX are
submartingales since jxj, x2, maxfx; 0g and ex are convex functions. (We assume
that all the integrals under consideration exist.)

The following fact for discrete time is due to Joseph L. Doob. See [26].

Theorem 6.3 (Doob Decomposition) If fXngn�0 is a submartingale with respect
to a filtration fFngn�0. Define a stochastic process fAngn�0, called the compensator,
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by A0 D 0 and

An D
nX

iD1
.EŒXijFi�1� � Xi�1/ ; n � 0 :

Then An is Fn�1-measurable, and fAng is increasing almost surely. Let

Mn D Xn � An :

Then fMngn�0 is a martingale. If A0 D 0 and An is Fn�1-measurable, then the
decomposition

Xn D Mn C An ; n � 0 ;

is unique.

Proof Note that EŒXijFi�1�� Xi�1 � 0 since fXngn�0 is a submartingale, and hence
fAng is an increasing sequence. ut
Example 6.7 Let Xn be the symmetric random walk in Example 6.1. Then the
process X2n � n is a martingale. For the proof, note that

EŒX2nC1 � .n C 1/jFn� D EŒ.Xn C ZnC1/2 � .n C 1/jFn�

D EŒX2n C 2XnZnC1 C Z2nC1 � .n C 1/jFn�

D EŒX2n C 2XnZnC1 C 1 � .n C 1/jFn�

D EŒX2n C 2XnZnC1 � njFn�

D EŒX2n jFn�C EŒ2XnZnC1jFn� � EŒnjFn�

D X2n C 2XnEŒZnC1jFn� � n

D X2n � n :

For the equality just before the last one, we take out what is known at time n, and
for the last equality we use EŒZnC1jFn� D EŒZnC1� D 0 since ZnC1 and Fn are
independent.

Remark 6.3 The continuous limit of a symmetric random walk is Brownian motion
Wt. Hence the fact that X2n � n is a martingale corresponds to the fact that W2

t � t is
a martingale. See Theorem 7.10.

The following fact for continuous time is due to Paul-André Meyer. See [67, 68].

Theorem 6.4 (Doob–Meyer Decomposition) Let fYtg0�t�T be a submartingale.
Under certain conditions for Yt, we have a unique decomposition given by

Yt D Lt C Ct ; 0 � t � T ;
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where Lt is a martingale, and Ct is predictable and increasing almost surely with
C0 D 0 and EŒCt� < 1, 0 � t � T.

Definition 6.7 (Compensator) The process Ct given in Theorem 6.4 is called the
compensator of Yt. Let fXtg0�t�T be a continuous, square-integrable martingale.
Since Yt D X2t is a submartingale, by the Doob–Meyer theorem we have the
decomposition

X2t D Lt C Ct ; 0 � t � T :

The compensator Ct of X2t is denoted by hX;Xit, or simply hXit . (For the details,
consult [58].)

Definition 6.8 (Quadratic Variation) Let fXtg0�t�T be a continuous martingale.
The quadratic variation process of Xt, denoted by ŒX;X�t or ŒX�t, is defined by

ŒX;X�t D lim
n!1

nX

jD1
jXtj � Xtj�1 j2

where the convergence is in probability as max1�j�n jtj � tj�1j ! 0 as n ! 1.
Using the idea from the identity

jjv C wjj2 D jjvjj2 C jjwjj2 C 2v � w

for v;w 2 R
k, we define the quadratic covariation process ŒX;Y�t of two continuous

square-integrable martingales Xt and Yt by

ŒX;Y�t D 1

2
.ŒX C Y;X C Y�t � ŒX;X�t � ŒY;Y�t/ :

Remark 6.4

(i) It is known that X2t � ŒX�t is a martingale.
(ii) Since X2t � hXit and X2t � ŒX�t are martingales, ŒX�t � hMit is also a martingale.

(iii) If Xt is a continuous martingale, then ŒX;X�t D hX;Xit.

Example 6.8 For a Brownian motion Wt, we have

hW;Wit D ŒW;W�t D t :

Definition 6.9 (Integrability)

(i) A random variable X is integrable if EŒjXj� < 1, which holds if and only if

lim
n!1EŒ1fjXj>ngjXj� D 0 :
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(ii) A stochastic process fXtg0�t<1 is integrable if

sup
0�t<1

EŒjXtj� < 1 :

(iii) A stochastic process fXtg0�t<1 is uniformly integrable if, as n ! 1,

sup
0�t<1

EŒ1fjXt j>ngjXtj� D sup
0�t<1

Z

fjXtj>ng
jXtj dP ! 0 :

Remark 6.5

(i) The condition that sup0�t<1 EŒjXtj� < 1 is equivalent to limt!1 EŒjXtj� < 1
since jXtj is a submartingale (see Example 6.6) and since the expectation of a
submartingale is an increasing function of t.

(ii) If fXtg is uniformly integrable, then it is integrable since

sup
0�t<1

EŒjXtj� < sup
0�t<1

EŒ1fjXt j>ngjXtj�C n < 1 :

Example 6.9 The sequence fk D k 1Œ0;1=k�, k � 1, is bounded in L1.Œ0; 1�; dx/, i.e.,
jj fkjj1 D 1 < 1, but not uniformly integrable for Lebesgue measure dx.

The following fact is due to Joseph L. Doob. Consult [26, 81, 103] for the details.

Theorem 6.5 (Martingale Convergence Theorem) If a martingale fXtg0�t<1 is
integrable, then there exists an X1 2 L1 such that Xt converges to X1 almost surely
as t ! 1.

Corollary 6.1

(i) Uniformly integrable martingales converge almost surely.
(ii) Square-integrable martingales converge almost surely.

(iii) Positive martingales converge almost surely.

Proof

(i) Note that uniformly integrable martingales are integrable.
(ii) Note that square-integrable martingales are uniformly integrable.

(iii) If a martingale satisfies Xt � 0, then EŒjXtj� D EŒXt� D EŒX0� < 1. ut
The following fact shows a typical method for constructing a uniformly inte-

grable martingale.

Theorem 6.6 On a probability space .�;F ; fFtgt�0;P/ with a filtration fFtgt�0
we are given an F -measurable and integrable random variable X. Define Xt D
EŒXjFt�. Then fXtg is a uniformly integrable martingale.
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Proof By Jensen’s inequality for conditional expectation in Theorem 5.3 we have
jXtj D jEŒXjFt�j � EŒjXjjFt�, and hence

EŒjXtj� � EŒEŒjXjjFt�� D EŒjXj� < 1 :

Using the tower property, we have

EŒXtjFs� D EŒEŒXjFt�jFs� D EŒXjFs� D Xs

for s < t, which proves that Xt is a martingale.
As mentioned in Definition 3.13, due to absolute continuity, for every " > 0 there

exists a ı > 0 such that P.A/ < ı implies EŒ1AjXj� < ". By Jensen’s inequality we
have jXtj � EŒjXjjFt�, and hence

EŒjXj� � EŒjXtj� � EŒ1fjXtj�KgjXtj� � KP.fjXtj � Kg/

for every K > 0. Choose K > EŒjXj�=ı, then P.fXtj > Kg/ < ı. Then

EŒ1fjXtj>KgjXtj� � EŒ1fjXt j>KgEŒjXjjFt�� .Jensen’s inequality/

D EŒEŒ1fjXt j>KgjXjjFt�� .1fjXtj>Kg is Ft-measurable/

D EŒ1fjXt j>KgjXj� .the tower property/

< " .absolute continuity/

for every t. ut
Remark 6.6 The above fact is essential in the martingale method for option pricing,
where T is the expiry date of an option, X is a discounted payoff function, and
EŒXjFt� is the discounted option price at time 0 � t � T. For more information see
Chap. 16.

Theorem 6.6 states that the conditional expectation with respect to a filtration
is a uniformly integrable martingale. Hence, by Corollary 6.1, it converges almost
surely. The following shows when its converse holds.

Theorem 6.7 (Uniformly Integrable Martingale) Let fXtgt�0 be a martingale
defined on a probability space with a filtration .�;F ; fFtgt�0;P/. Then the
following statements are equivalent:

(i) Xt converges in L1.
(ii) fXtg is integrable, Xt converges to X1 2 L1 almost surely, and Xt D EŒX1jFt�,

t � 0.
(iii) fXtg is uniformly integrable.
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Proof

(i) ) (ii). Since Xt converges in L1, EŒjXtj� also converges and is bounded.
Hence fXtg is integrable. By Theorem 6.5 Xt converges to X1 2 L1

almost surely. Since Xt D EŒXujFt� for u � t and since EŒXujFt�

converges to EŒXjFt� in L1 as u ! 1, Xt D EŒXjFt�. It remains to
show that X 2 L1. Fatou’s inequality implies that

EŒjXj� D EŒ lim
t!1 jXtj� D EŒlim inf

t!1 jXtj� � lim inf
t!1 EŒjXtj�

� sup
0�t�1

EŒjXtj� < 1 :

(ii) ) (iii). This is Theorem 6.6.
(iii) ) (i). If fXtg is uniformly integrable, it is bounded in L1 by Remark 6.5.

Thus by Theorem 6.5 there exists an X such that Xt converges to X
almost surely. Since almost sure convergence implies convergence in
probability by Fact 3.7, combining uniform integrability and almost
sure convergence we have L1-convergence. ut

6.4 Stopping Time

Consider the situation when an investor wants to reduce the risk of stock market
crash by selling some shares of a stock, whose price at time t is denoted by St,
when its value falls below a level b, b < S0, i.e., the shares will be sold at time
� D minfn > 0 W Stn � bg if the stock price is observed at discrete times 0 < t1 <
t2 < � � � . If fn � 1 W Stn � bg D ;, then � D C1 by convention. Since the decision
to trade depends on information obtained by the time tn, which is represented by
Fn D � .fStk W 0 � k � ng/, we require the condition that f� D ng is Fn-measurable.

Definition 6.10 (Stopping Time)

(i) (Discrete time) Let fFngn�0 be a filtration on a probability space .�;F/. A
random variable

� W � ! f0; 1; 2; : : :g [ fC1g

satisfying

f! 2 � W �.!/ � ng 2 Fn ; n � 1 ;

is called a stopping time. This condition is equivalent to f� D ng 2 Fn for every
n � 1 since

f� D ng D f� � ng \ f� � n � 1gc 2 Fn
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and

f� � ng D f� D 1g [ � � � [ f� D ng 2 Fn :

(ii) (Continuous time) Let fFtgt�0 be a filtration on a probability space .�;F/. A
random variable � W � ! Œ0;1� satisfying

f! 2 � W �.!/ � tg 2 Ft for every t � 0

is called a stopping time. (If we consider a finite maturity date T in financial
applications, the filtration in the above condition may be defined only on 0 �
t � T.)

Remark 6.7 (Stopped Process) Let � be a stopping time, and let fXngn�1 be a
stochastic process. Here are some standard notations: a ^ b D minfa; bg, .� ^
n/.!/ D �.!/ ^ n and X�^n D Xn1fn<�g C X�1fn��g. If Xn is adapted to a filtration
Fn, then X�^n is also adapted to Fn since for a Borel subset B � R we have

fX�^n 2 Bg D fXn 2 B; � > ng [
� n[

kD1
fXk 2 B; � D kg

�
:

Example 6.10 (Binary Expansion) Let � D Œ0; 1/ be the unit interval with its
filtration fFngn�0 defined by

Fn D �
�nh i

2n
;

i C 1

2n

�
W 0 � i � 2n � 1

o�
:

Note that Fn D �.X1; : : : ;Xn/. Define T W � ! f0; 1; 2; : : :g by T.!/ D k if
! D !1!2!3 � � � and k D minfi � 1 W !i D 0g. In other words, T is the first
time that the digit in the binary expansion of ! is equal to 0 for the first time. For
example, T D 1 on Œ0; 1

2
/. See Fig. 6.4. There are points with two different binary

expansions such as ! D 0111 � � � D 1000 � � � , but those points form a subset of

Fig. 6.4 The first time that
the digit ‘0’ appears in the
binary expansion
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probability zero. Except at such points, T is uniquely defined, and hence it is well-
defined at almost every point. Since f! W T � ng is Fn-measurable, T is a stopping
time.

Definition 6.11 (The First Hitting Time) The first hitting time �B of a Borel set
B � R by an adapted process fXngn�0 is defined by

�B.!/ D minfn � 0 W Xn.!/ 2 Bg :

It is a stopping time since for every n � 0 we have

f! W �B.!/ � ng D
[

k�n

f! W Xk.!/ 2 Bg 2 Fn :

For the continuous time case, we define the first hitting time �B by

�B.!/ D infft � 0 W Xt.!/ 2 Bg :

Example 6.11 Consider a random walker starting from 0 2 Z. Toss a coin, and he
moves to the right or left by the distance 1 depending on the outcome 0 and 1 (for
heads and tails) until he arrives at �5 2 Z or 5 2 Z. Let Xn denote the position of
the random walker at time n. Note that X0 D 0. Define

�.!/ D minfn W Xn.!/ D �5 or 5g

where ! 2 � D Q1
nD1f0; 1g, which is identified with Œ0; 1� as in Example 6.10. As

before, the filtration is given by Fn D �.X1; : : : ;Xn/. Note that

f� D 1g D f� D 2g D f� D 3g D f� D 4g D ;

and �.!/ D 5 if and only if ! D 00000 � � � or ! D 11111 � � � , i.e.,

! 2
h
0;
1

25

i
[
h
1 � 1

25
; 1
i
:

Then � is a stopping time. To see why, note that

f� D ng D
� n�1\

kD1
f�5 < Xk < 5g

�

\ fXn D ˙5g

which is an intersection of two subsets belonging to Fn�1 and Fn.

Theorem 6.8 (Stopped Martingale) Let � be a stopping time, and let fXtg be a
martingale. Then fXt^�g is also a martingale.

Proof Consult [85]. ut
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Example 6.12 As a corollary of Theorem 6.8, we haveEŒX�^n� D EŒX0�. Recall that
the symmetric random walk fXng on Z starting from 0 moving to the next position
by the distance ˙1 is a martingale. Let � be the stopping time defined by � D inffn W
Xn D 1g. Then

EŒX�^n� D EŒX0� D 0 < 1 D EŒX� �

since X� D 1.

Example 6.13 (Martingale) A fair coin is being tossed repeatedly, and the outcome
is given by Zi D ˙1, i � 1, representing a win or a loss. A strategy, or a betting
system, is defined by ˇn D 2n�1 dollars if Z1 D � � � D Zn�1 D �1 (n�1 consecutive
losses), and ˇn D 0, otherwise. Note that the nth bet is placed after the n � 1

observations. Let

Yn D Z1 C 2Z2 C � � � C 2n�1Zn :

Define a stopping time � D minfn W Yn D 1g. Then � < 1 almost surely, and � is
the total number of wins if we play until we collect one dollar, and Y�^n is the total
amount of winnings after n plays. It is a martingale. Note that for n � 1 consecutive
losses from the beginning, we have

Y� .!/ D �1 � 2 � � � � � 2n�2 C 2n�1 D 1 ;

and hence Y� D 1 almost surely. This game was called ‘martingale’, and is the
origin of the mathematical term.

Definition 6.12 (Local Martingale) Let fXtg0�t<1 be a (continuous) stochastic
process. Suppose that there exists a nondecreasing sequence of stopping times �n,
n � 1, such that fXt^�ng0�t<1 is a martingale for every n � 1 and limn!1 �n D 1
almost surely. Then we call fXtg0�t<1 a (continuous) local martingale.

Remark 6.8

(i) A martingale fMtg0�t<1 is a local martingale. For, if we take a localizing
sequence �n D n, n � 1, then fMt^�ng0�t<1 is a martingale for every n � 1 by
Theorem 6.8.

(ii) EŒXt� need not exist for a local martingale Xt.

6.5 Computer Experiments

Simulation 6.1 (Estimation of Exponential)
Let N D minfn � 2 W U1 � U2 � � � � � Un�1 > Ung where Ui, i � 1,

are independent and uniformly distributed in Œ0; 1�. We check the fact that the
expectation of N equals e D 2:7183 : : : (For a proof, consult Exercise 6.6.)
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num = 10^7; % number of iterations

N = ones(num,1);

for j=1:num

count = 2;

U1 = rand;

U2 = rand;

while (U1 <= U2)

U1 = U2;

U2 = rand;

count = count + 1;

end

N(j) = count;

end

ave = mean(N)

Simulation 6.2 (Estimation of Exponential)
Let N D minfn W U1 C � � � C Un > 1g where Ui, i � 1, are independent and

uniformly distributed in Œ0; 1�. We check the fact that the expectation of N equals
e D 2:7183 : : : (For a proof, consult Exercise 6.7.)

num = 10^7; % number of iterations

N = zeros(num,1);

for j=1:num

count = 0;

total = 0;

while(total <= 1)

total = total + rand;

count = count + 1;

end

N(j) = count;

end

ave = mean(N)

Exercises

6.1 Let s < t < u. Show that P.Xu � y j Xs;Xt/ D P.Xu � y j Xt/ for a Markov
process fXtg.

6.2 Let Z1;Z2;Z3; : : : be independent and identically distributed random variables
such that Pr.Zn D 1/ D p > 1

2
and Pr.Zn D �1/ D q D 1 � p. Using the notations

in Example 6.1, let X0 D 0, Xn D Z1 C � � � C Zn, n � 1, be a random walk. Prove
that Xn is not a martingale.

6.3 Let M0;M1;M2; : : : be a martingale. Show that exp.M0/, exp.M1/, exp.M2/, : : :
is a submartingale. (We assume that all the integrals under consideration exist.)
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6.4 Show that a discrete time previsible martingale is constant.

6.5 Suppose that jXtj � Y for every t where Y � 0 and EŒY� < 1. Show that fXtgt

be uniformly integrable.

6.6 Let N D minfn � 2 W U1 � U2 � � � � � Un�1 > Ung where Ui, i � 1, are
independent and uniformly distributed in Œ0; 1�.

(i) Prove that PfN > ng D 1
nŠ , n � 1.

(ii) Show that EŒN� D e.

6.7 Let Ui, i � 1, be independent and uniformly distributed in Œ0; 1�. Define N D
minfn W U1 C � � � C Un > 1g. Show that EŒN� D e.

6.8 Using the same notations as in Example 6.1, define the first hitting time � D
inffk � 0 W Xk D 1g.

(i) Prove that � is a stopping time.
(ii) Define T D supfk � 0 W Xk D 1g and show that T is not a stopping time. (Hint:

f� D 1g D S1
jD1 B2jC1, B2jC1 2 F2jC1.)

(iii) Taking � D Œ0; 1� and using the binary expansion representation, plot the
graphs of � and T.

6.9 Given a stochastic process fXtgt�0, let Gt be the �-algebra generated by fXs W
0 � s � tg. Prove that if Xt is a martingale with respect to some filtration fHtgt�0,
then Xt is also a martingale with respect to the filtration fGtgt�0.

6.10 Assume that F0 D f;; �g. Show that if a discrete time martingale fXng is
predictable, then it is constant.

6.11 Let Xt be a submartingale and � be a nondecreasing convex function. Show
that �.X/ is a submartingale if �.Xt/ is integrable for every t.

6.12 Define the last hitting time �B W � ! f0; 1; 2; : : :g [ fC1g by

�B.!/ D supfn � 0 W Xn.!/ 2 Bg :

Show that �B is not a stopping time.

6.13 If �1 and �2 are stopping times with respect to a filtration fFngn�0, then we
define .�1 _ �2/.!/ D maxf�1.!/; �2.!/g. Show that �1 _ �2 is also a stopping time.
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Brownian Motion



Chapter 7
Brownian Motion

After the botanist Robert Brown discovered Brownian motion under a microscope
in 1827, it was studied by Louis Bachelier in 1900 to study option price, and Albert
Einstein did research on Brownian motion in 1905. Later, Norbert Wiener gave
a rigorous framework. While the Brownian motions found in nature should have
bounded speed, the mathematical model allows unbounded speed of transition from
one location to another with small but positive probability. Therefore, when we
need to distinguish the mathematical definition of Brownian motion from physical
Brownian motion, we use the terminology Wiener process instead of Brownian
motion. In this book we use the terminology Brownian motion on most occasions. In
this chapter we introduce the basic properties of Brownian motion needed in finance.
To denote a Brownian motion we use two notations W.t/ and Wt interchangeably.

7.1 Brownian Motion as a Stochastic Process

We consider only one-dimensional Brownian motion in this chapter. Brownian
motion as an idealized physical phenomena can be described as an axiomatic
mathematical system. Assume that at time t D 0 a particle is located at 0 2 R

1,
and as time passes by it continuously moves in the positive or negative direction at
random. The probability that the particle is found in the interval Œa; b� at time t > 0
is given by

Z b

a

1p
2t

e�x2=.2t/ dx :

Now, we present an axiomatic definition of a Brownian motion, and in the next
section we introduce a sample space consisting of continuous curves!.t/ defined on
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112 7 Brownian Motion

Œ0;1/ such that !.0/ D 0, and call the associated stochastic process Wt, Wt.!/ D
!.t/ for t � 0, a Brownian motion.

Definition 7.1 (Brownian Motion) A stochastic process Wt, t � 0, is called a
Brownian motion if it has the following properties:

(i) W0 D 0 and t 7! Wt, t � 0, is continuous with probability 1.
(ii) For 0 � s � t the increment Wt � Ws has normal distribution with mean 0 and

variance t � s.
(iii) For 0 � t1 < t2 � t3 < t4 � � � � � t2n�1 < t2n the increments

W.t2/� W.t1/; : : : : : : ;W.t2n/� W.t2n�1/

are independent.

Remark 7.1 The transition probability density of moving from a fixed point x at
time s to y at time t, s � t, is given by

p.t � sI x; y/ D 1
p
2.t � s/

exp

�

� .x � y/2

2.t � s/

�

; (7.1)

which has variance t � s and mean x.

In Fig. 7.1 thirty sample paths of Brownian motion are given together with the
parabola t D W2 (left) and the probability density functions for Wt, t D 1; : : : ; 10.

In Fig. 7.2 sample paths of Brownian motion are given for 0 � t � 10�8 (left)
and for 0 � t � 108 (left), respectively. Compare the scalings.
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t

W

0
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10 −5 0 5
0

0.1

0.2

0.3

Wt

Fig. 7.1 Sample paths of Brownian motion together with the parabola t D W2 (left) and the
probability density functions for Wt as t increases (right)
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Fig. 7.2 Sample paths of Brownian motion for 0 � t � 10�8 and for 0 � t � 108

Theorem 7.1 For 0 D t0 < t1 < � � � < tn and for intervals I1; : : : ; In � R, put
ıtj D tj � tj�1. Then

P.Wt1 2 I1; : : : ;Wtn 2 In/

D
Z

I1

� � �
Z

In

p.ıt1I 0; x1/ p.ıt2I x1; x2/ � � � p.ıtnI xn�1; xn/ dxn � � � dx1 :

Theorem 7.2 (Invariance Under Time Translation) Given a Brownian motion
fWtgt�0, for an arbitrary constant a � 0 put Bt D WtCa � Wa. Then fBtgt�0 is also
a Brownian motion.

Proof Put ıtk D .tk C a/� .tk�1 C a/ D tk � tk�1 and Jk D Ik C Wa. Then

P.Bt1 2 I1; : : : ;Btn 2 In/

D P.Wa 2 R;Wt1Ca 2 J1; : : : ;WtnCa 2 Jn/

D
Z

J1

� � �
Z

Jn

p.ıt1I Wa; x1/ p.ıt2I x1; x2/ � � � p.ıtnI xn�1; xn/ dxn � � � dx1

D
Z

J1

� � �
Z

Jn

p.ıt1I 0; x1�Wa/ � � � p.ıtnI xn�1�Wa; xn�Wa/ dxn � � � dx1

D
Z

I1

� � �
Z

In

p.ıt1I 0; y1/ p.ıt2I y1; y2/ � � � p.ıtnI yn�1; xn/ dyn � � � dy1

which coincides with the probability of Brownian motion. ut
Theorem 7.3

(i) E ŒWtWs� D minft; sg. As a corollary, E

W2

t

� D t.
(ii) E


.Wt � Ws/

2
� D jt � sj.
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Proof

(i) Assume that s � t. Then we have

E ŒWtWs� D
Z 1

�1

Z 1

�1
x y p.s; 0; x/ p.t � s; x; y/ dx dy

D
Z 1

�1
x p.s; 0; x/

�Z 1

�1
y p.t � s; x; y/ dy

�

dx

D
Z 1

�1
x p.s; 0; x/ x dx D

Z 1

�1
x2 p.s; 0; x/ dx D s :

(ii) Note that E

W2

t � 2WtWs C W2
s

� D t � 2minft; sg C s D jt � sj. Or, we may
apply Theorem 7.2: Since Wt �Ws and Wt�s are identically distributed for s � t,
Part (i) implies that E


.Wt � Ws/

2
� D E


W2

t�s

� D t � s. ut
Remark 7.2 Either by direct computation, or by comparing the coefficients of
Taylor expansions of the equality in Lemma 7.1 we have EŒWn

t � D 0 for n odd,
EŒW2

t � D t and EŒW4
t � D 3t2.

Definition 7.2 (Quadratic Variation) Let 0 D t0 < t1 < � � � < tn D T be a
partition of the interval Œ0;T� such that limn!1 maxi ıit D 0 where ıit D tiC1 � ti.
The quadratic variation of Brownian motion is defined by

lim
n!1

n�1X

iD0
jW.tiC1/� W.ti/j2

where the convergence is in the L2-sense. Put ıiW D WtiC1
� Wti . Note that

EŒ
P

i jıiWj2� D P
i ıit D T.

Theorem 7.4 The quadratic variation of Brownian motion is given by

lim
n!1

n�1X

iD0

ˇ
ˇWtiC1

� Wti

ˇ
ˇ2 D T

where the convergence is in the L2-sense.

Proof Since .ıiW/2 and .ıjW/2 are independent for i 6D j, we have

EŒ.ıiW/
2.ıjW/

2� D EŒ.ıiW/
2�EŒ.ıjW/

2� :
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By Remark 7.2, EŒ.ıiW/4� D 3.ıit/2 and EŒ.ıiW/2� D ıit. As n ! 1,

E

�ˇˇ
ˇ
ˇ

n�1X

iD0
.ıiW/

2 � T

ˇ
ˇ
ˇ
ˇ

2�

D
n�1X

iD0

n�1X

jD0
E

.ıiW/

2.ıjW/
2
� � 2T

n�1X

iD0
E

.ıiW/

2
�C T2

D
n�1X

iD0
E

.ıiW/

4
�C 2

X

i<j

E

.ıiW/

2.ıjW/
2
� � 2T

n�1X

iD0
E

.ıiW/

2
�C T2

D
n�1X

iD0
3.ıit/

2 C 2
X

i<j

.ıit/ .ıjt/ � 2T
n�1X

iD0
ıit C T2

D 2

n�1X

iD0
.ıit/

2 C
� n�1X

iD0
ıit

�2
� 2T

n�1X

iD0
ıit C T2

D 2

n�1X

iD0
.ıit/

2 C T2 � 2T2 C T2 � 2max
i
ıit

n�1X

iD0
ıit D 2max

i
ıit 	 T ! 0

and the proof is complete. ut
Corollary 7.1 (The First Order Variation) The first order variation of Brownian
motion diverges. In other words, with probability 1 we have

lim
n!1

n�1X

iD0

ˇ
ˇWtiC1

� Wti

ˇ
ˇ D 1 :

Proof For a continuous sample path ! belonging to a set �1 of measure 1 we put
Cn D max0�i�n�1

ˇ
ˇWtiC1

� Wti

ˇ
ˇ. Since ! is a uniformly continuous function defined

on a compact set Œ0;T�, we have limn!1 Cn D 0 and

n�1X

iD0

ˇ
ˇWtiC1

� Wti

ˇ
ˇ2 � Cn

n�1X

iD0

ˇ
ˇWtiC1

� Wti

ˇ
ˇ :

The left-hand side converges to T for almost every ! belonging to a set �2 of
measure 1 along a subsequence fnkg1

kD1 by Theorem 7.4. Hence
Pn�1

iD0
ˇ
ˇWtiC1

� Wti

ˇ
ˇ

increases to infinity with probability 1. ut
Lemma 7.1 For a real constant � we have

E

e�Wt

� D e
1
2 �

2t ; t � 0 :
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Proof Note that

E

eWt
� D 1p

2t

Z 1

�1
exe� x2

2t dx

D 1p
2t

Z 1

�1
e� .x�t/2�t2

2t dx

D e
t
2

1p
2t

Z 1

�1
e� y2

2t dy D e
1
2 t :

Since � Wt and W�2t have the same distribution, we have E

e�Wt

� D E

eW

�2 t
� D

e
1
2 �

2t. ut
Remark 7.3 By replacing � by �� in Lemma 7.1, we have E


e��Wt

� D e
1
2 �

2t,
which can be proved also by the fact that �Wt and ��Wt are identically distributed.

Example 7.1 In the geometric Brownian motion model the stock price St satisfies

St D S0e.�� 1
2 �

2/tC�Wt :

Since EŒe� 1
2 �

2tC�Wt � D e� 1
2 �

2t
E

e�Wt

� D 1, we have EŒSt� D S0e�t, i.e., the
stock price increases exponentially on average regardless of the volatility � as time
increases. In Fig. 7.3 sample paths of St are plotted together with the curve y D S0e�t

for � D 0:25 and � D 0:3. Consult Simulation 7.2. See also Remark 7.8 for a less
intuitive result.

Lemma 7.2 If i D p�1, then E

ei�Wt

� D e� 1
2 �

2t for any real constant � .
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Fig. 7.3 Exponential growth of the geometric Brownian motion: The sample average of St is close
to the exponential curve given in the right
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Proof Recall that the Fourier transform of the probability density function of the
standard normal variable is the probability density function itself up to a constant
multiple. (See Example 4.8.) Hence

E

eiWt

� D
Z 1

�1
1p
2t

e�x2=.2t/eixdx

D
Z 1

�1
1p
2

e�y2=2ei
p

tydy

D e�.pt/2=2 D e�t=2 :

Since �Wt and W�2t are identically distributed, we have EŒei�Wt � D EŒeiW�2 t � D
e� 1

2 �
2t. ut

Remark 7.4 The probability distribution of Wt is symmetric around 0 and hence
EŒsin Wt� D 0. Thus

E

eiWt

� D E Œcos Wt�C iE Œsin Wt� D E Œcos Wt�

and we obtain a real number even when the function under integration is complex-
valued in the above. As a by-product we have E Œcos Wt� D e�t=2. For t D 1 we
have

E Œcos Z� D 1p
e

where Z is a standard normal variable.

Theorem 7.5 Let 0 � s < t. Under the conditions that Ws D x and Wt D z the
distribution of W.sCt/=2 is normal with expectation 1

2
.x C z/ and variance 1

4
.t � s/.

That is, the conditional probability density function f .y/ is given by

f .y/ D 1
q
2 t�s

4

exp

 

� .y � xCz
2
/2

2 t�s
4

!

:

Proof For the sake of notational simplicity, we prove the statement for s D 0, in
which case we have x D 0. To find the conditional density function, we compute first
the conditional expectation EŒ�.Wt=2/jWt D z� for an arbitrary function � W R ! R.
For ız > 0 let

A D f! W Wt.!/ 2 Œz; z C ız�g :
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Then

1

P.A/

Z

A
�.W t

2
/dP

D
R zCız

z

R1
�1 �.y/ p. t

2
I 0; y/ p. t

2
I y; u/ dy du

R zCıy
z p.tI 0; u/ du

�
R1

�1 �.y/ p. t
2
I 0; y/ p. t

2
I y; z/ dy ız

p.tI 0; z/ ız

D
Z 1

�1
�.y/

p. t
2
I 0; y/ p. t

2
I y; z/

p.tI 0; z/ dy :

Thus the conditional probability density function of W t
2

given Wt D z is obtained by

p. t
2
I 0; y/ p. t

2
I y; z/

p.tI 0; z/

D 1
q
2 t

2

exp

�

� y2

2 t
2

�
1

q
2 t

2

exp

�

� .z � y/2

2 t
2

�p
2t exp

�
z2

2t

�

D
p
2p
t

exp

 

�2.y � 1
2
z/2

t

!

:

ut
In Theorem 7.6 presented in the next paragraph, we construct a sample Brownian

path satisfying WT D b using the above result. First, we find the value at t D 1
2
T,

then find the values at t D 1
4
T; 3

4
T, and so on by adding midpoints. We let ıt D 1

2n T
for some n. Connect the points

.0; 0/; .ıt;W.ıt//; : : : ; .kıt;W.kıt//; : : : ; .T;W.T//

by line segments, and obtain a piecewise curve which converges to a Brownian
sample path. See also Sect. 12.3.

Theorem 7.6 (Brownian Motion Conditional on WT D b) By using successive
approximation we construct a sample path of Brownian motion over a finite interval
Œ0;T�. For the sake of notational simplicity we consider the case T D 1. We will
define a sequence of piecewise linear functions W.n/, n � 1, recursively. Given
n � 1, consider the points k

2n , 0 � k � 2n, and define W.n/ using W.n�1/ at those
points depending on whether k is even or odd.

(i) If k is even, then k D 2i, and define

W.n/

�
k

2n

�

D W.n/

�
i

2n�1

�

D W.n�1/
�

i

2n�1

�

:
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Fig. 7.4 Construction of a
sample path of Brownian
motion

(ii) If k is odd, then k D 2i C 1, and define

W.n/

�
k

2n

�

D 1

2

�

W.n/

�
2i

2n

�

C W.n/

�
2i C 2

2n

��

C 2� nC1
2 Z.n/2iC1

where Z.n/2iC1, 1 � 2i C 1 � 2n, are independent standard normal variables. In
other words,

W.n/

�
2i C 1

2n

�

D 1

2

�

W.n�1/
�

i

2n

�

C W.n�1/
�

i C 1

2n

��

C 2� nC1
2 Z.n/2iC1 :

(See Fig. 7.4.) Finally, we connect the points . k
2n ;W.n/

�
k
2n

�
/ to obtain a

piecewise linear continuous function W.n/ on the whole interval. Then W.n/,
n � 1, converges uniformly to a continuous function with probability 1.

Proof Let .�;P/ denote the probability space under consideration, and put

Mn.!/ D maxfjZ.n/k .!/j W 0 < k < 2n; k is oddg

and An D fMn > ng. Take ˛ > 0. Since

P.jZ.n/k j > ˛/ D 2
1p
2

Z 1

˛

e�z2=2dz <

r
2



Z 1

˛

˛

z
e�z2=2dz D

r
2



1

˛
e�˛2=2 ;

we have

P.An/ D P

 
[

k

n
jZ.n/k j > n

o
!

� 2n�1
P.jZ.n/1 j > n/ �

r
2



2n�1

n
e�n2=2 ;

and

1X

nD1
P.An/ < 1 :
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By the Borel–Cantelli lemma (Theorem 4.10) there exists a set �1 such that
P.�1/ D 1 and for ! 2 �1 there exists N D N.!/ satisfying Mn.!/ � n for
n � N. Then, for ! 2 �1 and n � N, we have

sup
0�t�1

jW.nC1/.t/ � W.n/.t/j D 2� nC1
2 Mn � 2� nC1

2 n ;

and hence, for n;m � N,

sup
0�t�1

jW.m/.t/ � W.n/.t/j D
1X

jDn

2� jC1
2 j :

Since the infinite sum in the above converges monotonically to 0 as n ! 1, we
conclude that W.n/.t/ converges uniformly on Œ0; 1�. ut
Fact 7.7 Let W.t/ be the limit of W.n/.t/ in the preceding construction.

(i) The increments

W.n/

�
k

2n

�

� W.n/

�
k � 1

2n

�

are independent and normally distributed with mean 0 and variance 1
2n .

(ii) If 0 D t0 < t1 < � � � < tn � 1, then the increments W.tiC1/ � W.ti/ are
independent, normally distributed, with mean 0 and variance tiC1 � ti. Thus
W.t/ is a Brownian motion. (See Fig. 7.5.)

Proof Consult [45]. ut

Fig. 7.5 A sample path of
Brownian motion constructed
by the bisection method
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Remark 7.5 Sometimes a generalized Brownian motion aCWt is called a Brownian
motion conditional on W0 D a. (See also Theorem 7.2.)

7.2 Sample Paths of Brownian Motion

In this section we introduce a concrete example of a Brownian motion which will
be useful in computer simulations.

Definition 7.3 (Cylinder Subset) Let � be the set of functions ! W Œ0;1/ ! R
1,

called sample paths, satisfying the following conditions:

(i) !.0/ D 0,
(ii) !.t/ is a continuous function of t.

To endow a measurable structure on � we consider cylinder subsets which are
building blocks of all measurable subsets: For arbitrary time points 0 D t0 < t1 <
� � � < tn and arbitrary intervals I1; : : : ; In � R, we define a cylinder subset by

C.t1; : : : ; tnI I1; : : : ; In/ D f! 2 � j!.t1/ 2 I1; : : : ; !.tn/ 2 Ing :

(See Fig. 7.6 for a graphical representation of a cylinder subset where a sample path
passes through the gates represented by the intervals.) The �-algebra generated by
the cylinder subsets C.t1; : : : ; tnI I1; : : : ; In/ for n � 1 and 0 D t0 < t1 < � � � <
tn � t, is denoted by Ft. Note that fFtgt�0 is a filtration and that a �-algebra F is
generated by

S
t�0 Ft. Then we obtain a filtered measurable space .�; fFtgt�0;F/,

which is called a sample space of the Brownian motion.

An infinitely long cylinder f.x; y/jx2 C y2 D 1g 	 R
1 � R

3 is a set of the points
whose third coordinates are arbitrary. A cylinder subset for a Brownian motion is
regarded as a subset of the infinite product

Q
t�0R1t of the real line R1t D R

1, t � 0,
whose points are arbitrary except at finitely many values 0 D t0 < t1 < � � � < tn.

Fig. 7.6 A cylinder subset
for Brownian motion

I
I

I

I
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Remark 7.6 The following are basic properties of the cylinder subsets.

(i) C.tI I1/[ C.tI I2/ D C.tI I1 [ I2/.
(ii) C.tI I1/\ C.tI I2/ D C.tI I1 \ I2/.

(iii) For t1 < t2 we have C.t1I I1/ \ C.t2I I2/ D C.t1; t2I I1; I2/.
(iv) If s < t, then Wt is not Fs-measurable.

Now we define a measure on � using the transition probability of Brownian
motion.

Definition 7.4 (Probability of Brownian Motion) Put ıtj D tj � tj�1 and define
the size P0 of the cylinder subset C.t1; : : : ; tnI I1; : : : ; In/ of � by

P0.C.t1; : : : ; tnI I1; : : : ; In//

D
Z

I1

� � �
Z

In

p.ıt1I 0; x1/ p.ıt2I x1; x2/ � � � p.ıtnI xn�1; xn/ dxn � � � dx1

where p.ıtI x; y/ is the transition probability density of the normal distribution
defined in (7.1). By the Kolmogorov Extension Theorem, P0 is extended to a
probability measure P defined on F . To be more precise, we first consider the
algebra F0 generated by finite unions of cylinder subsets and define an additive
set function P0 W F0 ! Œ0; 1�, and next we extend the domain of P0 to the
whole �-algebra F and obtain a countably additive set function, i.e., a measure,
P W F ! Œ0; 1�.

Definition 7.5 (Brownian Motion as a Stochastic Process) Using the notations
given in Definition 7.4, we define a Brownian motion as a sequence of random
variables Wt, t � 0, defined on .�;F ;P/ by Wt.!/ D !.t/. Since W�1

t .I/ D C.tI I/
for a Borel subset I � R, we have �.Wt/ � Ft. In other words, fWtgt�0 is adapted
to fFtgt�0 (Fig. 7.7).

The following theorem shows that the concrete Brownian motion constructed in
Definition 7.5 satisfies all the axioms for the abstract Brownian motion given in
Definition 7.1. Hence the Brownian motion in Definition 7.5 is a Brownian motion
in the original sense.

Ω

ω

ω

Fig. 7.7 Brownian motion and a cylinder subset
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Theorem 7.8 (Brownian Motion) Let Wt be the Brownian motion in Defini-
tion 7.5. Then we have the following:

(i) For 0 � s � t the increment Wt � Ws has normal distribution with expectation
0 and variance t � s.

(ii) For 0 � t1 < t2 � t3 < t4 � � � � � t2n�1 < t2n, the increments

Wt2 � Wt1 ; Wt4 � Wt3 ; : : : ; Wt2n � Wt2n�1

are independent.

Proof

(i) Note that for an arbitrary Borel set I � R we have

P.Wt � Ws 2 I/ D
“

f.x;y/Wy�x2Ig
p.sI 0; x/ p.t � sI x; y/ dx dy

D
Z 1

�1
p.sI 0; x/

�Z

fyWy�x2Bg
p.t � sI x; y/ dy

�

dx

D
Z 1

�1
p.sI 0; x/

�Z

B
p.t � sI x; x C z/ dz

�

dx

D
Z 1

�1
p.sI 0; x/

�Z

B
p.t � sI 0; z/ dz

�

dx

D
Z

I
p.t � sI 0; z/ dz

Z 1

�1
p.sI 0; x/ dx

D
Z

I
p.t � sI 0; z/ dz :

Hence Wt � Ws is normally distributed with mean 0 and variance t � s.
(ii) For notational convenience we consider the case n D 2. For arbitrary Borel sets

A;B � R we put

D1 D f.x1; x2; x3; x4/ W x2 � x1 2 A; x4 � x3 2 Bg
and

D2 D f.x3; x4/ W x4 � x3 2 Bg
and obtain

P .Wt2 � Wt1 2 A;Wt4 � Wt3 2 B/

D
ZZZZ

D1

p.t1I 0; x1/ p.t2 � t1; x1; x2/ p.t3 � t2; x2; x3/

	p.t4 � t3; x3; x4/ dx1 dx2 dx3 dx4
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D
Z 1

�1
p.t1I 0; x1/

� Z

fx2Wx2�x12Ag

“

D2

p.t2 � t1; x1; x2/ p.t3 � t2; x2; x3/

	p.t4 � t3; x3; x4/ dx2 dx3 dx4

�

dx1 (Put x2 � x1 D u.)

D
Z 1

�1
p.t1I 0; x1/

�Z

A
p.t2 � t1; x1; u C x1/I2.x3; x4/du

�

dx1

D
Z 1

�1
p.t1I 0; x1/

�Z

A
p.t2 � t1; 0; u/I2.x3; x4/du

�

dx1

D
Z

A
p.t2 � t1; 0; u/I2.x3; x4/du

where

I2.x3; x4/ D
“

D2

p.t3 � t2; u C x1; x3/p.t4 � t3; x3; x4/ dx3 dx4 :

Now we put x4 � x3 D v and obtain

I2.x3; x4/ D
Z 1

�1

Z

B
p.t3 � t2; u C x1; x3/p.t4 � t3; x3; x3 C v/ dv dx3

D
Z 1

�1
p.t3 � t2; u C x1; x3/

�Z

B
p.t4 � t3; 0; v/ dv

�

dx3

D
Z

B
p.t4 � t3; 0; v/ dv :

Hence

P.Wt2 � Wt1 2 A;Wt4 � Wt3 2 B/

D
Z

A
p.t2 � t1; 0; u/

�Z

B
p.t4 � t3; 0; v/ dv

�

du

D
Z

A
p.t2 � t1; 0; u/ du

Z

B
p.t4 � t3; 0; v/ dv

D P.Wt2 � Wt1 2 A/P.Wt4 � Wt3 2 B/ :

For the last equality we use the result from the proof of Theorem 7.8(i). ut
Remark 7.7 (Nondifferentiability of Brownian Motion) From the equation

ıWt

ıt
D WtCıt � Wt

ıt
� 1p

ıt
N.0; 1/

we observe that as the increment ıt > 0 converges to 0 the increment of Brownian
motion can be arbitrarily large. This is the reason why almost every sample path
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of Brownian motion is not differentiable at every t. Therefore we use short line
segments in plotting sample paths of Brownian motion, and should not use any
smoothing technique.

Theorem 7.9 (Time Inversion) Let Wt, t � 0, be a Brownian motion. The process
Xt defined by

Xt D
�
0; t D 0

tW1=t; t > 0

is also a Brownian motion.

Proof Consult [71]. ut
Corollary 7.2 (Law of Large Numbers for Brownian Motion) Let Wt, t � 0, be
a Brownian motion. Then

lim
t!1

Wt

t
D 0

almost surely.

Proof Note that

lim
t!1

Wt

t
D lim

u!0C uW1=u D lim
u!0C Xu D 0

almost surely since Xu, u � 0, is a Brownian motion by Theorem 7.9. ut
For a simulation of Corollary 7.2, see Simulation 7.4 and Fig. 7.8. For a related

result, see Exercise 8.7.
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Fig. 7.8 The Law of Large Numbers for Brownian motion
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Remark 7.8 In Example 7.1, for any constants � and � we showed that

EŒSt� D EŒS0e.�� 1
2 �

2/tC�Wt � D S0e�t ; t � 0 :

However, if � � 1
2
�2 < 0, then

lim
t!1 S0e.�� 1

2 �
2/tC�Wt D lim

t!1 S0etŒ.�� 1
2 �

2/C� 1t Wt � D lim
t!1 S0et.�� 1

2 �
2/ D 0

almost surely by the Law of Large Numbers. Since

lim
t!1E ŒSt� D S0e�t D

8
<

:

1 ; � > 0

S0 ; � D 0

0 ; � < 0

we have

0 D E

h
lim

t!1 St

i
6D lim

t!1E ŒSt�

for � � 0. If � D 0 then St is a martingale and EŒSt� D S0 for every t � 0 by
Theorem 6.1, which is in agreement with the above result. Note that even in this
case we have limt!1 St D 0.

See Fig. 7.3 for the simulations for � > 0 and � � 1
2
�2 > 0 where individual

sample paths tend to increase as t ! 1 and the average of sample paths grows
exponentially. See also Fig. 7.9 for � > 0 and � � 1

2
�2 < 0 where individual

sample paths converge to 0 while their average grows exponentially.

0 100 200 300 400 500
0

10

20

30

40

t

S

Fig. 7.9 The Law of Large Numbers for geometric Brownian motion for � > 0 and �� 1
2
�2 < 0

with exponentially increasing average
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Fig. 7.10 The Law of Large Numbers for geometric Brownian motion and the martingale property
for � D 0

Table 7.1 Limiting behaviors of geometric Brownian motion depending on the signs of � and
�� 1

2
�2

� > 0 � D 0 � < 0

�� 1
2
�2 > 0 St ! C1 a.s. Not applicable Not applicable

EŒSt� ! C1
�� 1

2
�2 D 0 St D e�Wt Not applicable Not applicable

EŒSt� ! C1
�� 1

2
�2 < 0 St ! 0 a.s. St ! 0 a.s. St ! 0 a.s.

EŒSt� ! C1 EŒSt� D S0 EŒSt� ! 0

Finally, for � D 0 presented in Fig. 7.10, the martingale property makes the
sample paths stay around the constant average S0 for every t.

In Table 7.1 the limiting behaviors of geometric Brownian motion are classified
by the signs of � and � � 1

2
�2 under the assumption that � > 0.

7.3 Brownian Motion and Martingales

In this section we present some of the most important examples of martingales
defined by a Brownian motion fWtgt�0.

Let �1 < � � � < ak�1 < ak < akC1 < � � � < 1, and let Jk D .ak; akC1�. Fix
0 � s < t. Note that the cylinder sets C.sI Jk/ D f! W Ws.!/ 2 Jkg partition the set
of all Brownian paths �. In Fig. 7.11 the interval Jk is plotted along the line with
the time coordinate equal to s. Let J be one such interval. If akC1 � ak is close to
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Fig. 7.11 Conditional
expectation of Wt on a
cylinder set C.sI J/

J

zero, then EŒWtjFs� is approximated by a number EŒWtjC.sI J/� on C.sI J/. Assume
that J is of the form J D .a; a C ıx� for some a and ıx > 0. We assume that ıx is
sufficiently small.

EŒWtjC.sI J/� D
R

C.sIJ/ Wt dP

P..C.sI J//

D
R1

�1
R

J x2p.sI 0; x1/p.t � sI x1; x2/ dx1dx2R
J p.sI 0; x1/ dx1

�
R1

�1 x2p.sI 0; a/p.t � sI a; x2/ ıx dx2
p.sI 0; a/ ıx

D
Z 1

�1
x2p.t � sI a; x2/ dx2

D a

where p.uI x; y/ denotes the transition probability density from x to y in time u. Since
a is the representative value of Ws on C.sI J/, we observe that on each subset C.sI J/
two random variables EŒWtjFs� and Ws are sufficiently close to each other. In fact,
EŒWtjFs� D Ws, i.e., Wt is a martingale.

Lemma 7.3 Given a real constant � and 0 � s < t, we have

EŒe�Wt jFs� D e
1
2 �

2.t�s/e�Ws :

In other words, if we let

Lt D e� 1
2 �

2t��Wt ;

then EŒLtjFs� D Ls, that is, Lt is a martingale.

Proof Since Wt � Ws is independent of Fs we have

EŒe�.Wt�Ws/jFs� D EŒe�.Wt�Ws/� D EŒe�Wt�s � D e
1
2 �

2.t�s/ :

Hence EŒe�Wt� 1
2 �

2tjFs� D e� 1
2 �

2t
EŒe�Wt jFs� D e� 1

2 �
2se�Ws . ut
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Here we present some examples of martingales.

Theorem 7.10 The following stochastic processes are martingales:

(i) A Brownian motion fWtgt�0 is a martingale.
(ii) fW2

t � tgt�0 is a martingale.

(iii) feWt� 1
2 tgt�0 is a martingale.

(iv) fe
1
2 t cos Wtgt�0 is a martingale.

(v) fW3
t � 3tWtgt�0 is a martingale.

Proof Take 0 � s < t.

(i) Since Wt � Ws and Fs are independent, we have

EŒWt � WsjFs� D EŒWt � Ws� D 0 ;

and hence

EŒWtjFs� D EŒWsjFs� D Ws :

(ii) To show that EŒW2
t � tjFs� D W2

s � s we note that

EŒW2
t jFs� D EŒ.Wt � Ws/

2 C 2WsWt � W2
s jFs�

D EŒ.Wt � Ws/
2jFs�C 2WsEŒWtjFs� � EŒW2

s jFs�

D EŒ.Wt � Ws/
2�C 2WsWs � W2

s

D EŒW2
t�s�C W2

s

D t � s C W2
s :

(iii) To show that

EŒeWt e� 1
2 tjFs� D eWs e� 1

2 s

for s � t, we choose � D 1 in Lemma 7.3.
(iv) Let z D ˛ C iˇ 2 C, ˛; ˇ 2 R and i2 D �1, be a complex number, and let

<.w/ denote the real part of a complex number w. Then

EŒcos WtjFs� D E
< �

eiWt
� jFs

�

D < �
E

eiWt jFs

��

D < �
E

eiWs ei.Wt�Ws/jFs

��

D < �
eiWsE


ei.Wt�Ws/jFs

��

D < �
eiWsE


ei.Wt�Ws/

��

D < �
eiWsE


eiWt�s

��
:
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By Lemma 7.2 we have

EŒcos WtjFs� D < �
eiWs e�.t�s/=2

�

D e�.t�s/=2 cos Ws

and E

e
1
2 t cos WtjFs

� D e
1
2 s cos Ws.

(v) Since Wt � Ws is independent of Fs, .Wt � Ws/
2 and .Wt � Ws/

3 are also
independent of Fs. Hence we have

EŒW3
t jFs� � W3

s

D EŒ.Wt � Ws C Ws/
3 � W3

s jFs�

D EŒ.Wt � Ws/
3 C 3.Wt � Ws/

2 Ws C 3.Wt � Ws/W2
s jFs�

D EŒ.Wt � Ws/
3�C 3Ws EŒ.Wt � Ws/

2�C 3W2
s EŒWt � Ws�

D 0C 3Ws.t � s/C 3W2
s 	 0

D EŒ3t WtjFs� � 3sWs :

Hence EŒW3
t � 3t WtjFs� D W3

s � 3sWs . ut
Remark 7.9 As a by-product of the proof of Theorem 7.10 (iv), we obtain

EŒcos WtjFs� D e�.t�s/=2 cos Ws :

For s D 0 the fact that EŒcos Wt� D e�t=2 has already been mentioned in Remark 7.4.
(See Exercise 7.17 for a related result.)

Theorem 7.11 (Continuity of Brownian Motion) For " > 0 we have

lim
ıt!0

P.f! W jWtCıt.!/� Wt.!/j > "g/ D 0 :

Proof Chebyshev’s inequality implies that for any fixed " > 0 we have

P.jWtCıt � Wtj > "/ D P.jWtCıt � EŒWtCıtjFt� j > "/

� 1

"2
VarŒWtCıtjFt�

D 1

"2
ıt ! 0

as ıt ! 0. ut
The following facts due to Paul Lévy characterize Brownian motions using the

concept of martingale.
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Theorem 7.12 Given a stochastic process fXtgt�0 and the filtration Ft D �.fXs W
0 � s � tg/, the process Xt is a Brownian motion if and only if all of the following
conditions hold:

(i) X0 D 0 with probability 1.
(ii) A sample path t 7! Xt is continuous with probability 1.

(iii) fXtgt�0 is a martingale with respect to fFtgt�0 .
(iv) fX2t � tgt�0 is a martingale with respect to fFtgt�0 .

Theorem 7.13 Let fMtgt�0 be a martingale with respect to a filtration fFtgt�0 and
a probability measure Q. If Mt is continuous, M0 D 0 and

ŒM;M�t D t ;

then it is a Brownian motion.

Proof Let

F.t; x/ D exp. 1
2
�2t C i�x/

for some real constant � where i2 D �1. Then

dF.t;Mt/ D 1
2
�2F.t;Mt/ dt C i�F.t;Mt/ dMt � 1

2
�2F.t;Mt/ dŒM;M�t

D i�F.t;Mt/ dMt :

Hence F.t;Mt/ D exp. 1
2
�2t C i�Mt/ is a martingale. Since, for s � t,

E

h
exp

�
1
2
�2t C i�Mt

� ˇˇ
ˇFs

i
D exp

�
1
2
�2s C i�Ms

�
;

the characteristic function of Mt � Ms is given by

E

h
exp .i�.Mt � Ms//

ˇ
ˇ
ˇFs

i
D exp

�� 1
2
�2.t � s/

�
:

Hence Mt�Ms, s � t, is normally distributed with mean 0 and variance t�s underQ.
As a by-product we obtain

E

h
ei�Mt

ˇ
ˇ
ˇFs

i
D e� 1

2 �
2.t�s/ei�Ms ; s < t :

Next, suppose that 0 � t1 � t2 � � � � � tn. Then, for real constants �1; : : : ; �n,

E

ei�1Mt1Ci�2.Mt2�Mt1 /C���Ci�n.Mtn �Mtn�1 /

�

D E

ei.�1��2/Mt1Ci.�2��3/Mt2C���Ci.�n�1��n/Mtn�1Ci�nMtn

�

D E

E

ei.�1��2/Mt1Ci.�2��3/Mt2C���Ci.�n�1��n/Mtn�1Ci�nMtn jFtn�1

��



132 7 Brownian Motion

D E

ei.�1��2/Mt1Ci.�2��3/Mt2C���Ci.�n�1��n/Mtn�1E


ei�nMtn jFtn�1

��

D E

h
ei.�1��2/Mt1Ci.�2��3/Mt2C���Ci.�n�1��n/Mtn�1 e� 1

2 �
2
n.tn�tn�1/ei�nMtn�1

i

D e� 1
2 �

2
n.tn�tn�1/E


ei.�1��2/Mt1Ci.�2��3/Mt2C���Ci�n�1Mtn�1

�

D e� 1
2 �

2
n.tn�tn�1/E


E

ei.�1��2/Mt1Ci.�2��3/Mt2C���Ci�n�1Mtn�1 jFtn�2

��

:::

D e� 1
2 �

2
n.tn�tn�1/e� 1

2 �
2
n�1.tn�1�tn�2/ 	 � � � 	 e� 1

2 �
2
1t1 ;

thus the increments are independent. ut

7.4 Computer Experiments

Simulation 7.1 (Sample Paths of Brownian Motion)
We plot 100 sample paths of Brownian motion. See Fig. 7.1.

N = 200; % number of time steps

T = 20;

dt = T/N;

time = 0:dt:T;

M = 30; % number of sample paths

W = zeros(M,N+1); % dW and W are matrices.

dW = sqrt(dt)*randn(M,N);

for i=1:N

W(:,i+1) = W(:,i) + dW(:,i); % Note W(j,1) = 0.0.

end

for j = 1:M

plot(time,W(j,1:N+1),’b’);

hold on;

end

Simulation 7.2 (Average of Geometric Brownian Motion)
We check the formula EŒSt� D S0e�t given in Example 7.1. See Fig. 7.3.

mu = 0.25;

sigma = 0.3;

N = 100; % number of time steps

T = 5;

dt = T/N;

time = 0:dt:T;

num = 200; % number of sample paths

W = zeros(num,N + 1);

dW = zeros(num,N);
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S = zeros(num,N + 1);

S0 = 1;

S([1:num],1) = S0;

for i = 1:num

dW(i,1:N) = sqrt(dt)*randn(1,N);

end

for i = 1:num

for j=1:N

S(i,j+1) = S(i,j) + mu*S(i,j)*dt + sigma*S(i,j)*dW(i,j);

end

end

ave = zeros(1,N+1);

for j = 1: N+1

ave(j) = mean(S(:,j));

end

plot(time,ave);

hold on

t = 0:0.01:T;

plot(t,S0*exp(mu*t),’r’)

Simulation 7.3 (Brownian Motion with Boundary Condition)
Using the bisection method we generate a sample path of Brownian motion with

a given condition at the final time T using conditional expectation. For an output see
Fig. 7.5.

T = 1; % length of time interval

n = 8; % number of bisections

dt = T/2^n; % length of time step

time = 0:dt:T; % partition of the time interval

M = 2^n + 1;

W = zeros(1,M); % a sample path of Brownian motion

W(1) = 0; % initial condition

W(M) = 0.3; % condition on Brownian motion W at time T=dt*(M-1)

for i=1:n

Increment = 2^(n-i+1);

for j=1:Increment:2^n

index1 = j;

index2 = j+Increment;

t1 = time(index1);

t2 = time(index2);

W1 = W(index1);

W2 = W(index2);

ave = (W1 + W2)/2;

var = (t2 - t1)/4;

ind_mid = (index1 + index2)/2;

W(ind_mid)=random(’normal’,ave,sqrt(var)); %conditional expectation

end

end
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for i=0:n

t_value = zeros(1,2^i+1);

W_value = zeros(1,2^i+1);

for k=1:2^i+1

t_value(k)=(k-1)*dt*2^(n-i);

W_value(k) = W((k-1)*2^(n-i)+1);

end

plot(t_value,W_value,’-’, ’color’, hsv2rgb([1-i/n 1 1]));

hold on;

pause(0.3); % Pause between successive stages.

end

Simulation 7.4 (Law of Large Numbers for Brownian Motion)
We plot 10 sample paths of 1

t Wt, 0 � t � 500, to simulate the Law of Large
Numbers for Brownian motion (Corollary 7.2). For an output see Fig. 7.8.

N = 200; % number of time steps

T = 500;

dt = T/N;

time = 0:dt:T;

M = 10; % number of sample paths

W = zeros(M,N+1); % dW and W are matrices.

dW = sqrt(dt)*randn(M,N);

for i=1:N

W(:,i+1) = W(:,i) + dW(:,i); % Note W(j,1) = 0.0.

end

X = zeros(M,N+1);

X(:,1) = 1;

for i = 2:N+1

X(:,i) = W(:,i)/((i-1)*dt);

end

for j = 1:M

plot(time,X(j,1:N+1));

hold on;

end

Exercises

7.1 Let Z be normally distributed with mean zero and variance under the measure
P. What is the distribution of

p
tZ? Is the process Xt D p

tZ a Brownian motion?

7.2 For a standard normal variable Z, show that EŒeWt � D e
1
2 t.

7.3 Suppose that X is normally distributed with mean � and variance �2. Calculate
EŒe�X� and hence evaluate EŒX4�. What is EŒX2k�?
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7.4 Show that Vt D WtCT � WT is a Brownian motion for any T > 0.

7.5 Show that fW3
t � 3tWtgt�0 is a martingale.

7.6 Prove that fW3
t gt�0 is not a martingale even though EŒW3

t � D 0 for every t � 0.
(Hint: Use EŒ.Wt � Ws/

3jFs� D 0.)

7.7 Compute (i) EŒ.Wt � Ws/
2�, (ii) EŒe�Wt � and (iii) EŒe2Wt �.

7.8 Given a Brownian motion Wt, 0 � t � 1, define a stochastic process Xt D
Wt � tW1 which is called a Brownian bridge. Then clearly X0 D X1 D 0 and
EŒXt� D 0. Show that EŒX2t � D t � t2.

7.9 Compute the following conditional expectations:

(i) EŒW2
t jWs D x�, 0 � s < t.

(ii) EŒW2
t jWr D x;Ws D y�, 0 � r < s < t.

(iii) EŒe�Wt jWs D x�, 0 � s < t.
(iv) EŒW3

t jWs D x�, 0 � s < t.
(v) EŒWsjWt D 0�, 0 � s < t.

(vi) EŒWr jWs D x;Wt D y�, 0 � s < r < t.
(vii) EŒW2

t jWs D 0�, 0 � s � t.

7.10 For a real constant � show that E

Wte�Wt

� D � t e
1
2 �

2t.

7.11 For a real constant � show that E

W2

t e�Wt
� D .t C �2t2/ e

1
2 �

2t.

7.12 Let fWtgt�0 be a Brownian motion. Show that the processes fXtgt�0 in the
following are also Brownian motions.

(i) Xt D ˛Wt=˛2 for ˛ 6D 0.
(ii) Xt D a�1=2Wat for a > 0.

(iii) Xt D WTCt � WT for T > 0.

(iv) Xt D
�

Wt; t � T;
2WT � Wt; t > T;

for T > 0.

7.13 Prove that for 0 � s < t we haveEŒWsjWt� D s
t Wt. In other words,EŒWsjWt D

y� D s
t y.

7.14 Show that the variation of the paths of Wt is infinite almost surely.

7.15 Show that EŒWsjWt� D s
t Wt for 0 � s < t using the following idea: Define

a process fXugu�0 by X0 D 0 and Xu D uW1=u for u > 0. Then Xu is a Brownian
motion.

7.16 Show that a process Xt D e�Wt� 1
2 �

2t, 0 � t < 1, is a martingale. Prove
that limt!1 Xt D 0 almost surely. Show that fXtg0�t<1 is not uniformly integrable
directly from the definition of uniform integrability without using the law of large
numbers for Brownian motion.

7.17 Find a constant a for which Xt D eat cos Wt, t � 0, is a martingale.



Chapter 8
Girsanov’s Theorem

Let fWtgt�0 be a Brownian motion with respect to a probability measure P. Take a
constant � , and consider Xt D Wt C � t, 0 � t < 1, which is called a Brownian
motion with drift. Our goal is to find a probability measure Q for which Xt, 0 �
t � T, is a Brownian motion for some fixed T. We require an additional condition
that Q is equivalent to P, i.e., P.A/ D 0 if and only if Q.A/ D 0. In other words,
an event occurs with positive P-probability if and only if it happens with positive
Q-probability. Such a condition is important in financial applications since we have
to deal with the same set of asset price movements even when we switch to a new
probability measure. Igor Girsanov proved the existence of such a measure Q. We
will find first a necessary condition for the existence of an equivalent probability
measure Q for which a Brownian motion with drift is a Brownian motion. Such a
necessary condition will turn out to be crucial in defining Q.

8.1 Motivation

Let E or EP denote expectation with respect to a probability measure P. Let fWtgt�0
denote a P-Brownian motion. For a given constant � consider a new stochastic
process

Xt D Wt C � t :

We want to find an equivalent probability measure Q such that fXtg0�t�T is a
Q-Brownian motion for some fixed T.

First, we will see what a possible definition of Q would look like. Let� be the set
of all continuous sample paths ! such that !.0/ D 0, and let fFtg be the filtration
generated by the Brownian motion fWtg. For t � 0 and an interval I D Œa; b� � R,

© Springer International Publishing Switzerland 2016
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consider a cylinder subset of � defined by

C.tI I/ D f! 2 � W Wt.!/ 2 Ig :

Note that C.tI I/ is Ft-measurable since C.tI I/ D W�1
t .I/. Suppose that there exists

an equivalent probability measure Q such that

Z

�

f .Wt.!// dP.!/ D
Z

�

f .Xt.!// dQ.!/

D
Z

�

f .Wt.!/C � t/ dQ.!/

for every bounded measurable function f W R ! R. If we take an indicator function
f .x/ D 1I.x/ for an interval I D Œa; b�, then we have

Z

�

f .Wt/ dP D
Z

C.tII/
dP D P.C.tI I//

Z

�

f .Wt C � t/ dQ D
Z

C.tII�� t/
dQ D Q.C.tI I � � t// :

Hence

P.C.tI I// D Q.C.tI I � � t// ;

or

P.C.tI I C � t// D Q.C.tI I//

for every t � 0 and every I. By the definition of P,

P.C.tI I C � t// D
Z bC� t

aC� t

1p
2t

e�x2=2tdx

D
Z b

a

1p
2t

e�. yC� t/2=2tdy : (8.1)

Let L be the Radon–Nikodym derivative of Q with respect to P, i.e., L D dQ
dP , and

denote its conditional expectation EŒLjFt� by Lt. Later it will be shown that Lt D
e� 1

2 �
2t��Wt , which is a P-martingale. If we consider an option with finite expiry date

T < 1 and the set of all Brownian paths defined over 0 � t � T, then L D LT . Now
we find a possible formula for Lt assuming that there exists a function 
t W R ! R
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such that Lt.!/ D 
t.Wt.!//. Then

Q.C.tI I// D E
QŒ1C.tII/�

D E
PŒ1C.tII/L�

D E
PŒEPŒ1C.tII/LjFt�� (use the tower property)

D E
PŒ1C.tII/EPŒLjFt�� (take out what is known)

D E
PŒ1C.tII/Lt�

D
Z

C.tII/

t.Wt/ dP

D
Z b

a

t.x/

1p
2t

e�x2=2t dx :

Using (8.1), we obtain


t.x/ e�x2=2t D e�.xC� t/2=2t ; (8.2)

and hence 
t.x/ D e��x� 1
2 �

2t and

Lt D 
t.Wt/ D e��Wt� 1
2 �

2t : (8.3)

The same conclusion can be obtained using the Fourier transformation as follows:
Since the probability density functions of Xt and Wt with respect to Q and P,
respectively, are identical, the corresponding Fourier transforms are equal. In fact,
E
QŒei�Xt � D E

PŒei�Wt � D e� 1
2 �
2t for real �. Since

E
QŒei�Xt � D E

PŒei�.WtC� t/
t.Wt/�

D
Z 1

�1
ei�.xC� t/
t.x/

1p
2t

e� x2
2t dx

D
Z 1

�1
ei�y
t. y � � t/

1p
2t

e� . y�� t/2

2t dy

and since

E
PŒei�Wt � D

Z 1

�1
ei�y 1p

2t
e� y2

2t dy ;

by the uniqueness of the inverse, we have


t. y � � t/
1p
2t

e� . y�� t/2

2t D 1p
2t

e� y2

2t ;

which is equivalent to (8.2).
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8.2 Equivalent Probability Measure

Definition 8.1 Recall that Lt D e� 1
2 �

2t��Wt is a martingale and EŒLt� D 1 for t � 0.
Define a probability measure Q on .�;FT/ by dQ D LT dP, i.e.,

Q.A/ D E
PŒ1ALT � D

Z

A
LT dP

for A 2 FT . (Note that Q is equivalent to P since LT > 0.)

Lemma 8.1 For 0 � s � t, and an Ft-measurable random variable �t, we have

E
QŒ�tjFs� D E

P

�

�t
Lt

Ls

ˇ
ˇ
ˇ
ˇFs

�

:

In particular, for s D 0, EQŒ�t� D E
PŒ�tLt�.

Proof For A 2 Fs, we have

Z

A
�t dQ D

Z

A
E
QŒ�tjFs� dQ (definition of conditional expectation)

D
Z

A
E
QŒ�tjFs�LT dP

D
Z

A
E
PŒEQŒ�tjFs�LT jFs� dP (the tower property)

D
Z

A
E
QŒ�tjFs�E

PŒLT jFs� dP (take out what is known)

D
Z

A
E
QŒ�tjFs�Ls dP :

On the other hand,

Z

A
�t dQ D

Z

A
�tLT dP

D
Z

A
E
PŒ�tLT jFs� dP (definition of conditional expectation)

D
Z

A
E
PŒEPŒ�tLT jFt�jFs� dP (the tower property)

D
Z

A
E
PŒ�tE

PŒLT jFt�jFs� dP (take out what is known)

D
Z

A
E
PŒ�tLtjFs� dP :
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Thus
R

A E
QŒ�tjFs�Ls dP D R

A E
PŒ�tLtjFs� dP for every A 2 Fs, and hence

E
QŒ�tjFs�Ls D E

PŒ�tLtjFs�. ut
Lemma 8.2 Let Q be the equivalent measure given in Definition 8.1, and let Xt D
Wt C � t. Then E

QŒXt� D 0 and E
QŒX2t � D t.

Proof Recall the results in Exercises 7.10, 7.11. Then we have

E
QŒXt� D EŒ.Wt C � t/ e� 1

2 �
2t��Wt �

D e� 1
2 �

2t.EŒWte��Wt �C � t EŒe��Wt �/

D e� 1
2 �

2t.�� t e
1
2 �

2t C � t e
1
2 �

2t/

D 0

and

E
QŒX2t � D EŒ.Wt C � t/2 e� 1

2 �
2t��Wt �

D e� 1
2 �

2t
�
EŒW2

t e��Wt �C 2� tEŒWte��Wt �C �2t2 EŒe��Wt �
�

D e� 1
2 �

2tf.t C �2t2/ e
1
2 �

2t C 2� t.�� t/ e
1
2 �

2t C �2t2 e
1
2 �

2tg
D t :

ut

8.3 Brownian Motion with Drift

Lemma 8.3 Let Q be the equivalent measure given in Definition 8.1, and let Xt D
Wt C � t. Then Xt is a Q-martingale.

Proof Since, by the result in Exercise 8.4,

EŒWtLtjFs� D e� 1
2 �

2t
EŒWte

��Wt jFs� D .Ws � �.t � s// Ls ;

we have

E
QŒXtjFs� D EŒXtLtL

�1
s jFs� (by Lemma 8.1)

D L�1
s EŒ.Wt C � t/LtjFs�

D L�1
s EŒWtLtjFs�C L�1

s � tEŒLtjFs�

D .Ws � �.t � s//C � t

D Ws C �s D Xs :

ut
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Theorem 8.1 (Girsanov) Let Wt, 0 � t � T, be a P-Brownian motion with
respect to a filtration Ft, 0 � t � T, on a probability space .�;F ;P/ and let �t

be an arbitrary real number. Let Xt D Wt C � t and define an equivalent probability
measure Q by dQ D LT dP, LT D e� 1

2 �
2T��WT . Then Xt is a Q-Brownian motion.

Proof Two measures are equivalent since the Radon–Nikodym derivative is posi-
tive. Clearly, X0 D 0 and dXdX D dt. To prove that Xt is a Q-Brownian motion, use
Theorem 7.13 and Lemma 8.3. ut

Note that our proof of Theorem 8.1 does not rely on Itô’s lemma explicitly even
though Itô’s lemma is used via Theorem 7.13. A generalized version of Girsanov’s
theorem can be proved using Itô’s lemma.

Theorem 8.2 (Generalized Girsanov’s Theorem) Fix 0 < T < 1. Let
fWtg0�t�T be a P-Brownian motion with respect to a filtration fFtg0�t�T on a
probability space .�;F ;P/, and let f�tg0�t�T be an adapted process to fFtg. Let

Xt D Wt C
Z t

0

�sds

and

Lt D exp

�

�1
2

Z t

0

�2s ds �
Z t

0

�s dWs

�

:

Assume that the Novikov condition holds, i.e.,

E
P

�

exp

�
1

2

Z T

0

�2t dt

��

< 1 :

Then Lt is a martingale, and EŒLt� D EŒL0� D 1 for t � 0. Using LT as the Radon–
Nikodym derivative, define a probability measure Q by dQ D LT dP. Then Xt, 0 �
t � T, is a Brownian motion with respect to Q.

Proof Clearly, dXtdXt D .dWt C �tdt/.dWt C �tdt/ D dt. By the generalized Itô
formula,

dLt D Lt

�

�1
2
�2t dt � �t dWt

�

C 1

2
Lt�

2
t dt D �Lt�t dWt :

Hence Lt is a P-martingale. Since

d.XtLt/

D LtdXt C XtdLt C .dXt/.dLt/

D Lt.dWt C �tdt/C Xt.�Lt�t dWt/C .dWt C �tdt/.�Lt�t dWt/

D .�Xt�t C 1/LtdWt ;
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XtLt is also a P-martingale. Hence, for s � t,

E
QŒXtjFs� D E

PŒXt
Lt

Ls
jFs� D 1

Ls
E
PŒXtLtjFs� D 1

Ls
XsLs D Xs :

Now we apply Theorem 7.13. ut
Theorem 8.3 (Multidimensional Girsanov’s Theorem) Fix T < 1, and let
.W1

t ; : : : ;W
d
t /, 0 � t � T, be a d-dimensional Brownian motion on a probability

space .�;F ;P/ with a filtration fFtg0�t�T, and let .�1t ; : : : ; �
d
t / be an adapted

process. Let

Xi
t D Wi

t C
Z t

0

� i
s ds

and

Lt D exp

 

�1
2

dX

iD1

Z t

0

.� i
s/
2 ds �

dX

iD1

Z t

0

� i
s dWi

s

!

:

Assume that the Novikov condition holds, i.e.,

E

"

exp

 
1

2

dX

iD1

Z T

0

.� i
t /
2 dt

!#

< 1 :

Then Lt is a martingale, and henceEŒLt� D EŒL0� D 1 for t � 0. Define a probability
measure Q by dQ D LT dP. Then .X1t ; : : : ;X

d
t /, 0 � t � T, is a d-dimensional

Brownian motion with respect to Q.

8.4 Computer Experiments

Simulation 8.1 (Brownian Motion with Drift)
We plot 30 sample paths of Brownian motion with drift. For the output see

Fig. 8.1.

N = 300; % number of time steps

T = 50.;

dt = T/N;

theta = 0.4;

time = 0:dt:T;

num_samples = 30; % number of sample paths

X = zeros(num_samples,N + 1); % dW and X are matrices.

dW = zeros(num_samples,N);
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Fig. 8.1 Brownian motion
with drift Xt D Wt C � t with
drift coefficient �

t
0 5 10 15 20

X
t

-5

0

5

10

15

for j = 1:num_samples

dW(j,1:N) = sqrt(dt)*randn(1,N);

end

for j = 1:num_samples

for i=1:N

X(j,i+1) = X(j,i) + dW(j,i) + theta*dt; % X(j,1) = 0.0

end

end

for j = 1:num_samples

plot(time,X(j,1:N + 1));

hold on;

end

x = 0:0.01:T;

plot(x,0,’k’)

plot(x,theta*x,’r’)

Exercises

8.1 Let Z denote a standard normal variable. (i) Show that EŒeWt � D EŒe
p

tZ � D e
1
2 t.

(ii) For a real constant ˛, show that e˛Z 2 Lp for 1 � p < 1.

8.2 Show that EQŒWt� D �� t and E
QŒW2

t � D �2t2 C t by direct computation.

8.3 Show directly that EPŒe˛Wt � D E
QŒe˛Xt � for a real constant ˛ using the Radon–

Nikodym derivative.
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8.4 For a real constant � and for s < t, show that the following holds:

EŒWt e�Wt jFs� D .Ws C �.t � s// e
1
2 �

2.t�s/e�Ws :

8.5 For a real constant � and for s < t, show that the following holds:

EŒW2
t e�Wt jFs� D f.t � s/C .Ws C �.t � s//2g e

1
2 �

2.t�s/e�Ws :

8.6 Let Q be the equivalent measure given in Definition 8.1, and let Xt D Wt C � t.
Show that X2t � t is a Q-martingale without using the fact that Xt is a Q-Brownian
motion.

8.7 Let Wt be a Brownian motion with respect to a probability measure P for 0 �
t < 1. Take a constant � 6D 0. Let Q be a probability measure for which Xt D
Wt C � t is a Brownian motion for 0 � t < 1. Show that Q is not equivalent to P.

8.8 A possible discrete version of Girsanov’s theorem can be regarded as a coin
tossing problem using a biased coin. Assume that the probability of showing heads
when we flip a given coin is equal to p, 1

2
< p < 1. If the outcome of a toss is heads,

then the game under consideration pays a player the amount $A, and if the outcome
is tails it pays �$B. What is a condition for A and B to have a fair game?



Chapter 9
The Reflection Principle of Brownian Motion

We investigate the reflection properties of Brownian motion. The results in this
chapter will be used for the pricing of barrier options in Sect. 18.2. For the sake
of simplicity of exposition we consider only one barrier problems.

9.1 The Reflection Property of Brownian Motion

Take m > 0 (the symbol m is chosen for ‘maximum’) and let fWtgt�0 be a Brownian
motion with respect to a probability measure P. (The problem is symmetric with
respect to m. For m < 0, we obtain corresponding equivalent results.) Let � denote
the first hitting time of a Brownian particle, i.e.,

� D infft � 0 W Wt D mg :

See Fig. 9.1 where a sample Brownian path hits the level m D 3 and stops there.
Consult Simulation 9.1.

In Fig. 9.2 we consider a Brownian path, Path A, and its reflection, Path B, after
Path A hits a barrier of height m at � < T. Since a Brownian particle at the position
m at time � < T has the equal probability of being above or below m, we observe
the following:

PfWT < m; � < Tg D PfWT > m; � < Tg (9.1)

and

Pf� < Tg D PfWT < m; � < Tg C PfWT > m; � < Tg : (9.2)

© Springer International Publishing Switzerland 2016
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Fig. 9.1 A Brownian path is
stopped when it hits a barrier
m D 3

0 2 4 6
−4

−2

0

2

4

t
W

t
Fig. 9.2 A Brownian path is
reflected after it hits a barrier

τ
path A

path Bpath B

Substituting (9.1) into (9.2), we have

Pf� < Tg D 2PfWT > m; � < Tg :

Note that if WT > m then � < T, i.e.,

PfWT > m; � < Tg D PfWT > mg :

Hence

Pf� < Tg D 2PfWT > mg : (9.3)

Thus

PfWT > mj� < Tg D PfWT > m; � < Tg
Pf� < Tg D 1

2
:
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In other words, once a Brownian particle is at the position m at time � before T, then
there is a fifty-fifty chance of being above or below m at T. Let

N.x/ D 1p
2

Z x

�1
exp

�

� z2

2

�

dz

be the standard normal cumulative distribution function. Then we obtain the
following result.

Lemma 9.1 The first hitting time � satisfies

Pf� < Tg D 2N

�

� mp
T

�

:

Hence the probability density function of � is given by

f� .T/ D m

T
p
2T

exp

�

�m2

2T

�

:

Proof Note that (9.3) implies that

Pf� < Tg D 2p
2T

Z 1

m
exp

�

� x2

2T

�

dx

D 2p
2

Z 1

m=
p

T
exp

�

�x2

2

�

dx :

To obtain the pdf of � , we take the derivative of Pf� < Tg with respect to T. ut

9.2 The Maximum of Brownian Motion

Define

MT D maxfWt W 0 � t � Tg :

Hence the values of the ordered pair .MT ;WT/ are distributed in the set

D D f.m;w/ W w � m;m � 0g :

See Fig. 9.3. Note that the condition � < T is equivalent to the condition MT > m.
Let w < m, where w will denote a value assumed by WT . In Fig. 9.2 we observe that
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Fig. 9.3 Range of .MT ;WT/

WT D w for Path A if and only if WT D 2m � w for Path B. Hence we make the
following observations:

PfMT > m;WT < wg D PfMT > m;WT > 2m � wg (9.4)

and

PfWT < wg D PfMT > m;WT < wg C PfMT < m;WT < wg : (9.5)

Substituting (9.4) into (9.5), we have

PfMT < m;WT < wg D PfWT < wg � PfMT > m;WT > 2m � wg :

Since w < m, the condition WT > 2m � w implies that MT > m. Hence

PfMT < m;WT < wg D PfWT < wg � PfWT > 2m � wg : (9.6)

Lemma 9.2

(i) Let w � m and m � 0. The probability distribution of WT below a barrier m is
given by

PfMT < m;WT < wg D N

�
wp
T

�

� N

�

�2m � wp
T

�

:

(ii) For w � m and m � 0, the joint probability density function of MT and WT is
given by

fMT ;WT .m;w/ D 2.2m � w/

T
p
2T

exp

�

� .2m � w/2

2T

�

:

Proof (i) Use (9.6). (ii) It suffices to take the second order partial derivative of the
cumulative probability distribution PfWT < w;MT < mg with respect to w and m.
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More precisely, we have

@

@m
N

�
wp
T

�

D 0

and

@2

@w@m
N

�

�2m � wp
T

�

D @

@w

"
1p
2

exp

 

�1
2

�

�2m � wp
T

�2!�

� 2p
T

�#

D 1p
2

exp

 

�1
2

�

�2m � wp
T

�2!
@

@w

"

�1
2

�

�2m � wp
T

�2#�

� 2p
T

�

:

Now note that

@

@w

"

�1
2

�

�2m � wp
T

�2#

D
�

�1
2

�

2

�

�2m � wp
T

�
1p
T

D 2m � w

T
:

ut

9.3 The Maximum of Brownian Motion with Drift

For 0 � t � T let zWt be a Brownian motion with respect to a probability measure zP.
For an arbitrary real number � let yWt be the Brownian motion with drift � per unit
time. More precisely, define

yWt D zWt C � t; 0 � t � T :

Define the maximum of yWt by

yMT D max
0�t�T

yWt :

Since yM0 D 0, we have yMT � 0 and yMT � yWT .

Theorem 9.1 The joint probability density function zf yMT ; yWT
of . yMT ; yWT/ with

respect to zP is given by

zf yMT ; yWT
.m;w/ D 2.2m � w/

T
p
2T

e�w� 1
2 �

2T� 1
2T .2m�w/2

in D, and 0 elsewhere.
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Proof Define

yZt D e�� zWt� 1
2 �

2t D e�� yWtC 1
2 �

2t; 0 � t � T ;

which is a martingale with respect to zP. Note that there exists a probability measure
yP such that d yP D yZT dzP for which yWt is a Brownian motion. (See Theorem 8.1.)
Then

yf yMT ; yWT
.m;w/ D 2.2m � w/

T
p
2T

e� 1
2T .2m�w/2

on D, and 0 elsewhere. Now the probability density function of . yMT ; yWT/ with
respect to zP is given by

zP
n

yMT � m; yWT � w
o

D E
zP
h
1f yMT �m; yWT �wg

i

D E
yP
�
1

yZT

1f yMT �m; yWT �wg
�

D E
yP
h
e� yWT � 1

2 �
2T1f yMT �m; yWT �wg

i

D
Z w

�1

Z m

�1
e�w� 1

2 �
2Tyf yMT ; yWT

.m;w/ dm dw :

By differentiating with respect to m and w, we have

zf yMT ; yWT
.m;w/ D e�w� 1

2 �
2Tyf yMT ; yWT

.m;w/ :

ut
Corollary 9.1 We have

zf yMT
.m/ D

8
<

:

2p
2T

e� 1
2T .m��T/2 � 2�e2�mN

��m � �Tp
T

�

; m � 0 ;

0 ; m < 0 :

Proof For m < 0, it is clear that zf yMT
.m/ D 0. For m � 0 note that

zf yMT
.m/ D

Z 1

�1
zf yMT ; yWT

.m;w/ dw

D
Z m

�1
2.2m � w/

T
p
2T

e�w� 1
2 �

2T� 1
2T .2m�w/2dw

D e2�m 2

T
p
2T

Z m

�1
.2m � w/e� 1

2T .w�2m��T/2dw
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D e2�m 2

T
p
2

Z .�m��T/=
p

T

�1
.�p

Tu � �T/e� 1
2 u2du

D � 2e2�m

p
T

p
2

Z .�m��T/=
p

T

�1
ue� 1

2 u2du

�2�e2�m

p
2

Z .�m��T/=
p

T

�1
e� 1

2 u2du

D 2e2�m

p
T

p
2

e�.mC�T/2=2T � 2�e2�mN

��m � �Tp
T

�

where we used the identity

�w � 1

2
�2T � 1

2T
.2m � w/2 D � 1

2T
.w � 2m � �T/2 C 2�m

in the third equality, and we used the substitution

u D w � 2m � �Tp
T

in the fourth equality. ut
Corollary 9.2 For m � 0, we have

zPf yMT � mg D N

�
m � �Tp

T

�

� e2�mN

��m � �Tp
T

�

:

Proof Note that

zPf yMT � mg

D
Z m

�1
zf yMT
.�/ d�

D
Z m

0

�
2p
2T

e� 1
2T .���T/2 � 2�e2��N

��� � �Tp
T

��

d�

D
Z m

0

2p
2T

e� 1
2T .���T/2d� �

Z m

0

2�e2��N

��� � �Tp
T

�

d�

D I1 � I2
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where

I1 D
Z m

0

2p
2T

e� 1
2T .���T/2d�

D 2

Z .m��T/=
p

T

��p
T

1p
2

e� 1
2 z2dz

D 2

�

N

�
m � �Tp

T

�

� N
�
��p

T
�


and

I2 D
Z m

0

2�e2��
Z .����T/=

p
T

�1
1p
2

e� 1
2 z2dz d�

D
Z .�m��T/=

p
T

�1

Z m

0

2�e2��
1p
2

e� 1
2 z2d� dz

C
Z ��p

T

.�m��T/=
p

T

Z �p
Tz��T

0

2�e2��
1p
2

e� 1
2 z2d� dz

D .e2�m � 1/N
��m � �Tp

T

�

C
Z ��p

T

.�m��T/=
p

T
.e2�.�

p
Tz��T/ � 1/ 1p

2
e� 1

2 z2 dz (See Fig. 9.4.)

D .e2�m � 1/N
��m � �Tp

T

�

C
Z ��p

T

.�m��T/=
p

T

1p
2

e2�.�
p

Tz��T/� 1
2 z2 dz

�
�

N.��p
T/ � N

��m � �Tp
T

�


:

Fig. 9.4 Domain of
integration for the double
integral I2

μ

μ θ
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Since

2�.�p
Tz � �T/ � 1

2
z2 D �1

2
.z C 2�

p
T/2 ;

we have

I2 D .e2�m � 1/N
��m � �Tp

T

�

C
�

N.�
p

T/� N

��m C �Tp
T

�


�
�

N.��p
T/ � N

��m � �Tp
T

�


:

Hence

I1 � I2

D 2

�

N

�
m � �Tp

T

�

� N
�
��p

T
��

� .e2�m � 1/N

��m � �Tp
T

�

�
�

N.�
p

T/ � N

��m C �Tp
T

��

C
�

N.��p
T/� N

��m � �Tp
T

��

D 2N

�
m � �Tp

T

�

� N
�
��p

T
�

� e2�mN

��m � �Tp
T

�

�N.�
p

T/C N

��m C �Tp
T

�

D 2N

�
m � �Tp

T

�

� e2�mN

��m � �Tp
T

�

� 1C N

��m C �Tp
T

�

D 2N

�
m � �Tp

T

�

� e2�mN

��m � �Tp
T

�

� N

�
m � �Tp

T

�

D N

�
m � �Tp

T

�

� e2�mN

��m � �Tp
T

�

;

where we used the identity N.�x/CN.x/ D 1 for the third and the fourth equalities.
ut

9.4 Computer Experiments

Simulation 9.1 (The First Hitting Time)
We plot a sample Brownian path hitting a barrier m D 3. In the beginning of the

program we set hitting time D N C 1 where N is the number of subintervals
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in the partition of the time interval Œ0;T� just in case that the generated sample
Brownian path does not hit the level m D 3 before or at T. See Fig. 9.1.

T = 6;

m = 3;

N = 200;

hitting_time = N+1;

dt = T/N;

t = 0:dt:T;

W = zeros(1,N+1);

W(1,1) = 0;

dW = sqrt(dt)*randn(1,N);

for j = 1:N;

W(1,j+1) = W(1,j) + dW(1,j);

if ( (W(1,j+1) >= m) )

W(1,j+1) = m;

hitting_time = j+1;

break;

end

end

plot(0:dt:(hitting_time-1)*dt,W(1,1:hitting_time));



Part IV
Itô Calculus



Chapter 10
The Itô Integral

We define the Itô integral of a stochastic process and investigate its properties. To
define a Riemann–Stieltjes type integral

R T
0

f .t/ d˛.t/ using a function ˛ W Œ0;T� !
R as an integrator, we need the condition that the variation of ˛ is bounded. (For the
definition of variation, see Sect. A.3.) However, a sample path of a Brownian motion
is of unbounded variation since the growth rate of ıW is approximately equal to

p
ıt,

which is very large compared with ıt as ıt # 0. Therefore a Brownian sample path
cannot be used as an integrator in a definition of a Riemann–Stieltjes type integral.
K. Itô’s idea is to take a suitable average over all possible Brownian paths. This idea
will be explained gradually since it requires a considerable amount of preparation.
For an elementary introduction to the Itô integral, see [82, 102].

10.1 Definition of the Itô Integral

If a stochastic process f ft.!/gt�0 is measurable with respect to the filtration fFtg
for every t � 0, then the Itô integral of a stochastic process ft.!/ D f .t; !/ is
integrated with respect to an integrator given by a Brownian motion Wt, and the
resulting integral is a random variable. More precisely, if we let ti D T

n i we have

Z T

0

ft.!/ dWt.!/ D lim
n!1

n�1X

iD0
fti.!/

�
WtiC1

.!/ � Wti .!/
�

where the limit is defined in L2.�;P/ space. In other words,

E

�ˇˇ
ˇ
ˇ

n�1X

iD0
fti
�
WtiC1

� Wti

� �
Z T

0

ft dWt

ˇ
ˇ
ˇ
ˇ

2�

! 0
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160 10 The Itô Integral

as n ! 1. Note that in the Itô integral, to approximate ft.!/ on a subinterval
Œti; tiC1� we use the value at the left endpoint ti. This means the Itô integral possesses
many useful properties for financial mathematics.

Let ft.!/ D f .t; !/ be a stochastic process that is adapted to a filtration
fFtg0�t<1 such that

E

�Z 1

0

j ft.!/j2 dt

�

< 1 :

Here ft.!/ is regarded as a function f W t 7! f .t; !/, and is continuous for almost
every !, and

Z 1

0

j ft.!/j2 dt

is a Riemann integral for almost every ! where the continuity holds.
Let V denote the collection of all such stochastic processes. It is a vector space

with a norm defined by

jj f jj2V D E

�Z 1

0

j ft.!/j2 dt

�

:

On the right-hand side we write ft instead of f to emphasize the fact that it is an
integral with respect to t.

Definition 10.1 (Simple Process) Let 0 D t0 < t1 < � � � < tn D T be a partition of
the time interval Œ0;T�. Suppose that for 0 � i � n � 1 there exist Fti -measurable
random variables �i 2 L2.�/ such that a stochastic process f ftg is of the form

ft.!/ D
n�1X

iD0
�i.!/1Œti;tiC1/.t/ :

Then ft is called a simple stochastic process. (See Fig. 10.1.) The set of all simple
stochastic processes is denoted by H2

0. Since f 2 H2
0 satisfies

jj f jj2V D
n�1X

iD0
E
 j�ij2

�
.tiC1 � ti/ < 1 ;

we have f 2 V . In other words, H2
0 is a subspace of V .

Definition 10.2 (Itô Integral) For a simple process

ft.!/ D
n�1X

iD0
�j.!/1Œti;tiC1/.t/ 2 H2

0
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t
t i+1t 2 t it 0 t 1 t nt n-1

Fig. 10.1 A sample path of a simple process

we define its Itô integral I. f / by

I. f /.!/ D
n�1X

iD0
�i.!/

�
WtiC1

.!/ � Wti .!/
�
:

Remark 10.1

(i) An Itô integral I. f / is a random variable.
(ii) To avoid a subscript to a subscript as in Wtk , which is rather difficult to read,

we sometimes write W.tk/. Similarly, sometimes f .t/ may denote a stochastic
process ft, not a deterministic function of t.

(iii) From time to time we write ıWk D WtkC1
� Wtk and ıtk D tkC1 � tk.

(iv) A simple process ft D Pn�2
iD0 �j1Œti;tiC1/.t/C �n�11Œtn�1;tn �.t/ is regarded as being

defined over Œ0;1/ by taking ft D 0 for t � T.

Theorem 10.1 (Itô Isometry) If f 2 H2
0, then I. f / 2 L2.�;P/ and I W H2

0 !
L2.�;P/ is a norm-preserving linear transformation. In other words,

E
 jI. f /j2� D E

�Z 1

0

j ftj2dt

�

:

Proof The proof that I is a linear transformation is trivial, and omitted. If a step
stochastic process ft is of the form

ft.!/ D
n�1X

iD0
�i.!/ 1Œti;tiC1/.t/ 2 H2

0 ;

then

jI. f /j2 D
n�1X

jD0

n�1X

kD0
�j�k ıWjıWk

D
n�1X

kD0
j�kj2.ıWk/

2 C 2
X

j<k

�j�k ıWjıWk :
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Since �k and ıWk are independent and EŒ.ıWk/
2� D ıtk, we have

EŒ j�kj2.ıWk/
2� D EŒ j�kj2�EŒ.ıWk/

2� D EŒ j�kj2� ıtk :

If j < k, then �j�k ıWj and ıWk are independent, and hence

EŒ�j�k ıWj ıWk� D EŒ�j�k ıWj�EŒıWk� D 0 :

Thus

EŒ jI. f /j2� D
n�1X

kD0
EŒ j�kj2�ıtk < 1 : (10.1)

Therefore, I. f / 2 L2.�/.
On the other hand, since

j ftj2 D
n�1X

jD0

n�1X

kD0
�j�k 1Œtj;tjC1/.t/1Œtk ;tkC1/.t/ D

n�1X

kD0
j�kj2 1Œtk;tkC1/.t/ ;

we have

Z 1

0

j ftj2dt D
n�1X

kD0
j�kj2 �tk

and finally obtain

E

�Z 1

0

j ftj2dt

�

D
n�1X

kD0
EŒ j�kj2��tk : (10.2)

Now we use (10.1) and (10.2) to complete the proof. ut
Definition 10.3 (Extension of Itô Integral) Since the transformation I W H2

0 !
L2.�;P/ is linear and continuous, and since L2.�;P/ is a complete metric space,
by Corollary A.1 the domain of I can be extended from H2

0 to a set, denoted by H2,
which contains H2

0 as a dense subset. (When we emphasize the finite time interval
Œ0;T�, we writeH2

T in place ofH2.) Then the integral I. f / 2 L2.�;P/ of a stochastic
process f .t; !/ which is approximated by a sequence of simple processes fn.t; !/ is
determined by I. f / D limn!1 I. fn/ where the limit is taken in the L2-sense. In
other words,

lim
n!1E

 jI. f /� I. fn/j2
� D 0 :
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t
t i+1t 2 t it 0 t 1 t nt n-1

Fig. 10.2 Approximation of a general stochastic process by a simple process

Then I. f / is called the Itô integral and is denoted by

Z 1

0

ft dWt :

Remark 10.2

(i) It is clear that Theorem 10.1 holds for f 2 H2.
(ii) To approximate ft 2 H2 we use a simple process

fn.t; !/ D
n�1X

iD0
fti.!/1Œti;tiC1/.t/ 2 H2

0 ;

and I. f / is the L2-limit of

I. fn/ D
n�1X

iD0
fti
�
WtiC1

� Wti

�
:

(See Fig. 10.2.) Note that we choose the left endpoint ti in each interval Œti; tiC1/.
This rule makes the Itô integral a martingale. See Theorem 10.4.

Theorem 10.2 (Itô Isometry) For stochastic processes f ; g 2 H2 we have

EŒI. f /I.g/� D E

�Z 1

0

ft gt dt

�

:

Using the inner products defined on H2 and L2.�;P/, we observe that the equation
is equivalent to the relation .I. f /; I.g//L2 D . f ; g/H2 .

Proof Using the inner products on the spaces H2 and L2.�;P/, we obtain

. f ; f /H2 C .g; g/H2 C 2 . f ; g/H2

D . f C g; f C g/H2

D .I. f C g/; I. f C g//L2 (by Theorem 10.1)
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D .I. f /C I.g/; I. f /C I.g//L2

D .I. f /; I. f //L2 C .I.g/; I.g//L2 C 2 .I. f /; I.g//L2

D . f ; f /H2 C .g; g/H2 C 2 .I. f /; I.g//L2 : (by Theorem 10.1)

Hence . f ; g/H2 D .I. f /; I.g//L2 . ut
Definition 10.4 If f ftgt�0 is adapted to fFtgt�0, then f1Œ0;T�.t/ftgt�0 is also adapted
to fFtgt�0. For arbitrary T > 0 we define the Itô integral on a finite interval Œ0;T� by

Z T

0

ft dWt D
Z 1

0

1Œ0;T�.t/ft dWt :

Example 10.1 For ft D 1, we have

Z T

0

dWt D WT � W0 D WT :

Example 10.2 If g.0/ D 0 then the Riemann integral satisfies

Z T

0

g.t/g0.t/ dt D 1

2
g.T/2 ;

however, for the Itô integral we have

Z T

0

Wt dWt D 1

2
W2

T � 1

2
T :

Proof Put f .t/ D 1Œ0;T�.t/W.t/ 2 H2. Then

Z T

0

Wt dWt D
Z 1

0

ft dWt :

Take ti D i 	 T
n , and partition the interval Œ0;T� by 0 D t0 < t1 < � � � < tn D T.

Define

fn.t/ D
n�1X

iD0
1Œti;tiC1/.t/W.ti/ 2 H2

0 :
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Since

E

�Z 1

0

j f .t/ � fn.t/j2dt

�

D
n�1X

iD0

Z tiC1

ti

EŒ jW.t/ � W.ti/j2� dt

D
n�1X

iD0

Z tiC1

ti

.t � ti/ dt

D 1

2

n�1X

iD0
.tiC1 � ti/

2 D T2

2

1

n
! 0 ;

fn.t/ converges to f .t/ as n ! 1. Now we have

I. fn/ D
n�1X

iD0
W.ti/fW.tiC1/� W.ti/g

D 1

2

n�1X

iD0
fW.tiC1/2 � W.ti/

2g � 1

2

n�1X

iD0
fW.tiC1/ � W.ti/g2

D 1

2
W.T/2 � 1

2

n�1X

iD0
fW.tiC1/ � W.ti/g2 ;

which converges to 1
2
W.T/2 � 1

2
T in the L2-sense by Theorem 7.4. ut

As we have seen in Theorem 10.2, I W H2 ! L2.�;P/ is norm-preserving. Since
H2
0 is dense in H2, most properties of I on H2

0 are extended to H2.

Remark 10.3 In summary, for stochastic processes ft, gt, the following holds:

(i) For a; b constant,

Z t

0

.afu C bgu/ dWu D a
Z t

0

fudWu C b
Z t

0

gudWu :

(ii) For every t � 0,

E

� ˇˇ
ˇ
ˇ

Z t

0

fudWu

ˇ
ˇ
ˇ
ˇ

2 �

D E

�Z t

0

j fuj2du

�

:

Theorem 10.3 For f 2 L2Œa; b�, the Itô integral
R b

a f .t/dWt is a normally distributed

random variable with mean 0 and variance jj f jj2 D R b
a j f .t/j2dt.
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Proof The statement holds true if f is a step function. For an arbitrary f 2 L2Œa; b�,
we take a sequence of step functions fn converging to f in L2Œa; b� and apply
Theorem 4.2. ut

10.2 The Martingale Property of the Itô Integral

Theorem 10.4 Let .�;P; fFtgt�0/ be a probability space with a filtration and let
fWtgt�0 be a .P; fFtgt�0/-Brownian motion. Let g.t; !/, t � 0, be an Ft-predictable
process such that EŒg2.t; !/� < 1, then a stochastic process

Mt D
Z t

0

g.s; !/ dWs

is a martingale.

Proof First, we show that the given equation holds true for H2
0. Then we use

the fact that the linear transformation defined by taking conditional expectation is
continuous. ut
Corollary 10.1 The Itô integral has the following property:

E

�Z t

0

f .s; !/ dWs

�

D 0

where the expectation means the Lebesgue integral on �.

Proof Put

Mt D
Z t

0

f .s; !/ dWs :

Then

M0 D
Z 0

0

f .s; !/ dWs D 0 :

Since fMtg is a martingale, EŒMt� is constant, thus EŒMt� D EŒM0� D 0. ut
Example 10.3 From the result in Example 10.2 we have

0 D E

� Z T

0

Wt dWt

�

D 1

2
E

W2

T

� � 1

2
T ;

and hence EŒW2
T � D T, which coincides with the fact that the variance of WT is equal

to T.



10.3 Stochastic Integrals with Respect to a Martingale 167

Example 10.4 The geometric Brownian motion

St D S0e.�� 1
2 �

2/tC�Wt ;

which is a model for stock price movement, satisfies

St � S0 D
Z t

0

�Su du C
Z t

0

�Su dWu :

Since

E

�Z t

0

Su dWu

�

D 0 ;

we have

EŒSt� � S0 D
Z t

0

�EŒSu� du :

By differentiating both sides and putting g.t/ D EŒSt� we obtain g0.t/ D � g.t/,
whose solution is g.t/ D S0e�t. This result coincides with the result in Example 7.1.
For S0 D 1 and � D 1

2
�2 we have E


e�Wt

� D e
1
2 �

2t.

10.3 Stochastic Integrals with Respect to a Martingale

Let fMngn�0 be a discrete time martingale and fHngn�0 a discrete time predictable
process. If Hn is bounded, or if both Hn and Mn are L2-integrable, then X0 D 0 and

Xn D
nX

kD1
Hk.Mk � Mk�1/

for n � 1, defines a discrete time martingale, and we may informally write

Xn D
Z

HkdMk :

Now we consider the continuous time case. Let Mt be a continuous martingale.
As in the special case when Mt D Wt, using Mt as an integrator, we can define a
stochastic integral

Xt D
Z t

0

f .s;Ms/ dMs
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and derive the properties corresponding to the standard Itô integral. First, we define
the stochastic integral for a simple process

ft.!/ D
n�1X

iD0
�i.!/ 1Œti;tiC1/.t/

by

Z T

0

fs dMs D
n�1X

iD0
�i .MtiC1

� Mi/ ;

then extend it to the general case by taking the limit and obtain Xt. It is known that
fXtgt�0 is also a martingale. More precisely, take a predictable process f .t; !/ 2
L2.Œ0;T� 	�/ such that

E

� Z T

0

j ftj2 dhMit

�

< 1 :

Then

Xt D
Z t

0

fs dMs ; 0 � t � T ;

is a martingale and the following equality holds:

EŒX2t � D E

�Z t

0

j fsj2 dhMis

�

:

Furthermore, the compensator of X2t , defined in Definition 6.7, is given by

hXit D
Z t

0

j fsj2 dhMis :

Example 10.5 Let Wt be a Brownian motion, and take an adapted process g.s; !/ 2
L2.Œ0;T�; �/. Consider the martingale

Mt D
Z t

0

gs dWs ; 0 � t � T :

The compensator of M2
t is given by

hMit D
Z t

0

jgsj2 ds :
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Hence f 2 L2pred.Œ0;T� 	�/ with the condition that

E

� Z T

0

j ftj2dhMit

�

< 1

if and only if

E

� Z T

0

j ftj2jgtj2dt

�

< 1 :

Furthermore, we have

Z T

0

ft dMt D
Z T

0

ft gt dWt :

For more details see [58].

Theorem 10.5 Let fXtgt�0 be a continuous martingale. Then the processR t
0

f .u;Xu/dXu is a martingale.

Proof Here is a sketch of the proof. For 0 � s < t, we have

E

�Z t

0

f .u;Xu/ dXu

ˇ
ˇ
ˇ
ˇFs

�

D E

�Z s

0

f .u;Xu/ dXu

ˇ
ˇ
ˇ
ˇFs

�

C E

�Z t

s
f .u;Xu/ dXu

ˇ
ˇ
ˇ
ˇFs

�

and the second term on the right is approximated by

E

�Z t

s
f .u;Xu/dXu

ˇ
ˇ
ˇ
ˇFs

�

� E

� n�1X

iD0
f .ui;Xui/.XuiC1

� Xui/

ˇ
ˇ
ˇ
ˇFs

�

D
n�1X

iD0
E

h
f .ui;Xui/.XuiC1

� Xui/
ˇ
ˇ
ˇFs

i

D
n�1X

iD0
E

h
E

h
f .ui;Xui/.XuiC1

� Xui/
ˇ
ˇ
ˇFui

i ˇˇ
ˇFs

i

D
n�1X

iD0
E

h
f .ui;Xui/.Xui � Xui/

ˇ
ˇ
ˇFs

i

D 0

where s D u0 < � � � < ui < uiC1 < � � � < un D t. ut
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10.4 The Martingale Representation Theorem

Let fFtgt�0 be a filtration on a probability space .�;F ;P/. Let fMtgt�0 be a
martingale adapted to fFtg. If EŒM2

t � < 1 for every t � 0, then fMtgt�0 is called a
square-integrable martingale.

The following is a special case of the Martingale Representation Theorem when
the martingale under consideration is given by Brownian motion.

Theorem 10.6 (Martingale Representation Theorem) Let fWtgt�0 be a P-
Brownian motion, and let fFtgt�0 be the filtration generated by fWtg. If a
square-integrable process fMtgt�0 is adapted to fFtgt�0, and it is a P-martingale,
then there exists an fFtg-predictable process f˛tgt�0 satisfying

Mt D M0 C
Z t

0

˛s dWs

with probability 1.

Remark 10.4 Theorem 10.6 is the converse of Theorem 10.4. Its conclusion can be
written as

dMt D ˛t dWt :

In other words, if Mt is a martingale, then dMt has no dt-term, and it looks as if Mt

were differentiable with respect to Wt with its derivative equal to ˛t.

Proof Since M0 is F0-measurable, it is constant with probability 1. It suffices to
prove the statement for M0 D 0 since we can prove the above result for Nt using
Nt D Mt � M0 instead of Mt if necessary. By the properties of a martingale, we can
easily see that EŒMt� D 0 and EŒMT jFt� D Mt.

Let V be the set of square-integrable stochastic processes adapted to the given
filtration. For Xt;Yt 2 V define

.Xt;Yt/V D E

� Z T

0

XsYsds

�

;

then . � ; � /V is an inner product on a Hilbert space V . If we let

L20.�;FT ;P/ D fZ 2 L2.�;FT ;P/ W EŒZ� D 0g ;

then the linear transformation I W V ! L20.�;FT ;P/ defined by

I.fXtgt�0/ D
Z T

0

XsdWs
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preserves distance. Now it remains to show that I is surjective. Then there would
exist f˛tg0�t�T 2 V such that

MT D
Z T

0

˛sdWs :

Hence

Mt D EŒMT jFt� D E

� Z T

0

˛sdWs

ˇ
ˇ
ˇ
ˇFt

�

D
Z t

0

˛sdWs

and the proof is complete. For the details consult [54, 74]. ut
Example 10.6 Let Xt D R t

0
a.s/dWs where a.t/ is a deterministic function. Then Xt

is a martingale. For, if we apply the Itô formula to X2t , then

d.X2t / D XtdXt C XtdXt C dXtdXt D 2XtdXt C a.t/2dt

and d.X2t /� a.t/2dt D 2XtdXt. Hence X2t � R t
0

a.s/2ds is a martingale.

10.5 Computer Experiments

Simulation 10.1 (Itô Integral)
We generate a single sample path of

R t
0

WsdWs and compare it with the theoretical
formula 1

2
W2

t � 1
2
t. Recall that in the definition of the Itô integral we take

the left endpoint from the subinterval Œti; tiC1� to evaluate the integrand. In the
following program the partition of the time interval Œ0;T� is represented by an array
t = 0:dt:T of length N C 1 in such a way that

t.1/ D t0 D 0; t.2/ D t1; : : : ; t.i C 1/ D ti; : : : ; t.N C 1/ D tN D T :

The array Integral represents the partial sum
Pi

jD0 Wtj dWtj , 0 � i � N � 1, as

the time progresses while Exact is the exact formula 1
2
W2

t � 1
2
t. For the output see

Fig. 10.3.

T= 3.0;

N = 300;

dt = T/N;

t = 0:dt:T;

dW = sqrt(dt)*randn(1,N);

W = zeros(1,N+1);

Integral = zeros(1,N+1);

Exact = zeros(1,N+1);

for i = 1:N
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Fig. 10.3 Simulation of the
Itô integral

R t
0 WsdWs and the

exact answer 1
2
W2

t � 1
2
t

0 1 2 3
−2

−1

0

1

2

3

4

t

Approx
Exact

W(i+1) = W(i) + dW(i);

Integral(i+1) = Integral(i) + W(i)*dW(i); % Take the left endpoint.

Exact(i+1)=W(i+1)^2/2 - i*dt/2;

end

plot(t,Integral,’r-’,t,Exact,’k-.’);

xlabel(’t’);

hlegend=legend(’approx’,’exact’);

Simulation 10.2 (Itô Integral)
We generate M D 20 sample paths of the stochastic process

R t
0

WsdWs, 0� t � T.
See Fig. 10.4 where the straight line y D � 1

2
t is also plotted to check whether

1
2
W2

t � 1
2
t � 1

2
t. For small values of N the sample paths might go below the straight

line.

T = 3.0;

M = 10;

N = 500;

dt = T/N;

t = 0:dt:T;

dW = sqrt(dt)*randn(M,N);

W = [zeros(M,1), cumsum(dW,2)];

Integral = [zeros(M,1), cumsum(W(:,1:N).*dW,2)];

plot(t,Integral)

hold on

plot(t,-0.5*t)

xlabel(’t’);
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Fig. 10.4 Sample paths of
the stochastic processR t
0 WsdWs

0 1 2 3
−2

0

2

4

6

t

Simulation 10.3 (Convergence)

For the Itô integral
R T
0

WtdWt we check the L2-convergence of the partial sum
PN�1

iD0 Wti dWti to the limit 1
2
W2

T � 1
2
T. In our simulation we obtained the L2error D

0:0152 which is defined by

E

� ˇˇ
ˇ
ˇ

N�1X

iD0
Wti dWti �

�
1

2
W2

T � 1

2
T

� ˇˇ
ˇ
ˇ

2�

:

The average was computed using M D 10000 samples.

T = 3.0;

M = 10000;

N = 300;

dt = T/N;

t = 0:dt:T;

dW = sqrt(dt)*randn(M,N);

W = [zeros(M,1), cumsum(dW,2)];

Integral = [zeros(M,1), cumsum(W(:,1:N).*dW,2)];

Exact = 0.5*W(:,N+1).^2 - 0.5*T;

error = Integral(:,N+1) - Exact;

L2error = mean(error.^2)
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Exercises

10.1 Compute
R T
0
.Wt C 1/ dWt.

10.2 Without applying Corollary 10.1, show that E

�
R T
0
.Wt C 1/2 dWt

�

D 0.

10.3 Compute
R T
0

eWt dWt.

10.4 Compute EŒSt� in Example 10.4 using the fact that fe��tStgt�0 is a martingale.

10.5 Show that
R t
0

s dWs D t Wt � R t
0

Ws ds from the definition of the Itô integral.

10.6 Show that
R t
0

W2
s dWs D 1

3
W3

t �R t
0

Ws ds from the definition of the Itô integral.
(Hint: Use the identity b2.a � b/ D 1

3
.b3 � a3/� 1

3
.b � a/3 � b.b2 � a2/.)

10.7 Show that

Xt D t2Wt � 2

Z t

0

s Ws ds

is a martingale.

10.8 For a continuous deterministic function f .t/ define Xt D R t
0

f .s/dWs. Show
that Cov.Xt;XtCu/ D R t

0
f .s/2ds, u � 0.

10.9 Let Xt D eW2
t , t � 0. Show that

E

X2t
� D 1p

1 � 4t
; 0 � t <

1

4
;

and hence Xt 62 H2. (Thus the identity in Theorem 10.1 does not hold.)

10.10 Recall that the Itô isometry in Theorem 10.1 implies that the following Itô
integrals

X D
Z T

0

t dWt and Y D
Z T

0

.T � t/dWt

are normally distributed with mean 0 and variance equal to

Z T

0

t2dt D
Z T

0

.T � t/2dt D T3

3
:
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That is, X � N.0; T3

3
/ and Y � N.0; T3

3
/. Since

X C Y D
Z T

0

t dWt C
Z T

0

.T � t/dWt D
Z T

0

T dWt D T WT � N.0;T3/ ;

we see that Cov.X;Y/ D 1
6
T3. Prove this directly by applying Theorem 10.2.

10.11 Suppose that Xt D f .t;Wt/ is a martingale for some sufficiently smooth
f .t; x/. Show that f satisfies the differential equation ft C 1

2
fxx D 0.

10.12 Does there exist Xt D f .t;Wt/ such that dXt D Xt dWt?

10.13 Let dXt D atdt C dWt where at is a bounded process. Show that Xt is not a
martingale unless at D 0.

10.14 Fix a > 0. Define f .t; x/ D 1Œ0;a�.t/, .t; x/ 2 Œ0;1/ 	 .�1;1/.

(i) Compute
R t
0 f .s;Ws/dWs.

(ii) Prove that the stochastic process Xt defined by

Xt D
�

Wt; 0 � t � a
Wa; t > a

is a martingale.
(iii) Find ˛t such that dXt D ˛tdWt.

10.15 Show that W3
t � 3tWt is a martingale by applying the Martingale Represen-

tation Theorem.

10.16

(i) Suppose that fMtgt�0 is a martingale with respect to .P; fFtgt�0/. Show that
M2

t � ŒM�t is also a martingale.
(ii) Suppose that M1

t and M2
t are two martingales for t � 0. Show that M1

t M2
t �

ŒM1;M2�t is also a martingale.

10.17 Find a deterministic function g.t/ such that Xt D eWtCg.t/, t � 0, is a
martingale.

10.18 Show that Xt D .Wt C t/e�Wt� 1
2 t is a martingale.

10.19 Let dXt D atdt C dWt where at is a bounded process. Define

Lt D exp
�

�
Z t

0

asdWs � 1

2

Z t

0

a2s ds
�
:

Show that XtLt is a martingale.

10.20 Let Xt D t2Wt � 2
R t
0

sWsds. Show that Xt is a martingale.

10.21 Find a constant a for which Xt D eat cos Wt is a martingale.



Chapter 11
The Itô Formula

The Itô formula, or the Itô lemma, is the most frequently used fundamental fact
in stochastic calculus. It approximates a function of time and Brownian motion in a
style similar to Taylor series expansion except that the closeness of approximation is
measured in terms of probabilistic distribution of the increment in Brownian motion.

Let Wt denote a Brownian motion, and let St denote the price of a risky asset
such as stock. The standard model for asset price movement is given by the
geometric Brownian motion. More precisely, if ı represents small increment then
St satisfies an approximate stochastic differential equation ıSt D �Stıt C �StıWt

where ıW represents uncertainty or risk in financial investment. Since EŒıW� D 0

and EŒ.ıW/2� D ıt, we may write jıWj � p
ıt. Thus, even when ıt � 0 we

cannot ignore .ıW/2 completely. Itô’s lemma or Itô’s formula regards .ıW/2 as ıt
in a mathematically rigorous way, and is the most fundamental tool in financial
mathematics.

11.1 Motivation for the Itô Formula

The idea underlying the Itô formula is a probabilistic interpretation of the second
order Taylor expansion. Given a sufficiently smooth function f .t; x/, consider the
increment of the curve t 7! f .t;Wt/ using the second order Taylor expansion:

ıf D f .t C ıt;WtCıt/ � f .t;Wt/

D ft ıt C fx ıWt C 1

2

˚
ftt.ıt/

2 C 2ftx ıt ıWt C fxx.ıWt/
2
	
:

See Fig. 11.1. If ıt > 0 is close to 0, then .ıt/2 is far smaller than ıt. We note that
ıWt is normally distributed with mean 0 and variance ıt and it can be large, albeit
with very small probability, which is troublesome. We adopt the practical rule of

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_11
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Fig. 11.1 Graph of a
function and Itô’s lemma

z = f(t,x)

t
t+δt

W W+δW

z

x

Table 11.1 Multiplication
rule for Itô calculus

� dt dW

dt 0 0

dW 0 dt

thumb .ıt/2 D 0, .ıW/2 D ıt, and take ıW 	 ıt D ˙.ıt/3=2 D 0, i.e., we ignore
the ıt-terms of order greater than 1. See Table 11.1 which is written in differential
notation.

According to the new viewpoint we have

ıf D �
ft C 1

2
fxx
�
ıt C fx ıWt :

Before we prove the Itô formula in Sect. 11.2, we present a more detailed analysis
of the rule .dWt/

2 D dt which is the essential idea in the proof of the formula. Take
a partition 0 D t0 < t1 < � � � < tn D T of a given time interval Œ0;T� and let
ıti D tiC1 � ti and ıWi D WtiC1

� Wti , 0 � i � n � 1. Suppose we want to express
f .T;WT /� f .0;W0/ as a sum of small increments

.ıf /i D f .tiC1;WtiC1
/� f .ti;Wti/ ;

i.e., we consider

f .T;WT / � f .0;W0/ D
n�1X

iD1
.ıf /i :

Since ıWi can be considerably large compared to ıti, we ignore the terms corre-
sponding to .ıti/2 and .ıti/.ıWi/ in the second order Taylor expansion, then the
approximation of .ıf /i by the second order Taylor expansion is given by

.ıf /Taylor
i D ft ıti C fx ıWi C 1

2
fxx.ıWi/

2
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where the partial derivatives are evaluated at the point .ti;Wti /. It is known to
be a good approximation for sufficiently small ıt and ıW. Compare it with the
approximation by the Itô formula

.ıf /Itôi D . ft C 1

2
fxx/ ıti C fx ıWi :

Observe that the essential difference between two approximations is given by

"i D 1

2
fxx.ıWi/

2 � 1

2
fxx ıti D 1

2
fxx
�
.ıWi/

2 � ıti
�
:

If this is small enough in some sense, then we can say that the approximation by the
Itô formula is as good as Taylor approximation.

As a test we choose f .t; x/ D x2 and check the approximation errors for ıt � 0

and ıW � 0 resulting from two methods. We choose i D 0, and ti D 0, Wti D 0,
and plot the error of the second order Taylor approximation

f .ti C ıti;Wti C ıWi/ � f .ti;Wti/ � .ıf /Taylor
i

and the error of the Itô approximation

f .ti C ıti;Wti C ıWi/� f .ti;Wti/� .ıf /Itôi

over the region 0 � ıti � T, �1:5pT � ıWi � 1:5
p

T , T D 0:01. See Fig. 11.2
where the approximation by the Itô formula is better and the corresponding error
is close to zero. The second order Taylor expansion has negligible error so that the
graph is almost flat with height 0 while the Itô formula does not approximate the
given function well enough. Therefore we need to give a new interpretation for Itô

Fig. 11.2 Approximation
errors of f .t; x/ D x2 by the
second order Taylor
expansion and the Itô formula

0

0.05

0.1 −0.1
0

0.1

−0.1

−0.05

0

0.05

0.1

dWdt

er
ro

r

Taylor approx
Ito approx



180 11 The Itô Formula

approximation, which is nothing but taking the average error in a suitable sense over
all possible values of ıWi so that the average of "i would be close to 0 since ıWi is
normally distributed with average 0 and variance ıti.

In the following discussion we will compute the L2-norm of "i to estimate its
closeness to 0, and estimate the total error "0 C � � � C "n�1.

For i < j, we have

EŒ"i"j� D E

h1

4
fxx.ti;Wti/fıti � .ıWi/

2g fxx.tj;Wtj /fıtj � .ıWj/
2g
i

D E

h1

4
fxx.ti;Wti/fıti � .ıWi/

2g fxx.tj;Wtj /
i
E

ıtj � .ıWj/

2
�

D 0

by independence of

fxx.ti;Wti /fıti � .ıWi/
2g fxx.tj;Wtj/

and ıtj � .ıWj/
2, and by the fact that EŒıtj � .ıWj/

2� D 0.
For i D j we have

EŒ"2i � D E

�
1

4
. fxx.ti;Wti//

2fıti � .ıWi/
2g2
�

� C2

4
E

.ıti/

2 � 2 ıti .ıWi/
2 C .ıWi/

4
�

D C2

4

˚
.ıti/

2 � 2.ıti/2 C 3.ıti/
2
	 D C2

2
.ıti/

2

where

C D maxfj fxx.t; x/j W t � 0;�1 < x < 1g < 1 :

Hence

EŒ."0 C � � � C "n�1/2� D EŒ"20�C � � � C EŒ"2n�1� � n 	 C2

2

�
T

n

�2
D C2T

2
ıt

if we take ıt D T
n , ti D i	ıt, 0 � i � n. Thus the L2-norm of the total error satisfies

�
EŒ."0 C � � � C "n�1/2�

� 1
2 � C

�
T

2

� 1
2

.ıt/
1
2

which gives a bound for the speed of convergence to 0 of the total error in
approximating f .T;WT /� f .0; 0/ as ıt ! 0.
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Example 11.1 Take f .t; x/ D x2 as a test function. Since ft D 0, fx D 2x and ftt D 0,
fxx D 2, ftx D 0, we have C D 2 and

"i D .ıWi/
2 � ıti :

Thus

"0 C � � � C "n�1 D
n�1X

iD0
..ıWi/

2 � ıti/ D
n�1X

iD0
.ıWi/

2 � T

and

E

�� n�1X

iD0
.ıWi/

2 � T

�2�

D E

�� n�1X

iD0
.ıWi/

2

�2
� 2T

n�1X

iD0
.ıWi/

2 C T2
�

D E

� n�1X

iD0
.ıWi/

4 C
X

i6Dj

.ıWi/
2.ıWj/

2 � 2T
n�1X

iD0
.ıWi/

2 C T2
�

D
n�1X

iD0
3.ıti/

2 C
X

i6Dj

.ıti/.ıtj/ � 2T
n�1X

iD0
ıti C T2

D
n�1X

iD0
2.ıti/

2 C
n�1X

iD0

n�1X

jD0
.ıti/.ıtj/ � 2T

n�1X

iD0
ıti C T2

D
n�1X

iD0
2.ıti/

2 C
n�1X

iD0
ıti

n�1X

jD0
ıtj � 2T

n�1X

iD0
ıti C T2

D
n�1X

iD0
2.ıti/

2

where we used
Pn�1

iD0 ıti D T for the last equality. In Fig. 11.3 we choose T D 3,
ıt D 2�kT, 1 � k � 15, and estimate the L2-norm of

Pn�1
iD0 .ıWi/

2 � T which has
the theoretical value .2n.ıt/2/1=2 D 2�.k�1/=2T which is plotted as a function of k.
Consult Simulation 11.1.
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Fig. 11.3 Speed of
L2-convergence in Itô
formula with f .t; x/ D x2
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k

Fig. 11.4 Speed of
L2-convergence in Itô
formula with f .t; x/ D sin x

0 5 10 15
0
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2

k

Example 11.2 Take f .t; x/ D sin x as a test function. Since ft D 0, fx D cos x and
ftt D 0, fxx D � sin x, ftx D 0, we have C D 1 and

"i D 1

2
.sin Wti/

�
ıti � .ıWi/

2
�
:

Thus

EŒ."1 C � � � C "n/
2� � T

2
ıt :

In Fig. 11.4 we choose T D 3, ıt D 2�kT, 1 � k � 15, and compute the L2-norm
of "1 C � � � C "n which is bounded by . T

2
ıt/1=2 D 2�.kC1/=2T which is plotted as a

function of k, 0 � k � 15. Consult Simulation 11.2.
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11.2 The Itô Formula: Basic Form

The following fact is called the Itô formula or the Itô lemma.

Theorem 11.1 (Itô) Let f .t; x/ W Œ0;1/ 	 R
1 ! R

1 be a sufficiently smooth
function such that its partial derivatives ft, fx, fxx exist and are continuous. Fix a
constant 0 < T < 1. Then almost surely the following equation holds:

f .T;WT /� f .0;W0/

D
Z T

0

ft.s;Ws/ ds C
Z T

0

fx.s;Ws/ dWs C 1

2

Z T

0

fxx.s;Ws/ ds

where the first and the third integrals are Riemann integrals for each fixed sample
Brownian path.

Remark 11.1

(i) The formula in the theorem is written in integral notation, and it can also be
written in differential notation as follows:

df .t;Wt/ D ft.t;Wt/ dt C fx.t;Wt/ dWt C 1

2
fxx.t;Wt/ dt

or simply,

df D
�

ft C 1

2
fxx

�
dt C fx dWt :

(ii) For f .t; x/ D x2 in Example 11.1 a straightforward computation yields

f .tiC1;WtiC1
/ � f .ti;Wti/ D .Wti C ıWi/

2 � W2
ti

D 2WtiıWi C .ıWi/
2

and

W2
T � W2

0 D f .T;WT /� f .0;W0/

D
n�1X

iD0
2WtiıWi C

n�1X

iD0
.ıWi/

2

where the first sum converges to
R T
0
2WtdWt as n ! 1 in the L2-sense and the

second sum converges to T. On the other hand, since

.ıf /Itôi D 2WtiıWi C ıti ;
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we have

f .T;WT / � f .0;W0/ �
n�1X

iD0
.ıf /Itôi D

n�1X

iD0
2WtiıWi C T

in agreement with the fact that
Pn�1

iD0 .ıWi/
2 converges to T in the L2-sense.

Proof The essential idea of the proof is already presented in Sect. 11.1. Now we
will proceed with mathematical rigour. First, consider the case when there exists a
constant C > 0 such that for every .t; x/ 2 Œ0;1/ 	 R

1 we have

j f .t; x/j � C ; j ft.t; x/j � C ; j fx.t; x/j � C ; j fxx.t; x/j � C :

The unbounded case will be considered at the end of the proof. Let 0 D t0 < t1 <
� � � < tn D T be a partition of Œ0;T�, and put ıWi D WtiC1

� Wti , ıti D tiC1 � ti. We
assume that max1�i�n ıti ! 0 as n ! 1.

On each subinterval Œti; tiC1� by Taylor’s theorem there exist t�i 2 Œti; tiC1� and
W�

i 2 ŒWti.!/;WtiC1
.!/� such that the following holds:

f .T;WT.!// � f .0;W0.!//

D
n�1X

iD0

�
f .tiC1;WtiC1

.!// � f .ti;Wti.!//
�

D
n�1X

iD0

�
f .tiC1;WtiC1

� � f .ti;WtiC1
//C

n�1X

iD0

�
f .ti;WtiC1

/� f .ti;Wti/
�

D
n�1X

iD0
ft.t

�
i ;WtiC1

/ ıti C
n�1X

iD0
fx.ti;W

�
i / ıWi C 1

2

n�1X

iD0
fxx.ti;W

�
i / .ıWi/

2

D
n�1X

iD0
ft.t

�
i ;WtiC1

/ ıti C
n�1X

iD0
fx.ti;W

�
i / ıWi C 1

2

n�1X

iD0
fxx.ti;Wti/ ıti

C 1

2

n�1X

iD0
fxx.ti;Wti/..ıWi/

2 � ıti/C 1

2

n�1X

iD0
Œfxx.ti;W

�
i / � fxx.ti;Wti/�.ıWi/

2

D †1 C†2 C†3 C†4 C†5

where the symbol ! is omitted for the sake of notational simplicity if there is no
danger of confusion. Note that if WtiC1

.!/ < Wti .!/, then W�
i 2 ŒWtiC1

.!/;Wti.!/�.
First, we consider †1 and †3, which are Riemann integrals of continuous

functions for almost every !. By the definition of the Riemann integral their limits
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for almost every ! are given by

lim
n!1†1 D

Z T

0

ft.t;Wt.!// dt ;

lim
n!1†3 D

Z T

0

fxx.t;Wt.!// dt :

For †2, †4, †5 we first prove the L2-convergence of the limits

lim
n!1†2 D

Z T

0

fx.t;Wt/ dWt ;

lim
n!1†4 D 0 ;

lim
n!1†5 D 0 ;

and show that there exist subsequences which converge for almost every !.
As for †2 we use the boundedness condition j fx.t; x/j � C. Now, if we let

g.t; !/ D fx.t;Wt.!// 2 H2 ;

and define a simple stochastic process by

gn.t; !/ D
n�1X

iD0
fx.ti;Wti.!//1Œti;tiC1/.t/ 2 H2

simple ;

then gn.t; !/ approximates g. Note that for every 0 � t � T

lim
n!1 jgn.t; !/ � g.t; !/j2 D 0

for almost every ! by continuity.
Since

jgn.t/ � g.t/j2 � 4C2 ;

by the Lebesgue Dominated Convergence Theorem we have

lim
n!1

Z T

0

jgn.t; !/ � g.t; !/j2dt D 0

for almost every !. Furthermore, since

Z T

0

jgn.t; !/ � g.t; !/j2dt � 4TC2 ;
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we apply the Lebesgue Dominated Convergence Theorem once more to obtain

lim
n!1E

� Z T

0

jgn.t/ � g.t/j2dt

�

D 0 ;

where
R T
0

jgn.t; !/ � g.t; !/j2dt, n � 1, is regarded as a bounded sequence of
functions of ! with an upper bound for all n given by 4TC2, and E denotes the
Lebesgue integral on a probability space .�;P/. Hence gn converges to g in the
L2-sense in M2

T , and hence

I.gn/ D
Z T

0

gndW D
n�1X

iD0
fx.ti;Wti/ıWi

converges to

I.g/ D
Z T

0

fx.t;Wt/dWt

where I.�/ denotes the Itô integral of a function inside the parentheses.
Now we consider †4. Recall that, for i < j, a function depending on Wti , ıWi,

Wtj and another function depending on ıWj are independent. In other words, for any
measurable functions �1.�; �; �/ and �2.�/ we have

E

�1.Wti ; ıWi;Wtj /�2.ıWj/

� D E

�1.Wti ; ıWi;Wtj /

�
E

�2.ıWj/

�
:

Now since fxx is bounded by C we have

E

�ˇˇ
ˇ
ˇ

n�1X

iD0
fxx.ti;Wti /..ıWi/

2 � ıti/
ˇ
ˇ
ˇ
ˇ

2�

D E

� n�1X

iD0

n�1X

jD0
fxx.ti;Wti/..ıWi/

2 � ıti/fxx.tj;Wtj /..ıWj/
2 � ıtj/

�

D
n�1X

iD0

n�1X

jD0
E

fxx.ti;Wti /..ıWi/

2 � ıti/fxx.tj;Wtj/..ıWj/
2 � ıtj/

�

D
X

i<j

E

fxx.ti;Wti/..ıWi/

2 � ıti/fxx.tj;Wtj/
�
E

..ıWj/

2 � ıtj/
�

C
X

j<i

E

..ıWi/

2 � ıti/
�
E

fxx.ti;Wti/fxx.tj;Wtj /..ıWj/

2 � ıtj/
�

C
n�1X

iD0
E

h
fxx.ti;Wti /

2
ˇ
ˇ.ıWi/

2 � ıti
ˇ
ˇ2
i
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D 0C 0C
n�1X

iD0
E

h
fxx.ti;Wti/

2
ˇ
ˇ.ıWi/

2 � ıti
ˇ
ˇ2
i

D
n�1X

iD0
E

fxx.ti;Wti/

2
�
E
j.ıWi/

2 � ıtij2
�

� C2

n�1X

iD0
E
j.ıWi/

2 � ıtij2
�

D C2

n�1X

iD0

�
E

.ıWi/

4
� � 2EŒ.ıWi/

2� ıti C .ıti/
2
�

D C2

n�1X

iD0
.3 � 2C 1/.ıti/

2

� 2C2 max
1�i�n

ıti

n�1X

iD0
ıti

D 2C2T max
1�i�n

ıti ! 0 :

The third equality holds since, for i < j, by independence we have

E

fxx.ti;Wti /..ıWi/

2 � ıti/fxx.tj;Wtj/..ıWj/
2 � ıtj/

�

D E

fxx.ti;Wti /..ıWi/

2 � ıti/fxx.tj;Wtj/
�
E

.ıWj/

2 � ıtj
�

and the fourth equality by EŒ.ıWj/
2 � ıtj� D 0. The fifth equality holds since

j fxx.ti;Wti/j2 and j.ıWi/
2 � ıtij2 are independent. Hence

n�1X

iD0
fxx.ti;Wti/

�
.ıWi/

2 � ıti
� ! 0

in the L2-sense.
As for †5 we have

lim
n!1 max

i

ˇ
ˇ fxx.ti;W

�
i / � fxx.ti;Wti/

ˇ
ˇ D 0

for almost every ! by continuity. Since
Pn�1

iD0 .ıWi/
2 ! T in the L2-sense, by

Fact 3.8 there exists a subsequence fnkg1
kD1 such that

lim
nk!1

nk�1X

iD0
.ıWi.!//

2 D T
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for almost every !. Hence for fnkg1
kD1 for almost every ! we have

ˇ
ˇ
ˇ
ˇ
ˇ

nkX

iD0
. fxx.ti;W

�
i /� fxx.ti;Wti.!///.ıWi.!//

2

ˇ
ˇ
ˇ
ˇ
ˇ

� max
i

ˇ
ˇ fxx.ti;W

�
i /� fxx.ti;Wti .!//

ˇ
ˇ

nk�1X

iD0
.ıWi.!//

2 ! 0

as k ! 1. Since †2 converges in the L2-sense along fnkg, we can show the
convergence for almost every ! by using a subsequence of fnkg.

Now, we show that the same conclusion holds without the condition on bound-
edness of partial derivatives. Define fn.t; x/ D 1Œ�n;n�.x/f .t; x/ where 1Œ�n;n� is the
indicator of the interval Œ�n; n�. Since fn and its derivatives are bounded, we may
apply the previously proved result and obtain

fn.T;WT/ � fn.0;W0/

D
Z T

0

. fn/t.s;Ws/ds C
Z T

0

. fn/x.s;Ws/dWs C 1

2

Z T

0

. fn/xx.s;Ws/ ds :

Now define a monotonically increasing sequence of subsets

Bn D f! W sup
0�t�T

jWt.!/j � ng :

Since f D fn on Bn, the Itô formula holds on Bn for f . Since P.Bn/ ! 1, the Itô
formula for f holds for almost every !. ut

In the following we obtain stochastic differential equations.

Example 11.3

(i) For Xt D Wt, take f .t; x/ D x, then Xt D f .t;Wt/ and X0 D 0. Since fx D 1 and
fxx D 0, we have dXt D dWt, and

R T
0 dWt D WT in integral form.

(ii) For Xt D .Wt/
2, take f .t; x/ D x2, then Xt D f .t;Wt/ and X0 D 0. Since fx D 2x

and fxx D 2, we have dXt D 2WtdWt C 1
2

	 2dt D 2WtdWt C dt, and

Z T

0

WtdWt D 1

2
.WT/

2 � 1

2
T

in integral form. (See also Remark 11.1.)
(iii) For Xt D 1

3
.Wt/

3, take f .t; x/ D 1
3
x3, then Xt D f .t;Wt/ and X0 D 0. Since

fx D x2 and fxx D 2x, we have dXt D .Wt/
2dWt C 1

2
	 2Wtdt and

Z T

0

.Wt/
2dWt D 1

3
.WT/

3 �
Z T

0

Wtdt :
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(iv) For Xt D tWt, take f .t; x/ D tx, then Xt D f .t;Wt/ and X0 D 0. Since ft D x,
fx D t and fxx D 0, we have dXt D Wtdt C t dWt and

Z T

0

t dWt D TWT �
Z T

0

Wtdt :

So far, we have considered examples when stochastic processes Xt are given and
we derive the stochastic differential equations satisfied by Xt. We can evaluate a
given Itô integral directly as in Exercises 11.6, 11.7, 11.8, 11.10.

11.3 The Itô Formula: General Form

Now we define an Itô integral with respect to a general Itô process other than a
Brownian motion fWtgt�0.

Definition 11.1 (Itô Process) A stochastic process fXtgt�0 of the form

Xt D X0 C
Z t

0

au du C
Z t

0

bu dWu

is called an Itô process if it is adapted to the filtration fFtgt�0 associated with a
Brownian motion, i.e.,

dXt D at dt C bt dWt

where X0 is a constant, at and bt are stochastic processes adapted to the filtration
fFtgt�0 such that

Z T

0

jat.!/jdt < 1 for almost every !

and fbtgt�0 2 H2
T for every T.

Example 11.4

(i) The simplest Itô process is given by

Xt D X0 C
Z t

0

asds

where bt D 0.
(ii) For Xt D Wt we have dXt D dWt, and hence at D 0, bt D 1.

(iii) For Xt D .Wt/
2 we have dXt D dt C 2WtdWt, and hence at D 1, bt D 2Wt.

(iv) For Xt D 1
3
.Wt/

3 we have dXt D Wtdt C .Wt/
2dWt, and hence at D Wt,

bt D .Wt/
2.
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Example 11.5 For Xt D t Wt we have dXt D Wtdt C t dWt, and hence at D Wt,
bt D t. This formula looks as if it were the usual product rule for differentiation in
calculus.

Definition 11.2 (Itô Integral with Respect to Itô Processes) Let fXtgt�0 be an Itô
process given by

dXt D at dt C bt dWt :

For a process fYtgt�0 adapted to fFtgt�0 define the stochastic integral of Yt with
respect to Xt by

Z t

0

Yu dXu D
Z t

0

Yu au du C
Z t

0

Yu bu dWu ;

which can be rewritten as

Yt dXt D Yt at dt C Yt bt dWt :

Remark 11.2 (Itô Integral with Respect to a Martingale) If Xt is a martingale then
it is represented as an Itô process by Theorem 10.6, and we can define a stochastic
integral

R t
0

Yu dXu using Xt as an integrator.

Definition 11.3 (Quadratic Variation of a Martingale) Let Mt be a continuous
square-integrable martingale. Define the mesh size of the partition 0 D t0 < t1 <
� � � < tn D t by

ın D max
0� j�n�1 jtjC1 � tjj :

The quadratic variation of Mt, denoted by ŒM;M�t or simply ŒM�t , is defined by

ŒM;M�t D lim
n!1

n�1X

jD0
jMtjC1

� Mtj j2

where the limit is in probability as ın decreases to 0 as n ! 1. If Nt is another
martingale, then the covariation of Mt and Nt is given by

ŒM;N�t D lim
n!1

n�1X

jD0
.MtjC1

� Mtj /.NtjC1
� Ntj/

and satisfies

ŒM;N�t D 1

2
.ŒM C N;M C N�t � ŒM;M�t � ŒN;N�t/ :
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Theorem 11.2 (Product Rule) Let Xt and Yt be Itô processes. Then

ŒX;Y�t D XtYt � X0Y0 �
Z t

0

XsdYs �
Z t

0

YsdXs ;

or in differential notation

d.XtYt/ D XtdYt C YtdYt C dŒX;Y�t :

Proof Since

n�1X

jD0
.XtjC1

� Xtj/.YtjC1
� Ytj /

D
n�1X

jD0
.XtjC1

YtjC1
� XtjYtj /�

n�1X

jD0
Xtj.YtjC1

� Ytj/ �
n�1X

jD0
Ytj.XtjC1

� Xtj/

D XtYt � X0Y0 �
n�1X

jD0
Xtj.YtjC1

� Ytj /�
n�1X

jD0
Ytj.XtjC1

� Xtj/ :

The last two terms in the above converge in probability to Itô integrals
R t
0

XsdYs andR t
0 YsdXs. ut

Example 11.6 For a Brownian motion Wt we have ŒW�t D t.

Remark 11.3 For an Itô process Xt given by dXt D a.t;Xt/ dt C b.t;Xt/ dWt,
consider the martingale

Mt D
Z t

0

b.s;Xs/ dWs :

Then

ŒM;M�t D
Z t

0

b.s;Xs/
2 ds :

Now we present the Itô formula for an Itô process fXtgt�0. Its proof is similar to
the one for Theorem 11.1, and is omitted.

Theorem 11.3 (General Itô Formula) Consider an Itô process fXtgt�0 given by

dXt D at dt C bt dWt :
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Let f .t; x/ W Œ0;1/ 	 R ! R
1 be a function whose partial derivatives ft, fx and fxx

exist and are continuous. Suppose that

fx.t;Xt/ bt 2 H2
T

for every T. Then f .t;Xt/ is an Itô process, and with probability 1 we have

f .t;Xt/� f .0;X0/

D
Z t

0

ft.u;Xu/ du C
Z t

0

fx.u;Xu/ dXu C 1

2

Z t

0

fxx.u;Xu/ dŒX;X�u

D
Z t

0

�

ft.u;Xu/C fx.u;Xu/ au C 1

2
fxx.u;Xu/ b2u

�

du

C
Z t

0

fx.u;Xu/ bu dWu

for t � 0.

The above formula can be rewritten in a differential form as

df .t;Xt/ D
�

ft C fx at C 1

2
fxx b2t

�

dt C fx bt dWt :

See Table 11.2.

Example 11.7 Consider the geometric Brownian motion

dSt D �Stdt C �StdWt :

First, we look for a solution of the form St D f .t;Wt/. By the Itô formula we have

dSt D
�

ft.t;Wt/C 1

2
fxx.t;Wt/

�

dt C fx.t;Wt/ dWt

and
8
<

:
ft.t;Wt/C 1

2
fxx.t;Wt/ D �f .t;Wt/

fx.t;Wt/ D � f .t;Wt/ :

Table 11.2 Multiplication
rule for general Itô calculus

� dt a dt C b dW

dt 0 0

a dt C b dW 0 b2 dt
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Since these equations must hold for an arbitrary real number Wt.!/ we have

8
<

:
ft.t; x/C 1

2
fxx.t; x/ D �f .t; x/ ;

fx.t; x/ D � f .t; x/ :

From the second equation we see that f .t; x/ D g.t/e�x for some function g.t/. A
necessary condition for g is

g0.t/C 1

2
�2g.t/ D � g.t/ :

Hence for some constant C we have g.t/ D Ce.�� 1
2 �

2/t. Thus f .t; x/ D
Ce.�� 1

2 �
2/tC�x and

St D S0 e.�� 1
2 �

2/tC�Wt :

In Fig. 11.5 are given some sample paths of geometric Brownian motion with
� D 0:15, � D 0:2, S0 D 1 together with the curve S D S0e�t (left) and the
probability density functions for St, t D 1; : : : ; 10 (right).

Remark 11.4 Let � be a set of Brownian sample paths !, and let P be a Wiener
measure on �. For each t we may regard St as a function in Lp. For p D 1 we have

jjSt � 0jj1 D
Z

�

jSt.!/ � 0j dP D EŒSt� D S0e
�t ! 1 ;

0 2 4 6 8 10
0

2

4

6

8

10

t

S

0
5

10 0
5

10
0

0.5

1

1.5

2

St

Fig. 11.5 Sample paths of geometric Brownian motion together with the average given by the
curve S D S0e�t (left) and the probability density functions for St (right)
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and for p D 2

jjSt � 0jj22 D
Z

�

jSt.!/ � 0j2 dP D EŒS2t � D S20e
.2�C�2/t ! 1

as t ! 1. However, with probability 1,

lim
t!1 St.!/ D

� 1; � � 1
2
�2 > 0 ;

0; � � 1
2
�2 < 0 :

Example 11.8 Solve dXt D X3t dt � X2t dWt, X0 D 1. Assuming Xt D f .t;Wt/, we
have

dXt D �
ft C 1

2
fxx
�
dt C fxdWt ;

and hence
8
<

:
ft C 1

2
fxx D f 3 ;

fx D �f 2 :

From the second equation we have

� 1

f 2
fx D 1 ;

and hence

@

@x

�
1

f

�

D 1 ;

and

1

f .t; x/
D x C C.t/ ;

and finally

f .t; x/ D 1

x C C.t/
:

From the first equation in the above, we have

� C0.t/
.x C C.t//2

C 1

2

.�1/.�2/
.x C C.t//3

D 1

.x C C.t//3
:
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Since

�C0.t/.x C C.t//C 1 D 1

holds for every .t; x/, we conclude that C is constant. Thus

f D 1

x C C
:

Since f .0; 0/ D 1
C D 1, we have C D 1. Therefore f .t; x/ D 1

xC1 , and finally
we obtain

f .t;Wt/ D 1

Wt C 1
:

Example 11.9 (Brownian Bridge) A stochastic process Xt satisfying the SDE

dXt D b � Xt

T � t
dt C dWt ; 0 � t � T ; X.0/ D a ;

is called a Brownian bridge. It can be written as

Xt D a
�
1 � t

T

�C b
t

T
C .T � t/

Z t

0

1

T � s
dWs :

Since
R t
0 1=.T � s/2 ds < 1, the integral

R t
0 1=.T � s/ dWs is a martingale.

Example 11.10 (Tanaka) Let f .t; x/ D jxj. Then f is continuous, and

fx.t; x/ D
� C1 ; x > 0 ;

�1 ; x < 0 :

The Itô formula cannot be directly applied in this case since fx does not exist at
x D 0. However, we may regard 2 	 ı0.x/ as the second order derivative of f at
x D 0 where ı0.x/ is the Dirac delta measure at 0. If the Itô formula were to hold
for

f .t; x/ D jxj ;

then we would have

df D . ft C 1

2
fxx/ dt C fx dWt D ı0.x/ dt C sign.x/ dWt



196 11 The Itô Formula

and

jWtj D
Z t

0

ı0.Ws/ ds C
Z t

0

sign.Ws/ dWs

in a suitable sense where

sign.x/ D
�

1; x � 0

�1; x < 0 :

To proceed rigorously, we define the local time for Brownian motion at 0 by

Lt.!/ D lim
"!0

1

2"
�.fs 2 Œ0; t� W Ws.!/ 2 .��; �/g/

where the limit is taken in the L2-sense, and obtain Tanaka’s formula

jWtj D Lt C
Z t

0

sign.Ws/ dWs :

For a sketch of the proof, we modify f near x D 0 as follows:

f".t; x/ D
8
<

:

jxj ; jxj � "

1
2

�
"C x2

"

�
; jxj < " :

Then f" is continuous, and

@

@x
f".t; x/ D

8
<̂

:̂

C1 ; x � "
x

"
; jxj < "

�1 ; x � �" :

It can be shown that

f".Wt/ D f".W0/C
Z t

0

f 0
".Ws/dWs C 1

2"
�.fs 2 Œ0; t� W Ws 2 .�"; "/g/

where � denotes the Lebesgue measure on the real line. Applying the Itô isometry to

E

��Z t

0

Ws

"
1fWs2.�";"/gdWs

�2 �

;

we obtain

Z t

0

f 0
".Ws/1fWs2.�";"/gdWs D

Z t

0

Ws

"
1fWs2.�";"/gdWs ! 0
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in L2 as " ! 0. Finally, we let " ! 0. For more details, consult [85]. See also
Example 12.3.

11.4 Multidimensional Brownian Motion
and the Itô Formula

In this section we investigate multidimensional stochastic calculus used in multi-
asset continuous financial models.

Theorem 11.4 Suppose that fW1
t gt�0 and fW2

t gt�0 are two independent Brownian
motions and let 
, �1 � 
 � 1, be a constant. Then the process

Xt D 
W1
t C

p
1 � 
2 W2

t

is a Brownian motion.

Proof

(i) X0 D 0, Xt is continuous.
(ii) For s < t, we have

Xt � Xs D .
W1
t C

p
1 � 
2 W2

t / � .
W1
s C

p
1 � 
2 W2

s /

D 
 .W1
t � W1

s /C
p
1 � 
2 .W2

t � W2
s / ;

which is a sum of two normal random variables of mean 0 and variance 
2.t�s/
and .1�
2/.t�s/, respectively. Hence Xt �Xs is also normally distributed with
mean 0C 0 D 0 and variance 
2.t � s/C .1 � 
2/.t � s/ D t � s.

(iii) For 0 � t1 < t2 � t3 < t4 � � � � � t2n�1 < t2n the random variables

X.t2k/� X.t2k�1/ D 
.W1.t2k/� W1.t2k�1//C
p
1 � 
2.W2.t2k/� W2.t2k�1//

are independent for 1 � k � n. ut
Here is the uncorrelated multidimensional Itô formula.

Fact 11.5 Given two independent Brownian motions W1, W2, we consider two
stochastic processes

dXt D �Xdt C �X;1 dW1
t C �X;2 dW2

t

and

dYt D �Y dt C �Y;1 dW1
t C �Y;2 dW2

t :
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If f .x; y/ is sufficiently smooth, then

df .X;Y/ D fx dX C fy dY C 1

2
f fxx.�

2
X;1 C �2X;2/

C fyy.�
2
Y;1 C �2Y;2/C 2fxy.�X;1�Y;1 C �X;2�Y;2/g dt :

Remark 11.5 Using dW1 dW2 D 0 we may rewrite the above formula as

df .X;Y/ D fx dX C fy dY C 1

2
f fxxdX dX C fyydY dY C 2fxydX dYg :

In general, two Brownian motions W1 and W2 are not independent but correlated,
i.e., there exists a constant 
 such that for every t we have EŒW1

t W2
t � D 
 t,

which may be rewritten simply as dW1dW2 D 
 dt. Then we obtain the following
correlated multidimensional Itô formula.

Fact 11.6 (Product Rule) Suppose that there exists a constant 
 such that
EŒW1

t W2
t � D 
 t for t � 0. If f .x; y/ is differentiable sufficiently many times as

needed, then we have

df .X;Y/ D fx dX C fy dY C 1

2

˚
fxx.�

2
X;1 C �2X;2/C fyy.�

2
Y;1 C �2Y;2/

C 2fxy.�X;1�Y;1 C �X;2�Y;2 C 
 �X;1�Y;2 C 
 �X;2�Y;1/
	

dt :

Remark 11.6 Using dW1 dW2 D 
 dt, we rewrite the above formula as

df .X;Y/ D fx dX C fy dY C 1

2

�
fxxdX dX C fyydY dY C 2fxydX dY

�
:

Example 11.11 For f .x; y/ D xy we have

d.XY/ D XdY C YdX C .�X;1�Y;1 C �X;2�Y;2 C 
 �X;1�Y;2 C 
 �X;2�Y;1/ dt :

Example 11.12 As a special case of Example 11.11 we consider Xt D Yt D Wt. In
this case, we have �X D 0, �X;1 D 1, �X;2 D 0, �Y D 0, �Y;1 D 0, �Y;2 D 1. Since
dXdY D dt and 
 D 1, we obtain the formula

d..Wt/
2/ D 2Wt dWt C dt ;

which coincides with Example 11.3(ii).

Remark 11.7 Given two stochastic differential equations

dXi
t D �i.t;X

i
t/ dt C �i.t;X

i
t/ dWt ; i D 1; 2 ;
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we consider two martingales M1 and M2 defined by

Mi
t D

Z t

0

�i.s;X
i
s/ dWs ; i D 1; 2 :

Then


M1;M2

�
t
D
Z t

0

�1.s;X
1
s / �2.s;X

2
s / ds :

Remark 11.8 The stochastic differential equation in the multidimensional Black–
Scholes–Merton model consisting of N risky assets and d Brownian motions is of
the form

dSi
t D �iSi

t dt C
dX

jD1
� ijSi

t dWj
t ; i D 1; : : : ;N

where the matrix

� ij
�
1�i�N;1� j�d

is called a volatility matrix.

11.5 Computer Experiments

Simulation 11.1 (Itô Formula)
We test the rule .dW/2 D dt. See Fig. 11.3.

T = 3;

K = 15;

M = 300; % number of Brownian paths

L2 = zeros(1,K);

for k = 1:K

dt = T*2^(-k);

dW = sqrt(dt)*randn(M,2^k);

for m = 1:M

error(m) = sum(dW(m,1:2^k).^2) - T;

end

L2(k) = sqrt(mean(error(1:M).^2)); % L2-norm

end

x = 0:0.01:K;

plot(x, T*2.^((1-x)/2),’b-’);

hold on;

plot(L2,’or-’)
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Simulation 11.2 (Itô Formula)
We test the rule .dW/2 D dt. See Fig. 11.4.

T = 3;

K = 15;

M = 300; % number of Brownian paths

L2 = zeros(1,K);

for k = 1:K

dt = T*2^(-k);

dW = sqrt(dt)*randn(M,2^k);

W = zeros(M,2^k+1);

error = zeros(M,1);

epsilon = zeros(M,2^k);

for m = 1:M

for i = 1:2^k

W(m,i+1) = W(m,i) + dW(m,i);

epsilon(m,i)=0.5*sin(W(m,i))*(dt-dW(m,i)^2);

end

error(m,1) = sum( epsilon(m,1:2^k) );

end

L2(k) = sqrt(mean(error(1:M,1).^2)); % L2-norm

end

x = 0:0.01:K;

plot(x,T*2.^(-(x+1)/2),’b’);

hold on;

plot(L2,’or-’)

Simulation 11.3 (Geometric Brownian Motion)
We plot sample paths of geometric Brownian motion. For an output see Fig. 11.5.

N = 200; % number of time steps

T = 10;

dt = T/N;

mu = 0.15;

sigma = 0.25;

time = 0:dt:T;

M = 30; % number of sample paths

S = zeros(M,N + 1); % dW and S are matrices.

S0 = 1;

S(:,1)=S0;

dW = sqrt(dt)*randn(M,N);

for i=1:N

S(:,i+1) = S(:,i) + mu*S(:,i)*dt + sigma*S(:,i).*dW(:,i);

end

for j = 1:M

plot(time,S(j,1:N + 1),’b’);

hold on;

end
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Exercises

11.1 Solve the stochastic differential equation dXt D 5Xt dt C 3Xt dWt where
X0 D 1.

11.2 If a stock St pays dividend continuously, what would be a modification of the
geometric Brownian motion model for St?

11.3

(i) Let Xt > 0 for every t. Using the relationship 0 D d
�

Xt
1

Xt

�
, express d

� 1

Xt

�
in

terms of Xt and dXt.
(ii) Compute d

�
eWt
�
.

(iii) Compute d
�
e�Wt

�
.

11.4

(i) Let Xt be a stochastic process given by dXt D at dtCbt dWt for some processes
at and bt. Compute d.eXt/.

(ii) Let rt, t � 0, be a stochastic process, and define Zt D exp
�
� R t

0
rsds

�
.

Compute dZt.
(iii) Suppose that a process Bt > 0 satisfies dBt D rtBtdt for some process rt. Find

Bt.

11.5 Solve the stochastic differential equation dXt D dtC2pXt dWt where X0 D 1.

11.6 Compute
R t
0

Ws dWs by assuming that
R t
0

Ws dWs D f .t;Wt/ for some f . (If this
assumption is wrong, then we may try other candidates.)

11.7

(i) Show that there exists no sufficiently smooth function f .t; x/ such thatR t
0 W2

s dWs D f .t;Wt/.
(ii) Assume that

R t
0

W2
s dWs D f .t;Wt/C R t

0
g.s;Ws/ ds for some f and g. ComputeR t

0
W2

s dWs.

11.8 Under the assumption that
R t
0

s dWs D f .t;Wt/C
R t
0

g.s;Ws/ ds for some f and
g, find

R t
0 s dWs .

11.9 For a deterministic function f .t/, show that

Z t

0

f .s/ dWs D f .t/Wt �
Z t

0

Wsf
0.s/ ds :

11.10 Compute
R t
0

eWs dWs by assuming that
R t
0

eWs dWs D f .t;Wt/C
R t
0

g.s;Ws/ ds
for some f and g.
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11.11 Let ak.t/ D EŒWk
t � for k � 0 and t � 0. (i) Apply the Itô formula to show

that

ak.t/ D 1

2
k.k � 1/

Z t

0

ak�2.s/ ds ; k � 2 :

(ii) Prove that EŒW2kC1
t � D 0 and

EŒW2k
t � D .2k/Štk

2kkŠ
:

11.12 Let Xt D R t
0

as dWs for some process at. Prove that if at is bounded, then
X2t � R t

0
a2s ds is a martingale. For example, W2

t � t is a martingale.

11.13 Let dSt D �St dt C �St dWt. Compute the following without solving for St

explicitly: (i) d.e�rtSt/, (ii) d.S2t /, (iii) d.log St/, (iv) d .1=St/, (v) d.
p

St/

11.14 Let a.t/, b.t/, c.t/, d.t/ be continuous deterministic functions, and consider
a stochastic differential equation

Xt D
Z t

0

.a.s/Xs C b.s// ds C
Z t

0

.c.s/Xs C d.s// dWs :

Let ˛.t/ D EŒXt� and ˇ.t/ D EŒX2t �. Show that ˛0 D a˛C b and ˇ0 D .2a C c2/ˇC
2.b C cd/˛ C d2.



Chapter 12
Stochastic Differential Equations

Let W D .W1; : : : ;Wm/ be an m-dimensional Brownian motion, and let

� D .�ij/1�i�d;1�j�m W Œ0;1/ 	 R
d ! R

d 	 R
m

and

� D .�1; : : : ; �d/ W Œ0;1/ 	 R
d ! R

d

be continuous functions where � is regarded as a d 	 m matrix.
Consider a stochastic differential equation (SDE) given by

Xi
t D xi

0 C
Z t

0

�i.s;Xs/ ds C
mX

jD1

Z t

0

�ij.s;Xs/ dWj
s ;

or equivalently,

Xt D x0 C
Z t

0

�.s;Xs/ ds C
Z t

0

� .s;Xs/ dWs

where� and � are called coefficients. By a solution of the preceding SDE we mean
a stochastic process Xt satisfying the SDE. We will show that there exists a unique
solution. In the differential notation the given SDE is written as

dXi
t D �i.t;Xt/ dt C

mX

jD1
�ij.t;Xt/ dWj

t ;

or

dXt D �.t;Xt/ dt C � .t;Xt/ dWt : (12.1)

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_12
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Throughout the chapter we consider only the case that d D 1 and m D 1 for the
sake of notational simplicity. The statements of facts and the corresponding proofs
for multidimensional case are almost identical to those for the one-dimensional case.

12.1 Strong Solutions

Definition 12.1 A function g W Rk ! R
` is Lipschitz continuous if there exists a

constant 0 < L < 1 such that

jjg.x/ � g.y/jj � Ljjx � yjj :

Definition 12.2 We are given a Brownian motion fWtg and a stochastic process
fXtg. If the integrals

R t
0
�.s;Xs/ds and

R t
0
�.s;Xs/dWs exist for every t � 0, and if

Xt D X0 C
Z t

0

�.s;Xs/ ds C
Z t

0

�.s;Xs/ dWs ;

then Xt is called a strong solution of the SDE given by (12.1).

Theorem 12.1 (Existence and Uniqueness) We are given a stochastic differential
equation

dXt D �.t;Xt/ dt C �.t;Xt/ dWt ; X0 D x0 :

Suppose that � and � are Lipschitz continuous. Then there exists a unique solution
Xt that is continuous and adapted.

Proof Recall that for a locally bounded predictable process Yt, we have by Doob’s
L2-inequality

E

"

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

YudWu

ˇ
ˇ
ˇ
ˇ

2
#

� 4E

�Z t

0

Y2u du

�

and by the Cauchy–Schwarz inequality

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

Yudu

ˇ
ˇ
ˇ
ˇ

2

� t
Z t

0

Y2u du :

Start with X0t D x0, t � 0, and define Xn inductively for n � 0 by

XnC1
t D x0 C

Z t

0

�.Xn
s / ds C

Z t

0

�.Xn
s / dWs : (12.2)
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For n � 1 let

�n.t/ D E

"

sup
0�s�t

jXn
s � Xn�1

s j2
#

:

Fix T � 1. Then for 0 � t � T we have

�1.t/ D E

�

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

�.x0/ dr C
Z s

0

�.x0/ dWr

ˇ
ˇ
ˇ
ˇ

2 �

� 2E

�

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

�.x0/ dr

ˇ
ˇ
ˇ
ˇ

2 �

C 2E

�

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

�.x0/ dWr

ˇ
ˇ
ˇ
ˇ

2 �

� 2tE

� Z t

0

j�.x0/j2dr

�

C 8E

� Z t

0

j�.x0/j2ds

�

� 2t2j�.x0/j2 C 8tj�.x0/j2
� 10Tt .j�.x0/j2 C j�.x0/j2/

where the first inequality holds since .aCb/2 � 2a2C2b2 and the second inequality
is due to the Cauchy–Schwarz inequality and Doob’s L2-inequality. For n � 1 we
have

�nC1.t/ � 2E

�

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

.�.Xn
r /� �.Xn�1

r // dr

ˇ
ˇ
ˇ
ˇ

2 �

C 2E

�

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

.�.Xn
r /� �.Xn�1

r // dr

ˇ
ˇ
ˇ
ˇ

2 �

� 10K2T
Z t

0

�n.r/ dr :

By mathematical induction, we have

�n.t/ � C
.10TKt/n

nŠ

for 0 � t � T where

C D �.x0/2 C �.x0/2

K2
:

Hence

�
�
�
�

1X

nD1
sup
0�s�T

ˇ
ˇXn

s � Xn�1
s

ˇ
ˇ
�
�
�
�
2

�
1X

nD1

p
�n.t/ < 1
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where jj � jj2 denotes the L2-norm. Therefore there exists a continuous adapted
process Xt such that

lim
n!1 sup

0�s�T

ˇ
ˇXn

s � Xs

ˇ
ˇ D 0

with probability 1 and in L2. Thus we have

lim
n!1E

�

sup
0�s�T

ˇ
ˇ
ˇ
ˇ

Z s

0

�.Xn
r / dr �

Z s

0

�.Xr/ dr

ˇ
ˇ
ˇ
ˇ

2 �

D 0 ;

lim
n!1E

�

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

�.Xn
r / dWr �

Z s

0

�.Xr/ dWr

ˇ
ˇ
ˇ
ˇ

2 �

D 0 :

Letting n ! 1 in (12.2), we observe that X must satisfy the given SDE.
As for the uniqueness, suppose that X and Y are solutions of the given SDE.

Define

g.t/ D E

"

sup
0�s�t

jXs � Ysj2
#

:

Proceeding as before we deduce

g.t/ � 10K2T
Z t

0

g.s/ ds ; 0 � t � T

and conclude that g D 0 by Gronwall’s inequality. (See Lemma C.1.) ut
Example 12.1 (Langevin Equation) Let ˛ and � be constants. The solution of the
Langevin equation

dXt D �˛Xt dt C � dWt ; X0 D x0 ;

is called the Ornstein–Uhlenbeck process. If � D 0, then the SDE becomes an
ordinary differential equation, and the solution is deterministic and given by Xt D
x0e�˛t. Hence we see that Xte˛t D x0 is constant. For � 6D 0 the process Yt D Xte˛t

will move up and down about the constant x0. Since dYt D �e˛tdWt, we have a
solution Yt D Y0 C �

R t
0

e˛sdWs, and hence

Xt D e�˛tx0 C e�˛t�

Z t

0

e˛sdWs : (12.3)

For ˛ > 0, the mean and the variance are given by

EŒXt� D e�˛tx0
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Fig. 12.1 Sample paths of
the Ornstein–Uhlenbeck
process

0 1 2 3
−2

−1

0

1

2

t
X t

and

Var.Xt/ D EŒ.Xt � e�˛tx0/
2�

D E

��

e�˛t�

Z t

0

e˛sdWs

�2 �

D e�2˛t�2 E

�Z t

0

e2˛sds

�

(Itô isometry)

D �2
1 � e�2˛t

2˛
:

In Fig. 12.1 are plotted sample paths of the Ornstein–Uhlenbeck process with
˛ D 1, � D 0:5 and x0 D 1 together with its mean e�˛tx0 for 0 � t � 3. See
Simulation 12.2.

Theorem 12.2 For a continuous stochastic process Xt of finite variation, suppose
that Et satisfies

dEt D Et dXt ; E0 D 1 :

Then the solution, called a stochastic exponential, is given by

Et D exp
�

Xt � X0 � 1

2
ŒX;X�t

�
:

Proof Let Yt D Xt � X0 � 1
2
ŒX;X�t, then

d
�
eYt
� D eYt dYt C 1

2
eYt dŒY;Y�t :
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Since ŒX; ŒX;X��t D 0, we have ŒY;Y�t D ŒX;X�t, and hence

dEt D eYt dXt � 1

2
eYt dŒX;X�t C 1

2
eYt dŒX;X�t D eYt dXt :

To prove the uniqueness, suppose that Vt is another solution, and show that
d.Vt=Et/ D 0. ut
Example 12.2

(i) If Xt D Wt is a Brownian motion in Theorem 12.2, then

Et D e� 1
2 tCWt :

(ii) If Et D St is the price of a stock and Xt D Rt is the return on the investment in
the stock defined by dRt D dSt

St
, then dSt D StdRt, and hence

St D S0eRt�R0� 1
2 ŒR;R�t :

If St is given by a geometric Brownian motion dSt D �Stdt C �StdWt, then
Rt D �t C �Wt and

St D S
.�� 1

2 �
2/tC�Wt

0 :

(iii) If Et D Bt is the price of a risk-free bond and Xt D Rt the return on the
investment in the bond defined by dRt D dBt

Bt
, then dBt D Bt dRt and Rt satisfies

dRt D g.t/ dt for some deterministic function g.t/. Hence R.t/ � R.0/ DR t
0

g.t/ dt and ŒR;R�t D 0. Thus

Bt D B0eRt�R0� 1
2 ŒR;R�t D B0e

R t
0 g.t/ dt :

Remark 12.1 The Markov property means that given a present state of a process,
the future is independent of the past. A solution Xt of the SDE in Theorem 12.1 has
the Markov property. Consult [74].

12.2 Weak Solutions

Definition 12.3 Suppose that there exists a probability space with a filtration zFt,
a Brownian motion zWt and a process zXt adapted to zFt such that zX0 has the given
distribution, and zXt satisfies

zXt D zX0 C
Z t

0

�.s; zXs/ ds C
Z t

0

�.s; zXs/ d zWs :
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Then zXt is called a weak solution of the SDE

dXt D �.t;Xt/ dt C �.t;Xt/ dWt :

By definition, a strong solution is a weak solution. In the following we consider
an SDE with a discontinuous coefficient for which Theorem 12.1 is not applicable
since the coefficient is not Lipschitz.

Example 12.3 Consider the stochastic differential equation

dXt D sign.Xt/ dWt

where

sign.x/ D
�

1; x � 0

�1; x < 0 :

The function sign.x/ does not satisfy the Lipschitz condition, and it is known that
the equation does not have a strong solution. However, the Brownian motion is the
unique weak solution. For, if we take any Brownian motion zWt for Xt, and define

Yt D
Z t

0

sign. zWs/ d zWs D
Z t

0

sign.Xs/ dXs ;

then sign. zWs/ is adapted,

Z T

0

sign. zWs/
2dt D

Z T

0

1 dt D T < 1 ;

and Yt is a continuous martingale such that

ŒY;Y�t D
Z t

0

sign. zWs/
2dŒ zW; zW�s D

Z t

0

1 ds D t :

Then Yt is a Brownian motion by Lévy’s theorem. Finally, since

dYt D sign.Xt/ dXt ;

multiplying both sides by sign.Xt/, we have

dXt D sign.Xt/ dYt :

See also Example 11.10. For the proof of the uniqueness of the weak solution,
consult [74].
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12.3 Brownian Bridges

In Theorem 7.6 we showed how to construct sample paths of a Brownian motion
constrained at t D 1 using successive approximations. In this section we present a
constrained Brownian motion as a stochastic process.

Definition 12.4 A stochastic process fXtgt�0 is called a Gaussian process if for 0 <
t1 < � � � < tn any linear combination of Xt1 ; : : : ;Xtn is jointly normally distributed.

Example 12.4 A Brownian motion Wt is a Gaussian process. To see why, note that
for 0 < t1 < t2 < � � � < tn, the increments

ıW1 D Wt1 � W0 ; : : : ; ıWn D Wtn � Wtn�1

are independent and normal. Since

Wt1 D ıW1 ; Wt2 D ıW1 C ıW2 ; : : : ; Wtn D ıW1 C � � � C ıWn ;

the random variables Wt1 ;Wt2 ; : : : ;Wtn are jointly normally distributed. (See
Remark 4.10.) Recall that the covariance function is given by c.s; t/ D minfs; tg,
0 � s � t.

Example 12.5 Let f .t/ be a deterministic function of time t, and define Xt DR t
0

f .s/dWs where Wt is a Brownian motion. Then Xt is a Gaussian process. For
the proof, recall that for a real constant � the process

Mt D exp

�

�Xt � 1

2
�2
Z t

0

f .s/2ds

�

is a martingale. Hence

1 D M0 D EŒMt� D exp

�

�1
2
�2
Z t

0

f .s/2ds

�

EŒe�Xt � ;

and hence the moment generating function is given by

EŒe�Xt � D exp

�
1

2
�2
Z t

0

f .s/2ds

�

;

which is a moment generating function for a normal distribution with mean 0
and variance

R t
0 f .s/2ds. Thus Xt is normally distributed with the same mean and

variance. Now it remains to prove that for 0 < t1 < � � � < tn the random variables
Xt1 ; : : : ;Xtn are jointly normal. Note that the increments

ıX1 D Xt1 � X0 D Xt1 ; ıX2 D Xt2 � Xt1 ; : : : ; ıXn D Xtn � Xtn�1
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are normally distributed and independent. Since

Xt1 D ıX1 ; Xt2 D ıX1 C ıX2 ; : : : ; Xtn D ıX1 C � � � C ıXn ;

the random variables Xt1 ;Xt2 ; : : : ;Xtn are jointly normally distributed. (See
Remark 4.10.) For the details, consult [94].

Definition 12.5 (Brownian Bridge) Let Wt be a Brownian motion. For T > 0, the
Brownian bridge from 0 to 0 is defined by

Xt D Wt � t

T
WT ; 0 � t � T :

More generally, the Brownian bridge from a to b defined by

Xa!b
t D a C t

T
.b � a/C Wt � t

T
WT ; 0 � t � T :

See Simulation 12.3 and Fig. 12.2 for ten sample paths of the Brownian bridge
from a D 0 to b D 2 for T D 3.

Remark 12.2

(i) Note that Xt D X0!0
t and that Xa!b

0 D a, Xa!b
T D b.

(ii) Since we have to know the values of WT to define Xt, 0 � t � T, the Brownian
bridge Xt is not adapted to the filtration generated by Wt.

(iii) For 0 < t1 < � � � < tn < T, the random variables

Xt1 D Wt1 � t1
T

WT ; : : : ; Xtn D Wtn � tn
T

WT

are jointly normal since Wt1 ; : : : ;Wtn ;WT are jointly normal. Hence the
Brownian bridge from 0 to 0 is a Gaussian process, and so is Xa!b

t since

Fig. 12.2 Sample paths of
the Brownian bridge
Xt D X0!0

t from a D 0 to
b D 0 for T D 3

0 1 2 3

−2

−1

0

1

2

t

X t

Brownian bridge
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addition of a deterministic function to a Gaussian process Xt gives a new
Gaussian process.

(iv) EŒXt� D EŒWt � t
T WT � D 0 and EŒXa!b

t � D a C t
T .b � a/.

(v) For 0 < s � t < T, the covariance function c.s; t/ D c.t; s/ is given by

c.s; t/ D E

h
.Ws � s

T
WT/ .Wt � t

T
WT/

i

D E

h
WsWt � s

T
WtWT � t

T
WsWT C st

T2
W2

T

i

D s � s

T
t � t

T
s C st

T2
T

D s .T � t/

T
:

The covariance function of Xa!b
t is the same.

(vi) The Brownian bridge cannot be expressed as an Itô integral
R t
0

f .s/ dWs of a
deterministic function f .t/ since

Var.Xt/ D EŒX2t � D t .T � t/

T

which increases as t increases for 0 � t � T
2

and then decreases to zero for
T
2

� t � T. However, the Itô isometry implies that the variance of the Itô
integral is given by

Var

�Z t

0

f .s/ dWs

�

D E

��Z t

0

f .s/ dWs

�2 �

D
Z t

0

f .s/2ds ;

which increases monotonically for 0 � t � T.
(vii) For an application of the Brownian bridge in simulating an at-the-money

digital option, see Simulation 17.2.

Theorem 12.3 (Brownian Bridge) Define a process Yt, 0 � t � T, by

Yt D .T � t/
Z t

0

1

T � s
dWs ; 0 � t < T ;

and YT D 0. Then the following facts hold:

(i) Yt is adapted to the filtration generated by the Brownian motion Wt.
(ii) Yt satisfies the stochastic differential equation

dYt D � 1

T � t
Yt dt C dWt :
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(iii) Yt is a continuous Gaussian process on Œ0;T� and has mean m.t/ D 0 for every
t and covariance

c.s; t/ D s.T � t/

T
; 0 � s � t � T :

(iv) Yt has the same distribution as the Brownian bridge Xt from 0 to 0.

Proof

(i) Since Yt is defined by Ws, 0 � s � t, it is adapted to the filtration generated by
Ws, 0 � s � t.

(ii) Use the fact

dYt D
�Z t

0

1

T � s
dWs

�

.�dt/C .T � t/
1

T � t
dWt :

(iii) For 0 � t < T, the process

It D
Z t

0

1

T � s
dWs

is a Gaussian process by the argument in Example 12.5. Since It1 ; : : : ; Itn are
jointly normal, the random variables

Yt1 D .T � t1/It1 ; : : : ; Ytn D .T � tn/Itn

are jointly normal. Hence Yt is a Gaussian process for 0 � t < T. The mean of
Yt is equal to 0 since the expectation of an Itô integral is 0. For 0 � s � t < T,
the Itô isometry implies that the covariance of Y is given by

c.s; t/ D E

�

.T � s/
Z s

0

1

T � u
dWu 	 .T � t/

Z t

0

1

T � u
dWu

�

D .T � s/.T � t/E

�Z t

0

1Œ0;s�.u/
1

T � u
dWu 	

Z t

0

1

T � u
dWu

�

D .T � s/.T � t/E

�Z t

0

1Œ0;s�.u/
1

.T � u/2
du

�

D .T � s/.T � t/
Z t

0

1Œ0;s�.u/
1

.T � u/2
du

D .T � s/.T � t/
Z s

0

1

.T � u/2
du

D .T � s/.T � t/

�
1

T � s
� 1

T

�

D s.T � t/

T
:
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The variance of Yt, which is equal to t.T�t/
T , 0 � t < T, converges to 0 as

t " T. In combination with the fact that the mean of Yt is always equal to 0, the
definition YT D 0 enables Yt to be continuous at t D T.

(iv) Since Yt has the same mean and covariance functions m.t/ and c.s; t/ as the
Brownian bridge Xt from 0 to 0 and since a Gaussian process is completely
determined by m.t/ and c.s; t/, the process Yt has the same distribution as Xt.

ut
See Simulation 12.4 and Fig. 12.4 for ten sample paths of the process

Yt D .T � t/
Z t

0

1

T � s
dWs

with a D 0, b D 2 and T D 3, and see Simulation 12.5 and Fig. 12.5 for the
corresponding SDE

dYt D � 1

T � t
Yt dt C dWt :

Theorem 12.4 (Probability Density of Brownian Bridge) Let Xt be the Brownian
bridge from 0 to 0 for 0 � t � T in Definition 12.5. Take 0 D t0 < t1 < � � � < tn < T
and put ıti D ti � ti�1. The joint density fXt1 ;:::;Xtn

for Xt1 ; : : : ;Xtn is given by

fXt1 ;:::;Xtn
.x1; : : : ; xn/ D p.T � tn; xn; 0/

p.T; 0; 0/

nY

iD1
p.ıti; xi�1; xi/

where x0 D 0 and

p.ıt; x; x0/ D 1p
2ıt

exp

�

� .x
0 � x/2

2 ıt

�

is the transition density for Brownian motion. Note that fXt1 ;:::;Xtn
is equal to the joint

density of a Brownian motion Wt at t1; : : : ; tn conditional on WT D 0, and hence Xt

has the same probability distribution as Wt conditional on WT D 0.

Proof Put �0 D T and �i D T � ti. Define

Yi D 1

�i
Xti � 1

�i�1
Xti�1 :

Since each of Yt1 ; : : : ;Ytn is a linear combination of Xt1 ; : : : ;Xtn , which are jointly
normal, we see that Yt1 ; : : : ;Ytn are also jointly normal. Then

EŒYi� D 1

�i
EŒXti � �

1

�i�1
EŒXti�1 � D 0 ;
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Var.Yi/ D EŒY2i �

D 1

�2i
Var.Xti/ � 2

�i�i�1
Cov.Xti ;Xti�1 /C 1

�2i�1
Var.Xti�1 /

D 1

�2i

ti.T � ti/

T
� 2

�i�i�1
ti�1.T � ti/

T
C 1

�2i�1

ti�1.T � ti�1/
T

D 1

�i

ti
T

� 2

�i�1
ti�1
T

C 1

�i�1
ti�1
T

D �i�1ti � 2ti�1�i C ti�1�i

�i�1�iT

D �i�1ti � ti�1�i

�i�1�iT

D .T � ti�1/ti � ti�1.T � ti/

�i�1�iT
.since �i D T � ti/

D ıti
�i�1�i

:

For i < j, we have ti�1 < ti � tj�1 < tj and

Cov.Yi;Yj/

D Cov

�
1

�i
Xti � 1

�i�1
Xti�1 ;

1

�j
Xtj � 1

�j�1
Xtj�1

�

D 1

�i�j
c.ti; tj/� 1

�i�j�1
c.ti; tj�1/� 1

�i�1�j
c.ti�1; tj/C 1

�i�1�j�1
c.ti�1; tj�1/

D ti
�iT

� ti
�iT

� ti�1
�i�1T

C ti�1
�i�1T

D 0 :

Hence the jointly normal variables Yt1 ; : : : ;Ytn are independent and their joint
density is given by

fYt1 ;:::;Ytn
. y1; : : : ; yn/ D

nY

iD1

1
q
2 ıti

�i�1�i

exp

 

� 1

2 ıti
�i�1�i

y2i

!

:

Now we change the variables from . y1; : : : ; yn/ to .x1; : : : ; xn/ by the rule

yi D xi

�i
� xi�1
�i�1

; 1 � i � n
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where xi represents the value taken by Xti , the Brownian bridge from 0 to 0 at time ti.
Since

1
ıti

�i�1�i

y2i D �i�1�i

ıti

�
x2i
�2i

� 2
xixi�1
�i�1�i

C x2i�1
�2i�1

�

D 1

ıti

�
�i�1
�i

x2i � 2xixi�1 C �i

�i�1
x2i�1

�

D 1

ıti

�

.1C ıti
�i
/x2i � 2xixi�1 C .1 � ıti

�i�1
/x2i�1

�

D 1

ıti

�

.xi � xi�1/2 C ıti
�i

x2i � ıti
�i�1

x2i�1
�

D 1

ıti
.xi � xi�1/2 C 1

�i
x2i � 1

�i�1
x2i�1 ;

we have

nY

iD1
exp

 

� 1

2 ıti
�i�1�i

y2i

!

D exp

 

�1
2

nX

iD1

1
ıti

�i�1�i

y2i

!

D exp

 

�1
2

nX

iD1

1

ıti
.xi � xi�1/2 � 1

2

1

T � tn
x2n

!

:

Also note that

nY

iD1

1
q
2 ıti

�i�1�i

D
p

Tp
T � tn

nY

iD1

1p
2ıti

nY

iD1
�i :

Since

det

�
@yi

@xj

�

D
nY

iD1

1

�i

and p.T; 0; 0/ D p
2T , we have

fXt1 ;:::;Xtn
.x1; : : : ; xn/

D fYt1 ;:::;Ytn
. y1; : : : ; yn/

nY

iD1

1

�i

D
p

Tp
T � tn

exp

�

�1
2

x2n
T � tn

� nY

iD1

1p
2ıti

exp

 

�1
2

nX

iD1

.xi � xi�1/2

ıti

!
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D
p
2T

p
2.T � tn/

exp

�

�1
2

x2n
T � tn

� nY

iD1

1p
2ıti

exp

 

�1
2

nX

iD1

.xi � xi�1/2

ıti

!

D p.T � tn; xn; 0/

p.T; 0; 0/

nY

iD1
p.ıti; xi�1; xi/ :

ut
Corollary 12.1 The Brownian bridge Xa!b

t from a to b in Definition 12.5 has the
same probability distribution as the Brownian motion conditional on W0 D a and
WT D b.

Proof Let

Xa!b
t D a C t

T
.b � a/C Wt � t

T
WT

be the Brownian bridge from a to b in Definition 12.5 for some probability measure
P and a P-Brownian motion Wt. Then

X0!b�a
t D t

T
.b � a/C Wt � t

T
WT

is the Brownian bridge from 0 to b � a. Recall that

Xt D X0!0
t D Wt � t

T
WT

is the Brownian bridge from 0 to 0, and has the same probability distribution as Wt

for 0 � t � T conditional on WT D 0. Let � D b�a
T . Define a new probability

measure Q by

dQ

dP
D e� 1

2 �
2T��WT :

By Girsanov’s theorem, zWt D Wt C � t, 0 � t � T, is a Q-Brownian motion. Note
that

X0!b�a
t D Xt C � t

has the same probability distribution as Wt C � t for 0 � t � T conditional on
WT D 0. Since WT D 0 if and only if zWT D b � a, we note that X0!b�a

t has the
same probability distribution as a Brownian motion zWt conditional on zWT D b � a.
Therefore

Xa!b
t D a C X0!b�a

t



218 12 Stochastic Differential Equations

has the same probability distribution as a generalized Brownian motion yWt D aC zWt

conditional on yWT D b. ut
Remark 12.3

(i) In the proof of Corollary 12.1 we may directly derive the probability distri-
bution of the Brownian bridge from a to b and show that it is equal to the
probability distribution of the Brownian motion conditional on W0 D a and
WT D b as done in [94]. Our approach is to simplify the notational burden in
doing so and to prove Theorem 12.4 first, because its proof is relatively simple.

(ii) In Monte Carlo simulations for option pricing, Corollary 12.1 enables us to use
Definition 12.5 to simulate the Brownian motion conditional on WT D b instead
of constructing a Brownian motion using the successive approximations given
in Theorem 7.6.

12.4 Computer Experiments

Simulation 12.1 (Numerical Solution of an SDE)
We compare a numerical solution of the SDE given by

dXt D 2WtdWt C dt

with the exact solution Xt D W2
t C X0. See Fig. 12.3.

T= 3.0;

N = 500;

dt = T/N;

t = 0:dt:T;

dW = sqrt(dt)*randn(1,N);

W = zeros(1,N+1);

Fig. 12.3 A numerical
solution of
dXt D 2WtdWt C dt and the
exact solution Xt D W2

t C X0

0 1 2 3
0

1

2

3

t

X t

Numerical
Exact
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X = zeros(1,N+1);

X0 = 0.4;

X(1) = X0;

Exact = zeros(1,N+1);

Exact(1) = X0;

for i = 1:N

W(i+1) = W(i) + dW(i);

X(i+1) = X(i) + 2*W(i)*dW(i) + dt;

Exact(i+1)=W(i+1)^2 + X0;

end

plot(t,X,’r-’,t,Exact,’k-.’);

hlegend=legend(’approx’,’exact’);

Simulation 12.2 (Ornstein–Uhlenbeck Process)
We generate M sample paths of the Ornstein–Uhlenbeck process

dXt D �˛Xtdt C �dWt

together with the curve EŒXt� D e�˛tx0, 0 � t � T. See Fig. 12.1.

T= 3;

N = 200;

dt = T/N;

t = 0:dt:T;

M = 10;

X = zeros(M,N);

alpha = 1;

sigma = 0.5;

x0 = 1;

X(:,1) = x0 ;

dW = sqrt(dt)*randn(M,N);

for i = 1:N

X(:,i+1) = X(:,i) - alpha*X(:,i)*dt + sigma*dW(:,i);

end

for j = 1:M

plot(t,X(j,:));

hold on

end

t = 0:0.01:T;

plot(t,x0*exp(-alpha*t))

Simulation 12.3 (Brownian Bridge)
We generate numerical realizations of the Brownian bridge

Xt D X0!0
t D Wt � t

T
WT

from a D 0 to b D 0 for T D 3 in Definition 12.5. We take N D 100 for the number
of subintervals, ıt D T

N , and M D 10 for the number of sample paths. See Fig. 12.2.
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T= 3.0;

N = 100;

dt = T/N;

t = 0:dt:T;

M = 10;

W = zeros(M,N);

X = zeros(M,N);

a = 0;

b = 0;

X(:,1) = a;

dW = sqrt(dt)*randn(M,N);

for i = 1:N

W(:,i+1) = W(:,i) + dW(:,i);

end

for i = 1:N+1

X(:,i) = a*(1-(i-1)*dt)/T + b*(i-1)*dt/T + W(:,i) -(i-1)*dt/T*W(:,N+1);

end

for j = 1:M

plot(t,X(j,:));

hold on

end

Simulation 12.4 (Brownian Bridge Given by an Integral)
We generate the sample paths of the stochastic process Yt defined in Theo-

rem 12.3. As in Simulation 12.3 we take a D 0, b D 2, T D 3, N D 100, ıt D T
N

and M D 10. See Fig. 12.4.

Y = zeros(M,N+1);

Y(:,1) = a;

Integral = zeros(M,N+1);

Integral(:,1) = 0;

dW = sqrt(dt)*randn(M,N);

for i = 1:N

Integral(:,i+1) = Integral(:,i) + (1/(T-(i-1)*dt))*dW(:,i);

end

for i = 1:N+1

Y(:,i) = a*(1-(i-1)*dt/T) + b*(i-1)*dt/T + (T-(i-1)*dt)*Integral(:,i);

end

for j = 1:M

plot(t,Y(j,:));

hold on

end
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Fig. 12.4 Sample paths of
the process
Yt D .T � t/

R t
0

1
T�s dWs for

0 � t � 3
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t
Y t

Brownian bridge

Simulation 12.5 (Brownian Bridge Given by an SDE)
We generate the sample paths of the SDE given in Theorem 12.3. As in

Simulations 12.3, 12.4 we take a D 0, b D 2, T D 3, N D 100, ıt D T
N and

M D 10.

Y = zeros(M,N+1);

Y(:,1) = a;

dW = sqrt(dt)*randn(M,N);

for i = 1:N

Y(:,i+1) = Y(:,i) + (b-Y(:,i))/(T-(i-1)*dt)*dt + dW(:,i);

hold on

end

for j = 1:M

plot(t,Y(j,:));

hold on

end

See Fig. 12.5 for ten sample paths of the SDE given by

dYt D 1

T � t
.b � Yt/ dt C dWt ; Y0 D a

with a D 0, b D 2 and T D 3. In the numerical realizations of the SDE we take
ıt D T

N D 3
100

, and due to the discretization error in the final time step, YT cannot
be uniquely determined, but is distributed around b D 2. As N becomes larger, YT

becomes more concentrated around b.
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Fig. 12.5 Brownian bridge:
sample paths of the SDE
dYt D 1

T�t .b � Yt/ dt C dWt,
Y0 D a and YT D b, for
0 � t � T D 3
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Exercises

12.1 What is a stochastic differential equation satisfied by Yt D Wt
3?

12.2 Show that dXt D 3X1=3t dt C 3X2=3t dWt, X0 D 1, has infinitely many solutions.

12.3 Show that the solution of

dXt D dt C 2
p

Xt dWt

is given by

Xt D .Wt Cp
X0 /

2 :

12.4 Show that the solution of

dXt D �Xt.2 log Xt C 1/ dt � 2Xt

p� log Xt dWt

is given by

Xt D exp

�

�
�

Wt Cp� log X0
�2�

:

12.5 Show that the solution of the generalized Langevin equation or the mean-
reverting Ornstein–Uhlenbeck process

dXt D ˛.m � Xt/dt C �dWt
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is given by

Xt D m C e�˛t.X0 � m/C �

Z t

0

e�˛.t�s/dWs :

(Hint: Take Yt D Xt � m and apply the result in Example 12.1.)

12.6 Find the solution of the SDE

dXt D .˛t C ˇtXt/dt C .�t C ıtXt/dWt

where ˛t, ˇt, �t, ıt are adapted continuous processes. (Hint: Consider first the case
that ˛t D �t D 0.)

12.7 Solve the SDE

dXt D X3t dt � X2t dWt

where X0 D 1.

12.8 Suppose that Xt is the Ornstein–Uhlenbeck process dXt D �˛Xtdt C �dWt

given in (12.3). Does Yt D X2t satisfy

dYt D .�2 � 2˛Yt/ dt C 2�
p

Yt dWt ‹

12.9 Solve the SDE

dXt D 3

4
X2t dt � X3=2t dWt ; X0 > 0 :



Chapter 13
The Feynman–Kac Theorem

As an alternative method for the derivation of the Schrödinger differential equation
in quantum mechanics, the path integral approach was introduced in the 1960s
by the physicist Richard Feynman. Along a similar line a certain type of partial
differential equation can be solved using the expectation over the sample paths of
a stochastic process. Its mathematical formulation, the Feynman–Kac Theorem,
provides a link between two option pricing methods, one based on the Black–
Scholes–Merton partial differential equation and the other the martingale method.

13.1 The Feynman–Kac Theorem

Let F.t; x/ be a function of t and x representing time and space, respectively. Given a
stochastic process Xt, when is F.t;Xt/ a martingale? The Martingale Representation
Theorem implies that dF.t;Xt/ should have no drift term. If that is the case, we have
F.t;Xt/ D EŒF.T;XT /jFt� for 0 � t � T by the definition of a martingale, and
hence F.t; x/ D EŒF.T;XT/jXt D x�. The following theorem shows how to find a
solution of a differential equation using a probabilistic idea.

Theorem 13.1 (Feynman–Kac) Let F; �; � W Œ0;T�	R ! R be functions of t and
x, and let h W R ! R be a function of x. Consider a partial differential equation

8
<

:

@F

@t
.t; x/C �.t; x/

@F

@x
.t; x/C 1

2
�2.t; x/

@2F

@x2
.t; x/ D 0 ; 0 < t < T ;

F.T; x/ D h.x/ :

If a stochastic process Xt satisfies a stochastic differential equation

dXt D �.t;Xt/ dt C �.t;Xt/ dWt ;

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_13
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Fig. 13.1 The Feynman–Kac Theorem: Expectation of the final value h.XT / is the present value
F.t; x/

then we have

F.t; x/ D EŒh.XT/jFt�
ˇ
ˇ
XtDx

D EŒh.XT/jXt D x� :

See Fig. 13.1 where we take .t; x/ D .3; 2/ and T D 10.

Proof By the Itô formula we have

F.T;XT/� F.t;Xt/

D
Z T

t

�
@F

@s
.s;Xs/C �.s;Xs/

@F

@x
.s;Xs/C 1

2
�2.s;Xs/

@2F

@x2
.s;Xs/




ds

C
Z T

t
�.s;Xs/

@F

@x
.s;Xs/ dWs

D
Z T

t
�.s;Xs/

@F

@x
.s;Xs/ dWs :

Taking the conditional expectation EŒ � jFt� on both sides, we obtain

EŒF.T;XT /jFt� � F.t;Xt/ D 0 :

Thus F.t;Xt/ D EŒF.T;XT /jFt� D EŒh.XT/jFt�. ut
Example 13.1 If � D � D 0, then Xt is constant. In this case the conclusion of the
theorem implies that F depends only on x and F.t; x/ D h.x/.
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Example 13.2 If � D 0, then Xt is a solution of an ordinary differential equation
dX

dt
D �.t;X/, and may be regarded as a deterministic function �.t/. Then

d

dt
F.t; �.t// D @F

@t
.t; �.t//C @F

@x
.t; �.t// �0.t/

D @F

@t
.t; �.t//C @F

@x
.t; �.t// �.t; �.t// D 0

by the chain rule. Hence F is constant along the curve t 7! .t; �.t//, and

F.t;Xt/ D F.t; �.t// D F.T; �.T// D F.T;XT/ D h.XT/

for all t, i.e., F.t; �.t// D F.T; �.T//.

Example 13.3 (Brownian Motion) For the case that � D 0 and � D 1, we have the
simplest stochastic differential equation dXt D dWt. Then

Xt D X0 C
Z t

0

dWu D X0 C Wt ;

and

EŒh.XT/jFt�
ˇ
ˇ
XtDx

D EŒh.WT C X0/jFt�
ˇ
ˇ
WtCX0Dx

D EŒh.WT � Wt C x/jFt�
ˇ
ˇ
WtDx�X0

D EŒh.WT � Wt C x/� (by the independence of WT � Wt and Ft)

D EŒh.WT�t C x/� (WT � Wt and WT�t have the same distribution)

D
Z 1

�1
h.z C x/

1
p
2.T � t/

exp

�

� z2

2.T � t/

�

dz

D
Z 1

�1
h.y/

1
p
2.T � t/

exp

�

� .x � y/2

2.T � t/

�

dy :

The last integral, denoted by F.t; x/, is a convolution of h and the heat kernel

1
p
2.T � t/

exp

�

� x2

2.T � t/

�

and hence it satisfies a partial differential equation

@F

@t
C 1

2

@2F

@x2
D 0 ; F.T; x/ D h.x/ :
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Example 13.4 (Geometric Brownian Motion) Consider

dXt D �0Xt dt C �0Xt dWt

for which �.t; x/ D �0x and �.t; x/ D �0x. Then

XT D Xt exp
�
.�0 � 1

2
�20 /.T � t/C �0WT�t

�
:

Consider

Ft C �0xFx C 1

2
�20 x2Fxx D 0 :

Then the Feynman–Kac Theorem implies

F.t; x/ D EŒF.T;XT /jXt D x� :

Hence

F.t; x/ D E

h
F.T; x exp

�
.�0 � 1

2
�20 /.T � t/C �0WT�t/

�i
:

Definition 13.1 (Infinitesimal Generator) For a stochastic differential equation

dXt D �.t;Xt/ dt C �.t;Xt/ dWt (13.1)

we define an infinitesimal generator by

A D �.s; x/
@

@x
C 1

2
�2.s; x/

@2

@x2
:

13.2 Application to the Black–Scholes–Merton Equation

For a function F.t; x/ satisfying the partial differential equation given in Theo-
rem 13.1 we define a new function

V.t; x/ D e�r.T�t/F.t; x/ :

Since

@

@t
V.t; x/ D re�r.T�t/F.t; x/C e�r.T�t/ @

@t
F.t; x/ ;
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V satisfies a partial differential equation

@V

@t
.t; x/C �.t; x/

@V

@x
.t; x/C 1

2
�2.t; x/

@2V

@x2
.t; x/ D rV.t; x/

with a final condition

V.T; x/ D e�r.T�T/F.T; x/ D h.x/ :

Suppose that a process St follows the geometric Brownian motion

dSt D �0St dt C �0St dWt

where �0 and �0 are constant, i.e., �.t; x/ D �0x and �.t; x/ D �0x. By
Theorem 13.1 we have

V.t; x/ D e�r.T�t/F.t; x/ D e�r.T�t/
EŒh.ST/jSt D x� :

In conclusion, the partial differential equation

@V

@t
.t; x/C �.t; x/

@V

@x
.t; x/C 1

2
�2.t; x/

@2V

@x2
.t; x/ D rV.t; x/

with a final condition V.T; x/ D h.x/ has a solution of the form

V.t; x/ D e�r.T�t/
EŒh.ST/jSt D x� : (13.2)

Remark 13.1 When V denotes the price of a European option, if we take �0 D r by
risk-neutrality, we obtain the Black–Scholes–Merton equation

@V

@t
.t; x/C rx

@V

@x
.t; x/C 1

2
�20 x2

@2V

@x2
.t; x/ D rV.t; x/ ;

whose solution is given by (13.2). For more details see Sect. 15.1 and Sect. 16.4.

13.3 The Kolmogorov Equations

In this section we compute the density function of the transition probability of
Brownian motion.

I. The Kolmogorov Backward Equation

Theorem 13.2 (Kolmogorov Backward Equation) If Xt satisfies (13.1), then for
a Borel subset B � R

1 the transition probability

P.s; xI t;B/ D P.Xt 2 BjXs D x/
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Fig. 13.2 Derivation of the
Kolmogorov backward
equation

satisfies the Kolmogorov backward equation given by

�
@

@s
C A

�

P.s; xI t;B/ D 0 ; 0 < s < t ;

P.t; xI t;B/ D 1B.x/ :

In other words,

@

@s
P D �AP

and

P D e�tAP0 :

Proof In Theorem 13.1 use

P.Xt 2 BjXs D x/ D EŒ1B.Xt/jXs D x� :

Consult Fig. 13.2 where B is represented by a vertical segment. ut

Corollary 13.1 For an infinitesimal case, we choose an infinitesimally short inter-
val B D Œy; y C dy�. Suppose that the probability density is given by

P.s; xI t; Œ y; y C dy�/ D p.s; xI t; y/dy :

Then p is a solution of the differential equation

�
@

@s
C A

�

p.s; xI t; y/ D 0 ; 0 < s < t ;

and p.s; xI t; y/ converges to the Dirac delta measure ıx.y/ as s ! t in a suitable
sense.
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Proof Since

p.s; xI t; y/ dy D P.s; xI t; Œy; y C dy�/ � 1Œy;yCdy�.x/

as s ! t, we use

p.s; xI t; y/ � 1

dy
1Œy;yCdy�.x/ � ıy.x/ : ut

Example 13.5 Consider the Ornstein–Uhlenbeck process

dXt D �˛ Xt dt C � dWt :

Take B D .�1; y � and let

F.s; xI t; y/ D P.s; xI t;B/ D P.Xt 2 BjXs D x/ :

By the Kolmogorov backward equation, we have

@F

@s
� ˛x

@F

@x
C 1

2
�2
@2F

@x2
D 0 ; 0 < s < t ; (13.3)

with the final condition

F.t; xI t; y/ D 1.�1;y �.x/ :

Define

p.s; xI t; y/ D @

@y
F.s; xI t; y/ :

By differentiating the left-hand side of (13.3) with respect to y, we obtain

@p

@s
� ˛x

@p

@x
C 1

2
�2
@2p

@x2
D 0 ; 0 < s < t ; (13.4)

with the final condition

p.t; xI t; y/ D ıy.x/

where ıy denotes the Dirac delta measure at y. From (13.4), we obtain

p.s; yI t; x/ D 1
q
.1 � e�2˛.t�s// �

2

˛

exp

 

� .x � e�˛.t�s/y/2

.1 � e�2˛.t�s// �
2

˛

!

:
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II. The Kolmogorov Forward Equation

Now we derive the Kolmogorov forward equation, which is also called the
Fokker–Planck equation.

Definition 13.2 (Adjoint Operator) For an infinitesimal generator

A D �.s; x/
@

@x
C 1

2
�2.s; x/

@2

@x2

its adjoint operator A� is defined by

.A�f /.t; x/ D � @

@x
.�.t; x/f .t; x//C 1

2

@2

@x2
�
�2.t; x/f .t; x/

�
:

Theorem 13.3 (Kolmogorov Forward Equation) Let p.s; xI t; y/ be the transition
probability density of the Itô process Xt introduced previously. Then p satisfies the
Kolmogorov forward equation given by

@

@t
p.s; xI t; y/ D A�p.s; xI t; y/ ; 0 < t < T

p.s; xI t; y/ ! ıx.y/ ; s ! t :

Proof For any function �.t; x/ that is sufficiently smooth and compactly supported
in the domain .s;T/ 	 R

1 we have

�.T;XT/ D �.s;Xs/C
Z T

s

�
@�

@t
C A�

�

.t;Xt/ dt C �

Z T

s

@�

@x
.t;Xt/ dWt

by the Itô formula. Here, since t D T and t D s are a part of the boundary of the
domain .s;T/ 	 R

1, we have �.T;XT/ D �.s;Xs/ D 0. Furthermore, if we take the
conditional expectation EŒ � jXs D x �, then the last integral on the right-hand side is
zero. Hence

E

� Z T

s

�
@�

@t
C A�

�

.t;Xt/ dt

ˇ
ˇ
ˇ
ˇXs D x

�

D 0 ;

and by the definition of a transition probability density p.s; xI t; y/ we obtain

Z 1

�1
p.s; xI t; y/

Z T

s

�
@�

@t
C A�

�

.t; y/ dt dy D 0 :

Now by integration by parts with respect to t and y we obtain

Z 1

�1

Z T

s
�.t; y/

�

� @

@t
C A�

�

p.s; xI t; y/ dt dy D 0 :
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Since the equation holds for arbitrary � we conclude that

�

� @

@t
C A�

�

p.s; xI t; y/ D 0 :

Since s > 0 is arbitrary, the equation holds for 0 < t < T. ut
Example 13.6 Consider the Ornstein–Uhlenbeck process

dXt D �˛Xtdt C �dWt :

From the Kolmogorov forward equation

@p

@t
D � @

@x
.�˛xp/C @2

@x2

�
1

2
�2p

�

;

we obtain

p.s; yI t; x/ D 1
q
.1 � e�2˛.t�s// �

2

˛

exp

 

� .x � e�˛.t�s/y/2

.1 � e�2˛.t�s// �
2

˛

!

:

This can be obtained directly from the closed form solution of the given SDE. For
0 � s � t, we have

Xt D e�˛tx0 C e�˛t�

Z t

0

e˛udWu

D e�˛tx0 C e�˛t�

�Z s

0

e˛udWu C
Z t

s
e˛udWu

�

D e�˛.t�s/

�

e�˛sx0 C e�˛s�

Z s

0

e˛udWu

�

C e�˛t�

Z t

s
e˛udWu

D e�˛.t�s/Xs C e�˛t�

Z t

s
e˛udWu :

Let y D Xs. Then

EŒXtjXs D y� D e�˛.t�s/y

and

Var.XtjXs D y/ D e�2˛t�2
Z t

s
e2˛udu D �2

1� e�2˛.t�s/

2˛
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by the Itô isometry. Since Xt is Gaussian, we have

p.s; yI t; x/ D 1
q
2.1 � e�2˛.t�s// �

2

2˛

exp

 

� .x � e�˛.t�s/y/2

2.1� e�2˛.t�s// �
2

2˛

!

:

By letting t ! 1, we can obtain the limiting probability density

f .x/ D 1
q
2 �2

2˛

exp

 

� x2

2 �
2

2˛

!

: (13.5)

If we want to find only the limiting probability density directly, then we take @p
@t D 0

in the Kolmogorov forward equation, and solve

0 D � @

@x
.�˛x f .x//C @2

@x2

�
1

2
�2f .x/

�

:

Hence

C D ˛x f .x/C @

@x

�
1

2
�2f .x/

�

for some constant C. If we look for a probability density f .x/ satisfying
limx!˙1 x f .x/ D 0, then C D 0. Thus we obtain (13.5).

13.4 Computer Experiments

Simulation 13.1 (Feynman–Kac Theorem)
We produce sample paths of the Ornstein–Uhlenbeck process dXt D �˛Xtdt C

�dWt in Fig. 13.1.

t0 = 3; % initial time

X0 = 2 ; % initial space point

T = 10; % terminal time

N = 150; % number of time steps from t0 to T

dt = (T-t0)/N; % length of time interval

t = t0:dt:T;

M = 5; % number of sample paths

alpha = 0.5;

sigma = 1.5;

X = zeros(M,N);

X(:,1) = X0;

dW = sqrt(dt)*randn(M,N);

for i = 1:N
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X(:,i+1) = X(:,i) - alpha*X(:,i)*dt + sigma*dW(:,i);

end

for j = 1:M

plot(t(:),X(j,:),’color’,hsv2rgb([1-j/M 1 1]));

plot(T,X(j,N+1),’.’) ;

hold on

end

Now we choose h.x/ D 1B where B D Œa; b�, and evaluate EŒh.XT/�.

a = 1;

b = 3;

X = zeros(M,N);

X(:,1) = X0;

dW = sqrt(dt)*randn(M,N);

for i = 1:N

X(:,i+1) = X(:,i) - alpha*X(:,i)*dt + sigma*dW(:,i);

end

mean(heaviside(X(:,N)-a).*heaviside(b-X(:,N)))

The command heaviside is the Heaviside function H.x/ D 1Œ0;1/.x/, and
H.x � a/H.b � x/ D 1Œa;b�.x/. Now we obtain an estimate for F.t; x/.

ans = 0.2409



Part V
Option Pricing Methods



Chapter 14
The Binomial Tree Method for Option Pricing

Not long after the partial differential equation approach was developed for option
pricing by Black, Scholes [6] and Merton [65] in 1973, the binomial tree method
was introduced by Cox, Ross and Rubinstein [23] in 1979, which is a discrete time
model and much easier to understand and implement in practice. The method is
quite flexible and allows us to use parameters which may depend on time and asset
prices. In this chapter only the binomial tree method is introduced, and the Black–
Scholes–Merton differential equation will be presented in Chap. 15.

14.1 Motivation for the Binomial Tree Method

Consider a European call option on an underlying stock with its present price S0 D
$50 per share. Suppose that at the expiry date T the stock has only two values Su D
$80 and Sd D $40 with probabilities pu D 1

2
, pd D 1

2
. See Fig. 14.1.

If the strike price is given by K D $60 and the risk-free interest rate is r D 0,
then we might conclude that the present value V0 of the option is given by taking
the average of payoffs max.Su � K; 0/ D $20 and max.Sd � K; 0/ D $0 when the
stock price rises and falls, respectively, and hence V0 D pu 	 $20C pd 	 $0 D $10,
which will turn out to be wrong.

For, if we construct a portfolio consisting of a borrowed cash $20 at time t D 0

and 1
2

shares of the stock, then its value is equal to

�$20C 1

2
	 $S0 D �$20C 1

2
	 $50 D $5 :

At the expiry date the value of the portfolio will be equal to either

�$20C 1

2
	 $Su D �$20C 1

2
	 $80 D $20

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_14
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Fig. 14.1 A one period
binomial tree and real
probabilities

if the stock price goes up, or

�$20C 1

2
	 $Sd D �$20C 1

2
	 $40 D $0

if the stock price goes down. In either case, the value of the portfolio will be equal
to the value of the option. Hence the price of the option at t D 0 is equal to the
value of the portfolio, which is $5. We say that such a portfolio replicates the given
option.

14.2 The One Period Binomial Tree Method

Now we give a more systematic analysis. Let r denote the risk-free interest rate, and
let T be the expiry date of the option. Assume that the underlying asset St can have
two values Su and Sd at time T depending on the up and the down states, respectively.
See Fig. 14.2 where the probability space is given by� D fup; downg and the bond
price increases from 1 at time t D 0 to erT at time T regardless of the state. Similarly,
the option price Vt has two values Vu and Vd at time T depending on the up and the
down states, respectively. Under the no arbitrage principle, we have Sd < erT < Su.
For, if erT � Sd then no investor would deposit his/her money in the bank, and if
Su � erT then no investor would invest in the stock market.

14.2.1 Pricing by Hedging

We construct a risk-free, or hedged, portfolio to compute the option price. Consider
a portfolio … consisting of three assets: an option sold, a bond (or a bank deposit),
and	 shares of the underlying risky asset or stock. More precisely,… is given by

…t D �Vt C Bt C	St

for t D 0;T, which is held by an option seller to hedge the risk. Note that 	 is
decided at time t D 0, i.e., predictable, and is constant in the time interval Œ0;T�.
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Fig. 14.2 Prices of risk-free and risky assets in the one period binomial tree model

Since short-selling is allowed, 	 can be negative. We find 	 for which … becomes
a risk-free portfolio by solving

8
<

:

�Vu C erTB0 C	Su D erT.�V0 C B0 C	S0/

�Vd C erTB0 C	Sd D erT.�V0 C B0 C	S0/

where Vu and Vd are values taken by the payoff VT depending on the up and down
states of ST , respectively. Hence we have

�
erT Su � erTS0
erT Sd � erTS0

� �
V0
	

�

D
�

Vu

Vd

�

;

and

�
V0
	

�

D 1

erT.Sd � Su/

�
Sd � erTS0 �.Su � erTS0/

�erT erT

� �
Vu

Vd

�

D

2

6
6
6
4

1

erT

�
erTS0 � Sd

Su � Sd
Vu C Su � erTS0

Su � Sd
Vd

�

Vu � Vd

Su � Sd

3

7
7
7
5
:

Put

qu D erTS0 � Sd

Su � Sd
; qd D Su � erTS0

Su � Sd
:

Then

V0 D e�rT.quVu C qdVd/
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Fig. 14.3 A single-period
binomial tree and the
risk-neutral probability

and

	 D Vu � Vd

Su � Sd
:

Note that 0 < qu < 1, 0 < qd < 1 under the no arbitrage assumption, and qu Cqd D
1. Then the pair .qu; qd/ represents a probability distribution Q, which is called a
risk-neutral probability. See Fig. 14.3.

The expectation with respect to Q is denoted by E
Q. The option price at t D 0 is

given by

V0 D e�rT.quVu C qdVd/ D e�rT
E
QŒVT �

where VT is a random variable defined by the payoff at the expiry date. This is called
the risk-neutral pricing.

14.2.2 Pricing by Replication

We replicate a given payoff at T and apply the no arbitrage principle to compute the
European option price. Consider a portfolio… consisting of a risk-free asset and an
underlying stock. More precisely,

…t D Bt C	St

where 	 is the number of shares of the underlying stock. We find 	 for which
…T D VT by solving

�
erTB0 C	Su D Vu

erTB0 C	Sd D Vd

or equivalently,

�
erT Su

erT Sd

� �
B0
	

�

D
�

Vu

Vd

�

:
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Hence

�
B0
	

�

D 1

erT.Sd � Su/

�
Sd �Su

�erT erT

� �
Vu

Vd

�

:

Thus

B0 D 1

erT

� �Sd

Su � Sd
Vu C Su

Su � Sd
Vd

�

;

	 D Vu � Vd

Su � Sd
:

Note that the option and the portfolio that replicates the option at t D T have the
same value at t D 0 by the no arbitrage principle. Hence

V0 D …0

D B0 C	S0

D 1

erT

� �Sd

Su � Sd
Vu C Su

Su � Sd
Vd

�

C Vu � Vd

Su � Sd
S0

D 1

erT

�
erTS0 � Sd

Su � Sd
Vu C Su � erTS0

Su � Sd
Vd

�

;

which is identical to the result obtained by the hedging method.

14.3 The Multiperiod Binomial Tree Method

Given an option with expiry date T, we consider a multiperiod binomial tree of
length N, obtained by stringing together single-period binomial trees, where the
length of the time interval for each single-period binomial tree is ıt D T

N . At time
T D N 	 ıt, the asset price can take one of N C 1 possible values. In Sect. 14.4 it
will be shown that the European option price obtained by the binomial tree method
converges to a formula from the continuous time model. In Fig. 14.4 a binomial tree
of length N D 4 is plotted where u D 3

2
, d D 1

2
, and in Table 14.1 the corresponding

spreadsheet is represented by an upper triangular matrix.

Example 14.1 We now compute the price of a European call option with exercise
price K D 10 using a three-step binomial tree. For the sake of computational
convenience we assume r D 0. Other parameters are given by Su D uS0, Sd D dS0
where u D 3

2
, d D 1

2
. Note that qu D qd D 1

2
.

In Figs. 14.5, 14.6, 14.7 the numbers in the circles represent stock prices while the
numbers in the rectangles are call option prices for a given time and stock price. In
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Fig. 14.4 A multiperiod
binomial tree

δ δ δ δ

Table 14.1 A spreadsheet
for a multiperiod binomial
tree

32 48 72 108 162

16 24 36 54

8 12 18

4 6

2

Fig. 14.5 Payoff of a
European call option in a
binomial tree

Fig. 14.5 the numbers in the rectangles are payoffs at maturity date. As in Fig. 14.6,
from the payoff specified at time t D 3 we obtain the option price at time t D 2

by the single-period binomial tree method, and from the option price at t D 2 we
obtain the option price at t D 1 by the single-period binomial tree method, and
finally from the price at t D 1 we obtain the price at t D 0. For example, at t D 2

and with S2 D 36 the option price is equal to 26. The option price at t D 0 is 8:5.

The binomial model, which is based on the risk-neutral valuation, is a popular
approach to option pricing. It is based on the simplified assumption that over a
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Fig. 14.6 The first step in
pricing a European call
option by a binomial tree

Fig. 14.7 Pricing of a
European call option by a
binomial tree

single period (of very short duration ıt), the underlying asset can only move from
its current price to two possible levels. As will be shown in Sect. 14.4, the Black–
Scholes–Merton formula is the limiting value resulting from taking N ! 1 in
the binomial period where ıt D T

N . See Table 14.2 for the formal comparison of
continuous time and discrete time cases.

Recall that to compute the values
�N

i

�
, 1 � i � N, we consider the binomial coef-

ficients in the expansion of .x C y/N and Pascal’s triangle, which is a recombining
tree. That is why the tree employed in option pricing is called a binomial tree.

It is impossible to use a binary tree as a model for an asset price movement. The
fact that a binomial tree is recombinant reflects the usual assumption that future asset
price movement is not dependent on the past history, while a binary tree tracks all
the price history and the price movement depends not only on the present but also on
the past information. Furthermore, the number of nodes of a binomial tree is equal
to N C 1 where N is the length of the tree, while the number of nodes for a binary
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Table 14.2 Option pricing by risk-neutral method

Continuous time Discrete time

Observation time 0 � t � T n D 0; 1; : : : ;N

Expiry date T N � ıt

Random motion Brownian motion Wt Random walk

Range of random motion R
1 Integral multiples of ıx

Probability distribution Normal distribution Binomial distribution

Asset price movement Geometric Brownian motion Binomial tree

Size of randomness Volatility Standard deviation

Physical probability P .pu; pd/

Risk-neutral probability Q .qu; qd/

Payoff CT CN

Option price e�rT
EŒCT � e�rT

EŒCN �

tree grows exponentially, i.e., the number of nodes is equal to 2N . For example, for
an option with expiry date T D 1 year and ıt D 1 day, we have N D 252, in which
case 2252 � 1075 is too large to deal with computationally.

Remark 14.1 A rigorous presentation of the binomial tree method may be given as
follows: Let � be the set of all paths !. Consider a subset, called a cylinder set,
Œa1; : : : ; aM�, 1 � M � N, defined by

Œa1; : : : ; aM� D fw D a1 � � � aM!MC1 � � �!N j!MC1; : : : ; !N 2 fu; dgg

where we write ‘u’ and ‘d’ to denote up and down movements, respectively. Note
that the number of paths in Œa1; : : : ; aM� is equal to 2N�M and that

� D Œu� [ Œd�

D Œu,u� [ Œu,d� [ Œd,u� [ Œd,d�

D Œu,u,u� [ Œu,u,d� [ Œu,d,u� [ Œu,d,d�Œd,u,u� [ Œd,u,d� [ Œd,d,u� [ Œd,d,d�

D � � �

Let F0 D f;; �g, and let Fn be the �-algebra on � consisting of cylinder sets
Œa1; : : : ; aM�. Then we have a filtration F0 � F1 � F2 � � � � � FN . The payoff
function of a European option is measurable with respect to FN , and hence is
denoted by CN to emphasize the fact. Define

CN�1 D e�rıt
E
QŒCN jFN�1� ;

which is the option price at time .N � 1/ıt and depends on the asset price at time
.N � 1/ıt. This is measurable with respect to FN�1. We need to define Q on the
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whole space � by

Q.Œa1; � � � ; aN �/ D qk
u qN�k

d

where k is equal to the number of up movements.

14.4 Convergence to the Black–Scholes–Merton Formula

In this section we show that the European call option price obtained from the
N-period binomial tree model converges to the solution from the Black–Scholes–
Merton partial differential equation in Chap. 15 as N ! 1.

Let ıt D T
N , and use rıt as the interest rate in each single-period. If we take

Su D uS0 ; Sd D dS0

in the single period binomial model, then

Su � S0
S0

D u � 1 ;
Sd � S0

S0
D d � 1 :

Then, by the binomial tree method, the price of the European call option is given
by

V0 D e�rT
NX

iD0

 
N

i

!

qi.1 � q/N�i.S0u
idN�i � K/C

where N is the number of time steps, and

q D erıt � d

u � d
:

Note that

e�rıtqu C e�rıt.1 � q/d D 1 :

Let m be the smallest integer such that

S0u
mdN�m > K ;

or equivalently, m is the unique integer such that

S0u
m�1dN�mC1 � K < S0u

mdN�m :



248 14 The Binomial Tree Method for Option Pricing

Then

log K
S0

� N log d

log u
d

< m � log K
S0

� N log d

log u
d

C 1

and

V0 D e�rT
NX

iDm

 
N

i

!

qi.1 � q/N�i.S0u
idN�i � K/ :

Put

A D e�rT
NX

iDm

 
N

i

!

qi.1 � q/N�iuidN�i

and

B D
NX

iDm

 
N

i

!

qi.1 � q/N�i :

Then

V0 D AS0 � Ke�rTB :

To find the limit of B as N ! 1, recall that the binomial distribution B.N; q/
is approximated by the normal distribution N.Nq;Nq.1 � q// with mean Nq and
variance Nq.1 � q/ for sufficiently large N, and note that

NX

iDm

 
N

i

!

qi.1 � q/N�i D Pr.B.N; q/ � m/

� Pr.N.Nq;Nq.1 � q// � m/

D
Z 1

m

1
p
2Nq.1 � q/

exp

�

�1
2

.x � Nq/2

Nq.1 � q/

�

dx

D
Z 1

�d2

1p
2

exp

�

�y2

2

�

dy

D N.d2/
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where N denotes the standard normal distribution function,

d2 D lim
N!1

�m C Nq
p

Nq.1 � q/
D lim

N!1

log S0
K C N log d

log u
d

C Nq

p
Nq.1� q/

and we used the substitution y D x�Nqp
Nq.1�q/

. Similarly,

lim
N!1 A D lim

N!1 e�rT
NX

iDm

 
N

i

!

qi.1 � q/N�iuidN�i

D lim
N!1

NX

iDm

 
N

i

!
�
e�rıtqu

�i �
e�rıt.1 � q/d

�N�i

D
Z 1

d1

1p
2

exp

�

�y2

2

�

dy

D 1 � N.d1/

where

d1 D lim
N!1

log S0
K C N log d

log u
d

C Nq�

p
Nq�.1 � q�/

and q� D e�rıtqu. Hence we conclude that

lim
N!1 V0 D N.d1/S0 � Ke�rTN.d2/ :

In the following we show that by choosing suitable values for u and d the option
price formula obtained from the binomial tree method converges to the Black–
Scholes–Merton formula.

Theorem 14.1 Take

u D e�
p
ıt ; d D e��p

ıt :

Then the aforementioned d1, d2 converge to

log S0
K ˙ �

r C 1
2
�2
�

T

�
p

T

defined in the Black–Scholes–Merton formula.
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Proof We will show that d1 and d2 given in the above converge to the usual d1 and
d2 in the closed form solution of the Black–Scholes–Merton equation. Note that

q D erıt � e��p
ıt

e�
p
ıt � e��p

ıt

D .1C rıt/ � .1 � �
p
ıt C 1

2
�2ıt C � � � /

.1C �
p
ıt C 1

2
�2ıt C � � � / � .1 � �

p
ıt C 1

2
�2ıt C � � � /

� �
p
ıt C .r � 1

2
�2/ıt

2�
p
ıt

D 1

2
C r � 1

2
�2

2�

p
ıt :

Note that

d2 � log S0
K C N log d C Nq log u

dp
Nq.1 � q/ log u

d

D log S0
K � N�

p
ıt C N. 1

2
C r� 1

2 �
2

2�

p
ıt/2�

p
ıt

s

N

�
1
4

�
�

r� 1
2 �

2

2�

�2
ıt

�

2�
p
ıt

� log S0
K C �

r � 1
2
�2
�

T

�
p

T

and that

B � �K
�
e�rıt

�N
Z 1

d2

1

2
exp

�

�y2

2

�

dy D �Ke�rTN.d2/ :

As for A, note that

q� D e�rıt

 
1

2
C r C 1

2
�2

2�

p
ıt

!

� 1

2
C r C 1

2
�2

2�

p
ıt :
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Hence

d1 � log S0
K C N log d C Nq� log u

dp
Nq�.1 � q�/ log u

d

� log S0
K � N�

p
ıt C N. 1

2
C rC 1

2 �
2

2�

p
ıt/2�

p
ıt

s

N

�
1
4

�
�

rC 1
2 �

2

2�

�2
ıt

�

2�
p
ıt

� log S0
K C �

r C 1
2
�2
�

T

�
p

T

as N ! 1. ut
Remark 14.2 Note that for u; d D e˙�p

ıt � 1˙ �
p
ıt C 1

2
�2ıt, we have

ıSt

St
D StCıt � St

St
� ˙�

p
ıt C 1

2
�2ıt :

This result is consistent with the geometric Brownian motion for continuous time
model for the derivation of the Black–Scholes–Merton differential equation in
Chap. 15 if we regard the first term ˙�p

ıt as �ıWt and the second term 1
2
�2ıt

as �ıt. Since the drift coefficient � does not appear in the solution of the Black–
Scholes–Merton equation, it does not matter that the above choice of u and d
produces � as a function of � instead of an unrelated independent parameter. Note
that the continuous limit of 	 D Vu�Vd

Su�Sd is @V
@S .

14.5 Computer Experiments

Simulation 14.1 (Binomial Tree Method)
For a European call option we apply the binomial tree method and obtain

the value 10:4043 which is a rough approximation to the value 10:0201 that is
obtained by the Black–Scholes–Merton formula (Tables 14.3 and 14.4). For a better
estimation we need to increase the number of time steps. The following MATLAB

Table 14.3 The binomial
tree for the underlying asset

100 119.1093 141.8704 168.9809

84.2368 100.3339 119.5070

70.9584 84.5180

59.7731
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Table 14.4 The binomial
tree for the call option price

10.4043 18.8595 33.6779 58.9809

2.2988 4.6750 9.5070

0 0

0

code produces two binomial trees for the asset price and a European call option
price. (For the simulations for American options, see Chap. 19.)

S0 = 100;

K = 110;

T = 1;

r = 0.05;

sigma = 0.3;

M = 3; % number of time steps

dt = T/M;

u = exp(sigma*sqrt(dt) + (r-0.5*sigma^2)*dt);

d = exp(-sigma*sqrt(dt) + (r-0.5*sigma^2)*dt);

q = 1/2;

% We compute asset prices.

for i = 0:1:M

fprintf(’time = %i\n’, i)

S = S0*u.^([i:-1:0]’).*d.^([0:1:i]’)

end

fprintf(’Payoff at expiry\n’)

Call = max(S0*u.^([M:-1:0]’).*d.^([0:1:M]’)- K,0)

% We proceed backward to compute option value at time 0.

for i = M:-1:1

fprintf(’time = %i\n’, i-1)

Call = exp(-r*dt)*(q*Call(1:i) + (1-q)*Call(2:i+1))

end

Simulation 14.2 (Convergence of the Binomial Tree Method)
We take the same set of parameter values for S0, K, T, r, � and p as in

Simulation 14.1. The option price obtained by the binomial tree method converges
to the price from the Black–Scholes–Merton formula, represented by the horizontal
line in Fig. 14.8, as M ! 1. The oscillating behavior of the graph is inherent in
the binomial tree method due to the imperfect stability of the numerical algorithm
as explained in Chap. 29.

M_values = [50:1:1000];

Call_prices = zeros(length(M_values),1);

for j = 1:length(M_values)

M = M_values(j);

dt = T/M;

u = exp(sigma*sqrt(dt) + (r-0.5*sigma^2)*dt);

d = exp(-sigma*sqrt(dt) + (r-0.5*sigma^2)*dt);
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Fig. 14.8 Convergence to the
Black–Scholes–Merton price

M

0 200 400 600 800 1000
9.95

10

10.05

10.1

Call = max(S0 *u.^([M:-1:0]’) .* d.^([0:1:M]’) - K,0);

for i = M:-1:1

Call = exp(-r*dt)*(p*Call(1:i)+(1-p)*Call(2:i+1));

end

Call_prices(j) = Call;

end

plot(M_values,Call_prices,’.’);

hold on;

% the Black-Scholes-Merton formula.

d1 = (log(S0/K)+(r+0.5*sigma^2)*T)/(sigma*sqrt(T));

d2 = d1-sigma*sqrt(T);

Call_BSM = S0*normcdf(d1) - K*exp(-r*T)*normcdf(d2)

x=0:1000;

plot(x,Call_BSM,’r’);

Exercises

14.1 Suppose that we want to use the simple interest rate r in Sect. 14.2, i.e., BT D
.1C r/TB0. Show that under the assumption that Su D uS0 and Sd D dS0 we have

V0 D 1

1C r

�
1C r � d

u � d
Vu C u � .1C r/

u � d
Vd

�

:

In this case, the no arbitrage principle implies that 0 < d < 1C r < u.



Chapter 15
The Black–Scholes–Merton Differential
Equation

The simultaneous publications of Black and Scholes [6] and Merton [65] in 1973
mark the beginning of the theory of option pricing. Using the theory of stochastic
calculus, they derived the so-called Black–Scholes–Merton differential equation. It
is essentially a heat equation with the direction of time reversed.

15.1 Derivation of the Black–Scholes–Merton Differential
Equation

Here is a list of the assumptions for the Black–Scholes–Merton model.

Assumptions on the Underlying Asset

(i) The asset follows a geometric Brownian motion with constant volatility.
(ii) There are no dividends or stock splits.

Assumptions on the Financial Market

(iii) It is possible to buy and sell any amount of the asset at any time.
(iv) The bid and the ask prices are equal, i.e., the bid-ask spread is zero.
(v) There are no transaction costs or taxes.

(vi) Short selling is allowed without any cost. Borrowing money is possible at any
time.

(vii) The risk-free interest rate is known and constant.

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_15
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Recall the general version of Itô’s lemma. Its idea can be summarized in the
following heuristic argument. Since the option price V depends on t and S we will
write V.S; t/. As time changes from t to t C ıt, V also changes. Using the second
order Taylor series expansion we obtain

ıV D @V

@t
ıt C @V

@S
ıS C 1

2

@2V

@S2
.ıS/2 C @2V

@S@t
ıS ıt C 1

2

@2V

@t2
.ıt/2 :

The increment ıt is close to 0, and we ignore any term whose order is greater than
1 by Itô’s lemma. Consult Table 11.1. Since

.ıS/2 D �2S2.ıW/2 C higher order terms � �2S2ıt

we can classify the increments as follows:

ıV D
�
@V

@t
C 1

2
�2S2

@2V

@S2

�

ıt
„ ƒ‚ …

risk-free

C @V

@S
ıS

„ƒ‚…
risky

:

Now we are ready to derive a partial differential equation called the Black–
Scholes–Merton equation for a European option price V .

Theorem 15.1 (Black–Scholes–Merton Equation) The price V.S; t/ of a Euro-
pean option at time t with maturity T and strike price K satisfies

@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
D rV :

The final condition V.S;T/ is given by the payoff function of the option.

Proof To derive a partial differential equation for V we take the viewpoint of a fund
manager of the portfolio … based on the idea of hedging, and construct a portfolio
… that is self-financing and risk-free as follows:

….S; t/ D �V.S; t/C D.S; t/C	.S; t/S :

In other words, … consists of an option that has been sold, a bank deposit or risk-
free asset D, and 	 shares of risky asset S. Here 	 is a function of t and S, and is
called the hedge ratio. If 	 < 0, it represents short selling.

As a fund manager we maintain the same number of shares of a stock from time
t to t C ıt, which fits common sense. More precisely, since we do not know how
much S would change, we wait until we obtain the information on the stock value at
time t C ıt, and make an investment decision upon that information. Suppose that
while the hedge ratio 	t is fixed, St changes to StCıt, and …t changes to …t C ı…

(Fig. 15.1).
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Fig. 15.1 Adjustment of 	t

in discrete time hedging

t
t i+1t i-1 t i

Δ t

The risk-free asset Dt gains interest

ıDt D rDtıt :

Hence

ı… D �ıV C ıD C	ıS

D �ıV C rDıt C	ıS

D
�

�@V

@t
� 1

2
�2S2

@2V

@S2
C rD

�

ıt C
�

	 � @V

@S

�

ıS :

If we take

	t D @V

@S
.t; St/

for every t, then we have

ı… D
�

�@V

@t
� 1

2
�2S2

@2V

@S2
C rD

�

ıt : (15.1)

Now the ıS term has disappeared and ı… is risk-free, and hence it is equivalent to a
bank deposit for a time duration ıt. Thus we obtain

ı… D r…ıt : (15.2)

By the no arbitrage principle, the right-hand sides of (15.1) and (15.2) are equal,
and we have

�

�@V

@t
� 1

2
�2S2

@2V

@S2
C rD

�

ıt D r…ıt :
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Therefore

�

�@V

@t
� 1

2
�2S2

@2V

@S2
C rD

�

D r

�

�V C D C @V

@S
S

�

and we obtain the Black–Scholes–Merton equation after canceling the rD terms.
ut

For a different derivation of the Black–Scholes-Merton equation based on the
martingale method see Sect. 16.4. For the logical implications among the facts
related to option pricing, see the diagram in Fig. 2.7.

15.2 Price of a European Call Option

Now we solve the Black–Scholes–Merton equation and find the price V.S; t/ of a
European call option with expiry T. The domain of V is given by 0 � t � T,
0 � S < 1. The boundary conditions are given by

V.0; t/ D 0 ;

V.S; t/ � S � K

for sufficiently large S, and the final condition is given by

V.S;T/ D maxfS � K; 0g :
(See Fig. 15.2.) The Black–Scholes–Merton equation resembles the heat equation

@V

@t
D 1

2

@2V

@S2

except for the sign of the time derivative, and instead of an initial condition at time
t D 0 a final condition at t D T is given. The reason is that the payoff at the expiry
is fixed from the beginning of the life of an option.

Fig. 15.2 Domain and a
boundary condition for a
payoff of a European call
option
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Theorem 15.2 (Black–Scholes–Merton Formula) The price Vt at time 0 � t � T
of a European call option with expiry T and strike price K is given by

Vt D StN .d1/ � Ke�r.T�t/N .d2/

where

d1;2 D log St
K C .r ˙ 1

2
�2/.T � t/

�
p

T � t

and N.�/ denotes the standard normal cumulative distribution function.

Proof We convert the Black–Scholes–Merton equation into the heat equation with
an initial condition going through several steps of change of variables. Put

8
ˆ̂
<

ˆ̂
:

S D Kex

t D T � 1

�2
�

V.S; t/ D Kv.x; �/ :

In other words,

v.x; �/ D 1

K
V.S; t/ D 1

K
V.Kex;T � 1

�2
�/ :

Then �1 < x < 1, 0 � � � �2T and

�2
@v

@�
D 1

2
�2
@2v

@x2
C
�

r � 1

2
�2
�
@v

@x
� rv :

If we let C D r

�2
, then

@v

@�
D 1

2

@2v

@x2
C
�

C � 1

2

�
@v

@x
� Cv :

Since V.S;T/ D maxfS � K; 0g, the initial condition for v is given by

v.x; 0/ D 1

K
V.Kex;T/ D 1

K
maxfKex � K; 0g D maxfex � 1; 0g :

Observe that the parameters K, T, �2, r have disappeared, and only one parameter C
remains in the equation. When several parameters appear in one equation simulta-
neously and make the equation look complicated, we can sometimes combine some
of parameters into one new parameter so that the new equation becomes simpler and
easier to solve. If such a new parameter is dimensionless, then we may say that it is
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an essential parameter in describing the equation. For example, the dimensions of r
and �2 are both time�1, and hence C D r=�2 is dimensionless.

Now we look for v of the form

v.x; �/ D e˛xCˇ�u.x; �/

for some ˛, ˇ, u.x; �/. If such a solution exists, then we have

ˇu C @u

@�
D 1

2

@2u

@x2
C �

C � 1

2
C ˛

�@u

@x
C �1

2
˛2 C .C � 1

2
/˛ � C

�
u :

If we take

˛ D �C C 1

2

and

ˇ D 1

2
˛2 C .C � 1

2
/˛ � C D �1

2
.C C 1

2
/2 ;

then a necessary condition for u becomes the heat equation

@u

@�
D 1

2

@2u

@x2
:

Note that the initial condition for u is given by

u.x; 0/ D u0.x/ D e�˛xv.x; 0/ D e.C� 1
2 /x maxfex � 1; 0g :

Hence

u.x; �/ D 1p
2�

Z 1

�1
u0.�/e�.x��/2=.2�/d�

D 1p
2�

Z 1

0

e.C� 1
2 /� .e� � 1/e�.x��/2=.2�/d� :

Put

I1; I2 D 1p
2�

Z 1

0

e.C˙ 1
2 /�e�.x��/2=.2�/d� ;
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then u.x; �/ D I1 � I2. Note that

e˛xCˇ� I1

D e.�CC 1
2 /x� 1

2 .CC 1
2 /
2� 1p

2�

Z 1

0

e�.x��/2=.2�/C.CC 1
2 /�d� .take � D ��/

D e.�CC 1
2 /x� 1

2 .CC 1
2 /
2� 1p

2�

Z �1

0

e�.xC�/2=.2�/�.CC 1
2 /�.�1/ d�

D e.�CC 1
2 /x� 1

2 .CC 1
2 /
2� 1p

2�

Z 0

�1
e�.xC�/2=.2�/�.CC 1

2 /�d�

D e.�CC 1
2 /x� 1

2 .CC 1
2 /
2� 1p

2�

Z 0

�1
e�.�CxC.CC1

2 /�/
2=.2�/C.CC1

2 /xC 1
2 .CC1

2 /
2�d�

D ex 1p
2�

Z 0

�1
e�.�CxC.CC 1

2 /�/
2=.2�/d�

D ex 1p
2�

Z xC.CC 1
2 /�

�1
e��2=.2�/d� .take � D �p

�
/

D ex 1p
2

Z .xC.CC 1
2 /�/=

p
�

�1
e��2=2d� D exN.d1/

where

d1 D x C .C C 1
2
/�p

�
D log S

K C . r
�2

C 1
2
/�2.T � t/

�
p

T � t
:

Similarly, for the second term we obtain

e˛xCˇ� I2

D e.�CC1
2 /x� 1

2 .CC1
2 /
2� 1p

2�

Z 0

�1
e�.�CxC.C� 1

2 /�/
2=2�C.C� 1

2 /xC 1
2 .C� 1

2 /
2�d�

D e�C� 1p
2

Z .xC.C� 1
2 /�/=

p
�

�1
e��2=2d�

D e�C�N.d2/

where

d2 D x C .C � 1
2
/�p

�
D log S

K C . r
�2

� 1
2
/�2.T � t/

�
p

T � t
:
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Since � D �2.T � t/, we have C� D r
�2
�2.T � t/ D r.T � t/. Hence

V.S; t/ D Kv.x; �/

D KexN.d1/ � Ke�C�N.d2/

D SN.d1/� Ke�r.T�t/N.d2/ :

ut
Remark 15.1 The formula is still meaningful in some extreme cases.

(i) If S0 D 0 then St D 0 for every 0 � t � T, and hence the payoff is 0 for any
K. Therefore Vt D 0, which can be seen from the formula since

lim
S0!0C d1 D lim

S0!0C d2 D �1

and

lim
S0!0C N.d1/ D lim

S0!0C N.d2/ D 0 :

(ii) If K D 0, then the payoff is equal to the stock price at expiry, and hence
VT D ST , thus Vt D St for every 0 � t � T. This is obvious from the formula
since limK!0C d1 D C1 and limK!0C N.d1/ D 1.

(iii) If � D 0, then there is no risk and hence � D r. Note that St D S0ert is
deterministic. Hence VT D .ST � K/C D .S0erT � K/C is also deterministic,
and

Vt D e�r.T�t/.S0erT � K/C :

This is obvious from the formula since if St > Ke�r.T�t/ then

lim
�!0C d1 D lim

�!0C d2 D C1 ;

lim
�!0C N.d1/ D lim

�!0C N.d2/ D 1 ;

thus Vt D St � Ke�r.T�t/ for every 0 � t � T. If St < Ke�r.T�t/ then

lim
�!0C d1 D lim

�!0C d2 D �1

lim
�!0C N.d1/ D lim

�!0C N.d2/ D 0 ;

and Vt D 0.
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Fig. 15.3 Price of a
European call option
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Fig. 15.4 Price of a
European put option

0
5

10
15

20 0

0.5

1

0

2

4

6

8

10

t
S

Pu
t

In Figs. 15.3 and 15.4 the call price and put price surfaces are plotted for the
values of 0 � t � 2, 0 � S0 � 20.

In all experiments we take strike price K D 100, interest rate r D 0:05 and
volatility � D 0:3. In Fig. 15.5 we take present date t0 D 0, expiry date T D 1

12
; 1; 2

and plot the graphs on the interval 40 � S � 160.
In Fig. 15.6 we plot the option prices as functions of time to expiry T � t for

various strike prices.
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Fig. 15.5 Prices of European call and put options as functions of asset price with different times
to expiration
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Fig. 15.6 Prices of European call and put options as functions of time to expiry with different
strike prices

15.3 Greeks

The formula for the option price contains several parameters, and we can take partial
derivatives with respect to these parameters. Those partial derivatives of the option
price are denoted by various Greek letters, called Greeks, and we list some of them
in the following:

	 D @V

@S

� D @2V

@S2
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 D @V

@r

‚ D @V

@t

Vega D @V

@�

Here is a convenient way to memorize which Greek letter represents which
partial derivative: The Greek letter 
 corresponds to the Roman letter r, and � to t.
However, Vega is an invented letter and not in the Greek alphabet. To represent the
English word ‘volatility’, we need a letter corresponding to the Roman symbol ‘v’
but the Greek alphabet does not have such a symbol. Sometimes we write � to
denote Vega.

Uppercase delta (	) represents the number of shares needed in hedging. To avoid
the possibility of confusion, we use a lowercase delta (ı) to denote the increment.
For the list of Greek letters consult Table 15.1, in which Greek letters are given with
their sounds written in Roman letters.

Table 15.1 The Greek
alphabet

Uppercase Lowercase Name Pronunciation

A ˛ alpha a

B ˇ beta b (v in modern Greek)

� � gamma g

	 ı delta d

E � epsilon e

Z � zeta z

H � eta e (i in modern Greek)

‚ � theta th

I � iota i

K � kappa k

ƒ � lambda l

M � mu m

N � nu n

„ � xi ks

O o omicron o

…  pi p

P 
 rho r

† � sigma s

T � tau t

‡ � upsilon y (i in modern Greek)

ˆ � phi ph

X � chi kh

‰  psi ps

� ! omega o
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Theorem 15.3 Consider a European call option, and let

d1; d2 D log S
K C .r ˙ 1

2
�2/.T � t/

�
p

T � t
:

Then the Greeks are given by

	 D N.d1/

� D N0.d1/
S�

p
T � t


 D .T � t/Ke�r.T�t/N.d2/

‚ D �S�

2
p

T � t
N0.d1/� rKe�r.T�t/N.d2/

Vega D S
p

T � t N0.d1/

Proof By direct computation, we obtain

@V

@S
D N.d1/C SN0.d1/

1

S

1

�
p

T � t
� Ke�r.T�t/N0.d2/

1

S

1

�
p

T � t
:

Now it suffices to show

SN0.d1/ D Ke�r.T�t/N0.d2/ :

Since N0.x/ D 1p
2

e�x2=2, it suffices to show

log
S

K
C r.T � t/ D 1

2
.d21 � d22/ :

Now we use

1

2
.d21 � d22/ D 1

2
.d1 C d2/.d1 � d2/ D 1

2
	 2 log S

K C r.T � t/

�
p

T � t
�

p
T � t :

For the others, the proofs are omitted. ut
Remark 15.2 For a European call option the following statements are true:

(i) When the underlying stock price rises, the price of the call option also rises,
and hence	 > 0, which is observed in the formula for	.

(ii) As the interest rate increases, there is more discount, and the discounted strike
price decreases, and hence 
 > 0 as seen in the formula.

(iii) As the time to expiry decreases, ‚ < 0 as seen in the formula, thus the
option price decreases. For European put options, this need not be true. See
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Figs. 15.5, 15.6 where for put options the price is not necessarily monotone
with respect to time. See also Fig. 15.11 for the plot of Theta.

(iv) Note that Vega is always positive since as volatility increases the possibility
that the stock price goes up above the strike price, and therefore the chance
that the option can be exercised, increases.

(v) Since � > 0, V as a function of S, the graph of V.t; S/ is convex.
(vi) Note that @V

@K < 0 since the call option price decreases as K increases. In fact,
we have

@V

@K
D �e�r.T�t/N.d2/ :

Consult Exercise 15.7 for a proof. For an application see Theorem 17.2.

We plot the Greeks using the Black–Scholes–Merton formula. In all experiments
we take strike price K D 100, interest rate r D 0:05 and volatility � D 0:3. In
Fig. 15.7 we take T � t D 1

12
; 1; 2 and plot the graphs on the interval 40 � S � 160.

Let 	C and 	P denote the Deltas of call and put options with the same K and T.
Due to the put-call parity C � P D S � Ke�rT , they satisfy

	C �	P D 1 :

The slopes of the curves in Fig. 15.5 are plotted in Fig. 15.7.
For Gamma we take T � t D 1

2
; 1; 2. Since 	C �	P D 1, we know that � of a

call and a put is identical since � D @	=@S. Recall that � is positive. See Fig. 15.8.
Rho is positive for a call option while it is negative for a put option. For, if the

interest rate rises, the present value of the strike price decreases, and the call option
value increases while the put option value decreases. Rho has large absolute value,
as seen in Fig. 15.9, which is compensated by the fact that ır is usually very small
in the relation V.r C ır/� V.r/ � 
 	 ır. Note that if r D 5% moves to 5:1% then
ır D 0:1% D 0:001.
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Fig. 15.7 Delta of European call and put options
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Fig. 15.8 Gamma of European call and put options
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Fig. 15.9 Rho of European call and put options

Vega is large for asset values close to the strike price, and at-the-money options
have large values of Vega. Out-of-the-money options have low values of Vega since
their prices are low. Deep in-the-money options also have low values of Vega since
their values are mostly intrinsic values. See Fig. 15.10.

For the rate of change of the option value as time changes, we consider Theta,
which is negative for European call options. Let ‚C and ‚P denote the Thetas of
call and put options. From the put-call parity

C.t/ � P.t/ D S � Ke�r.T�t/ ;

we have

‚C �‚P D �rKe�r.T�t/ :

In our example, K D 100, r D 0:05 and T � t D 0:5; 1; 2. Hence ‚P D ‚C C
rKe�r.T�t/ and rKe�r.T�t/ D 4:8765; 4:7561; 4:5242. See Fig. 15.11.
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Fig. 15.10 Vega of European call and put options
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Fig. 15.11 Theta of European call and put options

15.4 Solution by the Laplace Transform

In Sect. 15.2 we employed a more or less direct method to solve the Black–Scholes–
Merton partial differential equation. In this section we use another method based on
the Laplace transformation. The Black–Scholes–Merton equation is essentially a
heat equation (or a diffusion equation), and we modify the Laplace transformation
method for the heat equation, which is given in Appendix D.3.

To convert the given problem into an initial value problem, we let

� D T � t

and put

v.S; �/ D V.S;T � �/ :
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By Theorem 15.1 we have

1

2
�2S2

@2v

@S2
C rS

@v

@S
� @v

@�
D rv : (15.3)

The initial data is given by v.S; 0/ D V.S;T/. Let f .S; s/ be the Laplace
transformation L Œv� of v.S; �/ with respect to � . Since

L

�
@v

@�

�

.S; s/ D sL Œv�.S; s/ � v.S; 0/ ;

we take the Laplace transformations of both sides of (15.3) and obtain

1

2
�2S2

@2f

@S2
C rS

@f

@S
� .s C r/f D �v.S; 0/ : (15.4)

To solve it, find first a homogeneous solution of the homogeneous equation

1

2
�2S2

@2f

@S2
C rS

@f

@S
� .s C r/f D 0 : (15.5)

In this case there exist two linearly independent solutions of the form

f .S; s/ D S� : (15.6)

(Note that since the coefficients of the given differential equation are not constant,
it is hard to guess a general form. To make the differential equation a little simpler,
we put y D log S, and obtain a constant coefficient differential equation

1

2
�2
@2f

@y2
C .�1

2
�2 C r/

@f

@y
� .s C r/f D 0

and find a solution of the form c1e�1y C c2e�2y using (15.7).)
Substituting (15.6) into (15.5), we obtain

1

2
�2S2�.� � 1/S��2 C rS�S��1 � .s C r/S� D 0 :

Eliminating S� from the both sides, we obtain the quadratic equation

1

2
�2�2 C .�1

2
�2 C r/� � .s C r/ D 0 : (15.7)
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Hence there exist two zeros

�1;2 D
�.r � 1

2
�2/˙

q
.r � 1

2
�2/2 C 2.s C r/�2

�2
:

For s > 0 we have �1 > 1, �2 < � 2r

�2
< 0. In summary a homogeneous solution fH

of (15.5) is of the form

fH D c1S
�1 C c2S

�2

where c1.s/ and c2.s/ are constants with respect to S.
Now we find the prices of financial derivatives.

Example 15.1 (Forward Contract) Consider a forward contract to buy a share of
a stock at price K on a future date T. Let us find its price v. Note that the initial
condition is given by

v.S; 0/ D V.S;T/ D S � K :

Hence (15.4) becomes

1

2
�2S2

@2f

@S2
C rS

@f

@S
� .s C r/f D K � S : (15.8)

Let us find its particular solution fP of the form

fP.S; s/ D c1.s/S
�1 C c2.s/S

�2 C S

s
� K

s C r
:

To determine the constants we check the behavior of v on the boundary of the
domain. As S � C1, we have v.S; �/ � S, and hence

fP.S; s/ � S
1

s

and c1 D 0. On the other hand, for S � 0, we have v.S; �/ � �Ke�r� , and hence

fP.S; s/ � � K

s C r
;

thus c2 D 0. Hence

fP.S; s/ D S

s
� K

s C r
:



272 15 The Black–Scholes–Merton Differential Equation

Now we take the inverse Laplace transformation and obtain

v.S; �/ D S � Ke�r�

and

V.S; t/ D S � Ke�r.T�t/ :

Example 15.2 (European Call Option) The initial condition is given by

v.S; 0/ D V.S;T/ D maxfS � K; 0g :
Let f .S; s/ be the Laplace transformation L Œv� of v.S; �/ with respect to � . Then

1

2
�2S2

@2f

@S2
C rS

@f

@S
� .s C r/f D minfK � S; 0g : (15.9)

The homogeneous solution fH of the above equation is of the form

fH D c1S
�1 C c2S

�2 :

Now we try to find a particular solution fP of (15.9) of the following form

fP.S; s/ D
8
<

:
aS�1 C bS�2 C S

s
� K

s C r
; K < S < 1 ;

cS�1 C dS�2; 0 � S < K :

To determine the constants let us check the property of v on the boundary of the
domain. As S � C1, we have v.S; �/ � S, and hence fP.S; s/ � S 1s and a D 0.
Similarly, as S � 0, we have v.S; �/ � 0, and hence fP.S; s/ � 0 and d D 0. Thus

fP.S; s/ D
8
<

:
bS�2 C S

s
� K

s C r
; K < S < 1 ;

cS�1 ; 0 � S < K :

See Fig. 15.12.

Fig. 15.12 Boundary
condition for the Laplace
transformation of a European
call price
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Since fP.S; s/ is continuous and differentiable along the boundary S D K of two
domains, it satisfies the following two conditions:

bK�2 C K

s
� K

s C r
D cK�1 ;

�2bK�2�1 C 1

s
D �1cK�1�1 :

Now we find b and c, and then take the inverse Laplace transformation of fP.S; s/.
For more algebraic details consult [57, 95].

15.5 Computer Experiments

Simulation 15.1 (Delta Hedging)
Let us review discrete time hedging in the derivation of the Black–Scholes–

Merton equation. What is the meaning of dDt D rDtdt? In contrast to d…t D r…tdt
over the time interval Œ0;T�, which has a continuous global solution …t D …0ert,
the bank deposit Dt does not satisfy Dt D D0ert for 0 � t � T. The reason is
that we readjust the investment into the risky asset upon receiving new stock market
information by using a new value of 	 at ti, and the investment into risk-free asset
is also readjusted. More precisely, Dt D Dti 	 er.t�ti/ for ti � t < tiC1. Consult
Fig. 15.13.

Since …t is self-financing, it is continuous at time ti, and we have

…ti D �Vti C Dti�1e
rıt C	ti�1Sti D �Vti C Dti C	ti Sti ;

which implies that

Dti D Dti�1e
rıt C .	ti�1 �	ti/Sti :

We present in-the-money and out-of-the-money cases for a European call option
in Figs. 15.14 and 15.15, respectively. The values of	 approaches 1 or 0 depending
on whether the option is in-the-money or out-of-the-money. In the first case, the
option will be exercised with certainty, so the seller must hedge it fully, while in

Fig. 15.13 Readjustment of
the bank deposit in discrete
time hedging δ
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Fig. 15.14 In-the money option: delta hedging using a portfolio … D �V C D C	S

the second case there is not much chance to be exercised and the need to hedge is
almost zero. In both cases the plots for …t are close to the exponential curve …0ert

as expected. The graphs for 	 and D are step functions which will converge to
continuous functions as the number of time steps increases to 1.

T = 5;

r = 0.10; % interest rate

mu = 0.15; % drift coefficient

sigma = 0.3; % volatility

S0 = 100; % asset price at time t=0

K = 110; % strike price

N = 100 ; % number of time steps

dt = T/N;

t_value = [0:dt:T];

W = zeros(1,N+1); % Brownian motion

S = zeros(1,N+1); % asset price

V = zeros(1,N+1); % option price

Delta = zeros(1,N+1); % Delta

D = zeros(1,N+1); % bank deposit
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Fig. 15.15 Out-of-the-money option: delta hedging using a portfolio … D �V C D C	S

Pi = zeros(1,N+1); % portfolio

D(1) = 0.0; % Choose any number for the initial cash amount.

S(1)= S0;

for i=2:N+1

dW = sqrt(dt)*randn;

W(i) = W(i-1) + dW;

S(i) = S(i-1) + mu*S(i-1)*dt + sigma*S(i-1)*dW;

end

for i=1:N+1

tau = T-(i-1)*dt;

d1 = (log(S(i)/K) + (r+0.5*sigma^2)*tau)/sigma/sqrt(tau);

d2 = d1 - sigma*sqrt(tau);

V(i)= S(i)*normcdf(d1) - K*exp(-r*tau)*normcdf(d2);

Delta(i)=normcdf(d1);

end

for i = 1:N

D(i+1) = exp(r*dt)*D(i) + (Delta(i)-Delta(i+1))*S(i+1);
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%self-financing

end

for i = 1:N+1

Pi(i) = -V(i) + D(i) + Delta(i)*S(i);

end

subplot(3,2,1);

plot([0:dt:T],W)

title(’W’)

subplot(3,2,2);

plot([0:dt:T],S)

title(’S’)

hold on

plot([0:dt:T],K,’--’)

subplot(3,2,3);

plot([0:dt:T],V)

title(’V’)

subplot(3,2,4);

for i=1:N

x = (i-1)*dt:dt/(500/N):i*dt;

y = Delta(i)*exp(0*x);

plot(x,y) % Plot the graph on each subinterval.

hold on

end

title(’\Delta’)

subplot(3,2,5);

for i=1:N

x = (i-1)*dt:dt/(500/N):i*dt;

y = D(i);

plot(x,y*exp(r*(x-(i-1)*dt))) % Plot the graph on each subinterval.

hold on

end

title(’D’)

subplot(3,2,6);

plot([0:dt:T],Pi(1)*exp(r*[0:dt:T]))

title(’\Pi’)

hold on

plot([0:dt:T],Pi)

Simulation 15.2 (Option Price Surface)
We regard the European call and put option prices as functions of t and S, and

plot their graphs. See Figs. 15.3, 15.4.

K = 10;

S0 = 10;

r = 0.05;

sigma = 0.3;

mu = 0.1;
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T = 1;

N = 51;

dt = T/(N-1);

S_path = zeros(N,1);

S_path(1)= S0; % asset price at time 0

for i=1:N-1

dW = sqrt(dt)*randn;

S_path(i+1) = S_path(i) + mu*S_path(i)*dt + sigma*S_path(i)*dW;

end

C_path = zeros(N,1);

P_path = zeros(N,1);

for i = 1:N

S = S_path(i);

tau = T-(i-1)*dt;

d1 = (log(S/K) + (r+0.5*sigma^2)*tau)/(sigma*sqrt(tau));

d2 = d1 - sigma*sqrt(tau);

C_path(i) = S*normcdf(d1) - K*exp(-r*tau)*normcdf(d2);

P_path(i) = C_path(i) - S + K*exp(-r*tau);

end

t_value = linspace(0,T,N);

S_value = linspace(0,20,N);

C = zeros(N,N);

P = zeros(N,N);

for j=1:N

S = S_value(j);

for i = 1:N-1

tau = T-t_value(i);

d1 = (log(S/K)+(r+0.5*sigma^2)*tau)/(sigma*sqrt(tau));

d2 = d1-sigma*sqrt(tau);

N1 = normcdf(d1);

N2 = normcdf(d2);

C(i,j) = S*N1 - K*exp(-r*tau)*N2;

P(i,j) = C(i,j) + K*exp(-r*tau) - S;

end

C(N,j) = max(S-K,0); % payoff at T

P(N,j) = max(K-S,0); % payoff at T

end

% Plot the superimposed image of asset price movement.

[S_grid,t_grid] = meshgrid(S_value,t_value);

figure(1);

surf(S_grid,t_grid,C)

hold on

plot3(S_path,t_grid,C_path);

xlabel(’S’), ylabel(’t’), zlabel(’Call’)

hold off
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figure(2);

surf(S_grid,t_grid,P)

hold on

plot3(S_path,t_grid,P_path);

xlabel(’S’), ylabel(’t’), zlabel(’Put’)

hold off

Exercises

15.1 What is the boundary condition of the Black–Scholes–Merton equation for a
European put option? Consult Fig. 15.16.

15.2 Define d1 and d2 as usual. Show that d1 � d2 D �
p

T � t and hence d2 D
d1 � �

p
T � t.

15.3 Recall that the value of a European call option C is given by C.S/ D SN.d1/�
Ke�rTN.d2/ at time t D 0, where d1 and d2 are defined as usual. Using the idea in
Theorem 2.1, find the value of a European put option at t D 0.

15.4 Let C.S; t/ denote the value of a European call option where S is the
underlying asset price.

(i) Find limK!0C C.S/.
(ii) Find lim�!0C C.S; t/.

(iii) How about the case when the volatility � is very large? Does it agree with
common sense?

15.5 Recall that the value of a European put option is given by

P.St; t/ D StN.d1/� Ke�r.T�t/N.d2/� St C Ke�r.T�t/

D Ke�r.T�t/N.�d2/� StN.�d1/ :

Fig. 15.16 Boundary
condition for the price of a
European put option
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(i) Find limK!0C P.S/.
(ii) Find lim�!0C P.S; t/.

(iii) How about the case when the volatility � is very large? Does it agree with
common sense?

15.6 Let C.S; t/ denote the value of a European call option with strike price K.
When ST > K, compute

lim
t!T�

@C.S; t/

@S
:

15.7 Prove that for a European call option price C we have

@C

@K
D �e�r.T�t/N.d2/ :

15.8 Explain the behavior of the solution of the Black–Scholes–Merton equation
for a European put option in the case when the volatility � is zero. How about the
case when � is very large? Does it agree with common sense?

15.9 The Black–Scholes–Merton equation can be derived using the first form of
Itô’s lemma. First, consider a portfolio

….t; S.t;Wt// D �V.t; S.t;Wt//C D.t; S.t;Wt//C	.t; S.t;Wt//S.t;Wt/ :

Define y…, yV , yD, y	 by

y….t;Wt/ D ….t; S.t;Wt// ;

yV.t;Wt/ D V.t; S.t;Wt// ;

yD.t;Wt/ D D.t; S.t;Wt// ;

y	.t;Wt/ D 	.t; S.t;Wt// :

Then

y….t;Wt/ D �yV.t;Wt/C yD.t;Wt/C y	.t;Wt/S.t;Wt/ :

15.10 The elasticity � of an option price is the ratio of the percentage change in the
option price V with respect to the percentage change in the underlying asset price S.
More precisely,

� D lim
ıS!0

ıV
V
ıS
S

:

(It measures the leverage in the option investment.)
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(i) Show that� D 	 S
V . (This means that for a deep out-of-the-money option, i.e.,

an option with V � 0, the elasticity can be large.)
(ii) Show that for a European call option, � � 1. (This means that the investment

in an option is riskier than that in the underlying asset.)
(iii) Show that for a European put option,� � 0.



Chapter 16
The Martingale Method

In this chapter we introduce two proofs of the option pricing formula given by (16.2)
by applying martingale theory. The first method is based on hedging of a portfolio
process, and the second on replication of the payoff at expiry date T.

16.1 Option Pricing by the Martingale Method

Let fWtgt�0 be a Brownian motion with respect to a probability measure P. Assume
that the asset price movement fStgt�0 follows geometric Brownian motion

dSt D �St dt C �St dWt

where � and � are constant, which has a solution

St D S0 e�WtC.�� 1
2 �

2/t :

Let r > 0 be risk-free interest rate, and put � D ��r
�

and define Xt by

Xt D Wt C � t :

Then dXt D dWt C �dt and

dSt D �St dt C �St.dXt � �dt/

D .� � ��/St dt C �St dXt

D rSt dt C �St dXt :

© Springer International Publishing Switzerland 2016
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Let Q be a probability measure such that E
h

dQ
dP

ˇ
ˇFt

i
D e� 1

2 �
2t��Wt for 0 � t � T.

Girsanov’s theorem states that P and Q are equivalent, and fXtg is a Q-Brownian
motion. Let zSt D e�rtSt be a discounted asset price. Since

zSt D S0e.��r� 1
2 �

2/tC�Wt D zS0 e� 1
2 �

2tC�Xt ;

we have

dzSt D �zSt dXt

and fzStg is a Q-martingale.
Recall that if a payoff function at T depends on a process fStg0�t�T , then it is

FT-measurable.

Method I: Option Pricing by Hedging

Consider a portfolio process

…t D �Vt C Dt C	tSt

as given in Sect. 15.1. Define the discounted processes

z…t D e�rt…t ; zVt D e�rtVt and zDt D e�rtDt :

Then

z…t D �zVt C zDt C	tzSt :

Since, with the choice of

	t D @V

@S
;

the portfolio…t becomes risk-free, we have…t D …0ert, 0 � t � T. Hence

z…t D …0

and

d z…t D 0 :
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Let Yt� denote the limit from the left of the process Y at time t > 0. Take a
partition 0 D t0 < t1 < � � � < tN�1 < tN D T. Since the portfolio is self-financing,
we have

z…tiC1� � z…ti D �.zVtiC1� � zVti/C .zDtiC1� � zDti/C	ti.
zStiC1� � zSti/ :

Since z…t, zVt and zSt are continuous (with probability 1), we have

z…tiC1
� z…ti D �.zVtiC1

� zVti/C .zDtiC1� � zDti/C	ti.zStiC1
� zSti/ :

Since z…t D …0 for 0 � t � T and since zDt D Dti e
�rti for ti � t < tiC1, we have

0 D �.zVtiC1
� zVti/C 0C	ti.zStiC1

� zSti/ :

(See Fig. 16.1.) Hence

zVT � zV0 D
N�1X

iD0
.zVtiC1

� zVti/ D
N�1X

iD0
	ti.

zStiC1
� zSti/ :

By taking the limit, we have

zVT � zV0 D
Z T

0

	t dzSt : (16.1)

The stochastic integral on the right-hand side of (16.1) is meaningfully defined since
the integrator zSt is a continuous martingale with respect to Q. By the Martingale
Representation Theorem there exists an ˛t such that

dzSt D ˛t dXt :

In fact,

˛t D �zSt :

Fig. 16.1 Time discretization
for discounted bond price zDt

t
t i+1t i-1 t i

Dt
~
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Hence

zVT � zV0 D
Z T

0

	t�zSt dXt :

By taking the expectations of both sides, we have

E
QŒzVT � � zV0 D 0

since the expectation of the Itô integral is zero. Therefore,

V0 D e�rT
E
QŒVT � :

If we consider the time interval Œt;T� in the beginning of the derivation of the
formula, we obtain

zVT � zVt D
Z T

t
	t�zSu dXu

and

Vt D e�r.T�t/
E
QŒVT jFt� : (16.2)

Method II: Option Pricing by Replication

Let CT denote the payoff of a given European option, and

Bt D ert

be the value of risk-free deposit of unit amount. Define Vt and zVt by

Vt D E
QŒ e�r.T�t/CT jFt �

and

zVt D e�rtVt D E
QŒ e�rTCT jFt � :

Then we have a replication of the payoff since

VT D erT zVT D E
QŒCT jFT � D CT :
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It remains to show that Vt is self-financing. Since zVt is a Q-martingale, by
the Martingale Representation Theorem there exists a predictable process f˛tgt�0
such that

zVt D zV0 C
Z t

0

˛u dXu D zV0 C
Z t

0

˛u
1

�zSu

dzSu

where the continuous martingale zSt is the integrator for the given stochastic integral.
Now define �t by

�t D ˛t
1

�zSt

:

Then we have

zVt D zV0 C
Z t

0

�udzSu :

Since

dzVt D �t dzSt ; (16.3)

we have

d.e�rtVt/ D �t d.e�rtSt/ ;

and hence

�re�rtVt dt C e�rtdVt D �t.�re�rtSt dt C e�rtdSt/ ;

and after multiplying by ert we obtain

�rVt dt C dVt D �t.�rSt dt C dSt/ :

Note that since e�rt dBt D r dt,

dVt D .Vt � �tSt/ e�rtdBt C �t dSt :

Now define  t by

 t D .Vt � �tSt/ e�rt ;

or equivalently,

Vt D  tBt C �tSt : (16.4)
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Since

dVt D  t dBt C �t dSt ;

 t and �t produce a self-financing portfolio Vt. Thus Vt is the option price at time t.
The following results shows that the option price does not depend on the drift

coefficient in the geometric Brownian motion, which is also observed in the Black–
Scholes–Merton formula.

Theorem 16.1 (Risk Neutrality) For a European option with its expiry date T and
payoff CT , its price V0 at t D 0 is given by

V0 D E
PŒ e�rTCT.S0 e�WT C.r� 1

2 �
2/T/ � :

In other words, the option price is the expected discounted payoff taken over the
sample paths of a geometric Brownian motion with the drift coefficient � replaced
by the risk-free interest rate r.

Proof Note that (16.2) implies

V0 D E
QŒ e�rTCT.ST/ �

D E
QŒ e�rTCT.erT zST/ �

D E
QŒ e�rTCT.erTS0 e�XT� 1

2 �
2T/ �

D E
QŒ e�rTCT.S0 e�XTC.r� 1

2 �
2/T/ �

D E
PŒ e�rTCT .S0 e�WT C.r� 1

2 �
2/T/ �

where the last equality is merely a change of symbols XT and WT which represent
Brownian motions with respect to Q and P, respectively. ut

16.2 The Probability Distribution of Asset Price

Now we find the price of a European option with expiry date T and payoff CT.ST/

where ST is the asset price at T by using the probability density function of ST .
If the asset price St follows the geometric Brownian motion, then at time t D T

we have

ST D S0 e�WT C.�� 1
2 �

2/T :

If x denotes a value taken by ST , then we have

log x
S0

� .� � 1
2
�2/T

�
D WT :
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If y denotes a value taken by WT , the pdf of y is given by

f .y/ D 1p
2T

exp

�

� 1

2T

� log x
S0

� .�� 1
2
�2/T

�

�2�

:

Since dy
dx D 1

�x , the price of the option is given by

e�rT
EŒCT .ST/� D e�rT

Z 1

0

CT.x/f .y.x//
dy

dx
dx

D e�rT
Z 1

0

CT.x/

x�
p
2T

exp

�

� .log x
S0

�.� � 1
2
�2/T/2

2T�2

�

dx :

To apply the risk-neutral method, we put � D r. Then the option price equals

e�rT
Z 1

0

CT.x/

x�
p
2T

exp

�

� .log x
S0

� .r � 1
2
�2/T/2

2T�2

�

dx :

16.3 The Black–Scholes–Merton Formula

In this section we compute the price of a European call option using the martingale
method. Since the payoff is given by C.ST/ D .ST � K/C at expiry date T, we have

V0 D e�rT
E
QŒ .ST � K/C �

D e�rT
E
QŒ .erT zST � K/C �

D e�rT
E
QŒ .erTS0 e�XT� 1

2 �
2T � K/C �

D e�rT
E
QŒ .S0 e�

p
TZC.r� 1

2 �
2/T � K/C �

D e�rT
Z 1

�1
.S0 e�

p
TxC.r� 1

2 �
2/T � K/C

1p
2

e�x2=2 dx

where the symbol Z denotes the standard normal variable. If we consider a European
call option with exercise price K, then the domain of integration is given by

fx W S0e
�

p
TxC.r� 1

2 �
2/T � Kg :

Hence

x � x0 D log K
S0

� .r � 1
2
�2/T

�
p

T
: (16.5)



288 16 The Martingale Method

Therefore the given integral is equal to

e�rT
Z 1

x0

.S0 e�
p

TxC.r� 1
2 �

2/T � K/
1p
2

e�x2=2 dx : (16.6)

Now we put

d1; d2 D log S0
K C .r ˙ 1

2
�2/T

�
p

T
:

If we let y D �x, then dy D �dx, and (16.6) is equal to

e�rT
Z d2

�1
.S0 e��p

TyC.r� 1
2 �

2/T � K/
1p
2

e�y2=2 dy

D S0

Z d2

�1
e��p

Ty� 1
2 �

2T 1p
2

e�y2=2 dy � Ke�rT
Z d2

�1
1p
2

e�y2=2 dy :

Then we have

Z d2

�1
1p
2

e��p
Ty� 1

2 �
2T�y2=2 dy D

Z d2

�1
1p
2

e�.yC�p
T/2=2 dy

D N.d2 C �
p

T/

D N.d1/ ;

and the original integral representing the option price is given by

S0N.d1/ � Ke�rTN.d2/ ;

which is identical with the solution given in Sect. 15.2.
The martingale method can derive a closed form solution in some cases, but in

general the Monte Carlo method is used to find an approximate solution, and it is
more widely used than the partial differential equation approach. For an application
of the restricted normal distribution in the Monte Carlo method for the estimation
of (16.6), see Exercise 27.2.

16.4 Derivation of the Black–Scholes–Merton Equation

In this section, using the martingale method combined with the Feynman–Kac
Theorem, we derive the Black–Scholes–Merton equation for European options. Let
Vt denote the option price at time t, and assume that the payoff is of the form CT.ST/.
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If a function F W Œ0;T� 	 Œ0;1/ ! R satisfies

Vt.!/ D F.t; St.!// ;

then

F.t; x/ D E
QŒe�r.T�t/CT.ST/jSt D x� :

Now if we put

G.t; x/ D E
QŒCT.ST/jSt D x� ;

then

G.t; x/ D er.T�t/F.t; x/ :

Now we apply the Feynman–Kac Theorem to G.t; x/ and obtain

@

@t
.er.T�t/F.t; x//

ˇ
ˇ
ˇ
ˇ
xDSt

C rSt
@

@x
.er.T�t/F.t; x//

ˇ
ˇ
ˇ
ˇ
xDSt

C 1

2
�2S2t

@2

@x2
.er.T�t/F.t; x//

ˇ
ˇ
ˇ
ˇ
xDSt

D 0 :

After dividing by erT , then taking derivatives, and finally multiplying by ert, we
obtain

�rF.t; St/C @F.t; x/

@t

ˇ
ˇ
ˇ
ˇ
xDSt

C rSt
@F.t; x/

@x

ˇ
ˇ
ˇ
ˇ
xDSt

C 1

2
�2S2t

@2F.t; x/

@x2

ˇ
ˇ
ˇ
ˇ
xDSt

D 0 :

Since St can take any arbitrary value, the following equation should hold:

� rF.t; x/C @F.t; x/

@t
C rx

@F.t; x/

@x
C 1

2
�2x2

@2F.t; x/

@x2
D 0 ; (16.7)

which is nothing but the Black–Scholes–Merton equation.
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16.5 Delta Hedging

For hedging, we will find the Delta (	) of a European call option. From (16.4) it is
equal to �t, which is given by (16.3).

First, put

zF.t; y/ D e�rtF.t; yert/ ;

then we have

@

@t
zF.t; y/

D �re�rtF.t; yert/C e�rt

�
@F

@t
.t; yert/C @F

@x
.t; yert/ryert




D e�rt

�

�rF.t; yert/C @F

@t
.t; yert/C ryert @F

@x
.t; yert/




D e�rt

�

�1
2
�2y2e2rt @

2F

@x2
.t; yert/




(by (16.7))

D �1
2
�2y2ert @

2F

@x2
.t; yert/ ;

@zF.t; x/
@x

D @

@x

�
e�rtF.t; xert/

� D @F

@x

ˇ
ˇ
ˇ
ˇ
.t;xert/

;

and

@2zF.t; x/
@x2

D @2

@x2
�
e�rtF.t; xert/

� D ert @
2F

@x2

ˇ
ˇ
ˇ
ˇ
.t;xert/

:

Hence

@zF
@t
.t; x/ D �1

2
�2x2

@2zF
@x2

.t; x/ : (16.8)

On the other hand, from

dzSt D � zSt dXt

we obtain

.dzSt/
2 D �2zS2t dt ;
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and by applying Itô’s lemma to zF.t; zSt/, and using (16.8), we obtain

dzF.t; zSt/ D @zF
@t
.t; zSt/dt C @zF

@x
.t; zSt/dzSt C 1

2

@2zF
@x2

.t; zSt/�
2zS2t dt

D @zF
@x
.t; zSt/dzSt :

Since

zVt D e�rtVt D e�rtF.t; St/ D zF.t; e�rtSt/ D zF.t; zSt/ ;

we have

dzVt D dzF.t; zSt/ D @zF
@x
.t; zSt/dzSt :

Hence (16.3) implies that

	 D �t D @zF
@x
.t; zSt/ D @F

@x
.t; St/ :

Remark 16.1

(i) In the case of a European call option we can show easily

	 D N.d1/

using the martingale method as done in Theorem 15.3. First, put

d1; d2 D log St
K C .r ˙ 1

2
�2/.T � t/

�
p

T � t
:

Now note that

Vt D F.t; St/ D StN.d1/ � Ke�rTN.d2/ert

and Bt D ert. Then by checking the coefficients of St and Bt, we find

�
�t D N.d1/ ;
 t D �Ke�rTN.d2/ :

(ii) In the standard continuous hedging strategy (as in the derivation of the Black–
Scholes–Merton equation) we consider a portfolio

…t D �Vt C Dt C	St
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from the viewpoint of the option seller where Dt is the bank deposit. Then

Ke�r.T�t/N.d2/ D 	tSt � Vt D …t � Dt ;

which is risk-free. Suppose that we, as a seller of the option, start with no
money, i.e., …0 D 0. This means that we sell an option and using the option
premium received, we buy some shares of the underlying asset and invest the
left-over cash in risk-free bond. Note that

0 D �V0 C D0 C	0S0 ;

and hence

D0 D V0 �	0S0 D �Ke�rTN.d2/

which is the borrowed amount at the start.

16.6 Computer Experiments

Simulation 16.1 (Martingale Method)
We compare the martingale method with the Black–Scholes–Merton formula.

See Figs. 16.2, 16.3 where the call price and Delta are approximately equal to 5:5871
and 0:4108, respectively.

Fig. 16.2 Convergence to the
Black–Scholes–Merton price
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Fig. 16.3 Convergence to the
Black–Scholes–Merton
formula for Delta

8 10 12 14 16

0.35

0.4

0.45

log2(N)

Δ

S0 = 100;

K = 110;

sigma = 0.3;

r = 0.05;

T = 0.5;

% Black-Scholes-Merton formula

d1 = (log(S0/K)+(r+0.5*sigma^2)*T)/(sigma*sqrt(T));

d2 = d1 - sigma*sqrt(T);

N1 = normcdf(d1);

N2 = normcdf(d2);

Call_formula = S0*N1 - K*exp(-r*T)*N2;

Delta_formula = N1;

% option price

J = 16;

L = 2^J;

W = sqrt(T)*randn(L,1);

S = S0*exp((r-0.5*sigma^2)*T + sigma*W); % S_T

V = exp(-r*T)*max(S - K,0);

figure(1)

for j = 9:J

M(j) = 2^j; % number of samples

a(j) = mean(V(1:M(j)));

b(j) = 1.96*std(V(1:M(j)))/sqrt(M(j));

end

x = 8:0.01:J+1;

plot(x,Call_formula,’r’)

hold on

errorbar(9:J, a(9:J),b(9:J));

xlabel(’log_2(N)’)

ylabel(’call price’);

hold off

% Delta
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dS = 0.001;

S1 = (S0+dS)*exp((r-0.5*sigma^2)*T + sigma*W);

dVdS = exp(-r*T)*(max(S1-K,0)-max(S-K,0))/dS;

hold off

figure(2)

for j = 9:J

M(j) = 2^j; % number of samples

a2(j) = mean(dVdS(1:M(j)));

b2(j) = 1.96*std(dVdS(1:M(j)))/sqrt(M(j));

end

x = 8:0.01:J+1;

plot(x,Delta_formula,’-r’)

hold on

errorbar(9:J, a2(9:J),b2(9:J));

xlabel(’log_2(N)’)

ylabel(’\Delta’);

Exercises

16.1 (A trivial application of the martingale method) Consider a European option
that pays $1 at time T. Find its price V0 at t D 0. Its price V0 at t D 0 is given by the
expectation with respect to a martingale measure Q, and V0 D e�rT

E
QŒ1� D e�rT ,

which is nothing but the risk-free bond price. If we follow the rule that � should
be replaced by r in using the expectation with respect to a physical measure P, we
would have the same answer since e�rT

E
PŒ1� D e�rT .



Part VI
Examples of Option Pricing



Chapter 17
Pricing of Vanilla Options

The Black–Scholes–Merton formula for a European call option is derived in
Sect. 16.3 using the martingale method. In this chapter we present more examples
of pricing of vanilla options. For more information consult [9] and [29].

17.1 Stocks with a Dividend

A dividend is a distribution of a company’s profits to its shareholders. Dividends are
usually issued as cash payments or shares of stock. The dividend rate may mean the
cash amount each share receives, or a percent of the current market price.

When a stock pays a dividend, it is periodically paid. Although dividends are
not paid continuously in the real financial world, for theoretical analysis we also
consider the case when the dividend is paid continuously.

1. Continuous Dividends

Suppose that the asset price follows the geometric Brownian motion St D
S0 exp.�t C �Wt/. Over the time interval Œ t; t C dt/ for a sufficiently short time
length dt > 0, we receive a dividend ı St dt per share for some constant ı > 0, and
buy ı dt shares of stock and add them to the existing stocks. If we let g.t/ be the
number of stocks at t, then g.t C dt/� g.t/ D g.t/ıdt since we can use the dividend
g.t/ı St dt to buy g.t/ı dt shares of stock. In other words, g.t/ satisfies an ordinary
differential equation g0.t/ D g.t/ı. Hence g.t/ D g.0/eıt. If we begin with one
share at t D 0, i.e., g.0/ D 1, then g.t/ D eıt. If we reinvest the dividend into stock
continuously, then the total value of stock is equal to

Zt D g.t/S0 exp.�t C �Wt/ D S0 exp..� C ı/t C �Wt/ :

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_17

297



298 17 Pricing of Vanilla Options

Regarding Zt as a new underlying asset, we apply the martingale method to compute
the option price.

First, let

zZt D e�rtZt D S0 exp..� C ı � r/t C �Wt/ :

Then

dzZt D .� C ı C 1

2
�2 � r/zZtdt C �zZtdWt :

If we let

� D � C ı C 1
2
�2 � r

�

and define a probability measure Q by

dQ

dP

ˇ
ˇ
ˇ
ˇ
Ft

D exp

�

��Wt � 1

2
�2t

�

;

then Xt D Wt C � t is a Q-Brownian motion, and fzZtgt�0 is a Q-martingale.
Thus the price of a call option is given by

Vt D e�r.T�t/
E
QŒ.ST � K/CjFt�

D e�r.T�t/
E
QŒ.e�ıT ZT � K/CjFt�

D e�ıT e�r.T�t/
E
QŒ.ZT � eıTK/CjFt� :

This value is equal to the price of e�ıT contracts of call options on the underlying
asset fZtg�0 with maturity date T and exercise price eıTK. If we substitute the result
in the previous formula, then

Vt D e�ıT .ZtN.c1/ � eıTKe�r.T�t/N.c2//

D STN.c1/� Ke�r.T�t/N.c2/

where

c1; c2 D log Zt
eıT K

C .r ˙ 1
2
�2/.T � t/

�
p

T � t
D log St

K C .r ˙ 1
2
�2 � ı/.T � t/

�
p

T � t
:

Now, if we let

d1; d2 D log Ft
K ˙ 1

2
�2.T � t/

�
p

T � t
D log St

K C .r � ı ˙ 1
2
�2/.T � t/

�
p

T � t
D c1; c2
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and

Ft D e.r�ı/.T�t/St ;

i.e., if we let Ft be the forward price of the stock, then we can write

Vt D e�r.T�t/.FtN.d1/� KN.d2// :

Remark 17.1 Let us find the replicating portfolio for Vt D Dt C	tSt. If

�t D N.c1/ D N.d1/

then we have to keep e�ıT�t units of Zt. In other words, we have to keep e�ı.T�t/�t

units of St. On the other hand, since

Vt � Zte�ıT�t D �Ke�rTN.c2/ert ;

we have to keep �Ke�rTN.c2/ D �Ke�rTN.d2/ units of bond.

2. Periodic Dividends

In the real world dividends are paid periodically, not continuously. If a dividend
ıSTi is paid at predetermined dates Ti, i � 1, then under the assumption that the
price of the stock St is continuous from the left,

STiC � STi� D �ıSTi�

since St decreases instantaneously by ıSTi� as time passes by across Ti. (As for the
notation, we write limt!Ti˙ St.!/ D STi˙.!/ for every Brownian sample path !.)
Hence

STiC D .1 � ı/STi� ;

and every time when dividend is paid the stock price is multiplied by 1 � ı. If we
let nŒt� be the number of times when dividend is paid until time t, i.e.,

nŒt� D maxfi W Ti � tg ;

then the stock price is given by

St D S0.1 � ı/nŒt� exp.�t C �Wt/ :

If at every time the dividend is paid we increase the number of shares of the stock
by buying the stock using the dividend, the instantaneous increment in the number
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of shares across the time Ti is equal to

ıSTi�
STiC

D ı

1 � ı :

Hence immediately after the time Ti the number of shares of the stock increases by
the ratio of 1C ı

1�ı D 1
1�ı . If we denote such a portfolio by Zt, then it satisfies

Zt D 1

.1 � ı/nŒt� St D S0 exp.�t C �Wt/ :

Thus defined Zt may be regarded as a stock without dividend. Put

� D � C 1
2
�2 � r

�

and define a probability measure Q by

dQ

dP

ˇ
ˇ
ˇ
ˇ
Ft

D exp

�

��Wt � 1

2
�2t

�

:

Then Xt D Wt C � t is a Q-Brownian motion, and the discounted process of Zt,
fzZtgt�0, is a Q-martingale.

Theorem 17.1 The fair price for a forward contract on a stock that periodically
pays dividend is given by

K D erT.1 � ı/nŒT�S0 :

Proof Since the value of the forward contract at expiry date T is equal to CT D
ST � K, its value at time t is equal to

Vt D E
QŒ e�r.T�t/.ST � K/jFt�

D E
QŒ e�r.T�t/..1 � ı/nŒT�ZT � K/jFt�

D .1 � ı/nŒT�Zt � e�r.T�t/K

D .1 � ı/nŒT��nŒt�St � e�r.T�t/K :

Since V0 D 0 for a fair contract, we have .1 � ı/nŒT�S0 � e�rTK D 0. ut
Remark 17.2 As seen in the proof, we have

Vt D .1� ı/nŒT�Zt � e�r.T�t/K ;

and hence we keep .1 � ı/nŒT� units of Zt, i.e., .1 � ı/nŒT��nŒt� shares of the stock for
hedging.
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17.2 Bonds with Coupons

Consider a bond whose price changes stochastically in the financial market. Suppose
that the bond pays coupons at predetermined dates 0 < T1 < � � � < Tn < T. Let C
denote the coupon amount, and r > 0 the risk-free interest rate. If a bond investor
saves the coupons in the form of a risk-free deposit at a bank, the sum of present
values of the coupons until maturity is equal to

Pn
iD1 Ce�rTi . Let

J.t/ D minfi W t < Tig ; 0 � t � T :

That is, J.t/ is the first time a coupon payment is received after time t. For example,
J.Tk/ D k C 1 for k D 1; : : : ; n � 1. Hence

nX

iDJ.t/

Ce�r.Ti�t/

is the sum of values at the time t of coupons which will be received after t. Assume
that the bond price St satisfies

St D
nX

iDJ.t/

Ce�r.Ti�t/ C Ae�tC�Wt (17.1)

for some constants A, � and � . Suppose that the bond investor deposits a coupon
payment into a bank account immediately after it is paid. Then the value of the
coupon payments until time t is equal to

J.t/�1X

iD1
Ce�r.Ti�t/ :

Since the bond itself has value given by (17.1), the portfolio Zt consisting of the
bond itself and the coupons received until time t is given by

Zt D
nX

iD1
Ce�r.Ti�t/ C Ae�tC�Wt :

Now we look for a measure Q for which the discounted price zZt D e�rtZt is a
martingale. Since

zZt D
nX

iD1
Ce�rTi C Ae.��r/tC�Wt ;
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it suffices to find Q for which Ae.��r/tC�Wt is a martingale. To find it, put

� D � C 1
2
�2 � r

�

and let Q be the measure such that

dQ

dP

ˇ
ˇ
ˇ
ˇ
Ft

D e��Wt� 1
2 �

2t ;

then Xt D Wt C � t is a Q-Brownian motion, and fzZtg is a Q-martingale.
The value at time t of the option whose payoff is given by CT 2 FT is given by

E
QŒe�r.T�t/CT jFt�. At maturity T there remains no coupon to receive, and the bond

price is equal to

ST D Ae�TC�WT D Ae.r� 1
2 �

2/TC�XT :

17.3 Binary Options

A European cash-or-nothing binary call option with strike price K pays an agreed
amount A at expiry date T if the asset price ST satisfies ST > K, pays nothing if
ST < K, and 1

2
A if ST D K. If we ignore the probability zero case that ST D K in

a continuous asset price model, then the payoff may be written as A 	 1fST�Kg. A
European asset-or-nothing binary call option pays ST if ST � K, and pays nothing
if ST < K. Binary put options are defined similarly. A binary option is also called a
digital option. The put-call parity relation for cash-or-nothing options is given by

C.St; t/C P.St; t/ D Ae�r.T�t/

since

C.ST ;T/C P.ST ;T/ D A

where C.S; t/ and P.S; t/ denote the prices of binary call and binary put with the
same strike price (Fig. 17.1).

If we combine a cash-or-nothing binary option and a European call option, we
can construct an asset-or-nothing binary option since

K 	 1fST�Kg C .ST � K/C D ST 	 1fST �Kg :
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Fig. 17.1 Payoffs of
cash-or-nothing call and put

Fig. 17.2 Payoffs of
asset-or-nothing call and put

The put-call parity for asset-or-nothing options is given by

C.St; t/C P.St; t/ D St :

(See Fig. 17.2.) In continuous asset price models such as the geometric Brownian
motion model, it does not make any difference what value we assign to the payoff
when ST D K since the probability of such an event is zero. However, in the real
financial market stock price can have integral multiples of tick size which is the
minimum amount that the price of the stock can change. Thus we have to define the
payoff for the event ST D K. For example, we may take 1

2
A as the payoff for ST D K

in the case of a cash-or-nothing binary option.
A cash-or-nothing binary option can be dynamically hedged. However, if near

the expiry date the asset price is close to the exercise price then hedging is difficult
in practice.

Theorem 17.2 The price C of a cash-or-nothing call option is given by

C.S; t/ D e�r.T�t/N.d2/

where d2 is identical as in the formula for the European call. (See Fig. 17.3.)

We present five different proofs. For the sake of notational simplicity we find
C.S; t/ for t D 0.
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Fig. 17.3 Price of a
cash-or-nothing call option
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Fig. 17.4 Domain and
boundary conditions of a
cash-or-nothing call option

Proof (Method 1: Partial Differential Equation) To derive the option price formula,
we solve the Black–Scholes–Merton equation with the boundary conditions

8
ˆ̂
<

ˆ̂
:

C.0; t/ D 0 ; 0 � t � T ;
C.S;T/ D 0 ; S < K ;

C.S;T/ D 1 ; K < S ;
C.S; t/ � e�r.T�t/ ; S � 1 :

See Fig. 17.4. The last condition means that if the stock price is very high then
the probability of exercising the option at expiry date is close to 1 and its discounted
value is the present option price.

As in the case for a European call option, put

8
<

:

S D Kex ;

t D T � 1
�2
� ;

V.S; t/ D Kv.x; �/ :
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Then

�2
@v

@�
D 1

2
�2
@2v

@x2
C
�

r � 1

2
�2
�
@v

@x
� rv :

If we let C D r

�2
, then

@v

@�
D 1

2

@2v

@x2
C
�

C � 1

2

�
@v

@x
� Cv :

Since V.S;T/ D 1fS�Kg, the initial condition for v is given by

v.x; 0/ D 1

K
V.Kex;T/ D 1

K
1fx�0g :

Now we look for v of the form

v.x; �/ D e˛xCˇ�u.x; �/

for some ˛, ˇ, u. If such a solution exists, then we have

ˇu C @u

@�
D 1

2

@2u

@x2
C
�

C � 1

2
C ˛

�
@u

@x
C
�
1

2
˛2 C .C � 1

2
/˛ � C

�

u :

If we take ˛ D �C C 1
2

and

ˇ D 1

2
˛2 C

�

C � 1

2

�

˛ � C D �1
2

�

C C 1

2

�2
;

then

@u

@�
D 1

2

@2u

@x2

and

u.x; 0/ D u0.x/ D e�˛xv.x; 0/ D 1

K
e.C� 1

2 /x1fx�0g :

Hence

e˛xCˇ�u.x; �/

D e˛xCˇ� 1p
2�

Z 1

�1
u0.�/e

�.x��/2=.2�/d�
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D e˛xCˇ� 1p
2�

Z 1

0

1

K
e.C� 1

2 /�e�.x��/2=.2�/d�

D 1

K
e.�CC1

2 /x� 1
2 .CC1

2 /
2� 1p

2�

Z 0

�1
e�.�CxC.C� 1

2 /�/
2=2�C.C� 1

2 /xC 1
2 .C� 1

2 /
2�d�

D 1

K
e�C� 1p

2

Z .xC.C� 1
2 /�/=

p
�

�1
e��2=2d�

D 1

K
e�C�N.d2/

where

d2 D x C .C � 1
2
/�p

�
D log S

K C .r � 1
2
�2/.T � t/

�
p

T � t
:

Since C� D r.T � t/, we conclude

V.S; t/ D Kv.x; �/ D e�r.T�t/N.d2/ :

ut
Proof (Method 2: Risk-Neutrality) Suppose that the underlying asset price St

follows a geometric Brownian motion

dSt D rStdt C �StdWt

under a risk-neutral measure Q. The option price is given by

C.S; t/ D EŒe�r.T�t/1fST �KgjSt�

where the conditional expectation is taken with respect to Q. Since ST D
Ste.r�1=2�2/.T�t/C�WT�t conditional on St at time t, we have

EŒ1fST �KgjSt�

D EŒ1fSte.r�1=2�2/.T�t/C�WT�t �Kg�

D QfSte
.r� 1

2 �
2/.T�t/C�WT�t � Kg

D Qf.r � 1

2
�2/.T � t/C �WT�t � log

K

St
g

D QfWT�t >
log K

St
� .r � 1

2
�2/.T � t/

�
g

D QfZ >
log K

St
� .r � 1

2
�2/.T � t/

�
p

T � t
g .where Z � N.0; 1//
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D QfZ <
log St

K C .r � 1
2
�2/.T � t/

�
p

T � t
g .since � Z � N.0; 1//

D N.d2/ :

Hence C.St; t/ D e�r.T�t/N.d2/. ut
Proof (Method 3: Differentiation of a European Call) There is a simpler method of
finding the price of a digital option if we already have the classical Black–Scholes–
Merton formula for a European call option. Let C.K/ denote the price of a European
call option with exercise price K. Assume K < K1. Then the price of a European
call option with exercise price K1 is equal to C.K1/. If we consider a new option
defined by the difference of two European call options with exercise prices K and
K1, respectively, then its payoff at expiry T is given by

8
<

:

0 if 0 � ST < K ;

ST � K if K � ST < K1 ;
K1 � K if K1 � ST ;

and its price is given by C.K/ � C.K1/. See Fig. 17.5. Now note that the cash-or-
nothing call option with payoff 1fST�Kg can be approximated by a European option
whose payoff at expiry date T is given by the second graph in Fig. 17.6. Hence the
price of the cash-or-nothing call option with exercise price K can be approximated
by 1

K1�K .C.K/ � C.K1// as shown in Fig. 17.6. Therefore the price of the digital
option is equal to the limit

lim
K1!K

C.K/ � C.K1/

K1 � K
D �@C

@K
D e�r.T�t/N.d2/ :

Fig. 17.5 Difference of two
European call options

Fig. 17.6 Approximation of
a cash-or-nothing call option
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Fig. 17.7 Difference of two
binary call options

See Remark 15.2 for the second equality.

Proof (Method 4: Differentiation of a Binary Call)
Let B denote the price of a cash-or-nothing binary call option. It will be regarded

as a function of strike price K while the other parameters are fixed. Then the price
of the European option with the payoff given in Fig. 17.7 is equal to

1

K1 � K
.B.K/� B.K1//

which converges to � @B

@K
as K1 ! K.

On the other hand, according to the risk-neutral method the option price is equal
to

e�r.T�t/
E
Q

�
1

K1 � K
1fK�ST�K1g.ST/

ˇ
ˇ
ˇ
ˇSt

�

: (17.2)

Since Fig. 17.7 is an approximation of a point mass ıfST DKg called the Dirac delta
functional at K, the conditional expectation in (17.2) converges to

e�r.T�t/
E
QŒıfST DKg.ST/jSt� (17.3)

as K1 ! K.
By the formula in Example 4.16 the conditional pdf f .y/, 0 < y < 1, of ST ,

under the condition defined by St, is given by

f .y/ D 1

�y
p
2.T � t/

exp

 

� .log y � log St � .r � 1
2
�2/.T � t//2

2�2.T � t/

!

:
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Then the conditional expectation in (17.3) is equal to e�r.T�t/f .K/. Since

f .K/ D 1

�K
p
2.T � t/

exp

 

� .log K � log St � .r � 1
2
�2/.T � t//2

2�2.T � t/

!

D 1

�K
p
2.T � t/

exp

�

�1
2

d22

�

and since two limits should be equal, we have

� @B

@K
D e�r.T�t/ 1

�K
p
2.T � t/

exp

�

�1
2

d22

�

:

Now, since

@N.d2/

@K
D 1p

2
exp

�

�1
2

d22

��

� 1

K�
p

T � t

�

;

we conclude that

@B

@K
D e�r.T�t/ @N.d2/

@K

and hence B.K/ D e�r.T�t/N.d2/ C c for some constant c. Since B.0/ D e�r.T�t/

and N.d2.0// D 1, we have c D 0. ut
Proof (Method 5: Laplace Transformation Approach) As in Sect. 15.4, we let � D
T � t and put v.S; �/ D V.S;T � �/, and obtain

1

2
�2S2

@2v

@S2
C rS

@v

@S
� @v

@�
D rv (17.4)

with the initial data

v.S; 0/ D V.S;T/ :

Let f .S; s/ be the Laplace transformation L Œv� of v.S; �/. Since

L

�
@v

@�

�

.S; s/ D sL Œv�.S; s/ � v.S; 0/ ;

after taking the Laplace transformations of both sides of (17.4), we obtain

1

2
�2S2

@2f

@S2
C rS

@f

@S
� .s C r/f D �v.S; 0/ : (17.5)
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To solve it, first find a solution of the homogeneous equation

1

2
�2S2

@2f

@S2
C rS

@f

@S
� .s C r/f D 0 : (17.6)

In this case there exist two linearly independent solutions, and we look for solutions
of the form

f .S; s/ D S� : (17.7)

Note that � 6D 1; 2. Substituting (17.7) into (17.6), we obtain

1

2
�2S2�.� � 1/S��2 C rS�S��1 � .s C r/S� D 0 :

Eliminating S� from the both sides, we obtain the quadratic equation

1

2
�2�2 C .�1

2
�2 C r/� � .s C r/ D 0 : (17.8)

Hence there exist two zeros

�1; �2 D
�.r � 1

2
�2/˙

q
.r � 1

2
�2/2 C 2.s C r/�2

�2
:

For s > 0 we have

�1 >
�.r � 1

2
�2/C

q
.r � 1

2
�2/2 C 2r�2

�2
D �2

�2
D 1 ;

�2 <
�.r � 1

2
�2/�

q
.r � 1

2
�2/2 C 2r�2

�2
D � 2r

�2
< 0 :

In summary, a homogeneous solution fH of (17.6) is of the form

fH D c1.s/S
�1 C c2.s/S

�2

where c1.s/ and c2.s/ depend only on s but not on S.
Now we recall that the initial condition is given by

v.S; 0/ D V.S;T/ D 1fS�Kg :
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Hence (17.5) becomes

1

2
�2S2

@2f

@S2
C rS

@f

@S
� .s C r/f D �1fS�Kg : (17.9)

In the region S � K, we have

1

2
�2S2

@2f

@S2
C rS

@f

@S
� .s C r/f D �1 ;

and we have a particular solution

fP.S; s/ D 1

s C r
:

Therefore we try to find a general solution f of (17.9) of the form

f .S; s/ D
8
<

:
a1S�1 C a2S�2 C 1

s C r
; S � K ;

a3S�1 C a4S�2 ; S < K ;

where ai may depend on s. To determine ai in the region S � K we note that
v.S; �/ ! 1 as S ! C1 and hence f .S; s/ must be bounded as S ! C1, which
is possible only when a1 D 0. On the other hand, if S < K, we have v.S; �/ ! 0

as S # 0, and hence f .S; s/ ! 0 as S # 0, thus we conclude that a4 D 0. If we
summarize what has been obtained so far, we have

f .S; s/ D
8
<

:
c2.s/S�2 C 1

s C r
; S � K ;

c1.s/S�1 ; S < K ;

for some c1.s/ and c2.s/. Since f .S; s/ is continuous and differentiable at .K; s/, we
have

8
<

:
c2.s/K�2 C 1

s C r
D c1.s/K�1 ;

c2.s/�2K�2�1 D c1.s/�1K�1�1 :

Hence

8
<̂

:̂

c1.s/ D �2

�1 � �2
K��1 1

s C r
;

c2.s/ D �1

�1 � �2
K��2 1

s C r
:
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Note that

�1

�1 � �2

D
�.r � 1

2
�2/C

q
.r � 1

2
�2/2 C 2.s C r/�2

2

q
.r � 1

2
�2/2 C 2.s C r/�2

D .s C r/�2
q
.r � 1

2
�2/2 C 2.s C r/�2

1

r � 1
2
�2 C

q
.r � 1

2
�2/2 C 2.s C r/�2

and

�2

�1 � �2

D
�.r � 1

2
�2/�

q
.r � 1

2
�2/2 C 2.s C r/�2

2

q
.r � 1

2
�2/2 C 2.s C r/�2

D .s C r/�2
q
.r � 1

2
�2/2 C 2.s C r/�2

1

r � 1
2
�2 �

q
.r � 1

2
�2/2 C 2.s C r/�2

:

Since, for S < K, we have

f .S; s/

D �2

�1 � �2

�
S

K

��1 1

s C r

D �2
q
.r � 1

2
�2/2 C 2.s C r/�2

exp
�
�1 log S

K

�

r � 1
2
�2 �

q
.r � 1

2
�2/2 C 2.s C r/�2

:

Now we take the inverse Laplace transformation and obtain v.S; �/ D e�r�N.d2/
and finally we have V.S; t/ D e�r.T�t/N.d2/. ut
Theorem 17.3 Consider a cash-or-nothing call with payoff 1fST �Kg. The hedge
ratio 	 is given by

	 D @C

@S
D e�r.T�t/N0.d2/

�S
p

T � t
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Fig. 17.8 Delta of a cash-or-nothing call option

and satisfies

lim
t!T�	 D

8
<

:

0; ST > K
1; ST D K
0; ST < K

with probability 1 where the limit is taken as t converges to T from the left. (See
Fig. 17.8.)

Proof In the following argument, we consider continuous sample paths for St since
it is continuous with probability 1.

(i) Suppose ST > K. Since

d2.t; St/ � log ST
K C .r � 1

2
�2/.T � t/

�
p

T � t
� C1

1p
T � t

for T � t � 0, we have

N0.d2/ D 1p
2

e� 1
2 d22 � C2e�C3=.T�t/

and

	 � C4
e�C3=.T�t/

p
T � t

� 0

for T � t � 0 where Ci, 1 � i � 4, are positive constants.
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(ii) Suppose ST D K. Then St � K for t � T. Since

d2.t; St/ � log 1C .r � 1
2
�2/.T � t/

�
p

T � t
� C1

p
T � t ;

we have

N0.d2/ D 1p
2

e� 1
2 d22 � C2e�C3.T�t/ � C4

and

	 � C5
1p

T � t
� 1

for T � t � 0 where Ci, 1 � i � 5, are positive constants.
(iii) Suppose ST < K. Since there exists a constant C > 0 such that

d2.t; St/ � log ST
K C .r � 1

2
�2/.T � t/

�
p

T � t
� �C

1p
T � t

for T � t � 0, we have	 � 0 for T � t � 0 as in the case (i). ut
Remark 17.3

(i) The result implies that if S > K or S < K almost at expiry date with almost
certainty the seller of the option has to pay to the buyer of the option either $1
or nothing, and hence, close to expiry date, either there is no need for the option
seller to hedge by keeping stocks or there is no way to hedge.

(ii) Note that delta is inversely proportional to the asset price as expected since delta
represents the number of shares of the underlying asset in hedging the option
sold.

Remark 17.4 (European Call Option Price) We can derive the formula of the price
of a European call option from that of the price of a binary option. Let K be the
strike price of a given European call option. Its payoff is approximated by a sum of
payoffs of infinitely many binary options. More precisely, the payoff .ST � K/C is
approximated by

1X

iD0
ıK 	 1fST�KCi�ıKg

if ıK > 0 is sufficiently small. See Fig. 17.9. Let B.x/ denote the time t D 0 price of
a binary option with strike price x and payoff 1fST �xg. Then the price of a European
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Fig. 17.9 Difference of two
binary options

δ

call option with strike price K, denoted by C.K/, is approximated by

1X

iD0
B.K C i 	 ıK/ ıK :

Hence

C.K/ D lim
ıK!0

1X

iD0
B.K C i 	 ıK/ ıK

D
Z 1

K
B.x/ dx

D
Z 1

K
e�rTN.d2/ dx

where

d1;2.x/ D � log x C log S0 C .r ˙ 1
2
�2/T

�
p

T
:

Note that

Z 1

K
N.d2/ dx D

Z 1

K

Z d2.x/

�1
1p
2

e�z2=2 dz dx

D
Z d2.K/

�1

Z x�

K

1p
2

e�z2=2 dx dz .x� D S0e.r� 1
2 �

2/T��p
Tz/

D
Z d2.K/

�1
1p
2

e�z2=2
�
x� � K

�
dz

D
Z d2.K/

�1
1p
2

e�z2=2
�

S0e.r� 1
2 �

2/T��p
Tz � K

�
dz
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Fig. 17.10 d2 as a function
of strike price

z

z

z

x

D S0e
rT
Z d2.K/

�1
1p
2

e�.zC�p
T/2=2dz � KN.d2.K//

D S0erTN.d2.K/C �
p

T/ � KN.d2.K// :

For the domain of integration for the double integral see Fig. 17.10. Now we use the
fact that d2.K/C �

p
T D d1.K/.

Exercises

17.1 Show that the fair price for a forward contract on ST at t D 0 is equal to
F D AerT .

17.2 What is the price of an asset-or-nothing binary call option?

17.4 Computer Experiments

Simulation 17.1 (Cash-or-Nothing Call)
The price surface defined by the Black–Scholes–Merton formula for a cash-or-

nothing call option is given in Fig. 17.3. Also presented in Fig. 17.8 is the delta for
the option where the graph is unbounded at t D T as proved in Theorem 17.3.

K = 5;

A = 1;

r = 0.05;

sigma = 0.3;

M= 70; % number of points on the asset axis including endpoints

N= 50; % number of points on the time axis including endpoints

mu = 0.1;

T = 1;



17.4 Computer Experiments 317

dt=T/N;

S0 = 4;

S_max = 10;

dS = S_max/M;

S_range = 0:dS:S_max;

t_range = 0:dt:T;

call = zeros(M+1,N+1);

Delta= zeros(M+1,N+1);

for i = 1:M+1

S = S_range(i);

for j = 1:N

tau = T-t_range(j);

d2 = (log(S/K)+(r-0.5*sigma^2)*(tau))/(sigma*sqrt(tau));

call(i,j) = A*exp(-r*tau)*normcdf(d2);

Delta(i,j) = (A*exp(-r*tau)*normpdf(d2))/(sigma*S*sqrt(tau));

end

Delta(i,N+1) = (A*normpdf(d2))/(sigma*S*sqrt(tau));

call(i,N+1) = A*heaviside(S-K); % payoff at T

end

Delta(1,:) = 0;

[t_grid,S_grid] = meshgrid(t_range,S_range);

figure(1)

surf(S_grid,t_grid,call);

hold off;

figure(2);

surf(S_grid,t_grid,delta);

Simulation 17.2 (Brownian Bridge and At-the-Money Option)
The delta for an at-the-money cash-or-nothing call is computed, and the output

is given in Fig. 17.11 where 	 ! 1 as t ! T. To generate a sample asset path St

such that

ST D S0 exp

�

.� � 1

2
�2/T C �WT

�

D K ;

we use a Brownian bridge path X0!b
t from 0 to b where b satisfies

S0 exp

�

.� � 1

2
�2/T C �b

�

D K ;
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Fig. 17.11 Delta of an at-the-money digital option

i.e.,

b D 1

�

�

log
K

S0
� .� � 1

2
�2/T




:

We take 1
2
A as the payoff for ST D K

mu = 0.1; % drift coefficient

sigma = 0.3; % volatility

T = 2; % expiry date

r = 0.05; % risk-free interest rate

N = 200; % number of time subintervals

dt = T/N;

M = 5; % number of sample paths

K = 14; % strike price

S0 = 10;

A = 1; % payoff

t = 0:dt:T;

% Brownian Motion
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W = zeros(M,N + 1);

dW = sqrt(dt)*randn(M,N);

for i=1:N

W(:,i+1) = W(:,i) + dW(:,i);

end

% Brownian Bridge

b = ( log(K/S0) - (mu-(sigma^2)/2)*T )/sigma

X = zeros(M,N+1);

for i=1:N+1

X(:,i) = b*(i-1)*dt/T + W(:,i) - W(:,N+1)*(i-1)*dt/T;

end

subplot(2,2,1)

for i = 1:M

plot(t,X(i,1:N+1));

hold on;

end

title(’Brownian Bridge’);

% Asset Price

S = zeros(M,N+1);

S(:,1) = S0;

for i=1:N+1

S(:,i) = S0*exp((mu-(sigma^2)/2)*(i-1)*dt + sigma*X(:,i));

end

subplot(2,2,2);

for i=1:M

plot(t,S(i,:))

hold on;

end

title(’Asset Price’);

% Option Price

V=zeros(M,N+1);

d2=zeros(M,N+1);

for i=1:N+1

tau = T-(i-1)*dt;

d2(:,i) = (log(S(:,i)/K) + (r-0.5*sigma^2)*tau)/sigma/sqrt(tau);

V(:,i)= A*exp(-r*tau)*normcdf(d2(:,i));

end

V(:,N+1) = A/2;

subplot(2,2,3)

for i=1:M

plot(t,V(i,:));

hold on;

end

title(’Option Price’);

% Delta
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Delta = zeros(M,N+1);

for i=1:N+1

tau = T-(i-1)*dt;

d2 = (log(S(:,i)/K) + (r-0.5*sigma^2)*tau)/sigma/sqrt(tau);

Delta(:,i) = A*exp(-r*tau)*normpdf(d2(:))./(S(:,i)*sigma*tau);

end

subplot(2,2,4)

for i=1:M

plot(t, Delta(i,:));

hold on;

end

title(’Delta’);



Chapter 18
Pricing of Exotic Options

Options with nonstandard features are called exotic options. In this chapter we intro-
duce exotic options such as Asian options and barrier options. For an encyclopedic
collection of option pricing formulas consult [36].

18.1 Asian Options

The payoff of an Asian option with expiry date T is determined by a suitably defined
average of underlying asset prices S1; : : : ; Sn measured on predetermined dates 0 <
t1 < t2 < � � � < tn D T. For example, we can choose any of the following definitions
of average to define a payoff of an Asian option.

A1 D arithmetic average D S1 C � � � C Sn

n

A2 D geometric average D .S1 	 � � � 	 Sn/
1=n

Or using weights wi we may define weighted averages by

weighted arithmetic average D w1S1 C � � � C wnSn

w1 C � � � C wn
;

weighted geometric average D .Sw1
1 	 � � � 	 Swn

n /
1=.w1C���Cwn/ :

We can also define the corresponding continuous versions of averages. If we
consider only equal weights in computing the average, there are four types of
averages as given in Table 18.1.

In Fig. 18.1 a sample asset price path is presented for Asian option with n D 6

monitoring times for the period 0 � t � T D 3.

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
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Table 18.1 Definitions of
average for Asian options

Average Discrete time Continuous time

Arithmetic 1
n

Pn
iD1 Sti

1
T

R T
0 St dt

Geometric .St1 � � � Stn/
1=n exp

�
1
T

R T
0 log St dt

�

Fig. 18.1 An asset price path
for Asian option with six
monitoring times
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For a call option with exercise price K the payoff is given by .A � K/C for
some average A. Asian options are used to hedge the risk from fluctuations of metal
prices, crude oil price or foreign currency rates. Due to lower volatility of an average
compared to the original underlying asset price, Asian option prices are lower than
those of vanilla options, in general.

Theorem 18.1 Suppose that the price of the underlying asset St follows a geometric
Brownian motion, i.e., St D S0 exp..� � 1

2
�2/t C �Wt/ for some � and � . Then the

price of an Asian call option with geometric average, with strike price K and expiry
date T, is given by

S0e. N��r/TN.d1/� Ke�rTN.d2/

where

d1; d2 D log S0
K C . N�˙ 1

2
N�2/T

N�p
T

;

N�2 D 1

6
�2.1C 1

n
/.2C 1

n
/ ;

N� D 1

2
N�2 C 1

2
.r � 1

2
�2/.1C 1

n
/ :
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Proof We apply the risk-neutral method in Sect. 16.3 and take � D r. Put ıt D T
n ,

then

A2 D S0 exp

�
1

n

�

.r � 1

2
�2/

nX

iD1
iıt C �

nX

iD1
Wiıt


�

:

Since

nX

iD1
Wiıt D n.Wıt � W0/

C .n � 1/.W2ıt � Wıt/

C :::

C 3.W.n�2/ıt � W.n�3/ıt/

C 2.W.n�1/ıt � W.n�2/ıt/

C .Wnıt � W.n�1/ıt/

and since the increments Wiıt � W.i�1/ıt are independent on the right-hand side,Pn
iD1 Wiıt is normally distributed with mean 0 and variance

nX

iD1
i2ıt D 1

6
n.n C 1/.2n C 1/ıt D 1

6
.n C 1/.2n C 1/T :

If we put

X D 1

n

�

.r � 1

2
�2/

nX

iD1
iıt C �

nX

iD1
Wiıt




;

then

A2 D S0 eX :

Note that X has normal distribution with mean . N�� 1
2

N�2/T and variance N�2T. Hence

Y D X � . N� � r/T

has normal distribution with mean .r � 1
2

N�2/T and variance N�2T. Furthermore, we
have

A2 D S0e
. N��r/TeY :
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Now we find the price of an Asian call option where A2 is used as the definition
of average and the payoff is given by maxf0;A2 � Kg. Take S0e. N��r/T as the initial
price in the Black–Scholes–Merton formula, and we obtain the Asian call option
price. ut
Remark 18.1

(i) Note that for sufficiently large n, we have

N�2 � 1

3
�2

and

N� � r � 1

2
	 1

3
�2 C 1

2
.r � 1

2
�2/ � r D � 1

12
�2 � 1

2
r < 0 ;

which implies that the Asian call option price is cheaper since N� < � and

S0e. N��r/T < S0 :

(ii) In the above proof, we used the identity

nX

iD1
Wiıt D

n�1X

kD0
.n � k/ .W.kC1/ıt � Wkıt/ ;

which is nothing but a discretized version of the Itô integral: After multiplying
both sides by ıt D T

n , we obtain

nX

iD1
Wiıt 	 T

n
D

n�1X

kD0
.T � k

T

n
/ .W.kC1/ıt � Wkıt/ ;

whose continuous limit is given by

Z T

0

Wt dt D
Z T

0

.T � t/ dWt :

The right-hand side is equal to

TWT �
Z T

0

t dWt :

Hence we obtain the formula in Example 11.3(iv).



18.2 Barrier Options 325

18.2 Barrier Options

A barrier option has a barrier or barriers, and becomes effective only when the asset
price stays within the barriers or goes outside the boundary depending on the type of
the option during the lifetime of the option. Figure 18.2 illustrates a barrier option
with an upper barrier. For a knock-out option, if the asset price crosses the barrier
or barriers, the option loses its value immediately. For a knock-in option the barrier
option has value only when the asset price reaches a certain level before or at expiry
date. Barriers may be defined only on a part of the time to expiry date, and barriers
of different heights can be set up.

For example, consider a call option with its exercise price equal to $10 and
knock-in barrier equal to $11. The asset price at t D 0 was $9, and the price at
expiry date is $10.5. If the asset price has never been equal to $11, then the option at
expiry date will be useless. However, the value of the option at expiry date is worth
$0.5 if the asset price has been at $11 at least once. Or, we may consider a knock-
out barrier option which becomes worthless if the asset price hits a given barrier at
any time t, 0 � t � T. See Fig. 18.2 for several scenarios of asset price movement.
Consult Simulation 18.1.

A barrier option can have two barriers L < U. In Fig. 18.3 a double barrier option
is shown with its lower and upper barriers L and U. In this case, knock-out barrier

Fig. 18.2 A knock-out
barrier option with five
sample asset paths
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S t

Fig. 18.3 A double barrier
option
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options can have many different kinds of knock-outs and knock-ins: up-and-out,
down-and-out, up-and-in, down-and-in, and their various combinations.

Let zWt is a zP-Brownian motion. Let yWt D zWt C � t where

� D r � 1
2
�2

�
D r

�
� 1

2
� :

Then

St D S0e�
zWtC.r� 1

2 �
2/t D S0e�

yWt :

Let us compute the price of an up-and-out call option where there is one barrier
B D B1 > S0. Define

yMT D max
0�t�T

yWt :

Then

max
0�t�T

St D S0e�
yMT :

The option knocks out if and only if

S0e�
yMT > B :

Otherwise, the option pays off

.ST � K/C D .S0e
� yWT � K/C :

Hence the payoff at expiry date T is given by

VT D .S0e�
yWT � K/C1fS0e�

yMT �Bg

D .S0e
� yWT � K/1fS0e� yWT �K; S0e�yMT �Bg

D .S0e�
yWT � K/1f yWT �k; yMT �bg

where

k D 1

�
log

K

S0
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and

b D 1

�
log

B

S0
:

The option value at t � T is given by

Vt D E
zPŒe�r.T�t/VT jFt� ;

and hence

e�rtVt D E
zPŒe�rTVT jFt�

is a martingale.
Let � denote the first time at which the asset price reaches the barrier B, i.e.,

� D
�

infft � 0 W St D Bg if St D B for some 0 � t < 1 ;

1 ; otherwise :

(Recall that a sample path of St is continuous with probability 1.) Then � is a
stopping time. Define a stochastic process by

e�r.t^�/Vt^� D
�

e�rtVt ; 0 � t � � ;

e�r�V� ; � < t � T :

Since a stopped martingale is also a martingale, we see that e�r.t^�/Vt^� is a zP-
martingale. (Consult Theorem 6.8.) More precisely, let Vt D v.t; St/, 0 � t � � ,
then e�r.t^�/v.t ^ �; St^� / is a zP-martingale.

Now we derive the Black–Scholes–Merton equation for an up-and-out call
barrier option.

Theorem 18.2 (Up-and-Out Call) Let v.t; x/ denote the option price at time t,
0 � t � T, of an up-and-out call under the assumption that the call has not knocked
out prior to time t and St D x. Then we have the Black–Scholes–Merton equation

vt C rxvx C 1

2
�2x2vxx D rv ; .t; x/ 2 Œ0;T� 	 Œ0;B/

with boundary and final conditions given by

8
<

:

v.t; 0/ D 0 ; 0 � t � T ;
v.t;B/ D 0 ; 0 � t � T ;
v.T; x/ D .x � K/C; 0 � x � B :
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Fig. 18.4 Boundary and final
conditions for an up-and-out
call barrier option

(See Fig. 18.4.) Its solution is given by

v.t; x/ D x
n
N
�
ıC.�;

x

K
/
�

� N
�
ıC.�;

x

B
/
�o

� e�r�K
n
N
�
ı�.�;

x

K
/
�

� N
�
ı�.�;

x

B
/
�o

� B
� x

B

��2r=�2
�

N

�

ıC.�;
B2

Kx
/

�

� N

�

ıC.�;
B

x
/

�


C e�r�K
� x

B

��2r=�2C1 �
N

�

ı�.�;
B2

Kx
/

�

� N

�

ı�.�;
B

x
/

�


where � D T � t,

ı˙.�; u/ D 1

�
p
�

�

log u C .r ˙ 1

2
�2/�




;

and N.�/ denotes the cumulative distribution function of the standard normal
distribution.

Proof Note that

d.e�rtv.t; St//

D e�rt

�

�rvdt C vtdt C vxdS C 1

2
vxx.dS/2




D e�rt

�

�rv C vt C rSvx C 1

2
�2S2vxx




dt C e�rt�Svxd zW :

The drift term should vanish for 0 � t � � . Since .t; St/ is an arbitrary point in
f.t; x/ W 0 � t � T; 0 � x � Bg before the up-and-out option strikes out, we obtain
the Black–Scholes–Merton equation in the rectangle. ut
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Fig. 18.5 Price of a down-and-out put option

Now we find the formula for the price of a down-and-out put barrier option. See
Fig. 18.5 where we observe that the option price is zero if the asset price falls below
the given barrier.

Theorem 18.3 (Down-and-Out Put) The price of a down-and-out put option Pd-o

with strike price K with a barrier L, L < K, and expiry date T is given by

Pd-o D Ke�rTN.�dK
2 / � S0N.�dK

1 /

� Ke�rTN.�dL
2 /C S0N.�dL

1 /

� Ke�rT
� L

S0

� 2r
�2

�1
.N.d4/� N.d6//

C S0
� L

S0

� 2r
�2

C1
.N.d3/ � N.d5//

where

dK
1;2 D log S0

K C .r ˙ 1
2
�2/T

�
p

T
;

dL
1;2 D log S0

L C .r ˙ 1
2
�2/T

�
p

T
;

d3;4 D log L
S0

C .r ˙ 1
2
�2/T

�
p

T
;

d5;6 D log L2

S0K C .r ˙ 1
2
�2/T

�
p

T
:
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Proof Note that

Pd-o D e�rT
EŒ.K � ST/1fL<ST<Kg1fmin0�t�T St>Lg�

D e�rT
EŒ.K � ST/1fL<ST<Kg�

� e�rT
EŒ.K � ST/1fL<ST<Kg1fmin0�t�T St�Lg�

D e�rT
EŒ.K � ST/1fST<Kg�

� e�rT
EŒ.K � ST/1fST<Lg�

� e�rT
EŒK1fL<ST<Kg1fmin0�t�T St�Lg�

C e�rT
EŒST1fL<ST<Kg1fmin0�t�T St�Lg�

D I1 � I2 � I3 C I4 :

Observe that I1 is the price of a European put option, and hence

I1 D Ke�rTN.�dK
2 /� S0N.�dK

1 / :

Similarly, we see that

I2 D e�rT
EŒ.K � L C L � ST/1fST<Lg�

D e�rT.K � L/P.fST < Lg/
C Le�rTN.�dL

2 /

� S0N.�dL
1 / :

Let us compute P.fST < Lg/. If Wt denotes the Brownian motion driving the price
process, then we have

P.fST < Lg/ D P

 (

W1 <
log L

S0
� .r � 1

2
�2/T

�
p

T

)!

D P

 (

�W1 >
log S0

L C .r � 1
2
�2/T

�
p

T

)!

D 1 � N.dL
2 /

D N.�dL
2 /

since �W1 is a standard normal variable. Hence

I2 D e�rT.K � L/N.�dL
2 /C Le�rTN.�dL

2 /� S0N.�dL
1/

D Ke�rTN.�dL
2/ � S0N.�dL

1 / :
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Now put

� D 1

�
log

L

S0
;

� D 1

�
log

K

S0
;

� D r

�
� 1

2
� :

Since

Wt D �Wt

is also a Brownian motion, we define a Brownian motion with drift by

yWt D Wt � � t

and define

yMT D max
0�t�T

yWt :

Then

L < ST < K

if and only if

�� < yWT < �� :

Also note that the following three statements are equivalent:

min
0�t�T

St � L ;

min
0�t�T

.Wt C � t/ � � ;

and

max
0�t�T

yWt � �� :

Hence

EŒ1fL<ST<Kg1fmin0�t�T St�Lg�

D Pf�� < yWT < �� ; yMT � ��g
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D
Z ��

��

Z 1

��
2.2m � w/

T
p
2T

e��w� 1
2 �

2T� 1
2T .2m�w/2 dm dw

D
Z ��

��
1p
2T

e��w� 1
2 �

2T� 1
2T .�2��w/2 dw

D e2��
Z ��

��
1p
2T

e� 1
2T .wC2�C�T/2 dw

D e2��
Z z.��/

z.��/
1p
2

e� 1
2 z2 dz

D e2��
�

N

�
�C �Tp

T

�

� N

��� C 2�C �Tp
T

�


where we applied Theorem 9.1 in the second equality, and we used the identity

��w � 1

2
�2T � 1

2T
.w C 2�/2 D � 1

2T
.w C 2�C �T/2 C 2��

in the fourth equality, and we took the substitution

z.w/ D w C 2�C �Tp
T

in the fifth. Note that

e2�� D exp

�

2

�
r

�
� 1

2
�

�
1

�
log

L

S0

�

D
�

L

S0

� 2r
�2

�1
;

�C �Tp
T

D log L
S0

C .r � 1
2
�2/T

�
p

T
D d4 ;

and

�� C 2�C �Tp
T

D � log K
S0

C 2 log L
S0

C .r � 1
2
�2/T

�
p

T
D d6 :

Hence

I3 D Ke�rT

�
L

S0

� 2r
�2

�1
fN.d4/� N.d6/g :

Finally, since

ST D S0e��T��WT D S0e��.��TCWT / D S0e�� yWT ;
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we have

EŒST1fL<ST<Kg1fmin0�t�T St�Lg�

D
Z ��

��

Z 1

��
S0e

��w 2.2m � w/

T
p
2T

e��w� 1
2 �

2T� 1
2T .2m�w/2 dm dw

D S0

Z ��

��
1p
2T

e�.�C�/w� 1
2 �

2T� 1
2T .wC2�/2 dw

D S0

Z ��

��
1p
2T

e� 1
2T .wC2�C.�C�/T/2C2�.�C�/C 1

2 �
2TC��T dw

D S0e2�.�C�/C 1
2 �

2TC��T
Z z.��/

z.��/
1p
2

e� 1
2 z2 dz

D S0e2�.�C�/C 1
2 �

2TC��T

	
�

N

�
�C .� C �/Tp

T

�

C N

��� C 2�C .� C �/Tp
T

�


where we used the substitution

z.w/ D w C 2�C .� C �/Tp
T

in the fourth equality. Note that

2�.� C �/C 1

2
�2T C ��T

D 2
� r

�2
C 1

2

�
log

L

S0
C rT

D log
�� L

S0

�2r=�2C1
erT
�

and that

�C .� C �/Tp
T

D log L
S0

C .r C 1
2
�2/T

�
p

T
D d3 ;

�� C 2�C .� C �/Tp
T

D log L2

S0K C .r C 1
2
�2/T

�
p

T
D d5 ;

I4 D S0

�
L

S0

�2r=�2C1
.N.d3/� N.d5// ;

which completes the proof. ut
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18.3 Computer Experiments

Simulation 18.1 (Stopped Asset Price Process)
We plot five sample paths of the asset price process, some of which are knocked

out by an upper barrier before T. See Fig. 18.2.

M = 5; % number of sample paths

T = 1.5;

mu = 0.1;

sigma = 0.3;

a = 0;

b = 11;

S0 = 9;

N = 300;

dt = T/N;

t = 0:dt:T;

S = zeros(M,N+1);

S(:,1) = S0;

dW = sqrt(dt)*randn(M,N);

stop = (N+1)*ones(M,1);

for i = 1:M;

for j = 1:N;

S(i,j+1) = S(i,j) + mu*S(i,j)*dt + sigma*S(i,j)*dW(i,j);

if ( (S(i,j+1) >= b) )

S(i,j+1) = b;

stop(i) = j+1;

break;

end

end

end

for i = 1:M

plot(0:dt:(stop(i)-1)*dt,S(i,1:stop(i)),’color’,hsv2rgb([1-i/M 1 1]));

hold on

end

Simulation 18.2 (Down-and-Out Put)
The surface defined by the Black–Scholes–Merton formula for a down-and-out

put is given in Fig. 18.5.

K = 10;

L = 6; % a lower barrier

r = 0.05;

sigma = 0.3;

M= 75; % number of points on the asset axis including endpoints

N= 40; % number of points on the time axis including endpoints

T = 2;

dt = T/N;

S0 = 10;

S_max = 20;

dS = S_max/M;

S_range=0:dS:S_max; % Divide the interval into M subintervals.
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t_range=0:dt:T; % Divide the interval into N subintervals.

Put_do = zeros(M+1,N+1);

index_barrier = ceil(L/dS)

for i=1:M+1

S = S_range(i);

for j=1:N

tau = T - t_range(j);

d1K = (log(S/K) + (r+0.5*sigma^2)*tau)/sigma/sqrt(tau);

d2K = (log(S/K) + (r-0.5*sigma^2)*tau)/sigma/sqrt(tau);

d1L = (log(S/L) + (r+0.5*sigma^2)*tau)/sigma/sqrt(tau);

d2L = (log(S/L) + (r-0.5*sigma^2)*tau)/sigma/sqrt(tau);

d3 = (log(L/S) + (r+0.5*sigma^2)*tau)/sigma/sqrt(tau);

d4 = (log(L/S) + (r-0.5*sigma^2)*tau)/sigma/sqrt(tau);

d5 = (log(L^2/S/K) + (r+0.5*sigma^2)*tau)/sigma/sqrt(tau);

d6 = (log(L^2/S/K) + (r-0.5*sigma^2)*tau)/sigma/sqrt(tau);

I1(i,j)= K*exp(-r*tau)*normcdf(-d2K) - S*normcdf(-d1K);

I2(i,j)= K*exp(-r*tau)*normcdf(-d2L) - S*normcdf(-d1L);

I3(i,j)= K*exp(-r*tau)*(L/S)^(2*r/sigma^2-1)*(normcdf(d4)

-normcdf(d6));

I4(i,j)= S*(L/S)^(2*r/sigma^2+1)*(normcdf(d3)-normcdf(d5));

Put_do(i,j) = I1(i,j) - I2(i,j) -I3(i,j) + I4(i,j);

end

end

for i=1:index_barrier

Put_do(i,:) =0;

end

for i=1:M+1

Put_do(i,N+1) = max(K-S_range(i),0)*heaviside

(S_range(i) - L);

end

[t_grid,S_grid]=meshgrid(t_range,S_range);

surf(S_grid,t_grid,Put_do);



Chapter 19
American Options

An option that can be exercised early, i.e., before or on the expiry date, is called an
American option while a European option can be exercised only on the expiry date.
Such an early exercise feature makes the pricing of American options harder. In the
last section we introduce a very practical algorithm called the least squares Monte
Carlo method, which is based on regression to estimate the continuation values from
simulated sample paths.

19.1 American Call Options

Since an American option can be exercised at any time, it must be at least as valuable
as an otherwise identical European option. For American call options, however, the
right to early-exercise is worthless. In other words, the right on early exercise does
not affect the price of an American call option.

Theorem 19.1 The prices of an American call option and a European call option
are equal if their expiry date and exercise price are equal.

Proof The holder of an American call option would try to maximize his profit using
various strategies. The first strategy is to early exercise the option at time t < T. If
St > K, then the holder will gain profit St � K at time t. This strategy is no better
than the following second strategy: At the time t in the first strategy by short selling
the holder receives St, and at expiry date T the holder has two choices: (i) either the
holder exercises the option and buys a share of the stock at the exercise price K, or
(ii) buys a share of the stock in the market at the price ST . By the second strategy
the holder of the option can buy a stock at expiry date paying at most K, and return
the stock which was borrowed for short selling.

Since the value of K at time T is not greater than the value of K at time t, the
second strategy is better than or as good as the first one. Note that the second strategy

© Springer International Publishing Switzerland 2016
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Table 19.1 Viewpoint of the holder of an American call option

Time 0 t T

Without short sell Option Cash St � K er.T�t/.St � K/

With short sell (I) Option Cash St and .�1/ share of stock er.T�t/St � K

With short sell (II) Option Cash St and .�1/ share of stock er.T�t/St � ST

can be used for a European option. Hence the prices of an American call option and
a European call option are equal if the expiry date and exercise price are identical.
Consult Table 19.1. ut
Remark 19.1 Consider European call options C1 and C2 on a stock with the same
exercise price and different expiry dates T1 and T2, T1 < T2, respectively. Consider
an American call option A2 with expiry date T2. It has the same value as C2 by
Theorem 19.1. However, A2 can be exercised any time before T2 including at time
T1. Hence it is worth as least as much as C1. Thus C2 is valuable at least as much as
C1. This implies that the European call option price is a monotonically increasing
function of time to expiry.

19.2 American Put Options

Theorem 19.2 Let V.S; t/ denote the price of an American put option with expiry
date T and exercise price K. Then for each t 2 Œ0;T� there exists a number S�

t 2
.0;1/ such that for 0 � S � S�

t and 0 � t � T, we have

V.S; t/ D K � S and
@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
< rV ;

and for S�
t < S and 0 � t � T,

V.S; t/ > maxfK � S; 0g and
@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
D rV :

The boundary condition at S D S�
t is that the option price is continuously

differentiable with respect to S, is continuous in t, and

V.S�
t ; t/ D maxfK � S�

t ; 0g ;
@V

@S
.S�

t ; t/ D �1 :

Proof As in Sect. 15.1 the increment of V is given by

ıV D
�
@V

@t
C 1

2
�2S2

@2V

@S2

�

ıt C @V

@S
ıS :
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Now from the viewpoint of an option seller we construct a self-financing and risk-
free portfolio… by

….S; t/ D �V.S; t/C D.S; t/C	.S; t/S : (5)

In other words, … consists of one option sold, and bank deposit D, and 	 units of
underlying asset S. We do not know how much S will change as time passes by from
t to t Cıt. Thus we fix the hedge ratio	 from t to t Cıt, and suppose that S changes
to S C ıS and… changes to…C ı…, respectively. The bank deposit D increases by
the amount ıD D rDıt. In summary, we have

ı… D �ıV C rDıt C	ıS

D
�

�@V

@t
� 1

2
�2S2

@2V

@S2
C rD

�

ıt C
�

�@V

@S
C	

�

ıS :

Take	 D @V
@S . Then the ıS term disappears, and there is no risk in ı… since there is

no risky asset price movement. However, there remains the risk that the holder of an
American option may early exercise the option and cause financial loss to the seller,
and ı… should be greater than the risk-free profit to compensate for the risk. Hence
we have the inequality ı… > r…ıt, and hence

�@V

@t
� 1

2
�2S2

@2V

@S2
C rD � r

�

�V C D C @V

@S
S

�

:

After canceling rD from both sides, we obtain the desired inequality. For the details
of the proof, consult [75, 94]. ut

The optimal exercise boundary for an American put option is a curve given by
f.t; S�

t / W 0 � t � Tg. See Fig. 19.1. In the domain given by f.t; S/ W S > S�
t g it is

better to wait until the asset price goes down further without exercising early. As the

Fig. 19.1 Optimal exercise
boundary for an American
put option
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Fig. 19.2 The price P of an
American put option when
the asset price St takes the
boundary price S�

t at time t

expiry date approaches, we have smaller possibility that the asset price moves down
further and the future payoff will increase. Hence we have to exercise the option
at a higher price than before to expect the same level of payoff. Thus the function
t 7! S�

t is monotonically increasing.
In the domain f.t; S/ W S > S�

t g the inequality in Theorem 19.2 becomes an
equality. The reason is that in the management of the portfolio …, as in the case
of a European option, we do not exercise the American put option before expiry
date, and hence we have d… D r… dt. In this case, we give a boundary condition
@P
@S D �1 along the optimal exercise boundary, and solve the Black–Scholes–Merton
partial differential equation. (See Fig. 19.2.) For such a partial differential equation
the boundary of the domain is not explicitly given, thus it is called a free boundary
problem.

If St < S�
t at time t, i.e., it is better to early exercise the option, then the price

P.St; t/ of the American put option at time t is given by a line segment P D K � St

with slope �1 as in Fig. 19.2. If St � S�
t , then P.St; t/ > K � St as shown in the

graph.
For 0 � t � T the price of an American put option at time t with St D x is

given by

P.x; t/ D sup
t���T

E

�

e�r.��t/.K � S� /
C
ˇ
ˇ
ˇ
ˇSt D x

�

where � denotes a stopping time. Continuous time models are theoretically com-
plicated and the explicit pricing formula is not yet known. For more information,
consult [8, 47]. The binomial tree method is simple to implement in pricing
American put options. At every step we compare the price of the corresponding
European option if the option is not exercised and the profit if it is exercised, and
choose the more profitable action. See [17] for a modified algorithm.

We say that an option is perpetual if the time to expiry is infinite. In the following
result, note that L < K and V.S/ > 0 if � > 0.
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Theorem 19.3 (Perpetual American Put) The price of a perpetual American put
option is given by

V.S/ D

8
<̂

:̂

.K � L/

�
L

S

�2r=�2

; L < S < 1 ;

K � S ; 0 � S � L ;

where

L D 2rK

2r C �2
:

Proof Since the time to expiry is always infinite, the option price V does not depend
on time t, and is a function of S only and the exercise boundary is of the form S�

t D L
for some constant L for all t > 0. The Black–Scholes–Merton partial differential
equation becomes an ordinary differential equation

1

2
�2S2

@2V

dS2
C rS

dV

dS
� rV D 0 ; 0 < S < 1 :

We look for a general solution of the form

V.S/ D c1S
p1 C c2S

p2

for some constants c1; c2; p1; p2. Now use the boundary conditions V.L/ D K � L,
limS#L

dV
dS D �1 and limS!1 V.S/ D 0. ut

19.3 The Least Squares Method of Longstaff and Schwartz

We introduce a practical and simple approach to pricing options with early exercise
features, proposed by Longstaff and Schwartz, that combines the Monte Carlo
method with a simple least squares regression. See [60]. A Bermudan option is
an option that can be exercised only at a set of discrete times 0 < t1 < � � � < tn D T.
By taking ıti D tiC1 � ti, 1 � i � n, and max0�i�n�1 ıti ! 0 as n ! 1, we can
approximate an American option with Bermudan options. If an American option is
in the money at the final exercise date T, the optimal strategy for the holder of the
American option is to exercise it. Before the expiry date, however, it is optimal to
exercise if the immediate exercise value is more valuable than the expected cash
flow from continuation. Using the cross-sectional data in the simulated asset paths,
we obtain the conditional expectation function which best represents the given data.
This is done by regressing the realized cash flows from continuation on a set of basis
functions, which allows us to find the optimal exercise rule for the option. The least
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squares Monte Carlo method is also applicable in path-dependent and multifactor
situations.

Example 19.1 (American Put Option) Let S0 D 10:0 and r D 0:05. Compute the
price of an American put option with exercise price K D 11:0 and T D 3. Let us
assume that the put option is exercisable at times t D 1; 2; 3, where t D 3 is the
expiry date of the option. The discount rate is equal to e�rıt D 0:9512. For the sake
of simplicity, we explain the algorithm using eight sample paths for the price of the
underlying asset. The sample paths are generated under the risk-neutral probability
and are shown in Table 19.2.

To maximize the value of the option we find the stopping rule at each point
along each sample path St, t D 1; 2; 3. The algorithm is recursive, and we proceed
backward in time. Conditional on not exercising the option before t D 3, the cash
flows Y3 D maxfS3 � K; 0g received by the option holder at t D 3 are given by the
last column of Table 19.2.

If the option is in the money at t D 2, the holder must decide whether to exercise
the option immediately or continue until the final expiration date at t D 3. From the
asset prices in Table 19.2, there are only four paths, the first, the fourth, the sixth
and the seventh, for which the option is in the money at t D 2. Let X denote the
stock prices at t D 2 for these four paths, and Y D e�rıtY3 denote the corresponding
discounted cash flows received at t D 3 if the put is not exercised at t D 2. By using
only in-the-money paths we fit the approximating polynomial in the region where
exercise is meaningful and reduce the computing time. See Table 19.3.

Table 19.2 Asset prices St at
t D 1; 2; 3 and cash flow Y3
at t D 3

Path t D 0 t D 1 t D 2 t D 3 Y3
1 10.00 10.60 10.10 11.70 0.00

2 10.00 11.30 13.70 14.20 0.00

3 10.00 10.10 11.50 10.80 0.20

4 10.00 11.80 10.90 10.20 0.80

5 10.00 10.40 11.60 12.10 0.00

6 10.00 10.70 10.20 10.50 0.50

7 10.00 10.80 9.50 10.40 0.60

8 10.00 9.50 11.70 12.60 0.00

Table 19.3 Regression at
time 2

Path X D S2 Y D e�rıtY3
1 10.10 0.0000

2 – –

3 – –

4 10.90 0.7610

5 – –

6 10.20 0.4756

7 9.50 0.5707

8 – –
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At t D 2 we do not know the future asset price S3 and the corresponding
option value at t D 3. Thus we fit a quadratic polynomial to the data using
the least squares method to estimate the expected cash flow from continuing the
option’s life conditional on S2. The resulting conditional expectation function is
p2.x/ D EŒYjX D x� D 0:8561x2 � 17:3051x C 87:6840. (We may employ basis
functions defined by orthogonal polynomials such as Laguerre polynomials. See
Example C.6 in Appendix C.)

With this conditional expectation function, we can now decide whether to
exercise or continue by comparing the value of immediate exercise at t D 2 with
the value from continuation given in Table 19.4. When the asset path is not in the
money at t D 2 the option is continued.

The value of immediate exercise is equal to K � S2 for the in-the-money paths,
while the value from continuation is given by p2.S2/. If S2�K > p2.S2/we exercise,
otherwise we continue. We conclude that it is optimal to exercise the option at t D 2

for the first, the sixth and the seventh paths, and obtain Table 19.5 that displays the
cash flows received by the option holder conditional on not exercising prior to time
2. When the option is exercised at t D 2, the cash flow in the final column becomes
zero since there are no further cash flows once the option is exercised.

Moving backward in time recursively, we now check whether the option should
be exercised at t D 1. From Table 19.2, there are six asset paths for which the
option is in the money at t D 1. For these sample paths, we again define Y as the
discounted value of the subsequent option cash flows. In defining Y at t D 1, we
use actual realized cash flows along each sample path. As before, we choose only

Table 19.4 Optimal early
exercise decision at time 2

Path S2 � K p2.S2/ Decision

1 0.90 0.2365 Exercise

2 – – –

3 – – –

4 0.10 0.7755 Continuation

5 – – –

6 0.80 0.2439 Exercise

7 1.50 0.5514 Exercise

8 – – –

Table 19.5 Cash flow at
time 2 conditional on not
exercising before time 2

Path t D 1 t D 2 t D 3

1 – 0.90 0.00

2 – 0.00 0.00

3 – 0.00 0.20

4 – 0.00 0.80

5 – 0.00 0.00

6 – 0.80 0.00

7 – 1.50 0.00

8 – 0.00 0.00
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the paths satisfying S1 < K, and take X D S1. The vectors X and Y are given by
the nondashed elements in Table 19.6. Since the option can only be exercised once,
future cash flows occur at either t D 2 or t D 3, but not both. Cash flows received at
t D 2 are discounted back one period to t D 1, and any cash flows received at t D 3

are discounted back two periods to t D 1. For example, discounted cash flows are
0:9 	 e�rıt D 0:8561 for the first path, and 0:2 	 e�2rıt D 0:1810 for the third.

The best fit quadratic polynomial at t D 1 by the least squares method is given
by p1.x/ D EŒYjX D x� D 1:7138x2 � 33:8220x C 166:6906. Substituting the
values of X, we obtain estimated continuation values, and we compare them with
immediate exercise values at t D 1. See Table 19.7. Comparing two columns we see
that exercise at t D 1 is optimal for the third, the fifth and the eighth paths.

Having identified the exercise strategy at t D 1; 2; 3, the stopping rule can now
be given by Table 19.8, where the symbol ‘1’ represents exercise dates at which the
option is exercised, and ‘0’ no exercise.

Following this stopping rule, we exercise the option at the exercise dates where
there is a one in Table 19.8. This leads to the option cash flow presented in
Table 19.9, and the option can now be valued by discounting each cash flow back
to t D 0, and averaging over all paths. Applying this procedure results in a value of
0:8047 for the American put. See Simulation 19.3. For a more practical and efficient
code with a large number of sample paths, see Simulation 19.4.

Table 19.6 Regression at
time 1

Path X D S1 Y

1 10.60 0.8561

2 – –

3 10.10 0.1810

4 – –

5 10.40 0.0000

6 10.70 0.7610

7 10.80 1.4268

8 9.50 0.0000

Table 19.7 Optimal early
exercise decision at time 1

Path S1 � K p1.S1/ Decision

1 0.40 0.7167 Continuation

2 – – –

3 0.90 �0.0685 Exercise

4 – – –

5 0.60 0.3066 Exercise

6 0.30 0.9698 Continuation

7 0.20 1.2549 Continuation

8 1.50 0.0454 Exercise
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Table 19.8 Stopping rule Path t D 1 t D 2 t D 3

1 0 1 0

2 0 0 0

3 1 0 0

4 0 0 1

5 1 0 0

6 0 1 0

7 0 1 0

8 1 0 0

Table 19.9 Complete option
cash flow

Path t D 1 t D 2 t D 3

1 0.00 0.90 0.00

2 0.00 0.00 0.00

3 0.90 0.00 0.00

4 0.00 0.00 0.80

5 0.60 0.00 0.00

6 0.00 0.80 0.00

7 0.00 1.60 0.00

8 1.50 0.00 0.00

19.4 Computer Experiments

Simulation 19.1 (American Call Option: The Binomial Tree Method)
We use the binomial tree method to price an American option. Observe that the

prices of a European call and an American call are equal with the same parameter
values.

S0 = 100;

K = 110;

T = 1;

r = 0.05;

sigma = 0.3;

M = 1000; % number of time steps

dt = T/M;

u = exp(sigma*sqrt(dt) + (r-0.5*sigma^2)*dt);

d = exp(-sigma*sqrt(dt) + (r-0.5*sigma^2)*dt);

p = 1/2;

Call_Am = max(S0*u.^([M:-1:0]’).*d.^([0:1:M]’)- K,0);

for i = M:-1:1

S = S0*u.^([i-1:-1:0]’).*d.^([0:1:i-1]’);

Call_Am = max(max(S-K,0), exp(-r*dt)*(p*C_Am(1:i)+(1-p)*C_Am(2:i+1)));

end

Call_Am

d1 = (log(S0/K)+(r+0.5*sigma^2)*T)/(sigma*sqrt(T));
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d2 = d1-sigma*sqrt(T);

Call_Eu = S0*normcdf(d1) - K*exp(-r*T)*normcdf(d2)

The output is

Call_Am = 10.0212

Call_Eu = 10.0201

Simulation 19.2 (American Put Option: The Binomial Tree Method)
We use the binomial tree method to price an American option. Observe that the

price of an American put option is higher than that of a European put when we take
the same set of parameter values for both.

S0 = 100;

K = 110;

T = 1;

r = 0.05;

sigma = 0.3;

M = 1000; % number of time steps

dt = T/M;

u = exp(sigma*sqrt(dt) + (r-0.5*sigma^2)*dt);

d = exp(-sigma*sqrt(dt) + (r-0.5*sigma^2)*dt);

p = 1/2;

Put_Am = max(K - S0*u.^([M:-1:0]’).*d.^([0:1:M]’),0);

for i = M:-1:1

S = S0*u.^([i-1:-1:0]’).*d.^([0:1:i-1]’);

Put_Am =max(max(K-S,0),exp(-r*dt)*(p*Put_Am(1:i)+(1-p)*Put_Am(2:i+1)));

end

Put_Am

d1 = (log(S0/K)+(r+0.5*sigma^2)*T)/(sigma*sqrt(T));

d2 = d1 - sigma*sqrt(T);

Put_Eu = K*exp(-r*T)*normcdf(-d2) - S0*normcdf(-d1)

The output is

Put_Am = 15.6189

Put_Eu = 14.6553

See also the result in Simulation 19.4.

Simulation 19.3 (Longstaff–Schwartz Method: A Step-by-Step Guide)
Here is a detailed explanation of Example 19.1.

K = 11.0;

T = 3;

r = 0.05;

L = 3; % number of time intervals

dt = T/L;

M = 8; % number of asset paths
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Define the asset price paths given in Table 19.2.

S = [10.0 10.6 10.1 11.7;

10.0 11.3 13.7 14.2;

10.0 10.1 11.5 10.8;

10.0 11.8 10.9 10.2;

10.0 10.4 11.6 12.1;

10.0 10.7 10.2 10.5;

10.0 10.8 9.5 10.4;

10.0 9.5 11.7 12.6]

Find cash flows at t D 3.

CF = zeros(M,L); % cash flow

CF(:,3) = max(K-S(:,4),0)

Compute the discount rate e�rdt.

Discount_rate = exp(-r*dt);

Find the interpolating polynomial of degree 2 at time 2. The regression uses only
the in-the-money asset paths at time 2 listed in Table 19.3.

j = 0; % index for the number of in-the-money at t=2 asset paths

for i=1:M % index for asset paths

if S(i,3) < K % in-the-money at t=2

j = j+1;

index_ITM2(j) = i;

X2(j) = S(i,3); % Asset price at t=2

Y2(j) = CF(i,3)*exp(-r*dt); % discounted cash flow at t=2

end

end

Print the number of the asset price paths in-the-money at time 2.

num_ITM2 = j

Print the indices corresponding to in-the-money asset paths at time 2.

index_ITM2(:)

Asset price X2 and discounted cash flow Y2 at time 2.

[X2(:),Y2(:)]

Find the interpolating polynomial p2.x/ D EŒYjX D x� of degree 2 based on the
data .X2;Y2/. Its coefficients are given in descending order.

p2 = polyfit(X2,Y2,2)

Find the optimal early exercise decision at time 2. See Table 19.4.

Exercise2 = max(K - X2(:),0);

Continuation2 = polyval(p2,X2(:));

[Exercise2,Continuation2]
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Cash flow at time 2.

for j = 1:num_ITM2

if Exercise2(j) >= Continuation2(j) % Early exercise

CF(index_ITM2(j),2)=Exercise2(j); % cash flow on early exercise

CF(index_ITM2(j),3)=0;

else

CF(index_ITM2(j),2)=0; % t=2 value on continuation

end

end

sprintf(’Cash flow at t=2’)

CF

See Table 19.5.
Now we consider the regression at time 1. To find the regression polynomial we use
only the asset paths in-the-money at time 1 listed in Table 19.6.

j = 0; % index for the number of in-the-money at t=2 asset paths

for i=1:M % index for asset paths

if S(i,2) < K % in-the-money at t=1

j = j+1;

index_ITM1(j) = i;

X1(j) = S(i,2); % Asset price at t=1

Y1(j) = CF(i,2)*exp(-r*dt)+CF(i,3)*exp(-2*r*dt);

end

end

In the above, in computing the discounted cash flow Y1 at t D 1, only one term
in the sum CF.i; 2/e�rdt C CF.i; 3/e�2rdt is nonzero.
Print the number of the asset paths that are in-the-money at time 1.

num_ITM1 = j

Print the indices corresponding to in-the-money asset paths at time 1.

index_ITM1(:)

Asset price X1 and discounted cash flow Y1 at time 1.

[X1(:),Y1(:)]

Find the regression polynomial p1.x/ D EŒYjX D x� of degree 2 based on .X1;Y1/.
Its coefficients are given in descending order.

p1 = polyfit(X1,Y1,2)

Find the optimal early exercise decision at time 1. See Table 19.7.

Exercise1 = max(K - X1(:),0);

Continuation1 = polyval(p1,X1(:));

[Exercise1,Continuation1]

% Cash flow at time 1

for j = 1:num_ITM1

if Exercise1(j) > Continuation1(j) % Early exercise

CF(index_ITM1(j),1)=Exercise1(j); % cash flow on early exercise

CF(index_ITM1(j),2)=0;

CF(index_ITM1(j),3)=0;
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else

CF(index_ITM1(j),1)=0;

end

end

Find the option cash flow given in Table 19.9. Note that there is only one positive
value along each asset price path as seen in Table 19.8.

CF

Compute the price of the American put option by taking the average of discounted
future cash flows. We first compute the present value along each asset price path.

PV = exp(-r*dt)*CF(:,1) + exp(-r*2*dt)*CF(:,2) + exp(-r*3*dt)*CF(:,3);

mean(PV)

Simulation 19.4 (Longstaff–Schwartz Method)
We use the Longstaff–Schwartz method to price an American put option. The

following is a modification of a code written by D.M. Lee.

S0 = 100;

K = 110;

T = 1;

r = 0.05;

sigma = 0.3;

L = 100; % number of time intervals

dt = T/L;

M = 10^4; % number of asset paths

Y = zeros(M,L);

S = S0*ones(M,L+1); % asset paths

for k = 2:L+1

S(:,k)=S(:,k-1).*exp((r-0.5*sigma^2)*dt+sigma*sqrt(dt)*randn(M,1));

end

% Find payoff Y at expiry.

for i=1:M

Y(i,L) = max(K - S(i,L+1),0);

end

% Find payoff Y at nodes for each time index.

for k = L+1:-1:3

j = 0;

for i=1:M

if S(i,k-1) < K % in-the-money condition

j = j+1;

S1(j) = S(i,k-1); % in-the-money asset price

Y1(j) = exp(-r*dt)*Y(i,k-1); % discounted cash flow

end

end

p = polyfit(S1,Y1,2);

for i = 1:M

if K - S(i,k-1) > polyval(p,S(i,k-1)) % early exercise condition

Y(i,k-2) = max(K - S(i,k-1),0);

else

Y(i,k-2) = exp(-r*dt)*Y(i,k-1);

end

end



350 19 American Options

end

American_put_LS = exp(-r*dt)*mean(Y(:,1))

The output is

American_put_LS = 15.6282

Compare it with the European put price given by the Black–Scholes–Merton
formula.

d1 = (log(S0/K) + (r + 0.5*sigma^2)*T)/(sigma*sqrt(T));

d2 = d1 - sigma*sqrt(T);

N1 = normcdf(d1);

N2 = normcdf(d2);

European_put_BSM = S0*N1 - K*exp(-r*T)*N2 + K*exp(-r*T) - S0

The output is

European_put_BSM = 14.6553

Compare the American put price 15:6282 obtained by the Longstaff–Schwartz
method in the above with the value obtained by the binomial tree method in
Simulation 19.2.
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Chapter 20
The Capital Asset Pricing Model

How can we measure the performance of mutual funds and their investment risk?
What is the use of a market index such as S&P 500? The portfolio theory can provide
us with the answers. This chapter presents the Capital Asset Pricing Model (CAPM),
which deals with an efficient portfolio management. For a historical introduction see
[4].

To maximize the return of a portfolio consisting of more than one asset under
a given risk level, we find the optimal weight .w1; : : : ;wn/ where wi is the weight
for the ith underlying asset. In this chapter the covariance matrix is denoted by C.
All vectors are column vectors unless otherwise stated. The transpose of a matrix
M, including row vectors and column vectors, is denoted by Mt. For example, if
v D .v1; : : : ; vn/ is a row vector then vt is a column vector. Throughout the chapter
except when explicitly mentioned we assume that all the assets under consideration
are risky.

20.1 Return Rate and the Covariance Matrix

In this chapter we consider a single-period model for asset price movements. Let St

denote the price of an asset S at time points t D 0 and t D T. If ST is constant, then
S is said to be risk-free. Otherwise, it is called a risky asset. See Fig. 20.1.

Definition 20.1 (Return) The return RS of an asset S from time 0 to T > 0 is
defined by

RS D ST � S0
S0

:
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Fig. 20.1 A risk-free asset
(left) and a risky asset (right)
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Given several assets S1; : : : ; Sn, we consider a portfolio

V D x1S
1 C � � � C xnSn ;

where xj is a real number. The case when xj < 0 means the short-selling xj units of
the asset Sj.

Let Rj denote the return of asset Sj from time 0 to time T > 0. Then its expected
return and variance are given by

�j D EŒRj� and �2j D EŒ.Rj � �j/
2� ;

respectively. By definition, the variance of the return of a risk-free asset is zero,
while a risky asset has positive variance. Unless stated otherwise, all assets in this
chapter are assumed to be risky.

Theorem 20.1 (Return of a Portfolio) The return RV of a portfolio

V D x1S
1 C � � � C xnSn

from time 0 to time T > 0 is given by

RV D w1R1 C � � � C wnRn

where the weight wj satisfies

wj D xjS
j
0

V0

and

w1 C � � � C wn D 1 :
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Proof The values of V at time 0 and time T are V0 D x1S10 C � � � C xnSn
0 and VT D

x1S1T C � � � C xnSn
T , respectively, and hence

RV D VT � V0
V0

D x1.S1T � S10/C � � � C x1.Sn
T � Sn

0/

V0

D x1S10
V0

S1T � S10
S10

C � � � C xnSn
0

V0

Sn
T � Sn

0

Sn
0

;

which proves the statement. ut
Definition 20.2 (Attainable Portfolio) The portfolio in the statement of Theo-
rem 20.1 is called an attainable portfolio.

Definition 20.3 (Covariance) Define the covariance between the returns Ri and Rj

by

Cij D Cov.Ri;Rj/ D EŒ.Ri � �i/.Rj � �j/�

and the covariance matrix by C D 
Cij
�
. Note that Cii D Var.Ri/ D �2i .

Remark 20.1 The covariance between a risky asset and a risk-free asset is 0. Thus
if we consider a risk-free asset in defining the covariance matrix then a column and
a row of a covariance matrix are zero vectors. In this chapter we assume that every
asset is risky and the covariance matrix is invertible.

We define the expectation of a vector composed of random variables fXign
iD1 or

the expectation of a matrix composed of random variables fYijgn
i;jD1 as the vector

or the matrix given by the expectations of each component, i.e., EŒ .X1; : : : ;Xn/ � D
.EŒX1�; : : : ;EŒXn�/ and E


ŒYij�ij

� D 
EŒYij�

�
ij
. Using �i, � and � respectively, we

denote the expected return of the ith risky asset, the vector defined by n expected
returns, and the expected return of a portfolio consisting of n risky assets. If we let
R D .R1; : : : ;Rn/

t and � D .�1; : : : ; �n/
t, then

C D EŒ.R � �/.R ��/t� :

Thus C is a product of an n 	 1 matrix and a 1 	 n matrix, and hence C is an n 	 n
matrix, and its .i; j/th component is EŒ.Ri � �i/.Rj � �j/�.

Lemma 20.1 (Positive Semidefiniteness) The covariance matrix C is symmetric
and positive semidefinite. Hence its eigenvalues are nonnegative.



356 20 The Capital Asset Pricing Model

Proof For v D .v1; : : : ; vn/
t we have

vtCv D vt
EŒ.R ��/.R ��/t�v D EŒvt.R ��/.R � �/tv� D EŒ u2� � 0

where u D vt.R ��/. ut
Theorem 20.2 (Return of a Portfolio) Consider the return of a portfolio V given
by

RV D w1R1 C � � � C wnRn D wtR

where w D .w1; : : : ;wn/
t . Its expected return �V and variance �2V are given by

�V D w1�1 C � � � C wn�n D wt� ;

�2V D
nX

iD1

nX

jD1
wiwjcij D wtCw :

Proof Use the fact that

�V D E

"
nX

iD1
wiRi

#

D
nX

iD1
wi�i

and

�2V D Cov

 
nX

iD1
wiRi;

nX

iD1
wiRi

!

D
nX

iD1

nX

jD1
wiwjCij :

ut

20.2 Portfolios of Two Assets and More

Consider a portfolio consisting of two risky assets with their expected returns �1,
�2 and their variances �21 , �22 , respectively.

Definition 20.4 (Correlation) The correlation coefficient 
12 between the returns
of two risky assets is given by


12 D Cov.R1;R2/

�1 �2
D C12p

C11C22
:
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In this case, if we let w1, w2 be the weights then the expected return of the
portfolio is equal to

� D w1�1 C w2�2

and its variance is given by

�2 D C11w
2
1 C C22w

2
2 C 2C12w1w2

D �21w21 C �22w22 C 2
12�1�2w1w2

where Cij is the covariance between the returns. Consult also Definition 4.14.
If 
12 D 1 then �2 D .�1w1 C �2w2/2 and � D j�1w1 C �2w2j. Hence the

trajectory of the points

.�; �/ D .j�1w1 C �2w2j;w1�1 C w2�2/

on the .�; �/-plane is obtained by folding symmetrically along � D 0 the left part
of the straight line w1.�1; �1/ C w2.�2; �2/. See the left graph in Fig. 20.2 where

we choose � D
�
0:3

0:4

�

and C D
�
0:2 0:3

0:3 0:45

�

. The points on the thick line segment

0 � w1 � 1, 0 � w2 � 1 represent portfolios without short selling.
If 
12 D �1 then �2 D .�1w1 � �2w2/2 and � D j�1w1 � �2w2j. Hence the

trajectory of the points

.�; �/ D .j�1w1 � �2w2j;w1�1 C w2�2/

on the .�; �/-plane is obtained by folding symmetrically along � D 0 the left part of
the straight line w1.�1; �1/Cw2.��2; �2/. See the right graph in Fig. 20.2 where we
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Fig. 20.2 A line representing portfolios for 
12 D 1 (left) and a line for 
12 D �1 (right)
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Fig. 20.3 A curve representing portfolios of two risky assets for 0 < 
12 < 1 (left) and a curve
for �1 < 
12 < 0 (right)

choose � D
�
0:3

0:4

�

and C D
�
0:2 �0:3

�0:3 0:45
�

. The points on the thick line segment

0 � w1 � 1, 0 � w2 � 1 represent portfolios without short selling.
For �1 < 
12 < 1 the portfolios are represented by the curves in Fig. 20.3,

which do not intersect the �-axis. The portfolios of two assets with 
12 � 1 are
represented by the curves in the left, and the portfolios with 
12 � �1 in the right.

We take � D
�
0:3

0:4

�

, C D
�
0:25 0:3

0:3 0:45

�

for 
12 � 0:8944 and C D
�
0:25 �0:3
�0:3 0:45

�

for 
12 � �0:8944. The points on the thick line segment 0 � w1 � 1, 0 � w2 � 1

represent portfolios without short selling.
If the second asset is risk-free, i.e., the return R2 is equal to rf , then �2 D 0, and

hence

.�; �/ D .jw1j�1;w1�1 C w2rf / D w1.�1; �1/C w2.0; rf /

for w1 � 0 and

.�; �/ D .jw1j�1;w1�1 C w2rf / D w1.��1; �1/C w2.0; rf /

for w1 < 0. See Fig. 20.4 where rf D 0:3 and �1 D p
0:3 � 0:5477. The points on

the thick line segment for 0 � w1 � 1, 0 � w2 � 1 represent portfolios without
short selling.

Now we consider portfolios consisting of three or more assets, which are
assumed to be risky. For simplicity of notation we only consider portfolios of three
assets. Similar conclusions can be obtained for portfolios consisting of more assets.
Let the points .�1; �1/, .�2; �2/ and .�3; �3/ correspond to the given three assets,
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Fig. 20.4 Portfolios
consisting of a risk-free asset
and a risky asset
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Fig. 20.5 The set of attainable portfolios consisting of three risky assets (left) and the image of
the triangle w1 C w2 C w3 D 1, w1;w2;w3 � 0 (right)

respectively. We choose any two of them and apply the method in the previous
section to plot curves representing the portfolios defined by the chosen two assets.
Now we pick one portfolio from each of three curves, and form a new portfolio
curve. Such a curve is a set of portfolios defined by a weighted sum of the original
three portfolios represented by .�1; �1/, .�2; �2/ and .�3; �3/. The set M of all such
points is the right side of the curve in the left plot in Fig. 20.5, which is called the
Markowitz bullet. In other words, if we let

W D f.w1;w2;w3/ W w1 C w2 C w3 D 1g

and take w;w0 2 W and c C c0 D 1, then cw C c0w0 2 W. Thus, if P;P0 2 M then
the new curve determined by P and P0 is included in M.

On the right in Fig. 20.5 we have the image of the triangle f.w1;w2;w3/ W w1 C
w2 C w3 D 1;w1;w2;w3 � 0g, which is the set of weights of three assets in a
portfolio constructed without using short selling. We can see that the triangle is
mapped into the first quadrant of the .�; �/-plane, being folded.
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20.3 An Application of the Lagrange Multiplier Method

Now we solve the problem of finding the maximum or the minimum of a matrix
function using the Lagrange multiplier method. From now on we write

1 D .1; : : : ; 1/t

and define an n 	 2 matrix

M D Œ1;� � (20.1)

where column vectors are given by 1 and � D .�1; : : : ; �n/
t. In the following

arguments to eliminate trivial cases we assume that � 6D ˛1 for any arbitrary
constant ˛. If we had � D ˛1 for some ˛, then all the risky assets would have
the same expected return with different risk levels.

Theorem 20.3 (Extremum of a Quadratic Form) Let A be an invertible n 	 n
symmetric matrix. A necessary condition that the function xtAx has its extremum at
x under the constraint 1tx � 1 D 0 is

x D 1

1tA�11
A�11 :

Proof To use Lagrange multiplier method, we put

f .x/ D 1

2
xtAx ;

g.x/ D 1tx � 1 ;

and let

F.x; �/ D f .x/ � �g.x/ :

By Lemma A.2 we find the partial derivatives of F with respect to xi, and set them
equal to 0, and write the equations in a vector notation, and finally obtain

0 D
�
@F

@x1
; : : : ;

@F

@xn

�

D rF.x; �/ D rf .x/ � �rg.x/ D xtA � �1t :

By taking transposes we have 0 D Atx��1 D Ax��1 and x D �A�11. Substituting

the result in 1tx D 1, we obtain � D 1

1tA�11
. ut

In the above result the symmetry condition can be relaxed. If we let B D
1
2
.A C At/, then B is symmetric and xtAx D xtBx. In applications, A is given by
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the covariance matrix, which is symmetric, and the quadratic form is the variance
of the return of a portfolio of n assets. See the next section.

Theorem 20.4 (Extremum of a Quadratic Form) Let A be an n 	 n symmetric
matrix. Assume that A�1 and .MtA�1M/�1 exist. If xtAx has its minimum at the
point x under the constraints

�
1tx � 1 D 0 ;

�tx � �0 D 0

for some constant �0, then x satisfies

x D �1A
�11 C �2A

�1�

where �1; �2 satisfy the conditions

�
�11tA�11 C �21tA�1� D 1 ;

�1�
tA�11 C �2�

tA�1� D �0 :

Proof To apply the Lagrange multiplier method we put

f .x/ D 1

2
xtAx ;

g1.x/ D 1tx � 1 ;

g2.x/ D �tx � �0

and let

F.x; �1; �2/ D f .x/ � �1g1.x/� �2g2.x/ :

First, we compute the partial derivatives of F by Lemma A.2 and set them equal to
0, and finally obtain

�
@F

@x1
; : : : ;

@F

@xn

�

D rf � �1rg1 � �2rg2 D xtA � �11t � �2�t D 0 :

Hence xtA D �11t C �2�
t. By taking the transpose matrices, we obtain Ax D

�11 C �2� and

x D �1A
�11 C �2A

�1� D A�1M
�
�1

�2

�

: (�)
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We rewrite the constraints

�
1tx D 1

�tx D �0
as Mtx D

�
1

�0

�

. Now using (�), we

convert the previous equation as

MtA�1M
�
�1
�2

�

D
�
1

�0

�

:

ut
Remark 20.2 The conclusion of the above theorem can be rewritten as

x D A�1M
�
�1
�2

�

and

MtA�1M
�
�1
�2

�

D
�
1

�0

�

:

Hence

x D A�1M.MtA�1M/�1
�
1

�0

�

:

20.4 Minimum Variance Line

In this section we assume that the covariance matrix C is invertible, and that A is
given by a covariance matrix in Theorem 20.4. Variance represents the level of risk
in our model. Our objective in optimal portfolio management is to find the maximum
of expected return when variance is given, or to find the minimum of variance when
the expected return is given. See Fig. 20.6.

Fig. 20.6 Two optimization
problems: Find the maximum
of expected return when �0 is
given, or find the minimum of
variance when �0 is given.

μ

σ
σ

μ



20.4 Minimum Variance Line 363

Remark 20.3 The assumption that C is invertible is a plausible one. For, if C were
not invertible, then there would exist w D .w1; : : : ;wn/ 6D 0 such that Cw D 0.
Now consider a portfolio

V D w1S
1 C � � � C wnSn :

Then its return RV is given by

RV D w1R1 C � � � C wnRn

and

Var.RV/ D
X

ij

wiwjCov.Ri;Rj/ D .Cw;w/ D 0 :

This implies that RV is constant, which is nothing but
P

i wi�i. Since

RV D
X

i

wi
Si

T � Si
0

Si
0

D
X

i

wi

Si
0

Si
T � 1 ;

we have

X

i

wi

Si
0

Si
T � 1 �

X

i

wi�i D 0 ;

which is a nontrivial linear combination of n random variables Si
T representing risky

assets and one risk-free asset. (The constant �1�Pi wi�i is regarded as a coefficient
�1�Pi wi�i times the random variable representing a bond that pays 1 at time T.)
Hence we would have linear dependence among random variables Si

T , 1 � i � n
and a bond given by a constant function 1. This is not a plausible assumption.

Definition 20.5 Since the covariance matrix C is assumed to be invertible, it
has nonzero real eigenvalues. Furthermore, eigenvalues are positive, and we have
xtCx > 0 for every x 6D 0, x 2 R

n. The same property holds with C�1. Define a
bilinear form .�; �/C by

.x; y/C D ytC�1x ;

then .�; �/C is a positive definite inner product on R
n.

Lemma 20.2 Let M D Œ1;� � be the n 	 2 matrix defined by (20.1). Then MtC�1M
is invertible, and det.MtC�1M/ > 0.
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Proof Note that

MtC�1M D
�

1tC�11 1tC�1�
�tC�11 �tC�1�

�

:

By the Cauchy–Schwarz inequality we obtain

.x; y/C
2 � .x; x/C .y; y/C

i.e.,

jytC�1xj2 � xtC�1x ytC�1y

and again we obtain

xtC�1x ytC�1y � ytC�1x xtC�1y � 0 :

(Check the necessary and sufficient condition given in Theorem B.1 for which
equality holds.) Substituting x D 1 and y D �, we obtain

det.MtC�1M/ D 1tC�11 �tC�1� � 1tC�1� �tC�11 � 0 :

Since � is not a scalar multiples of 1, the inequality is strict. ut
If we define a 2 	 2 invertible matrix L by

L D .MtC�1M/�1 ;

then det L > 0, Lt D L, and

L�1 D MtC�1M :

Note that

L D .det L/

�
�tC�1� �1tC�1�
��tC�11 1tC�11

�

:

When the expected return is equal to �0, the weight vector w that minimizes the
variance is given by

w D C�1ML

�
1

�0

�
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by Remark 20.2, and the corresponding variance satisfies

wtCw D Œ1; �0�L
tMtC�1CC�1ML

�
1

�0

�

D Œ1; �0�LMtC�1ML

�
1

�0

�

D Œ1; �0�L

�
1

�0

�

D L11 C 2 L12 �0 C L22 �
2
0

where L D ŒLij�. Since the covariance matrix is assumed to be invertible,
Lemma 20.1 implies wtCw > 0 for w 6D 0, and hence L22 > 0.

Remark 20.4 Note that L22 D .det L/1tC�11.

A point on the .�; �/-plane will represent the standard deviation

� D p
wtCw

and the expected return

� D wt�

of the return of a portfolio consisting of risky assets with a weight vector w
satisfying 1tw D 1. (In this book �i, �, � will denote respectively the expected
return of the ith risky asset, ordered n-tuples of n expected returns, and the expected
return of a portfolio consisting of n risky assets.

The set of the points on the .�; �/-plane corresponding to all the weight vectors
is of the form

f .�; �/ W � �
p

L11 C 2 L12 �C L22 �2 g :

The boundary of the domain is given by

L11 C 2 L12 �C L22 �
2 D �2 :

Since L22 > 0, the above equation represents a hyperbola

�20 C L22.� � �0/
2 D �2 :

The asymptotes are given by

� D ˙ 1p
L22

� C �0
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Fig. 20.7 The minimum variance line for risky assets and the point .�0; �0/ representing the
portfolio with the minimum variance among all portfolios (left), and asymptotes and a tangent
line (right)

where

�0 D �L12
L22

D 1tC�1�
1tC�11

;

�20 D L11 � L212
L22

D det L

L22
D 1

1tC�11
:

We used the result in Remark 20.4 in finding �0. Since the two asymptotes intersect
at .0; �0/ on the �-axis, a tangent line with positive slope to the minimum variance
line should have the �-intercept .0; r/ for some r < �0. See Fig. 20.7.

Definition 20.6 (Minimum Variance Line) The curve thus obtained is called the
minimum variance line. A point on the minimum variance line represents the
portfolio whose variance is the smallest among portfolios with the same expected
return.

Among the points on the minimum variance line the point .�0; �0/ represents the
investment with the minimal risk. Its weight vector w0 is given by

w0 D C�1ML

�
1

�0

�

D C�1ML

2

4
1

1tC�1�
1tC�11

3

5

D 1

1tC�11
C�1ML

�
1tC�11
1tC�1�

�

:
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From the definition of L we have

�
1tC�11
1tC�1�

�

D
�
.L�1/11
.L�1/21

�

D the first column of L�1

and

L

�
1tC�11
1tC�1�

�

D
�
1

0

�

:

Hence

w0 D 1

1tC�11
C�1M

�
1

0

�

D 1

1tC�11
C�11 :

Note that we can apply Theorem 20.3 to obtain the same result.

20.5 The Efficient Frontier

Definition 20.7 (Dominating Portfolio) We are given two assets (or portfolios)
with expected returns �1, �2, and standard deviations �1, �2, respectively. If �1 �
�2 and �1 � �2 as in Fig. 20.8, we say that the first asset dominates the second
asset.

Definition 20.8 (Efficient Frontier) A portfolio is said to be efficient when there
is no other portfolio that dominates it. The set of all efficient portfolios is called the
efficient frontier. In Fig. 20.9 the minimum variance line is given as the boundary
of the set of attainable portfolios constructed by several assets, and the thick upper
part is the efficient frontier.

Fig. 20.8 The first asset
dominates the second asset

μ

σ

σ , μ

σ , μ
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Fig. 20.9 The efficient
frontier
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Remark 20.5

(i) When the first asset dominates the second one, it is better to invest in the first
one since the first asset has lower risk but higher expected return. Even when
one asset dominates the other asset, we can combine two assets and construct
a portfolio reducing risk as in Fig. 20.8.

(ii) For an efficient investment we should construct an efficient portfolio, and set
the level of risk, determined by � , according to the preference of the investor.
To gain high return, an investor must accept high risk.

(iii) The efficient portfolio has the maximum expected return among the portfolios
with the same standard deviation. Thus efficient frontier is a subset of the
minimum variance line.

Lemma 20.3 Let Xi, 1 � i � n, be random variables. Then the covariance of two
portfolios

P
i aiXi and

P
j bjXj is given by

Cov

� nX

iD1
aiXi;

nX

jD1
bjXj

�

D
nX

iD1

nX

jD1
aibjCov.Xi;Xj/ :

In vector notation

Cov.atX;btX/ D atCb D btCa

where a D .a1; : : : ; an/
t , b D .b1; : : : ; bn/, X D .X1; : : : ;Xn/

t and C D
ŒCov.Xi;Xj/�ij.

Theorem 20.5 All the efficient portfolios have the same covariance as the minimum
variance portfolio represented by the point .�0; �0/.
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Proof Let a point .�; �/ represent a given efficient portfolio. Then

�2 � L22 �
2 � 2 L12 � � L11 D 0

and the weight vector is given by

w D C�1ML

�
1

�

�

:

In this case we have wtR D Œ1; � �LMtC�1R and by Lemma 20.3 we obtain

Cov.wt
0R;w

tR/ D Cov.wt
0R; Œ1; � �LMtC�1R/

D Œ1; � �LMtC�1Cw0

D Œ1; � �LMtw0

D Œ1; � �L

�
1t

�t

��
1

1tC�11
C�11

�

D 1

1tC�11
Œ1; � �L

�
1tC�11
�tC�11

�

D 1

1tC�11
Œ1; � �

�
1

0

�

D 1

1tC�11
;

where we used

L�1 D MtC�1M D
�

1tC�11 �tC�11
�tC�11 �tC�1�

�

in the fifth equality. ut

20.6 The Market Portfolio

Now we consider a portfolio that contains a risk-free asset such as a bank deposit or
bond. If we let rf > 0 denote the risk-free interest rate, then such a risk-free asset is
represented by a point .0; rf / on the .�; �/-plane. Consider an investment in which
we invest into a risk-free asset by the ratio b, and into a portfolio  of risky assets by
the ratio 1�b. Assume that the return of the risky portfolio has its standard deviation
and average given by .�; �/ and that there exists a weight vector w such that the
return is given by wtR. Here we do not exclude the case that b < 0, which means



370 20 The Capital Asset Pricing Model

Fig. 20.10 A portfolio with a
risk-free asset
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that borrowed cash is invested more in the risky portfolio. The given risky portfolio
is represented by the point .�; �/ in Fig. 20.10.

Such a combination of investments has expected return

EŒb rf C .1 � b/wtR� D b rf C .1 � b/�

and standard deviation

q
Var.b rf C .1 � b/wtR/ D p

Var..1 � b/wtR/ D j1� bj� ;

hence the corresponding point on the .�; �/-plane lies on the straight line

..1 � b/�; b rf C .1 � b/�/ D b.0; rf /C .1� b/.�; �/

for b � 1. In other words, it is on the line passing through the points .0; rf / and
.�; �/.

In Fig. 20.10 the thick line segment corresponds to the range 0 � b � 1, and
the thin segment to b < 0. The line segment corresponding to b > 1 is obtained by
reflecting the line in Fig. 20.10 using � D rf as the axis of symmetry. A portfolio
represented by a point on the line segment has lower expected return than the case
b � 1 but with the same risk, thus it is not regarded as a possible investment strategy.

When a risk-free asset is included, a necessary condition for an efficient
investment is that the portfolio represented by .� ; �/ must be located on the
efficient frontier for the portfolio without a risk-free asset. Furthermore, .�; �/
should be the tangent point .�M ; �M/ of the tangent line passing through .0; rf / and
tangent to the Markowitz bullet. Therefore, when a risk-free asset is included, the
efficient frontier is the tangent line to the Markowitz bullet passing through .0; rf /

as in Fig. 20.11.
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Fig. 20.11 The capital
market line and the market
portfolio
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Definition 20.9 (Market Portfolio) The tangent line in the above is called the
capital market line, and its equation is given by

� D rf C �M � rf

�M
� :

The portfolio represented by .�M ; �M/ is called the market portfolio because it is
employed by all the market participants for efficient investment. A stock price index
is often used as a proxy for the market portfolio.

Definition 20.10 (Market Price of Risk) If a portfolio lying on the capital market
line has risk � , then

�M � rf

�M
�

is called the risk premium or market price of risk. It is a compensation for the
investment risk. For more details consult [19].

Theorem 20.6 The market portfolio satisfies the condition

�Cw D �� rf 1

where w is the weight of the portfolio, � D �M � rf

�2M
, C the covariance matrix,

� D .�1; : : : ; �n/ the expected return vector, and 1 D .1; : : : ; 1/.

Proof Among the lines passing through .0; rf / and a point in the interior of the
efficient frontier, the capital market line has the maximal slope. See Figs. 20.10
and 20.11. If the market portfolio is represented by the point .�M ; �M/ D
.
p

wtCw;�tw/ on the .�; �/-plane, then its slope is given by

�tw � rfp
wtCw

:
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To find the maximum under the constraint 1tw D 1, we apply the Lagrange
multiplier method. Let

F.w; �/ D �tw � rfp
wtCw

� �.1tw � 1/

and take partial derivatives. Then

@F

@wi
D
�i

p
wtCw � .�tw � rf /

Pn
jD1 Cijwjp
wtCw

wtCw
� � D 0

@F

@�
D 1tw � 1 D 0 :

The first equation becomes

�i �
2
M � .�M � rf /

nX

jD1
Cijwj D � �3M ;

which is equal to

� � �M � rf

�2M
Cw D � �M1 (�)

in a vector form. Now we take the inner product with w and obtain

�M � �M � rf

�2M
�2M D � �M :

Hence we have

� D rf

�M
;

which yields

w D �2M
�M � rf

C�1.� � rf 1/

in combination with (�). Therefore we have �Cw D �� rf 1. ut
Remark 20.6

(i) As explained in Sect. 20.4, we need the condition rf < �0 for the existence of
a tangent line with positive slope.
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(ii) If rf � �0, the best strategy is to invest everything in the risk-free asset. If risky
assets are independent and �i D 1, then we have

�0 D 1tC�1�
1tC�11

D �1 C � � � C �n

n

since C D diag.1; : : : ; 1/ is the identity matrix. Thus, if

rf � �1 C � � � C �n

n

then it is efficient to invest everything in the risk-free asset. In other words,
when rf is sufficiently high, bank deposit is better than stock.

(iii) For Figs. 20.7, 20.9, 20.11 we take

C D

2

6
6
4

0:06 0:05 0:02 0:01

0:05 0:08 0:05 0:01

0:02 0:05 0:07 0:01

0:01 0:01 0:01 0:05

3

7
7
5 and � D

2

6
6
4

0:15

0:1

0:12

0:08

3

7
7
5 :

20.7 The Beta Coefficient

Definition 20.11 (Beta Coefficient) The beta coefficient ˇV for a portfolio or an
individual asset V is defined by

ˇV D Cov.RV ;RM/

�2M
:

The beta coefficient measures the sensitivity of a given stock or portfolio price
with respect to the stock price index. When we have a bull market, it is better to
have a stock with large beta since the change in its price is larger than in other stocks
in general. However, with a bear market a stock with smaller beta is better. Sectors
with large betas are electronics, finance, medical equipments, and sectors with small
betas are chemicals, medicine and food. Consumer-oriented sectors which are not
affected during economic downturn have small betas.

Theorem 20.7 For an arbitrary portfolio V with expected return �V , its beta
coefficient ˇV is given by

ˇV D �V � rf

�M � rf
:
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Fig. 20.12 The relation
between the beta coefficient
and expected return
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Proof By Definition 20.11 we have

ˇV D wt
VCwM

�2M
:

Theorem 20.6 implies that

ˇV D 1

�M � rf
wt

V.� � rf 1/ D 1

�M � rf
.wt

V� � rf wt
V1/ :

Now we use wt
V� D �V and wt

V1 D 1. ut
In Fig. 20.12 a portfolio V is represented by a point .ˇV ; �V/ on the straight line

� D rf C .�M � rf /ˇ ;

called the security market line in the .ˇ; �/-plane. The term

.�M � rf /ˇ

is regarded as the risk premium.

Remark 20.7 Let w D .w1; : : : ;wn/ be the weight vector of the market portfolio.
Then wi.�i � rf / is the portion of the contribution of the ith asset in the whole return
of the portfolio.

20.8 Computer Experiments

Simulation 20.1 (Portfolios of Two Assets)
We take a covariance matrix

C D
�
0:2 �0:3

�0:3 0:45
�
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which gives the correlation coefficient 
12 D �1. See Fig. 20.2. For more
experiments find a positive semidefinite symmetric matrix for C.

mu = [0.3; 0.41] ; % returns of assets

% Define a covariance matrix.

C= [ 0.2 -0.3 ; -0.3 0.45 ] ;

eig(C) % Check the eigenvalues.

rho12 = C(1,2)/sqrt(C(1,1)*C(2,2)) % -1

N = 1000; % number of plotted points

mu_V = zeros(1,N);

sigma_V = zeros(1,N);

dt=1/N;

for i=1:N

w = [i*dt; 1-i*dt]; % weight

mu_V(i) = w’ * mu;

sigma_V(i) = sqrt(w’*C*w);

end;

plot(sigma_V,mu_V, ’.’) ;

hold on

for i=N+1:2*N

w = [i*dt; 1-i*dt];

mu_V(i) = w’ * mu;

sigma_V(i) = sqrt(w’*C*w);

end;

plot(sigma_V,mu_V, ’.’) ;

hold on

for i=N+1:2*N

w = [1-i*dt; i*dt];

mu_V(i) = w’ * mu;

sigma_V(i) = sqrt(w’*C*w);

end;

plot(sigma_V,mu_V, ’.’) ;

hold on

plot(sqrt(C(1,1)),mu(1),’.’) ;

plot(sqrt(C(2,2)),mu(2),’.’) ;

Simulation 20.2 (Portfolios of Three Aassets)
We find the image of all attainable portfolios of three risky assets without short

selling. See the right plot in Fig. 20.5.

mu_vec = [0.3; 0.2; 0.12] ; % returns of three risky assets

% covariance matrix

C = [ 0.3 0.02 0.01 ;

0.02 0.15 0.03 ;

0.01 0.03 0.18 ];

N = 1000; % number of plotted points

for i=1:N

w1 = rand;

w2 = 1-w1;
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weight = [ w1; w2; 0];

mu12(i) = weight’ * mu_vec;

sigma12(i) = sqrt(weight’ * C * weight);

end ;

for i=1:N

w1 = rand;

w3 = 1-w1;

weight = [ w1; 0; w3];

mu13(i) = weight’ * mu_vec;

sigma13(i) = sqrt(weight’ * C * weight);

end ;

for i=1:N

w2 = rand;

w3 = 1-w2;

weight = [0; w2; w3];

mu23(i) = weight’ * mu_vec;

sigma23(i) = sqrt(weight’ * C * weight);

end ;

L = 5000;

for i=1:L

w2 = rand;

w1 = (1-w2)*rand;

weight = [ w1; w2; 1-w1-w2 ];

mu(i) = weight’ * mu_vec ;

sigma(i) = sqrt(weight’ * C * weight);

end ;

plot(sigma,mu,’.’) ;

hold on

plot(sigma12,mu12,’.’) ;

hold on

plot(sigma13,mu13,’.’) ;

hold on

plot(sigma23,mu23,’.’) ;

Simulation 20.3 (Capital Market Line)
Based on the data for four risky assets in Remark 20.6(iii), we plot the minimum

variance portfolio, the efficient frontier, the minimum variance line, the market
portfolio, and the capital market line.

mu = [ 0.15; 0.1; 0.12; 0.08]; % returns of assets

% the covariance matrix.

C = [ 0.06, 0.05, 0.02, 0.01 ;

0.05, 0.08, 0.05, 0.01 ;

0.02, 0.05, 0.07, 0.01 ;

0.01, 0.01, 0.01, 0.05 ] ;

one_vec = ones(4,1); % a vector of 1’s

inv_C = inv(C); % inverse of the covariance matrix

A1 = one_vec’ * inv_C * one_vec; % 1’*C^(-1)*1

A2 = one_vec’ * inv_C * mu; % 1’*C^(-1)*mu = mu’*C^(-1)*1
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A3 = mu’ * inv_C * mu; % mu’*C^(-1)*mu

L = inv([A1, A2; A2, A3]);

% minimum variance portfolio

mu_0 = - L(1,2)/L(2,2)

sigma_0 = sqrt(1/A1);

N = 200; % number of plotted points

max_sigma = 0.8

%max_mu = 1/sqrt(L(2,2)) * max_sigma + mu_0

max_mu = 0.5;

r = 0.06; % To have a tangent line we take r < mu_0.

% asymptotes

mu_asym = linspace(0,max_mu,N);

sigma_asym = zeros(1,N);

for i=1:N

sigma_asym(i) = sqrt(L(2,2)*(mu_asym(i) - mu_0)^2);

end

% minimum variance line

mu_MVL = linspace(0,max_mu,N);

sigma_MVL = zeros(1,N);

for i=1:N

sigma_MVL(i) = sqrt(L(2,2)*mu_MVL(i)^2 + 2*L(1,2)*mu_MVL(i) + L(1,1));

end

% Market Portfolio

mu_M = -(L(1,1)+L(1,2)*r)/(L(1,2)+L(2,2)*r);

sigma_M = sqrt(L(2,2)*mu_M^2 + 2*L(1,2)*mu_M + L(1,1));

% Capital Market Line

mu_CML = linspace(r,max_mu,N);

sigma_CML = zeros(1,N);

for i=1:N

sigma_CML(i)=((mu_CML(i)-r)*sigma_M)/(mu_M-r);

end

plot(sigma_0, mu_0,’.’); % Minimum Variance Portfolio

hold on

plot(sigma_asym, mu_asym,’--’); % Asymptotes

hold on

plot(sigma_MVL, mu_MVL,’-’); % Minimum Variance Line

hold on

plot(sigma_M,mu_M,’.’); % Market Portfolio

hold on

plot(sigma_CML,mu_CML,’-’); % Capital Market Line

xlabel(’\sigma’) ;

ylabel(’\mu’);
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Exercises

20.1 (Optimal Investment for Continuous Time) Consider the wealth consisting
of a risk-free asset and a stock St. For more details consult [24]. Assume that St

follows geometric Brownian motion dSt D ˛ St dt C � St dWt. Let Xt denote wealth,
and let t be the amount of investment in St at t. We assume that Xt is self-financing.
Since Xt � t is the bank deposit, the increment in Xt is the sum of two increments:
the first one from stock investment and the second from bank deposit. Since the
number of shares of the stock is equal to t=St, we have dXt D t

St
dSt C .Xt �

t/ r dt D t.˛dt C �dWt/C .Xt � t/rdt.

(i) Let zt D e�rtt be a discounted portfolio. Show that the discounted wealth
satisfies d zXt D zt.˛ � r/ dt C zt � dWt.

(ii) Define the market price of risk by � D ˛�r
�

. To exclude trivial cases we assume

that ˛ > r. Define Lt D e�� Wt� 1
2 �

2t. Show that EŒL2t � D e�
2t, and fLt zXtgt�0 is a

martingale.
(iii) Under the condition that EŒzXT � D �, the problem is to minimize the risk, i.e.,

to find the minimum of the variance of zX. Show that for such zXT we have
zXT D C11 C C2LT where

C1 D X0 � � e�
2T

1 � e�2T
; C2 D � � X0

1 � e�2T
:

(iv) Show that zXt D C1 C C2e�
2Te��Wt� 3

2 �
2t in an optimal investment.

(v) Show that t D �C2
1
�

ert�e�
2Te��Wt� 3

2 �
2t in an optimal investment.

(vi) Show that �zXT
D j� � X0j=

p
e�2T � 1 in the .�zXT

; �/-plane where � repre-

sents EŒzXT �.



Chapter 21
Dynamic Programming

We investigate continuous time models for combined problems of optimal portfolio
selection and consumption. An optimal strategy maximizes a given utility, and the
solution depends on what to choose as a utility function. Under the assumption that
a part of wealth is consumed, we find an explicit solution for optimal consumption
and investment under certain assumptions. Utility increases as more wealth is spent,
however, less is reinvested and the capability for future consumption decreases,
therefore the total utility over the whole period under consideration may decrease.
See [9, 63, 64, 83] for more information.

In some of the previous chapters, we used the Lagrange multiplier method
for optimization problems, however, in this chapter we employ the dynamic
programming method to deal with stochastic control for optimization. The idea
of dynamic programming is to optimize at every time step to achieve overall
optimization.

21.1 The Hamilton–Jacobi–Bellman Equation

A classical method for finding minima or maxima is the calculus of variations,
which is employed when the future event is deterministic. On the other hand,
dynamic programming, which was introduced by the applied mathematician R.
Bellman in the 1950s, results in an equation which is a modification of the
Hamilton–Jacobi equation in classical mechanics.

Given an Itô stochastic process fXtg0�t�T , where Xt denotes wealth at time t, we
consider an optimization problem defined by

max
u

E

�Z T

0

f .Xt; t; ut/ dt C H.XT ;T/

�

:

© Springer International Publishing Switzerland 2016
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The Riemann integral represents the total utility from time t D 0 to time T. The
case that T D 1 is also possible. The term H.XT ;T/ represents the utility of
the remaining wealth XT by the time T. The expectation is the average over all
possibilities.

In this problem the given constraint is given by the Itô process

dXt D �.Xt; t; ut/ dt C �.Xt; t; ut/ dWt (21.1)

and the initial wealth X0 D x0. The stochastic process ut is a control variable, in
other words, optimal control is achieved by ut based on the information Xt at time t.
In general, the control ut is of the form

ut D g.Xt; t/

for some function g.x; t/. (When there is no danger of confusion we write u for
simplicity. Even though g.x; t/ is a continuous function, it is not differentiable in
general.)

In the above problem there might not exist a maximum over all possible choices
for u, however the supremum always exists. In the problems presented in this chapter
we assume that there exists a solution u for which the maximum exists. Thus we
write maximum in place of supremum.

Instead of a rigorous derivation of the Hamilton–Jacobi–Bellman equation,
which requires a lot of work, we present the idea in a heuristic manner. For arbitrary
0 � t � T define

J.X; t/ D max
u

E

�Z T

t
f .Xs; s; us/ ds C H.XT ;T/

ˇ
ˇ
ˇ
ˇXt D X

�

which is the sum of the total utility from time t to time T under the condition Xt D X
and the final remaining value at T given by H.XT ;T/. By definition,

J.X;T/ D H.X;T/ :

Now we derive a necessary condition under the assumption that the solution of a
given optimization problem exists. Instead of presenting a rigorous proof we employ
a heuristic method with the assumption that the given functions are sufficiently
smooth as needed.

We assume that the solution of an optimization problem over the whole interval
is optimal over each subinterval. Hence we have

J.X; t/ D max
u

E

"Z tCıt

t
f .Xs; s; us/ ds C J.X C ıX; t C ıt/

ˇ
ˇ
ˇ
ˇXt D X

#

(21.2)
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Fig. 21.1 Partition of time
interval for total utility

δ

δ

where XCıX, under the condition that Xt D X at time t, denotes XtC ıt at time tC ıt,
which is given by (21.1). See Fig. 21.1. Here the integral is approximated by

Z tCıt

t
f .Xs; s; us/ ds � f .Xt; t; ut/ ıt : (21.3)

By the Itô formula we have

J.X C ıX; t C ıt/

D J.X; t/C @J.X; t/

@X
ıX C @J.X; t/

@t
ıt C 1

2

@2J.X; t/

@X2
�2.X; t; ut/ıt C o.ıt/

D J.X; t/C @J.X; t/

@X
�.X; t; u/ıt C @J.X; t/

@X
�.X; t; ut/ıW

C@J.X; t/

@t
ıt C 1

2

@2J.X; t/

@X2
�2.X; t; u/ıt C o.ıt/ : (21.4)

Since the conditional expectation of the increment of Brownian motion is 0, we have

E

�
@J

@X
�.X; t; ut/ ıW

ˇ
ˇ
ˇ
ˇXt

�

D E

�
@J

@X
�.X; t; ut/

ˇ
ˇ
ˇ
ˇXt

�

	 E

ıW
ˇ
ˇXt
� D 0 : (21.5)

Using (21.3), (21.4) and (21.5), we compute the right-hand side of (21.2), and obtain

J.X; t/ D max
u

E

�

f .X; t; ut/ ıt C J.X; t/C @J.X; t/

@X
�.X; t; ut/ ıt

C @J.X; t/

@X
�.X; t; ut/ ıW C @J.X; t/

@t
ıt

C 1

2

@2J.X; t/

@X2
�2.X; t; u/ıt C o.ıt/

ˇ
ˇ
ˇ
ˇXt D X

�

D max
u

�
f .X; t; ut/ ıt C J.X; t/C @J.X; t/

@X
�.X; t; ut/ ıt

C @J.X; t/

@t
ıt C 1

2

@2J.X; t/

@X2
�2.X; t; ut/ıt C o.ıt/

�
:
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After subtracting J.X; t/ from both sides, then dividing by ıt, and finally letting
ıt ! 0, we obtain the following conclusion.

Theorem 21.1 (Hamilton–Jacobi–Bellman Equation) For t � 0 let Xt be a
stochastic process given by

dXt D �.Xt; t; ut/ dt C �.Xt; t; ut/ dWt :

To solve an optimization problem

max
u

E

�Z T

0

f .Xs; s; us/ ds C H.XT ;T/

ˇ
ˇ
ˇ
ˇXt D x0

�

define

J.X; t/ D max
u

E

�Z T

t
f .Xs; s; us/ ds C H.XT ;T/

ˇ
ˇ
ˇ
ˇXt D X

�

:

Then J satisfies

�@J

@t
.Xt; t/

D max
u

�

f .Xt; t; ut/C @J

@x
.Xt; t/ �.Xt; t; ut/C 1

2

@2J

@x2
.Xt; t/ �

2.Xt; t; ut/

�

with boundary condition

J.XT ;T/ D H.XT ;T/ :

Remark 21.1

(i) In general the necessary condition given in the above is a sufficient condition.
(ii) If an optimization problem is defined for the infinite horizon, i.e., T D 1,

then in general the condition B D 0 is given, and we find a solution satisfying
limt!1 J.X; t/ D 0.

21.2 Portfolio Management for Optimal Consumption

Utility is a measure of satisfaction from the consumption of goods and services,
and marginal utility is the amount of satisfaction from the consumption of an
additional unit of goods and services. The marginal utility decreases as the quantity
of consumed goods increases in general. Let U.c/ denote the utility function that
measures the amount of utility where c � 0 is the consumption rate. That is, U.c/ıt
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denotes the total utility from the consumption of c ıt over a short time span ıt. Since
more consumption means more satisfaction in general, U is an increasing function.

By the law of diminishing marginal utility, U is a concave function. For example,
for some constant 0 < � < 1 we have

U.c/ D c�

or

U.c/ D log c :

The marginal utility is represented as U0, and the law of diminishing marginal utility
may be expressed as U00 < 0.

First, we assume that the price equation for a risky asset is given by a geometric
Brownian motion dSt D ˛ St dt C � St dWt. (The symbol � was already used to
define X, and we use a new symbol ˛ to define the asset price S.)

Let Xt denote the value of a portfolio at time t and let ut be the ratio of investment
into a risky asset. Suppose that ct dt is consumed for a time period of length dt.
Assume that the portfolio is self-financing and there is no inflow of new investment
from outside. To exclude the trivial case when one consumes as he/she wishes so that
utility becomes very large, but the total wealth soon falls below zero, we impose a
condition that Xt � 0. Hence the number of shares of a risky asset is equal to utXt=St,
and the amount invested in the risk-free asset is .1� ut/Xt. The increment of wealth
after time length dt is equal to

dXt D utXt

St
dSt C r.1 � ut/Xt dt � ct dt

D .˛utXt C r.1 � ut/Xt � ct/ dt C �utXt dWt :

In the right-hand side of the first line .utXt=St/dSt represents the increment of the
total stock price, and the second term r .1 � ut/Xt dt is the interest on bank deposit.
The term �ct dt representing consumption has a negative coefficient since wealth
decreases due to consumption.

Now it remains to find suitable ut and ct � 0 to maximize utility. For some
constant 
 > 0 we consider e�
tU.ct/ to discount the future value. In the following
problem we take B D 0. Consult [63] or [66] for more general cases.

Theorem 21.2 (Power Utility) For 0 < T < 1, we define the maximal utility over
the period 0 � t � T by

max
u;c

E

�Z T

0

e�
tU.ct/ dt

�

:
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If there exists 0 < � < 1 such that U.c/ D c� , then we have

ut D ˛ � r

�2.1� �/
D u� (21.6)

ct D h.t/1=.��1/Xt (21.7)

where

A D r� C 1

2

�

1 � �

.˛ � r/2

�2
� 


B D 1 � �

h.t/ D
�

B

A

�
e

1
1�� A.T�t/ � 1

�
 1��
:

The maximal utility over the period 0 � t � T is given by

�
B

A

�
e

1
1�� AT � 1

�
 1��
X�0 :

Proof For 0 � t � T define

J.x; t/ D max
u;c

E

�Z T

t
e�
sU.cs/ ds

ˇ
ˇ
ˇ
ˇXt D x

�

:

In the Hamilton–Jacobi–Bellman equation we take

f .t; c/ D e�
tc�

and need to maximize

� .u; c/ $ e�
tc� C fux.˛ � r/C .rx � c/g@J

@x
C 1

2
�2u2x2

@2J

@x2

by Theorem 21.1. If a maximum is achieved at each fixed interior point .x; t/, then
we have

8
ˆ̂
<̂

ˆ̂
:̂

0 D @�

@c
D e�
t�c��1 � @J

@x

0 D @�

@u
D x.˛ � r/

@J

@x
C �2ux2

@2J

@x2
:
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Hence c and u satisfy the conditions

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

c��1 D 1
�

e
t @J

@x

u D ˛ � r

�2

�

�@J

@x

��

x
@2J

@x2

��1
:

Now we look for J of the form

J.x; t/ D e�
th.t/x� :

From the final condition J.x;T/ D 0 we obtain the boundary condition

h.T/ D 0 :

Note that
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

@J

@t
D e�
th0.t/x� � 
e�
th.t/x�

@J

@x
D �e�
th.t/x��1

@2J

@x2
D �.� � 1/e�
th.t/x��2 :

Hence

u D ˛ � r

�2
.�1/�e�
th.t/x��1

�.� � 1/e�
th.t/x��1 D 1

1 � �

˛ � r

�2
:

On the other hand,

c��1 D 1

�
e
t�e�
th.t/x��1 D h.t/x��1 ;

and hence

c D h.t/1=.��1/x :
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To find h we substitute the preceding results in the Hamilton–Jacobi–Bellman
equation and obtain

0 D @J

@t
C e�
tc� C fux.˛ � r/C .rx � c/g@J

@x
C 1

2
�2u2x2

@2J

@x2

D .e�
th0.t/x� � 
e�
th.t/x� /C e�
th.t/
�

��1 x�

C
n 1

1 � �

.˛ � r/2

�2
x C .rx � h.t/

1
��1 x/

o
�e�
th.t/x��1

C1

2
�2

1

.1 � �/2
.˛ � r/2

�4
x2�.� � 1/e�
th.t/x��2

D .e�
th0.t/x� � 
e�
th.t/x� /C e�
th.t/
�

��1 x�

C
n 1

1 � �

.˛ � r/2

�2
C r � h.t/

1
��1

o
�e�
th.t/x�

C1

2

�1
.1 � �/

.˛ � r/2

�2
�e�
th.t/x� :

After division by e�
tx� , the right-hand side becomes

h0.t/ � 
h.t/C h.t/
�

��1 C
�

r � h.t/
1

��1

�
�h.t/C 1

2

1

.1� �/

.˛ � r/2

�2
�h.t/ :

Hence we have

h0.t/C Ah.t/C Bh.t/�
�

1�� D 0

where the constants A and B are given by

A D r� C 1

2

�

1 � �
.˛ � r/2

�2
� 
 ;

B D 1 � � :

To apply the result in Appendix C.2 we define a new variable

y.t/ D h.t/
1

1�� ;

then we obtain a linear differential equation

y0.t/C 1

1 � �
Ay.t/C 1

1 � �
B D 0 :

Using an integrating factor

M.t/ D e
1

1�� At
;
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we obtain

e� 1
1�� Aty.t/C B

A
D C :

From the boundary condition y.T/ D 0, we find

C D B

A
e

1
1�� AT

;

and obtain

y.t/ D �B

A
C Ce� 1

1�� At D B

A

�
e

1
1�� A.T�t/ � 1

�
:

ut
Remark 21.2

(i) In Fig. 21.2, we plot ten sample paths of the optimal wealth process Xt, X0 D
100, 0 � t � T D 30, ˛ D 0:1, r D 0:05, � D 0:3, � D 0:5 and 
 D 0:06.
In this case, A D �0:0211, B D 0:5000. We see that Xt ! 0 as t ! T, which
agrees with common sense that there should be no remaining wealth after time
T to maximize utility over the period 0 � t � T.

(ii) An investor invests wealth into a risky asset with a constant rate u�, which is
proportional to ˛ � r as can be seen in (21.6). For our choice of parameters,
u� D 1:1111.

(iii) As stock price can go up more on average, with larger values of ˛, we have to
invest more in stocks as can be seen in (21.6).

100 20 30
0

100

200

300

400

X
t

Fig. 21.2 Sample paths of optimal portfolio Xt with power utility for 0 � t � T
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(iv) For larger volatility � , we should invest less in stocks as can be seen in (21.6).
(v) With higher interest rate r, less amount should be invested in stock while saving

more in the bank account, as can be seen in (21.6).
(vi) An investor spends in proportion to the present wealth Xt. Even though the

proportion coefficient h.t/1=.��1/ in (21.7) increases to C1 as t ! T, the
consumption rate

ct D h.t/1=.��1/Xt

can converge to a finite value since Xt ! 0 as t ! T. See Figs. 21.3, 21.4.
(Consult Simulation 21.1.) The wealth process tends to vary widely due to the
fact that there is no wage and the income of the investor is generated only by
return on stock investment.

Fig. 21.3 The proportion of
spending h.t/1=.��1/ for
0 � t � 30
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Fig. 21.4 Optimal consumption and portfolio for 0 � t � 30
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Theorem 21.3 (Log Utility) Over the period 0 � t < 1 we define the maximum
utility by

max
u;c

E

�Z 1

0

e�
tU.ct/ dt

�

:

If U.c/ D log c, then the optimal strategy is given by

ut D ˛ � r

�2
; ct D 
Xt :

The maximum utility over the period 0 � t < 1 is given by A log X0 C B where

A D 1



;

B D 1




�

log 
 C r



C .˛ � r/2

2
�2
� 1

�

:

For the sample paths for the optimal portfolio Xt, see Fig. 21.5. Since it is
impossible to do a simulation for the infinite time horizon problem, we take
sufficiently large T for our simulation. In Simulation 21.2 we choose T D 100

which is justified by the fact that the estimate given by the Monte Carlo method
with T D 100 is close to the closed-form solution.

Proof For t � 0 we define
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Fig. 21.5 Optimal portfolio Xt with log utility for 0 � t < 1
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J.x; t/ D max
u;c

E

�Z 1

t
e�
sU.cs/ ds

ˇ
ˇ
ˇ
ˇXt D x

�

:

Take

f .t; c/ D e�
t log c

in the Hamilton–Jacobi–Bellman equation, and apply Theorem 21.1 to find the
maximum of

� .u; c/ $ e�
t log c C fux.˛ � r/C rx � cg@J

@x
C 1

2
�2u2x2

@2J

@x2
:

Assuming the existence of a maximum for each fixed interior point .x; t/, we obtain
the following two equations:

8
ˆ̂
<̂

ˆ̂
:̂

0 D @�

@c
D e�
t 1

c
� @J

@x

0 D @�

@u
D x.˛ � r/

@J

@x
C �2ux2

@2J

@x2
:

Hence c and u satisfy the conditions

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

c D e�
t

�
@J

@x

��1

u D ˛ � r

�2

�

�@J

@x

��

x
@2J

@x2

��1
:

Now we look for J of the form

J.x; t/ D e�
t.A log x C B/ :

By taking partial derivatives, we obtain

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

@J

@t
D �
e�
t.A log x C B/

@J

@x
D e�
tAx�1

@2J

@x2
D �e�
tAx�2 :
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Hence

(
c D A�1x ;
u D ˛ � r

�2

��e�
tAx�1� ��e�
tAx�1��1 D ˛ � r

�2
:

To find constants A and B, we substitute the previous results in the Hamilton–Jacobi–
Bellman equation and obtain

0 D @J

@t
C e�
t log c C fux.˛ � r/C .rx � c/g@J

@x
C 1

2
�2u2x2

@2J

@x2

D �
 e�
t.A log x C B/C e�
t.� log A C log x/

C
�
.˛ � r/2

�2
x C .rx � A�1x/

�

e�
tAx�1 � 1

2
�2
.˛ � r/2

�4
x2e�
tAx�2

D �
 e�
t.A log x C B/C e�
t.� log A C log x/

C
�
1

2

.˛ � r/2

�2
C .r � A�1/

�

e�
tA :

Dividing by e�
t we obtain

0 D �
.A log x C B/C .� log A C log x/C
�
1

2

.˛ � r/2

�2
C .r � A�1/

�

A :

By comparing the coefficients of log x, we obtain A D 1



. Thus

0 D �
B C log 
C
�
1

2

.˛ � r/2

�2
C .r � 
/

�
1



:

ut
For a more general example of a utility function, see [48].

21.3 Computer Experiments

Simulation 21.1 (Power Utility)
We compare the Monte Carlo method with the closed-form solution for the utility

maximization problem with U.c/ D p
c in Theorem 21.2.

T = 30;

N = 500;

dt = T/N;

M = 10^5; % sample size for Monte Carlo

X0 = 100; %initial portfolio
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alpha = 0.1;

r = 0.05;

sigma = 0.3;

gamma = 0.5;

rho = 0.06;

u = (alpha-r)/(sigma^2)/(1-gamma) % optimal investment ratio

A = r*gamma + 0.5*(gamma/(1-gamma))*( (alpha-r)^2/sigma^2 ) - rho

B = 1 - gamma

h = zeros(1,N+1);

for i=1:N+1

h(1,i) = ( (B/A)*(exp(A*(T-(i-1)*dt)/(1-gamma))-1) )^(1-gamma);

end

X = zeros(M,N+1);

c = zeros(M,N+1);

X(:,1) = X0;

c(:,1) = h(1,1)^(1/(gamma-1)) * X(:,1);

dW = sqrt(dt)*randn(M,N);

for j=1:N

X(:,j+1)=X(:,j)+(alpha*u*X(:,j)+r*(1-u)*X(:,j)-c(:,j))*dt ...

+ sigma*u*X(:,j).*dW(:,j);

c(:,j+1)=h(j+1)^(1/(gamma-1)) * X(:,j+1);

end

integral = zeros(M,1);

for j=1:N

integral(:) = integral(:) + exp(-rho*(j-1)*dt) * c(:,j).^gamma * dt;

end

plot(0:dt:T,h(1,1:N+1).^(1/(gamma-1)),’k’);

plot(0:dt:T,c(1,1:N+1),’k’);

plot(0:dt:T,X(1,1:N+1),’k’);

max_utility_MC = mean(integral) % by Monte Carlo

max_utility_formula = (((B/A)*(exp(A*T/(1-gamma))-1))^(1-gamma))*(X0^gamma)

% by the closed-form formula

For the plots, see Figs. 21.3, 21.4. The Monte Carlo method and the closed-form
formula give their results as follows:

max_utility_MC = 41.3021

max_utility_formula = 41.2441

Simulation 21.2 (Log Utility)
We compare the Monte Carlo method with the closed-form solution for the utility

maximization problem with U.c/ D log c in Theorem 21.3. Since it is impossible to
do a simulation for an infinite horizon problem, we take T D 100. We take the same
set of parameters as in Simulation 21.1. The estimate given by the Monte Carlo
method agrees with the theoretical value with an acceptable error as one can see at
the end of the paragraph. For the plot of the sample paths, see Fig. 21.5.
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u = (alpha - r)/(sigma^2) % optimal investment ratio

A = 1/rho;

B = (log(rho) + r/rho + (alpha - r)^2/(2*rho*sigma^2) -1)/rho;

X = zeros(M,N+1);

c = zeros(M,N+1);

X0 = 100; % initial portfolio

X(:,1) = X0;

c(:,1) = rho * X(1);

dW = sqrt(dt)*randn(M,N);

for j=1:N

X(:,j+1)=X(:,j)+(alpha*u*X(:,j)+r*(1-u)*X(:,j)-c(:,j))*dt ...

+sigma*u*X(:,j).*dW(:,j);

c(:,j+1)=rho*X(:,j+1);

end

integral = zeros(M,1);

for j=1:N

integral(:) = integral(:) + exp(-rho*(j-1)*dt)*log(c(:,j))*dt;

end

max_utility_MC = mean(integral) % by Monte Carlo

max_utility_formula = A*log(X0) + B % by the closed-form formula

The results of the Monte Carlo method and the closed-form formula are as follows:

max_utility_MC = 33.5208

max_utility_formula = 33.7443
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Chapter 22
Bond Pricing

In this chapter we derive a fundamental pricing equation for bond pricing under a
general assumption on interest rate movements. For a comprehensive introduction
to bonds, consult [100].

22.1 Periodic and Continuous Compounding

Definition 22.1 The discount factor Z.t;T/ is defined to be the rate of exchange
between a given amount of money at time t and an amount of money at a later
date T.

For example, if one hundred dollars at a future date T is worth ninety two
dollars and fifty cents today (t D 0), then Z.0;T/ D 0:925. Compounded interest
means that there is interest on interest while simple interest means no interest on
interest. A compounding frequency of interest accruals is the number of times per
year when interest is paid. Throughout the book we consider only compounded
interest rate. Suppose that we have the information that the interest rate per year is
R without knowing the compounding method. Under the assumption of the periodic
compounding let m be the compounding frequency, i.e., the interest is compounded
m times per year. In T years the value of the investment of a principal A will be
equal to AŒ.1C R

m /
m�T . Since

A D Z.0;T/ 	 A

��

1C R

m

�m�T

;

we have

Z.0;T/ D
�

1C R

m

��mT

:
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As m ! 1 we compound more and more frequently, and obtain

lim
m!1 A

��

1C R

m

�m�T

D A eRT :

Since .1C R
m /

m is monotonically increasing and converges to eR as m ! 1 for R >
0, a depositor prefers continuous compounding to period compounding if the interest
rate is positive. (See Exercise 22.1.) When $A is invested at a constant continuously
compounded rate R, then $A grows to eRT 	 $A at time T, or equivalently, $A to be
received at T is discounted to e�RT 	 $A at t D 0, and hence the discount factor for
continuous compounding is equal to Z.0;T/ D e�RT .

Remark 22.1 (Periodic and Continuous Compounding) Let Rm denote the interest
rate periodically compounding m times per year, e.g., m D 2 corresponds to semi-
annual compounding,, and let Rc be the interest rate with continuous compounding.
Suppose that we invest the initial amount A and the two compounding methods will
produce the same amount at the end of n years. Since

A eRcn D A

��

1C Rm

m

�m�n

;

we have eRc D .1C Rm
m /

m. Hence Rc D m log.1C Rm
m / and Rm D m.eRc=m � 1/.

Remark 22.2 The discount factor Z.t;T/ is the time t price P.t;T/ of a zero coupon
bond that pays $1 with maturity T. In general, the curve T 7! P.t;T/ is assumed to
be sufficiently smooth while t 7! P.t;T/ is regarded as stochastic.

22.2 Zero Coupon Interest Rates

Definition 22.2 Some bonds pay interest, called a coupon, periodically. They are
called coupon bonds, or fixed income securities, because they pay a fixed amount of
interest at regular intervals. If a bond does not pay any interest before maturity and
provides a payoff only at time T, it is called a zero coupon bond. For a bond without
coupon payments the interest and principal is realized at maturity. A zero rate (or
spot rate), is the rate of interest earned on a zero coupon bond. See Definition 22.8(i)
for the details.

Pricing a bond with coupon payments is not easy because a portion of interest is
paid in the form of coupons before maturity. Thus we discount each coupon payment
at the corresponding zero rate, which is obtained by the bootstrap method described
as follows:

Consider the bonds traded in the bond market given in Table 22.1. For bonds with
time to maturity equal to 1.5 years and 2 years, half of the annual coupon amount is
paid every six months, i.e., compounding frequency is given by m D 2.
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Table 22.1 Market data for bonds

Principal Time to maturity Annual coupon Bond price Compound. freq.

($) (years) ($) ($) (times per year)

100 0:25 0 98:31 4

100 0:50 0 96:54 2

100 1:00 0 93:14 1

100 1:50 6 98:10 2

100 2:00 10 104:62 2

Table 22.2 Continuously
compounded zero rates
determined by Table 22.1

Maturity (years) Zero rate (%)

0.25 6.818

0.50 7.043

1.00 7.107

1.50

2.00

The first three bonds pay no coupons before maturity, and it is easy to calculate
their zero rates.

(i) Let us consider the first bond which pays $100, and we make the profit
$100 � $98:31 D $1:69, in three months. Note that 100 D A

�
1C Rm

m

�mn

with A D 98:31, m D 4, n D 0:25. Hence 100 D 98:31
�
1C R4

4

�
and

R4 D 4�.100�98:31/
98:31

D 6:876%. From the equation A eRcn D A
�
1C Rm

m

�mn
,

we have eRc�0:25 D 1C R4
4

and Rc D 6:818%.
(ii) We do similarly for the next two bonds. Let us consider the second bond which

pays $100, and we make the profit $100 � $96:54 D $3:46, in six months.
Note that 100 D A

�
1C Rm

m

�mn
with A D 96:54, m D 2, n D 0:5. Hence

100 D 96:54
�
1C R2

2

�
and R2 D 2�.100�96:54/

96:54
D 7:168%. From the equation

A eRcn D A
�
1C Rm

m

�mn
, we have eRc�0:5 D 1C R2

2
and Rc D 7:043%.

(iii) Let us consider the third bond which pays $100, and we make the profit $100�
$93:14 D $6:86, in a year. Note that 100 D A

�
1C Rm

m

�mn
with A D 93:14,

m D 1, n D 1. Hence 100 D 93:14
�
1C R1

1

�
and R1 D 100�93:14

93:14
D 7:365%.

From the equation A eRcn D A
�
1C Rm

m

�mn
, we have eRc�1 D 1C R1

1
and Rc D

7:107%. Using the results from (i), (ii) and (iii) we can present a partially
completed table as Table 22.2.

Now we consider the remaining cases.
(iv) Consider the fourth bond which has coupon payments of $3 every six months.

To calculate the cash price of a bond we discount each cash flow at the
appropriate zero rate. The cash flow is given as follows:

! 6 months: $3
!! 1 year: $3
!!! 1.5 years: $103
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Table 22.3 Continuously
compounded zero rates
determined by Table 22.1

Maturity (years) Zero rate (%)

0.25 6.818

0.50 7.043

1.00 7.107

1.50 7.233

2.00 7.348

One arrow corresponds to half a year. Now we use the earlier results given in
Table 22.2. Note that

98:10 D 3e�0:07043�0:5 C 3e�0:07107�1:0 C 103e�R�1:5

Hence R D 0:07233, and we can fill a blank space in the previous table.
(v) Consider the fifth bond which has coupon payments of $5 every six months. To

calculate the cash price of a bond we discount each cash flow at the appropriate
zero rate. The cash flow is given as follows:

! 6 months: $5
!! 1 year: $5
!!! 1.5 years: $5
!!!! 2.0 years: $105

Now we use the previous results. Since

104:62 D 5e�0:07043�0:5 C 5e�0:07107�1:0 C 5e�0:07233�1:5 C 105e�R�2:0 ;

we have R D 0:07348, and finally we obtain Table 22.3.

22.3 Term Structure of Interest Rates

The term structure of interest rates, or spot rate curve, or yield curve at time t is
the relation between the level of interest rates and their time to maturity. Usually,
long-term interest rates are greater than short term interest rates, and hence the yield
curve is upward moving.

There are several theories for the term structure of interest rates.

1. Expectations Theory: The interest rate on a long-term bonds will be equal to an
average of the short-term interest rates that people expect to occur over the life of
the long-term bond. This theory does not explain why the yield curve is upward
moving in most cases since the short-term interest rate moves in either direction
in general.
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2. Segmented Market Theory: Short, medium and long maturity bonds are separate
and segmented, and their interest rates are determined by their own supply and
demand, and move independently of each other. This theory does not explain
why the interest rates on bonds of different maturities tend to move together.

3. Liquidity Premium Theory: The interest rate on a long-term bond will equal
an average of short-term interest rates expected to occur over the life of the
long-term bonds plus a liquidity premium. Since investors tends to prefer short-
term bonds to avoid the liquidity risk, for a long-term bond a positive liquidity
premium must be added.

Example 22.1 (Management of Interest Rate) Suppose that the interest rates posted
by a bank is given in Table 22.4. Depositors would choose to put their money in
the bank only for one year because they want to have more financial flexibility.
Otherwise longer term deposits would tie up the fund for a longer period of time.
Now suppose that we want a mortgage. We would choose a five-year mortgage
at 6% because it fixes the borrowing rate for the next five years and subjects us
to less refinancing risk. Therefore, when the bank posts the rates shown in the
above table, the majority of its customers would choose one-year deposits and five-
year mortgages. This creates an asset/liability mismatch for the bank. There is no
problem if interest rates fall. The bank will finance the five-year 6% loans with
deposits that cost less than 3% in the future and net interest income will increase.
However, if the rates rise, then the deposits that are financing these 6% loans will
cost more than 3% in the future and net interest income will decline.

How can we ensure that the maturities of the assets on which interest is earned
and the maturities of the liabilities on which interest is paid are matched? We can do
it by increasing the five-year rate on both deposits and mortgages. For example, the
bank can post new rates given in Table 22.5 where the five-year deposit rate is 4%
and the five-year mortgage rate 7%. This would make five-year deposits relatively
more attractive and one-year mortgages relatively more attractive. Some customers
who chose one-year deposits when the rates were as in Table 22.4 will switch to five-
year deposits, and some customers who chose five-year mortgages when the rates
were as in Table 22.4 will choose one-year mortgages. This method may lead to the
match of the maturities of assets and liabilities. If there is still an imbalance with
depositors tending to choose a one-year maturity and borrowers a five-year maturity,

Table 22.4 Present interest
rates

Maturity (years) Deposit rate Lending rate

1 3% 6%

5 3% 6%

Table 22.5 New interest
rates

Maturity (years) Deposit rate Mortgage rate

1 3% 6%

5 4% 7%
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five-year deposit and mortgage rates could be increased even further. Eventually the
imbalance will disappear.

22.4 Forward Rates

Definition 22.3 The forward rate is the future zero rate implied by today’s term
structure of interest rates. See Definition 22.8(ii) for the details.

For example, consider two different strategies for bond investment. In the first
strategy, we buy a bond with maturity equal to two years with interest rate R2 D
4:0%. In this case, an investment of $1 will grow to $1 	 eR2�2 in two years. The
second strategy is to buy a bond with maturity of one year which has interest rate
R1 D 3:0%. Using the sum of the principal $1 and the interest, which is equal to
$1 	 eR1�1, we reinvest at time 1 year, and receive $1 	 eR1�1 eF12�.2�1/ where F12
is the forward rate that is predetermined today. To avoid arbitrage, two investment
strategies should yield the same profit, i.e.,

eR2�2 D eR1�1 eF12�.2�1/ :

Hence R2 	 2 D R1 	 1 C F12 	 .2 � 1/. Therefore, we have F12 D 5:0%. See
Table 22.6.

Remark 22.3 Suppose that the zero rates for time periods T1 and T2 are R1 and R2
with both rates continuously compounded. The forward rate for the period between
times T1 and T2 is

R2T2 � R1T1
T2 � T1

:

A forward rate agreement (FRA) is an agreement that a certain rate, called the
forward rate, will be exchanged for interest at the market rate to a notional amount
during a certain future time period from T1 to T2. The agreement is so structured
that neither party needs to make an upfront payment, i.e., the value of the contract
is zero when the agreement is entered.

Example 22.2 Suppose that a company has agreed with a bank at time t D 0 that it
will receive the forward rate 4% on the notional amount $100 million for 3 months

Table 22.6 Calculation of forward rates

Year Zero rate for an n-year investment Forward rate for the nth year

(n) (% per annum) (% per annum)

1 R1 D 3:0

2 R2 D 4:0 F12 D 5:0



22.5 Yield to Maturity 403

starting in T1 D 3 years. That is, T2 D T1 C 3
12

D 3:25. Suppose that the interest
rate turns out to be 4.5% (with quarterly compounding) at T1. The company has to
pay $125; 000 D $100million 	 0:5% 	 3

12
to the bank at time T2, or equivalently,

$123; 630 D .1C 0:045/�0:25 	 $125; 000 at T1.

22.5 Yield to Maturity

Consider a coupon bond that provides the holder with cash flows c1; : : : ; cn on dates
0 < t1 < � � � < tn D T. (In most cases, ci is a coupon payment of fixed amount c
for 1 � i � n � 1, and cn is a coupon payment plus the principal.) Let Z.0; ti/ be the
discount factors for each date ti. Then the value B of the coupon bond is equal to

B D
nX

iD1
ciZ.0; ti/ : (22.1)

Note that B is equal to the present value of the future cash flows.

Definition 22.4 The yield to maturity, or just YTM for short, is the single discount
rate for all dates ti that makes the present value of the future cash flows equal to the
bond price. It is also called the internal rate of return.

(i) In the continuously compounding case, the yield y is defined by Z.0; ti/ D e�yti ,
i.e,

B D
nX

iD1
cie�yti : (22.2)

Since

d

dy
B.y/ D �

nX

iD1
ticie�yti < 0 ;

there exists a unique value for y satisfying (22.2). Since

d2

dy2
B.y/ D

nX

iD1
t2i cie�yti > 0 ;

the graph of B.y/ is monotonically decreasing and convex.
(ii) In the periodic compounding case with the compounding frequency m, the yield

is defined by Z.0; ti/ D .1C y
m/

�mti , i.e,

B D
nX

iD1
ci

�
1C y

m

��mti
: (22.3)
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Fig. 22.1 Computation of the yield to maturity when the bond price is given

Note that the periodically compounded yield converges to the continuously
compounded yield.

Example 22.3 Consider a coupon bond, with face value P D $100, that pays C D
$6 every six months until maturity T D 20. Suppose that its present value is B D
$140. What is the yield to maturity? We have to solve

B D
2TX

kD1
Ce�0:5ky C Pe�Ty D Ce�0:5y 1 � e�Ty

1� e�0:5y
C Pe�Ty :

Using the Newton–Raphson method we find y D 0:0632. See Fig. 22.1 and
Simulation 22.1. The present bond price B D $140 is represented by the horizontal
line, and the vertical line the yield to maturity.

22.6 Duration

The duration of a bond is a measure of how long on average the holder of the bond
has to wait before receiving cash payment. A zero-coupon bond that matures in n
years has a duration of n years. However, a coupon bond maturing in n years has
a duration of less than n years, because the holder receives some of the payments
prior to year n.

Definition 22.5 (Duration for Continuous Compounding) Consider a coupon
bond that provides the holder with cash flows c1; : : : ; cn on dates 0 < t1 < � � � <
tn D T. Recall that the price B and the (continuously compounded) yield to maturity
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y satisfy

B.y/ D
nX

iD1
cie�yti :

The duration D of the bond is defined by

D D �B0.y/
B.y/

D 1

B

nX

iD1
ticie�yti :

Remark 22.4

(i) Duration was introduced by F. Macaulay in 1938.
(ii) We may rewrite the duration as

D D
nX

iD1

cie�yti

B
ti ;

which is the weighted average of the coupon payment dates ti. Note that the
sum of the weights equals 1 and that the ith weight is the proportion of the
discounted cash flow at ti.

(iii) When the bond yield increases, the bond price decreases.

Theorem 22.1 Let ıy be a small change in the continuously compounded yield to
maturity, and let ıB the corresponding change in the bond price. Then

ıB

B
� �D ıy :

Proof Note that ıB � B0.y/ ıy D Pn
iD1.�ti/cie�yti ıy D �DB ıy. ut

Example 22.4 Consider a three-year 8% coupon bond with a face value of $100.
Coupon payments of $100 	 0:08

2
D $4 are made every six months. (There are six

coupon payments before and on the maturity date T D 3.) Suppose that the yield to
maturity is 7.5% per annum with continuous compounding, i.e., y D 0:075. We will
show how to calculate the duration of the bond. First, the cash flow of the coupon
bond is given in Table 22.7.

Then we fill the next columns for the present values of the cash flows, the
weights, and the payment dates times the weights. The total of the last column in
Table 22.8 equals the duration.

Definition 22.6 (Duration for Periodic Compounding) Let y be the yield to
maturity for the periodic compounding case with a compounding frequency of m
times per year. Then the duration D is defined by

D D
X

i

ti
ci
�
1C y

m

��mti

B
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Table 22.7 Calculation of duration: a bond with coupons

Time Cash flow Present value Weight Time � Weight

(years) ($) ($) (years)

t1 D 0:5 c1 D 4

t2 D 1:0 c2 D 4

t3 D 1:5 c3 D 4

t4 D 2:0 c4 D 4

t5 D 2:5 c5 D 4

t6 D 3:0 c6 D 104

Total 124

Table 22.8 Calculation of duration

Time Cash flow Present value Weight Time � Weight

(years) ($) ($) (years)

0.5 4 3:853 0:038 0:019

1.0 4 3:711 0:037 0:037

1.5 4 3:574 0:035 0:053

2.0 4 3:443 0:034 0:068

2.5 4 3:316 0:033 0:082

3.0 104 83:046 0:823 2:468

Total 124 100:943 1:000 D D 2:727

and the modified duration D� is defined by

D� D D

1C y
m

:

Note that D� ! D as m ! 1. Since

B0.y/ D �
X

i

tici

�
1C y

m

��mti�1
;

we have

ıB � � BD

1C y
m

ıy D �BD�ıy :

In other words,

B0.y/
B.y/

� �D�ıy :
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Definition 22.7 (Convexity)

(i) For a continuously compounded case, the convexity C of a bond with price B
and yield to maturity y is defined by

C D B00.y/
B.y/

D 1

B

X

i

t2i cie�yti :

(ii) For a periodically compounded case, the convexity is defined by

C� D B00.y/
B.y/

D 1

B

X

i

ti

�

ti C 1

m

�

ci

�
1C y

m

��mti 1

.1C y
m /

2
:

Theorem 22.2

(i) For a continuously compounded case, we have

ıB

B
� �D ıy C 1

2
C ıy2 :

(ii) For a periodically compounded case, we have

ıB

B
� �D� ıy C 1

2
C� ıy2 :

Proof By the Taylor series expansion, ıB � B0.y/ ıy C 1
2
B00.y/ ıy2. Dividing both

sides by B, we obtain the desired result. ut

22.7 Definitions of Various Interest Rates

Let the present time be t, and let P.t;T/ and P.t; S/ denote the zero coupon bond
prices with maturities T and S, T < S, respectively. Consider a bank that wants to
lend money, say $1, to a borrower for a future period ŒT; S�. Let the interest rate for
lending be f .t;T; S/, which is agreed on at time t. The bank shorts P.t;T/

P.t;S/ units of
the S-maturity zero coupon bond, and long one unit of the T-maturity zero coupon
bond. (The price of P.t;T/

P.t;S/ units of the S-maturity zero coupon bond at time t equals
P.t;T/
P.t;S/ 	 P.t; S/ D P.t;T/, which is exactly equal to the cost of buying one unit of
the T-maturity zero coupon bond. Hence there is no cash transfer.) At time T, the
proceeds from the T-maturity bond are lent out for the period ŒT; S� with the interest
rate f .t;T; S/. At time S, the loan is paid back from the borrower and the short
position of S-bond is recovered, i.e., the S-bond is returned by the bank, resulting in
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a net cash flow of

C D $1 	 e f .t;T;S/.S�T/ � $1 	 P.t;T/

P.t; S/

at time S. Since the bank did not need any money at time t, we have C D 0 by the
no arbitrage principle. Thus

f .t;T; S/ D 1

S � T
log

P.t;T/

P.t; S/

and

P.t;T/e�.S�T/f .t;T;S/ D P.t; S/ :

Definition 22.8

(i) The spot rate R.t;T/ at t for maturity T is defined as the yield to maturity of
the T-maturity bond, i.e., P.t;T/ D e�.T�t/R.t;T/. More precisely,

R.t;T/ D � log P.t;T/

T � t
:

(ii) The forward rate f .t;T; S/ at t for T < S is defined by

f .t;T; S/ D 1

S � T
log

P.t;T/

P.t; S/
:

Since P.t; t/ D 1, taking T D t, we obtain

e�.S�t/f .t;t;S/ D P.t; S/ ;

which in turn implies that

f .t; t; S/ D R.t; S/ :

(iii) The instantaneous forward rate f .t;T/, over the interval ŒT;T C dt�, is defined
by

f .t;T/ D lim
S#T

f .t;T; S/ :
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Note that

f .t;T/ D lim
S#T

1

S � T
log

P.t;T/

P.t; S/

D � lim
S#T

log P.t; S/� log P.t;T/

S � T

D � @

@T
log P.t;T/

D � 1

P.t;T/

@

@T
P.t;T/ :

Hence

P.t;T/ D e� R T
t f .t;u/du

and

R.t;T/ D 1

T � t

Z T

t
f .t; u/du :

(iv) Define the short rate r.t/, over the interval Œt; t C dt�, by

r.t/ D lim
T#t

R.t;T/ D f .t; t/ :

22.8 The Fundamental Equation for Bond Pricing

A zero coupon bond will pay the investor a riskless fixed amount at maturity, and
it might be regarded as a riskless investment. However, if the interest rate r is
stochastic, a bond is a risky asset since a change in the interest rate will cause a
change in the present value of the pre-agreed payment at maturity. Especially when
the investor wants to sell the bond before maturity, a sudden increase in the short-
term interest rate may cause losses.

We assume that the short rate rt satisfies a stochastic differential equation

drt D �.rt; t/ dt C �.rt; t/ dWt

for some �.r; t/ and �.r; t/. Note that in bond pricing there is no underlying asset
with which to hedge the risk. Therefore we construct a portfolio in which one bond is
hedged by another bond with different maturity in the derivation of the fundamental
equation for bond pricing given in the following theorem due to O. Vasicek.
The key concept is similar to the Delta-hedging idea in the derivation of the
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Black–Scholes–Merton equation, and it is fundamental in pricing bonds and interest
rate derivatives. See [99].

Theorem 22.3 (Fundamental Equation for Pricing) Let V.r; t/ denote the price
of a bond with payoff equal to 1 at maturity date T, or an interest rate derivative
that pays g.rT/ where rT denotes the interest rate at T. Then it satisfies

@V

@t
C 1

2
�2
@2V

@r2
C m.r; t/

@V

@r
D rV (22.4)

for some function m.r; t/. The final condition is given by V.r;T/ D 1 for a bond,
and V.r;T/ D g.r/ for a derivative, respectively.

Proof Since a bond is an interest rate derivative with contingent claim given by
g.rT/ D 1 at maturity, we prove the theorem for general derivatives. We consider
two arbitrarily chosen derivatives, and construct a portfolio in which one derivative
is hedged by another derivative with different maturity. Let Vi.r; t/ denote the price
at time t of the ith derivative with maturity Ti where t � minfT1;T2g. Set up a
portfolio… given by

… D V1 �	V2

where 	 is the number of units of the second derivative that is shorted. Then the
increment of… after time increment dt is given by

d… D @V1
@t

dt C @V1
@r

dr C 1

2
�2
@2V1
@r2

dt �	
�
@V2
@t

dt C @V2
@r

dr C 1

2
�2
@2V2
@r2

dt

�

by Itô’s lemma. To make the coefficient of the risky term dr equal to zero,
eliminating randomness in the portfolio, we take

	 D @V1
@r

.@V2
@r

: (22.5)

Then

d… D

8
<̂

:̂

@V1
@t

C 1

2
�2
@2V1
@r2

�
@V1
@r
@V2
@r

�
@V2
@t

C 1

2
�2
@2V2
@r2

�
9
>=

>;
dt :

Since … is risk-free, we have d… D r… dt, and hence

@V1
@t

C 1

2
�2
@2V1
@r2

�
@V1
@r
@V2
@r

�
@V2
@t

C 1

2
�2
@2V2
@r2

�

D r

0

B
@V1 �

@V1
@r
@V2
@r

V2

1

C
A :
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Hence

1
@V1
@r

�
@V1
@t

C 1

2
�2
@2V1
@r2

�

� 1
@V2
@r

�
@V2
@t

C 1

2
�2
@2V2
@r2

�

D r

 
1
@V1
@r

V1 � 1
@V2
@r

V2

!

:

By collecting V1 terms on the left-hand side and V2 terms on the right, we obtain

@V1
@t

C 1

2
�2
@2V1
@r2

� rV1

@V1
@r

D
@V2
@t

C 1

2
�2
@2V2
@r2

� rV2

@V2
@r

:

The left-hand side depends only on V1 not V2, and the right-hand side depends only
on V2 not V1, and hence both sides do not depend on the derivative price. Therefore
the derivative price V satisfies

@V

@t
C 1

2
�2
@2V

@r2
� rV

@V

@r

D �m.r; t/

for some function m.r; t/. The negative sign in front of m.r; t/ is for notational
convenience in the final statement of the result. ut
Example 22.5 If Vt denotes the value at time t of an interest rate option with
maturity T and strike rate rK , then its price satisfies the fundamental pricing equation
given in Theorem 22.3 with the final condition V.r;T/ D N 	 maxfr � rK ; 0g for
some nominal amount N.

Remark 22.5 As in the derivation of the Black–Scholes–Merton differential equa-
tion presented in Theorem 15.1, we can simulate the portfolio process ….r; t/ D
V1.r; t/ � 	V2.r; t/ where we take 	 given by (22.5) and the price processes of
bond 1 and bond 2. The fundamental pricing equation depends on our choice of the
interest rate model. For example, the Vasicek model assumes that m.r; t/ has the
same form as the drift rate of the original interest rate process, although possibly
with different parameter values. Consult Simulation 23.4 in Chap. 23.

Remark 22.6 When there is continuous coupon payment, we modify the model as

@V

@t
C 1

2
�2
@2V

@r2
C m.r; t/

@V

@r
� rV C K.r; t/ D 0

where K.r; t/ dt is the amount received in a period of length dt. For discrete coupon
payment, we introduce the jump condition

V.r; tc�/ D V.r; tcC/C K.r; tc/

where tc is the time of coupon payment and K.r; tc/ is the amount of coupon.



412 22 Bond Pricing

Remark 22.7 (Risk-Neutral Measure) Let Pt be the price at time t of a bond with
maturity T such that PT D 1. Let drt D �.rt; t/dt C �.rt; t/dWt be a model of the
movement of the physical interest rate where Wt is a P-Brownian motion. Let m.r; t/
be the function given in Theorem 22.3. Put

�.r; t/ D �.r; t/ � m.r; t/

�.r; t/

and �t D �.rt; t/, and we assume, throughout the rest of the chapter, that the
following Novikov condition holds:

E
P

�

exp

�
1

2

Z T

0

�2t dt

��

< 1 :

(Here we are assuming that � 6D 0.) Define

zWt D Wt C
Z t

0

�udu :

By Girsanov’s theorem, there is a probability measure Q equivalent to P, with the
Radon–Nikodym derivative

dQ

dP
D exp

�

�
Z T

0

�t dWt � 1

2

Z T

0

�2t dt

�

such that zWt, 0 � t � T, is a Q-Brownian motion. The measure Q is called the
risk-neutral measure. The interest rate now satisfies

drt D �dt C �.d zWt � �dt/ D m dt C �d zWt ;

and it is called the risk-neutral interest rate.

Remark 22.8 (Market Price of Interest Rate Risk) Suppose that the coefficient
m.r; t/ in Theorem 22.3 is of the form

�m.r; t/ D �.r; t/�.r; t/ � �.r; t/

for some �.r; t/. (We just take � D ��m
�

.) Then (22.4) becomes

@V

@t
C 1

2
�2
@2V

@r2
C .� � ��/

@V

@r
� rV D 0 : (22.6)
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By Itô’s lemma, we have

dV D
�
@V

@t
C 1

2
�2
@2V

@r2

�

dt C @V

@r
dr

D
�
@V

@t
C 1

2
�2
@2V

@r2

�

dt C @V

@r
.�dt C �dW/

D
�
@V

@t
C 1

2
�2
@2V

@r2
C �

@V

@r

�

dt C �
@V

@r
dW

D
�

��
@V

@r
C rV

�

dt C �
@V

@r
dW

where (22.6) is used for the last equality. Hence

dV � rVdt D �
@V

@r
.� dt C dW/ (22.7)

and

E
P

"
dV � rVdt

� @V
@r

#

D � dt : (22.8)

(Here we are assuming that � @V
@r 6D 0.) The left-hand side of (22.8) is the risk-

adjusted excess return above the risk-free rate, and hence � D � � m

�
is called the

market price of interest rate risk.

Let m.r; t/ be the function given in Theorem 22.3. Let � , zWt and Q be defined as
in Remark 22.7.

Theorem 22.4 (Discounted Feynman–Kac Theorem for Interest Rate Deriva-
tives) Consider an interest rate derivative with its payoff at maturity S given by
XS. Let Vt denote the price of the interest rate derivative at 0 � t � S. Choose a
numeraire given by the risk-free cash account process

Bt D e
R t
0 rudu

and consider the corresponding discounted derivative price process

zVt D B�1
t Vt D e� R t

0 ruduVt :
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Assume that at least one of following conditions holds:

(i) There exists a random variable Y � 0 such that EQŒY� < 1 and jeVtj � Y for
every t.

(ii) E
Q

hR S
0

�
B�1

t � @V
@r

�2
dt
i
< 1.

Then

Vt D E
Q

h
e� R S

t ruduXS

ˇ
ˇ
ˇFt

i
; 0 � t � S ;

where

drt D m dt C �d zWt :

Proof Note that

deVt D e� R t
0 rududVt C e� R t

0 rudu.�rt/Vtdt

D B�1
t .dVt � rtVtdt/

D B�1
t �

@V

@r
d zWt ; (by Eq. (22.7))

and hence zVt is a local Q-martingale. Since at least one of two given conditions
holds, zVt is a Q-martingale. (See Lemma 5.1 in [30] and Remark 7.2 in [49] for the
proof.) Hence

e� R t
0 ruduVt D zVt D E

Q

hzVS

ˇ
ˇ
ˇFt

i
D E

Q

h
e� R S

0 ruduVS

ˇ
ˇ
ˇFt

i
:

Since e� R t
0 rudu is Ft-measurable, we have

Vt D E
Q

h
e
R t
0 rudue� R S

0 ruduVS

ˇ
ˇ
ˇFt

i
D E

Q

h
e� R S

t ruduVS

ˇ
ˇ
ˇFt

i

for 0 � t � S. Now use VS D XS. ut
Corollary 22.1 (Discounted Feynman–Kac Theorem for Bonds) The price
P.t; S/ of a zero coupon bond with maturity S at time 0 � t � S is given by

P.t; S/ D E
Q

h
e� R S

t rudu
ˇ
ˇ
ˇFt

i
:

Proof Note that the bond price P.t; S/ satisfies P.S; S/ D XS D 1. ut
Example 22.6 Consider a forward contract in which a price K will be paid at time
T in return for a repayment of $1 at time S, T < S. Equivalently, K is paid at T in
return for delivery at T of the S-bond that has a value P.T; S/ at T. Now the problem
is to find how much the contract is worth at time t < T. Since the contract has value



22.8 The Fundamental Equation for Bond Pricing 415

X D P.T; S/� K at T, we have

V.t/ D E
QŒe� R T

t rudu.P.T; S/� K/jFt�

D E
QŒe� R T

t rudu
E
QŒe� R S

T rudujFT � jFt� � K E
QŒe� R T

t rudujFt�

D E
QŒEQŒe� R T

t rudue� R S
T rudujFT � jFt� � K E

QŒe� R T
t rudujFt�

D E
QŒe� R S

t rudujFt� � K E
QŒe� R T

t rudujFt�

D P.t; S/� KP.t;T/ :

If K is chosen so that there is no need to exchange any money at time t D 0 for the
forward contract, then V.0/ D 0, and hence K D P.0;S/

P.0;T/ .

Theorem 22.5 As in the method for pricing an option on a stock given in Sect. 16.1,
there exists a self-financing and replicating strategy for interest rate derivatives with
maturity S.

Proof Construct a portfolio composed of two assets: a bond P with maturity T, S �
T, and the risk-free cash deposit B. Let Q be the risk-neutral measure constructed in
Theorem 22.4. Assume that the bond pays $1 at T and that the risk-free cash account
satisfies dBt D rtBtdt, B0 D 1, for the interest rate process rt. Then Bt D e

R t
0 rudu. Let

XS denote the payoff at S of the interest rate derivative under consideration. Define
a Q-martingale

Mt D E
QŒB�1

S XSjFt�

for 0 � t � S. Let zPt D B�1
t Pt be the discounted bond price. Then, by Eq. (22.7),

dzPt D �rtB
�1
t Ptdt C B�1

t dPt

D B�1
t .dPt � rtPtdt/

D B�1
t �

@P

@r
d zWt :

Since zPt and Mt are bothQ-martingales, by the Martingale Representation Theorem,
there exists a predictable process �t such that

Mt D M0 C
Z t

0

�udzPu :

Define

 t D Mt � �t zPt
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and consider a portfolio V defined by

Vt D �tPt C  tBt :

Since

Vt D Bt.�tzPt C  t/ D BtMt ;

we have

dVt D BtdMt C MtdBt

D Bt�tdzPt C MtdBt

D Bt�t.�rtB
�1
t Ptdt C B�1

t dPt/C . t C �tB
�1
t Pt/dBt

D �t.�rtPtdt C dPt/C . t C �tB
�1
t Pt/dBt

D �tdPt C  tdBt C �tB
�1
t Pt.�rtBtdt C dBt/

D �tdPt C  tdBt :

Hence Vt is self-financing. Finally, Vt replicates the contingent claim at time S since
VS D BSMS D BSE

QŒB�1
S XSjFS� D BSB�1

S XS D XS. ut
Example 22.7 If V itself is a bond with maturity S, and XS D VS D 1, then holding
V is a self-financing and replicating strategy. In this case, �t D 1 and  t D 0.

22.9 Computer Experiments

Simulation 22.1 (Yield to Maturity)
Using the Newton–Raphson method we compute the yield to maturity when the

present price of a coupon bond is given.

B = 140; % current bond price

C = 5; % Coupon is paid every six months.

T = 20; % time to maturity of bond

P = 100; % face value

r_max = 0.2;

L = 500;

dr = r_max/L;

r = 0:dr:r_max; % range of interest rates

PV = C*exp(-0.5*r(:)).*(1-exp(-T*r(:)))./(1-exp(-0.5*r(:)))+P*exp(-r(:)*T);

PV(1) = C*2*T + P;

plot(r,PV)

xlabel(’Interest rate’)

ylabel(’Price of bond’)
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For the graph of bond price as a function of interest rate, see Fig. 22.1. Now we find
the yield to maturity by Newton’s method.

syms y % Create a symbolic variable y.

F = C*exp(-0.5*y)*(1-exp(-T*y))/(1-exp(-0.5*y)) + P*exp(-y*T) - B;

F1 = diff(F,y);

n = 7;

Y = zeros(n+1,1);

Y(1) = 0.01;

for i=1:n

Y(i+1) = Y(i) - subs(F,Y(i)) / subs(F1,Y(i));

end

YTM = Y(n+1) % Yield to maturity

Or, we may use the following command to compute the yield to maturity.

solve(C*exp(-y/2)*(1-exp(-T*y))/(1-exp(-y/2))+P*exp(-y*T)==B,y,’Real’,true)

Simulation 22.2 (Discounted Feynman–Kac Theorem)
We compute the present (t D 0) price of a zero coupon bond with maturity

T D 30 years using Corollary 22.1 in the Vasicek model drt D ˛.Nr � rt/ dt C � dWt

given in Sect. 23.2. The closed form formula for bond prices in the following code
is from Theorem 23.3.

T= 30;

N = 1000;

dt = T/N;

t = 0:dt:T;

M = 10^5; % the number of samples for the Monte Carlo method

r = zeros(M,1);

alpha = 0.4;

r_bar = 0.05;

sigma = 0.015;

r0 = 0.03;

r(:) = r0;

Integral = zeros(M,1);

for i = 1:N

dW = sqrt(dt)*randn(M,1);

r(:) = r(:) + alpha*(r_bar - r(:))*dt + sigma*dW(:);

Integral(:) = Integral(:) + r(:)*dt;

end

B = 1/alpha*(1-exp(-alpha*T));

A = (B-T)*(r_bar - sigma^2/2/alpha^2)- sigma^2*B^2/4/alpha;

Vasicek_formula = exp(A-B*r0)

MC_bond_price = mean(exp(-Integral(:)))

sample_std = std(exp(-Integral(:)))/sqrt(M)
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The output is given by

Vasicek_formula =

0.2389

MC_bond_price =

0.2390

sample_std =

1.4652e-04

Note that the theoretical formula under the Vasicek model (Theorem 23.3) and the
Monte Carlo method produce the prices very close to each other. If we employ the
Cox–Ingersoll–Ross model in Sect. 23.3 given by drt D ˛.Nr � rt/ dt C �

p
rt dWt

with Matlab code

r(:) = max(0,r(:) + alpha*(r_bar - r(:))*dt + sigma*sqrt(r(:)).*dW(:));

using the same parameters as in the Vasicek model except for � D 0:015=
pNr D

0:0671, we obtain the bond price 0:2387, which is close to the value computed by
the Vasicek model.

Simulation 22.3 (Distribution of the Discount Factor)
To plot the distributions of

R T
0

rtdt and the discount factor exp.� R T
0

rtdt/
considered in Simulation 22.2 under the Vasicek model, we generate 106 sample
paths. (We observe that all the sample values for the integral

R T
0 rtdt are positive

even though a sample path rt, r0 D 0:03, can be negative for some 0 < t � T.) The
number of sample values belonging to the jth subinterval is given by bin(j) in the
following code.

y = Integral(:);

histogram(y,50,’Normalization’,’pdf’)

title(’Distribution of \int_0^T r_t dt’);

ylabel(’Probability’);

For the plots, see Fig. 22.2. Observe that the distributions of
R T
0

rtdt and

exp.� R T
0

rtdt/ are approximately normal and lognormal, respectively.
If the Cox–Ingersoll–Ross model in Sect. 23.3 is employed in bond pricing with

the same parameters as in the Vasicek model except for � D 0:015=
pNr D 0:0671

to match the volatility level, we have the distributions given in Fig. 22.3. Observe
that the distribution of

R T
0

rtdt is skewed to the right and exp.� R T
0

rtdt/ is more
symmetric than in the Vasicek model case. This is due to the fact that in the CIR
model the interest rate is always nonnegative, not symmetrically distributed.
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Fig. 22.2 Probability distributions of
R T
0 rtdt and exp.� R T

0 rtdt/ in the Vasicek model
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Fig. 22.3 Probability distributions of
R T
0 rtdt and exp.� R T

0 rtdt/ in the CIR model

Exercises

22.1 Prove that .1 C R
m /

m is monotonically increasing and converges to eR as
m ! 1.

22.2 Let … D V1 � 	V2 as in the proof of Theorem 22.3 and assume that … is
hedged by choosing	 as in (22.5). Show that the following holds:

1

…

@…

@t
C 1

2
�2
1

…

@2…

@r2
D r :

22.3 Under the assumption that the bond price at t is given by P.t; S/ D
E
QŒe� R S

t rudujFt�, derive the fundamental equation for bond pricing given in The-
orem 22.3.



Chapter 23
Interest Rate Models

While the assumption that the interest rate is constant produces reasonable estimates
in option pricing, the same assumption would produce less reliable results in pricing
bonds and interest rate derivatives. One of the reasons is that the bonds usually have
much longer maturity. We investigate interest rate models expressed in terms of
stochastic differential equations. In this chapter we introduce models for the short
rate rt, in particular. Recall the definition of the short rate given in Definition 22.8.
If not stated otherwise, an interest rate means a short rate in this chapter.

23.1 Short Rate Models

Definition 23.1 (Affine Term Structure) Let P.t;T/ denote the price at time t of
a bond with maturity T. Assume that P.T;T/ D 1. If the bond price is given by a
formula of the form

P.r; t;T/ D eA.t;T/�B.t;T/ r

for some sufficiently smooth deterministic functions A.t;T/ and B.t;T/ where r
denotes the interest rate, then the model is said to have an affine term structure. Note
that in the exponent the coefficient for r is �B.t;T/ so that we have B.t;T/ > 0 in
agreement with the fact that

@

@r
P.r; t;T/ D �B.t;T/P.r; t;T/ < 0 :

Theorem 23.1 Consider a risk-neutral interest rate process rt such that

drt D m.rt; t/ dt C �.rt; t/ d zWt

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_23
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where zWt is a Q-Brownian motion. Assume that the interest rate model has an affine
term structure. Suppose that its diffusion and drift terms are of the form

m.r; t/ D a.t/C b.t/ r

and

�2.r; t/ D c.t/C d.t/ r

for some deterministic functions a, b, c and d. (In other words, m and �2 are affine
functions in r.) Then A and B given in Definition 23.1 satisfy the system of ordinary
differential equations

8
ˆ̂
<̂

ˆ̂
:̂

@

@t
A.t;T/ � a.t/B.t;T/C 1

2
c.t/B.t;T/2 D 0 ; A.T;T/ D 0 ;

@

@t
B.t;T/C b.t/B.t;T/ � 1

2
d.t/B.t;T/2 D �1 ; B.T;T/ D 0 :

(23.1)

Proof Recall that the bond price P.t;T/ satisfies the fundamental equation in
Theorem 22.3. By substituting P.t;T/ D eA.t;T/�B.t;T/r in place of V in the equation,
we obtain the ordinary differential equations in (23.1). The boundary conditions
follow since

1 D P.T;T/ D eA.T;T/�B.T;T/r

for every r. ut
Remark 23.1 The second equation in (23.1) for B.t;T/ is called a Riccati equation.
(See Appendix C.2.) Once we solve for B, then we insert it into the first equation,
and obtain A.

23.2 The Vasicek Model

Consider the Vasicek model [99] for an interest rate given by

drt D ˛.Nr � rt/ dt C � d zWt

where rt is the interest rate at t, and ˛, Nr and � are positive constants. (For Nr D 0 we
obtain the Ornstein–Uhlenbeck process in Example 12.1.) This model has the mean
reversion property that is observed in the financial market. That is, if the interest
rate rt is higher than Nr, called the long-term mean, then ˛.Nr � rt/, the coefficient
of dt, becomes negative, and the interest rate tends to decrease, and if the level of
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rt is lower than Nr then ˛.Nr � rt/ becomes positive and the interest rate tends to go
up. The coefficient ˛ is called the reversion rate. In the long run, the interest rate is
distributed around Nr. Note that the interest rate can become negative in the Vasicek
model.

Theorem 23.2 The interest rate rt in the Vasicek model has the normal distribution,
and for 0 � s � t we have

rt D Nr C .rs � Nr/ e�˛.t�s/ C �

Z t

s
e�˛.t�u/d zWu :

Hence the conditional mean and variance are given by

E
QŒrtjFs� D Nr C .rs � Nr/ e�˛.t�s/ ;

VarQ.rtjFs/ D �2

2˛
.1 � e�2˛.t�s// :

The limiting probability distribution of the interest rate rt converges to a normal
distribution with mean Nr and variance �2

2˛
as t ! C1.

Proof Recall that an Itô integral of a deterministic function is normally distributed
by Theorem 10.3. Since rt in the above is a sum of a deterministic part Nr C
.rs � Nr/ e�˛.t�s/ and an Itô integral of a deterministic function, it is also normally
distributed. Note that

E
QŒrtjFs� D E

Q

�

Nr C .rs � Nr/e�˛.t�s/ C �

Z t

s
e�˛.t�u/d zWu

ˇ
ˇ
ˇ
ˇFs

�

D Nr C .rs � Nr/e�˛.t�s/ C � E
Q

� Z t

s
e�˛.t�u/d zWu

ˇ
ˇ
ˇ
ˇFs

�

D Nr C .rs � Nr/e�˛.t�s/ C � E
Q

� Z t

s
e�˛.t�u/d zWu

�

D Nr C .rs � Nr/e�˛.t�s/ C � 	 0
where the third equality is from the independence property of conditional expecta-
tion in Theorem 5.2. Note that

VarQ.rtjFs/ D E
QŒ.rt � E

QŒrtjFs�/
2jFs�

D E
Q

��

�

Z t

s
e�˛.t�u/d zWu

�2 ˇˇ
ˇ
ˇFs

�

D �2
Z t

s
e�2˛.t�u/du (by Itô identity)

D �2

2˛
.1� e�2˛.t�s// :
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Fig. 23.1 Sample paths of
the interest rate in the Vasicek
model
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To find the limiting distribution, we take the limit as t ! C1 and note that the
limit of normal distributions is also normal. ut

In Fig. 23.1 are plotted ten sample paths of the interest rate obtained from
Simulation 23.1 where we take ˛ D 0:4, Nr D 0:05, � D 0:015, T D 30 and
r0 D 0:3. Note that rt can take negative values. The solid line is the graph of the
expectation of rt that converges to the level Nr, and the two dotted lines above and
below the solid line represent the range of rt within one standard deviation from the
mean.

Theorem 23.3 The bond price under the Vasicek model is given by

P.t;T/ D eA.T�t/�B.T�t/ rt

where

B.T � t/ D 1

˛
.1 � e�˛.T�t// ;

A.T � t/ D .B.T � t/ � .T � t//

�

Nr � �2

2˛2

�

� �2

4˛
B.T � t/2 :

Proof The equations in (23.1) now become

8
ˆ̂
<̂

ˆ̂
:̂

@

@t
A.t;T/ � Nr˛B.t;T/C �2

2
B.t;T/2 D 0 ; A.T;T/ D 0 ;

@

@t
B.t;T/ � ˛B.t;T/C 1 D 0 ; B.T;T/ D 0 :

(23.2)
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From the second equation in (23.2) we obtain

B.t;T/ D 1

˛
.1 � e�˛.T�t// :

By substituting the result in the first equation, we can express @
@t A.t;T/ in terms of

constant and exponential functions of t, which can be integrated easily. ut
Remark 23.2 (Calibration) How can we estimate parameters ˛, Nr and � in the
interest rate model? First, using the historical data, we estimate � . Then, using N
bond prices beginning at a fixed time, say t D 0, with maturities T1; : : : ;TN , we find
˛ and Nr minimizing the sum

NX

iD1

�
PVasicek.0;Ti/ � Pdata.0;Ti/

�2

where PVasicek.0;Ti/ is the price by the Vasicek model and Pdata.0;Ti/ is the market
price.

Remark 23.3 (Term Structure of Interest Rates in the Vasicek Model) Note that the
value of the zero coupon bond at time t depends only on time to maturity � D T � t
and the spot rate is given by

R.t; t C �/ D � log P.rt; t C �/

�
D �A.�/

�
C B.�/

�
rt :

(See Definition 22.8.) Thus for fixed � we have

dR.t; t C �/ D B.�/

�
drt D B.�/

�
�.Nr � rt/ dt C B.�/

�
�d zWt :

Note that the random component is given by B.�/
�
�d zWt and that

Var.dR.t; t C �// D
�

B.�/

�

�2
�2dt D

�
B.�/

�

�2
Var.drt/ :

Since

0 <
B.�/

�
D 1 � e�˛�

˛�
< 1 ;

financial shocks to short-term interest rates, drt, have a milder effect on longer-
term bonds, dR.t; �/. Since B.�/

�
is a monotonically decreasing function of � , which

converges to 0 as � ! 1 as shown in Fig. 23.2, we observe that the volatility B.�/
�
�

of dR.t; t C �/ for long-term spot rates is smaller than the volatility of short-term
yields.
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Fig. 23.2 B.�/=� as a
monotonically decreasing
function of � in the Vasicek
model
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Fig. 23.3 Term structure of
interest rates in the Vasicek
model
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As seen in Fig. 23.3 where three curves of R.0; �/ corresponding to r0 D
0:01; 0:04; 0:07 are given, longer-term rates move less than short-term rates. This
does not necessarily imply that the volatility of long-term bond prices is smaller
than the volatility of short-term bond prices since the duration of a bond should be
multiplied in computing bond price. See Theorem 22.1.

Figure 23.4 shows the surface given by the bond price under the Vasicek model
with ˛ D 0:4, Nr D 0:05, � D 0:015, T D 10 and 0 � r � 0:5.
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Fig. 23.4 Bond price by the
Vasicek model
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23.3 The Cox–Ingersoll–Ross Model

Consider the Cox–Ingersoll–Ross model [22], or the CIR model for short, given by

drt D ˛.Nr � rt/ dt C �
p

rt d zWt :

There are two major differences from the Vasicek model. First, due to �
p

rt, which
is the coefficient of dWt, volatility itself has randomness. Second, the interest rate is
always nonnegative. If rt becomes zero, then the coefficient of dWt is also zero and
the coefficient of dt is positive, and interest rate becomes positive again.

In Fig. 23.5 are presented sample paths of rt, where the solid line is the graph of
the expectation of rt that converges to the level Nr, and the two dotted lines above and
below the solid line represent the range of rt within one standard deviation from the
mean. See Simulation 23.2.

Theorem 23.4 The interest rate rt in the CIR model has the noncentral chi-squared
distribution. More precisely, the probability density function of the interest rate r at
time t, with r D r0 at time t D 0, is given by

f .r/ D ct �
2.ctr; d; �t/

where the values of the degrees of freedom d, the non-centrality parameter �t, and
normalizing constant ct are given by

d D 4˛Nr
�2

;

�t D ctr0e�˛t ;

ct D 4˛

�2.1� e�˛t/
:
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Fig. 23.5 Sample paths of
the interest rate in the CIR
model
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For s � t

EŒrtjrs� D rs e�˛.t�s/ C Nr �1 � e�˛.t�s/
�

and

Var.rtjrs/ D rs
�2

˛

�
e�˛.t�s/ � e�2˛.t�s/

�C Nr �
2

2˛

�
1 � e�˛.t�s/

�2
:

Note that limt!1 EŒrt� D Nr and limt!1 Var.rt/ D Nr �
2

2˛
. The limiting distribution

itself is given by
4˛

�2
�2
�
4˛

�2
r;
4˛

�2
Nr; 0
�

.

Proof For the part concerning the noncentral chi-squared distribution, see [18]. For
the part for the mean and variance, consult [14]. ut
Remark 23.4 Let

� D infft > 0 W rt � 0g

be the first hitting time that the interest rate rt becomes zero or possibly negative.
(By convention, inf ; D C1.) Note that f� D C1g is the event that X never hits
zero. If 2˛Nr � �2 then

Pr.� D C1/ D 1 ;
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Fig. 23.6 Probability distribution of the interest rate rt, t D 1; 2; 5; 50, in the CIR model: r0 D
0:01 (left) and r0 D 0:3 (right)

i.e., rt > 0 for every t > 0 with probability 1. If 2˛Nr < �2, then

Pr.� < C1/ D 1 ;

i.e., the interest rate becomes zero or negative in finite time. For the proof, see [18].

For detailed information on the noncentral chi-squared distribution see Exam-
ple 4.16. In Fig. 23.6, obtained from Simulation 23.3, the interest rate rt is
nonnegative. The probability distributions for rt are plotted for t D 1; 2; 5; 50 with
the initial condition r0 D 1% in the left panel, and r0 D 30% in the right panel. In
both cases the distribution converges to a limiting distribution around Nr D 0:05.

Theorem 23.5 The bond price under the CIR model is given by

P.r; t;T/ D eA.T�t/�B.T�t/ r

where

� D
p
˛2 C 2�2 ;

A.�/ D 2˛Nr
�2

log

�
2�e.˛C�/�=2

.˛ C �/.e�� � 1/C 2�

�

;

B.�/ D 2.e�� � 1/

.˛ C �/.e�� � 1/C 2�
:

Proof The equations in (23.1) now become

8
<̂

:̂

@

@t
A.t;T/ D a.t/B.t;T/C 1

2
c.t/B.t;T/2 ; A.T;T/ D 0 ;

@

@t
B.t;T/ D ˛B.t;T/C �2

2
B.t;T/2 � 1 ; B.T;T/ D 0 :

(23.3)
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The second equation in (23.3), called the Riccati equation, has a solution given in
the statement even though it is nonlinear. By substituting it in the first equation, we
can express @

@t A.t;T/ in terms of constant and exponential functions of t, which can
be integrated easily. ut

Figure 23.7 shows the curves of R.0; �/ corresponding to r0 D 0:01; 0:04; 0:07,
and Fig. 23.8 shows the surface given by the bond price with ˛ D 0:4, Nr D 0:05,
� D 0:0671, T D 10 and 0 � r � 0:5 under the CIR model.

Fig. 23.7 Term structure of
interest rates in the CIR
model
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Fig. 23.8 Bond price by the
CIR model
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23.4 The Ho–Lee Model

Early term structure models such as the Vasicek, and Cox–Ingersoll–Ross models
were not arbitrage-free models. Consider the Ho–Lee model [40] given by

drt D �.t/ dt C � d zWt

where zWt is a Q-Brownian motion, and �.t/ and the constant � are calibrated by the
observed market data. The Ho–Lee model was the first arbitrage-free model.

Theorem 23.6 The bond price under the Ho–Lee model is given by

P.t;T/ D eA.t;T/�.T�t/ r

where

A.t;T/ D �2

6
.T � t/3 �

Z T

t
�.s/ .T � s/ ds :

Proof In the Ho–Lee model, since a.t/ D �.t/, b.t/ D 0, c.t/ D �2 and d.t/ D 0

in (23.1), we have

8
<̂

:̂

@

@t
A.t;T/ D �.t/B.t;T/ � 1

2
�2B.t;T/2 ; A.T;T/ D 0 ;

@

@t
B.t;T/ D �1 ; B.T;T/ D 0 :

Hence B.t;T/ D T � t and

@

@t
A.t;T/ D �.t/ .T � t/ � 1

2
�2.T � t/2 :

Thus

A.t;T/ D A.t;T/ � A.T;T/

D �
Z T

t

@A.s;T/

@s
ds

D �
Z T

t
�.s/ .T � s/ ds C 1

2
�2
Z T

t
.T � s/2ds ;

which completes the proof. ut
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Remark 23.5 Recall that the instantaneous forward rate is given by

f .0;T/ D � @

@T
log P.0;T/

D � @

@T
.A.0;T/� Tr0/

D �@A.0;T/

@T
C r0

D ��
2

2
T2 C

Z T

0

�.s/ ds :

(See Definition 22.8.) We assume that at t D 0 for some T1, say T1 D 30 years,
we have the information of the bond prices P.0;T/ at t D 0 for every maturity
0 � T � T1 from the market.1 Hence f .0;T/, 0 � T � T1, is also known at t D 0,
and used as input data into the formula. Since

f .0;T/ D �@A.0;T/

@T
C r0 D ��

2

2
T2 C

Z T

0

�.s/ds ;

we have

�.T/ D @f .0;T/

@T
C �2T :

Remark 23.6 (Drawbacks of the Ho–Lee Model) The interest rate process in the
Ho–Lee model can grow to ˙1 as T ! C1, which is not realistic. Furthermore,
the volatility of the changes in long-term interest rates, which is measured by the
variance of dR.t; t C �/, is equal to the volatility of the changes in the short-term
interest rate since

R.t; t C �/ D �A.�/C �rt

�
D �A.�/

�
C rt :

That is, for a fixed � we have

Var.dR.t; t C �// D Var.drt/ D �2dt :

This is not in agreement with the market data which shows gradual decline as a
function of � .

1In practice, since P.0; T/ is given only for finitely many discrete values of T in real data, we
apply some interpolation method by sufficiently smooth curves. Thus we may assume that it is
differentiable in T as many times as needed.
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23.5 The Hull–White Model

Consider the Hull–White model [42] given by

drt D .�.t/� � rt/ dt C � d zWt

where zWt is a Q-Brownian motion, and the deterministic function �.t/ and the
constant � are calibrated by the market data. More precisely, the function �.t/ is
chosen first to match exactly the term structure of interest rates, and after that we
choose � and � to fit the term structure of spot rate volatilities.

Theorem 23.7 The bond pricing formula in the Hull–White model is given by

P.r; tI T/ D eA.tIT/�B.tIT/ r

where

B.tI T/ D 1

�
.1 � e��.T�t//

and

A.tI T/ D �
Z T

t
B.sI T/ �.s/ ds C �2

2�2

�

T � t C 1 � e�2�.T�t/

2�
� 2B.tI T/

�

:

Remark 23.7

(i) It can be shown that

�.t/ D @f .0; t/

@t
C � f .0; t/C �2

2�
.1 � e�2� t/ :

(ii) Since

R.t; t C �/ D �A.�/

�
C 1

�

1 � e���

�
rt ;

we have

dR.t; t C �/ D 1

�

1 � e���

�
drt :

Let

f .�/ D 1

�

1 � e���

�
; � > 0 :



434 23 Interest Rate Models

Fig. 23.9 Volatility
decreases as time to maturity
� increases in the Hull–White
model
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Then

Var.dR.t; t C �// D f .�/2Var.drt/ D f .�/2�2dt ;

which is decreasing as � increases since

@f

@�
.�/ D 1

�

�e��� � � .1 � e��� /
�2

D e��� .�� C 1/� 1

��2

D .�� C 1/� e��

��2e��
< 0

in agreement with the real market term structure. See Fig. 23.9 for the plot of
the graph of f .�/, 0 < � � 30.

23.6 Computer Experiments

Simulation 23.1 (Vasicek Model)
We generate M D 10 sample paths of the interest rate in the Vasicek model. See

Fig. 23.1.

T= 30;

N = 500;

dt = T/N;

t = 0:dt:T;

M = 10;
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r = zeros(M,N);

alpha = 0.4;

r_bar = 0.05;

sigma = 0.015;

r0 = 0.03;

r(:,1) = r0 ;

dW = sqrt(dt)*randn(M,N);

for i = 1:N

r(:,i+1) = r(:,i) + a*(r_bar - r(:,i))*dt + sigma*dW(:,i);

end

for j = 1:M

plot(t,r(j,:),’color’,hsv2rgb([1-j/M 1 1]));

hold on

end

t = 0:dt:T;

plot(t,0,’k’)

plot(t,r_bar,’k:’)

% mean

plot(t,r_bar+(r0-r_bar)*exp(-alpha*t))

% standard deviation

stdev = sqrt(sigma^2/(2*alpha)*(1-exp(-2*alpha*t)));

plot(t,r_bar+(r0-r_bar)*exp(-alpha*t) + stdev,’k-.’);

plot(t,r_bar+(r0-r_bar)*exp(-alpha*t) - stdev,’k-.’);

Simulation 23.2 (Cox–Ingersoll–Ross Model)
We generate M D 10 sample paths of the interest rate in the CIR model. Except

for � D 0:015=
pNr D 0:0671 to match the volatility level in the Vasicek model we

take the same set of parameter values for T, N, M, ˛, Nr and r0. See Fig. 23.5.

T= 30;

N = 500;

dt = T/N;

t = 0:dt:T;

M = 10;

r = zeros(M,N);

alpha = 0.4;

r_bar = 0.05;

sigma = 0.015/sqrt(r_bar)

r0 = 0.03;

r(:,1) = r0 ;

dW = sqrt(dt)*randn(M,N);

% Avoid the event that the discretized interest rate becomes negative!

for i = 1:N

r(:,i+1) = max(0,r(:,i) + alpha*(r_bar-r(:,i))*dt...

+ sigma*sqrt(r(:,i)).*dW(:,i));

end

for j = 1:M

plot(t,r(j,:),’color’,hsv2rgb([1-j/M 1 1]));

hold on

end

t = 0:dt:T;
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plot(t,0,’k--’)

plot(t,r_bar,’b’)

% expectation

Exp_r = r0*exp(-alpha*t)+r_bar*(1-exp(-alpha*t));

plot(t,Exp_r)

% standard deviation

stdev = sqrt(r0*sigma^2/alpha*(exp(-alpha*t)-exp(-2*alpha*t))...

+ r_bar*sigma^2/(2*alpha)*(1-exp(-alpha*t)).^2);

plot(t,Exp_r + stdev,’k-.’);

plot(t,Exp_r - stdev,’k-.’);

Simulation 23.3 (CIR Model: Probability Distribution)
We plot the probability density functions of rt in the Cox–Ingersoll–Ross model

for several values of t as shown in Fig. 23.6. We start with r0 D 1% and observe that
the limiting distribution of rt for t D 50 is distributed around Nr D 5%.

alpha = 0.4;

r_bar = 0.05;

r0 = 0.01;

sigma = 0.015;

r_max = 0.07;

N = 500;

dr = r_max/N;

t0 = 1;

c_t = 4*alpha/sigma^2/(1-exp(-alpha*t0));

d = 4*alpha*r_bar/sigma^2;

lambda_t = c_t*r0*exp(-alpha*t0);

r = 0:dr:r_max;

y0=c_t*ncx2pdf(c_t*r,d,lambda_t); % noncentral chi-squared distribution

plot(r,y0)

hold on;

We plot the same type of graphs for t1 D 2, t2 D 5 and t3 D 50 in the same panel.
See the left panel in Fig. 23.6.

Simulation 23.4 (The Fundamental Equation for Pricing)
We simulate the Delta hedging used in the derivation of the fundamental equation

for pricing interest rate derivatives in Chap. 22. (See the proof of Theorem 22.3.) In
the following discrete time version that is used for numerical simulation we check
the self-financing condition on the risk-free cash account Ct. Consider a portfolio
…t given by

…t D V1;t �	tV2;t C Ct : (23.4)

Hence the self-financing condition implies that

ı…t D ıV1;t �	tıV2;t C rtCtıt

D .V1;tCıt � V1;t/�	t.V2;tCıt � V2;t/C rtCtıt : (23.5)
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After discrete time rebalancing, we have

…tCıt D V1;tCıt �	tCıtV2;tCıt C CtCıt : (23.6)

If we take

	 D @V1
@r

.@V2
@r

in (23.5) as in the proof of Theorem 22.3, then ı…t in (23.5) becomes risk-free and
…t behaves as if it is a risk-free bank account and satisfies

ı…t D rt…tıt : (23.7)

The simulation result for (23.7) is represented by the vector Pi bank in the MATLAB

code given below. The last panel in Fig. 23.10 displays the risk-free investment

…t D …0 exp

�Z t

0

rudu

�

; 0 � t � T ;

with continuous compounding interest rt.
On the other hand, (23.4),(23.5) and (23.6) together imply that

.V1;tCıt �	tCıtV2;tCıt C CtCıt/ � .V1;t �	tV2;t C Ct/

D .V1;tCıt � V1;t/ �	t.V2;tCıt � V2;t/C rtCtıt ; (23.8)

which is simplified to

�	tCıtV2;tCıt C CtCıt � Ct D �	tV2;tCıt C rtCtıt : (23.9)

Thus

CtCıt D .1C rtıt/Ct C .	tCıt �	t/V2;tCıt : (23.10)

The simulation result for Ct is given in the fifth panel in Fig. 23.10, and the
corresponding portfolio Pi hedging is given in the last panel. Observe that the
two graphs are almost identical.

In the following simulation for the interest rate rt we employ the Vasicek model,
and consider two bonds with maturity dates T1 D 3 and T2 D 4.

T1 = 3; T2 = 4;

N = 200; dt = T1/N; t = 0:dt:T1;

alpha = 0.35;

r_bar = 0.05;

sig = 0.015; % sigma

r0 = 0.03;
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Fig. 23.10 Delta hedging in the derivation of the fundamental equation for pricing interest rate
derivatives

r(1) = r0;

dW = sqrt(dt)*randn(1,N);

for i = 1:N

r(i+1) = r(i) + alpha*(r_bar - r(i))*dt + sig*dW(i);

end

figure(1)

plot(t,r);

xlabel(’t’);

ylabel(’r’);
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title(’Interest rate’);

figure(2)

V1 = zeros(N+1,1); % Bond 1 price by Vasicek

Y2 = zeros(N+1,1); % Bond 2 price by Vasicek

% Compute B_k(T_i-t), A_k(T_k-t) and V_k(t) for k=1,2

for i = 1:N+1

B1(i) = 1/alpha*(1-exp(-alpha*(T1-t(i))));

A1(i) = (B1(i)-(T1-t(i)))*(r_bar-sig^2/2/alpha^2)-sig^2*B1(i)^2/4/alpha;

V1(i) = exp(A1(i)-B1(i)*r(i));

end

for i = 1:N+1

B2(i) = 1/alpha*(1-exp(-alpha*(T2-t(i))));

A2(i) = (B2(i)-(T2-t(i)))*(r_bar-sig^2/2/alpha^2)-sig^2*B2(i)^2/4/alpha;

V2(i) = exp(A2(i)-B2(i)*r(i));

end

plot(t,A1,’-k’,t,A2,’--r’,t,B1,’-.k’,t,B2,’r)

legend(’A(T1-t)’,’A(T2-t)’,’B(T1-t)’,’B(T2-t)’);

xlabel(’t’);

ylabel(’A & B’);

title(’A(T-t) & B(T-t)’);

figure(3)

plot(t,V1,’-k’,t,V2,’:r’)

legend(’T1-bond’,’T2-bond’);

xlabel(’t’);

ylabel(’V’);

title(’Bond price’);

figure(4)

Delta = zeros(1,N+1); % hedge ratio

for i = 1:N+1

Delta(i) = B1(i)*V1(i)/(B2(i)*V2(i));

end

plot(t,Delta)

xlabel(’t’);

ylabel(’\Delta’);

title(’Delta’);

figure(5)

% Cash account C with continuously compounding interest

% Choose any amount for C(1).

C = zeros(1,N+1);

% self-financing condition

for i = 1:N

C(i+1) = (1+r(i)*dt)*C(i) + (Delta(i+1)-Delta(i))*V2(i+1);

end

plot(t,C,’Color’,’k’)

xlabel(’t’);

ylabel(’C’);

title(’Cash account’);

figure(6)
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Pi_hedging = zeros(1,N+1); % portfolio of V1 and V2 and Cash

for i = 1:N+1

Pi_hedging(i) = V1(i) - Delta(i)*V2(i) + C(i);

end

Pi_bank = zeros(1,N+1); % risk-free bank deposit

Pi_bank(1) = Pi_hedging(1);

cum_rate = zeros(1,N+1);

for i = 1:N

cum_rate(i+1) = cum_rate(i) + r(i);

Pi_bank(i+1) = Pi_hedging(1)*exp(cum_rate(i)*dt);

end

plot(t,Pi_bank,’k’,t,Pi_hedging,’:r’)

xlabel(’t’);

ylabel(’\Pi’);

title(’Portfolio’);

legend(’Hedging’,’Bank deposit’);

Exercises

23.1 (Merton Model) Suppose that the interest rate rt is given by a stochastic
differential equation dr D � dt C � dW for some constants � and � and that the
market price of risk � is constant.

(i) Show that the price of a zero-coupon bond is given by

P.r; t;T/ D exp

�

�r.T � t/ � 1

2
.� � ��/.T � t/2 C 1

6
�2.T � t/3

�

:

(ii) Show that the yield to maturity of a zero coupon bond in Definition 22.8 is
given by

R.t;T/ D r C 1

2
.� � ��/.T � t/ � 1

6
�2.T � t/2 :

Does this conclusion agree with common sense?

23.2 (Vasicek Model) For the Vasicek model prove the following facts:

(i) Cov.rt; rs/ D e�˛.tCs/

�

�0 C �2
e2˛s � 1

2˛

�

.

(ii) EŒ
R t

s rudu
ˇ
ˇFs� D Nr.t � s/C .rs � Nr/1 � e�˛.t�s/

˛
.

(iii) Derive the limiting probability density of the interest rate directly from the
Kolmogorov equation.

23.3 (CIR Model) For the CIR model, derive the limiting pdf of the interest rate
directly from the Kolmogorov equation. More precisely, show that the pdf p.x/ is
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Fig. 23.11 Limit of the pdf
of the interest rate rt in the
CIR model with 2˛Nr D �2
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given by

p.x/ D Cx.2˛Nr/=�2�1e�.2˛=�2/x ; x � 0 ;

where C > 0 is the normalizing constant satisfying

Z 1

�1
p.x/dx D 1 :

To ensure that

lim
x!0C p.x/ D 0 ;

we impose the condition that 2˛Nr > �2. What happens if 2˛Nr D �2? (Hint: See
Fig. 23.11.)

23.4 (Ho–Lee Model) Show that, in the Ho–Lee Model, for every fixed time to
maturity � D T � t we have Var.dR.t; �// D Var.drt/ D �2dt.



Chapter 24
Numeraires

A numeraire is a reference asset against which all other assets are evaluated. For
example, the concept of time value of money is equivalent to discounting assets
using the risk-free bond as a numeraire. Sometimes, a suitable choice of a numeraire
makes the computation of option prices easier.

24.1 Change of Numeraire for a Binomial Tree Model

As an illustration of numeraire change we present a discrete time model. Consider a
one period binomial tree model for an asset price movement from time t D 0 to t D
T. The values of all the assets including the risk-free bank deposit Bt, the underlying
asset (for a given option) St, and the replicating portfolio Vt are determined by the
ratio to a numeraire, which is the reference asset in our computation of option price.
Assume that B0 D 1 and BT D erT where r is the risk-free interest rate for the time
period of length T. Also assume that ST can have two values uS0 and dS0 where
d < erT < u depending on up and down states at T. See Fig. 24.1. As usual, we
take a probability space � D fu; dg where u and d represent up and down states
respectively, and choose a filtration F0 D f;; �g, FT D f;; �; fug; fdgg.

Now we choose the underlying asset St as a numeraire. Then the discounted
assets corresponding to Bt and St are denoted by zBt D Bt

St
and zSt D St

St
D 1,

respectively. For example, zB0 D 1
S0

. See Fig. 24.2.

Note that zSt is a martingale with respect to any probability measure Q D .qu; qd/,
i.e.,

E
QŒzST jF0� D zS0

since zST D zS0 D 1. (See the diagram on the right in Fig. 24.2.)

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
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Lemma 24.1 There exists a probability measure Q D .qu; qd/ for which the
following statements hold true:

(i) The discounted bank deposit zBt D Bt
St

in terms of the numeraire St is a
martingale, i.e.,

E
QŒzBT jF0� D zB0 :

(ii) Consider a portfolio Vt D c1St C c2Bt. Then zVt D Vt
St

is a Q-martingale.

Proof (i) It suffices to show

qu

�
erT

uS0

�

C qd

�
erT

dS0

�

D 1

S0
(24.1)

together with

qu C qd D 1 (24.2)

for some qu > 0 and qd > 0. Note that the system of linear equations defined
by (24.1) and (24.2) is equivalent to

�
dqu C uqd D ude�rT

qu C qd D 1

which has a solution

qu D u.1 � de�rT/

u � d
; qd D d.ue�rT � 1/

u � d
:
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By the no arbitrage principle, we have dS0 < erTS0 < uS0, and hence qu > 0,
qd > 0.

(ii) By the linearity of conditional expectation, we have

E
QŒzVT jF0� D E

QŒc1zST C c2zBT jF0�
D c1E

QŒzST jF0�C c2E
QŒzBT jF0�

D c1zS0 C c2zB0 ;

and hence EQŒzVT jF0� D zV0. ut
Now we apply the preceding idea to compute the option value at time 0.

Theorem 24.1 With the underlying asset as a numeriare, we have the same option
pricing formula given in Sect. 14.2 as follows:

V0 D e�rT

�
erT � d

u � d
Vu C u � erT

u � d
Vd

�

:

Proof By Lemma 24.1 we have

V0
S0

D E
Q

�
VT

ST

�

D qu
Vu

uS0
C qd

Vd

dS0
;

and hence

V0 D qu
1

u
Vu C qd

1

d
Vd D 1 � de�rT

u � d
Vu C ue�rT � 1

u � d
Vd :

ut

24.2 Change of Numeraire for Continuous Time

Using the stock price St as a numeraire in the continuous time model, we derive the
formula for the price of a European call option. Let Bt D ert be the risk-free asset
price at time t, and take

zBt D Bt

St
:
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We will find an equivalent probability measure Q for which zBt is a Q-martingale.
By Ito’s lemma,

d

�
1

St

�

D
�

� 1

S2t

�

dSt C 1

2

2

S3t
.dSt/

2 D � 1

St
�dt � 1

St
�dWt C 1

St
�2dt :

Hence

St d

�
1

St

�

D .�2 � �/dt � �dWt : (24.3)

Then

dzBt D d
�

ert 1

St

�

D rert 1

St
dt C ert 1

St

�
.�2 � �/dt � �dWt

�

D ert

St

�
.r C �2 � �/dt � �dWt

�

D ��zBt

�
r C �2 � �

�� dt C dWt

�

where we used
�

dBt; d

�
1

St

��

t

D 0 :

Put

� D r C �2 � �

�� D �� r

�
� �

and

Xt D Wt C � t :

Then

dSt D �Stdt C �StdWt D .r C �2/Stdt C �StdXt : (24.4)

Let Q be a probability measure defined by

dQ D exp

�

�1
2
�2T � �WT

�

dP :
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Then Xt is a Q-Brownian motion by Girsanov’s theorem, and zBt is a Q-martingale
since

dzBt D ��zBt dXt : (24.5)

Define zVt and Vt by

zVt D Vt

St
D E

Q

�
CT

ST

ˇ
ˇ
ˇ
ˇFt

�

where CT is the contingent claim on expiry date T. Then

VT D STE
Q

�
CT

ST

ˇ
ˇ
ˇ
ˇFT

�

D ST
CT

ST
D CT :

Now, to prove that Vt is the option price, it remains to show that Vt is self-financing.
Since zVt is a Q-martingale, by the Martingale Representation Theorem and (24.5)
there exists a process ˛t such that

zVt D zV0 C
Z t

0

˛udXu D zV0 C
Z t

0

˛u

�

� 1

�zBu

�

dzBu :

Put

�t D ˛t

�

� 1

�zBt

�

:

Then

zVt D zV0 C
Z t

0

�udzBu ;

i.e.,

dzVt D �t dzBt : (24.6)

Now let

 t D zVt � �t zBt :

Then

zVt D �tzBt C  t ;
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and

Vt D zVtSt D �tBt C  tSt : (24.7)

Now let

dVt D at dt C bt dWt (24.8)

for some at and bt. Then (24.3) implies that the covariation of Vt and 1=St is given
by

�

dVt; d
� 1

St

��

t

D ��bt

St
dt : (24.9)

From (24.6), we have

1

St
dVt C Vt d

�
1

St

�

C
�

dVt; d

�
1

St

��

t

D �t

�
1

St
dBt C Bt d

�
1

St

�


:

Hence (24.3) and (24.9) imply that

dVt C Vt
�
.�2 � �/dt � �dWt

� � �btdt D �t
˚
dBt C Bt

�
.�2 � �/dt � �dWt

�	
:

Then (24.7) implies that

dVt D �tdBt �  tSt
�
.�2 � �/dt � �dWt

�C �btdt ; (24.10)

Thus, taking covariances with d
�
1=St

�
of both sides of (24.10), we have

bt

�

� �
St

�

dt D .� St/.��/
�

� �
St

�

dt :

Hence

bt D � tSt : (24.11)

Substituting (24.11) in (24.10), we obtain

dVt D �tdBt �  tSt
�
.�2 � �/dt � �dWt

�C �2 tStdt

D �tdBt �  tSt .��dt � �dWt/

D �tdBt C  tdSt : (24.12)

Now (24.8) shows that Vt is self-financing.
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Next, since zVt is a Q-martingale, we have

V0
S0

D zV0 D E
QŒzVT � D E

Q

�
VT

ST

�

D E
Q

�
CT

ST

�

:

For a European call option with strike price K and expiry date T, we have

CT D .ST � K/1fST�Kg ;

and hence

V0 D S0E
Q

�
.ST � K/1fST �Kg

ST

�

D S0E
Q

1fST �Kg

� � S0KE
Q

�
1fST�Kg

ST

�

: (24.13)

Note that

E
QŒ1fST �Kg�

D Q.fST � Kg/
D Q.fS0e.rC 1

2 �
2/TC�XT � Kg/ .by (24.4)/

D Q

 (

XT � log K
S0

� .r C 1
2
�2/T

�

)!

D Q

 (

X1 � log K
S0

� .r C 1
2
�2/T

�
p

T

)!

.since XT ;
p

TX1 � N.0;T//

D Q

 (

X1 � log S0
K C .r C 1

2
�2/T

�
p

T

)!

.since X1 � N.0; 1//

D N.d1/ ; (24.14)

and that

S0E
Q

�
1fST�Kg

ST

�

D E
P

�

1fST �Kg exp

�

�.� � 1

2
�2/T � �WT

�

exp

�

�1
2
�2T � � WT

��

:

Now put

z� D � C � D � � r

�
:
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Then

� � 1

2
�2 C 1

2
�2 D r C 1

2
z�2 :

Now define another equivalent probability measure Q0 by

dQ0

dP
D exp

�

�1
2

z�2T � z� WT

�

:

Let

Yt D Wt C z� t :

Then Yt is a Q0-Brownian motion, and zSt D e�rtSt D St

Bt
is a Q

0-martingale. Then

S0KE
Q

�
1fST �Kg

ST

�

D Ke�rT
E
P

�

1fST �Kg exp

�

�1
2

z�2T � z� WT

��

D Ke�rT
E
Q

0


1fST�Kg

�

D Ke�rT
Q

0.fST � Kg/
D Ke�rT

Q
0.fS0e.r� 1

2 �
2/TC�YT � Kg/

D Ke�rTN.d2/ : (24.15)

From (24.13)–(24.15) we may rewrite the Black–Scholes–Merton formula as

V0 D S0Q.fST � Kg/� Ke�rT
Q

0.fST � Kg/ :

In Table 24.1 we list three equivalent probability measures P, Q and Q
0

introduced in the preceding discussion, the corresponding Brownian motions Wt,

Xt and Yt, respectively; and the martingales
Bt

St
and

St

Bt
with respect to Q and Q

0,
respectively.

Remark 24.1 (i) An asset-or-nothing European call option with strike price K and
expiry date T has payoff equal to ST1fST>Kg. Its price Vasset

0 at time t D 0 satisfies

Vasset
0

S0
D E

Q

�
ST1fST�Kg

ST

�

D Q.fST � Kg/ :

Hence Vasset
0 D S0N.d1/. See also Exercise 17.2.
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Table 24.1 Equivalent measures, Brownian motions and martingales

Probability Brownian motion Geometric Brownian motion Martinagle

P Wt dSt D �Stdt C �StdWt

Q Xt D Wt C � t dSt D .r C �2/Stdt C �StdXt Bt=St

Q
0 Yt D Wt C z� t dSt D rStdt C �StdYt St=Bt

(ii) A cash-or-nothing European call option with strike price K and expiry date T
has payoff equal to 1fST�Kg. Its price Vcash

0 at time t D 0 satisfies

Vcash
0

B0
D E

Q
0

�
1fST�Kg

BT

�

D e�rT
Q

0.fST � Kg/ :

Hence Vcash
0 D e�rTN.d2/ as shown in Theorem 17.2.

24.3 Numeraires for Pricing of Interest Rate Derivatives

Let P.r; tI T/ be the price of the (zero coupon) bond with maturity T, used as a
numeraire to discount an interest rate derivative V.r; tI T/, and let

zV.r; tI T/ D V.r; tI T/

P.r; tI T/
:

Once it is understood that the maturity dates for P and V are both equal to T, and
that the time t has the range 0 � t � T, we write P.r; t/, V.r; t/, zV.r; t/ instead of
P.r; tI T/, V.r; tI T/, zV.r; tI T/, respectively, when there is no danger of confusion.
In the following, as in the case for V , we have the fundamental equation for pricing
zV , too.

Theorem 24.2 (Fundamental Equation for Pricing Discounted Interest Rate
Derivatives) Let

drt D m.rt; t/ dt C �.rt; t/ dWt

describe the interest rate process where Wt is a Q-Brownian motion for a risk-
neutral probability measure Q. Then a discounted interest rate derivative zV satisfies

@zV
@t

C .m.r; t/C �P.r; t/�.r; t//
@zV
@r

C 1

2
�.r; t/2

@2zV
@r2

D 0 (24.16)
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where

�P.r; t/ D 1

P.r; t/

@P.r; t/

@r
�.r; t/ :

Proof Since V D PzV, we have

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

@V

@t
D @P

@t
zV C P

@zV
@t

@V

@r
D @P

@r
zV C P

@zV
@r

@2V

@r2
D @2P

@r2
zV C @P

@r

@zV
@r

C @P

@r

@zV
@r

C P
@2zV
@r2

:

Since Theorem 22.3 holds for P, we have

@P

@t
C m.r; t/

@P

@r
C 1

2
�.r; t/2

@2P

@r2
D rP ;

and hence the following equation, obtained from Theorem 22.3,

 
@P

@t
zV C P

@zV
@t

!

C m.r; t/

 
@P

@r
zV C P

@zV
@r

!

C 1

2
�.r; t/2

 
@2P

@r2
zV C 2

@P

@r

@zV
@r

C P
@2zV
@r2

!

D rV

is simplified to

rPzV C P

 
@zV
@t

C m.r; t/
@zV
@r

C 1

2
�.r; t/2

@2zV
@r2

!

C �.r; t/2
@P

@r

@zV
@r

D rV ;

which is further reduced to

P

 
@zV
@t

C m.r; t/
@zV
@r

C 1

2
�.r; t/2

@2zV
@r2

!

C �.r; t/2
@P

@r

@zV
@r

D 0

since rPzV D rV . After dividing by P, we obtain

@zV
@t

C m.r; t/
@zV
@r

C 1

2
�.r; t/2

@2zV
@r2

C �.r; t/2
1

P

@P

@r

@zV
@r

D 0 :

Finally, we take �P D �
1

P

@P

@r
. ut
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Remark 24.2 The fundamental equation (24.16) for zV in Theorem 24.2 is different
from the result (22.4) for V in Theorem 22.3 in two ways: First, the left-hand side

is zero, and the second,
@zV
@r

has a coefficient that has one more term �P.r; t/�.r; t/.

Definition 24.1 Put

� D m � .m C �P�/

�
D ��P ;

and define an equivalent probability measure QT , called the forward risk-neutral or
T-forward risk-neutral measure, by

E
Q

�
dQT

dQ

ˇ
ˇ
ˇ
ˇFt

�

D exp

�

�1
2

Z t

0

�2s ds �
Z t

0

�sdWs

�

where fFtg is the filtration defined by the information up to t.

Let

zWt D Wt C
Z t

0

�sds :

Then, by Theorem 8.2, zWt is a QT -Brownian motion and

dr D m dt C �.d zW � � dt/ D .m C �P�/dt C �d zW :

Theorem 24.3 If zV.r;T/ D gT is the payoff of a discounted interest rate derivative
at maturity T, then

zV.r; t/ D E
Q

T
Œ gT jFt�

where the expectation is taken over the interest rate given by

drt D .m.rt; t/C �P.r; t/�.r; t// dt C �.rt; t/ d zWt :

In other words,

V.r; tI T/ D P.r; tI T/EQ
T
Œ gT jFt� :

Proof Use Theorems 13.1 and 24.2. ut
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Remark 24.3 (i) The bond price P.r; tI T/ is known in the market at time t.
(ii) Recall that Theorem 22.4 states that

V.r; tI T/ D E
QŒe� R T

t rudugT jFt�

6D E
QŒe� R T

t rudujFt�E
QŒgT jFt�

D P.r; tI T/EQŒgT jFt�

since e� R T
t rudu and gT are not necessarily uncorrelated with respect to Q.
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Chapter 25
Numerical Estimation of Volatility

Volatility is the most important parameter in the geometric Brownian motion model
for asset price movement for option pricing. All other parameters such as asset price,
strike price, time to expiry and the risk-free interest rate can be observed in the
financial market. Volatility is used instead of option price for trading in the financial
market. To estimate the volatility we employ various techniques, some of which are
introduced in this chapter.

25.1 Historical Volatility

Historical volatility is an estimate of volatility based on the past data, usually
collected over several years up to the current date. Assume that the asset price
follows geometric Brownian motion

S.t/ D St D S0 exp

�

.� � 1

2
�2/t C �Wt

�

:

Since

log
St

Su
D .� � 1

2
�2/.t � u/C �.Wt � Wu/

for 0 � u < t, we observe that log St
Su

follows the normal distribution with mean

.� � 1
2
�2/.t � u/ and variance �2.t � u/.

© Springer International Publishing Switzerland 2016
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Suppose that historical asset price data S.ti/ is available at equally spaced time
values ti D i ıt, 1 � i � n, and that tn D n 	 ıt is the present time. Define

Li D log
S.ti/

S.ti�1/
:

Then Li, 1 � i � n, are independent and normally distributed with mean .�� 1
2
�2/ıt

and variance �2ıt. Hence we may write

Li D .�� 1

2
�2/ ıt C �

p
ıt Zi ;

where Zi are independent standard normal variables. Define

Am D 1

m

mX

jD1
Ln�jC1 :

Assume that n is sufficiently large, and the moving window size m is small so that
n  m. Since

Am D 1

m

mX

jD1

�
log S.tn�jC1/� log S.tn�j/

�

D 1

m
log

S.tn/

S.tn�m/
;

we have

Am D 1

m

�

m.�� 1

2
�2/ıt C �.W.tn/ � W.tn�m//




� N
�
.� � 1

2
�2/ıt;

�2

m
ıt
�

where the symbol � denotes the probability distribution. Since both the average and
the variance of Am are close to 0, we take

Am D 0 ;

i.e., we may assume that the average of Li is 0, and use

1

m � 1

mX

kD1
.Ln�kC1 � 0/2
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to estimate �2ıt. (We divide the sum by m � 1 instead of m to obtain an unbiased
estimate.) In other words, to estimate � we use

vu
u
t 1

ıt

1

m � 1

mX

kD1
L2n�kC1 :

As mentioned in Theorem 15.2 the dimension of � is time�1=2. If we want to find
volatility per year using the daily data, we choose ıt D 1

N where N is the number
of trading days in a year, usually N D 252, and use the daily record of asset price
movement, and estimate the yearly volatility. For the monthly volatility we take
N D 12.

25.2 Implied Volatility

As inputs in the Black–Scholes–Merton equation we need parameters such as asset
price, exercise price, time to expiry, risk-free interest rate and volatility, among
which the volatility is not observable. However, we can find it when all other
parameters and the option price are given. More precisely, as shown in Sect. 15.3,

vega D @V

@�
D S

p
T � t N0.d1/ > 0 ;

and hence option price V is an increasing function of volatility � while St, K, T � t
and r are fixed. Since we can observe St, K, T � t, r and V in the financial market,
the remaining parameter � is uniquely determined, which is called the implied
volatility. Historical volatility is based on the past historical data while the implied
volatility looks into the future movement of the asset price.

If we plot the implied volatility against exercise price, the middle of the graph is
low and both ends are relatively high. Such a phenomena is called a volatility smile.

To find the implied volatility we employ numerical methods. First, construct an
equation of the form f .�/ D 0 in terms of an unknown variable � , and use either
the bisection method or the Newton method.

25.2.1 The Bisection Method

In the bisection method we choose a sufficiently wide interval, say Œa; b�. If f .a/ < 0
and f .b/ > 0 then the Intermediate Value Theorem implies that there exists an x�,
a < x� < b, such that f .x�/ D 0. Note that if f . aCb

2
/ < 0 then aCb

2
< x� < b,

and if f . aCb
2
/ > 0 then a < x� < aCb

2
by the Intermediate Value Theorem again. In

this way, we can reduce the width of the possible range of x� by half. Applying the
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Fig. 25.1 Solution of
f .x�/ D 0 by the bisection
method

Fig. 25.2 Solution of
f .x�/ D 0 by the
Newton–Raphson method

method n times, we obtain an interval of length .b � a/=2n in which x� exists, i.e.,

jx� � xnj � .b � a/
1

2n
:

See Fig. 25.1.

25.2.2 The Newton–Raphson Method

In the Newton–Raphson method, or the Newton method, we take a tangent line to
the curve y D f .x/ under the assumption that f is differentiable and f 0 6D 0. At
x D xn the equation for the tangent line is given by

y D f 0.xn/.x � xn/C f .xn/

and the x-intercept is denoted by xnC1. See Fig. 25.2. It is known that fxng1
nD1

converges to c such that f .c/ D 0. We apply the iterative algorithm

xnC1 D xn � f .xn/

f 0.xn/

repeatedly.
The convergence speed of the Newton–Raphson method is much faster than that

of the bisection method as can be seen in the following result.
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Theorem 25.1 If f .x�/ D 0 and f 0.x�/ 6D 0, there exists a constant A > 0 such that
for every n � 1 we have

jxnC1 � x�j � A jxn � x�j2 :

Proof Since f .x�/ D 0, we have

xnC1 � x� D xn � f .xn/� f .x�/
f 0.xn/

� x�

D xn � f 0.xn/.xn � x�/C O.jxn � x�j2/
f 0.xn/

� x�

D xn � .xn � x�/C O.jxn � x�j2/ � x�

D O.jxn � x�j2/

where O.hk/ denotes a quantity satisfying lim suph!0
O.hk/

hk � C for some constant
0 < C < 1.

Or, if we want to use the Taylor expansion, let ın D x� � xn. Then

0 D f .x�/ D f .xn C ın/ D f .xn/C f 0.xn/ın C O.ı2n/ ;

and hence

ın D � f .xn/

f 0.xn/
C O.ı2n/ :

Therefore

x� D xn C ın D xn � f .xn/

f 0.xn/
C O.ı2n/ D xnC1 C O.ı2n/ ;

which shows that ınC1 D x� � xnC1 D O.ı2n/. ut
Figure 25.3 shows the results of two methods for finding zeros of the equation

e�x2 � sin x D 0.

Remark 25.1 (Nonexistence of a Solution) If f .x/ D x2 C 1, then there exists no
solution for f .x/ D 0 and the above algorithm generates a nonconvergent sequence.
For a more theoretical analysis, consult Chap. 2 on invariant measures in [21].

Theorem 25.2 Let C.�/ denote the European call option price, which is regarded
as a function of volatility � while T, t, r, K, St are given. Then C.�/ is a strictly
monotonically increasing function of � on .0;1/, and there exists a �0 such that
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Fig. 25.3 Comparison of efficiency of the bisection method and the Newton method

C.�/ is convex on .0; �0/ and concave on .�0;1/. In fact, if C00.�0/ D 0, then

�0 D
r

2
j log.St=K/C r.T � t/j

T � t
:

Proof Note that

@C

@�
D vega D S

p
T � t N0.d1/ > 0 :

Also note that

@2C

@�2
D �S

p
T � tp
2

exp

�

�1
2

d21

�

d1
@d1
@�

D �@C

@�
d1
@d1
@�

:

Since

@d1
@�

D � log.S=K/C r.T � t/

�2
p

T � t
C 1

2

p
T � t D �d2

�
;

we have

@2C

@�2
D @C

@�

d1d2
�

:

Hence either d1.�1/ D 0 or d2.�2/ D 0 for some �1, �2. If d1.�1/ D 0 then

�21 D 2

�

� 1

T � t
log

S

K
� r

�

� 0 ;
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Fig. 25.4 The call price C.�/ and its first and second order derivatives for 0 � � � 2

and if d2.�2/ D 0 then

�22 D 2

�
1

T � t
log

S

K
C r

�

� 0 :

If both cases occur, then log S
K C r.T � t/ D 0, and we would have d1;2 D

˙ 1
2
�

p
T � t . Hence �1 D �2 D 0. ut

In Fig. 25.4 we take T D 1, t D 0, r D 5%, K D 9, S0 D 10 and plot the graphs
of C.�/, C0.�/, C00.�/. The points marked by ‘x’ represent the inflection point of
C.�/, the maximum point of C0.�/, and the point where C00.�/ D 0, respectively.

The following results shows the monotone convergence of the estimated value in
computing the implied volatility by the Newton–Raphson algorithm.

Theorem 25.3 Let

�nC1 D �n � F.�n/

F0.�n/

where F.�/ D C.�/ � C� where C� denotes the market value of the European call
option. Let �� be a solution of F.��/ D 0. Then F0.�/ takes its maximum at some
point � D y� , and the error �n � �� decreases to 0 monotonically as n increases.

Proof Note that

F0.�/ D @C

@�
D vega D S

p
T � t N0.d1/ > 0 :
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Since F.��/ D 0, we have

�nC1 � �� D �n � F.�n/

F0.�n/
� �� D �n � �� � .�n � ��/F0.�n/

F0.�n/

for some �n between �� and �n by the Mean Value Theorem. Hence

�nC1 � ��

�n � �� D 1 � F0.�n/

F0.�n/
:

Since F0.�/ > 0 and F0.�/ takes its maximum at y� , if we start from �0 D y� in the
Newton–Raphson algorithm, we have

0 <
�1 � ��

�0 � �� < 1 ;

which implies that the error in �1 is smaller than the error in �0. Note that they have
the same sign. To proceed we suppose that y� < ��. Then �0 < �1 < ��. Hence
0 < F0.�1/ < F0.�1/, and

0 <
�2 � ��

�1 � �� < 1 :

Continuing the same argument, we have

0 <
�nC1 � ��

�n � �� < 1

for every n � 1. Thus the error decreases monotonically as n increases. The same
result can be obtained under the assumption that y� > ��. ut
Remark 25.2 (Volatility Smile) In theory, the implied volatility should be equal
for any choice of S and K, but in practice the graph of implied volatility versus
moneyness S

K is convex. Such a pattern is called a volatility smile. Options
did not show a volatility smile before the stock market crash in 1987, but the
investors afterwards began to reassess the probabilities of rare events such as
financial disasters, and caused higher evaluations of out-of-the-money options. This
reflects the fact that the standard Black–Scholes–Merton model assumes log-normal
distributions of underlying asset returns and that normal distributions have small tail
probabilities. Sometimes, the implied volatility curve is concave, which is called a
volatility frown.
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25.3 Computer Experiments

Simulation 25.1 (Bisection Method and Newton Method)
We compare the bisection method and Newton method. For the output see

Fig. 25.3.

fun = @(x) exp(-x^2) - sin(x); % function

x0 = 1.5; % initial point

exact_sol= fzero(fun,x0)

% Bisection

a = 0.0;

b = 2.0;

k = 1;

k_max = 20;

F = @(x) exp(-x^2) - sin(x);

if ((F(a)*F(b)) > 0)

disp(’ERROR: F(a) and F(b) must have different signs’)

end

xmid = (a + b)/2;

while (k < k_max)

if ((F(a)*F(xmid)) < 0)

b = xmid;

else

a = xmid;

end

xmid = (a + b)/2;

bis_err(k) = abs(xmid - exact_sol);

k = k+1;

end

subplot(1,2,1)

semilogy(bis_err,’-o’)

title(’Bisection’)

% Newton

x0 = 1;

x = x0;

increment = 1;

k = 1;

while (k < k_max)

Fval = exp(-x^2) - sin(x) ;

Fprime = -2*x*exp(-x^2) - cos(x);

increment = Fval/Fprime;

x = x - increment;

newt_err(k) = abs(x - exact_sol);

k = k+1;

end

subplot(1,2,2)

semilogy(newt_err,’-o’)

title(’Newton’)
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Fig. 25.5 Convergence of �n to �� as n ! 1

Simulation 25.2 (Implied Volatility)
We compute the implied volatility. For the output see Fig. 25.5.

S0 = 100;

K = 40; % A deep in-the-money case chosen for the best looking plot.

r = 0.05;

T = 5;

sigma_market = 0.1; % a given condition

n = 20; %number of iterations

sigma0 = sqrt(2*abs((log(S0/K)+r*T)/T))

% definitions of functions

d1 = @(x) (log(S0/K)+(r+x.^2/2)*T)./(x*sqrt(T));

d2 = @(x) (log(S0/K)+(r-x.^2/2)*T)./(x*sqrt(T));

C = @(x) S0*normcdf(d1(x))-K*exp(-r*(T))*normcdf(d2(x));

vega = @(x) S0*sqrt(T)*normpdf(d1(x));

C_market=C(sigma_market); % observed in the market

F = @(x) C(x)-C_market;

sigma = zeros(1,n);

sigma(1)=sigma0;

for i=1:1:n-1

sigma(i+1)=sigma(i) - F(sigma(i))/vega(sigma(i));

end

figure(1);

error=zeros(1,n);

for i=1:n;

error(i)=abs(sigma_market-sigma(i));

end

semilogy(error,’o-’);

hold off
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figure(2);

x=0:0.01:2;

plot(x,C(x));

hold on

plot(sigma,C(sigma));

hold on

plot(sigma_market,C_market,’r*’);

Exercises

25.1 Let ıt D T
L and ti D i 	 ıt. Consider the geometric Brownian motion for the

asset price S

S.tiC1/� S.ti/

S.ti/
D �ıt C �

p
ıt Yi

where �; � > 0 are constant and Y0;Y1;Y2; : : : are independent standard normal
variables. Find

lim
ıt!0C

1

ıt
E

"�
S.tiC1/ � S.ti/

S.ti/

�2#

:



Chapter 26
Time Series

A time series is a sequence of collected data over a time period. Theoretically,
we usually assume that a given sequence is infinitely long into the future and
sometimes also into the past, and it is regarded as an observed random sample
realized from a sequence of random variables. Time series models are used to
analyze historical data and to forecast future movement of market variables. Since
financial data is collected at discrete time points, sometimes it is appropriate to use
recursive difference equations rather than differential equations which are defined
for continuous time. Throughout the chapter we consider only the discrete time
models. A process is stationary if all of its statistical properties are invariant in
time, and a process is weakly stationary if its mean, variance and covariance are
invariant in time. We introduce time series models and study their applications
in finance, especially in forecasting volatility. For an introduction to time series,
consult [27, 59, 97].

26.1 The Cobweb Model

Before we formally start the discussion of time series, we present a basic example
from economics to illustrate the application of time series models, and the criterion
for its convergence.

Example 26.1 (Cobweb Model) Here is a simple application of the theory of
difference equations in economics. We assume that the following relations hold at
time t among demand dt, supply st and market price pt for some a, b, � > 0, ˇ > 0 :

8
<

:

dt D a � � pt

st D b C ˇ p�
t C "t

st D dt

(26.1)
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where p�
t is the expected market price at time t, i.e.,

p�
t D EŒ ptjFt�1�

and "t is a sequence of independent random shocks with zero mean. The first two
assumptions in the model (26.1) are based on an economic common sense that
demand is inversely proportional to present price and that supply is proportional
to expected price. The third assumption in (26.1) implies that supply and demand
are in a dynamical equilibrium in an ideal market.

In the left panel in Fig. 26.1 we start at time t from the economic state represented
by the point A1. If the price is high at pt initially, then the demand shrinks to dt and
the price goes down to ptC1, and the demand rises to dtC1. In the right panel in
Fig. 26.1, if the price is high then the supply is high and the price eventually drops.
Combining both panels in Fig. 26.1, we obtain the diagram in Fig. 26.2 where the
horizontal axis represents the quantity for supply and demand. As time progresses,
the economic state moves from A1 to A2, then to A3, and A4.

Fig. 26.1 Relations between demand and price (left), and supply and price (right)

Fig. 26.2 The cobweb model for supply and demand
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To simplify the model and derive a difference equation we suppose the following
holds:

p�
t D pt�1 :

Then the second condition in (26.1) becomes

st D b C ˇ pt�1 C "t :

Hence the third equation in (26.1) yields

b C ˇ pt�1 C "t D a � �pt ;

which produces a difference equation

pt D a � b

�
� ˇ

�
pt�1 � 1

�
"t : (26.2)

Its general solution is given by

pt D a � b

�

t�1X

iD0

�

�ˇ
�

�i

C
�

�ˇ
�

�t

p0 � 1

�

t�1X

iD0

�

�ˇ
�

�i

"t�i

D a � b

�

1 �
�
�ˇ

�

�t

1 �
�
�ˇ

�

� C
�

�ˇ
�

�t

p0 � 1

�

t�1X

iD0

�

�ˇ
�

�i

"t�i

D a � b

� C ˇ
C
�

�ˇ
�

�t �

p0 � a � b

� C ˇ

�

� 1

�

t�1X

iD0

�

�ˇ
�

�i

"t�i :

The cumulative error or shock has mean 0 and variance

1

�2

t�1X

iD0

�
ˇ

�

�2i

Var."1/ D 1

�2

1 �
�
ˇ

�

�2t

1 �
�
ˇ

�

�2 Var."1/ :

Thus pt converges to
a � b

� C ˇ
as t ! 1 if ˇ

�
< 1 as shown on the left in Fig. 26.3,

and pt diverges if ˇ

�
> 1 as on the right.

Remark 26.1

(i) The cobweb model given here is multi-dimensional, however, it can be con-
verted into a one-dimensional time series as given in (26.2).
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Fig. 26.3 Cobweb models: convergent (left) and divergent (right) cases

(ii) Cobweb models are also studied in nonlinear dynamical systems theory
where the system is deterministic. The evolution of the system may become
unpredictable due to nonlinearity. Consult [21] for more information.

26.2 The Spectral Theory of Time Series

We give a brief mathematical background of time series models.

Definition 26.1 (Stationary Time Series) A time series is a stochastic process
fxtg1

tD1 or fxtg1
tD�1 indexed by time t. It is weakly stationary if EŒxt� and

Cov.xt; xtCk/ do not depend on t, i.e., they are invariant in time. Then, EŒxt� is called
the mean and �k D Cov.xt; xtCk/ is called the autocovariance function of the time
series as a function of k. The time difference k is called lag. Note that �0 D Var.xt/

for every t, and

��k D Cov.xt; xt�k/ D Cov.xtCk; x.t�k/Ck/ D Cov.xtCk; xt/ D �k :

A time series fxtg1
tD1 is strongly stationary or just stationary if the joint probability

distribution of .xtCk1 ; : : : ; xtCkn/ does not depend on t � 1 for any n � 1 and
0 � k1 < � � � < kn. Clearly, a stationary times series is weakly stationary.

For a one-sided infinite sequence f�kgk�0, we define ��k D �k for k � 1, and
obtain a two-sided infinite sequence, i.e., �k is defined for every k 2 Z. Thus we
always assume that a given sequence is two-sided and ��k D �k.

Definition 26.2 (Autocorrelation) The autocorrelation function (ACF) for a
weakly stationary time series, as a function of k, is defined by


k D Cov.xt; xtCk/p
Var.xt/Var.xtCk/

D �kp
�0�0

D �k

�0
:
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Definition 26.3 (Ergodicity) For a stationary process fxtg, let � D Q
t Rt where

Rt D R
1 for every t, and define P on � by taking the time invariant probability of

the given time series, i.e.,

P.C/ D Prf.x1; : : : ; xk/ 2 Cg

for a cylinder subset C D I1	� � �	Ik for k � 1where I1; : : : ; Ik are arbitrary intervals.
Then, by the Kolmogorov Extension Theorem, P can be extended to a probability
measure defined on the �-algebra F generated by all the cylinder subsets. The given
time series is said to be ergodic if any shift-invariant (in other words, stationary)
subset C 2 F satisfies P.C/ D 0 or 1. We usually assume that the time series under
consideration is ergodic. An ergodic stationary time series is an example of ergodic
measure preserving shift transformations. For more information, see [21, 86].

Theorem 26.1 (Birkhoff Ergodic Theorem) For an ergodic stationary time series
fxtg, we have

lim
n!1

1

n

nX

tD1
f .xt; : : : ; xtCk�1; : : :/ D EŒf .x1; : : : ; xk; : : :/� (26.3)

where the expectation on the right-hand side exists.

Remark 26.2

(i) The Birkhoff Ergodic Theorem states that time mean equals space mean, which
enables us to estimate mean, variance, covariance, etc. of the given time series
by taking time averages of a single sample series. See Example 26.2.

(ii) By taking f D 1C for C 2 F , we can show that (26.3) is equivalent to
the ergodicity condition. Thus (26.3) is usually employed as the definition of
ergodicity in the study of time series.

Example 26.2 If a time series fxtg is stationary and ergodic with EŒjxtj� < 1, then

lim
n!1

1

n

nX

tD1
xt D EŒx1�

almost surely where EŒx1� D EŒx2� D � � � . To see why, choose f D x1.

Definition 26.4 (Positive Definite Sequence) A sequence f�kg1
kD�1 is positive

definite if

1X

tD�1

1X

sD�1
ctcs�t�s � 0

for any sequence fckg1
kD�1, ck 2 C, such that ck D 0 for jkj � K for some K > 0.
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Theorem 26.2 The autocovariance function f�kg of a weakly stationary time series
is positive definite.

Proof For any sequence fckg1
kD�1, ck 2 R, such that

P1
kD�1 jckj2 < 1, we have

1X

tD�1

1X

sD�1
ctcs�t�s

D
X

t

X

s

ctcsCov.xs; xsC.t�s//

D
X

t

X

s

ctcsCov.xs; xt/

D
X

t

X

s

ctcsEŒ.xs � EŒxs�/.xt � EŒxt�/�

D E

�X

s

cs.xs � EŒxs�/
X

t

ct.xt � EŒxt�/

�

D E

�X

s

cs.xs � EŒxs�/
X

t

ct.xt � EŒxt�/

�

D E

�ˇˇ
ˇ
ˇ
X

t

ct.xt � EŒxt�/

ˇ
ˇ
ˇ
ˇ

2�

� 0 :

ut
Example 26.3 (Fourier Coefficients of a Measure) Suppose that

ak D
Z 1

0

e�2 ik�d�.�/

for some (positive) measure � on Œ0; 1�. Then

1X

tD�1

1X

sD�1
ctcsat�s D

1X

tD�1

1X

sD�1
ctcs

Z 1

0

e�2 i.t�s/�d�

D
Z 1

0

1X

tD�1
cte

�2 it�
1X

sD�1
cse�2 is�d�

D
Z 1

0

ˇ
ˇ
ˇ
ˇ
ˇ

1X

tD�1
cte�2 it�

ˇ
ˇ
ˇ
ˇ
ˇ

2

d� � 0
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for ck 2 C such that ck D 0 for jkj � K for some K > 0. Hence fakg is positive
definite. Assume further that ak is real. In this case, since

a�k D
Z 1

0

e�2 i.�k/�d� D ak D ak ;

we have a�k D ak.

The following theorem states that Example 26.3 is the only example of a positive
definite sequence.

Theorem 26.3 (Herglotz) A positive definite sequence fakg is a Fourier transform
of a (positive and finite) measure on Œ0; 1�, that is, there exists a positive measure �
on Œ0; 1� such that

ak D
Z 1

0

e�2 ik�d�.�/ ; k 2 Z :

Proof See [37, 46]. ut
Corollary 26.1 For the autocovariance function f�kg of a weakly stationary time
series fxtg, there exists a positive measure � on Œ0; 1� such that

�k D
Z 1

0

e�2 ik�d�.�/ ; k 2 Z : (26.4)

Proof Now apply Theorems 26.2 and 26.3. ut
Definition 26.5 (Spectral Density Function) If the measure � in (26.4) in Corol-
lary 26.1 is absolutely continuous with respect to Lebesgue measure, then the
function f .x/ such that d� D f .x/ dx is called the spectral density function. If f .x/
is m-times differentiable and f .m/.x/ is integrable, then �k D o.jkj�m/ as jkj ! 1.
Consult [46] for its proof.

The following fact due to H. Wold is a theoretical foundation of time series
models. For the proof, see [53]. For more information consult [32, 59, 79, 101].

Theorem 26.4 (Wold Decomposition) A weakly stationary time series fxtg with
its spectral density function can be written as

xt D �C
1X

jD0
 j "t�j (26.5)

where  0 D 1, and "t are uncorrelated random variables with EŒ"t� D 0 and
Var."t/ D �2. The random variables "t are called innovations.

For an example when the spectrum is discrete, see Exercise 26.2.
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26.3 Autoregressive and Moving Average Models

Now we introduce an abstract model for time series.

Definition 26.6 (MA Model) The right-hand side of (26.5) converges in the L2-
sense, and it can be approximated by a finite sum given by

xt D �C "t C  1 "t�1 C � � � C  q "t�q ;

which is called a moving average model of order q, or MA(q).

Definition 26.7 (Backshift Operator) Let fxtg be a time series and let B denote the
backward shift operator, or backshift operator, defined by Bxt D xt�1 . (A rigorous
interpretation of this commonly used notation would be the following: Let X be the
collection of all sample time series x D fxtg . Here we regard x D fxtg as a bi-
infinite sequence with its t-th component xt . Define B W X ! X by .Bx/t D xt�1 .
Thus the sequence Bx is obtained by shifting x to the right by one time step.) Note
that a constant time series� D .: : : ; �; �;�; : : :/ is invariant under B, i.e., B� D �.

Iterating the backshift operator B, we obtain B2xt D B.Bxt/ D xt�2, . . . , B jxt D
xt�j. Hence we can rewrite (26.5) as

xt D �C  .B/"t (26.6)

where

 .B/ D 1C  1B C  2B
2 C � � � :

Now we formally rewrite (26.6) as

"t D 1

 .B/
.xt � �/ D �.B/.xt � �/ D �.B/xt � z� (26.7)

for some constant z� where the formal power series

�.B/ D 1 � �1B � �2B
2 � � � � (26.8)

is defined by

�.B/ D 1

 .B/
D 1

1C  1B C  2B2 C � � � :

By truncating high order terms of the power series �.B/ given in (26.8), we obtain
a polynomial

1 � �1B � � � � � �pBp ;
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which approximately solves (26.7). Thus we have a time series model

"t D .1 � �1B � � � � � �pBp/xt � z�
D xt � �1xt�1 � � � � � �pxt�p � z� : (26.9)

Definition 26.8 (AR Model) The equation (26.9) may be rewritten as

xt D z�C �1xt�1 C � � � C �pxt�p C "t ; (26.10)

which is called an autoregressive model of order p, or AR( p).

Remark 26.3 (Invertibility Condition) It can be shown that the formal power
series (26.8) converges if  .z/ 6D 0 for complex numbers z such that jzj � 1, in
other words, the zeros of  .z/ are outside the unit circle.

Definition 26.9 (ARMA Model) We combine the AR(p) and MA(q) models and
construct an ARMA(p,q) model of the form

xt D �C �1xt�1 C � � � C �pxt�p C "t C  1"t�a C � � � C  q"t�q ;

which is an approximation of the formal power series by a formal rational function
of B. Small values of p and q are sufficient in many applications.

Example 26.4 Suppose that xt satisfies the AR(1) model

xt D a0 C a1xt�1 C "t

where "t denotes a random shock at t. We assume that "t are uncorrelated and
identically distributed with zero mean. Then we have

xt D a0 C a1.a0 C a1xt�2 C "t�1/C "t

D a0 C a1a0 C a21xt�2 C a1"t�1 C "t

D .a0 C a1a0/C a21.a0 C a1xt�3 C "t�2/C ."t C a1"t�1/
:::

D a0

t�1X

iD0
ai
1 C at

1x0 C
t�1X

iD0
ai
1"t�i :

Example 26.5 Consider the AR(2) model

xt D a0 C a1xt�1 C a2xt�2 C "t :
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Fig. 26.4 The AR(2) model: time series xt (left) and autocorrelation function (right)

It is necessary to have the condition that the zeros of 1 � a1z � a2z2 are outside the
unit disk. In Fig. 26.4 a time series xt, 1 � t � 500, and the autocorrelation function
�k=�0, 1 � k � 15, are plotted in the left and right panels, respectively, for the
AR(2) model. See Simulation 26.1.

26.4 Time Series Models for Volatility

First, we introduce some basic ideas for the forecasting of future volatility move-
ment. Let Sn be the asset price at the end of the nth day. Let

un D log
Sn

Sn�1
D log

�
Sn � Sn�1

Sn�1
C 1

�

denote the log return of the day n, and S0 be the asset price at the start of the day 1.
Since log.1C x/ � x for x � 0, we may use the definition

un D Sn � Sn�1
Sn�1

:

Let Fn be the �-algebra defined by the market information including asset prices
up to day n. Then, by definition, Sn is Fn-measurable and so is un. Let m be the length
of the observation window for the estimation of un, and we use the time series data
un�m; un�mC1; : : : ; un�1, and define Nu by

Nu D 1

m

mX

iD1
un�i ; (26.11)
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which is Fn�1-measurable. Define the sample variance

�2n D 1

m � 1
mX

iD1
.un�i � Nu/2

which is also Fn�1-measurable. Since the average of ui is practically regarded as
zero and m is large, we take Nu D 0, and may use

�2n D 1

m

mX

iD1
u2n�i (26.12)

to forecast the daily volatility for the day n. More generally, we may use a weighted
average

�2n D
mX

iD1
˛iu

2
n�i ; ˛i � 0 ;

mX

iD1
˛i D 1 : (26.13)

I. The EWMA Model
The exponentially weighted moving average model, EWMA for short, is defined

as follows: For a constant 0 < � < 1, take

˛i D 1 � �

�
�i

in (26.13). Define

�2n D 1 � �

�

1X

iD1
�iu2n�i :

Since

�2n�1 D 1 � �

�

1X

iD1
�iu2n�1�i D 1 � �

�2

1X

iD2
�iu2n�i ;

we have

�2n D 1 � �

�
.�u2n�1 C

1X

iD2
�iu2n�i/ D .1 � �/u2n�1 C ��2n�1 :

Thus

�2n D .1 � �/u2n�1 C ��2n�1 : (26.14)
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II. The ARCH Model
The economist Robert Engel [28] introduced the ARCH(m) model defined by

�2n D � NV C
mX

iD1
˛iu

2
n�i

and

un D �n"n ; "n � N.0; 1/

where "n are independent, and

� > 0 ; ˛i � 0 ; � C
mX

iD1
˛i D 1 :

It is a special case of (26.13). The acronym ARCH stands for autoregressive
conditional heteroskedasticity. (The term ‘heteroskedasticity’ means variability of
variance.) ARCH models are employed in modeling financial time series that exhibit
time-varying volatility. There are many extensions of ARCH models.

Let Fn be the �-algebra generated by the information up to time n � 1. Then �n

is Fn�1-measurable, and

EŒun� D EŒEŒunjFn�1�� D EŒEŒ�n"njFn�1�� D EŒ�nEŒ"njFn�1�� D 0

and

EŒu2njFn�1� D EŒ�2n "
2
njFn�1� D �2nEŒ"

2
njFn�1� D �2nEŒ"

2
n� D �2n ;

thus the conditional variance is stochastic.
III. The GARCH Model

Tim Bollerslev [10] introduced the GARCH(p,q) model defined by

�2n D ˛0 C
pX

iD1
˛iu

2
n�i C

qX

jD1
ˇj�

2
n�j (26.15)

and

un D �n"n ; "n � N.0; 1/

where "n are independent and

˛0 > 0 ; ˛i � 0 ; ˇj � 0 ;

pX

iD1
˛i C

qX

jD1
ˇj < 1 :
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Remark 26.4 GARCH stands for generalized ARCH. Note that the EWMA model
is a special case of the GARCH(1,1) model with � D 0, and that the ARCH(1)
model is a special case of the GARCH(1,1) model with ˇ D 0.

Let us focus on the GARCH(1,1) model defined by

�2n D � NV C ˛u2n�1 C ˇ�2n�1 (26.16)

where

� C ˛ C ˇ D 1 :

Note that un is Fn�1-measurable, and un D �n"n. Hence

EŒu2njFn�1� D EŒ�2n "
2
njFn�1� D �2n EŒ"2njFn�1� D �2n EŒ"2n� D �2n :

Since, for j > 0,

�2nCj D � NV C ˛u2nCj�1 C ˇ�2nCj�1 ;

we have

EŒ�2nCjjFnCj�2� D � NV C ˛ EŒu2nCj�1jFnCj�2�C ˇ EŒ�2nCj�1jFnCj�2�

D � NV C ˛�2nCj�1 C ˇ�2nCj�1
D � NV C .˛ C ˇ/�2nCj�1 :

Hence

EŒ�2nCj � NV jFnCj�2� D .˛ C ˇ/.�2nCj�1 � NV/ :

By the tower property of conditional expectation,

EŒ�2nCj � NVjFnCj�3� D EŒEŒ�2nCj � NVjFnCj�2�jFnCj�3�

D EŒ.˛ C ˇ/.�2nCj�1 � NV/jFnCj�3�

D .˛ C ˇ/EŒ�2nCj�1 � NVjFnCj�3�

D .˛ C ˇ/2.�2nCj�2 � NV/ :

By repeating the procedure, we have

EŒ�2nCj � NVjFn�1� D .˛ C ˇ/j.�2n � NV/ : (26.17)
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Fig. 26.5 The GARCH(1,1) model: time series for ut (left) and �2t (right)

Hence we can forecast the volatility on day n C j at the start of the day n, or
equivalently, at the end of day n�1. Note that EŒ�2nCjjFn� converges to NV as j ! 1.

Remark 26.5 Consider the GARCH(1,1) model.

(i) (Volatility clustering) A large value of u2n�1 or �2n�1 generates a large value of
�2n , which implies that a large value of u2n�1 tends to be followed by a large value
of u2n, which is called volatility clustering in financial time series. See Fig. 26.5
where we take a0 D 0:01, ˛ D 0:05 and ˇ D 0:85 for the simulation.

(ii) (Fat tail) It is known that the kurtosis � satisfies

� D EŒu4n�

.EŒu2n�/
2

D 3f1� .˛ C ˇ/2g
1 � .˛ C ˇ/2 � 2˛2

> 3

when the denominator is positive, which implies that the tail distribution of
a GARCH(1,1) process is heavier than a normal distribution for which the
kurtosis is equal to 3. For a simulation consult Simulation 26.2.

26.5 Computer Experiments

Simulation 26.1 (AR(2) Model)
We consider the AR(2) model and compute the autocorrelation function. See

Fig. 26.4.

N = 10000 ; % the length of the time series

x = zeros(N,1);

x(1) = 1;

x(2) = 1;

a0 = 0;

a1 = 0.7;

a2 = -0.5;
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% The polynomial a2*z^2 + a1*z + a0 is represented as poly = [-a2 -a1 1]

% The roots of the polynomial are returned in a column vector.

r = roots(poly)

abs(r)

sigma2 = 0.2; % variance for epsilon

for t=1:N

epsilon(t) = randn * sqrt(sigma2) ;

end

for t=3:N

x(t)= a0 + a1*x(t-1) + a2*x(t-2) + epsilon(t);

end

% Discard the first 100 samples to remove transient samples.

x(1:100) = [];

epsilon(1:100) = [];

mu = mean(x);

var_x = var(x); % variance of x

N = N - 100;

% autocorrelation

L = 15 ; % L denotes lag.

rho = zeros(1,L);

for k=1:L

for t=1:N-k

rho(k) = rho(k) + (x(t)-mu)*(x(t+k)-mu);

end

rho(k) = rho(k)/(N-k)/var_x;

end

figure(1)

plot(x(1:500));

xlabel(’t’);

ylabel(’x’);

figure(2)

bar(rho)

xlabel(’k’);

ylabel(’ACF’);

Simulation 26.2 (GARCH(1,1) Model)
We consider the GARCH(1,1) model and observe the volatility clustering. See

Fig. 26.5. In the following code, the command mean(X > a) produces the average
of the indicator function of the event fX > ag, i.e., the probability of fX > ag.

sigma2(1) = 0.1;

a0 = 0.01;

alpha = 0.05;

beta = 0.85;

T = 100000; % Tail estimation requires large T

for t = 1:1:T

u(t) = sqrt(sigma2(t))*randn;

sigma2(t+1) = a0 + alpha*u(t)^2 + beta*sigma2(t);

end

u(1:100) = []; % Discard the first 100 samples to remove transient samples
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sigma2(1:100) = [];

figure(1)

plot(u(1:300));

xlabel(’u’);

figure(2)

plot(sigma2(1:300));

xlabel(’\sigma^2’);

u = u./std(u); % Normalize u

for k = 1:1:4

P(1,k) = 1 - normcdf(k); % Tail probability of the normal distribution

P(2,k) = mean(u > k); % Estimate the tail probability of u

end

format long

P

In the following output we print only a few significant digits to save space. We
observe that u has heavier tail than the standard normal distribution.

P =

0.15865525 0.02275013 0.00134989 0.00003167

0.15813813 0.02307307 0.00176176 0.00004004

Exercises

26.1 Show that if the measure d� in (26.4) is the Dirac delta measure at a single
point �0 D 1

2
, then �k D e�2 ik�0 D .�1/k and d� D dF where F.�/ D 0 for � < 1

2
,

and F.�/ D 1 for � � 1
2
.

26.2 (ACF with discrete spectrum) Define xt D PL
iD1 ai sin.2�it C Ui/ where

ai are constant, Ui � U.0; 1/ are independent random variables, and 0 < �1 <

�2 < � � � < �L < 1. Show EŒxt� D 0. Compute �k D EŒxtxtCk�. Find a
monotonically increasing step function F.�/ such that �k D R 1

0
e2 i�kdF.�/ where

the given integral is the Riemann–Stieltjes integral.

26.3 (ACF with absolute continuous spectrum) Consider xt D �xt�1 C "t where
j�j < 1, f"tg are independent and "t � N.0; 1/. Find the spectral distribution
function.

26.4 Find EŒxtC1jxt; xt�1; : : : ; xt�pC1� in the AR(p) model.

26.5 Let xt be the MA(m) process with equal weights 1
mC1 at all lags defined by

xt D
mX

qD0

1

m C 1
"t�q
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where "t are uncorrelated random variables with EŒ"t� D 0 and Var."t/ D �2. Prove
that the ACF of the process is given by


.k/ D
8
<

:

mC1�k
mC1 ; 0 � k � m ;

0 ; k > m :

26.6 Define an estimator for the yearly volatility �� from (26.12).

26.7 In the geometric Brownian motion, find the distribution of Nu defined
by (26.11).

26.8 Note that the EWMA model is a special case of the GARCH model. Show
that EŒ�2nCjjFn�1� D �2n in the EWMA model.



Chapter 27
Random Numbers

The Monte Carlo method was invented by John von Neumann and Stanislaw
Ulam. It is based on probabilistic ideas and can solve many problems at least
approximately. The method is powerful in option pricing which will be investigated
in Chap. 28. We need random numbers to apply the method. For efficiency, we need
a good random number generator.

The most widely used algorithm is given by a linear congruential generator
xnC1 D axn C b .mod M/ for some natural numbers a; b;M; x0. To obtain a
sufficiently long sequence of random numbers without repetition, we choose a very
large value for M. Even for such a seemingly simple algorithm it is very difficult to
find suitable constants a; b;M; x0 either by theoretical methods or computational
methods. Most users of random numbers choose well-known generators and
corresponding parameters.

In practice most random numbers are generated by deterministic algorithms, and
they are called pseudorandom numbers. For a comprehensive reference on random
number generation, consult [51]. For elementary introductions, see [7, 76]. Consult
also [21].

27.1 What Is a Monte Carlo Method?

Suppose that we want to integrate a function of many variables, i.e., the dimension of
the domain of the integrand is high, we apply Monte Carlo integration to estimate
an integral. For 1 � k � s let Ik D Œ0; 1�, and consider a function f .x1; : : : ; xs/

on the s-dimensional cube Q D Qs
kD1 Ik � R

s. If we want to numerically
integrate f on Q by Riemann integral, then we partition each interval Ik into n
subintervals, and obtain ns small cubes. Then choose a point qi, 1 � i � ns,
from each subcube, and evaluate f .qi/ then compute their average. This is not
practical since there are ns numbers whose average would require a long time
to compute even for small numbers such as s D 10 and n D 10. To avoid

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7_27
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such a difficulty we use Monte Carlo method. First, choose a reasonably large
number m that is considerably small compared with ns. Then select m samples
from fqi W 1 � i � nsg and find the average of f at those m points. By the
Central Limit Theorem we see that the error of the method is proportional to
1p
m

.
Here is another example of a Monte Carlo method. Suppose that we want to

estimate  D 3:14 : : :. As shown in Fig. 27.1 we choose n uniformly distributed
random points from the unit square, and count the number of points inside the circle.
If there are k points, as n ! 1, the relative frequency k

n converges to 
4

. Such a
probabilistic or statistical method is called a Monte Carlo method, which was named
after Monte Carlo which is famous for casinos.

As the third example, we consider the estimation of the gamma function defined
by

� .p/ D
Z 1

0

xp�1e�x dx :

Recall that � .p/ D .p � 1/Š for a natural number p. To estimate � .p/, we use an
exponentially distributed random variable X with the density function h.x/ D e�x,
x � 0, and find EŒXp�1�. See Fig. 27.2 where � .6/ D 5Š D 120 is estimated using
2n random numbers in the Monte Carlo method.

Fig. 27.1 Estimation of  by
using random numbers

100

1
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Fig. 27.2 Estimation of
� .p/, p D 6, by the Monte
Carlo method
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27.2 Uniformly Distributed Random Numbers

Here is how to generate a sequence of real numbers with uniform distribution in the
unit interval Œ0; 1�. First, choose a very large integer M > 0 and generate integers
0 � xn < M, then divide them by M thus obtaining xn=M. If M is very large, those
fractions can approximate well any real numbers. Thus we may concentrate on the
generation of random numbers satisfying 0 � xn < M.

A linear congruential generator is an algorithm defined by

xnC1 D axn C b .mod M/ ;

which is denoted by LCG.M; a; b; x0/. It is important to choose suitable constants
x0,a,b and M.

Fact 27.1 The period of LCG.M; a; b; x0/ is equal to M if and only if the following
conditions hold:

(i) b and M are relatively prime,
(ii) if M is divisible by a prime p, then a � 1 is also divisible by p,

(iii) if M is divisible by 4, then a � 1 is also divisible by 4.

For a proof, see [51]. In the 1960s IBM developed a linear congruential generator
called Randu, whose quality turned out to be less than expected. It is not used now
except when we need to gauge the performance of a newly introduced generator
against it. ANSI (American National Standards Institute) C and Microsoft C include
linear congruential generators in their C libraries.

For a prime number p an inversive congruential generator is defined by

xnC1 D ax�1
n C b .mod p/
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Table 27.1 Pseudorandom number generators

Name Algorithm Period

Randu LCG(231 , 65539, 0, 1) 229

ANSI LCG(231 , 1103515245, 12345, 141421356) 231

Microsoft LCG(231 , 214013, 2531011, 141421356) 231

ICG ICG(231 - 1, 1, 1, 0) 231 � 1

Ran0 LCG(231-1, 16807, 0, 3141) 231 � 2

MT19937 A matrix linear recurrence over a finite field F2 219937 � 1

and denoted by ICG.p; a; b; x0/, where x�1 is the inverse of x modulo p multiplica-
tion. In this case, since p is prime, the set Zp is a field where division is possible. For
example, Z7 D f0; 1; 2; 3; 4; 5; 6g and all nonzero elements have inverse elements
given by 1�1 D 1, 2�1 D 4, 3�1 D 5, 4�1 D 2, 5�1 D 3, 6�1 D 6.

Table 27.1 lists various random number generators. All the generators except
Randu have been in use until recently. Mersenne twister (MT19937) is the most
widely used generator now. It is employed by MATLAB and many other computer
software packages. Its name is derived from the fact that its period length is a
Mersenne prime. For more information consult [51, 62, 78].

27.3 Testing Random Number Generators

To check the efficiency of a given pseudorandom number generator we apply not
only theoretical number theory but also test it statistically. One such methods is the
following: For a sequence fxng, 0 � xn < M, generated by a pseudorandom number
generator we define a point in the three-dimensional cube Œ0;M�	 Œ0;M�	 Œ0;M� by
.x3iC1; x3iC2; x3iC3/ for i � 0 and check whether they reveal a lattice structure. The
more visible the lattice structure is, the less random the generator is.

A lattice structure determined by a bad linear congruential generator
LCG.M; a; b; x0/ is presented in Fig. 27.3 where there are a small number of planes
determined by the points generated by a linear congruential generator with M D 230,
a D 65539, b D 0 and x0 D 1. The points are on fifteen planes inside a cube, and
such a lattice structure is a weakness of linear congruential generators. In practice,
to make sure that thus generated n-tuples are more evenly distributed, we need to use
generators which can produce sufficiently many .n � 1/-dimensional hyperplanes
inside an n-dimensional cube.
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Fig. 27.3 Plane structure
determined by
three-dimensional points
obtained from a linear
congruential generator

27.4 Normally Distributed Random Numbers

Example 27.1 Here is a convenient way to generate random numbers with approx-
imate standard normal distribution: Take independent and uniformly distributed
random numbers u1; u2; : : : ; uN and let

X D
r
12

N

 
NX

kD1
uk � N

2

!

;

which has mean 0 and variance 1. By the Central Limit Theorem the sum X is
approximately normally distributed for sufficiently large N. For N D 12 the factorp
12=N conveniently becomes 1. Let U1; : : : ;U12 be independent and uniformly

distributed in Œ0; 1�. Then EŒUi� D 1
2

and VarŒUi� D R 1
0
.x � 1

2
/2 dx D 1

12
. Hence

Y D U1 C � � � C U12 � 6

satisfies EŒY� D 0 and Var.Y/ D Var.U1/C� � �CVar.U12/ D 1. To find the skewness
E

.Y � EŒY�/3

�
we note that

.Y � EŒY�/3 D Y3 D
 

12X

iD1
.Ui � 1

2
/

!3

D
X

i;j;k

.Ui � 1

2
/.Uj � 1

2
/.Uk � 1

2
/ :

If i; j; k are all distinct, we have

E

.Ui � 1

2
/.Uj � 1

2
/.Uk � 1

2
/
� D E


Ui � 1

2

�
E

Uj � 1

2

�
E

Uk � 1

2

� D 0 :
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If i 6D j D k, then

E

.Ui � 1

2
/.Uj � 1

2
/.Uk � 1

2
/
� D E


Ui � 1

2

�
E

.Uj � 1

2
/2
� D 0 	 1

12
D 0 :

Finally, if i D j D k then

E

.Ui � 1

2
/3
� D

Z 1

0

.u � 1

2
/3du D 0 :

Hence the skewness is equal to 0. As for the kurtosis, we have EŒY4� D 29
10

,
which is very close to the theoretical value 3 of the kurtosis of the standard normal
distribution. (See Exercise 4.12.) Therefore we may use Y as a crude approximation
of a standard normal random variable in a numerical simulation. See Fig. 27.4 and
Simulation 27.4.

Now we consider a rigorous method for generating random numbers with
standard normal distribution. The Box–Muller algorithm [11] converts a pair
of independent uniformly distributed random numbers into a pair of normally
distributed random numbers.

Theorem 27.2 (Box–Muller) For two independent random variables U1 and U2

uniformly distributed in .0; 1/, define

.
; �/ D .
p�2 log U1; 2U2/ ;

Fig. 27.4 The histogram for
the distribution of
U1 C � � � C U12 � 6 with the
pdf of the standard normal
distribution
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and let

.Z1;Z2/ D .
 cos �; 
 sin �/ :

Then Z1 and Z2 are independent, and have the standard normal distribution.

Proof Define a one-to-one mappingˆ W Œ0; 1/ 	 Œ0; 1/ ! R
2 by

ˆ.u1; u2/ D .
p�2 log u1 cos 2u2;

p�2 log u1 sin 2u2/ D .z1; z2/ :

Note that z21 C z22 D �2 log u1. Since the Jacobian of ˆ is given by

Jˆ D det

2

6
6
4

� 1
p�2 log u1

cos 2u2
u1

p�2 log u1.�2 sin 2u2/

� 1
p�2 log u1

sin 2u2
u1

p�2 log u1.�2 cos 2u2/

3

7
7
5 D �2

u1
;

we have, for A � Œ0; 1/ 	 Œ0; 1/,
“

A

fU1;U2 .u1; u2/du1du2 D Pr..U1;U2/ 2 A/

D Pr..Z1;Z2/ 2 ˆ.A//

D
“

ˆ.A/

fZ1;Z2 .z1; z2/dz1dz2

D
“

A

fZ1;Z2 .ˆ.u1; u2//jJˆjdu1du2

D
“

A

fZ1;Z2 .ˆ.u1; u2//
2

u1
du1du2 :

Since the joint probability density is given by

fU1;U2 .u1; u2/ D 1 ; .u1; u2/ 2 Œ0; 1/ 	 Œ0; 1/ ;

we have

fZ1;Z2 .z1; z2/ D u1
2

D 1

2
e� 1

2 .z
2
1Cz22/ :

Since

fZ1;Z2 .z1; z2/ D 1p
2

e� 1
2 z21

1p
2

e� 1
2 z22 D fZ1 .z1/fZ2 .z2/ ;

we conclude that Z1 and Z2 are independent. ut
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Fig. 27.5 Generation of normally distributed random points by the Box–Muller algorithm

In Fig. 27.5 are plotted 103 uniformly distributed random points (left) and the
corresponding normally distributed points generated by the Box–Muller algorithm
(right). Consult Simulation 27.5.

The following algorithm, called Marsaglia’s polar method, is a modification of
the Box–Muller method, and does not use trigonometric functions, which can reduce
computation time even though some of the generated points by the pair .U1;U2/ are
wasted without being used.

Theorem 27.3 (Marsaglia) For independent random variables U1 and U2 uni-
formly distributed in .0; 1/, define V1 D 2U1�1 and V2 D 2U2�1. Let R D V2

1CV2
2

and select the points .V1;V2/ such that 0 < R < 1 and define

.Z1;Z2/ D
 

V1

r

�2 log R

R
;V2

r

�2 log R

R

!

:

Then Z1 and Z2 are independent and have the standard normal distribution.

Proof Note that the accepted points .V1;V2/ are uniformly distributed inside the
unit disk D with the uniform probability density 1


. Define a mapping ‰ W D !

Œ0; 1� 	 Œ0; 1� by ‰.V1;V2/ D .R; ‚/ where R D V2
1 C V2

2 and tan.2‚/ D V2
V1

,
‚ 2 Œ0; 1/. Since, for 0 � ˛ � 1,

Pr.R � ˛/ D Pr.V2
1 C V2

2 � ˛/ D Pr.
q

V2
1 C V2

2 � p
˛/ D .

p
˛/2

1


D ˛ ;
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Fig. 27.6 Generation of normally distributed random points by the Marsaglia algorithm

we see that .R; ‚/ is uniformly distributed in the unit square. Note that R and‚ are
independent since

Pr.˛1 � R � ˛2; ˇ1 � ‚ � ˇ2/

D Pr.
p
˛1 �

q
V2
1 C V2

2 � p
˛2; ˇ1 � ‚ � ˇ2/

D
�
1


.
p
˛2/

2 � 1


.
p
˛1/

2

�

.ˇ2 � ˇ1/

D Pr.˛1 � R � ˛2/ Pr.ˇ1 � ‚ � ˇ2/ ;

and apply the Box–Muller method to obtain the standard normal variables Z1 and Z2.

Finally we note that cos.2‚/ D V1=
q

V2
1 C V2

2 and sin.2‚/ D V2=
q

V2
1 C V2

2 .
ut

In Fig. 27.6 we plot 103 uniformly distributed random points, the accepted points
inside the unit disk, their images under  , and the normally distributed points
generated by the Marsaglia algorithm (from left to right). Consult Simulation 27.6.

Remark 27.1 In practice, if memory size does not matter, we can obtain normally
distributed random numbers very quickly using MATLAB, which can generate
normally distributed random numbers as fast as it can generate uniformly distributed
numbers. Almost instantly it can generate millions of random numbers on a desktop
computer. For a practical algorithm employed by MATLAB, consult [70].

27.5 Computer Experiments

Simulation 27.1 (Estimation of )
We plot the lattice structure in the unit cube determined by ordered triples of

random numbers. See Fig. 27.1.

a = rand(1000,1);

b = rand(1000,1);
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plot(a,b,’.’);

hold on

t=0:pi/300:pi/2;

plot(cos(t),sin(t))

axis equal

N=10^6;

xx=rand(N,1);

yy=rand(N,1);

frequency = 0;

for i = 1:N

if xx(i)^2+yy(i)^2 < 1

count = 1;

else

count = 0;

end

frequency = frequency + count;

end

frequency/N*4 % This produces a number close to pi = 3.1415...

Simulation 27.2 (Estimation of the Gamma Function)
We test the formula � .6/ D 5Š using exponentially distributed random numbers.

See Fig. 27.2.

p = 6;

N = 20;

num = 2^N;

% (p-1)th power of exponentially distributed random numbers

A = exprnd(1,num,1) .^ (p-1);

for i = 1:N

gamma(i) = mean(A(1:2^i));

end

x = 0:0.02:N;

plot(gamma,’o-’);

hold on

plot(x,factorial(p-1));

title(’\Gamma(6)=120’);

xlabel(’n’);

Simulation 27.3 (Lattice Structure of Ordered Triples)
We plot the lattice structure in the unit cube determined by ordered triples of

uniformly distributed random numbers. See Fig. 27.3.

a=65539;

b=0;

M=2^30;

x0=1;

N=3000;

x=zeros(N);

y=zeros(N);

z=zeros(N);
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x(1)=x0;

y(1)=mod(a*x(1)+b,M);

z(1)=mod(a*y(1)+b,M);

for i=2:3*N

x(i)=mod(a*z(i-1)+b,M);

y(i)=mod(a*x(i)+b,M);

z(i)=mod(a*y(i)+b,M);

end;

x=x./M;

y=y./M;

z=z./M;

plot3(x,y,z,’.’);

Simulation 27.4 (Sum of Twelve Uniform Variables)
We show that the probability distribution of the sum of twelve uniform variables

is close to the standard normal distribution. See Example 27.1.

SampleSize=100000;

U12=random(’unif’,0,1,12, SampleSize);

Y=sum(U12)-6;

mu = mean(Y)

sigma2 = mean(Y.^2)

skew = mean(Y.^3)

kurto = mean(Y.^4)

Number_of_bins = 40;

N = Number_of_bins - 1;

width = (max(Y) - min(Y))/N;

minimum_value = min(Y) - width/2;

maximum_value = max(Y) + width/2;

bin = zeros(1, Number_of_bins);

for i=1:SampleSize

j_bin=ceil((Y(i) - minimum_value)/width);

bin(j_bin)=bin(j_bin)+1;

end

x = minimum_value:0.01:maximum_value;

y = 1/sqrt(2*pi)*exp(-x.^2/2);

mid_points = minimum_value + width/2:width:maximum_value;

bar(mid_points,bin/SampleSize/width, 1, ’w’)

hold on

plot(x,y)

The output is

mu = 0.0038

sigma2 = 1.0026

skew = 0.0069

kurto = 2.9085
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For a plot of the histogram see Fig. 27.4.

Simulation 27.5 (Box–Muller Method)
We generate random numbers with the standard normal distribution using the

Box–Muller algorithm.

N = 10000;

U1 = rand(N,1);

U2 = rand(N,1);

r = sqrt(-2*(log(U1)));

theta = 2*pi*U2;

Z1 = r.*cos(theta);

Z2 = r.*sin(theta);

plot(U1,U2,’.’)

plot(Z1,Z2,’.’)

For the plot see Fig. 27.5.

Simulation 27.6 (Marsaglia’s Polar Method)
We generate random numbers with the standard normal distribution using

Marsaglia’s polar method. Note that the MATLAB command atan for arctan.x/,
�1 < x < 1, has its values in the range Œ�

2
; 
2
�.

N = 10000;

index = zeros(N,1);

U1 = rand(N,1);

U2 = rand(N,1);

V1 = 2*U1 - 1;

V2 = 2*U2 - 1;

k = 0;

for i = 1:N

R = V1(i)^2 + V2(i)^2;

if (0 < R && R < 1)

k = k+1;

index(k)=i;

C = sqrt(-2*log(R)/R);

W1(k) = V1(i);

W2(k) = V2(i);

Z1(k) = V1(i)*C;

Z2(k) = V2(i)*C;

end

end

K = k

V1 = W1(1:K);

V2 = W2(1:K);

R = V1.^2 + V2.^2;

for k=1:K

if V1(k) >= 0 && V2(k) >= 0
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Theta(k) = (1/(2*pi))*atan(V2(k)/V1(k));

elseif V1(k) >= 0 && V2(k) < 0

Theta(k) = (1/(2*pi))*atan(V2(k)/V1(k)) + 1;

else

Theta(k) = (1/(2*pi))*atan(V2(k)/V1(k)) + 1/2;

end

end

plot(U1,U2,’k.’,’markersize’,1);

plot(V1,V2,’k.’,’markersize’,1);

plot(cos(2*pi*t),sin(2*pi*t),’r-’,’LineWidth’,1);

plot(R,Theta,’k.’,’markersize’,1);

plot(Z1,Z2,’k.’,’markersize’,1);

For the plot see Fig. 27.6.

Exercises

27.1 Show that if a random variable U is uniformly distributed in .0; 1/ then Y D
� log U has exponential distribution.

27.2 Fix a constant x0. Explain how to generate random numbers with the restricted
normal distribution with the probability density function given by

f .x/ D 1

1 � N.x0/
1Œx0;C1/.x/

1p
2

e�x2=2

where

N.x/ D
Z x

�1
1p
2

e�z2=2 dz :

(For an application see Exercise 28.7.)



Chapter 28
The Monte Carlo Method for Option Pricing

Option price is expressed as an expectation of a random variable representing a
payoff. Thus we generate sufficiently many asset price paths using random number
generators, and evaluate the average of the payoff. In this chapter we introduce
efficient ways to apply the Monte Carlo method. The key idea is variance reduction,
which increases the precision of estimates for a given sample size by reducing the
sample variance in the application of the Central Limit Theorem. The smaller the
variance is, the narrower the confidence interval becomes, for a given confidence
level and a fixed sample size.

28.1 The Antithetic Variate Method

Here is a basic example of the antithetic variate method for reducing variance.
Given a function f .x/ defined on the unit interval Œ0; 1�, choose a random variable U
uniformly distributed in Œ0; 1�. Note that 1� U is also uniformly distributed. To find
the expectation EŒ f .U/� we compute

EŒ f .U/�C EŒ f .1 � U/�

2
D E

�
f .U/C f .1 � U/

2

�

:

In this case, 1� U is called an antithetic variate. This method is effective especially
when f is monotone.

Example 28.1 Note that
R 1
0

exdx D e � 1. If we want to find the integral by the
Monte Carlo method, we estimate EŒeU� where U is uniformly distributed in Œ0; 1�.
Let

X D eU C e1�U

2
;
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and find EŒX� to estimate EŒeU�. Note that

Var.X/ D Var.eU/C Var.e1�U/C 2Cov.eU ; e1�U/

4

D Var.eU/C Cov.eU; e1�U/

2
:

Note that

EŒeUe1�U� D
Z 1

0

exe1�xdx D e � 2:71828

and

Cov.eU ; e1�U/ D EŒeUe1�U� � EŒeU�EŒe1�U � D e � .e � 1/2 � �0:2342 :

Since

Var.eU/ D EŒe2U� � .EŒeU�/2 D e2 � 1

2
� .e � 1/2 � 0:2420 ;

we have

Var.X/ � 0:0039 :

Hence the variance of X is greatly reduced in comparison with the variance of eU .
(See also Exercise 28.2 for a similar example.)

Theorem 28.1 For any monotonically increasing (or decreasing) functions f and
g, and for any random variable X, we have

EŒ f .X/g.X/� � EŒ f .X/�EŒg.X/� ;

or, equivalently,

Cov. f .X/; g.X// � 0 :

Proof First, consider the case when f and g are monotonically increasing. Note that

. f .x/ � f . y//.g.x/� g. y// � 0

for every x; y since two differences are either both nonnegative (x � y) or both
non-positive (x � y). Thus, for any random variables X;Y, we have

. f .X/� f .Y//.g.X/� g.Y// � 0 ;
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and hence

EŒ. f .X/ � f .Y//.g.X/� g.Y//� � 0 :

Hence

EŒ f .X/g.X/�C EŒ f .Y/g.Y/� � EŒ f .X/g.Y/�C EŒ f .Y/g.X/� :

If X and Y are independent and identically distributed, then

EŒ f .X/g.X/� D EŒ f .Y/g.Y/�

and

EŒ f .X/g.Y/� D EŒ f .X/�EŒg.Y/� D EŒ f .X/�EŒg.X/� ;

EŒ f .Y/g.X/� D EŒ f .Y/�EŒg.X/� D EŒ f .X/�EŒg.X/� :

Hence

2EŒ f .X/g.X/� � 2EŒ f .X/�EŒg.X/� :

Therefore,

Cov. f .X/; g.X// D EŒ f .X/g.X/�� EŒ f .X/�EŒg.X/� � 0 :

When f and g are monotonically decreasing, then we simply replace f and g by �f
and �g, respectively, and note that �f and �g are monotonically increasing and that
Cov. f .X/; g.X// D Cov.�f .X/;�g.X// � 0. ut
Corollary 28.1 Let f .x/ be a monotone function and X be any random variable.
Then we have

(i) Cov. f .X/; f .1 � X// � 0,
(ii) Cov. f .X/; f .�X// � 0.

Proof

(i) First, consider the case when f is monotonically increasing. Define g.x/ D
�f .1 � x/. Then g.x/ is also increasing. Hence

Cov. f .X/; f .1� X// D Cov. f .X/;�g.X// D �Cov. f .X/; g.X// � 0 :

If f .x/ is decreasing, then consider instead �f .x/ which is increasing, and note
that Cov. f .X/; f .1 � X// D Cov.�f .X/;�f .1 � X// � 0.

(ii) The proof is similar to that of (i). ut
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Remark 28.1

(i) If f .x/ is monotone and U is uniformly distributed in Œ0; 1�, then
Cov. f .U/; f .1 � U// � 0.

(ii) If f .x/ is monotone and Z is a standard normal variable, then Cov. f .Z/;
f .�Z// � 0.

Example 28.2 (Option Pricing) Consider a European call option with expiry date
T and payoff C.ST/ D maxfST � K; 0g where ST is the asset price at T. If Z denotes
a standard normal variable, we consider Z and �Z to apply the antithetic variate
method. Since ST D S0e.r� 1

2 �
2/TC�p

TZ and zST D S0e.r� 1
2 �

2/T��p
TZ are correlated,

two payoffs C.ST/ and C.zST/ are also correlated. Since

E
QŒC.ST/� D E

QŒC.zST/� ;

we have

E
QŒC.ST/� D E

Q

"
C.S0e.r� 1

2 �
2/TC�p

TZ/C C.S0e.r� 1
2 �

2/T��p
TZ/

2

#

:

In Simulation 28.1 the ratio between the variances for the standard Monte Carlo and
the antithetic variate method is approximately equal to 2:7080.

When we price a path dependent option, we need to generate sample paths of a
geometric Brownian motion by the discretized algorithm

S.tiC1/ D S.ti/C �S.ti/ıt C �S.ti/
p
ıtZi

where Zi are independent standard normal variables. The antithetic path zSt is given
by the algorithm

zS.tiC1/ D zS.ti/C �zS.ti/ıt � � zS.ti/
p
ıtZi :

The antithetic variate method employs both St and zSt as a pair. Since ST and zST are
correlated, f .ST/ and f .zST/ are also correlated for any function f . In Fig. 28.1 we
take � D 0:1 and � D 0:3.

The efficiency of the antithetic variate method in pricing European options
depends on the parameter values as shown in Fig. 28.2. We take T D 1, S0 D 10,
r D 0:05, � D 0:3, and choose various values of K. Payoffs C1 are plotted by
solid lines, and the corresponding antithetic variates C2 by dotted lines as functions
of z, the values of the standard normal distribution. The averages .C1 C C2/=2 are
also plotted together. In Fig. 28.2 the reduction rate for the cases corresponding to
K D 8; 10; 12 are approximately equal to 86%, 70%, 59%, respectively. Consult
Simulation 28.2.
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Fig. 28.1 A pair of sample paths of geometric Brown motion obtained by antithetic variate method
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Fig. 28.2 Payoffs of European call options and the corresponding antithetic variates for S0 D 10

and K D 8; 10; 12

28.2 The Control Variate Method

The control variate method for variance reduction in estimating EŒX� employs
another random variable Y whose properties are well-known. For example, the mean
EŒY� is known. The random variable Y is called a control variate.

Suppose that EŒY� is already known. Define

zX D X C c .Y � EŒY�/

for a real constant c. Then

EŒzX� D EŒX� :
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We try to find an optimal value �c of c for which

Var.zX/ D Var.X/C c2Var.Y/C 2c Cov.X;Y/ (28.1)

becomes minimal. Differentiating with respect to c, we have

�cD �Cov.X;Y/

Var.Y/
; (28.2)

and by choosing c D �c in (28.1) we obtain

min
c

Var.zX/ D Var.X/� Cov.X;Y/2

Var.Y/

D Var.X/

�

1� Cov.X;Y/2

Var.X/Var.Y/

�

D Var.X/.1 � 
.X;Y/2/
� Var.X/ :

Thus the maximal rate of variance reduction rate is equal to

Var.X/� minc Var.zX/
Var.X/

D 
.X;Y/2 :

Hence the more X and Y are correlated, the better the variance reduction gets.

Example 28.3 Let U be uniformly distributed in the interval .0; 1/ and

X D eU :

We want to estimate EŒX�. Take a control variate Y D U. Note thatEŒY� D R 1
0

y dy D
1
2
. Define

zX D eU� �c .U � 1

2
/

for the optimal value �c given by (28.2). Note that

Cov.eU ;U/ D EŒeUU�� EŒeU�EŒU�

D
Z 1

0

exx dx � .e � 1/
1

2
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D e � .e � 1/� .e � 1/1
2

D 3

2
� 1

2
e � 0:140859

and

�cD �Cov.eU ;U/

Var.U/
D �

3
2

� 1
2
e

1
12

D 6.e � 3/ � �1:690309 :

Recall that

Var.eU/ D EŒe2U � � EŒeU �2 D e2 � 1

2
� .e � 1/2 � 0:242036 :

Hence the variance reduction rate is approximately equal to


.eU;U/2 D Cov.eU ;U/2

Var.eU/Var.U/
� 0:1408592

0:242036	 1
12

� 0:9837 ;

and the variance is greatly reduced by 98.37%. See also Exercise 28.6.

Example 28.4 (European Call Option) To estimate EŒX� for

X D .ST � K/C ;

we choose the underlying asset itself as a control variate, i.e., we take Y D ST . Recall
that EŒY� D S0erT and Var.Y/ D S20e

2rT.e�
2T � 1/. To compute the covariance of X

and Y we may use the Monte Carlo method since we do not need the precise value
for �c in (28.2). For exotic options with complicated payoffs, sometimes it might
be convenient to take the payoffs of standard European calls and puts as control
variates.

Example 28.5 (Asian Option with Arithmetic Average) We use the control variate
method to compute the price of an Asian option with arithmetic average, denoted
by Varith, using the price of the corresponding Asian option with geometric average,
Vgeo, as a control variate. The formula for the price of an Asian option with
geometric average, Vgeo formula, is given in Theorem 18.1. Since the expectation of
Vgeo is equal to Vgeo formula, the expectation of

zV D Varith C c.Vgeo � Vgeo formula/

is equal to the expectation of Varith, however, with a suitable choice of c the variance
of zV is reduced in comparison to the variance of Varith which is computed by the
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Fig. 28.3 Comparison of the
standard Monte Carlo method
and the control variate
method for computing Asian
option price

log
2
(N)

11 13 15 17 19 21

P
ric

e

4.2

4.4

4.6

4.8
standard
control variate

standard Monte Carlo method. The optimal value for c is

�cD �Cov.Varith;Vgeo/

Var.Vgeo/
:

For our simulation we simply choose �cD 1, which is not the best choice, however,
we have a reasonable reduction in variance. See Fig. 28.3 where the confidence
intervals are presented for each sample size N D 2j, 12 � j � 20. Consult
Simulation 28.4.

28.3 The Importance Sampling Method

The importance sampling method for Monte Carlo integration modifies a given
probability density before computing the expectation. The idea is to assign more
weight to a region where the given random variable has more importance. Consider
an integral

E
PŒX� D

Z

�

X dP

with respect to a probability measure P. Let Q be an equivalent probability measure
with its Radon–Nikodym derivative with respect to P denoted by dQ

dP . Recall that the
Radon–Nikodym derivative of P with respect to Q, denoted by dP

dQ , satisfies

dP

dQ
D 1

dQ
dP
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and
Z

�

X dP D
Z

�

X
dP

dQ
dQ :

Example 28.6 Let P denote the Lebesgue measure on the unit interval .0; 1/. Let U
be uniformly distributed in .0; 1/, and take X D U5 and consider EŒU5�. Note that
E
PŒX� D 1

6
and

VarP.X/ D E
PŒU10� � .EPŒU5�/2 D 1

11
� 1

36
D 25

396
� 0:0631 :

Now we use the importance sampling method, putting more weight near the value 1.
For example, we define a probability measure Q by

Q.A/ D
Z

A
2x dx

for A � .0; 1/, i.e., dQ
dP D 2x. Note that dP

dQ D 1
2x and

E
PŒU5� D E

Q

�

U5 dP

dQ

�

D E
Q

�
1

2
U4

�

:

Also note that

VarQ
�
1

2
U4

�

D E
Q

�
1

4
U8

�

�
�

E
Q

�
1

2
U4

��2

D 1

4

(Z 1

0

2u9 du �
�Z 1

0

2u5 du

�2)

D 1

4

�
1

5
� 1

9

�

D 1

45
� 0:0222 :

Thus the variance is reduced by approximately 0:0631�0:0222
0:0631

� 64:8%.
The transformation rule in Theorem 4.6 corresponding to the pdf fY. y/ D 2y

is Y D p
U. (See Example 4.14.) Hence E

PŒU5� D E
Q

1
2
U4
� D E

Q

1
2
Y2
�

and
VarQ

�
1
2
U4
� D VarQ

�
1
2
Y2
�
. See Exercise 28.8 for a related problem, and for the

numerical experiment see Simulation 28.5.

Example 28.7 (Deep Out-of-the-Money Asian Option) Consider an option whose
payoff becomes zero if the underlying asset price falls below an agreed level K at
expiry or before expiry. In computing the price of such an option using the standard
Monte Carlo method, too many sample asset paths are wasted without contributing
in option valuation, especially when K is very high compared to S0 so that the option
is deep out-of-the-money.
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We move upward the asset paths as time increases by replacing a given drift
coefficient r by a larger value r1 in simulating geometric Brownian motion so that
more sample paths thus generated would have nonzero contribution in evaluating the
average of payoff. Girsanov’s theorem allows us to do this as long as we multiply by
the Radon–Nikodym derivative. We adopt this idea in Simulation 28.6, and compute
the price of an Asian call option with arithmetic average where S0 D 100, K D 150

and r D 0:05.
Here is a theoretical background. Let

CT.St1 ; : : : ; StL/ D max

�
1

L
.St1 C � � � C StL/� K; 0




be the payoff of an Asian option with arithmetic average. The standard Monte Carlo
method for option pricing computes

e�rT
E
PŒCT .St1 ; : : : ; StL/�

using the sample paths of the geometric Brownian motion

dSt D rStdt C �StdWt

where P denotes the martingale measure and Wt is a P-Brownian motion. Since S0
is too low compared to K, future values of St, 0 < t � T, will tend to stay low so
that the arithmetic average will also be far below K in most cases, and most sample
values for Monte Carlo simulation will be zero.

Now choose a constant r1 > r and let

� D r � r1
�

:

By Girsanov’s theorem there exists an equivalent probability measure Q with
Radon–Nikodym derivative dQ

dP satisfying

E

hdQ

dP

ˇ
ˇFt

i
D e� 1

2 �
2t��Wt

and Xt D Wt C � t is a Q-Brownian motion. Note that

dP

dQ
D e

1
2 �

2TC�WT D e
1
2 �

2TC�.XT ��T/ D e� 1
2 �

2TC�XT

and

dSt D r1Stdt C �StdXt :
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Hence the option price is equal to

e�rT
E
PŒCT � D e�rT

E
Q

h
CT

dP

dQ

i

D e�rT
E
Q

h
CT e

1
2 �

2TC�WT

i

D e�rT
E
Q

h
CT e� 1

2 �
2TC�XT

i
:

Note that the same idea can be applied for the computation of European options.
For more theoretical details, consult Chap. 16.

28.4 Computer Experiments

Simulation 28.1 (Antithetic Variate Method)
We use the antithetic variate method to compute the price of a European call

option, and compare the results with the Black–Scholes–Merton formula. The
price of the vanilla call option according to the Black–Scholes–Merton formula
is approximately equal to call vanilla D 10:0201, while the estimated values
by the standard Monte Carlo method and by the antithetic variate method are
a D 9:9271 and a anti D 10:0823, respectively. The corresponding variances
are b D 379:5477 and b anti D 140:1554 with their ratio given by 2:7080.

S0 = 100;

K = 110;

r = 0.05;

sigma = 0.3;

T = 1;

d1 = (log(S0/K) + (r + 0.5*sigma^2)*T)/(sigma*sqrt(T));

d2 = (log(S0/K) + (r - 0.5*sigma^2)*T)/(sigma*sqrt(T));

call_vanilla = S0*normcdf(d1) - K*exp(-r*T)*normcdf(d2)

N = 1000;

dt = T/N;

M = 10^4;

S = ones(1,N+1);

S2 = ones(1,N+1);

V = zeros(M,1);

V2 = zeros(M,1);

V_anti = zeros(M,1);

for i = 1:M

S(1,1) = S0;

S2(1,1) = S0;

dW = sqrt(dt)*randn(1,N);

for j = 1:N

S(1,j+1) = S(1,j)*exp((r-0.5*sigma^2)*dt + sigma*dW(1,j));

S2(1,j+1) = S2(1,j)*exp((r-0.5*sigma^2)*dt - sigma*dW(1,j));
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end

V(i) = exp(-r*T)*max(S(1,N+1)-K,0);

V2(i) = exp(-r*T)*max(S2(1,N+1)-K,0);

V_anti(i) = (V(i)+V2(i))/2;

end

a = mean(V)

b = var(V)

a_anti = mean(V_anti)

b_anti = var(V_anti)

ratio = b/b_anti

Simulation 28.2 (Reduction Rate of Variance)
We estimate the reduction rate of variance in the antithetic variate method for

various choices of parameters. The option price is given by taking the average
of e�rT.C1 C C2/=2 with respect to the standard normal density. If the graph of
.C1 C C2/=2 is close to being flat for z belonging to some significant range where
substantial probability is concentrated, say �2 < z < 2, then the variance itself is
small.

S0 = 10;

K = 8; %Choose other values for K.

r = 0.05;

sigma = 0.3;

T = 1;

Z = randn(10^7,1);

C1 = max(S0*exp((r-0.5*sigma^2)*T +sigma*sqrt(T)*Z)-K,0);

C2 = max(S0*exp((r-0.5*sigma^2)*T -sigma*sqrt(T)*Z)-K,0);

C = (C1+C2)/2;

Variance_classical = var(C1)

Variance_anti = var(C)

reduction_rate = 1- Variance_anti / Variance_classical

Simulation 28.3 (Antithetic Variate Method for a Barrier Option)
We use the antithetic variate method to compute the price of a down-and-out put

barrier option taking the same set of parameters in Simulation 28.1. The price of the
down-and-out put barrier option according to the formula is approximately equal to
P do D 10:6332, while the estimated values by the standard Monte Carlo method
and by the antithetic variate method are a D 10:6506 and a anti D 10:6381,
respectively. The corresponding variances are b D 174:3541 and b anti D
36:8697 with their ratio given by 4:7289.

L = 60; % a lower barrier

d1K = (log(S0/K) + (r + 0.5*sigma^2)*T)/(sigma*sqrt(T));

d2K = (log(S0/K) + (r - 0.5*sigma^2)*T)/(sigma*sqrt(T));

d1L = (log(S0/L) + (r + 0.5*sigma^2)*T)/(sigma*sqrt(T));

d2L = (log(S0/L) + (r - 0.5*sigma^2)*T)/(sigma*sqrt(T));

d3 = (log(L/S0) + (r + 0.5*sigma^2)*T)/(sigma*sqrt(T));

d4 = (log(L/S0) + (r - 0.5*sigma^2)*T)/(sigma*sqrt(T));

d5 = (log(L^2/S0/K) + (r + 0.5*sigma^2)*T)/(sigma*sqrt(T));

d6 = (log(L^2/S0/K) + (r - 0.5*sigma^2)*T)/(sigma*sqrt(T));
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put_vanilla = K*exp(-r*T)*normcdf(-d2K) - S0*normcdf(-d1K);

P2 = - K*exp(-r*T)*normcdf(-d2L) + S0*normcdf(-d1L) ;

P3 = - K*exp(-r*T)*(L/S0)^(2*r/sigma^2-1)*(normcdf(d4)-normcdf(d6));

P4 = S0*(L/S0)^(2*r/sigma^2+1)*(normcdf(d3)-normcdf(d5));

P_do = put_vanilla + P2 + P3 + P4

N = 10000;

dt = T/N;

M = 10^4;

V1 = zeros(M,1);

V2 = zeros(M,1);

V_anti = zeros(M,1);

S1 = ones(1,N+1);

S2 = ones(1,N+1);

for i=1:M

S1(1,1) = S0;

S2(1,1) = S0;

dW = sqrt(dt)*randn(1,N);

for j = 1:N

S1(1,j+1) = S1(1,j)*exp((r-0.5*sigma^2)*dt + sigma*dW(1,j));

S2(1,j+1) = S2(1,j)*exp((r-0.5*sigma^2)*dt - sigma*dW(1,j));

end

S1_min = min(S1(1,:));

S2_min = min(S2(1,:));

if S1_min > L

V1(i) = exp(-r*T)*max(K - S1(1,N+1),0);

else

V1(i) = 0;

end

if S2_min > L

V2(i) = exp(-r*T)*max(K - S2(1,N+1),0);

else

V2(i)=0;

end

V_anti(i) = (V1(i)+V2(i))/2;

end

Simulation 28.4 (Control Variate Method)
We use the control variate method to compute the price of an Asian option with

arithmetic average using the price of the corresponding Asian option with geometric
average as a control variate. The formula for an Asian option with geometric
average is known, and given by V geo formula in the program. The expectation
of V control = V - V geo + V geo formula is equal to that of the price V of
an Asian option with arithmetic average, but the variance is reduced. See Fig. 28.3
for the output.

S0 = 100;

K = 110;

r = 0.05;

sigma = 0.3;

T = 1;

L = 12; % number of observations

dt = T/L;



514 28 The Monte Carlo Method for Option Pricing

sigma_bar = sqrt( sigma^2*(L+1)*(2*L+1)/(6*L^2));

mu_bar = 1/2*sigma_bar^2 + (r-1/2*sigma^2)*(L+1) / (2*L);

d1 = (log(S0/K) + (mu_bar+1/2*sigma_bar^2)*T)/(sigma_bar*sqrt(T));

d2 = (log(S0/K) + (mu_bar-1/2*sigma_bar^2)*T)/(sigma_bar*sqrt(T));

V_geo_formula = S0*exp((mu_bar -r)*T)*normcdf(d1) -K*exp(-r*T)*normcdf(d2);

J = 20;

ave = zeros(J,1);

ave_control = zeros(J,1);

error = zeros(J,1);

error_control = zeros(J,1);

ratio = ones(J,1);

S = ones(2^J,L);

dW = sqrt(dt)*randn(2^J,L);

for i=1:2^J

S(i,1) = S0*exp((r-1/2*sigma^2)*dt +sigma*dW(i,1)); %asset price at T_1

for j=2:L

S(i,j) = S(i,j-1) *exp((r-1/2*sigma^2)*dt+ sigma*dW(i,j));

end

end

J1 = 12;

for n=J1:J

N = 2^n;

V_arith = exp(-r*T) * max( mean(S(1:N,:),2) - K , 0);

ave(n) = mean(V_arith);

var_V_arith = var(V_arith);

error(n) = 1.96*sqrt(var_V_arith)/sqrt(N);

V_geo = exp(-r*T) * max( exp(mean(log(S(1:N,:)),2)) - K , 0);

V = V_arith - V_geo + V_geo_formula;

ave_control(n) = mean(V);

var_control = var(V);

error_control(n) = 1.96*sqrt(var_control)/sqrt(N);

ratio(n) = var_V_arith/var_control;

end

errorbar(J1:J, ave(J1:J), error(J1:J), ’ro--’)

hold on

errorbar(J1:J, ave_control(J1:J), error_control(J1:J),’k*-’,’linewidth’,2)

legend(’standard’, ’control variate’);

xlabel(’log_2(N)’);

ylabel(’Price’);

Simulation 28.5 (Importance Sampling Method)
The following is for the experiment of Example 28.6.

M=10^6;

U = rand(M,1);

Ave1 = mean(U.^5)
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Var1 = var(U.^5)

% Importance sampling method is applied now.

Ave2 = mean(0.5*U.^2)

Var2 = var(0.5*U.^2)

Compare the output!

Ave1 = 0.1667

Var1 = 0.0630

Ave2 = 0.1668

Var2 = 0.0222

Simulation 28.6 (Importance Sampling Method)
We shift the average of the asset prices using the Girsanov theorem which allows

us to replace r by r1 in generating sample paths of geometric Brownian motion.
This example computes the price of an Asian option with arithmetic average when
the option is in deep out-of-the-money. (Consult Example 28.7.) We monitor the
asset price L D 12 times until the expiry date T D 1. The price obtained by the
standard Monte Carlo method is price D 0:1928 with variance 3:9979 while the
price obtained by the importance sampling method is price1 D 0:1956 and the
variance variance1 D 0:2363. The variance is reduced by ratio D 16:9185.
This method is comparable to the control variate method in the efficiency.

S0 = 100;

K = 150;

r = 0.05;

sigma = 0.3;

T = 1;

L = 12; % number of measurements

dt = T/L;

r1 = r + 0.5;

theta = (r - r1)/sigma;

M = 10^6;

dW = sqrt(dt)*randn(M,L);

W = sum(dW,2);

RN = exp(-0.5*theta^2*T + theta*W); % Radon-Nikodym derivative dQ/dQ1

S = zeros(M,L);

for i=1:M

S(i,1) = S0*exp((r-1/2 *sigma^2)*dt + sigma*dW(i,1));

for j=2:L

S(i,j) = S(i,j-1) * exp((r-1/2*sigma^2)*dt+ sigma*dW(i,j));

end

end

S1 = zeros(M,L);

for i=1:M

S1(i,1) = S0*exp((r1-1/2 *sigma^2)*dt + sigma*dW(i,1));

for j=2:L
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S1(i,j) = S1(i,j-1) * exp((r1-1/2*sigma^2)*dt+ sigma*dW(i,j));

end

end

V = exp(-r*T) * max( mean(S(1:M,:),2) - K, 0);

price = mean(V)

variance = var(V)

V1 = exp(-r*T) * max( mean(S1(1:M,:),2) - K, 0);

price1 = mean(V1.*RN)

variance1 = var(V1.*RN)

ratio = variance / variance1

Exercises

28.1 Let U denote a uniformly distributed variable in .0; 1/. Let F be a cumulative
distribution function of a random variable X. Assume that F�1 exists. Show that
F�1.U/ and F�1.1 � U/ are identically distributed, but negatively correlated.

28.2

(i) Prove that
R 1
0

e
p

xdx D 2 by direct computation.

(ii) Estimate EŒe
p

U� using the antithetic variate method to find the above integral
where U is uniformly distributed in Œ0; 1�.

28.3

(i) If f .x/ is monotone on Œa; b�, how can we apply the antithetic variate method for
EŒ f .V/� where the random variable V is uniformly distributed in Œa; b�. (Hint:
If U is uniformly distributed in Œ0; 1�, then both a C .b � a/U and b C .a � b/U
are uniformly distributed in Œa; b�.)

(ii) If 0 D a1 < b1 D a2 < b2 D a3 < � � � < bn D 1, and f is monotone on
each subinterval Œai; bi�, explain how to apply the antithetic variate method for
EŒ f .U/� where U is uniformly distributed in Œ0; 1�. (Hint: Use the antithetic
variate method on each subinterval.)

28.4 Let f be a symmetric function, i.e., f .�x/ D f .x/, and let Z denote the standard
normal variable. Is the antithetic variate method for the estimation of EŒ f .Z/� more
efficient than the classical Monte Carlo method without variance reduction?

28.5

(i) Plot the payoffs of straddles as functions of z, the values of the standard normal
distribution, for T D 1, r D 0:05, � D 0:3, S0 D 10 and K D 8; 10; 12.

(ii) Discuss the efficiency of the antithetic variate method for the pricing of a
straddle.
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28.6 Estimate EŒe
p

U� using the control variate method for
R 1
0 e

p
xdx D 2 where U

is uniformly distributed in Œ0; 1�. (For the exact evaluation of the integral, consult
Exercise 28.2(i).)

28.7 (Continuation of Exercise 27.2) Suppose that we know how to generate
random numbers with the restricted normal distribution with the pdf given by

f .x/ D 1

1 � N.x0/
1Œx0;C1/.x/

1p
2

e�x2=2

where

N.x/ D
Z x

�1
1p
2

e�z2=2 dz :

Explain how to use such random numbers to improve the standard Monte Carlo
method for the pricing of a European call option whose payoff is zero for ST � K.

28.8 In Example 28.6 take dQ
dP D 5x4 and check the reduction of variance in this

case.

28.9 Consider a deep out-of-the-money European call option with a short time to
expiry date T. Many sample paths of the asset price St fall into the region where
ST � K and produce zero values for the payoff at T. Thus these samples are wasted
without contributing much to the evaluation of the expectation in the standard Monte
Carlo method. To overcome such a problem, we increase the mean and variance of
the asset price used in the simulation so that more sample values of ST exceed K than
before. Explain how to achieve the goal without relying on the Girsanov’s theorem.



Chapter 29
Numerical Solution
of the Black–Scholes–Merton Equation

The price of a European call option is given by the Black–Scholes–Merton partial
differential equation with the payoff function .x � K/C as the final condition.
However, for a more general option with an arbitrary payoff function there is no
simple formula for option price, and we have to resort to numerical methods studied
in this Chapter. For further information, the reader is referred to [38, 92, 98].

29.1 Difference Operators

Let y.x/ be a function and let ym denote y.mh/ for some fixed small h. If not stated
otherwise, we assume that h > 0 and that functions are evaluated at x D mh
for m 2 Z. The first and higher order ordinary and partial derivatives of y are
approximated by Taylor series of finite order, which are again approximated by
difference operators in more than one way. The most elementary example of
difference is given by ymC1 � ym which approximates hy0.mh/. Some of the most
frequently used difference operators are listed in Table 29.1 with corresponding
Taylor series approximations where y and its derivatives are evaluated at x D mh.

Proof The Taylor series approximations given in Table 29.1 can be proved from the
following observations: First, note that

ymC1 D y.mh C h/ D ym C hy0 C 1

2
h2y00 C 1

6
h3y000 C 1

24
h4y.iv/ C � � � (29.1)

where the derivatives are evaluated at x D mh. Now we compute ymC1 � ym.
Replacing h by �h in (29.1), we have

ym�1 D y.mh C .�h// D ym � hy0 C 1

2
h2y00 � 1

6
h3y000 C 1

24
h4y.iv/ C � � �
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Table 29.1 The first order difference operators and their Taylor series approximations

Operator Symbol Definition Taylor Series

Forward 	 ymC1 � ym hy0 C 1
2
h2y00 C 1

6
h3y000 C 1

24
h4y.iv/ C � � �

Backward r ym � ym�1 hy0 � 1
2
h2y00 C 1

6
h3y000 � 1

24
h4y.iv/ C � � �

Half Central ı ymC

1
2

� ym�

1
2

hy0 C 1
24

h3y000 C � � �
Full Central 	0

1
2
.ymC1 � ym�1/ hy0 C 1

6
h3y000 C � � �

Table 29.2 The second order central difference operator and its Taylor approximation

Operator Symbol Definition Taylor Series

Second order central ı2 ymC1 � 2ym C ym�1 h2y00 C 1
12

h4y.iv/ C � � �

and we obtain ym � ym�1. Similarly, by choosing increment size 1
2
h, we have

ymC 1
2

D y.mh C 1

2
h/ D ym C 1

2
hy0 C 1

8
h2y00 C 1

48
h3y000 C � � �

ym� 1
2

D y.mh � 1

2
h/ D ym � 1

2
hy0 C 1

8
h2y00 � 1

48
h3y000 C � � �

Hence

ıy D ymC 1
2

� ym� 1
2

D hy0 C 1

24
h3y000 C � � � :

ut

Proof For the 2nd order central difference in Table 29.2, we note that

ı2y D .ymC1 � ym/� .ym � ym�1/

D .hy0 C 1

2
h2y00 C 1

6
h3y000 C 1

24
h4y.iv/ C � � � /

�.hy0 � 1

2
h2y00 C 1

6
h3y000 � 1

24
h4y.iv/ C � � � /

D h2y00 C 1

12
h4y.iv/ C � � � :

ut
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29.2 Grid and Finite Difference Methods

Consider a heat equation (or a diffusion equation)

@u

@t
D @2u

@x2
; 0 � x � L ; t � 0

with an initial condition u.x; 0/ D g.x/ and boundary conditions

u.0; t/ D a.t/ ; u.L; t/ D b.t/ :

Example 29.1 Consider the heat heat equation given above. Take L D  , g.x/ D
sin x, a.t/ D b.t/ D 0. Then u.x; t/ D e�t sin x.

Let Nx and Nt denote the numbers of subintervals in the partitions of the intervals
Œ0;L� and Œ0;T�, respectively. Put

h D L

Nx
; k D T

Nt

and consider a grid (or a mesh) given by

f. jh; ik/ W 0 � j � Nx ; 0 � i � Ntg

and use the symbol Ui
j to denote the value of the finite difference solution at the grid

point . jh; ik/. Note that Ui
j approximates u. jh; ik/. See Fig. 29.1.

Fig. 29.1 A grid for a finite
difference method
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29.2.1 Explicit Method

We may approximate the given heat equation using the discretizations

@

@t
�! 1

k
	t ;

@2

@x2
�! 1

h2
ı2x :

Then we obtain a finite difference equation

1

k
	tU

i
j � 1

h2
ı2x Ui

j D 0 ;

in other words,

1

k
.UiC1

j � Ui
j/ � 1

h2
.Ui

jC1 � 2Ui
j C Ui

j�1/ D 0 :

Hence we have a convex linear combination of Ui
jC1, Ui

j , Ui
j�1 given by

UiC1
j D �Ui

jC1 C .1 � 2�/Ui
j C �Ui

j�1 (29.2)

where

� D k

h2

is the mesh ratio. The . j C 1/st value is computed explicitly by the jth values on the
right-hand side. Thus it is called an explicit method. The algorithm takes the average
of current states to obtain the next stage in time, and is called FTCS, an acronym for
forward difference in time and central difference in space (Fig. 29.2).

To check the stability of the FTCS algorithm, consider the heat equation defined
on 0 � x � 2, 0 � t � 1 where the initial condition is given by the point mass at
x D 1. (See the left and middle plots in Fig. 29.3 and the first part of Simulation 29.1.

Fig. 29.2 FTCS: Taking
average on the grid
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Fig. 29.3 Comparison of FTCS and BTCS for the heat equation with initial condition given by
the Dirac delta functional: FTCS with � < 1
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Table 29.3 Numerical values obtained by FTCS for � D 4

1.0 0 �1792 5728 �10864 13345 �10864 5728 �1792 0

0.75 0 64 �336 780 �1015 780 �336 64 0

0.5 0 0 16 �56 81 �56 16 0 0

0.25 0 0 0 4 �7 4 0 0 0

0.0 0 0 0 0 1 0 0 0 0
t x 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

See also Fig. 29.4.) Take Nx D 8 and Nt D 4, then h D k D 1
4
, � D 4 and (29.2)

becomes

UiC1
j D 4Ui

jC1 � 7Ui
j C 4Ui

j�1 (29.3)

which produce numerical values given in Table 29.3. Note that the magnitude of
numerical values are literally exploding contrary to physical intuition and that the
signs of nonzero numerical values are alternating as shown in Table 29.4.

To find out why the algorithm is unstable, suppose that the initial condition is
given by a point mass at x D 1 and � > 1

2
in (29.2). If the signs of Ui

j are given by

: : : ; Ui
j�1 � 0 ; Ui

j � 0 ; Ui
jC1 � 0 ; Ui

jC2 � 0 ; : : :
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Table 29.4 Signs of numerical values obtained by FTCS for � D 4

1.0 0 � C � C � C � 0

0.75 0 C � C � C � C 0

0.5 0 0 C � C � C 0 0

0.25 0 0 0 C � C 0 0 0

0.0 0 0 0 0 C 0 0 0 0
t x 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

then

UiC1
j D � 	 positive C .1 � 2�/	 negative C � 	 positive � 0 ;

UiC1
jC1 D � 	 negative C .1 � 2�/	 positive C � 	 negative � 0 ;

and so on. Hence we have an alternating pattern again at . j C 1/st time step. Let

Ui D �
Ui
0; : : : ;U

i
Nx

�

and

jj.a0; : : : ; an/jj1 D
nX

jD0
jajj :

Then

jjUiC1jj1 D
NxX

jD0
j�Ui

jC1 C .1 � 2�/Ui
j C �Ui

j�1j

D
X

j

j�Ui
jC1j C j.1 � 2�/Ui

jj C j�Ui
j�1j

D �
X

j

jUi
jj C .2� � 1/

X

j

jUi
j j C �

X

j

jUi
j j

D .4� � 1/
X

j

jUi
jj

D .4� � 1/iC1 jjU0jj1 ;

which shows that the norm of UiC1 increases exponentially as i increases since 4��
1 > 1. Therefore it is necessary to have the condition � � 1

2
to have the stability of

the numerical scheme given by FTCS.
To view the iteration scheme from the viewpoint of matrix computation, define

an .Nx � 1/ 	 .Nx � 1/ tridiagonal matrix A by
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A D

2

6
6
6
6
6
6
6
6
6
6
4

1�2� � 0 � � � � � � 0

� 1�2� � 0
:::

0
: : :

: : :
: : :

: : :
:::

:::
: : :

: : :
: : :

: : : 0
::: 0 � 1�2� �

0 � � � � � � 0 � 1�2�

3

7
7
7
7
7
7
7
7
7
7
5

and .Nx � 1/-dimensional vectors U0, Ui, 1 � i � Nt, and pi by

U0 D

2

6
6
6
6
6
6
4

g.h/
g.2h/
:::
:::

g..Nx � 1/h/

3

7
7
7
7
7
7
5

; Ui D

2

6
6
6
6
6
6
4

Ui
1

Ui
2
:::
:::

Ui
Nx�1

3

7
7
7
7
7
7
5

; and ri D

2

6
6
6
6
6
6
6
6
6
4

� a.ik/
0
:::
:::

0

� b.ik/

3

7
7
7
7
7
7
7
7
7
5

:

Then

UiC1 D AUi C ri ; 0 � i � Nt � 1 :

Remark 29.1 (Discretization Error) The error of a numerical scheme arising from
discretization at the grid point . jh; ik/ is called local accuracy. The local accuracy
"i

j for FTCS can be estimated as follows: Let ui
j denote the exact solution u. jh; ik/.

Then, under the assumption that the derivatives are bounded if needed, we have

"i
j D 1

k
	tu

i
j � 1

h2
ı2x ui

j

D
�
@u

@t
C 1

2
k
@2u

@t2
C O.k2/




�
�
@2u

@x2
C 1

12
h2
@4u

@x4
C O.h4/




D 1

2
k
@2u

@t2
� 1

12
h2
@4u

@x4
C O.k2/C O.h4/

D O.k/C O.h2/

where we used the Taylor series expansions given in Tables 29.1 and 29.2.
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29.2.2 Implicit Method

For the discretization of the heat equation

@u

@t
� @2u

@x2
D 0

we use the backward difference in time and the 2nd order central difference in space
as follows:

1

k
rtU

i
j � 1

h2
ı2x Ui

j D 0 :

Then we have

Ui
j � Ui�1

j

k
� Ui

jC1 � 2Ui
j C Ui

j�1
h2

D 0 :

Now, for the sake of notational convenience, we replace i by i C 1, and obtain

UiC1
j � Ui

j

k
� UiC1

jC1 � 2UiC1
j C UiC1

j�1
h2

D 0 :

Hence

UiC1
j D Ui

j C k

h2
.UiC1

jC1 � 2UiC1
j C UiC1

j�1 / ;

which is equivalent to

.1C 2�/UiC1
j D Ui

j C �UiC1
jC1 C �UiC1

j�1

where

� D k

h2
:

The algorithm is called BTCS, an acronym for backward difference in time and
central difference in space. Note that UiC1

j is a weighted average of Ui
j , UiC1

jC1 , UiC1
j�1 ,

and the algorithm is called an implicit method (Fig. 29.5).
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Fig. 29.5 BTCS: Taking
average on the grid

Define a .Nx � 1/ 	 .Nx � 1/ tridiagonal matrix B by

B D

2

6
6
6
6
6
6
6
6
6
6
4

1C2� �� 0 � � � � � � 0

�� 1C2� �� 0
:::

0
: : :

: : :
: : :

: : :
:::

:::
: : :

: : :
: : :

: : : 0
::: 0 �� 1C2� ��
0 � � � � � � 0 �� 1C2�

3

7
7
7
7
7
7
7
7
7
7
5

and .Nx � 1/-dimensional vectors si by

si D

2

6
6
6
6
6
6
6
6
6
4

� a..i C 1/k/
0
:::
:::

0

� b..i C 1/k/

3

7
7
7
7
7
7
7
7
7
5

:

Then

BUiC1 D Ui C si ;

or equivalently,

UiC1 D B�1.Ui C si/ :

Remark 29.2 The local accuracy for BTCS is given by

"i
j D 1

k
rtu

i
j � 1

h2
ı2x ui

j

D
�
@u

@t
� 1

2
k
@2u

@t2
C O.k2/




�
�
@2u

@x2
C 1

12
h2
@4u

@x4
C O.h4/
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Fig. 29.6 Time average on
the grid

D �1
2

k
@2u

@t2
� 1

12
h2
@4u

@x4
C O.k2/C O.h4/

D O.k/C O.h2/ :

29.2.3 Crank–Nicolson Method

We consider the intermediate time level at .iC 1
2
/k and the corresponding discretiza-

tion of the heat equation given by

1

k
ıtU

iC 1
2

j � 1

h2
ı2x U

iC 1
2

j D 0 :

(See Fig. 29.6). Taking the time average of the right hand side, we obtain a new
relation

1

k
ıtU

iC 1
2

j � 1

h2
ı2x�tU

iC 1
2

j D 0 ;

where �t denotes the averaging operation by half distance in time, in other words,

1

k
ıtU

iC 1
2

j � 1

h2
ı2x

UiC1
j C Ui

j

2
D 0

and

1

k
ıtU

iC 1
2

j � 1

h2
.UiC1

jC1 � 2UiC1
j C UiC1

j�1 /C .Ui
jC1 � 2Ui

j C Ui
j�1/

2
D 0 :

Finally, we obtain the Crank–Nicolson scheme given by

UiC1
j � Ui

j � 1

2
�.UiC1

jC1 � 2UiC1
j C UiC1

j�1 C Ui
jC1 � 2Ui

j C Ui
j�1/ D 0 :
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29.3 Numerical Methods for the Black–Scholes–Merton
Equation

Example 29.2 (Explicit Method) We use the FTCS algorithm to compute the
numerical solution of the Black–Scholes–Merton equation for the price of a
European put option with strike price K D 5 and expiry date T D 1. We take
� D 0:3 and r D 0:05 in our computation. It is easier to plot the price surface of a
put option than a call option since for large values of S the price of a European put
option is close to zero, and hence we can choose an upper bound Smax for S using
a relatively small value. In this example, we choose Smax D 10. See Fig. 29.7 and
Simulation 29.2.

Example 29.3 (Implicit Method) We use the BTCS algorithm to compute the
numerical solution of the Black–Scholes–Merton equation for the price of a binary
put option. See Fig. 29.8 and Simulation 29.3.

Example 29.4 (Crank–Nicolson Method) We use the Crank–Nicolson algorithm to
find the numerical solution of the Black–Scholes–Merton equation for the price of
a down-and-out put option. See Fig. 29.9 and Simulation 29.4.

29.4 Stability

Theorem 29.1 (Lax Equivalence Theorem) A numerical scheme for a finite
difference method converges to a true solution if and only if its local accuracy tends
to zero as k; h ! 0, and it satisfies a certain stability condition.

One such stability condition is the von Neumann stability condition.

Fig. 29.7 Price of a
European put option by FTCS
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Fig. 29.8 Price of a binary
put option by BTCS
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Definition 29.1 A finite difference method is stable in the sense of von Neumann
if, disregarding initial conditions and boundary conditions, under the substitution
Uj

i D � ie
p�1ˇjh we have j�j � 1 for every ˇh 2 Œ�; �.

Example 29.5 In FTCS for the diffusion equation we have

UiC1
j D �Ui

jC1 C .1 � 2�/Ui
j C �Ui

j�1 ;

and hence

� iC1e
p�1ˇjh D �� ie

p�1ˇjhe
p�1ˇh C .1 � 2�/� ie

p�1ˇjh C �� ie
p�1ˇjhe�p�1ˇh:

Thus

� D �e
p�1ˇh C .1 � 2�/C �e�p�1ˇh

D 1C �.e
p�1ˇh=2 � e�p�1ˇh=2/2

D 1C �.2
p�1 sin.

1

2
ˇh/2

D 1 � 4� sin2.
1

2
ˇh/ :

The condition that j�j � 1 is equivalent to

�1 � 1 � 4� sin2.
1

2
ˇh/ � 1 ;

which is again equivalent to

0 � � sin2.
1

2
ˇh/ � 1

2
:
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The condition is satisfied for any ˇ and h if 0 � � � 1
2
. It can be shown that BTCS

is unconditionally stable, i.e., the von Neumann stability condition is satisfied for
every � > 0.

Remark 29.3 The binomial tree method for option pricing can be shown to be a
special case of the BTCS algorithm under the condition h2 D �2k for the Black–
Scholes–Merton equation after taking the change of variables. (See Exercise 29.3.)

29.5 Computer Experiments

Simulation 29.1 (FTCS and BTCS for the Heat Equation)
We compare numerical solutions of the heat equation defined on 0 � x � 2,

0 � t � 0:1 obtained by FTCS and BTCS for various choices of Nx and Nt where
the initial condition is given by the Dirac functional at x D 1. (See Fig. 29.3.)
For the second experiment with u.x; 0/ D sin x, replace U(Nx/2+1,1)=1 by
U(2:Nx,1)=sin(dx:dx:(Nx-1)*dx). (See Fig. 29.4.)

T = 0.1;

Nx = 30; % Choose an even integer.

L = 2;

x = linspace(0,L,Nx+1);

% L = pi;

dx = L / Nx;

%%% FTCS (nu < 1/2)

Nt = 70;

t = linspace(0,T,Nt+1);

dt = T / Nt;

nu = dt / dx^2

A = (1-2*nu)*eye(Nx-1,Nx-1) + nu*diag(ones(Nx-2,1),1)

... + nu*diag(ones(Nx-2,1),-1);

U = zeros(Nx+1,Nt+1);

U(Nx/2+1,1)=1;

for i=1:Nt

U(2:Nx,i+1) = A * U(2:Nx,i);

end

figure(1);

mesh(0:dx:L,0:dt:T,U’);

%%% FTCS (nu > 1/2)

Nt = 43;

dt = T / Nt;

nu = dt / dx^2

A = (1-2*nu)*eye(Nx-1,Nx-1) + nu*diag(ones(Nx-2,1),1)

... + nu*diag(ones(Nx-2,1),-1);

U = zeros(Nx+1,Nt+1);

U(Nx/2+1,1)=1;

for i=1:Nt

U(2:Nx,i+1) = A * U(2:Nx,i);
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end

figure(2);

mesh(0:dx:L,0:dt:T,U’);

%%% BTCS (nu > 1/2)

Nt = 10;

dt = T / Nt;

nu = dt / dx^2

B = (1+2*nu)*eye(Nx-1,Nx-1) - nu*diag(ones(Nx-2,1),1)

... - nu*diag(ones(Nx-2,1),-1);

U = zeros(Nx+1,Nt+1);

U(Nx/2+1,1)=1;

for i=1:Nt

U(2:Nx,i+1) = B\U(2:Nx,i);

end

figure(3);

mesh(0:dx:L,0:dt:T,U’);

Simulation 29.2 (FTCS for a Put)
We compute the price of a European put option by the FTCS method and plot the

graph. See Example 29.2 and Fig. 29.7.

K = 5; % strike price

sigma = 0.3;

r = 0.05;

T = 1;

S_max = 10;

M = 20; % number of partitions of asset price interval

N = 30; % number of partitions of time interval

dt = T/N;

dS = S_max/M;

V=zeros(M+1,N+1);

V(:,N+1) = max(K-(0:dS:S_max)’,0);

V(1,:) = K*exp(-r*dt*(N-[0:N]));

V(M+1,:) = 0;

a = 0.5*dt*(sigma^2*(0:M).^2 - r.*(0:M));

b = 1 - dt*(sigma^2*(0:M).^2 + r);

c = 0.5*dt*(sigma^2*(0:M).^2 + r.*(0:M));

for i=N:-1:1 % backward computation

for j=2:M

V(j,i) = a(j)*V(j-1,i+1) + b(j)*V(j,i+1)+c(j)*V(j+1,i+1);

end

end

mesh((0:dS:S_max),(0:dt:T),V’)

Simulation 29.3 (BTCS for a Binary Put)
We compute the price of a binary put option by the BTCS method and plot the

graph. See Example 29.3 and Fig. 29.8.
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K = 5; % strike price

sigma = 0.3;

r = 0.05;

T = 1;

S_max = 20;

M = 25; % number of partitions of asset price interval

N = 30; % number of partitions of time interval

dt = T/N;

dS = S_max/M;

V = zeros(M+1,N+1);

V(:,N+1) = heaviside(K-(0:dS:S_max)’);

V(1,:) = exp(-r*dt*(N-[0:N]));

a = 0.5*dt*(-sigma^2*(0:M).^2 + r*(0:M));

b = 1 + dt*(sigma^2*(0:M).^2 + r);

c = -0.5*dt*(sigma^2.*(0:M).^2 + r*(0:M));

TriDiag = diag(a(3:M),-1) + diag(b(2:M)) + diag(c(2:M-1),1);

B = zeros(M-1,1);

for i = N:-1:1 % backward computation

B(1) = -a(2)*V(1,i);

V(2:M,i) = TriDiag \ (V(2:M,i+1) + B);

end

mesh((0:dS:S_max),(0:dt:T),V’)

Simulation 29.4 (Crank–Nicolson for a Down-and-Out Put)
We compute the price of a down-and-out put option by the Crank–Nicolson

method and plot the graph. See Example 29.4 and Fig. 29.9.

K = 4; % strike price

sigma = 0.3;

r = 0.05;

T = 1;

Fig. 29.9 Price of a
down-and-out put option by
the Crank–Nicolson method
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S_max = 10;

L = 3; % the lower barrier

M = 50; % number of partitions of asset price interval

N = 30; % number of partitions of time interval

dt = T/N;

dS = (S_max - L)/M; % We need dS < K-L.

V = zeros(M+1,N+1);

V(:,N+1) = max(K-(L:dS:S_max)’,0);

V(1,:) = 0; % boundary condition at S=0

V(M+1,:) = 0; % boundary condition at S=large

M1 = L/dS;

M2 = S_max/dS;

a = 0.25*dt*(sigma^2*(M1:1:M2).^2 - r*(L/dS:1:S_max/dS));

b = -0.5*dt*(sigma^2*(M1:1:M2).^2 + r);

c = 0.25*dt*(sigma^2*(M1:1:M2).^2 + r*(L/dS:1:S_max/dS));

A = -diag(a(3:M),-1) + diag(1-b(2:M)) - diag(c(2:M-1),1);

B = diag(a(3:M),-1) + diag(1+b(2:M)) + diag(c(2:M-1),1);

for i=N:-1:1 % backward computation

V(2:M,i) = A \ B*V(2:M,i+1);

end

J = floor(L/dS);

U = zeros(J, N+1);

W = [U;V];

mesh((L-J*dS:dS:S_max), (0:dt:T),W’)

Exercises

29.1 Check the formulas given in Tables 29.1 and 29.2 for functions f .x/ D x3 and
f .x/ D x4.

29.2 Show that the Crank–Nicolson method has local accuracy O.k2/C O.h2/ and
that it is unconditionally stable.

29.3 Take x D log S and v D e�rtV in the Black–Scholes–Merton equation in
Theorem 15.1, and obtain

@v

@t
C 1

2
�2
@2v

@x2
C .r � 1

2
�2/

@v

@x
D 0 :

Choose h and k in BTCS under the condition that h2 D �2k, and check that the
resulting numerical algorithm is the binomial tree method in Sect. 14.3.



Chapter 30
Numerical Solution of Stochastic Differential
Equations

Stochastic differential equations (SDEs) including the geometric Brownian motion
are widely used in natural sciences and engineering. In finance they are used to
model movements of risky asset prices and interest rates. The solutions of SDEs
are of a different character compared with the solutions of classical ordinary and
partial differential equations in the sense that the solutions of SDEs are stochastic
processes. Thus it is a nontrivial matter to measure the efficiency of a given
algorithm for finding numerical solutions. In this chapter we introduce two methods
for numerically solving stochastic differential equations. For more details consult
[50, 92].

30.1 Discretization of Stochastic Differential Equations

Given an SDE

dXt D a.t;Xt/ dt C b.t;Xt/ dWt ; X0 D x0

defined on a time interval Œt0;T�, we consider its corresponding time discretization

YnC1 D Yn C a.tn;Yn/�n C b.tn;Yn/�Wn ; n D 0; 1; � � � ;N � 1

where t0 < t1 < � � � < tN D T, �n D tnC1 � tn, �Wn D WtnC1
� Wtn , and study

iterative algorithms to find numerical solutions.
To plot a sample path for Yt on an interval t 2 Œt0;T� we plot a piecewise linear

function defined by

Yt D Ytn C t � tn
tnC1 � tn

.YtnC1
� Ytn/ ; tn � t � tnC1 ;

which reflects the nondifferentiability of a sample path of Xt .

© Springer International Publishing Switzerland 2016
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Definition 30.1 (Strong Convergence) Let ı D maxn jtnC1 � tnj. Suppose that an
SDE for Xt has a discrete solution Yn such that there exists ı0 > 0, � > 0 and K > 0

for which

EŒjXT � YN j� � Kı� for every 0 < ı < ı0 :

Then we say that Y converges to X in the strong sense and call � the order of strong
convergence.

Definition 30.2 (Weak Convergence) Let ı D maxn jtnC1 � tnj. Suppose that an
SDE for Xt has a discrete solution Yn such that there exists ı0 > 0, ˇ > 0 and K > 0

for which

jEŒg.XT/� � EŒg.YN/�j � Kıˇ for every 0 < ı < ı0

for an arbitrary nice function g such as a polynomial or a piecewise linear function.
Then we say that Y converges to X in the weak sense and call ˇ the order of weak
convergence.

Remark 30.1 (i) If we take g.x/ D x and g.x/ D .x � EŒXT �/
2 in the previous

definition of weak convergence, we can obtain the average and variance of XT ,
respectively.

(ii) Let �.x/ be a convex function. Then, by Jensen’s inequality we haveEŒ�.X/� �
�.EŒX�/. If we take �.x/ D jxj, then we obtain

EŒjXT � YN j� � jEŒXT � YN �j D jEŒXT � � EŒYN �j :

(iii) In many applications we need not find the values of Xt for all 0 � t � T.
For example, to compute the price of a European option where CT denotes the
payoff function at maturity T it suffices to know CT.XT/. That is, it is enough
to consider the weak convergence speed.

(iv) Since the root mean square of �Wn is not ı but ı1=2, the discrete approximate
solution of an SDE has a smaller order of convergence than the discrete
approximate solution of an ordinary differential equation, in general.

(v) Consider a computer simulation for strong convergence where t0 D 0. We
take the time step ı D T

N , and obtain a discrete solution Y and its values at T,

denoted by Yj
T , 1 � j � J, and compute

".ı/ D 1

J

JX

jD1
jXj

T � Yj
N j

and finally plot the graph of � log ".ı/ against � log ı for the values ı D
2�3; 2�4; 2�5, and so on.
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From now on we treat only the case when the functions a and b do not depend
on t.

30.2 Stochastic Taylor Series

In this section we present the Taylor series expansion of a stochastic process given
by an SDE dXt D a.t;Xt/dt C b.t;Xt/dWt. If a.t; x/ D a.t/ and b.t; x/ D 0, then we
have the usual Taylor series expansion. In the following discussion, for the sake of
notational simplicity, we consider the case when a.t; x/ and b.t; x/ are functions of
x only.

30.2.1 Taylor Series for an Ordinary Differential Equation

Given a sufficiently smooth function a.x/ W R ! R, we consider a one-dimensional
autonomous ordinary differential equation d

dt Xt D a.Xt/ on the time interval Œt0;T�
which has a solution Xt with an initial data Xt0 . We may rewrite the equation as

Xt D Xt0 C
Z t

t0

a.Xs/ ds : (30.1)

Given a C1 function f W R ! R, we have

d

dt
.f .Xt// D f 0.Xt/

d

dt
Xt D a.Xt/

@

@x
f .Xt/

by the chain rule. If we let L be a differential operator defined by

L D a.x/
@

@x
;

then

d

dt
. f .Xt// D Lf .Xt/ :

Equivalently,

f .Xt/ D f .Xt0 /C
Z t

t0

L f .Xs/ ds : (30.2)
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If we substitute f .x/ D a.x/ in (30.2), then we obtain

a.Xt/ D a.Xt0/C
Z t

t0

L a.Xs/ ds : (30.3)

Substituting (30.3) back into (30.1), we have

Xt D Xt0 C
Z t

t0

�

a.Xt0 /C
Z s

t0

La.Xz/dz

�

ds

D Xt0 C a.Xt0 / .t � t0/C
Z t

t0

Z s

t0

La.Xz/ dz ds : (30.4)

Similarly, if we substitute f D La in (30.2) then we obtain

La.Xt/ D La.Xt0/C
Z t

t0

L2a.Xu/ du ; (30.5)

and, by substituting (30.5) back into (30.4), we obtain

Xt D Xt0 C a.Xt0/

Z t

t0

ds C
Z t

t0

Z s

t0

�

La.Xt0/C
Z z

t0

L2a.Xu/du

�

dz ds

D Xt0 C a.Xt0/ .t � t0/C 1

2
La.Xt0 / .t � t0/

2 C R.t0I t/ ; (30.6)

where

R.t0I t/ D
Z t

t0

Z s

t0

Z z

t0

L2a.Xu/ du dz ds :

The idea is to keep on substituting the nth order approximation of Xt into the original
equation (30.1) to obtain the .n C 1/-st order approximation.

30.2.2 Taylor Series for a Stochastic Differential Equation

Now we consider the Taylor series expansion for an SDE

dXt D a.Xt/ dt C b.Xt/ dWt : (30.7)
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By Itô’s lemma, we have

f .Xt/ D f .Xt0 /C
Z t

t0

�

a.Xs/
@f

@x
.Xs/C 1

2
b2.Xs/

@2f

@x2
.Xs/

�

ds

C
Z t

t0

b.Xs/
@f

@x
.Xs/ dWs

D f .Xt0 /C
Z t

t0

L0f .Xs/ ds C
Z t

t0

L1f .Xs/ dWs (30.8)

where

L0 D a
@

@x
C 1

2
b2
@2

@x2
; L1 D b

@

@x
:

If we take f .x/ D x in (30.8), we have

L0f D a ; L1f D b

and recover the original equation (30.7) rewritten in the integral form as

Xt D Xt0 C
Z t

t0

a.Xs/ ds C
Z t

t0

b.Xs/ dWs : (30.9)

We take

f D a ; f D b

in (30.8) and obtain

a.Xt/ D a.Xt0/C
Z t

t0

L0a.Xs/ ds C
Z t

t0

L1a.Xs/ dWs (30.10)

and

b.Xt/ D b.Xt0/C
Z t

t0

L0b.Xs/ ds C
Z t

t0

L1b.Xs/ dWs : (30.11)

We substitute (30.10) and (30.11) into (30.9), and obtain

Xt D Xt0 C
Z t

t0

�

a.Xt0 /C
Z s

t0

L0a.Xu/ du C
Z s

t0

L1a.Xu/ dWu

�

ds

C
Z t

t0

�

b.Xt0 /C
Z s

t0

L0b.Xu/ du C
Z s

t0

L1b.Xu/ dWu

�

dWs

D Xt0 C a.Xt0 / .t � t0/C b.Xt0/ .Wt � Wt0 /C R.t0I t/ (30.12)



540 30 Numerical Solution of Stochastic Differential Equations

where

R.t0I t/ D
Z t

t0

Z s

t0

L0a.Xu/ du ds C
Z t

t0

Z s

t0

L1a.Xu/ dWu ds

C
Z t

t0

Z s

t0

L0b.Xu/ du dWs C
Z t

t0

Z s

t0

L1b.Xu/ dWu dWs :

From (30.8) we have

f .Xt/ D f .Xt0 /C L0f .Xt0 /

Z t

t0

ds C L1f .Xt0 /

Z t

t0

dWs

C c.Xt0 /

Z t

t0

Z s2

t0

dWs1dWs2 C R. f ; t0I t/

where

c.x/ D b.x/
˚
b.x/f 00.x/C b0.x/f 0.x/

	
: (30.13)

Note that

Z t

t0

Z s2

t0

dWs1dWs2 D
Z t

t0

.Ws2 � Wt0 / dWs2

D
Z t

t0

Ws2 dWs2 � Wt0

Z t

t0

dWs2

D 1

2
fW2

t � W2
t0 � .t � t0/g � Wt0 .Wt � Wt0 /

D 1

2
f.Wt � Wt0 /

2 � .t � t0/g :

Hence (30.13) becomes

f .Xt/ D f .Xt0 /C L0f .Xt0 /.t � t0/C L1f .Xt0 /.Wt � Wt0 /

C1

2
c.Xt0 /f.Wt � Wt0 /

2 � .t � t0/g C R. f ; t0I t/ : (30.14)

If we take f .x/ D x in (30.14), then

Xt D Xt0 C a.Xt0/ .t � t0/C b.Xt0 / .Wt � Wt0 /

C1

2
b.Xt0 /b

0.Xt0 /f.Wt � Wt0 /
2 � .t � t0/g C R. f ; t0I t/: (30.15)



30.3 The Euler Scheme 541

30.3 The Euler Scheme

Consider an SDE

dXt D a.Xt/ dt C b.Xt/ dWt ; X0 D x0

defined on the time interval Œt0;T�. Here, for the sake of notational simplicity, we
consider the case when a.t; x/ and b.t; x/ are functions of x only. The Euler scheme
is a numerical method based on the approximation given by (30.12), after truncation
of the remainder term R.t0I t/, to find a numerical solution of

YnC1 D Yn C a.Yn/�n C b.Yn/�Wn ; n D 0; 1; : : : ;N � 1

at 0 D t0 < t1 < � � � < tN D T, where Y0 D x0,�n D tnC1�tn,�Wn D WtnC1
�Wtn .

The increment �Wn has normal distribution with average 0 and variance �n. The
increments �Wn are independent of each other and obtained by random number
generators in computer simulations.

If a and b are bounded and Lipschitz continuous, then the Euler scheme has
strong order � D 0:5. On the other hand, the strong order of a discretized numerical
solution of an ordinary differential equation is equal to 1. The weak order of the
Euler scheme is equal to ˇ D 1.

In Fig. 30.1 is plotted the speed of numerical approximation by the Euler scheme
for geometric Brownian motion

dSt D � St dt C � St dWt

with � D 0:5, � D 0:6. The points .n;� log "n/, 4 � n � 10, are plotted. In this
case, since we have a closed form solution, we can compare the numerical solution
obtained by the Euler scheme with the theoretical solution, where we take time step
ı D 2�n, 4 � n � 10, and sample size 104.

In the case of strong convergence the error satisfies " � Kı� , and hence we have

� log2 " � � log2 K C � n :

Thus the slope of the regression line is approximately equal to � if we plot � log2 "
for each n. In the case of weak convergence the slope is approximately equal to ˇ. In
Fig. 30.1 we observe that the slope in the first graph is close to 0:5 and in the second
graph the slope is approximately equal to 1, and thus the speed of convergence to
zero is exponential.
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Fig. 30.1 The Euler Scheme: speeds of strong convergence (left) and weak convergence (right)
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Fig. 30.2 The Milstein Scheme: speeds of strong convergence (left) and weak convergence (right)

30.4 The Milstein Scheme

The Milstein scheme is a numerical method based on the approximation given
by (30.15), after truncation of the remainder term R. f ; t0I t/, to find a numerical
solution of

YnC1 D Yn C a.Yn/�n C b.Yn/�Wn C 1

2
b.Yn/ b0.Yn/

˚
.�Wn/

2 ��n
	

for n D 0; 1; : : : ;N � 1 at 0 D t0 < t1 < � � � < tN D T, where b0.x/ denotes the
derivative of b.x/ with respect to x. It was named after Grigori N. Milstein [69].

If EŒ.X0/2� < 1 and if a and b are twice continuously differentiable and
the second order derivatives are Lipschitz continuous, then the order of strong
convergence of the Milstein scheme is � D 1:0. The order of weak convergence
is also ˇ D 1:0.

Figure 30.2 displays numerical results from the Milstein scheme for geometric
Brownian motion with � D 0:5, � D 0:6. The sample size is 104. Observe that the
slopes are approximately equal to 1 in both cases.
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30.5 Computer Experiments

Simulation 30.1 (Euler Scheme: Weak Convergence)
We test the speed of weak convergence of the Euler scheme for solving the

geometric Brownian motion when we take g.x/ D .x � EŒXT �/
2.

T = 1;

N = [2^4,2^5,2^6,2^7,2^8,2^9,2^10];

J = 10^4;

mu = 0.5;

sigma = 0.6;

X_0 = 10;

X_T=zeros(1,J);

Y_N=zeros(1,J);

for n=1:length(N)

dt = T/N(n);

for j=1:J

W(1) = 0;

Y(1) = X_0;

for i=1:N(n)

dW = sqrt(dt)*randn;

W(i+1) = W(i) + dW;

Y(i+1) = Y(i) + mu*Y(i)*dt + sigma*Y(i)*dW;

end

Y_N(j) = Y(N(n)+1);

X_T(j) = X_0*exp((mu - 0.5*sigma^2)*T + sigma*W(N(n)+1));

%epsilon(n) = abs(mean(X_T) - mean(Y_T));

epsilon(n) = abs(var(X_T) - var(Y_N));

end

end

line_fit = polyfit(log(N)/log(2),-log(epsilon)/log(2),1)

plot(log(N)/log(2),-log(epsilon)/log(2),’+’)

hold on

plot(log(N)/log(2),line_fit(1)*log(N)/log(2) + line_fit(2), ’:’)

Simulation 30.2 (Milstein Scheme: Strong Convergence)
We test the speed of strong convergence of the Milstein scheme for solving the

geometric Brownian motion.

T = 1;

N = [2^4,2^5,2^6,2^7,2^8,2^9,2^10];

J = 10^4;

Error=zeros(1,J);

mu = 0.5;

sigma = 0.6;

X_0 = 10;

for n=1:length(N)

dt = T/N(n);

t = [0:dt:T];

for j=1:J
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W(1) = 0;

Y(1) = X_0;

for i=1:N(n)

dW = sqrt(dt)*randn;

W(i+1) = W(i)+dW;

Y(i+1) =Y(i)+mu*Y(i)*dt+sigma*Y(i)*dW+sigma^2/2*Y(i)*(dW^2-dt);

end

X_T = X_0*exp((mu - 0.5*sigma^2)*T + sigma*W(N(n)+1));

Error(j) = abs(X_T - Y(N(n)+1));

end

epsilon(n) = mean(Error);

end

line_fit = polyfit(log(N)/log(2),-log(epsilon)/log(2),1)

plot(log(N)/log(2),-log(epsilon)/log(2),’+’)

hold on

plot(log(N)/log(2),line_fit(1)*log(N)/log(2) + line_fit(2), ’:’)

Exercises

30.1 Let ıt D T
L and ti D i ıt. Consider the geometric Brownian motion

S.tiC1/� S.ti/

S.ti/
D �ıt C �

p
ıt Yi

where �; � are positive constants and Y0;Y1;Y2; : : : are independent standard
normal variables.

(i) What is the distribution of log

�
S.t/

S0

�

? Justify your answer.

(ii) Find

lim
ıt!0C

1

ıt
E

��
S.tiC1/ � S.ti/

S.ti/

�2 �

:

30.2 Compare the exact solution obtained in Problem 12.3 for the SDE

dXt D dt C 2
p

Xt dWt

with a numerical solution obtained by the Milstein scheme.

30.3 Compare the exact solution obtained in Problem 12.4 for the SDE

dXt D �Xt.2 log Xt C 1/dt C 2Xt

p� log Xt dWt

with a numerical solution obtained by the Milstein scheme.



Appendix A
Basic Analysis

In this chapter we introduce the definitions, notations and facts for sets, functions
and metric spaces.

A.1 Sets and Functions

We denote the sets of the natural numbers, integers, rational numbers, real numbers,
complex numbers by N, Z, Q, R, C, respectively.1 The difference of two sets A and
B is defined by AnB D fx W x 2 A; x 62 Bg, and their symmetric difference is defined
by A 4 B D .A [ B/ n .A \ B/. If A � X, then Ac denotes the complement of A, i.e.,
Ac D X n A.

Given two sets X and Y, a function f W X ! Y (or a map or a mapping) from X
to Y is a rule that assigns for every x 2 X a unique element f .x/ 2 Y. The sets X and
Y are called the domain and range (or codomain) of f , respectively. For each x 2 X
the element f .x/ is called the image of x under f . Sometimes the range of f means
the subset f f .x/ W x 2 Xg.

If f f .x/ W x 2 Xg D Y, then f is called an onto function. If f .x1/ 6D f .x2/
whenever x1 6D x2, then f is called a one-to-one function. If f W X ! Y is onto and
one-to-one, it is called a bijection or a one-to-one correspondence, and in this case
there exists an inverse function f �1.

Even when the inverse function of f W X ! Y does not exist, the inverse image
of E � Y under f is defined by f �1.E/ D fx W f .x/ 2 Eg. The operation of taking
inverse images satisfies f �1.E [ F/ D f �1.E/ [ f �1.F/, f �1.E \ F/ D f �1.E/ \
f �1.F/ and f �1.Y n E/ D X n f �1.E/.

1The symbol Z is from the German word ‘Zahl’ for number, and Q from the Italian word
‘quoziente’ for quotient.

© Springer International Publishing Switzerland 2016
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The number of elements of a set A is called the cardinality of A, and denoted
by cardA. If f W X ! Y is a one-to-one correspondence, then X and Y have
the same cardinality. If X has finitely many elements, or X and N have the same
cardinality, then X is called a countable set. Examples of countable sets are N, Z,
Q, etc. A countable union of countable sets is also countable, more precisely, if Ai

is a countable set for each i D 1; 2; : : : then
S1

iD1 Ai is also a countable set. If X is
not countable, X is called an uncountable set. Examples of uncountable sets are R

and C. If we add uncountably many positive numbers, the sum is always infinite,
and that is why we consider only a countable sum of positive numbers and use the
notation

P
.

For a subset A � X, the characteristic function (or the indicator function) of A,
denoted by 1A, is defined by

1A.x/ D
�
1 ; x 2 A ;
0 ; x 62 A :

A.2 Metric Spaces

Definition A.1 A metric (or distance) on a set X is a function d W X 	 X ! R

satisfying the following conditions:

(i) d.x; y/ � 0 for every x; y 2 X. d.x; y/ D 0 holds only for x D y.
(ii) Symmetry holds, i.e., d.x; y/ D d. y; x/ for every x; y 2 X.

(iii) The triangle inequality holds, i.e., d.x; z/ � d.x; y/ C d. y; z/ for every
x; y; z 2 X.

A set X on which a metric d is defined is called a metric space and denoted by .X; d/.

Example A.1 For any two points x D .x1; : : : ; xn/, y D . y1; : : : ; yn/ in the

Euclidean space R
n define d.x; y/ D �Pn

iD1.xi � yi/
2
�1=2

, then .Rn; d/ is a metric
space. It is the standard metric on the Euclidean spaces.

Definition A.2 A norm on a vector space V is a function jj � jj W V ! R satisfying
the following conditions:

(i) For every v 2 V , jjvjj � 0, and jjvjj D 0 holds only for v D 0.
(ii) For a scalar c and a vector v 2 V we have jjcvjj D jcj jjvjj.

(iii) The triangle inequality jjv1 C v2jj � jjv1jj C jjv2jj holds.

A vector space X equipped with a norm jj � jj is denoted by .V; jj � jj/ and called a
normed space.

Fact A.1 On a normed space a metric can be defined by d.x; y/ D jjx � yjj. Hence
a normed space is a metric space.
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Example A.2 For 1 � p < 1 and x 2 R
n define jjxjjp D �Pn

iD1 jxijp
�1=p

, and for
p D 1 define jjxjj1 D max1�i�n jxij, then jj � jjp is a norm for every 1 � p � 1.

Given a sequence fxng1
nD1 of points in a metric space .X; d/, if the sequence

of real numbers fd.xn; x/g1
nD1 converges to 0 then we say that the sequence fxng1

nD1
converges to the limit x in X and write x D limn!1 xn or xn ! x. More precisely, xn

converges to x if for any arbitrary " > 0 there exists an N � 1 such that d.x; xn/ < "

for any n � N.
Given a sequence x1; x2; x3; : : : of points of a metric space .X; d/ if for any

arbitrary � > 0 there exists an N such that d.xm; xn/ < " for any m; n � N, then fxng
is called a Cauchy sequence.

A convergent sequence is a Cauchy sequence. A Cauchy sequence in a space X
need not converge to a point in X. For example, a sequence 1; 1:4; 1:41; 1:414; : : : in
X D Q does not have its limit

p
2 in X. If any arbitrary Cauchy sequence converges

in a metric space X, then it is called a complete space. For example, Rn is a complete
space.

A.3 Continuous Functions

Throughout this section a function f W X ! Y is given where .X; dX/ and .Y; dY/ are
metric spaces.

Definition A.3 (Continuity) If a function f satisfies limn!1 f .xn/ D f .x/ as
limn!1 xn D x, then f is said to be continuous at x. If this property holds for every
x 2 X, then we say that f is said to be continuous on X.

Fact A.2 The following statements are equivalent:

(i) f is continuous at x 2 X.
(ii) For any " > 0 there exists a ı > 0 such that dX.x; x0/ < ı implies

dY. f .x/; f .x0// < ". The constant ı depends on x and ", i.e., ı D ı."; x/.

Definition A.4 (Uniform Continuity) If for any " > 0 there exists a ı > 0 such
that dX.x; x0/ < ı implies dY. f .x/; f .x0// < ", and if ı does not depend on x but only
on ", then f is said to be uniformly continuous on X.

Example A.3

(i) Let X D Œ0; 1� and X0 D .0; 1�. The function f .x/ D 1
x on X0 is continuous but

not uniformly continuous. It cannot be extended to X. This fact is consistent
with Theorem A.11.

(ii) If f W R1 ! R
1 is Lipschitz continuous, i.e., there exists a constant 0 � M < 1

such that j f .x/�f . y/j < Mjx�yj for every x; y, then f is uniformly continuous.
(iii) If f W R1 ! R

1 is differentiable and if j f 0.x/j � M < 1, then by the Mean
Value Theorem f satisfies j f .x/� f . y/j < j f 0.z/jjx � yj � Mjx � yj, and hence
f is Lipschitz continuous and uniformly continuous.
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Now we consider the metric space consisting of continuous functions.

Example A.4 Let C.Œ0; 1�;R/ and C.Œ0; 1�;C/ be the sets of all continuous functions
f defined on Œ0; 1� with their values in R and C, respectively. They are vector spaces
with the norm defined by jj f jj D maxx2Œ0;1� j f .x/j, called the uniform norm. We can
define a metric d by

d. f ; g/ D max
x2Œ0;1�

j f .x/� g.x/j

for two continuous functions f ; g, and hence C.Œ0; 1�;R/ and C.Œ0; 1�;C/ are metric
spaces. They are complete metric spaces.

Definition A.5 (Open Ball) On a metric space .X; d/, for r > 0 the subset
Br.x0/ D fx 2 X W d.x0; x/ < r/ is called the open ball of radius r centered at
x0. Let U � X. If for any point x0 of U there exists an r D r.x0/ > 0 such that
Br.x0/ � U, then U is said to be open. A set is closed if its complement is open.
Trivial examples of open subsets are ; and X.

Example A.5

(i) If X D R
1, then open intervals .a; b/, .�1; b/ and .a;1/ are open sets.

(ii) If X is a normed space with a norm jj � jj, then the open unit ball B1.0/ D fx 2
X W jjxjj < 1g is open.

If a subset K � X is covered by subsets fU� W � 2 �g, i.e., K � S
� U�,

then fU� W � 2 �g is called a cover of K. If there exists a �0 � � such that
K � S

�2�0 U�, then we call fU� W � 2 �0g a subcover of K, or a subcover of
fU� W � 2 �g. If every U� is an open set, then fU� W � 2 �g is called an open cover.
If �0 is a finite set, then fU� W � 2 �g is called a finite subcover.

Definition A.6 (Compact Set) If, for any open cover of a set K, there exists a finite
subcover, then K is said to be compact .

Fact A.3 (Heine–Borel Theorem) A subset of Rn is compact if and only if it is
closed and bounded.

Fact A.4 (Bolzano–Weierstrass Theorem) Every bounded sequence in R
n has a

convergent subsequence.

Example A.6 A metric space .X; d/ is given.

(i) The empty set ; and a finite set are compact.
(ii) For X D R

1, a closed and bounded interval Œa; b� is compact.
(iii) For X D R

1, closed and unbounded intervals such as R1, .�1; b � and Œa;1/

are not compact.
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Fact A.5 Given two metric spaces .X; dX/, .Y; dY/ and a continuous function f W
X ! Y. If X is a compact set, then the following holds:

(i) f .X/ is a compact subset of Y.
(ii) For Y D R

1 f assumes its maximum and minimum on X, i.e., there exist x1;
x2 2 K such that

f .x1/ D max
x2K

f .x/ ; f .x2/ D min
x2K

f .x/ :

(iii) f is uniformly continuous.

Definition A.7 (Dense Subset) A subset X0 of a metric space X is dense in X if
for every x 2 X and for every r > 0 the open ball Br.x/ satisfies Br.x/ \ X0 6D ;.
Equivalently, for every x 2 X there exists a sequence xn 2 X0 that converges to x.

Example A.7

(i) The set of integers Z is not dense in R.
(ii) The set of rational numbers Q is dense in the set of real numbers R.

(iii) The set of irrational numbers R n Q is dense in R.
(iv) The open interval .a; b/ is dense in the interval Œa; b�.

Fact A.6 (Weierstrass) A real-valued trigonometric function of period 1 is a
function of the form

NX

nD1
an cos.2nx/C

NX

nD1
bn sin.2nx/ ; an; bn 2 R; N 2 N :

The set of all such functions is dense in .CŒ0; 1�;R/.

Fact A.7 (Stone–Weierstrass) A complex-valued trigonometric function of period
1 is a function of the form

NX

nD�N

cne2 inx; cn 2 C; N 2 N

where i2 D �1. The set of all such functions is dense in .CŒ0; 1�;C/.

A.4 Bounded Linear Transformations

We are given two normed spaces .X; jj � jjX/, .Y; jj � jjY/. When there is no danger
of confusion we write jj � jj to denote both jj � jjX and jj � jjY . If a map T W X ! Y
satisfies T.x1 C x2/ D T.x1/ C T.x2/ for x1; x2 2 X and T.cx/ D cf .x/ for x 2 X
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and scalar c, then T is called a linear transformation. For a linear transformation T
we usually write Tx instead of T.x/.

Define a norm jjTjj of a linear transformation T W X ! Y by

jjTjj D sup
x 6D0

jjTxjj
jjxjj D sup

jjxjjD1
jjTxjj :

The transformation T is called a bounded transformation if jjTjj < 1, which is
equivalent to the condition that there exists an M < 1 such that

jjTxjj � Mjjxjj

for every x. In fact, jjTjj is the infimum of such constants M.

Example A.8 For X D R
n, Y D R

m and an m 	 n matrix A, the map T W X ! Y
defined by Tx D Ax is linear.

(i) Define a norm on R
k by

jjvjj1 D
kX

iD1
jvij ; v D .v1; : : : ; vk/ :

Then the norm of T W X ! Y is given by

jjTjj D max
1� j�n

mX

iD1
jAijj :

(ii) Define a norm on R
k by

jjvjj1 D max
1�i�k

jvij ; v D .v1; : : : ; vk/ :

Then the norm of T W X ! Y is given by

jjTjj D max
1�i�m

nX

jD1
jAijj :

(iii) Let m D n and define a norm on R
n by

jjvjj2 D
 

nX

iD1
jvij2

!1=2

; v D .v1; : : : ; vn/ :
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Let �i denote the eigenvalues of the symmetric matrix AtA or the singular
values of A. Then the norm of T W Rn ! R

n is given by

jjTjj D max
1�i�n

p
�i :

Fact A.8 Any two norms jj � jj1 and jj � jj2 on a finite dimensional vector space X are
equivalent, i.e., there exist constants 0 < A � B such that Ajjxjj1 � jjxjj2 � Bjjxjj1
for every x 2 X. In this case, the metrics induced by the all the norms are equivalent
since Ajjx � yjj1 � jjx � yjj2 � Bjjx � yjj1 for every x; y 2 X, and a convergent
sequence with respect to one norm is also convergence with respect to the other
norm.

Theorem A.9 Let .X; jj � jjX/ and .Y; jj � jjY/ be normed spaces, and let f W X ! Y
be a linear mapping. Then the following statements are equivalent:

(i) f is bounded.
(ii) f is continuous.

(iii) f is uniformly continuous.

Proof (i) ) (iii) If there exists an M < 1 such that jj f .x/jj � Mjjxjj for every x,
then by the linearity we have jj f .x1/ � f .x2/jj � Mjjx1 � x2jj for x1; x2 2 X. For
every � > 0 choose ı D �=M, then jjx1 � x2jj < ı implies jj f .x1/ � f .x2/jj < �. In
other words, f is uniformly continuous.

(iii) ) (ii) This is obvious by definition.
(ii) ) (i) If jj f .x/jj � Mjjxjj does not hold for all x, then there exists a sequence

xn 2 X such that jjxnjj D 1 and jj f .xn/jj > n. Define a new sequence zn D 1
n xn.

Then jj f .zn/jj > 1. Hence zn ! 0, but f .zn/ does not converge to 0 2 Y. In other
words, f is not continuous, which is a contradiction. ut
Definition A.8 Let .X; d/ be a metric space. A mapping f W X ! X is called a
contraction if there is a constant 0 < ˛ < 1 such that for every x; y 2 X we have
d. f .x/; f . y// � ˛ d.x; y/.

Theorem A.10 (Banach Fixed Point Theorem) If f is a contraction defined on a
complete metric space X, then f has a unique fixed point x� 2 X, i.e., f .x�/ D x�.
Furthermore, for any starting point x0 2 X we have the convergence of xm D f m.x0/
to x� and the error bound is given by

d.xm; x
�/ � ˛m

1 � ˛ d.x0; x1/ ;

which shows that the speed of convergence to a limit is exponential.

Proof Let xn D f n.x0/, n � 1. Then there exists 0 < ˛ < 1 such that

d.xnC1; xn/ D d. f .xn/; f .xn�1// � ˛ d.xn; xn�1/ � � � � � ˛nd.x1; x0/ :
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Hence, for n > m,

d.xm; xn/ � d.xm; xmC1/C d.xmC1; xmC2/C � � � C d.xn�1; xn/

� .˛m C ˛m�1 C � � � C ˛n�1/ d.x0; x1/

D ˛m 1 � ˛n�m

1 � ˛
d.x0; x1/

� ˛m

1� ˛
d.x0; x1/ : .�/

Since d.xn; xm/ ! 0 as n;m ! C1, the sequence x0; x1; x2; : : : is Cauchy, and
hence it converges to some point x� since X is complete. Since

d.x�; f .x�// � d.x�; xn/C d.xn; f .x
�// � d.x�; xn/C ˛ d.xn�1; x�/ ;

we can make d.x�; f .x�// arbitrarily small by choosing large n. Hence it must be
zero, and f .x�/ D x�. To prove the uniqueness, take x; y such that f .x/ D x and
f . y/ D y. Then d.x; y/ D d. f .x/; f . y// � ˛ d.x; y/, which is true only when
d.x; y/ D 0. To find an error bound, let n ! C1 in the inequality (�). ut

For an application of the Fixed Point Theorem in numerical linear algebra, see
Sect. B.7.

A.5 Extension of a Function

We are given two sets X, Y and a function f W X0 ! Y where X0 is a subset of X. If
there exists a function F W X ! Y such that F.x/ D f .x/ for every x 2 X0, then F is
called an extension of f to X. In this case f is called the restriction of F to X0.

Now we consider the extension of a continuous function defined on a dense
subset to the whole space.

Lemma A.1 Let .X; dX/ and .Y; dY/ be metric spaces. If f W X ! Y is a uniformly
continuous function, then f maps a Cauchy sequence fxng to a Cauchy sequence
f f .xn/g.

Proof For every � > 0 the uniform discontinuity of f implies that there exists a
ı > 0 such that dX.z; z0/ < ı implies dY. f .z/; f .z0// < �. If fxng is a Cauchy
sequence, then there exists a sufficiently large N such that dX.xm; xn/ < ı for
m; n � N. Hence dY. f .xm/; f .xn// < �. ut
Theorem A.11 Let .X; dX/ and .Y; dY/ be metric spaces, and let X0 � X be a
dense subspace of X. Suppose that Y is a complete space. If f W X0 ! Y is uniformly
continuous, then f can be extended to X as a continuous and linear map.
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Proof First, we will define f .x/ for any x 2 X. Take a sequence xn 2 X0 converging
to x. By Lemma A.1 f .xn/ is a Cauchy sequence. Since Y is a complete space, f .xn/

converges to a limit, which is defined to be f .x/.
To show that the preceding definition is well-defined and independent of

any particular sequence xn 2 X0, take another sequence x0
n 2 X0 and show

limn!1 f .xn/ D limn!1 f .x0
n/. Arranging elements of two sequences alternatingly

we obtain a new sequence x1; x0
1; x2; x

0
2; x3; x

0
3; : : :, which also converges to x, hence

is a Cauchy sequence. By Lemma A.1, f .x1/; f .x0
1/; f .x2/; f .x

0
2/; f .x3/; f .x

0
3/; : : : is

also a Cauchy sequence. Since Y is a complete space, there exists a unique limit,
which is the common limit of two subsequences f .x1/; f .x2/; : : : and f .x0

1/; f .x
0
2/; : : :,

and hence they have the same limit. ut
Corollary A.1 Let .X; jj � jjX/ and .Y; jj � jjY/ be normed spaces, and let X0 � X
be a dense vector subspace of X. Assume that Y is a complete space. If a linear
transformation f W X0 ! Y is continuous, then f is uniformly continuous, and hence
by Theorem A.11 f can be extended to X as a continuous and linear transformation.

A.6 Differentiation of a Function

Definition A.9 (Differentiation) If a function f W Rn ! R
m satisfies the condition

that for every point x there exists an m 	 n matrix Df .x/ such that

lim
jjhjj!0

jj f .x C h/ � f .x/� Df .x/hjj
jjhjj D 0 ;

we say that f is differentiable and call the matrix Df .x/, or the associated linear
transformation, the derivative of f .

Remark A.1 The derivative of a differentiable function f D . f1; : : : ; fm/ W Rn ! R
m

is defined by

Df .x/ D
�
@fi
@xj

�

ij

:

For m D 1 we have

Df .x/ D rf .x/ D
�
@f

@x1
; : : : ;

@f

@xn

�

;

where

f .x C h/ � f .x/ � rf .x/h

and the right-hand side is a product of a 1 	 n matrix and an n 	 1 matrix.
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Now we consider the partial derivatives of a function defined by a matrix.

Lemma A.2

(i) For a column vector a 2 R
n define g W Rn ! R

1 by g.x/ D a � x D atx. Then
rg.x/ D at.

(ii) For an n 	 n matrix A define f W R
n ! R

1 by f .x/ D xtAx. Then rf .x/ D
xt.A C At/.

Proof

(i) The proof is a direct application of the definition. Intuitively, if h � 0 then
g.x C h/ � g.x/ � rg.x/h, and hence

at.x C h/� atx D ath � rg.x/h :

Thus rg.x/ D at.
(ii) As in the first part, for h � 0 we have

f .x C h/ � f .x/ D .x C h/tA.x C h/ � xtAx

D xtAx C xtAh C htAx C htAh � xtAx

D xtAh C htAx C htAh

� xtAh C htAx

D xtAh C .Ax/th

D xtAh C xtAth

D xt.A C At/h

and rf .x/ D xt.A C At/. ut
Definition A.10 (Variation) For a partition a D t0 < t1 < � � � < tn D b and a
function f W Œa; b� ! R, put ıfi D f .tiC1/� f .ti/. Define the variation of f by

Vb
a . f / D sup

n�1X

iD0
jıfij

where the supremum is taken over all finite partitions of Œa; b�.
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Linear Algebra

Linear algebra deals with operations of vectors and matrices, and it is widely used
in many areas because it is an essential tool in solving a system of linear equations.
The goal of this chapter is to introduce some basic concepts and terminology in
linear algebra.

B.1 Vectors

Theorem B.1 (Cauchy–Schwarz Inequality) Let V be a vector space with an
inner product .�; �/. Then we have .v;w/2 � .v; v/.w;w/ for v;w 2 V. Equality
holds if and only if one of the vectors v;w is a constant multiple of the other one.

Proof First, consider the case when the scalar field is real. If v D 0 or w D 0, then
the inequality clearly holds. It suffices to prove the theorem for the case v 6D 0 and
w 6D 0. Since

f .t/ D .tv C w; tv C w/ D t2.v; v/C 2.v;w/t C .w;w/ � 0

for every real t, f .t/ has nonnegative minimum

f .t0/ D .v; v/.w;w/ � .v;w/2

.v; v/

at t0 D � .v;w/
.v; v/

. The quadratic function f .t/ is equal to 0 if and only if there exists

a real number t such that tv C w is the zero vector, and otherwise f .t/ > 0. ut
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Given a linear map T W V ! V , if there exists a nonzero vector v such that
Tv D �v for some scalar �, then v is called a characteristic vector or an eigenvector,
and � is called a characteristic value or an eigenvalue.

B.2 Matrices

Let V and W be two vector spaces with bases fv1; : : : ; vmg and fw1; : : : ;wng,
respectively. A convenient way of expressing a linear transformation T W V ! W
is to compute T.vj/ D P

i aijwi. Then the nm scalars aij have all the information on
T. The following basic facts regarding matrix multiplication are frequently used in
Part VII.

Fact B.2

(i) Put 1 D .1; : : : ; 1/t 2 R
n. Then 1t1 D n, and 11t is an n 	 n matrix all of

whose n2 components are 1. Note that 1tx D x1 C � � � C xn.
(ii) Let L and M be matrices of sizes m 	 n and n 	 `, respectively. Then

LM D
h
LM1 � � � LM`

i

where Mj denotes the jth column of M. Note that LMj is an m	1 matrix, i.e., an
m-dimensional column vector, since it is the product of matrices of sizes m 	 n
and n 	 1, respectively.

(iii) Let M and L be matrices of sizes n 	 ` and ` 	 k. Then

ML D

2

6
6
4

M1L

:::

MnL

3

7
7
5

where Mi is the ith row of M. Note that MiL is a k-dimensional row vector since
it is a product of matrices of sizes 1 	 ` and ` 	 k.

If a basis B of V consists of eigenvectors v1; : : : ; vn of T, then the matrix A D Œaij�

of T with respect to B satisfies aij D 0 for i 6D j and T.vi/ D aiivi for every i. Thus
A is a diagonal matrix. One of the goals of linear algebra is to take a suitable basis
so that the corresponding matrix of T is close to a diagonal matrix. The trace of A
is defined by

Pn
iD1 Aii and is equal to the sum of eigenvalues.

The column rank of a matrix A is the dimension of the column space of A, and
the row rank of A is the dimension of the row space of A. The column rank and the
row rank are equal, and rank.A/ � min.m; n/. If rank.A/ D minfm; ng, then A is
said to have full rank.

The linear transformation T.x/ D Ax is injective if and only if rank.A/ D n, i.e.,
A has full column rank. The linear transformation T.x/ D Ax is surjective if and
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only if rank.A/ D m, i.e., A has full row rank. If m D n, then A is invertible if and
only if rank.A/ D n.

If B is an n 	 k matrix, then rank.AB/ � minfrank A; rank Bg. If B is an n 	 k
matrix of rank n, then rank.AB/ D rank.A/. If C is an ` 	 m matrix of rank m, then
rank.CA/ D rank.A/.

B.3 The Method of Least Squares

Let V be a vector space with an inner product .�; �/. The case when V is infinite
dimensional is not excluded in the following argument. Consider the problem of
approximating a vector v 2 V by a subspace V0. We introduce the least squares
method, which finds the minimum

min
w2V0

jjv � wjj2 D .v � w; v � w/ :

We consider the case when V0 is finite-dimensional. There are two methods. For the
first method we choose V0 D spanfw1; : : : ;wkg and define

f .c1; : : : ; ck/ D jjv � .c1w1 C � � � C ckwk/jj2 ;

then take partial derivatives with respect to cj, and set them equal to 0.
The second method is based on the fact that the distance minimizing vector is the

orthogonal projection of v onto V0, and it solves the system of equations .wj; v �
.c1w1 C � � � C ckwk// D 0.

For � D f!1; : : : ; !ng with the normalized counting measure P, i.e., P.f!ig/ D
1
n for 1 � i � n, we may regard L2.�/ as R

n. Table B.1 lists the corresponding
concepts in Lebesgue integral theory and linear algebra. For example, the constant
function 1 D 1� is identified with the vector .1; : : : ; 1/.

For V D L2.�/ let V0 be a two-dimensional subspace of V spanned by the
constant function 1 D 1� and a nonconstant function X, i.e., V0 D fa1 C bX W
a; b 2 Rg. Fix Y 2 V . If a and b solve the minimization problem

min
a;b

jjY � .a1C bX/jjL2 :

Table B.1 Comparison of
Lebesgue integral on a finite
space and linear algebra

Lebesgue Integral Linear Algebra

A random variable X A vector v
The constant function 1 The vector .1; : : : ; 1/
R
� XYdP D EŒXY� 1

n v � w
R
� X2dP D EŒX2� D jjXjj2L2 1

n jjvjj2
L2.�;P/ R

n
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To solve for a and b, either we set

f .a; b/ D jjY � .a1C bX/jj2L2 D .Y � .a1C bX/;Y � .a1C bX//

and take the partial derivatives with respect to a and b, set the derivatives equal to 0,
or we use the orthogonality relations

�
.1;Y � .a1C bX// D 0

.X;Y � .a1C bX// D 0 ;

or, equivalently

�
1 EŒX�

EŒX� EŒX2�

� �
a
b

�

D
�
EŒY�
EŒXY�

�

: (B.1)

Since 1 and X are linearly independent, the determinant EŒX2��EŒX�2 is nonzero by
the Cauchy–Schwarz inequality. (In fact, it is positive.) Hence the solution of (B.1)
is given by b D Cov.X;Y/

Var.X/ and a D EŒY� � bEŒX�.

Example B.1 (Linear Regression) If we try to approximately express data
f.x1; y1/; : : : ; .xn; yn/g for n � 2 using a line of best fit Y D a C bX, we need
to solve the least squares problem defined by

min
a;b

nX

iD1
jyi � .a C bxi/j2 :

If we put x D .x1; : : : ; xn/, y D . y1; : : : ; yn/, 1 D .1; : : : ; 1/, then the above problem
is converted into

min
a;b

jjy � .a1 C bx/jj2 ;

which has a solution

b D
Pn

iD1 xiyi �Pn
iD1 xi

Pn
iD1 yiPn

iD1 x2i � .
Pn

iD1 xi/2

by the preceding computation. The hidden assumption in this problem is the
condition that 1 and x are linearly independent, which is equivalent to the condition
that not all xi are equal. See Fig. B.1.

Example B.2 (Quadratic Regression) Given the points .x1; y1/; : : : ; .xn; yn/, the
objective is to find .a; b; c/ for which

Pn
iD1 j.ax2i C bxi C c/� yij2 is minimized. Let

v1 D .x21; : : : ; x
2
n/

t, v2 D .x1; : : : ; xn/
t, v3 D .1; : : : ; 1/t and y D . y1; : : : ; yn/

t.
Assume that the vectors are linearly independent. Then the given problem is
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Fig. B.1 The line of best fit
and the least squares method

X
0 2 4 6 8 10

Y

0

2

4

6

8

10

equivalent to the minimization of jjy�.av1Cbv2Ccv3/jj. Since y�.av1Cbv2Ccv3/
is orthogonal to v1, v2 and v3, we have

8
<

:

a v1 � v1 C b v1 � v2 C c v1 � v3 D y � v1
a v2 � v1 C b v2 � v2 C c v2 � v3 D y � v2
a v3 � v1 C b v3 � v2 C c v3 � v3 D y � v3

which is equivalent to

AtA

2

4
a
b
c

3

5 D
2

4
y � v1
y � v2
y � v3

3

5 (B.2)

where the columns of A are given by v1, v2 and v3. Since AtA is symmetric, its
eigenvalues are real. If AtAv D �v for some � 2 R, v 6D 0, then

jjAvjj2 D .Av;Av/ D .AtAv; v/ D .�v; v/ D �jjvjj2 ;

and hence � > 0. Otherwise, Av D 0 and A would have rank less than 3. Since AtA
has positive eigenvalues, it is invertible, and the above matrix equation (B.2) has a
unique solution. For a numerical simulation see Fig. F.1.
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B.4 Symmetric Matrices

Theorem B.3 Let A be a symmetric matrix, then the following statements are
equivalent:

(i) A is positive definite.
(ii) There exists a symmetric positive definite matrix B such that A D B2.

(iii) There exists an invertible matrix B such that A D BtB.

Proof To prove that the statement (i) implies the statement (ii), recall that A is
orthogonally diagonalizable. Hence PtAP D D where P is orthogonal and D is
diagonal. Note that the diagonal entries of D are eigenvalues of A, which are
positive. Hence we have D D D2

0 where D0 is the diagonal matrix whose entries
are positive square roots of eigenvalues of A. Thus

A D PD2
0P

t D PD0D0P
t D PD0P

tPD0P
t D .PD0P

t/.PD0P
t/ D B2

where B D PD0Pt.
To prove (ii) ) (iii), note that A D BB D BtB.
To prove (iii) ) (i), note that xtAx D xtBtBx D .Bx/t.Bx/ D jjBxjj2 > 0,

x 6D 0. ut
Theorem B.4 Let A be a nonnegative definite matrix. Then there exists a lower
triangular matrix L having nonnegative diagonal elements such that A D LLt.
Furthermore, if A is positive definite, then the matrix L is unique and has positive
diagonal elements.

Proof See p.147, [91]. ut
Definition B.1 If A is symmetric and positive definite, then there exists a unique
lower triangular matrix L with positive diagonal entries such that A D LLt. This is
called the Cholesky decomposition of A.

Example B.3 Here is how to transform a random vector so that the resulting random
vector is normalized, i.e., its mean is zero and the covariance matrix is the identity
matrix. Suppose that an m 	 1 random vector X has a mean vector � D EŒX� and
a positive-definite covariance matrix†. Choose a matrix L satisfying † D LLt, and
put Z D L�1.X ��/. Then

EŒZ� D EŒL�1.X � �/� D L�1
EŒX � �� D L�1.� ��/ D 0

and

Var.Z/ D Var.L�1X � L�1�/

D Var.L�1X/

D EŒL�1X.L�1X/t�
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D EŒL�1XXt.L�1/t�

D L�1
EŒXXt�.L�1/t

D L�1Var.X/.L�1/t

D L�1†.L�1/t D Im :

B.5 Principal Component Analysis (PCA)

Let A be a nonnegative-definite n 	 n matrix, i.e., Ax � x � 0 for x 2 R
n. Assume

further that A is symmetric. (For example, A is a covariance matrix or correlation
matrix.) Let �1 � �2 � � � � � �n � 0 be the eigenvalues of A with corresponding
eigenvectors v1; : : : ; vn of norm 1. (All vectors are column vectors.) Recall that they
are pairwise orthogonal. It can be shown that

�1 D Av1 � v1 D max
jjvjjD1

Av � v :

Next, it can be proved that

�2 D Av2 � v2 D max
jjvjjD1
v�v1D0

Av � v :

Proceeding inductively, we have

�kC1 D Av2 � v2 D max
jjvjjD1

v�viD0; 1�i�k

Av � v :

(If A is a covariance matrix of a random vector X D .X1; : : : ;Xn/, then �i D Var.vi �
X/.) The projection of x in the direction of vi is called the ith principal component
of x. Note that we have the following decompositions:

In D v1vt
1 C � � � C vnvt

n

A D �1v1vt
1 C � � � C �nvnvt

n

where In is the n 	 n identity matrix. The principal component analysis seeks to find
some small k for which .�1 C � � � C �k/=.�1 C � � � C �n/ is close to 1 so that the
approximation �1v1vt

1 C � � � C �kvkvt
k is sufficiently close to A.
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B.6 Tridiagonal Matrices

Lemma B.1 Consider a uniform tridiagonal matrix

B D

2

6
6
6
6
6
6
6
6
6
6
4

a b 0 � � � � � � 0
b a b

: : :
:::

0 b a
: : :

: : :
:::

:::
: : :

: : :
: : : b 0

:::
: : : b a b

0 � � � � � � 0 b a

3

7
7
7
7
7
7
7
7
7
7
5

Then B has the eigenvalues �k D a C 2b cos k
nC1 , 1 � k � n.

Proof First, we consider a uniform tridiagonal matrix

A D

2

6
6
6
6
6
6
6
6
6
6
4

0 1 0 � � � � � � 0
1 0 1

: : :
:::

0 1 0
: : :

: : :
:::

:::
: : :

: : :
: : : 1 0

:::
: : : 1 0 1

0 � � � � � � 0 1 0

3

7
7
7
7
7
7
7
7
7
7
5

We will show that the eigenvalues of A are given by �k D 2 cos k
nC1 , 1 � k � n. Let

x D .x1; : : : ; xn/
t be an eigenvector of A with corresponding eigenvalue �. Then,

after defining x0 D xnC1 D 0, we have the difference equation

xj�1 C xjC1 D �xj ; 1 � j � n :

Its characteristic polynomial is given by

p.r/ D r2 � �r C 1 :

Suppose that � D 2. Then p.r/ D 0 has a double root r D 1, and hence xj D c1r j C
c2 jr j D c1 C c2 j, 0 � j � n C 1, for some constants c1; c2. Since x0 D xnC1 D 0,
we have c1 D c2 D 0 and x D 0, which contradicts the fact that x 6D 0. Hence
� 6D 2. Now suppose that � D �2. Then p.r/ D 0 has a double root r D �1, and
hence xj D c1.�1/ j C c2 j.�1/ j D .�1/ j.c1 C c2 j/, 0 � j � n C 1, which would
lead to a contradiction, too. Thus � 6D 2.

Since �2 6D 4, the discriminant of p.r/ D 0 is equal to �2 � 4 6D 0, and there
are two distinct (not necessarily real) roots �1, �2 of p.r/ D 0. Then the general
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solution is of the form xj D c1r
j
1 C c2r

j
2 for some constants c1; c2. Since x0 D 0,

we have c1 C c2 D 0, and xj D c1.r
j
1 � r j

2/. Note that c1 6D 0 since x 6D 0. Since

xnC1 D 0, we have rnC1
1 � rnC1

2 D 0, and hence
�

r1
r2

�nC1 D 1. Since r1r2 D 1, we

have 1
r2

D r1 and r2.nC1/
1 D 1. Hence r1; r2 D exp.˙2i k

2.nC1/ /, 1 � k � n. Thus

� D r1 C r2 D 2 cos.2 k
2.nC1/ /.

Finally, let us consider a general case. It suffices to consider the case when b 6D 0.
Since A D 1

b .B � aI/, we have

det.�I � A/ D det
�
�I � 1

b
.B � aI/

� D 1

bn
det..b�C a/I � B/ :

Now we apply the previous result for A. ut
Definition B.2 Let A D Œaij� be an n	n matrix where aij are complex numbers, 1 �
i; j � n. It is said to be strictly diagonally dominant (by rows) if jaiij >Pn

jD1;j6Di jaijj
for every 1 � i � n.

Fact B.5 (Gershgorin Circle Theorem) Let A D Œaij� be an n 	 n matrix where aij

are complex numbers, 1 � i; j � n. Let ri D P
j6Di jaijj and let D.aii; ri/ denote the

disk of radius ri centered at aii in the complex plane. Then the eigenvalues of A lie
inside

Sn
iD1 D.aii; ri/.

Proof Take an eigenvalue� of A with a corresponding eigenvector v D .v1; : : : ; vn/.
Choose i� 2 f1; : : : ; ng satisfying jvi� j D maxj jvjj. Note that jvi� j > 0. Since Av D
�v, the ith row satisfies

P
j aijvj D �vi for every i. Hence

P
j6Di aijvj D �vi � aiivi.

Thus

j� � ai�i� j D
P

j6Di� ai�jvj

vi�
�
X

j6Di�

jai�jj D ri� :

ut
Remark B.1 Put

B D

2

6
6
6
6
6
6
6
6
6
6
4

1C 2� �� 0 : : : : : : 0

�� 1C 2� �� : : :
:::

0 �� 1C 2�
: : :

: : :
:::

:::
: : :

: : :
: : : �� 0

:::
: : : �� 1C 2� ��

0 : : : : : : 0 �� 1C 2�

3

7
7
7
7
7
7
7
7
7
7
5
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(i) Since B is strictly diagonally dominant, it is invertible by Gershgorin’s theorem
for j�j � 1

2
.

(ii) Lemma B.1 implies that B has eigenvalues

�k D 1C 2� � 2� cos
k

n C 1
; 1 � k � n :

For j�j � 1
2
, we have �k > 0 and B is invertible.

(iii) Invertibility alone can proved as follows: Let Bn be the n 	n tridiagonal matrix
given as above. Let Cn D 1

�
Bn. For the sake of notational simplicity we put

cn D det Cn. Then det Bn D �ncn and

cn D
�
1

�
C 2

�

cn�1 � cn�2 :

It suffices to show that cn > 0, n � 2. By mathematical induction we show that
cn > 0 and cn > cn�1 for n � 2. For n D 1, c1 D 1

�
C 2 > 0. For n D 2

c2 D
�
1

�
C 2

�2
� 1 D

�
1

�

�2
C 4

1

�
C 3 > 0

and

c2 � c1 D
�
1

�

�2
C 3

1

�
C 1 > 0 :

Now we assume that ck > 0 and ck > ck�1 for 2 � k < n. Then

cn D
�
1

�
C 2

�

cn�1 � cn�2 D
�
1

�
C 1

�

cn�1 C .cn�1 � cn�2/ > 0

and

cn � cn�1 D 1

�
cn�1 C .cn�1 � cn�1/ > 0 :

B.7 Convergence of Iterative Algorithms

Given an n 	 n matrix A and b 2 R
n, consider the equation

Ax D b : (B.3)
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Take C and D such that A D D C C. Then (B.3) becomes

x D �D�1Cx C D�1b : (B.4)

Let B D �D�1C D I � D�1A and d D D�1b, and define T W Rn ! R
n by

T.x/ D Bx C d :

Then (B.4) is equivalent to

T.x/ D x (B.5)

and Theorem A.10 implies that if T is a contraction then (B.5) has a unique solution,
which is the limit of Tn.x0/ for any x0. Since jjT.x/ � T.y/jj D jjB.x � y/jj �
jjBjj jjx�yjj, we choose a norm so that jjBjj < 1 to have a contraction. For example,
if we choose a norm jjxjj1 D Pn

iD1 jxij, then

jjTjj D jjBjj1 D max
1� j�n

nX

iD1
jBijj ;

and if we choose a norm jjxjj1 D max1�i�n jxij, then

jjTjj D jjBjj1 D max
1�i�n

nX

jD1
jBijj :

Example B.4 (Jacobi Algorithm) If we choose D D diag.a11; : : : ; ann/with aii 6D 0,
then a sufficient condition for the convergence is

jjI � D�1Ajj1 D max
1�i�n

nX

j6D1

ˇ
ˇ
ˇ
ˇ
aij

aii

ˇ
ˇ
ˇ
ˇ < 1 ;

which is equivalent to jaiij >Pn
jD1 jaijj for every i. The iteration is given by

x.kC1/
i D bi �P

j6Di aijx
.k/
j

aii
; 1 � i � n :

For more information, consult [12, 55].
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Ordinary Differential Equations

An ordinary differential equation is an equation defined by derivatives of a function
of one variable. For a general introduction to ordinary differential equations, consult
[39, 96].

Lemma C.1 (Gronwall’s Inequality) Let g.t/ W Œ0; a� ! R be continuous and
nonnegative. Suppose that there exist constants C � 0, K � 0 such that

g.t/ � C C K
Z t

0

g.s/ ds ;

for every t 2 Œ0; a�. Then g.t/ � CeKt for every t 2 Œ0; a�.
Proof First, suppose that C > 0. Define G.t/ by

G.t/ D C C K
Z t

0

g.s/ ds :

Then G.t/ � g.t/ and G.t/ � C > 0. Since d
dt G.t/ D Kg.t/ � KG.t/, we have

d
dt .log G.t// � K, and log G.t/ � log G.0/C Kt. Since G.0/ D c, we conclude that
g.t/ � G.t/ � G.0/eKt D CeKt. ut

C.1 Linear Differential Equations with Constant Coefficients

A differential operator L is said to be linear if it satisfies L.c1 f1Cc2 f2/ D c1L. f1/C
c2L. f2/ and L.cf / D cL. f / for arbitrary constants c1; c2 and c. To solve a linear
ordinary differential equation

an
@nf

@xn
C � � � C a1

@f

@x
C a0f D g.x/ (C.1)

© Springer International Publishing Switzerland 2016
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where an; : : : ; a1; a0 are constants, we first solve the homogeneous equation

an
@nf

@xn
C � � � C a1

@f

@x
C a0f D 0 (C.2)

and find a homogeneous solution fH , then take the sum with a particular solution fP
of (C.1). To find a general solution of (C.2) we solve a polynomial equation

an�
n C � � � C a1�C a0 D 0 : (C.3)

(i) If there exist distinct real solutions �1; : : : ; �n for (C.3), then a general solution
is of the form c1e�1x C � � � C cne�nx.

(ii) If some of them are double roots, say �1 D �2, then the corresponding solution
is of the form

c1e
�1x C c2xe�1x C c3e

�3x C � � � C cne�nx :

If some of them are triple roots, say �1 D �2 D �3, then the corresponding
solution is of the form

c1e�1x C c2xe�1x C c3x
2e�3x C � � � C cne�nx

and so on.
(iii) If there are complex roots � D a C b

p�1, b 6D 0, then there exist solutions of
the form ex cos.bx/ and ex sin.bx/. A general solution is a linear combination
of such functions. The set of general solutions of (C.1) is an n-dimensional
vector space V , and the set of solutions of (C.2) is a parallel translate of the
form fP C V .

Example C.1 To solve a differential equation

f 00 � 2af 0 C a2f D .D � a/2f D 0

where D D d
dx , we solve .t � a/2 D 0 and find a double root t D a. Put g.x/ D

e�axf .x/. Then D2g D 0, and hence g.x/ D c1 C c2x. Thus f .x/ D c1e�x C c2xe�x.
The same idea can be used for a triple root as in a differential equation .D�1/3f D 0,
and so on.

Example C.2 To solve a differential equation

..D � ˛/2 C ˇ2/f D 0

where ˛; ˇ are real constants, we put g.x/ D e�˛xf .x/. Then D2g D �ˇ2g, g.x/ D
c1 cosˇx C c2 sinˇx, and finally f .x/ D c1e˛x cosˇx C c2e˛x sinˇx.
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Example C.3 To solve an ordinary differential equation

f 00 C f D 1

we first solve the homogeneous equation f 00 C f D 0 and find the two-dimensional
vector space V D fc1 sin x C c2 cos x W c1; c2 constantg consisting of homogeneous
solutions and translate the space by fP D 1, and find the desired solution set VCfP D
fc1 sin x C c2 cos x C 1 W c1; c2 constantg.

C.2 Linear Differential Equations with Nonconstant
Coefficients

The linear equation

dy

dx
C P.x/y D Q.x/

can be solved by multiplying by an integrating factor e
R

P.x/dx. Then we have

d

dx
.e
R

P.x/dxy/ D Q.x/e
R

P.x/dx ;

which produces the solution

y D e� R
P.x/dx

�Z
Q.x/e

R
P.x/dxdx C C

�

:

Example C.4 An ordinary differential equation need not have a global solution. For
example, consider y0 D y2, which has a trivial solution y D 0 and a nontrivial

solution of the form y D 1

�x C C
where C is a constant.

Example C.5 The initial value problem y0 D 2
p

xy, y.0/ D 1, has a solution y D
.1C 2

3
x
3
2 /2.

Example C.6 Consider Laguerre’s equation defined by

xy00 C .1 � x/y0 C py D 0

where p is a constant. It is known that the only solutions bounded near the
origin are constant multiples of F.�p; 1; x/ where F.a; c; x/ denotes the confluent
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hypergeometric function defined by

F.a; c; x/ D 1C
1X

nD1

a.a C 1/ � � � .a C n � 1/
nŠc.c C 1/ � � � .c C n � 1/

xn :

The solutions are polynomials if p is a nonnegative integer. The functions

Ln.x/ D F.�n; 1; x/ ; n � 0 ;

are called Laguerre polynomials. They form an orthonormal basis in the Hilbert
space L2.Œ0;1/; e�xdx/ where the weight of the measure is given by the density
e�x, x � 0. Or, we may consider the Hilbert space L2.Œ0;1/; dx/ and take the
following definition of Laguerre polynomials:

Ln.x/ D e�x=2 1

nŠ
ex dn

dx
.xne�x/ ; n � 1 :

For example, L0.x/ D e�x=2, L1.x/ D e�x=2.1 � x/, L2.x/ D e�x=2.1 � 2x C x2

2
/.

Consult [96] for more details.

C.3 Nonlinear Differential Equations

Definition C.1 An ordinary differential equation of the form

dy

dx
C P.x/y D Q.x/yn (C.4)

is called a Bernoulli equation.

For n 6D 0; 1, multiplying both sides of (C.4) by .1 � n/y�n, we obtain

.1� n/y�n dy

dx
C .1 � n/P.x/y1�n D .1 � n/Q.x/ :

By the change of variable z D y1�n, we have

dz

dx
D .1� n/y�n dy

dx
:

Hence the nonlinear equation given by (C.4) is converted into the linear equation

dz

dx
C .1 � n/P.x/z D .1 � n/Q.x/ :
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Definition C.2 An ordinary differential equation of the form

dy

dx
D p.x/C q.x/y C r.x/y2 (C.5)

is called a Riccati equation.

There is no closed-form solution for (C.5) and we have to resort to numerical
solutions, in general. However, if we can find a particular solution y1.x/, then the
general solution is of the form y.x/ D y1.x/ C z.x/ where z.x/ is the general
solution of

dz

dx
� fq.x/C 2r.x/y1.x/g z.x/ D r.x/z.x/2 ;

which is the Bernoulli equation with n D 2.

C.4 Ordinary Differential Equations Defined by Vector
Fields

A function F W Rn ! R
n is called a vector field. If a curve � W .a; b/ ! R

n satisfies
the differential equation

d�

dt
D F.�.t// ;

then � is called an integral curve of the vector field F.

Definition C.3 (Exponential of a Matrix) Let A denote an n 	 n matrix. Define
eA by

exp.A/ D eA D
1X

kD0

1

kŠ
Ak

where the infinite sum is defined by the convergence of finite sums of matrices in
the n2-dimensional Euclidean space. To show that the sum converges, first we regard
A D .Aij/

n
i;jD1 as a point in the Euclidean space R

n2 with the norm jj � jj defined by

jjAjj D max
ij

jAijj :

Recall that Rn2 is a complete metric space. Then we use the fact that the partial sumsPN
nD1 1

nŠA
n form a Cauchy sequence in R

n2 , and converges to a limit as N ! 1.
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Theorem C.1 (Differential Equation Defined by a Matrix) Let x W R
1 ! R

n

denote a differentiable curve. Consider an ordinary differential equation

d

dt
x.t/ D A x.t/ ; x.0/ D x0

defined by an n 	 n matrix A. Then its solution is given by

x.t/ D etAx0 :

C.5 Infinitesimal Generators for Vector Fields

Example C.7 Let A be an n 	 n matrix. Put gt D etA for t 2 R. Then fgtgt2R is a
one-parameter group of linear transformations acting on R

n. Note that

Av D lim
t!0

1

t
.etAv � v/ D Av

and that A is the linear transformation given by multiplication by A.

Example C.8 (Ordinary Differential Equation) Consider a system of linear differ-
ential equations given by

d

dt
x.t/ D Ax.t/ ; x.0/ D x0 :

Then clearly x.t/ D gtx0 D etAx0 and

d

dt

ˇ
ˇ
ˇ
tD0x.t/ D lim

t!0

1

t
.etAx0 � x0/ D Ax0 :

Hence A is multiplication by A as expected. For example, consider x00 D x. Then

put y D x0. Then we have a system of equations x0 D y, y0 D x. Let x D
�

x
y

�

and

A D
�
0 1

1 0

�

: Then
d

dt
x D Ax. Its solution is given by x.t/ D etAx0.

Example C.9 (Exponential of Differential Operators) Consider differential opera-
tors which act on the set of sufficiently smooth functions defined on the real line.

(i) The exponential of differentiation is translation, i.e.,

exp

�

t
d

dx

�

�.x/ D �.x C t/

in a suitable sense.
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(ii) The exponential of Laplacian solves the diffusion equation since

exp

�

t
d2

dx2

�

�.x/ D .� � Gt/.x/

in a suitable sense where Gt is the heat kernel and � denotes convolution. For
more information, consult [55].
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Diffusion Equations

D.1 Examples of Partial Differential Equations

An equation consisting of partial derivatives of a function of several variables is
called a partial differential equation. When one of the variables represents time, it
is usually denoted by t. The following are typical examples of second order linear
partial differential equations with constant coefficients.

Example D.1 The partial differential equation

@2f

@x21
C � � � C @2f

@x2n
D 0

is called the Laplace equation, and its solutions are called harmonic functions. For
the existence and uniqueness of the solution, we impose a boundary condition along
the boundary of the domain.

Example D.2 The partial differential equation

@2f

@t2
�
�
@2f

@x21
C � � � C @2f

@x2n

�

D 0

is called the wave equation, and describes propagation of waves in n-dimensional
space. For the existence and uniqueness of the solution, we need an initial condition,
and in some cases a boundary condition.

Example D.3 The partial differential equation

@f

@t
D a2

@2f

@x2

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7
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is called the heat equation or diffusion equation, and represents dissipation of
heat or chemicals. The Black–Scholes–Merton partial differential equation can be
converted to the heat equation through changes of variables.

D.2 The Fourier Transform

Define the Fourier transform F.s/ of a function f .t/ by

F.s/ D F Œ f .t/�.s/ D 1

2

Z 1

�1
e�istf .t/ dt :

Note that F is a linear transformation.

Example D.4 (Solution of Heat Equation) Using the Fourier transformation we
solve the heat equation given by

@f

@t
D a2

@2f

@x2
; �1 < x < 1 ; t > 0 (D.1)

together with the initial condition

f .x; 0/ D g.x/ ; �1 < x < 1

and the boundary condition

f .x; t/ ! 0 ;
@f

@x
.x; t/ ! 0 as x ! ˙1 ; t > 0 :

Apply the Fourier transform to both sides of (D.1), and derive and solve the resulting
equation in terms of F.s/, and apply the inverse Fourier transform. Then we have

f .x; t/ D 1

2a
p
t

Z 1

�1
g.s/ exp

�

� .x � s/2

4a2t

�

ds :

If g.s/ is given by the Dirac delta functional ı0.s/ concentrated at 0, then

f .x; t/ D 1

2a
p
t

exp

�

� x2

4a2t

�

:
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D.3 The Laplace Transform

Define the Laplace transform F.s/ of a function f .t/, t � 0, by

F.s/ D L Œ f .t/�.s/ D
Z 1

0

e�stf .t/ dt :

For some functions the Laplace transform is not defined. For example, for s > 0,

L
h1

t

i
D
Z 1

0

e�st

t
dt C

Z 1

1

e�st

t
dt >

Z 1

"

e�s

t
dt ! C1

as " # 0. If f .t/ is piecewise continuous on t � 0 and satisfies the condition that
j f .t/j � Meat, a � 0, then L Œ f .t/�.s/ exists for all s > a. It is easy to see that L is
a linear transformation.

Fact D.1 The following basic facts are known:

(i) L Œ f .at/� D 1
a F
�

s
a

�
, a 6D 0.

(ii) L Œt˛� D �.˛C1/
s˛C1 , ˛ � 0. In particular, L Œ1� D 1

s , s > 0.

(iii) L Œeat� D 1
s�a , s > a.

(iv) L Œ f 0.t/� D sL Œ f � � f .0/.
(v) L Œ f 00.t/� D s2L Œ f � � sf .0/� f 0.0/.

(vi) L Œtf .t/� D �F0.s/.
(vii) L Œ

R t
0

f .u/du� D 1
sL Œ f .t/�.

(viii) L
h

f .t/
t

i
D R1

s F.v/dv.

(ix) L Œeatf .t/� D F.s � a/.
(x) L Œ f .t�a/H.t�a/� D e�asL Œ f �, a > 0, where H.x/ is the Heaviside function

defined by H.x/ D 1, x � 0, and H.x/ D 0, x < 0.
(xi) L Œı.t � a/� D e�as, a > 0.

Example D.5

L

t� 1

2

� D
p
p
s
:

To see why, note that

L

t�

1
2
� D

Z 1

0

e�stt�
1
2 dt (Take st D u.)

D s� 1
2

Z 1

0

e�uu� 1
2 du (Take u D z2.)

D 2s� 1
2

Z 1

0

e�z2dz D 2s� 1
2

p


2
:
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Fact D.2 The following facts are known:

(i) Define the convolution by

. f � g/.t/ D
Z t

0

f .t � u/ g.u/ du :

Then

L Œ f � g� D L Œ f �L Œg� :

(ii) The inverse of the Laplace transform is given by

L �1ŒF.s/� D f .t/ D 1

2i

Z cCi1

c�i1
F.s/ estds :

Definition D.1 For �1 < x < 1 define the error function by

erf.x/ D 2p


Z x

0

e�u2du :

Note that limx!1 erf.x/ D 1. Let N.�/ denote the cumulative distribution function
of the standard normal distribution. Then

1C erf.x/

2
D
Z p

2x

�1
1p
2

e�u2=2du D N.
p
2x/ :

Fact D.3 The error function satisfies

L

erf.

p
t/
� D 1

s
p

s C 1
:

To see why, note that

erf.
p

t/ D 2p


Z p
t

0

e�x2dx D 1p


Z t

0

u� 1
2 e�udu :

Hence

L

erf.

p
t/
� D 1p


L

�Z t

0

u� 1
2 e�udu

�

D 1p


1

s
L
h
t�

1
2 e�t

i
:

Now use L Œt� 1
2 e�t� D

p
p

sC1 .
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Fact D.4 For C � 0 the error function satisfies

L

�

erf

�
Cp

t

��

D 1

s
.1 � e�2C

p
s/ :

Example D.6 (Diffusion Equation) Using the Laplace transformation we solve

@f

@t
D a2

@2f

@x2
(D.2)

for a > 0. The initial condition is given by the Dirac delta function f .x; 0/ D ı0.x/.
For t > 0, f .x; t/ represents a probability density and satisfies limx!˙1 f .x; t/ D 0

and limx!˙1 @f
@x .x; t/ D 0. This problem is not easy to solve because the initial

condition is given by a measure. We make it smoother in the following way:
First, put

u. y; t/ D
Z y

�1
f .x; t/ dx :

From (D.2) we obtain

Z y

�1
@f

@t
.x; t/ dx D a2

Z y

�1
@2f

@x2
.x; t/ dx :

Then the left- and the right-hand sides are respectively equal to @u
@t .x; t/ and

a2
Z y

�1
@2f

@x2
.x; t/ dx D a2

�
@f

@x
. y; t/ � @f

@x
.�1; t/

�

D a2
@f

@x
. y; t/ :

Hence we obtain

@u

@t
D a2

@2u

@x2
(D.3)

with u.x; 0/ D H.x/ where H.x/ is the Heaviside function. Recall that from
distribution theory, established by Laurent Schwartz, we have H0.x/ D ı0.x/.

Let U.x; s/ denote the Laplace transform of u.x; t/ with respect to t. Since

L

�
@u

@t

�

.x; s/ D sL Œu�.x; s/ � u.x; 0/ ;

by taking the Laplace transforms of the both sides of (D.3), we obtain

a2
@2U

@x2
� s U D �H.x/ : (D.4)
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To solve it, we first try to find a solution of the corresponding homogeneous
equation, which is a second order linear differential equation, and there exists
two linearly independent solutions. Since s > 0, the solution is of the form
c1 e.

p
s=a/x C c2 e�.ps=a/x. Now, for x > 0, (D.4) has a particular solution UP.x; s/ D

1

s
, and hence (D.4) has a general solution of the form

U.x; s/ D c1 e.
p

s=a/x C c2 e�.ps=a/x C 1

s
:

Since limx!1 u.x; t/ D 1, we have limx!1 U.x; s/ D 1

s
. Hence c1 D 0 and (D.4)

has a general solution of the form

U.x; s/ D c2 e�.ps=a/x C 1

s
:

There still remains an unused condition. The initial data is symmetric and the
differential equation is also symmetric so that the solution, which is a probability
density function f .x; t/, is also symmetric with respect to x D 0. Hence u.0; t/ D 1

2

and hence U.0; s/ D 1
2s . Since

c2e�.ps=a/�0 C 1

s
D 1

2s
;

we have c2 D � 1
2s . A general solution of (D.4) is of the form

U.x; s/ D � 1

2s
e�.ps=a/x C 1

s
: (D.5)

Finally, taking the inverse Laplace transform of (D.5), we obtain

u.x; t/ D L �1
�

� 1

2s
e�.ps=a/x C 1

s

�

D 1

2
L �1

�
1

s
.1 � e�.ps=a/x/

�

C L �1
�
1

2s

�

D 1

2
erf

�
x

2a
p

t

�

C 1

2

D N

�
x

a
p
2t

�

D 1p
2

Z x=a
p
2t

�1
exp

�

�y2

2

�

dy :
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Therefore

f .x; t/ D @u

@x
.x; t/ D 1

2a
p
t

exp

�

� x2

4a2t

�

:

D.4 The Boundary Value Problem for Diffusion Equations

Consider the diffusion equation ut D uxx with an initial condition (IC) and/or a
boundary condition (BC) on a domain 0 � x � L, 0 � t � T with

�
IC u.x; 0/ D g.x/ ;
BC u.0; t/ D a.t/ ; u.L; t/ D b.t/ :

We do not exclude the cases L D 1 and/or T D 1 (Fig. D.1).

Example D.7 g.x/ D sin.L x/, a D b D 0. Then u.x; t/ D e�t sin.x/.

Fig. D.1 A domain and a
boundary condition for a
diffusion equation

π
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Entropy

E.1 What Is Entropy?

Claude Elwood Shannon created information theory by publishing a paper on data
transmission in 1948, laying the foundation of digital communication technology.
One of his contributions is on data compression, where entropy is the amount of
information content or randomness contained in a digital signal. He adopted the term
‘entropy’ from thermodynamics in physics to measure information content after he
met John von Neumann. According to legend, von Neumann said, “There are two
reasons why the term entropy should be used. First, no one knows what entropy
really is, and there will be no one who will challenge the new theory. Second, a
fashionable word such as entropy will attract many people to a new theory.” The
mathematical definition of Shannon’s entropy has the same form as the entropy
used in thermodynamics, and they share the same conceptual root in the sense that
both measure the amount of randomness.

Shannon’s entropy can be explained in the following way: Consider an infinitely
long binary sequence. Shannon showed that the maximal possible rate of data
compression is equal to the entropy. For example, if 0 and 1 appear independently
with probability 1

2
each, then the entropy is log 2. The most widely used lossless

data compression algorithm is the Ziv–Lempel algorithm. For more information
consult [21].

Definition E.1 (Discrete Entropy) Let . p1; : : : ; pn/, pi � 0, be a discrete proba-
bility distribution. Its entropy is defined by

H D
nX

iD1
pi log

1

pi

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7
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where the natural logarithm is employed and 0 log 0 D 0 by convention. (Any
logarithmic base may be used in the definition.) Note that the discrete entropy is
nonnegative.

Example E.1 Consider a coin tossing problem where the probability of obtaining
heads is p, and the probability of obtaining tails is q D 1 � p. Then the entropy
is equal to �p log p � q log q. Note that the entropy of the probability distribution
. p1; : : : ; pn/ is bounded by log n. For the proof see Example 3.7.

Definition E.2 (Continuous Entropy) For a continuous distribution the probabil-
ity density function 
.x/, the entropy is defined by

H.
/ D �
Z 1

�1

.x/ log
.x/ dx :

Note that the continuous entropy can be negative.

Example E.2 The uniform distribution in Œa; b� has density function


.x/ D
�

1
b�a ; x 2 Œa; b�
0; x 62 Œa; b�

and its entropy is equal to � R b
a

1
b�a log 1

b�a dx D log.b � a/.

Example E.3 Consider a normal distribution with the pdf given by


.x/ D 1p
2�2

exp

�

� .x � �/2

2�2

�

:

Then H.
/ D 1
2

log.2�2/C 1
2
.

E.2 The Maximum Entropy Principle

When the full information is not available for a probability distribution for a
given problem, we attempt to guess the probability distribution under a constraint
determined by partial information. Since entropy is regarded as the amount of
randomness, any additional information on the probability distribution would reduce
entropy, thus the entropy maximizing distribution already contains all the available
information, which is called the Maximum Entropy Principle. In other words, the
desired distribution is the one with maximum entropy. For an application in finance,
see [16].

Example E.4 (Discrete Entropy) We are given a small cube. When rolled, the cube
comes to rest showing on its upper surface one to six spots with probabilities equal
to pi > 0, p1 C � � � C p6 D 1, which are unknown to us. If it is known that the
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expectation of the number of spots on the cube is equal to 4, i.e.,
P6

iD1 i 	 pi D 4,
what is a reasonable way to estimate pi? To solve the problem we employ the
Maximum Entropy Principle. Since the sum of probabilities is equal to 1, we
have g1. p1; : : : ; p6/ D P6

iD1 pi � 1 D 0, and the given condition is written as
g2. p1; : : : ; p6/ D P6

iD1 i 	 pi � 4 D 0. Now we apply the Lagrange multiplier
method to the following function F defined by

F. p1; : : : ; p6; �1; �2/ D
X

i

pi log
1

pi
C �1 g1. p1; : : : ; p6/C �2 g2. p1; : : : ; p6/

and find p1; : : : ; p6. Then the distribution with maximal entropy is given by pi D Cri,
1 � i � 6, for some C and r. For more details consult [33].

For a continuous entropy, we use calculus of variations to find 
. We assume
that there exists a unique pdf 
max such that H.
max/ D Hmax is maximal among all
possible values H.
/ where 
 is a pdf satisfying given conditions. Choose a pdf �
and define


".x/ D 
max.x/C "�.x/

1C "
: (E.1)

We assume that 
" � 0 for some sufficiently small � > 0, �� < " < �, so that 
" is
a pdf. Furthermore, we choose � in such a way that 
" satisfies the given conditions.
Consider a function " 7! H.
"/, �� < " < �, which takes the maximum at " D 0.

We derive a condition on 
max from d
d"

ˇ
ˇ
ˇ
"D0H.
"/ D 0 and show d2

d"2

ˇ
ˇ
ˇ
"D0H.
"/ < 0

to check whether H.
max/ D Hmax is maximal. Note that

d

d"
H.
"/ D �

Z 1

�1

��
d

d"

"

�

log 
� C d

d"

"




dx ;

d2

d"2
H.
"/ D �

Z 1

�1

(�
d2

d"2

"

�

log 
� C
�

d

d"

"

�2
1


"
C d2

d"2

"

)

dx :

Since d
d"
"

ˇ
ˇ
ˇ
"D0 D �.x/� 
max.x/, we have

d

d"
H.
"/

ˇ
ˇ
ˇ
"D0 D �

Z
f.� � 
max/ log 
max C .� � 
max/g dx :

Since d
d"H.
"/

ˇ
ˇ
"D0 D 0, and since

Z
.� � 
max/ dx D 1� 1 D 0 ; (E.2)
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we have
Z
.� � 
max/ log 
max dx D 0 : (E.3)

Since d2

d"2

"

ˇ
ˇ
ˇ
"D0 D �2.�.x/� 
max.x//, (E.2) and (E.3) together imply

d2

d"2
H.
"/

ˇ
ˇ
ˇ
"D0 D �

Z 1

�1
.� � 
max/

2


max
dx < 0 :

Theorem E.1 (Uniform Distribution) Among the continuous probability distribu-
tions taking values in Œa; b�, the uniform distribution has the maximal entropy.

Proof Take s and t such that a � s < t � b. Choose a pdf �.x/ which is almost
concentrated at s and t with probabilities p and 1 � p, respectively. Since we will
take the limit as � converges to a discrete probability measure concentrated at s and
t, we assume that �.x/ itself is such a discrete probability measure. By (E.3), we
have

Hmax D �p log
max.s/� .1 � p/ log 
max.t/ D �p log

max.s/


max.t/
� log 
max.t/

for 0 < p < 1. Hence log 
max.s/

max.t/

D 0 and Hmax D � log 
max.t/. Hence 
max.s/ D

max.t/ and 
max.t/ D e�Hmax . Thus 
max.x/ D e�Hmax . Since

R b
a 
max.x/dx D 1, we

have 
max.x/ D 1
b�a and Hmax D log.b � a/. ut

Theorem E.2 (Exponential Distribution) Among all the continuous probability
distributions taking values in the interval Œ0;1/ with average 1=�, the exponential
distribution has the maximal entropy.

Proof Take s and t such that 0 � s < 1
�
< t < 1. Choose a pdf �.x/ which is

almost concentrated at s and t with probabilities p and 1�p, respectively. We assume
that �.x/ itself is a discrete probability measure concentrated at s and t. Choose p in
such a way that the average of � satisfies spC t.1�p/ D 1

�
, i.e., p D .t � 1

�
/=.t � s/,

and define 
" as in (E.1). By (E.3), we have Hmax D p.log 
max.t/ � log 
max.s// �
log 
max.t/. Hence

log 
max.t/ � .�Hmax/

t � 1
�

D log 
max.t/ � log 
max.s/

t � s
: (E.4)

As s and t both converge to 1
�

, the right-hand side of (E.4) converges to the limit

0

max.
1
�
/=
max.

1
�
/. Hence 
max.

1
�
/ D e�Hmax since the left-hand side of (E.4) also has
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to converge to a limit. Thus (E.4) is rewritten as

log 
max.t/ � log 
max.
1
�
/

t � 1
�

D log 
max.t/ � log 
max.s/

t � s
: (E.5)

Note that the left- and right-hand sides of (E.5) are the average slopes of y D
log 
max.x/ over the intervals Œs; t� and Œ 1

�
; t�. Since they are equal, y D log 
max.x/

is a straight line. Therefore, 
max.x/ D Ce�ax for some C > 0 and a > 0. SinceR1
0

Ce�axdx D 1, we have C D a. Since 1
�

D R1
0

xae�axdx D 1
a , we have a D �,


max.x/ D �e��x and Hmax D � log 
max.
1
�
/ D log�C 1. ut

Theorem E.3 (Normal Distribution) Among the continuous probability distribu-
tions taking values in .�1;1/ with average � and variance �2, the normal
distribution N.�; �2/ has the maximal entropy.

Proof For notational simplicity we assume that � D 0 and � D 1. Let 
max be the
pdf such that H.
max/ D Hmax is maximal among all possible values H.
/ where 

is a pdf satisfying

Z 1

�1
x
.x/dx D 0 (E.6)

and
Z 1

�1
x2
.x/dx D 1 : (E.7)

First, note that 
max.�x/ D 
max.x/. If not, let z
.x/ D 
max.�x/. Then

H.z
/ D �
Z C1

�1

max.�x/ log 
max.�x/ dx D

Z �1

C1

max. y/ log 
max. y/ dy

and hence H.z
/ D Hmax and 
max D z
 by the uniqueness.
Based on the fact that 
max is an even function, we take a symmetric set J D

Œ�b;�a� [ Œa; b�, 0 < a < b, such that 
max.x/ � C for x 2 J for some C > 0.
Choose �.x/ � 0 such that

fx W �.x/ > 0g � Œa C ı; b � ı� [ Œ�.b � ı/;�.a C ı/�

for some small ı > 0 such that a C ı < b � ı with the properties

Z 1

�1
�.x/dx D 1 ; (E.8)

Z 1

�1
x�.x/dx D 0 (E.9)
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and
Z 1

�1
x2�.x/dx D 1 : (E.10)

Define


".x/ D 
max.x/C "�.x/

1C "
:

Then
R1

�1 
"dx D 1 and 
" � 0 for some � > 0, �� < " < �, and 
" satisfies (E.6)
and (E.6). Define a mapping " 7! H.
"/ and derive (E.2) and (E.3).

To find a condition on 
max.x/ on jxj � 1, fix a � 1, and a pdf � which is almost
concentrated at x D ˙a with probability 0 < p < 1

2
each, and at 0 with probability

1� 2p. Since we take the limit as � converges to a discrete probability concentrated
at ˙a and 0, we assume that � itself is such a discrete probability. Then p and a
satisfy a2p C .�a/2p C02.1�2p/ D 1 by (E.10). Hence 2p D 1

a2
, and (E.3) implies

�Hmax D R
� log 
maxdx D 1

a2
log 
max.a/C .1 � 1

a2
/ log 
max.0/, and hence


max.x/ D 
max.0/e�.HmaxClog 
max.0//x2 ; jxj � 1 : (E.11)

To find a condition on 
max.x/ for jxj � 1, fix a � 1 and take �.x/ which is almost
concentrated at x D ˙a;˙ 1

a with probabilities p, p, 1
2

� p, 1
2

� p. From (E.10),
a2p C 1

a2
. 1
2

� p/C .�a/2p C 1
.�a/2

. 1
2

� p/ D 1. Hence a2p C 1
a2
. 1
2

� p/ D 1
2
, p D

1
2

1
a2C1 . Since (E.3) implies �Hmax D 2

˚
log 
max.a/ 	 p C log 
max

�
1
a

� 	 . 1
2

� p/
	
,

we have, for jaj � 1,

log 
max

�
1

a

�

D 1
1
2

� p

�

�1
2

Hmax � p log
max.a/

�

D 2.a2 C 1/

a2

�

�1
2

Hmax � 1

2

1

a2 C 1

˚
log 
max.0/� .Hmax C log 
max.0//a

2
	
�

D log 
.0/�
�
1

a2
Hmax C log 
max.0/

�

;

and hence, by taking x D 1
a , we conclude that (E.11) holds for jxj � 1, too.

Since (E.8) and (E.10) hold for 
.x/, we have

Z 1

�1

.0/e�.HmaxClog
.0//x2dx D 1 (E.12)
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and
Z 1

�1
x2
.0/e�.HmaxClog 
.0//x2dx D 1 : (E.13)

Substituting y D p
2
p

Hmax C log
max.0/x in (E.12), we obtain


max.0/ D
p

Hmax C log 
max.0/p


: (E.14)

Hence (E.13) becomes
R1

�1 x2
max.0/ exp.�
max.0/
2x2/ dx D 1. Taking z Dp

2
.0/x, we have 2
max.0/
2 D 1, 
max.0/ D 1p

2
, and Hmax D 1

2
C 1

2
log.2/

by (E.14). Thus 
max.x/ D 1p
2

e� 1
2 x2 . ut

Consider a risky asset S. If the average of the return ıS
S over time ıt is given by

�ıt and the variance by �2ıt, then by applying the maximal entropy principle we
assume that ıSS has the normal distribution with average�ıt and variance �2ıt. Thus
the maximal entropy principle gives another plausible explanation for hypothesis on
the geometric Brownian motion of S.



Appendix F
MATLAB Programming

We present a brief introduction to the software MATLAB,1 providing just enough to
understand and modify the programs given in this book. For a more comprehensive
introduction to various examples of MATLAB programs, see [70].

F.1 How to Start

The name of a MATLAB file ends with the extension ‘.m’. The command clear

all removes all stored variables from the current workspace, freeing up system
memory. The command clc clears the area on the screen called the Command
Window, and the output is displayed in the same starting position on the screen. The
command clf clears the current figure window. In the beginning of a MATLAB file
it is convenient to include a line consisting of three commands clear all; clc;

clf;. To save space the above three commands are usually not shown in MATLAB

codes presented in this book.
If a command or a name of a variable ends without a semicolon (;) then the output

is printed in the Command Window. If there is no need to see the output, just type a
semicolon at the end of the line, then MATLAB will perform the command, but will
not show the result on the screen. The following code lists a few basic mathematical
operations.

1+4

9-2

5*6

2^7

1MATLABr is a registered trademark of The MathWorks, Inc., and was developed to deal with
mathematical problems mostly in applied mathematics. It stands for MATrix LABoratory, and as
the name suggests, it is efficient in doing numerical computations involving vectors and matrices.

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7
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produces

ans =

5

ans =

7

ans =

30

ans =

128

The following code

p=1/3

format long

p

a=exp(-1.2)

b=log(a)

get(0,’format’) % Check the format for display of decimal numbers.

format short

b

produces

p =

0.3333

p =

0.333333333333333

a =

0.301194211912202

b =

-1.200000000000000

ans =

long

b =

-1.2000

For trigonometric functions

pi

sin(pi)

cos(pi/2)

tan(pi/4)

produces

ans =

3.1416

ans =

1.2246e-16

ans =

6.1232e-17

ans =

1.0000
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F.2 Random Numbers

To generate 2 	 5 matrices A;B;C consisting of random numbers with the uniform
distribution in .0; 1/, with the standard normal distribution, and with the uniform
distribution in the set of integers �1 � n � 4, respectively, we use

A = rand(2,5)

B = randn(2,5)

C = randi([-1,3],2,5)

produces

A =

0.4363 0.0261 0.4306 0.7624 0.6800

0.1739 0.9547 0.9616 0.0073 0.7060

B =

0.0831 -0.5279 -0.8499 0.7253 -0.3864

0.1578 0.7231 -0.7964 1.6865 -0.5051

C =

2 3 0 1 -1

3 1 3 3 1

F.3 Vectors and Matrices

MATLAB can process a given group of objects more efficiently if they are expressed
as vectors or matrices.

u = [1 2 3 4]

v = transpose(u)

w = zeros(4,1)

v + w

3*v

A = ones(3,4)

A*v

B = [1 2 3; 0 1 4; 2 3 1; -1 0 7]

C = A*B

produces

u =

1 2 3 4

v =

1

2

3

4

w =

0

0

0

0
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ans =

1

2

3

4

ans =

3

6

9

12

A =

1 1 1 1

1 1 1 1

1 1 1 1

ans =

10

10

10

B =

1 2 3

0 1 4

2 3 1

-1 0 7

C =

2 6 15

2 6 15

2 6 15

There are two ways to compute the inverse of a matrix.

D = rand(3,3)

det(D) % Check the determinant to see whether the matrix is invertible.

I = diag(ones(3,1)) % the identity matrix

I / D

D \ I

inv(D)

produces

D =

0.8842 0.3990 0.7360

0.0943 0.0474 0.7947

0.9300 0.3424 0.5449

ans =

0.0480

I =

1 0 0

0 1 0

0 0 1

ans =

-5.1301 0.7197 5.8793

14.3272 -4.2228 -13.1923

-0.2460 1.4249 0.0894

ans =

-5.1301 0.7197 5.8793

14.3272 -4.2228 -13.1923
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-0.2460 1.4249 0.0894

ans =

-5.1301 0.7197 5.8793

14.3272 -4.2228 -13.1923

-0.2460 1.4249 0.0894

It is better to use E=D instead of E*inv(D) when we solve a linear system of
equations XD D E, and use DnE instead of inv(D)*Ewhen we solve a linear system
of equations DX D E.

E = rand(3,3)

det(E)

E / D

E*inv(D)

D \ E

inv(D)*E

produces

E =

0.6862 0.3037 0.7202

0.8936 0.0462 0.7218

0.0548 0.1955 0.8778

ans =

-0.1712

ans =

0.6531 0.2377 0.0929

-4.1002 1.4765 4.7091

2.3036 0.4647 -2.1782

ans =

0.6531 0.2377 0.0929

-4.1002 1.4765 4.7091

2.3036 0.4647 -2.1782

ans =

-2.5551 -0.3753 1.9857

5.3352 1.5768 -4.3100

1.1094 0.0086 0.9297

ans =

-2.5551 -0.3753 1.9857

5.3352 1.5768 -4.3100

1.1094 0.0086 0.9297

The following defines a tridiagonal matrix.

a = -1;

b = 2;

c = 3;

m = 6;

T = diag(a*ones(m,1)) + diag(b*ones(m-1,1),1) + diag(c*ones(m-1,1),-1)
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produces

T =

-1 2 0 0 0 0

3 -1 2 0 0 0

0 3 -1 2 0 0

0 0 3 -1 2 0

0 0 0 3 -1 2

0 0 0 0 3 -1

F.4 Tridiagonal Matrices

The following produces a tridiagonal matrix. Consult Lemma B.1 for the interpre-
tation of the output.

a = -1;

b = 2;

c = 2;

n = 6;

%The following produces a tridiagonal matrix.

T = diag(a*ones(n,1)) + diag(b*ones(n-1,1),1) + diag(c*ones(n-1,1),-1)

rank(T) % rank

det(T) % determinant

eig(T) % eigenvalues

lambda(1:n,1) = a + 2*b*cos([1:n]*pi/(n+1))

produces

T =

-1 2 0 0 0 0

2 -1 2 0 0 0

0 2 -1 2 0 0

0 0 2 -1 2 0

0 0 0 2 -1 2

0 0 0 0 2 -1

ans =

6

ans =

13

ans =

-4.6039

-3.4940

-1.8901

-0.1099

1.4940

2.6039

lambda =

2.6039

1.4940
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-0.1099

-1.8901

-3.4940

-4.6039

In the last sentence of the code, lambda(1:n,1) and cos([1:n]*pi/(n+1)) are
regarded as vectors.

F.5 Loops for Iterative Algorithms

As an example of an iterative algorithm, we present a method of testing the
uniform distribution of M pseudorandom numbers generated by the command
rand. First, we divide the unit interval into N subintervals of equal length,
Œ0; 1N /; Œ

1
N ;

2
N /; : : : ; Œ

N�1
N ; 1/, and count how many times the pseudorandom numbers

belong to each subinterval.

M = 500;

N = 5;

x = rand(M,1);

width = 1/N;

bin = zeros(1,N); % initial values for each bin

for i = 1:M

j = ceil(x(i)/width);

bin(j) = bin(j) + 1;

end

bin

produces

bin =

95 104 111 95 95

Note that ceil(x(i)/width) will find to which bin the ith random number x(i)
belongs, where ceil(x) for ‘ceiling’ is the smallest integer greater than or equal to
x.
For the second example of an iterative algorithm, consider the Newton method for
computing

p
5. Take f .x/ D x2 � 5.

format long

x0 = 2.0; % Choose a suitable starting point.

f = x0^2 - 5;

fprime = 2*x0;

x = x0 - f/fprime

while abs(x - x0) > 10^(-10)

x0 = x;

f = x^2 - 5;

fprime = 2*x;
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x = x - f/fprime

end

produces

x =

2.250000000000000

x =

2.236111111111111

x =

2.236067977915804

x =

2.236067977499790

x =

2.236067977499790

F.6 How to Plot Graphs

As an example, let use plot the standard normal density function y D
1=.

p
2/ exp.�x2=2/ on the interval �5 � x � 5. First, take 1001 equally spaced

points in the interval where the function is evaluated.

x = -5:0.01:5;

Without the semicolon (;) at the end of the sentence, there would be a
display of 1001 D 5�.�5/

0:01
C 1 points starting from �5 to 5 with equal

increment 0:01 because x is regarded as a vector by MATLAB, i.e., x D
�5:0000;�4:9900;�4:9800;�4:9700;�4:9600; and so on. To evaluate the func-
tion we use

y = 1/(sqrt(2*pi))*exp(-x.^2/2);

where

x.^2

means that x2 is computed for each entry x of the vector x.

plot(x,y,’Color’,’b’,’LineWidth’,1.5)

produces a graph where b means the color blue. Other abbreviations for available
colors are k for black, r for red, g for green, and y for yellow. The line width can be
changed to 1 or 2, or any positive number.
For a specification of the range of the plot, we use

set(gca,’xlim’,[-5 5],’ylim’,[0 0.5],’xtick’,[-4:1:4],’ytick’,[0:0.1:0.5]);

where gca means the current axes for plotting a graph, and xlim and ylim specify
the ranges for the axes, and xtick and ytick specify the locations where tick marks
are drawn.
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F.7 Curve Fitting

For a set of two-dimensional data we find the best fitting polynomial in the least
squares sense. The command polyfit(X,Y,n) finds the polynomial of degree n
that best fits the data. In the following we find the best fitting quadratic polynomial
Y D aX2 C bX C c (Fig. F.1).

x = 0:0.1:10;

X = [1.2 2.4 3.2 4.7 5.6 7.0 9.0];

Y = [1.9 2.4 2.5 3.0 4.2 5.7 7.3];

p = polyfit(X,Y,2)

f = polyval(p,x);

plot(x,f)

hold on

plot(X,Y,’o’)

The coefficients a; b; c are given below:

p =

0.0631 0.0722 1.7048

For a linear fit see Fig. B.1.

F.8 How to Define a Function

A simple method of defining a function such as f .x/ D sin x
x is to use the command

inline as follows:

f = inline(’sin(x)/x’)

X
0 2 4 6 8 10

Y

0

2

4

6

8

10

Fig. F.1 Polynomial fitting of data
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x = 0.1;

f(x)

which produces

f =

Inline function:

f(x) = sin(x)/x

ans =

0.9983

For a complicated definition such as the Black–Scholes–Merton formula we define a
separate MATLAB file and call it from the inside of another file. Here is an example.
Define a function BlackScholes() of five variables by

BlackScholes.S;K;T; r; �/ D SN .d1/� Ke�rTN .d2/

where

d1;2 D log S
K C .r ˙ 1

2
�2/T

�
p

T
:

(We may choose any function name instead of BlackScholes, however, an
informative name will be helpful to avoid confusion with other functions. The
function name itself does not matter. Only the name of the file containing the
definition is called from another file.) Save the definition of BlackScholes() as
a separate MATLAB file with a title such as BSM.m as follows:

function [Call_price, Put_price] = BlackScholes(S,K,T,r,sigma)

% an example of a function file

d1 = (log(S/K)+(r + 0.5*sigma^2)*T)/(sigma*sqrt(T));

d2 = d1 - sigma*sqrt(T);

N1 = 0.5*( 1+erf(d1/sqrt(2)) );

N2 = 0.5*( 1+erf(d2/sqrt(2)) );

Call_price = S*N1 - K*exp(-r*T)*N2;

Put_price = Call_price +K*exp(-r*T) - S;

Input variables, S,K,T,r,sigma, are written inside a pair of parentheses, and
outputs, Call price, Put price, are written between a pair of brackets. From
another MATLAB file we call the function file name BSM as follows:

S = 100;

K = 110;

T = 1;

r = 0.05;

sigma = 0.3;

[Call_price, Put_price] = BSM(S,K,T,r,sigma)
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Then we obtain the following output in the command window:

Call_price =

10.0201

Put_price =

14.6553

F.9 Statistics

Compute the cumulative probability Pr.Z < a/ where Z � N.0; 1/ using the
command normcdf(a).

normcdf(0)

normcdf(1)

normcdf(2)

normcdf(3)

produces

ans =

0.5000

ans =

0.8413

ans =

0.9772

ans =

0.9987

The command mean(X) computes the average of sample values of a random
variable X while mean(X > a) gives the probability of the event fX > ag. That
is, mean(X) D EŒX� and mean(X > a) D Pr.X > a/ D E


1fX>ag

�
.

X = randn(100000,1);

mean(X.^2)

1 - mean(X > 1)

1 - mean(X > 2)

1 - mean(X > 3)

produces

ans =

1.0043

ans =

0.8418

ans =

0.9770

ans =

0.9986
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The command norminv(u) gives the inverse cumulative probability of the standard
normal distribution. That is, u D Pr.Z � norminv(u)/, 0 � u � 1.

norminv(0)

norminv(0.5)

norminv(0.99)

norminv(1)

normcdf(norminv(0.25))

produces

ans =

-Inf

ans =

0

ans =

2.3263

ans =

Inf

ans =

0.2500

Note that -Inf and Inf represent �1 and C1, respectively.



Solutions for Selected Problems

Problems of Chap. 1

1.1 Let K be the closed cone given by all convex linear combinations of d1; : : : ;dM

with nonnegative coefficients. Then either d0 2 K or d0 62 K. If d0 2 K, then (i) has
a solution. In this case, � � d0 D �1� � d1 C � � � C �M� � dM , and (ii) does not hold.
If d0 62 K, then there exists a hyperplane H in R

N that separates d0 and K. Choose
a normal vector ß 6D 0 to H and pointing in the direction where K is located. (See
Fig. 1.) Then � satisfies the second statement, but not the first statement. (Remark.
Suppose that the market is arbitrage free. If we take d0 D S0, then case (ii) does not
happen and case (i) holds. Thus S0 D �1d1C� � �C�MdM for some �1; : : : ; �M � 0.)

1.2

(i) Consider the equation

�
Cu

Cd

�

D Dt

�
a
b

�

. Unless .S2T.!u/; S2T.!d// is a constant

multiple of .S1T.!u/; S1T.!d//, there is a unique solution for every .Cu;Cd/. That
is, unless S1 and S2 are essentially the same asset with a different number of
units, a unique solution exists and the market is complete.

(ii) The given system of equations becomes

�
Cu D auS0 C b.1C r/B0
Cd D adS0 C b.1C r/B0

:

Since d 6D u, the determinant of Dt D
�

uS0 b.1C r/
dS0 b.1C r/

�

is nonzero, and hence

there exists a unique solution.

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
DOI 10.1007/978-3-319-25589-7
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Fig. 1 The closed convex
cone K in the proof of Farkas’
lemma

π

Problems of Chap. 2

2.1 The payoff of the portfolio is given by �ST C .ST � K/C which can be written
as a piecewise linear function f .ST/ defined by f .ST/ D �ST , 0 � ST � K, and
f .ST/ D �K, ST � K. The maximum loss is equal to �K.

2.2 A call option provides insurance if the holder of the call option has a short
position in the asset on which the option is written. A put option provides insurance
if the holder of the put option owns the asset on which the option is written.

2.3 A strangle is a sum of a put option with payoff .K1 � ST/
C and a call option

with payoff .ST � K2/C.

Problems of Chap. 3

3.7 Since A D S1
kD1

n
x D Pk

nD1 an2
�n W an D 0; 1

o
, A has countably many points,

and its Lebesgue measure is 0.

3.8 Show that 1
4

D 0:0202020202 : : : in the ternary expansion. If we consider an
experiment with three outcomes represented by three symbols ‘0’, ‘1’, ‘2’, each
having probability 1

3
, then the unit interval is regarded as the set of every possible

outcome represented by a number x in the ternary expansion x D a1a2a3 : : : where
ai 2 f0; 1; 2g. The set A consists of the results of obtaining either 0 or 2 in each trial,
and hence the probability of A is 2

3
	 2

3
	 2

3
	 � � � D 0.

3.9 Use the sequence constructed in the construction of the Lebesgue integral in
Sect. 3.3.

3.13 If we take �.x/ D 1
x in Jensen’s inequality, then 1R

X dP
� R

1
X dP and hence

R
X dP

R
1
X dP � 1. Since Y � 1

X , we conclude that
R

X dP
R

Y dP � 1.
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Problems of Chap. 4

4.1 Note that

1X

jD0
P.fX � jg/ D

1X

jD0

1X

kDj

P.fk � X < k C 1g/ :

4.2 Since �.X/ D 1, we have 0 D �.EŒX�/ < EŒ�.X/� D 1.

4.3 F.x/ D
�
0; x < a ;
1; x � a :

4.4 Substituting t D p
x, we have

Z 1

0

e
p

xdx D
Z 1

0

et2t dt D 
et2t

�1
0

�
Z 1

0

et2 dt D 2e � 2.e � 1/ D 2 :

4.5 Let f .x/ denote the pdf of the standard normal distribution. Since f .�x/ D f .x/,
we have N.˛/CN.�˛/ D R ˛

�1 f .x/dxCR �˛
�1 f .x/dx D R ˛

�1 f .x/dxCR1
˛

f .x/dx DR1
�1 f .x/dx D 1.

4.6 Since Pr.F�1.U/ � x/ D Pr.U � F.x// D F.x/, we see that F�1.U/ and X
have the same distribution function F.

4.8

EŒeX � D
Z 1

�1
ex 1p

2�
e�.x��/2=2�2dx .Take z D x � �

�
:/

D
Z 1

�1
e�zC� 1p

2
e�z2=2dz

D
Z 1

�1
e�C�2=2 1p

2
e�.z��/2=2dz

D e�C�2=2
Z 1

�1
1p
2

e�z2=2dz D e�C�2=2 :

Since 2X has mean 2� and variance 4�2, we have EŒe2X � D e2�C2�2 . Thus

Var.eX/ D EŒ.eX � e�C�2=2/2�

D EŒe2X � 2e�C�2=2eX C e2�C�2�

D e2�C2�2 � 2e�C�2=2e�C�2=2 C e2�C�2

D e2�C�2.e�2 � 1/ :
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4.9 Since ˛Z is normal with mean 0 and variance ˛2, by Exercise 4.8 we have

jje˛Zjjp
p D EŒe˛pZ � D e˛

2p2=2 < 1 :

4.10

EŒe˛Z2 � D
Z 1

�1
1p
2

e˛x2e�x2=2 dx

D
Z 1

�1
1p
2

e�.1�2˛/x2=2 dx .z D p
1 � 2˛ x:/

D 1p
1 � 2˛

Z 1

�1
1p
2

e�z2=2 dz D 1p
1 � 2˛ :

4.12 Note that

EŒY4� D E

hX

i

X

j

X

k

X

`

.Ui � 1

2
/.Uj � 1

2
/.Uk � 1

2
/.U` � 1

2
/
i
:

There are five cases: (i) all of i; j; k; ` are distinct, (ii) there exists only one equal pair,
(iii) there are two equal pairs, (iv) one equal triple, and (v) all are equal. The cases
(i),(ii),(iv) produce zero, while (iii),(v) yield 1

144

�
12
2

��
4
2

��
2
2

� D 11
4

and 1
80

�
12
1

��
4
4

� D 3
20

,
respectively. Hence EŒY4� D 11

4
C 3

20
D 29

10
.

4.13 Since h.x/ D x2, we have h�1. y/ D ˙p
y for 0 � y � 1 and

fY. y/ D 1

j � 2
p

yj fX.�p
y/C 1

j2pyj fX.
p

y/ D 1

2
p

y
; 0 < y � 1 :

4.14 Since X and Y are independent, the joint pdf is the product of fX and fY , i.e.,
fX;Y.x; y/ D 1

2
e�.x2Cy2/=2. Hence for �

2
< �1 < �2 <


2

,

Pr
�
�1 < tan�1 Y

X
< �2

� D Pr
�

tan �1 <
Y

X
< tan �2

�

D
“

D

1

2
e�.x2Cy2/=2dxdy

D 1



Z 1

0

Z �2

�1

e�r2=2r drd� D �2 � �1



where D D f.x; y/ W �1 < tan�1 y
x < �2g. (Note that D has two pieces!)
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4.15 By the chain rule and the invariance of probability, we have

“

Q

fV;W.ˆ.x; y//jJˆ.x; y/jdxdy D
“

ˆ.Q/

fV;W.v;w/dvdw

D
“

Q

fX;Y.x; y/dxdy

for any square Q � R
2. Thus fV;W.ˆ.x; y//jJˆ.x; y/j D fX;Y.x; y/.

4.17 Take X � N.0; 1/ and Y D X2. Then X and Y are not independent, and
Cov.X;Y/ D EŒXY� � EŒX�EŒY� D EŒX3� � EŒX�EŒX2� D 0.

4.18 Define

�
X1
X2

�

D
�

a11 a12
a21 a22

� �
Z1
Z2

�

where the vectors v1 D .a11; a12/, v2 D
.a21; a22/ are of length 1 so that X1;X2 have variances equal to 1. A necessary and
sufficient condition for EŒX1X2� D 
 is that v1 � v2 D 
. Now we choose v1 D .1; 0/

and find v2.

4.19

(i) Let fX.x/ denote the pdf of X. Then

Z 1

0

x2fX.x/dx D
Z 1

0

�Z x

0

2t dt

�

fX.x/dx

D
Z 1

0

�Z 1

0

2t 1Œ0;x�.t/ dt

�

fX.x/dx

D
Z 1

0

Z 1

0

2t 1Œ0;x�.t/ fX.x/dx dt (by Fubini’s theorem)

D
Z 1

0

Z 1

0

2t 1Œt;1/.x/ fX.x/dx dt

D 2

Z 1

0

t

�Z 1

0

1Œt;1/.x/ fX.x/dx

�

dt

D 2

Z 1

0

t P.X > t/ dt :

The formula has a geometric interpretation: Consider the volume obtained by
rotating the graph y D 1�FX.x/, x � 0, around the y-axis. The left-hand side is
obtained by adding horizontal disks of radius x with thickness jdyj D fX.x/dx,
while the right-hand side is obtained by adding the volumes of infinitesimally
thin vertical cylinders.
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(ii) Note that

1X

nD0
n2P.X D n/ D

1X

nD1

 
nX

kD1
.2k � 1/

!

P.X D n/

D
1X

kD1
.2k � 1/

1X

nDk

P.X D n/

D
1X

kD2
.2k � 1/P.X � k/ :

4.21 Since the joint pdf of X and Y is equal to fX.x/fY. y/, we have

P.XY � a/ D
Z 1

0

Z a=y

�1
fX.x/fY. y/ dxdy C

Z 0

�1

Z 1

a=y
fX.x/fY. y/ dxdy :

Now we differentiate the both sides with respect to a, and obtain

fXY.a/ D
Z 1

0

fX

�
a

y

�
1

y
fY. y/ dy �

Z 0

�1
fX

�
a

y

�
1

y
fY. y/ dy

D
Z 1

0

fX

�
a

y

�
1

jyj fY. y/ dy C
Z 0

�1
fX

�
a

y

�
1

jyj fY. y/ dy

D
Z 1

�1
fX

�
a

y

�
1

jyj fY. y/ dy :

4.22 By Exercise 4.21, we have

fXY.a/ D
Z 1

0

1

y
fX

�
a

y

�

dy D
Z 1

a

1

y
dy D � log a

for 0 � a � 1, and fXY.a/ D 0 elsewhere.

4.23

(i) EŒX� D � C P
p

DEŒZ� D � and Var.X/ D Var.P
p

D Z/ D
EŒP

p
D Z.P

p
DZ/t� D EŒP

p
D ZZt

p
D

t
Pt� D P

p
DEŒZZt�

p
D

t
Pt D

P
p

D Var.Z/
p

D
t
Pt D P

p
D

p
D

t
Pt D PDPt D †. Thus X � N.�; †/.

(ii) Use the fact that the columns of P
p

D are
p
�1v1; : : : ;

p
�nvn.
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4.24

(i)

fZ21CZ22
.x/ D

Z 1

�1
fZ21 .x � y/fZ22 . y/dy

D
Z x

0

fZ21 .x � y/fZ22 . y/dy

D
Z x

0

1
p
2.x � y/

e�.x�y/=2 1p
2y

e�y=2dy

D 1

2
e�x=2

Z x

0

1
p

y.x � y/
dy D 1

2
e�x=2 :

For the last equality we used the fact that

Z x

0

1
p

y.x � y/
dy D

Z 1

0

1
p

u.1 � u/
du D : .Substitute y D xu:/

(ii) Use the convolution!

Problems of Chap. 5

5.2

(i) G D f;; fa; bg; fc; dg; �g.
(ii) For a Borel subset A � R

1, we have Z�1.A/ D � 2 G if 1 2 A. Otherwise,
Z�1.A/ D ; 2 G. Hence Z is G-measurable.

(iii) Since Y�1.f5g/ is G-measurable and contains a, Y�1.f5g/ D fa; bg or
Y�1.f5g/ D �. In either case, Y.b/ D 5.

(iv) Since H contains X�1.f0g/ D fag, X�1.f3g/ D fb; cg, X�1.f1g/ D fdg, we
have H D �.X/ D f;; fag; fb; cg; fdg; fa; b; cg; fa; dg; fb; c; dg; �g.

(v) Note that W is H-measurable since W�1.f10g/ D fag 2 H, W�1.f20g/ D
fb; c; dg 2 H. Hence EŒWjX� D W.

5.6 As ıy ! 0, we have

EŒXjY� � EŒXjy � Y � y C ıy�

D
’
Œ0;1��Œ y;yCıy� X dP

P.Œ0; 1� 	 Œ y; y C ıy�/

D
’
Œ0;1��Œ y;yCıy� x.x C y/ dxdy
’
Œ0;1��Œ y;yCıy�.x C y/ dxdy
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�
R
Œ0;1� x.x C y/ dx ıy
R
Œ0;1�
.x C y/ dx ıy

!
R
Œ0;1�

x.x C y/ dx
R
Œ0;1�
.x C y/ dx

D
1
2
y C 1

3

y C 1
2

where the symbol ‘�’ represents approximation and ‘!’ denotes convergence in a
suitable sense, respectively. Hence EŒXjY� D 3YC2

6YC3 .

5.7 First, we have

Var.XjY/ D EŒ.X � EŒXjY�/2jY�
D EŒX2jY� � 2EŒXjY�2 C EŒXjY�2
D EŒX2jY� � EŒXjY�2 :

Hence

EŒVar.XjY/� D EŒEŒX2jY�� � EŒEŒXjY�2� D EŒX2� � EŒEŒXjY�2� :
On the other hand,

Var.EŒXjY�/ D EŒEŒXjY�2� � EŒEŒXjY��2 D EŒEŒXjY�2� � EŒX�2 :

Therefore, EŒVar.XjY/�C Var.EŒXjY�/ D EŒX2� � EŒX�2.

5.8

(i) Note that for B such that P.B/ > 0, we have P.BjA/ D P.AjB/P.B/
P.A/ . Now use

P.A/ D Pn
kD1 P.AjBk/P.Bk/.

(ii) Let A denote the event of being infected, and B represent the positive reaction
by the test. The superscript c represents complement, e.g., Ac means the event
of being healthy. We summarize all the given information as follows: P.A/ D
0:001, P.BjA/ D 0:95, P.BjAc/ D 0:01. The given exercise problem is to find
P.AjB/. Since

P.A \ B/ D P.BjA/P.A/ D 0:95 	 0:001 D 0:00095

and

P.Ac \ B/ D P.BjAc/P.Ac/ D 0:01 	 0:999 D 0:00999 ;

we have

P.AjB/ D P.A \ B/

P.B/
D 0:00095

0:01094
� 8:68% :

In the following table the necessary probabilities are printed in bold (Table 1).
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Table 1 Bayes’ rule and probabilities

1 P.A/ D 0:00100 P.Ac/ D 0:99900

P.B/ D 0:01094 P.A \ B/ D 0:00095 P.Ac \ B/ D 0:00999
P.Bc/ D 0:98906 P.A \ Bc/ D 0:00005 P.Ac \ Bc/ D 0:98901

Problems of Chap. 6

6.1 We need to show that

P.Xu � y j �.Xs/; �.Xt// D P.Xu � y j �.Xt// (F.1)

for a Markov process fXtg. Recall that P.AjG/ D EŒ1AjG� for a measurable subset A
and a sub-�-algebra G. Hence (F.1) is equivalent to

EŒ1fXu�yg j �.Xs/; �.Xt/� D EŒ1fXu�yg j �.Xt/� : (F.2)

The left-hand side is equal to EŒEŒ1fXu�ygjFt� j �.Xs/; �.Xt/� by the tower property
since �.Xs/; �.Xt/ � Ft. Since

EŒ1fXu�ygjFt� D EŒ1fXu�yg j �.Xt/�

by the Markov property, the left-hand side is equal to

EŒEŒ1fXu�ygj�.Xt/� j �.Xs/; �.Xt/� D EŒ1fXu�ygj�.Xt/� :

6.2 If ! 2 � is of the form! D a1 : : : an : : : for ai 2 f0; 1g, then Sn.!/ D k�.n�k/
where k is the number of 1’s among a1; : : : ; an. Note that

EŒSnC1jFn�.!/

D 1

P.Œa1; : : : ; an�/

Z

Œa1;:::;an�

SnC1dP

D 1

P.Œa1; : : : ; an�/

�Z

Œa1;:::;an;0�

SnC1dP C
Z

Œa1;:::;an;1�

SnC1dP
�

D 1

pkqn�k

�
.k � .n � k/C 1/pkqn�kp C .k � .n � k/ � 1/pkqn�kq

�

D .k � .n � k/C 1/p C .k � .n � k/ � 1/q

D k � .n � k/C p � q

6D Sn.!/
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since p 6D q. More formally,

EŒSnC1jFn� D EŒSn C ZnC1jFn�

D EŒSnjFn�C EŒZnC1jFn�

D Sn C EŒZnC1jFn�

D Sn C EŒZnC1�

D Sn C p � q 6D Sn :

6.5 Use EŒ 1fjXt j>ng jXtj � � EŒ 1fjYj>ng jYj �.
6.6

(i) For n � 2, we have

Pr.N > n/ D Pr.minfk W U1 � U2 � � � � � Uk�1 > Ukg > n/

D Pr.U1 � U2 � � � � � Un/

D
Z 1

0

Z un

0

� � �
Z u2

0

du1 � � � dun�1dun

D
Z 1

0

Z un

0

� � �
Z u3

0

u2 du2 � � � dun�1dun

D
Z 1

0

Z un

0

� � �
Z u4

0

1

2
u23 du3 � � � dun�1dun

D :::

D
Z 1

0

1

.n � 1/Š
un�1

n dun D 1

nŠ
:

This is intuitively clear since Pr.Ui1 � Ui2 � � � � � Uin/ are all equal to 1
.n�2/Š

for any permutation .i1; i2; : : : ; in/ of .1; 2; : : : ; n/, and

Pr.N > n/ D Pr.U1 � U2 � � � � � Un/ D 1

nŠ
:

(ii) Since

Pr.M D n/ D Pr.M > n � 1/� Pr.M > n/ D 1

.n � 1/Š
� 1

nŠ
D 1

nŠ
.n � 1/
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for n � 2, we have

EŒM� D
1X

nD2
n Pr.M D n/ D

1X

nD2
n
1

nŠ
.n � 1/ D

1X

nD2

1

.n � 2/Š
D

1X

nD0

1

nŠ
D e :

6.9 Hint: Since Gt � Ht, we have

EŒXtjGs� D EŒEŒXtjHs�jGs� D EŒXsjGs� D Xs

for s < t.

6.10 Since Xn�1 D EŒXnjFn�1� D Xn for every n, we have

Xn D Xn�1 D � � � D X1 D X0 D EŒX1jF0� ;

and Xn is constant.

6.12 Note that f�B D ng D fXn 2 Bg \ �T
k>nfXk 62 Bg�, which is not necessarily

Fn-measurable. Hence the last hitting time �B is not a stopping time.

6.13 Note that f�1 _ �2 D ng D f�1 D n; �2 � ng [ f�1 � n; �2 D ng 2 Fn . Thus
�1 _ �2 is a stopping time.

Problems of Chap. 7

7.5 Let f .t; x/ D x3 � 3tx. Then df .t;Wt/ D . ft C 1
2
fxx/dt C fxdWt D �3tdWt, and

hence f .t;Wt/ D R t
0
.3W2

s � 3s/dWs, which is a martingale.

7.8 EŒX2t � D EŒW2
t C t2W2

1 � 2tWtW1� D t C t2 � 2t2 D t � t2.

7.10

E

Wte

�Wt
� D 1p

2t

Z 1

�1
x e�xe� x2

2t dx

D 1p
2t

Z 1

�1
x e� .x�� t/2��2 t2

2t dx

D e
1
2 �

2t 1p
2t

Z 1

�1
. y C � t/ e� y2

2t dx

D e
1
2 �

2t.0C � t/
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7.11

E

W2

t e�Wt
� D 1p

2t

Z 1

�1
x2 e�xe� x2

2t dx

D 1p
2t

Z 1

�1
x2 e� .x�� t/2��2 t2

2t dx

D e
1
2 �

2t 1p
2t

Z 1

�1
. y C � t/2 e� y2

2t dy

D e
1
2 �

2t.t C 0C �2t2/ :

7.12 We check the conditions in Definition 7.1. All the processes start at 0 and have
mean 0.

(i) The increments are independent, and we have

Var.Xt � Xs/ D ˛2Var.Wt=˛2 � Ws=˛2 / D ˛2.t=˛2 � s=˛2/ D t � s :

(ii) Take ˛ D a�1=2 in Part (i).
(iii) The increments are independent, and we have Var.Xt � Xs/ D Var..WTCt �

WT/ � .WTCs � WT// D Var.WTCt � WTCs/ D t � s.
(iv) For s < t � T and T < s < t we have increments Xt � Xs given by Wt � Ws

or �.Wt � Ws/. For s � T < t we have Xt � Xs D 2WT � Wt � Ws D
.WT �Wt/C.WT �Ws/ D �.Wt �WT/C.WT �Ws/. Hence for every partition
0 � t1 < t2 � � � � � t2n�1 < t2n the increments Xt2 � Xt1 ; : : : ;Xt2n � Xt2n�1 are
independent. Furthermore,

Var.Xt � Xs/ D Var.Wt � WT/C Var.WT � Ws/ D .t � T/C .T � s/ D t � s :

7.13 We will find a function f such that EŒWsjWt� D f .Wt/. For such a function we
have

Z

fWt2Bg
Ws dP D

Z

fWt2Bg
EŒWsjWt� dP D

Z

fWt2Bg
f .Wt/ dP

for every interval B. Note that

Z

fWt2Bg
Ws dP D

Z
Ws 1fWt2Bg dP

D
Z 1

�1

Z

B
x p.sI 0; x/ p.t � sI x; y/ dy dx

D
Z

B

Z 1

�1
x p.sI 0; x/ p.t � sI x; y/ dx dy
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and
Z

fWt2Bg
f .Wt/ dP D

Z

B
f . y/ p.tI 0; y/ dy :

Hence

f . y/p.tI 0; y/

D
Z 1

�1
xp.sI 0; x/p.t � sI x; y/ dx

D
Z 1

�1
x

1p
2s

exp

�

� x2

2s

�
1

p
2.t � s/

exp

�

� .x � y/2

2.t � s/

�

dx

D 1p
2

Z 1

�1
x

1
p
2s.t � s/

exp

�

� .t � s/x2 C sx2 C sy2 � 2sxy

2s.t � s/

�

dx

D 1p
2

Z 1

�1
x

1
p
2s.t � s/

exp

 

�
.
p

tx � sp
t
y/2

2s.t � s/

!

exp

�

�y2

2t

�

dx

D p.tI 0; y/
Z 1

�1
xp

�
s.t � s/

t
I s

t
y; x

�

dx D p.tI 0; y/ s

t
y :

Thus f . y/ D s

t
y.

7.15 Choose u D 1
t and v D 1

s for 0 < s < t. Then u < v, and EŒXv jXu� D Xu.
In other words, EŒvW1=v juW1=u� D uW1=u. Hence EŒvWsjuWt� D uWt. Note that
�.uWt/ D �.Wt/ and that EŒvWsjuWt� D EŒvWsjWt�.

7.17 Since EŒeat cos WtjFs� D eat
EŒcos WtjFs� D eate�.t�s/=2 cos Ws, we need

eate�.t�s/=2 D eas, which would imply .a � 1
2
/t C 1

2
s D as, and a D 1

2
.

Problems of Chap. 8

8.2

(i) Since E
QŒWt� D E

PŒWte� 1
2 �

2t��Wt � D e� 1
2 �

2t
E
PŒWte��Wt �, we have E

QŒWt� D
e� 1

2 �
2t.�� t/e

1
2 � t D �� t.

(ii) Since EQŒW2
t � D E

PŒW2
t e� 1

2 �
2t��Wt � D e� 1

2 �
2t
E
PŒW2

t e��Wt �, we have EQŒW2
t � D

e� 1
2 �

2t.�2t2 C t/e
1
2 � t D �2t2 C t.

8.3 E
QŒe˛Xt � D E

PŒe˛Xt L� D E
PŒEPŒe˛Xt LjFt�� D E

PŒe˛XtE
PŒLjFt�� D

E
PŒe˛Xt Lt� D EŒe˛.WtC� t/e� 1

2 �
2t��Wt � D e˛� t� 1

2 �
2t
EŒe.˛��/Wt �; which is equal to

e˛� t� 1
2 �

2te
1
2 .˛��/2t D e

1
2 ˛

2t D EŒe˛Wt �:
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8.4 Since Wt � Ws and Fs are independent, we have

EŒ.Wt � Ws/ e�.Wt�Ws/jFs� D EŒ.Wt � Ws/ e�.Wt�Ws/�

D EŒWt�s e�Wt�s �

D �.t � s/ e
1
2 �

2.t�s/ :

Hence

EŒWt e�Wt jFs� � WsEŒe�Wt jFs� D EŒ.Wt � Ws/ e�Wt jFs�

D �.t � s/ e
1
2 �

2.t�s/e�Ws :

8.5 Since Wt � Ws and Fs are independent, we have

EŒ.Wt � Ws/
2 e�.Wt�Ws/jFs� D EŒ.Wt � Ws/

2 e�.Wt�Ws/�

D EŒW2
t�s e�Wt�s �

D ..t � s/C �2.t � s/2/ e
1
2 �

2.t�s/ :

On the other hand,

e�WsEŒ.Wt � Ws/
2 e�.Wt�Ws/jFs�

D EŒ.Wt � Ws/
2 e�Wt jFs�

D EŒW2
t e�Wt jFs� � 2Ws EŒWt e�Wt jFs�C W2

s EŒe
�Wt jFs� :

Hence

EŒW2
t e�Wt jFs�

D e�WsEŒ.Wt � Ws/
2e�.Wt�Ws/jFs�C 2WsEŒWte�Wt jFs� � W2

s EŒe
�Wt jFs�

D f.t � s/C �2.t � s/2 C W2
s C 2�.t � s/Wsg e

1
2 �

2.t�s/e�Ws :

8.6 Take s < t. From Exercise 8.4,

EŒWtLtjFs� D e� 1
2 �

2t
EŒWte��Wt jFs� D .Ws � �.t � s// Ls :

From Exercise 8.5,

EŒW2
t Lt jFs� D e� 1

2 �
2t
EŒW2

t e��Wt jFs� D f.t � s/C .Ws � �.t � s//2g Ls :
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Hence we have

E
QŒX2t � t jFs�

D EŒX2t LtL
�1
s jFs� � t (by Lemma 8.1)

D L�1
s EŒ.Wt C � t/2Lt jFs� � t

D L�1
s

�
EŒW2

t Lt jFs�C 2� tEŒWtLt jFs�C �2t2EŒLt jFs�
� � t

D f.t � s/C .Ws � �.t � s//2g C 2� tfWs � �.t � s/g C �2t2 � t

D .Ws C �s/2 � s

D X2s � s :

8.7 Let

A D
�

lim
t!1

Wt

t
D 0




:

Then P.A/ D 1 by the Law of Large Numbers (Corollary 7.2). Note that

lim
t!1

Xt

t
D lim

t!1
Wt C � t

t
D � 6D 0

on A. Hence Q.A/ D 0 since

Q

��

lim
t!1

Xt

t
D 0


�

D 1 :

Thus P and Q are not equivalent.

8.8 To have a fair game the expected reward must be equal to $0. Hence pA � .1�
p/B D 0, which implies that B D p

1�p A > A. In other words, if we interpret the
event of having heads and tails as upward and downward movements respectively,
we need to give more weight to the downward movement than the upward movement
to compensate the bias.

Problems of Chap. 10

10.4 Put Mt D S0e� 1
2 �

2tC�Wt . Then Mt D M0 C R t
0 �Mu dWu. Hence Mt is a

martingale, and for every t � 0 we have EŒMt� D EŒM0� D S0, which implies
that EŒS0e� 1

2 �
2tC�Wt � D S0, and EŒSt� D S0e�t.
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10.8 Note that

Cov.Xt;XtCu/

D Cov

�Z t

0

f .s/dWs;

Z tCu

0

f .s/dWs

�

D E

��Z t

0

f .s/dWs � 0
��Z tCu

0

f .s/dWs � 0

��

D E

�Z t

0

f .s/dWs

�Z t

0

f .s/dWs C
Z tCu

t
f .s/dWs

��

D E

�Z t

0

f .s/dWs

Z t

0

f .s/dWs

�

C E

�Z t

0

f .s/dWs

Z tCu

t
f .s/dWs

�

D
Z t

0

E


f .s/2
�

ds C E

�Z t

0

f .s/dWs

�

E

�Z tCu

t
f .s/dWs

�

D
Z t

0

f .s/2ds C 0 	 0

where we used the fact that
R t
0

f .s/dWs and
R tCu

t f .s/dWs are independent in the fifth
equality.

10.9 By the result of Exercise 4.10 we have

E

X2t
� D E

h
e2W2

t

i
D E

h
e2tW2

1

i
D 1p

1 � 4t
; 0 � t <

1

4
:

Hence the identity in Theorem 10.1 does not hold.

10.10 Note that Cov.X;Y/ D EŒXY� D R T
0

t.T � t/ dt D 1
6
T3.

10.11 By the Martingale Representation Theorem, f .t;Wt/ D f .0;W0/C R t
0
˛sdWs.

Now use the Itô formula.

10.12 The function f .t; x/ satisfies two differential equations ft C 1
2
fxx D 0 and

fx D f . From the second equation, we see that f .t; x/ D exg.t/ for some g. From the
first equation we have g0C 1

2
g D 0, and hence g.t/ D g.0/e� 1

2 t. Thus Xt D X0eWt� 1
2 t.

10.14

(i)
R t
0

f .s;Ws/dWs is equal to Xt .
(ii) To prove that Xt is a martingale, either use the definition of a martingale or

apply the Martingale Representation Theorem since Xt is an Itô integral.
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10.17 Suppose that Xt is a martingale.

Solution 1. Since

dXt D
�

g0.t/eWtCg.t/ C 1

2
eWtCg.t/




dt C eWtCg.t/dWt ;

we have

g0.t/eWtCg.t/ C 1

2
eWtCg.t/ D 0

by the Martingale Representation Theorem. Hence g.t/ D � 1
2
t C C for some

constant C.
Solution 2. Since EŒXt� D e

1
2 tCg.t/, t � 0, is constant, we have g.t/ D � 1

2
t C C.

10.20 dXt D .2tWt C 0/dt C t2dWt � 2tWtdt D t2dWt .

Problems of Chap. 11

11.2 If ı denotes the continuous dividend yield, then the modified model for the
stock price movement is given by dSt D .� � ı/Stdt C �StdWt .

11.4

(i) Let f .t; x/ D ex. Then eXt D f .t;Xt/. Hence

d.eXt/ D eXt dXt C 1

2
eXt.dXt/

2 D eXt.at C 1

2
b2t /dt C eXt btdWt :

(ii) Take Xt D � R t
0 rsds. Then dXt D �rtdt, at D �rt, bt D 0. Since Zt D eXt , we

have dZt D Zt.�rt/dt.

11.5 Xt D .1C Wt/
2.

11.6 For t D 0, we have
R 0
0

WsdWs D f .0;W0/. Hence f .0; 0/ D 0. By Itô’s lemma
we have

�
ft C 1

2
fxx D 0 ;

fx D x :

From the second equation we have f .t; x/ D 1
2
x2 C �.t/. Combining the result with

the first equation, we obtain �.t/ D � 1
2

C C for some constant C. Thus f .t; x/ D
1
2
x2� 1

2
tCC. Since f .0; 0/ D 0, we conclude that

R t
0

WsdWs D f .t;Wt/ D 1
2
W2

t � 1
2
t.



620 Solutions for Selected Problems

11.7

(i) Suppose that there exists f .t; x/ such that
R t
0

W2
s dWs D f .t;Wt/. This assump-

tion is wrong and here is why. Suppose that the assumption were right. Taking
t D 0, we find 0 D f .0; 0/. By Itô’s lemma, we have Wt dWt D . ft C 1

2
fxx/ dt C

fx dWt. Hence

�
ft C 1

2
fxx D 0 ;

fx D x2 :

Hence f D 1
3
x3 C �.t/ for some �.t/. Thus �0.t/C x D 0, which is impossible.

(ii) Now let us modify the assumption! Assume that there exists f .t; x/ and g.t; x/
such that

R t
0

W2
s dWs D f .t;Wt/C R t

0
g.s;Ws/ ds. Then

�
ft C 1

2
fxx C g D 0 ;

fx D x2:

From the second equation we have f .t; x/ D 1
3
x3 C �.t/. Combining the result

with the first equation, we obtain �0.t/C x C g.t; x/ D 0, and hence

Z t

0

W2
s dWs D 1

3
W3

t C �.t/C
Z t

0

���0.s/ � Ws
�

ds D 1

3
W3

t �
Z t

0

Ws ds :

11.8 Assume that
R t
0

s dWs D f .t;Wt/ C R t
0

g.s;Ws/ ds for some f and g. By Itô’s
lemma, we have

�
ft C 1

2
fxx C g D 0 ;

fx D t :

Hence f .t; x/ D tx C �.t/ for some �.t/. Note that 0 D f .0; 0/ D �.0/. Since
x C �0.t/C g D 0, we have g.t; x/ D ��0.t/ � x. Thus

Z t

0

s dWs D tWt C �.t/C
Z t

0

.��0.s/� Ws/ ds D tWt �
Z t

0

Ws ds :

11.10 Assume that there exist f and g such that
R t
0 eWs dWs D f .t;Wt/ CR t

0
g.s;Ws/ ds. By Itô’s lemma, we have eWt dWt D . ft C 1

2
fxx/ dt C fx dWt C g dt.

Hence

�
ft C 1

2
fxx C g D 0 ;

fx D ex :
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Hence f .t; x/ D ex C �.t/ for some �.t/. Note that 0 D f .0; 0/ D 1 C �.0/. Since
�0.t/C 1

2
ex C g D 0, we have g.t; x/ D ��0.t/ � 1

2
ex. Thus

Z t

0

eWs dWs D eWt C �.t/C
Z t

0

.��0.t/ � 1

2
eWs/ ds D eWt � 1� 1

2

Z t

0

eWs ds :

11.11

(i) Let f .t; x/ D xk, k � 2. Then

Wk
t D

Z t

0

1

2
k.k � 1/Wk�2

s ds C
Z t

0

kWk�1
s dWs :

Hence

ak.t/ D EŒWk
t � D

Z t

0

1

2
k.k � 1/EŒWk�2

s �ds D
Z t

0

1

2
k.k � 1/ak�2.s/ds :

(ii) Since the pdf f .x/ of Wt is an even function, we have EŒW2kC1
t � DR1

�1 x2kC1f .x/dx D 0. Or, we may use mathematical induction on the recursive
relation a2kC1.t/ D 1

2
k.k � 1/ R t

0 a2k�1.s/ ds together with a1 D 0. Similarly, by
induction,

a2k.t/ D 1

2
.2k/.2k � 1/

Z t

0

.2k � 2/Šsk�1

2k�1.k � 1/Š
ds D .2k/Štk

2kkŠ
:

11.14 First, by taking expectations on both sides, we obtain ˛.t/ D ˛.0/ CR t
0
.a.s/˛.s/C b.s//ds, and hence ˛0.t/ D a.t/˛.t/C b.t/. For ˇ.t/, note that

X2t D X20 C
Z t

0


2Xsfa.s/Xs C b.s/g C fc.s/Xs C d.s/g2� ds

C
Z t

0

Œ2Xsfc.s/Xs C d.s/g� dWs

and take expectations on both sides, then take derivatives.

Problems of Chap. 12

12.2 For a � 0, let Xt D 0, 0 � t � a, and Xt D .Wt � a/3, t > a.
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12.6 Take ˛t D �t D 0. Then dXt D ˇtXtdt C ıtXtdWt. Let Yt be an Itô process
defined by dYt D ˇtdt C ıtdWt. Then dŒY;Y�t D ı2t dt and dXt D XtdYt, and hence

Xt D X0 exp

�

Yt � Y0 � 1

2
ŒY;Y�t

�

D X0 exp

�Z t

0

ˇsds C
Z t

0

ısdWs � 1

2

Z t

0

ı2s ds

�

D X0 exp

�Z t

0

.ˇsds � 1

2
ı2s /ds C

Z t

0

ısdWs

�

:

For arbitrary ˛t, �t, we look for a solution of the form Xt D GtHt where

dGt D ˇtGtdt C ıtGtdWt ; G0 D 1 ;

dHt D atdt C btdWt ; H0 D X0 :

12.7 Assume that Xt D f .t;Wt/ for some f .t; x/. Then

. ft C 1

2
fxx/dt C fxdWt D f 3dt � f 2dWt :

Hence

�
ft C 1

2
fxx D f 3 ;

fx D �f 2 :

From the second equation, we have �df=f 2 D dx, 1=f D x C g.t/, f .t; x/ D 1=.x C
g.t//. Substituting the result in the first equation, we obtain g.t/ D C for some
constant C. Since X0 D 1, we have C D 1. Thus Xt D 1=.Wt C 1/.

12.8 Note that

dYt D 2XtdXt C 1

2
	 2.dXt/

2

D 2Xt.�˛Xtdt C �dWt/C .�˛Xtdt C �dWt/
2

D .�2 � 2˛X2t /dt C 2�XtdWt :

Thus, by substituting (12.3), we obtain

dYt D .�2 � 2˛Yt/dt C 2�

�

e�˛tx0 C e�˛t�

Z t

0

e˛sdWs

�

dWt :

12.9 Let Xt D f .t;Wt/ for some f .t; x/. Then 1
2
fxx C ft D 3

4
f 2 and fx D �f 3=2.

From the second equation, f .t; x/ D 4=.c C x/2 for some constant C. Hence Xt D



Solutions for Selected Problems 623

4=.C C Wt/
2. Since X0 D 4=.C C 0/2, C D ˙2=pX0. Thus

Xt D 4=.˙2=pX0 C Wt/
2 :

Note that both solutions have the same distribution.

Problems of Chap. 15

15.5 (ii) The answer is �St C Ke�r.T�t/ or 0. (iii) Ke�r.T�t/.

15.7 Observe first

@d1
@K

D K

S0

�

� S0
K2

�
1

�
p

T
D � 1

K�
p

T
;

@d2
@K

D @

@K
.d1 � �p

T/ D @d1
@K

:

Hence

@C

@K

D S0N
0.d1/

@d1
@K

� e�rTN.d2/ � Ke�rTN0.d2/
@d2
@K

D �S0
1p
2

e�d21=2
1

K�
p

T
� e�rTN.d2/C Ke�rT 1p

2
e�d22=2

1

K�
p

T

D �S0
1

K�
p
2T

e�d21=2 � e�rTN.d2/C 1

�
p
2T

e�d22=2�rT :

Now we note that

�d22
2

� rT D � .d1 � �p
T/2

2
� rT

D �d21
2

C �d1
p

T � �2T

2
� rT

D �d21
2

C log
S0
K
:
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Therefore

@C

@K
D �S0

1

�K
p
2T

e�d21=2 � e�rTN.d2/C 1

�
p
2T

e�d21=2Clog.S0=K/

D �S0
K

1

�
p
2T

e�d21=2 � e�rTN.d2/C S0
K

1

�
p
2T

e�d21=2

D �e�rTN.d2/ :

15.10

(i) Since 	 D @V
@S � ıV

ıS , we have

� �
ıV
V
ıS
S

D ıV

ıS

S

V
� 	

S

V
:

(ii) Since V � SN.d1/ and 	 D N.d1/, we have � � 1.
(iii) Note that a European put option loses its value if the asset price increases, i.e.,

ıV � 0 if ıS > 0. Hence � � 0. Or, we may use the fact that the deltas
of the call and put options with the same strike price, denoted by 	C and 	P

respectively, satisfy the relation	P D 	C � 1 � 0.

Problems of Chap. 16

16.1 The price V0 at t D 0 is given by the expectation with respect to a martingale
measure Q, and V0 D e�rT

E
QŒ1� D e�rT , which is nothing but the risk-free bond

price. If � is replaced by r in the expectation with respect to a physical measure P,
we would have the same answer since e�rT

E
PŒ1� D e�rT .

Problems of Chap. 17

17.1 Using CT D ST � F, we find F such that EQŒe�rT.ST � F/jF0� D 0. Hence

F D E
QŒST � D E

QŒAe.r� 1
2 �

2/TC�XT � D AerT
E
QŒe� 1

2 �
2TC�XT � D AerT ;

where we used the fact EQŒe� 1
2 �

2TC�XT � D E
QŒe� 1

2 �
20C�X0 � D 1 since e� 1

2 �
2tC�Xt is

a Q-martingale. ut
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17.2 Since an asset-or-nothing call can be decomposed into the sum of a European
call and a cash-or-nothing call as can be seen in the identity

ST1fST>Kg„ ƒ‚ …
asset-or-nothing

D .ST � K/C
„ ƒ‚ …
European call

C K1fST>Kg„ ƒ‚ …
cash-or-nothing

;

the European call price is equal to the asset-or-nothing call price minus the
cash-or-nothing call price.

Problems of Chap. 20

20.1

(i) By the Itô formula for a product, we have

d.e�rtXt/ D �re�rtXtdt C e�rtŒ..˛ � r/t C rXt/dt C �tdWt�

D e�rtŒ.˛ � r/tdt C �tdWt� :

(ii) Let Yt D e�2�Wt� 1
2 .2�/

2t. Since Yt is nothing but Lt with 2� in place of � , it is
a martingale, and hence EŒYt� D EŒY0� D 1, t � 0. Then L2t D e�2�Wt��2t D
Yt e�

2t, and EŒL2t � D EŒe�2�Wt��2t� D EŒYt�e�
2t D e�

2t, which proves statement
(a). Note that dL dzX D .��L/.z�/ dt D �.˛� r/Lz dt. By the Itô formula for
a product, we have

d.LzX/ D zXdL C LdzX C dLdzX
D ��LzXdW C L.z.˛ � r/dt C z�dW/ � .˛ � r/Lz dt

D ��LzXdW C Lz�dW D L.�� zX C �/ dW :

Hence Lt zXt D X0C
R t
0

Ls.s��� zXs/dWs and Lt zXt is a martingale, which proves
(b). (Here we need some conditions on the integrand to define the Itô integral,
and in this theorem we assume that such conditions are satisfied.)

(iii) Note that, by the properties of a martingale, EŒLt zXt� D EŒL0zX0� D X0, 0 �
t � T. This condition is implicitly given in the problem. Consider L2.�;FT/

with the inner product defined by .X;Y/L2 D EŒXY� for X;Y 2 L2. Define
V D f� W EŒ�� D EŒLT�� D 0g. Since .1; �/L2 D EŒ�� D 0 and .LT ; �/L2 D
EŒLT�� D 0, the subspace V is spanned by the functions orthogonal to 1 and
LT . Using the Gram–Schmidt orthogonalization, we choose an orthonormal
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basis f�i W i � 1g for V . For .b1; : : : ; bn/ 2 R
n let Y D zXT C b1�1 C� � �C bn�n.

Then EŒY� D EŒzXT � D � and EŒLT Y� D EŒLT zXT � D X0. Define

f .b1; : : : ; bn/ D Var.zXT C b1�1 C � � � C bn�n/ D Var.Y/ :

Then f .b1; : : : ; bn/ D EŒzX2T �C
Pn

iD1 b2i C 2
Pn

iD1 bi EŒzXT�i��EŒzXT �
2. Since f

takes its minimum Var.zXT/ at .0; : : : ; 0/, we have @f
@bj

ˇ
ˇ
.0;:::;0/

D 0, and hence

EŒzXT�j� D 0, 1 � j � n. Since the above holds for every n we have
EŒzXT�� D 0 for arbitrary � 2 V . Hence zXT belongs to V?. From part (ii) we
obtain a system of linear equations

� D EŒzXT � D EŒC1 C C2LT � D C1 C C2

X0 D EŒLT zXT � D EŒC1LT C C2L
2
T � D C1 C C2e�

2T ;

which has the desired solution.
(iv) Since fLt zXtgt is a martingale, using zXT D C11 C C2LT we obtain

Lt zXt D EŒLT zXT jFt� D EŒC1LT C C2L
2
T jFt�

D C1EŒLT jFt�C C2e
�2T

E

h
e�2�WT � 1

2 .2�/
2T
ˇ
ˇFt

i

D C1Lt C C2e�
2Te�2�Wt� 1

2 .2�/
2t :

To obtain the last equality we used the fact that Lt and e�2�Wt� 1
2 .2�/

2t are
martingales. Now we divide both sides by Lt.

(v) Let zt D e�rtt be the discounted efficient portfolio. By part (iv) the
discounted wealth zXt obtained by the efficient investment satisfies

dzXt D C2e�
2Te��Wt� 3

2 �
2t.��/ .�dt C dWt/ :

By part (i), we have dzXt D zt�.�dt C dWt/. Now compare the coefficients to
obtain zt.

(vi) By part (iii) we have

.1 � e�
2T/2 .C2

1 C 2C1C2 C C2
2 e�

2T � �2/

D .X0 � �e�
2T/2 C 2.X0 � �e�

2T/.� � X0/C .� � X0/
2e�

2T � .1 � e�
2T/2�2

D �.X0 � �/2.1 � e�
2T/ :

Hence �2zXT
D EŒzX2T � � �2 D C2

1 C 2C1C2 C C2
2 e�

2T � �2 D .��X0/2

e�2T �1 .
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Problems of Chap. 22

22.1 Assume that R � 0. Let f .x/ D .1 C R
x /

x, x > 0. To show that f .x/
is monotonically increasing, we prove that g.x/ D log f .x/ is monotonically
increasing. Since

g0.x/ D log.1C R

x
/C x

� R
x2

1C R
x

D log.1C R

x
/ � R

x C R
;

we let h.R/ D log.1C R
x / � R

xCR for fixed x > 0, and observe that

h0.R/ D
1
x

1C R
x

� .x C R/ � R

.x C R/2
D 1

x C R
� x

.x C R/2
D R

.x C R/2
> 0

for R > 0 and h.0/ D 0. Since h.R/ > 0 for R > 0, we have g0.x/ > 0 for every
x > 0, and f .x/ is monotonically increasing.

22.2 Since @…
@r D 0 after … is hedged by choosing 	 as given by (22.5), we obtain

1
…
@…
@t C 1

2
1
…
@2…
@r2
�2 D r from the fundamental equation for bond pricing.

Problems of Chap. 23

23.1 Recall that the pricing equation for P is given by

@P

@t
C .� � ��/

@P

@r
C 1

2
�2
@2P

@r2
D rP : (F.3)

The boundary condition for a zero-coupon bond is given by

P.r;T;T/ D 1 : (F.4)

(i) We try to find a solution of the form

P.r; t;T/ D A.T � t/ e�rB.T�t/ (F.5)
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for some functions A and B. Then

@P

@r
D �A.T � t/B.T � t/ e�rB.T�t/ ;

@2P

@r2
D A.T � t/B.T � t/2 e�rB.T�t/ ;

@P

@t
D �A0.T � t/e�rB.T�t/ C rA.T � t/B0.T � t/ e�rB.T�t/ :

After cancellation of common factors, the pricing equation becomes

�A0 C rAB0 � .� � ��/AB C 1

2
�2AB2 D rA ;

which must hold for every r. Hence �A0 � .� � ��/AB C 1
2
�2AB2 D 0 and

A.B0 � 1/ D 0 : (F.6)

From (F.4) and (F.5) we have A.0/e�rB.0/ D 1 for every r. Hence A.0/ D 1 and
B.0/ D 0. Thus we have B.T � t/ D T � t from (F.6). Then A satisfies

A0.T � t/

A.T � t/
D �.� � ��/.T � t/C 1

2
�2.T � t/2

with A.0/ D 1. Hence A.T � t/ D exp.� 1
2
.� � ��/.T � t/2 C 1

6
�2.T � t/3/.

(ii) The result is not realistic because the yield is negative for large T.

23.2

(i) Use Cov.rt; rs/ D �0e�˛.tCs/ C �2
R s
0

e�˛.s�u/e�˛.t�u/du.
(ii) Use EŒ

R t
s rudu

ˇ
ˇFs� D R t

s EŒrujFs�du.
(iii) To find the limiting distribution, we may take t ! 1, or if we want to find it

directly, then we take @p
@t D 0 in the Kolmogorov forward equation, and solve

0 D � @

@x
.˛.Nr � x/p/C @2

@x2

�
1

2
�2p

�

:

Hence

C D �˛.Nr � x/p C @

@x

�
1

2
�2p

�
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for some constant C. If we assume that a solution satisfies the condition that
limx!C1 xp.x/ D 0 and limx!C1 p0.x/ D 0, then C D 0. From

p0.x/
p.x/

D ˛.Nr � x/
1
2
�2

;

we obtain

p.x/ D 1
q
 �2

˛

exp

 

� .x � Nr/2
�2

˛

!

:

The coefficient is chosen so that
R1

�1 p.x/dx D 1.

23.3 For the limiting probability density of the interest rate, we take @p
@t D 0 in the

Kolmogorov forward equation, and solve

0 D � @

@x
.˛.Nr � x/p.x//C @2

@x2

�
1

2
�2xp.x/

�

:

As in Exercise 23.2(iii), we solve

C1 D �˛.Nr � x/p.x/C @

@x

�
1

2
�2xp.x/

�

:

Hence

C1 D �˛.Nr � x/p.x/C 1

2
�2p.x/C 1

2
�2xp0.x/ :

If we assume that p.0/ D 0 and limx!0 xp0.x/ D 0, then C1 D 0. From

p0.x/
p.x/

D ˛Nr � 1
2
�2 � ˛x

1
2
�2x

;

we obtain

log p.x/ D
�
2˛Nr
�2

� 1

�

log jxj � 2˛

�2
x C C2

for x such that p.x/ > 0. Thus p.x/ D Cx.2˛Nr/=�2�1e�.2˛=�2/x, x � 0. If 2˛Nr D �2,
then the limit is an exponential function.
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23.4 Let � D T � t be fixed. For the sake of notational convenience, we shall
write R.t; t C �/ and P.t; t C �/ in place of R.t;T/ and P.t;T/, respectively. From
Definition 22.8(i),

R.t; t C �/ D � log P.t; t C �/

�
D �A.t; t C �/

�
C rt :

Hence dR.t; t C �/ D drt and

Var.dR.t; t C �// D Var.drt/ D Var.�d zWt/ D �2dt :

Problems of Chap. 26

26.1 �k D e�2 ik�0 D .�1/k, and F.�/ D 0, � < 1
2
, and F.�/ D 1, � � 1

2
.

26.2 This is an example of a discrete spectrum, i.e., the measure d� is discrete.
First, note that

EŒxt� D
Z

� � �
Z

Œ0;1�n

LX

iD1
ai sin.2�it C ui/ du1 � � � dun

D
LX

iD1

Z 1

0

ai sin.2�it C ui/ dui D 0 :

Now for the autocovariance, note that

EŒxtxtCk�

D
Z

� � �
Z LX

iD1
ai sin.2�it C ui/

LX

jD1
aj sin.2�j.t C k/C uj/ du1 � � � dun

D
Z

� � �
Z LX

iD1
a2i sin.2�it C ui/ sin.2�j.t C k/C ui/ du1 � � � dun

C
Z

� � �
Z X

i6Dj

aiaj sin.2�it C ui/ sin.2�j.t C k/C uj/ du1 � � � dun

D
Z 1

0

LX

iD1
a2i sin.2�it C ui/ sin.2�i.t C k/C ui/ dui

C
Z 1

0

Z 1

0

X

i6Dj

aiaj sin.2�it C ui/ sin.2�j.t C k/C uj/ duiduj :
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Hence

EŒxtxtCk� D
LX

iD1
a2i

Z 1

0

cos.2�ik/� cos.2�i.2t C k/C 2ui/

2
dui

C
X

i6Dj

aiaj

Z 1

0

sin.2�it C ui/ dui

Z 1

0

sin.2�j.t C k/C uj/ duj

D
LX

iD1

1

2
a2i cos.2�ik/ :

Thus �0 D 1
2

PL
iD1 a2i , �k D PL

iD1 bi cos.2�ik/, k 6D 0, for some bi, and

�k D
Z 1

0

cos.2�k/dF.�/ D
Z 1

0

e2 i�kdF.�/

where F.�/ is a monotonically increasing step function with jumps of size bi at
� D �i. Note that the discrete measure dF has point masses of size bi at � D �i for
1 � i � L.

26.3 Since

xtCk D �xtCk�1 C "tCk

D �.�xtCk�2 C "tCk�1/C "tCk

D :::

D �kxt C
k�1X

iD0
� i"tCk�i ;

we have �.k/ D �.0/�jkj and

f .�/ D
1X

kD�1
�.k/e2 ik� D �.0/

1 � �2
1 � 2� cos 2� C �2

� 0 ;

for 0 � � � 1.

26.4 EŒxtC1jxt; xt�1; : : : ; xt�pC1� D �1xt C � � � C �pxt�pC1 .

26.6 Since .��/2ıt D 1
m�1

Pm
iD1 u2n�i, define

�� D
 
1

ıt

1

m � 1
mX

iD1
u2n�i

!1=2

:
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26.7 Since un D .�� 1
2
�2/ıtC�p

ıt�n where �n � N.0; 1/ for n � 1, Nu is normally
distributed with mean .� � 1

2
�2/ıt and variance �2ıt=m.

26.8 Choose p C q D 1 and ˛ C ˇ D 1.

Problems of Chap. 27

27.1 We find � W Œ0; 1� ! Œ0;1/ such that Y D �.U/ has exponential distribution,
i.e., its pdf is given by fY. y/ D e�y, y � 0. Since

e��.x/ D
8
<

:

1

�0.x/
; 0 � x � 1 ;

0 ; elsewhere ;

we have e��.x/�0.x/ D 1 on Œ0; 1�, and �e��.x/ D x C C for some constant C. If
�.0/ D 0, then C D �1, �.x/ D � log.�x C 1/, and hence Y D � log.1 � U/. If
�.0/ D 1, then �0.x/ < 0, e��.x/�0.x/ D �1, C D 0, and hence Y D � log U.

27.2 Let U denote a random variable uniformly distributed in .0; 1/. Let F.x/ denote
the cumulative distribution function of a random variable generating the random
numbers with the given distribution. Then

F.x/ D 1

1 � N.x0/
1Œx0;C1/.x/ .N.x/ � N.x0// :

Then Y D F�1.U/ and X have the identical distribution. Here we regard F as a
one-to-function defined on Œx0;C1/. (For the proof, see Exercise 4.6.) Since

U D F.Y/ D N.Y/ � N.x0/

1 � N.x0/
;

we have Y D N�1..1 � N.x0//U C N.x0//. Thus, we first generate uniformly
distributed numbers ui, i � 1, using a random number generator, and compute
N�1..1 � N.x0// ui C N.x0//, i � 1.

Problems of Chap. 28

28.1 Since 1 � U is also uniformly distributed in .0; 1/, we have

Pr.F�1.1 � U/ � x/ D Pr.1 � U � F.x// D Pr.U � F.x// D F.x/ :
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Hence F�1.1 � U/ has the cumulative distribution function F. Since the cdf of
F�1.U/ is F.x/ by Exercise 4.6, we see that F�1.U/ and F�1.1� U/ have the same
cdf. To show that the correlation is negative, use Corollary 28.1.

28.2

(i) Put y D p
x. Then y2 D x, 2y dy D dx. Hence

R 1
0

e
p

xdx D R 1
0

ey2y dy, which is

equal to

ey2y

�1
0

� R 1
0

ey2 dy D 2e � 2.e � 1/ D 2.

(ii) To estimate EŒe
p

U� by the Monte Carlo method, we consider X D 1
2
.e

p
U C

e
p
1�U/ where U � U.0; 1/. Note that

Var.X/ D Var.e
p

U/C Var.e
p
1�U/C 2Cov.e

p
U; e

p
1�U/

4

D Var.e
p

U/C Cov.e
p

U ; e
p
1�U/

2
:

Note that

EŒe
p

Ue
p
1�U� D

Z 1

0

e
p

xe
p
1�xdx � 3:8076

and

Cov.e
p

U ; e
p
1�U/ D EŒe

p
Ue

p
1�U� � EŒe

p
U�EŒe

p
1�U� � �0:1924 :

By direct calculation, we have Var.e
p

U/ D e2�7
2

� 0:1945. Hence Var.X/ � 0:001,

which is a great reduction in comparison with the variance of e
p

U.

28.3

(i) We estimate b�a
2
.EŒ f .aC.b�a/U/�CEŒ f .bC.a�b/U/�/. Note that aC.b�a/U

and a C .b � a/.1� U/ D b C .a � b/U are antithetic.
(ii) Since EŒ f .U/� D R 1

0
f .x/ dx D Pn

iD1
R bi

ai
f .x/ dx, we estimate

nX

iD1

bi � ai

2
.EŒ f .ai C .bi � ai/U/�C EŒ f .bi C .ai � bi/U/�/ :

28.4 No. Due to the symmetry of the function under consideration, the antithetic
variate method is equivalent to the standard Monte Carlo method.

28.5

(i) For the plots of the payoffs of straddles see Fig. 2.
(ii) In the second case where the payoff function of the straddle is close to being

symmetric, the efficiency of the antithetic variate method is not good.
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10

15

z

K = 12

Fig. 2 Payoffs of straddles and the corresponding antithetic variates for S0 D 10 and K D
8; 10; 12

28.6 Take Y D eU. Note that EŒY� D R 1
0

eydy D e � 1. Using Y D eU as a control

variate, define Z D e
p

U � .eU � .e � 1//.
28.7 The option price is equal to

.1 � N.x0//e�rT
EŒS0 e�

p
TYC.r� 1

2 �
2/T � K�

where the random variable Y has the restricted normal distribution. The standard
Monte Carlo method computes the average of payoff over the whole real line
.�1;1/. Since the payoff is zero on the interval .�1; x0/, the generated random
numbers belonging to the interval are not used in actual computation and wasted.
Therefore the evaluation based on the restricted normal distribution is more efficient
than the standard Monte Carlo method. See (16.5) in Sect. 16.3 for the exact value
of x0.

28.8 Choose g.x/ D 5x4 and define a probability measure Q by dQ
dP D 5x4. Note

that EPŒU5� D E
Q

h
U5 dP

dQ

i
D E

Q

1
5
U
�
. Also note that

VarQ
�
1

5
U

�

D 1

25

�
E
Q

U2
� � �

E
Q ŒU�

�2�

D 1

25

(Z 1

0

5x6 dx �
�Z 1

0

5x5 dx

�2)

D 1

25

�
5

7
� 25

36




D 1

35
� 1

36
D 1

1260
� 0:00079 :

Hence the variance is reduced by 0:0631�0:00079
0:0631

� 98:7%.
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28.9 First, we sample zZ from the normal distribution N. m
�

p
T
; s2/ so that �

p
T zZ �

N.m; �2Ts2/. Then the option price is given by

e�rT
E
QŒ.ST � K/C�

D e�rT
E
Q

��
S0e

.r� 1
2 �

2/TC�p
TX � K

�C�
where X � N.0; 1/ w.r.t. Q

D e�rT
E

zQ
��

S0e.r� 1
2 �

2/TC�p
TX � K

�C dQ

d zQ
�

; X � N.
m

�
p

T
; s2/ w.r.t. zQ

where

dQ

d zQ D
1p
2

exp.�X2=2/

1p
2s2

exp
�
�.X � m

�
p

T
/2=.2s2/

�

D s exp

 

�X2

2
C
.X � m

�
p

T
/2

2s2

!

D s exp

 

�
. m
�

p
T

C sZ/2

2
C Z2

2

!

where Z � N.0; 1/ with respect to zQ. Thus the option price is equal to

s e�rT
E

"
�

S0e.r� 1
2 �

2/TCmCs�
p

TZ � K
�C

exp

 
Z2

2
�
. m
�

p
T

C sZ/2

2

!#

:

Problems of Chap. 29

29.3 Take x D log S. Then

@V

@S
D @V

@x

dx

dS
D @V

@x

1

S
;

@2V

@S2
D @V

@S

�
@V

@x

1

S

�

D @V

@x

�
@V

@x

1

S

�
1

S
D
�
@2V

@x2
1

S
C @V

@x

�

� 1

S2

�

ex

�
1

S
;

and hence

S2
@2V

@S2
D @2V

@x2
� @V

@x
:
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Thus the Black–Scholes–Merton equation is transformed into

@V

@t
C 1

2
�2
�
@2V

@x2
� @V

@x

�

C r
@V

@x
D rV :

Now let u D e�rtV . Then we have

@u

@t
C 1

2
�2
@2u

@x2
C .r � 1

2
�2/

@u

@x
D 0 :

Applying BTCS we obtain

UiC1
j � Ui

j

k
C 1

2
�2

UiC1
jC1 � 2UiC1

j C UiC1
j�1

h2
C .r � 1

2
�2/

UiC1
jC1 � UiC1

j�1
2h

D 0 :

Choose h and k satisfying h2 D �2k. Then

Ui
j D q UiC1

jC1 C .1 � q/UiC1
j�1

where

q D 1

2
C

p
k

2�

�

r � 1

2
�2
�

:

Since Ui
j D e�rikVi

j for every i; j, we have

Vi
j D e�rk

�
q ViC1

jC1 C .1 � q/ViC1
j�1
�
:



Glossary

Accrued Interest Interest on a bond that has accrued but has not yet been paid.

Agent Someone authorized to do business on behalf of a client.

American Option An option that can be exercised at any time before or on expiry.

Arbitrage An opportunity to make risk-free profit by buying and selling in
different markets utilizing the disparity between market prices. When more broadly
used, arbitrage means an opportunity to make a profit without risking any future
loss.

Asian Option An option whose payoff at expiry depends on an average of the
underlying asset prices over the life of the option.

Ask Price The price at which a dealer or market-maker offers to sell an asset. Offer
price.

Asset A financial claim or a piece of property that has monetary value such as cash,
shares and bonds.

At-the-Money Option An option for which the current market price of the
underlying asset is equal to the strike price.

Barrier Option An option that becomes activated or ceases to exist when the
underlying asset price hits the given barrier(s).

Basis Point 0.01%, that is, 0.0001.

Bermudan Option An option that can be exercised at a set of times unlike
European options, which can be exercised only at the expiry and American options,
which can be exercised any time. The name comes from the fact that Bermuda is
geographically located between America and Europe.

Beta The percentage change in the price of a security for a 1% change in the market
portfolio.

© Springer International Publishing Switzerland 2016
G.H. Choe, Stochastic Analysis for Finance with Simulations, Universitext,
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Bid Price The price at which a dealer or market-maker buys an asset. The interest
rate a dealer will pay to borrow funds in the money market.

Bid-Ask Spread The difference between the bid price and the ask price.

Binary Option An option whose payoff is either nothing or a certain amount of
cash or shares of the underlying asset. Also called a digital option.

Binomial Tree A diagram for a possible movement of asset price over time in
which asset price can move up or down in each time period.

Black–Scholes–Merton Equation The second order partial differential equation
for the price of a European call option where two variables for partial differentia-
tions represent time and asset price.

Black–Scholes–Merton Formula The formula for the price of a European call
option given by the asset price, strike price, interest rate, time to expiry, and the
volatility. The solution of the Black–Scholes–Merton equation.

Bond A debt security that promises to make payments periodically for a specified
period of time.

Bund Bond issued by the Federal German government.

Broker An agent, either an individual or firm, who executes buy and sell orders
submitted by an investor.

Call Option An financial contract that gives the holder of the option the right, but
not the obligation, to buy the underlying asset at a specified price.

Cash Flows Cash payments to the holder of a security.

Collateral Cash or securities pledged to the lender to guarantee payment in the
event that the borrower is not able to make payments. In the futures market a trader
has to put up collateral called the initial margin against the possibility that he will
lose money on the trade.

Common Stock A security that is a claim on the earnings and assets of a company
with voting right. An ordinary share.

Convexity A measure of the curvature of the graph for the price of a bond plotted
against the interest rate.

Consumption Spending by consumers on nondurable goods and services.

Contingent Claim A claim that can be made depending on whether one or more
specified outcomes occur or do not occur in the future.

Counterparty The other party to a trade or contract.

Coupon Interest payment from a bond.
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Coupon Bond A bond that periodically pays the owner fixed interest payments,
called coupons, until the maturity date at which time a specified final amount, called
the principal, is repaid.

Coupon Rate The amount of the yearly coupon payment expressed as a percentage
of the face value of a bond.

Credit Risk The risk that arises from the possibility that the borrower might
default.

Currency Paper money and coins.

Dealer A person who buys and sells securities, acting as principal in trading for its
own account, as opposed to a broker who acts as an agent in executing orders on
behalf of its clients. Most dealers act as brokers.

Default An event in which the issuer of a debt security is unable to make interest
payments or pay off the amount owed when the security matures.

Delivery The act of the seller to supply the underlying asset to the buyer. Some
derivatives contracts include the physical delivery of the underlying commodity or
security.

Delta The rate of change in the price of a derivative due to the change in the
underlying asset. It measures the sensitivity of the price of the derivative to the
price of the underlying asset.

Delta Hedging Hedging a derivative position using the underlying asset whose
amount is determined by delta.

Delta-Neutral An option is said to be delta-neutral if it is delta-hedged. It is
protected against small changes in the price of the underlying asset.

Derivative A financial instrument whose value is determined or derived by the
price of another asset.

Digital Option Another name for a binary option.

Discount Bond A bond that is bought at a price below its face value and whose
face value is repaid at the maturity date. There is no interest payment, and hence it
is also called a zero-coupon bond.

Discount Factor The rate of exchange between a given amount of money at time t
and an amount of money at a later date T.

Diversification Investing in a portfolio of assets whose returns move in different
ways so that the combined risk is lower than for the individual assets.

Dividend The payment per share made by a company to its shareholders. On
ordinary shares the amount varies with the profitability of the firm. On preferred
shares it is usually fixed.
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Dow Jones Industrial Average (DJIA) US index based on the stock prices of 30
leading industrial companies traded on the NYSE. It is the simple average of share
prices not weighted by market capitalization.

Down-and-In Option A knock-in option that pays the specified payoff only if the
underlying asset price hits a barrier.

Down-and-Out Option A knock-out option that becomes worthless once the
underlying asset price hits a barrier.

Drift The expected change per unit time period in an asset price.

Duration A measure of the value-weighted average life of a bond.

Equity Common stock. An equity holder is a part-owner of a company, and
receives dividend payment if the company makes a profit.

Exchange Stock exchange. A marketplace in which securities are traded.

Exchange Rate The price of one currency expressed in terms of another currency.

European Option An option that can be exercised only on expiry date.

Exercise The purchase or sale of the underlying asset at the strike price specified
in the option contract.

Exercise Price Another name for the strike price of an option. The amount that is
paid for the underlying asset.

Exotic Option A derivative contract with a nonstandard characteristic.

Expiry The last date of a contract beyond which it becomes worthless if not
exercised.

Face Value The principal or par value of a bond, which is repaid at maturity.

Fixed Income Security A security that pays a fixed amount on a regular basis until
maturity. A generic term for bonds.

Forward Contract A financial contract on the price and quantity of an asset or
commodity to sell or buy at a specified time in the future. An agreement between
two parties which is not traded on an exchange.

Forward Price The price specified in advance in a forward contract for a given
asset or commodity. The forward price makes the forward contract have zero value
when the contract is written.

Futures Contract A financial contract similar to a forward contract that is traded
publicly in a futures exchange. The buyer and the seller have to place a margin
to avoid a default on the contract, and the futures contract is marked-to-market
periodically.

Forward Rate Agreement (FRA) is an agreement that a forward rate will be
exchanged for interest at the market rate to a notional amount during a certain future
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time period. The agreement is so structured that neither party needs to make an
upfront payment.

Gamma The rate of change in delta of an option for a small change in the price of
the underlying asset. It measures the sensitivity of delta to the price of the underlying
asset.

Gilt A bond issued by the UK government. The bond was gilt-edged in older days.

Greeks The rates of changes, denoted by Greek letters except Vega, in the price of
a financial derivative when the parameters such as the price of the underlying asset,
time, interest rate and volatility change by one unit.

Hedge Ratio The ratio of the quantity of the hedge instrument to be bought or sold
such as the futures contracts to the quantity of the asset to be hedged.

Hedge To protect oneself by eliminating the risk of loss in an investment.

Implied Volatility The volatility implied by the market price of an option. The
price computed by applying the Black–Scholes–Merton formula using the implied
volatility equals the market price.

Instrument A share, bond or some other tradable security.

Interest Rate The cost of borrowing money.

Interest Rate Risk The possibility of loss associated with changes in interest rates.

In-the-Money Option An option that would have positive value if exercised now.
For example, if the asset price is above the strike price then a call option is in-the-
money.

Intrinsic Value The value of an option if it can be exercised immediately.

Lambda Another name for vega. Note thatƒ is an upside down V.

Lognormal Distribution A probability distribution of a random variable whose
logarithm is normally distributed.

Long Position A position that can profit from an increase in the price of an asset
under consideration.

Margin A deposit required for both buyers and sellers of a futures contract. It
eliminates or reduces the level of loss in case that the buyer or seller fails to meet
the obligations of the contract.

Margin Call The required amount to be added to the margin account by the owner
of a margined position. This can be due to a loss on the position or an increase in
the margin requirement.

Market Capitalization The total value of a company on the stock market, which
is equal to the current share price times the number of shares issued.
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Market Maker A trader in stocks, bonds, commodities or derivatives who offers
to buy at the bid price (lower) and sell at the offer price (higher) at the same time,
thereby making a market.

Mark-to-Market Updated evaluation of a portfolio or a position based on the
current market prices.

Maturity Time to the expiration date of a debt instrument.

Negotiable Security A security that can be traded freely after it is issued.

No Arbitrage Principle The principle that one cannot create positive value out of
nothing, i.e., there is no free lunch.

Numeraire The units in which a payoff is denominated.

Offer Price The price at which a trader offers to sell an asset. The interest rate a
dealer asks for lending funds in the money market. Ask price.

Open Outcry A trading system in which traders gather in one physical location
and convey their offers to sell and buy by gesturing and shouting.

Out-of-the-Money Option An option that would have zero value if it is exercised
now. For example, if the asset price is below the strike price then a call option is
out-of-the-money.

Over-the-Counter Transactions Trades and deals that occur without the involve-
ment of a regulated exchange. OTC in abbreviation.

Par The face or nominal value of a bond, normally repaid at maturity.

Par Bond A bond that is trading at par value.

Payoff The value of a position usually at expiry or maturity.

Physical Measure The probability measure defined by the movement of the asset
price in the real market.

Position An investor who buys (sells) securities has a long (short) position.

Practitioner A person who works in finance industry in contrast to an academician
who teaches at a college.

Preference Shares Preference stock. Preference shares pay a fixed dividend and
do not carry voting rights.

Premium In the options market the premium is the price of an option. Sometimes
it means additional amount above a certain reference level.

Present Value Today’s value of a cash flow in the future.

Put-Call Parity A relationship between the prices of European call and put
options.
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Put Option A contract giving the holder the right, but not the obligation, to sell the
underlying asset at a specified price.

Rebalancing Resetting of the weights of assets in a portfolio. It involves periodi-
cally buying or selling assets in the portfolio to maintain the desired level of asset
allocation. For example, consider a portfolio consisting of assets A and B. Suppose
that the original target asset allocation was 70% for the asset A and 30% for the
asset B. If the asset A performed well in a given period and the weight for the asset
A is now 80%, then we sell some units (or shares) of the asset A and buy the asset
B in order to maintain the original target allocation.

Replication When a financial derivative can be duplicated by constructing a
portfolio of consisting of a suitable combination of the underlying asset and the
risk-free asset, we say that the portfolio replicates the derivative.

Risk The uncertainty associated with the return on an investment.

Risk-Neutral Measure The probability measure for which the expected return on
the asset is the risk-free interest rate.

Risk Premium The difference between the expected return on an asset and the
risk-free interest rate. The spread between the interest rate on bonds with default
risk and the risk-free interest rate.

Rho The rate of change in value of a derivative due to a change in the interest rate,
usually a basis change.

Rollover To delay the payment of a debt. To roll a position over one expiry or
delivery month to a later month.

S&P 500 Standard and Poor’s 500. An index of five hundred shares traded on the
New York Stock Exchange (NYSE).

Security A tradable financial instrument such as a stock and bond.

Self-Financing Portfolio A portfolio without additional investment or withdrawal
to manage.

Sharpe Ratio The ratio of the risk premium to the standard deviation of the return.

Short Position A position that can profit from a decrease in the price of an asset
under consideration.

Short Selling A transaction in which an investor borrows stock from a broker, sells
it in the market, then buys it back and returns it to the lender. A profit will be made
if the price has fallen.

Sovereign Bond A bond issued by a government.

Split In stock split one share is divided into multiple shares without raising new
capital.



644 Glossary

Spot Price The price of a security for immediate delivery. However, the actual
settlement and delivery may take place a few days later.

Spot Rate Zero coupon rate.

Spread The difference between two prices and interest rates. For example, the
difference between the bid and offer prices for a dealer, or the difference between
lending and funding interest rates for a commercial bank.

Stock A security that is a claim on the earnings and assets of a company.

Stock Exchange An organized and regulated market for trading securities. Some
stock exchanges use open outcry trading method, while others use telecommunica-
tion systems to connect dealers.

Stock Index An average of the prices of a collection of stocks. The average is either
equally weighted, or weighted with weights proportional to market capitalization.
The most commonly used quoted index in the US are the Dow Jones Industrial
Average (DJIA) and the S&P 500.

Strike Price The same as the exercise price.

Straddle The purchase of a call and a put with the same strike price and time to
expiry.

Strangle The purchase of a call with a higher strike and a put with a lower strike
and the same time to expiry.

Systematic Risk Undiversifiable or market risk.

Systemic Risk The risk that an event such as a bank failure might have a domino
effect on the whole financial system.

Tenor Time to maturity.

Term Structure of Interest Rates Behavior of interest rates for a range of
maturities.

Theta The rate of change in the value of a derivative due to the passage of time.

Tick Size The minimum amount of asset price movement allowed in a price
quotation.

Tick Value The value of one tick movement in the quoted price on the whole
contract size.

Time Value The difference between an option’s price and its intrinsic value.

Time Value of Money This expression refers to the fact that money to be received
in the future is worth less than the same amount of money today if interest rate is
positive.

Trader A person who buys and sells securities, either for herself, or on behalf of
someone else.
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Transaction Cost The money spent in exchanging financial assets or goods.

Treasury Bill A short-term debt security issued by a government.

Treasury Note US Treasury notes have maturities between 1 and 10 years when
issued.

Treasury Bond US Treasury bonds have maturities between 10 and 30 years when
issued.

Underlying The asset that is referred to in a derivative contract to define the payoff.
Its price determines the price of the derivative.

Up-and-In Option A knock-in option that is activated only when the asset price
exceeds the barrier.

Up-and-Out Option A knock-out option that becomes worthless when the asset
price exceeds the barrier.

Vanilla Option A standard option such as European calls and European puts.

Vega The rate of change in the price of a derivative due to a change in volatility.

Volatility The standard deviation of the continuously compounded return on an
asset. A key parameter in option pricing.

Volatility Skew The difference in implied volatility between in-the-money and out-
of-the-money options, which makes the implied volatility graph skewed.

Volatility Smile The phenomenon that the graph of the implied volatility for a
range of strike prices looks like a smile when both in-the-money and out-of-the-
money options have higher values of volatility than at-the-money options.

Volatility Surface A three-dimensional graph in which volatility is plotted against
strike price and time to expiry.

Warrant A long-dated option as a security that can be freely traded.

Writer The seller of an option.

Yield A generic term for the return on an investment, or more specifically, the yield
to maturity of a bond.

Yield Curve A plot of the interest rates for a given type of bond against time to
maturity. It is upward-sloping if the rates on shorter maturity bonds are lower than
those on longer maturity bonds, and downward-sloping when short-term yields are
higher.

Yield to Maturity The interest rate that equates the present value of the payments
received from a bond in the future with its current market price.

Zero Coupon Bond A discount bond without coupon payments.

Zero Coupon Rate Also spot rate. The interest rate that is applicable to a specific
future date.
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Index

Absolute continuity, 101
Adapted process, 92
Adjoint operator, 232
Affine term structure, 421
Algebra, 25, 122

Borel � -algebra, 27
� -algebra, 26, 122

Almost surely, 28
American option

call, 337
put, 338

Antithetic variate, 501, 504
AR model. See Autoregressive model (AR

model)
Arbitrage, 4, 5
Arbitrage free market, 7
Arbitrage portfolio, 6
ARMA model, 477
Arrow–Debreu security, 7, 9
Asian option, 321, 507
Asset

risk-free, 354
risky, 354

Asset-or-nothing option, 302, 316, 450
At-the-money option, 212
Autocorrelation function, 472
Autocovariance function, 472
Autoregressive model (AR model), 477
Autoregressive conditional heteroskedasticity

(ARCH) model, 480

Bachelier, Louis, 111
Backshift operator, 476
Backward difference in time, central difference

in space (BTCS), 526

Backward shift operator, 476
Banach Fixed Point Theorem, 551
Barrier option, 325

down-and-out put, 329
Bayes’ rule, 89
Bermudan option, 341
Bernoulli equation, 570
Beta coefficient, 373
Bid-ask spread, 255
Binary expansion, 27, 78
Binary option, 302
Binary representation, 93
Binomial distribution, 47, 248
Binomial tree method, 531, 534

American put option, 340
pricing by hedging, 240
pricing by replication, 242

Birkhoff Ergodic Theorem, 473
Bisection method, 459
Black–Scholes–Merton equation

barrier option, up-and-out call, 327
European option, 256
Feynman–Kac Theorem, 229
martingale method, 288
numerical solution, 519

Black–Scholes–Merton formula, 259, 288,
324, 600

Black–Scholes–Merton model, 255
multidimensional, 199

Bolzano–Weierstrass theorem, 548
Bootstrap method, 398
Borel–Cantelli lemma, 61, 120
Box–Muller method, 492
Brownian bridge, 135, 195
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Brownian motion, 227
continuity, 130
definition, 112, 122
first hitting time, 147
Lévy’s characterization, 130, 131
maximum, 149, 151
multidimensional, 199, 203
nondifferentiability, 124
properties, 123
time inversion, 125

BTCS. See Backward difference in time,
central difference in space (BTCS)

Butterfly, 18

Calculus of variations, 585
Calibration, 425
Cantor set, 37, 39
Capital Asset Pricing Model (CAPM), 353
Capital market line, 371
CAPM. See Capital Asset Pricing Model

(CAPM)
Cash-or-nothing option, 302, 451
Cauchy sequence, 552
Cauchy–Schwarz inequality, 35, 63
Central Limit Theorem, 62, 488, 491, 501
Change of variables, 112
Characteristic function, 41, 47, 49
Chebyshev inequality, 36, 61, 130
Chi-squared distribution, 66

noncentral, 66, 427
Cholesky decomposition, 560
CIR model. See Cox–Ingersoll–Ross (CIR)

model
Closed set, 548
Cobweb, 469
Coin tossing, 43, 44
Compact set, 548
Compact support, 232
Compensator, 97, 99, 168
Complete market, 9
Complete space, 552
Compounding

continuous, 398
periodic, 398
semi-annual, 398

Conditional expectation
given an event, 75
given a random variable, 84
given a � -algebra, 78
properties of, 79

Conditional measure, 28
Conditional probability, 75

Conditional variance, 88
Confidence

interval, 501
level, 501

Contingent claim, 3
Continuous process, 92
Continuous measure, 36
Contraction, 551, 565
Control variate, 505
Convergence

in distribution, 62
in measure, 33
in probability, 33, 60, 99
of a sequence, 547

Convex function, 34
Convexity, 407
Convolution, 54, 227, 578
Correlated normal variables, 65
Correlation, 63, 72
Correlation matrix, 561
Coupon, 398
Covariance, 63, 175, 502
Covariance matrix, 52, 561
Covariation, 190, 448

quadratic, 99
Cox–Ingersoll–Ross (CIR) model, 427
Crank–Nicolson method, 528
Cumulative distribution function, 46, 73
Cylinder subset, 27, 79, 121, 473

Data compression, 583
Delta hedging, 290

simulation, 273
Dense subset, 549
Derivative, 16
Difference operator, 520
Diffusion equation, 521
Digital option, 302
Dimensionless, 260
Dirac delta measure, 195, 230, 231, 484
Discount factor, 397
Discount rate, 342
Discounted Feynman–Kac Theorem, 413
Discrete measure, 32, 36
Distribution

binomial, 248
chi-squared, 66
exponential, 586
jointly normal, 52
lognormal, 58
noncentral chi-squared, 66
normal, 46, 66, 587
uniform, 586
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Dividend, 201, 255
continuous, 297
periodic, 299

Dominating portfolio, 367
Doob decomposition, 97
Doob’s L2-inequality, 204
Doob–Meyer decomposition, 98
Duration, 405, 426

modified, 406

Early exercise, 339
Efficient frontier, 367
Einstein, Albert, 111
Entropy, 583
Equivalent measure, 37, 137
Equivalent metric, 551
Equivalent norm, 551
Ergodic process, 473
Error function, 578
Euler scheme, 541
European option

call, 17, 337
put, 17

EWMA model. See Exponentially weighted
moving average (EWMA) model

Exotic option, 19, 321
Asian, 321, 507
barrier, 325
binary, 302
digital, 302

Expectation, 43
Explicit method, 522
Exponential

of differentiation operator, 572
of Laplacian, 573

Exponential distribution, 586
Exponentially weighted moving average

(EWMA) model, 479
Extension of a function, 552

Fair game, 145
Fat tail, 482
Feynman, Richard, 225
Feynman–Kac Theorem, 225, 228, 288, 289

discounted, 413
Filtration, 91

natural, 92
Fixed income security, 398
Fixed point, 551
Fokker–Planck equation, 232
Forward, 15, 414

Forward difference in time and central
difference in space (FTCS), 522

Forward rate, 402
Forward rate agreement, 402
Forward risk-neutral measure, 453
Fourier inversion formula, 47
Fourier transform, 41, 46, 52, 117, 139, 576
Fractal, 38
Free boundary problem, 340
FTCS. See Forward difference in time and

central difference in space (FTCS)
Function

convex, 34
measurable, 28
simple, 29

Fundamental equation for pricing
discounted interest rate derivatives, 451
interest rate derivatives, 410

Futures, 16

Game of twenty questions, 91
Gamma function, 66, 488
Gaussian process, 210
Geometric Brownian motion, 58, 228, 229,

378, 383, 541, 589
Girsanov’s theorem, 142, 145, 217, 412, 447,

510, 515
generalized, 142
multidimensional, 143

Gram–Schmidt orthogonalization, 625
Greeks

delta, 264
gamma, 265
rho, 265
theta, 265
Vega, 265

Gronwall’s inequality, 206, 567

Hamilton–Jacobi–Bellman equation, 382
Heat equation, 259, 521
Heaviside function, 577, 579

MATLAB command, 235
Hedge ratio, 256, 312
Hedging, 9, 240
Hein–Borel theorem, 548
Herglotz’s theorem, 475
Heteroskedasticity, 480
Hölder’s inequality, 35
Hypergeometric function, 67

confluent, 570
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Implicit method, 526
Importance sampling, 508
Independence

of events, 50
of random variables, 50
of � -algebras, 50

Independence property of conditional
expectation, 79, 423

Indicator function, 29, 41, 483
Inequality

Cauchy–Schwarz, 35, 63
Chebyshev, 36, 130
Gronwall, 206, 567
Hölder, 35
Jensen, 34, 81
Minkowski, 36

Infinitesimal generator, 228, 232
Information, 84
Information theory, 583
Instantaneous forward rate, 408, 432
Insurance, 17, 21
Integrating factor, 569
Integrator, 159, 167
Interest rate

compounded, 397
simple, 397

Intermediate Value Theorem, 459
Internal rate of return, 403
Intrinsic value, 17
Itô

formula, 183, 226, 232
formula for product, 198
identity, 423
integral, 163
isometry, 161, 163, 174
lemma, 183
process, 189

Jacobi algorithm, 565
Jensen’s inequality, 34, 81
Joint probability density, 52
Joint probability density function, 52, 55
Joint probability distribution, 472
Jointly normal distribution, 52

Kolmogorov
backward equation, 230
Extension Theorem, 28, 122, 473
forward equation, 232, 234, 628, 629

Kolmogorov, Andrey Nikolaevich, 30
Kurtosis, 66, 72, 482

Lag, 472
Lagrange multiplier method, 372, 585
Laguerre

equation, 569
polynomial, 343, 570

Laplace transform, 49, 577
Law of Large Numbers, 617
Law of large numbers for Brownian motion,

135
Lax Equivalence Theorem, 529
Least squares method, 341, 557
Lebesgue measure, 27, 93
Lévy’s theorem, 130, 209
Lévy, Paul, 130
Lim sup of subsets, 61
Line of best fit, 558
Linear regression, 558
Lipschitz continuous, 541, 542, 547
Local accuracy, 525
Local martingale, 105, 414
Local time, 196
Lognormal distribution, 58
Long position, 6, 15

Margin, 16
Market portfolio, 371
Market price of interest rate risk, 413
Market price of risk, 371, 378, 413
Markov

process, 92
property, 92

Markowitz bullet, 359, 370
Marsaglia method, 494
Martingale, 95, 127, 129, 169, 225, 288, 444

game, 105
local, 105
stopped, 327

Martingale Convergence Theorem, 100
Martingale measure, 10
Martingale Representation Theorem, 170, 225,

415, 447
MATLAB, 490, 495, 591
Maximum Entropy Principle, 584
Mean, 43
Mean of time series, 472
Mean reversion, 422
Measurable

function, 28
space, 26
subset, 26

Measure, 26
absolutely continuous, 36, 475
conditional, 28
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continuous, 36
discrete, 32, 36
equivalent, 36, 37, 137
Lebesgue, 27, 93
martingale, 10
monotonicity of, 27
probability, 26, 32
singular, 93
singular continuous, 37–39

Mersenne
prime, 490
twister, 490

Mesh ratio, 522
Milstein scheme, 542
Minimum variance line, 366
Minkowski’s inequality, 36
Model, 13

Black–Scholes–Merton, 255
Modified duration, 406
Moment generating function, 49
Monotone function, 501, 502
Monte Carlo method, 63, 488, 501
Moving average model, 476

Newton–Raphson method, 404, 416, 459, 460
No arbitrage principle, 5, 20, 240, 242, 253,

257, 408, 445
Noncentral chi-squared distribution, 66, 427
Nonnegative-definite matrix, 561
Norm of a linear transformation, 550
Normal distribution, 46, 49, 66, 423, 491, 587

restricted, 288, 499, 517
Novikov condition, 142, 143, 412
Numeraire, 413, 443

Open ball, 548
Open set, 548
Optimal exercise boundary, 339
Option

American call, 337
American put, 338
asset-or-nothing, 302, 316, 450
at-the-money, 212
barrier, 325, 329
Bermudan, 341
butterfly, 18
cash-or-nothing, 302, 451
European call, 17, 337
European put, 17
exotic, 19, 321
straddle, 17, 18, 516
strangle, 17

vanilla, 19
Option pricing

by hedging, 282
martingale method, 287
pdf of underlying asset, 287
by replication, 284

Ornstein–Uhlenbeck process, 206, 231, 233
Orthogonal projection, 82
Over-the-counter (OTC), 17

Parallelogram law, 99
Pascal’s triangle, 245
Pdf, 42
Portfolio, 3, 6

dominating, 367
Position

long, 15
short, 15

Positive definite sequence, 473
Predictable process, 94, 107, 168, 240
Principal, 397
Principal component, 561
Probability 1, 28

density function, 42, 46
distribution, 217
measure, 26, 32
preserving transformation, 43

Probability density function, 66
joint, 52

Process
adapted, 92
Itô, 189
Markov, 92
predictable, 94
stochastic, 92

Product rule, 191, 198
Pseudorandom number generator, 487

inversive congruential generator, 489
lattice structure, 490
linear congruential generator, 489
test of efficiency, 490

Put-call parity, 19, 302, 303

Quadratic
covariation, 99
variation, 99, 190

Radon–Nikodym
derivative, 37, 138, 412, 508, 510
Theorem, 37

Random variable, 28, 42
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Random walk, 93, 96
Rank, 556
Rebalancing, 437
Recombining tree, 245
Regression, 341
Replication, 9, 240, 242, 284
Restriction of a function, 552
Return, 353
Riccati equation, 422, 430, 571
Riemann integral, 487
Riemann–Stieltjes integral, 159
Risk

market price of, 371, 378
premium, 371, 374

Risk-free
asset, 354
interest rate, 255

Risk-neutrality, 229
interest rate, 412
measure, 412
pricing, 11
probability, 10, 242

Risky asset, 354

Sample path, 92
construction, 118

SDE. See Stochastic differential equation
(SDE)

Security, 15
Security market line, 374
Self-financing portfolio, 256, 436, 448
Set, 545
Shannon, Claude Elwood, 583
Short position, 6, 15
Short selling, 15, 255
Simple function, 29
Singular value, 551
Skewness, 66
Space

measurable, 26
Spectral density function, 475
Spot rate, 398
Spot rate curve, 400
Spread option, 18
Standard deviation, 44
Standard normal distribution, 46
State price vector, 7
Stationary time series, 472
Stochastic differential equation (SDE), 203,

225
Stochastic integral with respect to a martingale,

169
Stochastic process, 92

continuous, 92
Stochastic Taylor series, 537
Stock split, 255
Stone–Weierstrass theorem, 549
Stopped martingale, 327
Stopping time, 102, 103, 340
Straddle, 17, 516
Strangle, 17, 22
Strong convergence, 536
Strongly stationary time series, 472
Submartingale, 96, 97
Subset measurable, 26
Supermartingale, 96
Symmetric matrix, 551

Tanaka’s formula, 196
Tangent line, 370, 372
Tangent point, 370
Taylor series, stochastic, 537
Term structure of interest rates, 400, 425
Ternary expansion, 37
Time series, 469
Time to expiry, 20
Tower property of conditional expectation, 79,

481
Trace, 556
Transition probability, 92, 122, 229, 232
Tridiagonal matrix, 524, 527

Ulam, Stanislaw, 487
Uncorrelated normal variables, 65
Underlying asset, 15
Uniform continuity, 552
Uniform distribution, 44, 489, 586
Uniform integrability, 100, 135

Vanilla option, 19
Variance

conditional, 88
reduction, 501

Variation, 114, 159, 554
first order, 115
quadratic, 99, 114

Vasicek model, 422
Volatility, 265

historical, 457
implied, 459

Volatility clustering, 482
Volatility smile, 459, 464
von Neumann, John, 487, 583
von Neumann stability, 529
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Weak convergence, 536
Weakly stationary time series, 472
Weierstrass theorem, 549
Wold Decomposition, 475

X (random variable), 41

Yield curve, 400
Yield to maturity, 403, 404

Zero coupon bond, 407
Zero rate, 398
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