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Abstract. We present a tool-supported approach where we used data
mining techniques for automatically inferring workload models from his-
torical web access log data. The workload models are represented as
Probabilistic Timed Automata (PTA) and describe how users interact
with the system. Via their stochastic nature, PTAs have more advan-
tages over traditional approaches which simply playback scripted or pre-
recorded traces: they are easier to create and maintain and achieve higher
coverage of the tested application. The purpose of these models is to
mimic real-user behavior as closely as possible when generating load. To
show the validity and applicability of our proposed approach, we present
a few experiments. The results show, that the workload models automat-
ically derived from web server logs are able to generate similar load with
the one applied by real-users on the system and that they can be used
as the starting point for performance testing process.

Keywords: Workload model generation · Log file analysis · Perfor-
mance testing · Probabilistic timed automata

1 Introduction

The primary idea in performance testing is to establish how well a system per-
forms in terms of responsiveness, stability, resource utilization, etc., under a given
synthetic workload. The synthetic workload is usually generated from some kind
of workload profile either on-the-fly or pre-generated. However, Ferrari states
that synthetic workload should mimic the expected workload as closely as pos-
sible [1], otherwise it is not possible to draw any reliable conclusions from the
results. This means that if load is generated from a workload model, then the
model must represent the real-world user behavior as closely as possible. In addi-
tion, Jain points out that one of the most common mistakes in load testing is
the use of unrepresentative load [2].

There already exists a broad range of well established web analytics soft-
ware both as open source (Analog, AWStats, Webalyzer), proprietary (Sawmill,
NetInsight, Urchin), as well as web hosted ones (Google Analytics, Analyzer,
Insight). All these tools have different pricing models and range from free up to
several hundred euros per month. These tools provide all kinds of information
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regarding the user clients, different statistics, daily number of visitors, average
site hits, etc. Some tools can even visualize navigation paths that visitors take
on the site. However, this usually requires a high-priced premium subscription.
What the above tools do not provide is a deeper classification of the users or
even a artefact that can directly be used for load testing. Such an artefact, based
on real user data, would be the ideal source for generating synthetic load in a
performance testing environment. Instead, the performance tester have to inter-
pret the provided information and build his own artefact, from where load is
generated. Automatically creating this artefact would also significantly speed
up the performance testing process by removing the need of manual labour, and
thus saving time and money.

This paper investigates an approach for automatically creating workload
models from web server log data. More specifically, we are targeting HTTP-
based systems with RESTful [3] interfaces. The proposed approach uses the
K-means algorithm to classify users into groups based on the requested resources
and, subsequently, a probabilistic workload model is automatically built for each
group.

The presented approach and its tool support integrate with our performance
testing process using the MBPeT [4] tool. The MBPeT tool generates load in
real-time by executing the workload models in parallel. The parallel execution
is meant to simulate the concurrent nature of normal web requests coming from
real-world users. The tool itself has a distributed master/slave architecture which
makes it suitable for cloud environments. However, the approach proposed in this
paper can be used independently for analyzing and classifying the usage of a
web site.

The rest of the paper is structured as follow: In Sect. 2, we give an overview
of the related work. In Sect. 3, we present our performance testing process and
tool chain in which we integrate our approach. Section 4 describes the approach,
whereas, in Sect. 5, we present tool support. Section 6 shows our approach applied
on a real-world example. In Sect. 7, we demonstrate the validity of our work with
several experiments. Finally, in Sect. 8, we present conclusions and discuss future
work.

2 Related Work

Load testing is still often done manually by specifying load scripts that describe
the user behavior in terms of a subprogram [5,6]. The subprogram is then run
for each virtual user, possibly with the data being pre-generated or randomly
generated. With regard to the data, these types of approaches exhibit a certain
degree of randomization. However, the behavior of each virtual user is mainly
a repetition of pre-defined traces. Most of these approaches are prone to errors
due to much manual work and lack of abstraction that stochastic models offer.
However, the question: “How to create a realistic stochastic performance model?”
remains.

There exists a plethora of tools on the market that can analyze HTTP-based
logs and provide the user with statistical information and graphs regarding the
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system. Some tools might even offer the user with common and reoccurring pat-
terns. However, to the best of our knowledge, there is no web analytics software
that will create a stochastic model from log data.

Kathuria et al. proposed an approach for clustering users into groups based
on the intent of the web query or the search string [7]. The authors divide the
user intent into three categories: navigational, informational, and transactional.
The proposed approach clusters web queries into one of the three categories
based on a K-means algorithm. Our approach differs from this one in the sense
that we cluster the users by their behavior by looking at the request pattern and
accessed resources, whereas in their approach, the authors cluster users based
on the intent or meaning behind the web query.

Vaarandi [8] proposes a Simple Logfile Clustering Tool consequently called
SLCT. SLCT uses a clustering algorithm that detects frequent patterns in sys-
tem event logs. The event logs typically contain log data in various formats
from a wide range of devices, such as printers, scanners, routers, etc. The tool
automatically detects common patterns in the structure of the event log. The
approach is using data mining and clustering techniques to detect normal and
anomalous log file lines. The approach is different from ours in the sense that we
assume that the logging format is known and we build a stochastic model that
can be used for performance testing from common patterns found in the log.

Shi [9] presents an approach for clustering user interest in web pages using
the K-means algorithm. The author uses fuzzy linguistic variables to describe
the time duration that users spend on web pages. The final user classification
is then done using the K-means algorithm based on the time the users spend
on each page. This research is different from ours in the sense that we are not
classifying users based on the amount of time they spend on a web page but
rather on their access pattern.

The solutions proposed by Mannila et al. [10] and Ma and Hellerstein [11] are
targeted towards discovering temporal patterns from event logs using data min-
ing techniques and various association rules. Both approaches assume a common
logging format. Although association rules algorithms are powerful in detecting
temporal associations between events, they do not focus on user classification
and workload modeling for performance testing.

Another approach is presented by Anastasiou and Knottenbelt [12]. Here,
the authors propose a tool, PEPPERCORN, that will infer a performance model
from a set of log files containing raw location tracking traces. From the data,
the tool will automatically create a Petri Net Performance Model (PNPM). The
resulting PNPM is used to make an analysis of the system performance, identify
bottlenecks, and to compute end-to-end response times by simulating the model.
The approach differs from our in the sense that it operates on different structured
data and that the resulting Petri Net model is used for making a performance
analysis of the system and not for load generation. In addition, we construct
probabilistic time automata from which we later on generate synthetic load.

Lutteroth and Weber describe a performance testing process similar to ours
[13]. Load is generated from a stochastic model represented by a form chart. The
main differences between their and our approach is that we use different type
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Fig. 1. Performance testing process.

of models and that we automatically infer our models from log data while they
create the models manually. In addition, due to their nature, form chart models
are less scalable compared to PTAs.

3 Process and Tool Chain

The work presented in this paper connects to our previous model-based perfor-
mance testing process using the MBPeT tool (see Fig. 1). MBPeT is a perfor-
mance testing tool which generates load by simulating several workload models
concurrently to get a synthetic semi-random workload mix. The tool generates
the load in a distributed fashion and applies it in real-time to the system under
test (SUT), while measuring several key performance indicators, such as response
time, throughput, error rate, etc. At the end of the test session, a detailed test
report is provided.

MBPeT requires workload models and a test adapter as an input to generate
load, as follows:

3.1 Workload Models

Traditionally, performance testing starts first with identifying key performance
scenarios, based on the idea that certain scenarios are more frequent than others
or certain scenarios impact more on the performance of the system than other
scenarios. A performance scenario is a sequence of actions performed by an
identified group of users [14]. However, this has traditionally been a manual step
in the performance testing process. Typically, the identified scenarios are put
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Fig. 2. Example of a probabilistic timed automata.

together in a model or subprogram and later executed to produce load that is
sent to the system.

In our approach, we use probabilistic timed automata (PTA) [15] to model the
likelyhood of user actions. The PTA consists of a set of locations interconnected
to each other via a set of edges. A PTA also includes the notion of time and
probabilities (see Fig. 2(a)). Edges are labeled with different values: probability
value, think time, and action. The probability value represents the likelihood
of that particular edge being taken based on a probability mass function. The
think time describes the amount of time that a user thinks or waits between two
consecutive actions. An action is a request or a set of requests that the user
sends to the system. Executing an action means making a probabilistic choice,
waiting for the specified think time, and executing the actual action. In order to
reduce complexity of the PTA, we use a compact notation where the probability
value, think time, and action are modeled on the same edge (see Fig. 2(b)).
Previously, the model was created manually from the performance requirements
of the system and based on an estimated user behavior.

3.2 Test Adapter

MBPeT tool utilizes a test adapter to translate abstract actions found in a
workload model into concrete actions understandable by the SUT. For example,
in case of a web application, a browse action would have to be translated into
a HTTP GET request. Usually the test adapter is implemented manually. For
each action in the model the corresponding lines of code (e.g., in order to send
a HTTP request to the SUT) have to be written.
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Table 1. Requests to be structured in a tree.

3.3 Log2Model Tool

The Log2Model tool proposed in this work, is used as an alternative for auto-
matically creating the workload models and the test adapter required by the
MBPeT tool. Basically, the tool analyses historic usage of a web application or
web service by mining its web server log files. The algorithm behind Log2Model
will be discussed in the following section.

4 Automatic Workload Model Creation

In this section, we describe the method for automatically creating the workload
model from log data and we discuss relevant aspects in more detail. The starting
point of our approach is a web server log provided by web servers such as Apache
or Microsoft Server. A typical format for a server log is shown in Table 1. The
log is processed in several steps and a workload model is produced.

4.1 Parsing

The log file is parsed line by line using a pattern that matches the logging format.
In our approach, a new virtual user is created when a new client IP-address1 is
encountered in the log. For each request made to the sever, the requested resource
is stored in a list associated with a virtual user. The date and time information
of the request together with the time difference to the previous request is also
stored. The latter is what we denote as think time between two requests. For
example, consider the requests in Table 1. The information would result in two
new virtual users (Alice and Bob) being created. Bob made a request for a
document while Alice made requests for two different pictures. The time between
Alice’s two requests was 34 s. This is what we note as think time between two
requests. Please note, that it is impossible to know what the think time was
before the first request, since we have no information about what Alice did before
then. This will be important later on when we divide requests into different
sessions.

Parsing the log file also entails ignoring irrelevant data. This could be e.g.,
lines that start with a pound sign (“#”) or some other unwanted characters. This
usually indicate that the line is to be interpreted as a comment and not as a log
1 Our approach uses IP-addresses for user classification since the UserId is only avail-

able for authenticated users and usually not present in the log.
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Fig. 3. Example of request tree reduction.

entry. It is not uncommon to encounter requests made by autonomous machines,
also referred to as bots. These types of requests are identified and removed from
the log into a separate list. The commonly known bots are specified in a whitelist
that can be updated by the user. Requests from bots are detected in two ways.
Firstly, by looking at the resource that has been requested. Some bots usually
request a specific resource, namely robots.txt. This file contains information of
what the bots should not index on the site. Secondly, we can refer bots from the
user agent that made the request. It is not uncommon that the name of the user
agent contains the word bot e.g., Googlebot or Bingbot.

4.2 Pre-processing

From the previous step, we obtain a list of virtual users and for each virtual user
a list of requests made from the same client IP-address. In the pre-processing
phase, these lists of requests are split up into shorter lists called sessions. A ses-
sion is a sequence of requests made to the web server which represent the user
activity in a certain time interval. It is not always trivial to say when one session
ends and another begins, since the time interval varies from session to session.
Traditionally, a session ends when a certain period of inactivity is detected, (e.g.,
30 min). Hence, we define a session timeout value which is used to split the list
of requests of a given user into sessions. In other words, we are searching for
a time gap between two successive requests from the same virtual user that is
greater than the specified timeout value. When a gap is found, the request trace
is split, and a new session is started.

4.3 Building a Request Tree

Visitors interact with web sites by carrying out actions. Actions can be seen
as abstract transactions or templates that fit many different requests. These
requests can be quite similar in structure, yet not identical to each other. For
example, consider a normal web shop where users add products to the basket.
Adding two different products to the basket will result in two different web
requests even though the action is the same. In this step, we group similar
requests into actions.
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Table 2. Example showing the number of actions that different visitors perform.

Virtual User Act. 1 Act. 2 Act. 3 Act. 4 Act. 5

Visitor 1 2 0 0 3 3

Visitor 2 0 3 4 3 3

Visitor 3 1 0 1 8 9

Visitor 4 4 6 0 0 1

Visitor 5 0 0 4 8 7

Visitor 6 5 2 0 7 0

Fig. 4. K-means clustering on data from Table 2.

To achieve this, we first put the requests into a tree structure. For example,
consider the example in Table 1. We split the string of the requested resource
by the “/” separator and structure it into a tree. Figure 3-left shows how the
requests in Table 1 would be structured. We always keep count of how many
times we end up in a leaf node. For each new log line, we try to fit the request
into the tree, otherwise a new branch is created.

After parsing a large log file, we obtain a large tree that might be difficult
to manage. However, the tree can be reduced into a smaller tree by grouping
together nodes. The algorithm is recursive and nodes at the same level in the
tree are grouped together if they share joint sub-nodes. Figure 3-right shows how
a tree can be reduced into a smaller tree. Once the request tree has been reduced
as much as possible, every path in the reduced tree, that reaches a leaf node, is
then considered as an action that can be executed against the system.

Consider the second request made by both Bob and Alice in Table 1. These
two requests are basically the same type of request. They both request a resource
from the same collection. This is similar to a REST interface where one uses
collections and resources. It would seem obvious that these two requests are the
result of the same action, only that the user requested different resources. Hence,
by grouping together requests of the same type to the same resources, the tree
can be reduced to a smaller tree. Similar requests are grouped into an action.

Requests in the tree can also be joined by manually inspecting the tree and
grouping nodes that are a result of the same action. If a node in the path
has more than one parameter, (e.g., it is a result of grouping two resources)
that part of the request can be parameterized. For example, the request “/bas-
ket/book,phone/add” is a parameterized action where either book or phone
should be used when sending the actual request to the system.
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Table 3. Example showing different clustering parameters.

Virtual User #Get #Post ATT ASL ARS

Visitor 1 25 3 44 653 696

Visitor 2 17 0 25 277 1353

Visitor 3 31 3 54 1904 473

Visitor 4 19 1 23 444 943

4.4 User Classification

Before we start constructing a workload model representing the user behavior,
we cluster different virtual users into groups according to their behavior. By user
behavior we mean a behavioral pattern that a group of web site visitors have in
common. A User Type can be seen as a group abstracting several visitors of a
web site.

To group visitors based on the actions they perform we use the K-means
algorithm [16]. Table 2 shows the properties used for clustering. The properties
are the actions obtained from the reduced request tree and the numbers represent
the number of times a visitor has performed that action. The only input in this
step is the number of desired clusters which has to be specified a priori. Figure 4
show how the different visitors in Table 2 would be clustered into groups (or
User Types) using the K-means algorithm.

K-means clustering is an old method that involves assigning data points to
k different clusters so that it minimizes the total squared distance between each
point and its closest cluster center. One of the most widely used algorithms is
simply referred to as “K-means” and it is a well documented algorithm that have
several proposed optimization to it.

Our approach also allows us to cluster virtual users based on other charac-
teristics. Table 3 shows an example using different clustering parameters, such as
the total number of GET requests sent to the system (#Get) the total number
of POST requests sent to the system (#Post), the Average Think Time (ATT ),
the Average Session Length (ASL), and Average Response Size (ARS ).

This method, however, gives different clustering results compared to the pre-
vious method and can be used as a complement if the first method gives unsat-
isfactory results.

4.5 Removing Infrequent Sessions

Before we start building the workload model for each selected cluster, we filter
out low frequency sessions. If we would include all possible sessions in the final
workload model it would become too cluttered, difficult to understand, and it
would include actions which do not contribute significantly to the load due to
their low frequency rate.

Removing sessions that have low frequency is achieved by sorting sessions in
descending order according to their execution rate. We filter out low frequent
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Fig. 5. Model built in a step-wise manner.

1

2

0.1 / 45 / user_type1 0.4 / 60 / user_type2 0.5 / 20 / user_type3

Fig. 6. Root model describing different user types their waiting times and probability.

sessions according to a Pareto probability density function [17] by cutting off the
tail beneath a certain threshold value. The threshold value is given as a percent-
age value. That means that sessions below the threshold are simply ignored and
treated as irrelevant. The threshold value can however be adjusted on-the-fly to
include more or fewer sessions in the workload model.

4.6 Building the Workload Model

The workload models that we create describe the common behavior of all virtual
users belonging to the same cluster. We say that the model describes the behavior
of a particular User Type. Creating the model for a particular user type is a
step-wise process where we overlap sessions of all visitors belonging to the same
cluster.

Session by session we gradually build a model, while reusing existing nodes
in the model as much as possible. At each step, we note the number of times
an edge has been traversed, the action, and the think time value. We use this
information to calculate the probability and average think time of each edge in
the model.

Figure 5 depicts how the workload model is gradually built. One session at a
time is included in the workload model. An edge represents an action being sent
to the system. The numbers associated to the edges represent session IDs. Each
node represents a place, where the visitor waits before sending the next action.
One by one we include all the session belonging to the same cluster, while reusing
existing nodes as much as possible. Identical sessions will be laid on top of each
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Fig. 7. Example of the request tree.

other and at each step, we note the number of times an edge has been traversed,
the action, and the think time value. We use this information to calculate the
probability and average think time of each edge.

We calculate the probability for an action as the ratio of a particular action
to all the actions going out from a node. In a similar way, we calculate the think
time of an action by computing the average of all think time values of an action.

In order to guarantee that the workload generated from the workload model
matches the workload present in the log file, we calculate the user arrival rate.
This information together with the distribution between user types is described
in a higher level model called the root model. Figure 6 depicts such a model.

The labels on the edges are separated by a “/” and refer to the probability,
waiting time, and user type, respectively. The probability value describes the
distribution between different user types. The waiting time describes the average
waiting time between sessions. The user type value simply denotes what workload
model to execute. To calculate the waiting time of a user type, we first have to
study the waiting time between different sessions of a particular user. We then
calculate the user waiting time by computing an average time between sessions
for every user belonging to a cluster.

5 Tool Support

Tool support for our approach was implemented using the Python [18] program-
ming language. To increase the performance of the tool and make use of as many
processor cores as possible for the most computation intensive tasks, we made
use of Python’s multiprocessing library.
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(a)

(b)

Fig. 8. Log2Model tool screenshots showing two workload models and the correspond-
ing ramp (a) and refined workload models and the corresponding ramp based on the
zoom box (b).
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Our tool has a set of pre-defined patterns for common logging formats that
are typically used in modern web servers (e.g., Apache and Microsoft Server).
However, if the pattern of the log file is not automatically recognized (e.g., due
to a custom logging format) the user can manually specify a logging pattern via
a regular expression. Once the log is parsed, the data is stored into a database.
This way we avoid having to re-parse large log files from one experiment to
another.

Before parsing a log file, the tool prompts the user for a session time out
value and the number of user clusters. This information, however, has to be
provided a priori. Once the file has been parsed and the reduced request tree
has been built, the user has a chance to manually inspect the tree. Requests can
be grouped manually by dragging one node on top of the other. Figure 7 shows
an example of such a request tree.

When the workload models have been built for each cluster they are pre-
sented to the user. Figure 8(a) shows an example where 2 clusters have been
used. The left pane shows the number of concurrent users detected throughout
the logging period. The slider bar at the bottom of the figure can be used to
adjust the threshold value, which determines how many sessions to include in
the model. A higher threshold value usually means more sessions are included in
the model, leading to a more complex model. By zooming in on specific regions
of interest in the left pane, new models that correspond to the selected region
are automatically generated and updated in the GUI. Figure 8(b) shows two new
clusters and a new ramp function that corresponds to the data in the selected
region in Fig. 8(a).

When saving the model, the tool will create two additional artefacts: a ramp
function and the test adapter code. The ramp is exported as a data set of (time,
numeber of users) pairs, which can be either directly used by the MBPeT tool
or can be used for further analysis and processing, for instance selecting only a
part of it, or applying different smoothing spline regressions depending on the
needs of the tester.

The test adapter will contain a code skeleton implementing, in a parametrized
form, mappings of the actions in the workload models to HTTP requests. For
compatibility with the MBPeT tool, the adapter code is currently exported to
Python code using the standard Python libraries for HTTP communication, but
it can be easily customized for other programming languages or libraries.

6 Example

In this section, we apply our approach to a web log file containing real-users data.
The web site2 used in this example maintains scores of football games played in
the football league called pubiliiga. It also stores information about where and
when the games are played, rules, teams, etc. The web site has been created
using the Django framework [19] and runs on top of an Apache web server.

2 www.pubiliiga.fi.

www.pubiliiga.fi
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6.1 Parsing and Filtering

The log that we used was 323 MB in size and contained roughly 1.3 million
lines of log data. The web site was visited by 20,000 unique users that resulted
in 365,000 page views between April 25th of 2009 and August 23rd of 2013.
However, most of the users only visited the web site once or twice and there
were only about 2,000 frequent users that regularly visited the web site. Also,
since the web site is updated frequently on the same platform on which it is
running, the log contained a significant amount of data from erroneous requests
made by the simple method of trail and error during development. All erroneous
requests and requests made from known robots were filtered out. The results
that we are going to show in this section are generated from a selected section
of the log data containing a mere 30,000 lines of log data, generated by 1092
unique users.

6.2 Processing the Data

We used a session timeout value of 60 min to determine where to split the list of
requests into sessions. In this experiment, we clustered users into two different
groups. The total time to process the data was around 10 seconds. The computer
was equipped with a 8 core Intel i7 2.93 GHz processor and had 16 GB of memory.

Table 4 shows a summary of the execution time for different steps of the
algorithm for different log sizes. The final step, building the workload model, was
purposely left out since it varies considerably depending on the chosen number
of clusters and threshold value.

6.3 Building the Workload Models

Figures 9 and 10 shows the constructed workload models for one of the clusters.
A total of 985 virtual users were grouped into this cluster. Figure 9 shows the
workload model when using a threshold value of 0.5, which means that 50 percent
of the traces are included in the model, starting from the highest frequency ones.
However, the model is too complicated to be used for analysis or load generation,
and some of the sessions are rarely executed due to a very low probability.

Table 4. Table showing execution times for different log sizes in terms of lines of log
entries.

Phase 30.000 50.000 100.000 200.000 400.000

Parsing 6 s 10 s 22 s 50 s 2 min

Pre-processing 4 s 9 s 10 s 21 s 31 s

Request tree reduction 0.3 s 0.3 s 0.8 s 2 s 5 s

Clustering 0.08 s 0.08 s 0.4 s 5 s 60 s

Total 10.38 s 19.38 s 33.2 s 1 min 18 s 3 min 36 s
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Fig. 9. Workload model for cluster 1, (threshold = 50 %).

Fig. 10. Workload model for cluster 1, (threshold = 30 %).

Figure 10 shows the workload model with a threshold value of 0.3. Here we can
see that the model is much more readable and we can actually start to make sense
of the navigational patterns in the workload model. For confidentiality reasons
the actual request types have been left of and replaced by abstract types. The
workload models created for the second cluster looked almost the same. Creating
the models took approximately 2 s. However, the execution times may hugely
vary depending on the selected threshold value.

7 Validation

In this section, we demonstrate the validity of our approach on an auctioning
web service, generically called YAAS (Yet Another Auction Site). The YAAS
web service was developed as a university stand-alone project. The web service
has a RESTful interface and has 5 simple actions:

– Browse: Returns all active auctions.
– Search: Returns auctions that matches the search query.
– Get Auction: Returns information about a particular auction.
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– Get Bids: Returns all the bids made to a particular auction.
– Bid : Allows an authenticated user to place a bid on an auction.

During this experiment we preformed two load tests. First, we generated load
from workload models that we built manually. We then re-created the workload
models from the log data that was produced during first load test. In the second
load test, load was generated from the re-created workload models. Finally, we
compared the load that was generated during both tests. In the first step, we
manually created models for two different user types. To test if the clustering
works as expected, we made the workload models almost identical except for one
request. One user type is doing distinctively a browse request while the other
user type is always doing a search request. Figure 12(a) depicts the model for
user type 1, the one that is performing distinctively a browse request. A similar
model was also created for user type 2. If the algorithm can cluster users into
different groups when only one action distinguishes them, then we consider the
clustering to be good enough.

7.1 Generating a Log File

Once the models were built, they were used to load test the YAAS system using
our in-house performance testing tool MBPeT. We simulated 10 virtual users
(60 % user type 1 and 40 % user type 2) in parallel for 2 h. We set the virtual
users to wait 20 s between each session. This value is later going to influence the
timeout value during pre-processing phase. From the produced log file, containing
roughly 10,000 lines, we re-created the original models as accurately as possible.
We point out that the original model is of a probabilistic nature, which means
that distinctly different traces with different lengths can be generated from a
fairly simple model. For example, the shortest session had only 1 action, while
the longest session had 22 actions. Also, we do not have exact control over how
many times each trace is executed by a user.

7.2 Recreating the Models

To make sure that we split the sessions in a similar way we used a timeout value
of 20 s. No other delay between the requests was that large. We also clustered

(a) Original root model. (b) Recreated root model.

Fig. 11. Root models.
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Fig. 12. Original vs. Recreated user profiles.

Table 5. Comparison between the two test runs.

Request Load Test 1 Load Test 2

Search(string) 1263 1294

Browse() 1895 1942

Get Auction(id) 2762 2821

Get bids(id) 2697 2625

Bid(id, price, username, password) 1288 1265

Total 9903 9947

Request Rate 1.37 req/sec 1.38 req/sec

the data into 2 user types. Each user type is later going to be represented with
a separate workload model. In this experiment we did not filter out any user
sessions, hence we used a threshold value of 1.0, meaning all traces found in the
log were used to recreate the models. Figure 12(a) shows the original workload
model while Fig. 12(b) shows the re-constructed workload model for User Type
1. A similar model was also created for User Type 2. As one can see, the only
difference from the original model is the probability values on the edges. However
close, the probability values in the original models do not match exactly those in
the generated workload models. This is due to the fact that we use a stochastic
model for generating the load and we do not have an exact control of what traces
are generated. Figure 11(a) shows original root model while Fig. 11(a) shows the
re-created root model. From the figures we can see that the probability values
of the re-created root model match that of the original root model (60 % and
40 %) and that the waiting time is close to 20 s (19.97 and 19.98).

Due to space limitation we only show a comparison of the original versus
recreated user profiles for one of the two user types. A similar result was obtained
for the second type as well.

The test adapter generated to support the above workload models was around
250 LOC. The actual number of LOC used to implement the 5 actions in the
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workload models amounted to 130 LOC, while the rest is reusable static code
like library imports and initializations.

7.3 Comparing the Load Generated from the Models

Even though the models look similar, we also wanted to make sure that the load
generated from the original models matched the load generated from our re-
created models. Hence, we let the MBPeT tool measure the number of requests
sent to the YAAS system during both steps. Table 5 shows a comparison between
the test runs.

As can be seen from the table, the re-created model produced a slightly higher
workload. However, we like to point out that the load generation phase lasted
for 2 h and we see a difference of 44 requests. This is backed up by looking at
the measured request rate. Load test 1 generated 1.37 req/sec, while load test 2
is virtually identical with 1.38 req/sec.

8 Conclusions

In this paper, we have presented a tool-supported approach for creating perfor-
mance models from historical log data. The models are of a stochastic nature
and specify the probabilistic distribution of actions that are executed against
the system.

The approach is automated, hence reducing the effort necessary to create
workload models for performance testing. In contrast, Cai et al. [20] report that
they spent around 18 h to manually create a test plan and the JMeter scripts for
the reference Java PetStore application [21].

The experiments presented in this paper have shown that the approach can
adequately create workload models from log files and that they mimic the real
user behavior when used for load testing. Further, the models themselves give
insight in how users behave. This information can be valuable for optimizing
functions in the system and enforcing certain navigational patterns on the web
site.

Future work will targeted towards handling larger amount of log data. Cur-
rently the tool is not optimized enough to operate efficiently on large data
amounts. Another improvement is automatic session detection. Currently the
tool follows a pre-defined timeout value for detecting sessions. Automatic ses-
sion detection could suggest different timeout values for different users, hence,
improving on the overall quality of the recreated model. Currently, we are only
clustering users according to accessed resources. In the future, we would like to
extend the K-means clustering algorithm to cluster based on other relevant fac-
tors like: request method, size of resource, user request rate, etc. This clustering
method could suggest models that, when executed, exercise the workload pat-
terns on the system, thus, potentially finding “hidden” bottlenecks. Further, an
interesting experiment would be to analyze only failed or dropped requests. This
way one could for instance study the details of how a DoS-attack was carried
out and what pages were hit during the attack.
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