
A Problem-, Quality-, and Aspect-Oriented
Requirements Engineering Method

Stephan Faßbender, Maritta Heisel, and Rene Meis(B)

Paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{stephan.fabbender,maritta.heisel,rene.meis}@uni-due.de

Abstract. Requirements engineers not only have to cope with the
requirements of various stakeholders for complex software systems, they
also have to consider several software qualities (e.g., performance, main-
tainability, security, and privacy) that the system-to-be shall address. In
such a situation, it is challenging for requirements engineers to develop a
complete and coherent set of requirements for the system-to-be. Separa-
tion of concerns has shown to be one option to handle the complexity of
systems. The problem frames approach address this principle by decom-
posing the problem of building the system-to-be into simpler subprob-
lems. Aspect-orientation aims at separating cross-cutting functionalities
into separate functionalities, called aspects. We propose a method called
AORE4PF, which shows that aspect-orientation can be integrated into
the problem frames approach to increase the separation of concerns and
to benefit from several methods that exist on problem frames to develop
a complete and coherent set of requirements. We validated our method
with a small experiment in the field of crisis management.

Keywords: Early aspects · Problem frames · Requirements engineering

1 Introduction

Keeping an eye on good and sufficient requirements engineering is a long-known
success factor for software projects and the resulting software products [1].
Nonetheless, larger software incidents are regularly reported, which originate
in careless dealing with, for example, security requirements. Beside reputation
damage, loss of market value and share, and costs for legal infringement [2,3],
fixing defects that caused the incident is costly. Fixing a defect when it is already
fielded is reported to be up to eighty times more expensive than fixing the corre-
sponding requirements defects early on [4,5]. Therefore, it is crucial for require-
ments engineers to identify, analyze, and describe all requirements and related
quality concerns. But eliciting good requirements is not an easy task [6], even
more when considering complex systems.

Part of this work is funded by the German Research Foundation (DFG) under grant
number HE3322/4-2.

c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 291–310, 2015.
DOI: 10.1007/978-3-319-25579-8 17



292 S. Faßbender et al.

Nowadays, for almost every software system, various stakeholders with
diverse interests exist. These interests give rise to different sets of requirements.
These diverse requirements not only increase the complexity of the system-to-
be, but also contain different cross-cutting concerns, such as qualities, which are
desired by the stakeholders. In such a situation, the requirements engineer is
really challenged to master the complexity and to deliver a coherent and com-
plete description of the system-to-be.

One possible option to handle the complexity of a system-to-be is the concept
of separation of concerns [7]. In its most general form, the separation of concerns
principle refers to the ability to focus on, and analyze or change only those parts
of a system which are relevant for one specific problem. The main benefits of this
principle are a reduced complexity, improved comprehensibility, and improved
reusability [7].

Both, AORE (aspect-oriented requirements engineering) and the problem
frame approach implement this principle, but for different reasons. The approach
of AORE, which originates from aspect-oriented programming, is to separate
each cross-cutting requirement into an aspect. Instead of integrating and solv-
ing the cross-cutting requirement for all requirements it cross-cuts, the aspect is
solved in isolation. Hence, aspect-orientation leads to a clear separation of con-
cerns. To combine an aspect with a requirement, an aspect defines a pointcut
(set of join points), which describes how the aspect and a requirement can be
combined. The problem frames approach [8] generally also follows the separation
of concerns principle. It decomposes the overall problem of building the system-
to-be into small sub-problems that fit to a problem frame. Each sub-problem is
solved by a machine, which has to be specified using the given domain knowledge.
All machines have to be composed to form the overall machine. We will show
that aspect-orientation gives guidance for the process of decomposing the over-
all problem and especially for the composition of the machines. As both ways of
separating concerns seem to be complementary, it is promising to combine both.
Hence, we propose the AORE4PF (Aspect-Oriented Requirements Engineering
for Problem Frames) method that provides guidance for classifying requirements,
separating the different concerns, modeling requirements for documentation and
application of completeness and interaction analyses, and weaving the reusable
parts to a complete and coherent system. Furthermore, AORE4PF provides tool
support for most activities.

The rest of the paper is structured as follows. Section 2 introduces a smart
grid scenario, which is used as a case study. In Sect. 3, we introduce the problem
frames approach and UML4PF as background of this paper. Our method for the
integration of AORE into the problem frames approach is presented in Sect. 4.
A small experiment for validation is presented in Sect. 5. Work related to this
paper is discussed in Sect. 6. Finally, Sect. 7 concludes the paper and presents
possible future work.

2 Case Study

To illustrate the application of the AORE4PF method, we use the real-life case
study of smart grids. As sources for real functional requirements, we consider



A Problem-, Quality-, and Aspect-Oriented Requirements 293

diverse documents such as “Application Case Study: Smart Grid” provided by
the industrial partners of the EU project NESSoS1, the “Protection Profile for
the Gateway of a Smart Metering System” [9] provided by the German Federal
Office for Information Security2, and “Requirements of AMI (Advanced Multi-
metering Infrastructure”) [10] provided by the EU project OPEN meter3.

We define the terms specific to the smart grid domain and our use case in
the following. The smart meter gateway represents the central communication
unit in a smart metering system. It is responsible for collecting, processing, stor-
ing, and communicating meter data. The meter data refers to readings measured
by smart meters regarding consumption or production of a certain commodity.
A smart meter represents the device that measures the consumption or produc-
tion of a certain commodity and sends it to the gateway. An authorized external
entity can be a human or an IT unit that communicates with the gateway from
outside the gateway boundaries through a wide area network (WAN). The WAN
provides the communication network that interconnects the gateway with the
outside world. The LMN (local metrological network) provides the communica-
tion network between the meter and the gateway. The HAN (home area network)
provides the communication network between the consumer and the gateway.
The term consumer refers to end users of commodities (e.g., electricity).

We have chosen a small selection of requirements to illustrate our method.
These requirements are part of the 13 minimum use cases defined for a smart
meter gateway given in the documents of NESSoS and the open meter project.
The considered use cases are concerned with gathering, processing, and storing
meter readings from smart meters for the billing process. The requirements are
described as follows:

(R1) Receive Meter Data. The gateway shall receive meter data from smart
meters.

(R17) New Firmware. The gateway should accept a new firmware from autho-
rized external entities. The gate shall log the event of successful verification of
a new version of the firmware.

(R18) Activate New Firmware. On a predetermined date the gateway exe-
cutes the firmware update. The gateway shall log the event of deploying a new
version of the firmware.

(R28) Prevent Eavesdropping. The Gateway should provide functionality to
prevent eavesdropping. The gateway must be capable of encrypting communica-
tions and data by the safest and best encryption mechanisms possible.

(R29) Privacy and Legislation. Many countries protect customers’ and peo-
ple’s rights by laws, to ensure that personal and confidential information will
not be disclosed easily within communicating systems. Grid systems shall not
be a way to reveal information.

1 http://www.nessos-project.eu/.
2 www.bsi.bund.de.
3 http://www.openmeter.com/.

http://www.nessos-project.eu/
www.bsi.bund.de
http://www.openmeter.com/


294 S. Faßbender et al.

3 UML-Based Problem Frames

Problem frames are a means to describe software development problems. They
were proposed by Jackson [8], who describes them as follows: “A problem frame
is a kind of pattern. It defines an intuitively identifiable problem class in terms of
its context and the characteristics of its domains, interfaces and requirement.”
It is described by a frame diagram, which consists of domains, interfaces between
domains, and a requirement. We describe problem frames using UML class dia-
grams extended by stereotypes as proposed by Hatebur and Heisel [11]. All
elements of a problem frame diagram act as placeholders, which must be instan-
tiated to represent concrete problems. Doing so, one obtains a problem diagram
that belongs to a specific class of problems.

Figure 1 shows a problem diagram in UML notation. The class with the
stereotype �machine� represents the thing to be developed (e.g., the software).
The classes with some domain stereotypes, e.g., �biddableDomain� or �lexical-

Domain� represent problem domains that already exist in the application envi-
ronment. Jackson distinguishes the domain types causal domains that comply
with some physical laws, lexical domains that are data representations, biddable
domains that are usually people, and connection domains that mediate between
domains.

Domains are connected by interfaces consisting of shared phenomena. Shared
phenomena may be events, operation calls, messages, and the like. They are
observable by all connected domains, but controlled by only one domain,
as indicated by an exclamation mark. For example, in Fig. 1 the annotation
WAN!{forwardUpdateFirmware} means that the phenomenon in the set {forward-
UpdateFirmware} is controlled by the domain WAN and observable by the machine
domain SMGFirmwareStorage, which is connected to it. These interfaces are rep-
resented as associations with the stereotype �connection�, and the name of the
associations contain the phenomena and the domains controlling the phenomena.

In Fig. 1, the lexical domain FirmwareUpdate is constrained and the Authorized-

ExternalEntity is referred to, because the machine SMGFirmwareStorage has the role
to store new FirmwareUpdates from AuthorizedExternalEntity for satisfying require-
ment R17. These relationships are modeled using dependencies that are anno-
tated with the corresponding stereotypes.

The full description for Fig. 1 is as follows: The biddable domain Authorized-

ExternalEntity controls the updateFirmware command, which is forwarded by
the WAN and finally observed by the machine domain SMGFirmwareStorage. The
SMGFirmwareStorage controls the phenomenon storeNewFirmware, which stores the
received information in the lexical domain FirmwareUpdate.

Software development with problem frames proceeds as follows: first, the
environment in which the machine will operate is represented by a context dia-
gram. Like a problem diagram, a context diagram consists of domains and inter-
faces. However, a context diagram contains no requirements. Then, the problem
is decomposed into subproblems. If ever possible, the decomposition is done in
such a way that the subproblems fit to given problem frames. To fit a subprob-
lem to a problem frame, one must instantiate its frame diagram, i.e., provide



A Problem-, Quality-, and Aspect-Oriented Requirements 295

Fig. 1. Problem diagram R17: new firmware.

Description
Informal

Requirements
Base

Diagrams
Problem
Base

Specifications
Problem
Base

Requirements
Quality

Relations
Cross−Cut
Preliminary

Requirements
Aspect
Preliminary

Requirements
Quality
Preliminary

Aspect
Requirements

Relations
Cross−Cut

Specifications
Problem
Weaved

Relations
Weaving

Diagrams
Problem
Aspect
Consolidated

Diagrams
Problem
Base
Consolidated

Specifications
Problem
Weaved
Consolidated

Relations
Weaving
Consolidated

Specifications
Problem
Aspect

Diagrams
Problem
Aspect

Document

Requirements
Classify Requirements

Base
Model

Qualities
Underlying

Identify

Analyse
Completeness Requirements

Aspect
Model Weave

Requirements

ou
tp

ut
in

pu
t /

ou
tp

ut
in

pu
t /

information flow control flow Activity generated automatically generated semi−automatically

Analyze
Interactions

pr
oc

es
s

Fig. 2. The AORE4PF method.

instances for its domains, phenomena, and interfaces. The UML4PF framework
provides tool support for this approach. A more detailed description can be
found in [12].

4 Method

An illustration of our method is given in Fig. 2. The initial input for our method
is a textual informal description of the requirements the system-to-be shall
fulfill. These requirements are classified into preliminary aspect requirements
(or short aspects), which are functional and cross-cutting, preliminary quality
requirements (or short qualities), which are non-functional and cross-cutting,
and base requirements (or short bases), which are not cross-cutting. Addition-
ally, the relations between requirements and aspects or qualities are documented
as preliminary cross-cut relations. Then all identified base requirements are mod-
eled following the problem frames approach introduced in Sect. 3, such that for
each base requirement a base problem diagram is created. Additionally, we create
a sequence diagram for each problem diagram. The sequence diagrams serve as
a base problem specification. To prepare the completeness analysis, we identify
for all preliminary aspect requirements the underlying qualities they address.
The already known preliminary quality requirements can aid the identification.
As a result, we get a set of quality requirements. Based on the identified qual-
ity and base requirements, we can analyze whether there is a cross-cut relation
between a quality requirement and a base requirement not discovered yet. Thus,
we analyze the completeness of the preliminary cross-cut relations and update
them if necessary. The results are a set of cross-cut relations and also updated
aspect requirements. Next, the aspect requirements are modeled in a similar way
as requirements using specialized problem diagrams, called aspect problem dia-
grams. Again, we specify the machine behavior using sequence diagrams, which



296 S. Faßbender et al.

results in aspect problem specifications. For the next step, weave requirements,
the base problem specifications and aspect problem specifications are weaved to
fulfill the base and aspect requirements as defined by the base problem diagrams
and aspect problem diagrams. For the weaving, we have to accomplish two activ-
ities. First, we define the weaving relations. These relations refine the cross-cut
relations. Then, we can automatically generate for each requirement a weaved
problem specification representing the weaved system behavior. Last, we have to
analyze the base and aspect problem diagrams for unwanted interactions, such
as conflicts. The weaving relations and the weaved problem specifications can
support this activity. The results of this step are consolidated base and aspect
problem diagrams as well as consolidated weaving relations and problem specifi-
cations. We will discuss all steps of our method in detail in the following sections.

4.1 Classify Requirements

As a first step, we have to identify and analyze the requirements contained in
the informal description. We have to separate and classify these requirements
as they will be treated differently afterwards. A requirement can be (1) a base,
which is functional and not cross-cutting, (2) an aspect, which is functional and
cross-cutting, and (3) a quality, which is non-functional and cross-cutting. Note
that we see quality requirements as requirements, which are not operationalized
to an aspect right now. Hence, there is a clear relation between qualities and
aspects, and we will later on refine qualities to aspects. Normally, statements
in an informal description are not given that clear-cut as given by the three
discussed classes of requirements. Hence, one can find requirements mixing dif-
ferent classes, for example, aspects are already combined with the corresponding
bases or qualities are mentioned in the according bases. In consequence, identi-
fying statements which constitute requirements is only half of the job, but also
a separation of mixed requirements has to be performed.

First, we separate functional and quality requirements. A tool like
OntRep [13] can support the requirements engineer in this step. This way we
identify R29 as requirement containing two quality requirements (R29A and R29B)
and R28 containing one quality (R28A) and one functional requirement (R28B):

(R28A) Security. The Gateway shall be protected against external attacks.

(R29A)Privacy. [. . . ] personal and confidential information will not be disclosed
easily within communicating systems. Grid systems shall not be a way to reveal
information.

(R29B) Compliance. Many countries protect customers’ and people’s rights
by laws.

Thus, we have identified and separated the preliminary quality requirements.
Second, we have to analyze the functional requirements for aspects and sepa-

rate them. For this activity tools like EA-Miner [14], Theme/Doc [15] or REAs-
sistant4 can aid the requirements engineer. This way we identify the following
two aspects:
4 https://code.google.com/p/reassistant/.

https://code.google.com/p/reassistant/


A Problem-, Quality-, and Aspect-Oriented Requirements 297

(R28B) Network Encryption. [. . . ] The gateway must be capable of encrypt-
ing communications and data by the safest and best encryption mechanisms
possible.

(R30) Logging. The gate shall log the occurring important events.

Note that while eavesdropping is already formulated as separate aspect, logging
is introduced as a new aspect that is extracted from R17 and R18 which both
contain the logging aspect:

(R17B) New Firmware: Logging. The gate shall log the event of successful
verification of a new version of the firmware.

(R18B) Activate New Firmware: Logging. The gateway shall log the event
of deploying a new version of the firmware.

These two requirements describe how the aspect R30 has to be integrated into
the corresponding base requirements. This information is used later on during
the weaving process. Thus, we have identified and separated the preliminary
aspect requirements.

The remaining functional requirements form the base requirements for our
system:

(R1) Receive Meter Data. The gateway shall receive meter data from smart
meters.

(R17A) New Firmware. The gateway should accept a new firmware from
authorized external entities.

(R18A) Activate New Firmware. On a predetermined date the gateway exe-
cutes the firmware update.

We document the relations between the separated functional, quality, and
aspect requirements in a preliminary cross-cut relation table. These relations
are given in Table 1 with crosses in italic in the regions (Base,Quality),
(Base,Aspect), and (Quality,Aspect). Note that everything given in bold
is discovered later on in the annotated step (x). Furthermore, the regions
(Aspect,Quality) and (Aspect,Aspect) are considered in step 4, and (Qual-
ity,Quality) in step 7. If a requirement is separated into a functional requirement
(base or aspect) and a quality, then we add a cross in the region (Base,Quality)
of the table if the functional requirement is a base requirement, representing
that the quality has to be taken into account for the base requirement, and in
the region (Quality,Aspect) if it is an aspect requirement, representing that the
aspect requirement addresses the software quality. In Table 1, we documented
that the aspect R28B is related to the quality R28A. This kind of mapping will
later on be used to provide guidance for the selections of mechanisms to address
the quality requirements. If functional requirements are separated into base and
aspect requirements, then we also add respective crosses in the upper right quad-
rant. In Table 1, we documented that the aspect R30 cross-cuts the base require-
ments R17A and R18A.



298 S. Faßbender et al.

Table 1. Requirements (Cross-cut) relation table for the smart grid scenario.

Quality Aspect

R28A R29A R29B R313 R28B R30(R17B, R18B) R324

Base R1 X4 X4 X4 X4 X4 X4

R17A X4 X3 X4 X

R18A X3 X

Aspect R28B

R30 X4 X4

R324

Quality R28A I7 I7 I7 X X4

R29A I7 I7 I7 X4 X4

R29B I7 I7 I7 X4 X4 X4

R313 I7 I7 I7 X3

Fig. 3. Problem diagram for R1. Fig. 4. Sequence diagram for R1.

4.2 Model Base Problems

In this step, we model the functional requirements identified in the previous
step. For each functional requirement, we create a problem diagram as proposed
by the problem frames approach introduced in Sect. 3. For reasons of space, we
only show the problem diagrams for the requirements R1 and R17A, but these
two problem diagrams are sufficient to understand the rest of the paper, even
though we use the five selected requirements for exemplifying our method. The
problem diagram for R17A is shown in Fig. 1 and explained in Sect. 3. Figure 3
shows the problem diagram for R1. The problem described in this diagram is
that the machine SMGReceiver shall requestData via the LMN from the SmartMeter.
In response, the SmartMeter will sendData that was requested via the LMN back to
the machine. The machine does then writeTemporaryData received from the smart
meter in the lexical domain TemporaryMeterData.

For every problem diagram, we have to provide a reasoning, called frame
concern [8], why the specification of the submachine together with the knowl-



A Problem-, Quality-, and Aspect-Oriented Requirements 299

edge about the environment (domain knowledge) leads to the satisfaction of
the requirement. To visualize how frame concern is addressed in the specific
problems, we create at least one sequence diagram for each problem diagram.
These sequence diagrams describe the specification (behavior of the machine)
and the domain knowledge (behavior of the domains) which is necessary to satisfy
the requirement. How to systematically create the sequence diagrams is out of
scope of this paper, but the approach presented by Jackson and Zave [16] can
be used for this task. Figure 4 shows the sequence diagram for the sub-problem
Receive Meter. The interaction is started the sub-machine SMGReceiver causing
the phenomenon requestData (specification). This request is forwarded via the
LMN to the SmartMeter (domain knowledge). The smart meter then answers the
request and sends the meter data (requirement) using the phenomenon sendData

(domain knowledge). The data is forwarded via the LMN to the sub-machine
(domain knowledge). In the case of a successful check of the received data,
the received data is stored in the lexical domain TemporaryMeterData (specifi-
cation). Hence, the gateway stores the meter data received from smart meters
(requirement).

4.3 Identify Underlying Qualities

In order to check whether the cross-cut relation is complete, we identify for all
aspects the software qualities they address. Note that the relationship between
aspects and qualities is many-to-many. That is, an aspect can address multiple
software qualities. For example, the logging of system events possibly addresses
the software qualities accountability, transparency, maintainability, performance,
and traceability. On the other hand, a software quality can be addressed by mul-
tiple aspects, for example, the software quality confidentiality could be addressed
by the following aspects: encryption, authentication and authorization, and
data minimization. For the identification of underlying qualities tools such as
QAMiner [17] can be used. This way we discover that in our case the aspect R30
has the underlying quality maintainability:

(R31) Maintainability. All events which are useful to trace a malfunction of
the gateway shall be logged.

We document the relation between the aspect and the identified underlying
quality in cross-cut relation table. In Table 1, we added the bold cross X3 in the
lower right quadrant. Furthermore, we add the relations between the identified
quality to the base requirements which are implied by the relations of the cor-
responding aspect. For our smart grid scenario, we added the bold crosses X3

in the upper left quadrant of Table 1. The consideration of the underlying qual-
ities allows requirements engineers to access whether the selected mechanisms
(aspects) sufficiently address the respective quality.

4.4 Analyze Completeness

Based on the identified qualities, we can re-use quality-dependent analysis tech-
niques on problem frames to check the completeness of the cross-cut relation. For



300 S. Faßbender et al.

example, for privacy one can use the ProPAn method [18], the law (identifica-
tion) pattern method [19] provides guidance for compliance, security is covered
by the PresSuRE method [20], and so forth. These analysis techniques identify
for a given problem frames model and the respective quality in which functional
requirements the quality has to be considered. At this point of our method,
we have all inputs that the analysis techniques need. Using the results of the
analysis techniques, we can update the cross-cut relation and check whether
the selected aspects together with the defined cross-cut relation guarantee the
intended software qualities.

In this way, we identify that, for example, several qualities are relevant for
R1. Privacy (R29A) is relevant as the consumption data metered by the smart
meters enables one to analyze what the persons in the household are currently
doing. Hence, the consumption data is an asset which has to be protected. As
result, the security analysis also shows that the consumption data has to be
protected against eavesdropping (R28A). Maintainability (R31) is also relevant
for R1, as a malfunction can also occur while receiving consumption data. The
compliance analysis (R29B) reveals and strengthens the importance of privacy
because of different data protection acts. Additionally, the logging mechanism
is not only relevant for maintainability but also for compliance as several laws
require the fulfillment of accountability requirements whenever there is a con-
tractual relation between different parties. This information is used to update
the cross-cut relation table (see bold crosses X4 in Table 1). The already existing
aspect requirements are sufficient to cover the newly found relations.

Furthermore, we have to check whether a software quality that was identified
as relevant for a base requirement is also relevant for an aspect requirement that
cross-cuts the base requirement. E.g., we have to check whether the logs written
for the base requirements R1 and R17B contain confidential information that
has to be protected against an external attacker. For presentation purpose, we
assume that such an attacker has to be considered in the smart grid scenario and
add an aspect requirement for the encryption of persistent data that cross-cuts
the logging aspect.

(R32) Data Encryption. Persistent data shall be stored encrypted on the gate-
way.

We update the regions (Aspect,Quality) and (Aspect,Aspect) of the cross-
cut relation table (see Table 1) to document that the quality R28A has to be
taken into account for the aspect R30 (cross in region (Aspect,Quality)), and
that the aspect R3 is cross-cut by the newly introduced aspect R32 (cross in
region (Aspect,Aspect)).

4.5 Model Aspect Requirements

To model aspect requirements in a similar way as base requirements, we extended
the UML profile of the UML4PF tool with aspect-oriented concepts. To dif-
ferentiate aspect requirements, the machines that address them, and the dia-
gram they are represented in, from base requirements and their machines



A Problem-, Quality-, and Aspect-Oriented Requirements 301

and diagrams, we introduce the new stereotypes �Aspect�, �AspectMachine�,
and �AspectDiagram� as specialization of the stereotypes �Requirement�,
�ProblemDiagram�, and �Machine�, respectively. In addition to problem dia-
grams, an aspect diagram has to contain a set of join points, which together
form a pointcut. These join points can be domains and interfaces. Hence, we
introduced the new stereotype �JoinPoint�, which can be applied to all special-
izations of the UML meta-class NamedElement. During the weaving, join points
are instantiated with domains of the diagrams the aspect cross-cuts.

To create an aspect diagram, we have to identify the join points which are
necessary to combine the aspect with the problems it cross-cuts and to under-
stand the problem of building the aspect machine. In most cases, we have a
machine, besides the aspect machine, as join point in an aspect diagram. This
machine will be instantiated during the weaving with the machine of the prob-
lem that the aspect is weaved into. The interface between this join point and the
aspect machine describes how a problem machine can utilize an aspect and which
context information is needed by the aspect machine. We have to derive the join
points important for the problem described by the aspect from its description
and the requirements it cross-cuts. Besides the specialized stereotypes for the
machine and the requirement, and the definition of join points for the later
weaving, the process of building an aspect diagram is similar to the process of
building problem diagrams. As for problem diagrams, we also create sequence
diagrams for each aspect. The sequence diagrams contain two kinds of informa-
tion. First, the messages annotated with the stereotype �JoinPoint� describe
the pointcut scenario. I.e., these messages describe when during the behavior
necessary to accomplish the cross-cut requirement the behavior of the aspect
can be integrated. Note that we can represent the common pointcut definitions
used, e.g., in AspectJ, such as before, after and around, by a sequence diagram
with the behavior description for the aspect before, after, or around the pointcut
scenario, respectively. Second, all other messages describe the internal behavior
necessary to accomplish the aspect requirement.

Fig. 5. Aspect diagram for aspect R30. Fig. 6. Sequence diagram for aspect R30.

For reasons of space, we will only discuss the aspect requirement R30 in
detail. The aspect R28B and the sequence diagram for the decryption of received
data is described in [21]. R30 covers the logging of important events in the sys-
tem. The corresponding aspect diagram is presented in Fig. 5. It contains the



302 S. Faßbender et al.

Fig. 7. Sequence diagram for aspect
R28B.

Fig. 8. Sequence diagram for aspect
R32.

aspect machine SMGLog, which is able to record events in the EventStorage. Fur-
thermore, the aspect diagram contains two domains as join points. The machine
SMGRequester will be instantiated by a problem machine and the domain Source

by the origin of the event to be logged. The machine SMGRequester observes the
phenomenon event1 of Source and is able to issue the phenomenon event2. These
phenomena represent the events that shall be logged and need to be instantiated
during the weaving. If an event that has to be logged is observed, then SMGRe-

quester instructs the aspect machine SMGLog to log that event (logEvent). In
general, we have to distinguish four cases for the event to be logged. The event
could be issued using a synchronous or asynchronous message of the Source,
or a synchronous or asynchronous message from the machine SMGRequester to
the Source. For the sake of simplicity, we only consider the case shown in the
sequence diagram in Fig. 6. This sequence diagram shows the case that SMGRe-

quester sends a synchronous message to Source and receives a result (requirement).
Then SMGRequester asks SMGLog to log the observed event (requirement). The
machine SMGLog then records the event (specification). Hence, the observed
event is logged (requirement). Figures 7 and 8 show the sequence diagrams for
the behavior of aspect R28B for sending encrypted data via a network and aspect
R32 for encrypting data that shall be stored persistently.

4.6 Weave Requirements

For each base requirement, we now create a sequence diagram that describes
how the aspect requirements have to be weaved into it to address the cross-cut
relations. The basis for the weaving sequence diagram is the sequence diagram
of the requirement. The behavior of the sub-machine is extended with the invo-
cation of the aspects given by the row of the base requirement in the cross-cut
relation table (see Table 1). Furthermore, we have to consider whether the base
requirement is cross-cut by an aspect a1 that is itself cross-cut by another aspect
a2. If this is the case, we have to weave the aspect a2 into the base requirement
after the aspect a1 was weaved into it.

The cross-cut relations are not sufficient to weave the aspect requirements
into the base requirement. The reason is that the cross-cut relation does not
define how and when an aspect has to be integrated into the base problem. Nev-
ertheless, we can identify the situations during the dynamics of the base problem
where an aspect could be integrated using the pointcut scenarios described in
the sequence diagrams of the aspect. For each base requirement, we create a



A Problem-, Quality-, and Aspect-Oriented Requirements 303

Fig. 9. Weaved sequence diagram for R17A.

table that defines the weaving relations, i.e., how and in which order the aspects
have to be integrated into the base problem. A row in the table consists of the
aspect sequence diagram that shall be weaved into the requirement, and the
instantiation of the join points of the aspect with the domains and messages
of the base sequence diagram. An instantiation of a join point j by a domain
or message b of the base problem is denoted by b/j. The instantiated messages
uniquely describe how and when the aspect is integrated into the base sequence
diagram. Table 2 shows the weaving relations for base requirement R1.

Because of the aspect requirement R28B all communications have to be
encrypted to prevent eavesdropping attacks. This implies that all external mes-
sages that a sub-machine sends have to be encrypted and the ones it receives
have to be decrypted. Hence, we have to integrate the aspect R28B twice into
the base requirement R1. The pointcut scenarios in the two sequence diagrams
R28B (Out) (shown in Fig. 7) and R28B (In) can only be instantiated in one way,
because in the sequence diagram for R1 (see Fig. 4) there is only one communi-
cation from the machine via a network (LMN) to a receiver (SmartMeter) and one
back from the sender (SmartMeter) via the network (LMN). The first two lines
of Table 2 describe these integrations. The pointcut scenario of the aspect R30
matches for all synchronous message calls with a reply (see Fig. 6). Hence, we
have two possible situations in the sequence diagram for R1 where the aspect
could be integrated. The event to be logged is a failed check of the received
meter data and hence, we integrate aspect R30 as described by the third line in
Table 2. Finally, we have to integrate aspect R32 that cross-cuts aspect R30. The
pointcut scenario for R32 (see Fig. 8) has to be instantiated with the recording
of the event (see Fig. 6) as described in line four of Table 2.

The weaving relations are used to generate the weaving sequence diagrams
from the sequence diagrams of the problem and aspect diagrams. These auto-



304 S. Faßbender et al.

Table 2. Weaving relations for base requirement R1.

Aspect Domain Instantiations Message Instantiations

R28B (Out) SMGReceive/SMGRequester, requestData/sendDataOut,

LMN/Network, SmartMeter/Receiver forwardRequest/forwardDataOut

R28B (In) SMGReceive/SMGRequester, sendData/sendDataIn,

LMN/Network, SmartMeter/Sender forwardData/forwardDataIn

R30 SMGReceive/SMGRequester, check/event2, fail/event1

SMGReceive/Source

R32 SMGLog/SMGRequester, recordEvent/storeData

EventStorage/Storage

matically generated sequence diagrams have then to be adjusted, such that the
overall behavior satisfies the weaving requirement. The generated sequence dia-
gram for R1 is shown in Fig. 9. For the sake of readability, we use a bold font
for messages from the original problem specification of R1. In accordance with
Table 2, the date sent to the smart meter is encrypted before sending and the
received data is decrypted when received. Furthermore, in the case of a failed
check of the received data an encrypted log is recorded.

4.7 Analyze Interactions

For reasons of space, we do not go into detail for this step. Alebrahim et al.
provide methods for interaction analysis using problem frames. In [22] functional
requirements are treated, and [23] describes how to analyze quality requirements
for interactions. Both works use the smart grid as a case study. Hence, we re-
used the methods and results also for this work. The results are documented in
Table 1 using bold I.

Table 3. Effort spent (in person-hours/minutes) for conducting the method.

5 Validation

To validate our method, we applied it to the crisis management system
(CMS) [24] that Kienzle et al. proposed as a case study for aspect-oriented
modeling. We derived an informal scenario description and the textual use case
descriptions from the original as input for our method5. The method was exe-
cuted by a requirements expert, who did not know the case beforehand. From the
5 For the inputs and the results see http://imperia.uni-due.de/imperia/md/content/

swe/aore4pf cms report.pdf.

http://imperia.uni-due.de/imperia/md/content/swe/aore4pf_cms_report.pdf
http://imperia.uni-due.de/imperia/md/content/swe/aore4pf_cms_report.pdf


A Problem-, Quality-, and Aspect-Oriented Requirements 305

information provided to the requirements analyst, he identified 13 base require-
ments that he modeled using 10 problem diagrams, 8 aspect requirements that
he modeled using 5 aspect diagrams, and 6 quality requirements.

The effort spent for conducting our method on the CMS is summarized in
Table 3. It took 5 h to classify the requirements. Note that for the case study
this step was done manually. The reason was that tools such as, for example,
OntRep [13] or EA-Miner [14] require some additional input like training docu-
ments or an existing ontology. But unfortunately, such inputs were not available.
Hence, the first step can be sped up significantly using these tools. Another
big block of effort is the modeling of base and aspect requirements. Here the
tool support already helps to speed up the modeling, but is subject for further
improvement. Note that the modeling steps do not only include the modeling
itself, but also the analysis and improvement of the original requirements, which
make the requirements more precise and unambiguous. Therefore, parts of the
effort spent on the modeling steps are unavoidable even when using another
method or notation. The modeling itself pays off as it allows the usage of the
broad spectrum of methods and tools which need problem frame models as input.
For example, the analysis of completeness uses these models and takes about an
hour for different kinds of qualities. The weaving of aspects is quite time con-
suming right now. Here the tool support is on an experimental level, but the
observations taken during the case study imply that a full fledged tool support
will significantly drop the effort. The interaction analysis takes round about two
hours, which is significantly below the effort of doing such an analysis without a
problem frame model (see [22] for further information). All the effort spent sums
up to 21,5 person hours, which is significant but reasonable with regards to the
results one gets. And compared to efforts other authors report, the effort spent
for our method seems to be even low. For example, Landuyt et al. [25] report an
effort spent of 170 h for the requirements engineering related activities.

Table 4. Requirements identified.



306 S. Faßbender et al.

To asses the sufficiency of the method and the used tools, the requirements
and qualities found within our method were compared to the original document
as described by Kienzle et al. Table 4 shows the comparison. Overall, the results
are satisfying as most requirements were found and classified in the correct class
(30 %) or in another, also correct, class (45 %). The high amount of requirements
classified differently are due to specific classes given in the original documents.
For example, persistence and statistical logging were completely described as
functional requirements in the documents but treated as qualities. For such
requirements it is a more general discussion if they are quality requirements
or not. Hence, we accepted both views as correct. For some specific qualities,
such as mobility or accuracy, the overall observation cannot be acknowledged.
The reasons are subject to further investigations.

To asses the aspects identified, we compared the results of our method to
the results given in other publications considering aspect-oriented requirements
engineering using the same scenario [25,26]. The set of requirements identified
with our method includes all requirements which are treated as aspects in the
other works. 83 % of the aspects found and separated in [25] and 75 % of those
in [26] were also separated as aspects by our method. The other 17 % of aspects
in [25] and 25 % in [26] were identified as base requirements by our method. A
detailed investigation showed that both views on these requirements are reason-
able. Some of the aspects our method found were not mentioned in the other
works. 38 % and 25 % of the requirements identified by our method where not
mentioned in [25,26], respectively. Reasons for the missing requirements might
be that they were not reported due to lack of space or that they were not found.

We could not asses our completeness analysis quantitatively as the other
works using the scenario stick to the original requirements. But the qualita-
tive investigation of the completeness analysis showed reasonable results. This
observation is also true for the cross cut relations. We also compared the weaved
specification with sequence diagrams or state machines given by the original doc-
ument and works in [24]. Here we observed that the specifications produced by
our method were at least as good as the chosen assessment artifacts. Again, the
interaction analysis could not be assessed quantitatively due to missing bench-
marks. But the found interactions seemed to be real problems which have to be
resolved in a real case.

6 Related Work

There are many works considering early aspects [27–33]. Most of these
approaches deal with goal-oriented approaches and use-case models. But goal
or use-case models are of a higher level of abstraction than problem frames.
Additionally, goal and use-case models are stakeholder-centric, while problem
frames are system-centric. Therefore, refining functional requirements taking
into account more detail of the system-to-be and analyzing the system-to-be
described by the functional requirements is reported to be difficult for such



A Problem-, Quality-, and Aspect-Oriented Requirements 307

methods [34]. Recently, there were papers which reported a successful integra-
tion of goal- and problem-oriented methods [35,36]. Hence, one might benefit
from integrating goal-models in our method.

Conejero et al. [37] present a framework alike the method presented in this
paper. Their process also starts with unstructured textual requirements. Then
different tools and modeling notations are used along the frame work to identify
and handle aspects. In difference to our process, they do not consider a com-
pleteness or interaction analysis and especially for the modeling of aspects they
lack tool support.

Only few approaches consider the integration of early aspects in the problem
frames approach. Lencastre et al. [38] also investigated how early aspects can be
integrated into problem frames. Their method to model aspects in the problem
frames approach differs from ours. For an aspect, the authors first select a prob-
lem frame as PF Pointcut Scenario. This pointcut scenario defines into which
problems the aspect can be integrated. The pointcut scenario is then extended
to the PF Aspectual Scenario, which is similar to our aspect diagrams, with the
difference that the pointcut always has to be a problem frame. This reduces
flexibility, because an aspect (e.g., logging of all system events) may have to be
integrated into different problem diagrams.

7 Conclusions

In this paper, we presented the AORE4PF method which integrates aspect-
orientation into the problem frames approach and utilizes many quality analysis
method based on problem frames to be a problem-, quality-, and aspect-oriented
requirements engineering method. We extended the UML4PF profile with stereo-
types that allow us to create aspect diagrams. We further introduced a structured
methodology to separate aspects from requirements, to model aspects, and to
weave aspects and requirements together. We considered both the static and the
behavioral view on the requirements, aspects, and their weaving. We exemplified
our method using a smart grid scenario from the NESSoS project as case study
and validated it using a crisis management system.

The contributions of this work are (1) the integration of aspects into the prob-
lem frames approach, (2) a structured way of separating base, quality and aspect
requirements, starting from a textual description, (3) the detection of implicit
qualities given by aspects, (4) identification of all base requirements relevant for
a quality and the related aspects, (5) a structured method to weave base and
aspect requirements, and (6) the integration of an interactions analysis between
the resulting requirements. The AORE4PF method is (7) tool-supported in most
steps. The resulting requirements model not necessarily leads to an aspect-
oriented implementation of the software. The identified aspects can also help
to define the structure of a component-based implementation.

For future work, we plan to improve the tool support. More steps of our
method, such as the instantiation of pointcut scenarios during the weaving, can
be automated to a higher degree and we want to provide an integrated tool chain



308 S. Faßbender et al.

for the requirements separation. Additionally, we will investigate how architec-
tures can be derived from the aspect-oriented requirements model.

References

1. Hofmann, H., Lehner, F.: Requirements engineering as a success factor in software
projects. IEEE Softw. 18, 58–66 (2001)

2. Cavusoglu, H., Mishra, B., Raghunathan, S.: The effect of internet security breach
announcements on market value: capital market reactions for breached firms and
internet security developers. Int. J. Electron. Commer. 9, 70–104 (2004)

3. Khansa, L., Cook, D.F., James, T., Bruyaka, O.: Impact of HIPAA provisions on
the stock market value of healthcare institutions, and information security and
other information technology firms. Comput. Secur. 31, 750–770 (2012)

4. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE
Trans. Softw. Eng. 14, 1462–1477 (1988)

5. Willis, R.: Hughes aircraft’s widespread deployment of a continuously improving
software process. AD-a358 993. Carnegie-Mellon University (1998)

6. Firesmith, D.: Specifying good requirements. J. Object Technol. 2, 77–87 (2003).
http://www.jot.fm/issues/issue 2003 07/column7

7. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15, 1053–1058 (1972)

8. Jackson, M.: Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, New York (2001)

9. Kreutzmann, H., Vollmer, S., Tekampe, N., Abromeit, A.: Protection profile for
the gateway of a smart metering system. Technical report, BSI (2011)

10. OPEN meter project: requirements of AMI. Technical report, OPEN meter project
(2009)

11. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable
software. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 317–331.
Springer, Heidelberg (2010)

12. Côté, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF - a tool for problem-
oriented requirements analysis. In: Proceedings of the 19th IEEE International
Requirements Engineering Conference, pp. 349–350. IEEE Computer Society
(2011)

13. Moser, T., Winkler, D., Heindl, M., Biffl, S.: Requirements management with
semantic technology: an empirical study on automated requirements categorization
and conflict analysis. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS,
vol. 6741, pp. 3–17. Springer, Heidelberg (2011)

14. Sampaio, A., Rashid, A., Chitchyan, R., Rayson, P.: EA-Miner: towards automa-
tion in aspect-oriented requirements engineering. In: Rashid, A., Akşit, M. (eds.)
Transactions on AOSD III. LNCS, vol. 4620, pp. 4–39. Springer, Heidelberg (2007)

15. Baniassad, E., Clarke, S.: Finding aspects in requirements with Theme/Doc.
In: Early Aspects: Aspect-Oriented Requirements Engineering and Archi-
tecture Design, pp. 15–22 (2004). http://trese.cs.utwente.nl/workshops/
early-aspects-2004/workshop papers.htm

16. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In:
ICSE, pp. 15–24. ACM Press, USA (1995)

17. Rago, A., Marcos, C., Diaz-Pace, J.A.: Uncovering quality-attribute concerns in
use case specifications via early aspect mining. Requirements Eng. 18, 67–84 (2013)

http://www.jot.fm/issues/issue_2003_07/column7
http://trese.cs.utwente.nl/workshops/early-aspects-2004/workshop_papers.htm
http://trese.cs.utwente.nl/workshops/early-aspects-2004/workshop_papers.htm


A Problem-, Quality-, and Aspect-Oriented Requirements 309

18. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for
computer-aided privacy threat identification. In: Preneel, B., Ikonomou, D. (eds.)
APF 2012. LNCS, vol. 8319, pp. 1–16. Springer, Heidelberg (2014)

19. Faßbender, S., Heisel, M.: From problems to laws in requirements engineering using
model-transformation. In: ICSOFT 2013, pp. 447–458. SciTePress (2013)

20. Faßbender, S., Heisel, M., Meis, R.: Functional requirements under security Pres-
SuRE. In: ICSOFT-PT 2014 - Proceedings of the 9th International Conference on
Software Paradigm Trends, pp. 5–16. SciTePress (2014)

21. Faßbender, S., Heisel, M., Meis, R.: Aspect-oriented requirements engineering with
problem frames. In: ICSOFT-PT 2014 - Proceedings of the 9th International Con-
ference on Software Paradigm Trends, pp. 145–156. SciTePress (2014)

22. Alebrahim, A., Faßbender, S., Heisel, M., Meis, R.: Problem-based requirements
interaction analysis. In: Salinesi, C., van de Weerd, I. (eds.) REFSQ 2014. LNCS,
vol. 8396, pp. 200–215. Springer, Heidelberg (2014)

23. Alebrahim, A., Choppy, C., Faßbender, S., Heisel, M.: Optimizing functional and
quality requirements according to stakeholders’ goals. In: Mistrik, I. (ed.) System
Quality and Software Architecture. Elsevier, Amsterdam (2014)

24. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: a case study
for aspect-oriented modeling. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transac-
tions on Aspect-Oriented Software Development VII. LNCS, vol. 6210, pp. 1–22.
Springer, Heidelberg (2010)

25. Van Landuyt, D., Truyen, E., Joosen, W.: Discovery of stable abstractions for
aspect-oriented composition in the car crash management domain. In: Katz, S.,
Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-Oriented Software Develop-
ment VII. LNCS, vol. 6210, pp. 375–422. Springer, Heidelberg (2010)

26. Mussbacher, G., Amyot, D., Araújo, J., Moreira, A.: Requirements modeling with
the aspect-oriented user requirements notation (AoURN): a case study. In: Katz,
S., Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-Oriented Software Devel-
opment VII. LNCS, vol. 6210, pp. 23–68. Springer, Heidelberg (2010)

27. Rashid, A.: Aspect-oriented requirements engineering: an introduction. In: Pro-
ceedings of the 16th IEEE International Requirements Engineering Conference,
pp. 306–309. IEEE Computer Society (2008)

28. Yu, Y., Cesar, J., Leite, S.P., Mylopoulos, J.: From goals to aspects: discovering
aspects from requirements goal models. In: Proceedings of the 12th IEEE Interna-
tional Requirements Engineering Conference, pp. 38–47. IEEE Computer Society
(2004)

29. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases.
Addison-Wesley Professional, Englewood Cliffs (2004)

30. Whittle, J., Araujo, J.: Scenario modelling with aspects. IEE Proc. Softw. 151,
157–171 (2004)

31. Sutton, Jr., S.M., Rouvellou, I.: Modeling of software concerns in cosmos. In: Pro-
ceedings of the 1st International Conference on Aspect-oriented Software Develop-
ment, AOSD 2002, pp. 127–133. ACM, New York (2002)

32. Moreira, A., Araújo, J., Rashid, A.: A concern-oriented requirements engineering
model. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
293–308. Springer, Heidelberg (2005)

33. Grundy, J.C.: Aspect-oriented requirements engineering for component-based soft-
ware systems. In: Proceedings of the IEEE International Symposium on Require-
ments Engineering, pp. 84–91. IEEE Computer Society, Washington (1999)



310 S. Faßbender et al.

34. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements
from goal models. In: IEEE 31st International Conference on Software Engineering,
pp. 265–275. IEEE Computer Society (2009)

35. Mohammadi, N.G., Alebrahim, A., Weyer, T., Heisel, M., Pohl, K.: A framework
for combining problem frames and goal models to support context analysis during
requirements engineering. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.,
Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 272–288. Springer, Heidelberg
(2013)

36. Beckers, K., Faßbender, S., Heisel, M., Paci, F.: Combining goal-oriented and
problem-oriented requirements engineering methods. In: Cuzzocrea, A., Kittl, C.,
Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 178–
194. Springer, Heidelberg (2013)

37. Conejero, J.M., Hernandez, J., Jurado, E., van den Berg, K.: Mining early aspects
based on syntactical and dependency analyses. Sci. Comput. Program. 75, 1113–
1141 (2010)

38. Lencastre, M., Moreira, A., Araújo, J., Castro, J.: Aspects composition in problem
frames. In: Proceedings of the 16th IEEE International Requirements Engineering
Conference, pp. 343–344. IEEE Computer Society (2008)


	A Problem-, Quality-, and Aspect-Oriented Requirements Engineering Method
	1 Introduction
	2 Case Study
	3 UML-Based Problem Frames
	4 Method
	4.1 Classify Requirements
	4.2 Model Base Problems
	4.3 Identify Underlying Qualities
	4.4 Analyze Completeness
	4.5 Model Aspect Requirements
	4.6 Weave Requirements
	4.7 Analyze Interactions

	5 Validation
	6 Related Work
	7 Conclusions
	References


