
123

Andreas Holzinger · Jorge Cardoso
José Cordeiro · Therese Libourel
Leszek A. Maciaszek
Marten van Sinderen (Eds.)

9th International Joint Conference, ICSOFT 2014
Vienna, Austria, August 29–31, 2014
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 555

Communications
in Computer and Information Science 555

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Andreas Holzinger • Jorge Cardoso
José Cordeiro • Therese Libourel
Leszek A. Maciaszek • Marten van Sinderen (Eds.)

Software Technologies
9th International Joint Conference, ICSOFT 2014
Vienna, Austria, August 29–31, 2014
Revised Selected Papers

123

Editors
Andreas Holzinger
Medical Informatis, Statistics, Document
Medical University Graz
Graz
Austria

Jorge Cardoso
Engenharia Informática Department
Universidade de Coimbra
Coimbra
Portugal

José Cordeiro
INSTICC and IPS
Setúbal
Portugal

Therese Libourel
Département Informatique
Université de Montpellier
Montpellier
France

Leszek A. Maciaszek
Wroclaw University of Economics
Wroclaw
Poland

Marten van Sinderen
Department of Computer Science
University of Twente
Enschede, Overijssel
The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-25578-1 ISBN 978-3-319-25579-8 (eBook)
DOI 10.1007/978-3-319-25579-8

Library of Congress Control Number: 2015952534

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The present book includes extended and revised versions of a set of selected papers
from the 9th International Joint Conference on Software Technologies (ICSOFT 2014),
which was sponsored by the Institute for Systems and Technologies of Information,
Control and Communication (INSTICC) and co-organized by the Austrian Computer
Society and the Vienna University of Technology – TU Wien (TUW). ICSOFT 2014
was held in cooperation with the IEICE Special Interest Group on Software Interprise
Modelling (SWIM) and technically co-sponsored by the IEEE Computer Society and
IEEE Computer Society’s Technical Council on Software Engineering (TCSE).

The purpose of ICSOFT is to bring together researchers, engineers, and practitioners
working in areas that are related to software engineering and applications. ICSOFT is
composed of two co-located conferences: ICSOFT-PT, which specializes in new
software paradigm trends, and ICSOFT-EA, which specializes in mainstream software
engineering and applications. Together, these conferences aim at becoming a major
meeting point for software engineers worldwide.

ICSOFT-PT (9th International Conference on Software Paradigm Trends) focused
on four main paradigms that have been intensively studied during the last decade for
software and system design, namely, Models, Aspects, Services, and Context.

ICSOFT-EA (9th International Conference on Software Engineering and Applica-
tions) had a practical focus on software engineering and applications. The conference
tracks were Enterprise Software Technologies, Software Engineering and Systems
Security, Distributed Systems, and Software Project Management.

ICSOFT 2014 received 145 paper submissions from 46 countries in all continents,
of which 14 % were presented as full papers. To evaluate each submission, a
double-blind paper evaluation method was used: each paper was reviewed by at least
two internationally known experts from the ICSOFT Program Committee.

The quality of the papers presented here stems directly from the dedicated effort
of the Steering and Scientific Committees and the INSTICC team responsible for
handling all secretariat and logistics details. We are further indebted to the conference
keynote speakers, who presented their valuable insights and visions regarding areas of
interest to the conference. Finally, we would like to thank all authors and attendants for
their contribution to the conference and the scientific community.

We hope that you will find these papers interesting and consider them a helpful
reference in the future when addressing any of the aforementioned research areas.

April 2015 Andreas Holzinger
Jorge Cardoso
José Cordeiro

Therese Libourel
Leszek A. Maciaszek
Marten van Sinderen

Organization

Conference Co-chairs

Andreas Holzinger Medical University Graz, Austria
Stephen Mellor

(honorary)
Freeter, UK

Program Co-chairs

ICSOFT-EA

Therese Libourel University of Montpellier II (IRD, UR, UAG), France
Leszek A. Maciaszek Wroclaw University of Economics, Poland and Macquarie

University, Sydney, Australia

ICSOFT-PT

Jorge Cardoso University of Coimbra, Portugal and Karlsruhe Institute of
Technology, Germany

José Cordeiro Polytechnic Institute of Setúbal/INSTICC, Portugal
Marten van Sinderen University of Twente, The Netherlands

Organizing Committee

Marina Carvalho INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
João Francisco INSTICC, Portugal
Lucia Gomes INSTICC, Portugal
Rúben Gonçalves INSTICC, Portugal
Ana Guerreiro INSTICC, Portugal
André Lista INSTICC, Portugal
Filipe Mariano INSTICC, Portugal
Andreia Moita INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Cátia Pires INSTICC, Portugal
Carolina Ribeiro INSTICC, Portugal
João Ribeiro INSTICC, Portugal
Susana Ribeiro INSTICC, Portugal
Sara Santiago INSTICC, Portugal
Fábio Santos INSTICC, Portugal
Mara Silva INSTICC, Portugal

José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

ICSOFT-EA Program Committee

Hamideh Afsarmanesh University of Amsterdam, The Netherlands
Markus Aleksy ABB Corporate Research Center, Germany
Waleed Alsabhan University of Brunel, UK
Toshiaki Aoki Japan Advanced Institute of Science and Technology,

Japan
Gabriela Noemí Aranda Universidad Nacional Del Comahue, Argentina
Farhad Arbab CWI, The Netherlands
Jocelyn Armarego Murdoch University, Australia
Cyrille Artho AIST, Japan
Fevzi Belli University of Paderborn, Germany
Jorge Bernardino Polytechnic Institute of Coimbra - ISEC, Portugal
Marcello Bonsangue Leiden University, The Netherlands
Dumitru Burdescu University of Craiova, Romania
Antoni Lluís Mesquida

Calafat
Universitat de les Illes Balears (UIB), Spain

Jose Antonio
Calvo-Manzano

Universidad Politécnica de Madrid, Spain

Mauro Caporuscio Politecnico di Milano, Italy
Luiz Fernando Capretz University of Western Ontario, Canada
Kung Chen National Chengchi University, Taiwan
Marta Cimitile UNITELMA Sapienza, Italy
Peter Clarke Florida International University, USA
François Coallier École de technologie supérieure, Canada
Kendra Cooper The University of Texas at Dallas, USA
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Aldo Dagnino ABB Corporate Research, USA
Ferruccio Damiani Università degli Studi di Torino, Italy
Steven Demurjian University of Connecticut, USA
Juan C. Dueñas Universidad Politécnica de Madrid, Spain
Philippe Dugerdil Geneva School of Business Administration, University of

Applied Sciences of Western Switzerland, Switzerland
Fikret Ercal Missouri University of Science and Technology, USA
João Faria FEUP - University of Porto, Portugal
Rita Francese Università degli Studi di Salerno, Italy
Matthias Galster University of Canterbury, New Zealand
Nikolaos Georgantas Inria, France
Hamza Gharsellaoui INSAT Institute – University of Carthage, Tunisia, Al-Jouf

College of Technology, TVTC, KSA, Saudi Arabia
Paola Giannini Università del Piemonte Orientale, Italy
J. Paul Gibson TSP - Telecom SudParis, France

VIII Organization

Slimane Hammoudi ESEO, MODESTE, France
Brian Henderson-Sellers University of Technology, Sydney, Australia
Pedro Rangel Henriques University of Minho, Portugal
Jose Luis Arciniegas

Herrera
Universidad del Cauca, Colombia

Yoshiki Higo Osaka University, Japan
Jose R. Hilera University of Alcala, Spain
Andreas Holzinger Medical University Graz, Austria
Jang-eui Hong Chungbuk National University, Korea, Republic of
Ivan Ivanov SUNY Empire State College, USA
Bo Nørregaard

Jørgensen
University of Southern Denmark, Denmark

Dimitris Karagiannis University of Vienna, Austria
Carlos Kavka ESTECO SpA, Italy
Foutse Khomh École Polytechnique, Canada
Mieczyslaw Kokar Northeastern University, USA
Jitka Komarkova University of Pardubice, Czech Republic
Jun Kong North Dakota State University, USA
Dimitri Konstantas University of Geneva, Switzerland
Nicholas Kraft The University of Alabama, USA
Martin Kropp University of Applied Sciences Northwestern Switzerland,

Switzerland
Konstantin Läufer Loyola University Chicago, USA
David Lorenz Open University, Israel
Ricardo J. Machado Universidade do Minho, Portugal
Leszek A. Maciaszek Wroclaw University of Economics, Poland and Macquarie

University, Sydney, Australia
Ahmad Kamran Malik Quaid-i-Azam University, Pakistan
Eda Marchetti ISTI-CNR, Italy
Cristina Marinescu Universitatea Politehnica Timisoara, Romania
Katsuhisa Maruyama Ritsumeikan University, Japan
Tom McBride University of Technology Sydney, Australia
Emilia Mendes Blekinge Institute of Technology, Sweden
Marian Cristian

Mihaescu
University of Craiova, Romania

Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Mattia Monga Università degli Studi di Milano, Italy
José Arturo Mora-Soto Carlos III University of Madrid, Spain
Antao Moura Federal Universisty of Campina Grande (UFCG), Brazil
Henry Muccini University of L’Aquila, Italy
Yuko Murayama Iwate Prefectural University, Japan
Takako Nakatani University of Tsukuba, Japan
Paolo Nesi University of Florence, Italy
Jianwei Niu University of Texas at San Antonio, USA
Rory O’Connor Dublin City University, Ireland
Hanna Oktaba Universidad National Autonoma de Mexico, Mexico

Organization IX

Xin Peng Fudan University, China
Dewayne E. Perry ARiSE, UT Austin, USA
Giuseppe Polese Università degli Studi di Salerno, Italy
Anders Ravn Aalborg University, Denmark
Claudio de la Riva University of Oviedo, Spain
Colette Rolland Université Paris 1 Panthéon-Sorbonne, France
Gustavo Rossi Lifia, Argentina
Chanchal Roy University of Saskatchewan, Canada
Chandan Rupakheti Rose-Hulman Institute of Technology, USA
Krzysztof Sacha Warsaw University of Technology, Poland
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Maria-Isabel

Sanchez-Segura
Carlos III University of Madrid, Spain

Luis Fernandez Sanz University of Alcala, Spain
Riccardo Scandariato iMinds-DistriNet, KU Leuven, Belgium
Giuseppe Scanniello University of Basilicata, Italy
Bradley Schmerl Carnegie Mellon University, USA
Beijun Shen Shanghai Jiaotong University, China
Istvan Siket Hungarian Academy of Science, Research Group on

Artificial Intelligence, Hungary
Harvey Siy University of Nebraska at Omaha, USA
Anongnart Srivihok Kasetsart University, Thailand
Bedir Tekinerdogan Bilkent University, Turkey
Massimo Tivoli University of L’Aquila, Italy
Davide Tosi University of Insubria, Italy
Yuh-Min Tseng National Changhua University of Education, Taiwan
Burak Turhan University of Oulu, Finland
László Vidács University of Szeged, Hungary
Sergiy Vilkomir East Carolina University, USA
Gianluigi Viscusi EPFL-CDM, Switzerland
Christiane Gresse von

Wangenheim
UFSC - Federal University of Santa Catarina, Brazil

Bin Xu Tsinghua University, China
Hong Zhu Oxford Brookes University, UK

ICSOFT-EA Additional Reviewers

Mariano Di Claudio University of Florence, Italy
Estrela Ferreira Cruz Instituto Politécnico de Viana do Castelo, Portugal
Huseyin Ergin University of Alabama, USA
Cynthya García UC3M, Spain
Ana Lima Associação CCG/ZGDV - Centro de Computação Gráfica,

Portugal
Bernardi Mario Luca University of Sannio, Italy
Giacomo Martelli Università degli Studi di Firenze, Italy
João Moreira University of Porto, Portugal

X Organization

Alvaro Navas Universidad Politécnica de Madrid, Spain
Ana Cristina Ramada

Paiva
Feup, Portugal

Hugo Parada UPM, Spain
Yu Sun Vanderbilt University, USA
Juliana Teixeira Minho University, Portugal
George K.

Thiruvathukal
Loyola University Chicago, USA

Robert Yacobellis Loyola University, Chicago, USA

ICSOFT-PT Program Committee

Markus Aleksy ABB Corporate Research Center, Germany
Toshiaki Aoki Japan Advanced Institute of Science and Technology,

Japan
Colin Atkinson University of Mannheim, Germany
Xiaoying Bai Tsinghua University, China
Alexandre Bergel Pleiad Lab, University of Chile, Santiago, Chile
Jorge Bernardino Polytechnic Institute of Coimbra - ISEC, Portugal
Marcello Bonsangue Leiden University, The Netherlands
Thomas Buchmann University of Bayreuth, Germany
Dumitru Burdescu University of Craiova, Romania
Nelio Cacho Federal University of Rio Grande do Norte, Brazil
Fergal Mc Caffery Dundalk Institute of Technology, Ireland
Jose Antonio

Calvo-Manzano
Universidad Politécnica de Madrid, Spain

Mauro Caporuscio Politecnico di Milano, Italy
Cinzia Cappiello Politecnico di Milano, Italy
Sergio de Cesare Brunel University, UK
Kung Chen National Chengchi University, Taiwan
Marta Cimitile UNITELMA Sapienza, Italy
Peter Clarke Florida International University, USA
Kendra Cooper The University of Texas at Dallas, USA
Sergiu Dascalu University of Nevada, Reno, USA
Steven Demurjian University of Connecticut, USA
Juan C. Dueñas Universidad Politécnica de Madrid, Spain
Maria Jose Escalona University of Seville, Spain
Jean-Rémy Falleri Institut Polytechnique de Bordeaux, France
João Faria FEUP - University of Porto, Portugal
Rita Francese Università degli Studi di Salerno, Italy
Nikolaos Georgantas Inria, France
Paola Giannini Università del Piemonte Orientale, Italy
J. Paul Gibson TSP - Telecom SudParis, France
Cesar Gonzalez-Perez Institute of Heritage Sciences (Incipit), Spanish National

Research Council (CSIC), Spain
Gregor Grambow University of Ulm, Germany

Organization XI

Esther Guerra Universidad Autónoma de Madrid, Spain
Christian Heinlein Aalen University, Germany
Markus Helfert Dublin City University, Ireland
Brian Henderson-Sellers University of Technology, Sydney, Australia
Jose Luis Arciniegas

Herrera
Universidad del Cauca, Colombia

Jose R. Hilera University of Alcala, Spain
Andreas Holzinger Medical University Graz, Austria
Jang-eui Hong Chungbuk National University, Korea, Republic of
Milan Ignjatovic Prosoftwarica GmbH, Switzerland
Ivan Ivanov SUNY Empire State College, USA
Edson A. Oliveira Junior State University of Maringá, Brazil
Hermann Kaindl Vienna University of Technology, Austria
Bill Karakostas City University, UK
Mieczyslaw Kokar Northeastern University, USA
Jun Kong North Dakota State University, USA
Martin Kropp University of Applied Sciences Northwestern Switzerland,

Switzerland
Juan de Lara Universidad Autónoma de Madrid, Spain
Konstantin Läufer Loyola University Chicago, USA
Jonathan Lee National Taiwan University, Taiwan
David Lorenz Open University, Israel
Ricardo J. Machado Universidade do Minho, Portugal
Ahmad Kamran Malik Quaid-i-Azam University, Pakistan
Eda Marchetti ISTI-CNR, Italy
Jasen Markovski Eindhoven University of Technology, The Netherlands
Manuel Mazzara Polytechnic of Milan, Italy
Gergely Mezei Budapest University of Technology and Economics,

Hungary
Marian Cristian

Mihaescu
University of Craiova, Romania

Tommi Mikkonen Institute of Software Systems, Tampere University
of Technology, Finland

Raffaela Mirandola Politecnico di Milano, Italy
Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Mattia Monga Università degli Studi di Milano, Italy
José Arturo Mora-Soto Carlos III University of Madrid, Spain
Claude Moulin JRU CNRS Heudiasyc, University of Compiègne, France
Elena Navarro University of Castilla-La Mancha, Spain
Paolo Nesi University of Florence, Italy
Rory O’Connor Dublin City University, Ireland
Marcos Palacios University of Oviedo, Spain
Fiona Polack University of York, UK
Giuseppe Polese Università degli Studi di Salerno, Italy
Jolita Ralyte University of Geneva, Switzerland
Anders Ravn Aalborg University, Denmark

XII Organization

Claudio de la Riva University of Oviedo, Spain
Colette Rolland Université Paris 1 Panthéon-Sorbonne, France
Carlos Rossi Universidad de Málaga, Spain
Gustavo Rossi Lifia, Argentina
Gunter Saake Institute of Technical and Business Information Systems,

Germany
Maria-Isabel

Sanchez-Segura
Carlos III University of Madrid, Spain

Marian Fernández de
Sevilla

Alcalá University, Spain

Harvey Siy University of Nebraska at Omaha, USA
Peter Stanchev Kettering University, USA
Ernest Teniente Polytechnic University of Catalonia, Spain
Davide Tosi University of Insubria, Italy
Gianluigi Viscusi EPFL-CDM, Switzerland
Christiane Gresse von

Wangenheim
UFSC - Federal University of Santa Catarina, Brazil

Andreas Winter Carl von Ossietzky University Oldenburg, Germany
Jinhui Yao Xerox Research, USA
Jingyu Zhang Macquarie University, Australia
Elena Zucca University of Genova, Italy

ICSOFT-PT Additional Reviewers

Saverio Giallorenzo Università di Bologna, Italy
Carlos Salgado Universidade do Minho, Portugal
Reimar Schröter University of Magdeburg, Germany

Invited Speakers

Emilia Mendes Blekinge Institute of Technology, Sweden
J.C. (Hans) van Vliet Vrije Universiteit, The Netherlands
Ivona Brandic Vienna UT, Austria
Dimitris Karagiannis University of Vienna, Austria

Organization XIII

Contents

Software Engineering and Applications

BPMN 2.0 and the Service Interaction Patterns:
Can We Support Them All? . 3

Dario Campagna, Carlos Kavka, and Luka Onesti

Design Patterns for Model-Driven Development . 21
Timo Vepsäläinen and Seppo Kuikka

Measuring the Quality of Open Source Software Ecosystems Using QuESo . . . 39
Oscar Franco-Bedoya, David Ameller, Dolors Costal,
and Xavier Franch

Definition of Software Quality Evaluation and Measurement Plans:
A Reported Experience Inside the Audio-Visual Preservation Context 63

Isabella Biscoglio and Eda Marchetti

Context and Data Management for Multitenant Enterprise Applications
in SaaS Environments: A Middleware Approach . 81

Chun-Feng Liao, Kung Chen, and Jiu-Jye Chen

The Fixed-Price Contract: A Challenge for the Software Development
Project . 97

Cornelia Gaebert

Model Transformation by Example Driven ATL Transformation Rules
Development Using Model Differences . 113

Joseba A. Agirre, Goiuria Sagardui, and Leire Etxeberria

Mining Web Server Logs for Creating Workload Models 131
Fredrik Abbors, Dragos Truscan, and Tanwir Ahmad

New Flexible Architectures for Reconfigurable Wireless Sensor Networks . . . 151
Hanen Grichi, Olfa Mosbahi, and Mohamed Khalgui

A Measurement-Oriented Modelling Approach: Basic Concepts to Be
Shared . 170

Giulio D’Emilia, Gaetanino Paolone, Emanuela Natale,
Antonella Gaspari, and Denis Del Villano

Evolution of Feature-Oriented Software: How to Stay on Course and Avoid
the Cliffs of Modularity Drift . 183

Andrzej Olszak, Sanja Lazarova-Molnar, and Bo Nørregaard Jørgensen

http://dx.doi.org/10.1007/978-3-319-25579-8_1
http://dx.doi.org/10.1007/978-3-319-25579-8_1
http://dx.doi.org/10.1007/978-3-319-25579-8_2
http://dx.doi.org/10.1007/978-3-319-25579-8_3
http://dx.doi.org/10.1007/978-3-319-25579-8_4
http://dx.doi.org/10.1007/978-3-319-25579-8_4
http://dx.doi.org/10.1007/978-3-319-25579-8_5
http://dx.doi.org/10.1007/978-3-319-25579-8_5
http://dx.doi.org/10.1007/978-3-319-25579-8_6
http://dx.doi.org/10.1007/978-3-319-25579-8_6
http://dx.doi.org/10.1007/978-3-319-25579-8_7
http://dx.doi.org/10.1007/978-3-319-25579-8_7
http://dx.doi.org/10.1007/978-3-319-25579-8_8
http://dx.doi.org/10.1007/978-3-319-25579-8_9
http://dx.doi.org/10.1007/978-3-319-25579-8_10
http://dx.doi.org/10.1007/978-3-319-25579-8_10
http://dx.doi.org/10.1007/978-3-319-25579-8_11
http://dx.doi.org/10.1007/978-3-319-25579-8_11

Can Organisational Theory and Multi-agent Systems Influence Next
Generation Enterprise Modelling? . 202

Balbir S. Barn, Tony Clark, and Vinay Kulkarni

Software Defect Prediction in Automotive and Telecom Domain:
A Life-Cycle Approach . 217

Rakesh Rana, Miroslaw Staron, Jörgen Hansson, Martin Nilsson,
and Wilhelm Meding

Time in the Domain Entities Access Architecture . 233
Marco Covelli, Daniela Micucci, and Marco Mobilio

A Performance Prediction Model for Google App Engine Using Colored
Petri Net . 251

Sachi Nishida and Yoshiyuki Shinkawa

Software Paradigm Trends

A Case Study on Model-Driven Development and Aspect-Oriented
Programming: Benefits and Liabilities . 269

Uwe Hohenstein and Christoph Elsner

A Problem-, Quality-, and Aspect-Oriented Requirements Engineering
Method . 291

Stephan Faßbender, Maritta Heisel, and Rene Meis

Problem-Based Security Requirements Elicitation and Refinement
with PresSuRE . 311

Stephan Faßbender, Maritta Heisel, and Rene Meis

Model Refactorings for and with Graph Transformation Rules 331
Sabine Winetzhammer and Bernhard Westfechtel

A Tool-Supported Approach for Introducing Aspects in UPPAAL Timed
Automata . 349

Dragos Truscan, Jüri Vain, Martin Koskinen, and Junaid Iqbal

A Timed Semantics of Workflows. 365
Marcello M. Bersani, Salvatore Distefano, Luca Ferrucci,
and Manuel Mazzara

Author Index . 385

XVI Contents

http://dx.doi.org/10.1007/978-3-319-25579-8_12
http://dx.doi.org/10.1007/978-3-319-25579-8_12
http://dx.doi.org/10.1007/978-3-319-25579-8_13
http://dx.doi.org/10.1007/978-3-319-25579-8_13
http://dx.doi.org/10.1007/978-3-319-25579-8_14
http://dx.doi.org/10.1007/978-3-319-25579-8_15
http://dx.doi.org/10.1007/978-3-319-25579-8_15
http://dx.doi.org/10.1007/978-3-319-25579-8_16
http://dx.doi.org/10.1007/978-3-319-25579-8_16
http://dx.doi.org/10.1007/978-3-319-25579-8_17
http://dx.doi.org/10.1007/978-3-319-25579-8_17
http://dx.doi.org/10.1007/978-3-319-25579-8_18
http://dx.doi.org/10.1007/978-3-319-25579-8_18
http://dx.doi.org/10.1007/978-3-319-25579-8_19
http://dx.doi.org/10.1007/978-3-319-25579-8_20
http://dx.doi.org/10.1007/978-3-319-25579-8_20
http://dx.doi.org/10.1007/978-3-319-25579-8_21

Software Engineering and Applications

BPMN 2.0 and the Service Interaction Patterns:
Can We Support Them All?

Dario Campagna(B), Carlos Kavka, and Luka Onesti

Research and Development Department, ESTECO SPA, Area Science Park,
Padriciano 99, Trieste, Italy

{campagna,kavka,onesti}@esteco.com

Abstract. The Business Process Model and Notation (BPMN) specifi-
cation version 2.0 represents the amalgamation of best practices within
the business modeling community to define the notation and seman-
tics of collaboration diagrams, process diagrams and choreography dia-
grams. Capturing and managing collaborative processes became a hot
topic in the past years, and different choreography modeling languages
have emerged. The advancement of such languages let to the definition
of the service interaction patterns, a framework for the benchmarking of
choreography languages against abstracted forms of representative sce-
narios. In this paper, we present an assessment of BPMN 2.0 support for
service interaction patterns. We evidence the issues that limit the set of
supported patterns, and propose enhancements to overcome them.

Keywords: BPMN 2.0 · Collaboration diagrams · Service interaction
patterns

1 Introduction

In the past years there has been much activity in developing languages for Busi-
ness Process Management systems. In particular, languages suited for describing
interaction behavior between different services, i.e., for modeling service chore-
ography, have emerged as a key instrument for achieving integration of business
applications in a service-oriented architecture (SOA) setting. Examples of such
languages are Lets’Dance [1], WS-CDL [2], and WS-BPEL [3].

With the advancement of service choreography languages came the need for
consolidated insights into the capability and exploitation of the resulting stan-
dard specifications and associated implementations in terms of business require-
ments. In 2005, Barros et al. concluded that for service-oriented architectures
to move forward, it was necessary to shift from thinking in terms of request-
response and buyer-seller-shipper interaction scenarios into addressing complex,
large-scale, multi-party interactions in a systematic manner. They thus presented
in [4] a set of thirteen patterns of service interactions, the service interaction pat-
terns. These patterns aim to contribute to the gathering of requirements needed
to shed light into the nature of service interactions in collaborative business
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 3–20, 2015.
DOI: 10.1007/978-3-319-25579-8 1

4 D. Campagna et al.

processes, where a number of parties, each with its own internal processes, need
to interact with one another according to certain pre-agreed rules [4]. The pat-
terns capture different peculiar characteristics of such collaborative processes.
The number of involved parties may be in the order of tens or even hundreds,
and thus the nature of interactions is rarely only bilateral but rather multi-
lateral. Furthermore, the assumption of strict synchronization of all responses
before the next steps in a process breaks down due to the independence of the
parties. More realistically, responses are accepted as they arrive. Also, while it
is conventional to think of multi-cast interactions as a party sending a request
to several other parties, the reverse may also apply, several parties send mes-
sages from autonomous events to a party which correlates these into a single
request. Finally, not all interactions in dynamic marketplaces follow a requester-
respondent-requester structure. Rather, a sender may re-direct interactions to
nominated delegates. Receivers may outsource requests, choosing to “stay in the
loop” and observe parts of responses. More generally, it may only be possibly to
determine the order of interaction at run-time, given, for example, the content
of messages passed.

The collected service interaction patterns have been derived and extrapolated
from insights into real-scale B2B transaction processing, use cases gathered by
standardization committees, generic scenarios identified in industry standards,
and case studies reported in the literature. The patterns consolidate recurrent
scenarios and abstract them in a way that provides reusable knowledge. They
range from simple message exchanges to scenarios involving multiple partici-
pants and multiple message exchanges. On the one hand, the service interaction
patterns consolidate the nature of service interactions through generalized func-
tional classification. On the other hand, they clear the track for further and ongo-
ing extensions. These patterns allow the assessment of web services standards,
and the benchmarking of choreography and orchestration languages, making it
possible for SOA technologies to progress further [4].

Since their introduction, the service interaction patterns have been used to
evaluate different choreography languages. In this paper, we focus on the latest
version of the Business Process Model and Notation, i.e., BPMN version 2.0 [5],
and present an assessment of BPMN 2.0 collaboration diagrams support for the
service interaction patterns.

The remainder of this paper is structured as follows. In Sect. 2 we recall
some of the choreography language analysis based on the service interaction
patterns. In Sect. 3, we evaluate BPMN 2.0 for its pattern support, and point
out issues that limit the set of representable patterns. To overcome such issues,
we propose in Sect. 4 a set of enhancements for BPMN 2.0. The paper conclusions
are presented in Sect. 5.

2 Related Work

WS-BPEL [3] has been the first language to be analyzed in terms of service
interaction patterns. In [4,6] the authors show that WS-BPEL directly supports

BPMN 2.0 and the Service Interaction Patterns 5

Single Transmission Bilateral Interaction Patterns. For Single Transmission
Multilateral Interaction Patterns, WS-BPEL imposes some restrictions to the
Send/Receive pattern and requires “house-keeping” code for correlation and for
capturing stop and success conditions. WS-BPEL provides support for two of
the three Multi Transmission Interaction Patterns. Lack of sufficient transaction
support compromises a WS-BPEL solution for Atomic Multicast Notification.
All the Routing Patterns are supported with the exception of Dynamic Routing,
which is outside the scope of WS-BPEL.

In [7] the authors show that BPMN 1.0 directly supports only five of the
thirteen service interaction patterns, and present extensions for BPMN 1.0 that
allow the representation of multiple participants, reference passing, and correla-
tion. They introduce the concept of participant set in order to represent a set of
participants of the same type involved in the same conversation, and the concept
of reference to distinguish individual participant out of a participant set. A ref-
erence is a special data object, it can be connected to flow objects via directed
associations, and can be passed to other participants connecting it to message
flows with undirected associations. Thanks to these extensions, the number of
patterns supported by BPMN 1.0 increases to ten. Contingent Request is only
partially supported, while Dynamic Routing is excluded from the analysis.

The BPMN 2.0 specification extends the scope and capabilities of BPMN 1.0
in several areas. Among other improvements, it describes the execution seman-
tics for all BPMN elements, defines an extensibility mechanism for process model
extensions, and defines a choreography model. BPMN 2.0 choreographies are
evaluated in [8] by using an extended quality framework, which includes the ser-
vice interaction patterns. Since the patterns only cover one perspective of the
requirements for choreography definition languages, the framework also includes
other perspectives paying special attention to graphical notations. The evalu-
ation identifies a number of issues in BPMN 2.0 that affects the perceptual
discriminability of certain choreography modeling constructs. To address these
deficiencies, the authors propose the introduction of new concepts in choreogra-
phy diagrams. Examples are the concept of channel annotations, message mul-
tiplicity for message flows, and annotations for message flows to indicate which
participant initiates a conversation. In [9] the authors considered a precise analy-
sis of the support of the service interaction patterns in BPMN 2.0 as an important
future work. However, such a study is still missing.

3 Pattern Analysis

We present in this section an assessment of BPMN 2.0 support for the service
interaction patterns introduced by Barros et al. in [4]. This section is organized
by following the structure of [4]. For each pattern, we present its description
and issues, and propose a BPMN 2.0 implementation. The implementations and
their semantics are described in natural language. For most of the patterns, we
include a BPMN 2.0 graphical representation of the implementation. We provide
no formal validation of the proposed solutions, since the only complete BPMN
2.0 semantics specification is presented in [5] by using natural language.

6 D. Campagna et al.

As we will show, BPMN 2.0 directly supports the Single Transmission Bilat-
eral Interaction Patterns, two of the three Single Transmission Multilateral
Interaction Patterns, the Multi-responses pattern, and two of the three Rout-
ing Patterns. With the addition of a BPMN 2.0 extension for collaborations and
message queuing, it is possible to support the One-to-many Send/Receive pat-
tern and the Contingent Requests pattern too. The Atomic Multicast Notification
pattern can only be partially supported. We excluded from this assessment the
Dynamic Routing pattern since its description is too imprecise, as already noted
in [7,10].

From now on, with the term party we indicate a BPMN 2.0 participant
instance, and with the term parties we indicate a set of heterogeneous BPMN
2.0 participant instances, i.e., instances of one or more BPMN 2.0 participants.

3.1 Single Transmission Bilateral Interaction Patterns

Single transmission bilateral interaction patterns correspond to elementary inter-
actions where a party sends (receives) a message, and as a result expects a reply
(sends a reply). These patterns cover one-way and round-trip non-routed bilat-
eral interactions.

Send

Description. A party X sends a message to another party.
Issues. The counter-party may or may not be known at design time.

The Send interaction pattern can be modeled as shown in Fig. 1(a). A send task
in a participant X sends a message to a participant Y. If participant Y has
multiplicity greater than one (i.e., there may be more than one instance of Y
in execution at the same time), then we can add a reference for Y to the sent
message payload, and use context-based correlation in Y to route the message
to the correct instance. It is assumed that the sender gains knowledge about the
receiver reference and stores it in, e.g., a data object.

Receive

Description. A party X receives a message from another party.

The Receive interaction pattern can be modeled by using a receive task in a
participant X. The task receives a message from a participant Y, as shown in
Fig. 1(b). If Y has multiplicity greater than one, then we can use context-based
correlation in X to accept only messages from a particular instance of Y.

Send/Receive

Description. A party X engages in two casually related interactions: in the
first interaction X sends a message to another party Y, while in the second
one X receives a message from Y.

BPMN 2.0 and the Service Interaction Patterns 7

(a) Send pattern. (b) Receive pattern. (c) Send/Receive pattern.

Fig. 1. Single transmission bilateral interaction patterns.

Issues. The counter-party may or may not be known in advance. The outgoing
and incoming messages must be correlated.

The Send/Receive interaction pattern is depicted in Fig. 1(c). It can be modeled
with a send task followed by a receive task in a participant X. The former task
sends a message to a participant Y, the latter receives a message from Y. If Y has
multiplicity greater than one, then we can make use of context-based correlation
for communicating with the desired instance of Y, and take advantage of key-
based correlation to correlate outgoing and incoming messages in X.

3.2 Single Transmission Multilateral Interaction Patterns

Single transmission multilateral interaction patterns cover non-routed interac-
tions where a party may send or receive multiple messages, but as part of different
interaction threads dedicated to different parties.

Racing Incoming Messages

Description. A party X expects to receive one among a set of messages. Mes-
sages may be structurally different and may come from different parties. The
way a message is processed depends on its type and/or the party from which
it comes.

The Racing Incoming Messages interaction pattern can be modeled by using an
event based gateway connected to catch message events in a participant X, as
depicted in Fig. 2(a). Each catch message event receives messages of a certain
type, or from a particular participant.

One-to-many Send

Description. A party X sends a message to several other parties. All the mes-
sages have the same type (although their contents may differ).

Issues. The number of parties to whom the message is sent may or may not be
known at design time.

Under the assumption that receiving parties are instances of a single participant,
this pattern can be thought as variant of the Send pattern when participant Y

8 D. Campagna et al.

has multiplicity greater than one. The pattern can be modeled as shown in
Fig. 2(b). A parallel multi-instance send task A in participant X receives as
input a data object collection containing references of participant Y instances,
and sends a message to each of them. Context-based correlation can be used in
Y in order to route messages to the correct instances.

One-from-many Receive

Description. A party X receives several logically related messages arising from
autonomous events occurring at different parties. The arrival of messages
needs to be timely so that they can be correlated as a single logical request.

Issues. Since messages originate from autonomous parties, a mechanism is
needed to determine which incoming messages should be grouped together.

Under the assumption that sending parties are instances of a single participant,
this pattern can be viewed as a variant of the Receive pattern when the sending
participant Y has multiplicity greater than one. The pattern can be modeled as
depicted in Fig. 2(c). A loop receive task A with an interrupting boundary timer
event is used in participant X to receive messages from participant Y instances.
Context-based correlation can be used in X to accept only messages from certain
instances of participant Y .

One-to-many Send/Receive

Description. A party X sends a request to several other parties, which may
be all identical or logically related. Responses are expected within a given
time-frame. However, some responses may not arrive within the time-frame
and some parties may even not respond at all.

Issues. The number of parties to which messages are sent may or may not be
known at design time. Responses need to be correlated to their corresponding
requests.

A BPMN 2.0 representation of this pattern is shown in Fig. 2(d). We use in
participant X a multi-instance sub-process with an interrupting boundary timer
event, and whose loop data input is a data object collection containing references
to instances of a participant Y . The sub-process contains a send task followed by
a receive task. Each instance of the sub-process sends a message to an instance
of Y (context-based correlation is used in Y), and then waits for a response.
Responses could be correlated to their corresponding request by using key-based
correlation in X. However, BPMN 2.0 correlation works at process instance level,
i.e., we can only correlate a message to a specific instance of a process. To support
this pattern we need to correlate received messages to a particular instance
of the sub-process, and this is not possible in BPMN 2.0. To overcome this
limitation, we propose a BPMN 2.0 extension for collaboration/conversations,
and a modification of message correlation semantics, which will be described in
Sect. 4.

BPMN 2.0 and the Service Interaction Patterns 9

(a) Racing Incoming Messages. (b) One-to-many Send.

(c) One-from-man Re-
ceive.

(d) One-to-many Send/Receive.

Fig. 2. Single transmission multilateral interaction patterns.

Fig. 3. Multi-responses pattern.

3.3 Multi Transmission Interaction Patterns

Multi transmission interaction patterns are dedicated to non-routed interactions
in which a party sends (receives) messages to (from) the same party.

Multi-responses

Description. Party X sends a request to party Y, then X receives any number
of responses from Y until no further responses are required. The trigger of no

10 D. Campagna et al.

further responses can rise from a temporal condition, or be based on message
content, which in both cases can rise from either X or Y.

Figure 3 depicts a possible representation of this pattern in BPMN 2.0. Par-
ticipant X sends a message to participant Y by using the send task D. Such
message is received in Y by the receive task A. Then, Y sends messages to X by
using the loop send task B. These messages are received in X by the loop receive
task E. X stops receiving message as soon as either the interrupting boundary
timer event of E is triggered, or E loop condition evaluates to false, or a message
sent by Y (by using the send task C) reaches the interrupting boundary catch
message event of E.

Contingent Requests

Description. Party X makes a request to another party Y . If X does not receive
a response within a certain time-frame, X sends a request to another party
Z, and so on.

Issues. After a contingency request has been issued, it may be possible that a
response arrives (late) from a previous request.

Figure 4 depicts a possible representation of the pattern (we assume that
responding parties are instances of the same participant). First, a task in X
selects a reference to an instance of Y from a data object collection. Then, the
send task A sends a message to the selected Y instance (context-based correlation
is used in Y). Finally, the receive task B waits for a response from Y . Context-
based correlation is used in X to accept only messages containing the selected
Y instance reference in their payloads. If no response is received before the
interrupting timer boundary event is triggered, then another Y instance reference
is selected and processed as described. Responses that arrive late from previous
requests are discarded thanks to context-based correlation.

Fig. 4. Contingent Requests pattern, solution (1).

The just described implementation of the pattern exploits one of the three
available solutions to handle the late response issue. The first solution (1) is to
disallow late arrivals altogether, and receive only the response of the current
request. Another solution (2) is to accept the first response even if it is late and

BPMN 2.0 and the Service Interaction Patterns 11

Fig. 5. Contingent Requests pattern, solution (2).

stop outstanding requests. The last solution (3) is to accept the first arriving
response, trigger the end of outstanding request, but receive any further response
that arrives (before X terminates). The pattern does not predispose which of
the three solutions prevails. Solution (1) is the one adopted in Fig. 4.

To support solution (2) we modify the workflow in Fig. 4 adding to it a data
object and a task C. The resulting workflow is shown in Fig. 5. We use the new
data object for context-based correlation in X. We initialize this data object with
some value, and add this value to the payload of messages sent to Y instances.
Only messages from Y instances containing the chosen value in their payload are
accepted in X. As soon as a response is received by B, the task C executes and
changes the value of the new data object. Any other message coming from Y
instances will then be discarded by context-based correlation. With the workflow
in Fig. 5 we accept late responses, but we may lose messages that arrive after the
interrupting boundary timer event has been triggered and before the activation
of B. Hence, the response we receive in X may not be the first sent from Y .
To avoid losing responses, we propose a modification to the message semantics.
This modification will be described in Sect. 4.2.

Solution (3) does not specify how late responses arriving after the first one
should be managed upon receipt. Assuming that such responses can all be man-
aged in the same way, Solution (3) can be supported by modifying the workflow
in Fig. 5 adding to it a data object collection, a multi-instance receive task, and
defining two conversations. Figure 6 depicts the resulting workflow. We store in
the new data object collection the references of Y instances that will receive a
message. The first conversation, named First response, groups the message flow
exiting from A and the message flow entering in B, and is associated to a corre-
lation key based on the data object Key. The second conversation, named Other
responses, groups the message flow exiting from A and the one entering into the
multi instance receive task D. Other responses is associated to a correlation key
based on the payload of messages sent from A. The two correlation keys will be
such that messages that correlate with one keys do not correlate with the other
key. As soon as a response is received by B, the task C executes and changes the

12 D. Campagna et al.

Fig. 6. Contingent Requests pattern, solution (3).

value of the new data object. Any other message coming from Y instances will
be correlated to the Other responses conversation, and received by an instance of
task D. Since we are assuming that late responses succeeding the first response
from Y can all be treated in the same way, we do not care which instance of D
receives a particular response from Y . With the workflow in Fig. 6, we accept
late responses but again we may lose messages that arrive when no receive task
is active. Hence, the response received by B may not be the first sent from Y ,
and D instances may not receive all other late responses. The modification to
the message semantics that will be described in Sect. 4.2 will help to solve these
issues. If we want a response from Y to be received by a particular instance of D,
then deep changes to the BPMN 2.0 message correlation mechanism are needed.
A precise analysis of such changes is out of the scope of this assessment.

Atomic Multicast Notification

Description. A party sends notifications to several parties such that a certain
number of parties are required to accept the notification within a certain
time-frame. For example, all parties or just one party are required to accept
the notification. In general, the constraint for successful notification applies
over a range between a minimum and maximum number.

Issues. The constraint that all parties should have received the notification,
means that if any one party received the notification, all the other parties
also received it. Thus, some kind of transactional support is required.

The main issue of this pattern relates to atomic transactions. Atomic transac-
tions have an all-or-nothing property: the actions taken by a transaction partic-
ipant prior to commit are only tentative (typically they are neither persistent
nor made visible outside the transaction); if all participants were able to execute
successfully then transactions are committed; if a participant aborts or does not
respond at all, all transactions are aborted. Web Service Atomic Transaction [11]

BPMN 2.0 and the Service Interaction Patterns 13

is an OASIS standard that defines protocols for atomic transactions, one of them
is Two-Phase Commit (2PC). The 2PC protocol coordinates registered partici-
pants to reach a commit or abort decision, and ensures that all participants are
informed of the final result.

BPMN 2.0 provides built-in support for business transaction through the
notion of transaction sub-process. A sub-process marked as transactional means
that its component activities must either all complete successfully or the sub-
process must be restored to its original consistent state. However, business trans-
actions are usually not ACID transactions coordinated via the 2PC protocol.
The reason is they fail the isolation requirement. In order to isolate, or lock, the
resource performing the component activities of the transaction, the transac-
tion must be short-running, taking milliseconds to complete. For business trans-
actions it is not possible to make that assumption. Business transactions are
long-running, and the resources associated with their component tasks are not
locked while the transaction is in progress. Instead, each activity in the trans-
action executes normally in its turn, but if the transaction as a whole fails to
complete successfully, each of its activities that has completed already is undone
by executing its defined compensating activity. Hence, BPMN 2.0 provides no
support for atomic transactions, but different workarounds can be provided for
the Atomic Multicast Notification pattern. These workarounds will be described
in Sect. 4.3.

3.4 Routing Patterns

Routing patterns cover routed interactions, i.e., interactions involving transfers
of party references.

Request with Referral

Description. Party X sends a request to party Y indicating that any follow-up
should be sent to a number of other parties (Z1, Z2, . . . , Zn) depending on
the evaluation of a certain condition.

Issues. Party Y may or may not have a prior knowledge of the identity of the
other parties. The information transferred from X to Y must therefore allow
Y to interact with the other parties.

This pattern can be represented in BPMN 2.0 as shown in Fig. 7. A data
object collection in participant X contains references to instances of participant
Z that should receive the follow-ups (we assume that the referred parties are all
instances of the same participant). The data object collection is transferred to
participant Y through a message sent by the send task A in X. The receive task
B in Y receives the message from A, and stores its payload (i.e., the collection of
references) into a data object collection. Then, the multi-instance send task C in
Y sends a message to each instance of Z referenced in the data object collection
(context-based correlation is used in Z).

14 D. Campagna et al.

Fig. 7. Request with Referral pattern.

Relayed Request

Description. Party X makes a request to party Y which delegates the request
to other parties (Z1, Z2, . . . , Zn). Z1, Z2, . . . , Zn then continue interactions
with X while Y observes a view of the interactions including faults.

Issues. The delegated parties (Z1, Z2, . . . , Zn) may or may not have prior knowl-
edge of the identity of the request originator, i.e., party X. The information
transferred from party Y to the delegated parties must therefore allow these
to fully identify and interact with X.

Figure 8 depicts the BPMN 2.0 representation of this pattern. The send task
A in participant X sends a message containing the reference of X in its payload
to participant Y . The message is received by an intermediate catch message event
and its payload is stored into a data object. Subsequently, the multi-instance send
task C in Y sends a message containing the reference of X in its payload to each
instance of participant Z referenced in a data object collection (context-based
correlation is used in Z, we assume that delegated parties are all instances of
the same participant). Each message sent by task C reaches a different instance
of the receive task E, that in its turn transfers the payload into a data object.
The send task F and G in Z executes in parallel. The task F sends messages
to Y , allowing it to monitor interactions between Z and X through the loop
receive task D. The task G sends messages to the loop receive task B in order
to continue the interaction with the participant X. Context-based correlation is
used in X to receive messages from the delegated parties.

4 BPMN 2.0 Enhancements

We describe in this section the proposed set of enhancements for BPMN 2.0 that
improve its support for service interaction patterns.

4.1 Initiator Extension

In this section, we introduce the concept of collaboration/conversation initiator,
and modify the message correlation semantics in order to move message routing

BPMN 2.0 and the Service Interaction Patterns 15

Fig. 8. Relayed Request pattern.

at the initiator level. Then, we show how such extensions help supporting the
One-to-many Send/Receive pattern with the BPMN 2.0 workflow described in
Sect. 3.2.

Business processes typically can run for days or even months, requiring asyn-
chronous communication via messages. Moreover, many instances of a particular
process will typically run in parallel, e.g., many instances of an order process,
each representing a particular order. Correlation is used to associate a particular
message to an ongoing conversation between two particular process instances.
BPMN 2.0 allows using existing message data for correlation purposes, rather
than requiring the introduction of technical correlation data [5].

The concept of correlation facilitates the association of a message to a process
instance send task (throw message event) or receive task (catch message event)
often in the context of a conversation, which is also known as instance rout-
ing. This association can be viewed at multiple levels, namely the collaboration
(conversation), choreography, and process level. However, the actual correlation
happens during runtime (e.g., at the process level). Correlations describe a set
of predicates on a message (generally on the payload) that need to be satisfied
in order for that message to be associated to a distinct process instance send
task (throw message event) or receive task (catch message event).

In plain key-based correlation, messages that are exchanged within a con-
versation are logically correlated by means of one or more common correlation
keys. A correlation key represents a composite key out of one or many correlation
properties. A correlation property essentially specifies an extraction expressions
atop a message. At run time, the first sent or received message in a conversation
populates at least one of the correlation key instances. If a follow-up message

16 D. Campagna et al.

derives a correlation key instance, where that correlation key had previously been
initialized within the conversation, then the correlation key value in the message
and conversation must match. For example, let us suppose to have participant
X and Y involved in a conversation with a message flow going from a send task
in X to a receive task in Y , and a message flow going from a send task in Y
to a receive task in X. When the send task of the i-th instance of X sends a
message, a correlation key is instantiated from the message payload. When the
receive task of the i-th instance of X receives a message from Y , a correlation
key instance is derived from the received message payload, and checked against
the previously instantiated correlation key. If the two key instances match, then
the received message is accepted. Otherwise, it is discarded.

Key-based correlation allows one to route messages to receive tasks (or catch
message events) in specific process instances, based on messages payloads. In
some cases, this may be not enough. For example, in the workflow for the One-to-
many Send/Receive pattern depicted in Fig. 2(d), we want the task B to receive
a message that correlates with the one sent by the task A. Hence, we want to
route messages from Y to the task B in specific instances of the multi-instance
sub-process in X.

BPMN 2.0 does not provide a way to indicate which element (e.g., par-
ticipant, activity, etc.) involved in a conversation initiates the communication.
Such information can be useful to better understand the sequence of interactions
determined by message flows in a conversation. Moreover, the knowledge of the
conversation initiator is fundamental for moving message correlation to a level
different from the one of process instances. We propose a BPMN 2.0 extension,
called initiator, which allows one to specify the id of the element initiating a
conversation.

The following is the XSD schema for the initiator extension.

<xsd:schema ...>

<xsd:element name="initiator" type="tInitiator"/>

<xsd:complexType name="tInitiator">

<xsd:attribute name="initiatorId" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:schema>

The initiator element can be used to specify the initiator of a collaboration
as follows.

<bpmn:definitions ...>

...

<bpmn:extension mustUnderstand="false" definition="esteco:initiator"/>

...

<bpmn:collaboration ...>

<bpmn:extensionElements>

<esteco:initiator initiatorId="_11"/>

</bpmn:extensionElements>

...

</bpmn:collaboration>

...

</bpmn:definitions>

BPMN 2.0 and the Service Interaction Patterns 17

In key-based correlation, correlation key instances are associated to conver-
sation instances. A conversation instance is associated to the process instances
that it involves. We propose to associate conversation instances to their initia-
tors. Thanks to this association, a received message can be routed to a spe-
cific initiator instance. The modified key-based correlation mechanism works as
follows. When a message is sent by an initiator instance, a correlation key is
instantiated and associated to the corresponding conversation instance. When
a message reaches the initiator, the correlation key instance derived from the
message payload is matched with correlation key instances associated to con-
versation instances. If a match is found, the message is routed to the initiator
instance associated to the matching conversation.

Let us now consider the One-to-many Send/Receive workflow depicted in
Fig. 2(d). The initiator in the conversation between X and Y is the sub-process in
X. At run-time, for each message sent by task A, a correlation key is instantiated
and associated to an instance of the conversation. Each sub-process instance is
associated to a different conversation instance. Each message sent by Y generates
a correlation key instance that is matched with the correlation key instances of
conversation instances. When a match is found, the message is routed to the
sub-process instance associated to the matching conversation, and received by
the correct instance of task B.

4.2 Message Queuing

In Sect. 3.3 we proposed three BPMN 2.0 representation of Contingent Requests.
The representation depicted in Fig. 5 and the one shown in Fig. 6 have a flaw,
i.e., late responses may be lost.

In order to overcome this limitation, we propose the introduction of message
queuing. We associate a queue to each message flow. A message directed to a
receive task or catch message event in a process, is stored in the queue of the mes-
sage flow it is traversing when it cannot be received (e.g., when the receive task to
which it is directed to is not yet active). As soon as a receive task or catch message
event becomes active, it looks for messages in the message queue. If message cor-
relation is used, only messages that correlate with some key are stored in queues.

Thanks to message queuing, responses that reach participant X when the
receive task B in Fig. 5 is not yet active are not lost. Let us suppose a message
from Y reaches X just after the interrupting timer boundary events of B has
been triggered. The message is stored in a queue for the message flow entering
task B. After the selection of the next Y reference and the execution of A,
B becomes active and immediately receives the message that was previously
stored in the queue. Message queuing also avoid losing messages in the workflow
depicted in Fig. 6.

4.3 Workarounds for Atomic Transactions

As we already pointed out in Sect. 3.3, BPMN 2.0 provides no support for atomic
transactions. Nevertheless, different workarounds can be provided for the Atomic
Multicast Notification pattern.

18 D. Campagna et al.

Fig. 9. Example of usage of transaction sub-process, compensating activity, and com-
pensation events.

The first workaround consists in enforcing quasi-atomicity [12]. Quasi-
atomicity is related to the ability to undo certain parts of a process execution.
Using this mechanism, receiving parties can perform the work associated to
received requests, and compensate for it in case of failure. However, the effect
of the performed work is visible to other parties, thus violating the principle of
atomicity. Quasi-atomicity can be enforced in BPMN 2.0 by exploiting its built-
in support for business transactions. Each receiving party can use a transaction
sub-process to perform the work associated to the received request. Activities
within the transaction that need to be undone if the transaction fails can be
connected with their respective compensating activities by using compensating
boundary events. Figure 9 depicts an example of usage of such BPMN 2.0 ele-
ments. Participant Y executes a transaction through a transaction sub-process.
The transaction only consists of a task A connected to its respective compen-
sating activity. After the execution of the transaction sub-process, Y awaits for
an “Ok” or a “Fail” message. If a “Fail” message is received, the compensation
event “Undo Transaction”, targeted to the transaction sub-process, triggers the
compensating activity of A and rolls back the transaction to its initial state.

The second workaround is a BPMN 2.0 encoding of the 2PC protocol as
a sequence of sub-interactions, in a way similar to the one proposed in [4].
In the first phase, a “prepare” message is sent from the coordinating party to
each receiving party. Each receiver deals with this message with a separate sub-
process, which eventually will send back a “ready” message to the coordinator.
After the timeout, the responses are counted to determine whether the minimum
and maximum constraint are satisfied. Then, the second phase has a related set
of sub-processes for each party providing a “commit” or “reject” message. Differ-
ent payloads may be included in the first and second phase messages. As part of
the first phase of interactions, contacted parties might only see a limited content
of the message, enough to decide whether they are ready to accept the request
or not. In the second phase, selected parties see all details needed to act on the
request. Transaction sub-processes, compensating activities, and compensation
events may be used to enforce quasi-atomicity in the second phase.

BPMN 2.0 and the Service Interaction Patterns 19

The third workaround is a variant of One-to-many Send/Receive pattern with
a completion condition at the notifying side, as proposed in [7].

5 Conclusions

In this paper, we investigated BPMN 2.0 support for the service interaction
patterns [4], and proposed a set of enhancements to broaden it.

We assessed that BPMN 2.0 collaboration diagrams directly supports nine
of the thirteen patterns, i.e., the three Single Transmission Bilateral Interac-
tion Patterns, Racing Incoming Messages, One-to-many Send, One-from-many
Receive, Multi-responses, Request with Referral, and Relayed Request. Stan-
dard BPMN 2.0 supports Contingent Requests when we choose to disallow late
responses altogether. The BPMN 1.0 extensions presented in [7] are not necessary
in BPMN 2.0, since it supports multiple participants and message correlation
out of the box, and since reference passing [7] can be modeled by using data
objects/data inputs/data outputs, messages, and context-based correlation.

We proposed three enhancements to broaden BPMN 2.0 support for service
interaction patterns. The first is an extension called initiator that together with
a modification of the key-based message correlation semantics allows the repre-
sentation of the One-to-many Send/Receive pattern. The second enhancement
consists in the use of message queues to fully support the Contingent requests
pattern. The last enhancement is a set of workarounds for Atomic Multicast
Notification. Thanks to these enhancements, BPMN 2.0 supports eleven of the
thirteen patterns.

Future work will include the study of BPMN 2.0 extensions to further improve
the Contingent request pattern support. We also plan to evaluate BPMN 2.0 as
a whole, comparing and combining our results with the ones presented in [8].
Moreover, we consider a π-calculus formalization of the BPMN 2.0 semantics
as an important future work. Such a formalization would make it possible for a
formal validation of the proposed pattern representations, since a π-calculus for-
malization of the service interaction patterns has already been presented in [13].

Acknowledgements. The authors thank the reviewers for the very useful comments
that have contributed to enhance the paper.

References

1. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s dance: a language for
service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

2. W3C: Web Services Choreography Description Language Version 1.0. http://www.
w3.org/TR/ws-cdl-10/ (2005)

3. OASIS: Web Services Business Process Execution Language Version 2.0. http://
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (2007)

http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

20 D. Campagna et al.

4. Barros, A., Dumas, M., Hofstede, A.: Service interaction patterns: towards a refer-
ence framework for service-based business process interconnection. Technical report
FIT-TR-2005-02, Faculty of IT, Queensland University of Technology (2005)

5. OMG: Business Process Model and Notation (BPMN) Version 2.0 (2011). http://
www.omg.org/spec/BPMN/2.0

6. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

7. Decker, G., Puhlmann, F.: Extending BPMN for modeling complex choreographies.
In: Tari, Z., Meersman, R. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 24–40.
Springer, Heidelberg (2007)

8. Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D., Dumas, M.: Evaluating chore-
ographies in BPMN 2.0 using an extended quality framework. In: Dijkman, R.,
Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 103–117.
Springer, Heidelberg (2011)

9. Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D.: Choreographies in BPMN 2.0:
new challenges and open questions. In: Proceedings of the 4th Central-European
Workshop on Services and their Composition, ZEUS-2012, vol. 847, pp. 50–57
(2012)

10. Decker, G., Overdick, H., Zaha, J.M.: On the suitability of WS-CDL for choreog-
raphy modeling. In: Proceedings of Methoden, Konzepte und Technologien für die
Entwicklung von dienstebasierten Informationssystemen, EMISA 2006 (2006)

11. OASIS: Web Services Atomic Transaction (WS-AtomicTransaction) Version
1.2 (2009). http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.
2-spec-os.html

12. Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE
Trans. Softw. Eng. 26, 943–958 (2000)

13. Decker, G., Puhlmann, F., Weske, M.: Formalizing service interactions. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
414–419. Springer, Heidelberg (2006)

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html

Design Patterns for Model-Driven Development

Timo Vepsäläinen(B) and Seppo Kuikka

Department of Automation Science and Engineering, Tampere University
of Technology, P.O Box 692, 33101 Tampere, Finland

{timo.vepsalainen,seppo.kuikka}@tut.fi

Abstract. Design patterns document solutions to recurring design and
development challenges. UML, which is the de-facto modeling language
in software development, supports defining and using patterns with its
Collaboration concepts. However, as is demonstrated in the paper, the
support is not sufficient for all kinds of patterns and all meaningful ways
to use patterns. In this paper, the use of design patterns is suggested
for documentation purposes in Model-Driven Development. The pattern
support of UML is complemented with an approach that does not con-
strain the nature of pattern solutions. The approach is tool-supported
in a model-driven development tool environment for basic control and
safety-related control applications, UML AP tool. The developed tool
support includes instantiating and highlighting patterns in models as
well as gathering documentation on use of patterns, which could espe-
cially benefit safety system development.

Keywords: Design pattern · Model-driven development · Safety · Tool
support

1 Introduction

Design patterns document proven solutions to recurring challenges in design and
development work. Patterns capture expert solutions for reuse purposes and aid
communication by giving names to known solutions. Support for patterns is
included also in UML, which is the de-facto modeling language in software devel-
opment. The support is based on Collaboration and CollaborationUse concepts
[21] that have been developed along the entire language, from parameterized
collaborations [24].

However, in addition to the standard approach, many tool vendors, e.g. No
Magic [20], have implemented additional pattern support in a more ad hoc man-
ner. Such pattern support is in many tools based on informal templates that can
be copied to models to create instances of the patterns. Copying the templates
may also utilize wizards that enable modifying pattern occurrences by selecting
existing elements for pattern-specific roles, for instance. However, without explic-
itly indicating pattern instances, the information about them is endangered to
vanish. With application specific names of classes and interfaces, for instance,
the pattern instances can be difficult to notice for both developers and the tools.
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 21–38, 2015.
DOI: 10.1007/978-3-319-25579-8 2

22 T. Vepsäläinen and S. Kuikka

UML, thus, aims to support defining patterns and their instances in models.
It appears that the UML pattern concepts have been designed with traditional
GoF (Gang of Four) [12] patterns in mind: with focus on classes and their con-
tents. However, as will be demonstrated, the UML Collaborations may not be
sufficient for all kinds of patterns and foreseeable, meaningful ways to use pat-
terns. Nevertheless, when patterns are utilized in software projects, document-
ing their use in models could be of great value. Especially this is the case with
development processes that emphasize the use of models in place of written doc-
umentation, e.g. Model-Driven Development (MDD). In MDD, the information
that is required for producing documentation should be in the models.

In some domains of applications, the information content of documentation
is even governed by regulations and standards, in addition to development needs.
For example, the development processes and techniques of safety systems and
applications are governed by standards such as IEC 61508 [15]. In addition to
using standard-compliant methods and techniques, a developer of such a system
must be able to prove the compliance of the developed system. This is where the
relevant documentation is needed.

This paper addresses the aforementioned issues by extending the work in [28]
with support for design patterns of safety systems [29]. A pattern modeling app-
roach is presented that is not restricted to the contents of UML classifiers only.
Safety Systems are supported with specific pattern concepts and means for orga-
nizing related patterns to catalogues. The approach is tool-supported in UML
AP (UML Automation Profile) tool environment [26] for MDD of control appli-
cations. The contributions of this paper are as follows. Shortcomings in UML
pattern support are demonstrated. A set of non-restrictive patterns concepts is
presented and rationalized. The Use of the pattern concepts for documenting
the solutions of safety systems and producing documentation is demonstrated.

The rest of this paper is organized as follows. Section 2 reviews work related
to modeling and using design patterns in UML context. Section 3 outlines and
discusses how the use of patterns could benefit specifically MDD and safety
system development. The means of UML for pattern modeling are presented
in Sect. 4, in addition to pointing out shortcomings in the approach. Section 5
presents the new patterns modeling concepts. Tool support for using patterns is
presented in Sect. 6. Conclusions are drawn in Sect. 7.

2 Related Work

The roots of design patterns, as a concept, lie in building architecture and in
the work of Christopher Alexander, see [2,3]. In software development, the use
of patterns began to gain popularity after the publication of the GoF patterns
[12]. The application area of the GoF patterns was object oriented programming.
However, support for patterns was also developed into UML in the form of the
collaborations.

In addition to area of expertise, e.g. building and software engineering, design
patterns vary with respect to their abstraction levels and detailedness. For exam-
ple, Lasater [19] describes patterns as design tools for improving existing code (on

Design Patterns for Model-Driven Development 23

the programming language level) whereas [6] focuses on architectural patterns
that can have varying implementations. Patterns for safety system development
can be found e.g. in [22], the patterns mainly describing the roles of their ele-
ments and their responsibilities in basic control and safety systems.

The need for automated tool support to define and use design patterns in
models has been identified by several researchers. Support has also been devel-
oped for specifying patterns, detecting pattern instances, detecting parts in mod-
els where to apply patterns and for instantiating and visualizing patterns in
models. For example, [10] presents a formal pattern specification technique that
is based on UML. It is intended for specifying design patterns and checking the
conformance of pattern instances to their specifications. In publication [11], auto-
matic transformations are developed for refactoring patterns into models. The
approach is based on the specifications of pattern-specific problems, solutions
and model transformations to apply the solutions.

Detection of points in models where to apply design patterns has been stud-
ied, among others, in [5]. Detection rules are specified with Object Constraint
Language (OCL) and combined with decision trees. Detecting design pattern
instances has been studied in [25]. The approach is based on representing both
the models and patterns with graphs and applying graph similarity scoring.

Automating the application and evolution of design patterns has been pro-
posed and studied e.g. in [8,18,30]. In [8], QVT (Query/View/Transformation)
transformations are developed for evolving pattern applications to new ones, by
e.g. adding new observers to an Observer pattern instance. Publication [30] uses
XSLT (Extensible Stylesheet Language Transformations) for pattern-specific
transformations to add patterns. In [18] model transformations (to apply pat-
terns) are guided with UML stereotypes that mark appropriate points in models.

Visualizing design patterns in models and diagrams has been addressed
in [7,17]. Publication [7] presents several notations to highlight patterns and
pattern-related elements in diagrams. Among the notations is the collaboration
notation that is also used in this work. In [17], a UML profile is developed for
the specification of pattern specific roles that elements in models play. Based on
the profile, the authors have developed a web service tool that integrates e.g. to
Rational Rose to visualize patterns.

Among other domains of applications, design patterns have been developed
to document the recurring solutions of safety applications, e.g. redundancy.
Douglass [9] presents 4 patterns to implement redundancy or redundancy-like
behavior so that a task is performed in several channels or that another comput-
ing channel is used to observe the behavior of the main channel. Also IEC 61508
[15] (part 6) presents several M out of N solutions in which the idea is to perform
a calculation redundantly and to use voting to acquire a reliable result for it.
In its recommendation tables, IEC 61508 also refers to a range of solutions that
have already been described in pattern literary. For example, the standard rec-
ommends the use of backward recovery (from faults) [13,23] and cyclic program
execution [9].

Because of the documentation requirements, safety system development could
also benefit from ability to indicate the use of the standard solutions in models.

24 T. Vepsäläinen and S. Kuikka

Instead of detecting pattern instances as e.g. in [25], a starting point should
be that uses of patterns are design decisions of developers. Developers apply
standard solutions with a reason and they should be explicitly marked in models.
In this way, reliable documentation, which is of special importance in the domain,
could be gathered from models.

3 Design Patterns to Facilitate MDD

Design patterns provide many general, well-known benefits to development work.
For example, patterns encapsulate knowledge and experience, provide common
vocabulary for developers and enhance documentation of designs [1].

Design patterns can be seen to mark points in models in which develop-
ers have been faced with challenges. Patterns can be considered as predefined,
reusable design decisions. However, they often require configuring for specific
applications [16]. Patterns are proven and general whereas design decisions are
more tentative, specific to an application and possibly choices between possi-
ble solutions [14]. By applying a pattern and marking the instance, a developer
thus not only instantiates and configures a solution. The model is enriched with
architectural information.

The use of patterns can thus extend models with architectural knowledge.
However, especially patterns could be valuable in MDD in which the purpose is
in shifting development efforts from documents to models. To demonstrate this
point, we discuss their use to a few selected purposes.

When patterns are marked in models that are used throughout the develop-
ment process, it is possible to gather statistics on the use of the patterns. Pattern
markings promote traceability between the solutions and their uses in individ-
ual systems. The work and preferred solutions of developers can be compared
by comparing the patterns that they use in the models. Companies and teams
can set up rules for using patterns in order to unify practices. For example, a
specific challenge could be agreed to be solved always in a standard way. Also
metrics could be defined to evaluate software products. Extensibility and mod-
ifiability, for example, are quality attributes that many classic design patterns
aim to improve. As a consequence, it is possible that similar software products
could be compared in terms of preferred quality attributes by comparing the
patterns that are used in the products.

Design patterns can promote learning of new developers, too. When best
practices and expert solutions are documented as patterns and pattern instances
marked in design models, the models can be used as training material. New
developers can look for pattern instances, in which kinds of contexts they have
been used and how they have been used by experienced developers. Optimally,
design pattern instances could be highlighted in models and diagrams in order
to ensure their discovery. Diagrams with pattern annotations could also be used
as parts of written documents when copied to such documents, when necessary.

It can be argued that the mentioned benefits are not restricted to the use
of patterns in MDD only. However, improving the documentation value of mod-
els is of special importance in model-driven approaches, such as MDD. This is

Design Patterns for Model-Driven Development 25

because one of the objectives of MDD is to gain benefits by changing the focus
of development efforts from documents to models. However, if the aim is not to
produce written documents in which challenges and decisions could be included,
the only places where they can be added are the models.

As mentioned, documentation plays an especially important part in safety
system development. In special application areas it could be possible to maintain
separate documents. However, that would be against the essential idea of MDD
and lead to splitting information to several places. It could also require additional
work. A more appropriate approach would be to include the documentation in
the models, in the first place. A possible challenge for this objective is that mod-
els tend to be more applicable to representing solutions than rationale behind
them. However, at least the use of patterns could provide general rationale for
the solutions and, in case of safety systems, could also indicate compliance to
standards.

4 Design Patterns in UML

In UML, patterns are defined with the Collaboration concept that extends both
the StructuredClassifier and BehavioredClassifier concepts, similarly to the Class
concept of the language. A pattern definition is a set of cooperating participants
that are owned by a Collaboration as its properties, similarly to properties of
a class. For each role of the pattern there should be a property owned by the
Collaboration. Required relationships between the participants can be specified
with connectors between the properties. The features required from the partici-
pants are defined by UML Classifiers (e.g. classes or interfaces) that are used as
types of the properties.

Pattern instances are represented with CollaborationUses. A Collabora-
tionUse represents an application of a Collaboration (pattern) to a specific sit-
uation. CollaborationUses are owned by classifiers to the contents of which the
Collaborations (patterns) are applied. Properties of the applying classifiers are
bound to the roles (properties) of the Collaborations with Dependencies. The
properties that play roles in a pattern instance must be owned by the classifier
that owns the CollaborationUse element.

Graphically, Collaborations and CollaborationUses can be used in composite
structure diagrams (CSDs). In case of defining a Collaboration (pattern), the
root element of the diagram is the Collaboration, whereas in case of a Collabo-
rationUse the classifier owning it. In other diagrams, CollaborationUses can be
visible in compartments related to the applying classes, if supported by the tool
being used.

4.1 Challenges with the UML Approach

The approach of UML for defining and using design patterns is formal and well-
defined. However, with the approach, for example, the literature presentations of
many well-known patterns cannot be re-produced in models. A CollaborationUse

26 T. Vepsäläinen and S. Kuikka

Fig. 1. A class diagram illustrating the Observer pattern.

Fig. 2. A layered architecture pattern illustration in a class diagram.

cannot be used e.g. in a class diagram describing the classes of a package because
the participants would be classes (instead of properties) and owned by a package
(instead of a class). For example, the classes in Fig. 1 could not be marked as an
Observer [12] pattern instance.

A rationale for claiming that the familiar structure in the figure is not an
Observer instance could be that a class diagram does not yet indicate occurrences
and uses of instances of the classes in the pattern specific way. Instead, the UML
approach would be to define another class, create instances of the classes (of the
figure) as properties of the other class and connect them to use the services of
each other. Graphically this could be done with CSDs that were not available at
the time e.g. Observer pattern was authored. This is a possible explanation for
the UML support to differ from the literature (or vice versa). However, from a
pragmatic point of view, it may not be worthwhile to limit patterns strictly to
describe classifiers, only. On one hand, CSDs are not used as commonly (e.g. in
industry) as class diagrams are. On the other hand, if a developer deliberately
designs classes so that they can be used according to a pattern, it should be
possible for her to mark the decision, e.g. for documentation purposes.

Another example related to the lack of pattern modeling capabilities in UML
is related to architectural patterns. A well-known example of such a pattern
is the Layers pattern [6]. An intuitive means to illustrate the use of Layers

Design Patterns for Model-Driven Development 27

Fig. 3. The metamodel of the new pattern modeling concepts; UML concepts are
highlighted with grey colour.

in a UML model could be the presenting of the packages and classes that an
application is built of in a layered-like orientation as in Fig. 2. One could also use
component diagrams and arrange the components to a layered like orientation,
like in [6], pp. 35. However, neither of these approaches could be marked as a
Layers instance. Packages, which both the diagram types are used to describe,
cannot own CollaborationUses. And if they could, the packages and components
would not be properties of a class.

Related to pattern languages, UML does not define means to specify relations
between patterns. According to the language specification [21], Collaborations
can extend others. However, there is no means to specify, for example, that after
applying a pattern it could be advisable to apply another, related pattern. Lastly,
the means of UML for defining the information content of patterns other than
solutions, e.g. context and problem, are limited. The Collaboration concept does
not include textual or other kinds of properties for such purposes.

5 The General Pattern Modeling Approach

Generally, the concepts that can be used in models conforming to a model-
ing language are defined in the metamodel of the language. The concepts that
are available in UML models, for example, are defined in the UML metamodel
[21]. The UML metamodel, in turn, has been defined with Meta Object Facility
(MOF). The metamodel of the new pattern modeling concepts is presented next.

What pieces of information a pattern is obviously required to include are
a name (identifier), problem (that the pattern solves), context (in which the
pattern can be used) and the solution, as also suggested in [3]. On the other hand,
as argued in the previous section, the modeling approach should not restrict the

28 T. Vepsäläinen and S. Kuikka

nature of solutions in patterns. Patterns may consist of practically any modeling
elements and describe also other modeling elements than classes.

The basic concepts of the new pattern modeling approach are depicted in the
metamodel in Fig. 3 that has been divided into two parts. The concepts on the
left-hand side are aimed for defining patterns whereas the concepts on the right-
hand side are for using and marking patterns instances. Although they are part
of the same metamodel, it is assumed that design patterns could be defined in
specific library models (preferably by experienced developers) and their instances
used in application models (of the systems being modeled). Similar division of
concepts exists already in UML related to profiles and stereotypes. Stereotypes
are defined by experts in profile models and then used in a number of appli-
cation models. Although stereotypes are tools for design work and altering the
semantics of modeling elements, they are defined in UML models similarly to
the concepts that they specialize.

The Pattern and PatternApplication concepts are aimed for defining patterns
and pattern instances, respectively. Their UML counterparts are the Collabo-
ration and CollaborationUse concepts. However, instead of defining (only) the
contents of a classifier, Patterns contain textual information which has been
structured based on the canonical form of patterns [4] with an addition of con-
sequences from the Alexandrian form [2].

The Pattern concept is extended from the UML PackageableElement so that
Patterns can be defined within package hierarchies. The main contents of Pat-
terns are PatternRoles that are used to specify structural and behavioral roles
specific to the Patterns. Multiplicities define the limitations to numbers of mod-
eling elements playing the roles in pattern instances. PatternRoles can also refer
to template elements that are specific to the roles. Their purpose is to enable
the development of tool support to facilitate the creation of pattern instances.

RoleBindings are owned by PatternApplications and they bind pattern
instance specific elements to the roles of the patterns. The approach does not
restrict the metaclasses of bound elements since the (concrete) elements of UML
all extend the abstract Element concept that is used as the type of the meta-
reference. The same applies to SysML and UML AP modeling elements in the
supporting tool; they can be used in patterns and pattern instances as well.

The patternLanguage concept is a lightweight approach to pattern languages,
allowing patterns to be organized into hierarchies. With PatternRelations, pat-
terns can be organized into (pattern) sequences describing meaningful orders of
using patterns, and sequences combined to simple languages. Relations also allow
the specification of alternatives, patterns requiring other patterns and patterns
that conflict with each other. This aspect is yet to be defined in more detail.

The safety-related concepts of the metamodel include support for distin-
guishing the patterns of safety systems and for specifying their applicability for
different levels of safety. A SafetyPattern is, thus, a design pattern that has been
identified to be related to safety and that may have recommendations for safety
systems of different Safety Integrity Levels (SILs).

With safety systems, we refer to systems that perform safety functions,
which are required to ensure the safety of a controlled process. The SILs in the

Design Patterns for Model-Driven Development 29

metamodel refer to the 4 Safety Integrity Levels in IEC 61508, SIL1 being the
lowest and SIL4 the highest level [15]. In general, SILs determine the probabilities
of correct behavior. However, for software systems, it may be difficult to provide
probabilities. The focus of the standard is thus on development techniques and
measures. For each SIL and for each development phase, the standard specifies
a set of techniques that can be highly recommended (HR), recommended (R) or
non-recommended (NR) or with non-specified recommendation (NS). The alter-
natives in the Recommendation (enumeration) in the metamodel correspond to
these alternatives.

The purpose of the SafetyCatalogues is to collect together (from various pat-
tern sources) related SafetyPatterns. Catalogues are aimed to contain patterns
that should be used together and to which sets of patterns that are used in
models can be compared. Patterns in a catalogue can be related to, e.g., a phase
in development. For example, IEC 61508 [15] includes the lists of recommended
techniques to be used during specific software development phases. For software
architecture design, for instance, the standard mentions 27 techniques and/or
measures, some of which are alternatives to each other.

The background of the Specialization relation is that many solutions (e.g.
redundancy) that are recommended by safety standards have numerous special-
ized pattern versions in pattern literature. With the Specialization relation, the
purpose is to enable the use of general SafetyPatterns in SafetyCatalogues but
in such a way that patterns specializing the general patterns can be considered
as their alternatives, for example when comparing the patterns of a model with
SafetyCatalogues.

The major differences of the general pattern modeling approach in com-
parison to the UML approach are as follows. The roles of patterns have been
separated from their template elements in the template packages. Pattern def-
initions contain textual information. The model elements playing the roles in
patterns and their instances are not restricted to be properties or instances of
any specific UML (or e.g. SysML) metaclass. PatternApplications are owned by
packages that are used in models in any case. In addition, specific safety-related
concepts have been defined for safety application development.

The concepts relieve the restrictions of UML so that, for example, the pat-
terns of the examples presented in Sect. 4.1 could be marked as instances of
appropriate pattern definitions. Since elements playing roles in a pattern need
not be properties, for example the class definitions of Fig. 1 could be marked as
parts of an Observer instance. A structure like that could also be marked as a
pattern instance regardless of whether the constructs would be defined in the
same or different package. It would only affect to which package should own the
PatternApplication element. Constructing patterns from classes, packages and
components is also possible, which enables marking the structure of Fig. 2 as a
Layers instance.

As a downside, the approach is less formal than that of UML. Because of
the freedom to define patterns to consist of practically any elements, it is more
difficult to confirm the correctness of pattern applications. Since the approach
does not restrict the elements that play roles in a pattern instance to be owned

30 T. Vepsäläinen and S. Kuikka

Fig. 4. A visualization of an Observer pattern instance.

by a single model element, it is also possible for pattern instances to disperse to
several places in models due to, for example, model refactoring. That is, although
some simple checks of consistency can be automated, more responsibility over
the correctness of pattern definitions and instances is left for developers. Another
restriction of the approach is related to the portability of it to other tools. This
aspect is discussed in more detail in Sect. 7.

6 Tool Support to Use and Benefit from Patterns

To demonstrate the use of the concepts and tool support developed based on
them, the concepts are used in two example models. First of the models illustrates
the use of the pattern concepts with Observer [12] as an example. The second
model, then, demonstrates the use of the safety-related concepts. It presents
a SafetyCatalogue and how a model of a safety application complies with the
catalogue.

6.1 General Pattern Concepts

The starting point in the Observer example is a situation in which a class (Pres-
sureControl) should be made capable of receiving notifications of new (pressure)
measurements from another class (PressureMeasurement). A class diagram illus-
trating the starting point is shown on the left-hand side of Fig. 4. However, in
order to apply Observer, it needs to be first defined with the pattern concepts.
A tree view of a model defining the pattern with the concepts is shown on the
left-hand side of Fig. 5.

The pattern is in the example defined in a Package that contains the Pattern
element (Observer) as well as a template Package. The pattern element contains
the roles related to it (Observer, Subject and ConcreteObserver). The classes
and interfaces of the template package were illustrated in Fig. 1; they also define
several operations that are hidden from the figure below. Textual information
related to the pattern, e.g. context and problem, is stored in the properties of
the Pattern element.

The example class diagram, after applying the pattern, is illustrated on the
right-hand side of Fig. 4. The diagram also illustrates how pattern instances are

Design Patterns for Model-Driven Development 31

Fig. 5. References in a pattern definition and from a pattern instance to its definition.

visualized with the collaboration notation. The modifications from applying the
pattern include an addition of an interface (Observer), an interface realization
as well as several operations specific to the role elements of the pattern, e.g.
update(). These elements have been added based on the template elements illus-
trated in Fig. 1.

Another view to the results is presented on the right-hand side of Fig. 5 that
illustrates the references between the model trees related to the pattern defi-
nition and pattern instance. The operations and other added model elements
are contained in the model in a similar manner than any model elements. The
information about the pattern instance, on the other hand, is stored in a Patter-
nApplication element. The PatternApplication contains the RoleBindings that
link the pattern instance specific elements to the general roles of the pattern
definition.

Tool support has been developed to facilitate the use of patterns and to
demonstrate the benefits from their use. The metamodel extensions to UML
AP and UML modeling concepts, see Fig. 3, were defined with Eclipse Model-
ing Framework (EMF) that is a Meta Object Facility (MOF) implementation
used by the UML AP tool [26]. In addition to implementing the concepts, tool
support has been developed to instantiate and visualize patterns in models as
well as to generate documentation from models. For the first two purposes, sup-
port has been implemented into the core tool whereas the latter extends the
documentation generation work in [27].

Instantiating Patterns. Compared with instantiating patterns from templates
in an ad hoc manner, the use of the pattern concepts requires additional work.
Defining patterns with the Pattern and PatternRole elements has to be done
only once for each pattern. PatternApplications, however, need to be created
and configured for each new pattern instance. As such, it is natural that this
task should be facilitated with tool support. In the tool, this task has been
integrated into a wizard. Compared with existing pattern wizards in UML tools,
the novelty of the wizard is in managing the new concepts.

32 T. Vepsäläinen and S. Kuikka

Fig. 6. The pattern information page of the pattern application wizard.

The process of instantiating patterns is performed as follows. The user of the
tool initiates the wizard from a tool menu. As a response, the tool scans through
available pattern libraries in order to find available patterns. New libraries can
be added to the tool by registering them with an (Eclipse) extension point that
has been developed for this purpose. The user of the tool is provided with a
list of available patterns. When selecting a pattern to apply, part of the textual
information (problem, context and solution) related to the patterns are shown to
the user, as illustrated in Fig. 6. After selecting a pattern, the pattern (definition)
that should be referenced by the PatternApplication to be created is known. In
case of the diagram root element being a package, the PatternApplication to be
created can be owned by the package. Otherwise, it can be created to be owned
by the package closest to the diagram root in the model hierarchy. The wizard
proceeds to processing (iterating through) the pattern roles.

For each role, the wizard enables the user to select an existing element from
the active diagram to act in the role. If the pattern in question defines a tem-
plate, it is also possible to copy an element for the role from the template. For
PatternRoles that the user has either selected an element for or copied it from
the template, the wizard creates RoleBindings that bind the elements to the
roles of the pattern. In case of using existing elements in roles of a pattern, their
contents (elements owned by them) are compared and completed to correspond
to those of the templates by copying missing contents.

Technically, the wizard only collects the information from the user whereas
actual model changes are performed all at the same time after completing the
wizard. The purpose of this is to enable collecting model modifications to a single
(undoable) command. However, currently undoing a pattern application requires
manual work.

It is also possible to modify pattern instances after creating them. PatternAp-
plications and RoleBindings can be selected from the outline view of the tool and
modified with the properties view. Elements related to a pattern instance can be
reorganized and it is possible to apply more (compatible) patterns. Information

Design Patterns for Model-Driven Development 33

Fig. 7. An exemplary automatically generated traceability sheet.

on which elements are part of a pattern instance is stored in a PatternApplica-
tion specific to the instance and the RoleBindings of it. They are not affected
by the additions of new elements or simple changes to the bound elements, e.g.
re-naming or moving them.

Visualizing Patterns. Although pattern instances are always visible in the
outline view of the tool, they are not visible in diagrams by default. This is in
order to keep the amount of details in diagrams relatively small to keep them
understandable. Patterns can also be considered as explanatory information that
may not be required all the time. However, when pattern applications are nec-
essary to be shown, e.g. for documentation or teaching purposes, it should be
possible to visualize them in diagrams.

Visualization of a pattern is initialized from a menu of the Eclipse outline
view while at the same time selecting the pattern instance (PatternApplication)
to be shown. As a response, a dotted ellipse shape with lines to the elements,
which play the roles in the pattern instance, is created. The ellipse represents a
pattern instance and contains the name of the pattern (definition). Connections
to the role elements show the names of the corresponding pattern roles.

The graphical presentation of pattern instances is similar to Collabora-
tionUses in UML CSDs, with addition of <<PatternApplication>> to distin-
guish between them. An example graphical presentation of an Observer pattern
application was presented at the right-hand side of Fig. 4. In the figure, the pat-
tern has been applied to a client application model so that the names of the
concrete classes are different from the names of the template classes, which were
shown in Fig. 1.

Patterns as a Part of Documentation. One of the main motivations of
the work has been to use patterns for documentation purposes in MDD, for
both safety-related and non-safety related applications. Since design patterns

34 T. Vepsäläinen and S. Kuikka

Fig. 8. An example safety catalogue sheet presenting architecture design techniques.

and their instances are modeled with dedicated elements, it is possible to track
the patterns that are used in a model of an application as well as the numbers
of pattern instances. Since PatternApplications are owned by packages, it is
possible to trace the parts of models in which design patterns are used. Starting
from packages, it is again possible to track the patterns that are used in the
packages.

Exporting documentation on pattern usage is initiated by the user of the tool
that selects the root of the model from the outline view, selects export function-
ality and then traceability information. The documentation sheet generation, for
safety-related and non-safety-related applications, has been developed to extend
the work presented in [27].

The first of the new sheets, pattern traceability sheet, lists the design patterns
that are used in the exported model. The sheet is collected by searching all
PatternApplication instances in the model. The sheet presents the numbers of
instances for each design pattern and totally. With traceability matrices, the
sheet presents package to design pattern traceability (the patterns that are used
in each package), design pattern to package traceability (in which packages each
design pattern is used) and lastly design pattern to element traceability. In the
latter matrix, each design pattern instance is traced to all elements that play
roles in the instance. An example sheet presenting traceability for the pressure
sensor example of Fig. 4 is presented in Fig. 7.

Another new sheet, pattern sheet, focuses on the design patterns themselves.
At the beginning of the sheet, a list of patterns, instances of which can be found
in the model, is repeated with the numbers of pattern instances. After this table,
the sheet presents the printouts of information for each design pattern used in
the model including context, problem, forces, solution (textually), consequences,
resulting context, example, and known usage.

6.2 Patterns of Safety Systems

Documentation sheets for safety system development are illustrated with two
examples. The first of the sheet types is for presenting SafetyCatalogues that
can be defined to correspond to recommendations tables of safety standards, for

Design Patterns for Model-Driven Development 35

Fig. 9. An example safety catalogue conformability sheet (Color figure online).

example. The latter sheet type is intended for comparing the sets of SafetyPat-
terns that are used in models with SafetyCatalogues.

Safety catalogue sheets are intended for printing SafetyCatalogues. Selected
catalogues are printed to separate tables starting from their first patterns, which
are assigned number 1 in the tables. The next and alternative SafetyPatterns can
be found with the use of the corresponding PatternRelations (of the metamodel).
Alternatives are in the tables assigned same numbers but different letters, to
indicate them being alternatives to each other. Recommendations of the patterns
to all SILs are also printed into the tables.

An example safety catalogue sheet can be seen in Fig. 8 that presents a
part of a printout of a catalogue of techniques and measures that IEC 61508
[15] recommends for software architecture design. In the table, patterns can be
highly recommended (HR), recommended (R), non-recommended (NR) or with
non-specified recommendation (NS). To avoid repeating standard material, the
table includes only 15 techniques that have been modeled as patterns to produce
the example. By looking at the table, however, it becomes clear that pattern
literature already includes specialized versions of many of the techniques, for
example to implement redundancy [9].

Safety catalogue conformability sheets are intended for presenting how Safe-
tyPatterns that are used in a model conform to SafetyCatalogues. To compile the
sheet, SafetyCatalogues related to the model are collected into a list from which
the user may select the desired ones. The general structure of the sheet is similar
to the previous sheet. However, the SafetyPatterns of the catalogue that are used
in the model are indicated with a grey colour. In addition, the table presents
whether the used patterns are compatible with each SIL. The compatibility of
the (used) patterns is illustrated with a green colour and incompatibility with
a red colour. Incompatibility can result from both using a non-recommended
pattern or not-using a recommended (or highly recommended) technique or any
of its recommended alternatives. The last rows of the table present the numbers
of patterns (excluding alternatives) that would be recommended for each SIL
and how many of them have been actually used.

An example safety catalogue conformability sheet can be found in Fig. 9. It
presents the conformability of SafetyPatterns used in an example model to the
software safety requirement specification techniques of IEC 61508 [15] that have
been modeled as a SafetyCatalogue. According to the table (grey highlighting),

36 T. Vepsäläinen and S. Kuikka

semi-formal modeling techniques and computer-aided specification tools have
been used and the software safety requirements specification supports both back-
ward and forward traceability. The table also illustrates (with the green colour)
that these choices would be appropriate to all SILs.

7 Conclusions and Discussion

This paper has discussed the use of design patterns in UML based modeling
and their potential benefits in model-driven development. Shortcomings in UML
design pattern support have been pointed out and an additional set of modeling
concepts has been presented.

Design patterns document solutions and capture expert knowledge to recur-
ring challenges in design and development work. They enable including addi-
tional documentation in models. Patterns enrich models with information on
challenges, the points of decisions as well as traceability between solutions and
their use in specific applications. Visualizing patterns in diagrams may support
learning of developers and increase the value of diagrams in written documents.
Knowledge on pattern usage can be gathered to documentation and to compare
applications and the work of developers.

Related to safety systems and application, patterns enable specifying the
applicability of solutions to applications of different integrity levels. SafetyPat-
terms, i.e. the patterns of systems, can be collected into collections with which
it is possible to model both recommendation tables of safety standards and
custom collections of patterns. Safety-related information can then be used
to generate documentation from models and to compare models with cata-
logues. Safety application development is also an application domain that could
specifically benefit from possibilities to export documentation. Without auto-
mated documentation support, the documentation would have to be produced
manually.

The scope of design patterns that can be found in literature varies in terms
of area of expertise and abstraction level of patterns. Many patterns present
rather conceptual solutions than concrete structures that could be copied or
modeled always in the same way. However, although the UML concepts have
been enriched along the entire language, the pattern support is still restricted
to the collaborating properties of classifiers.

The information content of actual published patterns is not restricted to such
narrow scope. For example, the solutions of patterns may consist of packages,
components or even use cases. Thus, patterns may not always even concern pro-
gramming language level aspects and their information content is not restricted
to solutions only. In addition, patterns include information about their contexts
and problems for which the patterns provide the solutions.

In this work, these issues have been addressed by defining and implementing
a set of pattern modeling concepts that can be used to complement the UML
concepts. The presented, simple set of modeling concepts enhances the UML
limitations by enabling patterns to include textual information and to consist of

Design Patterns for Model-Driven Development 37

practically any elements that a pattern author finds useful. As a downside, the
approach leaves more responsibility over the correctness of patterns and pattern
applications to developers. The portability of the approach to other tools is also
questionable, which is caused by metamodel modifications.

The approach introduces new metaclasses to the UML metamodel that has
been defined with MOF. Implementing the approach in other tools would require
similar additions to their metamodels. The other extension mechanism of UML,
light weight profiles, however, would not have enabled all the required additions.
UML specification [21], for example, denies stereotypes to be used to insert new
metaclasses or metareferences between the existing metaclasses of UML. That
is, with stereotypes it would have been possible to include the suggested textual
information in the Collaborations of UML. However, CollaborationUses would
still have to be owned by classifiers and the other mentioned constraints would
still apply.

Tool support for automating the use of the new concepts has been developed
for instantiating patterns, visualizing patterns in diagrams as well as collecting
documentation and statistics from models. SafetyCatalogues can be presented
in standard-like tables with which models and their patterns can be compared.
Such safety sheets can be used also during development as guidance to present
the standard-compliant selections that still have to be addressed.

The tool and the concepts have been used by researchers working in Re-Use
project at the Tampere University of Technology (TUT). They have been found
useful and will be used to gather more use experience in software engineering
courses in the department of Automation Science and Engineering at TUT.

References

1. Agerbo, E., Cornils, A.: How to preserve the benefits of design patterns. ACM
SIGPLAN Not. 33, 134–143 (1998)

2. Alexander, C., Ishikawa, S., Silverstein, M.: Pattern Language: Towns, Buildings
Construction. Oxford University Press, Oxford (1977)

3. Alexander, C.: The Timeless Way of Building. Oxford University Press, Oxford
(1979)

4. Appleton, B.: Patterns and software: essential concepts and terminology. Object
Mag. Online 3, 20–25 (1997)

5. Briand, L.C., Labiche, Y., Sauve, A.: Guiding the application of design patterns
based on UML models. In: The 22nd IEEE International Conference on Software
Maintenance, ICSM 2006, pp. 234–243 (2006)

6. Buschmann, F., Meunier, R., Rohnert, H., et al.: Pattern Oriented Software Archi-
tecture: A System of Patters. Wiley, New York (1996)

7. Dong, J.: UML extensions for design pattern compositions. J. Object Technol. 1,
151–163 (2002)

8. Dong, J., Yang, S.: QVT based model transformation for design pattern evolutions.
In: 10th IASTED International Conference on Internet and Multimedia Systems
and Applications (2006)

9. Douglass, B.P.: Real-time design patterns. In: Real-Time UML: Developing Effi-
cient Objects for Embedded Systems. Addison-Wesley, Reading (1998)

38 T. Vepsäläinen and S. Kuikka

10. France, R.B., Kim, D., Ghosh, S., et al.: A UML-based pattern specification tech-
nique. IEEE Trans. Softw. Eng. 30, 193–206 (2004)

11. France, R., Chosh, S., Song, E., et al.: A metamodeling approach to pattern-based
model refactoring. IEEE Softw. 20, 52–58 (2003)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education, Upper Saddle River
(1994)

13. Hanmer, R.: Patterns for Fault Tolerant Software. Wiley, Chichester (2013)
14. Harrison, N.B., Avgeriou, P., Zdlin, U.: Using patterns to capture architectural

decisions. IEEE Softw. 24, 38–45 (2007)
15. IEC: 61508 Functional Safety of electrical/electronic/programmable Electronic

Safety-Related Systems. International Electrotechnical Commission (2010)
16. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-

sions. In: The 5th working IEEE/IFIP Conference onSoftware Architecture, pp.
109–120 (2005)

17. Jing, D., Sheng, Y., Kang, Z.: Visualizing design patterns in their applications and
compositions. IEEE Trans. Softw. Eng. 33, 433–453 (2007)

18. Kajsa, P., Majtás, L.: Design patterns instantiation based on semantics and model
transformations. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe,
B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 540–551. Springer, Heidelberg (2010)

19. Lasater, C.G.: Design Patterns. Jones & Bartlett Publishers, Boston (2010)
20. No Magic, Inc., MagicDraw (2014). http://www.nomagic.com/products/

magicdraw.html
21. OMG: Unified Modeling Language Specification 2.4.1: SuperStructure. Object

Management Group (2011)
22. Rauhamäki, J., Vepsäläinen, T., Kuikka, S.: Patterns for safety and control system

cooperation. In: VikingPlop (2013)
23. Saridakis, T.: Design patterns for checkpoint-based rollback recovery. In: The 10th

Conference on Pattern Languages of Programs (PLoP) (2003)
24. Sunyé, G., Le Guennec, A., Jézéquel, J.-M.: Design patterns application in

UML. In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 44–62. Springer,
Heidelberg (2000)

25. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., et al.: Design pattern detection
using similarity scoring. IEEE Trans. Softw. Eng. 32, 896–909 (2006)

26. Vepsäläinen, T., Hästbacka, D., Kuikka, S.: Tool support for the UML automation
profile - for domain-specific software development in manufacturing. In: The Third
International Conference on Software Engineering Advances, ICSEA 2008, pp. 43–
50 (2008)

27. Vepsäläinen, T. and Kuikka, S.: Towards model-based development of safety-
related control applications. In: 2011 IEEE 16th Conference on Emerging Tech-
nologies and Factory Automation (ETFA) (2011)

28. Vepsäläinen, T., Kuikka, S.: Design pattern support for model-driven development.
In: 9th International Conference on Software Engineering and Applications, pp.
277–286 (2014)

29. Vepsäläinen, T., Kuikka, S.: Safety patterns in model-driven development. In: 9th
International Conference on Software Engineering Advances, pp. 233–239 (2014)

30. Xue-Bin, W., Quan-Yuan, W., Huai-Min, W., et al.: Research and implementa-
tion of design pattern-oriented model transformation. In: The International Multi-
Conference on Computing in the Global Information Technology, ICCGI 2007
(2007)

http://www.nomagic.com/products/magicdraw.html
http://www.nomagic.com/products/magicdraw.html

Measuring the Quality of Open Source Software
Ecosystems Using QuESo

Oscar Franco-Bedoya1,2(B), David Ameller1, Dolors Costal1,
and Xavier Franch1

1 Group of Software and Service Engineering (GESSI), Universitat Politècnica de
Catalunya, Barcelona, Spain

{ohernan,dameller,dolors,franch}@essi.upc.edu
http://www.essi.upc.edu/∼gessi/

2 Universidad de Caldas, Manizales, Colombia

Abstract. Open source software has witnessed an exponential growth
in the last two decades and it is playing an increasingly important role
in many companies and organizations leading to the formation of open
source software ecosystems. In this paper we present a quality model
that will allow the evaluation of those ecosystems in terms of their rele-
vant quality characteristics such as health or activeness. To design this
quality model we started by analysing the quality measures found during
the execution of a systematic literature review on open source software
ecosystems and, then, we classified and reorganized the set of measures
in order to build a solid quality model. Finally, we test the suitability of
the constructed quality model using the GNOME ecosystem.

Keywords: Quality model · Software ecosystem · Quality measures ·
Open source software

1 Introduction

Software ecosystems are emerging in the last years as a new way to understand
the relationships between software projects, products, and organizations. There
are two widespread definitions:

– A software ecosystem is “a set of actors functioning as a unit and interacting
with a shared market for software and services. A software ecosystem consists
of actors such as independent software vendors (ISV), outsourcers, and cus-
tomers. A software ecosystem typically is interconnected with institutions such
as standardization organizations, open source software communities, research
communities, and related ecosystems” [1].

– A software ecosystem is “a collection of software projects which are developed
and evolve together in the same environment” [2].

In the first definition software ecosystems are understood from a holistic busi-
ness oriented perspective as a network of actors, organizations and companies,
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 39–62, 2015.
DOI: 10.1007/978-3-319-25579-8 3

40 O. Franco-Bedoya et al.

while the second definition focuses on technical and social aspects of a set of
software projects and their communities. In this paper we try to reconcile both
visions and consider the business oriented perspective together with the techni-
cal and social perspectives in order to assess software ecosystem quality in its
broader sense.

We focus on a particular kind of software ecosystems, i.e., those that are built
around an Open Source Software (OSS) initiative (e.g., Android, GNOME, and
Eclipse ecosystems), namely OSS ecosystems. We have identified three dimen-
sions of quality in OSS ecosystems: the first dimension is the quality of the
software platform in which the projects of the ecosystem are built upon (e.g.,
the Android ecosystem provides the Android platform used by all the Android
mobile apps); the second dimension, as mentioned Jansen and Cusumano [1], is
the quality of the OSS communities that grow inside the ecosystem and ecosys-
tem’s projects (e.g., the GNOME community itself, i.e., the community of the
platform, but also the communities of the projects that belong to the ecosystem
such as Anjuta, Banshee, and Abi Word communities); the third dimension of
quality is inherent to the ecosystems themselves, i.e., the quality derived from
the understanding of the OSS ecosystem as a network of interrelated elements
(e.g., the number of Eclipse plug-ins and their dependencies between them can
be used to assess the ecosystem’s interrelatedness).

Assessing the quality of OSS ecosystems is of vital importance because qual-
ity assurance is a way to prevent bad decisions, avoid problems, and it allows to
verify the compliance with the requirements and the business goals. It can also be
used for quality systematic monitoring to provide feedback and execute preventive
actions. For example, before deciding to integrate a project into an established OSS
ecosystem it is crucial to perform a good quality assessment to avoid problems such
as inactive user communities, low level of community cohesion, or even synergetic
evolution problems, i.e., lack of collaboration between the key developers.

One way to ensure that the quality assessment has covered the most impor-
tant characteristics of the ecosystem is to use a quality model, “the set of charac-
teristics and the relationships between them which provide the basis for specifying
quality requirements and evaluating quality” [3]. Unfortunately, currently there
is not any quality model for OSS ecosystems available in the literature, except
from some measures distributed among many papers.

To fill this gap, in this paper we present QuESo, a quality model for the quality
assessment of OSS ecosystems. To obtain this quality model we used design sci-
ence methodology [4], first, we searched in the literature for all available measures
related to OSS ecosystems, second, we designed the quality model using both a
bottom-up strategy by classifying the measures found, and a top-down strategy
by analysing the relationships in the quality characteristics that can be assessed
by the measures (e.g., to assess the community activeness we can count the number
of changes in the source repository or the number of messages in the mailing lists in
a recent period of time), and finally, we maded a preliminary solution evaluation.

The rest of the paper is structured as follows: in Sect. 2 we review the related
work; in Sect. 3 we explain the research methodology; in Sect. 4 we explain the
QuESo quality model; in Sect. 5 we provide examples of real measures and their

Measuring the Quality of Open Source Software Ecosystems Using QuESo 41

meaning; in Sect. 6 we provide an initial validation of the model; in Sect. 7 we
discuss some observations made in this work; and finally, in Sect. 8 we provide
the conclusions and the future work.

2 Related Work

When talking about quality models in the software domain it is inevitable to
mention the ISO quality model [5]. This quality model targets the quality of
a software product, from three perspectives: internal, external, and quality of
use. The specific quality characteristics of the ISO quality model do not cover
the important dimensions of OSS ecosystems such as the ones related to the
community or the ones related to the health of the ecosystem.

The QualOSS quality model [6] gives a good representation for one of the
three dimensions covered by QuESo, the OSS community. However we had to
extend it with new characteristics that are relevant in the context of OSS ecosys-
tems (see Sect. 4.2).

As we will explain in Sect. 3, we have found many papers that, although
do not provide a quality model, they propose a good set of measures to evalu-
ate some aspects of OSS ecosystems. We would like to mention the works that
provided the most interesting measures.

– Hartigh et al. [7] developed a concrete measure tool for evaluating business
ecosystems based on the classification made by Iansiti and Levien [8]. They
conceptualized the business ecosystem health as financial health and network
health based on a set of eight measures.

– Mens and Goeminne. [9] provided a set of measures (e.g., number of commits,
total bugs, mailing list), by studying the developer community, including the
way developers work, cooperate, communicate and share information.

– Neu et al. [10] presented a web application for ecosystem analysis by means
of interactive visualizations. The authors used the application to analysis
the GNOME ecosystem study case.

– Kilamo et al. [11] studied the problem of building open source communities
for industrial software that was originally developed as closed source.

Finally we remark the existence of two other secondary studies about software
ecosystems [12,13], but in both cases the studies did not have a research question
about quality metrics or quality assessment for software ecosystems. Also, it is
worth mentioning that as a way to complete our SLR we included the results of
these two studies to our SLR (see Sect. 3.1).

3 Research Methodology

We structure our research in terms of design science since it involves creating
new artefacts and acquiring new knowledge. Our research methodology follows
the engineering cycle as described by [4]. We have performed a first engineering
cycle that includes steps for (1) problem investigation, (2) solution design and
(3) a preliminary solution evaluation. In the rest of these sections we describe
the strategies followed in each step.

42 O. Franco-Bedoya et al.

3.1 Problem Investigation: Systematic Literature Review

Our problem investigation step was devoted to search in the literature for all
available measures related to OSS ecosystems and establish criteria to judge wich
measures to consider for developing QuESo. A Systematic Literature Review
(SLR) is a method to identify, evaluate, and interpret the available research
relevant to a particular topic, research question, or phenomenon of interest [14].

The literature review protocol is part of a wider SLR that we are conducting
with the goal of identifying the primary studies related to OSS ecosystems.
A more detailed explanation of the protocol can be found in Franco-Bedoya
et al. [15].

The research question that addresses the measures and indicators related to
the ecosystem quality is: What measures or attributes are defined to assess or
evaluate open source software ecosystems?

We defined a search string based on keywords derived from all the SLR
research questions:“(OSS OR FOSS OR FLOSS OR Open Source OR Free Soft-
ware OR Libre Software) AND ecosystem”.

The search strategy used was a combination of sources: digital libraries, man-
ual searches, the inclusion of specific papers from the two secondary studies men-
tioned in Sect. 2 and the chapters in a recently published book about software
ecosystems [16].

As a result of the SLR, 53 primary studies were selected, from them we
identified 17 related to the identification of measures to evaluate the quality of
OSS ecosystems. Figure 1 illustrates the SLR selection process.

Once we had collected the measures from the selected papers, we used the
following criteria from Hartigh et al. (2013) and Neu et al. [7,10] to include them
in QuESo:

1. User-friendly and operationalizable: measures should be logical, easy to use
and operationalizable into a measurable entity.

2. Non-redundant: when we identified similar measures we selected only one of
them, but we kept all the sources for traceability.

After excluding non-operationalizable and merging the similar measures with
the previous criteria, we finally selected 68 different measures for the QuESo
quality model (note that some of the measures are used to assess more than one
characteristic of the quality model).

3.2 Solution Design: Quality Model Construction

There exist several proposals for quality model construction that focus on soft-
ware quality. Most of them follow top-down strategies [17,18]. In short, they take
as a basis a reference quality model such as the ISO quality model [5], take their
quality characteristics as departing point and refine them till they end up with
a hierarchy with specific measures at its lower level. Remarkably, the proposal
in Radulovic and Garcia-Castro [19] is mainly bottom-up oriented, i.e., it takes
a set of measures as departing point to build the model. For our purposes, a

Measuring the Quality of Open Source Software Ecosystems Using QuESo 43

BookManual
search

Secondary
studies

Digital
libraries

35 11 1 6

Papers with measures
of OSS ecosystems

17

Fig. 1. Selection of primary studies.

bottom-up approach is the most adequate because: (1) a well-established refer-
ence quality model (or even, in its defect, a complete and systematic body of
knowledge) for software ecosystems is still missing [20], and (2) there already
exist a myriad of specific measures that can be applied to OSS ecosystems and
that have been identified in our SLR. Furthermore, although it focuses on the
construction of software quality models, we can easily use it to the construction
of a quality model for OSS ecosystems.

Radulovic and Garcia-Castro [19] proposal has a clearly defined sequence of
steps:

1. To identify basic measures.
2. To identify derived measures.
3. To identify quality measures (by aggregation of basic and derived measures).
4. To identify relationships between measures.
5. To specify relationships between measures.
6. To define domain-specific quality sub-characteristics.
7. To align quality sub-characteristics with a quality model.

Note that the alignment in the seventh step partly implies top-down rea-
soning. Quality sub-characteristics that have been previously defined are related
to others already specified in the existing model. If needed, some new quality
sub-characteristics can be specified, or existing ones can be modified or excluded.

We have followed all the steps of the proposal. In particular, for steps 1 and
2, devoted to identify measures, we have based our work on the SLR described in
Sect. 3.1. The application of step 7 requires the use of a reference quality model.
Since, to our knowledge, a quality model for the whole scope of OSS ecosystems
is still missing, we have decided to use QualOSS [6] which measures the per-
formance of open source communities. Clearly, new quality sub-characteristics

44 O. Franco-Bedoya et al.

Fig. 2. QuESo quality model.

emerging from measures related to the ecosystem considered as a whole will have
to be specified, since they are not addressed by QualOSS.

3.3 Solution Evaluation

As a first step for the solution evaluation we have validated the feasibility of
obtaining the measures included in our QuESo quality model and, consequently,
the feasibility of evaluating the characteristics and subcharacteristics proposed
in QuESo. We have done this by taking the ecosystem around GNOME projects
as a case study and have analyzed the literature related to the GNOME ecosys-
tem to extract for which measures there are available values documented in the
literature. The rest of details of the evaluation process are described in Sect. 6.

4 QuESo Quality Model

In this section we describe the QuESo quality model obtained as a result of the
application of the procedure described in Sect. 3.2. The model is composed of
two types of interrelated elements: quality characteristics and measures. Quality
characteristics correspond to the attributes of an open source software ecosys-
tem that are considered relevant for evaluation. The quality characteristics are
organized in a hierarchy of levels that is described in the rest of this section.
For the lack of space, in the tables presented in this paper we have omitted the
descriptions. The whole set of measures with their definitions is available in the
Appendix A. Also, note that we opted to keep the measure names that appear
in the primary studies, even that in some cases the name given is not the most
appropriate, we discuss about this topic in Sect. 7.

The quality characteristics in QuESo have been organized in three dimen-
sions: (1) those that relate to the platform around which the ecosystem is built,
(2) those that relate to the community (or set of communities) of the ecosystem

Measuring the Quality of Open Source Software Ecosystems Using QuESo 45

and (3) those that are related to the ecosystem as a network of elements, such
as projects or companies (see Fig. 2).

4.1 Platform-Related Quality Characteristics

Platform-related quality characteristics consist of the set of attributes that are
relevant for the evaluation of the software platform.

As a result of our SLR, we have observed that the literature do not pro-
vide measures for evaluating open source platform-related quality characteristics.
This fact may indicate that there are not significant differential issues for open
source software quality with respect to generic software quality that motivates
the need of specific measures.

Then, similarly as done in the QualOSS model, since a mature proposal such
as ISO 25000-SQuaRE [5] focuses on generic software quality, QuESo adopts
directly the characteristics and sub-characteristics proposed by ISO 25000-
SQuaRE and this part of the quality model is omitted in the paper.

4.2 Community-Related Quality Characteristics

Following the procedure described in Sect. 3.2, the QuESo proposal for
community-related quality characteristics is based both on the set of measures
identified in our SLR and on the QualOSS quality model [6] (see Fig. 2).

QualOSS specifies three community characteristics, namely, maintenance
capacity, sustainability and process maturity.

Maintenance Capacity. Soto et al. define maintenance capacity as the abil-
ity of a community to provide the resources necessary for maintaining its prod-
ucts and mention that aspects relevant to it are the number of contributors to
a project and the amount of time they contribute to the development effort. In
order to align maintenance capacity with our identified measures it is refined in
three sub-characteristics: size, cohesion and activeness. The size of the commu-
nity influences its maintenance capacity and can be evaluated by measures such as
number of core developers and number of committers. The ability of the commu-
nity to collaborate defined by its cohesion is also relevant. A measure that can be
used to evaluate cohesion is the ecosystem connectedness in the community social
network. Finally, the activeness of the community can be evaluated by measures
such as bug tracking activity and number of commits. We have identified 26 mea-
sures that can be used to measure the maintenance capacity (see Table 1).

Sustainability. Sustainability is the likelihood that a community remains able
to maintain the products it develops over an extended period of time. According
to Soto et al. it is affected by heterogeneity and regeneration ability and, as a
result of our measure analysis, we have specified additional sub-characteristics
besides them: effort balance, expertise balance and visibility.

The heterogeneity of a community contributes to its sustainability. For
instance, if a community is mainly composed of employees of a particular

46 O. Franco-Bedoya et al.

Table 1. List of measures for maintenance capacity.

Subcharacteristic Measure

Size Number of contributors

Size Number of members

Size Number of authors

Size Number of bug fixers

Size Number of committers

Size Number of core developers

Size Number of nodes and edges

Cohesion Betweenness centrality

Cohesion Cluster of collaborating developers

Cohesion Ecosystem connectedness

Cohesion Outdegree of keystone actors

Activeness Bug tracking activity

Activeness Buildup of assets

Activeness Community effort

Activeness Date of last commit

Activeness Files changed

Activeness Files per version

Activeness Lines added

Activeness Lines changed

Activeness Lines removed

Activeness Mailing list

Activeness Number of commits

Activeness Contributor commit rate

Activeness Developer activity diagrams

Activeness Temporal community effort

Activeness Number of event people

company, there is the risk of the company cutting its financial support. Het-
erogeneity can be evaluated by measures such as geographical distribution of
community members.

Regeneration ability also enhances sustainability since a community that has
been able to grow in the past increases its chances of not declining in the future.
A measure that we have identified for it is for instance, new members which
counts the number of new members of the community at any point of time.

The effort balance is relevant for sustainability i.e., if most of the contribution
effort comes from one or a small number of members of the community and it is
not uniformly distributed, then its continuity is highly dependent on that small
set of members. On the other hand, a balanced effort distribution among all
members facilitates its continuity over time. Some measures for effort balance
are: number of developer projects and number of developer releases.

Measuring the Quality of Open Source Software Ecosystems Using QuESo 47

Table 2. List of measures for sustainability.

Subcharacteristic Measure

Heterogeneity Geographical distribution

Regeneration ability Temporal community effort

Regeneration ability New members

Effort balance Contributor commit rate

Effort balance Developer activity diagrams

Effort balance Maximum number of commits of a developer

Effort balance Member effort

Effort balance Member activity rate

Effort balance Number of activity communities

Effort balance Number of developer releases

Effort balance Number of developer projects

Effort balance Project developer experience

Effort balance Temporal community effort

Effort balance Total effort of members

Expertise balance Expertise view contributor

Expertise balance Principal member activity

Expertise balance Relation between categorical event and developer participation

Visibility Number of event people

Visibility Amount of inquires or feature requests

Visibility Job advertisements

Visibility Number of downloads

Visibility Number of mailing list users

Visibility Number of passive user

Visibility Number of readers

Visibility Number of scientific publications

Visibility Social media hits

Visibility Visibility

Visibility Web page requests

In a similar way, the expertise balance among most members of a community
is again a way to guarantee its sustainability. A community highly dependent on
the expertise of one or a few members suffers from a risky situation. A measure
for this is, for instance, expertise view contributor which calculates a contributor
expertise based on the number and type of files he changed within a month.

The visibility of a community gives it the capacity of attracting people to
contribute and support it if needed. Examples of measures identified for visibility
are: number of downloads, social media hits and web page requests.

QuESo has 28 measures that can be used to measure the sustainability (see
Table 2).

48 O. Franco-Bedoya et al.

Process Maturity. Process maturity is the ability of a developer commu-
nity to consistently achieve development-related goals by following established
processes. It can be assessed for specific software development tasks with the
answers of questions such as: is there a documented process for the task? [6].
Apparently, this characteristic requires qualitative assessment more than quan-
titative measures. This is consistent with the results of our SLR since we have not
identified measures devoted to evaluate process maturity aspects. The absence of
measures for process maturity hampers the application of the bottom-up process
to further refine this characteristic.

4.3 Ecosystem Network Quality Characteristics

Since QualOSS does not address the network-related quality, this part of QuESo
is exclusively based on the analysis of measures identified in our SLR.

QuESo proposes two ecosystem network-related characteristics: resource
health and network health. In this paper we take as definition for health applied
to software ecosystems: longevity and a propensity for growth [21,22].

Resource Health. Resource health facilitates the combination of value activi-
ties from multiple actors to obtain value-creating end products [23]. It is related
to the financial health concept defined by Hartigh et al. [7]: “The financial health
is a long-term financially based reflection of a partner’s strength of management
and of its competences to exploit opportunities that arise within the ecosystem
and is directly related to the capability of an ecosystem to face and survive dis-
ruptions”. In the OSS ecosystem case this means that there is a set of partners or
actors functioning as a unit and interacting among them. Their relationships are
frequently operated through the exchange of information and resources. Two
sub-characteristics, particularly relevant to resource health, are the financial
vitality and the trustworthiness of the ecosystem.

The financial vitality is the viability and the ability to expand (i.e., robust-
ness, ability to increase size and strength) of the ecosystem [24]. Two examples
of financial measures that evaluate it are liquidity and solvency. They can be
obtained directly, e.g., using balance sheet data of partners, but also indirectly,
through the network relations.

Trustworthiness is the ability to establish a trusted partnership of shared
responsibility in building an overall open source ecosystem [25]. Operational
financial measures obtained from bankruptcy models (e.g., Z-score and Zeta
model) are adequate to measure it because they take short-term and long-term
survival into account [7].

QuESo has 5 measures that can be used to measure the resource health (see
Table 3).

Network Health. Hartigh et al. [7] define network health as a representation
of how well partners are connected in the ecosystem and the impact that each
partner has in its local network. Healthy ecosystems show many relations and
subsystems of different types of elements that are intensely related [26]. Further-
more, in a healthy OSS ecosystem network, these relations are mutualistic [27].

Measuring the Quality of Open Source Software Ecosystems Using QuESo 49

Table 3. List of measures for resource health.

Subcharacteristic Measure

Trustworthiness Zeta model

Trustworthiness Z-score

Financial vitality Liquidity

Financial vitality Solvency

Financial vitality Network resources

Van der Linden et al. [28] proposed to evaluate the network health of an OSS
ecosystem before its adoption. To align network health with the identified mea-
sures we have refined it into four sub-characteristics: interrelatedness, clustering,
synergetic evolution and information consistency.

Interrelatedness is the ability of the nodes of an OSS ecosystem to establish
connections between them. It can be evaluated by measures such as centrality
i.e., the number of network relations of a node, and project activity diagrams
that allows to obtain the kind of project evolution.

Clustering is the capacity of the species (or nodes) in the entire ecosystem
to be classified around its projects. It also enables small OSS projects to come
together as a large social network with a critical mass [29]. Basic measures as
number community projects, number of files and variety in products can be used
to identify clusters using social network analysis techniques [30].

Synergetic evolution is the ability of the subsystems that constitute the whole
ecosystem to form a dynamic and stable space-time structure [24,31]. Measures
such as ecosystem entropy and ecosystem reciprocity can be used to evaluate
synergetic evolution. The ecosystem entropy measure is based on the definition of
software system entropy from Jacobson [32] who states that it is a measure for the
disorder that always increases when a system is modified. Ecosystem reciprocity
measures direct and active collaboration between the company and its customers
in creating value propositions (e.g., through collaboration with key developers
in an OSS community and other companies within the ecosystem) [33].

Information consistency is the consistency of the core information elements
across the breadth of an ecosystem. The code vocabulary map measure evaluates
this sub-characteristic. It consists of a summary of terms used in the source
code that can be used to obtain a general overview of the domain language of
the project’s network.

QuESo has 15 measures that can measure the network health (see Table 4).

5 Examples of Measures

In this section we provide several examples extracted from the papers selected
in the SLR. In particular we have selected the examples that belong to the
GNOME software ecosystem. Our intention is to clarify the type of measures
that are mentioned in this paper with examples.

50 O. Franco-Bedoya et al.

In the following we present the selected GNOME examples of measure values
organized by the characteristics of the QuESo quality model. We omit process
maturity because we have not found quantitative measures to evaluate it (see
explanation in Sect. 4.2). We also omit resource health measures because exam-
ples for them are not reported in the SLR papers for the GNOME ecosystem.

– The maintenance capacity can be evaluated from the number of authors mea-
sure which gives the amount of people that change files in a project. According
to Goeminne and Mens [34] data, for the GNOME ecosystem there have been
3.500 different people having contributed at least once to at least one of the
GNOME projects between 1997 and 2012. The number of commits measure
is also relevant. Each commit corresponds to the action of making a set of
changes permanent. According to Jergensen and Sarma [35] Jergensen and
Sarma (2011) approximately 480.000 commits were made in GNOME from
1997 to 2007.

– A measure for sustainability is the member activity rate which gives a value
between 0 and 1 that helps to analyse the effort balance, i.e., a zero value
indicates a uniform distribution of the work, which means that each person
has the same activity rate while a value of 1 means that a single person carries
out all the work. The member activity rate for the GNOME Evince project
has had a value between 0,7 and 0,8 from 1999 to 2009 according to Mens and
Goeminne [34].

– The network health of an ecosystem can be evaluated by measures such as
number community projects and number of active projects. For the GNOME
ecosystem, there were more than 1.300 projects between 1997 and 2012 and
more than 25 % of them had been active for more than six and a half years. At
the lower side of the spectrum, more than 25 % of all projects had been active
less than one year [36]. Another measure for network health is the contributor
activity graph. According to Neu et al. [10], one of the contributors of the
GNOME ecosystem has been working in 499 projects and has more than
15.000 changes between 1998 and 2011.

6 Validation: GNOME Case

In this section we present an early version of our quality model validation.
The goal of this validation is to provide evidence of the feasibility to obtain
the measures, and consequently, the feasibility to evaluate the corresponding
characteristics and sub characteristics proposed in QuESo. We hope to validate
this feasibility using the QuESo measures identified in the literature related to
the GNOME ecosystem

6.1 Quality Model Validation

The validation of a quality model is very important and very difficult activ-
ity [37]. It is not practically possible to specify or measure all subcharacteristics

Measuring the Quality of Open Source Software Ecosystems Using QuESo 51

Table 4. List of measures for network health.

Subcharacteristic Measure

Interrelatedness Contributor activity graph

Interrelatedness Project activity diagrams

Interrelatedness Networks node connection

Interrelatedness Ecosystem connectedness

Interrelatedness Ecosystem cohesion

Interrelatedness Centrality

Interrelatedness Variety of partners

Clustering Variety in products

Clustering Number community projects

Clustering Number of active projects

Clustering Number of files

Synergetic evolution Distribution over the species

Synergetic evolution Ecosystem entropy

Synergetic evolution Ecosystem reciprocity

Information consistency Code vocabulary map

for all parts of a OSS ecosystem. It also requires long period of time. Similarly
it is not usually practical to specify or measure quality in use for all possible
stakeholders scenarios [5]. The model should be tailored before use to identify
those characteristics and subcharacteristics that are most important, and the
different types of measure depending on the stakeholder goals and also to pro-
vide some evidence of the feasibility to obtain these measures, as mentioned
in [21], one of the most habitual problems is the absence of data to calculate the
measures. However, in order to gain confidence in the quality of the work, an
initial feasibility and availability validation of the QuESo measures will be done.

6.2 GNOME Ecosystem Case

In this section we present an early version of our quality model validation.
The goal of this validation is to provide evidence of the feasibility to obtain
the measures, and consequently, the feasibility to evaluate the corresponding
characteristics and sub characteristics proposed in QuESo. We hope to validate
this feasibility using the QuESo measures identified in the literature related to
the GNOME ecosystem.

We divided the process in two phases, similar to Samoladas [38]: the identi-
fication of the literature related to GNOME ecosystem and the specification of
the QuESO measures that are available for the GNOME ecosystem.

In the first phase, we have identified several papers that have measures for
analysing the GNOME ecosystem. In the second phase the selected works were
analysed as follows: first the measures with available values were extracted,

52 O. Franco-Bedoya et al.

Fig. 3. GNOME ecosystem evaluation with QuESo.

secondly the measures were classified according to the QuESo measure clas-
sification, and finally analysed the situation for each quality aspects of QuESo.

Figure 3 shows the QuESo graphical model with the percentage of measures
found in the literature for each quality aspect and Table 5 shows the number
of measures found for each subcharacteristisc. In the Appendix B we show a
detailed table with the GNOME measures and the papers associated. The col-
umn source of this table lists the papers with values for each measure. The
community quality dimension has measures associated with each subcharacter-
istic, and some of them have values for all the associated measures. However, in
the case of the ecosystem network quality dimension we have not found values
for the measures related to resource health, and only the 40 % of measures of
network health have values.

6.3 Observations

From the results shown in Fig. 3 and Table 5 we made some observations:

– There are many works with measure values for the community while there are
few works with measure values related to the ecosystem network.

– The papers found do not cover the whole set measures in the QuESo quality
model.

The first observation is also mentioned by other authors, for example, Jansen
et al. [21] wrote that there is little literature that studied OSS from an ecosystem
perspective, while Manikas et al. [39] wrote that most of the works studied OSS
from a project or community perspective.

For the second observation, we cannot state that there is full availability
of measure values, however it worth to mention that in this case we limited

Measuring the Quality of Open Source Software Ecosystems Using QuESo 53

Table 5. List of measures by QuESo subcharacteristic.

Sub-characteristic Number of measures

Size 5

Cohesion 1

Activeness 13

Heterogeneity 1

Regeneration ability 2

Effort balance 11

Expertice Balance 2

Visibility 1

Information consistency 0

Synergetic evolution 1

Clustering 2

Interrelatedness 3

Trustworthiness 0

Financial vitality 0

the sources to the ones published in the literature. Other methods can include
direct access to the GNOME data sources (e.g., the number of files, number of
downloads, web page request, and code vocabulary map). Other measures such
as z-score, liquidity, and solvency can be obtained using surveys or public data.

7 Discussion

Some observations were made during the design of this quality model. In the
following, the most interesting ones are discussed:

– Completeness: since we followed a mainly bottom-up strategy, the complete-
ness of the quality model depends on how complete the set of measures found
in the literature is. In this sense, we would like to remark that our quality
model may be not complete by one or more of the following reasons: there
may be some papers with relevant measures not included in the SLR because
they were not present in digital libraries or because our search string did not
find them; another reason could be that some important measures are not yet
reported in the literature. In this work, our intention was not to invent new
measures but to organize the existing ones into a quality model.

– Quantitative vs. Qualitative: the measures found in the literature are mostly
quantitative, but a quality assessment may also include qualitative evalua-
tions. For example, we commented in Sect. 4.2 the lack of measures for process
maturity because in this case the assessment needs to be done with qualitative
evaluations of the community. Since we have focused on quantitative measures,
there may be other characteristics of the quality model that require or that
may be complemented with qualitative evaluations.

54 O. Franco-Bedoya et al.

– Unbalanced Distribution of Measures: just by looking into the measure tables,
it is easy to observe that the amount of measures for some characteristics is
high (e.g., activeness with 17 measures, visibility with 11 measures) while for
other is very low (e.g., heterogeneity with 1 measure, information consistency
with 1 measure). This unbalanced situation could be an indicator that more
research is needed for the characteristics with a low amount of measures.

– Measure Names: we have named the measures included in the QuESo quality
model with the same names they are referred to in the SLR papers from
where they were extracted. The reason for this is to improve traceability.
However, some of those measure names might be ambiguous or misleading
because it is not evident from them how the measure is evaluated (e.g., project
activity diagrams). To improve measure understandability we have listed their
definitions in the Appendix A.

– Assesment Process: It is worth mentioning that to perform a complete quality
assessment of a software ecosystem we first would need to define the assess-
ment process which is out of the scope of this paper. The quality assess-
ment process will have to deal with, e.g., How are the values of each measure
interpreted (i.e., defining what are the good and the bad values)?; How can
the measures be merged to provide the assessment for a particular sub-
characteristic of the quality model?; or What are the principles to perform
the assessment with missing, incorrect, and/or inconsistent measure data? We
are will provide the answer to these and other questions as part of our future
work in this topic.

8 Conclusions

In this paper we have presented QuESo, a quality model for assessing the qual-
ity of OSS ecosystems. This quality model has been constructed following a
bottom-up strategy that consisted in searching the available measures for OSS
ecosystems in the literature and then organize them into several quality charac-
teristics. The presented quality model covers three aspects of OSS ecosystems:
the platform, the community, and the ecosystem network; which altogether are
a good representation of the most important aspects of an OSS ecosystem.

This quality model can be used as a starting point for the quality assessment
of an OSS ecosystem, and it is in our plans for the future work to define a
complete quality assessment process (as described in Sect. 5) and to apply it in
a real quality assessment. As consequence new measures may be needed for the
assessment, but this is the best way to improve, and complete the quality model,
and a way to prove its capabilities in quality assessment.

Acknowledgements. This work is a result of the RISCOSS project, funded by the
EC 7th Framework Programme FP7/2007–2013 under the agreement number 318249.
We would also like to thank Carme Quer for her assistance and the contribution of
EOSSAC project, founded by the Ministry of Economy and Competitiveness of the
Spanish government (TIN2013-44641-P) is also acknowledged.

Measuring the Quality of Open Source Software Ecosystems Using QuESo 55

Appendix A: Measure Definitions

Amount of Inquires or Feature Requests. Number of inquire or feedbacks
received for the OSS community. Contributions could be corrective, adaptive,
perfective or preventive. R8.

Betweenness Centrality. Reflects the number of shortest paths that pass
through a specific node. R1.

Bug tracking Activity. Number of comments created in project bug tracker
and total number of actions in the bug tracker. R2, R3, R6, R8, R15.

Buildup of Assets. Total factor productivity over time. Can be measured using
individual company data. R4.

Centrality. Number of relations clique memberships. Number of individual net-
work relations of a partner. The more central partner is the most persistent.
When the partners are in clique or cluster, its persistence is considered high.
Because is regarded as a secure environment. R1, R4, R6, R7.

Cluster of Collaborating Developers. The nodes are developers and the
edges between them represent projects on which they collaborated. They
both make modifications to the project for at least a certain number of
times. R9, R10.

Code Vocabulary Map. Summary of terms used in the source code of the
project. The vocabulary map is a tool for the developer who wants to obtain
a general overview of the domain language of a project. R9.

Community Effort. The combined effort of all members belonging to commu-
nity. R3.

Contributor Activity Graph. The contributor distribution at ecosystem
level. R12.

Contributor Commit Rate. Average between first and last commit. R12.
Date of Last Commit. Date of last commit of a project/community. R11.
Developer Activity Diagrams. Give an overview of the contributors daily

activity within an ecosystem. R10, R12.
Distribution over the Species. Variety measure for niche creation factor.

The equality of the division of partners over the species. E.g., the distribu-
tion between numbers of resellers, number of system integrators, numbers of
OEM’s. R4, R11.

Ecosystem Cohesion. Number of relations present in a subgroup/maximum
possible of relation among all the nodes in the sub-group. R4.

Ecosystem Connectedness. Number of relations as a proportion of the theo-
retically maximum number of relations in all ecosystem. Is a metric of con-
nectedness. Is a property that keeps communities structure safe from risks,
guaranteeing their well-being and health. R4.

Ecosystem Entropy. The second law of thermodynamics, in principle, states
that a closed system’s disorder cannot be reduced, it can only remain
unchanged or increase. A measure of this disorder is entropy. This law also
seems plausible for software systems; as a system is modified, its disorder,
or entropy, always increases. Can be viewed as being similar to the measure-
ment of the existence of order or disorder among the participating software
components, software products, or software organizations. R17.

56 O. Franco-Bedoya et al.

Expertise View Contributor. Visualization about a contributor expertise
based on file extensions (number and type of files changed within a month).
R12.

Files Changed. Number of files that has been changed. R12.
Files per Version. Number of files per version. R6, R11, R12.
Geographical Distribution. Geographical distribution of community mem-

bers. R2.
Job Advertisements. Number of job advertisements on the project/comm-

unity. R8.
Lines Added. Lines added. R7, R12.
Lines Changed. Lines changed. R12.
Lines Removed. Lines removed. R12.
Liquidity. Provide an indication whether a partner is able to meet its short-term

obligations. Can be measured with: financial status of a partner; counting
the number of new members in a business ecosystem. R4.

Mailing List. Number of messages posted to project mailing lists and the num-
ber of responses obtained from those messages. R1, R2, R6, R11, R15.

Maximum Number of Commits of a Developer. The size and density of
a contributor in a project. R3, R12.

Member Activity Rate. Activity rate 1 means that a single person carries
out all the work. R11.

Member Effort. The effort of member m in community c. R3, R10, R11.
Network Resources. Measure for delivery innovations factor of productivity.

They can be measured directly, e.g., using balance of partners, but also
indirectly, through the network relations. R4.

Networks Node Connection. Connections between central and non-central
species or partners. R4.

New Members. Counting the number of new members at any point in time. R4.
Number of Active Projects. Number of active projects. R3, R10.
Number of Authors. Number of authors for projects. Author can change files

in a project. R3, R11.
Number of Bug Fixers. Number bug fixers in the community. R8.
Number Committers. Number of committers per project. R3, R9, R11.
Number of Activity Communities. The number of activity communities in

which member m is involved. R3, R7.
Number of Commits. Total number of commits containing source code,

documentation, and translation. Average number of commits per week
(project/community). R3, R6, R9, R10, R11, R12, R14, R15.

Number of Community Project. Number of projects built on top of the
platform of a community. R3, R8.

Number of Contributors. Total of contributors per project. R3, R8, R12.
Number of Core Developers. Core developer contribute most of the code

and oversee the design and evolution. of the project. R6, R10.
Number of Developer Releases. Number of releases that a developer has

been active on a project. R6.
Number of Developer Projects. Number of projects of a developer. R12.

Measuring the Quality of Open Source Software Ecosystems Using QuESo 57

Number of Downloads. Number of downloads from the official community
portal or mirrors. R7, R8.

Number of Event People. The number of people participating in project
events and meetings gives direct information on the activity in the commu-
nity. R8.

Number of Files. Files during projects life. R14, R11.
Number of Mailing List Users. Number of users subscribed to the project

mailing list. R2, R6, R8, R11.
Number of Members. The number of activity members involved in community

c. R3, R5, R6, R16.
Number of Nodes and Edge. Number of nodes and edges. R1.
Number of Passive User. Passive users in the community. R8.
Number of Readers. Number of readers in the community. R8.
Number of Scientific Publications. Number of scientific publications men-

tioning the community. R8.
Outdegree of Keystone Actors. Is defined as someone who has a lot of devel-

opers he works with and also plays a large role in the software ecosystem. R7
Principal Member Activity. The principal activity of a member m for a given

time t. Community c for which m carried out the most effort. R3, R10, R11.
Project Activity Diagrams. Allow identify the project evolution comparing

six metrics; calculating the contributors involvement distribution. R2, R12.
Project Developer Experience. Total number of releases in which the devel-

oper was active. R6.
Reciprocity of the Ecosystem. (definition not provided). R7.
Relation between Categorical Event and Developer Participation.

Relation between categorical event and developer participation. R15.
Social Media Hits. Number of hits the project gets in the social media.

R7, R8.
Solvency. Value creation measure for niche creation. Can be measured by stan-

dard metrics such as revenue share or profit share of newly introduced prod-
ucts or technologies. An alternative is to look at the build-up of partner
equity. R4.

Temporal Community Effort. The combined effort of all members belonging
to community c during time period t. R3.

Total Effort of Members. Total effort done by a particular community mem-
ber m in a set of communities C. R3.

Variety in Products. Offered by the partner depends on alliances with other
partners. Euclidean distances towards the overall mean of the business ecosys-
tem can be used to measured most of these variety of scores. R4, R13.

Variety of Partners. Covariance with market indicates the variety of different
partners a partner has. R4.

Visibility. Tell us something about the centrality of a partner in the market.
Popularity of the partner R4.

Web Page Requests. Total request to OSS community web page. R8.
Zeta Model. Bankruptcy classification score model. R4.
Z-score. Bankruptcy model to test the creditworthiness and solvency of part-

ners. R4.

58 O. Franco-Bedoya et al.

Appendix B: QuESo Measures in GNOME Ecosystem

Measure Sources

Bug tracking activity R2, R3, R6, R11

Centrality R6

Cluster of collaborating developers R10

Community effort R3

Contributor activity graph R12

Contributor commit rate R12

Date of last commit R11

Developer activity diagrams R10, R12

Distribution over the species R11

Expertise view contributor R12

Files changed R12

Files per version R6, R11, R12

Geographical distribution R2

Lines added R12

Lines changed R12

Lines removed R12

Mailing list R2, R6, R11

Maximum Number of commits of a developer R3, R12

Member effort R10

Members activity rate R11

New members R6

Number community projects R3

Number of active projects R3, R10

Number of activity communities R3, R7

Number of authors R3, R11

Number of commiters R3, R11

Number of commits R3, R6, R10, R12

Number of contributors R3, R12

Number of core developers R6, R10

Number of developer projects R12

Number of developer releases R6

Number of mailing list users R2, R6, R11

Number of members R3, R6

Principal member activity R3

Project activity diagrams R2, R12

Project developer experience R6

Temporal community effort R3

Total effort of members R3

Measuring the Quality of Open Source Software Ecosystems Using QuESo 59

References

1. Jansen, S., Cusumano, M.: Defining software ecosystems: a survey of software
platforms and business network governance. [20], pp. 13–28

2. Lungu, M., Malnati, J., Lanza, M.: Visualizing gnome with the small project obser-
vatory. In: Proceedings of the 6th MSR, IEEE. pp. 103–106 (2009)

3. ISO/IEC 9126: Product quality - Part 1: Quality model (2001)
4. Wieringa, R.: Design science as nested problem solving. In: Proceedings of the 4th

International Conference on Design Science Research in Information Systems and
Technology, pp. 8:1–8:12. ACM, New York, NY, USA (2009)

5. ISO/IEC 25000: Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE (2014)

6. Soto, M., Ciolkowski, M.: The QualOSS open source assessment model measuring
performance of open source communities. In: Proceedings of the 3rd ESEM. pp.
498–501 (2009)

7. Hartigh, E., Visscher, W., Tol, M., Salas, A.J.: Measuring the health of a business
ecosystem. [20], pp. 221–245

8. Iansiti, M., Levien, R.: Keystones and dominators: framing operating and technol-
ogy strategy in a business ecosystem. Technical report, Harvard Business School
(2004)

9. Mens, T., Goeminne, M.: Analysing the evolution of social aspects of open source
software ecosystems. In: Proceedings of the 3rd IWSECO. pp. 1–14 (2011)

10. Neu, S., Lanza, M., Hattori, L., D’Ambros, M.: Telling stories about GNOME with
complicity. In: Proceedings of the 6th VISSOFT, pp. 1–8 (2011)

11. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open
source - growing an open source ecosystem. J. Syst. Softw. 85, 1467–1478 (2012)

12. Manikas, K., Hansen, K.M.: Software ecosystems a systematic literature review. J.
Syst. Softw. 86, 1294–1306 (2013)

13. Barbosa, O., Alves, C.: A systematic mapping study on software ecosystems. In:
Proceedings of the 3rd IWSECO, pp. 15–26 (2011)

14. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering version 2.3. Technical report, Keele University
EBSE (2007)

15. Franco-Bedoya, O., Ameller, D., Costal, D., Franch, X.: Protocol for a systematic
literature review on open source-software ecosystems. Technical report, Universi-
tat Politcnica de Catalunya (2014). Available on www.essi.upc.edu/∼gessi/papers/
queso-slrprotocol.pdf

16. Jansen, S., van Capelleveen, G.: Quality review and approval methods for exten-
sions in software ecosystems. [20], pp. 187–217

17. Franch, X., Carvallo, J.P.: Using quality models in software package selection. IEEE
Softw. 20, 34–41 (2003)

18. Behkamal, B., Kahani, M., Akbari, M.K.: Customizing ISO 9126 quality model for
evaluation of B2B applications. Inf. Softw. Technol. 51, 599–609 (2009)

19. Radulovic, F., Garcia-Castro, R.: Extending software quality models - a sample in
the domain of semantic technologies. In: Proceedings of the 23rd SEKE, pp. 25–30
(2011)

20. Jansen, S., Brinkkemper, S., Cusumano, M.: Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Publishing,
Northampton (2013)

www.essi.upc.edu/~gessi/papers/queso-slrprotocol.pdf
www.essi.upc.edu/~gessi/papers/queso-slrprotocol.pdf

60 O. Franco-Bedoya et al.

21. Jansen, S.: Measuring the health of open source software ecosystems: beyond the
scope of project health. Inf. Softw. Technol. 56, 1508–1519 (2014)

22. Lucassen, G., Rooij, K., Jansen, S.: Ecosystem health of cloud PaaS providers. In:
Proceedings of the 4th ICSOB, pp. 183–194 (2013)

23. Anderson, J.C., Narus, J.A., Narayandas, D.: Business Market Management:
Understanding, Creating, and Delivering Value, 3rd edn. Prentice Hall, Upper
Saddle River (2009)

24. Li, X., Jie, X., Li, Q., Zhang, Q.: Research on the evaluation of business ecosystem
health. In: Proceedings of the 6th ICMSEM, pp. 1009–1020. Springer (2013)

25. Agerfalk, P.J., Fitzgerald, B.: Outsourcing to an unknown workforce: exploring
opensourcing as a global sourcing strategy. Mis Quartely 32, 385–409 (2008)

26. Gamalielsson, J., Lundell, B., Lings, B.: The Nagios community: an extended quan-
titative analysis. In: Proceedings of the 6th OSS, pp. 85–96. Springer (2010)

27. Lundell, B., Forssten, B.: Exploring health within OSS ecosystems. In: Proceedings
of the 1st OSCOMM. pp. 1–5 (2009)

28. van der Linden, F., Lundell, B., Marttiin, P.: Commodification of industrial soft-
ware: a case for open source. IEEE Softw. 26, 77–83 (2009)

29. Scacchi, W.: Free/open source software development: recent research results and
emerging opportunities. In: Proceedings of the 6th ESEC-FSE, pp. 459–468 (2007)

30. Lungu, M., Lanza, M., Gı̂rba, T., Robbes, R.: The small project observatory: visu-
alizing software ecosystems. Sci. Comput. Prog. 75, 264–275 (2010)

31. Haken, H.: Naturwissenschaften. Synergetics 67, 121–128 (1980)
32. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach.

Addison Wesley, Redwood City (2004)
33. Glott, R., Haaland, K., Bannier, S.: D3.1 Draft Business Model Risk Requirements

Report (2013) Deliverable of the RISCOSS FP7 project (grant 318249)
34. Goeminne, M., Claes, M., Mens, T.: A historical dataset for the gnome ecosystem.

In: Proceedings of the 10th Working Conference on Mining Software Repositories.
MSR 2013, pp. 225–228. ACM (2013)

35. Jergensen, C., Sarma, A.: The onion patch: migration in open source ecosystems.
In: Proceedings of the 19th SIGSOFT and 13th ESEC/FSE, pp. 70–80. ACM
(2011)

36. Goeminne, M., Mens, T.: Analyzing ecosystems for open source software developer
communities. [20], pp. 247–275

37. von Wangenheim, C., Hauck, J., Zoucas, A., Salviano, C., McCaffery, F., Shull,
F.: Creating software process capability/maturity models. IEEE Softw. 27, 92–94
(2010)

38. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS quality model:
measurement based open source software evaluation. In: Russo, B., Damiani, E.,
Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Development, Communities
and Quality. The International Federation for Information Processing, vol. 275, pp.
237–248. Springer, US (2008)

39. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems-a con-
ceptual framework proposal. In: Proceedings of the International Workshop on
Software Ecosystems, pp. 33–44. Citeseer (2013)

Measuring the Quality of Open Source Software Ecosystems Using QuESo 61

SLR References

R1. Gamalielsson, J., Lundell, B., and Lings, B. (2010). The Nagios community:
An extended quantitative analysis. In Proceedings of the 6th OSS, pages 85–
96. Springer.

R2. Goeminne, M. and Mens, T. (2010). A framework for analysing and visu-
alising open source software ecosystems. In Proceedings of IWPSE-EVOL,
pages 42–47.

R3. Goeminne, M. and Mens, T. (2013). Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry, chapter Analyzing
ecosystems for open source software developer communities, pages 247–275.
In [20].

R4. Hartigh, E., Visscher, W., Tol, M., and Salas, A. J. (2013). Software Ecosys-
tems: Analyzing and Managing Business Networks in the Software Industry,
chapter Measuring the health of a business ecosystem, pages 221–245. In
[20].

R5. Jansen, S., Souer, J., Luinenburg, L., and Brinkkemper, S. (2012). Shades of
gray: Opening up a software producing organization with the open software
enterprise model. Journal of Systems and Software, 85(7):1495–1510.

R6. Jergensen, C. and Sarma, A. (2011). The onion patch: migration in open
source ecosystems. In Proceedings of the 19th ACM-SIGSOFT, pages 70–80.

R7. Kabbedijk, J. and Jansen, S. (2011). Steering insight: An exploration of
the ruby software ecosystem. In Proceedings of the 2nd ICSOB, pages 44–55.
Springer.

R8. Kilamo, T., Hammouda, I., Mikkonen, T., and Aaltonen, T. (2012). From
proprietary to open source - Growing an open source ecosystem. Journal of
Systems and Software, 85(7):1467–1478.

R9. Lungu, M., Lanza, M., Gı̂rba, T., and Robbes, R. (2010). The Small
Project Observatory: Visualizing software ecosystems. Science of Computer
Programming, 75(4):264–275.

R10. Lungu, M., Malnati, J., and Lanza, M. (2009). Visualizing gnome with
the small project observatory. In Proceedings of the 6th MSR, pages 103–106.
IEEE.

R11. Mens, T. and Goeminne, M. (2011). Analysing Evolution of Social Aspects
of Open Source Software Ecosystems. In Proceedings of the 3rd IWSECO,
pages 1–14.

R12. Neu, S., Lanza, M., Hattori, L., and D’Ambros, M. (2011). Telling stories
about GNOME with Complicity. In Proceedings of the 6th VISSOFT, pages
1–8.

R13. Scacchi, W. and Alspaugh, T. A. (2012). Understanding the role of licenses
and evolution in open architecture software ecosystems. Journal of Systems
and Software, 85(7):1479–1494.

R14. Shao, J., Kuk, G., Anand, S., Morley, J. G., Jackson, M. J., and Mitchell,
T. (2012). Mapping Collaboration in Open Source Geospatial Ecosystem.
Transactions in GIS, 16(4):581–597.

62 O. Franco-Bedoya et al.

R15. Ververs, E., van Bommel, R., and Jansen, S. (2011). Influences on devel-
oper participation in the Debian software ecosystem. In Proceedings of the
MEDES, pages 89–93. ACM.

R16. Weiss, M. (2011). Economics of collectives. In Proceedings of the 15th

SPLC, pages 39:1–39:8. ACM.
R17. Yu, L., Cawley, J., and Ramaswamy, S. (2012). Entropy-Based Study of

Components in Open-Source Software Ecosystems. INFOCOMP Journal of
Computer Science, 11(1):22–31.

Definition of Software Quality Evaluation
and Measurement Plans: A Reported
Experience Inside the Audio-Visual

Preservation Context

Isabella Biscoglio(&) and Eda Marchetti

Institute of Information Science and Technologies “Alessandro Faedo”,
National Research Council, Pisa, Italy

{isabella.biscoglio,eda.marchetti}@isti.cnr.it

Abstract. The digital preservation want to guarantee accessible and usable over
time digital audio-visual media content, regardless of the challenges of media
failure and technological change. For this aim, the current technologies for digital
audio-visual media preservation deal with complex technological, organiza-
tional, economic and rights-related issues: ensuring the development and use of
high-quality software could be a key factor for their success. The paper reports an
experience matured inside the Presto4U project concerning the requirements
elicitation corresponding of some functional and non-functional requirements.
These have been mapped on some characteristics and sub-characteristics of a
quality model and a customized software measurement plans has been imple-
mented. An example of the quality evaluation plans application is also reported.

Keywords: Software quality � Requirements elicitation � Digital audio-visual
media preservation � Measurement

1 Introduction

Over the last fifteen years the dynamic continuously evolving nature of the IT industry
concerning audio-video media and technologies has produced the important issues of
the long-term preservation of digital audio-visual media. This research field is
becoming more and more complex due to the vast range of topics it includes: like for
instance technological, organizational, economic and rights-related issues. Although
good solutions are emerging it remains very difficult for the great majority of media
owners to gain access to advanced audio-visual preservation technologies. Major
problems are connected with the short technology cycles and lifetimes which causes a
rapid product decay and technological obsolescence. These issues have an impact on
digital material preservation in terms of source and process of preservation.

In this context one of the currently on-going European project targeting the topic of
audiovisual preservation is Presto4U project - European Technology for Digital
Audiovisual Media Preservation [32]. Inside the Presto4U project the identification of a
quality evaluation process, able to guarantee the development and use of high-quality
software both by technology and service providers as well as media owners, has been

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 63–80, 2015.
DOI: 10.1007/978-3-319-25579-8_4

adopted and promoted as a key solutions for solving audiovisual media preservation
issues. Thus a crucial work of the project, and of this paper, is the identification of a
quality evaluation plan for the Communities of Practice (CoPs), i.e. the principal group
of actors of audiovisual media preservation (users, technology vendors and service
providers), able to satisfy the specific requirements identified during the project life-
time. Indeed these plans will be useful to achieving the established quality level and to
make easy the technology transfer of research results.

On the other hand the software quality and its evaluation have been discussed for
several years and from different points of view [30]. Also in the context of standard-
ization, quality is very well defined and many international standards have been
published about software processes and products quality [13, 15, 19, 20, 22]. However
to the best of our knowledge none of the available quality standards and/or best
practices has been currently specialized and adapted for the specific digital audio-visual
preservation context. All these documents and sources of information constitute a very
interesting base for the digital preservation context, as models, characteristics, mea-
sures and methods that they present can be considered or readapted for preservation
purposes. Thus audio-visual technologies could be evaluated on the basis of software
quality standards and the results could suggest important decisions about their adoption
or improvement. Nevertheless, for this aim it is necessary a preliminary activity of
preservation requirement elicitation and a successive mapping of these preservation
requirements on the characteristics and sub-characteristics of a quality model on which
these requirements impact. Only later an evaluation process could be implementable.

Continuing the work initiated in [4, 5], this paper presents the procedural steps
followed from requirements elicitation to the definition of a specific qualitymodel and the
relative customized software measurement plans. With respect to specific quality issues
for the digital collections, following activities are carried out: the definition of a software
product quality model customized for audio-visual collection tools; the definition of two
high-level quality evaluation plans; the specification of customized software measure-
ment plans on the basis of international standards on software products quality.

The paper is organized as in the following: the Sect. 2 presents the motivation of
this work. The Sect. 3 introduces the topic of software quality and an overview about
the international standards for software quality. In Sect. 4, the quality evaluation
procedure and the adopted quality models are presented. In Sect. 5, the explorative case
study is shown, and an example of product evaluation provided. Discussion and
conclusion close the paper.

2 Motivation

The decay and the technological obsolescence of the software products that are used in
digital material preservation context represent a serious problem in terms of sources
and process of preservation, content management, digital archiving, etc. As above
introduced, ensuring use of high-quality software by the help of international standards,
can limit these risks and promote the adoption of good practices.

In the digital preservation context, two models are currently used as a reference.
One is the Open Archival Information System (OAIS) [14]. This model concerns

64 I. Biscoglio and E. Marchetti

technical aspects of digital object’s life cycle, as ingest, archival storage, data man-
agement and access, and it also recommends metadata issues. It mainly targets the
preservation aspects regarding terminology and archival concepts or different long-term
preservation strategies and techniques. However it does not deal with quality aspects of
the software. The other is the non-functional requirements (NFR) Framework [7] which
is focused on the elicitation requirement activity. This framework is mainly based on a
graph of interconnected goals each one representing an NFR for the system under
development. This paper does not rely on [7, 14], because the first does not deal with
quality aspects of the software and the latter requires for its application a background of
technical knowledge that many involved (Presto4U) stakeholders do not have.

The paper target instead the standards family ISO/IEC 25000, 2005 [22], which is
focused on software quality evaluation models. Models, characteristics, measures and
methods proposed in these standards have been specialized or readapted for
audio-visual preservation purposes. However as discussed in [31] these standards only
provide a conceptual framework, and not a ready-to-use solutions usable in every
context. The necessity of adaptation and revision becomes a pressing exigency, mainly
when the considered systems or products do not perfectly fit with the characteristics
and peculiarities of classical software engineering.

Besides, even when the standards are very comprehensive and specific, they still
show some common weaknesses, which could have an important impact on applica-
bility of the standards themselves [1, 2, 29, 33] such as:

• the terminology: it could be not fully aligned with the classic measurement ter-
minology in software engineering;

• the metrics identification: the metrics provided by the various standard could not be
properly aligned;

• the results analysis: not all the standards propose the same ranking for the con-
sidered metrics. Thus possible conversions or alignment of various ranking con-
sidered should be defined;

• the same reference scale: wherever possible for the same ranking the same reference
scale should be adopted so make easier finals quality assessment value.

• the extension of the characteristics: each quality standards should try to include or
extend the characteristics already defined in different available standards so to have
a more uniform and complete coverage of quality requirements.

According to [6, 8] the risk of failure for the measurement programs could be: a
misunderstanding of what is to be measured, why and how it is to be measured; an
inadequate data collection; a wrong interpretations of data; the lack of trained and
expert resources required to dedicate to measurement; the expensive costs for mea-
surement programs; the incorrect mapping of organization goals with appropriate
measures.

The criticalities underlined in the various quality evaluation procedures in many
cases make very difficult the adoption of the standards into the products development.
In spite of the limits of international standards applicability, considering the quality as a
limited number of independent characteristics [15] allows to evaluate the most inter-
esting for each CoPs characteristics and quality levels (“internal”, “external” and
“in-use”).

Definition of Software Quality Evaluation and Measurement Plans 65

The ambitions of this paper are to overcome some of the above-mentioned
weaknesses considering the specific context of the audio-visual preservation by and to
define the of audio-video preservation needs and related requirements so to enhance the
quality evaluation procedure and the adoption of the international standards.

3 Background

In the field of software engineering, the evaluation of software product quality is vital
to both acquisition and development of software that meets quality requirements. In the
following, some of the most important international standards will be presented; pre-
liminary some specific terms will be shown then detail about software quality are
highlighted. In particular: software quality “the totality of features and characteristics of
a software product that bear on its ability to satisfy stated or implied needs” [13];
software quality characteristics “a set of attributes of a software product by which its
quality is described and evaluated. A software quality characteristic may be refined into
multiple levels of sub-characteristics” [13]; Software quality metric “a quantitative
scale and method, which can be used to determine the value a feature takes for a
specific software product” [13].

About software quality, the standardization bodies that have mostly published are:

• ISO (International Organization for Standardization).
• IEC (International Electrotechnical Commission).
• IEEE (Institute for Electrical and Electronic Engineers).

The IEC cooperates closely with ISO and IEEE, and the standards developed jointly
with ISO carry the acronym of both organizations.

Considering the ISO and IEC, two of themost important joint standards developed for
the software quality evaluation have been: the ISO/IEC 9126 “Software engineering -
Product Quality” with its four versions [15–18]. The principal merit of ISO/IEC 9126
standard can be found in its attempt to reduce the product quality concept to a limited
number of independent characteristics and to have developed the notion of various levels
of qualities (“internal”, “external” and “in-use”). Nevertheless, it was not successful in
providing meaningful, quantitatively expressed (or measurable) indicators associated to
quality characteristics [34].

The standards [13, 19] are converged into ISO/IEC 25000, SQuaRE [22] which
represents families of standards and constitutes the result of an effort to harmonize
previous standards in order to establish criteria for the specification of software
products quality requirements, their measurement and evaluation. The general objective
for SQuaRE is to respond to the evolving needs of users (those who develop and those
who acquire software products) through an improved and unified set of normative
documents covering three different and complementary quality processes: requirements
specification, measurement and evaluation.

Other standards involved in the quality assessment are: ISO/IEC 15939 standard
[21], that defines a measurement process applicable to system and software engineering
and management disciplines, the ISO/IEC/IEEE 12207 standard [27] which focuses on
the processes in the life cycle of a software product or service and the ISO/IEC/IEEE

66 I. Biscoglio and E. Marchetti

15288 [28], which targets the processes in the life cycle of a system. Finally there is
ISO/IEC 15504 [20], which deals with process assessment and its implementations in
terms of guidelines and tools.

The IEEE standards encompass software and systems lifecycles, from concept and
development to delivery and maintenance. Also the reuse of software components is
included. The most important are: the standard IEEE 830 [9], which focus on content
and characteristics of a Software Requirements Specification, the standard IEEE 1012
[10], which defines the Verification & Validation (V&V) processes in terms of specific
activities and includes [27] and IEEE 1074 [11] which defines the process activities
mandatory for the development and maintenance of software.

4 Quality Evaluation Procedure

In this section the experience matured inside the Presto4U project for the definition of
the software quality evaluation procedure is reported. In tune with the nature of the
project and its particular interests, each CoP worked for producing a customized set of
preservation needs to be given to software quality expert evaluators. According to a
bottom-up approach, in order to ensure that the products meet user and customer needs,
various stakeholders, chosen among the project partners, have been involved for pro-
ducing a software quality model customized for digital collections. In particular the
aspects considered during the requirements elicitation activity have been:

1. the definition of the project scope: digital audio-visual preservation;
2. the definition of the project purpose: the project aims to develop a body of

knowledge on the status of digital preservation practice (problems and needs), to
map preservation needs in quality characteristics, to evaluate the used tools, to
identify useful research results and to promote their adoption and implementation;

3. the definition of the different products that could be considered as a target for the
quality evaluation procedure. In the audiovisual preservation context, they can be
either tools for mapping between metadata formats and standards or for archiving
and restoring of audiovisual files, or for automatic extracting and enriching of
metadata of audiovisual contents, or for evaluating the quality of the various con-
tents (like images and sounds).

On the basis of these elements and the availability of the involved stakeholders, the first
steps of a quality evaluation process have been performed and the most important
quality aspects in the digital audio-visual preservation context have been highlighted.

Successively, on the bases of the set of audio-visual preservation needs of each
CoP, a list of functional and non-functional requirements expressed in natural language
has been defined. These requirements have been mapped on some characteristics and
sub-characteristics of the quality model defined from an original software product
quality model according to [23] so that two high-level quality evaluation plans (one for
functional requirements and one for non- functional requirements) have been defined.
Then according to [25] the identified subsets of software product characteristics have
been associated to quality measures and measurement functions and two customized

Definition of Software Quality Evaluation and Measurement Plans 67

software measurement plans have been defined. Finally the evaluation stringency has
been selected as opportune test strategies to be applied and test results to be achieved.

The target of the evaluation procedure considered is therefore to identify for each
CoP the most important issues that could be responsible of the preservation quality
level. Without the pretense to define general results, in the following sections further
details about the steps useful for producing the high level software product quality
evaluation plans and the customized software product measurement plans are
presented.

Inside a complete software product quality evaluation process, the high level
software product quality evaluation plans constitute an outcome of the first phase of the
process, called “establish the evaluation requirements”, and an input of the second
phase called “specify the evaluation” which produces in turn as outcome the cus-
tomized software measurement plans. On the basis of these last plans the software
quality of the storage tools used inside the Presto4U project will be subsequently
measured. However, phases that follow the “specify the evaluation” in product quality
evaluation process [26], i.e. “designing the evaluation and “executing the evaluation”
are out of the scope of this paper. In the following sections further detail of the phase of
the evaluation procedure considered are provided.

4.1 Establishing the Evaluation Requirements

Inspired by [26] and by the software product quality evaluation process that it contains,
the activity of “establishing the evaluation” requirements included the following steps:

1. Establishing the Purpose of the Evaluation: As a purpose of the project was
evaluating the used tools in order to identify useful research that could promote
their adoption, purpose of the evaluation is reconsidering the acceptability of these
products.

2. Obtaining the Software Product Quality Requirements: In order to ensure that the
products meet user and customer needs, stakeholders were detected for collecting
information and a quality model was defined as reference. In the Presto4U evalu-
ation process stakeholders were identified among the staff of the CoPs. By inter-
views and questionnaires, a list of audio-visual preservation needs came to light. In
particular, for overcoming initial differences between basic terminologies (software
engineering vs audio-video preservation), a shared and informal glossary has been
preliminary defined preliminary. For confidential reasons this glossary cannot be
included in this paper. On the basis of detected preservation needs, a list of
audio-visual preservation requirements has been defined using as quality model the
product quality model reported in [23].

3. Identify Product Parts to be Included in the Evaluation: Inside the audio-visual
preservation environment different products could be considered as a target for the
quality evaluation: such as tools for archiving and restoring of audiovisual files, for
evaluating the quality of the various contents (like images and sounds) and so on.
Besides, each product can have specific preservation quality requirements due to the
target usage or its different nature (product purchased, in a development stage, fully

68 I. Biscoglio and E. Marchetti

developed, etc.) or the hardware, software and network environment in which the
product will be used. The types of identified products are tools that perform dif-
ferent quality aspects like for instance the quality of the content (“are the images
good and the sound clean?”), the validity of the files (“are they adherent to the file
standards and correctly playable?”). The parts of tools that could response to these
questions are these parts to be included in the evaluation.

4. Define the Stringency of the Evaluation in order to Provide Confidence to it: As
the evaluation stringency should be related to a set of characteristics and sub-
characteristics that establish the expected evaluation levels, the detected quality
requirements have been mapped on the characteristics and sub-characteristics of the
detected quality model, which is the product quality model of [23].

The mapping of the preservation requirements into the quality model constitutes a
preliminary high level software product quality evaluation plan. Subsequently to
quality evaluation plan development, in the phase called “specify the evaluation”, the
evaluation measures to be applied, the decision criteria to be defined and the evaluation
results to be achieved have been detailed.

4.2 Specify the Evaluation

In [24, 25] the measures applicable for the evaluation of each characteristic and
sub-characteristic are provided. Besides these two standards contain common and
essential to measurement terms with their definitions like Measure (noun), i.e. the
variable to which a value is assigned as the result of measurement and Measurement,
i.e. the set of operations having the object of determining a value of a measure;

Inside the Presto4U project during the “specify the evaluation” stage the identified
characteristics and sub-characteristics have been associated with measures, measure-
ment functions, test strategies and expected test result. In particular the steps imple-
mented have been the following [26]:

1. Selecting Metrics: The definition of the quality characteristics into
sub-characteristics does not allow their direct measurement, therefore metrics useful
to software development have to be defined. Every quantifiable internal attribute of
software and every quantifiable external attribute of the software interacting with its
environment that correlates with a characteristic can be established as a metric.
Metrics can differ depending on the CoP exigencies, environment and the phases of
the development process in which they are used. Metrics used in the development
process should be correlated to the user perspective metrics, because the metrics
from the user’s view are crucial.

2. Defining Decision Criteria for Quality Measures: Usually decision criteria are
numerical thresholds useful to determine the need for action or the degree of
confidence of a certain result. These have to be defined according with quality
requirements and corresponding evaluation criteria. Benchmarks, statistical control
limits, historical data could be used as a reference.

3. Establishing Decision Criteria for Evaluation: To assess the quality of the product,
the results of the evaluation of the different characteristics need to be summarised.

Definition of Software Quality Evaluation and Measurement Plans 69

A procedure with separate criteria for each involved characteristics should be con-
sidered. The procedure could be provided in terms of individual sub-characteristics,
or a weighted combination of sub-characteristics. The procedure can include other
aspects such as time and cost that contribute to the assessment of quality of a
software product in a particular environment.

On the basis of the customized quality model and the evaluation and measurement
plans, the software quality of the digital collection tools used inside the Presto4U
project will be subsequently evaluated. However this last activity is out of the scope of
this paper.

5 Explorative Case Study

In this section an experiment of software quality evaluation, for digital collection in the
audio-video preservation environment is reported. The experiment has been developed
thanks to the collaboration with TATE Gallery as partner representative of the Video
Art, Art Museums and Galleries CoP [35]. Therefore, in the case study, the considered
stakeholders have been identified among the staff of TATE Gallery.

As reported in the Sect. 4.1 the “establishing the evaluation requirements” is a
preliminary activity of the evaluation process. To derive the high level software pro-
duct quality evaluation plans the following steps have been defined:

1. Definition of Preservation Needs: by interviews and questionnaires, a list of
preservation needs should be generated.

2. Identification of Preservation Requirements: through an iterative refinement process
the preservation requirements should be identified from the declared needs. In
particular on a list of functional and non-functional requirements expressed in
natural language has been defined.

3. Definition of the Preservation Quality Plan: the preservation requirements should
be mapped in some characteristics and sub-characteristics of the product quality
model. As result two high level software product quality evaluation plans (one for
functional and one for non-functional requirements) have been defined.

Considering instead the second phase called “specify the evaluation” to derive the
customized software measurement plans two the following steps have been defined:

1. Selecting Metrics and their Decision Criteria: For each sub-characteristic identified
in the high level software product quality evaluation plans the most suitable metric
is selected according to the digital collection exigencies. Moreover the measured
value of each sub-characteristic has been mapped on the customized scale decided
in agreement of the degrees of satisfaction of the digital collection requirements.

2. Establishing Criteria for Evaluation: For each characteristics identified in the high
level software product quality evaluation plans the assessment results has been
summarized in terms of a weighted combination of sub-characteristics.

In the rest of this section further details of the implementation of these steps in the
considered case study are provided.

70 I. Biscoglio and E. Marchetti

5.1 Preservation Needs

In the considered case study the identified preservation needs considered study have
been specified for the digital video art collections software tools. The list provided here
below is just a meaningful extract of the overall set of collected. The list has been then
elaborated to derive the set of preservation requirements as detailed in the next section.

1. The software should perform the functions of data ingest, archival storage and
migrating digital file to new formats or carriers when necessary.

2. The software should be modified without any impact on existing quality.
3. The software should be interoperable with TATE Gallery collection management

system.
4. All copies must be recorded as components on the collection management system

(TMS) and the purpose and status of a particular copy must also be recorded.
5. Any access to the file is restricted.
6. Location information must be accurate and kept up to date and record the pres-

ence of a digital file.
7. Ingest and storage activities must not compromise the video quality of the video

material.
8. The original video quality must be preserved.
9. Preservation actions and decisions must be documented and transparent. Every

action or modification on the media files must be recorded and traced.
10. Looking, controlling and operating on the system content.
11. The software should be able to be transferred in different broadcast environments

and to be adaptable to their specific exigencies.

5.2 Preservation Requirements

Usually the requirements can be written either in natural language or in semi-formal
language (with graphical notations, precise syntax and a non-rigorous semantic) or in
formal language (mathematics-based language with syntax and semantics formally
defined). Among them, the first is the most common and easy way to express software
requirements despite the ambiguity risk [3]. Expressed in natural language require-
ments can be easy communicated and discussed among various technical and
no-technical stakeholders, before being used in the subsequent product development
phases. In this case study, natural language requirements have been necessary for the
discussions among project partners that operate in different from software engineering
fields, therefore from the previous list of preservation needs, a list of requirements has
been refined.

• Req. 1: The software has to perform all the functionalities that it is developed for.
• Req. 2: The software should let the possibility to integrate/correct/modify

user-specific features or components without any impact on existing product
quality.

• Req. 3: The tool should be interoperable with different collection management
systems and should let the possibility to import data from different format.

Definition of Software Quality Evaluation and Measurement Plans 71

• Req. 3.1: The tool should import material in both 25 Hz and 29.97 Hz formats.
• Req. 3.2: The tool should input/output different file formats like for instance: AVI,

FLV, MOV, MPEG-1, MPEG-2, MPEG-4, SWF, WMV for video collection
• Req. 4: The software should track all copies and record the status of each copy.
• Req. 5: Any access to the file is restricted.
• Req. 6: Location information must be accurate and traceable.
• Req. 6.1: The tool should store different information about a file such as: Object No,

Title, Artist, Dims, Comp No, Comp Name, Comp Desc, Media Fmt, Duration,
Video Std, Aspect Ratio, When Made?, Where made?, Provenance, TiBM label,
Current Location, Video Res., Colour, Audio, Details of Master, Misc, Author.

• Req. 7: During its activity, the software should not allow the alteration of the
ingested material video quality.

• Req. 7.1: The system should include a quality control flags, monitor the level of
errors, and support corrections when occurred.

• Req. 8: Preservation actions and decisions can be proven to have taken place and
cannot be repudiated later.

• Req. 9: Every action or modification on the files must be recorded and traced.
• Req. 10: The software should let easy control and operate on the content.
• Req. 11: The software should be adapted for different, evolving, operational or

usage environments.

5.3 Definition of the Evaluation Plans

The last step for the definition of the high level quality evaluation plans (one for
functional requirements and one for non-functional requirements) includes the classi-
fication of the main just above-cited requirements into functional or non-functional and
their mapping into the characteristics and sub-characteristics of the adopted quality
model [23]. In particular for the non-functional requirements a more detailed refine-
ments have been required in order to avoiding generic and non-quantifiable terms that
can generate ambiguities and misunderstandings [3, 9]. Here below a possible mapping
between requirements and definitions of the sub-characteristics are reported.

Req. 1 – The software has to perform all the functionalities that it is developed for.

Classification: functional
Characteristic: functional suitability
Sub-characteristic: functional completeness - Degree to which the set of functions
covers all the specified tasks and user objectives.

Req. 2 – The software should let the possibility to integrate/correct/modify
user-specific features or components without any impact on existing product quality.

Classification: non-functional
Characteristic: maintainability
Sub-characteristic: modifiability - Degree to which a product or system can be
effectively and efficiently modified without introducing defects or degrading
existing product quality.

72 I. Biscoglio and E. Marchetti

Req. 3 – The tool should be interoperable with different collection management
systems and should let the possibility to import data from different format.

Classification: non-functional
Characteristic: compatibility
Sub-characteristic: interoperability - degree to which two or more systems, products
or components can exchange information and use the information that has been
exchanged.

Req. 4 – The software should track all copies and record the purpose or status of
each copy.

Classification: non-functional
Characteristic: reliability
Sub-characteristic: availability - degree to which a system, product or component is
operational and accessible when required for use.

Req. 5 – Any access to the file is restricted.

Classification: non-functional
Characteristic: security
Sub-characteristic: confidentiality - degree to which a product or system ensures
that data are accessible only to those authorized to have access.

Req. 6 – Location information must be accurate and traceable.

Classification: non-functional
Characteristic: security
Sub-characteristic: authenticity - degree to which the identity of a subject or
resource can be proved to be the one claimed.

Req. 7 – During its activity, the software should not allow the alteration of the
ingested material video quality.

Classification: non-functional
Characteristic: usability
Sub-characteristic: user error protection – degree to which a system protects users
against making errors.

Req. 8 – Preservation actions and decisions can be proven to have taken place and
cannot be repudiated later.

Classification: non-functional
Characteristic: security
Sub-characteristic: non-repudiation - degree to which actions or events can be
proven to have taken place, so that the events or actions cannot be repudiated later.

Req. 9 – Every action or modification on the media files must be recorded and
traced.

Classification: non-functional
Characteristic: security

Definition of Software Quality Evaluation and Measurement Plans 73

Sub-characteristic: accountability - degree to which the actions of an entity can be
traced uniquely to the entity.

Req. 10 – The software should let easy control and operate on the content.

Classification: non-functional
Characteristic: usability
Sub-characteristic: operability - degree to which a product or system has attributes
that make it easy to operate and control.

Req. 11 – The software should be adapted for different, evolving, operational or
usage environments.

Classification: non-functional
Characteristic: portability
Sub-characteristic: adaptability - degree to which a product or system can effec-
tively and efficiently be adapted for different or evolving hardware, software or
other operational or usage environments.

Considering in particular the functional requirements Req. 1, according to the sug-
gestions of the involved stakeholders, a level of need has been associated to each of the
functionality. The levels of need have been classified as follows: Essential - Must have;
Conditional - Could deal also without, but it would be better to have; Optimal - May be
appreciated in some cases, but in most cases it doesn’t make the difference.

In Table 1 an extract of the final high level quality evaluation plan for the functional
requirement Req. 1 is presented. In particular in the first two columns a more detailed
specification of the needs and the relative functionalities respectively is provided; while
in the third column the level of need associated to each functionality is specified. As
evidenced by the forth column all the functional requirements of the considered case
study have been associated to Functional Suitability characteristic and to Functional
completeness sub-characteristic.

Table 1. High level quality evaluation plan for functional requirements.

Needs Functionalities Level of
needs

Characteristics
and sub-
characteristics

GUI Ingestion The tool shall make GUI
ingestion

Essential Functional
suitability -
functional
completeness

Preservation of original
content properties

The tool shall preserve the
properties of the
audio-visual media
original content

Essential

Extension with add-ons
and plugins

The tool should allow
extension with add-ons
and plugins

Conditional

Populate and draw data
and statistics from
collection management
systems

The tool may populate and
draw data and statistics
from collection
management systems

Optimal

74 I. Biscoglio and E. Marchetti

In Table 2 an extract of the final high level quality evaluation plan for the
non-functional requirements is presented.

These two plans have been successively refined in the next steps of the quality
evaluation process with techniques, measures to be applied, decision criteria to be
defined and evaluation results to be achieved for better specifying the evaluation.
However in spite of their high level detail, they are just an example of quality eval-
uation process refinement on only few of the possible characteristics and
sub-characteristics of the quality model. The refinement highlights the most important
quality aspects in the specific context of digital video art collections, which are mainly
related to security.

5.4 Definition of the Measurement Plans

During the phase called “specify the evaluation” two customized software quality
measurement plans (for functional and non-functional requirements respectively) have
been defined following the steps defined in Sect. 4.2. In particular for each identified
characteristic and sub-characteristic, measure, measurement function, test strategy and
expected test result have been detected and adapted to the preservation context in order
to reduce the cost and effort due to generic quality evaluations.

The detected measures have been chosen as it was supposed a possible relation
between their corresponding characteristics and the sub-characteristics and the digital
preservation needs inside PRESTO4U. In this case study the presence of this relation is
deduced in collaboration with domain experts.

In Table 3 the customized software quality measurement plan for functional
requirements is presented. In particular for the associated measure (Functional imple-
mentation coverage forth column) the measurement function refined for this case study
is reported in the fifth column. The refinement has been done in order to take in

Table 2. High level software product quality plan for non-functional requirements.

Product quality model Requirements
Characteristics Sub-characteristics

Compatibility Interoperability REQ. 3
Usability Operability REQ. 10

User error protection REQ. 7
Reliability Availability REQ. 4
Security Confidentiality REQ. 5

Non-repudiation REQ. 8
Accountability REQ. 9
Authenticity REQ. 6

Maintainability Modifiability REQ. 2
Portability Adaptability REQ. 11

Definition of Software Quality Evaluation and Measurement Plans 75

consideration the level of need (see Sect. 5.3) expressed for the digital collection tools.
As a consequence also the Test Strategy and the Test Results has been redefined
accordingly (sixth and seventh column respectively).

Table 3. Measurement plan for functional requirements.

Reqs

Product Quality
Model

Measure Measurement Function Test Strategy Test
Results

Charats Sub-
Characts

REQ.1
Functional
suitability

Functional
complete-
ness

Functional
implemen-
tation
coverage

X=(X1+X2*0.5+X3*0.25)/1.75 with
X1=1 - (A / B)
A= Number of missing or unsatisfying
essential functions
B= Number of mandatory functions
essential in the evaluation
X2= 1 – (C / D)
C= Number of missing or unsatisfying
conditional functions assessed in the
evaluation
D= Number of conditional functions
X3= 1- (E / F)
E= Number of missing or unsatisfying
optional functions assessed in the evalua-
tion
F= Number of optional functions

Each function is
evaluated as es-
sential, conditional
or optional. The
presence/absence
of each function in
the tool is
checked. This
does not include
the evaluation of
the goodness of
the function im-
plementation.

Closer to
1 value is
better

Table 4. Measurement plan for non-functional requirements.

76 I. Biscoglio and E. Marchetti

Finally in Table 4 the customized software quality measurement plan for
non-functional requirements is presented. In particular in the fourth column the mea-
sure selected for each sub-characteristic is reported. In the fifth column the redefined
measurement function is provided. As for the previous plan this has been performed in
collaboration with domain experts and in order to take in consideration the peculiarities
of the preservation environment. As a consequence also the test results have been
redefined accordingly.

5.5 Example of Product Evaluation

On the basis of the customized quality model and the evaluation and measurement
plans, the software quality of the digital collection tools used inside the Presto4U
project will be assessed. This stage is currently an ongoing step of the project and just
preliminary and partial results are available. For confidentiality reasons these data are
not provide here, however for aim of completeness two examples of measurement
relative to some specific sub-characteristics are presented in the following of this
section.

The first example concern the evaluation of an hypothetical tool for digital col-
lection, called TOOL1, according to the functionalities it implements. In particular
TOO1 is supposed to provide the following set of functionalities: (i) GUI ingestion;
(ii) preservation of the audio-visual media original content, (iii) population and draw
data and statistics from collection management. For the evaluation of TOOL1, the high
level quality evaluation plan of Table 1 and the relative measurement plan of Table 3
are used as reference model.

Thus the measurement function associated to the Functional Completeness
sub-characteristic (X = (X1 + X2*0.5 + X3*0.25)/1.75) is applied and the test results
for TOOL1 computed. In this case X1 = 1−(0 /2) = 1 because both of the two essential
functions are implemented; X2 = 1−(1 /1) = 0 because the unique conditional functions
is not implemented; X3 = 1−(0 /1) = 1 because the unique optional functions is
implemented. The final value for the Functional Completeness of TOOL1 is
(1 + 0*0.5 + 1*0.25)/1.75 = 1,25/1.75 = 0.714 that is quite close to the optimal value 1.

The second example concern the evaluation of the TOOL1 consider its degree of
interoperability. In particular TOO1 is supposed to provide the following set of file
formats for video collection: MPEG-1, MPEG-2, MPEG-4. For the evaluation of
TOOL1, the high level quality evaluation plan of Table 2 and the relative measurement
plan of Table 4 are used as reference model.

Thus the measurement function associated to the Interoperability sub-characteristic
(X = A/B) is applied and the test results for TOOL1 computed. In this case value A = 3
because the number of data formats included in TOOL1 is 3 (MPEG-1, MPEG-2,
MPEG-4); value B = 8 because the total number of data formats listed in the software
requirements Req 3.2 is 8 (AVI, FLV, MOV, MPEG-1, MPEG-2, MPEG-4, SWF,
WMV). Thus the final value for the Interoperability sub-characteristic of TOOL1 is
3/8 = 1.25/1.75 = 0.375 that is far from the optimal value 1.

Definition of Software Quality Evaluation and Measurement Plans 77

6 Discussion and Conclusion

The paper present an experiment of the definition of software quality evaluation and
measurement plans for digital collection tool. In particular, revising and expanding
work done in [4, 5] high-level quality evaluation plans for functional and
non-functional requirements have been introduced together with their respective
measurement plans. This experiment has included the refinement and the specialization
of the measures proposed in the international standards according to specific digital
collection preservation requirements so to overcome some of weaknesses of the
standard applicability and to reduce the cost and effort that would have been spent if
more generic quality evaluations were adopted.

In this paper, the experience matured inside the digital preservation environment
stops at this phase, that is named as specifying the evaluation in [26]. Even if pre-
liminary the obtained results highlighted important quality aspects and criticalities in
the software quality evaluation process. In particular most of the problems rose in the
alignment of the classical terminology of the software engineering context with the one
that is specific for the preservation environment. Thus a shared and informal glossary
has been preliminary defined so to avoiding possible misunderstandings. Moreover,
this experience highlighted the necessity of the definition of two quality evaluation
plans customized according to specific needs to be considered and specific character-
istics to be measured. Indeed the list of characteristics and sub-characteristics provided
in the standards do not completely reflect the specific exigencies of the particular
environments as, for example, the preservation environment. In line with one of the
research results about the applicability of the standards, it is opportune underlining also
the necessity of the specialization of the measurement plans by the introduction or
refinement of specific measurement functions able to take in consideration the orga-
nizational limits and constraints.

The procedure customized for the audio-visual preservation has been positively
accepted inside the Presto4U project that, for the first time, faces the problems of the
applicability of international standards for software quality assessment. Different
stakeholders have considered the proposed procedure, the encountered problems and
the practical proposed solutions a good reference to replicate the experience in software
engineering contexts different from audio-visual preservation one.

On the basis of the customized evaluation and measurement plans, the software
quality of the digital collection tools used inside the Presto4U project are currently
under evaluation. Even if still very preliminary and partial the obtained results con-
firmed the usefulness of the proposed approach and constitute a valid basis for
preservation tool selection both for domain experts and standard user facing for the first
time the problem of digital collection.

Acknowledgements. This work has been partially funded by the EC FP7 Presto4U Project
No. 600845. The authors would like to thank Mario Fusani for the interesting and useful
discussions.

78 I. Biscoglio and E. Marchetti

References

1. Abran, A., Al-Qutaish, R.E., Cuadrado-Gallego, J.: Analysis of the ISO 9126 on software
product quality evaluation from the metrology and ISO 15939 perspectives. WSEAS Trans.
Comput. 5(11), 2778–2786 (2006)

2. Azuma, M.: The impact of ICT evolution and application explosion on software quality: a
solution by ISO/IEC 250nn square series of standards. In: WoSQ 2011, pp. 1–2. ACM,
New York, NY, USA (2011)

3. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software specification:
linguistic sources of ambiguity. Technical report, University of Waterloo (2003)

4. Biscoglio, I., Marchetti, E.: A case of adoption of 25000 standards family - establishing
evaluation requirements in the audio-visual preservation context. In: ICSOFT-EA 2014,
pp. 222–233. Vienna, Austria (2014)

5. Biscoglio, I., Marchetti, E.: An experiment of software quality evaluation in the audio-visual
media preservation context. In: QUATIC 2014 to appear. Guimarães, Portugal (2014)

6. Bundschuh, M., Dekkers, C.: The Measurement Compendium: Estimating and
Benchmarking Success with Functional Size Measurement. Springer, Heidelberg (2008)

7. Chung, L., Nixon, J.M.B., Yu, A.: Non-functional Requirements in Software Engineering.
Springer, Reading (2000)

8. Gopal, A., Krishnan, M.S., Mukhopadhyay, T., Goldenson, D.R.: Measurement programs in
software development: determinants of success. IEEE Trans. Softw. Eng. 28(9), 863–875
(2002)

9. IEEE 830: Recommended practice for software requirements specifications (1998)
10. IEEE 1012: System and software verification and validation (2004)
11. IEEE 1074: IEEE standard for developing software life cycle processes (2006)
12. ISO 9000-3: Quality management and quality assurance standards – Part 3: guidelines for

the application of ISO 9001 to the development, supply and maintenance of software (2001)
13. ISO 9126: Information technology, software product evaluation, quality characteristics and

guidelines for their use (1991)
14. ISO 14721: Space data and information transfer systems – open archival information system

(OAIS) – reference model (2012)
15. ISO/IEC 9126 – 1: Software engineering - product quality part 1: quality mode (2001)
16. ISO/IEC 9126 – 2: Software engineering - product quality part 2: external metrics (2001)
17. ISO/IEC 9126 – 3: Software engineering - product quality part 3: internal metrics (2001)
18. ISO/IEC 9126 – 4: Software engineering - product quality part 4: quality in use metrics

(2001)
19. ISO/IEC 14598 (parts 1 to 6): Software engineering — software product evaluation (1998)
20. ISO/IEC 15504: Information technology — process assessment (2004)
21. ISO/IEC 15939: Systems and software engineering – measurement process (2007)
22. ISO/IEC FDIS 25000: Systems and software engineering — Systems and software quality

requirements and evaluation (SQuaRE) (2005)
23. ISO/IEC FDIS 25010: Systems and software engineering — (SQuaRE) — system and

software quality models (2011)
24. ISO/IEC 25022: Systems and software engineering - SQuaRE – measurement of quality in

use (2012)
25. ISO/IEC 25023: Systems and software engineering - SQuaRE – measurement of system and

software product quality (2012)
26. ISO/IEC 25040: Systems and software engineering - SQuaRE – evaluation process (2010)

Definition of Software Quality Evaluation and Measurement Plans 79

27. ISO/IEC/IEEE 12207: Systems and software engineering — software life cycle processes
(2008)

28. ISO/IEC/IEEE 15288: Systems and software engineering — system life cycle processes
(2008)

29. Olsina, L., Lew, P., Dieser, A., Rivera, B.: Updating quality models for evaluating new
generation web applications. J. Web Eng. 11, 209–246 (2012)

30. Pfleeger, S.L.: Software Engineering. Theory and Practice, 4th edn. Prentice Hall,
Englewood Cliffs (2009)

31. Polillo, R.: A core quality model for web applications. J. Web Eng. 11, 181–208 (2012)
32. Presto4U project. www.prestocentre.org/4u
33. Al-Quataish, R.E.: An investigation of the weaknesses of the ISO 9126 international

standard. In: International Conference on Computer and Electrical Engineering, IEEE,
pp. 275–279 (2009)

34. Software Engineering Institute: the international process research consortium: a process
research framework, pp. 20–28 (December 2006)

35. TATE Gallery. www.tate.org.uk/

80 I. Biscoglio and E. Marchetti

http://www.prestocentre.org/4u
http://www.tate.org.uk/

Context and Data Management for Multitenant
Enterprise Applications in SaaS Environments:

A Middleware Approach

Chun-Feng Liao(B), Kung Chen, and Jiu-Jye Chen

Department of Computer Science, National Chengchi University, Taipei, Taiwan
{cfliao,chenk,100971009}@nccu.edu.tw

Abstract. Software as a service (SaaS) is a promising service model
of cloud computing. Its key characteristic is the ability for clients to
use a software application on a pay-as-you-go subscription basis. To
be economically sustainable, a SaaS application must be multitenant.
However, it is generally agreed that designing a multitenant enterprise
application in SaaS environments is a non-trival task. In this work, we
propose an integrated service middleware that addresses cross-cutting
concerns when developing and deploying multitenant enterprise SaaS
applications. To verify the feasibility of our approach, a sample SaaS
application have been implemented on the proposed middleware. Also,
two tenant-specific virtual applications are constructed to demonstrate
multi-tenancy. Finally, a series of performance evaluations are conducted
to assess the overheads of making an enterprise application multitenant
enabled.

Keywords: Multitenancy · Schema-mapping · Universal table · SaaS

1 Introduction

Recently, a considerable number of studies have been made on Cloud Comput-
ing, which is defined by NIST (National Institute of Standards and Technology)
as a computing capability that provides on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured service [1]. The NIST
definition also identifies three popular service model in a cloud environment,
namely, Infrastructure as Service (IaaS), Platform as Service (PaaS), and Soft-
ware as a Service (SaaS). Among the service models in cloud computing, SaaS
(Software as a Service) is reported to be the most competitive [2]. Its central
defining characteristic is the ability for clients to use a software application on
a pay-as-you-go subscription basis. However, to be economically sustainable, a
SaaS application must leverage resource sharing to a great extent by accom-
modating different clients (or called tenants) of the application while making it
appear to each that they have the application all to themselves. In other words,
a SaaS application must be a multitenant application [3].

Despite the benefits and popularity of multitenant SaaS applications, the
approach for implementing such applications is still not well-studied and
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 81–96, 2015.
DOI: 10.1007/978-3-319-25579-8 5

82 C.-F. Liao et al.

documented [4]. Technically speaking, SaaS-level multi-tenancy employs a single
application instance to serve multiple tenants. In other word, tenants of a SaaS
application are oblivious to the fact that the resources (e.g. CPU time, network
bandwidth, and data storage) are shared among tenants. For instance, a SaaS
application must implement affinity (how tasks are transparently distributed),
persistence (how data are transparently distributed and managed), performance
isolation, QoS differentiation, and tenant-specific customization [5]. These issues
are relatively hard to tackle and require higher expertise.

Several cross-cutting concerns need to be addressed when implementing a
multitenant SaaS application, which can be into two layers, namely, the appli-
cation layer and the data layer. The core issue in the application layer is how
to devise a transparent way to store and to propagate the tenant-specific infor-
mation (or called tenant contexts). Typically, enterprise applications tend to
store tenant contexts in a platform-dependent session implementation. However,
if the tenant contexts are stored in this way, then in order to propagating tenant
contexts into a business method, either the method signature or the body of the
business method must be modified to access the platform-specific session imple-
mentation. Both of these approaches involve significant modification of code and
made business methods being tightly coupled on platform-specific API.

In addition, traditional “sticky session” [6] handling mechanisms are also
platform-specific and require careful configuration in a clustered environment.
As nodes in the cloud environment is usually virtualized, heterogeneous and
elastic, it is even harder to devise a platform independent approach for handling
sticky sessions. A more transparent way to store and propagate tenant context
is thus apparently required.

Meanwhile, although it is generally agreed that the multitenant data layer is
one of the most important concerns [7], there is also little investigation on data
layer concerns in a multitenant application. There are two inter-related issues to
be addressed in this layer: schema layout management and tenant-specific schema
customization. In the design space of the multitenant schema layout management
strategy, various alternative approaches form a continuum between the isolated
data style and the shared data style [3]. As pointed out by Aulbach et al., the
shared data style provides very good consolidation but lacks schema extensibility
[8]. Many shared data style assumes that either each tenant has a dedicated set
of tables and have the same schema or all tenants are consolidated in one set of
tables but share an identical schema. Among commonly used schema-mapping
techniques, Universal Table seems to be a promising shared data style since it is
possible to preserve extensibility at the same time. Essentially, a Universal Table
is a generic structure that has virtually no schema attached to it. Although it
is commonly held that Universal Table layout would incur a large amount of
performance overhead, it is the approach adopted by SalesForce.com, which is a
successful SaaS vendor best known for its CRM service that supports more than
55,000 tenants [9]. However, it is not clear how the Froce.com SaaS applications
leased by tenants transparently transform the query statements for the logical
schema to the ones for the physical schema.

Context and Data Management for Multitenant Enterprise Applications 83

As the above-mentioned design issues, application layer or data layer, are
cross-cutting concerns of a multitenant application, they should be modularized
so that developers are able to implement, deploy, and integrate to such cus-
tomizations to the applications with minimal additional programming and con-
figuration efforts. A general approach is to devise a middleware-level facility
that supports transparently tenant context management, automatic mapping of
multiple single-tenant logical schemas to one multitenant physical schema in the
database, and flexible customization of tenant-specific logical schemas. Hence,
we propose a service middleware that addresses these issues.

Specifically, our objective is to design a middleware that provides: (1) a plat-
form independent tenant context management service that stores and propagates
tenant contexts based on the thread-specific storage pattern [10]; (2) a data
service that implements multitenant Universal Table schema layout; (3) a mul-
titenant ORM (object-relational mapping) customization service that enables
the customization of tenant-specific domain objects and their mappings to the
underlying schema layout. On top of this middleware, we construct a simple SaaS
application, ShoppingForce.com, to demonstrate the feasibility of our approach.
Finally, we also present results of the performance assessments of this work.

2 Related Work

It is commonly agreed that resource sharing is the key to yield cost benefits in
a cloud environment. An emerging approach to support resource sharing is the
concept of Multitenancy, which employs a single application instance to serve
multiple tenants. The design issues of multitenant enterprise applications fall into
two groups: the application layer and the data layer. In the application layer,
several challenges arise when transforming these applications into multitenant
ones: (1) how to obtain tenant-specific information (or called tenant contexts),
(2) where to store the tenant contexts, and (3) how to propagate tenant contexts
among components [11]. Several approaches have been proposed to deal with the
first issues mentioned above, including intercepting filters [12], aspects [13], or
contexts [14]. What seems to be lacking, however, is an appropriate mechanism
for storing and propagating of tenant contexts.

In the data layer, Pereira and Chiueh mentioned the concepts of a multi-
tenant query rewriting engine in the future work section [15]. Li proposes a
heuristic-based query rewriting mechanism for transforming queries to the log-
ical schema to HBase, which is an implementation of BigTable [16]. Aulbach
et al. survey several schema-mapping techniques, including Universal Table [8].
The data architecture used by Force.com [9] falls into the category of Universal
Table, which is the foundation of our data layer design.

Several attempts have been made to provide a common platform for multi-
tenant enterprise applications. However, the objectives of these attempts either
focus on isolation issues [17], administration issues [18], or only provide concep-
tual discussion [19]. This paper concentrates the issue of tenant context and data
management and realize our approach as a service middleware.

84 C.-F. Liao et al.

Fig. 1. Overall architecture of the proposed service middleware.

3 Middleware Design

In this section, we shall present the design of the three core services of the pro-
posed middleware. As depicted in Fig. 1, the three core services are the Tenant
Context Service, the multitenant ORM Service, and the multitenant Schema-
Mapping Service. A multitenant SaaS application, which is able to host several
tenant-specific virtual applications, can be built on top of the proposed middle-
ware. The detailed mechanisms of the three core services will be introduced in
the following sub-sections.

3.1 Tenant Context Management Service

A key characteristic of a multitenant SaaS application is that it must provide
tenant-specific user interfaces, business logics and data to a certain extent. To
realize tenant-specific customization of an application, some artifacts, usually
called isolation points, have to be isolated for different tenants [12]. To imple-
ment tenant-specific customization, program logics in the isolation points must
have access to tenant contexts. Therefore, it is important to find a way for storing
and propagating tenant contexts among the isolation points spreading in a mul-
titenant SaaS application. If the clients of a SaaS application are Web-based,
then a common approach is to store tenant contexts in a platform-dependent
HTTP session implementation. Essentially, an HTTP session is an abstraction
of a shared storage which is accessible through a specific sequence of user-system
interactions. For instance, the shopping cart in an e-commerce web site is usually
stored in an HTTP session.

Context and Data Management for Multitenant Enterprise Applications 85

Fig. 2. In traditional HTTP Session approach, all method signatures throughout the
call sequences have to be modified.

Fig. 3. In the tenant specific storage approach, only isolation points are modified.

However, the above-mentioned approach leads to several problems. First,
the approach is not applicable to non-web-based clients. Second, if not carefully
designed, the HTTP session can be unstable and brittle due to the sticky session
problem, proxy farm problem, or net quasar problem [20]. Most importantly,
the multitenant processing logic will be “polluted” by platform-specifics of the
underlying HTTP implementation. Taking Java-based Web application as an
example, the multitenant processing logic must use a Servlet API to access tenant
contexts, causing the logic being dependent on the Servlet API. Moreover, the
method signatures for user interfaces, business logics and data access have to
be modified to propagate tenant contexts (see Fig. 2). To minimize the efforts

86 C.-F. Liao et al.

Fig. 4. Managing tenant context from thread-specific storage

of migrating an single-tenant application into multitenant ones, it is preferable
to avoid significant modification of code or being tightly coupled with some
platform specific API.

Thread-specific storage is a design pattern that allows multiple threads to
access a logically global but physically local for each individual thread [10]. Inter-
nally, a thread-specific storage is essentially a globally accessible list of maps,
where the maps are indexed by thread IDs. Hence, program logics in a specific
thread t can only access one of the map, that is, the map indexed by t. It
is reported that thread-specific storage is more efficient, reusable and portable
[10]. However, if it is not carefully designed, it can lead to an obscure system
structure because of the use of a (logically) global object. As a result, it is impor-
tant to store and propagate tenant contexts in a thread-specific storage through
an uniform API. Based on this observation, we devise a platform independent
mechanism that allows the program logic to access tenant contexts, stored in
a tenant-specific storage, from user interfaces, business logics and data without
depending on the HTTP session, as shown in Fig. 3. Currently, we realize the
thread-specific storage via a static member variable located within the Tenant-
ContextHolder called contextRepository, which is realized by ThreadLocal class
provided by JDK (see Fig. 4). Tenant contexts belonging to different threads
are isolated by ThreadLocal. In other words, although contextRepository seems
to be global to the system, when a thread accesses it by calling the getContext
method, only the tenant context specific to the calling thread is returned.

3.2 Multitenant Schema-Mapping Service

This section describes the design of the proposed Universal-Table-based multi-
tenant schema-mapping service. Before examining the detailed mechanisms, it
is helpful to introduce the overall data architecture and design issues of Uni-
versal Table. Essentially, Universal Table is a generic storage consisting of a
GUID (Global Unique Identifier), a tenant ID, and a fixed number of generic
data columns (i.e. the Data Table in Fig. 5). The metadata of logical tables
(objects), logical columns (fields), logical relationship, logical primary keys, and

Context and Data Management for Multitenant Enterprise Applications 87

Fig. 5. The data architecture of Universal table schema-mapping.

Fig. 6. Example of Universal table schema-mapping.

logical index information of records are stored in Objects, Fields, Relationships,
Uniquefields, and Index, respectively (see Fig. 5). In the sequel, we follow the con-
vention in [9] and use the term objects and tables as well as fields and columns
interchangeably.

Consider a hypothetical e-commerce SaaS application, ShoppingForce.com,
that enables its tenants to sell products and to process orders on-line. Since
different tenants have their own unique needs in describing their products,

88 C.-F. Liao et al.

ShoppingForce.com allows its tenants to create their own customized schemas
for their products. Figure 6 illustrates the scenario. Here we have two product
tables (i.e. Productlt=667 and Productlt=604, where l denotes “logical” schema and
t denotes tenant id). The data in the two logical tables will be stored together
into a universal table (i.e. the Shared Table) via the schema mapping service.

We now turn to the design of our Universal-Table-based multitenant schema-
mapping service. At the core of the service is a set of query rewriting rules that
specify the transformations from logical queries to physical queries via relational
algebra. Due to space limitation, the reader is referred to our previous work for
detailed specification of those query rewriting rules [21]. In the following, we
sketch the overall query rewriting mechanism via an example of transforming a
projection statement. Let us assume that a tenant, whose id is 667, has submitted
a projection statement:

SELECT price, description FROM Product.

This projection statement will be rewritten to a form that selects physical fields
from the shared table, Data. Firstly, the statement will be represented by the
following algebraic form:

π̄<price,description>[667](Product),

where π̄ denotes the projection operation that selects subscripted fields, e.g.,
price, description, from a logical table specified by its name and a tenant id
annotation, e.g., Product and 667.

Secondly, we look up the objectId from the Objects table via the logical table
name, (Product), and the tenant id, 667. This is specified by using the object
name transformation function ξobject(Product, 667), which is assumed to return
1 in this example. With the physical object id and tenant id, we can select all the
rows of the tenant’s Product data from the shared table Data, which is specified
by the following equation.

As mentioned, we can find all records belonging to the logical table Product
owned by tenant 667 from the physical table Data by performing a physi-
cal selection statement filtered by tenantId and objectId. The value of phys-
ical field objectId can be obtained by the object name transformation function
ξobject(Product, 667), which is assumed to be 1 in this example:

σobjectId=1∧tenantId=667(Data). (1)

Thirdly, given the objectId, we may obtain the mapping between logical field
names and physical field names using the Fields table. We specify the mapping
via the field name transformation function ξfield(Product, nf , 667), where the
logical field names id, name, price, and description are obtained by substituting
nf by value1, value2, value3, and value4, respectively. As a result, the logical
table Product can be reconstructed by appending a rename operation, ρ, and a
projection operation in front of the expression in (1):

Context and Data Management for Multitenant Enterprise Applications 89

7t(Product) =ρ(id,name,price,description)

π<value1,value2,value3,value4>

σobjectId=1∧tenantId=667(Data).

(2)

Note that the projection operation π<value1,value2,value3,value4> is required since
the Data table has additional fields to keep track of metadata of a record such
as GUID, objectId and tenantId fields of the Data table, as depicted in Fig. 6.

Now that we have reconstructed the logical table Product from Data, we can
apply arbitrary query operations to it:

π<price,description>[667](Product) =
π<price,description>

ρ(id,name,price,description)

π<value1,value2,value3,value4>

σobjectId=1∧tenantId=667(Data).

(3)

Then, the physical form of the tenant-aware logical projection statement can be
derived as follows:

SELECT price, description FROM (

SELECT value1 AS id, value2 AS name,

value3 AS price, value4 AS description

FROM Data

WHERE objectId=1 AND tenantId=667).

Finally, it is important to point out that the rewriting rules are realized
in MultiTenantDataServiceFacade, as shown in Fig. 9, which is the facade for
the adapters to the ORM framework. This design made the implementation of
rewriting rules easier to be integrated with the ORM framework, which will be
explained in detail in the next section.

3.3 Multitenant Object-Relational Mapping Service

Because of the difficulties arising from object-relational impedance mismatch
[22], contemporary enterprise applications typically access database through
an Object-Relational Mapping (ORM) framework. However, the SQL rewriting
mechanisms introduced in the previous section do not deal with the interop-
erability issues with ORM. Hence, in this section, we propose an transparent
approach for integrating SQL rewriting mechanisms into an ORM framework.

Generally speaking, the first step of ORM design is to define the mappings
between object fields and database fields. Such mappings are usually specified
by the annotations in the source code. To be consistent with the annotation-
based convention, we use the annotation @MultiTenantCapable to indicate that
the annotated object is going to be mapped to a multitenant database. For
instance, to annotate the Product to be multitenant capable, the only additional
effort is to add an @MultiTenantCapable annotation, as shown below:

90 C.-F. Liao et al.

Fig. 7. The structure of CustomObject and CustomRelationShip.

Fig. 8. The design of runtime bytecode transformation mechanism.

@MultiTenantCapable

Public class Product {...}.

Except the annotation, no additional modification is required from the devel-
oper’s point of view.

We are now ready to introduce the underlying techniques of the proposed
approach. In order to map user-customized domain objects into Universal Table
schema layout, metadata information such as class name, field name and relation-
ship has to be extracted and then attached to the mapping object. As depicted
in Fig. 7, we defined two general interface, namely, CustomObject, CustomField
and CustomRelationship, to store the metadata information mentioned above.
At runtime, the system periodically checks any newly added user-customized
domain objects. If the annotation @MultiTenantCapable is observed, then the
annotated object will be enhanced to implement the CustomObject and related
interfaces on the fly by a bytecode rewriting mechanism to be sketched below. In
particular, the implementation of the mappings between user-customized domain

Context and Data Management for Multitenant Enterprise Applications 91

Fig. 9. The overall design of multitenant ORM.

objects and the underlying schema layout is dynamically generated and injected
into the bytecode of these objects.

Figure 9 displays the overall structure of how the proposed mechanism adapts
to an existing ORM framework. There is a class called MultiTenantServiceFacade
that serves as a unified entry point so that the proposed mechanism is more
portable to different ORM frameworks. The SQL rewriting rules presented in
the previous section in are implemented in the insert, update, delete methods of
MultiTenantServiceFacade. The object-relational mapping tasks are delegated to
CustomObjectMapper, which uses CustomizationHandler to interact with user-
customized domain objects. It is worth mentioning that, due to the use of thread
specific storage pattern, CustomObjectMapper and CustomizationHandler are
able to obtain the reference to tenant contexts in situ without any parameter
passing.

Currently, we implement the proposed design based on JavaAgent [23], as
the bytecode transformation tool and DataNucleus’s JDO [24] implementation,
as the underlying ORM framework. DataNucleus [25] is designed based on OSGi
platform [26] so that our extension can be easily integrated into it as a bundle.
As shown in Fig. 8, the main transforming logic is implemented in a specific
class called MTAClassFileTransformer which is initialized by JavaAgent and is
hooked in JVM. Before the annotated classes are loaded, JVM will delegate to
MTAClassFileTransformer so that it has a chance to modify the bytecode.

4 Implementation

We studied the feasibility of the proposed middleware by implementing a Java-
based prototype. To verify the prototype, we also implemented a simple SaaS

92 C.-F. Liao et al.

Fig. 10. Two on-line shopping applications hosted by ShoppingForce.com.

Fig. 11. The object customization and relationship customization pages in Shopping-
Force.com.

application called ShoppingForce.com on top of the middleware. The SaaS appli-
cation is able to access the underlying tenant context management, ORM, and
schame-mapping services.

In the application layer, we realize the thread-specific storage via a static
member variable, which is realized by the ThreadLocal class provided by JDK.
Tenant contexts belonging to different threads are isolated by ThreadLocal. In
other words, although thread-specific storage seems to be global to the system,
when a thread accesses it by calling the getContext method, only the tenant con-
text that is specific to the calling thread is returned. In the data layer, to access
the physical schema, the application uses JDOQL (JDO Database Query Lan-
guage) [24] and manipulates JDO API. Then, The JDOQL is translated inter-
nally to SQL statements and then used as the inputs of the proposed rewriting
schemes.

To create a virtual application, the tenant applies for an account on-line and
a tenant profile is then generated accordingly. We have created two different on-
line shopping applications hosted on ShoppingForce.com. Sometimes, a tenant
needs to modify default virtual schema such as adding tenant-specific columns.

Context and Data Management for Multitenant Enterprise Applications 93

In such case, ShoppingForce.com provides a set of schema customization pages
which can be accessed from the account management page, as shown in Fig. 11.

5 Experiments

To test the performance of the tenant-aware schema layout management service
in the data layer, we conducted experiments in a stand-alone switched network.
In the network, the test client and the test server are deployed on two sep-
arate PCs with Intel Core i7 3.4-GHz processor with 4G bytes memory. For
the test client, we use Apache JMeter 2.9 [27], a well-known open source and
general-purpose performance measurement platform, which can be used to sim-
ulate arbitrary load types on the server or network to test overall performance
under different load types. The service middleware and the database is deployed
on the test server, where the database is MySQL Community Server 5.7 with
InnoDB engine running on Ubuntu Linux 12.04.

For the experiments, we set up a imaginary scenario, in which there are 100
tenants and each tenant stores 100,000 records in both a Universal Table imple-
mentation and a Private Table implementation. In the Universal Table imple-
mentation, there are respectively 10 million, 10 million, and 5 million records
stored in the Indexes, UniqueFields, and Relationships table. For each tests,
based on the above scenario settings, several concurrent threads that issue query
requests to the service middleware. After a request is finished, the JMeter plat-
form gathers the responded results and reports the turnaround time. We per-
formed experiments for Selection, Projection, and Join statements of Private
Table and Universal Table implementations, respectively. When performing the
tests, built-in cache mechanism of query processer is turned off to better reflect
the actual overheads induced by the transformed SQL.

A summary of experimental results for Private Table and Universal Table is
shown in Table 1. Compared to the Private Table implementation, which serves
as a baseline, there is a great performance penalty for “multitenant-ifying” the
database. The main reason is that schema-mapping involves overheads of addi-
tional database access since all meta information of logical-physical mapping
has to be stored in physical storage. However, we believe that the overhead is
acceptable for most enterprise SaaS applications because the worst turnaround
time of query operations is still less than 20 ms. Moreover, the performance

Table 1. Average turnaround time of queries on private table and Universal table
schema layouts (in milliseconds).

Operation type Private table (Baseline) Universal table (SQL) Universal table (ORM)

Select 0.4469 5.1793 14.0067

Insert 1.3823 13.7154 14.4246

Delete 0.5264 10.2565 16.0911

Update 0.5238 9.1029 15.3657

94 C.-F. Liao et al.

can be improved significantly if the built-in cache mechanism of query proces-
sor is turned on. It is also worthy to point out that the turnaround time for
ORM implementation is a bit slower than the direct SQL implementation. This
result reflects the trade-offs between code maintainability (via the use of ORM
framework) and performance.

6 Conclusions

In this article, we report the design of a multitenant-enabled middleware for
supporting the development and deployment of enterprise multitenant SaaS
applications. The proposed service middleware addresses three essential design
aspects, namely, tenant context storage and propagation, schema-mapping, and
the integration of ORM framework, of enterprise SaaS applications. We have
also presented a prototype implementation of the proposed approach and con-
ducted performance evaluations to assess the overheads. In addition, a sample
multitenant SaaS application, the ShoppingForce.com and two tenant-specific
virtual applications are also constructed to demonstrate the feasibility of the
service middleware. Further research is required to investigate approaches for
enhancing the security aspect of the proposed middleware. Specifically, multi-
tenancy promotes resource sharing, which unavoidably trades a certain amount
of security for the lower service costs. Fortunately, security issues caused by
resource sharing can be significantly reduced if the multitenant SaaS applica-
tion is deployed on a middleware platform that employs advanced access control
and program monitoring mechanisms for intercepting unauthorized accesses to
a shared resource. Hence, we shall look into those mechanisms and investigate
how to leverage them to prevent unauthorized data accesses, such as checking
tenant ID’s. On a different front, we are going to explore more transparent ways,
such as aspect-oriented programming or dependency injection, to help develop-
ers transform a single tenant enterprise application into a multitenant one based
on the proposed service middleware with less efforts.

Acknowledgements. This work is sponsored by Ministry of Science and Technol-
ogy, Taiwan, under grant 103-2221-E-004-005, 103-2221-E-004-018, and 103-2218-E-
004-001.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing, 2nd edn, pp.
800–145. NIST Special Publication (2011)

2. Momm, C., Krebs, R.: A qualitative discussion of different approaches for imple-
menting multi-tenant saas offerings. In: Proceedings of Software Engineering 2011,
Workshop (2011)

3. Chong, F., Carroro, G.: Architecture strategies for catching the long tail (2011).
http://msdn.microsoft.com/en-us/library/aa479069.aspx

http://msdn.microsoft.com/en-us/library/aa479069.aspx

Context and Data Management for Multitenant Enterprise Applications 95

4. Koziolek, H.: The sposad architectural style for multi-tenant software applications.
In: Proceedings of the 9th Working IEEE/IFIP Conferences on Software Architec-
ture (2012)

5. Krebs, R., Momm, C., Konev, S.: Architectural concerns in multi-tenant saas appli-
cations. In: Proceedings of the International Conference on Cloud Computing and
Service Science (CLOSER12) (2012)

6. Galchev, G., Fleischer, C., Luik, O., Kilian, F., Stanev, G.: Session handling based
on shared session information, US Patent App. 11/322,596 (2007)

7. Fang, S., Tong, Q.: A comparison of multi-tenant data storage solutions for
software-as-a-service. In: Proceedings of the 6th International Conference on Com-
puter Science and Education (ICCSE 2011) (2011)

8. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-tenant data-
bases for software as a service: schema-mapping techniques. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data (2008)

9. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant internet
application development platform. In: Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data (2009)

10. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Soft-
ware Architecture, Patterns for Concurrent and Networked Objects, vol. 2. Wiley,
New York (1996)

11. Bezemer, C.P., Zaidman, A.: Challenges of reengineering into multi-tenant saas
applications. Delft University of Technology, Technical report TUD-SERG-2010-
012 (2010)

12. Cai, H., Wang, N., Zhou, M.J.: A transparent approach of enabling saas multi-
tenancy in the cloud. In: Proceedings of IEEE World Congress on Services (2010)

13. Wang, H., Zheng, Z.: Software architecture driven configurability of multi-tenant
SaaS application. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) Web Information
Systems and Mining. LNCS, vol. 6318, pp. 418–424. Springer, Heidelberg (2010)

14. Truyen, E., Cardozo, N., Walraven, S., Vallejos, J., Bainomugisha, E., Gunther,
S., D’Hondt, T., Joosen, W.: Context-oriented programming for customizable SaaS
applications. In: Proceedings of ACM Symposium on Applied Computing (2012)

15. Pereira, J., Chiueh, T.C.: SQL Rewriting Engine and its Applications, Technical
report. Stony Brook University (2007)

16. Li, C.: Transforming relational database into hbase: a case study. In: 2010 IEEE
International Conference on Software Engineering and Service Sciences (ICSESS).
IEEE (2010)

17. Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D.,
Weerawarana, S., Fremantle, P.: Multi-tenant soa middleware for cloud computing.
In: 2010 IEEE 3rd International Conference on Cloud Computing (Cloud). IEEE
(2010)

18. Strauch, S., Andrikopoulos, V., Sáez, S.G., Leymann, F., Muhler, D.: Enabling
tenant-aware administration and management for jbi environments. In: 2012 5th
IEEE International Conference on Service-Oriented Computing and Applications
(SOCA). IEEE (2012)

19. Shimamura, H., Soejima, K., Kuroda, T., Nishimura, S.: Realization of the high-
density SaaS infrastructure with a fine-grained multitenant framework. NEC Tech.
J. 5, 132–136 (2010)

20. Joines, S., Willenborg, R., Hygn, K.: Performance Analysis for Java Web Sites.
Addison-Wesley Professional (2003)

96 C.-F. Liao et al.

21. Liao, C.F., Chen, K., Chen, J.J.: Toward a tenant-aware query rewriting engine
for universal table schema-mapping. In: 2012 IEEE 4th International Conference
on Cloud Computing Technology and Science (CloudCom) (2012)

22. Ambler, S.: Agile Database Techniques: Effective Strategies for the Agile Software
Developer. Wiley (2003)

23. Aarniala, J.: Instrumenting java bytecode. In: Seminar Work for the Compiler-
scourse, Department of Computer Science, University of Helsinki, Finland (2005)

24. Russell, C.: Java Data Objects 2.0. JSR 243 Specification (2010)
25. Miller, F., Vandome, A., John, M.: DataNucleus. VDM Publishing, Saarbrucken

(2010)
26. Hall, R., Pauls, K., McCulloch, S.: OSGi in Action: Creating Modular Applications

in Java. Manning Publications Company, Greenwich (2011)
27. Halili, E.H.: Apache Jmeter: A Practical Beginner’s Guide to Automated Testing

and Performance Measurement for your Websites. Packt Publishing, Birmingham
(2008)

The Fixed-Price Contract: A Challenge for the Software
Development Project

Cornelia Gaebert(✉)

Research Group on Strategic Information Management,
European Research Center for Information Systems, University of Muenster,

Leonardo Campus 11, 48149 Muenster, Germany
cornelia.gaebert@uni-muenster.de,

cornelia.gaebert@indal.de

Abstract. Describing the software development project between customer and
supplier at the contracting level as interaction of the involved organizations in
terms of game theory, we can show that the parties are in a dilemma situation
regarding the effort for closing the gaps of incomplete requirement specifications.
Incomplete, ambiguous, and changing requirements are the number one reason
for failure of software development projects. Customer and supplier have to
interchange information for closing requirement gaps. However, gathering and
interchanging information generates undesirable costs. The most commonly used
contract model is a fixed-price contract. Under this condition, the supplier is
forced to cooperate, whereas the customer prefers to defect regarding closing
requirement gaps. In support of our theoretical argument, we carried out an
empirical investigation. We derive suggestions for improving the fixed-price
contract design of software development projects as well as for the cooperation
behavior during the project.

Keywords: Software development project · Outsourcing · Failure · Information
asymmetry · Dilemma structures · Incomplete contract

1 Introduction

Despite project management improvements and professionalization of the software
development process, the number of failing software development projects has remained
high for decades [7, 28].

Organizations expect to mitigate this risk by outsourcing [5]. They expect that the
supplier take the risk for the project failing when working under autonomy. The customer
considers the supplier responsible for budget, time, and quality.

Researchers in the field of software project management and software engineering
have focused their studies on the project’s internal problems, even when external
suppliers carry out the projects [1, 22]. Moreover, they provide recommendations for
practical action straight from the success factors derived from reasons of failure (see
also [9]). They consider the qualifications of all stakeholders as well as the continuous
improvement of project management [4], such as the change from structured to agile
project management [32].

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 97–112, 2015.
DOI: 10.1007/978-3-319-25579-8_6

This paper shifts the spotlight on the relationship between customer and supplier.
We argue for describing the software development project at the contracting level, as a
cooperation of two parties: the one that needs a software system to meet their individual
requirements, and the one that has the ability to produce the software system. We call
the first party the customer, and the second the supplier. First, both parties pursue
economic targets.

The aim of this paper is to show that a formal description of the cooperation between
the supplier and customer of a software development project will open new perspectives
for understanding the failure of these projects. We provide a theoretical rationale for the
failure of software development projects. Therefore, we introduce and justify a model
of the software development project as a two-party interaction game, in which the
delivery of information is the crucial element in each interaction. Using this approach,
it will be possible to analyze contractual situations for software projects with respect to
risks of failure. We will show how the structure of this interaction results in a high risk
of failure for such projects. Nonetheless, from our model we can derive some suggestions
for the contract design of software development projects and for the cooperation
behavior during the project.

We base our argument on the number one reason for failure, incomplete, ambiguous,
and changing requirements [7, 18, 19, 27, 28]. In this paper, we call this deficit require‐
ment gaps. As we will show in Sect. 2.1, this is inherent in the setting of a software
development project. Therefore, the customer and supplier need to interact with each
other to establish clear requirements, explain changes, and exchange information over
time. In Sect. 2.2, we briefly show the possible behavior of the actors in this situation.
Regarding the delivery of needed information, the parties are in a situation called the
prisoner’s dilemma. Therefore, we introduce in Sect. 2.3 the prisoner’s dilemma as a
formal description [30]. Section 2.4 describes the software development projects in
terms of game theory. We must ultimately expect that when both parties defect from
cooperation, the project tends to fail. Finally, we show in Sect. 2.5, that even under the
mostly agreeable fixed-price contract [23], the customer want to save costs. However,
the customer will be dissatisfied with the quality of the developed software. Conse‐
quently, the contract is unable to fulfill its function and the project tends to fail.

In Sect. 3, we support this theoretical argumentation using a two-step empirical
investigation. First, we interviewed experts, both customers and suppliers, using a
formal questionnaire. Second, we conducted in-depth expert interviews. The empirical
results show the relevance of these concepts for the understanding of problems in soft‐
ware development projects.

Finally, in Sect. 4 we summarize these suggestions and describe some directions for
further research, starting with this model.

2 The Project as a Two Party Game

Researchers in the field of software project management focus primarily on the control
of decisions and activities of the acting participants and stakeholders within the devel‐
opment organization [16, 24]. They often describe them as rational agents having goals

98 C. Gaebert

and making decisions for the cooperation with other actors, with the purpose of
achieving a maximum of benefit [6, 31]. However, as shown by Tollefsen [29], we can
also consider organizations like companies or public authorities as rational agents who
have their own goals and make rational decisions for reaching these goals.

At the organizational level, regarding a software development project, we can define
two kinds of actors: First, there are organizations acting as the customer; and second are
the organizations acting as the supplier. The customer has business goals that result in
requirements for a software system, which are described in a requirement specification
document. The supplier has the ability to develop an information system that meets those
requirements. Therefore, the customer and supplier sign a contract to carry out a software
development project.

2.1 System-Inherent Causes for Incomplete Requirement Specifications

In an ideal world, the requirement specification is complete, unambiguous, and clear. In
such a world, the supplier has calculated all efforts for the implementation of the
requirements before signing the contract. Based on the specification, the designers and
developers will implement the needed system. No communication and no interaction
between the parties will be necessary during the project.

Unfortunately, requirements are not complete and unambiguous. As shown in
research literature [18, 19], and as stated by all experts in our empirical survey (see
Sect. 3), gaps exist in the requirements specifications. Researchers and practitioners have
exerted a lot of effort in developing methods for producing better specifications without
gaps, misunderstandings, and unclear descriptions.

Nevertheless, as we will argue in the following, there are system-inherent causes for
the gaps in requirement specifications.

First, software requirement specifications contain knowledge in a strict sense only
about the past and the present. For instance, the customer knows problems that exist
with the currently used system, the present market situation, and business cases. About
the future, there are only assumptions. In particular, how the new system will change
the business processes is not a matter of fact, but a matter of expectation and anticipation.

Second, the requirement engineer can only document consciously available knowl‐
edge, and to some extent subconsciously available knowledge. However, in all business
processes, relevant conditions and information exist that no one knows about [15]. The
customer has knowledge primarily regarding the business for which the software system
is needed. In contrast, the supplier has knowledge regarding technical issues, like the
properties of used frameworks and development techniques. Furthermore, on the suppli‐
er’s side, experiences from other projects regarding user acceptance and performance
problems exist. This knowledge is also relevant for the development of a software
system, but in the moment of documenting the requirements it is not available.

Third, the software development project needs time. The customer and the supplier
interact and exchange information during the project’s development. As their settings
change, new requirements may arise.

Consequently, we have to accept the fact, that requirement specifications will contain
gaps also in the future, and even if research in requirement engineering finds new and
better methods.

The Fixed-Price Contract 99

2.2 Possible Choices of Rational Actors

As we have shown, the customer and the supplier must sign the contract based on an
incomplete requirement specification. Closing the gaps is part of each software devel‐
opment project, and there is no way to avoid this situation. The question arises, how a
rational actor will behave in this situation.

Both actors have the choice to participate in the closing of specification gaps, or to
avoid these efforts and to demand this effort from the other party. Therefore, we have
to analyze four cases.

(1) The customer tries to avoid effort, whereas the supplier exerts effort in closing the
gaps. The customer may argue that the supplier should calculate these efforts during
the calculation of the projects costs. Furthermore, the supplier has seen the speci‐
fication before signing the contract and has committed to implement the needed
system, if necessary by detailing the requirements. In such cases, customers will
argue that there are no real gaps in the requirements but there are some details left
to be defined during the system design phase. Thus, the supplier is responsible for
specifying these details. The customer will avoid delivering resources for clarifi‐
cation. The supplier must specify assumptions and define suggestions, and the
customer is free to accept or to reject them.
The result is an enormous effort on the supplier’s side, whereas the customer will
save on costs and will get the needed system with little effort on their own part.

(2) The reverse situation is also possible. The supplier can avoid exerting effort in
closing the gaps and can demand all information needed from the customer. If the
supplier finds a specification gap during the design and the implementation of the
system, he will ask the customer for clarification and deny sending their own experts
or making his own suggestions based on experiences from other projects. In this
case, there will be high costs on the customer’s side, whereas the supplier incurs
no extra costs for closing the gaps. Furthermore, the supplier has the ability to
initiate change requests to get extra payments.

(3) It is possible, that both parties avoid any effort in closing the requirement gaps. The
supplier may implement the system without asking the customer if there is a problem
with the specification. Alternatively, if the supplier asks, he can be satisfied with any
answer from the customer and does not reflect it on own experiences. The customer
may also avoid effort for clarification. Both sides may see the other side as being
responsible for closing the gaps and may ignore arising problems. The result of this
behavior is that both sides save efforts during the project, but in the end, the system
does not meet the real business requirements of the customer. The project is highly
risky, and if it fails, the customer will not pay the price for the development. There‐
fore, in such a case, both parties will probably lose their investments.

(4) Finally, both parties may cooperate, sending their experts and delivering all infor‐
mation and experiences for finding the right solution in the case of requirement
gaps. The efforts on both sides then are high; however, the project can finish with
a system that meets the requirements.

100 C. Gaebert

Clearly, the fourth case is the best way to finish a project successfully. However, in
reality, both the customer and the supplier have to save costs by avoiding extra effort.
Therefore, it is not self-evident that the parties cooperate as described in this scenario.

For some time game theory has described the structure of the situation as prisoner’s
dilemma [30]. In recent years, the prisoner’s dilemma has already been used in the
analysis of dilemma structures between developers within software development
projects [13, 31]. We will use this model as an analytical tool for understanding the
situation of the projects’ parties. First, we will introduce the original picture, giving the
model its name. Then we will apply it to the project situation.

2.3 The Prisoner’s Dilemma

In the prisoner’s dilemma, a prosecutor questions two prisoners individually. Both pris‐
oners (player) can deny the alleged offense (cooperate with each other), and both result
in an imprisonment of 5 years. However, each of them can also admit and incriminate
the other (defect). If only one of them admits, he or she gets the acquittal (leniency) and
the other gets 20 years of imprisonment. If both confess, each receives 10 years of
imprisonment. Although it would be best for both prisoners, if they denied the offense,
they will both confess because of the incentive conditions of the situation. The special
situation in capturing the dilemma situation is that both actors miss the potential gains
from cooperation just because they follow their own incentives and thus act rationally.

Figure 1 depicts the situation and the preferences of the prisoners in a schematic way.
We enter the payoff for each player in four quadrants: A, B, C, and D. We enter the
results of player X in the lower-left corner of each quadrant, and we list the payoffs of
player Y in the upper-right corner. The arrows in the figure mark the advantage calculi.
The horizontal arrows describe the tendency of Y; the vertical arrows describe the
tendency of X.

Fig. 1. Prisoner’s dilemma.

The Fixed-Price Contract 101

For X and Y, defecting is the dominant strategy, which they will choose. Both pris‐
oners make their rational decisions independently from the other, knowing the possible
choices that the other may make. If the other cooperates, for each prisoner it would be
best to defect, because he will be free. If the other one defects, for each it is also the
better choice to defect. Consequently, both prisoners will defect and will get a bad result.
If both decide to cooperate, the result would be much better.

The frame in the lower-left quadrant C shows the (Nash) equilibrium, the result that
rational actors will get in a prisoner’s dilemma situation.

2.4 The Customer and the Supplier in a Dilemma Situation

Now, for applying the prisoner’s dilemma to the software development project, we
identify the player Y with the customer and player X with the supplier. If the customer
defects and the supplier cooperate, the latter will close all specification gaps at his own
cost, and the customer will get the best result (case 1 in Sect. 2.2, quadrant D in Fig. 1).
In contrast, if the supplier defects by avoiding the needed effort, and the customer works
hard to close all gaps, it will be the best for the supplier (case 2, quadrant A in Fig. 1).
If both parties cooperate, both incur some costs, but they get the best system as the result
of the project (case 4, quadrant B in Fig. 1). Finally, if neither the customer nor the
supplier work on closing the gaps, they will exert less effort, but the result is a bad system
that does not meet the requirements (case 3, quadrant C in Fig. 1).

If both the supplier and the customer in a software development project act as rational
actors, they both must avoid any effort in closing gaps in the requirement specification – the
result will be a bad system.

Please note, only the order of evaluation is in this situation crucial for the result, not
the concrete rating level [2]. Therefore, we can translate the payoff to simple numerical
amounts for the better representation of the problem structure of the dilemma situation
in the form of a prisoner’s dilemma [3]. Figure 2 depicts the four cases in four fields.

Fig. 2. The prisoner’s dilemma of the software development project in normal form with payoffs.

102 C. Gaebert

The supplier (player X) gets in quadrant A a result of 4 (only the customer closes
gaps). In quadrant B, both get a payoff of 3 (both close gaps), and in C a payoff of 2
(nobody closes gaps). In the D quadrant, the supplier realized his worst result of 1 (only
the supplier closes gaps). The customer (player Y) obtains in quadrant D his best result
with the payment of 4. The customer achieves his worst result in quadrant A with a
payoff of 1. Divergent preferences determine the order of evaluation of possible results:
For the supplier, it is A > B > C > D and for the customer it is D > B > C > A. The
payoff matrix of the one is therefore the transposed payoff matrix of the other.

The rational actors achieve the dominant result because there is no effective behavior
binding, i.e. the supplier and the customer are in a so-called institutional vacuum [3]. If
the supplier and the customer want to escape this dilemma, they must prevent the insti‐
tutional vacuum so that they are no longer in a dilemma structure. They can achieve this
only through collective self-commitment to cooperation, through simultaneous aban‐
donment of the solutions in the quadrants A and D. Both can improve their payoff only
in this way. They must find rules that reward cooperation and punish defection to guar‐
antee effective behavior binding. Following the cooperation agreement must be the
rational choice for the actors. Each actor will decide this way, only if the achieved result
is better for him than the solution without agreement. The agreement must eliminate the
conflict. It causes the actors no longer to operate independently [11]. The players coop‐
erate only if they know the alternative solutions and if they are sure how the other one
will act [8].

If a negative sanction is established for both players in the case of defection, the
possible payoffs change (Fig. 3). The preferences are changing, and so the order of
evaluation of the results changes. Cooperation will be the dominant strategy. The
enticing thing about this situation is that no actor cares how the other player is set. The
individual gets, in any case, a payoff of 3 if he cooperates. The actors found a new
opportunity space by way of rules. These rules change the incentives so that the actors
can still defect, but they do not want to defect. It is not about improving the game, but
about playing another game.

Fig. 3. Negative sanction for both.

The Fixed-Price Contract 103

2.5 Rational Behavior in Dilemma Situations

As empirical studies show, contractual arrangements between both parties vary between
fixed-price and time-and-material contracts [10, 14]. Fixed-price contracts consist as the
name suggests of a fixed-price for the developed software. In the case of a time-and-
material contract, the customer pays for a specified amount per hour. Sometimes, the
two contract types are combined, such as a fixed-price for the initial development and
time-and-material for its enhancement.

With a time-and-material contract, neither the customer nor the supplier has incen‐
tives to avoid efforts in closing the requirement gaps. This contract type eliminates this
conflict as long as the customer is willing to pay. However, fixed-price contracts domi‐
nate the contract types. Under the conditions of a fixed-price contract, the customer in
particular has the chance to exert pressure on the supplier by threatening to reject the
system and to deny paying the agreed-upon price. Some authors explicitly demand to
control the suppliers’ work in detail [24].

Because of the sanction for the supplier in such a contract situation, the order of
evaluation for the supplier changes (Fig. 4). The preferences of the supplier switch from
defecting to cooperating. The customer receives the penalty as a bonus, so his preference
does not change. His payoff for defection is always higher than his cooperation payoff.
The balance adjusts itself in quadrant D, where the customer achieves his best result.
The inescapable conclusion of this finding is that the customer will not want to cooperate
in closing the gaps because, no matter how the supplier chooses, he always achieves his
best result with defection. He just needs to ensure that he collects the penalty from the
supplier in the case that the supplier has not demonstrably fulfilled the contract. The
actors will not achieve the equilibrium solution in quadrant B.

Fig. 4. The software development project under fixed-price with one-sided sanctions.

Nevertheless, the supplier has options to deal with the situation, and he must do this,
if he is a rational actor. As shown by Spremann [26], in the case of asymmetrically
distributed information, there are options for hidden actions. In software projects, the
supplier has the chance to save effort on quality issues as performance, maintainability,
reliability, and other quality attributes. Problems from this behavior will appear after

104 C. Gaebert

finishing the project, and due to the fact, that there are many possible causes for prob‐
lems, the supplier may deny the responsibility for these problems. Therefore, also the
customer should have an interest in finding a contract design as described in Fig. 3.

Is it possible in a software development project as under investigation of this study
to implement negative sanctions in the case of defection for both parties? It is not difficult
to implement sanctions regarding the supplier. If the supplier does not meet the mile‐
stones, or if the quality of the software system is bad, it is possible for the customer to
deduct a penalty from the agreed price.

On the other side, a sanction for the customer would mean that he has to pay a higher
price. This would escape the fixed-price condition, so it does not seem possible to
implement such a sanction.

3 Empirical Support of the Theoretical Argument

We support our theoretical findings with an empirical survey. First, it is essential that
the supplier get mostly a fixed-price for the software system. If the customer would pay
an effort-based price for all of the work done by the supplier, no dilemma situation would
arise. Second, do the customer and supplier agree that there are gaps in the requirement
specifications delivered by the customer by signing the contract? Third, is there a poten‐
tial conflict resulting from this situation? Do both parties quite agree that there is
conflict? To support the practical relevance of these assumptions, we carried out an
empirical investigation.

For this empirical part of our study, we conducted a two-step evaluation. First, we
developed a questionnaire in the form of a standardized online survey as a special kind
of standardized survey [17]. Next, we conducted personal interviews to deepen our
understanding of the results from the questionnaire. The period of the evaluation was
one year.

For the questionnaire, we chose the standardized online survey to give the respond‐
ents an opportunity to reflect and to question their own companies [25]. The format of
the online survey itself was legitimate because the interviewees were an IT-savvy group.
Open answers supplemented the closed questions to not be too restrictive and to gather
the covered information [20]. In the following, we will analyze and interpret the results
descriptively.

We interviewed experienced project participants on both sides (customer and
supplier). The questionnaire had to take the management perspective as well as the view
of the project management into account. Because it is not possible to address trivially
the population of all manufacturers and customers of custom software, and because
questioning the population about any associated unacceptably high cost is not realistic,
we chose a smaller population. Therefore, we could not achieve complete representa‐
tiveness [25]. For practical reasons, we addressed the 45 members of a network of IT
companies in Germany. Fifty additional addressees were available from other contacts.
To expand the circle of respondents and to amplify the customer side, we used contacts
in social networks such as Facebook (approximately 30), Xing (approximately 20), and
Twitter (approximately 50). This ensured that the respondents had experience in

The Fixed-Price Contract 105

different contexts of possible projects. Of the 200 addressees who were requested to
participate in the survey, 29 actually completed the questionnaire (14 suppliers, 5
customers, 9 suppliers and customers (both), and one other).

An independent survey that evaluated the willingness to participate in the survey
suggested a conscientious answering of the questions. A total of 48.3 % of the respond‐
ents indicated that they belong to management and that they have responsibility for the
contracts; 27.6 % are project managers; 6.9 % are employees at the working level; and
17.2 % perform other activities, such as consulting. 89.7 % of the respondents had 10 or
more years of experience with software development projects. The participants repre‐
sented a broad range of sizes of projects with regard to the duration and number of
employees.

For the exemplary and in-depth interviews, we conducted semi-structured expert inter‐
views. We questioned, on the one side, a consultant with experience in software projects
for approximately 15 years. He supports big companies in defining and organizing the
contractual issues of software projects. On the other side, we spoke with a supplier with
experience in software projects for approximately 20 years. He is an owner of a software
development company with 10 programmers. Considering the sensitivity of failure research
and the resulting difficulty in gaining access to project details, this methodology was most
appropriate. The incomplete script of the semi-structured interview format left room for
improvising questions [21]. The first interview lasted approximately 3 h; the second lasted
1.5 h. We made extensive notes during the interviews, which we evaluated afterward
through a qualitative content analysis. Because we demanded appointed circumstances and
facts, we avoided free interpretation problems [12].

3.1 Results from the Online Survey

The survey showed that the proportion of fixed-price contracts for software devel‐
opment projects is extremely high (Fig. 5). Taking into account that even the so-
called agile fixed-price, time-and-material (T&M) price with ceiling ultimately
determines the maximum total budget for the consumer, the proportion of this type
of contract is a total of more than three quarters of the software development
projects. A manager on the side of the supplier added in free text: “Even if it is
charged at T&M, the expectation of the customer is the compliance with the
budget /value of the order.”

Fig. 5. Proportion of different types of contracts on software development projects.

106 C. Gaebert

On the bottom line, the T&M price with ceiling and the agile fixed-price mean the
implementation of the requirements at fixed cost. Often the ceiling does not differ
significantly from the calculated expense. An agile fixed-price, however, allows one to
the implementation of requirements when new requirements emerge. Then, these new
requirements can replace earlier ones. However, such contractual subtleties relate only
to new requirements. A third party (judge) can evaluate them. Nevertheless, this rarely
helps in cases of closing the requirement gaps. Rather, closing gaps only makes uncon‐
scious knowledge aware. For the customer, it appeared typically obvious, whereas it
was unknown to the supplier and vice versa. Filling the gaps makes it known explicitly.

The customers predominantly determine the contract model (Fig. 6). Although 80 %
of the customers indicate that they at least often determine the contract model, suppliers
say quite the opposite. Two-thirds of them admit that they have little or no influence on
the contract model. One comment from a project leader on the supplier side is: “I do not
understand the question. The contract model is in all cases defined by the customer.”
Thus, customers clearly choose the contract design.

Fig. 6. Answer to the question “Do you determine the contract model?”.

Customers and suppliers have different views on emerging problems inside a fixed-
price project, like when an imbalance occurs in terms of time, cost, and quality (Fig. 7).

Fig. 7. Is an imbalance of time, cost, or quality in the project under fixed-price problematic?

The Fixed-Price Contract 107

Although 77 % of the suppliers consider such a situation always or usually as prob‐
lematic, 60 % of the customers believe that this is rarely or almost never a problem for
them.

Against this background, it is important to consider how the contract reflects gaps
in the requirement specifications and how the signed contract supports the project itself.

After all, such gaps lead to increased interaction. Most respondents stated for the
vast number of projects (Fig. 8) that such gaps exist.

Fig. 8. Frequency of requirement gaps.

Almost a third of the respondents said that such gaps “always” happen; 93 % say
that this case occurs at least often. However, a fixed-price contract hardly takes this
sufficiently into account. For suppliers to do this seems hardly to be possible, as the notes
to the relevant questions show. They try to work with a kind of overhead calculation but
requirement gaps “are rarely sufficiently taken into account.”

However, contracts widely do not reflect this fact. On the question, whether contrac‐
tors continuously update the contract during the project, 81 % of participants responded
that this rarely or never happens.

Customers and suppliers have a different perspective regarding whether gaps leading
to unforeseen interaction would be renegotiated (Fig. 9). Although customers are of the

Fig. 9. Renegotiate customer and supplier requirement gaps.

108 C. Gaebert

opinion that this would always or at least often happen, 61 % of the suppliers believe
that there are never or almost never renegotiations.

Two-thirds of all respondents say that gaps in the requirement specifications always
or almost always lead to unplanned discussions. The contract usually does not take into
account the extra costs, which interactions trigger.

3.2 Results from Interviews

We documented the interviews in a structured way with references to each question and
to the paragraph of the answer. In the following, we give a short overview of the results.
In brackets, we note the reference to the minutes of the interviews. For example, (S
Q3A2) references the supplier interview, question 3, answer paragraph 2.

Both interview partners said that the mostly preferred contract model is the fixed-
price contract, especially if the requirements are documented and if they seem to be clear
(C Q3A1, S Q5A2). This is because of the customer’s restriction in having a limited
budget and that customers must calculate the expected benefits against the costs before‐
hand (C Q16A1, (S Q6A1).

Nevertheless, because “it is very seldom that the requirements are specified in a
formal way” (C Q10A1), it is almost impossible to calculate the real costs. In addition,
the supplier stated: “The problem does not come from the fixed-price itself, but from
unclear, incomplete, or changing requirements. And the problem is that the customer is
not willing to change the price if he changes the requirements” (S Q6A3).

The interviews supported the finding from the online survey, that the customers
mostly dominate the contract design (S Q5A2, C Q3A1). Nevertheless, both interview
partners gave hints, that obligations for a cooperating behavior of the customer are
possible in practice (C Q14A4, S Q11A6).

Because the requirement specifications were so important, we asked our interview
partners to explain the reasons for the gaps, the possibilities for dealing with these gaps,
as well as the consequences. Both sides cited the reasons as being “special” or “excep‐
tional use cases” that the experts were not aware of during the requirements analysis or
were too difficult to model (C Q11A1; C Q11A4; S Q10A1). Furthermore, the facts were
“obvious” (C Q11A3) or “self-evident” (S Q10A1) to the business experts, so they did
not speak about them. Nonfunctional requirements were often unknown to the users (S
Q10A1).

Both interview partners showed a high degree of uncertainty regarding the behavior,
intentions, and skills of the other side. Customers try to get certainty beforehand from
information like “descriptions of credential projects, facts about the know-how of their
staff, information about the methods in designing and processing a software project” (C
Q7A1). With “governance structures for the project” (C Q5A1) the customer hopes to
“get at early phases of the project a good feeling of the progress and the quality of the
vendor’s work” (C Q6A1). However, uncertainty remains high: “Nearly nobody can
distinguish the clever, good one from the slow and poor one. And if the vendor mentions
that there are unforeseeable problems, you don’t know if he is right or he is not profes‐
sional enough for doing his job” (C Q16A1).

Regarding the same issue, the interview partner from the supplier side said, “a new
management, problems in his market, new relevant law, and maybe, the customer does

The Fixed-Price Contract 109

not need the software anymore or the costs will be higher than the effects. Then, maybe,
the customer’s management tries to cancel the project” (S Q11A5).

On the customer side, the strategy is to handle all problems in a formal way and to
avoid all discussions regarding effort in narrowing the gaps in the requirements (C
Q11A5; C Q15A1). In contrast, the supplier obviously has strategies of its own, knowing
that the customer cannot see all that the supplier is doing (S Q12A1).

4 Conclusions

The objective of this paper was to describe the software development project as an
interaction between two organizations, both acting as rational agents, both having
economic targets. We have shown that these actors are in a dilemma situation, known
from game theory as the prisoner’s dilemma. In such a situation, the individual rational
behavior of both actors leads to a result that does not satisfy either parties—neither the
customer nor the supplier.

The root cause of this situation is the incompleteness of the requirement specifica‐
tions. As theoretical and empirical investigations show, a specification without gaps is
not possible. Therefore, the parties must cooperate when closing the gaps. Nonetheless,
particularly under the most widely used fixed-price contract, both parties must avoid
efforts in this cooperation.

Certainly, our investigation is not representative. However, our aim was to support
our theoretical findings. As our survey shows, the customer often dominates the contrac‐
tual regulations. In this situation, the customer can avoid the effort in closing the require‐
ment gaps, whereas the supplier is forced to cooperate. As a rational agent, the supplier
will use information asymmetries to save effort by hidden actions. This results in a poorly
developed software system. Based on our two-party model, future research can analyze
the dependencies of asymmetrically distributed information and software quality.

Using the game theory, we can describe the problem, but we can also show the way
out. We can derive from the model the suggestion to connect defection with a sanction,
and therefore change the situation. Defining the obligations for closing the requirement
gaps for both the customer and the supplier within the contract can serve as such a
sanction. We suggest that customers and suppliers agree on clear and tangible obliga‐
tions for the customer regarding the cooperation for filling the gaps in requirement
specifications. These contractual obligations should contain information on the neces‐
sary staff and the time required. Then, if the customer fails to meet these obligations,
the parties may agree on a bonus for the supplier to be offset with possible penalties. In
further research, we can include the theory of incomplete contracts.

Furthermore, we can use the results from research about the prisoner’s dilemma [2].
If both parties are willing and able to cooperate, then it can be rational to start interactions
with cooperation. In this way, both sides need a system to recognize and measure the
behavior of the other party. Because experience is a prerequisite for trust, further
research should examine whether the methods and concepts in the software development
project are suitable for the formation of experience. We can derive such concepts from
approaches of economic theories using the theoretical descriptions of customer and
supplier as rational agents.

110 C. Gaebert

References

1. Al-Ahmad, W., Al-Fagih, K., Khanfar, K., Alsamara, K., Abuleil, S., Abu-Salem, H.: A
taxonomy of an IT project failure: root causes. Int. Manag. Rev. 5(1), 93–104 (2009)

2. Axelrod, R.: Die Evolution der Kooperation, Studienausgabe (7nd edn), München (2009)
3. Beckmann, M., Pies, I.: Freiheit durch Bindung - Zur ökonomischen Logik von

Verhaltenskodizes, Diskussionspapier Nr. 2006-9, Lehrstuhl für Wirtschaftsethik der Martin-
Luther-Universität Halle (2006)

4. Buhl, H.U., Meier, M.C.: Die Verantwortung der Wirtschaftsinformatik bei IT-
Großprojekten. Wirtschaftsinformatik 2, 59–62 (2011)

5. Chua, C.E.H., Lim, W.-K., Soh, C., Sia, S.K.: Client strategies in vendor transition: a threat
balancing perspective. J. Strateg. Inf. Syst. 21(1), 72–83 (2012)

6. Cockburn, A.: The end of software engineering and the start of economic-cooperative gaming.
ComSIS 1(1), 1–32 (2004)

7. El Emam, K., Koru, A.G.: A replicated survey of IT software project failures. IEEE Softw.
25(5), 84–90 (2008)

8. Davis, L.H.: Prisoners, paradox, and rationality. Paradoxes of rationality and cooperation. In:
Campell, R., Sowden, L. (eds.) Prisoner’s Dilemma and Newcomb’s Problem, pp. 46–59.
UBC Press, Vancouver (1985). Reprint of American Philosophical Quarterly 14, 4, 1977,
319–327

9. Dwivedi, Y.K., Ravichandran, K., Williams, M.D., Miller, S., Lal, B., Antony, G.V., Kartik,
M.: IS/IT project failures: a review of the extant literature for deriving a taxonomy of failure
factors. In: Dwivedi, Y.K., Henriksen, H.Z., Wastell, D., De’, R. (eds.) TDIT 2013. IFIP
AICT, vol. 402, pp. 73–88. Springer, Heidelberg (2013)

10. Fink, L., Lichtenstein, Y., Wyss, S.: Ex post adaptations and hybrid contracts in software
development services. Appl. Econ. 45(32), 4533–4544 (2013)

11. Gauthier, D.: Maximization constrained: the rationality of cooperation. Paradoxes of
rationality and cooperation. In: Campell, R., Sowden, L. (eds.) Prisoner’s Dilemma and
Newcomb’s Problem, pp. 75–93. UBC Press, Vancouver (1985)

12. Gläser, J., Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse, 4th edn. VS Verlag,
Wiesbaden (2010)

13. Hazzan, O., Dubinsky, Y.: Social perspective of software development methods: the case of
the prisoner dilemma and extreme programming. In: Baumeister, H., Marchesi, M.,
Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, pp. 74–81. Springer, Heidelberg (2005)

14. Kalnins, A., Mayer, K.J.: Relationships and hybrid contracts: an analysis of contract choice
in information technology. J. Law Econ. Organ. 20(1), 207–229 (2004)

15. Kano, N., Seraku, N., Takahashi, F., Tsuji, S.: Attractive quality and must be quality. Qual.
J. Japan. Soc. Qual. Control 14(2), 39–44 (1984)

16. Keil, M., Smith, H.J., Pawlowski, S., Jin, L.: ‘Why didn’t somebody tell me?’: Climate,
information asymmetry, and bad news about troubled projects. SIGMIS Database 35(2),
65–84 (2004)

17. Klammer, B.: Empirische Sozialforschung. Eine Einführung für
Kommunikationswissenschaftler und Journalisten. Utb, Konstanz (2005)

18. Liu, J.Y.-C., Chen, H.-G., Chen, C.C., Sheu, T.S.: Relationships among interpersonal conflict,
requirements uncertainty, and software project performance (2011)

19. McGee, S., Greer, D.: Towards an understanding of the causes and effects of software
requirements change: two case studies. Requirement Eng. 17, 133–155 (2012)

20. Mayer, H.: Interview und schriftliche Befragung. Entwicklung, Durchführung und
Auswertung. Oldenbourg Wissenschaftsverlag, München (2012)

The Fixed-Price Contract 111

21. Myers, M.D., Newman, M.: The qualitative interview in IS research: examining the craft. Inf.
Organ. 17(1), 2–26 (2007)

22. Natovich, J.: Vendor related risks in IT development: a chronology of an outsourced project
failure. Technol. Anal. Strateg. Manag. 15(4), 409–419 (2003)

23. Oestereich, B.: Der agile Festpreis und andere Preis- und Vertragsmodelle. Objekt-Spektrum
01(2006), 29–33 (2006)

24. Rustagi, S., King, W.R., Kirsch, L.J.: Predictors of formal control usage in IT outsourcing
partnerships. Inf. Syst. Res. 19(2), 126–143 (2008)

25. Schnell, R., Hill, P., Esser, E.: Methoden der Sozialforschung, 9th edn. Oldenbourg
Wissenschaftsverlag, München (2011)

26. Spremann, K.: Asymmetrische Information. ZfB 60(5/6), 561–586 (1990)
27. Standish Group 1995: CHAOS Report. http://www.projectsmart.co.uk/docs/chaos-

report.pdf. Accessed 21 June 2011
28. Standish Group, 2010. CHAOS MANIFESTO, The Laws of Chaos and the CHAOS 100 Best

PM Practices. https://secure.standishgroup.com/reports/reports.php#reports. Accessed 26
June 2011

29. Tollefsen, D.: Organizations as true believers. J. Soc. Philos. 33(3), 395–410 (2002)
30. Tucker, A.W.: Biographie, prisoner’s dilemma (1950). http://www.princeton.edu/pr/

news/95/q1/0126tucker.html
31. Yilmaz, M., O’Connor, R.V., Collins, J.: Improving software development process through

economic mechanism design communications. Comput. Inf. Sci. 99, 177–188 (2010)
32. Zannier, C., Maurer, F.: Comparing decision making in agile and non-agile software

organizations. In: Damiani, E., Concas, G., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol.
4536, pp. 1–8. Springer, Heidelberg (2007)

112 C. Gaebert

http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://www.projectsmart.co.uk/docs/chaos-report.pdf
https://secure.standishgroup.com/reports/reports.php%23reports
http://www.princeton.edu/pr/news/95/q1/0126tucker.html
http://www.princeton.edu/pr/news/95/q1/0126tucker.html

Model Transformation by Example
Driven ATL Transformation Rules

Development Using Model Differences

Joseba A. Agirre(&), Goiuria Sagardui, and Leire Etxeberria

Mondragon Unibertsitatea, MGEP, Mondragon, Spain
{jaagirre,gsagardui,letxeberria}@mondragon.edu

Abstract. The use of Model Driven Development (MDD) approach is
increasing in industry. MDD approach raises the level of abstraction using
models as main artifacts of software engineering processes. The development of
model transformations is a critical step in MDD. Tasks for defining, specifying
and maintaining model transformation rules can be complex in MDD. Model
Transformation By Example (MTBE) approaches have been proposed to ease
the development process of transformation rules. Starting from pairs of example
models the transformation rules are derived semi-automatically.
The aim of our approach is to derive the adaptation operations that must be

implemented in a legacy model transformation to fulfill a new transformation
requirement. An MTBE approach and a tool to develop and evolve ATL
transformation rules have been developed. Our approach derives the transfor-
mations operations automatically using execution traceability data and models
differences. The developed MTBE approach can be applied to evolve legacy
model transformations. The tool can be used with endogenous and exogenous
model to model transformations. The approach has been validated with several
model transformations and the results have been collected. A real case study is
introduced to demonstrate the usefulness of the tool.

Keywords: Model driven development � Model transformation development �
Model transformation by example � Model transformation execution trace �
Model differences

1 Introduction

Model transformations are fundamental in Model Driven Development (MDD).
A model transformation takes input models conforming to the source metamodel and
produces output models conforming to the target meta-model. To express meta-models
and models several tool exist, for example the popular Eclipse Modeling Framework
(EMF). On MDD, a model transformation is specified through a set of transformation
rules, usually using transformation languages such as Atlas Transformation Language
(ATL) [1], QVT [2] or EPSILON [3]. There are two kinds of model transformations:
endogenous and exogenous [4]. Endogenous transformations are transformations
between models expressed with the same meta-model. Exogenous transformations are
transformations between models expressed using different meta-models. Tasks for

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 113–130, 2015.
DOI: 10.1007/978-3-319-25579-8_7

defining, specifying and maintaining transformation rules are usually complex and
critical in MDD.

In order to facilitate the development of transformations rules reuse mechanisms
[5], reusable transformation design patterns [6] and refactoring operations [7] have
been described. Model Transformation By Example (MTBE) [8] approaches have been
proposed to ease the development process of transformation rules. By-example
approaches define transformations using examples models. In MTBE starting from
pairs of example input/output models the transformation rules are derived. Differ-
ent MTBE approaches exists [9]. MTBE approaches for model transformation are
classified in two types (I) demonstration based and (II) correspondences based. Model
transformation by demonstration (MTBD) [10] specifies the desired transformation
using modifications performed on example models. MTBE based on correspondences
uses pairs of input/output models and a mapping data between them to derive the
transformation rules. MTBE approaches allow specifying the model transformation
using models, which is very intuitive. Transformation rules are generated
semi-automatically so the model transformation development process is improved.
Examples models can also be used to test the implemented transformations [9].

Evolving legacy model transformations is a complex task. The aim of the approach
is to reduce maintenance efforts when modifications are required in a model trans-
formation. Our approach is focused on generating semi-automatically transformation
rules from pairs of example input/output models and transformation rules execution
traces (see Fig. 1). The main characteristic of the approach is that it can be used to
evolve legacy model transformations. Models differences, obtained after modifying a
source model and a target model, are the core of the approach. Concretely the expected
output model and the present produced output model, when transformation is executed,
are compared. And adaptations of the transformation implementation are derived.

In this paper, we present a JAVA & EMF tool (TransEvol) for semi-automatic
derivation of ATL model to model transformations to fulfill a new transformation

Fig. 1. Approach for automatic model transformation analysis to derive adaptation operations.

114 J.A. Agirre et al.

requirement. This paper provides the following contributions to the study of MTBE
(I) MTBE approach based on model differences for exogenous and endogenous model
transformations, (II) a MTBE approach applicable to ATL legacy model transforma-
tions and (III) Validation of the usefulness of the approach in a real legacy model
transformation using a tool that we have developed.

In the following sections we detail the solution which guides the implementation of
model transformations. First, in Sect. 2, the legacy model transformation example that
motivated the need for automating the evolution of transformation rules is presented.
Section 3 describes the MTBE approach used for the model transformation develop-
ment. The fourth resumes the results of applying the approach on the motivating
example. Then in Sect. 5 a brief description of the related work is presented. Finally in
Sect. 6 the conclusions and future work are resumed.

2 Legacy Model Transformation Example

In [11] a MDD code generation system is presented. The MDD system generates
ANSI-C code from component-based SW architectures, previously designed in UML.
The MDD system generates the C code in two steps. As in Model Driven Architecture
(MDA) [12] platform independent models (PIM) are transformed into platform specific
models (PSM), and finally the PSM is transformed in code. In our case study, UML
designs are transformed to intermediate models representing ANSI-C code through a
model to model (M2M) transformation. SIMPLEC [13] metamodel is used to represent
a subset of ANSI-C. The exogenous M2M transformation is implemented using ATL
transformation language. Once the SIMPLEC models are obtained, a model to text
(M2T) transformation is applied to SIMPLEC models to generate ANSI-C code.
XPAND2 based templates are used to generate the output source code. Figure 2
resumes the example MDD code generation system.

The M2M transformation is composed by 8 ATL modules with 73 transformation
rules and 44 helper functions. The M2T transformation has 31 templates to generate the
ANSI-C code from SIMPLE-C models. Originally, the MDD system of the case study

Fig. 2. UML to C MDD code generation system.

Model Transformation by Example Driven ATL Transformation Rules 115

did not offer concurrency characteristics at the design model and at the generated code.
At one point, to add concurrency capabilities was required. This kind of situation is
defined as abstraction evolution [14]. In abstraction evolution new domain concepts
must be added to the MDD system, so several artifacts of the MDD system are affected.
In this case, the source metamodel (UML) does not support the abstractions required to
offer concurrency, so it is necessary to extend the metamodel or to add a new
metamodel.

The UML MARTE (Modeling and Analysis of Real-Time and Embedded Systems)
[15] profile was selected to add concurrency concepts in the design models. MARTE
profile is an UML extension that provides support for specification, design, and veri-
fication of real time and embedded systems in UML. Due to the division of the
generation in two stages the M2T transformation and the SIMPLEC metamodel did not
require any change. Obviously, the source metamodel extension implies a co-evolution
of the M2M transformation. The only documentation available about the M2M
transformation was a few input models, so an exhaustive navigation was required to
adapt manually the complex M2M transformation.

Our approach is based on defining the desired transformation by editing a previous
input model and demonstrating the changes in transformations that lead to a target
model. To relate the differences to a legacy model transformation an execution trace
data is required. Combining the example models data with the transformation execution
trace data the adaptation operations that must be implemented in the legacy model
transformations are derived automatically (see Fig. 1). This way the development time
is reduced and the probability to incur in errors is reduced. A JAVA & EMF tool has
been developed to deduce automatically the adaptation operations on ATL transfor-
mation rules. The tool implements an algorithm to derive adaptation operations using
model differences and execution trace data. A metamodel to express adaptation oper-
ations on transformation rules has been defined.

3 Outputs Models Differences Driven Model Transformation
Analysis

The aim of the approach is to derive the adaptation operations that must be imple-
mented in a legacy model transformation to fulfill a new requirement. Starting from
pairs of example input/output models the tool deduces a number of adaptations in the
transformation. The transformation analysis process consists of the following phases
(see Fig. 1):

1. Adapt manually a previous input model to add the new requirement and obtain the
differential model between both models (For example, the addition of a
UML MARTE task model to express the concurrency).

2. Adapt manually a previous output model to add the requirement and obtain the
differential model between the both models (For example, adding SIMPLEC ele-
ments that represent the implementation of the designed task model).

3. Obtain the traceability between the previous design model, the generated output
model and the transformation rules. ATL2Trace [30] Higher Order Transformation

116 J.A. Agirre et al.

(HOT) is applied to the transformation under development to obtain the execution
trace.

4. Deduce the adaptations to be made in the transformation rules to fulfill the new
5. transformation requirement using TransEvol.
6. Execute a higher order transformation to semi-automatically adapt the transfor-

mation rules.
7. Manually finish the transformation rules implementation.
8. Validate the transformation implementation using the manually generated input and

output model.

Figures 3, 4 and 5 show an example of the artifacts that take part in the analysis
process. Some details of the case study have been omitted in the interest of improving
the understandability. First, the input model is modified manually to add a task model
with three periodic tasks to the example design (see Fig. 3). To specify the model
transformation the output model must be modified to integrate the SIMPLEC elements
that correspond to the designed task model. Three new methods are added to the output
model (see Fig. 4). Using this information, the approach detects a one-to-one mapping
and a new matched rule must be generated. To bind the new output elements with its
container element a binding statement also must be created in the rule that generates the
container. Figure 5 lists the resulting transformation rules.

The transformation rules analysis tool, TransEvol, relates EMFDiff [16] differences
types of the output models to adaptation operations to apply on the model transfor-
mation. The tool implements an algorithm that derives adaptation operations from the
difference model between a model generated by the M2M transformation (GOm,
Generated output model) and an expected output model (EOm)). This difference model
is called Output models differential (ΔOm = EOm − GOm) and is generated using
EMFCompare [17] and conforms to EMFDiff metamodel. The EMFDiff metamodel
types used to analyze the model transformation are: addition of an element
(ModelElementChangeLeft), removal of an element (ModelElementChangeRight),

Fig. 3. The task model aggregated to the example design model.

Model Transformation by Example Driven ATL Transformation Rules 117

change of an element container (MoveModelElement), addition of an attribute
(AttributeChangeLeftTarget), addition of a reference (ReferenceChangeLeftTarget),
modification of a reference (UpdateReference) and modification of an attribute
(UpdateAttribute). The EMFDiff differences offer basically the data of the new element,
the deleted or updated element, the element affected by the change and the container of
the new element.

3.1 Specifying Adaptation Operation for the Transformation Rules

TransEvol tool uses a metamodel called MMRuleAdaptation (Fig. 6) to express the
required adaptation operations for the transformation rules. The transformation rules

Fig. 4. The output model differences due to the task model.

Fig. 5. The required adaptation operations for the model transformation to integrate the task
model concepts.

118 J.A. Agirre et al.

are subject to the following refinement modifications: addRule, splitRule, deleteRule,
deleteOutputPatternElement, deleteBinding, addInputPatternElement addOutputPat-
ternElement, addBinding, moveOutputPatternElement, moveBinding, updateBinding,
UpdateFilter and UpdateSource. After the analysis, the tool generates a model
expressing the required adaptation. Any modification operation is defined as an
AdaptationTarget. Each adaptation target has a set of adaptation operations. Each
adaptation operation requires different information to specify the modification, see
Table 1. The metamodel uses ATL metamodel elements to express the data related to
each modification operation. Table 1 collects the data required to express each adap-
tation operation.

3.2 Relationship Between EMFDiff Difference Types and Adaptation
Operations

The tool relates EMFDiff differences types of the output models with adaptation
operations. Table 2 resumes the relation between EMFDiff types and adaptation
operations. Not always the same difference type instance is related to the same adap-
tation operation.

The algorithm first takes a difference element of the ΔOm and decides which kind
of difference is:

1. Addition of output model elements
2. Removal of an output model element
3. Change of an element container
4. Addition and modification of attributes
5. Addition and modification of references

Once the type of the difference is decided, the algorithm must deduce the modi-
fication that must be applied to the model transformation. Depending on the scenario of
the model transformation the adaptation operation for an output EMFDiff difference
type may be slightly different. For example when some elements are added to the
output model (ΔOm > 0) a matched rule, a lazy rule or an output pattern element must

Fig. 6. MMRuleAdaptation metamodel.

Model Transformation by Example Driven ATL Transformation Rules 119

be added, and also a binding must be created to associate the new element with a
previously created model element. The addition of an output model element can be due
to a one-to-one mapping, one-to-many mapping (different output elements types),
one-to-many mapping (same output elements type) or many-to-many mapping.
Depending on the scenario of the element addition the adaptation operations vary. To
select the scenario the tool uses the ΔOm, ΔIm, ΔImc and ΔOmc models data.

Addition of Elements: One-to-One Mapping Scenario. The conditions to detect a
one-to-one mapping scenario are: (I) The number of ModelElementChangeLeft in the
ΔIm and the ΔOm is equal to 1, (II) the metamodel class coverage increment for the
input and output metamodel must be 1. This scenario requires a new matched rule. The
adaptation operation of adding a new matched rule is compound by a new rule and a
binding. The data required to define the new matched rule is the Input Pattern element,
the output pattern element and the rule name. The input pattern element is the type of
any of the added element of the ΔIm model. The output pattern element is the type of
one of the added element of the ΔOm. The rule name is the concatenation of both types.
To create the binding that relates the new target element to its container the rule that

Table 1. MMAdapatationRule metamodel’s adaptation operations.

Adaptation operation Required data

Add Rule newRule: ATL!Rule
relatedBinding: MMRuleAdaptation!AddBinding

Add MatchedRule
(extends addRule)

newRule: ATL!Rule
relatedBinding: MMRuleAdaptation!AddBinding

Add LazyRule
(extends addRule)

newRule: ATL!Rule
relatedBinding : MMRuleAdaptation!AddBinding

Split Rule affectedRule: ATL!Rule
newRule: MMRuleAdaptation!AddRule

Add Binding
(extends BindingOperation)

affectedRule: ATL!Rule
newBinding : ATL!Binding

Remove Binding
(extends BindingOperation)

affectedRule: ATL!Rule
affectedBinding: ATL!Binding

Update Binding
(extends BindingOperation)

affectedRule: ATL!Rule
affectedBinding: ATL!Binding
newValue:OCL!OclExpression

Move Binding
(extends BindingOperation)

affectedRule: ATL!Rule
toRule: ATL!Rule
binding: ATL!Binding

Add filter to input pattern newFilter: OCL!OclExpression
affectedRule: ATL!Rule

Add input pattern element affectedRule: ATL!Rule
newInput:ATL!InputPatternElement

Add output pattern elemen affectedRule: ATL!Rule
outputPattern: ATL!OutputPatternElement

Delete out pattern element affectedRule: ATL!Rule
outputPattern: ATL!OutputPatternElement

120 J.A. Agirre et al.

created the container element must be searched. To search the rule that creates the
container the execution traceability data is used. Once the affected rule is founded the
binding statement is established.

Addition of Elements: One-to-Many Mapping Scenario. The second kind of sce-
nario is related to one-to-many mappings. This kind of scenarios requires the creation
of a new output pattern element or a new lazy rule. If different types of target elements
are created new output pattern elements are added to a rule. If instances of the same
type are created for an input element type lazy rules are required. The transformation
examples can be specified differently, Table 3 resumes one-to-many scenarios that the
algorithm detects.

Addition of Elements: Many-to-Many Mapping Scenario. Many-to-many scenario
is defined when a set of elements are added and both ΔImc and ΔOmc are higher than
one. Two strategies can apply to this scenario. The first strategy is to specify the
transformation example with a set of one-to-many mapping examples, where ΔImc is
equal to 1 in each step. When ΔImc is greater than 1 the algorithm must align input
elements with output elements using the similarity of its properties values. In those
cases false positives adaptation operations can be deduced. For those cases a warning
message is used. That way the transformation rules developers can analyze the adap-
tation operation model proposal and change it manually.

Removal of an Output Model Element. Two removal scenarios are detected by the
algorithm. A matched rule is removed when ΔOmc = −1. The other scenario occurs
when ΔOmc = 0 and some ModelElementChangeRight appears (see Table 4). This
scenario requires a filtering operation in the input pattern element. In both cases the

Table 2. Relationship between EMFDiff metamodel types and adaptation operations for model
transformations.

EMFDiff difference type
EMFDiff type descrip-

tion
Adaptation operations

ModelElement
ChangeLeft

Addition of an element
Add matched rule and add
binding
Add lazy rule and add binding

ModelElement
ChangeRight

Removal of an element
Add filter
Remove rule

MoveModelElement Change of container
Split rule and modify binding
Move binding

ReferenceChange
LeftTarget

Addition of a reference Add binding

UpdateReference
Update of a reference
value

Update binding
Add input pattern

AttributeChange
LeftTarget

Addition of an attribute
value

AddBinding

UpdateAttribute
Modification of an
attribute value

Add binding
Update binding
Add input pattern

Model Transformation by Example Driven ATL Transformation Rules 121

affected rule is founded searching in the execution trace the rule that generates the
removed elements.

Change of an Element Container. Sometimes without any modification in the input
models (ΔImc = 1 and ΔIm = 0) the model transformation evolves and requires to

Table 3. One-to-many mapping scenarios.

Previous transformation Desired transformation
Scenario

data
Adaptation
operation

ΔIm = 0
ΔOm = N
ΔImc=0

ΔOmc = 1

Add output
pattern element

ΔIm < ΔOm
ΔImc=1

ΔOmc = N

Add matched
rule with

multiple output
pattern

elements

ΔIm < ΔOm
ΔImc=1

ΔOmc = N

Add matched
Rule with multi-
ple output pattern

elements

ΔIm < ΔOm
ΔImc=1

ΔOmc = 1

Add matched
rule

Add Lazy rule

ΔIm < ΔOm
ΔImc=0

ΔOmc = 0
Add Lazy rule

Legend:
Arrow: Transformation
Geometric shapes (left side of the arrow): Elements of the input model
Geometric shapes (right side of the arrow): Elements of the Output model

Table 4. Removing output elements.

Previous transformation Expected transformation

Legend:
Arrow: Transformation
Geometric shapes (left side of the arrow): Elements of the input model
Geometric shapes (right side of the arrow): Elements of the Output model

122 J.A. Agirre et al.

change the instance of the container of an output element or even the container type.
Both scenarios are detected by the algorithm. The first scenario involves a split rule
operation. To split the affected rule a copy of the rule is done but filtering is added to
the input pattern and a binding must be modified. When the type of the container
changes a binding must be deleted in the rule that created the previous container and a
binding must be added in the rule that created the desired container. To search those
affected rules the execution trace of the previously executed transformation is used.

Addition and Modification of Attributes or References. The operations related to
these scenarios are modification of a binding or an addition of a binding. In these cases,
the execution trace is used to search the affected rule. The information of the output
elements that have the difference (Updateattribute, UpdateReference, Refer-
enceChangeLeftElement and AttributeChangeLeftElement) is used to search the
affected rule in the traceability data and to define the binding statement.

The Algorithm: Summary. Using the differences models and the traceability infor-
mation the analysis of the transformation can be done. The difference model is based on
model elements and not on metamodel elements, so several differences may be referred
to the same change to be made in the transformation rules. We therefore must filter the
adaptation operations to obtain the final adaptation operation model. Figure 7 repre-
sents a simplification of the algorithm.

Fig. 7. Algorithm for adaptation operations deduction.

Model Transformation by Example Driven ATL Transformation Rules 123

4 Implementing the Adaptation Operations

Once the adaptation operations model is generated the last step is to implement and
validate the adaptation operations applied to the transformation rules. A HOT has been
implemented to perform automatically the adaptation operations on the ATL module.
The HOT takes as input the ATL module and the adaptation model. Despite the tool
can detect the listed operations actually the HOT only implements addRule,
addBinding, splitRrule and addFilter. The operations that are not executed by the HOT
must be implemented manually. Once the transformation rules are adapted the new
input model and the desired output models are used to validate the implementation of
the transformation rule.

5 Validation of the Approach

During the development of the tool 8 small model transformations were used to val-
idate the detection and generation of the different adaptation operations. Those
examples are toy examples taken from the ATL Zoo. Two of them were endogenous
transformations and others were exogenous. The used endogenous transformations
were model refinements: the flattening of state machines and the introduction of the
bridge design pattern on UML class diagrams. The Table 5 resumes the results obtained
in each case study. Each case study is defined by its initial dimension (number of rules
and helpers), the induced adaptation operations and the number of iterations (how
many differential models were required) used to finish the transformation. In all the
case studies, except in UML2ANSIC, the increase of input meta-classes were 0 or 1 in
each iteration.

All the exogenous transformations, except one, were developed from scratch. So a
legacy model transformation was required to test the approach in a more real context.
For a first validation of the tool in a real context the case study presented in Sect. 2, a
model transformation from UML to SIMPLEC, was chosen. Following the result of
applying the tool to the UML to SIMPLEC case study will be shown. Then the threats
to the validity are listed.

5.1 Applying the Tool to the Case Study

In this subsection, results from applying the tool to the M2M transformation that
generates SIMPLEC models, representing C source code, from UML SW designs, is
presented. The M2M transformation is implemented in ATL. The M2M transformation
is performed incrementally by superimposition mechanism of ATL [18]. The new
requirement was to add concurrency capabilities to the generated code. As presented
before, to achieve this objective, UML MARTE profile was selected and the complex
M2M transformation (8 files, 40 matched rules, 30 lazy rules and 44 helper functions)
required some changes.

To apply the tool a previously used UML design was selected: a UML design of an
automatic door controller without concurrency. The M2M transformation was executed

124 J.A. Agirre et al.

to generate the output model. Also the transformation execution trace model was
generated. To start with the analysis, using UML MARTE a task model was added to
the automatic door controller design. The API selected to express concurrency was a
bare-metal API similar to FreeRTOS API. On the next step, the expected target output
model with concurrency was created changing manually the generated output model.
Finally, the difference models between the original and the incremented models were
generated using EMFCompare Tool. A total of 13 differences were detected between
the input models and 12 differences were detected on the output models.

Instead of specifying all the differences in one step the transformation example was
divided in two steps. (I) the platform provider, the concurrency API, was specified as
MARTE describes, (II) the task model was designed and each task was related to its
behavior.

Table 5. Case studies results.

Model
transformation

Type Dimension Derived adaptation
operations

Number of
iterations

UML to
ANSI-C

Exogenous 40
matched
rules

30 lazy
rules

33 helper

3 add matched rules (with
its bindings)

1 add lazy rule (with its
bindings)

4 add bindings

2

StateMachine
to flattened

Endogenous 7 matched
rules

2 add filter to input pattern
(negative condition)

1 split rule (with its filter
pattern)

2 update binding
2 add lazy rules(with its
bindings)

1 add binding

4

ListMetamodel
Refactoring

Exogenous 0 2 add matched rule 2

Bridge pattern Endogenous 8 matched
rules

1 split rule (with add filter)
1 update binding

1

Families to
person

Exogenous 0 1 add matched rule
1 split rule
1 add filter

3

Tree to Node Exogenous 0 2 add matched rules
1 add filter to input pattern

1

TreeToList Exogenous 0 2 add matched rules
1 add filter to input pattern

3

Port example Exogenous 0 2 add matched rules
1 split rule (with the filters)

3

Side effect
example

Exogenous 0 1 addition input pattern
3 add matches rules (with
the bindings)

4

Model Transformation by Example Driven ATL Transformation Rules 125

In the first step, the concurrency API model (two functions: addTask and schedule)
was defined using MARTE stereotypes in the design model and a header with the API
definition was added to the output model. The scenario was: ΔImc = 3, ΔOmc = 0,
ΔIm = 4 and ΔOm = 3. Three one-to-one mappings were detected, so three matched
rules were deduced in this step: (I) the generation of the header of the API model
(II) the addTask function and (III) the schedule function.

The second step requires the creation of the task model. And also the assignment of
the behavior to each task. In this case the scenario was: ΔImc = 3, ΔOmc = 0, ΔIm = 10
and ΔOm = 10. Seven of the ΔOm differences were ReferenceChangeLeftTarget type.
The remaining three differences were addition of output elements. The adaptation
operations deduced were four addBinding operations, that affected legacy transfor-
mation rules, and two addMatchedRule due to two one-to-many mappings detected.
The models and the result corresponding to the task model can be seen in Figs. 3, 4,
and 5.

When the tool derives add rule operations also a binding statement to attach the
new elements with the container is derived. In those cases, the binding statement
expression is implemented by a helper function. The tool generates the helper header
definition and the call statement. The algorithm of the helper functions is completed
manually.

The final model transformation implementation was validated applying the trans-
formation to the new design model and comparing the new generated model with the
expected model. All the deduced adaptation operations were correct. To apply the tool
it is enough knowing the changes that are necessary in the M2M transformation input
and output models. Previous knowledge of the model transformation implementation is
not required, so the time required to adapt the M2M transformation is reduced.

5.2 Threats to Validity

The proposed case study is a real system and thus do not consider a certain number of
factors that could affect the validation of the method:

• Correctness: Although initial case study show promising results, as all the trans-
formation rules have been correctly identified, algorithm should be proved in more
complex and different examples to improve the coverage of the validation.

• Scalability: The selected case study has legacy transformations (8 files, 40 matches
rules, 30 lazy rules and 44 helper functions) and we deployed 13 differences in input
models and 12 differences in output models. Although the case study is a real
system, validation with bigger case studies is required.

• Negative Construction: the algorithm supports the remove matched rule operation
and the add filter operation. In this real case study there are not negative con-
structions. However, the negative constructions have been proved with toy exam-
ples during the development of the tool.

• Many to Many Mappings: In the case study there are not many to many mappings.
At present the tool can detect many to many mappings. However some ambiguities
occurs generating the adaptation operations using the tool. To deal with many to

126 J.A. Agirre et al.

many mappings the transformation must be specified with a set of one to many
mapping examples.

6 Related Work

The presented approach is highly related to MTBE. There are previous MTBE
approaches which already deal with automatic generation of model transformations
starting from pairs of example models. Most of the approaches are based on formal
mapping to derive the transformations [19]. Reference [20] approach uses correspon-
dence model between input and output model to generate ATL transformation rules.
Instead offering a mapping model [21] annotates with extra information the source
metamodel and the target metamodel to derive the required ATL transformation rules.
Our approach also creates ATL transformation rules but a mapping between the desired
input and output model or extra information besides the models differentials is not
required.

In [22] a genetic programming based approach to derive model transformation rules
(implemented with JESS) from input/output models is presented. This approach does
not require fine-grained transformation traces. But due to the nature of the search
algorithm the approach cannot be used to evolve a legacy model to model transfor-
mation. Something similar occurs with [23] where a heuristic algorithm is used to
generate a new transformed model by similarity with other transformation example
models. This approach is a self-tuning transformation so it cannot be used with legacy
model transformations.

MTBD are based on defining the desired transformation by editing a source model
and demonstrating the changes that evolve to a target model. Most of the MTBD are
used on endogenous model transformation [24] not as MTBE based on correspon-
dences, which can be used with exogenous transformations. Reference [25] presents a
MTBD approach that can be applied to exogenous model transformation. This
approach uses a state-based comparison to determine the executed modification
operations after modeling the desired transformation. Using an incremental approach,
in each step using a small transformation rule demonstration, internal templates rep-
resenting the transformation rules are created. Once all the steps are done the templates
are transformed to ATL transformation rules. This approach offers an interactive step
where the developer can annotate the templates prior to generate the ATL rules to add
information about the matching strategies. Because the approach uses templates created
by transformation rules demonstrations it is not easy to apply this approach to legacy
model transformations. Negative application conditions as well as many-to-one attri-
bute correspondences are not considered. Our approach derives the transformations
operations automatically using execution traceability data and models differences. This
way the approach can be used to evolve legacy model transformations.

Most example-based approaches are constructive, that is, the new information
always imply adding new elements to the artifact (a transformation in this case).
Deleting is more complex. The presented approach can deal with negative
constructions.

Model Transformation by Example Driven ATL Transformation Rules 127

Metamodel and transformation co-evolution solution also exists. In [26] input
metamodel differences are used to derive the evolution on the transformation rules. In
[27] weaving between metamodels and transformation rules is used to analyze the
impact on the transformation rules due to input metamodel evolution. These works only
derives the modification on the transformation rules when regular metamodel evolu-
tion, as attribute modification or metaclass rename, occurs. When new elements on the
input metamodel appear, the approach cannot derive the transformation rules.

Most of the MTBE cannot be applied to legacy model transformations. The main
contribution of our MTBE approach is that it can be applied to evolve ATL legacy
model transformations. Our approach can be applied to both exogenous and endoge-
nous model transformations. We also have validated our approach in a real case study.

7 Conclusions and Future Work

An MTBE approach and a tool to evolve ATL transformation have been presented.
A metamodel for expressing adaptation operations for transformation rules and the
algorithm to derive the adaptation operations for M2M transformations have been
described. The tool has been used successfully for adapting exogenous legacy model
transformations to new transformation requirements. The tool generates
semi-automatically adaptation operations for ATL transformation rules. The helpers
used in the binding statements are only defined and called. The implementation of the
helper functions must be done manually. The algorithm used to derive adaptation
operation and the metamodel used to express the operations can be used to express
operations for transformation languages such as QVT or EPSILON. The tool may
require some changes to work with other transformation languages execution traces and
also a new HOT, must be implemented for each transformation language.

The algorithm can detect one-to-one, one-to-many and many to many mappings.
Negative construction examples are also detected. Actually the derivation of many to
many and many to one mapping requires manual intervention. The tool uses output
models differentials and execution trace data. In [28] the same data is used to locate the
implementation errors in transformation rules implemented with EPSILON. The tool
can be used with that orientation but must be analyzed how.

Once the functionality of the tool has been tested with small examples and a
medium real legacy system, more validation on scalability and correctness are required.
Currently, we are working on the definition of a methodology for the specification of
correct example models. In short-term the tool is going to be used in a legacy model
transformation to aggregate some security requirements to the output models as in [29].

Acknowledgements. This work has been developed in the DA2SEC project and UE2014-12
AURE project context funded by the Department of Education, Universities and Research of the
Basque Government. The work has been developed by the embedded system group supported by
the Department of Education, Universities and Research of the Basque Government.

128 J.A. Agirre et al.

References

1. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci.
Comput. Program. 72(1–2), 31–39 (2008)

2. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Query/View/
Transformation (QVT) Specification, version 1.1 (2011)

3. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language. In: Gray,
J., Vallecillo, A., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60. Springer,
Heidelberg (2008)

4. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

5. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W.:
Fact or fiction – reuse in rule-based model-to-model transformation languages. In: Hu, Z.,
de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 280–295. Springer, Heidelberg (2012)

6. Iacob, M.E., Steen, M.W., Heerink, L.: Reusable model transformation patterns. In: 2008
12th Enterprise Distributed Object Computing Conference Workshops, pp. 1–10. IEEE
(2008)

7. Wimmer, M., Perez, S.M., Jouault, F., Cabot, J.: A catalogue of refactorings for
model-to-model transformations. J. Object Technol. 11(2), 21–40 (2012)

8. Varró, D.: Model transformation by example. In: Whittle, J., Reggio, G., Harel, D., Wang,
J. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer, Heidelberg (2006)

9. Kappel, G., Langer, P., Wimmer, M., Retschitzegger, W., Schwinger, W.: Model
transformation by-example: a survey of the first wave. In: Düsterhöft, A., Klettke, M.,
Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations. LNCS, vol.
7260, pp. 197–215. Springer, Heidelberg (2012)

10. White, J., Gray, J., Sun, Y.: Model transformation by demonstration. In: Selic, B., Schürr, A.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Heidelberg (2009)

11. Agirre, J., Sagardui, G., Etxeberria, L.: A flexible model driven software development
process for component based embedded control systems. In: III Jornadas de Computación
Empotradas JCE, SARTECO (2012)

12. Mellor, S.J.: MDA Distilled: Principles of Model-Driven Architecture. Addison-Wesley
Professional, Boston (2004)

13. Agirre J., Sagardui, G., Etxeberria, L.: Plataforma DSDM para la Generación de Software
Basado en Componentes en Entornos Empotrados. In: JISBD, pp. 7–15 (2010)

14. Van Deursen, A., Visser, E., Warmer, J.: Model-driven software evolution: A research
agenda. In: Proceedings of International Workshop on Model-Driven Software Evolution
(MoDSE), ECSMR 2007 (2007)

15. Object Management Group (OMG): Modeling and analysis of real-time and embedded
systems (MARTE), version 1.0 (2009). http://www.omg.org/spec/MARTE/1.0/

16. Toulmé, A.: Presentation of EMF compare utility. In: Eclipse Modeling Symposium (2006)
17. Brun, C., Pierantonio, A.: Model differences in the Eclipse modelling framework. In: EJIP

(2008)
18. Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module superimposition: a composition

technique for rule-based model transformation languages. Softw. Syst. Model. 9(3), 285–
309 (2009)

19. Balogh, Z., Varró, D.: Model transformation by example using inductive logic
programming. Softw. Syst. Model. 8(3), 347–364 (2009)

Model Transformation by Example Driven ATL Transformation Rules 129

http://www.omg.org/spec/MARTE/1.0/

20. Strommer, M., Wimmer, M.: A framework for model transformation by-example: Concepts
and tool support. In: Paige, R.F., Meyer, B. (eds.) Objects, Components, Models and
Patterns. LNBIP, vol. 11, pp. 372–391. Springer, Heidelberg (2008)

21. García-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model transformation
by-example: an algorithm for generating many-to-many transformation rules in several
model transformation languages. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 52–
66. Springer, Heidelberg (2009)

22. Faunes, M., Sahraoui, H., Boukadoum, M.: Genetic-programming approach to learn model
transformation rules from examples. In: Kappel, G., Duddy, K. (eds.) ICMB 2013. LNCS,
vol. 7909, pp. 17–32. Springer, Heidelberg (2013)

23. Kessentini, M., Sahraoui, H., Boukadoum, M., Omar, O.B.: Search-based model
transformation by example. Softw. Syst. Model. 11(2), 209–226 (2012)

24. Sun, Y., Gray, J.: End-user support for debugging demonstration-based model
transformation execution. In: Van Gorp, P., Ritter, T., Rose, L.M. (eds.) ECMFA 2013.
LNCS, vol. 7949, pp. 86–100. Springer, Heidelberg (2013)

25. Wimmer, M., Langer, P., Kappel, G.: Model-to-model transformations by demonstration. In:
Gogolla, M., Tratt, L. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 153–167. Springer,
Heidelberg (2010)

26. Levy, F., Muniz, P.: Applying MTBE manually: a method and an example. In:
MDEBE@MoDELS (2013)

27. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel evolution
in MDE. J. Object Technol. 11(3), 31–33 (2012)

28. Matragkas, N., Kolovos, D., Paige, R., Zolotas, A.: A traceability-driven approach to model
transformation testing. In: AMT@MoDELS (2013)

29. Sun, Y., Gray, J., Delamare, R., Baudry, B., White, J.: Automating the maintenance of
nonfunctional system properties using demonstration-based model transformation. J. Softw.
Evol. Process 25(12), 1335–1356 (2013)

30. Joault, F.: Loosely coupled traceability for ATL. In: Proceedings of the European
Conference on Model Driven Architecture Workshop on Traceability, ECMDA (2005)

130 J.A. Agirre et al.

Mining Web Server Logs for Creating
Workload Models

Fredrik Abbors(B), Dragos Truscan, and Tanwir Ahmad

Åbo Akademi University, Joukahaisenkatu 3-5 A, Turku, Finland
{fredrik.abbors,dragos.truscan,tanwir.ahmad}@abo.fi

Abstract. We present a tool-supported approach where we used data
mining techniques for automatically inferring workload models from his-
torical web access log data. The workload models are represented as
Probabilistic Timed Automata (PTA) and describe how users interact
with the system. Via their stochastic nature, PTAs have more advan-
tages over traditional approaches which simply playback scripted or pre-
recorded traces: they are easier to create and maintain and achieve higher
coverage of the tested application. The purpose of these models is to
mimic real-user behavior as closely as possible when generating load. To
show the validity and applicability of our proposed approach, we present
a few experiments. The results show, that the workload models automat-
ically derived from web server logs are able to generate similar load with
the one applied by real-users on the system and that they can be used
as the starting point for performance testing process.

Keywords: Workload model generation · Log file analysis · Perfor-
mance testing · Probabilistic timed automata

1 Introduction

The primary idea in performance testing is to establish how well a system per-
forms in terms of responsiveness, stability, resource utilization, etc., under a given
synthetic workload. The synthetic workload is usually generated from some kind
of workload profile either on-the-fly or pre-generated. However, Ferrari states
that synthetic workload should mimic the expected workload as closely as pos-
sible [1], otherwise it is not possible to draw any reliable conclusions from the
results. This means that if load is generated from a workload model, then the
model must represent the real-world user behavior as closely as possible. In addi-
tion, Jain points out that one of the most common mistakes in load testing is
the use of unrepresentative load [2].

There already exists a broad range of well established web analytics soft-
ware both as open source (Analog, AWStats, Webalyzer), proprietary (Sawmill,
NetInsight, Urchin), as well as web hosted ones (Google Analytics, Analyzer,
Insight). All these tools have different pricing models and range from free up to
several hundred euros per month. These tools provide all kinds of information
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 131–150, 2015.
DOI: 10.1007/978-3-319-25579-8 8

132 F. Abbors et al.

regarding the user clients, different statistics, daily number of visitors, average
site hits, etc. Some tools can even visualize navigation paths that visitors take
on the site. However, this usually requires a high-priced premium subscription.
What the above tools do not provide is a deeper classification of the users or
even a artefact that can directly be used for load testing. Such an artefact, based
on real user data, would be the ideal source for generating synthetic load in a
performance testing environment. Instead, the performance tester have to inter-
pret the provided information and build his own artefact, from where load is
generated. Automatically creating this artefact would also significantly speed
up the performance testing process by removing the need of manual labour, and
thus saving time and money.

This paper investigates an approach for automatically creating workload
models from web server log data. More specifically, we are targeting HTTP-
based systems with RESTful [3] interfaces. The proposed approach uses the
K-means algorithm to classify users into groups based on the requested resources
and, subsequently, a probabilistic workload model is automatically built for each
group.

The presented approach and its tool support integrate with our performance
testing process using the MBPeT [4] tool. The MBPeT tool generates load in
real-time by executing the workload models in parallel. The parallel execution
is meant to simulate the concurrent nature of normal web requests coming from
real-world users. The tool itself has a distributed master/slave architecture which
makes it suitable for cloud environments. However, the approach proposed in this
paper can be used independently for analyzing and classifying the usage of a
web site.

The rest of the paper is structured as follow: In Sect. 2, we give an overview
of the related work. In Sect. 3, we present our performance testing process and
tool chain in which we integrate our approach. Section 4 describes the approach,
whereas, in Sect. 5, we present tool support. Section 6 shows our approach applied
on a real-world example. In Sect. 7, we demonstrate the validity of our work with
several experiments. Finally, in Sect. 8, we present conclusions and discuss future
work.

2 Related Work

Load testing is still often done manually by specifying load scripts that describe
the user behavior in terms of a subprogram [5,6]. The subprogram is then run
for each virtual user, possibly with the data being pre-generated or randomly
generated. With regard to the data, these types of approaches exhibit a certain
degree of randomization. However, the behavior of each virtual user is mainly
a repetition of pre-defined traces. Most of these approaches are prone to errors
due to much manual work and lack of abstraction that stochastic models offer.
However, the question: “How to create a realistic stochastic performance model?”
remains.

There exists a plethora of tools on the market that can analyze HTTP-based
logs and provide the user with statistical information and graphs regarding the

Mining Web Server Logs for Creating Workload Models 133

system. Some tools might even offer the user with common and reoccurring pat-
terns. However, to the best of our knowledge, there is no web analytics software
that will create a stochastic model from log data.

Kathuria et al. proposed an approach for clustering users into groups based
on the intent of the web query or the search string [7]. The authors divide the
user intent into three categories: navigational, informational, and transactional.
The proposed approach clusters web queries into one of the three categories
based on a K-means algorithm. Our approach differs from this one in the sense
that we cluster the users by their behavior by looking at the request pattern and
accessed resources, whereas in their approach, the authors cluster users based
on the intent or meaning behind the web query.

Vaarandi [8] proposes a Simple Logfile Clustering Tool consequently called
SLCT. SLCT uses a clustering algorithm that detects frequent patterns in sys-
tem event logs. The event logs typically contain log data in various formats
from a wide range of devices, such as printers, scanners, routers, etc. The tool
automatically detects common patterns in the structure of the event log. The
approach is using data mining and clustering techniques to detect normal and
anomalous log file lines. The approach is different from ours in the sense that we
assume that the logging format is known and we build a stochastic model that
can be used for performance testing from common patterns found in the log.

Shi [9] presents an approach for clustering user interest in web pages using
the K-means algorithm. The author uses fuzzy linguistic variables to describe
the time duration that users spend on web pages. The final user classification
is then done using the K-means algorithm based on the time the users spend
on each page. This research is different from ours in the sense that we are not
classifying users based on the amount of time they spend on a web page but
rather on their access pattern.

The solutions proposed by Mannila et al. [10] and Ma and Hellerstein [11] are
targeted towards discovering temporal patterns from event logs using data min-
ing techniques and various association rules. Both approaches assume a common
logging format. Although association rules algorithms are powerful in detecting
temporal associations between events, they do not focus on user classification
and workload modeling for performance testing.

Another approach is presented by Anastasiou and Knottenbelt [12]. Here,
the authors propose a tool, PEPPERCORN, that will infer a performance model
from a set of log files containing raw location tracking traces. From the data,
the tool will automatically create a Petri Net Performance Model (PNPM). The
resulting PNPM is used to make an analysis of the system performance, identify
bottlenecks, and to compute end-to-end response times by simulating the model.
The approach differs from our in the sense that it operates on different structured
data and that the resulting Petri Net model is used for making a performance
analysis of the system and not for load generation. In addition, we construct
probabilistic time automata from which we later on generate synthetic load.

Lutteroth and Weber describe a performance testing process similar to ours
[13]. Load is generated from a stochastic model represented by a form chart. The
main differences between their and our approach is that we use different type

134 F. Abbors et al.

Fig. 1. Performance testing process.

of models and that we automatically infer our models from log data while they
create the models manually. In addition, due to their nature, form chart models
are less scalable compared to PTAs.

3 Process and Tool Chain

The work presented in this paper connects to our previous model-based perfor-
mance testing process using the MBPeT tool (see Fig. 1). MBPeT is a perfor-
mance testing tool which generates load by simulating several workload models
concurrently to get a synthetic semi-random workload mix. The tool generates
the load in a distributed fashion and applies it in real-time to the system under
test (SUT), while measuring several key performance indicators, such as response
time, throughput, error rate, etc. At the end of the test session, a detailed test
report is provided.

MBPeT requires workload models and a test adapter as an input to generate
load, as follows:

3.1 Workload Models

Traditionally, performance testing starts first with identifying key performance
scenarios, based on the idea that certain scenarios are more frequent than others
or certain scenarios impact more on the performance of the system than other
scenarios. A performance scenario is a sequence of actions performed by an
identified group of users [14]. However, this has traditionally been a manual step
in the performance testing process. Typically, the identified scenarios are put

Mining Web Server Logs for Creating Workload Models 135

1

2

0.6 / 0 /

3

0.4 / 0 /

4

1.0 / 3 / action1()

5

1.0 / 4 / action2()

6

1.0 / 0 /

7

1.0 / 0 /

8

1.0 / 6 / exit() 1.0 / 8 / exit()

(a) Original PTA

1

2

0.6 / 3 / action1()

3

0.4 / 4 / action2()

4

1.0 / 6 / exit() 1.0 / 8 / exit()

(b) Compact PTA

Fig. 2. Example of a probabilistic timed automata.

together in a model or subprogram and later executed to produce load that is
sent to the system.

In our approach, we use probabilistic timed automata (PTA) [15] to model the
likelyhood of user actions. The PTA consists of a set of locations interconnected
to each other via a set of edges. A PTA also includes the notion of time and
probabilities (see Fig. 2(a)). Edges are labeled with different values: probability
value, think time, and action. The probability value represents the likelihood
of that particular edge being taken based on a probability mass function. The
think time describes the amount of time that a user thinks or waits between two
consecutive actions. An action is a request or a set of requests that the user
sends to the system. Executing an action means making a probabilistic choice,
waiting for the specified think time, and executing the actual action. In order to
reduce complexity of the PTA, we use a compact notation where the probability
value, think time, and action are modeled on the same edge (see Fig. 2(b)).
Previously, the model was created manually from the performance requirements
of the system and based on an estimated user behavior.

3.2 Test Adapter

MBPeT tool utilizes a test adapter to translate abstract actions found in a
workload model into concrete actions understandable by the SUT. For example,
in case of a web application, a browse action would have to be translated into
a HTTP GET request. Usually the test adapter is implemented manually. For
each action in the model the corresponding lines of code (e.g., in order to send
a HTTP request to the SUT) have to be written.

136 F. Abbors et al.

Table 1. Requests to be structured in a tree.

3.3 Log2Model Tool

The Log2Model tool proposed in this work, is used as an alternative for auto-
matically creating the workload models and the test adapter required by the
MBPeT tool. Basically, the tool analyses historic usage of a web application or
web service by mining its web server log files. The algorithm behind Log2Model
will be discussed in the following section.

4 Automatic Workload Model Creation

In this section, we describe the method for automatically creating the workload
model from log data and we discuss relevant aspects in more detail. The starting
point of our approach is a web server log provided by web servers such as Apache
or Microsoft Server. A typical format for a server log is shown in Table 1. The
log is processed in several steps and a workload model is produced.

4.1 Parsing

The log file is parsed line by line using a pattern that matches the logging format.
In our approach, a new virtual user is created when a new client IP-address1 is
encountered in the log. For each request made to the sever, the requested resource
is stored in a list associated with a virtual user. The date and time information
of the request together with the time difference to the previous request is also
stored. The latter is what we denote as think time between two requests. For
example, consider the requests in Table 1. The information would result in two
new virtual users (Alice and Bob) being created. Bob made a request for a
document while Alice made requests for two different pictures. The time between
Alice’s two requests was 34 s. This is what we note as think time between two
requests. Please note, that it is impossible to know what the think time was
before the first request, since we have no information about what Alice did before
then. This will be important later on when we divide requests into different
sessions.

Parsing the log file also entails ignoring irrelevant data. This could be e.g.,
lines that start with a pound sign (“#”) or some other unwanted characters. This
usually indicate that the line is to be interpreted as a comment and not as a log
1 Our approach uses IP-addresses for user classification since the UserId is only avail-

able for authenticated users and usually not present in the log.

Mining Web Server Logs for Creating Workload Models 137

Fig. 3. Example of request tree reduction.

entry. It is not uncommon to encounter requests made by autonomous machines,
also referred to as bots. These types of requests are identified and removed from
the log into a separate list. The commonly known bots are specified in a whitelist
that can be updated by the user. Requests from bots are detected in two ways.
Firstly, by looking at the resource that has been requested. Some bots usually
request a specific resource, namely robots.txt. This file contains information of
what the bots should not index on the site. Secondly, we can refer bots from the
user agent that made the request. It is not uncommon that the name of the user
agent contains the word bot e.g., Googlebot or Bingbot.

4.2 Pre-processing

From the previous step, we obtain a list of virtual users and for each virtual user
a list of requests made from the same client IP-address. In the pre-processing
phase, these lists of requests are split up into shorter lists called sessions. A ses-
sion is a sequence of requests made to the web server which represent the user
activity in a certain time interval. It is not always trivial to say when one session
ends and another begins, since the time interval varies from session to session.
Traditionally, a session ends when a certain period of inactivity is detected, (e.g.,
30 min). Hence, we define a session timeout value which is used to split the list
of requests of a given user into sessions. In other words, we are searching for
a time gap between two successive requests from the same virtual user that is
greater than the specified timeout value. When a gap is found, the request trace
is split, and a new session is started.

4.3 Building a Request Tree

Visitors interact with web sites by carrying out actions. Actions can be seen
as abstract transactions or templates that fit many different requests. These
requests can be quite similar in structure, yet not identical to each other. For
example, consider a normal web shop where users add products to the basket.
Adding two different products to the basket will result in two different web
requests even though the action is the same. In this step, we group similar
requests into actions.

138 F. Abbors et al.

Table 2. Example showing the number of actions that different visitors perform.

Virtual User Act. 1 Act. 2 Act. 3 Act. 4 Act. 5

Visitor 1 2 0 0 3 3

Visitor 2 0 3 4 3 3

Visitor 3 1 0 1 8 9

Visitor 4 4 6 0 0 1

Visitor 5 0 0 4 8 7

Visitor 6 5 2 0 7 0

Fig. 4. K-means clustering on data from Table 2.

To achieve this, we first put the requests into a tree structure. For example,
consider the example in Table 1. We split the string of the requested resource
by the “/” separator and structure it into a tree. Figure 3-left shows how the
requests in Table 1 would be structured. We always keep count of how many
times we end up in a leaf node. For each new log line, we try to fit the request
into the tree, otherwise a new branch is created.

After parsing a large log file, we obtain a large tree that might be difficult
to manage. However, the tree can be reduced into a smaller tree by grouping
together nodes. The algorithm is recursive and nodes at the same level in the
tree are grouped together if they share joint sub-nodes. Figure 3-right shows how
a tree can be reduced into a smaller tree. Once the request tree has been reduced
as much as possible, every path in the reduced tree, that reaches a leaf node, is
then considered as an action that can be executed against the system.

Consider the second request made by both Bob and Alice in Table 1. These
two requests are basically the same type of request. They both request a resource
from the same collection. This is similar to a REST interface where one uses
collections and resources. It would seem obvious that these two requests are the
result of the same action, only that the user requested different resources. Hence,
by grouping together requests of the same type to the same resources, the tree
can be reduced to a smaller tree. Similar requests are grouped into an action.

Requests in the tree can also be joined by manually inspecting the tree and
grouping nodes that are a result of the same action. If a node in the path
has more than one parameter, (e.g., it is a result of grouping two resources)
that part of the request can be parameterized. For example, the request “/bas-
ket/book,phone/add” is a parameterized action where either book or phone
should be used when sending the actual request to the system.

Mining Web Server Logs for Creating Workload Models 139

Table 3. Example showing different clustering parameters.

Virtual User #Get #Post ATT ASL ARS

Visitor 1 25 3 44 653 696

Visitor 2 17 0 25 277 1353

Visitor 3 31 3 54 1904 473

Visitor 4 19 1 23 444 943

4.4 User Classification

Before we start constructing a workload model representing the user behavior,
we cluster different virtual users into groups according to their behavior. By user
behavior we mean a behavioral pattern that a group of web site visitors have in
common. A User Type can be seen as a group abstracting several visitors of a
web site.

To group visitors based on the actions they perform we use the K-means
algorithm [16]. Table 2 shows the properties used for clustering. The properties
are the actions obtained from the reduced request tree and the numbers represent
the number of times a visitor has performed that action. The only input in this
step is the number of desired clusters which has to be specified a priori. Figure 4
show how the different visitors in Table 2 would be clustered into groups (or
User Types) using the K-means algorithm.

K-means clustering is an old method that involves assigning data points to
k different clusters so that it minimizes the total squared distance between each
point and its closest cluster center. One of the most widely used algorithms is
simply referred to as “K-means” and it is a well documented algorithm that have
several proposed optimization to it.

Our approach also allows us to cluster virtual users based on other charac-
teristics. Table 3 shows an example using different clustering parameters, such as
the total number of GET requests sent to the system (#Get) the total number
of POST requests sent to the system (#Post), the Average Think Time (ATT),
the Average Session Length (ASL), and Average Response Size (ARS).

This method, however, gives different clustering results compared to the pre-
vious method and can be used as a complement if the first method gives unsat-
isfactory results.

4.5 Removing Infrequent Sessions

Before we start building the workload model for each selected cluster, we filter
out low frequency sessions. If we would include all possible sessions in the final
workload model it would become too cluttered, difficult to understand, and it
would include actions which do not contribute significantly to the load due to
their low frequency rate.

Removing sessions that have low frequency is achieved by sorting sessions in
descending order according to their execution rate. We filter out low frequent

140 F. Abbors et al.

Fig. 5. Model built in a step-wise manner.

1

2

0.1 / 45 / user_type1 0.4 / 60 / user_type2 0.5 / 20 / user_type3

Fig. 6. Root model describing different user types their waiting times and probability.

sessions according to a Pareto probability density function [17] by cutting off the
tail beneath a certain threshold value. The threshold value is given as a percent-
age value. That means that sessions below the threshold are simply ignored and
treated as irrelevant. The threshold value can however be adjusted on-the-fly to
include more or fewer sessions in the workload model.

4.6 Building the Workload Model

The workload models that we create describe the common behavior of all virtual
users belonging to the same cluster. We say that the model describes the behavior
of a particular User Type. Creating the model for a particular user type is a
step-wise process where we overlap sessions of all visitors belonging to the same
cluster.

Session by session we gradually build a model, while reusing existing nodes
in the model as much as possible. At each step, we note the number of times
an edge has been traversed, the action, and the think time value. We use this
information to calculate the probability and average think time of each edge in
the model.

Figure 5 depicts how the workload model is gradually built. One session at a
time is included in the workload model. An edge represents an action being sent
to the system. The numbers associated to the edges represent session IDs. Each
node represents a place, where the visitor waits before sending the next action.
One by one we include all the session belonging to the same cluster, while reusing
existing nodes as much as possible. Identical sessions will be laid on top of each

Mining Web Server Logs for Creating Workload Models 141

Fig. 7. Example of the request tree.

other and at each step, we note the number of times an edge has been traversed,
the action, and the think time value. We use this information to calculate the
probability and average think time of each edge.

We calculate the probability for an action as the ratio of a particular action
to all the actions going out from a node. In a similar way, we calculate the think
time of an action by computing the average of all think time values of an action.

In order to guarantee that the workload generated from the workload model
matches the workload present in the log file, we calculate the user arrival rate.
This information together with the distribution between user types is described
in a higher level model called the root model. Figure 6 depicts such a model.

The labels on the edges are separated by a “/” and refer to the probability,
waiting time, and user type, respectively. The probability value describes the
distribution between different user types. The waiting time describes the average
waiting time between sessions. The user type value simply denotes what workload
model to execute. To calculate the waiting time of a user type, we first have to
study the waiting time between different sessions of a particular user. We then
calculate the user waiting time by computing an average time between sessions
for every user belonging to a cluster.

5 Tool Support

Tool support for our approach was implemented using the Python [18] program-
ming language. To increase the performance of the tool and make use of as many
processor cores as possible for the most computation intensive tasks, we made
use of Python’s multiprocessing library.

142 F. Abbors et al.

(a)

(b)

Fig. 8. Log2Model tool screenshots showing two workload models and the correspond-
ing ramp (a) and refined workload models and the corresponding ramp based on the
zoom box (b).

Mining Web Server Logs for Creating Workload Models 143

Our tool has a set of pre-defined patterns for common logging formats that
are typically used in modern web servers (e.g., Apache and Microsoft Server).
However, if the pattern of the log file is not automatically recognized (e.g., due
to a custom logging format) the user can manually specify a logging pattern via
a regular expression. Once the log is parsed, the data is stored into a database.
This way we avoid having to re-parse large log files from one experiment to
another.

Before parsing a log file, the tool prompts the user for a session time out
value and the number of user clusters. This information, however, has to be
provided a priori. Once the file has been parsed and the reduced request tree
has been built, the user has a chance to manually inspect the tree. Requests can
be grouped manually by dragging one node on top of the other. Figure 7 shows
an example of such a request tree.

When the workload models have been built for each cluster they are pre-
sented to the user. Figure 8(a) shows an example where 2 clusters have been
used. The left pane shows the number of concurrent users detected throughout
the logging period. The slider bar at the bottom of the figure can be used to
adjust the threshold value, which determines how many sessions to include in
the model. A higher threshold value usually means more sessions are included in
the model, leading to a more complex model. By zooming in on specific regions
of interest in the left pane, new models that correspond to the selected region
are automatically generated and updated in the GUI. Figure 8(b) shows two new
clusters and a new ramp function that corresponds to the data in the selected
region in Fig. 8(a).

When saving the model, the tool will create two additional artefacts: a ramp
function and the test adapter code. The ramp is exported as a data set of (time,
numeber of users) pairs, which can be either directly used by the MBPeT tool
or can be used for further analysis and processing, for instance selecting only a
part of it, or applying different smoothing spline regressions depending on the
needs of the tester.

The test adapter will contain a code skeleton implementing, in a parametrized
form, mappings of the actions in the workload models to HTTP requests. For
compatibility with the MBPeT tool, the adapter code is currently exported to
Python code using the standard Python libraries for HTTP communication, but
it can be easily customized for other programming languages or libraries.

6 Example

In this section, we apply our approach to a web log file containing real-users data.
The web site2 used in this example maintains scores of football games played in
the football league called pubiliiga. It also stores information about where and
when the games are played, rules, teams, etc. The web site has been created
using the Django framework [19] and runs on top of an Apache web server.

2 www.pubiliiga.fi.

www.pubiliiga.fi

144 F. Abbors et al.

6.1 Parsing and Filtering

The log that we used was 323 MB in size and contained roughly 1.3 million
lines of log data. The web site was visited by 20,000 unique users that resulted
in 365,000 page views between April 25th of 2009 and August 23rd of 2013.
However, most of the users only visited the web site once or twice and there
were only about 2,000 frequent users that regularly visited the web site. Also,
since the web site is updated frequently on the same platform on which it is
running, the log contained a significant amount of data from erroneous requests
made by the simple method of trail and error during development. All erroneous
requests and requests made from known robots were filtered out. The results
that we are going to show in this section are generated from a selected section
of the log data containing a mere 30,000 lines of log data, generated by 1092
unique users.

6.2 Processing the Data

We used a session timeout value of 60 min to determine where to split the list of
requests into sessions. In this experiment, we clustered users into two different
groups. The total time to process the data was around 10 seconds. The computer
was equipped with a 8 core Intel i7 2.93 GHz processor and had 16 GB of memory.

Table 4 shows a summary of the execution time for different steps of the
algorithm for different log sizes. The final step, building the workload model, was
purposely left out since it varies considerably depending on the chosen number
of clusters and threshold value.

6.3 Building the Workload Models

Figures 9 and 10 shows the constructed workload models for one of the clusters.
A total of 985 virtual users were grouped into this cluster. Figure 9 shows the
workload model when using a threshold value of 0.5, which means that 50 percent
of the traces are included in the model, starting from the highest frequency ones.
However, the model is too complicated to be used for analysis or load generation,
and some of the sessions are rarely executed due to a very low probability.

Table 4. Table showing execution times for different log sizes in terms of lines of log
entries.

Phase 30.000 50.000 100.000 200.000 400.000

Parsing 6 s 10 s 22 s 50 s 2 min

Pre-processing 4 s 9 s 10 s 21 s 31 s

Request tree reduction 0.3 s 0.3 s 0.8 s 2 s 5 s

Clustering 0.08 s 0.08 s 0.4 s 5 s 60 s

Total 10.38 s 19.38 s 33.2 s 1 min 18 s 3 min 36 s

Mining Web Server Logs for Creating Workload Models 145

Fig. 9. Workload model for cluster 1, (threshold = 50 %).

Fig. 10. Workload model for cluster 1, (threshold = 30 %).

Figure 10 shows the workload model with a threshold value of 0.3. Here we can
see that the model is much more readable and we can actually start to make sense
of the navigational patterns in the workload model. For confidentiality reasons
the actual request types have been left of and replaced by abstract types. The
workload models created for the second cluster looked almost the same. Creating
the models took approximately 2 s. However, the execution times may hugely
vary depending on the selected threshold value.

7 Validation

In this section, we demonstrate the validity of our approach on an auctioning
web service, generically called YAAS (Yet Another Auction Site). The YAAS
web service was developed as a university stand-alone project. The web service
has a RESTful interface and has 5 simple actions:

– Browse: Returns all active auctions.
– Search: Returns auctions that matches the search query.
– Get Auction: Returns information about a particular auction.

146 F. Abbors et al.

– Get Bids: Returns all the bids made to a particular auction.
– Bid : Allows an authenticated user to place a bid on an auction.

During this experiment we preformed two load tests. First, we generated load
from workload models that we built manually. We then re-created the workload
models from the log data that was produced during first load test. In the second
load test, load was generated from the re-created workload models. Finally, we
compared the load that was generated during both tests. In the first step, we
manually created models for two different user types. To test if the clustering
works as expected, we made the workload models almost identical except for one
request. One user type is doing distinctively a browse request while the other
user type is always doing a search request. Figure 12(a) depicts the model for
user type 1, the one that is performing distinctively a browse request. A similar
model was also created for user type 2. If the algorithm can cluster users into
different groups when only one action distinguishes them, then we consider the
clustering to be good enough.

7.1 Generating a Log File

Once the models were built, they were used to load test the YAAS system using
our in-house performance testing tool MBPeT. We simulated 10 virtual users
(60 % user type 1 and 40 % user type 2) in parallel for 2 h. We set the virtual
users to wait 20 s between each session. This value is later going to influence the
timeout value during pre-processing phase. From the produced log file, containing
roughly 10,000 lines, we re-created the original models as accurately as possible.
We point out that the original model is of a probabilistic nature, which means
that distinctly different traces with different lengths can be generated from a
fairly simple model. For example, the shortest session had only 1 action, while
the longest session had 22 actions. Also, we do not have exact control over how
many times each trace is executed by a user.

7.2 Recreating the Models

To make sure that we split the sessions in a similar way we used a timeout value
of 20 s. No other delay between the requests was that large. We also clustered

(a) Original root model. (b) Recreated root model.

Fig. 11. Root models.

Mining Web Server Logs for Creating Workload Models 147

Fig. 12. Original vs. Recreated user profiles.

Table 5. Comparison between the two test runs.

Request Load Test 1 Load Test 2

Search(string) 1263 1294

Browse() 1895 1942

Get Auction(id) 2762 2821

Get bids(id) 2697 2625

Bid(id, price, username, password) 1288 1265

Total 9903 9947

Request Rate 1.37 req/sec 1.38 req/sec

the data into 2 user types. Each user type is later going to be represented with
a separate workload model. In this experiment we did not filter out any user
sessions, hence we used a threshold value of 1.0, meaning all traces found in the
log were used to recreate the models. Figure 12(a) shows the original workload
model while Fig. 12(b) shows the re-constructed workload model for User Type
1. A similar model was also created for User Type 2. As one can see, the only
difference from the original model is the probability values on the edges. However
close, the probability values in the original models do not match exactly those in
the generated workload models. This is due to the fact that we use a stochastic
model for generating the load and we do not have an exact control of what traces
are generated. Figure 11(a) shows original root model while Fig. 11(a) shows the
re-created root model. From the figures we can see that the probability values
of the re-created root model match that of the original root model (60 % and
40 %) and that the waiting time is close to 20 s (19.97 and 19.98).

Due to space limitation we only show a comparison of the original versus
recreated user profiles for one of the two user types. A similar result was obtained
for the second type as well.

The test adapter generated to support the above workload models was around
250 LOC. The actual number of LOC used to implement the 5 actions in the

148 F. Abbors et al.

workload models amounted to 130 LOC, while the rest is reusable static code
like library imports and initializations.

7.3 Comparing the Load Generated from the Models

Even though the models look similar, we also wanted to make sure that the load
generated from the original models matched the load generated from our re-
created models. Hence, we let the MBPeT tool measure the number of requests
sent to the YAAS system during both steps. Table 5 shows a comparison between
the test runs.

As can be seen from the table, the re-created model produced a slightly higher
workload. However, we like to point out that the load generation phase lasted
for 2 h and we see a difference of 44 requests. This is backed up by looking at
the measured request rate. Load test 1 generated 1.37 req/sec, while load test 2
is virtually identical with 1.38 req/sec.

8 Conclusions

In this paper, we have presented a tool-supported approach for creating perfor-
mance models from historical log data. The models are of a stochastic nature
and specify the probabilistic distribution of actions that are executed against
the system.

The approach is automated, hence reducing the effort necessary to create
workload models for performance testing. In contrast, Cai et al. [20] report that
they spent around 18 h to manually create a test plan and the JMeter scripts for
the reference Java PetStore application [21].

The experiments presented in this paper have shown that the approach can
adequately create workload models from log files and that they mimic the real
user behavior when used for load testing. Further, the models themselves give
insight in how users behave. This information can be valuable for optimizing
functions in the system and enforcing certain navigational patterns on the web
site.

Future work will targeted towards handling larger amount of log data. Cur-
rently the tool is not optimized enough to operate efficiently on large data
amounts. Another improvement is automatic session detection. Currently the
tool follows a pre-defined timeout value for detecting sessions. Automatic ses-
sion detection could suggest different timeout values for different users, hence,
improving on the overall quality of the recreated model. Currently, we are only
clustering users according to accessed resources. In the future, we would like to
extend the K-means clustering algorithm to cluster based on other relevant fac-
tors like: request method, size of resource, user request rate, etc. This clustering
method could suggest models that, when executed, exercise the workload pat-
terns on the system, thus, potentially finding “hidden” bottlenecks. Further, an
interesting experiment would be to analyze only failed or dropped requests. This
way one could for instance study the details of how a DoS-attack was carried
out and what pages were hit during the attack.

Mining Web Server Logs for Creating Workload Models 149

Acknowledgements. Our sincerest gratitude go to the owners of www.pubilliiga.fi
for letting us use their data in our experiments.

References

1. Ferrari, D.: On the foundations of artificial workload design. In: Proceedings of the
1984 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS 1984, pp. 8–14. ACM, New York (1984)

2. Al-Jaar, R.: Book review: The art of computer systems performance analysis: Tech-
niques for experimental design, measurement, simulation, and modeling by raj jain
(John Wiley & Sons). SIGMETRICS Perform. Eval. Rev. 19, 5–11 (1991)

3. Richardson, L., Ruby, S.: Restful web services, 1st edn. O’Reilly, Sebastopol (2007)
4. Abbors, F., Ahmad, T., Truscan, D., Porres, I.: MBPeT: a model-based perfor-

mance testing tool. In: 2012 Fourth International Conference on Advances in Sys-
tem Testing and Validation Lifecycle (2012)

5. Rudolf, A., Pirker, R.: E-business testing: user perceptions and performance issues.
In: Proceedings of the First Asia-Pacific Conference on Quality Software (APAQS
2000), pp. 315–323. IEEE Computer Society, Washington, DC (2000)

6. Subraya, B.M., Subrahmanya, S.V.: Object driven performance testing in web
applications. In: Proceedings of the First Asia-Pacific Conference on Quality Soft-
ware (APAQS 2000), pp. 17–26. IEEE Computer Society (2000)

7. Kathuria, A., Jansen, B.J., Hafernik, C.T., Spink, A.: Classifying the user intent
of web queries using k-means clustering. In: Internet Research. Number 5, pp.
563–581. Emerald Group Publishing (2010)

8. Vaarandi, R.: A data clustering algorithm for mining patterns from event logs. In:
Proceedings of the 3rd IEEE Workshop on IP Operations and Management (IPOM
2003), pp. 119–126. IEEE (2003)

9. Shi, P.: An efficient approach for clustering web access patterns from web logs.
International Journal of Advanced Science and Technology 5, 1–14 (2009). SERSC

10. Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov. 1, 259–289 (1997)

11. Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown
periods. In: Proceedings of the 17th International Conference on Data Engineering,
pp. 205–214. IEEE Computer Society, Washington, DC (2001)

12. Anastasiou, N., Knottenbelt, W.: PEPERCORN: inferring performance models
from location tracking data. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 169–172. Springer, Heidelberg (2013)

13. Lutteroth, C., Weber, G.: Modeling a realistic workload for performance testing.
In: 12th International Conference on Enterprise Distributed Object Computing,
pp. 149–158. IEEE Computer Society (2008)

14. Petriu, D.C., Shen, H.: Applying the UML Performance Profile: Graph Grammar-
based Derivation of LQN Models from UML Specifications, pp. 159–177. Springer-
Verlag (2002)

15. Jurdziński, M., Kwiatkowska, M., Norman, G., Trivedi, A.: Concavely-priced prob-
abilistic timed automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 415–430. Springer, Heidelberg (2009)

16. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics
and Probability. Number 1, pp. 281–297. University of California Press, Berkeley
(1967)

www.pubilliiga.fi

150 F. Abbors et al.

17. Arnold, B.: Pareto and generalized pareto distributions. In: Chotikapanich, D.
(ed.) Modeling Income Distributions and Lorenz Curves. vol. 5, Economic Studies
in Equality, Social Exclusion and Well-Being, pp. 119–145. Springer, New York
(2008)

18. Python: Python programming language. http://www.python.org/. Accessed 30
December 2014

19. Python: Django Framework. https://www.djangoproject.com/. Accessed 30
December 2014

20. Cai, Y., Grundy, J., Hosking, J.: Synthesizing client load models for performance
engineering via web crawling. In: Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering, ASE 2007, pp. 353–
362. ACM (2007)

21. Oracle: Java Pet Store 2.0 reference application (2014). http://www.oracle.com/
technetwork/java/index-136650.html. Accessed 30 December 2014

http://www.python.org/
https://www.djangoproject.com/
http://www.oracle.com/technetwork/java/index-136650.html
http://www.oracle.com/technetwork/java/index-136650.html

New Flexible Architectures for Reconfigurable
Wireless Sensor Networks

Hanen Grichi(B), Olfa Mosbahi, and Mohamed Khalgui

National Institute of Applied Science and Technology,
University of Carthage, Tunis, Tunisia

hanen.grichi@gmail.com

http://www.insat.rnu.tn

Abstract. This chapter deals with reconfigurable wireless sensor net-
works (to be named by RWSN). A RWSN is composed of distributed
autonomous nodes that execute programs (reconfigurable software tasks)
and control local sensors to monitor physical or environmental conditions.
We propose three reconfiguration forms to be executed in our RWSN : (i)
hardware reconfiguration allowing the activation/deactivation of nodes,
(ii) software reconfiguration allowing the addition/ removal/ update of
tasks and (iii) protocol reconfiguration allowing the modification of rout-
ing protocols between nodes. We propose, in this chapter, a zone-based
multi-agent architecture for RWSN to optimize the distributed recon-
figurations. Each agent of this architecture is modeled by nested state
machines in order to control the problem complexity. The chapter’s con-
tribution is applied to a case study that we simulate with WSNet (Wire-
less Sensor Network simulator) [5] to show the originality of this new
architecture.

Keywords: Wireless sensor network · Reconguration · Multi-agent
architecture · Nested state machine · Simulation

1 Introduction

Wireless Sensor Networks (to be named WSN) become today an important
established technology for a large number of applications (pollution prevention
[1], agriculture [4], military, structures and buildings health, etc.). WSNs usually
consist of many small devices called sensor nodes. Each node is able to allow local
control processing and communications with remote nodes under real-time and
energy constraints. Wireless Sensor Networks can be homogeneous (sensor nodes
are of the same nature) or heterogeneous (with different types of nodes) [12]. We
are interested in this chapter in homogeneous WSN. Several related works [6]
describe the wireless sensor network (WSN) as a system of spatially distributed
sensor nodes that collect important information in the target environment. Each
sensor node has limited computation capacity, local memory, power supply [15]
and communication link. Each directed link connects two neighboring nodes

c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 151–169, 2015.
DOI: 10.1007/978-3-319-25579-8 9

152 H. Grichi et al.

through a network [7]. The most generic model for a WSN is based on the data
gathering [11] and communication capabilities of sensors.

Nowadays, WSN migrate to an auto-programming technology which is based
on intelligent sensor networking infrastructures [1]. The system can change its
behavior at run-time, it is what we call a reconfigurable system. Two reconfigu-
ration policies could be identified: static (offline: by stopping the WSN to make
required modifications and restart it) or dynamic (online: by changing the net-
work structures during its execution) [12]. In the second case, we have also two
kinds of reconfiguration: manual (executed by users) and automatic (executed by
agents). The researchers define the RWSN (Reconfigurable WSN) as an adaptive
WSN. The reconfiguration can also add/remove one/more physical elements of
the network by activating/deactivating them. The reconfiguration touches first
the material (allowing the activation/deactivation of nodes), second the software
(allowing the reconfiguration of tasks) and third the communication protocols
(allowing the adaptation of routing protocols between nodes). Many projects
deal with RWSN such as WASAN [9], ReWINS [8], TWIST project [3], but
they cover one or two reconfiguration types (hardware, software or protocol)
and not mix all of them.

Our problem consists in the application of these three reconfiguration types:
what is the gain that we can get by using any hardware reconfiguration, or
software reconfiguration or also the protocol reconfiguration? If we reduce the
communication by applying reconfiguration scenarios, can we win in terms of
energy? We try in this chapter to answer these questions by defining three forms
of reconfiguration for low power RWSNs. We define a new zone-based multi-agent
architecture for RWSN where a communication protocol is well-defined for useful
distributed reconfigurations. We decompose the RWSN to a set of zones where
each one gathers a number of nodes. The radius of each zone is a parameter to be
defined by users according to several characteristics of the followed technology.
We define a Controller Agent (CrA) that handles the reconfiguration strategies
of the whole network, and assign a Zone Agent for each zone (ZA) to control
the local reconfiguration scenarios. Each node of a particular zone is controlled
by a Slave Agent (SA) that monitors the local reconfiguration scenarios inside
the node. This original multi-agent architecture combines all possible reconfig-
uration forms to be adapted for the environment where we minimize the energy
consumption. This adaptive architecture is modeled by nested state machines
in order to control the specification complexity. With our solution, we gain in
terms of energy to be consumed by each node and the number of exchanged mes-
sages between nodes in the network. This architecture supports the delegation
between agents and controls the complexity by providing hierarchical structure
of RWSN. We apply and simulate the chapter’s contribution to a case study
to be assumed as a running example, and compare our results to some related
works in order to show the originality of this architecture.

The chapter is organized as follows: after introduction and background,
Sect. 3 presents our position between related works. Section 4 proposes a new def-
inition of RWSN to be explained on a case study. The multi-agent architecture
of the RWSN is proposed in Sect. 5. Section 6 presents the coordination protocol

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 153

between different agents. The simulation and evaluation of our contribution is
provided in Sect. 7 before concluding the chapter in Sect. 8.

2 Background

We briefly present the formalism of finite state machines to be used in the fol-
lowing for the modelling of RWSN. Finite State Machine (FSM) is an abstract
machine that can be in one of finite number of states. It changes the behav-
ior from a state to another by firing a transition in response to a particular
event. A FSM is an efficient way to specify constraints of the overall behavior
of a system [14]. A classic form of a FSM is a direct graph with the following
elements: G=(Q, Σ, Z, δ, q0, F) where: (a) Vertices Q is a finite set of states
(Q1,Q2,...,Qi) such that each state (Qi) models a system’s behavior at an instant
t, (b) Input symbols Σ is a finite collection of input symbols or designators.
This part of graph represents the finite set of initial states, (c) Output sym-
bols Z is a finite collection of output symbols or designators. This part of graph
represents the final state of the system, (d) Edges δ represents transitions from
one state to another as caused by input symbols, (e) Start state q0 is the start
state q0 ∈ Q, (f) Accepting state(s) F : F ∈ Q is the set of accepting states.
We define Nested State Machines as a set of FSM such that a state of one corre-
sponds to another machine. This solution is useful for the modeling of a complex
system where the information should be modeled on different hierarchical levels
in order to control the complexity.

3 State of the Art

In the present day, several researches deal with RWSN where a reconfiguration
can be applied in three levels: hardware, software and data routing. Hard-
ware reconfigurations are defined in [2] by adding FPGA-based intelligent
modules to nodes. In [9], the wireless autonomous sensor and networks of
actors (WASAN) define hardware reconfigurations as dynamic operations
that model platforms of evaluation and assistance. To model well the protocol
reconfiguration, the existence of reconfigurable interfaces is essential; Harish
Ramamurthy in [8] presents the ReWINS project (Reconfigurable Wireless Inter-
face for Networking), to manage the reconfigurability thanks to a ’Central Con-
trol Unit ’. The Reconfigurable Wireless Sensor Network for Structural Health
Monitoring [13], is also another project of RWSN. This proposition has the pos-
sibility to reconfigure the parameters of the monitoring application (software
reconfiguration), depending on the needs of the end-user operating at the
sink node. To optimize the radio transmission of data and avoid interferences
(protocol reconfiguration), each sink node establishes a reserved communica-
tion link with each of the sensor nodes. In [3], the TWIST project (a scalable and
flexible tested architecture for indoor deployment of wireless sensor networks)
defines two reconfiguration forms: software/ hardware. This project uses the

154 H. Grichi et al.

USB infrastructure for the hardware reconfiguration and the software one is
controlled by a set of interfaces to be implemented on a station.

We note that all related works do not address all possible reconfiguration
forms together that the current chapter deals with. We propose a new zone-based
multi-agent architecture for RWSN. Our proposition is original and different
from all others since we treat all reconfiguration forms, control the complexity
of modeling by using nested state machines and optimize the energy consumption
as well as the exchanged messages between nodes thanks to the zone-based
solution.

4 Contribution: New Solutions for RWSN

We present in this section, our new solutions for RWSN. We present our new
definition of the reconfigurable wireless sensor network.

4.1 RWSN : Definition

We define a reconfiguration scenario as any response to a request in order
to adapt the system to its environment and to improve also its performance.
We consider three kinds of reconfigurations: (i) software reconfiguration allow-
ing the addition/removal and update of Os-tasks or data, (ii) hardware recon-
figuration allowing the activation/deactivation of sensor nodes, (iii) protocol
reconfiguration allowing the optimization/degradation of the protocol (e.g. addi-
tion/removal/update of messages to be exchanged between nodes as well as their
routing paths). We denote in the following by a RWSN, a reconfigurable WSN
that automatically modifies its software and/or hardware architecture and/or
inter-nodes communication protocol. Contrary to all related works, a RWSN is
defined as a dynamic reconfigurable WSN, that automatically modifies at run
time the architecture as well as structure of the network. This modification can
touch the material (e.g. sensors), the software (e.g. OS tasks) and the data rout-
ing. Note that the TWIST project [3] does not address the protocol reconfigura-
tion. The ReWINS project [8] does not suppose the reconfiguration of WSN as
a dynamic and automatic reconfiguration. In the current chapter, we extend all
related works and address all possible reconfiguration forms that can be applied
at run time on RWSN.

4.2 RWSN : New Architecture

We give in the following some definitions that will be used in the following.

– RWSN : a set of Nbz zones and S stations. A station controls the whole net-
work, whereas each zone is composed of n nodes such that each node gathers
m hardware detectors to be controlled by software tasks. Note that a com-
munication protocol is applied between nodes of a same or of different zones.
We define Nbz = number of the zones in WSN and Zi as the zone number i
of the network.

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 155

– RWSN zone: a geographical space to be defined by all the points included
in the area of this zone. This zone is fixed by a radius to be defined by the
RWSN designer.

– RWSN station: a supervisor in a RWSN to be characterized by: (i) A memory,
that should be bigger than a node memory, (ii) A bandwidth, that represents
the velocity of data transmission with nodes.

– Reconfigurable node: a device to be composed with others. It runs under
energy, real-time and functional constraints. A node is characterized by: (i)
An identifier (ID) which is unique in the zone, (ii) a set of m detectors DTi
(i =1,2,...,m) where each sensor is modeled by two variables: the state (Sd :
active or not), and the value to be detected (Vd), (iii) a power unit represented
by two batteries (we denote by PwBi(t) the current value of battery’s charge
and PwBiMax the maximum load), (iv) the router (R) that supports the
communications with other nodes.

– Reconfigurable sensor: a detector that consumes energy to provide required
services for the node. We suppose that it is controlled by a unique OS-Task.

– Reconfigurable protocol: a protocol that supports the communication between
nodes. We assume it as reconfigurable since we suppose that messages can be
added or removed at run-time. Table 1 describes the parameters of a routing
table in each node in order to characterize each communication between them.

Table 1. Node routing table parameters.

ID Node Identifier

IDZone Zone Identifier

IDDest Final Destination Node Identifier

IDNext Next Node Identifier in communication path (neighbor)

Time Execution time for communication by a node

4.3 Reconfiguration Forms

We have three forms of reconfigurations:

– Software Reconfiguration. Modifies the behaviors of nodes at run time.
The modification is made on the software architecture by: (i) adding (or
removing) OS-tasks to be executed in nodes, (ii) modifying their scheduling,
(iii) modifying the used data by tasks.

– Hardware Reconfiguration. This kind of reconfiguration consists of: (i)
activation/deactivation of detectors, (ii) activation/deactivation of nodes. The
deactivation of all detectors in a node implies its deactivation. In fact, acti-
vating only one detector in a node results in its activation.

– Protocol Reconfiguration. Consists in modifying the data routing when
software and hardware reconfigurations are applied at run-time.

156 H. Grichi et al.

4.4 Case Study

We propose as a running example, a RWSN to be denoted by Sys. It is com-
posed of 3 zones (Z1, Z2, Z3) where each one Zi is composed of three nodes.
These three zones are supervised by a station (S). Each node Nzj,(j=1..9) is
characterized by two detectors, two batteries and a router (Rj). Each detector
DTm, (m =1 or 2) can detect the temperature (to be denoted by DT1) and the
humidity of the environment (to be denoted by DT2). It is characterized by a
state (Sd : {activate= 1, deactivate= 0}), and the detected value (Vd). The two
batteries are denoted by Bk (k = 1 or 2). Each battery Bk is characterized by a
current value of load (PwBk,j) and a value of maximum load (PwBMaxk,j). We
suppose initially, that Nz5 executes only DT1.

Software Reconfiguration. We define the following three tasks {T1,T2,T3}:
(i) T1 : controls the temperature and detects signal when it is higher than 45◦.
(ii) T2 : reduces the threshold from 45◦ to 30◦. This task can be used for any
detection of fire. (iii) T3 : controls the humidity of the environment. We define
3 software reconfigurations: {SR1, SR2, SR3}. (a) SR1 : a reconfiguration that
allows the addition of (T1) to each node in a summer day; (b) SR2 : is applied to
each summer night to remove the task (T1) and to add (T2). (c) SR3 : updates
the threshold to be taken by (T3).

Fig. 1. First and second reconfiguration of WSN.

Hardware Reconfiguration. In order to minimize the dissipated energy, we
apply hardware reconfigurations {HR1, HR2, HR3} on 3 sensor nodes (Nz1
from Z1, Nz5 from Z2, Nz9 from Z3) (i) HR1 : deactivates Nz1 from Z1 by
deactivating (DT 1(1) of Nz1 and DT 2(1) of Nz1), (ii) HR2 : deactivates DT1(5)
for the node Nz5, (iii) HR3 : activates Nz9 from Z3 by activating DT 2(9) of Nz9.
The hardware reconfiguration, in this case, can change the routing information
between nodes. The link of communication between Nz1 and its neighbors is cut
(the same case as Nz5). By using HR3, (Nz9) can be connected to its neighbors
(see the modification in Fig. 1).

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 157

Protocol Reconfiguration. If we apply HR1, HR2 and HR3 (deactivation of
Nz1, Nz5 and activation of Nz9), the routing tables of (Nz1, Nz5, Nz9) will be
changed from first routing table parameters to the second one. In this case the
protocol reconfiguration eliminates 3 communication links between nodes (Nz1,
Nz5), and adds 2 other links to (Nz9).

Nz1 Nz5 Nz9
State Activate Activate Deactivate
ID ID1 ID5 ID9
IDZone Z1 Z2 Z3
IDDest ID7 ID1
IDNext ID2, ID3 ID4
Time 0.02s 0.01s

First routing table parameters

Nz1 Nz5 Nz9
State Deactivate Deactivate Activate
ID ID1 ID5 ID9
IDZone Z1 Z2 Z3
IDDest ID7 ID9 ID2
IDNext ID2 Or ID3 ID4 ID7 Or ID8
Time 0.02s

Second routing table parameters

Fig. 2. Multi-Agent architecture for RWSN.

5 New Multi-agent Architecture for (RWSN)

We present in this section, our new multi-agent architecture for RWSN. We
present the formalization and the modeling of our multi agent architecture.

5.1 Motivation

To handle all cited forms, we propose a multi-agent architecture for RWSN. This
architecture is composed of a Controller Agent (CrA) that controls the whole

158 H. Grichi et al.

architecture, a Zone Agent (ZA) to be affected to each zone in order to control
its nodes, and a Slave Agent (SA) that controls each node of any zone. All these
agents handle the different reconfiguration forms that we described above. In
order to control the complexity, each agent has a hierarchical architecture to
be modeled by Nested State Machines. We show in Fig. 2 this new multi-agent
architecture of RWSN. We model the multi-agent architecture for RWSN as a
system to be composed by one CrA, a set of (ZA) and a set of (SA): Sys={CrA,
ϕZA, ϕSA}; ϕZA= set of all Zone Agents; ϕSA = set of all Slave Agents; In one
Zone = {ZA, ϕSA}.

5.2 Formalization of RWSN

In this section, we present the formalization of the proposed RWSN. We start
with the controller Agent logic.

Fig. 3. Controller agent architecture (Color figure online).

Controller Agent (CrA) Logic. For the modeling of this agent, we propose
two levels: (i) First Reconfiguration Level: CrA Architecture: The (CrA)
defines in this level the set of active and deactive zones under well-defined con-
ditions at a particular time. This level will be modeled latter with the State
Machine (FSM I). (ii) Second Reconfiguration Level: CrA Data Flows:
This level describes the different flows of data to be exchanged between the active
zones that we define in level 1. For each state of (FSM I) that models level 1, we
define in the current second level a particular state machine that defines all the
possible data flows. A state of this State Machine defines a particular reconfigu-
ration scenario that changes the routing policy software between zones. In Fig. 3,
the red state of (FSM I) defines a subset of active zones and corresponds to the

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 159

state machine (FSM I.1) in level 2. The state Rtp 1 represents a first routing
solution between these zones and Rtp 2 represents another routing solution.

Zone Agent (ZA) Logic. We propose four levels for this agent: (i) first recon-
figuration level: ZA Architecture: we describe in this level the different
active and deactive nodes under well-defined conditions at a particular time.
This level is characterized by a superset of nodes such that any reconfiguration
scenario corresponds to the activation of a subset, (ii) second reconfiguration
level: ZAData Flows/ Detectors: the second level of the Zone Agent (ZA)
defines the set of detectors that should be active in each node under well-defined
conditions at a particular time. This second level defines also the different data
flows that can be followed to exchange data between the active nodes of the
zone. The activation of detectors as well as the definition of reconfiguration data
flows belong to the same level since they are depending in logic, (iii) third
reconfiguration level: ZA Scheduling: this level defines the different recon-
figurable scheduling of OS-tasks that control active detectors in active nodes
under well-defined condition at a particular time, (iv) fourth reconfiguration
level: ZA Data value: This level defines the different values and structure of
data to be used by the OS-tasks of active nodes under well-defined conditions
at a particular time.

To handle the complexity of the problem, we use nested state machines to
model the Zone Agent.

Fig. 4. Zone agent architecture.

160 H. Grichi et al.

In Fig. 4, the red state ArchNode n defines the different active nodes of a
zone at a particular time t under well-defined conditions, this state corresponds
to two state machines FSM II.1 and FSM II.2 in level 2. FSM II.1 defines in
this zone all possible activations of detectors. FSM II.2 represents the different
routing solutions between active nodes in this zone. The red state ArchDetect
n defines under well-defined conditions the different detectors which should be
active in active nodes of the zone. Rtn 1 defines a particular solution to exchange
data between active nodes in a zone. Two states of these state machines of level
2 define a particular state machine in level 3 where a state defines a particular
scheduling of active tasks. The red state LogEx1 n defines the execution logic of
tasks and defines a new state machine FSM II.4 in level 4. Each state in FSM
II.4 defines particular values and structures of data to be used by actives tasks.
Thanks to this solution we can cover all possible reconfiguration forms while
controlling the complexity of the problem.

Slave Agent (SA) Logic. This agent executes the reconfiguration strategies
to be defined by CrA and ZA.

Note Finally that to gain in terms of energy for example, each Zone Agent
(ZA) controls at run-time the load in the batteries of each slave before applying
required reconfiguration scenarios that can possibly remove tasks or also deac-
tivate nodes in order to preserve power as much as possible. We note also that
we are interested in the architecture of RWSN without detailing the technical
solutions to add/remove tasks or activate/deactivate nodes. We are not inter-
ested also in the real-time scheduling of tasks that will be in another work. The
contribution of the current chapter is dealing with the architecture of RWSN to
address all possible reconfiguration forms while controlling the complexity of the
problem.

5.3 Modeling of RWSN

We present in this section, the nested state machines modeling the agents.

Controller Agent (CrA) Model. We model the two levels of (CrA) by the
following state machines.

-First modeling level: CrA Architecture:

GC1 = (Qc, δc, qc0) where:

(a) Vertices Qc: set of states such that each state corresponds to active zones at a

particular time (Qc1, Qc2, ..., Qci). We denote by Qci = (MN1, MN2, ..., MNn) the set

of active master nodes of RWSN, (b) Edges δc: activation or deactivation of master

nodes, (c) Start state qc0: a first architecture which defines the default active zones.

-Second modeling level: CrA Data flows: For each state Qci ∈ Qc in GC1, we
define:

GC2 = (Qp, δp, qp0) where:

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 161

(a) Vertices Qp: set of states where each one represents a particular routing solution

between active zones (Qpi1,Qpi2,...,Qpij). (b) Edges δp: the modification of data flows

between active zones. (c) Start state qp0: the data flows between the default active

zones.

Zone Agent (ZA) Model. We define in the following the nested state machines
of each (ZA).

-First modeling level: ZA Architecture:

GD1 = (Qd, δd, qd0) where:

(a)Vertices Qd: set of states such that each one represents a subset of active nodes in

a zone, Qdi=(N1,N2,...,Ni), (c)Edges δd: activation/deactivation of nodes in a zone,

(d)Start state qd0: default list of nodes in a zone.

-Second modeling level: ZA Data flows/detectors: For each state Qdi of GD1, we
define two state machines GN2 and GN ′

2:

GN2 = (Qn, δn, qn0) where:

(a)Vertices Qn: set of states where each one represents a particular routing solution

between active nodes of a zone, (b)Edges δn: modification of data flows between active

nodes, (c)Start state qn0: data flows between default active nodes Qni1.

Fig. 5. Running example for ZA modeling.

162 H. Grichi et al.

GN ′
2 = (Qn’, δn’, qn′

0,) where:

(a)Vertices Qn’: set of states such that each one represents detectors to be active at

a particular time, (Qn’i1,Qn’i2,...,Qn’ij). We can define Qn’ij=(Detc1,Detc2,...,Detcn)

as a set of active detectors, (b)Edges δn’: activation/deactivation of detectors,

(c)Start state qn0’: the default list of detectors in a node: Qn’i1.

-Third modeling level: ZA Scheduling: For each state Qnij in GN2 and Qn’ij in
GN’2, we define:

GE3 = (Qe, δe, qe0) where:

(a)Vertices Qe: set of states such that each one represents the scheduling of OS-

tasks implementing active nodes in a zone, (Qij1,Qij2,...,Qijk), (b)Edges δe: modifi-

cation of the execution sense of detectors by respecting the dependence of the latter,

(c)Start state qe0: the default scheduling of OS-tasks Qeij1

-Fourth modeling level: ZA Data value: For each state Qeijk in GE3, we define:

GS4 = (Qs, δs, qs0) where:

(a)Vertices Qs: set of states where each state represents data structures and values

to be used by active tasks, (Qijk1,Qijk2,...,Qijkl), (b)Edges δs: modification of data

structure or values, (c)Start state qs0: the default data structures Qijk1.

The Fig. 5 defines the nested state machines that model ZA1 of Z1. FSM
II is a state machine that defines all possible activations of nodes in the zone,
the red state Q52 corresponds to two state machines FSM II.1 and FSM II.2 in
level 2. Q521 represents a particular data flow between active nodes in a zone.
Q521 is a set of active detectors in a node. Both of the two states correspond to
a particular state machine in level 3. Q5212 represents a particular scheduling of
OS-tasks that control active detectors in level 2. Q5212 corresponds to particular
data structures FSM II.4 in level 4, Q52121 corresponds to a particular data
structures and values to be used by active nodes in this zone Zone1.

Fig. 6. Running example for SA modeling.

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 163

Slave Agent Modeling (SA). This agent executes directly the orders of the
corresponding (ZA). Figure 6 shows the reaction of a slave agent in Zone1 when
it receives an order from a corresponding Zone Agent.

6 Coordination Protocol Between Agents

We propose a communication protocol between the different agents (CrA, ZA,
SA) of this architecture. It is based on the following operation: (i) CrA Algo-
rithm: the operation that links CrA to any ZA. (ii) ZA Algorithm: the operation
between any ZA and any corresponding SA. (iii) Oper 1 : an operation allowing
the activation/deactivation of nodes in a zone. (iv) Oper2 : an operation allow-
ing a modification of data flows in a zone (v) Oper3 : an operation allowing the
activation/deactivation of detectors in a node. (vi) Oper4 : an operation allowing
the modification of scheduling in a zone and (vii) Oper5 : an operation allowing
the modification of data structures or values in a zone.

CrA Algorithm: to apply a reconfiguration, CrA sends to any ZA an array con-
taining the list of desired active zones with the new flow of data to be exchanged
between them.

Algorithm 1. CrA Algorithm.
—————————————————————————————————–
Z Zone; newArray(tabZoneActiv[nb]); DS= Transm Distance (threshold);
D(CrA,j)= α, j �= CrA; (i,j)=β , j �= i;
REPEAT {Send new vector(activ zones) to neighbors zones:

IFD(CrA,j) ≤ DS; Send (tabZoneActiv[nb], CrA, j);

FOR EACHdest j, find the next with dist min to j;

IFD(i,j) ≤ DS; Send(tabZoneActiv[nb], j, i); i+1; calculate(D(i,j));}
UNTIL D (i,j)= 0; source i = destination j;

Send(ProtoCommunic (AC, ZoneDest1, ..., ZoneDestj));

ZA Algorithm: Step-By-Step: (ZA) sends to any (SA) a reconfiguration
scenario.

Algorithm 2. ZA Algorithm.
—————————————————————————————————
We declare: VAR = orderReconfig(ZA, SA);

IF (VAR =1) Send (ReconficArchitecNode(), ZA, SA);
IF (VAR =2) Send (ReconfProtoCommNod(), ZA, SA);
IF (VAR =3) Send (ReconfArchiDetectors(), ZA, SA);
IF (VAR =4) Send (ReconfLogicExecDetec(), ZA, SA);

IF (VAR =5) Send (ReconficStructData(), ZA, SA);

164 H. Grichi et al.

IF (VAR =1) ⇒ Execute Oper 1; We declare: Arch[] = new Array[nbNode] ;
FOR EACH Zi ∈ setZonei= {Z1,Z2,...,Zi};
FOR EACH Nzj(i) Arch[] = ReconficArchitecNode()

REPEAT IF (PwB → 0) ; Sd(Nzj(i))=0; Arch[IDj]=0;

IF Vd(Nzj(i))≥ threshold; Sd(Nzj(i))=1 ; Arch[IDj]=1; j=j+1;

UNTIL j= nbNode; RETURN Arch[]};
IF (VAR =2) ⇒ Execute Oper 2; ReconfProtoCommNodes(){
IF(N is an node address connected in zone) { Deliverdata (node, link); }
ELSE IF (The routing table contains a route for N) { Deliverdata (@nextnode, link); }
ELSE IF (There exists a default route) {(DefaultLink);}
ELSE {Send(error-message);} }
IF (VAR =3) ⇒ Execute Oper 3; ArchDetector[]= new Array[nbDetector]();

FOR EACH Nzj(i) ArchDetector[]= ReconfArchiDetectors();

REPEAT IF ∀Sd(DTk)=0; ArchDetector[IDk]=0;

IF ∃ Sd(DTk)=0; ArchDetector[IDk]=1;

IF Vd(DTk) ≥ threshold;Sd(DTk)=1 ; ArchDetector[IDk]=1; k=k+1;j=j+1; UNTIL
k= nbDetector; j= nbNode; RETURN ArchDetector[];
IF (VAR =4) ⇒ Execute Oper 4; ActiDetec[]= new Array[nbActiDetec](); We declare:

RandomStruct[] = new ActiDetec[](); RandomStruct[]= ReconfLogicExecDetec()

FOR (k=0,k=j+1) REPEAT RandomStruct[k]= RANDOM (ActiDetec[i]);

UNTIL k= nbDetector;

RETURN RandomStruct[];
IF (VAR =5) ⇒ Execute Oper 5; We declare: DataStructure[]= new Array[nbData]();

We declare: RandomStructure[] = new DataStructure[](); RandomStructure[]= Reconfic-

StructData()

FOR (l=0,l=l+1) REPEAT RandomStructure[l]= RANDOM (DataStructure[l]);

UNTIL l= nbData;

RETURN RandomStructure[];

7 Simulation and Evaluation

In order to show the benefits of our contribution, we apply a simulation of RWSN.
We start with a theoretical simulation before presenting a practical one (Fig. 7).

Fig. 7. Comparison between 3 architecture types: Arch 1, Arch 2, Arch 3.

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 165

7.1 Theoretical Simulation

We propose a system (Sys 2) to be composed of 10 zones (Z1...Z10), each one
is composed of 100 nodes: one master node (Mni) and 99 slaves (Snj), and a
station (S) to control the whole RWSN. Each node Nz(j) in the same zone Zi
is characterized by two sensors or detectors : DTnj (n =1 or 2) to detect the
temperature and the humidity of the environment. Each sensor node is equipped
with a battery, thus the available energy is limited. Our system (Sys) is char-
acterized as follows: (i) an omnidirectional antenna is installed in each sensor
node and the transmission range is defined in 15m (DS), (ii) the data are trans-
mitted without any delay, (iii) the exchanged messages are with a constant size.
To Apply the three forms of reconfiguration, we execute the following scenar-
ios: (i) (CrA) sends the first reconfiguration to be applied: activation of all
nodes (Hardware reconfiguration) and modification of temperature to be
(45◦) (Software reconfiguration), (ii) (ZA) of each zone receives this order
and broadcasts it to each corresponding slave which applies this order, (iii) (SA)
verifies the new routing table according to the recommendation of ZA (Protocol
reconfiguration), (iv) All (SA) send the collected information in step by step
to (CrA). This scenario is described as follows:

Theoretical Simulation
——————————————————————————————————–

10 zones; CrA; DS=15m;tabZoneActiv[10]=
Z1 Z2 Z3 Z4 Z5

Z6 Z7 Z8 Z9 Z10

tabDist[10]=
D1=D(CrA,Z1)=14m D2=D(CrA,Z2)=13m
D3=D(CrA,Z3)=10m D4=D(CrA,Z4)=14m
D5=D(CrA,Z5)=21m D6=D(CrA,Z6)=26m
D7=D(CrA,Z7)=31m D8=D(CrA,Z8)=34m
D9=D(CrA,Z9)=40m D10=D(CrA,Z10)=42m
SEND STEP IF Di ≤ 15, Di={1,...,10};
Send(tabZoneActiv[10], CrA, Z1); Send(tabZoneActiv[10], CrA, Z2); Send(tabZoneActiv[10], CrA, Z3);
Send(tabZoneActiv[10], CrA, Z4); Send(ProtoCommunic(CrA, Z1, Z2, Z3, Z4)); END SEND STEP
CALCUL D(Zi,Zj); i={1,...,10}, j={5,...,10}; D(Zi,Zj)=Dj-Di; IF D(Zi,Zj) ≤ DS; Send(tabZoneActiv[10], Zi, Zj);
D(Z1,Z5)= D5-D1 21-14=7m
D(Z1,Z6)= D6-D1 26-14=12m
D(Z1,Z7)= D7-D1 31-14=17m
D(Z1,Z8)= D8-D1 34-14=20m
D(Z1,Z9)= D9-D1 40-14=26m
D(Z1,10)= D10-D1 42-14=28m
Send(tabZoneActiv[10], Z1, Z5, Z6); Send(ProtoCommunic(Z1, Z5, Z6)); CALCUL D(Zi,Zj); i={6,...,10},

j={7,...,10};

D(Z6,Z7)= D7-D6 31-26=5m
D(Z6,Z8)= D8-D6 34-26=8m
D(Z6,Z9)= D9-D6 40-26=14m
D(Z6,Z10)= D10-D6 42-26=16m

Send(tabZoneActiv[10], Z6, Z7, Z8,Z9); Send(ProtoCommunic(Z6, Z7, Z8,Z9)); CALCUL D(Z9,Z10);
D(Z9,Z10)= D10-D9 40-42=2m
Send(tabZoneActiv[10], Z9, Z10); Send(ProtCommunic(Z9, Z10);
FOR EACH Z i ∈ setZone; (ZA) send to the (SA) an order of reconfig.
FOR EACH Nz j(i); orderReconfig(ZA, SA) = 1; VAR =1 ⇒ Send (ReconficArchitecNode(), ZA, SA); Arch[]= new
Array[100]; Arch[] =ReconficArchitecNode()
REPEAT IF (PwB ≥ 0) ; Sd(Nz j(i))=1; Arch[IDj]=1; j=j+1; UNTIL j= nbNode; RETURN Arch[]}; New-node-
archit ⇒ orderReconfig(ZA, SA) = 2; VAR =2 ⇒ send (ReconfProtoCommNodes());
ReconfProtoCommNodes(){ IF (N an address of node connected in a zone Z { Deliverdata (Nz j(i), link); ELSE IF
(∃ route ∈ routing table); Deliverdata (Nz j+1(i), link); send (DataStructure j(i)[], CrA);}

166 H. Grichi et al.

To show the benefits of our contribution, we compare this work to the projects
TWIST [3] and ReWINS [8]: (i) we compute the number of exchanged messages
in our multi-agent architecture of RWSN (denoted by Arch 1) where 10 messages
are exchanged between (CrA) and the 10 (ZA) agents. We suppose that we
have 50 active nodes and 50 deactive ones per zone. In this case, 50 messages
are exchanged between (ZA) and (SA). The number of exchanged messages:
NbExchMgs1= 10+10*50=510 messages. For the TWIST project [3], the authors
use the notion of Super nodes, (denoted by Arch 2), which is similar to our
Zone Agent but without a concept of active nodes. We have 10 messages to
be exchanged between the station and super nodes (10 messages are equal to
the number of super nodes) plus the messages to be exchanged between the
super nodes and all others= 10*1000. The number of exchanged messages is
NbExchMgs2= 10+10*1000=10010 messages. For the project ReWINS [8], the
authors do not consider an agent-based architecture. We denote this architecture
by Arch 3, we have, 500 exchanged messages between the station and its nearly
nodes plus the exchanged messages between the rest of the nodes. The number of

exchanged messages is NbExchMgs3=
500∑

i=0

i = 250750 messages. (ii) If we suppose

that the time of transmission of any message is 2 ms, we can calculate the
transmission time of all messages for these three solutions as follows.

Note that the minimization of exchanged messages between nodes reduces
the total energy consumption in a RWSN. We can compute the complex-
ity of our coordination protocol that we compare to related works [3,8]. Let
n be the constant size of data to be exchanged between nodes, and N be
the number of operations in the communication protocol (Oper 1, Oper 2,
Oper 3, Oper 4, Oper 5), Nb(oppj) the number of sub-operations in the
operation oppj, j=(A,..5), Size(n): the algorithm size or the total number
of sub-operations in the protocol. The complexity of our protocol is com-
pared to related works [3,8] as follows: (a): For our architecture (Arch 1):

Size(n) =
5∑

j=1

(
n∑

i=0

nNb(oppj))=5(2n[log2n]) = 10n[log2n] and the complex-

ity is O(10n[log2n]) = O(n[log2n]). The Size(n)=recursive equation. (b): For
TWIST [3] architecture (Arch 2), we have: Size(n)= n(2n[log2n]) = n2[log2n]
and the complexity is O(n2[log2n]). (c): For ReWINS [8] architecture (Arch 3),
we have: Size(n) = n3 and the complexity is O(n3).

7.2 Practical Simulation

We are interested in the exchange of signals between nodes when the temperature
is between 30◦ and 50◦ (30◦ ≤Temp≤50◦). Our major goal is to keep all nodes
of the network on live as much as possible. We assume that if the number of
dead nodes (node with battery charge = 0, PwB=0) reaches 30 % of the original
number of nodes (in order of 300 nodes) then, the network collapses. We apply

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 167

Fig. 8. Comparison between two simulation cases.

Fig. 9. The start and end of simulation.

our contribution to this case study by using WSNet (Wireless Sensor Network
simulator) [5]1.

We assume two simulation strategies: (i) First case (SIM1): We suppose that
we do not apply our contribution. Each node sends periodically the temperature
information even it’s higher than 50◦), (ii) second case (SIM2): We apply our
contribution by assuming that each node stops any emission of temperature
information if it is higher than 50. Figure 8 shows the benefits of our contribution
that we tested with WSNet.

We note that without the reconfiguration (SIM1), the network performance
is low, since it collapses much faster than in (SIM2). Figure 9 presents additional
results of our simulation by using WSNet. The red nodes are deactivated nodes
(PwB=0), the brown area shows the high temperature zone, the nodes with a
purple outline are active in the process of transmitting data and those in green
are in their neighborhoods and participating in routing.

According to our theoretical and practical simulation, the advantages of
the chapter’s contribution :(i) a gain in transmission time of messages to be
exchanged between nodes. This gain includes a decrease of transmission times,
(ii) a gain in terms of energy since we gain in transmission of messages,

1 We thank Ms. Zeineb Gueich for collaboration to prepare this experimentation.

168 H. Grichi et al.

(iii) a hierarchical architecture of RWSN in order to control the complexity
of the problem and to increase the flexibility of reconfiguration.

8 Conclusions and Perspectives

This chapter proposes new solutions for reconfigurable wireless sensor networks
to be composed of communicating nodes which execute reconfigurable tasks.
The reconfiguration is assumed to be any operation allowing the adaptation
of the network to its environment under different constraints. We define three
forms of reconfigurations to increase the flexibility of the network: (i) software
reconfiguration allowing the addition/removal and update of tasks, (ii) hardware
reconfiguration allowing the activation/deactivation of sensor nodes or detectors,
(iii) protocol reconfiguration allowing the modification of data flows. Nowadays,
many projects deal with RWSN such as WASAN and TWIST [3]. Nevertheless
no one addresses all these forms together. We propose a zone-based multi-agent
architecture for RWSN where hierarchical agents are defined for a more flexibil-
ity of the network. We use nested state machines as a modeling solution to cover
all these forms and control the complexity. A coordination protocol is defined
between agents for their feasible coordination. We present in this chapter a the-
oretical and practical simulation that proves the chapter’s contribution. The
applicability bound of our proposed solution is the modelling complexity when
the number of zones increases. Moreover, the system that we treat is real-time,
but it is critical to meet all real-time constraints while handling different recon-
figuration scenarios. The third applicability bound is the critical management of
reconfiguration requests on the medium between the nodes especially when the
number of zones increases.

We plan in the future work to verify functional and temporal properties
for the formal validation of RWSN. The real-time scheduling in nodes as well
as the functional safety will be possible future trends to be also followed. We
can also,automate the decomposition of zones to gain in terms of transmission
messages between nodes , in case of applying a reconfiguration scenario. A real
industrial case study will be considered for more evaluations of our contribution.

References

1. Guptay, V., Kim, J., Pandya, A., Lakshmanan, K., Rajkumar, R., Tovary, E.:
Nano-CF: a coordination framework for macro-programming in wireless sensor
networks. In: Mesh and Ad Hoc Communications and Networks (SECON)(2011)

2. Bellis, S.J., Delaney, K., Barton, J., Razeeb, K.M.: Development of field program-
mable modular wireless sensor network nodes for ambient systems in Computer
Communications, Special Issue on WSNs, pp. 1531–1544, August 2005

3. Handziski, V., Kopke, A., Willig, A., Wolisz, A.: TWIST: A Scalable and Recon-
figurable Wireless Sensor Network Testbed for Indoor Deployments in Technical
University Berlin, Telecommunication Networks Group, November 2005

4. Wang, F.: Case study: Using LabVIEW to Design a Greenhouse Remote Monitor-
ing System, Northeast Agriculture University (2010)

New Flexible Architectures for Reconfigurable Wireless Sensor Networks 169

5. Hamida, E.B., Santos, S.: WSNet : Simulation configuration Tutorial in ARES
INRIA / CITI - INSA Lyon (2007)

6. Shwe, H.-Y., Wang, C., Chong, P.-H.J., Kumar, A.: Robust cubic-based 3-D local-
ization for wireless sensor networks. Wireless Sens. Netw. J. 5(9), 169–179 (2013)

7. Chen, T.-S., Chang, C.-Y., Sheu, J.-P.: Efficient path-based multicast in wormhole-
routed mesh networks. J. Sys. Archit. 46, 919–930 (2000)

8. Ramamurthy, H., Prabhu, B.S., Gadh, R.: Reconfigurable wireless interface for
networking sensors (ReWINS). In: de Groot, S.H., Niemegeers, I.G.M.M. (eds.)
PWC 2004. LNCS, vol. 3260, pp. 215–229. Springer, Heidelberg (2004)

9. Kindratenko, V., Pointer, D.: Mapping a sensor interface and a reconfigurable
communication system to an FPGA core. Sens. Lett. 3, 174–178 (2005)

10. Chen, J., Zhang, L., Luo, J.: Reconfiguration cost analysis based on PetriNet for
manufacturing system. J. Softw. Eng. Appl. 2, 361–369 (2009)

11. Xiong, J., Zhao, J., Chen, L.: Efficient data gathering in wireless sensor networks
based on matrix completion and compressive sensing. IEEE Commun. Lett. 3, 1–3
(2013)

12. Saravanakumar, R., Susila, S.G., Li, J., Raja, J.: Energy efficient homogeneous
and heterogeneous system for wireless sensor networks. Int. J. Comput. Appl. 17,
33–38 (2011)

13. Bocca, M., Cosar, E.I., Salminen, J., Eriksson, L.M.: A reconfigurable wireless
sensor network for structural health monitoring. In: Structural Health Monitoring
of Intelligent Infrastructure conference, July 2009

14. Samek, M.: Practical Statecharts in C/C++: Quantum Programming for Embed-
ded Systems in CMP Books, imprint of CMP Media LLC (2003). ISBN 1-57820-
110-1

15. Swamy, N.: Control Algorithms for Networked Control and Communication Sys-
tems, PhD thesis, Department of Electrical Engineering in the University of Texas
at Arlington, Texas (2003)

A Measurement-Oriented Modelling Approach:
Basic Concepts to Be Shared

Giulio D’Emilia(✉), Gaetanino Paolone, Emanuela Natale,
Antonella Gaspari, and Denis Del Villano

Department of Industrial and Information Engineering and of Economics,
University of L’Aquila, L’Aquila, Italy

{giulio.demilia,gaetanino.paolone,emanuela.natale}@univaq.it,
{antonella.gaspari,denis.delvillano}@graduate.univaq.it

Abstract. Measurements represent a fundamental component of Enterprise
Information Systems and they play a key role in organizations. Their own
languages, concepts and techniques, concerning how to approach and solve prob‐
lems in industrial scenarios, inevitably characterize these two disciplines. The
practical meaning of metrological concepts is often partially or completely misun‐
derstood, in particular the extended uncertainty and the confidence level, which
both can supply useful support in business activities. After explaining their phys‐
ical meaning, in this paper the question being posed is how to get a methodology
that allows to analyze, model and implement software subsystems able to render
really usable information concerning measurements, keeping their informative
peculiarities unchanged. The final goal of our research is to define a Use Case-
based methodology for modeling the informative content of measurements and
their usage, that starts from the business model of an enterprise and achieves a
software model able to satisfy users’ needs.

Keywords: Use case · Business modelling · System modelling · UML ·
Measurement · Uncertainty · Energy

1 Introduction

It is generally acknowledged that designing and developing software systems is
becoming increasingly complex. Fortunately, there are methodologies and tools [1] to
tackle this demanding and, sometimes critical, challenge. For example, the methodology
proposed in [2–4] promotes the iterative and incremental development of complex soft‐
ware systems using a methodological framework that supports model-driven engi‐
neering. Such a methodology is inspired to the Rational Unified Process (RUP) [5] and
it poses Use Cases (UC) at the center of the modelling [6].

Nowadays measurements, i.e. quantitative information from measured quantities,
increasingly represent a fundamental component of Enterprise Information Systems
(EIS) and they play a key role in organizations. While the automation of decision-making
processes based on measurements appears to be a great opportunity, on the other hand
difficulties are presumable. There is the possibility of having a large amount of data

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 170–182, 2015.
DOI: 10.1007/978-3-319-25579-8_10

coming from measurements to be integrated into the Business Information System that
have their primary language and who are not always well spread throughout all depart‐
ments of the business organizations. Moreover, the source of information has an
extremely wide variability in the measuring system implementing methods and in the
quality of measurements. There are concepts related to the variability that may lead to
content’s smokiness but computerization may be a useful solution. Another difficulty is
that the operating conditions can have, from one case to another, completely different
characteristics and connotations. This is why the question we posed is how to get a
methodology that allows us to analyze, model and implement software subsystems able
to render really usable information concerning measurements, keeping their informative
peculiarities unchanged. Please note that in literature there are very few examples that
can support this [7]. Studies aiming to compare foundations of measurement theory to
software measurement [8] do not appear, in fact, closer to these goals.

For an IT project to be successful, it must be as close as possible to business reality,
in such a way that corporate users can find in the application [9] the same modus operandi
of their own function: each actor plays a set of UCs within the organization and does so
regardless of automation. Today, UCs are at the core of modelling and developing soft‐
ware applications [1, 10, 11]. The methodology appearing in [4] is an example of the
proposal that gives the power to manage such a complexity through a layer of classes
dedicated to UC automation. Their methodology examines the system behavioral aspects
through a top-down process (such an approach is commonplace amidst software devel‐
opment methodologies), and then proceeds by means of stepwise refinements of the
initial business model.

The final goal of our research is to define a methodological proposal for modeling
the measurements and their usage that starts from the business model of an enterprise
subsystem and achieves a software model able to satisfy the users’ needs (i.e., that fully
adheres to business processes). In line with this goal, the present contribution calls into
question the convenience of using a top-down approach in business modeling, system
modeling, design and implementation of a software system able to make the expected
information available, going from the measurements to the management.

The next step (created with this paper) adapts the approach proposed in [2–4], trans‐
forming it in such a way that you can understand and design software application for
the analysis of measurements starting from business system requirements. In summary,
what we want to do is to extract UCs from the EIS and bring them into the computerized
system (from Business Modeling to System Modeling) also in relation to the measure‐
ments to be carried out in any enterprise area, whether they are related to the production,
power consumption and all other forms of detection.

The paper is organized as follows. Section 2 recalls essential elements of the meth‐
odology appeared in [2–4] needed for comprehending this work. Section 3 outlines
essential characteristics of an EIS’ subsystem dedicated to metering and its peculiarities
in decision-making, regardless of the usage of computer. Section 4 starts the discussion
about a possible transformation of the methodological process recalled in Sect. 2, which
can lay a solid foundation for pursuing the aforementioned ultimate goal. Brief conclu‐
sions end the paper.

A Measurement-Oriented Modelling Approach 171

2 The Methodology

The methodology introduced in [2–4] allows to represent two models in detail: the busi‐
ness and the system model. Use case modeling and realization are the most important
aspects of the methodology. The proposal is centered around four distinct layers (Fig. 1)
with an iterative and incremental approach that leads to the realization of a Business
Use Case (BUC) into the software application through stepwise refinements. The first
two layers of UC analysis are placed in the business modeling context: their objective
is to get a complete representation of the given business reality. The next two layers are
rather placed in the system modeling context with the objective of representing the
software system. More in detail, they illustrate that the first layer concerns an analysis
of BUCs, which are then specialized by Business Use Case Realizations (BUCR) in the
second layer. Afterwards, a trace operation is used to define the system UCs (third layer),
which are then specialized by Use Case Realizations (UCR) (fourth layer). The latter
ones can be implemented by Object Oriented classes.

Fig. 1. A sketch of the methodological layers.

Next, we describe the methodology thoroughly with a brief example referring to a
real-life document management project for a bank, where every layer contains a type of
UML diagram. We will show that this example may be useful because whatever is being
developed for a bank, that is to say a typical management case, can be applied to any
industrial scenario. Figure 2 shows a fragment of the BUC diagram, placed in the first
layer of Fig. 1.

172 G. D’Emilia et al.

Fig. 2. The BUC diagram (1st layer).

The example shows how BUCs are used to express an actor/system interaction. For
each BUC, we define the related BUCRs. Referring to the BUC Documental
Management, Fig. 3 proposes six BUCRs.

Fig. 3. The BUC realize diagram (2nd layer).

After the business modelling phase, we analyze the part of the system that will be
automated. The trace operation can introduce many system UCs for a single BUCR. For
example, in Documental Management, the document acquisition can be realized
by the Bank, but by Suppliers as well (see Fig. 4). The output of the trace operation
produces the system UCs in the third layer of Fig. 1.

A Measurement-Oriented Modelling Approach 173

Fig. 4. The use case trace diagram (3rd layer).

In the last phase of the subsystem behavioral analysis, we must identify at least one
system UCR for each system UC. In this phase we also introduce some technological
UCRs, such as LinkFile. For the sake of brevity, we will not present an example of
system UCR diagram, but it should be straightforward to understand that this operation
introduces a further refinement of the subsystem.

Fig. 5. Methodological overview.

The current methodology has a strong industrial impact because it has been repeat‐
edly applied in real projects reaching good results and its adoption has brought benefits
both in terms of the engineering aspects of design and development time [2]. Moreover,
the methodology enables to build software systems with the help of a an existing

174 G. D’Emilia et al.

Java-based framework that implements a Java class for each UCR and allows to speed
up the software development.

Figure 5 represents an overview of the methodology: it also shows the main involved
artifacts. It is clear that, in conclusion, it is possible to reaffirm that the methodological
process is UC-driven, since the UC artefact exists both in the business model and system
model, although it is represented by different stereotypes, and is also exported to code.

3 The Measurement Viewpoint

Decision making requires both information and knowledge. Information (or its absence)
is crucial to decision making [12]. In other circumstances the theory of measurement
has already demonstrated to favor the ability to enter in the actual reality of the processes
of interest [13]. Therefore, information deriving from measurement data may play a key
role in business decision making. In business management, it is important that the deci‐
sion is supported by appropriate tools, having the function to give the possibility to
minimize the risk of errors so that the person can make complex decisions. In this sense,
measurement uncertainty offers a considerable aid to quantify that risk, because it refers
to the concept of the information reliability level (level of confidence).

3.1 Basis Concepts of the Measurement Theory

The measurement uncertainty is a parameter characterizing the dispersion of the values
being attributed to a measurand, due to the random effect of many causes; three types
of these are generally indicated, connected to the instrumentations and to the measure‐
ment method, to the operator and, finally, to the environment.

Some of these may be evaluated by a “type A” evaluation of measurement uncer‐
tainty from the statistical distribution of the quantity values from series of measurements
and can be characterized by standard deviation. The other components, which can be
evaluated by “type B” evaluation of measurement uncertainty, can also be characterized
by standard deviation, evaluated by probability density functions based on experience
or other information [14].

The measurement uncertainty reflects the unavoidable lack of exact knowledge of
the value of the measurand, and a probability distribution over the set of possible values
for the measurand is used to represent the information available on it. If the scenario of
measurement is taken into account, the difference between the real operating situation
and the ideal one means a random variability of measurements, even though the “true
value” of quantity is set as constant. It must be pointed out that the “true value” of the
quantity is a very satisfactory target to be pursued; knowing it means knowing everything
about the phenomenon; therefore, if you know everything, nobody can contradict you,
even though this is, obviously, impossible in a real condition.

In order to approach real situations, the answer to the question “what is the true
value?” is given by the expanded uncertainty, that is the product of a standard meas‐
urement uncertainty by a coverage factor k. The coverage probability means the prob‐
ability by which the true value of the measurand is contained in the uncertainty interval

A Measurement-Oriented Modelling Approach 175

realized around the measurement. In most cases the probability distribution can be
considered normal, and the coverage factor is set equal to 2 if a coverage probability of
approximately 95 % is chosen. To obtain a better evaluation of the coverage factor
associated to a specific coverage probability, especially when the number of measure‐
ments used for the uncertainty evaluation is low, a value taken from the Student distri‐
bution can be set [15].

The answer to the above question the measurements give is according this procedure;
the “true value” is unknown but an interval could be shown where the “true value” is
with a set coverage probability. Your decisions, your considerations have to be made
thinking that every value of the interval is a possible “true value” with the given confi‐
dence level. Confidence level is a strategic parameter; increasing it means that all the
possible value of the “true value” has been taken into account with a reduced risk of
missing some one; the counter part of increasing confidence level and k for a set standard
uncertainty is that we should be able to take decisions, to make actions effective with
an enlarged set of possible values and this is, obviously, more difficult.

Optimizing the needed knowledge of the reality, standard uncertainty of measure‐
ments, and the risk of operating mistake, confidence level, can give a very useful contri‐
bution to the making of conscious decisions.

3.2 Measurements as a Tool for the Decision-Making

If the data are accurate, i.e. closer to the “true quantity value” of the measured quantity,
they can be processed effectively creating an informative base with the following
features:

• shared, i.e. integrated within business informative systems set in the specific indus‐
trial situation;

• transparent, i.e. objective and incontestable by the team members who participate in
the decisional process;

• significant, i.e. consistent from the data quality viewpoint;
• aware, involving, in other words, an indication about the risk assumed by the decision

maker, with reference to different alternative choices.

In that context, aiming at the fulfillment of these features, the attention must be paid to
several challenging aspects for both information systems and metrology disciplines.
Without limiting the general nature of the foregoing, an interesting area of use of a
decision-making strategy based on measurement uncertainty of data coming from the
field, is referred to an energy case of optimization. In particular, with reference to an
industry operating in the aeronautical sector, simple measurements allowed us to vali‐
date a predictive model of energy consumption, to be used for the definition of a cost
effective strategy for energy saving [16].

In this context, the decision-making strategy provides for the possibility of having
a management tool that, for example, is able to return alternatively:

• the correspondence between a budget of improvement (I) and the target (t) that can
be guaranteed, in front of a predetermined level of confidence (k) or risk deemed
acceptable by the decision maker;

176 G. D’Emilia et al.

• the relation between a variable and adjustable improvement investment Ǐ and the
probability p(k′) that a target set as t’ is achieved.

In fact, in order to ensure, for the same investment I, and with a given level of confi‐
dence p(k) to achieve a given objective t, it is necessary that the model gives the
value as a solution, which is related to the target of a quantity t exactly equal to the
measurement uncertainty of the model, U(m), according to the following logical
implication:

with:

where:

p(t, I)%: probability of reaching the target t, with the investment I;
n: degrees of freedom;
k, k′: coverage factors (with n = ∞);
p(k): probability (confidence level) associated with the model k coverage factor;
t, t′: fixed or variable target depending on investment;
m: indication of the consumption model validated, i.e. provided of its uncertainty,
m = f (I);

: indication of the model that is in new condition after the fixed investment I;
: indication of the model corresponding to the realization of the investment variable Ǐ;

u(m): standard uncertainty of the model;
U(m): expanded uncertainty of the model.

Furthermore, it is possible to study the relationship, p(k′) = f′(Ǐ), between probability
p(k′) to reach the target and the required investment Ǐ. In fact, in front of an investment
Ǐ the model will return an indication m = f(I) corresponding to a reduction in consump‐
tion plausibly less ambitious (i.e.), being: k′ ≠ k.

4 The Approach We Look At

Designing a large enterprise software application is a complex and articulated process
since it represents the company automation. The identification of the UCs appears
particularly critical. It illustrates the interaction modes of the end-users with the system
according to the usual business workflows. It is important to emphasize that the usage
of a methodology, in the context of software engineering, has a fundamental importance
for controlling the complexity of computerized solution.

As described in previous sections, measurements represent a key element in decision
making. BUCs and BUCRs detection is a critical factor for the success of software
applications which aim to be strategic for the business management and that are inspired
by measurements. As a first step towards the definition of a methodology for the analysis

A Measurement-Oriented Modelling Approach 177

and design of software for decision making that is based on measurements, we apply
the methodology mentioned in Sect. 2 to a real case. The case study is referred to an
energy case of optimization within an enterprise of avionic components: the main goal
is to reach the energy consumption optimization.

In the proposed approach, the business modeling activity starts, in close collaboration
with the enterprise top management, from the detection of Organization Units involved
in the IT project and then proceeds discovering their Business Systems (BS) and their
Business Goals (BG). Four BSs were detected and analyzed: in the example discussed
hereinafter we focus on one of them, the BS EnergyManagementArea, involved in
reaching the BG named EnergyConsumptionEfficiency.

Inside every BS we identify Business Actors, BUCs and BUCRs, using the construct
BUC to represent a single interaction mode between actors and the system, and the
construct BUCR to represent how business workers, business entities, and business
events collaborate to perform a particular BUC [17].

After a thorough analysis of the Company, with particular attention to information
flow inside the BS EnergyManagementArea, we identified several BUCs. In
presenting our proposal, particularly interesting are the BUCs performed by the Business
Worker Energy Manager, whose decisions are closely related to the measurements made
on the field. Among those BUCs, (from the knowledge-intensive point of view)
ConsumptionTargetManagement is the most complex, realized by 3 BUCRs
(Fig. 6).

Fig. 6. Part of the case study BUC realize diagram.

To better understand the logic flow and document knowledge aspects involved in
knowledge-intensive BUCRs, we widely use Business Activity Diagrams (BAD) (where
a Business Activity (BA) denotes an elementary business operation or a knowledge-
intensive task) and a strong narrative description. The ability of UML BADs to effec‐
tively describe complex business processes [18] allows us to depict the inference process
that lets the Business Actor take a complex decision. A complex BA (that is an activity
representing a number of intricate atomic tasks) may be depicted at different grain-size
levels through the use of several BADs. For example, the BUCR Target-Model
Comparison – representing the concepts expressed in Sect. 3 – was depicted using

178 G. D’Emilia et al.

the BAD in Fig. 7 (which is only part of a larger diagram) and also widely documented
through a narrative specification.

Fig. 7. Part of the case study BA diagram.

During the execution of the business modeling discipline, as provided for by theory,
the main Business Entities (BE) (representing a significant and persistent piece of infor‐
mation that is manipulated by Business Actors and Business Workers [17]) were also
identified and modelled.

Specific attention was paid to documenting classes of measurement-intensive busi‐
ness objects, i.e. those BEs strongly related to measurements. In their modeling, close
attention was placed on maintaining the peculiarities of measurement unchanged and
well-marked, in order to grant a key role in business decision making to information
deriving from measurement data. Figure 8 shows a portion of the BEs diagram.

Fig. 8. The case study’s business entities

A Measurement-Oriented Modelling Approach 179

After the Business Analysis, a trace operation was performed: according to the
methodology, we identified the BUCRs to be computerized and we traced them into
System UCs (Fig. 9).

Fig. 9. Part of the case study UC trace diagram.

In the same manner and with the same aim, as provided for by the theory, a trace
operation was performed only on the BEs needed for the system’s computerization
(Fig. 10).

Fig. 10. The trace operation on the BEs.

During the conceptual analysis phase, with the aim of describing how each UC is
realized, we identified the Use Case Realizations: Fig. 11 shows part of the realize
diagram.

180 G. D’Emilia et al.

Fig. 11. An example of realize diagram.

Each UCR was also characterized and strongly supported in terms of one or more
scenarios (usually represented by UML Sequence Diagrams or UML Activity
Diagrams).

5 Conclusions

At the end of the case study’s modelling process we believe the proposed approach
produces a good representation of the EIS to be computerized, and a concrete image of
subsystems to be automated. It is important to remark that we achieved this firm belief
in close collaboration with several stakeholders involved in various aspects of the
project, mainly measurements experts, decision makers, IT-business analysts and soft‐
ware engineers. Therefore, in our opinion, the usage of this methodological approach,
broadly integrated with the usage of BADs (mainly to represents business decision-
making patterns) allows to improve the quality of communications between the various
stakeholders involved in modelling, and designing a measurement-intensive software
system. Starting from the business modeling activity, the increase in the quality of
information may help reaching a more effective system analysis and, at the end of the
process, building a software system as close as possible to business reality and fully able
to reveal its decision-making patterns.

Finally, we believe this approach may become a first step in reducing the informative
gap (concerning the correct usage and interpretation of measurements) between business
management, software engineers and measurement experts, giving some preliminary
solutions deriving from the fact that in the best of our knowledge, measurements are not
correctly used into automated decision making processes as often the typical concepts
of measurement (uncertainty, level of confidence, …) are lost while being processed
and made accessible to end-users. A change is needed in the usage of measurements in
decision making processes modelling and computerization. The proposed top-down
approach may be the first step in this change. Certainly, in order to completely clarify
how measurements need to be correctly used and interpreted within an automated deci‐
sion-making process, many aspects need to be studied more closely, with reference to
the business modelling, to the type of approach (top-down, bottom-up, mixed), to the
procedures of in field transfer of the results, etc.

A Measurement-Oriented Modelling Approach 181

References

1. Sukaviriya, N., Sinha, V., Mani, S.: Reflection of a year long model-driven business and UI
modeling development project. In: Palanque, P., Gulliksen, J., Kotzé, P., Prates, R.O.,
Oestreicher, L., Gross, T., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 749–
762. Springer, Heidelberg (2009)

2. Paolone, G., Clementini, E., Liguori, G.: A methodology for building enterprise web 2.0
applications. In: The Modern Information Technology in the Innovation Processes of the
Industrial Enterprises, Prague, Czech Republic, 12–14 November 2008

3. Paolone, G., Clementini, E., Liguori, G.: Design and development of web 2.0 applications.
In: ITAIS 2008, Paris, France, 13–14 December 2008

4. Paolone, G., Clementini, E., Liguori, G., Cestra, G.: Web 2.0 applications: model-driven tools
and design. In: ITAIS 2009, Costa Smeralda, Italy, 2–3 October 2009

5. Kruchten, P.: Rational Unified Process, An Introduction, 2nd edn. Addison Wesley, Boston
(2003)

6. UML, Unified Modeling Language, version 2.4.1 (2012). http://www.uml.org/
7. Wen, B., Zhang, L.: Mapping enterprise process measure into information model. In: First

International Workshop on Education and Computer Science, pp. 612–615 (2009)
8. Carbone, P., Buglione, L., Mari, L., Petri, D.: A comparison between foundations of

metrology and software measurement. IEEE Trans. Instrum. Measur. 57, 235–241 (2008)
9. Zhao, X., Zou, Y., Hawkins, J., Madapusi, B.: A business process driven approach for

generating e-commerce user interfaces. In: Model Conference 2007, Nashville, TN, pp. 256–
270, 30 September–5 October 2007

10. Zelinka, L., Vranić, V.: A configurable UML based use case modeling metamodel. In: First
IEEE Eastern European Conference on the Engineering of Computer Based Systems (2009)

11. Duan, J.: An approach for modelling business application using refined use case. In: ISECS
International Colloquium on Computing, Communication, Control, and Management (2009)

12. Beretta, F., De Carlo, F., Introna, V., Saccardi, D.: Progettare e gestire l’efficienza energetica.
McGraw-Hill, New York (2012)

13. D’Emilia, G., Di Rosso, G., Gaspari, A., Massimo, A.: Metrological interpretation of a six
sigma action for improving on line optical measurement of turbocharger dimensions in the
automotive industry. Proc. Inst. Mech. Eng. D J. Autom. Eng. (2014)

14. ISO/IEC Guide 99:2007: International vocabulary of metrology - basic and general concepts
and associated terms (VIM) (2007)

15. UNI CEI ENV 13005:2000: Guide to the expression of uncertainty in measurement (2000)
16. D’Emilia, G., Gaspari, A., Natale, E.: Uncertainty evaluation of energy flow in industrial

applications as a key factor in setting improvement actions. Proposed for publication to
Applied Energy (2014)

17. Johnston, S.: Rational UML profile for business modelling. IBM Rational (2004).
www.ibm.com

18. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wohed, P.: On the suitability of
UML 2.0 activity diagrams for business process modeling. In: Stumptner, M., Hartmann, S.,
Kiyoki, Y. (eds.) 3rd Asia-Pacific Conference on Conceptual modeling. Conferences in
Research and Practice in Information Technology, vol. 53 (2006)

182 G. D’Emilia et al.

http://www.uml.org/
http://www.ibm.com

Evolution of Feature-Oriented Software: How to Stay
on Course and Avoid the Cliffs of Modularity Drift

Andrzej Olszak(✉), Sanja Lazarova-Molnar, and Bo Nørregaard Jørgensen

Centre for Energy Informatics, University of Southern Denmark, Odense, Denmark
{ao,slmo}@mmmi.sdu.dk, bnj@iti.sdu.dk

Abstract. With time software systems easily become obsolete if not updated to
reflect the ever-changing needs of their users. This update process is far from
trivial as each feature is not necessarily captured by a single module, but rather
scattered across a number of different modules. The situation is further aggravated
by the fact that a module can encompass a number of different features. Our goal
is to measure and evaluate how easy it is to trace back and update a given piece
of software based on its modularity. Modularity is known as the degree to which
a system’s components may be separated and recombined. The approach that we
propose is based on the idea of using relative, as opposed to absolute, modularity
metrics that measure the distance between the actual metric values for a given
source code and their values achievable for the source code’s ideally modularized
counterpart. The approach, termed modularization compass, computes the modu‐
larity drift by optimizing the feature-oriented modularization of source code based
on traceability links between features and source code. The optimized modulari‐
zations are created automatically by transforming the groupings of classes into
packages, which is guided by a multi-objective grouping genetic algorithm. The
proposed approach was evaluated by application to long-term release histories of
three open-source Java applications.

Keywords: Software evolution · Feature-oriented modularization · Re-
modularization · Software comprehension

1 Introduction

Software maintenance have always represented large and growing expense for organi‐
zations [1]. Incorporating changes requested by the users during software evolution is
a non-trivial process because it requires deep understanding of the relations between
software’s problem domain and its solution domain [2]. Doing so is difficult because a
problem domain is centered around user-observable units of functionality, i.e. so-called
features [2, 3], whereas a solution domain is arranged around source-code units, known
as modules, packages, classes, methods and instructions. Hence, modification of a
feature in response to a particular change requested by users implies the ability to effec‐
tively map the feature to the concrete source-code units that need to be inspected, modi‐
fied and tested. Furthermore, one needs to properly modularize the implementations of
features into source-code modules to support software inspection and modification [4].

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 183–201, 2015.
DOI: 10.1007/978-3-319-25579-8_11

Unfortunately, implementations of features are usually not explicitly represented
into source-code modules in the organizations of software. Instead, an organization of
software traditionally focuses on separating technical concerns such as model, view,
controller or persistence into separate architectural layers, each represented by one or
more source-code modules. As a result, implementations of features become scattered
over multiple source-code modules and tangled with one another, as each feature typi‐
cally crosscuts multiple architectural layers. These relations between feature specifica‐
tions and source-code modules affect software evolution in several ways:

• Scattering denotes delocalization of implementation of a feature over several source-
code units of an application [2] and corresponds to the software comprehension
phenomenon of delocalized plans [5]. The presence of delocalized plans makes it
difficult to identify relevant source-code units during change tasks [5, 6].

• Tangling of features denotes interleaving of implementations of multiple features
within a single module of source code [7]. Such interleaving makes it difficult to
understand how multiple features relate and how they reuse fragments of each others’
implementations [8].

Apart from software comprehension, the mapping gap between features and source-code
modules makes it very difficult to modify source code. Due to scattering, modification
of one feature may require understanding and modification of several seemingly unre‐
lated source-code modules. Due to tangling, a modification intended to affect only one
feature may cause accidental change propagation to other features that happen to use
the source-code module that is being modified.

Because of the evolutionary implications of scattering and tangling, it is important
to keep track of the development of their values over subsequent evolutionary releases
of software. The erosion of feature-oriented modularity, as indicated by the increasing
scattering and tangling, has to be observed to provide a measure of the extent of devel‐
opment overhead that they may incur. Ultimately, such knowledge can be used to inform
planning of feature-oriented remodularization efforts.

This paper proposes an approach termed modularization compass that quantifies the
so-called drift of feature-oriented modularity in software. We define drift in feature-
oriented modularity as the distance between the scattering and tangling metric values
of the actual source code of a software release, and a counterpart that is ideally modu‐
larized with respect to the metrics of interest. The idealized counterparts are created
through a remodularization process that optimizes the grouping of classes into packages
according to feature-oriented criteria using a multi-objective grouping genetic algo‐
rithm. To compute the values of scattering and tangling our approach assumes availa‐
bility of traceability links between features and source-code units, as obtainable from
several existing feature-location approaches. Based on the measurements of scattering
and tangling drifts, the modularization compass approach provides so-called compass
views that depict evolution of the drift of the feature-oriented modularity over an appli‐
cation’s lifetime.

This approach was implemented in the Java programming language and evaluated using
long-term release histories of three open-source Java applications. There, the drift infor‐
mation from the modularization compass views was used to identify the development

184 A. Olszak et al.

periods in which the potential benefits from restructuring the code would have been
largest, and to determine whether this restructuring effort should have focused on reducing
the scattering or the tangling of features. Apart from demonstrating the approach, a number
of observations were made regarding the nature of drift of feature-oriented modularity.

The remaining part of the paper is structured as follows. Section 2 describes the state
of the art of feature-oriented modularity. Section 3 presents the modularization compass
approach. Section 4 evaluates the approach. Finally, Sect. 5 concludes the paper.

2 State of the Art

There exist several works that investigate the evolution of features and the modularity
of their implementations over time.

Hsi and Potts [9] proposed to use three views: morphological, functional and object
view to study the co-evolution of the representation of features in the user interface (UI),
their textual specifications and their implementation in three releases of Microsoft’s
Word text processor. The presented qualitative analysis shows that the features
providing the core functionality experience little change and tend to stabilize over time.
This is because they tend to become more entangled with associations as new features
are added. As a result, newer features are added on the periphery of the main functionality
of the application in either small extensions or larger clumps.

Fischer and Gall [10] designed a visualization of feature co-evolution based on the
logical coupling between source files created during adoption of change requests. This
approach uncovers hidden dependencies among features and thereby identifies potential
occurrences of architectural deterioration in directory structures of programs. The
authors apply their approach to a four-year revision history of the Mozilla web browser
to uncover unanticipated dependencies and co-evolution of features.

Hou and Wang [11] analyzed the evolution of features related to usability in the
Eclipse IDE. This was done by both qualitative and quantitative manual analysis of
change logs of the project. The authors identify the majority of changes as gradual
refinements or incremental additions, accommodated by the project’s architecture.
Usability-related features are observed to be the largest component of work in the
project, with a shift over time towards features concerned with integration and automa‐
tion of other features. The observed incremental, rather than punctuated, growth of
features of Eclipse is believed to be enabled by the stability of the architecture.

Greevy et al. [12] focused on qualitative assessment and visualization of evolu‐
tionary changes in implementations of features. Using the proposed visualization, the
authors are able to reason about functional specialization of classes over time, extension
of existing features with new classes and refactorings performed to features. The
presented results depict an increase of feature count and addition of feature-specific
classes over time.

In an earlier work, Olszak and Jørgensen [13] developed an approach to bi-directional
remodularization of existing Java applications to improve the modularization of features
in source code. Feature location was performed using an annotation-driven dynamic
analysis mechanism, and new feature-oriented package structures were automatically

Evolution of Feature-Oriented Software 185

created using a multi-objective genetic algorithm aiming at reducing scattering, tangling,
coupling and increasing cohesion. The observed improvements suggested that the modu‐
larizations produced by this approach are good starting points when migrating applica‐
tions to feature-oriented designs.

3 The Approach

Implementing a feature inherently requires a mixture of technically diverse classes. In
particular, each non-trivial feature encompasses some forms of (1) interfacing classes
that allow users to activate the feature and see the results of its execution, (2) logic and
domain model classes that contain the essential processing algorithms, and (3) persis‐
tence classes that allow for storing and loading the results of a feature’s execution.
Hence, features can be viewed as implicit vertical slices that crosscut the common hori‐
zontal layers of an application’s architecture. These implicit slices consist of graphs of
collaborating classes that end up scattered and tangled within individual layers [14].
This is depicted in Fig. 1.

Fig. 1. Relations between feature specifications and units of source code.

Our approach quantifies these two facets of modularity of features using the
following measures, based on formulations proposed by Brcina and Riebisch [15]:

• Scattering of a feature is quantified as the number of packages that contribute to
implementing that feature. The average of these values, computed for all features in
a system, is referred to as FSCA. The formulation of FSCA is described in detail in
Sect. 4.3.

• Tangling of a package is quantified as the number of features that the package
contributes to. The average of these values, computed for all packages in a system,
is referred to as FTANG. The formulation of FTANG is described in detail in Sect. 4.3.

186 A. Olszak et al.

The extent to which scattering and tangling of features is minimized is a measure of how
well features are modularized within source-code units. We refer to this as the degree
of feature-oriented modularity of software.

In order to measure feature-oriented complexity of evolving features in terms of
scattering and tangling, relations between the source-code units and individual features
have to be identified. The process of identifying relations between source-code units and
observable functionality of a system is known as feature location [16]. This work
assumes that traceability links are readily available or are recovered for an application
using one of the feature-location approaches available in the literature. In particular, for
the evaluation purposes, Sect. 4 uses an existing feature-location approach based on
source-code annotation and dynamic analysis.

3.1 Evolution of Feature-Oriented Modularity

The essence of how features of software applications evolve is well expressed by the
laws of continuing growth and the law of increasing complexity, as formulated by
Lehman [17]. According to the former, software applications need to expand and
enhance their features over time in order to remain useful to their users. The latter
postulates that these expansions will lead to increasing complexity of the source code,
unless work is done to reduce it. One of the facets of the increasing complexity is the
increasing complexity of how features are modularized in source code, as will be exem‐
plified in the following.

Fig. 2. Example impact of evolutionary changes on feature-oriented modularity.

The example application schematically depicted in Fig. 2 initially provides only one
feature that is implemented by two layered modules. Hence, the initial average tangling
FTANG in the application equals 1 (initially each module implements one feature), and
the initial average scattering FSCA equals 2 (the feature is implemented by two
modules).

The first change scenario depicts the effects of adding a new feature to the application
without modifying the structure of the source code. Such a functional extension will

Evolution of Feature-Oriented Software 187

naturally tend to increase the tangling of the application’s modules, as a result of reusing
parts of existing code among features. The second scenario shows the effects of
enhancing one of the existing features. Because the enhancement is implemented as a
new module in the application (a realistic example of doing so would be adding persis‐
tence capabilities), the scattering of the feature increases.

Thereafter, depicted are two possible contrasting scenarios of source-code restruc‐
turings undertaken to improve modularization of features. One of them is based on the
merging of existing modules to minimize the scattering of features. As illustrated, this
causes features to be more tangled with one another. The other restructuring reduces
feature tangling by dividing existing modules along the boundaries of features. As a side
effect, the scattering of features increases.

Based on this simple example, two important observations can be made:

Addition and enhancement of user functionality tends to increase tangling and scat‐
tering of features. Accordingly, difficulties of code comprehension and change propa‐
gation associated with these phenomena should be expected to increase as well.

Restructuring source code to minimize only one of the two properties of feature-
oriented modularity (i.e. scattering or tangling) tends to degrade the other property.
Hence, in order to achieve a simultaneous optimization of both conflicting criteria, a
middle-ground restructuring needs to be devised. For the presented toy example, simple
enumeration of all possible modularizations could achieve this. Enumeration, however,
would certainly not be feasible for larger systems because the number of all possible
distributions of N classes among M modules is equal to MN.

3.2 The Drift of Modularity

There are multiple factors that have to be considered when planning a feature-oriented
restructuring of an application. Fundamentally, undertaking a restructuring is only
worthwhile if the costs of doing so are regained by lower development costs for subse‐
quent releases. The costs of a restructuring include factors such as the actual effort
required, the impact on time-to-market of the product, changes to design documentation,
etc. On the benefits side, one should expect improvements of changeability and under‐
standability of feature implementations during subsequent releases and hence a reduc‐
tion of development costs. Unfortunately, estimating these benefits remains difficult
without knowing how much the modularization of features can actually be improved by
means of restructuring.

Hence, to make informed feature-oriented restructuring decisions, one should be able
to foresee the consequences of performing a feature-oriented restructuring. In practice,
this boils down to being able to foresee how much the current values of feature scattering
and tangling can be reduced in course of restructurings.

Unfortunately, the achievable benefits of restructurings cannot be estimated by
simply computing the distance between the current values of scattering and tangling
metrics and their numerical minima. This is because the numerical minima of these and
other metrics often do not correspond to realistic optimal modularizations of non-trivial
applications, e.g. tangling equal to 1 requires no code sharing among features; scattering
equal to 1 requires each feature to be fully contained in a single module; coupling equal

188 A. Olszak et al.

to 0 requires no dependencies among modules, etc. The presence and the type of normal‐
ization factors embedded in each metric further complicate the situation.

To identify the maximum possible improvements of feature-oriented modulariza‐
tion, it is necessary to construct its optimized modularization, on which the reference
scattering and tangling values can be measured. Assuming that doing so is possible with
sufficient accuracy and in an automated manner (which assumption will be expanded in
the next section), it would be possible to calculate the distance between the current values
of scattering and tangling and their optimized values achievable, if the application is
restructured according to feature-oriented criteria.

Based on this, we define the drift of feature-oriented modularity in an application as
the distances between the absolute and the optimal values of the scattering, measured
here using FSCA, and of tangling, measured here using FTANG.

Fig. 3. Relativity of metric drift.

As schematically depicted in Fig. 3, the drift of feature-oriented modularity can be
plotted over time for a given application to serve as a metaphorical compass that indi‐
cates how much the modularization of features diverges from the optimum with each
subsequent release. Observing the drift trends can be used in several ways by developers
to determine the need for initiating feature-oriented restructurings of the next releases
of their applications.

The compass views of scattering and tangling drifts can be used to identify periods
in which restructuring efforts would be most beneficial. Types of such periods include
the ones in which the drift constitutes a large portion of the absolute metric value. An
example of such a period is the release r4 in Fig. 3, for which there is a large potential
for reducing the absolute metric value by improving modularization of features. More‐
over, in the release r4 the drift increased significantly with relation to the previous
release, and therefore restructuring could be considered in r4 to prevent further diver‐
gence of the application’s modularization from the optimum in the next release.

Moreover, by contrasting the drift plots for scattering and tangling, one can deter‐
mine the character of restructuring most needed at a given point in time. For instance,
large drift of scattering indicates a need for improving localization of individual features

Evolution of Feature-Oriented Software 189

within modules, which may require reducing the overall number of modules. In contrast,
large drift of tangling indicates a need for improving separation of features within
modules, which may require increasing the overall number of modules.

3.3 Calculating Drift Using Optimization

Given the technical characteristics and automation potentials of existing methods for
separating features [18], the modularization compass approach is based on regrouping
classes in terms of packages to reduce scattering and tangling of features. While our
purely class-based approach has limits in the level of feature separation that it can
achieve, it has the important property of allowing complete automation of searching for
desired feature-oriented package structures and subsequently establishing them in
source code by using refactorings.

To calculate the drift of feature-oriented modularity, the modularization compass
approach uses the so-called feature-oriented remodularization. Feature-oriented remod‐
ularization is the process of multi-objective optimization of the distribution of classes
among packages, which aims at identifying Pareto-optimal package structures that
minimize both scattering FSCA and tangling FTANG metrics [13].

In addition, this formulation encompasses two traditional object-oriented objectives
that govern the inter- and intra-module dependencies among class, i.e. the objectives of
maximizing cohesion in packages and minimizing coupling among packages. Formal‐
ized definitions of the four metrics used as evaluation criteria for the mentioned opti‐
mization objectives are listed in Fig. 4. There, the set of all features in an application is
denoted as F, the set of all packages that contribute to at least one feature as PF, and the
set of all types as T.

Fig. 4. Objectives for optimizing modularity of features.

The definitions of FSCA and FTANG correspond to the ones mentioned earlier and
are simplified versions of the metrics proposed by Brcina and Riebisch [15] that are
defined based on the (i.e. “implemented by”) relation between features and packages.
The reformulation made in this work removes the additional normalization factors and
makes the metrics correspond directly to the numbers of features tangled in a package,

190 A. Olszak et al.

and packages that a feature is scattered over. Doing so allows for easier interpretation
of metric values, and is possible due to the modularity drift calculation being inde‐
pendent of metric normalization, as discussed earlier.

The cohesion metric PCOH is the package-level version of the RCI metric based on
data-data (DD) and data-method (DM) relations proposed by Briand et al. [19]. In its
essence, this metric computes for the set of packages P the average quotient of the actual
number of intra-package static dependencies among classes and the maximum possible
number of such dependencies. In turn, the package coupling metric PCOUP corresponds
to a sum of the ACAIC, OCAIC, ACMIC, and OCMIC coupling measures, as defined
by the same authors in [20], and thereby constitutes the sum of all inter-package static
dependencies in an application.

The actual process of optimizing the application’s modularity with respect to all the
metrics is performed using a tailored formulation of a genetic algorithm that we refer to as
multi-objective grouping genetic algorithm (MOGGA) [13]. The multi-objectivity is
achieved by exploiting the notion of Pareto-optimality, whose efficiency in optimizing
modularization of software systems according to multiple conflicting criteria was demon‐
strated by Harman and Tratt [21]. The grouping nature of the problem is exploited by using
a set of tailored genetic operators based on the work of Seng et al. [22], who demonstrated
their significant effect on improving the efficiency of traversing the search space of alter‐
native modularizations. Hereby, MOGGA constitutes a composition of these two well-
established approaches that is aims at leveraging their respective advantages.

In its essence, MOGGA evolves a population of individuals by means of selection,
reproduction and mutation driven by the score of the individuals with respect to a fitness
function. Each individual represents a particular distribution of classes among packages,
expressed by an array of integers. Within this array, classes are represented by indexes
in the arrays, and their assignment to packages is represented by the values of the corre‐
sponding array cells. The used representation scheme is exemplified in Fig. 5 using three
classes and two packages.

Fig. 5. The representation of grouping classes into packages.

MOGGA adapts two genetic operators that exploit the grouping-based nature of the
remodularization problem. First, the crossover operator that forms two children from
two parents is made to preserve packages as the building blocks of modularizations. The
crossover operator makes individual modularizations exchange whole packages, rather
than individual classes. The pairs of input individuals are chosen randomly, while
prioritizing the individuals proportionally to their fitness. The usage of the crossover
operator is schematically depicted in Fig. 6, where the complete package 2 from design1
is inserted into design2.

Evolution of Feature-Oriented Software 191

Fig. 6. The grouping crossover operator.

Secondly, a mutation operator is defined to randomly perform one of three actions:
merge two packages with the smallest number of classes, split the largest package into
two packages, and adopt an orphan class [23] being alone in a package into another
package. Example application of the individual variants of this operator is depicted in
Fig. 7.

Fig. 7. The grouping mutation operator.

Evaluation of the fitness of the individual modularization alternatives is done by
computing the four metrics of FSCA, FTANG, PCOH and PCOUP. Assigning the values
of these metrics to each individual creates a basis for assessing and selecting the indi‐
viduals representing the best modularizations of an application. In order to appropriately
represent the regions of the four-dimensional search space that the individual modula‐
rizations in the population occupy, MOGGA adopts the concept of Pareto-optimality.
Hence, the fitness of each individual becomes a tuple consisting of four independent
metric values. Such a multi-modal fitness is used for comparing individuals based on
the Pareto-dominance relation, which states that one out of two individuals is better than
the other individual, if all of its fitness values are not worse, and at least one of the values
is better. Thereby, it becomes possible to partially order individuals and to determine
the set of non-dominated individuals in a population, i.e. the so-called Pareto-front.

Starting with an initial population consisting of 98 % randomized individuals and
2 % of the individuals from the original modularization, a predefined number of evolu‐
tionary iterations are executed. Then the last Pareto-front is used to select a single indi‐
vidual being the optimization result. This is done by ranking the individuals in the
obtained four-dimensional Pareto-front with respect to each metric separately, and then
choosing the individual that is ranked best on average. Please note that while this method
is used here, existing literature defines a range of diverse methods for choosing a single
solution out of a Pareto-front, e.g. [24, 25].

The final solution identified by MOGGA represents an optimized assignment of
classes to a new set of packages. Proposed package structures can be then reviewed and
flexibly adjusted by a developer in the provided UML-like visualization of the Featu‐
reous Remodularization View [26], as described in the following subsection.

192 A. Olszak et al.

3.4 Featureous Remodularization View

Featureous Remodularization View plugin supports developers in restructuring by
allowing them to browse and adjust the automated remodularization results. The user
interface of Featureous Remodularization View is centered on a graph-based represen‐
tation of the package structure of an application. As shown in Fig. 8, this representation
depicts packages as nodes and static dependencies among them as edges. The individual
packages can be unfolded to reveal their enclosed classes and to refine the mapping of
static dependencies accordingly. Furthermore, each class can be further unfolded to
reveal a UML-like representation of its methods.

Fig. 8. Featureous remodularization view pre-remodularization tab.

The diagrammatic representation is used to visualize the package structures of both
an original application through a pre-remodularization tab and of a remodularized
application through a post-remodularization tab.

Apart from visual representation of package structure, the pre-remodularization tab
allows for selection of optimization objectives and for configuration of the parameters
of MOGGA. The user-configurable parameters are: (1) the number of iterations to be
executed, (2) the size of evolved population and (3) the probability of mutation. Apart
from the fours metrics used in this work, the view readily implements several other
metrics that can be used as additional remodularization objectives in future studies.

After the remodularization process is invoked and finished, Featureous Remodula‐
rization View displays the result in a dedicated post-remodularization tab. As shown in
Fig. 9, this view consists of the discussed diagrammatic visualization and a report
window that summarizes the difference between the original and the remodularized
application using a number of metrics.

Evolution of Feature-Oriented Software 193

Fig. 9. Post-remodularization tab of featureous remodularization view.

In addition to visually inspecting the results, the view makes it possible for devel‐
opers to manually adjust a proposed package structure before it is being physically
established in the source code. This can be done by renaming packages and by dragging
classes between packages to relocate them. During such manual relocation of classes,
the metrics displayed below the structural visualization are recomputed accordingly to
immediately reflect the effects of performed adjustments.

4 Evaluation

We have implemented the presented remodularization approach as part of the freely
available Featureous tool for feature-oriented analysis of Java software [27]. The code
transformations required for establishing the source-code modularizations were imple‐
mented using the Recoder code transformation library [28]. Furthermore, as will be
discussed later, this evaluation relies on a dynamic feature-location approach provided
by Featureous.

The goal of the study presented in this section is formulated as follows:

To evaluate whether drift-based metrics bring new insights into the evolution of feature-oriented
modularity of applications, as compared to using their absolutes values.

This is done by applying the approach to long-term release histories of three open-
source Java applications that were chosen based on their size, maturity and availability
of the historical revisions. The used applications are: RText – a text editor for program‐
mers (17 releases spanning, 3 years) [29], FreeMind – a mind-mapping tool (13 releases,
5 years) [30] and JHotDraw Pert – a diagramming application being a showcase for the
JHotDraw framework (11 releases, 8 years) [31].

194 A. Olszak et al.

4.1 Results of Feature Location

While the modularization compass approach does not impose any constraint on the
feature-location approach to be used, we have chosen to use the dynamic feature-location
approach provided by the Featureous tool. This feature-location approach identifies code
units involved in implementing individual features by tracing the execution of an instru‐
mented program during its interaction with a user. The tracing agent used for this purpose
is guided by annotations that have to be placed by a programmer at appropriate starting
methods of each feature. Apart from the use of annotations and user-driven feature trig‐
gering, this approach remains analogous to other dynamic approaches, such as software
reconnaissance [16]. An extensive discussion of the conceptual and technical details of
the used feature-location approach can be found in [13].

The most sensitive part to human interpretation was the one of recovery of feature
specifications for each release of the three investigated applications. We have performed
this recovery by inspecting the available user documentation and by listing the func‐
tionality exposed in the user interfaces of the applications. Table 1 lists the identified
features and the releases in which they were added to the systems, if they were added
during the investigated periods.

Table 1. Investigated releases and their identified features.

Application releases Identified features

RText
Releases: 0.8.0; 0.8.1; 0.8.2; 0.8.3;

0.8.4; 0.8.5; 0.8.6; 0.8.7; 0.8.8;
0.8.9; 0.9.0; 0.9.2; 0.9.3; 0.9.4;
0.9.5; 0.9.7; 0.9.8

Display text, Document properties (0.9.0), Edit basic,
Edit text, Exit program, Export document (0.8.7), Init
program, Modify options, Customize text (0.9.0),
Multiple documents, Navigate text, New document,
Open document, Playback macro (0.9.0), Print docu‐
ment, Record macro, Save document, Show docu‐
mentation, Source browser (added in 0.8.8 and
removed in 0.9.0), Undo redo, Plugins (0.9.0)

FreeMind
Releases: 0.0.2; 0.0.3; 0.1.0; 0.2.0;

0.3.0; 0.3.1; 0.4.0; 0.5.0; 0.6.0;
0.6.1; 0.6.5; 0.6.7; 0.7.1

Browse mode (0.3.0), Cloud node (0.7.1), Display map,
Show documentation (0.2.0), Edit basic, Edit map,
Evaluate (0.3.0), Exit program, Export map (0.5.0),
File mode (0.1.0), Icons (0.6.7), Import/export branch
(0.2.0), Init program, Link node (0.0.3), Modify edge,
Modify node, Multiple maps (0.0.3), Multiple modes
(0.1.0), Navigate map, New map, Open map, Print
map (0.03), Save map, Zoom

JHotDraw Pert
Releases: 5.2; 5.3; 5.4b1; 6.0b1;

7.0.7; 7.0.8; 7.0.9; 7.1; 7.2; 7.3;
7.3.1

Align, Dependency tool, Edit basic, Edit figure, Exit
program, Export drawing (7.0.7), Group figures, Init
program, Line tool (removed in 6.0b1), Modify
figure, Multiple windows (7.0.7), New drawing,
Open drawing, Order figures, Save as drawing, Selec‐
tion tool, Snap to grid, Task tool, Text tool, Undo redo
(5.3), Zoom (7.0.7)

Evolution of Feature-Oriented Software 195

4.2 Results of Feature Drift Measurement

In this evaluation, the drift of feature-oriented modularity was calculated by executing
MOGGA on each release of the three applications. Based on observations from a series
of pilot executions of MOGGA on target applications, we arrived at the following
configuration of the algorithm that reduces the overall execution times while preserving
high optimization level of the resulting modularizations. MOGGA was executed for a
population of 300 individuals for 500 evolutionary iterations with mutation probability
of 5 %. This configuration of the algorithm was applied to each release ten times to
reduce the impact of non-determinism of genetic computation. The best of the solutions
was used as a final result for each release. It is worth mentioning that while this config‐
uration of MOGGA was observed to produce Pareto-optimal solutions in acceptable
timeframes for all investigated releases (i.e. in the order of magnitude of days), further
adjustments to the algorithm parameters could lead to reducing these times even further.

Fig. 10. Drift measurements for releases of RText.

The results of measuring the drift of feature-oriented modularity using MOGGA are
presented in the form of compass views in Fig. 10 for RText, in Fig. 11 for FreeMind,
and in Fig. 12 for JHotDraw Pert. For each application, two plots are shown – one for
evolution of scattering and one for evolution of tangling. In the plots, the absolute metric
values are displayed as a line, whereas the calculated drift is displayed as an area at the
bottom of the plots. This is aimed at simplifying the observation of development and
relation of the drift to the absolute metric value.

The scattering drift plot for RText, shown in Fig. 10, can be divided into two distinct
periods. The first period, ranging from release 0.8.0 to the 0.8.6, is a period of overall
growth of the scattering drift. Despite the minor reductions observed in a few inter‐
mediate releases (i.e., 0.8.1, 0.8.3 and 0.8.5), the drift value doubled in this first period.
This was also the period, in which the drift increased together with the absolute scattering
and constituted on average 42 % of the scattering’s value. During the second period,
between releases 0.8.6 and 0.9.8, the drift was initially decreased, and thereafter main‐
tained a relatively constant level. Interestingly, this was achieved despite an over twofold
increase in the absolute scattering of the application. This indicates that the modulari‐
zation decisions of the developers with respect to restraining features to a small number
of packages were close to optimum in this period.

196 A. Olszak et al.

The tangling drift plot for RText, shown in Fig. 10, contains three interesting periods.
Firstly, the period between the releases 0.8.0 and 0.8.3 is the period of sharp decreases
of drift and absolute tangling and a decrease of the relative contribution of drift to the
absolute tangling value. Secondly, between the releases 0.8.3 and 0.9.2, both the drift
and the absolute tangling were increasing at a similar rate. Despite the overall growth,
the drift appears here to be periodically reduced by the developers. Lastly, in the period
0.9.2 to 0.9.8 both the drift and the absolute tangling remain fairly constant. It is also
this period, where the relative contribution of the drift is the lowest. However, it remains
significantly higher than the relative contribution observed earlier of the scattering drift.
Together, this data indicates that the features of RText were better localized than sepa‐
rated from one another in terms of packages.

The scattering drift plot for FreeMind, shown in Fig. 11, depicts several oscillations
of the scattering drift over time. Initially, the oscillations are stronger but they eventually
weaken over time. In comparison, the value of the absolute scattering of the application
increases sharply between the releases 0.0.2 and 0.1.0, and thereafter remains approxi‐
mately constant over the next 10 releases. This suggests that the application structure
established at release 0.1.0 served well for the purpose of adding new features and
extending the existing ones in a localized fashion.

Fig. 11. Drift measurements for releases of FreeMind.

The tangling drift plot for FreeMind, shown in Fig. 11, can be divided into three
periods: the period of increasing drift and increasing absolute tangling (0.0.2–0.3.0), the
period of decreasing drift and stabilized absolute tangling (0.3.0–0.6.0), and the period
of continued growth in both the drift and the absolute tangling. It can be seen that the
overall changes of tangling drift and the absolute tangling reflect each other over time;
only a minor difference in the growth rates can be observed, i.e. in the release 0.0.2 the
drift constitutes 59 % of the absolute tangling value, whereas in release 0.7.1 it consti‐
tutes 47 % of the absolute tangling value. This high contribution indicates that FreeMind
has a relatively high potential for improving the separation of features through source
code restructuring. A potential trace of such efforts undertaken by the FreeMind devel‐
opers is the transition from the release 0.5.0 to 0.6.0, where the drift of tangling was
reduced by 34 %.

Evolution of Feature-Oriented Software 197

In both the scattering and tangling drift plots for JHotDraw Pert, shown in Fig. 12,
it can be seen that the feature-oriented evolution of the application underwent a dramatic
shift after release 6.0b1. Up till then, both the drifts and the absolute values of scattering
and tangling were generally increasing. Starting from the release 7.0.7, these trends have
changed. During the transition from 6.0b1 to 7.0.7, the drift of scattering was reduced
almost completely, despite an increase in the absolute scattering, and both the drift and
the absolute value of tangling were decreased significantly. Thereafter, both scattering
and tangling drifts experienced only very small increases, whereas the absolute scat‐
tering value continued to rise and the absolute tangling value continued to slightly
decrease.

It turns out that these observations find their reflection in the types of work on the
application that the developers undertook in the period preceding the 7.0.7 release.
The release notes from that period mention a large-scale architectural refactoring of the
underlying JHotDraw framework. While it is difficult to tell whether improving the sepa‐
ration of individual features of Pert was among the intentions of these refactorings, it
certainly became one of the results. Furthermore, the obtained reductions for both the drifts
and the absolute value of scattering and tangling have shown to remain fairly stable after
the source code refactoring – especially if compared to the rapid developments prior to the
refactoring. Interestingly, the absolute value of tangling began to decrease over a longer
period, which is a behavior unseen in the two other investigated software applications.

Fig. 12. Drift measurements for releases of JHotDraw Pert.

4.3 Discussion

The reported study applied the modularization compass approach to three real-world
Java applications. The measured drift values were observed to evolve over the subse‐
quent releases of the three applications in ways that were not trivially related to evolution
of the absolute metric values. This indicates that for the study subjects, the drift meas‐
urements add a new type of information about the evolution of the applications’ modu‐
larity over time.

198 A. Olszak et al.

The obtained drift measurements were used as an input to formulating a number of
hypotheses about the reasons for the observed changes of the applications’ feature-
oriented modularity over time and a number of restructuring recommendations.

Overall, in all of the investigated applications the tangling drift constituted a signif‐
icantly higher portion of FTANG than the scattering drift did for FSCA. This suggests
that it is the separation of features from one another, rather than their confinement in
few packages, that should be the primary restructuring goal for the three investigated
applications. While at this point it is not possible to judge whether the insufficient sepa‐
ration of features is a common trait of layered object-oriented architectures, we see it as
a viable hypothesis for further investigation.

Furthermore, periodical oscillations of the drift were observed in several cases that
were not observed on the absolute metric values. This initial observation appears
possibly be related to the observations of Anton and Potts [32] about the burst-like nature
of adding new features. In a 50-year evolution of a telephone system, they observed new
features to be introduced in discrete bursts, i.e. they exhibit punctuated rather than
incremental or gradual evolution. These bursts were typically followed by periods of
retrenchment that merged similar features and phased out older versions of new features.
In our context, burst-like additions or enhancements of features could have resulted in
rapid increases of drift, which were thereafter reduced during retrenchment periods.

5 Conclusions

The ability to change is both a blessing and a burden to software. On one hand, it allows
systems to adapt to changing requirements imposed by users. On the other hand,
changing existing source code is often difficult and the adoption of repetitive changes
tends to erode the original structure of source code.

The work presented in this paper focused on the drift of feature-oriented modularity
during the evolution of software applications. The proposed approach termed modula‐
rization compass measures this type of drift by comparing the original version of an
application to its automatically remodularized counterpart. The remodularization
process is performed by using a multi-objective grouping genetic algorithm that uses
metrics of scattering, tangling, cohesion and coupling as the objectives for package
structure optimization. The proposed package structures can be further reviewed and
flexibly adjusted by a developer in the Featureous Remodularization View.

The approach was implemented in Java, and applied to three open-source Java appli‐
cations. The obtained compass views showed significant differences between the evolu‐
tion of absolute values of scattering and tangling and the evolution of their drifts. Based
on the analysis of drifts over subsequent releases, we were able to identify when restruc‐
turing brings the largest improvement in feature modularity, and to determine that the
restructuring effort for all three applications should focus on separating features from
one another to reduce the significant drifts of their tangling.

Finally, the design and the evaluation of the approach resulted in several promising
directions for future research and provided several preliminary observations about the
general nature of evolution of software features.

Evolution of Feature-Oriented Software 199

References

1. Kemerer, C.F.: Software complexity and software maintenance: a survey of empirical
research. Ann. Softw. Eng. 1, 1–22 (1995)

2. Reid Turner, C., Fuggetta, A., Lavazza, L., Wolf, A.L.: A conceptual basis for feature
engineering. J. Syst. Softw. 49, 3–15 (1999)

3. Harrison, W., Box, P.: N degrees of separation: multi-dimensional separation of concerns.
In: Proceedings of the 21st International Conference on Software Engineering (CSE 1999),
pp. 10.00 (1999)

4. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15, 1053–1058 (1972)

5. Letovsky, S.S.: Delocalized plans and program comprehension. Software, IEEE 3, 41–49
(1986)

6. Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V., Murphy, G.C., Nagappan, N., Aho,
A.V.: Do crosscutting concerns cause defects? IEEE Trans. Software Eng. 34, 497–515
(2008)

7. Rugaber, S., Stirewalt, K., Wills, L.M.: The interleaving problem in program understanding.
In: Proceedings of 2nd Working Conference on Reverse Engineering, pp. 166–175. IEEE
(1995)

8. Benestad, H.C., Anda, B., Arisholm, E.: Understanding cost drivers of software evolution: a
quantitative and qualitative investigation of change effort in two evolving software systems.
Empirical Softw. Eng. 15, 166–203 (2010)

9. Hsi, I., Potts, C.: Studying the evolution and enhancement of software features. In:
Proceedings of International Conference on Software Maintenance, pp. 143–151. IEEE,
(2000)

10. Fischer, M., Gall, H.: Visualizing feature evolution of large-scale software based on problem
and modification report data. J. Softw. Maintenance Evol. Res. Pract. 16, 385–403 (2004)

11. Hou, D., Wang, Y.: An empirical analysis of the evolution of user-visible features in an
integrated development environment. In: Proceedings of the 2009 Conference of the Center
for Advanced Studies on Collaborative Research, pp. 122–135. IBM Corp. (2009)

12. Greevy, O., Ducasse, S., Girba, T.: Analyzing feature traces to incorporate the semantics of
change in software evolution analysis. In: Proceedings of the 21st IEEE International
Conference on Software Maintenance, ICSM 2005, pp. 347–356. IEEE (2005)

13. Olszak, A., Jørgensen, B.N.: Remodularizing Java programs for improved locality of feature
implementations in source code. Sci. Comput. Program. 77, 131–151 (2012)

14. van den Berg, K., Conejero, J.M., Hernández, J.: Analysis of crosscutting across software
development phases based on traceability. In: Proceedings of the 2006 International
Workshop on Early Aspects at ICSE, pp. 43–50. ACM (2006)

15. Brcina, R., Riebisch, M.: Architecting for evolvability by means of traceability and features.
In: 23rd IEEE/ACM International Conference on Automated Software Engineering-
Workshops, ASE Workshops 2008, pp. 72–81. IEEE (2008)

16. Wilde, N., Gomez, J.A., Gust, T., Strasburg, D.: Locating user functionality in old code. In:
Proceedings Conference on Software Maintenance 1992, pp. 200–205. IEEE (1992)

17. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE 68, 1060–
1076 (1980)

18. Murphy, G.C., Lai, A., Walker, R.J., Robillard, M.P.: Separating features in source code: an
exploratory study. In: Proceedings of the 23rd International Conference on Software
Engineering, pp. 275–284. IEEE Computer Society (2001)

200 A. Olszak et al.

19. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement in object-
oriented systems. Empirical Softw. Eng. 3, 65–117 (1998)

20. Briand, L.C., Daly, J.W., Wust, J.K.: A unified framework for coupling measurement in
object-oriented systems. IEEE Trans. Software Eng. 25, 91–121 (1999)

21. Harman, M., Tratt, L.: Pareto optimal search based refactoring at the design level. In:
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp.
1106–1113. ACM (2007)

22. Seng, O., Bauer, M., Biehl, M., Pache, G.: Search-based improvement of subsystem
decompositions. In: Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, pp. 1045–1051. ACM (2005)

23. Tzerpos, V., Holt, R.C.: ACDC: an algorithm for comprehension-driven clustering. In: 2013
20th Working Conference on Reverse Engineering (WCRE), pp. 258–258. IEEE Computer
Society (2000)

24. Rosenman, M., Gero, J.: Reducing the Pareto optimal set in multicriteria optimization (with
applications to Pareto optimal dynamic programming). Engineering Optimization 8, 189–206
(1985)

25. Chaudhari, P., Dharaskar, R., Thakare, V.: Computing the most significant solution from
Pareto front obtained in multi-objective evolutionary. Int. J. Adv. Comput. Sci. Appl.
(IJACSA) 1, 63–68 (2010)

26. Olszak, A., Jørgensen, B.N.: Featureous: an integrated environment for feature-centric
analysis and modification of object-oriented software. Int. J. Comput. Sci. Inf. Syst. 6, 58–
75 (2011)

27. http://featureous.org/
28. http://recoder.sourceforge.net/
29. http://fifesoft.com/rtext/
30. http://freemind.sourceforge.net/
31. http://www.jhotdraw.org/
32. Anton, A.I., Potts, C.: Functional paleontology: the evolution of user-visible system services.

IEEE Trans. Software Eng. 29, 151–166 (2003)

Evolution of Feature-Oriented Software 201

http://featureous.org/
http://recoder.sourceforge.net/
http://fifesoft.com/rtext/
http://freemind.sourceforge.net/
http://www.jhotdraw.org/

Can Organisational Theory and Multi-agent
Systems Influence Next Generation Enterprise

Modelling?

Balbir S. Barn1(B), Tony Clark1, and Vinay Kulkarni2

1 Department of Computer Science, Middlesex University,
The Burroughs, London, U.K

{b.barn,t.n.clark}@mdx.ac.uk
2 TRDDC, Tata Consultancy Services, Pune, India

vinay.vkulkarni@tcs.com

Abstract. This paper proposes that the current enterprise modelling
approaches are overly reliant on the know how or tacit knowledge of
enterprise architects for addressing organisational challenges such as
business-IT alignment. Furthermore, current modelling languages only
encourage linear thinking. By drawing upon existing research on (com-
putational) organisation theory and multi-agent systems, we propose
implementation requirements for a next generation enterprise modelling
language that supports agent based simulation. The language is moti-
vated by a detailed case study that illustrates the benefit of using simu-
lation style languages.

Keywords: Organisation theory · Multi-agent systems · Actor theory ·
Enterprise modelling

1 Introduction

The modern enterprise is faced with the tricky challenge of responding to external
drivers such as merger and acquisitions or potential new markets by adapting
and managing internal change. Any change has to be managed with respect to
business-IT alignment within the enterprise. Up to now, such a response has
been dependent upon human expertise based on tacit knowledge and experience
or “know how”. Such a position is not sustainable with the rapid pace of change
attributed to technology and globalization. This is confirmed with research that
indicates that Strategic business-IT alignment has remained an ongoing concern
for organisations [1] and researchers have addressed the importance of alignment
and in particular the need for congruence between business strategy and IT
strategy [2].

One specific approach that has been used to bear upon the problem of busi-
ness alignment is the role of Enterprise Architecture (EA) [3]. However, the pre-
dominant theme has focused on developing enterprise models that are descriptive
in nature and hence needing human expertise for their interpretation (see ([4,5])
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 202–216, 2015.
DOI: 10.1007/978-3-319-25579-8 12

Can Organisational Theory 203

for two obvious examples). As a result, current approaches to Enterprise Mod-
elling (EM) exhibit a high degree of latency in meeting key objectives such as
alignment, adaptation etc. Thus EA in its current state does not readily lend
itself to supporting the type of analysis that key decision makers typically uti-
lize. Such stakeholders demand: ease of comprehension of the entire business
so that decision-making can lead to efficient and effective change. In particular
they require the ability to play out various what-if (i.e., what will be the conse-
quences of such and such action) and if-what (i.e., what would have led to such
and such situation) scenarios to arrive at the right response, establish feasibility
of the response, and estimate a ROI of the response. Thus ways of simulating
an enterprise are needed and currently EA modelling approaches do not readily
support this requirement.

Away from the EA modelling community, organisational theory and in par-
ticular computational organisational theory manifested in technologies such as
multi-agent systems provides an opportunity to re-purpose existing research out-
comes to address the EA simulation and alignment conundrum. In doing so, this
position paper proposes that next generation Enterprise modelling languages
should draw upon concepts from organisational theory and multi-agent systems
in order that appropriate machinery can be implemented to support the simu-
lation requirement.

The remainder of this paper is structured as follows: Sect. 2 presents key con-
cepts from organisational theory and multi-agent systems. Specifically it draws
upon the established research relationship that exists between the two areas.
Section 3 presents the main contribution of the paper and proposes a novel lan-
guage based approach to enterprise modelling for simulation. The proposal draws
upon components, goal modelling and agent technologies. This is illustrated by
a detailed case study in Sect. 4. Section 5 discusses our plans for addressing the
research challenges raised by the approach.

2 Organisational Theory and Multi-agent Systems

Our starting premise is the view that there is a pressing need for next genera-
tion EM languages to address the requirements described in Sect. 1 which can
be broadly summarised as languages that: are machine manipulatable, support
simulation through executability, and are model based. Such requirements raise
two questions: What needs to be simulated? Secondly, what technologies can we
deploy to support execution? In answering the first question we need to revert
to organisational theory to understand the meaning of organisation and its con-
stituting elements. Human organisations in particular have been the subject of
detailed analysis from a range of disciplines including engineering, economics,
psychology and sociology [6]. The resulting analysis of the literature for organi-
sational theory leads to a persuasive argument for the use of agent technology,
particularly multi-agent systems as candidate technology for supporting the sim-
ulation/executability requirements identified.

Ours is an organisational society such that organisations are the dominant
characteristic of modern societies. One rationale for the existence of organisations

204 B.S. Barn et al.

posited by Carley and Gassser is that they exist to overcome the cognitive, phys-
ical, temporal and institutional limitations of individual agency [7]. While there
are many ways in which these limitations can be overcome and the structure,
form or architecture of an organisation contributes to such efforts, decades of
research indicate that there is no optimal organisational design. Instead, the chal-
lenge morphs into one of adaptability and response to change. First, we present
here, a necessarily brief overview of some of the key definitions and perspectives
on organisations that underpin how we intend to articulate the concept of an
organisation in the context of the model driven enterprise [8]. We first begin with
a definition of the term organisation recognising that there are multiple defini-
tions depending upon the perspective taken. The definition is reported from [9]:

organisations are social units (or human groupings) deliberately con-
structed and reconstructed to seek specific goals.

We explore this definition further by considering how the study of organisations
has generally investigated the constituent elements of an organisation and three
dominant theoretical perspectives informing research. Leavitt identifies some
core features of organisations [10]:

Social. Structure regularised aspects of relationships among participants in an
organisation that may be both normative (embodying what ought to be) or
factual order (actual structures).

Participants. Individuals who in return for a variety of inducements make
contributions to the organisation. Participants may belong to more than one
organisation.

Goals. An organisational goal is a desired state of affairs which the organisation
attempts to realise. Goals are central to how an organisation functions and
are often vague or very specific.

Technology. This is the means by which work is performed in an organisa-
tion. Technology can be interpreted as a manufacturing plant, the software
systems enabling workers to perform work or even technical knowledge and
skills of participants.

Environment. Organisations exist in a specific physical, socio-technical and
cultural environment to which they must respond and adapt. All aspects of
an organisation are influenced and contextualised by the environment. For
example, software systems are purchased from external providers or devel-
oped by technicians trained in some other organisation.

These features are generic to organisations and can form the basis for extracting
key concepts of an organisation. Carley [7] presents a similar set. Note that these
features may vary in some way when viewed through a particular perspective or
metaphor. The last century has seen three dominant perspectives (and overlaps)
dominating research in organisation theory: organisations as Rational Systems;
organisations as Natural Systems and organisations as Open Systems. A rational
system perspective denotes a focus on efficiency and optimisation and ultimately
presents a reductionist model. The open systems perspective is of most relevance

Can Organisational Theory 205

to us as it ranges from a simple clockwork view (a dynamic system with pre-
determined motions), cybernetic view (a system capable of self-regulation in
terms of externally prescribed criterion such as a thermostat) to an open system
(a system capable of self-maintenance based on throughputs of resources such
as a living cell) [11].

These views are categorised by Gazendam [12] and conform to essentially two
categories: Classical organisational theories and Systems theories. He suggests
that classical theories have a strong correspondence to a machine metaphor
where the organisation as a whole consists of agents performing tasks in fixed
structures consisting of agent tasks, communication paths and spatio-temporal
orderings. Systems theories on the other hand view the organisation comprising
of sub-organisations fulfilling a specific function. Gazendam furthermore notes
that: “System theories of organisation are relatively poor because they only pay
attention to the system level, and remain rather abstract.”

Theories based on the machine metaphor have formed the basis of research
on (multi-) agent-based system in the late 1980 s and 1990s to study alternative
viewpoints for describing organisations [13]. Here an agent is an autonomous and
intelligent being such as a human or a simulator of a human realised by software
(a computer agent) [12]. Systems that are comprised entirely of computer agents
have been used as simulations of organisations and correspondingly offer interest-
ing perspectives on the study of organisations. Multi-agent systems (MAS) and
the associated Computational organisational Theory [7] provide the collective
apparatus for investigation.

Computational organisational Theory (COT) aims to understand and model
both human organisations and artificial organisations (multi-agent systems) that
exhibit collective organisational properties such as the need to act collabora-
tively. Typical outputs of such research are the generation of new concepts and
theories about organising and organisations. Historically many applications and
models have been constructed but our review of the current enterprise mod-
elling literature indicates that COT has not yet been applied to some of the
tricky problems of enterprise modelling such as Business-IT alignment discussed
in the introduction.

There are immediate information processing requirements that are deducible
from the definition of organisation such as: information ubiquity, tasks, uncer-
tainty distribution of organisational intelligence and necessity of communication
through a model-based perspective. COT also suggests that: organisations are
modelable, and so are manipulatable; are able to be designed to fit specific needs
and there is an assumption that the costs of modelling and researching organi-
sations in simulation mode rather than in vivo are lower [7].

Key characteristics of organisations such as that described by Leavitt and
Carley emphasise structure and behaviour. Hoogendoorn et al. [14] propose
these two aspects as necessary pre-requisites for modelling change when using
MAS. In their proposal, organisations are described solely by the way groups
and roles are arranged to form a whole. Related to this, Giorgini et al. use the
i* framework [15] to define a series of architectural organisational styles which
act as metaclasses and offer a set of design parameters for coordinating goals,

206 B.S. Barn et al.

actions and behavior and therefore govern how an organisation functions [16,17].
Our position contributes to enterprise modelling technologies by drawing upon
research outputs from COT to meet the needs of an adaptive organisation located
in a systematic understanding of socio-technical nature of an organisation [18].

If MAS and COT are an appropriate way forward, then there are additional
requirements for methods that can support COT based approaches. Those tasked
with modelling enterprises need guidance that: “allow the description of social
structures, permit the use of tools to perform project management, and include
IDE or CASE tools that facilitate the analysis and design of MASs [19]”. Fur-
thermore, all methodologies need to contain enough abstractions to model and
support MASs, which are usually structured as societies of agents that play roles
and exchange information following predefined protocols [20]. Isern et al. then go
onto review a range of agent-oriented methodologies by evaluating their under-
lying meta models. Analysis of these meta models guides us toward the essential
features of the language proposed in Sect. 3.

We have posited that current approaches to EM presents a linear form of
enquiry requiring tacit knowledge based on an Architect’s know how that pre-
vents scaling up to rapidly address “what if” type of questions. Adopting tech-
nologies based on MAS requires robust models for representing the complexity
and dynamic nature of organisations as they respond to external business drivers.
In particular then MAS can be used to provide simulation models for exploration
of complex environments. Simulation models can be explanatory models that can
help identify kinds of behaviour expected under specific conditions or they can be
predictive models that determine more precisely the kind of behaviour a system
will display in the future [21].

Luck et al. propose a grouping of the agent-technologies, tools and techniques
that can address these types of simulation for EM for theory building about an
enterprise at three levels: organisational-level (focusing on larger aggregations of
structures; Interaction-level (collaboration, communication and decision making
between agents) and Agent-level (learning and reasoning [19]. Cross cutting con-
cerns such as agent programming languages and methodologies (noted earlier)
provide practical steps towards realisation of agent systems.

In the next section, we discuss how this partitioning has been used to influ-
ence our proposal.

3 Next Generation EM

We posit that any approach that is derived from ideas from the previous sections
relies on being able to represent and process an organisation that is expressed in
terms of a component-based abstraction. We envisage a product-line approach
[22] whereby a suite of tools based on this abstraction is used to facilitate a
collection of different organisation analysis and simulation activities. Each activ-
ity will constitute a domain, e.g., cost analysis, resource analysis, mergers and
acquisition, regulatory compliance. In principle, each new domain will require
a new domain specific language to represent the concepts. How should such a
proliferation of domains be accommodated by a single component abstraction?

Can Organisational Theory 207

Fig. 1. Component abstraction (Core Concepts).

Our proposal is to construct an extensible kernel language called Enterprise
Simulation Language (ESL), that is used as the target of translations from a
range of domain specific languages (DSLs) that have been designed to support
organisational analysis from a particular perspective. Each DSL supports an
organisation analysis and simulation use-case. We then aim to construct a vir-
tual machine for the kernel language so that it is executable. Model execution
supports organisation simulation and some analysis use-cases. Links to external
packages such as model-checkers will complete the analysis use-cases.

The use of a single kernel language provides a single focus of development
effort and can help minimise the problem of point-to-point integration of analysis
methods. Our hypothesis is that a small core collection of concepts, including
component, interface, goal, event, function as shown in Fig. 1, are a suitable
basis for most types of analysis and simulation use-case and therefore the kernel
language will be defined in terms of these concepts.

Given its ability to accommodate multiple simulation and analysis use-cases,
we envisage the language being the basis of a suite of organisational modelling,
simulation and analysis tools, presented in the form of a single integrated exten-
sible meta-tool EA Simulation Environment (EASE-Y) shown in Fig. 2. Since
organisational information is likely to be very large (at least many tens of thou-
sands of model elements) it is important the tool is implemented efficiently, is
scalable, supports distributed concurrent development and is flexible in terms of
its architecture. To this end we aim that the kernel language should be compiled
to a machine language running on a dedicated kernel engine, the language inte-
grates with standard repository technology, and can run equally well on single
machines, networked machines and via the cloud.

Organisations consist of many autonomous components. Components are
organised into dynamically changing hierarchical groups, operate concurrently,
and manage goals that affect their behavior. We aim for the kernel language
to reflect these features by having an operational semantics based on the Actor

208 B.S. Barn et al.

Fig. 2. The EASE-Y architecture.

Model of Computation (AMC) [23] and its relation to organisations, or iOrgs
[24]. Actors have an address and manage an internal state that is private and
cannot be shared with other actors in the system. Execution proceeds by send-
ing asynchronous messages from a source actor to the address of a target actor.
Synchronous messages can be achieved by sending an actor in an asynchronous
message to which the result should be sent. Each message is handled in a separate
execution thread associated with the target of the message and the message itself
(collectively referred to as a task). During task-execution an actor may choose
to change its state and behavior (becoming a new actor) that is immediately
available to process the next message sent to the target address.

Our claim is that the AMC provides a suitable basis for execution and analy-
sis of the concepts discussed in Sect. 2. Actors, sometimes individually and some-
times collectively, can be used to represent the features of a component. The rest
of this section lists the key features that must be supported by the kernel lan-
guage and how the actor approach can support them:

[Adaptability]. This is required because organisational components may change
dynamically during a simulation. Resources, individuals, and even departments
may move location, and have an affect on results. Furthermore, the behavior of
a component may change over time as information changes within the system.
An actor can, in principle, change behavior as a result of handling each message.

[Modularity]. Each part of an organisation is intended to perform a business
function that can be expressed in terms of a collection of operations. The internal
organisation in terms of people, IT systems and the implementation of various
business processes is usually hidden. The AMC provides an interface of message
handlers for each actor. Both the state and the implementation of the message

Can Organisational Theory 209

interface are hidden from the outside. The specification of an actor in terms of
its external interface can be expressed in terms of LTL formulas that constitute
the external goal for a component.

[Autonomy]. A key feature of an organisation is that the behavior of each sub-
component is autonomous. A particular department is responsible for its own
behavior and can generate output without the need for a stimulus. The AMC is
highly concurrent with each actor being able to spawn multiple threads and over
which other actors have no control (unless granted by the thread originator).

[Distribution]. An organisation may be distributed and this may be an impor-
tant feature of its simulation. Furthermore, we have a requirement that the
tooling for organisational analysis and simulation should support distributed
concurrent development. The AMC associates actors with addresses to which
messages are sent. Execution does not rely on the particular location of the
actor (i.e. the mapping between the address and the actor behavior) that can be
in the same address space, via a network connection or in the cloud.

[Intent]. In addition to autonomous behavior, an organisation component
exhibits intent. This might take the form of an internal goal that guides the
behavior of the component to ensure that it contributes to the overall mission of
the organisation. Although actors do not directly provide support for such goals,
we intend to use results from the field of Multi-Agent Systems [13] where sup-
port for goal-based reasoning is provided within each agent when determining
how to handle messages.

[Composition]. An organisation is an assembly of components. As noted above,
the topology of an organisation may be static or dynamic. Actors can be nested
in more than one way. Actor behaviors are declared and new actors are dynam-
ically created with an initial behavior (much like Java classes). The scope of
actor behaviors can be nested to provide modularity. Adding a dynamically cre-
ated actor to the state of a parent actor provides composition. Such actors can
be sent as part of messages. If the source actor retains the address, then the
communicated actor becomes shared between the source and the target of the
message.

[Extensibility]. Our aim is to support a number of simulation and analysis
use-cases. As such the kernel language will need to support a collection of inde-
pendent domains. Whilst we expect the DSLs to target the kernel language it is
likely that each domain will have its own fundamental concepts and actions (so-
called Therbligs, [25]). We envisage such domain-specific features being defined
in the kernel language and then pre-loaded to form an augmented target lan-
guage for DSL translations.

[Event-Driven]. Organisational components cannot rely on when communi-
cations occur and where they originate. In addition, a component may simply
cause an event to occur without knowing who will consume the event. This is
to be contrasted with message-based communication where the target is always
known to the source and where sometimes the message carries information about

210 B.S. Barn et al.

Fig. 3. A component DSL.

Fig. 4. Translation from DSL to ESL.

the source that becomes available to the target. The AMC is based on message
passing where the source knows the address of the target. Given that the kernel
language is the target of DSL transformations, support for event-based commu-
nication becomes an architectural issue where events are simply messages that
are sent to an actor container that is responsible for delivering event-messages
to dynamically changing collections of actors. Providing that the transformation
establishes the correct assembly of actors and conforms to an appropriate mes-
sage passing protocol then component events are supported without needing to
make them an intrinsic part of the kernel.

Our current work on ESL has positioned ESL as a General Purpose Lan-
guage (GPL) that is a kernel language for representing organisations. Organ-
isations consist of many autonomous components, organised into dynamically
changing hierarchical groups, operating concurrently, and managing goals that
affect their behaviour. The details of the syntax and semantics of ESL are out-
side the scope of this paper. In summary, however, the syntax of the language
comprises commands, expressions, patters and commands that are guarded by
patterns and boolean expressions. The semantics of the language are based on
the operational semantics of the AMC [23] and its relation to organisations, or
iOrgs [24]. In essence, this becomes a series of object traces of both the system

Can Organisational Theory 211

Fig. 5. Software provisioning organisation.

and individual actor traces. Currently, ESL is implemented in the programming
language Racket.

For ESL to be effective at representing organisations, multiple DSLs that
target ESL are necessary. A simplified example DSL is shown in Fig. 3(a) together
with an example model in Fig. 3(b). Components communicate using messages
whose types are defined by interfaces. The state of a component is defined by
local variables and the behaviour by a state machine. All data is defined by class
models.

An overview of the translation of model Fig. 3(b) to ESL shown in Fig. 4
where components and interfaces are translated to actors, messages and data
is encoded as terms, and the state transition machine is encoded as guarded
pattern-matching behaviour rules. Notice that ESL is more expressive than the
DSL (actors are not static entities, unlike components, for example) although
the latter lends itself to a familiar graphical syntax.

4 Case Study Illustration

How can ESL and DSLs be used together to carry out enterprise modelling
activities? In this section, using a realistic case study we provide an illustrative
example of how we envisage use of the ESL technology.

Consider an IT Services provider that delivers a range of service products
such as development, maintenance and testing in response to requests for pro-
posals. A project is resourced, executed using existing processes, and delivered
to customers with resources being subsequently released. This business as usual

212 B.S. Barn et al.

Fig. 6. Decision making using ESL.

(BAU) scenario involves operational complexities including skill-matching, deal-
ing with unforeseen demand, staff attrition, resource utilisation, accounting for
operational delays, while ensuring business targets are met. Various strategies
are open to the organisation to enable it to aim to improve its BAU state.
Example strategies could include:

– Increase in similar projects to improve maturity of workforce and hence quality
and track record;

– Reduce project costs;
– Investment in training and productivity tools.

Each strategy however, has various scenarios as well as factors such as supply
and demand that are dynamic and also dependent on the external business
environment. A key requirement for management is know which strategy would
be beneficial amongst the various alternatives and when to switch from one
strategy to another so as to maintain or improve existing operating levels.

Figure 5 shows a software provisioning organisation operating in a static sup-
ply and demand context. It is measured on three metrics: revenue, expense
and resource utilisation. Demand comprises of four kinds of software develop-
ment projects: low margin low risk (LMLR), medium margin low risk (MMLR),
medium margin high risk (MMHR) and high margin high risk (HMHR). The
organisation bids for these projects and has different win-to-bid ratio for differ-
ent kinds of projects.

A win-to-bid ratio signifies market perception of the ability to deliver a given
kind of project on time and with the desired quality, and is largely determined
by track record. Supply comprises four kinds of workforce resources: junior (J),
skilled junior (SJ), senior (S) and expert (E), e.g., execution of an HMHR project
demands larger proportion of experts than, say, an LMLR project. SJ is a critical
resource for all kinds of projects and hence is always in demand. Thus, the
workforce composition J:SJ:S:E dictates what kind of projects can be delivered.
Technology such as programmer productivity tools and automated testing can
influence effectiveness at a price. A reserve of resources may be maintained in
order to take advantage of opportunities as they arise.

Can Organisational Theory 213

Fig. 7. Implementation architecture.

The organisation is faced with several business-critical decisions such as: Are
resources optimally loaded or is there some slack? Will quoting a reduced price
or delivery time be more effective at winning more bids? Will staff training
or the use of productivity tools reduce delivery time? When would the benefits
start outweighing the costs? What J:SJ:S:E configuration delivers optimal KPIs?
What would be the impact of scarcity of experts on KPIs? What would be the
result of focusing on high margin projects only?

Figure 6 shows a pictorial depiction of decision making in ESL. KPI denotes
the set of observable variables indicative of system state or, in other words,
goodness of the decision. VAR denotes the set of influencing variables having a
control on the system state.Coherent influencing variables are grouped together
into an Actor constituting its state. It is possible that an influencing variable
may belong to more than one actor. As a result, state change of such variables
needs to be propagated to other actors (having the variable as a constituent of its
state) as well. This is implemented through message passing between the relevant
set of actors. Value of a KPI is typically a function, not a mathematical formula
though, of the values of its influencing variables which in turn may have a discrete
value or a time-varying value distribution or a function over other influencing
variables. These influences are implemented in terms of message passing between
the relevant actors.

Figure 7 shows the organisation being modelled as a set of interacting actors
namely, Customers, Supply, Organisation, Sales unit, Delivery unit, Resource
management unit, Accounts and Recruitment unit. Actors interact with each

214 B.S. Barn et al.

other through message passing. For instance, Customers actor sends the RFP
(type, description, originator) message to Organisation actor who delegates it
to Sales unit actor that in turn send the Bid (RFP Id, proposal, price) mes-
sage back to Customers actor. A bid win results in Customers actor sending
Bid response (Id, deadline, result, originator) to Organisation actor which del-
egates it to Delivery unit actor that sends Deliverables message to Customers
actor on successful execution of the project. Resignation is modelled as Resource
management unit actor sending Resign message to Supply actor. Recruitment is
modelled through Offer (type, count, salary) and Recruit (count, type) message
interaction between Recruitment unit and Supply actors. Parameter count indi-
cates that recruitment happens in chunks. Clock and Monitor are special actors
needed for simulation and reporting respectively. Note that Fig. 7 could have
also been drawn using traditional UML component implementation notation.

5 Concluding Remarks

This position paper has proposed that current generation enterprise modelling
languages and technologies support a linear form of enquiry that requires tacit
knowledge based on an Architect’s know how. Such an approach prevents scaling
up to rapidly address “what if” type of questions that face organisations as they
seek to adapt to respond to ongoing change. At an abstract level, these types of
requirements have been studied in other disciplines, including economics, polit-
ical science, philosophy and linguistics leading to computation based organisa-
tional theories and technologies for describing agent interaction, communication
and decision-making. For the kind of decision making problem illustrated in this
paper, industry relies extensively on Excel. Such an approach typically repre-
sents the relationships between influencing factors or system variables in terms of
static equations. The lack of support in expressing temporal aspects of an organ-
isation (including the interference between variables with respect to time) limits
the use of spreadsheets to being a data computation aid instead of data-driven
decision making tool.

We have presented an argument that traces a route through (computational)
organisation theory to propose that next generation enterprise modelling lan-
guages should address COT and multi-agent system approaches to provide a
rich simulation platform that supports both explanatory models and predictive
models for the “what if” question. In doing so, we recognise that there are
open-ended research questions around methodology and proposed the simula-
tion platform. We plan to validate our proposition in a number of ways. We are
currently developing a collection of representative case studies based on real-
world data in a laboratory setting. One case study illustrates how the proposed
ideas and techniques can help data-driven decision making in an IT services
providing organisation. Another case study will address merger and acquisition
problem in wealth management domain. We intend to run co-design workshops
with Business Management domain experts in order to evaluate their response
to our proposals. We are currently extending µLEAP [26] to be the target kernel

Can Organisational Theory 215

language. We have designed and implemented the kernel language meta-model as
a prototype and intend to develop further versions as a virtual machine, possibly
using multiple Java VMs as targets.

References

1. Luftman, J.: Assessing business-it alignment maturity. Strat. Inf. Technol. Gov. 4,
99 (2004)

2. Chan, Y.E., Reich, B.H.: It alignment: what have we learned? J. Inf. Technol. 22,
297–315 (2007)

3. Lankhorst, M.: Introduction to enterprise architecture. In: Lankhorst, M. (ed.)
Modelling, Communication and Analysis. The Enterprise Engineering Series, pp.
1–10. Springer, Heidelberg (2005)

4. Veken, K.V.D.: Enterprise architecture modelling to support collaboration-the
archimate language as a tool for communication (2013)

5. Zachman, J.A.: A framework for information systems architecture. IBM Sys. J 26,
276–292 (1987)

6. Scott, W.R.: Organizations. Prentice-Hall, Englewood Cliffs (1992)
7. Carley, K.M., Gasser, L.: Computational organization theory, A modern approach

to distributed artificial intelligence, Multiagent systems. MIT press, Cambridge
(1999)

8. Clark, T., Kulkarni, V., Barn, B., France, R., Frank, U., Turk, D.: Towards the
model driven organization. In: 2014 47th Hawaii International Conference on Sys-
tem Sciences (HICSS), pp. 4817–4826. IEEE (2014)

9. Parsons, T., Jones, I.: Structure and Process in Modern Societies, vol. 3. Free Press,
New York (1960)

10. Leavitt, H.J.: Applied organization change in industry: structural, technical and
human approaches. New Perspect. Organ. Res. 55, 71 (1964)

11. Buckley, W.: Sociology and Modern Systems Theory. Prentice-Hall, Englewood
Cliffs (1967)

12. Gazendam, H.W., Jorna, R.J., et al.: Theories about architecture and performance
of multi-agent systems. University of Groningen (1998)

13. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New york (2009)
14. Hoogendoorn, M., Jonker, C.M., Schut, M.C., Treur, J.: Modeling centralized orga-

nization of organizational change. Comput. Math. Organ. Theor. 13, 147–184
(2007)

15. Yu, E.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Butterworth, R. (ed.) Proceedings of the Third IEEE International
Symposium on Engineering, pp. 226–235. IEEE (1997)

16. Kolp, M., Giorgini, P., Mylopoulos, J.: Multi-agent architectures as organizational
structures. Auton. Agents Multi Agent Sys. 13, 3–25 (2006)

17. Argente, E., Julian, V., Botti, V.: Multi-agent system development based on orga-
nizations. Electron. Notes Theor. Comput. Sci. 150, 55–71 (2006)

18. Bean, S.: Re-thinking enterprise architecture using systems and complexity
approaches. J. Enterp. Archit. 6, 7–13 (2010)

19. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent technology: computing
as interaction (a roadmap for agent based computing) (2005)

20. Isern, D., Sánchez, D., Moreno, A.: Organizational structures supported by agent-
oriented methodologies. J. Sys. Softw. 84, 169–184 (2011)

216 B.S. Barn et al.

21. Siebers, P.O., Aickelin, U.: Introduction to multi-agent simulation. arXiv preprint
(2008). arXiv:0803.3905

22. Reinhartz-Berger, I., Cohen, S., Bettin, J., Clark, T., Sturm, A.: Domain Engi-
neering. Springer, Heidelberg (2013)

23. Hewitt, C.: Actor model of computation: scalable robust information systems.
arXiv preprint (2010). arXiv:1008.1459

24. Hewitt, C.: Norms and commitment for iorgs (tm) information systems: Direct logic
(tm) and participatory grounding checking. arXiv preprint (2009). arXiv:0906.2756

25. Stanton, N.A.: Hierarchical task analysis: developments, applications, and exten-
sions. Appl. Ergon. 37, 55–79 (2006)

26. Clark, T., Barn, B.S.: Outsourcing service provision through step-wise transfor-
mation. In: Proceedings of the 7th India Software Engineering Conference, ACM
(2014)

http://arxiv.org/abs/0803.3905
http://arxiv.org/abs/1008.1459
http://arxiv.org/abs/0906.2756

Software Defect Prediction in Automotive
and Telecom Domain: A Life-Cycle Approach

Rakesh Rana1(&), Miroslaw Staron1, Jörgen Hansson2,
Martin Nilsson3, and Wilhelm Meding4

1 Computer Science and Engineering, Chalmers University of Gothenburg,
Gothenburg, Sweden

rakesh.rana@gu.se
2 School of Informatics, University of Skövde, Skövde, Sweden

3 Volvo Car Group, Gothenburg, Sweden
4 Ericsson, Göteborg, Sweden

Abstract. Embedded software is playing an ever increasing role in providing
functionality and user experience. At the same time, size and complexity of this
software is also increasing which bring new challenges for ensuring quality and
dependability. For developing high quality software with superior dependability
characteristics requires an effective software development process with greater
control. Methods of software defect predictions can help optimize the software
verification and validation activities by providing useful information for test
resource allocation and release planning decisions. We review the software
development and testing process for two large companies from the automotive
and telecom domain and map different defect prediction methods and their
applicability to their lifecycle phases. Based on the overview and current trends
we also identify possible directions for software defect prediction techniques
and application in these domains.

Keywords: Defect prediction � Software life cycle � Automotive � Telecom �
Test resource allocation � Release readiness

1 Introduction

Software today is an important part of telecom as well as automotive products. The
demands for new products and functionalities in these domains keep pushing the size
and complexity while also adding pressure to reduce cost and time to market. To meet
the demands of high quality and reliability - significant effort is devoted on software
V&V (Verification & Validation). Testing the software is an important part of software
V&V used for ensuring correct functionality and reliability of software systems; but at
the same time software testing is also a resource intensive activity accounting for up to
50 % of total software development costs [1] and even more for safety critical software
systems.

Defects in software provide observable indicators to track the quality of software
project/product under development. Different methods for analysis of software defect
data have been developed and evaluated, these methods have also been used to provide

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 217–232, 2015.
DOI: 10.1007/978-3-319-25579-8_13

range of benefits such as allowing early planning and allocation of resources to meet
the desired goals of projects. Different methods of software defect analysis and pre-
dictions have different characteristics, they need variety of input data, are appropriate to
be applied at specific levels and for certain applications. In this paper we summarize the
state of the art methods for software defect predications. We place these methods on the
software development life cycle of two companies from the telecom and automotive
domain and map them to their appropriate level of granularity and application type.

We also contend for the position that with technology enabling collection and
analysis of in-operations data efficiently in the automotive domain will enable software
designers and developers to use this information to design more robust and user
friendly features and functions.

This paper is the extended version of our previous work [2] where the focus of
work was mapping software defect prediction techniques over the automotive software
life cycle. In this paper we include another company from a different (telecom) domain.
Software development within these two companies have large differences, thus in this
paper we take a life cycle approach of applicability of software defect prediction
techniques where software development process follows V-model (automotive domain)
and for agile process (telecom domain).

2 Background and Related Work

2.1 Related Work

Expert opinions were used and their performance compared to other data based models
in study by Staron and Meding [3] of defect data from the telecom domain where they
found that simple statistical models based on moving averages provided better pre-
dictions for weekly defect inflow. Predictions by experts was also compared to pre-
dictions using software reliability growth models in the study by Almering et al. [4]
reporting that SRGMs outperformed expert predictions who gave more conservative
estimates.

Long term predictive power of SRGMs within the automotive domain was studied
in authors earlier works [5, 6], demonstrating their usefulness in making defect and
reliability predictions. Application of SRGMs for defect prediction has also been
studied by Woods [7] on industrial data and different models performance compared in
work by Pham [8].

Number of software metrics based on code characteristics such as size, complexity
etc., and metrics based on changes to software artifacts during development have also
been successfully used to classify defect prone software modules or estimate software
defect densities. Khoshgoftaar and Allen [9] used logistic regression for classifying
modules as fault-prone, while Menzies, Greenwald and Frank [10] used static code
attributes to make defect prone forecasts. Methods that use code and change metrics as
inputs and use machine learning methods for classification and forecasting have also
been studied by Gondra [11] and Ceylan et al. [12].

Fenton and Neil [13] critique the use of statistical based software defect prediction
models for their lack of causal link modelling and proposes use of Bayesian Belief

218 R. Rana et al.

Networks (BBNs). Bayesian Nets have been used to show their applicability for defect
forecasting at very early stages of software projects [14].

Our study complements earlier studies in defect predictions by illustrating when
different methods of SDP are most appropriate over a software development life cycle.
Based on the trends of software development and market demands, we also provide the
road map of future for SDP within the automotive domain that can be helpful for
effective application of these methods for making better predictions and thus enabling
developing high quality and reliable software within this domain.

2.2 Software Development Life Cycle in Automotive Domain

Most automotive OEMs follow Model Driven Development (MDD) and since
car/platform projects are often large and spread over several years, they are executed in
number of iterations. In literature and development standards, software development
life cycle in embedded and automotive domain has been illustrated as variants of
iterative development based on spiral process model [15] and approaches based on
V-model [16, 17].

The full EE (Electronics and Electrical System) development which constitutes the
complete development of software and hardware (Electronic Control Units) in auto-
motive domain, the different stages of process can be illustrated by Fig. 1, which are:

1. Concept Phase: Where a new functionality is designed and tested on prototypes
and Proof of Concept (POC) is demonstrated.

2. Production Software: The main requirements (on vehicle level) are set for the
upgrade (addition of new features in current system) and for the new functions
approved for market introduction. Software and hardware intended to be included in
production automobiles is developed in iterative manner following V-model or
spiral development process.
a. The first part of developing production software is dominated by the addition of

the new functionality. While unit, integration and functional testing are part of
each iteration during this phase as well, the focus is on addition of functionality
as prescribed in the vehicle programme.

b. In the second part of the production software development process, which is also
carried out in number of iterations – the focus is shifted to integration and

Fig. 1. Overview of software development lifecycle in the automotive domain.

Software Defect Prediction in Automotive and Telecom Domain 219

acceptance testing. In this period, software and hardware performance is cali-
brated to match to the market demands.

3. In Operation: Once the new vehicle model is released into the market, the per-
formance of software and hardware is monitored (through diagnostics) during its
operation. The data collection on performance of software, hardware and vehicle is
often higher within the warranty period than the latter phase where only essential
data is collected and used for improving the future products.

The process followed at each iteration within the production software development can
be described using a V-model (refer to Fig. 2). Essentially for each iteration first the
requirements are set followed by System Design (functional design and system
architecture). Following the system design ECU specifications are done which can also
be referred as software design since software is usually designed for a specific ECUs
and they are generally co-developed, optimized for particular functionality.

Next comes the implementation where designed software is implemented or
auto-generated from models. The code usually undergoes rigorous testing under sim-
ulated environment. The testing of software in simulated environment is termed
Model-In-Loop testing. The software code is then integrated with the hardware/ECU
and is tested in the Hardware-In-Loop testing (for all iterations) and testing within
complete vehicle prototypes (for selected iterations). Major types of testing carried out
to verify and validate the functionality include unit testing, sub-system integration and
testing, system integration and testing, functional and acceptance testing.

2.3 Software Development Life Cycle in Telecom Domain

Ericsson develops large software products for mobile telecommunication networks.
The software development process used in large part of the organization is based on the
principles of agile and lean development, referred internally as Streamline development

Fig. 2. Mapping automotive software life-cycle according to V-model.

220 R. Rana et al.

(SD) [18]. In the process, cross functional teams are responsible for complete analysis,
design, implementation, and testing of particular features of the product. The overview
of the software development and testing process is presented in Fig. 3.

The company has several large products for each of the product there is a main
branch that is maintained at all times. A number of features agreed to be developed
(marked with A, B and C in Fig. 3) are usually developed by separate teams after the
requirements are set and system has been designed. The newly developed features
undergo unit, function and system testing before being released into the main branch.

The main branch with added features is now branched out and subjected to function
and system testing on regular basis. After the integration of new features into the
network (network integration), this new version of software is also subjected to veri-
fication activities (Network Verification and Clean Run using specific test cases for
new features). Network integration and verification is completed before the product is
released internally. After the internal release, the product is subjected to further
function and system testing before making the general release to customers.

The streamline development process followed in this company is aligned to the
demands of market where new trends in the market require features to be developed
and released in shorter intervals, still ensuring high quality.

2.4 Methods for Software Defect Predictions (SDP)

Early estimations of software defects can be used effectively to do better resource
planning and allocations. Estimating and monitoring software defects further help to
track the progress of given software project and improve release planning.

A number of methods have been used for predicting software defects, categorized as:

• Causal Models,
• Using Expert Opinions,

Fig. 3. Overview of software development lifecycle in the telecom domain.

Software Defect Prediction in Automotive and Telecom Domain 221

• Analogy Based Predictions,
• Constructive Quality Model,
• Correlation Based Models
• Capture/Recapture Models,
• Models based on Code and Change Metrics,
• Software Reliability Growth Models (SRGMs), etc.

Based on the type of input which is required by various categories of methods, the
amount of data and sensitivity of methods to give stable predictions varies. The methods
are thus useful only at certain stage(s) during the lifecycle of software development. The
characteristics, main advantage and limitations of each method are summarized in
Table 1.

3 Results and Discussion

3.1 Defects Prediction over Automotive Software Life Cycle

Applicability of various methods for software defect predictions over the life cycle
phases of automotive software development is represented in Fig. 4. At the very
beginning when new functionality has been tried and the concept has been shown to
work, there is not much data available to used data heavy models. But it is possible to
use expert opinions to make estimates of size, complexity and expected defect
count/density for the proposed application. It is also possible to use expert opinions
together with historical projects data using analogy based approach. The methods of
defect prediction that can be applied at this stage are:

• Using Expert Opinions,
• Analogy Based Predictions

When the concept has been further tested, approved to go into production, requirements
are defined. At this stage other properties such as size, design dependencies etc. are also
made clear which allows for following methods for defect prediction:

• Causal Models,
• COnstructive QUALity MOdel (COQUALMO)

In the production phase, software is developed in an iterative manner. For each (in-
ternal) release, software from different sections (within OEM and software sourced
from suppliers) is integrated followed by rigorous function and integration testing.
With testing data at hand and possible access to source and evolution metrics, Models
that need testing/code metrics data can be applied in this phase. Examples of such
methods applicable during the iterative development/testing processes are:

• Software Reliability Growth Models (SRGM),
• Correlation Analysis,
• Capture/Recapture Analysis,
• Methods based on Code and Change Metrics

222 R. Rana et al.

Table 1. Software defect prediction models, characteristics and applicability over SW life cycle.

Method Input data required Advantages and limitations

Causal models Inputs about estimated size,
complexity, qualitative inputs
on planned testing and quality
requirements

• Causal models biggest
advantage is that they can be
applied very early in the
development process

• Possible to analyse what-if
scenarios to estimate output
quality or level of testing needed
to meet desired quality goals

Expert opinions Domain experience (software
development, testing and
quality assessment)

• This is the quickest and most
easy way to get the predictions
(if experts are available)

• Uncertainty of predictions is
high and forecasts may be
subjected to individual biases

Analogy based
predictions

Project characteristics and
observations from large number
of historical projects

• Quick and easy to use, the
current project is compared to
previous project with most
similar characteristics

• Evolution of software process,
development tool chain may lead
to inapplicability or large
prediction errors

Constructive
quality model

Software size estimates, product,
personal and project attributes;
defect removal level

• Can be used to predict cost,
schedule or the residual defect
density of the software under
development.

• Needs large effort to calibrate the
model.

Correlation
analysis

Number of defects found in given
iteration; size and test effort
estimates can also be used in
extended models

• This method needs little data
input which is available after
each iteration

• The method provides easy to use
rules that can be quickly applied

• The model can also be used to
identify modules that show
higher/lower levels of defect
density and thus allow early
interventions

Capture/recapture
analysis

Number of defects discovered in
a given software artefact by
independent defect detection
activities, such as different code
reviews

• This method can be applied at
any level, file to product level
(for higher levels representative
sample of files/modules would
be needed)

• For code inspection/reviews,
access to source code is needed

(Continued)

Software Defect Prediction in Automotive and Telecom Domain 223

Table 1. (Continued)

Method Input data required Advantages and limitations

• The method requires that
two/more similar but
independent resources are used
for same software artefact, which
requires additional resources

Regression
models

Software code (or models)
metrics as measure/proxies for
different characteristics of
software code/model; another
input can be the change metrics

• Uses actual code/models
characteristic metrics which
means estimates are made
based on data from actual
software under development

• Can only be applied when
code/models are already
implemented and access to the
source code/model is available

• The regression model
relationship between input
characteristics and output can be
difficult to interpret – do not map
causal relationship

Machine learning
based models

Software code (or models)
metrics as measure/proxies for
different characteristics of
software code/model; another
input can be the change metrics

• Similar to regression models,
these can be used for either
classification (defective/not
defective) or to estimate defect
count/densities

• Over time as more data is made
available, the models improvise
on their predictive accuracy by
adjusting their value of
parameters (learning by
experience)

• While some models as Decision
Trees are easy to understand
others may act like a black box
(for example Artificial Neural
Networks) where their internal
working is not explicit.

Software
reliability
growth models

Defect inflow data of software
under development (life cycle
model) or software under
testing.

• Can use defect inflow data to
make defect predictions or
forecast the reliability of
software based system

• Reliability growth models are
also useful to assess the
maturity/release readiness of
software close to its release

• These models need substantial
data points to make precise and
stable predictions

224 R. Rana et al.

SRGMs do not need access to source code/model metrics data; these are black-box
techniques that only use defect inflow data during development/testing to model the
reliability of software systems. While these models can be applied when the software is
under development/testing – they need substantial data points (defect inflow) to make
stable predictions.

Correlation analysis models uses number of defects discovered in given iteration
(and possibly more attributes) to predict number of defects for following iterations or
total defect count for full project. Thus correlation based models can also be applied
without the need for access to source code. For each iterative release, different methods
can also be used to assess the release readiness of these internal releases.

Capture/Recapture techniques usually uses code inspection/reviews for defect
predications, while methods based on code and change metrics require access to source
code/functional models to measure characteristics such as size, complexity, depen-
dencies etc., which are then used to make the defect proneness classification or fore-
casting of defect counts/densities. Thus methods based on code and change metrics and
to large extent capture/recapture analysis can only be applied when access to source
code/functional models is available.

Since large part of automotive software is often developed not by OEMs but their
suppliers, access to source code may be an issue as most suppliers keep their source
code un-accessible to OEMs. Thus applicability of methods that need access to
source/software evolution metrics cannot be applied at all sections of automotive
software development. Nonetheless these methods are applicable for application areas
where software is developed in-house by the OEMs. Further since software develop-
ment in automotive domain pre-dominantly uses MDD, functional/behavioural model
metrics alternatives to code metrics may need to be used where their applicability and
performance is currently not well documented. Thus in Fig. 4, defect prediction
techniques using capture/recapture analysis, regression and machine learning based

Fig. 4. Software defect prediction techniques mapped to automotive software development life
cycle.

Software Defect Prediction in Automotive and Telecom Domain 225

models using code and change metrics are highlighted by different colour to indicate
the issues with their application discussed here.

When the large part of production software has been developed, the second
part/phase within production software is focused on system and acceptance testing. In
this phase the testing and defect data collected can be analysed using defect classifi-
cation techniques such as Orthogonal Defect Classification (ODC) [19]. Although
defect classification techniques do not make defect count forecasts or assessment of
release readiness, they provide a structured data and analysis techniques to learn from
defect data and discover patterns that can help with software process improvements.

In the final in-operations phase the software performance can be monitored using
various logging and data collection techniques.

3.2 Defects Prediction over Telecom Software Life Cycle

Applicability of various methods for software defect predictions over the life cycle
phases of software development in the telecom domain is represented in Fig. 5.

As described in Sect. 2.3, the software development process followed at the
company (Ericsson) from the telecom domain is based on agile and lean principles and
is referred to as streamline development [18]. The first important difference in this

Fig. 5. Software defect prediction techniques mapped to streamline software development life
cycle.

226 R. Rana et al.

process compared to previous case of large EE platform projects in the automotive
domain is the time-span; the life-cycle for selected features is in weeks which more or
less correspond to one iteration in the automotive platform projects. Within these
release cycles the different software defect prediction techniques are useful at different
stages as:

• In the requirements phase, the requirements are specified and finalized for the
features (A, B, C etc.) to be developed. Since not even requirements are fully
specified yet, no techniques for software defect prediction can provide good
estimates.

• Once the requirements have been defined and system is designed, expert based and
analogy based predictions are useful. Expected defect count and defect proneness of
given feature/project or modules can be predicted either based exclusively on the
subjective experience of experts or it can be assisted with data and/or models from
similar past projects.

• The following phase is marked by the development activity where software is
usually hand coded (contrast to automotive domain where domain specific mod-
elling languages such as Matlab/Simulink are common). With system design at
hand and estimates on size and required functionality, causal models and con-
structive quality model can be sued in this phase for making defect predictions.

• After the implementation of feature(s) is mostly over, other techniques for software
defect prediction can be used, there are:
– Capture/recapture based models,
– Regression and machine learning based models,
– Software reliability growth models, and
– Using methods for release readiness assessment.

Since coding in this domain is mostly done in-house the access to source code and
software evolution/change metrics is not an issue. Thus techniques that require such
data can be readily applied for defect predictions and release readiness assessment.

• After most of testing is over, defect classification techniques can help analyse the
defect data to evaluate any process improvement potentials and undertake root
cause analysis.

• The software is released internally after adequate function, system, and integration
testing has been performed. The internal release is then subjected to rigorous
acceptance testing before making it available for the customer.

• When in operation, useful log data is collected about the performance of system and
any filed issues/reports are also collected and analysed.

3.3 Analysing Defects Data over Software Life Cycle

Another characteristic of defect analysis methods that is important for selecting the
right technique for given purpose is at what level the technique/model can be applied.
Based on the type of method and input data needed different models provide optimal
results at different levels and their predictions can also be useful for various purposes.

Software Defect Prediction in Automotive and Telecom Domain 227

Table 2 summarizes the levels and appropriate applications for each model type. The
level of analysis can be done at:

• Product Level (PL),
• System Level (SL),
• Sub-System level (SSL),
• Functional Unit level (FU),
• MOdule (MO), or at the
• File Level (FL)

The applications where analysis of software defect data can be useful are:

• Resource Planning and Allocations (RPA),
• What-IF analysis (WIF),
• Release Readiness Assessment (RR),
• Root Cause Analysis (RCA), or for
• Identification of Defect Prone units (IDP)

4 Roadmap for Increasing Effectiveness of Software Defect
Predictions

4.1 Using Field Data in the Automotive Domain

In the automotive software domain, the post release monitoring have been fairly limited
as software is not regarded same as hardware (software do not degrade or break down
with life). Another major reason for lack of monitoring of software in-operation per-
formance in the past has been the un-availability of necessary skills at the service end to
retrieve the data and easily feed it back to OEMs for analysis.

But with the advancements of new technology such as high speed data transfer,
storage facilities, cloud storage and highly automated computer based diagnostics
equipment’s available across most of the service points offers unprecedented

Table 2. Application level and useful purposes.

Model Application level Application area

Causal models PL, SL, SSL RPA, WIF
Expert opinions PL, SL, SSL, FU RPA, RRA, RCA, WIF
Analogy based predictions PL, SL, SSL, FU RPA, RRA
Constructive quality model PL, SL, SSL, FU RPA
Correlation analysis SSL, FU, MO, FL RRA, IDP, WIF
Capture/recapture analysis All levels RPA, RR, RCA, IDP
Regression models SSL, FU, MO, FL RRA, IDP, WIF
Machine learning based models SSL, FU, MO, FL RRA, IDP, WIF
SRGMs PL, SL RPA, RR, RCA

228 R. Rana et al.

opportunity to collect, store and use the data from the in-operations phase and use it to
feedback information that can further enhance the capabilities to design and develop
even better, higher quality and safe automotive software.

We contend that the current technologies make it possible for OEMs to collect and
analyse in-operations performance of software based systems very much like it has
been the case for hardware components in the past. And much like how such moni-
toring helped design better hardware components, increase their life and reliability –

monitoring the in-operations data of software systems performance will help design
more robust, reliable and user friendly software functions in the future.

For example, following and analysing detailed performance metrics of software
based system during their life-time operations will:

• Provide metrics for in-operations performance of software based systems.
• The qualitative and quantitative robustness and reliability measures from

in-operations data will provide input (feedback) for experts and causal models on
which software characteristics lead to most reliable performance.

• The current evaluation of performance of code and change metrics SDP models is
based on their performance compared to defects found during development and
testing. Using in-operations performance data and using code and change metrics
data from their source code will help identify “best practices” for the software
designers and developers to avoid actions that may lead to sub-optimal performance
during operations.

• Insights from the in-operation phase are already used by certain OEMs for effective
optimization/calibration. For example functional units such as powertrain use
in-operations data to calibrate engines for achieving optimal balance between power
and efficiency.

• With active monitoring and analysis of in-operations performance of software based
systems will help isolate any potential performance related issues and offer quick
updates whenever needed that will further enhance the overall dependability of
automotive products during the actual operation.

Further in future where in-operation monitoring and feedback cycle is shortened
would also enable OEMs to identify user satisfaction and usefulness of different fea-
tures within their cars. This will allow for design and development of more user
friendly features that will benefits the end customers.

4.2 Combining Different Models and Using Ground Up Approach
to Prediction

In contrast to automotive domain, the telecom domain post release monitoring is done
actively with strategic customers providing an active feedback channel for software
development organization. Compared to the automotive domain, the telecom domain
also usually have full access to source code and change metrics (developed internally)
allowing use of some techniques that are not always feasible for other domains with
limited access to these measures. On the other hand there are stringent requirements to
develop and deliver features in shorter periods of time, still maintain high quality.

Software Defect Prediction in Automotive and Telecom Domain 229

Two important areas for improving software defect predictions in this domain are
identified as:

1. Combining Different Software Defect Predictions Techniques: as reviewed
above different methods of defect prediction have their distinct advantages and also
they are usually more appropriate at specific time point in the software
development/testing phases. Using different techniques at different phases and
combining strengths of different methods can help make defect predictions with
higher effectiveness than using any single technique.

For example expert opinions have been shown to provide software effort esti-
mations better or at par with model estimates [20]. These estimates can be used in
combination of other data based models compared to as competing techniques.
Expert, analogy and/or causal models can be used to specify a probable high and
lower limit for reliability growth models asymptote which can make the predictions
more stable in comparison to using these models without such limits.

2. Using Ground-up Approach for Defect Prediction: another characteristic of
defect predictions techniques are their applicability at only a certain level of soft-
ware system. For example expert opinions and analogy based predictions works
well at project or system level but do not scale down well. On the other hand
regression and machine learning models provide useful estimates at file and module
level. One way of making effective software defect predictions at higher level could
be by using sampling and grounds up approach for making defect predictions.
Defect predictions methods such as capture/recapture analysis or regression based
models can be applied to a representative sample of files and modules and the
predictions thus obtained could be projected for the full system/project. These
predictions can also be validated or supported by predictions obtained from models
(such as expert opinions and causal models) that work well at these higher levels,
thus increasing the confidence in the predictions.

5 Conclusions

The role and importance of software in automotive and telecom domain has been
rapidly increasing. The size, complexity and value software provides in these domains
is ever increasing and expected to grow further. With trends moving towards connected
society, more software enables functions, autonomous vehicles and active safety sys-
tems – ensuring dependability of software based systems is highest priority.

Software development in automotive domain is long and complex process, various
software defect predictions models offer possibilities to predict expected defects thus
providing early estimations that are useful for resource planning and allocations,
release planning and enabling close monitoring of progress of given project. In the
telecom domain the time to market and high quality of released software play a critical
role.

In the paper we reviewed that different methods for SDP need different forms of
input data, they also have different capabilities and limitations when it comes to their
ability to make accurate and stable forecasts. Thus given at what phase of software

230 R. Rana et al.

development life cycle we are in and what kind of data is available, certain defect
prediction models may be more appropriate than others and thus should be preferred.

For the automotive domain, we contend that unlike past, the present technology
enables close monitoring, collection and analysis of detailed performance data of
software based system during in-operations phase. This data now and in future will be
much easy to collect, store, retrieve and analyse. We contend that analysis of such data
will lead to development of more robust software based systems that will further help to
enhance the reliability of automotive products and aid in development of features that
provide superior overall user experience.

In case of telecom domain, we take a position that using different models in
combination will provide better (more accurate and stable) predictions that using one
method in isolation. It is further suggested that using sampling approach and predic-
tions from lower granularity levels can be projected to higher granularity levels using
ground-up approach which can further be complimented by predictions from defect
prediction models that work best at higher granularity levels.

Acknowledgements. The research presented here is done under the VISEE project which is
funded by Vinnova and Volvo Cars jointly under the FFI programme (VISEE, Project No:
DIARIENR: 2011-04438). We are also thankful to companies involved (Volvo Car Group and
Ericsson) for their participation in this study.

References

1. Jones, E.L.: Integrating testing into the curriculum—arsenic in small doses. ACM SIGCSE
Bull. 33, 337–341 (2001)

2. Rana, R., Staron, M., Hansson, J., Nilsson, M.: Defect prediction over software life cycle in
automotive domain: state of the art and road map for future. Presented at the 9th
International Joint Conference on Software Technologies - ICSOFT-EA, Vienna, Austria
(2014)

3. Staron, M., Meding, W.: Predicting weekly defect inflow in large software projects based on
project planning and test status. Inf. Softw. Technol. 50(7), 782–796 (2008)

4. Almering, V., van Genuchten, M., Cloudt, G., Sonnemans, P.J.: Using software reliability
growth models in practice. IEEE Softw. 24(6), 82–88 (2007)

5. Rana, R., Staron, M., Mellegård, N., Berger, C., Hansson, J., Nilsson, M., Törner, F.:
Evaluation of standard reliability growth models in the context of automotive software
systems. In: Oivo, M., Jedlitschka, A., Baldassarre, M.T., Heidrich, J. (eds.) PROFES 2013.
LNCS, vol. 7983, pp. 324–329. Springer, Heidelberg (2013)

6. Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., Törner, F.: Evaluating long-term
predictive power of standard reliability growth models on automotive systems. Presented at
the 24th Annual International Symposium on Software Reliability Engineering (ISSRE
2013), Pasadena, CA, USA (2013)

7. Wood, A.: Predicting software reliability. Computer 29(11), 69–77 (1996)
8. Pham, H.: Software reliability and cost models: perspectives, comparison, and practice. Eur.

J. Oper. Res. 149(3), 475–489 (2003)
9. Khoshgoftaar, T.M., Allen, E.B.: Logistic regression modeling of software quality. Int.

J. Reliab. Qual. Saf. Eng. 6(04), 303–317 (1999)

Software Defect Prediction in Automotive and Telecom Domain 231

10. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. IEEE Trans. Software Eng. 33(1), 2–13 (2007)

11. Gondra, I.: Applying machine learning to software fault-proneness prediction. J. Syst. Softw.
81(2), 186–195 (2008)

12. Ceylan, E., Kutlubay, F.O., Bener, A.B.: Software defect identification using machine
learning techniques. In: 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications, SEAA 2006, pp. 240–247 (2006)

13. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE Trans.
Software Eng. 25(5), 675–689 (1999)

14. Fenton, N., Neil, M., Marsh, W., Hearty, P., Radliński, Ł., Krause, P.: On the effectiveness
of early life cycle defect prediction with Bayesian Nets. Empir. Softw. Eng. 13(5), 499–537
(2008)

15. Boehm, B.W.: A spiral model of software development and enhancement. Computer 21(5),
61–72 (1988)

16. Dieterle, W.: Mechatronic systems: Automotive applications and modern design
methodologies. Annu. Rev. Control 29(2), 273–277 (2005)

17. ISO: International Standard-ISO 26262-Road vehicles-Functional safety. International
Organization for Standardization (2011)

18. Tomaszewski, P., Berander, P., Damm, L.-O.: From traditional to streamline development—
opportunities and challenges. Softw. Process Improv. Pract. 13(2), 195–212 (2008)

19. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., Wong,
M.-Y.: Orthogonal defect classification-a concept for in-process measurements. IEEE Trans.
Software Eng. 18(11), 943–956 (1992)

20. Jørgensen, M.: A review of studies on expert estimation of software development effort.
J. Syst. Softw. 70(1–2), 37–60 (2004)

232 R. Rana et al.

Time in the Domain Entities Access
Architecture

Marco Covelli1(B), Daniela Micucci2, and Marco Mobilio2

1 TabulaeX, via Carducci 32, Milan, Italy
marco.covelli@tabulaex.com

2 Department of Informatics Systems and Communication,
University of Milano Bicocca, Viale Sarca 336, Milan, Italy

{daniela.micucci,marco.mobilio}@unimib.it

Abstract. Domain Entities Access is an architecture that enables the
realization of platforms supporting responsive environments in the inter-
action with instrumented physical environments through the observation
and the control of meaningful domain entities. This results in an envi-
ronment model that abstracts from any technological details. Domain
entities are characterized by a set of pairs property-value. The value of a
property is the last inferred one without any information with respect to
when the data used in the inference have been acquired. Thus, the status
of domain entities lacks of timeliness. The architecture has been revised
so that end-user applications can rely on both inspection and control
mechanisms whose results are driven by time. The new implementation
of the framework have been validated in a real simplified scenario.

Keywords: Time · Perception flow · Action flow · Software architec-
ture · Responsive environments

1 Introduction

Instrumented environments [1] are common environments enriched with devices
able to gather information about them and to act on them. From a technological
point of view, they constitute the milestone of responsive environments [2,3],
systems able to sense the environment and to respond to it and to the users that
inhabit it.

Those kind of systems primarily requires to intermix multiple components
and integrated solutions that are highly heterogeneous, have different capabili-
ties, and often rely on different communication protocols [4]. Due to this hetero-
geneity, many systems rely on ad hoc solutions that often are based on specific
technologies and protocols.

The approaches to the integration of heterogeneous devices can be divided
into two main groups: solutions that supply with enabling integration platforms
[5–7], and solutions that provide platforms that allow applications to reason in
terms of domain-related concepts [8,9]. Platforms of the first group provide an

c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 233–250, 2015.
DOI: 10.1007/978-3-319-25579-8 14

234 M. Covelli et al.

unified access to the heterogeneous devices. Thus, they can be used in any appli-
cation domain, but they do not provide an abstract, domain-dependant model of
the environment. On the opposite, solutions of the second group provide appli-
cations with a model of the environment that is closer to the application logic,
thus filling the gap between the physical environment and how it is perceived
by the applications. The main disadvantage of such solutions concerns the poor
adaptability of the model to domains that differ from the one for which the
model has been conceived. Moreover, time does not appear in the description of
the analized approaches that maintain an environment model. On the contrary,
in these kind of systems, time becomes crucial: an end-user application that uses
information on the status of domain entities must be aware about its timeliness,
that is, how old the data is [10]. For example, the position of a person without
being enriched with the time at which it was acquired is an information poten-
tially useless when the localization systems are not pervasive in the environment.
With time-related information, end-user applications are able to determine the
obsolescence and, therefore, the reliability of the information.

The paper presents an extension of the Domain Entities Access (DEA) [11],
an architecture for the observation and the control of instrumented environ-
ments that is located halfway between the two main classes of approaches above
described. DEA allows the integration of heterogeneous devices and provides
end-user applications with a unified access to an abstract domain-related repre-
sentation of the environment. The abstract representation of the environment (i)
captures domain related issues by abstracting from the physical devices; (ii) can
be inspected by end-user applications with the aim of identifying intelligent/ad
hoc behavior; and (iii) can be used by end-user applications to deliver commands
reifying the identified intelligent/ad hoc behavior.

The new contribution to DEA described in this article concerns the intro-
duction of aspects related to time both in the environment model, and in the
interaction between end-user applications and the model. In the new version
of DEA, when the “real” environment represented by the model evolves, the
corresponding status change is recorded in the model by placing it in a tempo-
ral context. The new mechanisms end-user applications exploit to observe and
control the environment model take into account timing issues. End-user appli-
cations can inspect the model not only on the basis of information on the status
of specific domain entities, but also for when these changes were recorded. In
addition, end-user applications will control the environment model (i.e., the sta-
tuses of domain entities) by means of timed commands, that is, they can also
specify when the change should take place. Finally, time has been included in
the DEA architecture while preserving the logic of predicates that makes DEA
independent of the specific application domain.

The paper is organized as follows: Sect. 2 overviews the DEA architecture and
outlines the points of weakness of the model related to time; Sects. 3 and 4 present
the new entity model and the new access layer respectively; Sect. 5 describes the
implementation of a real simplified scenario; Sect. 6 compares DEA to the state
of the art; and Sect. 7 outlines the conclusions and identifies future directions.

Time in the Domain Entities Access Architecture 235

2 DEA Architecture Overview and Limitations

There is a semantic gap between the environment model used by end-user appli-
cations to observe and interact with the physical environment and the devices
that produce stimuli and actuate actions. End-user applications reason in terms
of statuses of domain entities. For example, “Marco is located in room 27”,
“switch on the main light in room 2006”. On the opposite, sensing devices pro-
duce stimuli and actuating devices accept actions whose semantics and syntax
is up to the devices. “DF6YH78KLO”, “#01001#01”, are respectively examples
of a stimulus from a RFID reader and of an action to a BTicino light.

DEA (Domain Entity Access) is a layered architecture for the design of plat-
forms supporting end-user applications that reason in terms of domain entities
be they abstractions of physical devices (e.g., lamp) or inferred from events
generated by sensing devices (e.g., people), thus filling the semantic gap. The
architecture seamlessly integrates sensing and actuation devices, providing end-
user applications with an environment model that they can exploit to control and
observe the status of meaningful domain entities. The environment model is an
abstract and unified representation of the context of interest, which ranges from
the physical devices (e.g., lamps) to the people that inhabit the environment.

2.1 Overview

Stimuli from the sensing devices in the physical environment contribute in main-
taining the environment model updated so that it can reflect the “real” situation.
Symmetrically, commands from end-user applications possibly affect the “real”
environment through actions that are performed by actuating devices. In turn,
a change of the “real” environment is captured by sensing devices that produce
stimuli, thus closing the loop. For example, an application that tracks people and
activates cameras only when required, reasons on a model of the environment
constituted by people and cameras whose status is updated by a set of physical
cameras, RFID readers, and any kind of sensing device able to detect move-
ments. Moreover, the application operates on the status of the camera in the
environment model to control the corresponding physical camera, thus ignoring
the specific technological dependant action required to switch on/off the physical
camera. In turn, when the physical camera changes its status, the correspond-
ing generated stimulus will update the status of the camera in the environment
model. The two flows respectively realize the processes of perception [12].

Referring to Fig. 1, the first three layers of the architecture (from the bottom)
deal with data abstraction that is responsible for maintaining the environment
model updated with respect to the “real” environment, thus managing both the
perception and the action flows. The upper layer deals with access mechanisms
end-user applications can use to observe and control the environment model.

In detail, the interface layer is responsible for interfacing with the specific
device; the translation layer translates stimuli as produced by the devices into a
common vocabulary (abstract stimuli) and actions (abstract actions) into techno-
logical dependant actions; the inference/reification layer makes inferences about

236 M. Covelli et al.

Fig. 1. Overall architecture.

Fig. 2. Concrete architecture.

statuses of domain entities according to stimuli from the devices (and the actual
statuses) and reifies commands into abstract actions (independent from any
technological issues) that actuators have to perform; finally, the access layer
provides mechanisms end-user applications exploit to observe and control sta-
tuses of domain entities.

2.2 Concrete Architecture

Figure 2 illustrates the overall architecture with emphasis on its concrete real-
ization in terms of software components.

Time in the Domain Entities Access Architecture 237

Each of the first three layers deals with well-defined data structures both in
perception flow (from bottom to top) and in action flow (from top to bottom).
This allows identifying software components characterized by compactness and
insulation [13].

In detail and starting from the bottom, the component in charge of com-
municating with a device is the sensor wrapper (for sensing devices) and the
actuator wrapper (for actuating devices). At least there are as many wrappers
as the different typologies of the physical devices. In Fig. 2 they are represented
by the components labeled SWi (sensor wrappers) and AWi (actuator wrappers).

The component in charge of operating translations is the stimuli transla-
tor (from stimuli to abstract stimuli) and the action translator (from abstract
actions to actions) respectively. At least there are as many translators as the dif-
ferent typologies of protocols used by the physical devices. In Fig. 2 components
labeled STi and ATi are respectively stimuli translators and action translators.

Wrappers and translators depend on the specific devices that instrument the
environment. Thus, they are domain-dependant components.

The inference and the reification activities in the inference/reification layer are
respectively concretized by the status guesser and the wish reasoner components.

In Fig. 2, components labeled SGi and WRi are respectively status guessers
and wish reasoners. How many guessers are needed depends both on the charac-
teristics of the domain entities (i.e., their properties and dependencies) and on
how much the guessers are compact and insulate. The same holds for the wish
reasoners.

Guessers and reasoners depends on the specific domain entities that con-
stitute the environment model and their properties. Thus, they are domain-
dependant components.

In the access layer, three components reify the three supported interaction
modes: the observation component is in charge of managing the observation
interaction mode; the subscription component is in charge of managing the sub-
scription interaction mode by capturing the status changes inferred by the status
guessers and delivering them to the subscribed end-user applications; and the
wish component is in charge of managing the status change requests, thus deliv-
ering them to the proper wish reasoners.

The identified components and layering allow to define a framework for what
concerns the access layer and the structure of the components in the data
abstraction layer. When an instrumented environment must be observed and
controlled, then a platform is designed. Such a platform will relies on the frame-
work for what concerns the domain-independent issues, and will include both
the appropriate set of domain entities and the domain-dependant components.

2.3 Limitations

Domain entities realize the environment model. They are observable and pos-
sibly controllable units of interest in a “real” environment from the end-user
application point of view.

238 M. Covelli et al.

In the previous version of the DEA architecture, an entity was defined as a
set of property-value pairs, that entirely describes the entity itself. Each prop-
erty models a piece of information. Which properties characterize an entity is a
domain related issue. For this reason, DEA specifies only how they have to be
defined.

The value of a property is the last inferred one without any information about
when the stimuli that have been analyzed by the inference process have been
acquired. Thus, the environment model maintains a snapshot of the “real” envi-
ronment by relying on information with different timeliness [10], which describes
how old is data.

Thus, time should be assigned to values associated to properties and made
available to end-user applications. Any kind of aging policy should not be
included in the model because the evaluation of the timeliness depends on the
application domain. For example, an application that tracks persons in real-
time needs information about their positions that has an associated timestamp
close to the current time. On the opposite, an application that infers behavioral
models of persons can also rely on information that is not properly updated.

The access layer provides mechanisms end-user applications can exploit to
observe and control the environment model. Such mechanisms are based on mes-
sages and allow formulating requests about domain entities without the need to
mention them explicitly. By exploiting a subset of the concepts of predicate logic,
in the previous version of the architecture, end-user applications were able to
refer to domain entities through their properties and their values. No consider-
ation about time was taken into account. In detail, end-user applications were
principally able to observe the statuses of the environment model and to make
wishes about its evolution (i.e., to deliver commands). An observation returned
values related to properties that were not enriched with time and were the last
inferred ones. Thus, an application was not able to get to know the timeliness of
the information received. Dealing with commands, they were executed as soon
as they were received since no temporal scheduling was taken into account. This
way, an end-user application must be aware about when to deliver commands
so that their effects are implemented in the desired time. On the opposite, it
would be desirable that an end-user application does not have to be aware of
the technological details related to the actuators that fulfill the command: the
application should only be aware about when it wants that the desired state is
the current one. For example, if an end-user application wishes a mobile entity
to be in a certain place at a specified time, it does not have to worry about
when to send the command. The application must only specify it wants to get
the mobile entity in that position to the desired time.

3 Time in the Data Abstraction Layer

An entity was previously defined in [11] as a set of property-value pairs, each one
modeling a piece of information. Thus, each entity was described by the union
of its current property values.

Time in the Domain Entities Access Architecture 239

With the introduction of time, each piece of information is captured by a
property having a set of value-timestamp pairs. Each pair represents the value
of the property at a specific instant, usually discretized by the property value
change. Thus, each entity is described by the changes of these values over time.
In short, the introduced set represents the history of status changes over time.

Properties can be mutable and immutable: the former change over time,
whilst the latter are fixed once for all. For example, the location of a person can
vary over time; his name is fixed once for all.

Referring to a domotic domain, persons and lights are examples of domain
entities. Each entity is characterized by its proper set of properties: a person
has a position and a name, a light has a position too and is in an on/off status.
Moreover, both the entities has a type and an unique identifier. Instances of those
entities have registered values for their properties enriched with timestamps. For
example, home at 7 AM, office at 9 AM, and lunch room at 1 PM are plausible
values for the location property of person with identifier bob.

A property can also be controllable. For example, the on/off status of a light
is typically controllable, the same cannot be asserted for a person’s location.
Commands are requests for changing the status of entities. Previously in [11], a
command only specified the wished new value for a property. With the introduc-
tion of time, a command also specifies when the new property value is desired
to be observable. For example, an end-user application can plan to turn the
radio on at a specified time; or an end-user application can schedule a required
temperature of 20 Celsius degrees when the user will come back at home.

The perception flow works as the previous version, with the addition of time
in the data flow. For example, an RFID sensor detects a tag at 9:03 AM: this
event is captured by the interface layer that exposes the data to the upper
layer. Data is translated into the homogeneous syntax and propagated to its
upper layer. The inference/reification layer infers the new value for the position
property of the person with identifier m covelli at 9:03 AM and then updates
the persistent representation of the environment model, by adding a new value-
timestamp pair to the Location property of m covelli.

The action flow relies on the same stack too, with the addition of the concept
of timed commands. For example, an end-user application wishes to turn a radio
on at 6:30 AM. The radio is modeled by a domain entity with a set of properties
including OnOffStatus, which is controllable and contains the status of the radio.
The application delivers to the inference/reification layer a command stating
that the value of the property OnOffStatus should be set to On at 6:30 AM
(the user wishes the radio on when he wakes up in the morning). The layer
is in charge of reifying the command by producing the proper abstract action
for the corresponding radio switcher. Given that switching a radio on is an
instant action, this command “sleeps” in the layer until few moments before
6:30. Then, the abstract action is delivered to the translation layer that produces
an action that is understandable to the recipient radio switcher. The action is
then managed by the interface layer that finally commands the device.

The approach can face more complex scenarios also, where the status changes
can not be instantaneous. For example, ensuring 20 Celsius degrees at the time

240 M. Covelli et al.

the user comes back home. In this case, the reification layer, by relying on the
current temperature and other variables (such as the average time to warm the
environment), is in charge to deliver to the translator layer the corresponding
abstract actions at the right time to guarantee 20 Celsius degree at the desired
time.

4 Time in the Access Layer

The inference/reification layer maintains entities (i.e., the environment model).
With the introduction of time, this layer maintains snapshots of the environment
status over time, which can be entirely or partially retrieved. This means that
end-user applications can now refer to statuses in the past, in the present, and
in the future.

As from the first version of the architecture, the access layer provides mecha-
nisms end-user applications can exploit to observe and control the environment
model. The interactions are based on messages and allow formulating requests
about domain entities without the need to mention them explicitly. The delivery
of the messages is formulated using a subset of the concepts of predicate logic,
that allows to refer to domain entities through their properties and their val-
ues. Such a solution allows end-user applications to do not explicitly know the
domain entities constituting the environment model. For example, an application
can formulate a request like “switch on the lamp in room 27” without knowing
which is the lamp in room 27. At a conceptual level, the approach is to send
messages directly to domain entities, which respond individually on their merits.
Reply messages are also characterized by a payload that contains the required
information, and by a sender that identifies the entity to which the information
is referred.

A request message consists of a recipient, which describes via predicate logic
the properties of the entities to which the message is addressed, and a payload,
which specifies the detail of the request. A reply message consists of a sender
that is described via predicate logic and a payload with the information related
to the sender.

We define a predicate p(x), with x a domain entity, as a series of property-
value pairs, linked by the common logical connectors (conjunction, disjunction,
and negation). For example, the predicate p1(x) “x is a lamp located in sal2 lab”
can be expressed in terms of property-value tokens like “x has property Type
equals to Lamp AND x has property Location equals to sal2”. Defining the
environment model E as the set of all the domain entities and a given p(x), it
is possible to declaratively describe a set Ep ⊆ E, containing the entities having
the characteristics described in p, as follows: Ep = {e ∈ E | p(e) is true}. To
be fully compliant with the domain model, the syntax includes the possibility
to specify a minimum confidence, to filter values under a given trustworthiness
threshold.

This approach effectively allows entity selection by the specification of prop-
erty constraints.

Time in the Domain Entities Access Architecture 241

The use of predicate enables the definition of dynamic sets of entities, by
formalizing predicates that may include mutable property values.

For example, it is possible to define a predicate p2(x) “x is a person in sal2
lab”: there will be a concrete possibility that an entity e could be in Ep at the
moment t0 but not at t1. This makes possible to discriminate entities by their
properties, without the need of enumerating them.

However, it is important to notice that this approach also fits the case an
end-user application needs to explicitly refer to a specific entity, that could be
done by defining a constraint on the Id property (if defined).

Leaving untouched the recipients and senders (the predicate logic part), that
refers as before to current statuses of entities, time references to payloads have
been introduced, which allow to retrieve past information and to schedule future
environment changes.

Exploiting the above described message-based protocol, the access layer
enables end-user applications

– to query the model about the punctual status of selected entities, in the
present and in the past (observation)

– to express interest for status changes of selected entities, obtaining notifica-
tions at each occurrence (subscription)

– to express immediate or future desired statuses for entities, which are reified
in changes to the physical environment made by suitable actuators (wish)

Observation and subscription are for observation purposes. In the first case
the request concerns the status of an entity at a given time, thus allowing an end-
user application to deal with past snapshots of the environment. In the second
case, subscriptions refer to the status changes that occurs since the request. For
example, observations allow to query the environment in order to obtain the
names of the persons in a room at a given time; subscriptions allow to express
interest for all the future changes of the status of the lights in a specific room,
without having to list them.

Wish allows end-user applications to deliver commands (i.e., to change the
entities status) so that the required status change can be observed at the
requested time. Thus, end-user applications can schedule commands over time.
For example, wishes allow to ask for switching off all the lights in a certain area
at a certain time.

In the following details about the three supported interactions will be
provided.

An observation consists in a request message specifying a logic predicate that
defines the interested entities and a list L of properties and a time as payload.

For example, an end-user application needs to know the number of peo-
ple that were present in a building composed by two rooms yesterday at 6:30
PM. Room is a domain entity characterized by the properties Id (the identifier),
Type (the typology of the entity), and ContainedPeople (the number of con-
tained people). Thus, the end-user application composes the observation request
message:

242 M. Covelli et al.

Recipient:

Type = Room

ObservationRequest:

ContainedPeople , 15 Nov 2014 6:30PM

This message is delivered to all the entities who have the property Type equals to
Room. The payload specifies that the request concerns the value of their property
ContainedPeople on November the 15th 2014 at 6:30PM. The two rooms (sal1
and sal2) answer the query by sending back to the requesting application, the
messages:

Sender:

Id = sal1

ObservationResponse :

ContainedPeople = 1 0.9, 15 Nov 2014 5:34 PM

Sender:

Id = sal2

ObservationResponse :

ContainedPeople = 3 0.9, 15 Nov 2014 6:03 PM

The second value assigned to ContainedPeople in both the reply messages
(0.9) is the confidence value. The date/time refers to the age of the information,
namely it is the time that corresponds to the last update of the property value
with respect to the time specified in the request. In this case, for example, the
property ContainedPeople for sal1 has changed for the last time at 5:34 PM
with respect to 6:30 PM (the time specified in the request). Both confidence and
time may help in reasoning on the aging of the statuses: given the nature of a
specific property, a value can be evaluated as too old (thus, low reliable) by an
end-user application, leading to further considerations for the business logic.

Subscription allows to observe the environment model asynchronously: end-
user applications subscribe to entity status changes so that they will be notified
each time a change occurs. Firstly the end-user application performs a subscrip-
tion specifying the predicate p that describes the target entities and the list L
of properties in which it is interested. Since the subscription, the end-user appli-
cation will receive a notification whenever a status change involves one of the
properties in L of an entity in Ep.

For example, an end-user application needs to be notified each time a student
changes its location inside a university building. Person is a domain entity char-
acterized by the properties Id (the identifier), Type (the typology of the entity),
Location (the position inside the building), and Role (the role of the person).
Thus, the end-user application composes the subscription request message:

Sender:

CaseStudyApp

Recipient:

Type = Person AND

Role = Student

SubscriptionRequest :

Location

Time in the Domain Entities Access Architecture 243

From now on, the requesting application will be notified of any Location
value change that involves entities of type Person and role Student. Differently
from “standard” request messages, the subscription also includes a sender field,
needed to identify the recipient of future notification messages. Suppose that the
environment model has been updated as a result of a perception flow generated
by an image captured by a camera. The Location value of the entity with Id
equals to m covelli has changed, meaning that the entity “has entered” a new
location. Then, the entity itself sends to the applications that are subscribed to
such event the notification message:

Sender:

Id = m_covelli

StatusChange:

Location = sal1 0.8, 16 Nov 2014 9:10 AM

Time in the payload refers to the time in which stimuli used to infer the location
have been sensed.

Wish allows end-user applications to control the “real” environment through
commands. Actuated commands can produce effects that are perceived by sen-
sors, which activate a perception flow. Thus, the consequences of a command
request will be observable by the applications if they properly observe the
environment model, according to the previous introduced modes (observation
and/or subscription). In other words, to perceive the change, the application
must observe the entity it wants to control.

A wish consists in a request message that contains a predicate p that describes
the target entities, and a property-value pair and a scheduled time as payload,
that specifies the property and the new value the end-user application “wishes”
to assign to the target entities and when the application “wishes” the new value
to become effective.

For example, an end-user application needs to switch on all the lights
in the sal1 room today at 6:30 PM. Light is a domain entity character-
ized by the properties Id (the identifier), Type (the typology of the entity),
Location (the position inside the building), and OnOffStatus (the on/off sta-
tus). Thus, the end-user application composes the request message:

Recipient:

Type = Light AND

Location = sal1

WishRequest:

OnOffStatus = On, 16 Nov 2014 6:30 PM

This request message selects the entities by the type (they should be lights) and
the location (they should be in sal1), and asks them to switch on at 6:30 PM.
This request activates an action flow that materializes the results at the specified
time. Like for the observations, the time parameter is now mandatory.

Wishes can be not so trivial like switching on a light. In general, when
the time interval between the request submission and the scheduled time is
not enough for the materialization (e.g., warming a big cold room in less than
15 min), the general policy continues to be the best-effort one.

244 M. Covelli et al.

Fig. 3. Domain-related components for the applicative scenario.

5 Validation

The existing implementation of DEA has been extended to include time. The
validation aimed to prove the effective advantages in the development of end-user
applications using the presented architecture with the addition of time-related
concepts.

5.1 The Case Study

The case study deals with a building that houses the offices of a company. Com-
pany employees use computers. The end-user application aims at making employ-
ees able to use their computers as soon as they reach their room avoiding both
energy waste and time required to turn on the computer. Moreover, according
to the policy of energy saving, when a employ leaves its office, the application
turn the light off.

The behavior described above requires a specific instrumentation of the envi-
ronments. In addition, the end-user application requires to know how long it
takes for each employee to reach his office.

In the case study, only one employee (Mr. White) has been considered. The
physical environment has been instrumented with RFID sensors produced by
Softwork in proximity of the entrance and the exit of each involved rooms (i.e.,
the hall of the building and the office of Mr. White), with a BTicino system
that controls the lights relying on the OWN protocol, and with a computer with
a NIC (Network Internet Card) supporting the wake on LAN protocol (WOL).
Once entered in the building, Mr. White takes 5 min to reach his office.

Time in the Domain Entities Access Architecture 245

5.2 The DEA Configuration

The environment model consists of the following entities: Light, Person, and
Computer. Each of them is characterized by the following properties: Location,
Type, and Id. Moreover, Light and Computer have also OnOffStatus that states
if they are switched on or off.

The above entities constitute the whole environment model since they entirely
represent the “context of interest”. Moreover, the model, by its own nature, han-
dles the entities in the same way and does not specify any structural constraint
between them. Possible physical/spatial considerations (e.g., the building topol-
ogy) have to be done on one or more external physical space models.

The implemented components dealing with domain-related issues are
sketched in Fig. 3. At a first look they may appear too many, but each one is
actually very simple, reflecting a philosophy of high-cohesion and low-coupling.
In particular, at the interface layer, MyHomeSW and RFIDSensorsSW respec-
tively interfaces with the respective sensors to acquire the generated stimuli;
MyHomeAW and ComputerAW respectively interfaces with the respective actuators
to deliver actions. At the translation layer, OWNetST and SoftworkST trans-
late stimuli from the respective sensors into abstract stimuli; OWNetAT and
ComputerAT translate abstract actions from the wish reasoners into actions
in a language that the target actuator is able to understand. Finally, at the
inference/reification layer, LampOnOffStatusSG and PersonLocationSG are in
charge of elaborating the abstract stimuli respectively from the OWNetST com-
ponent to update the OnOffStatus property of each Light entity, and from
the SoftworkST component to update the Location property of each Person
entity; LampOnOffStatusWR and ComputerWR are in charge of reifying the com-
mands from the end-user application into corresponding abstract actions and
deliver them to OWNetAT and ComputerAT respectively.

5.3 The Interaction Between the End-User Application and DEA

The end-user application is a simple Java program that interfaces with the
exposed web services of DEA platform. Its basic behavior is to initially send
subscription requests and wait for status change notifications to trigger wish
requests.

The following is the subscription request for observing changes in the location
of employees:

Sender:

CaseStudyApp

Recipient:

Type = Person

SubscriptionRequest :

Location

Thus, whenever a new person enters the hall, the application will receive a
notification like the following:

246 M. Covelli et al.

Sender:

Id = mr_white

StatusChange:

Location = Hall 0.9, 16 Nov 2014 8:31 AM

The message notifies that Mr. White has entered at 8.31 AM the building
with a confidence equals to 0.9. The application logic triggers a rule that sends
a wish request like the following:

Recipient:

Type = Computer AND

Location = OfficeOfMrWhite

WishRequest:

OnOffStatus = On, 16 Nov 2014 8:36 AM

This message requests that the computer of Mr. White should be turned on at
8.36.

The ComputerWR will plan the actions with timing that are compliant with
the computer involved. Considering that the computer of Mr. White requires
two minutes for the boot, then the actions will be scheduled at 8:33 AM.

In this example, it was possible to save up two minutes of energy. On the
contrary, if the application could only send the turn on command when noti-
fied about the entrance of Mr. White in the building, the computer would be
unnecessarily turned three minutes in advance.

Finally, if the end-user application will receive the following command:

Sender:

Id = mr_white

StatusChange:

Location = Corridor 0.9, 16 Nov 2014 12:00 AM

the application will plan the following command to be executed immediately:

Recipient:

Type = Light AND

Location = OfficeOfMrWhite

WishRequest:

OnOffStatus = On, 16 Nov 2014 12:01 AM

6 Related Works

Devices interoperability is a well known issue [6,14]. Depending on the research
field (more or less oriented to hardware integration), the proposed solutions can
be classified in two main groups: the former composed by integration platforms
that merely unify communication mechanisms from and to devices; the latter
composed by more complex architectures that offer an environment representa-
tion to the applications, more suited to the application domain.

DEA fits in the middle of these two classes, reducing their drawbacks and
exploiting their advantages.

Time in the Domain Entities Access Architecture 247

6.1 Integration Platforms

Solutions in this scope focus on the technological problem of devices interop-
erability. Typically they offer platforms that abstract specific communication
protocols and offer homogeneous mechanisms for interacting with the devices.
The general approach is to define a set of communication requirements that
applications have to use to interface with them. These requirements are often
represented by the use of common vocabularies to uniform syntax and semantics
of data and the adherence to a common communication mode.

The CASAS Lightwight middleware (CLM) [6], for example, is a solution
based on message-passing between information sources (typically sensors) and
consumers, that uses the publish/subscribe paradigm: the interested components
subscribe to specific sources and consequently receive the produced information,
expressed by a predefined XML syntax. Thomson et al. in [5] follows a service-
oriented approach instead, proposing a framework that abstracts devices and
exposes them as web services or through technologies like Java RMI.

Solutions of this kind often are foundations of research projects, in partic-
ular in the field of Ambient Intelligence and Ubiquitous Computing. CLM, for
example, is used as a base for the communication system of the smart home
CASAS (that, in the authors knowledge, has not public results yet); the frame-
work by Thomson et al. constitutes instead the device abstraction infrastructure
of Amigo [15], that proposes a service-oriented architecture for smart homes.

These integration platforms only deal with devices and their data (that may
also include time or not), delegating the end-user applications to fit them into
an appropriate environment representation. This allows these solutions to be
potentially used in any application domain that concerns hardware components.
However, defining and maintaining a proper environment model often is a non-
trivial task.

DEA follows the general approach above described and takes inspiration from
the CLM publish/subscribe model for its data abstraction layers, by allowing
the communication between device components and inference/reification ones
through the SIS framework. The syntax and semantic of the data are defined in
a shared vocabulary, that models device raw data in a plain format. In addition,
DEA allows to define and maintain an environment model, that could include
the architecture into the “domain-oriented architectures” group.

6.2 Domain-Oriented Architectures

Domain-oriented architectures mainly focus on offering information models that
fit particular application domains. These architectures usually include device
interoperability mechanisms, that they use to infer domain knowledge from het-
erogeneous sources.

Usually information models refer to abstract representations of environments,
whose complexity depends on the specific domain of the solution. In general,
solutions in this scope add an abstraction layer to the previous group, with the
goal of infer domain knowledge from device data.

248 M. Covelli et al.

In the field of home automation we found, for example, DOG Gateway [14],
an architecture for “intelligent domotic environments”, that abstracts hardware
components into an ontological representation of the overall environment, which
comprises appliances, various systems (e.g., HVAC, gas, lightning) and simple
devices (e.g., lamps), and their spatial location into the environment topology.
In this case, the gap between device data and domain knowledge is relatively
small: most of the entities at domain level are devices or their aggregations.

In the field of Ambient Intelligence, and in more complex automation solu-
tions, the richness of the models may increase, including more than just device
entities and their statuses. In these scenarios, models are enriched by more
abstract entities, like people or weather conditions; in general, using an Ubiqui-
tous Computing term, these models deal with context informations.

Fernandez-Montes et al. in [16] propose a Smart Environments software ref-
erence architecture that implements a perception-reasoning-action cyclic flow.
Through a component called Ontologiser, it organizes data, standardizing them
into an environment model. This model includes devices information (i.e., their
spatial location and status), inhabitants (like personal data, localization, and
health status) and other environment information (e.g., room temperature and
brightness). This perceived information is used to reason about the environment
to possibly act on it.

In Ubiquitous Computing, the focus moves further on even more abstract
environment representation, where devices may be mere information sources
(e.g., RFID tags detecting people presence), thus sometimes directly excluded
from the model. An example is Gaia [8], defined by its authors as a middleware
for Active Spaces. An Active Space is an instrumented environment coordinated
by a software infrastructure that extracts context information, that can be useful
to adapt the environment itself to the user’s needs.

The main common drawback of the solutions of this class is that each of
them supports a specific domain and consequently defines a static information
model, concretely excluding its reusability in different domains. Furthermore,
the majority of the approaches doesn’t deal with time as a primary aspect.
DEA overcomes these issues by defining a plain and simple method for modeling
domain information, based on property-value pairs, and its contextualization
over time. Thus, we define how to model information, but not what, leaving to
domain experts or anyone who wants to use the architecture the definition of its
own environment model and how device data are linked to it.

Another aspect regards the action process, that is, how applications act on
the environment to change its state. Although each of the presented architec-
tures model in a clear way the perception of the environment (the transformation
of device-related data into domain knowledge), there are not details for its sym-
metric process. The best expectation should be to express actions using the
same syntax and semantic of the domain model. DEA complies this expecta-
tion by allowing the applications to express wishes on entity statuses at desired
time, that will be transformed into feasible actions for the appropriate hardware
components.

Time in the Domain Entities Access Architecture 249

7 Conclusions and Future Directions

The paper presented an extension of an architecture that allows the integration
of heterogeneous devices in order to offer end-user applications a representation
of the environment at the right level of abstraction. The extension involves the
inclusion of time-related concepts both in the model of the environment and in
the mechanisms an end-user application can exploit to interact with the model.
Such an inclusion both resolved the problem of information aging and both
the problem in making the end-user application aware about when to deliver
commands so that they can be fulfilled at the desired time.

The proposed architecture is independent from the application domain,
highly modular and open. In fact, it is not designed for a specific scenario,
but defines precise levels of abstraction in which placing well-defined compo-
nents that are domain dependant. Such components are characterized by a high
independence and have well-defined interfaces, which specify the structure of the
data to be treated and how to communicate with the rest of the architecture.
This enforces the openness of the solution, since it encourages the addition of
components that adhere to the interfaces and that realize the needed abstraction
flows, thus making easy to incrementally support new devices and entity models.

The implementation of a case study has also demonstrated the actual sim-
plification in terms of access to the environment by end-user applications and
the advantages in using timed commands.

Future developments will include the identification of solutions that can
improve the performance of both the status guessers and wish reasoners reduc-
ing both their communication and computation overhead. This can be reached
by applying the ALARM architecture [17] in the design of such components.
ALARM is a layered architecture that improves software modularity and reduces
computational and communication overhead for systems requiring data from
sensors in order to perform domain-related elaborations (e.g., tracking and sur-
veillance systems).

References

1. Butz, A., Krüger, A.: A generalized peephole metaphor for augmented reality and
instrumented environments. In: Proceedings of The International Workshop on
Software Technology for Augmented Reality Systems (STARS) (2003)

2. Negroponte, N.: Soft Architecture Machines. MIT Press, Cambridge (1975)
3. Bullivant, L.: Responsive Environments: Architecture, Art and Design (V&A Con-

temporaries). Victoria & Albert Museum, London (2006)
4. Kim, J.E., Boulos, G., Yackovich, J., Barth, T., Beckel, C., Mosse, D.: Seamless

integration of heterogeneous devices and access control in smart homes. In: 2012
8th International Conference on Intelligent Environments (IE). pp. 206–213 (2012)

5. Thomson, G., Sacchetti, D., Bromberg, Y., Parra, J., Georgantas, N., Issarny, V.:
Amigo interoperability framework: dynamically integrating heterogeneous devices
and services. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) Constructing
Ambient Intelligence, vol. 11, pp. 421–425. Springer, Berlin Heidelberg (2008)

250 M. Covelli et al.

6. Kusznir, J., Cook, D.: Designing lightweight software architectures for smart envi-
ronments. In: 2010 Sixth International Conference on Intelligent Environments
(IE), IEEE. pp. 220–224 (2010)

7. Ristau, H.: Publish/process/subscribe: message based communication for smart
environments. In: 2008 IET 4th International Conference on Intelligent Environ-
ments. pp. 1–7 (2008)

8. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R., Nahrstedt,
K.: A middleware infrastructure for active spaces. IEEE Pervasive Comput. 1,
74–83 (2002)

9. Aiello, M., Dustdar, S.: Are our homes ready for services? a domotic infrastructure
based on the web service stack. Pervasive Mob. Comput. 4, 506–525 (2008)

10. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data
consumers. J. Manage. Inf. Syst. 12, 5–33 (1996)

11. Covelli, M., Micucci, D., Mobilio, M.: An architecture for the design of platforms
supporting responsive environments. In: Proceedings of the International Confer-
ence on Software Engineering and Applications (ICSOFT-EA). pp. 417–427 (2014)

12. Cook, D.J., Das, S.K.: How smart are our environments? an updated look at the
state of the art. Pervasive Mob. Comput. 3, 53–73 (2007)

13. Stevens, W., Myers, G., Constantine, L.: Classics in Software Engineering. Yourdon
Press, Upper Saddle River, NJ, USA (1979)

14. Bonino, D., Castellina, E., Corno, F.: The DOG gateway: enabling ontology-based
intelligent domotic environments. IEEE Trans. Consumer Electron. 54, 1656–1664
(2008)

15. Janse, M., Vink, P., Georgantas, N.: Amigo architecture: service oriented archi-
tecture for intelligent future in-home networks. In: Mühlhäuser, M., Ferscha, A.,
Aitenbichler, E. (eds.) Constructing Ambient Intelligence. Communications in
Computer and Information Science, vol. 11, pp. 371–378. Springer, Berlin
Heidelberg (2008)

16. Fernandez-Montes, A., Ortega, J., Alvarez, J., Gonzalez-Abril, L.: Smart environ-
ment software reference architecture. In: Fifth International Joint Conference on
INC, IMS and IDC, 2009, NCM 2009, IEEE. pp. 397–403 (2009)

17. Fiamberti, F., Micucci, D., Mobilio, M., Tisato, F.: A layered architecture based
on previsional mechanisms. In: Proceedings of the International Conference on
Software Engineering and Applications (ICSOFT-EA). pp. 354–359 (2013)

A Performance Prediction Model for Google
App Engine Using Colored Petri Net

Sachi Nishida and Yoshiyuki Shinkawa(B)

Ryukoku University, 1-5 Seta Oe-cho Yokotani, Otsu 520-2194, Japan
shinkawa@rins.ryukoku.ac.jp

Abstract. Recently, PaaS (Platform as a Service) type cloud services
are widely accepted as platforms for various web applications. Google
App engine (GAE) is one of the most popular ones of such services.
However, as for mission critical applications, there are several obstacles
to migrate into these cloud services like GAE. One of the crucial obsta-
cles is that, while such applications require predictable stable response
time, it is difficult to predicate or estimate it in these services, since only
a little performance information on these cloud services is available. In
addition, the structure of them is not opened to general public. There-
fore, it seems difficult to build a performance estimation model based on
the system structure. This paper proposes a Colored Petri Net (CPN)
based performance prediction model or framework for GAE, based on
the performance parameters obtained through the measurement by user
written programs. The framework is build focusing on the application
structure, which consists of a series of GAE APIs, and GAE works as a
mechanism to produce the probabilistic process delays. These delays are
modeled using the queuing theory which is embedded in the CPN model.
The framework has high modularity to plug-in any kinds of applications
easily.

Keywords: Cloud computing · Google App Engine · Performance
prediction · Colored petri nets

1 Introduction

Google App Engine (GAE) [1,2] is one of the most popular PaaS (Platform As
A Service) type cloud platform for scalable and economic information systems
including database transaction processing. While GAE provides us with a easy
way to implement considerably complicated transaction systems with low cost,
little effort, and high quality, there are several obstacles for mission critical
applications, especially for database transaction applications, to migrate into the
GAE from their own on-premise systems or platforms. Among those obstacles,
“data integrity”, “security”, and “system performance” seem most crucial.

While many attentions are paid to the first two topics during system and
application design phases [3,4], the third topic is only focused on after the sys-
tem operation. The major reason for this is that only a little information is
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 251–265, 2015.
DOI: 10.1007/978-3-319-25579-8 15

252 S. Nishida and Y. Shinkawa

available on the detail of the GAE, by which we can estimate the performance
of the system currently designed, e.g. on the average response time of each GAE
system component. However, the performance prediction in the design phase is
important for the mission critical applications, since they usually have perfor-
mance and throughput constraints, and if the problems with these concerns are
detected after the cutover, an enormous amount of effort will be wasted to tune-
up, re-design, and re-program the system. Therefore, the performance prediction
is one of the critical tasks for such kinds of systems to run in the cloud.

In order to build a performance prediction model for the GAE, we need an
alternative way to obtain the performance related information of the GAE. One
practical way to gather such information is to measure the performance of the
GAE under various configurations, to estimate the performance data.

This paper presents a simulation based approach to predicting the perfor-
mance of GAE applications. In this approach, we focus on the APIs that the
GAE provides, to compose the above performance prediction model, since they
are easily measured by user written programs, and we can compose application
process models using them. Colored Petri Net (CPN) [5] is used as a modeling
and simulation tool, since it provides us with a vast capability for expressing
the behavior and functionality of systems, with temporal characteristics. The
rest of the paper is organized as follows. In Sect. 2, we introduce a CPN based
performance prediction framework. Section 3 presents how the GAE applications
and the GAE platform are modeled using CPN, along with the simulation data
generation and resultant evaluation methods. Section 4 shows a way to obtain
the performance parameters using user written measurement programs.

2 CPN Based Performance Prediction Framework

Google App Engine (GAE) is one of the most popular cloud services, which is
categorized into the PaaS. GAE provides us with a variety of services, regard-
ing web applications, databases, and software development environments. As a
result, there could be a variety of system forms, using different program lan-
guages and databases.

Among them, one of the typical use of GAE is to deploy Java based Datastore
applications in the form of servlets, developed under the Eclipse with the “Google
Plugin”. GAE Datastore is one of the NoSQL databsses [6], with simplified
structure and manipulation, focusing more on the availability and scalability
than the integrity and usability. The concepts of “table”, “row”, and “column”
in the relational database are approximately mapped to “kind”, “entity”, and
“property” in the Datastore respectively. We focus on this forms of application
for the performance prediction.

Since the detailed internal structure of GAE is not opened to the general
public, it seems impractical to predict the performance based on the temporal
characteristics of each system component. Instead, an application structure ori-
ented performance prediction seems more realistic, if we can obtain the required
time with the statistical fluctuations for each API. These APIs include the Per-
sistenceManager creation, the Query object creation, the data manipulation like

A Performance Prediction Model for Google App Engine 253

data insertion, deletion, modification, and selection, transaction control, com-
mit/abort, and so on.

From the performance viewpoint, each application program is regarded as a
series of these APIs, which are passed to the GAE system. On the other hand,
the GAE system is almost a black box, although several major components
are partially opened to public, e.g. BigTable, GFS (Google File System), and
Chubby [7,8]. Therefore, for the performance viewpoint, it seems better to regard
GAE as a black-box mechanism to produce a temporal delay than to model the
details of it.

In order to make a performance prediction model for GAE, we first have to
choose an appropriate modeling tool having the capability of

1. expressing the behavior and functionality of each application program,
2. simulating the behavior and functionality of each application, along with the

interactions with the GAE system, and
3. producing the temporal delay in the simulation.

Colored Petri Net (CPN) in conjunction with the CPN tools [9] is one of the
most suitable modeling tools for these requirements.

CPN is formally defined as a nine-tuple CPN=(P, T, A, Σ, V, C, G, E, I),
where

P : a finite set of places.
T : a finite set of transitions.

(a transition represents an event)
A : a finite set of arcs P ∩ T = P ∩ A = T ∩ A = ∅.
Σ : a finite set of non-empty color sets.

(a color represents a data type)
V : a finite set of typed variables.
C : a color function P → Σ.
G : a guard function T → expression.

(a guard controls the execution of a transition)
E : an arc expression function A → expression.
I : an initialization function : P → closed expression.

In the above definition, a “place” means some location or mechanism to hold
some resources or data, which are represented by the “tokens”. A “transition”
means an occurrence of an event to manipulate the tokens. Each token is asso-
ciated with a unique “color” that is defined as a data type. By introducing the
data type into regular Petri Nets, CPN can perform explicit data processing to
express the functionality of a model. An “arc” function and “guard function”
are in charge of the above data processing. While an arc function can modify
the relevant token values, a guard function examines the values to control the
assigned transition firing.

CPN itself is not furnished with the temporal capability, however it have been
enhanced to the Timed CPN [5], by incorporating the “firing delay” concept of
the timed Petri Net [10] into it. In Timed CPN, each token can optionally be

254 S. Nishida and Y. Shinkawa

Fig. 1. An example of Timed CPN.

assigned a timestamp property along with a color set. By this timestamp, the
firing of a transition by this token is postponed until the timestamp expires.

This property is declared at the “closet” (color set) definition time like

closet No = INT timed ;

The actual timestamp is assigned by one of the three ways, namely, by the initial
token marking, by the transaction firing, or by the arc function invocation. The
assignment operation is designated by the symbol “@”, e.g. “@ + 50”. Figure 1
shows an example of such Timed CPN model.

In order to increase the modularity of the prediction model, we first build a
high level framework using CPN, which is composed of functionally independent
four major components, as shown in Fig. 2. In this figure, the “Generation”
component generates all the application programs or transactions in the form
of CPN tokens, which are to run in the GAE system. Each token is appended
an appropriate arrival time as a CPN timestamp. The “Application” component
performs the execution of each application at the given concurrency level.

The concurrency level is implemented as a maximum number of concurrently
active threads to run each transaction. In order to control the concurrency level,
the place “CLC” (an abbreviation for Concurrency Level Control) is marked

A Performance Prediction Model for Google App Engine 255

Fig. 2. High level framework.

with an integer list token, each element of which represent the thread availability,
and the length of which represents the concurrency level, namely, the maximum
number of concurrently active threads.

The “Delay” component produces the temporal delay with statistical fluc-
tuation. The last component “Evaluation” examines the resultant tokens of the
simulation marked in the “OUT” place, to calculate and report the performance
indices, e.g. the mean response time, variance, waiting time, and throughput.

3 Performance Simulation and Evaluation Mode

Each component in the performance prediction framework is refined stepwise
into the more detailed simulatable CPN model.

3.1 Refining the “Application” Component

As stated in Sect. 2, each application can be regarded as a series of GAE APIs
from the performance prediction viewpoint, since the most of execution time is
consumed for the processing of these APIs, and the rest part would be negligibly
small.

256 S. Nishida and Y. Shinkawa

When we build database transaction programs for the GAE, we first have
to prepare datastore kinds, or tables in terms of relational databases. A kind is
defined as a Java class with JDO annotation, as shown in List 1.1.

List 1.1. Kind Definition.

public c lass Buch {
@PrimaryKey
@Pers i s tent (va lueSt ra tegy = IdGeneratorStrategy . IDENTITY)
private St r ing bookId ;
@Pers i s tent
private St r ing t i t l e ;
@Pers i s tent
private St r ing author ;
@Pers i s tent
private St r ing pub l i she r ;
@Pers i s tent
private int publ ishDate ;
@Pers i s tent
private St r ing s e r i e s ;
@Pers i s tent
private St r ing s h e l f ;
@Pers i s tent
private St r ing p lace ;
@Pers i s tent
private int p r i c e ;
@Pers i s tent
private int l e n t ;
public Buch(St r ing bookId , S t r ing t i t l e , S t r ing author ,

S t r ing pub l i she r , int publishDate , S t r ing s e r i e s ,
S t r ing sh e l f , S t r ing place , int pr i ce , int l e n t) {
this . bookId = bookId ;
this . t i t l e = t i t l e ;
this . author = author ;
this . pub l i sh e r = pub l i sh e r ;
this . publ ishDate = publ ishDate ;
this . s e r i e s = s e r i e s ;
this . s h e l f = s h e l f ;
this . p l ace = place ;
this . p r i c e = p r i c e ;
this . l e n t = l en t ;

}

public St r ing getBookId () {
return bookId ;

}
∗
∗
∗ /∗ g e t t e r s and s e t t e r s f o l l ow ∗/
∗
∗

}

A part of a simplified Java program to deal with this kind “Buch” is shown
in List 1.2.

List 1.2. Sample GAE program.

public c lass BuchSuchen extends HttpServ le t {
/∗ ∗/
/∗ Variable De f in i t i ons ∗/
/∗ ∗/

public void doGet (HttpServ letRequest req ,
HttpServletResponse resp)

A Performance Prediction Model for Google App Engine 257

throws IOException {
re sp . setContentType (” text /html ; cha r s e t=UTF−8”) ;
req . setCharacterEncoding (”UTF−8”) ;
pm = PMF. get () . getPers i s tenceManager () ;
MemcacheService mcs = MemcacheServiceFactory .

getMemcacheService () ;
public void read () {

f i l t e r = ”” ;
Query query = pm. newQuery (Buch . class) ;
i f (s c r e en . equa l s (”2”)) {

f i l t e r = r t . g e t F i l t e r () ;
}
else s e tF i l t e rPa ramet e r s () ;
query . s e t F i l t e r (f i l t e r) ; //
r t . s e t F i l t e r (f i l t e r) ;
bookList = (List<Buch>) query . execute () ;
System . out . p r i n t l n (” s i z e o f b o ok l i s t = ” + bookList .

s i z e ()) ;
}
public void update () {

try {
Query query = pm. newQuery (Buch . class) ;
f i l t e r = ”bookId == ” + ” ’ ” + bookId + ” ’ ” ;
System . out . p r i n t l n (” f i l t e r = ” + f i l t e r) ;
query . s e t F i l t e r (f i l t e r) ;
L i s t<Buch> books = (List<Buch>) query .

execute () ;
System . out . p r i n t l n (” S i z e == ” + books . s i z e ()

) ;
for (Buch book : books) {

i f (! book . getBookId () . equa l s (bookId))
break ;

book . setBookId (bookId) ;
i f (t i t l e . l ength () > 0) book .

s e tT i t l e (t i t l e) ;
i f (author . l ength () > 0) book .

setAuthor (author) ;
i f (pub l i sh e r . l ength () > 0) book .

s e tPub l i s h e r (pub l i s h e r) ;
i f (publ ishDate . l ength () > 0) book .

setPubl i shDate (In t ege r . pa r s e In t (
publ ishDate)) ;

i f (s e r i e s . l ength () > 0) book .
s e t S e r i e s (s e r i e s) ;

i f (s h e l f . l ength () > 0) book .
s e t S h e l f (s h e l f) ;

i f (p lace . l ength () > 0) book .
s e tP lac e (p lace) ;

i f (p r i c e . l ength () > 0) book .
s e tP r i c e (In t eg e r . pa r s e In t (p r i c e)
) ;

i f (l e n t . equa l s (” ”)) book . setLent
(1) ;

}
} f ina l ly {

pm. c l o s e () ;
}

}
/∗ ∗/
/∗ Other Method Def in i t i ons ∗/
/∗ ∗/

}

258 S. Nishida and Y. Shinkawa

Fig. 3. “Application” component.

The typical GAE Datastore application, written by Java JDO, flows as
follows.

1. Handle the Session and Memcache objects in its prologue.
2. Get the PersistenceManager instance.
3. Declare the beginning of the transaction.
4. Create and execute the Query objects to access the Datastore as many as

required.
5. Close the PersistenceManager.
6. Commit or abort the transaction.

Each action of the above process is expressed as an “API”. For each API that
interfaces the GAE system, one CPN transition is assigned, in order to explicitly
show the sequence of the issued APIs from a transaction. Since this sequence
is different from each other between transactions, we have to create multiple
instances of this “Application” component, each of which reflects the application
logic of an individual transaction.

A Performance Prediction Model for Google App Engine 259

Fig. 4. “Generation” component.

As shown in Fig. 3, each transition in this component is connected to the
two places “REQ” and “SEQ” that are interfaced with the “Delay” component.
The “REQ” place holds the tokens each of which represents a single GAE API.
Theses tokens are used to produce the temporal delay by the “Delay” component.
On the other hand, the “SEQ” place holds a single token to control the firing
sequence of the transitions. By this token we can implement the if-then-else
branches and while loops to form the control structure of each application logic.

The color sets assigned to these places have the same name as the places,
which are defined as

closet REQ = product OP * OptList;
closet SEQ = product OP * RC * SN;

Where “OP” represents the API name, “OptList” represents the option list or
argument list of the API to derive the accurate delay time, “RC” is the return
code from the API, and “SN” is the sequence number of the transition to be
fired next.

3.2 Refining the “Generation” Component

The purpose of this component is to generate the transactions to be performed
in the GAE system, at the appropriate arrival rate, following the appropriate
distribution functions.

260 S. Nishida and Y. Shinkawa

Fig. 5. “Delay” component.

In order to provide the transaction tokens at a desired arrival rate following
a desired distribution pattern, we need to generate a set of the timestamps using
the appropriate distribution function with the appropriate mean and variance
values. The CPN ML language, which is a specification language for CPN models,
provides us with a variety of distribution functions, e.g. Exponential, Normal,
Chi-square, Bernoulli, and so on.

For example, in order to generate the transaction tokens at the arrival rate
500 per second, and each interval time between adjacent transactions follow the
exponential distribution function, we first define the CPN ML function as,

fun delayExp (x) = round (exponential (1.0/x));

and add the timestamp by “@+delayExp(500.0)” to each initial transaction
token with the “timestamp = 0”. Figure 4 shows an example of “Generation”
component for this arrival rate. In this figure, “Arr” transition add the above
timestamps. This “Generation” component generates a Poisson arrival, since the

A Performance Prediction Model for Google App Engine 261

time interval between events follows the exponential distribution function. The
structure of “Generation” component for another transaction arrival pattern is
basically the same.

The generated transaction tokens are marked in the “InQ” place, which inter-
faces with the “Application” component. The “InQB” place holds the copy of
all the generated transaction tokens for the later performance evaluation.

3.3 Refining the “Delay” Component

The functionality of this component is rather simple in comparison with other
components, since it simply adds the temporal delay to the received tokens
which represents the GAE APIs. However, the delay could vary with many fac-
tors, some of which we cannot even forecast, e.g. the system reconfiguration,
data replication, or recovery operations. Therefore, this component calculates
the delay based on the mean and the variance values obtained through the sys-
tem measurement. This approach is discussed in the next section.

Assuming this information is obtained, the component is implemented as a
CPN model as shown in Fig. 5. In this figure, each transition “API-x” (x =
A,B, · · ·) represents a specific API. The delay would be different even for the
same API, depending on the characteristics of the object to be handled and the
API options such as setFilter options. Such information is embedded into the
“OptList” field of the token “REQ” by the “Application” component, and is
handled by the CPN ML functions in the “Delay” component. For example, if
the delay of data insertion varies with the kinds of the Datastore, following the
normal distribution functions with the different mean and variance values, we
have to define the CPN ML function for the delay as List 1.3.

List 1.3. Delay Generation ML Program.

va l tx = detTran t1
in
(uniqID , tx , (genDBRL tx))
end ;
fun de l aySe l e c t db = case db o f

1 => round (normal (2 .6973 ,11 .26709371)) |
2 => round (normal (3 . 99365 , 22 .52153)) |
3 => round (normal (3 . 54455 , 10 .54986359)) |

=> 0 ;
fun delayUpdate db = case db o f

1 => round (normal (76 .099 ,9054 .523299)) |
2 => round (normal (48 .38625 , 1841 .868)) |
3 => round (normal (94 . 341 , 3826 .030719)) |

=> 0 ;
fun de l ay In s e r t db = case db o f

1 => round (normal (105 .575 ,7693 .153875)) |
2 => round (normal (96 . 901 , 6811 .027)) |
3 => round (normal (77 . 03 , 4937 .9957)) |

=> 0 ;
fun de layDe le te db = case db o f

1 => round (normal (62 .804 ,8665 .071784)) |
2 => round (normal (94 .9975 , 4257 .376)) |
3 => round (normal (73 .1385 , 2563 .186393)) |

=> 0 ;
fun f n = case (t l n) o f n i l => [] |

=> (t l n) ;

262 S. Nishida and Y. Shinkawa

This CPN ML function generates the different delay patterns for three dif-
ferent Datastore kinds, each of which follows the normal distribution function
with different mean and variance values.

The transition “API-x” works a server in terms of queuing theory [11], there-
fore it should cease the firing while it processes the received request. It means
if the transition generates the delay t, it never fires until the time t expires. On
the other hand, the Timed CPN adopts a different mechanism. Even though
the timestamp of a token postpones the firing of a transition, the firing ends
instantaneously, and another token can fire it. In order to avoid this conflict, we
use one more place “Px” for each transition “API-x” as shown in Fig. 5. The
token in this place is initially marked with “timestamp = 0”. Each time “API-x”
fires, the timestamp value of the token in “Px” is increased by the delay time.
Therefore, the token ceases the firing of “API-x” for the delay time.

3.4 Refining the “Evaluation” Component

After the simulation of the “Application” components ends, interacting with
the “Delay” component, the “OUT” place contains all the scheduled transac-
tion tokens with their end timestamps. Since the copy of the arrival transaction
tokens with their arrival timestamps are marked in the “InQB” place, this mod-
ule can calculate the elapsed time for each transaction, along with the mean
response time, the variance, and the throughput. Each elapsed time is calcu-
lated by subtracting the arrival timestamp from the end timestamp, the mean
response time is obtained by dividing the summation of these elapsed times by
the number of transactions, and the variance is derived from this mean response
time and each response time. The throughput is a number of the processed
transactions per time unit, and is calculated similarly.

The resultant performance data obtained through the simulation are marked
in the “Result” place as a report.

4 Measuring and Estimating the Base Parameters

The proposed framework regards the GAE as a black-box, therefore we need
to obtain the base performance parameters, e.g. the mean and variance values
of the elapsed time of each API, by measuring the system. For the obtainment
of these parameters, a set of simple Java programs is used in this framework.
Since an elapsed time of each API is usually too short to be measured by a
program, each measurement program issues several hundreds of the same API,
and calculates the mean value. This mean value is written to the GAE log as a
warning. List 1.4 shows an example of such a Java code.

Each measurement program is performed many times to obtain the variance
and to estimate the proper distribution function. As for the Datastore access
APIs, the elapsed time would vary with the size of the kind and the number of
the propertiess in the kind. Therefore, we have to measure the parameters varying
these factors. Tables 1 and 2 show the sample results of such a measurement.

A Performance Prediction Model for Google App Engine 263

List 1.4. Measurement Program.

Query query = pm. newQuery (Buch20 . class) ;
long s t a r t = System . cur rentT imeMi l l i s () ;
for (int i = 1 ; i <=200; i++){

St r ing s = ”bookId==\”” + i + ”\”” ;
query . s e t F i l t e r (s) ;
r t . s e t F i l t e r (f i l t e r) ;
bookList = (List<Buch20>)query . execute () ;

}
long stop = System . cur rentT imeMi l l i s () ;
long t = stop − s t a r t ;
l og . warning (”Elapsed Time = ” + t /200) ;

All the obtained parameters are embedded into the “Delay” component to
produce the appropriate delay.

Table 1. Mean value – elapsed time.

Size Sel Mod Del Ins

3 × 10000 3.54455 94.341 73.1385 77.03

5 × 8000 2.744525 90.6515 71.7045 64.04

10 × 4000 3.99365 48.38625 94.9975 96.901

20 × 2000 2.8044 101.388 80.803 64.6795

50 × 1000 2.6973 76.099 62.804 105.575

Table 2. Distribution – elapsed time.

Size Sel Mod Del Ins

3 × 10000 10.54986359 3826.030719 2563.186393 4937.9957

5 × 8000 3.316131306 2586.511223 2847.611555 2751.954

10 × 4000 22.52153305 1841.868342 4257.375919 6811.027499

20 × 2000 9.33806114 10922.73706 2580.819791 1202.372305

50 × 1000 11.26709371 9054.523299 8665.071784 7693.153875

Since the above performance parameters vary over time, or in other words,
they are time varying factors, we have to measure them periodically, and reflect
them in the “Delay” component in order to keep the prediction framework up to
date.

5 Conclusions

A simulation based performance prediction framework for GAE is proposed,
which uses the Timed Colored Petri Net (Timed CPN). In order to increase the
modularity, the framework is composed of four functionally independent compo-
nents connected together by CPN places, namely, “Generation”, “Application”,
“Delay” and “Evaluation” components.

264 S. Nishida and Y. Shinkawa

Since GAE is almost a black-box from the performance prediction viewpoint,
most performance parameters have to be obtained through the measurement
using user written programs. Using the obtained parameters, that is, the mean
and variance values with the estimated distribution functions, “Delay” compo-
nents produces the delay for each API, then add it to the timestamp attribute
of each token that has issued the API.

At the end of the simulation, the “Evaluation” component examines the resul-
tant tokens to calculate the performance indices. The performance parameters
change over time, or they are the time-varying factors, therefore the above mea-
surement must be done periodically, so that the latest parameters are embedded
into the “Delay” component.

The proposed approach estimates the performance from end-to-end basis for
each transaction. However, for more precise prediction and performance analysis,
we need component based estimation, that is, we have to take the delay of each
component into account. For this purpose, we can use the monitoring facility of
the CPN tools. However, we need to modify the prediction model to gather the
monitoring data.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
25330094.

References

1. de Jonge, A.: Essential App Engine: Building High-Performance Java Apps with
Google App Engine. Addison-Wesley Professional, Boston (2011)

2. Sanderson, D.: Programming Google App Engine. Oreilly and Associates Inc.,
Cambridge (2009)

3. Garcia, J.L., Langenberg, R., Suri, N.: Bigtable: Benchmarking Cloud Security
Level Agreements Using Quantitative Policy Trees. In: Proceedings of the 2012
ACM Workshop on Cloud Computing Security. Workshop, pp. 103–112 (2012)

4. Nishida, S., Shinkawa, Y.: Data Integrity in Cloud Transactions. In: Proceedings
of the 4th International Conference on Cloud Computing and Services Science, pp.
457–462 (2014)

5. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modeling and Validation of
Concurrent Systems. Springer-Verlag, Heidelberg (2009)

6. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley Professional, Cambridge (2012)

7. Chang, F., Dean, J., Ghemawat, S, Hsieh, W.C, Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for
Structured Data. In: Proceedings of the 7th Conference on USENIX Symposium
on Operating Systems Design and Implementation, vol. 7, pp. 205–218 (2006)

8. Howard, S.G., Gobioff, H., Leung, S.: The Google File System (2003). http://static.
googleusercontent.com/media/research.google.com/ja//archive/gfs-sosp2003.pdf

9. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transfer
(STTT) 9(3–4), 213–254 (2007)

http://static.googleusercontent.com/media/research.google.com/ja//archive/gfs-sosp2003.pdf
http://static.googleusercontent.com/media/research.google.com/ja//archive/gfs-sosp2003.pdf

A Performance Prediction Model for Google App Engine 265

10. Wang, J.: Timed Petri Nets: Theory and Application. The International Series on
Discrete Event Dynamic Systems. Springer, Heidelberg (1998)

11. Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queuing Theory. Mathematical
Modeling. Birkhaeuser Boston, Boston (1989)

Software Paradigm Trends

A Case Study on Model-Driven Development
and Aspect-Oriented Programming:

Benefits and Liabilities

Uwe Hohenstein1(&) and Christoph Elsner2

1 Siemens AG, Corporate Technology,
Otto-Hahn-Ring 6, 81730 Muenchen, Germany

Uwe.Hohenstein@siemens.com
2 Siemens AG, Corporate Technology,
Wladimirstr 3, 91058 Erlangen, Germany
Christoph.Elsner@siemens.com

Abstract. Model-driven development (MDD) and aspect-oriented program-
ming (AOP) are two very different paradigms, having in common that they both
aim at increasing development efficiency. In order to investigate their benefits
and liabilities, we compared both in context of a case study on an
industrial-grade software system, the Open SOA platform. Already having a
model-driven XML/XSL-T implementation in place, we re-implemented the
corresponding logic of the Open SOA platform with a corresponding AOP
implementation in AspectJ. Considering several comparison criteria, the results
of our case study indicate that the AspectJ implementation is less redundant,
better testable, and improves on understandability and readability. The
model-driven approach, in turn, is the more flexible one, as it allows for gen-
erating arbitrary artifacts and structures, without the need for compromising on
design. Additionally, we expect that MDD can furthermore catch up on read-
ability and understandability, when more advanced MDD tooling can be
leveraged. As our case study mainly centers around implementing wrappers and
boilerplate-code, which are rather common issues, our results may be transferred
to similar problem settings. Furthermore, our evaluation criteria can guide others
in making technology choices. To this end, we give an outlook on how com-
binations of MDD and AOP may leverage the best of both worlds.

Keywords: AOP � AspectJ � MDD � XSL-T � Case study

1 Introduction

Model-driven development (MDD) has the goal to develop software systems on a
higher abstraction level than code [24]. Given some high-level form of input, more
concrete output is generated, maybe even source code. Code generation not only saves
time and effort, but also avoids programming errors and increases programmer pro-
ductivity [21]. Moreover, the input has a higher level of abstraction, is simpler and
shorter than the generated code, and makes concepts more explicit. One basic idea of
MDD is a voluntary self-restriction, i.e., the input model uses a limited number of

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 269–290, 2015.
DOI: 10.1007/978-3-319-25579-8_16

concepts that are defined by a metamodel. Common forms of input are domain-specific
languages (DSL): graphical, textual, XML, or UML models. A lot of tooling can be
used such as Xtext [28] or MPS [17] or pure::variants [3].

Aspect-orientation programming (AOP) is quite a different technology that pro-
vides new mechanisms to handle crosscutting concerns (CCCs). CCCs are those
functionalities that are typically spread across several classes with conventional pro-
gramming. Those CCCs usually cause duplicated and redundant code. This leads to
lower programming productivity, poor quality and traceability, and a lower degree of
code reuse. AOP provides new constructs to separate crosscutting concerns. This
separation allows for a better modularization, thereby avoiding the well-known
symptoms of code tangling and code scattering [25]. Aspect-oriented languages such as
AspectJ [2, 12] support the separation of concerns by means of special language
constructs. Even other languages such as Scala or Ruby are starting to offer means for
handling CCCs such as abstractions or meta-programming.

Both technologies, MDD and AOP, can be used to avoid redundant code. As
Normén, [18] states “code duplications smell badly” and should be avoided. However,
there are always cases where they cannot be avoided using conventional programming
languages. While MDD uses a generative approach, AOP extends an existing imple-
mentation language and modularizes common code in an aspect.

In this paper, we compare both technologies in a real industrial application. The
comparison is done for XML-based code generation and the AspectJ language in the
context of the OpenSOA project [22]. OpenSOA offers a service-oriented telecom-
munication middleware platform. It is an open service platform for the deployment and
provision of communication services such as capturing user presence, management of
calling domains, notifications, administration functionality for the underlying switch
technology, and so forth. An OSGi container builds the technical basis.

A specific challenge within the OpenSOA framework is that several message-based
interfaces have to be kept consistent. These interfaces are similar, however, having
slight differences.

Since the development team spent about 50 % of its time to create and maintain
interface code and inline documentation, an MDD approach has been implemented to
avoid duplicated code in different layers and to achieve consistency between several
closely related interfaces and Javadoc comments. The approach relies on XML input
and XSL-T transformations producing Java code, similar to [20]. Although the
approach is very helpful, developing and verifying XSL-T transformations has resulted
to be tedious.

The content of this paper is to evaluate and compare the usage of AOP in such a
typical MDD scenario. The work is based upon prior work that we presented in [8]. We
started to re-implement the OpenSOA system with the language AspectJ to avoid code
generation and to reduce code – even if it follows a different paradigm. The AspectJ
implementation is a (non-obvious) alternative to the existing XSL-T code generation.
Moreover, it could easily be integrated into the project infrastructure in contrast to other
approaches. Using this basis, several facets of both solutions are compared and
discussed.

At first, we compare the classical criterion of “lines of code”. This is an indicator
for the manual work to be done. “Code” does not only mean Java/AspectJ code but also

270 U. Hohenstein and C. Elsner

writing XSL-T transformations and XML input in case of MDD: both comprise effort
to be done.

We distinguish two major roles: The implementer provides the generative
infra-structure, i.e., implements XSL-T scripts or codes aspects in AspectJ. In contrast,
the user applies this infrastructure by providing XML input or defining pointcuts,
respectively.

The more lines of code have to be written, the more work has to be done. But the
code does not determine exclusively the effort. Therefore, we qualitatively and quan-
titatively evaluate several other measures. Understandability is a further mean for
complexity and maintenance effort: The easier to apply, understand, and maintain a
concept, the less effort an implementer or user has. Furthermore, testability is important
for the implementer to check the correctness of the framework. For instance, XSL-T
could generate code that is not accepted by a Java compiler. Further investigation
criteria are usability, redundancy avoidance, and completeness of the approach. Our
evaluation criteria have a strong industrial background and have been chosen due to
their relevance for the involved OpenSOA software developers.

We use the case study to compare in detail the weaknesses and strengths of both
approaches with regard to those criteria in order to give some guidance for choosing
amongst the technologies and to make the best of both worlds.

In the following, we present in Sect. 2 the project OpenSOA, a telecommunication
middleware [22], we used for our case study. Section 3 describes the model-driven
approach, based upon XML and XSL-T, which was in productive use. We present in
Sect. 4 an alternative AspectJ solution, which could serve the same purpose. Both
approaches are compared in Sect. 5 using the above mentioned criteria. Moreover, it
summarizes the limitations of both technologies and discusses what of our experiences
can be generalized beyond the case study. Section 6 presents some related work, before
Sect. 7 concludes the discussion.

2 The OpenSOA Framework

The OpenSOA framework consists of six services: DomainManagement, UserMan-
agement, ResourceManagement, ProfileManagement, ApplicationManagement, and
RoleManagement. These services offer CRUD functionality, i.e., create, find, update,
and delete operations. There are 93 operations in total, i.e., 15.5 operations per service
in average.

For each of these Services, classes ServiceSkeleton and ServiceTrans-
Skeleton implement essential middleware functionality, while a class Service-
Impl implements the actual business logic. Figure 1 shows the important parts of these
classes for the UserManagement service.

The classes ServiceSkeleton provide the entry point for service invocations.
CRUD operations such as create expect both a dedicated parameter request object
and a service context in its signature: OpReply op(OpRequest req, Ser-
viceRequestContext ctx). Depending on whether persistence in a database is
required or not, the call either delegates to the method op(params) of class Ser-
viceTransSkeleton or to op(params,em) of class ServiceImpl.

A Case Study on Model-Driven Development 271

Fig. 1. Service classes for the UserManagement service.

272 U. Hohenstein and C. Elsner

The parameter em provides an OpenJPA EntityManager to perform database
operations. In both cases, a list of parameters (denoted as params) is extracted from
the Request parameter by req.get…(). The ServiceSkeleton class catches
technical exceptions and throws various service exceptions such as Authoriza-
tionException or PersistenceDuplicateEntityException.

The ServiceImpl classes provide a code template to be filled out with the real
business logic.

Classes ServiceTransSkeleton are used only by services that handle per-
sistence. The class basically delegates to the ServiceImpl methods, but puts some
logic around by a template mechanism, especially to let the Impl functionality run in a
database session and transaction. The template is obtained by using the Ser-
viceSkeleton object and used to execute an OpenJPACallback. The
OpenJPACallback must implement a doInTransaction method, which
invokes the ServiceImpl method that contains the logic to be executed in a session
and transaction. That is, execute(OpenJPACallback) opens a database con-
nection (which is represented by an EntityManager em in OpenJPA) and starts a
transaction around doInTransaction. Moreover, when a database operation fails
because of connection problems or database server crashes, a retry is performed taking
a new connection, maybe from a failover server in order to achieve high availability.

Further classes OpRequest and OpReply are used in the signatures of Ser-
viceSkeleton for operations Op.

Obviously, similar methods occur in different classes for one single service, having
the same name but slightly different signatures. This should not be seen as a deficit of
the architecture. A major reason for choosing the design with different signatures is to
achieve better testability with shorter test cycles, since ServiceTransSkeleton/
Impl can be tested without an OSGi container. Another reason for this type of
architecture is to have a class ServiceTransSkeleton for a reusable session and
transaction handling.

So, although we consider the architecture appropriate, a lot of method signatures
and also code parts have to be kept consistent.

3 The MDD Approach

To ease the development and to handle consistency, an MDD approach has been
established in the project. Its goal is to keep related signatures and documentation
headers of different parts of a single service consistent.

The basic idea consists of specifying services in an XML-based description lan-
guage in one place. The user has to specify a file Service.xml for each service. The
corresponding metamodel is a predefined XML-Schema. Figure 2 presents such a file.

This XML input is taken for generating code by means of several XSL-T scripts. In
particular, the documentation and the Javadoc description of parameters are generated
in a consistent manner. The XML input specifies an XML element <service> with a
certain name.

A Case Study on Model-Driven Development 273

An attribute persistence=true controls the persistence infrastructure for
using the OpenJPA persistence framework to access a DBS. Similarly, event-
ing=true prepares an eventing mechanism in the business logic.

Each <service> element specifies <operation>s with <parameter> types,
<return> type, and <exception>s in XML. Several XML attributes affect the
code generation:

Fig. 2. XML sample service description.

274 U. Hohenstein and C. Elsner

• deprecated=true lets @deprecated occur in the Javadoc behind a
parameter.

• transaction=true adds a session and transaction management. We call such
an operation transactional in the following.

• Parameters can be validated by specifying a <validation> such as nullAl-
lowed or emptyAllowed; checks are added on parameter values, e.g., whether
null or empty strings are allowed.

• A <description> can be added to most XML parts to be used in Javadoc
documentation.

3.1 XSL-T Scripts for Code Generating

There are three basic XSL-T transformations that are responsible for generating the
code for the three types of classes mentioned before:

• TransSkeleton.xsl generates the complete code for Service-
TransSkeleton classes.

• Skeleton.xsl generates the complete code for ServiceSkeleton classes.
• Impl.xsl generates the code frames for ServiceImpl classes, which have to

be completed with business logic by programmers.

The overall principle of generation is straightforward. Each service in Service.
xml results in three Java classes ServiceTransSkeleton, ServiceImpl, and
ServiceSkeleton.

Each XSL-T implementation simply transforms XML elements and attributes to
Java code and produces the classes. Each <operation> results in a corresponding
Java method in each class, however, having slightly different signatures and imple-
mentations for the classes. The <parameter>s describe the signature of methods.

The <description> is used for adding a consistent documentation including
Javadoc. <description> can occur at several levels (<operation>, <ex-
ception>, <parameter>).

Details about the output generated from the XSL-T scripts are described in the
following. Figure 3 presents an excerpt of a script to generate a signature with docu-
mentation. These lines show how verbose and unreadable the XSL-T code is.

3.2 Classes ServiceImpl

The Java code for ServiceImpl classes and its methods are directly derived from
the XML specification. ServiceImpl is the only class that is not fully generated.
The user has to implement the business logic. Some specific points are (cf. Fig. 1):

• Signature Changes: The create method obtains two additional parameters
EntityManager em and boolean isValidated if transaction=true
and <validation nullAllowed= “false”/>, respectively, are specified for
any operation. The first parameter em enables the method to use OpenJPA’s

A Case Study on Model-Driven Development 275

EntityManager functionality. The second parameter allows invokers to switch a
parameter validation on or off.

• Additional Code Fragments: The validation of parameters of the form “if (!
isValidated)…”, if turned on by <validation>, is added at the beginning
of the method. For instance, nullAllowed=false checks whether a parameter
is null, then throwing a DomainValidationException.

• Import Statements: All required imports are generated, according to what classes are
used.

• JavaDoc: The informal <description> text occurs in comments, particularly
Javadoc @param and @return clauses are filled with the operation’s <de-
scription> text as well as @throws for <exception> specifications. This
avoids checkstyle warnings, which are reported in quality metrics. If an operation is
marked with deprecated=true, then @deprecated will be added in Javadoc.

Fig. 3. XSL-T excerpt from Skeleton.xsl.

276 U. Hohenstein and C. Elsner

3.3 Classes ServiceTransSkeleton

This type of class is only required for persistent classes, i.e., services that are specified
as persistence=true. Their methods are allowed to access the database via
OpenJPA. In contrast to ServiceImpl classes, the generated classes possess a
complete implementation. The following points are specific:

• Signature Changes: The signatures differ since there is no parameter em.
• Again, headers with Javadoc are generated, taking into account the different

signature.
• The same holds for import statements.
• Code Variants: The XML service description controls the code generation. For

example, if transaction=true is specified for a method, OpenJPA is used to
execute the database statements, and a session and transaction template is put
around the logic, which also takes care of a retry in case connection problems.

3.4 Classes ServiceSkeleton

The ServiceSkeleton classes are completely generated according to the XML
service specification, which controls the code generation. We again mention some
specific points:

• Signature Changes: Compared to the other classes, signatures are changing again,
e.g., operations possess a Request-object, which bundles parameter values instead
of having individual parameters. This means that the parameters for invoking
trans.create must be extracted from such a Request. Depending on the
context, the right list of parameters is filled in.

• The relevant import statements are added, too. Again, headers with Javadoc are
generated, taking into account the different signature.

• Additional Class Fields: If persistence=true is set for a service, then the class
is prepared to use OpenJPA by providing an internal field OpenJPA-
Configuration openJPAConf with get/set methods. Similarly, if event-
ing=true is specified for a service, the class is prepared for handling events by
adding a field EventingComponent myEC with get/set methods. Any class with
a transactional method also obtains an internal field ServiceTransSkeleton
trans.

• Code Variants: Transactional methods such as create basically delegate to
trans.create. Non-transactional methods directly delegate to the Ser-
viceImpl class.

There are six exception types that can be specified for a method by means of
<exception>: DomainValidationException, AuthorizationExcep-
tion, DomainPersistenceException etc. Every specified exception is caught,
logged and re-thrown. Special database exceptions DataAccessException and
PersistenceException are handled for transaction=true. In particular,
several subtypes of PersistenceException are distinguished in order to throw

A Case Study on Model-Driven Development 277

service-specific exceptions such as UserDuplicateEntityException or
UserEntityNotFoundException. The <logmessage> element for <ex-
ception> is used as text in LOG.debug().

4 AspectJ Approach

The most popular aspect-oriented language is certainly AspectJ [2]. AspectJ pro-
gramming is essentially done by adding aspects to Java source code. The main purpose
of aspects is to concentrate crosscutting functionality. To this end, an aspect can
intercept certain points of the program flow, called join points, and add logic by
advices. Examples of join points are method and constructor calls or executions,
attribute accesses, and exceptions.

Join points are syntactically specified by means of pointcuts. Pointcuts identify join
points in the program flow by means of a signature expression. A specification can
determine exactly one method by describing the complete signature including final,
private, static, return and parameter types etc. Or it can use wildcards to select several
methods of several classes by * MyClass*.get*(.., String). A star “*” in
names denotes any character sequence. Hence, get* means any method that starts with
“get”. A type “*” denotes any type. Parameter types can be fixed or left open (..).

The following aspect has a before advice that adds logic before executing those
methods that are captured by the pointcut myPC:

4.1 General Principle

Using AspectJ, we re-implemented the software system. We were able to replace the
code generation with a pure homogeneous language approach. There is no XML input
and no XSL-T transformation. It is just AspectJ code.

The basic idea is to let developers start with manually writing the ServiceImpl
classes instead of Service.xml descriptions, including Javadocs and the business
logic. The signatures in ServiceImpl now need to be specified as required, i.e.,
including em and isValidated parameters (which are added by XSL-T, cf. Sec-
tion 3.2, if specified). This has to be done only once in the Impl classes.

AspectJ is used to add all the missing parts for the whole implementation. The
aspects are described in more detail in the subsequent subsections.

278 U. Hohenstein and C. Elsner

4.2 One TransSkeletonAspect

A TransSkeletonAspect aspect is responsible for implementing the functionality
of TransSkeleton classes (see Sect. 3.4 and Fig. 1), which provide the session and
transaction handling. Instead of specifying transaction=true for specific meth-
ods, a pointcut executeInTx() determines the transactional methods to which the
logic of doInTransaction() should be applied, i.e., all public methods of Impl
classes that possess an EntityManager parameter:

A single around advice can then add the logic:

The advice obtains an EntityManager em, starts and ends a new transaction,
invoking the intercepted method with proceed() in between, and putting the redo
logic around (not shown here). Hence, the logic is done in a central place and becomes
much easier since we get rid of the complicated OpenJPACallback template
mechanism as shown in Fig. 1 and explained in Sect. 2. Please note this code is now
defined once and no longer part of every transactional method. The pointcut defines
where the code has to be executed.

4.3 One SkeletonAspect

In principle, there is no need for Skeleton classes since it is possible to put the logic
around the Impl methods. However, we are faced with the problem that the Skeleton
methods are invoked from outside. Moreover, the signatures refer to service-specific
OpRequest and OpReply objects. Thus, we are forced to keep the Skeleton classes.
But we are able to factor out common functionalities in aspects. The following code
remains to be written for the user management service, for example:

A Case Study on Model-Driven Development 279

This is basically the Skeleton method without logging functionality (see the
strikethrough) and exception handling, both being extracted into aspects. In the original
code, a method of the TransSkeleton or Impl is invoked inside depending on the
transactional setting. Here, we call the Impl-method directly since the Trans-
Skeleton behaviour (if necessary) is put around by means of an aspect. Thus, the
reference TransSkeleton trans is no longer needed.

It remains to manually specify the signature, unpack parameters from a
Create-UserRequest, and invoke methods impl.op of ServiceImpl classes.

If persistence is required, get/set methods for OpenJPAConfiguration and a
corresponding internal field need to be added. This can simply be implemented in a
dedicated superclass Persistence:

The following statement puts the Persistence superclass on top of persistent
Skeleton classes and let derived classes inherit the above functionality:

280 U. Hohenstein and C. Elsner

Similarly, another superclass Eventing and a declare parents statement are added
if eventing is enabled. Please note there is no problem with multiple inheritance: Aspects
can add two superclasses, Persistence and Eventing, to a Skeleton class.

A single SkeletonAspect aspect keeps all these declare parents state-
ments and also concentrates the logging functionality in corresponding before/
afterReturning advices:

4.4 Aspect for Exception Handling

Another aspect takes care of exception handling, which was originally part of
Skeleton classes. This aspect defines several advices. Each advice adds a further
try-catch block around the invocation of Impl methods:

A Case Study on Model-Driven Development 281

The ServiceRequestContext, which is used to signal a failure, is obtained
by accessing the second parameter of the joinpoint by means of thisJoinpoint.
getArgs()[1].

DataAccessException and PersistenceException, which are thrown
in case of transactional methods (transaction=true), are handled similarly,
however, transforming exception types:

4.5 Validation Logic

Validation logic such as

is inserted whenever a validation is required. This adds a check for nullness for the
given parameter name in the method of the Impl class. In XSL-T, this is specified for
an operation by means of

The same behavior can be achieved by a before advice that adds the nullness
check before method execution. The problem is how to get the parameter object to be
checked, i.e., user above. As the kinds of validation checks the programmer would like
to perform is known in advance, we can simplify the code by only referring to the
position of the parameter in the signature. For example, we provide pointcuts val-
idateNotNullAtPositioni that allow for adding a check for a certain position i.
An advice can access the parameter at this position:

282 U. Hohenstein and C. Elsner

The parameter name, to be added to DomainValidator.validate, is
obtained by means of reflection (MethodSignature); the isValidated param-
eter always occurs last and can simply be bound to a variable isVal.

To make code more readable, an annotation @Validate(“user”,nullAl-
lowed=“false”) can mark every method to be validated: An aspect intercepts any
usage of this annotation and inserts the validation logic. This makes usage easier.

5 Comparison

We compare the originally existing MDD with the new AOP approach with regard to
several comparison criteria. The criteria have been selected due to their relevance for
the OpenSOA developers. At first, we investigate the classical quantitative criterion of
“lines of code”. This is a measurement for the manual work to be done. “Code” here
does not only mean Java or AspectJ code but also XSL-T transformations and XML
input in case of MDD: This comprises effort to be done as well. Further, qualitatively
evaluated, criteria are usability, understandability, testability (which all affect devel-
opment time), and redundancy. We took those criteria without any weights since they
all together have an impact on development time and cost. We asked the developers but
did not obtain a precise weighting.

Please also note we ignored performance since the performance is mostly affected
by database accesses. Anyway, the types of pointcuts we use are very simple and
usually do not cause performance issues.

The results are partially subjective in the sense that the assessment of the original
MDD infrastructure is done by the involved software developers.

5.1 Lines of Code

The XSL-T approach requires XML input files Service.xml. That is the specifi-
cation effort for a user to apply the infrastructure for the six services Applica-
tionManagement, DomainManagement etc. All these XML files have 4339 lines in
total.

A Case Study on Model-Driven Development 283

To provide the generative infrastructure, the implementer has to implement three
XSLT scripts: TransSkeleton.xsl (220 lines), Skeleton.xsl (499 lines), and
Impl.xsl (384 lines). We have mentioned briefly the classes Request/Reply for
Skeleton operations. These are generated as well by XSL-T scripts Reques-
tObject.xsl (205 lines) and ReplyObject.xsl (113 lines). These are 1421
lines for code generation.

In total, 5760 (=4339 + 1421) lines are required for the XSL-T approach.
In the AspectJ solution, an implementer has to code advices in AspectJ, while a

user applies this infrastructure by defining pointcuts or placing annotations.
The user has to manually implement a class ServiceImpl. From a logical point

of view, the specification parts in Service.xml are directly put into code in Ser-
viceImpl.java; these are 1208 lines for 93 methods without business logic (which
we do not count in either approach).

The infrastructure is given by aspects. One aspect TransSkeletonAspect
handles the transactional behaviour for transactional methods. The decision which
methods are transactional is done by means of method pointcuts. An around advice
puts transactional logic around the relevant methods of the Impl-classes. This aspect
has 259 lines.

A SkeletonAspect aspect adds Persistence and Eventing super classes
by means of two declare parents pointcuts. Moreover, the aspect introduces logging
with before/afterReturning advices. This aspect requires 12 lines of code. The
two new superclasses Persistence and Eventing have 17 lines (9 and 8 lines).

For each Service, a ServiceSkeleton class must be implemented due to
external usage. These are 93 methods with about 8 lines in average, which sums up to
744 lines.

An ExceptionAspect adds exception handling. It comprises 2 lines for the
aspect declaration itself and 12 lines for each of 6 the exception types. Handling
transactional exceptions requires additional 21 lines. This sums up to 95 lines.

One ValidationAspect handles the validation code for at most two positions:
8 * 2 positions à 13 lines. These are additional 208 lines.

Hence, the AspectJ approach requires 2543 lines thus saving more than 3600 lines,
i.e., nearly 60 %.

Unfortunately, this calculation does not consider the 94 Request and 57 Reply
classes for Skeleton operations. In the XSL-T approach, these 10418 and 4176 lines
of code, respectively, are generated. But in the AspectJ approach, there is no mean to
produce or to avoid these classes: We have to manually implement those 14594 lines of
code: The previously calculated advantage of AspectJ is lost!

However, the classes contain a lot of trivial comments (28 lines for Request and
15 lines for Reply classes in average), i.e., 3487 lines could be left out. Since the
classes are simple JavaBeans with a constructor, a get-method, and toString
method, specifying the attributes is enough; Eclipse or any other IDE can generate the
code by a mouse-click. This requires additional time to handle the IDE, but reduces the
lines of code by further 735 lines (94 * 6 + 57 * 3). But the AspectJ approach still
requires 10372 lines for handling Request/Reply-classes.

284 U. Hohenstein and C. Elsner

5.2 Understandability

There is another point that concerns the development time for providing the infras-
tructure: understandability. It also affects the evolution of the system.

XSL-T is quite different from an object-oriented programming language such as
Java, since it defines a set of rules that apply to a given XML document recursively.
Reading those rules and understanding the overall behavior is not easy even if one is
familiar with XML and XPath. In particular, the rule-base approach makes it difficult to
write or to extend XSL-T scripts. Moreover, programmers must handle a couple of
unintuitive and error-prone details of XSL-T, such as a special handling of
zero-parameter methods or leaving out a “,” after the last parameter in parameter lists.
Other MDD frameworks such as Xtend2 [27] or XPand [28] provide a better support.

These drawbacks are not present in the AspectJ approach. Indeed, its major
advantage is its homogeneity: There is one language to learn, AspectJ, which extends
well-known Java by a few constructs such as pointcuts and advices the semantics of
which is clear and understandable. Advices, in turn, are implemented in pure Java.
Having a little knowledge about AspectJ, it should be no problem to understand the
advices we have presented.

The disadvantage is that some conceptual points cannot be handled appropriately. One
example is adding validation logic, which becomes less intuitive because we cannot
directly handle the parameter position (cf. Subsect. 4.5). Furthermore, we cannot generate
Skeleton and Request/Reply classes easily. These parts must be hand-coded. And
finally, import statements must be added manually or generated by using IDE support. In
contrast, those parts are completely generated in the XSL-T approach.

5.3 Testability

Testability is the major disadvantage of the XSL-T approach. Since code is generated,
syntactical correctness is not immediately visible. Thus, the effort to check correctness
is high. Several cycles of generating code, compilation, testing, and debugging are
necessary in order to check ultimate correctness. Moreover, debugging of XSL-T is
very limited.

Moreover, the correct behavior must be proven by unit testing. This means par-
ticularly that any variation within XML service descriptions has to be checked and unit
tested. This is difficult and increases complexity with the number of possible combi-
nations. One possible but challenging approach is to generate unit tests as part of the
XML-based generation. However, also because of the complexity of the XSL-T lan-
guage, only manual testing of main use cases was performed for OpenSOA. The
(inappropriate) strategy, we noticed in practice, is thus to let developers generate code
and detect problems during tests; having their feedback, implementers can fix the
problems. In turn, a new rollout of the MDD infrastructure is required, leading to slow
turn-around cycles for bug fixing.

Using AspectJ, syntactical correctness is immediately given for both the infras-
tructural advices and the pointcuts thanks to special plug-ins such as AJDT for the
Eclipse IDE. As a direct consequence of the integrated language approach and

A Case Study on Model-Driven Development 285

corresponding compiler support, any syntax errors in wildcards or aspects are detected
by a compiler. The plugin also issues a warning if a pointcut does not match any
joinpoint in the code base. Only the correct behavior has to be checked, but can be
achieved by running unit tests in an ordinary Java IDE. Moreover, debugging AspectJ
is similar to Java code thanks to IDE support.

5.4 Usability

In the XSL-T approach, it is very straightforward to write input.xml files. Moreover, an
XML schema exists and indicates any syntactical errors in input files. Only the code
generator has to be started to produce Java code.

In AspectJ, applying “code generation” means to specify corresponding pointcuts,
e.g., to apply exception handling or the transaction template to methods. Despite not
being part of the ordinary Java language, pointcuts are easy to understand. In fact, we
only use a small subset of AspectJ pointcuts, more or less using obvious wildcard
expressions in the sense of “all method of a Service class”. Anyway, the simplest way
is to enumerate methods. Applying aspects is mostly a one-line pointcut. Moreover,
excellent support of the Eclipse AJDT plugin let one determine the effect of aspects
immediately, e.g., where an advice will be inserted. Using annotations to apply an
aspect certainly yields to a better separation of infrastructure and usage.

5.5 Redundancy

The XSL-T transformations are partially redundant because the redundancy of signa-
tures moves from code to XSL-T scripts: Generating similar classes Impl, Skele-
ton, TransSkeleton etc. with similar methods requires similar XSL-T
transformations. Furthermore, the exception handling in the generated code is cross-
cutting and scattered around classes in the final outcome.

AspectJ, from its nature, has a much better separation of concerns for handling the
transaction skeletons and exception handling. The overall redundancy is less. There are
no longer several similar classes, it is essentially the Impl Java class; the logic of other
generated classes becomes part of aspects. However, there are some limitations. For
instance, the Skeleton methods have to be manually written (with IDE support for
generating import’s). Even if some common logic can again be concentrated in aspects,
e.g., by putting superclasses on top of classes, we cannot avoid these classes.

5.6 Completeness

The XSL-T approach allows for generating code including Javadoc comments and
import statements.

In contrast, the AspectJ solution is not able to handle necessary import statements.
The AO approach simply relies on IDE support such as “Organize import” function-
ality; which however often is just a mouse-click. Similarly, comments and Javadocs
have to be manually added. From a logical point of view, those parts move from
Service.xml to ServiceImpl.java, i.e., put directly into code. In the XSL-T

286 U. Hohenstein and C. Elsner

approach, Javadoc is generated into several classes, but this is not necessary here:
There will be only one Java class, besides additional aspects.

5.7 Comparison Summary

The results we obtained with our case study indicate that AspectJ reveals its major
strengths in avoiding redundancy and better testability, while MDD with XSL-T is a
more complete and flexible approach. In fact, XSL-T allows for generating arbitrary
artifacts the design demands, whereas AspectJ cannot provide this functionality and
would require changes in the design. AOP in turn is better understandable and readable,
however, we see that other MDD tools offer more advanced and integrated features.

Table 1 provides a rough summary of the comparison results.

5.8 Limitations and Generality

As our case study focuses on a specific software framework, our study cannot serve as
an extensive guide for the selection among the technologies for arbitrary use cases and
software projects. Nevertheless, we think that our case study results can be of value for
practitioners being in the situation to choose among them.

As our problem of generating wrapper classes and boilerplate-code is rather
common, we believe that our results have potential to be transferred to other problem
settings. Furthermore, we think that the dimensions our evaluation is based on will help
others to guide their decision making when choosing amongst the technologies or to
take benefit from the best of both worlds.

Whereas in our solution, understandability speaks in favor of AOP, we see that
more advanced and integrated tooling could significantly improve the position of MDD
here. More advance generator languages, for example Xtend2 [27], provide a more
straight forward generation approach, without recursive generation rules, but with
mature editor support and even debugging functionality.

6 Related Work

There are several case studies and a large body of papers that either only evaluate the
benefits and liabilities of MDD (e.g., [11, 15] or AOP (e.g., [9]. For example, [9] take
the Berkeley DB as a case study and refactored the code into 38 features. While other
studies, e.g., [13], suggested that features of a product line be implemented by aspects,

Table 1. Summary of comparison results.

AspectJ - AOP XSLT - MDD

Lines of code − (requires add. OO classes) o (duplicated XSLT code)
Understandability + (straight forward) − (complex syntax/semantics)
Testability + (directly testable) o (difficult for generated code)
Usability o/+ (reasonable) − (difficult)
Redundancy + (nearly not redundant) o (partially redundant)

A Case Study on Model-Driven Development 287

they find that AspectJ is not suitable to implement most of their features. Even if this
work is not a comparison, it shows deficiencies of the language AspectJ, not neces-
sarily of AO or AOP, with respect to their case study. In contrast, [5] shows how to
successfully apply aspects to implement a persistence framework, which is usually
controlled by code generation based upon annotations or XML.

Our work, in contrast, aims at a comparison of AOP with MDD, in order to support
the selection among the technologies. Only few work exists that explicitly makes such
a comparison. [23] argues that AOSD and MDD are alike since both adapt an input
system in order to receive an augmented output system, however, using different
approaches, weaving and transformation, respectively. They discuss the technical
differences by means of an example. [10] compares AOP and MDD with regard to a
better separation of concerns. They only investigate how to describe and how to apply
both, concluding that a model-driven approach offers more flexibility.

Reference [14] uses a heart pacemaker product line to elaborate on modeling cross-
cutting variability with AO. They state that AO can benefit the MDD of product lines. The
study identifies desired characteristics of AO modeling techniques for product lines and
proposes similar evaluation criteria to ours such as feasibility, degrees of variability,
evolution, tool support, and cost, however, miss to investigate those in their case study.

Reference [1] uses a mobile phone software product line to systematically evaluate
AOP as a product line technology. Their result is that AOP is especially suitable for
variability across several components. The study discusses several factors and the effort
for various activities: implementing reusable code, reacting to evolutionary changes,
reusing code, resolving variations, and testability. Our study discusses similar points,
however, at a deeper level using a real industrial case study.

Indeed, there is further significant work on combining AOP and MDD. For
instance, [7] notices that the generated code is not always adequate for a task at hand,
and mentions following in-house coding conventions and missing import features as
examples. These are particular problems we handle. Generating AspectJ code helps to
give flexibility.

Reference [19] combines both approaches by describing an MDD approach that
generates aspect-oriented models. That is, aspects are part of the outcome. This is
especially useful to handle unanticipated variabilities by means of aspects as the
MDD/AOP approach of [26] illustrates. In our work, we explicitly compare the two
technologies, to avoid increasing the overall technical complexity and dependencies of
the developed software, in our case, the OpenSOA framework.

7 Conclusions

In this paper, we compared two completely different approaches, model-driven devel-
opment (MDD) and aspect-oriented programming (AOP) with AspectJ, by means of a
real industrial software system and thus investigating several criteria. While MDD, here
applying XSL-T, is straight forward and well-understood for code generation, the usage
of AOP is not so obvious, but can serve the same purpose in a different manner [23].

We achieved some interesting results during an aspect-oriented re-implementation
of the original XSL-T system. AOP is principally able to handle code generation and

288 U. Hohenstein and C. Elsner

has some advantages over XSL-T: AspectJ is better understandable and usable,
especially from an implementer’s point of view. There is a huge advantage for testing,
in particular, checking the syntactic and semantic correctness. We also notice a better
separation of concerns and avoidance of redundancy, for instance, if logic is put around
existing code (transactional skeleton) or after/before (logging). The most striking
limitations appear if new classes have to be introduced. This is the main reason why the
pure AspectJ-based solution requires more lines of code (LoC).

XSL-T has advantage if several code generators are producing several output files
based upon the same input file. This leads to the mentioned LoC advantage. Thus,
XSL-T is more extensible and has potential for creating further classes, in particular
Request/Reply classes in this case study. Finally, XSL-T results in a rather weak
understandability. This, however, seems to be a consequence of the technology choice
than of the MDD approach in general. By using MDD approaches with more intuitive
languages and mature IDE support based around Eclipse Ecore (e.g., Xtend2 [27] or
XPand [28]), we believe the implementation and the evaluation would improve in this
category. In particular, there are tools available that can be used to produce Java code,
at least classes and method signatures as a model. This can build a basis to take the Java
ServiceImpl file as input and produce Request and Reply classes. Indeed, [6] even
developed an Ecore metamodel for Java 5.0 together with a parser and printer, so that
plain Java statements could be produced.

A combination of XSL-T and AspectJ also seems to be a promising approach to
combine the advantages of each technology. This particularly fits smoothly to the
existing implementation. That is why we intend to investigate the combination of both
approaches, i.e., following [7] to generate aspects within the code to get the best out of
both worlds.

References

1. Muthig, D., Anastasopoulos, M.: An evaluation of aspect-oriented programming as a
product line implementation technology. In: Krueger, C., Krueger, C., Dannenberg, R.B.
(eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp. 141–156. Springer, Heidelberg
(2004)

2. AspectJ. Eclipse AspectJ Homepage. http://eclipse.org/aspectj/. Accessed 18 Mar 2014
3. Beuche, D.: Variant management with pure::variants. Technical report, pure-systems GmbH,

2006. http://www.pure-systems.com/fileadmin/down-loads/pv-whitepaper-en-04.pdf (2006).
Accessed 25 May 2014

4. Groher, I., Krüger, C., Schwanninger, C.: A Tool-based approach to managing croscutting
feature implementations. In: 7th International Conference on AOSD, Brussels (2008)

5. Hohenstein, U.: Using aspect-orientation to add persistency to applications. In: Proceedings
of Datenbanksysteme in Business, Technologie und Web (BTW), Karlsruhe (2005)

6. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the gap between modelling
and Java. In: Gašević, D., van den Brand, M., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969,
pp. 374–383. Springer, Heidelberg (2010)

7. Henthorne, C., Tilevich, E.: Code generation on steroids: enhancing code generators via
generative aspects. In: 2nd International Workshop on Incorporating COTS Software into
Software Systems: Tools and Techniques (IWICSS 2007) (2007)

A Case Study on Model-Driven Development 289

http://eclipse.org/aspectj/
http://www.pure-systems.com/fileadmin/down-loads/pv-whitepaper-en-04.pdf

8. Hohenstein, U., Elsner, C.: A case study for comparing of model-driven development and
aspect-oriented programming. In: 9th International Conference on Software Technologies
ICSOFT-PT Vienna (2014)

9. Kästner, C., Apel, S., Batory, D.: A case study implementing features using AspectJ. In:
Proceedings of International Software Product Line Conference (SPLC), Kyoto (2007)

10. Kaboré, C., Beugnard, A.: Interests and drawbacks of AOSD compared to MDE – a position
paper. In: 3rd Workshop on Aspects and Models, at 21st ECOOP 2007 (2007)

11. Kapteijns, T., Jansen, S., Houet, H., Barendse, R.: A comparative case study of model driven
development vs traditional development: the tortoise or the hare. In: CTIT Proceedings of
5th European Conference on Model Driven Architecture (2009)

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–357.
Springer, Heidelberg (2001)

13. Lee, K.: Combining feature-oriented analysis and aspect-oriented programming for product line
asset development. In: Proceedings of International Software Product Line Conference (2006)

14. Liu, J., Lutz, R., Rajan, H.: The role of aspects in modeling product line variabilities. In:
Proceedings of 1st Workshop on Aspect-Oriented Product Line Engineering, GPCE,
Portland (Oregon) (2006)

15. Lussenburg, V., van der Storm, T., Vinju, J., Warmer, J.: Mod4J: a qualitative case study of
model-driven software development. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
MODELS 2010, Part II. LNCS, vol. 6395, pp. 346–360. Springer, Heidelberg (2010)

16. Mezini, M., Ostermann, K.: Variability management with feature-oriented programming and
aspects. In: Proceedings of 12th International Symposium on Foundations of Software
Engineering (FSE), Newport Beach (CA) (2004)

17. MPS. JetBrains: Meta Programming System. http://www.jetbrains.com/mps/. Accessed 25
May 2014

18. Normén, F.: Remove code smell with AOP (2007). http://weblogs.asp.net/fredriknormen/
archive/2007/11/29/remove-code-smell-with-aop.aspx Accessed 25 May 2014

19. Pinto, M., Fuentes, L., Fernández, L., Valenzuela, J.: Using AOSD and MDD to enhance the
architectural design phase. In: Proceedings of OTM 2009 (2009)

20. Reichel, C., Oberhauser, R.: XML-based programming language modeling: an approach to
software engineering. In: SEA 2004 (2004)

21. Smaragdakis, Y., Huang, S., Zook, D.: Program generators and the tools to make them. In:
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation.
ACM Press (2004)

22. Strunk, W.: The symphonia product-line. In: Java and Object-Oriented (JAOO) Conference,
Arhus, Denmark (2007)

23. Stein, D., Hanenberg, S.: Why aspect-oriented software development and model-driven
development are not the same – a position paper. Electr. Notes Theor. Comput. Sci. 163(1),
2006 (2006)

24. Stahl, T., Völter, M.: Model-Driven Software Development. Wiley, Hoboken (2006)
25. Tarr, P., Osher, H., Harrison, W., Sutton, S.: N degrees of separation: multi-dimensional

separation of concerns. In: 21st International ICSE 1999 (1999)
26. Völter, M., Groher, I.: Product line implementation using aspect-oriented and model-driven

software development. In: 11th International Software Product Line Conference (SPLC),
Kyoto, Japan (2007)

27. Xtend2. Eclipse Xtend 2 Homepage. http://www.eclipse.org/Xtext/#xtend2. Accessed 18
Mar 2014

28. Xtext. Eclipse Xtext Homepage. http://www.eclipse.org/Xtext/. Accessed 25 May 2014

290 U. Hohenstein and C. Elsner

http://www.jetbrains.com/mps/
http://weblogs.asp.net/fredriknormen/archive/2007/11/29/remove-code-smell-with-aop.aspx
http://weblogs.asp.net/fredriknormen/archive/2007/11/29/remove-code-smell-with-aop.aspx
http://www.eclipse.org/Xtext/%23xtend2
http://www.eclipse.org/Xtext/

A Problem-, Quality-, and Aspect-Oriented
Requirements Engineering Method

Stephan Faßbender, Maritta Heisel, and Rene Meis(B)

Paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{stephan.fabbender,maritta.heisel,rene.meis}@uni-due.de

Abstract. Requirements engineers not only have to cope with the
requirements of various stakeholders for complex software systems, they
also have to consider several software qualities (e.g., performance, main-
tainability, security, and privacy) that the system-to-be shall address. In
such a situation, it is challenging for requirements engineers to develop a
complete and coherent set of requirements for the system-to-be. Separa-
tion of concerns has shown to be one option to handle the complexity of
systems. The problem frames approach address this principle by decom-
posing the problem of building the system-to-be into simpler subprob-
lems. Aspect-orientation aims at separating cross-cutting functionalities
into separate functionalities, called aspects. We propose a method called
AORE4PF, which shows that aspect-orientation can be integrated into
the problem frames approach to increase the separation of concerns and
to benefit from several methods that exist on problem frames to develop
a complete and coherent set of requirements. We validated our method
with a small experiment in the field of crisis management.

Keywords: Early aspects · Problem frames · Requirements engineering

1 Introduction

Keeping an eye on good and sufficient requirements engineering is a long-known
success factor for software projects and the resulting software products [1].
Nonetheless, larger software incidents are regularly reported, which originate
in careless dealing with, for example, security requirements. Beside reputation
damage, loss of market value and share, and costs for legal infringement [2,3],
fixing defects that caused the incident is costly. Fixing a defect when it is already
fielded is reported to be up to eighty times more expensive than fixing the corre-
sponding requirements defects early on [4,5]. Therefore, it is crucial for require-
ments engineers to identify, analyze, and describe all requirements and related
quality concerns. But eliciting good requirements is not an easy task [6], even
more when considering complex systems.

Part of this work is funded by the German Research Foundation (DFG) under grant
number HE3322/4-2.

c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 291–310, 2015.
DOI: 10.1007/978-3-319-25579-8 17

292 S. Faßbender et al.

Nowadays, for almost every software system, various stakeholders with
diverse interests exist. These interests give rise to different sets of requirements.
These diverse requirements not only increase the complexity of the system-to-
be, but also contain different cross-cutting concerns, such as qualities, which are
desired by the stakeholders. In such a situation, the requirements engineer is
really challenged to master the complexity and to deliver a coherent and com-
plete description of the system-to-be.

One possible option to handle the complexity of a system-to-be is the concept
of separation of concerns [7]. In its most general form, the separation of concerns
principle refers to the ability to focus on, and analyze or change only those parts
of a system which are relevant for one specific problem. The main benefits of this
principle are a reduced complexity, improved comprehensibility, and improved
reusability [7].

Both, AORE (aspect-oriented requirements engineering) and the problem
frame approach implement this principle, but for different reasons. The approach
of AORE, which originates from aspect-oriented programming, is to separate
each cross-cutting requirement into an aspect. Instead of integrating and solv-
ing the cross-cutting requirement for all requirements it cross-cuts, the aspect is
solved in isolation. Hence, aspect-orientation leads to a clear separation of con-
cerns. To combine an aspect with a requirement, an aspect defines a pointcut
(set of join points), which describes how the aspect and a requirement can be
combined. The problem frames approach [8] generally also follows the separation
of concerns principle. It decomposes the overall problem of building the system-
to-be into small sub-problems that fit to a problem frame. Each sub-problem is
solved by a machine, which has to be specified using the given domain knowledge.
All machines have to be composed to form the overall machine. We will show
that aspect-orientation gives guidance for the process of decomposing the over-
all problem and especially for the composition of the machines. As both ways of
separating concerns seem to be complementary, it is promising to combine both.
Hence, we propose the AORE4PF (Aspect-Oriented Requirements Engineering
for Problem Frames) method that provides guidance for classifying requirements,
separating the different concerns, modeling requirements for documentation and
application of completeness and interaction analyses, and weaving the reusable
parts to a complete and coherent system. Furthermore, AORE4PF provides tool
support for most activities.

The rest of the paper is structured as follows. Section 2 introduces a smart
grid scenario, which is used as a case study. In Sect. 3, we introduce the problem
frames approach and UML4PF as background of this paper. Our method for the
integration of AORE into the problem frames approach is presented in Sect. 4.
A small experiment for validation is presented in Sect. 5. Work related to this
paper is discussed in Sect. 6. Finally, Sect. 7 concludes the paper and presents
possible future work.

2 Case Study

To illustrate the application of the AORE4PF method, we use the real-life case
study of smart grids. As sources for real functional requirements, we consider

A Problem-, Quality-, and Aspect-Oriented Requirements 293

diverse documents such as “Application Case Study: Smart Grid” provided by
the industrial partners of the EU project NESSoS1, the “Protection Profile for
the Gateway of a Smart Metering System” [9] provided by the German Federal
Office for Information Security2, and “Requirements of AMI (Advanced Multi-
metering Infrastructure”) [10] provided by the EU project OPEN meter3.

We define the terms specific to the smart grid domain and our use case in
the following. The smart meter gateway represents the central communication
unit in a smart metering system. It is responsible for collecting, processing, stor-
ing, and communicating meter data. The meter data refers to readings measured
by smart meters regarding consumption or production of a certain commodity.
A smart meter represents the device that measures the consumption or produc-
tion of a certain commodity and sends it to the gateway. An authorized external
entity can be a human or an IT unit that communicates with the gateway from
outside the gateway boundaries through a wide area network (WAN). The WAN
provides the communication network that interconnects the gateway with the
outside world. The LMN (local metrological network) provides the communica-
tion network between the meter and the gateway. The HAN (home area network)
provides the communication network between the consumer and the gateway.
The term consumer refers to end users of commodities (e.g., electricity).

We have chosen a small selection of requirements to illustrate our method.
These requirements are part of the 13 minimum use cases defined for a smart
meter gateway given in the documents of NESSoS and the open meter project.
The considered use cases are concerned with gathering, processing, and storing
meter readings from smart meters for the billing process. The requirements are
described as follows:

(R1) Receive Meter Data. The gateway shall receive meter data from smart
meters.

(R17) New Firmware. The gateway should accept a new firmware from autho-
rized external entities. The gate shall log the event of successful verification of
a new version of the firmware.

(R18) Activate New Firmware. On a predetermined date the gateway exe-
cutes the firmware update. The gateway shall log the event of deploying a new
version of the firmware.

(R28) Prevent Eavesdropping. The Gateway should provide functionality to
prevent eavesdropping. The gateway must be capable of encrypting communica-
tions and data by the safest and best encryption mechanisms possible.

(R29) Privacy and Legislation. Many countries protect customers’ and peo-
ple’s rights by laws, to ensure that personal and confidential information will
not be disclosed easily within communicating systems. Grid systems shall not
be a way to reveal information.

1 http://www.nessos-project.eu/.
2 www.bsi.bund.de.
3 http://www.openmeter.com/.

http://www.nessos-project.eu/
www.bsi.bund.de
http://www.openmeter.com/

294 S. Faßbender et al.

3 UML-Based Problem Frames

Problem frames are a means to describe software development problems. They
were proposed by Jackson [8], who describes them as follows: “A problem frame
is a kind of pattern. It defines an intuitively identifiable problem class in terms of
its context and the characteristics of its domains, interfaces and requirement.”
It is described by a frame diagram, which consists of domains, interfaces between
domains, and a requirement. We describe problem frames using UML class dia-
grams extended by stereotypes as proposed by Hatebur and Heisel [11]. All
elements of a problem frame diagram act as placeholders, which must be instan-
tiated to represent concrete problems. Doing so, one obtains a problem diagram
that belongs to a specific class of problems.

Figure 1 shows a problem diagram in UML notation. The class with the
stereotype �machine� represents the thing to be developed (e.g., the software).
The classes with some domain stereotypes, e.g., �biddableDomain� or �lexical-

Domain� represent problem domains that already exist in the application envi-
ronment. Jackson distinguishes the domain types causal domains that comply
with some physical laws, lexical domains that are data representations, biddable
domains that are usually people, and connection domains that mediate between
domains.

Domains are connected by interfaces consisting of shared phenomena. Shared
phenomena may be events, operation calls, messages, and the like. They are
observable by all connected domains, but controlled by only one domain,
as indicated by an exclamation mark. For example, in Fig. 1 the annotation
WAN!{forwardUpdateFirmware} means that the phenomenon in the set {forward-
UpdateFirmware} is controlled by the domain WAN and observable by the machine
domain SMGFirmwareStorage, which is connected to it. These interfaces are rep-
resented as associations with the stereotype �connection�, and the name of the
associations contain the phenomena and the domains controlling the phenomena.

In Fig. 1, the lexical domain FirmwareUpdate is constrained and the Authorized-

ExternalEntity is referred to, because the machine SMGFirmwareStorage has the role
to store new FirmwareUpdates from AuthorizedExternalEntity for satisfying require-
ment R17. These relationships are modeled using dependencies that are anno-
tated with the corresponding stereotypes.

The full description for Fig. 1 is as follows: The biddable domain Authorized-

ExternalEntity controls the updateFirmware command, which is forwarded by
the WAN and finally observed by the machine domain SMGFirmwareStorage. The
SMGFirmwareStorage controls the phenomenon storeNewFirmware, which stores the
received information in the lexical domain FirmwareUpdate.

Software development with problem frames proceeds as follows: first, the
environment in which the machine will operate is represented by a context dia-
gram. Like a problem diagram, a context diagram consists of domains and inter-
faces. However, a context diagram contains no requirements. Then, the problem
is decomposed into subproblems. If ever possible, the decomposition is done in
such a way that the subproblems fit to given problem frames. To fit a subprob-
lem to a problem frame, one must instantiate its frame diagram, i.e., provide

A Problem-, Quality-, and Aspect-Oriented Requirements 295

Fig. 1. Problem diagram R17: new firmware.

Description
Informal

Requirements
Base

Diagrams
Problem
Base

Specifications
Problem
Base

Requirements
Quality

Relations
Cross−Cut
Preliminary

Requirements
Aspect
Preliminary

Requirements
Quality
Preliminary

Aspect
Requirements

Relations
Cross−Cut

Specifications
Problem
Weaved

Relations
Weaving

Diagrams
Problem
Aspect
Consolidated

Diagrams
Problem
Base
Consolidated

Specifications
Problem
Weaved
Consolidated

Relations
Weaving
Consolidated

Specifications
Problem
Aspect

Diagrams
Problem
Aspect

Document

Requirements
Classify Requirements

Base
Model

Qualities
Underlying

Identify

Analyse
Completeness Requirements

Aspect
Model Weave

Requirements

ou
tp

ut
in

pu
t /

ou
tp

ut
in

pu
t /

information flow control flow Activity generated automatically generated semi−automatically

Analyze
Interactions

pr
oc

es
s

Fig. 2. The AORE4PF method.

instances for its domains, phenomena, and interfaces. The UML4PF framework
provides tool support for this approach. A more detailed description can be
found in [12].

4 Method

An illustration of our method is given in Fig. 2. The initial input for our method
is a textual informal description of the requirements the system-to-be shall
fulfill. These requirements are classified into preliminary aspect requirements
(or short aspects), which are functional and cross-cutting, preliminary quality
requirements (or short qualities), which are non-functional and cross-cutting,
and base requirements (or short bases), which are not cross-cutting. Addition-
ally, the relations between requirements and aspects or qualities are documented
as preliminary cross-cut relations. Then all identified base requirements are mod-
eled following the problem frames approach introduced in Sect. 3, such that for
each base requirement a base problem diagram is created. Additionally, we create
a sequence diagram for each problem diagram. The sequence diagrams serve as
a base problem specification. To prepare the completeness analysis, we identify
for all preliminary aspect requirements the underlying qualities they address.
The already known preliminary quality requirements can aid the identification.
As a result, we get a set of quality requirements. Based on the identified qual-
ity and base requirements, we can analyze whether there is a cross-cut relation
between a quality requirement and a base requirement not discovered yet. Thus,
we analyze the completeness of the preliminary cross-cut relations and update
them if necessary. The results are a set of cross-cut relations and also updated
aspect requirements. Next, the aspect requirements are modeled in a similar way
as requirements using specialized problem diagrams, called aspect problem dia-
grams. Again, we specify the machine behavior using sequence diagrams, which

296 S. Faßbender et al.

results in aspect problem specifications. For the next step, weave requirements,
the base problem specifications and aspect problem specifications are weaved to
fulfill the base and aspect requirements as defined by the base problem diagrams
and aspect problem diagrams. For the weaving, we have to accomplish two activ-
ities. First, we define the weaving relations. These relations refine the cross-cut
relations. Then, we can automatically generate for each requirement a weaved
problem specification representing the weaved system behavior. Last, we have to
analyze the base and aspect problem diagrams for unwanted interactions, such
as conflicts. The weaving relations and the weaved problem specifications can
support this activity. The results of this step are consolidated base and aspect
problem diagrams as well as consolidated weaving relations and problem specifi-
cations. We will discuss all steps of our method in detail in the following sections.

4.1 Classify Requirements

As a first step, we have to identify and analyze the requirements contained in
the informal description. We have to separate and classify these requirements
as they will be treated differently afterwards. A requirement can be (1) a base,
which is functional and not cross-cutting, (2) an aspect, which is functional and
cross-cutting, and (3) a quality, which is non-functional and cross-cutting. Note
that we see quality requirements as requirements, which are not operationalized
to an aspect right now. Hence, there is a clear relation between qualities and
aspects, and we will later on refine qualities to aspects. Normally, statements
in an informal description are not given that clear-cut as given by the three
discussed classes of requirements. Hence, one can find requirements mixing dif-
ferent classes, for example, aspects are already combined with the corresponding
bases or qualities are mentioned in the according bases. In consequence, identi-
fying statements which constitute requirements is only half of the job, but also
a separation of mixed requirements has to be performed.

First, we separate functional and quality requirements. A tool like
OntRep [13] can support the requirements engineer in this step. This way we
identify R29 as requirement containing two quality requirements (R29A and R29B)
and R28 containing one quality (R28A) and one functional requirement (R28B):

(R28A) Security. The Gateway shall be protected against external attacks.

(R29A)Privacy. [. . .] personal and confidential information will not be disclosed
easily within communicating systems. Grid systems shall not be a way to reveal
information.

(R29B) Compliance. Many countries protect customers’ and people’s rights
by laws.

Thus, we have identified and separated the preliminary quality requirements.
Second, we have to analyze the functional requirements for aspects and sepa-

rate them. For this activity tools like EA-Miner [14], Theme/Doc [15] or REAs-
sistant4 can aid the requirements engineer. This way we identify the following
two aspects:
4 https://code.google.com/p/reassistant/.

https://code.google.com/p/reassistant/

A Problem-, Quality-, and Aspect-Oriented Requirements 297

(R28B) Network Encryption. [. . .] The gateway must be capable of encrypt-
ing communications and data by the safest and best encryption mechanisms
possible.

(R30) Logging. The gate shall log the occurring important events.

Note that while eavesdropping is already formulated as separate aspect, logging
is introduced as a new aspect that is extracted from R17 and R18 which both
contain the logging aspect:

(R17B) New Firmware: Logging. The gate shall log the event of successful
verification of a new version of the firmware.

(R18B) Activate New Firmware: Logging. The gateway shall log the event
of deploying a new version of the firmware.

These two requirements describe how the aspect R30 has to be integrated into
the corresponding base requirements. This information is used later on during
the weaving process. Thus, we have identified and separated the preliminary
aspect requirements.

The remaining functional requirements form the base requirements for our
system:

(R1) Receive Meter Data. The gateway shall receive meter data from smart
meters.

(R17A) New Firmware. The gateway should accept a new firmware from
authorized external entities.

(R18A) Activate New Firmware. On a predetermined date the gateway exe-
cutes the firmware update.

We document the relations between the separated functional, quality, and
aspect requirements in a preliminary cross-cut relation table. These relations
are given in Table 1 with crosses in italic in the regions (Base,Quality),
(Base,Aspect), and (Quality,Aspect). Note that everything given in bold
is discovered later on in the annotated step (x). Furthermore, the regions
(Aspect,Quality) and (Aspect,Aspect) are considered in step 4, and (Qual-
ity,Quality) in step 7. If a requirement is separated into a functional requirement
(base or aspect) and a quality, then we add a cross in the region (Base,Quality)
of the table if the functional requirement is a base requirement, representing
that the quality has to be taken into account for the base requirement, and in
the region (Quality,Aspect) if it is an aspect requirement, representing that the
aspect requirement addresses the software quality. In Table 1, we documented
that the aspect R28B is related to the quality R28A. This kind of mapping will
later on be used to provide guidance for the selections of mechanisms to address
the quality requirements. If functional requirements are separated into base and
aspect requirements, then we also add respective crosses in the upper right quad-
rant. In Table 1, we documented that the aspect R30 cross-cuts the base require-
ments R17A and R18A.

298 S. Faßbender et al.

Table 1. Requirements (Cross-cut) relation table for the smart grid scenario.

Quality Aspect

R28A R29A R29B R313 R28B R30(R17B, R18B) R324

Base R1 X4 X4 X4 X4 X4 X4

R17A X4 X3 X4 X

R18A X3 X

Aspect R28B

R30 X4 X4

R324

Quality R28A I7 I7 I7 X X4

R29A I7 I7 I7 X4 X4

R29B I7 I7 I7 X4 X4 X4

R313 I7 I7 I7 X3

Fig. 3. Problem diagram for R1. Fig. 4. Sequence diagram for R1.

4.2 Model Base Problems

In this step, we model the functional requirements identified in the previous
step. For each functional requirement, we create a problem diagram as proposed
by the problem frames approach introduced in Sect. 3. For reasons of space, we
only show the problem diagrams for the requirements R1 and R17A, but these
two problem diagrams are sufficient to understand the rest of the paper, even
though we use the five selected requirements for exemplifying our method. The
problem diagram for R17A is shown in Fig. 1 and explained in Sect. 3. Figure 3
shows the problem diagram for R1. The problem described in this diagram is
that the machine SMGReceiver shall requestData via the LMN from the SmartMeter.
In response, the SmartMeter will sendData that was requested via the LMN back to
the machine. The machine does then writeTemporaryData received from the smart
meter in the lexical domain TemporaryMeterData.

For every problem diagram, we have to provide a reasoning, called frame
concern [8], why the specification of the submachine together with the knowl-

A Problem-, Quality-, and Aspect-Oriented Requirements 299

edge about the environment (domain knowledge) leads to the satisfaction of
the requirement. To visualize how frame concern is addressed in the specific
problems, we create at least one sequence diagram for each problem diagram.
These sequence diagrams describe the specification (behavior of the machine)
and the domain knowledge (behavior of the domains) which is necessary to satisfy
the requirement. How to systematically create the sequence diagrams is out of
scope of this paper, but the approach presented by Jackson and Zave [16] can
be used for this task. Figure 4 shows the sequence diagram for the sub-problem
Receive Meter. The interaction is started the sub-machine SMGReceiver causing
the phenomenon requestData (specification). This request is forwarded via the
LMN to the SmartMeter (domain knowledge). The smart meter then answers the
request and sends the meter data (requirement) using the phenomenon sendData

(domain knowledge). The data is forwarded via the LMN to the sub-machine
(domain knowledge). In the case of a successful check of the received data,
the received data is stored in the lexical domain TemporaryMeterData (specifi-
cation). Hence, the gateway stores the meter data received from smart meters
(requirement).

4.3 Identify Underlying Qualities

In order to check whether the cross-cut relation is complete, we identify for all
aspects the software qualities they address. Note that the relationship between
aspects and qualities is many-to-many. That is, an aspect can address multiple
software qualities. For example, the logging of system events possibly addresses
the software qualities accountability, transparency, maintainability, performance,
and traceability. On the other hand, a software quality can be addressed by mul-
tiple aspects, for example, the software quality confidentiality could be addressed
by the following aspects: encryption, authentication and authorization, and
data minimization. For the identification of underlying qualities tools such as
QAMiner [17] can be used. This way we discover that in our case the aspect R30
has the underlying quality maintainability:

(R31) Maintainability. All events which are useful to trace a malfunction of
the gateway shall be logged.

We document the relation between the aspect and the identified underlying
quality in cross-cut relation table. In Table 1, we added the bold cross X3 in the
lower right quadrant. Furthermore, we add the relations between the identified
quality to the base requirements which are implied by the relations of the cor-
responding aspect. For our smart grid scenario, we added the bold crosses X3

in the upper left quadrant of Table 1. The consideration of the underlying qual-
ities allows requirements engineers to access whether the selected mechanisms
(aspects) sufficiently address the respective quality.

4.4 Analyze Completeness

Based on the identified qualities, we can re-use quality-dependent analysis tech-
niques on problem frames to check the completeness of the cross-cut relation. For

300 S. Faßbender et al.

example, for privacy one can use the ProPAn method [18], the law (identifica-
tion) pattern method [19] provides guidance for compliance, security is covered
by the PresSuRE method [20], and so forth. These analysis techniques identify
for a given problem frames model and the respective quality in which functional
requirements the quality has to be considered. At this point of our method,
we have all inputs that the analysis techniques need. Using the results of the
analysis techniques, we can update the cross-cut relation and check whether
the selected aspects together with the defined cross-cut relation guarantee the
intended software qualities.

In this way, we identify that, for example, several qualities are relevant for
R1. Privacy (R29A) is relevant as the consumption data metered by the smart
meters enables one to analyze what the persons in the household are currently
doing. Hence, the consumption data is an asset which has to be protected. As
result, the security analysis also shows that the consumption data has to be
protected against eavesdropping (R28A). Maintainability (R31) is also relevant
for R1, as a malfunction can also occur while receiving consumption data. The
compliance analysis (R29B) reveals and strengthens the importance of privacy
because of different data protection acts. Additionally, the logging mechanism
is not only relevant for maintainability but also for compliance as several laws
require the fulfillment of accountability requirements whenever there is a con-
tractual relation between different parties. This information is used to update
the cross-cut relation table (see bold crosses X4 in Table 1). The already existing
aspect requirements are sufficient to cover the newly found relations.

Furthermore, we have to check whether a software quality that was identified
as relevant for a base requirement is also relevant for an aspect requirement that
cross-cuts the base requirement. E.g., we have to check whether the logs written
for the base requirements R1 and R17B contain confidential information that
has to be protected against an external attacker. For presentation purpose, we
assume that such an attacker has to be considered in the smart grid scenario and
add an aspect requirement for the encryption of persistent data that cross-cuts
the logging aspect.

(R32) Data Encryption. Persistent data shall be stored encrypted on the gate-
way.

We update the regions (Aspect,Quality) and (Aspect,Aspect) of the cross-
cut relation table (see Table 1) to document that the quality R28A has to be
taken into account for the aspect R30 (cross in region (Aspect,Quality)), and
that the aspect R3 is cross-cut by the newly introduced aspect R32 (cross in
region (Aspect,Aspect)).

4.5 Model Aspect Requirements

To model aspect requirements in a similar way as base requirements, we extended
the UML profile of the UML4PF tool with aspect-oriented concepts. To dif-
ferentiate aspect requirements, the machines that address them, and the dia-
gram they are represented in, from base requirements and their machines

A Problem-, Quality-, and Aspect-Oriented Requirements 301

and diagrams, we introduce the new stereotypes �Aspect�, �AspectMachine�,
and �AspectDiagram� as specialization of the stereotypes �Requirement�,
�ProblemDiagram�, and �Machine�, respectively. In addition to problem dia-
grams, an aspect diagram has to contain a set of join points, which together
form a pointcut. These join points can be domains and interfaces. Hence, we
introduced the new stereotype �JoinPoint�, which can be applied to all special-
izations of the UML meta-class NamedElement. During the weaving, join points
are instantiated with domains of the diagrams the aspect cross-cuts.

To create an aspect diagram, we have to identify the join points which are
necessary to combine the aspect with the problems it cross-cuts and to under-
stand the problem of building the aspect machine. In most cases, we have a
machine, besides the aspect machine, as join point in an aspect diagram. This
machine will be instantiated during the weaving with the machine of the prob-
lem that the aspect is weaved into. The interface between this join point and the
aspect machine describes how a problem machine can utilize an aspect and which
context information is needed by the aspect machine. We have to derive the join
points important for the problem described by the aspect from its description
and the requirements it cross-cuts. Besides the specialized stereotypes for the
machine and the requirement, and the definition of join points for the later
weaving, the process of building an aspect diagram is similar to the process of
building problem diagrams. As for problem diagrams, we also create sequence
diagrams for each aspect. The sequence diagrams contain two kinds of informa-
tion. First, the messages annotated with the stereotype �JoinPoint� describe
the pointcut scenario. I.e., these messages describe when during the behavior
necessary to accomplish the cross-cut requirement the behavior of the aspect
can be integrated. Note that we can represent the common pointcut definitions
used, e.g., in AspectJ, such as before, after and around, by a sequence diagram
with the behavior description for the aspect before, after, or around the pointcut
scenario, respectively. Second, all other messages describe the internal behavior
necessary to accomplish the aspect requirement.

Fig. 5. Aspect diagram for aspect R30. Fig. 6. Sequence diagram for aspect R30.

For reasons of space, we will only discuss the aspect requirement R30 in
detail. The aspect R28B and the sequence diagram for the decryption of received
data is described in [21]. R30 covers the logging of important events in the sys-
tem. The corresponding aspect diagram is presented in Fig. 5. It contains the

302 S. Faßbender et al.

Fig. 7. Sequence diagram for aspect
R28B.

Fig. 8. Sequence diagram for aspect
R32.

aspect machine SMGLog, which is able to record events in the EventStorage. Fur-
thermore, the aspect diagram contains two domains as join points. The machine
SMGRequester will be instantiated by a problem machine and the domain Source

by the origin of the event to be logged. The machine SMGRequester observes the
phenomenon event1 of Source and is able to issue the phenomenon event2. These
phenomena represent the events that shall be logged and need to be instantiated
during the weaving. If an event that has to be logged is observed, then SMGRe-

quester instructs the aspect machine SMGLog to log that event (logEvent). In
general, we have to distinguish four cases for the event to be logged. The event
could be issued using a synchronous or asynchronous message of the Source,
or a synchronous or asynchronous message from the machine SMGRequester to
the Source. For the sake of simplicity, we only consider the case shown in the
sequence diagram in Fig. 6. This sequence diagram shows the case that SMGRe-

quester sends a synchronous message to Source and receives a result (requirement).
Then SMGRequester asks SMGLog to log the observed event (requirement). The
machine SMGLog then records the event (specification). Hence, the observed
event is logged (requirement). Figures 7 and 8 show the sequence diagrams for
the behavior of aspect R28B for sending encrypted data via a network and aspect
R32 for encrypting data that shall be stored persistently.

4.6 Weave Requirements

For each base requirement, we now create a sequence diagram that describes
how the aspect requirements have to be weaved into it to address the cross-cut
relations. The basis for the weaving sequence diagram is the sequence diagram
of the requirement. The behavior of the sub-machine is extended with the invo-
cation of the aspects given by the row of the base requirement in the cross-cut
relation table (see Table 1). Furthermore, we have to consider whether the base
requirement is cross-cut by an aspect a1 that is itself cross-cut by another aspect
a2. If this is the case, we have to weave the aspect a2 into the base requirement
after the aspect a1 was weaved into it.

The cross-cut relations are not sufficient to weave the aspect requirements
into the base requirement. The reason is that the cross-cut relation does not
define how and when an aspect has to be integrated into the base problem. Nev-
ertheless, we can identify the situations during the dynamics of the base problem
where an aspect could be integrated using the pointcut scenarios described in
the sequence diagrams of the aspect. For each base requirement, we create a

A Problem-, Quality-, and Aspect-Oriented Requirements 303

Fig. 9. Weaved sequence diagram for R17A.

table that defines the weaving relations, i.e., how and in which order the aspects
have to be integrated into the base problem. A row in the table consists of the
aspect sequence diagram that shall be weaved into the requirement, and the
instantiation of the join points of the aspect with the domains and messages
of the base sequence diagram. An instantiation of a join point j by a domain
or message b of the base problem is denoted by b/j. The instantiated messages
uniquely describe how and when the aspect is integrated into the base sequence
diagram. Table 2 shows the weaving relations for base requirement R1.

Because of the aspect requirement R28B all communications have to be
encrypted to prevent eavesdropping attacks. This implies that all external mes-
sages that a sub-machine sends have to be encrypted and the ones it receives
have to be decrypted. Hence, we have to integrate the aspect R28B twice into
the base requirement R1. The pointcut scenarios in the two sequence diagrams
R28B (Out) (shown in Fig. 7) and R28B (In) can only be instantiated in one way,
because in the sequence diagram for R1 (see Fig. 4) there is only one communi-
cation from the machine via a network (LMN) to a receiver (SmartMeter) and one
back from the sender (SmartMeter) via the network (LMN). The first two lines
of Table 2 describe these integrations. The pointcut scenario of the aspect R30
matches for all synchronous message calls with a reply (see Fig. 6). Hence, we
have two possible situations in the sequence diagram for R1 where the aspect
could be integrated. The event to be logged is a failed check of the received
meter data and hence, we integrate aspect R30 as described by the third line in
Table 2. Finally, we have to integrate aspect R32 that cross-cuts aspect R30. The
pointcut scenario for R32 (see Fig. 8) has to be instantiated with the recording
of the event (see Fig. 6) as described in line four of Table 2.

The weaving relations are used to generate the weaving sequence diagrams
from the sequence diagrams of the problem and aspect diagrams. These auto-

304 S. Faßbender et al.

Table 2. Weaving relations for base requirement R1.

Aspect Domain Instantiations Message Instantiations

R28B (Out) SMGReceive/SMGRequester, requestData/sendDataOut,

LMN/Network, SmartMeter/Receiver forwardRequest/forwardDataOut

R28B (In) SMGReceive/SMGRequester, sendData/sendDataIn,

LMN/Network, SmartMeter/Sender forwardData/forwardDataIn

R30 SMGReceive/SMGRequester, check/event2, fail/event1

SMGReceive/Source

R32 SMGLog/SMGRequester, recordEvent/storeData

EventStorage/Storage

matically generated sequence diagrams have then to be adjusted, such that the
overall behavior satisfies the weaving requirement. The generated sequence dia-
gram for R1 is shown in Fig. 9. For the sake of readability, we use a bold font
for messages from the original problem specification of R1. In accordance with
Table 2, the date sent to the smart meter is encrypted before sending and the
received data is decrypted when received. Furthermore, in the case of a failed
check of the received data an encrypted log is recorded.

4.7 Analyze Interactions

For reasons of space, we do not go into detail for this step. Alebrahim et al.
provide methods for interaction analysis using problem frames. In [22] functional
requirements are treated, and [23] describes how to analyze quality requirements
for interactions. Both works use the smart grid as a case study. Hence, we re-
used the methods and results also for this work. The results are documented in
Table 1 using bold I.

Table 3. Effort spent (in person-hours/minutes) for conducting the method.

5 Validation

To validate our method, we applied it to the crisis management system
(CMS) [24] that Kienzle et al. proposed as a case study for aspect-oriented
modeling. We derived an informal scenario description and the textual use case
descriptions from the original as input for our method5. The method was exe-
cuted by a requirements expert, who did not know the case beforehand. From the
5 For the inputs and the results see http://imperia.uni-due.de/imperia/md/content/

swe/aore4pf cms report.pdf.

http://imperia.uni-due.de/imperia/md/content/swe/aore4pf_cms_report.pdf
http://imperia.uni-due.de/imperia/md/content/swe/aore4pf_cms_report.pdf

A Problem-, Quality-, and Aspect-Oriented Requirements 305

information provided to the requirements analyst, he identified 13 base require-
ments that he modeled using 10 problem diagrams, 8 aspect requirements that
he modeled using 5 aspect diagrams, and 6 quality requirements.

The effort spent for conducting our method on the CMS is summarized in
Table 3. It took 5 h to classify the requirements. Note that for the case study
this step was done manually. The reason was that tools such as, for example,
OntRep [13] or EA-Miner [14] require some additional input like training docu-
ments or an existing ontology. But unfortunately, such inputs were not available.
Hence, the first step can be sped up significantly using these tools. Another
big block of effort is the modeling of base and aspect requirements. Here the
tool support already helps to speed up the modeling, but is subject for further
improvement. Note that the modeling steps do not only include the modeling
itself, but also the analysis and improvement of the original requirements, which
make the requirements more precise and unambiguous. Therefore, parts of the
effort spent on the modeling steps are unavoidable even when using another
method or notation. The modeling itself pays off as it allows the usage of the
broad spectrum of methods and tools which need problem frame models as input.
For example, the analysis of completeness uses these models and takes about an
hour for different kinds of qualities. The weaving of aspects is quite time con-
suming right now. Here the tool support is on an experimental level, but the
observations taken during the case study imply that a full fledged tool support
will significantly drop the effort. The interaction analysis takes round about two
hours, which is significantly below the effort of doing such an analysis without a
problem frame model (see [22] for further information). All the effort spent sums
up to 21,5 person hours, which is significant but reasonable with regards to the
results one gets. And compared to efforts other authors report, the effort spent
for our method seems to be even low. For example, Landuyt et al. [25] report an
effort spent of 170 h for the requirements engineering related activities.

Table 4. Requirements identified.

306 S. Faßbender et al.

To asses the sufficiency of the method and the used tools, the requirements
and qualities found within our method were compared to the original document
as described by Kienzle et al. Table 4 shows the comparison. Overall, the results
are satisfying as most requirements were found and classified in the correct class
(30 %) or in another, also correct, class (45 %). The high amount of requirements
classified differently are due to specific classes given in the original documents.
For example, persistence and statistical logging were completely described as
functional requirements in the documents but treated as qualities. For such
requirements it is a more general discussion if they are quality requirements
or not. Hence, we accepted both views as correct. For some specific qualities,
such as mobility or accuracy, the overall observation cannot be acknowledged.
The reasons are subject to further investigations.

To asses the aspects identified, we compared the results of our method to
the results given in other publications considering aspect-oriented requirements
engineering using the same scenario [25,26]. The set of requirements identified
with our method includes all requirements which are treated as aspects in the
other works. 83 % of the aspects found and separated in [25] and 75 % of those
in [26] were also separated as aspects by our method. The other 17 % of aspects
in [25] and 25 % in [26] were identified as base requirements by our method. A
detailed investigation showed that both views on these requirements are reason-
able. Some of the aspects our method found were not mentioned in the other
works. 38 % and 25 % of the requirements identified by our method where not
mentioned in [25,26], respectively. Reasons for the missing requirements might
be that they were not reported due to lack of space or that they were not found.

We could not asses our completeness analysis quantitatively as the other
works using the scenario stick to the original requirements. But the qualita-
tive investigation of the completeness analysis showed reasonable results. This
observation is also true for the cross cut relations. We also compared the weaved
specification with sequence diagrams or state machines given by the original doc-
ument and works in [24]. Here we observed that the specifications produced by
our method were at least as good as the chosen assessment artifacts. Again, the
interaction analysis could not be assessed quantitatively due to missing bench-
marks. But the found interactions seemed to be real problems which have to be
resolved in a real case.

6 Related Work

There are many works considering early aspects [27–33]. Most of these
approaches deal with goal-oriented approaches and use-case models. But goal
or use-case models are of a higher level of abstraction than problem frames.
Additionally, goal and use-case models are stakeholder-centric, while problem
frames are system-centric. Therefore, refining functional requirements taking
into account more detail of the system-to-be and analyzing the system-to-be
described by the functional requirements is reported to be difficult for such

A Problem-, Quality-, and Aspect-Oriented Requirements 307

methods [34]. Recently, there were papers which reported a successful integra-
tion of goal- and problem-oriented methods [35,36]. Hence, one might benefit
from integrating goal-models in our method.

Conejero et al. [37] present a framework alike the method presented in this
paper. Their process also starts with unstructured textual requirements. Then
different tools and modeling notations are used along the frame work to identify
and handle aspects. In difference to our process, they do not consider a com-
pleteness or interaction analysis and especially for the modeling of aspects they
lack tool support.

Only few approaches consider the integration of early aspects in the problem
frames approach. Lencastre et al. [38] also investigated how early aspects can be
integrated into problem frames. Their method to model aspects in the problem
frames approach differs from ours. For an aspect, the authors first select a prob-
lem frame as PF Pointcut Scenario. This pointcut scenario defines into which
problems the aspect can be integrated. The pointcut scenario is then extended
to the PF Aspectual Scenario, which is similar to our aspect diagrams, with the
difference that the pointcut always has to be a problem frame. This reduces
flexibility, because an aspect (e.g., logging of all system events) may have to be
integrated into different problem diagrams.

7 Conclusions

In this paper, we presented the AORE4PF method which integrates aspect-
orientation into the problem frames approach and utilizes many quality analysis
method based on problem frames to be a problem-, quality-, and aspect-oriented
requirements engineering method. We extended the UML4PF profile with stereo-
types that allow us to create aspect diagrams. We further introduced a structured
methodology to separate aspects from requirements, to model aspects, and to
weave aspects and requirements together. We considered both the static and the
behavioral view on the requirements, aspects, and their weaving. We exemplified
our method using a smart grid scenario from the NESSoS project as case study
and validated it using a crisis management system.

The contributions of this work are (1) the integration of aspects into the prob-
lem frames approach, (2) a structured way of separating base, quality and aspect
requirements, starting from a textual description, (3) the detection of implicit
qualities given by aspects, (4) identification of all base requirements relevant for
a quality and the related aspects, (5) a structured method to weave base and
aspect requirements, and (6) the integration of an interactions analysis between
the resulting requirements. The AORE4PF method is (7) tool-supported in most
steps. The resulting requirements model not necessarily leads to an aspect-
oriented implementation of the software. The identified aspects can also help
to define the structure of a component-based implementation.

For future work, we plan to improve the tool support. More steps of our
method, such as the instantiation of pointcut scenarios during the weaving, can
be automated to a higher degree and we want to provide an integrated tool chain

308 S. Faßbender et al.

for the requirements separation. Additionally, we will investigate how architec-
tures can be derived from the aspect-oriented requirements model.

References

1. Hofmann, H., Lehner, F.: Requirements engineering as a success factor in software
projects. IEEE Softw. 18, 58–66 (2001)

2. Cavusoglu, H., Mishra, B., Raghunathan, S.: The effect of internet security breach
announcements on market value: capital market reactions for breached firms and
internet security developers. Int. J. Electron. Commer. 9, 70–104 (2004)

3. Khansa, L., Cook, D.F., James, T., Bruyaka, O.: Impact of HIPAA provisions on
the stock market value of healthcare institutions, and information security and
other information technology firms. Comput. Secur. 31, 750–770 (2012)

4. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE
Trans. Softw. Eng. 14, 1462–1477 (1988)

5. Willis, R.: Hughes aircraft’s widespread deployment of a continuously improving
software process. AD-a358 993. Carnegie-Mellon University (1998)

6. Firesmith, D.: Specifying good requirements. J. Object Technol. 2, 77–87 (2003).
http://www.jot.fm/issues/issue 2003 07/column7

7. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15, 1053–1058 (1972)

8. Jackson, M.: Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, New York (2001)

9. Kreutzmann, H., Vollmer, S., Tekampe, N., Abromeit, A.: Protection profile for
the gateway of a smart metering system. Technical report, BSI (2011)

10. OPEN meter project: requirements of AMI. Technical report, OPEN meter project
(2009)

11. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable
software. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 317–331.
Springer, Heidelberg (2010)

12. Côté, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF - a tool for problem-
oriented requirements analysis. In: Proceedings of the 19th IEEE International
Requirements Engineering Conference, pp. 349–350. IEEE Computer Society
(2011)

13. Moser, T., Winkler, D., Heindl, M., Biffl, S.: Requirements management with
semantic technology: an empirical study on automated requirements categorization
and conflict analysis. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS,
vol. 6741, pp. 3–17. Springer, Heidelberg (2011)

14. Sampaio, A., Rashid, A., Chitchyan, R., Rayson, P.: EA-Miner: towards automa-
tion in aspect-oriented requirements engineering. In: Rashid, A., Akşit, M. (eds.)
Transactions on AOSD III. LNCS, vol. 4620, pp. 4–39. Springer, Heidelberg (2007)

15. Baniassad, E., Clarke, S.: Finding aspects in requirements with Theme/Doc.
In: Early Aspects: Aspect-Oriented Requirements Engineering and Archi-
tecture Design, pp. 15–22 (2004). http://trese.cs.utwente.nl/workshops/
early-aspects-2004/workshop papers.htm

16. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In:
ICSE, pp. 15–24. ACM Press, USA (1995)

17. Rago, A., Marcos, C., Diaz-Pace, J.A.: Uncovering quality-attribute concerns in
use case specifications via early aspect mining. Requirements Eng. 18, 67–84 (2013)

http://www.jot.fm/issues/issue_2003_07/column7
http://trese.cs.utwente.nl/workshops/early-aspects-2004/workshop_papers.htm
http://trese.cs.utwente.nl/workshops/early-aspects-2004/workshop_papers.htm

A Problem-, Quality-, and Aspect-Oriented Requirements 309

18. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for
computer-aided privacy threat identification. In: Preneel, B., Ikonomou, D. (eds.)
APF 2012. LNCS, vol. 8319, pp. 1–16. Springer, Heidelberg (2014)

19. Faßbender, S., Heisel, M.: From problems to laws in requirements engineering using
model-transformation. In: ICSOFT 2013, pp. 447–458. SciTePress (2013)

20. Faßbender, S., Heisel, M., Meis, R.: Functional requirements under security Pres-
SuRE. In: ICSOFT-PT 2014 - Proceedings of the 9th International Conference on
Software Paradigm Trends, pp. 5–16. SciTePress (2014)

21. Faßbender, S., Heisel, M., Meis, R.: Aspect-oriented requirements engineering with
problem frames. In: ICSOFT-PT 2014 - Proceedings of the 9th International Con-
ference on Software Paradigm Trends, pp. 145–156. SciTePress (2014)

22. Alebrahim, A., Faßbender, S., Heisel, M., Meis, R.: Problem-based requirements
interaction analysis. In: Salinesi, C., van de Weerd, I. (eds.) REFSQ 2014. LNCS,
vol. 8396, pp. 200–215. Springer, Heidelberg (2014)

23. Alebrahim, A., Choppy, C., Faßbender, S., Heisel, M.: Optimizing functional and
quality requirements according to stakeholders’ goals. In: Mistrik, I. (ed.) System
Quality and Software Architecture. Elsevier, Amsterdam (2014)

24. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: a case study
for aspect-oriented modeling. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transac-
tions on Aspect-Oriented Software Development VII. LNCS, vol. 6210, pp. 1–22.
Springer, Heidelberg (2010)

25. Van Landuyt, D., Truyen, E., Joosen, W.: Discovery of stable abstractions for
aspect-oriented composition in the car crash management domain. In: Katz, S.,
Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-Oriented Software Develop-
ment VII. LNCS, vol. 6210, pp. 375–422. Springer, Heidelberg (2010)

26. Mussbacher, G., Amyot, D., Araújo, J., Moreira, A.: Requirements modeling with
the aspect-oriented user requirements notation (AoURN): a case study. In: Katz,
S., Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-Oriented Software Devel-
opment VII. LNCS, vol. 6210, pp. 23–68. Springer, Heidelberg (2010)

27. Rashid, A.: Aspect-oriented requirements engineering: an introduction. In: Pro-
ceedings of the 16th IEEE International Requirements Engineering Conference,
pp. 306–309. IEEE Computer Society (2008)

28. Yu, Y., Cesar, J., Leite, S.P., Mylopoulos, J.: From goals to aspects: discovering
aspects from requirements goal models. In: Proceedings of the 12th IEEE Interna-
tional Requirements Engineering Conference, pp. 38–47. IEEE Computer Society
(2004)

29. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases.
Addison-Wesley Professional, Englewood Cliffs (2004)

30. Whittle, J., Araujo, J.: Scenario modelling with aspects. IEE Proc. Softw. 151,
157–171 (2004)

31. Sutton, Jr., S.M., Rouvellou, I.: Modeling of software concerns in cosmos. In: Pro-
ceedings of the 1st International Conference on Aspect-oriented Software Develop-
ment, AOSD 2002, pp. 127–133. ACM, New York (2002)

32. Moreira, A., Araújo, J., Rashid, A.: A concern-oriented requirements engineering
model. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
293–308. Springer, Heidelberg (2005)

33. Grundy, J.C.: Aspect-oriented requirements engineering for component-based soft-
ware systems. In: Proceedings of the IEEE International Symposium on Require-
ments Engineering, pp. 84–91. IEEE Computer Society, Washington (1999)

310 S. Faßbender et al.

34. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements
from goal models. In: IEEE 31st International Conference on Software Engineering,
pp. 265–275. IEEE Computer Society (2009)

35. Mohammadi, N.G., Alebrahim, A., Weyer, T., Heisel, M., Pohl, K.: A framework
for combining problem frames and goal models to support context analysis during
requirements engineering. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.,
Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 272–288. Springer, Heidelberg
(2013)

36. Beckers, K., Faßbender, S., Heisel, M., Paci, F.: Combining goal-oriented and
problem-oriented requirements engineering methods. In: Cuzzocrea, A., Kittl, C.,
Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 178–
194. Springer, Heidelberg (2013)

37. Conejero, J.M., Hernandez, J., Jurado, E., van den Berg, K.: Mining early aspects
based on syntactical and dependency analyses. Sci. Comput. Program. 75, 1113–
1141 (2010)

38. Lencastre, M., Moreira, A., Araújo, J., Castro, J.: Aspects composition in problem
frames. In: Proceedings of the 16th IEEE International Requirements Engineering
Conference, pp. 343–344. IEEE Computer Society (2008)

Problem-Based Security Requirements
Elicitation and Refinement with PresSuRE

Stephan Faßbender(B), Maritta Heisel, and Rene Meis

Paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{stephan.fabbender,maritta.heisel,rene.meis}@paluno.uni-due.de

Abstract. Recently published reports on cybercrime indicate an ever-
increasing number of security incidents related to IT systems. Many
attacks causing the incidents abuse (in)directly one or more security
defects. Fixing the security defect once fielded is costly. To avoid the
defects and the subsequent need to fix them, security has to be considered
thoroughly when developing software. The earliest phase to do so is the
requirements engineering, in which security threats should be identified
early on and treated by defining sufficient security requirements. In a pre-
vious paper [1], we introduced a methodology for Problem-based Security
Requirements Elicitation (PresSuRE). PresSuRE provides a computer-
aided security threat identification. The identification is based on the
functional requirements for a system-to-be. Still, there is a need for guid-
ance on how to derive security requirements once the threats are identi-
fied. In this work, we provide such guidance extending PresSuRE and its
tool support. We illustrate and validate our approach using a smart grid
scenario provided by the industrial partners of the EU project NESSoS.

Keywords: Security analysis · Problem frames · Requirements elicita-
tion

1 Introduction

Recently, there has been an increase of reported security incidents hitting large
software systems. For example, in the report on cybercrime for the year 2013
published by the federal criminal police office of Germany, the authors state that
64426 security incidents were reported in Germany [2]. This is an increase by
70 percent with respect to 2008 [3]. Moreover, particular types of attacks which
aim at companies increased much more. For example, data manipulation and
computer sabotage incidents in companies increased by 18 percent with respect
to 2012 and 578 percent with respect to 2008. These numbers are limited to

Part of this work is funded by the German Research Foundation (DFG) under
grant number HE3322/4-2 and the EU project Network of Excellence on Engineer-
ing Secure Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4
Trustworthy ICT, Grant No. 256980).

c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 311–330, 2015.
DOI: 10.1007/978-3-319-25579-8 18

312 S. Faßbender et al.

Germany, but, for example, Norton reports a world wide damage of 113 billion
US dollar in 2013 due to security incidents [4]. Hence, the need for secure IT
systems is staggering.

Not all of the security incidents are directly related to security defects in an
IT system, but many attacks abuse indirectly or directly one or more security
defects. Hence, these security defects need to be fixed. But fixing the security
defect causing the incident is costly. Fixing a defect when it is already fielded is
reported to be up to eighty times more expensive than fixing the corresponding
requirements defects early on [5,6]. Thus, security issues should be detected as
early as possible for a system-to-be. Therefore, it is crucial for requirements
engineers to identify security threats, and to refine the threats into security
requirements. But eliciting good requirements is not an easy task [7], even more
with regard to security, as most requirements engineers are not security experts
in the first place.

In a previous work of ours, we proposed a method called problem-based secu-
rity requirements elicitation (PresSuRE), which guides a requirements engineer
through the process of eliciting a set of security requirements in collaboration
with the stakeholders of the system-to-be and security experts [1]. PresSuRE
has several benefits. It does not require the requirements engineer to have a
security background. It does not require any preliminary security requirements
and security relevant information. It lowers the effort by providing tool support
for semi-automated modeling and an automated security analysis. Furthermore,
PresSuRE is completely guided by a detailed process.

PresSuRE is based on the same idea of deriving information flows from func-
tional requirements like the problem-based privacy analysis (ProPAn) [8], but
changes the analysis to be suitable for security. The analysis and elicitation
is based on a complete set of functional requirements for a system-to-be. The
method is accompanied with tool-support1. PresSuRE is based on the problem
frame notation introduced by Jackson [9]. Problem frames are suitable as input
for a semi-automated analysis, as they have a predictable structure, underlying
semantics, and support focusing on parts of the system-to-be.

But PresSuRE, as reported in the previous work, only gives detailed guid-
ance for the steps which are necessary for analyzing the system-to-be for secu-
rity threats. A description how to derive and model initial security requirements,
and how to analyze if the security requirements are sufficient regarding the found
threats, is still missing. Hence, in this paper we provide such guidance by extend-
ing PresSuRE.

We briefly describe the case study (Sect. 2) we use for the running example
and the validation. The problem frame notation is explained in Sect. 3. Section 4
introduces the running example, which is used for the rest of the paper. The
PresSuRE method as introduced in [1] is briefly explained in Sect. 5. In Sect. 6,
we describe the our new extension for deriving security requirements and in
Sect. 7 PresSuRE is validated. In Sect. 8 related work is discussed, and the final
conclusion is drawn in Sect. 9.
1 http://www.uml4pf.org/ext-pressure/installation.html.

http://www.uml4pf.org/ext-pressure/installation.html

Problem-Based Security Requirements Elicitation and Refinement 313

2 Case Study

To illustrate the application of the PresSuRE method, we use the real-life case
study of smart grids. As sources for real functional and quality requirements, we
consider diverse documents such as “Application Case Study: Smart Grid” pro-
vided by the industrial partners of the EU project NESSoS2, the “Protection Pro-
file for the Gateway of a Smart Metering System” [10] provided by the German
Federal Office for Information Security, and “Requirements of AMI (Advanced
Multi-metering Infrastructure”) [11] provided by the EU project OPEN meter3.

To use energy in an optimal way, smart grids make it possible to couple the
generation, distribution, storage, and consumption of energy. Smart grids use
information and communication technology (ICT), which allows for financial,
informational, and electrical transactions.

We define the terms specific to the smart grid domain and our use case in
the following. The smart meter gateway represents the central communication
unit in a smart metering system. It is responsible for collecting, processing, stor-
ing, and communicating meter data. The meter data refers to readings measured
by smart meters regarding consumption or production of a certain commodity.
A smart meter represents the device that measures the consumption or produc-
tion of a certain commodity and sends it to the gateway. An authorized external
entity can be a human or an IT unit that communicates with the gateway from
outside the gateway boundaries through a wide area network (WAN). The WAN
provides the communication network that interconnects the gateway with the
outside world. The LMN (local metrological network) provides the communica-
tion network between the meter and the gateway. The HAN (home area network)
provides the communication network between the consumer and the gateway.
The term consumer refers to end users of commodities (e.g., electricity).

3 Problem-Oriented Requirements Engineering

Jackson [9] introduced the concept of problem frames, which is concerned with
describing, analyzing, and structuring software development problems. A prob-
lem frame represents a class of software development problems. It is described
by a frame diagram, which consists of domains, interfaces between them, and a
requirement. Domains describe entities in the environment. Jackson distinguishes
the domain types biddable domains that are usually people, causal domains that
comply with some physical laws, and lexical domains that are data representa-
tions. Whenever we have influence on the design of a domain it is a designed
domain. To describe the problem context, a connection domain between two
other domains may be necessary. Connection domains establish a connection
between other domains by means of technical devices. Examples are video cam-
eras, sensors, or networks. Note that one domain can have more than one type,
for example a domain can be a connection and causal domain at the same time.
2 http://www.nessos-project.eu/.
3 http://www.openmeter.com/.

http://www.nessos-project.eu/
http://www.openmeter.com/

314 S. Faßbender et al.

Fig. 1. Problem diagram RQ 4: submit meter data.

Interfaces connect domains, and they contain shared phenomena. Shared
phenomena may be events, operation calls, messages, and the like. They are
observable by at least two domains, but controlled by only one domain, as indi-
cated by the abbreviation of that domain and “!”. For example, the shared phe-
nomenon MeterData in Fig. 1 is observable by the domains SMGSubmitter and
PersistentMeterData, but controlled only by the domain PersistentMeterData
(abbreviation PMD).

The objective is to construct a machine (i.e., software) that controls the
behavior of the environment (in which it is integrated) in accordance with the
requirements. Problem-oriented requirements analysis relies on a decomposition
of the overall problem into sub-problems, which are represented by problem
diagrams. Problem diagrams contain the requirements belonging to the sub-
problem. When we state a requirement, we want to change something in the
environment. Therefore, each requirement constrains at least one domain in the
environment. A requirement may also refer to several domains in the environ-
ment of the machine.

The problem frames approach distinguishes between the requirements (R),
the domain knowledge (D), and the specification (S). The requirements describe
the desired system after the machine is built. The domain knowledge repre-
sents the relevant parts of the problem world. The specifications describe the
behavior of the software in order to meet the requirements.

We describe problem frames using UML class diagrams, extended by stereo-
types, as proposed by Hatebur and Heisel [12]. Figure 1 shows a problem
diagram in UML notation. The biddable domain (UML class with stereo-
type �biddableDomain�) Authorized External Entity controls the request
billing data phenomenon (Denoted by the AEE!{requestBillingData} in the
name of the UML association with the stereotype �connection� between
the classes Authorized External Entity and WAN), which is observed by the
causal connection domain WAN (UML class with stereotype �causalDomain,
connectionDomain�). The SMGSubmitter controls the read data phenomenon,
which is observed by the lexical domain PersistentMeterData (UML class
with stereotype �lexicalDomain�). Additionally, the SMGProvider submits the
data. The Persistent Meter Data controls the meter data it contains. The WAN
forwards the data and commands it observes. The requirement RQ 4 (for a textual

Problem-Based Security Requirements Elicitation and Refinement 315

description see Sect. 4) constrains the WAN for forwarding the submitted data
and refers to the billing data requested by Authorized External Entity, and the
meter data stored in the PersistentMeterData.

4 Running Example: Billing

We chose the use case Meter Reading for Billing given in the documents of
NESSoS and the open meter project to exemplify our method. This use case
is concerned with gathering, processing, and storing meter readings from smart
meters for the billing process. Beside the billing use case, there are in total 13
use cases described for the minimal features of a smart meter gateway, which we
all considered for our validation. The functional requirements for this use case
are defined as follows:

(RQ 1)Receive Meter Data. The smart meter gateway shall receive meter
data from smart meters.
(RQ 2)Process Meter Data. The smart meter gateway shall process meter
data from smart meters.
(RQ 3)Store Meter Data. The smart meter gateway shall store meter data
from smart meters.
(RQ 4)Submit Billing Data. The smart meter gateway shall submit processed
meter data to authorized external entities.
(RQ 5)Provide Consumption Data to Consumer. The smart meter gate-
way shall provide meter data for consumers for the purpose of checking the
consistency of bills.

The problem diagram for RQ 4 was already shown in Fig. 1 and explained in
Sect. 3. Figure 2 shows the problem diagram for RQ 1. The causal domain smart
meter controls the send data phenomenon, which is forwarded by the LMN
and finally observed by the machine domain SMGReceiver. The SMGReceiver
controls the phenomenon writeTemporaryData, which stores the received infor-
mation in the lexical domain temporary meter data. Additionally, the SMGRe-
ceiver can request data which is forwarded by the LMN to the smart meter.

Fig. 2. Problem diagram RQ 1: receive meter data.

316 S. Faßbender et al.

The causal connection domain LMN forwards the data and commands it
observes. The requirement RQ 1 constrains the temporary meter data and refers
to the smart meter. These two problem diagrams are sufficient to understand
the rest of the paper, nevertheless we use all five functional requirements for our
method.

Note that we will simplify this example in the following. We will not elaborate
on all security elements but restrict ourselves to one example for each element,
for example one asset, to improve the comprehensibility for the reader and for
reasons of space. Nevertheless, for the validation we elaborated the full case
study in means of 27 requirements and all possible assets and attackers.

5 The PresSuRE Method

The PresSuRE method as introduced in [1] consists of four phases and nine
steps, which we will briefly explain in the following. For a detailed view we refer
the reader to [1].

5.1 Model Functional Requirements

We assume that the functionality of the system-to-be is described completely,
coherently and unambiguously. The functional requirements are a good starting
point for a security analysis as the requirements engineer is used to deal with
them, they are often already well defined, they already contain everything which
has to be protected, and they also contain the entry points for possible attack
vectors an adversary can use.

Model Problem Diagrams. In the first step of the PresSuRE method, the
functional requirements have to be modeled using the problem frame notation.
This can be done by the requirements engineer alone, based on a textual descrip-
tion of the functional requirements. The result is a set of problem diagrams as
well as an automatically generated connection domain discovery table. The func-
tional requirements and corresponding problem diagrams are presented in Sect. 4.

Adjust Problem Diagrams. As setting up problem diagrams allows some
degree of freedom, adjustments might be needed to prepare the problem dia-
grams. For the PresSuRE analysis, connection domains are specifically impor-
tant. But as connection domains are not of central relevance for fulfilling the
functional requirements, they are often left out. Hence, one has to make sure
that all connection domains are explicitly modeled.

For each connection between domains, the requirements engineer and the sys-
tem stakeholders have to check if there is a connection domain in between. The
requirements engineer and the system stakeholders use a table containing the
connected domains pairwise, the phenomena in between and a standard ques-
tionnaire, which helps to elicit the missing connection domains. For an example
of such a table see [1]. The result of this step are adjusted problem diagrams,
which are modeled by the requirements engineer using semi-automated wizards.

Problem-Based Security Requirements Elicitation and Refinement 317

For our example, using the table and answering the questions, we see that our
problem diagrams have to contain WAN, HAN and LMN as connection domains.
This information is already reflected by the problem diagrams shown in this paper.

5.2 Security Knowledge Elicitation

Before starting the security analysis, some security-specific knowledge has to
be elicited. This information is crucial for the success of the analysis, as in
most cases the functional requirements do not contain enough information for
considering security thoroughly. The knowledge about assets in the system-to-be
and attackers which might tamper with the system has to be made explicit. As
this knowledge is not or only partially available for requirements engineers, they
have to collaborate with the stakeholders of the system and security experts.

Prepare Knowledge Elicitation. Even though the functional requirements
do not contain the information for security analysis, they do already contain
some information, which is the starting point for eliciting the additional domain
knowledge. We use security element elicitation tables, and attacker elicitation
tables to elicit this information. Examples of such tables are given in [1]. The
tables are automatically generated from the problem diagrams.

Identify Assets, Authorized Entities and Rights. The baseline questions
for this step are “What has to be protected?” (asset), “Who is eligible to access
the asset?” (authorized entities), and “Which actions are allowed for a stake-
holder regarding an asset?” (rights). We use the previously generated security
element elicitation tables to elicit this information. These tables are completed
by the stakeholders of the system-to-be using the following description, while the
requirements engineer models the results.

Assets. Identify those domains which have to be protected. Every domain beside
the machine is an asset candidate. Most likely one wants to protect a lexical
domain representing information or a causal domain. For our example, we only
select the persistent meter data as an asset, which contains information about
the electricity consumption of the consumer. This information has to be protected
for privacy reasons, as it, for example, allows to monitor the consumer. The full
case study contains 13 further assets (see Sect. 7).

Authorized Entities. An authorized entity to an asset is every domain which
has an eligible interest in knowing the state / reading, or controlling / writing
the asset. Eligible entities of the meter data are the smart meters, which produce
the meter data, the external entities, who need the consumption information for
billing, and the consumer, who wants to check his/her electricity consumption.

Rights. Authorized entities have different rights to access the asset. In case of
a lexical domain, the rights are to read or write the information in the domain.
In case of the causal domain, the rights are to control or know the state of
the causal domain. For each right and authorized entity, one has to state if the
entity is allowed to have the right or if the entity must have the right. The smart

318 S. Faßbender et al.

meters must have the right to write the information, while the consumer and
external entities must have the right to read the information. The smart meters
do not need to read the stored consumption data, and the external entities and
the consumer are not allowed to modify the consumption data.

The elicited information has to be added to the model. For this purpose,
we use domain knowledge diagrams. In domain knowledge diagrams additional
knowledge about domains and relations between domains can be modeled. To
support modeling security-related domain knowledge we developed UML profiles.
The modeling is explained in detail in [1]. The diagrams are generated in the
background while the requirements engineer completes a wizard which is similar
to the security element elicitation table. The result of the step are asset knowledge
diagrams.

Attacker(s) Elicitation. In this step, the requirements engineer and a secu-
rity expert have to collaborate to define those attackers who might attack our
system-to-be. While the requirements engineer has a deeper understanding of the
system-to-be and its domain, the security expert adds his/her vital knowledge
about attackers, attacker abilities, possible attack vectors, and so forth. Hence,
it is not mandatory that the requirements engineer has a security background.

Beckers et al. [13] enumerate different types of attackers: physical attacker,
software attacker, network attacker, and social attacker. Regarding their abili-
ties, we have chosen the abilities as described by Dolev and Yao [14]: read (read
message / get state of domain), write (write message / change state of domain),
interfere (intercept message / prevent the change of state). For the purpose of
eliciting the information about attackers, we use the generated attacker elicita-
tion tables.

Attacker. First, we have to reason for each domain and type of attacker about
the question if this type of attacker might exist for the domain at hand. For
simplicity’s sake, we assume for the running example that we only have to defend
against network attackers. We distinguish between two network attackers: The
internal network attacker, who has access to the HAN and LMN, where the smart
meters reside, and the external network attacker, who can attack via the WAN.
Note that for the full case study we found and modeled 7 attackers in total,
including all kinds of attackers.

Abilities. For each attacker and each domain the attacker has access to, we
have to state which abilities the attacker has. Whenever there is no detailed
information about the attackers and their abilities regarding a domain they
have access to, one should assume the strongest attacker. This might lead to
an overestimation of the threats afterward. But adding an unnecessary secu-
rity requirement is not so much of an issue, while missing one is critical. After
an assessment of all attackers of our example and their abilities, we could not
exclude any of the basic abilities. Hence, our attackers have all abilities regarding
the domains they have access to.

The elicited information has to be added to the model to be available for
our analysis, too. Again, the modeling can be done semi-automatically using the

Problem-Based Security Requirements Elicitation and Refinement 319

wizards our tool provides. The result are attacker knowledge diagrams (see [1]
for more details).

5.3 Graph Generation

The automated part of the security analysis relies on graphs, which visualize infor-
mation flows and access flows. The attacker asset access graphs, which contain
the potential security threats towards the functional requirements, are generated
stepwise. The steps and intermediate graphs are explained in the following.

Global Access Graph. All graphs (V, E) that we use for our security analysis in the
PresSuRE method are labeled and directed. The set of vertices is a subset of the
domains occurring in the model, formally V ⊆ Domain. An edge is annotated
with a diagram and a type. The diagram can be a problem diagram or a domain
knowledge diagram. The type can be required (req), implicit (imp) or attack (att)
(Type :: = req|imp|att). The type indicates if the edge is required or implicitly
given by the problem diagram or if it shows a possible attack relationship defined
in a domain knowledge diagram. The edges point from one domain to another,
formally E ⊆ Domain × Diagram × Type × Domain. For the rest of the paper
we will regard such an edge as an access flow. In the following, we describe a
graph (V, E) only by its edges E .

For the analysis of the threats towards an asset we will use the global
access graph. This graph contains the information about access flows between
domains, and which problem diagrams are the source of these flows. For the
flows, we distinguish between required flows as stated by the requirement and
implicit ones which are modeled due to the given environment. To set up the
global access graph we use the problem diagrams as an input. The predicates
constrains, refersTo : P(Domain × Diagram) and controls : P(Domain ×
Domain × Diagram) can be derived from the problem frame model and are
used to generate the global access graph. We have (d, p) ∈ constrains and
(d, p) ∈ refersTo iff a requirement or domain knowledge in diagram p con-
strains the domain d or refers to it, respectively. (d1, d2, p) ∈ controls is true iff
the domain d1 controls an interface that d2 observes in the diagram p.

Using these predicates, we create the global access graph G, which is an
overapproximation of the access flows occurring in the system-to-be. An edge
(d1, p, req, d2) is in G iff the domains d1 and d2 are not equal, and the domain d1
is referred to and the domain d2 is constrained in p. For example, the problem dia-
gram for RQ 1 (see Fig. 2) contains the smart meter and the temporary storage.
The smart meter is referred by RQ 1 and the temporary storage is constrained by
RQ 1 . Hence, we add a required access flow edge (solid arrow) between smart
meter (node with name SmartMeter) and temporary meter data (node with name
TemporaryMeterData) annotated with RQ 1 (see graph shown in Fig. 3).

Additionally, an edge (d1, p, imp, d2) is in G iff the (d1, p, req, d2) is not already
in G, the domains d1 and d2 are not equal, and d2 observes an interface con-
trolled by d1 in p. Note that machines are treated as transitive forwarders in
this case. This means that whenever a machine m observes an interface con-
trolled by d1, and d2 observes an interface controlled by m, we assume that

320 S. Faßbender et al.

Fig. 3. Global access graph (also asset access graph for persistent meter data).

d2 observes an interface of d1. For example, the domain LMN controls a phe-
nomenon forwardMeterData which is observed by the machine (see Fig. 2). The
domain temporary meter data observes a phenomenon writeTemporaryData from
the machine. Hence, an implicit access flow edge (dotted edge) is added between
the LMN and the temporal meter data annotated with RQ 1 (see Fig. 3). The
complete formal definition is given in [1].

Because of the annotation of the edges we keep the information which prob-
lem diagram causes the access flow. Thus, our global access graph contains trace-
ability links that are used in our further analysis. The semantics of an edge
(d1, p, t, d2) ∈ G is that in problem diagram p there is possibly a required or
implicit (depending on t) access flow from domain d1 to domain d2.

Asset Access Graph. As the global access graph can be huge for a complex
system-to-be, we introduce an asset access graph which focuses the view on one
asset only. It only contains access flows given by the requirements directly or
indirectly concerning the asset. Thus, we get one asset access graph per asset.
The asset access graph makes the information for the requirements engineer
easier to comprehend. Hence, it improves the scalability of our method. An edge
(d1, p, t, d2) is in Gasset iff p is in Paccess. A problem diagram p is in Paccess iff
there is an edge (d1, p, t, d2) which is required and d1 and d2 are both in Daccess.
Daccess is a union of Dactive and Dpassive. A domain d1 is in Dactive iff there is
a required access flow which starts at d1 and the target domain d2 is already in
Dactive. Initially, only the asset is in Dactive. Hence, Dactive contains all domains
which have a required direct or indirect (via another domain) access flow towards
the asset. A domain d2 is in Dpassive iff there is a required access flow which
ends at d2 and the source domain d1 is already in Dpassive. Initially, only the
asset is in Dpassive. Hence, Dpassive contains all domains which are the target
of a required direct or indirect (via another domain) access flow from the asset.
The complete formal definition is given in [1].

The resulting asset access graph for the persistent meter data is shown in
Fig. 3, as for our small example the global and the asset access graph do not differ.
For a complex scenario the asset access graph is significantly smaller than the
global access graph. The asset access graph can be used to check if a stakeholder
can gain more rights than he/she should. For reasons of space, we do not go into
detail on this matter.

Attacker Asset Access Graph. For each asset, we generate the attacker asset
access graph, which visualizes the information and control flows from attack-
ers to the asset and from the asset to the attackers. At this point, we focus
on the basic information security goals confidentiality, integrity, and availabil-
ity (short CIA), which are suggested by the Common Criteria [15] and ISO

Problem-Based Security Requirements Elicitation and Refinement 321

27000 family of standards [16]. The problematic access flows are annotated with
the information which CIA property(ies) are threatened (CIA:: = C|I|A|ε).
First, the domains which are directly connected to attackers are identified.
Note that for this purpose we use the information given in domain knowl-
edge diagrams created during the step Identify assets, authorized entities and
rights described in Sect. 5.2. From these diagrams, we can derive the predi-
cates read,write, interfere : P(Domain × Diagram). We have (d, dk) ∈ read,
(d, dk) ∈ write, and (d, dk) ∈ interfere iff domain knowledge in diagram dk has
a read, write, or interfere dependency, respectively, to the domain d.

A domain d can be object to be attacked if it is in Daccess for the asset
at hand. That is, an attacker can access or influence information on the asset
through the domain d. We define the sets Dw, Di, and Dr as the sets of
all domains for which an attacker has the ability to write, interfere, or read
it, respectively. A domain d is in Dw iff there exists an attacker a and a
domain knowledge diagram dk, in which d is written and a is referred to by
the domain knowledge. The domain d is in Di iff there exists an attacker a and
a domain knowledge diagram dk in which d is interfered and a is referred as
sources of the interference. The domain d is in Dr iff there exists an attacker a
and a domain knowledge diagram dk in which the information in d is referred to
and a reads this information. Based on the three sets of domains which might
be attacked, the asset threat graph Gthreat can be set up. Dw, Di, and Dr are
formally defined as follows.

Dw ={d : Daccess | ∃a : Attacker; dk : Diagram • (d, dk) ∈ write

∧ (a, dk) ∈ refersTo}
Di ={d : Daccess | ∃a : Attacker; dk : Diagram • (d, dk) ∈ interfere

∧ (a, dk) ∈ refersTo}

Dr ={d : Daccess | ∃a : Attacker; dk : Diagram • (a, dk) ∈ read ∧ (d, dk) ∈ refersTo}

Gthreat contains all edges, and therefore problem diagrams, of the corresponding
asset access graph which might allow an attacker to successfully attack the asset
at hand. An access flow (d1, p, t, d2) ∈ Gasset represents that information which
is transferred from d1 to d2 that possibly comes from the asset or that possibly
will be stored in the asset. Hence, such an access flow is a possible threat to the
confidentiality of an asset if an attacker has the ability to read one of the domains
d1 or d2 (d1 ∈ Dr ∨ d2 ∈ Dr). In this case, we add the edge (d1, p, t,C, d2) to
Gthreat. An access flow (d1, p, t, d2) ∈ Gasset is a possible threat to the integrity
of an asset if an attacker has the ability to write the source d1 of the access
flow (d1 ∈ Dw), because an attacker could change the information of the asset
or the information sent to the asset at domain d1, which forwards it to domain
d2. In this case, we add the edge (d1, p, t, I, d2) to Gthreat. We have to consider
an access flow (d1, p, t, d2) ∈ Gasset as a possible threat to the availability of
an asset if an attacker has the ability to interfere one of the domains d1 or d2
(d1 ∈ Di ∨ d2 ∈ Di), because an attacker is then able to threaten the availability
of information flowing from or to the asset through the domains d1 and d2. In

322 S. Faßbender et al.

Fig. 4. Attacker asset access graph for persistent meter data.

this case, we add the edge (d1, p, t,A, d2) to Gthreat. Gthreat is defined as follows.

Gthreat ={(d1, p, t, cia, d2) : Domain × Diagram × Type × CIA × Domain |
(d1, p, t, d2) ∈ Gasset ∧ [(d1 ∈ Dr ∨ d2 ∈ Dr) ∧ cia = C

∨ d1 ∈ Dw ∧ cia = I ∨ (d1 ∈ Di ∨ d2 ∈ Di) ∧ cia = A]}
The full attacker asset access graph Gattack is an extension of Gthreat ⊂ Gattack.
We add an edge (d1, p, t, ε, d2) to Gattack iff (d1, dk, t, d2) is in Gasset but not in
Gthreat. These edges visualize how the attacks on the access flows in Gthreat might
be propagated over the system due to the functional requirements. Additionally,
the attackers are added to the attacker asset access graph. Gattack contains an
edge (a, dk, att, cia, d) if a is an attacker and a domain knowledge diagram dk
exists, in which d is referred to and d is written (cia = I) or interfered (cia = A).
Additionally, Gattack contains an edge (a, dk, att,C, d) if a is an attacker and a
domain knowledge diagram dk exists in which d is referred to and a is read.
Formally, we define Gattack as follows.

Gattack ={(d1, p, t, ε, d2) : Domain × Diagram × Type × CIA × Domain

| (d1, p, t, d2) ∈ Gasset ∧ ∀st : CIA • (d1, p, t, st, d2) /∈ Gthreat}∪
{(a, dk, att, cia, d) : Attacker × Diagram × Type × CIA × Domain |
(d, dk) ∈ refersTo ∧ [(a, dk) ∈ read ∧ cia = C ∨ (a, dk) ∈ write ∧ cia = I

∨ (a, dk) ∈ interfere ∧ cia = A]} ∪ Gthreat

The generated attacker asset access graph for the persistent meter data is shown
in Fig. 4. Note that for reasons of readability, the PresSuRE tool merges edges
and their annotation if they have the same source and target, and are of the same
type. The asset is now visualized as ellipse with bold border and the asset name
(PersistentMeterData) is written in bold. The attackers internal and external
network attacker are also added as ellipses with dashed borders and in italic font.
Their attack flow edges are shown as dashed edges, which are annotated with
the domain knowledge diagram they are described in and the security goals they
may threaten. A bold (both, edge and annotation) access flow indicates a flow for
which a security property might be threatened by an attacker. The threatened
security property is annotated in brackets. For example, the implicit access flow
edge between the nodes LMN and TemporaryMeterData is annotated with RQ1
(A,C,I). Hence, it might be possible that for RQ1 the confidentiality, integrity
and availability of persistent meter data is threatened.

Problem-Based Security Requirements Elicitation and Refinement 323

6 Extending PresSuRE

For the last step of PresSuRE we have to analyze the attacker asset access graphs
and derive initial security requirements. The input to this step are the attacker
asset access graphs. As this step is sparsely described in [1], we elaborate this step
and describe the extended tool support in the following. The attacker asset access
graph contains all information regarding access flows to and from the asset at
hand. And it contains the information where the asset might be threatened by an
attacker. For each asset we identified previously, we check if we have to augment
the original requirements related to the asset with security requirements. For
each attacker asset access graph, we have to do the following as long as not all
problematic access flows are treated:

Select Edge. Select a problematic required or implicit access flow (bold edge
with bold annotation) not considered yet. We select the implicit access flow edge
between the nodes LMN and TemporaryMeterData annotated with RQ1 (A,C,I).

Check Confidentiality. If there is a (. . . , C, . . .) annotated, we have to check
whether there is a threat to the confidentiality of the asset or not. If the threat
can occur for the annotated requirement, we have to augment this requirement
with a confidentiality requirement. Indeed, the confidentiality is threatened by
internal network attackers. If they are able to learn all data sent by the smart
meters, they can derive the information contained in the persistent meter data
by themselves. Hence, we have to add a confidentiality requirement complement-
ing RQ1.

Check Integrity. If there is an (. . . , I, . . .) annotated, we have to check whether
there is a threat to the integrity of the asset or not. If the threat can occur
for the annotated requirement, we have to augment this requirement with an
integrity requirement. The integrity is threatened by internal network attackers.
If they are able to add data or change data sent by the smart meters, they can
change the information contained in the persistent meter data. This is a threat
as the persistent meter data is the basis for the billing. Hence, we have to add
an integrity requirement complementing RQ1.

Check Availability. If there is an (. . . , A, . . .) annotated, we have to check
whether there is a threat to the availability of the asset or not. If the threat
can occur for the annotated requirement, we have to augment this requirement
with an availability requirement. The availability can be threatened by internal
network attackers. If they are able to deny the service of the LMN, no data
can be sent by the smart meters. Thus, the persistent meter data cannot be
computed and used for billing. Hence, we have to add an availability requirement
complementing RQ1.

The iteration over the assets, and the iteration over the edges in an accord-
ing attacker asset access graph for the asset at hand, is guided by the tool. It
indicates the asset and the edge in question and shows the according attacker
asset access graph. The requirements engineer and security expert have to do

324 S. Faßbender et al.

Table 1. SR template for connection domains, and integrity and confidentiality.

Input

domain accessed by the attacker, the attacker, and threatened security property

Precondition

Precondition 1: Domain accessed by the attacker is a connection domain

Precondition 2: Security property threatened is integrity or confidentiality

Template

Title: Secure access flows via [domain accessed by the attacker]

Text: The access flows via the [domain accessed by the attacker] must be secured
in a way such that the [the attacker] is not able to threaten the [threatened security
property] of the access flows

the reasoning and provide the result to the tool. From this information we col-
lected for an edge, we can derive initial security requirements. The initial security
requirements can be generated automatically, by using templates. For example,
the template for a security requirement regarding a connection domain which
can be accessed by an attacker to threaten the security properties confidentiality
and integrity is shown in Table 1. Such a template defines the inputs for filling
the templates. In this case, we need the attacker, the domain he/she can access
and the security property threatened by the access of the attacker. To instanti-
ate the template in a reasonable way some preconditions must be fulfilled. First,
the domain accessed by the attacker must be a connection domain. Second, the
security property threatened must be integrity or confidentiality. The template
itself is given as gap-text in which the gaps are indicated by brackets. Within a
bracket the input element is referenced, which will later on replace the bracket
when instantiating the template. Such a template also contains the modeling
rules to add the security requirement to the problem frames model. For sake of
brevity, we do not show and discuss these rules in detail. An example model is
shown in Fig. 5. In general, we stick to the profile and rules as defined in [17].

The templates for the different cases are implemented in the tool. Hence,
for our example we can generate the following requirement regarding confiden-
tiality: SRQ 1.1 Secure access flows viaLMN The access flows via the
LMNmust be secured in a way that theInternalNetworkAttackeris not able to
threaten theconfidentialityof the access flows. Fig. 5 shows the according model-
ing, in which the confidentiality requirement SRQ1.1 (UML class with stereo-
types �requirement, confidentiality�) complements (UML dependency with
stereotype �complements�) RQ 1(UML class with stereotype �requirement�).
SRQ1.1 constrains (UML dependency with stereotype �constrains�) the LMN
(UML class with stereotypes �connectionDomain, causalDomain�). SRQ1.1
considers the InternalNetworkAttacker (Property attackers of SRQ1.1). We treat
the integrity and availability threat for the selected edge in the same way.

Every newly added security requirement has an impact on the attacker asset
access graph at hand. But it also has an impact on other attacker asset access
graphs whenever an attacker asset access graph contains edges, which appear

Problem-Based Security Requirements Elicitation and Refinement 325

Fig. 5. Snipped from the problem diagram for RQ 1 augmented with SRQ1.1

due to the functional requirement that is complemented by the newly added
security requirement. Hence, it is necessary to reduce all attacker asset access
graphs to ensure that one only analyzes edges which are not already treated by
a security requirement. For the specification of the reduction of attacker asset
access graphs, we need two additional predicates. The predicate isMitigated :
P(Requirement × CIA × Attacker) can be derived from the problem frame
model. We have (r, cia, a) ∈ isMitigated iff the requirement r is complemented
by a cia security requirement, which refers to attacker a. The predicate models :
P(Requirement ×Diagram) can be derived from the problem frame model. We
have (r, p) ∈ models iff a requirement r is part of the diagram p. Additionally,
we define the set Raccess. Raccess contains the tuples (r, cia, a) : Requirement×
CIA×Attacker which relate the requirement r to the attacker a who exploits r
to threaten the security property cia. A tuple (r, cia, a) is in Raccess iff an access
flow (d1, p, t, cia, d2) exists in part of the attacker asset access graph Gattack for
which the requirement r is modeled in the diagram p and Gattack additionally
contains an edge (a, dk, att, cia, d1) or an edge (a, dk, att, cia, d2).

Raccess ={(r, cia, a) : Requirement × CIA × Attacker | ∃(d1, p, t, cia′, d2) : Gattack•
cia′ = cia ∧ (r, p) ∈ models ∧ (∃dk : diagram • (a, dk, att, cia, d1) ∈ Gattack

∨ (a, dk, att, cia, d2) ∈ Gattack}
Based on Raccess and GthreatOld, which is equal to Gthreat calculated before we
introduce a new security requirement, we can now update Gthreat. Gthreat now
contains all edges, and therefore problem diagrams, of the corresponding asset
access graph which might allow an attacker to successfully attack the asset at
hand and this attack is not mitigated by an according security requirement. An
access flow (d1, p, t, cia, d2) ∈ GthreatOld is also contained in Gthreat iff there exists
an requirement r and an attacker a for which the requirement r is modeled in
the diagram p, the requirement r enables the attacker a to threaten cia, and this
access is still not mitigated by a complementing security requirement. Formally,
we define the new Gthreat as follows:

required GthreatOld

Gthreat ={(d1, p, t, cia, d2) : GthreatOld | (∃r : Requirement, a : Attacker•
(r, p) ∈ models ∧ (r, cia, a) ∈ Raccess \ isMitigated)}

The updated threat graph Gthreat leads to an updated and reduced attacker
asset access graph Gattack . Hence, the tool ensures that only edges are analyzed
which are not already treated. Additionally, the tool is now able to detect that
an asset is not threatened anymore as Gattack is gradually reduced till it is
empty. As we have added security requirements for integrity, confidentiality, and

326 S. Faßbender et al.

Fig. 6. Attacker asset access graph for persistent meter data after reduction.

availability complementingRQ 1 , the tool generates reduced attacker asset access
graphs. Fig. 6 shows the graph for the persistent meter data after the reduction
(the initial graph is shown in Fig. 4). The smart meters, the LMN, and the
temporary meter data are no longer part of the graph, as the threats which made
them relevant are already covered by security requirements.

7 Validation

We validated PresSuRE using two real-life case studies, the already introduced
smart meter and a voting system. The voting system requirements were obtained
from a Common Criteria profile for voting systems [18]. For more details on
the voting system case study, see [19]. The results for applying PresSuRE are
reported in the following in detail for the Smart Grid. The original functional
requirements were obtained from [11] and the NESSoS case studies provided by
the industrial partners of the project. For conducting our method, we selected 13
minimum uses cases, which embody 27 requirements in total. For these require-
ments, 14 assets and 7 attackers of all kinds, as described in Sect. 5.2, were
identified. Based on this information, the graphs were generated, and the initial
security requirements elicited.

We analyzed each attacker asset access graph for assessing the tool sup-
port, and we also analyzed the initial security requirements found for assessing
the overall method. For the graph, we checked for each edge in the attacker
asset access graph at hand if the annotated threats are existing according to
the threats and security requirements of the original documents (e.g. [10,11]
for smart meter). We also looked for threats and security requirements which
are defined in such documents, but which were not identified using PresSuRE.
In this way we were able to measure the precision and recall of our method.
Unfortunately, we do not know which security analysis was used for eliciting the
security requirements reported in those documents. But we assume that secu-
rity experts were involved in writing the documents and the documents were
reviewed thoroughly. Hence, these documents are a good benchmark.

Next, we aggregated the results of the edges of the attacker asset access graph
for each requirement. Thus, we derived for each requirement the information if
the requirement has to be complemented by security requirements according
to PresSuRE. Again, we also checked if the found security requirements are

Problem-Based Security Requirements Elicitation and Refinement 327

Table 2. Results of the assessment for the smart meter case study.

Confidentiality Integrity Availability

Precision per attack asset access edges 36.14% 66.35% 62.52%

Recall per attack asset access edges 100.00% 100.00% 100.00%

Aggregated precision per attack asset access edges 55.00%

Aggregated recall per attack asset access edges 100.00%

Precision per requirement 92.59% 96.30% 96.30%

Recall per requirement 100.00% 100.00% 100.00%

Aggregated precision per requirement 95.06%

Aggregated recall per requirement 100.00%

compliant with the original documents. Last, we measured the precision and
recall of PresSuRE on the requirements level.

The results of this analysis for the smart meter is shown in Table 2. Speaking
of the precision on the level of edges of the attacker asset access graph, we have
many false positives, especially for confidentiality. This is because the original
documents do not demand a high level of confidentiality. Additionally, PresSuRE
discovered potential indirect information flows between assets which will not
occur in the system later on. Thus, PresSuRE is very strict and defensive, which
is not appropriate in every case. Note that even though the indirect flows often
turned out to be irrelevant, they have to be checked anyway. Often attacks use
such indirect relations to tamper with a system. Overall, the precision on the level
of edges of the attacker asset access graph is acceptable (55 %), but should be
improved. The recall is perfect (100 %) as we did not find any false negatives. On
the requirements level, our results are satisfying. Whenever PresSuRE suggested
to add a complementing security requirement for a functional requirement, this
suggestion was correct with a precision of 95 %, and no security requirement was
missed (recall 100 %).

Similar results were obtained for the voting system case study. The precision
on the level of edges of the attacker asset graph is slightly higher, as the vot-
ing system documents are very strict regarding confidentiality. This fact is also
reflected on the requirements level, but the difference to the smart meter case
study is not significant. For the attacker asset access edge and the requirements
level the recall was 100 % again.

Speaking of the effort, we spent 43 person hours, which is a significant effort,
but seems to be reasonable. The effort for using PresSuRE was reported and
discussed in detail in [1].

8 Related Work

Schmidt and Jrjens [20] propose to integrate the SEPP method, which is based
on problem frames, and UMLSec [21], which is based on a UML profile and allows
tool-based reasoning about security properties. In this way, they can express and
refine security requirements and transfer the security requirements to subsequent

328 S. Faßbender et al.

design artifacts. A similar method is described by Haley et al. [22], which also
relies on problem frames for security requirements analysis. The first method
[20] starts after the initial security requirements are already known, while the
latter one already embodies a step for security requirements elicitation. But this
particular step is described very sparsely and informally. Hence, our work can
complement and improve these works.

There are many publications concerning goal-oriented security requirements
analysis (e.g. [23–26]). But goal models are of a higher level of abstraction than
problem frames. Goal models are stakeholder-centric, while problem frames are
system-centric. Therefore, refining functional requirements taking into account
more detail of the system-to-be and analyzing the system-to-be described by the
functional requirements is reported to be difficult for goal-oriented methods [27].
Alrajeh et al. try to tackle this problem by introducing refinement steps which
rely on heavy weight formalizations. We offer an alternative way of bridging
this gap. Thus, even though the goals of an attacker and their implication for
the goals of stakeholders are already known, one might benefit from using our
method.

9 Conclusions

In this paper, we extended a methodology for Problem-based Security Require-
ments Elicitation (PresSuRE). PresSuRE is a method for identifying security
needs during the requirements analysis of software systems using a problem frame
model. Our extension now enables a guided analysis of found threats. In conse-
quence, security requirements can be derived in a structured way. In summary,
the PresSuRE method extension has the following advantages: It introduces a
method to reduce attacker asset access graphs successively by adding security
requirements, which (1) allows to visualize the impact of a security requirement
on the attacker asset access graphs, (2) visualizes the unmitigated threats, and
(3) avoids analysis of threats which are already covered by a security require-
ment. And it is a re-usable requirements security analysis method which (1)
investigates the threats gradually and relies on the analysis single access flow at
a time, which the analyst can easily comprehend, (2) allows to derive security
requirements in a structured way, (3) eases the formulation and modeling of
the security requirements, (4) is applicable to different domains, and (5) is tool
supported to ease analysis and the modeling tasks necessary for the method.
We validated our method and tool with two real-life case studies in the fields of
smart grids and voting systems. The results show the suitability of our method
to detect initial security requirements. For the future, we plan to investigate
how the basic CIA properties can be systematically refined further into more
fine-grained security requirements such as authentification and authorization.

Problem-Based Security Requirements Elicitation and Refinement 329

References

1. Faßbender, S., Heisel, M., Meis, R.: Functional requirements under security pres-
sure. In: ICSOFT-PT 2014 - Proceedings of the 9th International Conference on
Software Paradigm Trends, Vienna, Austria, 29–31 August 2014

2. Bundeskriminalamt (federal criminal police office): Bundeslagebild Cybercrime
2013 (report on cybercrime 2013). Technical report, Germany (2014)

3. Bundeskriminalamt (federal criminal police office): Bundeslagebild Cybercrime
2012 (report on cybercrime 2012). Technical report, Germany (2013)

4. Norton: Norton Report 2013. Technical report, Norton (2013)
5. Willis, R.: Hughes Aircraft’s Widespread Deployment of a Continuously Improving

Software Process. AD-a358 993. Carnegie-mellon university, Pittsburgh (1998)
6. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE

Trans. Softw. Eng. 14, 1462–1477 (1988)
7. Firesmith, D.: Specifying good requirements. J. Object Technol. 2, 77–87 (2003)
8. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for

computer-aided privacy threat identification. In: Preneel, B., Ikonomou, D. (eds.)
APF 2012. LNCS, vol. 8319, pp. 1–16. Springer, Heidelberg (2014)

9. Jackson, M.: Problem Frames: Analyzing and structuring software development
problems. Addison-Wesley, Boston (2001)

10. Kreutzmann, H., Vollmer, S., Tekampe, N., Abromeit, A.: Protection profile for
the gateway of a smart metering system. Technical report, BSI (2011)

11. Requirements of AMI. Technical report, OPEN meter project (2009)
12. Hatebur, D., Heisel, M.: Making pattern- and model-based software development

more rigorous. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp.
253–269. Springer, Heidelberg (2010)

13. Beckers, K., Hatebur, D., Heisel, M.: A problem-based threat analysis in compli-
ance with common criteria. In: ARES 2013, IEEE Computer Society (2013)

14. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29, 198–207 (1983)

15. ISO/IEC: Common Criteria for Information Technology Security Evaluation.
ISO/IEC 15408, International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC), Geneva, Switzerland (2009)

16. ISO/IEC: Information technology - Security techniques - Information security man-
agement systems - Overview and Vocabulary. ISO/IEC 27000, International Orga-
nization for Standardization (ISO) and International Electrotechnical Commission
(IEC), Geneva, Switzerland (2009)

17. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable
software. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 317–331.
Springer, Heidelberg (2010)

18. Volkamer, M., Vogt, R.: Common Criteria Protection Profile for Basic set of secu-
rity requirements for Online Voting Products. Bundesamt f”ur Sicherheit in der
Informationstechnik (2008)

19. Faßbender, S., Heisel, M.: From problems to laws in requirements engineering using
model-transformation. In: ICSOFT 2013, SciTePress. pp. 447–458 (2013)

20. Schmidt, H., Jürjens, J.: Connecting security requirements analysis and secure
design using patterns and UMLsec. In: Mouratidis, H., Rolland, C. (eds.) CAiSE
2011. LNCS, vol. 6741, pp. 367–382. Springer, Heidelberg (2011)

21. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)

330 S. Faßbender et al.

22. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Security requirements engi-
neering: a framework for representation and analysis. IEEE Trans. Softw. Eng. 34,
133–153 (2008)

23. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within
a social setting. In: RE 2003. pp. 151–161 (2003)

24. Mouratidis, H., Giorgini, P.: Secure Tropos: a security-oriented extension of the
tropos methodology. Int. J. Softw. Eng. Knowl. Eng. 17, 285–309 (2007)

25. Salehie, M., Pasquale, L., Omoronyia, I., Ali, R., Nuseibeh, B.: Requirements-
driven adaptive security: protecting variable assets at runtime. In: RE 2012. pp.
111–120 (2012)

26. Van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: ICSE 2004. pp. 148–157 (2004)

27. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements
from goal models. In: ICSE 2009. pp. 265–275 (2009)

Model Refactorings for and with Graph
Transformation Rules

Sabine Winetzhammer(B) and Bernhard Westfechtel

Applied Computer Science I, University of Bayreuth,
Universitätsstraße 30, 95440 Bayreuth, Germany

{sabine.winetzhammer,bernhard.westfechtel}@uni-bayreuth.de
http://btn1x4.inf.uni-bayreuth.de/modgraph/homepage

Abstract. Refactoring denotes the activity of improving the structure
of software by applying a series of transformations without affecting its
externally observable behavior. Refactoring has been applied extensively
at the source code level. In the context of model-driven software engi-
neering, refactoring has to be applied consistently to both structural and
behavioral models. In this paper, we present tool support for model refac-
toring in ModGraph, a tool which employs Ecore class diagrams for struc-
tural modeling and graph transformation rules for declarative behavioral
modeling. A refactoring transformation restructures the structural model
— an Ecore class diagram — and propagates the changes consistently to
the behavioral model — a set of graph transformation rules. Since the
refactoring transformations are implemented with graph transformation
rules, ModGraph supports model refactoring both for and with graph
transformation rules.

Keywords: Refactoring · Graph transformation rules · ModGraph

1 Introduction

Model-driven software engineering reduces the effort of developing software by
replacing low-level programming with the construction of high-level executable
models. To this end, both structural and behavioral models have to be developed.
In the context of object-oriented modeling, there seems to be a general consensus
to employ some variant of class diagrams for structural modeling, e.g., EMF,
MOF, or UML class diagrams. In contrast, there is a wide spectrum of languages
for behavioral modeling which are based on different computational paradigms
(e.g., state machines, activity diagrams, or rule-based transformation languages).
In this paper, we will focus on behavioral modeling with graph transformation
rules [22]: Models are considered as graphs, and transformations of these graphs
are specified declaratively by graph transformation rules.

Software evolution [14] is a discipline which provides concepts, methods, and
tools for evolving software in response to changing requirements, platforms, tech-
nologies, etc. A prerequisite for evolving software according to these changes is

This paper is an extended and revised version of [27].

c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 331–348, 2015.
DOI: 10.1007/978-3-319-25579-8 19

332 S. Winetzhammer and B. Westfechtel

that the software is well structured and prepared for changes. In the context of
object-oriented software development, this problem is addressed in a variety of
different ways, including e.g. design patterns [10] and refactorings (the focus
of this paper).

According to [9], refactoring denotes the activity of improving the structure
of software by applying a series of transformations without affecting its exter-
nally observable behavior. The transformations proposed in [9] were developed
for and applied to (object-oriented) programs. In the context of model-driven
software engineering, refactoring has to be applied to both structural and behav-
ioral models. Previous work on model refactoring focused on structural models
[3,13,16]. However, when the structural model is refactored, the respective chan-
ges have to be propagated into the behavioral model; otherwise, the behavioral
model is no longer consistent with the structural model.

In this paper, we close the gap identified above, resulting in comprehensive
support for model refactoring. We present tool support for model refactoring in
ModGraph1, a tool which employs Ecore class diagrams for structural model-
ing and graph transformation rules for behavioral modeling. For the structural
model, ModGraph offers a set of refactoring transformations along the lines of
Fowler’s work [9]. The tool support goes beyond previous work since the refac-
torings are propagated from the structural model into the behavioral model.
Thus, graph transformation rules are updated in response to the changes of
the underlying Ecore model. Furthermore, tool support for model refactoring is
implemented in ModGraph with the help of graph transformation rules. Thus,
ModGraph supports model refactoring both for and with graph transformation
rules.

Altogether, our work provides an important contribution to model evolution,
which is an essential prerequisite for putting model-driven software engineering
to work. The term model evolution is used in a variety of different contexts.
Frequently, model evolution is concerned with the changes of model instances in
response to changes of the underlying metamodel [20] (analogously to schema
evolution in databases [2]). In contrast, the work presented in this paper has a
different focus: It deals with the consistent refactoring of a set of interdependent
models, which requires propagation of the changes of the structural model into
the behavioral model. The migration of model instances is not considered here.

Section 2 provides some background information on ModGraph. Section 3
gives an overview of our approach to the consistent refactoring of structural and
behavioral models. Section 4 introduces an example which serves to illustrate our
refactoring approach. Section 5 deals with the model-driven implementation of
refactoring transformations. Section 6 discusses related work. Section 7 concludes
the paper.

2 ModGraph

The work reported in this paper was carried out in the context of the ModGraph
project [26]. ModGraph is a tool for model-driven software engineering which is
1 http://btn1x4.inf.uni-bayreuth.de/modgraph/homepage.

http://btn1x4.inf.uni-bayreuth.de/modgraph/homepage

Model Refactorings for and with Graph Transformation Rules 333

based on the Eclipse Modeling Framework (EMF, see [23]). Structural modeling
is performed with Ecore. For behavioral modeling, ModGraph follows a hybrid
approach: Complex model transformation rules are specified declaratively as
graph transformation rules. Graph transformation rules may be organized into
control structures with the help Xcore2, which provides a textual language for
Ecore models and a procedural and functional language for model transforma-
tions (Xbase [8]). Furthermore, Xbase may be used to realize simple operations
directly.

In Ecore, a structural model essentially consists of a set of classes own-
ing structural and behavioral features. Structural features are partitioned into
attributes, which have (collections of) simple values, and references to target
classes. By default, references are unidirectional (from instances of the source
class to instances of the target class); however, a pair of unidirectional refer-
ences may be grouped into a bi-directional reference. Behavioral features are
modeled by operations. The structural model merely describes the signature of
operations, but not their behavior.

In ModGraph, the behavior of an operation may be specified declaratively
by a graph transformation rule. Model instances are considered as graphs whose
nodes and edges correspond to objects and links, respectively. A graph transfor-
mation rule describes an in-place model transformation and essentially consists
of a left-hand side and a right-hand side. The left-hand side describes the pattern
to be matched, the right-hand side describes the replacing subgraph. Nodes and
edges occurring only on the left-hand side and right-hand side are deleted and
created, respectively.

Traditionally, the left-hand side and the right-hand side are displayed sep-
arately. For example, the left part of Fig. 1 shows a divided view of a graph
transformation rule which describes a simple refactoring on a structural model:
The attribute a is moved from the class C1 to the class C2. The right part illus-
trates the notation used in ModGraph: The left-hand side and the right-hand
side are shown in a single merged view, which eliminates the redundancies of the
divided view. Elements belonging only to one side are marked: Elements to be
deleted are shown in red color and are annotated with --, while inserted elements
are displayed in green color and are annotated with ++.

Figure 1 shows a very simple example of a graph transformation rule. In Mod-
Graph, a graph transformation rule consists of a precondition, a graph pattern,

Fig. 1. A graph transformation rule shown as divided view and merged view.

2 https://wiki.eclipse.org/Xcore.

https://wiki.eclipse.org/Xcore

334 S. Winetzhammer and B. Westfechtel

a set of negative application conditions (NAC), and a postcondition. A nega-
tive application condition is a graph pattern the presence of which inhibits the
application of the rule. If the precondition holds, the graph pattern has been
matched and none of the NACs has been matched, the transformation is applied
and must guarantee the postcondition.

Altogether, the ModGraph tool has to deal with different types of models, as
illustrated in Fig. 2. The blue boxes represent the models which are created by
the ModGraph user: The structural model is defined by an Ecore class diagram.
The behavioral model consists of a set of graph transformation rules specify-
ing the behavior of operations introduced in the structural model. At runtime,
graph transformation rules will be applied to model instances by matching and
replacing subgraphs. Internally, a graph transformation rule is represented as a
model, too (namely an instance of the graph transformation metamodel, which
in turn is an instance of the Ecore metamodel).

Fig. 2. Models and metamodels in ModGraph.

An excerpt from the graph transformation metamodel is shown in Fig. 3.
The graph pattern of a graph transformation rule essentially consists of nodes
and edges, all of which are represented as objects. Each object is typed in two
ways: First, it is typed by a class from the graph transformation metamodel.
The metamodel for the graph pattern provides a class hierarchy which defines
different types of nodes and edges to be explained below. Second, the object is
linked to a class of the Ecore model which defines the application-specific types
against which the rule must be checked.

A graph pattern (class GTGraphPattern) aggregates a set of graph pattern ele-
ments. Each element is either a node (GTNode) or an edge (GTNode) connecting
a source node with a target node. A node aggregates attributes and field. An
attribute object (GTAttribute) is used either for an assignment or for a value
comparison. A field (GTField) specifies a constraint (in OCL or Xcore) or an
operation call.

Model Refactorings for and with Graph Transformation Rules 335

Fig. 3. Metamodel for the graph pattern of a graph transformation rule.

Pattern elements may have a status (GPElementWithStatus) which defines
whether the element is created, deleted, or preserved. The class GPNode serves to
represent graph pattern nodes with a status. If a node is designated as optional,
it is not required for a successful match. Pattern nodes are either bound or
unbound (classes GPBoundNode and GPUnboundNode, respectively). Both bound
and unbound nodes are classified into single nodes and multi-nodes, which are
matched against single nodes and sets of nodes, respectively. The node for the
current object (GTThisObject) may be neither be created nor deleted. Edges with
a status are modeled by the class GPLink. Paths (GTPath) define derived edges
by a path expression. Paths constitute positive application conditions and can
neither be created nor destroyed.

ModGraph provides a single type of graph rule which may be used for differ-
ent purposes. The rule specifies a graph transformation if it contains elements
to be inserted or deleted or attribute assignments. A graph rule which does not
specify any changes is a graph test which checks whether the graph pattern is
present or not. Rules may also represent graph queries; to this end, graph pat-
tern nodes may be designated as output parameters. A graph rule may serve
simultaneously as a transformation and a query.

336 S. Winetzhammer and B. Westfechtel

Fig. 4. Interaction of the refactoring engine with the affected models.

3 Approach

Figure 4 illustrates our approach to refactoring. After having prepared a struc-
tural and a behavioral model for some application, the ModGraph user wishes
to restructure the overall model consistently. To this end, he calls refactoring
transformations, which are realized with the help of graph transformation rules
and Xcore operations. First, the structural model is transformed. Subsequently,
the performed changes are propagated to all affected graph transformation rules.
Due to our reflective approach, refactoring transformations could be applied to
themselves (at least as far as the graph transformation rules are concerned; see
below). All refactoring transformations are typed over a refactoring metamodel
(not shown in Fig. 4) which extends both the Ecore metamodel and the graph
transformation metamodel.

Please notice that refactoring support is confined to the Ecore model and the
graph transformation rules. In addition, the ModGraph user may have written
procedural Xcore operations which currently have to be refactored manually.
Furthermore, progating changes to Ecore models to their instances goes beyond
the scope of ModGraph’s tool support, as well. This propagation is called model
migration and has already been addressed extensively in the scientific literature
(see [20] for an overview and see also work on schema evolution support for
database systems [2]).

Table 1 describes a few refactoring transformations which we implemented in
ModGraph; see [27] for a complete list. For each refactoring, the table lists its
name and describe its effect on the Ecore model and the graph transformation
rules. The refactorings were inspired by the work of Fowler [9], who proposed
a comprehensive set of refactorings for object-oriented programs. We adapted
these refactorings to operate on Ecore models and ModGraph’s transformation
rules (examples see Figs. 6 and 7).

Model Refactorings for and with Graph Transformation Rules 337

Table 1. Refactoring transformations: Changes to the Ecore model and propagations
to graph transformation rules.

Name Change bi- to unidirectional reference

Ecore model Delete one of a pair of opposite references

ModGraph rules Replace each instance of the deleted reference with an instance of
its previously opposite reference

Name Change uni- to bidirectional reference

Ecore model Add a reference to a class and set its opposite

ModGraph rules —

Name Extract class

Ecore model Create an extracted class and a reference from an existing class.
Move selected features from the existing class to the extracted
class

ModGraph rules If a node is typed with the existing class, check whether it uses
features moved to the new class. In this case, create a node of
the extracted class and an edge from the old node. Move the
elements referencing the extracted class to the new node

Name Extract subclass

Ecore model Extract a set of features of an existing class to a new subclass

ModGraph rules Retype nodes typed with the existing class to the new subclass
provided that they use features moved to the new subclass

Name Pull up attribute

Ecore model Move an attribute which is defined identically in all subclasses to
their common superclass

ModGraph rules —

Name Replace inheritance by delegation

Ecore model Replace the inheritance relationship between a subclass sub and a
superclass sup by a reference from sub to super

ModGraph rules If a node typed with sub uses features of super, add a new node
and an edge from the old node to the new node. Move the
elements referencing super from the old node to the new node

4 Example

We applied refactoring transformations to a sample project — Bug Tracker —
which may be retrieved from the ModGraph homepage. The state of the Ecore
model before the refactoring is displayed in Fig. 5. The class BugTracker models
a bug tracking database which composes users, user groups, and projects. Each
project maintains a set of reported tickets, each of which evolves into a sequence
of revisions. In the following, we will discuss two refactoring transformations on
the Ecore model and its attached graph transformation rules.

338 S. Winetzhammer and B. Westfechtel

Fig. 5. The Ecore model for the Bug Tracker.

4.1 Changing a Bi- to a Unidirectional Reference

With one exception, all containment references in the Ecore model are unidirec-
tional. This style of modeling is common since the EMF implementation main-
tains links from contained objects to their containers anyway. This is achieved
in a generic way, independently of the application-specific Ecore model. Thus,
there is no need to model opposite references explicitly.

The user who created the Bug Tracker model wishes to apply this modeling
style consistently throughout the whole Ecore model. To this end, (s)he invokes
the refactoring transformation for changing a bi- to a unidirectional reference on
the reference owningProject from Ticket to Project.

The upper part of Fig. 6 shows the cutout of the Ecore model to be modified,
as well as a ModGraph rule which will be affected by the intended change. The
sample rule defines a graph query rather than a graph transformation rule. The
rule implements an operation on the class Project which returns a set of tickets
with given severity and status for a given project. Its graph pattern includes a
node named this, which denotes the current object on which the rule is invoked.
The node tickets is a multi-node (shaded rectangle) which is matched against a
set of nodes. The node is marked with out, implying that the matched set will be

Model Refactorings for and with Graph Transformation Rules 339

Fig. 6. Example: Changing a bi- to a unidirectional reference.

returned by the rule. The Constraints compartment contains two OCL constraints:
Both the status and the severity of the current revision of a matched ticked must
have the values which are passed as parameters to the rule.

If the changes in the Ecore model were not propagated to the rule, the link
labeled owningProject would become inconsistent because its type (the removed
reference) does not exist any more. The lower part of Fig. 6 shows the consistent
state which will be produced by applying ModGraph’s refactoring transformation
for changing a bi- to a unidirectional reference: The link is inverted and retyped
automatically to the containment reference reportedTickets.

4.2 Extracting a Class

Our second transformation deals with the extraction of a class: Features of an
existing class are moved to a new class which is referenced from the existing class.
The upper part shows an excerpt from the Ecore model of the Bug Tracker (class
User) and a graph transformation rule which adds a user to a given group and
assigns its attributes. The lower part shows the updated excerpt from the Ecore
model: The name attributes of the class User are moved to the new class Names.
This change introduces inconsistencies into the createUser rule shown on the top:

340 S. Winetzhammer and B. Westfechtel

Fig. 7. Example: Extracting a class.

Listing 1.1. Changing a bi- to a unidirectional reference in the Ecore model.

1 class Refac tor ing {
2 . . .

3 op void changeB id i r e c t i ona lToUn id i r e c t i ona lRe f e r ence (EReference r e f) {
4 i f (r e f . EOpposite != null)

5 EcoreUt i l : : remove (r e f)

6 }
7 . . .

8 }

Assignments to the moved attributes are no longer valid. The refactoring trans-
formation reestablishes consistency by updating the graph pattern: A newNode

is inserted which is referenced from user through a names link, and the attribute
assignments are moved to newNode.

Model Refactorings for and with Graph Transformation Rules 341

Listing 1.2. Propagation of the change of a bi- to a unidirectional reference.
1 c lass Propagation{
2 . . .
3 op void propagateChangeBid i rec t iona lToUnid i rec t iona lRe fe rence (
4 EReference formerOpposite , GraphTransformationRule ru l e) {
5 try {
6 var pattern =
7 propagateChangeBid i rect iona lToUnid i rect iona lReferenceGraphPattern (
8 formerOpposite , r u l e)
9 for (GTNegativeApplicationCondition nac :

10 ru l e . negat ivePattern as GTNegativeApplicationCondition []) {
11 t h i s . propagateChangeBidirect ionalToUnidirect ionalReferenceNAC (
12 formerOpposite , nac)
13 }
14 } catch (Exception e) {
15 e . pr intStackTrace ()
16 }
17 // Propagate changes to t ex tua l e lements o f the ru l e
18 }
19 . . .
20 }

5 Refactoring Transformations

We implemented refactoring transformations in ModGraph with the help of
graph transformation rules and Xcore operations. To illustrate this approach,
we resume the examples which were presented in the previous section.

5.1 Changing a Bi- to a Unidirectional Reference

The transformation for changing a bi- to a unidirectional reference is structured
into two parts dealing with the structural and the behavioral model, respectively.

The structural refactoring transformation is realized by a simple Xcore oper-
ation (Listing 1.1); it does not pay off to write a graph transformation rule. If
the supplied reference ref has an opposite reference, it is deleted by calling the
remove method provided by the utility class EcoreUtil.

The behavioral refactoring transformation is performed after the structural
refactoring transformation. To this end, the change is propagated to all rules
attached to the structural model. Listing 1.2 shows the Xcore operation for
propagating the change to a single rule. The operation is supplied with two
parameters (shown as rounded rectangles): the formerOpposite reference, i.e., the
reference whose opposite was deleted, and the rule to which the change is to be
propagated. In the body, the propagation is applied to all components of the
rule, including the graph pattern, the set of NACs, and textual elements such
as pre- and postconditions, etc.

The repair of an affected link in a graph pattern is realized by a graph
transformation rule (Fig. 8); change propagation to a NAC is handled similarly.
The meta rule receives the rule to be updated, the former opposite reference,
and the name of the deleted reference as parameters. The node delLink at the
bottom stands for the link to be deleted. Its OCL constraint checks that it has
been an instance of the deleted reference. The link is reached by navigating from

342 S. Winetzhammer and B. Westfechtel

Listing 1.3. Xcore operation for propagating a class extraction.
1 op EObject [] propagateExtractClassNEW (EClass ext ractedClass ,

2 EClass ex i s t i ngC la s s , GraphTransformationRule ru l e) {
3 var GTGraphPattern pattern = ru l e . pattern

4 var EList<EObject> objectsToRemove = newBasicEList ()

5 var GTNode ex i s t ingNode

6 var EList<GTField> gTFields = newBasicEList ()

7 var EList<GTAttribute> gTAttr ibutes = newBasicEList ()

8 var EList<GPLink> gTInLinks = newBasicEList ()

9 var EList<GPLink> gTOutLinks = newBasicEList ()

10 for (GPElement gpu : pattern . e lements) {
11 i f (gpu i n s t an c e o f GPUnboundNode && ((gpu as GPUnboundNode) . ˆ type as

12 EClass) . name . equa l s (e x i s t i n gC l a s s . name)) {
13 ex i s t ingNode = gpu as GPUnboundNode

14 } else i f (gpu i n s t an c e o f GTThisObject &&

15 ((gpu as GTThisObject) . ˆ type as EClass) . name

16 . equa l s (e x i s t i n gC l a s s . name)) {
17 ex i s t ingNode = gpu as GTThisObject

18 }
19 }
20 i f (ex i s t ingNode != null) {
21 for (EAttr ibute ea : ex t rac t edCla s s . getEAttr ibutes ()) {
22 for (GTAttribute gta : ex i s t ingNode . a t t r i b u t e s) {
23 i f (gta . exAttr ibute . eIsProxy () && getNameFromURI(gta . exAttr ibute)

24 . equa l s (ea . name)) {
25 gTAttr ibutes . add (gta) ;

26 }
27 }
28 }
29 for (EOperation eo : ex t rac t edCla s s . getEOperations ()) {
30 for (GTField g t f : ex i s t ingNode . g e tF i e l d s ()) {
31 i f (g t f . getKind () . getName () . equa l s (”OPERATION CALL”)) {
32 var St r ing content = g t f . content

33 var St r ing operationName =

34 content . s p l i t (Pattern . quote (” (”)) . get (0)

35 i f (operationName . equa l s (eo . name)) {
36 gTFields . add (g t f)

37 }
38 }
39 }
40 }
41 for (EReference er : ex t rac t edCla s s . getEReferences ()) {
42 for (GPLink g t l : ex i s t ingNode . outgoingEdges

43 . f i l t e r (e | e i n s t an c e o f GPLink) as GPLink []) {
44 i f (g t l . exReference . eIsProxy () &&

45 getNameFromURI(g t l . exReference) . equa l s (er . name)) {
46 gTOutLinks . add (g t l)

47 }
48 }
49 for (GPLink g t l : (ex i s t ingNode . incomingEdges

50 . f i l t e r (e | e i n s t an c e o f GPLink))

51 as GPLink []) {
52 i f (g t l . exReference . eIsProxy ()

53 && getNameFromURI(g t l . exReference) . equa l s (er . name)) {
54 gTInLinks . add (g t l)

55 }
56 }
57 }
58 try{ i f (! gTAttr ibutes . isEmpty () | | ! gTFields . isEmpty () | |
59 ! gTInLinks . isEmpty () | | ! gTOutLinks . isEmpty ())

60 propagateExtractClassSF (extractedClass , e x i s t i ngC la s s , ru le ,

61 gTAttributes , gTInLinks , gTOutLinks , gTFields)

62 }catch (GTFailure f){}
63 // Update NACs and tex tua l e lements

64 }

Model Refactorings for and with Graph Transformation Rules 343

Fig. 8. Rule propgagating a change of a bi- to a unidirectional reference to an affected
link in a graph pattern of a graph transformation rule.

Fig. 9. Rule for extracting features into a new class in the Ecore model.

the rule to the elements of its graph pattern. The new link link instantiates the
formerOpposite reference and swaps the source and the target node of the old link.
Finally, the nodes class1 and class2 ensure that the new link is type consistent:
It must connect two nodes whose types conform to the source and target class
of the formerOpposite reference. These checks are realized with the help of path
expressions (represented by thick grey arrows).

344 S. Winetzhammer and B. Westfechtel

5.2 Extracting a Class

The structural refactoring transformation is realized by a single graph trans-
formation rule (Fig. 9). The rule is supplied with the following parameters: the
existing class from which features are going to be extracted, the set of structural
features to be moved, the set of behavioral features (operations) to be moved,
the name of the new class, and the name of the new reference from the existing
class to the new class. The rule is equipped with two NACs: First, the name of
the new class must not clash with the name of a classifier in the same package.
Likewise, the name of the new reference must not clash with the name of any
structural feature of the existing class. If there are no name clashes, the rule is
applicable and creates both a new class and a reference to the new class. Further-
more, the designated structural features and operations are moved to the new
class by deleting the links from the existing class and creating corresponding
links from the new class.

The behavioral refactoring transformation is realized by the Xcore operation
shown in Listing 1.3. The operation is called on an extracted class, an existing
class, and a rule; it is invoked from another operation which iterates over all
rules attached to the Ecore model. Its body processes the components of the
rule (graph pattern, NACs, pre- and postconditions) in turn. The listing shows
only the propagation to the graph pattern, which is performed in a loop over all
of its elements (starting in line 10). For each element, it is checked whether it
constitutes a node which is affected by the structural refactoring transformation
(10–19). In this case, several loops are executed which iterate over extracted
attributes (21–28), operations (29–40), and references (41–57). In these loops,
all affected attribute checks or assignments, fields (containing operation calls),
as well as outgoing and incoming links are collected. Subsequently, an operation
is called which performs the change propagation (60–61).

The graph transformation rule in Fig. 10 is used to propagate the extraction
of a class to the graph pattern of an affected rule. The meta rule is supplied
with the following parameters: the existing class, the extracted class, the rule, the
node which is typed by the existing class, and the attributes, fields, incoming and
outgoing links to be moved. When the rule is applied, a new node is created which
is connected via a new link to the existing node. Furthermore, the designated
attributes, fields, incoming and outgoing links are moved to the new node. Please
notice that the creation of containment links from the new node implicitly deletes
old containment links, since each object may have at most one container.

6 Related Work

Mens [17] provides a comprehensive survey of software refactoring. Fowler’s book
probably constitutes the most cited reference in this domain [9]. The refactorings
presented in this book all apply to object-oriented programs, i.e., they are applied
to source code rather than models. Furthermore, refactorings are described in
an informal way. A formalization which is based on program graphs and graph
transformation rules is presented in [15]. A major restriction of this work consists

Model Refactorings for and with Graph Transformation Rules 345

Fig. 10. Propagation of the extraction of a class to a graph pattern.

in the fact that each transformation has to be realized by a single rule. In gen-
eral, programmed graph transformation rules are required for specifying refac-
torings. This is demonstrated e.g. by [11], in which a refactoring case prepared
for the GraBaTs 2008 workshop was realized in Fujaba [28]. The refactoring case
included three refactorings on program graphs.

Research on model refactoring primarily focuses on the structural model
(class diagrams). For example, in [3] refactoring of Ecore models is specified with
graph transformation rules in the AGG environment [24]. Mens [13] demonstrates
how refactoring transformations on UML class diagrams may be specified in
different graph transformation languages (AGG and Fujaba). In [16], critical
pair analysis is applied to AGG rules for refactoring Ecore models in order to
detect dependencies between refactoring transformations. Based on this analysis,
the user is guided in the application of these transformations.

Bottoni [4] goes beyond these approaches by providing integrated refactoring
transformations: A refactoring transformation is applied not only to a UML
class diagram, but also to the source code implementing the structural model.
Our work differs from this approach inasmuch as we consider behavioral models
rather than source code.

We are aware of only a few approaches dealing with the propagation of
changes from the structural model into the behavioral model. Rosner and Bauer
[21] propose an approach to update model transformations in response to meta-
model changes. The approach requires an ontology mapping between metamodel
versions and is applied to evolve QVT-R [18] transformations. The evolution of
model transformations constitutes an example of a higher order transforma-
tion [25].

346 S. Winetzhammer and B. Westfechtel

To the best of our knowledge, the only approach dealing with the propagation
of changes into graph transformation rules is presented in [12], which refers to
the GReAT language and environment [1]. However, this approach suffers from
several limitations. First, it considers only elementary changes to the metamodel,
e.g., changing the name of a class. Second, changes are propagated only in a semi-
automatic way. Third, the resulting graph transformation rules may contain
syntactic and semantic errors.

Altogether, the work presented in this paper is unique inasmuch as it does
not only support refactoring with, but also refactoring for graph transformation
rules. Refactoring on the structural and the behavioral model are supported in
an integrated way, and changes are propagated to graph transformation rules
such that consistency is preserved.

7 Conclusions

Model-driven software engineering reduces development effort by replacing low-
level programming with the construction of high-level models. To make these
models executable, structural modeling has to be complemented with behavioral
modeling. During their lifetime, models undergo many changes for a variety of
different reasons. Thus, it is crucial to support model evolution. Refactoring of
models provides an important contribution to model evolution since it aims at
restructuring models such that future changes are facilitated.

In this paper, we presented tool support for model refactoring in the Mod-
Graph environment. ModGraph employs Ecore models for structural modeling
and graph transformation rules for behavioral modeling. Refactorings are sup-
ported in an integrated way: Each refactoring transformation on the structural
model is consistently propagated into the behavioral model. In this way, our
work goes considerably beyond previous work on model refactoring which was
confined to the refactoring of the structural model. Furthermore, while several
other approaches use graph transformations for refactoring (i.e., refactoring with
graph transformations), our work is unique inasmuch as it addresses refactoring
for graph transformations, as well.

Altogether, we implemented 19 refactoring transformations; see [27] for a
complete list. The transformations provided to the end user were realized with

Table 2. Average number of elements per rule, compared to data from [6].

language Fujaba ModGraph

project MOD2-SCM Refactoring

single nodes 1,71 4,43

multi-nodes 0,03 3,06

links 0,73 5,74

paths 0,01 0,91

Model Refactorings for and with Graph Transformation Rules 347

a total of 35 graph transformation rules and 71 Xcore operations. According to
our findings from [6], we followed a hybrid approach to behavioral modeling,
mixing procedural and rule-based operations. The rightmost column of Table 2
lists the average number of single nodes, multi-nodes, links, and paths in graph
patterns of the transformation rules for refactoring. These data demonstrate
that our refactoring rules are fairly complex, in particular if they are compared
against the numbers from [6] (referring to the MOD2-SCM project [5,7], which
was implemented in Fujaba rather than in ModGraph). This complexity results
from our style of modeling: First, graph transformation rules are used only when
they really pay off. Second, as illustrated in Subsect. 5.2, graph transformation
rules usually perform complex modifications in a single step after all required
data have been collected in preceding Xcore operations.

References

1. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language
for model transformations. Softw. Syst. Model. 5(3), 261–288 (2006)

2. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. In: Proceedings of the 1987 ACM
SIGMOD International Conference on Management of Data (SIGMOD 1987), pp.
311–322. ACM Press, San Franciso (1987)

3. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMF
model refactoring based on graph transformation concepts. In: Favre, J.M., Heckel,
R., Mens, T. (eds.) Proceedings of the Third Workshop on Software Evolution
Through Transformations: Embracing the Change. Electronic Communications of
the EASST, vol. 3. Natal, Rio Grande del Norte, Brazil, 16 p., September 2006

4. Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Specifying integrated refactoring with
distributed graph transformations. In: Pfaltz et al. [19], pp. 220–235

5. Buchmann, T., Dotor, A., Westfechtel, B.: MOD2-SCM: a model-driven product
line for software configuration management systems. Inf. Softw. Technol. 55(3),
630–650 (2013)

6. Buchmann, T., Westfechtel, B., Winetzhammer, S.: The added value of pro-
grammed graph transformations – a case study from software configuration man-
agement. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol.
7233, pp. 198–209. Springer, Heidelberg (2012)

7. Dotor, A.: Entwurf und Modellierung einer Produktlinie von Software-
Konfigurations-Management-Systemen. Ph.D. thesis, University of Bayreuth,
Germany (2011)

8. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., Hasselbring, W.,
von Massow, R., Hanus, M.: Xbase: Implementing domain-specific languages for
Java. In: Proceedings of the 11th International Conference on Generative Pro-
gramming and Component Engineering (GPCE 2012), pp. 112–121. ACM Press,
Dresden (2012)

9. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)

348 S. Winetzhammer and B. Westfechtel

11. Geiger, L.: Graph transformation-based refactorings using Fujaba. In: Rensink,
A., van Gorp, P. (eds.) 4th International Workshop on Graph-Based Tools: The
Contest, Leicester, UK (2008)

12. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A novel app-
roach to semi-automated evolution of DSML model transformation. In: van den
Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 23–41.
Springer, Heidelberg (2010)

13. Mens, T.: On the use of graph transformations for model refactoring. In: Lämmel,
R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 219–257.
Springer, Heidelberg (2006)

14. Mens, T., Demeyer, S. (eds.): Software Evolution. Springer, Heidelberg (2009)
15. Mens, T., Eetvelde, N.V., Demeyer, S., Janssens, D.: Formalizing refactorings with

graph transformations. J. Softw. Maint. Evol. Res. Pract. 17(4), 247–276 (2005)
16. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph

transformation. Softw. Syst. Model. 6(3), 269–285 (2007)
17. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.

30(2), 126–139 (2004)
18. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.

Object Management Group, Needham, MA, formal/2011-01-01 edn., January 2011
19. Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.): AGTIVE 2003. LNCS, vol. 3062. Springer,

Heidelberg (2004)
20. Rose, L.M., Herrmannsdoerfer, M., Williams, J.R., Kolovos, D.S., Garcés, K.,

Paige, R.F., Polack, F.A.C.: A comparison of model migration tools. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 61–75. Springer, Heidelberg (2010)

21. Roser, S., Bauer, B.: Automatic generation and evolution of model transforma-
tions using ontology engineering space. In: Spaccapietra, S., Pan, J.Z., Thiran, P.,
Halpin, T., Staab, S., Svatek, V., Shvaiko, P., Roddick, J. (eds.) Journal on Data
Semantics XI. LNCS, vol. 5383, pp. 32–64. Springer, Heidelberg (2008)

22. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations, vol. 1. World Scientific Publishing, Singapore (1997)

23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2009)

24. Taentzer, G.: AGG: A graph transformation environment for modeling and vali-
dation of software. In: Pfaltz et al. [19], pp. 446–453

25. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-
order model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

26. Winetzhammer, S.: ModGraph – generating executable EMF models. In: Krause,
C., Westfechtel, B. (eds.) Proceedings of the 7th International Workshop on Graph
Based Tools. Electronic Communications of the EASST, vol. 54, pp. 32–44. EASST,
Bremen (2012)

27. Winetzhammer, S., Westfechtel, B.: Propagating model refactorings to graph trans-
formation rules. In: ICSOFT-PT 2014 - Proceedings of the 9th International Con-
ference on Software Paradigm Trends, Vienna, Austria, pp. 17–28, Aug 2014

28. Zündorf, A.: Rigorous object oriented software development. Technical report,
University of Paderborn, Germany (2001)

A Tool-Supported Approach for Introducing
Aspects in UPPAAL Timed Automata

Dragos Truscan1(B), Jüri Vain2, Martin Koskinen1, and Junaid Iqbal1

1 Åbo Akademi University, Joukahaisenkatu 3–5 A, Turku, Finland
{dragos.truscan,martin.koskinen,junaid.iqbal}@abo.fi

2 Tallinn University of Technology, Tallinn, Estonia
vain@ioc.ee

Abstract. In this paper, we suggest an approach which combines
aspect-oriented concepts with UPPAAL timed automata (UPTA), in
order to provide a systematic constructive approach with tool support
for model weaving and verification. Using our approach one may develop
independently different aspects of the system as timed automata and
then weave them later on into a complete specification. In order to facili-
tate the weaving process, we suggest explicit composition patterns which
allow us to fully automate the weaving process via model transforma-
tions. The composition patterns are accompanied by generic verification
rules which ensure that the weaving of an aspect does not conflict with
the original behaviour of the base model. Preliminary results show that
the weaving process can be fully automated while preserving the modu-
larity of the specifications.

Keywords: Aspect-oriented modeling · UPPAAL Timed Automata ·
Model transformation

1 Introduction

Aspect-oriented modeling (AOM) [1,2] is a paradigm inspired from aspect-
oriented programming [3,4], which promotes the idea of separation of concerns
in order to build more modular and easy to update specifications. An aspect
describes a particular concern of the system from a particular viewpoint, allow-
ing the developers to focus on individual features of the system in isolation.

An aspect model consists of an advice model (a model fragment describing
a new functionality), a pointcut model (a model fragment specifying where the
aspect can be composed to a base model) and a composition protocol (how the
advice model is connected via the pointcut model). An aspect model can be
woven with the base model in many places (called join points) and in different
ways. The result of composing advice models and a base model is called composite
model. The composition process is also called model weaving.

According to Sutton, aspect-oriented software development (AOSD) provides
improved separation of concerns, ease of maintenance, evolution and customiza-
tion, and greater flexibility in development [5]. Other researchers report in a
c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 349–364, 2015.
DOI: 10.1007/978-3-319-25579-8 20

350 D. Truscan et al.

survey of industrial projects [6] that the main benefits of AOSD are the sub-
stantial reduction in model size and improved design stability. However, the
main body of AOSD and AOM technologies provides a conceptual framework,
leaving room for relatively loose semantic interpretation. Nevertheless, the main
research challenges remain in hiding from users the complexities of the compo-
sition mechanisms and in developing associated tool support.

In this paper, we suggest the use of aspect-oriented methods in the context
of UPPAAL timed automata (UPTA) with the focus on providing a constructive
approach accompanied by automated tool support for model weaving. Our sug-
gestion would allow for decoupling the design of different aspects of the system
and the use of explicit composition patterns to weave the aspects together via
model transformations. The composition patterns are accompanied by generic
verification rules which are used to verify that the weaving process does not
conflict with the behavior of the base model. The approach will take advan-
tage of the precise semantics of UPTA and their expressiveness when specifying
behavioural aspects: incorporate timing constraints explicitly, multi-processes,
synchronization and data structures. In addition, one can take advantage of the
good tool support for model-checking in UPPAAL and of the available test gen-
eration tools built on top of UPPAAL, which have been used in many industrial
projects.

In the following, we discuss related works in Sect. 2. Section 3 will provide a
short introduction to timed automata. Our aspect-oriented modeling approach is
described in Sect. 4. Section 5 exemplifies the approach with an example, followed
by a description of tool support in Sect. 6. We conclude with a preliminary
analysis of the approach and discuss future work.

2 Related Work

The Unified Modeling Language (UML) [7] has been used as the de facto model-
ing language in the AOM community and several language extensions have been
proposed in e.g., [8–12] along with corresponding weaving mechanisms. For a
more complete overview, the reader is referred to [13]. However, aspect opera-
tions used in the context of UML lack clear semantics and constructive defini-
tions. Although UPTA is less expressive than UML, they allow more rigourous
semantic definition. In our approach, we suggest the use of UPPAAL timed
automata for specifying aspect models and their weaving without extending the
formalism.

Several researchers have studied the verification of AO programs [14–16] and
of the AO designs. For instance, D. Xu [17] translates a woven state model into
finite state processes (FSP), which is verified in the Labeled Transition System
Analyzer (LTSA) tool [18] using manually specified verification properties. This
approach is similar to our approach in the sense that it allows the verification of
the specification. However, in our case, both the advice models and the woven
model are specified using UPPAAL timed automata and then simulated and
verified in the UPPAAL tool.

A Tool-Supported Approach for Introducing Aspects 351

To our best of knowledge the only attempt to combine aspect-orientation
and UPPAAL timed automata has been suggested by Sarna and Vain [19].
They provide an approach for including aspects in the construction of test mod-
els by formal refinements of UPTA specifications. The difference to our paper
is that they used aspects for refining the system specification in place, whereas
in this paper the aspects are used for extending the functionality of the system
with new features. Such an approach allows one to define features aspect-wise,
while aspect weaving rules provide discipline for structural modeling.

3 Preliminaries of UPTA

An UPTA model M is a closed network of extended time automata A1, . . . ,An,
that are called processes. The processes are combined into a single system by
the CCS1 parallel composition A1 ‖ . . . ‖ An [20, Sect. 5.1,pp.25]. Synchronous
communication between the processes is done by hand-shake synchronization
links that are called channels. Each process may have input actions denoted
ch?, where ch is the name of a channel, output actions denoted ch!, and internal
actions Act of A1, . . . ,An. Asynchronous communication between processes is
done by shared variables.

Each UPTA process Ai is given as a tuple (L;E;V ;Cl; Init; Inv;TL) where
L is a finite set of locations, E is the set of edges defined by E ⊆ L×G(Cl;V)×
Sync × Act × L, where G(Cl;V) is the set of enabling conditions - guards.
Sync ⊆ Σ is a set of synchronisation actions over the channels the process Ai

is linked to the network. In the graphical notation, the locations are denoted by
circles and edges by arrows (see Fig. 2). The set Act of internal actions is a set of
sequences of assignment actions with integer and boolean expressions as well as
with clock resets r. V denotes the set of integer and boolean variables. Cl denotes
the set of real-valued clocks (Cl∩V = �). Init ⊆ Act is a set of assignments that
assigns the initial values to variables and clocks. Inv : L → I(Cl;V) is a function
that assigns an invariant I to each location, I(Cl;V) is the set of invariants over
clocks Cl and variables V . TL : L → {ordinary, urgent, committed} is the
function that assigns the type to each location of the automaton.

The semantics of UPTA M = A1 ‖ . . . ‖ An is given in terms of labelled tran-
sition systems (LTS) [20]. A state of a network is a pair 〈L, u〉, where L denotes
a vector of current locations of the network, one for each process A1, . . . ,An

and u is a clock assignment reflecting the current values of the clocks in M .
A network may perform two types of transitions, delay transitions and discrete
transitions.

There are two rules for discrete transitions defining local actions where one
of the processes makes a move on its own, and synchronizing actions where two
processes synchronize on a channel and move simultaneously. Let li stand for
the ith element of a location vector l and l[l′i/li] for the vector l with li being

1 Calculus of Communicating Systems.

352 D. Truscan et al.

substituted with l′i. The transition rule is as follows:

〈L, u〉 →Act 〈L[l′i/li], u′〉
if li →g,Act,r l′i, u ∈ g, u′ ∈ I(L[l′i/li]) (1)

〈L, u〉 →Act 〈L[l′i/li], L[l′j/lj], u′〉,
if there exists i
= j such that

1. li →gi,ch?,ri l′i, lj →gj,ch!,rj l′i and u ∈ gi ∧ gj , and
2. u′
= u[rj �→ 0(ri �→ 0)] and u′ ∈ I(L[l′i/li], L[l′j/lj])

(2)

Delay transitions apply uniformly to the set u of clocks of M :

〈L, u〉 →d 〈L, u + d〉if u∈ I(L) and (u + d) ∈ I(L),
where I(L) = ∩I(li). (3)

Besides clock variables, UPTA may have boolean and integer variables, each
with bounded domain and initial value. Predicates over these variables can be
used as guards of the edges and they can be updated using resets on the edges.
The semantics of the models that include such variables is extended in natural
way, i.e. for an action transition to be enabled, the extended clock assignment
must also satisfy all integer guards on the corresponding edges and when a
transition is taken the assignment is updated according to the boolean, integer
and clock resets.

To model atomic sequences of actions, e.g. atomic broadcast or multicast,
UPTA support a notion of committed locations. A committed location is a loca-
tion where no delay is allowed. In a network, if any process is in a committed
location then only action transitions starting from such a committed location are
allowed. Thus, processes in committed locations may be interleaved only with
processes in a committed location.

Let C(L) denote the set of committed locations in L and →c denote the
transition relation for a network with committed locations, then the conditions
in formula 1 and 2 are strengthened respectively with a condition:

1. either li ∈ C(L) or C(L) =∅,
2. either li ∈ C(L), lj ∈ C(L) or C(L) =∅.

In the rest of the paper, we explain the weaving operations by referring only
to syntactic notions of UPTA and rely on the transition semantics of parallel
components defined herein.

4 Introducing Aspects in UPTA

As discussed in the introduction, the concerns of a system are developed in
weakly related parts (models) called aspects. An aspect model is composed of a

A Tool-Supported Approach for Introducing Aspects 353

Fig. 1. Generic weaving architecture for UPTA.

pointcut and an advice. Pointcuts identify points in the execution model referred
to as join points.

With respect to UPTA, a pointcut can be a guard or set of guards applied
to any combination of UPTA elements (model fragments) that are accessible via
the edges to which the pointcut guards are attached. Consequently, a join point
is a place in the base UPTA model where the advice model is superimposed and
the pointcut defines under what conditions the advice can be inserted in the
base model.

Both the base model and advice model are assumed to be UPTA and this
model class is conservative under weaving operations described in this section.
A composed model or woven model is a network of automata interacting via join
points. The composition protocol is specified by generic adapters corresponding
to each type of advice. During the composition the same aspect can be woven
in several places (join points) in the base model.

4.1 Generic Process

The generic weaving process is shown in Fig. 1. In this figure, two independent
timed automata Base Model and Advice Model implement two cross-cutting con-
cerns Concern1 and Concern2, respectively. When the two models are composed
a woven model is created. The weaving process is regarded as a model transfor-
mation in which two independently developed models are composed via generic
adapters.

Let Base Model be the base model to which the functionality of Advice Model
is composed, resulting in a UPTA network. We define an Adapter as a model
fragment which introduces weaving information in both models. Basically, the
adapter introduces a JoinPoint in the base model, and the corresponding entry
and exit points of the advice that matches to the join point. The adapter encodes
one of the following composition rules: before, after, around, and conditional. The
first three follow the semantics of the AspectJ aspect-oriented programming
language [21], that is a piece of code of the aspect is executed before, after, or

354 D. Truscan et al.

in place of its join points. The fourth adapter type allows the execution of an
aspect only if certain conditions are met, as it will be discussed later on. These
rules specify when the behavior introduced by the advice should be executed
with respect to a join point and how the control should be returned to the base
model. In our approach, we make several assumptions:

– The execution of an advice is atomic w.r.t. its base model. That is, once an
aspect model is entered from a join point, the base model waits for the aspect
to complete before exiting the join point;

– An advice model has one entry point and one or several exit points which
return to the same join point;

– The same advice model template is shared between several join points of a
base model if it includes only one UPTA process. If more than one parallel
processes constitutes a base model, the waiting and race conditions for an
advice are avoided due to the assumption that the number of advice model
instances needs to be equal to the number of base model processes that have
join points with given advice. The number of advice instances may be less in
special cases where simultaneous execution of join points in parallel processes
is excluded.

– The base model and the advice model can be woven using UPTA-specific
communication and synchronization assumptions, e.g. synchronizing the entry
and exit of advice model with wait in the base model, sharing or refining data
between base and advice model, etc.

4.2 Join Point Adapters

For the purpose of making weaving operators constructive, we suggest several
join point adapters which allow for a systematic and mechanized weaving of
aspects into the base models. These adapters allow one to decide, based on the
pointcut condition, whether the aspect should be executed at a given join point.

The adapters we define can be applied for refining a channel synchronization,
generically shown as the model fragment in Fig. 2. The channel* represents a
synchronization between edges of parallel automata, whereas the direction of the
synchronization is specified by suffixes of the channel name, e.g. channel! denotes
the sending and channel? the receiving side of the channel. The synchronization
can take place whenever both edges linked with a channel are enabled by their
guards. During the synchronization, the variable updates specified on the syn-
chronized edges are performed. In the following, in order to save space, we only
present the adapters that can be applied to a receiving model fragment, however
the adapters to be applied to a sending model fragment are similar.

Fig. 2. Model fragment with channel synchronization.

A Tool-Supported Approach for Introducing Aspects 355

Fig. 3. Generic after adapter.

The after adapter (Fig. 3) allows the execution of an advice after a channel
synchronization. It refines the End location with two new locations AspectStart
and Call, as well as with two new channels enterAdvice! and exitAdvice?. When-
ever the pointcut expression is true, the advice is executed, otherwise the base
behavior is executed.

The corresponding adapter introduced to the advice model during the weav-
ing is shown in Fig. 4. As one may notice, the execution of the advice model
is triggered from the base model via the join point by receiving the enterAd-
vice? synchronization and, after executing the advice functionality, it returns
the control via the exitAdvice! synchronization.

Fig. 4. Generic advice.

The before adapter (Fig. 5) allows the execution of the advice model before
the base model reaches its fragment. The same generic advice model as in Fig. 4
can be used.

Fig. 5. Generic before adapter.

The third adapter, the around adapter (Fig. 6), allows the weaving of around
advices by starting the execution of the advice model before the one of the
base model fragment and returning from the advice model afterwards. The same
generic advice model as in Fig. 4 can be used. This is the most complex adapter
type, and it can be used to both overload and override the functionality of the
base model fragment.

356 D. Truscan et al.

Fig. 6. Generic around adapter.

Finally, the conditional adapter (Fig. 7) introduces new functionality to the
same base model fragment in Fig. 2. The new functionality decides whether the
execution of the base model continues after executing the advice or returns to a
previous location. Compared to the previous adapters, the conditional adapter
will allow the base model to consume the channel? synchronization, but the
advice will decide if the same synchronization should be executed again via
exitAdviceRepeat or the base model should proceed to the next location via
exitAdviceContinue.

Fig. 7. Generic conditional adapter.

Fig. 8. Generic conditional aspect.

The corresponding generic aspect model for this advice is shown in Fig. 8.
As one may notice, this model can return to the join point via two different
channels. If needed the adapter may be extended with more complex behavior,
for instance with multiple exit points, which we defer for future work.

4.3 Generic Verification Rules for the Weaving

Extending the base models with new functionality may imply changing of the
liveness conditions or of the timing behaviour of the woven models. Thus it is

A Tool-Supported Approach for Introducing Aspects 357

important to check that after the weaving of an aspect at a given join point the
original properties of the base model are not affected. Therefore, for each type
of adapter defined in the previous section we associate two generic verification
rules, similar to contracts, which have to hold before and after weaving an aspect
model into the base model.

These rules are specified as liveness properties using TCTL (Timed Compu-
tation Tree Logic) [22] queries. For instance, if we consider the model fragment
in Fig. 2, the first generic query can be specified as:

Start → Stop

which allows one to verify that the model fragment, once it reaches location
Start it will inevitably lead to location Stop. This rule should hold before and
after weaving an aspect into a base model. Thus the rule is associated with the
generic join point adapters of type (Fig. 3), before (Fig. 5), after, and (Fig. 6)
around.

With respect to the conditional adapter (Fig. 7), the rule is refined in order
to allow the model to inevitably progress to the Stop location or return to the
Start state, as follows:

AspectStart → Stop or Start

The above rules allow one to verify local deadlock freeness. In order to ensure
global deadlock freeness, for each new woven model we verify the following rule:

A� not deadlock

Additional verification rules, including time related ones, can be specified on
a case-by-case basis.

5 Case Study: Auto-Off Lamp

We exemplify our approach with an example originally found as a demo model
in the documentation of the UPPAAL TRON tool [23], under the name auto-off
lamp controller.

5.1 Base Model - Revisited

The purpose of the lamp controller is that, once it is tuned on, it will wait for
a given time period before turning off, unless there are user inputs (“touches”)
which reset its auto-off function. The demo is composed of two models: a lamp
and a user model. The lamp model (Fig. 9-left) reacts to events, on the touch
channel, and synchronizes to the user via the done channel. When the lamp is in
the OFF location and the touch synchronization arrives, the internal clock x of
the lamp is set to zero at the same time as the lamp transitions to the switchON
location. The lamp is allowed to stay in this location for tolerance time units,
during which it has to change the lamp-state modeling variable n to value 10
and synchronize its location to the environment on the done channel. After that,
the lamp is in ON location, where it can accept new touch events.

358 D. Truscan et al.

Fig. 9. Original lamp (left) and user (right) models.

The lamp will stay in the ON location for switchtime time units, unless a
touch event is received during its allowed stay and the clock is reset. When
switchtime time units have elapsed the lamp transitions to switchOFF location
and the n variable is set to zero. In this location the lamp will continue to accept
touch events, even though these have no effect. A location change synchroniza-
tion on done channel will take place from the switchOFF location to the OFF
location within switchtime + tolerance time units. This implies that the lamp is
allowed to stay in the switchOFF location for tolerance time units.

The model of the environment is presented in Fig. 9-right. Its functional-
ity is to emit touch events when the lamp is in a receiving state or to accept
confirmation that the lamp level has changed.

5.2 Introducing New Functionality

We introduce two new orthogonal concerns to the lamp specification:

– Authentication: only authenticated users may change the state of the lamp;
– Logging: authentication attempts should be logged.

Each concern will be implemented separately as a stand-alone advice and
woven in the base model of the lamp using the adapters described in Sect. 4.

Authentication Aspect. The first step is to create an advice model which
implements the authentication. Since the authentication can result either in a
successful or in a failed attempt, the advice model will have two exit points and
thus should be compatible with a conditional adapter. The authentication advice
(Fig. 10) is entered via the enAuth? synchronization, after which, depending on
the result of the authentication, it will exit via either exAuthCon! or exAuthRep!.
For simplicity, the authentication is discriminated by a pass variable shared with
the user model.

Intuitively, we would like to extend the behavior of our lamp model, to accept
touch events only from authenticated users. If the user is not authenticated, the
touch event is received but it has no effect on the lamp. In order to weave the
authentication advice with the base model, the conditional adapter has to be
applied to the base model in all possible locations. The target locations are

A Tool-Supported Approach for Introducing Aspects 359

Fig. 10. Advice handling authentication.

Fig. 11. Lamp woven with authentication advice.

Fig. 12. Logging advice.

Fig. 13. Weaving the logging advice into authentication.

all those edges having a touch? channel synchronization. The result of weaving
authentication using the conditional adapter is shown in Fig. 11.

The behavior of the lamp model is the same with the base model whenever
the authentication is successful or the jointpoint condition is not satisfied. When

360 D. Truscan et al.

Fig. 14. Environment model with authentication.

Fig. 15. Complete woven lamp model.

the authentication fails, the control is returned to the location preceding touch,
ignoring the user touch.

Logging Aspect. The logging aspect is introduced in a similar manner.
Figure 12 shows and advice model for logging which has been already refined
with an adapter. The advice is entered via the enLog? synchronization and it
exits via the exLog! synchronization after incrementing the number of failed
authentications.

In order to weave this aspect with its base model, in this case the Authentica-
tion advice model, we refine exAuthRep! edge in Fig. 10 using the before adapter
defined in Fig. 5, obtaining the model shown in Fig. 13.

Based on the new advice, whenever the authentication fails, the event is
logged by invoking the Logging advice via the enLog! synchronization and after
receiving exLog?, the original exAuthRep! is synchronized to the lamp model.

Environment with Authentication. The original user model in Fig. 9 is
updated to provide simple, both valid and invalid, authentication credentials
via the global integer variable pass, as shown in Fig. 14. Instead of having a
complete set of correct and incorrect authentication credentials, we used only

A Tool-Supported Approach for Introducing Aspects 361

two values (0 and 1), one to represent all the successful cases and one to represent
the unsuccessful cases. We also consider the authentication to take place at the
same time as the touch event. Therefore the touch channel has not changed
name. The new functionality could have been also introduced via a new aspect,
but we decided to keep the example simple.

5.3 Complete Woven Model

The resulting UPTA after weaving both the authentication and logging aspects
into the original lamp model is shown in Fig. 15. As one may notice, at runtime,
the aspects can be enabled or disabled statically by the use of the jp Auth and
jp log variables. When both these variables are set to false, the model in Fig. 15
will be equivalent with the original lamp model in Fig. 9. This approach allows
us to include or exclude the aspects using one single UPTA model.

6 Tool Support

6.1 Aspect Weaving

Since the composition mechanisms are specified explicitly via generic adapters,
the aspect weaving was completely automated via a tool implemented in the
Python programming language [24]. In order to implement the graphical user
interface (GUI), an open source, cross-platform, light-weight wxPython library
is used. In the GUI, the user can select a template from UPPAAL model files as
the base model template, the advice model template, the channel pinpointing a
join point and the type of weaving adapter (Fig. 16).

The tool parses the base model and identifies the locations and edges where
advice model has to be woven. By using this information, the advice model is
then woven at identified model fragments according to the type of advice. The
corresponding synchronizations are then added to the base model, in order to
synchronize the entry and exit of the advice model.

As a result of weaving process, a new UTPA model and the accompanying
verification rules are generated. The composite model is an UPTA model which
can be used to simulate and verify the composite specification. The woven aspect
behavior can be completely bypassed by setting the pointcut variables, which
results in the behavior of original base model. The newly generated composite
model can also act as base model to weave other advice models as described
earlier, supporting thus an incremental development approach.

6.2 Verification

After weaving the Authentication aspect into the original lamp model, the fol-
lowing verification rules have been generated by the tool, corresponding to each
join point related to a touch? synchronization.

lamp.AuthStart a → lamp.SwitchOn or lamp.Off

362 D. Truscan et al.

Fig. 16. Screen caption of the model weaver GUI.

lamp.AuthStart b → lamp.On or lamp.On
lamp.AuthStart c → lamp.switchOff or lamp.switchOff

Due to the source and target location being the same for the touch channel,
the underlined part of the second and third verification rules is redundant and
thus it can be discarded. In case where more precision is needed in distinguishing
the path taken in the join point, one can augment the join point with auxiliary
boolean variables which will be reset to true, whenever an edge (labelled with
that reset) of the join point is traversed.

Subsequently, when weaving the Logging advice into the Authentication
model, the following rule is generated:

aal.LoggingStart → aal.IDLE,

where aal is an instantiation of the Authentication aspect woven with Log-
ging aspect as previously shown in Fig. 15.

Last but not least, the tool generates the verification query for deadlock
freeness. All the generated rules including case specific ones are then verified in
the UPPAAL verifier.

7 Conclusions and Future Work

In this paper, we proposed an approach in which we introduce aspects-oriented
concepts in the context of UPTA models with the purpose of creating more
modular, manageable and easy to update specifications. More specifically, we
have proposed a set of generic adapters that can be used for systematic and tool-
supported weaving and verification of UPTA-based aspect models. Our approach
allows one to employ aspect-oriented concepts without modifying the underlying
UPTA formalism. In addition, it allows one to take advantage of the verification
engine of UPPAAL to ensure the validity of the resulting models.

A Tool-Supported Approach for Introducing Aspects 363

The use of generic weaving adapters allowed to implement weaving as a model
transformation. Due to the way the adapters are defined, the weaving does not
replace the original model fragment where the join point is applied, allowing thus
for multiple aspects to be woven consecutively at the same model fragment.

Preliminary evaluation shows that creating and updating aspect models
becomes easier following our approach and that weaving of the models does
not have a dramatic effect on the symbolic state space of the resulting models.
However a more thorough evaluation is subject to future work.

Future work also includes an evaluation on what are the benefits of using
UPTA-based aspect-oriented models for testing. More specifically we will look
at the impact of using aspect models on the test suite updates and will investigate
new aspect-based test coverage criteria which will exploit the modularity of the
models.

References

1. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme App-
roach. Addison-Wesley, Boston (2005)

2. France, R.B., et al.: An aspect-oriented approach to design modeling. In: IEE Pro-
ceedings - Software, Special Issue on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design, vol. 151 (2004)

3. Filman, R.E., et al.: Aspect-Oriented Software Development. Addison-Wesley,
Boston (2005)

4. Kiczales, G., et al.: Aspect-oriented programming. In: Matsuoka, S., Akşit, M.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 140–149. Springer, Heidelberg (1997)

5. Sutton Jr., S.M.: Aspect-oriented software development and software process. In:
Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 177–191.
Springer, Heidelberg (2006)

6. Rashid, A., et al.: Aspect-oriented software development in practice: tales from
AOSD-Europe. Computer 43, 19–26 (2010)

7. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, 2nd edn. Pearson Higher Education, Upper Saddle River (2004)

8. Ali, S., et al.: Modeling robustness behavior using aspect-oriented modeling to
support robustness testing of industrial systems. Softw. Syst. Model. 11, 633–670
(2012)

9. Aldawud, O., et al.: UML profile for aspect-oriented software development. In:
Proceedings of Third International Workshop on Aspect-Oriented Modeling (2003)

10. Han, Y., et al.: A meta model and modeling notation for AspectJ. In: The 5th
AOSD Modeling with UML Workshop (2004)

11. Stein, D., et al.: A UML-based aspect-oriented design notation for AspectJ. In:
Proceedings of the 1st International Conference on Aspect-oriented Software Devel-
opment, AOSD 2002, pp. 106–112. ACM, New York (2002)

12. Tkatchenko, M., Kiczales, G.: Uniform support for modeling crosscutting structure.
In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 508–521.
Springer, Heidelberg (2005)

13. Wimmer, M., et al.: A survey on UML-based aspect-oriented design modeling.
ACM Comput. Surv. 43, 28:1–28:33 (2011)

364 D. Truscan et al.

14. Ubayashi, N., Tamai, T.: Aspect-oriented programming with model checking. In:
Proceedings of the 1st International Conference on Aspect-oriented Software Devel-
opment, AOSD 2002, pp. 148–154. ACM, New York (2002)

15. Denaro, G., Monga, M.: An experience on verification of aspect properties. In:
Proceedings of the 4th International Workshop on Principles of Software Evolution,
IWPSE 2001, pp. 186–189. ACM, New York (2001)

16. Krishnamurthi, S., Fisler, K.: Foundations of incremental aspect model-checking.
ACM Trans. Softw. Eng. Methodol. 16, 7 (2007)

17. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue
Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015)

18. Magee, J., Kramer, J.: Concurrency: State models and java programs. Wiley, New
York (1999). [IBMb 02] IBM, “Business Process Execution Language For Web
Services” (1) 6

19. Sarna, K., Vain, J.: Exploiting aspects in model-based testing. In: Proceedings
of the Eleventh workshop on Foundations of Aspect-Oriented Languages, FOAL
2012, pp. 45–48. ACM, New York (2012)

20. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

21. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of aspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol.
2072, pp. 327–354. Springer, Heidelberg (2001)

22. Alur, R., et al.: Model-checking for real-time systems. In: LICS 1990, Proceedings
of Fifth Annual IEEE Symposium on e Logic in Computer Science, pp. 414–425.
IEEE (1990)

23. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

24. van Rossum, G.: The Python Programming Language. http://www.python.org
(Accessed Sep 2015)

http://www.python.org

A Timed Semantics of Workflows

Marcello M. Bersani1, Salvatore Distefano1,2, Luca Ferrucci3,
and Manuel Mazzara4(B)

1 Dipartimento di Elettronica Informazione e Bioingegneria,
Politecnico di Milano, Milano, Italy

{marcellomaria.bersani,salvatore.distefano}@polimi.it
2 Kazan Federal University, Kazan, Russia

3 ISTI-CNR, Pisa, Italy
luca.ferrucci@isti.cnr.it

4 Innopolis University, Kazan, Russia
m.mazzara@innopolis.edu.ru

Abstract. We formalize timed workflow with abnormal behavior man-
agement (i.e. recovery) and demonstrate how temporal logics and model
checking are methodologies to iteratively revise the design correct-by
construction system. We define a formal semantics by compiling generic
workflow patterns into an extension of LTL with dense time clocks (CLT-
Loc). CLTLoc allows us to define the first logical formalization of work-
flows that can be practically employed in verification tools and to avoid
the use of well-known automata based formalisms dealing with real-time.
We use an ad-hoc bound model checker to prove requirements valid-
ity on a business process. The working assumption is that lightweight
approaches easily fit into processes that are already in place so that rad-
ical change of procedures, tools and people’s attitudes are not needed.
The complexity of formalisms and invasiveness of methods have been
demonstrated to be one of the major drawback and obstacle for deploy-
ment of formal engineering techniques into mundane projects.

Keywords: Workflow · Recovery framework · Formal methods ·
Temporal logic · Semantics

1 Introduction

Workflows are logical, abstract artifacts able to describe or implement patterns
of activities required to perform real works. Any type of resources is considered
in this definition, both human and mechanical, including electronic, automation
and computer-based devices or systems. The general concept of workflow has
been adopted and characterized in several contexts such as economics (knowledge
economy, business process), management (manufacturing, job shop), mathemat-
ics (queueing systems, decision making, operations research), engineering (qual-
ity engineering, service engineering). With specific regard to computer science,
workflows are used in several contexts such as algorithms, business processes,

c© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): ICSOFT 2014, CCIS 555, pp. 365–383, 2015.
DOI: 10.1007/978-3-319-25579-8 21

366 M.M. Bersani et al.

Web services, machine learning, service oriented computing, software product
lines, human machine interaction.

Workflows are therefore applied in different contexts and also in different
ways: in design phase, where their representations are used to evaluate specific
properties (both functional and non-functional) of the corresponding systems;
to represent and evaluate the effectiveness of scheduling systems and policies; in
document management and imaging; in service composition and orchestration
(service oriented architecture/infrastructure, bioinformatics and cheminformat-
ics scientific workflows); to study human machine interactions.

This work can be framed into the workflow representation techniques, propos-
ing a formal approach based on CLTLoc [1] semantics for modelling the real-
time workflow executions and for the verification of dependability properties. In
fact, as CLTLoc extends LTL [2] by allowing timing constraints into formulae,
both instantaneous (zero time) and time consuming activities can be taken into
account in the workflow model, thus providing an effective tool for dependability
verification of workflows.

On Methods and Tools. Logics and model-checking have been successfully
used in the last decades for modelling and verification of various types of hard-
ware and software systems and have a stronger credibility in the scientific com-
munity when compared with other formalisms. We here give an CLTLoc-based
semantics of workflow execution and use Zot [3] model checker for requirement
verification. By applying model-checking on the case study presented in this
paper, we demonstrate the feasibility of the verification approach and how tem-
poral logics can work for both modelling and verification of (simple but realistic)
business workflows inclusive of exception handling. This work has to be intended
as complementary to what has been done in [4] where a similar problem was
approached in term of Process Algebra.

Differently from several others formalizations only offering languages with-
out methods – for a detailed discussion see [5,6] – our approach, together with
software tools, aims at offering a complete practical toolkit for software and sys-
tems engineers working in the field of workflow design. Following the line of [7]
this approach goes under the correct-by-construction paradigm and the idea of
developing dependable systems by integrating specific approaches well-suited to
each development phase.

The ideal process of workflow verification is an iterative process. In this work,
we aim at providing an instrument for workflow revision, i.e. a procedure to follow
until the requirements are finally met. To do this, we encode the workflow into a
formal language and, at the same time, we formally describe specific requirements
on the system. This is discussed in Sect. 3. At this point, as shown in Sect. 4,
correctness can be automatically determined via the Zot model checker. As an
outcome of model checking we may need to revise the workflow in order to meet
the requirements.

A Timed Semantics of Workflows 367

A Descriptive Semantics. The role of temporal logics in verification and
validation is two-fold. First, temporal logic allows abstract, concise and conve-
nient expression of required properties of a system. In fact, temporal logic is
often used with this goal in the verification of finite-state models, e.g., in model
checking [8]. Second, temporal logic can be used as a descriptive approach for
specifying and modelling systems (see, e.g., [9,10]). A descriptive model is based
on axioms, written in some (temporal) logic, which define the system through its
general properties, rather than by an operational model based on some kind of
machine behaving in the desired way. In this case, verification typically consists
of satisfiability checking of the entailment between the model and the desired
property [11].

Specifying temporal relations among events that do not inherently behave
in an operational way may become rather hard when operational models are
employed. This is the case for the system recovery considered here. Excep-
tion handling is an event-based paradigm that implements the asynchronous
exchange of warning events among actors that are part of the system. The typical
implementation of exception handling mechanisms – through logical rules of the
form if (cond) then throw(e) and try-catch blocks – requires ad-hoc extensions
of operational-based formalisms by means of the definition of message-passing
primitives. Specifying exception handling mechanisms through temporal logic
can be easily achieved by the logic itself and also allows modelling of classes
of exceptions endowed with a specific semantics (see Sect. 3) in a coherent and
uniform way.

Other Approaches and Novelty. Several approaches have been adopted in
recent years to provide formal semantics of business processes. Most of them are
very much bound to a specific formalism accordingly extended to better cope
with modelling issues. These attempts mostly belong (but not limited) to the
process algebras, Petri nets or model-based philosophies, with some raid into
temporal logics et similia too.

Mobile process algebra have been successfully used in [4] that this work
intend to complement. Limitations of process algebras approaches like the pre-
vious ones and, for example, [12] are related to the fact that process algebras
are based on equational reasoning. From a practical perspective, this makes ver-
ification tricky, difficult and certainly not user-friendly, because verification is
mainly carried out by specific proof techniques that are used to prove behav-
ioural equivalence among processes. Furthermore, all these approaches mostly
focus on the verification of reachability-based properties (with some exceptions
like [13]) and tool support is very limited (see [14]). On the other side, other
works like [15] provide a methodology and tool support for the modelling phase,
but do not cope with the verification phase and either do not belong to the
correct-by-construction paradigm.

Petri Nets supporters and van der Aalst approaches like Workflow Petri Nets
(WPN) [16] reached the objective of verification and tool support to a much larger
extent than other communities. This approach is based on extensions of previously

368 M.M. Bersani et al.

existing formalisms and still represents an operational model, which also inherits
the relative overhead. A successful attempt to overcome this issue has been pro-
vided by [17] where acyclic WPN are translated into a finite-state automaton and
verified against a suitable LTL property in order to verify soundness.

Model-based approaches have also been used, though to a much lesser extent
and often in combination with testing, for validation of business critical systems.
The B-model is one of the most popular together with its reactive-systems exten-
sion Event-B [18]. B and Event-B are not lightweight methods. They do come
with a refinement-based methodology, which however cannot easily be embedded
into already existing industrial processes [7].

In the domain of temporal logics, CTL has been used to specify and enforce
intertask dependencies [19], and LTL for UML activity graphs verification [20].
Other temporal logics have also been used for similar objectives. In particular,
in [21] a complete and coherent semantics based on the TRIO logic [22] has been
proposed for a more consistent set of UML diagrams.

Recovery frameworks have been more rarely formalized in similar manners
instead. This was the main contribution of [23]. One of the first works formally
discussing business recovery in terms of long-running transactions is [24]. In [25]
a simplified and clarified semantics of WS-BPEL recovery framework has been
presented in terms of Process Algebras. In [26] the state-of-the-art in formal-
izing fault, compensation and termination mechanisms of WS-BPEL 2.0 has
been deeply investigated. More recently, another model has been formulated for
the description of composite web services orchestrated by WS-BPEL and with
resources associated. The key contribution of [27] is the integration of WS-BPEL
with WSRF [28], a resource management language, taking into account the main
structural elements of WS-BPEL with event handling and fault handling.

The main contribution of the paper is a timed semantics for workflows which
extends the one in [23] with the definition of timing constraints bounding delays
of activities and transitions. CLTLoc, being the first extension of LTL with
constraints over Reals, allows us to define a descriptive semantics based on a
temporal logic, along the line of that we proposed in [23], without resorting to
Timed Automata [29], the de-facto standard formalism for dealing with real-time
reasoning. So, to the best of the authors’ knowledge, the proposed semantics is
the first descriptive formalization of workflows with recovery over real-time.

The working assumption is that a lightweight solution would easily fit into
processes that are already in place without the need for a radical change of
procedures, tools and people’s attitudes, which is actually the case for most of the
aforementioned techniques. The complexity of formalisms and invasiveness of
methods have been demonstrated to be one of the major drawback and obstacle
for deployment of formal engineering techniques into mundane projects [7,30].

The rest of the paper is organized as follows: Sect. 2 describes the case study
of a workflow for order processing. The semantics of workflows and exception
handling is given using temporal logic in Sect. 3 where a general encoding into
CLTLoc is provided. In Sect. 4 the implementation of this translation is illus-
trated and tests have been carried out to validate its correctness. Finally, Sect. 5
draws conclusive remarks and focus on future developments.

A Timed Semantics of Workflows 369

2 Timed Workflows with Recovery

A business process is a set of logically related tasks performed to achieve a well
defined business outcome. Examples of typical business processes are elaborating
a credit claim, hiring a new employee, ordering goods from a supplier, creating
a marketing plan, processing and paying an insurance claim, and so on. Many
computer systems are already available in the commercial marketplace to address
the various aspects of Business Process Management (BPM) and automation.

An automated business process is generally called business workflow, i.e. a
choreographed and system-driven sequence of activities directed towards per-
forming a certain business task to completion. By activity we mean an element
that performs a specific function within a process. Activities can be as simple
as sending or receiving a message, or as complex as coordinating the execution
of other processes and activities. A business process may encompass complex
activities some of which run on back-end systems such as, for example, a credit
check, automated billing, a purchase order, stock updates and shipping, or even
such frivolous activities as sending a document and filling a form.

Workflow is commonly used to define the dynamic behaviour of business
systems and originates from business and management as a way of modelling
business processes that could wholly or partially be automated. It has evolved
from the notion of process in manufacturing and offices because these processes
are the result of trying to increase efficiency in routine work activities since
industrialization.

The view on a workflow which is inherited from the BPM perspective – i.e.
the way in which workflow designers may see a system – is somehow different
from the way formalists see it. Therefore, to fill the gap between the formal
and informal world, we will provide the reader with a precise understanding
introducing a formal definition of a business workflow. However, our notation is
suitably abstract enough to represent a large number of different modelization
formalisms, such as those based on State Machines (Statecharts [31], UML Activ-
ity Diagrams [32] and Petri Nets) or specialized to represent business processes,
such as BPEL [33]. In fact, one of the purposes of this work is defining a general
notation able to include most of the specialized constructs of these languages, by
abstraction. How this abstraction is performed is out of the scope of the paper.

A workflow is a directed graph defined by pair (A, T), where A is a finite
non empty set of places (or activities) and T is a relation that is defined as
T ⊆ A × A × N. Elements of T are pairs (p, q, d), with p, q ∈ A and d ∈ N, that
are called transitions (later indicated by tdpq). When d is zero, the transition is
called zero-time and it is simply written tpq otherwise d is the delay of executing
tdpq. Let a be a place of A and time : A → N be a function labelling activities
of the workflow. We write ac, with c = time(a), for the activity a which lasts c
time units. We assume that activities have non null duration, i.e., function time
never nullifies. Set out(a) is the set of outgoing transitions starting from a which
is defined as {(a, q) | q ∈ A, (a, q) ∈ T}. Set in(a) is the set of ingoing transitions
leading to p which is defined as {(q, a) | q ∈ A, (q, p) ∈ T}.

370 M.M. Bersani et al.

We assume that |out(a)| ≥ 1, for all a ∈ A, except for place end , and that
|in(a)| ≥ 1, for all a ∈ A, except for place start .

A finite path from a to a′ is a (finite) sequence of pairs (a0, a1) . . . (an−1, an)
with a0 = a and an = a′, such that (ai, ai−1) ∈ T , for all 1 ≤ i ≤ n. An
infinite path from a is an (infinite) sequence of pairs (ai, ai−1) ∈ E, for all i ≥ 1,
where a0 = a. As in [23], we assume that workflows are structurally correct,
that is, such that there exists at least one path from place start to (any) place
end . The CLTLoc modelling allows us to define precisely all the executions of a
timed workflow that, informally, are the superposition of paths of the workflow
starting from the initial place.

Conditional cases and split-join activities have been already considered in [23].
In this paper, we refine their modelling to make it compliant with the real-time
semantics. We briefly recall their intuitive meaning. Conditional cases model if-
then-else blocks provided with the usual semantics. If the condition holds the
“then” branch is executed otherwise the execution flow follows the “else” branch.
Split-join activities model the parallel execution of two (or more) branches of
the workflow that starts concurrently when activity split is executed and eventu-
ally synchronize their computations in correspondence with the associated join
activity. We assume that conditional cases and split-joins are fictitious activities
with non relevant time duration. Therefore, the execution of conditional cases
and split-join is considered instantaneous with no time consumption and causes
the related activity to start at the same instant where they occur. However,
a non null duration may still be associated with these activities by defining a
non-zero time incoming transition.

We consider workflows that are endowed with exceptions, which are events
(or signals) representing erroneous configurations that occur during the workflow
execution and that may prevent it from reaching a final place. With no loss of
generality, we assume that an exception (raised at some moment throughout
the execution) that is not managed forces the running activities that monitor
that exception not to terminate. The termination of an execution, and then of
all the activities occurring therein, can only be guaranteed if end is reached.
The assumption is not too strong and does not prevent modelling an activity,
say a, that terminates with an error configuration. In fact, one can introduce
an exception to represent the wrong termination of a and a special activity that
detects it and that is specifically devised for managing faulty termination of a. In
addition, workflow executions are not restricted only to finite paths (from start to
end) and infinite iterations of finite paths of the workflow are still allowed. In fact,
infinite executions are representative of wrong behaviours only when there is one
(ore more) activity, over some paths, that can not terminate and does not allow
the workflow to proceed further and reach end . To guarantee that a workflow is
correctly designed, all the exceptions that may raise during an execution have to
be caught and solved. Designers should prevent anomalous situations by defining
suitable recovery actions that restore the workflow execution.

Exceptions associated with a workflow are partitioned into the set of perma-
nent (i.e., non-punctual) exceptions and the set of punctual exceptions, as in [23].

A Timed Semantics of Workflows 371

Informally, we say that an exception is punctual when its duration is negligible,
whereas we say that an exception is non-punctual when it may have a duration
lasts from a position where it is raised until a position where it expires. In this
paper, since we extend the modelling through real-time constraints we allow
permanent exception to have an exact duration by which it must be handled. If
this is not the case, then the workflow does not terminate. Punctual exceptions
are not associated with any duration as they must be solved by some activ-
ity that is already underway. Activities in the workflow can be associated with
three, possibly empty, sets of exceptions: (i) the set of exceptions that activity
can notify whenever a potential dangerous error may compromise the workflow
execution and that have to be suitably handled by some other activity which is
able to repair the fault; (ii) the set of exceptions that activity can handle and
the set of exceptions that may compromise the workflow execution because they
let activity switch to an error state, if no activity catching them is active at the
same time.

3 Formal Semantics

Constraint LTL (CLTL [34,35]) is an extension of LTL allowing atomic formulae
over a constraint system. Let V be a finite set of variables and let D = (R, {<,=})
be a constraint system over which formulae are interpreted. In this paper, we
consider a fragment of CLTL where temporal terms α are defined as: α := c | x,
where c is a constant in N and x is a variable in V .

An atomic constraint is a term of the form α1 ∼ α2, where ∼∈ {<,=}, α1

and α2 are temporal terms. Well-formed CLTL formulae are defined as follows:

φ := p | α1 ∼ α2 | φ ∧ φ | ¬φ | X (φ) | Y (φ) | φUφ | φSφ

where p ∈ AP , every αi’ is a temporal term, ∼∈ {<,=}, X, Y, U and S are
the “next”, “previous”, “until” and “since” operators of LTL. The semantics of
CLTLoc is defined with respect to D and the order (N, <) representing positions
in time. An interpretation is a pair (π, σ), where σ : N × V → D is a mapping
assigning for every variable x ∈ V its value σ(x, i) at each position i ∈ N and
π : N → ℘(AP) is a mapping associating a set of propositions with each position
in N. The semantics of CLTL at a position i ∈ N over an interpretation (π, σ) is
defined in Table 1 (Boolean connectives are omitted for brevity). A formula φ ∈
CLTL is satisfiable if there exists a pair (π, σ) such that (π, σ), 0 |= φ. In this
case, we say that (π, σ) is a model of φ and we write simply (π, σ) |= φ.

CLTLoc [1] is a special case of CLTL, where the arithmetical variables behave
as clocks, as in Timed Automata [29]. The logic is the first decidable extension
of LTL that embeds the notion of dense time through explicit clocks in the
language for which there is an implemented decision procedure freely available.
Intuitively, a clock x measures the time elapsed since the last time when x = 0,
i.e., the last “reset” of x. To ensure that time progresses at the same rate for
every clock, σ must satisfy the following condition: for every position i ∈ N,
there exists a “time delay” δ > 0 such that for every clock x ∈ V either time

372 M.M. Bersani et al.

Table 1. Semantics of CLTL.

(π, σ), i |= p ⇔ p ∈ π(i) for p ∈ AP

(π, σ), i |= α1 ∼ α2 ⇔ σ(i, xα1) ∼ σ(i, xα2)

(π, σ), i |= ¬φ ⇔ (π, σ), i �|= φ

(π, σ), i |= φ ∧ ψ ⇔ (π, σ), i |= φ and(π, σ), i |= ψ

(π, σ), i |= X (φ) ⇔ (π, σ), i + 1 |= φ

(π, σ), i |= Y (φ) ⇔ (π, σ), i − 1 |= φ ∧ i > 0

(π, σ), i |= φUψ ⇔ ∃ j ≥ i : (π, σ), j |= ψ ∧ (π, σ), n |= φ ∀ i ≤ n < j

(π, σ), i |= φSψ ⇔ ∃ j ≤ i : (π, σ), j |= ψ ∧ (π, σ), n |= φ ∀ j < n ≤ i

progress, i.e., σ(i + 1, x) = σ(i, x) + δ, or the clock is reset , i.e., σ(i + 1, x) = 0.
The initial value of a clock, σ(0, x), may be any non-negative value. If needed, a
clocks x may be initialized to c just by adding a constraint of the form x = c.

Workflow Model. Workflows model execution of systems as sequences of activ-
ities. Transitions, conditional case and split-join interleave the activities and
determine uniquely the execution flow, i.e., the sequence of activities that real-
izes the computation. An activity is an abstraction of a compound of actions that
are performed by the real workflow. Although they can be modelled as atomic
computations, we adopt a different perspective for which the activities, being
actions in the real world, have a non-punctual duration. To translate workflows
into an CLTLoc formula, we assume that all the activities (except for the activ-
ities start and end) are always followed by a transition, and viceversa, and that
conditional case and split-join are special activities that have punctual duration.
When an activity is performed, the firing of the outgoing transition lets the sys-
tem change allowing it to execute the next activity.

Let (A, T) be a workflow. With no loss of generality, we assume that no ele-
ment in the graph is duplicated. By this assumption, we associate each activity
with an atomic proposition that uniquely identifies it. We write tpq to indicate
an element (p, q) ∈ T , i.e., a transition between activities p, q ∈ A. If activity
a ∈ A holds at position i then the workflow is performing activity a at that posi-
tion; similarly for t. We introduce ‖ and ⊕ to indicate a split-join activity and a
conditional case activity, respectively; start and end to indicate the starting and
the final activity of the workflow. Workflow diagrams are translated according
to rules in Table 2.

Let tout(a) be the disjunction
∨

t∈out(a) t and tin(a) be the disjunction∨
t∈in(a) t.

Table 2 summarizes the CLTLoc formulae defining the translation of the
workflow. We slightly depart from the formalization provided in [23] to model
zero-time transitions and the duration of activities. We now describe all formulae
defining such aspects while motivations for formulae that are not detailed here
can be found in [23].

A Timed Semantics of Workflows 373

Table 2. Workflow LTL encoding. For convenience, transitions are labeled with
numeric pedices.

[a]tout(a)

a ⇒ (a ∧ ¬tout(a))U(tout(a)) ∨ G (a) (1)
∧

t∈out(a)

(t ⇒ Y (a) ∧ ¬a) (2)

a
t2t1

ti

tin(a)[a]

a ⇒ (a ∧ ¬tin(a))S(tin(a)) (3)
∧

td∈in(a)

(td ⇒ X (a) ∧ ¬a) (4)

∧

t∈in(a)

(t ⇒ ¬Y (a) ∧ a) (5)
a

t2t1

ti

[· + ·]
t1 ⇒ ¬t2 (6)

⊕ ⇒ ¬Y (⊕) ∧ ¬X (⊕) (7)

t1 ∨ t2 ⇔ ⊕ (8)

+
t2t1

[· | ·]

∧

t1,t2∈out(‖)
(t1 ⇔ t2) (9)

‖ ⇒ ¬Y (‖) ∧ ¬X (‖) (10)

ti ⇔‖ (11)

‖ t2t1

ti

[· | ·]

∧

t1,t2∈in(‖)
(t1 ⇔2) (12)

‖ ⇒ ¬Y (‖) ∧ ¬X (‖) (13)

ti ⇔‖ (14)
‖ t2t1

ti

td

td ⇔ xt = 0 ∧ X (xt = d) (15) td

a ∧ ¬Y (a) ⇔ xa = 0 (16)

Y (a) ∧ ¬a ⇒ xa = time(a) (17)

a=time(a)

Zero-time transitions are modelled through Formula 5. Let t be a transition
reaching activity a, i.e., such that t ∈ in(a). When t fires at position i then a is
true in i but it does not at position i−1 where an activity b such that t ∈ out(b)
was active. Formula 4 and 5 are different, as the former, combined with Formula
2, forces the absence of the two activities a and b when tab occurs; the latter lets
tab fire exactly at the first position where b holds. In other words, a transition
tab between activity a followed by b, is non zero-time when, if i is the position
where it fires, activity a holds at position i − 1, where it ends, and activity b
holds at position i+1, where it starts, but none of them at position i. Conversely,
a transition tab between activity a followed by b, is zero-time when activity a

374 M.M. Bersani et al.

holds at position i − 1 and activity b holds at position i, where it starts exactly
at the same position when tab holds.

Figure 1 shows an example of a zero-time and non zero-time transition.

{a} {a} {a} {a} {b, t}{b} {t1.3} {c} {c}
1.5 0.8 1.2 1.5 0.5 1.5 1.3 0.7

a=5

t

b=2

t1.3

c=1

Fig. 1. Portion of an execution (left) of the sequence of activities a, b and c (right)
where t is a zero-time transition between a and b and t1.3 is a non zero-time transition
that lasts 1.3 time units. The delays between two consecutive positions of the CLTLoc
representation of the execution are shown in the picture between any pair of bullets.
For instance, the time elapsing between position 2 and 3 is 0.8 time unit. Zero-time
transition t occurs in the first position of the execution of activity b which, therefore,
begins exactly when activity a terminates. Transition t1.3 has a non null duration and
then it separates activity b from c.

Given an activity a ∈ A, the CLTLoc semantics that we associated with
[a]tout(a) and tin(a)[a] does not impose any constraint on the firing of transitions
in the sets out(a) and in(a), making the execution flow non-deterministically
determined. Formulae (1)-(4) are the same of those presented in [23]. The only
difference is in Formula (4) which is now written for non zero-time transitions.

Conditional case [· + ·] and split-join [· | ·] activities are modelled similarly
to [23] by formulae (1)-(5) . However, we introduce formulae (8), (11) and (14)
to model the zero duration of split/join activities and conditional cases. They
enforce the contemporaneity of the activities ⊕ and ‖ with the outgoing transi-
tions, that are assumed to be zero-time. Therefore, their behaviour is modelled
by Formula (5).

Adding time to workflows requires care in modelling split-join activities and
the duration of their branches. It is, in fact, possible to write unfeasible split-join
blocks that do not allow any execution to reach the join when the branches are
not “temporally synchronized”, that is, when there is at least a pair of paths in
the split-join block whose duration (the sum of the duration of all the activities
and non zero-time transitions over the path) is not equal. In such a case, the
designer must introduce special activities, that are not functionally related to
the workflow, to delay the execution of those paths in the split-join which have
different duration. In Sect. 4, we show how our approach can be used to refine
the model and design split-join activities that are correctly synchronized.

Formulae (15)-(17) are new and not part of [23] as they model the real-time
temporal behaviour of activities and transitions. Figure 2 shows an example of
constraints on clocks measuring delays for activities and non zero-time transi-
tions. Formula (15) defines the duration of non-zero time transitions. For each
non-zero time transition tdi , we introduce a clock xi that is reset when tdi fires

A Timed Semantics of Workflows 375

{b, t}
xb = 0

{b} {b}{b} {td}
xb = 5
xtd = 0 xtd = d

1.2 1.5 0.5 1.3 d

t

b=5

td

Fig. 2. Execution (left) of activity b and transitions t and td depicted on the right,
where t is a zero-time transition preceding b and td is a non zero-time transition that
lasts d time units. The delays between two consecutive positions of the CLTLoc repre-
sentation of the execution are non-deterministically determined to meet the constraint
on the duration of the activity imposed in Formula (17). In position 2, activity b starts
and clock xb is reset. The constraint xb = 5 on the duration of activity b is met in
the next position where b terminates (in the example this holds when td occurs). For-
mula (15) models temporal constraints on td. When td occurs, clock xtd is reset. In the
next position, it meets the constraint xtd = d.

and whose value is exactly d in the next position. To measure activity delays,
we introduce clock xa for activity a ∈ A. Formula (16) defines the condition
for resetting xa that occurs when activity a starts. The formula states that if,
at the current position, activity a holds and in the previous position a was not
underway, then clock xa is reset. This allows the clocks to initiate the measuring
of the duration of a. When activity finishes then, at that moment, clock xa must
evaluate to time(a). In a terminating run, all activities terminate and eventually
are such that Y (a)∧¬a. Then, all the executions meet the temporal constraints
on the duration of the activities by enforcing the consequent of Formula (17). In
case of workflow errors, some activities of the workflow may loop forever.

In such a case, the antecedent of the implication is false, as the activity
satisfies G (a), and does not constraint the value of clock xa to any specific
value. Along the execution of activity a, its clock xa has a value which is less
than the duration time(a) of the activity itself.

As in [23], we assume that when a workflow terminates, it never resumes, by
adding to the model formula end ⇒ G (end).

Encoding Exceptions. Let E be a (finite) set of exceptions associated with
the workflow and P and S be two subsets of E such that P ∪ S = E and
P ∩ S = ∅ where P is the set of permanent exceptions and S is the set of
punctual exceptions. In this section, with abuse of notation, we restrict set A
only to activities that are not start, end, split-join and conditional activities
with which no exception is associated.

Informally, we say that an exception is punctual when it holds exactly one
time instant whenever it occurs. Conversely, an exception is non-punctual when
it may have a duration and it lasts from a position where it is raised until a
position where it expires. In this paper, we focus on non-punctual exceptions for
which the modelling is modified with respect to [23] to deal with time constraints.
Formulae defining the behaviour of punctual exceptions are not shown here as
they are the same as those presented in [23].

376 M.M. Bersani et al.

Let a be an activity and catch(a) be the set of exceptions that activity a
can restores. Since non-punctual exceptions may hold continuously over some
adjacent positions, when such an exception occurs, say e, at some position, it
holds until an activity a such that e ∈ catch(a) restores the exception. To store
the time elapsed since its generation, we introduce a clock xe, for all e ∈ P .
Formula (18) imposes that clock xe is reset when exception e is thrown.

∧

e∈P

(e ∧ ¬Y (e) ⇔ xe = 0). (18)

We extend function time to element of set E. Formula (19) is different from the
one presented in [23] as it also includes the timing constraint on clock xe to
meet the deadline time(e). It states that if, at the current position, e holds then
there is a position in the future where an activity restores it before the deadline
time(e), otherwise it will hold indefinitely. In fact, if the right-hand formula
holds, i.e., the exception is managed correctly before the deadline, then ¬G (e)
holds and e will not hold indefinitely. Conversely, if the right-hand formula does
not hold then ¬G (e) does not holds, that is, e will hold indefinitely.

∧

e∈P

(e ⇒ (¬G (e) ⇔
∨

a∈A

e∈catch(a)

(eU(a ∧ xe ≤ time(e)))). (19)

Any non-punctual exception which is not properly resolved by some activi-
ties of the workflow before its deadline causes the workflow to fall into an
error configuration and lets the execution loop forever. Formula (20) states that
in exception e is active and its clock is greater than its deadline then the
exception remains active and endures indefinitely. Formula (20), conjoined with
Formula (19), avoids the occurrence of an already managed exception e after its
deadline, because otherwise G (e) holds which, by Formula (19), is equivalent to
not having an activity that managed e (Fig. 3).

∧

e∈P

(e ∧ xe > time(e) ⇒ G (e)). (20)

Let probe(a) be the set of exceptions associated with activity a that may
let a loop indefinitely. If a is active at a certain position of the time, then the
occurrence of (i) an exception e in probe(a) causes an abortion of a if, at that
moment, there is no activity b that restores e, such that e ∈ catch(b) or (i) an
exception e has not met its deadline. The abortion represents a configuration of
error that can not be restored, i.e., a loops infinitely or terminates with a system
error. Formula (21) is the same as the one in [23] and is defined for all activities
a ∈ A of the workflow with a non empty set probe(b)

∧

e∈probe(a)

(a ∧ (G (e) ∨ e ∧
∧

b∈A

e∈catch(b)

¬b)) ⇒ G (a) (21)

Formula (22), which is introduced for all activities a ∈ A appearing in the work-
flow, defines the necessary conditions to have infinite execution. It is modified

A Timed Semantics of Workflows 377

{e}
xe = 0

{e} {e} {e, a, t} {a}
xe = 2.2 xe = 3.5

{e}
xe = 0

1.2 1.1 0.9 1.3 1.7

t

a=3[e]

Fig. 3. Portion of the execution (left) of exception e with deadline time(e) = 3 caught
by activity a, i.e., such that e ∈ catch(a). In position 5, where xe = 2.2, activity a solves
the exception before its deadline. Therefore, e does not occur in the next position,
that occurs after 3 time units since the generation of e, because of Formula (20) and
Formula (20). Exception e is newly thrown in the last position of the sub-execution
where clock xe is reset.

with respect to the correspondent one in [23] because the disjunct
∨

e∈P G (e) is
added to the formula. At a certain position, if activity a is active and it never
terminates, i.e., G (a) holds at that position, then (i) there exists an activity c of
the workflow, possibly different from a, that eventually loops indefinitely because
an exception e ∈ probe(c) is not correctly handled or (ii) there is an exception e
whose deadline has not met which continues indefinitely (due to Formula (20)).
If activity a holds forever, then there is an activity c (which may possibly be a)
and a non-punctual exception e ∈ probe(c) that holds indefinitely, because no
activity b, that actually could manage e, ever catches it.

G (a) ⇒ F

⎛

⎜⎜⎝
∨

c∈A

e∈probe(c)

(G

⎛

⎜⎜⎝c ∧ e ∧
∧

b∈A

e∈catch(b)

¬b)

⎞

⎟⎟⎠ ∨
∨

e∈P

G (e ∧ c))

⎞

⎟⎟⎠ (22)

Observe that when probe(c), for some c ∈ A, is empty the formula within F is
trivially false. In this case, the activity appearing in the antecedent of the formula
always terminates and no looping executions are admitted for it, because G (a)
is false.

An exception e ∈ E is internal if it is thrown by some activity appearing
in the workflow whereas it is external otherwise. The same formalization in [23]
holds in this context, so the reader may refer to [23] for further details.

We can now, formally, define the executions of a workflow. Let W be a work-
flow and φW the CLTLoc formula translating W that is defined by conjunction
the formulae above, globally quantified over the time. We define execution of W
an CLTLoc interpretation (π, σ) for formula φW such that (π, σ), 0 |= φW .

4 An Example

To demonstrate the soundness and effectiveness of the proposed approach, it
has been applied to the investigation of an example taken from literature and
related to an office process. This way, in the following, we first describe the office
workflow and then we report on how to apply our framework to the verification
of some basic properties of the overall process.

378 M.M. Bersani et al.

4.1 The Model

A workflow for processing generic good requests, referable to a quite large class
of small and medium enterprises (for details see [36]), is described in Fig. 4. Even
if simple, it could represent, from a high level perspective, a broad class of actual
e-commerce or similar (remote) purchase systems. In the corresponding workflow
model we included some design flaws on exception handlers that may drive to
neverending executions.

More specifically, the office workflow is composed of ten activities, drawn as
rectangles, which could generate three types of exceptions: HF (Hardware Fail-
ure), SF (Software Failure) and TF (Transport Failure). The first two of them

Order Receipt

Inventory Check

Reject 1

Internal Credit Check

YES

NO

SF
HF

SF recovery available?NO

YES

Recovery [SF]

? Reject 2 [TF]NO

YES

II
Billing

Shipping

II

Archiving

Confirmation

TFHF
HF
SF
TF

20m

60m

1m

5m

120m

1m

60m

10m

30m

15m

60m

10m

Delay50m

Fig. 4. Office workflow representation.

A Timed Semantics of Workflows 379

(HF and SF) are permanent exceptions, while TF ones are punctual excep-
tions. The probe and throw exception sets related to an activity are identified
by all its ingoing or outgoing labelled arrows, respectively. This way we have
throw(InternalCreditCheck) = {HF ,SF} and throw(Shipping) = {TF}. The
set of exceptions caught by an activity is specified within square brackets close
to its name in the rectangle (catch(Recovery) = {SF} and catch(Reject2) =
{TF}). Conditions are represented by diamonds and labelled with ? or with
< Condition Name >? (SF recovery available?). Similarly, split-join concur-
rent activities are depicted by diamonds labelled with ‖. Both condition and
split-join activities are instantaneous activities thus characterized by zero-time
durations. Finally, the number specified as subscript of labels represents the time
spent in an activity with the corresponding time unit (m stands for minutes),
i.e. the activity time durations. With regard to exceptions, this time represents a
timeout: once expired the exception can no longer be handled and/or recovered.

Verifying the reachability property G (¬Arch), we prove that Archiving
activity is not reachable. So, to synchronize the execution of the two branches, we
have introduced a new dummy activity Delay to equal the duration of activity
Shipping.

4.2 Verification

To demonstrate the effectiveness of our approach in this section we verify (the
CLTLoc model of) the workflow described above to identify wrong execution
patterns taking into account different, alternative scenarios characterized by the
exceptions, thus obtaining hints able to drive the model refinement towards a
correct design. In this section, we discuss on the performance results of the
verification process and the satisfiability of properties.

To validate the CLTLoc model, we exploit the Bounded Satisfiability Check-
ing (BSC) [11] approach similarly to [23].

Table 3 shows time – in seconds – required by Zot to verify a set of functional
user-defined properties, memory occupation – in MBytes – and the result, i.e.
whether the property is satisfied or not.

Formula G (¬tf ∧ ¬hf ∧ ¬sf ⇒ F (end)) states that, if no exceptions occur,
the workflow must terminate, as in [23]. As reported in Table 3, the property
holds also in the timed version of the workflow, since there are no traces which
satisfy its negation.

Formula (G (¬hf ∧ ¬sf) ∧ F (tf ∧ xShipp = 5)) ⇒ F (end) checks the occur-
rence of the TransportFailure punctual exception, which is thrown by Shipping
activity and models a shipping problem, such as a truck accident. The variable
xShipp is the clock associated to activity Shipping, which counts the time elapsed
since the beginning of the execution of the activity: in this formula, we want to
simulate the thrown of the tf exception after 5 time units – minutes, in the case
study – from the beginning of the activity. As reported in Table 3, the property
does not hold: the counterexample trace shows, as in [23], that the activities
Billing and Shipping loop forever. Having a look at the workflow, we observe
that some activities never terminate since the exception tf can be caught only

380 M.M. Bersani et al.

Table 3. Test results.

Formula Time (s) Memory (Mb) Result

G (¬tf ∧ ¬hf ∧ ¬sf ⇒ F (end)) 7.545 25 UNSAT

(G (¬hf ∧ ¬sf) ∧ F (tf ∧ xShipp = 5)) ⇒ F (end) 8.536 180 SAT

(G (¬hf ∧ ¬sf) ∧ F (tf ∧ xShipp = 25)) ⇒ F (end) 7.846 28 UNSAT

by activity Reject2, which can not be executed in parallel with Shipping, and
because activity Billing catches the exception before its deadline, which is 10
time units.

Formula (G (¬hf ∧ ¬sf)∧F (tf ∧ xShipp = 25)) ⇒ F (end) checks, again, the
occurrence of the TransportFailure punctual exception, but in a scenario where
it is thrown after activity Billing has finished its execution. In this case, there
are no parallel activities that catch the exception, since activity Delay is only a
placeholder to wait for synchronization, so the workflow terminates.

All tests have been carried out on a 3.3 Ghz quad core PC with 16 Gb of RAM.
The bound k, which is a user-defined parameter representing the maximal length
of runs analysed by Zot, corresponds to the number of discrete positions that
are used to build the bounded representation of the model. The value chosen is
k = 35. By analysing the longest path of the workflow of Fig. 4, one can see that
this value for k is big enough to guarantee the definition of meaningful workflow
executions, i.e., interpretations over the symbols appearing in the workflow that
are model of the LTL formula translating it (partly shown in and defined through
rules of Sect. 3).

To verify properties like the one modelled by Formula G
(¬tf ∧ ¬hf ∧ ¬sf ⇒

F (end)
)
, Zot must exhaustively analyse all possible runs to return UNSAT,

which is the worst case in terms of time and memory consumed; taking it into
account, we can conclude that it is feasible, using modern model checking tools
such as Zot, to perform formal verification of non-trivial functional real-time
properties, in a limited amount of resources, allowing designer to execute the
analysis in an interactive real-time manner.

5 Conclusions and Future Work

The major objective of this paper is demonstrating how temporal logics are
effective in giving semantics and iteratively enforce requirements into the process.
To this purpose, starting from [23], we extended the previous LTL semantics
formalization of workflows to include timed activities. To model timed workflow
we exploit CLTLoc [37], which is an LTL based logic where atomic formulae are
both atomic propositions and constraints over dense clocks. The implemented
solution is able to verify time behavior of a wide class of workflows, as also
demonstrated by an example of a generic office business process.

The workflow patterns here analyzed are limited with respect to a real sce-
nario, where more complex patterns, as the ones identified in [38], need to be

A Timed Semantics of Workflows 381

investigated and encoded into our approach. Once workflows are intended as
graphs and transitions are treated like in this paper, similarities emerge with
the Petri Nets approach, in particular with Workflow Petri Nets [16]. Other for-
malisms such as the business process modeling notation (BPMN) [39] could be
considered as starting point for our approach. Indeed, in [40] BPMN has been
exploited for workflow design since it includes the concept of partition (modeled
as pools and swimlanes), an essential features for business processes modeling
not considered here. This will need to be investigated later.

Zero-time modeling is also an open issue. When some workflow activities
have a negligible duration with respect to the other ones, they may be modeled
as having a logical zero time duration. This implies Zeno behaviours and other
counterintuitive consequences. [10] introduces a new metric temporal logic called
X-TRIO, which exploits the concepts of Non-Standard Analysis [41]. The way
to “glue” together CLTLoc with X-TRIO is a promising research strand.

Finally, runtime evolution in business processes [42] and, more in general, the
idea of self-reconfiguring systems are related issues we intend to further explore.

Acknowledgements. The authors acknowledge the support and advice given by
Marina Carvalho, Miticus Flamejante, Vı́nicius Pereira, Diego Pérez, Michele Ciavotta,
Marco Miglierina and all the other Friends at Politecnico di Milano, which represent a
moving force, an actual égrégore capable of always moving ideas forward to the next
level.

References

1. Bersani, M.M., Rossi, M., Pietro, P.S.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. In: 2013 20th International Symposium on
Temporal Representation and Reasoning, 26–28 September, 2013, Pensacola, FL,
USA, pp. 99–106 (2013)

2. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R.
(ed.) Proceedings of Logics of Programs. LNCS, vol. 193, pp. 196–218. Springer,
Heidelberg (1985)

3. Pradella, M., Morzenti, A., San Pietro, P.: Refining real-time system specifications
through bounded model- and satisfiability-checking. In: ASE, pp. 119–127 (2008)

4. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for ws-bpel. J. Logic Alge-
braic Program. 70, 96–118 (2007)

5. Mazzara, M.: Deriving specifications of dependable systems: toward a method. In:
12th European Workshop on Dependable Computing (EWDC) (2009)

6. Mazzara, M.: On methods for the formal specification of fault tolerant systems.
In: Proceedings of the 4th International Conference on Dependability (DEPEND
2011) (2011)

7. Gmehlich, R., Grau, K., Iliasov, A., Jackson, M., Loesch, F., Mazzara, M.: Towards
a formalism-based toolkit for automotive applications. In: Formal Methods in Soft-
ware Engineering (FormaliSE) (2013)

8. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

9. Morzenti, A., San Pietro, P.: Object-oriented logical specification of time-critical
systems. ACM Trans. Softw. Eng. Methodol. (TOSEM) 3, 56–98 (1994)

382 M.M. Bersani et al.

10. Ferrucci, L., Mandrioli, D., Morzenti, A., Rossi, M.: A metric temporal logic for
dealing with zero-time transitions. In: Proceedings of 19th International Sympo-
sium on Temporal Representation and Reasoning, pp. 81–88. IEEE Computer Soci-
ety (2012)

11. Pradella, M., Morzenti, A., San Pietro, P.: Bounded satisfiability checking of metric
temporal logic specifications. ACM Trans. on Soft. Eng. Meth. (TOSEM) (2013)

12. Vaz, C., Ferreira, C.: On the analysis of compensation correctness. J. Log. Algebr.
Program. 81, 585–605 (2012)

13. Calzolai, F., De Nicola, R., Loreti, M., Tiezzi, F.: TAPAs: a tool for the analysis
of process algebras. In: van der Aalst, W.M.P., Billington, J., Jensen, K. (eds.)
Transactions on Petri Nets and Other Models of Concurrency I. LNCS, vol. 5100,
pp. 54–70. Springer, Heidelberg (2008)

14. Mazzara, M., Bhattacharyya, A.: On modelling and analysis of dynamic reconfig-
uration of dependable real-time systems. In: DEPEND, International Conference
on Dependability (2010)

15. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with jolie. In:
Web Services Foundations, pp. 81–107 (2014)

16. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

17. Yamaguchi, M., Yamaguchi, S., Tanaka, M.: A model checking method of soundness
for workflow nets. IEICE Trans. 92(A), 2723–2731 (2009)

18. Augusto, J.C., Howard, Y., Gravell, A.M., Ferreira, C., Gruner, S., Leuschel, M.:
Model-based approaches for validating business critical systems. In: STEP, pp.
225–233 (2003)

19. Attie, P.C., Singh, M.P.: Specifying and enforcing intertask dependencies. In: Pro-
ceedings of the 19th VLDB Conference, pp. 134–145 (1993)

20. Eshuis, R., Wieringa, R.: Verification support for workflow design with uml activity
graphs (2002)

21. Baresi, L., Morzenti, A., Motta, A., Rossi, M.: A logic-based semantics for the
verification of multi-diagram uml models. ACM SIGSOFT Softw. Eng. Notes 37,
1–8 (2012)

22. Ghezzi, C., Mandrioli, D., Morzenti, A.: Trio: A logic language for executable
specifications of real-time systems. J. Syst. Softw. 12, 107–123 (1990)

23. Ferrucci, L., Bersani, M.M., Mazzara, M.: An LTL semantics of businessworkflows
with recovery. In: ICSOFT-PT 2014 - Proceedings of the 9th International Con-
ference on Software Paradigm Trends, Vienna, Austria, 29–31 August, 2014, pp.
29–40 (2014)

24. Butler, M.J., Ferreira, C.: An operational semantics for stac, a language for
modelling longrunning business transactions. In: Meredith, G., Ferrari, G.-L., De
Nicola, R. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 87–104. Springer,
Heidelberg (2004)

25. Dragoni, N., Mazzara, M.: A formal semantics for the ws-bpel recovery framework.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 92–109. Springer,
Heidelberg (2010)

26. Eisentraut, C., Spieler, D.: Web services and formal methods. Springer, Heidelberg
(2009)

27. Dı́az, M., Valero, V., Maćıa, H., Mateo, J., Dı́az, G.: Bpel-rf tool: An automatic
translation from ws-bpel/wsrf specifications to petri nets. In: ICSEA 2012 : The
Seventh International Conference on Software Engineering Advances (2012)

A Timed Semantics of Workflows 383

28. Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann,
F., Nally, M., Storey, T., Weerawaranna, S.: Modeling stateful resources with web
services (2004)

29. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comp. Sci. 126, 183–235
(1994)

30. Romanovsky, A., Thomas, M. (eds.): Industrial Deployment of System Engineering
Methods. Springer, Heidelberg (2013)

31. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274 (1987)

32. OMG: Unified modeling language 2.0 (2005). http://www.omg.org/spec/UML/2.0/
33. OASIS: Web services business process execution language version 2.0 (2007).

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
34. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf.

Comput. 205, 380–415 (2007)
35. Bersani, M.M., Frigeri, A., Rossi, M., San Pietro, P.: Completeness of the bounded

satisfiability problem for constraint LTL. In: Delzanno, G., Potapov, I. (eds.) RP
2011. LNCS, vol. 6945, pp. 58–71. Springer, Heidelberg (2011)

36. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proceedings of Conference on Organizational Computing Systems. COCS 1995,
pp. 10–21. ACM, New York (1995)

37. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. In: Proceedings of the International Sym-
posium on Temporal Representation and Reasoning (TIME), pp. 99–106 (2013)

38. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distrib. Parallel Databases 14, 5–51 (2003)

39. OMG: Business process model and notation (bpmn) (2011). http://www.bpmn.org/
40. Mazzara, M., Dragoni, N., Zhou, M.: Implementing workflow reconfiguration in

ws-bpel. Security 2, 73–92 (2012)
41. Robinson, A.: Non-standard analysis. Princeton University Press, Princeton (1996)
42. Baresi, L., Guinea, S., Manna, V.P.L.: Consistent runtime evolution of service-

based business processes. In: Liu, A., John Klein, A.T. (ed.) Working IEEE/IFIP
Conference on Software Architecture (WICSA) (2014)

http://www.omg.org/spec/UML/2.0/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.bpmn.org/

Author Index

Abbors, Fredrik 131
Agirre, Joseba A. 113
Ahmad, Tanwir 131
Ameller, David 39

Barn, Balbir S. 202
Bersani, Marcello M. 365
Biscoglio, Isabella 63

Campagna, Dario 3
Chen, Jiu-Jye 81
Chen, Kung 81
Clark, Tony 202
Costal, Dolors 39
Covelli, Marco 233

D’Emilia, Giulio 170
Del Villano, Denis 170
Distefano, Salvatore 365

Elsner, Christoph 269
Etxeberria, Leire 113

Faßbender, Stephan 291, 311
Ferrucci, Luca 365
Franch, Xavier 39
Franco-Bedoya, Oscar 39

Gaebert, Cornelia 97
Gaspari, Antonella 170
Grichi, Hanen 151

Hansson, Jörgen 217
Heisel, Maritta 291, 311
Hohenstein, Uwe 269

Iqbal, Junaid 349

Jørgensen, Bo Nørregaard 183

Kavka, Carlos 3
Khalgui, Mohamed 151
Koskinen, Martin 349
Kuikka, Seppo 21
Kulkarni, Vinay 202

Lazarova-Molnar, Sanja 183
Liao, Chun-Feng 81

Marchetti, Eda 63
Mazzara, Manuel 365
Meding, Wilhelm 217
Meis, Rene 291, 311
Micucci, Daniela 233
Mobilio, Marco 233
Mosbahi, Olfa 151

Natale, Emanuela 170
Nilsson, Martin 217
Nishida, Sachi 251

Olszak, Andrzej 183
Onesti, Luka 3

Paolone, Gaetanino 170

Rana, Rakesh 217

Sagardui, Goiuria 113
Shinkawa, Yoshiyuki 251
Staron, Miroslaw 217

Truscan, Dragos 131, 349

Vain, Jüri 349
Vepsäläinen, Timo 21

Westfechtel, Bernhard 331
Winetzhammer, Sabine 331

	Preface
	Organization
	Contents
	Software Engineering and Applications
	BPMN 2.0 and the Service Interaction Patterns: Can We Support Them All?
	1 Introduction
	2 Related Work
	3 Pattern Analysis
	3.1 Single Transmission Bilateral Interaction Patterns
	3.2 Single Transmission Multilateral Interaction Patterns
	3.3 Multi Transmission Interaction Patterns
	3.4 Routing Patterns

	4 BPMN 2.0 Enhancements
	4.1 Initiator Extension
	4.2 Message Queuing
	4.3 Workarounds for Atomic Transactions

	5 Conclusions
	References

	Design Patterns for Model-Driven Development
	1 Introduction
	2 Related Work
	3 Design Patterns to Facilitate MDD
	4 Design Patterns in UML
	4.1 Challenges with the UML Approach

	5 The General Pattern Modeling Approach
	6 Tool Support to Use and Benefit from Patterns
	6.1 General Pattern Concepts
	6.2 Patterns of Safety Systems

	7 Conclusions and Discussion
	References

	Measuring the Quality of Open Source Software Ecosystems Using QuESo
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Problem Investigation: Systematic Literature Review
	3.2 Solution Design: Quality Model Construction
	3.3 Solution Evaluation

	4 QuESo Quality Model
	4.1 Platform-Related Quality Characteristics
	4.2 Community-Related Quality Characteristics
	4.3 Ecosystem Network Quality Characteristics

	5 Examples of Measures
	6 Validation: GNOME Case
	6.1 Quality Model Validation
	6.2 GNOME Ecosystem Case
	6.3 Observations

	7 Discussion
	8 Conclusions
	References

	Definition of Software Quality Evaluation and Measurement Plans: A Reported Experience Inside the Audio-Visual Preservation Context
	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 Quality Evaluation Procedure
	4.1 Establishing the Evaluation Requirements
	4.2 Specify the Evaluation

	5 Explorative Case Study
	5.1 Preservation Needs
	5.2 Preservation Requirements
	5.3 Definition of the Evaluation Plans
	5.4 Definition of the Measurement Plans
	5.5 Example of Product Evaluation

	6 Discussion and Conclusion
	Acknowledgements
	References

	Context and Data Management for Multitenant Enterprise Applications in SaaS Environments: A Middleware Approach
	1 Introduction
	2 Related Work
	3 Middleware Design
	3.1 Tenant Context Management Service
	3.2 Multitenant Schema-Mapping Service
	3.3 Multitenant Object-Relational Mapping Service

	4 Implementation
	5 Experiments
	6 Conclusions
	References

	The Fixed-Price Contract: A Challenge for the Software Development Project
	Abstract
	1 Introduction
	2 The Project as a Two Party Game
	2.1 System-Inherent Causes for Incomplete Requirement Specifications
	2.2 Possible Choices of Rational Actors
	2.3 The Prisoner’s Dilemma
	2.4 The Customer and the Supplier in a Dilemma Situation
	2.5 Rational Behavior in Dilemma Situations

	3 Empirical Support of the Theoretical Argument
	3.1 Results from the Online Survey
	3.2 Results from Interviews

	4 Conclusions
	References

	Model Transformation by Example Driven ATL Transformation Rules Development Using Model Differences
	Abstract
	1 Introduction
	2 Legacy Model Transformation Example
	3 Outputs Models Differences Driven Model Transformation Analysis
	3.1 Specifying Adaptation Operation for the Transformation Rules
	3.2 Relationship Between EMFDiff Difference Types and Adaptation Operations

	4 Implementing the Adaptation Operations
	5 Validation of the Approach
	5.1 Applying the Tool to the Case Study
	5.2 Threats to Validity

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgements
	References

	Mining Web Server Logs for Creating Workload Models
	1 Introduction
	2 Related Work
	3 Process and Tool Chain
	3.1 Workload Models
	3.2 Test Adapter
	3.3 Log2Model Tool

	4 Automatic Workload Model Creation
	4.1 Parsing
	4.2 Pre-processing
	4.3 Building a Request Tree
	4.4 User Classification
	4.5 Removing Infrequent Sessions
	4.6 Building the Workload Model

	5 Tool Support
	6 Example
	6.1 Parsing and Filtering
	6.2 Processing the Data
	6.3 Building the Workload Models

	7 Validation
	7.1 Generating a Log File
	7.2 Recreating the Models
	7.3 Comparing the Load Generated from the Models

	8 Conclusions
	References

	New Flexible Architectures for Reconfigurable Wireless Sensor Networks
	1 Introduction
	2 Background
	3 State of the Art
	4 Contribution: New Solutions for RWSN
	4.1 RWSN: Definition
	4.2 RWSN: New Architecture
	4.3 Reconfiguration Forms
	4.4 Case Study

	5 New Multi-agent Architecture for (RWSN)
	5.1 Motivation
	5.2 Formalization of RWSN
	5.3 Modeling of RWSN

	6 Coordination Protocol Between Agents
	7 Simulation and Evaluation
	7.1 Theoretical Simulation
	7.2 Practical Simulation

	8 Conclusions and Perspectives
	References

	A Measurement-Oriented Modelling Approach: Basic Concepts to Be Shared
	Abstract
	1 Introduction
	2 The Methodology
	3 The Measurement Viewpoint
	3.1 Basis Concepts of the Measurement Theory
	3.2 Measurements as a Tool for the Decision-Making

	4 The Approach We Look At
	5 Conclusions
	References

	Evolution of Feature-Oriented Software: How to Stay on Course and Avoid the Cliffs of Modularity Drift
	Abstract
	1 Introduction
	2 State of the Art
	3 The Approach
	3.1 Evolution of Feature-Oriented Modularity
	3.2 The Drift of Modularity
	3.3 Calculating Drift Using Optimization
	3.4 Featureous Remodularization View

	4 Evaluation
	4.1 Results of Feature Location
	4.2 Results of Feature Drift Measurement
	4.3 Discussion

	5 Conclusions
	References

	Can Organisational Theory and Multi-agent Systems Influence Next Generation Enterprise Modelling?
	1 Introduction
	2 Organisational Theory and Multi-agent Systems
	3 Next Generation EM
	4 Case Study Illustration
	5 Concluding Remarks
	References

	Software Defect Prediction in Automotive and Telecom Domain: A Life-Cycle Approach
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Related Work
	2.2 Software Development Life Cycle in Automotive Domain
	2.3 Software Development Life Cycle in Telecom Domain
	2.4 Methods for Software Defect Predictions (SDP)

	3 Results and Discussion
	3.1 Defects Prediction over Automotive Software Life Cycle
	3.2 Defects Prediction over Telecom Software Life Cycle
	3.3 Analysing Defects Data over Software Life Cycle

	4 Roadmap for Increasing Effectiveness of Software Defect Predictions
	4.1 Using Field Data in the Automotive Domain
	4.2 Combining Different Models and Using Ground Up Approach to Prediction

	5 Conclusions
	Acknowledgements
	References

	Time in the Domain Entities Access Architecture
	1 Introduction
	2 DEA Architecture Overview and Limitations
	2.1 Overview
	2.2 Concrete Architecture
	2.3 Limitations

	3 Time in the Data Abstraction Layer
	4 Time in the Access Layer
	5 Validation
	5.1 The Case Study
	5.2 The DEA Configuration
	5.3 The Interaction Between the End-User Application and DEA

	6 Related Works
	6.1 Integration Platforms
	6.2 Domain-Oriented Architectures

	7 Conclusions and Future Directions
	References

	A Performance Prediction Model for Google App Engine Using Colored Petri Net
	1 Introduction
	2 CPN Based Performance Prediction Framework
	3 Performance Simulation and Evaluation Mode
	3.1 Refining the ``Application'' Component
	3.2 Refining the ``Generation'' Component
	3.3 Refining the ``Delay'' Component
	3.4 Refining the ``Evaluation'' Component

	4 Measuring and Estimating the Base Parameters
	5 Conclusions
	References

	Software Paradigm Trends
	A Case Study on Model-Driven Development and Aspect-Oriented Programming: Benefits and Liabilities
	Abstract
	1 Introduction
	2 The OpenSOA Framework
	3 The MDD Approach
	3.1 XSL-T Scripts for Code Generating
	3.2 Classes ServiceImpl
	3.3 Classes ServiceTransSkeleton
	3.4 Classes ServiceSkeleton

	4 AspectJ Approach
	4.1 General Principle
	4.2 One TransSkeletonAspect
	4.3 One SkeletonAspect
	4.4 Aspect for Exception Handling
	4.5 Validation Logic

	5 Comparison
	5.1 Lines of Code
	5.2 Understandability
	5.3 Testability
	5.4 Usability
	5.5 Redundancy
	5.6 Completeness
	5.7 Comparison Summary
	5.8 Limitations and Generality

	6 Related Work
	7 Conclusions
	References

	A Problem-, Quality-, and Aspect-Oriented Requirements Engineering Method
	1 Introduction
	2 Case Study
	3 UML-Based Problem Frames
	4 Method
	4.1 Classify Requirements
	4.2 Model Base Problems
	4.3 Identify Underlying Qualities
	4.4 Analyze Completeness
	4.5 Model Aspect Requirements
	4.6 Weave Requirements
	4.7 Analyze Interactions

	5 Validation
	6 Related Work
	7 Conclusions
	References

	Problem-Based Security Requirements Elicitation and Refinement with PresSuRE
	1 Introduction
	2 Case Study
	3 Problem-Oriented Requirements Engineering
	4 Running Example: Billing
	5 The PresSuRE Method
	5.1 Model Functional Requirements
	5.2 Security Knowledge Elicitation
	5.3 Graph Generation

	6 Extending PresSuRE
	7 Validation
	8 Related Work
	9 Conclusions
	References

	Model Refactorings for and with Graph Transformation Rules
	1 Introduction
	2 ModGraph
	3 Approach
	4 Example
	4.1 Changing a Bi- to a Unidirectional Reference
	4.2 Extracting a Class

	5 Refactoring Transformations
	5.1 Changing a Bi- to a Unidirectional Reference
	5.2 Extracting a Class

	6 Related Work
	7 Conclusions
	References

	A Tool-Supported Approach for Introducing Aspects in UPPAAL Timed Automata
	1 Introduction
	2 Related Work
	3 Preliminaries of UPTA
	4 Introducing Aspects in UPTA
	4.1 Generic Process
	4.2 Join Point Adapters
	4.3 Generic Verification Rules for the Weaving

	5 Case Study: Auto-Off Lamp
	5.1 Base Model - Revisited
	5.2 Introducing New Functionality
	5.3 Complete Woven Model

	6 Tool Support
	6.1 Aspect Weaving
	6.2 Verification

	7 Conclusions and Future Work
	References

	A Timed Semantics of Workflows
	1 Introduction
	2 Timed Workflows with Recovery
	3 Formal Semantics
	4 An Example
	4.1 The Model
	4.2 Verification

	5 Conclusions and Future Work
	References

	Author Index

