
Chapter 7
Nonlocal BVPs and the Discrete Fractional
Calculus

7.1 Introduction

In this chapter we discuss the concept of a nonlocal boundary value problem in
the context of the discrete fractional calculus. More generally, we discuss how the
nonlocal structure of the discrete fractional difference and sum operators affect their
interpretation and analysis. In particular, we recall from earlier chapters that the
fractional difference and sum contain de facto nonlocalities. For example, in the case
of the discrete fractional forward difference, we have that��

ay.t/, for N�1 < � � N
with N 2 N, depends not only on the value y.t C � � N/ but also on the entire
collection of values fy.a/; y.a C 1/; : : : ; y.t C � � N/g, for each t 2 ZaCN�� . This
means that the discrete fractional operator in some sense possesses a memory-like
property, wherein the operator at a point is influenced by a linear combination of
values of y back to the initial time point t D a itself.

The nonlocal nature described in the preceding paragraph seriously complicates
the study of many potentially fundamental properties of fractional sums and
differences. For example, there is, at present, no satisfactory understanding of the
geometrical properties of the fractional difference. Contrast this with the integer-
order setting, i.e., � 2 N, in which there is a complete understanding of the various
geometrical implications of the sign of the fractional difference. Thus, while it is
trivial to prove that �y.t/ > 0 for t 2 Z implies that y is strictly increasing on Z,
it is very nontrivial to decide how monotonicity is connected to the positivity or
negativity of the fractional difference. Similarly, while it is equally trivial to prove
that �2y.t/ > 0 for t 2 Z implies that �y is strictly increasing on Z and thus
that y satisfies a convexity-type property, the analogue of this sort of result in the
discrete fractional setting is much more difficult to obtain, and we only explore
these properties to a limited extent in Sects. 7.2 and 7.3 in the sequel. And, of
course, issues of monotonicity and convexity are hardly the only properties affected
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458 7 Nonlocal BVPs and the Discrete Fractional Calculus

by the nonlocal structure of the fractional difference. The analysis of boundary value
problems, for example, is also widely affected and complicated by this inherent
nonlocality.

All in all, in this section we provide a collection of applications involving the
nonlocal structure of the fractional difference. We also consider the problem of
analyzing nonlocal boundary value problems within the context of the discrete
fractional calculus. While the latter is not necessarily explicitly affected by the
nonlocal nature of the fractional sum and difference operators, it does demonstrate
in what way the existence of explicit nonlocalities in a boundary value problem can
complicate the analysis of the problem, much as the implicit nonlocalities in the
discrete fractional operates complicate the analysis of the geometrical properties of
these operators.

7.2 A Monotonicity Result for Discrete Fractional
Differences

The first result we present demonstrates that the discrete fractional difference
satisfies a particular monotonicity condition—note that the results of this section
can mostly be found in Dahal and Goodrich [67]. Roughly stated, see Theorem 7.1
for a precise statement, the main result of this section can be summarized as follows:
Given � 2 .1; 2/ and a map y W N0 ! R satisfying

• y.t/ � 0, for each t 2 N0;
• �y.0/ � 0; and
• ��y.t/ � 0, for each t 2 N2�� ;

then it holds that y is increasing on its domain.
Recalling that

��
ay.t/ WD �N���Ny.t/ D �N

"
1

�.N � �/
tC��NX

sDa

.t � s � 1/N���1y.s/
#

„ ƒ‚ …
WD���N y.t/

;

this result does not seem to be immediately apparent from the definition of the
fractional difference. Hence, it is not obvious that the fractional order difference
behaves in this way, and it highlights one of the consequences of the nonlocal
structure of the fractional difference operator. In addition, that this monotonicity
result holds implies some other nontrivial consequences, and we shall detail a few
of these toward the conclusion of this section.

We now state and prove the monotonicity result. Observe that the proof of this
result is based upon the principle of strong induction. Moreover, the reader should
observe the way in which the nonlocal structure of ��

0 is explicitly utilized in the
proof.
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Theorem 7.1. Let y W N0 ! R be a nonnegative function satisfying y.0/ D 0. Fix
� 2 .1; 2/ and suppose that ��

0y.t/ � 0 for each t 2 N2�� . Then y is increasing
on N0.

Proof. We prove this result by the principle of strong induction. To this end, observe
that the base case holds somewhat trivially since we calculate

y.1/ � y.0/ D y.1/ � 0;

due to the fact that y.0/ D 0, by assumption, and the fact that y.1/ � 0, also by
assumption.

Now, to complete the induction step fix k 2 N and suppose that

�y.j � 1/ D y.j/ � y.j � 1/ � 0;

for each 1 � j � k � 1. Recall that ��
0y.t/ � 0 for each t 2 N2�� , which by means

of Lemma 2.33 implies that

���
0y.2 � �/ D �y.1/ � y.2/ � 0

���
0y.3 � �/ D 1

2
�.1 � �/y.1/C �y.2/ � y.3/ � 0

���
0y.4 � �/ D 1

6
�.1 � �/.2 � �/y.1/C 1

2
�.1 � �/y.2/C �y.3/ � y.4/

� 0

:::

���
0y.k � �/ D 1

.k � 1/Š�.1 � �/ � � � .k � 2 � �/y.1/C � � �

C �y.k � 1/ � y.k/ � 0;
(7.1)

for fixed k 2 N; note that in (7.1) we have used the assumption that y.0/ D 0 to
simplify suitably ��y.j � �/ for each j. In particular, (7.1) implies that

y.k/ � 1

.k � 1/Š�.1 � �/ � � � .k � 2 � �/y.1/C � � � C �y.k � 1/ (7.2)

for fixed k 2 N. Inequality (7.2) shall be used repeatedly in the sequel.
We claim that for the value of k fixed at the beginning of the preceding paragraph

y.k/ � y.k � 1/ � 0; (7.3)

which will complete the induction step. To prove (7.3) we first calculate, by using
estimate (7.2),
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y.k/ � y.k � 1/

� �y.k � 1/C 1

2
�.1 � �/y.k � 2/C 1

6
�.1 � �/.2 � �/y.k � 3/

C � � � C 1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/y.1/ � y.k � 1/

D .� � 1/y.k � 1/C 1

2
�.1 � �/y.k � 2/C 1

6
�.1 � �/.2 � �/y.k � 3/

C � � � C 1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/y.1/

D .� � 1/y.k � 1/

C
�
1

2
�.1 � �/y.k � 2/ � 1

2
�.1 � �/y.k � 1/

�
C 1

2
�.1 � �/y.k � 1/

C
�
1

6
�.1 � �/.2 � �/y.k � 3/ � 1

6
�.1 � �/.2 � �/y.k � 1/

�

C 1

6
�.1 � �/.2 � �/y.k � 1/

:::

C
�

1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/y.1/

� 1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/y.k � 1/
�

C 1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/y.k � 1/: (7.4)

On the other hand, invoking the induction hypothesis implies that

1

2
�.1 � �/„ ƒ‚ …
<0

.�y.k � 1/C y.k � 2//„ ƒ‚ …
�0

� 0

1

6
�.1 � �/.2 � �/„ ƒ‚ …

<0

.�y.k � 1/C y.k � 3//„ ƒ‚ …
�0

� 0

:::

1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/„ ƒ‚ …
<0

.�y.k � 1/C y.1//„ ƒ‚ …
�0

� 0: (7.5)
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Observe that in (7.5) we are using the fact that since y.k � 1/ � y.k � 2/ it follows
that y.k � 1/� y.k � 3/ � y.k � 2/� y.k � 3/ � 0, and so forth. In any case, putting
the k � 2 estimates in (7.5) into inequality (7.4) yields

y.k/ � y.k � 1/

�
"
.� � 1/C 1

2
�.1 � �/C 1

6
�.1 � �/.2 � �/C : : :

C 1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/
#

y.k � 1/:

Since y.k � 1/ � 0 by assumption, to complete the proof it suffices to show that

.� � 1/C 1

2
�.1 � �/C 1

6
�.1 � �/.2 � �/

C � � � C 1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/ � 0;

for each 1 < � < 2. To complete this final step define the .k � 1/-th degree
polynomial function Pk�1 W R ! R by

Pk�1.�/ WD .� � 1/C 1

2
�.1 � �/C 1

6
�.1 � �/.2 � �/C : : :

C 1

.k � 1/Š�.1 � �/.2 � �/ � � � .k � 2 � �/:

Then, for example,

2Pk�1.�/
1 � � D .� � 2/C 1

3
�.2 � �/C � � � C 2

.k � 1/Š�.2 � �/ � � � .k � 2 � �/:

And, moreover,

6Pk�1.�/
.1 � �/.2 � �/ D .� � 3/C 1

4
�.3 � �/C � � �

C 6

.k � 1/Š�.3 � �/ � � � .k � 2 � �/:

Continuing in this fashion we eventually arrive at

.k � 1/ŠPk�1.�/
.1 � �/.2 � �/ � � � .k � 2 � �/ D �.k � 1 � �/;
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whence

Pk�1.�/ D �1
.k � 1/Š .1 � �/.2 � �/ � � � .k � 2 � �/.k � 1 � �/: (7.6)

But then (7.6) implies that

Pk�1.�/ D � 1

.k � 1/Š .1 � �/.2 � �/ � � � .k � 2 � �/.k � 1 � �/

D 1

.k � 1/Š .�1/
2.� � 1/.2 � �/ � � � .k � 2 � �/.k � 1 � �/

D 1

.k � 1/Š .�1/
3.� � 1/.� � 2/.3 � �/ � � � .k � 2 � �/.k � 1 � �/

:::

D 1

.k � 1/Š .�1/
k.� � 1/.� � 2/ � � � .� � k C 2/.� � k C 1/:

(7.7)
The factorization of Pk�1 given by (7.7) implies that Pk�1 has k � 1 distinct zeros
and these zeros are, in particular, � D 1; 2; : : : ; k � 1. In particular, observe that
when k is even, it follows that Pk�1.�/ > 0, for each � 2 .1; 2/, since .�1/k > 0

and the other factors will constitute a product of k � 2 negative numbers and exactly
one positive number. On the other hand, when k is odd, it follows that Pk�1.�/ > 0,
for each � 2 .1; 2/, since .�1/k < 0 and the other factors will once again constitute
a product of k � 2 negative numbers and exactly one positive number.

We conclude that for each k 2 N it follows that Pk�1.�/ > 0whenever � 2 .1; 2/.
And this implies that (7.3) holds. Since this completes the induction step, we obtain
that y is increasing for k 2 N and � 2 .1; 2/, and this completes the proof. ut

Having proved the case where y.0/ D 0, it is easy to generalize this to the case
where y.0/ � 0. We state this generalization as Corollary 7.2. It turns out that this
generalization will be useful in the next section when we consider concavity and
convexity properties of the fractional difference operator.

Corollary 7.2. Let y W N0 ! R be a nonnegative function. Fix � 2 .1; 2/ and
suppose that ��

0y.t/ � 0, for each t 2 N2�� . If �y.0/ � 0, then y is increasing
on N0.

Proof. Define the function Qy W Z�1 ! R by Qy.t/ WD y.t/, if t ¤ �1, and Qy.�1/ WD
0. Then we may apply Theorem 7.1 to Qy on Z�1 and obtain that Qy is increasing on
Z�1; observe that it can be shown that ���1 Qy � ��

0y so that ���1 Qy.t/ � 0 holds.
Thus, y is increasing on N0, as desired. ut
Remark 7.3. It is important to point out that the original version of the paper by
Dahal and Goodrich [67], in which the monotonicity results for discrete fractional
operators first appeared, contained a minor error in one result. In particular, [67,
Corollary 2.3] is missing the hypothesis that �y.0/ � 0 holds.
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As it may be instructive to see why this error occurs, let us briefly explain the
problem. So, to see why we cannot deduce the monotonicity of y from the hypothesis
��
0y.t/ � 0, t 2 Z2�� , alone, we recall that the proof of the corollary in the original

paper employed the map Qy W Z�1 ! R defined by

Qy.t/ WD
(

y.t/, t 2 N0

0, t 2 f�1g : (7.8)

Note that in (7.8) the map y is the same map as in the statement of Corollary 7.2
above. The goal of the proof in [67, Corollary 2.3] was to show that ���1 Qy.t/ � 0,
for each t 2 Z1�� , so that we could use [67, Theorem 2.2] to conclude that Qy and,
hence, y was increasing.

To see why this does not work quite as intended, observe that

���1 Qy.1 � �/ D 1

�.��/
1X

sD�1
..1 � �/ � s � 1/���1 Qy.s/

D 1

�.��/
h
.�� C 1/���1 Qy.�1/C .��/���1 Qy.0/

C .�� � 1/���1 Qy.1/
i

D �1
2
�.�� C 1/Qy.�1/ � � Qy.0/C Qy.1/

D ��y.0/C y.1/: (7.9)

Thus, (7.9) shows us that without additional information about y.0/ and y.1/, we
cannot deduce that ���1 Qy.1� �/ � 0. Moreover, while it is true that ���1 Qy.k � �/ �
��
0y.k � �/, for each k 2 N2, this does not force ���1 Qy.1 � �/ to be nonnegative, as

shown by (7.9) above. This is the basis of the error.
Finally, suppose that �y.0/ � 0, which is the necessary additional hypothesis as

noted above. By a calculation similar to (7.9) we find that

��
0y.2 � �/ D �1

2
�.�� C 1/y.0/ � �y.1/C y.2/ � 0: (7.10)

Thus, combining (7.10) with the fact that �y.0/ � 0 we estimate

�y.1/ � .� � 1/y.1/C 1

2
�.1 � �/y.0/ � .� � 1/

�
1 � 1

2
�

�
y.0/: (7.11)

Since the map � 7! .� � 1/
�
1 � 1

2
�
�

is nonnegative for � 2 .1; 2/, we obtain
from (7.11) that �y.1/ � 0. Finally, proceeding inductively from inequality (7.11),
we obtain the monotonicity of Qy on Z�1 and thus of y on N0.
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Recall that in the statement of both Theorem 7.1 and Corollary 7.2 we have that
y is nonnegative. It is easy to obtain a result similar to Theorem 7.1 in case y is
instead nonpositive. In addition, as with Theorem 7.1, we may obtain a corollary
dual to Corollary 7.2, but we omit its statement.

Theorem 7.4. Let y W N0 ! R be a nonpositive function satisfying y.0/ D 0. Fix
� 2 .1; 2/ and suppose that ��

0y.t/ � 0, for each t 2 N2�� . If it also holds that
�y.0/ � 0, then y is decreasing on N0.

Proof. Let y be as in the statement of this theorem. Put z WD �y. Then z.0/ D 0,
z is nonnegative on its domain, and (by the linearity of the fractional difference
operator) ��

0z.t/ � 0 for each t 2 N2�� . Consequently, each of the hypotheses of
Theorem 7.1 is satisfied. Therefore, we conclude that z is increasing, whence �z D y
is decreasing at each t 2 N0. And this completes the proof. ut

We mention next a couple of representative consequences of Theorems 7.1
and 7.4. We begin by providing a result regarding a discrete fractional IVP, which
is Corollary 7.5, and then a result about a discrete fractional BVP with (possibly)
inhomogeneous boundary conditions, which is Corollary 7.6.

Corollary 7.5. Let h W Œ1;C1/N �R ! R be a nonnegative, continuous function,
and let A, B 2 R be nonnegative constants. Then the unique solution of the discrete
fractional IVP

��
0y.t/ D h.t C � � 1; y.t C � � 1//, t 2 Œ2 � �;C1/Z2��

y.0/ D A, �y.0/ D B

is increasing (and nonnegative).

Proof. Simply note that the proof of Theorem 7.1 reveals that one may replace
the hypothesis that y is nonnegative on its domain with the hypothesis that y.1/ �
y.0/ � 0. Since A, B � 0, the result follows. ut
Corollary 7.6. Let h W Z��2 �R ! R be a nonpositive function, and let A, B 2 R

be nonpositive constants. Then the unique solution of the discrete fractional IVP

��
��2y.t/ D h.t C � � 1; y.t C � � 1//

y.� � 2/ D A

�y.� � 2/ D B

is decreasing.

Our final consequence of Theorem 7.1 deserves special mention. To contextual-
ize the result, let us consider the problem

�
�˛
˛�1u

	
.t/ D �u.t C ˛ � 1/C f .t C ˛ � 1; u.t C ˛ � 1//, t 2 Œ0;T � 1�N0

u.˛ � 1/ D u.˛ � 1C T/;
(7.12)
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which was studied by Ferreira and Goodrich [83]. Supposing that f satisfied
superlinear growth at 0 and C1 (uniformly for t), they proved that problem (7.12)
has at least one positive solution for a range of values of the parameter �, even if f
is nonnegative. Assuming � > 0, such an occurrence is clearly impossible in case
˛ D 1, for then (7.12) implies that u is strictly increasing, contradicting the periodic
boundary conditions. So, this result demonstrates that the fractional difference can
behave in unexpected ways, due precisely to its nonlocal structure.

With this somewhat aberrant result in mind, we might wonder if it is possible for
the problem

���
��2y.t/ D f .t C � � 1; y.t C � � 1//, t 2 Œ0; b C 1�N0

y.� � 2/ D 0

y.� C b C 1/ D 0

(7.13)

to have at least one positive solution if f is nonpositive. Now, when � D 2, the
nonpositivity of f implies that �2y.t/ � 0, for each admissible t, from which
it follows at once that if y is a solution of problem (7.13), then y.t/ � 0 for
each t. This is a simple consequence of the geometrical implications of �2y.t/ �
0 together with the Dirichlet boundary conditions. However, as the discussion
regarding problem (7.12) demonstrates, in the fractional setting one cannot be so
sure. In fact, it would not be entirely unreasonable to suspect that perhaps that
nonlocal structure of ��

��2 somehow allows for a positive solution to exist in spite
of the nonpositivity of f . Corollary 7.7 demonstrates conclusively that this particular
geometric aberration is forbidden.

Corollary 7.7. Let f W Œ� � 1; � C b�Z��1 � R ! R be continuous and
nonpositive and b 2 N a given constant. Then the discrete fractional boundary
value problem (7.13) has no positive solution.

We would also like to mention that it is necessary to impose some additional
restriction beyond the positivity of the fractional difference if we hope to deduce the
monotonicity of y. For example, in Corollary 7.2 we impose the condition �y.0/ �
0, which, as was explained earlier, was inadvertently omitted from the statement
of the corresponding result in [67], though all of the other results in that paper are
correct as stated. In any case, to demonstrate that the positivity of the fractional
difference is not sufficient, we provide the following example.

Example 7.8. Let f .t/ D 2�t, t 2 N0, and assume that 2Cp
2

2
< � < 2. We will

show that ��
0 f .t/ � 0, t 2 N2�� , f .t/ � 0 on N0; but f .t/ is not increasing on N1.

Clearly f .t/ � 0 on N0.
For t D 2 � � C k, k � 0, we have

��
0f .t/ D

Z 3Ck

0

h���1.2 � � C k; � C 1/f .�/ ��

D
kC2X
iD0

h���1.2 � � C k; i C 1/2�i:
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For 0 � i � k C 2, 1 < � < 2, we have

h���1.2 � � C k; i C 1/ D .1 � � C k � i/���1

�.��/

D �.2 � � C k � i/

�.3C k � i/�.��/

D .�� C 1C k � i/ � � � .�� C 1/.��/
.2C k � i/Š

:

(7.14)

It follows from (7.14) that if k � i � 1, then h���1.2 � � C k; i C 1/ > 0. When
i D k; k C 1; k C 2, we have

h���1.2 � � C k; k C 1/ D �.2 � �/
2Š�.��/ D .�� C 1/.��/

2
; (7.15)

h���1.2 � � C k; k C 2/ D �.1 � �/
�.��/ D ��; (7.16)

h���1.2 � � C k; k C 3/ D �.��/
�.��/ D 1; (7.17)

respectively. So from (7.15), (7.16), (7.17), and the fact that 2C
p
2

2
< � < 2, we get

that

��
0 f .t/ �

kC2X
iDk

h���1.2 � � C k; i C 1/2�i

D .�� C 1/.��/
2

� 1
2k

� �

2kC1 C 1

2kC2

D 2�2 � 4� C 1

2kC2 > 0:

But since f .t/ is obviously decreasing, it follows that the some additional condition
is necessary above and beyond the positivity of the fractional difference.

It should be noted that the above example is just a special case of a more general
result, which we illustrate with the following example.

Example 7.9. Let f .t/ D ˛�t, t 2 N0, and assume that ˛ > 1: If we proceed as in
the example above, we obtain the estimate
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��
0f .t/ �

kC2X
iDk

h���1.2 � � C k; i C 1/˛�i

D .�� C 1/.��/
2

� 1
˛k

� �

˛kC1 C 1

˛kC2

D ˛2�2 � �˛2 � 2�˛ C 2

2˛kC2 :

Let us define

g.�/ WD �2 � �.2C ˛/

˛
C 2

˛2
:

We see, therefore, that ��
0 f .t/ > 0 if g.�/ > 0. If we solve the quadratic inequality

g.�/ > 0, we find that for all �0 < � < 2, we have ��
0f .t/ > 0, where �0 WD

˛C2Cp
˛2C4˛�4
2˛

: Since �0 < 2 holds because ˛ > 1, it follows that we obtain a
family of functions f .t/ WD ˛�t which are decreasing but for which ��

0f .t/ > 0.
Finally, the following table illustrates how the interval .�0; 2/ varies with differing
choices for ˛ 2 .1;1/.

˛ 1:2 2 3 8

�0 1:950 1:707 1:510 1:224

We conclude by presenting a monotonicity theorem of a different color. The
interesting point regarding this result is that we do not necessarily suppose that
�f .a/ � 0. Rather, we replace this condition with a weaker condition on the “initial
growth” of the map t 7! y.t/. Thus, this result improves the monotonicity result that
was proved earlier. This new result was proved by Baoguo, Erbe, Goodrich, and
Peterson, and it relies in a special way on a useful difference inequality discovered
by Baoguo, Erbe, and Peterson. Thus, we first state the aforementioned technical
lemma and then state and prove the existence theorem; we mention that for the
interested reader, the proof of Lemma 7.10 may be found in [47]. (For readers who
have read Chap. 3, it is seen that Lemma 7.10 is very much related, in the nabla
setting, to Theorem 3.115.)

Lemma 7.10. Assume that��
af .t/ � 0, for each t 2 NaC2�� , with 1 < � < 2. Then

�f .a C k C 1/ � �h��.a C k C 2 � �; a/f .a/

�
aCkX
�Da

h��.a C k C 2 � �; �.�//�f .�/

for each k 2 N0, where
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h��.t; �.�// D .t � �/��
.t � � � �/Š.a C k C 2 � �/Š < 0;

for t 2 NaC2�� , a � �.�/ � t C � � 1.

Theorem 7.11. Assume that f W Na ! R and that��
af .t/ � 0, for each t 2 NaC2�� ,

with 1 < � < 2. If

f .a C 1/ � �

k C 2
f .a/

for each k 2 N0, then �f .t/ � 0, for t 2 NaC1.

Proof. We prove that �f .a C k C 1/ � 0, for each k � 0, by the principle of
strong induction. From Lemma 7.10, in case k D 0, together with the hypothesis
f .a C 1/ � �

2
f .a/, we estimate

�f .a C 1/ � �h��.a C 2 � �; a/f .a/ � h��.a C 2 � �; a C 1/�f .a/

D �
�

�.3 � �/
�.3/�.�� C 1/

f .a/C �.2 � �/
�.2/�.�� C 1/

�f .a/

�

D � �.2 � �/
�.�� C 1/

�
1

2
.2 � �/f .a/C�f .a/

�

� � �.2 � �/
�.�� C 1/

�
1

2
.2 � �/C �

2
� 1

�
„ ƒ‚ …

D0

f .a/

D 0:

Suppose next that k � 1 and �f .a C i/ � 0, for i 2 N
k
1. From Lemma 7.10 together

with the hypothesis f .a C 1/ � �
kC2 f .a/ for each k 2 N0, we estimate

�f .a C k C 1/

� �f .a/h��.a C k C 2 � �; a/ �
aCkX
�Da

h��.a C k C 2 � �; �.�//�f .�/

� �f .a/h��.a C k C 2 � �; a/ � h��.a C k C 2 � �; a C 1/�f .a/

D � �.k C 3 � �/
�.k C 3/�.�� C 1/

f .a/ � �.k C 2 � �/
�.k C 2/�.�� C 1/

�f .a/

D � �.k C 2 � �/
�.k C 2/�.�� C 1/„ ƒ‚ …

>0

�
k C 2 � �

k C 2
f .a/C�f .a/

�
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� � �.k C 2 � �/
�.k C 2/�.�� C 1/

�
k C 2 � �

k C 2
C �

k C 2
� 1

�
„ ƒ‚ …

D0

f .a/

D 0:

As this inequality implies that f is monotone increasing, the proof is thus
complete. ut
Remark 7.12. We would like to point out that very recently (i.e., as of late 2015)
there has been quite a bit of progress made in extending the results of this
section, which were deduced by Dahal and Goodrich in late 2013. Correspondingly,
there has been much activity very recently (again, as of late 2015) extending the
concavity/convexity results of the next section. In addition to the preceding theorem,
additional generalizations have been produced. We direct the interested reader to the
forthcoming papers by Baoguo, Erbe, Goodrich, and Peterson [53, 54].

7.3 Concavity and Convexity Results for Fractional
Difference Operators

In the previous section we demonstrated that the discrete fractional difference
operator satisfied a particular monotonicity condition, and we saw how this was
a direct consequence of the implicit nonlocality in the construction of the fractional
difference. In this section we present some convexity and concavity results for
discrete fractional difference operators. We note that the results of this section can
mostly be found in a paper by Goodrich [114].

We begin by stating the main result of this section and then proceed to state and
discuss several consequences of this result. Essentially, the result states that if

• y.0/ D �y.0/ D � � � D �N�3y.0/ D 0;
• �N�2y.0/ � 0;
• �N�1y.0/ � 0; and
• �

	
0 y.t/ � 0, for each t 2 NN�	;

then �N�1y.t/ � 0, for each t 2 N0. In particular, if we fix N D 3, then we
obtain a suitable convexity result. In this special case we obtain that if y.0/ D 0,
�y.0/ is nonnegative, �2y.0/ is also nonnegative, and �	

0 y.t/ is nonnegative for
each admissible t, then the map t 7! y.t/ is concave on its domain. So, this result
essentially demonstrates that if y has a bit of initial convexity, so to speak, then
this is propagated provided that the sufficient auxiliary conditions are in force, as
described precisely above. In some sense, this is not quite what one would expect,
since it would be preferable not to have to require the condition �2y.0/ � 0. At the
end of this section we shall suggest how this may be improved.
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With these considerations in mind, we now state and prove the convexity result.
Observe that the proof of this result and its corollaries are strongly based on an
application of the monotonicity result. Thus, this collection of results gives us yet
another nontrivial application of the monotonicity result.

Theorem 7.13. Fix 	 2 .N � 1;N/, for N 2 N3 given, and let y W N0 ! R be a
given function satisfying �jy.0/ D 0 for each j 2 f0; 1; 2; : : : ;N � 3g, �N�2y.0/ �
0, and �	

0 y.t/ � 0 for each t 2 NN�	. If it also holds that �N�1y.0/ � 0, then
�N�1y.t/ � 0, for each t 2 N0.

Proof. Define the function w W N0 ! R by

w.t/ WD �N�2y.t/:

We show that w satisfies the monotonicity theorem—namely, Corollary 7.2. To this
end, put � WD 	 � N C 2 2 .1; 2/. On the one hand, by Theorem 2.51 we obtain

��
0w.t/ D ��

0�
N�2
0 y.t/ D �N�2

2�� ��
0y.t/

�
N�3X
jD0

�
j
0y.0/

�.�� � N C j C 3/
t���NC2Cj

„ ƒ‚ …
D0

D �N�2
2�� ��

0y.t/

D ��CN�2
0 y.t/

D �
	
0 y.t/

� 0;

for each t 2 N2�� D NN�	. We also observe that

w.0/ D �N�2y.0/ � 0:

By Corollary 7.2 it follows that t 7! w.t/ is increasing at t D 0. That is to say, it
holds that �N�1y.0/ � 0. We also note that �N�1y.0/ D �w.0/ � 0. Finally, by
repeatedly applying Corollary 7.2 we obtain that �N�1y.t/ � 0 for each t 2 N0.
And this completes the proof. ut
Remark 7.14. Observe that in the proof of Theorem 7.13 we repeatedly apply
Corollary 7.2 at the end of the argument. In fact, it is worth noting that one can
strengthen Corollary 7.2 in precisely this way—namely, it is sufficient that y.0/ � 0.
In particular, one need not know a priori that y is nonnegative, merely that y is
“initially” nonnegative. The nonnegativity is, in fact, then propagated. A careful
proof of this assertion is left to the reader.
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We now demonstrate that the hypotheses of Theorem 7.13 can be altered
somewhat.

Corollary 7.15. Fix	 2 .N�1;N/, for N 2 N3 given, and assume that�	
0 y.t/ � 0

for each t 2 NN�	. In case N is odd, assume that

(
�jy.0/ < 0, j D 0; 2; : : : ;N � 3
�jy.0/ > 0, j D 1; 3; : : : ;N � 4 ;

whereas in case N is even, assume that

(
�jy.0/ > 0, j D 0; 2; : : : ;N � 4
�jy.0/ < 0, j D 1; 3; : : : ;N � 3 :

If in addition it holds both that �N�2y.0/ � 0 and that �N�1y.0/ � 0, then
�N�1y.t/ � 0, for each t 2 N0.

Proof. Observe that by the calculation in the proof of Theorem 7.13, it follows that
��
0w.t/ � 0 if and only if

N�3X
jD0

�jy.0/

�.�� � N C j C 3/
t���NC2Cj � 0I (7.18)

recall here that the inequality �N�2
2�� ��

0y.t/ D �
	
0 y.t/ � 0 is still assumed. It then

follows from (7.18) that

t.t � 1/ � � � .�	C 1/

.t C 	/Š
y.0/C � � � C t.t � 1/ � � � .�	C N � 2/

.t C 3C 	 � N/Š
�N�3y.0/ � 0

must hold for each t 2 NN�	.
For notational convenience we next define the map Cj W N3 � NN�	 ! R, for

j 2 f0; 1; : : : ;N � 3g, by

Cj.N; t/ WD 1

�.�� � N C j C 3/
t���NC2Cj

D �.t C 1/

�.�� � N C j C 3/�.t C � C N � 1 � j/
:

Observe that Cj.N; t/ is nothing more than the coefficient of �jy.0/ in (7.18).
Recalling that t 2 NN�	, we may simplify the ratio of gamma functions appearing
in the definition of Cj. In particular, it is then apparent that if j is even, then
Cj.N; t/ < 0 if N is even, whereas Cj.N; t/ > 0 if N is odd; moreover, this holds
for each t 2 NN�	 as a simple calculation reveals. The sign relationship is reversed
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if j is odd, and, once again, the relationship holds for each admissible t. We then
see that (7.18) holds provided that �jy.0/ satisfies the sign condition, for each
admissible j, presented in the statement of the theorem. And this completes the
proof. ut

We next present three examples to illustrate the application of Corollary 7.15 in
the cases where N D 3, 4, or 5.

Example 7.16. Suppose that N D 3. Then Corollary 7.15 demonstrates that
�2y.t/ � 0, for example, provided that

y.0/ < 0

�y.0/ � 0

�2y.0/ � 0

�
	
0 y.t/ � 0 for some 	 2 .2; 3/:

Example 7.17. Suppose that N D 4. Then Corollary 7.15 implies that �3y.t/ � 0

if it holds that

y.0/ > 0

�y.0/ � 0

�2y.0/ � 0

�3y.0/ � 0

�
	
0 y.t/ � 0 for some 	 2 .3; 4/:

Example 7.18. Suppose that N D 5. Then Corollary 7.15 implies that �4y.t/ � 0

if it holds that

y.0/ < 0

�y.0/ � 0

�2y.0/ � 0

�3y.0/ � 0

�4y.0/ � 0

�
	
0 y.t/ � 0 for some 	 2 .4; 5/:

The next corollary is immediate and provides a geometrical interpretation of
Theorem 7.13 in case 	 2 .2; 3/ and thus N D 3; in particular, it provides for a
convexity-type result.
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Corollary 7.19. If 2 < 	 < 3 and y W N0 ! R satisfies y.0/ D 0, �y.0/ � 0,
�2y.0/ � 0, and �	

0 y.t/ � 0, for each t 2 Z3�	, then �2y.t/ � 0, for each t 2 N0.

We can also obtain an alternative version of Theorem 7.13.

Corollary 7.20. Fix 	 2 .N � 1;N/, for N 2 N given, and let y W N0 ! R be a
given function satisfying �jy.0/ D 0 for each j 2 f0; 1; 2; : : : ;N � 3g, �N�2y.0/ �
0, and �	

0 y.t/ � 0 for each t 2 ZN�	. If it also holds that �N�1y.0/ � 0, then
�N�1y.t/ � 0, for each t 2 N0.

Proof. Put z � �y and apply Theorem 7.13 to the function z. ut
Finally, as a specific application of this result and to demonstrate a nontrivial

consequence of Theorem 7.13 we consider the theorem in case N D 3. To this end,
consider the following FBVP, and observe that this is a special case of the so-called
.N � 1; 1/ problem for the case N D 3; see [124] for additional results on a class of
discrete fractional .N � 1; 1/ problems.

�
	
	�3y.t/ D f .t C 	 � 1; y.t C 	 � 1//, t 2 N

bC1
0 DW f0; 1; : : : ; b C 1g

y.	 � 3/ D 0 D �y.	 � 3/
y.	C b C 1/ D 0

(7.19)

Corollary 7.21. If the continuous function f W N
	Cb
	�1 �R ! R is nonnegative and

2 < 	 < 3, then problem (7.19) has no nontrivial positive solution.

Proof. We begin by noting that from the boundary conditions we clearly have both
that y.	 � 3/ D 0 and that �y.	 � 3/ � 0. Furthermore, we compute

�2y.	 � 3/ D y.	 � 1/ � 2y.	 � 2/C y.	 � 3/ D y.	 � 1/:

Therefore, supposing for contradiction that y is a fictitious positive solution of
problem (7.19), the above calculation demonstrates that �2y.	 � 3/ � 0. Note,
in addition, that by the form of the difference equation in (7.19) together with the
assumption on the function f we may also conclude that �	

	�3y.t/ � 0 for each
t 2 N0. Thus, we may invoke Theorem 7.13 to deduce that �2y.t/ � 0 for each
t 2 Z	�3.

Now, by the contradiction assumption we have that y is nontrivial, and so, it
follows that for some time t0 2 Z

	Cb
	�2 it holds that y .t0/ > 0. But then �y .t0/ > 0.

Since Theorem 7.13 has shown that �2y.t/ � 0 for all t, it follows that �y.t/ � 0

for each t 2 Z
	Cb
t0 . Thus, y.	CbC1/ > 0, which violates the boundary condition at

the right endpoint, and so, a contradiction is obtained. Consequently, (7.19) cannot
have a nontrivial positive solution, as claimed. ut
Remark 7.22. For obvious geometrical reasons, problem (7.19) cannot have a
positive solution in case 	 D 3. However, lacking this simple geometric intuition
when 	 … N, it does not appear to be plainly obvious that problem (7.19) maintains
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this similar solution structure. Accordingly, Corollary 7.21 demonstrates that no
such aberrant or otherwise pathological behavior occurs in the fractional case.

In fact, this is of some interest since the nonlocal structure of the fractional
difference can be responsible for aberrant behavior. As mentioned in the previous
section, it has been shown by Ferreira and Goodrich [83, Theorem 3.13] that
this nonlocality can contribute to certain boundary value problems possessing
positive solutions even in the case where their integer-order counterpart does not
possess nontrivial, positive solutions. Thus, Corollary 7.21 demonstrates that no
such aberration occurs with respect to the fractional .2; 1/ problem studied above.

The reader should observe that it is certainly possible to write numerous
analogues of Corollary 7.21 by repeatedly applying Theorem 7.13 for different
choice of N. It is instructive to do this in a few cases to obtain a better sense of
the implications of the result. However, we leave this as an optional exercise.

Remark 7.23. Due to the minor error in [67, Corollary 2.3], there are subsequently
some minor errors in [114]. Fortunately, the changes required to that paper are very
minor. In particular, the following minor changes must be made. It should be noted
that other than including a single additional hypothesis, no changes are required to
the proofs in [114]; the proofs are otherwise correct.

• In [114, Theorem 2.6, Corollary 2.8] the hypothesis �N�1y.0/ � 0 must be
added, whereas in [114, Corollary 2.11] the hypothesis �N�1y.0/ � 0 must be
added.

• In [114, Example 2.9] the hypothesis �2y.0/ � 0 must be added in the first
part of the example, whereas in the second part of the example the hypothesis
�3y.0/ � 0 must be added.

• In [114, Corollary 2.10] the hypothesis �2y.0/ � 0 must be added.

We would like to conclude this section, much as we did in Sect. 7.2, by pointing
out that due to a flurry of recent work in the area, the basic convexity and concavity
results presented earlier in this section have been able to be substantively extended
in a variety of directions. As one such representative result, we present the following
theorem, which was recently proved by Baoguo, Erbe, Goodrich, and Peterson; it
will appear in a forthcoming paper [53], and we direct the reader to the paper for
further details on this and other related results. In particular, we omit the proof of
the result, but instead focus on its relationship to the results presented earlier in this
section, and the way in which it improves them.

Theorem 7.24. Fix � 2 .2; 3/ and suppose that ��
af .t/ � 0 for each t 2 N3Ca�� .

If for each k 2 N�1 it holds that

1

�� C 1
f .a C 2/C � C 2C k

.� � 1/.3C k/
f .a C 1/ � �

.3C k/.4C k/
f .a/ � 0; (7.20)

then �2f .t/ � 0 for each t 2 NaC1.

Proof. Omitted—see [53]. ut
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Remark 7.25. Observe that inequality (7.20) does not necessarily imply that
�2f .a/ � 0. For example, if we put f .a/ D 0, f .a C 1/ D 1, and f .a C 2/ D 1:9

and we also fix � D 5
2

2 .2; 3/, then we calculate

1

�� C 1
f .a C 2/C � C 1

2.� � 1/ f .a C 1/ � �

6
f .a/

D �2
3

� 1:9C 7

6
� 1 � 5

12
� 0 D � 1

10
< 0;

which shows that inequality (7.20) is satisfied in case k D �1; in fact, it can be
shown that (7.20) is satisfied for each k 2 N�1. Yet we calculate�2f .a/ D � 1

10
< 0.

Similarly, if we put g.a/ D 1, g.a C 1/ D 2:8, and g.a C 2/ D 4:5 as well as
again taking � D 5

2
, then we see that �2g.a/ D � 1

10
< 0. Yet at the same time we

calculate

1

�� C 1
g.a C 2/C � C 1

2.� � 1/g.a C 1/ � �

6
g.a/

D �2
3

� 4:5C 7

6
� 2:8 � 5

12
� 1 D � 3

20
< 0;

which shows that inequality (7.20) is satisfied in case k D �1, and, as can be easily
shown, it holds for k 2 N�1.

All in all, then, we see that condition (7.20) may be satisfied even if the map
t 7! f .t/ is not convex “at” t D a. In particular, this means that Theorem 7.24 does
not require that the map t 7! f .t/ be “initially convex.”

7.4 Analysis of a Three-Point Boundary Value Problem

In the preceding two sections we demonstrated that under certain conditions the
discrete fractional difference operator satisfies both monotonicity and convexity
properties. We thus focused on the nonlocal structure implicit to the fractional
operators. As mentioned in the introduction to this chapter, one can also study
explicitly nonlocal boundary value problems. In this and the succeeding sections
of this chapter, we examine a few specific examples of these so-called nonlocal
boundary value problems.

We begin by examining a three-point problem in this section. This is a special
case of the so-called m-point problem, wherein our boundary value problem has a
boundary condition of the form, say,

y.0/ D
mX

jD1
ajy

�

j

	
;
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where, for each j, the number 
j is both nonzero and an element of the domain of y.
In particular, then, the value of y at t D 0 depends on the values of y at time points
other than t D 0. This then gives rise to an explicit nonlocal boundary condition.
Now, in the integer-order case determining the Green’s function and its properties
for such a problem can be tedious, but is usually not too overly taxing. However, in
the fractional case, as this section demonstrates, determining explicitly the Green’s
function and its properties for even the three-point problem is extremely technical.
In particular, the problem we study in this section is

���y.t/ D f .t C � � 1; y.t C � � 1//
y.� � 2/ D 0

˛y.� C K/ D y.� C b/:

Finally, as we shall note later in this section, if we remove the nonlocal boundary
condition element by simply putting ˛ D 0, then we recover the Green’s function
for the conjugate problem as is easily checked by the reader. Moreover, most of the
results in this section can be found in the paper by Goodrich [104].

So, with this context in mind, we first deduce the Green’s function for the
operator ��� together with the boundary conditions y.��2/ D 0 and ˛y.�CK/ D
y.� C b/, where 0 � ˛ � 1 and K 2 Œ�1; b � 1�Z. We first present a preliminary
lemma, which will prove to be rather useful in what follows. The lemma can be
found in a paper by Goodrich [88].

Lemma 7.26. Fix k 2 N and let
˚
mj


k

jD1,
˚
nj


k

jD1 � .0;C1/ such that

max
1�j�k

mj � min
1�j�k

nj

and that for at least one j0, 1 � j0 � k, we have that mj0 < nj0 . Then for fixed
˛0 2 .0; 1/, it follows that

�
n1

n1 C ˛0
� : : : � nk

nk C ˛0

� �
m1 C ˛0

m1

� : : : � mk C ˛0

mk

�
> 1:

Proof. Fix an index j0, where j0 is one of the indices, of which there exists at least
one, for which nj0 > mj0 . Notice that as nj0 > mj0 and ˛0 > 0, it follows that
nj0˛0 > mj0˛0, whence mj0nj0 C nj0˛0 > mj0nj0 C mj0˛0, so that

mj0 C ˛0

mj0

>
nj0 C ˛0

nj0

;

whence

nj0

nj0 C ˛0
� mj0 C ˛0

mj0

> 1:
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But now the claim follows at once by repeating the above steps for each of the
remaining j0 � 1 terms and observing that the product of j terms, each of which is at
least unity and at least one of which exceeds unity, is greater than unity. ut

In addition, for reference in the sequel and to simplify the rather formidable nota-
tional burden associated with this problem, let us make the following declarations;
note that we provide the domains of these maps in the statement of Theorem 7.27.

g1.t; s/ WD 1

�.�/

"
� .t � s � 1/��1

C t��1

�0

�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1� #

g2.t; s/ WD 1

�.�/

�
t��1

�0

�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1��

g3.t; s/ WD 1

�.�/

�
�.t � s � 1/��1 C t��1

�0

.b C � � s � 1/��1
�

g4.t; s/ WD 1

�.�/

�
t��1

�0

.b C � � s � 1/��1
�

�0 WD .b C �/��1 � ˛.K C �/��1
(7.21)

Theorem 7.27. Let h W Œ� � 1; � C b � 1�N��1 ! R be given. The unique solution
of the problem

���y.t/ D h.t C � � 1/
y.� � 2/ D 0

˛y.� C K/ D y.� C b/ (7.22)

is the function

y.t/ D
bX

sD0
G.t; s/h.s C � � 1/;

where G.t; s/ is the Green’s function for the operator ��� together with the
boundary conditions in (7.22), and where

G.t; s/ WD

8̂̂̂
<̂
ˆ̂̂̂:

g1.t; s/, 0 � s � minft � �;Kg
g2.t; s/, 0 � t � � < s � K � b

g3.t; s/, 0 < K < s � t � � � b

g4.t; s/, maxft � �;Kg < s � b

;

with gi.t; s/, 1 � i � 4, are as defined in (7.21) above.
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Proof. Omitted—see [104]. ut
Remark 7.28. It is easy to observe that in case ˛ D 0, not only does problem (7.22)
reduce to the usual conjugate FBVP that was considered in [31], but, moreover, the
Green’s function given by Theorem 7.27 reduces to the Green’s function derived in
[31].

We now wish to prove that the Green’s function .t; s/ 7! G.t; s/ in Theorem 7.27
satisfies certain properties that will prove to be of use in the sequel and are also of
independent interest. We first prove an easy preliminary lemma.

Lemma 7.29. Let �0 be as defined in (7.21). Then for each K 2 Œ�1; b � 1�Z,
� 2 .1; 2�, and b 2 N, we find that �0 > 0.

Proof. Recall from (7.21) that �0 D .b C �/��1 � ˛.K C �/��1. It is evident that
this function is decreasing in ˛ for each fixed K, �, and b, and so, it suffices to show
that �0 > 0 when ˛ D 1. To this end, note that t	 is increasing in t, whenever
0 < 	 < 1. Since b C � > K C �, it immediately follows that

�0

ˇ̌
˛D1 D .b C �/��1 � .K C �/��1 > 0;

which proves the claim. We observe that this same result holds even in the case
where � D 2. ut
Theorem 7.30. Let G be the Green’s function given in the statement of Theo-
rem 7.27. Then for each .t; s/ 2 Œ��2; �Cb�N��2 � Œ0; b�N0 , we find that G.t; s/ � 0.

Proof. As was mentioned at the beginning of this section, the proof of this result
may be found in its entirety in [104]. However, we include the proof here for its
instructive value. In particular, it shall give the reader a sense of the delicacy that
is involved in arguing the properties of Green’s functions associated with fractional
difference operators—delicacy that is obviated if we pass to the integer-order case.
Moreover, this will also give the reader a general sense for certain of the techniques
that may be utilized in these sorts of arguments.

With this in mind, our program to complete the proof is to show that for each i,
1 � i � 4, it holds that gi.t; s/ > 0 for each admissible pair .t; s/. To complete this
program, we begin by showing both that g2.t; s/ > 0 and that g4.t; s/ > 0, as these
are the easier cases. In the case of g2.t; s/, observe that it suffices to show that the
inequality

.b C � � s � 1/��1 � ˛.K C � � s � 1/��1 > 0 (7.23)

holds. Showing that (7.23) is true is equivalent to showing that

.b C � � s � 1/��1

˛.K C � � s � 1/��1 > 1: (7.24)
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But to see that (7.24) is true for each admissible pair .t; s/ and each ˛ 2 .0; 1�, notice
that t	 is increasing in t provided that 	 2 .0; 1/. Consequently, we obtain that

.b C � � s � 1/��1

˛.K C � � s � 1/��1 � .b C � � s � 1/��1

.K C � � s � 1/��1 > 1;

which proves (7.24) and thus (7.23). On the other hand, we note that by the form of
g4 given in (7.21), we obtain at once that g4.t; s/ > 0 since �0 > 0 by Lemma 7.29
and bC��s�1 > 0 in this case. Thus, we conclude that both g2 and g4 are positive
on each of their respective domains.

We next consider the function g3. Recall from (7.21) that

g3.t; s/ D 1

�.�/

�
�.t � s � 1/��1 C t��1

�0

.b C � � s � 1/��1
�
:

Evidently, to prove that g3.t; s/ > 0, we may instead just prove that �.�/g3.t; s/ > 0.
Now, it is clear that g3 is increasing in ˛, for as ˛ increases, �0 clearly decreases.
In particular, then, we deduce that

�.�/g3.t; s/ � �.t � s � 1/��1 C t��1.b C � � s � 1/��1

.b C �/��1 : (7.25)

Note that (7.25) implies that g3.t; s/ > 0 if and only if

t��1.b C � � s � 1/��1

.t � s � 1/��1.b C �/��1 > 1: (7.26)

To prove that (7.26) holds, recall that on the domain of g3 it holds that t � s C � >

K C�. Consequently, given a fixed but arbitrary s0 > K, we have that t D s0C�C j,
for some 0 � j � b � s0 with j 2 N0. But then for this number s0, we may recast the
left-hand side of (7.26) as

t��1.b C � � s � 1/��1

.t � s � 1/��1.b C �/��1

D �.t C 1/� .b C � � s0/ � .t � s0 � � C 1/ �.b C 2/

�.t � � C 2/� .b � s0 C 1/ � .t � s0/ �.b C � C 1/

D � .s0 C � C j C 1/ � .b C � � s0/ �.j C 1/�.b C 2/

� .s0 C j C 2/ � .b � s0 C 1/ �.� C j/�.b C � C 1/

D jŠ.b C 1/Š Œ.� C j C s0/ � � � .� C j/�

.s0 C j C 1/Š .b � s0/Š Œ.b C �/ � � � .b C � � s0/�

D .b C 1/ � � � .b � s0 C 1/

.b C �/ � � � .b C � � s0/
� .� C j C s0/ � � � .� C j/

.s0 C j C 1/ � � � .j C 1/
: (7.27)
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Now, observe that each of the fractions on the right-hand side of (7.27) has
exactly s0 C 1 factors in each of its numerator and denominator. In addition, by
putting ˛0 WD � � 1 > 0, we observe that this expression satisfies the hypotheses
of Lemma 7.26. (Of course, some repetition of factors may occur between the two
fractions on the right-hand side of (7.27), but these may always be canceled to obtain
the form required by Lemma 7.26. Thus, we may safely ignore the existence of any
possible repetition.) Consequently, we deduce from this lemma that

t��1.b C � � s � 1/��1

.t � s � 1/��1.b C �/��1

D .b C 1/ � � � .b � s0 C 1/

.b C �/ � � � .b C � � s/
� .� C j C s0/ � � � .� C j/

.s0 C j C 1/ � � � .j C 1/
> 1;

whence (7.26) holds. But as (7.26) holds for each admissible pair .t; s/, it follows at
once that (7.25) holds, too, so that g3.t; s/ > 0, as claimed.

Finally, we show that g1.t; s/ > 0 on its domain, which we recall is 0 � s �
minft � �;Kg. Recall from (3.1) that

�.�/g1.t; s/ D �.t � s � 1/��1

C t��1

�0

�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1� ;

where we again use the fact that g1.t; s/ is positive if and only if �.�/g1.t; s/ is
positive. Let us pause momentarily to notice that

.b C � � s � 1/��1 � ˛.K C � � s � 1/��1 > 0; (7.28)

which is evidently an important condition. Note that (7.28) just follows from (7.23)
above.

Notice that g1.t; s/ > 0 only if

t��1

�0

�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1� > .t � s � 1/��1: (7.29)

We begin by proving that the function F W Œ0; 1� ! R defined by

F.˛/ WD .b C � � s � 1/��1 � ˛.K C � � s � 1/��1

.b C �/��1 � ˛.K C �/��1 (7.30)

is increasing in ˛ for 0 � ˛ � 1. Note that a straightforward calculation shows that
F.˛/ is increasing in ˛ if and only if

.b C � � s � 1/��1.K C �/��1

.K C � � s � 1/��1.b C �/��1 > 1: (7.31)
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To see that (7.31) holds, let s0 be arbitrary but fixed such that each of s0 2 Œ0; b�N0
and 0 � s0 � minft � �;Kg holds. So, it follows that the left-hand side of (7.31)
above satisfies

.b C � � s0 � 1/��1 .K C �/��1

.K C � � s0 � 1/��1 .b C �/��1

D .b C 1/ � � � .b � s0 C 1/

.b C �/ � � � .b C � � s0/
� .K C �/ � � � .K C � � s0/

.K C 1/ � � � .K � s0 C 1/
: (7.32)

But it is easy to check that by putting ˛0 WD ��1 > 0, we may apply Lemma 7.26 to
the right-hand side of (7.32) to conclude that (7.31) holds. Thus, the map ˛ 7! F.˛/
is increasing in ˛, as desired. In particular, this implies that to prove that (7.29)
is true, it suffices to check its truth in case ˛ D 0. In this case, we find that
proving (7.29) reduces to proving that

t��1.b C � � s � 1/��1

.b C �/��1.t � s � 1/��1 > 1 (7.33)

holds. Observe that the same proof that was used to show that (7.26) held can be
used to show that (7.33) holds, too. Thus, as (7.29) holds in case ˛ D 0, the result
of (7.30)–(7.33) implies that (7.29) holds for each admissible ˛. Consequently, we
conclude that g1.t; s/ > 0, from which it follows that gi.t; s/ > 0 for each i, 1 �
i � 4. Hence, it follows that G.t; s/ � 0 for each admissible pair .t; s/. And this
concludes the proof. ut
Theorem 7.31. Let G be the Green’s function given in the statement of Theo-
rem 7.27. In addition, suppose that for given K 2 Œ�1; b � 1�Z and 1 < � � 2,
we have that ˛ satisfies the inequality

0 � ˛

� min
.t;s/2ŒsC�;�Cb�N��1�Œ0;b�N0

�
.b C �/��1

.K C �/��1 � t��2.b C � � s � 1/��1

.K C �/��1.t � s � 1/��2

�
:

(7.34)

Then for each s 2 Œ0; b�N0 it holds that

max
t2Œ��1;�Cb�N��1

G.t; s/ D G.s C � � 1; s/: (7.35)

Proof. Our strategy is to show that �tgi.t; s/ > 0 for each i D 2, 4, and that
�tgi.t; s/ < 0 for i D 1, 3. From this the claim will follow at once. To this end,
we first show that the former claim holds, as this is the easier of the two cases. Note,
for example, that when i D 2, we find by direct computation that

�.�/�tg2.t; s/ D .� � 1/t��2

�0

�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1� :

(7.36)
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So, it is clear from (7.36) that �tg2.t; s/ > 0 if and only if

.b C � � s � 1/��1 > ˛.K C � � s � 1/��1:

But as this immediately follows from (7.23)–(7.24), we deduce that

�tg2.t; s/ > 0;

as desired. On the other hand, the estimate �tg4.t; s/ > 0 evidently holds

considering that �tg4.t; s/ D .��1/t��2

�0
.b C � � s � 1/��1. And this concludes the

analysis of �tgi.t; s/ in case i is even.
We next attend to g3.t; s/. In particular, we claim that �tg3.t; s/ < 0 for each

admissible pair .t; s/. To see that this claim holds, note that

�.�/�tg3.t; s/ D �.� � 1/.t � s � 1/��2

C .� � 1/t��2

�0

.b C � � s � 1/��1;

where we have used the fact that �t.t � s � 1/��1 D .� � 1/.t � s � 1/��2, which
may be easily verified from the definition. So, if�tg3 is to be a nonpositive function,
then it must hold that

t��2.b C � � s � 1/��1

�0

< .t � s � 1/��2: (7.37)

Notice that (7.37) is true if and only if .b C�/��1�˛.K C�/��1 > t��2.bC��s�1/��1

.t�s�1/��2

is true. But this latter inequality is true only if

� ˛ > t��2.b C � � s � 1/��1

.t � s � 1/��2.K C �/��1 � .b C �/��1

.K C �/��1 (7.38)

is true. From (7.38) we see that by requiring ˛ to satisfy, for each admissible K and
�, the estimate

0 � ˛

� min
.t;s/2ŒsC�;�Cb�N��1�Œ0;b�N0

�
.b C �/��1

.K C �/��1 � t��2.b C � � s � 1/��1

.K C �/��1.t � s � 1/��2

�
;

(7.39)

it follows that (7.37) is true—that is, that g3.t; s/ > 0 for each admissible pair .t; s/.
Note that restriction (7.39) above is precisely restriction (7.34), which was given in
the statement of this theorem. Thus, with restriction (7.34) in place, we conclude
that the map .t; s/ 7! �tg3.t; s/ will be nonpositive on its domain, as desired.
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Finally, we claim that�tg1.t; s/ < 0 on its domain. Observe that by the definition
of g1 given in (7.21), we must argue that

� .� � 1/.t � s � 1/��2

C .� � 1/t��2

�0

�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1� < 0: (7.40)

But observe that

� .� � 1/.t � s � 1/��2

C .� � 1/t��2

�0

�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1�

� �.� � 1/.t � s � 1/��2 C .� � 1/t��2.b C � � s � 1/��1

�0

:

So, we deduce that if

� .� � 1/.t � s � 1/��2 C .� � 1/t��2.b C � � s � 1/��1

�0

< 0; (7.41)

then inequality (7.40) holds. Now, note that we can solve for ˛ in (7.41) to obtain an
upper bound on ˛. As this calculation is exactly the same as the one given earlier in
the argument, we do not repeat it here. Instead we point out that the restriction (7.41)
implies that

0 � ˛ � .b C �/��1

.K C �/��1 � t��2.b C � � s � 1/��1

.K C �/��1.t � s � 1/��2 :

Note that the right-hand side of (7.41) is precisely restriction (7.34). So, by
assuming (7.34) we also get that (7.40) holds. Consequently, the preceding analysis
shows that (7.40) holds, from which it follows that �tg1.t; s/ > 0 on its domain.
Thus, we deduce that (7.35) holds, which completes the proof. ut

Before presenting our final theorem in this section regarding the map .t; s/ 7!
G.t; s/, we make some definitions for convenience.
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�1 WD
�

bC�
4

	��1

.b C �/��1

�2 WD 1
3.bC�/
4

���1

" �
3.b C �/

4

���1

�

3.bC�/
4

� 1
���1 �

.b C �/��1 � ˛.K C �/��1�
.b C � � 1/��1

#

�3 WD 1
3.bC�/
4

���1

2
64�

3.b C �/

4

���1
�


3.bC�/
4

� 1
���1

.b C �/��1

.b C � � 1/��1

3
75

We will make use of these constants in the sequel.

Theorem 7.32. Let G be the Green’s function given in the statement of Theo-
rem 7.27. Let �i, 1 � i � 3, be defined as above. Then it follows that for each
s 2 Œ0; b�N0

min
t2

h
bC�
4 ;

3.bC�/
4

i G.t; s/ � � max
t2Œ��2;�Cb�N��2

G.t; s/ D �G.s C � � 1; s/; (7.42)

where

� WD min f�1; �3g ; (7.43)

and � satisfies the inequality 0 < � < 1.

Proof. To simplify the notation used in this proof, let us put, for each 1 � i � 4,

Qgi.t; s/ WD
(

gi.t;s/
g2.sC��1;s/ , i D 1; 2

gi.t;s/
g4.sC��1;s/ , i D 3; 4

:

Observe that for s � t � � C 1 and bC�
4

� t � 3.bC�/
4

, it holds that

Qg2.t; s/ D Qg4.t; s/ D t��1

.s C � � 1/��1 �
�

bC�
4

	��1

.b C �/��1 ; (7.44)

whence from (7.44) it is clear that in the case where both s � t � � C 1 and t 2h
bC�
4
;
3.bC�/
4

i
, it follows that

min
t2

h
bC�
4 ;

3.bC�/
4

i G.t; s/ � �1G.s C � � 1; s/:
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On the other hand, suppose that s < t � � C 1 and t 2
h

bC�
4
;
3.bC�/
4

i
. Then

we consider two cases depending upon whether or not the pair .t; s/ lives in the
domain of Qg1 or Qg3. In the case where .t; s/ lives in the domain of Qg3, we note that
by definition

Qg3.t; s/

D �.t � s � 1/��1�0

.s C � � 1/��1.b C � � s � 1/��1 C t��1

.s C � � 1/��1

D 1

.s C � � 1/��1

"
t��1 � .t � s � 1/��1 �

.b C �/��1 � ˛.K C �/��1�
.b C � � s � 1/��1

#

� 1
3.bC�/
4

���1

�

2
64�

3.b C �/

4

���1
�


3.bC�/
4

� 1
���1 �

.b C �/��1 � ˛.K C �/��1�
.b C � � 1/��1

3
75 :
(7.45)

So, it is clear from (7.45) that in case s < t � � C 1 and t 2
h

bC�
4
;
3.bC�/
4

i
, we get

that min
t2

h
bC�
4 ;

3.bC�/
4

i G.t; s/ � �2G.s C � � 1; s/.
Finally, suppose that s < t � � C 1, t 2

h
bC�
4
;
3.bC�/
4

i
, and that the pair .t; s/

lives in the domain of Qg1. By using a similar calculation as in (7.45) together with
the definition of Qg1, we obtain the lower bound

Qg1.t; s/

D �.t � s � 1/��1�0

.s C � � 1/��1 Œ.b C � � s � 1/��1 � ˛.K C � � s � 1/��1�

C t��1

.s C � � 1/��1

� 1
3.bC�/
4

���1

�

2
64�

3.b C �/

4

���1
�


3.bC�/
4

� s � 1
���1 �

.b C �/��1 � ˛.K C �/��1�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1

3
75 :

(7.46)

We now need to focus on the quotient .bC�/��1�˛.KC�/��1

.bC��s�1/��1�˛.KC��s�1/��1 appearing on the
right-hand side of (7.46). We claim that this is a decreasing function of ˛.
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To prove this claim, let us put

g.˛/ WD .b C �/��1 � ˛.K C �/��1

.b C � � s � 1/��1 � ˛.K C � � s � 1/��1 ; (7.47)

where for each fixed but arbitrary b, s, �, and K, we have that g W Œ0; 1� ! Œ0;C1/.
Now, let the map ˛ 7! F.˛/ be defined as in (7.30) above. Note from (7.47) that

g.˛/ D 1

F.˛/
:

Recall that in case 0 � ˛ � 1 we have already argued that F is increasing in ˛. So,
straightforward computations demonstrate that g is decreasing in ˛, for 0 � ˛ � 1,
as desired.

Since g is decreasing in ˛, we conclude that

Qg1.t; s/

� 1
3.bC�/
4

���1

�

2
64�

3.b C �/

4

���1
�


3.bC�/
4

� s � 1
���1 �

.b C �/��1 � ˛.K C �/��1�
.b C � � s � 1/��1 � ˛.K C � � s � 1/��1

3
75

� 1
3.bC�/
4

���1

2
64�

3.b C �/

4

���1
�


3.bC�/
4

� s � 1
���1

.b C �/��1

.b C � � s � 1/��1

3
75

� 1
3.bC�/
4

���1

2
64�

3.b C �/

4

���1
�


3.bC�/
4

� 1
���1

.b C �/��1

.b C � � 1/��1

3
75 :

Thus, we observe that in this case it holds that min
t2

h
bC�
4 ;

3.bC�/
4

i G.t; s/ � �3G.s C
� � 1; s/.

Finally, note that since �2 � �3, it must hold that min f�1; �2; �3g D min f�1; �3g.
Thus, we can put � WD min f�1; �3g as in (7.43). The previous part of the proof then
shows that for each s 2 Œ0; b�N0 it holds that

min
t2

h
bC�
4 ;

3.bC�/
4

i G.t; s/ � � max
t2Œ��2;�Cb�N��2

G.t; s/ D �G.s C � � 1; s/; (7.48)

and as (7.48) is (7.42), the first part of the proof is complete.
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To complete the proof, it remains to show that � , as defined in (7.43), satisfies
0 < � < 1. We first observe that �1 < 1. This follows from the fact that t��1 is
an increasing function in t whenever � 2 .1; 2�. To see that this latter claim is true,
simply observe that

�
�
t��1� D .� � 1/ � �.t C 1/

�.t � � C 3/
> 0:

Thus, as bC�
4
> bC� and

�
bC�
4

	��1
, .bC�/��1 ¤ 0, the claim follows. In particular,

this demonstrates that

� D min f�1; �3g � �1 < 1: (7.49)

On the other hand, observe that �1 > 0. So, it only remains to show that �3 > 0.
Note that �3 is strictly positive if and only if


3.bC�/
4

���1
.b C � � 1/��1


3.bC�/
4

� 1
���1

.b C �/��1
> 1: (7.50)

But (7.50) is true if and only if

.b C 1/

3.bC�/
4

�
.b C �/


3.bC�/
4

� � C 1
� > 1 (7.51)

holds for each admissible b and �—that is, each b 2 Œ2;C1/N and � 2 .1; 2�.
We claim that (7.51) is true for each b 2 Œ2;C1/ and each � 2 .1; 2�. To see

this, for each fixed and admissible b, put

Hb.�/ WD
.b C 1/


3.bC�/
4

�
.b C �/


3.bC�/
4

� � C 1
� ; (7.52)

which is the left-hand side of inequality (7.51), and note that each of

Hb.1/ D 1 (7.53)

and

Hb.2/ D .b C 1/
�
3
4
b C 3

2

	
.b C 2/

�
3
4
b C 1

2

	 D 3b C 3

3b C 2
(7.54)

holds. Now, Hb.2/ > 1 is evidently true for each admissible b. Moreover, a
straightforward computation shows that
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H0
b.�/ D 3.b C 1/

.3b � � C 4/2
: (7.55)

But then (7.55) demonstrates that for each b, it holds that the map � 7! Hb.�/ is
strictly increasing in �. Therefore, as Hb.1/ D 1 and Hb.2/ > 1, we obtain at once
that

Hb.�/ > 1 (7.56)

for each � 2 .1; 2� and b 2 Œ2;C1/N. But then from (7.56) we deduce that (7.51)
holds, as desired.

In summary, (7.50)–(7.56) demonstrate that �3 > 0. But we then find that

� D min f�1; �3g > 0: (7.57)

Putting (7.49) and (7.57) together implies that � 2 .0; 1/, as claimed. And this
completes the proof. ut
Remark 7.33. Note that in case ˛ D 0, the result of Theorem 7.32 reduces to the
results obtained in [31], as the reader may easily check.

Remark 7.34. For a brief investigation of the properties of the set of admissible
values of ˛ generated by condition (7.34) above, one may consult [104].

Remark 7.35. Once we have the preceding properties of the Green’s function G in
hand, it then is standard to provide some basic existence result for the FBVP

���y.t/ D f .t C � � 1; y.t C � � 1//
y.� � 2/ D 0

˛y.� C K/ D y.� C b/;

where f W Œ0; b�N0 � R ! Œ0;C1/ is a continuous map. However, since we
complete this sort of analysis in the somewhat more general case of (potentially)
nonlinear boundary conditions in the next section, we will not present existence
theorems for the three-point problem studied in this section. We instead direct the
interested reader to [104, §5] where results of this sort may be found for the three-
point problem studied in this section.

7.5 A Nonlocal BVP with Nonlinear Boundary Conditions

In the previous section we saw how a three-point problem can be analyzed. In
particular, notice that the boundary condition in that setting is linear in the sense
that if we define the boundary operator B defined by

By WD ˛y.t C �/C y.t C � C b/; y 2 R
m;
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then B is linear map from R
m into R, for some m > 1 with m 2 N. However,

there is no requirement that the boundary conditions for a given BVP be linear. In
fact, if the boundary conditions are nonlinear, then the mathematical analysis of
the problem can be very interesting and potentially challenging. For one thing, one
cannot generally approach the problem in the same way—namely by determining
an appropriate Green’s function. Rather, an alternative but viable approach in this
setting is to instead construct a new operator by taking the operator associated with
the linear boundary condition problem and then suitably perturbing it. This approach
will be seen in this section. In particular, we wish to consider a modification of the
BVP considered in the previous section; namely, we consider in this section the
problem

���y.t/ D f .t C � � 1; y.t C � � 1//
y.� � 2/ D g.y/

y.� C b/ D 0

in the case where the map y 7! g.y/ is potentially nonlinear. The results of this
section may be found largely in Goodrich [92].

We begin by providing a lemma, which essentially recasts the above BVP as
an appropriate summation operator. Studying the existence of solutions to the BVP
will then be reduced to demonstrating the existence of nontrivial fixed points of the
associated summation operator.

Theorem 7.36. Let h W Œ� � 1; : : : ; � C b � 1�N��1 ! R and g W R
bC3 ! R be

given. A function y is a solution of the discrete FBVP

���y.t/ D h.t C � � 1/
y.� � 2/ D g.y/

y.� C b/ D 0

(7.58)

where t 2 Œ0; b�N0 , if and only if y.t/, for each t 2 Œ� � 2; � C b�N��2 , has the form

y.t/ D � 1

�.�/

t��X
sD0
.t � s � 1/��1h.s C � � 1/

C t��1
"

1

.� C b/��1�.�/

bX
sD0
.� C b � s � 1/��1h.s C � � 1/

� g.y/

.b C 2/�.� � 1/

#
C t��2

�.� � 1/g.y/: (7.59)
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Proof. Using the results from earlier in this text, we find that a general solution
for (7.58) is the function

y.t/ D ����h.t C � � 1/C c1t
��1 C c2t

��2; (7.60)

where t 2 Œ� � 2; � C b�N��2 . On the one hand, applying the boundary condition at
t D � � 2 in (7.58) implies at once that

c2 D 1

�.� � 1/g.y/: (7.61)

Applying the boundary condition at t D � C b in (7.58) yields

0 D y.� C b/

D Œ����h.t/�tD�Cb C c1.� C b/��1 C .� C b/��2

�.� � 1/ g.y/

D � 1

�.�/

bX
sD0
.� C b � s � 1/��1h.s C � � 1/C c1.� C b/��1

C .� C b/��2

�.� � 1/ g.y/; (7.62)

whence (7.62) implies that

c1 D 1

.� C b/��1�.�/

bX
sD0
.� C b � s � 1/��1h.s C � � 1/

� .� C b/��2

.� C b/��1�.� � 1/g.y/ (7.63)

D 1

.� C b/��1�.�/

bX
sD0
.� C b � s � 1/��1h.s C � � 1/

� 1

.b C 2/�.� � 1/g.y/:

Consequently, using (7.60)–(7.63), we deduce that for each t 2 Œ� � 2; � C b�N��2

it holds that y has the form given in (7.59) above. And this shows that if (7.58)
has a solution, then it can be represented by (7.59) and that every function of the
form (7.59) is a solution of (7.58). And this completes the proof of the theorem. ut
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We now recall an additional lemma that will prove to be useful later in this
section.

Lemma 7.37. For t and s for which both .t � s � 1/� and .t � s � 2/� are defined,
we find that

�s Œ.t � s � 1/�� D ��.t � s � 2/��1:

Proof. Omitted—see [89, Lemma 2.4]. ut
Finally, for � 2 .1; 2� given, we provide the following lemma, which will also be

of importance later in this section.

Lemma 7.38. The map

t 7! 1

�.� � 1/
�

t��2 � 1

b C 2
t��1

�

is strictly decreasing in t, for t 2 Œ� � 2; � C b�N��2 . In addition, it holds both that

min
t2Œ��2;�Cb�N��2

�
1

�.� � 1/
�

t��2 � 1

b C 2
t��1

��
D 0

and that

max
t2Œ��2;�Cb�N��2

�
1

�.� � 1/
�

t��2 � 1

b C 2
t��1

��
D 1:

Proof. Note that

�t

�
t��2 � 1

b C 2
t��1

�
D .� � 2/t��3 � � � 1

b C 2
t��2 < 0; (7.64)

where the inequality in (7.64) follows from the observation that .� � 2/.b C 2/ �
.t � � C 3/.� � 1/ < 0. It follows that the map

t 7! 1

�.� � 1/
�

t��2 � 1

b C 2
t��1

�

is strictly decreasing in t as well. Furthermore, notice both that

1

�.� � 1/
�

t��2 � 1

b C 2
t��1

�
tD��2

D 1

�.� � 1/
�
�.� � 1/ � 0

b C 2

�
D 1

(7.65)
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and that

1

�.� � 1/
�

t��2 � 1

b C 2
t��1

�
tD�Cb

D 0:

In particular, as a consequence of (7.64)–(7.65) we see that the second claim in the
statement of the theorem follows. And this completes the proof of the lemma. ut

We now wish to show that under certain conditions, problem (7.58) has at
least one solution. We observe that problem (7.58) may be recast as an equivalent
summation equation. In particular, y is a solution of (7.58) if and only if y is a fixed
point of the operator T W R

bC3 ! R
bC3, where

.Ty/.t/ WD � 1

�.�/

t��X
sD0
.t � s � 1/��1f .s C � � 1; y.s C � � 1//

C t��1

.� C b/��1�.�/

bX
sD0
.� C b � s � 1/��1f .s C � � 1; y.s C � � 1//

� t��1g.y/
.b C 2/�.� � 1/ C t��2

�.� � 1/g.y/;

(7.66)

for t 2 Œ� � 2; �C b�N��2 ; this observation follows from Theorem 7.36. We now use
this fact to state and prove our first existence theorem.

Theorem 7.39. Suppose that the maps .t; y/ 7! f .t; y/ and y 7! g.y/ are Lipschitz
in y. That is, there exist ˛, ˇ > 0 such that jf .t; y1/ � f .t; y2/j � ˛ jy1 � y2j
whenever y1, y2 2 R, and jg .y1/ � g .y2/j � ˇky1 � y2k whenever y1, y2 2
C .Œ� � 2; � C b�N��2 ;R/. Then it follows that problem (7.58) has a unique solution
provided that the condition

2˛

bY
jD1

�
� C j

j

�
C ˇ < 1 (7.67)

holds.

Proof. We will show that under the hypotheses in the statement of this theorem T is
a contraction mapping. To this end, we notice that for each admissible y1 and y2 it
holds that
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kTy1 � Ty2k

� ˛ky1 � y2k max
t2Œ��2;�Cb�N��2

"
1

�.�/

t��X
sD0
.t � s � 1/��1

#

C ˛ky1 � y2k max
t2Œ��2;�Cb�N��2

"
t��1

.� C b/��1�.�/

bX
sD0
.� C b � s � 1/��1

#

C ˇky1 � y2k max
t2Œ��2;�Cb�N��2

ˇ̌̌
ˇ� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
ˇ̌̌
ˇ :

(7.68)

We now analyze each of the three terms on the right-hand side of (7.68).
We first notice, by an application of Lemma 7.37, that

˛ky1 � y2k
"

1

�.�/

t��X
sD0
.t � s � 1/��1

#
D ˛ky1 � y2k

�.�/

�
�1
�
.t � s/�

�t��C1

sD0

D ˛ky1 � y2k
�

�.t C 1/

�.t � � C 1/�.� C 1/

�
� ˛ky1 � y2k

�
�.� C b C 1/

�.b C 1/�.� C 1/

�

D ˛

bY
jD1

�
� C j

j

�
ky1 � y2k:

(7.69)

So, this estimates the first term on the right-hand side of (7.68). Then another
application of Lemma 7.37 reveals that

˛ky1 � y2k
"

t��1

.� C b/��1�.�/

bX
sD0
.� C b � s � 1/��1

#

� ˛ky1 � y2k
�.�/

bX
sD0
.� C b � s � 1/��1 D ˛ky1 � y2k

�.�/

�
�1
�
.� C b � s/�

�bC1

sD0

D ˛ky1 � y2k
bY

jD1

�
� C j

j

�
;

(7.70)

which provides an upper bound for the second term appearing on the right-hand side
of (7.66). Finally, we may estimate the third term on the right-hand side of (7.68)
by employing Lemma 7.38 and observing that

ˇky1 � y2k
ˇ̌̌
ˇ� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
ˇ̌̌
ˇ � ˇky1 � y2k: (7.71)
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Putting (7.69)–(7.71) into the right-hand side of (7.68), we conclude at once that

kTy1 � Ty2k �
8<
:2˛

bY
jD1

�
� C j

j

�
C ˇ

9=
; ky1 � y2k:

So, by requiring condition (7.67) to hold, we find that (7.58) has a unique solution.
And this completes the proof. ut

By weakening the conditions imposed on the functions f and g, we can still
deduce the existence of at least one solution to (7.58). We shall appeal to the
Brouwer theorem to accomplish this.

Theorem 7.40. Suppose that there exists a constant M > 0 such that f .t; y/ satisfies
the inequality

max
.t;y/2Œ��1;�Cb�1�N��1�Œ�M;M�

jf .t; y/j � M
2�.�CbC1/

�.�C1/�.bC1/ C 1
(7.72)

and g.y/ satisfies the inequality

max
0�kyk�M

jg.y/j � M
2�.�CbC1/

�.�C1/�.bC1/ C 1
: (7.73)

Then (7.58) has at least one solution, say y0, satisfying jy0.t/j � M, for all t 2
Œ� � 2; � C b�N��2 .

Proof. Consider the Banach space B WD ˚
y 2 R

bC3 W kyk � M


. Let T be the

operator defined in (7.66). It is clear that T is a continuous operator. Therefore,
the main objective in establishing this result is to show that T W B ! B—that is,
whenever kyk � M, it follows that kTyk � M. Once this is established, the Brouwer
theorem will be invoked to deduce the conclusion.

To this end, assume that inequalities (7.72)–(7.73) hold for given f and g. For
notational convenience in the sequel, let us put

�0 WD M
2�.�CbC1/

�.�C1/�.bC1/ C 1
; (7.74)

which is a positive constant. Using the notation introduced previously in (7.74),
observe that

kTyk

� max
t2Œ��2;�Cb�N��2

1

�.�/

t��X
sD0
.t � s � 1/��1jf .s C � � 1/; y.s C � � 1//j

C max
t2Œ��2;�Cb�N��2

(
t��1

.� C b/��1�.�/
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�
bX

sD0
.� C b � s � 1/��1jf .s C � � 1; y.s C � � 1//j

)

C max
t2Œ��2;�Cb�N��2

ˇ̌̌
ˇ� t��1

.b C 2/�.� � 1/ C t��2

�.�/

ˇ̌̌
ˇ jg.y/j

� �0 max
t2Œ��2;�Cb�N��2

"
1

�.�/

t��X
sD0
.t � s � 1/��1

C
bX

sD0

t��1.� C b � s � 1/��1

.� C b/��1�.�/

#

C�0 max
t2Œ��2;�Cb�N��2

ˇ̌̌
ˇ� t��1

.b C 2/�.� � 1/ C t��2

�.�/

ˇ̌̌
ˇ : (7.75)

Now, much as in the proof of Theorem 7.39 we can simplify the expression on the
right-hand side of inequality (7.75). In particular, we observe that

1

�.�/

t��X
sD0
.t � s � 1/��1 C t��1

.� C b/��1�.�/

bX
sD0
.� C b � s � 1/��1

� 1

�.�/

t��X
sD0
.t � s � 1/��1 C 1

�.�/

bX
sD0
.� C b � s � 1/��1

� 1

�.�/

bX
sD0
.� C b � s � 1/��1 C 1

�.�/

bX
sD0
.� C b � s � 1/��1

D 2

�.�/

bX
sD0
.� C b � s � 1/��1; (7.76)

where to obtain inequality (7.76) we have used the fact that the map t 7! t��1 is
increasing in t since � > 1. Furthermore, it holds that

bX
sD0
.� C b � s � 1/��1 D

�
�1
�
.� C b � s/�

�bC1

sD0
D �.� C b C 1/

��.b C 1/
: (7.77)

In addition we may estimate the second term on the right-hand side of inequal-
ity (7.75) by using Lemma 7.38, which implies that

max
t2Œ��2;�Cb�N��2

ˇ̌̌
ˇ� t��1

.b C 2/�.� � 1/ C t��2

�.�/

ˇ̌̌
ˇ D 1: (7.78)
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If we now put (7.75)–(7.78) together, then we find that

kTyk � �0

�
2�.� C b C 1/

�.� C 1/�.b C 1/

�
C�0

D �0

�
2�.� C b C 1/

�.� C 1/�.b C 1/
C 1

�
: (7.79)

Finally, by the definition of�0 given earlier in (7.74), we deduce that (7.79) implies
that

kTyk � �0

�
2�.� C b C 1/

�.�/�.b C 1/
C 1

�
D M: (7.80)

Thus, from (7.80) we conclude that T W B ! B, as desired. Consequently, it
follows at once by the Brouwer theorem that there exists a fixed point of the map
T , say y0 2 B. But this function y0 is a solution of (7.58). Moreover, y0 satisfies the
bound jy0.t/j � M, for each t 2 Œ� � 2; �C b�N��2 . Thus, the proof is complete. ut

We next we wish to deduce the existence of at least one positive solution to
problem (7.58). To this end, we first need recall some facts about the Green’s
function for the problem

���y.t/ D f .t C � � 1; y.t C � � 1//
y.� � 2/ D 0

y.� C b/ D 0:

In particular, we recall the following result.

Lemma 7.41. Let 1 < � � 2. The unique solution of the FBVP

���y.t/ D h.s C � � 1/
y.� � 2/ D 0

y.� C b/ D 0

is given by the map y W Œ� � 2; � C b�Z��2 ! R defined by

y.t/ D
bC1X
sD0

G.t; s/h.s C � � 1/;

where the Green’s function G W Œ� � 2; � C b�Z��2 � Œ0; b�N0 ! R is defined by

G.t; s/ WD 1

�.�/

8<
:

t��1.�Cb�s�1/��1

.�Cb/��1 � .t � s � 1/��1, .t; s/ 2 T2
t��1.�Cb�s�1/��1

.�Cb/��1 , .t; s/ 2 T2
;
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where

T1 WD f.t; s/ 2 Œ� � 2; � C b�Z��2 � Œ0; b�N0 W 0 � s < t � � C 1 � b C 1g

and

T2 WD f.t; s/ 2 Œ� � 2; � C b�Z��2 � Œ0; b�N0 W 0 � t � � C 1 � s � b C 1g :

Lemma 7.42. The Green’s function G defined in Lemma 7.41 satisfies the following
conditions:

(i) G.t; s/ > 0 for t 2 Œ� � 1; � C b�N��1 for s 2 Œ0; b�N;
(ii) maxt2Œ��1;�Cb�N��1

G.t; s/ D G.s C � � 1; s/ for s 2 Œ0; b�N; and
(iii) There exists a number � 2 .0; 1/ such that

min
bC�
4 �t� 3.bC�/

4

G.t; s/ � � max
t2Œ��1;�Cb�N��1

G.t; s/ D �G.s C � � 1; s/;

for s 2 Œ0; b�N0 .
Remark 7.43. The proof of both Lemmas 7.41 and 7.42 are simple modifications
of the proofs of [31, Theorem 3.1] and [31, Theorem 3.2], respectively. Hence, we
omit the proofs.

Before defining the cone that we shall use to prove our existence theorems, we
need a preliminary lemma.

Lemma 7.44. If the map y 7! g.y/ is nonnegative, then there exists a constant
Q� 2 .0; 1/ with the property that

min
t2

h
bC�
4 ;

3.bC�/
4

i
bX

sD0
G.t; s/f .s C � � 1; y.s C � � 1//

C min
t2

h
bC�
4 ;

3.bC�/
4

i
�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/

� Q� max
t2Œ��2;�Cb�N��2

bX
sD0

G.t; s/f .s C � � 1; y.s C � � 1//

C Q� max
t2Œ��2;�Cb�N��2

�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/: (7.81)

Proof. To see that this is true, observe first that by Lemma 7.42 we find � 2 .0; 1/

such that
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min
t2

h
bC�
4 ;

3.bC�/
4

i
bX

sD0
G.t; s/f .s C � � 1; y.s C � � 1//

� � max
t2Œ��2;�Cb�N��2

bX
sD0

G.t; s/f .s C � � 1; y.s C � � 1//: (7.82)

Now, recall from Lemma 7.38 that the map

t 7! 1

�.� � 1/
�

t��2 � 1

b C 2
t��1

�

is strictly decreasing in t and, furthermore, is strictly positive for t < b C �. In
particular, from this observation we deduce the existence of a number M > 0 such
that

min
t2

h
bC�
4 ;

3.bC�/
4

i
�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

D M: (7.83)

Note that we assume here that there exists a point Qt 2 N��2 such that bC�
4

� Qt �
3.bC�/
4

. Additionally, we recall from Lemma 7.38 that

max
t2Œ��2;�Cb�N��2

1

�.� � 1/
�

t��2 � 1

b C 2
t��1

�
D 1: (7.84)

In particular, then, (7.83)–(7.84) imply that by putting

�0 WD M; (7.85)

where �0 is clearly strictly positive, it follows from (7.83)–(7.85) that

min
t2

h
bC�
4 ;

3.bC�/
4

i
�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/

D �0 � max
t2Œ��2;�Cb�N��2

�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/:

Finally, define Q� by

Q� WD min f�; �0g : (7.86)

Evidently, definition (7.86) implies that Q� 2 .0; 1/. Moreover, inequality (7.82)
implies that
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min
t2

h
bC�
4 ;

3.bC�/
4

i
bX

sD0
G.t; s/f .s C � � 1; y.s C � � 1//

C min
t2

h
bC�
4 ;

3.bC�/
4

i
�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/

� Q� max
t2Œ��1;�Cb�N��1

bX
sD0

G.t; s/f .s C � � 1; y.s C � � 1//

C Q� max
t2Œ��1;�Cb�N��1

�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/; (7.87)

which since (7.87) is (7.81) completes the proof of the lemma. ut
Now, let us put

 WD 1Pb
sD0 G.s C � � 1; s/

and

� WD 1Pb 3.�Cb/
4 ��C1c

sDd �Cb
4 ��C1e Q�G

��
bC1
2

�
C �; s

� : (7.88)

In addition, define the set K � C .Œ� � 2; � C b�N��2 ;R/ by

K WD
(

y W Œ� � 2; � C b�N��2 ! R W y.t/ � 0,

min
t2

h
bC�
4 ;

3.bC�/
4

i y.t/ � Q�ky.t/k
)
;

(7.89)

which is a cone in the Banach space C .Œ� � 2; � C b�N��2 ;R/, where the number Q�
in (7.88)–(7.89) is the same number as given in Lemma 7.44 above. Moreover, we
will also need in the sequel the constant

� WD 1

2
:

Finally, we introduce some conditions that will be helpful in the sequel; these
conditions place some control on the growth of the nonlinearity f as well as the
functional g appearing in (7.58).
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F1: There exists a number r > 0 such that f .t; y/ � 1
2
r whenever 0 � y � r.

F2: There exists a number r > 0 such that f .t; y/ � �r whenever Q�r � y � r,
where Q� is the number provided in Lemma 7.44.

G1: There exists a number r > 0 such that g.y/ � �r whenever 0 � kyk � r.

Remark 7.45. The operator T defined in (7.66) may be written in the form

.Ty/.t/ D
bX

sD0
G.t; s/f .s C � � 1; y.s C � � 1//

C
�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/;

(7.90)

where G is the Green’s function from Lemma 7.41. This observation is important
since it allows us to use the known properties of the map .t; s/ 7! G.t; s/ to obtain
useful estimates in the existence argument.

With these declarations in hand, we proceed with proving an existence theorem.
We begin with a preliminary lemma, however, to establish separately that T in fact
maps K into itself.

Lemma 7.46. Let T be defined as in (7.90) and K as in (7.89). Assume in addition
that both f and g are nonnegative. Then T.K/ � K.

Proof. Let T be the operator defined in (7.90). Observe that

min
t2

h
bC�
4 ;

3.bC�/
4

i.Ty/.t/

� min
t2

h
bC�
4 ;

3.bC�/
4

i
bX

sD0
G.t; s/f .s C � � 1; y.s C � � 1//

C min
t2

h
bC�
4 ;

3.bC�/
4

i
�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/

� Q� max
t2Œ��1;�Cb�N��1

bX
sD0

G.t; s/f .s C � � 1; y.s C � � 1//

C Q� max
t2Œ��1;�Cb�N��1

�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/

� Q�kTyk; (7.91)

where Q� is as defined in (7.86). Since it is obvious that .Ty/.t/ � 0 for all t whenever
y 2 K, it follows that (7.91) establishes that T.K/ � K, as desired. ut
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Theorem 7.47. Suppose that there exists two distinct numbers r1 and r2, with r1,
r2 > 0, such that conditions (F1) and (G1) hold at r1 and condition (F2) holds at
r2. Finally, assume that each of f and g is nonnegative. Then problem (7.58) has a
positive solution, whose norm lies between r1 and r2.

Proof. Let T be the operator defined in (7.90). It is clear that T is completely
continuous, and Lemma 7.46 establishes that T.K/ � K. Without loss of generality,
suppose that 0 < r1 < r2. Define the set �1 by

�1 WD fy 2 C .Œ� � 2; � C b�N��2 ;R/ W kyk < r1g :

Then we have that for y 2 @�1 \ K

kTyk � max
t2Œ��2;�Cb�N��2

bX
sD0

G.t; s/f .s C � � 1; y.s C � � 1//

C max
t2Œ��2;�Cb�N��2

��
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/

�

� r1

2

bX
sD0

G.s C � � 1; s/

C g.y/ max
t2Œ��2;�Cb�N��2

1

�.� � 1/
�

t��2 � t��1

b C 2

�

� r1
2

C r1
2

D kyk:
(7.92)

So, from (7.92) we conclude that kTyk � kyk for y 2 K \ @�1.
Conversely, define the set �2 by

�2 WD fy 2 C .Œ� � 2; � C b�N��2 ;R/ W kyk < r2g :

Then using Lemma 7.42, for y 2 @�2 \ K we estimate

.Ty/

��
b C 1

2

�
C �

�

�
bX

sD0
G

��
b C 1

2

�
C �; s

�
f .s C � � 1; y.s C � � 1//

� �r2

b 3.�Cb/
4 ��C1cX

sDd �Cb
4 ��C1e

Q�G

��
b C 1

2

�
C �; s

�
� r2 D kyk: (7.93)



502 7 Nonlocal BVPs and the Discrete Fractional Calculus

Consequently, from (7.93) we conclude that kTyk � kyk whenever y 2 @�2 \ K.
But then by an application of the well-known Krasnosel’skiı̆ fixed point theorem we
conclude that T has a fixed point, say, y0 2 K. This map t 7! y0.t/ is a positive
solution to problem (7.58) since y0 2 K satisfies r1 < ky0k < r2. Thus, the proof is
complete. ut

We now provide a second result that yields the existence of at least one positive
solution. In what follows, we shall assume that f has the special form f .t; y/ �
F1.t/F2.y/. Moreover, to facilitate this result, we introduce the following additional
conditions on F2 and g.

F3: The function F2 satisfies limy!0C

F2.y/
y D 0.

F4: The function F2 satisfies limy!1 F2.y/
y D C1.

G2: The function g satisfies limkyk!0C

g.y/
kyk D 0.

Remark 7.48. Observe that there are many nontrivial functionals y 7! g.y/
satisfying condition (G2). For example, the functional defined by g.y/ WD Œy.�C1/�3
clearly satisfies (G2).

Theorem 7.49. Suppose that conditions (F3)–(F4) and (G2) hold. Moreover,
assume that each of F1, F2, and g is nonnegative. Then problem (7.58) has at least
one positive solution.

Proof. Because of condition (F3), there exists a number ˛1 > 0 sufficiently small
such that

F2.y/ � 1y; (7.94)

for each y 2 .0; ˛1�, and where we choose 1 sufficiently small so that

1

bX
sD0

G.s C � � 1; s/F1.s/ � 1

2
(7.95)

holds. Similarly, condition (G2) implies that there exists a number ˛2 > 0 such that

g.y/ � 2kyk (7.96)

whenever kyk 2 .0; ˛2�, and where 2 is chosen so that

2 max
t2Œ��2;�Cb�N��2

�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

� 2 � 1

2
: (7.97)

Now, put ˛� WD min f˛1; ˛2g and define the set �1 by

�1 WD fy 2 K W kyk < ˛�g :
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Then it follows that for all y 2 K \ @�1 inequalities (7.94)–(7.97) imply that

kTyk � max
t2Œ��2;�Cb�N��2

bX
sD0

G.t; s/F1.s C � � 1/F2.y.s C � � 1//

C max
t2Œ��2;�Cb�N��2

��
t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/

�

� 1kyk
bX

sD0
G.s C � � 1; s/F1.s C � � 1/C 2kyk

�
�
1

2
C 1

2

�
kyk

D kyk; (7.98)

whence (7.98) implies that kTyk � kyk.
On the other hand, condition (F4) implies the existence of a number ˛3 > 0 such

that

F2.y/ � 3y (7.99)

whenever y � ˛3. Furthermore, we can choose 3 sufficiently large such that

3

b 3.�Cb/
4 ��C1cX

sDd �Cb
4 ��C1e

Q�G

��
b C 1

2

�
C �; s

�
F1.s C � � 1/ � 1: (7.100)

Put

˛�� WD max

�
2˛�;

˛3

Q�
�

(7.101)

and observe that for kyk D ˛�� we estimate

min
bC�
4 �t� 3.bC�/

4

y.t/ � Q�kyk � ˛3: (7.102)

Now, define the set �2 by

�2 WD fy 2 K W kyk < ˛��g :

Recall from the proof of Lemma 7.38 that

� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/ � 0; (7.103)
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for each t 2 Œ� � 2; � C b�N��2 . And from this it follows that

�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

g.y/ � 0; (7.104)

for each t 2 Œ� � 2; � C b�N��2 . Thus, putting (7.99)–(7.104) together, we find that
for y 2 @�2 \ K,

.Ty/

��
b C 1

2

�
C �

�

D
bX

sD0
G

��
b C 1

2

�
C �; s

�
F1.s C � � 1/F2.y.s C � � 1//

C
�
� t��1

.b C 2/�.� � 1/ C t��2

�.� � 1/
�

tD
�

bC1
2

�
C�

g.y/

�
b 3.�Cb/

4 ��C1cX
sDd �Cb

4 ��C1e
G

��
b C 1

2

�
C �; s

�
F1.s C � � 1/F2.y.s C � � 1//

� 3

b 3.�Cb/
4 ��C1cX

sDd �Cb
4 ��C1e

G

��
b C 1

2

�
C �; s

�
F1.s C � � 1/y.s C � � 1/

� 3kyk
b 3.�Cb/

4 ��C1cX
sDd �Cb

4 ��C1e
Q�G

��
b C 1

2

�
C �; s

�
F1.s C � � 1/ � kyk: (7.105)

So, from (7.105) we conclude that kTyk � kyk whenever y 2 K \ @�2.
Consequently, we deduce that T has a fixed point in the set

�K \�2

	 n �1. Since
this fixed point is a positive solution to (7.58), the claim follows. ut
Remark 7.50. Observe that in case � D 2, both Theorems 7.47 and 7.49 provide
results for the existence of a positive solution to the integer-order nonlocal BVP
given by (7.58).

We conclude this section by providing two examples of certain of the theorems
presented in this section. We begin with an example illustrating Theorem 7.39
followed by an example illustrating Theorem 7.40.

Example 7.51. Suppose that � D 11
10

and b D 10. In addition, let us suppose that
f .t; y/ WD sin y

30Ct2
and that g.y/ WD 1

50
Œy.� C 1/C y.� C 2/�. We consider the FBVP
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��11
10 y.t/ D sin

�
y

�
t C 1

10

		
30C �

t C 1
10

	2
y.� � 2/ D 1

50
Œy.� C 1/C y.� C 2/�

y.� C b/ D 0: (7.106)

Now, in this case inequality (7.67) is

2˛

bY
jD1

�
� C j

j

�
C ˇ � 26:851˛ C ˇ < 1: (7.107)

But it is not difficult to prove that each of f and g is Lipschitz with Lipschitz
constants ˛ D 1

30
and ˇ D 1

25
, respectively. So, for these choices of ˛ and

ˇ, inequality (7.107) is satisfied. Therefore, we deduce from Theorem 7.39 that
problem (7.106) has a unique solution.

Example 7.52. Suppose that � D 3
2
, b D 10, and M D 1000. Also suppose that

f .t; y/ WD 1
10

te� 1
100 tjyj and that g.y/ WD Pn

iD1 ciy .ti/, where ftign
iD1 � Œ� � 2; � C

b�N��2 is a strictly increasing sequence satisfying ��2 � t1 < t2 < � � � < tn � �Cb
with ti 2 N��1 for each i. (Clearly, we must take n � b C 3 here.) Thus, in this case
problem (7.58) becomes

��3
2 y.t/ D 1

10

�
t C 1

2

�
e� 1

100 .tC 1
2 /jy.tC 1

2 /j

y.� � 2/ D
nX

iD1
ciy .ti/

y.� C b/ D 0: (7.108)

Furthermore, note that in this setting the Banach space B assumes the form B WD˚
y 2 R

13 W kyk � 1000


.

We claim that (7.108) has at least one solution. So, to check that the hypotheses
of Theorem 7.40 hold, we note that

M
2�.�CbC1/

�.�C1/�.bC1/ C 1
D 1000

2�. 32C10C1/
�. 52 /�.11/

C 1
	 11:614:

It is evident that jf .t; y/j � 23
20
< 11:614 whenever y 2 Œ�1000; 1000�. On the other

hand, if we require, say, the condition

nX
iD1

jcij � 1

100
; (7.109)
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then (7.109) implies that for each y 2 C.Œ� � 2; � C b�;R/ satisfying the condition
kyk � 1000 it holds that

jg.y/j �
nX

iD1
jcij jy .ti/j � 1000

nX
iD1

jcij � 10 < 11:350

so that g satisfies condition (7.73). Thus, given restriction (7.109), we conclude from
Theorem 7.40 that (7.108) has at least one solution. In particular, by the conclusion
of Theorem 7.40 we deduce that this solution, say y0, satisfies

jy0.t/j � 1000, for t 2
�
�1
2
;
23

2

�
Z

�

1
2

:

7.6 Discrete Sequential Fractional Boundary Value Problems

In this section we emphasize a different property of the discrete fractional difference
and see how it can give rise to a suitably nonlocal problem. In particular, we consider
the concept of a so-called sequential fractional boundary value problem. Recall
that for fractional differences it does not necessarily hold that ��

aCM�	�
	
a f .t/ D

�
�C	
a f .t/, as was discussed in Chap. 2. Consequently, we may consider a so-called

discrete sequential FBVP. In this case, we consider the discrete fractional boundary
value problem

��	1�	2�	3y.t/ D f .t C 	1 C 	2 C 	3 � 1; y .t C 	1 C 	2 C 	3 � 1//
y.0/ D 0

y.b C 2/ D 0;
(7.110)

for

t 2 Œ2 � 	1 � 	2 � 	3; b C 2 � 	1 � 	2 � 	3�Z2�	1�	2�	3
;

and where throughout we make the assumptions that	i 2 .0; 1/, for each i D 1; 2; 3,
and that each of 1 < 	2 C 	3 < 2 and 1 < 	1 C 	2 C 	3 < 2 holds. The
potential interest in problem (7.110) is that the sequence of fractional difference
�	1�	2�	3y.t/ is not necessarily equivalent to the non-sequential difference
�	1C	2C	3y.t/. Consequently, we have in the fractional setting a situation that
cannot occur in the integer-order setting since�k1�k2y.t/ D �k1Ck2y.t/, for each k1,
k2 2 N. Moreover, this dissimilarity is a direct consequence of the implicit nonlocal
structure of the fractional difference. We note that the results of this section can be
found in Goodrich [99].
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We begin by proving a simple proposition. This realization will be important later
in this section.

Proposition 7.53. Let y W N0 ! R with 	 2 .0; 1�. Then we find that

�	�1y.1 � 	/ D y.0/:

Proof. To see that this is true, observe that 	�1 � 0 since 	 2 .0; 1�. By definition,
then, it follows that

�	�1y.1 � 	/ D
"

1

�.1 � 	/
tC	�1X

sD0
.t � s � 1/�	y.s/

#
tD1�	

D 1

�.1 � 	/
0X

sD0
.�	 � s/�	y.s/

D 1

�.1 � 	/ � �.1 � 	/y.0/

D y.0/;

as claimed. ut
We now provide an analysis of problem (7.110). We begin by repeatedly applying

the composition rules for fractional differences to derive a representation of a
solution to (7.110) as the fixed point of an appropriate operator. In the sequel, the
Banach space B is the set of (continuous) real-valued maps from Œ0; b C 2�N0 when
equipped with the usual maximum norm, k � k. Moreover, henceforth we also put

Q	 WD 	1 C 	2 C 	3;

for notational convenience. Recall that in what follows we assume both that 	1 C
	2 2 .1; 2/ and that Q	 2 .1; 2/. Finally, we give the following notation, which will
also be useful in the sequel.

T1 WD
n
.t; s/ 2 Œ0; b C 2�N0 � Œ2 � Q	; b C 2 � Q	�N2� Q	

W

0 � s < t � Q	C 1 � b C 2
o

T2 WD
n
.t; s/ 2 Œ0; b C 2�N0 � Œ2 � Q	; b C 2 � Q	�N2� Q	

W

0 � t � Q	C 1 � s � b C 2
o
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Theorem 7.54. Let the operator T W B ! B be defined by

.Ty/.t/ WD ˛.t/y.1/C
bC2� Q	X

sD� Q	C2
G.t; s/f .s C Q	 � 1; y .s C Q	 � 1// ; (7.111)

where ˛ W Œ0; b C 2�N0 ! R is defined by

˛.t/ WD .t � 2C 	2 C 	3/
	2C	3�1

� .	2 C 	3/
� .b C 	2 C 	3/

	2C	3�1

.b C Q	/ Q	�1 � .	2 C 	3/
.t C Q	 � 2/ Q	�1

(7.112)

and G W Œ0; b C 2�N0 � Œ� Q	C 2;� Q	C b C 2�N2� Q	
! R is the Green’s function for

the non-sequential conjugate problem given by

G.t; s/ WD
8<
:
.tC Q	�2/ Q	�1

.bC1�s/ Q	�1

.bC Q	/ Q	�1 � .t � s � 1/ Q	�1, .t; s/ 2 T1
.tC Q	�2/ Q	�1

.bC1�s/ Q	�1

.bC Q	/ Q	�1 , .t; s/ 2 T2
: (7.113)

Then whenever y 2 B is a fixed point of T, it follows that y is a solution of
problem (7.110).

Proof. To begin the proof notice that by the operational properties deduced in
Chap. 2 we may write

�	1�	2�	3y.t/

D �	1

�
�	2C	3y.t/ � y.0/

� .�	2/ .t � 1C 	3/
�	2�1

�

D �	1
�
�	2C	3y.t/

� � y.0/

� .�	2/�
	1

h
.t � 1C 	3/

�	2�1
i

D � Q	y.t/ � y.0/

� .�	2/ � � .�	2/
� .�	2 � 	1/ .t � 1C 	3/

�	2�	1�1�

�
1X

jD0

�
�j�2C	2C	3y .2 � 	2 � 	3/
� .�	1 � 2C j C 1/

.t � 2C 	2 C 	3/
�	1�2Cj

�

D � Q	y.t/ � �	2C	3�2y .2 � 	2 � 	3/
� .�	1 � 1/ .t � 2C 	2 C 	3/

�	1�2

� �	2C	3�1y .2 � 	2 � 	3/
� .�	1/ .t � 2C 	2 C 	3/

�	1�1

� y.0/

� .�	2 � 	1/ .t � 1C 	3/
�	2�	1�1 : (7.114)
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Now, the same argument as in Proposition 7.53 shows that

�	2C	3�2y .2 � 	2 � 	3/ D y.0/: (7.115)

On the other hand, note that by the definition of the fractional sum, keeping in mind
that 	2 C 	3 � 2 < 0, we obtain that

�	2C	3�1y.t/ D ��	2C	3�2y.t/

D �t

"
1

� .2 � 	2 � 	3/
t�2C	2C	3X

sD0
.t � s � 1/1�	2�	3y.s/

#

D 1

� .2 � 	2 � 	3/
t�1C	2C	3X

sD0
.t � s/1�	2�	3y.s/

� 1

� .2 � 	2 � 	3/
t�2C	2C	3X

sD0
.t � s � 1/1�	2�	3y.s/:

(7.116)
So, from (7.116), we obtain

�	2C	3�1y .2 � 	2 � 	3/

D 1

� .2 � 	2 � 	3/
1X

sD0
.2 � 	2 � 	3 � s/1�	2�	3 y.s/

� 1

� .2 � 	2 � 	3/
0X

sD0
.1 � 	2 � 	3 � s/1�	2�	3 y.s/

D 1

� .2 � 	2 � 	3/y.0/
h
.2 � 	2 � 	3/1�	2�	3 � .1 � 	2 � 	3/1�	2�	3

i

C 1

� .2 � 	2 � 	3/ .1 � 	2 � 	3/1�	2�	3 y.1/:

(7.117)
Putting (7.115) and (7.117) into (7.114), we deduce that

�	1�	2�	3y.t/

D � Q	y.t/ � Œy.1/C .1 � 	2 � 	3/ y.0/�

� .�	1/ .t � 2C 	2 C 	3/
�	1�1

� y.0/

� .�	1 � 1/ .t � 2C 	2 C 	3/
�	1�2

� y.0/

� .�	2 � 	1/ .t � 1C 	3/
�	2�	1�1 ; (7.118)
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where we have made some routine simplifications. Now, by the boundary conditions
in (7.110) we find that (7.118) reduces to

�	1�	2�	3y.t/ D � Q	y.t/ � .t � 2C 	2 C 	3/
�	1�1

� .�	1/ y.1/: (7.119)

Inverting the problem (7.110), we find by means of (7.119) that

y.t/ D ��� Q	
"

� .t � 2C 	2 C 	3/
�	1�1

� .�	1/ y.1/

#

��� Q	f .t C Q	 � 1; y .t C Q	 � 1//
C c1 .t C Q	 � 2/ Q	�1 C c2 .t C Q	 � 2/ Q	�2 (7.120)

holds.
Now, continuing from (7.120), it is clear that the boundary condition y.0/ D 0

implies that c2 D 0. On the other hand, the boundary condition y.b C 2/ D 0,
implies that

0 D c1 .b C Q	/ Q	�1 C y.1/

� .	2 C 	3/
.b C 	2 C 	3/

	2C	3�1

� 1

� . Q	/
bC2� Q	X

sD� Q	C2
.b C 1 � s/ Q	�1f .s C Q	 � 1; y .s C Q	 � 1//

(7.121)

From (7.121), we deduce that

c1 D � .b C 	2 C 	3/
	2C	3�1

.b C Q	/ Q	�1 � .	2 C 	3/
y.1/

C 1

� . Q	/
bC2� Q	X

sD� Q	C2

.b C 1 � s/ Q	�1

.b C Q	/ Q	�1 f .s C Q	 � 1; y .s C Q	 � 1// :

At last, substituting the values of c1 and c2 into (7.120), we conclude that

y.t/ D ˛.t/y.1/C
bC2� Q	X

sD� Q	C2
G.t; s/f .s C Q	 � 1; y .s C Q	 � 1// ; (7.122)

where ˛ is as defined in (7.112) above and the map .t; s/ 7! G.t; s/ is as defined
in (7.113) above. Now, if .Ty/.t/ is defined by the right-hand side of (7.122), i.e.,
we define T W B ! B as in the statement of this theorem, then it is clear that T
satisfies the boundary value problem (7.110). And this completes the proof. ut
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We next state an easy proposition regarding the Green’s function, .t; s/ 7! G.t; s/,
appearing in the operator T , as defined above.

Proposition 7.55. The Green’s function .t; s/ 7! G.t; s/ given in Theorem 7.54
satisfies:

(i) G.t; s/ � 0 for each .t; s/ 2 Œ0; b C 2�N0 � Œ2 � Q	; b C 2 � Q	�N2� Q	
;

(ii) maxt2Œ0;bC2�N0 G.t; s/ D G.s C Q	 � 1; s/ for each s 2 Œ2 � Q	; b C 2 � Q	�N2� Q	
;

and
(iii) there exists a number � 2 .0; 1/ such that

min
Œ b
4 ;
3b
4 �N0

G.t; s/ � � max
t2Œ0;bC2�N0

G.t; s/ D �G.s C Q	 � 1; s/;

for s 2 Œ2 � Q	; b C 2 � Q	�N2� Q	
.

Proof. Omitted—see [99] for details. ut
We next require a preliminary lemma regarding the behavior of ˛ appearing

in (7.112) above.

Lemma 7.56. Let ˛ be defined as in (7.112). Then ˛.0/ D ˛.bC2/ D 0. Moreover,
k˛k 2 .0; 1/.
Proof. That ˛.0/ D ˛.b C 2/ D 0 is obvious. On the other hand, to show that
0 < k˛k < 1, we argue as follows.

We show first that ˛.t/ > 0, for all t 2 Œ1; b C 1�N. To this end, let us first note
that

˛.t/

D .t � 2C 	2 C 	3/
	2C	3�1

� .	2 C 	3/
� .b C 	2 C 	3/

	2C	3�1

.b C Q	/ Q	�1 � .	2 C 	3/
.t C Q	 � 2/ Q	�1

D � .t C 	2 C 	3 � 1/
�.t/� .	2 C 	3/

� � .b C 	2 C 	3 C 1/ � .t C Q	 � 1/
� .b C Q	C 1/ � .	2 C 	3/ �.t/

D � .t C 	2 C 	3 � 1/ � .b C Q	C 1/ � � .t C Q	 � 1/ � .b C 	2 C 	3 C 1/

�.t/� .	2 C 	3/ � .b C Q	C 1/
:

(7.123)

Therefore, ˛.t/ > 0, for each t 2 Œ1; b C 1�N, if and only if

� .t C 	2 C 	3 � 1/ � .b C Q	C 1/ > � .t C Q	 � 1/ � .b C 	2 C 	3 C 1/

(7.124)

for each t 2 Œ1; b C 1�N. Now, (7.124) is equivalent to

� .t C 	2 C 	3 � 1/ � .b C Q	C 1/

� .t C Q	 � 1/ � .b C 	2 C 	3 C 1/
> 1:
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But since

� .t C 	2 C 	3 � 1/ � .b C Q	C 1/

� .t C Q	 � 1/ � .b C 	2 C 	3 C 1/
D .b C Q	/ � � � .t C Q	 � 1/
.b C 	2 C 	3/ � � � .t C 	2 C 	3 � 1/

(7.125)
and the right-hand side of (7.125) is clearly greater than unity, it follows that (7.124)
holds, and so, we conclude from (7.123)–(7.125) that ˛.t/ > 0, for t 2 Œ1; b C 1�N,
as claimed.

On the other hand, to argue that ˛.t/ < 1, for t 2 Œ0; b C 2�N0 , we begin by
recasting ˛.t/ in a different form. In particular, define 	0 2 .1; 2/ by

	0 WD 	2 C 	3: (7.126)

Then it follows that

Q	 D 	0 C 	1: (7.127)

Therefore, putting (7.126)–(7.127) into the definition of ˛ provided in (7.112) we
conclude that

˛.t/ D .t � 2C 	0/
	0�1

� .	0/
� .b C 	0/

	0�1 .t C 	0 C 	1 � 2/	0C	1�1
.b C 	0 C 	1/

	0C	1�1 � .	0/
: (7.128)

Now, consider the map

t 7! .t C 	0 C 	1 � 2/	0C	1�1
.b C 	0 C 	1/

	0C	1�1 (7.129)

appearing in the second addend on the right-hand side of (7.128). Since

.t C 	0 C 	1 � 2/	0C	1�1
.b C 	0 C 	1/

	0C	1�1

D .b C 1/ � � � .t C 1/.t/

.b C 	0 C 	1/ � � � .t C 	0 C 	1/ .t C 	0 C 	1 � 1/ ; (7.130)

we see from (7.130) that for each fixed but arbitrary b, t, and 	0, the map defined
in (7.129) decreases as 	1 increases. Consequently, for fixed but arbitrary b, t, and
	0 we conclude that

˛.t/ <
.t � 2C 	0/

	0�1

� .	0/
�

"
.b C 	0/

	0�1 .t C 	0 C 	1 � 2/	0C	1�1
.b C 	0 C 	1/

	0C	1�1 � .	0/

#
	1D1

D .t � 2C 	0/
	0�1

� .	0/
� .b C 	0/

	0�1 .t C 	0 � 1/	0
.b C 	0 C 1/	0 � .	0/
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D .t � 2C 	0/
	0�1

� .	0/
� � .b C 	0 C 1/ � .t C 	0/ �.b C 2/

�.b C 2/�.t/� .	0/ � .b C 	0 C 2/

D .t � 2C 	0/
	0�1

� .	0/
� � .t C 	0/

.b C 	0 C 1/ �.t/� .	0/
: (7.131)

Now, from (7.131), we see that ˛.t/ < 1 if and only if

� .t C 	0 � 1/
� .	0/ �.t/

� � .t C 	0/

.b C 	0 C 1/ �.t/� .	0/
� 1; (7.132)

which is itself equivalent to

.b C 	0 C 1/ � .t C 	0 � 1/ �.t/� .	0/
� .	0/ �.t/ Œ.b C 	0 C 1/ � .	0/ �.t/C � .t C 	0/�

� 1: (7.133)

Inequality (7.133) is equivalent to

.b C 	0 C 1/ � .t C 	0 � 1/
.b C 	0 C 1/ � .	0/ �.t/C � .t C 	0/

� 1: (7.134)

We claim that (7.134) holds for each triple .b; t; 	0/ 2 N � Œ1; b C 1�N0 � .1; 2/.
To prove this latter claim, we rewrite left-hand side of inequality (7.134) in the

following way:

.b C 	0 C 1/ � .t C 	0 � 1/
.b C 	0 C 1/ � .	0/ �.t/C � .t C 	0/

D � .t C 	0 � 1/
� .	0/ �.t/C �.tC	0/

bC	0C1

D 1
�.	0/�.t/
�.tC	0�1/ C tC	0�1

bC	0C1
:

Then inequality (7.134) is equivalent to

� .	0/ �.t/

� .t C 	0 � 1/ C t C 	0 � 1
b C 	0 C 1

� 1: (7.135)

Now, each of the addends on the left-hand side of (7.135) is nonnegative. In addition,
we observe that

� .	0/ �.t/

� .t C 	0 � 1/ � 1; (7.136)

for each admissible t and 	0 since t > t C 	0 � 1, noting that in the case where
	0 D 1 we get equality in (7.136). But then (7.136) implies (7.135), which in turn
implies that (7.132) holds.
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In summary, for each admissible triple .b; t; 	0/, we conclude that ˛.t/ < 1.
Moreover, based on the discussion regarding 	1 given in (7.129)–(7.130), we have
actually shown something stronger—namely, that for each fixed but arbitrary b, t,
and 	0, it holds that

sup
	12.0;1/

˛ .tI b; 	0/ < 1: (7.137)

Thus, (7.137) implies that ˛.t/ < 1, for each fixed but arbitrary 4-tuple
.b; t; 	0; 	1/ 2 N � Œ1; b C 2�N � .1; 2/ � .0; 1/. Since we earlier showed that
˛.t/ > 0 whenever t ¤ 0, b C 2, we conclude that

k˛k < 1;

as desired. And this completes the proof. ut
Remark 7.57. As we mentioned in the introduction to this section, note that
Theorem 7.54 shows that problem (7.110) is not necessarily the same as the
conjugate problem studied in [31]. In fact, there is a de facto nonlocal nature to
problem (7.110) as evidenced by the explicit appearance of y.1/ in the operator T ,
as defined above. As remarked above, this is an interesting complication that cannot
occur in the integer-order setting.

As an application of the preceding analysis, we now provide a typical existence
theorem for problem (7.110). The basic argument is similar to those presented
elsewhere in this book—e.g., Sect. 7.7. However, the appearance of the term y.1/ in
the operator T does add some interest.

So, let us next provide some standard assumptions on the nonlinearity. For
simplicity’s sake, we assume that f .t; y/ WD a.t/g.y/; here, it is assumed that a is
continuous and not zero identically on Œ0; b C 2�N0 . We also assume (H1) and (H2)
below. These assumptions are standard superlinear growth assumptions on g at both
0 and C1.

H1: We find that limy!0C

g.y/
y D 0.

H2: We find that limy!1 g.y/
y D C1.

We also need to define a suitable cone in which to look for fixed points of T . In
particular, we consider the cone K � B, defined by

K WD
(

y 2 B W y � 0, min
t2Œ b

4 ;
3b
4 �N

y.t/ � ��kyk
)
; (7.138)

where �� 2 .0; 1/ is a constant to be determined later. Note that in (7.138) the
constant �� is not the same as the constant � appearing in part 3 of Proposition 7.55.
However, it does satisfy 0 < �� < 1, as will be demonstrated in the proof of
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Lemma 7.58 below. We first show that the cone K is invariant under the operator
T . We then argue that conditions (H1)–(H2) imply, as is well known in the integer-
order case (e.g., [77]), that problem (7.110) has at least one positive solution.

Lemma 7.58. Let T be the operator defined in (7.111) and K the cone defined
in (7.138). Then T.K/ � K.

Proof. Evidently when y 2 K, it follows that .Ty/.t/ � 0, for each t. On the other
hand, we observe that

min
t2Œ b

4 ;
3b
4 �N
.Ty/.t/

� �0y.1/k˛k C �

bC2� Q	X
sD� Q	C2

G .s C Q	 � 1; s/ f .s C Q	 � 1; y .s C Q	 � 1//

� ��
2
4y.1/k˛k C

bC2� Q	X
sD� Q	C2

G .s C Q	 � 1; s/ f .s C Q	 � 1; y .s C Q	 � 1//
3
5

� ��kTyk;
(7.139)

where the number � appearing in (7.139) is the same number � as in part 3 of
Proposition 7.55. Furthermore, the number �0 > 0 appearing in (7.139) is defined by

�0 WD
mint2Œ b

4 ;
3b
4 �N

˛.t/

k˛k :

We may then define �� by

�� WD min f�0; �g ;

where 0 < �� < 1. Thus, whenever y 2 K, it follows that Ty 2 K, as desired. And
this completes the proof. ut
Theorem 7.59. Assume that f satisfies conditions (H1)–(H2). Then prob-
lem (7.110) has at least one positive solution.

Proof. First of all, note that T is trivially completely continuous in this setting.
Second of all, recall from Lemma 7.56 that ˛.t/ < 1, for all t 2 Œ0; b C 2�N0 .
Therefore, we may select " > 0 so that ˛.t/ < " < 1 holds for all admissible t.
Given this ", we may, by way of condition (H1), select 1 > 0 sufficiently small so
that both

g.y/ � 1y (7.140)
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and

1

bC2� Q	X
sD� Q	C2

G .s C Q	 � 1; s/ a.s/ � 1 � " (7.141)

hold for all 0 < y < r1, where r1 WD r1 .1/. Next put

�1 WD fy 2 B W kyk < r1g :

Let y 2 @�1 \ K be arbitrary but fixed. Then upon combining (7.140)–(7.141) we
estimate

kTyk � y.1/ max
t2Œ0;bC2�N0

˛.t/C max
t2Œ0;bC2�N0

bC2� Q	X
sD� Q	C2

G.t; s/a.s/g .y .s C Q	 � 1//

< "y.1/C
bC2� Q	X

sD� Q	C2
G .s C Q	 � 1; s/ a.s/1y.s/

� "kyk C kyk � 1
bC2� Q	X

sD� Q	C2
G .s C Q	 � 1; s/ a.s/

� kyk;
(7.142)

whence (7.142) implies that T is a cone contraction on @�1 \ K.
On the other hand, from condition (H2) we may select a number 2 > 0 such that

both

2

bC2� Q	X
sD� Q	C2

��G .s C Q	 � 1; s/ a.s/ > 1

and

g.y/ > 2y

hold whenever y > r2 > 0, for some sufficiently large number r2 WD r2 .2/ > 0.
Define the number r�

2 > 0 by

r�
2 WD

�
2r1;

r2
��

�
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and put

�2 WD fy 2 B W kyk < r�
2 g :

Recall that for y 2 K, we must have y.1/ � 0, and that from Lemma 7.56 we know
also that ˛.t/ � 0, for all t 2 Œ0; b C 2�N0 . Then it is not difficult to show (see, for
example, a similar argument in [94]) that

kTyk � kyk;

whenever y 2 @�2 \ K, so that T is a cone expansion on @�2 \ K.
In summary, by once again appealing to Krasnosel’skiı̆’s fixed point theorem we

obtain the existence of a function y0 2 K \ �
�2 n�1

	
such that Ty0 D y0, where y0

is a positive solution to problem (7.110). And this completes the proof. ut
We now briefly comment on a couple of extensions of the preceding results. In

particular, let us consider the following sequential fractional difference

�	n � � ��	1y.t/;

where 	j 2 .0; 1/ for each j D 1, : : : , n, under a couple of different additional
assumptions on the collection

˚
	j


n

jD1. For notational simplicity in the sequel, we
define

Q	C
j WD

jX
kD1

	k

and

Q	�
j WD

n�1X
kDn�j

	k:

We continue to use the symbol Q	 to denote the sum
Pn

jD1 	j.

Proposition 7.60. Assume that 0 <
Pn�1

jD1 	j < 1 and 1 <
Pn

jD1 	j < 2. Then it
follows that

�	n � � ��	1y.t/

D � Q	C

n y.t/

�

2
64

�
t � 1C Q	C

n�1
	�	n�1

� .�	n/
�

n�2X
jD1


t � 1C Q	C

j

�� Q	�

n�jC1
�	n�1

�

� Q	�

n�jC1 � 	n

�
3
75 y.0/:
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Proof. We note first that

�	n � � ��	3 Œ�	2�	1y.t/�

D �	n � � ��	3

�
� Q	C

2 y.t/ � �	1�1y .1 � 	1/
� .�	2/ .t � 1C 	1/

�	2�1
�

D �	n � � ��	4

"
� Q	C

3 y.t/

� �	1C	2�1y .1 � 	1 � 	2/
� .�	3/ .t � 1C 	1 C 	2/

�	3�1

� �	1�1y .1 � 	1/
� .�	2 � 	3/ .t � 1C 	1/

�	2�	3�1
#
:

Now, inductively repeating this process results in the following equality:

�	n�1 � � ��	1y.t/

D � Q	C

n�1y.t/ �
n�2X
jD1

2
64�

Q	C

j �1y

1 � Q	C

j

�
�


� Q	�

n�j�1
� 

t � 1C Q	C
j

�� Q	�

n�j�1�1
3
75 :

So, it follows that

�	n � � ��	1y.t/

D �	n

8̂<
:̂� Q	C

n�1y.t/ �
n�2X
jD1

2
64�

Q	C

j �1y

1 � Q	C

j

�
�


� Q	�

n�j�1
� 

t � 1C Q	C
j

�� Q	�

n�j�1�1
3
75

9>=
>;

D � Q	C

n y.t/ � ��1C Q	C

n�1y
�
1 � Q	C

n�1
	

� .�	n/

�
t � 1C Q	C

n�1
	�	n�1

C
n�2X
jD1

2
64�

Q	C

j �1y

1 � Q	C

j

�
�


� Q	�

n�j�1
� �

�

� Q	�

n�j�1
�

�

� Q	�

n�j�1 � 	n

� 
t � 1C Q	C

j

�� Q	�

n�j�1�	n�1
3
75

D � Q	C

n y.t/

�

2
64

�
t � 1C Q	C

n�1
	�	n�1

� .�	n/
�

n�2X
jD1


t � 1C Q	C

j

�� Q	�

n�jC1
�	n�1

�

� Q	�

n�jC1 � 	n

�
3
75 y.0/;

as claimed, which completes the proof. ut



7.6 Discrete Sequential Fractional Boundary Value Problems 519

Our next proposition provides for a more direct generalization of problem (7.110)
considered earlier.

Proposition 7.61. Suppose that 0 <
Pn�2

jD1 	j < 1, 1 <
Pn�1

jD1 	j < 2, and 1 <Pn
jD1 	j < 2. Then we find that

�	n � � ��	1y.t/

D � Q	y.t/ �
�
t � 2C Q	C

n�1
	�	n�1

� .�	n/
y.1/

�
n�2X
jD1

2
4 1

�

� Q	�

n�j�1 � 	n

� 
t � 1C Q	C

j

�� Q	�

n�j�1�	n�1
3
5 y.0/

�
"�

t � 2C Q	C
n�1

	�	n�1

� .�	n/

�
1 � Q	C

n�1
	 �

�
t � 2C Q	C

n�1
	�	n�2

� .�	n � 1/

#
y.0/:

Proof. We first write

�	n � � ��	1y.t/

D �	n

8̂<
:̂� Q	C

n�1y.t/ �
n�2X
jD1

2
64�

Q	C

j �1y

1 � Q	C

j

�
�


� Q	�

n�j�1
� 

t � 1C Q	C
j

�� Q	�

n�j�1�1
3
75

9>=
>;

D �	n� Q	C

n�1y.t/

�
n�2X
jD1

2
64�

Q	C

j �1y

1 � Q	C

j

�
�


� Q	�

n�j�1
� �	n

�
t � 1C Q	C

j

�� Q	�

n�j�1�1
�3
75

D � Q	y.t/ �
1X

kD0

�j�2C Q	C

n�1y
�
2 � Q	C

n�1
	

� .�	n � 1C j/

�
t � 2C Q	C

n�1
	�	n�2Cj

�
n�2X
jD1

"
� Q	C

j �1y

1 � Q	C

j

�
�


� Q	�

n�j�1
�

�
�


� Q	�

n�j�1
�

�

� Q	�

n�j�1 � 	n

� 
t � 1C Q	C

j

�� Q	�

n�j�1�	n�1
#
:

Now notice both that

��2C Q	C

n�1y
�
2 � Q	C

n�1
	

� .�	n � 1/
�
t � 2C Q	C

n�1
	�	n�2 D

�
t � 2C Q	C

n�1
	�	n�2

� .�	n � 1/ y.0/
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and that

��1C Q	C

n�1y
�
2 � Q	C

n�1
	

� .�	n/

�
t � 2C Q	C

n�1
	�	n�1

D
�
t � 2C Q	C

n�1
	�	n�1

� .�	n/

��
1 � Q	C

n�1
	

y.0/C y.1/
�
:

So, we conclude that

�	n � � ��	1y.t/

D � Q	y.t/ �
�
t � 2C Q	C

n�1
	�	n�1

� .�	n/
y.1/

�
n�2X
jD1

2
4 1

�

� Q	�

n�j�1 � 	n

� 
t � 1C Q	C

j

�� Q	�

n�j�1�	n�1
3
5 y.0/

�
"�

t � 2C Q	C
n�1

	�	n�1

� .�	n/

�
1 � Q	C

n�1
	 �

�
t � 2C Q	C

n�1
	�	n�2

� .�	n � 1/

#
y.0/:

And this completes the proof. ut
Propositions 7.60 and 7.61 again demonstrate that the sequential problems are

(potentially) different than the non-sequential problems and, in particular, isolate
these differences. Furthermore, with Propositions 7.60 and 7.61 in hand, we can
write down a number of existence results for sequential discrete FBVPs. But we
omit their statements here.

7.7 Systems of FBVPs with Nonlinear, Nonlocal Boundary
Conditions

In this section we shall demonstrate how we can apply our analysis of nonlocal dis-
crete fractional boundary value problems to systems of such problems. Essentially,
other than modifying the Banach space and associated cone in which we work, the
analysis is very similar. In particular, we are interested in the system

���1y1.t/ D �1a1 .t C �1 � 1/ f1 .y1 .t C �1 � 1/ ; y2 .t C �2 � 1//
���2y2.t/ D �2a2 .t C �2 � 1/ f2 .y1 .t C �1 � 1/ ; y2 .t C �2 � 1// ; (7.143)

for t 2 Œ0; b�N0 , subject to the boundary conditions
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y1 .�1 � 2/ D  1 .y1/ , y2 .�2 � 2/ D  2 .y2/

y1 .�1 C b/ D �1 .y1/ , y2 .�2 C b/ D �2 .y2/ ; (7.144)

where �i > 0, ai W R ! Œ0;C1/, �i 2 .1; 2� for each 1 � i � 2, and for each i
we have that  i, �i W R

bC3 ! R are given functionals. We shall also assume that
fi W Œ0;C1/� Œ0;C1/ ! Œ0;C1/ is continuous for each admissible i. One point
of interest to which we wish to draw the reader’s attention is the fact that because it
may well occur that �1 ¤ �2, it follows, due to the inherent domain shifting of the
operator��

0 , that the two functions y1 and y2 appearing in (7.143) may be defined on
different domains. Evidently, this cannot occur in the integer-order problem—i.e.,
when �1, �2 2 N. Problem (7.143)–(7.144) was originally studied by Goodrich [94],
and the results of this section may be found in that paper.

We now wish to fix our framework for the study of problem (7.143)–(7.144). First
of all, we let Bi represent the Banach space of all maps from Œ�i � 2; : : : ; �i C b�

N�i�2

into R when equipped with the usual maximum norm, k � k. We shall then put

X WD B1 � B2:

By equipping X with the norm

k .y1; y2/ k WD ky1k C ky2k;
it follows that .X ; k � k/ is a Banach space, too—see, for example, [74].

Next we wish to develop a representation for a solution of (7.143)–(7.144) as the
fixed point of an appropriate operator on X . To accomplish this we present some
adaptations of results from [31] that will be of use here. Because the proofs of these
lemmas are straightforward, we omit them.

Lemma 7.62 ([31]). Let 1 < � � 2 and h W Œ� � 1; � C b � 1�N��1 ! R be given.
The unique solution of the FBVP ���y.t/ D h.tC��1/, y.��2/ D 0 D y.�Cb/ is
given by y.t/ D Pb

sD0 G.t; s/h.sC��1/, where G W Œ��2; �Cb�N��2�Œ0; b�N0 ! R

is defined by

G.t; s/ WD
8<
:

t��1.�Cb�s�1/��1

�.�/.�Cb/��1 � .t � s � 1/��1, 0 � s < t � � C 1 � b
t��1.�Cb�s�1/��1

�.�/.�Cb/��1 , 0 � t � � C 1 � s � b
:

Lemma 7.63 ([31]). The Green’s function G given in Lemma 7.62 satisfies:

(i) G.t; s/ � 0 for each .t; s/ 2 Œ� � 2; � C b�N��2 � Œ0; b�N0 ;
(ii) maxt2Œ��2;�Cb�N��2

G.t; s/ D G.s C � � 1; s/ for each s 2 Œ0; b�N0 ; and
(iii) there exists a number � 2 .0; 1/ such that

min
bC�
4 �t� 3.bC�/

4

G.t; s/ � � max
t2Œ��2;�Cb�N��2

G.t; s/ D �G.s C � � 1; s/;

for s 2 Œ0; b�N0 .
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Now consider the operator S W X ! X defined by

S .y1; y2/ .t1; t2/ WD .S1 .y1; y2/ .t1/ ; S2 .y1; y2/ .t2// ; (7.145)

where we define S1 W X ! B1 by

S1 .y1; y2/ .t1/

WD ˛1 .t1/  1 .y1/C ˇ1 .t1/ �1 .y1/

C �1

bX
sD0

G1 .t1; s/ a1 .s C �1 � 1/ f1 .y1 .s C �1 � 1/ ; y2 .s C �2 � 1//

and S2 W X ! B2 by

S2 .y1; y2/ .t2/

WD ˛2 .t2/  2 .y2/C ˇ2 .t2/ �2 .y2/

C �2

bX
sD0

G2 .t2; s/ a2 .s C �2 � 1/ f2 .y1 .s C �1 � 1/ ; y2 .s C �2 � 1// I

note that, for j D 1, 2, we define the maps ˛j, ˇj W �
�j � 2; �j C b

�
Z�j�2

! R by

˛j.t/ WD 1

�
�
�j � 1	

�
t�j�2 � 1

b C 2
t�j�1

�

ˇj.t/ WD t�j�1

.� C b/�j�1 ;

which occur in the definitions of S1 and S2 above. Moreover, the map .t; s/ 7!
Gj.t; s/ is precisely the map .t; s/ 7! G.t; s/ as given in Lemma 7.62 with � replaced
by �j. We claim that whenever .y1; y2/ 2 X is a fixed point of the operator S, it
follows that the pair of functions y1 and y2 is a solution to problem (7.143)–(7.144).

Theorem 7.64. Let fj W R
2 ! Œ0;C1/ and

 j, �j 2 C
�
�j � 2; �j C b

�
N�j�2

;R
�

be given, for j D 1, 2. If .y1; y2/ 2 X is a fixed point of S, then the pair of functions
y1 and y2 is a solution to problem (7.143)–(7.144).

Proof. Omitted—see [94]. ut
The following lemma and its associated corollary are of particular importance in

the sequel. Because the proofs of each of these are straightforward, we omit them.
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Lemma 7.65. For each j D 1; 2, the function tj 7! ˛j
�
tj
	

is decreasing in tj, for
tj 2 �

�j � 2; �j C b
�
N�j�2

. Also, it holds both that

min
tj2Œ�j�2;�jCb�

N�j�2

˛j
�
tj
	 D 0

and

max
tj2Œ�j�2;�jCb�

N�j�2

˛j
�
tj
	 D 1:

On the other hand, for each j D 1; 2, the function tj 7! ˇj
�
tj
	

is strictly increasing
in tj, for tj 2 �

�j � 2; �j C b
�
N�j�2

. In addition, it holds that

min
tj2Œ�j�2;�jCb�

N�j�2

ˇj
�
tj
	 D 0

and that

max
tj2Œ�j�2;�jCb�

N�j�2

ˇj
�
tj
	 D 1:

Corollary 7.66. Let j D 1; 2 be given. Put Ij WD
h

bC�j

4
;
3.bC�j/

4

i
. Then there exist

constants M˛j , Mˇj 2 .0; 1/ such that

min
tj2Ij

˛j
�
tj
	 D M˛jk˛jk

and

min
tj2Ij

ˇj
�
tj
	 D Mˇjkˇjk:

Let us conclude this section with a remark.

Remark 7.67. Observe that unlike in the case of the integer-order problem (i.e.,
when �1 D �2 D 2), in the fractional-order problem we encounter a significant
problem with respect to the domains of the various operators insofar as it may occur
that Z�1�2 ¤ Z�2�2. As has been noted with different problems in previous sections,
this complication arises in the discrete fractional calculus due to the domain shifting
of the fractional forward difference and sum operators.

We now present the first of two theorems for the existence of at least one positive
solution to problem (7.143)–(7.144). Note that for this first existence result we shall
not assume that either  i .yi/ or �i .yi/, with i D 1; 2, is nonnegative for all yi � 0.
Rather, we shall make some other assumptions about these functionals.
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So, let us now present the conditions that we shall assume henceforth. We note
that conditions (F1) and (F2) are essentially the same conditions given by Henderson
et al. [121]. Moreover, condition (L1) is essentially the same condition (up to a
constant multiple) as given in [121, Theorem 3.1].

F1: There exist numbers f �
1 and f �

2 , with f �
1 , f �

2 2 .0;C1/, such that

lim
y1Cy2!0C

f1 .y1; y2/

y1 C y2
D f �

1 and lim
y1Cy2!0C

f2 .y1; y2/

y1 C y2
D f �

2 :

F2: There exist numbers f ��
1 and f ��

2 , with f ��
1 , f ��

2 2 .0;C1/, such that

lim
y1Cy2!C1

f1 .y1; y2/

y1 C y2
D f ��

1 and lim
y1Cy2!C1

f2 .y1; y2/

y1 C y2
D f ��

2 :

G1: For each j D 1; 2, the functionals  j and �j are linear. In particular, we
assume both that

 j
�
yj

	 D
�jCbX

iD�j�2
cj

i��jC2yj.i/

and that

�j
�
yj

	 D
�jCbX

kD�j�2
dj

k��jC2yj.k/;

for constants cj
i��jC2, dj

k��jC2 2 R.

G2: For each j D 1; 2, we have both that

�jCbX
iD�j�2

cj
i��jC2Gj.i; s/ � 0

and that

�jCbX
kD�j�2

dj
k��jC2Gj.k; s/ � 0;

for each s 2 Œ0; b�N0 , and in addition that

�jCbX
iD�j�2

cj
i��jC2 C

�jCbX
kD�j�2

dj
k��jC2 � 1

4
:
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G3: We have that each of  i .˛i/,  i .ˇi/, �i .˛i/, and �i .ˇi/ is nonnegative for
each admissible i—that is, i D 1, 2.

L1: The constants �1 and �2 satisfy

ƒ1 < �i < ƒ2;

for each i, where

ƒ1 WD max

(
1

2

"
bX

sD0
�G1

��
b C 1

2

�
C �1; s

�
a1 .s C �1 � 1/ f ��

1

#�1
;

1

2

"
bX

sD0
�G2

��
b C 1

2

�
C �2; s

�
a2 .s C �2 � 1/ f ��

2

#�1 )

and

ƒ2 WD min

(
1

4

"
bX

sD0
G1 .s C �1 � 1; s/ a1 .s C �1 � 1/ f �

1

#�1
;

1

4

"
bX

sD0
G2 .s C �2 � 1; s/ a2 .s C �2 � 1/ f �

2

#�1 )
;

where � 2 .0; 1/ is a constant defined by

� WD min
˚
M˛1 ;M˛2 ;Mˇ1 ;Mˇ2 ; �1; �2



;

where M˛1 , M˛2 , Mˇ1 , and Mˇ2 each comes from Corollary 7.66 and �1 and �2
are associated by Lemma 7.63 with G1 and G2, respectively. Recall that these are
defined on possibly different time scales.

In what follows we shall also make use of the cone

K WD
n
.y1; y2/ 2 X W y1; y2 � 0,

min
.t1;t2/2

�
bC�1
4 ;

3.bC�1/
4

�
�

�
bC�2
4 ;

3.bC�2/
4

� Œy1 .t1/C y2 .t2/� � �k .y1; y2/ k,

 j
�
yj

	 � 0, �j
�
yj

	 � 0, for each j D 1; 2
o
;

(7.146)

where � is defined exactly as in the statement of condition (L1) above. This cone is
essentially a modification of the type of cone introduced by Infante and Webb [159].
Clearly, we have that K � X . In order to show that S has a fixed point in K, we must
first demonstrate that K is invariant under S—that is, S.K/ � K. This we now show.
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Lemma 7.68. Let S W X ! X be the operator defined as in (7.145). Then S W
K ! K.

Proof. Suppose that .y1; y2/ 2 K. We show first that

min
.t1;t2/2

�
bC�1
4 ;

3.bC�1/
4

�
�

�
bC�2
4 ;

3.bC�2/
4

� ŒS1 .y1; y2/ .t1/C S2 .y1; y2/ .t2/�

� �kS .y1; y2/ k;

whenever .y1; y2/ 2 K.
So note that

min
t12

�
bC�1
4 ;

3.bC�1/
4

� S1 .y1; y2/ .t1/

� M˛1k˛1k�1 .y1/C Mˇ1kˇ1k 1 .y1/

C �1

bX
sD0

G1 .t1; s/ a1 .s C �1 � 1/ f1 .y1 .s C �1 � 1/ ; y2 .s C �1 � 1//

� Q�1 max
t12Œ�1�2;�1Cb�

"
˛1 .t1/ �1 .y1/C ˇ1 .t1/  1 .y1/

C �1

bX
sD0

G1 .t1; s/ a1 .s C �1 � 1/ f1 .y1 .s C �1 � 1/ ; y2 .s C �1 � 1//
#

D Q�1kS1 .y1; y2/ k;
(7.147)

where e�1 WD min
˚
M˛1 ;Mˇ1 ; �1



, whence

min
t12

�
bC�1
4 ;

3.bC�1/
4

� S1 .y1; y2/ .t1/ � Q�1kS1 .y1; y2/ k; (7.148)

as desired. In an entirely similar manner to (7.147), we deduce that

min
t22

�
bC�2
4 ;

3.bC�2/
4

� S2 .y1; y2/ .t2/ � Q�2kS2 .y1; y2/ k; (7.149)

where Q�2 WD min
˚
M˛2 ;Mˇ2 ; �2



.
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Now, put � WD min f Q�1; Q�2g. Consequently, from (7.148)–(7.149) it follows that

min
.t1;t2/2

�
bC�1
4 ;

3.bC�1/
4

�
�

�
bC�2
4 ;

3.bC�2/
4

� ŒS1 .y1; y2/ .t1/C S2 .y1; y2/ .t2/�

� min
.t1;t2/2

�
bC�1
4 ;

3.bC�1/
4

�
�

�
bC�2
4 ;

3.bC�2/
4

� S1 .y1; y2/ .t1/

C min
.t1;t2/2

�
bC�1
4 ;

3.bC�1/
4

�
�

�
bC�2
4 ;

3.bC�2/
4

� S2 .y1; y2/ .t2/

� . Q�1kS1 .y1; y2/ k C Q�2kS2 .y1; y2/ k/
� .�kS1 .y1; y2/ k C �kS2 .y1; y2/ k/
D �k .S1 .y1; y2/ ; S2 .y1; y2// k
D �kS .y1; y2/ k: (7.150)

So, from (7.150) we conclude that whenever .y1; y2/ 2 X , we find that

min
.t1;t2/2

�
bC�1
4 ;

3.bC�1/
4

�
�

�
bC�2
4 ;

3.bC�2/
4

� ŒS1 .y1; y2/ .t1/C S2 .y1; y2/ .t2/�

� �kS .y1; y2/ k;
as desired.

We next show that for each j D 1; 2 we have  j
�
Sj .y1; y2/

	 � 0 whenever
.y1; y2/ 2 K. Indeed, first note that

 j
�
Sj .y1; y2/

	

D �j

bX
sD0

�jCbX
iD�j�2

(
cj

i��jC2Gj.i; s/aj
�
s C �j � 1	

� fj .y1 .s C �1 � 1/ ; y2 .s C �2 � 1//C  j
�
˛j

	
 j

�
yj

	 C  j
�
ˇj

	
�j

�
yj

	 )
:

(7.151)

But by assumptions (G2) and (G3) together with the nonnegativity of fj .y1; y2/ and
the fact that .y1; y2/ 2 K, we find from (7.151) that

 j
�
Sj .y1; y2/

	 � 0;

for each j D 1; 2. An entirely dual argument, which we omit, shows that

�j
�
Sj .y1; y2/

	 � 0;

too, whenever .y1; y2/ 2 K and j D 1; 2.
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Finally, it is clear from the definitions of both S1 and S2 that

S1 .y1; y2/ .t1/ � 0 and S2 .y1; y2/ .t2/ � 0;

for each t1 and t2, whenever .y1; y2/ 2 K. Therefore, we conclude that whenever
.y1; y2/ 2 K, it follows that S .y1; y2/ 2 K. Thus, S W K ! K, as desired. And this
completes the proof. ut

We now prove the first of our two main existence theorems, which we label
Theorem 7.69.

Theorem 7.69. Suppose that conditions (F1)–(F2), (G1)–(G3), and (L1) hold.
Then problem (7.143)–(7.144) has at least one positive solution.

Proof. We have already shown in Lemma 7.68 that S W K ! K. Furthermore, it is
evident that S is completely continuous.

We begin by observing that by condition (L1) there exists a number " > 0 such
that each of

max

(
1

2

"
bX

sD0
�G1

��
b C 1

2

�
C �1; s

�
a1 .s C �1 � 1/ �

f ��
1 � "	

#�1
;

1

2

"
bX

sD0
�G2

��
b C 1

2

�
C �2; s

�
a2 .s C �2 � 1/ �

f ��
2 � "	

#�1 )
� �1, �2

(7.152)
and

�1, �2 � min

(
1

4

"
bX

sD0
G1 .s C �1 � 1; s/ a1 .s C �1 � 1/ �

f �
1 C "

	#�1
;

1

4

"
bX

sD0
G2 .s C �2 � 1; s/ a2 .s C �2 � 1/ �

f �
2 C "

	#�1 )
:

(7.153)

holds. Now, given this number ", by condition (F1) it follows that there exists some
number r�

1 > 0 such that

f1 .y1; y2/ � �
f �
1 C "

	
.y1 C y2/ ; (7.154)

whenever k .y1; y2/ k < r1. Similarly, by condition (F2) and for the same number ",
there exists a number r��

1 > 0 such that

f2 .y1; y2/ � �
f �
2 C "

	
.y1 C y2/ ; (7.155)
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whenever k .y1; y2/ k < r2. Then by putting r1 WD min
˚
r�
1 ; r

��
1



, we find that each

of (7.154) and (7.155) is true whenever k .y1; y2/ k < r1. This suggests defining the
set �1 � X by

�1 WD f.y1; y2/ 2 X W k .y1; y2/ k < r1g ; (7.156)

which we shall use momentarily.
Now, let �1 be as in (7.156) above. Then for .y1; y2/ 2 K \ @�1 we find that

kS1 .y1; y2/ k

D max
t12Œ�1�2;�1Cb�N�1�2

ˇ̌̌
ˇ̌˛1 .t1/ �1 .y1/C ˇ1 .t1/  1 .y1/

C �1

bX
sD0

G1 .t1; s/ a1 .s C �1 � 1/ f1 .y1 .s C �1 � 1/ ; y2 .s C �2 � 1//
ˇ̌̌
ˇ̌

� r1

2
4 �1CbX

iD�1�2
c1i��1C2 C

�1CbX
kD�1�2

d1k��1C2

3
5

C �1

bX
sD0

G1 .s C �1 � 1; s/ a1 .s C �1 � 1/ �
f �
1 C "

	 k .y1; y2/ k

� k .y1; y2/ k
"
1

4
C �1

bX
sD0

G1 .s C �1 � 1; s/ a1 .s C �1 � 1/ �
f �
1 C "

	#
;

(7.157)

where we use the fact that S1 .y1; y2/ is nonnegative whenever .y1; y2/ 2 K.
However, by the choice of �1 as given in (7.152)–(7.153), we deduce from (7.157)
that

kS1 .y1; y2/ k � 1

2
k .y1; y2/ k: (7.158)

We note that by an entirely dual argument we may estimate

kS2 .y1; y2/ k � 1

2
k .y1; y2/ k: (7.159)

Thus, by combining estimates (7.152)–(7.159) we deduce that for .y1; y2/ 2 K\@�1

we have

kS .y1; y2/ k � 1

2
k .y1; y2/ k C 1

2
k .y1; y2/ k D k .y1; y2/ k:



530 7 Nonlocal BVPs and the Discrete Fractional Calculus

Now, let " > 0 be the same number selected at the beginning of this proof. Then
by means of condition (F2) we can find a number Qr2 > 0 such that

f1 .y1; y2/ � �
f ��
1 � "	 .y1 C y2/ (7.160)

and

f2 .y1; y2/ � �
f ��
2 � "	 .y1 C y2/ ; (7.161)

whenever y1 C y2 � Qr2. Put

r2 WD max

�
2r1;

Qr2
�

�
; (7.162)

where, as before, we take

� WD min f Q�1; Q�2g :

Moreover, define the set �2 � X by

�2 WD f.y1; y2/ 2 X W k .y1; y2/ k < r2g : (7.163)

Note that if .y1; y2/ 2 K \ @�2, then it follows that

y1 .t1/C y2 .t2/ � min
.t1;t2/2

�
bC�1
4 ;

3.bC�1/
4

�
�

�
bC�2
4 ;

3.bC�2/
4

� Œy1 .t1/C y2 .t2/�

� �k .y1; y2/ k
� Qr2: (7.164)

Now, define the numbers 0 < �1 < �2 by

�1 WD max

( &
�1 C b

4
� �1 C 1

'
;

&
�2 C b

4
� �2 C 1

')

and

�2 WD min

( $
3.�1 C b/

4
� �1 C 1

%
;

$
3.�2 C b/

4
� �2 C 1

%)
I

we assume in the sequel that b is sufficiently large so that Œ�1; �2� \ N0 ¤ ¿. Then
for each .y1; y2/ 2 K \ @�2 we estimate
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S1 .y1; y2/

��
b C 1

2

�
C �1

�

D
�1CbX

iD�1�2
c1i��1C2y1.k/C

�1CbX
kD�1�2

d1k��1C2y1.k/

C �1

bX
sD0

"
G1

��
b C 1

2

�
C �1; s

�

� a1 .s C �1 � 1/ f1 .y1 .s C �1 � 1/ ; y2 .s C �2 � 1//
#

� �1

�2X
sD�1

G1

��
b C 1

2

�
C �1; s

�
a1 .s C �1 � 1/ �

f ��
1 � �	 � Œky1k C ky2k�

� 1

2
k .y1; y2/ k;

(7.165)

where to arrive at the first inequality in (7.165) we have used the positivity
assumption imposed on each of  1 and �1 whenever .y1; y2/ 2 K. Thus, we
conclude from (7.165) that

kS1 .y1; y2/ k � 1

2
k .y1; y2/ k: (7.166)

In a completely similar way, it can be shown that

kS2 .y1; y2/ k � 1

2
k .y1; y2/ k: (7.167)

Consequently, (7.160)–(7.167) imply that

kS .y1; y2/ k � k .y1; y2/ k; (7.168)

whenever .y1; y2/ 2 K \ @�2.
Finally, notice that (7.160) implies that the operator S is a cone compression

on K \ @�1, whereas (7.168) implies that S is a cone expansion on K \ @�2.
Consequently we conclude that S has a fixed point, say

�
y�
1 ; y

�
2

	 2 K. As
�
y�
1 ; y

�
2

	
is

a positive solution of (7.143)–(7.144), the theorem is proved. ut
Remark 7.70. Note that in the preceding arguments it is important that each of �1
and �2 (and thus � ) is a constant. That � is constant here is a reflection of the fact
that the Green’s function G satisfies a sort of Harnack-like inequality. Interestingly,
however, in the continuous fractional setting, this may (see [90]) or may not (see
[46]) be true. This is one of the differences one may observe between the discrete
and continuous fractional calculus.
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Remark 7.71. It is clear that Theorem 7.69 could be readily extended to the case of
n equations and 2n boundary conditions.

We now wish to present an alternative method for deducing the existence of at
least one positive solution to problem (7.143)–(7.144). In particular, instead of using
the cone given in (7.146), we shall now revert to a more traditional cone, whose use
can be found in innumerable papers. An advantage of this approach is that it shall
allow us to weaken hypothesis (G1). However, we achieve this increased generality
at the expense of having to assume a priori the positivity of each of these functionals
for all y � 0. In particular, for the second existence result we make the following
hypotheses.

G4: For i D 1, 2 we have that

lim
kyik!0C

 i .yi/

kyik D 0:

G5: For each i D 1, 2 we have that

lim
kyik!0C

�i .yi/

kyik D 0:

G6: For each i D 1, 2 we have that  i .yi/ and �i .yi/ are nonnegative for all
yi � 0.

L2: The constants �1 and �2 satisfy

ƒ1 < �i < ƒ2;

for each i D 1; 2, where

ƒ1 WD max

(
1

2

"
bX

sD0
�G1

��
b C 1

2

�
C �1; s

�
a1 .s C �1 � 1/ f ��

1

#�1
;

1

2

"
bX

sD0
�G2

��
b C 1

2

�
C �2; s

�
a2 .s C �2 � 1/ f ��

2

#�1 )

and

ƒ2 WD min

(
1

3

"
bX

sD0
G1 .s C �1 � 1; s/ a1 .s C �1 � 1/ f �

1

#�1
;

1

3

"
bX

sD0
G2 .s C �2 � 1; s/ a2 .s C �2 � 1/ f �

2

#�1 )
;
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where f �
i and f ��

i retain their earlier meaning from conditions (F1)–(F2), for each
i D 1; 2. Moreover, � is defined just as it was earlier in this section.

Remark 7.72. Observe that there do exist nontrivial functionals satisfying condi-
tions (G4) and (G5). For example, consider the functional given by

�.y/ WD Œy .t0/�
6 ;

where t0 is some number in the domain of y. Then it is clear that

0 � lim
kyk!0C

Œy .t0/�
6

kyk � lim
kyk!0C

Œy .t0/�
6

y .t0/
D lim

kyk!0C

Œy .t0/�
5 D 0;

from which it follows that � satisfies conditions (G4)–(G5); this specifically relies
upon the fact that �.y/ is nonnegative for all y � 0.

We now present our second existence theorem of this section.

Theorem 7.73. Suppose that conditions (F1)–(F2), (G4)–(G6), and (L2) hold.
Then problem (7.143)–(7.144) has at least one positive solution.

Proof. Begin by noting that by condition (L2) that there is " > 0 such that

max

(
1

2

"
bX

sD0
G1

��
b C 1

2

�
C �1; s

�
a1 .s C �1 � 1/ �

f ��
1 � "	

#�1
;

1

2

"
bX

sD0
G2

��
b C 1

2

�
C �2; s

�
a2 .s C �2 � 1/ �

f ��
2 � "	

#�1 )
� �1, �2

(7.169)
and

�1, �2 � min

(
1

3

"
bX

sD0
G1 .s C �1 � 1; s/ a1 .s C �1 � 1/ �

f �
1 C "

	#�1
;

1

3

"
bX

sD0
G2 .s C �2 � 1; s/ a2 .s C �2 � 1/ �

f �
2 C "

	#�1 )
:

(7.170)

Now, for the number " determined by (7.169)–(7.170), it follows from conditions
(G4)–(G5) there exists a number 1 > 0 such that

�1 .y1/ � "ky1k; (7.171)
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whenever ky1k � 1, and there exists a number 2 > 0 such that

 1 .y2/ � "ky1k; (7.172)

whenever ky1k � 2. Put

� WD min f1; 2g :

We conclude that whenever k .y1; y2/ k < �, each of (7.171) and (7.172) holds.
Now, for the same " > 0 given in the first paragraph of this proof, we find that

there exists a number 3 such that

f1 .y1; y2/ � �
f �
1 C �

	
.y1 C y2/ ; (7.173)

whenever k .y1; y2/ k < 3. Thus, by putting

�� WD min f�; 3g ;

we get that (7.171), (7.172), and (7.173) are collectively true.
So, define the set �1 � X by

�1 WD f.y1; y2/ 2 X W k .y1; y2/ k < ��g :

Then whenever .y1; y2/ 2 K \ @�1 we have, for any t1 2 Œ�1 � 2; �1 C b�
N�1�2

,

S1 .y1; y2/ .t1/

� "ky1k C "ky1k

C �1

bX
sD0

G1 .t1; s/ a1 .s C �1 � 1/ f1 .y1 .s C �1 � 1/ ; y2 .s C �2 � 1//

� 2"ky1k C �1

bX
sD0

G1 .s C �1 � 1; s/ a1 .s C �1 � 1/ �
f �
1 C "

	 k .y1; y2/ k

�
�
2"C 1

3

�
k .y1; y2/ k;

(7.174)

where we have used condition (L2) together with (7.170). An entirely dual argument
reveals that

S2 .y1; y2/ .t/ �
�
2"C 1

3

�
k .y1; y2/ k: (7.175)
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Therefore, putting (7.174)–(7.175) together we conclude that

kS .y1; y2/ k � k .y1; y2/ k;

whenever .y1; y2/ 2 K \ @�1 and " is chosen sufficiently small, which may be
assumed without loss of generality.

To complete the proof, we may give an argument essentially identical to the
second half of the proof of Theorem 7.69. We omit this, and so, the proof is
complete. ut
Remark 7.74. As with Theorem 7.69, it is clear how the results of this section can
be extended to the case in which (7.143) is replaced with n equations and boundary
conditions (7.144) are extended to 2n boundary conditions in the obvious way.
As with the corresponding generalization of Theorem 7.69, however, we omit the
details of this extension.

We conclude by providing an explicit numerical example in order to illustrate the
application of Theorem 7.69. This is the same example as the one presented in [94].

Example 7.75. Consider the boundary value problem

��1:3y1.t/ D �1a1

�
t C 3

10

�
f1

�
y1

�
t C 3

10

�
; y2

�
t C 7

10

��

��1:7y2.t/ D �2a2

�
t C 7

10

�
f2

�
y1

�
t C 3

10

�
; y2

�
t C 7

10

��
; (7.176)

subject to the boundary conditions

y1

��7
10

�
D 1

12
y1

�
13

10

�
� 1

25
y1

�
53

10

�

y1

�
213

10

�
D 1

30
y1

�
83

10

�
� 1

100
y1

�
73

10

�

y2

�
� 3

10

�
D 1

40
y2

�
17

10

�
� 1

150
y2

�
77

10

�

y2

�
217

10

�
D 1

17
y2

�
47

20

�
� 1

30
y2

�
107

20

�
; (7.177)

where we take

a1.t/ WD et�4,

a2.t/ WD et�4,
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f1 .y1; y2/ WD 5000e�y2 .y1 C y2/C .y1 C y2/ , and

f2 .y1; y2/ WD 7500e�y1 .y1 C y2/C .y1 C y2/ ,

with f1, f2 W Œ0;C1/ � Œ0;C1/ ! Œ0;C1/. It is clear from the statement of
problem (7.176)–(7.177) that we have made the following declarations.

 1 .y1/ WD 1

12
y1

�
13

10

�
� 1

25
y1

�
53

10

�

�1 .y1/ WD 1

30
y1

�
83

10

�
� 1

100
y1

�
73

10

�

 2 .y2/ WD 1

40
y2

�
17

10

�
� 1

150
y2

�
77

10

�

�2 .y2/ WD 1

17
y2

�
47

20

�
� 1

30
y2

�
107

20

�
(7.178)

Note, in addition, that y1 is defined on the set

�
� 7

10
;
3

10
; : : : ;

213

10

�
� Z

213
10

� 7
10

;

whereas y2 is defined on the set

�
� 3

10
;
7

10
; : : : ;

217

10

�
� Z

217
10

� 3
10

;

and we note that Z
213
10

� 7
10

\ Z

217
10

� 3
10

D ¿, as, toward the beginning of this section, we

indicated could occur in the study of problem (7.143)–(7.144). In particular, we have
chosen �1 D 13

10
, �2 D 17

10
, and b D 20. We shall select �1 and �2 below.

We next check that each of conditions (F1)–(F2), (G1)–(G3), and (L1) holds. It
is easy to check that (F1)–(F2) hold. On the other hand, since (7.178) reveals that
each of the functionals is linear in y1 and y2, we conclude at once that (G1) holds.
On the other hand, to see that conditions (G2)–(G3) hold, observe both that

1

12
C 1

25
C 1

30
C 1

100
D 1

6
� 1

4

and that

1

40
C 1

150
C 1

17
C 1

30
D 421

3400
� 1

4
:
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Furthermore, additional calculations show both that

�jCbX
iD�j�2

cj
i��jC2Gj.i; s/ � 0

and that

�jCbX
kD�j�2

dj
k��jC2Gj.k; s/ � 0;

for each j D 1; 2. So, we conclude that condition (G2) holds. Finally, one can
compute the following estimates.

 1 .˛1/ 	 0:012

 1 .ˇ1/ 	 0:012

 2 .˛2/ 	 0:012

 2 .ˇ2/ 	 0:0012

�1 .˛1/ 	 0:00091

�1 .ˇ1/ 	 0:018

�2 .˛2/ 	 0:015

�2 .ˇ2/ 	 0:000099

Consequently, condition (G3) is satisfied.
Finally, we check condition (L1) to determine the admissible range of the

parameters, �i for i D 1; 2. To this end, recall from [31, Theorem 3.2] that the
constant � in Lemma 7.63 is

� WD min

(
1

3.bC�/
4

���1

�
" �

3.b C �/

4

���1
�


3.bC�/
4

� 2
���1

.� C b C 1/��1

.� C b � 1/��1

#
;

�
bC�
4

	��1

.b C �/��1

)
:

(7.179)
Thus, using the definition of � provided by (7.179), we estimate that

ƒ1 	 max
˚
f ��
1 � 3:288 � 10�7; f ��

2 � 1:0322 � 10�7

D max

˚
3:288 � 10�7; 1:0322 � 10�7


D 3:337 � 10�7;
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whereas

ƒ2 	 min
˚
f �
1 � 1:871 � 10�9; f �

2 � 1:363 � 10�9

D min

˚
5001 � 1:871 � 10�9; 7501 � 1:363 � 10�9


D min
˚
9:357 � 10�6; 1:022 � 10�5


D 9:357 � 10�6:

So, suppose that

�1, �2 2 �
3:337 � 10�7; 9:357 � 10�6� :

Then we conclude from Theorem 7.69 that problem (7.176)–(7.177) has at least one
positive solution. And this completes the example.

Remark 7.76. A similar example could be provided for Theorem 7.73.

Remark 7.77. We note that a class of functions satisfying conditions (F1)–(F2) are
given by the function f W R

nC ! Œ0;C1/ defined by

f .x/ WD C1e
�g.x/r � H.x/;

where g W R
nC ! Œ0;C1/, C1 > 0 is a constant, and H W R

nC ! R
nC is the vector

field defined by

H.x/ WD
nX

iD1

1

2
x2i ei;

where ei is the i-th vector in the standard ordered basis for R
n; note that by the

notation R
nC we mean the closure of the open positive cone in R

n—i.e., we put

R
nC WD fx 2 R

n W xi � 0 for each 1 � i � ng � R
n:

More trivially, we remark that the collection of functions defined L .y1; y2/ D ay1 C
ay2, for a > 0, satisfies (F1)–(F2).

7.8 Concluding Remarks

In this chapter we have demonstrated several ways in which nonlocal elements may
occur in the discrete fractional calculus. Such elements may arise explicitly, as is
the case in the nonlocal BVP setting. On the other hand, the fractional sum and
difference themselves contain nonlocal elements, and this considerably complicates
the analysis and interpretation of fractional operators.
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In closing we wish to draw attention to the fact that due to this implicit nonlocal
structure, there are many open questions regarding the interpretation, particularly
geometric, of the discrete fractional difference. For instance, as alluded to earlier,
only recently has there been any development in our understanding of how the
sign of, say ��

0y.t/ is related, for various ranges of �, to the behavior of y itself.
Yet in spite of these recent developments, it seems that there is likely much to be
discovered in this arc of research.

Moreover, above and beyond pure geometrical implications, the nonlocal struc-
ture embedded within ��

0y affects negatively the analysis of boundary and initial
value problems insofar as the attendant analysis is much more complicated and
there still remain some very basic open questions. For example, as we have seen
in this chapter, even the elementary problem of analyzing a particular Green’s
function associated with a given boundary value operator is very nontrivial, often
requiring arguments that while elementary are nonetheless technical. Furthermore,
many fundamental areas of study in the integer-order difference calculus presently
do not possess satisfactory analogues in the fractional-order setting. Among these is
oscillation theory, which has no satisfactory fractional-order analogue. On the one
hand, this is rather remarkable in recognition of the centrality of such results in the
integer-order theory. On the other hand, however, given the tremendous complexity
that the nonlocal structure of ��

0y creates, perhaps it is unsurprising that such
gaps exist. As with some of the other questions surrounding the discrete fractional
calculus, it is unclear at present whether this gap can ultimately be filled in an at
once satisfactory and elegant manner.

All in all, this section has shown a few of the ways in which nonlocalities may
arise in the setting of boundary value problems. Moreover, we have seen how the
implicit nonlocal structure of the discrete fractional sum and difference complicate
in surprising ways their analysis. Finally, we hope that the reader has gained a
sense of some of the open and unanswered questions in the discrete fractional
calculus, questions whose solutions appear to be at once greatly complicated
and substantively enriched by the nonlocal structure of fractional operators. As a
concluding point, we wish to note that the interested reader may consult any of
the following references for additional information on not only local and nonlocal
boundary value problems, but also on other related topics in the discrete calculus
that we have touched upon in this and other chapters [1, 2, 5, 6, 8–12, 14–
30, 44, 45, 48, 51, 55–61, 68–73, 75, 79–82, 84–86, 97, 98, 100–103, 105–113,
115–118, 120, 122, 126–130, 132, 133, 136, 138, 140–144, 148–151, 154–158, 160–
166, 168–172]:

7.9 Exercises

7.1. Prove the result mentioned in Remark 7.14.
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