Chapter 5
Calculus on Mixed Time Scales

5.1 Introduction

This chapter focuses on what we call the calculus on a mixed time scale whose
elements we will define in terms of a point « and two linear functions. There has
been recent interest in mixed time scales by Auch [37, 38], Auch et al. [39], Estes
[34, 78], Erbe et al. [76], and Mert [145].

5.2 Basic Mixed Time Scale Calculus

In this section, we introduce some fundamental concepts and properties concerning
what we will call a mixed time scale. Throughout this chapter we assume a, b are
constants satisfying

a>1, b>0, a+b>1.

We will use two linear functions to define our so-called mixed time scale. First we
let o : R — R be defined by

o(t)=at+b, tekR.

Then we define the linear function p to be the inverse function of o, that is

t—>b
p(t)=——, teR.
a
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We call o the forward jump operator and p the backward jump operator. Only
for these two functions we use the following notation. For n > 1 we define the
function o” recursively by

o'(t) = o(0" (1)), teR,
where 6°(f) := 1, and
p" (1) = p(p" ' (1), 1ER,

where p°(¢) := t. We now define our mixed time scale T, where for simplicity we
always assume o > 0:

TO! = { vpz(a)v p((X),()l,O'(O(),O'Z(Ol),"'}.
By Exercise 5.1, we have that
o< pHa) < pla) <a <o(@) <oX(a) <.

Usually the domains of o and p will be either R or T, .
Theorem 5.1. Ifa > 1, then

, teT,.

Proof. Since 0" (o) > 0 > 1%1 for all n > 0, it remains to show that p"(t) > -

1—a
for all n > 1. We prove this by induction. First, for the base case note that
) b
pla) = > :
a 1—a
Now assume n > 1 and p" (o) > % Then it follows that
n+1 n ,On(Ol)—b lb%u_b b
" o) = p(p"(1) = > = .
a a 1—a
O

Note that the above theorem does not hold if a = 1. Also note that when a > 1,
T, is not a closed set (see Theorem 5.6 (iii)).

Definition 5.2. For c,d € T, such that d > ¢, we define

Tieq :=To N e, d] = {c,0(c),0%(c),....p(d),d}.
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We define T ¢ 4), T(cq, and T[4 similarly. Additionally, we may use the notation
T, where T¢ := Ty 4.

Definition 5.3. We define a forward graininess function, u, by
n@):=o0(@)—t=(at+b)—t=(@—1)t+0>b.

In the following theorem we give some properties of the graininess function u.

Theorem 5.4. Fort € Ty and n € Ny, the following hold:

() pu(t) > 0;
(i) p(a"(1) = a"u();
(i) p(p" (1) = a"p(?).

Proof. We just prove (iii) and leave the rest of the proof (see Exercise 5.2) to the
reader. To see that (iii) holds consider for ¢ € T, the base case

—b —1 b
pp®) = @=1p) +b =@~ )" 4= CTIEL_

Now assume n > 1 and u(p"(r)) = a "u(t) for t € T,. Then using the induction
assumption we get for r € T,

w(P @) = p(p" (1) = a"ulp(®) = a~ "V p@).

Hence, (iii) holds. O

Theorem 5.5 (Properties of Forward Jump Operator). Given m,n € Ny and
teT,

n—1
() forn>1,0"(t) =d't+b ) d;
j=0
(i) ifm > n, 6™(t) > o (1);
(iii) ift > 0, lim o"(f) = oo.
n—>oQo

Proof. We will only prove (i) and (iii) here. First we will prove property (i) by an

induction argument. The base case clearly holds. Assume that n > 1 and o"(¢) =
n—1

a't + > @b. It follows that

j=0
n—1
") =0(0"(t) =0 |a"t+b Zaj
j=0
n—1 n

=a a”t—i—bZai +b=d""r+ bZaj

J=0 J=0



356 5 Calculus on Mixed Time Scales

This completes the proof of (i).
Next we prove that (iii) holds. First, consider the subcase in which a > 1. Then

n—1
o"(t) =d't+ ) db=a't

J=0

Since t > 0 and a > 1, we have that lim o"(f) = oco. Next, consider the case in
n—>o00
whicha = 1. Then b > 0, and

n—1 n—1

o"(t)=d't+» db=t+) b=t+nb>nb.
j=0 j=0
Since b > 0, we have that lim ¢"(¢f) = oo. This completes the proof of (iii). O
n—>0o0

Theorem 5.6 (Properties of Backward Jump Operator). Given positive integers
m, n, and t € T, the following properties hold:

n—1

G p"(t)y=a"[t=> db];

j=0

(i) if m > n, then p"(t) < p"(1);

(i) lim p"(t) = —coifa = 1and = £ ifa > 1.
n—oo

Proof. We will just prove (i) holds (see Exercise 5.3 for parts (ii) and (iii)). So, first
we note that

0

1 t=b_ '

1) = = t— ab
pl)=——=a ,E:o

J=0

n—1
Assume thatn > 1 and p"(f) = a™" (t - a’b) holds. Then

P (1) = p(p" (1))

n—1

=pla™” I—Za’b
=0

n—1
a™ |:t— > aib:| —b

j=0

a
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n—1
t— Z ab—d'b
j=0

=0

This completes the proof of (i) by induction.

We now define a function N(t,s), whose value (we will see in Theorem 5.

when s, € T, with s < ¢, gives the cardinality, card(T}s ), of the set T ).
Definition 5.7. For a > 1, we define the function N : T, x T, — Z by

N(t,s) :=log, (Mg)

For simplicity, we will use the notation N(¢) := N(t,«), for r € T,,.

As presented in Estes [34, 78], some properties of the function N are given in
following theorem.

Theorem 5.8. Assume a > 1 andt,s,r € T,. Then the following hold:

(i) N(t.1) = 0;

(ii) N(t,s) = card(Tyy), if s < t;
(iii) N(s,t) = —N(t,s);
(iv) N(t,s) = N(t,r) + N(r,s).

Proof. Since

N(t,t) = log, (%) =log,1 =0,

357

O
8)7

the

we have that (i) holds. To see that (ii) holds, let s,z € T, withs < . If k =

card(T|s ), then t = o(s), and so we have that

= 2] ][] -

To see that (iii) holds, consider

N(t,s) = loga[u()] —1lo |:M(S)

) M] =N

The proof of (iv) is Exercise 5.4.
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5.3 Discrete Difference Calculus

In this section, we define a difference operator on our mixed time scale T, and study
its properties. Note thatif a = ¢ > 1 and b = 0, then D is the g-difference operator
(see Chap. 4), and if a = b = 1, then D is the forward difference operator.

Definition 5.9. Given f : T, — R, the mixed time scale difference operator is
defined by

b = LD SO

(1)

Theorem 5.10 (Properties of Difference Operator). Letf,g: T, - Rand a €
[0, 00) be given. Then for t € T, the following hold:

(i) Da = 0;
(ii) Daf(t) = aDf(1);

(iii) D(f(1) + g(1) = Df (1) + Dg(1);

(iv) D(F(1)g(1)) = (0 (1))Dg(r) + (Df (1))g(1):
V) D(f(D)g(1) = fF(ODg(0) + (Df(1)g(a(1):

. (0 ) _ 8WDf() — (Ds)f (@) .
oy o (50 O DBV i g(gio ) 2 0.
Proof. Since Do = - 0 we have that (i) holds. Also
w(?)
pafy - LEO —0 _ (f(a(t)) —f(t)) i)
p(2) ©() ’

so (ii) holds. To see that (iii) holds note that

D) + g(1)) = [f(o(0) + g(og)()t]) —[f(®) + g(®)]

_[fle®) =1 N glo (1) —g(®)
w(1) p(1)

= Df(¢) + Dg(r).

The proof of property (iv) is left to the reader. Property (v) follows from (iv) by
interchanging f(#) and g(¢). Finally, property (vi) follows from the following:

(f(O(t))) B (JLt))
D (@ ) _ \glo®) g(?)
g(®) w(?)

_ [(o(1)g(1) — g(a()f (1)
8(Mg(a())p(2)
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fle®)g(n) —f()g() +f(1)g() —glo())f ()

8(a()g(u (1)
fle@) —f®Y\ glo(®) — g
zg@( 0 ) fm( 1) )
g(1g(o (1))
_ 80Df (1) = (Dg))f (1)
8(Ng(o (1)) '
And this completes the proof. O

5.4 Discrete Delta Integral

In this section, we will define the integral of a function defined on the mixed time
scale T,. We will develop several properties of this integral, including the two
fundamental theorems for the calculus on mixed time scales.

Definition 5.11. Letf : T, — Rand c¢,d € T, be given. Then

N(d.c)—1
> fel(e)u(ei(c) ifc<d
d j=0
/f(’)D“: 0 ife=d
¢ N(c.d)—1

- ZO [ d)u(o’(d) ifc>d.
=

Theorem 5.12 (Properties of Integral). Given f,g : T, — R and c,d,l € T,,
the following properties hold:

@ [ f@Dt =~ [; f0)Dr;
(i) [*af()Dt = a [ f(1)Dr;
i) [(f(1) + gDt = [*f (0Dt + [ g()Dr:
(v) [ f()Dt = 0;
) [ 4 £()Dt = /. "f()Dt + fl" f(Dr;
i) ifd > c, then ‘ IS f(t)Dt‘ < [ )f@)|Dr:
(vii) iff(5) = g(t) for t € Tiea), then [* fF()Dt > [ g(d)Dr1, if d > c.

Proof. These properties follow from properties of summations. As an example, we
will just prove property (vi). To this end, we note that
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K(d.c)—1

> fe(@)ulo)(0)

=0

K(d.0)—1

PG CIG)]

=0

/c "ol

Definition 5.13. Assume c,d € T, and ¢ < d. Given f : T 4y — R. We say F is
an antidifference of f on T} 4 provided DF (1) = f(¢) for all ¢ € T} p(a)]-

IA

a

The following theorem shows that every function f : T, — R has an
antidifference on T, .

Theorem 5.14 (Fundamental Theorem of Difference Calculus: Part II).
Assume f : T, — Rand ¢ € T,. If we define F : T, — R by F(t) = fctf(s)Ds,
then F is an antidifference of f on T,.

Proof. Let F be as defined as in the statement of this theorem. Then for r € T,

f:(t)f(s)Ds - fctf(s)Ds _ f,g(t)f(S)DS _ SO p(r)
w(r) w(?) n(2)

DF(r) = =/,

which is what we wanted to show. O

Theorem 5.15. Assume f : T, — R and F is an antidifference of f on T,. Then a
general antidifference of f on Ty, is given by

GH)y=F@t)+C, teT,,

where C is an arbitrary constant.

Proof. Let F be an antidifference of f on T,. Set G(t) = F(t) + C fort € T,, where
C is a constant. Then

DG(t) =D[F(t) + C] =f(t) + 0 =f(t), for teT,.
Conversely, assume G(¢) is any antidifference of f on T,. Then
D[G(t) — F(t)] = DG(t) — DF(t) = f(t) —f(t) =0, te€T,.
From Exercise 5.6, there is a constant C so that

G)—F@)=C, teT,.
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Hence,
Fit)=G@t)+C, teT,,

as desired. O

Definition 5.16. We define the indefinite integral as follows:

/f(t)Dt =F()+ C,

where F(¢) is any antidifference of f(¢).

Theorem 5.17 (Fundamental Theorem of Difference Calculus: Part I). Assume
f: Ty - Randc,d € Ty,. Then, if F is any antidifference of f on T, it follows that

d d
/ f(@®Dt = / DF(t)Dt = F(d) — F(c).

Proof. Put

G(t) := /tf(s)Ds, t € Ty.

By Theorem 5.14 G() is an antidifference of f(f) on T,. Let F(r) be any fixed
antidifference of f(¢) on Ty. Then by Theorem 5.15 we have that

F(t) = G(t) + A, where A is a constant.

It follows that
d
F(d) — F(a) = [G(d) + A] — [G(c) + A] = G(d) = / f(s)Ds.

ad

Remark 5.18. Note that the Fundamental Theorem of Calculus tells us that given
f: T, - R,apoint ) € Ty, and a real number C, the unique solution of the IVP

Dy(t) = f(1)
y(to) = C

is given by y(¢) = ft; f(s)Ds + C, fort € T,.

The integration by parts formulas in the next theorem are very useful.
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Theorem 5.19 (Integration by Parts). Given two functions u,v : T, — R, if
c,d e Ty, c<d, then
d

d d
/ u(z)Dv(t)Dt:u(t)v(t)‘ - / V(o (1)) Du()Dt

and

d

d d
/ u(o(t))Dv(t)Dt = u(t)v(t)) — / v()Du(t)Dt.
Proof. By the product rule
Dlu(t)v(t)] = v(o(£))Du(t) + (Dv(t))u(z).
Using the fundamental theorem of calculus, we get
d
/ u(t)Dv(1)Dt 4+ v (o (£))Du(t)Dt = u(d)v(d) — u(c)v(c).

It follows that
d d
/ u(t)Dv(t)Dt = u(t)v(t)|f — / v(o (¢))Du(t)Dt.

This proves the first integration by parts formula. Interchanging u(¢) and v(r) leads
to the second integration by parts formula. O

5.5 Falling and Rising Functions

In this section, we define the falling and rising functions for the mixed time scale
Ty, which are analogous to the falling and rising functions for the delta calculus
in Chap. 1. Several properties of these functions will be given, including the
appropriate power rule.

First we define the appropriate rising and falling functions for the mixed time
scale calculus.

Definition 5.20. Assume n € N. We define the rising function, 1*, read “f to the n
rising,” by

n—1
= l_[af(t), 0= 1,
=0



5.5 Falling and Rising Functions 363

for t € R. We also define the falling function, 2, read “f to the » falling,” by
n—1
m=1]l0. L:=1
j=0

fort e R.

Definition 5.21. For n € Z, we define a-square bracket of » by

at—1
fora>1
[n, =14 a—1

n fora =1

Theorem 5.22 (Properties of a-Square Bracket of n). Forn € Z, anda > 1,

(i) [0], = O;

(ii) [l]a =1
(iii) [n]e + @ = [n + 1]a:
@iv) a[n], + 1 = [n+ 1]4;

W) [nla = - [Z]

Proof. To see that (iii) holds for a > 1, note that

. a —1 . an+1_1
[n], +d" = +ad"=——=[n+1],.
a—1 a—1

Also (iii) trivially holds for a = 1.
To see that (iv) holds for a > 1 note that

at—1 atl'—a a-1
anly +1=a +1= +
a—1 a—1 a—1
an+l_1
=—— =[hn+1],.
a—1

Also for a = 1 we have that
anle+1=n+1=[n+1],.
Property (v) holds for a > 1, since

a"—1 _,at—1 1],
[_n]a = =—a —— =———.
a—1 a—1 a’

Furthermore, (v) is trivially true fora = 1. ad
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We may use the a-square bracket function to simplify the expressions that we
found for the forward and backward jump operators.

Theorem 5.23. For n € N the following hold:
(i) o™(t) = a"t + [n].b;

(i) p"(r) = a™"t + [-nl.b:

(i) o"(1) — 1 = [n]apu(?).

Proof. In order to prove property (i), we have by part (i) of Theorem 5.5 that

n—1
a—1

a"(t) =a’1t+b2(;aj=a"t+b(a_l ) = a"t + [n].b.
=

Similarly part (i) of Theorem 5.6 gives us that (ii) holds. Finally, using property
(i) we have that

o"t)—t=dt+[np—t= (@ -+ (an _ll)b

a—

- (an — 1) [(a@ — 1)t + b] = [n]ap(2).

a—1

and hence (iii) holds. O
Next we prove a power rule.

Theorem 5.24 (Power Rule). Forn € N the following holds:
D" = [n](a()"", for teR.

Proof. For t € R we have that

n—1 n—1
[107(a(0) — 1o/ (0) n—t
5 =0 j=0 N [U(n) (1) — t] j
br= () B0 E"j(”
0”@~
=2 e (0)
(1) Jl:!
= [l o))",

where in the last step we used part (iii) of Theorem 5.23. O
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Definition 5.25. Forn € Z and a > 1, we define the a-bracket of n by

a'—1
{n}a = ((l - 1)an—l

n fora =1.

fora > 1

The following theorem gives us several properties of the a-bracket function.

Theorem 5.26. The following hold:

() {0}a =0;
(ii) {l}a =1
(iii) {n}a = LEZ]_“I;

(iv) {n}e = —a[—nla;

W) o(t) = p" (1) = {n}ap (o).

Proof. We will just prove part (iv) holds when a > 1. This follows from

[n]a

{n}d - a— l = _a[_n]a»

where the first equality is by part (iii) of this theorem and the second equality is by
part (v) of Theorem 5.22. O

Theorem 5.27 (Power Rule). For n € N the following holds:

= {n}", for teR.

Proof. To establish the result, we calculate
n—1 n—1
TR - T A0
[o@]* = _ j=0 =0
p(1) p(1)

n—1 n—1
o (1) ]_[1 P (D) =" (1) ]_[1 P ()
J= =

(1)
n—2

_ o=
== /]_[Op’(t)

Dtt =

= {n}atﬂ,

with the last equality by part (v) of Theorem 5.26. O
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5.6 Discrete Taylor’s Theorem

In this section we will develop Taylor’s Theorem for functions on T, . First we define
the Taylor monomials for the mixed time scale T, as follows.

Definition 5.28. We define the Taylor monomials for the mixed time scale T, as
follows. First put hy(t,s) = 1 for t,s € T,. Then for each n € N; we recursively
define 4,(t, s), for each fixed s € T, to be the unique solution (see Remark 5.18) of
the IVP

Dy(t) = hn—l(ta S)’ t €T,
y(s) = 0.

In the next theorem we derive a formula for %, (¢, s) (see Erbe et al. [76]).

Theorem 5.29. The Taylor monomials, h,(t,s), n € Ny, for the mixed time scale
T, are given by

Lt—o*(s)
ha(t,s) = _
=

fort,s € T,.

Proof. For n € Ny, let

no ke
fn(f,S)i=H%, for t,s€T,.

k=1

We prove by induction on n, for n € Ny, that f,(¢t,5) = h,(t,s) for t,s € T,.
By our convention on products fy(z,s) = 1 = hy(t,s), and it is easy to see that
fit,s) = t—s = h(t,s) fort,s € Ty. Assume n > 1 and fi(t,5) = h(z,s) for
t,s € Ty, 0 < k < n. It remains to show that f,,1(z,s) = h,+1(¢,s) fort,s € T,.
First, note that

nt+l k-1 —o" — kl
ﬁH_l(t’S):l_[t o (s) _ tn+1(s)l—[t k] (S)

k=1 [Kla la k=1

_t—=0"(s)
- [l’l+1] fn([,S)

_1=a"(s)
=, e

by the induction hypothesis. Fix s € T, then using the product rule
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zmﬂmsz( “”h(n)

[n+ 1],
_ 20 =00 i)
T hrm OV
_ (at + b[n_in;]a_ [n]ab)ﬁl (1, 5) + [f( 1L using Theorem 5.23, (i)
_at _“n[_lii_li)(l[n 1 )fn 1(t,s) + [f" @s L using Theorem 5.22, (iv)
_ n—1
_ a(f[%l]a(s))fn ((1,5) + [ﬁlgl: “;L using Theorem 5.23, (i)
_ aln) f(t, s) n Jult,5)
[n+ 1], [n+ 1]
_aln],+1
_[+U'Mt)
= fo(t,5) using Theorem 5.22, (iv)
= hn(t, S).

Since, for each fixed s, y(¢) = f,+1(, s) solves the IVP
Dy(t) :hn(tss)» ter-[[‘ot
y(s) =0,

we have by Remark 5.18 that &, (¢, s) = fu+1(, s) for t € T,. Finally, notice that
since s € T, is arbitrary we conclude that A, (¢, s) = fr41(¢,s) forallt,s € T,,.
O

Definition 5.30. For n € Ny, we define the a-falling-bracket (of n) factorial,
denoted by {n},!, recursively by {0},! = 1 and for n € N,

nya! = {nja (in—13.1).

Definition 5.31. For n € Nj, we define the a-rising-bracket (of n) factorial,
denoted by [n],!, recursively by [0],! = 1 and for n € N;

[n]a! = [n]a ([n - l]a!) .

The following theorem is a generalization of the binomial expansion of
(t—1"=0,neNj.
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Theorem 5.32 (Estes [34, 78]). Assumen > 1andt € T,. Then

n_(=1)i <t7> (=)

P [i]aH{n — i}a!

Proof. For n € Ny, consider

n(=1) (t;) (=)
nll) = BT ETEE——
0 ; [[]lo¥n —i}4!
We will prove by induction on n that £, (f) = 0. For the base case n = 1 we have

fiy=t—t=0.

Assume n € Ny and f,(f) = 0. It remains to show f,, () = 0. Using the product

rule
1 (=1 (7 (fﬁ)
Dfnﬂ(z):D(Z i ,{() )
i=0

n+1—i},!
(e GO () )
‘D( PR R R TE

& (=D (0@) T (o))t
_; [—1]Mn+1 =i

D () )y ewy e
B T R PR I

_J D e e g (1 () (=)
SR T W PR PP O) | T

__y D0 emy= O () =)
i=0

[l]a'{n - l}a' i=0 [l]a'{n - l}a‘

= —fulo @) +/u(0)
=0.

Since Df,+1(f) = 0, we have that f,4(t) = C, with ¢t € T, for some constant C.
Note that ;4 () can be expanded to a polynomial in ¢, and that each term of the sum
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n+1 (—1)l (Z‘IT) (t’ﬁ)
Frr () = Z [[a'{n + 1 —i},!

i=0

is divisible by ¢. Thus, the polynomial expansion of f,4;(f) has no constant term
and by the polynomial principle, C = 0. We have shown that f,4(f) = 0. This
completes the proof by induction. O

Next we prove an alternate formula for the Taylor monomials due to
Estes [34, 78].

Theorem 5.33. Assumen € Ngandt,s € T,. Then

v (=1 (o) ()
= 2

i=0

Proof. Fix s and let

v (=1 (o) ()
PO = 2

i=0

We will show by induction that f;,(¢,s) = h,(¢,s). The base case fy(t,s) = hy(t, s)
follows from the definitions. Assume that n € N; and f,(¢t,s) = h,(¢,s). From
Theorem 5.32, we know that f; (s, s) = 0. Also

n (_1)! (S;> (ILI_’)
Dfyt1(t,s) = D ; [a¥n + 1 —i}a!

e () )

T Tt 0!
= fult,8) = hu(1,5).
Hence, for each fixed s € Ty, y(¢) = fu+1(t, s) solves the IVP
Dy(t) = h,(t,s), teT,
y(s) = 0.

So, by the uniqueness of solutions to IVPs (see Remark 5.18), we have that
Ju+1(t,8) = hy41(2, s) for each fixed s € T,,. This completes the proof by induction.
O
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Later we are going to see that we need to take the mixed time scale difference of
h, (¢, s) with respect to its second variable. To do this we now introduce the type-two
Taylor monomials, g,(t, s), n € Ny.

Definition 5.34. We define the type-two Taylor monomials g, : T, x T, — R,
for n € Ny, recursively as follows:

go(t,s) =1 for ts€ Ty,

and for each n € Ny, g,(t,s), for each fixed s € T,, is the unique solution
(see Remark 5.18) of the IVP

Dy(t) = _gl‘l—l(o-(t)vs)a te Toc
y(s) = 0.
In the next theorem we give two different formulas for the type-two Taylor
monomials.

Theorem 5.35. The type-two Taylor monomials are given by

O () (=) i
g”(t,s)=h,,(s,t)=ZW_n ko

i=0
fort,s € T,.
Proof. We prove by induction on n that h,(s,1) = g,(t,s), t,s € Ty, n € N.

Obviously this holds for n = 0. Assume n > 0 and h,(s, 1) = g,(t,s) for t,s € T,,.
Fix s € T, and consider

(< 1) )(n+l i)
Dhyyi(s.) =D > [l]a'{;SJrl—l}a

i=0

n+1 i i—1 —i
N EDHe@)T ()
2 li— 1.+ 1—i},!

& D)) ()
‘_; [ila{n — %!

= —h,(s,0(t)) = —g,(a(t),s) by the induction hypothesis

by Theorem 5.24

for t € T,. Also, by Theorem 5.32, h,11(s,s) = 0. So, y(t) = h,+1(s, t) satisfies
for each fixed s the same IVP

Dy(t) = —gu—1(0 (1), 5)
y(s) =0



5.6 Discrete Taylor’s Theorem 371

as g,+1(, s). Hence, by the uniqueness (see Remark 5.18) of solutions to IVPs

n (—l)i 7 (SD)
For1(t,8) = hpyi (s, 1) = Z ( )

i—0 [iatin —ija!

fort € T,. o
We now can state our power rule as follows.

Theorem 5.36. Assume n € Ny. Then for each fixed s € T,
Dhy1(t,5) = hy(t,5)
and
Dhyt1(s,1) = —hu(0 (1), 5)

forteT,.

Proof. By the definition (Definition 5.28) of A, (¢, s) we have for each fixed s € T,
that Dh,,1(t,s) = h,(t,s) for all t € T,. To see that Dh,4+(s,t) = —h, (0 (), s) for
t € Ty, note that by Theorem 5.33

ntl (=1)f (ﬁ) (smH1=0)
Dm““”%zDZ;mgm+1—ag

vt (1 (fo )T (241
[i— alin+ 1 —it,!

G (0T ()
——Z; [ila6n — !

i=1

= _hn(a(t)’ S),

which completes the proof. O

Theorem 5.37 (Taylor’s Formula). Assume f : Ty, — R, n € Nyand s € T,.
Then

f@) = palt,s) + Ry(t.s5), 1 €T,

where the n-th degree Taylor polynomial, p,(t, s), based at s, is given by

palt.s) = ) D'f(s)ut,s), 1€ T,

k=0
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and the remainder term, R, (t, s), based at s, is given by

R,(t,s) = / th,,(t,o(r))D”Hf(r)Dr, teT,.

Proof. We prove Taylor’s Formula by induction. For n = 0 we have

Ro(t.s) = / ho(t,0(z))Df ()Dt = / Df(t)Dt = f(t) = f(s).
Solving for f(¢) we get the desired result

f(t) =f(S) +R0(t» S) :PO(t» S) +R0(t7 S), re Ta~

Now assume that n > 0 and f(¢) = p,(t, s) + R,(t,s), for t € T,. Then integrating
by parts we obtain

Rua(t.5) = f s (1.0 (D)D" (D)

= hn+l(t’ T)Dn+lf(f)‘i=3 + /t hn(t’ U(T))Dn+1f(f)DT

N

= —hup 1 (2, 5) D" (s) + / l h(t, 0 (0))D" T f(7)Dt

= _hn+1(tv S)Dn+1f(S) + Rn(t» S)
= —hu1 (6, D" f(5) + £(2) = pult. s)
= —put1(t,8) + £ (1).

Solving for f(¢) we obtain the desired result

f(t) :pn-i-l(tv S) + Rn-H(tv S), te Ta'

This completes the proof by induction. O
We can now use Taylor’s Theorem to prove the following variation of constants
formula.

Theorem 5.38 (Variation of Constants Formula). Assume f : T, — R and
s € Ty. Then the unique solution of the IVP

Dyt =f(t), teT,
Diy(s) =Ci, 0<k<n-—1,
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where Cy, 0 < k < n— 1, are given constants, is given by

n—1

Y0 = - Cln(t.9) + [ b o@D,

t
k=0 s
fort € T,.

Proof. Tt is easy to see that the given IVP has a unique solution y(¢). By Taylor’s
Formula (see Theorem 5.37) applied to y(¢) with n replaced by n — 1, we get

n—1 t
K

Y0 = 3 DO + [ s to@)D(eDe

k=0
n—1 t

= Y G5 + [ b0 @D
k=0 §

fort € T,. O

Example 5.39. Consider the mixed time scale where « = 1 and o(¢¥) = 2t + 1
(soa = 2 and b = 1). Use the variation of constants formula in Theorem 5.38 to
solve the IVP

DXyt =t—1, teT
y(1) =2, Dy(l) =0.

By the variation of constants formula in Theorem 5.38, we have that
t
¥() = 2ho(2, 1) + Oy 2, 1) + / i (1, 0())(s — 1)Ds
1

=24 /thl(t, o (s))h (s, 1)Ds.
1

Integrating by parts we calculate
t t
y(t) = 2 + hy(t, $)hy(s, 1)‘ T / hy(s, 1)Ds
5= 1
t
=2+ hs(s, 1)) =2+

=2+ %(l— D@E—3)¢—17),

for t € T;. The reader could check this result by just twice integrating both sides of
the equation D?y(f) = ¢t — 1 from 1 to ¢.
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5.7 Exponential Function

In this section we define the exponential function on a mixed time scale and give
several of its properties. First we define the set of regressive functions by

R ={p: Ty — C suchthat 1+ p(r)u(t) # 0 for t € Ty,}.

Definition 5.40. The mixed time scale exponential function based at s € T,
denoted by ¢,(t,s), where p € R is defined to be the unique solution, y(f), of the
initial value problem

Dy(1) = p(t)y(0), (5.1)
y(s) =L (5.2)
In the next theorem we give a formula for e, (¢, s).

Theorem 5.41. Assumep € R and s € Ty. Then

K(t,s)—1 ) )
I [+ p@ e, >
j=
ep(t,s) = 1, ift=s
—K(1,5) 1
' ift <s.

S T pPOR@ )]

Proof. It suffices to show (see Remark 5.18) that y(f) = e,(t,s) as defined in the
statement of this theorem satisfies the [VP

Dy(t) = p(y(t), teT,
y(s) = 1.

Itis clear that e, (s, s) = 1. It remains to show that De,(t, s) = p(t)e,(t, s). Consider
the case that t = o*(s) for k > 1. Then

N(o(t),s)—1

1 . ,
De,(t,s) = o) ,l;[) [1+p(07(s)) 1 (07(9))]
K(1.5)—1

1_[ [14p(c/(5) 1 (07(5)]

Jj=0

_
(1)
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N(t,5)—1 ) )
P @) (") T [14p(7©) 1 ()]
— =
a (1)
= p(t)ey(t,s).
Consider the case when ¢t = s. Then,
Dey(s, s) = [ +pEe)uE)]—1 = p(s) = p(s)ey(s,s).

()
Consider the case when t = p(s). In this case it follows that

1

R ICOYAT0)
w(p(s))

_ P (p(s))
L+p (p(s) 1 (p(s)

= p (p(s) ep(p(s). 5).

Dey(p(s). 5)

Finally, consider the case when t = p*(s) for k > 2. In this final case it then holds
that

—N(o(1),s)

1
Dey(t,s) = e} Jl] L+ (p9(9) 1 (p9(5))
—N(t,5)

1
u E L+ p (p0)) 1 (0 (5))

1 1
= m |:1 1 ¥ (p(—N(”‘V))(S)) L (p(—N(t.s)) (s)):|

—N(o(1).5) 1
g 1] T+ (096) 1 (PD )

—N(o(1).5) 1

_ p(?) l—[
Ltpu@) o 14p(p0©) 1 (p9(s))

= p()ey(t,5),

which completes the proof. O
Next we define an addition on R.



376 5 Calculus on Mixed Time Scales

Definition 5.42. We define the circle plus addition, @, on the set of regressive
functions R on the mixed time scale T, by

(p® )@ = p@) +r@) + n@OpOr@), 1T,

Similar to the proof of Theorem 4.16, we can prove the following theorem.

Theorem 5.43. The set of regressive functions R with the addition & is an Abelian
group.

Like in Chap. 4, the additive inverse of a function p € R is given by
__P
1+ up

op:
We then define the circle minus subtraction, &, on R by

pOr:=pa(6r).

It follows that

p—r
1+ pr’

per=

In the following theorem we give several properties of the exponential function
ep(t,s).

Theorem 5.44. Lett,s,r € T, and p,l € R. Then the following properties hold:

(i) eo(t,s) = 1;
(ii) ep(S, S) =1;
(11]) Dep(t, S) = P(l)ep(t, S),
(iv) ey(a(?),5) = [1 + p(O)(n)] ep(t, s);
(V) ep(p(t), S) = el’(t’ S)

v [T+ (o) 1 ()]
(vi) if 1 +p()u(t) > 0 forall t € Ty then ey(t,s) > 0;

(vii) e,(t, 5)ey(s, 1) = ey(t,1);

(viii) ep(s, 1) =

= eep(t’ S);

ey(t,s)
(ix) e,,%t, s%el(t, s) = epai(t, s);
e, s _
(x) er(ts) eiop(t,5).

Proof. The proof of this theorem is very similar to the proof of Theorem 4.18. Here
we will just prove first half of part (viii). Consider the case ¢ > s. Then
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N(t,5) 1

ep(s, 1) = ]1] 1+ p (0/(0) (P (1))

N(t,s)

1
P (P (@V0I()) i (/0N 0(5))

I
:l

N(s
1
l:[ O—N(t.s)—j(s)) m (GN(zA,.s)—j (s))

N(t.5)—1 | |

a Jl:! L+ p(0/(9) n(07(s))  ep(ts)
When ¢ = s, it follows that e, (s, s) = ep(+s) = 1. Finally, consider the case when
t < s. Then
N(s,t)—1
o= ] [1+p(@®)n(®)]
j=0
N(s,1)—1
= [ [+ (""" 76) n(e"" )]
j=0
N(s,t) 1
= [L+p(@®)) 1 (P $))] = ——.
CON= i
which was to be shown. O

Next we define the scalar dot multiplication, ®, on the set of positively regressive
functions R :={p € R: 1+ u(®)p(t) >0, t € Ty}.

Definition 5.45. We define the scalar dot multiplication, ®, on R+ by

@op) @ = LHHOPOF =1
p(1)

Similar to the proof of Theorem 4.21 we can prove the following theorem.
Theorem 5.46. Ifa € Randp € R™, then
ey (t,a) = eqop(t, a)

forteT,.

Then similar to the proof of Theorem 4.22, we get the following result.
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Theorem 5.47. The set of positively regressive functions R on a mixed time scale
with the addition @ and the scalar multiplication © is a vector space.

5.8 Trigonometric Functions

In this section, we use the exponential function defined in the previous section to
define the hyperbolic and trigonometric functions for the mixed time scale.

Definition 5.48. For £p € R, we define the mixed time scale hyperbolic cosine
function cosh, (-, s) based at s € T, by

ep(t’ S) + e—p(ta S)
2 b

cosh,(t,5) 1= teT,.
Definition 5.49. Likewise we define the mixed time scale hyperbolic sine function
sinh, (-, 5) based at s € T,, by

ep(t,s) —e_p(t,5)

sinh, (¢, 5) 1= 5 , teT,.

Similar to the proof of Theorem 4.24 one can prove the following theorem.

Theorem 5.50. Assume £p € R and t,s € T,. Then the following properties
hold:

(i) cosh,(s,s) = 1;
(ii) sinh,(s,s) =0;
(iil) cosh_p(t,s) = cosh,(t;s);
(iv) sinh_,(t,s) = —sinh,(z, 5);
(v) Dcoshy(t,s) = p(¢) sinh,(t,5);
(vi) Dsinh,(t,s) = p(t) cosh,(t,s);
(vi) cosh’(z,5) — sinh>(t,5) = e_,2(t,5).

Definition 5.51. Assume +ip € R. Then we define the mixed time scale cosine
function cos, (-, s) based at s € T,, by

ep(t,s) + e_p(t,s)
2 9

cos,(t, s) := teT,.

Definition 5.52. We define the mixed time scale sine function sin,(-,s) based at
s € Ty by

eip(tv S) - e—i[) (tv S)
2i

sin, (t, 5) 1= , teT,.

Similar to the proof of Theorem 4.27 one can prove the following theorem.
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Theorem 5.53. Assume +ip € R and t,s € Ty. Then the following properties
hold:

(i) cosy(s,s) = 1;
(i) siny(s,s) = 0;
(iii) cos_p(t,s) = cos,(t,s);
(iv) sin_,(t,s) = —sin,(t,s);
(v) Dcosy(t,s) = —p(t) sin, (2, 5);
(vi) Dsin,(t,s) = p(t) cos,(t,s);
(vii) cos,(t,5) + sinf,(t, 5) = e, (1,5).

Similar to the proof of Theorem 4.26 one can prove the following theorem.
Theorem 5.54. Assume *+ip € R and t,s € Ty. Then the following properties
hold:

(i) sing,(t,s) = isinh,(z, 5);
(ii) cos(t,s) = cosh,(?, s);
(iii) sinhy,(t,s) = isin,(z,s);
(iv) coshy,(t,s) = cos,(t,s),
forteT,.
It is easy to prove the following theorem.

Theorem 5.55. Ifp € R, then a general solution of
Dy(1) = p()y(), t€T,
is given by
y(t) = cep(t,a), teT,.

Theorem 5.56. Assume t,s € T, and p is a constant. Then the following Taylor
series converge on Tis o).

(i) €(t.5) = gopﬂhn(t, 9. if peR;

(i) siny (z,5) = fo(—l)"p2"+lhzn+l(r, 9. if tipeR:
(i) cos,(t,s) = iojo(—l)”pz"hz,,(t, s), if +ipeR;
() sinhy(1.5) = & 2 o6, i E£p e R

[ee)
(v) coshy(t,s) = Y. p*ha(t,s), if +peR.
n=0

Proof. Fix t € T[s00). Then for some k > 0, it holds that = o*(s) > s. Let
M= max{|e,,(r, s)| : T € Tyyq}. Then for n > 1 we have
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t
[R,(2,8)| = / h (2, o(r))D"+lep(r, s)Dt

t

= /h,,(t,o(r))p"“e,,(r,s)Dr
t
< M|p|"*! [ h,(t,0(t))Dt
= M|p|""! |hysr (1, 5)] . (5.3)
Now if m > k, we have that
m+1

t— i—1
Ratt.9)] =M™ 1.9 = Mlpp TT =72,
a

i=1
Note that since m > k, the product in the above expression contains the factor

t—o*(s)  t—t
k+1.  k+1],

Thus, for all m > k,
R, (t,5) = 0.

Hence, by Taylor’s Formula (Theorem 5.37) the Taylor series for e,(t, s) converges
for any t € T[sc0). The remainder of this theorem follows from the fact that the
functions cos,(t,s) sin,(t,s), cosh,(t,s), and sinh,(¢,s) are defined in terms of
appropriate exponential functions. O

Theorem 5.57. Fix s € T,. Then the Taylor series for each of the functions in

Theorem 5.56 converges on T (oo 5) when |p| < ﬁ

Proof. Lets € T, be fixed. We will first prove that if |p| < @, then the Taylor
series for e, (¢, s) converges for each 1 € T(_co). Fix t € T(—co,5). We claim that for
eacha > 1

0" =t uls)
lim = .
n—00 [n]a a

54)

First we prove (5.4) for a = 1. This follows from the following calculations:

o) —t Cod s+ [n—1]b—t
lim —————— = lim

n—00 [n]a n—>00 [n]a
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. S+[n—1b—t
= lim ——
n—>00 1)1
= lim
n—00 n

Next we prove (5.4) for a > 1. To this end consider

1

o) —t Cod s+ m—1]b—1t
lim ———— = lim
n—00 1], n—00 [1].
. an—ls + a”__ll—lb —¢ N
= lim m by the definition of [n],
n—00 ‘;_1
o (a=Da" s+ @' =1)b—(a— )t
= lim
n—o00 a*— 1
_(a—Ds+b
N a
A0
ot

Now consider the remainder term

R.(t,5) = /,hn(t,a(t))D”Hep(t,s)Dt = /thn(t,a(t))p""’lep(t, s)Dr.

It follows that

IRu(t. )| < [p]"*! / n(2.0: (D) lep(z. 9)|D.

If we let

M = max{|e,(t,s)| :t <7 <s—1},

then

IRa(t, )| < Mip|™! / (b, 0(2) Dt
t

L t—oF (o)
[ [k]a

— M|p|n+1 /S
t

k=1

— M / (1) (t.0())Dr

= M|p|n+1 [(_1)n+1hn+1(tv T)]zz:

s—(n—l)b—t_lz_&

a

by Theorem 5.5, (i)

381
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= M|p|""' (=1)" hygr (1. 5)

n+1 k I(S)—[

. M| |n+1
H kla
Using (5.4) and |p| <m , there is a number r and a positive integer N so that
n—1 —t
0§|p|¢§r<l, for n>N.

(7]
It follows that

ok l(s) —t

W

oo
Tim R, (t.5)] = lim M Ipl
k=1
Therefore, by Taylor’s Formula,

oo
ep(t,s) = Zp"hn(t, s)
n=0

fort € T(—oo.)-

The remainder of this theorem follows from the fact that the functions cos, (¢, 5)
sin, (t, s), cosh,(t, ), and sinh, (¢, s) are defined in terms of appropriate exponential
functions. O

Theorem 5.58. For fixed t,s € Ty, the power series

F0) =3 ()2

n=0

converges for |x| < ——

()

Proof. First, consider the power series

We will perform the ratio test with this series:

tn+1
{n+ 1},

ap+1
ay

lim =
n—o00

n—>oo
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_ 1 p" (1)
= im |—7F—
n—00 {n + l}a
. |a"t+ [—nl.b t [n].b
= lm|——————| = — .
n—>00 [n + 1],1 n—00 [n —+ 1]a [n + 1]a
an

Since lim
n—oo [n 4+ l]a

= 0, we have that

. Ap+1 Sm [n]ab
lim = lim |—— | = lim
n—o0 | q, n—o0 [ {n + 1}, oo |[n+ 1],
I (@ —1)b b
= lim |[—————| = =,
n—»00 (a”'H -1 a

a . .
So, A(x) converges when |x| < A Next, consider the power series

( l)n n
B(x) =
> i
Again, we perform the ratio test. Then

0" (s)
1l

a's + [n].b
im —————
oo [+ L,

an+1
a

lim
n—>o00

1m
n—>00

i (5 )
i (7

a'(a— 1)s [n].b
[n + l]a)

— fim a'(a—1)s L [n].b
] e an+1 -1 [n + 1]a

_a=Ds b _pl)

a a a

So B(x) converges when |x| < %. Note that u(s) > b, so L. for all s.
(s

w(s)

Now, f(x) = A(x)B(x). So, f(x) converges when |x| < ? O
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5.9 The Laplace Transform

Most of the results in this section are due to Auch et al. [39]. In this chapter when
discussing Laplace transforms we assume that r € T, satisfies r > o > 0, and we
let T, = {t > r:t e T,}. Also we let R¢ denote the set of regressive complex
constants.

Definition 5.59. If f : T, — R, then we define the discrete Laplace transform of
f based at r € T by

L4F}(s) = / ee(0 (1), NF (1) D1,

r

where L,{f} : R — C.

Definition 5.60. We say that a function f : T, — R is of exponential order k > 0
if for every fixed r € T, there exists a constant M > 0 such that

lf(t)| =< Mek(tv r)’

for all sufficiently large ¢ € T,.

Theorem 5.61. Suppose f : T, — R is of exponential order k > 0. Then L, {f}(s)
exists for |s| > k.

Proof. Since f is of exponential order k > 0, there is a constant M > OandaT € T,
such that |[f(f)| < Mey(t,r) for t > T. Pick N € Ny such that t = o¥(r). Then we
have

< / leas(@(1). NF(H) | Di

/T en(0 (). P (1) Dr

Y /T " leas(@ (). Pex(t. ) | Dt

=M - ! t Dt
= , ‘mekes(y’”)
_ pe'(m) i
ZN THsntoiey e’
| du(r)
=M s e @O |
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We will show that this sum converges absolutely for |s| > k by the ratio test. We have

(ai+lﬂ(r)€kes(0i+l(”)s r) ) ( 1+ sa'u(r) )'
1+ sait pu(r) au(r)eres(oi(r),r)
— tm (aekex(a"“(r),r)) ( 1+ sa'u(r) )

i—00 1+ atlsu(r) eros(0i(r), 1)

— lim ( aeyos(0'(r), r)(1 + ka'pu(r)) ) ( 1+ sa'u(r) )‘
(I +a™*lspu(r)(1 + sa'ju(r)) ) \exes(o’(r), r)

a+ ka™ u(r)

lim
i—00

i—00

=lim | —————
oo |1 + satu(r)
| k() k
= lim |- F— | = —.
imoo | o spu(r)| s

Hence the sum converges absolutely when |s| > k, and therefore £,{f}(s) converges
if |s| > k. |

Theorem 5.62 (Linearity). Supposef,g: T, — R are of exponential order k > 0,
and c,d € R. Then

LAcf + dg}(s) = cLAf}(s) + dLAgH).
for |s| > k.

Proof. The result follows easily from the linearity of the delta integral. We have, for
|s| > k, that

LAcf + dgi(s) = / (cf (1) + dg(1)ees(o (1), 1) Dt
—c [ feac0.nDr+d [ geao.n D1
= cLAf}(s) + dLAg(s).
which completes the proof. O

The following lemma will be useful for computing Laplace transforms of various
functions.

Lemma 5.63. Ifp,q € R¢ and |p| < |q|, then for t € T, we have

lim e t,r) =0.
t—00 peq( )
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Proof. Letp,q € R¢ with |p| < |q|. First, note that

im —1 +pu®) im —“([ rr
t—oo 1 + qu(t) t—00 m +gq
= ‘1—7' <1, since |p| < |ql.
q
This implies that
00 i
hm \ee(tr)|—h ep(t.7) :HM =
= oo ley(t,r)| g1+ qu(oi(r)
Thus, limy o0 €poy(t, 1) = 0. O

Remark 5.64. In particular, note that if s > 0, then

lim egy(t, r) = 0.
—>00

Theorem 5.65. Let p € R€. Then for |s| > |p|, we have

Lofep(1. I} (s) = ——

Proof. First, note that e, (¢, r) is of exponential order |p| since

K(tr)—1

.0l = ] |1 +pr'()

i=0
K(t,r)—1

[T 1+l () = ey ..

i=0

IA

Thus, if |s| > |p|, we have

Lo{ey (1.} (s) = [ ¢ (0 (1). ey (1. Dt

o0 1
- / €1 D

‘_/ epos(t:r) D

Then note both that Deyg(7, 1) = (p © 5)(t) epo5(t, ) and that (p © 5)(1) = ; +w ( 5
This gives us
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1 o0
Loley(t.}0) =~ / Deyos(t. 1Dt

1 .
= |:z1—1>I£o epos(t,r) — epos(r.r )]

p—s
1
==
since lim e,g(t, r) = 0 by Lemma 5.63. O
=00

The following results describe the relationship between the Laplace transform
and the delta difference.

Lemma 5.66. If f : T, — R is of exponential order k > 0, then Df is also of
exponential order k > 0.

Proof. Let |[f(t)] < Me(t, r) for sufficiently large t. We will prove this lemma by
showing that

Df (1)

<M< o0
ex(t,r)

im
—>00
First, consider

Df (1)

er(t,r)

_ |[fle@) —f®
u(t)er(t, r)
_ e+ Fol
T [u@e(t, )]
- Mey(o(t), r) + Mei(t, r)
[u()ex(t, )|
_ Men(t, ) (1 + k(1)) + Mey (1, r)
- (et r)
_ Mey(t,r) 2 + k()
u(t)er(t, r)
2M

< —— + Mk.
wu(r)

Thus, we have

Df (1)

< Mk.
er(t,r)

lim
1—>00

Then, for any € > 0 and ¢ sufficiently large,

IDf()] = (Mk + €)er(t.7).
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Therefore, Df is of exponential order & > 0. O

Corollary 5.67. Iff : T, — R is of exponential order k > 0, then D"f is also of
exponential order k > 0 for every n € N.

To see that the corollary holds, use the previous result.
Theorem 5.68. Iff : T, — R is of exponential order k > 0 and n € N, then

n—1

LAD'f(D}(s) = "L AfY(s) = ) " TDf (),

i=0

for |s| > k.

Proof. We will proceed by induction on n. First consider the base case n = 1. Using
integration by parts we have

LADF(D}(5) / ¢ (0 (1), ADF (1) Dr

—>00

= eos(t,Nf (1)

+ / #ﬂ@ees(r, Pf (1) Dt

f(
gs(r7 r)

t=r

s / ces(0 (1), (1) Dt —

= sL (D} (5) = f ().

Now assume the statement is true for some n > 1. Then by the base case we have

LAD™f(1)}(s) = sLAD"f(1)}(s) — D"f (1)

n—1
=5 {sm{f}@ - s"—‘—iDl‘fm} ~D'f(r)

i=0

n—1
= s"MLAfYs) = )" TDI () = DY ()

i=0
=S"TLALYs) = Y S TDF (),
i=0

as desired. O
To show that the Laplace transform is injective (Theorem 5.70) and therefore
invertible we will use the following lemma.

Lemma 5.69. Letf : T, — R be of exponential order k > 0. Then

lim £,{f}(s) =0.



5.9 The Laplace Transform 389

Proof. Lett, = o"(r). Since f is of exponential order %, there is a constant M > 0
and a positive integer N such that |[f(z,)| < Mey(t,, r) for all n > N. Then we have

Bim |LAf3()] < lim Y 1 (1) eas(turr, 1] (i)
n=0
N—1
= 1im Y | ()llees(ur1. )l (tn)
n=0

o0
+ lim > Jeay(tatr. )1 () |12 (t)
S‘)OOn:N

o0
<M lim > ety r)leas(tut1, 1)1t
§—>00 =N

<M Jim Y ety nI[1+ Os(t)p(t)lees (. 1) (1)

n=N

o0
. ek(tnvr)
=M lim ) ‘ t,
Hoo,;v [+ sutleston )
o0
. ek(tn»r)
<M1 t,).
=M lm ) [ G 140
We now show that
‘1 + ku(r) - ’1 + kp(ty)
L+sp(r) |~ [ 1+ sp(tn)

for N(s), I(s) > k and for all integers m > 0. To this end, we prove that

|1+ kp () (1 4 sp(@n))] = |(1+ k() (14 s ()]

holds by writing s = N (s) + iJ(s) and showing

(I + kp(r) (1 4+ R p(tm)) = (1 + k() (1 4 Rs)p(r)

and

() pltm) + kIS () (tm) = () (r) + kI () e (t) (7).

Rewriting these inequalities yields

(R(s) = BOp(tnm) = (R(s) — k) (r)
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and

() (tm) = I(s)p(r),

respectively, which are true by assumption. Thus for sufficiently large |s|, we have

el < 3 128 )

— | es(tn.7)

1+ sp4(tm)

1+ kp(n) |
1+ su(r)

o]
=) uad
n=N
a+akp(r) N
1+su(r)

a+akp(r)
I+su(r)

= pu(r)
1

as |s| — oo. O

Theorem 5.70 (Injectivity). If f,g : T, — R and L{f}(s) = L,{g}(s), then
f() =g(t) forallt>r.

Proof. We will first prove that £,{f}(s) = 0 implies f(tf) = O for all r > r. First,
note that by Lemma 5.69, we have

lim £,4f}(s) = 0.

for any r € T,. We will show that f(¢"(r)) = 0 for all n > 0 by induction. We first
prove the case n = 0. To this end, we observe that if

LAf}(s) =0,

then it follows that
o0
/ f(t) ees(a(t),r) Dt = 0.
And from this it follows that

e(0 (). ) / F(0) eas(@(0). r) D = 0,
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whence
/ f(®) ess(a(t),0(r)) Dt = 0.

Consequently, it holds that

FORG) + / feao.0t) D1 =0
from which it follows that

Fp(r) + Lo ifi(s) = 0.

Taking the limit as s — oo yields
f(r):u“(r) + Slirglo ﬁa(r){f}(s) =0,
and so, it holds that

fpr) =0,

hence

f(r)=0.

For the inductive step, assume f(o'(r)) = 0 for all i < n. Then it follows that

Lfi(s) =0,

from which we obtain

f(t) ecs(o(t), r) Dt = 0.

o"(r)

Thus,
e (@™ (). 1) / " () ean(0 (). 1) Dt = .
o (r)

So, we deduce that

[e.]

f(0) eas(o(t), " (r)) Dt = 0.

o"(r)
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All in all, we conclude that
o0
fl@"(r)u(e"(r)) + / " )f(t) eos(0 (1), 0"+l(r)) Dt =0,
o r
and so,

J@" (0™ (1) + Lonti(y i3 (s) = 0.

Taking the limit as s — oo yields
F@"()u(o"(r) + lim Lontiy{fHs) = 0.
5§—>00
Therefore,
f@"(r)u(a"(r)) = 0.
Hence, we deduce that
f(a"(r)) = 0.

So, f(t) =O0forall > r.

Thus, £,{f}(s) = 0 if and only if f = 0. Now let g be an arbitrary function
such that £,{f}(s) = L,{g}(s). Then by linearity, we have L, {f — g}(s) = 0, which
implies f — g = 0. Hence, f(t) = g(¢) forall t > r. O

Theorem 5.71 (Shifting). Suppose f : T, — R is of exponential order k > 0. Then
for |s| > k, we have:

) Lo lf16) = (6" (), NLATHO)

- / e 0oty D
i) L 306) = eoulr " OVLATHO)

+ [, coto.senr o

Proof. For part (i), we will proceed by induction on n. For the base case, consider
n=1:

Lomtfi(s) = / e (0 (1), 0 (D) (1) Dr.

a(r)
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Note that
B (1 4 spu(r))
eos(0(1),0(r) = (1 + su(r))es(o (1), a(r))

_ (L +su()
~es(a(),n)

= (1 4 su(r))ees(a (). ).

Therefore, we have
AC(T(r){f}(s)
- / (1 (e (0.7 Dr

M2 2

[(1+ si(r)eas(@ (0(1), f (@ (0 (M) (o’ (0(1)))]

<.
Il
)

M

[(1+ sp(M)eas((r), Nf @ (M) (0! ()]

<.
Il
S

™3¢

[(1+ si(r)eas(@ (r), Nf (0’ () (o’ (1))]

<.
Il
S

— (1 + sp(r))ees(a(r), nf (r)u(r).
Note that

(+sp() _ (A+sp0)
e@().r) — (T+sp(es(r,n)

We can thus further simplify the expression to

(I 4 sp(n)ees(a(r).r) =

Lo ifi(s) = / (I + su(r))ees(a (@), nf (1) Dr — f(r)u(r)
= (1 + s (N)LASH(s) = f(r)u(r)
o (r)
= es(G(V),V))Er{f}(S)—/ es(a(r), a())f (1) Dt,

which proves the base case.
For the inductive step, assume the hypothesis is true for some n > 1. Then by the
base case, we have
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Lgnt1 3 (s)
= €,(6" (1), 0" (1) Lon(n{f}(s)

ontl (r)

_ / y es(@" (1), o (0)f (1) Dt

= e(0""(r),0"(r)) [es(o”(r), NLAf(s)

a"(r)

o"(r) 0"+1(r)
- [ es(0"(r), o ()f (t)Dt} - / es(0" ! (r), o ()))f (1) Dt

()
= ei(0" T (. NLALY(s) — / es(@" 1 (r), o (1)f (1) Dt

0,n-‘,—l G

—[ es(@" (1), 0 (0)f (1) Dt
o"(r)

a"t1(r)
= (0" (). NLALH(s) — / es(@" 1 (r), o ())f (1) Dr.

We now prove part (ii) similarly. For the base case, consider n = 1. We obtain

qmw@=/u%mmmmmm»

/0 r

_/“eawmﬂ
o

o T+ sty D2

1 fp)pu(p(r))
— LAY 4 RPREP)
T 5100 - T T 500

= eos(r, p(MNLAf}H(s) + / ees(a (1), p(r)f (1) D,

p(r)

proving the base case. For the inductive step, assume the hypothesis is true for some
n > 1. Then by the base case, we have

'Cp"+](r){f}(s)

P (r)
= ead(p" (), PN (N) Ly {F}(s) + / . ees(0 (1), p" (n)f (1) Dt

")
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= eas(p"(r). p" (1) [ees(h P (MNLAS(5)

p"(r)

+ / eas(@(0). ") () Dt | + [ eas(@(t), " ) (1) Dt
P P

() )

r

= eoy(r, "N LA () + / eas(0 (1), " ())f (1) Dt

p"(r)

P (r)
+ / cos(a(t). o (1)f (1) Dr
P

Il+l(r)

r

= eas(r, "N LA} (s) + / eas(o (1), "1 (0)f (1) Dr.

P

And this completes the proof. O

5.10 Laplace Transform Formulas

Theorem 5.72. Ifc € R, then L, {c}(s) = $ for |s| > 0.
Proof. Note ¢ = c ¢y(t, r) and apply Theorems 5.65 and 5.62. O

Definition 5.73. If f : T, — R, then for any n € N, we define the n-th
antidifference of f based at r by

DIf(t) = / I / / ) / " f() Dy - D,

Theorem 5.74. Letf : T, — R. Then for any n € N,
t
D70 = [ .06 s
Proof. Consider the initial value problem

Dy(n) = f(1),
D*y(r) =0for0 <k <n-—1.

It is easy to see that the unique solution to this system is given by D, "f ().
However, by Taylor’s Theorem, y(f) = P,—(t,r) + R,—1(t, r) where

n—1
Poi(t,r) = D D)t ),

k=0
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and
t
Roca0.0) = [ a0 DD Ds.
Then we have
f() =D"y(t) = D"Py—i(t,7) + D"Ry—1(t, ) = D"R,—1 (2, 7),
which implies that R, (¢, r) is also a solution. Thus we have
D"f(t) = Ry—1(t,7)

_ / et (1, 0/()D" () Ds
= [ hamstt.06)PD 101 Ds

- [ o (1, 0(5))f (5) Ds.

since the solution is unique. O

The following results are used to obtain the exponential order of the Taylor
monomial, &, (z, r), and give its Laplace transform.

Lemma 5.75. Let f(f) be of exponential order k > 0. Then D;'f() is also of
exponential order k > 0.

Proof. Let |f(t)| < Mey(t,r) forall t > x, and let C = | [ f(u) Du|. Then for t > x,
we have

/r t f(u) Du

/;xf(u) Du

D ()] =

< + /th(u)Du

§C+frtlf(u)|Du

t
< C+M/ er(u,r) Du

u=t

= C+ 2 (el r)

u=r

=C+ Ag(ek(l‘, r)—1)
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M
<C+ ;ek(ﬁ r)

< (C + %) er(t,r).

As this demonstrates that D !f is of exponential order, the proof of the lemma is
complete. O

Corollary 5.76. Let f(t) be of exponential order k > 0. Then D, "f(t) is also of
exponential order k > 0 for alln € N.

To see that the corollary holds, use the previous result.

Theorem 5.77. Let f be of exponential order k > 0. Then for |s| > k,

LA FO)) = S LAFY).

Proof. We will proceed by induction on n. For the base case, consider n = 1. Then
using integration by parts, we have

L4} s) = / cen(0 (1), P (1) Dr

eas(t, r)D; [ (1)

s / "~ eeu(0(t). D7 (1) Dr
— SLADT D)),

Thus, LAD;'f(1)}(s) = (L AF}(s).
For the inductive step, assume the statement is true for some integer n > 0. Then
we have

1
LAD" ™ f(1)}(s) = ;Lr{Dr_ @0}
_! [inz:,{f}(s)}
S| S
1
= Fﬂr{f}(s)’

as was to be shown. O
Lemma 5.78. The n-th Taylor monomial h,(t, r) is of exponential order k = 1.

Proof. We will prove this result for a > 1 (leaving the case a = 1 to the reader) by
induction on n. Consider the base case n = 1. We have
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hi(t,r) t—r
=00 | e] (t, r) T i>oo e (t, r)
< lim lim |——
=00 |ey(t,r) t—oo | ey (t,r)

t
< lim |———
'—>°°‘1+u(p(t))‘

t
t—1>r<I>lo 14+ a )

. at
= lim |——
—>00 a+(a—1)t+b‘

. a
=ll_1)1(1>10 (0_1)4_@
_ a
S a-1

Thus, for sufficiently large ¢ and any € > 0,
(0| = (=== +€) erlt..
a—1

For the inductive step, assume /£, (t, r) is of exponential order 1 for some n. Then,
since D'y, (¢, r) = hy,41(t, r), applying Lemma 5.75 implies /4 is of exponential
order 1. O

Theorem 5.79. Let |s| > 1. Then

LA{h, (2, 1)}(s) = s"i‘l .

Proof. The base case, n = 0, is trivial since £,{1}(s) = % Note that

L {ha(t,1)}(s)

/00 eos(0(t), r)h,(t, r)Dt

00
N s
EQS(U(Z),r)th,.](f, r)li:roo +/ mees(h V)hn+1(t, V)
*° s
= - < S t’ hn t’
| et D)

= sLhp41(2,7)}(s).
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Thus, L. {h,+1(t,r)}(s) = %E,{hn(t, r)}(s). Suppose that the theorem holds for
some 7. Then it follows that

1 11 1
L1 (. 1)}s) = LA (1. 1)}(s) = Sy T g

which completes the induction step and thus proves the result. O

Lemma 5.80. The discrete trigonometric functions, sin, and cos,, and the hyper-
bolic trigonometric functions, sinhy, and coshy, are all of exponential order |p|.

Proof. Let p be such that £p € R¢. Then for sufficiently large 7, we have
) 1
| sinh,(z, )| = 3 |ep(t, r) —e_p(t, r)|

1 1
=< Elep(t’ I’)| + 5|e—p(t’ r)|
< e\p|(t, r).

The proof for cosh,(t, r) is analogous.
For cos,, we can use the identity cos, (¢, r) = coshy,(¢, r) to obtain

| cos,(t,r)| = | coshy, (2, r)|
=< ejip|(t,1)
= e)p|(, 7).
The proof for sin, (¢, r) is analogous. O

Theorem 5.81. For |s| > |p| and £p € R¢, we have

(i) L{cosh,(t,r)}(s) = ﬁ
(i) L.{sinh,(t,7)}(s) = =L

s2—p2*

Proof. To see that (i) holds, note that

Er{COShp(tv ri(s) = [Er{ep(tv r)}(s) + Lr{e—p(tv r)}(s)]

1 I 1

G-p T 2G+p

N = N =

s2—p?’

The proof of (ii) is similar. ad
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Theorem 5.82. For |s| > |p| and Lip € R¢, we have

() £,4c0s,(t}6) = i
(i) L {sin,(t,r)}(s) = #.

Proof. To see that (i) holds, recall that cos, (¢, r) = cosh,(t, r) and thus,

L,{cos,(t,r)}(s) = L,{coshy,(t, )} (s)

11 n 1 1
T 2(s—ip)  2(s+ip)
s
o2+ pz'
The proof of (ii) is analogous. O
Lemma 5.83. Forp,q € R and t,r € Ty, let k(t) = m. Then the following
functions are of exponential order |p| + |q|:
(i) e[)(tv r) COShk(t’ r);
(ii) ep(t, r) sinh(t, r);
(iil) e, (2, r) cosi(t,r);
(iv) ep(t, 1) sing(t, 7).
Proof. We will prove the result for (i). First, note that
q q pqp(t)
PO —==p+
1+ pu(n) L+pu() 1+ pu)
q(1 + pu(1)
1+ pp(2)
=p+gq.

Therefore,

e(t,r) + e (t,r)
2

le, (2, 7) coshi(t, r)| = |e,(t,7)

epai(t, 1) + epo—i(t,7)

2
< ep@k(t, I")| + |ep®—k(t’ r)
- 2
< les(z. )]
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where
s = max{|p ® k|, |p & —k|}
= max{|p + q|, Ip — q}
< Ipl +lql.
Thus,

lep (2, r) coshy(t, r)| < |es(t, r)| < Mey(t,r),

for some M > 0, and so, e,(t, r) cosh(t, r) is of exponential order |p| + |g|. The
proofs of (ii)—(iv) are analogous. O

Theorem 5.84. Let k(1) =
have

(1) L{ey(t, r) cosh(z, r)}(s) = ﬁ;
(ii) L{ey(t,r)sinhi(t,r)}(s) = m
(iii) L£,{e,(t, r) cosi(t,r)}(s) = m,
(iv) L {ep(t, r)sing(t, r)}(s) = m

Proof. To prove (i), first note that

1+PH(1) for p,q € RE. Then for |s| > |p| + |q|, we

p®k=p+gq,

as stated above. Therefore,
L,{e,(t, r) coshi(t,r)}(s)
1
E I:E { p®1+m (1) (t r)} (S) + E { p®l+;/qt(t) (t’ r)} (S)]

[ﬁr {€p+q(l, ”)} (s) + L, {ep—q(t’ r)} (s)]

| —

2

Y I
C2ls—(p+q9 s—(p-—9
_ s—p
CG-pP -

The proof of (ii) is similar.
To see that (iii) holds, consider that cos, (¢, r) = cosh, (¢, r) and let ¢ = ig in the
result of the proof of (i) to get
S—p S—p

Er{ep(t’ l”) COSk([, r)}(s) = (S _p)2 — (iq)2 = (S _p)2 + q2'

The proof of (iv) is analogous. O
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5.11 Solving IVPs Using the Laplace Transform

In this section we will demonstrate how the discrete Laplace transform can be
applied to solve difference equations on T,.

Example 5.85. Solve:
Df (1) — 2Df (1) — 8f (1) = 0,
Df(r) = 0: () = =3.

We will take the Laplace transform of both sides of the equation and use the initial
conditions to solve this problem. We begin with

0 = LADf (1) — 2Df (1) — 8/ (1)}(s)

= LAD’f(1)}(s) = 2LADf (0} (s) = 8LAF}(5)
= [SLU}(s) = 5f () = DF ()] = 2 [sL{F}(5) — f(1)] = 8L} (5)

= |:s2£{f}(s) —5 (—%)] -2 [sﬁb‘}(s) - (—3)} — 8L{f}(s)

= (s =25 — 8)L{f}(s) + gs -3,

from which it follows that

3
RO =558

Using partial fractions, we obtain

3 1
3—§S ) -1

L = = .
i s2—25s—8 s—4+s+2

Therefore, by the injectivity of the Laplace transform,

1
f@® = —564(1, r) —e_y(t,r).
Example 5.86. Solve the following IVP:

D*y(t) +4y(1) =0
y(0) =1
Dy(0) = 1.
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To solve the above problem, we first take the Laplace transform of both sides. This
yields

LotD?y(1) + 4y(1)} = Lo{0},
from which it follows that
s Loy} — (s + 1) + 4Loly} = 0.
We then solve for L£o{y} and invert by writing
(S +4Lo{yy =5+ 1,

from which it follows that

) 1 2

L =Grs T awra

Thus,

1
y(t) = cosy(z,0) + 3 siny (2, 0).

5.12 Green’s Functions

In this section we will consider boundary value problems on a mixed time scale
with Sturm-Liouville type boundary value conditions for a > 1. We will find a
Green’s function for a boundary value problem on a mixed time scale with Dirichlet
boundary conditions, and investigate some of its properties. Many of the results in
this section can be viewed as analogues to results for the continuous case given in
Kelley and Peterson [137].

Theorem 5.87. Let B € T,z and A, B, E, F € R be given. Then the homogeneous
boundary value problem (BVP)

—D?y(1) = 0, teT,
Ay(e) — BDy(a) =0
Ey(B) + FDy(B) = 0

has only the trivial solution if and only if

y :=AE(B —a) + BE + AF # 0.
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Proof. A general solution of —D?y(¢) = 0 is given by
y(t) = co + c1hi(t, @).
Using the boundary conditions, we have
Ay(a) — BDy(a) = Acy — Bc; =0
and
Ey(B) + FDy(B) = E[co + c1(B —a)] + Fco = 0.
Thus, we have the following system of equations

c)A—c1B=0
coE + c1[E(B—a)+ F] =0,

which has only the trivial solution if and only if

A —B

y = # 0.

E EB —Ex+F
It follows that

y = A[E(B —«a) + F)] + BE
= AE(B — &) + BE + AF,

as claimed. O
Lemma 5.88. Assume B € T, and A,Ay € R. Then the boundary value
problem

—Dy(t) =0, teT,®

y(@) =A1, y(B) = Ay

has the solution

Ay —A

y(0) = A+ R —a).

Proof. A general solution to the mixed difference equation D?*y(f) = 0 is given by

(@) =co+ cihi(t,a) = co + c1(t — a).
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Using the first boundary condition, we get

y(@) =co =A;.
Using the second boundary condition, we have that

y(B) = A1+ c1(B —a) = As.

Solving for c; we get

Ay — A
c| = .
1 B—a
Hence,
Ay — Ay
y() =A + (t—a).
B—«a

a

Theorem 5.89. Assume f : ng(ﬂ ) > R and B € Ty2(y). Then the unique solution
of the BVP

—D*y(1) =f(1), teTL® (5.5)
y(@) =0=y(p), (5.6)
is given by
P K(B)-1
¥ = [ GsoDs = ]_ZO G(t, 0¥ (@))f (0 (@) (07 (@)),

fort € Tg, where G ']I‘g X Tg(ﬂ ) s R is called the Green’s function for the
homogeneous BVP

—DX(#) =0, teTt® (5.7)
y(@) =0 =y(B), (5.3)
and is defined by
Glt.s) = u(t,s), 0<K(s) <K(®—-1=<K(B)—1

v(t,s), 0=<K() <K(s)<K(B) -1,
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where for (t,s) € ']I‘g X Tg(ﬁ)

_ h(B.a(s)

u(t,s) ;= () (1, @) = hi(t,0(s))
and
_ hi(B.o(s)
v(t,s) = —hl(ﬂ,a) hi(t, ).

Proof. Note for the y defined in Theorem 5.87 we have that for A = E = 1,
B=F=0,

y =AC(B—0a)+BC+AD = (B —a) # 0.

Hence, by Exercise 5.13, the BVP (5.5), (5.6) has a unique solution y(¢). Using the
variation of constants formula (Theorem 5.38 with n = 2) we have that

y(t) = coho(t, o) + c1hy(t, @) —/ hy(t,0(s)f (s)Ds

K(n—1

=co+ah(ta)— Y hit o0 (@)f (0! (@)puo’ (@)

j=0
K(H)—1

= co+ahit,a) = Y It 0 @) (0 (@)d ().

j=0

Using the first boundary condition, we get

¥@) = co + ety (@) — / * b (1.0 (5)f(5)Ds

= Cy
=0,
and using the second boundary condition, we have that
K(p)—1 , ' .
Y(B) = cih(B.a) = Y m(B,0" @) (o (@)p(0) (@) =0.

Jj=0

Solving for c; yields

YO (B 07T (@) (07 (@) (0¥ (@)
hi(B, ) ‘

c] =
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Thus,

> RO hy (B, @Y @ @)’ @)
() = hi(t, @)
hi(B.a)

K(n)—1
= > (.o @)f (07 (@) (o (@)
j=0

K(t)—1

)3 [hl(ﬂ,0j+1(a))

L T B 0’“(a))}f(a"(a))u(of(a))

K(B)—1

Jj+1
s hi(B. 0" ()

RIS — 7 mo)f (@)’ (@)

J=K(1)

= Y Gt.o/ @) (@) (@)

Jj=0

B
= / G(t, 5)f(s)Ds,

for G(t, s) defined as in the statement of this theorem. O

Theorem 5.90. The Green’s function for the BVP (5.7), (5.8), satisfies
G(t,5) =0, (1,5) € T/ x T?P

and

ma;}( G([’ S) = G(O’(S), S), s € Tg(ﬁ)

teTh

Proof. First, note both that

hl(ﬁ»a(s))hl(a o) = hi(B.o(s))

Gles) = =, B = )

(x—a)=0

and that

hi(B,0(s))
h(B, )

G(B.s) = hi(B.a) — hi(B.o(s)) = 0.
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Now we will show that DG(z,s) > 0 for t < s, DG(t,s) < 0 fors < ¢, and
G(o(s),s) > G(s,s). So first consider the domain 0 < K(¢) < K(s) < K(B) — 1:

hi(B.a(s))
hi(B. @)
_B- ()

= 5- ———ho(t, @)

_ ﬂ—O(S)
= .
> 0.

DG(t, S) = Dhl(tv (X)

Now consider the domain 0 < K(s) < K(f) — 1 < K(B) — 1:

hi(B.o(s))

DG(t,s) = m(p.a) —— = Dhy(t,a) — Dhy(t,0(s))
_F- -~ ols POyt~ ot 0(9)
B0,

o
<0,

since B8 —o(s) < B — a. Now, since G is increasing for + < s and decreasing for
s < t, we need to see which is larger: G(o (s), s) or G(s, s). So consider

G(o(s),s) — G(s,s)

~ 270600 -0 - 06 o) - L0 60
='Bﬂ_a()[a(s) —s5+a]

- 2060 -

>0,

which implies that max _.s G(z,5) = G(0(s),s). Also, since DG(z,s) > O for 7 €
T, DG(t,s) < 0fort € T, p), and G(a, 5) = 0 = G(B, 5), we have G(t,5) > 0
on its domain. O

Remark 5.91. Note that in the above proof, we have DG(z,s) > 0 fort < s < p(f),
DG(t,s) < Ofora <s <t.
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In the next theorem we give some more properties of the Green’s function for the
BVP (5.7), (5.8).

Theorem 5.92. Let G(t,s), u(t,s), and v(t, s) be as defined in Theorem 5.89. Then
the following hold:

(i) G(a,s) =0 =G(B,s), seTa”;
(i) for each fixed s € Tﬁ(’s), —D%u(t,s) = 0 = —D*v(t,s) fort € ng(ﬁ);
(i) v(t,8) = u(t,s) + b (1,0(s)), (t,5) € Th x TP
(iv) u(o(s),s) = v(o(s),s), seThP,
(v) =D*G(t,s5) = J (t,5) € Tﬁz(ﬂ ) x ']I‘f,(ﬂ ), where 8 is the Kronecker delta,

nis)’
i.e., 8 = lfort=sandé,; =0fort#s.

Proof. In the proof of Theorem 5.90 we proved (i). The proofs of the properties
(i1)—(iv) are straightforward and left to the reader (see Exercise 5.15). We now use
these properties to prove (v). It follows that for ¢ < s,

—D?G(t,s) = —D?u(t,s) = 0 = i
p(s)
and for ¢t > s,
—D*G(t,s) = —D*v(t,s) =0 = i )
u(s)
Finally, when t = s, we have using Exercise 5.5
DZG(t, s)
_ G(a*(1), 9)pu(1) — G(o (1), )[u(®) + (o ()] + G(t, 9)pu(o (1))
[k ()]* (o (7))
_ v(02(1), ) (1) — u(o (1), $)[p(2) + (o ()] + u(t, s)pu(o (1)
(L)) (o (1)
_ v(0%(s5), )p(s) — u(a (s), )[1(s) + (o ()] + uls, s)p(o (s))
()2 (o (s))
_ [u(0?(s), 5) 4+ hi(02(5), 0 ()] 11 (s)
[ ()1 (o(5))

| U6 )[) + 1O ()] + uls. (o )
HOPRE )

_ (@), 06)RG)

PR )

+ D*u(s, s)




410 5 Calculus on Mixed Time Scales

_ (0*(s),0(5))
T u®u(a(s)
o?(s) — o (s)
p(s)pu(o(s))

1
ok

Therefore,

8
—D?’G(t,s5) = o ,
=200

for (¢,s) € ng(,s) X ’I[‘g(ﬂ). O
The following theorem along with Exercise 5.13 is a uniqueness result for the
Green’s function for the BVP (5.7), (5.8).

Theorem 5.93. There is a unique function G : ']I‘g X ’]I‘f,(ﬂ ) R such that
G(a,s) = 0 = G(B,s), for each s € ']I‘f,(ﬂ), and that —D*>G(t,s) = %, for each
fixed s € ’]I‘g(ﬂ ),

Proof. Fix s € T5?). Then by Theorem 5.89 with £(f) = dte TP the BVP

) >
—D2u(r) = 8 0% (B)
Dy(1) ) re Ty

y(e) =0 = y(B).
has a unique solution on 11’5. Hence for each fixed s € Tg(ﬂ ), G(t, s) is uniquely

determined for ¢ € ’]1‘5. Since s € ’]I‘g(ﬂ ) s arbitrary, G(t, s) is uniquely determined
on Tg X Tg(ﬁ ). O

Theorem 5.94. Assume f : ’IF{,J,ZUS ) > R. Then the unique solution of the BVP

— D) =f(), teT;®
y() =A1, y(B) =4,

is given by

B
y(t) = u(t) + / G(t,5)f (s)Ds = u(r)

K(B)—1 A . A
+ Y G(t.ol(@)f (0 (@) (o (@)).

J=0
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where u(t) solves the BVP

—D>() =0, teTl®
@) =A;, y(B) =4,

and G(t, s) is the Green’s function for the BVP (5.7), (5.8).

Proof. By Exercise 5.13 the given BVP has a unique solution y(7). By Theorem 5.89

Yo =t + [ " 6.9 s)Ds
= u(t) + zzt),
where z() := [ G(t, 5)f (s)Ds is by Theorem 5.89 the solution of the BVP
D) = (). 2(@) = 0 = 2(B).

It follows that

y(@) = u(@) + z(a) = Ay

and
y(B) = u(B) +z(B) = As.
Furthermore,
—D’y(1) = =D’u(t) — D’z(1) = 0+ f (1) = f (1)
forre T P, O

We now prove a comparison theorem for solutions of boundary value problems
of the type treated by Theorem 5.94.

Theorem 5.95 (Comparison Theorem). Ifu,v : Tg — R satisfy

D’u() <D*v(), teT!®
u(a) > v(a),

u(B) = v(B).

Then u(t) > v(t) on 'H‘g.



412 5 Calculus on Mixed Time Scales

Proof. Let w(t) := u(t) — v(t), fort € ’]Tg. Then for ¢ € ’]ng(ﬁ)
(1) := =D*w(t) = —D*u(t) + D*v () > 0.

IfA; ;== u(a)—v(a) > 0and A, := u(B)—v(B) > 0, then w(r) solves the boundary
value problem

—D*w(t) =f(t), teT/®
w(a) = A, w(B) = As.

Thus, by Theorem 5.94

B
w(t) = y(r) + / G(t,5)f(s)Ds te€ Tg,

o

where G(t, s) is the Green’s function defined earlier and y(¢) is the solution of

—D»(1) =0, teT/®
y(@) = A1, y(B) =A,.

Since —D?y(f) = 0 has the general solution
y(0) =co+cthi(t,a) =co+ a1t —a),

and both y(«),y(8) > 0, we have y(f) > 0. By Theorem 5.90, G(z,s) > 0, and,
thus, we have

B
wit) = y(1) + f G(t,5)f(5)Ds > 0,

o

fortETg. O

5.13 Exercises

5.1. Show that the points in T, satisfy
ce< pP@) < pla) <a <o(a) <o(@) <---.

5.2. Prove part (ii) of Theorem 5.4.
5.3. Prove parts (ii) and (iii) of Theorem 5.6.
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5.4. Prove part (iv) of Theorem 5.8.
5.5. Assume f : T, — R. Show that

F@2@)u(@) — flo@)p@) + nlo@))] +f(0)ulo(t)
(@10 (1) '

5.6. Assume c,d € T, with ¢ < d. Prove that if f : T}. 4 — R and Df(f) = 0 for
t € T pay> then f(¢) = C for all ¢ € T} 4, where C is a constant.

D () =

5.7. Show thatif n € N; and a > 1, then

n—1
7], = Zak.
k=0

Then use this formula to prove parts (iii)—(v) of Theorem 5.22.
5.8. Prove part (ii) of Theorem 5.23.

5.9. Assumef : T, x T, — R. Derive the Leibniz formula

D/tf(t, s)Ds = /th(t, $)Ds + f(o (1), 1)

forr e T,.
5.10. Consider the mixed time scale where « = 2 and o (f) = 37+ 2 (soa = 3 and
b = 2). Use the variation of constants formula in Theorem 5.38 to solve the IVP
Dy()=2t—4, teT,
¥(2) = 0. Dy(2) =0.
5.11. Use the Leibniz formula in Exercise 5.9 to prove the Variation of Constants
Theorem (Theorem 5.37).
5.12. Prove Theorem 5.43.
5.13. Assume f € Ty, A.B.E.F € Rand f : ’H‘ﬁz(ﬂ) — R. Then the
nonhomogeneous BVP
~D’y(t) =f(1), teRE
Ay(a) — BDy(a) = G,
Ey(B) + FDy(B) = C3,
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where the constants C;, C, are given, has a unique solution if and only if the
corresponding homogeneous BVP

—D%() =0, reR’
Ay(a) — BDy(a) =0
Ey(B) + FDy(B) = 0

has only the trivial solution.

5.14. Show that for the BVP

—DX(1) =0, teT/®
Dy(a) = 0 = Dy(B),

the y in Theorem 5.87 satisfies y = 0. Then show that the given BVP has infinitely
many solutions.

5.15. Prove parts (ii)—(iv) of Theorem 5.92.

5.16. Use Theorem 5.92 to prove directly that the function
B
() = / G(t,5)f (s)Ds,
o

fort e ']I‘g, where G(t, s) is the Green’s function for the BVP (5.7), (5.8), solves the
BVP (5.5), (5.6).
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