Chapter 3
Nabla Fractional Calculus

3.1 Introduction

As mentioned in the previous chapter and as demonstrated on numerous occasions,
the disadvantage of the discrete delta fractional calculus is the shifting of domains
when one goes from the domain of the function to the domain of its delta fractional
difference. This problem is not as great with the fractional nabla difference as
noted by Atici and Eloe. In this chapter we study the discrete fractional nabla
calculus. We then define the corresponding nabla Laplace transform motivated by a
particularly general definition of the delta Laplace transform that was first defined
in a very general way by Bohner and Peterson [62]. Several properties of this nabla
Laplace transform are then derived. Fractional nabla Taylor monomials are defined
and formulas for their nabla Laplace transforms are presented. Then the discrete
nabla version of the Mittag—Leffler function and its nabla Laplace transform is
obtained. Finally, a variation of constants formula for an initial value problem for
a v-th, 0 < v < 1, order nabla fractional difference equation is given along with
some applications. Much of the work in this chapter comes from the results in Hein
etal. [119], Holm [123-125], Brackins [64], Ahrendt et al. [3, 4], and Baoguo et al.
[49, 52].

3.2 Preliminary Definitions

We first introduce some notation and state elementary results concerning the nabla
calculus, which we will use in this chapter. As in Chaps. 1 and 2 for a € R, the sets
N, and N2, where b — a is a positive integer, are defined by

N,:={a,a+1,a+2,...}, NZ ={a,a+1,a+2,...,b}.
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150 3 Nabla Fractional Calculus

For an arbitrary function f : N, — R we define the nabla operator (backwards
difference operator), V, by

(VN :=f@) =ft=1), €Ny

For convenience, we adopt the convention that Vf(¢) := (Vf)(¢). Sometimes it is
useful to use the relation

V(@) = Af(r—1) (3.1)

to get results for the nabla calculus from the delta calculus and vice versa. Since
many readers will be interested only in the nabla calculus, we want this chapter to
be self-contained. So we will not use the formula (3.1) in this chapter. The operator
V" is defined recursively by V"f(t) := V(V"_lf(t)) for t € Ny4,, n € Ny, where
VY is the identity operator defined by V°f(r) = f(f). We define the backward jump
operator, p : N,y | — N, by

p(t)y=t—1.

Also we let f* denote the composition function f o p. It is easy (Exercise 3.1) to see
that if f : N — R and Vf(¢) = 0 for t € N4, then

f(t)=C, teN, whereC isaconstant.

The following theorem gives several properties of the nabla difference operator.
Theorem 3.1. Assumef,g:N, > Randa,p € R. Then fort € Nyy1,

(i) Vo =0;
(i) Vaf() = aVf(1);
(iii) V(f(1) +g@®) = Vf(®) + Vg(1);
(iv) ifo # 0, then Vo' TF = Lot
v) V(f(g@®) =f(p®) Ve + Vf(1)g(®);

. Vi) —f (Vv .
(i) V(55) = UGG @) #0. 1€ Noy.

Proof. We will just prove (iv) and (v) and leave the proof of the other parts to the
reader. To see that (iv) holds assume that ¢ # 0 and note that

vat—i-ﬂ — at+ﬂ _ Olr—l+/3
— [(X _ l]at—]-‘rﬂ

a—1
— at+ﬂ_
o
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Next we prove the product rule (v). For t € N4, consider

VIf(0g(] = f()g(®) —f(—Dg(r—1)
=f(—D[g@®) —gt— D]+ [f(®) —f(— D]g®)
= f(p())Vg(®) + Vf()g(),

which is the desired result. O
Next we define the rising function.

Definition 3.2. Assume 7 is a positive integer and ¢ € R. Then we define the rising
function, 1", read “¢ to the n rising,’by

=ttt + 1) (t+n—1).

Readers familiar with the Pochhammer function may recognize this notation in
its alternative form, (k),. See Knuth [139].
The rising function is defined this way so that the following power rule holds.

Theorem 3.3 (Nabla Power Rule). Forn € N, @ € R,
Vit+a)y =n(t+a) ",

forteR.

Proof. We simply write

Vit+a) ' =(t+a)'—(t—1+a)"
=[t+a)+a+--(t+a+n-1)]
—[t+a—-Dt+a)---(t+ao+n—2)
=(t+o)it+a+)---(t+a+n-2)
Jt+a+n—-1)—(t+a—-1)]
=n(t+ot)m.
This completes the proof. O
Note that for n € Ny,
fi=tt+1)---(t+n—1)
=@t+n—-1D)@t+n—-2)---(t+1)-t
_(t+n—1D(+n—2)---1-T'(1)
L)

t¢{0,—1,-2,---},

_T@+n)
- T

where I' is the gamma function (Definition 1.6). Motivated by this we next define
the (generalized) rising function as follows.
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Definition 3.4. The (generalized) rising function is defined by

7_l"(t—i—r)
r= NGO

(3.2)

for those values of ¢ and r so that the right-hand side of equation (3.2) is sensible.
Also, we use the convention that if ¢ is a nonpositive integer, but ¢ 4 r is not a
nonpositive integer, then £ := 0.

We then get the following generalized power rules.

Theorem 3.5 (Generalized Nabla Power Rules). The formulas
Vi+a) =r+a) (3.3)
and
Vie—0" = —r(@—p@®)", (34

hold for those values of t, r, and o so that the expressions in equations (3.3) and
(3.4) are sensible. In particular, O =11 #0,—1,-2,---.

Proof. Consider that

Vit+a) =@t+a) —(t—14+a)
_ F(t+a+r)_F(t+a+r—1)

L@+ T(+a—1)
=[(HFOH”_1)—(t+05—1)]%
_ Ft+a+r—1)
= Tarw
=r(t+a) .

Hence, (3.3) holds. Next we prove (3.4). To see this, note that

Vie—t) =@—1)" —(a—t+1)
MNa—t+r) T(@—t+1+47r)
Ta—1t)  Da—t+1)
Fa—rt+7r)
Ma—t+1)

=[a—1)—(x—t+7)]

IF'a—1t+7r)
"T@—r+1
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Pla—p@)+r—1
['(a = p(1))

— (@ —p(r)) .

This completes the proof. O

3.3 Nabla Exponential Function

In this section we want to study the nabla exponential function that plays a similar
role in the nabla calculus that the exponential function ¢”" does in the continuous
calculus. Motivated by the fact that when p is a constant, x(f) = e”' is the unique
solution of the initial value problem

X =px, x(0)=1,

we define the nabla exponential function, E,(t,s) based at s € N,, where the
function p is in the set of (nabla) regressive functions

R:=4{p:Nyy1 —>R: 1—p@) #0, for reN,},
to be the unique solution of the initial value problem

Vy(@) =p@0y(@®), 1€ Nuyy (3.5

y(s) = 1. (3.6)

After reading the proof of the next theorem one sees why this IVP has a unique

solution. In the next theorem we give a formula for the exponential function E,, (z, 5).
Theorem 3.6. Assume p € R and s € N,. Then

t 1
I - 1 e N,
Ey(t,s) = { =t =@ (3.7)

[F=l=p@] reN7"
Here it is understood that th=r+l h(t) = 1 for any function h.

Proof. First we find a formula for E, (¢, s) for t > s 4 1 by solving the IVP (3.5),
(3.6) by iteration. Solving the nabla difference equation (3.5) for y(r) we obtain

y(0) = y(t—1), €Nyt (3.8)

1
1 —p(1)
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Letting t = s 4+ 1 in (3.8) we get

(s+1) ) 1
Ky = S) = .
Y l—p(s—i-l)y 1—ps+1)
Then letting ¢ = s + 2 in (3.8) we obtain
(s+2) ) :
y(s = ——y(s = .
1—p(s+2) [1—p(s+ D] —p(s + 2)]

Proceeding in this matter we get by mathematical induction that

t
1
E(ta= [] ——.
T=s5+1 1 _p(t)
for t € Ny1 . By our convention on products we get
E(s.s)= [] l-p@] =1
T=s+1

as desired. Now assume a < t < s. Solving the nabla difference equation (3.5) for
y(t — 1) we obtain

yt =1 =[1=p@Oly@®), 1€Nap. (3.9
Letting # = s in (3.9) we get
yis =1 = [1=p@)]y(s) = [1 = p(s)].

If s — 2 > a, we obtain by letting t = s — 1 in (3.9)

ys—=2)=[1=pls—Dlyts—1) =[1=p)][l —p(s—DI.
By mathematical induction we arrive at
s
E(t.s)= [[ 1-p(@). for teN;
T=t+1

Hence, E,(t, s) is given by (3.7). O
Theorem 3.6 gives us the following example.

Example 3.7. If s € N, and p(t) = po, where py # 1 is a constant, then

E,(t,s) = (1 —po)*™, teN,.
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We now set out to prove properties of the exponential function E,(t,s). To
motivate some of these properties, consider, for p, g € R, the product

t t

1 1
Ey(t,a)Ey(t,a) = IEH 1-p(0) rg_l T—q(0)

! 1
= 11 [1—p(0)][1 — q(v)]

t=a+1

t

1
B ,B,H 1 — [p(1) + gq(v) — p(v)q(7)]

t

1

— ———— if(pE ) = p(t) + q(t) — p(D)q(?)
TLL 1—(pHEqg(r)

= pmq(t’ a)

fort € N,.
Hence, we deduce that the nabla exponential function satisfies the law of
exponents

E,(t,a)E (t,a) = Eymy(t,a), t€N,,
if we define the box plus addition HH on R by
(p B q)(1) := p@0) +q(1) —p()q(1), 1€ Nayy.

We now give an important result concerning the box plus addition H.

Theorem 3.8. If we define the box plus addition, B, on R by

pHq:=p+q—pq,

then R, B is an Abelian group.

Proof. First, to see that the closure property is satisfied, note that if p,g € R, then
1 —p(t) #0and 1 — g(r) # O for t € Nyy. It follows that

I—=(pBg®) =1—[p@) +q() —p()gq®)] = (1 —p®)(1 —q(1)) # 0,
for t € Ny, and hence the function p H g € R.
Next, notice that the zero function, 0, is in R, since the regressivity condition
1 —0 =1 # 0 holds. Also
0OBp=0+p—0-p=p, forallpeR,

so the zero function 0 is the identity element in R.
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We now show that every element in R has an additive inverse let p € R. So, set
q= ” and note that since

_ ., P 1
1—q()=1 1—p(r)_1—p(r)7é0’ teNgy

we have that ¢ € R, and we also have that

_ _ 2
pEﬂq—pﬁﬂ—p=p+—p— P —o,
1—p 1l—p 1-p

so ¢ is the additive inverse of p. For p € R, we use the following notation for the
additive inverse of p:

Bp = 2. (3.10)

The fact that the addition H is associative and commutative is Exercise 3.4. O
We can now define box minus subtraction, H, on R in a standard manner as
follows.

Definition 3.9. We define box minus subtraction on R by

pBq:=pHI[Hq.
By Exercise 3.5 we have that if p, g € R, then

(®) —q@)

, teN,.
—q(1)

(pBag ==

In addition, we define the set of (nabla) positively regressive functions, R *, by
={p:Nyy; ;> R, suchthat 1—p() >0 for e Ny}

The proof of the following theorem is left as an exercise (see Exercise 3.8).

Theorem 3.10. The set of positively regressive functions, R, with the addition B,
is a subgroup of R.

In the next theorem we give several properties of the exponential function
E,(t,s).
Theorem 3.11. Assume p,q € R and s,r € N,. Then

(@) Eo(r,s) =1, 1€Ng

(ii) E,(t,s) #0, teNg
(iii) ifp € RY, then E,(t,s) >0, 1t € Ny;
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(iv) VE,(t,s) = p()E,(t,s), t € Nyy1,and E,(t,t) =1, teNg;
(V) Ep(p(t)’s) = [1 _p(t)]Ep(tv S), re Na-i—l;
(vi) E,(t,5)E,(s,r) = E,(t, 1), t€Ny

(vii) E,(t,s)E,(t,s) = Epmy(t,s), t€Ng;

(vii) Egp(1.s) = 7. 1€ Na:

(ix) 03 = Epmg(t.9), 1€N,

Proof. Using Example 3.7, we have that
Eo(t,s) = (1 -0 "=1

and thus (i) holds.
To see that (ii) holds, note that since p € R, it follows that 1 — p(¢f) # 0, and
hence we have that for ¢ € N

t

1
E,(t.5) = — 40
e IL-[H I=p() ?

and for r € N$~!

Epts)= [] 1 =p@] #0.

t=t+1

Hence, (ii) holds. The proof of (iii) is similar to the proof of (ii), whereas property
(iv) follows from the definition of E,(z, 5).
Since, for t € N,

t—1

Epw.) = [] —

T=s5+1 l_p(‘[)
! 1
= [1-p@)] —
1=

[1 = pOIEy(2,5)
we have that (v) holds for r € Nyy. Next assume ¢ € Nj;_ll. Then

s

Ep(t).s)= [] [1-p@)]

t=p(t)+1

~ [0 - ()
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=[1-p@] [] 1 =p@)]

T=t+1
= [1 =p(]Ey (2, 5).

Hence, (v) holds for r € Nerll. It is easy to check that E,(p(s),s) =
[1 — p(s)] E, (s, s). This completes the proof of (v).

We will just show that (vi) holds when s > r > a. First consider the case r € N;.
In this case

! 1 : 1
E,(t,s)E,(s,r) =
eonen= 11w 11 =
d 1
-1l
=E,(r).

Next, consider the case # € N~!. Then

H [1—p(0)] H (T)

E,(t,5)E,(s,1)

r=1+1 = r+1
! 1

N T:ll )

= E,(t,1).

Finally, consider the case t € N;‘l. Then

Ey(t, $)Ep(s,r) = 1‘[ [1—p(2)] H

=t+1 = r+1

[] 1=p@)

T=r+1
=E,(t,r).

p(r)

This completes the proof of (vi) for the special case s > r > a. The case a <
s < ris left to the reader (Exercise 3.9). The proof of the law of exponents (vii) is
Exercise 3.10. To see that (viii) holds, note that for r € N;
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EEP(Z‘, s) = l_[ !

T Eno
=[] 0-p@)]
T=s+1
1
T Ep(t,s)

Also, if t € NZ‘I

Egyts) = [] 11— Bp)]

T=t+1
_ 1—[ !
T=t+1 1 _p(T)
. 1
B E[J(t?s).

Hence (viii) holds for € N,. Finally, using (viii) and then (vii), we have that

E,(t,5)
EZ(L S) = Ep(t, S)EEq(t, S) = EPE[Eq] ([, S) — EpElq(t, S),
from which it follows that (ix) holds. q

Next we define the scalar box dot multiplication, [-.

Definition 3.12. For « € R, p € R the scalar box dot multiplication, & [ p, is
defined by

allp=1-(1-p"“.
It follows that fora e R, p € R™

1= (@Bp)@®) =1-{1-[1-pO]}
[1—-p®]* >0

fort € N,yi.Hencea O p e RT.
Now we can prove the following law of exponents.
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Theorem 3.13. Ifa € Randp € R™, then

Ez (tv a) = EO(E‘p(tv a)

fort e N,.

Proof. Consider that, for r € N,

1
= 11 [1+p(0)]*

r=a+1
d 1
N ,ﬂl [ —(I—p(®)]
d 1
N TDM I~ [ & pl(r)
= E,m,(t. a).
This completes the proof. O

Theorem 3.14. The set of positively regressive functions R, with the addition B
and the scalar multiplication [, is a vector space.

Proof. From Theorem 3.10 we know that R with the addition H is an Abelian
group. The four remaining nontrivial properties of a vector space are the
following:

(i) 18p=p;

(i) e (pHBq) = («Ep) B (x Hg);
(iii) « I (BB p) = (@f) L p;

(iv) (@ +p)Ep=(aEp)B(BEp),

where o, B € Rand p, g € R*. We will prove properties (i)—(iii) and leave property
(iv) as an exercise (Exercise 3.12).
Property (i) follows immediately from the following:

18p=1-(1-p) =p.
To prove (ii) consider

(«Ep) B (xHq)
=alp+allqg—(aEp)(ag)
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I-0=-p]+[1-0=9—[1 =1 =p)][1 = (1 —9)]
=1-(1-p*(1-9"

=1-(0-p—q+pg)*

=1-(1-pHg)"

=o(pHg).

Hence, (ii) holds. Finally, consider
«B(BHBp) =1-(1-pEp)"
=1- [1—[1—(1 —p)ﬂ]T
=1-(1-p
= (aB) Up.

Hence, property (iii) holds. O

3.4 Nabla Trigonometric Functions

In this section we introduce the discrete nabla hyperbolic sine and cosine functions,
the discrete sine and cosine functions and give some of their properties. First we
define the nabla hyperbolic sine and cosine functions.

Definition 3.15. Assume p, —p € R. Then the generalized nabla hyperbolic sine
and cosine functions are defined as follows:

E,(t,a) + E_,(t.a)
2 b

_Ey(t,a) —E_p(t,a)

Cosh, (¢, a) :=
osh,(t, a) 7

Sinh,(t, a) :

forr € N,.

The following theorem gives various properties of the nabla hyperbolic sine and
cosine functions.

Theorem 3.16. Assume p, —p € R. Then

(i) Coshy(a,a) =1, Sinh,(a,a) = 0;

(ii) Coshy(t,a) — Sinh)(t,a) = E(t,a), € Ng;
(iii) VCosh,(t,a) = p(t) Sinhy(t,a), te Nyqi;
(iv) VSinhy(t,a) = p(t) Coshy(t,a), te Nyq1;
(v) Cosh_p(t,a) = Cosh,(t,a), teNg;
(vi) Sinh_p(t,a) = —Sinh,(t,a), te€ N,
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Proof. Parts (i), (v), (vi) follow immediately from the definitions of the nabla
hyperbolic sine and cosine functions. To see that (ii) holds, note that

Cosh’(z, a) — Sinh’ (z, a)

[E,(t,a) + E_p(1,0)]" = [E,(t,a) — E_,(1, )]’
4

=E,(t,a)E_,(t,a)

= Ey@—p (1. a)
=E, (t,a).

To see that (iii) holds, consider

1 1
VCosh,(t,a) = EVEP(I, a) + EVE_p(t’ a)

1
E [pEp(t, a) —pE_,(t, a)l

E,(t,a) — E_,(t,a)
2
= p Sinh,(t, a).

The proof of (iv) is similar (Exercise 3.13). O
Next, we define the nabla sine and cosine functions.

Definition 3.17. Assume ip, —ip € R. Then we define the nabla sine and cosine
functions as follows:

Eip(t, a) + E_ip(l, a)
2 b

Eip(tv a) — E_ip(t, a)

C t,a) =
0s,(t,a) %

Sin,(t,a) =

fort € N,.
Using the definitions of Cos,(f,a) and Sin,(t,a) we get immediately Euler’s
formula

Ei,(t,a) = Cos,(t,a) + iSiny(t,a), teN, (3.11)

provided ip, —ip € R.
The following theorem gives some relationships between the nabla trigonometric
functions and the nabla hyperbolic trigonometric functions.

Theorem 3.18. Assume p is a constant. Then the following hold:

(i) Siny(t,a) = iSinh,(t,a), if p# £1;
(ii) Cosip(t,a) = Coshy(t,a), if p# *x1;
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(iii) Sinhip(t,a) = iSin,(t,a), if p # £i;
(iv) Coshiy(t,a) = Cosy(t,a), if p # *i,
fort e N,.

Proof. To see that (i) holds, note that

1
Sinip(t» a) = Z[Eizp (L a) - Eiizp (t’ a)]

1
% [E_p(t,a) — E,(t,a)]

Ey(t,a) —E_,(t,a)
i

2
= i Sinh,(¢, a).

The proof of parts (ii), (iii), and (iv) are similar. O
The following theorem gives various properties of the generalized sine and cosine
functions.

Theorem 3.19. Assume ip, —ip € R. Then

(i) Cosy(a,a) =1, Siny(a,a) =0;

(ii) Cosf,(t, a) + Sin;(t, a)=E_p(t,a), teN,;
(iii) VCos,(t,a) = —p(t) Sin,(t,a), te€ Nygi;
(iv) VSiny,(t,a) = p(t) Cosy(t,a), te Nyji;

(v) Cos_p(t,a) = Cosy(t,a), teNy
(vi) Sin_p(t,a) = =Sin,(t,a), t€ N,

Proof. The proof of this theorem follows from Theorems 3.16 and 3.18. O

3.5 Second Order Linear Equations
with Constant Coefficients

The nonhomogeneous second order linear nabla difference equation is given by

V2y(0) + p(OVy(D) + q(0)y(t) = f(1), 1 € Nasa, (3.12)
where we assume p, g,f : Nyj2 — Rand 1 + p(¢t) + ¢(¢) # 0 for t € Ny45. In this

section we will see that we can easily solve the corresponding second order linear
homogeneous nabla difference equation with constant coefficients

V(1) + pVy(t) + qy(t) = 0.t € Nyjo, (3.13)

where we assume the constants p, g € R satisfy 1 +p + g # 0.
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First we prove an existence-uniqueness theorem for solutions of initial value
problems (IVPs) for (3.12).

Theorem 3.20. Assume that p,q,f : Nyto — R, 1 + p(t) + q(t) # 0, t € Ny4a,
A,B € R, and ty € Nyy . Then the IVP
V2y(1) + p(OVy (@) + q(O)y(®) = (1), 1 € Nasoa, (3.14)

where ty € Nyy1 and A, B € R has a unique solution y(t) on N,,.

Proof. Expanding equation (3.14) we have by first solving for y(f) and then solving
for y(t — 2) that, since 1 + p(t) + ¢q(¢) # 0,

2+ p(r)

y(®) Zmy(t —-1)
f(@)
- m“" 2+ T570 +40 (3.16)
and
y(t—2) = =[1+p@®) + gO]y(®) + 2 + pO)]y(t — 1) + £ (1). a.17)

If we let t = typ + 1 in (3.16), then equation (3.14) holds at t = fy + 1 iff

PR -0/ (% A
Yo T+ p+ Dt+qlio+ D) 1+pto+ D) +qli+1)
flto+1)

14+ plto+ 1)+ q(to + 1).

Hence, the solution of the IVP (3.14), (3.15) is uniquely determined at ¢y, + 1. But
using the equation (3.16) evaluated at t = ¢y + 2, we have that the unique values of
the solution at 7y and #, + 1 uniquely determine the value of the solution at 7y + 2. By
induction we get that the solution of the IVP (3.14), (3.15) is uniquely determined
on Ny _;. On the other hand if #, > a 4+ 2, then using equation (3.17) with ¢ = f,
we have that

y(to —2) = —[1 + p(to) + q(t0)1B + [2 + p(t0)]A + f (o).

Hence the solution of the IVP (3.14), (3.15) is uniquely determined at fy — 2.
Similarly, if #o — 3 > a, then the value of the solution at fy — 2 and at 7y — 1 uniquely
determines the value of the solution at fy — 3. Proceeding in this manner we have
by mathematical induction that the solution of the IVP (3.14), (3.15) is uniquely
determined on N~!. Hence the result follows. o
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Remark 3.21. Note that the so-called initial conditions in (3.15)

yito—1)=A, y) =B

hold iff the equations y(#y) = C, Vy(ty) = D := B — A are satisfied. Because of this
we also say that

y(to) = C, Vy(to) =D

are initial conditions for solutions of equation (3.12). In particular, Theorem 3.20
holds if we replace the conditions (3.15) by the conditions

y(to) = C, Vy(t) = D.

Remark 3.22. From Exercise 3.21 we see that if 1 4+ p(¢) + ¢(7) # 0, t € N4, then
the general solution of the linear homogeneous equation

V2y(1) + p())Vy(1) + q()y(H) = 0
is given by
() = ey () + coya(t), teN,,

where y1(¢), y2(f) are any two linearly independent solutions of (3.13) on N,,.

Next we show we can solve the second order linear nabla difference equation
with constant coefficients (3.13). We say the equation

M4Hpl+g=0

is the characteristic equation of the nabla linear difference equation (3.13) and the
solutions of this characteristic equation are called the characteristic values of (3.13).
Theorem 3.23 (Distinct Roots). Assume 1 + p + g # 0 and Ay # A, (possibly
complex) are the characteristic values of (3.13). Then

¥(t) = c1Ey (t.a) + c2E), (t, a)

is a general solution of (3.13) on N,.

Proof. Since Aj, A, satisfy the characteristic equation for (3.13), we have that the
characteristic polynomial for (3.13) is given by

A=ADA =22 = 22— (A1 + ADA + A4y
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and hence
p=—h—24, qg=Xhi.
Since
l+p+g=1+(A =)+ Al =1 -4 —-2A) #0,

we have that 11,4, # 1 and hence E) (t,a) and E),(t,a) are well defined. Next
note that

V2E) (1,a) + p VEy,(1,a) + q Ej,(1,a)
= [A} + pAi + qlEx, (1, a)
=0,

fori = 1,2. Hence E),(t,a), i = 1,2 are solutions of (3.13). Since A; # A,, these
two solutions are linearly independent on N, and by Remark 3.22,

¥(t) = a1E (t,a) + 2E), (1, a)

is a general solution of (3.13) on N,,. O

Example 3.24. Solve the nabla linear difference equation
V(1) + 2Vy(t) — 8y(t) = 0. t € Nyps.
The characteristic equation is
M420-8=A-2)A+4) =0
and the characteristic roots are
M =2, Ay=-4.
Note that 1 4+ p + ¢ = —5 # 0, so we can apply Theorem 3.23. Then we have that

(1) = c1Ey (t,a) + c2E),(t,a)
= c1Ey(t,a) + cE_4(t, a)
=c (=) + 57!

is a general solution on N,,.
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Usually, we want to find all real-valued solutions of (3.13). When a characteristic
value A; of (3.13) is complex, E;, (t,a) is a complex-valued solution. In the next
theorem we show how to use this complex-valued solution to find two linearly
independent real-valued solutions on N,,.

Theorem 3.25 (Complex Roots). Assume the characteristic values of (3.13) are
A=a=xif, B>0anda # 1. Then a general solution of (3.13) is given by

y(t) = c1Ey(t, a)Cos, (t, a) + c2E, (1, a)Sin, (t, a),

where y := %

Proof. Since the characteristic roots are A = « + i, f§ > 0, we have that the
characteristic equation is given by

A2 =2l +a’ 4+ B2 =0.
It follows that p = —2« and ¢ = > + B2, and hence
L+p+qg=(1—-a)+p>#0.

Hence, Remark 3.22 applies. By the proof of Theorem 3.23, we have that y(¢) =
Eq 1ip(t, a) is a complex-valued solution of (3.13). Using

a—l—iﬁ:aEElilﬁ =a Hiy,

where y = L # 1, we get that

1—a?
y(l) = Eot-l—iﬂ (l, a) = EaEEiy (l, Cl) = Ea(t, a)E,'y (I, a)
is a nontrivial solution. It follows from Euler’s formula (3.11) that

y(t) = Eot (t7 a)Eiy (tv a)
= E,(t,a)[Cos, (¢, a) + iSin, (t, a)]

= y1(1) + iy2(2)
is a solution of (3.13). But since p and g are real, we have that the real part, y;(f) =
E.(t,a)Cos,(t,a), and the imaginary part, y»(t) = E,(t,a)Sin,(t,a), of y(¢) are
solutions of (3.13). But y;(¢), y»(¢) are linearly independent on N, so we get that

(1) = c1Eq(t, a)Cos, (¢, a) + c2E,(t, a)Sin, (t, a)

is a general solution of (3.13) on N,,. O
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Example 3.26. Solve the nabla difference equation
V(1) + 2Vy(t) + 2y(t) = 0, t € Nyyo. (3.18)
The characteristic equation is
A2 4+20+2=0,

and so, the characteristic roots are A = —1 & i. Note that 1 + p + g = 5 # 0. So,
applying Theorem 3.25, we find that

y(t) = c1E—(t, a)Cos%(t, a) + c,E_ (1, a)Sin% (t,a)

is a general solution of (3.18) on N,.

The previous theorem (Theorem 3.25) excluded the case when the characteristic
roots of (3.13) are 1 £ i3, where B > 0. The next theorem considers this case.

Theorem 3.27. If the characteristic values of (3.13) are 1 = if8, where B > 0, then
a general solution of (3.13) is given by

y(t) = c1 %" cos [%(f - a)] + B " sin [g(r - a)] ,

t e N,

Proof. Since 1—if is a characteristic value of (3.13), we have that y(t) = E1_is(t, a)
is a complex-valued solution of (3.13). Now

¥0) = Erip(t.a)
= (B

_ (ﬂe’%)a_t

— ,Ba—tei%(a—t)
= g {cos [%(a - t)] + isin [%(a - t)]}
— B cos [%(r - a)] — i sin [%(; . a)] .

It follows that

yi(6) = B cos [%(t—a)] . ya(f) = B sin [%(t—a)]
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are solutions of (3.13). Since these solutions are linearly independent on N,, we
have that

(1) = c1 " cos [%(r - a)] + 2B sin [%(r - a)]

is a general solution of (3.13). O

Example 3.28. Solve the nabla linear difference equation
V2y(1) — 2Vy(1) + 5y(r) =0, e N,.

The characteristic equation is A2 — 21 + 5 = 0, so the characteristic roots are
A =1 =% 2i. It follows from Theorem 3.27 that

y(t) = 127" cos (%t) + 227" sin (%t) ,

for r € Np.

Theorem 3.29 (Double Root). Assume Ay = A, = r # 1 is a double root of the
characteristic equation. Then

y(t) = c1E (t,a) + c2(t — a)E (1, a)

is a general solution of (3.13).

Proof. Since A; = r is a double root of the characteristic equation, we have that
A% —2rA + 1> = 0 is the characteristic equation. It follows that p = —2r and
g = r*. Therefore

l4+p+g=1-2r+r=(010-r*#0
since r # 1. Hence, Remark 3.22 applies. Since r # 1 is a characteristic root, we
have that y,(tf) = E,(t, a) is a nontrivial solution of (3.13). From Exercise 3.14, we

have that y,(t) = (¢t — a)E,(¢,a) is a second solution of (3.13) on N,. Since these
two solutions are linearly independent on N,, we have from Remark 3.22 that

y(t) = c1E (t,a) + c2(t — a)E,(t, a)

is a general solution of (3.13). O

Example 3.30. Solve the nabla difference equation
V2y(1) 4+ 12Vy(1) + 36y(t) =0, t € Ny,
The corresponding characteristic equation is

A 4120 +36 = (L +6)> =0.
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Hence r = —6 # 1 is a double root, so by Theorem 3.29 a general solution is
given by

y(t) = c1E—4(t,a) + c2(t — a)E_4(t, a)
=77+t —a)71!

forr € N,.

3.6 Discrete Nabla Integral

In this section we define the nabla definite and indefinite integral, give several of
their properties, and present a nabla fundamental theorem of calculus.

Definition 3.31. Assume f : N,4; — R and b € N,. Then the nabla integral of f
from a to b is defined by

b
/bf(t)Vtzz > f@). teN,

t=a+1

with the convention that

/af(t)Vtz > f@:=o.

t=a+1

Note that even if f had the domain N, instead of N,4; the value of the integral
fab f(@®V1t does not depend on the value of f at a. Also note if f : N,4; — R, then
F(t) := ] f(v)V is defined on N, with F(a) = 0.

The following theorem gives some important properties of this nabla integral.

Theorem 3.32. Assume f,g : Nov1 — R, b,c,d e N, b < c < d, anda € R.
Then

() [, af OVi=a [, f(1)VE; ‘
(i) [, @)+ g)Ve= [, fOVt+ [, gn)V;
(i) [ f()Vi=0;
W) [ f@OVe= [{fOVi+ [ f0Vr
™) | [y @V < [ If(0)|Ve:
(Vi) if F(t) := [, f(s)Vs, fort € N§, then VF(t) = f(1), t € N§, |
(vii) iff(1) = g(t) fort € Ny, then [, f()Vi > [, g(t)V1.

Proof. To see that (vi) holds, assume

F(r) = /btf(s)Vs, reNj.
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Then, for t € Nj 11, WE have that

VF(@) =V (/tf(s)Vs)
b

(5 )

s=b+1

t t—1
PIRICEINIO!

s=b+1 s=b+1

=f@.

Hence property (vi) holds. All the other properties of the nabla integral in this
theorem hold since the corresponding properties for the summations hold. O

Definition 3.33. Assume f : N°, | — R. Wesay F : N° — R is a nabla
antidifference of f(f) on N? provided

VF() =f()., teN,.

Iff: NZ+1 — R, then if we define F by

F(t) := / tf(s)Vs, teN’

we have from part (vi) of Theorem 3.32 that VF(r) = f(¢), for t € N2 | that is,

a+1°

F(t) is a nabla antidifference of f(#) on N’. Next we show that if f : Ny — R,
then () has infinitely many antidifferences on N2.

Theorem 3.34. Iff : N? +1 — Rand G(1) is a nabla antidifference of f(t) on I\
then F(t) = G(t) + C, where C is a constant, is a general nabla antidifference of
f(t) on N2,

Proof. Assume G(?) is a nabla antidifference of f(f) on N2. Let F(r) := G(t) + C,
t € N2 where C is a constant. Then

VF(t) = VG(1) =f(1). 1eNs,,,

and so, F(t) is a antidifference of () on N°.
Conversely, assume F(¢) is a nabla antidifference of f(r) on N°. Then

V(F(1) = G(1) = VF(1) = VG(@) = f(1) —f(1) = 0
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for 1 € N°_ . This implies F(f) — G(r) = C, for t € N’, where C is a constant.
Hence

F():=G(+C, teN

This completes the proof. O
Definition 3.35. If f : N, — R, then the nabla indefinite integral of f is defined by

/f(t)Vt =F()+ C,

where F(¢) is a nabla antidifference of f(¢) and C is an arbitrary constant.

Since any formula for a nabla derivative gives us a formula for an indefinite
integral, we have the following theorem.

Theorem 3.36. The following hold:
(i) [atPVi= Lol +C, a#l;

o—1

(i) [(—)Vi=HG—a)T' +C. r#-1L
(i) [(@—p0)'Vi=——5@—-)*+C r#-1;

(iv) [p() Ey(t,a)Vt = E,(t,a)+ C, if peTR;

) [p()Cosh,(t,a)Vt = Sinh,(t,a) + C, if *peR;
(vi) [ p(1)Sinh,(t,a)Vt = Coshy(t,a) + C, if =£peR;
(vii) [ p@t)Cos,(t,a)Vt = Siny(t,a) + C, if *ipeR;

(viii) [ p(0)Sin,(t,a)Vi = —Cos,(t,a) + C, if =*ipe R,

where C is an arbitrary constant.

Proof. The formula

/a”‘ﬁVt: Lloz"HS +C, a#l,

is clear when o = 0, and for o # 0 it follows from part (iv) of Theorem 3.1. Parts

(i1) and (iii) of this theorem follow from the power rules (3.3) and (3.4), respectively.

Part (iv) of this theorem follows from part (iv) of Theorem 3.11. Parts (v) and (vi) of

this theorem follow from parts (iv) and (iii) of Theorem 3.16, respectively. Finally,

parts (vii) and (viii) of this theorem follow from parts (iv) and (iii) of Theorem 3.19,

respectively. O
We now state and prove the fundamental theorem for the nabla calculus.

Theorem 3.37 (Fundamental Theorem of Nabla Calculus). We assume [ :
NP 11 —> Rand F is any nabla antidifference of f on N°. Then

b
/ OVt =F@)| = F(b) — F(a).
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Proof. By Theorem 3.32, (vi), we have that G defined by G(¢) := fat f(s)Vs, for
t € N’ is a nabla antidifference of f on N2. Since F is a nabla antidifference of f on
N?_ it follows from Theorem 3.34 that F(f) = G(f) + C, t € N, for some constant
C. Hence,

F(t)|" = F(b) - F(a)
= [G(b) + C] - [G(a) + (]
= G(b) — G(a)

This completes the proof. O

Example 3.38. Assume p # 0, 1 is a constant. Use the integration formula
t 1 ‘
E,(t,a)Vt = l—)Ep(t, a)l,
to evaluate the integral f04 f(&)Vt, where f(¢) := (=3)7", t € Np. We calculate

/O 4(—3)_’Vt = /O 4(1 — 4)07'vy
4

/ E.(t,0)Vt
0

1 4
= Z 4(t» 0)’0

= Iy -]

20

81"

Check this answer by using part (i) in Theorem 3.36.

Using the product rule (part (v) in Theorem 3.1) we can prove the following
integration by parts formulas.
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Theorem 3.39 (Integration by Parts). Given two functions u,v : N, — R and
b,c € N, b < ¢, we have the integration by parts formulas:

/C u(®)Vu(t)Vt = u(t)v(t)‘c — /C v(p()Vu(r)Vt, (3.19)
b b b

[ (o) V(1) Vi = u(t)v(t))c — / (VUL (3.20)
b b b

Example 3.40. Given f(t) = (t—1)3'~" for t € N, evaluate the integral fltf(r)Vr.
Note that

t t
/ f(r)Vr = / (t —1DE_(tr,1) V.
1 1
To set up to use the integration by parts formula (3.19), set
u(r) =t—1, Vu(r) = E_ (7, 1).
It follows that
1 3
Vu(t) =1 v(m) = —7E-(@ D). v(p(r) = —5E(z. D).
Hence, using the integration by parts formula (3.19), we get
t t
[ f(r)Vr = / (t —DE_»(z, 1)Vt
1 1
1 =t 3 !
= (1= 1)E_(z, 1)( + -/ E_s(z, 1)Vt
2 =1 2 1

_ %(; —1DE_»(t,1) - %E_z(f, 1)[:

1 3 3
=—(t—1E_(t1)—-E_»(1 —
2( VE_»(t, 1) 1 2( )+4

_3t1’11’+3
2 \3 4\3 4’

fort € Nj.
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3.7 First Order Linear Difference Equations

In this section we show how to solve the first order nabla linear equation

Vy(1) = p()y(®) + q(1), 1€ Nyyy, (3.21)

where we assume p,q : N,y — R and p € R. At the end of this section we will
then show how to use the fact that we can solve the first order nabla linear equation
(3.21) to solve certain nabla second order linear equations with variable coefficients
(3.13) by the method of factoring.

We begin by using one of the following nabla Leibniz’s formulas to find a
variation of constants formula for (3.21).

Theorem 3.41 (Nabla Leibniz Formulas). Assume f : N, X N,y — R. Then

v([ 1 ove) = | "V Ve + 100, ), (:22)
t € Nyyi. Also

v ( / m f)vf) - / StV 4 f . (3.23)
fort € Nuts

Proof. The proof of (3.22) follows from the following:

\% (/atf(t, r)Vr) = /atf(t, )Vt — /:_lf(z— 1,7)Vr

= /t[f(t, T)—f(t—1,7)]Vt + /_llf(t— 1,7)Vt

_ [ V(1. 0V +f(p(t). 1)

for t € Ny . The proof of (3.23) is Exercise 3.22. O
Theorem 3.42 (Variation of Constants Formula). Assume p,q : N,y; — R and
p € R. Then the unique solution of the IVP
Vy(@) = p0)y(®) + q(t), 1€ Nay
(@) =A
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is given by
t
y(t) = AE,(t,a) + / E,(t, p(s))gq(s)Vs, teN,.

Proof. The proof of uniqueness is left to the reader. Let

y(t) := AE,(t,a) + / E,(t, p(s))g(s)Vs, teN,.

a

Using the nabla Leibniz formula (3.22), we obtain
t
Vﬂ0=mmwﬂmn+/pm&@p®M@W&+@@®w®M®

=mﬂpamﬂry/awm®mqu+ﬂn

= p(0)y(®) + q(1)
for t € N, 1. We also see that y(a) = A. And this completes the proof. O
Example 3.43. Assuming r € R, solve the IVP

Vy(t) = r(t)y(t) + Er(tv a)» re Na-‘rl (324)
y(a) = 0. (3.25)

Using the variation of constants formula in Theorem 3.42, we have
t
(1) = / E,(t, p(s))E.(s,a)Vs

= E.(t,a) / tEr(a, P(s)E:(s, a)Vs

_ E.(s,a)
E“@/Ewwm

E.(s,a)
‘E“”/U—AME@@

= E.(t, a)/; =) Vs

If we further assume r(tf) = r # 1 is a constant, then we obtain that the function
ﬁ (t — a)E, (¢, a) is the solution of the IVP

Vy(®) = ry(t) + Ei(t.a),  y(a) = 0.
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A general solution of the linear equation (3.21) is given by adding a general
solution of the corresponding homogeneous equation Vy(f) = p(tf)y(¢) to a
particular solution to the nonhomogeneous difference equation (3.21). Hence,

¥(0) = cEy(t.a) + /0 E,(t. p(s))q(s)V's

is a general solution of (3.21). We use this fact in the following example.

Example 3.44. Find a general solution of the linear difference equation
Vy(r) = (B3)y(r) + 3¢, teNj. (3.26)

Note that the constant function p(r) := H3 is a regressive function on N;. Hence,
the general solution of (3.26) is given by

t
Y0 = cE,(t0) + [ Eylt.p)g)Vs
t
= cEg;3(¢,0) + 3/ sEgs(t, p(s))Vs
0
t
— cE(10)+3 [ SE(p(5).0s
0
t
= cEg;3(¢,0) — 6/ SE3(s,1)Vs,
0
for t € Ny. Integrating by parts we get

y(®)

t
cEg3(t,0) — 2sE5(s, t)|£:0 + 2/ E;(p(s),1)Vs
0

t

= CEE:J,([, O) —2t— 4/ E3(S,l)VS
0

4
= gy (1.0) = 2 — S Es(s. N,

4 4

CEE_v,([, O) —2t— 5 + §E3(0,l)
4

= aFEg;(t,0) — 21 — 3

4
= —2t_22‘__
a(—2) 3

for r € Ny.
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Example 3.45. Assuming r # 1, use the method of factoring to solve the nabla
difference equation

V2y(1) — 2rVy(t) + r*y(1) =0, reN,. (3.27)
A factored form of (3.27) is
(V—=rD)(V—=rDy(@t) =0, teN,. (3.28)
It follows from (3.28) that any solution of (V — rI)y(t) = 0 is a solution of (3.27).
Hence y,(f) = E,(t,a) is a solution of (3.27). It also follows from the factored
equation (3.28) that the solution y() of the IVP

(V= ry(t) = E/(t.a),  y(@) =0

is a solution of (3.27). Hence, by the variation of constants formula in Theorem 3.42,
t t
y() = / E.(t, p(s)E.(s,a)Vs = E,(t,a) / E.(a, p(s))E.(s,a)Vs
t
— £,.0) [ Ee/(p(9). 005 6.0)Vs

= E,(t,a) /t[l — &r]|Eg,(s,a)E,(s,a)Vs

1

1—r

Vs

=E.(t,a) /t[l — 6r|Vs = E.(t,a) /t
= L(l —a)E,(t,a)
1—r

is a solution of (3.27). But this implies that y,(f) = (t — a)E, (¢, a) is a solution of
(3.27). Since y; (¢) and y,(¢) are linearly independent on N,

y(1) = c1Ex(1,a) 4 c2(t — @)E, (1, a)

is a general solution of (3.27) on N,,.

3.8 Nabla Taylor’s Theorem

In this section we want to prove the nabla version of Taylor’s Theorem. To do this we
first study the nabla Taylor monomials and give some of their important properties.
These nabla Taylor monomials will appear in the nabla Taylor’s Theorem. We then
will find nabla Taylor series expansions for the nabla exponential, hyperbolic, and
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trigonometric functions. Finally, as a special case of our Taylor’s theorem we will
obtain a variation of constants formula for V*y(r) = h(r).

Definition 3.46. We define the nabla Taylor monomials, H,(t,a), n € N, by
Hy(t,a) = 1, fort € N,, and

H,(t,a) =

t—a)”
%, t € Ny—pt1, ne€Np.

Theorem 3.47. The nabla Taylor monomials satisfy the following:

(1) H,(t,a) =0, a—n+1<t<a, neNy
(i) VHu41(t,a) = H,(t,a), t€ Ny—py1, n€ Ny
(i) [ Hy(zr,a)Vt = H,41(t.a), t€N, ne Ny
(iv) jat H,(t,p(s))Vs = H,y1(t,a), t€eN,, neN,
Proof. Part (i) of this theorem follows from the definition (Definition 3.46) of the
nabla Taylor monomials. By the first power rule (3.3), it follows that

(t—a)t!
(n+ 1)!
_(t—a)

n!
= H,(t,a),

VHn-H (l, a) =V

and so, we have that part (ii) of this theorem holds. Part (iii) follows from parts (ii)
and (i). Finally, to see that (iv) holds we use the integration formula in part (iii) in
Theorem 3.36 to get

[ epnvs = [t p(o)79s
a nJa

—1 pay s=t
= a7V
(n+ 1)
= IHp41 (t» a)'
This completes the proof. O

Now we state and prove the nabla Taylor’s Theorem.

Theorem 3.48 (Nabla Taylor’s Formula). Assumef : N,—, — R, where n € N.
Then

@) =pu(®) + Ry(®), 1€ Nap,
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where the n-th degree nabla Taylor polynomial, p,(t), is given by
palt) = Z Vi) L= Z Vi (@)Hi(t. a)

and the Taylor remainder, R, (t), is given by

Rot) = [ l “%WV"“f(sWs - / ' Hy(t. pls) V" (5)Vs,

fort € N,_,. (By convention we assume R,(t) = 0fora—n <t <a.)

Proof. We will use the second integration by parts formula in Theorem 3.39, namely
(3.20), to evaluate the integral in the definition of R, (¢). To do this we set

u(p(s)) = Ha(t, p(s)),  Vu(s) = V"*If(s).
Then it follows that
u(s) = Hu(t,5),  v(s) = V'f(s).
Using part (iv) of Theorem 3.47, we get

VM(S) = — n—l(tv /O(S))

Hence we get from the second integration by parts formula (3.20) that
t
R0 = [ Hi(epo) V6V
s=t 4
= H,(t, s)V”f(s)Lza + / H,—1(t, p(s))V"f(s)Vs
t
= V@, .0 + [ Hialr pe) Vs,
a
Again, using the second integration by parts formula (3.20), we have that
s=t
Ry(1) = = V'f(@)H,(t,a) + Hae1 (1,) V"7 f ()|

+ / o (1, p(s) V" () Vs

= — V'f(@)H,(t,a) = V"~ 'f(@)H,-1 (1, )

+ / Hys (1, p(5)) V"~ £ (5) Vs.
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By induction on n we obtain

R0 = = 3V @H(t.a) + [ Ho(t.pl) V)V

k=1

==Y V(@H(t,a) + f (1) = f(@)Ho (1, a)

k=1

= Z V(@) Hi (1, a) + £ (1)

k=0

= —pa(0) +1(0).

Solving for f(¢) we get the desired result. O
We next define the formal nabla power series of a function at a point.

Definition 3.49. Let a € R and let
Zy:={...,a—2,a—l,a,a+1l,a+2,...}.
Iff:Z, — R, then we call

(t—a)f

Y Vi@ =) Vf@Hd(.a)
k=0 ’ k=0

the (formal) nabla Taylor series of f att = a

The following theorem gives some convergence results for nabla Taylor series
for various functions.

Theorem 3.50. Assume |p| < 1 is a constant. Then the following hold:

(1) E[)(t9 (1) = Z:ioann(t9 (1),

(11) Slnp (tv a) = Z:io(_l)npzn—’—lHZn—H (tv a);
(i) Cosy(t,a) = 3,20 (=1)"'p*" Hau(t, a):
(iv) Coshy(t,a) =Y o2 p*"Hau(t, a);

(V) Sinhy(t,a) = 3020 p*" Hpu1 (1. a),

fort e N,.
Proof. First we prove part (i). Since V'E,(t,a) = p"E,(t,a) for n € Ny, we have
that the Taylor series for E, (¢, a) is given by

oo

> V'Ey(a.a)Hy(t.a) = Y p"Hu(t.a).

n=0 n=0
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To show that the above Taylor series converges to E, (¢, ) when |p| < 1 is a constant,
for each t € N,, it suffices to show that the remainder term, R,(¢), in Taylor’s
Formula satisfies

lim R,(1) =0
n—>oo

when |p| < 1, for each fixed t € N,
So fix t € N, and consider

Ry (1)] = /tHn(t, p()V'TE, (5. a)Vs

f Ha(t. p(s)p™ Ey (5. ) Vs

Since t is fixed, there is a constant C such that
|E1,(s,a)| <C, a<s<t

Hence,
t
R.(1)] < C / H (6, p()|pl™+ 1 Vs

t
= clp™ [, p(o)Vs
= C|p|"™'Hy4+1(t,a) by Theorem 3.47, (iv)

— C|p|n+l (t — a)m
n+ 1!
By the ratio test, if |p| < 1, the series
e |p|n+1(f _ a)m
(n+ 1)!

n=0

converges. It follows that if |p| < 1, then by the n-th term test

) |p|"+1(t—a)"+l
ll]ll _—
n—>00 (n+ 1)!

This implies that if |p| < 1, then for each fixed r € N,

lim R,(¢) =0,

n—>oo
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and hence if |p| < 1,

o0
Ep(ts Cl) = anHn(t, Cl)
n=0

for all + € N,,. Since the functions Sin, (¢, a), Cos,(t, a), Sinh, (¢, a), and Cosh, (¢, a)
are defined in terms of E, (¢, a), parts (ii)—(v) follow easily from part (i). O

We now see that the integer order variation of constants formula follows from
Taylor’s formula.

Theorem 3.51 (Integer Order Variation of Constants Formula). Assume
h:N,+1 — Randn € Ny. Then the solution of the IVP

Viy(1) = h(1), t € Nyt

Viy@) =G, 0<k<n—1, (3.29)

where Cy, 0 < k < n— 1, are given constants, is given by the variation of constants
formula

n—1

Y0 = Y Ci(t.a) + [ Hya (b pOHOT5. 1€ N
k=0 a

Proof. 1Tt is easy to see that the given IVP has a unique solution y that is defined on
N,—u+1. By Taylor’s formula (see Theorem 3.48) with n replaced by n — 1 we get
that

n—1 t
Y0 = 3 V@) + [ 0 p6) 56 Vs

k=0
n—1 ¢

=Y CiH(t.a) + f H,_1(t, p(s))h(s) Vs,
k=0 a

te€ Nyt O
We immediately get the following special case of Theorem 3.51. This special
case, which we label Corollary 3.52, is also called a variation of constants formula.

Corollary 3.52 (Integer Order Variation of Constants Formula). Assume
the function h : N,4+1 — R and n € Ny. Then the solution of the IVP

V'y(t) = h(t), t€ Noy
Vi) =0, 0<k<n-—1 (3.30)
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is given by the variation of constants formula.

t
Y0 = [ Huos (. p)AO Vs, 1€ Ny,
Example 3.53. Use the variation of constants formula to solve the IVP
V(1) = (=2)*"", 1€ Ngy

Wa) =2, V(@) =1.
By the variation of constants formula in Theorem 3.51 the solution of this IVP is
given by

t
y(t) = CoHy(t,a) + C1H(t,a) + / Hi(t, p(s))(=2)* Vs

= 2Hy(t,a) + H|(t,a) + / H\(t, p(s))E5(s,a)Vs

1 Coq
= 2Hy(1.a) + H(1.a) + 3H (. 9B, a)( _+3 / Es(s,a)Vs

a

1 1
= 2Hy(t,a) + Hi(t,a) — §H1(l‘, a) + §E3(S, a)

t
a

1 1 1
= 2Hy(t,a) + H(t,a) — §H1(t, a) + —Ez(t,a) — 3

9
2 1 1
=2+ ZH(, —(=2)* ==
+ SH(a) + 52" =
17 2 1
- Z(t— __2a7t’
5+ 50— +5(-2)

forr € N,—;.

3.9 Fractional Sums and Differences

With the relevant preliminaries established, we are now ready to develop what we
mean by fractional nabla differences and fractional nabla sums. We first give the
motivation for how we define nabla integral sums.

In the previous section (see Corollary 3.52) we saw that

¥(0) = / Hy (1. p())f (5)V's
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is the unique solution of the nabla difference equation V*y(r) = f(r),t € N,y
satisfying the initial conditions Viy(a) = 0,0 < i < n— 1, for ¢t € N,. Integrating
n times both sides of V"y(f) = f(¢) and using the initial conditions Viy(a) = 0,
0 <i<n-—1, we get by uniqueness

t 71 Tn—1
// / f(@)Vt,--- V5,V

=/HFMw®V®W~ (3.31)

The formula (3.31) can also be easily proved by repeated integration by parts.
Motivated by this we define the nabla integral order sum as in the following
definition.

Definition 3.54 (Integral Order Sum). Letf : N,;; — R be given and n € Nj.
Then

V0= [ B pO6Vs. re N,

Also, we define V77 (¢) := f(¢).

Note that the function V;"'f depends on the values of f at all the points a + 1 <
s < t, unlike the positive integer nabla difference V"f(¢), which just depends on the
values of f at the n 4 1 points t —n < s < t. Another interesting observation is
that we could think of V_"f(¢) as defined on N,_,4, from which we obtain that
f(t) =0, a+n—1 <t <abyourconvention that the nabla integral from a point
to a smaller point is zero (see Definition 3.31). The following example appears in
Hein et al. [119].

Example 3.55. Use the definition (Definition 3.54) of the fractional sum to find
V;zEI, (t,a), where p # 0, 1 is a constant. By definition we obtain, using the second
integration by parts formula (3.20),

t
Va_zE,,(t,a) =/ Hy(t, p(s))E,(s,a)Vs
1 ‘ 1 [t
= —E,(s,a)H(t, s)|v_a + —/ E,(s,a)Vs
p o P Ja
1 1 '
= —;Hl (t,a) + p_zEP(S’ a)}xza
1H(t ) + ]E(t ) :
=——H\(t,a) + 5E,(t,a) — —
p P’ P?

1 1 1
= -+ (1 —pT .
p p p
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Note that if n € Ny, then

(t—a) (—a)
nl T+l

H,(t,a) =
Motivated by this we define the fractional p-th order nabla Taylor monomial as

follows.

Definition 3.56. Let © # —1,—2,—3,---. Then we define the u-th order nabla
fractional Taylor monomial, H,.(t, a), by

(t—a)F
C(p+1)°

whenever the right-hand side of this equation is sensible.

H,(t,a) =

In the next theorem we collect some of the properties of fractional nabla Taylor
monomials.

Theorem 3.57. The following hold:
(i) Hy(a,a) =0;

(iiy VH,(t,a) = H, (t,a);

(iii) f(fHH(s, a)Vs = H,11(t,a);

(v) [ H,(t. p(5))Vs = Hy41(t,a);
(v) fork e N, H_i(t,a) =0, t € N,

provided the expressions in this theorem are well defined.

Proof. Part (i) follows immediately from the definition of H,(t, a). The proofs of
parts (ii)—(iii) of this theorem are the same as the proof of Theorem 3.47, where we
used the fractional power rules instead of the integer power rules. Finally, part (v)
follows since

(t—ay ™

H_k(l, a) = Tk +1) =

by our earlier convention when the denominator is undefined but the numerator is
defined. O

Now we can define the fractional nabla sum in terms of the nabla fractional
Taylor monomial as follows.

Definition 3.58 (Nabla Fractional Sum). Letf : N,y; — R be given and assume
u > 0. Then

VIR = / Hiuer (1. p())f (5) Vs,

for t € N, where by convention V, "f(a) = 0.

The following example appears in Hein et al. [119].
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Example 3.59. Use the definition (Definition 3.58) of the fractional sum to find
V., "1. By definition

t
VI E = / H,_1(t,p(s))- 1Vs

t
= [ Hurtrpo) Vs
=H,(t,a), teN,

by part (iv) of Theorem 3.57.

For those readers that have read Chap. 2 we gave a relationship between a certain
delta fractional sum and a certain nabla fractional sum. This formula is sometimes
useful for obtaining results for the nabla fractional calculus from the delta fractional
calculus. Since we want this chapter to be self-contained we will not use this formula
in this chapter.

Theorem 3.60. Assume f : N, — Randv > 0. Then
A +v) = V. f(0) + Hy1 (2, p(@))f (@),
fort € N,. In particular, if f(a) = 0, then
A +v) =V, (),

fort e N,.

Proof. Note that f : N, — R implies A f(t 4+ v) is defined for t € N,. Using the
definition of the v-th order fractional sum (Definition 3.58) we find that

t+1
87+ = [ bl v o @YV

=Y ha(t+v.0(0)f(7)

- (v —p(1)=
= ; Tf(f)

t

_Z re+v-—r)

—TWr'ie+v-r1)

_ (t—1+ 1)t
—Z T @

=V, ()

fort € N,. o
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We next define the nabla fractional difference (nabla Riemann—Liouville frac-
tional difference) in terms of a nabla fractional sum. The Caputo fractional sum
(Definition 3.117) will be considered in Sect. 3.18.

Definition 3.61 (Nabla Fractional Difference). Letf : N,;; — R, v € Rt and
choose N such that N — 1 < v < N. Then we define the v-th order nabla fractional
difference, Vf(t), by
V(1) := VNV N1 for 1€ Nygw.
We now have a definition for both fractional sums and fractional differences;
however, they may still be unified to a similar form. We will show here that the

traditional definition of a fractional difference can be rewritten in a form similar to
the definition for a fractional sum. The following result appears in Ahrendt et al. [3].

Theorem 3.62. Assumef : N, - R, v > 0, v € Ny, and choose N € Ny such that
N—1<v <N.Then

V0 = [ Ho a0V (3.32)

fort € Nyyi.

Proof. Note that
Vaf (1) = VMV ETIf ()
_— ( | Hy p(f))f(f)Vf)
v ([ oo ve)
—ve (| Hya(t, pNF(RVE + Hyor (o0, p0)))

_ A / Hy—ss(t, p(0))f () V.

By applying Leibniz’s Rule N — 1 more times, we deduce that

V) = [ Hora oY @V

which is the desired result. O
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In the following theorem we show that the nabla fractional difference, for each
fixed r € N, is a continuous function of v for v > 0. The following theorem appears
in Ahrendt et al. [3].

Theorem 3.63 (Continuity of the Nabla Fractional Difference). Assume f :
N, — R. Then the fractional difference V,f is continuous with respect to v for
v > 0.

Proof. 1t is sufficient for this proof to show that forf : N, - R, N—1 <v <N,
and m € Ny, the following hold:

V)f(a + N + m) is continuous with respect to v on (N — 1, N), (3.33)
V'f(a+N+m) — V¥f(a+N+m)asv — N, (3.34)

and
V'fl@a+N+m)— V¥ f(a+N+m)yasv — (N—1)T. (3.35)

Let v be fixed such that N — 1 < v < N. We now show that (3.33) holds. To see
this note that we have the following:

Vifat Nt m) = [ Hopsp(@) Ve

- - _ ey
ET I R WL
1 a+N+m -

= _ —v—1

- P(=v) 1';—1 (@+N+m=p(e)) f(©)
a+N+m Fra+N+m—1t+1—-v-1)
I§H F'a+N+m—t+ 1)I'(-v) f(7)
a+N+m

_ (a—i-N—i-m—r—v_1)...(_v)1-(_v)

= I;} (@+N+m—1)T(—-v) f(7)
a+N+m—1

f(t) + f(a+ N + m).

Z @+N+m—t—v—1)---(-v)
Bl (@a+N+m—r1)!
Lettingi :=a+ N + m — 7, we get

Vf(a+ N+ m)
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fla+N+M—i)+fla+ N+ M).

i=1

This shows that the v-th order fractional difference is continuouson N—1 < v < N,
showing (3.33) holds.
Now we consider the case v — N~ in order to show that (3.34) holds:

lim V)f(a+ N+ m)
v—>N—

i ’%’:”(i—1—v)---(1—v)(—u)

i!

fla+N+M—i

+ fla+ N+ M)

N+m

3 ((i—I—IZ)"'(—N)f(a+N+m_i)) +fl@a+N+m)
i=1 '

N+m

= Z ((—l)i(N+ : _l.'i)m(N)f(a—l-N—i-m—i))

i=0

N+m

- Z(—l)i(jz,/)f(a +N+m—i)

i=0
N
(N
Z(—l)’( ,)f(a +m+ N —i)
i=0 !
= VVf(a+ N +m).
Finally we want to show (3.35) holds. So we write

lim V) f(a+ N+ m)

v—>(N—1)T
N+m .
, (i—1—v)---(I—v)(—v) .
= lim a+N+M-—i
v—>N—1)*+ Z i! £ )

+ fla+ N + M)

N+m

:Zl(i—N)(i—N

—1)---(1=N)
i

1

f(a+ N+ m—i)

+ fla+ N+ m)



3.10 Nabla Laplace Transforms 191

N+m . .
- 2:(_1)"(1\/_’)(]\“r Lo W=Dy Ny m—i)
i=0

i!

N+m

= Z(_1)f(Ni_1)f(a+m+ 1+N—1-i)
i=0

= VNVt (a + N + m).

This completes the proof. O

To prove various properties for the nabla fractional sums and differences it is
convenient to develop the theory of the nabla Laplace transform, which we do in the
next section.

3.10 Nabla Laplace Transforms

Having established the necessary preliminaries, we are now ready to discuss
an important application of this material: the Laplace transform. The Laplace
transform, as in the standard calculus, will provide us with an elegant way to solve
initial value problems for a fractional nabla difference equation. In this section, we
will lay the groundwork for this method, prove the basic properties, and establish a
means in which to solve various initial value (nabla) fractional difference equations.
We begin this section by defining the nabla Laplace transform operator £, (based at
a) as follows:

Definition 3.64. Assume f : N,;; — R. Then the nabla Laplace transform of f is
defined by

L) = / Egy(o(0). )f (V.

for those values of s # 1 such that this improper integral converges.

In the following theorem we give another formula for the Laplace transform,
which is often more convenient to use.

Theorem 3.65. Assume f : N,+1 — R. Then

LAfHs) =Y (1 =)' fa+ k), (3.36)

k=1

for those values of s such that this infinite series converges.
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Proof. Assume f : N,y — R. Then
Laif}() = / Ean(p(t). a)f () V1
=[wu—EﬂWﬁ7th

o0 1 a—t+1
= / (—) f(OVt
a 1—s

[wu—@FWvat

PR i)

t=a+1

> (=9 fa+ k.

k=1

for those values of s such that this infinite series converges. O
In the definition of the nabla Laplace transform we assumed s # 1 because we
do not define Eg; (¢, a). But the formula of the nabla Laplace transform (3.36) is
well defined when s = 1. From now on we will always include s = 1 in the domain
of convergence for the nabla Laplace transform although in the proofs we will often
assume s # 1. In fact the formula (3.36) for any f : N,+; — R gives us that

Laif3(1) =fla+1).

Example 3.66. We use the last theorem to find £,{1}(s). By Theorem 3.65 we
obtain

Lo{l}s) = Y (1 —9"1
k=1

= (-
k=0

1
=———— for|l—s] <1
1—(1-y)
1
s

That is

LA1}(s) = % ls—1] < 1.
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Theorem 3.67. For all nonnegative integers n, we have that
1
Lo{Hy (- a)}(s) = ==, for [|s—1] <L
s

Proof. The proof is by induction on 7. The result is true for n = 0 by the previous
example. Suppose now that L,{H,(-,a)}(s) = # for some fixed n > 0 and |s —
1] < 1. Then consider

o0
Lt C.a}o) = [ Ealp). 0.0V
We will apply the first integration by parts formula (3.19) with
1
u(t) = Hl‘l"rl(lv a)9 and Vv(t) = EEY(p(t)v a) =-—-H SEEA‘(ta a)'
S
It follows that
1
Vu(t) = Hy(t.a).  v(p(t)) = —Eas(p(1). a).
Hence by the integration by parts formula (3.19)
o0
Lt Ca}0) = [ Balp).0t1 .0V
1 o 1 [
= _EEEIX(L a)Hn+1 (l, CZ) |a + ; EEIS(P(I)» a)Hn(tv a)Vt
1 —a o 1
= (1= " Hy1 (1.0)[7 + < LUH, (@)} 6):

Using the nabla form of L’Hopital’s rule (Exercise 3.19) we calculate

H, . (t,
lim |(1 —S)tiaHn_H(t, a)| = lim M
t—>00 1—00 |1 _ S|a—t
. H,(t,a)
= lim
=00 [1 —[1 —s[][1 —s]*~
. Hn—l(ts a)
= lim

i=oo [1 —[1 —s|?[1 —s|*~

li H()([, a)
= lIm
0 [T 1= s[[PFI]1— 5o
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since |s — 1| < 1. Thus we have that

1
La{Hpi1(a)}(s) = prest ls—1] <1

completing the proof. O
Definition 3.68. A function f : N,+; — Ris said to be of exponential order » > 0
if there exist a constant M > 0 and a number 7' € N, such that

If(t)] < Mr', forallt e Ny.
Theorem 3.69. Forn € Ny, the Taylor monomials H,(t, a) are of exponential order
1 + € for all € > 0. Also, Hy(t, a) is of exponential order 1.

Proof. Since
|Ho(t,a)| = 1-1", €Ny,

Hy(t, a) is of exponential order 1. Next, assume n € Nj and € > 0 is fixed. Using
repeated applications of the nabla I’Hopital’s rule, we get

Hl‘l(tv a) . Hn—l(tv a)
m = 1im —F———:
—00 (1 + e)t —00 ﬁ(l + 6)’

li Hn—2(ta a)
im —— 12
=00 (52)*(1 + )

. Ho(t, a)

= m ———
o () (1 + ey
=0.

It follows from this that each H, (z, a), n € Ny, is of exponential order 1 + ¢ for all
€>0. a

Theorem 3.70 (Existence of Nabla Laplace Transform). Iff : N,4+; — Risa
Sfunction of exponential order r > 0, then its Laplace transform exists for |s—1| < %

Proof. Let f be a function of exponential order r. Then there is a constant M > 0
and a number 7 € N4 such that |f()] < Mr' for all + € Nr. Pick K so that
T = a + K, then we have that

If(a + k)| < Mrt*, ke Ng.
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We now show that

Loifis) =) (1 —9)""fla+k)

k=1

converges for |s — 1| < % To see this, consider
oo (e9)
DI =9 fla+ =Y 1= s f(a+ k)]
k=K k=K
o0
< Z |1 _ S|k—era+k
k=K

o0
= Mty s — 11
k=K

which converges since r|s — 1| < 1. It follows that £,{f}(s) converges absolutely
for |s—1| < % O

Theorem 3.71. The Laplace transform of the Taylor monomial, H,(t,a), n € N,
exists for |s — 1| < 1.

Proof. The proof of this theorem follows from Theorems 3.69 and 3.70. O
Similarly, by Exercise 3.30 each of the functions E,(, a), Cosh, (¢, a), Sinh, (¢, a),

Cos,(t, a), and Sin,(t, a) is of exponential order |1 4 p|, and hence by Theorem 3.70

their Laplace transforms exist for |s — 1| < m.

Theorem 3.72 (Uniqueness Theorem). Assume f,g : Nyy1 — R. Then f(t) =
g(#), t € Nyy1, if and only if

La{f}(s) = Lalg}(s), for |s—1[<r
for some r > Q.

Proof. Since L, is a linear operator it suffices to show that f(t) = 0 for r € N4 if
and only if L,{f}(s) = 0 for |s — 1| < r for some r > 0. If f(r) = O for t € N 41,
then trivially £,{f}(s) = 0 for all s € C. Conversely, assume that £,{f}(s) = 0 for
|s — 1| < r for some r > 0. In this case we have that

Y fa+ -} =0, Is—1]<r

k=1

This implies that

f(t):Ov Z‘EI\L/I"FI‘
This completes the proof. O
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3.11 Fractional Taylor Monomials

To find the formula for the Laplace transform of a fractional nabla Taylor monomial
we will use the following lemma which appears in Hein et al [119].

Lemma 3.73. Forv € C\Z and n > 0, we have that

(=D"T'(=v)

E—— (3.37)

(14+v) =

Proof. The proof of (3.37) is by induction for n € Ny. For n = 0 (3.37) clearly
holds. Assume (3.37) is true for some fixed n > 0. Then,

A+v)T'=04+v)"v+n+1)

—1)"T(— 1
:( T +n+ ), by the induction hypothesis

'(—v—n)
(=)' ()
S T(—v—(n+ 1)’
The result follows. a

We now determine the Laplace transform of the fractional nabla Taylor
monomial.

Theorem 3.74. For v not an integer, we have that

1
LAH,(-,a)}(s) = KESE for |s—1] <.

Proof. Consider for |s — 1] < 1, |s]? > 1

00 [ee] k?
_ k=l _ g
Lt @}0) = 320 = Huta ko) = 300 =9 ey

_Z(l_)kl T(k+v) Z(—)k T(k+1+v)

rrov+1) rc+nre+1
(1 + )k
_Z(l_ STkt Tk+1)
— k I'(=v)
Z( D (1 —) T+ DI (—v —k) (by Lemma 3.73)

k=0

[+ DI v+ D]
_Z( DA =) T(k+ 1)



3.11 Fractional Taylor Monomials 197

=Y (DF (‘“,f ”)(1 —s)t
k=0

G = (by the Generalized Binomial Theorem)

1
svtl’

This completes the proof. O
Combining Theorems 3.67 and 3.74, we get the following corollary:

Corollary 3.75. Forv € C\{—1,-2,-3, ...}, we have that

1
LAH, (- a)}(s) = =y for |1 —s| <1.

Theorem 3.76. The following hold:

() LAEC.a)}(s) = 5. p#1Li

(i) La{Coshy(.@)}() = 35, p# £L:

(iii) La{Sinhy(a)}(s) = 7B, p# £1:

(iv) Li{Cosp(-,a)}(s) = ﬁ, p # +i;

V) LalSima)}(s) = by, p # i

where (i) holds for |s—1| < |1—p|, (ii) and (iii) hold for |s—1| < min{|1—p|, |1+p|}.
and (iv) and (v) hold for |s — 1| < min{|1 —ip|, |1 + ip|}.

Proof. To see that (i) holds, note that

=

LAE,(a)}(s) = ) (1 —9)"'Ep(a + k. a)

k=1
o0
=) 1-9"1-p7k
k=1
1 °°(1—s)"“
1—pk=1 1—p
1 1 1—s
= — or <1
l-pl-1= 1-p
1
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for |[s— 1| < |1 —p|. To see that (ii) holds, note that for |s— 1| < min{|1—p|, |l +p|}

L{Cosh, (-.a)}(s)

SLAECa}8) + 5Ll a)}o)

1 1
2(s—p) * 2(s +p)
S

s2—p2
To see that (iv) holds, note that

La{Cosy(-,a)}(s) = La{Coship(-, a)}(s)
s
s> — (ip)?
s
for |s — 1| < min{|1 — ip|, |1 + ip|}. The proofs of parts (iii) and (v) are left as an
exercise (Exercise 3.31). ad

3.12 Convolution

We are now ready to investigate one of the most important properties in solving
initial-value fractional nabla difference equations: convolution. This definition is
motivated by the desire to express the fractional nabla sums and fractional nabla
differences as convolutions of arbitrary functions and Taylor monomials. As a
consequence, the resulting properties that stem from this definition are, in fact,
consistent with the standard convolution. Many of the results in this section appear
in Hein et al. [119] and Ahrendt et al. [3].

Definition 3.77. Forf, g : N,4; — R, we define the nabla convolution product of
f and g by

(F*9)(0) = f = p(t) + )g(@)VT, 1€ Nosr.

Example 3.78. Use the definition of the nabla convolution product to find 1 *
Sin, (-, a), p # 0, £i. By Definition 3.77,

(1 * Sin, (-, a))(t) = /t 1-Sin,(z,a)Vt

t
= / Sin,(r,a)Vt
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1
= ——Cosy(7, a)|;
p
1 1
= - - —COSI,(I, Cl),
p P

fort € Nu.l,_l.

Example 3.79. Use the definition of the (nabla) convolution product to find

(Ep(a) xEg(a)) (1), p.g#1. p#aq.

Assume g # 0. By Definition 3.77 and using the second integration by parts
formula, we have that

(Ep(.a) x Eq(.a) (1)
= /lEp(t —p(t) +a,a)E,(r,a)VT

a

1 — ,
= BT+ 3= + g/ E,(t — p(t) + a.a)E,(t, a)Vt

_ éEq(t, a) — ég,,g, )+ (Ey.a) % Ey(.) ()

Solving for (E, (-, a) * E,(-, a)) (t), we obtain

(Ep(-,a) * Eq(-,a)) (1) = p%qu(t’ a) + q—iqu(t, a)

for t € N 1. We leave it to the reader to show that this last formula is also valid if
qg=0.

Theorem 3.80. Assume v € R\{0,—1,—2,...}andf : Nyy1 — R. Then

VU0 = (Humt (oa) (@),

fort S Na+l-

Proof. The result follows from the following:

(Hyor ()  1)(0) = / Hyt (0= p(0) + a. a)f (1) VT

_ [t—p@® t+a-a)"
—/a o) f(t)Vt
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C(t—p(r)" 7t
a r'w)

_ / Hy1(t. p(0)f () VT
0

———f(v)Vr

fort € Nyyq. O

Theorem 3.81 (Nabla Convolution Theorem). Assume f,g : N,4+1 — R and
their nabla Laplace transforms converge for |s — 1| < r for some r > 0. Then

Laif * g3(s) = Lalf1(9)Lalg}(s),

for|s—1| <r.
Proof. The following proves our result:

Lo{f xgis) =Y (1=9)(F* g)(a+k)

k=1

=97 [ sk oo+ v

k=1

a+k
= Z(l—s)k 'Y flatk—p(r) + a)g(r)
k=1 t=a+1

k
> (=9 f(k— p(r) + a)g(z + a)
=1

2

> (=9 k= p(r) + a)g(a + T)
k=t

1
=1 k=

(Z(l — )" gla+ r)) (Z(l — )@+ k))

=1 k=1

= Laig}(9)Laif3(5)

for|s—1| <r. O
With the above result and the uniqueness of the Laplace transform, it follows that
the convolution product is commutative and associative (see Exercise 3.32).
We next establish properties of the Laplace transform that will be useful in
solving initial value problems for integer nabla difference equations.
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Theorem 3.82 (Transformation of Fractional Sums). Assume v > 0 and the

nabla Laplace transform of f : Nyy1 — R converges for |s — 1| < r for some
r > 0. Then

LAYTTI6) = S LAFNO)

for|s — 1| < min{1, r}.

Proof. The result follows since

LAV, f3(s) = LalHy—1 (. a) * f}(s)
= Ea{HV—l('aa)}(S)La{f}(s)

= Lm0,
S

for |s — 1| < min{1, r}. O

Assuming that v is a positive integer, this result is consistent with the formula
in the continuous case for the Laplace transform of the n-th iterated integral of a
function. We want to establish similar properties for fractional differences; however,
we will first establish integer-order difference properties.

Theorem 3.83 (Transform of Nabla Difference). Assume f : N, — R is of

exponential order r > 0. Then

LAVfI(s) = sLaif}(s) — f(a)
for|s—1| <r.

Proof. Note that since we are assuming thatf : N, — R, we have that Vf : N, —
R and so we can consider £,{Vf}(s). Since f : N, — R is of exponential order

r > 0, it follows that Vf : N,4; — R is of exponential order r > 0. It follows that
for|s—1| <r,

LAVfY(s) = (1 =9 "Vf(a+k)

k=1
=D (=9 fla+k) —fla+k=1)]
k=1

[e.]

= Lf}I&) =Y (1=9)fla+k-1)

k=1

= Laif}s) = Y (1= 9)"f(a+ k)

k=0
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= Lo {f}) —f@—(1=9) Y (1 =9 fla+ k)

k=1
= Laif}(s) —f(a) — (1 =) Lalf}(5)
= sLaif3(s) = f(a).
This completes the proof. O

The following is a simple example where we will use the Nabla Convolution
Theorem and Theorem 3.83 to solve an initial value problem.

Example 3.84. Use the Nabla Convolution Theorem to help you solve the IVP

Vy(t) = 3y(1) = Es(t,a), € Nay
y(a) =0.

If y(¢) is the solution of this IVP and its Laplace transform, Y,(s), exists, then we
have that

1
5Ya(s) —y(a) = 3Ya(s) = —.
s—4
Using the initial condition and solving for Y, (s) we obtain

1 1

Y.(s) = .
(s) s—4s5s—3

Using the Nabla Convolution Theorem we see that

y(t) = (E4('7 d) * E3('7 a)) (t)
Using Example 3.79 we find that

y(1) = Ea(t, @) — E5(1, a)
= (-3 = (-2
is the solution of our given IVP on N,,. Of course, in this simple example one could
also use partial fractions to find y(r).
We can then generalize this result for an arbitrary number of nabla differences.

Theorem 3.85 (Transform of n-th-Order Nabla Difference). Assume
f i Ny—nw+1 — Ris of exponential order r > 0. Then

La{V"f}(s) = 5" Lalf}(5) = )"V (). (3.38)

k=1

for |s—1| < r, foreachn € Nj.
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Proof. Note that since f is of exponential order r > 0, V"f is of exponential order
r > 0 for each n € N;. Hence L,{V"f}(s) converges for |s— 1| < r foreach n € Nj.
The proof of (3.38) is by induction for n € N;. The base case n = 1 follows from
Theorem 3.83. Now assume n > 1 and (3.38) holds for |s — 1| < r. Then, using
Theorem 3.83, we have that

LAV () = La{V V1)
= S‘Ca{vnf}(s) - an(a)

n

= [s"z:a{f}(n - s"kvklﬂa)] —V'f(a)

k=1
n+1

— Sn+l£a{f}(s) _ Zs(n+1)_kvk_lf(d).

k=1
Hence, (3.38) holds when n is replaced by n + 1 and the proof is complete. O
Example 3.86. Solve the IVP

V2y(1) — 6Vy(1) + 8y(t) =0, 1€ Noyy
y(a) =1, Vy(a) =-1.
If y(2) is the solution of this IVP and we let Y, (s) := L,{y}(s), we have that
[5*Ya(s) — sy(a@) = Vy(@)] = 6 [sYu(s) — y(@)] + 8Yu(s) = 0.
Using the initial conditions we have
[szYa(s) —s+ 1] —6[sY,(s) — 1] + 8Y,(s) = 0.

Solving for Y, (s) we have that

s—17
s2—6s+8
_ s—7
(s —2)(s—4)

5 1 31
255—2_5s—4

Y, (s) =

It follows that

y(t) = gEz(t, a) — %E;;(t, a)



204 3 Nabla Fractional Calculus

5 a—t 3 a—t
= 5(—1) - 5(—3)

fort € N,—;.

3.13 Further Properties of the Nabla Laplace Transform

In this section we want to find the Laplace transform of a v-th order fractional
difference of a function, where 0 < v < 1.

Theorem 3.87. Assume f : N,+1 — R is of exponential order r > 0 and 0 < v <
1. Then

La{Vafi(s) = s"La{f}(s)

for|s—1| <r.

Proof. Using Theorems 3.82 and 3.83 we have that
LaAVAfHs) = LoAVVTF(s)
= LAV, TN — VU (@)
S5 L)

s"La{f}(s)

for |s— 1] < 1. |
Next we state and prove a useful lemma (see Hein et al. [119] for n = 1 and see
Ahrendt et al. [3] for general n).

Lemma 3.88 (Shifting Base Lemma). Givenf : N,;; — Rand n € Ny, we have
that

Ly S k
Lol = (12 £ - Y L
k=1

Proof. Consider

o

Latnif}s) =Y (1 =9 fla+n+k)

k=1

= Y (1-9""fa+k

k=n+1
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_ N _Sath
= Gy LB ; Tt

which is what we wanted to prove. O
With this, we are ready to provide the general form of the Laplace transform of
a v-th order fractional difference of a function f, where 0 < v < 1.

Theorem 3.89. Givenf :N,y; — Rand 0 <v < 1. Then we have

1
1

LotV = $" Lo F}0) = T——f(a+ 1.

Proof. Consider

Lar1{Vuf3(s)
= Lot VYU 7f}(s)
= 5L, 1{V; U7 (s) — VU™ f(@ 4+ 1), by Theorem 3.83

a

= 5L, 1{V U7f)(s) —f(a+ 1), by Exercise 3.27.

From this and Lemma 3.88, we have that

Lat1{Vofi(s)

- s( L LAV 0983 () — Vo 0f(a ¢ 1)) fa+ )
1—s 1—s

v 1
= 1s—£a{f}(s) 1 f(a+1) (by Theorem 3.82).

- -
Applying Lemma 3.88 again we obtain

Lat1{Vaf3(s)

1 1
=5 (Lo tf1) + T+ ) = @ D,

which is the desired result. O

The following theorem was proved by Jia Baoguo.
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Theorem 3.90. Letf : N,—y+1 — Rand N — 1 < v < N be given. Then
we have

N

Lot {VIFHS) =5 Larr F}(5) + - f(a +1)

- ZsN_ka_lf(a +1).

k=2

Proof. We first calculate

Lat1{Vaf}(5)
= Lot VIV Y8 s)

N
Theorgn 3.85 SN£a+1 (Va—(N—v)f)(S) _ Z SN—kvk—lVa—(N—V)f(a + 1)
k=1
1—s

N
Lemma 3.88 15_ SEH{V;(N—V)f}(S) _

N
_ ZSN—kvk—lvu—(N—v)f(a + 1)
k=1

rem N 1 V(I_(N_V) 1
Theorem3.82 8" L) — N fla+1)
1—s5 V7V 1—5s

N
_ ZSN—kvk—lva—(N—v)f(a + 1)
k=1
Ve " fa+ 1)
1—s

PO (1= 9L H6) + fa+ 1] ="

N
_ Z sN—kvk—] Va—(N—u)f(a + 1)
k=1

Since
1
Vo VIfa+ 1) = / Hy—v—1(a + 1. a)f (s)Vs

=Hy_y(a+ 1,a)f(a+ 1) =f(a+ 1),
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we have

Lot 1{V,f1(s)

_ o N Nf(a +1)
N
=Y V@ 1)
k=1
= $" Lot {fHs) + - f(a +1)— ZSN W@+ 1.
k=2

a

Remark 3.91. When N = 1, Theorem 3.90 becomes the Theorem 3.89. When N =
2, we can get the following Corollary.

Corollary 3.92. Letf :N, - Rand 1 <v < 2 be given. Then we have

LantVNO) = 8" Lan )0 + 5 fla+ )= Vila+ 1)

= S Lentf)6) + T fla+ 1) + /(@)

3.14 Generalized Power Rules

We now see that with the use of the Laplace transform it is very easy to prove the
following generalized power rules.

Theorem 3.93 (Generalized Power Rules). Let v € R and . € R such that u,
V + W, and L — v are nonnegative integers. Then we have that

i) V "H ([ a) = u+v(t a);
(ii) V”H (t a) =H, ,(t a);
(ili) V;'(t—a) = B gynty,

T'(p+v+1)
. T T (p+1 7.
(iv) Vi —a)" = 500 (1 — )™
fort e N,.

Proof. To see that (i) holds, note that

1
LoV "Hy(a)}(s) = o LalHy (. a)}(s)

1
svtu+l

= LaiHu+v(, a)}(s).
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Hence, by the uniqueness theorem (Theorem 3.72) we have that
Va_UH//t(t’a) =H/L+U(tva)v tENa+l'

Also, this last equation holds for + = a and hence (i) holds. To see that (i) implies
(iii), note that
V. ' (t—a)l =T(u+ 1)V, "H,(t, a)
=T (n+ DHyq0(1,a)

e+
S T(u+v+1)

(t — a)rt.

To show that part (ii) holds we will first show that
EG{VH_UHN(-, a)}(s) = Ea{H;L—v (-, a)}(s)’ (3.39)

for |s — 1| < 1. On the one hand, using Lemma 3.88 with n = 1 we have that

1 H, ,(a+ 1,a)
£a+1{Hu—v('7a)}(s) = :Ea{H/A—V("a)}(S) - le
1 1 1 (3.40)
Tl skl o '
On the other hand, using Theorem 3.89 we have that
1—s
Lot VoH, (- a)}6) = 5" Lo tHy (. a)}s) = T—H,(a+ 1.0)
1 1 1—s"
= | —— £ 4H (. _ _] _
o[ Ldt e - ] - 7=
sv 1 1—s"
- l—s[s/““"1 B 1] C1—s
1 1 1
= — . 3.41
1 —sstvtl 15 ( )

From (3.40) and (3.41) we get that (3.39) holds. Hence, by the uniqueness theorem
(Theorem 3.72)

V) H,(t,a) = H,_,(t,a)
for t € N,41. But this last equation also holds for + = a. Thus, part (ii) holds for
t € N,. The proof of (iv) is left to the reader (Exercise 3.34). O

Next we consider the fractional difference equation

Vox(t) =f(t), te Ny, (3.42)
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where N — 1 < v < N, N € Nj. First we prove the following existence-uniqueness
theorem for the fractional difference equation 3.42.

Theorem 3.94. Assumef : N, y - Rand N—1 <v <N, N € Ny. Then the IVP

VEx(t) = £(8), t € Noan
x(a+k)=c, 1 <k<N,
where ¢, for 1 < k < N, are given constants, has a unique solution, which is defined
on N, 41.

Proof. First note that if we write the fractional equation V) x(¢) = h(f) in expanded
form we have that

—1
> Hormi (1, p(0)xX(0) + 3(0) = £(1).
T=a

It follows that the given IVP is equivalent to the summation equation

t—1

x(1) = f(1) = Y Hopmr (1, p(1))x(7) (3.43)
xa+k)=c, 1=<k=N. (3.44)

Letting t = a + N + 1 in this summation IVP we have that x(¢) solves our IVP at
t=a+ N+ 1iff

t—1
x(@a+N+1) =fla+) = Y ccHo,1(t. p(x)x(7).

T=a
O

Theorem 3.95. Assume v > 0 and N — 1 < v < N. Then a general solution of
Vx(t) = 0 is given by

)C(t) = Cle—l(ta (1) + C2Hv—2(tv a) + -+ CNHv—N(ta a)
fort e N,.
Proof. For 1 <k < N, we have from (3.58) that
VYH,—(t,a) = VAV ' H,_(t,a)
= V*Hy(t,a) (by Theorem 3.93)
= V1
=0
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for t € N,. Since these N solutions are linearly independent on N, we have that
x(t) = clHU—l (ta a) + CZHU—Z(I» a) + e + CNHU—N(L a)

is a general solution of V}x(f) = 0 on N,. O
The next theorem relates fractional Taylor monomials based at values that differ
by a positive integer. This result is in Hein et al. [119] and Ahrendt et al. [3].

Theorem 3.96. Forv € R\{—1,-2,...} and N,m € N,

m

Hy_n(t,a+m) = Z ('Z) (=1 Hy_y—k(t, ).

k=0

Proof. The proof is by induction on m for m > 1. Consider the base case m = 1

Hv—N(tv a) - HU—N—l(tv a)

t—a)™  (t—a)p T
FTb—-N+1 T@-N)
't—a+v—N) 't—a+v—-N-1)
FTbO—N+DI(t—a) T(W-NI(t—a)
_T't—a+v—-N-1)
_r(z—a)r(u—N+1)[(t_a+v_N_1)_(v_N)]
_(t—pa)l(t—a+v—-N—-1)

N I'(t—a)T(v—N+1)

_ T't—a+v—-N-1)

T T(t—p@)T(v—N+1)

_ =@+

T Tw—=N+1)

= HU_N([,Q + 1)

Hence the base case, m = 1, holds. Now assume m > 1 is fixed and

m

HU—N(t’a + m) = Z (IZ) (_l)kHU—N—k(tv (l).

k=0

From the base case with the number a replaced by the number a 4+ m we have that

HV—N(L a+m+ l) = H\)—N([7 a+ m) - HV—N—I(I’ a+ m)
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Applying the induction hypothesis to both terms on the right side of this equation
gives

H,_y({t,a+m+1)

= (’Z (=D Hyoni(t.a) = ) ('Z) (=D Hyy-1-4(t, @)

k=0

m m+1
=y (’Z (~D*Hyyi(t.a) = Y (k’f 1)(—1)k—‘HU_N_k(r, a)

k=0 k=1
m+1 m . m .
=2 | Je s~ ) D e a)
k=0
m+1 m m
- (k— 1)(_1)k_1Hv—N—k(tv a) + (_1) (_1)_1HU_N(I, a)
k=0
s m m
E(0)- ()
k=0

m—+1
— (’": 1)(—1)kHU_N_k(t, a).

This completes the proof. O

3.15 Mittag-Leffler Function

In this section we define the nabla Mittag—Leffler function, which is useful for
solving certain IVPs. First we give an alternate proof of part (i) of Theorem 3.50.

Theorem 3.97. For |p| < 1, we have that E,(t,a) = Y oo, p"Hi(t,a) for t € N,,.

Proof. We will show that E,(t,a) and Y 2, p*Hi(t,a) have the same Laplace
transform. In order to ensure convergence, we restrict the transform domain such
that |s| < |p|, |1 —s| < 1, and |1 — s| < |1 — p|. First, we determine the Laplace
transform of the exponential function as follows:

LAE (-, a)}(s)

d -9t a-p*

k=1

1 i(l—s)k:sl

l-p=\1-p 2
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Next, we have

DN THEED WAL A
k=0 k=0

1 o /p\k 1
=3 2(5) =

s—p

Finally, E,(a, a) = 1 by definition, and Y o, p*Hy(a,a) = 1since  p°Hoy(a,a) =
1 and p*Hy(a,a) = 0 for k > 1. Therefore, we obtain the desired result on N,. O

Next we define the nabla Mittag—Leffler function, which is a generalization of
the exponential function E, (t, a).

Definition 3.98 (Mittag—Leffler Function). For |p| < 1,a > 0, € R, we define
the nabla Mittag—Leffler function by

o
Epup(t,a) := ZpkHak_Hg(t, a), teN,.
k=0

Remark 3.99. Since Hy(t,a) = 1, we have that Eg, o(t,a) = 1 and E,, , o(a,a) = 1.
Also note that E,, | o(t, a) = E,(t, a), for |p| < 1.

Theorem 3.100. Assume |p| < 1, « > 0, B € R. Then

V[‘,)(a)Ep.a,,H (t7 P(a)) = Ep,a.ﬁ—v (t» p(a)) (3.45)

fort e N,.

Proof. Since

o0
Ve wEpap(t. p(@) = Vi, (Z P! Hay (1. p(a)))
k=0

o0
> PV Haitp (2. p(a))
k=0

o0
=Y P Huirp(t. p(a)
k=0

= Lpa,p—v (t, p(a))

we have that (3.45) holds for r € N,. O
Theorem 3.101. Assume N—1 <v <N, N € Nand |c| < 1. Then

E—c,v.v—i(t, P(d)) I1<i<N
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are N linearly independent solutions on N, of
Vox(®) +cx(@) = 0,1 € Noqy.

In particular, a general solution of the fractional equation V;(a)x(t) 4+ cx(t) =0is
given by

)C(t) = CIE—c,u,v—l (L P(a)) + CZE—c,v.v—Z(t» P(a)) + -+ CNE—C,V,U—N(t7 P(a)),

fort e N,.

Proof. If ¢ = 0, then this result follows from Theorem 3.95. Now assume ¢ # 0.
Fix 1 <i < N and consider for t € N4,

V;(a)E—c,v,v—i(t’ ,O(Cl)) = E—C,U,—i(ta p(a))s by (345)

= Z(—C)kH wk—i(t, p(a))

k=0

= Z(—C)kHvk—i(ts p(a))

k=1

- Z(—c)k“HV(Hl)—i(ﬁ p(a))

k=0

= —c Z(—c)kHkaufi) (1. p(a))

k=0

= —CE_;y,-i(t, p(a)).

Hence, foreach 1 <i < N, E_., ,—i(t, p(a)) is a solution of V;(a)x(t) +cx(t) =0
on N,,. It follows that a general solution of V;’( a)x(t) + cx(t) = 0 is given by

x(t) = CIE—c.v,v—l(t» )O(a)) + C2E—c,v,v—2(t7 P(a)) + s + CNE—c.v,v—N(tv P(a))

fort € N,. O
The following example was suggested by Jia Baoguo.

Example 3.102. Consider the second order nabla difference equation

V2x(f) 4 cx(t) = 0, 0<c<l. (3.46)
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From Definition 3.98, Theorem 3.50, and Theorem 3.101, we have the following are
two solutions of (3.46):

E_c>1(ta) = Z(—C)kszﬂ(f» a)

k=0

= 2 DV s 1)
k=0

—IS' (t,a) 3.47
—%mﬁ,a. (3.47)

and

E_cr0(t,a) = Z(—C)ksz(l, a)

k=0

=Y (D) *Hyy1(t.a)

k=0
= Cos /(1. a). (3.48)

The characteristic values of the equation (3.46) are A1, = =+./ci. So the solutions
of (3.46) are xi (x,a) = E z;(1,a) and xp(x,a) = E_ z(1,a). So

E_ =0+ Ve =1+ C)%[COSQ +isin 0]

= (14 ¢)T [cos(a—1)0 + isin(a —1)0] (3.49)

and
E/z=(1— ey = (1+¢) 7T [cos(a—10 —isin@—10],  (3.50)
_ 1 s e
wherecos@-m,mn@—m.

From the definitions (see Definition 3.17) of Cos_/z(¢, a) and Sin (7, @), we have

E /i(t,a) + E_ s5(1.a)

Cos /:(t,a) = 5
= (1+¢)T cos(a—10 (3.51)
and
E i(t,a) — E_ (1,
Sin_/:(t,a) = vilt-@) — B yilt. )

2i
= —(1 +¢)T sin(a —1)6. (3.52)
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Consequently, using (3.47), (3.48), (3.51), and (3.52), we find that

1

ﬁ(l +¢)7 sin(a — 1)6

E_c2.(t,a) =

and that
E_cao(t.a) = (1+¢)T cos(a—1)6.
Thus, from Theorem 3.101, the general solution of the equation (3.46) is given by
x(f) = (14 ¢)T [cy sin(a — )0 + ¢, cos(a — 1)),

Finally, the real part

yi(t,a) = (1 + c)aT_t cos(a — )6
and the imaginary part

ya(t,a) = (1 +¢)T sin(a — 10

are solutions of (3.46).
We will now determine the Laplace transform of the Mittag—Leffler function.

Theorem 3.103. Assume |p| < 1 a constant, « > 0, and € R. Then

a—p—1

LBy (- a)}(s) = -

sOl_

for |1 —s| <1, [s¢] > |p].
Proof. Note that

o

LaAEpapCa)}(s) = ) P*LalHursp (- a)}(s)
k=0

" P\
LT
sP s

a—p—1

=]

s —p’

This completes the proof. O
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3.16 Solutions to Initial Value Problems

We will now consider a v-th order fractional nabla initial value problem and give a
formula for its solution in case 0 < v < 1.

Theorem 3.104 (Fractional Variation of Constants Formula [119]). Assume f :
N, > R, |c|] < 1 and 0 < v < 1. Then the unique solution of the fractional initial
value problem

V30 + exl)) = £0), 1€ N,

(3.53)
x(a)=A, AeR

is given by

x(1) = [E—cvwa1(, p(@) * fF()]@) + [Alc + 1) = f(@) |E—c.ov-1 (1, p(a)).
(3.54)

Proof. We begin by taking the Laplace transform based at a of both sides of the
fractional equation in (3.53) to get that

LAV53(5) + cLa{x}(s) = Lalf}s).

Applying Theorem 3.89 and using the initial condition, we have that

v

O+ L0 -4 (T ) = Lo

Using Lemma 3.88 implies that

<s+@[1 Ly () (s)

1 v
J )
=£a{x}(5)

1 1
= :L‘p(a){f}(s) - :f(d) .

=La{f}(s)

Multiplying both sides of the preceding equality by (1 — s) and then solving for
L@ 1x}(s) we obtain

Lootd6) = ——Lylf16) + Ale + 1) = (@)
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Since

1
‘CP(a){E—c,v.v—l('7 p(a))}(?) = s’ + ¢’

we have by the convolution theorem that

x(1) = (E—cow—1(, p(@) *f()) (@) + [Alc + 1) — f(@)] E—c.ov—1 (2, p(a))
(3.55)

fort € Nyy. O
Letting ¢ = 0 in the above fractional initial value problem, we get the following
corollary.

Corollary 3.105. Letf : N, - Rand 0 < v < 1. Then the unique solution of the
fractional IVP

VX =f@®), €N
x(a)=A, AeR

is given by
x(1) = Vo f (D) + (A —f(@) i (2, pla). (3.56)
Proof. First, we observe that
Eoumi(t.p(@)) = Hyo1 (1, pla)).
Finally, we have (Eouom1(.p(@) * fO)D) = [HooiCop@) *fO] () =

Vo@a "f(t) by Theorem 3.80. From this, the stated solution to the initial value
problem follows. O

Example 3.106. Use Corollary 3.105 to solve the IVP
1
sz(o)x(t) =t teN
x(0) = 2.

By the variation of constants formula (3.56), the solution of this IVP is given by

x(1) = Vi Hi(1.0) + (2 = DH_y (1. p(0))

(t— p(0)~*

1
— 2
=V, o Hi(t.0) + e
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I\)\'—“

. 0 t ﬂ
B /p(O) H_%(t’p(s))w“r/o H_1(t,p(5))sVs + T'(3)
_/o H_y (1, p(s))sVs + o

-3 (t—p(0)~F
= V() Hl(t,o) + #
v ? t+1)°F
=V, 2H(t,0) + ———— o

! -

- et
TO) Ux
S N R
s hbv-

where we used Theorem 3.93 in step seven.

3.17 Nabla Fractional Composition Rules

In this section we prove several composition rules for nabla fractional sums and
differences. Most of these results can be found in Ahrendt et al. [3]. First we prove
the following formula for the composition of two fractional sums.

Theorem 3.107. Assumef : N,y — R, and v, u > 0. Then
VUV () =V UTRf(@), te N,
Proof. Note that

LAVVYs) = 5 LadVa "f}(s)
= L)
= Lo{Va ")
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By the uniqueness theorem for Laplace transforms (Theorem 3.72), we have

Vo 'V = V()

fort € Na.l,_]. Also
V. 'V ' fla) = 0=V, " f(a).

O

Next we prove a theorem concerning the composition of an integer-order

difference with a fractional sum and with a fractional difference. This result was
first proved in this generality by Ahrendt et al. [3].

Lemma 3.108. Let k € Ny, u > 0, and choose N € N such that N —1 < u < N.
Then

VIR (1) = Vi (1), (3.57)
and
VEVEF(1) = V(). (3.58)

fort € Nyyy.

Proof. Assume k € Ny, u > 0, and choose N € N; such that N — 1 < p < N. First
we prove (3.57) for u = N. To see this first note that

VS0 =V [ Hi a0V

=V /If(t)Vr
a
=f(®), t€Natr.
So, then, for the case of u = N we have
VEV () = VIV VY R)]
— Vly=0=Dg(py
— Vi2y=(Dp(p

= V"N
= VN(1), 1€ Nogr.
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Hence (3.57) holds for 4 = N. Now we consider (3.58). It is trivial to prove (3.58)
when © = N, so we assume N — 1 < u < N. First we will show that (3.58) holds
for the base case

VVEF(@) = VT (1), 1€ Nug.

This follows from the following:
VVif()
t
_v ( / H_H_l(r,p(r)f(r>Vr)

:/ H_y—(t, p())f (O)VT + Hopmr1 (p(1). p())f (1) (by (3.22))

_ / H oot p)f (1)
=V, @).
Then, for any k € Ny,
VEVEF(1) = VEH(VVEF(D)

= VIV @)
= VIV @)

= VETIE(r), 1€ Nogs,

which shows (3.58) holds for this case. In case N — 1 < u < N, noticing that
\R f() can be obtained from A f(r) by replacing p by —u, we obtain by a
similar argument that (3.57) holds for the case N — 1 < p < N. And this completes
the proof. O

Theorem 3.109. Assume f : N, — Rand v, u > 0. Then

VoV (@) = ViR ().

Proof. Letv, u > 0be given, and N € N such that N — 1 < v < N. Then we have

VIVEf() = VNV NIV ()
= VNV V=g by Theorem 3.107
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= VNVNT=e () by Lemma 3.108
= V. 7f(0).

This completes the proof. O

The following theorem for N = 1 appears in Hein et al. [119] and for general N
appears in Ahrendt et al. [3].

Theorem 3.110. Assume the nabla Laplace transform of f : Nyy1 — R exists for
[s—1| <r,r>0,v>0,andpick N € Ny sothat N—1 < v <N. Then

N—1 o

lﬁMVfM@—f%ﬁwvm9+§j[ wkﬂa+k+0

N

-G _SS)N_k VN f a4k + 1)

_ VN—k—lva—(N—U)f(a + N)Sk},

for|s—1| <r.

Proof. Consider
LasnAVUFHS) = Lagn VYV VF(s)

N
= " LoV, VM) = Y SNV TR 4+ N) - by (3.85)
k=1

V. "f(a+ k)
N (N=v) e J Y
|:(1 )Nﬁ {V f}(s) ; (1 — S)N—k+1
N—1
= SVNHFIVINTIf (@ 4+ N) by Lemma 3.88
k=0

Ve " (a+ k)
= 0o )N/Ja{f}(s) SNZTA*’HI

N—1
_ Zska—k—lva—(N—U)f(a + N)
k=0

k v, V) k
:s[ a+N{f}(S)+Z—f(a; 1<)+1i| Z—f(a+ )
k=1

s)N=kH
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N—1
=) SVNHFIVINTIf (@ 4+ N) by Lemma 3.88
k=0

1 sY

— Lo lfN) + Z[ @ kD

N
(1- - SN kV "= U)f(a +k+1)— VN_k_lVa_(N_V)f(a + N)Sk]v

which is what we wanted to prove. O

Theorem 3.111. Assumef : N, - R, v > 0 and k € Ny. Then

k—1

VitV (@0 = Vi () = Y Vif(a+ D Hy—g(t.a + k).

j=0

Proof. Integrating by parts on two different occasions below we get
VA0 = [ Hepo) Vv
= [ ooV
a+k

= V@0 + ;k Hy (0. p(0) V£ (2)
—V¥f(a+ kHy-1(t.a+ k) + Hy—1(t.a + k)Vf(7)
= V. V() — VAU f(a + K)Hy— i (1,0 + k)
= VIV, V0] = V(@ 4+ H,y -1 (a4 k)
= VOV () = VR a + W H, o (ta + k)
- V¥ f(a+ H,(t.a + k).
Integrating by parts kK — 2 more times gives

k—1

Vi V(@0 = Vi 0 = Y Vif(a+ OH,—(ta + K),
=0

which was what we wanted to prove. O
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Theorem 3.112. Let v > 0 and k € Ny be given and choose N € N such that
N—1<v <N. Then

k—1
Vi V(@0 = VETF () = Y Vi (a+ k) H- k(. a + K).
j=0

Proof. Consider

Vi V() = VN (VT (0)

k—1
= V[Vl T - > " Vif(a + k)Hy—y—i4(t. a + k)
j=0
k—1
= VELF(O) = Y Vf(a + O Hy—y—i4(t, )
j=0
k—1
= VERF(0) = Vif(a + HVY " Hy_yi45(t.a)
j=0

k—1

= VELF @0 = Y Vif(a + )V Hy—y g (2. a).
j=0

Taking the difference inside the summation N — 1 more times, we get

k=1
Vi V@) = VELF() = Y Vif(a + DH-y iyt a + k),
j=0
which is what we wanted to prove. O

Theorem 3.113. Assume 1 < v < 2. Then the unique solution of the fractional IVP

V;x(t) =0, te N,H_z
x(a + 2) = A(),
Vx(a +2) = Ay,

where Ay, A1 € R, is given by

x(1) = [(2—=v)A¢ + (v — DA]hy—1 (1, a)
+ [(v — 1)A0 — I)Al]hv_z(l‘, a), (3.59)

fort € Nyy.
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Proof. Let x(f) be the solution of the IVP (3.59) V) x(¢) = 0. Then

x(t) = c1Hy—1(t,a) + coH, (¢, a).
Using the IC’s we get that

x(a+1)=x(a+2)—Vx(a+2) =A)—A;.
It follows from this that
x(a+1)=cH,—1(a+ 1,a) + c;H,2(a+ 1,a) = Ay —A,.
Since H,—j(a + 1,a) = H,—z(a + 1,a) = 1, we have that
c1+c =A)—A.

Since Vx(t) = ¢1H,—»(t, a) + c2H,—3(t, a), we get that

Vx(a+2) =ciHy—(a+2,a) + c;H,—3(a + 2,a)
=c(v—1D+ev-2)
— A,

Solving the system
c1+c=A)—A
(v="Decr+ (v=2)c2 = Ay
we get
c1=2—-v)Ag+ (v —1)A, c;=(Ww—1)Ag—vA,.
Hence,
x() = [2=v)Ao + (v = DAy (1. a) + [(v — DA — vA ]hy (1, a),

fort e Na+l . O
Next, we look at the nonhomogeneous equation with zero initial conditions.
Theorem 3.114. Letg: N, - Rand 1 < v < 2. Then, fort € N,4,, the fractional
initial value problem
Vax(1) = g(1), 1 € Nyyo
x(a+2)=0
Vx(a+2)=0
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has the unique solution

x(t) =V, g(t) — [gla+ 1) + gla + 2)]h,—1(t,a)
+ gla+2)h,—1(t, a). (3.60)

Proof. We take the Laplace transform based at a + 2 of both sides of the equation.

La2{Vyx}(s) = Lat21g}(s).

Next, we use Theorem 3.110 and Lemma 3.88 on the left-hand side and the Laplace
transform shifting theorem on the right-hand side of the equation.

a- )ZE alx}(s)
) (ﬁ)Zva—(z_”)x(a +1) = YV + 2)

2
— (ls—)Va_(z_")x(a +2)— sVa_(z_”)x(a +2)
-

1 1 1
— (1 —S)2 a{g}(s) ( )zg(a + 1) — —g(a + 2)

Using x(a 4+ 2) = 0 = Vx(a + 2), we obtain

T L) = T Lleh0) — s+ D)

() () (1

1
——g(a+2).
1—s

Next, we solve for the Laplace transform of x(7) to obtain

L) = Lt — gt D~ T gat2)

= 1Ll (3O Lt} )]~ ala+ 1)

! gla+2).

sv—l

1
——gla+2)+
s
Finally, we take the inverse Laplace transform and note that

Ug(t) = hy—y(t,a) * g(1),
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which yields

x(1) = [h-1(,a) x gO)] = [gla + 1) + gla + D)]h-1 (1, @)
+ gla + 2)h,—»(t,a)

=V, "g(t)—[gla+ 1)+ gla+2)]h,—i(t,a) + gla + 2)h, (1, a)

fort e Na+2~

3.18 Monotonicity for the Nabla Case

Most of the results in this section appear in the paper [49]. These results were
motivated by the paper by Dahal and Goodrich [67]. The results of Dahal and
Goodrich are treated in Sect. 7.2. First, we derive a nabla difference inequality which

plays an important role in proving our main result on monotonicity.

Theorem 3.115. Assume that f : N, — R, V.f(t) > 0, for each t € Ny, with

1 <v <2 Then

Vf(t) > —f(a+ D)[H-,—1(t,a) + H-,(t.a + 1)]

—1
_ Z H_,(t, p(1))Vf(2)

T=a+2
B (—v+ D)@ L (v + )T
B T e R
fort € Nyyy, where fort > t,
(—v+ 17
H_,(t, p(v)) = -0l <0.

Proof. Note that

a+1 t
Vi) = / Hoo 1 (1, p(0)f (1) VT + / | Heni e p () ()

= Hooi(ta)f(a+ 1) + / o1 PO O

Integrating by parts and using the power rule

V:H_,(t,7) = —H_,— (L P(T))

(3.61)

(3.62)

(3.63)

(3.64)
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we have that (where we use H_, (¢, p(t)) = 1)
t

Hoy1 (1, p(0))f (1) VT
a+1

e FOH Oy + / @)V

=fla+DH_y(ta+ 1)+ Y Hoo(tp(t)Vf (1)

t=a+2

t—1
=fla+ DH_,(t.a+ 1)+ > H_(t.p(x)Vf(7)

t=a+2
+H_, (1, p(t)) Vf (1)

227

—1
=fla+ DH_,(t.a+ 1)+ > H_,(t.p(x)Vf(z) + Vf(r). (3.65)

t=a+2

Using (3.64) and (3.65), we obtain

0= Af()
= [H_y—1(t,a) + H-,(t,a + D]f(a+ 1)

t—1

+ Y Hou(t, p(@)Vf () + Y (0),

t=a+2

for t € N,y by assumption. Solving this last inequality for Vf(¢) we obtained the
desired inequality (3.61). Next we show that (3.63) holds. This follows from the

following:

H_, (1, p(7))

_(t=p@)™"

O T(-v+1)

=4+ D7

- T(-v+1

. r¢e+1—-v—r1)

S T(t—t+ DI(=v +1)

(vt (v+t—t—1--(—v+1)
N (t—1)!

(since t—1>1)
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(v + 15
T (t—1)!
<0

since 1 < v < 2. Also

—[H-v-1(t,a) + H-,(t,a + 1)]
t—a)y™! t—pla)™"
= _[( F(—)v) + (F(—I(:J(—:)l) ]
:_[F(—V+t—p(a)) (v +1—p(a)) ]
F¢—a)'(=v)  T(@—p@)l'(—v+1)
(v +t—p@)(—v+t—a—=2)---(-v+2)(—v+1)
T (t—p(a))!

_ r—v+t—a
T+ D= p(a)!
(vt pT@
(=)

> 0.

This completes the proof. O

Theorem 3.116. Assume f : Nyyy — R, Vf(t) > O, for each t € Nyy, with
1 <v <2 Then Vf(t) > 0, fort € Nyy,.

Proof. We prove that Vf(a+ k) > 0, for k > 0 by the principle of strong induction.
Since V)f(a + 1) = f(a + 1), we have by assumption that f(a + 1) > 0. When
t = a + 2, it follows that

a+2
Vofla+2) = / H_,—i(a+2,7—1)f(r)Vr

=fa+2)—vf(a+1)
=Vfa+2)—(v—-Df(@a+1).

From our assumption V) f(a + 2) > 0 and the fact that V)f(a + 1) = f(a + 1), we
have

Vfa+2) > @wv—-1)f(a+1)>0.

Suppose k > 2 and that Vf(a + i) > 0, for i = 2,3,4,--- k. Then from
Theorem 3.115, we have Vf(a + k 4+ 1) > 0, so this completes the proof. m|
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3.19 Caputo Fractional Difference

In this section we define the p-th Caputo fractional difference operator and give
some of its properties. Many of the results in this section and related results are
contained in the papers by Anastassiou [7-13] and the paper by Ahrendt et al. [4].

Definition 3.117. Assume f : N,_y4+; — R and u > 0. Then the u-th Caputo
nabla fractional difference of f is defined by

Vif (1) = VN0 VNE(r)

for t € Nyy1, where N = [u].

One nice property of the Caputo nabla fractional difference is that if & > 1 and
C is any constant, then

VA C = 0.

Note that this is not true for the nabla Riemann—Liouville fractional difference, when
C # 0 and u > 0is not an integer (see Exercise 3.28).

The following theorem follows immediately from the definition of the Caputo
nabla fractional difference and the definition of the Taylor monomials.

Theorem 3.118. Assume y > 0 and N = [u]. Then the nabla Taylor monomials,
Hi(t,a), 0 < k < N — 1, are N linearly independent solutions of Vi.x = 0 on
Na—n+1.

The reader should compare this theorem (Theorem 3.118) to Theorem 3.95 which
gives the analogue result for the nabla Riemann—Liouville case Vi'x = 0. That is,
H, ;(t,a), where 0 < k < N —1, are N linearly independent solutions of Vix = 0.

The following result appears in Anastassiou [7].

Theorem 3.119 (Nabla Taylor’s Theorem with Caputo Differences). Assume f :
Ny—v+1 > R u>0and N—1 < u < N. Then

N—1

10 = Y @@V @ + [ Hya 0. o) Vi (.
k=0 a

fOV[ € Na—N+l-
Proof. By Taylor’s Theorem (Theorem 3.48) with n = N — 1, we have that

N—1

10 = Y Ht.a (@ + [ Byt p@) V@

k=0
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for t € N,_y+1. Hence to complete the proof we just need to show that

/ Hyor (1. p(0) VVf (1) VT = f Hye (1. p(0) VLA f (1) VT, (3.66)

holds for # € N,_y+;. By convention both integrals in (3.66) are equal to zero for
t € Nj_y - Hence it remains to prove that (3.66) holds for # € N,. To see that this
is true note that

t
/ Hyr (1 p(0) VI (1) VT = VRV ()
= V1V TV ()
=V, #NtuyN(r) by Theorem 3.107
= V. VVNF(0),

_ / Hy (1. p(0) VVf (1) Ve

fort € N,. o

3.20 Nabla Fractional Initial Value Problems
In this section we will consider the nabla fractional initial value problem (IVP)

V;*x(t) =h(1), 1€ Ngy

(3.67)
Vix(a) =c,, 0<k<N-1,

where we always assume thata,v € R,v > 0, N := [v],¢c, e Rfor0 <k <N-—1,
and & : N,4; — R. In the next theorem we will see that this IVP has a unique
solution which is defined on N,_y41.

Theorem 3.120. The unique solution to the IVP (3.67) is given by

N—1

x(t) =Y Hi(t.a)e + V, "h(),
k=0

fort € Ny_ny1, where by convention V,Vh(t) = 0fora—N+1<t<a

Proof. Define f : N,_y4+1 — R by

Vif(a) = .
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for 0 < k < N — 1 (note that this uniquely defines f(f) fora— N + 1 <t < a), and
for t € N,y define f(¢) recursively by

—1
V() = h(r) — f Hyeyr (1. p(0) VVf (2) VT

—1
=h(t) = Y Hy-om1 (1. p(0) V" (0).

T=a+1

So forany r € Nyy i,

—1
V() + / Hysr (1. p(0) VN () VT = h(1). (3.68)
It follows that
VELL() = VIOV

_ / Hyy1 (1. p()) V(1) VT

—1
_ / Hy—ser (1, p(0) V(D) VT + VY1)
— h(r) by (3.68)

for t € N,4;. Therefore, f(r) solves the IVP (3.67). Conversely, if we suppose that
there is a function f : N,_y4+; — R that satisfies the IVP, reversing the above steps
would lead to the same recursive definition. Therefore the solution to the IVP is
uniquely defined. By the Caputo Discrete Taylor’s Theorem, x(f) = f(¢) is given by

N—1

x(t) =Y H(t.a)V¥x(a) + V, " Vi,x(0)
k=0

N—1

= chHk(t, a) + V. Vh(r).
k=0

The following example appears in [4].

Example 3.121. Solve the IVP

Volx(t)y =1, teN,

*

x(0) = 2.
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Applying the variation of constants formula in Theorem 3.120 we get

0

l‘k
x(f) = Ez + V5 %7 h()
k=0 "

_o / ' Hea(t, p(s))sVs
0

for ¢t € Ny. Integrating by parts, we have

t
x(f) =2 —sHq(t.5)[_, + / H(t, p(s)) Vs
0
=2—H1(t.9)|_,
I 17

=2 =
HEYER))

for t € Ny.

Corollary 3.122. Forv > 0, N = [v], and h : N,y — R, we have that
VNIV () = W), t € Not.
Proof. Assume N # v; otherwise, the proof is trivial. Let v > 0, N = [v], and

h:Nyy1 — R. Letcp € RforO <k <N — 1, and define f : N,_y4+; — R in terms
of h by

N=1 .
HOEEDY 4 k,a) cx + VU h(?).
k=0 :

Then by Theorem 3.120, f(¢) solves the IVP

VLA©) = h(@). 1€ Nops
Vif(a) =cx, 0<k<N-1.

With repeated applications of the Leibniz rule (3.22) we get

N—1
VVf(t) = VN[ > H(t.a)e + Va_”h(t)}

k=0

= VVV k(1)



3.21 Monotonicity (Caputo Case) 233

= [ st pomneorve
=79 [ st DRV + s 00,5000 |
= v [ st nomnn e

_ yh-2 / H,y—5(t, p(0))h(x)VT + H,—(p(1), p(t))h(t)}

= V2 _/tHv—s(t,p(f))h(f)VT]

= V[[tHV_N(I,p(T)h(‘E)VT]
_ / Hy—y1 (1. p(0))h(2)V'T + Hyy (p(0). p(t))h(0)
- / Hyyo1 (1, p(2))h(2) Ve

= [ttt 0B
= V¥Vh(r).
It follows that
VeIV = VYTV () = VL) = k),

and the proof is complete. O

3.21 Monotonicity (Caputo Case)

Many of the results in this section appear in Baoguo et al. [49]. This work is
motivated by the paper by R. Dahal and C. Goodrich [67], where they obtained some
interesting monotonicity results for the delta fractional difference operator. These
monotonicity results for the delta case will be discussed in Sect. 7.2. In this section,
we prove the following corresponding results for Caputo fractional differences.

Theorem 3.123. Assume that N —1 <v <N, f : Ny-y11 — R, V2. f(1) = 0 for
t € Nyp1 and VN=f(a) > 0. Then VVN7If () > 0 for t € N,
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Theorem 3.124. Assume N —1 < v <N, f : Ny_yy1 — R, and VVf(t) > 0 for
t € Nyy1. Then V0. f(t) > 0, for eacht € Ny.

When N = 2 in Theorem 3.123 we get the important monotonicity result.

Theorem 3.125. Assume that 1 <v <2, f:Nyq — R, VI.f(t) > 0 fort € Noyg
and f(a) > f(p(a)). Then f(¢) is an increasing function for t € N,().

Also the following partial converse of Theorem 3.123 is true.

Theorem 3.126. Assume O <v < 1, f : Ny — Rand f is an increasing function
fort € Ny Then V).f(f) > 0, for eacht € Ngy .

We also give a counterexample to show that the above assumption f(a) > f(p(a))
in 3.125 is essential. We begin by proving the following theorem.

Theorem 3.127. Assume that f : No—y+1 — R, and Vg*f(t) > 0, for each t €
Ny+1, withN — 1 < u < N. Then

V¥ (a + k)

k—1 . N—p—2
(k—i+ DVTr29 ,
Z;[—F(N—/L—l) ]VN 'fla+i-1)

+ Hy—y—1(a + k,a)VV"f(a), (3.69)

for k € Ny (note by our convention on sums the first term on the right-hand side is
zero when k = 1).

Proof. If t = a + 1, we have that

0 < VAhfa+1) =V, VMV

a+1
— [ Heepaat 1p)V s

= Hy—pu—1(a+ 1.a)VVf(a + 1)
=VVfa+1) =V @+ 1) — V¥ f(a),

where we used Hy—,—i(a + 1,a) = 1. Solving for V¥~!f(a + 1) we get the
inequality

VNt a + 1) > VVf(a),

which gives us the inequality (3.69) for r = a+ 1. Hence, the inequality (3.69) holds
fort=a+1.
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Next consider the case t = a + k for k > 2. Taking t = a + k, k > 2 we have that

0<VLf@
=V, TV (@)

_ / Hy—u—1 (1. () V() Vs

a+k
— [ Hvi @t ke p) VOV

k
=Y Hyui(a+ka+i—1)Vf(a+1i)

i=1
k
=Y Hyua+ka+i—1)[V¥fa+i)— V¥ fa+i—1)]

i=1

k
= ZHN_M_l(a +ka+i— 1DV (@ +i)

i=1

k
=Y Hy—pi(a+ka+i— 1)V fa+i-1)

i=1
k—1
=VV'fla+k) + Y Hyyi(a+ka+i—1)V"fla+i)
i=1
—Hy y1(a+k, a)V¥"f(a)
k
=Y Hyuala+ka+i—1)VVfa+i-1),

i=2

where we used Hy_,—i(a + k,a + k— 1) = 1. It follows that
k-1
0<VN'fla+ k) + ) Hypi(a+ka+i—1)V¥"'fla+1i)
i=1
k-1
— Hy—y—1(a+k.a)V""'f(@) = Y " Hy—y—1(a+k.a+ )V"V"'f(a + i)
i=1
V¥f(a+ k) — Hy—p—1(a + k.a)V¥""f(a + i)
k=1

(i@ + kea+ i)

i=1

—Hy_yi(a+ka+i- 1)]VN—1f(a +i).
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Hence,

0 <V¥f(a + k) — Hy—-1(a + k. a)V""'f(a)
k—1
— Z ViHy—p—1(a +k, S)|s=a+iVN71f(a +10)
i=1
=V""f(a + k) — Hy—p-1 (@ + k. ) V¥ f (a)
k—1
+ ZHN—M—Z(CI +hkati-DVVf(a+1i)
i=1
=V¥"f(a + k) = Hy—pp1(a + k. @) V" f ()
k—1

PR, e
+ ; [—(kr(]\’: :3_ ;) v '@+,

Solving the above inequality for VN~f(a + k), we obtain the desired inequality
(3.69).
Next we consider for 1 <i<k—1

k—i+ V2 T(N—p+k—i—1)
I'N—pu—1)  Tk—i+DIN—pn—1)
_(N—ptk—i=2) - (N—p—1) “0

(k—i)!
since N < i + 1. Also
kN—[,L—l
Hy_y—1(a+ka)=———
e T(N - p)
_TN—p+k-1)
LT N — )
_WNoptk=2 N
(k—1)!
And this completes the proof. O

From Theorem 3.127 we have the following

Theorem 3.128. Assume that N —1 < v <N, f : Ny_y4+1 = R, V..f(t) = 0 for
t € Nyp1 and VN=f(a) > 0. Then VVN7If () > 0 for t € N,
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Proof. By using the principle of strong induction, we prove that the conclusion of

the theorem is correct. By assumption, the result holds for ¢t = a. Suppose that

VNI (t) > 0, fort =a,a+1,...,a + k— 1. From Theorem 3.127 and (3.69), we

have V¥!f(a + k) > 0, and the proof is complete. O
Taking N = 2 and N = 3, we can get the following corollaries.

Corollary 3.129. Assumethat1 <v <2,f : Nyg — R, V.f (1) > 0 fort € Noyy
and f(a) > f(p(a)). Then f(¢) is increasing for t € Np().

Corollary 3.130. Assume that2 <v <3,f : Ny — R, V.f(1) > 0 fort € N1
and V*f(a) > 0. Then Vf(f) is increasing for t € N,.

One should compare the next result with Theorem 3.128.

Theorem 3.131. Assume that N —1 <v <N, f : Ny_yy1 — R, and VNf(t) > 0
fort € Noy1. Then V. f(t) > 0, for each t € Ny41.

Proof. Taking t = a + k, we have

V@)
=V, NN ()

_ / Hy—yum1 (1, p(s) VVf (5) Vs

k
=Y Hy_ui(a+ka+i—1)Vf(a+i). (3.70)

i=1
Since

Hy y(a+ka+i—1)
_(k—i+ Vet
=
_ T*k+N—i—p)
T(N— )T (k—i+1)
_Cpt kN N p DN =)

, 3.71

(k—1i)! 37D
where we used u < N, from (3.70) and (3.71) we get that V/.f(t) > 0, for each
1€ Ngpq, O

Taking N = 1 and N = 2, we get the following corollaries.

Corollary 3.132. Assume that 0 < v < 1, f : Ny — Rand f is an increasing
Sfunction fort € N,. Then Vif(t) > 0, fort € Nyyi.
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Corollary 3.133. Assume that 1 < v < 2, f : Ny, — R and V3f(t) > 0 for
t € Nyt1. Then V). f(t) > 0, for each t € Nyy .

In the following, we will give a counterexample to show that the assumption in
Corollary 3.129 “f(a) > f(p(a))” is essential. To verify this example we will use
the following simple lemma.

Lemma 3.134. Assumef € C*([a,o0)) andf” (1) > 0on [a, 00). Then V}.f (1) = 0,
foreacht € Nyyi, with1 <v < 2.

Proof. By Taylor’s Theorem,

f(a—i—z—i—l)—f(a—i—z)—i—f(a—i—z)—i—fﬁ(s) Eelat+iat+i+1] (3.72)
and
fla+i—1)=f(a+i) f(a+)+f//(n), nela+i—1,a+i (3.73)

fori =0,1,...,k— 1. Using (3.72) and (3.73), we have

Via+i+ ) =fla+i+1)=2fa+i)+fla+i—1)  (3.74)

_STE) ()
- 2
> 0.

From (3.74) and Corollary 3.133, we get that V;* f(t) = 0, for each t € N4, with
1<v<?2. O

Example 3.135. Let f(r) = —/t, a = 2. We have /(1) > 0, for t > 1. By
Lemma 3.134, we have V).f(¢) > 0.

Note that f(p(a)) = f(1) = —1 > f(a) = —+/2. Therefore f(x) does not satisfy
the assumptions of Corollary 3.129. In fact, f(x) is decreasing, for > 1.

Corollary 3.129 could be useful for solving nonlinear fractional equations as the
following result shows.

Corollary 3.136. Let h : N,+1 x R — R be a nonnegative, continuous function.
Then any solution of the Caputo nabla fractional difference equation

V5Ly(t) = h(t,y(1)), t€Nyp, l1<v<2 (3.75)

satisfying Vy(a) = A > 0 is increasing on N,().
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3.22 Asymptotic Behavior and Comparison Theorems

In this section we will determine the asymptotic behavior of solutions of a nabla
Caputo fractional equation of the form

Vo.x(t) = c()x(t), te€ Ngy, (3.76)
where ¢ : Nyy; — R, 0 < v < 1. We will prove important comparison theorems

to help us prove our asymptotic results. Most of the results in this section appear in
Baoguo et al. [52]. The following lemma will be useful.

Lemma 3.137. Assume that c(t) < 1, 0 < v < 1. Then any solution of
V> x(t) = c(0)x(1), t € Nyyg (3.77)

satisfying x(a) > 0 is positive on N,.

Proof. Using the integrating by parts formula (3.23) and
VsH_,(t,5) = —H_,—1(t, p(s)),
we have
VYx(t) = V. 17Vx(r)

= /t H_,(t, p(s))Vx(s)Vs

= H_,(t,9)x(s)|'—, +/ H_,_1(t, p(s))x(s)Vs

= —H_,(t,a)x(@) + Y Hoyo1(t, p(5))x(s).

Taking t = a + k, we have
Vix(t) =Via(a+ k)
=x(a+ k) —vx(a +k—1)— v(%'-’_l)x(a+k—2)—---
R R
(=0 + 1) (v +k—1)
- =D x(a).

Using (3.77), we get
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x(a + k)
= m[vx(a—i—k—])-k%x(a_i_k_z)_i_m
e 1)(/(_(1_)1,) - 2)x(a +1)
(-v+ D (-v+k-—1)
(k—1D)! x(@).

From the strong induction principle, 0 < v < 1, and x(a) > 0, it is easy to prove
that x(a + k) > 0, for k € Ny. O

The following comparison theorem plays an important role in proving our main
results.

Theorem 3.138. Assume c;(t) < c1(t) < 1,0 < v < 1, and x(¢), y(t) are solutions
of the equations

V2ex(t) = c1(H)x(1), (3.78)
and
Viy(1) = c2(0)y(r), (3.79)
respectively, for t € N,y satisfying x(a) > y(a) > 0. Then
x(1) = (1),

fort e N,

Proof. Similar to the proof of Lemma 3.137, taking t = a + k, we have

x(a + k)
—q !
v(v+1)---(—v+k—-2) (—v+1)---(—v+k-1)
&= D! x(a+1) + = x(a)]
(3.80)
and
y(a + k)
v(—v+1)---(—v+k-2) (—v+1)---(—v+k—-1)
*—1)! vat+ )+ *—1)! vl

(3.81)
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We will prove x(a + k) > y(a + k) > 0 for k € Ny by using the principle of strong
induction. By assumption x(a) > y(a) > 0 so the base case holds. Now assume that
x(a+1i)>yla+1i)>0,fori =0,1,...,k— 1. Using c,(r) < c;(t) < 1,

v(=v+ 1 (—v+i—-1) -

0,
i!

the base case k = 1 fori =2,3,---k— 1,

(—v+D)(=v+2)---(—v+k-1) -0
(k— 1)

)

(3.80), and (3.81) we have
x(a+k)=yla+k) > 0.

This completes the proof. O

Remark 3.139. Since Ho(t,a) = 1, we have that Eqg,0(t,a) = 1 and E,,p
(a,a) = 1.

Lemma 3.140. Assume that0 < v < 1, |b| < 1. Then

V;* Eb,v.O(tv a) = bEb,v.O(tv a)

fort € Nyy.

Proof. Integrating by parts, we have

V;*E},’v.o(l‘, a)

= /IH_V(t, p(s))VEp, 0(s,a)Vs

— [Ho (1.9)Epos. )]y + / Ho (1. p(s) Ep (5. @) Vs
=—H_,(t,a) + / ZH_V_I(t, 0(s)) Zb"Hvk(s, a)Vs, (3.82)

k=0

where we used H_,(#,7) = 0 and E}, o(a,a) = 1. In the following, we first prove
that the infinite series

Hoyo1(1.p(5)) ) U Hui(s, @) (3.83)
k=0

for each fixed ¢ is uniformly convergent for s € [a, ].
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We will first show that

(- —
|H—v—1(t’ IO(S))| = F([ES‘)‘:_l;F(Sjv) S 1

fora < s < t. For s = ¢ we have that

|Hoy—1 (2. p(0)] = 1.

Now assume that a < s < t. Then

I'(—v+t—y) _|t=s—v—1(t—s—v—=2)---(-v)
F(t—s+ DO(=v)| (t—s)!
Ct=s=+D||t=s—1-(@+1) ’—v‘
N t—s t—s—1 B
<1
Also consider
Hou(s.a) = I'(vk+s—a)

F's—a)'(vk+1)

_Wk+s—a—1)---(vk+ 1)
N (s—a—1)!

Note that for large £ it follows that

Hyi(s,a) < Wk +s—a— 1)
<Wk+t—a—1)""

for a < s < t. Applying the Root Test to the infinite series in (3.83) we get that for
each fixed ¢

lim /|b|f(vk +t—a— 1)y—a=1 = |b| < 1.
k—00

Hence, for each fixed ¢ the infinite series in (3.83) is uniformly convergent for
s € [a,1]. So from (3.82), integrating term by term, we obtain, using (3.32) and
VVH,i(s,a)) = Hy—y (s, a), that

o t
ViEpvo(t,a) = —H_,(t,a) + Zbk[ H_,_(t, p(s))H(s,a)Vs
k=0 “
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oo
= —H_,(t.a) + Y b'VIHy(t.a)
k=0

00
=—H_,(t,a) + Z kavk—v (t,a)
k=0

kavk—v (tv a)

e

»
Il

= bEp (1, a),

where we also used Hy (¢, @) = 1. This completes the proof. O
With the aid of Lemma 3.140, we now give a rigorous proof of the following
result.

Lemma 3.141. Assume that 0 < v < 1, |b| < 1. Then Ep,o(t, a) is the unique
solution of Caputo nabla fractional IVP
Vex(1) = bx(t), t € Nyt (3.84)
x(a) = 1.

Proof. It is easy to see that the given IVP has a unique solution. If b = 0, then
EO,V.O(tv a) =1

is the solution of the given IVP. For b # 0 the result follows from Lemma 3.140
and the uniqueness. O

We will see that the following lemma, given in Pudlubny [153], is useful in
proving asymptotic properties of certain fractional Taylor monomials and certain
nabla Mittag—Leffler functions.

Lemma 3.142. Assume N(z) > 0. Then

r . nln®
= m .
(Z) nl>oo Z(Z+ 1)'(Z+n)

The following lemma is an asymptotic property for certain nabla fractional
Taylor monomials.

Lemma 3.143. Assume that 0 < v < 1. Then we have
lim H,(t,a) = oo, for k=>1,
—>00

lim Hy(t,a) =1, for k=0.
—>00
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Proof. Taking t = a + n,n > 0, we have

3
N, Hult, @) = lim Hula +n.a) = lim 2om——
I'(vk + n)
m —————
n—oo ['(n)T" (vk + 1)

Wk+n—DWk+n—2)---(vk+1) (n — 2)vk+!

= 3.85
n—00 (n—2)!(n— 2)vk+! n—1 (385)
Using Lemma 3.142 with z = vk + 1 and n replaced by n — 2, we have
i Wk+14+n-2)(vk+14+n-3)---(vk+1) 1
im = )
n—00 (n—2)!(n — 2)vk+1 C(vk+1)
and
) vk+1
lim u:oo, for k>1,
n—00 n—1
] (n _ 2)vk+1
lim ——— =1, for k=0.
n—00 n—1
Using (3.85), we get the desired results. O

Theorem 3.144. Assume 0 < b, < c(t) < 1,t € Nyt1, 0 < v < 1. Further assume
x(2) is a solution of Caputo nabla fractional difference equation

V%x(t) = c(Ox(r). 1€ Nypy (3.86)

satisfying x(a) > 0. Then
x(a
0 2 "5, 0.0,

fort € Nyy.
Proof. From Lemma 3.141, we have
VisxEp,v0(t,a) = brEy, , (. a)
and Ep, , o(a,a) = 1.
In Theorem 3.138, take ¢,(t) = b, . Then x(¢) and

v ="k, 0
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satisfy
V2%ex(t) = c()x(r), (3.87)
and
V2%y(t) = bay(1), (3.88)

respectively, for t € N4 and
x(a)
x(a) > TEbz,v,O(ava) = y(a).

From Theorem 3.138, we get that

(a)

X
X(l) = TEbz,v,O(ta Cl),

for t € N,. This completes the proof. O
From Lemma 3.143 and the definition of Ej,,o(?,a), we get the following
theorem.

Theorem 3.145. For 0 < by, < 1, we have

lim Ebz,u,O(t’ a) = +oo.
—>00

From Theorem 3.144 and Theorem 3.145, we have the following result holds.

Theorem 3.146. Assume 0 < v < 1 and there exists a constant by such that 0 <
by < c(t) < 1. Then the solutions of the equation (3.76) with x(a) > 0 satisfy

lim x(f) = +o0.
—>00

Next we consider the case c(f) < by < 0, t € N,. First we prove some
preliminary results.

Lemma 3.147. Assumef :N, > R, 0 <v < 1. Then

v TIVE () = VVSTVF () — f(@H- (1. a). (3.89)
Proof. Using integration by parts and H_, (¢, 1) = 0, we have

vV IIVE() = / tH_v(t, p(s))Vf(s)Vs

a

— Ho (0 6y + [ Horer 1 p ) 0)Vs

- H(La)f(a) + / ey (1. p($))f () V. (3.90)
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Using the composition rule V'V, "f(t) = V, "f(#), for v, u > 0in Theorem 3.109,
we have

YV @) = Vo)
= [ Hora e p6 97 (3.91)
From (3.90) and (3.91), we get that (3.89) holds. O

From Lemma 3.147, it is easy to get the following corollary which will be useful
later.

Corollary 3.148. For 0 < v < 1, the following equality holds:
V'V = VVf (1) = Hy-1 (1, a)f (a). (3.92)

fort e N,

Lemma 3.149. Assume that 0 < v < 1 and x(t) is a solution of the fractional
equation

V2ex(t) = c()x(z), t € Nyt (3.93)

satisfying x(a) > 0. Then x(t) satisfies the integral equation
t
50 = [ Hoa 1. p)e6) Vs + 1@

S;_l G i_:(k ))U 1c(s)x(s) + x(a).

Proof. Using Lemma 3.147 and the composition rule
VeV r () = ViTlf o),
for «, § > 0 given in Theorem 3.109, we get

Vrx() = V. 7Vx(r)
= VV;Ux(1) — x(a)H_, (t, a)
= V)x(t) —x(a)H_, (1, a).

From (3.93), we have

Vox(t) = c(0)x(t) + x(a)H-, (t, a).
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Applying the operator V" to each side we obtain
V. 'Vix(t) =V, e()x(t) + x(a)V, "H_,(t,a),
which can be written in the form
VoUVVUx(0) = V7V e(0)x(t) 4+ x(a)V, "H-, (1, a).

Using Corollary 3.148, we obtain

(1= (t—a) "

v (1—v) _ (1-v)
VvV, 'V, x(2) —F(v) v, x(1) .
=V, c(t)x(t) + x(a)V,"H_, (¢, a).

On the other hand, using

a
V0| = [ @ penao)vs =0
t=a a
we obtain
VV UV Ux(0) = V7V e(t)x(t) 4+ x(a)V, "H-, (1, a).
By the composition rule, namely Theorem 3.107, it follows both that
Vv, Ux(r) = V7x(r) and that VV'x(r) = x(t), from which it follows
that
x(t) =V, c(®)x(t) + x(a)V,VH_,(t, a).
Finally, by the power rule V_"H_, (t,a) = Hy(t,a) = 1, we obtain

x(1) = V., e(0)x(t) + x(a)

=/m4m®MW®W+M)

= Z H,—(t, p(s))c(s)x(s) + x(a)

s=a+1
t — v—1
_ Z C=s+ D™ 9xs) + x(a). (3.94)
s=a+1 F( )
And this completes the proof. O

The following lemma appears in [34].
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Lemma 3.150. Assume that 0 < v < 1, |b| < 1. Then the Mittag—Leffler function
Epyo—i(t, p(@) = D020 b*Hyptv—1(t, p(a)) is the unique solution of the IVP

Vo@X(t) = bx(1), t e Nyyg
1

Lemma 3.151. Assume 0 < v < 1, |b| < 1. Then any solution of the equation
Vo) = bx(t), t € Nyyg (3.96)
satisfying x(a) > 0 is positive on N,.

Proof. From (3.32), we have fort = a + k

V2(0) = /p o s

a+k
= ZH_”_l (a+k,s—1)x(s)
=x(a+k)—vx(a+k—1)—Wx(cwl—k—Z)

v(—v+1)--(—v+k-—1)
e — k! x(a).
Using (3.92), we have that
(1=>b)x(a+k)
v(=v+1)

=vx(a+k—1)+Tx(a+k—2)

n v(—v+1)--(—v+k-—1)

+ .- i

x(a). (3.97)

We will prove x(a + k) > 0 for k € Ny by using the principle of strong induction.
Since x(a) > 0 we have that the base case holds. Now assume that x(a + i) > 0, for
i=0,1,--- ,k— 1. Since

_ D (— i—1
v(—v+1) .'( v+ )>0
i!

fori =2,3,---k— 1, from (3.97), we have x(a + k) > 0. This completes the proof.
O
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Lemma 3.152. Assume that0 <v <1, —1 < b < 0. Then

lim Ep,(t,a) = 0.

—>00

Proof. From Lemma 3.150 and Lemma 3.151, we have E;, ,—(t, p(a)) > 0, for
t € Ny41. So we have

o0
VEpuo(t.a) = Y B*VHy(t. a)
k=0

o0
Hkal(tv (,l) = Z kakal(ta Cl)

o0
.Y
k=0 k=1
00
b,
k=1

o0
bk_lek—l (t,a)=b Z ijvj+v—l(t’ a)

Jj=0

= bEb,v.v—l(tv CZ) = bEb,v.v—l(t - 17 P(a)) < O,

for t € N,41, where we used H_;(t,a) = 0. Therefore, E;, o(¢, a) is decreasing for
t € Nyy;. From Lemma 3.137, we have Ej, ,, o(t,a) > 0 for r € N,4. Suppose that

lim Eb,v.O(tv a) =A>0.
—>00

In the following, we will prove A = 0. If not, A > 0. Let x(¢) := Ej, o(t,a) > 0.
From Lemma 3.149, we have

(1) = [ ' Hoer (0, p(8))bx(5) Vs + x(a)

= b[x(t) + vx(t—1) + Wx(t -2)

t o+ Hyoy(t.a)x(a + D] + x().

For fixed kg > 0 and large ¢, we have (since b < 0)

(t-2)

x(r) < b[x(t) +vx(t—1) + Wx

+ LA G Al Gl 1)x(t—ko)] + x(a).
ko!
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Letting t — oo, we get that

viv +1 1)--- ko —1
V+D, 0Dtk )
2! ko!

0<A 5bA[1+v+ ]+x(a). (3.98)

Notice (using mathematical induction in the first step) that

1 1)--- ko — 1
P Gl ) SRS Gl i DAL Ul Bnll))
! ko!
0w+ DO +2)--- (v + ko)
N ko!
W+ DO+ (w1 +k— 1) (kg — D!
B (ko — D)!(ko — 1)*+! ko
— 4+ 00,
as kg — oo, where we used (see Lemma 3.142)
1 — lim v+DHw+2)---(w+14+k—1)
FTv+1) k—oo (ko — 1)!(ko — 1)v+!

So in (3.98), for sufficiently large ko, the right side of (3.98) is negative, but the left
side of (3.98) is positive, which is a contradiction. So A = 0. This completes the
proof. O

Theorem 3.153. Assume c(t) < by < 0,0 < v < 1, and x(¢) is any solution of the
Caputo nabla fractional difference equation

V29ex(t) = c(t)x(t), t€ Ngyy (3.99)
satisfying x(a) > 0. Then
x(1) = 2x(a)Ep, v0(1, @),

fort e N,
Proof. Assume that b; > —1. Otherwise we can choose 0 > b} > —1, b] > b; and

replace b; by b|. From Lemma 3.141, we have

V2 eEp vo(t.a) = biEp, v0(t. a)

a

and Ep, ,o(a,a) = Ho(a,a) = 1.
In Theorem 3.138, take c;(f) = b;. Then it holds that x(¢) and y(r) =
2x(a)Ep, v0(t, a) satisfy

V2%ex(t) = c(t)x(z), (3.100)
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and
V0.y(t) = biy(1). (3.101)
respectively, for ¢ € N,y and
x(a) < 2x(a) = 2x(a)Ep, v0(a,a) = y(a).
From Theorem 3.138, we get that
x(1) = 2x(a)Ep, v0(t.a),

for t € N,. This completes the proof. O
From Theorem 3.153 and Lemma 3.152, we get the following result.

Theorem 3.154. Assume 0 < v < 1 and there exists a constant by such that c(t) <

by < 0. Then the solutions of the equation (3.76) with x(a) > 0 satisfy

lim x(¢) = 0.
—>00

Next we consider solutions of the v-th order Caputo nabla fractional difference
equation

V2%x(t) = c()x(r), t € Nyyi, (3.102)

satisfying x(a) < 0.
By making the transformation x(f) = —y(f) and using Theorem 3.146 and
Theorem 3.154, we get the following theorem.

Theorem 3.155. Assume 0 < v < 1 and there exists a constant by such that 0 <
by < c(t) < 1,t € Nyy1. Then the solutions of the equation (3.102) with x(a) < 0
satisfy

lim x(¢) = —oo0.
1—>00

Theorem 3.156. Assume 0 < v < 1 and there exists a constant by such that c¢(t) <
by <0, t € Nyt1. Then the solutions of the equation (3.102) with x(a) < 0 satisfy

lim x(¢) = 0.
—>00



252 3 Nabla Fractional Calculus
3.23 Self-Adjoint Caputo Fractional Difference Equation

Let D, := {x: N, — R}, and let L, : D, — D, 4+ be defined by
(L)) := Vip(t + DVt + D]+ q0x(0), 1 € Nog, (3.103)

where x € D,,0 < v < 1,p(t) > 0,¢t € Nyy; and ¢ : Nyy;1 — R. Most of the
results in this section appear in Ahrendt et al. [4].

Theorem 3.157. The operator L, in (3.103) is a linear transformation.

Proof. Letx,y: N, — R, and let o, 8 € R. Then
Lo[ax + By](2)

- V[p(r DV fox(t + 1) + Byl + 1)1} T g(Olax() + By(1)

- V[p(r D@Vt 4 1) + BV 4+ 1)1} + aq()x(0) + By (D)

= Viap(t + DVgx(t + 1) + Bp(t + DV, y( + D] + aq()x(t) + Bq()y(2)
= aVp(t + DVx(t + D] + ag®)x(t) + BV[p(t + DVt + D] + Bq()y(1)
= aL.x(t) + BLY(1),

fort € Nyy. O

Theorem 3.158 (Existence and Uniqueness for IVPs). Let A,B € R be given
constants and assume h : N,y| — R. Then the IVP

Lox(1) = h(r), 1 € Nogy

(3.104)
x(a) =A, Vx(a+1)=B

has a unique solution on N,,.

Proof. Let x : N, — R be defined uniquely by
x(a)=A, x(a+1)=A+B,
and for ¢t € N 41, x(¢) satisfies the summation equation

X+ 1) = x(t) — ng—ii?lVﬂﬂ

t=a+1 )

WO = 4050 +p0) Y Mv (x )}

t=a+1 )

1
+pO+D[
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We will show that x solves the IVP (3.104). Clearly the initial conditions are
satisfied. Now we show that x is a solution of the nabla Caputo self-adjoint equation

on N,. To see this note that for r € N, ;, we have from the last equation

Vx(r+1) + /tH_U(t + 1, p(7))Vx(r)VT

— _ —(1—-v)
= o [0 — 400 + VY],
But
Vau(t +1)
=V, ™Vx(r 4 1)
+1
=/ H_,(t+ 1,p(r))Vx(r)Vt
=H_ ,t+1,)Vx(t+1) + /tH_,,(t 4+ 1, p(7))Vx(r) VT

=Vx(r+1) + /ZH_V(t + 1, p(1))Vx(r)Vr.

Hence, from this last equation and (3.105) we get that

plt + DV2x(t + 1) = h(t) — q(1)x(2) + p(O)V; ™) Vx(r)
= h(t) — q(1)x(t) + p(H) V), x(2).

It follows that

Vip(t + DV2,x(t + D] + g(0)x(t) = h(2)

(3.105)

for t € N 4. Reversing the preceding steps shows that if y(7) is a solution to the
IVP (3.104), it must be the same solution as x(¢). Therefore the IVP (3.104) has a

unique solution.

Theorem 3.159. Let O <v < 1 and letx : N, — R. Then

Vix(a+1) = Vx(a+1).

ad
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Proof. Let 0 < v < 1. Then by the definition of the nabla Caputo fractional
difference it holds that

Vix(@+1) =V, "™Vx(@a+ 1)

a+1
_ / Hoy(a+ 1, p(2)) Vi(t)Vr
=H ,(a+1,a)Vx(a+1)
= Vx(a + 1),

which is what we wanted to prove. O

Theorem 3.160 (General Solution of the Homogeneous Equation). We
assume X1, X, are linearly independent solutions of L,x = 0 on N,. Then the general
solution to L,x = 0 is given by

x(t) = cix1(t) + cxp(t), teN,

where cy, ¢, € R are arbitrary constants.

Proof. Let x1, x, be linearly independent solutions of L,x(f) = 0 on N,. If we let
a:=x(a), B:=x(a+1), y:=x), §:=x(a+1),

then x1, x, are the unique solutions to the IVPs

Lx; =0, Lx, =0,
x1(a) = a, and | x2(a) =y,
xi(a+1) =4, x(a+1)=6.

Since L, is a linear operator, for any ¢, ¢; € R, we have

La[erx1 (1) + caxa(1)] = c1Laxi (1) + c2Laxa(1) = 0,
s0 x(1) = c1x1(t) + caxz(¢) solves L,x(t) = 0. Conversely, suppose x : N, — R
solves L,x(f) = 0. Note that if A := x(a) and B := x(a + 1), then x(¢) is the unique

solution of the IVP

Lx =0,
x(a) =A, x(a+1)=B.

It remains to show that the matrix equation

X](a) X2(a) C] _ A
[xl(a+ 1) x2(a + 1)} [CZ] = [B] (3.106)
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has a unique solution for ¢y, ¢;. Then x(¢) and c1x (f) + c2x,(¢) solve the same IVP,
so by Theorem 3.158, every solution to L,x(f) = 0 may be uniquely expressed as a
linear combination of x; (f) and x;(¢). The above matrix equation can be equivalently

expressed as
aylfca]| _|A
,3 8 (&) - Bl

Suppose by way of contradiction that

a'}/ _
/38'_0‘

Without loss of generality, there exists a constant k € R for which « = ky and
B = ké. Then x{(a) = ky = kxp(a), and x;(a + 1) = k§ = kxp(a+ 1). Since kx,(¢)
solves L,x(t) = 0, we have that x; () and kx, (¢) solve the same IVP. By uniqueness,
x1(t) = kxp(¢). But then x;(f) and x,(¢) are linearly dependent on N,, so we have a
contradiction. Therefore, the matrix equation (3.106) must have a unique solution.
O

Corollary 3.161. Assume x|, x, are linearly independent solutions of L,x(t) = 0 on
N, and yy is a particular solution to L,x(t) = h(t) on N, for some h : N,o1 = R.
Then the general solution of L,x(t) = h(t) is given by

X(l) = C1X] (t) + CzXz(t) —+ yo(l),

where c1, c; € R are arbitrary constants, fort € N,,.

Proof. This proof is left to the reader. O

Next we define the Cauchy function for the Caputo fractional self-adjoint
equation, L,x = 0. Later we will see its importance for finding a variation of
constants formula for L,x = k() and also its importance for constructing Green’s
functions for various boundary value problems.

Definition 3.162. The Cauchy function for L,x(f) = 0 is the real-valued function
x with domain a < s < ¢ such that, for each fixed s € N,, x satisfies the IVP

Lsx(t) =0, teN
x(s,s) =0, (3.107)

Vx(s+1,s) = p(s;H)
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Note by Theorem 3.159, the IVP (3.107) is equivalent to the IVP

Lix(1) =0 1€ Ny,
x(s,s) =0,

Vix(s+1,s) = p(s_}H)'

Example 3.163. We show that the Cauchy function for
Vip(t + DVguy(t+ D] =0. 1€ Noyy

is given by the formula

_ Hv l(t /O(T))
o) =V ((ﬂ) / B CEE (3-108)

for ¢t > s > a. We know for each fixed s, the Cauchy function satisfies the equation
Vip(t+ DVox(t+1,5] =0,
fort > s > a. It follows that

plt+ D0t + 1s) = a(s)

a(s)
Vix(t+1,s) = .
i L) = TR
Letting ¢ = s and using the initial condition
Vx(s+1,5) = Vix(s + 1,5) =
( ) = Vax( ) 61D
we get that «(s) = 1. Hence we have that
Vox(+1,s) = .
st =

By the definition of the Caputo difference, this is equivalent to

VOVt +1,5) =
s ( ) ST D)

1
VIV TV L) = V“”( )
N N 'x( S) N p(t+ 1)

_ 1—v 1
Vx(t+1,5) = V! (p(t+1))'
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Replacing ¢ + 1 with ¢ yields

Vax(t,s) = V!7" (pz_t)) .

Integrating both sides from s to # and using x(s, s) = 0 we get

t
1
x(t,5) = / vi=v %V‘E

gy L
/VV ()VT
1 1=
— v
[ ' p(f)l:;
ER—
=V (p(r)) Vs ()(”

_ 1@ p(@)
- (p(t)) / NG

Example 3.164. Find the Cauchy function for
VViy(t+1) =0, te Ny

From Example 3.163 we have that the Cauchy function is given by

- Hyi(p(0)
9=V ((r)) / B CEE

_ [ Hyy (1. p(1)) Ve

=t

= _Hv(tv T)

= H,(t,s).
Note that if v = 1 we get the well-known result that the Cauchy function for
V2x(t + 1) = Ois given by x(t,5) =t — s.

Theorem 3.165 (Variation of Constants). Assume h : N,y — R. Then the
solution of the IVP

Lay(t) = h(t)v re I\Ia-f—l
y(@) =yla+1) =0,
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is given by

y(t) = /rx(t, s)h(s)Vs, teN,,

where x(t, s) is the Cauchy function for L,x = 0.

Proof. Lety(r) = fat x(t, 5)h(s)Vs, t € N,. We first note that y(r) satisfies the initial
conditions:

a

ya) = ) x(a,s)h(s) =0,

s=a+1
a+1
ya+1) = Z x(a+ 1,5)h(s) =x(a+ 1,a+ Dh(a+ 1) = 0.
s=a+1

Next, note that by the Leibniz formula (3.23), we have that
—1
Vy(t) = f Vix(t, $)h(s)Vs + x(t, t)h(t)

-1
= / Vix(t, s)h(s)Vs. (3.109)
We now show that
—1
V() = / Vox(t, s)h(s)Vs, (3.110)
for t € N, 5. By the definition of the Caputo fractional difference,
Vauy(0) = V7 Vy(0)

_ / H_,(t. p(2))Vy(z) VT

t —1
=/ H_v(t,p(t))/ Vix(t, $)h(s)VsVt, by (3.109)

t pr—1
/ / H_,(t, p(t))Vux(t, s)h(s) VsVt

—1

>0 ) Hou(t p(@)Vix(t. s)h(s)

t=a+1 s=a+1
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t —1
- Z Z H_, (t, p(v))Vix(t, s)h(s)
t=a+2 s=a+1

t—1 t
— Z Z H_,(t, p(t))Vix(t, s)h(s)

s=a+1 t=s+1

—1 t

=/ /H_U(t, p(1))Vix(t, $)h(s)VT Vs
t—1

_ / V09,11, 5)h(5) Vs

—1
= / Vi x(t, s)h(s)Vs

for t € Ny45. Hence (3.110) holds. Then by (3.110) we have that

t

pt+ DHViyit+1) = / [p(t + DVx(t + 1, 5)] h(s)Vs.

a

Using the Leibniz formula (3.23) we get that
V[pt+ DV +1)]

—1
= / YV [plt + DVix(t + 1,9)] h(s)Vs + p(t + DVx(t + 1, 1)h(2)

t—1
= / V [p(t + DVLx( + 1,9)] h(s)Vs + h(D)

It follows that
Lyy(®) = V[p(t + D)V,y(t + D] + q(@)y()

—1 =1
= / \% [p(t + V5 x(t+ 1, s)] h(s)Vs + h(t) + / q(t)x(t, s)h(s)Vs

t—1
= / [V[p(t + DVgx(t + 1.9)] + q(0)x(z, S)}h(S)VS + h()

= h(r) + /t_l Lgx(t, s)h(s)Vs
= h(t).

Thus, y(¢) solves the given IVP.
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Theorem 3.166 (Variation of Constants Formula). Assume p,q : N,y — R.
Then the solution to the IVP

L.y(t) = h(1),
y(a) = A,
Vy(a+ 1) =B,

fort € Nyy1, where A, B € R are arbitrary constants, is given by
12
Y0 =300) + [ x0.5h6) Vs
a

where yo(t) solves the IVP

L,y(t) =0,
y(a@) = A,
Vy(a+ 1) = B,
fort S Na+l-
Proof. The proof follows from Theorem 3.165 by linearity. O

Corollary 3.167. Assume p,h : N,+1 — R. Then the solution of the IVP

V[p(t + I)V;*y(t + 1)] = h(t)v re Na-i—l
y(a) = Vya+1) =0,

is given by

t - 1
y(t)=/a Vi (%) h(s)Vs.

Proof. From Theorem 3.165, we know that the solution is given by

t
¥ = [ .46V,
where x(¢, s) is the Cauchy function for

Vp( + DV + D] = 0.
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By Example 3.163, we know the Cauchy function for the above difference equation
isx(z,s) =V (L) Hence the solution of our given IVP is given by

s p(t)
t - 1
o=V, (pm)h“)vs’

fort € N,. O
The following example appears in [4].

Example 3.168. Solve the IVP

VVIEx(t+1) =1, teN,

*

x(0) = Vx(1) = 0.

Note that for this self-adjoint equation, p(f) = 1 and ¢(f) = 0. From Example
(3.164) we have that x(z, s) = H¢(t, s)
Then by Theorem 3.165

x(t) = /Otx(t, s)sVs

t
= / H(t,5)sVs.
0
Integrating by parts we get from Exercise 3.37 that

R SR ¥ 1
x(t)_F(3.6)(t )=,

for t € Ny.

3.24 Boundary Value Problems

Many of the results in this section appear in Ahrendt et al. [4]. In this section we
will consider the nonhomogeneous boundary value problem (BVP)

Lx(t) = h(t), te N}
ax(a) — BVx(a+1) = A, (3.111)
yx(b) + §Vx(b) = B,
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and the corresponding homogeneous BVP

Lix(f) =0, reN |
ax(a) — BVx(a+ 1) =0, (3.112)
yx(b) + §Vx(b) = 0,

where h : NZ;ll - R,p(t) >0, € NZH, 0<v<l,and e, f,y,8,A,B € R for
which @ + B2 > 0 and y? + §% > 0. Also we always assume b — a is a positive
integer and b — a is large enough so that the boundary conditions are not equivalent
to initial conditions. The following theorem gives an important relationship between
these two BVPs.

Theorem 3.169. The homogeneous BVP (3.112) has only the trivial solution iff the
nonhomogeneous BVP (3.111) has a unique solution.

Proof. Let x1,x, be linearly independent solutions to L,x(f) = 0 on NZ. By
Theorem 3.160, a general solution to L,x(¢) = 0 is given by

x(t) = c1x1(t) + c2x2(2),

where c1, c; € R are arbitrary constants. If x(¢) solves the homogeneous boundary
conditions, then x(¢) is the trivial solution if and only if ¢; = ¢; = 0. This is true if
and only if the system of equations

{ afcixy(a) + caxz(a)] — BV[eixi(a+ 1) + coxp(a + 1)] = 0,
)/[C]JC] (b) + C2X2(b)] + 8V[C1X1 (b) + Cz.Xz(b)] =0,

or equivalently,

% cilaxi (@) — BVxi(a + 1)] + c2[axz(a) — BVxy(a + 1)] = 0,
cilyxi(b) + 8Vx(b)] + c2[yx2(b) + 6Vxz(b)] = 0,

has only the trivial solution ¢; = ¢, = 0. In other words, x(¢) solves (3.112) if and
only if

_ |axi(a) — BVxi(a + 1) axz(a) — BVxz(a + 1)
| yxi(b) + 8Vx(b) yx2(b) + §Vxa(b)

£ 0.

Now consider the nonhomogeneous BVP (3.111). By Corollary 3.161, a general
solution of the nonhomogeneous equation L,y(t) = h(t) is given by

(1) = arxi(t) + axx:(t) + yo(1),

where aj,a, € R are arbitrary constants, and yo : N, — R is a particular
solution of the nonhomogeneous equation L,y(f) = h(z). Then y(r) satisfies the
nonhomogeneous boundary conditions in (3.111) if and only if
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alaixi(a) + axxy(a) + yo(a)]
=BV . laixi(a+ 1) + ayxy(a + 1) + yo(a + 1)] = A,
vlaix1(b) + axx»(b) + yo(b)] + 8V[aix(b) + ax»(b) + yo(b)] = B.

This system is equivalent to the system

arfaxi(a) — BVxi(a + 1)] + az[axz(a) — BVxa(a + 1)]
= A —ayo(a) + BVyo(a + 1),

a[yx1(b) + 8Vx1(b)] + ax[yx2(b) + §Vxa(b)]

= B —yyo(b) — §Vyo(D).

Thus, y(¢) satisfies the boundary conditions in (3.111) iff D # 0. Therefore the

homogeneous BVP (3.112) has only the trivial solution iff the nonhomogeneous

BVP (3.111) has a unique solution. O
In the next theorem we give conditions for which Theorem 3.169 applies.

Theorem 3.170. Let

_ 1 al By
=ayV, —— + —— + ———.
P8 b= 1) " p)  pla+ 1)

Then the BVP
Vip(t+ DVix(t+ 1) =0, e N7,

ax(a) — BVix(a+1) =0, (3.113)
yx(b) + 8V .x(b) = 0,

has only the trivial solution if and only if p # 0.
Proof. Note that x;(f) = 1,x() = V¥ ﬁ are linearly independent solutions to
Vip(t+ DV2%ix(t+ 1)} =0.

Then a general solution of the difference equation is given by

1
x(t) = c1x1(t) + c2xa(t) = c1 + 2V, ' —.
p(®)

The boundary conditions ax(a) — BV .x(a + 1) = 0, and yx(b) + 6V .x(b) = 0

give us the linear system
)
o +c| ———| =0,
1 2[ pla+1)
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) 1
ay+cao|l—+yV,'— ] =0
Y Z(p(m v p(b>)

The determinant of the coefficients of this system is given by

B

o —= T 1 al By
pla+1) — ayV“’ +— 4+ =)
Yo Ve s “ pb=1)  pb)  pla+l)
Hence, the BVP has only the trivial solution if and only if p # 0. O

Corollary 3.171. Assume «, B, y, and § are all greater than or equal to zero with
a? + B% # 0 and y? + 8% # 0. Then the homogeneous BVP

Vip(t+ DV%x(t+ 1)] =0, e N7,
ax(a) — BVix(a+1) =0, (3.114)
yx(b) + 8V .x(b) = 0,

has only the trivial solution.

Proof. The hypotheses of this theorem imply that p > 0. Hence the conclusion
follows from Theorem 3.170. |

Definition 3.172. Assume the homogeneous BVP (3.112) has only the trivial
solution. Then we define the Green’s function, G(t,s), for the homogeneous
BVP 3.112 by

Glt.s) = u(t,s), a<t<s<»h,
U0 |v(ts), a<s<t1<b,

where for each fixed s € Ng 41> u(t,s) is the unique solution (guaranteed by
Theorem 3.169) of the BVP

Lu(t) =0, teNZ}

au(a,s) — BVu(a+1,s) =0,
yu(b,s) + 8Vu(b,s) = —[yx(b,s) + §Vx(b, s)],
and
v(t,s) == u(t,s) + x(t,s),

where x(¢, s) is the Cauchy function for L,x(¢) = 0.

Note that for each fixed s € N2, v(t,s) = u(t,s) + x(t,5) is a solution of
L,x(t) = 0 and since
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yu(b,s) + §Vu(b,s) = yu(b,s) + x(b—1,s)] + §V[u(b,s) + x(b, s)]
= [yu(b, s) + §Vu(b, s)] + [yx(b,s) + §Vx(b, s)]
= —[yx(b,s) + §Vx(b, s)] + [yx(b,s) + §Vx(b, )]
=0,
we have that for each fixed s € N’ the function v(t, s) satisfies the homogeneous
boundary condition in (3.112) at t = b.
Theorem 3.173 (Green’s Function). If (3.112) has only the trivial solution, then

the unique solution to the BVP

Loy(t) = h(t), te N,
ay(a) — BVy(a+ 1) =0, (3.115)
yy(b) + 8Vy(b) = 0,

is given by

b
y(t) :/ G(t,s)h(s)Vs, te€ NZ,

a

where G(t, s) is the Green’s function for the homogeneous BVP (3.112).
Proof. Let

‘ b
y(t) := /b G(t,s)h(s)Vs=/ G(t,s)h(s)Vs-i—/ G(t,5)h(s)Vs
¢ b
= / v(t, s)h(s)Vs + / u(t, s)h(s)Vs
' b
= [ ) + 09405 + [ ute s
b t
= / u(t, s)h(s)Vs + / x(t,5)h(s)Vs
b
_ / u(t, $)h(s) Vs + 2(1),

where z(f) := jat x(t, s)h(s)Vs. Since x(t, s) is the Cauchy function for L,x(t) = 0,
it follows that z solves the IVP
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Lyz(t) = h(r), teN!
z(a) = 0,
zZ(a+1) =0,

fort e N2+1, by Theorem 3.165. Then,

b
Loy(t) = [ Lot(t, $)h(s)Vs + Luz(0)
= 0+ h(r) = h(1),

fort € Ng L It remains to show that the boundary conditions hold. At ¢t = a, we
have

ay(a) — BVy(a + 1) = /b[au(a, s) — BVu(a + 1, 5)]h(s)Vs
+a[0lZ(a) —pBVza+1)] =0,
and at = b, we have
yy(b) + §Vy(b)

b b
=yz(b) + / yu(b, s)h(s)Vs + 6Vz(b) + / SVu(b, s)h(s)Vs
b b
=Y f x(b, )h(s)Vs + 8V f x(b, s)h(s)Vs
b
+/ [yu(b, s) + §Vu(b, s)]h(s)Vs

b b
= —[ [yx(b,s) + 8Vx(b, s)]h(s)Vs + / [yx(b,s) + 8Vx(b, s)|h(s)Vs
=0.

This completes the proof. O

Corollary 3.174. If the homogeneous BVP (3.112) has only the trivial solution,
then the unique solution of the nonhomogeneous BVP (3.111) is given by

b
y(t) = z(t) + / G(t,s)h(s)Vs, teN’,
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where z is the unique solution to the BVP

Liz(f) =0, te N7
az(a) — BVz(a+ 1) = A,
yz(b) + §Vz(b) = B.

Proof. This corollary follows directly from Theorem 3.173 by linearity. O

Theorem 3.175. Assume a,b € R and b — a € N,. Then the Green’s function for
the BVP

VA% =0 N
(1) =0 1€ Ny, (3.116)
x(a) = x(b) =0,
is given by
t <r<s<b
Git.s) = u(t,s), a<t<s<b,
v(t,s), a<s<t<bh,
where
b — Ut_ v
u(t.s) = - L= =)
ra+vyb—a)y
and
(t—5)"
f, = ul(t, _—
V0 = U+ [

Proof. By the definition of the Green’s function for the boundary value problem
(3.116) we have that

u(t,s), a<t<s<b,
G(t,s) = (t,5) - - =
v(t,s), a<s<t<bh,

where u(t, s) for each fixed s solves the BVP

VIV au(t+1,5)] =0,
u(a,s) =0,
u(b,s) = —x(b,s),

fort € Ny41, and v(¢, s) = u(t,s) + x(z, s). By inspection, we see that x; () = 1is
a solution of

VIVLY(+ D] =0,
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for t € Ngqi. Also if x,(2) := (V,V1)(¢) we have that

V[Vix (i + 1] = V[V, Vo (1)]
= V[V, "IV ()]
= V[V, ¥V (1)
= (V1))
=0,

so x,(t) also is a solution V[V, y(¢t 4+ 1)] = 0. Since x;(¢) and x,(¢) are linearly
independent, by Theorem 3.160 the general solution is given by

yO) =ci+ (V")) =c + C2%’
and it follows that
u(t,s) = ci(s) + CZ(S)%'

The boundary condition u(a, s) = 0 implies that ¢ (s) = 0. The boundary condition
u(b, s) = —x(b, s) then yields

b — v
—x(b,s) = u(b,s) = cz(s)%.
From Example 3.163, we know that
b — v
b9 = (VDB = s,
and thus
_ -y
c(s) = _(b—a)V'

Hence the Green’s function is given by

_ )] Ta+we-a"
G(t.s) = (b_s)vv)((t—ac)l% (t—s)" <
T+ wG-ar Tty
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Remark 3.176. Note that in the continuous and integer-order discrete cases, the
Green’s function is symmetric. This is not necessarily true in the fractional case. By
way of counterexample, take a = 0, b = 5, and v = 0.5. Then one can show that

@™ _ 32

GQJ):MQJ)Z_Fasxﬂﬁ}'_%’

but

_ ) RO R
G@ﬁ_v@m__rga@ﬁ+ra@"7

Theorem 3.177. Assume a,b € R and b — a € N,. Then the Green’s function for
the BVP

VVix(t+1)=0, teN}
x(a) = x(b) =0,

satisfies the inequalities

(i) G(t,5) <0,
N b—a F(b—a+1)
(i1) G(ES)E—( 4 )(F(V+1)I‘(b—a+V))’

(b—a)’
(111) / |G(t S)|VS = m

fort e N’ and

b—a
i V,G(t,5)|Vs < ,
ov)/ VG9|Vs = 2

forte Na+1

Proof. First we show that (i) holds. Leta <t < s < b. Then

(t—a)'(b—s)" _ 0.

G(t,s) = u(t,s) = m =<

Now let a < s < t < b. Then G(t,5) = v(t,s), so we wish to show that v(z, s)
is nonpositive. First, we show that v(¢, s) is increasing. Taking the nabla difference
with respect to ¢ yields

t—a)’b—s)"  (t—s)" 1 (t-a'(b-9"  (—s5""
V{_r@+n@—@v+ru+m]__ Twb-ar | T
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This expression is nonnegative if and only if

(t—a) 'b—9)" _(=9""
TW(b-a® ~ T

Since t — s is positive, this is equivalent to

0 -y
b—ayt—s¥ '

By the definition of the rising function,

(t—a) (b —s)"
b—a)y(t— s)m

_[F(t—a+v—l)][F(b—s+v)]|: r'®-—a) :|[ L(t—s) i|

I't—a) r'wp-—-ys) re—a+v)[[TEt—s+v-1)

_|:F(t—a+v—1:||:F(t—s):|[F(b—a)][f‘(b—s+v):|
Fre—s+v-0||Tt—a)[[Th-s) ]| Tb—a+v)

_(t=s+v-—Dt—s+v)---(t—a+v-2)

B (t—s)t—s+1)---(t—p(a))

=95t D (b= pla)

b—s+v(b—s+v+1)---(b—a+v-—1)
_(t=s+v—1) (t—s—i—v)m(t—a—i—v—Z)
(=9 (@—s+1D) (t = p(a))

b=y (b=s+D)  b—pa)
b—s+v)yb—s+v+1) B—a+v-1)

<1

since each factor in the second to last expression is less than or equal to one. Next,
we note that v(z, s) at the right endpoint, t = b, satisfies

(b-a'b-s5)" (-5 _

V) = T o Do e T Tt D)

Thus, v(t, s) is nonpositive for a < s < t < b. Therefore, for ¢ € Ng, G(t,s) is
nonpositive.

Next we show that (ii) holds. Since we know that v(z, s) is always increasing for
a <s <t <band that for s = 1, v(t,s) = u(t,s), it suffices to show that

u(m)z_b;a( T(b—a+1) )

rv+1HIr'b—a+v)
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Leta <t <s <b. Then

N e e R e N
GU.s) =ult.s) =~ e = T+ Db—ay

Note that fore e Ny and0 < v < 1,

;_F(oc+v)<F(a+1)_ T
- T@ ~ T

So

(s—a)’(b—s)" s—a)'b—s)'
To+Db-a’ ~ T+ Db—a
(-9
v+ 1)(®b—a)P
(b= -al(b-a)
T 4T+ DL (b—a+v)
b-—a)T(b—a+1)
T AT+ DTG —a+v)
b—a rb—a+1)
4 (F(v + DI (b—a+ v))’

and hence (ii) holds.
Now we show property (iii) holds. Thus, we compute

b
/|G(l,s)|Vs
; b
Z/ |v(t,s)|Vs+[ |u(t, 5)|Vs

2/;

(t—a)’(b—5)"  (—5s)"
T+ Db-—ay  Td+v)

v+ D)b—a)y

([ =i - = " = b9
= / _[_ T+ Db-aF " TU+ u)}v”/t TotDb—ar "’

To+Db—a ), To+rn "’

_ (t—a)'(b—s—1)"TT
T Tw+2)(b-a)y

=[b (t—a)v(b—s)vV ! (t—s)vV

s=t

Sh—s— 1t
—a r'ev+2)

sS=a

b (4 NT(h T
vH/MW

271
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_ (=@’ —p@)"* (1 pa)’*’

'v+2)(b—a)y '(v+2)

_(t—a’b—p@)b—a)” (t—p@)t-a)’
F(v+2)(b—a)y’ T(v+2)
(t—a)
F( +2)
. t—a)y(bh—1
T Tw+2

o b —p(@) — (1= p(a))]

Hence,

t—a)b—1)
[ 1G(t,5)|Vs < r( )

- (2 —a)(b—
- 'v+2)
_ b —a)?

4T (v +2)

b
)

Finally, we will show that (iv) holds. First assume that b — a > 1. Taking the
difference with respect to f, we have

—(t—a)’(b—s)"  —v(t—a)"'(b—s)" -0

V) = VR I DG —ar T T+ D —ar

For 1 € N2 | we compute
b
/|V,G(t,s)|Vs
=1 b
=/ |V,G(t,s)|Vs+/ |V.G(t,s)| Vs
a t—1
=1 b
=/ |V,v(t,s)|Vs+/ [Viu(t, s)| Vs
a t—1
=1 (=) (b —s)" f—s)"
Y Y RLETIUGEE A EEA 1
; Frb+DH@—a® TO+1)

b T (= b—s)
i /t_l Vi [m D= a)V} Vs
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_ t—1 —(f _ a)i(b _ S)V t—1 (l‘ _ S)F
-/ V’[F(w 1)(b—a)v] vi+ [ V’[r(v+1>}vs
b (t—a)y’(b—s)7
" /,_1 Vi [F(v + Db a)V} Ve
_ = vt —a)" (b —s)”
_/a [ T+ )b—ay ]VS
R bl —a) (b —s)”
o [r(v+1)}V”/,_l[mwl)(b—a)v}VS
_ /"1 —ve—a) (=1 = pO)I | o
a L+ Db-a”
i Y (G VO
* / [ T+ 1) ] vs

blu(t—a) (b — 1) — p(s)]”
*/,_1[ 6+ Do ar ]vs

B —v(t—a)! -1 1!
T Tw+Db-a)P’ [v + l(b_s_ b ]s=a
. -1 . S s=t—1
* F(V + ]) |:T(t_s_ ) i|s=a
v(t—a)’ ! -1 1
r(v+1)(b—a)“[v+l(b_s_1) LH
v(t—a)ﬁ

= m [(b — )" — (b - P(a))VH]

—m[(f—H‘l—l)v—(f—P(a))V]
—v(t—a)ﬁ
T(v+2)(b—a)’
_ 2= o-0"" = p@)”  v(t—a) (b - p@)
T TOw+2)(b—a) Tw+1) C(v+2)

[(b A I A t)V]

Suppose ¢t = b. This would imply that

20(b —a)”~1(0) !
F'wv+2)(®b—a)’

b
[ |V:G(t,s)| Vs =
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(b—p@)”  v(b—a) (b - pla))

rv+1) 'ev+2)
_ v+ DG —p@)”  vb—a)" (b= pa)
N T'(v+2) C(v+2)

Fort = b and b — a = 2, this becomes

b _ 0D’ @)
/a IViG(t.9)| Vs = Tw+2) T(w+2)
W+ DIFw+1) wT(w+1)
T T(v+2 = TO+2)

—_—

RS
2
<
“v+1
b—a
v+1°

On the other hand, for t = b and b — a = 3, we have

’ v+ DEH v@EHE
/a VG IVs = 5 " T+ 2)
_w+DI'(v+2) 20T (v + 2)
T Tw+2  TOw+2rQ)
=1

b—a
< )
“v+1

Fort = b and b — a > 4, the result holds since

b
/ [V:G(t,s)| Vs

_ w4+ DG=p@) vb-a)"'(b-pa)

N T'(v+2) C(v+2)
_w+Dhb—a-2+v)---(2+v) B vI'(b — p(a) + v)(b— p(a))
- (b - p(a)) 2+ v)['(b—a)
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_ w+DHb—a—-24+v)---2+v) B vI'(b— p(a) +v)

I'(b— p(a)) L2+ v)I'(b - p(a))
_w+Dhb—a-2+v)---2+v) vib—a—2+v)---(2+V)
(b—a-2)! (b—a-2)!
_(b—a-2+v)---(2+V)
b—a-2)!
_(b=p@)b-—a-2+v)---(2+v)
a (b—p(a))!
_ (b=p@)b—p@)---Q)
B (b — p(a))!
_ 30— p(a)!(b - p(a)) _b=pla _b=-a
b — p(a))! 2 T+

So the result holds in general when ¢ = b. Now, assume ¢t < b. If t = a + 1, then
we have

b
/ |V.G(t,s)| Vs

21N = p(@) T+ (v + DOV (b —a)” — (1T (b — pla)’ T
N T +2)(b—a)’

_ 2T ()(b— p(@) (b — a)” —vI'(v)(b — p(a)) (b — a)”

N I'v+2)((b—a)y

_ 2T ()(b - p(a)) — v () (b — p(a))

N I'(v+2)

_ T+ DG-p@) _TO+ DG —p@)b—p@ _b-a

- C(v+2) W+ D41 v+l T u41

If t = a + 2, then

b
/ |V,G(t,s)| Vs

_ @Y —a=2" T+ (v + DADNG - @) v (b - pa)' !
N v +2)(®b—a)’
2T+ Db—a—2""" v+ DI ) (b-a)’
N T'(v+2)b—a)y’ T'(v+2)(b—a)’
_ VP + D= p@)" !
C(v+2)(b—a)P
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_ I+ DG -p@)b-a-2) = v—p@)
o+ Db —pla) +v) v+ 1
<2v(b—a—2)+1_v(b—p(a))
v+1 v+1
_2v(b—a-2) v+1 v(b-pa)
N v+1 v+l v+l
_v(b—a—2)+1<b—p(a)<b—a
v+1 T v+1 T v+1

If t = a + 3, then

b
/ |V,G(t,s)| Vs

_ 2@ Y -a=3)"+ 0+ DEHG—a)” —vE (b - pa)’ !
N 'v+2)(®b—ap
222 +v)I'(b—a—2+v)['(b—a)

= TOh—at I+ )T h—a=3 "D
T+ 26— p(@)

'v+2)ra
_vib—p@)b—a—-2)(b—a—3) _v(b—p(a)
= @ inb-a—2tn TOFD 2

It follows that
b
/|V,G(t,s)|Vs
5v(b—a—3)+v+1—m
_ 2vb—2va—6v+2v+2—vb+va+v
B 2
_v(b—a—3)+2
S ——
b—a—-3+2
PO —
- 2
_ b—p(a)
2
b—a
<

v4+1°
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Now suppose that t = a + k, where k € Ni_p @ Then

b
/ |V,G(t,s)| Vs

_ 2@ T o —a- 0+ DE=DT v®)" b~ p@)

b—-a)TW+2) 'v+2) 'v+2)
_wlkk+v-—DI'b—a—k+v+DHI'b—-a) @+ DI'(k—-1+v)
 T(RT(h—a+v) T +2)T(b—a—k) T(v+2)T(k—1)

B vI(k+v—1)(b—pla))
I'(v+2)I'(k)
22w +2)...(v+k=2)(b—pla)...(b—a—k)
k=D!b—pa+v)...b—a—(k—1)+v)
wv+1...(v+k=2)

(k—2)!
B v(v+2)...(v+k—=2)(b— p(a))
(k—1)!

Hence,

b
/ |V,G(t,s)| Vs

2O+ k=)ba—k)  (k=DE+D).. (¢ +k-2)

- (k—1)! (k—1)!

v +2)...(v+k=2)(b—p(a)

(k—1)!
v +2)...(v+k—2)2b—2a—2k—b+a+1)
(k—1)!
N k=—DWw+1...v+k=2)
(k—1)!
_vw+2)...(v+k=2)b—a+1-2)+k-DW+1)...(v+k—2)
(k— 1)

MA@ ...k=1D)b—a+1=-2k)+ *k—-1)2)3)...(k=1)

= (k—1)!

Tk—DIb—a+1-2k) + (k—1)(k—1)!
(k—1)!
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_(b—a+1-2042(0k—1)

2
_ b=pla@
2
b—a
< .
Tv+1
And this completes the proof. O

Example 3.178. Use an appropriate Green’s function to solve the BVP

VVOx(t+1) =1, te N1
x(0) = 0 = x(b),

where b € N,. By Theorem 3.175 we have that the Green’s function for the BVP

VVOIx(t+1) =0, teN,

3.117)
x(0) =0 = x(b),
is given by
u(t,s), 0<t<s<b,
G(t,
(t,9) { (t,s), 0<s b,
where
b )05,05
u(t,s) = ) , <t<s<b
'(1.5)69>
and

05,05 05
v(t,s) = — (=9 L —i-(t ) , 0<s<t<b.
['(1.5)b05 I'(1.5) -

Then the solution of the BVP (3.117) is given by
b
x(t) = / G(t,5)h(s)Vs
0

' b
= / v(t, s)h(s)Vs + / G(t.5)h(s)Vs
0 t

B t (b-— s)Oioi (t_S)OS b (b - S)TT
_/0|: rass | (5 }VH[ [ (. 5)190}%
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_ £0- b N (t )05
h F(l.S)bO-S/O(b DIV o T(L5) Tas

_ 03 T 05 [t — 1) — p(s)]*°
T S)bOS/[( D= plVs +/ [(1.5) T Tas

O35 (-1 —s"

_ (G Ve
CT(1.5)b05 1.5

— L5)15

s=0
1 5 15
1.5 (1.5)b5 15F(1 5)( b
_ 4=V gs 4 (t— 13
3/h05 NZa

fort € Ng.

3.25 Exercises

3.1. Assumef : N2 — R. Show that if Vf(f) = 0 for 7 € Na+1, then f(f) = C for
te Nb where C is a constant.

3.2. Assumef, g : N, — R. Prove the nabla quotient rule

(f (t)) 8OV () —f(H)Ve(@)
8() 8(0g(p(1)) ’

which is part (vi) of Theorem 3.1.
3.3. Prove that

g(l) # 0, re Na—i—ls

t—r+1) =+

3.4. Prove that the box plus addition, B, on R is commutative and associative (see
Theorem 3.8).

3.5. Show thatif p, g € R, then

13 t
PE o0 = p() q()’ fEN,.
—q(1)
3.6. Show thatif p € R, then
1 p
—Op=—"
I W
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3.7. Prove directly from the definition of the box dot multiplication, [, that if
p € R and n € Ny, then

np=pHpHp---Hp,

where the right-hand side of the above expression has n terms.

3.8. Show that the set of positively regressive constants R with the addition B is
an Abelian subgroup of R.

3.9. Prove part (vi) of Theorem 3.11 for the case a < s < r. Thatis, if p € R and
a < s <r,then

E,(t,S)E,(s,r) = Ep(t,r), teN,.

3.10. Assume p,q € R and s € N,. Prove the law of exponents (Theorem 3.11,
(vii))

E,(t,)E (t,s) = Eymq(t,s), t€N,.
3.11. Prove thatif p,q € R and
E,(t,a) = E (t,a), teN,,

then p(t) = q(t), t € Nyt 1.
3.12. Show thatifa, 8 € Randp € R, then

(@+p)Ep=(alp) BB Lp).
3.13. Show thatif p, —p € R, then
VSinh,(t,a) = p(t)Cosh(t,a), t€ N,.

3.14. Show by direct substitution that y(r) = (t — a)E.(t,a), r # 1, is a nontrivial
solution of the second order linear equation V2y(f) — 2rVy(t) + r*y(t) = 0 on N,,.

3.15. Prove part (iii) of Theorem 3.18. That is, if p # +i is a constant, then
Sinhi,(t,a) = i Sin,(t,a), t€N,.

3.16. Solve each of the following nabla difference equations:
() VZu(t) —4Vu(t) + 5u(f) =0, te€ Ng;
(i) V2u(t) —4Vu(t) +4u(t) =0, teNg;

(i) V2u(f) —4Vu() —5u(t) =0, teN,.
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3.17. Solve each of the following nabla linear difference equations:

(i) V2x(f) — 10Vx(t) + 25x(f) =0, t € Ny;
(i) V2x() —9x(r) =0, teNg;
(iii) V2x(r) +2Vx(f) + 5x(1) =0, te€N,.

3.18. Solve each of the following nabla linear difference equations:

(i) V2y(1) —2Vy(1) +2y(1) =0, €Ny
(i) V2y(t) —2Vy(f) + 10y(r) =0, € N,.

3.19. Prove the nabla version of L’Hoépital’s rule: If f, g : N, — R, and
lim f(f) = 0 = lim g(z)
—>00 —>00

and g(1)Vg(r) < 0 for large ¢, then

lim @ = lim —Vf(t)
100 g(t) 100 Vg(1)

provided lim;_, o % exists.

3.20. Use the integration formula

/a""ﬁVt = Lloz"“3 +C

to prove the integration formula
1
/Ep(t, a)Vt = —E,(t,a) + C.
p

3.21. Show thatif 1 + p(f) + g(r) # 0, for t € N,4,, then the general solution of
the linear homogeneous equation

V2y(1) + p() V(1) + q()y() = 0
is given by
(@) = ciyi(t) + caya(t), t €Ny,

where y; (¢), y,(f) are any two linearly independent solutions of (3.13) on N,,.

3.22. Assumef : N, x N,4; — R. Prove the Leibniz formula (3.23). That is,

t t—1
v (/ f(, r)Vr) = / Vif(t, )V +f(1,1),

fort € Na+l-
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3.23. Evaluate the nabla integral fot f(z)Vt, when
@) () =1(=2)", teNg;
(i) £(1) = Ha(p(r). 0)Es(1.0). 1€ No.

3.24. Use the variation of constants formula in either Corollary 3.52 or Theo-
rem 3.51 to solve each of the following IVPs.

@
V() =37, teN
y(0) =0, Vy0)=0
(i1)
V2y(r) = Sinhy(7,0), teN,
y©0) =-1, Vy0) =1
(iii)

V() =t—2, teN;
y(2)=0, Vy2)=0

3.25. Show that if u > 0, then
Hy(a+1l,a)=1=H ,(a+1,a).
3.26. Show if > 0 is not a positive integer, then
H,(t,a)=0, fort=a,a—1,a—-2,---.
Also show that if p is a positive integer, then
H,(t,a) =0, forreNg_ ..
3.27. Show thatiff : N,y — R and p > 0, then
V i fla+ 1) =fla+1).

3.28. Use Definition 3.61 to show that if & > 0is not an integer and C is a constant,
then

VHC = CH_,(t,a), teN,.
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On the other hand, if u = k is a positive integer, show that VAC = 0.

3.29. Use the definition (Definition 3.58) of the fractional sum to evaluate each of
the following integer sums.

(1) Va_ZCOSh3 (t,a), teNg
(i) V.3H(t,a), teN;
(iii) V5 2Sing(t,2), teN,.
3.30. For p # 0,1 a constant, show that each of the functions E, (¢, a), Cosh, (¢, a),
Sinh, (¢, a), Cos,(t, a), and Sin, (¢, a) is of exponential order ﬁ
3.31. Prove parts (iii) and (v) of Theorem 3.76.
3.32. Using the definition (Definition 3.77) of the nabla convolution product, show
that the nabla convolution product is commutative—i.e., for allf, g : N,y — R,

(@) = (g*)®), 1€Nayr.

Also show that the nabla convolution product is associative.

3.33. Solve each of the following IVPs using the nabla Laplace transform:
@

Vy(t) —4y(t) = 2E5(t,a), t€ Nyt

y(a) = =2
(i1)
Vy() =3y(t) =4, 1€ Nayy
yla) = -2
(iii)
V2y(0) + Vy(1) = 6y(1) = 0, 1€ Ny
y@a =3 ya+1)=0
(iv)

V2y(1) = 5Vy(t) + 6y(t) = E4(t.a), 1€ Nyys
vy =1, yla+1)=-1.

3.34. Prove part (iv) of Theorem 3.93
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3.35. Use Theorem 3.120 to solve each of the following IVPs:

@)
Voix(t) =3, rel
x(0) = m;

(i1)
1 T
Vi x(t) =13, teN
x(0) = 2;

(iii)
2
Vj*x(t) =t—a, tE€ Na+1

x(a) = 4.

3.36. Use Theorem 3.120 to solve each of the following IVPs:

(1)
Volx(n) =3, teN,
x(0) =2, Vx(0)=-1.
(ii)
5 T
Vix() =103, teN
x(0) =Vx(0) = 0.
(iif)
V2Ix(t) =t—a, teN,yq

x(a) = 0 = Vx(a).

(t— 1)ﬁ

3.37. Show that (see example 3.168)
t
sH ¢(t,s)Vs =
| sttste99s = =

for r € Np.
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3.38. Solve the following IVPs using Theorem 3.166:
®

VVx(t+1)=t—a, t€ Ny,
x(a) = Vx(a) = 0.

(ii)

VVIx(t+1) =1, teN,

*

x(0) =1, Vx(0)=2.

3.39. Use an appropriate Green’s function to solve the BVP

VVOix(t+1) =1, te Ny,

E3

x(0) = 0 = x(b),

where b € N,.
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