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Preface

The continuous fractional calculus has a long history within the broad area of
mathematical analysis. Indeed, it is nearly as old as the familiar integer-order
calculus. Since its inception, it can be traced back to a question L’Hôpital had asked
Leibniz in 1695 regarding the meaning of a one-half derivative; it was not until the
1800s that a firm theoretical foundation for the fractional calculus was provided.
Nowadays the fractional calculus is studied both for its theoretical interest as well
as its use in applications.

In spite of the existence of a substantial mathematical theory of the continuous
fractional calculus, there was really no substantive parallel development of a discrete
fractional calculus until very recently. Within the past five to seven years however,
there has been a surge of interest in developing a discrete fractional calculus. This
development has demonstrated that discrete fractional calculus has a number of
unexpected difficulties and technical complications.

In this text we provide the first comprehensive treatment of the discrete fractional
calculus with up-to-date references. We believe that students who are interested in
learning about discrete fractional calculus will find this text to be a useful starting
point. Moreover, experienced researchers, who wish to have an up-to-date reference
for both discrete fractional calculus and on many related topics of current interest,
will find this text instrumental.

Furthermore, we present this material in a particularly novel way since we
simultaneously treat the fractional- and integer-order difference calculus (on a
variety of time scales, including both the usual forward and backwards difference
operators). Thus, the spirit of this text is quite modern so that the reader can not only
acquire a solid foundation in the classical topics of the discrete calculus, but is also
introduced to the exciting recent developments that bring them to the frontiers of
the subject. This dual approach should be very useful for a variety of readers with a
diverse set of backgrounds and interests.

There are several ways in which this book could be used as part of a formal
course, and we have designed the text to be quite flexible and accommodating in its
use. For example, if one prefers, it is possible to use this text for an introductory
course in difference equations with the inclusion of discrete fractional calculus. In
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this case coverage of the first two chapters provide a basic introduction to the delta
calculus, including the fractional calculus on the time scale of integers. We also
recommend Sects. 7.2 and 7.3 if time permits.

On the other hand, if students have some basic knowledge of the difference
calculus or if two semesters are available, then usage of this text in a number of other
courses is possible. For example, for students with a background in elementary real
analysis, one can cover Chaps. 1 and 2 more quickly and then skip to Chaps. 6 and 7
which present some basic results for fractional boundary value problems (FBVPs).
If one is already familiar with the basics of the fractional calculus, then Chaps. 6
and 7 together with some of the current literature indicated in the references could
easily form the basis for a seminar in the current theory of FBVPs. By contrast, if
one has two semesters available, one can cover Chaps. 1–5 carefully, which will
provide a very thorough introduction to both the discrete fractional calculus as well
as the integer-order time scales calculus.

In short, there are a myriad of courses for which this text can serve either a
primary or secondary role. And, in particular, the text has been designed so that,
effectively, any chapter after Chaps. 1 and 2 can be freely omitted or included at
one’s discretion.

Regarding the specific content of the book, we note that in the first chapter of
this book we develop the basic delta discrete calculus using the accepted standard
notation. We define the forward difference operator � and develop the discrete
calculus for this operator. When one applies this difference operator to the power
functions, exponential function, trigonometric functions, and hyperbolic functions
one often gets very complicated functions and these formulas are quite often not
useful. In this book we define these functions in such a way that the formulas are
very nice, and they actually resemble the formulas that we know from the continuous
calculus. Many applications and interesting problems involving these functions are
given.

In Chap. 2 we first introduce the discrete delta fractional calculus and then study
the (delta) Laplace transform, which is a special case of the Laplace transform
studied in the book by Bohner and Peterson [62]; we do not assume the reader
has any knowledge of the material in that book. The delta Laplace transform is
equivalent under a transformation to the well-known Z-transform, but we prefer the
definition of the Laplace transform given here, which has the property that many
of the Laplace transform formulas are analogous to the Laplace transform formulas
in the continuous setting. We show how we can use the (delta) Laplace transform
to enable us to solve certain initial value problems for difference equations and
summation equations. We then develop several properties of this transform in the
fractional calculus setting, giving a precise treatment of domains of convergence
along the way. We then apply the Laplace transform method to solve fractional
initial value problems and fractional summation equations.

In Chap. 3 we develop the calculus for the discrete nabla difference operator
r (backwards difference operator). Once again, the appropriate power functions,
exponential function, trigonometric functions, and hyperbolic functions are defined
and their properties are derived. The nabla fractional calculus is also developed
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and a formula relating the nabla and delta fractional calculus is proved. In Chap. 4
the quantum calculus (or q-calculus) is given. The quantum calculus has important
applications to quantum theory and to combinatorics, and this chapter provides a
broad introduction to the basic theory of the q-calculus. Moreover, we also provide
a brief introduction to the concept of fractional q-derivatives and integrals. Finally,
in Chap. 5 we present the concept of a mixed time scale, which allows us to treat in
a unified way a number of individual time scales and associated operators, e.g., the
q-difference operator and the forward difference operator. This chapter will provide
the reader with an introduction to the basic theory of the area such as the exponential
and trigonometric functions on mixed time scales, the Laplace transform, and the
application of these concepts to solving initial and boundary value problems.

The final two chapters of this text, Chaps. 6 and 7, focus on the theory of FBVPs;
as such, these two chapters require more mathematical maturity than the first five.
In general, and, furthermore, we assume that the reader has the relevant familiarity
from the first half of the book. Thus, for example, in Chap. 7 we assume that the
reader is familiar with Chap. 2 regarding the fractional delta calculus. In particular,
in Chap. 6 the study of Green’s functions and boundary value problems for fractional
self-adjoint equations is given. Self-adjoint operators are an important classical area
of differential equations and in that setting are well known to have a very pleasing
mathematical theory. In Chap. 6 we present some of the known results in the discrete
fractional setting, and this presentation will amply demonstrate the number of open
questions that remain in this theory. Finally, in Chap. 7 the nonlocal structure of
the fractional difference operator (in the delta case only) is explored in a variety
of manifestations. For example, we discuss in what ways the sign of the fractional
difference (for various orders) affects the behavior of the functions to which the
difference is applied (e.g, monotonicity- and convexity-type results). As we show,
there are some substantial and surprising differences in the case of the fractional
delta operator. Furthermore, we examine how explicit nonlocal elements in discrete
fractional boundary value problems may interact with the implicit nonlocal structure
of the fractional difference operator, and we examine how to analyze such problems.
All in all, in this final chapter of the book we aim to give the reader a sense of the
tremendous complexity and mathematical richness that these nonlocal structures
induce.

Finally, we should like to point out that we have included a great many exercises
in this book, and the reader is encouraged to attempt as many of these as possible.
To maximize the flexibility of this text as well as its potential use in independent
study, we have included answers to many of the exercises.

We would like to thank Chris Ahrendt, Elvan Akin, Douglas Anderson, Ferhan
Atici, Tanner Auch, Pushp Awasthi, Martin Bohner, Abigail Brackins, Paul Eloe,
Lynn Erbe, Alex Estes, Scott Gensler, Julia St. Goar, Johnny Henderson, Wu
Hongwu, Michael Holm, Wei Hu, Areeba Ikram, Baoguo Jia, Raziye Mert, Gordon
Woodward, Rong Kun Zhuang, and the REU students Kevin Ahrendt, Lucas Castle,
David Clark, Lydia DeWolf, James St. Dizier, Nicky Gaswick, Jeff Hein, Jonathan
Lai, Liam Mazurowski, Sam McCarthy, Brent McKain, Kelsey Mitchell, Kaitlin
Speer, Kathryn Yochman, Emily Obudzinski, Matt Olsen, Timothy Rolling, Richard
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Ross, Sarah Stanley, Dominic Veconi, Cory Wright and Kathryn Yochman, for their
influence on this book. Finally, we would like to thank Ann Kostant and our Springer
Executive Editor, Elizabeth Loew, and her assistants for the accomplished handling
of our manuscript.

Omaha, NE, USA Christopher Goodrich
Lincoln, NE, USA Allan C. Peterson
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Chapter 1
Basic Difference Calculus

1.1 Introduction

In this section we introduce the basic delta calculus that will be useful for our later
results. Frequently, the functions we consider will be defined on a set of the form

Na WD fa; a C 1; a C 2; : : : g;

where a 2 R; or a set of the form

N
b
a WD fa; a C 1; a C 2; : : : ; bg;

where a; b 2 R and b � a is a positive integer.

Definition 1.1. Assume f W N
b
a ! R. If b > a, then we define the forward

difference operator � by

�f .t/ WD f .t C 1/ � f .t/

for t 2 N
b�1
a :

Note that in Definition 1.1 we make a slight abuse of notation by writing �f .t/,
as we shall do throughout this text. Technically, it would be more precise to write
.�f /.t/ to emphasize that �f is a function that is being evaluated at the point t.
However, as long as one understands this true meaning of the notation, then we see
no harm in using the simpler-to-read notation �f .t/.

Definition 1.2. We define the forward jump operator � on N
b�1
a by

�.t/ D t C 1:
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2 1 Basic Difference Calculus

It is often convenient to use the notation f � to denote the function defined by the
composition f ı �; that is

f � .t/ D .f ı �/.t/ D f .�.t// D f .t C 1/;

for t 2 N
b�1
a : Also, the operator �n, n D 1; 2; 3; : : : is defined recursively by

�nf .t/ D �.�n�1f .t// for t 2 N
b�n
a , where we assume the integer b � a � n:

Finally, �0 denotes the identity operator, i.e., �0f .t/ D f .t/:

In the following theorem we give several important properties of the forward
difference operator.

Theorem 1.3. Assume f ; g W Nb
a ! R and ˛; ˇ 2 R, then for t 2 N

b�1
a

(i) �˛ D 0I
(ii) �˛f .t/ D ˛�f .t/I

(iii) � Œf C g� .t/ D �f .t/C�g.t/I
(iv) �˛tCˇ D .˛ � 1/˛tCˇI
(v) � Œfg� .t/ D f .�.t//�g.t/C�f .t/g.t/I

(vi) �
�

f
g

�
.t/ D g.t/�f .t/�f .t/�g.t/

g.t/g.�.t// ;

where in (vi) we assume g.t/ ¤ 0; t 2 N
b
a:

Proof. We will just prove (iv) and the quotient rule (vi). Since

�˛tCˇ D ˛tC1Cˇ � ˛tCˇ D .˛ � 1/˛tCˇ

we have that (iv) holds. To see that the quotient rule (vi) holds, note that

�

�
f

g

�
.t/ D f .t C 1/

g.t C 1/
� f .t/

g.t/

D f .t C 1/g.t/ � f .t/g.t C 1/

g.t/g.t C 1/

D g.t/Œf .t C 1/ � f .t/� � f .t/Œg.t C 1/ � g.t/�

g.t/g.�.t//

D g.t/�f .t/ � f .t/�g.t/

g.t/g.�.t//
:

The proof of the product rule (v) is Exercise 1.2. ut
Due to the fact that (ii) and (iii) hold in Theorem 1.3 we say� is a linear operator.

Next, we define the falling function.

Definition 1.4 (Falling Function). For n a positive integer we define the falling
function, tn, read t to the n falling, by

tn WD t.t � 1/.t � 2/ � � � .t � n C 1/:

Also we let t0 WD 1:
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The falling function is defined so that the following power rule holds.

Theorem 1.5 (Power Rule). The power rule

�tn D ntn�1;

holds for n D 1; 2; 3; � � � .

Proof. Assume n is a positive integer and consider

�tn D .t C 1/n � tn

D .t C 1/t.t � 1/ � � � .t � n C 2/ � t.t � 1/.t � 2/ � � � .t � n C 1/

D t.t � 1/.t � 2/ � � � .t � n C 2/Œ.t C 1/ � .t � n C 1/�

D ntn�1:

This completes the proof. ut
A very important function in mathematics is the gamma function which is

defined as follows.

Definition 1.6 (Gamma Function). The gamma function is defined by

�.z/ D
Z 1

0

e�ttz�1dt

for those complex numbers z for which the real part of z is positive (it can be shown
that the above improper integral converges for all such z).

Integrating by parts we get that

�.z C 1/ D
Z 1

0

e�ttzdt

D Œ�e�ttz�t!1
t!0C �

Z 1

0

.�e�t/ztz�1dt

D z�.z/

when the real part of z is positive. We then use the very important formula

�.z C 1/ D z�.z/ (1.1)

to extend the domain of the gamma function to all complex numbers z ¤ 0,
�1;�2; � � � : Also note that since it can be shown that limz!0 j�.z/j D 1 it follows
from (1.1) that

lim
z!�n

j�.z/j D 1; n D 0; 1; 2; : : : ;
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which is a fundamental property of the gamma function which we will use from
time to time. Another well-known important consequence of (1.1) is that

�.n C 1/ D nŠ; n D 0; 1; 2; � � � :

Because of this, the gamma function is known as a generalization of the factorial
function.

Note that for n a positive integer

tn D t.t � 1/ � � � .t � n C 1/

D t.t � 1/ � � � .t � n C 1/�.t � n C 1/

�.t � n C 1/

D �.t C 1/

�.t � n C 1/
:

Motivated by this above calculation, we extend the domain of the falling function
in the following definition.

Definition 1.7. The (generalized) falling function is defined by

tr WD �.t C 1/

�.t � r C 1/

for those values of t and r such that the right-hand side of this equation makes sense.
We then extend this definition by making the common convention that tr D 0 when
t � r C 1 is a nonpositive integer and t C 1 is not a nonpositive integer. We also use
the convention given in Oldham and Spanier [152, equation (1.3.4)] that

�.�n/

�.�N/
D .�n � 1/N�n D .�1/N�n NŠ

nŠ
;

where n and N are nonnegative integers.

The motivation for the first convention in Definition 1.7 is that whenever t � r C 1

is a nonpositive integer and t C 1 is not a nonpositive integer, then

lim
s!t

sr D lim
s!t

�.s C 1/

�.s � r C 1/
D 0:

A similar remark motivates the second convention mentioned in Definition 1.7.
Whenever these conventions are used one should always verify the conclusion by
taking appropriate limits. This step will usually not be included in our calculations.

Next we state and prove the generalized power rules.
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Theorem 1.8 (Power Rules). The following (generalized) power rules

�.t C ˛/r D r.t C ˛/r�1; (1.2)

and

�.˛ � t/r D �r.˛ � �.t//r�1; (1.3)

hold, whenever the expressions in these two formulas are well defined.

Proof. Consider

�.t C ˛/r D .t C ˛ C 1/r � .t C ˛/r

D �.t C ˛ C 2/

�.t C ˛ C 2 � r/
� �.t C ˛ C 1/

�.t C ˛ C 1 � r/

D Œ.t C ˛ C 1/ � .t C ˛ C 1 � r/��.t C ˛ C 1/

�.t C ˛ C 2 � r/

D r
�.t C ˛ C 1/

�.t C ˛ � r C 2/

D r.t C ˛/r�1:

Hence (1.2) holds.
To see that (1.3) holds, consider

�.˛ � t/r D �

�
�.˛ � t C 1/

�.˛ � t C 1 � r/

�

D �.˛ � t/

�.˛ � t � r/
� �.˛ � t C 1/

�.˛ � t C 1 � r/

D Œ.˛ � t � r/ � .˛ � t/�
�.˛ � t/

�.˛ � t C 1 � r/

D �r
�.˛ � t/

�.˛ � t C 1 � r/

D �r.˛ � �.t//r�1:

Hence the power rule (1.3) holds. ut
Note that when n � k � 0 are integers, then the binomial coefficient satisfies

 
n

k

!
WD nŠ

.n � k/ŠkŠ
D n.n � 1/ � � � .n � k C 1/

kŠ
D nk

�.k C 1/
:

Motivated by this we next define the (generalized) binomial coefficient as follows.
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Definition 1.9. The (generalized) binomial coefficient
�t

r

�
is defined by

 
t

r

!
WD tr

�.r C 1/

for those values of t and r so that the right-hand side is well defined. Here we also
use the convention that if the denominator is undefined, but the numerator is defined,
then

�n
k

� D 0:

Theorem 1.10. The following hold

(i) �
�t

r

� D � t
r�1
�I

(ii) �
�rCt

t

� D �rCt
tC1
�I

(iii) ��.t/ D .t � 1/�.t/;
whenever these expressions make sense.

The proof of this theorem is left as an exercise (Exercise 1.13).

1.2 Delta Exponential Function

In this section we want to study the delta exponential function that plays a similar
role in the delta calculus on Na that the exponential function ept, p 2 R, does in the
continuous calculus. Keep in mind that when p is a constant, x.t/ D ept is the unique
solution of the initial value problem

x0 D px; x.0/ D 1:

For the delta exponential function we would like to consider functions in the set of
regressive functions defined by

R D fp W Na ! R such that 1C p.t/ ¤ 0 for t 2 Nag:

Some of the results that we give will be true if in the definition of regressive
functions we consider complex-valued functions instead of real-valued functions.
We leave it to the reader to note when this is true.

We then define the delta exponential function corresponding to a function p 2 R,
based at s 2 Na, to be the unique solution (why does p 2 R guarantee uniqueness?),
ep.t; s/; of the initial value problem

�x.t/ D p.t/x.t/; (1.4)

x.s/ D 1: (1.5)
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Theorem 1.11. Assume p 2 R and s 2 Na: Then

ep.t; s/ D
(Qt�1

�DsŒ1C p.�/�; t 2 NsQs�1
�DtŒ1C p.�/��1; t 2 N

s�1
a :

(1.6)

Here, by a standard convention on products, it is understood that for any function h
that

s�1Y
�Ds

h.�/ WD 1:

Proof. We solve the IVP (1.4), (1.5) to get a formula for ep.t; s/. Solving (1.4) for
x.t C 1/ we get

x.t C 1/ D Œ1C p.t/�x.t/; t 2 Na: (1.7)

Letting t D s in (1.7) and using the initial condition (1.5) we get

x.s C 1/ D Œ1C p.s/�x.s/ D Œ1C p.s/�:

Next, letting t D s C 1 in (1.7) we get

x.s C 2/ D Œ1C p.s C 1/�x.s C 1/ D Œ1C p.s/�Œ1C p.s C 1/�:

Proceeding in this fashion we get

ep.t; s/ D
t�1Y
�Ds

Œ1C p.�/� (1.8)

for t 2 NsC1. In the product in (1.8), it is understood that the index � takes on the
values s; s C1; s C2; : : : ; t �1: By convention ep.s; s/ D Qs�1

�DsŒ1C p.�/� D 1. Next
assume t 2 N

s�1
a . Solving (1.7) for x.t/ we get

x.t/ D 1

1C p.t/
x.t C 1/: (1.9)

Letting t D s � 1 in (1.9), we get

x.s � 1/ D 1

1C p.s � 1/x.s/ D 1

1C p.s � 1/ :
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Next, letting t D s � 2 in (1.9), we get

x.s � 2/ D 1

1C p.s � 2/x.s � 1/ D 1

Œ1C p.s � 2/� Œ1C p.s � 1/� :

Continuing in this manner we get

x.t/ D
s�1Y
�Dt

Œ1C p.�/��1; t 2 N
s�1
a :

ut
Theorem 1.11 gives us the following example.

Example 1.12. If p.t/ D p is a constant with p ¤ �1 (note this constant function is
in R), then from (1.6)

ep.t; s/ WD .1C p/t�s; t 2 Na:

Example 1.13. Find ep.t; 1/ if p.t/ D t � 1; t 2 N1: First note that 1C p.t/ D t ¤ 0

for t 2 N1, so p 2 R. From (1.6) we get

ep.t; 1/ D
t�1Y
�D1

� D .t � 1/Š

for t 2 N1.

It is easy to prove the following theorem.

Theorem 1.14. If p 2 R, then a general solution of

�y.t/ D p.t/y.t/; t 2 Na

is given by

y.t/ D cep.t; a/; t 2 Na;

where c is an arbitrary constant.

The following example is an interesting application using an exponential func-
tion.

Example 1.15. According to folklore, Peter Minuit in 1626 purchased Manhattan
Island for goods worth $24: If at the beginning of 1626 the $24 could have been
invested at an annual interest rate of 7% compounded quarterly, what would it have
been worth at the end of the year 2014: Let y.t/ be the value of the investment after
t quarters of a year. Then y.t/ satisfies the equation
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y.t C 1/ D y.t/C :07

4
y.t/

D y.t/C :0175 y.t/:

Thus y is a solution of the IVP

�y.t/ D :0175 y.t/; y.0/ D 24:

Using Theorem 1.14 and the initial condition we get that

y.t/ D 24 e:0175.t; 0/ D 24.1:0175/t:

It follows that

y.1552/ D 24.1:0175/1552 � 1:18 � 1013

(about 11.8 trillion dollars!).

We now develop some properties of the (delta) exponential function ep.t; a/. To
motivate our later results, consider, for p; q 2 R the product

ep.t; a/eq.t; a/ D
tY

�Da

.1C p.�//
tY

�Da

.1C q.�//

D
tY

�Da

Œ1C p.�/�Œ1C q.�/�

D
tY

�Da

Œ1C .p.t/C q.t/C p.t/q.t//�

D
tY

�Da

Œ1C .p ˚ q/.�/�; if .p ˚ q/.t/ WD p.t/C q.t/C p.t/q.t/

D ep˚q.t; a/:

Hence we get the law of exponents

ep.t; a/eq.t; a/ D ep˚q.t; a/

holds for p; q 2 R; provided

p ˚ q WD p C q C pq:
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Theorem 1.16. If we define the circle plus addition, ˚, on R by

p ˚ q WD p C q C pq;

then R, ˚ is an Abelian group.

Proof. First to see the closure property is satisfied, note that if p; q 2 R, then 1 C
p.t/ ¤ 0 and 1C q.t/ ¤ 0 for t 2 Na: It follows that

1C .p ˚ q/.t/ D 1C Œp.t/C q.t/C p.t/q.t/� D Œ1C p.t/�Œ1C q.t/� ¤ 0

for t 2 Na; and hence p ˚ q 2 R.
Next the zero function 0 2 R as 1C 0 D 1 ¤ 0: Also

0˚ p D 0C p C 0 � p D p; for all p 2 R;

so the zero function 0 is the additive identity element in R:
To show that every element in R has an additive inverse let p 2 R. Then set

q D �p
1Cp and note that since

1C q.t/ D 1C �p.t/

1C p.t/
D 1

1C p.t/
¤ 0

for t 2 Na, so q 2 R and we also have that

p ˚ q D p ˚ �p

1C p
D p C �p

1C p
C �p2

1C p
D p � p D 0

so q is the additive inverse of p. For p 2 R; we use the following notation for the
additive inverse of p:

�p WD �p

1C p
: (1.10)

The fact that the addition ˚ is associative and commutative is Exercise 1.19. ut
We can now define circle minus subtraction on R in the standard way that

subtraction is defined in terms of addition.

Definition 1.17. We define circle minus subtraction on R by

p � q WD p ˚ Œ�q�:

It can be shown (Exercise 1.18) that if p; q 2 R then

.p � q/.t/ D p.t/ � q.t/

1C q.t/
; t 2 Na:

The next theorem gives us several properties of the exponential function ep.t; s/;
based at s 2 Na.
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Theorem 1.18. Assume p; q 2 R and t; s; r 2 Na. Then

(i) e0.t; s/ D 1 and ep.t; t/ D 1I
(ii) ep.t; s/ ¤ 0; t 2 NaI

(iii) if 1C p > 0, then ep.t; s/ > 0I
(iv) �ep.t; s/ D p.t/ ep.t; s/I
(v) e�p .t; s/ D ep.�.t/; s/ D Œ1C p.t/�ep.t; s/I

(vi) ep.t; s/ep.s; r/ D ep.t; r/I
(viii) ep.t; s/eq.t; s/ D ep˚q.t; s/I
(viii) e�p.t; s/ D 1

ep.t;s/
I

(ix) ep.t;s/
eq.t;s/

D ep�q.t; s/I
(x) ep.t; s/ D 1

ep.s;t/
:

Proof. We prove many of these properties when s D a and leave it to the reader to
show that the same results hold for any s 2 Na. By the definition of the exponential
we have that (i) and (iv) hold. To see that (ii) holds when s D a note that since
p 2 R, 1C p.t/ ¤ 0 for t 2 Na and hence we have that

ep.t; a/ D
t�1Y
�Da

Œ1C p.�/� ¤ 0;

for t 2 Na. The proof of (iii) is similar to the proof of (ii).
Since

ep.�.t/; a/ D
�.t/�1Y
�Da

Œ1C p.�/�

D
tY

�Da

Œ1C p.�/�

D Œ1C p.t/�ep.t; a/;

we have that (v) holds when s D a.
We only show (vi) holds when t � s � r and leave the other cases to the reader.

In particular, we merely observe that

ep.t; s/ep.s; r/ D
t�1Y
�Ds

Œ1C p.�/�
s�1Y
�Dr

Œ1C p.�/�

D
t�1Y
�Dr

Œ1C p.�/�

D ep.t; r/:
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We proved (vii) holds when with s D a, earlier to motivate the definition of the
circle plus addition. To see that (viii) holds with s D a note that

e�p.t; a/ D
t�1Y
�Da

Œ1C .�p/.�/�

D
t�1Y
�Da

1

1C p.�/

D 1Qt�1
�DaŒ1C p.�/�

D 1

ep.t; a/
:

Since

ep.t; a/

eq.t; a/
D ep.t; a/e�q.t; a/ D ep˚Œ�q�.t; a/ D ep�q.t; a/;

we have (ix) holds when s D a. Since

ep.t; a/ D
t�1Y
sDa

Œ1C p.s/� D 1Qt�1
sDaŒ1C p.s/��1

D 1

ep.a; t/
;

we have that (x) holds. ut
Before we derive some other properties of the exponential function we give

another example where we use an exponential function.

Example 1.19. Assume initially that the number of bacteria in a culture is P0 and
after one hour the number of bacteria present is 3

2
P0. Find the number of bacteria,

P.t/, present after t hours. How long does it take for the number of bacteria to triple?
Experiments show that P.t/ satisfies the IVP (why is this plausible?)

�P.t/ D kP.t/; P.0/ D P0:

Solving this IVP we get from Theorem 1.14 that

P.t/ D P0ek.t; 0/ D P0.1C k/t:

Using the fact that P.1/ D 3
2
P0 we get 1C k D 3

2
. It follows that

P.t/ D P0

�
3

2

�t

; t 2 N0:
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Let t0 be the amount of time it takes for the population of the bacteria to triple. Then

P.t0/ D P0

�
3

2

�t0

D 3P0;

which implies that

t0 D ln.3/

ln.1:5/
� 2:71 hours:

The set of positively regressive functions, RC, is defined by

RC WD fp 2 R W 1C p.t/ > 0; t 2 Nag:

Note that by Theorem 1.18, part (iii), we have that if p 2 RC, then ep.t; a/ > 0 for
t 2 Na. It is easy to see (Exercise 1.20) that .RC;˚/ is a subgroup of .R;˚/.

We next define the circle dot scalar multiplication ˇ on RC:

Definition 1.20. The circle dot scalar multiplication, ˇ, is defined on RC by

˛ ˇ p D .1C p/˛ � 1:

Theorem 1.21. If ˛ 2 R and p 2 RC, then

e˛p .t; a/ D e˛ˇp.t; a/

for t 2 Na:

Proof. Consider

e˛p .t; a/ D
(

t�1Y
�Da

Œ1C p.�/�

) ˛

D
t�1Y
�Da

Œ1C p.�/�˛

D
t�1Y
�Da

f1C Œ.1C p.�//˛ � 1�g

D
t�1Y
�Da

Œ1C .˛ ˇ p/.�/�

D e˛ˇp.t; a/:

This completes the proof. ut
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The following lemma will be used in the proof of the next theorem.

Lemma 1.22. If p; q 2 R and

ep.t; a/ D eq.t; a/; t 2 Na;

then p D q.

Proof. Assume p; q 2 R and ep.t; a/ D eq.t; a/ for t 2 Na: It follows that

p.t/ ep.t; a/ D q.t/ eq.t; a/; t 2 Na:

Dividing by ep.t; a/ D eq.t; a/ we get that p D q: ut
Theorem 1.23. The set of positively regressive functions RC, with the addition ˚,
and the scalar multiplication ˇ is a vector space.

Proof. We just prove two of the properties of a vector space and leave the rest of
the proof (see Exercise 1.25) to the reader. First we show that the distributive law

.˛ C ˇ/ˇ p D .˛ ˇ p/˚ .ˇ ˇ p/

holds for ˛; ˇ 2 R, p 2 RC: This follows from

e.˛Cˇ/ˇp.t; a/ D e˛Cˇ
p .t; a/

D e˛p .t; a/e
ˇ
p .t; a/

D e˛ˇp.t; a/eˇˇp.t; a/

D e.˛ˇp/˚.ˇˇp/.t; a/

and an application of Lemma 1.22. Next we show that 1 ˇ p D p for all p 2 RC:
This follows from

e1ˇp.t; a/ D e1p.t; a/ D ep.t; a/

and an application of Lemma 1.22. ut

1.3 Delta Trigonometric Functions

In this section we introduce the delta hyperbolic sine and cosine functions, the delta
sine and delta cosine functions and give some of their properties. First, we define
the delta hyperbolic sine and cosine functions.

Definition 1.24. Assume ˙p 2 R. Then the delta hyperbolic sine and the delta
hyperbolic cosine functions are defined as follows:



1.3 Delta Trigonometric Functions 15

coshp.t; a/ WD ep.t; a/C e�p.t; a/

2
; sinhp.t; a/ WD ep.t; a/ � e�p.t; a/

2

for t 2 Na:

The following theorem gives various properties of the delta hyperbolic sine and
cosine functions.

Theorem 1.25. Assume ˙p 2 R. Then

(i) coshp.a; a/ D 1; sinhp.a; a/ D 0I
(ii) cosh2p.t; a/ � sinh2p.t; a/ D e�p2 .t; a/; t 2 NaI

(iii) � coshp.t; a/ D p.t/ sinhp.t; a/; t 2 NaI
(iv) � sinhp.t; a/ D p.t/ coshp.t; a/; t 2 NaI
(v) cosh�p.t; a/ D coshp.t; a/; t 2 NaI

(vi) sinh�p.t; a/ D � sinhp.t; a/; t 2 NaI
(vii) ep.t; a/ D coshp.t; a/C sinhp.t; a/; t 2 Na:

Proof. Clearly (i) holds. To see that (ii) holds note that

cosh2p.t; a/ � sinh2p.t; a/ D .ep.t; a/C e�p.t; a//2 � .ep.t; a/ � e�p.t; a//2

4

D ep.t; a/e�p.t; a/

D ep˚.�p/.t; a/

D e�p2 .t; a/:

To see that (iii) holds, consider

� coshp.t; a/ D 1

2
�ep.t; a/C 1

2
�e�p.t; a/

D 1

2
Œp.t/ep.t; a/ � p.t/e�p.t; a/�

D p.t/ sinhp.t; a/:

The proof of (iv) is similar. The proofs of (v) and (vi) are trivial. The formula in part
(vii) we call the (delta) hyperbolic Euler’s formula and its proof follows from the
definitions of the hyperbolic sine and hyperbolic cosine functions. ut

We next define the delta sine and cosine functions.

Definition 1.26. For ˙ip 2 R, we define the delta sine function and delta cosine
function as follows:

cosp.t; a/ D eip.t; a/C e�ip.t; a/

2
; sinp.t; a/ D eip.t; a/ � e�ip.t; a/

2i

for t 2 Na:
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The following theorem gives some relationships between the delta trigonometric
functions and the delta hyperbolic trigonometric functions.

Theorem 1.27. Assume ˙p 2 R. Then

(i) sinip.t; a/ D i sinhp.t; a/I
(ii) cosip.t; a/ D coshp.t; a/I

(iii) sinhip.t; a/ D i sinp.t; a/I
(iv) coship.t; a/ D cosp.t; a/;

for t 2 Na:

Proof. To see that (i) holds note that

sinip.t; a/ D 1

2i
Œei2p.t; a/ � e�i2p.t; a/�

D i
ep.t; a/ � e�p.t; a/

2

D i sinhp.t; a/:

The proofs of (ii)–(iv) are similar. ut
The following theorem gives various properties of the delta sine and cosine

functions.

Theorem 1.28. Assume ˙ip 2 R. Then

(i) cosp.a; a/ D 1; sinp.a; a/ D 0I
(ii) cos2p.t; a/C sin2p.t; a/ D ep2 .t; a/; t 2 NaI

(iii) � cosp.t; a/ D �p.t/ sinp.t; a/; t 2 NaI
(iv) � sinp.t; a/ D p.t/ cosp.t; a/; t 2 NaI
(v) cos�p.t; a/ D cosp.t; a/; t 2 NaI

(vi) sin�p.t; a/ D � sinp.t; a/; t 2 NaI
(vii) eip.t; a/ D cosp.t; a/C i sinp.t; a/; t 2 Na:

Proof. The proof of this theorem follows from Theorems 1.25 and 1.27. ut
We call the formula

eip.t; a/ D cosp.t; a/C i sinp.t; a/; t 2 Na (1.11)

in part (vii) of Theorem 1.28 the (delta) Euler’s formula.

1.4 Second Order Linear Equations with Constant
Coefficients

The nonhomogeneous second order linear difference equation is given by

�2y.t/C p.t/�y.t/C q.t/y.t/ D f .t/; t 2 Na; (1.12)
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where we assume that p.t/ ¤ q.t/C1, for t 2 Na: In this section we will see that we
can easily solve the corresponding second order linear homogeneous equation with
constant coefficients

�2y.t/C p�y.t/C qy.t/ D 0; t 2 Na; (1.13)

where we assume the constants p; q 2 R satisfy p ¤ 1C q.
First we prove an existence-uniqueness theorem for solutions of initial value

problems (IVPs) for (1.12).

Theorem 1.29. Assume that p; q; f W Na ! R, p.t/ ¤ 1C q.t/, t 2 Na, A;B 2 R;

and t0 2 Na: Then the IVP

�2y.t/C p.t/�y.t/C q.t/y.t/ D f .t/; t 2 Na; y.t0/ D A; y.t0 C 1/ D B;
(1.14)

has a unique solution y.t/ on Na:

Proof. Expanding equation (1.12) out we have first solving for y.t C 2/ and then
solving for y.t/ that

y.t C 2/ D Œ2 � p.t/�y.t C 1/ � Œ1 � p.t/C q.t/�y.t/C f .t/ (1.15)

and, since p.t/ ¤ 1C q.t/, t 2 Na,

y.t/ D 2 � p.t/

1 � p.t/C q.t/
y.t C 1/ � 1

1 � p.t/C q.t/
y.t C 2/ � f .t/

1 � p.t/C q.t/
:

(1.16)

If we let t D t0 in (1.15), then equation (1.12) holds at t D t0 iff

y.t0 C 2/ D Œ2 � p.t0/�B � Œ1 � p.t0/C q.t0/�A C f .t0/:

Hence, the solution of the IVP (1.14) is uniquely determined at t0 C 2. But using
the equation (1.15) evaluated at t D t0 C 1, we have that the unique values of the
solution at y.t0 C 1/ and y.t0 C 2/ uniquely determines the value of the solution at
t0C3. By induction we get that the solution of the IVP (1.14) is uniquely determined
on Nt0 . On the other hand, if t0 > a, then using equation (1.16) with t D t0 � 1, we
have that

y.t0 � 1/ D 1

1 � p.t0 � 1/C q.t0 � 1/
�
Œ2 � p.t0 � 1/�A � B � f .t0 � 1/

	
:

Hence the solution of the IVP (1.14) is uniquely determined at t0 � 1. Proceeding in
this manner we have by mathematical induction that the solution of the IVP (1.14)
is uniquely determined on N

t0
a : Hence the result follows. ut
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Remark 1.30. It follows from Theorem 1.29, that if p.t/ ¤ 1 C q.t/, t 2 Na, then
the general solution of the linear homogeneous equation

�2y.t/C p.t/�y.t/C q.t/y.t/ D 0

is given by

y.t/ D c1y1.t/C c2y2.t/; t 2 Na;

where y1.t/, y2.t/ are any two linearly independent solutions of (1.13) on Na:

We now show we can solve the second order linear homogeneous equation (1.13)
with constant coefficients.

Theorem 1.31 (Distinct Roots). Assume p ¤ 1 C q and �1 ¤ �2 (possibly com-
plex) are solutions (called the characteristic values of (1.13)) of the characteristic
equation

�2 C p�C q D 0:

Then

y.t/ D c1e�1.t; a/C c2e�2.t; a/

is a general solution of (1.13).

Proof. Assume �1; �2 are characteristic values of (1.13). Then the characteristic
equation of (1.13) is given by

�2 � .�1 C �2/�C �1�2 D 0:

It follows that p D �.�1 C �2/ and q D �1�2. Hence q C 1 � p D .�1 C 1/

.�2 C 1/ ¤ 0, since p ¤ q C 1. Hence, we have that �1; �2 ¤ �1 and so e�i.t; a/,
i D 1; 2; are well defined. Since

�2e�i.t; a/C p �e�i.t; a/C q e�i.t; a/ D Œ�2i C p�i C q�e�i.t; a/ D 0;

we have that e�i.t; a/, i D 1; 2; are solutions of (1.13). Since these two solutions are
linearly independent on Na, we have that

y.t/ D c1e�1.t; a/C c2e�2.t; a/

is a general solution of (1.13) on Na. ut
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Example 1.32 (Fibonacci Numbers). The Fibonacci numbers F.t/, t D 1; 2; 3; � � �
are defined recursively by

F.t C 2/ D F.t/C F.t C 1/; t 2 N1;

F.1/ D 1 D F.2/:

The Fibonacci sequence is given by

1; 1; 2; 3; 5; 8; 13; 21; 34; � � � :

Fibonacci used this to model the population of pairs of rabbits under certain
assumptions. To find F.t/, note that F.t/ is the solution of the IVP

�2F.t/C�F.t/ � F.t/ D 0; t 2 N1;

F.1/ D 1 D F.2/:

To solve this IVP we first get that the characteristic equation is

�2 C � � 1 D 0:

Hence, the characteristic values are

�1 D �1C p
5

2
; �2 D �1 � p

5

2
:

It follows that

F.t/ D c1e�1.t; 1/C c2e�2.t; 1/

D c1

 
1C p

5

2

!t�1
C c2

 
1 � p

5

2

!t�1
: (1.17)

Applying the initial conditions we get the system

F.1/ D 1 D c1 C c2

F.2/ D 1 D c1

 
1C p

5

2

!
C c2

 
1 � p

5

2

!
:

Solving this system for c1 and c2, using (1.17) and simplifying we get

F.t/ D 1p
5

 
1C p

5

2

!t

� 1p
5

 
1 � p

5

2

!t

;
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for t 2 N1: Note F.t/ is the integer nearest to 1p
5

�
1Cp

5
2

�t
. It follows that F.20/ is

the integer nearest

1p
5

 
1C p

5

2

!20
� 6765:00003;

which gives us that F.20/ D 6765:

Usually, we want to find all real-valued solutions of (1.13). When a characteristic
root �1 is complex, e�1.t; a/ is a complex-valued solution. In the next theorem we
show how to use this complex-valued solution to find two linearly independent real-
valued solutions on Na.

Theorem 1.33 (Complex Roots). If the characteristic values are � D ˛ ˙ iˇ,
ˇ > 0 and ˛ ¤ �1, then a general solution of (1.13) is given by

y.t/ D c1e˛.t; a/ cos� .t; a/C c2e˛.t; a/ sin� .t; a/;

where � WD ˇ

1C˛ :

Proof. First we show that if ˛ ˙ iˇ, ˇ > 0 are complex characteristic values
of (1.13), then the condition p ¤ q C 1 is satisfied. In this case the characteristic
equation for (1.13) is given by

�2 � 2˛�C ˛2 C ˇ2 D 0:

It follows that p D �2˛ and q D ˛2Cˇ2. Therefore, 1Cq�p D .˛C1/2Cˇ2 ¤ 0:

This implies that p ¤ q C 1. By Theorem 1.31, we have that y.t/ D e˛Ciˇ.t; a/ is a
complex-valued solution of (1.13). Using

˛ C iˇ D ˛ ˚ i
ˇ

1C ˛
D ˛ ˚ i�;

we get that

y.t/ D e˛Ciˇ.t; a/ D e˛˚i� .t; a/ D e˛.t; a/ei� .t; a/:

It follows from the (delta) Euler’s formula (1.11) that

y.t/ D e˛.t; a/ei� .t; a/

D e˛.t; a/Œcos� .t; a/C i sin� .t; a/�

D y1.t/C iy2.t/
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is a solution of (1.13). But since p and q are real, we have that the real part,
y1.t/ D e˛.t; a/ cos� .t; a/, and the imaginary part, y2.t/ D e˛.t; a/ sin� .t; a/, of
y.t/ are solutions of (1.13). Since p ¤ qC1 and y1.t/, y2.t/ are linearly independent
on Na, we get from Remark 1.30 that

y.t/ D c1e˛.t; a/ cos� .t; a/C c2e˛.t; a/ sin� .t; a/

is a general solution of (1.13) on Na. ut
Example 1.34. Solve the difference equation

�2y.t/ � 2�y.t/C 2y.t/ D 0; t 2 Na: (1.18)

The characteristic equation is

�2 � 2�C 2 D 0

and so the characteristic values are � D 1˙ i. Hence using Theorem 1.33, we get

y.t/ D c1e1.t; a/ cos 1
2
.t; a/C c2e1.t; a/ sin 1

2
.t; a/

is a general solution of (1.18) on Na.

The previous theorem (Theorem 1.33) excluded the case when the characteristic
values of (1.13) are �1˙ iˇ, where ˇ > 0. The next theorem considers this case.

Theorem 1.35. If the characteristic values of (1.13) are �1 ˙ iˇ, where ˇ > 0,
then a general solution of (1.13) is given by

y.t/ D c1ˇ
t�a cos

h	
2
.t � a/

i
C c2ˇ

t�a sin
h	
2
.t � a/

i
;

t 2 Na:

Proof. First note that by the first part of the proof of Theorem 1.33 we have that
p ¤ q C 1: Since �1 C iˇ is a characteristic root of (1.13), we have that y.t/ D
e�1Ciˇ.t; a/ is a complex-valued solution of (1.13). Now

y.t/ D e�1Ciˇ.t; a/

D .iˇ/t�a

D
�
ˇei 	2

�t�a

D ˇt�a cos
h	
2
.t � a/

i
C iˇt�a sin

h	
2
.t � a/

i
:
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It follows that

y1.t/ D ˇt�a cos
h	
2
.t � a/

i
; y2.t/ D ˇt�a sin

h	
2
.t � a/

i

are solutions of (1.13). Since these solutions are linearly independent on Na, we
have that

y.t/ D c1ˇ
t�a cos

h	
2
.t � a/

i
C c2ˇ

t�a sin
h	
2
.t � a/

i
;

is a general solution of (1.13). ut
Example 1.36. Solve the delta linear difference equation

�2y.t/C 2�y.t/C 5y.t/ D 0; t 2 N0:

The characteristic equation is �2 C 2� C 5 D 0, so the characteristic values are
� D �1˙ 2i. It follows from Theorem 1.35 that

y.t/ D c12
t cos

�	
2

t
�

C c22
t sin

�	
2

t
�
;

is a general solution on N0:

Theorem 1.37 (Double Root). Assume p ¤ 1 C q, and �1 D �2 D r is a double
root of the characteristic equation. Then

y.t/ D c1er.t; a/C c2.t � a/er.t; a/

is a general solution of (1.13).

Proof. Since �1 D r is a characteristic value, we have y1.t/ D er.t; a/ is a solution
of (1.13). Since �1 D �2 D r, we have that the characteristic equation for (1.13) is

.� � r/2 D �2 � 2r�C r2 D 0:

Hence, in this case, (1.13) has the form

�2y.t/ � 2r�y.t/C r2y.t/ D 0:

From Exercise 1.32, we have that y2.t/ D .t�a/er.t; a/ is a second solution of (1.13)
on Na: Since these two solutions are linearly independent on Na, we have that

y.t/ D c1er.t; a/C c2.t � a/er.t; a/

is a general solution of (1.13). ut
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Example 1.38. Evaluate the t by t determinant of the following tridiagonal matrix

M.t/ WD

2
6666666666664

4 4 0 0 � � � 0 0 0
1 4 4 0 � � � 0 0 0
0 1 4 4 � � � 0 0 0
0 0 1 4 � � � 0 0 0
:::
:::
:::
:::
: : :

:::
:::
:::

0 0 0 0 � � � 4 4 0
0 0 0 0 � � � 1 4 4
0 0 0 0 � � � 0 1 4

3
7777777777775

for t 2 N1: For example, we have that

M.1/ WD 

4
�
; M.2/ WD

�
4 4

1 4

	
; and M.3/ WD

2
4
4 4 0

1 4 4

0 1 4

3
5 :

Let D.t/ be the value of the determinant of M.t/. Expanding the t C 2 by t C 2

determinant D.t C 2/ along its first row we get

D.t C 2/ D 4D.t C 1/ � 4D.t/; t 2 N1:

Note that D.1/ D 4 and D.2/ D 12. It follows that if we define D.0/ D 1, then we
have

D.t C 2/ � 4D.t C 1/C 4D.t/ D 0; t 2 N0:

It then follows that D.t/ is the solution of the IVP

�2D.t/ � 2�D.t/C D.t/ D 0; t 2 N0

D.0/ D 1; D.1/ D 4:

The characteristic equation is �2 � 2� C 1 D 0, and thus �1 D �2 D 1 are the
characteristic values. Hence by Theorem 1.37,

D.t/ D c1e1.t; 0/C c2.t � 0/e1.t; 0/
D c12

t C c2t2
t:

Using the initial conditions we get the system of equations

D.0/ D 1 D c1

D.1/ D 4 D 2c1 C 2c2:



24 1 Basic Difference Calculus

Solving this system we get that c1 D c2 D 1 and hence

D.t/ D 2t C t2t:

The reader should check this answer for a few values of t.

Example 1.39. Find the determinant D.t/; t 2 N1 of the t � t matrix that has zeros
down the diagonal, 2’s down the superdiagonal, 8’s down the subdiagonal. This
leads to solving the IVP

D.t C 2/C 16D.t/ D 0; t 2 N0

D.0/ D 1; D.1/ D 0:

If we tried to use Theorem 1.33 to solve the difference equation D.tC2/C16D.t/ D
0 we would write the equation D.t C 2/C 16D.t/ D 0 in the form

�2D.t/C 2�D.t/C 17D.t/ D 0:

The characteristic values for this equation are �1˙ 4i. But Theorem 1.33 does not
apply since the real part of �1 ˙ 4i is �1. Applying Theorem 1.44 we get that a
general solution of D.t C 2/C 16D.t/ D 0 is given by

D.t/ D c14
t cos

�	
2

t
�

C c24
t cos

�	
2

t
�
; t 2 N0:

Applying the initial conditions we get

D.t/ D 4t cos
�	
2

t
�
;

for t 2 N1:

Sometimes it is convenient to know how to solve the second order linear
homogeneous difference equation when it is of the form

y.t C 2/C cy.t C 1/C dy.t/ D 0; (1.19)

where c; d 2 R and d ¤ 0 without first writing (1.19) (as we did in Examples 1.32
and 1.38) in the form (1.13). Exercise 1.36 shows that the difference equation 1.13
with p ¤ 1C q is equivalent to the difference equation 1.19 with d ¤ 0: Similar to
the proof of Theorem 1.31 we can prove (Exercise 1.29) the theorem.

Theorem 1.40 (Distinct Roots). Assume d ¤ 0 and r1; r2 are distinct roots of the
equation

r2 C cr C d D 0:
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Then

y.t/ D c1r
t
1 C c2r

t
2

is a general solution of (1.19).

Example 1.41. Solve the difference equation

u.t C 2/ � 5u.t C 1/C 6u.t/ D 0: (1.20)

Solving r2 � 5r C 6 D .r � 2/.r � 3/ D 0, we get r1 D 2, r2 D 3. It follows from
Theorem 1.40 that

u.t/ D c12
t C c23

t

is a general solution of (1.20).

Similar to the proof of Theorem 1.37 one could prove (see Exercise 1.30) the
following theorem.

Theorem 1.42 (Double Root). Assume d ¤ 0 and r is a double root of r2 C cr C
d D 0: Then

y.t/ D c1r
t C c2tr

t

is a general solution of (1.19).

Example 1.43. Solve the difference equation

u.t C 2/C 4u.t C 1/C 4u.t/ D 0: (1.21)

Solving the equation r2 C 4r C 4 D .r C 2/2 D 0, we get r1 D r2 D �2. It follows
from Theorem 1.42 that

u.t/ D c1.�2/t C c2t.�2/t

is a general solution of (1.21).

Theorem 1.44 (Complex Roots). Assume d ¤ 0 and ˛ ˙ iˇ, ˇ > 0 are complex
roots of r2 C cr C d D 0: Then

y.t/ D c1r
t cos.
 t/C c2r

t sin.
 t/;

where r D p
˛2 C ˇ2 and 
 D Tan�1 ˇ

˛
if ˛ ¤ 0 and 
 D 	

2
if ˛ D 0 is a general

solution of (1.19).
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Proof. Since r D ˛ C iˇ, ˇ > 0 is a solution of r2 C cr C d D 0; we have by
Theorem 1.40 that y.t/ D .˛ C iˇ/t is a (complex-valued) solution of (1.19). Let

 WD Tan�1 ˇ

˛
if ˛ ¤ 0 and let 
 D 	

2
if ˛ D 0: Then if r WD p

˛2 C ˇ2 we have that

y.t/ D .˛ C iˇ/t

D �
rei


�t

D rtei
 t

D rt cos.
 t/C irt sin.
 t/:

Since the real and imaginary parts of y.t/ are linearly independent solutions
of (1.19), we have that

y.t/ D c1r
t cos.
 t/C c2r

t sin.
 t/

is a general solution of (1.19). ut
Next we briefly discuss the method of annihilators for solving certain nonhomo-

geneous difference equations. For an arbitrary function f W Na ! R we define the
operator E by

Ef .t/ D f .t C 1/; t 2 Na:

Then En WD E � En�1 for n 2 N1: We say the polynomial in E;

p.E/ WD En C a1E
n�1 C � � � C anI;

annihilates f W Na ! R provided p.E/f .t/ D 0 for t 2 Na: Similarly we say the
polynomial in the operator �,

p.�/ WD �n C a1�
n�1 C � � � C anI;

annihilates f W Na ! R provided p.�/f .t/ D 0

Example 1.45. Here are some simple annihilators for various functions:

(i) .E � rI/rt D 0I
(ii) .� � rI/er.t; a/ D 0I

(iii) .E � rI/2trt D 0I
(iv) .�2 � p2/ coshp.t; a/ D 0I
(v) .�2 � p2/ sinhp.t; a/ D 0I

(vi) .�2 C p2/ coshp.t; a/ D 0I
(vii) .�2 C p2/ sinhp.t; a/ D 0I

(viii) �n.t � a/k D 0; for integers n � k � 0:
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We now give some simple examples where we use the method of annihilators to
solve various difference equations.

Example 1.46. Solve the first order linear equation

y.t C 1/ � 3y.t/ D 5t; t 2 Z: (1.22)

First we write this equation in the form

.E � 3I/y.t/ D 5t:

Since E � 5I annihilates the right-hand side, we multiply each side by the operator
E � 5I to get

.E � 5I/.E � 3I/y.t/ D 0; t 2 Z:

It follows that a solution of (1.22) must be of the form

y.t/ D c13
t C c25

t; t 2 Z:

Substituting this into equation (1.22) we get

c13
tC1 C c25

tC1 � c13
tC1 � 3c25

t D 5t; t 2 Z:

Hence we see that we must have c2 D 1
2
. It follows that

y.t/ D c13
t C 1

2
� 5t; t 2 Z

is a general solution of (1.22).

Example 1.47. Solve the second order linear nonhomogeneous difference equation

y.t C 2/ � 6y.t C 1/C 8y.t/ D 16 � 4t; t 2 N0: (1.23)

by the annihilator method. The difference equation (1.23) can be written in the form

.E � 2I/.E � 4I/y.t/ D 16 � 4t; t 2 N0:

Multiplying both sides by the operator E � 4I we get that

.E � 2I/.E � 4I/2y.t/ D 0:

Hence y.t/ must have the form

y.t/ D c12
t C c24

t C c3t4
t; t 2 N0:
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Substituting this into the difference equation (1.23) we get after simplification that
8c3 D 16. Hence c3 D 2 and we have that

y.t/ D c12
t C c24

t C 2t4t; t 2 N0

is a general solution of (1.23).

Also we can use the method of annihilators to solve certain nonhomogeneous
equations of the form

�2y.t/C p�y.t/C qy.t/ D f .t/;

where p; q are real constants with p ¤ 1C q, as is shown in the following example.

Example 1.48. Use the method of annihilators to solve the nonhomogeneous equa-
tion

�2y.t/ � 3�y.t/C 2y.t/ D 4t�a; t 2 Na: (1.24)

The equation (1.24) can be written in the form

.� � I/.� � 2I/y.t/ D e3.t; a/:

Multiplying both sides by the operator .� � 3I/ we get that solutions of (1.24) are
solutions of

.� � I/.� � 2I/.� � 3I/y.t/ D 0:

The values of the characteristic equation .� � 1/.� � 2/.� � 3/ D 0 are �1 D 1;

�2 D 2; �3 D 3. Hence all solutions of (1.24) are of the form

y.t/ D c1e1.t; a/C c2e2.t; a/C c3e3.t; a/:

Substituting this into the equation we get that we must have 2c3e3.t; a/ D e3.t; a/
which gives us that c3 D 2. Hence the general solution of (1.24) is given by

y.t/ D c1e1.t; a/C c2e2.t; a/C 2e3.t; a/; t 2 Na:

1.5 The Delta Integral

First we define the delta definite integral.

Definition 1.49. Assume f W Na ! R and c 	 d are in Na, then

Z d

c
f .t/�t WD

dX
tDc

f .t/; (1.25)
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where by convention
Pc�k

tDc f .t/ WD 0; whenever k 2 N1: We will define this to be
the case even when f .t/ is not defined for some (or all) values t 2 Nc�k: In the sum
in (1.25) it is understood that the index t takes on the values c; cC1; cC2; : : : ; d �1
when d > c.

Note that the value of the integral
R d

c f .t/�t does not depend on the value f .d/: The
following theorem gives some properties of this delta integral.

Theorem 1.50. Assume f ; g W Na ! R, b; c; d 2 Na, b 	 c 	 d, and ˛ 2 R.
Then

(i)
R c

b ˛f .t/�t D ˛
R c

b f .t/�tI
(ii)

R c
b .f .t/C g.t//�t D R c

b f .t/�t C R c
b g.t/�tI

(iii)
R b

b f .t/�t D 0I
(iv)

R d
b f .t/�t D R c

b f .t/�t C R d
c f .t/�tI

(v) j R c
b f .t/�tj 	 R c

b jf .t/j�tI
(vi) if F.t/ WD R t

b f .s/�s, for t 2 N
c
b; then �F.t/ D f .t/; t 2 N

c�1
b I

(vii) if f .t/ � g.t/; for t 2 N
c�1
b ; then

R c
b f .t/�t � R c

b g.t/�t:

Proof. Most of these properties of the integral hold since the corresponding
properties for sums hold. We leave the proof of this theorem to the reader. ut
Definition 1.51. Assume f W Nb

a ! R. We say F is an antidifference of f on N
b
a

provided

�F.t/ D f .t/; t 2 N
b�1
a :

Since �
�
1
2
3t
� D 3t, t 2 Na, we have that F.t/ D 1

2
3t is an antidifference of

f .t/ D 3t on Na:

Theorem 1.52. If f W N
b
a ! R and G.t/ is an antidifference of f .t/ on N

b
a, then

F.t/ D G.t/ C C, where C is an arbitrary constant, is a general antidifference of
f .t/ on N

b
a.

Proof. Assume G.t/ is an antidifference of f .t/ on N
b
a. Let F.t/ WD G.t/CC, t 2 N

b
a,

where C is a constant. Then

�F.t/ D �G.t/ D f .t/; t 2 N
b
a;

and so F.t/ is an antidifference of f .t/ on N
b
a. Next assume F.t/ is an antidifference

of f .t/ on N
b
a. Then

�ŒF.t/ � G.t/� D �F.t/ ��G.t/ D f .t/ � f .t/ D 0

for t 2 N
b�1
a : This implies (Exercise 1.1) F.t/ � G.t/ D C, for t 2 N

b
a, where C is a

constant. Hence F.t/ WD G.t/C C; for t 2 N
b
a: ut
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Example 1.53. Find the number of regions, R.n/, the plane is divided into by n
lines, where no two lines are parallel and no three lines intersect at the same point.
Note that

R.1/ D 2; R.2/ D 4; R.3/ D 7; R.4/ D 11:

To find R.n/ for all n 2 N1, first convince yourself that for any n 2 N1,

R.n C 1/ D R.n/C n C 1:

It follows that

�R.n/ D n C 1 D .n C 1/1:

Since 1
2
.n C 1/2 is an antidifference of .n C 1/1, we have by Theorem 1.52 that

R.n/ D 1

2
.n C 1/2 C C:

Using R.1/ D 2 we get that C D 1 and hence

R.n/ D 1

2
.n C 1/2 C 1; t 2 N1:

Definition 1.54. If f W Na ! R, then the delta indefinite integral of f is defined by
Z

f .t/�t WD F.t/C C;

where F is an antidifference of f and C is an arbitrary constant.

It is easy to verify that

Z
˛f .t/�t D ˛

Z
f .t/�t

and
Z
.f .t/C g.t//�t D

Z
f .t/�t C

Z
g.t/�t:

Any formula for a delta derivative gives us a formula for an indefinite delta
integral, so we have the following theorem.

Theorem 1.55. Assume p, r, ˛ are constants. Then the following hold:

(i)
R
.t � ˛/r�t D 1

rC1 .t � ˛/rC1 C C; r ¤ �1I
(ii)

R
ep.t; a/�t D 1

p ep.t; a/C C; p ¤ 0;�1I



1.5 The Delta Integral 31

(iii)
R

coshp.t; a/�t D 1
p sinhp.t; a/C C; p ¤ 0;˙1I

(iv)
R

sinhp.t; a/�t D 1
p coshp.t; a/C C; p ¤ 0;˙1I

(v)
R

cosp.t; a/�t D 1
p sinp.t; a/C C; p ¤ 0;˙iI

(vi)
R

sinp.t; a/�t D � 1
p cosp.t; a/C C; p ¤ 0;˙iI

(vii)
R
.˛ � �.t//r�t D �1

rC1 .˛ � t/rC1 C C; r ¤ �1I
(viii)

R �t
r

�
�t D � t

rC1
�C CI

(ix)
R �rCt

t

�
�t D �rCt

t�1
�C CI

(x)
R
.t � 1/�.t/�t D �.t/C CI

(xi)
R
˛t�t D 1

˛�1˛
t C C; ˛ ¤ 1;

where C is an arbitrary constant.

Theorem 1.56 (Fundamental Theorem for the Difference Calculus). Assume f W
N

b
a ! R and F.t/ is any antidifference of f .t/ on N

b
a. Then

Z b

a
f .t/�t D

Z b

a
�F.t/�t D F.t/jba:

(Here we use the common notation F.t/jba WD F.b/ � F.a/:)

Proof. Assume F.t/ is any antidifference of f .t/ on N
b
a. Let

G.t/ WD
Z t

a
f .s/�s; t 2 N

b
a:

Then by Theorem 1.50 (vi), G.t/ is an antidifference of f .t/ on N
b
a. Hence by

Theorem 1.52, F.t/ D G.t/C C, where C is a constant. Then

F.t/jba D F.b/ � F.a/

D Œ.G.b/C C/ � .G.a/C C/�

D G.b/ � G.a/

D
Z b

a
f .t/�t:

This completes the proof. ut
Example 1.57. Use a delta integral to find the sum of the squares of the first n
positive integers. Using k2 D k2 C k1 we get

nX
kD1

k2 D
Z nC1

1

k2�k

D
Z nC1

1

.k2 C k1/�k
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D
�
1

3
k3 C 1

2
k2
	nC1

1

D 1

3
.n C 1/3 C 1

2
.n C 1/2

D .n C 1/n.n � 1/
3

C .n C 1/n

2

D n.n C 1/.2n C 1/

6
:

Using the product rules in Exercise 1.2 we can prove the following integration
by parts theorem.

Theorem 1.58 (Integration by Parts). Given two functions u; v W Na ! R and
b; c 2 Na, b < c, we have the integration by parts formulas

Z c

b
u.t/�v.t/�t D u.t/v.t/

ˇ̌
ˇ
c

b
�
Z c

b
v.�.t//�u.t/�t: (1.26)

Z c

b
u.�.t//�v.t/�t D u.t/v.t/

ˇ̌
ˇ
c

b
�
Z c

b
v.t/�u.t/�t: (1.27)

Example 1.59. Evaluate

Z
t4t�t;

where we consider t4t for t 2 N0: Note that

Z
t4t�t D

Z
te3.t; 0/�t:

To set up integration by parts let

u.t/ D t; �v.t/ D e3.t; 0/:

We then use

�u.t/ D 1; v.t/ D 1

3
e3.t; 0/; v.�.t// D 4

3
e3.t; 0/
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and the integration by parts formula (1.26) to get

Z
t4t�t D

Z
te3.t; 0/�t

D 1

3
te3.t; 0/ � 4

3

Z
e3.t; 0/�t

D 1

3
te3.t; 0/ � 4

9
e3.t; 0/C C

D 1

3
t4t � 4

9
4t C C:

1.6 Discrete Taylor’s Theorem

In this section we want to prove the discrete version of Taylor’s Theorem. First we
study the discrete (delta) Taylor monomials and give some of their properties. We
will see that these discrete Taylor monomials will appear in the discrete Taylor’s
Theorem. These (delta) Taylor monomials take the place of the Taylor monomials
.t�s/n

nŠ in the continuous calculus.

Definition 1.60. We define the discrete Taylor monomials (based at s 2 Na),
hn.t; s/, n 2 N0 by

hn.t; s/ D .t � s/n

nŠ
; t 2 Na:

In particular if s D a, then

hn.t; a/ D .t � a/n

nŠ
; t 2 Na:

Theorem 1.61. The Taylor monomials satisfy the following:

(i) h0.t; a/ D 1; t 2 NaI
(ii) hn.t; t/ D 0; t 2 Na; n 2 N1I

(iii) �hnC1.t; a/ D hn.t; a/; t 2 Na; n 2 N0I
(iv)

R
hn.t; a/�t D hnC1.t; a/C C; t 2 Na; n 2 N0I

(v) �shnC1.t; s/ D �hn.t; �.s//; t 2 Na; n 2 N0I
(vi)

R
hn.t; �.s//�s D �hnC1.t; s/C C; t 2 Na; n 2 N0;

where C is a constant.

Proof. We will only prove part (v). Since
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�shnC1.t; s/ D �s
.t � s/nC1

.n C 1/Š

D 1

.n C 1/Š
�s.t � s/nC1

D � 1

nŠ
.t � �.s//n; by (1.3)

D � .t � �.s//n
nŠ

D �hn.t; �.s//;

we have that (v) holds. ut
Now we state and prove the discrete Taylor’s Theorem.

Theorem 1.62 (Taylor’s Formula). Assume f W Na ! R and n 2 N0. Then

f .t/ D pn.t/C Rn.t/; t 2 Na;

where the n-th degree Taylor polynomial, pn.t/, is given by

pn.t/ WD
nX

kD0
�kf .a/

.t � a/k

kŠ
D

nX
kD0

�kf .a/hk.t; a/

and the Taylor remainder, Rn.t/, is given by

Rn.t/ D
Z t

a

.t � �.s//n
nŠ

�nC1f .s/�s D
Z t

a
hn.t; �.s//�

nC1f .s/�s;

for t 2 Na:

Proof. If n D 0, then

p0.t/C R0.t/ D f .a/h0.t; a/C
Z t

a
h0.t; �.s//�f .s/�s

D f .a/C
Z t

a
�f .s/�s

D f .a/C f .t/ � f .a/ D f .t/:

Hence Taylor’s Theorem holds for n D 0: Now assume that n � 1. We will apply
the second integration by parts formula in Theorem 1.58, namely (1.27), to

Rn.t/ D
Z t

a
hn.t; �.s//�

nC1f .s/�s:
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To do this we set

u.�.s// D hn.t; �.s//; �v.s/ D �nC1f .s/;

then it follows that

u.s/ D hn.t; s/; v.s/ D �nf .s/:

Using Theorem 1.61, (v), we get

�su.s/ D �hn�1.t; �.s//:

Hence we get from the integration by parts formula (1.27), that

Rn.t/ D
Z t

a
hn.t; �.s//�

nC1f .s/�s

D hn.t; s/�
nf .s/

ˇ̌
ˇ
sDt

sDa
C
Z t

a
hn�1.t; �.s//�nf .s/�s

D ��nf .a/hn.t; a/C
Z t

a
hn�1.t; �.s//�nf .s/�s:

If n � 2, then again we apply the integration by parts formula (1.27), to get

Rn.t/ D ��nf .a/hn.t; a/C hn�1.t; s/�n�1f .s/
ˇ̌
ˇ
sDt

sDa

C
Z t

a
hn�2.t; �.s//�n�1f .s/�s

D ��nf .a/hn.t; a/ ��n�1f .a/hn�1.t; a/

C
Z t

a
hn�2.t; �.s//�n�1f .s/�s:

By induction on n, we get

Rn.t/ D �
nX

kD1
�kf .a/hk.t; a/C

Z t

a
h0.t; �.s//�f .s/�s

D �
nX

kD1
�kf .a/hk.t; a/C f .t/ � f .a/

D �
nX

kD0
�kf .a/hk.t; a/C f .t/:
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Solving for f .t/ we get the desired result. ut
Definition 1.63. If f W Na ! R, then we call

1X
kD0

�kf .a/
.t � a/k

kŠ
D

1X
kD0

�kf .a/hk.t; a/

the (formal) Taylor series of f based t D a:

The following theorem gives us some Taylor series for various functions.

Theorem 1.64. Assume p is a constant. Then the following hold:

(i) If p ¤ �1, then ep.t; a/ D P1
nD0 pnhn.t; a/I

(ii) If p ¤ ˙1, then coshp.t; a/ D P1
nD0 p2nh2n.t; a/I

(iii) If p ¤ ˙1; then sinhp.t; a/ D P1
nD0 p2nC1h2nC1.t; a/I

(iv) If p ¤ ˙i; then sinp.t; a/ D P1
nD0.�1/np2nC1h2nC1.t; a/I

(v) If p ¤ ˙i; then cosp.t; a/ D P1
nD0.�1/np2nh2n.t; a/I

for all t 2 Na:

Proof. We first prove part (i). Since�kep.t; a/ D pkep.t; a/ for each k 2 N; we have
that the Taylor series for ep.t; a/ is given by

1X
nD0

�nep.a; a/hn.t; a/ D
1X

nD0
pnhn.t; a/:

To show that the above Taylor series converges to ep.t; a/, for each t 2 Na, it suffices
to show that the remainder term, Rn.t/, in Taylor’s formula, satisfies

lim
n!1 Rn.t/ D 0

for each fixed t 2 Na.
So fix t 2 Na and consider

jRn.t/j D
ˇ̌
ˇ̌
Z t

a
hn.t; �.s//�

nC1ep.s; a/�s

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z t

a
hn.t; �.s//p

nC1ep.s; a/�s

ˇ̌
ˇ̌

	
Z t

a
hn.t; �.s//jpjnC1jep.s; a/j�s

Since t is fixed, there is a constant C such that

jep.s; a/j 	 C; s 2 N
t�1
a :
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Hence

jRn.t/j 	 C
Z t

a
hn.t; �.s//jpjnC1�s

D CjpjnC1
Z t

a
hn.t; �.s//�s

D �CjpjnC1hnC1.t; s/
ˇ̌
ˇ
sDt

sDa

D CjpjnC1hnC1.t; a/

D CjpjnC1 .t � a/nC1

.n C 1/Š
:

Since .t � a/nC1 D 0; for n � t � a, we have that Rn.t/ D 0 for n � t � a, so for
each fixed t, limn!1 Rn.t/ D 0: Hence,

ep.t; a/ D
1X

nD0
pnhn.t; a/; t 2 Na:

To see that (ii) holds for t 2 Na, note that for p ¤ ˙1

coshp.t; a/ D ep.t; a/C e�p.t; a/

2

D
1X

kD0

pk C .�p/k

2
hk.t; a/

D
1X

nD0
p2nh2n.t; a/:

Similarly, since sinhp.t; a/; sinp.t; a/, and cosp.t; a/, are defined in terms of expo-
nential functions, parts (iii)–(v) follow easily from part (i). ut

We next show that Taylor’s Theorem gives us a variation of constants formula.

Theorem 1.65 (Variation of Constants Formula). Assume f W Na ! R. Then the
unique solution of the IVP

�ny.t/ D f .t/; t 2 Na

�ky.a/ D ck; 0 	 k 	 n � 1;

where ck, 0 	 k 	 n � 1; are given constants is given by
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y.t/ D
n�1X
kD0

ckhk.t; a/C
Z t

a
hn�1.t; �.s//f .s/�s;

for t 2 Na:

Proof. The proof of uniqueness is similar to the proof of Theorem 1.29. Using
Taylor’s Theorem 1.62, we get the solution, y.t/, of the given IVP is given by

y.t/ D pn�1.t/C Rn�1.t/

D
n�1X
kD0

�ky.a/hk.t; a/C
Z t

a
hn�1.t; �.s//�ny.s/�s

D
n�1X
kD0

ckhk.t; a/C
Z t

a
hn�1.t; �.s//f .s/�s

for t 2 Na: ut
We now give a very elementary example to illustrate the variation of constants

formula.

Example 1.66. Use the integer variation of constants formula to solve the IVP

�2y.t/ D 3t; t 2 N0

y.0/ D �y.0/ D 0:

Using the variation of constants formula in Theorem 1.65, the solution of the given
IVP is given by

y.t/ D
Z t

0

h1.t; �.s//3
s�s D

Z t

0

h1.t; �.s//e2.s; 0/�s:

Integrating by parts we get

y.t/ D 1

2
.t � s/e2.s; 0/jtsD0 C 1

2

Z t

0

e2.s; 0/�s

D �1
2

t C 1

4
Œe2.s; 0/�

t
sD0

D �1
2

t C 1

4
Œe2.t; 0/ � 1�

D �1
2

t � 1

4
C 1

4
3t;

for t 2 N0: Of course one could easily solve the IVP in this example by twice
integrating both sides of �2y.t/ D 3t from 0 to t (Exercise 1.52).
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1.7 First Order Linear Difference Equations

In this section we show how to solve the first order linear equation

�y.t/ D p.t/y.t/C q.t/; t 2 Na; (1.28)

where we assume p; q W Na ! R and p.t/ ¤ �1 for t 2 Na:

We will use the following Leibniz formula to find a variation of constants formula
for (1.28).

Theorem 1.67 (Leibniz Formula). Assume f W Na � Na ! R. Then

�

�Z t

a
f .t; s/�s

�
D
Z t

a
�tf .t; s/�s C f .�.t/; t/; t 2 Na: (1.29)

Proof. We have that

�

�Z t

a
f .t; s/�s

�
D
Z tC1

a
f .t C 1; s/�s �

Z t

a
f .t; s/�s

D
Z t

a
Œf .t C 1; s/ � f .t; s/��s C

Z tC1

t
f .t C 1; s/�s

D
Z t

a
�tf .t; s/�s C

Z tC1

t
f .t C 1; s/�s

D
Z t

a
�tf .t; s/�s C f .�.t/; t/;

which completes the proof. ut
Theorem 1.68 (Variation of Constants Formula). Assume p 2 R and q W Na

! R. Then the unique solution of the IVP

�y.t/ D p.t/y.t/C q.t/; t 2 Na

y.a/ D A

is given by

y.t/ D Aep.t; a/C
Z t

a
ep.t; �.s//q.s/�s;

for t 2 Na:
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Proof. The proof (see Exercise 1.56) of the uniqueness of solutions of IVPs for this
case is similar to the proof of Theorem 1.29. Let

y.t/ D Aep.t; a/C
Z t

a
ep.t; �.s//q.s/�s; t 2 Na:

Using the Leibniz formula (1.29), we get

�y.t/ D Ap.t/ep.t; a/C
Z t

a
p.t/ep.t; �.s//q.s/�s C ep.�.t/; �.t//q.t/

D p.t/

�
Aep.t; a/C

Z t

a
ep.t; �.s//q.s/�s

	
C q.t/

D p.t/y.t/C q.t/:

Also y.a/ D A: ut
Of course, it is always possible to compute solutions of difference equations

by direct step by step computation from the difference equation. We next give an
interesting example due to Gautschi [87] (and appearing in Kelley and Peterson
[134, 135]) that illustrates that round off error can be a serious problem.

Example 1.69 (Gautschi [87]). First we solve the IVP

�y.t/ D .t � 1/y.t/C 1; t 2 N1

y.1/ D 1 � e:

Note that p.t/ WD t�1 is a regressive function on N1. Using the variation of constants
formula in Theorem 1.68, we get that the solution of our given IVP is given by

y.t/ D .1 � e/et�1.t; 1/C
Z t

1

et�1.t; �.s// � 1�s

D et�1.t; 1/
�
1 � e C

Z t

1

et�1.1; �.s//�s

	

D et�1.t; 1/
�
1 � e C

Z t

1

1

et�1.�.s/; 1/
�s

	
:

From Example 1.13, we have that et�1.t; 1/ D .t � 1/Š. Hence

y.t/ D .t � 1/Š
�
1 � e C

Z t

1

1

.�.s/ � 1/Š�s
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D .t � 1/Š
"
1 � e C

t�1X
sD1

1

sŠ

#

D �.t � 1/Š
1X

kDt

1

kŠ
:

Note that this solution is negative on N1. Now if one was to approximate the initial
value 1 � e in this IVP by a finite decimal expansion, it can be shown that the
solution z.t/ of this new IVP satisfies limt!1 z.t/ D 1 and hence z.t/ is not a good
approximation for the actual solution. For example, if z.t/ solves the IVP

�z.t/ D .1 � t/z.t/C 1; t 2 N1

z.1/ D �1:718;

then z.2/ D �:718; z.3/ D �:436; z.4/ D �:308; z.5/ D �:232, z.6/ D �:16,
z.7/ D :04 and after that z.t/ increases rapidly with limt!1 z.t/ D 1: Hence z.t/
is not a good approximation to the actual solution y.t/ of our original IVP.

A general solution of the linear equation (1.28) is given by adding a general
solution of the corresponding homogeneous equation �y.t/ D p.t/y.t/ to a
particular solution to the nonhomogeneous difference equation (1.28). Hence by
Theorem 1.14 and Theorem 1.68

y.t/ D cep.t; a/C
Z t

a
ep.t; �.s//q.s/�s

is a general solution of (1.28). We use this fact in the following example.

Example 1.70. Find a general solution of the linear difference equation

�y.t/ D .�2/y.t/C t; t 2 N0: (1.30)

Note that the constant function �2 is a regressive function on N0. The general
solution of (1.30) is given by

y.t/ D cep.t; a/C
Z t

a
ep.t; �.s//q.s/�s

D ce�2.t; 0/C
Z t

0

s e�2.t; �.s//�s

D ce�2.t; 0/C
Z t

0

s e2.�.s/; t/�s

D ce�2.t; 0/C 3

Z t

0

s e2.s; t/�s:
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Integrating by parts we get

y.t/ D ce�2.t; 0/C 3

2
se2.s; t/

ˇ̌t
sD0 � 3

2

Z t

0

e2.�.s/; t/�s

D ce�2.t; 0/C 3

2
t � 9

2

Z t

0

e2.s; t/�s

D ce�2.t; 0/C 3

2
t � 9

4
e2.s; t/

ˇ̌t
0

D ce�2.t; 0/C 3

2
t � 9

4
C 9

4
e2.0; t/

D ˛e�2.t; 0/C 3

2
t � 9

4

D ˛

�
1

3

�t

C 3

2
t � 9

4
:

1.8 Second Order Linear Equations (Variable Coefficients)

In this section we will show how we can solve some second order linear equations
(with possibly variable coefficients) by the method of factoring. As a special case
of our factoring method we will solve Euler–Cauchy difference equations. We start
with the following example to illustrate the method of factoring.

Example 1.71. Solve the difference equation

�2y.t/ � .t C 2/�y.t/C 2ty.t/ D 0; t 2 N0: (1.31)

The method we use to solve this equation is called the method of factoring. We first
write our difference equation in the form

�Œ�y.t/ � 2y.t/� � tŒ�y.t/ � 2y.t/� D 0

which also can be written in the factored form (using I as the identity operator)

.� � tI/.� � 2I/y.t/ D 0:
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Note that from Exercise 1.60 the operators��tI and��2I do not commute, so one
has to be careful when one uses this method of factoring. Letting y.t/ be a solution
of our given difference equation and setting v.t/ D .� � 2I/y.t/, we get that

.� � tI/v.t/ D 0

which gives us the equation

�v.t/ D tv.t/:

By Theorem 1.14,

v.t/ D c2et.t; 0/ D c2

t�1Y
sD0
.1C s/ D c2tŠ:

Since v.t/ D .� � 2I/y.t/ we have that

�y.t/ D 2y.t/C c2tŠ:

Using the variation of constants formula in Theorem 1.68, we get that

y.t/ D c1e2.t; 0/C
Z t

0

e2.t; �.s//c2sŠ�s

D c13
t C c2

Z t

0

3t�s�1sŠ�s

D c13
t C c23

t�1
Z t

0

�
sŠ

3s

�
�s

D c13
t C c23

t�1
t�1X
sD0

sŠ

3s
:

Hence

y.t/ D ˛3t C ˇ3t
t�1X
kD0

kŠ

3k

is a general solution of the difference equation (1.31).

We next show how we can use this method of factoring to solve the Euler–
Cauchy difference equation

t�.t/�2y.t/C ct�y.t/C dy.t/ D 0; t 2 Na; (1.32)
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where c and d are real constants. We assume that

1C d

t�.t/
� c

�.t/
¤ 0; t 2 Na: (1.33)

Since (1.33) holds, we have from Theorem 1.29 that solutions of IVPs for (1.32)
are unique and solutions exist on Na. Also by Remark 1.30 we have that if y1.t/ and
y2.t/ are linearly independent solutions of (1.32) on Na, then

y.t/ D c1y1.t/C c2y2.t/; t 2 Na

is a general solution of (1.32). We call the equation

r.r � 1/C cr C d D 0 (1.34)

or equivalently

r2 C .c � 1/r C d D 0 (1.35)

the characteristic equation of the Euler–Cauchy difference equation (1.32) and the
solutions of (1.34) and (1.35) the characteristic values (roots). Let ˛, ˇ be the
characteristic values, then the characteristic equation is given by

.r � ˛/.r � ˇ/ D r2 � .˛ C ˇ/r C ˛ˇ D 0:

Hence

c � 1 D �.˛ C ˇ/; d D ˛ˇ:

Note that

1C d

t�.t/
� c

�.t/
D 1C ˛ˇ

t�.t/
� 1 � ˛ � ˇ

�.t/

D t�.t/ � .1 � ˛ � ˇ/t C ˛ˇ

t�.t/

D t2 C .˛ C ˇ/t C ˛ˇ

t�.t/

D .t C ˛/.t C ˇ/

t�.t/

D
t
�
1C ˛

t

� �
1C ˇ

t

�

�.t/
:
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Hence we see that (1.33) holds if and only if

˛

t
2 R; ˇ

t
2 R:

We now show how to factor the left-hand side of equation (1.32) assuming
that (1.33) holds. Let y W Na ! C: Then, for t 2 Na,

t�.t/�2y.t/C ct�y.t/C dy.t/

D t�.t/�2y.t/C .1 � ˛ � ˇ/t�y.t/C ˛ˇ y.t/

D fŒt�.t/�2y.t/C t�y.t/� � ˇt�y.t/g � ˛Œt�y.t/ � ˇy.t/�

D t�Œt�y.t/ � ˇy.t/� � ˛Œt�y.t/ � ˇy.t/�

D .t� � ˛I/ .t� � ˇI/ y.t/;

where I is the identity operator on the space of functions defined on Na. We call the
difference equation

.t� � ˛I/ .t� � ˇI/ y.t/ D 0 (1.36)

the factored form of the Euler–Cauchy equation.
We will show that to solve the Euler–Cauchy equation we just need to find the

characteristic values of (1.32). Next we solve the Euler–Cauchy equation by solving
the factored form of the Euler–Cauchy equation (1.36).

Theorem 1.72 (Distinct Roots). Assume ˛ ¤ ˇ are the characteristic values of the
Euler–Cauchy difference equation (1.32) and ˛

t ;
ˇ

t 2 R. Then a general solution of
the Euler–Cauchy equation (1.32) is given by

y.t/ D c1e ˛
t
.t; a/C c2e ˇ

t
.t; a/;

for t 2 Na:

Proof. Note from the factored form of the Euler–Cauchy equation, if

.t� � ˇI/ y.t/ D 0;

then y.t/ is a solution of the Euler–Cauchy equation (1.32). Since y2.t/ D e ˇ
t
.t; a/

is a solution of

�y.t/ D ˇ

t
y.t/
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we have that y2.t/ D e ˇ
t
.t; a/ is also a solution of (1.32). Now by Exercise 1.61, we

can write the factored equation in the form

.t� � ˇI/ .t� � ˛I/ y.t/ D 0:

Hence, by the above argument y1.t/ D e ˛
t
.t; a/ is a solution of (1.32). Since ˛ ¤ ˇ

the solutions y1.t/, y2.t/ are linearly independent solutions on Na. Hence a general
solution of the Euler–Cauchy equation (1.32) is given by

y.t/ D c1e ˛
t
.t; a/C c2e ˇ

t
.t; a/;

for t 2 Na: ut
Example 1.73 (Distinct Real Roots). Solve the Euler–Cauchy difference equation

t�.t/�2y.t/ � 5t�y.t/C 8y.t/ D 0; t 2 N1: (1.37)

The characteristic equation is

r2 � 6r C 8 D .r � 2/.r � 4/ D 0

and so the characteristic values are r1 D 2; r2 D 4. It follows from Theorem 1.72
that a general solution of (1.37) is given by

y.t/ D c1e 2
t
.t; 1/C c2e 4

t
.t; 1/

D c1

t�1Y
sD1

�
1C 2

s

�
C c2

t�1Y
sD1

�
1C 4

s

�

D c1

t�1Y
sD1

�
s C 2

s

�
C c2

t�1Y
sD1

�
s C 4

s

�

D c1
.t C 1/2

2Š
C c2

.t C 3/4

4Š

D a1.t C 1/2 C a2.t C 3/4

for t 2 N1:

Theorem 1.74 (Double Root). Assume ˛ is a double root of the characteristic
equation for the Euler–Cauchy difference equation (1.32) and ˛

t 2 R. Then a
general solution of the Euler–Cauchy difference equation (1.32) is given by

y.t/ D c1e ˛
t
.t; a/C c2e ˛

t
.t; a/

t�1X
sDa

1

s C ˛
;

for t 2 Na.
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Proof. In this case the factored Euler–Cauchy equation is given by

.t� � ˛I/.t� � ˛I/y.t/ D 0:

It follows that y1.t/ D e ˛
t
.t; a/ is a solution of this equation. To get a second

solution note that by considering the factored equation we get that if y.t/ satisfies
the difference equation

.t� � ˛I/y.t/ D e ˛
t
.t; a/;

then y is a solution. In particular, let y2 be the solution of the IVP

�y.t/ D ˛

t
y.t/C 1

t
e ˛

t
.t; a/; y.a/ D 0:

By the variation of constants formula in Theorem 1.68,

y2.t/ D
Z t

a
e ˛

t
.t; �.s//

1

s
e ˛

t
.s; a/�s

D e ˛
t
.t; a/

Z t

a

1

s
e ˛

t
.a; �.s//e ˛

t
.s; a/�s

D e ˛
t
.t; a/

Z t

a

1

s
e� ˛

t
.�.s/; a/e ˛

t
.s; a/�s

D e ˛
t
.t; a/

Z t

a

�
1

s C ˛

�
e� ˛

t
.s; a/e ˛

t
.s; a/�s

D e ˛
t
.t; a/

Z t

a

�
1

s C ˛

�
�s

D e ˛
t
.t; a/

t�1X
sDa

�
1

s C ˛

�
:

Since y1.t/, y2.t/ are linearly independent solutions of the given Euler–Cauchy
equation we have that a general solution is given by

y.t/ D c1e ˛
t
.t; a/C c2e ˛

t
.t; a/

t�1X
sDa

1

s C ˛
;

for t 2 Na: ut
Example 1.75 (Double Root). Solve the Euler–Cauchy difference equation

t�.t/�2y.t/ � 3t�y.t/C 4y.t/ D 0; t 2 Na; (1.38)
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where a > 0: The characteristic equation is given by

r2 � 4r C 4 D .r � 2/2 D 0;

so 2 is a double root of the characteristic equation. By Theorem 1.74 we have that a
general solution of (1.38) is given by

y.t/ D c1e 2
t
.t; a/C c2e 2

t
.t; a/

t�1X
sDa

1

s C 2
;

for t 2 Na:

Theorem 1.76 (Complex Roots). Assume r1 D ˛ C iˇ; r2 D ˛ � iˇ are the
characteristic values of the Euler–Cauchy difference equation (1.32) and ˛

t 2 R.
Then a general solution of (1.32) is given by

y.t/ D c1e ˛
t
.t; a/ cos ˇ

tC˛

.t; a/C c2e ˛
t
.t; a/ sin ˇ

tC˛

.t; a/;

for t 2 Na:

Proof. By the proof of Theorem 1.72, we have that y.t/ D e ˛Ciˇ
t
.t; a/ is a (complex-

valued) solution of the Euler–Cauchy difference equation (1.32). Since ˛
t 2 R it

follows that �˛ … Na and hence ˇ

tC˛ is well defined on Na. Now consider

˛

t
˚ iˇ

t C ˛
D ˛

t
C iˇ

t C ˛
C ˛

t

iˇ

t C ˛

D ˛

t
C i

ˇ

t
:

Using Euler’s formula (see Theorem 1.28, (vii) or Exercise 1.27), we have that

y.t/ D e ˛Ciˇ
t
.t; a/

D e ˛
t Ci ˇt

.t; a/

D e ˛
t ˚ iˇ

tC˛

.t; a/

D e ˛
t
.t; a/e iˇ

tC˛

.t; a/

D e ˛
t
.t; a/ cos ˇ

tC˛

.t; a/C ie ˛
t
.t; a/ sin ˇ

tC˛

.t; a/:

Since we are assuming the constants c; d in the Euler–Cauchy difference equa-
tion (1.32) are real, we have that
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e ˛
t

cos ˇ
tC˛

.t; a/; sin ˇ
tC˛

.t; a/

are real-valued solutions of the Euler–Cauchy difference equation (1.32). Since they
are linearly independent on Na,

y.t/ D c1e ˛
t
.t; a/ cos ˇ

tC˛

.t; a/C c2e ˛
t
.t; a/ sin ˇ

tC˛

.t; a/

is a general solution of the Euler–Cauchy difference equation (1.32). ut
Example 1.77 (Complex Roots). Solve the Euler–Cauchy difference equation

t�.t/�2y.t/ � 5t�y.t/C 13y.t/ D 0; t 2 Na:

The characteristic equation is

r2 � 6r C 13 D 0;

and hence the characteristic values are r D 3˙ 2i: From Theorem 1.76, we get that

y.t/ D c1e 3
t
.t; a/ cos 2

tC3
.t; a/C c2e 3

t
.t; a/ sin 2

tC3
.t; a/

is a general solution.

For n � 3M. Bohner and E. Akin (see [63, Chapter 2]) defined the Euler–Cauchy
difference equation of arbitrary order by

.t� � ˛1/ .t� � ˛2/ .t� � ˛n/ D 0; (1.39)

where we assume ˛i
t 2 R, 1 	 i 	 n: For the reader interested in Euler–Cauchy

difference equations of order n � 3 see Exercise 1.67.

1.9 Vector Difference Equations

In this section, we will examine the properties of the linear vector difference
equation with variable coefficients

�y.t/ D A.t/y.t/C f .t/; t 2 Na; (1.40)

and the corresponding homogeneous system

�u.t/ D A.t/u.t/; t 2 Na; (1.41)
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where f W Na ! Rn and the real n � 1 matrix function A.t/ will be assumed to be a
regressive matrix function on Na (that is I CA.t/ is nonsingular for all t 2 Na). With
these assumptions, it is easy to show that for any t0 2 Na the initial value problem

�x.t/ D A.t/x.t/C f .t/

x.t0/ D x0;

where x0 2 R
n is a given n � 1 constant vector, has a unique solution on Na: To

solve the nonhomogeneous difference equation (1.40) we will see that we first want
to be able to solve the corresponding homogeneous difference equation (1.41). The
matrix equation analogue of the homogeneous vector difference equation (1.41) is

�U.t/ D A.t/U.t/; t 2 Na (1.42)

where U.t/ is an n � n matrix function. Note that U.t/ is a solution of (1.42) if and
only if each of its column vectors is a solution of (1.41). From the uniqueness of
solutions to IVPs for the vector equation (1.40) we have that the matrix IVP

�U.t/ D A.t/U.t/; U.t0/ D U0;

where t0 2 Na and U0 is a given n � n constant matrix has a unique solution on Na:

Theorem 1.78. Assume A.t/ is a regressive matrix function on Na. If ˆ.t/ is a
solution of (1.42), then either det ˆ.t/ ¤ 0 for all t 2 Na or det ˆ.t/ D 0 for
all t 2 Na.

Proof. Since ˆ.t/ is a solution of (1.42) on Na,

ˆ.t C 1/ D ŒI C A.t/�ˆ.t/; t 2 Na:

Therefore,

det ˆ.t C 1/ D det ŒI C A.t/� det ˆ.t/; (1.43)

for all t 2 Na. Now either det ˆ.a/ ¤ 0 or det ˆ.a/ D 0. Since det ŒI C A.t/� ¤ 0

for all t 2 Na, we have by (1.43) that if det ˆ.a/ ¤ 0, then det ˆ.t/ ¤ 0 for all
t 2 Na, while if det ˆ.a/ D 0, then det ˆ.t/ D 0 for all t 2 Na. ut
Definition 1.79. We say thatˆ.t/ is a fundamental matrix of the vector difference
equation (1.41) provided ˆ.t/ is a solution of the matrix equation (1.42) and
detˆ.t/ ¤ 0 for t 2 Na.

Definition 1.80. If A is a regressive matrix function on Na, then we define the
matrix exponential function, eA.t; t0/, based at t0 2 Na to be the unique solution
of the matrix IVP

�U.t/ D A.t/U.t/; U.t0/ D I:
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From Exercise 1.71 we have that ˆ.t/ is a fundamental matrix of �u.t/ D
A.t/u.t/ if and only if its columns are n linearly independent solutions of the vector
equation �u.t/ D A.t/u.t/ on Na. To find a formula for the matrix exponential
function, eA.t; t0/, we want to solve the IVP

U.t C 1/ D ŒI C A.t/�U.t/; t 2 Na; U.t0/ D I:

Iterating this equation we get

eA.t; t0/ D
( �Qt�1

sDt0
ŒI C A.s/�; t 2 Nt0Qt0�1

sDt ŒI C A.s/��1; t 2 N
t0�1
a ;

where it is understood that
Qt0�1

sDt0
ŒI C A.s/� D eA.t0; t0/ D I and for t 2 Nt0C1

�
t�1Y
sDt0

ŒI C A.s/� WD ŒI C A.t � 1/�ŒI C A.t � 2/� � � � ŒI C A.t0/�:

Example 1.81. If A is an n � n constant matrix and I C A is invertible, then

eA.t; t0/ D .I C A/t�t0 ; t 2 Na:

Similar to the proof of Theorem 1.16 one can prove (Exercise 1.73) the following
theorem.

Theorem 1.82. The set of all n � n regressive matrix functions on Na with the
addition, ˚ defined by

.A ˚ B/.t/ WD A.t/C B.t/C A.t/B.t/; t 2 Na

is a group. Furthermore, the additive inverse of a regressive matrix function A
defined on Na is given by

.�A/.t/ WD �ŒI C A.t/��1A.t/; t 2 Na:

In the next theorem we give several properties of the matrix exponential. To prove
part (vii) of the this theorem we will use the following lemma.

Lemma 1.83. Assume Y.t/ and Y.�.t// are invertible matrices. Then

�Y�1.t/ D �Y�1.�.t//�Y.t/Y�1.t/ D �Y�1.t/�Y.t/Y�1.�.t//:

Proof. Taking the difference of both sides of Y.t/Y�1.t/ D I we get that

Y.�.t//�Y�1.t/C�Y.t/Y�1.t/ D 0:
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Solving this last equation for �Y�1.t/ we get that

�Y�1.t/ D �Y�1.�.t//�Y.t/Y�1.t/:

Similarly, one can use Y�1.t/Y.t/ D I to get that

�Y�1.t/ D �Y�1.t/�Y.t/Y�1.�.t//:

ut
Theorem 1.84. Assume A and B are regressive matrix functions on Na and
s; r 2 Na: Then the following hold:

(i) �eA.t; s/ D A.t/eA.t; s/I
(ii) eA.s; s/ D II

(iii) det eA.t; s/ ¤ 0 for t 2 NaI
(iv) eA.t; s/ is a fundamental matrix of (1.41);
(v) eA.�.t/; s/ D ŒI C A.t/�eA.t; s/I

(vi) (semigroup property) eA.t; r/eA.r; s/ D eA.t; s/ holds for t; r; s 2 NaI
(vii) e�1

A .t; s/ D e��A�.t; s/I
(viii) eA.t; s/ D e�1

A .s; t/ D e��A�.s; t/; where A� denotes the conjugate transpose
of the matrix AI

(ix) B.t/eA.t; t0/ D eA.t; t0/B.t/, if A.t/ and B.�/ commute for all t; � 2 NaI
(x) eA.t; s/eB.t; s/ D eA˚B.t; s/; if A.t/ and B.�/ commute for all t; � 2 Na.

Proof. Note that (i) and (ii) follow from the definition of the matrix exponential.
Part (iii) follows from Theorem 1.78 and part (ii). Parts (i) and (iii) imply part (iv)
holds. Since ˆ.�.t// D ˆ.t/C�ˆ.t/, we have that

eA.�.t/; s/ D eA.t; s/C�eA.t; s/ D ŒI C A.t/�eA.t; s/

and hence (v) holds. To see that the semigroup property (vi) holds, fix r; s 2 Na and
set ˆ.t/ D eA.t; r/eA.r; s/: Then

�ˆ.t/ D �eA.t; r/eA.r; s/

D A.t/eA.t; r/eA.r; s/

D A.t/ˆ.t/:

Next we show that ˆ.s/ D eA.s; r/eA.r; s// D I: First note that if r D s, then
ˆ.s/ D ˆ.s; s/ˆ.s; s/ D I. Hence we can assume that s ¤ r. For the case r > s � a;
we have that

ˆ.s/ D eA.s; r/eA.r; s/ D
 

r�1Y
�Ds

ŒI C A.�/��1
! 

�
r�1Y
�Ds

ŒI C A.�/�

!

D ŒI C A.s/��1 � � � ŒI C A.r � 1/��1ŒI C A.r � 1/� � � � ŒI C A.s/� D I:
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Similarly, for the case s > r � a one can show that ˆ.s/ D I: Hence, by the
uniqueness of solutions for IVPs we get that eA.t; r/eA.r; s/ D eA.t; s/: To see that
(vii) holds, fix s 2 Na and let

Y.t/ WD 

e�1

A .t; s/
��
; t 2 Na:

Then

�Y.t/ D 

�e�1

A .t; s/
��

D � 
e�1
A .�.t/; s/�eA.t; s/e

�1
A .t; s/

��

D � 
e�1
A .�.t/; s/A.t/

��

D �
h
.ŒI C A.t/�eA.t; s//

�1 A.t/
i�

D � 
e�1
A .t; s/ŒI C A.t/��1A.t/

��

D �A�.t/ŒI C A�.t/��1


e�1

A .t; s/
��

D .�A�/.t/Y.t/:

Since


e�1

A .t; s/
��

and e�A�.t; s/ satisfy the same matrix IVP we get

�
e�1

A .t; s/
�� D e�A�.t; s/:

Taking the conjugate transpose of both sides of this last equation we get that part
(vii) holds. The proof of (viii) is Exercise 1.78 and the proof of (ix) is Exercise 1.79.

To see that (x) holds, let ˆ.t/ D eA.t; s/eB.t; s/, t 2 Na. Then by the product rule

�ˆ.t/ D � ŒeA.t; s/eB.t; s/�

D eA.�.t/; s/�eB.t; s/C�eA.t; s/eB.t; s/

D Œ1C A.t/�eA.t; s/B.t/eB.t; s/C A.t/eA.t; s/eB.t; s/

D ŒA.t/C B.t/C A.t/B.t/�eA.t; s/eB.t; s/

D Œ.A ˚ B/.t/�ˆ.t/

for t 2 Na. Sinceˆ.s/ D I, we have thatˆ.t/ and eA˚B.t; s/ satisfy the same matrix
IVP. Hence, by the uniqueness theorem for solutions of matrix IVPs we get the
desired result eA.t; s/eB.t; s/ D eA˚B.t; s/: ut

Now for any nonsingular matrix U0, the solution U.t/ of (1.42) with U.t0/ D U0

is a fundamental matrix of (1.41), so there are always infinitely many fundamental
matrices of (1.41). In particular, if A is a regressive matrix function on Na, then
ˆ.t/ D eA.t; t0/ is a fundamental matrix of the vector equation �u.t/ D A.t/u.t/:
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The following theorem characterizes fundamental matrices for (1.41).

Theorem 1.85. If ˆ.t/ is a fundamental matrix for (1.41), then ‰.t/ is another
fundamental matrix if and only if there is a nonsingular constant matrix C such that

‰.t/ D ˆ.t/C;

for t 2 Na.

Proof. Let ‰.t/ D ˆ.t/C, where ˆ.t/ is a fundamental matrix of (1.41) and C is
nonsingular constant matrix. Then ‰.t/ is nonsingular for all t 2 Na, and

�‰.t/ D �ˆ.t/C

D A.t/ˆ.t/C

D A.t/‰.t/:

Therefore ‰.t/ is a fundamental matrix of (1.41).
Conversely, assume ˆ.t/ and ‰.t/ are fundamental matrices of (1.41). For some

t0 2 Na, let

C WD ˆ�1.t0/‰.t0/:

Then ‰.t/ and ˆ.t/C are both solutions of (1.42) satisfying the same initial
condition at t0. By uniqueness,

‰.t/ D ˆ.t/C;

for all t 2 Na. ut
The proof of the following theorem is similar to that of Theorem 1.85 and is left

as an exercise (Exercise 1.68).

Theorem 1.86. If ˆ.t/ is a fundamental matrix of (1.41), then the general solution
of (1.41) is given by

u.t/ D ˆ.t/c;

where c is an arbitrary constant column vector.

Hence we see to solve the vector equation (1.41) we just need to find the
fundamental matrix ˆ.t/ D eA.t; t0/: We will set off to prove the Putzer algorithm
(Theorem 1.88) which will give us a nice formula eA.t; 0/, for t 2 N0 when A
is a constant n � n matrix. In the proof of this theorem we will use the Cayley–
Hamilton Theorem which states that every square constant matrix satisfies its own
characteristic equation. We now give an example to illustrate this important theorem.
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Example 1.87. Show directly that the matrix

A D
�
2 �1
3 �4

	

satisfies its own characteristic equation. The characteristic equation of A is

�2 C 2� � 5 D 0:

Then

A2 C 2A � 5I D
�
1 2

�6 13
	

C
�
4 �2
6 �8

	
�
�
5 0

0 5

	

D
�
0 0

0 0

	

and so A does satisfy its own characteristic equation.

The proof of the next theorem is motivated by the fact that by the Cayley–
Hamilton Theorem an n by n constant matrix A can be written as a linear
combination of the matrices I, A, A2, : : : , An�1 and therefore every nonnegative
integer power At of A can also be written as a linear combination of I, A, A2, : : : ,
An�1.

Theorem 1.88 (Putzer’s Algorithm). Let �1; �2; : : : ; �n be the (not necessarily
distinct) eigenvalues of the constant n by n matrix A, with each eigenvalue repeated
as many times as its multiplicity. Define the matrices Mk; 0 	 k 	 n, recursively by

M0 D I

Mk D .A � �kI/Mk�1; 1 	 k 	 n:

Then

At D
n�1X
kD0

pkC1.t/Mk; t 2 N0;

where the pk.t/, 1 	 k 	 n are chosen so that

2
6664

p1.t C 1/

p2.t C 1/
:::

pn.t C 1/

3
7775 D

2
666664

�1 0 0 � � � 0
1 �2 0 � � � 0
0 1 �3 � � � 0
:::
: : :

: : :
: : :

:::

0 � � � 0 1 �n

3
777775

2
6664

p1.t/
p2.t/
:::

pn.t/

3
7775 (1.44)
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and

2
6664

p1.0/
p2.0/
:::

pn.0/

3
7775 D

2
6664

1

0
:::

0

3
7775 : (1.45)

Proof. Let the matrices Mk, 0 	 k 	 n be defined as in the statement of this theorem.
Since for each fixed t � 0, At is a linear combination of I, A, A2, : : : , An�1, we also
have that for each fixed t, At is a linear combination of M0, M1, M2, : : : , Mn�1, that is

At D
n�1X
iD0

pkC1.t/Mk

for t � 0. It remains to show that the pk’s are as in the statement of this theorem.
Since AtC1 D A � At, we have that

n�1X
kD0

pkC1.t C 1/Mk D A
n�1X
kD0

pkC1.t/Mk

D
n�1X
kD0

pkC1.t/ ŒAMk�

D
n�1X
kD0

pkC1.t/ ŒMkC1 C �kC1Mk�

D
n�1X
kD0

pkC1.t/MkC1 C
n�1X
kD0

�kC1pkC1.t/Mk

D
n�1X
kD1

pk.t/Mk C
n�1X
kD0

pkC1.t/�kC1Mk;

D �1p1.t/M0 C
n�1X
kD1

Œpk.t/C �kC1pkC1.t/�Mk; (1.46)

where in the second to the last step we have replaced k by k � 1 in the first
sum and used the fact that (by the Cayley–Hamilton Theorem) Mn D 0. Note
that equation (1.46) is satisfied if pk.t/; k D 1; 2; : : : ; n; are chosen to satisfy the
system (1.44). Since A0 D I D p1.0/I C � � � C pn.0/Mn�1, we must have (1.45) is
satisfied. ut
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The following example shows how we can use the Putzer algorithm to find the
exponential function eA.t; 0/ when A is a constant matrix. This method is called
finding the matrix exponential eA.t; 0/ using the Putzer algorithm.

Example 1.89. Use the Putzer algorithm (Theorem 1.88) to find eA.t; 0/; t 2 N0,
where

A WD
�
1 2

1 2

	
:

Note eA.t; 0/ D Qt�1
�D0 ŒI C A� D .I C A/t. So to find eA.t; 0/ we just need to find Bt

where

B WD I C A D
�
2 2

1 3

	
:

We now apply Putzer’s algorithm (Theorem 1.88) to find Bt. The characteristic
equation for B is given by �2�5�C4 D .��1/.��4/ D 0. Hence the eigenvalues
of B are given by �1 D 1; �2 D 4. It follows that M0 D I and

M1 D B � �1I D
�
1 2

1 2

	
:

To find p1.t/ we now solve the IVP

p1.t C 1/ D �1p.t/ D p1.t/; p1.0/ D 1:

It follows that p1.t/ D 1: Next to find p2.t/ we solve the IVP

p2.t C 1/ D p1.t/C �2p2.t/ D 1C 4p2.t/; p2.0/ D 0:

This gives us the IVP

�p2.t/ D 3p2.t/C 1; p2.0/ D 0:

Using the variation of constants formula in Theorem 1.68 we get

p2.t/ D
Z t

0

e3.t; �.s//�s

D
Z t

0

e�3.�.s/; t/�s

D
Z t

0

Œ1C �3�e�3.s; t/�s
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D 1

4

Z t

0

e�3.s; t/�s

D �1
3

e�3.s; t/jsDt
sD0

D �1
3

e�3.t; t/C 1

3
e�3.0; t/

D �1
3

C 1

3
e3.t; 0/

D �1
3

C 1

3
4t:

It follows that

eA.t; 0/ D p1.t/M0 C p2.t/M1

D
�
1 0

0 1

	
C
�

� 1

3
C 1

3
4t

��
1 2

1 2

	

D 1

3

�
2C 4t �2C 2 � 4t

�1C 4t 1C 2 � 4t

	
:

It follows from this that

y.t/ D c1

�
2C 4t

�1C 4t

	
C c2

��2C 2 � 4t

1C 2 � 4t

	

is a general solution of

�y.t/ D
�
1 2

1 2

	
y.t/; t 2 N0:

Example 1.90. Use Putzer’s algorithm for finding the matrix exponential eA.t; 0/ to
solve the vector equation

�u.t/ D Au.t/; t 2 N0;

where A is the regressive matrix given by

A D
�
1 1

�1 3
	
:

Let B WD I C A, then eA.t; 0/ D ŒI C A�t D Bt; where

B D
�
2 1

�1 4
	
:
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The characteristic equation of the constant matrix B is given by

�2 � 6�C 9 D 0

and so the characteristic values are �1 D �2 D 3: It follows that

M0 D I D
�
1 0

0 1

	
and M1 D .B � 3I/M0 D

��1 1
�1 1

	
:

Next we solve the IVP

p.t C 1/ D
�
3 0

1 3

	
p.t/; p.0/ D

�
1

0

	
:

Hence p1.t/ solves the IVP

p1.t C 1/ D 3p1.t/; p1.0/ D 1:

Since �p1.t/ D 2p1.t/; p1.0/ D 1, we have that p1.t/ D e2.t; 0/ D 3t. Also p2.t/
solves the IVP

p2.t C 1/ D p1.t/C 3p2.t/; p2.0/ D 0:

It follows that p2.t/ solves the IVP

�p2.t/ D 2p2.t/C e2.t; 0/; p2.0/ D 0:

Using the variation of constants formula in Theorem 1.68 we get that

p2.t/ D
Z t

0

e2.t; �.�//e2.�; 0/��

D
Z t

0

e�2.�.�/; t/e2.�; 0/��

D 1

3

Z t

0

e�2.�; t/e2.�; 0/��

D 1

3

Z t

0

e�2.�; t/e2.�; 0/��

D 1

3

Z t

0

e2.t; �/e2.�; 0/��

D 1

3
e2.t; 0/

Z t

0

1��
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D 1

3
te2.t; 0/

D 1

3
t3t

Hence by Putzer’s algorithm

eA.t; 0/ D Bt

D p1.t/M0 C p2.t/M1

D 3t

�
1 0

0 1

	
C 1

3
t3t

��1 1
�1 1

	

D 3t

�
1 � 1

3
t 1

3
t

� 1
3
t 1C 1

3
t

	
:

Since eA.t; 0/ is a fundamental matrix of �u.t/ D Au.t/, we have by Theorem 1.86
that

u.t/ D 3t

�
1 � 1

3
t 1

3
t

� 1
3
t 1C 1

3
t

	
c

D c13
t

�
1 � 1

3
t

� 1
3
t

	
C c23

t

�
1
3
t

1C 1
3
t

	

is a general solution.

Fundamental matrices can be used to solve the nonhomogeneous equation (1.40).

Theorem 1.91 (Variation of Parameters (Constants)). Assume ˆ.t/ is a funda-
mental matrix of (1.41). Then the unique solution of (1.40) that satisfies the initial
condition y.a/ D y0 is given by the variation of parameters formula

y.t/ D ˆ.t/ˆ�1.a/y0 Cˆ.t/
Z t

a
ˆ�1.s C 1/f .s/�s; (1.47)

for t 2 Na.

Proof. Let y.t/ be given by (1.47) for t 2 Na. Using the vector version of the Leibniz
formula (1.29), we have

�y.t/ D �ˆ.t/ˆ�1.a/y0 C�ˆ.t/
Z t

a
ˆ�1.s C 1/f .s/�s

Cˆ.t C 1/ˆ�1.t C 1/f .t/
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D A.t/ˆ.t/ˆ�1.a/y0 C A.t/ˆ.t/
Z t

a
ˆ�1.s C 1/f .s/�s C f .t/

D A.t/

�
ˆ.t/ˆ�1.a/y0 Cˆ.t/

Z t

a
ˆ�1.s C 1/f .s/�s

	
C f .t/

D A.t/y.t/C f .t/:

Consequently, y.t/ defined by (1.47) is a solution of the nonhomogeneous equation,
and also we have that y.a/ D y0: ut

A special case of the above theorem is the following result.

Theorem 1.92. Assume A.t/ is a regressive matrix function on Na and assume f W
Na ! R

n. Then the unique solution of the IVP

�y.t/ D A.t/y.t/C f .t/; t 2 Na

y.a/ D y0

is given by the variation of constants formula

y.t/ D eA.t; a/y0 C
Z t

a
eA.t; �.s//f .s/�s;

for t 2 Na.

Proof. Since ˆ.t/ D eA.t; a/ is a fundamental matrix of �y.t/ D A.t/y.t/, we have
by Theorem 1.91, that the solution of our IVP in the statement of this theorem is
given by

y.t/ D eA.t; a/e
�1
A .a; a/y0 C eA.t; a/

Z t

a
e�1

A .�.s/; a/f .s/�s

D eA.t; a/y0 C
Z t

a
eA.t; a/eA.a; �.s//f .s/�s

D eA.t; a/y0 C
Z t

a
eA.t; �.s//f .s/�s;

where in the last two steps we used properties (viii) and (vi) in Theorem 1.84. ut
Example 1.93. Solve the system

u.t C 1/ D
�

0 1

�2 �3
	

u.t/C
�
2

3

�t �
1

�2
	
; t 2 N0;

u.0/ D
�
1

1

	
:
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From Exercise 1.72, we can choose

ˆ.t/ D
�
.�2/t .�1/t
.�2/tC1 .�1/tC1

	

D .�1/t
�

2t 1

�2tC1 �1
	
:

Then

ˆ�1.t/ D .�1/t
2t

��1 �1
2tC1 2t

	
:

From (1.47), we have for t � 0,

u.t/ D .�1/t
�

2t 1

�2tC1 �1
	 ��2

3

	
C

t�1X
sD0

��:5.�3/�s

0

	!

D .�1/t
�

2t 1

�2tC1 �1
	���2

3

	
C
�
:375..�3/�t � 1/

0

	�

D .�1/t
�

2t 1

�2tC1 �1
	 ��:125..�3/1�t C 19/

3

	
:

1.10 Stability of Linear Systems

At the outset of this section we will be concerned with the stability of the trivial
solution of the vector difference equation

y.t C 1/ D Ay.t/; t 2 Na; (1.48)

where A is an n � n constant matrix. By the trivial solution of (1.48) we mean the
solution y.t/ � 0, t 2 Na (here by context we know 0 denotes the zero vector). First
we define what we mean by the stability of the trivial solution on Na: We will adopt
the notation that y.t; z/ denotes the unique solution of the IVP

y.t C 1/ D Ay.t/; y.a/ D z; z 2 R
n:

Definition 1.94. Let k � k be a norm on R
n. We say the trivial solution of (1.48) is

stable on Na provided given any � > 0, there is a ı > 0 such that ky.t; z/k < � on
Na if kzk < ı: If this is not the case we say the trivial solution of (1.48) is unstable
on Na. If the trivial solution is stable on Na and limt!1 y.t/ D 0 for every solution y
of (1.48), then we say the trivial solution of (1.48) is globally asymptotically stable
on Na.
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We will use the following remark in the proof of the next theorem.

Remark 1.95. An important result [137, Theorem 2.54] in analysis gives that for
any n � n constant matrix M, there is a constant D > 0, depending on M and the
norm k � k on R

n, so that

kMzk 	 Dkzk

for all z 2 R
n.

Theorem 1.96. If the eigenvalues of A satisfy j�kj < 1, 1 	 k 	 n, then the trivial
solution of (1.48) is globally asymptotically stable on Na.

Proof. We will just prove this theorem for the case a D 0. Let r WD maxfj�kj W 1 	
k 	 ng and fix ı so that 0 	 r < ı < 1. From the Putzer algorithm (Theorem 1.88),
the solution y.t; z/ of (1.48) satisfying y.0; z/ D z is given by

y.t; z/ D Atz D
n�1X
kD0

pkC1.t/Mkz; t 2 N0: (1.49)

We now show that for each 1 	 k 	 n there is a constant Bk > 0 such that

jpk.t/j 	 Bkı
t; t 2 N0: (1.50)

By (1.44),

jp1.t C 1/j 	 rjp1.t/j; t 2 N0:

Iterating this inequality and using p1.0/ D 1, we have

jp1.t/j 	 rt; t 2 N0:

Hence if we let B1 D 1 and use the fact that r < ı we have that

jp1.t/j 	 B1ı
t; t 2 N0:

Hence (1.50) holds for k D 1: We next show that there is a constant B2 > 0 such
that

jp2.t/j 	 B2ı
t; t 2 N0:

From (1.44) we get

jp2.t C 1/j 	 rjp2.t/j C jp1.t/j
	 rjp2.t/j C rt:
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It follows from iteration and p2.0/ D 0 that

jp2.t/j 	 t � rt�1

	 t

ı

� r

ı

�t�1
ıt

for t 2 N0. L’Hôpital’s rule implies that

lim
t!1

t

ı

� r

ı

�t�1 D 0;

so there is a constant B2 > 0 so that

jp2.t/j 	 B2ı
t; t 2 N0:

Hence (1.50) holds for k D 2: Similarly, we can show that for t 2 N0

jp3.t/j 	 t.t � 1/
2

rt�2;

from which it follows that there is a B3 so that

jp3.t/j 	 B3ı
t; t 2 N0:

Continuing in this manner, we obtain constants Bk > 0, 1 	 k 	 n so that

jpk.t/j 	 Bkı
t; t 2 N0;

for k D 1; 2; � � � ; n. Using Remark 1.95 we have there are constants Dk such that

kMkzk 	 Dkkzk; 1 	 k 	 n

for all z 2 R
n: Using this and (1.49) we have that for t 2 N0,

ky.t; z/k 	
n�1X
kD0

jpkC1.t/j kMkzk

	
� n�1X

kD0
BkC1Dk

�
kzkıt

	 Cıtkzk (1.51)

where C WD Pn�1
kD0 BkC1Dk. It follows from (1.51) that the trivial solution is stable

on N0. Since 0 < ı < 1, it also follows from (1.51) that limt!1 y.t; z/ D 0. Hence
the trivial solution of (1.48) is globally asymptotically stable on N0. ut
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Example 1.97. Consider the vector difference equation

u.t C 1/ D
�
1 �5
:25 �1

	
u.t/: (1.52)

The characteristic equation for A D
�
1 �5
:25 �1

	
is �2 C 1

4
D 0 and hence the

eigenvalues of A are �1 D i
2

and �2 D � i
2
. Since

j�1j D j�2j D 1

2
< 1;

we have by Theorem 1.96 the trivial solution of (1.52) is globally asymptotically
stable on N0.

In the next theorem we give conditions under which the trivial solution of (1.48)
is unstable on Na.

Theorem 1.98. If there is an eigenvalue, �0, of A satisfying j�0j > 1, then the
trivial solution of (1.48) is unstable on Na.

Proof. Assume �0 is an eigenvalue of A so that j�0j > 1. Let v0 be a corresponding
eigenvector. Then y0.t/ D �t�a

0 v0 is a solution of equation (1.48) on Na, and

lim
t!1 ky0.t/k D lim

t!1 j�jt�akv0k D 1:

This implies that the trivial solution of (1.48) is unstable on Na. ut
Example 1.99. Consider the vector difference equation

y.t C 1/ D
��:5 3

:5 �1
	

y.t/: (1.53)

The characteristic equation for A D
��:5 3

:5 �1
	

is �2 C 3
2
� � 1 D 0 and so the

eigenvalues are �1 D :5; �2 D �2; Since j�2j D 2 > 1 we have by Theorem 1.98
that the trivial solution of (1.53) is unstable on N0:

In the next theorem we give conditions on the matrix A which implies the trivial
solution is stable on N0.

Theorem 1.100. Let �1; �2; : : : ; �n be the eigenvalues of A. Assume j�kj 	 1 and
whenever j�kj D 1, then �k is a simple eigenvalue of A. Then the trivial solution
of (1.48) is stable on Na.

Proof. We prove this theorem for the case a D 0. If all the eigenvalues of A satisfy
j�ij < 1, then by Theorem 1.96 we have that the trivial solution of (1.48) is stable on
N0. Now assume there is at least one eigenvalue of A with modulus one. Without loss
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of generality we can order the eigenvalues of A so that j�ij D 1 for i D 1; : : : ; k � 1,
where 2 	 k 	 n and j�ij < 1 for i D k; : : : ; n. From equations (1.44) and (1.45),

p1.t/ D �t
1:

Next, p2 satisfies

p2.t C 1/ D �2p2.t/C �t
1;

so (as in the annihilator method)

.E � �1I/.E � �2I/p2.t/ D 0:

Since �1 ¤ �2,

p2.t/ D B12�
t
1 C B22�

t
2;

for some constants B12, B22. Continuing in this way, we have

pi.t/ D B1i�
t
1 C � � � C Bii�

t
i

for i D 1; : : : ; k � 1. Consequently, there is a constant D > 0 so that

jpi.t/j 	 D

for i D 1; : : : ; k � 1 and t 2 N0.
From (1.44), pk.t C 1/ D �kpk.t/C pk�1.t/ and hence

jpk.t C 1/j 	 j�kjjpk.t/j C D; t 2 N0:

Choose ı D maxfj�kj; j�kC1j; : : : ; j�njg < 1. Then

jpk.t C 1/j 	 ıjpk.t/j C D:

By iteration and the initial condition pk.0/ D 0,

jpk.t/j 	 D
t�1X
jD0

ıj

	 D
1X

jD0
ıj

D D

1 � ı
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for t 2 N0. In a similar manner, we find that there is a constant D� so that

jpi.t/j 	 D�

for i D 1; 2; : : : ; n and t 2 N0.
From Theorem 1.88, the solution of equation (1.48) satisfying u.0/ D u0; is

given by

u.t/ D
n�1X
iD0

piC1.t/Miu0

and it follows that

ku.t/k 	 D�
n�1X
iD0

kMiu0k

	 Cku0k
for t 2 N0 and some C > 0. ut
Example 1.101. Consider the system

u.t C 1/ D
�

cos 
 sin 

� sin 
 cos 


	
u.t/; t 2 Na; (1.54)

where 
 is a real number. For each 
 the eigenvalues of the coefficient matrix
in (1.54) are �1;2 D e˙i
 : Since j�1j D j�2j D 1 and both eigenvalues are simple,
we have by Theorem 1.100 that the trivial solution of (1.54) is stable on Na. From
linear algebra the coefficient matrix in (1.54) is called a rotation matrix. When a
vector u is multiplied by this coefficient matrix, the resulting vector has the same
length as u, but its direction is 
 radians clockwise from u. Consequently, every
solution u of the system has all of its values on a circle centered at the origin of
radius ju.a/j. This also tells us that the trivial solution of (1.54) is stable on Na; but
not globally asymptotically stable on Na:

1.11 Floquet Systems

In this section we consider the so-called Floquet system

u.t C 1/ D A.t/u.t/; t 2 Z˛; (1.55)

where ˛ 2 R and

Z˛ WD f: : : ; ˛ � 2; ˛ � 1; ˛; ˛ C 1; ˛ C 2; : : : g;
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and we assume that A.t/ is an n � n matrix function which has minimum positive
period p (p is an integer). We say that p is the prime period of A.t/. Here are
two simple scalar examples that are indicative of the behavior of general Floquet
systems.

Example 1.102. Since a.t/ WD 2 C .�1/t, t 2 Z0 is periodic with prime period
p D 2; the equation

u.t C 1/ D Œ2C .�1/t�u.t/; t 2 Z0 (1.56)

is a scalar Floquet system with prime period p D 2: Equation (1.56) can be written
in the form

�u.t/ D Œ1C .�1/t�u.t/:
By Theorem 1.14 the general solution of (1.56) is given by

u.t/ D ceh.t; 0/;

where h.t/ WD 1C .�1/t, t 2 Z0. It follows from (1.8) that for t 2 N0

u.t/ D c
t�1Y
�D0
Œ1C h.�/�

D c
t�1Y
�D0
Œ2C .�1/� �

D
(
.
p
3/t; if t is even

.
p
3/tC1; if t is odd:

It is easy to check that the last expression above is also true for negative integers.
Define the p D 2 periodic function r by

r.t/ WD
(

c; if t is even

c
p
3; if t is odd;

for t 2 Z0 and put b WD p
3. Then we have that all solutions of (1.56) are of the

form

u.t/ D r.t/bt; t 2 Z0:

Compare this with formula (1.59) in Floquet’s Theorem 1.105.
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In some cases we need b to be a complex number to write the general solution in
the form u.t/ D r.t/bt as the next example shows.

Example 1.103. Since a.t/ WD .�1/t is periodic with prime period p D 2; the
equation

u.t C 1/ D .�1/tu.t/; t 2 Z0

is a scalar Floquet system. The general solution is given by

u.t/ D ˛.�1/ t.t�1/
2 ; t 2 Z0:

We can write this solution in the form

u.t/ D r.t/bt; t 2 Z0;

where

r.t/ D ˛.�1/ t2
2 ; t 2 Z0

is periodic with period 2 and b D �i. Compare this with the formula (1.59) in
Floquet’s Theorem 1.105.

In preparation for the proof of Floquet’s Theorem, we need the following result
concerning logarithms of nonsingular matrices.

Lemma 1.104. Assume C is a nonsingular matrix and p is a positive integer. Then
there is a nonsingular matrix B such that

Bp D C:

Proof. We will prove this theorem only for 2 � 2 matrices. First consider the case
where C has two linearly independent eigenvectors. In this case, by the Jordan
canonical form theorem, there is a nonsingular matrix Q so that

C D Q�1JQ;

where

J D
�
�1 0

0 �2

	
;

and �1, �2 (�1 D �2 is possible) are the eigenvalues of C. Now we want to find a
matrix B such that

Bp D C D Q�1JQ:
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Equivalently, we want to pick B so that

QBpQ�1 D J;

or

�
QBQ�1�p D J:

Then we need to choose B so that

QBQ�1 D
"
.�1/

1
p 0

0 .�2/
1
p

#
;

so

B D Q�1
"
.�1/

1
p 0

0 .�2/
1
p

#
Q:

Finally, we consider the case where C has only one linearly independent eigen-
vector. In this case, by the Jordan canonical form theorem, there is a nonsingular
matrix Q so that

C D Q�1JQ;

where

J D
�
�1 1

0 �1

	
;

and �1 is the eigenvalue of C.
Let’s try to find a matrix B of the form

B D Q�1
�

a b
0 a

	
Q (1.57)

so that Bp D C:
Then

Bp D
�

Q�1
�

a b
0 a

	
Q

�p

D Q�1
�

a b
0 a

	p

Q

D Q�1
�

aI C
�
0 b
0 0

	 p

Q;
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where I is the 2 � 2 identity matrix. Using the binomial theorem, we get

Bp D Q�1
�

apI C pap�1
�
0 b
0 0

	
Q

D Q�1
�

ap pap�1b
0 ap

	
Q

D C D Q�1
�
�1 1

0 �1

	
Q;

if a and b are picked to satisfy

ap D �1 and pap�1b D 1:

Solving for a and b we get from (1.57) that

B D Q�1
2
4�

1
p

1
1
p�

1
p �1
1

0 �
1
p

1

3
5Q

is the desired expression for B. ut
Theorem 1.105 (Discrete Floquet’s Theorem). If ˆ.t/ is a fundamental matrix
for the Floquet system (1.55), then ˆ.t C p/ is also a fundamental matrix and
ˆ.t C p/ D ˆ.t/C; t 2 Z˛ , where

C D ˆ�1.˛/ˆ.˛ C p/: (1.58)

Furthermore, there is a nonsingular matrix function P.t/ and a nonsingular constant
matrix B such that

ˆ.t/ D P.t/Bt�˛; t 2 Z˛; (1.59)

where P.t/ is periodic on Z˛ with period p.

Proof. Assume ˆ.t/ is a fundamental matrix for the Floquet system (1.55). If
‰.t/ WD ˆ.t C p/, then ‰.t/ is nonsingular for all t 2 Z˛ , and

‰.t C 1/ D ˆ.t C p C 1/

D A.t C p/ˆ.t C p/

D A.t/‰.t/;
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for t 2 Z˛ . Hence‰.t/ D ˆ.t Cp/ is a fundamental matrix for the vector difference
equation (1.55). Since ‰.t/ and ˆ.t/ are both fundamental matrices of (1.55), we
have by Theorem 1.85, there is a nonsingular constant matrix C such that

‰.t/ D ˆ.t C p/ D ˆ.t/C; t 2 Z˛:

Letting t D ˛ and solving for C, we get that equation (1.58) holds. By Lemma 1.104,
there is a nonsingular matrix B so that Bp D C. Let

P.t/ WD ˆ.t/B�.t�˛/; t 2 Z˛: (1.60)

Note that P.t/ is nonsingular for all t 2 Z˛ and since

P.t C p/ D ˆ.t C p/B�.t�˛Cp/

D ˆ.t/CB�pB�.t�˛/

D ˆ.t/B�.t�˛/

D P.t/;

P.t/ is periodic with period p. Solving equation (1.60) for ˆ.t/, we get equa-
tion (1.59). ut
Definition 1.106. Let ˆ.t/ and C be as in Floquet’s theorem (Theorem 1.105).
Then the eigenvalues � of the matrix C are called the Floquet multipliers of the
Floquet system (1.55).

Since fundamental matrices of a linear system are not unique (see Theorem 1.85),
we must show that the Floquet multipliers are well defined. Let ˆ.t/ and ‰.t/ be
fundamental matrices for the Floquet system (1.55) and let

C1 D ˆ�1.˛/ˆ.˛ C p/ and C2 D ‰�1.˛/‰.˛ C p/:

It remains to show that C1 and C2 have the same eigenvalues. By Theorem 1.85
there is a nonsingular constant matrix F so that

‰.t/ D ˆ.t/F; t 2 Z˛:

Hence,

C2 D ‰�1.˛/‰.˛ C p/

D Œˆ.˛/F��1Œˆ.˛ C p/F�

D F�1ˆ�1.˛/ˆ.˛ C p/F

D F�1C1F:
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Since

det.C2 � �I/ D det.F�1C1F � �I/

D det F�1.C1 � �I/F

D det.C1 � �I/;

C1 and C2 have the same characteristic polynomial and therefore have the same
eigenvalues. Hence Floquet multipliers are well defined.

Theorem 1.107. The Floquet multipliers of the Floquet system (1.55) are the
eigenvalues of the matrix

D WD A.˛ C p � 1/A.˛ C p � 2/ � � � A.˛/:

Proof. To see this let ˆ.t/ be the fundamental matrix of the Floquet system (1.55)
satisfying ˆ.˛/ D I. Then the Floquet multipliers are the eigenvalues of

D D ˆ�1.˛/ˆ.˛ C p/ D ˆ.˛ C p/:

Iterating the equation

ˆ.t C 1/ D A.t/ˆ.t/;

we get that

D D ˆ.˛ C p/ D ŒA.˛ C p � 1/A.˛ C p � 2/ � � � A.˛/�ˆ.˛/

D A.˛ C p � 1/A.˛ C p � 2/ � � � A.˛/;

which is the desired result. ut
Here are some simple examples of Floquet multipliers. Note that in the scalar

case we use d instead of D.

Example 1.108. For the scalar equation

u.t C 1/ D .�1/tu.t/; t 2 Z0;

the coefficient function a.t/ D .�1/t has prime period p D 2, and d D a.1/ a.0/ D
�1, so � D �1 is the Floquet multiplier.

Example 1.109. Find the Floquet multipliers for the Floquet system

u.t C 1/ D
�

0 1

.�1/t 0
	

u.t/; t 2 Z0:



74 1 Basic Difference Calculus

The coefficient matrix A.t/ is periodic with prime period p D 2, so

D D A.1/A.0/

D
�
0 1

�1 0
	 �
0 1

1 0

	

D
�
1 0

0 �1
	
:

Consequently, �1 D 1; �2 D �1 are the Floquet multipliers.

The following theorem demonstrates why the term multiplier is appropriate.

Theorem 1.110. The number � is a Floquet multiplier for the Floquet sys-
tem (1.55), if and only if there is a nontrivial solution u.t/ of (1.55) such that

u.t C p/ D �u.t/; t 2 Z˛:

Furthermore, if �1; �2; � � � ; �k are distinct Floquet multipliers, then there are k
linearly independent solutions, ui.t/; 1 	 i 	 k of the Floquet system (1.55) on Z˛

satisfying

ui.t C p/ D �iui.t/; t 2 Z˛; 1 	 i 	 k:

Proof. Assume �0 is a Floquet multiplier of (1.55). Then �0 is an eigenvalue of the
matrix C given by equation (1.58). Let u0 be an eigenvector of C corresponding to
�0, and ˆ.t/ be a fundamental matrix for (1.55). Define

u.t/ WD ˆ.t/u0 t 2 Z˛:

Then u.t/ is a nontrivial solution of (1.55), and from Floquet’s theorem ˆ.t C p/ D
ˆ.t/C. Hence, we have

u.t C p/ D ˆ.t C p/u0

D ˆ.t/Cu0

D ˆ.t/�0u0

D �0u.t/;

for t 2 Z˛: The proof of the converse is essentially reversing the above steps. The
proof of the last statement in this theorem is Exercise 1.89. ut

In Example 1.109 we saw that 1 and �1were Floquet multipliers. Theorem 1.110
implies that there are linearly independent solutions that are periodic with periods
2 and 4. The next theorem shows how a Floquet system can be transformed into an
autonomous system.



1.11 Floquet Systems 75

Theorem 1.111. Let ˆ.t/ D P.t/Bt�˛ , t 2 Z˛ , be as in Floquet’s theorem. Then
y.t/ is a solution of the Floquet system (1.55) if and only if

z.t/ D P�1.t/y.t/; t 2 Z˛

is a solution of the autonomous system

z.t C 1/ D Bz.t/; t 2 Z˛:

Proof. Assume y.t/ is a solution of the Floquet system (1.55). Then there is a
column vector w so that

y.t/ D ˆ.t/w D P.t/Bt�˛w; t 2 Z˛:

Let z.t/ WD P�1.t/y.t/, t 2 Z˛: Then z.t/ D P�1.t/y.t/ D Bt�˛w. It follows that z.t/
is a solution of z.t C 1/ D Bz.t/; t 2 Z˛: The converse can be proved by reversing
the above steps. ut
Example 1.112. In this example we determine the asymptotic behavior of two
linearly independent solutions of the Floquet system

u.t C 1/ D
"

0
2C.�1/t

2
2�.�1/t

2
0

#
u.t/; t 2 Z0:

First we find the Floquet multipliers for this Floquet system. For this system, p D 2

and thus

D D A.1/A.0/

D
�
0 1

2
3
2
0

	 �
0 3

2
1
2
0

	

D
�
1
4
0

0 9
4

	
:

Hence the Floquet multipliers are �1 D 1
4

and �2 D 9
4
. Since j�1j D 1

4
< 1 and

j�2j D 9
4
> 1, we get there are two linearly independent solutions u1.t/, u2.t/ on Z0

satisfying

lim
t!1 ku1.t/k D 0; lim

t!1 ku2.t/k D 1:

Using Theorem 1.111 one can prove (see Exercise 1.92) the following stability
theorem for Floquet systems.



76 1 Basic Difference Calculus

Theorem 1.113. Let �1; �2, : : : , �n be the Floquet multipliers of the Floquet
system (1.55). Then the trivial solution is

(i) globally asymptotically stable iff k�ik < 1, 1 	 i 	 nI
(ii) stable provided k�ik 	 1; 1 	 i 	 n and whenever k�ik D 1, then �i is a

simple eigenvalue;
(iii) unstable provided there is an i0; 1 	 i0 	 n, such that k�ik > 1:
Example 1.114. By Theorem 1.113 the trivial solution of the Floquet system in
Example 1.112 is globally asymptotically stable.

We conclude this section by mentioning that although in this chapter we have
explored a substantial introduction to the classical difference calculus, there are
naturally many stones we have left unturned. So, for the reader who is interested
in more advanced and specialized techniques from the classical theory of difference
equations, we encourage him or her to consult the book by Kelley and Peterson
[135] for a multitude of related results.

1.12 Exercises

1.1. Show that if f W Nb
a ! R satisfies �f .t/ D 0 for t 2 N

b�1
a , then f .t/ D C for

t 2 N
b
a, where C is a constant.

1.2. Prove the product rules

(i) �.f .t/g.t// D f .�.t//�g.t/C�f .t/g.t/I
(ii) �.f .t/g.t// D f .t/�g.t/C�f .t/g.�.t//:

Why does (i) imply (ii)?

1.3. Show that �.1/ D 1 and that for any positive integer that �.n C 1/ D nŠ:

1.4. Show that for x a real variable that limx!0C �.x/ D C1:

1.5. Show that �.1=2/ D p
	: Hint first show that

�
�.1=2/

�2
D 4

Z 1

0

Z 1

0

e�x2�y2dx dy:

1.6. By Exercise 1.5, �.1=2/ D p
	 . Find �.5=2/ and �.�3=2/:

1.7. Use the definition of the (generalized) falling function (Definition 1.7) to show
that for n 2 N1,

t�n D 1

.t C 1/.t C 2/ � � � .t C n/
:
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Then use this expression directly (do not use the gamma function) to prove

�.t�n/ D �n.t�.nC1//;

t ¤ �1;�2;�3; : : : ;�n � 1:
1.8. Show that  D �. C 1/ for  ¤ 0;�1;�2;�3; : : : , and that . � k/ D 0,
 � k ¤ �1;�2;�3; � � � ; k D 1; 2; 3; � � � :
1.9. Show that

.t � �/t� D t�C1;

whenever both sides of this equation are well defined.

1.10. For integers m and n satisfying m > n � 0, evaluate the binomial coefficient�n
m

�
:

1.11. Evaluate each of the following binomial coefficients:

(i)
�t

t

�
for t ¤ �1;�2;�3; : : : I

(ii)
�
1
3
2

�I
(iii)

� 1
2
3
2

�I
(iv)

�p2C2p
2

�
:

1.12. Prove each of the following:

(i)
�t

r

� D � t
t�r

�I
(ii)

�t
r

� D t
r

�t�1
r�1
�I

(iii)
�t

r

� D �t�1
r

�C �t�1
r�1
�I

(iv)
��

k

� D .�1/k�kC�1
�1

�I
(v)

�
�C


� D �
�C
�

�
:

where in (iv)  > 0 and k 2 N0:

1.13. Prove Theorem 1.10.

1.14. For each of the following, find ep.t; a/ given that

(i) p.t/ D 7; t 2 Na; a D 5I
(ii) p.t/ D 2

tC1 ; t 2 Na; a D 0I
(iii) p.t/ D 4

t ; t 2 N1; a D 1I
(iv) p.t/ D 3�t

.tC1/.tC7/ ; t 2 N0; a D 0:

1.15. Let P.t/ be the population of a bacteria in a culture after t hours. Assuming
that P satisfies the IVP

�P.t/ D 9P.t/; P.0/ D 5; 000

use Theorem 1.14 to find a formula for P.t/:
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1.16 (Compound Interest). A bank pays interest with an annual interest rate of
8% and interest is compounded 4 times a year. If $100 is invested, how much money
do you have after 20 years?

1.17 (Radioactive Decay). Let R.t/ be the amount of the radioactive isotope Pb-
209 present at time t. Assume initially that R0 is the amount of Pb-209 present and
that the change in the amount of Pb-209 each hour is proportional to the amount
present at the beginning of that hour and the half life of Pb-209 is 3.3 hours. Find a
formula for R.t/. How long does it take for 70% of the Pb-209 to decay?

1.18. Show that if p; q 2 R, then

.p � q/.t/ D p.t/ � q.t/

1C q.t/
; t 2 Na:

1.19. Complete the proof of Theorem 1.16 by showing that the addition ˚ on R is
associative and commutative.

1.20. Show that the set of positively regressive functions RC with the addition ˚
is a subgroup of the set of regressive functions R:
1.21. Prove Theorem 1.21 if a is replaced by s, where s 2 Na:

1.22. Prove parts (iv) and (v) of Theorem 1.25.

1.23. Prove part (ii) of Theorem 1.27.

1.24. Prove that if p 2 R and n 2 N1, then

n ˇ p D p ˚ p ˚ � � � ˚ p;

where the right-hand side has n terms.

1.25. Prove that if p; q 2 RC and ˛; ˇ 2 R, then the following hold:

(i) ˛ ˇ .ˇ ˇ p/ D .˛ˇ/ˇ pI
(ii) ˛ ˇ .p ˚ q/ D .˛ ˇ p/˚ .˛ ˇ q/:

1.26. Prove Theorem 1.28 directly (do not use Theorem 1.27) from the definitions
of cosp.t; a/ and sinp.t; a/.

1.27. Derive Euler’s formula (1.11)

eip.t; a/ D cosp.t; a/C i sinp.t; a/; t 2 Na:

Also derive the hyperbolic analogue of Euler’s formula

ep.t; a/ D coshp.t; a/C sinhp.t; a/; t 2 Na:
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1.28. Verify each of the following formulas for p ¤ ˙i:

(i) cosp.�.t/; a/ D cosp.t; a/ � p sinp.t; a/; t 2 NaI
(ii) sinp.�.t/; a/ D sinp.t; a/C p cosp.t; a/; t 2 NaI

(iii) cosp.t � 1; a/ D 1
1Cp2

Œcosp.t; a/C p sinp.t; a/�; t 2 NaC1I
(iv) sinp.t � 1; a/ D 1

1Cp2
Œsinp.t; a/ � p cosp.t; a/�; t 2 NaC1:

1.29. Prove Theorem 1.40.

1.30. Prove Theorem 1.42.

1.31. Using a delta integral (see Example 1.57) find

(i) the sum of the first n positive integers;
(ii) the sum of the cubes of the first n positive integers.

1.32. Show by direct substitution that y.t/ D .t � a/er.t; a/, r ¤ �1, is a solution
of the second order linear equation �2y.t/ � 2r�y.t/C r2y.t/ D 0:

1.33. Solve each of the following difference equations:

(i) �2y.t/ � 5�y.t/C 6y.t/ D 0; t 2 N0I
(ii) �2y.t/C 2�y.t/ � 8y.t/ D 0; t 2 N0I

(iii) �2y.t/ � 2�y.t/C 5y.t/ D 0; t 2 NaI
(iv) �2y.t/C y.t/ D 0; t 2 N0I
(v) �2y.t/C 6�y.t/C 9y.t/ D 0; t 2 N0I

(vi) �2y.t/C 8�y.t/C 16y.t/ D 0; t 2 N0:

1.34. Solve each of the following difference equations:

(i) u.t C 2/C 4u.t C 1/ � 5u.t/ D 0; t 2 ZI
(ii) u.t C 2/ � 4u.t C 1/C 8u.t/ D 0; t 2 ZI

(iii) u.t C 3/ � u.t C 2/ � 8u.t C 1/C 12u.t/ D 0; t 2 N0:

1.35. Solve each of the following linear difference equations:

(i) �2y.t/C 2�y.t/C 2y.t/ D 0; t 2 NaI
(ii) �2y.t/C 2�y.t/C 10y.t/ D 0; t 2 Na:

1.36. Show that a second order linear homogeneous equation of the form�2y.t/C
p.t/�y.t/ C q.t/y.t/ D 0 with p.t/ ¤ 1 C q.t/ is equivalent to an equation of the
form y.t C 2/C c.t/y.t C 1/C d.t/y.t/ D 0 with d.t/ ¤ 0.

1.37 (Real Roots). Find the value of the determinant of the t by t matrix with
all 4’s on the diagonal, 1’s on the superdiagonal, 3’s on the subdiagonal, and 0’s
elsewhere.

1.38 (Complex Roots). Find the value of the determinant of the t by t matrix with
all �2’s on the diagonal, 4’s on the superdiagonal, 1’s on the subdiagonal, and 0’s
elsewhere.
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1.39 (Complex Roots). Find the value of the determinant of the t by t matrix with
all 2’s on the diagonal, 4’s on the superdiagonal, 1’s on the subdiagonal, and 0’s
elsewhere.

1.40. What would you guess are general solutions of each of the following:

(i) �3y.t/ � 6�2y.t/C 11�y.t/ � 6y.t/ D 0; t 2 N0I
(ii) �3y.t/ ��2y.t/ � 8�y.t/C 12y.t/ D 0; t 2 N0I

(iii) �3y.t/ � 7�2y.t/C 16�y.t/ � 10y.t/ D 0; t 2 N0‹

1.41. Show that if F.t/ is the t-th term in the Fibonacci sequence (see
Example 1.32), then

lim
t!1

F.t C 1/

F.t/
D 1C p

5

2
:

The ratio 1Cp
5

2
is known as the “golden section” and was considered by the ancient

Greeks to be the most aesthetically pleasing ratio of the length of a rectangle to its
width.

1.42. In how many ways can you tile a 1 � n, hallway, n � 2, if you have green
1 � 1 tiles and red and yellow 1 � 2 tiles?

1.43. Solve the following difference equations:

(i) u.t C 2/C 2u.t C 1/ � 8u.t/ D 0; t 2 N0I
(ii) u.t C 2/ � 6u.t C 1/C 9u.t/ D 0 t 2 N0I

(iii) u.t C 2/C 2u.t C 1/C 4u.t/ D 0; t 2 N0:

1.44. Solve the following difference equations:

(i) u.t C 2/C 8u.t C 1/ � 9u.t/ D 0; t 2 N0I
(ii) u.t C 2/C 9u.t/ D 0 t 2 N0I

(iii) u.t C 3/C u.t C 2/ � 8u.t C 1/ � 12u.t/ D 0; t 2 N0:

1.45. Solve the following difference equations:

(i) u.t C 2/ � 3u.t C 1/ � 10u.t/ D 0; t 2 N0I
(ii) u.t C 2/ � 8u.t C 1/C 16u.t/ D 0 t 2 N0I

(iii) u.t C 2/ � 4u.t C 1/C 16u.t/ D 0 t 2 N0I
(iv) u.t C 3/ � 3u.t C 2/ � 9u.t C 1/C 27u.t/ D 0; t 2 N0:

1.46. Use the method of annihilators to solve the following difference equations:

(i) y.t C 2/ � 5y.t C 1/C 4y.t/ D 4t; t 2 N0I
(ii) y.t C 2/ � y.t C 1/ � 6y.t/ D 5t; t 2 N0I

(iii) y.t C 2/ � 2y.t C 1/ � 8y.t/ D 2.4/t; t 2 N0:

1.47. Use the method of annihilators to solve the following difference equations:

(i) y.t C 2/ � 3y.t C 1/C 2y.t/ D 3tI t 2 N0I
(ii) y.t C 2/ � 3y.t C 1/ � 4y.t/ D 4t; t 2 N0I

(iii) y.t C 2/ � 6y.t C 1/C 8y.t/ D 3t; t 2 N0:
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1.48. Use integration by parts to evaluate each of the following:

(i)
R

t23t�t; t 2 N0I
(ii)

Pt�1
sD0 s2s; t 2 N0I

(iii)
R � t

2

�2
�t; t 2 N0:

1.49. Evaluate
Pn

kD0 k5k for n 2 N0:

1.50. Use integration by parts to evaluate each of the following:

(i)
R � t

2

�� t
5

�
�t; t 2 N0I

(ii)
R

t
.tC1/.tC2/.tC3/�t; t 2 N0I

(iii)
Pn�1

kD1 k
2k ; n 2 N0:

1.51. Show directly (do not use Theorem 1.62) that if f W Na ! R is a polynomial
of degree n, then f .t/ D f .a/C�f .a/h1.t; a/C � � � C�nf .a/hn.t; a/; here hk.t; a/,
k 2 N0 are the Taylor monomials.

1.52. Solve the IVP in Example 1.66 by twice integrating both sides of�2y.t/ D 3t

from 0 to t.

1.53 (Tower of Hanoi Problem). Assume you have three vertical pegs with n
rings of different sizes on the first peg with larger rings below smaller ones. Find
the minimum number of moves, y.n/, that it takes in moving the n rings on the first
peg to the third peg. A move consists of transferring a single ring from one peg to
another peg with the restriction that a larger ring cannot be placed on a smaller ring.
(Hint: Find a first order linear equation that y.n/ satisfies and use Theorem 1.68 to
find y.n/:)

1.54. Suppose that at the beginning of each year we deposit $2; 000 dollars in an
IRA account that pays an annual interest rate of 4%. Find an IVP that the amount of
money, y.t/; that we have in the account after t years satisfies and use Theorem 1.68
to find y.t/. How much money do we have in the account after 25 years?

1.55. Suppose at the beginning of each year that we deposit $3; 000 dollars in an
IRA account that pays an annual interest rate of 5%. How much money, y.t/, will
we have in our IRA account at the end of the t-th year?

1.56. Prove that the IVP in Theorem 1.68 has a unique solution on Na.

1.57 (Newton’s Law of Cooling). A small object of temperature 70 degrees F is
placed at time t D 0 in a large body of water with constant temperature 40 degrees F.
After 10 minutes the temperature of the object is 60 degrees F. Experiments indicate
that during each minute the change in the temperature of the object is proportional
to the difference of the temperature of the object and the water at the beginning of
that minute. What is the temperature of the object after 5 minutes? When will the
temperature of the object be 50 degrees F?
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1.58. Solve each of the following first order linear difference equations

(i) �y.t/ D 2y.t/C 3t; t 2 N0I
(ii) y.t C 1/ � 4y.t/ D 4t

� t
5

�
; t 2 N0I

(iii) �y.t/ D p.t/y.t/C ep.t; a/; t 2 NaI
(iv) �y.t/ � 1

t y.t/ D t2 � 1; t 2 N1;

where in (iii) we assume p 2 R:
1.59. Solve each of the following first order linear difference equations

(i) y.t C 1/ � 3y.t/ D 4t; t 2 N0I
(ii) �y.t/ D 2y.t/C 3t; t 2 N0:

1.60. Show that the operators � � tI and � � 2I, where I is the identity operator,
as operators on the set of functions mapping Na to R do not commute.

1.61. Show that the operators t��˛I and t��ˇI commute, where I is the identity
operator and ˛ and ˇ are constants, as operators on the set of functions mapping Na

to C.

1.62. Use the method of factoring to solve each of the following difference
equations:

(i) �2y.t/ � 5�y.t/C 6y.t/ D 0; t 2 NaI
(ii) �2y.t/C 6�y.t/C 9y.t/ D 0; t 2 NaI

(iii) �2y.t/ � 1C3t
t �y.t/C 3

t y.t/ D 0; t 2 N1I
(iv) �2y.t/ � .t C 4/�y.t/C .3t � 1/y.t/ D 0; t 2 N0:

1.63. Use the method of factoring to solve each of the following difference
equations:

(i) y.t C 2/ � .t C 4/y.t C 1/C .2t C 2/y.t/ D 0; t 2 N0I
(ii) u.t C 2/ � .t C 3/u.t C 1/C 2tu.t/ D 0; t 2 N1:

1.64. Solve the following Euler–Cauchy difference equations:

(i) t�.t/�2y.t/ � 5t�y.t/C 9y.t/ D 0; t 2 N1I
(ii) t�.t/�2y.t/ � 9t�y.t/C 25y.t/ D 0; t 2 N1:

1.65. Solve the following Euler–Cauchy difference equations:

(i) t.t C 1/�2y.t/C 4t�y.t/C 2y.t/ D 0; t 2 N2I
(ii) t�.t/�2y.t/C 9t�y.t/C 16y.t/ D 0; t 2 N5I

(iii) t�.t/�2y.t/ � 6t�y.t/C 12y.t/ D 0; t 2 N1:

1.66. Solve the following Euler–Cauchy difference equations:

(i) t�.t/�2y.t/ � 5t�y.t/C 3y.t/ D 0; t 2 N1I
(ii) .t� � 5I/ .t� � 2I/ y.t/ D 0; t 2 N1I

(iii) t�.t/�2y.t/C t�y.t/C 4y.t/ D 0; t 2 N1:
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1.67. Solve the following Euler–Cauchy difference equations:

(i) .t� � 2I/ .t� � 3I/ .t� � 4I/ y.t/ D 0; t 2 N1I
(ii) .t� � 4I/ .t� � 2I/ .t� � 2I/ y.t/ D 0; t 2 N1:

1.68. Prove Theorem 1.86.

1.69. Use the variation of constants formula as in Example 1.66 to solve the IVP

�2y.t/ D t3; t 2 N0;

y.0/ D y.1/ D 0:

1.70. Use the variation of constants formula as in Example 1.66 to solve the IVP

�2y.t/ D cosp.t; 0/; t 2 N0

y.0/ D y.1/ D 0;

where p ¤ 0;˙i is a constant.

1.71. Assume A.t/ is a regressive matrix function on Na. Show that ˆ.t/ is a
fundamental matrix of �u.t/ D A.t/u.t/ if and only if its columns are n linearly
independent solutions of the vector equation �u.t/ D A.t/u.t/ on Na.

1.72. Show that

ˆ.t/ WD
�
.�2/t .�1/t
.�2/tC1 .�1/tC1

	

D .�1/t
�

2t 1

�2tC1 �1
	

is a fundamental matrix of the system

u.t C 1/ D
�
0 1

�2 �3
	

u.t/:

1.73. Prove Theorem 1.82.

1.74. Prove that if A.t/ is a regressive matrix function on Na, then

.�A/.t/ D �A.t/ŒI C A.t/��1

for t 2 Na.

1.75. Show that if Y.t/ is invertible for t 2 Na, then

�


Y�1.t/

� D �Y�1.t/�Y.t/ .Y� .t//�1 ;

for t 2 Na:
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1.76. For each of the following show directly that the given matrix satisfies its own
characteristic equation.

(i) A D
2
4
2 1 3

�1 2 0

1 �2 3

3
5 I

(ii) A D
�

a b
c d

	
:

1.77. Find 2 by 2 matrices A and B such that AtBt ¤ .AB/t for some t � 1: Show
that if two n by n matrices C and D commute, then .CD/t D CtDt for t D 0; 1; 2; � � � :
1.78. Prove part (viii) of Theorem 1.84, that is

eA.t; s/ D e�1
A .s; t/ D e��A�.s; t/;

where A� denotes the conjugate transpose of the matrix A:

1.79. Prove part (ix) of Theorem 1.84, that is B.t/eA.t; t0/ D eA.t; t0/B.t/, if A.t/
and B.�/ commute for all t; � 2 Na:

1.80. Solve each of the following systems:

(i) u.t C 1/ D
�
1 �1
1 1

	
u.t/I

(ii) u.t C 1/ D
�
1 �4
2 �3

	
u.t/I

(iii) u.t C 1/ D
2
4
8 �4 0
9 �4 0
2 �1 3

3
5 u.t/I

(iv) u.t C 1/ D
2
4
1 0 0

1 0 1

0 1 0

3
5 u.t/:

1.81. Solve each of the following IVPs:

(i) u.t C 1/ D
�
1 1

�1 3
	

u.t/; u.0/ D
�
2

�1
	

I

(ii) u.t C 1/ D
�
2 0

0 1

	
u.t/C

�
2t

3t

	
; u.0/ D

�
1

2

	
I

(iii) u.t C 1/ D
�
2 1

�1 4
	

u.t/C
�
3�t

0

	
; u.0/ D

�
1

�1
	
:

1.82. Solve each of the following IVPs:

(i) u.t C 1/ D
�
4 1

�1 2
	

u.t/C
�
1

2

	
; u.0/ D

�
1

�1
	

I
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(ii) u.t C 1/ D
�
2 2

2 �1
	

u.t/C
�
1

0

	
; u.0/ D

�
1

1

	
I

(iii) u.t C 1/ D
��1 4
�3 6

	
u.t/C

�
0

3t

	
; u.0/ D

�
1

1

	
:

1.83. Use Putzer’s algorithm (see Example 1.89) to find eA.t; 0/ for each of the
following:

(i) A D
�
3 1

�1 1

	
I

(ii) A D
�
0 �1
1 2

	
I

(iii) A D
�
2 1

�1 2

	
:

1.84. Let

A D
�
0 1

�c �d

	
:

Show that if the matrix A has a multiple characteristic root with modulus one, then
the vector equation y.t C 1/ D Ay.t/, t 2 N0, has an unbounded solution and hence
the trivial solution of y.t C 1/ D Ay.t/ is unstable on N0: Relate this example to
Theorem 1.100.

1.85. Prove the following result. Assume A is an n � n constant matrix and f W
N0 ! R

n. Then the solution of the IVP

u.t C 1/ D Au.t/C f .t/; u.0/ D u0 (1.61)

where u0 is a given n � 1 constant vector has a unique solution given by

u.t/ D Atu0 C
Z t

0

At�s�1f .s/�s; t 2 N0:

1.86. Without solving y.tC1/ D Ay.t/; t 2 Na; determine the stability of the trivial
solution of y.t C 1/ D Ay.t/ on Na for each of the following cases:

(i) A D
�
0 1

� 1
2
1

	
I

(ii) A D
�
0 1
1
6

1
6

	
I

(iii) A D
2
4
1
2

0 0

0 1
2
2
3

0 � 2
3
1
2

3
5 :
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1.87. Find the Floquet multiplier of each of the following difference equations:

(i) y.t C 1/ D cos. 2	 t
3
/y.t/I

(ii) y.t C 1/ D 2C.�1/t
3

y.t/:

1.88. Find the Floquet multipliers of the Floquet system

u.t C 1/ D
"

0 1C 3C.�1/t
2

3�.�1/t
2

0

#
u.t/:

1.89. Show that if �1; �2; : : : ; �k are distinct Floquet multipliers, then there are k
linearly independent solutions, yi.t/; 1 	 i 	 k; of the Floquet system (1.55) on Z

satisfying

yi.t C p/ D �iyi.t/; t 2 Z; 1 	 i 	 k:

1.90. Find the Floquet multipliers of the Floquet system

u.t C 1/ D
�

1 sin
�
	
2

t
�

cos
�
	
2

t
�

1

	
u.t/; t 2 Z0:

1.91. Find the Floquet multipliers of the Floquet system

u.t C 1/ D
�

1 sin
�
2	
3

t
�

cos
�
2	
3

t
�

1

	
u.t/; t 2 Z0:

1.92. Prove Theorem 1.113.



Chapter 2
Discrete Delta Fractional Calculus and Laplace
Transforms

2.1 Introduction

At the outset of this chapter we will be concerned with the (delta) Laplace transform,
which is a special case of the Laplace transform studied in the book by Bohner and
Peterson [62]. We will not assume the reader has any knowledge of the material
in that book. The delta Laplace transform is equivalent under a transformation
to the Z-transform, but we prefer the definition of the Laplace transform given
here, which has the property that many of the Laplace transform formulas will
be analogous to the Laplace transform formulas in the continuous setting. We will
show how we can use the (delta) Laplace transform to solve initial value problems
for difference equations and to solve summation equations. We then develop the
discrete delta fractional calculus. Finally, we apply the Laplace transform method
to solve fractional initial value problems and fractional summation equations.

The continuous fractional calculus has been well developed (see the books by
Miller and Ross [147], Oldham and Spanier [152], and Podlubny [153]). But only
recently has there been a great deal of interest in the discrete fractional calculus (see
the papers by Atici and Eloe [32–36], Goodrich [88–96], Miller and Ross [146],
and M. Holm [123–125]). More specifically, the discrete delta fractional calculus
has been recently studied by a variety of authors such as Atici and Eloe [31, 32,
34, 35], Goodrich [88, 89, 91, 92, 94, 95], Miller and Ross [147], and M. Holm
[123–125]. As we shall see in this chapter, one of the peculiarities of the delta
fractional difference is its domain shifting properties. This property makes, in
certain ways, the study of the delta fractional difference more complicated than
its nabla counterpart, as a comparison of the present chapter to Chap. 3 will
demonstrate.

© Springer International Publishing Switzerland 2015
C. Goodrich, A.C. Peterson, Discrete Fractional Calculus,
DOI 10.1007/978-3-319-25562-0_2

87



88 2 Discrete Delta Fractional Calculus and Laplace Transforms

2.2 The Delta Laplace Transform

In this section we develop properties of the (delta) Laplace transform. First we give
an abstract definition of this transform.

Definition 2.1 (Bohner–Peterson [62]). Assume f W Na ! R: Then we define the
(delta) Laplace transform of f based at a by

Laff g.s/ D
Z 1

a
e�s.�.t/; a/f .t/�t

for all complex numbers s ¤ �1 such that this improper integral converges.

The following theorem gives two useful expressions for the Laplace transform
of f .

Theorem 2.2. Assume f W Na ! R. Then

La ff g .s/ D Fa.s/ WD
Z 1

0

f .a C k/

.s C 1/kC1�k (2.1)

D
1X

kD0

f .a C k/

.s C 1/kC1 ; (2.2)

for all complex numbers s ¤ �1 such that this improper integral (infinite series)
converges.

Proof. To see that (2.1) holds note that

La ff g .s/ D
Z 1

a
e�s.�.t/; a/f .t/�t

D
1X

tDa

e�s.�.t/; a/f .t/

D
1X

tDa

Œ1C �s��.t/�af .t/

D
1X

tDa

f .t/

.1C s/t�aC1

D
1X

kD0

f .a C k/

.1C s/kC1 :
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This also gives us that

La ff g .s/ D
Z 1

0

f .a C k/

.1C s/kC1�k:

ut
To find functions such that the Laplace transform exists on a nonempty set we

make the following definition.

Definition 2.3. We say that a function f W Na ! R is of exponential order r > 0

(at 1) if there exists a constant A > 0 such that

jf .t/j 	 Art; for t 2 Na; sufficiently large.

Now we can prove the following existence theorem.

Theorem 2.4 (Existence Theorem). Suppose f W Na ! R is of exponential order
r > 0. Then La ff g .s/ converges absolutely for js C 1j > r:

Proof. Assume f W Na ! R is of exponential order r > 0. Then there is a constant
A > 0 and an m 2 N0 such that for each t 2 NaCm; jf .t/j 	 Art. Hence for
js C 1j > r,

1X
kDm

ˇ̌
ˇ̌ f .k C a/

.s C 1/kC1

ˇ̌
ˇ̌ D

1X
kDm

jf .k C a/j
js C 1jkC1

	
1X

kDm

ArkCa

js C 1jkC1

D Ara

js C 1j
1X

kDm

�
r

js C 1j
�k

D Ara

js C 1j

�
r

jsC1j
�m

1 �
�

r
jsC1j

�

D A
jsC1jm

raCm

js C 1j � r

< 1:

Hence, the Laplace transform of f converges absolutely for js C 1j > r. ut
We will see later (see Remark 2.57) that the converse of Theorem 2.4 does not hold
in general.

In this chapter, we will usually consider functions f of some exponential order
r > 0; ensuring that the Laplace transform of f does in fact converge somewhere
in the complex plane—specifically, it converges for all complex numbers outside
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the closed ball of radius r centered at negative one, that is, for js C 1j > r: We
will abuse the notation by sometimes writing Laff .t/g.s/ instead of the preferred
notation Laff g.s/:
Example 2.5. Clearly, ep .t; a/ ; p ¤ �1; a constant, is of exponential order r D
j1C pj > 0: Therefore, we have for js C 1j > r D j1C pj;

La
˚
ep.t; a/

�
.s/ D La

˚
.1C p/t�a� .s/

D
1X

kD0

.1C p/k

.s C 1/kC1

D 1

s C 1

1X
kD0

�
p C 1

s C 1

�k

D 1

s C 1

 
1

1 � pC1
sC1

!

D 1

s � p
:

Hence

Lafep.t; a/g.s/ D 1

s � p
; js C 1j > j1C pj:

An important special case (p D 0) of the above formula is

La f1g .s/ D 1

s
; for js C 1j > 1:

In the next theorem we see that the Laplace transform operator La is a linear
operator.

Theorem 2.6 (Linearity). Suppose f ; g W Na ! R and the Laplace transforms of f
and g converge for js C 1j > r, where r > 0, and let c1; c2 2 C. Then the Laplace
transform of c1f C c2g converges for js C 1j > r and

La fc1f C c2gg .s/ D c1La ff g .s/C c2La fgg .s/ ; (2.3)

for js C 1j > r:

Proof. Since f ; g W Na ! R and the Laplace transforms of f and g converge for
js C 1j > r, where r > 0, we have that for js C 1j > r
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c1La ff g .s/C c2La fgg .s/

D c1

1X
kD0

f .a C k/

.s C 1/kC1 C c2

1X
kD0

g.a C k/

.s C 1/kC1

D
1X

kD0

.c1f C c2g/.a C k/

.s C 1/kC1

D Lafc1f C c2gg.s/:

This completes the proof. ut
The following uniqueness theorem is very useful.

Theorem 2.7 (Uniqueness). Assume f ; g W Na ! R and there is an r > 0 such that

La ff g .s/ D La fgg .s/

for js C 1j > r. Then

f .t/ D g.t/; for all t 2 Na:

Proof. By hypothesis we have that

La ff g .s/ D La fgg .s/

for js C 1j > r. This implies that

1X
kD0

f .a C k/

.s C 1/kC1 D
1X

kD0

g.a C k/

.s C 1/kC1

for js C 1j > r. It follows from this that

f .a C k/ D g.a C k/; k 2 N0;

and this completes the proof. ut
Next we give the Laplace transforms of the (delta) hyperbolic sine and cosine

functions.

Theorem 2.8. Assume p ¤ ˙1 is a constant. Then

(i) Lafcoshp.t; a/g.s/ D s
s2�p2

I
(ii) Lafsinhp.t; a/g.s/ D p

s2�p2
;

for js C 1j > maxfj1C pj; j1 � pjg:
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Proof. To see that (ii) holds, consider

Lafsinhp.t; a/g.s/ D 1

2


Lafep.t; a/g.s/ � Lfe�p.t; a/g.s/
�

D 1

2

1

s � p
� 1

2

1

s C p

D p

s2 � p2

for js C1j > maxfj1C pj; j1� pjg: The proof of (i) is similar (see Exercise 2.5). ut
Next, we give the Laplace transforms of the (discrete) sine and cosine functions.

Theorem 2.9. Assume p ¤ ˙i. Then

(i) Lafcosp.t; a/g.s/ D s
s2Cp2

I
(ii) Lafsinp.t; a/g.s/ D p

s2Cp2
;

for js C 1j > maxfj1C ipj; j1 � ipjg:
Proof. To see that (i) holds, note that

Lafcosp.t; a/g.s/ D Lafcoship.t; a/g.s/

D 1

2


Lafeip.t; a/g.s/C Lfe�ip.t; a/g.s/
�

D 1

2

1

s � ip
C 1

2

1

s C ip

D s

s2 C p2
;

for js C 1j > maxfj1C ipj; j1� ipjg: For the proof of part (ii) see Exercise 2.6. ut
Theorem 2.10. Assume ˛ ¤ �1 and ˇ

1C˛ ¤ ˙1: Then

(i) Lafe˛.t; a/ cosh ˇ
1C˛

.t; a/g.s/ D s�˛
.s�˛/2�ˇ2 I

(ii) Lafe˛.t; a/ sinh ˇ
1C˛

.t; a/g.s/ D ˇ

.s�˛/2�ˇ2 ;

for js C 1j > maxfj1C ˛ C ˇj; j1C ˛ � ˇjg:
Proof. To see that (i) holds, for js C 1j > maxfj1C ˛ C ˇj; j1C ˛ � ˇjg; consider

Lafe˛.t; a/ cosh ˇ
1C˛

.t; a/g.s/

D 1

2
Lafe˛.t; a/e ˇ

1C˛

.t; a/g.s/C 1

2
Lafe˛.t; a/e �ˇ

1C˛

.t; a/g.s/

D 1

2
Lafe

˛˚ ˇ
1C˛

.t; a/g.s/C 1

2
Lafe

˛˚ �ˇ
1C˛

.t; a/g.s/
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D 1

2
Lafe˛Cˇ.t; a/g.s/C 1

2
Lafe˛�ˇ.t; a/g.s/

D 1

2

1

s � ˛ � ˇ C 1

2

1

s � ˛ C ˇ

D s � ˛
.s � ˛/2 � ˇ2 :

The proof of (ii) is Exercise 2.7. ut
Similar to the proof of Theorem 2.10 one can prove the following theorem.

Theorem 2.11. Assume ˛ ¤ �1 and ˇ

1C˛ ¤ ˙i: Then

(i) Lafe˛.t; a/ cos ˇ
1C˛

.t; a/g.s/ D s�˛
.s�˛/2Cˇ2 I

(ii) Lafe˛.t; a/ sin ˇ
1C˛

.t; a/g.s/ D ˇ

.s�˛/2Cˇ2 ;

for js C 1j > maxfj1C ˛ C iˇj; j1C ˛ � iˇjg:
When solving certain difference equations one frequently uses the following

theorem.

Theorem 2.12. Assume that f is of exponential order r > 0. Then for any positive
integer N

La
˚
�Nf

�
.s/ D sNFa.s/ �

N�1X
jD0

sj�N�1�jf .a/; (2.4)

for js C 1j > r.

Proof. By Exercise 2.2 we have for each positive integer N, the function �Nf is of
exponential order r. Hence, by Theorem 2.4 the Laplace transform of �Nf for each
N � 1 exists for js C 1j > r. Now integrating by parts we get

Laf�f g.s/ D
Z 1

a
e�s.�.t/; a/�f .t/�t

D e�s.t; a/f .t/jb!1
a �

Z 1

a
�se�s.t; a/f .t/�t

D �f .a/C s
Z 1

a
e�s.�.t/; a/f .t/�t

D sFa.s/ � f .a/

for js C 1j > r: Hence (2.4) holds for N D 1. Now assume N � 1 and (2.4)
holds. Then

Laf�NC1f g.s/ D Laf� ��Nf
�g.s/

D sLaf�Nf g.s/ ��Nf .a/
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D s

2
4sNFa.s/ �

N�1X
jD0

sj�N�1�jf .a/

3
5 ��Nf .a/

D sNC1Fa.s/ �
.NC1/�1X

jD0
sj�.NC1/�1�jf .a/:

Hence (2.4) holds for each positive integer by mathematical induction. ut
The following example is an application of formula (2.4).

Example 2.13. Use Laplace transforms to solve the IVP

�2y.t/ � 3�y.t/C 2y.t/ D 2 � 4t; t 2 N0

y.0/ D 2; �y.0/ D 4:

Assume y.t/ is the solution of the above IVP. We have, by taking the Laplace
transform of both sides of the difference equation in this example,

Œs2Y0.s/ � sy.0/ ��y.0/� � 3ŒsY0.s/ � y.0/�C 2Y0.s/ D 2

s � 3 :

Applying the initial conditions and simplifying we get

.s2 � 3s C 2/Y0.s/ D 2s � 2C 2

s � 3 :

Further simplification leads to

.s � 1/.s � 2/Y0.s/ D 2.s � 2/2
s � 3 :

Hence

Y0.s/ D 2.s � 2/
.s � 1/.s � 3/

D 1

s � 1 C 1

s � 3 :

It follows that the solution of our IVP is given by

y.t/ D e1.t; 0/C e3.t; 0/

D 2t C 4t; t 2 N0:

Now that we see that our solution is of exponential order we see that the steps we
did above are valid.
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The following corollary gives us a useful formula for solving certain summation
(delta integral) equations.

Corollary 2.14. Assume f W Na ! R is of exponential order r > 1. Then

La

�Z t

a
f .�/��


.s/ D 1

s
Laff g.s/ D Fa.s/

s

for js C 1j > r.

Proof. Since f W Na ! R is of exponential order r > 1, we have by Exercise 2.3
that the function h defined by

h.t/ WD
Z t

a
f .�/��; t 2 Na

is also of exponential order r > 1. Hence the Laplace transform of h exists for
js C 1j > r. Then

Laff g.s/ D Laf�hg.s/
D sLafhg.s/ � h.a/

D sLa

�Z t

a
f .�/��


.s/:

It follows that

La

�Z t

a
f .�/��


.s/ D 1

s
Laff g.s/ D Fa.s/

s

for js C 1j > r: ut
Example 2.15. Solve the summation equation

y.t/ D 2 � 4t C 2

t�1X
kD0

y.k/; t 2 N0: (2.5)

Equation (2.5) can be written in the equivalent form

y.t/ D 2 � e3.t; 0/C 2

Z t

0

y.k/�k; t 2 N0: (2.6)

Taking the Laplace transform of both sides of (2.6) we get, using Corollary 2.14,

Y0.s/ D 2

s � 3 C 2

s
Y0.s/:
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Solving for Y0.s/ we get

Y0.s/ D 2s

.s � 2/.s � 3/

D 6

s � 3 � 4

s � 2 :

It follows that

y.t/ D 6e3.t; 0/ � 4e2.t; 0/

D 6 � 4t � 4 � 3t; t 2 N0:

is the solution of (2.5).

Next we introduce the Dirac delta function and find its Laplace transform.

Definition 2.16. Let c 2 Na. We define the Dirac delta function at c on Na by

ıc.t/ D
(
1; t D c

0; t ¤ c:

Theorem 2.17. Assume c 2 Na. Then

Lafıcg.s/ D 1

.s C 1/c�aC1 for js C 1j > 0:

Proof. For js C 1j > 0;

Lafıcg.s/ D
1X

kD0

ıc.a C k/

.s C 1/kC1

D 1

.s C 1/c�aC1 :

This completes the proof. ut
Next we define the unit step function and later find its Laplace transform.

Definition 2.18. Let c 2 Na. We define the unit step function on Na by

uc.t/ D
(
0; t 2 N

c�1
a

1; t 2 Nc:

We now prove the following shifting theorem.
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Theorem 2.19 (Shifting Theorem). Let c 2 Na and assume the Laplace transform
of f W Na ! R exists for js C 1j > r: Then the following hold:

(i) Laff .t � .c � a//uc.t/g.s/ D 1
.sC1/c�a Laff g.s/I

(ii) Laff .t C .c � a//g.s/ D .s C 1/c�a
h
Laff g.s/ �Pc�a�1

kD0
f .aCk/
.sC1/kC1

i
;

for js C 1j > r: (In (i) we have the convention that f .t � .c � a//uc.t/ D 0 for
t 2 N

c�1
a if c � a C 1.)

Proof. To see that (i) holds, consider

Laff .t C a � c/uc.t/g.s/ D
1X

kD0

f .2a C k � c/uc.a C k/

.s C 1/kC1

D
1X

kDc�a

f .2a C k � c/

.s C 1/kC1

D
1X

kD0

f .2a C k C c � a � c/

.s C 1/kCc�aC1

D
1X

kD0

f .a C k/

.s C 1/kCc�aC1

D 1

.s C 1/c�a

1X
kD0

f .a C k/

.s C 1/kC1

D 1

.s C 1/c�a
Laff g.s/

for js C 1j > r:
Part (ii) holds since

Laff .t C .c � a//g.s/ D
1X

kD0

f .a C k C c � a/

.s C 1/kC1

D
1X

kD0

f .k C c/

.s C 1/kC1

D
1X

kDc�a

f .a C k/

.s C 1/k�cCaC1

D .s C 1/c�a
1X

kDc�a

f .a C k/

.s C 1/kC1
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D .s C 1/c�a

" 1X
kD0

f .a C k/

.s C 1/kC1 �
c�a�1X

kD0

f .a C k/

.s C 1/kC1

#

D .s C 1/c�a

"
Laff g.s/ �

c�a�1X
kD0

f .a C k/

.s C 1/kC1

#

for js C 1j > r: ut
In the following example we will use part (i) of Theorem 2.19 to solve an IVP.

Example 2.20. Solve the IVP

�y.t/ � 3y.t/ D 2ı50.t/; t 2 N0

y.0/ D 5:

Taking the Laplace transform of both sides, we get

sY0.s/ � y.0/ � 3Y0.s/ D 2

.s C 1/51
:

Using the initial condition and solving for Y0.s/ we have that

Y0.s/ D 5

s � 3 C 2

s � 3
1

.s C 1/51
:

Taking the inverse transform of both sides we get the desired solution

y.t/ D 5e3.t; 0/C 2e3.t � 51; 0/u51.t/
D 5.4t/C 2.4/t�51u51.t/; t 2 N0:

In the following example we will use part (ii) of Theorem 2.19 to solve an IVP.

Example 2.21. Use Laplace transforms to solve the IVP

y.t C 2/C y.t C 1/ � 6y.t/ D 0; t 2 N0

y.0/ D 5; y.1/ D 2:

Assume y.t/ is the solution of this IVP and take the Laplace transform of both sides
of the given difference equation to get (using part (ii) of Theorem 2.19) that

.s C 1/2
�

Y0.s/ � 5

s C 1
� 2

.s C 1/2

	
C .s C 1/

�
Y0.s/ � 5

s C 1

	
� 6Y0.s/ D 0:
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Solving for Y0.s/ we get

Y0.s/ D 5s C 12

.s � 1/.s C 4/

D 17

5

1

s � 1 C 8

5

1

s C 4
:

Taking the inverse transform of both sides we get

y.t/ D 17

5
e1.t; 0/C 8

5
e�4.t; 0/

D 17

5
2t C 8

5
.�3/t; t 2 N0:

Theorem 2.22. The following hold for n � 0:

(i) Lafhn.t; a/g.s/ D 1

snC1 for js C 1j > 1I
(ii) Laf.t � a/ng.s/ D nŠ

snC1 for js C 1j > 1:
Proof. The proof of this theorem follows from Corollary 2.14 and the fact that
Lf1g.s/ D 1

s for js C 1j > 1: ut

2.3 Fractional Sums and Differences

The following theorem will motivate the definition of the n-th integer sum, which
will in turn motivate the definition of the -th fractional sum. We will then define
the -th fractional difference in terms of the -th fractional sum.

Theorem 2.23 (Repeated Summation Rule). Let f W Na ! R be given, then

Z t

a

Z �1

a
� � �
Z �n�1

a
f .�n/��n � � ���2��1 D

Z t

a
hn�1.t; �.s//f .s/�s: (2.7)

Proof. We will prove this by induction on n for n � 1. The case n D 1 is trivially
true. Assume (2.7) holds for some n � 1. It remains to show that (2.7) then holds
when n is replaced by n C 1. To this end, let

y.t/ WD
Z t

a

Z �1

a
� � �
Z �n�1

a

Z �n

a
f .�nC1/��nC1��n � � ���2��1:

Let g.�n/ D R �n

a f .�nC1/��nC1, then it follows from the induction assumption that



100 2 Discrete Delta Fractional Calculus and Laplace Transforms

y.t/ D
Z t

a
hn�1.t; �.s//g.s/�s

D
Z t

a
u.s/�v.s/�s;

where

u.s/ WD g.s/; �v.s/ D hn�1.t; �.s//:

It follows (using Theorem 1.61, (v)) that

�u.s/ D f .s/ v.s/ D �hn.t; s/; v.�.s// D �hn.t; �.s//:

Hence, integrating by parts, it follows that

y.t/ D �hn.t; s/
Z s

a
f .�nC1/��nC1

ˇ̌
ˇ
t

a

C
Z t

a
hn.t; �.s//f .s/�s

D
Z t

a
hn.t; �.s//f .s/�s:

This completes the proof. ut
Motivated by (2.7), we define the n-th integer sum ��n

a f .t/ for positive integers
n, by

��n
a f .t/ D

Z t

a
hn�1.t; �.s//f .s/�s:

But, since

hn�1.t; �.s// D 0; s D t � 1; t � 2; � � � ; t � n C 1;

we obtain

��n
a f .t/ D

Z t�nC1

a
hn�1.t; �.s//f .s/�s; (2.8)

which we consider the correct form of the n-th integer sum of f .t/. Before we use
the definition (2.8) of the n-th integer sum to motivate the definition of the -th
fractional sum, we define the -th fractional Taylor monomial as follows.
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Definition 2.24. The -th fractional Taylor monomial based at s is defined by

h.t; s/ D .t � s/

�. C 1/
;

whenever the right-hand side is well defined.

We can now define the -th fractional sum.

Definition 2.25. Assume f W Na ! R and  > 0. Then the -th fractional sum of f
(based at a) is defined by

��
a f .t/ WD

Z t�C1

a
h�1.t; �.�//f .�/��

D
t�X
�Da

h�1.t; �.�//f .�/;

for t 2 NaC: Note that by our convention on delta integrals (sums) we can extend
the domain of ��

a f to NaC�N , where N is the unique positive integer satisfying
N � 1 <  	 N; by noting that

��
a f .t/ D 0; t 2 N

aC�1
aC�N :

The expression “fractional sum” is actually is misnomer as we define the -th
fractional sum of a function for any  > 0. Expressions like �

p
3

a y.t/ and �	
a y.t/

are well defined.

Remark 2.26. Note that the value of the -th fractional sum of f based at a is a
linear combination of f .a/; f .a C 1/; � � � ; f .t � /; where the coefficient of f .t � /
is one. In particular one can check that ��

a f .t/ has the form

��
a f .t/ D h�1.t; �.a//f .a/C � � � C f .t �  � 1/C f .t � /: (2.9)

The following formulas concerning the fractional Taylor monomials generalize
the integer version of this theorem (Theorem 1.61).

Theorem 2.27. Let t; s 2 Na. Then

(i) h.t; t/ D 0

(ii) �h.t; a/ D h�1.t; a/I
(iii) �sh.t; s/ D �h�1.t; �.s//I
(iv)

R
h.t; a/�t D hC1.t; a/C CI

(v)
R

h.t; �.s//�s D �hC1.t; s/C C;

whenever these expressions make sense.
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Proof. To see that (iii) holds, note that

�sh.t; s/ D h.t; s C 1/ � h.t; s/

D .t � s � 1/
�. C 1/

� .t � s/

�. C 1/

D �.t � s/

�.t � s � /�. C 1/
� �.t � s C 1/

�.t � s C 1 � /�. C 1/

D
�
.t � s � / � .t � s/

	
�.t � s/

�. C 1/�.t � s �  C 1/

D � . C 1/�.t � s/

�./�.t � s �  C 1/

D � �.t � s/

�./�.t � s �  C 1/

D � .t � �.s//�1

�./

D �h�1.t; �.s//:

The rest of the proof of this theorem is Exercise 2.16. ut
Example 2.28. Using the definition of the fractional sum (Definition 2.25), find

�
� 1
2

0 1:

Using Theorem 2.27, part (v), we get

�
� 1
2

0 1 D
Z tC 1

2

0

h� 1
2
.t; �.s// � 1 �s

D �h 1
2
.t; s/

ˇ̌sDtC 1
2

sD0

D �h 1
2
.t; t C 1

2
/C h 1

2
.t; 0/

D � .�
1
2
/
1
2

�. 3
2
/

C t
1
2

�. 3
2
/

D 2p
	

t
1
2 :

Later we will give a formula (2.16) that also gives us this result.

Next we define the fractional difference in terms of the fractional sum.



2.3 Fractional Sums and Differences 103

Definition 2.29. Assume f W Na ! R and  > 0. Choose a positive integer N such
that N � 1 <  	 N. Then we define the -th fractional difference by

�
af .t/ WD �N��.N�/

a f .t/; t 2 NaCN�:

Note that our fractional difference agrees with our prior understanding of whole-
order differences—that is, for any  D N 2 N0

�
af .t/ WD �N��.N�/

a f .t/ D �N��0
a f .t/ D �Nf .t/; (2.10)

for t 2 Na. This is called the Riemann–Liouville definition of the -th delta
fractional difference.

Remark 2.30. We will see in the proof of Theorem 2.35 below that the value of the
fractional difference�

af .t/ depends on the values of f on N
tC
aC�N . This full history

nature of the value of the -th fractional difference of f is one of the important
features of this fractional difference. In contrast if one is studying an n-th order
difference equation, the term �nf .t/ only depends on the values of f at the n C 1

points t; t C 1; t C 2; � � � ; t C n.

Example 2.31. Use Definition 2.29 to find �
1
2

0 1: Using Example 2.28, we have that

�
1
2

0 1 D ��
� 1
2

0 1

D �
2p
	

t
1
2

D 1p
	

t�
1
2 :

Later we will give a formula (see (2.22)) that also gives us this result.

The following Leibniz formulas will be very useful.

Lemma 2.32 (Leibniz Formulas). Assume f W NaC� � Na ! R. Then

�

� Z t��C1

a
f .t; �/��

	
D
Z t��C1

a
�tf .t; �/�� C f .t C 1; t � �C 1/ (2.11)

and

�

� Z t��C1

a
f .t; �/��

	
D
Z t��C2

a
�tf .t; �/�� C f .t; t � �C 1/ (2.12)

for t 2 NaC�; where the �tf .t; s/ inside the integral means the difference of f .t; �/
with respect to t.
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Proof. To see that (2.11) holds, note that, for t 2 NaC�,

�

� Z t��C1

a
f .t; �/��

	
D
Z t��C2

a
f .t C 1; �/�� �

Z t��C1

a
f .t; �/��

D
Z t��C1

a
�tf .t; �/�� C f .t C 1; t C 1 � �/:

The proof of (2.12) is Exercise 2.19. ut
In the next theorem we give a very useful formula for�

af .t/. We call this formula
the alternate definition of �

af .t/ (see Holm [123, 124]).

Theorem 2.33. Let f W Na! R and  > 0 be given, with N � 1 <  	 N: Then

�
af .t/ WD

( R tCC1
a h��1.t; �.�//f .�/��; N � 1 <  < N
�Nf .t/;  D N

(2.13)

for t 2 NaCN�:

Proof. First note that if  D N 2 N0; then using (2.10), we have that

�
af .t/ D �N��.N�/

a f .t/ D �N��0
a f .t/ D �Nf .t/:

Now assume N � 1 <  < N: Our proof of (2.13) will follow from N applications
of the Leibniz formula (2.12). To see this we have for t 2 NaCN�;

�
af .t/ D �N��.N�/

a f .t/

D �N

"Z t�.N�/C1

a
hN��1.t; �.�//f .�/��

#

D �N�1 ��
� Z t�.N�/C1

a
hN��1.t; �.�//f .�/��

	
:

Using the Leibniz rule (2.12), we get

�
af .t/ D �N�1

"Z t�.N��1/C1

a
hN��2.t; �.�//f .�/��

C hN��1.t; t � .N �  � 2//f .t � .N �  � 1//
#

D �N�1
"Z t�.N��1/C1

a
hN��2.t; �.�//f .�/��

#
:
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Applying the Leibniz formula (2.12) again we get

�
af .t/ D �N�2

"Z t�.N��2/C1

a
hN��3.t; �.�//f .�/��

C hN��2.t; t � .N �  � 3//f .t � .N �  � 2//
#

D �N�2
"Z t�.N��2/C1

a
hN��3.t; �.�//f .�/��

#
:

Repeating these steps N � 2 more times, we find that

�
af .t/ D �N�N

"Z t�.N��N/C1

a
hN��N�1.t; �.�//f .�/��

C hN��N.t; t � .N �  � .N C 1//f .t � .N �  � N//

#

D
Z tCC1

a
h��1.t; �.�//f .�/�� C h�.t; t C  C 1/f .t C /

D
Z tCC1

a
h��1.t; �.�//f .�/��:

This completes the proof. ut
Remark 2.34. By Theorem 2.33 we get for all  > 0,  … N1 that the formula for
�

af .t/ can be obtained from the formula for��
a f .t/ in Definition 2.25 by replacing

 by � and vice-versa, but the domains are different.

Theorem 2.35 (Existence-Uniqueness Theorem). Assume q; f W N0 ! R,  > 0
and N is a positive integer such that N � 1 <  	 N. Then the initial value problem

�
�Ny.t/C q.t/y.t C  � N/ D f .t/; t 2 N0 (2.14)

y. � N C i/ D Ai; 0 	 i 	 N � 1; (2.15)

where Ai, 0 	 i 	 N � 1; are given constants, has a unique solution on N�N :

Proof. Note that by Remark 2.26, for each fixed t, ��.N�/
�N y.t/ is a linear combina-

tion of y.� N/; y.� N C 1/; � � � ; y.t � N C / with the coefficient of y.t � N C /

being one. Since
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�
�Ny.t/ D �N�

�.N�/
�N y.t/;

we have for each fixed t,�
�Ny.t/ is a linear combination of y.�N/; y.�N C1/,

� � � ; y.t C /, where the coefficient of y.t C / is one. Now define y.t/ on N
�1
�N

by the initial conditions (2.15). Then note that y.t/ satisfies the fractional difference
equation (2.14) at t D 0 iff

�
�Ny.0/C q.0/y. � N/ D f .0/:

But this holds iff

.� � � /y. � N/C .� � � /y. � N C 1/C � � � C y./C q.0/y. � N/ D f .0/;

which is equivalent to the equation

.� � � /A0 C .� � � /A1 C � � � C .� � � /An�1 C y./C q.0/A0 D f .0/:

Hence if we define y./ to be the solution of this last equation, then y.t/ satisfies the
fractional difference equation at t D 0. Summarizing, we have shown that knowing
y.t/ at the points  � N C i, 0 	 i 	 N � 1 uniquely determines what the value of
the solution is at the next point . Next one uses the fact that the values of y.t/ on
N

�N uniquely determine the value of the solution at  C 1. An induction argument

shows that the solution is uniquely determined on N�N : ut
Remark 2.36. We could easily extend Theorem 2.35 to the case when f ; q W Na ! R

instead of the special case a D 0 that we considered in Theorem 2.35. Also, the term
q.t/y.t C� N/ in equation (2.14) could be replaced by q.t/y.t C� N C i/ for any
0 	 i 	 N � 1: Note that we picked the nice set N0 so that the fractional difference
equation needs to be satisfied for all t 2 N0, but then solutions are defined on the
shifted set N�N : By shifting the set on which the fractional difference equation is
defined, we can evidently obtain solutions that are defined on the nicer set N0. In this
book our convention when considering fractional difference equations is to assume
the fractional difference equation is satisfied for t 2 Na and the solutions are defined
on NaC�N :

In a standard manner one gets the following result that follows from Theo-
rem 2.35.

Theorem 2.37. Assume q W N0 ! R. Then the homogeneous fractional difference
equation

�
�Nu.t/C q.t/u.t C  � N/ D 0; t 2 N�N

has N linearly independent solutions ui.t/, 1 	 i 	 N, on N0 and

u.t/ D c1u1.t/C c2u2.t/C � � � C cNuN.t/;
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where c1; c2; � � � ; cN are arbitrary constants, is a general solution of this homoge-
neous fractional difference equation on N0. Furthermore, if in addition, yp.t/ is a
particular solution of the nonhomogeneous fractional difference equation (2.14) on
N0, then

y.t/ D c1u1.t/C c2u2.t/C � � � C cNuN.t/C yp.t/;

where c1; c2; � � � ; cN are arbitrary constants, is a general solution of the nonhomo-
geneous fractional difference equation (2.14).

2.4 Fractional Power Rules

Using the Leibniz formula we will prove the following fractional sum power rule.
Later in this chapter (see Theorem 2.71) we will use discrete Laplace transforms to
give an easier proof of this theorem. Later we will see that the fractional difference
power rule (Theorem 2.40) will follow from this fractional sum power rule.

Theorem 2.38 (Fractional Sum Power Rule). Assume � � 0 and  > 0. Then

��
aC�.t � a/� D �.�C 1/

�.�C  C 1/
.t � a/�C (2.16)

for t 2 NaC�C:

Proof. Let

g1.t/ WD �.�C 1/

�.�C  C 1/
.t � a/�C;

and

g2.t/ WD ��
aC�.t � a/� D

t�X
sDaC�

h�1.t; �.s//.s � a/�; (2.17)

for t 2 NaC�C: To complete the proof we will show that both of these functions
satisfy the initial value problem

.t � a � .�C /C 1/�g.t/ D .�C /g.t/ (2.18)

g.a C �C / D �.�C 1/: (2.19)

Since

g1.a C �C / D �.�C 1/

�.�C  C 1/
.�C /�C

D �.�C 1/
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and

g2.a C �C / D 1

�./

aC�X
sDaC�

.a C �C  � �.s//�1.s � a/�

D 1

�./
. � 1/�1��

D �.�C 1/

we have that gi.t/, i D 1; 2 both satisfy the initial condition (2.19).
We next show that g1.t/ satisfies the difference equation (2.18). Note that

�g1.t/ D .�C /
�.�C 1/

�.�C  C 1/
.t � a/�C�1:

Multiplying both sides by t � a � .�C /C 1 we obtain

.t � a � .�C /C 1/�g1.t/

D .�C /
�.�C 1/

�.�C  C 1/
Œt � a � .�C  � 1/�.t � a/�C�1

D .�C /
�.�C 1/

�.�C  C 1/
.t � a/�C by Exercise (1.9)

D .�C /g1.t/

for t 2 NaC�C: That is, g1.t/ is a solution of (2.18).
It remains to show that g2.t/ satisfies (2.18). Using (2.17) we have that

g2.t/

D 1

�./

t�X
sDaC�



.t � �.s// � . � 2/�.t � �.s//�2.s � a/�

D 1

�./

t�X
sDaC�



.t � a � .�C /C 1/ � .s � a � �/�.t � �.s//�2.s � a/�

D t � a � .�C /C 1

�./

t�X
sDaC�

.t � �.s//�2.s � a/�

� 1

�./

t�X
sDaC�

.t � �.s//�2.s � a � �/.s � a/�

D h.t/ � k.t/;
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where

h.t/ WD t � a � .�C /C 1

�./

t�X
sDaC�

.t � �.s//�2.s � a/�

and

k.t/ WD 1

�./

t�X
sDaC�

.t � �.s//�2.s � a � �/.s � a/�

D 1

�./

t�X
sDaC�

.t � �.s//�2.s � a/�C1:

Using (2.17) and (2.11) we get

�g2.t/

D  � 1
�./

t�X
sDaC�

.t � �.s//�2.s � a/� C 1

�./
. � 1/�1.t C 1 �  � a/�

D  � 1
�./

t�X
sDaC�

.t � �.s//�2.s � a/� C .t C 1 �  � a/�:

It follows that

.t � a C .�C /C 1/�g2.t/ D . � 1/h.t/C .t C 1 �  � a/�C1: (2.20)

Also, integrating by parts we get (here we also use Lemma 2.32)

k.t/ D 1

�./

t�X
sDaC�

.t � �.s//�2.s � a/�C1

D 1

�./

"
� .s � a/�C1.t � s/�1

 � 1

#sDtC1�

sDaC�

C �C 1

. � 1/�./
t�X

sDaC�
.t � �.s//�1.s � a/�

D � .t C 1 �  � a/�C1

 � 1 C �C 1

. � 1/�./
t�X

sDaC�
.t � �.s//�1.s � a/�:
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It follows that

.t C 1 �  � a/�C1 D �. � 1/k.t/C .�C 1/g2.t/: (2.21)

Finally, from (2.21) and (2.20), we get

.t � a C .�C /C 1/�g2.t/ D . � 1/h.t/C .t C 1 �  � a/�C1

D . � 1/h.t/ � . � 1/k.t/C .�C 1/g2.t/

D .�C /g2.t/:

This completes the proof. ut
Example 2.39. Find

�
� 3
2

5
2

.t � 2/ 12 ; t 2 N2:

Consider

�
� 3
2

5
2

.t � 2/ 12 D �
� 3
2

2C 1
2

.t � 2/ 12

D �.3
2
/

�.3/
.t � 2/2

D
p
	

4
.t � 2/2

D
p
	

4
.t2 � 5t C 6/;

for t 2 N2:

Theorem 2.40 (Fractional Difference Power Rule). Assume � > 0 and  � 0;

N � 1 <  < N. Then

�
aC�.t � a/� D �.�C 1/

�.� �  C 1/
.t � a/�� (2.22)

for t 2 NaC�CN�:

Proof. To see that (2.22) holds, note that

�
aC�.t � a/� D �N�

�.N�/
aC� .t � a/�

D �N

�
�.�C 1/

�.�C 1C N � / .t � a/�CN�
�
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D �.�C 1/

�.�C 1C N � / �
N.t � a/�CN�

D �.�C 1/.�C N � /N
�.�C 1C N � / .t � a/��

D �.�C 1/

�.�C 1 � /.t � a/��:

This completes the proof. ut
Example 2.41. Find

�
1
2
5
2

.t � 1/ 32 ; t 2 N1:

Consider

�
1
2
5
2

.t � 1/ 32 D �
1
2

1C 3
2

.t � 1/ 32

D �.5
2
/

�.2/
.t � 1/1

D 3
p
	

4
.t � 1/;

for t 2 N1:

The fractional power rules in terms of Taylor monomials take a nice form as we
see in the following theorem.

Theorem 2.42. Assume � > 0;  > 0, then the following hold:

(i) ��
aC�h�.t; a/ D h�C.t; a/; t 2 NaC�C I

(ii) �
aC�h�.t; a/ D h��.t; a/; t 2 NaC��:

Proof. To see that (i) follows from Theorem 2.38 note that for t 2 NaC�C

��
aC�h�.t; a/ D ��

aC�
.t � a/�

�.�C 1/

D 1

�.�C 1/

�.�C 1/

�.�C  C 1/
.t � a/�C

D .t � a/�C

�.�C  C 1/

D h�C.t; a/:

Similarly, part (ii) follows from Theorem 2.40 (see Exercise 2.22). ut
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Theorem 2.43. Assume� > 0 and N is a positive integer such that N�1 < � 	 N.
Then for any constant a

x.t/ D c1.t � a/��1 C c2.t � a/��2 C � � � C cN.t � a/��N

for all constants c1; c2; � � � ; cN, is a solution of the fractional difference equation
�
�
aC��Ny.t/ D 0 on NaC��N :

Proof. Let � and N be as in the statement of this theorem. If � D N, then for
1 	 k 	 N, we have that

�
�
aC��N.t � a/��k D �N.t � a/N�k D 0:

Now assume that N � 1 < � < N. Then we want to consider the expression

�
�
aC��N.t � a/��k:

Note that since the subscript and the exponent do not match up in the correct
way we cannot immediately apply formula (2.22) to the above expression. To
compensate for this we do the following.

�
�
aC��N .t � a/��k D

tC�X
sDaC��N

h���1.t; �.s//.s � a/��k

D
tC�X

sDaC��k

h���1.t; �.s//.s � a/��k;

since

.s � a/��k D 0; for s D a C � � N; a C � � N C 1; � � � ; a C � � k � 1:

Therefore, we have that

�
�
aC��N .t � a/��k D �

�
aC��k.t � a/��k

D �.� � k C 1/

�.1 � k/
.t � a/�k

D 0:

The conclusion of the theorem then follows from the fact that ��
a is a linear

operator. ut
It follows from Theorem 2.43 that

x.t/ D a1h��1.t; a/C a2h��2.t; a/C � � � C aNh��N.t; a/

is a general solution of �aC��Ny.t/ D 0:
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Theorem 2.44 (Continuity of Fractional Differences). Let f W Na ! R be given.
Then the fractional difference�

af is continuous with respect to  for  > 0: By this
we mean for each fixed m 2 N0,

�
af .a C de �  C m/;

where de denotes the ceiling of , is continuous for  > 0:

Proof. To prove this theorem it suffices to prove the following:

(i) �
af .a C N �  C m/ is continuous with respect to  on .N � 1;N/I

(ii) lim!N� �
af .a C N �  C m/ D �Nf .a C m/I

(iii) lim!.N�1/C �
af .a C N �  C m/ D �N�1f .a C m C 1/:

First we show that (i) holds. For any fixed  > 0 with N � 1 <  < N, we have

�
af .a C N �  C m/ D

tCX
sDa

h��1.t; �.s//f .s/

ˇ̌
ˇ̌
ˇ
tDaCN�Cm

D
aCNCmX

sDa

h��1.a C N �  C m; �.s//f .s/

D
aCNCm�1X

sDa

h��1.a C N �  C m; �.s//f .s/C f .a C N C m/

D
aCNCm�1X

sDa

.a C N �  C m � �.s//��1

�.�/ f .s/C f .a C N C m/

D
aCNCm�1X

sDa

�.a C N �  C m � s/

�.a C N C m � s C 1/�.�/ f .s/C f .a C N C m/

D
aCNCm�1X

sDa

�
.a C N �  C m � s � 1/ � � � .�/

.a C N C m � s/Š
f .s/

�

C f .a C N C m/

D
NCmX
iD1

�
.i � 1 � / � � � .� C 1/ .�/

iŠ
f .a C N C m � i/

�

C f .a C N C m/:
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It follows from this last expression that�
af .aCN �Cm/ is a continuous function

of , for N � 1 <  < N.

lim
!N�

�
af .a C N �  C m/

D lim
!N�

h NCmX
iD1

�
.i � 1 � / � � � .�/

iŠ
f .a C N C m � i/

�

C f .a C N C m/
i

D
NCmX
iD1

�
.i � 1 � N/ � � � .�N/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
NX

iD1

�
.i � 1 � N/ � � � .�N/

iŠ
f .a C N C m � i/

�
C f .a C N C m/;

D
NX

iD1

�
.�1/i .N/ � � � .N � i C 1/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
NX

iD1

 
.�1/i

 
N

i

!
f .a C N C m � i/

!

C f .a C N C m/

D
NX

iD0
.�1/i

 
N

i

!
f .a C N C m � i/

D
NX

iD0
.�1/i

 
N

i

!
f ..a C m/C N � i/

D �Nf .a C m/:

Hence, (ii) holds.
Finally, we show (iii) holds. To see this consider

lim
!.N�1/C

�
af .a C N �  C m/

D lim
!.N�1/C

"
NCmX
iD1

�
.i � 1 � / � � � .�/

iŠ
f .a C N C m � i/

�

C f .a C N C m/

#
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D
NCmX
iD1

�
.i � N/ � � � .�N C 1/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
N�1X
iD1

�
.i � N/ � � � .�N C 1/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
N�1X
iD1

�
.�1/i .N � 1/ � � � .N � i/

iŠ
f .a C N C m � i/

�

Cf .a C N C m/

D
N�1X
iD1

 
.�1/i

 
N � 1

i

!
f .a C N C m � i/

!
C f .a C N C m/

D
N�1X
iD0

 
.�1/i

 
N � 1

i

!
f .a C m C 1C .N � 1/ � i/

!

D �N�1f .a C m C 1/.

Hence, (iii) holds. ut
The binomial expression for �Nf .t/ is given by

�Nf .t/ D
NX

iD0
.�1/i

 
N

i

!
f .t C N � i/:

In the following theorem we give the binomial expressions for fractional
differences and fractional sums.

Theorem 2.45 (Fractional Binomial Formulas). Assume N � 1 <  	 N and
f W Na ! R. Then

�
af .t/ D

tC�aX
kD0

.�1/k
 


k

!
f .t C  � k/; t 2 NaCN� (2.23)

and

��
a f .t/ D

t�a�X
kD0

.�1/k
 

�
k

!
f .t �  � k/ (2.24)

D
t�a�X

kD0

 
 C k � 1

k

!
f .t �  � k/; t 2 NaC: (2.25)
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Proof. Assume f W Na ! R and 0 	  	 N. Fix t 2 NaCN� . Then t D a C N �
 C m; for some m 2 N0: Then

�
af .t/ D

Z tCC1

a
h��1.t; �.�//f .�/��

D
tCX
�Da

.t � �.�//��1

�.�/ f .�/

D
tCX
�Da

�.t � �/
�.t � � C  C 1/�.�/ f .�/

D
aCNCmX
�Da

�.a C N �  C m � �/
�.a C N C m � � C 1/�.�/ f .�/

D
NCmX
�D0

�.N C m � � � /
�.N C m � � C 1/�.�/ f .a C �/

D f .a C N C m/C
NCm�1X
�D0

.N C m � 1 � � � / � � � .�/
�.N C m � � C 1/

f .a C �/

D f .a C N C m/

C
NCm�1X
�D0

.�1/NCm�� ./ � � � . � .N C m � �/C 1/

�.N C m � � C 1/
f .a C �/

D
NCmX
�D0

.�1/NCm��
 



N C m � �

!
f .a C �/

D
NCmX
kD0

.�1/k
 


k

!
f .a C N C m � k/

D
NCmX
kD0

.�1/k
 


k

!
f ..a C N �  C m/C  � k/

D
t�aCX

kD0
.�1/k

 


k

!
f .t C  � k/:

Hence (2.23) holds. Since we can obtain the formula for ��
a f .t/ from the formula

for�
af .t/ by replacing  by � we get that (2.24) holds with the appropriate change

in domains. Finally, since
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�
k

!
D .�1/k

 
 C k � 1

k

!
;

(2.25) follows immediately from (2.24). ut
Note that if we let  D N in (2.23), we get the following integer binomial

expression for �Nf .t/, that is

�Nf .t/ D
NX

kD0
.�1/k

 
N

k

!
f .t C N � k/; t 2 Na:

2.5 Composition Rules

Theorem 2.46 (Composition of Fractional Sums). Assume f is defined on Na

and �;  are positive numbers. Then



�

��
aC

�
��

a f
��
.t/ D �

��.�C/
a f

�
.t/ D

h
��

aC�
�
���

a f
�i
.t/

for t 2 NaC�C:

Proof. For t 2 NaC�C , consider



�

��
aC

�
��

a f
��
.t/ D

t��X
sDaC

h��1.t; �.s//
�
��

a f
�
.s/

D
t��X

sDaC
h��1.t; �.s//

s�X
rDa

h�1.s; �.r//f .r/

D 1

�.�/�./

t��X
sDaC

s�X
rDa

.t � �.s//��1.s � �.r//�1f .r/

D 1

�.�/�./

t�.�C/X
rDa

t��X
sDrC

.t � �.s//��1.s � �.r//�1f .r/;

where in the last step we interchanged the order of summation. Letting x D s ��.r/
we obtain



�

��
aC

�
��

a f
��
.t/

D 1

�.�/�./

t�.�C/X
rDa

"
t���r�1X

xD�1
.t � x � r � 2/��1x�1

#
f .r/
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D 1

�./

t�.�C/X
rDa

2
4 1

�.�/

.t�r�1/��X
xD�1

.t � r � 1 � �.x//��1x�1
3
5 f .r/

D 1

�./

t�.�C/X
rDa



�

��
�1t

�1�
t!t�r�1 f .r/:

But by Theorem 2.38

�
��
�1t

�1 D �./

�. C �/
t�C�1

and therefore



�

��
aC

�
��

a f
��
.t/ D 1

�./

t�.�C/X
rDa

�./

�.�C /
.t � r � 1/�C�1f .r/

D 1

�.�C /

t�.�C/X
rDa

.t � �.r//�C�1f .r/

D �
��.�C/

a f
�
.t/;

t 2 NaCC�; which is one of the desired conclusions. Interchanging � and  in the
above formula we also get the result

h
��

aC�
�
���

a f
�i
.t/ D �

��.�C/
a f

�
.t/

for t 2 NaC�C: ut
In the next lemma we give composition rules for an integer difference with a

fractional sum and with a fractional difference. Atici and Eloe proved (2.26) with
the additional assumption that 0 < k <  and Holm [123, 125] proved (2.26) in this
more general setting.

Lemma 2.47. Assume f W Na ! R,  > 0, N � 1 <  	 N: Then



�k
�
��

a f
��
.t/ D �

�k�
a f

�
.t/; t 2 NaC: (2.26)

and



�k
�
�

af
��
.t/ D �

�kC
a f

�
.t/; t 2 NaCN�: (2.27)

Proof. First we prove that


�k
�
��k

a f
��
.t/ D f .t/; t 2 NaCk (2.28)
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by induction for k 2 N1. For the base case we have

���1
a f .t/ D �

� Z t

a
f .�/��

	
D f .t/

for t 2 NaC1: Now assume k � 1 and (2.28) holds. Then

�kC1�kC1
a f .t/ D �kC1��1

aCk�
�k
a f .t/ using Theorem 2.46

D �kŒ���1
aCk��

�k
a f .t/

D �k��k
a f .t/ by the base case with base a C k

D f .t/ by the induction assumption (2.28)

for t 2 NaCkC1: Therefore, for k � N

�k��N
a f .t/ D �k�N Œ�N��N

a �f .t/ D �k�Nf .t/

and for k < N

�k��N
a f .t/ D �k��k

aCN�kŒ�
�.N�k/
a �f .t/ D ��.N�k/

a f .t/ D �k�N
a f .t/

for t 2 NaCN : Hence for all k 2 N1 we have that (2.26) holds for the case  D N:
It is also true that (2.27) holds when  D N: Assume for the rest of this proof that
N � 1 <  < N. We will now show by induction that (2.27) holds for k 2 N1: For
the base case k D 1 we have using the Leibniz rule (2.11)

��
af .t/

D �

� Z tCC1

a
h��1.t; �.�//f .�/��

	

D
Z tCC1

a
h��2.t; �.�//f .�/�� C h�1.�.t/; t C  C 1/f .t C  C 1/

D
Z tCC1

a
h��2.t; �.�//f .�/�� C f .t C  C 1/

D
Z tCC2

a
h��2.t; �.�//f .�/��

D ��.��1/
a f .t/

D �1C
a f .t/:

Hence the base case

��
af .t/ D �1C

a f .t/
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holds. Now assume k � 1 and

�k�
af .t/ D �kC

a f .t/ (2.29)

holds. It follows from the induction hypothesis (2.29) and the base case that

�kC1�
af .t/ D ��k�1C

a f .t/

D ��kC
a f .t/

D �kC1C
a f .t/:

Hence (2.27) holds for all k 2 N1: The proof of (2.26) is very similar and is left as
an exercise (Exercise 2.23). ut

We now prove a composition rule that appears in Holm [125] for a fractional
difference with a fractional sum.

Theorem 2.48. Assume f W Na ! R; ; � > 0 and N � 1 <  	 N, N 2 N1: Then

�
aC����

a f .t/ D ���
a f .t/; t 2 NaC�CN�: (2.30)

Proof. Note that for t 2 NaC�CN� ,

�
aC����

a f .t/ D �N�
�.N�/
aC� ���

a f .t/

D �N��.N�C�/
a f .t/ by Theorem 2.46

D �N�.N�C�/
a f .t/ by (2.26)

D ���
a f .t/:

Hence (2.30) holds. ut
Remark 2.49. From Theorem 2.46 we saw that we can take fractional sums of
fractional sums by adding exponents and by Theorem 2.48 we can take fractional
differences of fractional sums by adding exponents. The fundamental theorem of
calculus gives us that

��1
a �f .�/ D

Z t

a
�f .�/ D f .t/ � f .a/ D �0

af .t/ � f .a/:

Hence we should not expect the fractional sum of a fractional difference can be
obtained by adding exponents.

In the next theorem we give a formula for a fractional sum of an integer
difference. The first formula in the following Theorem 2.50 is given in Atici et al.
[34] and the second formula appears in Holm [125].
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Theorem 2.50. Assume f W Na ! R, k 2 N0 and ; � > 0 with N � 1 < � 	 N:
Then

��
a �kf .t/ D �k�

a f .t/ �
k�1X
jD0

h�kCj.t; a/�
jf .a/; (2.31)

for t 2 NaC , and

��
aCN����

a f .t/ D ���
a f .t/

�
N�1X
jD0

h�NCj.t � N C ; a/�j�.N��/
a f .a C N � �/;

(2.32)

for t 2 NaCN��C:

Proof. We first prove that (2.31) holds by induction for k 2 N1: For the base case
k D 1 we have using integration by parts and

h�1.t; t �  C 1/ D 1 D h�2.t; t �  C 2/

that for t 2 NaC

��
a �f .t/ D

Z t�C1

a
h�1.t; �.�//�f .�/��

D h�1.t; �/f .t/
ˇ̌
ˇ̌
t�C1

�Da

C
Z t�C1

a
h�2.t; �.�//f .�/��

D h�1.t; t �  C 1/f .t �  C 1/ � h�1.t; a/f .a/

C
Z t�C1

a
h�2.t; �.�//��

D f .t �  C 1/ � h�1.t; a/f .a/C
Z t�C1

a
h�2.t; �.�//f .�/��

D
Z t�C2

a
h�2.t; �.�//f .�/�� � h�1.t; a/f .a/

D �1�
a f .t/ � h�1.t; a/f .a/

which proves (2.31) for the base case k D 1: Now assume k � 1 and (2.31) holds
for that k. Then we have that
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��
a �kC1f .t/ D ��

a �k�f .t/

D �k�
a �f .t/ �

k�1X
jD0

h�k�j.t; a/�
jC1f .a/ .by (2.31)/

D �k�
a f .t/ �

k�1X
jD0

h�kCj.t; a/�
jC1f .a/ � h�k�1.t; a/f .a/

D ��
a �kC1�

a f .t/ �
kX

jD0
h�k�1Cj.t; a/�

jf .a/;

for t 2 NaCN�: Hence (2.31) holds. Next we show that (2.32) holds. To see this
suppose now that  > 0 and� > 0with N�1 < � 	 N: Letting g.t/ D �

�.N��/
a f .t/

and b D a C N � � (the first point in the domain of g), we have for t 2 NaCN��C;

��
aCN����

a f .t/

D ��
aCN���N

�
��.N��/

a f .t/
�

D ��
aCN���Ng.t/

D �N�
aCN��g.t/ �

N�1X
jD0

h�NCj.t; b/�
jg.b/ by (2.32)

D �N�
aCN����.N��/

a f .t/ �
N�1X
jD0

h�NCj.t; b/�
j��.N��/

a f .b/

D ���
a f .t/ �

N�1X
jD0

h�NCj.t � N C ; a/�j�NC�
a f .a C N � �/;

where in this last step, we applied 2.31. ut
Finally, we give a composition formula for composing two fractional differences.

Note that the rule for this composition is nearly identical to the rule (2.32) for the
composition ��

aCM���
�
a : Theorem 2.51 is given for the specific case � 2 N0 by

Atici and Eloe in [34].

Theorem 2.51. Let f W Na ! R be given and suppose ; � > 0; with N � 1 <  	
N and M � 1 < � 	 M: Then for t 2 NaCM��CN�;

�
aCM����

a f .t/ D �C�
a f .t/�

M�1X
jD0

h��MCj.t � M C �; a/�j�MC�
a f .a C M � �/ (2.33)
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for N � 1 <  < N: If  D N, then (2.33) simplifies to

�
aCM����

a f .t/ D �C�
a f .t/; t 2 NaCM��:

Proof. Let f ; , and � be given as in the statement of the theorem. Lemma 2.47
has already proven the case when  D N:

If N � 1 <  < N, then for t 2 NaCM��CN� , we have

�
aCM����

a f .t/

D �N
h
�

�.N�/
aCM���

�
a f .t/

i
, and now using (2.50),

D �N

"
��NCC�

a f .t/

�
M�1X
jD0

�j�MC�
a f .a C M � �/hN��MCj.t � M C �; a/

#

D �C�
a �NhN��MCj.t � M C �/f .t/�

M�1X
jD0

�j�MC�
a f .a C M � �/�NhN��MCj.t � M C �; a/ (Lemma 2.47)

D �C�
a f .t/�

M�1X
jD0

�j�MC�
a f .a C M � �/h��MCj.t � M C �; a/

D �C�
a f .t/

�
M�1X
jD0

�j�MC�
a h��MC�.t � M C �/f .a C M � �/:

ut
Theorem 2.52 (Variation of Constants Formula). Assume N � 1 is an integer
and N � 1 <  	 N. If f W N0 ! R, then the solution of the IVP

�
�Ny.t/ D f .t/; t 2 N0 (2.34)

y. � N C i/ D 0; 0 	 i 	 N � 1 (2.35)

is given by

y.t/ D ��
0 f .t/ D

t�X
sD0

h�1.t; �.s//f .s/; t 2 N�N :
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Proof. Let

y.t/ D ��
0 f .t/ D

t�X
sD0

h�1.t; �.s// f .s/:

Then by our convention on sums

y. � N C i/ D
�NCiX
sD0

h�1. � N C i; �.s// f .s/ D 0

for 0 	 i 	 N � 1; and hence the initial conditions (2.35) are satisfied.
Also, for t 2 N0,

�
�Ny.t/ D �N�

�.N�/
�N y.t/

D �N
t�.N�/X
sD�N

hN��1.t; �.s// y.s/

D �N
t�.N�/X

sD
hN��1.t; �.s// y.s/;

where in the last step we used the initial conditions (2.35). Hence,

�
�Ny.t/ D �N��.N�/

 y.t/

D �N�
�.N�/
0C ��

0 f .t/

D �N��N
0 f .t/

D f .t/:

Therefore y is a solution of the fractional difference equation (2.34) on N0: ut
Next we use the fractional variation of constants formula to solve a simple

fractional IVP.

Example 2.53. Use the variation of constants formula in Theorem 2.52 to solve the
fractional IVP

�
1
2

� 1
2

y.t/ D 5; t 2 N0

y

�
�1
2

�
D 3

p
	:
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The solution of this IVP is defined on N� 1
2
: Note that the corresponding homoge-

neous fractional difference equation

�
1
2

� 1
2

y.t/ D 0; t 2 N0

has the general fractional equation form

�
aC�Ny.t/ D 0; t 2 Na

in Theorem 2.43, where

a D 0;  D 1

2
N D 1; a C  � N D �1

2
:

Hence t�
1
2 is a solution of the homogeneous equation�

1
2

� 1
2

y.t/ D 0 and hence (using

Theorem 2.52) a general solution of �
1
2

� 1
2

y.t/ D 5 is given by

y.t/ D ct�
1
2 C�

� 1
2

0 5

D ct�
1
2 C 5�

� 1
2

0 1 (2.36)

By formula (2.16) we have that

�
� 1
2

0 1 D �
� 1
2

0 t0 D �.1/

�.3
2
/

t
1
2 D 2p

	
t
1
2 ;

which is the expression that we got for�
� 1
2

0 1 in Example 2.28. It follows from (2.36)
that

y.t/ D ct�
1
2 C 10p

	
t
1
2 :

Using the initial condition y
�� 1

2

� D 3
p
	 we get that c D 3. Therefore, the solution

of the given IVP is

y.t/ D 3t�
1
2 C 10p

	
t
1
2 ;

for t 2 N� 1
2
:

Also, it is often necessary to know how a shifted Laplace transform with respect
to its base relates to the original Laplace transform with base a, as is described in
the following theorem.
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Theorem 2.54. Let m 2 N0 be given and suppose f W Na�m ! R and g W Na ! R

are of exponential order r > 0. Then for js C 1j > r,

La�m ff g .s/ D 1

.s C 1/m
La ff g .s/C

m�1X
kD0

f .a C k � m/

.s C 1/kC1 (2.37)

and

LaCm fgg .s/ D .s C 1/m La fgg .s/ �
m�1X
kD0

.s C 1/m�1�k g .a C k/ : (2.38)

Proof. Let f ; g; r, and m be given as in the statement of this theorem. Then for
js C 1j > r,

La�m ff g .s/ D
1X

kD0

f .a � m C k/

.s C 1/kC1

D
1X

kDm

f .a � m C k/

.s C 1/kC1 C
m�1X
kD0

f .a � m C k/

.s C 1/kC1

D
1X

kD0

f .a C k/

.s C 1/kCmC1 C
m�1X
kD0

f .a C k � m/

.s C 1/kC1

D 1

.s C 1/m
La ff g .s/C

m�1X
kD0

f .a C k � m/

.s C 1/kC1 ;

and hence (2.37) holds.
Next, consider

LaCm fgg .s/ D
1X

kD0

g .a C m C k/

.s C 1/kC1

D
1X

kDm

g .a C k/

.s C 1/k�mC1

D
1X

kD0

g .a C k/

.s C 1/k�mC1 �
m�1X
kD0

g .a C k/

.s C 1/k�mC1

D .s C 1/m La fgg .s/ �
m�1X
kD0

.s C 1/m�1�k g .a C k/ ;

and thus (2.38) holds. ut
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We leave it as an exercise to verify that applying formulas (2.37) and (2.38) yields

L.aCm/�m ff g .s/ D L.a�m/Cm ff g .s/ D La ff g .s/;

for js C 1j > r.
Recall the definition of the fractional Taylor monomials (Definition 2.24).

Definition 2.55. For each � 2 Rn .�N1/, define the �-th order Taylor monomial,
h�.t; a/; by

h�.t; a/ WD .t � a/�

�.�C 1/
; for t 2 Na:

Theorem 2.56. If � 	 0 and � … .�N1/, then h�.t; a/ is bounded (and hence is of
exponential order r D 1). If � > 0, then for every r > 1; h�.t; a/ is of exponential
order r:

Proof. First consider the case that � 	 0with � 62 .�N0/. Then for all large t 2 Na;

h� .t; a/ D �.t � a C 1/

�.�C 1/�.t � a C 1 � �/ 	 1

�.�C 1/
;

implying that h� is of exponential order one (i.e., bounded).
Next assume that � > 0, with N 2 N0 chosen so that N � 1 < � 	 N: Then for

any fixed r > 1,

h� .t; a/ D .t � a/�

�.�C 1/
D �.t � a C 1/

�.�C 1/�.t � a C 1 � �/

	 �.t � a C 1/

�.�C 1/�.t � a C 1 � N/

D .t � a/ � � � .t � a � N C 1/

�.�C 1/

	 .t � a/N

�.�C 1/

	 rt

�.�C 1/
,

for sufficiently large t 2 Na.
Therefore, h�.t; a/ is of exponential order r for each � 2 Rn .�N1/ and r > 1.

It follows from Theorem 2.4 that La
˚
h� .t; a/

�
.s/ exists for js C 1j > 1: ut

Remark 2.57. Note that the fractional Taylor monomials, h�.t; a/ for � > 0 are
examples of functions that are of order r for all r > 1, but are not of order 1 (see
Exercise 2.4).
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Theorem 2.58. Let � 2 Rn .�N1/ : Then

LaC�
˚
h� .t; a/

�
.s/ D .s C 1/�

s�C1 (2.39)

for js C 1j > 1:
Proof. For js C 1j > 1; consider

.s C 1/�

s�C1 D 1

s C 1

�
s C 1

s

��C1
D 1

s C 1

�
1 � 1

s C 1

����1
:

Since j 1
sC1 j < 1, we have by the binomial theorem that

.s C 1/�

s�C1 D 1

s C 1

1X
kD0
.�1/k

 
�� � 1

k

!�
1

s C 1

�k

D
1X

kD0
.�1/k

 
�� � 1

k

!
1

.s C 1/kC1 : (2.40)

But

.�1/k
 

�� � 1
k

!
D .�1/k .�� � 1/k

kŠ

D .�1/k .�� � 1/.�� � 2/ � � � .�� � k/

kŠ

D .�C k/.�C k � 1/ � � � .�C 1/

kŠ

D .�C k/k

kŠ

D
 
�C k

k

!
D
 
�C k

�

!
by Exercise 1.12, (v)

D .�C k/�

�.�C 1/

D Œ.a C �C k/ � a��

�.�C 1/

D h�.a C �C k; a/: (2.41)
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Using (2.40) and (2.41), we have that

.s C 1/�

s�C1 D
1X

kD0

h�.a C �C k; a/

.s C 1/kC1

D LaC�
˚
h� .t; a/

�
.s/;

for js C 1j > 1: ut

2.6 The Convolution Product

The following definition of the convolution product agrees with the convolution
product defined for general time scales in [62], but it differs from the convolution
product defined by Atici and Eloe in [32] (in the upper limit). We demonstrate
several advantages of using Definition 2.59 in the following results.

Definition 2.59. Let f ; g W Na ! R be given. Define the convolution product of f
and g to be

.f 
 g/ .t/ WD
t�1X
rDa

f .r/g.t � �.r/C a/; for t 2 Na (2.42)

(note that .f 
 g/ .a/ D 0 by our convention on sums).

Example 2.60. For p ¤ 0;�1, find the convolution product ep.t; a/ 
 1; and use
your answer to find Lfep.t; a/ 
 1g.s/: By the definition of the convolution product

.ep.t; a/ 
 1/.t/ D
t�1X
rDa

ep.r; a/

D
Z t

a
ep.r; a/�r

D 1

p
ep.r; a/jta

D 1

p
ep.t; a/ � 1

p
:

It follows that

Lafep.t; a/ 
 1g.s/ D 1

p

1

s � p
� 1

p

1

s
D 1

.s � p/s
:
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Note from Example 2.60 we get that

Lafep.t; a/ 
 1g.s/ D 1

.s � p/s
D 1

s � p

1

s
D Lafep.t; a/g.s/Laf1g.s/;

which is a special case of the following theorem which gives a formula for the
Laplace transform of the convolution product of two functions. Later we will show
that this formula is useful in solving fractional initial value problems. In this theorem
we use the notation Fa.s/ WD Laff g.s/; which was introduced earlier.

Theorem 2.61 (Convolution Theorem). Let f ; g W Na ! R be of exponential
order r0 > 0. Then

La ff 
 gg .s/ D Fa.s/Ga.s/; for js C 1j > r0 : (2.43)

Proof. We have

La ff 
 gg .s/ D
1X

kD0

.f 
 g/ .a C k/

.s C 1/kC1 D
1X

kD1

.f 
 g/ .a C k/

.s C 1/kC1

D
1X

kD1

1

.s C 1/kC1
aCk�1X

rDa

f .r/g.a C k � �.r/C a/

D
1X

kD1

k�1X
rD0

f .a C r/g.a C k � r � 1/
.s C 1/kC1

D
1X

rD0

1X
kD0

f .a C r/g.a C k � r � 1/
.s C 1/kC1 :

Making the change of variables � D k � r � 1 gives us that

La ff 
 gg .s/ D
1X
�D0

1X
rD0

f .a C r/g.a C �/

.s C 1/�CrC2

D
1X

rD0

f .a C r/

.s C 1/rC1
1X
�D0

g.a C �/

.s C 1/�C1

D Fa.s/Ga.s/;

for js C 1j > r0: ut
Example 2.62. Solve the (Volterra) summation equation

y.t/ D 3C 12

t�1X
rD0



2t�r�1 � 1� y.r/; t 2 N0 (2.44)
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using Laplace transforms. We can write equation (2.44) in the equivalent form

y.t/ D 3C 12

t�1X
rD0
Œe1.t � r � 1; 0/ � 1�y.r/

D 3C 12 Œ.e1.t; 0/ � 1/ 
 y.t/�; t 2 N0: (2.45)

Taking the Laplace transform (based at 0) of both sides of (2.45), we obtain

Y0.s/ D 3

s
C 12

�
1

s � 1 � 1

s

	
Y0.s/

D 3

s
C 12

s.s � 1/Y0.s/:

Solving for Y0.s/; we get

Y0.s/ D 3.s � 1/
.s C 3/.s � 4/

D 12=7

s C 3
C 9=7

s � 4 :

Taking the inverse Laplace transform of both sides, we get

y.t/ D 12

7
e�3.t; 0/C 9

7
e4.t; 0/

D 12

7
.�2/t C 9

7
5t:

2.7 Using Laplace Transforms to Solve Fractional Equations

When solving certain summation equations one uses the formula

La
˚
��N

a f
�
.s/ D Fa.s/

sN
; (2.46)

where N is a positive integer. Since the summation equation (2.5) can be written in
the form

y.t/ D 2 � 4t C 2

Z t

0

y.s/ �s; t 2 N0;

this is an example of a summation equation for which we want to use the
formula (2.46) with N D 1:
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We will now set out to generalize formulas (2.4) and (2.46) to the fractional case
so that we can solve fractional difference and summation equations using Laplace
transforms.

We will show (see Theorem 2.65) that if f W Na ! R is of exponential order, then
��

a f and�
af are of a certain exponential order and hence their Laplace transforms

will exist. We will use the following lemma, which gives an estimate for t in the
proof of Theorem 2.65.

Lemma 2.63. Assume  > �1 and N � 1 <  	 N. Then

t 	 tN ; for t sufficiently large: (2.47)

Proof. In this proof we use the fact that �.x/ > 0 for x > 0 and �.x/ is strictly
increasing for x � 2: First consider the case �1 <  	 0. Then, since t C 1 �  �
t C 1, we have for large t

t D �.t C 1/

�.t C 1 � /
	 1 D t0 D tN :

Next, consider the case  > 0. Then for large t we have

t D �.t C 1/

�.t C 1 � / 	 �.t C 1/

�.t C 1 � N/
D t .t � 1/ � � � .t � .N � 1// 	 tN :

This completes the proof. ut
Remark 2.64. Thus far whenever we have considered a function f W Na ! R, we
have always taken the domain of��

a f to be the set NaC . However, it is sometimes
convenient to take the domain of ��

a f to be the set NaC�N , where  > 0, and
N � 1 <  	 N: By our convention on sums we see that

��
a f .a C  � N C k/ D 0; for 0 	 k 	 N � 1:

Later (see, for example, Theorem 2.67) we will consider both of the

LaCf��
a f g.s/ and LaC�Nf��

a f g.s/:

Note that ��
a f W NaC ! R and ��

a f W NaC�N ! R are of the same exponential
order. Theorem 2.67 will give a relationship between these two Laplace transforms.

Theorem 2.65. Suppose that f W Na ! R is of exponential order r � 1, and let
 > 0, N � 1 <  	 N, be given. Then for each fixed � > 0; ��

a f W NaC ! R,
��

a f W NaC�N ! R, and �
af W NaCN� ! R are of exponential order r C �.
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Proof. First we show if f W Na ! R is of exponential order r D 1; then ��
a f W

NaC ! R is of exponential order r D 1 C �; for each � > 0. By Exercise 2.1 it
suffices to show that f is bounded on Na implies��

a f W NaC ! R is of exponential
order r D 1C �; for each � > 0. To this end assume

jf .t/j 	 N; t 2 Na:

Then, for t 2 NaC;

j��
a f .t/j D

ˇ̌
ˇ̌
Z t�C1

a
h�1.t; �.s//f .s/�s

ˇ̌
ˇ̌

	
Z t�C1

a
h�1.t; �.s//jf .s/j�s

	 N
Z t�C1

a
h�1.t; �.s//�s

D �Nh.t; s/jsDt�C1
sDa ; by Theorem 2.27, part (v)

D �Nh.t; t �  C 1/C Nh.t; a/

D Nh.t; a/:

Since, by Theorem 2.56, h.t; a/ is of exponential order 1 C � for each � > 0; it
follows that ��

a f W NaC ! R is of exponential order 1C �; for each � > 0.
Next assume f is of exponential order r > 1, there exist an A > 0 and a T 2 Na

such that

jf .t/j 	 Art; for all t 2 NT : (2.48)

For t 2 NTC , sufficiently large, consider

ˇ̌
��

a f .t/
ˇ̌ D

ˇ̌
ˇ̌
ˇ

t�X
sDa

h�1.t; �.s//f .s/

ˇ̌
ˇ̌
ˇ

	
t�X
sDa

h�1.t; �.s//jf .s/j

D
T�1X
sDa

h�1.t; �.s//jf .s/j C
t�X
sDT

h�1.t; �.s//jf .s/j

	
 

T�1X
sDa

jf .s/j
�./

!
.t � a/N�1 C A.t � a/N�1

�./

Z t�C1

T
rs�s

D
 

T�1X
sDa

jf .s/j
�./

!
.t � a/N�1 C A.t � a/N�1

�./

�
rs

r � 1
	sDt�C1

sDT
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D
 

T�1X
sDa

jf .s/j
�./

!
.t � a/N�1 C A.t � a/N�1

.r � 1/�./ Œr
t�C1 � rT �

	
 

T�1X
sDa

jf .s/j
�./

!
.t � a/N�1 C A.t � a/N�1r1�

.r � 1/�./ rt

D B.t � a/N�1 C C.t � a/N�1rt;

where B and C are constants. But for any fixed � > 0we get by applying L’Hôpital’s
rule, that

lim
t!1

B.t � a/N�1 C C.t � a/N�1rt

.r C �/t
D 0:

Therefore,��
a f W NaC ! R is of exponential order r C � for each fixed � > 0. By

Remark 2.64, we also have ��
a f W NaC�N ! R is of exponential order r C � for

each fixed � > 0.
Finally, we show �

af W NaCN� ! R, where N � 1 <  	 N, is of exponential
order r C � for each fixed � > 0: Since

�
af .t/ D �N��.N�/

a f .t/

and by the first part of the proof, ��.N�/
a f .t/ is of exponential order r C �, we have

by Exercise 2.2 that �
af is of exponential order r C �. ut

Corollary 2.66. Suppose that f W Na ! R is of exponential order r � 1 and let
 > 0 be given with N � 1 <  	 N: Then

LaC
˚
��

a f
�
.s/; LaC�N

˚
��

a f
�
.s/; and LaCN�

˚
�

af
�
.s/

converge for all js C 1j > r:

Proof. Suppose f ; r, and  are as in the statement of this corollary and fix s0 so
that js0 C 1j > r. Then there is an �0 > 0 so that js0 C 1j > r C �0: Since
we know by Theorem 2.65 that ��

a f W NaC ! R, ��
a f W NaC�N ! R, and

�
af W NaCN� ! R are of exponential order rC�0, it follows from Theorem 2.4 that

LaC
˚
��

a f
�
.s0/, LaC�N

˚
��

a f
�
.s0/, and LaCN�

˚
�

af
�
.s0/ converge. Since

js0 C 1j > r is arbitrary, we have that

LaC
˚
��

a f
�
.s/; LaC�N

˚
��

a f
�
.s/; and LaCN�

˚
�

af
�
.s/

all converge for all js C 1j > r: ut
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2.8 The Laplace Transform of Fractional Operators

With Corollary 2.66 in hand to insure the correct domain of convergence for the
Laplace transform of any fractional operator, we may now safely develop formulas
for applying the Laplace transform to fractional operators. This is the content of the
next theorem.

Theorem 2.67. Suppose f W Na ! R is of exponential order r � 1, and let  > 0

be given with N � 1 <  	 N. Then for js C 1j > r,

LaC
˚
��

a f
�
.s/ D .s C 1/

s
Fa .s/ ; (2.49)

and

LaC�N
˚
��

a f
�
.s/ D .s C 1/�N

s
Fa.s/: (2.50)

Proof. Since f W Na ! R is of exponential order r � 1, Fa.s/ exists for js C 1j > r
and by Corollary 2.66 both LaC

˚
��

a f
�
.s/ and LaC�N

˚
��

a f
�
.s/ exist for js C

1j > r: First, we find a relationship between the left-hand sides of equations (2.49)
and (2.50). Using (2.37), we get

LaC�N
˚
��

a f
�
.s/

D 1

.s C 1/N
LaC

˚
��

a f
�
.s/C

N�1X
kD0

��
a f .a C  � N C k/

.s C 1/kC1

D 1

.s C 1/N
LaC

˚
��

a f
�
.s/ ; (2.51)

using the fact that ��
a f .a C  � N C k/ D 0 for 0 	 k 	 N � 1, by our convention

on sums.
To see that (2.49) holds, note that

LaC
˚
��

a f
�
.s/

D
1X

kD0

��
a f .a C k C /

.s C 1/kC1

D
1X

kD0

1

.s C 1/kC1
kCaX
rDa

h�1.a C k C ; �.r//f .r/

D
1X

kD0

1

.s C 1/kC1
kCaX
rDa

f .r/h�1 ..a C k C 1/ � �.r/C a; a � . � 1//
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D
1X

kD0

.f 
 h�1.t; a � . � 1/// .a C 1C k/

.s C 1/kC1 ; by (2.42)

D LaC1 ff 
 h�1.t; a � . � 1//g .s/
D .s C 1/La ff 
 h�1.t; a � . � 1//g .s/ ; using (2.38) and (2.42)

D .s C 1/Fa .s/La fh�1.t; a � . � 1//g .s/ ; by (2.43)

D .s C 1/

s
Fa .s/ , applying (2.38), since r � 1

proving (2.49). Finally, using (2.51) and (2.49), we get

LaC�N
˚
��

a f
�
.s/ D 1

.s C 1/N
LaC

˚
��

a f
�
.s/

D .s C 1/�N

s
Fa .s/ ;

for js C 1j > r, proving (2.50). ut
Example 2.68. Find L2C	Cef��e

5C	 f g.s/ given that

f .t/ D .t � 5/	 ; t 2 N5C	 :

First note that

f .t/ D �.	 C 1/h	.t; 5/; t 2 N5C	 ;

and hence using (2.39) we have that

F5C	.s/ D �.	 C 1/L5C	fh	.t; 5/g.s/ D �.	 C 1/
.s C 1/	

s	C1

for js C 1j > 1:
Then using (2.50) gives us

L2C	Ce
˚
��e
5C	 f

�
.s/ D L.5C	/Ce�3f��e

5C	 f g.s/

D .s C 1/e�3

se

�
�.	 C 1/

.s C 1/	

s	C1

�

D �.	 C 1/
.s C 1/	Ce�3

s	CeC1

for js C 1j > 1:
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Remark 2.69. Note that when  D N in (2.50), the correct well-known for-
mula (2.46) for N D 1, is obtained. This holds true for the Laplace transform of
a fractional difference as well, as the following theorem shows (Holm [123]).

Theorem 2.70. Suppose f W Na ! R is of exponential order r � 1, and let  > 0

be given with N � 1 <  	 N. Then for js C 1j > r

LaCN�
˚
�

af
�
.s/ D s .s C 1/N� Fa.s/

�
N�1X
jD0

sj��1�j
a f .a C N � /: (2.52)

Proof. Let f ; r; , and N be given as in the statement of the theorem. By Exer-
cise 2.28 we have that (2.52) holds when  D N. Hence we assume N �1 <  < N.
To see this, consider

LaCN�
˚
�

af
�
.s/

D LaCN�
n
�N��.N�/

a f
o
.s/

D sNLaCN�
n
��.N�/

a f
o
.s/

�
N�1X
jD0

sj�N�1�j��.N�/
a f .a C N � /

D sN .s C 1/N�

sN� Fa .s/

�
N�1X
jD0

sj�N�1�j��.N�/
a f .a C N � /

D s .s C 1/N� Fa .s/ �
N�1X
jD0

sj��1�j
a f .a C N � / :

This completes the proof. ut

2.9 Power Rule and Composition Rule

In this section (see Atici and Eloe [34], Holm [123, 125]), we present a number
of properties and formulas concerning fractional sum and difference operators are
developed. These include composition rules and fractional power rules, whose
proofs employ a variety of tools, none of which involves the Laplace trans-
form. However, some of these results may also be proved using the Laplace
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transform. The following are two previously known results for which the Laplace
transform provides a significantly shorter and cleaner proof than the original ones
found in [34, 123].

Theorem 2.71 (Power Rule). Let ; � > 0 be given. Then for t 2 NaC�C;

��
aC� .t � a/� D �.�C 1/

�.�C 1C /
.t � a/�C

or equivalently

��
aC�h�.t; a/ D h�C.t; a/:

Proof. Applying Remark 2.57 together with Lemma 2.63, we conclude that for
each � > 0, .t � a/� is of exponential order 1 C � and therefore we have that
��

aC� .t � a/� is of exponential order 1 C 2�. Thus, after employing an argument
similar to that given in Corollary 2.66, we conclude that both LaC� f.t � a/�g and

LaC�C
n
��

aC� .t � a/�
o

converge for js C 1j > 1. Hence, for js C 1j > 1, we have

LaC�C
n
��

aC� .t � a/�
o
.s/

D .s C 1/

s
LaC� f.t � a/�g .s/ ; using (2.49)

D .s C 1/

s
�.�C 1/LaC�

˚
h� .t; a/

�
.s/

D .s C 1/

s
�.�C 1/

.s C 1/�

s�C1 ; applying (2.39)

D �.�C 1/
.s C 1/�C

s�CC1

D �.�C 1/LaC�C
˚
h�C .t; a/

�
.s/

D LaC�C
�

�.�C 1/

�.�C  C 1/
.t � a/�C


.s/ .

Since the Laplace transform is injective, it follows that

��
aC� .t � a/� D �.�C 1/

�.�C 1C /
.t � a/�C , for t 2 NaC�C:

This completes the proof. ut
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Theorem 2.72. Suppose that f W Na ! R is of exponential order r � 1, and let
; � > 0 be given. Then

��
aC����

a f .t/ D ����
a f .t/ D �

��
aC�

�
a f .t/; for all t 2 NaC�C:

Proof. Let f ; r; , and � be given as in the statement of the theorem. It follows from
Corollary 2.66 that each of

LaC�C
n
��

aC����
a f

o
; LaC�

˚
���

a f
�

and LaC.C�/
˚
��.C�/

a f
�

exists for js C 1j > r: Therefore, we may apply (2.49) multiple times to write for
js C 1j > r,

LaC�C
n
��

aC����
a f

o
.s/ D .s C 1/

s
LaC�

˚
���

a f
�
.s/

D .s C 1/

s
.s C 1/�

s�
La ff g .s/

D .s C 1/C�

sC� La ff g .s/

D LaC.C�/
˚
��.C�/

a f
�
.s/

D LaC�C
˚
����

a f
�
.s/ .

The result follows from symmetry and the fact that the operator LaC�C is injective
(see Theorem 2.7). ut

2.10 The Laplace Transform Method

The tools developed in the previous sections of this chapter enable us to solve a
general fractional initial value problem using the Laplace transform. The initial
value problem (2.53) below is identical to that studied and solved using the
composition rules in Holm [123, 125]. In Theorem 2.76 below, we present only
that part of the proof involving the Laplace transform method.

Theorem 2.73. Assume f W Na ! R is of exponential order r � 1 and  > 0 with
N � 1 <  	 N: Then the unique solution of the IVP

�
aC�Ny.t/ D f .t/; t 2 Na

�iy.a C  � N/ D 0; 0 	 i 	 N � 1;
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is given by

y.t/ D ��
a f .t/ D

Z t

a
h�1.t; �.k//f .k/�k;

for t 2 NaC�N :

Proof. Since

�
aC�Ny.t/ D f .t/; t 2 Na;

we have that

Laf�
aC�Nyg.s/ D Fa.s/

for js C 1j > r: Assume for the moment that the Laplace transform (based at
a C  � N) of the solution of the given IVP converges for js C 1j > r. It follows
from (2.52) that

Laf�
aC�Nyg.s/ D s.s C 1/N�YaC�N.s/ �

N�1X
jD0

sj��1�j
a y.a/

D s.s C 1/N�YaC�N.s/;

where we have used the initial conditions. It follows that

LaC�Nfyg.s/ D YaC�N.s/

D .s C 1/�N

s
Fa.s/

D LaC�Nf��
a f g.s/; by (2.50):

It then follows from the uniqueness theorem for Laplace transforms, Theo-
rem 2.7, that

y.t/ D ��
a f .t/; t 2 NaC�N :

From this we now know that y is of exponential order r and hence the above
arguments hold and the proof is complete. ut

Using Theorem 2.73 and Theorem 2.43 it is easy to prove the following result.

Theorem 2.74. Assume f W Na ! R is of exponential order r � 1 and  > 0 with
N � 1 <  	 N: Then a general solution of the nonhomogeneous equation

�
aC�Ny.t/ D f .t/; t 2 Na
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is given by

y.t/ D
NX

kD1
ck.t � a/�k C��

a f .t/

for t 2 NaC�N :

Example 2.75. Solve the IVP

�
1
2

a� 1
2

y.t/ D h 1
2
.t; a/; t 2 Na

y

�
a � 1

2

�
D 1

2
:

Note this IVP is of the form of the IVP in Theorem 2.74, where

 D 1

2
; N D 1; a C N �  D a � 1

2
; f .t/ D h 1

2
.t; a/:

From Theorem 2.74 a general solution of the fractional equation �
1
2

a� 1
2

y.t/ D
h 1
2
.t; a/ is given by

y.t/ D c1.t � a/�1 C�
� 1
2

a h 1
2
.t; a/

D c1.t � a/�
1
2 C .t � a/:

Applying the initial condition we get c1 D 1p
	
: Hence the solution of the given IVP

in this example is given by

y.t/ D 1p
	
.t � a/�

1
2 C .t � a/

for t 2 Na� 1
2
:

The following theorem appears in Ahrendt et al. [3].

Theorem 2.76. Suppose that f W Na ! R is of exponential order r � 1, and let
 > 0 be given with N � 1 <  	 N: The unique solution to the fractional initial
value problem

�
�

aC�Ny.t/ D f .t/; t 2 Na

�iy.a C  � N/ D Ai; i 2 f0; 1; � � � ;N � 1g I Ai 2 R
(2.53)
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is given by

y.t/ D
N�1X
iD0

˛i.t � a/iC�N C��
a f .t/; for t 2 NaC�N ;

where

˛i WD
iX

pD0

i�pX
kD0

.�1/k
iŠ

.i � k/N�
 

i

p

! 
i � p

k

!
Ap;

for i 2 f0; 1; � � � ;N � 1g :
Proof. Since f is of exponential order r, we know that Fa.s/ D La ff g .s/ exists
for js C 1j > r. So, applying the Laplace transform to both sides of the difference
equation in (2.53), we have for js C 1j > r

La
˚
�

aC�Ny
�
.s/ D Fa.s/:

Using (2.52), we get

s .s C 1/N� YaC�N.s/ �
N�1X
jD0

sj�
�j�1
aC�Ny.a/ D Fa.s/:

This implies that

YaC�N.s/ D Fa.s/

s .s C 1/N� C
N�1X
jD0

�
�j�1
aC�Ny.a/

s�j .s C 1/N� :

From (2.50), we have immediately that

Fa.s/

s .s C 1/N� D LaC�N
˚
��

a f
�
.s/ :

Considering next the terms in the summation, we have for each fixed j 2 f0; � � � ,
N � 1g,

1

s�j .s C 1/N� D 1

.s C 1/N�j�1
.s C 1/�j�1

s�j

D 1

.s C 1/N�j�1LaC�j�1
˚
h�j�1 .t; a/

�
.s/; by (2.39)

D LaC�N
˚
h�j�1 .t; a/

�
.s/
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�
N�j�2X

kD0

h�j�1 .k C a C  � N; a/

.s C 1/kC1 ; by (2.37)

D LaC�N
˚
h�j�1 .t; a/

�
.s/;

since

h�j�1 .k C a C  � N; a/ D .k C  � N/�j�1

�. � j/

D �.k C  � N C 1/

�.k � .N � j � 2// �. � j/

D 0,

for k 2 f0; � � � ;N � j � 2g : It follows that for js C 1j > r;

LaC�N fyg .s/

D LaC�N
˚
��

a f
�
.s/C

N�1X
jD0

�
�j�1
aC�Ny.a/LaC�N

˚
h�j�1 .t; a/

�
.s/

D LaC�N

8<
:

N�1X
jD0

�
�j�1
aC�Ny.a/h�j�1 .t; a/C��

a f

9=
; .s/ :

Since the Laplace transform is injective, we conclude that for t 2 NaC�N ;

y .t/ D
N�1X
jD0

�
�j�1
aC�Ny.a/h�j�1 .t; a/C��

a f .t/

D
N�1X
jD0

�
�j�1
aC�Ny.a/

�. � j/
.t � a/�j�1 C��

a f .t/

D
N�1X
iD0

 
�iC�N

aC�Ny.a/

�.i C  � N C 1/

!
.t � a/iC�N C��

a f .t/:

Moreover, Holm [125] showed that

�iC�N
aC�Ny.a/

�.i C  � N C 1/
D

iX
pD0

i�pX
kD0

.�1/k
iŠ

.i � k/N�
 

i

p

! 
i � p

k

!
�iy.a C  � N/;

for i 2 f0; 1; � � � ;N � 1g ; concluding the proof. ut
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Theorem 2.76 shows how we can solve the general IVP (2.53) using the discrete
Laplace transform method. We offer a brief example.

Example 2.77. Consider the IVP given by

�
�	
	�4y.t/ D 	4t2, t 2 N0

y.	 � 4/ D 2; �y.	 � 4/ D 3; �2y.	 � 4/ D 5; �3y.	 � 4/ D 7:
(2.54)

Note that (2.54) is a specific case of (2.53) from Theorem 2.76, with

a D 0;  D 	; N D 4; f .t/ D 	4t2

A0 D 2; A1 D 3; A2 D 5 A3 D 7:

After applying the discrete Laplace transform method as described in Theorem 2.76,
we have

y .t/ D
3X

iD0
˛it

iC	�4 C��	
0

�
	4t2

�

D
3X

iD0
˛it

iC	�4 C��	
2

�
	4t2

�
, since t2 D t .t � 1/ ;

� 0:303t	�4 C 5: 040t	�3 C 6: 977t	�2 C 4: 876t	�1 C 3: 272t	C2;

where in this last step, we calculated

˛i D
iX

pD0

i�pX
kD0

.�1/k
iŠ

.i � k/4�	
 

i

p

! 
i � p

k

!
Ap, for i D 0; 1; 2; 3,

for the first four terms and applied the power rule (Theorem 2.71) on the last term.

2.11 Exercises

2.1. Show that f W Na ! R is of exponential order r D 1 iff f is bounded on Na.

2.2. Prove that if f W Na ! R is of exponential order r > 0, then �nf W Na ! R is
also of exponential order r for n 2 N0:

2.3. Show that if f W Na ! R is of exponential order r > 1, then h.t/ WD R t
a

f .�/�� , t 2 Na is also of exponential order r.

2.4. Show that h0.t; a/ is of exponential order 1 and for each n � 0, hn.t; a/ is of
exponential order 1C � for all � > 0.
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2.5. Prove formula (i) in Theorem 2.8, that is

Lafcoshp.t; a/g.s/ D s

s2 � p2

for js C 1j > maxfj1C pj; j1 � pjg:
2.6. Prove formula (ii) in Theorem 2.9, that is

Lafsinp.t; a/g.s/ D p

s2 C p2

for js C 1j > maxfj1C ipj; j1 � ipjg:
2.7. Prove formula (ii) in Theorem 2.10, that is

Lafe˛.t; a/ sinh ˇ
1C˛

.t; a/g.s/ D ˇ

.s � ˛/2 � ˇ2 ;

for js C 1j > maxfj1C ˛ C ˇj; j1C ˛ � ˇjg:
2.8. Prove Theorem 2.11.

2.9. For each of the following find y.t/ given that

(i) Ya.s/ D 14�s
s2C2s�8 I

(ii) Y0.s/ D 2s2

s2�p
2sC1 :

2.10. Use Laplace transforms to solve the following IVPs

(i)

y.t C 2/ � 7y.t C 1/C 12y.t/ D 0; t 2 N0I
y.0/ D 2; y.1/ D 4:

(ii)

y.t C 1/ � 2y.t/ D 3t; t 2 N0I
y.0/ D 5:

(iii)

y.t C 2/ � 6y.t C 1/C 8y.t/ D 20.4/t; t 2 N0

y.0/ D 0; y.1/ D 4:
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2.11. Use Laplace transforms to solve the IVP

u.t C 1/C v.t/ D 0

� u.t/C v.t C 1/ D 0

u.0/ D 1; v.0/ D 0:

2.12. Solve each of the following IVPs:

(i)

�y.t/ � 2y.t/ D ı4.t/; t 2 N0I
y.0/ D 2;

(ii)

�y.t/ � 5y.t/ D 3u60.t/; t 2 N0

y.0/ D 4; t 2 N0:

2.13. Solve the following summation equations using Laplace transforms:

(i) y.t/ D 2C 4
Pt�1

rD0 3t�r�1y.r/; t 2 N0I
(ii) y.t/ D 3 � 5t � 4Pt�1

rD0 5t�r�1y.r/; t 2 N0I
(iii) y.t/ D t CPt�1

rD0 y.r/; t 2 N0I
(iv) y.t/ D 2t�a CPt�1

rDa 4
t�r�1y.r/; t 2 Na:

2.14. Use Laplace transforms to solve each of the following:

(i) y.t/ D 3t CPt�1
mD0 3k�m�1ym; t 2 N0I

(ii) y.t/ D 3t CPt�1
mD0 4k�m�1ym; t 2 N0:

2.15. Show that

(i) ��
a f .a C / D f .a/I

(ii) ��
a f .a C  C 1/ D f .a/C f .a C 1/:

2.16. Complete the proof of Theorem 2.27.

2.17. Work each of the following:

(i) Use the definition of the -th fractional sum (Definition 2.25) to find �
� 1
3

a 1I
(ii) Use the definition of the fractional difference (Definition 2.29) and part (2.32)

to find �
2
3
a 1:

2.18. Show that the following hold:

(i) ��
aC�.t � a/� D ��.t � a/�C; t 2 NaC�C I

(ii) �
aC�.t � a/� D �.t � a/��; t 2 NaC�CN�:
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2.19. Verify that (2.12) holds.

2.20. Show that h�.t; t � �C k/ D 0 for k 2 N1, � � k C 1 … f0;�1;�2; � � � g:
2.21. Evaluate each of the following using Theorem 2.38 and Theorem 2.40

(i) ��1
3
2

.t � 1/ 12 ; t 2 N 5
2
I

(ii) ��:7
4 .t � 1:7/2:3; t 2 N4:7I

(iii) �:5
5:5.t � 3/2:5; t 2 N5I

(iv) �
1
2

3 t.t � 1/.t � 2/; t 2 N 5
2
:

2.22. Prove that part (ii) of Theorem 2.42, follows from Theorem 2.40.

2.23. Prove (2.26).

2.24. Solve each of the following IVPs:

(i) �2:7�0:3x.t/ D t2; t 2 N0

x.�0:3/ D x.0:7/ D x.1:7/ D 0I
(ii) �1:6�0:4x.t/ D t4; t 2 N0

x.�0:4/ D x.0:6/ D 0I
(iii) �0:9�0:1x.t/ D t5; t 2 N0

x.�0:1/ D 0:

2.25. Use Theorems 2.54 and 2.58 to show that Lafh1.t; a/g D 1
s2

. Evaluate the
convolution product 1 
 1 and show directly (do not use the convolution theorem)
that Laf1 
 1g.s/ D Laf1g.s/ Laf1g.s/:
2.26. Assume p 2 R and p ¤ 0. Using the definition of the convolution product

(Definition 2.59), find

Œh1.t; a/ 
 ep.t; a/�.t/:

2.27. Assume p; q 2 R and p ¤ q. Using the definition of the convolution product
(Definition 2.59), find

Œep.t; a/ 
 eq.t; a/�.t/:

2.28. For N a positive integer, use the definition of the Laplace transform to prove
that (2.4) holds (that is, (2.52) holds when  D N).



Chapter 3
Nabla Fractional Calculus

3.1 Introduction

As mentioned in the previous chapter and as demonstrated on numerous occasions,
the disadvantage of the discrete delta fractional calculus is the shifting of domains
when one goes from the domain of the function to the domain of its delta fractional
difference. This problem is not as great with the fractional nabla difference as
noted by Atici and Eloe. In this chapter we study the discrete fractional nabla
calculus. We then define the corresponding nabla Laplace transform motivated by a
particularly general definition of the delta Laplace transform that was first defined
in a very general way by Bohner and Peterson [62]. Several properties of this nabla
Laplace transform are then derived. Fractional nabla Taylor monomials are defined
and formulas for their nabla Laplace transforms are presented. Then the discrete
nabla version of the Mittag–Leffler function and its nabla Laplace transform is
obtained. Finally, a variation of constants formula for an initial value problem for
a -th, 0 <  < 1, order nabla fractional difference equation is given along with
some applications. Much of the work in this chapter comes from the results in Hein
et al. [119], Holm [123–125], Brackins [64], Ahrendt et al. [3, 4], and Baoguo et al.
[49, 52].

3.2 Preliminary Definitions

We first introduce some notation and state elementary results concerning the nabla
calculus, which we will use in this chapter. As in Chaps. 1 and 2 for a 2 R, the sets
Na and N

b
a, where b � a is a positive integer, are defined by

Na WD fa; a C 1; a C 2; : : : g; N
b
a WD fa; a C 1; a C 2; : : : ; bg:

© Springer International Publishing Switzerland 2015
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150 3 Nabla Fractional Calculus

For an arbitrary function f W Na ! R we define the nabla operator (backwards
difference operator), r, by

.rf /.t/ WD f .t/ � f .t � 1/; t 2 NaC1:

For convenience, we adopt the convention that rf .t/ WD .rf /.t/. Sometimes it is
useful to use the relation

rf .t/ D �f .t � 1/ (3.1)

to get results for the nabla calculus from the delta calculus and vice versa. Since
many readers will be interested only in the nabla calculus, we want this chapter to
be self-contained. So we will not use the formula (3.1) in this chapter. The operator
rn is defined recursively by rnf .t/ WD r�rn�1f .t/

�
for t 2 NaCn, n 2 N1, where

r0 is the identity operator defined by r0f .t/ D f .t/. We define the backward jump
operator, � W NaC1 ! Na, by

�.t/ D t � 1:

Also we let f � denote the composition function f ı �. It is easy (Exercise 3.1) to see
that if f W N ! R and rf .t/ D 0 for t 2 NaC1; then

f .t/ D C; t 2 Na; where C is a constant.

The following theorem gives several properties of the nabla difference operator.

Theorem 3.1. Assume f ; g W Na ! R and ˛; ˇ 2 R. Then for t 2 NaC1;

(i) r˛ D 0I
(ii) r˛f .t/ D ˛rf .t/I

(iii) r .f .t/C g.t// D rf .t/C rg.t/I
(iv) if ˛ ¤ 0, then r˛tCˇ D ˛�1

˛
˛tCˇI

(v) r .f .t/g.t// D f .�.t//rg.t/C rf .t/g.t/I
(vi) r

�
f .t/
g.t/

�
D g.t/rf .t/�f .t/rg.t/

g.t/g.�.t// ; if g.t/ ¤ 0; t 2 NaC1.

Proof. We will just prove (iv) and (v) and leave the proof of the other parts to the
reader. To see that (iv) holds assume that ˛ ¤ 0 and note that

r˛tCˇ D ˛tCˇ � ˛t�1Cˇ

D Œ˛ � 1�˛t�1Cˇ

D ˛ � 1
˛

˛tCˇ:
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Next we prove the product rule (v). For t 2 NaC1, consider

rŒf .t/g.t/� D f .t/g.t/ � f .t � 1/g.t � 1/
D f .t � 1/Œg.t/ � g.t � 1/�C Œf .t/ � f .t � 1/�g.t/
D f .�.t//rg.t/C rf .t/g.t/;

which is the desired result. ut
Next we define the rising function.

Definition 3.2. Assume n is a positive integer and t 2 R. Then we define the rising
function, tn; read “t to the n rising,”by

tn WD t.t C 1/ � � � .t C n � 1/:

Readers familiar with the Pochhammer function may recognize this notation in
its alternative form, .k/n. See Knuth [139].

The rising function is defined this way so that the following power rule holds.

Theorem 3.3 (Nabla Power Rule). For n 2 N1, ˛ 2 R,

r.t C ˛/n D n .t C ˛/n�1;

for t 2 R.

Proof. We simply write

r.t C ˛/n D .t C ˛/n � .t � 1C ˛/n

D Œ.t C ˛/.t C ˛ C 1/ � � � .t C ˛ C n � 1/�
� Œ.t C ˛ � 1/.t C ˛/ � � � .t C ˛ C n � 2/�

D .t C ˛/.t C ˛ C 1/ � � � .t C ˛ C n � 2/
� Œ.t C ˛ C n � 1/ � .t C ˛ � 1/�

D n .t C ˛/n�1:

This completes the proof. ut
Note that for n 2 N1,

tn WD t.t C 1/ � � � .t C n � 1/
D .t C n � 1/.t C n � 2/ � � � .t C 1/ � t

D .t C n � 1/.t C n � 2/ � � � t � �.t/
�.t/

D �.t C n/

�.t/
; t … f0;�1;�2; � � � g;

where � is the gamma function (Definition 1.6). Motivated by this we next define
the (generalized) rising function as follows.
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Definition 3.4. The (generalized) rising function is defined by

tr D �.t C r/

�.t/
; (3.2)

for those values of t and r so that the right-hand side of equation (3.2) is sensible.
Also, we use the convention that if t is a nonpositive integer, but t C r is not a
nonpositive integer, then tr WD 0.

We then get the following generalized power rules.

Theorem 3.5 (Generalized Nabla Power Rules). The formulas

r.t C ˛/r D r .t C ˛/r�1; (3.3)

and

r.˛ � t/r D �r.˛ � �.t//r�1; (3.4)

hold for those values of t, r, and ˛ so that the expressions in equations (3.3) and
(3.4) are sensible. In particular, t0 D 1; t ¤ 0;�1;�2; � � � .

Proof. Consider that

r.t C ˛/r D .t C ˛/r � .t � 1C ˛/r

D �.t C ˛ C r/

�.t C ˛/
� �.t C ˛ C r � 1/

�.t C ˛ � 1/

D Œ.t C ˛ C r � 1/ � .t C ˛ � 1/��.t C ˛ C r � 1/
�.t C ˛/

D r
�.t C ˛ C r � 1/

�.t C ˛/

D r.t C ˛/r�1:

Hence, (3.3) holds. Next we prove (3.4). To see this, note that

r.˛ � t/r D .˛ � t/r � .˛ � t C 1/r

D �.˛ � t C r/

�.˛ � t/
� �.˛ � t C 1C r/

�.˛ � t C 1/

D Œ.˛ � t/ � .˛ � t C r/�
�.˛ � t C r/

�.˛ � t C 1/

D � r
�.˛ � t C r/

�.˛ � t C 1/
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D � r
�.˛ � �.t/C r � 1/

�.˛ � �.t//
D � r.˛ � �.t//r�1:

This completes the proof. ut

3.3 Nabla Exponential Function

In this section we want to study the nabla exponential function that plays a similar
role in the nabla calculus that the exponential function ept does in the continuous
calculus. Motivated by the fact that when p is a constant, x.t/ D ept is the unique
solution of the initial value problem

x0 D px; x.0/ D 1;

we define the nabla exponential function, Ep.t; s/ based at s 2 Na, where the
function p is in the set of (nabla) regressive functions

R WD fp W NaC1 ! R W 1 � p.t/ ¤ 0; for t 2 NaC1g;

to be the unique solution of the initial value problem

ry.t/ D p.t/y.t/; t 2 NaC1 (3.5)

y.s/ D 1: (3.6)

After reading the proof of the next theorem one sees why this IVP has a unique
solution. In the next theorem we give a formula for the exponential function Ep.t; s/.

Theorem 3.6. Assume p 2 R and s 2 Na. Then

Ep.t; s/ D
(Qt

�DsC1 1
1�p.�/ , t 2 NsQs

�DtC1Œ1 � p.�/�, t 2 N
s�1
a :

(3.7)

Here it is understood that
Qt
�DtC1 h.�/ D 1 for any function h.

Proof. First we find a formula for Ep.t; s/ for t � s C 1 by solving the IVP (3.5),
(3.6) by iteration. Solving the nabla difference equation (3.5) for y.t/ we obtain

y.t/ D 1

1 � p.t/
y.t � 1/; t 2 NaC1: (3.8)
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Letting t D s C 1 in (3.8) we get

y.s C 1/ D 1

1 � p.s C 1/
y.s/ D 1

1 � p.s C 1/
:

Then letting t D s C 2 in (3.8) we obtain

y.s C 2/ D 1

1 � p.s C 2/
y.s C 1/ D 1

Œ1 � p.s C 1/� Œ1 � p.s C 2/�
:

Proceeding in this matter we get by mathematical induction that

Ep.t; a/ D
tY

�DsC1

1

1 � p.�/
;

for t 2 NsC1. By our convention on products we get

Ep.s; s/ D
sY

�DsC1
Œ1 � p.�/� D 1

as desired. Now assume a 	 t < s. Solving the nabla difference equation (3.5) for
y.t � 1/ we obtain

y.t � 1/ D Œ1 � p.t/�y.t/; t 2 NaC1: (3.9)

Letting t D s in (3.9) we get

y.s � 1/ D Œ1 � p.s/�y.s/ D Œ1 � p.s/�:

If s � 2 � a, we obtain by letting t D s � 1 in (3.9)

y.s � 2/ D Œ1 � p.s � 1/�y.s � 1/ D Œ1 � p.s/� Œ1 � p.s � 1/� :

By mathematical induction we arrive at

Ep.t; s/ D
sY

�DtC1
Œ1 � p.�/�; for t 2 N

s
a:

Hence, Ep.t; s/ is given by (3.7). ut
Theorem 3.6 gives us the following example.

Example 3.7. If s 2 Na and p.t/ � p0, where p0 ¤ 1 is a constant, then

Ep.t; s/ D .1 � p0/
s�t; t 2 Na:
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We now set out to prove properties of the exponential function Ep.t; s/. To
motivate some of these properties, consider, for p; q 2 R, the product

Ep.t; a/Eq.t; a/ D
tY

�DaC1

1

1 � p.�/

tY
�DaC1

1

1 � q.�/

D
tY

�DaC1

1

Œ1 � p.�/� Œ1 � q.�/�

D
tY

�DaC1

1

1 � Œp.�/C q.�/ � p.�/q.�/�

D
tY

�DaC1

1

1 � .p � q/.�/
if .p � q/.t/ WD p.t/C q.t/ � p.t/q.t/

D Ep�q.t; a/

for t 2 Na.
Hence, we deduce that the nabla exponential function satisfies the law of

exponents

Ep.t; a/Eq.t; a/ D Ep�q.t; a/; t 2 Na;

if we define the box plus addition � on R by

.p � q/.t/ WD p.t/C q.t/ � p.t/q.t/; t 2 NaC1:

We now give an important result concerning the box plus addition �.

Theorem 3.8. If we define the box plus addition, �, on R by

p � q WD p C q � pq;

then R, � is an Abelian group.

Proof. First, to see that the closure property is satisfied, note that if p; q 2 R, then
1 � p.t/ ¤ 0 and 1 � q.t/ ¤ 0 for t 2 NaC1. It follows that

1 � .p � q/.t/ D 1 � Œp.t/C q.t/ � p.t/q.t/� D .1 � p.t//.1 � q.t// ¤ 0;

for t 2 NaC1, and hence the function p � q 2 R.
Next, notice that the zero function, 0, is in R, since the regressivity condition

1 � 0 D 1 ¤ 0 holds. Also

0� p D 0C p � 0 � p D p; for all p 2 R;

so the zero function 0 is the identity element in R.
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We now show that every element in R has an additive inverse let p 2 R. So, set
q D �p

1�p and note that since

1 � q.t/ D 1 � �p.t/

1 � p.t/
D 1

1 � p.t/
¤ 0; t 2 NaC1

we have that q 2 R; and we also have that

p � q D p � �p

1 � p
D p C �p

1 � p
� �p2

1 � p
D 0;

so q is the additive inverse of p. For p 2 R; we use the following notation for the
additive inverse of p:

ˇp WD �p

1 � p
: (3.10)

The fact that the addition � is associative and commutative is Exercise 3.4. ut
We can now define box minus subtraction, ˇ; on R in a standard manner as

follows.

Definition 3.9. We define box minus subtraction on R by

p ˇ q WD p � Œˇq�:

By Exercise 3.5 we have that if p; q 2 R, then

.p ˇ q/.t/ D p.t/ � q.t/

1 � q.t/
; t 2 Na:

In addition, we define the set of (nabla) positively regressive functions, RC; by

RC D fp W NaC1 W! R; such that 1 � p.t/ > 0 for t 2 NaC1g:

The proof of the following theorem is left as an exercise (see Exercise 3.8).

Theorem 3.10. The set of positively regressive functions, RC, with the addition �,
is a subgroup of R.

In the next theorem we give several properties of the exponential function
Ep.t; s/.

Theorem 3.11. Assume p; q 2 R and s; r 2 Na. Then

(i) E0.t; s/ D 1, t 2 NaI
(ii) Ep.t; s/ ¤ 0, t 2 NaI

(iii) if p 2 RC, then Ep.t; s/ > 0; t 2 NaI
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(iv) rEp.t; s/ D p.t/Ep.t; s/, t 2 NaC1; and Ep.t; t/ D 1; t 2 NaI
(v) Ep.�.t/; s/ D Œ1 � p.t/�Ep.t; s/, t 2 NaC1I

(vi) Ep.t; s/Ep.s; r/ D Ep.t; r/; t 2 NaI
(vii) Ep.t; s/Eq.t; s/ D Ep�q.t; s/; t 2 NaI

(viii) Eˇp.t; s/ D 1
Ep.t;s/

; t 2 NaI
(ix) Ep.t;s/

Eq.t;s/
D Epˇq.t; s/; t 2 Na.

Proof. Using Example 3.7, we have that

E0.t; s/ D .1 � 0/s�t D 1

and thus (i) holds.
To see that (ii) holds, note that since p 2 R, it follows that 1 � p.t/ ¤ 0, and

hence we have that for t 2 Ns

Ep.t; s/ D
tY

�DsC1

1

1 � p.�/
¤ 0

and for t 2 N
s�1
a

Ep.t; s/ D
sY

�DtC1
Œ1 � p.�/� ¤ 0:

Hence, (ii) holds. The proof of (iii) is similar to the proof of (ii), whereas property
(iv) follows from the definition of Ep.t; s/.

Since, for t 2 Ns;

Ep.�.t/; s/ D
t�1Y

�DsC1

1

1 � p.�/

D Œ1 � p.t/�
tY

�DsC1

1

1 � p.�/

D Œ1 � p.t/�Ep.t; s/

we have that (v) holds for t 2 NsC1. Next assume t 2 N
s�1
aC1. Then

Ep.�.t/; s/ D
sY

�D�.t/C1
Œ1 � p.�/�

D
sY
�Dt

Œ1 � p.�/�
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D Œ1 � p.t/�
sY

�DtC1
Œ1 � p.�/�

D Œ1 � p.t/�Ep.t; s/:

Hence, (v) holds for t 2 N
s�1
aC1. It is easy to check that Ep.�.s/; s/ D

Œ1 � p.s/�Ep.s; s/. This completes the proof of (v).
We will just show that (vi) holds when s � r � a. First consider the case t 2 Ns.

In this case

Ep.t; s/Ep.s; r/ D
tY

�DsC1

1

1 � p.�/

sY
�DrC1

1

1 � p.�/

D
tY

�DrC1

1

1 � p.�/

D Ep.t; r/:

Next, consider the case t 2 N
s�1
r . Then

Ep.t; s/Ep.s; r/ D
sY

�DtC1
Œ1 � p.�/�

sY
�DrC1

1

1 � p.�/

D
tY

�DrC1

1

1 � p.�/

D Ep.t; r/:

Finally, consider the case t 2 N
r�1
a . Then

Ep.t; s/Ep.s; r/ D
sY

�DtC1
Œ1 � p.�/�

sY
�DrC1

1

1 � p.�/

D
tY

�DrC1
Œ1 � p.�/�

D Ep.t; r/:

This completes the proof of (vi) for the special case s � r � a. The case a 	
s 	 r is left to the reader (Exercise 3.9). The proof of the law of exponents (vii) is
Exercise 3.10. To see that (viii) holds, note that for t 2 Ns
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Eˇp.t; s/ D
tY

�DsC1

1

1 � .ˇp/.�/

D
tY

�DsC1
Œ1 � p.�/�

D 1

Ep.t; s/
:

Also, if t 2 N
s�1
a

Eˇp.t; s/ D
sY

�DtC1
Œ1 � .ˇp/.�/�

D
sY

�DtC1

1

1 � p.�/

D 1

Ep.t; s/
:

Hence (viii) holds for t 2 Na. Finally, using (viii) and then (vii), we have that

Ep.t; s/

Eq.t; s/
D Ep.t; s/Eˇq.t; s/ D Ep�Œˇq�.t; s/ D Epˇq.t; s/;

from which it follows that (ix) holds. ut
Next we define the scalar box dot multiplication, �.

Definition 3.12. For ˛ 2 R; p 2 RC the scalar box dot multiplication, ˛ � p, is
defined by

˛ � p D 1 � .1 � p/˛:

It follows that for ˛ 2 R; p 2 RC

1 � .˛ � p/.t/ D 1 � f1 � Œ1 � p.t/�˛g
D Œ1 � p.t/�˛ > 0

for t 2 NaC1. Hence ˛ � p 2 RC.
Now we can prove the following law of exponents.
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Theorem 3.13. If ˛ 2 R and p 2 RC, then

E˛p .t; a/ D E˛�p.t; a/

for t 2 Na.

Proof. Consider that, for t 2 Na,

E˛p .t; a/ D
"

tY
�DaC1

1

1C p.�/

#˛

D
tY

�DaC1

1

Œ1C p.�/�˛

D
tY

�DaC1

1

1 � Œ1 � .1 � p.�//˛�

D
tY

�DaC1

1

1 � Œ˛ � p�.�/

D E˛�p.t; a/:

This completes the proof. ut
Theorem 3.14. The set of positively regressive functions RC, with the addition �
and the scalar multiplication �, is a vector space.

Proof. From Theorem 3.10 we know that RC with the addition � is an Abelian
group. The four remaining nontrivial properties of a vector space are the
following:

(i) 1� p D pI
(ii) ˛ � .p � q/ D .˛ � p/� .˛ � q/I

(iii) ˛ � .ˇ � p/ D .˛ˇ/� pI
(iv) .˛ C ˇ/� p D .˛ � p/� .ˇ � p/;

where ˛; ˇ 2 R and p; q 2 RC. We will prove properties (i)–(iii) and leave property
(iv) as an exercise (Exercise 3.12).

Property (i) follows immediately from the following:

1� p D 1 � .1 � p/1 D p:

To prove (ii) consider

.˛ � p/� .˛ � q/

D ˛ � p C ˛ � q � .˛ � p/.˛ � q/
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D Œ1 � .1 � p/˛�C Œ1 � .1 � q/˛� � Œ1 � .1 � p/˛�Œ1 � .1 � q/˛�

D 1 � .1 � p/˛.1 � q/˛

D 1 � .1 � p � q C pq/˛

D 1 � .1 � p � q/˛

D ˛ � .p � q/:

Hence, (ii) holds. Finally, consider

˛ � .ˇ � p/ D 1 � .1 � ˇ � p/˛

D 1 �
�
1 � 


1 � .1 � p/ˇ
� 	˛

D 1 � .1 � p/˛ˇ

D .˛ˇ/� p:

Hence, property (iii) holds. ut

3.4 Nabla Trigonometric Functions

In this section we introduce the discrete nabla hyperbolic sine and cosine functions,
the discrete sine and cosine functions and give some of their properties. First we
define the nabla hyperbolic sine and cosine functions.

Definition 3.15. Assume p;�p 2 R. Then the generalized nabla hyperbolic sine
and cosine functions are defined as follows:

Coshp.t; a/ WD Ep.t; a/C E�p.t; a/

2
; Sinhp.t; a/ WD Ep.t; a/ � E�p.t; a/

2

for t 2 Na.

The following theorem gives various properties of the nabla hyperbolic sine and
cosine functions.

Theorem 3.16. Assume p;�p 2 R. Then

(i) Coshp.a; a/ D 1; Sinhp.a; a/ D 0I
(ii) Cosh2p.t; a/ � Sinh2p.t; a/ D Ep2 .t; a/; t 2 NaI

(iii) rCoshp.t; a/ D p.t/ Sinhp.t; a/; t 2 NaC1I
(iv) rSinhp.t; a/ D p.t/ Coshp.t; a/; t 2 NaC1I
(v) Cosh�p.t; a/ D Coshp.t; a/; t 2 NaI

(vi) Sinh�p.t; a/ D �Sinhp.t; a/; t 2 Na.
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Proof. Parts (i), (v), (vi) follow immediately from the definitions of the nabla
hyperbolic sine and cosine functions. To see that (ii) holds, note that

Cosh2p.t; a/ � Sinh2p.t; a/

D


Ep.t; a/C E�p.t; a/

�2 � 

Ep.t; a/ � E�p.t; a/

�2
4

D Ep.t; a/E�p.t; a/

D Ep�.�p/.t; a/

D Ep2 .t; a/:

To see that (iii) holds, consider

rCoshp.t; a/ D 1

2
rEp.t; a/C 1

2
rE�p.t; a/

D 1

2
ŒpEp.t; a/ � pE�p.t; a/�

D p
Ep.t; a/ � E�p.t; a/

2

D p Sinhp.t; a/:

The proof of (iv) is similar (Exercise 3.13). ut
Next, we define the nabla sine and cosine functions.

Definition 3.17. Assume ip;�ip 2 R. Then we define the nabla sine and cosine
functions as follows:

Cosp.t; a/ D Eip.t; a/C E�ip.t; a/

2
; Sinp.t; a/ D Eip.t; a/ � E�ip.t; a/

2i

for t 2 Na.

Using the definitions of Cosp.t; a/ and Sinp.t; a/ we get immediately Euler’s
formula

Eip.t; a/ D Cosp.t; a/C iSinp.t; a/; t 2 Na (3.11)

provided ip;�ip 2 R.
The following theorem gives some relationships between the nabla trigonometric

functions and the nabla hyperbolic trigonometric functions.

Theorem 3.18. Assume p is a constant. Then the following hold:

(i) Sinip.t; a/ D iSinhp.t; a/; if p ¤ ˙1I
(ii) Cosip.t; a/ D Coshp.t; a/; if p ¤ ˙1I



3.5 Second Order Linear Equations with Constant Coefficients 163

(iii) Sinhip.t; a/ D iSinp.t; a/; if p ¤ ˙iI
(iv) Coship.t; a/ D Cosp.t; a/; if p ¤ ˙i;

for t 2 Na.

Proof. To see that (i) holds, note that

Sinip.t; a/ D 1

2i
ŒEi2p.t; a/ � E�i2p.t; a/�

D 1

2i
ŒE�p.t; a/ � Ep.t; a/�

D i
Ep.t; a/ � E�p.t; a/

2

D i Sinhp.t; a/:

The proof of parts (ii), (iii), and (iv) are similar. ut
The following theorem gives various properties of the generalized sine and cosine

functions.

Theorem 3.19. Assume ip;�ip 2 R. Then

(i) Cosp.a; a/ D 1; Sinp.a; a/ D 0I
(ii) Cos2p.t; a/C Sin2p.t; a/ D E�p2 .t; a/; t 2 NaI

(iii) rCosp.t; a/ D �p.t/ Sinp.t; a/; t 2 NaC1I
(iv) rSinp.t; a/ D p.t/ Cosp.t; a/; t 2 NaC1I
(v) Cos�p.t; a/ D Cosp.t; a/; t 2 NaI

(vi) Sin�p.t; a/ D �Sinp.t; a/; t 2 Na.

Proof. The proof of this theorem follows from Theorems 3.16 and 3.18. ut

3.5 Second Order Linear Equations
with Constant Coefficients

The nonhomogeneous second order linear nabla difference equation is given by

r2y.t/C p.t/ry.t/C q.t/y.t/ D f .t/; t 2 NaC2; (3.12)

where we assume p; g; f W NaC2 ! R and 1C p.t/C q.t/ ¤ 0 for t 2 NaC2. In this
section we will see that we can easily solve the corresponding second order linear
homogeneous nabla difference equation with constant coefficients

r2y.t/C pry.t/C qy.t/ D 0; t 2 NaC2; (3.13)

where we assume the constants p; q 2 R satisfy 1C p C q ¤ 0.
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First we prove an existence-uniqueness theorem for solutions of initial value
problems (IVPs) for (3.12).

Theorem 3.20. Assume that p; q; f W NaC2 ! R, 1 C p.t/ C q.t/ ¤ 0, t 2 NaC2,
A;B 2 R; and t0 2 NaC1. Then the IVP

r2y.t/C p.t/ry.t/C q.t/y.t/ D f .t/; t 2 NaC2; (3.14)

y.t0 � 1/ D A; y.t0/ D B; (3.15)

where t0 2 NaC1 and A;B 2 R has a unique solution y.t/ on Na.

Proof. Expanding equation (3.14) we have by first solving for y.t/ and then solving
for y.t � 2/ that, since 1C p.t/C q.t/ ¤ 0,

y.t/ D 2C p.t/

1C p.t/C q.t/
y.t � 1/

� 1

1C p.t/C q.t/
y.t � 2/C f .t/

1C p.t/C q.t/
(3.16)

and

y.t � 2/ D �Œ1C p.t/C q.t/�y.t/C Œ2C p.t/�y.t � 1/C f .t/: (3.17)

If we let t D t0 C 1 in (3.16), then equation (3.14) holds at t D t0 C 1 iff

y.t0 C 1/ D Œ2C p.t0 C 1/�B

1C p.t0 C 1/C q.t0 C 1/
� A

1C p.t0 C 1/C q.t0 C 1/

C f .t0 C 1/

1C p.t0 C 1/C q.t0 C 1/
:

Hence, the solution of the IVP (3.14), (3.15) is uniquely determined at t0 C 1. But
using the equation (3.16) evaluated at t D t0 C 2, we have that the unique values of
the solution at t0 and t0C1 uniquely determine the value of the solution at t0C2. By
induction we get that the solution of the IVP (3.14), (3.15) is uniquely determined
on Nt0�1. On the other hand if t0 � a C 2, then using equation (3.17) with t D t0,
we have that

y.t0 � 2/ D �Œ1C p.t0/C q.t0/�B C Œ2C p.t0/�A C f .t0/:

Hence the solution of the IVP (3.14), (3.15) is uniquely determined at t0 � 2.
Similarly, if t0 � 3 � a, then the value of the solution at t0 � 2 and at t0 � 1 uniquely
determines the value of the solution at t0 � 3. Proceeding in this manner we have
by mathematical induction that the solution of the IVP (3.14), (3.15) is uniquely
determined on N

t0�1
a . Hence the result follows. ut
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Remark 3.21. Note that the so-called initial conditions in (3.15)

y.t0 � 1/ D A; y.t0/ D B

hold iff the equations y.t0/ D C, ry.t0/ D D WD B � A are satisfied. Because of this
we also say that

y.t0/ D C; ry.t0/ D D

are initial conditions for solutions of equation (3.12). In particular, Theorem 3.20
holds if we replace the conditions (3.15) by the conditions

y.t0/ D C; ry.t0/ D D:

Remark 3.22. From Exercise 3.21 we see that if 1Cp.t/Cq.t/ ¤ 0, t 2 NaC2, then
the general solution of the linear homogeneous equation

r2y.t/C p.t/ry.t/C q.t/y.t/ D 0

is given by

y.t/ D c1y1.t/C c2y2.t/; t 2 Na;

where y1.t/, y2.t/ are any two linearly independent solutions of (3.13) on Na.

Next we show we can solve the second order linear nabla difference equation
with constant coefficients (3.13). We say the equation

�2 C p�C q D 0

is the characteristic equation of the nabla linear difference equation (3.13) and the
solutions of this characteristic equation are called the characteristic values of (3.13).

Theorem 3.23 (Distinct Roots). Assume 1 C p C q ¤ 0 and �1 ¤ �2 (possibly
complex) are the characteristic values of (3.13). Then

y.t/ D c1E�1.t; a/C c2E�2.t; a/

is a general solution of (3.13) on Na.

Proof. Since �1, �2 satisfy the characteristic equation for (3.13), we have that the
characteristic polynomial for (3.13) is given by

.� � �1/.� � �2/ D �2 � .�1 C �2/�C �1�2
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and hence

p D ��1 � �2; q D �1�2:

Since

1C p C q D 1C .��1 � �2/C �1�2 D .1 � �1/.1 � �2/ ¤ 0;

we have that �1; �2 ¤ 1 and hence E�1.t; a/ and E�2.t; a/ are well defined. Next
note that

r2E�i.t; a/C p rE�i.t; a/C q E�i.t; a/

D Œ�2i C p�i C q�E�i.t; a/

D 0;

for i D 1; 2. Hence E�i.t; a/, i D 1; 2 are solutions of (3.13). Since �1 ¤ �2, these
two solutions are linearly independent on Na, and by Remark 3.22,

y.t/ D c1E�1.t; a/C c2E�2.t; a/

is a general solution of (3.13) on Na. ut
Example 3.24. Solve the nabla linear difference equation

r2y.t/C 2ry.t/ � 8y.t/ D 0: t 2 NaC2:

The characteristic equation is

�2 C 2� � 8 D .� � 2/.�C 4/ D 0

and the characteristic roots are

�1 D 2; �2 D �4:

Note that 1C p C q D �5 ¤ 0, so we can apply Theorem 3.23. Then we have that

y.t/ D c1E�1.t; a/C c2E�2.t; a/

D c1E2.t; a/C c2E�4.t; a/

D c1.�1/a�t C c25
a�t

is a general solution on Na.
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Usually, we want to find all real-valued solutions of (3.13). When a characteristic
value �1 of (3.13) is complex, E�1.t; a/ is a complex-valued solution. In the next
theorem we show how to use this complex-valued solution to find two linearly
independent real-valued solutions on Na.

Theorem 3.25 (Complex Roots). Assume the characteristic values of (3.13) are
� D ˛ ˙ iˇ, ˇ > 0 and ˛ ¤ 1. Then a general solution of (3.13) is given by

y.t/ D c1E˛.t; a/Cos� .t; a/C c2E˛.t; a/Sin� .t; a/;

where � WD ˇ

1�˛ .

Proof. Since the characteristic roots are � D ˛ ˙ iˇ, ˇ > 0, we have that the
characteristic equation is given by

�2 � 2˛�C ˛2 C ˇ2 D 0:

It follows that p D �2˛ and q D ˛2 C ˇ2, and hence

1C p C q D .1 � ˛/2 C ˇ2 ¤ 0:

Hence, Remark 3.22 applies. By the proof of Theorem 3.23, we have that y.t/ D
E˛Ciˇ.t; a/ is a complex-valued solution of (3.13). Using

˛ C iˇ D ˛ � i
ˇ

1 � ˛ D ˛ � i�;

where � D ˇ

1�˛ , ˛ ¤ 1, we get that

y.t/ D E˛Ciˇ.t; a/ D E˛�i� .t; a/ D E˛.t; a/Ei� .t; a/

is a nontrivial solution. It follows from Euler’s formula (3.11) that

y.t/ D E˛.t; a/Ei� .t; a/

D E˛.t; a/ŒCos� .t; a/C iSin� .t; a/�

D y1.t/C iy2.t/

is a solution of (3.13). But since p and q are real, we have that the real part, y1.t/ D
E˛.t; a/Cos� .t; a/, and the imaginary part, y2.t/ D E˛.t; a/Sin� .t; a/, of y.t/ are
solutions of (3.13). But y1.t/, y2.t/ are linearly independent on Na, so we get that

y.t/ D c1E˛.t; a/Cos� .t; a/C c2E˛.t; a/Sin� .t; a/

is a general solution of (3.13) on Na. ut
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Example 3.26. Solve the nabla difference equation

r2y.t/C 2ry.t/C 2y.t/ D 0; t 2 NaC2: (3.18)

The characteristic equation is

�2 C 2�C 2 D 0;

and so, the characteristic roots are � D �1˙ i. Note that 1C p C q D 5 ¤ 0. So,
applying Theorem 3.25, we find that

y.t/ D c1E�1.t; a/Cos 1
2
.t; a/C c2E�1.t; a/Sin 1

2
.t; a/

is a general solution of (3.18) on Na.

The previous theorem (Theorem 3.25) excluded the case when the characteristic
roots of (3.13) are 1˙ iˇ, where ˇ > 0. The next theorem considers this case.

Theorem 3.27. If the characteristic values of (3.13) are 1˙ iˇ, where ˇ > 0, then
a general solution of (3.13) is given by

y.t/ D c1ˇ
a�t cos

h	
2
.t � a/

i
C c2ˇ

a�t sin
h	
2
.t � a/

i
;

t 2 Na.

Proof. Since 1�iˇ is a characteristic value of (3.13), we have that y.t/ D E1�iˇ.t; a/
is a complex-valued solution of (3.13). Now

y.t/ D E1�iˇ.t; a/

D .iˇ/a�t

D
�
ˇei 	2

�a�t

D ˇa�tei 	2 .a�t/

D ˇa�t
n
cos

h	
2
.a � t/

i
C i sin

h	
2
.a � t/

io

D ˇa�t cos
h	
2
.t � a/

i
� iˇa�t sin

h	
2
.t � a/

i
:

It follows that

y1.t/ D ˇa�t cos
h	
2
.t � a/

i
; y2.t/ D ˇa�t sin

h	
2
.t � a/

i
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are solutions of (3.13). Since these solutions are linearly independent on Na, we
have that

y.t/ D c1ˇ
a�t cos

h	
2
.t � a/

i
C c2ˇ

a�t sin
h	
2
.t � a/

i

is a general solution of (3.13). ut
Example 3.28. Solve the nabla linear difference equation

r2y.t/ � 2ry.t/C 5y.t/ D 0; t 2 N2:

The characteristic equation is �2 � 2� C 5 D 0, so the characteristic roots are
� D 1˙ 2i. It follows from Theorem 3.27 that

y.t/ D c12
�t cos

�	
2

t
�

C c22
�t sin

�	
2

t
�
;

for t 2 N0.

Theorem 3.29 (Double Root). Assume �1 D �2 D r ¤ 1 is a double root of the
characteristic equation. Then

y.t/ D c1Er.t; a/C c2.t � a/Er.t; a/

is a general solution of (3.13).

Proof. Since �1 D r is a double root of the characteristic equation, we have that
�2 � 2r� C r2 D 0 is the characteristic equation. It follows that p D �2r and
q D r2. Therefore

1C p C q D 1 � 2r C r2 D .1 � r/2 ¤ 0

since r ¤ 1. Hence, Remark 3.22 applies. Since r ¤ 1 is a characteristic root, we
have that y1.t/ D Er.t; a/ is a nontrivial solution of (3.13). From Exercise 3.14, we
have that y2.t/ D .t � a/Er.t; a/ is a second solution of (3.13) on Na. Since these
two solutions are linearly independent on Na, we have from Remark 3.22 that

y.t/ D c1Er.t; a/C c2.t � a/Er.t; a/

is a general solution of (3.13). ut
Example 3.30. Solve the nabla difference equation

r2y.t/C 12ry.t/C 36y.t/ D 0; t 2 NaC2:

The corresponding characteristic equation is

�2 C 12�C 36 D .�C 6/2 D 0:
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Hence r D �6 ¤ 1 is a double root, so by Theorem 3.29 a general solution is
given by

y.t/ D c1E�6.t; a/C c2.t � a/E�6.t; a/

D c17
a�t C c2.t � a/7a�t

for t 2 Na.

3.6 Discrete Nabla Integral

In this section we define the nabla definite and indefinite integral, give several of
their properties, and present a nabla fundamental theorem of calculus.

Definition 3.31. Assume f W NaC1 ! R and b 2 Na. Then the nabla integral of f
from a to b is defined by

Z b

a
f .t/rt WD

bX
tDaC1

f .t/; t 2 Na

with the convention that

Z a

a
f .t/rt D

aX
tDaC1

f .t/ WD 0:

Note that even if f had the domain Na instead of NaC1 the value of the integralR b
a f .t/rt does not depend on the value of f at a. Also note if f W NaC1 ! R, then

F.t/ WD R t
a f .�/r� is defined on Na with F.a/ D 0.

The following theorem gives some important properties of this nabla integral.

Theorem 3.32. Assume f ; g W NaC1 ! R, b; c; d 2 Na, b 	 c 	 d, and ˛ 2 R.
Then

(i)
R c

b ˛f .t/rt D ˛
R c

b f .t/rtI
(ii)

R c
b .f .t/C g.t//rt D R c

b f .t/rt C R c
b g.t/rtI

(iii)
R b

b f .t/rt D 0I
(iv)

R d
b f .t/rt D R c

b f .t/rt C R d
c f .t/rtI

(v) j R c
b f .t/rtj 	 R c

b jf .t/jrtI
(vi) if F.t/ WD R t

b f .s/rs, for t 2 N
c
b; then rF.t/ D f .t/, t 2 N

c
bC1;

(vii) if f .t/ � g.t/ for t 2 N
c
bC1; then

R c
b f .t/rt � R c

b g.t/rt.

Proof. To see that (vi) holds, assume

F.t/ D
Z t

b
f .s/rs; t 2 N

c
b:
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Then, for t 2 N
c
bC1, we have that

rF.t/ D r
�Z t

b
f .s/rs

�

D r
 

tX
sDbC1

f .s/

!

D
tX

sDbC1
f .s/ �

t�1X
sDbC1

f .s/

D f .t/:

Hence property (vi) holds. All the other properties of the nabla integral in this
theorem hold since the corresponding properties for the summations hold. ut
Definition 3.33. Assume f W N

b
aC1 ! R. We say F W N

b
a ! R is a nabla

antidifference of f .t/ on N
b
a provided

rF.t/ D f .t/; t 2 N
b
aC1:

If f W Nb
aC1 ! R, then if we define F by

F.t/ WD
Z t

a
f .s/rs; t 2 N

b
a

we have from part (vi) of Theorem 3.32 that rF.t/ D f .t/, for t 2 N
b
aC1, that is,

F.t/ is a nabla antidifference of f .t/ on N
b
a. Next we show that if f W Nb

aC1 ! R,
then f .t/ has infinitely many antidifferences on N

b
a.

Theorem 3.34. If f W Nb
aC1 ! R and G.t/ is a nabla antidifference of f .t/ on N

b
a,

then F.t/ D G.t/ C C, where C is a constant, is a general nabla antidifference of
f .t/ on N

b
a.

Proof. Assume G.t/ is a nabla antidifference of f .t/ on N
b
a. Let F.t/ WD G.t/C C,

t 2 N
b
a, where C is a constant. Then

rF.t/ D rG.t/ D f .t/; t 2 N
b
aC1;

and so, F.t/ is a antidifference of f .t/ on N
b
a.

Conversely, assume F.t/ is a nabla antidifference of f .t/ on N
b
a. Then

r.F.t/ � G.t// D rF.t/ � rG.t/ D f .t/ � f .t/ D 0
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for t 2 N
b
aC1. This implies F.t/ � G.t/ D C, for t 2 N

b
a, where C is a constant.

Hence

F.t/ WD G.t/C C; t 2 N
b
a:

This completes the proof. ut
Definition 3.35. If f W Na ! R, then the nabla indefinite integral of f is defined by

Z
f .t/rt D F.t/C C;

where F.t/ is a nabla antidifference of f .t/ and C is an arbitrary constant.

Since any formula for a nabla derivative gives us a formula for an indefinite
integral, we have the following theorem.

Theorem 3.36. The following hold:

(i)
R
˛tCˇrt D ˛

˛�1˛
tCˇ C C; ˛ ¤ 1I

(ii)
R
.t � ˛/rrt D 1

rC1 .t � ˛/rC1 C C; r ¤ �1I
(iii)

R
.˛ � �.t//rrt D � 1

rC1 .˛ � t/rC1 C C; r ¤ �1I
(iv)

R
p.t/ Ep.t; a/rt D Ep.t; a/C C; if p 2 RI

(v)
R

p.t/Coshp.t; a/rt D Sinhp.t; a/C C; if ˙ p 2 RI
(vi)

R
p.t/Sinhp.t; a/rt D Coshp.t; a/C C; if ˙ p 2 RI

(vii)
R

p.t/Cosp.t; a/rt D Sinp.t; a/C C; if ˙ ip 2 RI
(viii)

R
p.t/Sinp.t; a/rt D �Cosp.t; a/C C; if ˙ ip 2 R;

where C is an arbitrary constant.

Proof. The formula

Z
˛tCˇrt D ˛

˛ � 1˛
tCˇ C C; ˛ ¤ 1;

is clear when ˛ D 0, and for ˛ ¤ 0 it follows from part (iv) of Theorem 3.1. Parts
(ii) and (iii) of this theorem follow from the power rules (3.3) and (3.4), respectively.
Part (iv) of this theorem follows from part (iv) of Theorem 3.11. Parts (v) and (vi) of
this theorem follow from parts (iv) and (iii) of Theorem 3.16, respectively. Finally,
parts (vii) and (viii) of this theorem follow from parts (iv) and (iii) of Theorem 3.19,
respectively. ut

We now state and prove the fundamental theorem for the nabla calculus.

Theorem 3.37 (Fundamental Theorem of Nabla Calculus). We assume f W
N

b
aC1 ! R and F is any nabla antidifference of f on N

b
a. Then

Z b

a
f .t/rt D F.t/

ˇ̌b
a WD F.b/ � F.a/:
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Proof. By Theorem 3.32, (vi), we have that G defined by G.t/ WD R t
a f .s/rs, for

t 2 N
b
a; is a nabla antidifference of f on N

b
a. Since F is a nabla antidifference of f on

N
b
a, it follows from Theorem 3.34 that F.t/ D G.t/C C, t 2 N

b
a; for some constant

C. Hence,

F.t/
ˇ̌b
a D F.b/ � F.a/

D ŒG.b/C C� � ŒG.a/C C�

D G.b/ � G.a/

D
Z b

a
f .s/rs �

Z a

a
f .s/rs

D
Z b

a
f .s/rs:

This completes the proof. ut
Example 3.38. Assume p ¤ 0; 1 is a constant. Use the integration formula

Z t

a
Ep.t; a/rt D 1

p
Ep.t; a/

ˇ̌t
a

to evaluate the integral
R 4
0

f .t/rt; where f .t/ WD .�3/�t; t 2 N0. We calculate

Z 4

0

.�3/�trt D
Z 4

0

.1 � 4/0�trt

D
Z 4

0

E4.t; 0/rt

D 1

4
E4.t; 0/

ˇ̌4
0

D 1

4
ŒE4.4; 0/ � E4.0; 0/�

D 1

4
Œ.�3/�4 � 1�

D �20
81
:

Check this answer by using part (i) in Theorem 3.36.

Using the product rule (part (v) in Theorem 3.1) we can prove the following
integration by parts formulas.
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Theorem 3.39 (Integration by Parts). Given two functions u; v W Na ! R and
b; c 2 Na, b < c, we have the integration by parts formulas:

Z c

b
u.t/rv.t/rt D u.t/v.t/

ˇ̌
ˇ
c

b
�
Z c

b
v.�.t//ru.t/rt; (3.19)

Z c

b
u.�.t//rv.t/rt D u.t/v.t/

ˇ̌
ˇ
c

b
�
Z c

b
v.t/ru.t/rt: (3.20)

Example 3.40. Given f .t/ D .t �1/31�t for t 2 N1, evaluate the integral
R t
1

f .�/r� .
Note that

Z t

1

f .�/r� D
Z t

1

.� � 1/E�2.�; 1/r�:

To set up to use the integration by parts formula (3.19), set

u.�/ D � � 1; rv.�/ D E�2.�; 1/:

It follows that

ru.�/ D 1; v.�/ D �1
2

E�2.�; 1/; v.�.�// D �3
2

E�2.�; 1/:

Hence, using the integration by parts formula (3.19), we get

Z t

1

f .�/r� D
Z t

1

.� � 1/E�2.�; 1/r�

D �1
2
.� � 1/E�2.�; 1/

ˇ̌
ˇ
�Dt

�D1 C 3

2

Z t

1

E�2.�; 1/r�

� 1

2
.t � 1/E�2.t; 1/ � 3

4
E�2.�; 1/

ˇ̌
ˇ
�Dt

�D1

D �1
2
.t � 1/E�2.t; 1/ � 3

4
E�2.t; 1/C 3

4

D �3
2

t

�
1

3

�t

� 1

4

�
1

3

�t

C 3

4
;

for t 2 N1.
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3.7 First Order Linear Difference Equations

In this section we show how to solve the first order nabla linear equation

ry.t/ D p.t/y.t/C q.t/; t 2 NaC1; (3.21)

where we assume p; q W NaC1 ! R and p 2 R. At the end of this section we will
then show how to use the fact that we can solve the first order nabla linear equation
(3.21) to solve certain nabla second order linear equations with variable coefficients
(3.13) by the method of factoring.

We begin by using one of the following nabla Leibniz’s formulas to find a
variation of constants formula for (3.21).

Theorem 3.41 (Nabla Leibniz Formulas). Assume f W Na � NaC1 ! R. Then

r
�Z t

a
f .t; �/r�

�
D
Z t

a
rtf .t; �/r� C f .�.t/; t/; (3.22)

t 2 NaC1. Also

r
�Z t

a
f .t; �/r�

�
D
Z t�1

a
rtf .t; �/r� C f .t; t/; (3.23)

for t 2 NaC1
Proof. The proof of (3.22) follows from the following:

r
�Z t

a
f .t; �/r�

�
D
Z t

a
f .t; �/r� �

Z t�1

a
f .t � 1; �/r�

D
Z t

a
Œf .t; �/ � f .t � 1; �/�r� C

Z t

t�1
f .t � 1; �/r�

D
Z t

a
rtf .t; �/r� C f .�.t/; t/

for t 2 NaC1. The proof of (3.23) is Exercise 3.22. ut
Theorem 3.42 (Variation of Constants Formula). Assume p; q W NaC1 ! R and
p 2 R. Then the unique solution of the IVP

ry.t/ D p.t/y.t/C q.t/; t 2 NaC1
y.a/ D A
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is given by

y.t/ D AEp.t; a/C
Z t

a
Ep.t; �.s//q.s/rs; t 2 Na:

Proof. The proof of uniqueness is left to the reader. Let

y.t/ WD AEp.t; a/C
Z t

a
Ep.t; �.s//q.s/rs; t 2 Na:

Using the nabla Leibniz formula (3.22), we obtain

ry.t/ D Ap.t/Ep.t; a/C
Z t

a
p.t/Ep.t; �.s//q.s/rs C Ep.�.t/; �.t//q.t/

D p.t/

�
AEp.t; a/C

Z t

a
Ep.t; �.s//q.s/rs

	
C q.t/

D p.t/y.t/C q.t/

for t 2 NaC1. We also see that y.a/ D A. And this completes the proof. ut
Example 3.43. Assuming r 2 R, solve the IVP

ry.t/ D r.t/y.t/C Er.t; a/; t 2 NaC1 (3.24)

y.a/ D 0: (3.25)

Using the variation of constants formula in Theorem 3.42, we have

y.t/ D
Z t

a
Er.t; �.s//Er.s; a/rs

D Er.t; a/
Z t

a
Er.a; �.s//Er.s; a/rs

D Er.t; a/
Z t

a

Er.s; a/

Er.�.s/; a/
rs

D Er.t; a/
Z t

a

Er.s; a/

Œ1 � r.s/�Er.s; a/
rs

D Er.t; a/
Z t

a

1

1 � r.s/
rs:

If we further assume r.t/ D r ¤ 1 is a constant, then we obtain that the function
1
1�r .t � a/Er.t; a/ is the solution of the IVP

ry.t/ D ry.t/C Er.t; a/; y.a/ D 0:
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A general solution of the linear equation (3.21) is given by adding a general
solution of the corresponding homogeneous equation ry.t/ D p.t/y.t/ to a
particular solution to the nonhomogeneous difference equation (3.21). Hence,

y.t/ D cEp.t; a/C
Z t

0

Ep.t; �.s//q.s/rs

is a general solution of (3.21). We use this fact in the following example.

Example 3.44. Find a general solution of the linear difference equation

ry.t/ D .ˇ3/y.t/C 3t; t 2 N1: (3.26)

Note that the constant function p.t/ WD ˇ3 is a regressive function on N1. Hence,
the general solution of (3.26) is given by

y.t/ D cEp.t; a/C
Z t

a
Ep.t; �.s//q.s/rs

D cEˇ3.t; 0/C 3

Z t

0

sEˇ3.t; �.s//rs

D cEˇ3.t; 0/C 3

Z t

0

sE3.�.s/; t/rs

D cEˇ3.t; 0/ � 6
Z t

0

sE3.s; t/rs;

for t 2 N0. Integrating by parts we get

y.t/ D cE�3.t; 0/ � 2sE3.s; t/
ˇ̌t
sD0 C 2

Z t

0

E3.�.s/; t/rs

D cEˇ3.t; 0/ � 2t � 4
Z t

0

E3.s; t/rs

D cEˇ3.t; 0/ � 2t � 4

3
E3.s; t/

ˇ̌t
0

D cEˇ3.t; 0/ � 2t � 4

3
C 4

3
E3.0; t/

D ˛Eˇ3.t; 0/ � 2t � 4

3

D ˛.�2/t � 2t � 4

3

for t 2 N0.
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Example 3.45. Assuming r ¤ 1, use the method of factoring to solve the nabla
difference equation

r2y.t/ � 2rry.t/C r2y.t/ D 0; t 2 Na: (3.27)

A factored form of (3.27) is

.r � rI/.r � rI/y.t/ D 0; t 2 Na: (3.28)

It follows from (3.28) that any solution of .r � rI/y.t/ D 0 is a solution of (3.27).
Hence y1.t/ D Er.t; a/ is a solution of (3.27). It also follows from the factored
equation (3.28) that the solution y.t/ of the IVP

.r � rI/y.t/ D Er.t; a/; y.a/ D 0

is a solution of (3.27). Hence, by the variation of constants formula in Theorem 3.42,

y.t/ D
Z t

a
Er.t; �.s//Er.s; a/rs D Er.t; a/

Z t

a
Er.a; �.s//Er.s; a/rs

D Er.t; a/
Z t

a
E�r.�.s/; a/Er.s; a/rs

D Er.t; a/
Z t

a
Œ1 � �r�E�r.s; a/Er.s; a/rs

D Er.t; a/
Z t

a
Œ1 � �r�rs D Er.t; a/

Z t

a

1

1 � r
rs

D 1

1 � r
.t � a/Er.t; a/

is a solution of (3.27). But this implies that y2.t/ D .t � a/Er.t; a/ is a solution of
(3.27). Since y1.t/ and y2.t/ are linearly independent on Na;

y.t/ D c1Er.t; a/C c2.t � a/Er.t; a/

is a general solution of (3.27) on Na.

3.8 Nabla Taylor’s Theorem

In this section we want to prove the nabla version of Taylor’s Theorem. To do this we
first study the nabla Taylor monomials and give some of their important properties.
These nabla Taylor monomials will appear in the nabla Taylor’s Theorem. We then
will find nabla Taylor series expansions for the nabla exponential, hyperbolic, and
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trigonometric functions. Finally, as a special case of our Taylor’s theorem we will
obtain a variation of constants formula for rny.t/ D h.t/.

Definition 3.46. We define the nabla Taylor monomials, Hn.t; a/, n 2 N0, by
H0.t; a/ D 1, for t 2 Na, and

Hn.t; a/ D .t � a/n

nŠ
; t 2 Na�nC1; n 2 N1:

Theorem 3.47. The nabla Taylor monomials satisfy the following:

(i) Hn.t; a/ D 0; a � n C 1 	 t 	 a; n 2 N1I
(ii) rHnC1.t; a/ D Hn.t; a/; t 2 Na�nC1; n 2 N0I

(iii)
R t

a Hn.�; a/r� D HnC1.t; a/; t 2 Na; n 2 N0I
(iv)

R t
a Hn.t; �.s//rs D HnC1.t; a/; t 2 Na; n 2 N0.

Proof. Part (i) of this theorem follows from the definition (Definition 3.46) of the
nabla Taylor monomials. By the first power rule (3.3), it follows that

rHnC1.t; a/ D r .t � a/nC1

.n C 1/Š

D .t � a/n

nŠ

D Hn.t; a/;

and so, we have that part (ii) of this theorem holds. Part (iii) follows from parts (ii)
and (i). Finally, to see that (iv) holds we use the integration formula in part (iii) in
Theorem 3.36 to get

Z t

a
Hn.t; �.s//rs D 1

nŠ

Z t

a
.t � �.s//nrs

D �1
.n C 1/Š

.t � s/nC1
ˇ̌
ˇ
sDt

sDa

D .t � a/nC1

.n C 1/Š

D HnC1.t; a/:

This completes the proof. ut
Now we state and prove the nabla Taylor’s Theorem.

Theorem 3.48 (Nabla Taylor’s Formula). Assume f W Na�n ! R; where n 2 N0.
Then

f .t/ D pn.t/C Rn.t/; t 2 Na�n;
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where the n-th degree nabla Taylor polynomial, pn.t/, is given by

pn.t/ WD
nX

kD0
rkf .a/

.t � a/k

kŠ
D

nX
kD0

rkf .a/Hk.t; a/

and the Taylor remainder, Rn.t/, is given by

Rn.t/ D
Z t

a

.t � �.s//n
nŠ

rnC1f .s/rs D
Z t

a
Hn.t; �.s//rnC1f .s/rs;

for t 2 Na�n. (By convention we assume Rn.t/ D 0 for a � n 	 t < a.)

Proof. We will use the second integration by parts formula in Theorem 3.39, namely
(3.20), to evaluate the integral in the definition of Rn.t/. To do this we set

u.�.s// D Hn.t; �.s//; rv.s/ D rnC1f .s/:

Then it follows that

u.s/ D Hn.t; s/; v.s/ D rnf .s/:

Using part (iv) of Theorem 3.47, we get

ru.s/ D �Hn�1.t; �.s//:

Hence we get from the second integration by parts formula (3.20) that

Rn.t/ D
Z t

a
Hn.t; �.s//rnC1f .s/rs

D Hn.t; s/rnf .s/
ˇ̌
ˇ
sDt

sDa
C
Z t

a
Hn�1.t; �.s//rnf .s/rs

D �rnf .a/Hn.t; a/C
Z t

a
Hn�1.t; �.s//rnf .s/rs:

Again, using the second integration by parts formula (3.20), we have that

Rn.t/ D � rnf .a/Hn.t; a/C Hn�1.t; s/rn�1f .s/
ˇ̌
ˇ
sDt

sDa

C
Z t

a
Hn�2.t; �.s//rn�1f .s/rs

D � rnf .a/Hn.t; a/ � rn�1f .a/Hn�1.t; a/

C
Z t

a
Hn�2.t; �.s//rn�1f .s/rs:
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By induction on n we obtain

Rn.t/ D �
nX

kD1
rkf .a/Hk.t; a/C

Z t

a
H0.t; �.s//rf .s/rs

D �
nX

kD1
rkf .a/Hk.t; a/C f .t/ � f .a/H0.t; a/

D �
nX

kD0
rkf .a/Hk.t; a/C f .t/

D �pn.t/C f .t/:

Solving for f .t/ we get the desired result. ut
We next define the formal nabla power series of a function at a point.

Definition 3.49. Let a 2 R and let

Za WD f: : : ; a � 2; a � 1; a; a C 1; a C 2; : : : g:

If f W Za ! R, then we call

1X
kD0

rkf .a/
.t � a/k

kŠ
D

1X
kD0

rkf .a/Hk.t; a/

the (formal) nabla Taylor series of f at t D a

The following theorem gives some convergence results for nabla Taylor series
for various functions.

Theorem 3.50. Assume jpj < 1 is a constant. Then the following hold:

(i) Ep.t; a/ D P1
nD0 pnHn.t; a/I

(ii) Sinp.t; a/ D P1
nD0.�1/np2nC1H2nC1.t; a/I

(iii) Cosp.t; a/ D P1
nD0.�1/np2nH2n.t; a/I

(iv) Coshp.t; a/ D P1
nD0 p2nH2n.t; a/I

(v) Sinhp.t; a/ D P1
nD0 p2nC1H2nC1.t; a/;

for t 2 Na.

Proof. First we prove part (i). Since rnEp.t; a/ D pnEp.t; a/ for n 2 N0, we have
that the Taylor series for Ep.t; a/ is given by

1X
nD0

rnEp.a; a/Hn.t; a/ D
1X

nD0
pnHn.t; a/:
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To show that the above Taylor series converges to Ep.t; a/when jpj < 1 is a constant,
for each t 2 Na, it suffices to show that the remainder term, Rn.t/, in Taylor’s
Formula satisfies

lim
n!1 Rn.t/ D 0

when jpj < 1, for each fixed t 2 Na,
So fix t 2 Na and consider

jRn.t/j D
ˇ̌
ˇ̌
Z t

a
Hn.t; �.s//rnC1Ep.s; a/rs

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z t

a
Hn.t; �.s//p

nC1Ep.s; a/rs

ˇ̌
ˇ̌ :

Since t is fixed, there is a constant C such that

jEp.s; a/j 	 C; a 	 s 	 t:

Hence,

jRn.t/j 	 C
Z t

a
Hn.t; �.s//jpjnC1rs

D CjpjnC1
Z t

a
Hn.t; �.s//rs

D CjpjnC1HnC1.t; a/ by Theorem 3.47, (iv)

D CjpjnC1 .t � a/nC1

.n C 1/Š
:

By the ratio test, if jpj < 1, the series

1X
nD0

jpjnC1.t � a/nC1

.n C 1/Š

converges. It follows that if jpj < 1, then by the n-th term test

lim
n!1

jpjnC1.t � a/nC1

.n C 1/Š
D 0:

This implies that if jpj < 1, then for each fixed t 2 Na

lim
n!1 Rn.t/ D 0;
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and hence if jpj < 1,

Ep.t; a/ D
1X

nD0
pnHn.t; a/

for all t 2 Na. Since the functions Sinp.t; a/, Cosp.t; a/, Sinhp.t; a/, and Coshp.t; a/
are defined in terms of Ep.t; a/, parts (ii)–(v) follow easily from part (i). ut

We now see that the integer order variation of constants formula follows from
Taylor’s formula.

Theorem 3.51 (Integer Order Variation of Constants Formula). Assume
h W NaC1 ! R and n 2 N1. Then the solution of the IVP

rny.t/ D h.t/; t 2 NaC1

rky.a/ D Ck; 0 	 k 	 n � 1; (3.29)

where Ck, 0 	 k 	 n � 1, are given constants, is given by the variation of constants
formula

y.t/ D
n�1X
kD0

CkHk.t; a/C
Z t

a
Hn�1.t; �.s//h.s/rs; t 2 Na�nC1:

Proof. It is easy to see that the given IVP has a unique solution y that is defined on
Na�nC1. By Taylor’s formula (see Theorem 3.48) with n replaced by n � 1 we get
that

y.t/ D
n�1X
kD0

rky.a/Hk.t; a/C
Z t

a
Hn�1.t; �.s//rny.s/rs

D
n�1X
kD0

CkHk.t; a/C
Z t

a
Hn�1.t; �.s//h.s/rs;

t 2 Na�nC1. ut
We immediately get the following special case of Theorem 3.51. This special

case, which we label Corollary 3.52, is also called a variation of constants formula.

Corollary 3.52 (Integer Order Variation of Constants Formula). Assume
the function h W NaC1 ! R and n 2 N0. Then the solution of the IVP

rny.t/ D h.t/; t 2 NaC1

rky.a/ D 0; 0 	 k 	 n � 1 (3.30)
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is given by the variation of constants formula.

y.t/ D
Z t

a
Hn�1.t; �.s//h.s/rs; t 2 Na�nC1:

Example 3.53. Use the variation of constants formula to solve the IVP

r2y.t/ D .�2/a�t; t 2 NaC1
y.a/ D 2; ry.a/ D 1:

By the variation of constants formula in Theorem 3.51 the solution of this IVP is
given by

y.t/ D C0H0.t; a/C C1H1.t; a/C
Z t

a
H1.t; �.s//.�2/a�srs

D 2H0.t; a/C H1.t; a/C
Z t

a
H1.t; �.s//E3.s; a/rs

D 2H0.t; a/C H1.t; a/C 1

3
H1.t; s/E3.s; a/

ˇ̌
ˇ
t

sDa
C 1

3

Z t

a
E3.s; a/rs

D 2H0.t; a/C H1.t; a/ � 1

3
H1.t; a/C 1

9
E3.s; a/

ˇ̌
ˇ
t

a

D 2H0.t; a/C H1.t; a/ � 1

3
H1.t; a/C 1

9
E3.t; a/ � 1

9

D 2C 2

3
H1.t; a/C 1

9
.�2/a�t � 1

9

D 17

9
C 2

3
.t � a/C 1

9
.�2/a�t;

for t 2 Na�1.

3.9 Fractional Sums and Differences

With the relevant preliminaries established, we are now ready to develop what we
mean by fractional nabla differences and fractional nabla sums. We first give the
motivation for how we define nabla integral sums.

In the previous section (see Corollary 3.52) we saw that

y.t/ D
Z t

a
Hn�1.t; �.s//f .s/rs
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is the unique solution of the nabla difference equation rny.t/ D f .t/; t 2 NaC1
satisfying the initial conditions r iy.a/ D 0, 0 	 i 	 n � 1; for t 2 Na. Integrating
n times both sides of rny.t/ D f .t/ and using the initial conditions r iy.a/ D 0,
0 	 i 	 n � 1; we get by uniqueness

Z t

a

Z �1

a
� � �
Z �n�1

a
f .�n/r�n � � � r�2r�1

D
Z t

a
Hn�1.t; �.s//f .s/rs: (3.31)

The formula (3.31) can also be easily proved by repeated integration by parts.
Motivated by this we define the nabla integral order sum as in the following
definition.

Definition 3.54 (Integral Order Sum). Let f W NaC1 ! R be given and n 2 N1.
Then

r�n
a f .t/ WD

Z t

a
Hn�1.t; �.s//f .s/rs; t 2 Na:

Also, we define r�0f .t/ WD f .t/.

Note that the function r�n
a f depends on the values of f at all the points a C 1 	

s 	 t, unlike the positive integer nabla difference rnf .t/, which just depends on the
values of f at the n C 1 points t � n 	 s 	 t. Another interesting observation is
that we could think of r�n

a f .t/ as defined on Na�nC1, from which we obtain that
f .t/ D 0; a C n � 1 	 t 	 a by our convention that the nabla integral from a point
to a smaller point is zero (see Definition 3.31). The following example appears in
Hein et al. [119].

Example 3.55. Use the definition (Definition 3.54) of the fractional sum to find
r�2

a Ep.t; a/; where p ¤ 0; 1 is a constant. By definition we obtain, using the second
integration by parts formula (3.20),

r�2
a Ep.t; a/ D

Z t

a
H1.t; �.s//Ep.s; a/rs

D 1

p
Ep.s; a/H1.t; s/

ˇ̌t
sDa C 1

p

Z t

a
Ep.s; a/rs

D �1
p

H1.t; a/C 1

p2
Ep.s; a/

ˇ̌t
sDa

D �1
p

H1.t; a/C 1

p2
Ep.t; a/ � 1

p2

D �1
p
.t � a/C 1

p2
.1 � p/a�t � 1

p2
:
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Note that if n 2 N1, then

Hn.t; a/ D .t � a/n

nŠ
D .t � a/n

�.n C 1/
:

Motivated by this we define the fractional �-th order nabla Taylor monomial as
follows.

Definition 3.56. Let � ¤ �1;�2;�3; � � � . Then we define the �-th order nabla
fractional Taylor monomial, H�.t; a/; by

H�.t; a/ D .t � a/�

�.�C 1/
;

whenever the right-hand side of this equation is sensible.

In the next theorem we collect some of the properties of fractional nabla Taylor
monomials.

Theorem 3.57. The following hold:

(i) H�.a; a/ D 0I
(ii) rH�.t; a/ D H��1.t; a/I

(iii)
R t

a H�.s; a/rs D H�C1.t; a/I
(iv)

R t
a H�.t; �.s//rs D H�C1.t; a/I

(v) for k 2 N1, H�k.t; a/ D 0, t 2 Na;

provided the expressions in this theorem are well defined.

Proof. Part (i) follows immediately from the definition of H�.t; a/. The proofs of
parts (ii)–(iii) of this theorem are the same as the proof of Theorem 3.47, where we
used the fractional power rules instead of the integer power rules. Finally, part (v)
follows since

H�k.t; a/ D .t � a/�k

�.�k C 1/
D 0

by our earlier convention when the denominator is undefined but the numerator is
defined. ut

Now we can define the fractional nabla sum in terms of the nabla fractional
Taylor monomial as follows.

Definition 3.58 (Nabla Fractional Sum). Let f W NaC1 ! R be given and assume
� > 0. Then

r��
a f .t/ WD

Z t

a
H��1.t; �.s//f .s/rs;

for t 2 Na, where by convention r��
a f .a/ D 0.

The following example appears in Hein et al. [119].
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Example 3.59. Use the definition (Definition 3.58) of the fractional sum to find
r��

a 1. By definition

r��
a 1 D

Z t

a
H��1.t; �.s// � 1rs

D
Z t

a
H��1.t; �.s//rs

D H�.t; a/; t 2 Na

by part (iv) of Theorem 3.57.

For those readers that have read Chap. 2 we gave a relationship between a certain
delta fractional sum and a certain nabla fractional sum. This formula is sometimes
useful for obtaining results for the nabla fractional calculus from the delta fractional
calculus. Since we want this chapter to be self-contained we will not use this formula
in this chapter.

Theorem 3.60. Assume f W Na ! R and  > 0. Then

��
a f .t C / D r�

a f .t/C H�1.t; �.a//f .a/;

for t 2 Na. In particular, if f .a/ D 0, then

��
a f .t C / D r�

a f .t/;

for t 2 Na.

Proof. Note that f W Na ! R implies ��
a f .t C / is defined for t 2 Na. Using the

definition of the -th order fractional sum (Definition 3.58) we find that

��
a f .t C / D

Z tC1

a
h�1.t C ; �.�//f .�/r�

D
tX

�Da

h�1.t C ; �.�//f .�/

D
tX

�Da

.t C  � �.�//�1

�./
f .�/

D
tX

�Da

�.t C  � �/
�./�.t C  � �/

D
tX

�Da

.t � � C 1/�1

�./
f .�/

D r�
a f .t/

for t 2 Na. ut
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We next define the nabla fractional difference (nabla Riemann–Liouville frac-
tional difference) in terms of a nabla fractional sum. The Caputo fractional sum
(Definition 3.117) will be considered in Sect. 3.18.

Definition 3.61 (Nabla Fractional Difference). Let f W NaC1 ! R,  2 R
C and

choose N such that N � 1 <  	 N. Then we define the -th order nabla fractional
difference, r

a f .t/, by

r
a f .t/ WD rNr�.N�/

a f .t/ for t 2 NaCN :

We now have a definition for both fractional sums and fractional differences;
however, they may still be unified to a similar form. We will show here that the
traditional definition of a fractional difference can be rewritten in a form similar to
the definition for a fractional sum. The following result appears in Ahrendt et al. [3].

Theorem 3.62. Assume f W Na ! R;  > 0,  62 N1, and choose N 2 N1 such that
N � 1 <  < N. Then

r
a f .t/ D

Z t

a
H��1.t; �.�//f .�/r�; (3.32)

for t 2 NaC1.

Proof. Note that

r
a f .t/ D rNr�.N�/

a f .t/

D rN

�Z t

a
HN��1.t; �.�//f .�/r�

�

D rN�1r
�Z t

a
HN��1.t; �.�//f .�/r�

�

D rN�1
�Z t

a
HN��2.t; �.�//f .�/r� C HN��1.�.t/; �.t//f .t/

�

D rN�1
Z t

a
HN��2.t; �.�//f .�/r�:

By applying Leibniz’s Rule N � 1 more times, we deduce that

r
a f .t/ D

Z t

a
H��1.t; �.�//f .�/r�;

which is the desired result. ut
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In the following theorem we show that the nabla fractional difference, for each
fixed t 2 Na, is a continuous function of  for  > 0. The following theorem appears
in Ahrendt et al. [3].

Theorem 3.63 (Continuity of the Nabla Fractional Difference). Assume f W
Na ! R. Then the fractional difference r

a f is continuous with respect to  for
 > 0.

Proof. It is sufficient for this proof to show that for f W Na ! R, N � 1 <  	 N,
and m 2 N0, the following hold:

r
a f .a C N C m/ is continuous with respect to  on .N � 1;N/, (3.33)

r
a f .a C N C m/ ! rNf .a C N C m/ as  ! N�; (3.34)

and

r
a f .a C N C m/ ! rN�1f .a C N C m/ as  ! .N � 1/C: (3.35)

Let  be fixed such that N � 1 <  < N. We now show that (3.33) holds. To see
this note that we have the following:

r
a f .a C N C m/ D

Z t

a
H��1.t; �.�//r�

D 1

�.�/
tX

�DaC1
.t � �.�//��1

ˇ̌
ˇ̌
tDaCNCm

f .�/

D 1

�.�/
aCNCmX
�DaC1

.a C N C m � �.�//��1f .�/

D
aCNCmX
�DaC1

�.a C N C m � � C 1 �  � 1/
�.a C N C m � � C 1/�.�/ f .�/

D
aCNCmX
�DaC1

.a C N C m � � �  � 1/ � � � .�/�.�/
.a C N C m � �/Š�.�/ f .�/

D
aCNCm�1X
�DaC1

.a C N C m � � �  � 1/ � � � .�/
.a C N C m � �/Š f .�/C f .a C N C m/:

Letting i WD a C N C m � � , we get

r
a f .a C N C m/
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D
NCmX
iD1

.i � 1 � / � � � .1 � /.�/
iŠ

f .a C N C M � i/C f .a C N C M/:

This shows that the -th order fractional difference is continuous on N �1 <  < N,
showing (3.33) holds.

Now we consider the case  ! N� in order to show that (3.34) holds:

lim
!N�

r
a f .a C N C m/

D lim
!N�

NCmX
iD1

.i � 1 � / � � � .1 � /.�/
iŠ

f .a C N C M � i/

C f .a C N C M/

D
NCmX
iD1

�
.i � 1 � N/ � � � .�N/

iŠ
f .a C N C m � i/

�
C f .a C N C m/

D
NCmX
iD0

�
.�1/i .N C 1 � i/ � � � .N/

iŠ
f .a C N C m � i/

�

D
NCmX
iD0

.�1/i
 

N

i

!
f .a C N C m � i/

D
NX

iD0
.�1/i

 
N

i

!
f .a C m C N � i/

D rNf .a C N C m/:

Finally we want to show (3.35) holds. So we write

lim
!.N�1/C

r
a f .a C N C m/

D lim
!.N�1/C

NCmX
iD1

.i � 1 � / � � � .1 � /.�/
iŠ

f .a C N C M � i/

C f .a C N C M/

D
NCmX
iD1

.i � N/.i � N � 1/ � � � .1 � N/

iŠ
f .a C N C m � i/

C f .a C N C m/
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D
NCmX
iD0

.�1/i .N � i/.N C 1 � i/ � � � .N � 1/
iŠ

f .a C N C m � i/

D
NCmX
iD0

.�1/i
 

N � 1
i

!
f .a C m C 1C N � 1 � i/

D rN�1f .a C N C m/:

This completes the proof. ut
To prove various properties for the nabla fractional sums and differences it is

convenient to develop the theory of the nabla Laplace transform, which we do in the
next section.

3.10 Nabla Laplace Transforms

Having established the necessary preliminaries, we are now ready to discuss
an important application of this material: the Laplace transform. The Laplace
transform, as in the standard calculus, will provide us with an elegant way to solve
initial value problems for a fractional nabla difference equation. In this section, we
will lay the groundwork for this method, prove the basic properties, and establish a
means in which to solve various initial value (nabla) fractional difference equations.
We begin this section by defining the nabla Laplace transform operator La (based at
a) as follows:

Definition 3.64. Assume f W NaC1 ! R. Then the nabla Laplace transform of f is
defined by

Laff g.s/ D
Z 1

a
Eˇs.�.t/; a/f .t/rt;

for those values of s ¤ 1 such that this improper integral converges.

In the following theorem we give another formula for the Laplace transform,
which is often more convenient to use.

Theorem 3.65. Assume f W NaC1 ! R. Then

Laff g.s/ D
1X

kD1
.1 � s/k�1f .a C k/; (3.36)

for those values of s such that this infinite series converges.
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Proof. Assume f W NaC1 ! R. Then

Laff g.s/ D
Z 1

a
Eˇs.�.t/; a/f .t/rt

D
Z 1

a
Œ1 � ˇs�a�tC1f .t/rt

D
Z 1

a

�
1

1 � s

�a�tC1
f .t/rt

D
Z 1

a
.1 � s/t�a�1f .t/rt

D
1X

tDaC1
.1 � s/t�a�1f .t/

D
1X

kD1
.1 � s/k�1f .a C k/;

for those values of s such that this infinite series converges. ut
In the definition of the nabla Laplace transform we assumed s ¤ 1 because we

do not define Eˇ1.t; a/. But the formula of the nabla Laplace transform (3.36) is
well defined when s D 1. From now on we will always include s D 1 in the domain
of convergence for the nabla Laplace transform although in the proofs we will often
assume s ¤ 1. In fact the formula (3.36) for any f W NaC1 ! R gives us that

Laff g.1/ D f .a C 1/:

Example 3.66. We use the last theorem to find Laf1g.s/. By Theorem 3.65 we
obtain

Laf1g.s/ D
1X

kD1
.1 � s/k�11

D
1X

kD0
.1 � s/k

D 1

1 � .1 � s/
; for j1 � sj < 1

D 1

s
:

That is

Laf1g.s/ D 1

s
; js � 1j < 1:
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Theorem 3.67. For all nonnegative integers n, we have that

LafHn.�; a/g.s/ D 1

snC1 ; for js � 1j < 1:

Proof. The proof is by induction on n. The result is true for n D 0 by the previous
example. Suppose now that LafHn.�; a/g.s/ D 1

snC1 for some fixed n � 0 and js �
1j < 1. Then consider

LafHnC1.�; a/g.s/ D
Z 1

a
Eˇs.�.t/; a/HnC1.t; a/rt:

We will apply the first integration by parts formula (3.19) with

u.t/ D HnC1.t; a/; and rv.t/ D Eˇs.�.t/; a/ D �1
s

ˇ sEˇs.t; a/:

It follows that

ru.t/ D Hn.t; a/; v.�.t// D �1
s

Eˇs.�.t/; a/:

Hence by the integration by parts formula (3.19)

LafHnC1.�; a/g.s/ D
Z 1

a
Eˇs.�.t/; a/HnC1.t; a/rt

D �1
s

Eˇs.t; a/HnC1.t; a/
ˇ̌1
a C 1

s

Z 1

a
Eˇs.�.t/; a/Hn.t; a/rt

D �1
s
.1 � s/t�aHnC1.t; a/

ˇ̌1
a C 1

s
LfHn.�; a/g.s/:

Using the nabla form of L’Hôpital’s rule (Exercise 3.19) we calculate

lim
t!1 j.1 � s/t�aHnC1.t; a/j D lim

t!1
HnC1.t; a/
j1 � sja�t

D lim
t!1

Hn.t; a/

Œ1 � j1 � sj�j1 � sja�t

D lim
t!1

Hn�1.t; a/
Œ1 � j1 � sj�2j1 � sja�t

D � � �

D lim
t!1

H0.t; a/

Œ1 � j1 � sj�nC1j1 � sja�t

D 0;
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since js � 1j < 1. Thus we have that

LafHnC1.�; a/g.s/ D 1

snC2 ; js � 1j < 1

completing the proof. ut
Definition 3.68. A function f W NaC1 ! R is said to be of exponential order r > 0
if there exist a constant M > 0 and a number T 2 NaC1 such that

jf .t/j 	 Mrt; for all t 2 NT :

Theorem 3.69. For n 2 N1, the Taylor monomials Hn.t; a/ are of exponential order
1C � for all � > 0. Also, H0.t; a/ is of exponential order 1.

Proof. Since

jH0.t; a/j D 1 � 1t; t 2 NaC1;

H0.t; a/ is of exponential order 1. Next, assume n 2 N1 and � > 0 is fixed. Using
repeated applications of the nabla L’Hôpital’s rule, we get

lim
t!1

Hn.t; a/

.1C �/t
D lim

t!1
Hn�1.t; a/
�

1C� .1C �/t

D lim
t!1

Hn�2.t; a/
. �
1C� /2.1C �/t

� � �

D lim
t!1

H0.t; a/

. �
1C� /n.1C �/t

D 0:

It follows from this that each Hn.t; a/, n 2 N1, is of exponential order 1C � for all
� > 0. ut
Theorem 3.70 (Existence of Nabla Laplace Transform). If f W NaC1 ! R is a
function of exponential order r > 0, then its Laplace transform exists for js�1j < 1

r .

Proof. Let f be a function of exponential order r. Then there is a constant M > 0

and a number T 2 NaC1 such that jf .t/j 	 Mrt for all t 2 NT . Pick K so that
T D a C K, then we have that

jf .a C k/j 	 MraCk; k 2 NK :
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We now show that

Laff g.s/ D
1X

kD1
.1 � s/k�1f .a C k/

converges for js � 1j < 1
r . To see this, consider

1X
kDK

j.1 � s/k�1f .a C k/j D
1X

kDK

j1 � sjk�1jf .a C k/j

	
1X

kDK

j1 � sjk�1MraCk

D MraC1
1X

kDK

Œrjs � 1j�k�1;

which converges since rjs � 1j < 1. It follows that Laff g.s/ converges absolutely
for js � 1j < 1

r . ut
Theorem 3.71. The Laplace transform of the Taylor monomial, Hn.t; a/, n 2 N0,
exists for js � 1j < 1.

Proof. The proof of this theorem follows from Theorems 3.69 and 3.70. ut
Similarly, by Exercise 3.30 each of the functions Ep.t; a/, Coshp.t; a/; Sinhp.t; a/,

Cosp.t; a/, and Sinp.t; a/ is of exponential order j1Cpj, and hence by Theorem 3.70
their Laplace transforms exist for js � 1j < 1

j1Cpj .

Theorem 3.72 (Uniqueness Theorem). Assume f ; g W NaC1 ! R. Then f .t/ D
g.t/, t 2 NaC1; if and only if

Laff g.s/ D Lafgg.s/; for js � 1j < r

for some r > 0.

Proof. Since La is a linear operator it suffices to show that f .t/ D 0 for t 2 NaC1 if
and only if Laff g.s/ D 0 for js � 1j < r for some r > 0. If f .t/ D 0 for t 2 NaC1,
then trivially Laff g.s/ D 0 for all s 2 C. Conversely, assume that Laff g.s/ D 0 for
js � 1j < r for some r > 0. In this case we have that

1X
kD1

f .a C k/.1 � s/k�1 D 0; js � 1j < r:

This implies that

f .t/ D 0; t 2 NaC1:

This completes the proof. ut
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3.11 Fractional Taylor Monomials

To find the formula for the Laplace transform of a fractional nabla Taylor monomial
we will use the following lemma which appears in Hein et al [119].

Lemma 3.73. For  2 CnZ and n � 0, we have that

.1C /n D .�1/n�.�/
�.� � n/

: (3.37)

Proof. The proof of (3.37) is by induction for n 2 N0. For n D 0 (3.37) clearly
holds. Assume (3.37) is true for some fixed n � 0. Then,

.1C /nC1 D .1C /n. C n C 1/

D .�1/n�.�/. C n C 1/

�.� � n/
; by the induction hypothesis

D .�1/nC1�.�/
�.� � .n C 1//

:

The result follows. ut
We now determine the Laplace transform of the fractional nabla Taylor

monomial.

Theorem 3.74. For  not an integer, we have that

LafH.�; a/g.s/ D 1

sC1 ; for js � 1j < 1:

Proof. Consider for js � 1j < 1; jsjp > 1

LafH.�; a/g.s/ D
1X

kD1
.1 � s/k�1H.a C k; a/ D

1X
kD1
.1 � s/k�1 k

�. C 1/

D
1X

kD1
.1 � s/k�1 �.k C /

�.k/�. C 1/
D

1X
kD0
.1 � s/k

�.k C 1C /

�.k C 1/�. C 1/

D
1X

kD0
.1 � s/k

.1C /k

�.k C 1/

D
1X

kD0
.�1/k.1 � s/k

�.�/
�.k C 1/�.� � k/

(by Lemma 3.73)

D
1X

kD0
.�1/k.1 � s/k

Œ�. C 1/�k

�.k C 1/
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D
1X

kD0
.�1/k

 
�. C 1/

k

!
.1 � s/k

D Œ1 � .1 � s/��.C1/ (by the Generalized Binomial Theorem)

D 1

sC1 :

This completes the proof. ut
Combining Theorems 3.67 and 3.74, we get the following corollary:

Corollary 3.75. For  2 Cnf�1;�2;�3; : : : g, we have that

LafH.�; a/g.s/ D 1

sC1 ; for j1 � sj < 1:

Theorem 3.76. The following hold:

(i) LafEp.�; a/g.s/ D 1
s�p ; p ¤ 1I

(ii) LafCoshp.�; a/g.s/ D s
s2�p2

; p ¤ ˙1I
(iii) LafSinhp.�; a/g.s/ D p

s2�p2
; p ¤ ˙1I

(iv) LafCosp.�; a/g.s/ D s
s2Cp2

; p ¤ ˙iI
(v) LafSinp.�; a/g.s/ D p

s2Cp2
; p ¤ ˙iI

where (i) holds for js�1j < j1�pj, (ii) and (iii) hold for js�1j < minfj1�pj; j1Cpjg;
and (iv) and (v) hold for js � 1j < minfj1 � ipj; j1C ipjg.

Proof. To see that (i) holds, note that

LafEp.�; a/g.s/ D
1X

kD1
.1 � s/k�1Ep.a C k; a/

D
1X

kD1
.1 � s/k�1.1 � p/�kI

D 1

1 � p

1X
kD1

�
1 � s

1 � p

�k�1

D 1

1 � p

1

1 � 1�s
1�p

; for

ˇ̌
ˇ̌ 1 � s

1 � p

ˇ̌
ˇ̌ < 1

D 1

s � p
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for js�1j < j1�pj. To see that (ii) holds, note that for js�1j < minfj1�pj; j1Cpjg

LafCoshp.�; a/g.s/ D 1

2
LafEp.�; a/g.s/C 1

2
LafE�p.�; a/g.s/

D 1

2.s � p/
C 1

2.s C p/

D s

s2 � p2
:

To see that (iv) holds, note that

LafCosp.�; a/g.s/ D LafCoship.�; a/g.s/
D s

s2 � .ip/2

D s

s2 C p2

for js � 1j < minfj1 � ipj; j1C ipjg. The proofs of parts (iii) and (v) are left as an
exercise (Exercise 3.31). ut

3.12 Convolution

We are now ready to investigate one of the most important properties in solving
initial-value fractional nabla difference equations: convolution. This definition is
motivated by the desire to express the fractional nabla sums and fractional nabla
differences as convolutions of arbitrary functions and Taylor monomials. As a
consequence, the resulting properties that stem from this definition are, in fact,
consistent with the standard convolution. Many of the results in this section appear
in Hein et al. [119] and Ahrendt et al. [3].

Definition 3.77. For f ; g W NaC1 ! R, we define the nabla convolution product of
f and g by

.f 
 g/.t/ WD
Z t

a
f .t � �.�/C a/g.�/r�; t 2 NaC1:

Example 3.78. Use the definition of the nabla convolution product to find 1 

Sinp.�; a/, p ¤ 0;˙i. By Definition 3.77,

.1 
 Sinp.�; a//.t/ D
Z t

a
1 � Sinp.�; a/r�

D
Z t

a
Sinp.�; a/r�
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D �1
p

Cosp.�; a/
ˇ̌t
a

D 1

p
� 1

p
Cosp.t; a/;

for t 2 NaC1.

Example 3.79. Use the definition of the (nabla) convolution product to find

�
Ep.�; a/ 
 Eq.�; a/

�
.t/; p; q ¤ 1; p ¤ q:

Assume q ¤ 0. By Definition 3.77 and using the second integration by parts
formula, we have that

�
Ep.�; a/ 
 Eq.�; a/

�
.t/

D
Z t

a
Ep.t � �.�/C a; a/Eq.�; a/r�

D 1

q
Ep.t � � C a; a/Eq.�; a/

ˇ̌�Dt

�Da C p

q

Z t

a
Ep.t � �.�/C a; a/Eq.�; a/r�

D 1

q
Eq.t; a/ � 1

q
Ep.t; a/C p

q

�
Ep.�; a/ 
 Eq.�; a/

�
.t/:

Solving for
�
Ep.�; a/ 
 Eq.�; a/

�
.t/, we obtain

�
Ep.�; a/ 
 Eq.�; a/

�
.t/ D 1

p � q
Ep.t; a/C 1

q � p
Eq.t; a/

for t 2 NaC1. We leave it to the reader to show that this last formula is also valid if
q D 0.

Theorem 3.80. Assume  2 Rnf0;�1;�2; : : : g and f W NaC1 ! R. Then

r�
a f .t/ D .H�1.�; a/ 
 f /.t/;

for t 2 NaC1.

Proof. The result follows from the following:

.H�1.�; a/ 
 f /.t/ D
Z t

a
H�1.t � �.�/C a; a/f .�/r�

D
Z t

a

.t � �.�/C a � a/�1

�./
f .�/r�
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D
Z t

a

.t � �.�//�1

�./
f .�/r�

D
Z t

a
H�1.t; �.�//f .�/r�

D r�
a f .t/;

for t 2 NaC1. ut
Theorem 3.81 (Nabla Convolution Theorem). Assume f ; g W NaC1 ! R and
their nabla Laplace transforms converge for js � 1j < r for some r > 0. Then

Laff 
 gg.s/ D Laff g.s/Lafgg.s/;

for js � 1j < r.

Proof. The following proves our result:

Laff 
 gg.s/ D
1X

kD1
.1 � s/k�1.f 
 g/.a C k/

D
1X

kD1
.1 � s/k�1

Z aCk

a
f .a C k � �.�/C a/g.�/r�

D
1X

kD1
.1 � s/k�1

aCkX
�DaC1

f .a C k � �.�/C a/g.�/

D
1X

kD1

kX
�D1
.1 � s/k�1f .k � �.�/C a/g.� C a/

D
1X
�D1

1X
kD�
.1 � s/k�1f .k � �.�/C a/g.a C �/

D
 1X
�D1
.1 � s/��1g.a C �/

! 1X
kD1
.1 � s/k�1f .a C k/

!

D Lafgg.s/Laff g.s/

for js � 1j < r. ut
With the above result and the uniqueness of the Laplace transform, it follows that

the convolution product is commutative and associative (see Exercise 3.32).
We next establish properties of the Laplace transform that will be useful in

solving initial value problems for integer nabla difference equations.
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Theorem 3.82 (Transformation of Fractional Sums). Assume  > 0 and the
nabla Laplace transform of f W NaC1 ! R converges for js � 1j < r for some
r > 0. Then

Lafr�
a f g.s/ D 1

s
Laff g.s/

for js � 1j < minf1; rg.

Proof. The result follows since

Lafr�
a f g.s/ D LafH�1.�; a/ 
 f g.s/

D LafH�1.�; a/g.s/Laff g.s/

D 1

s
Laff g.s/;

for js � 1j < minf1; rg. ut
Assuming that  is a positive integer, this result is consistent with the formula

in the continuous case for the Laplace transform of the n-th iterated integral of a
function. We want to establish similar properties for fractional differences; however,
we will first establish integer-order difference properties.

Theorem 3.83 (Transform of Nabla Difference). Assume f W Na ! R is of
exponential order r > 0. Then

Lafrf g.s/ D sLaff g.s/ � f .a/

for js � 1j < r.

Proof. Note that since we are assuming that f W Na ! R, we have that rf W NaC1 !
R and so we can consider Lafrf g.s/. Since f W Na ! R is of exponential order
r > 0, it follows that rf W NaC1 ! R is of exponential order r > 0. It follows that
for js � 1j < r;

Lafrf g.s/ D
1X

kD1
.1 � s/k�1rf .a C k/

D
1X

kD1
.1 � s/k�1 Œf .a C k/ � f .a C k � 1/�

D Laff g.s/ �
1X

kD1
.1 � s/k�1f .a C k � 1/

D Laff g.s/ �
1X

kD0
.1 � s/kf .a C k/
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D LaC1ff g.s/ � f .a/ � .1 � s/
1X

kD1
.1 � s/k�1f .a C k/

D Laff g.s/ � f .a/ � .1 � s/Laff g.s/
D sLaff g.s/ � f .a/:

This completes the proof. ut
The following is a simple example where we will use the Nabla Convolution

Theorem and Theorem 3.83 to solve an initial value problem.

Example 3.84. Use the Nabla Convolution Theorem to help you solve the IVP

ry.t/ � 3y.t/ D E4.t; a/; t 2 NaC1
y.a/ D 0:

If y.t/ is the solution of this IVP and its Laplace transform, Ya.s/, exists, then we
have that

sYa.s/ � y.a/ � 3Ya.s/ D 1

s � 4 :

Using the initial condition and solving for Ya.s/ we obtain

Ya.s/ D 1

s � 4
1

s � 3 :

Using the Nabla Convolution Theorem we see that

y.t/ D .E4.�; a/ 
 E3.�; a// .t/:
Using Example 3.79 we find that

y.t/ D E4.t; a/ � E3.t; a/

D .�3/a�t � .�2/a�t

is the solution of our given IVP on Na. Of course, in this simple example one could
also use partial fractions to find y.t/.

We can then generalize this result for an arbitrary number of nabla differences.

Theorem 3.85 (Transform of n-th-Order Nabla Difference). Assume
f W Na�nC1 ! R is of exponential order r > 0. Then

Lafrnf g.s/ D snLaff g.s/ �
nX

kD1
sn�krk�1f .a/: (3.38)

for js � 1j < r; for each n 2 N1.
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Proof. Note that since f is of exponential order r > 0, rnf is of exponential order
r > 0 for each n 2 N1. Hence Lafrnf g.s/ converges for js�1j < r for each n 2 N1.
The proof of (3.38) is by induction for n 2 N1. The base case n D 1 follows from
Theorem 3.83. Now assume n � 1 and (3.38) holds for js � 1j < r. Then, using
Theorem 3.83, we have that

LafrnC1f g.s/ D Lafr Œrnf �g.s/
D sLafrnf g.s/ � rnf .a/

D s

"
snLaff g.s/ �

nX
kD1

sn�krk�1f .a/
#

� rnf .a/

D snC1Laff g.s/ �
nC1X
kD1

s.nC1/�krk�1f .a/:

Hence, (3.38) holds when n is replaced by n C 1 and the proof is complete. ut
Example 3.86. Solve the IVP

r2y.t/ � 6ry.t/C 8y.t/ D 0; t 2 NaC1
y.a/ D 1; ry.a/ D �1:

If y.t/ is the solution of this IVP and we let Ya.s/ WD Lafyg.s/; we have that



s2Ya.s/ � sy.a/ � ry.a/

� � 6 ŒsYa.s/ � y.a/�C 8Ya.s/ D 0:

Using the initial conditions we have



s2Ya.s/ � s C 1

� � 6 ŒsYa.s/ � 1�C 8Ya.s/ D 0:

Solving for Ya.s/ we have that

Ya.s/ D s � 7
s2 � 6s C 8

D s � 7
.s � 2/.s � 4/

D 5

2

1

s � 2 � 3

2

1

s � 4 :

It follows that

y.t/ D 5

2
E2.t; a/ � 3

2
E4.t; a/
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D 5

2
.�1/a�t � 3

2
.�3/a�t

for t 2 Na�1.

3.13 Further Properties of the Nabla Laplace Transform

In this section we want to find the Laplace transform of a -th order fractional
difference of a function, where 0 <  < 1.

Theorem 3.87. Assume f W NaC1 ! R is of exponential order r > 0 and 0 <  <

1. Then

Lafr
a f g.s/ D sLaff g.s/

for js � 1j < r.

Proof. Using Theorems 3.82 and 3.83 we have that

Lafr
a f g.s/ D Lafrr�.1�/

a f g.s/
D sLafr�.1�/

a f g.s/ � r�.1�/
a f .a/

D s

s1�
sLaff g.s/

sLaff g.s/

for js � 1j < 1. ut
Next we state and prove a useful lemma (see Hein et al. [119] for n D 1 and see

Ahrendt et al. [3] for general n).

Lemma 3.88 (Shifting Base Lemma). Given f W NaC1 ! R and n 2 N1, we have
that

LaCnff g.s/ D
�

1

1 � s

�n

Laff g.s/ �
nX

kD1

f .a C k/

.1 � s/n�kC1 :

Proof. Consider

LaCnff g.s/ D
1X

kD1
.1 � s/k�1f .a C n C k/

D
1X

kDnC1
.1 � s/k�n�1f .a C k/
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D 1

.1 � s/n
Laff g.s/ �

nX
kD1

f .a C k/

.1 � s/n�kC1 ;

which is what we wanted to prove. ut
With this, we are ready to provide the general form of the Laplace transform of

a -th order fractional difference of a function f , where 0 <  < 1.

Theorem 3.89. Given f W NaC1 ! R and 0 <  < 1. Then we have

LaC1fr
a f g.s/ D sLaC1ff g.s/ � 1 � s

1 � s
f .a C 1/:

Proof. Consider

LaC1fr
a f g.s/

D LaC1frr�.1�/
a f g.s/

D sLaC1fr�.1�/
a f g.s/ � r�.1�/

a f .a C 1/; by Theorem 3.83

D sLaC1fr�.1�/
a f g.s/ � f .a C 1/; by Exercise 3.27.

From this and Lemma 3.88, we have that

LaC1fr
a f g.s/

D s

�
1

1 � s
Lafr�.1�/

a f g.s/ � 1

1 � s
r�.1�/

a f .a C 1/

�
� f .a C 1/

D s

1 � s
Laff g.s/ � 1

1 � s
f .a C 1/ (by Theorem 3.82):

Applying Lemma 3.88 again we obtain

LaC1fr
a f g.s/

D s
�
LaC1ff g.s/C 1

1 � s
f .a C 1/

�
� 1

1 � s
f .a C 1/;

which is the desired result. ut
The following theorem was proved by Jia Baoguo.
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Theorem 3.90. Let f W Na�NC1 ! R and N � 1 <  < N be given. Then
we have

LaC1fr
a f g.s/ DsLaC1ff g.s/C s � sN�1

1 � s
f .a C 1/

�
NX

kD2
sN�krk�1f .a C 1/:

Proof. We first calculate

LaC1fr
a f g.s/

D LaC1frNr�.N�/
a f g.s/

Theorem 3.85D sNLaC1.r�.N�/
a f /.s/ �

NX
kD1

sN�krk�1r�.N�/
a f .a C 1/

Lemma 3.88D sN

1 � s
Lafr�.N�/

a f g.s/ � sN r�.N�/
a f .a C 1/

1 � s

�
NX

kD1
sN�krk�1r�.N�/

a f .a C 1/

Theorem 3.82D sN

1 � s
� 1

sN� Laff g.s/ � sN r�.N�/
a f .a C 1/

1 � s

�
NX

kD1
sN�krk�1r�.N�/

a f .a C 1/

Theorem 3.88D s

1 � s
Œ.1 � s/LaC1ff g.s/C f .a C 1/� � sN r�.N�/

a f .a C 1/

1 � s

�
NX

kD1
sN�krk�1r�.N�/

a f .a C 1/:

Since

r�.N�/
a f .a C 1/ D

Z aC1

a
HN��1.a C 1; a/f .s/rs

D HN�.a C 1; a/f .a C 1/ D f .a C 1/;
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we have

LaC1fr
a f g.s/

D sLaC1ff g.s/C s

1 � s
f .a C 1/ � sNf .a C 1/

1 � s

�
NX

kD1
sN�krk�1f .a C 1/

D sLaC1ff g.s/C s � sN�1

1 � s
f .a C 1/ �

NX
kD2

sN�krk�1f .a C 1/:

ut
Remark 3.91. When N D 1, Theorem 3.90 becomes the Theorem 3.89. When N D
2, we can get the following Corollary.

Corollary 3.92. Let f W Na ! R and 1 <  < 2 be given. Then we have

LaC1fr
a f g.s/ D sLaC1ff g.s/C s � s

1 � s
f .a C 1/ � rf .a C 1/

D sLaC1ff g.s/C s � 1
1 � s

f .a C 1/C f .a/:

3.14 Generalized Power Rules

We now see that with the use of the Laplace transform it is very easy to prove the
following generalized power rules.

Theorem 3.93 (Generalized Power Rules). Let  2 R
C and � 2 R such that �,

 C �, and � �  are nonnegative integers. Then we have that

(i) r�
a H�.t; a/ D H�C.t; a/I

(ii) r
a H�.t; a/ D H��.t; a/I

(iii) r�
a .t � a/� D �.�C1/

�.�CC1/ .t � a/�C I
(iv) r

a .t � a/� D �.�C1/
�.��C1/ .t � a/�� I

for t 2 Na.

Proof. To see that (i) holds, note that

Lafr�
a H�.�; a/g.s/ D 1

s
LafH�.�; a/g.s/

D 1

sC�C1
D LafH�C.�; a/g.s/:
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Hence, by the uniqueness theorem (Theorem 3.72) we have that

r�
a H�.t; a/ D H�C.t; a/; t 2 NaC1:

Also, this last equation holds for t D a and hence (i) holds. To see that (i) implies
(iii), note that

r�
a .t � a/� D �.�C 1/r�

a H�.t; a/

D �.�C 1/H�C.t; a/

D �.�C 1/

�.�C  C 1/
.t � a/�C:

To show that part (ii) holds we will first show that

Lafr�
a H�.�; a/g.s/ D LafH��.�; a/g.s/; (3.39)

for js � 1j < 1. On the one hand, using Lemma 3.88 with n D 1 we have that

LaC1fH��.�; a/g.s/ D 1

1 � s
LafH��.�; a/g.s/ � H��.a C 1; a/

1 � s

D 1

1 � s

1

s��C1 � 1

1 � s
: (3.40)

On the other hand, using Theorem 3.89 we have that

LaC1fr
a H�.�; a/g.s/ D sLaC1fH�.�; a/g.s/ � 1 � s

1 � s
H�.a C 1; a/

D s
h 1

1 � s
LafH�.�; a/g.s/ � 1

1 � s

i
� 1 � s

1 � s

D s

1 � s

h 1

s�C1 � 1
i

� 1 � s

1 � s

D 1

1 � s

1

s��C1 � 1

1 � s
: (3.41)

From (3.40) and (3.41) we get that (3.39) holds. Hence, by the uniqueness theorem
(Theorem 3.72)

r
a H�.t; a/ D H��.t; a/

for t 2 NaC1. But this last equation also holds for t D a. Thus, part (ii) holds for
t 2 Na. The proof of (iv) is left to the reader (Exercise 3.34). ut

Next we consider the fractional difference equation

r
a x.t/ D f .t/; t 2 NaCN ; (3.42)
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where N � 1 <  < N, N 2 N1. First we prove the following existence-uniqueness
theorem for the fractional difference equation 3.42.

Theorem 3.94. Assume f W NaCN ! R and N � 1 <  < N, N 2 N1. Then the IVP

r
a x.t/ D f .t/, t 2 NaCN

x.a C k/ D ck, 1 	 k 	 N;

where ck, for 1 	 k 	 N, are given constants, has a unique solution, which is defined
on NaC1.

Proof. First note that if we write the fractional equation r
a x.t/ D h.t/ in expanded

form we have that

t�1X
�Da

H��1.t; �.�//x.�/C x.t/ D f .t/:

It follows that the given IVP is equivalent to the summation equation

x.t/ D f .t/ �
t�1X
�Da

H��1.t; �.�//x.�/ (3.43)

x.a C k/ D ck; 1 	 k 	 N: (3.44)

Letting t D a C N C 1 in this summation IVP we have that x.t/ solves our IVP at
t D a C N C 1 iff

x.a C N C 1/ D f .aC/ �
t�1X
�Da

ckH��1.t; �.�//x.�/:

ut
Theorem 3.95. Assume  > 0 and N � 1 <  	 N. Then a general solution of
r

a x.t/ D 0 is given by

x.t/ D c1H�1.t; a/C c2H�2.t; a/C � � � C cNH�N.t; a/

for t 2 Na.

Proof. For 1 	 k 	 N; we have from (3.58) that

r
a H�k.t; a/ D rkr�k

a H�k.t; a/

D rkH0.t; a/ .by Theorem 3.93/

D rk1

D 0
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for t 2 Na. Since these N solutions are linearly independent on Na we have that

x.t/ D c1H�1.t; a/C c2H�2.t; a/C � � � C cNH�N.t; a/

is a general solution of r
a x.t/ D 0 on Na. ut

The next theorem relates fractional Taylor monomials based at values that differ
by a positive integer. This result is in Hein et al. [119] and Ahrendt et al. [3].

Theorem 3.96. For  2 Rnf�1;�2; :::g and N;m 2 N,

H�N.t; a C m/ D
mX

kD0

 
m

k

!
.�1/kH�N�k.t; a/:

Proof. The proof is by induction on m for m � 1. Consider the base case m D 1

H�N.t; a/ � H�N�1.t; a/

D .t � a/�N

�. � N C 1/
� .t � a/�N�1

�. � N/

D �.t � a C  � N/

�. � N C 1/�.t � a/
� �.t � a C  � N � 1/

�. � N/�.t � a/

D �.t � a C  � N � 1/
�.t � a/�. � N C 1/



.t � a C  � N � 1/ � . � N/

�

D .t � �.a//�.t � a C  � N � 1/
�.t � a/�. � N C 1/

D �.t � a C  � N � 1/
�.t � �.a//�. � N C 1/

D Œt � .a C 1/��N

�. � N C 1/

D H�N.t; a C 1/:

Hence the base case, m D 1, holds. Now assume m � 1 is fixed and

H�N.t; a C m/ D
mX

kD0

 
m

k

!
.�1/kH�N�k.t; a/:

From the base case with the number a replaced by the number a C m we have that

H�N.t; a C m C 1/ D H�N.t; a C m/ � H�N�1.t; a C m/:
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Applying the induction hypothesis to both terms on the right side of this equation
gives

H�N.t; a C m C 1/

D
mX

kD0

 
m

k

!
.�1/kH�N�k.t; a/ �

mX
kD0

 
m

k

!
.�1/kH�N�1�k.t; a/

D
mX

kD0

 
m

k

!
.�1/kH�N�k.t; a/ �

mC1X
kD1

 
m

k � 1

!
.�1/k�1H�N�k.t; a/

D
mC1X
kD0

 
m

k

!
.�1/kH�N�k.t; a/ �

 
m

m C 1

!
.�1/mC1H�N�m�1.t; a/

�
mC1X
kD0

 
m

k � 1

!
.�1/k�1H�N�k.t; a/C

 
m

�1

!
.�1/�1H�N.t; a/

D
mC1X
kD0

  
m

k

!
C
 

m

k � 1

!!
.�1/kH�N�k.t; a/

D
mC1X
kD0

 
m C 1

k

!
.�1/kH�N�k.t; a/:

This completes the proof. ut

3.15 Mittag–Leffler Function

In this section we define the nabla Mittag–Leffler function, which is useful for
solving certain IVPs. First we give an alternate proof of part (i) of Theorem 3.50.

Theorem 3.97. For jpj < 1, we have that Ep.t; a/ D P1
kD0 pkHk.t; a/ for t 2 Na.

Proof. We will show that Ep.t; a/ and
P1

kD0 pkHk.t; a/ have the same Laplace
transform. In order to ensure convergence, we restrict the transform domain such
that jsj < jpj, j1 � sj < 1, and j1 � sj < j1 � pj. First, we determine the Laplace
transform of the exponential function as follows:

La
˚
Ep.�; a/

�
.s/ D

1X
kD1
.1 � s/k�1.1 � p/�k

D 1

1 � p

1X
kD0

�
1 � s

1 � p

�k

D 1

s � p
:
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Next, we have

La

� 1X
kD0

pkHk.�; a/

.s/ D

1X
kD0

pkLafHk.�; a/g.s/

D 1

s

1X
kD0

�p

s

�k D 1

s � p
:

Finally, Ep.a; a/ D 1 by definition, and
P1

kD0 pkHk.a; a/ D 1 since p0H0.a; a/ D
1 and pkHk.a; a/ D 0 for k � 1. Therefore, we obtain the desired result on Na. ut

Next we define the nabla Mittag–Leffler function, which is a generalization of
the exponential function Ep.t; a/.

Definition 3.98 (Mittag–Leffler Function). For jpj < 1, ˛ > 0, ˇ 2 R, we define
the nabla Mittag–Leffler function by

Ep;˛;ˇ.t; a/ WD
1X

kD0
pkH˛kCˇ.t; a/; t 2 Na:

Remark 3.99. Since H0.t; a/ D 1, we have that E0;;0.t; a/ D 1 and Ep;;0.a; a/ D 1.
Also note that Ep;1;0.t; a/ D Ep.t; a/; for jpj < 1.

Theorem 3.100. Assume jpj < 1, ˛ > 0, ˇ 2 R. Then

r
�.a/Ep;˛;ˇ.t; �.a// D Ep;˛;ˇ�.t; �.a// (3.45)

for t 2 Na.

Proof. Since

r
�.a/Ep;˛;ˇ.t; �.a// D r

�.a/

 1X
kD0

pkH˛kCˇ.t; �.a//
!

D
1X

kD0
pkr

�.a/H˛kCˇ.t; �.a//

D
1X

kD0
pkH˛kCˇ�.t; �.a//

D Ep;˛;ˇ�.t; �.a//

we have that (3.45) holds for t 2 Na. ut
Theorem 3.101. Assume N � 1 <  	 N, N 2 N and jcj < 1. Then

E�c;;�i.t; �.a// 1 	 i 	 N
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are N linearly independent solutions on Na of

r
�.a/x.t/C cx.t/ D 0, t 2 NaCN :

In particular, a general solution of the fractional equation r
�.a/x.t/C cx.t/ D 0 is

given by

x.t/ D c1E�c;;�1.t; �.a//C c2E�c;;�2.t; �.a//C � � � C cNE�c;;�N.t; �.a//;

for t 2 Na.

Proof. If c D 0, then this result follows from Theorem 3.95. Now assume c ¤ 0.
Fix 1 	 i 	 N and consider for t 2 NaC1;

r
�.a/E�c;;�i.t; �.a// D E�c;;�i.t; �.a//; by (3.45)

D
1X

kD0
.�c/kHk�i.t; �.a//

D
1X

kD1
.�c/kHk�i.t; �.a//

D
1X

kD0
.�c/kC1H.kC1/�i.t; �.a//

D �c
1X

kD0
.�c/kHkC.�i/.t; �.a//

D �cE�c;;�i.t; �.a//:

Hence, for each 1 	 i 	 N; E�c;;�i.t; �.a// is a solution of r
�.a/x.t/C cx.t/ D 0

on Na. It follows that a general solution of r
�.a/x.t/C cx.t/ D 0 is given by

x.t/ D c1E�c;;�1.t; �.a//C c2E�c;;�2.t; �.a//C � � � C cNE�c;;�N.t; �.a//

for t 2 Na. ut
The following example was suggested by Jia Baoguo.

Example 3.102. Consider the second order nabla difference equation

r2x.t/C cx.t/ D 0; 0 < c < 1: (3.46)
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From Definition 3.98, Theorem 3.50, and Theorem 3.101, we have the following are
two solutions of (3.46):

E�c;2;1.t; a/ D
1X

kD0
.�c/kH2kC1.t; a/

D 1p
c

1X
kD0
.�1/k.pc/2kC1H2kC1.t; a/

D 1p
c

Sinp
c.t; a/: (3.47)

and

E�c;2;0.t; a/ D
1X

kD0
.�c/kH2k.t; a/

D
1X

kD0
.�1/k.pc/2kH2kC1.t; a/

D Cosp
c.t; a/: (3.48)

The characteristic values of the equation (3.46) are �1;2 D ˙p
ci. So the solutions

of (3.46) are x1.x; a/ D Ep
ci.t; a/ and x2.x; a/ D E�p

ci.t; a/. So

E�p
ci D .1C p

ci/a�t D .1C c/
a�t
2 Œcos 
 C i sin 
�a�t

D .1C c/
a�t
2 Œcos.a � t/
 C i sin.a � t/
� (3.49)

and

Ep
ci D .1 � p

ci/a�t D .1C c/
a�t
2 Œcos.a � t/
 � i sin.a � t/
�; (3.50)

where cos 
 D 1p
1Cc

, sin 
 D
p

cp
1Cc

.

From the definitions (see Definition 3.17) of Cosp
c.t; a/ and Sinp

c.t; a/, we have

Cosp
c.t; a/ D Ep

ci.t; a/C E�p
ci.t; a/

2

D .1C c/
a�t
2 cos.a � t/
 (3.51)

and

Sinp
c.t; a/ D Ep

ci.t; a/ � E�p
ci.t; a/

2i

D �.1C c/
a�t
2 sin.a � t/
: (3.52)
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Consequently, using (3.47), (3.48), (3.51), and (3.52), we find that

E�c;2;1.t; a/ D � 1p
c
.1C c/

a�t
2 sin.a � t/


and that

E�c;2;0.t; a/ D .1C c/
a�t
2 cos.a � t/
:

Thus, from Theorem 3.101, the general solution of the equation (3.46) is given by

x.t/ D .1C c/
a�t
2 Œc1 sin.a � t/
 C c2 cos.a � t/
�:

Finally, the real part

y1.t; a/ D .1C c/
a�t
2 cos.a � t/


and the imaginary part

y2.t; a/ D .1C c/
a�t
2 sin.a � t/


are solutions of (3.46).

We will now determine the Laplace transform of the Mittag–Leffler function.

Theorem 3.103. Assume jpj < 1 a constant, ˛ > 0, and ˇ 2 R. Then

LafEp;˛;ˇ.�; a/g.s/ D s˛�ˇ�1

s˛ � p
:

for j1 � sj < 1, js˛j > jpj.
Proof. Note that

LafEp;˛;ˇ.�; a/g.s/ D
1X

kD0
pkLafH˛kCˇ.�; a/g.s/

D 1

sˇC1
1X

kD0

� p

s˛

�k

D s˛�ˇ�1

s˛ � p
:

This completes the proof. ut
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3.16 Solutions to Initial Value Problems

We will now consider a -th order fractional nabla initial value problem and give a
formula for its solution in case 0 <  < 1.

Theorem 3.104 (Fractional Variation of Constants Formula [119]). Assume f W
Na ! R, jcj < 1 and 0 <  < 1. Then the unique solution of the fractional initial
value problem

(
r
�.a/x.t/C cx.t/ D f .t/; t 2 NaC1;

x.a/ D A; A 2 R
(3.53)

is given by

x.t/ D 

E�c;;�1.�; �.a// 
 f .�/�.t/C 


A.c C 1/ � f .a/
�
E�c;;�1.t; �.a//:

(3.54)

Proof. We begin by taking the Laplace transform based at a of both sides of the
fractional equation in (3.53) to get that

Lafr
�.a/xg.s/C cLafxg.s/ D Laff g.s/:

Applying Theorem 3.89 and using the initial condition, we have that

.s C c/Lafxg.s/ � A

�
1 � s

1 � s

�
D Laff g.s/:

Using Lemma 3.88 implies that

.s C c/

�
1

1 � s
L�.a/fxg.s/ � 1

1 � s
x.a/

	

„ ƒ‚ …
DLafxg.s/

�A

�
1 � s

1 � s

�

D 1

1 � s
L�.a/ff g.s/ � 1

1 � s
f .a/

„ ƒ‚ …
DLaff g.s/

:

Multiplying both sides of the preceding equality by .1 � s/ and then solving for
L�.a/fxg.s/ we obtain

L�.a/fxg.s/ D 1

s C c
L�.a/ff g.s/C ŒA.c C 1/ � f .a/�

1

s C c
:
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Since

L�.a/fE�c;;�1.�; �.a//g.s/ D 1

s C c
;

we have by the convolution theorem that

x.t/ D �
E�c;;�1.�; �.a// 
 f .�/�.t/C ŒA.c C 1/ � f .a/�E�c;;�1.t; �.a//

(3.55)

for t 2 NaC1. ut
Letting c D 0 in the above fractional initial value problem, we get the following

corollary.

Corollary 3.105. Let f W Na ! R and 0 <  < 1. Then the unique solution of the
fractional IVP

(
r
�.a/x.t/ D f .t/; t 2 NaC1

x.a/ D A; A 2 R

is given by

x.t/ D r�
�.a/f .t/C �

A � f .a/
�
H�1.t; �.a//: (3.56)

Proof. First, we observe that

E0;;�1.t; �.a// D H�1.t; �.a//:

Finally, we have
�
E0;;�1.�; �.a// 
 f .�/�.t/ D ŒH�1.�; �.a// 
 f .�/� .t/ D

r�.a/a� f .t/ by Theorem 3.80. From this, the stated solution to the initial value
problem follows. ut
Example 3.106. Use Corollary 3.105 to solve the IVP

r 1
2

�.0/x.t/ D t; t 2 N1

x.0/ D 2:

By the variation of constants formula (3.56), the solution of this IVP is given by

x.t/ D r� 1
2

�.0/H1.t; 0/C .2 � 1/H� 1
2
.t; �.0//

D r� 1
2

�.0/H1.t; 0/C .t � �.0//� 1
2

�. 1
2
/
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D
Z 0

�.0/

H� 1
2
.t; �.s//srs C

Z t

0

H� 1
2
.t; �.s//srs C .t � �.0//� 1

2

�. 1
2
/

D
Z t

0

H� 1
2
.t; �.s//srs C .t � �.0//� 1

2

�. 1
2
/

D r� 1
2

0 H1.t; 0/C .t � �.0//� 1
2

�. 1
2
/

D r� 1
2

0 H1.t; 0/C .t C 1/� 1
2

�. 1
2
/

D H 3
2
.t; 0/C 1p

	
.t C 1/� 1

2

D t
3
2

�. 5
2
/

C 1p
	
.t C 1/� 1

2

D 4

3
p
	

t
3
2 C 1p

	
.t C 1/� 1

2 ;

where we used Theorem 3.93 in step seven.

3.17 Nabla Fractional Composition Rules

In this section we prove several composition rules for nabla fractional sums and
differences. Most of these results can be found in Ahrendt et al. [3]. First we prove
the following formula for the composition of two fractional sums.

Theorem 3.107. Assume f W NaC1 ! R, and ; � > 0. Then

r�
a r��

a f .t/ D r���
a f .t/; t 2 Na:

Proof. Note that

Lafr�
a r��

a f g.s/ D 1
sLafr��

a f g.s/
D 1

sC�Lff g.s/
D Lafr���

a f g.s/:



3.17 Nabla Fractional Composition Rules 219

By the uniqueness theorem for Laplace transforms (Theorem 3.72), we have

r�
a r��

a f .t/ D r���
a f .t/

for t 2 NaC1. Also

r�
a r��

a f .a/ D 0 D r���
a f .a/:

ut
Next we prove a theorem concerning the composition of an integer-order

difference with a fractional sum and with a fractional difference. This result was
first proved in this generality by Ahrendt et al. [3].

Lemma 3.108. Let k 2 N0, � > 0, and choose N 2 N such that N � 1 < � 	 N.
Then

rkr��
a f .t/ D rk��

a f .t/; (3.57)

and

rkr�
a f .t/ D rkC�

a f .t/: (3.58)

for t 2 NaCk.

Proof. Assume k 2 N0, � > 0, and choose N 2 N1 such that N � 1 < � 	 N. First
we prove (3.57) for � D N. To see this first note that

rr�1
a f .t/ D r

Z t

a
H0.t; �.�//f .�/r�

D r
Z t

a
f .�/r�

D f .t/; t 2 NaC1:

So, then, for the case of � D N we have

rkr�N
a f .t/ D rk�1Œrr�1

a .r�.N�1/
a f .t//�

D rk�1r�.N�1/f .t/

D rk�2r�.N�2/f .t/

� � �
D r�.N�k/f .t/

D rk�Nf .t/; t 2 NaCk:
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Hence (3.57) holds for � D N. Now we consider (3.58). It is trivial to prove (3.58)
when � D N; so we assume N � 1 < � < N. First we will show that (3.58) holds
for the base case

rr�
a f .t/ D r1C�

a f .t/; t 2 NaC1:

This follows from the following:

rr�
a f .t/

D r
�Z t

a
H���1.t; �.�/f .�/r�

�

D
Z t

a
H���2.t; �.�//f .�/r� C H���1.�.t/; �.t//f .t/ .by (3.22)/

D
Z t

a
H���2.t; �.�//f .�/r�

D r1C�
a f .t/:

Then, for any k 2 N0,

rkr�
a f .t/ D rk�1.rr�

a f .t//

D rk�1r1C�
a f .t/

D rk�2r2C�
a f .t/

� � �
D rkC�

a f .t/; t 2 NaCk;

which shows (3.58) holds for this case. In case N � 1 < � < N, noticing that
rkC�

a f .t/ can be obtained from rk��
a f .t/ by replacing � by ��, we obtain by a

similar argument that (3.57) holds for the case N � 1 < � < N. And this completes
the proof. ut
Theorem 3.109. Assume f W Na ! R and ; � > 0. Then

r
a r��

a f .t/ D r��
a f .t/:

Proof. Let ; � > 0 be given, and N 2 N such that N � 1 <  	 N. Then we have

r
a r��

a f .t/ D rNr�.N�/
a r��

a f .t/

D rNr�.N�/��
a f .t/ by Theorem 3.107
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D rN�NC��
a f .t/ by Lemma 3.108

D r��
a f .t/:

This completes the proof. ut
The following theorem for N D 1 appears in Hein et al. [119] and for general N

appears in Ahrendt et al. [3].

Theorem 3.110. Assume the nabla Laplace transform of f W NaC1 ! R exists for
js � 1j < r, r > 0,  > 0, and pick N 2 N1 so that N � 1 <  	 N. Then

LaCNfr
a f g.s/ D sLaCNff g.s/C

N�1X
kD0

�
s

.1 � s/N�k
f .a C k C 1/

� sN

.1 � s/N�k
r�.N�/

a f .a C k C 1/

� rN�k�1r�.N�/
a f .a C N/sk

	
;

for js � 1j < r.

Proof. Consider

LaCNfr
a f g.s/ D LaCNfrNr�.N�/

a f g.s/

D sNLaCNfr�.N�/
a f g.s/ �

NX
kD1

sN�krk�1r�.N�/
a f .a C N/ by (3.85)

D sN

"
1

.1 � s/N
Lafr�.N�/

a f g.s/ �
NX

kD1

r�.N�/
a f .a C k/

.1 � s/N�kC1

#

�
N�1X
kD0

skrN�k�1r�.N�/
a f .a C N/ by Lemma 3.88

D s

.1 � s/N
Laff g.s/ � sN

NX
kD1

r�.N�/
a f .a C k/

.1 � s/N�kC1

�
N�1X
kD0

skrN�k�1r�.N�/
a f .a C N/

D s
�
LaCNff g.s/C

NX
kD1

f .a C k/

.1 � s/n�kC1

	
� sN

NX
kD1

r�.N�/
a f .a C k/

.1 � s/N�kC1
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�
N�1X
kD0

skrN�k�1r�.N�/
a f .a C N/ by Lemma 3.88

D sLaCNff g.s/C
N�1X
kD0

�
s

.1 � s/N�k
f .a C k C 1/

sN

.1 � s/N�k
r�.N�/

a f .a C k C 1/ � rN�k�1r�.N�/
a f .a C N/sk

	
;

which is what we wanted to prove. ut
Theorem 3.111. Assume f W Na ! R,  > 0 and k 2 N0. Then

r�
aCkrkf .t/ D rk�

aCkf .t/ �
k�1X
jD0

r jf .a C k/H�kCj.t; a C k/:

Proof. Integrating by parts on two different occasions below we get

r�
aCkrkf .t/ D

Z t

aCk
H�1.t; �.�//rkf .�/r�

D
Z t

aCk
H�1.t; �.�//rrk�1f .�/r�

D rk�1f .�/H�1.t; �/
ˇ̌t
aCk C

Z t

aCk
H�2.t; �.�//rk�1f .�/

D �rk�1f .a C k/H�1.t; a C k/C H�1.t; a C k/rk�1f .�/

D r�.�1/
aCk rk�1f .t/ � rk�1f .a C k/H�1.t; a C k/

D rŒr�
aCkrk�1f .t/� � rk�1f .a C k/H�1.t; a C k/

D r�.�2/
aCk rk�2f .t/ � rk�2f .a C k/H�2.t; a C k/

� rk�1f .a C k/H�1.t; a C k/:

Integrating by parts k � 2 more times gives

r�
aCkrkf .t/ D rk�

aCkf .t/ �
k�1X
jD0

r jf .a C k/H�kCj.t; a C k/;

which was what we wanted to prove. ut
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Theorem 3.112. Let  > 0 and k 2 N0 be given and choose N 2 N such that
N � 1 <  	 N. Then

r
aCkrkf .t/ D rkC

aCk f .t/ �
k�1X
jD0

r jf .a C k/H��kCj.t; a C k/:

Proof. Consider

r
aCkrkf .t/ D rN.r�.N�/

aCk rkf .t//

D rN

0
@rk�.N�/

aCk f .t/ �
k�1X
jD0

r jf .a C k/HN��kCj.t; a C k/

1
A

D rkC
aCk f .t/ �

k�1X
jD0

r jf .a C k/HN��kCj.t; a/

D rkC
aCk f .t/ �

k�1X
jD0

r jf .a C k/rN�1HN��kCj.t; a/

D rkC
aCk f .t/ �

k�1X
jD0

r jf .a C k/rN�1HN��kCj�1.t; a/:

Taking the difference inside the summation N � 1 more times, we get

r
aCkrkf .t/ D rkC

aCk f .t/ �
k�1X
jD0

r jf .a C k/H��kCj.t; a C k/;

which is what we wanted to prove. ut
Theorem 3.113. Assume 1 <  	 2. Then the unique solution of the fractional IVP

r
a x.t/ D 0; t 2 NaC2

x.a C 2/ D A0;

rx.a C 2/ D A1;

where A0;A1 2 R; is given by

x.t/ D Œ.2 � /A0 C . � 1/A1�h�1.t; a/

C Œ. � 1/A0 � A1�h�2.t; a/; (3.59)

for t 2 NaC1.
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Proof. Let x.t/ be the solution of the IVP (3.59) r
a x.t/ D 0. Then

x.t/ D c1H�1.t; a/C c2H�2.t; a/:

Using the IC’s we get that

x.a C 1/ D x.a C 2/ � rx.a C 2/ D A0 � A1:

It follows from this that

x.a C 1/ D c1H�1.a C 1; a/C c2H�2.a C 1; a/ D A0 � A1:

Since H�1.a C 1; a/ D H�2.a C 1; a/ D 1; we have that

c1 C c2 D A0 � A1:

Since rx.t/ D c1H�2.t; a/C c2H�3.t; a/; we get that

rx.a C 2/ D c1H�2.a C 2; a/C c2H�3.a C 2; a/

D c1. � 1/C c2. � 2/
D A1:

Solving the system

c1 C c2 D A0 � A1

. � 1/c1 C . � 2/c2 D A1

we get

c1 D .2 � /A0 C . � 1/A1; c2 D . � 1/A0 � A1:

Hence,

x.t/ D Œ.2 � /A0 C . � 1/A1�h�1.t; a/C Œ. � 1/A0 � A1�h�2.t; a/;

for t 2 NaC1. ut
Next, we look at the nonhomogeneous equation with zero initial conditions.

Theorem 3.114. Let g W Na ! R and 1 <  	 2. Then, for t 2 NaC2, the fractional
initial value problem

r
a x.t/ D g.t/; t 2 NaC2

x.a C 2/ D 0

rx.a C 2/ D 0
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has the unique solution

x.t/ D r�
a g.t/ � Œg.a C 1/C g.a C 2/�h�1.t; a/

C g.a C 2/h�2.t; a/: (3.60)

Proof. We take the Laplace transform based at a C 2 of both sides of the equation.

LaC2fr
a xg.s/ D LaC2fgg.s/:

Next, we use Theorem 3.110 and Lemma 3.88 on the left-hand side and the Laplace
transform shifting theorem on the right-hand side of the equation.

s

.1 � s/2
Lafxg.s/

� . s

1 � s
/2r�.2�/

a x.a C 1/ � rr�.2�/
a x.a C 2/

� . s2

1 � s
/r�.2�/

a x.a C 2/ � sr�.2�/
a x.a C 2/

D 1

.1 � s/2
Lafgg.s/ � 1

.1 � s/2
g.a C 1/ � 1

1 � s
g.a C 2/:

Using x.a C 2/ D 0 D rx.a C 2/; we obtain

s

.1 � s/2
Lafxg.s/ D 1

.1 � s/2
Lafgg.s/ � 1

.1 � s/2
g.a C 1/

� 1

1 � s
g.a C 2/:

Next, we solve for the Laplace transform of x.t/ to obtain

Lafxg.s/ D 1

s
Lafgg.s/ � 1

s
g.a C 1/ � .1 � s/

s
g.a C 2/

D ŒLafh�1.t; a/g.s/Lafgg.s/� � 1

s
g.a C 1/

� 1

s
g.a C 2/C 1

s�1 g.a C 2/:

Finally, we take the inverse Laplace transform and note that

r�
a g.t/ D h�1.t; a/ 
 g.t/;
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which yields

x.t/ D Œh�1.�; a/ 
 g.�/� � Œg.a C 1/C g.a C 2/�h�1.t; a/

C g.a C 2/h�2.t; a/

D r�
a g.t/ � Œg.a C 1/C g.a C 2/�h�1.t; a/C g.a C 2/h�2.t; a/

for t 2 NaC2. ut

3.18 Monotonicity for the Nabla Case

Most of the results in this section appear in the paper [49]. These results were
motivated by the paper by Dahal and Goodrich [67]. The results of Dahal and
Goodrich are treated in Sect. 7.2. First, we derive a nabla difference inequality which
plays an important role in proving our main result on monotonicity.

Theorem 3.115. Assume that f W Na ! R, r
a f .t/ � 0, for each t 2 NaC1, with

1 <  < 2. Then

rf .t/ � �f .a C 1/ŒH��1.t; a/C H�.t; a C 1/�

�
t�1X

�DaC2
H�.t; �.�//rf .�/ (3.61)

D �f .a C 1/
.� C 1/t��.a/

.t � �.a//Š �
t�1X

�DaC2

.� C 1/t��

.t � �/Š rf .�/ (3.62)

for t 2 NaC1, where for t � � ,

H�.t; �.�// D .� C 1/t��

.t � �/Š < 0: (3.63)

Proof. Note that

r
a f .t/ D

Z aC1

a
H��1.t; �.�//f .�/r� C

Z t

aC1
H��1.t; �.�//f .�/r�

D H��1.t; a/f .a C 1/C
Z t

aC1
H��1.t; �.�//f .�/r�: (3.64)

Integrating by parts and using the power rule

r�H�.t; �/ D �H��1.t; �.�//
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we have that (where we use H�.t; �.t// D 1)

Z t

aC1
H��1.t; �.�//f .�/r�

D �f .�/H�.t; �/jt�DaC1 C
Z t

aC1
H�.t; �.�//rf .�/r�

D f .a C 1/H�.t; a C 1/C
tX

�DaC2
H�.t; �.�//rf .�/

D f .a C 1/H�.t; a C 1/C
t�1X

�DaC2
H�.t; �.�//rf .�/

CH�.t; �.t//rf .t/

D f .a C 1/H�.t; a C 1/C
t�1X

�DaC2
H�.t; �.�//rf .�/C rf .t/: (3.65)

Using (3.64) and (3.65), we obtain

0 	 �
af .t/

D ŒH��1.t; a/C H�.t; a C 1/�f .a C 1/

C
t�1X

�DaC2
H�.t; �.�//rf .�/C rf .t/;

for t 2 NaC1 by assumption. Solving this last inequality for rf .t/ we obtained the
desired inequality (3.61). Next we show that (3.63) holds. This follows from the
following:

H�.t; �.�//

D .t � �.�//�
�.� C 1/

D .t � � C 1/�

�.� C 1/

D �.t C 1 �  � �/
�.t � � C 1/�.� C 1/

D .� C t � �/.� C t � � � 1/ � � � .� C 1/

.t � �/Š .since t � � � 1/
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D .� C 1/t��

.t � �/Š
< 0

since 1 <  < 2. Also

�ŒH��1.t; a/C H�.t; a C 1/�

D �
h .t � a/��1

�.�/ C .t � �.a//�
�.� C 1/

i

D �
h�.� C t � �.a//
�.t � a/�.�/ C �.� C t � �.a//

�.t � �.a//�.� C 1/

i

D � .� C t � �.a//.� C t � a � 2/ � � � .� C 2/.� C 1/

.t � �.a//Š

D � �.� C t � a/

�.� C 1/.t � �.a//Š

D � .� C 1/t��.a/

.t � �.a//Š
> 0:

This completes the proof. ut
Theorem 3.116. Assume f W NaC1 ! R, r

a f .t/ � 0, for each t 2 NaC1, with
1 <  < 2. Then rf .t/ � 0, for t 2 NaC2.

Proof. We prove that rf .a C k/ � 0, for k � 0 by the principle of strong induction.
Since r

a f .a C 1/ D f .a C 1/; we have by assumption that f .a C 1/ � 0. When
t D a C 2, it follows that

r
0 f .a C 2/ D

Z aC2

a
H��1.a C 2; � � 1/f .�/r�

D f .a C 2/ � f .a C 1/

D rf .a C 2/ � . � 1/f .a C 1/:

From our assumption r
a f .a C 2/ � 0 and the fact that r

a f .a C 1/ D f .a C 1/, we
have

rf .a C 2/ � . � 1/f .a C 1/ � 0:

Suppose k � 2 and that rf .a C i/ � 0, for i D 2; 3; 4; � � � ; k. Then from
Theorem 3.115, we have rf .a C k C 1/ � 0, so this completes the proof. ut
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3.19 Caputo Fractional Difference

In this section we define the �-th Caputo fractional difference operator and give
some of its properties. Many of the results in this section and related results are
contained in the papers by Anastassiou [7–13] and the paper by Ahrendt et al. [4].

Definition 3.117. Assume f W Na�NC1 ! R and � > 0. Then the �-th Caputo
nabla fractional difference of f is defined by

r�
a�f .t/ D r�.N��/

a rNf .t/

for t 2 NaC1; where N D d�e.

One nice property of the Caputo nabla fractional difference is that if � � 1 and
C is any constant, then

r�
a�C D 0:

Note that this is not true for the nabla Riemann–Liouville fractional difference, when
C ¤ 0 and � > 0 is not an integer (see Exercise 3.28).

The following theorem follows immediately from the definition of the Caputo
nabla fractional difference and the definition of the Taylor monomials.

Theorem 3.118. Assume � > 0 and N D d�e. Then the nabla Taylor monomials,
Hk.t; a/, 0 	 k 	 N � 1, are N linearly independent solutions of r�

a�x D 0 on
Na�NC1.

The reader should compare this theorem (Theorem 3.118) to Theorem 3.95 which
gives the analogue result for the nabla Riemann–Liouville case r�

a x D 0. That is,
H��k.t; a/, where 0 	 k 	 N � 1, are N linearly independent solutions of r�

a x D 0.
The following result appears in Anastassiou [7].

Theorem 3.119 (Nabla Taylor’s Theorem with Caputo Differences). Assume f W
Na�NC1 ! R, � > 0 and N � 1 < � 	 N. Then

f .t/ D
N�1X
kD0

Hk.t; a/rkf .a/C
Z t

a
H��1.t; �.�//r�

a�f .�/r�;

for t 2 Na�NC1.

Proof. By Taylor’s Theorem (Theorem 3.48) with n D N � 1, we have that

f .t/ D
N�1X
kD0

Hk.t; a/rkf .a/C
Z t

a
HN�1.t; �.�//rNf .�/r�;
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for t 2 Na�NC1. Hence to complete the proof we just need to show that

Z t

a
HN�1.t; �.�//rNf .�/r� D

Z t

a
H��1.t; �.�//r�

a�f .�/r�; (3.66)

holds for t 2 Na�NC1. By convention both integrals in (3.66) are equal to zero for
t 2 N

a
a�NC1. Hence it remains to prove that (3.66) holds for t 2 Na. To see that this

is true note that

Z t

a
H��1.t; �.�//r�

a�f .�/r� D r��
a r�

a�f .t/

D r��
a r�.N��/

a rNf .t/

D r���NC�
a rNf .t/ by Theorem 3.107

D r�N
a rNf .t/;

D
Z t

a
HN�1.t; �.�//rNf .�/r�

for t 2 Na. ut

3.20 Nabla Fractional Initial Value Problems

In this section we will consider the nabla fractional initial value problem (IVP)

(
r

a�x.t/ D h.t/; t 2 NaC1
rkx.a/ D ck; 0 	 k 	 N � 1; (3.67)

where we always assume that a;  2 R,  > 0, N WD de, ck 2 R for 0 	 k 	 N �1,
and h W NaC1 ! R. In the next theorem we will see that this IVP has a unique
solution which is defined on Na�NC1.

Theorem 3.120. The unique solution to the IVP (3.67) is given by

x.t/ D
N�1X
kD0

Hk.t; a/ck C r�
a h.t/;

for t 2 Na�NC1, where by convention r�
a h.t/ D 0 for a � N C 1 	 t 	 a.

Proof. Define f W Na�NC1 ! R by

rkf .a/ D ck;
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for 0 	 k 	 N � 1 (note that this uniquely defines f .t/ for a � N C 1 	 t 	 a), and
for t 2 NaC1 define f .t/ recursively by

rNf .t/ D h.t/ �
Z t�1

a
HN��1.t; �.�//rNf .�/r�

D h.t/ �
t�1X

�DaC1
HN��1.t; �.�//rNf .�/:

So for any t 2 NaC1,

rNf .t/C
Z t�1

a
HN��1.t; �.�//rNf .�/r� D h.t/: (3.68)

It follows that

r
a�f .t/ D r�.N�/

a rNf .t/

D
Z t

a
HN��1.t; �.�//rNf .�/r�

D
Z t�1

a
HN��1.t; �.�//rNf .�/r� C rNf .t/

D h.t/ by (3.68)

for t 2 NaC1. Therefore, f .t/ solves the IVP (3.67). Conversely, if we suppose that
there is a function f W Na�NC1 ! R that satisfies the IVP, reversing the above steps
would lead to the same recursive definition. Therefore the solution to the IVP is
uniquely defined. By the Caputo Discrete Taylor’s Theorem, x.t/ D f .t/ is given by

x.t/ D
N�1X
kD0

Hk.t; a/rkx.a/C r�
a r

a�x.t/

D
N�1X
kD0

ckHk.t; a/C r�
a h.t/:

ut
The following example appears in [4].

Example 3.121. Solve the IVP

(
r0:7
0� x.t/ D t; t 2 N1

x.0/ D 2:
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Applying the variation of constants formula in Theorem 3.120 we get

x.t/ D
0X

kD0

tk

kŠ
2C r�0:7

0 h.t/

D 2C
Z t

0

H�:3.t; �.s//srs

for t 2 N0. Integrating by parts, we have

x.t/ D 2 � sH:7.t; s/
ˇ̌sDt

sD0 C
Z t

0

H:7.t; �.s//rs

D 2 � H1:7.t; s/
ˇ̌sDt

sD0

D 2C 1

�.2:7/
t1:7

for t 2 N0.

Corollary 3.122. For  > 0, N D de, and h W NaC1 ! R, we have that

r�.N�/
a rN�

a h.t/ D h.t/; t 2 NaC1:

Proof. Assume N ¤ ; otherwise, the proof is trivial. Let  > 0, N D de, and
h W NaC1 ! R. Let ck 2 R for 0 	 k 	 N � 1, and define f W Na�NC1 ! R in terms
of h by

f .t/ WD
N�1X
kD0

.t � a/k

kŠ
ck C r�

a h.t/:

Then by Theorem 3.120, f .t/ solves the IVP

(
r

a�f .t/ D h.t/; t 2 NaC1
rkf .a/ D ck; 0 	 k 	 N � 1:

With repeated applications of the Leibniz rule (3.22) we get

rNf .t/ D rN

� N�1X
kD0

Hk.t; a/ck C r�
a h.t/

	

D rNr�
a h.t/
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D rN

� Z t

a
H�1.t; �.�//h.�/r�

	

D rN�1
� Z t

a
H�2.t; �.�//h.�/r� C H�1.�.t/; �.t//h.t/

	

D rN�1
� Z t

a
H�2.t; �.�//h.�/r�

	

D rN�2
� Z t

a
H�3.t; �.�//h.�/r� C H�2.�.t/; �.t//h.t/

	

D rN�2
� Z t

a
H�3.t; �.�//h.�/r�

	

D � � �

D r
� Z t

a
H�N.t; �.�/h.�/r�

	

D
Z t

a
H�N�1.t; �.�//h.�/r� C H�N.�.t/; �.t//h.t/

D
Z t

a
H�N�1.t; �.�//h.�/r�

D
Z t

a
H�.N�/�1.t; �.�/h.�/r�

D rN�
a h.t/:

It follows that

r�.N�/
a rN�

a h.t/ D r�.N�/
a rNf .t/ D r

a�f .t/ D h.t/;

and the proof is complete. ut

3.21 Monotonicity (Caputo Case)

Many of the results in this section appear in Baoguo et al. [49]. This work is
motivated by the paper by R. Dahal and C. Goodrich [67], where they obtained some
interesting monotonicity results for the delta fractional difference operator. These
monotonicity results for the delta case will be discussed in Sect. 7.2. In this section,
we prove the following corresponding results for Caputo fractional differences.

Theorem 3.123. Assume that N � 1 <  < N, f W Na�NC1 ! R, r
a� f .t/ � 0 for

t 2 NaC1 and rN�1f .a/ � 0. Then rN�1f .t/ � 0 for t 2 Na.



234 3 Nabla Fractional Calculus

Theorem 3.124. Assume N � 1 <  < N, f W Na�NC1 ! R, and rNf .t/ � 0 for
t 2 NaC1. Then r

a� f .t/ � 0, for each t 2 NaC1.

When N D 2 in Theorem 3.123 we get the important monotonicity result.

Theorem 3.125. Assume that 1 <  < 2, f W N�.a/ ! R, r
a� f .t/ � 0 for t 2 NaC1

and f .a/ � f .�.a//. Then f .t/ is an increasing function for t 2 N�.a/.

Also the following partial converse of Theorem 3.123 is true.

Theorem 3.126. Assume 0 <  < 1, f W N�.a/ ! R and f is an increasing function
for t 2 Na. Then r

a� f .t/ � 0, for each t 2 NaC1.

We also give a counterexample to show that the above assumption f .a/ � f .�.a//
in 3.125 is essential. We begin by proving the following theorem.

Theorem 3.127. Assume that f W Na�NC1 ! R, and r�

a� f .t/ � 0; for each t 2
NaC1, with N � 1 < � < N. Then

rN�1f .a C k/

�
k�1X
iD1

h .k � i C 1/N���2

�.N � � � 1/
i
rN�1f .a C i � 1/

C HN���1.a C k; a/rN�1f .a/; (3.69)

for k 2 N1 (note by our convention on sums the first term on the right-hand side is
zero when k D 1).

Proof. If t D a C 1, we have that

0 	 r�

a� f .a C 1/ D r�.N��/
a rNf .t/

D
Z aC1

a
HN���1.a C 1; �.s//rNf .s/rs

D HN���1.a C 1; a/rNf .a C 1/

D rNf .a C 1/ D rN�1f .a C 1/ � rN�1f .a/;

where we used HN���1.a C 1; a/ D 1. Solving for rN�1f .a C 1/ we get the
inequality

rN�1f .a C 1/ � rN�1f .a/;

which gives us the inequality (3.69) for t D aC1. Hence, the inequality (3.69) holds
for t D a C 1.
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Next consider the case t D a C k for k � 2. Taking t D a C k, k � 2 we have that

0 	 r�

a� f .t/

D r�.N��/
a rNf .t/

D
Z t

a
HN���1.t; �.s//rNf .s/rs

D
Z aCk

a
HN���1.a C k; �.s//rNf .s/rs

D
kX

iD1
HN���1.a C k; a C i � 1/rNf .a C i/

D
kX

iD1
HN���1.a C k; a C i � 1/ 
rN�1f .a C i/ � rN�1f .a C i � 1/�

D
kX

iD1
HN���1.a C k; a C i � 1/rN�1f .a C i/

�
kX

iD1
HN���1.a C k; a C i � 1/rN�1f .a C i � 1/

D rN�1f .a C k/C
k�1X
iD1

HN���1.a C k; a C i � 1/rN�1f .a C i/

� HN���1.a C k; a/rN�1f .a/

�
kX

iD2
HN���1.a C k; a C i � 1/rN�1f .a C i � 1/;

where we used HN���1.a C k; a C k � 1/ D 1. It follows that

0 	 rN�1f .a C k/C
k�1X
iD1

HN���1.a C k; a C i � 1/rN�1f .a C i/

� HN���1.a C k; a/rN�1f .a/ �
k�1X
iD1

HN���1.a C k; a C i/rN�1f .a C i/

D rN�1f .a C k/ � HN���1.a C k; a/rN�1f .a C i/

�
k�1X
iD1

h
HN���1.a C k; a C i/

� HN���1.a C k; a C i � 1/
i
rN�1f .a C i/:
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Hence,

0 	rN�1f .a C k/ � HN���1.a C k; a/rN�1f .a/

�
k�1X
iD1

rsHN���1.a C k; s/jsDaCirN�1f .a C i/

DrN�1f .a C k/ � HN���1.a C k; a/rN�1f .a/

C
k�1X
iD1

HN���2.a C k; a C i � 1/rN�1f .a C i/

DrN�1f .a C k/ � HN���1.a C k; a/rN�1f .a/

C
k�1X
iD1

h .k � i C 1/N���2

�.N � � � 1/
i
rN�1f .a C i/:

Solving the above inequality for rN�1f .a C k/, we obtain the desired inequality
(3.69).

Next we consider for 1 	 i 	 k � 1

.k � i C 1/N���2

�.N � � � 1/ D �.N � �C k � i � 1/
�.k � i C 1/�.N � � � 1/

D .N � �C k � i � 2/ � � � .N � � � 1/
.k � i/Š

< 0

since N < �C 1. Also

HN���1.a C k; a/ D kN���1

�.N � �/

D �.N � �C k � 1/
�.k/�.N � �/

D .N � �C k � 2/ � � � .N � �/
.k � 1/Š > 0:

And this completes the proof. ut
From Theorem 3.127 we have the following

Theorem 3.128. Assume that N � 1 <  < N, f W Na�NC1 ! R, r
a� f .t/ � 0 for

t 2 NaC1 and rN�1f .a/ � 0. Then rN�1f .t/ � 0 for t 2 Na.
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Proof. By using the principle of strong induction, we prove that the conclusion of
the theorem is correct. By assumption, the result holds for t D a. Suppose that
rN�1f .t/ � 0, for t D a; a C 1; : : : ; a C k � 1. From Theorem 3.127 and (3.69), we
have rN�1f .a C k/ � 0, and the proof is complete. ut

Taking N D 2 and N D 3, we can get the following corollaries.

Corollary 3.129. Assume that 1 <  < 2, f W N�.a/ ! R, r
a� f .t/ � 0 for t 2 NaC1

and f .a/ � f .�.a//. Then f .t/ is increasing for t 2 N�.a/.

Corollary 3.130. Assume that 2 <  < 3, f W Na�2 ! R, r
a� f .t/ � 0 for t 2 NaC1

and r2f .a/ � 0. Then rf .t/ is increasing for t 2 Na.

One should compare the next result with Theorem 3.128.

Theorem 3.131. Assume that N � 1 <  < N, f W Na�NC1 ! R, and rNf .t/ � 0

for t 2 NaC1. Then r
a� f .t/ � 0, for each t 2 NaC1.

Proof. Taking t D a C k, we have

r��
a� f .t/

D r�.N��/
a rNf .t/

D
Z t

a
HN���1.t; �.s//rNf .s/rs

D
kX

iD1
HN���1.a C k; a C i � 1/rNf .a C i/: (3.70)

Since

HN���1.a C k; a C i � 1/

D .k � i C 1/N���1

�.N � �/

D �.k C N � i � �/
�.N � �/�.k � i C 1/

D .��C k C N � i/ � � � .N � �C 1/.N � �/
.k � i/Š

> 0; (3.71)

where we used � < N, from (3.70) and (3.71) we get that r
a� f .t/ � 0, for each

t 2 NaC1, ut
Taking N D 1 and N D 2, we get the following corollaries.

Corollary 3.132. Assume that 0 <  < 1, f W N�.a/ ! R and f is an increasing
function for t 2 Na. Then r

a� f .t/ � 0, for t 2 NaC1.
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Corollary 3.133. Assume that 1 <  < 2, f W N�.a/ ! R and r2f .t/ � 0 for
t 2 NaC1. Then r

a� f .t/ � 0, for each t 2 NaC1.

In the following, we will give a counterexample to show that the assumption in
Corollary 3.129 “f .a/ � f .�.a//” is essential. To verify this example we will use
the following simple lemma.

Lemma 3.134. Assume f 2 C2.Œa;1// and f 00.t/ � 0 on Œa;1/. Then r
a� f .t/ � 0,

for each t 2 NaC1, with 1 <  < 2.

Proof. By Taylor’s Theorem,

f .a C i C 1/ D f .a C i/C f 0.a C i/C f 00.� i/

2
; � i 2 Œa C i; a C i C 1� (3.72)

and

f .a C i � 1/ D f .a C i/ � f 0.a C i/C f 00.�i/

2
; �i 2 Œa C i � 1; a C i� (3.73)

for i D 0; 1; : : : ; k � 1. Using (3.72) and (3.73), we have

r2f .a C i C 1/ D f .a C i C 1/ � 2f .a C i/C f .a C i � 1/ (3.74)

D f 00.� i/C f 00.�i/

2

� 0:

From (3.74) and Corollary 3.133, we get that r
a� f .t/ � 0, for each t 2 NaC1, with

1 <  < 2. ut
Example 3.135. Let f .t/ D �p

t, a D 2. We have f 00.t/ � 0, for t � 1. By
Lemma 3.134, we have r

a� f .t/ � 0.

Note that f .�.a// D f .1/ D �1 > f .a/ D �p
2. Therefore f .x/ does not satisfy

the assumptions of Corollary 3.129. In fact, f .x/ is decreasing, for t � 1.
Corollary 3.129 could be useful for solving nonlinear fractional equations as the

following result shows.

Corollary 3.136. Let h W NaC1 � R ! R be a nonnegative, continuous function.
Then any solution of the Caputo nabla fractional difference equation

r
a�y.t/ D h.t; y.t//; t 2 NaC1; 1 <  < 2 (3.75)

satisfying ry.a/ D A � 0 is increasing on N�.a/.



3.22 Asymptotic Behavior and Comparison Theorems 239

3.22 Asymptotic Behavior and Comparison Theorems

In this section we will determine the asymptotic behavior of solutions of a nabla
Caputo fractional equation of the form

r
a�x.t/ D c.t/x.t/; t 2 NaC1; (3.76)

where c W NaC1 ! R; 0 <  < 1. We will prove important comparison theorems
to help us prove our asymptotic results. Most of the results in this section appear in
Baoguo et al. [52]. The following lemma will be useful.

Lemma 3.137. Assume that c.t/ < 1, 0 <  < 1. Then any solution of

r
a�x.t/ D c.t/x.t/; t 2 NaC1 (3.77)

satisfying x.a/ > 0 is positive on Na.

Proof. Using the integrating by parts formula (3.23) and

rsH�.t; s/ D �H��1.t; �.s//;

we have

r
a�x.t/ D r�.1�/

a rx.t/

D
Z t

a
H�.t; �.s//rx.s/rs

D H�.t; s/x.s/jtsDa C
Z t

a
H��1.t; �.s//x.s/rs

D �H�.t; a/x.a/C
tX

sDaC1
H��1.t; �.s//x.s/:

Taking t D a C k, we have

r
a�x.t/ Dr

a�x.a C k/

Dx.a C k/ � x.a C k � 1/ � .� C 1/

2Š
x.a C k � 2/ � � � �

� .� C 1/ � � � .� C k � 2/
.k � 1/Š x.a C 1/

� .� C 1/ � � � .� C k � 1/
.k � 1/Š x.a/:

Using (3.77), we get
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x.a C k/

D 1

1 � c.a C k/

h
x.a C k � 1/C .� C 1/

2Š
x.a C k � 2/C � � �

C .� C 1/ � � � .� C k � 2/
.k � 1/Š x.a C 1/

C .� C 1/ � � � .� C k � 1/
.k � 1/Š x.a/

i
:

From the strong induction principle, 0 <  < 1, and x.a/ > 0, it is easy to prove
that x.a C k/ > 0, for k 2 N0. ut

The following comparison theorem plays an important role in proving our main
results.

Theorem 3.138. Assume c2.t/ 	 c1.t/ < 1, 0 <  < 1, and x.t/; y.t/ are solutions
of the equations

r
a�x.t/ D c1.t/x.t/; (3.78)

and

r
a y.t/ D c2.t/y.t/; (3.79)

respectively, for t 2 NaC1 satisfying x.a/ � y.a/ > 0. Then

x.t/ � y.t/;

for t 2 Na.

Proof. Similar to the proof of Lemma 3.137, taking t D a C k, we have

x.a C k/

D 1

1 � c1.a C k/

h
x.a C k � 1/C .� C 1/

2Š
x.a C k � 2/C � � �

C .� C 1/ � � � .� C k � 2/
.k � 1/Š x.a C 1/C .� C 1/ � � � .� C k � 1/

.k � 1/Š x.a/
i

(3.80)
and

y.a C k/

D 1

1 � c2.a C k/

h
y.a C k � 1/C .� C 1/

2Š
y.a C k � 2/C � � �

C .� C 1/ � � � .� C k � 2/
.k � 1/Š y.a C 1/C .� C 1/ � � � .� C k � 1/

.k � 1/Š y.a/
i
:

(3.81)
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We will prove x.a C k/ � y.a C k/ > 0 for k 2 N0 by using the principle of strong
induction. By assumption x.a/ � y.a/ > 0 so the base case holds. Now assume that
x.a C i/ � y.a C i/ > 0, for i D 0; 1; : : : ; k � 1. Using c2.t/ 	 c1.t/ < 1,

.� C 1/ � � � .� C i � 1/
iŠ

> 0;

the base case k D 1 for i D 2; 3; � � � k � 1,

.� C 1/.� C 2/ � � � .� C k � 1/
.k � 1/Š > 0;

(3.80), and (3.81) we have

x.a C k/ � y.a C k/ > 0:

This completes the proof. ut
Remark 3.139. Since H0.t; a/ D 1, we have that E0;;0.t; a/ D 1 and Ep;;0

.a; a/ D 1.

Lemma 3.140. Assume that 0 <  < 1, jbj < 1. Then

r
a�Eb;;0.t; a/ D bEb;;0.t; a/

for t 2 NaC1.

Proof. Integrating by parts, we have

r
a�Eb;;0.t; a/

D
Z t

a
H�.t; �.s//rEb;;0.s; a/rs

D ŒH�.t; s/Eb;;0.s; a/�
t
sDa C

Z t

a
H��1.t; �.s//Eb;;0.s; a/rs

D �H�.t; a/C
Z t

a
H��1.t; �.s//

1X
kD0

bkHk.s; a/rs; (3.82)

where we used H�.t; t/ D 0 and Eb;;0.a; a/ D 1. In the following, we first prove
that the infinite series

H��1.t; �.s//
1X

kD0
bkHk.s; a/ (3.83)

for each fixed t is uniformly convergent for s 2 Œa; t�.
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We will first show that

jH��1.t; �.s//j D
ˇ̌
ˇ̌ �.� C t � s/

�.t � s C 1/�.�/
ˇ̌
ˇ̌ 	 1

for a 	 s 	 t. For s D t we have that

jH��1.t; �.t//j D 1:

Now assume that a 	 s < t. Then

ˇ̌
ˇ̌ �.� C t � s/

�.t � s C 1/�.�/
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ .t � s �  � 1/.t � s �  � 2/ � � � .�/

.t � s/Š

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌ t � s � . C 1/

t � s

ˇ̌
ˇ̌
ˇ̌
ˇ̌ t � s � 1 � . C 1/

t � s � 1
ˇ̌
ˇ̌ � � �

ˇ̌
ˇ�
1

ˇ̌
ˇ

	 1:

Also consider

Hk.s; a/ D �.k C s � a/

�.s � a/�.k C 1/

D .k C s � a � 1/ � � � .k C 1/

.s � a � 1/Š :

Note that for large k it follows that

Hk.s; a/ 	 .k C s � a � 1/s�a�1

	 .k C t � a � 1/t�a�1

for a 	 s 	 t. Applying the Root Test to the infinite series in (3.83) we get that for
each fixed t

lim
k!1

k
p

jbjk.k C t � a � 1/t�a�1 D jbj < 1:

Hence, for each fixed t the infinite series in (3.83) is uniformly convergent for
s 2 Œa; t�. So from (3.82), integrating term by term, we obtain, using (3.32) and
r

a Hk.s; a// D Hk�.s; a/, that

r
a�Eb;;0.t; a/ D �H�.t; a/C

1X
kD0

bk
Z t

a
H��1.t; �.s//Hk.s; a/rs
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D �H�.t; a/C
1X

kD0
bkr

a Hk.t; a/

D �H�.t; a/C
1X

kD0
bkHk�.t; a/

D
1X

kD1
bkHk�.t; a/

D bEb;;0.t; a/;

where we also used H0.t; a/ D 1. This completes the proof. ut
With the aid of Lemma 3.140, we now give a rigorous proof of the following

result.

Lemma 3.141. Assume that 0 <  < 1, jbj < 1. Then Eb;;0.t; a/ is the unique
solution of Caputo nabla fractional IVP

r
a�x.t/ D bx.t/; t 2 NaC1 (3.84)

x.a/ D 1:

Proof. It is easy to see that the given IVP has a unique solution. If b D 0, then

E0;;0.t; a/ D 1

is the solution of the given IVP. For b ¤ 0 the result follows from Lemma 3.140
and the uniqueness. ut

We will see that the following lemma, given in Pudlubny [153], is useful in
proving asymptotic properties of certain fractional Taylor monomials and certain
nabla Mittag–Leffler functions.

Lemma 3.142. Assume <.z/ > 0. Then

�.z/ D lim
n!1

nŠnz

z.z C 1/ � � � .z C n/
:

The following lemma is an asymptotic property for certain nabla fractional
Taylor monomials.

Lemma 3.143. Assume that 0 <  < 1. Then we have

lim
t!1 Hk.t; a/ D 1; for k � 1;

lim
t!1 Hk.t; a/ D 1; for k D 0:
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Proof. Taking t D a C n, n � 0, we have

lim
t!1 Hk.t; a/ D lim

n!1 Hk.a C n; a/ D lim
n!1

nk

�.k C 1/

D lim
n!1

�.k C n/

�.n/�.k C 1/

D lim
n!1

.k C n � 1/.k C n � 2/ � � � .k C 1/

.n � 2/Š.n � 2/kC1 � .n � 2/kC1

n � 1 : (3.85)

Using Lemma 3.142 with z D k C 1 and n replaced by n � 2, we have

lim
n!1

.k C 1C n � 2/.k C 1C n � 3/ � � � .k C 1/

.n � 2/Š.n � 2/kC1 D 1

�.k C 1/
;

and

lim
n!1

.n � 2/kC1

n � 1 D 1; for k � 1;

lim
n!1

.n � 2/kC1

n � 1 D 1; for k D 0:

Using (3.85), we get the desired results. ut
Theorem 3.144. Assume 0 < b2 	 c.t/ < 1, t 2 NaC1, 0 <  < 1. Further assume
x.t/ is a solution of Caputo nabla fractional difference equation

r
a�x.t/ D c.t/x.t/; t 2 NaC1 (3.86)

satisfying x.a/ > 0. Then

x.t/ � x.a/

2
Eb2;;0.t; a/;

for t 2 NaC1.

Proof. From Lemma 3.141, we have

r
a� Eb2;;0.t; a/ D b2Eb2;;0.t; a/

and Eb2;;0.a; a/ D 1.

In Theorem 3.138, take c2.t/ D b2 . Then x.t/ and

y.t/ D x.a/

2
Eb2;;0.t; a/
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satisfy

r
a� x.t/ D c.t/x.t/; (3.87)

and

r
a�y.t/ D b2y.t/; (3.88)

respectively, for t 2 NaC1 and

x.a/ >
x.a/

2
Eb2;;0.a; a/ D y.a/:

From Theorem 3.138, we get that

x.t/ � x.a/

2
Eb2;;0.t; a/;

for t 2 Na. This completes the proof. ut
From Lemma 3.143 and the definition of Eb2;;0.t; a/, we get the following

theorem.

Theorem 3.145. For 0 < b2 < 1, we have

lim
t!1 Eb2;;0.t; a/ D C1:

From Theorem 3.144 and Theorem 3.145, we have the following result holds.

Theorem 3.146. Assume 0 <  < 1 and there exists a constant b2 such that 0 <
b2 	 c.t/ < 1. Then the solutions of the equation (3.76) with x.a/ > 0 satisfy

lim
t!1 x.t/ D C1:

Next we consider the case c.t/ 	 b1 < 0, t 2 Na. First we prove some
preliminary results.

Lemma 3.147. Assume f W Na ! R, 0 <  < 1. Then

r�.1�/
a rf .t/ D rr�.1�/

a f .t/ � f .a/H�.t; a/: (3.89)

Proof. Using integration by parts and H�.t; t/ D 0, we have

r�.1�/
a rf .t/ D

Z t

a
H�.t; �.s//rf .s/rs

D H�.t; s/f .s/jtsDa C
Z t

a
H��1.t; �.s//f .s/rs

D �H�.t; a/f .a/C
Z t

a
H��1.t; �.s//f .s/rs: (3.90)
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Using the composition rule r
a r��

a f .t/ D r��
a f .t/, for ; � > 0 in Theorem 3.109,

we have

rr�.1�/
a f .t/ D r

a f .t/

D
Z t

a
H��1.t; �.s//f .s/rs: (3.91)

From (3.90) and (3.91), we get that (3.89) holds. ut
From Lemma 3.147, it is easy to get the following corollary which will be useful

later.

Corollary 3.148. For 0 <  < 1, the following equality holds:

r�
a rf .t/ D rr�

a f .t/ � H�1.t; a/f .a/: (3.92)

for t 2 Na.

Lemma 3.149. Assume that 0 <  < 1 and x.t/ is a solution of the fractional
equation

r
a�x.t/ D c.t/x.t/; t 2 NaC1 (3.93)

satisfying x.a/ > 0. Then x.t/ satisfies the integral equation

x.t/ D
Z t

a
H�1.t; �.s//c.s/x.s/rs C x.a/

D
tX

sDaC1

.t � s C 1/�1

�./
c.s/x.s/C x.a/:

Proof. Using Lemma 3.147 and the composition rule

r˛
a r�ˇ

a f .t/ D r˛�ˇ
a f .t/;

for ˛; ˇ > 0 given in Theorem 3.109, we get

r
a�x.t/ D r�.1�/

a rx.t/

D rr�.1�/
a x.t/ � x.a/H�.t; a/

D r
a x.t/ � x.a/H�.t; a/:

From (3.93), we have

r
a x.t/ D c.t/x.t/C x.a/H�.t; a/:
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Applying the operator r�
a to each side we obtain

r�
a r

a x.t/ D r�
a c.t/x.t/C x.a/r�

a H�.t; a/;

which can be written in the form

r�
a rr�.1�/

a x.t/ D r�
a c.t/x.t/C x.a/r�

a H�.t; a/:

Using Corollary 3.148, we obtain

rr�
a r�.1�/

a x.t/ � .t � a/�1

�./
r�.1�/

a x.t/
ˇ̌
ˇ
tDa

D r�
a c.t/x.t/C x.a/r�

a H�.t; a/:

On the other hand, using

r�.1�/
a x.t/

ˇ̌
ˇ
tDa

D
Z a

a
H�.a; �.s//x.s/rs D 0;

we obtain

rr�
a r�.1�/

a x.t/ D r�
a c.t/x.t/C x.a/r�

a H�.t; a/:

By the composition rule, namely Theorem 3.107, it follows both that
r�

a r�.1�/
a x.t/ D r�1

a x.t/ and that rr�1
a x.t/ D x.t/, from which it follows

that

x.t/ D r�
a c.t/x.t/C x.a/r�

a H�.t; a/:

Finally, by the power rule r�
a H�.t; a/ D H0.t; a/ D 1, we obtain

x.t/ D r�
a c.t/x.t/C x.a/

D
Z t

a
H�1.t; �.s//c.s/x.s/rs C x.a/

D
tX

sDaC1
H�1.t; �.s//c.s/x.s/C x.a/

D
tX

sDaC1

.t � s C 1/�1

�./
c.s/x.s/C x.a/: (3.94)

And this completes the proof. ut
The following lemma appears in [34].
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Lemma 3.150. Assume that 0 <  < 1, jbj < 1. Then the Mittag–Leffler function
Eb;;�1.t; �.a// D P1

kD0 bkHkC�1.t; �.a// is the unique solution of the IVP

r
�.a/x.t/ D bx.t/; t 2 NaC1

x.a/ D 1

1 � b
: (3.95)

Lemma 3.151. Assume 0 <  < 1, jbj < 1. Then any solution of the equation

r
�.a/x.t/ D bx.t/; t 2 NaC1 (3.96)

satisfying x.a/ > 0 is positive on Na.

Proof. From (3.32), we have for t D a C k

r
�.a/x.t/ D

Z t

�.a/
H��1.t; �.s//x.s/rs

D
aCkX
sDa

H��1.a C k; s � 1/x.s/

D x.a C k/ � x.a C k � 1/ � .� C 1/

2
x.a C k � 2/

� � � � � .� C 1/ � � � .� C k � 1/
kŠ

x.a/:

Using (3.92), we have that

.1 � b/x.a C k/

D x.a C k � 1/C .� C 1/

2
x.a C k � 2/

C � � � C .� C 1/ � � � .� C k � 1/
kŠ

x.a/: (3.97)

We will prove x.a C k/ > 0 for k 2 N0 by using the principle of strong induction.
Since x.a/ > 0 we have that the base case holds. Now assume that x.a C i/ > 0, for
i D 0; 1; � � � ; k � 1. Since

.� C 1/ � � � .� C i � 1/
iŠ

> 0

for i D 2; 3; � � � k � 1, from (3.97), we have x.a C k/ > 0. This completes the proof.
ut
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Lemma 3.152. Assume that 0 <  < 1, �1 < b < 0. Then

lim
t!1 Eb;;0.t; a/ D 0:

Proof. From Lemma 3.150 and Lemma 3.151, we have Eb;;�1.t; �.a// > 0, for
t 2 NaC1. So we have

rEb;;0.t; a/ D
1X

kD0
bkrHk.t; a/

D
1X

kD0
bkHk�1.t; a/ D

1X
kD1

bkHk�1.t; a/

D b
1X

kD1
bk�1Hk�1.t; a/ D b

1X
jD0

bjHjC�1.t; a/

D bEb;;�1.t; a/ D bEb;;�1.t � 1; �.a// < 0;

for t 2 NaC1, where we used H�1.t; a/ D 0. Therefore, Eb;;0.t; a/ is decreasing for
t 2 NaC1. From Lemma 3.137, we have Eb;;0.t; a/ > 0 for t 2 NaC1. Suppose that

lim
t!1 Eb;;0.t; a/ D A � 0:

In the following, we will prove A D 0. If not, A > 0. Let x.t/ WD Eb;;0.t; a/ > 0.
From Lemma 3.149, we have

x.t/ D
Z t

a
H�1.t; �.s//bx.s/rs C x.a/

D bŒx.t/C x.t � 1/C . C 1/

2Š
x.t � 2/

C � � � C H�1.t; a/x.a C 1/�C x.a/:

For fixed k0 > 0 and large t, we have (since b < 0)

x.t/ 	 b
h
x.t/C x.t � 1/C . C 1/

2Š
x.t � 2/

C � � � C . C 1/ � � � . C k0 � 1/
k0Š

x.t � k0/
i

C x.a/:
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Letting t ! 1, we get that

0 < A 	 bA
h
1CC . C 1/

2Š
C� � �C . C 1/ � � � . C k0 � 1/

k0Š

i
Cx.a/: (3.98)

Notice (using mathematical induction in the first step) that

1C  C . C 1/

2Š
C � � � C . C 1/ � � � . C k0 � 1/

k0Š

D . C 1/. C 2/ � � � . C k0/

k0Š

D . C 1/. C 2/ � � � . C 1C k0 � 1/
.k0 � 1/Š.k0 � 1/C1

.k0 � 1/C1

k0

! C 1;

as k0 ! 1; where we used (see Lemma 3.142)

1

�. C 1/
D lim

k0!1
. C 1/. C 2/ � � � . C 1C k0 � 1/

.k0 � 1/Š.k0 � 1/C1 :

So in (3.98), for sufficiently large k0, the right side of (3.98) is negative, but the left
side of (3.98) is positive, which is a contradiction. So A D 0. This completes the
proof. ut
Theorem 3.153. Assume c.t/ 	 b1 < 0, 0 <  < 1, and x.t/ is any solution of the
Caputo nabla fractional difference equation

r
a�x.t/ D c.t/x.t/; t 2 NaC1 (3.99)

satisfying x.a/ > 0. Then

x.t/ 	 2x.a/Eb1;;0.t; a/;

for t 2 Na.

Proof. Assume that b1 > �1. Otherwise we can choose 0 > b0
1 > �1, b0

1 > b1 and
replace b1 by b0

1. From Lemma 3.141, we have

r
a� Eb1;;0.t; a/ D b1Eb1;;0.t; a/

and Eb1;;0.a; a/ D H0.a; a/ D 1.
In Theorem 3.138, take c2.t/ D b1. Then it holds that x.t/ and y.t/ D

2x.a/Eb1;;0.t; a/ satisfy

r
a� x.t/ D c.t/x.t/; (3.100)
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and

r
a�y.t/ D b1y.t/; (3.101)

respectively, for t 2 NaC1 and

x.a/ < 2x.a/ D 2x.a/Eb1;;0.a; a/ D y.a/:

From Theorem 3.138, we get that

x.t/ 	 2x.a/Eb1;;0.t; a/;

for t 2 Na. This completes the proof. ut
From Theorem 3.153 and Lemma 3.152, we get the following result.

Theorem 3.154. Assume 0 <  < 1 and there exists a constant b1 such that c.t/ 	
b1 < 0. Then the solutions of the equation (3.76) with x.a/ > 0 satisfy

lim
t!1 x.t/ D 0:

Next we consider solutions of the -th order Caputo nabla fractional difference
equation

r
a�x.t/ D c.t/x.t/; t 2 NaC1; (3.102)

satisfying x.a/ < 0.
By making the transformation x.t/ D �y.t/ and using Theorem 3.146 and

Theorem 3.154, we get the following theorem.

Theorem 3.155. Assume 0 <  < 1 and there exists a constant b2 such that 0 <
b2 	 c.t/ < 1; t 2 NaC1. Then the solutions of the equation (3.102) with x.a/ < 0

satisfy

lim
t!1 x.t/ D �1:

Theorem 3.156. Assume 0 <  < 1 and there exists a constant b1 such that c.t/ 	
b1 < 0, t 2 NaC1. Then the solutions of the equation (3.102) with x.a/ < 0 satisfy

lim
t!1 x.t/ D 0:
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3.23 Self-Adjoint Caputo Fractional Difference Equation

Let Da WD fx W Na ! Rg, and let La W Da ! DaC1 be defined by

.Lax/.t/ WD rŒp.t C 1/r
a�x.t C 1/�C q.t/x.t/; t 2 NaC1; (3.103)

where x 2 Da; 0 <  < 1, p.t/ > 0; t 2 NaC1 and q W NaC1 ! R. Most of the
results in this section appear in Ahrendt et al. [4].

Theorem 3.157. The operator La in (3.103) is a linear transformation.

Proof. Let x; y W Na ! R, and let ˛; ˇ 2 R. Then

LaŒ˛x C ˇy�.t/

D r
�

p.t C 1/r
a�Œ˛x.t C 1/C ˇy.t C 1/�

	
C q.t/Œ˛x.t/C ˇy.t/�

D r
�

p.t C 1/Œ˛r
a�x.t C 1/C ˇr

a�y.t C 1/�

	
C ˛q.t/x.t/C ˇq.t/y.t/

D rŒ˛p.t C 1/r
a�x.t C 1/C ˇp.t C 1/r

a�y.t C 1/�C ˛q.t/x.t/C ˇq.t/y.t/

D ˛rŒp.t C 1/r
a�x.t C 1/�C ˛q.t/x.t/C ˇrŒp.t C 1/r

a�y.t C 1/�C ˇq.t/y.t/

D ˛Lax.t/C ˇLay.t/;

for t 2 NaC1. ut
Theorem 3.158 (Existence and Uniqueness for IVPs). Let A;B 2 R be given
constants and assume h W NaC1 ! R. Then the IVP

(
Lax.t/ D h.t/; t 2 NaC1
x.a/ D A; rx.a C 1/ D B;

(3.104)

has a unique solution on Na.

Proof. Let x W Na ! R be defined uniquely by

x.a/ D A; x.a C 1/ D A C B;

and for t 2 NaC1; x.t/ satisfies the summation equation

x.t C 1/ D x.t/ �
tX

�DaC1

.t � � C 2/�

�.1 � / rx.�/

C 1

p.t C 1/

"
h.t/ � q.t/x.t/C p.t/

tX
�DaC1

.t � � C 1/�

�.1 � / rx.�/

#
:
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We will show that x solves the IVP (3.104). Clearly the initial conditions are
satisfied. Now we show that x is a solution of the nabla Caputo self-adjoint equation
on Na. To see this note that for t 2 NaC1, we have from the last equation

rx.t C 1/C
Z t

a
H�.t C 1; �.�//rx.�/r�

D 1

p.t C 1/



h.t/ � q.t/x.t/C p.t/r�.1�/

a rx.t/
�
: (3.105)

But

r
a�x.t C 1/

D r�.1�/
a rx.t C 1/

D
Z tC1

a
H�.t C 1; �.�//rx.�/r�

D H�.t C 1; t/rx.t C 1/C
Z t

a
H�.t C 1; �.�//rx.�/r�

D rx.t C 1/C
Z t

a
H�.t C 1; �.�//rx.�/r�:

Hence, from this last equation and (3.105) we get that

p.t C 1/r
a�x.t C 1/ D h.t/ � q.t/x.t/C p.t/r�.1�/

a rx.t/

D h.t/ � q.t/x.t/C p.t/r
a�x.t/:

It follows that

rŒp.t C 1/r
a�x.t C 1/�C q.t/x.t/ D h.t/

for t 2 NaC1. Reversing the preceding steps shows that if y.t/ is a solution to the
IVP (3.104), it must be the same solution as x.t/. Therefore the IVP (3.104) has a
unique solution. ut
Theorem 3.159. Let 0 <  < 1 and let x W Na ! R. Then

r
a�x.a C 1/ D rx.a C 1/:
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Proof. Let 0 <  < 1. Then by the definition of the nabla Caputo fractional
difference it holds that

r
a�x.a C 1/ D r�.1�/

a rx.a C 1/

D
Z aC1

a
H�.a C 1; �.�//rx.�/r�

D H�.a C 1; a/rx.a C 1/

D rx.a C 1/;

which is what we wanted to prove. ut
Theorem 3.160 (General Solution of the Homogeneous Equation). We
assume x1; x2 are linearly independent solutions of Lax D 0 on Na. Then the general
solution to Lax D 0 is given by

x.t/ D c1x1.t/C c2x2.t/; t 2 Na

where c1; c2 2 R are arbitrary constants.

Proof. Let x1; x2 be linearly independent solutions of Lax.t/ D 0 on Na. If we let

˛ WD x1.a/; ˇ WD x1.a C 1/; � WD x2.a/; ı WD x2.a C 1/;

then x1; x2 are the unique solutions to the IVPs

8<
:

Lx1 D 0;

x1.a/ D ˛;

x1.a C 1/ D ˇ;

and

8<
:

Lx2 D 0;

x2.a/ D �;

x2.a C 1/ D ı:

Since La is a linear operator, for any c1; c2 2 R, we have

LaŒc1x1.t/C c2x2.t/� D c1Lax1.t/C c2Lax2.t/ D 0;

so x.t/ D c1x1.t/ C c2x2.t/ solves Lax.t/ D 0. Conversely, suppose x W Na ! R

solves Lax.t/ D 0. Note that if A WD x.a/ and B WD x.a C 1/, then x.t/ is the unique
solution of the IVP

(
Lx D 0;

x.a/ D A; x.a C 1/ D B:

It remains to show that the matrix equation

�
x1.a/ x2.a/

x1.a C 1/ x2.a C 1/

	 �
c1
c2

	
D
�

A
B

	
(3.106)
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has a unique solution for c1; c2. Then x.t/ and c1x1.t/C c2x2.t/ solve the same IVP,
so by Theorem 3.158, every solution to Lax.t/ D 0 may be uniquely expressed as a
linear combination of x1.t/ and x2.t/. The above matrix equation can be equivalently
expressed as

�
˛ �

ˇ ı

	 �
c1
c2

	
D
�

A
B

	
:

Suppose by way of contradiction that

ˇ̌
ˇ̌˛ �
ˇ ı

ˇ̌
ˇ̌ D 0:

Without loss of generality, there exists a constant k 2 R for which ˛ D k� and
ˇ D kı. Then x1.a/ D k� D kx2.a/, and x1.a C 1/ D kı D kx2.a C 1/. Since kx2.t/
solves Lax.t/ D 0, we have that x1.t/ and kx2.t/ solve the same IVP. By uniqueness,
x1.t/ D kx2.t/. But then x1.t/ and x2.t/ are linearly dependent on Na, so we have a
contradiction. Therefore, the matrix equation (3.106) must have a unique solution.

ut
Corollary 3.161. Assume x1; x2 are linearly independent solutions of Lax.t/ D 0 on
Na and y0 is a particular solution to Lax.t/ D h.t/ on Na for some h W NaC1 ! R.
Then the general solution of Lax.t/ D h.t/ is given by

x.t/ D c1x1.t/C c2x2.t/C y0.t/;

where c1; c2 2 R are arbitrary constants, for t 2 Na.

Proof. This proof is left to the reader. ut
Next we define the Cauchy function for the Caputo fractional self-adjoint

equation, Lax D 0. Later we will see its importance for finding a variation of
constants formula for Lax D h.t/ and also its importance for constructing Green’s
functions for various boundary value problems.

Definition 3.162. The Cauchy function for Lax.t/ D 0 is the real-valued function
x with domain a 	 s 	 t such that, for each fixed s 2 Na, x satisfies the IVP

8̂
<
:̂

Lsx.t/ D 0; t 2 NsC1
x.s; s/ D 0;

rx.s C 1; s/ D 1
p.sC1/ :

(3.107)
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Note by Theorem 3.159, the IVP (3.107) is equivalent to the IVP

8̂
<
:̂

Lsx.t/ D 0 t 2 NsC1;
x.s; s/ D 0;

r
s�x.s C 1; s/ D 1

p.sC1/ :

Example 3.163. We show that the Cauchy function for

rŒp.t C 1/r
a�y.t C 1/� D 0; t 2 NaC1

is given by the formula

x.t; s/ D r�
s

�
1

p.t/

�
D
Z t

s

H�1.t; �.�//
p.�/

r�: (3.108)

for t � s � a. We know for each fixed s, the Cauchy function satisfies the equation

rŒp.t C 1/r
s�x.t C 1; s/� D 0;

for t � s � a. It follows that

p.t C 1/r
s�x.t C 1; s/ D ˛.s/

r
s�x.t C 1; s/ D ˛.s/

p.t C 1/
:

Letting t D s and using the initial condition

rx.s C 1; s/ D r
s�x.s C 1; s/ D 1

p.s C 1/

we get that ˛.s/ D 1. Hence we have that

r
s�x.t C 1; s/ D 1

p.t C 1/
:

By the definition of the Caputo difference, this is equivalent to

r�.1�/
s rx.t C 1; s/ D 1

p.t C 1/

r1�
s r�.1�/

s rx.t C 1; s/ D r1�
s

�
1

p.t C 1/

�

rx.t C 1; s/ D r1�
s

�
1

p.t C 1/

�
:
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Replacing t C 1 with t yields

rx.t; s/ D r1�
s

�
1

p.t/

�
:

Integrating both sides from s to t and using x.s; s/ D 0 we get

x.t; s/ D
Z t

s
r1�

s

1

p.�/
r�

D
Z t

s
rr�

s

1

p.�/
r�

D
�
r�

s

1

p.�/

	�Dt

�Ds

D r�
s

�
1

p.t/

�
� r�

s

�
1

p

�
.s/

D r�
s

�
1

p.t/

�
D
Z t

s

H�1.t; �.�//
p.�/

r�:

Example 3.164. Find the Cauchy function for

rr
a�y.t C 1/ D 0; t 2 NaC1:

From Example 3.163 we have that the Cauchy function is given by

x.t; s/ D r�
s

�
1

p.t/

�
D
Z t

s

H�1.t; �.�//
p.�/

r�

D
Z t

s
H�1.t; �.�//r�

D �H.t; �/

ˇ̌
ˇ̌
�Dt

�Ds

D H.t; s/:

Note that if  D 1 we get the well-known result that the Cauchy function for
r2x.t C 1/ D 0 is given by x.t; s/ D t � s.

Theorem 3.165 (Variation of Constants). Assume h W NaC1 ! R. Then the
solution of the IVP

(
Lay.t/ D h.t/; t 2 NaC1
y.a/ D y.a C 1/ D 0;
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is given by

y.t/ D
Z t

a
x.t; s/h.s/rs; t 2 Na;

where x.t; s/ is the Cauchy function for Lax D 0.

Proof. Let y.t/ D R t
a x.t; s/h.s/rs; t 2 Na. We first note that y.t/ satisfies the initial

conditions:

y.a/ D
aX

sDaC1
x.a; s/h.s/ D 0;

y.a C 1/ D
aC1X

sDaC1
x.a C 1; s/h.s/ D x.a C 1; a C 1/h.a C 1/ D 0:

Next, note that by the Leibniz formula (3.23), we have that

ry.t/ D
Z t�1

a
rtx.t; s/h.s/rs C x.t; t/h.t/

D
Z t�1

a
rtx.t; s/h.s/rs: (3.109)

We now show that

r
a�y.t/ D

Z t�1

a
r

s�x.t; s/h.s/rs; (3.110)

for t 2 NaC2. By the definition of the Caputo fractional difference,

r
a�y.t/ D r�.1�/

a ry.t/

D
Z t

a
H�.t; �.�//ry.�/r�

D
Z t

a
H�.t; �.�//

Z ��1

a
rtx.t; s/h.s/rsr�; by (3.109)

D
Z t

a

Z ��1

a
H�.t; �.�//rtx.t; s/h.s/rsr�

D
tX

�DaC1

��1X
sDaC1

H�.t; �.�//rtx.t; s/h.s/
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D
tX

�DaC2

��1X
sDaC1

H�.t; �.�//rtx.t; s/h.s/

D
t�1X

sDaC1

tX
�DsC1

H�.t; �.�//rtx.t; s/h.s/

D
Z t�1

a

Z t

s
H�.t; �.�//rtx.t; s/h.s/r�rs

D
Z t�1

a
r�.1�/

s rtx.t; s/h.s/rs

D
Z t�1

a
r

s�x.t; s/h.s/rs

for t 2 NaC2. Hence (3.110) holds. Then by (3.110) we have that

p.t C 1/r
a�y.t C 1/ D

Z t

a



p.t C 1/r

s�x.t C 1; s/
�

h.s/rs:

Using the Leibniz formula (3.23) we get that

r 

p.t C 1/r

a�y.t C 1/
�

D
Z t�1

a
r 


p.t C 1/r
s�x.t C 1; s/

�
h.s/rs C p.t C 1/r

s�x.t C 1; t/h.t/

D
Z t�1

a
r 


p.t C 1/r
s�x.t C 1; s/

�
h.s/rs C h.t/

It follows that

Lay.t/ D rŒp.t C 1/r
a�y.t C 1/�C q.t/y.t/

D
Z t�1

a
r 


p.t C 1/r
s�x.t C 1; s/

�
h.s/rs C h.t/C

Z t�1

a
q.t/x.t; s/h.s/rs

D
Z t�1

a

�
rŒp.t C 1/r

s�x.t C 1; s/�C q.t/x.t; s/

	
h.s/rs C h.t/

D h.t/C
Z t�1

a
Lsx.t; s/h.s/rs

D h.t/:

Thus, y.t/ solves the given IVP. ut
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Theorem 3.166 (Variation of Constants Formula). Assume p; q W NaC1 ! R.
Then the solution to the IVP

8̂
<̂
ˆ̂:

Lay.t/ D h.t/;

y.a/ D A;

ry.a C 1/ D B;

for t 2 NaC1, where A;B 2 R are arbitrary constants, is given by

y.t/ D y0.t/C
Z t

a
x.t; s/h.s/rs;

where y0.t/ solves the IVP

8̂
<̂
ˆ̂:

Lay.t/ D 0;

y.a/ D A;

ry.a C 1/ D B;

for t 2 NaC1.

Proof. The proof follows from Theorem 3.165 by linearity. ut
Corollary 3.167. Assume p; h W NaC1 ! R. Then the solution of the IVP

(
rŒp.t C 1/r

a�y.t C 1/� D h.t/; t 2 NaC1
y.a/ D ry.a C 1/ D 0;

is given by

y.t/ D
Z t

a
r�

s

�
1

p.t/

�
h.s/rs:

Proof. From Theorem 3.165, we know that the solution is given by

y.t/ D
Z t

a
x.t; s/h.s/rs;

where x.t; s/ is the Cauchy function for

rŒp.t C 1/r
a�y.t C 1/� D 0:
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By Example 3.163, we know the Cauchy function for the above difference equation

is x.t; s/ D r�
s

�
1

p.t/

�
. Hence the solution of our given IVP is given by

y.t/ D
Z t

a
r�

s

�
1

p.t/

�
h.s/rs;

for t 2 Na. ut
The following example appears in [4].

Example 3.168. Solve the IVP

(
rr0:6

0� x.t C 1/ D t; t 2 N1;

x.0/ D rx.1/ D 0:

Note that for this self-adjoint equation, p.t/ � 1 and q.t/ � 0. From Example
(3.164) we have that x.t; s/ D H:6.t; s/

Then by Theorem 3.165

x.t/ D
Z t

0

x.t; s/srs

D
Z t

0

H:6.t; s/srs:

Integrating by parts we get from Exercise 3.37 that

x.t/ D 1

�.3:6/
.t � 1/2:6;

for t 2 N0.

3.24 Boundary Value Problems

Many of the results in this section appear in Ahrendt et al. [4]. In this section we
will consider the nonhomogeneous boundary value problem (BVP)

8̂
<̂
ˆ̂:

Lax.t/ D h.t/; t 2 N
b�1
aC1

˛x.a/ � ˇrx.a C 1/ D A;

�x.b/C ırx.b/ D B;

(3.111)
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and the corresponding homogeneous BVP

8̂
<̂
ˆ̂:

Lax.t/ D 0; t 2 N
b�1
aC1

˛x.a/ � ˇrx.a C 1/ D 0;

�x.b/C ırx.b/ D 0;

(3.112)

where h W Nb�1
aC1 ! R, p.t/ > 0, t 2 N

b
aC1, 0 <  	 1, and ˛; ˇ; �; ı;A;B 2 R for

which ˛2 C ˇ2 > 0 and �2 C ı2 > 0. Also we always assume b � a is a positive
integer and b � a is large enough so that the boundary conditions are not equivalent
to initial conditions. The following theorem gives an important relationship between
these two BVPs.

Theorem 3.169. The homogeneous BVP (3.112) has only the trivial solution iff the
nonhomogeneous BVP (3.111) has a unique solution.

Proof. Let x1; x2 be linearly independent solutions to Lax.t/ D 0 on N
b
a. By

Theorem 3.160, a general solution to Lax.t/ D 0 is given by

x.t/ D c1x1.t/C c2x2.t/;

where c1; c2 2 R are arbitrary constants. If x.t/ solves the homogeneous boundary
conditions, then x.t/ is the trivial solution if and only if c1 D c2 D 0. This is true if
and only if the system of equations

�
˛Œc1x1.a/C c2x2.a/� � ˇrŒc1x1.a C 1/C c2x2.a C 1/� D 0;

�Œc1x1.b/C c2x2.b/�C ırŒc1x1.b/C c2x2.b/� D 0;

or equivalently,
�

c1Œ˛x1.a/ � ˇrx1.a C 1/�C c2Œ˛x2.a/ � ˇrx2.a C 1/� D 0;

c1Œ�x1.b/C ırx1.b/�C c2Œ�x2.b/C ırx2.b/� D 0;

has only the trivial solution c1 D c2 D 0. In other words, x.t/ solves (3.112) if and
only if

D WD
ˇ̌
ˇ̌˛x1.a/ � ˇrx1.a C 1/ ˛x2.a/ � ˇrx2.a C 1/

�x1.b/C ırx1.b/ �x2.b/C ırx2.b/

ˇ̌
ˇ̌ ¤ 0:

Now consider the nonhomogeneous BVP (3.111). By Corollary 3.161, a general
solution of the nonhomogeneous equation Lay.t/ D h.t/ is given by

y.t/ D a1x1.t/C a2x2.t/C y0.t/;

where a1; a2 2 R are arbitrary constants, and y0 W Na ! R is a particular
solution of the nonhomogeneous equation Lay.t/ D h.t/. Then y.t/ satisfies the
nonhomogeneous boundary conditions in (3.111) if and only if
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8<
:
˛Œa1x1.a/C a2x2.a/C y0.a/�

�ˇr
a�Œa1x1.a C 1/C a2x2.a C 1/C y0.a C 1/� D A;

�Œa1x1.b/C a2x2.b/C y0.b/�C ırŒa1x1.b/C a2x2.b/C y0.b/� D B:

This system is equivalent to the system

8̂
<̂
ˆ̂:

a1Œ˛x1.a/ � ˇrx1.a C 1/�C a2Œ˛x2.a/ � ˇrx2.a C 1/�

D A � ˛y0.a/C ˇry0.a C 1/;

a1Œ�x1.b/C ırx1.b/�C a2Œ�x2.b/C ırx2.b/�
D B � �y0.b/ � ıry0.b/:

Thus, y.t/ satisfies the boundary conditions in (3.111) iff D ¤ 0. Therefore the
homogeneous BVP (3.112) has only the trivial solution iff the nonhomogeneous
BVP (3.111) has a unique solution. ut

In the next theorem we give conditions for which Theorem 3.169 applies.

Theorem 3.170. Let

� WD ˛�r�
a

1

p.b � 1/ C ˛ı

p.b/
C ˇ�

p.a C 1/
:

Then the BVP
8̂
<̂
ˆ̂:

rŒp.t C 1/r
a� x.t C 1/� D 0; t 2 N

b�1
aC1;

˛x.a/ � ˇr
a�x.a C 1/ D 0;

�x.b/C ır
a�x.b/ D 0;

(3.113)

has only the trivial solution if and only if � ¤ 0.

Proof. Note that x1.t/ D 1; x2.t/ D r�
a

1
p.t/ are linearly independent solutions to

rfp.t C 1/r
a� x.t C 1/g D 0:

Then a general solution of the difference equation is given by

x.t/ D c1x1.t/C c2x2.t/ D c1 C c2r�
a

1

p.t/
:

The boundary conditions ˛x.a/ � ˇr
a�x.a C 1/ D 0; and �x.b/ C ır

a�x.b/ D 0

give us the linear system

c1˛ C c2

�
� ˇ

p.a C 1/

	
D 0;
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c1� C c2

�
ı

p.b/
C �r�

a

1

p.b/

�
D 0:

The determinant of the coefficients of this system is given by

ˇ̌
ˇ̌
ˇ
˛ � ˇ

�.aC1/
� ı

p.b/ C �r�
a

1
p.b/

ˇ̌
ˇ̌
ˇ D ˛�r�

a

1

p.b � 1/ C ˛ı

p.b/
C ˇ�

p.a C 1/
D �:

Hence, the BVP has only the trivial solution if and only if � ¤ 0. ut
Corollary 3.171. Assume ˛; ˇ; � , and ı are all greater than or equal to zero with
˛2 C ˇ2 ¤ 0 and �2 C ı2 ¤ 0. Then the homogeneous BVP

8̂
<̂
ˆ̂:

rŒp.t C 1/r
a� x.t C 1/� D 0; t 2 N

b�1
aC1;

˛x.a/ � ˇr
a�x.a C 1/ D 0;

�x.b/C ır
a�x.b/ D 0;

(3.114)

has only the trivial solution.

Proof. The hypotheses of this theorem imply that � > 0. Hence the conclusion
follows from Theorem 3.170. ut
Definition 3.172. Assume the homogeneous BVP (3.112) has only the trivial
solution. Then we define the Green’s function, G.t; s/, for the homogeneous
BVP 3.112 by

G.t; s/ WD
�

u.t; s/; a 	 t 	 s 	 b;
v.t; s/; a 	 s 	 t 	 b;

where for each fixed s 2 N
b
aC1, u.t; s/ is the unique solution (guaranteed by

Theorem 3.169) of the BVP

8<
:

Lau.t/ D 0; t 2 N
b�1
aC1

˛u.a; s/ � ˇru.a C 1; s/ D 0;

�u.b; s/C ıru.b; s/ D �Œ�x.b; s/C ırx.b; s/�;

and

v.t; s/ WD u.t; s/C x.t; s/;

where x.t; s/ is the Cauchy function for Lax.t/ D 0.

Note that for each fixed s 2 N
b
a, v.t; s/ D u.t; s/ C x.t; s/ is a solution of

Lax.t/ D 0 and since
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�v.b; s/C ıru.b; s/ D �Œu.b; s/C x.b � 1; s/�C ırŒu.b; s/C x.b; s/�

D Œ�u.b; s/C ırtu.b; s/�C Œ�x.b; s/C ırx.b; s/�

D �Œ�x.b; s/C ırtx.b; s/�C Œ�x.b; s/C ırx.b; s/�

D 0;

we have that for each fixed s 2 N
b
a the function v.t; s/ satisfies the homogeneous

boundary condition in (3.112) at t D b.

Theorem 3.173 (Green’s Function). If (3.112) has only the trivial solution, then
the unique solution to the BVP

8̂
<̂
ˆ̂:

Lay.t/ D h.t/; t 2 N
b�1
aC1

˛y.a/ � ˇry.a C 1/ D 0;

�y.b/C ıry.b/ D 0;

(3.115)

is given by

y.t/ D
Z b

a
G.t; s/h.s/rs; t 2 N

b
a;

where G.t; s/ is the Green’s function for the homogeneous BVP (3.112).

Proof. Let

y.t/ WD
Z b

a
G.t; s/h.s/rs D

Z t

a
G.t; s/h.s/rs C

Z b

t
G.t; s/h.s/rs

D
Z t

a
v.t; s/h.s/rs C

Z b

t
u.t; s/h.s/rs

D
Z t

a
Œu.t; s/C x.t; s/�h.s/rs C

Z b

t
u.t; s/h.s/rs

D
Z b

a
u.t; s/h.s/rs C

Z t

a
x.t; s/h.s/rs

D
Z b

a
u.t; s/h.s/rs C z.t/;

where z.t/ WD R t
a x.t; s/h.s/rs. Since x.t; s/ is the Cauchy function for Lax.t/ D 0,

it follows that z solves the IVP
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8<
:

Laz.t/ D h.t/; t 2 N
b�1
aC1

z.a/ D 0;

z.a C 1/ D 0;

for t 2 N
b
aC1, by Theorem 3.165. Then,

Lay.t/ D
Z b

a
Lau.t; s/h.s/rs C Laz.t/

D 0C h.t/ D h.t/;

for t 2 N
b
aC1. It remains to show that the boundary conditions hold. At t D a, we

have

˛y.a/ � ˇry.a C 1/ D
Z b

a
Œ˛u.a; s/ � ˇru.a C 1; s/�h.s/rs

C Œ˛z.a/ � ˇrz.a C 1/� D 0;

and at t D b, we have

�y.b/C ıry.b/

D �z.b/C
Z b

a
�u.b; s/h.s/rs C ırz.b/C

Z b

a
ıru.b; s/h.s/rs

D �

Z b

a
x.b; s/h.s/rs C ır

Z b

a
x.b; s/h.s/rs

C
Z b

a
Œ�u.b; s/C ıru.b; s/�h.s/rs

D �
Z b

a
Œ�x.b; s/C ırx.b; s/�h.s/rs C

Z b

a
Œ�x.b; s/C ırx.b; s/�h.s/rs

D 0:

This completes the proof. ut
Corollary 3.174. If the homogeneous BVP (3.112) has only the trivial solution,
then the unique solution of the nonhomogeneous BVP (3.111) is given by

y.t/ D z.t/C
Z b

a
G.t; s/h.s/rs; t 2 N

b
a;
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where z is the unique solution to the BVP

8
<
:

Laz.t/ D 0; t 2 N
b�1
aC1

˛z.a/ � ˇrz.a C 1/ D A;
�z.b/C ırz.b/ D B:

Proof. This corollary follows directly from Theorem 3.173 by linearity. ut
Theorem 3.175. Assume a; b 2 R and b � a 2 N2. Then the Green’s function for
the BVP

(
rr

a�x.t C 1/ D 0; t 2 N
b�1
aC1

x.a/ D x.b/ D 0;
(3.116)

is given by

G.t; s/ D
(

u.t; s/; a 	 t 	 s 	 b;

v.t; s/; a 	 s 	 t 	 b;

where

u.t; s/ D � .b � s/.t � a/

�.1C /.b � a/

and

v.t; s/ D u.t; s/C .t � s/

�. C 1/
:

Proof. By the definition of the Green’s function for the boundary value problem
(3.116) we have that

G.t; s/ D
(

u.t; s/; a 	 t 	 s 	 b;

v.t; s/; a 	 s 	 t 	 b;

where u.t; s/ for each fixed s solves the BVP
8̂
<̂
ˆ̂:

rŒr
a�u.t C 1; s/� D 0;

u.a; s/ D 0;

u.b; s/ D �x.b; s/;

for t 2 NaC1, and v.t; s/ D u.t; s/C x.t; s/. By inspection, we see that x1.t/ D 1 is
a solution of

rŒr
a�y.t C 1/� D 0;
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for t 2 NaC1. Also if x2.t/ WD .r�
a 1/.t/ we have that

rŒr
a�x2.t C 1/� D rŒr

a�r
a .1/�

D rŒr�.N�/
a rNr

a .1/�

D rŒr�.N�/
a r.N�/

a .1/�

D .r1/.t/
D 0;

so x2.t/ also is a solution rŒr
a�y.t C 1/� D 0. Since x1.t/ and x2.t/ are linearly

independent, by Theorem 3.160 the general solution is given by

y.t/ D c1 C c2.r�
a 1/.t/ D c1 C c2

.t � a/

�.1C /
;

and it follows that

u.t; s/ D c1.s/C c2.s/
.t � a/

�.1C /
:

The boundary condition u.a; s/ D 0 implies that c1.s/ D 0. The boundary condition
u.b; s/ D �x.b; s/ then yields

�x.b; s/ D u.b; s/ D c2.s/
.b � a/

�.1C /
:

From Example 3.163, we know that

x.b; s/ D .r�
s 1/.b/ D .b � s/

�.1C /
;

and thus

c2.s/ D � .b � s/

.b � a/
:

Hence the Green’s function is given by

G.t; s/ D

8
ˆ̂<
ˆ̂:

� .b � s/.t � a/

�.1C /.b � a/
; a 	 t 	 s 	 b;

� .b � s/.t � a/

�.1C /.b � a/
C .t � s/

�.1C /
; a 	 s 	 t 	 b:

ut
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Remark 3.176. Note that in the continuous and integer-order discrete cases, the
Green’s function is symmetric. This is not necessarily true in the fractional case. By
way of counterexample, take a D 0, b D 5, and  D 0:5. Then one can show that

G.2; 3/ D u.2; 3/ D � .2/0:5.2/0:5

�.1:5/.5/0:5
D �32

35
;

but

G.3; 2/ D v.3; 2/ D � .3/0:5.3/0:5

�.1:5/.5/0:5
C .1/0:5

�.1:5/
D �3

7
:

Theorem 3.177. Assume a; b 2 R and b � a 2 N2. Then the Green’s function for
the BVP

(
rr

a�x.t C 1/ D 0; t 2 N
b�1
aC1

x.a/ D x.b/ D 0;

satisfies the inequalities

(i) G.t; s/ 	 0;

(ii) G.t; s/ � �
�

b � a

4

��
�.b � a C 1/

�. C 1/�.b � a C /

�
;

(iii)
Z b

a
jG.t; s/jrs 	 .b � a/2

4�. C 2/
;

for t 2 N
b
a, and

(iv)
Z b

a
jrtG.t; s/jrs 	 b � a

 C 1
;

for t 2 N
b
aC1.

Proof. First we show that (i) holds. Let a 	 t 	 s 	 b. Then

G.t; s/ D u.t; s/ D � .t � a/.b � s/

�. C 1/.b � a/
	 0:

Now let a 	 s < t 	 b. Then G.t; s/ D v.t; s/, so we wish to show that v.t; s/
is nonpositive. First, we show that v.t; s/ is increasing. Taking the nabla difference
with respect to t yields

rt

�
� .t � a/.b � s/

�. C 1/.b � a/
C .t � s/

�.1C /

	
D � .t � a/�1.b � s/

�./.b � a/
C .t � s/�1

�./
:
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This expression is nonnegative if and only if

.t � a/�1.b � s/

�./.b � a/
	 .t � s/�1

�./
:

Since t � s is positive, this is equivalent to

.t � a/�1.b � s/

.b � a/.t � s/�1 	 1:

By the definition of the rising function,

.t � a/�1.b � s/

.b � a/.t � s/�1

D
�
�.t � a C  � 1/

�.t � a/

	 �
�.b � s C /

�.b � s/

	 �
�.b � a/

�.b � a C /

	 �
�.t � s/

�.t � s C  � 1/
	

D
�
�.t � a C  � 1
�.t � s C  � 1/

	 �
�.t � s/

�.t � a/

	 �
�.b � a/

�.b � s/

	 �
�.b � s C /

�.b � a C /

	

D .t � s C  � 1/.t � s C / � � � .t � a C  � 2/
.t � s/.t � s C 1/ � � � .t � �.a//

� .b � s/.b � s C 1/ � � � .b � �.a//
.b � s C /.b � s C  C 1/ � � � .b � a C  � 1/

D .t � s C  � 1/
.t � s/

.t � s C /

.t � s C 1/
� � � .t � a C  � 2/

.t � �.a//

� .b � s/

.b � s C /

.b � s C 1/

.b � s C  C 1/
� � � .b � �.a//
.b � a C  � 1/

	 1

since each factor in the second to last expression is less than or equal to one. Next,
we note that v.t; s/ at the right endpoint, t D b, satisfies

v.b; s/ D � .b � a/.b � s/

�. C 1/.b � a/
C .b � s/

�. C 1/
D 0:

Thus, v.t; s/ is nonpositive for a 	 s 	 t 	 b. Therefore, for t 2 N
b
a, G.t; s/ is

nonpositive.
Next we show that (ii) holds. Since we know that v.t; s/ is always increasing for

a 	 s 	 t 	 b and that for s D t, v.t; s/ D u.t; s/, it suffices to show that

u.t; s/ � �b � a

4

�
�.b � a C 1/

�. C 1/�.b � a C /

�
:
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Let a 	 t 	 s 	 b. Then

G.t; s/ D u.t; s/ D � .t � a/.b � s/

�. C 1/.b � a/
� � .s � a/.b � s/

�. C 1/.b � a/
:

Note that for ˛ 2 N1 and 0 <  < 1,

˛ D �.˛ C /

�.˛/
	 �.˛ C 1/

�.˛/
D ˛1:

So

� .s � a/.b � s/

�. C 1/.b � a/
� � .s � a/1.b � s/1

�. C 1/.b � a/

� � .
aCb
2

� a/.b � aCb
2
/

�. C 1/.b � a/

D � .b � a/.b � a/�.b � a/

4�. C 1/�.b � a C /

D � .b � a/�.b � a C 1/

4�. C 1/�.b � a C /

D �b � a

4

�
�.b � a C 1/

�. C 1/�.b � a C /

�
;

and hence (ii) holds.
Now we show property (iii) holds. Thus, we compute

Z b

a
jG.t; s/jrs

D
Z t

a
jv.t; s/jrs C

Z b

t
ju.t; s/jrs

D
Z t

a

ˇ̌
ˇ̌ � .t � a/.b � s/

�. C 1/.b � a/
C .t � s/

�.1C /

ˇ̌
ˇ̌rs C

Z b

t

.t � a/.b � s/

�. C 1/.b � a/
rs

D
Z t

a
�
�

� .t � a/.b � s/

�. C 1/.b � a/
C .t � s/

�.1C /

	
rs C

Z b

t

.t � a/.b � s/

�. C 1/.b � a/
rs

D
Z b

a

.t � a/.b � s/

�. C 1/.b � a/
rs �

Z t

a

.t � s/

�. C 1/
rs

D � .t � a/.b � s � 1/C1

�. C 2/.b � a/

ˇ̌
ˇ̌
sDb

sDa

C .t � s � 1/C1

�. C 2/

ˇ̌
ˇ̌
sDt

sDa
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D .t � a/.b � �.a//C1

�. C 2/.b � a/
� .t � �.a//C1

�. C 2/

D .t � a/.b � �.a//.b � a/

�. C 2/.b � a/
� .t � �.a//.t � a/

�. C 2/

D .t � a/

�. C 2/
Œb � �.a/ � .t � �.a//�

D .t � a/.b � t/

�. C 2/
:

Hence,

Z b

a
jG.t; s/jrs 	 .t � a/.b � t/

�. C 2/

	 . aCb
2

� a/.b � aCb
2
/

�. C 2/

D .b � a/2

4�. C 2/
:

Finally, we will show that (iv) holds. First assume that b � a > 1. Taking the
difference with respect to t, we have

rtu.t; s/ D rt
�.t � a/.b � s/

�. C 1/.b � a/
D �.t � a/�1.b � s/

�. C 1/.b � a/
	 0:

For t 2 N
b
aC1 we compute

Z b

a
jrtG.t; s/j rs

D
Z t�1

a
jrtG.t; s/j rs C

Z b

t�1
jrtG.t; s/j rs

D
Z t�1

a
jrtv.t; s/j rs C

Z b

t�1
jrtu.t; s/j rs

D
Z t�1

a
rt

��.t � a/.b � s/

�. C 1/.b � a/
C .t � s/

�. C 1/

	
rs

C
Z b

t�1
rt

�
.t � a/.b � s/

�. C 1/.b � a/

	
rs
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D
Z t�1

a
rt

��.t � a/.b � s/

�. C 1/.b � a/

	
rs C

Z t�1

a
rt

�
.t � s/

�. C 1/

	
rs

C
Z b

t�1
rt

�
.t � a/.b � s/

�. C 1/.b � a/

	
rs

D
Z t�1

a

"
�.t � a/�1.b � s/

�. C 1/.b � a/

#
rs

C
Z t�1

a

"
.t � s/�1

�. C 1/

#
rs C

Z b

t�1

"
.t � a/�1.b � s/

�. C 1/.b � a/

#
rs

D
Z t�1

a

"
�.t � a/�1Œ.b � 1/ � �.s/�

�. C 1/.b � a/

#
rs

C
Z t�1

a

"
Œ.t � 1/ � �.s/��1

�. C 1/

#
rs

C
Z b

t�1

"
.t � a/�1Œ.b � 1/ � �.s/�

�. C 1/.b � a/

#
rs

D �.t � a/�1

�. C 1/.b � a/

� �1
 C 1

.b � s � 1/C1
	sDt�1

sDa

C 

�. C 1/

��1

.t � s � 1/

	sDt�1

sDa

C .t � a/�1

�. C 1/.b � a/

� �1
 C 1

.b � s � 1/C1
	sDb

sDt�1

D .t � a/�1

�. C 2/.b � a/

h
.b � t/C1 � .b � �.a//C1i

� 1

�. C 1/



.t � t C 1 � 1/ � .t � �.a//�

C �.t � a/�1

�. C 2/.b � a/

h
.b � b � 1/C1 � .b � t/

i

D 2.t � a/�1.b � t/C1

�. C 2/.b � a/
C .t � �.a//

�. C 1/
� .t � a/�1.b � �.a//

�. C 2/
:

Suppose t D b. This would imply that

Z b

a
jrtG.t; s/j rs D 2.b � a/�1.0/C1

�. C 2/.b � a/
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C .b � �.a//
�. C 1/

� .b � a/�1.b � �.a//
�. C 2/

D . C 1/.b � �.a//
�. C 2/

� .b � a/�1.b � �.a//
�. C 2/

:

For t D b and b � a D 2, this becomes

Z b

a
jrtG.t; s/j rs D . C 1/.1/

�. C 2/
� .2/�1.1/
�. C 2/

D . C 1/�. C 1/

�. C 2/
� �. C 1/

�. C 2/

D 1 � 

 C 1

D 1

 C 1

	 2

 C 1

D b � a

 C 1
:

On the other hand, for t D b and b � a D 3, we have

Z b

a
jrtG.t; s/j rs D . C 1/.2/

�. C 2/
� .3�1/.2/
�. C 2/

D . C 1/�. C 2/

�. C 2/
� 2�. C 2/

�. C 2/�.3/

D 1

	 b � a

 C 1
:

For t D b and b � a � 4, the result holds since

Z b

a
jrtG.t; s/j rs

D . C 1/.b � �.a//
�. C 2/

� .b � a/�1.b � �.a//
�. C 2/

D . C 1/.b � a � 2C / � � � .2C /

�.b � �.a// � �.b � �.a/C /.b � �.a//
�.2C /�.b � a/
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D . C 1/.b � a � 2C / � � � .2C /

�.b � �.a// � �.b � �.a/C /

�.2C /�.b � �.a//

D . C 1/.b � a � 2C / � � � .2C /

.b � a � 2/Š � .b � a � 2C / � � � .2C /

.b � a � 2/Š

D .b � a � 2C / � � � .2C /

.b � a � 2/Š

D .b � �.a//.b � a � 2C / � � � .2C /

.b � �.a//Š

	 .b � �.a//.b � �.a// � � � .3/
.b � �.a//Š

D
1
2
.b � �.a//Š.b � �.a//

.b � �.a//Š D b � �.a/
2

	 b � a

 C 1
:

So the result holds in general when t D b. Now, assume t < b. If t D a C 1, then
we have

Z b

a
jrtG.t; s/j rs

D 2.1�1/.b � �.a//C1 C . C 1/.0/.b � a/ � .1�1/.b � �.a//C1

�. C 2/.b � a/

D 2�./.b � �.a//.b � a/ � �./.b � �.a//.b � a/

�. C 2/.b � a/

D 2�./.b � �.a// � �./.b � �.a//
�. C 2/

D �. C 1/.b � �.a//
�. C 2/

D �. C 1/.b � �.a//
. C 1/�. C 1/

b � �.a/
 C 1

	 b � a

 C 1
:

If t D a C 2, then

Z b

a
jrtG.t; s/j rs

D 2.2�1/.b � a � 2/C1 C . C 1/.1/.b � a/ � .2�1/.b � �.a//C1

�. C 2/.b � a/

D 2�. C 1/.b � a � 2/C1

�. C 2/.b � a/
C . C 1/�./.b � a/

�. C 2/.b � a/

� �. C 1/.b � �.a//C1

�. C 2/.b � a/
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D 2�. C 1/.b � �.a//.b � a � 2/
. C 1/.b � �.a/C /

C 1 � .b � �.a//
 C 1

	 2.b � a � 2/
 C 1

C 1 � .b � �.a//
 C 1

D 2.b � a � 2/
 C 1

C  C 1

 C 1
� .b � �.a//

 C 1

D .b � a � 2/C 1

 C 1
	 b � �.a/

 C 1
	 b � a

 C 1
:

If t D a C 3, then

Z b

a
jrtG.t; s/j rs

D 2.3�1/.b � a � 3/C1 C . C 1/.2/.b � a/ � .3�1/.b � �.a//C1

�. C 2/.b � a/

D 2�.2C /�.b � a � 2C /�.b � a/

�.3/�.b � a C /�. C 2/�.b � a � 3/ C . C 1/

� �. C 2/.b � �.a//
�. C 2/�.3/

D .b � �.a//.b � a � 2/.b � a � 3/
.b � �.a/C /.b � a � 2C /

C . C 1/ � .b � �.a//
2

It follows that

Z b

a
jrtG.t; s/j rs

	 .b � a � 3/C  C 1 � .b � �.a//
2

D 2b � 2a � 6 C 2 C 2 � b C a C 

2

D .b � a � 3/C 2

2

	 b � a � 3C 2

2

D b � �.a/
2

	 b � a

 C 1
:
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Now suppose that t D a C k, where k 2 N
b��.a/
4 . Then

Z b

a
jrtG.t; s/j rs

D 2.k/�1.b � a � k/C1

.b � a/�. C 2/
C . C 1/.k � 1/

�. C 2/
� .k/�1.b � �.a//

�. C 2/

D 2�.k C  � 1/�.b � a � k C  C 1/�.b � a/

�.k/�.b � a C /�. C 2/�.b � a � k/
C . C 1/�.k � 1C /

�. C 2/�.k � 1/

� �.k C  � 1/.b � �.a//
�. C 2/�.k/

D 2. C 2/ : : : . C k � 2/.b � �.a// : : : .b � a � k/

.k � 1/Š.b � �.a/C / : : : .b � a � .k � 1/C /

C . C 1/ : : : . C k � 2/
.k � 2/Š

� . C 2/ : : : . C k � 2/.b � �.a//
.k � 1/Š

Hence,

Z b

a
jrtG.t; s/j rs

	 2. C 2/ : : : . C k � 2/.b � a � k/

.k � 1/Š C .k � 1/. C 1/ : : : . C k � 2/
.k � 1/Š

� . C 2/ : : : . C k � 2/.b � �.a//
.k � 1/Š

D . C 2/ : : : . C k � 2/.2b � 2a � 2k � b C a C 1/

.k � 1/Š

C .k � 1/. C 1/ : : : . C k � 2/
.k � 1/Š

D . C 2/ : : : . C k � 2/.b � a C 1 � 2k/C .k � 1/. C 1/ : : : . C k � 2/
.k � 1/Š

	 .1/.3/.4/ : : : .k � 1/.b � a C 1 � 2k/C .k � 1/.2/.3/ : : : .k � 1/
.k � 1/Š

D
1
2
.k � 1/Š.b � a C 1 � 2k/C .k � 1/.k � 1/Š

.k � 1/Š
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D .b � a C 1 � 2k/C 2.k � 1/
2

D b � �.a/
2

	 b � a

 C 1
:

And this completes the proof. ut
Example 3.178. Use an appropriate Green’s function to solve the BVP

(
rr0:5

0� x.t C 1/ D 1; t 2 N
b�1
1 ;

x.0/ D 0 D x.b/;

where b 2 N2. By Theorem 3.175 we have that the Green’s function for the BVP

(
rr0:5

0� x.t C 1/ D 0; t 2 N1;

x.0/ D 0 D x.b/;
(3.117)

is given by

G.t; s/ D
�

u.t; s/; 0 	 t 	 s 	 b;
v.t; s/; 0 	 s 	 t 	 b;

where

u.t; s/ D � .b � s/0:5t0:5

�.1:5/b0:5
; 0 	 t 	 s 	 b

and

v.t; s/ D � .b � s/0:5t0:5

�.1:5/b0:5
C .t � s/0:5

�.1:5/
; 0 	 s 	 t 	 b:

Then the solution of the BVP (3.117) is given by

x.t/ D
Z b

0

G.t; s/h.s/rs

D
Z t

0

v.t; s/h.s/rs C
Z b

t
G.t; s/h.s/rs

D
Z t

0

"
� .b � s/0:5t0:5

�.1:5/b0:5
C .t � s/0:5

�.1:5/

#
rs C

Z b

t

"
� .b � s/0:5t0:5

�.1:5/b0:5

#
rs
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D � t0:5

�.1:5/b0:5

Z b

0

.b � s/0:5rs C
Z t

0

.t � s/0:5

�.1:5/
rs

D � t0:5

�.1:5/b0:5

Z b

0

Œ.b � 1/ � �.s/�0:5rs C
Z t

0

Œ.t � 1/ � �.s/�0:5
�.1:5/

rs

D t0:5

�.1:5/b0:5
Œ.b � 1/ � s�1:5

1:5

ˇ̌
ˇ̌
b

sD0
� Œ.t � 1/ � s�1:5

�.1:5/1:5

ˇ̌
ˇ̌
t

sD0

D � 1

1:5�.1:5/b:5
t:5 C 1

1:5�.1:5/
.t � 1/1:5

D �4.b � 1/1:5
3
p
	b0:5

t0:5 C 4

3
p
	
.t � 1/1:5

for t 2 N
b
0.

3.25 Exercises

3.1. Assume f W Nb
a ! R. Show that if rf .t/ D 0 for t 2 N

b
aC1, then f .t/ D C for

t 2 N
b
a, where C is a constant.

3.2. Assume f ; g W Na ! R. Prove the nabla quotient rule

r
�

f .t/

g.t/

�
D g.t/rf .t/ � f .t/rg.t/

g.t/g.�.t//
; g.t/ ¤ 0; t 2 NaC1;

which is part (vi) of Theorem 3.1.

3.3. Prove that

.t � r C 1/r D tr:

3.4. Prove that the box plus addition, �, on R is commutative and associative (see
Theorem 3.8).

3.5. Show that if p; q 2 R, then

.p ˇ q/.t/ D p.t/ � q.t/

1 � q.t/
; t 2 Na:

3.6. Show that if p 2 RC, then

1

2
� p D p

1C p
1 � p

:
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3.7. Prove directly from the definition of the box dot multiplication, �, that if
p 2 R and n 2 N1, then

n � p D p � p � p � � � � p;

where the right-hand side of the above expression has n terms.

3.8. Show that the set of positively regressive constants RC with the addition � is
an Abelian subgroup of R.

3.9. Prove part (vi) of Theorem 3.11 for the case a 	 s 	 r. That is, if p 2 R and
a 	 s 	 r, then

Ep.t; s/Ep.s; r/ D Ep.t; r/; t 2 Na:

3.10. Assume p; q 2 R and s 2 Na. Prove the law of exponents (Theorem 3.11,
(vii))

Ep.t; s/Eq.t; s/ D Ep�q.t; s/; t 2 Na:

3.11. Prove that if p; q 2 R and

Ep.t; a/ D Eq.t; a/; t 2 Na;

then p.t/ D q.t/, t 2 NaC1.

3.12. Show that if ˛; ˇ 2 R and p 2 RC; then

.˛ C ˇ/� p D .˛ � p/� .ˇ � p/:

3.13. Show that if p;�p 2 R, then

rSinhp.t; a/ D p.t/Cosh.t; a/; t 2 Na:

3.14. Show by direct substitution that y.t/ D .t � a/Er.t; a/, r ¤ 1, is a nontrivial
solution of the second order linear equation r2y.t/ � 2rry.t/C r2y.t/ D 0 on Na.

3.15. Prove part (iii) of Theorem 3.18. That is, if p ¤ ˙i is a constant, then

Sinhip.t; a/ D i Sinp.t; a/; t 2 Na:

3.16. Solve each of the following nabla difference equations:

(i) r2u.t/ � 4ru.t/C 5u.t/ D 0; t 2 N0I
(ii) r2u.t/ � 4ru.t/C 4u.t/ D 0; t 2 NaI

(iii) r2u.t/ � 4ru.t/ � 5u.t/ D 0; t 2 Na.
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3.17. Solve each of the following nabla linear difference equations:

(i) r2x.t/ � 10rx.t/C 25x.t/ D 0; t 2 N0I
(ii) r2x.t/ � 9x.t/ D 0; t 2 NaI

(iii) r2x.t/C 2rx.t/C 5x.t/ D 0; t 2 Na.

3.18. Solve each of the following nabla linear difference equations:

(i) r2y.t/ � 2ry.t/C 2y.t/ D 0; t 2 NaI
(ii) r2y.t/ � 2ry.t/C 10y.t/ D 0; t 2 Na.

3.19. Prove the nabla version of L’Hôpital’s rule: If f ; g W Na ! R; and

lim
t!1 f .t/ D 0 D lim

t!1 g.t/

and g.t/rg.t/ < 0 for large t, then

lim
t!1

f .t/

g.t/
D lim

t!1
rf .t/

rg.t/

provided limt!1 rf .t/
rg.t/ exists.

3.20. Use the integration formula

Z
˛tCˇrt D ˛

˛ � 1˛
tCˇ C C

to prove the integration formula

Z
Ep.t; a/rt D 1

p
Ep.t; a/C C:

3.21. Show that if 1C p.t/C q.t/ ¤ 0, for t 2 NaC2, then the general solution of
the linear homogeneous equation

r2y.t/C p.t/ry.t/C q.t/y.t/ D 0

is given by

y.t/ D c1y1.t/C c2y2.t/; t 2 Na;

where y1.t/, y2.t/ are any two linearly independent solutions of (3.13) on Na.

3.22. Assume f W Na � NaC1 ! R. Prove the Leibniz formula (3.23). That is,

r
�Z t

a
f .t; �/r�

�
D
Z t�1

a
rtf .t; �/r� C f .t; t/;

for t 2 NaC1.
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3.23. Evaluate the nabla integral
R t
0

f .�/r� , when

(i) f .t/ D t.�2/t; t 2 N0I
(ii) f .t/ D H2.�.t/; 0/E3.t; 0/; t 2 N0.

3.24. Use the variation of constants formula in either Corollary 3.52 or Theo-
rem 3.51 to solve each of the following IVPs.

(i)

r2y.t/ D 3�t; t 2 N1

y.0/ D 0; ry.0/ D 0

(ii)

r2y.t/ D Sinh4.t; 0/; t 2 N1

y.0/ D �1; ry.0/ D 1

(iii)

r2y.t/ D t � 2; t 2 N3

y.2/ D 0; ry.2/ D 0

3.25. Show that if � > 0, then

H�.a C 1; a/ D 1 D H��.a C 1; a/:

3.26. Show if � > 0 is not a positive integer, then

H�.t; a/ D 0; for t D a; a � 1; a � 2; � � � .

Also show that if � is a positive integer, then

H�.t; a/ D 0; for t 2 N
a
a��C1.

3.27. Show that if f W NaC1 ! R and � > 0, then

r��
a f .a C 1/ D f .a C 1/:

3.28. Use Definition 3.61 to show that if� > 0 is not an integer and C is a constant,
then

r�
a C D CH��.t; a/; t 2 Na:
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On the other hand, if � D k is a positive integer, show that rk
aC D 0.

3.29. Use the definition (Definition 3.58) of the fractional sum to evaluate each of
the following integer sums.

(i) r�2
a Cosh3.t; a/; t 2 NaI

(ii) r�3
a H1.t; a/; t 2 NaI

(iii) r�2
2 Sin4.t; 2/; t 2 N2.

3.30. For p ¤ 0; 1 a constant, show that each of the functions Ep.t; a/, Coshp.t; a/;
Sinhp.t; a/, Cosp.t; a/, and Sinp.t; a/ is of exponential order 1

j1�pj .

3.31. Prove parts (iii) and (v) of Theorem 3.76.

3.32. Using the definition (Definition 3.77) of the nabla convolution product, show
that the nabla convolution product is commutative—i.e., for all f ; g W NaC1 ! R;

.f 
 g/.t/ D .g 
 f /.t/; t 2 NaC1:

Also show that the nabla convolution product is associative.

3.33. Solve each of the following IVPs using the nabla Laplace transform:

(i)

ry.t/ � 4y.t/ D 2E5.t; a/; t 2 NaC1
y.a/ D �2I

(ii)

ry.t/ � 3y.t/ D 4; t 2 NaC1
y.a/ D �2I

(iii)

r2y.t/C ry.t/ � 6y.t/ D 0; t 2 NaC2
y.a/ D 3I y.a C 1/ D 0

(iv)

r2y.t/ � 5ry.t/C 6y.t/ D E4.t; a/; t 2 NaC2
y.a/ D 1; y.a C 1/ D �1:

3.34. Prove part (iv) of Theorem 3.93
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3.35. Use Theorem 3.120 to solve each of the following IVPs:

(i)

r 1
2

0�x.t/ D 3; t 2 N1

x.0/ D 	 I

(ii)

r 1
3

0�x.t/ D t
4
3 ; t 2 N1

x.0/ D 2I

(iii)

r 2
3

a�x.t/ D t � a; t 2 NaC1
x.a/ D 4:

3.36. Use Theorem 3.120 to solve each of the following IVPs:

(i)

r1:6
0� x.t/ D 3; t 2 N1

x.0/ D 2; rx.0/ D �1:

(ii)

r 5
3

0 x.t/ D t
4
3 ; t 2 N1

x.0/ Drx.0/ D 0:

(iii)

r2:7
a� x.t/ D t � a; t 2 NaC1

x.a/ D 0 D rx.a/:

3.37. Show that (see example 3.168)

Z t

0

sH:6.t; s/rs D 1

�.3:6/
.t � 1/2:6

for t 2 N0.
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3.38. Solve the following IVPs using Theorem 3.166:

(i)

(
rr0:5

0� x.t C 1/ D t � a; t 2 NaC1;
x.a/ D rx.a/ D 0:

(ii)

(
rr0:3

0� x.t C 1/ D t; t 2 N1;

x.0/ D 1; rx.0/ D 2:

3.39. Use an appropriate Green’s function to solve the BVP

(
rr0:2

0� x.t C 1/ D 1; t 2 N
b�1
1 ;

x.0/ D 0 D x.b/;

where b 2 N2.



Chapter 4
Quantum Calculus

4.1 Introduction

In this chapter we will mainly be concerned with functions defined on the infinite
set

aqN0 WD fa; aq; aq2; : : : ; aqn; � � � g; a > 0; q > 1

or the finite set

aqN
n0
0 WD fa; aq; aq2; : : : ; aqn0g; a > 0; q > 1;

where n0 is a positive integer. We define the jump operator � and the graininess
function � on aqN0 by

�.t/ D qt; �.t/ D .q � 1/t; t 2 aqN0 :

This study has important applications in quantum theory (see Kac and Cheung
[131]). It is standard to use the letter q, since this is the first letter in the word
“quantum.” Several of the results in this chapter appear in Auch [37], Auch et al.
[38], and Baoguo et al. [50].

More specifically, we begin in Sect. 4.2 by defining the quantum difference
operator and derive several of its properties. Then in Sect. 4.3 we define an
exponential function for the quantum calculus and derive several of its properties.
Following the exponential function, we define in Sect. 4.4 appropriate hyperbolic
and trigonometric functions for the quantum calculus and derive several of their
properties. In Sect. 4.5 we define and prove properties of the nabla integral including
integration by parts formulas, and then follow this in Sect. 4.6 by presenting an
important variation of parameters formula for certain quantum dynamic equations.
In Sect. 4.7 we define an appropriate quantum Laplace transform and derive several

© Springer International Publishing Switzerland 2015
C. Goodrich, A.C. Peterson, Discrete Fractional Calculus,
DOI 10.1007/978-3-319-25562-0_4
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important quantum Laplace transform formulas. After discussing the Laplace
transform, in Sect. 4.8 we define the matrix exponential function and show many
of its properties. In Sect. 4.9 Floquet theory for the quantum case is developed.
Finally, we conclude this chapter by studying the nabla quantum fractional calculus
in Sect. 4.10. Comparison theorems and the asymptotic behavior of solutions of
certain ˛-fractional equations with 0 < ˛ < 1 are given in this section.

4.2 The Quantum Difference Operator

We define the quantum difference operator (q-difference operator) (Jackson differ-
ence operator) as follows.

Definition 4.1 (q-Difference Operator). If f W aqN0 ! R; then we define the
quantum difference operator, (q-difference operator) (Jackson difference operator)
Dq, of f at t 2 aqN0 , by

Dqf .t/ D f .�.t// � f .t/

�.t/
:

We also define Dn
qf .t/, n 2 N1, recursively by Dn

qf .t/ D DqDn�1
q f .t/, where D0

q is
defined to be the identity operator.

The following theorem gives several properties of the quantum difference operator.

Theorem 4.2. Assume f ; g W aqN0 ! R and ˛ is a constant. Then the following
hold:

(i) Dq ˛ D 0I
(ii) Dq˛f .t/ D ˛Dqf .t/I

(iii) DqŒf .t/C g.t/� D Dqf .t/C Dqg.t/I
(iv) DqŒf .t/g.t/� D f .�.t//Dqg.t/C Dqf .t/g.t/I
(v) Dq

�
f .t/
g.t/

�
D g.t/Dqf .t/�f .t/Dqg.t/

g.t/g.�.t// ; if g.t/g.�.t// ¤ 0I
(vi) if Dqf .t/ D 0; t 2 aqN0 ; then f .t/ D C for t 2 aqN0 ; where C is a constantI

(vii) if Dqf .t/ > 0 on aqN0 , then f is strictly increasing on aqN0 :

Proof. We will just prove the quotient rule (v) and (vi) (the rest of the proof is
Exercise 4.1). To see that the quotient rule (v) holds, note that

Dq

�
f .t/

g.t/

�
D

f .qt/
g.qt/ � f .t/

g.t/

�.t/

D f .qt/g.t/ � f .t/g.qt/

�.t/g.t/g.qt/
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D f .�.t//g.t/C f .t/g.t/ � f .t/g.t/ � f .t/g.�.t//

�.t/g.t/g.�.t//

D g.t/Œf .�.t// � f .t/�

�.t/g.t/g.�.t//
� f .t/Œg.�.t// � g.t/�

�.t/g.t/g.�.t//

D g.t/Dqf .t/ � f .t/Dqg.t/

g.t/g.�.t//
:

To see that (vi) holds, assume

Dqf .t/ D 0; t 2 aqN0 :

Then, by the definition of the Jackson difference operator

f .qt/ � f .t/

�.t/
D 0; t 2 aqN0 :

This implies that f .qt/ D f .t/ for all t 2 aqN0 : It follows that there is a constant C
so that f .t/ D C; t 2 aqN0 : ut

Next we give a chain rule formula for functions defined on aqN0 .

Theorem 4.3 (Chain Rule). Assume n is a positive integer and f W aqN0 ! R:

Then

Dq .f .q
nt// D qnDqf .qnt/; t 2 aqN0 : (4.1)

Proof. Note that

Dq .f .q
nt// D f .qn�.t// � f .qnt/

�.t/

D qn f .�.qnt// � f .qnt/

qn�.t/

D qn f .�.qnt// � f .qnt/

�.qnt/

D qnDqf .qnt/

for t 2 aqN0 . ut
Let n 2 N0. Then we will use the notation (see [131])

Œn�q WD qn � 1
q � 1 D 1C q C q2 C � � � C qn�1
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and

Œn�qŠ WD Œn�q Œn � 1�q � � � Œ2�q Œ1�q; n 2 N1;

and Œ0�qŠ WD 1. Next we define the q-falling function.

Definition 4.4. For n 2 N and ˛; ˇ 2 R the q-falling function is defined by

.ˇ � ˛/nq WD
n�1Y
kD0
.ˇ � ˛qk/;

where by our convention on products .ˇ � ˛/0q WD 1:

Then we define the important Taylor monomials for the q-calculus in terms of
the q-falling functions as follows.

Definition 4.5. For each fixed s 2 aqN0 , we define the n-th, n 2 N0, order Taylor
monomial hn.t; s/ based at s by

hn.t; s/ D .t � s/nq
Œn�qŠ

:

Note that

h0.t; s/ D .t � s/0q
Œ0�qŠ

WD 1; and h1.t; s/ D t � s:

We now state the appropriate power rule for the q-calculus.

Theorem 4.6 (Power Rule). For each fixed s 2 aqN0 ;

DqhnC1.t; s/ D hn.t; s/

n 2 N0, t 2 aqN0 .

Proof. For each fixed s 2 aqN0 , we have that

DqhnC1.t; s/ D hnC1.�.t/; s/ � hnC1.t; s/
�.t/

D .�.t/ � s/
nC1
q � .t � s/

nC1
q

�.t/ � Œn C 1�qŠ

D fqn.qt � s/ � .t � qns/g.t � s/n�1
q

.q � 1/t Œn C 1�qŠ
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D .t � s/nq
Œn�qŠ

D hn.t; s/;

for t 2 aqN0 : ut
Note that

Di
qhn.s; s/ D 0 D hn.q

is; s/; 0 	 i 	 n � 1; Dn
qhn.s; s/ D 1:

The reason we call Theorem 4.6 the “power rule” is because we immediately get the
following corollary.

Corollary 4.7. For each fixed s 2 aqN0 ;

Dq.t � s/nq D Œn�q .t � s/n�1
q

n 2 N0, t 2 aqN0 .

The following theorem is also very important.

Theorem 4.8. For any constant ˛ 2 R and n 2 N0

DqhnC1.˛; t/ D �hn.˛; �.t//

for t 2 aqN0 :

Proof. We have that

DqhnC1 D 1

�.t/
ŒhnC1.˛; qt/ � hnC1.˛; t/�

D 1

�.t/

"
.˛ � qt/

nC1
q

Œn C 1�qŠ
� .˛ � t/

nC1
q

Œn C 1�qŠ

#

D Œ.˛ � qnC1t/ � .˛ � t/�

�.t/

.˛ � qt/nq
Œn C 1�qŠ

D � Œq
nC1 � 1�t.˛ � qt/nq
.q � 1/tŒn C 1�qŠ

D � .˛ � qt/nq
Œn�qŠ

D �hn.˛; �.t//;

t 2 aqN0 : ut
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Unlike for most of this chapter, for the rest of this section we assume 0 < q < 1,
which is an important case in quantum theory. For this case we will define a
fractional falling function and prove several interesting properties of this q-falling
function.

We motivate the definition of the q-falling function for the fractional case by
considering the following for n 2 N:

.ˇ � ˛/nq D
n�1Y
kD0
.ˇ � ˛qk/

D ˇn
n�1Y
kD0

�
1 � ˛

ˇ
qk

�

D ˇn

Qn�1
kD0.1 � ˛

ˇ
qk/

Q1
rDn.1 � ˛

ˇ
qr/Q1

rDn.1 � ˛
ˇ

qr/

D ˇn

Q1
kD0.1 � ˛

ˇ
qk/Q1

kD0.1 � ˛
ˇ

qkCn/
:

This leads to the following definition.

Definition 4.9. The fractional q-falling function for 0 < q < 1 is defined by

.ˇ � ˛/˛q WD ˇ˛

Q1
kD0.1 � ˛

ˇ
qk/Q1

kD0.1 � ˛
ˇ

qkC˛/

for ˇ; ˛; ˛ 2 R, provided the infinite product in the denominator does not converge
to zero.

Remark 4.10. Note that in the above definition, both infinite products converge for
q 2 .0; 1/. To see this recall that the infinite product

1Y
kD0

�
1C

�
�˛
ˇ

qk

�	

converges if and only if the infinite sum
P1

kD0
�
� ˛
ˇ

qk
�

converges. Since
P1

kD0
�
� ˛
ˇ

qk
�

D � ˛
ˇ

P1
kD0 qk is a geometric series with common ratio q 2 .0; 1/,

it converges, and so, the above infinite product converges.

In the next two theorems we prove some interesting properties of this fractional
q-falling function.

Theorem 4.11. The fractional q-falling function for ˛; �; ˛; ˇ 2 R, 0 < q < 1;

satisfies the following properties:
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(i) .ˇ � ˛/˛C�
q D .ˇ � ˛/˛q .ˇ � q˛˛/

�
q I

(ii) .�ˇ � �˛/˛q D �˛.ˇ � ˛/˛q I
(iii) .t � s/˛q D 0; t � s; t; s 2 aqN0 ; ˛ … N0:

Proof. To see that part (i) holds note that

.ˇ � ˛/˛C�
q D ˇ˛C�

Q1
kD0.1 � ˛

ˇ
qk/Q1

kD0.1 � ˛
ˇ

qkC˛C� /

D ˇ˛C�
Q1

kD0.1 � ˛
ˇ

qk/Q1
kD0.1 � ˛

ˇ
qkC˛C� /

Q1
kD0.1 � ˛q˛

ˇ
qk/Q1

kD0.1 � ˛
ˇ

qkC˛/

D ˇ˛

Q1
kD0.1 � ˛

ˇ
qk/Q1

kD0.1 � ˛
ˇ

qkC˛/
ˇ�

Q1
kD0.1 � ˛q˛

ˇ
qk/Q1

kD0.1 � ˛
ˇ

qkC˛C� /

D .ˇ � ˛/˛q .ˇ � q˛˛/
�
q :

Part (ii) follows from the following:

.�ˇ � �˛/˛q D .�ˇ/˛

Q1
kD0.1 � ˛�

ˇ�
qk/Q1

kD0.1 � ˛�

ˇ�
qkC˛/

D �˛ˇ˛

Q1
kD0.1 � ˛

ˇ
qk/Q1

kD0.1 � ˛
ˇ

qkC˛/

D �˛.ˇ � ˛/˛q :

Finally, to see that part (iii) holds, note that if t; s 2 aqN0 , then there are m; n 2 N0

such that t D aqn, s D aqm, and we have that

.t � s/˛q D .aqn � aqm/˛q

D .aqn/˛

Q1
kD0.1 � aqm

aqn qk/
Q1

kD0.1 � aqm

aqn qkC˛/

D .aqn/˛
Q1

kD0.1 � qm�nqk/Q1
kD0.1 � qm�nqkC˛/

D 0:

This completes the proof. ut
Theorem 4.12. For ˛;  2 R; n 2 N and q 2 .0; 1/, the following equalities hold
for t 2 aqN0 W
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(i) Dq.t � ˛/q D q�1Œ�1=q.�.t/ � ˛/�1
q I

(ii) Dq.˛ � t/q D �q�1Œ�1=q.˛ � t/�1
q .

Proof. Part (i) holds since

Dq.t � ˛/q D Dqt
Q1

kD0.1 � ˛
t qk/Q1

kD0.1 � ˛
t qkC/

D

�
t

q

� Q1
kD0.1 � ˛

t qkC1/Q1
kD0.1 � ˛

t qkCC1/
� t

Q1
kD0.1 � ˛

t qk/Q1
kD0.1 � ˛

t qkC/
�.t/

D

�
t

q

� Q1
kD0.1 � ˛

t qkC1/Q1
kD0.1 � ˛

t qkCC1/
.1 � ˛

t q/

.1 � ˛
t q/

� t
Q1

kD0.1 � ˛
t qk/Q1

kD0.1 � 
t qkC/

�.t/

D t
Q1

kD0
�
1 � ˛

t qkC1�
Q1

kD0
�
1 � ˛

t qkC�

2
64

�
1
q

� �
1 � ˛

t q
� � �

1 � ˛
t

�

t
�
1
q � 1

�

3
75

D t�1
Q1

kD0
�
1 � ˛

t qkC1�
Q1

kD0
�
1 � ˛

t qkC�

2
64

�
1
q

� � ˛
t � 1C ˛

t

1
q � 1

3
75

D q�1
�

t

q

��1 Q1
kD0

�
1 � ˛

t qkC1�
Q1

kD0
�
1 � ˛

t qkC�
"

1
q � 1
1
q � 1

#

D q�1Œ�1=q.�.t/ � ˛/�1
q :

To see that (ii) holds, note that

Dq.˛ � t/q D Dq˛


Q1
kD0.1 � t

˛
qk/Q1

kD0.1 � t
˛

qkC/

D
˛

Q1
kD0.1 � t

˛
qk�1/Q1

kD0.1 � t
˛

qkC�1/
� ˛

Q1
kD0.1 � t

˛
qk/Q1

kD0.1 � t
˛

qkC/
�.t/

D
˛

Q1
kD0.1 � t

˛
qk�1/Q1

kD0.1 � t
˛

qkC�1/
� ˛

Q1
kD0.1 � t

˛
qk/Q1

kD0.1 � t
˛

qkC/
.1 � t

˛
q�1/

.1 � t
˛

q�1/
�.t/

D ˛
Q1

kD0.1 � t
˛

qk/Q1
kD0.1 � t

˛
qkC�1/

2
4 .1 � t

˛
p/ � .1 � t

˛
q�1/

t
�
1
q � 1

�
3
5
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D ˛
Q1

kD0.1 � t
˛

qk/Q1
kD0.1 � t

˛
qkC�1/

� t

˛

"
q�1.1 � 1

q˛ /

t. 1q � 1/

#

D ˛�1
Q1

kD0.1 � t
˛

qk/Q1
kD0.1 � t

˛
qkC�1/

.�q�1/Œ�1=q

D �q�1Œ�1=q.˛ � t/�1
q :

ut

4.3 The Quantum Exponential

In this section we introduce the quantum exponential and prove several of its
important properties. First we define the set of q-regressive functions by

Rq � ˚
f W aqN0 ! R W 1C �.t/p.t/ ¤ 0; t 2 aqN0

�
:

Definition 4.13. For p 2 Rq we define the q-exponential function ep.�; a/ to be the
unique solution of the IVP

Dqx D p.t/x; x.a/ D 1:

Theorem 4.14. If p 2 Rq, then

ep.t; a/ D
t=qY

sDa

Œ1C �.s/p.s/�; t 2 aqN0 :

Here it is understood that the above product is 1 when t D a.

Proof. Let x.t/ be the solution of the IVP

Dqx D p.t/x; x.a/ D 1:

Then

Dqx.t/ D x.qt/ � x.t/

�.t/
D p.t/x.t/:

Solving for x.qt/ we get

x.qt/ D Œ1C �.t/p.t/�x.t/; t 2 aqN0 :
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Iterating this last equation we get the equations:

x.aq/ D Œ1C �.a/p.a/�x.a/ D Œ1C �.a/p.a/�

x.aq2/ D Œ1C �.aq/p.aq/�x.aq/ D Œ1C �.a/p.a/�Œ1C �.aq/p.aq/�

:::

x.aqn/ D
n�1Y
kD0



1C �

�
aqk
�

p
�
aqk
��
:

Thus,

ep.t; a/ D
t=qY

sDa

Œ1C �.s/p.s/�:

And this completes the proof. ut
Remark 4.15. Sometimes we will be interested in the exponential function ep.t; s/
based at s 2 Na instead of based at a which is defined as follows:

ep.t; s/ D

8̂
<̂
ˆ̂:

Q t
q
�DsŒ1C p.�/�.�/�; t 2 Nqs

1; t D s
Q s

q
�Dt

1
Œ1Cp.�/�.�/� ; t 2 N

s
q
a :

Note that ep.t; s/ is for each fixed s 2 aqN0 the solution of the IVP

Dqx.t/ D p.t/x.t/; x.s/ D 1

on Na:

We next motivate how to define an addition on the set of q-regressive functions
Rq in order to get an important law of exponents for our quantum exponential. To
see this, assume p; r 2 Rq and consider the product

ep.t; a/er.t; a/ D
t
qY

sDa

Œ1C �.s/p.s/�

t
qY

sDa

Œ1C �.s/r.s/�

D
t=qY

sDa

Œ1C �.s/p.s/�Œ1C �.s/r.s/�

D
t=qY

sDa

f1C �.s/p.s/C �.s/r.s/C �2.s/p.s/r.s/g
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D
t=qY

sDa

f1C �.s/Œp.s/C r.s/C �.s/p.s/r.s/�g

D
t=qY

sDa

Œ1C �.s/.p ˚ r/.s//�

D ep˚r.t; a/

if we define the circle plus addition, ˚, on the set of q-regressive functions Rq by

.p ˚ r/.t/ WD p.t/C r.t/C �.t/p.t/r.t/; t 2 aqN0 :

Similar to the proof of Theorem 1.16, we can prove the following theorem.

Theorem 4.16. The set of regressive functions Rq with the addition ˚ is an Abelian
group.

Proof. First we show that the closure property holds. Let p; r 2 Rq. Then

1C �.t/p.t/ ¤ 0; and 1C �.t/r.t/ ¤ 0;

for t 2 aqN0 . We want to show that 1C �.t/.p ˚ r/.t/ ¤ 0. To see this consider

1C �.t/.p ˚ r/.t/ D 1C �.t/Œp.t/C r.t/C �.t/p.t/r.t/�

D 1C �.t/p.t/C �.t/r.t/C �2.t/p.t/r.t/

D Œ1C �.t/p.t/�Œ1C �.t/r.t/�

¤ 0:

Thus, p ˚ r 2 Rq.
Next we show that the zero function, 0, is the identity element (by context one

will know when 0 is the zero function or the number 0) in Rq. We see that 0 2 Rq

since 1C �.t/.0/ D 1 ¤ 0. Also,

.0˚ p/.t/ D 0C p.t/C �.t/.0/p.t/ D p.t/;

so the zero function 0 is the identity element in Rq.
Next we show that every element in Rq has an additive inverse. If p 2 Rq, then

we set r D �p
1C�p . Then we have that

1C �.t/r.t/ D 1C ��.t/p.t/
1C �.t/p.t/

D 1

1C �.t/p.t/
¤ 0; for t 2 aqN0 ;

so r 2 Rq. We also have that
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.p ˚ r/.t/ D p.t/˚ �p.t/

1C �.t/p.t/

D p.t/C �p.t/

1C �.t/p.t/
� �.t/p2.t/

1C �.t/p.t/

D p.t/Œ1C �.t/p.t/� � p.t/ � �.t/p2.t/
1C �.t/p.t/

D 0; for t 2 aqN0 ;

which shows that r is the additive inverse of p.
Next we show that the associative law holds. Let p; `; r 2 Rq. Then

Œ.p ˚ `/˚ r/�.t/

D .p.t/C `.t/C �.t/p.t/`.t//˚ r.t/

D .p.t/C `.t/C �.t/p.t/`.t//C r.t/C �.t/Œp.t/C `.t/C �.t/p.t/`.t/�r.t/

D p.t/C q.t/C r.t/C �.t/p.t/`.t/

C �.t/p.t/r.t/C �.t/`.t/r.t/C �2.t/p.t/`.t/r.t/

D p.t/C `.t/C r.t/C �.t/`.t/r.t/

C p.t/`.t/�.t/C p.t/r.t/�.t/C �2.t/p.t/`.t/r.t/

D p.t/C Œ`.t/C r.t/C �.t/`.t/r.t/�C p.t/Œ`.t/C r.t/C �.t/`.t/r.t/��.t/

D Œp ˚ .`˚ r/�.t/; for t 2 aqN0 :

Hence, Rq, ˚ is a group.
Finally,

.p ˚ r/.t/ D p.t/C r.t/C �.t/p.t/r.t/

D r.t/C p.t/C �.t/r.t/p.t/

D .r ˚ p/.t/; for t 2 aqN0 ;

so our ˚ addition is commutative. Therefore, we have that Rq, ˚ is an Abelian
group. ut

For p 2 Rq, we use the following notation to denote the additive inverse of p:

�p D �p

1C �p

and we then define the circle minus subtraction, �, on Rq by

p � r D p ˚ .�r/:
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It follows that

p � r D p � r

1C �r
:

Definition 4.17. The set of positively q-regressive functions, RC
q , is defined by

RC
q WD fp 2 Rq W 1C �.t/p.t/ > 0; t 2 aqN0g:

Note that a positively q-regressive function need not be positive on aqN0 :

Theorem 4.18. Assume p; r 2 Rq and t; s; � 2 aqN0 . Then

(i) e0.t; a/ D 1 and ep.t; t/ D 1I
(ii) ep.t; a/ ¤ 0, t 2 aqN0 I

(iii) if p 2 RC
q , then ep.t; a/ > 0, t 2 aqN0 I

(iv) Dqep.t; s/ D p.t/ep.t; s/ and ep.s; s/ D 1I
(v) ep.�.t/; a// D Œ1C �.t/p.t/�ep.t; a/; t 2 aqN0 I

(vi) ep.t; s/ep.s; �/ D ep.t; �/I
(vii) ep.t; a/er.t; a/ D ep˚r.t; a/; t 2 aqN0 I

(viii) e�p.t; a/ D 1
ep.t;a/

; t 2 aqN0 I
(ix) ep.t;a/

er.t;a/
D ep�r.t; a/; t 2 aqN0 I

(x) if p; r are (complex) constants with jpj < jrj, then we have that
limt!1 ep�r.t; a/ D 0:

Proof. Since e0.t; a/ D Qt=q
sDa.1 C 0/ D 1 and ep.t; t/ D 1 by our convention on

products, we get that (i) holds.
To see that (ii) holds, note that p 2 Rq implies 1C�.t/p.t/ ¤ 0 for all t 2 aqN0 .

Hence,

ep.t; a/ D
t=qY

sDa

Œ1C �.s/p.s/� ¤ 0;

for all t 2 aqN0 :
To see that (iii) holds, note that since p 2 Rq, we have that 1C�.t/p.t/ > 0, for

2 aqN0 , and hence

ep.t; a/ D
t=qY

sDa

Œ1C �.s/p.s/� > 0; t 2 aqN0 :

Property (iv) follows directly from the definition (Definition 4.13) of ep.t; a/.
To see that (v) holds, the equation

Dqep.t; a/ D p.t/ep.t; a/; t 2 aqN0
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implies that

p.t/ep.t; a/ D ep.�.t/; a/ � ep.t; a/

�.t/
:

Solving this last equation for ep.�.t/; a/ we get the desired result

ep.�.t/; a/ D Œ1C �.t/p.t/�ep.t; a/:

To see that (vi) holds for the case t � s � � (the other cases are left to the reader),
note that

ep.t; s/ep.s; �/ D
t=qY
�Ds

Œ1C �.�/p.�/�
s=qY
�D�
Œ1C �.�/p.�/�

D
t=qY
�D�
Œ1C �.�/p.�/�

D ep.t; �/:

To see that (vii) holds, we calculate

ep.t; a/er.t; a/ D
t=qY

sDa

Œ1C �.s/p.s/�
t=qY

sDa

Œ1C �.s/r.s/�

D
t=qY

sDa

Œ1C �.s/p.s/�Œ1C �.s/r.s/�

D
t=qY

sDa

Œ1C �.s/p.s/C �.s/r.s/C �2.s/p.s/r.s/�

D
t=qY

sDa

f1C �.s/Œp.s/C r.s/C �.s/p.s/r.s/�g

D
t=qY

sDa

Œ1C �.s/.p ˚ r/.s/�

D ep˚r.t; a/:
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And this proves the claim. On the other hand, to see that (viii) holds, we simply
write.

e�p.t; a/ D
t=qY

sDa

�
1C �p.s/

1C �.s/p.s/
�.s/

	

D
t=qY

sDa

1

1C �.s/p.s/

D 1Qt=q
sDaŒ1C �.s/p.s/�

D 1

ep.t; a/
:

And see that (ix) holds, note that

ep.t; a/

er.t; a/
D
Qt=q

sDaŒ1C �.s/p.s/�Qt=q
sDaŒ1C �.s/r.s/�

D
t=qY

sDa

1C �.s/p.s/

1C �.s/r.s/

D
t=qY

sDa

.1C �.s/p.s//C �.s/r.s/ � �.s/r.s/
.1C �.s/r.s//

D
t=qY

sDa

�
1C �.s/p.s/ � �.s/r.s/

1C �.s/r.s/

	

D
t=qY

sDa

�
1C �.s/

p.s/ � r.s/

1C �.s/r.s/

	

D
t=qY

sDa

Œ1C �.s/.p ˚ .�r//.s/� by Exercise 4.38

D
t=qY

sDa

Œ1C �.s/.p � r/.s/�

D ep�r.t; a/:

Finally we show that (x) holds. First observe that

lim
t!1

ˇ̌
ep�r.t; a/

ˇ̌ D lim
t!1

ˇ̌
ˇ̌
ˇ
Qt=q

sDa.1C �.s/p/Qt=q
sDa.1C �.s/r/

ˇ̌
ˇ̌
ˇ D

1Y
sDa

ˇ̌
ˇ̌ .1C �.s/p/

.1C �.s/r/

ˇ̌
ˇ̌
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provided the limit exists. To see that this limit exists consider

lim
t!1

ˇ̌
ˇ̌ .1C �.t/p/

.1C �.t/r/

ˇ̌
ˇ̌ D jpj

jrj < 1:

It follows that there is a t0 such that for t � t0
ˇ̌
ˇ̌ .1C �.t/p/

.1C �.t/r/

ˇ̌
ˇ̌ 	 ı0;

for some constant ı0 such that jpj
jrj 	 ı0 < 1. Hence,

0 	 lim
t!1

ˇ̌
ep�r.t; a/

ˇ̌ D
t0=qY
sDa

ˇ̌
ˇ̌ .1C �.s/p/

.1C �.s/r/

ˇ̌
ˇ̌

1Y
rDt0

ˇ̌
ˇ̌ .1C �.r/p/

.1C �.r/r/

ˇ̌
ˇ̌

	
t0=qY
sDa

ˇ̌
ˇ̌ .1C �.s/p/

.1C �.s/r/

ˇ̌
ˇ̌

1Y
rDt0

ı0

D 0:

This completes the proof. ut
Next we define the q-scalar dot multiplication, ˇ, on RC

q : To motivate this
definition, note that if n is a positive integer and p 2 R, then

n terms‚ …„ ƒ
.p ˚ p ˚ p � � � ˚ p/.t/ D

nX
kD1

 
n

k

!
�k�1.t/pk.t/

D 1

�.t/

nX
kD1

 
n

k

!
�k.t/pk.t/

D 1

�.t/

"
nX

kD0

 
n

k

!
�k.t/pk.t/ � 1

#

D Œ1C �.t/p.t/�n � 1
�.t/

:

With this in mind we make the following definition.

Definition 4.19. We define the q-scalar dot multiplication, ˇ, on RC
q by

.˛ ˇ p/.t/ D Œ1C �.t/p.t/�˛ � 1
�.t/

; t 2 aqN0 :
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Lemma 4.20. If p; r 2 Rq and ep.t; a/ D er.t; a/; then

p.t/ D r.t/; t 2 aqN0 :

Theorem 4.21. If ˛ 2 R and p 2 RC
q , then

e˛p .t; a/ D e˛ˇp.t; a/

for t 2 aqN0 :

Proof. We have that

e˛p .t; a/ D
0
@

t=qY
sDa

Œ1C �.s/p.s/�

1
A
˛

D
t=qY

sDa

Œ1C �.s/p.s/�˛

D
t=qY

sDa

�
1C �.s/

.1C �.s/p.s//˛ � 1
�.s/

�

D
t=qY

sDa

f1C �.s/Œ˛ ˇ p�.s/g

D e˛ˇp.t; a/;

for t 2 aqN0 : ut
Then, similar to the proof of Theorem 1.23, we get the following result.

Theorem 4.22. The positively q-regressive functions RC
q with the addition ˚ and

the scalar multiplication ˇ is a vector space.

Proof. Since we have already proved that RC
q with ˚ is an Abelian group, we have

that RC
q satisfies many of the properties of a vector space. We now prove some of

the remaining properties. First note that

e˛ˇ.ˇˇp/.t; a/ D Œeˇˇp.t; a/�
˛

D Œeˇp .t; a/�
˛

D Œep.t; a/�
˛ˇ

D e.˛ˇ/ˇp.t; a/:

Therefore, by Lemma 4.20,

˛ ˇ .ˇ ˇ p/ D .˛ˇ/ˇ p:
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Next, we show a distributive property. Let ˛ 2 R and p; r 2 Rq. Then

e˛ˇ.p˚r/.t; a/ D e˛p˚r.t; a/

D Œep.t; a/er.t; a/�
˛

D e˛p .t; a/e
˛
r .t; a/

D e˛ˇp.t; a/e˛ˇr.t; a/

D e.˛ˇp/˚.˛ˇr/.t; a/:

Therefore, by Lemma 4.20,

˛ ˇ .p ˚ r/ D .˛ ˇ p/˚ .˛ ˇ q/:

Similarly one can show that

.˛ C ˇ/ˇ p D .˛ ˇ p/˚ .ˇ ˇ p/:

Finally, we show that we have a scalar multiplicative identity by writing

.1ˇ p/.t/ D 1C �.t/p.t/ � 1
�.t/

D �.t/p.t/

�.t/
D p.t/:

So we have that the constant function 1 is our multiplicative identity. ut

4.4 Quantum Hyperbolic and Trigonometric Functions

In this section we introduce both the quantum hyperbolic sine and cosine functions
and the quantum sine and cosine functions and give some of their properties. First,
we define the quantum hyperbolic sine and cosine functions.

Definition 4.23. Assume ˙p 2 Rq, then the quantum hyperbolic sine and cosine
functions are defined as follows:

coshp.t; a/ WD ep.t; a/C e�p.t; a/

2
; sinhp.t; a/ WD ep.t; a/ � e�p.t; a/

2

for t 2 aqN0 :

The following theorem gives various properties of the quantum hyperbolic sine
and cosine functions.



4.4 Quantum Hyperbolic and Trigonometric Functions 305

Theorem 4.24. Assume ˙p 2 Rq. Then

(i) coshp.a; a/ D 1; sinhp.a; a/ D 0I
(ii) cosh2p.t; a/ � sinh2p.t; a/ D e��p2 .t; a/; t 2 aqN0 I

(iii) Dq coshp.t; a/ D p sinhp.t; a/; t 2 aqN0 I
(iv) Dq sinhp.t; a/ D p coshp.t; a/; t 2 aqN0 I
(v) cosh�p.t; a/ D coshp.t; a/; t 2 aqN0 I

(vi) sinh�p.t; a/ D � sinhp.t; a/; t 2 aqN0 :

Proof. To see that (ii) holds note that

cosh2p.t; a/ � sinh2p.t; a/

D .ep.t; a/C e�p.t; a//2 C .ep.t; a/ � e�p.t; a//2

4

D ep.t; a/e�p.t; a/

D ep˚.�p/.t; a/

D e��p2 .t; a/:

To see that (iii) holds, consider

Dq coshp.t; a/ D 1

2
Dqep.t; a/C 1

2
Dqe�p.t; a/

D 1

2
Œp.t/ep.t; a/ � p.t/e�p.t; a/�

D p sinhp.t; a/:

The proof of (iv) is similar. Also (v) and (vi) hold. ut
Next, we define the quantum sine and cosine functions.

Definition 4.25. For ˙ip 2 Rq.C/, we define the generalized sine and cosine
functions as follows:

cosp.t; a/ D eip.t; a/C e�ip.t; a/

2
; sinp.t; a/ D eip.t; a/ � e�ip.t; a/

2i

for t 2 aqN0 :

The following theorem gives some relationships between the generalized trigono-
metric functions and the hyperbolic trigonometric functions.

Theorem 4.26. Assume ˙p 2 Rq.C/. Then for t 2 aqN0

(i) sinip.t; a/ D i sinhp.t; a/I
(ii) cosip.t; a/ D coshp.t; a/I

(iii) sinhip.t; a/ D i sinp.t; a/I
(iv) coship.t; a/ D cosp.t; a/:
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Proof. To see that (i) holds note that

sinip.t; a/ D 1

2i
Œei2p.t; a/ � e�i2p.t; a/�

D i
ep.t; a/ � e�p.t; a/

2

D i sinhp.t; a/:

The proofs of (ii)–(iv) are similar. ut
The following theorem gives various properties of the generalized sine and cosine

functions.

Theorem 4.27. Assume ˙ip 2 Rq.C/: Then

(i) cosp.a; a/ D 1; sinp.a; a/ D 0I
(ii) cos2p.t; a/C sin2p.t; a/ D e�p2 .t; a/; t 2 aqN0 I

(iii) Dq cosp.t; a/ D p sinp.t; a/; t 2 aqN0 I
(iv) Dq sinp.t; a/ D p cosp.t; a/; t 2 aqN0 I
(v) cos�p.t; a/ D cosp.t; a/; t 2 aqN0 I

(vi) sin�p.t; a/ D � sinp.t; a/; t 2 aqN0 :

Proof. The proof of this theorem follows from Theorems 4.24 and 4.26. ut

4.5 The Quantum Integral

We now define the quantum integration of a function defined on aqN0 .

Definition 4.28. Assume f W aqN0 ! R and c; d 2 aqN0 . Then we define the
quantum integral (q-integral) (Jackson integral) of f from c to d by

Z d

c
f .t/Dqt D

8̂
<̂
ˆ̂:

Pd=q
tDc f .t/�.t/; if d > c

0; if d D c

�Pc=q
tDd f .t/�.t/; if d < c:

Using well-known properties of sums and the above definition of the integral one
can easily prove the following elementary properties of the q-integral

R d
c f .t/Dqt.

Theorem 4.29. Assume f ; g W aqN0 ! R and c; d; e 2 aqN0 . Then

(i)
R d

c ˛f .t/Dqt D ˛
R d

c f .t/DqtI
(ii)

R d
c Œf .t/C g.t/�Dqt D R d

c f .t/Dqt C R d
c g.t/DqtI

(iii)
R c

c ˛f .t/Dqt D 0I
(iv)

R d
c f .t/Dqt D � R c

d f .t/DqtI
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(v)
R e

c f .t/Dqt D R d
c f .t/Dqt C R e

d f .t/DqtI
(vi) if c 	 d and f .t/ 	 g.t/ for t 2 fc; qc; � � � ; d=qg; then it follows thatR d

c f .t/Dqt 	 R d
c g.t/Dqt:

Definition 4.30. Assume fc; qc; : : : ; dg � aqN0 and DqF.t/ D f .t/ for t 2
fc; qc; : : : ; d=qg. Then we say F is a q-antidifference of f on fc; qc; � � � ; dg.

The following theorem shows that every function f W aqN0 ! R has an
antidifference on aqN0 :

Theorem 4.31. Assume that f W aqN0 ! R. Then F.t/ WD R t
c f .s/Dqs is a q-

antidifference of f .t/ on aqN0 ; that is,

DqF.t/ D Dq

Z t

c
f .s/Dqt D f .t/; t 2 aqN0 :

Proof. Assume f W aqN0 ! R and let

F.t/ WD
Z t

c
f .s/Dqs:

Then for t 2 aqN0

Dqf .t/ D Dq

Z t

c
f .s/Dqs

D F.qt/ � F.t/

�.t/

D
R qt

c f .s/Dqs � R t
c f .s/Dqs

�.t/

D
R qt

t f .s/Dqs

�.t/

D f .t/�.t/

�.t/

D f .t/:

Hence, F.t/ is a q-antidifference of f .t/ on aqN0 : ut
Theorem 4.32. If f W aqN

n
0 ! R and G.t/ is an q-antidifference of f .t/ on aqN

n
0 ,

then F.t/ D G.t/C C is a general q-antidifference of f .t/ on aqN
n
0 .

Proof. Assume G.t/ is an q-antidifference of f .t/ on aqN
n
0 . Let F.t/ D G.t/ C C,

where C is constant and t 2 aqN
n
0 . Then on aqN

n
0

DqF.t/ D DqG.t/ D f .t/; t 2 aqN
n�1
0 ;
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and so, F.t/ is an q-antiderivative of f .t/ on aqN
n
0 . Conversely, assume F.t/ is an

q-antidifference of f .t/ on aqN
n
0 . Then

Dq.F.t/ � G.t// D DqF.t/ � DqG.t/ D f .t/ � f .t/ D 0

for t 2 aqN
n�1
0 . This implies F.t/ � G.t/ D C, for t 2 aqN

n
0 . Hence,

F.t/ D G.t/C C;

for t 2 aqN
n
0 : ut

Theorem 4.33 (Fundamental Theorem of q-Calculus). Assume f W aqN
n
0 ! R

and F.t/ is any q-antidifference of f .t/ on aqN
n
0 . Then

Z aqn

a
f .t/Dqt D

Z aqn

a
DqF.t/Dqt D F.t/

ˇ̌
ˇ
aqn

a
:

Proof. Assume F.t/ is any q-antidifference of f .t/ on aqN
n
0 . Let

G.t/ WD
Z t

a
f .s/Dqs; t 2 aqN

n
0 :

By Theorem 4.31, G.t/ is an q-antidifference of f .t/. Hence by the previous theorem,
F.t/ D G.t/C C, where C is a constant. Then

F.t/
ˇ̌
ˇ
aqn

a
D F.aqn/ � F.a/ D ŒG.aqn/C C� � ŒG.a/C C�

D G.aqn/ � G.a/:

By Theorem 4.29, part (iii), G.a/ D 0 and hence

F.t/
ˇ̌
ˇ
aqn

a
D
Z aqn

a
f .t/Dqt:

This completes the proof. ut
Theorem 4.34 (Integration by Parts). Given two functions u; v W aqN0 ! R and
b; c 2 aqN0 ; b < c, we have the integration by parts formulas

Z c

b
u.t/Dqv.t/Dqt D u.t/v.t/

ˇ̌
ˇ
c

b
�
Z c

b
v.�.t//Dqu.t/Dqt

and
Z c

b
u.�.t//Dqv.t/Dqt D u.t/v.t/

ˇ̌
ˇ
c

b
�
Z c

b
v.t/Dqu.t/Dqt:
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Proof. The second integration by parts formula follows from the first by interchang-
ing u and v. Hence, it suffices to prove the first integration by parts formula. Assume
u; v W aqN0 ! R and b; c 2 aqN0 ; b < c. Using the product rule we have that

Dq.u.t/v.t// D Dqu.t/v.�.t//C u.t/Dqv.t/;

which implies

u.t/Dqv.t/ D Dq.u.t/v.t// � Dqu.t/v.�.t//:

Integrating both sides we obtain the following
Z c

b
u.t/Dqv.t/Dqt D

Z c

b
Dq.u.t/v.t//Dqt �

Z c

b
Dqu.t/v.�.t//Dqt;

which implies the following
Z c

b
u.t/Dqv.t/Dqt D u.t/v.t/

ˇ̌
ˇ
c

b
�
Z c

b
v.�.t//Dqu.t/Dqt:

This completes the proof. ut

4.6 Quantum Variation of Constants Formula

In this section we will derive a quantum variation of constants formula and give an
example of this result. First we will need to prove a Leibniz rule for the q-calculus.

Theorem 4.35 (Leibniz Rule). Assume f W aqN0 � aqN0 ! R. Then

Dq

�Z t

a
f .t; s/Dqs

�
D
Z t

a
Dqf .t; s/Dqs C f .�.t/; t/; t 2 aqN0 :

Here it is understood that the expression Dqf .t; s/ in the last integral means the
(partial) q-difference of f with respect to t.

Proof. Note that

Dq

�Z t

a
f .t; s/Dqs

�
D
R �.t/

a f .�.t/; s/Dqs � R t
a f .t; s/Dqs

�.t/

D
Z t

a

f .�.t/; s/ � f .t; s/

�.t/
Dqs C

R �.t/
t f .�.t/; s/Dqs

�.t/

D
Z t

a
Dqf .t; s/Dqs C f .�.t/; t/;

for t 2 aqN0 . ut
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Theorem 4.36 (Variations of Constants Formula). Assume f W aqN0 ! R. Then
the solution of the IVP

Dn
qy D f .t/; t 2 aqN0

Di
qy.a/ D 0; 0 	 i 	 n � 1

is given by

y.t/ D
Z t

a
hn�1.t; �.s//f .s/Dqs; (4.2)

for t 2 aqN0 :

Proof. We will use repeated applications of the Leibniz rule to prove this theorem.
First we see that if y.t/ is given by (4.2), then

Dqy.t/ D Dq

�Z t

a
hn�1.t; �.s//f .s/Dqs

�

D
Z t

a
hn�2.t; �.s//f .s/Dqs C hn�1.�.t/; �.t//f .t/

D
Z t

a
hn�2.t; �.s//f .s/Dqs:

It then follows that

D2
qy.t/ D Dq

�Z t

a
hn�2.t; �.s//f .s/Dqs

�

D
Z t

a
hn�3.t; �.s//f .s/Dqs C hn�2.�.t/; �.t//f .t/

D
Z t

a
hn�3.t; �.s//f .s/Dqs:

Proceeding by induction we get that

Dn�1
q y.t/ D Dq

�Z t

a
h1.t; �.s//f .s/Dqs

�

D
Z t

a
h0.t; �.s//f .s/Dqs C h1.�.t/; �.t//f .t/

D
Z t

a
h0.t; �.s//f .s/Dqs

D
Z t

a
f .s/Dqs:
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Finally, taking one more q-difference, we get

Dn
qy.t/ D f .t/; t 2 aqN0 :

Also, y.t/ satisfies the initial conditions

Di
qy.a/ D 0; 0 	 i 	 n � 1:

This completes the proof. ut
Example 4.37. Assume p is a nonzero real constant with ˙p 2 Rq. Use the
variation of constants formula (4.2) to solve the IVP

D2
qy.t/ D sinp.t; a/; t 2 aqN0

y.a/ D 0 D Dqy.a/:

By the variation of constants formula (4.2), we have the solution of our IVP is given
by

y.t/ D
Z t

a
h1.t; �.s// sinp.s; a/Dqs

D
Z t

a
.t � �.s// sinp.s; a/Dqs:

Using the second integration by parts formula in Theorem 4.34 with

u.�.s// D h1.t; �.s//; and Dqv.s/ D sinp.s; a/

we get

y.t/ D �1
p
.t � s/ cosp.s; a/jtsDa C 1

p

Z t

a
cosp.s; a/Dqs

D �1
p
.t � a/ cosp.t; a/C 1

p2
sinp.t; a/

ˇ̌
ˇ
t

sDa

D 1

p2
sinp.t; a/ � 1

p
.t � a/ cosp.t; a/:

Example 4.38. Use the variation of constants formula to solve the IVP

D2
qy.t/ D ep.t; 1/ t 2 aqN0

y.1/ D Dqy.1/ D 0;
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where p is a regressive constant. From the variation of constants formula, the
solution of this IVP is given by

y.t/ D
Z t

1

h1.t; �.s//ep.s; 1/Dqs:

Integrating by parts, we have

y.t/ D
Z t

1

h1.t; �.s//ep.s; 1/Dqs

D 1

p
h1.t; s/ep.s; 1/

ˇ̌
ˇ
t

sD1 � 1

p

Z t

1

ep.s; 1/Dqh1.t; s/Dqs

D �1
p

h1.t; 1/C 1

p2

h
ep.s; 1/

it

sD1

D �1
p

h1.t; 1/C 1

p2
ep.t; 1/ � 1

p2
ep.1; 1/

D �1
p

h1.t; 1/C 1

p2
ep.t; 1/ � 1

p2

D �1
p
.t � 1/C 1

p2

t
qY

�D1
Œ1C p.�/�.�/� � 1

p2
:

4.7 The q-Laplace Transform

Motivated by the real case where the Laplace transform is given by

Lff g.s/ D
Z 1

0

e�stf .t/dt;

we define the q-Laplace transform by replacing the real exponential e�st by the
quantum exponential e�s.�.t/; a/:

Definition 4.39. Assume f W aqN0 ! R. Then we define the q-Laplace transform
of f by

Laff g.s/ WD
Z 1

a
e�s.�.t/; a/f .t/Dqt

for those s 2 Rq.C/ such that the above improper integral converges.

In the following theorem we give a formula for Laff g.s/ as an infinite sum.
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Theorem 4.40. Assume f W aqN0 ! R. Then the q-Laplace transform of f is
given by

Laff g.s/ WD
1X

nD0

f .aqn/�.aqn/Qn
kD0Œ1C s�.aqk/�

;

for those values of s 2 Rq.C/ such that the above infinite sum converges.

Proof. We have that for t D aqn,

Laff g.s/ D
Z 1

a
e�s.�.t/; a/f .t/Dqt

D
1X

tDa

e�s.�.t/; a/f .t/�.t/

D
1X

tDa

f .t/�.t/

es.�.t/; a/

D
1X

tDa

f .t/�.t/

Œ1C s�.t/�es.t; a/

D
1X

tDa

f .t/�.t/

Œ1C s�.t/�
Qt=q
�DaŒ1C s�.�/�

D
1X

tDa

f .t/�.t/Qt
�DaŒ1C s�.�/�

D
1X

tDa

f .t/�.t/Qn
kD0Œ1C s�.aqk/�

D
1X

nD0

f .aqn/�.aqn/Qn
kD0Œ1C s�.aqk/�

;

which is what we wanted to prove. ut
To begin the study of finding functions whose Laplace transforms exist, we

introduce the next definition.

Definition 4.41. We say f W aqN0 ! R is of exponential order r � 0 if there is a
constant A > 0 such that

jf .aqn/j 	 A
h
�.a/q

n�1
2

in
rn

for all sufficiently large n 2 N0.



314 4 Quantum Calculus

Theorem 4.42 (Existence of q-Laplace Transform). If f W aqN0 ! R is of
exponential order r > 0, then La ff g .s/ exists for jsj > r.

Proof. Assume f .t/ is of exponential order r. Then there is a constant A > 0 and a

t0 D aqN 2 aqN0 such that jf .t/j 	 A
h
�.a/q

n�1
2

in
rn for all t 2 aqNN . We now show

that

La ff g .s/ D
Z 1

a
e�s.�.t/; a/f .t/Dqt D

1X
nD0

f .aqn/�.aqn/Qn
kD0Œ1C s�.aqk/�

converges for jsj > r. First note that

1X
nDN

ˇ̌
ˇ̌ f .aqn/�.aqn/Qn

kD0.1C s� .aqk//

ˇ̌
ˇ̌ 	

1X
nDN

jf .aqn/j�.aqn/Qn
kD0 j1C s� .aqk/ j

	
1X

nDN

A
�
�.a/q

n�1
2

�n
rn�.aqn/

Qn
kD0 j1C s�.aqk/j :

Consider

lim
n!1

A.�.a/q
n
2 /nC1rnC1�.aqnC1/QnC1

kD0 j1C s�.aqk/j
A.�.a/q

n�1
2 /nrn�.aqn/Qn

kD0 j1C s�.aqk/j

D �.a/r lim
n!1

qnC1

j1C s�.a/qnC1j

D �.a/r lim
n!1

1

j 1

qnC1 C s�.a/j

D �.a/r

�.a/jsj D r

jsj < 1;

for jsj > r: Therefore, by the ratio test, for jsj > r,

Laff g.s/ D
1X

nD0

f .aqn/�.aqn/Qn
kD0Œ1C s�.aqk/�

converges absolutely. ut
Corollary 4.43. If f W aqN0 ! R is of exponential order r > 0, then for each jsj > r
we have that

lim
t!1 e�s.�.t/; a/f .t/ D 0:
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Proof. From Theorem 4.42 we have that for jsj > r

Laff g.s/ D
Z 1

a
e�s.�.t/; a/f .t/Dqt

D
1X

nD0
e�s.�.aqn/; a/f .aqn/�.aqn/

converges. Therefore by the n-th term test we have that

lim
n!1 e�s.�.aqn/; a/f .aqn/�.aqn/ D 0:

Letting t D aqn, we get that

lim
t!1 e�s.�.t/; a/f .t/�.t/ D 0:

Since �.t/ D .q � 1/t, this implies that

lim
t!1 e�s.�.t/; a/f .t/ D 0:

ut
Theorem 4.44 (Linearity). Assume f ; g W aqN0 ! R are of exponential order r >
0. Then for jsj > r and ˛; ˇ 2 C;

La f˛f C ˇgg .s/ D ˛La ff g .s/C ˇLa fgg .s/:

Proof. Let f ; g W aqN0 ! R be of exponential order r > 0. Then for jsj > r and
˛; ˇ 2 C we have

La f˛f C ˇgg .s/ D
Z 1

a
e�s.�.t/; a/Œ˛f .t/C ˇg.t/�Dqt

D ˛

Z 1

a
e�s.�.t/; a/f .t/Dq C ˇ

Z 1

a
e�s.�.t/; a/g.t/Dqt

D ˛La ff g .s/C ˇLa fgg .s/:

ut
In the next theorem we are concerned with the q-Laplace transform of f W aqN0 !

R based at a point aqm 2 aqN0 , which is defined by

Laqmff g.s/ D
Z 1

aqm
e�s.�.t/; a/f .t/Dqt

D
1X

nDm

�.aqn/f .aqn/Qn
kD0Œ1C s�.aqk/�

:
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Theorem 4.45. Let m 2 N0 be given and suppose f W aqN0 ! R is of exponential
order r > 0. Then for jsj > r

Laqmff g.s/ D Laff g.s/ �
m�1X
nD0

�.aqn/f .aqn/Qn
kD0Œ1C s�.aqk/�

:

Proof. Assume m 2 N0 and f W aqN0 ! R is of exponential order r > 0. Then for
jsj > r,

Laqmff g.s/ D
Z 1

aqm
e�s.�.t/; a/f .t/Dqt

D
1X

nDm

�.aqn/f .aqn/Qn
kD0Œ1C s�.aqk/�

D
1X

nD0

�.aqn/f .aqn/Qn
kD0Œ1C s�.aqk/�

�
m�1X
nD0

�.aqn/f .aqn/Qn
kD0Œ1C s�.aqk/�

D Laff g.s/ �
m�1X
nD0

�.aqn/f .aqn/Qn
kD0Œ1C s�.aqk/�

:

ut
Theorem 4.46. The function f .t/ D ep.t; a/, for p 2 Rq.C/ a constant, is of
exponential order r D jpj C �; for each � > 0:

Proof. For t D aqn; n 2 N0, we have

ˇ̌
ep.t; a/

ˇ̌ D jep.aqn; a/j D
ˇ̌
ˇ̌
ˇ

n�1Y
kD0
Œ1C �.aqk/p�

ˇ̌
ˇ̌
ˇ D

n�1Y
kD0

j1C �.aqk/pj:

By applying the triangle inequality to each term in the product we obtain

jep.t; a/j 	
n�1Y
kD0
Œ1C �.aqk/jpj�:

Let � > 0 be given. Then there exists an N such that for all n � N we have
�.aqn/� > 1; which implies that

�.aqk/.jpj C �/ � �.aqk/jpj C 1 for all k 2 NN :
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But it is also true that

�.aqN/.jpj C �/ � �.aqk/jpj C �.aqN/�

� �.aqk/jpj C 1 for all k 	 N;

So, for n sufficiently large, we have

jep.t; a/j 	
n�1Y
kD0
Œ1C �.aqk/jpj�

D
NY

kD0
Œ1C �.aqk/jpj�

n�1Y
sDNC1

Œ1C �.aqs/jpj�

	 

�.aqN/.jpj C �//

�NC1 n�1Y
sDNC1

�.aqs/.jpj C �/

	 

a.q � 1/qN.jpj C �/

�NC1
Œa.q � 1/.jpj C �/�n�N�1 q

n.n�1/
2 q� N.NC1/

2

D an.q � 1/n.jpj C �/nq
N.NC1/

2 q
n.n�1/
2

D q
N.NC1/

2

h
�.a/q

n�1
2

in
.jpj C �/n:

Hence, ep.t; a/ is of exponential order r D jpj C � for each � > 0. ut
Theorem 4.47. Assume p is a regressive constant. Then

La
˚
ep.t; a/

�
.s/ D 1

s � p
; for jsj > jpj:

Proof. Recall that the quantum exponential function ep.t; a/ is given by

ep.t; a/ D
t=qY
�Da

Œ1C �.�/p.�/�:

Since, for any � > 0, ep.t; a/ is of exponential order jpjC�, we have for jsj > jpjC�

Lafep.t; a/g.s/ D
Z 1

a
e�s.�.t/; a/ep.t; a/Dqt

D
Z 1

a

ep.t; a/Qt
�DaŒ1C s�.r/�

Dqt

D
Z 1

a

ep.t; a/

Œ1C s�.t/�
Qt=q
�DaŒ1C s�.�/�

Dqt
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D
Z 1

a

e�s.t; a/ep.t; a/

1C s�.t/
Dqt

D
Z 1

a

ep�s.t; a/

1C s�.t/
Dqt

D 1

p � s

Z 1

a
.p � s/ ep�s.t; a/Dqt

D 1

p � s
ep�s.t; a/

ˇ̌
ˇ
1
a

D 1

s � p
:

Hence,

Lafep.t; a/g.s/ D 1

s � p
; jsj > jpj C �:

Since � > 0 is arbitrary, this holds for all jsj > jpj. ut
Remark 4.48. Since ep.t; a/ � 1 when p D 0, the q-Laplace transform of a
constant function follows from the above theorem and the linearity of the q-Laplace
transform:

La fcg .s/ D cLafe0.t; a/g D c

s
; jsj > 0: (4.3)

Theorem 4.49. The Taylor monomial hn.t; a/, n 2 N0, is of exponential order r D
�; for each � > 0:

Proof. Fix n 2 N0. For t D aqm 2 aqN0 we have that

jhn.t; a/j D .t � a/nq
Œn�qŠ

	 .t � a/n 	 tn D .aqm/n D anqmn: (4.4)

Note that for any fixed ı > 0 and any fixed constant ˛ > 1

lim
m!1˛

m2
2 ım D 1:

Therefore, taking ı D �.a/q� 1
2 �q�n; where � > 0 is fixed but arbitrary and ˛ D q,

we have there is a positive integer M such that

q
m2
2 Œ�.a/q� 1

2 �q�n�m � 1; for m � M:
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That is

Œq
m�1
2 �.a/��m

qmn
� 1; for m � M:

Hence,

qmn 	 Œq
m�1

m �.a/��m; for m � M: (4.5)

Then using (4.4) and (4.5) we get

jhn.t; a/j 	 anqmn 	 anŒ�.a/q
m�1
2 �m�m; for m � M:

Hence, hn.t; a/ is of exponential order �: ut
Theorem 4.50. For n 2 N0,

Lafhn.t; a/g.s/ D 1

snC1 ; for jsj > 0: (4.6)

Proof. From Theorems 4.42 and 4.47, we have that Lafhn.t; a/g.s/ exists for
jsj > 0: We prove that the formula (4.6) holds by mathematical induction. From
Remark 4.48, we have that (4.6) holds for n D 0: Now assume that (4.6) holds for
some n � 0.

Integrating by parts, we obtain

LafhnC1.t; a/g.s/ D
Z 1

a
hnC1.t; a/e�s.�.t/; a/Dqt

D 1

�s
hnC1.t; a/e�s.�.t/; a/

ˇ̌
ˇ
1
tDa

�
Z 1

a

hn.t; a/e�s.�.�.t//; a/

�s
Dqt

D �
Z 1

a
hn.t; a/

�
1

�s
Qt

rDa.1C �.r/s/

�
(using Corollary 4.43)

D 1

s

Z 1

a
hn.t; a/e�s.�.t/; a/Dqt

D 1

s
Lafhn.t; a/g.s/

D 1

s

1

snC1

D 1

snC2

for jsj > 0. ut
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Theorem 4.51. Assume p is a constant. If ˙p 2 Rq, then coshp.t; a/ and sinhp.t; a/
are of exponential order jpj C � for any � > 0. Also if ˙ip 2 Rq, then cosp.t; a/ and
sinp.t; a/ are of exponential order jpj C � for any � > 0.

Proof. By Exercise 4.5, je˙p.t; a/j 	 ejpj.t; a/ for t 2 qN0 . It follows that

j coshp.t; a/j 	 ejpj.t; a/; for t 2 qN0 ;

and so by Theorem 4.46 coshp.t; a/ is of exponential order jpj C � for any � > 0.
Similarly, sinhp.t; a/ is of exponential order jpj C � for any � > 0. Likewise, using
je˙ip.t; a/j 	 ejpj.t; a/ for t 2 aqN0 we get that cosp.t; a/, and sinp.t; a/ are of
exponential order jpj C � for any � > 0. ut
Theorem 4.52. Assume p is a constant. If ˙p 2 Rq.C/, then

(i) Lafsinhp.t; a/g.s/ D p
s2�p2

I
(ii) Lafcoshp.t; a/g.s/ D s

s2�p2
;

for jsj > jpj: If ˙ip 2 Rq.C/, then

(i) Lafcosp.t; a/g.s/ D s
s2Cp2

I
(ii) Lafsinp.t; a/g.s/ D p

s2Cp2
;

for jsj > jpj:
Proof. From Theorem 4.51, the exponential order of each of the functions
coshp.t; a/; sinhp.t; a/, cosp.t; a/, and sinp.t; a/ is jpj C � for any � > 0. It then
follows from Theorem 4.42 that the Laplace transform of each of these functions
exists for jsj > jpj.

For jsj > jpj, we have

Lafsinhp.t; a/g.s/ D La

�
ep.t; a/ � e�p.t; a/

2


.s/

D 1

2

�Lafep.t; a/g.s/ � Lafe�p.t; a/g.s/
�

D 1

2

�
1

s � p
� 1

s � .�p/

�

D 2p

2.s � p/.s C p/

D p

s2 � p2
:

On the other hand, in case jsj > jpj we calculate

Lafcoshp.t; a/g.s/ D La

�
ep.t; a/C e�p.t; a/

2


.s/

D 1

2

�Lafep.t; a/g.s/C Lafe�p.t; a/g.s/
�
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D 1

2

�
1

s � p
C 1

s � .�p/

�

D 2s

2.s � p/.s C p/

D s

s2 � p2
:

If it holds instead that jsj > jpj, then we find that

Lafcosp.t; a/g.s/ D La

�
eip.t; a/C e�ip.t; a/

2


.s/

D 1

2

�Lafeip.t; a/g.s/C Lafe�ip.t; a/g.s/
�

D 1

2

�
1

s � ip
C 1

s C ip

�

D 2s

2.s2 � i2p2/

D s

s2 C p2
:

Finally, in the remaining case where jsj > jpj, we obtain

Lafsinp.t; a/g.s/ D La

�
eip.t; a/ � e�ip.t; a/

2i


.s/

D 1

2i

�Lafeip.t; a/g.s/ � Lafe�ip.t; a/g.s/
�

D 1

2i

�
1

s � ip
� 1

s C ip

�

D 1

2i

�
2ip

s2 C p2

�

D p

s2 C p2
:

And this completes the proof. ut
Theorem 4.53. If f W aqN0 ! R and f .t/ is of exponential order r > 0, then

LafDn
qf g.s/ D snFa.s/ �

n�1X
kD0

sn�1�kDk
qf .a/; for jsj > r; (4.7)

where n 2 N1.
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Proof. We prove (4.7) by induction for n 2 N1. First if n D 1, we obtain (using
integration by parts) the following for jsj > r.

LafD1
qf g.s/ D

Z 1

a
e�s.�.t/; a/Dqf .t/Dqt

D e�s.t; a/f .t/
ˇ̌
ˇ
1
a

�
Z 1

a
�se�s.t; a/f .t/Dqt

D �f .a/C s
Z 1

a
e�s.�.t/; a/f .t/Dqt

D sFa.s/ � f .a/

Now assume that the theorem is true for some k 2 N. Consider

LafDkC1
q f g.s/ D LafDqDk

qf g.s/
D sLafDk

qf g.s/ � Dk
qf .a/

D s

 
skFa.s/ �

k�1X
rD0

sk�1�rDr
qf .a/

!
� Dk

qf .a/

D skC1Fa.s/ �
k�1X
rD0

sk�rDr
qf .a/ � Dk

qf .a/

D skC1Fa.s/ �
kX

rD0
sk�rDr

qf .a/:

Therefore, (4.7) holds for any n 2 N. ut
Theorem 4.54. Assume ˛;˙ ˇ

1C˛�.t/ 2 Rq. Then

(i) La

�
e˛.t; a/ cosh ˇ

1C˛�.t/
.t; a/


.s/ D s�˛

.s�˛/2�ˇ2 I

(ii) La

�
e˛.t; a/ sinh ˇ

1C˛�.t/
.t; a/


.s/ D ˇ

.s�˛/2�ˇ2 ;

for jsj > maxfj˛ C ˇj; j˛ � ˇjg:
Proof. Let ˛ and ˇ be as above, and assume jsj > maxfj˛ C ˇj; j˛ � ˇjg: First
consider

La

�
e˛.t; a/ cosh ˇ

1C˛�.t/
.t; a/


.s/

D La

�
e˛.t; a/

�
1

2

�
e ˇ
1C˛�.t/

.t; a/C e �ˇ
1C˛�.t/

.t; a/

	�
.s/
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D 1

2
La

�
e˛.t; a/e ˇ

1C˛�.t/
.t; a/


.s/C 1

2
La

�
e˛.t; a/e �ˇ

1C˛�.t/
.t; a/


.s/

D 1

2
La

�
e
˛˚ ˇ

1C˛�.t/
.t; a/


.s/C 1

2
La

�
e
˛˚ �ˇ

1C˛�.t/
.t; a/


.s/

D 1

2
La
˚
e˛Cˇ.t; a/

�C 1

2
La
˚
e˛�ˇ.t; a/

�
.s/:

Therefore,

La

�
e˛.t; a/ cosh ˇ

1C˛�.t/
.t; a/


.s/ D 1

2

�
1

s � .˛ C ˇ/
C 1

s � .˛ � ˇ/
	

D 1

2

�
1

.s � ˛/ � ˇ C 1

.s � ˛/C ˇ

	

D 1

2

2.s � ˛/
.s � ˛/2 � ˇ2

D s � ˛
.s � ˛/2 � ˇ2 :

Next consider

La

�
e˛.t; a/ sinh ˇ

1C˛�.t/
.t; a/


.s/

D La

�
e˛.t; a/

�
1

2

�
e ˇ
1C˛�.t/

.t; a/ � e �ˇ
1C˛�.t/

.t; a/

	�
.s/

D 1

2
La

�
e˛.t; a/e ˇ

1C˛�.t/
.t; a/


� 1

2
La

�
e˛/.t; a/e �ˇ

1C˛�.t/
.t; a/



D 1

2
La

�
e
˛˚ ˇ

1C˛�.t/
.t; a/


� 1

2
La

�
e
˛˚ �ˇ

1C˛�.t/
.t; a/



D 1

2
La
˚
e˛Cˇ.t; a/

� � 1

2
La
˚
e˛�ˇ.t; a/

�
:

Hence,

La

�
e˛.t; a/ sinh ˇ

1C˛�.t/
.t; a/


.s/ D 1

2

�
1

s � .˛ C ˇ/
� 1

s � .˛ � ˇ/
	

D 1

2

�
1

.s � ˛/ � ˇ � 1

.s � ˛/C ˇ

	

D 1

2

2ˇ

.s � ˛/2 � ˇ2

D ˇ

.s � ˛/2 � ˇ2 :

ut
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Similar to Theorem 4.54, one can prove the following theorem.

Theorem 4.55. Assume ˛ and ˇ are constants with ˛;˙i ˇ

1C˛�.t/ 2 Rq. Then

(i) La

�
e˛.t; a/ cos ˇ

1C˛�.t/
.t; a/


.s/ D s�˛

.s�˛/2Cˇ2 I

(ii) La

�
e˛.t; a/ sin ˇ

1C˛�.t/
.t; a/


.s/ D ˇ

.s�˛/2Cˇ2 ;

for jsj > maxfj˛ C iˇj; j˛ � iˇjg:
Proof. Let ˛ and ˇ be as above, and assume jsj > maxfj˛ C iˇj; j˛ � iˇjg. First
consider

La

�
e˛.t; a/ cos ˇ

1C˛�.t/
.t; a/


.s/

D La

�
e˛.t; a/

�
1

2

�
e iˇ
1C˛�.t/

.t; a/C e �iˇ
1C˛�.t/

.t; a/

	�
.s/

D 1

2
La

�
e˛.t; a/e iˇ

1C˛�.t/
.t; a/


.s/C 1

2
La

�
e˛.t; a/e �iˇ

1C˛�.t/
.t; a/


.s/

D 1

2
La

�
e
˛˚ iˇ

1C˛�.t/
.t; a/


.s/C 1

2
La

�
e
˛˚ �iˇ

1C˛�.t/
.t; a/


.s/

D 1

2
La
˚
e˛Ciˇ.t; a/

�C 1

2
La
˚
e˛�iˇ.t; a/

�
.s/:

Therefore,

La

�
e˛.t; a/ cos ˇ

1C˛�.t/
.t; a/


.s/ D 1

2

�
1

s � .˛ C iˇ/
C 1

s � .˛ � iˇ/

	

D 1

2

�
1

.s � ˛/ � iˇ
C 1

.s � ˛/C iˇ

	

D 1

2

2.s � ˛/
.s � ˛/2 C ˇ2

D s � ˛
.s � ˛/2 C ˇ2

:

Next consider

La

�
e˛.t; a/ sin ˇ

1C˛�.t/
.t; a/


.s/

D La

�
e˛.t; a/

�
1

2i

�
e iˇ
1C˛�.t/

.t; a/ � e �iˇ
1C˛�.t/

.t; a/

	�
.s/
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D 1

2i
La

�
e˛.t; a/e iˇ

1C˛�.t/
.t; a/


.s/ � 1

2i
La

�
e˛.t; a/e �iˇ

1C˛�.t/
.t; a/


.s/

D 1

2i
La

�
e
˛˚ iˇ

1C˛�.t/
.t; a/


.s/ � 1

2i
La

�
e
˛˚ �iˇ

1C˛�.t/
.t; a/


.s/

D 1

2i
La
˚
e˛Ciˇ.t; a/

�
.s/ � 1

2i
La
˚
e˛�iˇ.t; a/

�
.s/:

Hence,

La

�
e˛.t; a/ sin ˇ

1C˛�.t/
.t; a/


.s/ D 1

2i

�
1

s � .˛ C iˇ/
� 1

s � .˛ � iˇ/

	

D 1

2i

�
1

.s � ˛/ � iˇ
� 1

.s � ˛/C iˇ

	

D 1

2i

2iˇ

.s � ˛/2 C ˇ2

D ˇ

.s � ˛/2 C ˇ2
:

ut
Example 4.56. Use the q-Laplace transform to solve the following IVP:

D2
qy.t/ � 2Dqy.t/ � 8y.t/ D 0; t 2 aqN0

y.a/ D �3=2; Dqy.a/ D 0:

Taking the Laplace transform of both sides, we have

�
s2Ya.s/ � sy.a/ � sDqy.a/

� � 2 .sYa.s/ � y.a// � 8Ya.s/ D 0:

Using the initial conditions, we have

s2Ya.s/C 3s

2
� 2sYa.s/ � 3 � 8Ya.s/ D 0:

Solving for Ya.s/ we get

Ya.s/ D 3 � 3s
2

s2 � 2s � 8 D �3
2

s � 1
.s � 1/2 � 9 C 1

2

3

.s � 1/2 � 9 :

Taking the inverse Laplace transform we obtain

y.t/ D �3
2

e1.t; a/ cosh 3
1C�.t/

.t; a/C 1

2
e1.t; a/ sinh 3

1C�.t/
.t; a/:
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4.8 Matrix Exponential

In this section we will study matrix exponentials defined on the quantum set qN0 .
We say that a square matrix function A defined on qN0 is regressive provided

det ŒI C �.t/A.t/� ¤ 0; t 2 aqN0 :

Definition 4.57. Assume A is a regressive matrix function on aqN0 . Then we define
the matrix exponential eA.t; s/ for each fixed s 2 aqN0 to be the unique solution of
the matrix IVP

DqX.t/ D A.t/X.t/; t 2 aqN0

X.s/ D I;

where I is the identity matrix.

The following theorem gives a formula for the matrix exponential function
eA.t; a/. First we introduce some notation. Assume B.t/ is a matrix function defined
on aqN0 and s 	 t are in aqN0 . Then

�
t
qY

�Ds

B.�/ WD B

�
t

q

�
B

�
t

q2

�
� � � B.qs/B.s/;

with the convention that

�
s
qY

�Ds

B.�/ D I:

Theorem 4.58. Assume A.t/ is a regressive matrix function on aqN0 and s 2 aqN0 .
Then

eA.t; s/ D
8<
:

�Q t
q
�Ds ŒI C �.�/A.�/� ; t 2 NsQ s
q
�Dt ŒI C �.�/A.�/��1 ; t 2 N

s
q
a :

Also, if t D aqn and s D aqm, then

eA.t; s/ D
( �Qn�1

kDm



I C �.aqk/A.aqk/

�
; n 2 NmQm�1

kDn



I C �.aqk/A.aqk/

��1
; 0 	 n < m:
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Proof. Assume X.t/ solves the IVP

DqX.t/ D A.t/X.t/; t 2 aqN0

X.s/ D I:

Since DqX.t/ D A.t/X.t/, we have that

X.qt/ D ŒI C �.t/A.t/�X.t/: (4.8)

Now assume that t 2 NsC1. Letting t D s in (4.8) we have that

X.qs/ D ŒI C �.s/A.s/�X.s/ D ŒI C �.s/A.s/� :

Letting t D qs in (4.8) we have that

X.q2s/ D ŒI C �.qs/A.qs/�X.qs/

D ŒI C �.qs/A.qs/� ŒI C �.s/A.s/� :

Letting t D q2s in (4.8) we have that

X.q3s/ D 

I C �.q2s/A.q2s/

�
X.q2s/

D 

I C �.q2s/A.q2s/

�
ŒI C �.qs/A.qs/� ŒI C �.s/A.s/� :

Proceeding in this manner we have by mathematical induction that for t 2 NsC1

eA.t; s/ D X.t/ D �
t
qY

�Ds

ŒI C �.�/A.�/� :

If t D s,

eA.t; s/ D I D �
s
qY

�Ds

ŒI C �.�/A.�/� ;

by our convention on products. Finally, consider the case when t 2 N

s
q
a : Solving (4.8)

for X.t/, we get

X.t/ D ŒI C �.t/A.t/��1 X.qt/: (4.9)

Letting t D s
q in (4.9) we get

X

�
s

q

�
D
�

I C �

�
s

q

�
A

�
s

q

�	�1
X.s/ D

�
I C �

�
s

q

�
A

�
s

q

�	�1
:
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Letting t D s
q2

in (4.9) we get

X

�
s

q2

�
D
�

I C �

�
s

q2

�
A

�
s

q2

�	�1
X

�
s

q

�

D
�

I C �

�
s

q2

�
A

�
s

q2

�	�1 �
I C �

�
s

q

�
A

�
s

q

�	�1
:

Proceeding by mathematical induction we get that for t 2 N

s
q
a

eA.t; s/ D X.t/ D
s
qY
�Dt

ŒI C �.�/A.�/��1 :

The second formula for eA.t; s/ in this theorem follows from the first formula in this
theorem for eA.t; s/. ut
Example 4.59. Find eA.t; 1/ for the quantum set qN0 , where A.t/ WD 1

t B, t 2 qN0 ,
where B is a constant matrix satisfying detŒI C .q � 1/B� ¤ 0. By Theorem 4.58 for
t D qn

eA.t; a/ D �
n�1Y
kD1

�
I C �.qk/

qk
B

	

D ŒI C .q � 1/B�n�1

D ŒI C .q � 1/B�logq.t/�1 :

In the next theorem we give several properties of the matrix exponential function
eA.t; s/; based at s 2 Na.

Theorem 4.60. Assume A.t/;B.t/ are regressive matrix functions on aqN0 and
t; s; r 2 Na. Then

(i) if 0 denotes the zero matrix function, then e0.t; s/ D I and eA.t; t/ D II
(ii) det eA.t; s/ ¤ 0; t 2 NaI

(iii) �eA.t; s/ D A.t/eA.t; s/I
(iv) eA.qt; s/ D ŒI C .q � 1/tA.t/�eA.t; s/I
(v) eA.t; s/eA.s; r/ D eA.t; r/I

(vi) eA.t; s/eB.t; s/ D eA˚B.t; s/I
(vii) e�A.t; s/ D 1

eA.t;s/
I

(viii) eA.t;s/
eB.t;s/

D eA�B.t; s/; if A.t/B.s/ D B.s/A.t/ t; s 2 aqN0 I
(ix) eA.t; s/ D feA.s; t/g�1:

Proof. We prove many of these properties when s D a and leave it to the reader
to show that the same results hold for any s 2 Na. By the definition of the matrix
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exponential we have that (i) and (iv) hold. To see that (ii) holds when s D a note
that since A is a regressive matrix function on aqN0 ; detŒI C .q � 1/tA.t/� ¤ 0 for
t 2 Na and hence we have that

det eA.t; a/ D
t
qY

�Da

detŒI C �.�/A.�/� ¤ 0;

for t 2 Na. The proof of (iii) is similar to the proof of (ii).
Since

eA.�.t/; a/ D �
tY

�Da

ŒI C �.�/A.�/�

D ŒI C �.t/A.t/�

0
@ �

t
qY

�Da

ŒI C �.�/A.�/�

1
A

D ŒI C �.t/A.t/�eA.t; a/;

we have that (v) holds when s D a.
We only show (vi) holds when t � s � r and leave the other cases to the reader.

In particular, we merely observe that

eA.t; s/eA.s; r/ D �
t
qY

�Ds

ŒI C �.�/A.�/�

 
�

s�1Y
�Dr

ŒI C �.�/A.�/�

!

D �
t
qY

�Dr

ŒI C �.�/A.�/�

D eA.t; r/:

We proved (vii) holds when with s D a, earlier to motivate the definition of the
circle plus addition. To see that (viii) holds with s D a note that

e�A.t; a/ D �
t
qY

�Da

ŒI C �.�/.�A/.�/�

D �
t
qY

�Da

1

I C �.�/A.�/

D � 1
Q t

q
�DaŒI C �.�/A.�/�

D eA.t; a/
�1:
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Since

ep.t; a/

eq.t; a/
D ep.t; a/e�q.t; a/ D ep˚Œ�q�.t; a/ D ep�q.t; a/;

we have (ix) holds when s D a. Since

ep.t; a/ D
t
qY

sDa

Œ1C p.s/� D 1
Q t

q
sDa

1
Œ1Cp.s/�

D 1

ep.a; t/
;

we have that (x) holds. ut
Theorem 4.61 (Variation of Constants Formula). Assume A.t/ is an n � n
regressive matrix function and b.t/ is an n � 1 vector function on aqN0 : Then the
unique solution of the IVP

Dqy.t/ D A.t/y.t/C b.t/; t 2 aqN0

y.a/ D y0;

where y0 is a given n � 1 constant vector, is given by

y.t/ D eA.t; a/y0 C
Z t

a
eA.t; �.s//b.s/Dqs; t 2 aqN0 :

Proof. The proof of the uniqueness is left to the reader. Let

y.t/ D eA.t; a/y0 C
Z t

a
eA.t; �.s//b.s/Dqs; t 2 aqN0 :

Then using the Leibniz rule we get

Dqy.t/ D A.t/eA.t; a/y0 C
Z t

a
A.t/eA.t; �.s//b.s/Dqs C eA.�.t/; �.t//b.t/

D A.t/

�
eA.t; a/y0 C

Z t

a
eA.t; �.s//b.s/Dqs

	
C b.t/

D A.t/y.t/C b.t/;

for t 2 aqN0 . Also, y.a/ D y0: ut
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4.9 Floquet Theory

Most of the results in this section appear in a paper by Bohner and Chieochan
[61]. We now define what Bohner and Chieochan call an !-periodic function on
the quantum set qN0 .

Definition 4.62. Assume ! 2 N and f is a function defined on qN0 . Then we say f
is an !-periodic function on qN0 provided

q! f .q! t/ D f .t/; t 2 qN0 :

Remark 4.63. By Exercise 4.10 if have that if f is an !-periodic function on qN0 ,
then

qn!Ckf .qn!Ckt/ D qkf .qkt/ (4.10)

for all n 2 N0, 0 	 k 	 ! � 1, t 2 qN0 :

Next we give examples (see [61]) of !-periodic functions on qN0 :

Example 4.64. Let r0; r1; � � � ; r!�1 be ! real numbers and define f on qN0 by

f .t/ D f .qn!Ck/ D rk

qn!Ck
D rk

t
;

where n 2 N0 and 0 	 k 	 ! � 1: To see that f is an !-periodic function on qN0 ,
note that, since t 2 qN0 , it thus follows that t D qn!Ck for some n 2 N and some
k 2 f0; 1; 2; : : : ; ! � 1g, and hence

q! f .q! t/ D q! f .q!qn!Ck/

D q! f .q.nC1/!Ck/

D q!
rk

q.nC1/!Ck

D rk

qn!Ck

D f .t/:

Similarly, one gets the following corresponding result for examples of !-periodic
matrix functions on qN0 :

Example 4.65. Let R0;R1; � � � ;R!�1 be ! constant square matrices of the same
dimension and define the matrix function A on qN0 by

A.t/ D A.qn!Ck/ D 1

qn!Ck
Rk D 1

t
A.t/;

where n 2 N0 and 0 	 k 	 ! � 1: Then A is an !-periodic matrix function on qN0 :
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Bohner et al. [61] motivated the definition of an !-periodic function by giving
the following theorem.

Theorem 4.66. If f W qN0 ! R is !-periodic, then

Z q.nC1/!

qn!
f .t/Dqt D

Z q!

1

f .t/Dqt (4.11)

for n � 0.

Proof. Clearly, (4.11) holds for n D 0. Now assume n � 1 is fixed but arbitrary.
Then

Z q.nC1/!

qn!
f .t/Dqt D

.nC1/!�1X
kDn!

f .qk/�.qk/

D
.nC1/!�1X

kDn!

f .qk/.q � 1/qk

D
!�1X
kD0
.q � 1/qn!Ckf .qn!Ck/

D
!�1X
kD0

f .qk/.q � 1/qk; .using (4.10)/

D
!�1X
kD0

f .qk/�.qk/

D
Z q!

1

f .t/Dqt:

This completes the proof. ut
Floquet theory in the quantum case is the study of the Floquet system

Dqx.t/ D A.t/x.t/; t 2 qN0 ; (4.12)

where the matrix function A is assumed to be regressive with smallest positive
integer period !: In this case we say ! is the prime period of A.

Definition 4.67. The boundary value problem

Dqy.t/ D A.t/y.t/ (4.13)

x.t0/ D q!x.q! t0/; (4.14)
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where t0 2 qN0 ; is called a periodic boundary value problem and the boundary
condition (4.14) is called a periodic boundary condition.

The motivation for Definition 4.67 is the following theorem.

Theorem 4.68. Assume A.t/ is a regressive matrix function which is !-periodic on
qN0 . If x.t/ is a solution of the periodic BVP (4.13), (4.14), then x is !-periodic on
qN0 :

Proof. Assume x.t/ is a solution of the periodic BVP (4.13), (4.14). If we let

y.t/ WD q!x.q! t/; t 2 qN0 ;

we have, using the chain rule formula (4.1), that

Dqy.t/ WD q!Dqx.q! t/

D q!q!Dqx.q! t/

D q!q!A.q! t/x.q! t/

D q!A.t/x.q! t/

D A.t/q!x.q! t/

D A.t/y.t/:

Hence, y.t/ is a solution of the Floquet system (4.12). Since

y.t0/ D q!x.q! t0/ D x.t0/;

we have that x.t/ and y.t/ satisfy the same initial conditions. Thus by the uniqueness
of solutions of IVPs we have that

x.t/ D y.t/ D q!x.q! t/; t 2 qN0 :

That is, x.t/ is !-periodic. ut
Theorem 4.69. If B.t/ is an !-periodic and regressive matrix function on qN0 ; then

eB.q
! t; q!s/ D eB.t; s/ t; s 2 qN0 : (4.15)

Proof. We just prove the case where s < t are in qN0 . Let s D qm, t D qn, where
m; n 2 N0 with m < n: Then

eB.q
! t; q!s/ D eB.q

!Cn; q!Cm/

D
!Cn�1Y
kD!Cm



I C .q � 1/qkB.qk/

�
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D
n�1Y
kDm



I C .q � 1/qkC!B.qkC!/

�

D
n�1Y
kDm



I C .q � 1/qkq!B.q!qk/

�

D
n�1Y
kDm



I C .q � 1/qkB.qk/

�

D eB.t; s/;

which is what we wanted to prove. ut
Theorem 4.70 (Quantum Floquet Theorem). Assume the n � n matrix function
A.t/ is regressive on qN0 and is periodic with prime period !. Assume that ˆ.t/
is a fundamental matrix of (4.12). Then ‰.t/ WD q!ˆ.q! t/ is also a fundamental
matrix of (4.12) and ‰.t/ D ˆ.t/D, where D D q!ˆ�1.1/ˆ.q!/. Moreover there
exist an !-periodic regressive nonsingular matrix function B.t/ and an !-periodic
nonsingular matrix function B.t/ such that

ˆ.t/ D P.t/eB.t; 0/; t 2 qN0 :

Proof. The proof of the first part of this theorem is similar to the proof of
Theorem 4.70. Assume ˆ.t/ is a fundamental matrix of the Floquet system (4.12)
and let

‰.t/ WD q!ˆ.q! t/; t 2 Na:

Then

Dq‰.t/ D q!Dqˆ.q
! t/

D q!q!Dqˆ.q
! t/

D q!q!A.q! t/ˆ.q! t/

D q!A.t/ˆ.q! t/

D A.t/q!ˆ.q! t/

D A.t/‰.t/:

Hence, ‰.t/ is a solution of the Floquet system (4.12). Since

det‰.t/ D qN0 detˆ.q! t/ ¤ 0; t 2 qN0
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we have that ‰.t/ is a fundamental matrix of the Floquet system (4.12). But, since
ˆ.t/ and‰.t/ are fundamental matrices of (4.12), we have that there is a nonsingular
constant matrix D so that ˆ.t/ D ‰.t/D, for t 2 qN0 . Letting t D 1 and solving for
D we get D D q!ˆ�1.1/ˆ.q!/: ut
Definition 4.71. Assume ˆ is a fundamental matrix of the Floquet system (4.12).
Then the eigenvalues of the matrix

D WD q!ˆ�1.1/ˆ.q!/

are called the Floquet multipliers of the Floquet system (4.12).

Since the Floquet system (4.12) has infinitely many fundamental matrices we
need to prove that Floquet multipliers are well defined. To see this assume ˆ1.t/
and ˆ2.t/ are two fundamental matrices of the Floquet system (4.12) and let

D1 WD q!ˆ�1
1 .1/ˆ1.q

!/; D2 WD q!ˆ�1
2 .1/ˆ2.q

!/:

It remains to show that D1 and D2 have the same eigenvalues. Since ˆ1.t/ and
ˆ2.t/ are fundamental matrices of the Floquet system (4.12), we have that there is
a nonsingular constant matrix M so that

ˆ2.t/ D ˆ1.t/M; t 2 qN0 :

It follows that

D1 D q!ˆ�1
1 .1/ˆ2.q

!/ D q!M�1ˆ�1
2 .1/ˆ2.q

!/M D M�1D2M;

from which we conclude that D1 and D2 have the same eigenvalues.

Theorem 4.72. The number �0 is a Floquet multiplier of the Floquet system (4.12)
if and only if there is a nontrivial solution x.t/ of the Floquet system (4.12) satisfying

q!x.q! t/ D �0x.t/; t 2 qN0 :

Proof. Assume the number �0 is a Floquet multiplier of the Floquet system (4.12).
Let ˆ.t/ be a fundamental matrix of the Floquet system (4.12). Then by Floquet’s
Theorem q!ˆ.q! t/ D ˆ.t/D, where D D q!ˆ�1ˆ.q!/: Since �0 is an eigenvalue
of D there is a corresponding eigenvector x0 of the constant matrix D. Let x.t/ WD
ˆ.t/x0. Then x.t/ is a nontrivial solution of the Floquet system (4.12). Furthermore

q!x.q! t/ D q!ˆ.q! t/x0 D ˆ.t/Dx0

D ˆ.t/�0x0 D �0ˆ.t/x0 D �0x.t/:

The proof of the converse statement in this proof is Exercise 4.11. ut
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Corollary 4.73. If p W qN0 ! R is an !-periodic function on qN0 ; then 1
t ep.q! t; t/,

1
t coshp.q! t; t/, 1

t sinhp.q! t; t/; 1
t cosp.q! t; t/, and 1

t sinp.q! t; t/ are !-periodic
functions on qN0 :

Proof. We will just show that f .t/ WD 1
t ep.q! t; t/ is an !-periodic function on qN0 :

To see this note that

q! f .q! t/ D q!

q! t
ep.q

2! t; q! t/

D 1

t
ep.q

! t; t/; by (4.15)

D f .t/

for t 2 qN0 : The rest of the proof is left to the reader (see Exercise 4.12). ut

4.10 Nabla Fractional q-Calculus

Most of the material in this section can be found in Baoguo et al. [50]. In Chap. 2
we considered the delta fractional calculus and in Chap. 3 we considered the
nabla fractional calculus. One might have noticed that the nabla fractional calculus
was easier to work with than the delta fractional calculus. The same applies to
the quantum fractional calculus. Hence, in the remainder of this chapter we will
be concerned with what we will call the nabla quantum fractional calculus. In
particular, we will be interested in the nabla quantum operator, denoted rq, which
is defined by

rqx.t/ WD x.t/ � x.�.t//

.1 � p/t
D x.t/ � x.pt/

.1 � p/t
; t 2 qN0 ;

where we assume that q > 1, p WD 1
q ; and x W qN�1 ! R: Note that since q > 1, it

follows that 0 < p < 1. From Exercise 4.13 we have the relationship

rqx.qt/ D Dqx.t/:

Also, we will use the quantum integral of x W qN0 ! R, which is defined by

Z t

p
x.�/rq� D

tX
�D1

x.�/.�/

D
kX

iD0
x.qi/Œqi.1 � p/�; (4.16)
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where t D qk, p D 1
q D �.1/, .t/ WD qk � qk�1 D qk.1 � p/, and by conventionR p

p x.�/rq� D 0: We would like to point out for the reader that the papers [6] and
[26] present an introduction to fractional q-differences and q-sums. In this section,
we consider the asymptotic behavior of solutions of the nabla fractional q-difference
equation

r˛
q;px.t/ D c.t/x.t/; t 2 qN1 ; (4.17)

where q > 1, N1 D f1; 2; : : : g, p D q�1, and the fractional operator, r˛
q;p, is defined

later in Definition 4.78.

Definition 4.74. Assume 0 < p < 1. Then the quantum gamma function is defined
by

�p.t/ WD .p; p/1.1 � p/1�t

.pt; p/1
;

where .a; p/1 WD Q1
jD0.1 � apj/ and t 2 R n f0;�1;�2; : : : g.

Note that since 0 < p < 1, the series
P1

jD0 apj converges and so .a; p/1, a 2 R is
well defined. The next theorem gives an important formula for this quantum gamma
function.

Theorem 4.75. Assume 0 < p < 1. Then

�p.t C 1/ D Œt�p�p.t/; t 2 R: (4.18)

In particular, �p.1/ D 1 and �p.n/ D Œn�pŠ for n 2 N1:

Proof. We have that

�p.t C 1/ D .p; p/1.1 � p/�t

Q1
jD0.1 � ptC1Cj/

D 1 � pt

1 � p

.p; p/1.1 � p/1�t

Q1
jD0.1 � ptCj/

D 1 � pt

1 � p

.p; p/1.1 � p/1�t

.pt; p/1
D Œt�p�p.t/

for t 2 R. By the definition of �p.t/we get �p.1/ D 1. Then using the formula (4.18)
we get that �p.n/ D Œn�pŠ for n 2 N1: ut
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The p D q�1-power function (quantum power function), q > 1, is given by

.t � s/.˛/
q�1 D .t � s/.˛/p WD t˛

. s
t ; p/1

.p˛ s
t ; p/1

; t ¤ 0; 0 < p WD 1

q
< 1; ˛ 2 R:

(4.19)
Note that we used a different notation for .t � s/.˛/

q�1 in Definition 4.9. Furthermore,

one should observe that the power rule formulas for Dq.t � s/˛p in Theorem 4.12 are
not as nice as the nabla quantum power rule formulas that we obtain momentarily
in Theorem 4.76. For ˛ D n; a positive integer, this expression reduces to (see
Exercise 4.15)

.t � s/.n/
q�1 D .t � s/.n/p D tn

n�1Y
jD0

�
1 � pj s

t

�
: (4.20)

We next give nabla power rule formulas.

Theorem 4.76. Assume q > 1, p D q�1 and ˛ 2 R.

(i) The nabla q-difference of the p-factorial function .t � s/.˛/p D .t � s/.˛/p with
respect to t is given by

trq.t � s/.˛/p D Œ˛�p.t � s/.˛�1/
p :

(ii) The nabla q-difference of the p-factorial function .t � s/.˛/p D .t � s/.˛/p with
respect to s is given by

srq.t � s/.˛/p D �Œ˛�p.t � ps/.˛�1/
p :

Proof. To see that (i) holds consider

trq.t � s/.˛/p D .t � s/.˛/p � .pt � s/.˛/p

.1 � p/t

D
t˛ .s=t;p/1
.p˛s=t;p/1

� p˛t˛ .s=pt;p/1
.p˛�1s=t;p/1

.1 � p/t

D
t˛
Q1

nD0
1�pns=t
1�p˛Cns=t

� p˛t˛
Q1

nD0
1�pn�1s=t
1�p˛Cn�1s=t

.1 � p/t

D
t˛
Q1

nD0
1�pns=t
1�p˛Cns=t

h
1 � p˛.1�s=pt/

1�p˛�1s=t

i

.1 � p/t

D
t˛�1Q1

nD0
1�pns=t
1�p˛Cns=t

h
1�p˛

1�p˛�1s=t

i

1 � p
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D 1 � p˛

1 � p
t˛�1

1Y
nD0

1 � pns=t

1 � p˛�1Cns=t

D 1 � p˛

1 � p
� t˛�1.s=t; p/1
.p˛C1s=t; p/1

D 1 � p˛

1 � p
.t � s/.˛�1/

p

D Œ˛�p.t � s/.˛�1/
p :

Hence, (i) holds. To see that (ii) holds consider

srq.t � s/.˛/p D .t � s/.˛/p � .t � ps/.˛/p

s � ps

D
t˛ .s=t;p/1
.p˛s=t;p/1

� t˛ .ps=t;p/1
.p˛C1s=t;p/1

s � ps

D
t˛
Q1

nD0
1�pns=t
1�p˛Cns=t

� t˛
Q1

nD0
1�p1Cns=t
1�p˛C1Cns=t

s � ps

D
t˛
Q1

nD1
1�pns=t
1�p˛Cns=t

h
1�s=t
1�p˛s=t � 1

i

s � ps

D
t˛�1Q1

jD0
1�pjC1s=t
1�p˛CjC1s=t

h �1Cp˛

1�p˛s=t

i

1 � p

D �1 � p˛

1 � p
t˛�1

1Y
jD0

1 � pjC1s=t

1 � p˛�1CjC1s=t

D �1 � p˛

1 � p
� t˛�1.ps=t; p/1
.p˛C1ps=t; p/1

D �Œ˛�p.t � ps/.˛�1/
p :

And this completes the proof. ut
For q > 1, p D q�1 we define the ˛-th order nabla q-fractional Taylor

monomial by

K˛.t; s/ WD .t � s/.˛/p

�p.˛ C 1/
:

Then by Theorem 4.76 we get the important formulas
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trqK˛.t; s/ D K˛�1.t; s/;

trqK˛.t; �.s// D K˛�1.t; �.s// D K˛�1.t; ps/, and

srqK˛.t; s/ D �K˛�1.t; ps/;

which we will use frequently in the remainder of this section. Next we define the
˛-th nabla quantum fractional sum as in J. Čermák and L. Nechvátal [65] in terms
of the K˛�1.t; s/

Definition 4.77 (Nabla Fractional Sum). Assume ˛ > 0, q > 1, p D q�1, and
f W qN0 ! R. Then we define the nabla q-fractional sum of f at t D qk by

.r�˛
q;p f /.t/ WD

Z t

p
K˛�1.t; p�/f .�/rq�

D
tX

�D1
K˛�1.t; p�/f .�/.�/

D
kX

iD0
K˛�1.t; qi�1/f .qi/.qi/;

where by convention r�˛
q;p f .p/ D 0: Note that the second subscript gives the lower

limit of integration in the above integral definition.

Next we define the ˛-order nabla q-difference for ˛ > 0 in terms of a nabla
q-sum.

Definition 4.78 (Nabla Fractional Difference). Assume ˛ > 0, q > 1, p D q�1,
m � 1 < ˛ < m, where m 2 N1, and f W qN0 ! R. Then we define the nabla
q-fractional difference of f at t by

.r˛
q;pf /.t/ WD .rm

q r�.m�˛/
q;p f /.t/;

for t 2 qN0 : Also

.r˛
q;1f /.t/ WD .rm

q r�.m�˛/
q;1 f /.t/:

Similar to the proof of the q-difference Leibniz rule in Theorem 4.35 one can prove
the following nabla quantum difference Leibniz rule (see Exercise 4.14).

Lemma 4.79 (Leibniz Rule). Assume f W qN1 � qN1 ! R and q > 1: Then

rq

�Z t

1

f .t; s/rqs

	
D
Z t

1
trqf .t; s/rqs C f .pt; t/

for t 2 qN1 :
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The following theorem shows that we can get the formula for the nabla alpha
fractional difference, for ˛ > 0, from the formula for the nabla alpha fractional sum
by replacing ˛ by �˛.

Theorem 4.80. Assume ˛ > 0, q > 1, p D q�1, m � 1 < ˛ < m, where m 2 N1,
and f W qN0 ! R. Then

r˛
q;pf .t/ D

Z t

p
K�˛�1.t; ps/f .s/rqs; t 2 qN0 : (4.21)

Also

r˛
q;1f .t/ D

Z t

1

K�˛�1.t; ps/f .s/rqs: (4.22)

Proof. Using the definition of the nabla fractional difference (Definition 4.78) and
the Leibniz rule in Lemma 4.79 we have that

r˛
q;pf .t/ D rm

q r�.m�˛/
p;q f .t/

D rm�1
q rqr�.m�˛/

p;q f .t/

D rm�1
q

�
rq

Z t

p
Km�˛�1.t; ps/f .s/rq

	

D rm�1
q

�Z t

p
Km�˛�2.t; ps/f .s/rqs C Km�˛�1.pt; pt/f .t/

	

D rm�1
q

�Z t

p
Km�˛�2.t; ps/f .s/rqs

	
:

Repeating this argument m�1more times we obtain by mathematical induction that

r˛
q;pf .t/ D

Z t

p
K�˛�1.t; ps/f .s/rqs:

The proof of the last sentence in the statement of this theorem is similar and hence
is omitted. ut
Theorem 4.81. Assume 0 < ˛ < 1, c.t/ 	 0, t 2 qN1 . Then any solution of the
equation

r˛
q;px.t/ D c.t/x.t/; t 2 qN1 (4.23)

satisfying x.1/ > 0 is positive on qN0 :
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Proof. Equation 4.22 gives us that

r˛
q;px.t/ D

Z t

p
K�˛�1.t; ps/x.s/rqs;

and hence if t D qk, we see that

r˛
q;px.t/ D

kX
iD0

K�˛�1.t; p1�i/x.qi/.qi/: (4.24)

Since x.t/ is a solution of (4.23), we obtain, using (4.24), that

h
K�˛�1.t; p1�k/.t/ � c.t/

i
x.qk/ (4.25)

D �
k�1X
iD0

K�˛�1.t; p1�i/.qi/x.qi/:

We now show that since 0 < ˛ < 1, it follows that K�˛�1.t; p1�i/ < 0 for
0 	 i 	 k � 1. To see this first note that

�p.�˛/ D .p; p/1.1 � p/1C˛

.p�˛; p/1

D .1 � p/1C˛
Q1

jD0Œ1 � pjC1�Q1
jD0Œ1 � pj�˛�

D .1 � p/1C˛
Q1

jD0Œ1 � pjC1�
.1 � p�˛/

Q1
jD1Œ1 � pj�˛�

< 0:

Then note that for 0 	 i 	 k � 1, t D qk,

.t � qi�1/.�˛�1/
p D t�˛�1 .pk�iC1; p/1

.pk�i�˛; p/1

D t�˛�1
Q1

jD0Œ1 � pk�iC1Cj�Q1
jD0Œ1 � pk�i�˛Cj�

> 0

It follows from the last two inequalities that

K�˛�1.t; qi�1/ D .t � qi�1/�˛�1
p

�p.�˛/ < 0

for 0 	 i 	 k � 1:
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Since c.t/ 	 0 and K�˛�1.t; p1�k/ > 0 the coefficient of x.t/ D x.qk/ on the
right-hand side of (4.25) is positive. Since K�˛�1.t; p1�i/ < 0 for 0 	 i 	 k � 1;

.t/ > 0; and x.1/ > 0 it follows from (4.25) and the strong induction principle and
x.1/ > 0 that x.t/ D x.qk/ > 0, for k 2 N0. This completes the proof. ut

Next we consider the case where the coefficient in (4.17) satisfies c.t/ 	 0;

t 2 qN0 : The following results will be useful in proving our Theorem 4.88.

Lemma 4.82. Assume ˛ 2 R and 0 < p < 1: Then for t ¤ 0

.1 � p/K�˛�1.t; p/C K�˛.t; 1/ D K�˛.t; p/:

Proof. For t ¤ 0 we have that

.1 � p�˛/.t � p/.�˛�1/
p C .t � 1/.�˛/p

D .1 � p�˛/t�˛�1 .pt�1; p/1
.p�˛t�1; p/1

C t�˛
.t�1; p/1

.p�˛t�1; p/1

D t�˛

.p�˛t�1; p/1


t�1.1 � p�˛/.pt�1; p/1 C .t�1; p/1

�

D t�˛

.p�˛t�1; p/1

2
4.1 � p�˛/t�1

1Y
jD0

�
1 � pjC1

t

�
C

1Y
jD0

�
1 � pj

t

�3
5

D
t�˛

Q1
jD0

�
1 � pjC1

t

�

.p�˛t�1; p/1


.1 � p�˛/ t�1 C �

1 � t�1
��

D
t�˛

Q1
jD0

�
1 � pjC1

t

�

.p�˛t�1; p/1
Œ1 � p�˛t�1�

D
t�˛

Q1
jD0

�
1 � pjC1

t

�

.p1�˛t�1; p/1

D
t�˛

Q1
jD0

�
1 � pjC1

t

�
Q1

jD0 .1 � t�1pjC1�˛/

D .t � p/.�˛/p :

We now divide both sides of this last equation by �p.�˛ C 1/ D Œ�˛�p�p.�˛/ to
obtain

.1 � p�˛/.t � p/.�˛�1/
p

Œ�˛�p�p.�˛/ C K�˛.t; 1/ D K�˛.t; p/:
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This yields

.1 � p/K�˛�1.t; p/C K�˛.t; 1/ D K�˛.t; p/;

which is the desired result. ut
Lemma 4.83. Assume f W qN0 ! R, 0 < ˛ < 1, q > 1; and p D q�1. Then

r�.1�˛/
q;1 rqf .t/ D rqr�.1�˛/

q;1 f .t/ � f .1/K�˛.t; 1/ (4.26)

D r˛
q;1f .t/ � f .1/K�˛.t; 1/; (4.27)

and

r�.1�˛/
q;1 rqf .t/ D rqr�.1�˛/

q;p f .t/ � f .1/K�˛.t; p/ (4.28)

D r˛
q;pf .t/ � f .1/K�˛.t; p/: (4.29)

Proof. Integrating by parts and using (4.22), we have

r�.1�˛/
q;1 rqf .t/ D

Z t

1

K�˛.t; ps/rqf .s/rqs

D
h
K�˛.t; s/f .s/

it

sD1 C
Z t

1

K�˛�1.t; ps/f .s/rqs

D r˛
q;1f .t/ � f .1/K�˛.t; 1/

and hence (4.27) holds. By the Leibniz rule (Lemma 4.79) we get that

rqr�.1�˛/
q;1 f .t/ D r˛

q;1f .t/: (4.30)

Using (4.30) and (4.27) we get that (4.26) holds.
From (4.30) and (4.21) it follows that

rqr�.1�˛/
q;p f .t/ D r˛

q;1f .t/ D
Z t

p
K�˛�1.t; ps/f .s/rqs

D
Z 1

p
K�˛�1.t; ps/f .s/rqs C

Z t

1

K�˛�1.t; ps/f .s/rqs

D K�˛�1.t; p/f .1/.1/C
Z t

1

K�˛�1.t; ps/f .s/rqs

D K�˛�1.t; p/f .1/.1 � p/C r˛
q;1f .t/;

where in the last step we used (4.22). Subtracting f .1/K�˛.t; p/ from both sides of
this last equation we get
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rqr�.1�˛/
q;p f .t/ � f .1/K�˛.t; p/

D K�˛�1.t; p/f .1/.p � 1/C r˛
q;1f .t/ � f .1/K�˛.t; p/

D r˛
q;1f .t/ � f .1/ Œ.1 � p/K�˛�1.t; p/C K�˛.t; p/�

D r˛
q;1f .t/ � f .1/K�˛.t; 1/

D r�.1�˛/
q;1 rqf .t/;

where in the second to the last step we used Lemma 4.82 and in the last step we
used (4.27). Hence (4.28) holds. Since by the Leibniz rule rqr�.1�˛/

q;p f .t/ D r˛
q;pf .t/

we have that (4.28) implies (4.29) holds. ut
Replacing ˛ by 1�˛ in Lemma 4.83, we get the following corollary will be used

later.

Corollary 4.84. Assume f W qN0 ! R, 0 < ˛ < 1. Then

r�˛
q;1 rqf .t/ D rqr�˛

q;1 f .t/ � f .1/K˛�1.t; 1/; (4.31)

r�˛
q;1 rqf .t/ D rqr�˛

q;p f .t/ � f .1/K˛�1.t; p/: (4.32)

Lemma 4.85. Assume that f W qN0 � qN0 ! R. Then we have that

Z t

a

Z t

�.�/

f .�; �/rq�rq� D
Z t

a

Z �

a
f .�; �/rq�rq�:

Proof. Let

�.t/ WD
Z t

a

Z t

�.�/

f .�; �/rq�rq� �
Z t

a

Z �

a
f .�; �/rq�rq�:

From Lemma 4.79, we have

rq�.t/ D
Z t

a
f .t; �/rq� �

Z t

a
f .t; �/rq� D 0

and �.a/ D 0. So �.t/ � 0. This completes the proof. ut
The following lemma appears in [66].

Lemma 4.86. Let ˛ 2 R
C; ˇ 2 R. Then

r�˛
q;a .t � a/.ˇ/p D �p.ˇ C 1/

�p.˛ C ˇ C 1/
.t � a/.˛Cˇ/

p :

We next state and prove the following composition rule.
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Lemma 4.87. Let f be a real valued function, and ˛; ˇ > 0. Then for t 2 qN1 , we
have

r�˛
q;1 Œr�ˇ

q;1 f .t/� D r�.ˇC˛/
q;1 f .t/:

Proof. To see this note that

r�˛
q;1 Œr�ˇ

q;1 f .t/� D
Z t

1

K˛�1.t; ps/
h
r�ˇ

q;1 f .s/
i

rqs

D
Z t

1

K˛�1.t; ps/

�Z s

1

Kˇ�1.t; p�/f .�/rq�

	
rqs

(4.85)D
Z t

1

f .�/

�Z t

p�
K˛�1.t; ps/Kˇ�1.s; p�/rqs

	
rq�

D
Z t

1
tr�˛

q;p�Kˇ�1.t; p�/f .�/rq�

D
Z t

1

K˛Cˇ�1.t; p�/f .�/rq�

D r�.˛Cˇ/
q;1 f .t/:

ut
Theorem 4.88. Assume that q D p�1 > 1, 0 < ˛ < 1, c.t/ 	 0, for t 2 qN1 , and
x.t/ is a solution of the fractional q-difference equation

r˛
q;px.t/ D c.t/x.t/; t 2 qN1 (4.33)

satisfying x.1/ > 0: Then

lim
t!1 x.t/ D 0:

Proof. Applying the operator r�˛
q;1 to each side of Eq. (4.33) we obtain

r�˛
q;1 r˛

q;px.t/ D r�˛
q;1 c.t/x.t/;

which can be written in the form

r�˛
q;1 rqr�.1�˛/

q;p x.t/ D r�˛
q;1 c.t/x.t/:

Using (4.32), we obtain

rqr�˛
q;p r�.1�˛/

q;p x.t/ � K˛�1.t; p/r�.1�˛/
q;p x.t/jtD1 D r�p

q;1c.t/x.t/;
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whereupon combining this with the identity

r�.1�˛/
q;p x.t/jtD1 D

Z 1

p
K�˛.1; ps/x.s/rqs

D K�˛.1; p/x.1/.1/

D .1 � p/1�˛x.1/;

we arrive at

rqr�˛
q;p r�.1�˛/

q;p x.t/ D K˛�1.t; p/.1 � p/1�˛x.1/C r�˛
q;1 c.t/x.t/:

Using the composition rule, Lemma 4.87, it follows that r�˛
q;p r�.1�˛/

q;p x
.t/ D r�1

q;p x.t/ and that

rqr�1
q;p x.t/ D rq

�Z t

p
K0.t; ps/x.s/rqs

�

D rq

�Z t

p
x.s/rqs

�

D x.t/;

where we used K0.t; ps/ D 1. Hence, we see that

x.t/ D K˛�1.t; p/.1 � p/1�˛x.1/C r�˛
q;1 c.t/x.t/:

That is,

x.t/ D K˛�1.t; p/.1 � p/1�˛x.1/C
Z t

1

K˛�1.t; ps/c.s/x.s/rqs: (4.34)

Since x.1/ > 0, 0 < ˛ < 1, c.t/ 	 0 and Lemma 4.81, we have x.t/ > 0 for t 2 qN0 .
It is easy to see for t � s

.t � ps/.˛�1/
p D t˛�1

Q1
jD1.1 � s

qt q
�j/Q1

jD0.1 � s
q˛ t q

�j/
� 0:

Since c.s/ 	 0 and (4.34) we get that (taking t D qk)

0 < x.qk/ 	 K˛�1.qk; p/.1 � p/1�˛x.1/

D .qk � p/.˛�1/
p

�p.˛/
.1 � p/1�˛x.1/: (4.35)



348 4 Quantum Calculus

Note that

.qk � p/.˛�1/
p (4.36)

D qk.˛�1/ .q�k�1; p/1
.p˛�1pkC1; p/1

D qk.˛�1/
Q1

jD0.1 � pkC1q�j/Q1
jD0.1 � q�˛�kq�j/

D qk.˛�1/ .1 � p˛/ � � � .1 � q�˛�.k�1//
.1 � p/ � � � .1 � q�k/

�
Q1

jD0.1 � pq�j/Q1
jD0.1 � p˛q�j/

D qk.˛�1/ .1 � p˛/ � � � .1 � q�˛�.k�1//
.1 � p/ � � � .1 � q�k/

� �p.˛/

.1 � p/1�˛

! 0;

where we used both that limk!0 qk.˛�1/ D 0 and that

lim
k!1

.1 � p˛/ � � � .1 � q�˛�.k�1//
.1 � p/ � � � .1 � q�k/

D
Q1

jD0.1 � q�˛�j/Q1
jD0.1 � pq�j/

D .p˛; p/1
.p; p/1

D .1 � p/1�˛

�p.˛/
I

note that in this second calculation we have used (4.19). From (4.35) and (4.36), we
have the desired result

lim
k!1 x.qk/ D 0;

which completes the proof. ut
We conclude this section by considering solutions x.t/ of the ˛-th order nabla

fractional q-difference equation

r˛
q;px.t/ D c.t/x.t/; t 2 qN1 ; (4.37)

satisfying x.1/ < 0: By making the transformation x.t/ D �y.t/ and using
Theorem 4.88 we get the following theorem.
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Theorem 4.89. Assume that 0 < ˛ < 1, q > 1, and c.t/ 	 0 for t 2 qN1 . Then any
solution of equation (4.37) with x.1/ < 0 satisfies

lim
t!1 x.t/ D 0:

4.11 Exercises

4.1. Prove parts (i)–(iv) and (vii) of Theorem 4.2.

4.2. Fix s 2 qN0 and let f .t/ D .t � s/2, t 2 qN0 . Express f .t/ in terms of Taylor
monomials based at s. Use your answer to find Dqf .t/. Then check your answer by
finding Dqf .t/ using the product rule.

4.3. Prove that if p; r 2 Rq, then

.p � r/.t/ D p.t/ � r.t/

1C �.t/r.t/
; t 2 aqN0 : (4.38)

4.4. Show that if ˛;˙ ˇ

1C˛�.t/ 2 Rq, then ˛ ˙ ˇ 2 Rq:

4.5. Show that if p W aqN0 ! C, then jpj 2 RC
q . Then show that if p 2 Rq, it

follows that

jep.t; a/j 	 ejpj.t; a/ for t 2 aqN0 :

4.6. Assume a > 0, f W aqN0 ! R and b D aqm 	 c D aqn. Show that

Z c

b
f .t/Dqt D a.q � 1/

n�1X
kDm

qkf .aqk/:

4.7. Assume p is a nonzero real number. Use the variation of constants for-
mula (4.2) to solve each of the following IVPs:

(i)

D2
qy D cosp.t; 0/; t 2 aqN0 I

y.a/ D 0 D Dqy.a/I
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(ii)

D2
2y D t � a; t 2 a2N0 I

y.a/ D 0 D D2y.a/I

(iii)

D2
qy D sinhp.t; 0/; t 2 qN0 ;

y.1/ D 0; D2y.1/ D 2:

4.8. Use the q-Laplace transform to solve each of the following:

(i)

D2
qy.t/ � 3Dqy.t/C 2y.t/ D 2e3.t; a/; t 2 aqN0 ;

y.a/ D �1; Dqy.a/ D �1I

(ii)

D2
qy.t//C 4y.t/ D 8e2.t; a/; t 2 aqN0 ;

y.a/ D 1; Dqy.a/ D 5I

(iii)

D2
qy.t/C 16y.t/ D 0; t 2 aqN0 ;

y.a/ D 0; Dqy.a/ D 3I

(iv)

D2
qy.t// � 6Dqy.t/C 25y.t/ D 0; t 2 aqN0 ;

y.a/ D 1; Dqy.a/ D 2:

4.9. Show that any linear combination of !-periodic functions on qN0 is also !-
periodic.

4.10. Prove Remark 4.63 that if f is an !-periodic function on qN0 , then

qn!Ckf .qn!Ckt/ D qkf .qkt/ (4.39)

for n 2 N0, 0 	 k 	 ! � 1, t 2 qN0 :
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4.11. Prove that if there is a nontrivial solution of the Floquet system (4.12) and a
number �0 such that

q!x.q! t/ D �0x.t/; t 2 qN0 ;

then �0 is a Floquet multiplier.

4.12. Prove that if p W qN0 ! R is periodic with period !, then 1
t cosp.q! t; t/ is an

!-periodic function on qN0 :

4.13. Show that the nabla quantum operator and the quantum operator are related
by the formula

rqx.qt/ D Dqx.t/:

4.14. Prove the nabla q-difference Leibniz rule in Lemma 4.79.

4.15. Prove that (4.19) reduces to (4.20) when ˛ D n is a positive integer.

4.16. Show that if K˛.t; s/ WD .t�s/
.˛/
p

�p.˛C1/ , then K�˛.1; p/ D .1 � p/1�˛:



Chapter 5
Calculus on Mixed Time Scales

5.1 Introduction

This chapter focuses on what we call the calculus on a mixed time scale whose
elements we will define in terms of a point ˛ and two linear functions. There has
been recent interest in mixed time scales by Auch [37, 38], Auch et al. [39], Estes
[34, 78], Erbe et al. [76], and Mert [145].

5.2 Basic Mixed Time Scale Calculus

In this section, we introduce some fundamental concepts and properties concerning
what we will call a mixed time scale. Throughout this chapter we assume a; b are
constants satisfying

a � 1; b � 0; a C b > 1:

We will use two linear functions to define our so-called mixed time scale. First we
let � W R ! R be defined by

�.t/ D at C b; t 2 R:

Then we define the linear function � to be the inverse function of � , that is

�.t/ D t � b

a
; t 2 R:

© Springer International Publishing Switzerland 2015
C. Goodrich, A.C. Peterson, Discrete Fractional Calculus,
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We call � the forward jump operator and � the backward jump operator. Only
for these two functions we use the following notation. For n � 1 we define the
function �n recursively by

�n.t/ D �.�n�1.t//; t 2 R;

where �0.t/ WD t, and

�n.t/ D �.�n�1.t//; t 2 R;

where �0.t/ WD t: We now define our mixed time scale T˛ , where for simplicity we
always assume ˛ � 0:

T˛ WD f� � � ; �2.˛/; �.˛/; ˛; �.˛/; �2.˛/; � � � g:

By Exercise 5.1, we have that

� � � < �2.˛/ < �.˛/ < ˛ < �.˛/ < �2.˛/ < � � � :

Usually the domains of � and � will be either R or T˛:

Theorem 5.1. If a > 1; then

t >
b

1 � a
; t 2 T˛:

Proof. Since �n.˛/ � 0 > b
1�a for all n � 0, it remains to show that �n.˛/ > b

1�a
for all n � 1. We prove this by induction. First, for the base case note that

�.˛/ D ˛ � b

a
>

b

1 � a
:

Now assume n � 1 and �n.˛/ > b
1�a . Then it follows that

�nC1.˛/ D � .�n.t// D �n.˛/ � b

a
>

b
1�a � b

a
D b

1 � a
:

ut
Note that the above theorem does not hold if a D 1. Also note that when a > 1,

T˛ is not a closed set (see Theorem 5.6 (iii)).

Definition 5.2. For c; d 2 T˛ such that d � c, we define

TŒc;d� WD T˛ \ Œc; d� D fc; �.c/; �2.c/; : : : ; �.d/; dg:
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We define T.c;d/;T.c;d�; and TŒc;d/ similarly. Additionally, we may use the notation
T

d
c , where T

d
c WD TŒc;d�:

Definition 5.3. We define a forward graininess function, �, by

�.t/ WD �.t/ � t D .at C b/ � t D .a � 1/t C b:

In the following theorem we give some properties of the graininess function �.

Theorem 5.4. For t 2 T˛ and n 2 N0, the following hold:

(i) �.t/ > 0I
(ii) �.�n.t// D an�.t/I

(iii) �.�n.t// D a�n�.t/:

Proof. We just prove (iii) and leave the rest of the proof (see Exercise 5.2) to the
reader. To see that (iii) holds consider for t 2 T˛ the base case

�.�.t// D .a � 1/�.t/C b D .a � 1/ t � b

a
C b D .a � 1/t C b

a
D a�1�.t/:

Now assume n � 1 and �.�n.t// D a�n�.t/ for t 2 T˛: Then using the induction
assumption we get for t 2 T˛

�.�nC1.t// D �.�n.�.t/// D a�n�.�.t// D a�.nC1/�.t/:

Hence, (iii) holds. ut
Theorem 5.5 (Properties of Forward Jump Operator). Given m; n 2 N0 and
t 2 T˛

(i) for n � 1, �n.t/ D ant C b
n�1P
jD0

ajI
(ii) if m > n, �m.t/ > �.n/.t/I

(iii) if t > 0, lim
n!1 �n.t/ D 1:

Proof. We will only prove (i) and (iii) here. First we will prove property (i) by an
induction argument. The base case clearly holds. Assume that n � 1 and �n.t/ D
ant C

n�1P
jD0

ajb. It follows that

�nC1.t/ D �.�n.t// D �

0
@ant C b

n�1X
jD0

aj

1
A

D a

0
@ant C b

n�1X
jD0

aj

1
AC b D anC1t C

0
@b

nX
jD0

aj

1
A :
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This completes the proof of (i).
Next we prove that (iii) holds. First, consider the subcase in which a > 1. Then

�n.t/ D ant C
n�1X
jD0

ajb � ant:

Since t > 0 and a > 1, we have that lim
n!1 �n.t/ D 1. Next, consider the case in

which a D 1. Then b > 0, and

�n.t/ D ant C
n�1X
jD0

ajb D t C
n�1X
jD0

b D t C nb � nb:

Since b > 0, we have that lim
n!1 �n.t/ D 1. This completes the proof of (iii). ut

Theorem 5.6 (Properties of Backward Jump Operator). Given positive integers
m, n, and t 2 T˛ , the following properties hold:

(i) �n.t/ D a�n

 
t �

n�1P
jD0

ajb

!
I

(ii) if m > n, then �m.t/ < �n.t/I
(iii) lim

n!1 �n.t/ D �1 if a D 1 and D b
1�a if a > 1:

Proof. We will just prove (i) holds (see Exercise 5.3 for parts (ii) and (iii)). So, first
we note that

�1.t/ D t � b

a
D a�1

0
@t �

0X
jD0

ajb

1
A :

Assume that n � 1 and �n.t/ D a�n

 
t �

n�1P
jD0

ajb

!
holds. Then

�nC1.t/ D �.�n.t//

D �

0
@a�n

2
4t �

n�1X
jD0

ajb

3
5
1
A

D
a�n

"
t �

n�1P
jD0

ajb

#
� b

a
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D a�n�1
0
@t �

n�1X
jD0

ajb � anb

1
A

D a�.nC1/
0
@t �

nX
jD0

ajb

1
A :

This completes the proof of (i) by induction. ut
We now define a function N.t; s/, whose value (we will see in Theorem 5.8),

when s; t 2 T˛ with s 	 t, gives the cardinality, card.TŒs;t//, of the set TŒs;t/.

Definition 5.7. For a > 1, we define the function N W T˛ � T˛ ! Z by

N.t; s/ WD loga

�
�.t/

�.s/

�
:

For simplicity, we will use the notation N.t/ WD N.t; ˛/, for t 2 T˛:

As presented in Estes [34, 78], some properties of the function N are given in the
following theorem.

Theorem 5.8. Assume a > 1 and t; s; r 2 T˛ . Then the following hold:

(i) N.t; t/ D 0I
(ii) N.t; s/ D card.TŒs;t//, if s 	 tI

(iii) N.s; t/ D �N.t; s/I
(iv) N.t; s/ D N.t; r/C N.r; s/:

Proof. Since

N.t; t/ D loga

�
�.t/

�.t/

�
D loga 1 D 0;

we have that (i) holds. To see that (ii) holds, let s; t 2 T˛ with s 	 t. If k D
card.TŒs;t//, then t D � k.s/, and so we have that

N.t; s/ D loga

�
�.t/

�.s/

	
D loga

�
�.� k.s//

�.s/

	
D loga

�
ak�.s/

�.s/

	
D loga ak D k:

To see that (iii) holds, consider

N.t; s/ D loga

�
�.t/

�.s/

	
D � loga

�
�.s/

�.t/

	
D �N.s; t/:

The proof of (iv) is Exercise 5.4. ut
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5.3 Discrete Difference Calculus

In this section, we define a difference operator on our mixed time scale T˛ and study
its properties. Note that if a D q > 1 and b D 0, then D is the q-difference operator
(see Chap. 4), and if a D b D 1, then D is the forward difference operator.

Definition 5.9. Given f W T˛ ! R, the mixed time scale difference operator is
defined by

Df .t/ WD f .�.t// � f .t/

�.t/
; t 2 T˛:

Theorem 5.10 (Properties of Difference Operator). Let f ; g W T˛ ! R and ˛ 2
Œ0;1/ be given. Then for t 2 T˛ the following hold:

(i) D˛ D 0I
(ii) D˛f .t/ D ˛Df .t/I

(iii) D.f .t/C g.t// D Df .t/C Dg.t/I
(iv) D.f .t/g.t// D f .�.t//Dg.t/C .Df .t//g.t/I
(v) D.f .t/g.t// D f .t/Dg.t/C .Df .t//g.�.t//I

(vi) D

�
f .t/

g.t/

�
D g.t/Df .t/ � .Dg.t//f .t/

g.t/g.�.t//
if g.t/g.�.t// ¤ 0.

Proof. Since D˛ D ˛ � ˛
�.t/

D 0 we have that (i) holds. Also

D˛f .t/ D ˛f .�.t// � ˛f .t/

�.t/
D ˛

�
f .�.t// � f .t/

�.t/

�
D ˛Df .t/;

so (ii) holds. To see that (iii) holds note that

D.f .t/C g.t// D Œf .�.t//C g.�.t//� � Œf .t/C g.t/�

�.t/

D f .�.t// � f .t/

�.t/
C g.�.t// � g.t/

�.t/
D Df .t/C Dg.t/:

The proof of property (iv) is left to the reader. Property (v) follows from (iv) by
interchanging f .t/ and g.t/. Finally, property (vi) follows from the following:

D

�
f .t/

g.t/

�
D

�
f .�.t//

g.�.t//

�
�
�

f .t/

g.t/

�

�.t/

D f .�.t//g.t/ � g.�.t//f .t/

g.t/g.�.t//�.t/
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D f .�.t//g.t/ � f .t/g.t/C f .t/g.t/ � g.�.t//f .t/

g.�.t//g.t/�.t/

D
g.t/

�
f .�.t// � f .t/

�.t/

�
� f .t/

�
g.�.t// � g.t/

�.t/

�

g.t/g.�.t//

D g.t/Df .t/ � .Dg.t//f .t/

g.t/g.�.t//
:

And this completes the proof. ut

5.4 Discrete Delta Integral

In this section, we will define the integral of a function defined on the mixed time
scale T˛ . We will develop several properties of this integral, including the two
fundamental theorems for the calculus on mixed time scales.

Definition 5.11. Let f W T˛ ! R and c; d 2 T˛ be given. Then

Z d

c
f .t/Dt WD

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

N.d;c/�1P
jD0

f .� j.c//�.� j.c// if c < d

0 if c D d

�
N.c;d/�1P

jD0
f .� j.d//�.� j.d// if c > d:

Theorem 5.12 (Properties of Integral). Given f ; g W T˛ ! R and c; d; l 2 T˛ ,
the following properties hold:

(i)
R d

c f .t/Dt D � R c
d f .t/DtI

(ii)
R d

c ˛f .t/Dt D ˛
R d

c f .t/DtI
(iii)

R d
c .f .t/C g.t//Dt D R d

c f .t/Dt C R d
c g.t/DtI

(iv)
R c

c f .t/Dt D 0I
(v)

R d
c f .t/Dt D R l

c f .t/Dt C R d
l f .t/DtI

(vi) if d � c, then
ˇ̌
ˇR d

c f .t/Dt
ˇ̌
ˇ 	 R d

c jf .t/jDtI
(vii) if f .t/ � g.t/ for t 2 TŒc;d/, then

R d
c f .t/Dt � R d

c g.t/Dt; if d � c.

Proof. These properties follow from properties of summations. As an example, we
will just prove property (vi). To this end, we note that
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ˇ̌
ˇ̌
Z d

c
f .t/Dt

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
K.d;c/�1X

jD0
f .� j.c//�.� j.c//

ˇ̌
ˇ̌
ˇ̌

	
K.d;c/�1X

jD0

ˇ̌
f .� j.c//�.� j.c//

ˇ̌

D
Z d

c
jf .t/jDt:

ut
Definition 5.13. Assume c; d 2 T˛ and c < d. Given f W TŒc;d� ! R. We say F is
an antidifference of f on TŒc;d� provided DF.t/ D f .t/ for all t 2 TŒc;�.d/�.

The following theorem shows that every function f W T˛ ! R has an
antidifference on T˛:

Theorem 5.14 (Fundamental Theorem of Difference Calculus: Part II).
Assume f W T˛ ! R and c 2 T˛ . If we define F W T˛ ! R by F.t/ D R t

c f .s/Ds,
then F is an antidifference of f on T˛:

Proof. Let F be as defined as in the statement of this theorem. Then for t 2 T˛;

DF.t/ D
R �.t/

c f .s/Ds � R t
c f .s/Ds

�.t/
D
R �.t/

t f .s/Ds

�.t/
D f .t/�.t/

�.t/
D f .t/;

which is what we wanted to show. ut
Theorem 5.15. Assume f W T˛ ! R and F is an antidifference of f on T˛ . Then a
general antidifference of f on T˛ is given by

G.t/ D F.t/C C; t 2 T˛;

where C is an arbitrary constant.

Proof. Let F be an antidifference of f on T˛ . Set G.t/ D F.t/CC for t 2 T˛; where
C is a constant. Then

DG.t/ D DŒF.t/C C� D f .t/C 0 D f .t/; for t 2 T˛:

Conversely, assume G.t/ is any antidifference of f on T˛: Then

DŒG.t/ � F.t/� D DG.t/ � DF.t/ D f .t/ � f .t/ D 0; t 2 T˛:

From Exercise 5.6, there is a constant C so that

G.t/ � F.t/ D C; t 2 T˛:
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Hence,

F.t/ D G.t/C C; t 2 T˛;

as desired. ut
Definition 5.16. We define the indefinite integral as follows:

Z
f .t/Dt D F.t/C C;

where F.t/ is any antidifference of f .t/.

Theorem 5.17 (Fundamental Theorem of Difference Calculus: Part I). Assume
f W T˛ ! R and c; d 2 T˛ . Then, if F is any antidifference of f on T˛ , it follows that

Z d

c
f .t/Dt D

Z d

c
DF.t/Dt D F.d/ � F.c/:

Proof. Put

G.t/ WD
Z t

c
f .s/Ds; t 2 T˛:

By Theorem 5.14 G.t/ is an antidifference of f .t/ on T˛ . Let F.t/ be any fixed
antidifference of f .t/ on T˛ . Then by Theorem 5.15 we have that

F.t/ D G.t/C A; where A is a constant:

It follows that

F.d/ � F.a/ D ŒG.d/C A� � ŒG.c/C A� D G.d/ D
Z d

c
f .s/Ds:

ut
Remark 5.18. Note that the Fundamental Theorem of Calculus tells us that given
f W T˛ ! R, a point t0 2 T˛ , and a real number C, the unique solution of the IVP

Dy.t/ D f .t/

y.t0/ D C

is given by y.t/ D R t
t0

f .s/Ds C C, for t 2 T˛:

The integration by parts formulas in the next theorem are very useful.
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Theorem 5.19 (Integration by Parts). Given two functions u; v W T˛ ! R, if
c; d 2 T˛ , c < d, then

Z d

c
u.t/Dv.t/Dt D u.t/v.t/

ˇ̌
ˇ
d

c
�
Z d

c
v.�.t//Du.t/Dt

and

Z d

c
u.�.t//Dv.t/Dt D u.t/v.t/

ˇ̌
ˇ
d

c
�
Z d

c
v.t/Du.t/Dt:

Proof. By the product rule

DŒu.t/v.t/� D v.�.t//Du.t/C .Dv.t//u.t/:

Using the fundamental theorem of calculus, we get

Z d

c
u.t/Dv.t/Dt C v.�.t//Du.t/Dt D u.d/v.d/ � u.c/v.c/:

It follows that

Z d

c
u.t/Dv.t/Dt D u.t/v.t/jdc �

Z d

c
v.�.t//Du.t/Dt:

This proves the first integration by parts formula. Interchanging u.t/ and v.t/ leads
to the second integration by parts formula. ut

5.5 Falling and Rising Functions

In this section, we define the falling and rising functions for the mixed time scale
T˛ , which are analogous to the falling and rising functions for the delta calculus
in Chap. 1. Several properties of these functions will be given, including the
appropriate power rule.

First we define the appropriate rising and falling functions for the mixed time
scale calculus.

Definition 5.20. Assume n 2 N. We define the rising function, tn, read “t to the n
rising,” by

tn WD
n�1Y
jD0
� j.t/; t0 WD 1;
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for t 2 R: We also define the falling function, tn; read “t to the n falling,” by

tn WD
n�1Y
jD0
�j.t/; t0 WD 1:

for t 2 R:

Definition 5.21. For n 2 Z, we define a-square bracket of n by

Œn�a WD
8<
:

an � 1
a � 1 for a > 1

n for a D 1
:

Theorem 5.22 (Properties of a-Square Bracket of n). For n 2 Z, and a � 1,

(i) Œ0�a D 0I
(ii) Œ1�a D 1I

(iii) Œn�a C an D Œn C 1�aI
(iv) aŒn�a C 1 D Œn C 1�aI
(v) Œ�n�a D � Œn�a

an
:

Proof. To see that (iii) holds for a > 1, note that

Œn�a C an D an � 1
a � 1 C an D anC1 � 1

a � 1 D Œn C 1�a:

Also (iii) trivially holds for a D 1:

To see that (iv) holds for a > 1 note that

aŒn�a C 1 D a
an � 1
a � 1 C 1 D anC1 � a

a � 1 C a � 1
a � 1

D anC1 � 1
a � 1 D Œn C 1�a:

Also for a D 1 we have that

aŒn�a C 1 D n C 1 D Œn C 1�a:

Property (v) holds for a > 1, since

Œ�n�a D a�n � 1
a � 1 D �a�n an � 1

a � 1 D � Œn�a
an
:

Furthermore, (v) is trivially true for a D 1. ut
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We may use the a-square bracket function to simplify the expressions that we
found for the forward and backward jump operators.

Theorem 5.23. For n 2 N the following hold:

(i) �n.t/ D ant C Œn�abI
(ii) �n.t/ D a�nt C Œ�n�abI

(iii) �n.t/ � t D Œn�a�.t/:

Proof. In order to prove property (i), we have by part (i) of Theorem 5.5 that

�n.t/ D ant C b
n�1X
jD0

aj D ant C b

�
an � 1
a � 1

�
D ant C Œn�ab:

Similarly part (i) of Theorem 5.6 gives us that (ii) holds. Finally, using property
(i) we have that

�n.t/ � t D ant C Œn�ab � t D .an � 1/t C
�

an � 1
a � 1

�
b

D
�

an � 1
a � 1

�
Œ.a � 1/t C b� D Œn�a�.t/;

and hence (iii) holds. ut
Next we prove a power rule.

Theorem 5.24 (Power Rule). For n 2 N the following holds:

Dtn D Œn�a.�.t//
n�1; for t 2 R:

Proof. For t 2 R we have that

Dtn D

n�1Q
jD0
� j.�.t// �

n�1Q
jD0
� j.t/

�.t/
D Œ�.n/.t/ � t�

�.t/

n�1Y
jD1
� j.t/

D Œ�.n/.t/ � t�

�.t/

n�2Y
jD0
� j.�.t//

D Œn�a Œ�.t/�
n�1 ;

where in the last step we used part (iii) of Theorem 5.23. ut
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Definition 5.25. For n 2 Z and a � 1, we define the a-bracket of n by

fnga WD
8<
:

an � 1
.a � 1/an�1 for a > 1

n for a D 1.

The following theorem gives us several properties of the a-bracket function.

Theorem 5.26. The following hold:

(i) f0ga D 0I
(ii) f1ga D 1I

(iii) fnga D Œn�a
an�1 I

(iv) fnga D �aŒ�n�aI
(v) �.t/ � �n�1.t/ D fnga�.t/:

Proof. We will just prove part (iv) holds when a > 1. This follows from

fnga D Œn�a
an�1 D �aŒ�n�a;

where the first equality is by part (iii) of this theorem and the second equality is by
part (v) of Theorem 5.22. ut
Theorem 5.27 (Power Rule). For n 2 N the following holds:

Dtn D fngatn�1; for t 2 R:

Proof. To establish the result, we calculate

Dtn D Œ�.t/�n � tn

�.t/
D

n�1Q
jD0
�j.�.t// �

n�1Q
jD0
�j.t/

�.t/

D
�.t/

n�1Q
jD1
�j�1.t/ � �n�1.t/

n�1Q
jD1
�j�1.t/

�.t/

D �.t/ � �n�1.t/
�.t/

n�2Y
jD0
�j.t/

D fngatn�1;

with the last equality by part (v) of Theorem 5.26. ut
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5.6 Discrete Taylor’s Theorem

In this section we will develop Taylor’s Theorem for functions on T˛ . First we define
the Taylor monomials for the mixed time scale T˛ as follows.

Definition 5.28. We define the Taylor monomials for the mixed time scale T˛ as
follows. First put h0.t; s/ D 1 for t; s 2 T˛ . Then for each n 2 N1 we recursively
define hn.t; s/, for each fixed s 2 T˛ , to be the unique solution (see Remark 5.18) of
the IVP

Dy.t/ D hn�1.t; s/; t 2 T˛

y.s/ D 0:

In the next theorem we derive a formula for hn.t; s/ (see Erbe et al. [76]).

Theorem 5.29. The Taylor monomials, hn.t; s/, n 2 N0, for the mixed time scale
T˛ are given by

hn.t; s/ D
nY

kD1

t � � k�1.s/
Œk�a

for t; s 2 T˛:

Proof. For n 2 N0, let

fn.t; s/ WD
nY

kD1

t � � k�1.s/
Œk�a

; for t; s 2 T˛:

We prove by induction on n, for n 2 N0; that fn.t; s/ D hn.t; s/ for t; s 2 T˛ .
By our convention on products f0.t; s/ D 1 D h0.t; s/; and it is easy to see that
f1.t; s/ D t � s D h1.t; s/ for t; s 2 T˛ . Assume n � 1 and fk.t; s/ D hk.t; s/ for
t; s 2 T˛ , 0 	 k 	 n. It remains to show that fnC1.t; s/ D hnC1.t; s/ for t; s 2 T˛ .
First, note that

fnC1.t; s/ D
nC1Y
kD1

t � � k�1.s/
Œk�a

D t � �n.s/

Œn C 1�a

nY
kD1

t � � k�1.s/
Œk�a

D t � �n.s/

Œn C 1�a
fn.t; s/

D t � �n.s/

Œn C 1�a
hn.t; s/

by the induction hypothesis. Fix s 2 T˛ , then using the product rule
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DfnC1.t; s/ D D

�
t � �n.s/

Œn C 1�a
hn.t; s/

�

D �.t/ � �n.s/

Œn C 1�a
hn�1.t; s/C hn.t; s/

Œn C 1�a

D .at C b � ans � Œn�ab/

Œn C 1�a
fn�1.t; s/C fn.t; s/

Œn C 1�a
using Theorem 5.23, (i)

D a.t � an�1s � bŒn � 1�a/
Œn C 1�a

fn�1.t; s/C fn.t; s/

Œn C 1�a
using Theorem 5.22, (iv)

D a.t � �n�1.s//
Œn C 1�a

fn�1.t; s/C fn.t; s/

Œn C 1�a
using Theorem 5.23, (i)

D aŒn�afn.t; s/

Œn C 1�a
C fn.t; s/

Œn C 1�a

D aŒn�a C 1

Œn C 1�a
fn.t; s/

D fn.t; s/ using Theorem 5.22, (iv)

D hn.t; s/:

Since, for each fixed s, y.t/ D fnC1.t; s/ solves the IVP

Dy.t/ D hn.t; s/; t 2 T˛

y.s/ D 0;

we have by Remark 5.18 that hnC1.t; s/ D fnC1.t; s/ for t 2 T˛ . Finally, notice that
since s 2 T˛ is arbitrary we conclude that hnC1.t; s/ D fnC1.t; s/ for all t; s 2 T˛:

ut
Definition 5.30. For n 2 N0, we define the a-falling-bracket (of n) factorial,
denoted by fngaŠ, recursively by f0gaŠ D 1 and for n 2 N1

fngaŠ D fnga .fn � 1gaŠ/ :

Definition 5.31. For n 2 N0, we define the a-rising-bracket (of n) factorial,
denoted by Œn�aŠ, recursively by Œ0�aŠ D 1 and for n 2 N1

Œn�aŠ D Œn�a .Œn � 1�aŠ/ :

The following theorem is a generalization of the binomial expansion of
.t � t/n D 0, n 2 N1:
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Theorem 5.32 (Estes [34, 78]). Assume n � 1 and t 2 T˛ . Then

nX
iD0

.�1/i
�

ti
� �

tn�i
�

Œi�aŠfn � igaŠ
D 0:

Proof. For n 2 N1, consider

fn.t/ WD
nX

iD0

.�1/i
�

ti
� �

tn�i
�

Œi�aŠfn � igaŠ
:

We will prove by induction on n that fn.t/ D 0. For the base case n D 1 we have

f1.t/ D t � t D 0:

Assume n 2 N1 and fn.t/ D 0. It remains to show fnC1.t/ D 0. Using the product
rule

DfnC1.t/ D D

0
@

nC1X
iD0

.�1/i
�

ti
� �

tnC1�i
�

Œi�aŠfn C 1 � igaŠ

1
A

D D

0
@ .�1/nC1tnC1

Œn C 1�aŠ
C

nX
iD1

.�1/i
�

ti
� �

tnC1�i
�

Œi�aŠfn C 1 � igaŠ
C tnC1

fn C 1gaŠ

1
A

D
nX

iD1

.�1/i .�.t//i�1 .�.t//nC1�i

Œi � 1�aŠfn C 1 � igaŠ

C
nX

iD1

.�1/i
�

ti
� �

tn�i
�

Œi�aŠfn � igaŠ
C .�1/nC1 .�.t//n

Œn�aŠ
C tn

fngaŠ

D
nC1X
iD1

.�1/i .�.t//i�1 .�.t//nC1�i

Œi � 1�aŠfn C 1 � igaŠ
C

nX
iD0

.�1/i
�

ti
� �

tn�i
�

Œi � 1�aŠfn � igaŠ

D �
nX

iD0

.�1/i .�.t//i .�.t//n�i

Œi�aŠfn � igaŠ
C

nX
iD0

.�1/i
�

ti
� �

tn�i
�

Œi�aŠfn � igaŠ

D �fn.�.t//C fn.t/

D 0:

Since DfnC1.t/ D 0, we have that fnC1.t/ D C, with t 2 T˛ , for some constant C.
Note that fnC1.t/ can be expanded to a polynomial in t, and that each term of the sum
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fnC1.t/ D
nC1X
iD0

.�1/i
�

ti
� �

tnC1�i
�

Œi�aŠfn C 1 � igaŠ

is divisible by t. Thus, the polynomial expansion of fnC1.t/ has no constant term
and by the polynomial principle, C D 0. We have shown that fnC1.t/ D 0. This
completes the proof by induction. ut

Next we prove an alternate formula for the Taylor monomials due to
Estes [34, 78].

Theorem 5.33. Assume n 2 N0 and t; s 2 T˛ . Then

hn.t; s/ D
nX

iD0

.�1/i
�

si
� �

tn�i
�

Œi�aŠfn � igaŠ
:

Proof. Fix s and let

fn.t; s/ WD
nX

iD0

.�1/i
�

si
� �

tn�i
�

Œi�aŠfn � igaŠ
:

We will show by induction that fn.t; s/ D hn.t; s/. The base case f0.t; s/ D h0.t; s/
follows from the definitions. Assume that n 2 N1 and fn.t; s/ D hn.t; s/. From
Theorem 5.32, we know that fn.s; s/ D 0. Also

DfnC1.t; s/ D D

0
@

nX
iD0

.�1/i
�

si
� �

tnC1�i
�

Œi�aŠfn C 1 � igaŠ

1
A

D
n�1X
iD0

.�1/i
�

si
� �

tn�i
�

Œi�aŠfn � igaŠ

D fn.t; s/ D hn.t; s/:

Hence, for each fixed s 2 T˛ , y.t/ D fnC1.t; s/ solves the IVP

Dy.t/ D hn.t; s/; t 2 T˛

y.s/ D 0:

So, by the uniqueness of solutions to IVPs (see Remark 5.18), we have that
fnC1.t; s/ D hnC1.t; s/ for each fixed s 2 T˛: This completes the proof by induction.

ut
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Later we are going to see that we need to take the mixed time scale difference of
hn.t; s/ with respect to its second variable. To do this we now introduce the type-two
Taylor monomials, gn.t; s/, n 2 N0:

Definition 5.34. We define the type-two Taylor monomials gn W T˛ � T˛ ! R,
for n 2 N0, recursively as follows:

g0.t; s/ D 1 for t; s 2 T˛;

and for each n 2 N1, gn.t; s/; for each fixed s 2 T˛ , is the unique solution
(see Remark 5.18) of the IVP

Dy.t/ D �gn�1.�.t/; s/; t 2 T˛

y.s/ D 0:

In the next theorem we give two different formulas for the type-two Taylor
monomials.

Theorem 5.35. The type-two Taylor monomials are given by

gn.t; s/ D hn.s; t/ D
nX

iD0

.�1/i
�

ti
� �

sn�i
�

Œi�aŠfn � igaŠ
D

nY
kD1

s � � k�1.t/
Œk�a

;

for t; s 2 T˛:

Proof. We prove by induction on n that hn.s; t/ D gn.t; s/; t; s 2 T˛ , n 2 N0.
Obviously this holds for n D 0. Assume n � 0 and hn.s; t/ D gn.t; s/ for t; s 2 T˛ .
Fix s 2 T˛ and consider

DhnC1.s; t/ D D

0
@

nC1X
iD0

.�1/i
�

ti
� �

snC1�i
�

Œi�aŠfn C 1 � igaŠ

1
A

D
nC1X
iD1

.�1/i .�.t//i�1 �snC1�i
�

Œi � 1�aŠfn C 1 � igaŠ
by Theorem 5.24

D �
nX

iD0

.�1/i .�.t//i �sn�i
�

Œi�aŠfn � igaŠ

D �hn.s; �.t// D �gn.�.t/; s/ by the induction hypothesis

for t 2 T˛: Also, by Theorem 5.32, hnC1.s; s/ D 0: So, y.t/ D hnC1.s; t/ satisfies
for each fixed s the same IVP

Dy.t/ D �gn�1.�.t/; s/

y.s/ D 0



5.6 Discrete Taylor’s Theorem 371

as gnC1.t; s/: Hence, by the uniqueness (see Remark 5.18) of solutions to IVPs

fnC1.t; s/ D hnC1.s; t/ D
nX

iD0

.�1/i
�

ti
� �

sn�i
�

Œi�aŠfn � igaŠ
;

for t 2 T˛ . ut
We now can state our power rule as follows.

Theorem 5.36. Assume n 2 N0. Then for each fixed s 2 T˛

DhnC1.t; s/ D hn.t; s/

and

DhnC1.s; t/ D �hn.�.t/; s/

for t 2 T˛:

Proof. By the definition (Definition 5.28) of hn.t; s/ we have for each fixed s 2 T˛

that DhnC1.t; s/ D hn.t; s/ for all t 2 T˛: To see that DhnC1.s; t/ D �hn.�.t/; s/ for
t 2 T˛ , note that by Theorem 5.33

DhnC1.s; t/ D D
nC1X
iD0

.�1/i
�

ti
� �

snC1�i
�

Œi�aŠfn C 1 � igaŠ

D
nC1X
iD1

.�1/i
�
Œ�.t/�i�1

� �
snC1�i

�

Œi � 1�aŠfn C 1 � igaŠ

D �
nX

iD0

.�1/i
�
Œ�.t/�i

� �
sn�i

�

Œi�aŠfn � igaŠ

D �hn.�.t/; s/;

which completes the proof. ut
Theorem 5.37 (Taylor’s Formula). Assume f W T˛ ! R, n 2 N0 and s 2 T˛ .
Then

f .t/ D pn.t; s/C Rn.t; s/; t 2 T˛;

where the n-th degree Taylor polynomial, pn.t; s/, based at s, is given by

pn.t; s/ D
nX

kD0
Dkf .s/hk.t; s/; t 2 T˛;
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and the remainder term, Rn.t; s/, based at s, is given by

Rn.t; s/ D
Z t

s
hn.t; �.�//D

nC1f .�/D�; t 2 T˛:

Proof. We prove Taylor’s Formula by induction. For n D 0 we have

R0.t; s/ D
Z t

s
h0.t; �.�//Df .�/D� D

Z t

s
Df .�/D� D f .t/ � f .s/:

Solving for f .t/ we get the desired result

f .t/ D f .s/C R0.t; s/ D p0.t; s/C R0.t; s/; t 2 T˛:

Now assume that n � 0 and f .t/ D pn.t; s/C Rn.t; s/, for t 2 T˛ . Then integrating
by parts we obtain

RnC1.t; s/ D
Z t

s
hnC1.t; �.�//DnC2f .�/D�

D hnC1.t; �/DnC1f .�/
ˇ̌
ˇ
t

�Ds
C
Z t

s
hn.t; �.�//D

nC1f .�/D�

D �hnC1.t; s/DnC1f .s/C
Z t

s
hn.t; �.�//D

nC1f .�/D�

D �hnC1.t; s/DnC1f .s/C Rn.t; s/

D �hnC1.t; s/DnC1f .s/C f .t/ � pn.t; s/

D �pnC1.t; s/C f .t/:

Solving for f .t/ we obtain the desired result

f .t/ D pnC1.t; s/C RnC1.t; s/; t 2 T˛:

This completes the proof by induction. ut
We can now use Taylor’s Theorem to prove the following variation of constants

formula.

Theorem 5.38 (Variation of Constants Formula). Assume f W T˛ ! R and
s 2 T˛ . Then the unique solution of the IVP

Dny.t/ D f .t/; t 2 T˛

Diy.s/ D Ck; 0 	 k 	 n � 1;
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where Ck, 0 	 k 	 n � 1, are given constants, is given by

y.t/ D
n�1X
kD0

Ckhk.t; s/C
Z t

s
hn�1.t; �.�//f .�/D�;

for t 2 T˛:

Proof. It is easy to see that the given IVP has a unique solution y.t/. By Taylor’s
Formula (see Theorem 5.37) applied to y.t/ with n replaced by n � 1, we get

y.t/ D
n�1X
kD0

Dky.s/hk.t; s/C
Z t

s
hn�1.t; �.�//Dny.�/D�

D
n�1X
kD0

Ckhk.t; s/C
Z t

s
hn�1.t; �.�//f .�/D�;

for t 2 T˛: ut
Example 5.39. Consider the mixed time scale where ˛ D 1 and �.t/ D 2t C 1

(so a D 2 and b D 1). Use the variation of constants formula in Theorem 5.38 to
solve the IVP

D2y.t/ D t � 1; t 2 T1

y.1/ D 2; Dy.1/ D 0:

By the variation of constants formula in Theorem 5.38, we have that

y.t/ D 2h0.t; 1/C 0h1.t; 1/C
Z t

1

h1.t; �.s//.s � 1/Ds

D 2C
Z t

1

h1.t; �.s//h1.s; 1/Ds:

Integrating by parts we calculate

y.t/ D 2C h1.t; s/h2.s; 1/
ˇ̌
ˇ
t

sD1 C
Z t

1

h2.s; 1/Ds

D 2C h3.s; 1/
ˇ̌
ˇ
t

sD1 D 2C h3.t; 1/

D 2C 1

21
.t � 1/.t � 3/.t � 7/;

for t 2 T1: The reader could check this result by just twice integrating both sides of
the equation D2y.t/ D t � 1 from 1 to t.
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5.7 Exponential Function

In this section we define the exponential function on a mixed time scale and give
several of its properties. First we define the set of regressive functions by

R D fp W T˛ ! C such that 1C p.t/�.t/ ¤ 0 for t 2 T˛g:

Definition 5.40. The mixed time scale exponential function based at s 2 T˛ ,
denoted by ep.t; s/, where p 2 R is defined to be the unique solution, y.t/, of the
initial value problem

Dy.t/ D p.t/y.t/; (5.1)

y.s/ D 1: (5.2)

In the next theorem we give a formula for ep.t; s/.

Theorem 5.41. Assume p 2 R and s 2 T˛: Then

ep.t; s/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

K.t;s/�1Q
jD0



1C p.� j.s//�.� j.s//

�
; if t > s

1; if t D s
�K.t;s/Q

jD1
1

Œ1C p.�j.s//�.�j.s//�
; if t < s:

Proof. It suffices to show (see Remark 5.18) that y.t/ D ep.t; s/ as defined in the
statement of this theorem satisfies the IVP

Dy.t/ D p.t/y.t/; t 2 T˛

y.s/ D 1:

It is clear that ep.s; s/ D 1. It remains to show that Dep.t; s/ D p.t/ep.t; s/. Consider
the case that t D � k.s/ for k � 1. Then

Dep.t; s/ D 1

�.t/

N.�.t/;s/�1Y
jD0



1C p

�
� j.s/

�
�
�
� j.s/

��

� 1

�.t/

K.t;s/�1Y
jD0



1C p

�
� j.s/

�
�
�
� j.s/

��
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D
p.�N.t;s/.s//�

�
�N.t;s/.s/

� N.t;s/�1Q
jD0



1C p

�
� j.s/

�
�
�
� j.s/

��

�.t/

D p.t/ep.t; s/:

Consider the case when t D s. Then,

Dep.s; s/ D Œ1C p.s/�.s/� � 1
�.s/

D p.s/ D p.s/ep.s; s/:

Consider the case when t D �.s/. In this case it follows that

Dep.�.s/; s/ D
1 � 1

1C p .�.s// � .�.s//
� .�.s//

D p .�.s//

1C p .�.s// � .�.s//

D p .�.s// ep.�.s/; s/:

Finally, consider the case when t D �k.s/ for k � 2. In this final case it then holds
that

Dep.t; s/ D 1

�.t/

�N.�.t/;s/Y
jD1

1

1C p
�
�.j/.s/

�
�
�
�.j/.s/

�

� 1

�.t/

�N.t;s/Y
jD1

1

1C p
�
�.j/.s/

�
�
�
�.j/.s/

�

D 1

�.t/

"
1 � 1

1C p
�
�.�N.t;s//.s/

�
�
�
�.�N.t;s//.s/

�
#

�
�N.�.t/;s/Y

jD1

1

1C p
�
�.k/.s/

�
�
�
�.k/.s/

�

D p.t/

1C p�.t/

�N.�.t/;s/Y
jD1

1

1C p
�
�.k/.s/

�
�
�
�.k/.s/

�

D p.t/ep.t; s/;

which completes the proof. ut
Next we define an addition on R:
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Definition 5.42. We define the circle plus addition, ˚, on the set of regressive
functions R on the mixed time scale T˛ by

.p ˚ r/.t/ WD p.t/C r.t/C �.t/p.t/r.t/; t 2 T˛:

Similar to the proof of Theorem 4.16, we can prove the following theorem.

Theorem 5.43. The set of regressive functions R with the addition ˚ is an Abelian
group.

Like in Chap. 4, the additive inverse of a function p 2 R is given by

�p WD �p

1C �p
:

We then define the circle minus subtraction, �, on R by

p � r WD p ˚ .�r/:

It follows that

p � r D p � r

1C �r
:

In the following theorem we give several properties of the exponential function
ep.t; s/:

Theorem 5.44. Let t; s; r 2 T˛ and p; l 2 R. Then the following properties hold:

(i) e0.t; s/ D 1I
(ii) ep.s; s/ D 1I

(iii) Dep.t; s/ D p.t/ep.t; s/I
(iv) ep.�.t/; s/ D Œ1C p.t/�.t/� ep.t; s/I
(v) ep.�.t/; s/ D ep.t; s/

Œ1C p .�.t// � .�.t//�
I

(vi) if 1C p.t/�.t/ > 0 for all t 2 T˛ then ep.t; s/ > 0I
(vii) ep.t; s/ep.s; r/ D ep.t; r/I

(viii) ep.s; t/ D 1

ep.t; s/
D e�p.t; s/I

(ix) ep.t; s/el.t; s/ D ep˚l.t; s/I
(x)

el.t; s/

ep.t; s/
D el�p.t; s/:

Proof. The proof of this theorem is very similar to the proof of Theorem 4.18. Here
we will just prove first half of part (viii). Consider the case t > s. Then
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ep.s; t/ D
N.t;s/Y
jD1

1

1C p .�j.t// � .�j.t//

D
N.t;s/Y
jD1

1

1C p
�
�j.�N.t;s/.s/

�
�
�
�j.�N.t;s/.s/

�

D
N.t;s/Y
jD1

1

1C p
�
�N.t;s/�j.s/

�
�
�
�N.t;s/�j.s/

�

D
N.t;s/�1Y

jD0

1

1C p .� j.s// � .� j.s//
D 1

ep.t; s/
:

When t D s, it follows that ep.s; s/ D 1
ep.s;s/

D 1: Finally, consider the case when
t < s. Then

ep.s; t/ D
N.s;t/�1Y

jD0



1C p

�
� j.t/

�
�
�
� j.t/

��

D
N.s;t/�1Y

jD0



1C p

�
�N.s;t/�j.s/

�
�.�N.s;t/�j.s//

�

D
N.s;t/Y
jD1



1C p

�
�j.s/

�
�
�
�j.s/

�� D 1

ep.t; s/
;

which was to be shown. ut
Next we define the scalar dot multiplication, ˇ, on the set of positively regressive

functions RC WD fp 2 R W 1C �.t/p.t/ > 0, t 2 T˛g:
Definition 5.45. We define the scalar dot multiplication, ˇ, on RC by

.˛ ˇ p/.t/ WD Œ1C �.t/p.t/�˛ � 1
�.t/

; t 2 T˛:

Similar to the proof of Theorem 4.21 we can prove the following theorem.

Theorem 5.46. If ˛ 2 R and p 2 RC, then

e˛p .t; a/ D e˛ˇp.t; a/

for t 2 T˛:

Then similar to the proof of Theorem 4.22, we get the following result.
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Theorem 5.47. The set of positively regressive functions RC on a mixed time scale
with the addition ˚ and the scalar multiplication ˇ is a vector space.

5.8 Trigonometric Functions

In this section, we use the exponential function defined in the previous section to
define the hyperbolic and trigonometric functions for the mixed time scale.

Definition 5.48. For ˙p 2 R, we define the mixed time scale hyperbolic cosine
function coshp.�; s/ based at s 2 T˛ by

coshp.t; s/ WD ep.t; s/C e�p.t; s/

2
; t 2 T˛:

Definition 5.49. Likewise we define the mixed time scale hyperbolic sine function
sinhp.�; s/ based at s 2 T˛ by

sinhp.t; s/ WD ep.t; s/ � e�p.t; s/

2
; t 2 T˛:

Similar to the proof of Theorem 4.24 one can prove the following theorem.

Theorem 5.50. Assume ˙p 2 R and t; s 2 T˛ . Then the following properties
hold:

(i) coshp.s; s/ D 1I
(ii) sinhp.s; s/ D 0I

(iii) cosh�p.t; s/ D coshp.tI s/I
(iv) sinh�p.t; s/ D � sinhp.t; s/I
(v) D coshp.t; s/ D p.t/ sinhp.t; s/I

(vi) D sinhp.t; s/ D p.t/ coshp.t; s/I
(vii) cosh2p.t; s/ � sinh2p.t; s/ D e��p2 .t; s/:

Definition 5.51. Assume ˙ip 2 R. Then we define the mixed time scale cosine
function cosp.�; s/ based at s 2 T˛ by

cosp.t; s/ WD eip.t; s/C e�ip.t; s/

2
; t 2 T˛:

Definition 5.52. We define the mixed time scale sine function sinp.�; s/ based at
s 2 T˛ by

sinp.t; s/ WD eip.t; s/ � e�ip.t; s/

2i
; t 2 T˛:

Similar to the proof of Theorem 4.27 one can prove the following theorem.
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Theorem 5.53. Assume ˙ip 2 R and t; s 2 T˛: Then the following properties
hold:

(i) cosp.s; s/ D 1I
(ii) sinp.s; s/ D 0I

(iii) cos�p.t; s/ D cosp.t; s/I
(iv) sin�p.t; s/ D � sinp.t; s/I
(v) D cosp.t; s/ D �p.t/ sinp.t; s/I

(vi) D sinp.t; s/ D p.t/ cosp.t; s/I
(vii) cos2p.t; s/C sin2p.t; s/ D e�p2 .t; s/:

Similar to the proof of Theorem 4.26 one can prove the following theorem.

Theorem 5.54. Assume ˙ip 2 R and t; s 2 T˛ . Then the following properties
hold:

(i) sinip.t; s/ D i sinhp.t; s/I
(ii) cosip.t; s/ D coshp.t; s/I

(iii) sinhip.t; s/ D i sinp.t; s/I
(iv) coship.t; s/ D cosp.t; s/;

for t 2 T˛:

It is easy to prove the following theorem.

Theorem 5.55. If p 2 R, then a general solution of

Dy.t/ D p.t/y.t/; t 2 T˛

is given by

y.t/ D cep.t; a/; t 2 T˛:

Theorem 5.56. Assume t; s 2 T˛ and p is a constant. Then the following Taylor
series converge on TŒs;1/.

(i) ep.t; s/ D
1P

nD0
pnhn.t; s/; if p 2 RI

(ii) sinp.t; s/ D
1P

nD0
.�1/np2nC1h2nC1.t; s/; if ˙ ip 2 RI

(iii) cosp.t; s/ D
1P

nD0
.�1/np2nh2n.t; s/; if ˙ ip 2 RI

(iv) sinhp.t; s/ D
1P

nD0
p2nC1h2nC1.t; s/; if ˙ p 2 RI

(v) coshp.t; s/ D
1P

nD0
p2nh2n.t; s/; if ˙ p 2 R:

Proof. Fix t 2 TŒs;1/. Then for some k � 0, it holds that t D � k.s/ � s. Let
M D maxfˇ̌ep.�; s/

ˇ̌ W � 2 TŒs;t�g. Then for n � 1 we have
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jRn.t; s/j D
ˇ̌
ˇ̌
Z t

s
hn.t; �.�//D

nC1ep.�; s/D�

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z t

s
hn.t; �.�//p

nC1ep.�; s/D�

ˇ̌
ˇ̌

	 MjpjnC1
ˇ̌
ˇ̌
Z t

s
hn.t; �.�//D�

ˇ̌
ˇ̌

D MjpjnC1 jhnC1.t; s/j : (5.3)

Now if m � k, we have that

jRm.t; s/j 	 MjpjmC1 jhmC1.t; s/j D MjpjmC1
mC1Y
iD1

t � � i�1.s/
Œi�a

:

Note that since m � k, the product in the above expression contains the factor

t � � k.s/

Œk C 1�a
D t � t

Œk C 1�a
D 0:

Thus, for all m � k,

Rm.t; s/ D 0:

Hence, by Taylor’s Formula (Theorem 5.37) the Taylor series for ep.t; s/ converges
for any t 2 TŒs;1/. The remainder of this theorem follows from the fact that the
functions cosp.t; s/ sinp.t; s/, coshp.t; s/, and sinhp.t; s/ are defined in terms of
appropriate exponential functions. ut
Theorem 5.57. Fix s 2 T˛ . Then the Taylor series for each of the functions in
Theorem 5.56 converges on T.�1;s/ when jpj < a

�.s/ .

Proof. Let s 2 T˛ be fixed. We will first prove that if jpj < �.s/
a , then the Taylor

series for ep.t; s/ converges for each t 2 T.�1;s/: Fix t 2 T.�1;s/: We claim that for
each a � 1

lim
n!1

�n�1.s/ � t

Œn�a
D �.s/

a
: (5.4)

First we prove (5.4) for a D 1: This follows from the following calculations:

lim
n!1

�n�1.s/ � t

Œn�a
D lim

n!1
an�1s C Œn � 1�ab � t

Œn�a
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D lim
n!1

s C Œn � 1�1b � t

Œn�1

D lim
n!1

s � .n � 1/b � t

n
D b

1
D �.s/

a
:

Next we prove (5.4) for a > 1: To this end consider

lim
n!1

�n�1.s/ � t

Œn�a
D lim

n!1
an�1s C Œn � 1�ab � t

Œn�a
by Theorem 5.5, (i)

D lim
n!1

an�1s C an�1�1
a�1 b � t

an�1
a�1

by the definition of Œn�a

D lim
n!1

.a � 1/an�1s C .an�1 � 1/b � .a � 1/t
an � 1

D .a � 1/s C b

a

D �.s/

a
:

Now consider the remainder term

Rn.t; s/ D
Z t

s
hn.t; �.�//D

nC1ep.�; s/D� D
Z t

s
hn.t; �.�//p

nC1ep.�; s/D�:

It follows that

jRn.t; s/j 	 jpjnC1
Z s

t
jhn.t; �.�//jjep.�; s/jD�:

If we let

M WD maxfjep.t; s/j W t 	 � 	 s � 1g;

then

jRn.t; s/j 	 MjpjnC1
Z s

t
jhn.t; �.�//jD�

D MjpjnC1
Z s

t

ˇ̌
ˇ̌
ˇ

nY
kD1

t � � k�1.�/
Œk�a

ˇ̌
ˇ̌
ˇD�

D MjpjnC1
Z s

t
.�1/nhn.t; �.�//D�

D MjpjnC1 
.�1/nC1hnC1.t; �/
��Ds

�Dt
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D MjpjnC1.�1/nC1hnC1.t; s/

D MjpjnC1
nC1Y
kD1

� k�1.s/ � t

Œk�a
:

Using (5.4) and jpj < a
�.s/ , there is a number r and a positive integer N so that

0 	 jpj�
n�1.s/ � t

Œn�a
	 r < 1; for n � N:

It follows that

lim
n!1 jRn.t; s/j D lim

n!1 M
1Y

kD1
jpj�

k�1.s/ � t

Œk�a
D 0:

Therefore, by Taylor’s Formula,

ep.t; s/ D
1X

nD0
pnhn.t; s/

for t 2 T.�1;s/:

The remainder of this theorem follows from the fact that the functions cosp.t; s/
sinp.t; s/, coshp.t; s/, and sinhp.t; s/ are defined in terms of appropriate exponential
functions. ut
Theorem 5.58. For fixed t; s 2 T˛ , the power series

f .x/ D
1X

nD0
hn.t; s/x

n

converges for jxj < a

�.s/
:

Proof. First, consider the power series

A.x/ D
1X

nD0

tn

fngaŠ
xn:

We will perform the ratio test with this series:

lim
n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ D lim

n!1

ˇ̌
ˇ̌ tnC1

fn C 1gatn

ˇ̌
ˇ̌
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D lim
n!1

ˇ̌
ˇ̌ �n.t/

fn C 1ga

ˇ̌
ˇ̌

D lim
n!1

ˇ̌
ˇ̌
ˇ̌
ˇ
a�nt C Œ�n�ab
Œn C 1�a

an

ˇ̌
ˇ̌
ˇ̌
ˇ

D lim
n!1

ˇ̌
ˇ̌ t

Œn C 1�a
� Œn�ab

Œn C 1�a

ˇ̌
ˇ̌ :

Since lim
n!1

t

Œn C 1�a
D 0, we have that

lim
n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ D lim

n!1

ˇ̌
ˇ̌ snC1

fn C 1gatn

ˇ̌
ˇ̌ D lim

n!1

ˇ̌
ˇ̌ Œn�ab

Œn C 1�a

ˇ̌
ˇ̌

D lim
n!1

ˇ̌
ˇ̌ .an � 1/b
.anC1 � 1/

ˇ̌
ˇ̌ D b

a
:

So, A.x/ converges when jxj < a

b
. Next, consider the power series

B.x/ D
1X

nD0

.�1/nsn

Œn�aŠ
xn:

Again, we perform the ratio test. Then

lim
n!1

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ D lim

n!1

ˇ̌
ˇ̌ �n.s/

Œn C 1�a

ˇ̌
ˇ̌ D lim

n!1
ans C Œn�ab

Œn C 1�a

D lim
n!1

�
ans

Œn C 1�a
C Œn�ab

Œn C 1�a

�

D lim
n!1

�
an.a � 1/s

an � 1 C Œn�ab

Œn C 1�a

�

D lim
n!1

�
an.a � 1/s
anC1 � 1 C Œn�ab

Œn C 1�a

�

D .a � 1/s
a

C b

a
D �.s/

a
:

So B.x/ converges when jxj < a

�.s/
. Note that �.s/ > b, so

a

�.s/
<

a

b
for all s.

Now, f .x/ D A.x/B.x/. So, f .x/ converges when jxj < a

�.s/
. ut



384 5 Calculus on Mixed Time Scales

5.9 The Laplace Transform

Most of the results in this section are due to Auch et al. [39]. In this chapter when
discussing Laplace transforms we assume that r 2 T˛ satisfies r � ˛ � 0, and we
let Tr D ft � r W t 2 T˛g: Also we let Rc denote the set of regressive complex
constants.

Definition 5.59. If f W Tr ! R, then we define the discrete Laplace transform of
f based at r 2 T by

Lrff g.s/ WD
Z 1

r
e�s.�.t/; r/f .t/Dt;

where Lrff g W Rc ! C.

Definition 5.60. We say that a function f W T˛ ! R is of exponential order k > 0

if for every fixed r 2 T˛ , there exists a constant M > 0 such that

jf .t/j 	 Mek.t; r/;

for all sufficiently large t 2 Tr.

Theorem 5.61. Suppose f W Tr ! R is of exponential order k > 0. Then Lrff g.s/
exists for jsj > k.

Proof. Since f is of exponential order k > 0, there is a constant M > 0 and a T 2 Tr

such that jf .t/j 	 Mek.t; r/ for t � T . Pick N 2 N0 such that t D �N.r/. Then we
have

ˇ̌
ˇ̌
Z 1

T
e�s.�.t/; r/f .t/Dt

ˇ̌
ˇ̌ 	

Z 1

T
je�s.�.t/; r/f .t/ j Dt

	 M
Z 1

T
je�s.�.t/; r/ek.t; r/ j Dt

D M
Z 1

T

ˇ̌
ˇ̌ 1

1C s�.t/
ek�s.t; r/

ˇ̌
ˇ̌Dt

D M
1X

iDN

ˇ̌
ˇ̌ �.� i.r//

1C s�.� i.r//
ek�s.�

i.r/; r/

ˇ̌
ˇ̌

D M
1X

iDN

ˇ̌
ˇ̌ ai�.r/

1C sai�.r/
ek�s.�

i.r/; r/

ˇ̌
ˇ̌:
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We will show that this sum converges absolutely for jsj > k by the ratio test. We have

lim
i!1

ˇ̌
ˇ̌
�

aiC1�.r/ek�s.�
iC1.r/; r/

1C saiC1�.r/

��
1C sai�.r/

ai�.r/ek�s.� i.r/; r/

�ˇ̌
ˇ̌

D lim
i!1

ˇ̌
ˇ̌
�

aek�s.�
iC1.r/; r/

1C aiC1s�.r/

��
1C sai�.r/

ek�s.� i.r/; r/

�ˇ̌
ˇ̌

D lim
i!1

ˇ̌
ˇ̌
�

aek�s.�
i.r/; r/.1C kai�.r//

.1C aiC1s�.r//.1C sai�.r//

��
1C sai�.r/

ek�s.� i.r/; r/

�ˇ̌
ˇ̌

D lim
i!1

ˇ̌
ˇ̌a C kaiC1�.r/
1C saiC1�.r/

ˇ̌
ˇ̌

D lim
i!1

ˇ̌
ˇ̌
ˇ

1
ai C k�.r/
1

aiC1 C s�.r/

ˇ̌
ˇ̌
ˇ D k

jsj :

Hence the sum converges absolutely when jsj > k, and therefore Lrff g.s/ converges
if jsj > k. ut
Theorem 5.62 (Linearity). Suppose f ; g W Tr ! R are of exponential order k > 0,
and c; d 2 R. Then

Lrfcf C dgg.s/ D cLrff g.s/C dLrfgg.s/;

for jsj > k.

Proof. The result follows easily from the linearity of the delta integral. We have, for
jsj > k, that

Lrfcf C dgg.s/ D
Z 1

r
.cf .t/C dg.t//e�s.�.t/; r/Dt

D c
Z 1

r
f .t/e�s.�.t/; r/Dt C d

Z 1

r
g.t/e�s.�.t/; r/Dt

D cLrff g.s/C dLrfgg.s/;

which completes the proof. ut
The following lemma will be useful for computing Laplace transforms of various

functions.

Lemma 5.63. If p; q 2 Rc and jpj < jqj, then for t 2 Tr we have

lim
t!1 ep�q.t; r/ D 0:
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Proof. Let p; q 2 Rc with jpj < jqj. First, note that

ˇ̌
ˇ̌ lim
t!1

1C p�.t/

1C q�.t/

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ lim
t!1

1
�.t/ C p
1
�.t/ C q

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌p
q

ˇ̌
ˇ̌ < 1; since jpj < jqj:

This implies that

lim
t!1

ˇ̌
ep�q.t; r/

ˇ̌ D lim
t!1

ˇ̌
ˇ̌ep.t; r/

eq.t; r/

ˇ̌
ˇ̌ D

1Y
iD0

ˇ̌
ˇ̌1C p�.� i.r//

1C q�.� i.r//

ˇ̌
ˇ̌ D 0:

Thus, limt!1 ep�q.t; r/ D 0: ut
Remark 5.64. In particular, note that if s > 0, then

lim
t!1 e�s.t; r/ D 0:

Theorem 5.65. Let p 2 Rc. Then for jsj > jpj, we have

Lrfep.t; r/g.s/ D 1

s � p
:

Proof. First, note that ep.t; r/ is of exponential order jpj since

jep.t; r/j D
K.t;r/�1Y

iD0

ˇ̌
1C p�.� i.r//

ˇ̌

	
K.t;r/�1Y

iD0
1C jpj�.� i.r// D ejpj.t; r/:

Thus, if jsj > jpj, we have

Lrfep.t; r/g.s/ D
Z 1

r
e�s.�.t/; r/ep.t; r/Dt

D
Z 1

r
ep�s.t; r/

1

1C s�.t/
Dt

D 1

p � s

Z 1

r
ep�s.t; r/

p � s

1C s�.t/
Dt:

Then note both that Dep�s.t; r/ D .p � s/.t/ ep�s.t; r/ and that .p � s/.t/ D p�s
1Cs�.t/ :

This gives us
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Lrfep.t; r/g.s/ D 1

p � s

Z 1

r
Dep�s.t; r/Dt

D 1

p � s

h
lim

t!1 ep�s.t; r/ � ep�s.r; r/
i

D 1

s � p
;

since lim
t!1 ep�s.t; r/ D 0 by Lemma 5.63. ut

The following results describe the relationship between the Laplace transform
and the delta difference.

Lemma 5.66. If f W Tr ! R is of exponential order k > 0, then Df is also of
exponential order k > 0.

Proof. Let jf .t/j 	 Mek.t; r/ for sufficiently large t. We will prove this lemma by
showing that

lim
t!1

ˇ̌
ˇ̌ Df .t/

ek.t; r/

ˇ̌
ˇ̌ 	 M < 1:

First, consider

ˇ̌
ˇ̌ Df .t/

ek.t; r/

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ f .�.t// � f .t/

�.t/ek.t; r/

ˇ̌
ˇ̌

	 jf .�.t//j C jf .t/j
j�.t/ek.t; r/j

	 Mek.�.t/; r/C Mek.t; r/

j�.t/ek.t; r/j

	 Mek.t; r/.1C k�.t//C Mek.t; r/

�.t/ek.t; r/

	 Mek.t; r/.2C k�.t//

�.t/ek.t; r/

	 2M

�.t/
C Mk:

Thus, we have

lim
t!1

ˇ̌
ˇ̌ Df .t/

ek.t; r/

ˇ̌
ˇ̌ 	 Mk:

Then, for any � > 0 and t sufficiently large,

jDf .t/j 	 .Mk C �/ek.t; r/:
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Therefore, Df is of exponential order k > 0. ut
Corollary 5.67. If f W Tr ! R is of exponential order k > 0, then Dnf is also of
exponential order k > 0 for every n 2 N.

To see that the corollary holds, use the previous result.

Theorem 5.68. If f W Tr ! R is of exponential order k > 0 and n 2 N, then

LrfDnf .t/g.s/ D snLrff g.s/ �
n�1X
iD0

sn�1�iDif .r/;

for jsj > k.

Proof. We will proceed by induction on n. First consider the base case n D 1. Using
integration by parts we have

LrfDf .t/g.s/ D
Z 1

r
e�s.�.t/; r/Df .t/Dt

D e�s.t; r/f .t/

ˇ̌
ˇ̌
t!1

tDr

C
Z 1

r

s

1C s�.t/
e�s.t; r/f .t/Dt

D s
Z 1

r
e�s.�.t/; r/f .t/Dt � f .r/

es.r; r/

D sLr ff .t/g .s/ � f .r/:

Now assume the statement is true for some n > 1. Then by the base case we have

LrfDnC1f .t/g.s/ D sLrfDnf .t/g.s/ � Dnf .r/

D s

"
snLrff g.s/ �

n�1X
iD0

sn�1�iDif .r/

#
� Dnf .r/

D snC1Lrff g.s/ �
n�1X
iD0

sn�iDif .r/ � Dnf .r/

D snC1Lrff g.s/ �
nX

iD0
sn�iDif .r/;

as desired. ut
To show that the Laplace transform is injective (Theorem 5.70) and therefore

invertible we will use the following lemma.

Lemma 5.69. Let f W Tr ! R be of exponential order k > 0. Then

lim
s!1Lrff g.s/ D 0:
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Proof. Let tn D �n.r/: Since f is of exponential order k, there is a constant M > 0

and a positive integer N such that jf .tn/j 	 Mek.tn; r/ for all n � N. Then we have

lim
s!1 jLrff g.s/j 	 lim

s!1

1X
nD0

jf .tn/ e�s.tnC1; r/j �.tn/

D lim
s!1

N�1X
nD0

jf .tn/jje�s.tnC1; r/j�.tn/

C lim
s!1

1X
nDN

je�s.tnC1; r/jjf .tn/j�.tn/

	 M lim
s!1

1X
nDN

ek.tn; r/je�s.tnC1; r/j�.tn/

	 M lim
s!1

1X
nDN

ek.tn; r/jŒ1C �s.tn/�.tn/�e�s.tn; r/j�.tn/

D M lim
s!1

1X
nDN

ˇ̌
ˇ ek.tn; r/

Œ1C s�.tn/�es.tn; r/

ˇ̌
ˇ�.tn/

	 M lim
s!1

1X
nDN

ˇ̌
ˇek.tn; r/

es.tn; r/

ˇ̌
ˇ�.tn/:

We now show that
ˇ̌
ˇ̌1C k�.r/

1C s�.r/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌1C k�.tm/

1C s�.tm/

ˇ̌
ˇ̌

for <.s/; =.s/ > k and for all integers m � 0. To this end, we prove that

j.1C k�.r//.1C s�.tm//j � j.1C k�.tm//.1C s�.r//j

holds by writing s D <.s/C i=.s/ and showing

.1C k�.r//.1C <.s/�.tm// � .1C k�.tm//.1C <.s/�.r//

and

=.s/�.tm/C k=.s/�.r/�.tm/ � =.s/�.r/C k=.s/�.tm/�.r/:

Rewriting these inequalities yields

.<.s/ � k/�.tm/ � .<.s/ � k/�.r/
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and

=.s/�.tm/ � =.s/�.r/;

respectively, which are true by assumption. Thus for sufficiently large jsj, we have

jLrff g.s/j 	
1X

nDN

ˇ̌
ˇ̌ek.tn; r/

es.tn; r/
�.tn/

ˇ̌
ˇ̌

D
1X

nDN

�.tn/
n�1Y
mD0

ˇ̌
ˇ̌1C k�.tm/

1C s�.tm/

ˇ̌
ˇ̌

	
1X

nDN

�.r/ an

ˇ̌
ˇ̌1C k�.r/

1C s�.r/

ˇ̌
ˇ̌
n

D �.r/

ˇ̌
ˇ aCak�.r/
1Cs�.r/

ˇ̌
ˇ
N

1 �
ˇ̌
ˇ aCak�.r/
1Cs�.r/

ˇ̌
ˇ

! 0

as jsj ! 1. ut
Theorem 5.70 (Injectivity). If f ; g W Tr ! R and Lrff g.s/ D Lrfgg.s/, then
f .t/ D g.t/ for all t � r.

Proof. We will first prove that Lrff g.s/ D 0 implies f .t/ D 0 for all t � r. First,
note that by Lemma 5.69, we have

lim
s!1Lrff g.s/ D 0;

for any r 2 T˛ . We will show that f .�n.r// D 0 for all n � 0 by induction. We first
prove the case n D 0. To this end, we observe that if

Lrff g.s/ D 0;

then it follows that
Z 1

r
f .t/ e�s.�.t/; r/Dt D 0:

And from this it follows that

es.�.r/; r/
Z 1

r
f .t/ e�s.�.t/; r/Dt D 0;
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whence
Z 1

r
f .t/ e�s.�.t/; �.r//Dt D 0:

Consequently, it holds that

f .r/�.r/C
Z 1

�.r/
f .t/ e�s.�.t/; �.r//Dt D 0;

from which it follows that

f .r/�.r/C L�.r/ff g.s/ D 0:

Taking the limit as s ! 1 yields

f .r/�.r/C lim
s!1L�.r/ff g.s/ D 0;

and so, it holds that

f .r/�.r/ D 0;

hence

f .r/ D 0:

For the inductive step, assume f .� i.r// D 0 for all i < n. Then it follows that

Lrff g.s/ D 0;

from which we obtain
Z 1

�n.r/
f .t/ e�s.�.t/; r/Dt D 0:

Thus,

es.�
nC1.r/; r/

Z 1

�n.r/
f .t/ e�s.�.t/; r/Dt D 0:

So, we deduce that

Z 1

�n.r/
f .t/ e�s.�.t/; �

nC1.r//Dt D 0:
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All in all, we conclude that

f .�n.r//�.�n.r//C
Z 1

�nC1.r/
f .t/ e�s.�.t/; �

nC1.r//Dt D 0;

and so,

f .�n.r//�.�n.r//C L�nC1.r/ff g.s/ D 0:

Taking the limit as s ! 1 yields

f .�n.r//�.�n.r//C lim
s!1L�nC1.r/ff g.s/ D 0:

Therefore,

f .�n.r//�.�n.r// D 0:

Hence, we deduce that

f .�n.r// D 0:

So, f .t/ D 0 for all t � r.
Thus, Lrff g.s/ D 0 if and only if f D 0. Now let g be an arbitrary function

such that Lrff g.s/ D Lrfgg.s/. Then by linearity, we have Lrff � gg.s/ D 0, which
implies f � g D 0. Hence, f .t/ D g.t/ for all t � r. ut
Theorem 5.71 (Shifting). Suppose f W Tr ! R is of exponential order k > 0. Then
for jsj > k, we have:

i)L�n.r/ff g.s/ D es.�
n.r/; r/Lrff g.s/

�
Z �n.r/

r
es.�

n.r/; �.t//f .t/DtI

ii)L�n.r/ff g.s/ D e�s.r; �
n.r//Lrff g.s/

C
Z r

�n.r/
e�s.�.t/; �

n.r//f .t/Dt:

Proof. For part (i), we will proceed by induction on n. For the base case, consider
n D 1 W

L�.r/ff g.s/ D
Z 1

�.r/
e�s.�.t/; �.r//f .t/Dt:
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Note that

e�s.�.t/; �.r// D .1C s�.r//

.1C s�.r//es.�.t/; �.r//

D .1C s�.r//

es.�.t/; r/
D .1C s�.r//e�s.�.t/; r/:

Therefore, we have

L�.r/ff g.s/

D
Z 1

�.r/
.1C s�.r//e�s.�.t/; r/f .t/Dt

D
1X

jD0



.1C s�.r//e�s.�

jC1.�.r//; r/f .� j.�.r///�.� j.�.r///
�

D
1X

jD0



.1C s�.r//e�s.�

jC2.r/; r/f .� jC1.r//�.� jC1.r//
�

D
1X

jD0



.1C s�.r//e�s.�

jC1.r/; r/f .� j.r//�.� j.r//
�

� .1C s�.r//e�s.�.r/; r/f .r/�.r/:

Note that

.1C s�.r//e�s.�.r/; r/ D .1C s�.r//

es.�.r/; r/
D .1C s�.r//

.1C s�.r//es.r; r/
D 1:

We can thus further simplify the expression to

L�.r/ff g.s/ D
Z 1

r
.1C s�.r//e�s.�.t/; r/f .t/Dt � f .r/�.r/

D .1C s�.r//Lrff g.s/ � f .r/�.r/

D es.�.r/; r//Lrff g.s/ �
Z �.r/

r
es.�.r/; �.t//f .t/Dt;

which proves the base case.
For the inductive step, assume the hypothesis is true for some n � 1. Then by the

base case, we have
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L�nC1.r/ff g.s/
D es.�

nC1.r/; �n.r//L�n.r/ff g.s/

�
Z �nC1.r/

�n.r/
es.�

nC1.r/; �.t//f .t/Dt

D es.�
nC1.r/; �n.r//

"
es.�

n.r/; r/Lrff g.s/

�
Z �n.r/

r
es.�

n.r/; �.t//f .t/Dt

#
�
Z �nC1.r/

�n.r/
es.�

nC1.r/; �.t//f .t/Dt

D es.�
nC1.r/; r/Lrff g.s/ �

Z �n.r/

r
es.�

nC1.r/; �.t//f .t/Dt

�
Z �nC1.r/

�n.r/
es.�

nC1.r/; �.t//f .t/Dt

D es.�
nC1.r/; r/Lrff g.s/ �

Z �nC1.r/

r
es.�

nC1.r/; �.t//f .t/Dt:

We now prove part (ii) similarly. For the base case, consider n D 1. We obtain

L�.r/ff g.s/ D
Z 1

�.r/
e�s.�.t/; �.r//f .t/Dt

D
Z 1

�.r/

e�s.�.t/; r/

1C s�.�.r//
f .t/Dt

D 1

1C s�.�.r//
Lrff g.s/C f .�.r//�.�.r//

1C s�.�.r//

D e�s.r; �.r//Lrff g.s/C
Z r

�.r/
e�s.�.t/; �.r//f .t/Dt;

proving the base case. For the inductive step, assume the hypothesis is true for some
n � 1. Then by the base case, we have

L�nC1.r/ff g.s/

D e�s.�
n.r/; �nC1.r//L�n.r/ff g.s/C

Z �n.r/

�nC1.r/
e�s.�.t/; �

nC1.r//f .t/Dt
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D e�s.�
n.r/; �nC1.r//

"
e�s.r; �

n.r//Lrff g.s/

C
Z r

�n.r/
e�s.�.t/; �

n.t//f .t/Dt

#
C
Z �n.r/

�nC1.r/
e�s.�.t/; �

nC1.t//f .t/Dt

D e�s.r; �
nC1.r//Lrff g.s/C

Z r

�n.r/
e�s.�.t/; �

nC1.t//f .t/Dt

C
Z �n.r/

�nC1.r/
e�s.�.t/; �

nC1.t//f .t/Dt

D e�s.r; �
nC1.r//Lrff g.s/C

Z r

�nC1.r/
e�s.�.t/; �

nC1.t//f .t/Dt:

And this completes the proof. ut

5.10 Laplace Transform Formulas

Theorem 5.72. If c 2 R, then Lrfcg.s/ D c
s for jsj > 0.

Proof. Note c D c e0.t; r/ and apply Theorems 5.65 and 5.62. ut
Definition 5.73. If f W Tr ! R, then for any n 2 N, we define the n-th
antidifference of f based at r by

D�n
r f .t/ D

Z t

r

Z xn

r
� � �
Z x3

r

Z x2

r
f .x1/Dx1 � � � Dxn:

Theorem 5.74. Let f W Tr ! R. Then for any n 2 N,

D�n
r f .t/ D

Z t

r
hn�1.t; �.s//f .s/Ds:

Proof. Consider the initial value problem

(
Dny.t/ D f .t/;

Dky.r/ D 0 for 0 	 k 	 n � 1:

It is easy to see that the unique solution to this system is given by D�n
r f .t/.

However, by Taylor’s Theorem, y.t/ D Pn�1.t; r/C Rn�1.t; r/ where

Pn�1.t; r/ D
n�1X
kD0

Dkf .r/hk.t; r/;
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and

Rn�1.t; r/ D
Z t

r
hn�1.t; �.s//Dnf .s/Ds:

Then we have

f .t/ D Dny.t/ D DnPn�1.t; r/C DnRn�1.t; r/ D DnRn�1.t; r/;

which implies that Rn�1.t; r/ is also a solution. Thus we have

D�n
r f .t/ D Rn�1.t; r/

D
Z t

r
hn�1.t; �.s//Dny.s/Ds

D
Z t

r
hn�1.t; �.s//DnD�n

r f .s/Ds

D
Z t

r
hn�1.t; �.s//f .s/Ds;

since the solution is unique. ut
The following results are used to obtain the exponential order of the Taylor
monomial, hn.t; r/, and give its Laplace transform.

Lemma 5.75. Let f .t/ be of exponential order k > 0. Then D�1
r f .t/ is also of

exponential order k > 0.

Proof. Let jf .t/j 	 Mek.t; r/ for all t � x, and let C D ˇ̌R x
r f .u/Du

ˇ̌
. Then for t � x,

we have

ˇ̌
D�1

r f .t/
ˇ̌ D

ˇ̌
ˇ̌
Z t

r
f .u/Du

ˇ̌
ˇ̌

	
ˇ̌
ˇ̌
Z x

r
f .u/Du

ˇ̌
ˇ̌C

ˇ̌
ˇ̌
Z t

x
f .u/Du

ˇ̌
ˇ̌

	 C C
Z t

r
jf .u/j Du

	 C C M
Z t

r
ek.u; r/Du

D C C M

k
.ek.u; r//

ˇ̌
ˇ̌
uDt

uDr

D C C M

k
.ek.t; r/ � 1/
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	 C C M

k
ek.t; r/

	
�

C C M

k

�
ek.t; r/:

As this demonstrates that D�1
r f is of exponential order, the proof of the lemma is

complete. ut
Corollary 5.76. Let f .t/ be of exponential order k > 0. Then D�n

r f .t/ is also of
exponential order k > 0 for all n 2 N.

To see that the corollary holds, use the previous result.

Theorem 5.77. Let f be of exponential order k > 0. Then for jsj > k,

LrfD�n
r f .t/g.s/ D 1

sn
Lrff g.s/:

Proof. We will proceed by induction on n. For the base case, consider n D 1. Then
using integration by parts, we have

Lrff g.s/ D
Z 1

r
e�s.�.t/; r/f .t/Dt

D e�s.t; r/D
�1
r f .t/

ˇ̌
ˇ̌
t!1

tDr

C s
Z 1

r
e�s.�.t/; r/D

�1
r f .t/Dt

D sLrfD�1
r f .t/g.s/:

Thus, LrfD�1
r f .t/g.s/ D 1

sLrff g.s/.
For the inductive step, assume the statement is true for some integer n > 0. Then

we have

LrfD�n�1
r f .t/g.s/ D 1

s
LrfD�n

r f .t/g

D 1

s

�
1

sn
Lrff g.s/

	

D 1

snC1Lrff g.s/;

as was to be shown. ut
Lemma 5.78. The n-th Taylor monomial hn.t; r/ is of exponential order k D 1.

Proof. We will prove this result for a > 1 (leaving the case a D 1 to the reader) by
induction on n. Consider the base case n D 1. We have



398 5 Calculus on Mixed Time Scales

lim
t!1

ˇ̌
ˇ̌h1.t; r/
e1.t; r/

ˇ̌
ˇ̌ D lim

t!1

ˇ̌
ˇ̌ t � r

e1.t; r/

ˇ̌
ˇ̌

	 lim
t!1

ˇ̌
ˇ̌ t

e1.t; r/

ˇ̌
ˇ̌C lim

t!1

ˇ̌
ˇ̌ �r

e1.t; r/

ˇ̌
ˇ̌

	 lim
t!1

ˇ̌
ˇ̌ t

1C �.�.t//

ˇ̌
ˇ̌

D lim
t!1

ˇ̌
ˇ̌ t

1C a�1�.t/

ˇ̌
ˇ̌

D lim
t!1

ˇ̌
ˇ̌ at

a C .a � 1/t C b

ˇ̌
ˇ̌

D lim
t!1

ˇ̌
ˇ̌
ˇ

a

.a � 1/C aCb
t

ˇ̌
ˇ̌
ˇ

D a

a � 1 :

Thus, for sufficiently large t and any � > 0,

jh1.t; r/j 	
� a

a � 1 C �
�

e1.t; r/:

For the inductive step, assume hn.t; r/ is of exponential order 1 for some n. Then,
since D�1

r hn.t; r/ D hnC1.t; r/, applying Lemma 5.75 implies hnC1 is of exponential
order 1. ut
Theorem 5.79. Let jsj > 1. Then

Lrfhn.t; r/g.s/ D 1

snC1 :

Proof. The base case, n D 0, is trivial since Lrf1g.s/ D 1
s . Note that

Lrfhn.t; r/g.s/

D
Z 1

r
e�s.�.t/; r/hn.t; r/Dt

D e�s.�.t/; r/hnC1.t; r/jt!1
tDr C

Z 1

r

s

1C s�.t/
e�s.t; r/hnC1.t; r/

D
Z 1

r

s

1C s�.t/
e�s.t; r/hnC1.t; r/

D sLrfhnC1.t; r/g.s/:
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Thus, LrfhnC1.t; r/g.s/ D 1
sLrfhn.t; r/g.s/. Suppose that the theorem holds for

some n. Then it follows that

LrfhnC1.t; r/g.s/ D 1

s
Lrfhn.t; r/g.s/ D 1

s

1

.snC1/
D 1

snC2 ;

which completes the induction step and thus proves the result. ut
Lemma 5.80. The discrete trigonometric functions, sinp and cosp, and the hyper-
bolic trigonometric functions, sinhp and coshp, are all of exponential order jpj.
Proof. Let p be such that ˙p 2 Rc: Then for sufficiently large t, we have

j sinhp.t; r/j D 1

2

ˇ̌
ep.t; r/ � e�p.t; r/

ˇ̌

	 1

2
jep.t; r/j C 1

2
je�p.t; r/j

	 ejpj.t; r/:

The proof for coshp.t; r/ is analogous.
For cosp, we can use the identity cosp.t; r/ D coship.t; r/ to obtain

j cosp.t; r/j D j coship.t; r/j
	 ejipj.t; r/

D ejpj.t; r/:

The proof for sinp.t; r/ is analogous. ut
Theorem 5.81. For jsj > jpj and ˙p 2 Rc, we have

(i) Lrfcoshp.t; r/g.s/ D s
s2�p2

;

(ii) Lrfsinhp.t; r/g.s/ D p
s2�p2

.

Proof. To see that (i) holds, note that

Lrfcoshp.t; r/g.s/ D 1

2


Lrfep.t; r/g.s/C Lrfe�p.t; r/g.s/
�

D 1

2

1

.s � p/
C 1

2

1

.s C p/

D s

s2 � p2
:

The proof of (ii) is similar. ut
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Theorem 5.82. For jsj > jpj and ˙ip 2 Rc, we have

(i) Lrfcosp.t; r/g.s/ D s
s2Cp2

;

(ii) Lrfsinp.t; r/g.s/ D p
s2Cp2

:

Proof. To see that (i) holds, recall that cosp.t; r/ D coship.t; r/ and thus,

Lrfcosp.t; r/g.s/ D Lrfcoship.t; r/g.s/

D 1

2

1

.s � ip/
C 1

2

1

.s C ip/

D s

s2 C p2
:

The proof of (ii) is analogous. ut
Lemma 5.83. For p; q 2 Rc and t; r 2 T˛ , let k.t/ D q

1Cp�.t/ : Then the following
functions are of exponential order jpj C jqj:

(i) ep.t; r/ coshk.t; r/I
(ii) ep.t; r/ sinhk.t; r/I

(iii) ep.t; r/ cosk.t; r/I
(iv) ep.t; r/ sink.t; r/:

Proof. We will prove the result for (i). First, note that

p ˚ q

1C p�.t/
D p C q

1C p�.t/
C pq�.t/

1C p�.t/

D p C q.1C p�.t//

1C p�.t/

D p C q:

Therefore,

jep.t; r/ coshk.t; r/j D
ˇ̌
ˇ̌ep.t; r/

ek.t; r/C e�k.t; r/

2

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌ep˚k.t; r/C ep˚�k.t; r/

2

ˇ̌
ˇ̌

	
ˇ̌
ˇ̌ep˚k.t; r/j C jep˚�k.t; r/

2

ˇ̌
ˇ̌

	 jes.t; r/j ;



5.10 Laplace Transform Formulas 401

where

s D maxfjp ˚ kj; jp ˚ �kjg
D maxfjp C qj; jp � qjg
	 jpj C jqj:

Thus,

jep.t; r/ coshk.t; r/j 	 jes.t; r/j 	 Mes.t; r/;

for some M > 0, and so, ep.t; r/ coshk.t; r/ is of exponential order jpj C jqj. The
proofs of (ii)–(iv) are analogous. ut
Theorem 5.84. Let k.t/ D q

1Cp�.t/ for p; q 2 Rc. Then for jsj > jpj C jqj, we
have

(i) Lrfep.t; r/ coshk.t; r/g.s/ D s�p
.s�p/2�q2

I
(ii) Lrfep.t; r/ sinhk.t; r/g.s/ D q

.s�p/2�q2
I

(iii) Lrfep.t; r/ cosk.t; r/g.s/ D s�p
.s�p/2Cq2

I
(iv) Lrfep.t; r/ sink.t; r/g.s/ D q

.s�p/2Cq2
:

Proof. To prove (i), first note that

p ˚ k D p C q;

as stated above. Therefore,

Lrfep.t; r/ coshk.t; r/g.s/

D 1

2

h
Lr

n
ep˚ q

1Cp�.t/
.t; r/

o
.s/C Lr

n
ep˚ �q

1Cp�.t/
.t; r/

o
.s/
i

D 1

2


Lr
˚
epCq.t; r/

�
.s/C Lr

˚
ep�q.t; r/

�
.s/
�

D 1

2

�
1

s � .p C q/
C 1

s � .p � q/

	

D s � p

.s � p/2 � q2
:

The proof of (ii) is similar.
To see that (iii) holds, consider that cosq.t; r/ D coshiq.t; r/ and let q D iq in the

result of the proof of (i) to get

Lrfep.t; r/ cosk.t; r/g.s/ D s � p

.s � p/2 � .iq/2 D s � p

.s � p/2 C q2
:

The proof of (iv) is analogous. ut
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5.11 Solving IVPs Using the Laplace Transform

In this section we will demonstrate how the discrete Laplace transform can be
applied to solve difference equations on Tr.

Example 5.85. Solve:

(
D2f .t/ � 2Df .t/ � 8f .t/ D 0;

Df .r/ D 0I f .r/ D � 3
2
:

We will take the Laplace transform of both sides of the equation and use the initial
conditions to solve this problem. We begin with

0 D LrfD2f .t/ � 2Df .t/ � 8f .t/g.s/
D LrfD2f .t/g.s/ � 2LrfDf .t/g.s/ � 8Lrff g.s/
D 


s2Lff g.s/ � sf .r/ � Df .r/
� � 2 ŒsLff g.s/ � f .r/� � 8Lff g.s/

D
�

s2Lff g.s/ � s

�
�3
2

�	
� 2

�
sLff g.s/ �

�
�3
2

�	
� 8Lff g.s/

D .s2 � 2s � 8/Lff g.s/C 3

2
s � 3;

from which it follows that

Lff g.s/ D 3 � 3
2
s

s2 � 2s � 8 :

Using partial fractions, we obtain

Lff g.s/ D 3 � 3
2
s

s2 � 2s � 8 D � 1
2

s � 4 C �1
s C 2

:

Therefore, by the injectivity of the Laplace transform,

f .t/ D �1
2

e4.t; r/ � e�2.t; r/:

Example 5.86. Solve the following IVP:

D2y.t/C 4y.t/ D 0

y.0/ D 1

Dy.0/ D 1:
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To solve the above problem, we first take the Laplace transform of both sides. This
yields

L0fD2y.t/C 4y.t/g D L0f0g;

from which it follows that

s2L0fyg � .s C 1/C 4L0fyg D 0:

We then solve for L0fyg and invert by writing

.s2 C 4/L0fyg D s C 1;

from which it follows that

L0fyg D s

.s2 C 4/
C 1

2

2

.s2 C 4/
:

Thus,

y.t/ D cos2.t; 0/C 1

2
sin2.t; 0/:

5.12 Green’s Functions

In this section we will consider boundary value problems on a mixed time scale
with Sturm–Liouville type boundary value conditions for a > 1. We will find a
Green’s function for a boundary value problem on a mixed time scale with Dirichlet
boundary conditions, and investigate some of its properties. Many of the results in
this section can be viewed as analogues to results for the continuous case given in
Kelley and Peterson [137].

Theorem 5.87. Let ˇ 2 T�2.˛/ and A;B;E;F 2 R be given. Then the homogeneous
boundary value problem (BVP)

8̂
<̂
ˆ̂:

� D2y.t/ D 0; t 2 T˛

Ay.˛/ � BDy.˛/ D 0

Ey.ˇ/C FDy.ˇ/ D 0

has only the trivial solution if and only if

� WD AE.ˇ � ˛/C BE C AF ¤ 0:
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Proof. A general solution of �D2y.t/ D 0 is given by

y.t/ D c0 C c1h1.t; ˛/:

Using the boundary conditions, we have

Ay.˛/ � BDy.˛/ D Ac0 � Bc1 D 0

and

Ey.ˇ/C FDy.ˇ/ D EŒc0 C c1.ˇ � ˛/�C Fc0 D 0:

Thus, we have the following system of equations

c0A � c1B D 0

c0E C c1ŒE.ˇ � ˛/C F� D 0;

which has only the trivial solution if and only if

� WD
ˇ̌
ˇ̌
ˇ
A �B

E Eˇ � E˛ C F

ˇ̌
ˇ̌
ˇ ¤ 0:

It follows that

� WD AŒE.ˇ � ˛/C F/�C BE

D AE.ˇ � ˛/C BE C AF;

as claimed. ut
Lemma 5.88. Assume ˇ 2 T�2.˛/ and A1;A2 2 R. Then the boundary value
problem

�D2y.t/ D 0; t 2 T
�2.ˇ/
˛

y.˛/ DA1; y.ˇ/ D A2

has the solution

y.t/ D A1 C A2 � A1
ˇ � ˛ .t � ˛/:

Proof. A general solution to the mixed difference equation D2y.t/ D 0 is given by

y.t/ D c0 C c1h1.t; ˛/ D c0 C c1.t � ˛/:
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Using the first boundary condition, we get

y.˛/ D c0 D A1:

Using the second boundary condition, we have that

y.ˇ/ D A1 C c1.ˇ � ˛/ D A2:

Solving for c1 we get

c1 D A2 � A1
ˇ � ˛ :

Hence,

y.t/ D A1 C A2 � A1
ˇ � ˛ .t � ˛/:

ut
Theorem 5.89. Assume f W T�2.ˇ/˛ ! R and ˇ 2 T�2.˛/. Then the unique solution
of the BVP

�D2y.t/ D f .t/; t 2 T
�2.ˇ/
˛ (5.5)

y.˛/ D 0 D y.ˇ/; (5.6)

is given by

y.t/ D
Z ˇ

˛

G.t; s/f .s/Ds D
K.ˇ/�1X

jD0
G.t; � j.˛//f .� j.˛//�.� j.˛//;

for t 2 T
ˇ
˛ , where G W T

ˇ
˛ � T

�.ˇ/
˛ ! R is called the Green’s function for the

homogeneous BVP

� D2y.t/ D 0; t 2 T
�2.ˇ/
˛ (5.7)

y.˛/ D 0 D y.ˇ/; (5.8)

and is defined by

G.t; s/ WD
(

u.t; s/; 0 	 K.s/ 	 K.t/ � 1 	 K.ˇ/ � 1
v.t; s/; 0 	 K.t/ 	 K.s/ 	 K.ˇ/ � 1;
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where for .t; s/ 2 T
ˇ
˛ � T

�.ˇ/
˛

u.t; s/ WD h1.ˇ; �.s//

h1.ˇ; ˛/
h1.t; ˛/ � h1.t; �.s//

and

v.t; s/ WD h1.ˇ; �.s//

h1.ˇ; ˛/
h1.t; ˛/:

Proof. Note for the � defined in Theorem 5.87 we have that for A D E D 1,
B D F D 0,

� D AC.ˇ � ˛/C BC C AD D .ˇ � ˛/ ¤ 0:

Hence, by Exercise 5.13, the BVP (5.5), (5.6) has a unique solution y.t/. Using the
variation of constants formula (Theorem 5.38 with n D 2) we have that

y.t/ D c0h0.t; ˛/C c1h1.t; ˛/ �
Z t

˛

h1.t; �.s/f .s/Ds

D c0 C c1h1.t; ˛/ �
K.t/�1X

jD0
h1.t; �.�

j.˛///f .� j.˛//�.� j.˛//

D c0 C c1h1.t; ˛/ �
K.t/�1X

jD0
h2.t; �

jC1.˛//f .� j.˛//aj�.˛/:

Using the first boundary condition, we get

y.˛/ D c0 C c1h1.˛; ˛/ �
Z ˛

˛

h1.t; �.s//f .s/Ds

D c0

D 0;

and using the second boundary condition, we have that

y.ˇ/ D c1h1.ˇ; ˛/ �
K.ˇ/�1X

jD0
h1.ˇ; �

jC1.˛//f .� j.˛//�.� j.˛// D 0:

Solving for c1 yields

c1 D
PK.ˇ/�1

jD0 h2.ˇ; � jC1.˛//f .� j.˛//�.� j.˛//

h1.ˇ; ˛/
:
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Thus,

y.t/ D
PK.ˇ/�1

jD0 h1.ˇ; � jC1.˛//f .� j.˛//�.� j.˛//

h1.ˇ; ˛/
h1.t; ˛/

�
K.t/�1X

jD0
h1.t; �

jC1.˛//f .� j.˛//�.� j.˛//

D
K.t/�1X

jD0

�
h1.ˇ; � jC1.˛//

h1.ˇ; ˛/
h1.t; ˛/ � h1.t; �

jC1.˛//
	

f .� j.˛//�.� j.˛//

C
K.ˇ/�1X
jDK.t/

h1.ˇ; � jC1.˛//
h1.ˇ; ˛/

h1.t; ˛/f .�
j.˛//�.� j.˛//

D
K.ˇ/�1X

jD0
G.t; � j.˛//f .� j.˛//�.� j.˛//

D
Z ˇ

˛

G.t; s/f .s/Ds;

for G.t; s/ defined as in the statement of this theorem. ut
Theorem 5.90. The Green’s function for the BVP (5.7), (5.8), satisfies

G.t; s/ � 0; .t; s/ 2 T
ˇ
˛ � T

�.ˇ/
˛

and

max
t2Tˇ˛

G.t; s/ D G.�.s/; s/; s 2 T
�.ˇ/
˛ :

Proof. First, note both that

G.˛; s/ D h1.ˇ; �.s//

h1.ˇ; ˛/
h1.˛; ˛/ D h1.ˇ; �.s//

h1.ˇ; ˛/
.˛ � ˛/ D 0

and that

G.ˇ; s/ D h1.ˇ; �.s//

h1.ˇ; ˛/
h1.ˇ; ˛/ � h1.ˇ; �.s// D 0:
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Now we will show that DG.t; s/ � 0 for t 	 s, DG.t; s/ 	 0 for s < t, and
G.�.s/; s/ � G.s; s/. So first consider the domain 0 	 K.t/ 	 K.s/ 	 K.ˇ/ � 1:

DG.t; s/ D h1.ˇ; �.s//

h1.ˇ; ˛/
Dh1.t; ˛/

D ˇ � �.s/
ˇ � ˛ h0.t; ˛/

D ˇ � �.s/
ˇ � ˛

� 0:

Now consider the domain 0 	 K.s/ 	 K.t/ � 1 	 K.ˇ/ � 1:

DG.t; s/ D h1.ˇ; �.s//

h1.ˇ; ˛/
Dh1.t; ˛/ � Dh1.t; �.s//

D ˇ � �.s/
ˇ � ˛ h0.t; ˛/ � h0.t; �.s//

D ˇ � �.s/
ˇ � ˛ � 1

	 0;

since ˇ � �.s/ 	 ˇ � ˛. Now, since G is increasing for t 	 s and decreasing for
s < t, we need to see which is larger: G.�.s/; s/ or G.s; s/. So consider

G.�.s/; s/ � G.s; s/

D ˇ � �.s/
ˇ � ˛ .�.s/ � ˛/ � .�.s/ � �.s// � ˇ � �.s/

ˇ � ˛ .s � ˛/

D ˇ � �.s/
ˇ � ˛ Œ�.s/ � ˛ � s C ˛�

D ˇ � �.s/
ˇ � ˛ .�.s/ � s/

� 0;

which implies that max
t2Tˇ˛ G.t; s/ D G.�.s/; s/. Also, since DG.t; s/ � 0 for t 2

TŒ˛;s�, DG.t; s/ 	 0 for t 2 T.s;ˇ/, and G.˛; s/ D 0 D G.ˇ; s/, we have G.t; s/ � 0

on its domain. ut
Remark 5.91. Note that in the above proof, we have DG.t; s/ > 0 for t 	 s < �.ˇ/,
DG.t; s/ < 0 for ˛ < s < t.
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In the next theorem we give some more properties of the Green’s function for the
BVP (5.7), (5.8).

Theorem 5.92. Let G.t; s/; u.t; s/, and v.t; s/ be as defined in Theorem 5.89. Then
the following hold:

(i) G.˛; s/ D 0 D G.ˇ; s/; s 2 T
�.ˇ/
˛ I

(ii) for each fixed s 2 T
�.ˇ/
˛ ; �D2u.t; s/ D 0 D �D2v.t; s/ for t 2 T

�2.ˇ/
˛ I

(iii) v.t; s/ D u.t; s/C h1.t; �.s//; .t; s/ 2 T
ˇ
˛ � T

�.ˇ/
˛ I

(iv) u.�.s/; s/ D v.�.s/; s/; s 2 T
�.ˇ/
˛ I

(v) �D2G.t; s/ D ıts
�.s/ ; .t; s/ 2 T

�2.ˇ/
˛ � T

�.ˇ/
˛ ; where ıts is the Kronecker delta,

i.e., ıts D 1 for t D s and ıts D 0 for t ¤ s.

Proof. In the proof of Theorem 5.90 we proved (i). The proofs of the properties
(ii)–(iv) are straightforward and left to the reader (see Exercise 5.15). We now use
these properties to prove (v). It follows that for t < s,

�D2G.t; s/ D �D2u.t; s/ D 0 D ıts

�.s/

and for t > s,

�D2G.t; s/ D �D2v.t; s/ D 0 D ıts

�.s/
:

Finally, when t D s, we have using Exercise 5.5

D2G.t; s/

D G.�2.t/; s/�.t/ � G.�.t/; s/Œ�.t/C �.�.t//�C G.t; s/�.�.t//

Œ�.t/�2�.�.t//

D v.�2.t/; s/�.t/ � u.�.t/; s/Œ�.t/C �.�.t//�C u.t; s/�.�.t//

Œ�.t/�2�.�.t//

D v.�2.s/; s/�.s/ � u.�.s/; s/Œ�.s/C �.�.s//�C u.s; s/�.�.s//

Œ�.s/�2�.�.s//

D Œu.�2.s/; s/C h1.�2.s/; �.s//��.s/

Œ�.s/�2�.�.s//

C �u.�.s/; s/Œ�.s/C �.�.s//�C u.s; s/�.�.s//

Œ�.s/�2�.�.s//

D h1.�2.s/; �.s//�.s/

Œ�.s/�2�.�.s//
C D2u.s; s/
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D h1.�2.s/; �.s//

�.s/�.�.s//

D �2.s/ � �.s/
�.s/�.�.s//

D 1

�.s/
:

Therefore,

�D2G.t; s/ D ıts

�.s/
;

for .t; s/ 2 T
�2.ˇ/
˛ � T

�.ˇ/
˛ . ut

The following theorem along with Exercise 5.13 is a uniqueness result for the
Green’s function for the BVP (5.7), (5.8).

Theorem 5.93. There is a unique function G W T
ˇ
˛ � T

�.ˇ/
˛ ! R such that

G.˛; s/ D 0 D G.ˇ; s/, for each s 2 T
�.ˇ/
˛ , and that �D2G.t; s/ D ıts

�.s/ , for each

fixed s 2 T
�.ˇ/
˛ .

Proof. Fix s 2 T
�.ˇ/
˛ . Then by Theorem 5.89 with f .t/ D ıts

�.s/ ; t 2 T
�2.ˇ/
˛ ; the BVP

� D2y.t/ D ıts

�.s/
; t 2 T

�2.ˇ/
˛

y.˛/ D 0 D y.ˇ/;

has a unique solution on T
ˇ
˛ . Hence for each fixed s 2 T

�.ˇ/
˛ , G.t; s/ is uniquely

determined for t 2 T
ˇ
˛: Since s 2 T

�.ˇ/
˛ is arbitrary, G.t; s/ is uniquely determined

on T
ˇ
˛ � T

�.ˇ/
˛ : ut

Theorem 5.94. Assume f W T�2.ˇ/˛ ! R. Then the unique solution of the BVP

� D2y.t/ D f .t/; t 2 T
�2.ˇ/
˛

y.˛/ D A1; y.ˇ/ D A2

is given by

y.t/ D u.t/C
Z ˇ

˛

G.t; s/f .s/Ds D u.t/

C
K.ˇ/�1X

jD0
G.t; � j.˛//f .� j.˛//�.� j.˛//;
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where u.t/ solves the BVP

( � D2y.t/ D 0; t 2 T
�2.ˇ/
˛

y.˛/ D A1; y.ˇ/ D A2

and G.t; s/ is the Green’s function for the BVP (5.7), (5.8).

Proof. By Exercise 5.13 the given BVP has a unique solution y.t/: By Theorem 5.89

y.t/ D u.t/C
Z ˇ

˛

G.t; s/f .s/Ds

D u.t/C z.t/;

where z.t/ WD R ˇ
˛

G.t; s/f .s/Ds is by Theorem 5.89 the solution of the BVP

�D2z.t/ D f .t/; z.˛/ D 0 D z.ˇ/:

It follows that

y.˛/ D u.˛/C z.˛/ D A1

and

y.ˇ/ D u.ˇ/C z.ˇ/ D A2:

Furthermore,

�D2y.t/ D �D2u.t/ � D2z.t/ D 0C f .t/ D f .t/

for t 2 T
�2.ˇ/
˛ : ut

We now prove a comparison theorem for solutions of boundary value problems
of the type treated by Theorem 5.94.

Theorem 5.95 (Comparison Theorem). If u; v W Tˇ˛ ! R satisfy

D2u.t/ 	 D2v.t/; t 2 T
�2.ˇ/
˛

u.˛/ � v.˛/;

u.ˇ/ � v.ˇ/:

Then u.t/ � v.t/ on T
ˇ
˛ .
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Proof. Let w.t/ WD u.t/ � v.t/, for t 2 T
ˇ
˛: Then for t 2 T

�2.ˇ/
˛

f .t/ WD �D2w.t/ D �D2u.t/C D2v.t/ � 0:

If A1 WD u.˛/�v.˛/ � 0 and A2 WD u.ˇ/�v.ˇ/ � 0, then w.t/ solves the boundary
value problem

( � D2w.t/ D f .t/; t 2 T
�2.ˇ/
˛

w.˛/ D A1; w.ˇ/ D A2:

Thus, by Theorem 5.94

w.t/ D y.t/C
Z ˇ

˛

G.t; s/f .s/Ds t 2 T
ˇ
˛;

where G.t; s/ is the Green’s function defined earlier and y.t/ is the solution of

( � D2y.t/ D 0; t 2 T
�2.ˇ/
˛

y.˛/ D A1; y.ˇ/ D A2:

Since �D2y.t/ D 0 has the general solution

y.t/ D c0 C c1h1.t; ˛/ D c0 C c1.t � ˛/;

and both y.˛/; y.ˇ/ � 0, we have y.t/ � 0. By Theorem 5.90, G.t; s/ � 0, and,
thus, we have

w.t/ D y.t/C
Z ˇ

˛

G.t; s/f .s/Ds � 0;

for t 2 T
ˇ
˛: ut

5.13 Exercises

5.1. Show that the points in T˛ satisfy

� � � < �2.˛/ < �.˛/ < ˛ < �.˛/ < �2.˛/ < � � � :

5.2. Prove part (ii) of Theorem 5.4.

5.3. Prove parts (ii) and (iii) of Theorem 5.6.
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5.4. Prove part (iv) of Theorem 5.8.

5.5. Assume f W T˛ ! R. Show that

D2f .t/ D f .�2.t//�.t/ � f .�.t//Œ�.t/C �.�.t//�C f .t/�.�.t//

Œ�.t/�2�.�.t//
:

5.6. Assume c; d 2 T˛ with c < d. Prove that if f W TŒc;d� ! R and Df .t/ D 0 for
t 2 TŒc;�.d/�, then f .t/ D C for all t 2 TŒc;d�, where C is a constant.

5.7. Show that if n 2 N1 and a � 1, then

Œn�a D
n�1X
kD0

ak:

Then use this formula to prove parts (iii)–(v) of Theorem 5.22.

5.8. Prove part (ii) of Theorem 5.23.

5.9. Assume f W T˛ � T˛ ! R: Derive the Leibniz formula

D
Z t

a
f .t; s/Ds D

Z t

a
Df .t; s/Ds C f .�.t/; t/

for t 2 T˛:

5.10. Consider the mixed time scale where ˛ D 2 and �.t/ D 3t C2 (so a D 3 and
b D 2). Use the variation of constants formula in Theorem 5.38 to solve the IVP

D2y.t/ D 2t � 4; t 2 T2

y.2/ D 0; Dy.2/ D 0:

5.11. Use the Leibniz formula in Exercise 5.9 to prove the Variation of Constants
Theorem (Theorem 5.37).

5.12. Prove Theorem 5.43.

5.13. Assume ˇ 2 T�2.˛/, A;B;E;F 2 R and f W T
�2.ˇ/
˛ ! R: Then the

nonhomogeneous BVP

�D2y.t/ D f .t/; t 2 R
ˇ
˛

Ay.˛/ � BDy.˛/ D C1

Ey.ˇ/C FDy.ˇ/ D C2;
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where the constants C1; C2 are given, has a unique solution if and only if the
corresponding homogeneous BVP

� D2y.t/ D 0; t 2 R
ˇ
˛

Ay.˛/ � BDy.˛/ D 0

Ey.ˇ/C FDy.ˇ/ D 0

has only the trivial solution.

5.14. Show that for the BVP

� D2y.t/ D 0; t 2 T
�2.˛/
˛

Dy.˛/ D 0 D Dy.ˇ/;

the � in Theorem 5.87 satisfies � D 0. Then show that the given BVP has infinitely
many solutions.

5.15. Prove parts (ii)–(iv) of Theorem 5.92.

5.16. Use Theorem 5.92 to prove directly that the function

y.t/ WD
Z ˇ

˛

G.t; s/f .s/Ds;

for t 2 T
ˇ
˛ , where G.t; s/ is the Green’s function for the BVP (5.7), (5.8), solves the

BVP (5.5), (5.6).



Chapter 6
Fractional Boundary Value Problems

6.1 Introduction

In this chapter we derive the Green’s function for the fractional boundary value
problem (FBVP)

(
��

�2 y.t/ D 0; t 2 N
bC2
0

y. � 2/ D 0 D y. C b C 1/;
(6.1)

where  2 .1; 2� and b 2 N0. Next we derive several important properties of this
Green’s function which will be useful for proving some interesting results regarding
solutions of the nonlinear FBVP

(
��

�2 y.t/ D f .t; y.t C  � 1//; t 2 N
bC2
0

y. � 2/ D A; y. C b C 1/ D B;
(6.2)

where  2 .1; 2�, f W N
bC1
0 � R ! R and b 2 N0. In particular, we will prove

some results regarding the existence and uniqueness of solutions to the conjugate
FBVP (6.2) via various fixed point theorems. We also consider boundary value
problems for the so-called linear self-adjoint fractional equation. Most of the results
in this chapter are due to Awasthi [40–43].

6.2 Two Point Green’s Function

In this section we derive the Green’s function for the two point FBVP (6.1) and
prove several of its properties. In the next theorem we consider the following
nonhomogeneous FBVP with homogeneous boundary conditions:

© Springer International Publishing Switzerland 2015
C. Goodrich, A.C. Peterson, Discrete Fractional Calculus,
DOI 10.1007/978-3-319-25562-0_6
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(
��

�2 y.t/ D f .t/; t 2 N
bC2
0

y. � 2/ D 0; y. C b C 1/ D 0;
(6.3)

where f W NbC2
0 ! R:

Theorem 6.1 (Atici and Eloe [31]). The solution y of the FBVP (6.3) is given by

y.t/ D
Z bC3

0

G.t; s/f .s/�s D
bC2X
sD0

G.t; s/f .s/; t 2 N
bCC1
�2 ;

where the so-called Green’s function G.t; s/ for the FBVP (6.1) is given by

G.t; s/ WD

8
ˆ̂<
ˆ̂:

u.t; s/; 0 	 t �  C 1 	 s 	 b C 2;

v.t; s/; 0 	 s 	 t �  C 1 	 b C 2;

0; .t; s/ 2 f � 2g � Œ0; b C 2�N0 ;

where

u.t; s/ D t�1h�1. C b C 1; �.s//

. C b C 1/�1 ;

and

v.t; s/ D u.t; s/ � h�1.t; �.s//;

where h�1.t; s/ D .t�s/�1

�./
is the -th fractional Taylor monomial based at the

point s (see Definition 2.24).

Proof. Let y be a solution of the fractional difference equation

��
�2 y.t/ D f .t/; t 2 N

bC2
0 ;

on N
bCC1
�2 : It follows from Theorems 2.43 and 2.52 that

y.t/ D �
t�X
sD0

.t � �.s//�1

�./
f .s/C C1t

�1 C C2t
�2: (6.4)

We want y.t/ to satisfy the boundary conditions

y. � 2/ D 0; y. C b C 1/ D 0:
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Using the first BC, y. � 2/ D 0, gives

0 D C1. � 2/�1 C C2. � 2/�2 D C2�. � 1/;

which implies that C2 D 0. Using the second BC, y. C b C 1/ D 0, we get that

0 D �
bC1X
sD0

h�1. C b C 1; �.s//h.s/C C1. C b C 1/�1:

Solving for C1, we have that

C1 D
bC1X
sD0

h�1. C b C 1; �.s//

. C b C 1/�1 f .s/:

Thus, from (6.4),

y.t/ D �
t�X
sD0

h�1.t; �.s//f .s/C
bC1X
sD0

t�1h�1. C b C 1; �.s//

. C b C 1/�1 f .s/:

Since . C b C 1 � �.s//�1 D 0 for s D b C 2, the above expression can be
rewritten as

y.t/ D �
t�X
sD0

h�1.t; �.s//f .s/C
bC2X
sD0

t�1h�1. C b C 1; �.s//

. C b C 1/�1 f .s/:

It follows that

y.t/ D
bC2X
sD0

u.t; s/f .s/ �
t�X
sD0

h�1.t; �.s//f .s/

D
t�X
sD0
Œu.t; s/ � h�1.t; �.s//�f .s/C

bC2X
sDt�C1

u.t; s/f .s/

D
t�X
sD0

v.t; s/f .s/C
bC2X

sDt�C1
u.t; s/f .s/

D
bC2X
sD0

G.t; s/f .s/;

where G.t; s/ is the Green’s function for the FBVP (6.1). ut
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Remark 6.2. By Theorem 6.1 the Green’s function for the FBVP (6.1) is given by

G.t; s/ WD
8<
:

t�1 .CbC1��.s//�1

�./ .CbC1/�1 � .t��.s//�1

�./
, s 	 t � 

t�1 .CbC1��.s//�1

�./ .CbC1/�1 , t �  C 1 	 s
;

for  � 2 	 t 	  C b � 1; 0 	 s 	 b C 2:

Theorem 6.3. The Green’s function for the FBVP (6.1) satisfies

G.t; s/ � 0;

for  � 2 	 t 	  C b � 1; 0 	 s 	 b C 2:

Proof. From Theorem 6.1 we have that for 0 	 t �  C 1 	 s 	 b C 2

u.t; s/ D t�1 . C b C 1 � �.s//�1

�./ . C b C 1/�1 � 0:

To show that v.t; s/ � 0 it suffices to prove that

.t � �.s//�1

�./
	 t�1 . C b C 1 � �.s//�1

�./ . C b C 1/�1 ; t �  C 1 � s:

Equivalently, it suffices to show

.t � �.s//�1 . C b C 1/�1

. C b C 1 � �.s//�1 t�1 	 1:

Thus, consider

.t � �.s//�1 . C b C 1/�1

. C b C 1 � �.s//�1 t�1

D �.t � s/

�.t � s �  C 1/

�. C b C 2/

�.b C 3/

�.t �  C 2/

�.t C 1/

�.b C 2 � s/

�. C b � s C 1/
:

But t D  C s C k for some k, so

.t � �.s//�1 . C b C 1/�1

. C b C 1 � �.s//�1 t�1

D
�
�. C k/

�.k C 1/

	 �
�.k C s C 2/

�. C k C s C 1/

	 �
�.b C 2 � s/

�.b C 3/

	 �
�. C b C 2/

�. C b C 1 � s/

	

D
�

�. C k/

�. C k C s C 1/

	 �
�.k C s C 2/

�.k C 1/

	 �
�.b C 2 � s/

�.b C 3/

	 �
�. C b C 2/

�. C b C 1 � s/

	
:
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Using a property of the Gamma function, we have that

.t � �.s//�1 . C b C 1/�1

. C b C 1 � �.s//�1 t�1

D
�

1

. C k C s/ � � � . C k/

	 �
.k C s C 1/ � � � .k C 1/

1

	

�
�

1

.b C 2/ � � � .b C 2 � s/

	 �
. C b C 1/ � � � . C b C 1 � s/

1

	

D
�
.k C s C 1/. C b C 1/

. C k C s/.b C 2/

	
� � �
�
.k C 1/. C b C 1 � s/

. C k/.b C 2 � s/

	
:

It suffices to show that each factor in the last expression is less than or equal to one.
We will just show that the first factor is less than or equal to one, since the proof of
the other factors being less than or equal to one is similar. Therefore, consider the
first factor

.k C s C 1/. C b C 1/

. C k C s/.b C 2/
D .k C s/.b C 1/C .k C s/ C  C .b C 1/

.k C s/.b C 1/C .k C s/C  C .b C 1/
:

Considering the numerator and the denominator of this last expression, to show that
this fraction is less than or equal to one, it suffices to show that

.k C s/ C .b C 1/ 	 .k C s/C .b C 1/:

To see this first note that since .k C s/ 	 .b C 1/ and 1 <  	 2, we get

.k C s/. � 1/ 	 .b C 1/. � 1/:

Adding .k C 1/C .b C 1/ to both sides we get the desired result, namely

.k C s/ C .b C 1/ 	 .k C s/C .b C 1/:

Therefore, we have that G.t; s/ � 0. ut
Theorem 6.4 (Awasthi [40, 41]). Let G.t; s/ be the Green’s function for the
FBVP (6.1). Then

bC2X
sD0

G.t; s/ D t�1 . C b C 1 � t/

�. C 1/

for t 2 N
CbC1
�2 :
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Proof. By the definition of the Green’s function and using the fact that for all t 2
Œ � 2;  C b C 1�N�2 ; G.t; b C 2/ D 0, we have that

bC2X
sD0

G.t; s/ D
bC1X
sD0

G.t; s/

D
t�X
sD0

v.t; s/C
bC1X

sDtCC1
u.t; s/

D
t�X
sD0

Œu.t; s/ � h�1.t; �.s//�C
bC1X

sDtCC1
u.t; s/

D
bC1X
sD0

u.t; s/ �
t�X
sD0

h�1.t; �.s//

D
Z bC2

0

u.t; s/�s �
Z t�C1

0

h�1.t; �.s//�s:

Using integration by parts and the formula for u.t; s/, we get that

bC2X
sD0

G.t; s/

D t�1

. C b C 1/�1

Z bC2

0

h�1. C b C 1; �.s//�s C Œh.t; s/�
t�C1
sD0

D � t�1

. C b C 1/�1 Œh. C b C 1; s/�bC2
sD0 � h.t; 0/

D t�1

. C b C 1/�1 h. C b C 1; 0/ � h.t; 0/

D t�1. C b C 1/

. C b C 1/�1�. C 1/
� t

�. C 1/

D t�1 . C b C 1 � t/

�. C 1/

for t 2 N
CbC1
�2 : ut

In the following theorem we find an upper bound for
bC2X
sD0

G.t; s/, where

t 2 N
CbC1
�2 :
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Theorem 6.5 (Awasthi [40, 41]). The Green’s function for the FBVP (6.1) satisfies

max
t2NCbC1

�2

bC2X
sD0

G.t; s/

D 1

�. C 1/

�
 C

l
b � b C 2



m	�1 �
b C 1 �

l
b � b C 2



m	
;

where d�e is the ceiling function.

Proof. By Theorem 6.4, we have

bC2X
sD0

G.t; s/ D . C b C 1 � t/ t�1

�. C 1/
D 1

�. C 1/
F.t/;

where F.t/ WD t�1 . C b C 1 � t/. We observe that F.t/ � 0 on N
CbC1
�2 ; with

F. � 2/ D 0 and F. C b C 1/ D 0. So F has a nonnegative maximum and to find
this maximum we consider

�F.t/ D .�1/ t�1 C . � 1/. C b � t/ t�2

D t�2 Œ�.t �  C 2/C . � 1/. C b � t/�

D t�2 
2 C b � t � b � 2� :

It follows from this preceding expression that F.t/ has its maximum on N
CbC1
�2 at

t D  C
l

b � bC2


m
. Hence,

max
t2NCbC1

�2

bC2X
sD0

G.t; s/

D 1

�. C 1/

�
 C

l
b � b C 2



m	�1 �
b C 1 �

l
b � b C 2



m	
:

This completes the proof. ut
Remark 6.6. It is very important to mention that we are able to calculate the actual
maximum of the summation of the Green’s function. By putting  D 2 and
choosing b to be any nonnegative integer, one can compare the above result with the
classical cases both in the theory of ordinary differential equations and of difference
equations.
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Theorem 6.7. Assume  2 .1; 2� and h W Œ0; b C 2�N�2 ! R. Then the solution to
the nonhomogeneous FBVP

(
��

�2 y.t/ D h.t/; t 2 N
bC2
0

y. � 2/ D A; y. C b C 1/ D B
(6.5)

is given by

y.t/ D z.t/C
bC2X
sD0

G.t; s/h.s/; t 2 N
bCC1
�2 ;

where G.t; s/ is the Green’s function for the FBVP (6.1) and z.t/ is the unique
solution to the FBVP

(
�
�2 z.t/ D 0; t 2 N

bC2
0

z. � 2/ D A; z. C b C 1/ D B:
(6.6)

Proof. Let

w.t/ WD
bC2X
sD0

G.t; s/h.s/; t 2 N
bCC1
�2 :

By Theorem 6.1 w.t/ is the solution of the FBVP (6.3) on N
bCC1
�2 . Let y.t/ and z.t/

be as in the statement of this theorem. Then

y. � 2/ D z. � 2/C w. � 2/ D A C 0 D A;

and

y.b C  C 1/ D z.b C  C 1/C w.b C  C 1/ D B C 0 D B:

Finally,

��
�2y.t/ D ��

�2z.t/ ��
�2w.t/ D h.t/

for t 2 N
bC2
0 : ut

6.3 Various Fixed Point Theorems

Fixed point theorems are useful tools for guaranteeing the existence and uniqueness
of solutions of nonlinear equations in ordinary differential equations, partial differ-
ential equations, and many other areas of pure and applied mathematics. In this
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section, we will discuss the application of several fixed point theorems to the
solution of nonlinear fractional boundary value problems. In particular, conjugate
discrete fractional boundary value problems will be our main interest. We start with
the following well-known result [167].

Theorem 6.8 (Contraction Mapping Theorem). Let .X; k � k/ be a Banach space
and T W X ! X be a contraction mapping. Then T has a unique fixed point in X.

The following theorem is an application of the above theorem.

Theorem 6.9 (Awasthi [40, 41]). Assume that f W Œ0; b C 2�N0 � R ! R satisfies
a uniform Lipschitz condition with respect to its second variable with Lipschitz
constant k > 0. If

�
 C

�
b � b C 2



���1 �
b C 1 �

�
b � b C 2



��
<
�. C 1/

k
;

then the nonlinear fractional boundary value problem

(
��

�2 y.t/ D f .t; y.t C  � 1//, t 2 Œ0; b C 2�

y. � 2/ D A; y. C b C 1/ D B
(6.7)

has a unique solution.

Proof. Let Z be the space of real-valued functions defined on N
CbC1
�2 . Then we

define a norm k � k on Z by kxk D maxfjx.t/j W t 2 N
CbC1
�2 g so that the pair .Z; k � k/

is a Banach space. Now we define the map T W Z ! Z by

Tx.t/ D z.t/C
bC2X
sD0

G.t; s/f .s; x.s C  � 1// ; t 2 N
CbC1
�2 ;

where z is the unique solution to the FBVP (6.6) and G is the Green’s function for
the FBVP (6.1). Next we will show that T defined as above is a contraction map.
Observe for all t 2 N

CbC1
�2 and for all x; y 2 Z that

kTx.t/ � Ty.t/k

D max
t2NCbC1

�2

ˇ̌
ˇ̌
ˇ

bC2X
sD0

G.t; s/Œf .s; x.s C  � 1// � f .s; y.s C  � 1//�
ˇ̌
ˇ̌
ˇ

	 max
t2NCbC1

�2

bC2X
sD0

G.t; s/jf .s; x.s C  � 1// � f .s; y.s C  � 1//j

	 max
t2NCbC1

�2

bC2X
sD0

G.t; s/kjx.s C  � 1/ � y.s C  � 1/j
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	 kkx � yk max
t2NCbC1

�2

bC2X
sD0

G.t; s/

D kkx � yk
�. C 1/

�
 C

�
b � b C 2



���1 �
b C 1 �

�
b � b C 2



��

	 ˛kx � yk;
where

˛ D k

�. C 1/

�
 C

�
b � b C 2



���1 �
b C 1 �

�
b � b C 2



��
< 1

by assumption. Therefore T is a contraction mapping on Z. Hence T has a unique
fixed point in Z. Thus there exists a unique Nx 2 Z such that T.Nx/ D Nx.

Next we will show that Nx is the unique solution of (6.7). Consider the FBVP
(
�
�2 u.t/ D f .t; Nx.t C  � 1//

u. � 2/ D A; u. C b C 1/ D B:

Using Theorem 6.7 we get that the solution is given by

u.t/ D z.t/C
bC2X
sD0

G.t; s/ f .s; Nx.s C  � 1//:

But

u.t/ D z.t/C
bC2X
sD0

G.t; s/ f .s; Nx.s C  � 1// D T Nx.t/ D Nx.t/;

which implies that Nx is a solution to (6.5) since u.t/ D Nx.t/ for all t 2 N
CbC1
�2 .

The uniqueness of the solution to the FBVP (6.7) follows from the fact that the
Contraction Mapping Theorem guarantees the uniqueness of a fixed point of the
mapping T . ut

The following result appears in [167].

Theorem 6.10 (Schauder’s Fixed Point Theorem). Every continuous function
from a compact, convex subset of a topological vector space to itself has a fixed
point.

The following theorem is an application of Schauder’s Fixed Point Theorem.

Theorem 6.11 (Awasthi [40, 41]). Assume that f W Œ0; b C 2�N0 � R ! R is
continuous in its second variable and M � max

t2NCbC1
�2

jz.t/j, where z is the unique

solution to the FBVP
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(
�
�2 z.t/ D 0; t 2 N

bC2
0 ;

z. � 2/ D A; z. C b C 1/ D B:

Let C D maxfjf .t; u/j W 0 	 t 	 b C 2; u 2 R; juj 	 2Mg > 0. Then the nonlinear
FBVP (6.7) has a solution provided

�
 C

�
b � b C 2



���1 �
b C 1 �

�
b � b C 2



��
	 �. C 1/M

C
:

Proof. Let Z be the Banach space defined in the proof of Theorem 6.9. Thus Z is
a topological vector space. Let K D fy 2 Z W kyk 	 2Mg, then K is a compact,
convex subset of Z. Next define the map T W Z ! Z by

Ty.t/ D z.t/C
bC2X
sD0

G.t; s/f .s; y.s C  � 1//:

We will first show that T maps K into K. Observe that for t 2 N
CbC1
�2 and y 2 K we

have

jTy.t/j D
ˇ̌
ˇ̌
ˇz.t/C

bC2X
sD0

G.t; s/f .s; y.s C  � 1//
ˇ̌
ˇ̌
ˇ

	 jz.t/j C
bC2X
sD0

G.t; s/jf .s; y.s C  � 1//j

	 M C C
bC2X
sD0

G.t; s/

	 M C C
1

�. C 1/

�
 C

�
b � b C 2



���1 �
b C 1 �

�
b � b C 2



��

	 M C C
1

�. C 1/

�. C 1/M

C

	 2M:

Since t 2 N
CbC1
�2 was arbitrary, we have that kTyk 	 2M. This proves that T maps

K into K.
Next we will show that T is continuous on K. Let � > 0 be given and put l WD

max
t2NCbC1

�2

bC2X
sD0

G.t; s/: Then by Theorem 6.5 we have that
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l D 1

�. C 1/

�
 C

�
b � b C 2



���1 �
b C 1 �

�
b � b C 2



��
:

Since f is continuous in its second variable on R, we have that f is, in fact, uniformly
continuous in its second variable on Œ�2M; 2M�. Therefore, there exists a ı > 0 such
that for all t 2 Œ0; b C 2�N0 , and for all u; v 2 Œ�2M; 2M� with j.t; u/ � .t; v/j < ı

we have

jf .t; u/ � f .t; v/j < �

l
:

Thus for all t 2 N
CbC1
�2 it follows that

jTy.t/ � Tx.t/j

D
ˇ̌
ˇ̌
ˇ

bC2X
sD0

G.t; s/f .s; y.s C  � 1// �
bC2X
sD0

G.t; s/f .s; x.s C  � 1//
ˇ̌
ˇ̌
ˇ

	
bC2X
sD0

G.t; s/jf .s; y.s C  � 1// � f .s; x.s C  � 1//j

<

bC2X
sD0

G.t; s/
�

l
	 l

�

l
D �:

Now since t 2 N
CbC1
�2 was arbitrary we have that

kT.x/ � T.y/k < �:

This establishes the continuity of T on K. Hence, T is a continuous map from K
into K. Therefore, by Schauder’s Fixed Point Theorem (Theorem 6.10), T has a
fixed point in K. Thus, there exists a Nx 2 K such that T.Nx/ D Nx. This implies the
existence of a solution to the FBVP (6.7), and so this completes the proof. ut
Remark 6.12. The above theorem not only guarantees the existence of a solution
y.t/ but also shows that the solution satisfies jy.t/j 	 2M for t 2 Œ�2; CbC1�N�2 .

The following fixed point theorem appears in [167] and is a special case of
Brouwer’s Theorem.

Theorem 6.13. Let Z be a Banach space and T W Z ! Z be a compact operator. If
T.Z/ is bounded, then T has a fixed point in Z.

As an application of this theorem we will prove the following theorem regarding
the existence of a solution of the FBVP (6.5) under a strong assumption on f . This
result is important in proving results concerning upper and lower solutions.
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Theorem 6.14 (Awasthi [40, 41]). Assume that f W Œ0; b C 2�N0 � R ! R is
continuous with respect to its second variable and is bounded. Then the nonlinear
FBVP (6.7) has a solution.

Proof. Let (Z; k � k) be the Banach space as defined earlier. Now we define the
operator T W Z ! Z by

Ty.t/ D z.t/C
bC2X
sD0

G.t; s/f .s; y.s C  � 1//; t 2 N
CbC1
�2 ;

where z is the unique solution to the FBVP

(
�
�2 z.t/ D 0

z. � 2/ D A; z. C b C 1/ D B:
(6.8)

It is easy to see that the operator T is compact. Next we will show that T.Z/ is
bounded. Since f is bounded, there exists m > 0 such that for all t 2 Œ0; b C 2�N0
and for all u 2 R, it holds that jf .t; u/j 	 m. Thus for any y 2 Z and t 2 N

CbC1
�2 we

observe that

jTy.t/j D
ˇ̌
ˇ̌
ˇz.t/C

bC2X
sD0

G.t; s/f .s; y.s C  � 1//
ˇ̌
ˇ̌
ˇ

	jz.t/j C m
bC2X
sD0

G.t; s/

	 max
t2NCbC1

�2

jz.t/j C m max
t2NCbC1

�2

bC2X
sD0

G.t; s/:

Hence, T is bounded on Z, and the conclusion follows as a result of Theorem 6.13.
ut

Theorem 6.15 (Awasthi [40, 41]). Assume that f W Œ0; b C 2�N0 � R ! R satisfies
a uniform Lipschitz condition with respect to its second variable, with Lipschitz
constant k, and that the equation �

�2 y.t/ C ky.t C  � 1/ D 0 has a positive
solution u. Then it follows that the nonlinear FBVP (6.7) has a unique solution.

Proof. Since the equation

�
�2 y.t/C ky.t C  � 1/ D 0; t 2 N

bC2
0
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has a positive solution u on N
CbC1
�2 , it follows that u.t/ is a solution of the FBVP

(
��

�2 y.t/ D ku.t C  � 1/; t 2 N
bC2
0

y. � 2/ D C; y. C b C 1/ D D;
(6.9)

where C WD u. � 2/ > 0 and D WD u. C b C 1/ > 0. By using the conclusion of
Theorem 6.7 we have that

u.t/ D z.t/C
bC2X
sD0

G.t; s/ ku.s C  � 1/; (6.10)

where z is the unique solution to the FBVP

(
�
�2 z.t/ D 0; t 2 N

bC2
0

z. � 2/ D C; z. C b C 1/ D D;

and G.t; s/ is the Green’s function for the FBVP (6.1). Again by using Theorem 6.7,
z is given by

z.t/ D 1

. C b C 1/�1

�
u. C b C 1/ � u. � 2/. C b C 1/�2

�. � 1/
	

t�1

C u. � 2/
�. � 1/ t�2:

We now show that z.t/ > 0 on N
CbC1
�2 . Since t�1 D t�2 .t �  C 2/, then by

replacing t�1 with t�2 .t �  C 2/ and rearranging the terms yields

z.t/ D t�2
�

.t �  C 2/

. C b C 1/�1

�
u. C b C 1/ � u. � 2/. C b C 1/�2

�. � 1/
�

C u. � 2/
�. � 1/

	

D t�2
�
.t �  C 2/u. C b C 1/

. C b C 1/�1

C u. � 2/
�. � 1/

�
1 � .t �  C 2/. C b C 1/�2

. C b C 1/�1
�	

D t�2
�
.t �  C 2/u. C b C 1/

. C b C 1/�1 C u. � 2/
�. � 1/

�
1 � .t �  C 2/

b C 3

�	

D t�2
�
.t �  C 2/u. C b C 1/

. C b C 1/�1 C . C b C 1 � t/u. � 2/
�. � 1/.b C 3/

	

D t�2 h.t/;
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where

h.t/ D .t �  C 2/u. C b C 1/

. C b C 1/�1 C . C b C 1 � t/u. � 2/
�. � 1/.b C 3/

:

Since t�2 is a decreasing function of t and . C b C 1/�2 D �.CbC2/
�.bC4/ > 0; we

get that t�2 > 0, and in order to show that z.t/ is positive we just need to show that
h.t/ is positive.

We note in the definition of h.t/ that the first term is zero only at the left end
point t D  � 2 and is positive elsewhere. Also the second term is zero only at the
right end point t D  C b C 1 and positive elsewhere. Therefore, combining these
arguments we conclude that z.t/ > 0 for all t 2 N

CbC1
�2 . Thus, by (6.10) for all

t 2 N
CbC1
�2 we have that

u.t/ >
bC2X
sD0

kG.t; s/u.s C  � 1/:

Hence,

˛ D max
t2NCbC1

�2

k

u.t/

bC2X
sD0

G.t; s/u.s C  � 1/ < 1:

Now, let Z be the space of real-valued functions defined on N
CbC1
�2 . Consider the

(weighted) norm k � k defined by

kxk D max

� jx.t/j
u.t/

W t 2 N
CbC1
�2


:

Then the pair .Z; k � k/ is a complete normed space. Define T on Z by

Tx.t/ D z.t/C
bC2X
sD0

G.t; s/h.s/: t 2 N
CbC1
�2 :

Then for all t 2 N
CbC1
�2 we have that

jTx.t/ � Ty.t/j
u.t/

D 1

u.t/

ˇ̌
ˇ̌

bC2X
sD0

G.t; s/Œf .s; x.s C  � 1// � f .s; y.s C  � 1//�
ˇ̌
ˇ̌
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	 1

u.t/

bC2X
sD0

G.t; s/jf .s; x.s C  � 1// � f .s; y.s C  � 1//j

	 1

u.t/

bC2X
sD0

G.t; s/kjx.s C  � 1/ � y.s C  � 1/j

D 1

u.t/

bC2X
sD0

G.t; s/ku.s C  � 1/ jx.s C  � 1/ � y.s C  � 1/j
u.s C  � 1/

	 kx � yk k

u.t/

bC2X
sD0

G.t; s/u.s C  � 1/

	 kx � yk max
t2NCbC1

�2

k

u.t/

bC2X
sD0

G.t; s/ u.s C  � 1/

D ˛ kx � yk:
Since ˛ < 1, it follows that T is a contraction mapping on Z. Therefore, T has
a unique fixed point in Z. This implies the existence of a unique solution to the
nonlinear FBVP (6.7). ut

6.4 Self-Adjoint Linear Fractional Difference Equation

In this section, we prove an existence and uniqueness theorem for a class of
boundary value problems known as the self-adjoint linear fractional difference
equation—that is,

�
�
��1.p�x/.t/C q.t C � � 1/x.t C � � 1/ D f .t/; t 2 N

b
0; (6.11)

where 0 < � 	 1; b 2 N1; p W N�Cb
��1 ! .0;1/; f W Nb

0 ! R, and q W N�Cb�1
��1 ! R:

Note that if � D 1, then we obtain the standard self-adjoint difference equation

�.p�x/.t/C q.t/x.t/ D f .t/; t 2 N
b
0; (6.12)

and it is for this reason that we call (6.11) a fractional self-adjoint equation. A slight
variation of the difference equation (6.12) is well studied in Kelley–Peterson [135].

We next state and prove an existence and uniqueness theorem for the following
fractional initial value problem (FIVP):

(
�
�
��1.p�x/.t/C q.t C � � 1/x.t C � � 1/ D h.t/; t 2 N

b
0

x.� � 1/ D A; x.�/ D B:
(6.13)
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Theorem 6.16 (Awasthi [40, 41]). Assume h W N
b
0 ! R, q W N

�Cb�1
��1 ! R; p W

N
�Cb
��1 ! R with p.t/ > 0, A;B 2 R: Then the FIVP

(
�
�
��1.p�x/.t/C q.t C � � 1/x.t C � � 1/ D h.t/; t 2 N

b
0

x.� � 1/ D A; x.�/ D B;
(6.14)

has a unique solution that exists on N
�CbC1
��1 .

Proof. Consider the self-adjoint equation

�
�
��1.p�x/.t/C q.t C � � 1/x.t C � � 1/ D h.t/; t 2 N

b
0:

By applying the alternate definition of the fractional difference of a function
(Theorem 2.33) we have this fractional difference equation can be written in the
form (for t 2 N

b
0)

1

�.��/
tC�X

sD��1
.t��.s//���1p.s/�x.s/Cq.tC��1/x.tC��1/ D h.t/: (6.15)

We now show the existence and uniqueness of our solution. Letting t D 0 in
Eq. (6.15), we get

h.0/ D 1

�.��/
�X

sD��1
.��.s//���1p.s/�x.s/C q.� � 1/x.� � 1/

D 1

�.��/


.��/���1p.� � 1/.x.�/ � x.� � 1//�

C 1

�.��/


.�� � 1/���1p.�/.x.�C 1/ � x.�//

�C Aq.� � 1/:

Hence,

h.0/ D .��/p.� � 1/.B � A/C p.�/.x.�C 1/ � B/C Aq.� � 1/:

Solving for x.�C 1/ we have that

x.�C 1/ D h.0/C �p.� � 1/.B � A/ � Aq.� � 1/
p.�/

C B: (6.16)

Thus we see that the value of x.t/ at t D �C 1 is uniquely determined by the two
initial values of x.t/ at t D � � 1 and t D �: Hence, we get the existence and
uniqueness of the solution of the FIVP (6.14) on N

�C1
��1 :
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We now show the existence and uniqueness of our solution on N
�CbC1
��1 by

induction. To this end assume there is a unique solution x.t/ on N
t0
��1; where

t0 2 N
�Cb
�C1: We argue that the values of the solution map t 7! x.t/, for t 2 N

t0
��1,

uniquely determine the value of the solution at t0 C 1: To prove this, we first
substitute t D t0 � � in (6.15) to get

h.t0 � �/ D 1

�.��/
t0X

sD��1
.t0 � � � �.s//���1p.s/�x.s/

C q.t0 � 1/x.t0 � 1/

D 1

�.��/

2
4

t0�1X
sD��1

.t0 � � � �.s//���1p.s/�x.s/

3
5

C 1

�.��/


.�� � 1/���1p.t0/Œx.t0 C 1/ � x.t0/�

�

C q.t0 � 1/x.t0 � 1/

D 1

�.��/

2
4

t0�1X
sD��1

.t0 � � � �.s//���1p.s/�x.s/

3
5

C p.t0/Œx.t0 C 1/ � x.t0/�C q.t0 � 1/x.t0 � 1/:

We can uniquely solve the above equation for x.t0 C 1/ to get that

x.t0 C 1/ D x.t0/C 1

p.t0/
Œh.t0 � �/ � q.t0 � 1/x.t0 � 1/�

� 1

p.t0/

2
4 1

�.��/
t0�1X

sD��1
.t0 � � � �.s//���1p.s/�x.s/

3
5 :

Since by the induction hypothesis, each of the values of x.t/ in the expression

1

�.��/
t0�1X

sD��1
.t0 � � � �.s//���1p.s/�x.s/

is known, it follows that x.t0 C 1/ is uniquely determined, and hence we have that
x.t/ is the unique solution of (6.14) on N

t0C1
��1 . Thus, by mathematical induction, the

fractional IVP (6.14) has a unique solution that exists on N
�CbC1
��1 : ut

Remark 6.17. If � D 1 (i.e., an integer case) in Theorem 6.16, it can be shown that
for any t0 2 N

�Cb
��1 the initial conditions x.t0/ D A and x.t0 C 1/ D B determine a
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unique solution of the IVP (6.14) if q.t/ ¤ 0: Note in the fractional case 0 < � <

1; we just get the existence and uniqueness of the solution of (6.14) for the case
t0 D � � 1. The reason for this is that in the true fractional case (i.e., 0 < � < 1)
the fractional difference depends on all of its values back to its initial value at ��1:

6.5 Variation of Constants Formula

In this section we are interested in establishing the variation of constants formula
for the self-adjoint FIVP

(
�
�
��1.p�x/.t/ D h.t/; t 2 N

b
0

x.� � 1/ D �x.� � 1/ D 0;
(6.17)

where 0 < � 	 1, b 2 N1, and p W NbC�
��1 ! R with p.t/ > 0: Our variation of

constants formula will involve the Cauchy function, which we now define.

Definition 6.18. We define the Cauchy function x.�; �/ for the homogeneous frac-
tional equation

�
�
��1.p�x/.t/ D 0

to be the function x W N�CbC1
��1 � N

b
0 ! R such that for each fixed s 2 N

b
0, x.�; s/ is

the solution of the fractional initial value problem

(
�
�
��1.p�x/.t/ D 0; t 2 N

b
0

x.s C �/ D 0; �x.s C �/ D 1
p.sC�/

(6.18)

and is given by the formula

x.t; s/ D
t�1X

�DsC�

"
1

p.�/

.� � �.s//��1

�.�/

#
; t 2 N

�CbC1
��1 :

Note that by our convention on sums x.t; s/ D 0 for t 	 s C �.

Theorem 6.19. Let h W N
b
0 ! R and p W N

�Cb
��1 ! R with p.t/ > 0. Then the

solution to the initial value problem

(
�
�
��1.p�x/.t/ D h.t/; t 2 N

b
0

x.� � 1/ D �x.� � 1/ D 0
(6.19)
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is given by

x.t/ D
t���1X

sD0
x.t; s/h.s/; t 2 N

�CbC1
��1 ;

where x.t; s/ is the Cauchy function for ��
��1.p�x/.t/ D 0:

Proof. Let x.t/ be a solution of ��
��1.p�x/.t/ D h.t/, t 2 N

b
0. Then

�
�
0C��1.p�x/.t/ D h.t/; t 2 N

b
0:

Let y.t/ D .p�x/.t/. Then y.t/ is a solution of

�
�
0C��1y.t/ D h.t/; t 2 N

b
0;

and hence is given by

y.t/ D
t��X
sD0

.t � �.s//��1

�.�/
h.s/C c0t

��1; t 2 N
�Cb
��1 :

Dividing both sides by p.t/ we get that

�x.t/ D 1

p.t/

"
t��X
sD0

.t � �.s//��1

�.�/
h.s/C c0t

��1
#
; t 2 N

�Cb
��1 :

Using the second initial condition we obtain

0 D �x.� � 1/ D 1

p.� � 1/

"
��1��X

sD0

.� � 1 � �.s//��1

�.�/
h.s/C c0.� � 1/��1

#
:

Note that the first term in the sum on the right-hand side is zero by our convention
on sums, and therefore we are left with

0 D �x.� � 1/ D 1

p.� � 1/


c0.� � 1/��1� ;

which implies that c0 D 0. Thus,

�x.t/ D 1

p.t/

"
t��X
sD0

.t � �.s//��1

�.�/
h.s/

#
; t 2 N

�Cb
��1 :
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Summing both sides from � D � � 1 to � D t � 1 we obtain

t�1X
�D��1

�x.�/ D
t�1X

�D��1

1

p.�/

"
���X
sD0

.� � �.s//��1

�.�/
h.s/

#
; t 2 N

�Cb
��1 :

Interchanging the order of the summation then yields

x.t/ � x.� � 1/ D 1

�.�/

t�1��X
sD0

t�1X
�DsC�

�
1

p.�/
.� � �.s//��1h.s/

	
:

By using the first initial condition it follows that

x.t/ D 1

�.�/

t�1��X
sD0

t�1X
�DsC�

�
1

p.�/
.� � �.s//��1h.s/

	
;

and so,

x.t/ D
t�1��X

sD0

t�1X
�DsC�

�
1

p.�/
h��1.�; �.s//h.s/

	

D
t���1X

sD0
x.t; s/h.s/; t 2 N

�CbC1
��1 :

This completes the proof. ut
Theorem 6.20. Let p W N�Cb

��1 ! R with p.t/ > 0 and b 2 N1, 0 < � 	 1, and
assume that

� D ˛�

�Cb�1X
�D��1

���1

p.�/
C ˇ��.�/

p.� � 1/ C ˛ı.�C b/��1

p.�C b/
:

Then the homogeneous fractional boundary value problem (FBVP)

8̂
<̂
ˆ̂:

�
�
��1.p�x/.t/ D 0; t 2 N

b
0

˛x.� � 1/ � ˇ�x.� � 1/ D 0

�x.�C b/C ı�x.�C b/ D 0

(6.20)

has only the trivial solution if and only if � ¤ 0:
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Proof. Consider

�
�
��1.p�x/.t/ D 0; t 2 N

b
0:

Then

.p�x/.t/ D c0t
��1; t 2 N

�Cb
��1 ;

and so,

�x.t/ D c0t
��1

p.t/
; t 2 N

�Cb
��1 :

Summing both sides from � D � � 1 to � D t � 1 we obtain

x.t/ � x.� � 1/ D
t�1X

�D��1

c0�
��1

p.�/
; t 2 N

�CbC1
��1 :

Let c1 D x.� � 1/. Then the general solution of ��
��1.p�x/.t/ D 0 is given by

x.t/ D
t�1X

�D��1

c0�
��1

p.�/
C c1; t 2 N

�CbC1
��1 :

Now by using the boundary conditions we obtain the following linear system in c0
and c1.

�c0
ˇ�.�/

p.� � 1/ C c1˛ D 0

c0

0
@�

�Cb�1X
�D��1

���1

p.�/
C ı

.�C b/��1

p.�C b/

1
AC c1� D 0:

This system of equations has only the trivial solution if and only if

� D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

� ˇ�.�/

p.��1/ ˛0
@�

�Cb�1X
�D��1

���1

p.�/
C ı

.�C b/��1

p.�C b/

1
A �

ˇ̌
ˇ̌
ˇ̌
ˇ̌

¤ 0;
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which implies that the self-adjoint fractional boundary valued problem has only
trivial solution if and only if

� D ˛�

�Cb�1X
�D��1

���1

p.�/
C ˇ��.�/

p.� � 1/ C ˛ı.�C b/��1

p.�C b/
¤ 0:

And this completes the proof. ut
Remark 6.21. Letting � D 1 in the above theorem gives us the known result that
the BVP

�.p�x/.t/ D 0, t 2 N
b
0

˛x.0/ � ˇ�x.0/ D 0

�x.b C 1/C ı�x.b C 1/ D 0

has only the trivial solution if and only if

� D ˛�

bX
�D0

1

p.�/
C ˇ�

p.0/
C ˛ı

p.b C 1/
¤ 0:

6.6 Green’s Function for a Two-Point FBVP

In this section we will derive a formula for the Green’s function for the self-adjoint
fractional boundary value problem

(
�
�
��1.p�x/.t/ D 0; t 2 N

b
0

x.� � 1/ D 0; x.�C b C 1/ D 0;
(6.21)

where h W Nb
0 ! R and p W N�Cb

��1 ! R with p.t/ > 0.

Theorem 6.22. Let h W N
b
0 ! R and p W N

�Cb
��1 ! R with p.t/ > 0. Then the

Green’s function for the FBVP
(
�
�
��1.p�x/.t/ D 0; t 2 N

b
0

x.� � 1/ D 0; x.�C b C 1/ D 0
(6.22)

is given by

G.t; s/ D

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

� 1
�

0
@

t�1X
�D��1

���1

p.�/

1
A x.�C b C 1; s/; t 	 s C �

x.t; s/ � 1
�

0
@

t�1X
�D��1

���1

p.�/

1
A x.�C b C 1; s/; s 	 t � � � 1:

(6.23)
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Proof. In order to find the Green’s function for the above homogeneous FBVP, we
first consider the following nonhomogeneous FBVP

(
�
�
��1.p�x/.t/ D h.t/; t 2 N

b
0

x.� � 1/ D 0; x.�C b C 1/ D 0:

Since we have already derived the expression for �x in the proof of Theorem 6.19,
we have

�x.t/ D 1

p.t/

"
t��X
sD0

.t � �.s//��1

�.�/
h.s/C c0.t/

��1
#
; t 2 N

�Cb
��1 :

Now summing from � D � � 1 to � D t � 1 and interchanging the order of
summation we have that

x.t/ D
t�1��X

sD0

t�1X
�DsC�

"
1

p.�/

.� � �.s//��1h.s/
�.�/

#
C

t�1X
�D��1

c0�
��1

p.�/
C x.� � 1/:

By letting c1 D x.� � 1/, the above expression for the general solution can be
rewritten as

x.t/ D
t�1��X

sD0

t�1X
�DsC�

"
1

p.�/

.� � �.s//��1h.s/
�.�/

#
C

t�1X
�D��1

c0�
��1

p.�/
C c1:

Now, if we represent the term

t�1X
�DsC�

"
1

p.�/

.� � �.s//��1

�.�/

#

by x.t; s/, the Cauchy function, then the above expression for the general solution
can be rewritten as

x.t/ D
t�1��X

sD0
x.t; s/h.s/C

t�1X
�D��1

c0�
��1

p.�/
C c1:

By using the first boundary condition x.� � 1/= 0 we obtain

x.� � 1/ D
��2��X

sD0
x.� � 1; s/h.s/C

��2X
�D��1

c0�
��1

p.�/
C c1:
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Notice that the first two sums in the preceding expression are zero by convention as
the upper limit of summation is smaller than the lower limit, and therefore we have
that

c1 D 0:

Thus,

x.t/ D
t���1X

sD0
x.t; s/h.s/C

t�1X
�D��1

c0�
��1

p.�/
:

By using the second boundary condition x.�C b C 1/= 0 we have that

x.�C b C 1/ D
bX

sD0
x.�C b; s/h.s/C

�CbX
�D��1

c0�
��1

p.�/
: (6.24)

Solving for c0, we obtain

c0 D �

bX
sD0

x.�C b C 1; s/

�CbX
�D��1

���1

p.�/

h.s/:

Moreover, if we let � D
�CbX
�D��1

���1

p.�/
and substitute the values of c0 and c1 into the

expression for x, we thus obtain that the solution of the FBVP is

x.t/ D
t�1��X

sD0
x.t; s/h.s/ � 1

�

0
@

t�1X
�D��1

���1

p.�/

1
A

bX
sD0

x.�C b C 1; s/h.s/

D
bX

sDt��

�
�1
�

�0
@

t�1X
�D��1

���1

p.�/

1
A x.�C b C 1; s/h.s/

C
t�1��X

sD0

2
4x.t; s/ � 1

�

0
@

t�1X
�D��1

���1

p.�/

1
A x.�C b C 1; s/

3
5 h.s/:



440 6 Fractional Boundary Value Problems

In particular, then, the Green’s function for the FBVP can be written as

G.t; s/ D

8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂:

� 1
�

0
@

t�1X
�D��1

���1

p.�/

1
A x.�C b C 1; s/; t 	 s C �

x.t; s/ � 1
�

0
@

t�1X
�D��1

���1

p.�/

1
A x.�C b C 1; s/; s 	 t � � � 1:

And this completes the proof. ut

6.7 Green’s Function for the General Two-Point FBVP

In this section we will derive a formula for the Green’s function for the general
self-adjoint fractional boundary value problem

�
�
��1.p�x/.t/ D 0, t 2 N

b
0

˛x.� � 1/ � ˇ�x.� � 1/ D 0

�x.�C b/C ı�x.�C b/ D 0;

(6.25)

where ˛2 C ˇ2 > 0 and �2 C ı2 > 0.

Theorem 6.23. Assume p W N�Cb
��1 ! R with p.t/ > 0 and

� WD ˛�

�Cb�1X
�D��1

���1

p.�/
C ˇ��.�/

p.� � 1/ C ˛ı.�C b/��1

p.�C b/
¤ 0:

Then the Green’s function for the FBVP (6.25) is given by

G.t; s/ D
(

u.t; s/; t 	 s C �

v.t; s/; s 	 t � � � 1;
where

u.t; s/ D �1
�

"0
@

t�1X
�D��1

���1

p.�/

1
A
 
˛� x.�C b; s/

C ˛ı

p.�C b/

.�C b � �.s//��1

�.�/

!
C ˇ��.�/

p.� � 1/x.�C b; s/

C ˇı

p.� � 1/p.�C b/
.�C b � �.s//��1

#
;
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for t 	 s C �; and

v.t; s/ WD u.t; s/C x.t; s/;

for s 	 t � � � 1; where x.t; s/ is the Cauchy function for

�
�
��1.p�x/.t/ D 0:

Proof. In order to find the Green’s function for the above homogeneous
FBVP (6.25), we consider the following nonhomogeneous FBVP

�
�
��1.p�x/.t/ D h.t/; t 2 N

b
0

˛x.� � 1/ � ˇ�x.� � 1/ D 0

�x.�C b/C ı�x.�C b/ D 0;

(6.26)

where h W N
b
0 ! R is a given function. Since � ¤ 0, we have by Theorem 6.20

that the corresponding homogeneous FBVP (6.25) has only the trivial solution. It
is a standard argument that this implies that the nonhomogeneous FBVP (6.26) has
a unique solution. Let x.t/ be the solution of the nonhomogeneous FBVP (6.26).
As in the proof of Theorem 6.20 we get that since x.t/ is a solution of the fractional
difference equation

�
�
��1.p�x/.t/ D h.t/; t 2 N

b
0;

then

�x.t/ D 1

p.t/

"
t��X
sD0

.t � �.s//��1

�.�/
h.s/C c0.t/

��1
#
; t 2 N

�Cb
��1 :

Now summing both sides from � D �� 1 to � D t � 1 and interchanging the order
of summation we have that

x.t/ D
t�1��X

sD0

t�1X
�DsC�

"
1

p.�/

.� � �.s//��1h.s/
�.�/

#
C

t�1X
�D��1

c0�
��1

p.�/
C x.� � 1/:
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By letting c1 D x.� � 1/, the above expression for the general solution can be
rewritten as

x.t/ D
t�1��X

sD0

t�1X
�DsC�

"
1

p.�/

.� � �.s//��1h.s/
�.�/

#
C

t�1X
�D��1

c0�
��1

p.�/
C c1

D
t�1��X

sD0
x.t; s/h.s/C

t�1X
�D��1

c0�
��1

p.�/
C c1: (6.27)

Applying the two boundary conditions we get the following equations:

c1˛ � c0
ˇ�.�/

p.� � 1/ D 0

and

�

0
@

b�1X
sD0

x.�C b; s/h.s/C
�Cb�1X
�D��1

c0�
��1

p.�/
C c1

1
AC

ı

"
1

p.�C b/

 
bX

sD0

.�C b � �.s//��1

�.�/
h.s/C c0.�C b/��1

!#
D 0I (6.28)

i.e.,

c1� C c0

0
@�

�Cb�1X
�D��1

���1
p.�/

C ı
.�C b/��1

p.�C b/

1
A D � �

b�1X
sD0

x.�C b; s/h.s/

� ı

p.�C b/

bX
sD0

.�C b � �.s//��1
�.�/

h.s/:

(6.29)

Now, if we let

� D ˛�

�Cb�1X
�D��1

���1

p.�/
C ˇ��.�/

p.� � 1/ C ˛ı.�C b/��1

p.�C b/

and solve the above system for c0 and c1; we have that

c0 D �1
�

 
˛�

b�1X
sD0

x.�C b; s/C ˛ı

p.�C b/

bX
sD0

.�C b � �.s//��1

�.�/

!
h.s/
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and

c1 D � 1

�

ˇ�.�/

˛p.� � 1/

 
˛�

b�1X
sD0

x.�C b; s/

C ˛ı

p.�C b/

bX
sD0

.�C b � �.s//��1

�.�/

!
h.s/:

It follows that

c1 D � 1

�

"
ˇ�.�/

p.� � 1/�
b�1X
sD0

x.�C b; s/

C ˇı

p.� � 1/p.�C b/

bX
sD0
.�C b � �.s//��1

#
h.s/:

Substituting the above values of c0 and c1 in the Eq. (6.27) we get that

x.t/ D
t�1��X

sD0
x.t; s/h.s/ � 1

�

t�1X
�D��1

���1

p.�/

 
˛�

b�1X
sD0

x.�C b; s/h.s/

C ˛ı

p.�C b/

bX
sD0

.�C b � �.s//��1

�.�/
h.s/

!

� 1

�

 
ˇ��.�/

p.� � 1/
b�1X
sD0

x.�C b; s/h.s/

C ˇı

p.� � 1/p.�C b/

bX
sD0
.�C b � �.s//��1h.s/

!
:

Using x.�C b; b/ D 0; we obtain

b�1X
sD0

x.�C b; s/h.s/ D
bX

sD0
x.�C b; s/h.s/:

As a result of the above we obtain

x.t/ D
t�1��X

sD0
x.t; s/h.s/ � 1

�

0
@

t�1X
�D��1

���1

p.�/

1
A
"
˛�

bX
sD0

x.�C b; s/h.s/

C ˛ı

p.�C b/

bX
sD0

.�C b � �.s//��1

�.�/
h.s/

#
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� 1

�

"
ˇ��.�/

p.� � 1/
bX

sD0
x.�C b; s/h.s/

C ˇı

p.� � 1/p.�C b/

bX
sD0
.�C b � �.s//��1h.s/

#
:

Hence, we have that

x.t/ D
t�1��X

sD0
x.t; s/h.s/ � 1

�

0
@

t�1X
�D��1

���1

p.�/

1
A
"
˛�
� t���1X

sD0
x.�C b; s/h.s/

C
bX

sDt��
x.�C b; s/h.s/

�#

C ˛ı

p.�C b/

"
t���1X

sD0

.�C b � �.s//��1

�.�/
h.s/

C
bX

sDt��

.�C b � �.s//��1

�.�/
h.s/

#

� 1

�

� ˇ��.�/
p.� � 1/

�" t���1X
sD0

x.�C b; s/h.s/C
bX

sDt��
x.�C b; s/h.s/

#

C ˇı

p.� � 1/p.�C b/

"
t���1X

sD0
.�C b � �.s//��1h.s/

C
bX

sDt��
.�C b � �.s//��1h.s/

#
:

Thus the solution to the given FBVP is given by

x.t/ D
t�1��X

sD0

"
x.t; s/ � 1

�

 0
@

t�1X
�D��1

���1

p.�/

1
A
 
˛�x.�C b; s/

C ˛ı

p.�C b/

.�C b � �.s//��1

�.�/

!
C ˇ��.�/

p.� � 1/x.�C b; s/

C ˇı

p.� � 1/p.�C b/
.�C b � �.s//��1

!#
h.s/
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C
bX

sDt��

"
� 1

�

 0
@

t�1X
�D��1

���1

p.�/

1
A
 
˛�x.�C b; s/

C ˛ı

p.�C b/

.�C b � �.s//��1

�.�/

!
C ˇ��.�/

p.� � 1/x.�C b; s/

C ˇı

p.� � 1/p.�C b/
.�C b � �.s//��1

!#
h.s/:

Hence the Green’s function for the given FBVP is given by

G.t; s/ D
(

u.t; s/; t 	 s C �

v.t; s/; s 	 t � � � 1;

where

u.t; s/ D � 1

�

"0
@

t�1X
�D��1

���1

p.�/

1
A
 
˛�x.�C b; s/

C ˛ı

p.�C b/

.�C b � �.s//��1

�.�/

!
C ˇ��.�/

p.� � 1/x.�C b; s/

C ˇı

p.� � 1/p.�C b/
.�C b � �.s//��1

#

for t 	 s C �, and

v.t; s/ Dx.t; s/ � 1

�

"0
@

t�1X
�D��1

���1

p.�/

1
A
 
˛�x.�C b; s/

C ˛ı

p.�C b/

.�C b � �.s//��1

�.�/

!
C ˇ��.�/

p.� � 1/x.�C b; s/

C ˇı

p.� � 1/p.�C b/
.�C b � �.s//��1

#

for s 	 t � � � 1: This completes the proof. ut
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Remark 6.24. If ˛ D � D ı D 1 and ˇ D 0, then we get the known formula for
the Green’s function for the conjugate case

(
�
�
��1.p�x/.t/ D 0; t 2 N

b
0

x.� � 1/ D 0; x.�C b C 1/ D 0;
(6.30)

namely

G.t; s/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

� 1
�

0
@

t�1X
�D��1

���1

p.�/

1
A x.�C b C 1; s/, t 	 s C �

x.t; s/ � 1
�

0
@

t�1X
�D��1

���1

p.�/

1
A x.�C b C 1; s/, s 	 t � � � 1:

(6.31)

6.8 Green’s Function When p � 1

Our goal in this section is to deduce some important properties of the Green’s
function for the conjugate case when p.t/ � 1 for t 2 N

�Cb
��1 ; which will be useful

later in this chapter. In order to do that, first we will explicitly give a formula for the
Green’s function when p.t/ � 1 in the following theorem.

Theorem 6.25. Letting p.t/ � 1 in Remark 6.24 we get that the Green’s function
for the conjugate FBVP

(
�
�
��1.�x/.t/ D 0; t 2 N

b
0

x.� � 1/ D 0; x.�C b C 1/ D 0
(6.32)

is given by

G.t; s/ D
8<
:

u.t; s/ WD � 1
�

�
t�.�CbC1��.s//�

��.�C1/
�

, t 	 s C �

v.t; s/ WD .t��.s//�
�.�C1/ � 1

�

�
t�.�CbC1��.s//�

��.�C1/
�

, s 	 t � � � 1; (6.33)

where � D 1
�
.�C b C 1/�:

Proof. First we observe that with p.t/ � 1 for t 2 N
�Cb
��1 , the Cauchy function x.t; s/

takes the form

x.t; s/ D
t�1X

�DsC�

"
.� � �.s//��1

�.�/

#
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D 1

�.�/

t�1X
�DsC�

.� � �.s//��1

D 1

�.�/

t�1X
�DsC�

��

.� � �.s//�
�

D 1

�.�C 1/

t�1X
�DsC�

��.� � �.s//�

D 1

�.�C 1/



.t � �.s//� � .� � 1/�� D .t � �.s//�

�.�C 1/
:

Thus, x.�C b C 1; s/ D .�CbC1��.s//�
�.�C1/ and

� D
�CbX
�D��1

���1 D
�CbX
�D��1

��

�
��

�

	

D 1

�



.�C b C 1/� � .� � 1/�� D 1

�
.�C b C 1/�:

In the above, we have used the fact that .� � 1/� D 0. Moreover, for p.t/ � 1 we
have

t�1X
�D��1

t��1

p.�/
D

t�1X
�D��1

���1:

So we can write

t�1X
�D��1

���1 D
t�1X

�D��1
��

�
��

�

�
D t�

�
:

Thus, with p.t/ � 1 and with these modified forms of the Cauchy function x.t; s/
together with preceding sum, the Green’s function as derived in Theorem 6.22 can
be written in the simplified form

G.t; s/ D
8<
:

u.t; s/ WD � 1
�

�
t�.�CbC1��.s//�

��.�C1/
�

, t 	 s C �

v.t; s/ WD .t��.s//�
�.�C1/ � 1

�

�
t�.�CbC1��.s//�

��.�C1/
�

, s 	 t � � � 1; (6.34)

where � D 1
�
.�C b C 1/�: This completes the proof. ut
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In the following four theorems we will derive some properties of this Green’s
function in Theorem 6.25. First we prove that this Green’s function is of constant
sign.

Theorem 6.26. The Green’s function for the FBVP (6.32) in Theorem 6.25 satisfies

G.t; s/ 	 0:

Proof. We will show that each of u.t; s/ and v.t; s/ is nonpositive. First consider
u.t; s/: Since � > 0 by its definition, �.� C 1/ > 0 since 0 < � 	 1, t� � 0 as
� � 1 	 t 	 �C b C 1; and .�C b C 1 � �.s//� � 0 as s 2 N

b
0. This implies that

for t 	 s C � we have that

u.t; s/ D �1
�

�
t�.�C b C 1 � �.s//�

��.�C 1/

�
	 0:

Next we will show that v.t; s/ is nonpositive, for 0 	 s 	 t ��� 1 	 b. That is,
we will show that

.t � �.s//�
�.�C 1/

� 1

�

�
t�.�C b C 1 � �.s//�

��.�C 1/

�
	 0:

After substituting the value of � D 1
�
.� C b C 1/� and simplifying the above

inequality, we get that

1

.�C b C 1/��.�C 1/



.t � �.s//�.�C b C 1/� � t�.�C b C 1 � �.s//� 	 0:

Since .�C b C 1/� and �.�C 2/ > 0, it is sufficient to show that

.t � �.s//�.�C b C 1/�

t�.�C b C 1 � �.s//� 	 1:

Thus for 0 	 s 	 t � � � 1 	 b, we consider

.t � �.s//�.�C b C 1/�

t�.�C b C 1 � �.s//�

D �.t � s/�.t C 1 � �/
�.t � s � �/�.t C 1/

�.�C b C 2/�.b C 2 � �.s//
�.b C 2/�.�C b C 2 � �.s//

D �.t � s/

�.t C 1/

�.t C 1 � �/
�.t � s � �/

�.�C b C 2/

�.�C b C 2 � �.s//
�.b C 2 � �.s//

�.b C 2/
:
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Using the fact that �.s C 1/ D s�.s/, for each s 2 R n f: : : ;�2;�1; 0g, we obtain

�.t � s/

t � � � .t � s/�.t � s/

.t � �/ � � � .t � s � �/�.t � s � �/
�.t � s � �/

D .�C b C 1/ � � � .�C b C 2 � �.s//�.�C b C 2 � �.s//
�.�C b C 2 � �.s//

D �.b C 2 � �.s//
.b C 1/ � � � .b C 2 � �.s//�.b C 2 � �.s// :

Simplifying and rearranging the factors from the numerator and denominator we see
that the above expression is the same as

h .t � �/.t � � � 1/ � � � .t � � � s/

t.t � 1/ � � � .t � s/

ih .�C b C 1/.�C b/ � � � .�C b C 1 � s/

.b C 1/b � � � .b C 1 � s/

i
:

A further rearrangement of the factors gives us the expression

h .t � �/.�C b C 1/

t.b C 1/

ih .t � � � 1/.�C b/

.t � 1/b
i

� � �
h .t � � � s/.�C b C 1 � s/

.t � s/.b C 1 � s/

i
:

(6.35)

Now, in order to show that the above product in (6.35) is less than or equal to
one, we will show that each factor within the square brackets is less than or equal to
one. Thus for 0 	 k 	 s, we consider

.t � � � k/.�C b C 1 � k/

.t � k/.b C 1 � k/

and show it is less than or equal to one. Notice that the condition s 	 t ��� 1 	 b
implies that

t � � � 1 	 b:

Multiplying both sides by � > 0 and rewriting we get

t� � �2 � �b � � 	 0:

Adding to both sides the quantity tb C t � tk � kb � k C k2 we get

t�C tb C t � tk ��2 ��b ��C�k ��k � kb � k C k2 	 tb C t � tk � kb � k C k2;

which implies that

.t � � � k/.�C b C 1 � k/ 	 .t � k/.b C 1 � k/:

This implies that

.t � � � k/.�C b C 1 � k/

.t � k/.b C 1 � k/
	 1:
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Thus, we have shown that a general factor in the above product given by (6.35) is
less than or equal to one. Therefore, all the factors are less than or equal to one.
And this implies that the product given by (6.35) is less than or equal to one. So

.t � �.s//�
�.�C 1/

� 1

�

�
t�.�C b C 1 � �.s//�

��.�C 1/

�
	 0:

Since u.t; s/ 	 0 and v.t; s/ 	 0, we conclude that G.t; s/ 	 0: This completes the
proof. ut

Next we find a formula for
bX

sD0
jG.t; s/ˇ̌ in the following theorem.

Theorem 6.27. If t 2 N
�CbC1
��1 , then the Green’s function for (6.32) satisfies

bX
sD0

jG.t; s/ˇ̌ D t�

�.�C 2/
.�C b C 1 � t/: (6.36)

Proof. Consider

bX
sD0

ˇ̌
G.t; s/

ˇ̌ D
t���1X

sD0

ˇ̌
ˇ̌ .t � �.s//�
�.�C 1/

� 1

�

�
t�.�C b C 1 � �.s//�

��.�C 1/

�ˇ̌
ˇ̌

C
bX

sDt��

ˇ̌
ˇ̌�1
�

�
t�.�C b C 1 � �.s//�

��.�C 1/

�ˇ̌
ˇ̌ :

In Theorem 6.26 we proved that G.t; s/ 	 0; which implies that u.t; s/ 	 0 for
t 	 s C � and v.t; s/ 	 0 for s 	 t � � � 1: Thus

bX
sD0

jG.t; s/j D
t���1X

sD0

�
1

�

�
t�.�C b C 1 � �.s//�

��.�C 1/

�
� .t � �.s//�
�.�C 1/

	

C
bX

sDt��

1

�

�
t�.�C b C 1 � �.s//�

��.�C 1/

�

D 1

�

 
bX

sD0

t�.�C b C 1 � �.s//�
��.�C 1/

!
�

t���1X
sD0

.t � �.s//�
�.�C 1/

D t�

���.�C 1/

bX
sD0

�s.�C b C 1 � s/�C1

�.�C 1/

� 1

�.�C 1/

t���1X
sD0

�s.t � s/�C1

�.�C 1/
:
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Using the Fundamental Theorem of Discrete Calculus, we get that

bX
sD0

ˇ̌
G.t; s/

ˇ̌ D 1

�.�C 2/

�

.t � s/�C1�t��

sD0 � t�

��



.�C b C 1 � s/�C1�bC1

sD0

	

D 1

�.�C 2/

��
��C1 � t�C1� � t�

��

�
��C1 � .�C b C 1/�C1�

	
:

Since � D 1
�
.�C b C 1/� and using the fact that ��C1 D 0, we obtain

bX
sD0

ˇ̌
G.t; s/

ˇ̌ D 1

�.�C 2/

"
t�.�C b C 1/�C1

.�C b C 1/�
� t�C1

#
:

In addition, since t�C1 D t�.t � �/; we have that

bX
sD0

ˇ̌
G.t; s/

ˇ̌ D t�

�.�C 2/
.�C b C 1 � t/; t 2 N

�CbC1
��1 :

This completes the proof. ut
Theorem 6.28. The Green’s function for (6.32) satisfies

max
t2N�CbC1

��1

bC2X
sD0

jG.t; s/j

D 1

�.�C 2/

�
�C b �

�
b C 1

�C 1

�	��1 �
1C

�
b C 1

�C 1

�	
;

where dxe denotes ceiling of x.

Proof. In the previous theorem we proved that

bX
sD0

jG.t; s/ˇ̌ D t�

�.�C 2/
.�C b C 1 � t/; t 2 N

�CbC1
��1 :

Thus,

max
t2N�CbC1

��1

bX
sD0

ˇ̌
G.t; s/

ˇ̌ D 1

�.�C 2/
max

t2N�CbC1
��1

t�.�C b C 1 � t/; t 2 N
�CbC1
��1 :

Let F.t/ WD t�.�C b C 1� t/, where �� 1 	 t 	 �C b C 1 is a real variable. Then
observe that F.t/ � 0 for t 2 N

�CbC1
��1 with F.� � 1/ D 0 and F.�C b C 1/ D 0.

So F has a nonnegative maximum, and to find this maximum we consider
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F0.t/ D .�1/ t� C .�/.�C b � t/ t��1

D t��1 Œ.�1/.t C 1 � �/C .�/.�C b � t/�

D t��1 
�2 C b�C � � t� � t � 1� :

Now, by setting F0.t/ D 0 and using the fact that t��1 > 0 whenever t 2 N
�CbC1
��1 ,

we have that

�2 C b�C � � t� � t � 1 D 0:

Using standard calculus arguments it turns out that F.t/ restricted to the domain

N
�CbC1
��1 has a maximum at t D �C b �

�
b C 1

�C 1

�
. Thus,

max
t2N�CbC1

��1

bX
sD0

ˇ̌
G.t; s/

ˇ̌ D 1

�.�C 2/

�
�C b �

�
b C 1

�C 1

�	��1 �
1C

�
b C 1

�C 1

�	
;

as claimed. ut

6.9 Existence of a Zero Tending Solution

In this section we will prove the existence of a zero tending solution as t ! C1 of
the forced self-adjoint fractional difference equation (6.11); we obtain this result by
using the Banach Fixed Point Theorem (Contraction Mapping Theorem). Also an
example illustrating this result will be given.

Theorem 6.29. Let p W N��1 ! R, f W N0 ! R, q W N��1 ! R and assume

(1) p.t/ > 0 and q.t/ � 0, for all t 2 N��1

(2)
1X
�D�

1

p.�/
< 1

(3)
1X
�D0

f .�/ < 1

(4)
1X
�D�

1

p.�/

 
���X
sD0

h��1.t; �.s//q.s C � � 1/
!
< 1

hold. Then the forced self-adjoint fractional difference equation

�
�
��1.p�x/.t/C q.t C � � 1/x.t C � � 1/ D f .t/; t 2 N0

has a solution x which satisfies lim
t!1 x.t/ D 0:
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Proof. In order to prove this theorem we will use the Banach Fixed Point Theorem.

Since
1X
�D�

1

p.�/

 
���X
sD0

h��1.�; �.s//q.s C � � 1/
!
< 1, we can choose a 2 N�

such that

˛ WD
1X
�Da

1

p.�/

 
���X
sD0

h��1.�; �.s//q.s C � � 1/
!
< 1:

Let Z be the space of all real-valued functions x W Na ! R such that lim
t!1 x.t/ D 0

with norm k � k on Z defined by

kx.t/k D max
t2Na

jx.t/j:

Define the operator T on Z by

Tx.t/ D
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//Œq.s C � � 1/x.s C � � 1/ � f .s/�

#
;

for t 2 Na:

Now we will show that T W Z ! Z: To do this we will first show that Tx is a
real-valued function. Let x 2 Z be arbitrary but fixed. Then this implies that x is
a real-valued function satisfying lim

t!1 x.t/ D 0; which implies that for some real

number M > 0, it holds that jx.t/j 	 M for all t 2 Na. Since
1X
�D0

f .�/ converges,

it follows that for some real number N > 0, we have jf .�/j 	 N for all t 2 Na��.
Thus,

Tx.t/ D
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//Œx.s C � � 1/q.s C � � 1/ � f .s/�

#

	
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//ŒMq.s C � � 1/C N�

#

D M
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//q.s C � � 1/
#

C N
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//
#

<1:

And this demonstrates that T is well defined on Z.
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Next we will show that T.Z/ � Z: We will use an argument similar to the
previous paragraph. Let x 2 Z be arbitrary. Notice that

jTx.t/j D
ˇ̌
ˇ̌
ˇ

1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//Œx.s C � � 1/q.s C � � 1/ � f .s/�

#ˇ̌
ˇ̌
ˇ

	
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//ŒMq.s C � � 1/C N�

#

D M
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//q.s C � � 1/
#

C N
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//
#
:

(6.37)
Again, since

1X
�Dt

1

p.�/

 
���X
sD0

h��1.�; �.s//q.s C � � 1/
!
< 1;

we have that

lim
t!1

1X
�Dt

1

p.�/

 
���X
sD0

h��1.�; �.s//q.s C � � 1/
!

D 0;

for any real-valued nonnegative function q defined on Na. Thus, by applying the
limit as t ! 1 on both sides of the (6.37) we get that lim

t!1 Tx.t/ D 0. Thus,

T W Z ! Z:
Next we will show that T is a contraction mapping on Z: Let x, y 2 Z and t 2 Na

be arbitrary but fixed. Consider that

jTx.t/ � Ty.t/j

D
ˇ̌
ˇ̌
ˇ

1X
�Dt

1

p.�/

 
���X
sD0

h��1.�; �.s//Œ.x � y/q.s C � � 1/ � f .s/C f .s/�

!ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ

1X
�Dt

1

p.�/

 
���X
sD0

h��1.�; �.s//.x � y/q.s C � � 1/
!ˇ̌
ˇ̌
ˇ

	
1X
�Dt

1

p.�/

 
���X
sD0

h��1.�; �.s//jx � yjq.s C � � 1/
!



6.9 Existence of a Zero Tending Solution 455

	
1X
�Dt

1

p.�/

 
���X
sD0

h��1.�; �.s//q.s C � � 1/
!

kx � yk

	
1X
�Da

1

p.�/

 
���X
sD0

h��1.�; �.s//q.s C � � 1/
!

kx � yk

D ˛kx � yk;

for t 2 Na: Since t 2 Na is arbitrary and ˛ < 1, we conclude that T is a contraction
mapping on Z: Therefore, by the Banach fixed point theorem there exists a unique
fixed point z 2 Z such that Tz D z, which implies that for all t 2 Na

z.t/ D
1X
�Dt

1

p.�/

"
���X
sD0

h��1.�; �.s//Œq.s C � � 1/z.s C � � 1/ � f .s/�

#
:

We will now show that the unique fixed point z is a solution to the forced self-
adjoint fractional difference equation (6.11). To this end, applying the difference
operator � to the map z we obtain

�z.t/ D � 1

p.t/

"
t��X
sD0

.t � �.s//��1

�.�/
Œq.s C � � 1/z.s � �C 1/ � f .s/�

#
:

Thus,

p.t/�z.t/ D �
"

t��X
sD0

.t � �.s//��1

�.�/
Œq.s C � � 1/z.s � �C 1/ � f .s/�

#
;

from which it follows that

.p�z/.t/ D
"

t��X
sD0

.t � �.s//��1

�.�/
Œf .s/ � q.s C � � 1/z.s � �C 1/�

#

D �
��
0 Œf .�/ � q.� C � � 1/z.� C � � 1/�.t/; t 2 N�:

Consequently,

�
�
��1

�
p�z/

�
.t/ D �

�
��1.�

��
0 .f .:/ � q.� C � � 1/z.� C � � 1///.t/; t 2 N0:
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Now we use the fractional composition rule on the right-hand side of the above
equation to get

�
�
��1.p�z/.t/ D�0�1Œf .t/ � q.t C � � 1/z.t C � � 1/�; t 2 N0

D f .t/ � q.t C � � 1/z.t C � � 1/; t 2 N0

so that

�
�
��1.p�z/.t/C q.t C � � 1/z.t C � � 1/ D f .t/; t 2 N0:

Thus, z satisfies the self-adjoint equation (6.11) and is therefore a solution to
that equation. Since z 2 Z, we conclude that the self-adjoint equation (6.11) has a
solution z satisfying lim

t!1 z.t/ D 0: This completes the proof. ut
We conclude with an example.

Example 6.30. Let f .t/ WD 1
.tC1/2 for t 2 N0, q.t/ � 1 for t 2 N��1, and

p.t/ WD .t C 1/2.t C 1/� for t 2 N��1 in Theorem 6.29. Observe that each of
the following holds:

(1) p.t/ > 0 and q.t/ � 0, for all t 2 N��1

(2)
1X
�D�

1

p.�/
D

1X
�D�

1

.� C 1/2.� C 1/�
< 1

(3)
1X
�D0

f .�/ D
1X
�D0

1

.� C 1/2
< 1

(4)
1X
�D�

1

p.�/

 
���X
sD0

h��1.�; �.s//q.s C � � 1/
!

D
1X
�D�

.�/�

�.�C 1/.� C 1/2.� C 1/�
< 1:

Thus, Theorem 6.29 guarantees the existence of a solution to

�
�
��1.p�x/.t/C q.t C � � 1/z.t C � � 1/ D f .t/; t 2 N0

such that limt!1 x.t/ D 0:



Chapter 7
Nonlocal BVPs and the Discrete Fractional
Calculus

7.1 Introduction

In this chapter we discuss the concept of a nonlocal boundary value problem in
the context of the discrete fractional calculus. More generally, we discuss how the
nonlocal structure of the discrete fractional difference and sum operators affect their
interpretation and analysis. In particular, we recall from earlier chapters that the
fractional difference and sum contain de facto nonlocalities. For example, in the case
of the discrete fractional forward difference, we have that�

ay.t/, for N�1 <  	 N
with N 2 N, depends not only on the value y.t C  � N/ but also on the entire
collection of values fy.a/; y.a C 1/; : : : ; y.t C  � N/g, for each t 2 ZaCN� . This
means that the discrete fractional operator in some sense possesses a memory-like
property, wherein the operator at a point is influenced by a linear combination of
values of y back to the initial time point t D a itself.

The nonlocal nature described in the preceding paragraph seriously complicates
the study of many potentially fundamental properties of fractional sums and
differences. For example, there is, at present, no satisfactory understanding of the
geometrical properties of the fractional difference. Contrast this with the integer-
order setting, i.e.,  2 N, in which there is a complete understanding of the various
geometrical implications of the sign of the fractional difference. Thus, while it is
trivial to prove that �y.t/ > 0 for t 2 Z implies that y is strictly increasing on Z,
it is very nontrivial to decide how monotonicity is connected to the positivity or
negativity of the fractional difference. Similarly, while it is equally trivial to prove
that �2y.t/ > 0 for t 2 Z implies that �y is strictly increasing on Z and thus
that y satisfies a convexity-type property, the analogue of this sort of result in the
discrete fractional setting is much more difficult to obtain, and we only explore
these properties to a limited extent in Sects. 7.2 and 7.3 in the sequel. And, of
course, issues of monotonicity and convexity are hardly the only properties affected

© Springer International Publishing Switzerland 2015
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by the nonlocal structure of the fractional difference. The analysis of boundary value
problems, for example, is also widely affected and complicated by this inherent
nonlocality.

All in all, in this section we provide a collection of applications involving the
nonlocal structure of the fractional difference. We also consider the problem of
analyzing nonlocal boundary value problems within the context of the discrete
fractional calculus. While the latter is not necessarily explicitly affected by the
nonlocal nature of the fractional sum and difference operators, it does demonstrate
in what way the existence of explicit nonlocalities in a boundary value problem can
complicate the analysis of the problem, much as the implicit nonlocalities in the
discrete fractional operates complicate the analysis of the geometrical properties of
these operators.

7.2 A Monotonicity Result for Discrete Fractional
Differences

The first result we present demonstrates that the discrete fractional difference
satisfies a particular monotonicity condition—note that the results of this section
can mostly be found in Dahal and Goodrich [67]. Roughly stated, see Theorem 7.1
for a precise statement, the main result of this section can be summarized as follows:
Given  2 .1; 2/ and a map y W N0 ! R satisfying

• y.t/ � 0, for each t 2 N0;
• �y.0/ � 0; and
• �y.t/ � 0, for each t 2 N2� ;

then it holds that y is increasing on its domain.
Recalling that

�
ay.t/ WD �N��Ny.t/ D �N

"
1

�.N � /
tC�NX

sDa

.t � s � 1/N��1y.s/
#

„ ƒ‚ …
WD��N y.t/

;

this result does not seem to be immediately apparent from the definition of the
fractional difference. Hence, it is not obvious that the fractional order difference
behaves in this way, and it highlights one of the consequences of the nonlocal
structure of the fractional difference operator. In addition, that this monotonicity
result holds implies some other nontrivial consequences, and we shall detail a few
of these toward the conclusion of this section.

We now state and prove the monotonicity result. Observe that the proof of this
result is based upon the principle of strong induction. Moreover, the reader should
observe the way in which the nonlocal structure of �

0 is explicitly utilized in the
proof.
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Theorem 7.1. Let y W N0 ! R be a nonnegative function satisfying y.0/ D 0. Fix
 2 .1; 2/ and suppose that �

0y.t/ � 0 for each t 2 N2� . Then y is increasing
on N0.

Proof. We prove this result by the principle of strong induction. To this end, observe
that the base case holds somewhat trivially since we calculate

y.1/ � y.0/ D y.1/ � 0;

due to the fact that y.0/ D 0, by assumption, and the fact that y.1/ � 0, also by
assumption.

Now, to complete the induction step fix k 2 N and suppose that

�y.j � 1/ D y.j/ � y.j � 1/ � 0;

for each 1 	 j 	 k � 1. Recall that �
0y.t/ � 0 for each t 2 N2� , which by means

of Lemma 2.33 implies that

��
0y.2 � / D y.1/ � y.2/ 	 0

��
0y.3 � / D 1

2
.1 � /y.1/C y.2/ � y.3/ 	 0

��
0y.4 � / D 1

6
.1 � /.2 � /y.1/C 1

2
.1 � /y.2/C y.3/ � y.4/

	 0

:::

��
0y.k � / D 1

.k � 1/Š.1 � / � � � .k � 2 � /y.1/C � � �

C y.k � 1/ � y.k/ 	 0;
(7.1)

for fixed k 2 N; note that in (7.1) we have used the assumption that y.0/ D 0 to
simplify suitably �y.j � / for each j. In particular, (7.1) implies that

y.k/ � 1

.k � 1/Š.1 � / � � � .k � 2 � /y.1/C � � � C y.k � 1/ (7.2)

for fixed k 2 N. Inequality (7.2) shall be used repeatedly in the sequel.
We claim that for the value of k fixed at the beginning of the preceding paragraph

y.k/ � y.k � 1/ � 0; (7.3)

which will complete the induction step. To prove (7.3) we first calculate, by using
estimate (7.2),
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y.k/ � y.k � 1/

� y.k � 1/C 1

2
.1 � /y.k � 2/C 1

6
.1 � /.2 � /y.k � 3/

C � � � C 1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � /y.1/ � y.k � 1/

D . � 1/y.k � 1/C 1

2
.1 � /y.k � 2/C 1

6
.1 � /.2 � /y.k � 3/

C � � � C 1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � /y.1/

D . � 1/y.k � 1/

C
�
1

2
.1 � /y.k � 2/ � 1

2
.1 � /y.k � 1/

�
C 1

2
.1 � /y.k � 1/

C
�
1

6
.1 � /.2 � /y.k � 3/ � 1

6
.1 � /.2 � /y.k � 1/

�

C 1

6
.1 � /.2 � /y.k � 1/

:::

C
�

1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � /y.1/

� 1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � /y.k � 1/
�

C 1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � /y.k � 1/: (7.4)

On the other hand, invoking the induction hypothesis implies that

1

2
.1 � /

„ ƒ‚ …
<0

.�y.k � 1/C y.k � 2//„ ƒ‚ …
�0

� 0

1

6
.1 � /.2 � /

„ ƒ‚ …
<0

.�y.k � 1/C y.k � 3//„ ƒ‚ …
�0

� 0

:::

1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � /
„ ƒ‚ …

<0

.�y.k � 1/C y.1//„ ƒ‚ …
�0

� 0: (7.5)
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Observe that in (7.5) we are using the fact that since y.k � 1/ � y.k � 2/ it follows
that y.k � 1/� y.k � 3/ � y.k � 2/� y.k � 3/ � 0, and so forth. In any case, putting
the k � 2 estimates in (7.5) into inequality (7.4) yields

y.k/ � y.k � 1/

�
"
. � 1/C 1

2
.1 � /C 1

6
.1 � /.2 � /C : : :

C 1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � /
#

y.k � 1/:

Since y.k � 1/ � 0 by assumption, to complete the proof it suffices to show that

. � 1/C 1

2
.1 � /C 1

6
.1 � /.2 � /

C � � � C 1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � / � 0;

for each 1 <  < 2. To complete this final step define the .k � 1/-th degree
polynomial function Pk�1 W R ! R by

Pk�1./ WD . � 1/C 1

2
.1 � /C 1

6
.1 � /.2 � /C : : :

C 1

.k � 1/Š.1 � /.2 � / � � � .k � 2 � /:

Then, for example,

2Pk�1./
1 �  D . � 2/C 1

3
.2 � /C � � � C 2

.k � 1/Š.2 � / � � � .k � 2 � /:

And, moreover,

6Pk�1./
.1 � /.2 � / D . � 3/C 1

4
.3 � /C � � �

C 6

.k � 1/Š.3 � / � � � .k � 2 � /:

Continuing in this fashion we eventually arrive at

.k � 1/ŠPk�1./
.1 � /.2 � / � � � .k � 2 � / D �.k � 1 � /;
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whence

Pk�1./ D �1
.k � 1/Š .1 � /.2 � / � � � .k � 2 � /.k � 1 � /: (7.6)

But then (7.6) implies that

Pk�1./ D � 1

.k � 1/Š .1 � /.2 � / � � � .k � 2 � /.k � 1 � /

D 1

.k � 1/Š .�1/
2. � 1/.2 � / � � � .k � 2 � /.k � 1 � /

D 1

.k � 1/Š .�1/
3. � 1/. � 2/.3 � / � � � .k � 2 � /.k � 1 � /

:::

D 1

.k � 1/Š .�1/
k. � 1/. � 2/ � � � . � k C 2/. � k C 1/:

(7.7)
The factorization of Pk�1 given by (7.7) implies that Pk�1 has k � 1 distinct zeros
and these zeros are, in particular,  D 1; 2; : : : ; k � 1. In particular, observe that
when k is even, it follows that Pk�1./ > 0, for each  2 .1; 2/, since .�1/k > 0

and the other factors will constitute a product of k � 2 negative numbers and exactly
one positive number. On the other hand, when k is odd, it follows that Pk�1./ > 0,
for each  2 .1; 2/, since .�1/k < 0 and the other factors will once again constitute
a product of k � 2 negative numbers and exactly one positive number.

We conclude that for each k 2 N it follows that Pk�1./ > 0whenever  2 .1; 2/.
And this implies that (7.3) holds. Since this completes the induction step, we obtain
that y is increasing for k 2 N and  2 .1; 2/, and this completes the proof. ut

Having proved the case where y.0/ D 0, it is easy to generalize this to the case
where y.0/ � 0. We state this generalization as Corollary 7.2. It turns out that this
generalization will be useful in the next section when we consider concavity and
convexity properties of the fractional difference operator.

Corollary 7.2. Let y W N0 ! R be a nonnegative function. Fix  2 .1; 2/ and
suppose that �

0y.t/ � 0, for each t 2 N2� . If �y.0/ � 0, then y is increasing
on N0.

Proof. Define the function Qy W Z�1 ! R by Qy.t/ WD y.t/, if t ¤ �1, and Qy.�1/ WD
0. Then we may apply Theorem 7.1 to Qy on Z�1 and obtain that Qy is increasing on
Z�1; observe that it can be shown that ��1 Qy � �

0y so that ��1 Qy.t/ � 0 holds.
Thus, y is increasing on N0, as desired. ut
Remark 7.3. It is important to point out that the original version of the paper by
Dahal and Goodrich [67], in which the monotonicity results for discrete fractional
operators first appeared, contained a minor error in one result. In particular, [67,
Corollary 2.3] is missing the hypothesis that �y.0/ � 0 holds.
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As it may be instructive to see why this error occurs, let us briefly explain the
problem. So, to see why we cannot deduce the monotonicity of y from the hypothesis
�
0y.t/ � 0, t 2 Z2� , alone, we recall that the proof of the corollary in the original

paper employed the map Qy W Z�1 ! R defined by

Qy.t/ WD
(

y.t/, t 2 N0

0, t 2 f�1g : (7.8)

Note that in (7.8) the map y is the same map as in the statement of Corollary 7.2
above. The goal of the proof in [67, Corollary 2.3] was to show that ��1 Qy.t/ � 0,
for each t 2 Z1� , so that we could use [67, Theorem 2.2] to conclude that Qy and,
hence, y was increasing.

To see why this does not work quite as intended, observe that

��1 Qy.1 � / D 1

�.�/
1X

sD�1
..1 � / � s � 1/��1 Qy.s/

D 1

�.�/
h
.� C 1/��1 Qy.�1/C .�/��1 Qy.0/

C .� � 1/��1 Qy.1/
i

D �1
2
.� C 1/Qy.�1/ �  Qy.0/C Qy.1/

D �y.0/C y.1/: (7.9)

Thus, (7.9) shows us that without additional information about y.0/ and y.1/, we
cannot deduce that ��1 Qy.1� / � 0. Moreover, while it is true that ��1 Qy.k � / �
�
0y.k � /, for each k 2 N2, this does not force ��1 Qy.1 � / to be nonnegative, as

shown by (7.9) above. This is the basis of the error.
Finally, suppose that �y.0/ � 0, which is the necessary additional hypothesis as

noted above. By a calculation similar to (7.9) we find that

�
0y.2 � / D �1

2
.� C 1/y.0/ � y.1/C y.2/ � 0: (7.10)

Thus, combining (7.10) with the fact that �y.0/ � 0 we estimate

�y.1/ � . � 1/y.1/C 1

2
.1 � /y.0/ � . � 1/

�
1 � 1

2


	
y.0/: (7.11)

Since the map  7! . � 1/


1 � 1

2

�

is nonnegative for  2 .1; 2/, we obtain
from (7.11) that �y.1/ � 0. Finally, proceeding inductively from inequality (7.11),
we obtain the monotonicity of Qy on Z�1 and thus of y on N0.
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Recall that in the statement of both Theorem 7.1 and Corollary 7.2 we have that
y is nonnegative. It is easy to obtain a result similar to Theorem 7.1 in case y is
instead nonpositive. In addition, as with Theorem 7.1, we may obtain a corollary
dual to Corollary 7.2, but we omit its statement.

Theorem 7.4. Let y W N0 ! R be a nonpositive function satisfying y.0/ D 0. Fix
 2 .1; 2/ and suppose that �

0y.t/ 	 0, for each t 2 N2� . If it also holds that
�y.0/ 	 0, then y is decreasing on N0.

Proof. Let y be as in the statement of this theorem. Put z WD �y. Then z.0/ D 0,
z is nonnegative on its domain, and (by the linearity of the fractional difference
operator) �

0z.t/ � 0 for each t 2 N2� . Consequently, each of the hypotheses of
Theorem 7.1 is satisfied. Therefore, we conclude that z is increasing, whence �z D y
is decreasing at each t 2 N0. And this completes the proof. ut

We mention next a couple of representative consequences of Theorems 7.1
and 7.4. We begin by providing a result regarding a discrete fractional IVP, which
is Corollary 7.5, and then a result about a discrete fractional BVP with (possibly)
inhomogeneous boundary conditions, which is Corollary 7.6.

Corollary 7.5. Let h W Œ1;C1/N �R ! R be a nonnegative, continuous function,
and let A, B 2 R be nonnegative constants. Then the unique solution of the discrete
fractional IVP

�
0y.t/ D h.t C  � 1; y.t C  � 1//, t 2 Œ2 � ;C1/Z2�

y.0/ D A, �y.0/ D B

is increasing (and nonnegative).

Proof. Simply note that the proof of Theorem 7.1 reveals that one may replace
the hypothesis that y is nonnegative on its domain with the hypothesis that y.1/ �
y.0/ � 0. Since A, B � 0, the result follows. ut
Corollary 7.6. Let h W Z�2 �R ! R be a nonpositive function, and let A, B 2 R

be nonpositive constants. Then the unique solution of the discrete fractional IVP

�
�2y.t/ D h.t C  � 1; y.t C  � 1//

y. � 2/ D A

�y. � 2/ D B

is decreasing.

Our final consequence of Theorem 7.1 deserves special mention. To contextual-
ize the result, let us consider the problem

�
�˛
˛�1u

�
.t/ D �u.t C ˛ � 1/C f .t C ˛ � 1; u.t C ˛ � 1//, t 2 Œ0;T � 1�N0

u.˛ � 1/ D u.˛ � 1C T/;
(7.12)
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which was studied by Ferreira and Goodrich [83]. Supposing that f satisfied
superlinear growth at 0 and C1 (uniformly for t), they proved that problem (7.12)
has at least one positive solution for a range of values of the parameter �, even if f
is nonnegative. Assuming � > 0, such an occurrence is clearly impossible in case
˛ D 1, for then (7.12) implies that u is strictly increasing, contradicting the periodic
boundary conditions. So, this result demonstrates that the fractional difference can
behave in unexpected ways, due precisely to its nonlocal structure.

With this somewhat aberrant result in mind, we might wonder if it is possible for
the problem

��
�2y.t/ D f .t C  � 1; y.t C  � 1//, t 2 Œ0; b C 1�N0

y. � 2/ D 0

y. C b C 1/ D 0

(7.13)

to have at least one positive solution if f is nonpositive. Now, when  D 2, the
nonpositivity of f implies that �2y.t/ � 0, for each admissible t, from which
it follows at once that if y is a solution of problem (7.13), then y.t/ 	 0 for
each t. This is a simple consequence of the geometrical implications of �2y.t/ �
0 together with the Dirichlet boundary conditions. However, as the discussion
regarding problem (7.12) demonstrates, in the fractional setting one cannot be so
sure. In fact, it would not be entirely unreasonable to suspect that perhaps that
nonlocal structure of �

�2 somehow allows for a positive solution to exist in spite
of the nonpositivity of f . Corollary 7.7 demonstrates conclusively that this particular
geometric aberration is forbidden.

Corollary 7.7. Let f W Œ � 1;  C b�Z�1 � R ! R be continuous and
nonpositive and b 2 N a given constant. Then the discrete fractional boundary
value problem (7.13) has no positive solution.

We would also like to mention that it is necessary to impose some additional
restriction beyond the positivity of the fractional difference if we hope to deduce the
monotonicity of y. For example, in Corollary 7.2 we impose the condition �y.0/ �
0, which, as was explained earlier, was inadvertently omitted from the statement
of the corresponding result in [67], though all of the other results in that paper are
correct as stated. In any case, to demonstrate that the positivity of the fractional
difference is not sufficient, we provide the following example.

Example 7.8. Let f .t/ D 2�t, t 2 N0, and assume that 2Cp
2

2
<  < 2. We will

show that �
0 f .t/ � 0, t 2 N2� , f .t/ � 0 on N0; but f .t/ is not increasing on N1.

Clearly f .t/ � 0 on N0.
For t D 2 �  C k, k � 0, we have

�
0f .t/ D

Z 3Ck

0

h��1.2 �  C k; � C 1/f .�/ ��

D
kC2X
iD0

h��1.2 �  C k; i C 1/2�i:
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For 0 	 i 	 k C 2, 1 <  < 2, we have

h��1.2 �  C k; i C 1/ D .1 �  C k � i/��1

�.�/

D �.2 �  C k � i/

�.3C k � i/�.�/

D .� C 1C k � i/ � � � .� C 1/.�/
.2C k � i/Š

:

(7.14)

It follows from (7.14) that if k � i � 1, then h��1.2 �  C k; i C 1/ > 0. When
i D k; k C 1; k C 2, we have

h��1.2 �  C k; k C 1/ D �.2 � /
2Š�.�/ D .� C 1/.�/

2
; (7.15)

h��1.2 �  C k; k C 2/ D �.1 � /
�.�/ D �; (7.16)

h��1.2 �  C k; k C 3/ D �.�/
�.�/ D 1; (7.17)

respectively. So from (7.15), (7.16), (7.17), and the fact that 2C
p
2

2
<  < 2, we get

that

�
0 f .t/ �

kC2X
iDk

h��1.2 �  C k; i C 1/2�i

D .� C 1/.�/
2

� 1
2k

� 

2kC1 C 1

2kC2

D 22 � 4 C 1

2kC2 > 0:

But since f .t/ is obviously decreasing, it follows that the some additional condition
is necessary above and beyond the positivity of the fractional difference.

It should be noted that the above example is just a special case of a more general
result, which we illustrate with the following example.

Example 7.9. Let f .t/ D ˛�t, t 2 N0, and assume that ˛ > 1: If we proceed as in
the example above, we obtain the estimate
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�
0f .t/ �

kC2X
iDk

h��1.2 �  C k; i C 1/˛�i

D .� C 1/.�/
2

� 1
˛k

� 

˛kC1 C 1

˛kC2

D ˛22 � ˛2 � 2˛ C 2

2˛kC2 :

Let us define

g./ WD 2 � .2C ˛/

˛
C 2

˛2
:

We see, therefore, that �
0 f .t/ > 0 if g./ > 0. If we solve the quadratic inequality

g./ > 0, we find that for all 0 <  < 2, we have �
0f .t/ > 0, where 0 WD

˛C2Cp
˛2C4˛�4
2˛

: Since 0 < 2 holds because ˛ > 1, it follows that we obtain a
family of functions f .t/ WD ˛�t which are decreasing but for which �

0f .t/ > 0.
Finally, the following table illustrates how the interval .0; 2/ varies with differing
choices for ˛ 2 .1;1/.

˛ 1:2 2 3 8

0 1:950 1:707 1:510 1:224

We conclude by presenting a monotonicity theorem of a different color. The
interesting point regarding this result is that we do not necessarily suppose that
�f .a/ � 0. Rather, we replace this condition with a weaker condition on the “initial
growth” of the map t 7! y.t/. Thus, this result improves the monotonicity result that
was proved earlier. This new result was proved by Baoguo, Erbe, Goodrich, and
Peterson, and it relies in a special way on a useful difference inequality discovered
by Baoguo, Erbe, and Peterson. Thus, we first state the aforementioned technical
lemma and then state and prove the existence theorem; we mention that for the
interested reader, the proof of Lemma 7.10 may be found in [47]. (For readers who
have read Chap. 3, it is seen that Lemma 7.10 is very much related, in the nabla
setting, to Theorem 3.115.)

Lemma 7.10. Assume that�
af .t/ � 0, for each t 2 NaC2� , with 1 <  < 2. Then

�f .a C k C 1/ � �h�.a C k C 2 � ; a/f .a/

�
aCkX
�Da

h�.a C k C 2 � ; �.�//�f .�/

for each k 2 N0, where
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h�.t; �.�// D .t � �/�
.t �  � �/Š.a C k C 2 � �/Š < 0;

for t 2 NaC2� , a 	 �.�/ 	 t C  � 1.

Theorem 7.11. Assume that f W Na ! R and that�
af .t/ � 0, for each t 2 NaC2� ,

with 1 <  < 2. If

f .a C 1/ � 

k C 2
f .a/

for each k 2 N0, then �f .t/ � 0, for t 2 NaC1.

Proof. We prove that �f .a C k C 1/ � 0, for each k � 0, by the principle of
strong induction. From Lemma 7.10, in case k D 0, together with the hypothesis
f .a C 1/ � 

2
f .a/, we estimate

�f .a C 1/ � �h�.a C 2 � ; a/f .a/ � h�.a C 2 � ; a C 1/�f .a/

D �
�

�.3 � /
�.3/�.� C 1/

f .a/C �.2 � /
�.2/�.� C 1/

�f .a/

	

D � �.2 � /
�.� C 1/

�
1

2
.2 � /f .a/C�f .a/

	

� � �.2 � /
�.� C 1/

�
1

2
.2 � /C 

2
� 1

	

„ ƒ‚ …
D0

f .a/

D 0:

Suppose next that k � 1 and �f .a C i/ � 0, for i 2 N
k
1. From Lemma 7.10 together

with the hypothesis f .a C 1/ � 
kC2 f .a/ for each k 2 N0, we estimate

�f .a C k C 1/

� �f .a/h�.a C k C 2 � ; a/ �
aCkX
�Da

h�.a C k C 2 � ; �.�//�f .�/

� �f .a/h�.a C k C 2 � ; a/ � h�.a C k C 2 � ; a C 1/�f .a/

D � �.k C 3 � /
�.k C 3/�.� C 1/

f .a/ � �.k C 2 � /
�.k C 2/�.� C 1/

�f .a/

D � �.k C 2 � /
�.k C 2/�.� C 1/„ ƒ‚ …

>0

�
k C 2 � 

k C 2
f .a/C�f .a/
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� � �.k C 2 � /
�.k C 2/�.� C 1/

�
k C 2 � 

k C 2
C 

k C 2
� 1

	

„ ƒ‚ …
D0

f .a/

D 0:

As this inequality implies that f is monotone increasing, the proof is thus
complete. ut
Remark 7.12. We would like to point out that very recently (i.e., as of late 2015)
there has been quite a bit of progress made in extending the results of this
section, which were deduced by Dahal and Goodrich in late 2013. Correspondingly,
there has been much activity very recently (again, as of late 2015) extending the
concavity/convexity results of the next section. In addition to the preceding theorem,
additional generalizations have been produced. We direct the interested reader to the
forthcoming papers by Baoguo, Erbe, Goodrich, and Peterson [53, 54].

7.3 Concavity and Convexity Results for Fractional
Difference Operators

In the previous section we demonstrated that the discrete fractional difference
operator satisfied a particular monotonicity condition, and we saw how this was
a direct consequence of the implicit nonlocality in the construction of the fractional
difference. In this section we present some convexity and concavity results for
discrete fractional difference operators. We note that the results of this section can
mostly be found in a paper by Goodrich [114].

We begin by stating the main result of this section and then proceed to state and
discuss several consequences of this result. Essentially, the result states that if

• y.0/ D �y.0/ D � � � D �N�3y.0/ D 0;
• �N�2y.0/ � 0;
• �N�1y.0/ � 0; and
• �

�
0 y.t/ � 0, for each t 2 NN��;

then �N�1y.t/ � 0, for each t 2 N0. In particular, if we fix N D 3, then we
obtain a suitable convexity result. In this special case we obtain that if y.0/ D 0,
�y.0/ is nonnegative, �2y.0/ is also nonnegative, and ��

0 y.t/ is nonnegative for
each admissible t, then the map t 7! y.t/ is concave on its domain. So, this result
essentially demonstrates that if y has a bit of initial convexity, so to speak, then
this is propagated provided that the sufficient auxiliary conditions are in force, as
described precisely above. In some sense, this is not quite what one would expect,
since it would be preferable not to have to require the condition �2y.0/ � 0. At the
end of this section we shall suggest how this may be improved.
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With these considerations in mind, we now state and prove the convexity result.
Observe that the proof of this result and its corollaries are strongly based on an
application of the monotonicity result. Thus, this collection of results gives us yet
another nontrivial application of the monotonicity result.

Theorem 7.13. Fix � 2 .N � 1;N/, for N 2 N3 given, and let y W N0 ! R be a
given function satisfying �jy.0/ D 0 for each j 2 f0; 1; 2; : : : ;N � 3g, �N�2y.0/ �
0, and ��

0 y.t/ � 0 for each t 2 NN��. If it also holds that �N�1y.0/ � 0, then
�N�1y.t/ � 0, for each t 2 N0.

Proof. Define the function w W N0 ! R by

w.t/ WD �N�2y.t/:

We show that w satisfies the monotonicity theorem—namely, Corollary 7.2. To this
end, put  WD � � N C 2 2 .1; 2/. On the one hand, by Theorem 2.51 we obtain

�
0w.t/ D �

0�
N�2
0 y.t/ D �N�2

2� �
0y.t/

�
N�3X
jD0

�
j
0y.0/

�.� � N C j C 3/
t��NC2Cj

„ ƒ‚ …
D0

D �N�2
2� �

0y.t/

D �CN�2
0 y.t/

D �
�
0 y.t/

� 0;

for each t 2 N2� D NN��. We also observe that

w.0/ D �N�2y.0/ � 0:

By Corollary 7.2 it follows that t 7! w.t/ is increasing at t D 0. That is to say, it
holds that �N�1y.0/ � 0. We also note that �N�1y.0/ D �w.0/ � 0. Finally, by
repeatedly applying Corollary 7.2 we obtain that �N�1y.t/ � 0 for each t 2 N0.
And this completes the proof. ut
Remark 7.14. Observe that in the proof of Theorem 7.13 we repeatedly apply
Corollary 7.2 at the end of the argument. In fact, it is worth noting that one can
strengthen Corollary 7.2 in precisely this way—namely, it is sufficient that y.0/ � 0.
In particular, one need not know a priori that y is nonnegative, merely that y is
“initially” nonnegative. The nonnegativity is, in fact, then propagated. A careful
proof of this assertion is left to the reader.
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We now demonstrate that the hypotheses of Theorem 7.13 can be altered
somewhat.

Corollary 7.15. Fix� 2 .N�1;N/, for N 2 N3 given, and assume that��
0 y.t/ � 0

for each t 2 NN��. In case N is odd, assume that

(
�jy.0/ < 0, j D 0; 2; : : : ;N � 3
�jy.0/ > 0, j D 1; 3; : : : ;N � 4 ;

whereas in case N is even, assume that

(
�jy.0/ > 0, j D 0; 2; : : : ;N � 4
�jy.0/ < 0, j D 1; 3; : : : ;N � 3 :

If in addition it holds both that �N�2y.0/ � 0 and that �N�1y.0/ � 0, then
�N�1y.t/ � 0, for each t 2 N0.

Proof. Observe that by the calculation in the proof of Theorem 7.13, it follows that
�
0w.t/ � 0 if and only if

N�3X
jD0

�jy.0/

�.� � N C j C 3/
t��NC2Cj 	 0I (7.18)

recall here that the inequality �N�2
2� �

0y.t/ D �
�
0 y.t/ � 0 is still assumed. It then

follows from (7.18) that

t.t � 1/ � � � .��C 1/

.t C �/Š
y.0/C � � � C t.t � 1/ � � � .��C N � 2/

.t C 3C � � N/Š
�N�3y.0/ 	 0

must hold for each t 2 NN��.
For notational convenience we next define the map Cj W N3 � NN�� ! R, for

j 2 f0; 1; : : : ;N � 3g, by

Cj.N; t/ WD 1

�.� � N C j C 3/
t��NC2Cj

D �.t C 1/

�.� � N C j C 3/�.t C  C N � 1 � j/
:

Observe that Cj.N; t/ is nothing more than the coefficient of �jy.0/ in (7.18).
Recalling that t 2 NN��, we may simplify the ratio of gamma functions appearing
in the definition of Cj. In particular, it is then apparent that if j is even, then
Cj.N; t/ < 0 if N is even, whereas Cj.N; t/ > 0 if N is odd; moreover, this holds
for each t 2 NN�� as a simple calculation reveals. The sign relationship is reversed
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if j is odd, and, once again, the relationship holds for each admissible t. We then
see that (7.18) holds provided that �jy.0/ satisfies the sign condition, for each
admissible j, presented in the statement of the theorem. And this completes the
proof. ut

We next present three examples to illustrate the application of Corollary 7.15 in
the cases where N D 3, 4, or 5.

Example 7.16. Suppose that N D 3. Then Corollary 7.15 demonstrates that
�2y.t/ � 0, for example, provided that

y.0/ < 0

�y.0/ � 0

�2y.0/ � 0

�
�
0 y.t/ � 0 for some � 2 .2; 3/:

Example 7.17. Suppose that N D 4. Then Corollary 7.15 implies that �3y.t/ � 0

if it holds that

y.0/ > 0

�y.0/ 	 0

�2y.0/ � 0

�3y.0/ � 0

�
�
0 y.t/ � 0 for some � 2 .3; 4/:

Example 7.18. Suppose that N D 5. Then Corollary 7.15 implies that �4y.t/ � 0

if it holds that

y.0/ < 0

�y.0/ � 0

�2y.0/ 	 0

�3y.0/ � 0

�4y.0/ � 0

�
�
0 y.t/ � 0 for some � 2 .4; 5/:

The next corollary is immediate and provides a geometrical interpretation of
Theorem 7.13 in case � 2 .2; 3/ and thus N D 3; in particular, it provides for a
convexity-type result.
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Corollary 7.19. If 2 < � < 3 and y W N0 ! R satisfies y.0/ D 0, �y.0/ � 0,
�2y.0/ � 0, and ��

0 y.t/ � 0, for each t 2 Z3��, then �2y.t/ � 0, for each t 2 N0.

We can also obtain an alternative version of Theorem 7.13.

Corollary 7.20. Fix � 2 .N � 1;N/, for N 2 N given, and let y W N0 ! R be a
given function satisfying �jy.0/ D 0 for each j 2 f0; 1; 2; : : : ;N � 3g, �N�2y.0/ 	
0, and ��

0 y.t/ 	 0 for each t 2 ZN��. If it also holds that �N�1y.0/ 	 0, then
�N�1y.t/ 	 0, for each t 2 N0.

Proof. Put z � �y and apply Theorem 7.13 to the function z. ut
Finally, as a specific application of this result and to demonstrate a nontrivial

consequence of Theorem 7.13 we consider the theorem in case N D 3. To this end,
consider the following FBVP, and observe that this is a special case of the so-called
.N � 1; 1/ problem for the case N D 3; see [124] for additional results on a class of
discrete fractional .N � 1; 1/ problems.

�
�
��3y.t/ D f .t C � � 1; y.t C � � 1//, t 2 N

bC1
0 DW f0; 1; : : : ; b C 1g

y.� � 3/ D 0 D �y.� � 3/
y.�C b C 1/ D 0

(7.19)

Corollary 7.21. If the continuous function f W N
�Cb
��1 �R ! R is nonnegative and

2 < � < 3, then problem (7.19) has no nontrivial positive solution.

Proof. We begin by noting that from the boundary conditions we clearly have both
that y.� � 3/ D 0 and that �y.� � 3/ � 0. Furthermore, we compute

�2y.� � 3/ D y.� � 1/ � 2y.� � 2/C y.� � 3/ D y.� � 1/:

Therefore, supposing for contradiction that y is a fictitious positive solution of
problem (7.19), the above calculation demonstrates that �2y.� � 3/ � 0. Note,
in addition, that by the form of the difference equation in (7.19) together with the
assumption on the function f we may also conclude that ��

��3y.t/ � 0 for each
t 2 N0. Thus, we may invoke Theorem 7.13 to deduce that �2y.t/ � 0 for each
t 2 Z��3.

Now, by the contradiction assumption we have that y is nontrivial, and so, it
follows that for some time t0 2 Z

�Cb
��2 it holds that y .t0/ > 0. But then �y .t0/ > 0.

Since Theorem 7.13 has shown that �2y.t/ � 0 for all t, it follows that �y.t/ � 0

for each t 2 Z
�Cb
t0 . Thus, y.�CbC1/ > 0, which violates the boundary condition at

the right endpoint, and so, a contradiction is obtained. Consequently, (7.19) cannot
have a nontrivial positive solution, as claimed. ut
Remark 7.22. For obvious geometrical reasons, problem (7.19) cannot have a
positive solution in case � D 3. However, lacking this simple geometric intuition
when � … N, it does not appear to be plainly obvious that problem (7.19) maintains
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this similar solution structure. Accordingly, Corollary 7.21 demonstrates that no
such aberrant or otherwise pathological behavior occurs in the fractional case.

In fact, this is of some interest since the nonlocal structure of the fractional
difference can be responsible for aberrant behavior. As mentioned in the previous
section, it has been shown by Ferreira and Goodrich [83, Theorem 3.13] that
this nonlocality can contribute to certain boundary value problems possessing
positive solutions even in the case where their integer-order counterpart does not
possess nontrivial, positive solutions. Thus, Corollary 7.21 demonstrates that no
such aberration occurs with respect to the fractional .2; 1/ problem studied above.

The reader should observe that it is certainly possible to write numerous
analogues of Corollary 7.21 by repeatedly applying Theorem 7.13 for different
choice of N. It is instructive to do this in a few cases to obtain a better sense of
the implications of the result. However, we leave this as an optional exercise.

Remark 7.23. Due to the minor error in [67, Corollary 2.3], there are subsequently
some minor errors in [114]. Fortunately, the changes required to that paper are very
minor. In particular, the following minor changes must be made. It should be noted
that other than including a single additional hypothesis, no changes are required to
the proofs in [114]; the proofs are otherwise correct.

• In [114, Theorem 2.6, Corollary 2.8] the hypothesis �N�1y.0/ � 0 must be
added, whereas in [114, Corollary 2.11] the hypothesis �N�1y.0/ 	 0 must be
added.

• In [114, Example 2.9] the hypothesis �2y.0/ � 0 must be added in the first
part of the example, whereas in the second part of the example the hypothesis
�3y.0/ � 0 must be added.

• In [114, Corollary 2.10] the hypothesis �2y.0/ � 0 must be added.

We would like to conclude this section, much as we did in Sect. 7.2, by pointing
out that due to a flurry of recent work in the area, the basic convexity and concavity
results presented earlier in this section have been able to be substantively extended
in a variety of directions. As one such representative result, we present the following
theorem, which was recently proved by Baoguo, Erbe, Goodrich, and Peterson; it
will appear in a forthcoming paper [53], and we direct the reader to the paper for
further details on this and other related results. In particular, we omit the proof of
the result, but instead focus on its relationship to the results presented earlier in this
section, and the way in which it improves them.

Theorem 7.24. Fix  2 .2; 3/ and suppose that �
af .t/ � 0 for each t 2 N3Ca� .

If for each k 2 N�1 it holds that

1

� C 1
f .a C 2/C  C 2C k

. � 1/.3C k/
f .a C 1/ � 

.3C k/.4C k/
f .a/ 	 0; (7.20)

then �2f .t/ � 0 for each t 2 NaC1.

Proof. Omitted—see [53]. ut
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Remark 7.25. Observe that inequality (7.20) does not necessarily imply that
�2f .a/ � 0. For example, if we put f .a/ D 0, f .a C 1/ D 1, and f .a C 2/ D 1:9

and we also fix  D 5
2

2 .2; 3/, then we calculate

1

� C 1
f .a C 2/C  C 1

2. � 1/ f .a C 1/ � 

6
f .a/

D �2
3

� 1:9C 7

6
� 1 � 5

12
� 0 D � 1

10
< 0;

which shows that inequality (7.20) is satisfied in case k D �1; in fact, it can be
shown that (7.20) is satisfied for each k 2 N�1. Yet we calculate�2f .a/ D � 1

10
< 0.

Similarly, if we put g.a/ D 1, g.a C 1/ D 2:8, and g.a C 2/ D 4:5 as well as
again taking  D 5

2
, then we see that �2g.a/ D � 1

10
< 0. Yet at the same time we

calculate

1

� C 1
g.a C 2/C  C 1

2. � 1/g.a C 1/ � 

6
g.a/

D �2
3

� 4:5C 7

6
� 2:8 � 5

12
� 1 D � 3

20
< 0;

which shows that inequality (7.20) is satisfied in case k D �1, and, as can be easily
shown, it holds for k 2 N�1.

All in all, then, we see that condition (7.20) may be satisfied even if the map
t 7! f .t/ is not convex “at” t D a. In particular, this means that Theorem 7.24 does
not require that the map t 7! f .t/ be “initially convex.”

7.4 Analysis of a Three-Point Boundary Value Problem

In the preceding two sections we demonstrated that under certain conditions the
discrete fractional difference operator satisfies both monotonicity and convexity
properties. We thus focused on the nonlocal structure implicit to the fractional
operators. As mentioned in the introduction to this chapter, one can also study
explicitly nonlocal boundary value problems. In this and the succeeding sections
of this chapter, we examine a few specific examples of these so-called nonlocal
boundary value problems.

We begin by examining a three-point problem in this section. This is a special
case of the so-called m-point problem, wherein our boundary value problem has a
boundary condition of the form, say,

y.0/ D
mX

jD1
ajy
�
�j
�
;
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where, for each j, the number �j is both nonzero and an element of the domain of y.
In particular, then, the value of y at t D 0 depends on the values of y at time points
other than t D 0. This then gives rise to an explicit nonlocal boundary condition.
Now, in the integer-order case determining the Green’s function and its properties
for such a problem can be tedious, but is usually not too overly taxing. However, in
the fractional case, as this section demonstrates, determining explicitly the Green’s
function and its properties for even the three-point problem is extremely technical.
In particular, the problem we study in this section is

��y.t/ D f .t C  � 1; y.t C  � 1//
y. � 2/ D 0

˛y. C K/ D y. C b/:

Finally, as we shall note later in this section, if we remove the nonlocal boundary
condition element by simply putting ˛ D 0, then we recover the Green’s function
for the conjugate problem as is easily checked by the reader. Moreover, most of the
results in this section can be found in the paper by Goodrich [104].

So, with this context in mind, we first deduce the Green’s function for the
operator �� together with the boundary conditions y.�2/ D 0 and ˛y.CK/ D
y. C b/, where 0 	 ˛ 	 1 and K 2 Œ�1; b � 1�Z. We first present a preliminary
lemma, which will prove to be rather useful in what follows. The lemma can be
found in a paper by Goodrich [88].

Lemma 7.26. Fix k 2 N and let
˚
mj
�k

jD1,
˚
nj
�k

jD1 � .0;C1/ such that

max
1�j�k

mj 	 min
1�j�k

nj

and that for at least one j0, 1 	 j0 	 k, we have that mj0 < nj0 . Then for fixed
˛0 2 .0; 1/, it follows that

�
n1

n1 C ˛0
� : : : � nk

nk C ˛0

��
m1 C ˛0

m1

� : : : � mk C ˛0

mk

�
> 1:

Proof. Fix an index j0, where j0 is one of the indices, of which there exists at least
one, for which nj0 > mj0 . Notice that as nj0 > mj0 and ˛0 > 0, it follows that
nj0˛0 > mj0˛0, whence mj0nj0 C nj0˛0 > mj0nj0 C mj0˛0, so that

mj0 C ˛0

mj0

>
nj0 C ˛0

nj0

;

whence

nj0

nj0 C ˛0
� mj0 C ˛0

mj0

> 1:
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But now the claim follows at once by repeating the above steps for each of the
remaining j0 � 1 terms and observing that the product of j terms, each of which is at
least unity and at least one of which exceeds unity, is greater than unity. ut

In addition, for reference in the sequel and to simplify the rather formidable nota-
tional burden associated with this problem, let us make the following declarations;
note that we provide the domains of these maps in the statement of Theorem 7.27.

g1.t; s/ WD 1

�./

"
� .t � s � 1/�1

C t�1

�0



.b C  � s � 1/�1 � ˛.K C  � s � 1/�1�

#

g2.t; s/ WD 1

�./

�
t�1

�0



.b C  � s � 1/�1 � ˛.K C  � s � 1/�1�

	

g3.t; s/ WD 1

�./

�
�.t � s � 1/�1 C t�1

�0

.b C  � s � 1/�1
	

g4.t; s/ WD 1

�./

�
t�1

�0

.b C  � s � 1/�1
	

�0 WD .b C /�1 � ˛.K C /�1
(7.21)

Theorem 7.27. Let h W Œ � 1;  C b � 1�N�1 ! R be given. The unique solution
of the problem

��y.t/ D h.t C  � 1/
y. � 2/ D 0

˛y. C K/ D y. C b/ (7.22)

is the function

y.t/ D
bX

sD0
G.t; s/h.s C  � 1/;

where G.t; s/ is the Green’s function for the operator �� together with the
boundary conditions in (7.22), and where

G.t; s/ WD

8̂
ˆ̂̂
<
ˆ̂̂̂
:

g1.t; s/, 0 	 s 	 minft � ;Kg
g2.t; s/, 0 	 t �  < s 	 K 	 b

g3.t; s/, 0 < K < s 	 t �  	 b

g4.t; s/, maxft � ;Kg < s 	 b

;

with gi.t; s/, 1 	 i 	 4, are as defined in (7.21) above.
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Proof. Omitted—see [104]. ut
Remark 7.28. It is easy to observe that in case ˛ D 0, not only does problem (7.22)
reduce to the usual conjugate FBVP that was considered in [31], but, moreover, the
Green’s function given by Theorem 7.27 reduces to the Green’s function derived in
[31].

We now wish to prove that the Green’s function .t; s/ 7! G.t; s/ in Theorem 7.27
satisfies certain properties that will prove to be of use in the sequel and are also of
independent interest. We first prove an easy preliminary lemma.

Lemma 7.29. Let �0 be as defined in (7.21). Then for each K 2 Œ�1; b � 1�Z,
 2 .1; 2�, and b 2 N, we find that �0 > 0.

Proof. Recall from (7.21) that �0 D .b C /�1 � ˛.K C /�1. It is evident that
this function is decreasing in ˛ for each fixed K, , and b, and so, it suffices to show
that �0 > 0 when ˛ D 1. To this end, note that t� is increasing in t, whenever
0 < � < 1. Since b C  > K C , it immediately follows that

�0

ˇ̌
˛D1 D .b C /�1 � .K C /�1 > 0;

which proves the claim. We observe that this same result holds even in the case
where  D 2. ut
Theorem 7.30. Let G be the Green’s function given in the statement of Theo-
rem 7.27. Then for each .t; s/ 2 Œ�2; Cb�N�2 � Œ0; b�N0 , we find that G.t; s/ � 0.

Proof. As was mentioned at the beginning of this section, the proof of this result
may be found in its entirety in [104]. However, we include the proof here for its
instructive value. In particular, it shall give the reader a sense of the delicacy that
is involved in arguing the properties of Green’s functions associated with fractional
difference operators—delicacy that is obviated if we pass to the integer-order case.
Moreover, this will also give the reader a general sense for certain of the techniques
that may be utilized in these sorts of arguments.

With this in mind, our program to complete the proof is to show that for each i,
1 	 i 	 4, it holds that gi.t; s/ > 0 for each admissible pair .t; s/. To complete this
program, we begin by showing both that g2.t; s/ > 0 and that g4.t; s/ > 0, as these
are the easier cases. In the case of g2.t; s/, observe that it suffices to show that the
inequality

.b C  � s � 1/�1 � ˛.K C  � s � 1/�1 > 0 (7.23)

holds. Showing that (7.23) is true is equivalent to showing that

.b C  � s � 1/�1

˛.K C  � s � 1/�1 > 1: (7.24)
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But to see that (7.24) is true for each admissible pair .t; s/ and each ˛ 2 .0; 1�, notice
that t� is increasing in t provided that � 2 .0; 1/. Consequently, we obtain that

.b C  � s � 1/�1

˛.K C  � s � 1/�1 � .b C  � s � 1/�1

.K C  � s � 1/�1 > 1;

which proves (7.24) and thus (7.23). On the other hand, we note that by the form of
g4 given in (7.21), we obtain at once that g4.t; s/ > 0 since �0 > 0 by Lemma 7.29
and bC�s�1 > 0 in this case. Thus, we conclude that both g2 and g4 are positive
on each of their respective domains.

We next consider the function g3. Recall from (7.21) that

g3.t; s/ D 1

�./

�
�.t � s � 1/�1 C t�1

�0

.b C  � s � 1/�1
	
:

Evidently, to prove that g3.t; s/ > 0, we may instead just prove that �./g3.t; s/ > 0.
Now, it is clear that g3 is increasing in ˛, for as ˛ increases, �0 clearly decreases.
In particular, then, we deduce that

�./g3.t; s/ � �.t � s � 1/�1 C t�1.b C  � s � 1/�1

.b C /�1 : (7.25)

Note that (7.25) implies that g3.t; s/ > 0 if and only if

t�1.b C  � s � 1/�1

.t � s � 1/�1.b C /�1 > 1: (7.26)

To prove that (7.26) holds, recall that on the domain of g3 it holds that t � s C  >

K C. Consequently, given a fixed but arbitrary s0 > K, we have that t D s0CC j,
for some 0 	 j 	 b � s0 with j 2 N0. But then for this number s0, we may recast the
left-hand side of (7.26) as

t�1.b C  � s � 1/�1

.t � s � 1/�1.b C /�1

D �.t C 1/� .b C  � s0/ � .t � s0 �  C 1/ �.b C 2/

�.t �  C 2/� .b � s0 C 1/ � .t � s0/ �.b C  C 1/

D � .s0 C  C j C 1/ � .b C  � s0/ �.j C 1/�.b C 2/

� .s0 C j C 2/ � .b � s0 C 1/ �. C j/�.b C  C 1/

D jŠ.b C 1/Š Œ. C j C s0/ � � � . C j/�

.s0 C j C 1/Š .b � s0/Š Œ.b C / � � � .b C  � s0/�

D .b C 1/ � � � .b � s0 C 1/

.b C / � � � .b C  � s0/
� . C j C s0/ � � � . C j/

.s0 C j C 1/ � � � .j C 1/
: (7.27)
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Now, observe that each of the fractions on the right-hand side of (7.27) has
exactly s0 C 1 factors in each of its numerator and denominator. In addition, by
putting ˛0 WD  � 1 > 0, we observe that this expression satisfies the hypotheses
of Lemma 7.26. (Of course, some repetition of factors may occur between the two
fractions on the right-hand side of (7.27), but these may always be canceled to obtain
the form required by Lemma 7.26. Thus, we may safely ignore the existence of any
possible repetition.) Consequently, we deduce from this lemma that

t�1.b C  � s � 1/�1

.t � s � 1/�1.b C /�1

D .b C 1/ � � � .b � s0 C 1/

.b C / � � � .b C  � s/
� . C j C s0/ � � � . C j/

.s0 C j C 1/ � � � .j C 1/
> 1;

whence (7.26) holds. But as (7.26) holds for each admissible pair .t; s/, it follows at
once that (7.25) holds, too, so that g3.t; s/ > 0, as claimed.

Finally, we show that g1.t; s/ > 0 on its domain, which we recall is 0 	 s 	
minft � ;Kg. Recall from (3.1) that

�./g1.t; s/ D �.t � s � 1/�1

C t�1

�0



.b C  � s � 1/�1 � ˛.K C  � s � 1/�1� ;

where we again use the fact that g1.t; s/ is positive if and only if �./g1.t; s/ is
positive. Let us pause momentarily to notice that

.b C  � s � 1/�1 � ˛.K C  � s � 1/�1 > 0; (7.28)

which is evidently an important condition. Note that (7.28) just follows from (7.23)
above.

Notice that g1.t; s/ > 0 only if

t�1

�0



.b C  � s � 1/�1 � ˛.K C  � s � 1/�1� > .t � s � 1/�1: (7.29)

We begin by proving that the function F W Œ0; 1� ! R defined by

F.˛/ WD .b C  � s � 1/�1 � ˛.K C  � s � 1/�1

.b C /�1 � ˛.K C /�1 (7.30)

is increasing in ˛ for 0 	 ˛ 	 1. Note that a straightforward calculation shows that
F.˛/ is increasing in ˛ if and only if

.b C  � s � 1/�1.K C /�1

.K C  � s � 1/�1.b C /�1 > 1: (7.31)



7.4 Analysis of a Three-Point Boundary Value Problem 481

To see that (7.31) holds, let s0 be arbitrary but fixed such that each of s0 2 Œ0; b�N0
and 0 	 s0 	 minft � ;Kg holds. So, it follows that the left-hand side of (7.31)
above satisfies

.b C  � s0 � 1/�1 .K C /�1

.K C  � s0 � 1/�1 .b C /�1

D .b C 1/ � � � .b � s0 C 1/

.b C / � � � .b C  � s0/
� .K C / � � � .K C  � s0/

.K C 1/ � � � .K � s0 C 1/
: (7.32)

But it is easy to check that by putting ˛0 WD �1 > 0, we may apply Lemma 7.26 to
the right-hand side of (7.32) to conclude that (7.31) holds. Thus, the map ˛ 7! F.˛/
is increasing in ˛, as desired. In particular, this implies that to prove that (7.29)
is true, it suffices to check its truth in case ˛ D 0. In this case, we find that
proving (7.29) reduces to proving that

t�1.b C  � s � 1/�1

.b C /�1.t � s � 1/�1 > 1 (7.33)

holds. Observe that the same proof that was used to show that (7.26) held can be
used to show that (7.33) holds, too. Thus, as (7.29) holds in case ˛ D 0, the result
of (7.30)–(7.33) implies that (7.29) holds for each admissible ˛. Consequently, we
conclude that g1.t; s/ > 0, from which it follows that gi.t; s/ > 0 for each i, 1 	
i 	 4. Hence, it follows that G.t; s/ � 0 for each admissible pair .t; s/. And this
concludes the proof. ut
Theorem 7.31. Let G be the Green’s function given in the statement of Theo-
rem 7.27. In addition, suppose that for given K 2 Œ�1; b � 1�Z and 1 <  	 2,
we have that ˛ satisfies the inequality

0 	 ˛

	 min
.t;s/2ŒsC;Cb�N�1�Œ0;b�N0

�
.b C /�1

.K C /�1 � t�2.b C  � s � 1/�1

.K C /�1.t � s � 1/�2


:

(7.34)

Then for each s 2 Œ0; b�N0 it holds that

max
t2Œ�1;Cb�N�1

G.t; s/ D G.s C  � 1; s/: (7.35)

Proof. Our strategy is to show that �tgi.t; s/ > 0 for each i D 2, 4, and that
�tgi.t; s/ < 0 for i D 1, 3. From this the claim will follow at once. To this end,
we first show that the former claim holds, as this is the easier of the two cases. Note,
for example, that when i D 2, we find by direct computation that

�./�tg2.t; s/ D . � 1/t�2

�0



.b C  � s � 1/�1 � ˛.K C  � s � 1/�1� :

(7.36)
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So, it is clear from (7.36) that �tg2.t; s/ > 0 if and only if

.b C  � s � 1/�1 > ˛.K C  � s � 1/�1:

But as this immediately follows from (7.23)–(7.24), we deduce that

�tg2.t; s/ > 0;

as desired. On the other hand, the estimate �tg4.t; s/ > 0 evidently holds

considering that �tg4.t; s/ D .�1/t�2

�0
.b C  � s � 1/�1. And this concludes the

analysis of �tgi.t; s/ in case i is even.
We next attend to g3.t; s/. In particular, we claim that �tg3.t; s/ < 0 for each

admissible pair .t; s/. To see that this claim holds, note that

�./�tg3.t; s/ D �. � 1/.t � s � 1/�2

C . � 1/t�2

�0

.b C  � s � 1/�1;

where we have used the fact that �t.t � s � 1/�1 D . � 1/.t � s � 1/�2, which
may be easily verified from the definition. So, if�tg3 is to be a nonpositive function,
then it must hold that

t�2.b C  � s � 1/�1

�0

< .t � s � 1/�2: (7.37)

Notice that (7.37) is true if and only if .b C/�1�˛.K C/�1 > t�2.bC�s�1/�1

.t�s�1/�2

is true. But this latter inequality is true only if

� ˛ > t�2.b C  � s � 1/�1

.t � s � 1/�2.K C /�1 � .b C /�1

.K C /�1 (7.38)

is true. From (7.38) we see that by requiring ˛ to satisfy, for each admissible K and
, the estimate

0 	 ˛

	 min
.t;s/2ŒsC;Cb�N�1�Œ0;b�N0

�
.b C /�1

.K C /�1 � t�2.b C  � s � 1/�1

.K C /�1.t � s � 1/�2


;

(7.39)

it follows that (7.37) is true—that is, that g3.t; s/ > 0 for each admissible pair .t; s/.
Note that restriction (7.39) above is precisely restriction (7.34), which was given in
the statement of this theorem. Thus, with restriction (7.34) in place, we conclude
that the map .t; s/ 7! �tg3.t; s/ will be nonpositive on its domain, as desired.
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Finally, we claim that�tg1.t; s/ < 0 on its domain. Observe that by the definition
of g1 given in (7.21), we must argue that

� . � 1/.t � s � 1/�2

C . � 1/t�2

�0



.b C  � s � 1/�1 � ˛.K C  � s � 1/�1� < 0:

(7.40)

But observe that

� . � 1/.t � s � 1/�2

C . � 1/t�2

�0



.b C  � s � 1/�1 � ˛.K C  � s � 1/�1�

	 �. � 1/.t � s � 1/�2 C . � 1/t�2.b C  � s � 1/�1

�0

:

So, we deduce that if

� . � 1/.t � s � 1/�2 C . � 1/t�2.b C  � s � 1/�1

�0

< 0; (7.41)

then inequality (7.40) holds. Now, note that we can solve for ˛ in (7.41) to obtain an
upper bound on ˛. As this calculation is exactly the same as the one given earlier in
the argument, we do not repeat it here. Instead we point out that the restriction (7.41)
implies that

0 	 ˛ 	 .b C /�1

.K C /�1 � t�2.b C  � s � 1/�1

.K C /�1.t � s � 1/�2 :

Note that the right-hand side of (7.41) is precisely restriction (7.34). So, by
assuming (7.34) we also get that (7.40) holds. Consequently, the preceding analysis
shows that (7.40) holds, from which it follows that �tg1.t; s/ > 0 on its domain.
Thus, we deduce that (7.35) holds, which completes the proof. ut

Before presenting our final theorem in this section regarding the map .t; s/ 7!
G.t; s/, we make some definitions for convenience.
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�1 WD
�

bC
4

��1

.b C /�1

�2 WD 1�
3.bC/
4

��1

"�
3.b C /

4

��1

�
�
3.bC/
4

� 1
��1 


.b C /�1 � ˛.K C /�1�

.b C  � 1/�1

#

�3 WD 1�
3.bC/
4

��1

2
64
�
3.b C /

4

��1
�
�
3.bC/
4

� 1
��1

.b C /�1

.b C  � 1/�1

3
75

We will make use of these constants in the sequel.

Theorem 7.32. Let G be the Green’s function given in the statement of Theo-
rem 7.27. Let �i, 1 	 i 	 3, be defined as above. Then it follows that for each
s 2 Œ0; b�N0

min
t2
h

bC
4 ;

3.bC/
4

iG.t; s/ � � max
t2Œ�2;Cb�N�2

G.t; s/ D �G.s C  � 1; s/; (7.42)

where

� WD min f�1; �3g ; (7.43)

and � satisfies the inequality 0 < � < 1.

Proof. To simplify the notation used in this proof, let us put, for each 1 	 i 	 4,

Qgi.t; s/ WD
(

gi.t;s/
g2.sC�1;s/ , i D 1; 2

gi.t;s/
g4.sC�1;s/ , i D 3; 4

:

Observe that for s � t �  C 1 and bC
4

	 t 	 3.bC/
4

, it holds that

Qg2.t; s/ D Qg4.t; s/ D t�1

.s C  � 1/�1 �
�

bC
4

��1

.b C /�1 ; (7.44)

whence from (7.44) it is clear that in the case where both s � t �  C 1 and t 2h
bC
4
;
3.bC/
4

i
, it follows that

min
t2
h

bC
4 ;

3.bC/
4

iG.t; s/ � �1G.s C  � 1; s/:
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On the other hand, suppose that s < t �  C 1 and t 2
h

bC
4
;
3.bC/
4

i
. Then

we consider two cases depending upon whether or not the pair .t; s/ lives in the
domain of Qg1 or Qg3. In the case where .t; s/ lives in the domain of Qg3, we note that
by definition

Qg3.t; s/

D �.t � s � 1/�1�0

.s C  � 1/�1.b C  � s � 1/�1 C t�1

.s C  � 1/�1

D 1

.s C  � 1/�1

"
t�1 � .t � s � 1/�1 
.b C /�1 � ˛.K C /�1�

.b C  � s � 1/�1

#

� 1�
3.bC/
4

��1

�

2
64
�
3.b C /

4

��1
�
�
3.bC/
4

� 1
��1 


.b C /�1 � ˛.K C /�1�

.b C  � 1/�1

3
75 :

(7.45)

So, it is clear from (7.45) that in case s < t �  C 1 and t 2
h

bC
4
;
3.bC/
4

i
, we get

that min
t2
h

bC
4 ;

3.bC/
4

i G.t; s/ � �2G.s C  � 1; s/.
Finally, suppose that s < t �  C 1, t 2

h
bC
4
;
3.bC/
4

i
, and that the pair .t; s/

lives in the domain of Qg1. By using a similar calculation as in (7.45) together with
the definition of Qg1, we obtain the lower bound

Qg1.t; s/

D �.t � s � 1/�1�0

.s C  � 1/�1 Œ.b C  � s � 1/�1 � ˛.K C  � s � 1/�1�

C t�1

.s C  � 1/�1

� 1�
3.bC/
4

��1

�

2
64
�
3.b C /

4

��1
�
�
3.bC/
4

� s � 1
��1 


.b C /�1 � ˛.K C /�1�

.b C  � s � 1/�1 � ˛.K C  � s � 1/�1

3
75 :

(7.46)

We now need to focus on the quotient .bC/�1�˛.KC/�1

.bC�s�1/�1�˛.KC�s�1/�1 appearing on the
right-hand side of (7.46). We claim that this is a decreasing function of ˛.
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To prove this claim, let us put

g.˛/ WD .b C /�1 � ˛.K C /�1

.b C  � s � 1/�1 � ˛.K C  � s � 1/�1 ; (7.47)

where for each fixed but arbitrary b, s, , and K, we have that g W Œ0; 1� ! Œ0;C1/.
Now, let the map ˛ 7! F.˛/ be defined as in (7.30) above. Note from (7.47) that

g.˛/ D 1

F.˛/
:

Recall that in case 0 	 ˛ 	 1 we have already argued that F is increasing in ˛. So,
straightforward computations demonstrate that g is decreasing in ˛, for 0 	 ˛ 	 1,
as desired.

Since g is decreasing in ˛, we conclude that

Qg1.t; s/

� 1�
3.bC/
4

��1

�

2
64
�
3.b C /

4

��1
�
�
3.bC/
4

� s � 1
��1 


.b C /�1 � ˛.K C /�1�

.b C  � s � 1/�1 � ˛.K C  � s � 1/�1

3
75

� 1�
3.bC/
4

��1

2
64
�
3.b C /

4

��1
�
�
3.bC/
4

� s � 1
��1

.b C /�1

.b C  � s � 1/�1

3
75

� 1�
3.bC/
4

��1

2
64
�
3.b C /

4

��1
�
�
3.bC/
4

� 1
��1

.b C /�1

.b C  � 1/�1

3
75 :

Thus, we observe that in this case it holds that min
t2
h

bC
4 ;

3.bC/
4

i G.t; s/ � �3G.s C
 � 1; s/.

Finally, note that since �2 � �3, it must hold that min f�1; �2; �3g D min f�1; �3g.
Thus, we can put � WD min f�1; �3g as in (7.43). The previous part of the proof then
shows that for each s 2 Œ0; b�N0 it holds that

min
t2
h

bC
4 ;

3.bC/
4

iG.t; s/ � � max
t2Œ�2;Cb�N�2

G.t; s/ D �G.s C  � 1; s/; (7.48)

and as (7.48) is (7.42), the first part of the proof is complete.
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To complete the proof, it remains to show that � , as defined in (7.43), satisfies
0 < � < 1. We first observe that �1 < 1. This follows from the fact that t�1 is
an increasing function in t whenever  2 .1; 2�. To see that this latter claim is true,
simply observe that

�


t�1� D . � 1/ � �.t C 1/

�.t �  C 3/
> 0:

Thus, as bC
4
> bC and

�
bC
4

��1
, .bC/�1 ¤ 0, the claim follows. In particular,

this demonstrates that

� D min f�1; �3g 	 �1 < 1: (7.49)

On the other hand, observe that �1 > 0. So, it only remains to show that �3 > 0.
Note that �3 is strictly positive if and only if

�
3.bC/
4

��1
.b C  � 1/�1

�
3.bC/
4

� 1
��1

.b C /�1
> 1: (7.50)

But (7.50) is true if and only if

.b C 1/
�
3.bC/
4

�

.b C /
�
3.bC/
4

�  C 1
� > 1 (7.51)

holds for each admissible b and —that is, each b 2 Œ2;C1/N and  2 .1; 2�.
We claim that (7.51) is true for each b 2 Œ2;C1/ and each  2 .1; 2�. To see

this, for each fixed and admissible b, put

Hb./ WD
.b C 1/

�
3.bC/
4

�

.b C /
�
3.bC/
4

�  C 1
� ; (7.52)

which is the left-hand side of inequality (7.51), and note that each of

Hb.1/ D 1 (7.53)

and

Hb.2/ D .b C 1/
�
3
4
b C 3

2

�

.b C 2/
�
3
4
b C 1

2

� D 3b C 3

3b C 2
(7.54)

holds. Now, Hb.2/ > 1 is evidently true for each admissible b. Moreover, a
straightforward computation shows that
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H0
b./ D 3.b C 1/

.3b �  C 4/2
: (7.55)

But then (7.55) demonstrates that for each b, it holds that the map  7! Hb./ is
strictly increasing in . Therefore, as Hb.1/ D 1 and Hb.2/ > 1, we obtain at once
that

Hb./ > 1 (7.56)

for each  2 .1; 2� and b 2 Œ2;C1/N. But then from (7.56) we deduce that (7.51)
holds, as desired.

In summary, (7.50)–(7.56) demonstrate that �3 > 0. But we then find that

� D min f�1; �3g > 0: (7.57)

Putting (7.49) and (7.57) together implies that � 2 .0; 1/, as claimed. And this
completes the proof. ut
Remark 7.33. Note that in case ˛ D 0, the result of Theorem 7.32 reduces to the
results obtained in [31], as the reader may easily check.

Remark 7.34. For a brief investigation of the properties of the set of admissible
values of ˛ generated by condition (7.34) above, one may consult [104].

Remark 7.35. Once we have the preceding properties of the Green’s function G in
hand, it then is standard to provide some basic existence result for the FBVP

��y.t/ D f .t C  � 1; y.t C  � 1//
y. � 2/ D 0

˛y. C K/ D y. C b/;

where f W Œ0; b�N0 � R ! Œ0;C1/ is a continuous map. However, since we
complete this sort of analysis in the somewhat more general case of (potentially)
nonlinear boundary conditions in the next section, we will not present existence
theorems for the three-point problem studied in this section. We instead direct the
interested reader to [104, §5] where results of this sort may be found for the three-
point problem studied in this section.

7.5 A Nonlocal BVP with Nonlinear Boundary Conditions

In the previous section we saw how a three-point problem can be analyzed. In
particular, notice that the boundary condition in that setting is linear in the sense
that if we define the boundary operator B defined by

By WD ˛y.t C /C y.t C  C b/; y 2 R
m;
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then B is linear map from R
m into R, for some m > 1 with m 2 N. However,

there is no requirement that the boundary conditions for a given BVP be linear. In
fact, if the boundary conditions are nonlinear, then the mathematical analysis of
the problem can be very interesting and potentially challenging. For one thing, one
cannot generally approach the problem in the same way—namely by determining
an appropriate Green’s function. Rather, an alternative but viable approach in this
setting is to instead construct a new operator by taking the operator associated with
the linear boundary condition problem and then suitably perturbing it. This approach
will be seen in this section. In particular, we wish to consider a modification of the
BVP considered in the previous section; namely, we consider in this section the
problem

��y.t/ D f .t C  � 1; y.t C  � 1//
y. � 2/ D g.y/

y. C b/ D 0

in the case where the map y 7! g.y/ is potentially nonlinear. The results of this
section may be found largely in Goodrich [92].

We begin by providing a lemma, which essentially recasts the above BVP as
an appropriate summation operator. Studying the existence of solutions to the BVP
will then be reduced to demonstrating the existence of nontrivial fixed points of the
associated summation operator.

Theorem 7.36. Let h W Œ � 1; : : : ;  C b � 1�N�1 ! R and g W R
bC3 ! R be

given. A function y is a solution of the discrete FBVP

��y.t/ D h.t C  � 1/
y. � 2/ D g.y/

y. C b/ D 0

(7.58)

where t 2 Œ0; b�N0 , if and only if y.t/, for each t 2 Œ � 2;  C b�N�2 , has the form

y.t/ D � 1

�./

t�X
sD0
.t � s � 1/�1h.s C  � 1/

C t�1
"

1

. C b/�1�./

bX
sD0
. C b � s � 1/�1h.s C  � 1/

� g.y/

.b C 2/�. � 1/

#
C t�2

�. � 1/g.y/: (7.59)
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Proof. Using the results from earlier in this text, we find that a general solution
for (7.58) is the function

y.t/ D ���h.t C  � 1/C c1t
�1 C c2t

�2; (7.60)

where t 2 Œ � 2;  C b�N�2 . On the one hand, applying the boundary condition at
t D  � 2 in (7.58) implies at once that

c2 D 1

�. � 1/g.y/: (7.61)

Applying the boundary condition at t D  C b in (7.58) yields

0 D y. C b/

D Œ���h.t/�tDCb C c1. C b/�1 C . C b/�2

�. � 1/ g.y/

D � 1

�./

bX
sD0
. C b � s � 1/�1h.s C  � 1/C c1. C b/�1

C . C b/�2

�. � 1/ g.y/; (7.62)

whence (7.62) implies that

c1 D 1

. C b/�1�./

bX
sD0
. C b � s � 1/�1h.s C  � 1/

� . C b/�2

. C b/�1�. � 1/g.y/ (7.63)

D 1

. C b/�1�./

bX
sD0
. C b � s � 1/�1h.s C  � 1/

� 1

.b C 2/�. � 1/g.y/:

Consequently, using (7.60)–(7.63), we deduce that for each t 2 Œ � 2;  C b�N�2

it holds that y has the form given in (7.59) above. And this shows that if (7.58)
has a solution, then it can be represented by (7.59) and that every function of the
form (7.59) is a solution of (7.58). And this completes the proof of the theorem. ut
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We now recall an additional lemma that will prove to be useful later in this
section.

Lemma 7.37. For t and s for which both .t � s � 1/ and .t � s � 2/ are defined,
we find that

�s Œ.t � s � 1/� D �.t � s � 2/�1:

Proof. Omitted—see [89, Lemma 2.4]. ut
Finally, for  2 .1; 2� given, we provide the following lemma, which will also be

of importance later in this section.

Lemma 7.38. The map

t 7! 1

�. � 1/
�

t�2 � 1

b C 2
t�1

	

is strictly decreasing in t, for t 2 Œ � 2;  C b�N�2 . In addition, it holds both that

min
t2Œ�2;Cb�N�2

�
1

�. � 1/
�

t�2 � 1

b C 2
t�1

		
D 0

and that

max
t2Œ�2;Cb�N�2

�
1

�. � 1/
�

t�2 � 1

b C 2
t�1

		
D 1:

Proof. Note that

�t

�
t�2 � 1

b C 2
t�1

	
D . � 2/t�3 �  � 1

b C 2
t�2 < 0; (7.64)

where the inequality in (7.64) follows from the observation that . � 2/.b C 2/ �
.t �  C 3/. � 1/ < 0. It follows that the map

t 7! 1

�. � 1/
�

t�2 � 1

b C 2
t�1

	

is strictly decreasing in t as well. Furthermore, notice both that

1

�. � 1/
�

t�2 � 1

b C 2
t�1

	

tD�2
D 1

�. � 1/
�
�. � 1/ � 0

b C 2

	
D 1

(7.65)
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and that

1

�. � 1/
�

t�2 � 1

b C 2
t�1

	

tDCb

D 0:

In particular, as a consequence of (7.64)–(7.65) we see that the second claim in the
statement of the theorem follows. And this completes the proof of the lemma. ut

We now wish to show that under certain conditions, problem (7.58) has at
least one solution. We observe that problem (7.58) may be recast as an equivalent
summation equation. In particular, y is a solution of (7.58) if and only if y is a fixed
point of the operator T W R

bC3 ! R
bC3, where

.Ty/.t/ WD � 1

�./

t�X
sD0
.t � s � 1/�1f .s C  � 1; y.s C  � 1//

C t�1

. C b/�1�./

bX
sD0
. C b � s � 1/�1f .s C  � 1; y.s C  � 1//

� t�1g.y/
.b C 2/�. � 1/ C t�2

�. � 1/g.y/;

(7.66)

for t 2 Œ � 2; C b�N�2 ; this observation follows from Theorem 7.36. We now use
this fact to state and prove our first existence theorem.

Theorem 7.39. Suppose that the maps .t; y/ 7! f .t; y/ and y 7! g.y/ are Lipschitz
in y. That is, there exist ˛, ˇ > 0 such that jf .t; y1/ � f .t; y2/j 	 ˛ jy1 � y2j
whenever y1, y2 2 R, and jg .y1/ � g .y2/j 	 ˇky1 � y2k whenever y1, y2 2
C .Œ � 2;  C b�N�2 ;R/. Then it follows that problem (7.58) has a unique solution
provided that the condition

2˛

bY
jD1

�
 C j

j

�
C ˇ < 1 (7.67)

holds.

Proof. We will show that under the hypotheses in the statement of this theorem T is
a contraction mapping. To this end, we notice that for each admissible y1 and y2 it
holds that
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kTy1 � Ty2k

	 ˛ky1 � y2k max
t2Œ�2;Cb�N�2

"
1

�./

t�X
sD0
.t � s � 1/�1

#

C ˛ky1 � y2k max
t2Œ�2;Cb�N�2

"
t�1

. C b/�1�./

bX
sD0
. C b � s � 1/�1

#

C ˇky1 � y2k max
t2Œ�2;Cb�N�2

ˇ̌
ˇ̌� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
ˇ̌
ˇ̌ :

(7.68)

We now analyze each of the three terms on the right-hand side of (7.68).
We first notice, by an application of Lemma 7.37, that

˛ky1 � y2k
"

1

�./

t�X
sD0
.t � s � 1/�1

#
D ˛ky1 � y2k

�./

�
�1

.t � s/

	t�C1

sD0

D ˛ky1 � y2k
�

�.t C 1/

�.t �  C 1/�. C 1/

	
	 ˛ky1 � y2k

�
�. C b C 1/

�.b C 1/�. C 1/

	

D ˛

bY
jD1

�
 C j

j

�
ky1 � y2k:

(7.69)

So, this estimates the first term on the right-hand side of (7.68). Then another
application of Lemma 7.37 reveals that

˛ky1 � y2k
"

t�1

. C b/�1�./

bX
sD0
. C b � s � 1/�1

#

	 ˛ky1 � y2k
�./

bX
sD0
. C b � s � 1/�1 D ˛ky1 � y2k

�./

�
�1

. C b � s/

	bC1

sD0

D ˛ky1 � y2k
bY

jD1

�
 C j

j

�
;

(7.70)

which provides an upper bound for the second term appearing on the right-hand side
of (7.66). Finally, we may estimate the third term on the right-hand side of (7.68)
by employing Lemma 7.38 and observing that

ˇky1 � y2k
ˇ̌
ˇ̌� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
ˇ̌
ˇ̌ 	 ˇky1 � y2k: (7.71)
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Putting (7.69)–(7.71) into the right-hand side of (7.68), we conclude at once that

kTy1 � Ty2k 	
8
<
:2˛

bY
jD1

�
 C j

j

�
C ˇ

9
=
; ky1 � y2k:

So, by requiring condition (7.67) to hold, we find that (7.58) has a unique solution.
And this completes the proof. ut

By weakening the conditions imposed on the functions f and g, we can still
deduce the existence of at least one solution to (7.58). We shall appeal to the
Brouwer theorem to accomplish this.

Theorem 7.40. Suppose that there exists a constant M > 0 such that f .t; y/ satisfies
the inequality

max
.t;y/2Œ�1;Cb�1�N�1�Œ�M;M�

jf .t; y/j 	 M
2�.CbC1/

�.C1/�.bC1/ C 1
(7.72)

and g.y/ satisfies the inequality

max
0�kyk�M

jg.y/j 	 M
2�.CbC1/

�.C1/�.bC1/ C 1
: (7.73)

Then (7.58) has at least one solution, say y0, satisfying jy0.t/j 	 M, for all t 2
Œ � 2;  C b�N�2 .

Proof. Consider the Banach space B WD ˚
y 2 R

bC3 W kyk 	 M
�
. Let T be the

operator defined in (7.66). It is clear that T is a continuous operator. Therefore,
the main objective in establishing this result is to show that T W B ! B—that is,
whenever kyk 	 M, it follows that kTyk 	 M. Once this is established, the Brouwer
theorem will be invoked to deduce the conclusion.

To this end, assume that inequalities (7.72)–(7.73) hold for given f and g. For
notational convenience in the sequel, let us put

�0 WD M
2�.CbC1/

�.C1/�.bC1/ C 1
; (7.74)

which is a positive constant. Using the notation introduced previously in (7.74),
observe that

kTyk

	 max
t2Œ�2;Cb�N�2

1

�./

t�X
sD0
.t � s � 1/�1jf .s C  � 1/; y.s C  � 1//j

C max
t2Œ�2;Cb�N�2

(
t�1

. C b/�1�./
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�
bX

sD0
. C b � s � 1/�1jf .s C  � 1; y.s C  � 1//j

)

C max
t2Œ�2;Cb�N�2

ˇ̌
ˇ̌� t�1

.b C 2/�. � 1/ C t�2

�./

ˇ̌
ˇ̌ jg.y/j

	 �0 max
t2Œ�2;Cb�N�2

"
1

�./

t�X
sD0
.t � s � 1/�1

C
bX

sD0

t�1. C b � s � 1/�1

. C b/�1�./

#

C�0 max
t2Œ�2;Cb�N�2

ˇ̌
ˇ̌� t�1

.b C 2/�. � 1/ C t�2

�./

ˇ̌
ˇ̌ : (7.75)

Now, much as in the proof of Theorem 7.39 we can simplify the expression on the
right-hand side of inequality (7.75). In particular, we observe that

1

�./

t�X
sD0
.t � s � 1/�1 C t�1

. C b/�1�./

bX
sD0
. C b � s � 1/�1

	 1

�./

t�X
sD0
.t � s � 1/�1 C 1

�./

bX
sD0
. C b � s � 1/�1

	 1

�./

bX
sD0
. C b � s � 1/�1 C 1

�./

bX
sD0
. C b � s � 1/�1

D 2

�./

bX
sD0
. C b � s � 1/�1; (7.76)

where to obtain inequality (7.76) we have used the fact that the map t 7! t�1 is
increasing in t since  > 1. Furthermore, it holds that

bX
sD0
. C b � s � 1/�1 D

�
�1

. C b � s/

	bC1

sD0
D �. C b C 1/

�.b C 1/
: (7.77)

In addition we may estimate the second term on the right-hand side of inequal-
ity (7.75) by using Lemma 7.38, which implies that

max
t2Œ�2;Cb�N�2

ˇ̌
ˇ̌� t�1

.b C 2/�. � 1/ C t�2

�./

ˇ̌
ˇ̌ D 1: (7.78)
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If we now put (7.75)–(7.78) together, then we find that

kTyk 	 �0

�
2�. C b C 1/

�. C 1/�.b C 1/

	
C�0

D �0

�
2�. C b C 1/

�. C 1/�.b C 1/
C 1

	
: (7.79)

Finally, by the definition of�0 given earlier in (7.74), we deduce that (7.79) implies
that

kTyk 	 �0

�
2�. C b C 1/

�./�.b C 1/
C 1

	
D M: (7.80)

Thus, from (7.80) we conclude that T W B ! B, as desired. Consequently, it
follows at once by the Brouwer theorem that there exists a fixed point of the map
T , say y0 2 B. But this function y0 is a solution of (7.58). Moreover, y0 satisfies the
bound jy0.t/j 	 M, for each t 2 Œ � 2; C b�N�2 . Thus, the proof is complete. ut

We next we wish to deduce the existence of at least one positive solution to
problem (7.58). To this end, we first need recall some facts about the Green’s
function for the problem

��y.t/ D f .t C  � 1; y.t C  � 1//
y. � 2/ D 0

y. C b/ D 0:

In particular, we recall the following result.

Lemma 7.41. Let 1 <  	 2. The unique solution of the FBVP

��y.t/ D h.s C  � 1/
y. � 2/ D 0

y. C b/ D 0

is given by the map y W Œ � 2;  C b�Z�2 ! R defined by

y.t/ D
bC1X
sD0

G.t; s/h.s C  � 1/;

where the Green’s function G W Œ � 2;  C b�Z�2 � Œ0; b�N0 ! R is defined by

G.t; s/ WD 1

�./

8<
:

t�1.Cb�s�1/�1

.Cb/�1 � .t � s � 1/�1, .t; s/ 2 T2
t�1.Cb�s�1/�1

.Cb/�1 , .t; s/ 2 T2
;
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where

T1 WD f.t; s/ 2 Œ � 2;  C b�Z�2 � Œ0; b�N0 W 0 	 s < t �  C 1 	 b C 1g

and

T2 WD f.t; s/ 2 Œ � 2;  C b�Z�2 � Œ0; b�N0 W 0 	 t �  C 1 	 s 	 b C 1g :

Lemma 7.42. The Green’s function G defined in Lemma 7.41 satisfies the following
conditions:

(i) G.t; s/ > 0 for t 2 Œ � 1;  C b�N�1 for s 2 Œ0; b�N;
(ii) maxt2Œ�1;Cb�N�1

G.t; s/ D G.s C  � 1; s/ for s 2 Œ0; b�N; and
(iii) There exists a number � 2 .0; 1/ such that

min
bC
4 �t� 3.bC/

4

G.t; s/ � � max
t2Œ�1;Cb�N�1

G.t; s/ D �G.s C  � 1; s/;

for s 2 Œ0; b�N0 .
Remark 7.43. The proof of both Lemmas 7.41 and 7.42 are simple modifications
of the proofs of [31, Theorem 3.1] and [31, Theorem 3.2], respectively. Hence, we
omit the proofs.

Before defining the cone that we shall use to prove our existence theorems, we
need a preliminary lemma.

Lemma 7.44. If the map y 7! g.y/ is nonnegative, then there exists a constant
Q� 2 .0; 1/ with the property that

min
t2
h

bC
4 ;

3.bC/
4

i
bX

sD0
G.t; s/f .s C  � 1; y.s C  � 1//

C min
t2
h

bC
4 ;

3.bC/
4

i

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/

� Q� max
t2Œ�2;Cb�N�2

bX
sD0

G.t; s/f .s C  � 1; y.s C  � 1//

C Q� max
t2Œ�2;Cb�N�2

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/: (7.81)

Proof. To see that this is true, observe first that by Lemma 7.42 we find � 2 .0; 1/

such that
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min
t2
h

bC
4 ;

3.bC/
4

i
bX

sD0
G.t; s/f .s C  � 1; y.s C  � 1//

� � max
t2Œ�2;Cb�N�2

bX
sD0

G.t; s/f .s C  � 1; y.s C  � 1//: (7.82)

Now, recall from Lemma 7.38 that the map

t 7! 1

�. � 1/
�

t�2 � 1

b C 2
t�1

	

is strictly decreasing in t and, furthermore, is strictly positive for t < b C . In
particular, from this observation we deduce the existence of a number M > 0 such
that

min
t2
h

bC
4 ;

3.bC/
4

i

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

D M: (7.83)

Note that we assume here that there exists a point Qt 2 N�2 such that bC
4

	 Qt 	
3.bC/
4

. Additionally, we recall from Lemma 7.38 that

max
t2Œ�2;Cb�N�2

1

�. � 1/
�

t�2 � 1

b C 2
t�1

	
D 1: (7.84)

In particular, then, (7.83)–(7.84) imply that by putting

�0 WD M; (7.85)

where �0 is clearly strictly positive, it follows from (7.83)–(7.85) that

min
t2
h

bC
4 ;

3.bC/
4

i

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/

D �0 � max
t2Œ�2;Cb�N�2

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/:

Finally, define Q� by

Q� WD min f�; �0g : (7.86)

Evidently, definition (7.86) implies that Q� 2 .0; 1/. Moreover, inequality (7.82)
implies that



7.5 A Nonlocal BVP with Nonlinear Boundary Conditions 499

min
t2
h

bC
4 ;

3.bC/
4

i
bX

sD0
G.t; s/f .s C  � 1; y.s C  � 1//

C min
t2
h

bC
4 ;

3.bC/
4

i

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/

� Q� max
t2Œ�1;Cb�N�1

bX
sD0

G.t; s/f .s C  � 1; y.s C  � 1//

C Q� max
t2Œ�1;Cb�N�1

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/; (7.87)

which since (7.87) is (7.81) completes the proof of the lemma. ut
Now, let us put

� WD 1Pb
sD0 G.s C  � 1; s/

and

� WD 1

Pb 3.Cb/
4 �C1c

sDd Cb
4 �C1e Q�G

��
bC1
2

�
C ; s

� : (7.88)

In addition, define the set K � C .Œ � 2;  C b�N�2 ;R/ by

K WD
(

y W Œ � 2;  C b�N�2 ! R W y.t/ � 0,

min
t2
h

bC
4 ;

3.bC/
4

i y.t/ � Q�ky.t/k
)
;

(7.89)

which is a cone in the Banach space C .Œ � 2;  C b�N�2 ;R/, where the number Q�
in (7.88)–(7.89) is the same number as given in Lemma 7.44 above. Moreover, we
will also need in the sequel the constant

�� WD 1

2
:

Finally, we introduce some conditions that will be helpful in the sequel; these
conditions place some control on the growth of the nonlinearity f as well as the
functional g appearing in (7.58).
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F1: There exists a number r > 0 such that f .t; y/ 	 1
2
�r whenever 0 	 y 	 r.

F2: There exists a number r > 0 such that f .t; y/ � �r whenever Q�r 	 y 	 r,
where Q� is the number provided in Lemma 7.44.

G1: There exists a number r > 0 such that g.y/ 	 ��r whenever 0 	 kyk 	 r.

Remark 7.45. The operator T defined in (7.66) may be written in the form

.Ty/.t/ D
bX

sD0
G.t; s/f .s C  � 1; y.s C  � 1//

C
�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/;

(7.90)

where G is the Green’s function from Lemma 7.41. This observation is important
since it allows us to use the known properties of the map .t; s/ 7! G.t; s/ to obtain
useful estimates in the existence argument.

With these declarations in hand, we proceed with proving an existence theorem.
We begin with a preliminary lemma, however, to establish separately that T in fact
maps K into itself.

Lemma 7.46. Let T be defined as in (7.90) and K as in (7.89). Assume in addition
that both f and g are nonnegative. Then T.K/ � K.

Proof. Let T be the operator defined in (7.90). Observe that

min
t2
h

bC
4 ;

3.bC/
4

i.Ty/.t/

� min
t2
h

bC
4 ;

3.bC/
4

i
bX

sD0
G.t; s/f .s C  � 1; y.s C  � 1//

C min
t2
h

bC
4 ;

3.bC/
4

i

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/

� Q� max
t2Œ�1;Cb�N�1

bX
sD0

G.t; s/f .s C  � 1; y.s C  � 1//

C Q� max
t2Œ�1;Cb�N�1

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/

� Q�kTyk; (7.91)

where Q� is as defined in (7.86). Since it is obvious that .Ty/.t/ � 0 for all t whenever
y 2 K, it follows that (7.91) establishes that T.K/ � K, as desired. ut
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Theorem 7.47. Suppose that there exists two distinct numbers r1 and r2, with r1,
r2 > 0, such that conditions (F1) and (G1) hold at r1 and condition (F2) holds at
r2. Finally, assume that each of f and g is nonnegative. Then problem (7.58) has a
positive solution, whose norm lies between r1 and r2.

Proof. Let T be the operator defined in (7.90). It is clear that T is completely
continuous, and Lemma 7.46 establishes that T.K/ � K. Without loss of generality,
suppose that 0 < r1 < r2. Define the set �1 by

�1 WD fy 2 C .Œ � 2;  C b�N�2 ;R/ W kyk < r1g :

Then we have that for y 2 @�1 \ K

kTyk 	 max
t2Œ�2;Cb�N�2

bX
sD0

G.t; s/f .s C  � 1; y.s C  � 1//

C max
t2Œ�2;Cb�N�2

��
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/



	 r1�

2

bX
sD0

G.s C  � 1; s/

C g.y/ max
t2Œ�2;Cb�N�2

1

�. � 1/
�

t�2 � t�1

b C 2

	

	 r1
2

C r1
2

D kyk:
(7.92)

So, from (7.92) we conclude that kTyk 	 kyk for y 2 K \ @�1.
Conversely, define the set �2 by

�2 WD fy 2 C .Œ � 2;  C b�N�2 ;R/ W kyk < r2g :

Then using Lemma 7.42, for y 2 @�2 \ K we estimate

.Ty/

��
b C 1

2

�
C 

�

�
bX

sD0
G

��
b C 1

2

�
C ; s

�
f .s C  � 1; y.s C  � 1//

� �r2

b 3.Cb/
4 �C1cX

sDd Cb
4 �C1e

Q�G

��
b C 1

2

�
C ; s

�
� r2 D kyk: (7.93)
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Consequently, from (7.93) we conclude that kTyk � kyk whenever y 2 @�2 \ K.
But then by an application of the well-known Krasnosel’skiı̆ fixed point theorem we
conclude that T has a fixed point, say, y0 2 K. This map t 7! y0.t/ is a positive
solution to problem (7.58) since y0 2 K satisfies r1 < ky0k < r2. Thus, the proof is
complete. ut

We now provide a second result that yields the existence of at least one positive
solution. In what follows, we shall assume that f has the special form f .t; y/ �
F1.t/F2.y/. Moreover, to facilitate this result, we introduce the following additional
conditions on F2 and g.

F3: The function F2 satisfies limy!0C
F2.y/

y D 0.

F4: The function F2 satisfies limy!1 F2.y/
y D C1.

G2: The function g satisfies limkyk!0C
g.y/
kyk D 0.

Remark 7.48. Observe that there are many nontrivial functionals y 7! g.y/
satisfying condition (G2). For example, the functional defined by g.y/ WD Œy.C1/�3
clearly satisfies (G2).

Theorem 7.49. Suppose that conditions (F3)–(F4) and (G2) hold. Moreover,
assume that each of F1, F2, and g is nonnegative. Then problem (7.58) has at least
one positive solution.

Proof. Because of condition (F3), there exists a number ˛1 > 0 sufficiently small
such that

F2.y/ 	 �1y; (7.94)

for each y 2 .0; ˛1�, and where we choose �1 sufficiently small so that

�1

bX
sD0

G.s C  � 1; s/F1.s/ 	 1

2
(7.95)

holds. Similarly, condition (G2) implies that there exists a number ˛2 > 0 such that

g.y/ 	 �2kyk (7.96)

whenever kyk 2 .0; ˛2�, and where �2 is chosen so that

�2 max
t2Œ�2;Cb�N�2

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/


	 �2 	 1

2
: (7.97)

Now, put ˛� WD min f˛1; ˛2g and define the set �1 by

�1 WD fy 2 K W kyk < ˛�g :
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Then it follows that for all y 2 K \ @�1 inequalities (7.94)–(7.97) imply that

kTyk 	 max
t2Œ�2;Cb�N�2

bX
sD0

G.t; s/F1.s C  � 1/F2.y.s C  � 1//

C max
t2Œ�2;Cb�N�2

��
t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/



	 �1kyk
bX

sD0
G.s C  � 1; s/F1.s C  � 1/C �2kyk

	
�
1

2
C 1

2

	
kyk

D kyk; (7.98)

whence (7.98) implies that kTyk 	 kyk.
On the other hand, condition (F4) implies the existence of a number ˛3 > 0 such

that

F2.y/ � �3y (7.99)

whenever y � ˛3. Furthermore, we can choose �3 sufficiently large such that

�3

b 3.Cb/
4 �C1cX

sDd Cb
4 �C1e

Q�G

��
b C 1

2

�
C ; s

�
F1.s C  � 1/ � 1: (7.100)

Put

˛�� WD max

�
2˛�;

˛3

Q�


(7.101)

and observe that for kyk D ˛�� we estimate

min
bC
4 �t� 3.bC/

4

y.t/ � Q�kyk � ˛3: (7.102)

Now, define the set �2 by

�2 WD fy 2 K W kyk < ˛��g :

Recall from the proof of Lemma 7.38 that

� t�1

.b C 2/�. � 1/ C t�2

�. � 1/ � 0; (7.103)
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for each t 2 Œ � 2;  C b�N�2 . And from this it follows that

�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

g.y/ � 0; (7.104)

for each t 2 Œ � 2;  C b�N�2 . Thus, putting (7.99)–(7.104) together, we find that
for y 2 @�2 \ K,

.Ty/

��
b C 1

2

�
C 

�

D
bX

sD0
G

��
b C 1

2

�
C ; s

�
F1.s C  � 1/F2.y.s C  � 1//

C
�
� t�1

.b C 2/�. � 1/ C t�2

�. � 1/
	

tD
�

bC1
2

�
C

g.y/

�
b 3.Cb/

4 �C1cX

sDd Cb
4 �C1e

G

��
b C 1

2

�
C ; s

�
F1.s C  � 1/F2.y.s C  � 1//

� �3

b 3.Cb/
4 �C1cX

sDd Cb
4 �C1e

G

��
b C 1

2

�
C ; s

�
F1.s C  � 1/y.s C  � 1/

� �3kyk
b 3.Cb/

4 �C1cX

sDd Cb
4 �C1e

Q�G

��
b C 1

2

�
C ; s

�
F1.s C  � 1/ � kyk: (7.105)

So, from (7.105) we conclude that kTyk � kyk whenever y 2 K \ @�2.
Consequently, we deduce that T has a fixed point in the set

�K \�2

� n �1. Since
this fixed point is a positive solution to (7.58), the claim follows. ut
Remark 7.50. Observe that in case  D 2, both Theorems 7.47 and 7.49 provide
results for the existence of a positive solution to the integer-order nonlocal BVP
given by (7.58).

We conclude this section by providing two examples of certain of the theorems
presented in this section. We begin with an example illustrating Theorem 7.39
followed by an example illustrating Theorem 7.40.

Example 7.51. Suppose that  D 11
10

and b D 10. In addition, let us suppose that
f .t; y/ WD sin y

30Ct2
and that g.y/ WD 1

50
Œy. C 1/C y. C 2/�. We consider the FBVP
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��11
10 y.t/ D sin

�
y
�
t C 1

10

��

30C �
t C 1

10

�2

y. � 2/ D 1

50
Œy. C 1/C y. C 2/�

y. C b/ D 0: (7.106)

Now, in this case inequality (7.67) is

2˛

bY
jD1

�
 C j

j

�
C ˇ 	 26:851˛ C ˇ < 1: (7.107)

But it is not difficult to prove that each of f and g is Lipschitz with Lipschitz
constants ˛ D 1

30
and ˇ D 1

25
, respectively. So, for these choices of ˛ and

ˇ, inequality (7.107) is satisfied. Therefore, we deduce from Theorem 7.39 that
problem (7.106) has a unique solution.

Example 7.52. Suppose that  D 3
2
, b D 10, and M D 1000. Also suppose that

f .t; y/ WD 1
10

te� 1
100 tjyj and that g.y/ WD Pn

iD1 ciy .ti/, where ftign
iD1 � Œ � 2;  C

b�N�2 is a strictly increasing sequence satisfying �2 	 t1 < t2 < � � � < tn 	 Cb
with ti 2 N�1 for each i. (Clearly, we must take n 	 b C 3 here.) Thus, in this case
problem (7.58) becomes

��3
2 y.t/ D 1

10

�
t C 1

2

�
e� 1

100 .tC 1
2 /jy.tC 1

2 /j

y. � 2/ D
nX

iD1
ciy .ti/

y. C b/ D 0: (7.108)

Furthermore, note that in this setting the Banach space B assumes the form B WD˚
y 2 R

13 W kyk 	 1000
�
.

We claim that (7.108) has at least one solution. So, to check that the hypotheses
of Theorem 7.40 hold, we note that

M
2�.CbC1/

�.C1/�.bC1/ C 1
D 1000

2�. 32C10C1/
�. 52 /�.11/

C 1
� 11:614:

It is evident that jf .t; y/j 	 23
20
< 11:614 whenever y 2 Œ�1000; 1000�. On the other

hand, if we require, say, the condition

nX
iD1

jcij 	 1

100
; (7.109)
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then (7.109) implies that for each y 2 C.Œ � 2;  C b�;R/ satisfying the condition
kyk 	 1000 it holds that

jg.y/j 	
nX

iD1
jcij jy .ti/j 	 1000

nX
iD1

jcij 	 10 < 11:350

so that g satisfies condition (7.73). Thus, given restriction (7.109), we conclude from
Theorem 7.40 that (7.108) has at least one solution. In particular, by the conclusion
of Theorem 7.40 we deduce that this solution, say y0, satisfies

jy0.t/j 	 1000, for t 2
�
�1
2
;
23

2

	

Z
� 1
2

:

7.6 Discrete Sequential Fractional Boundary Value Problems

In this section we emphasize a different property of the discrete fractional difference
and see how it can give rise to a suitably nonlocal problem. In particular, we consider
the concept of a so-called sequential fractional boundary value problem. Recall
that for fractional differences it does not necessarily hold that �

aCM���
�
a f .t/ D

�
C�
a f .t/, as was discussed in Chap. 2. Consequently, we may consider a so-called

discrete sequential FBVP. In this case, we consider the discrete fractional boundary
value problem

���1��2��3y.t/ D f .t C �1 C �2 C �3 � 1; y .t C �1 C �2 C �3 � 1//
y.0/ D 0

y.b C 2/ D 0;
(7.110)

for

t 2 Œ2 � �1 � �2 � �3; b C 2 � �1 � �2 � �3�Z2��1��2��3
;

and where throughout we make the assumptions that�i 2 .0; 1/, for each i D 1; 2; 3,
and that each of 1 < �2 C �3 < 2 and 1 < �1 C �2 C �3 < 2 holds. The
potential interest in problem (7.110) is that the sequence of fractional difference
��1��2��3y.t/ is not necessarily equivalent to the non-sequential difference
��1C�2C�3y.t/. Consequently, we have in the fractional setting a situation that
cannot occur in the integer-order setting since�k1�k2y.t/ D �k1Ck2y.t/, for each k1,
k2 2 N. Moreover, this dissimilarity is a direct consequence of the implicit nonlocal
structure of the fractional difference. We note that the results of this section can be
found in Goodrich [99].
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We begin by proving a simple proposition. This realization will be important later
in this section.

Proposition 7.53. Let y W N0 ! R with � 2 .0; 1�. Then we find that

���1y.1 � �/ D y.0/:

Proof. To see that this is true, observe that ��1 	 0 since � 2 .0; 1�. By definition,
then, it follows that

���1y.1 � �/ D
"

1

�.1 � �/
tC��1X

sD0
.t � s � 1/��y.s/

#

tD1��

D 1

�.1 � �/
0X

sD0
.�� � s/��y.s/

D 1

�.1 � �/ � �.1 � �/y.0/

D y.0/;

as claimed. ut
We now provide an analysis of problem (7.110). We begin by repeatedly applying

the composition rules for fractional differences to derive a representation of a
solution to (7.110) as the fixed point of an appropriate operator. In the sequel, the
Banach space B is the set of (continuous) real-valued maps from Œ0; b C 2�N0 when
equipped with the usual maximum norm, k � k. Moreover, henceforth we also put

Q� WD �1 C �2 C �3;

for notational convenience. Recall that in what follows we assume both that �1 C
�2 2 .1; 2/ and that Q� 2 .1; 2/. Finally, we give the following notation, which will
also be useful in the sequel.

T1 WD
n
.t; s/ 2 Œ0; b C 2�N0 � Œ2 � Q�; b C 2 � Q��N2� Q�

W

0 	 s < t � Q�C 1 	 b C 2
o

T2 WD
n
.t; s/ 2 Œ0; b C 2�N0 � Œ2 � Q�; b C 2 � Q��N2� Q�

W

0 	 t � Q�C 1 	 s 	 b C 2
o
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Theorem 7.54. Let the operator T W B ! B be defined by

.Ty/.t/ WD ˛.t/y.1/C
bC2� Q�X

sD� Q�C2
G.t; s/f .s C Q� � 1; y .s C Q� � 1// ; (7.111)

where ˛ W Œ0; b C 2�N0 ! R is defined by

˛.t/ WD .t � 2C �2 C �3/
�2C�3�1

� .�2 C �3/
� .b C �2 C �3/

�2C�3�1

.b C Q�/ Q��1 � .�2 C �3/
.t C Q� � 2/ Q��1

(7.112)

and G W Œ0; b C 2�N0 � Œ� Q�C 2;� Q�C b C 2�N2� Q�
! R is the Green’s function for

the non-sequential conjugate problem given by

G.t; s/ WD
8
<
:
.tC Q��2/ Q��1

.bC1�s/ Q��1

.bC Q�/ Q��1 � .t � s � 1/ Q��1, .t; s/ 2 T1
.tC Q��2/ Q��1

.bC1�s/ Q��1

.bC Q�/ Q��1 , .t; s/ 2 T2
: (7.113)

Then whenever y 2 B is a fixed point of T, it follows that y is a solution of
problem (7.110).

Proof. To begin the proof notice that by the operational properties deduced in
Chap. 2 we may write

��1��2��3y.t/

D ��1

�
��2C�3y.t/ � y.0/

� .��2/ .t � 1C �3/
��2�1

	

D ��1


��2C�3y.t/

� � y.0/

� .��2/�
�1
h
.t � 1C �3/

��2�1
i

D � Q�y.t/ � y.0/

� .��2/ � � .��2/
� .��2 � �1/ .t � 1C �3/

��2��1�1�

�
1X

jD0

�
�j�2C�2C�3y .2 � �2 � �3/
� .��1 � 2C j C 1/

.t � 2C �2 C �3/
��1�2Cj

	

D � Q�y.t/ � ��2C�3�2y .2 � �2 � �3/
� .��1 � 1/ .t � 2C �2 C �3/

��1�2

� ��2C�3�1y .2 � �2 � �3/
� .��1/ .t � 2C �2 C �3/

��1�1

� y.0/

� .��2 � �1/ .t � 1C �3/
��2��1�1 : (7.114)
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Now, the same argument as in Proposition 7.53 shows that

��2C�3�2y .2 � �2 � �3/ D y.0/: (7.115)

On the other hand, note that by the definition of the fractional sum, keeping in mind
that �2 C �3 � 2 < 0, we obtain that

��2C�3�1y.t/ D ���2C�3�2y.t/

D �t

"
1

� .2 � �2 � �3/
t�2C�2C�3X

sD0
.t � s � 1/1��2��3y.s/

#

D 1

� .2 � �2 � �3/
t�1C�2C�3X

sD0
.t � s/1��2��3y.s/

� 1

� .2 � �2 � �3/
t�2C�2C�3X

sD0
.t � s � 1/1��2��3y.s/:

(7.116)
So, from (7.116), we obtain

��2C�3�1y .2 � �2 � �3/

D 1

� .2 � �2 � �3/
1X

sD0
.2 � �2 � �3 � s/1��2��3 y.s/

� 1

� .2 � �2 � �3/
0X

sD0
.1 � �2 � �3 � s/1��2��3 y.s/

D 1

� .2 � �2 � �3/y.0/
h
.2 � �2 � �3/1��2��3 � .1 � �2 � �3/1��2��3

i

C 1

� .2 � �2 � �3/ .1 � �2 � �3/1��2��3 y.1/:

(7.117)
Putting (7.115) and (7.117) into (7.114), we deduce that

��1��2��3y.t/

D � Q�y.t/ � Œy.1/C .1 � �2 � �3/ y.0/�

� .��1/ .t � 2C �2 C �3/
��1�1

� y.0/

� .��1 � 1/ .t � 2C �2 C �3/
��1�2

� y.0/

� .��2 � �1/ .t � 1C �3/
��2��1�1 ; (7.118)
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where we have made some routine simplifications. Now, by the boundary conditions
in (7.110) we find that (7.118) reduces to

��1��2��3y.t/ D � Q�y.t/ � .t � 2C �2 C �3/
��1�1

� .��1/ y.1/: (7.119)

Inverting the problem (7.110), we find by means of (7.119) that

y.t/ D ��� Q�
"

� .t � 2C �2 C �3/
��1�1

� .��1/ y.1/

#

��� Q�f .t C Q� � 1; y .t C Q� � 1//
C c1 .t C Q� � 2/ Q��1 C c2 .t C Q� � 2/ Q��2 (7.120)

holds.
Now, continuing from (7.120), it is clear that the boundary condition y.0/ D 0

implies that c2 D 0. On the other hand, the boundary condition y.b C 2/ D 0,
implies that

0 D c1 .b C Q�/ Q��1 C y.1/

� .�2 C �3/
.b C �2 C �3/

�2C�3�1

� 1

� . Q�/
bC2� Q�X

sD� Q�C2
.b C 1 � s/ Q��1f .s C Q� � 1; y .s C Q� � 1//

(7.121)

From (7.121), we deduce that

c1 D � .b C �2 C �3/
�2C�3�1

.b C Q�/ Q��1 � .�2 C �3/
y.1/

C 1

� . Q�/
bC2� Q�X

sD� Q�C2

.b C 1 � s/ Q��1

.b C Q�/ Q��1 f .s C Q� � 1; y .s C Q� � 1// :

At last, substituting the values of c1 and c2 into (7.120), we conclude that

y.t/ D ˛.t/y.1/C
bC2� Q�X

sD� Q�C2
G.t; s/f .s C Q� � 1; y .s C Q� � 1// ; (7.122)

where ˛ is as defined in (7.112) above and the map .t; s/ 7! G.t; s/ is as defined
in (7.113) above. Now, if .Ty/.t/ is defined by the right-hand side of (7.122), i.e.,
we define T W B ! B as in the statement of this theorem, then it is clear that T
satisfies the boundary value problem (7.110). And this completes the proof. ut
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We next state an easy proposition regarding the Green’s function, .t; s/ 7! G.t; s/,
appearing in the operator T , as defined above.

Proposition 7.55. The Green’s function .t; s/ 7! G.t; s/ given in Theorem 7.54
satisfies:

(i) G.t; s/ � 0 for each .t; s/ 2 Œ0; b C 2�N0 � Œ2 � Q�; b C 2 � Q��N2� Q�
;

(ii) maxt2Œ0;bC2�N0 G.t; s/ D G.s C Q� � 1; s/ for each s 2 Œ2 � Q�; b C 2 � Q��N2� Q�
;

and
(iii) there exists a number � 2 .0; 1/ such that

min
Œ b
4 ;
3b
4 �N0

G.t; s/ � � max
t2Œ0;bC2�N0

G.t; s/ D �G.s C Q� � 1; s/;

for s 2 Œ2 � Q�; b C 2 � Q��N2� Q�
.

Proof. Omitted—see [99] for details. ut
We next require a preliminary lemma regarding the behavior of ˛ appearing

in (7.112) above.

Lemma 7.56. Let ˛ be defined as in (7.112). Then ˛.0/ D ˛.bC2/ D 0. Moreover,
k˛k 2 .0; 1/.
Proof. That ˛.0/ D ˛.b C 2/ D 0 is obvious. On the other hand, to show that
0 < k˛k < 1, we argue as follows.

We show first that ˛.t/ > 0, for all t 2 Œ1; b C 1�N. To this end, let us first note
that

˛.t/

D .t � 2C �2 C �3/
�2C�3�1

� .�2 C �3/
� .b C �2 C �3/

�2C�3�1

.b C Q�/ Q��1 � .�2 C �3/
.t C Q� � 2/ Q��1

D � .t C �2 C �3 � 1/
�.t/� .�2 C �3/

� � .b C �2 C �3 C 1/ � .t C Q� � 1/
� .b C Q�C 1/ � .�2 C �3/ �.t/

D � .t C �2 C �3 � 1/ � .b C Q�C 1/ � � .t C Q� � 1/ � .b C �2 C �3 C 1/

�.t/� .�2 C �3/ � .b C Q�C 1/
:

(7.123)

Therefore, ˛.t/ > 0, for each t 2 Œ1; b C 1�N, if and only if

� .t C �2 C �3 � 1/ � .b C Q�C 1/ > � .t C Q� � 1/ � .b C �2 C �3 C 1/

(7.124)

for each t 2 Œ1; b C 1�N. Now, (7.124) is equivalent to

� .t C �2 C �3 � 1/ � .b C Q�C 1/

� .t C Q� � 1/ � .b C �2 C �3 C 1/
> 1:
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But since

� .t C �2 C �3 � 1/ � .b C Q�C 1/

� .t C Q� � 1/ � .b C �2 C �3 C 1/
D .b C Q�/ � � � .t C Q� � 1/
.b C �2 C �3/ � � � .t C �2 C �3 � 1/

(7.125)
and the right-hand side of (7.125) is clearly greater than unity, it follows that (7.124)
holds, and so, we conclude from (7.123)–(7.125) that ˛.t/ > 0, for t 2 Œ1; b C 1�N,
as claimed.

On the other hand, to argue that ˛.t/ < 1, for t 2 Œ0; b C 2�N0 , we begin by
recasting ˛.t/ in a different form. In particular, define �0 2 .1; 2/ by

�0 WD �2 C �3: (7.126)

Then it follows that

Q� D �0 C �1: (7.127)

Therefore, putting (7.126)–(7.127) into the definition of ˛ provided in (7.112) we
conclude that

˛.t/ D .t � 2C �0/
�0�1

� .�0/
� .b C �0/

�0�1 .t C �0 C �1 � 2/�0C�1�1
.b C �0 C �1/

�0C�1�1 � .�0/
: (7.128)

Now, consider the map

t 7! .t C �0 C �1 � 2/�0C�1�1
.b C �0 C �1/

�0C�1�1 (7.129)

appearing in the second addend on the right-hand side of (7.128). Since

.t C �0 C �1 � 2/�0C�1�1
.b C �0 C �1/

�0C�1�1

D .b C 1/ � � � .t C 1/.t/

.b C �0 C �1/ � � � .t C �0 C �1/ .t C �0 C �1 � 1/ ; (7.130)

we see from (7.130) that for each fixed but arbitrary b, t, and �0, the map defined
in (7.129) decreases as �1 increases. Consequently, for fixed but arbitrary b, t, and
�0 we conclude that

˛.t/ <
.t � 2C �0/

�0�1

� .�0/
�
"
.b C �0/

�0�1 .t C �0 C �1 � 2/�0C�1�1
.b C �0 C �1/

�0C�1�1 � .�0/

#

�1D1

D .t � 2C �0/
�0�1

� .�0/
� .b C �0/

�0�1 .t C �0 � 1/�0
.b C �0 C 1/�0 � .�0/
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D .t � 2C �0/
�0�1

� .�0/
� � .b C �0 C 1/ � .t C �0/ �.b C 2/

�.b C 2/�.t/� .�0/ � .b C �0 C 2/

D .t � 2C �0/
�0�1

� .�0/
� � .t C �0/

.b C �0 C 1/ �.t/� .�0/
: (7.131)

Now, from (7.131), we see that ˛.t/ < 1 if and only if

� .t C �0 � 1/
� .�0/ �.t/

� � .t C �0/

.b C �0 C 1/ �.t/� .�0/
	 1; (7.132)

which is itself equivalent to

.b C �0 C 1/ � .t C �0 � 1/ �.t/� .�0/
� .�0/ �.t/ Œ.b C �0 C 1/ � .�0/ �.t/C � .t C �0/�

	 1: (7.133)

Inequality (7.133) is equivalent to

.b C �0 C 1/ � .t C �0 � 1/
.b C �0 C 1/ � .�0/ �.t/C � .t C �0/

	 1: (7.134)

We claim that (7.134) holds for each triple .b; t; �0/ 2 N � Œ1; b C 1�N0 � .1; 2/.
To prove this latter claim, we rewrite left-hand side of inequality (7.134) in the

following way:

.b C �0 C 1/ � .t C �0 � 1/
.b C �0 C 1/ � .�0/ �.t/C � .t C �0/

D � .t C �0 � 1/
� .�0/ �.t/C �.tC�0/

bC�0C1

D 1
�.�0/�.t/
�.tC�0�1/ C tC�0�1

bC�0C1
:

Then inequality (7.134) is equivalent to

� .�0/ �.t/

� .t C �0 � 1/ C t C �0 � 1
b C �0 C 1

� 1: (7.135)

Now, each of the addends on the left-hand side of (7.135) is nonnegative. In addition,
we observe that

� .�0/ �.t/

� .t C �0 � 1/ � 1; (7.136)

for each admissible t and �0 since t > t C �0 � 1, noting that in the case where
�0 D 1 we get equality in (7.136). But then (7.136) implies (7.135), which in turn
implies that (7.132) holds.
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In summary, for each admissible triple .b; t; �0/, we conclude that ˛.t/ < 1.
Moreover, based on the discussion regarding �1 given in (7.129)–(7.130), we have
actually shown something stronger—namely, that for each fixed but arbitrary b, t,
and �0, it holds that

sup
�12.0;1/

˛ .tI b; �0/ < 1: (7.137)

Thus, (7.137) implies that ˛.t/ < 1, for each fixed but arbitrary 4-tuple
.b; t; �0; �1/ 2 N � Œ1; b C 2�N � .1; 2/ � .0; 1/. Since we earlier showed that
˛.t/ > 0 whenever t ¤ 0, b C 2, we conclude that

k˛k < 1;

as desired. And this completes the proof. ut
Remark 7.57. As we mentioned in the introduction to this section, note that
Theorem 7.54 shows that problem (7.110) is not necessarily the same as the
conjugate problem studied in [31]. In fact, there is a de facto nonlocal nature to
problem (7.110) as evidenced by the explicit appearance of y.1/ in the operator T ,
as defined above. As remarked above, this is an interesting complication that cannot
occur in the integer-order setting.

As an application of the preceding analysis, we now provide a typical existence
theorem for problem (7.110). The basic argument is similar to those presented
elsewhere in this book—e.g., Sect. 7.7. However, the appearance of the term y.1/ in
the operator T does add some interest.

So, let us next provide some standard assumptions on the nonlinearity. For
simplicity’s sake, we assume that f .t; y/ WD a.t/g.y/; here, it is assumed that a is
continuous and not zero identically on Œ0; b C 2�N0 . We also assume (H1) and (H2)
below. These assumptions are standard superlinear growth assumptions on g at both
0 and C1.

H1: We find that limy!0C
g.y/

y D 0.

H2: We find that limy!1 g.y/
y D C1.

We also need to define a suitable cone in which to look for fixed points of T . In
particular, we consider the cone K � B, defined by

K WD
(

y 2 B W y � 0, min
t2Œ b

4 ;
3b
4 �N

y.t/ � ��kyk
)
; (7.138)

where �� 2 .0; 1/ is a constant to be determined later. Note that in (7.138) the
constant �� is not the same as the constant � appearing in part 3 of Proposition 7.55.
However, it does satisfy 0 < �� < 1, as will be demonstrated in the proof of
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Lemma 7.58 below. We first show that the cone K is invariant under the operator
T . We then argue that conditions (H1)–(H2) imply, as is well known in the integer-
order case (e.g., [77]), that problem (7.110) has at least one positive solution.

Lemma 7.58. Let T be the operator defined in (7.111) and K the cone defined
in (7.138). Then T.K/ � K.

Proof. Evidently when y 2 K, it follows that .Ty/.t/ � 0, for each t. On the other
hand, we observe that

min
t2Œ b

4 ;
3b
4 �N
.Ty/.t/

� �0y.1/k˛k C �

bC2� Q�X
sD� Q�C2

G .s C Q� � 1; s/ f .s C Q� � 1; y .s C Q� � 1//

� ��
2
4y.1/k˛k C

bC2� Q�X
sD� Q�C2

G .s C Q� � 1; s/ f .s C Q� � 1; y .s C Q� � 1//
3
5

� ��kTyk;
(7.139)

where the number � appearing in (7.139) is the same number � as in part 3 of
Proposition 7.55. Furthermore, the number �0 > 0 appearing in (7.139) is defined by

�0 WD
mint2Œ b

4 ;
3b
4 �N

˛.t/

k˛k :

We may then define �� by

�� WD min f�0; �g ;

where 0 < �� < 1. Thus, whenever y 2 K, it follows that Ty 2 K, as desired. And
this completes the proof. ut
Theorem 7.59. Assume that f satisfies conditions (H1)–(H2). Then prob-
lem (7.110) has at least one positive solution.

Proof. First of all, note that T is trivially completely continuous in this setting.
Second of all, recall from Lemma 7.56 that ˛.t/ < 1, for all t 2 Œ0; b C 2�N0 .
Therefore, we may select " > 0 so that ˛.t/ < " < 1 holds for all admissible t.
Given this ", we may, by way of condition (H1), select �1 > 0 sufficiently small so
that both

g.y/ 	 �1y (7.140)
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and

�1

bC2� Q�X
sD� Q�C2

G .s C Q� � 1; s/ a.s/ 	 1 � " (7.141)

hold for all 0 < y < r1, where r1 WD r1 .�1/. Next put

�1 WD fy 2 B W kyk < r1g :

Let y 2 @�1 \ K be arbitrary but fixed. Then upon combining (7.140)–(7.141) we
estimate

kTyk 	 y.1/ max
t2Œ0;bC2�N0

˛.t/C max
t2Œ0;bC2�N0

bC2� Q�X
sD� Q�C2

G.t; s/a.s/g .y .s C Q� � 1//

< "y.1/C
bC2� Q�X

sD� Q�C2
G .s C Q� � 1; s/ a.s/�1y.s/

	 "kyk C kyk � �1
bC2� Q�X

sD� Q�C2
G .s C Q� � 1; s/ a.s/

	 kyk;
(7.142)

whence (7.142) implies that T is a cone contraction on @�1 \ K.
On the other hand, from condition (H2) we may select a number �2 > 0 such that

both

�2

bC2� Q�X
sD� Q�C2

��G .s C Q� � 1; s/ a.s/ > 1

and

g.y/ > �2y

hold whenever y > r2 > 0, for some sufficiently large number r2 WD r2 .�2/ > 0.
Define the number r�

2 > 0 by

r�
2 WD

�
2r1;

r2
��
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and put

�2 WD fy 2 B W kyk < r�
2 g :

Recall that for y 2 K, we must have y.1/ � 0, and that from Lemma 7.56 we know
also that ˛.t/ � 0, for all t 2 Œ0; b C 2�N0 . Then it is not difficult to show (see, for
example, a similar argument in [94]) that

kTyk � kyk;

whenever y 2 @�2 \ K, so that T is a cone expansion on @�2 \ K.
In summary, by once again appealing to Krasnosel’skiı̆’s fixed point theorem we

obtain the existence of a function y0 2 K \ ��2 n�1

�
such that Ty0 D y0, where y0

is a positive solution to problem (7.110). And this completes the proof. ut
We now briefly comment on a couple of extensions of the preceding results. In

particular, let us consider the following sequential fractional difference

��n � � ���1y.t/;

where �j 2 .0; 1/ for each j D 1, : : : , n, under a couple of different additional
assumptions on the collection

˚
�j
�n

jD1. For notational simplicity in the sequel, we
define

Q�C
j WD

jX
kD1

�k

and

Q��
j WD

n�1X
kDn�j

�k:

We continue to use the symbol Q� to denote the sum
Pn

jD1 �j.

Proposition 7.60. Assume that 0 <
Pn�1

jD1 �j < 1 and 1 <
Pn

jD1 �j < 2. Then it
follows that

��n � � ���1y.t/

D � Q�C
n y.t/

�

2
64
�
t � 1C Q�C

n�1
���n�1

� .��n/
�

n�2X
jD1

�
t � 1C Q�C

j

�� Q��
n�jC1

��n�1

�
�
� Q��

n�jC1 � �n

�

3
75 y.0/:
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Proof. We note first that

��n � � ���3 Œ��2��1y.t/�

D ��n � � ���3

�
� Q�C

2 y.t/ � ��1�1y .1 � �1/
� .��2/ .t � 1C �1/

��2�1
	

D ��n � � ���4

"
� Q�C

3 y.t/

� ��1C�2�1y .1 � �1 � �2/
� .��3/ .t � 1C �1 C �2/

��3�1

� ��1�1y .1 � �1/
� .��2 � �3/ .t � 1C �1/

��2��3�1
#
:

Now, inductively repeating this process results in the following equality:

��n�1 � � ���1y.t/

D � Q�C
n�1y.t/ �

n�2X
jD1

2
64
� Q�C

j �1y
�
1 � Q�C

j

�

�
�
� Q��

n�j�1
�

�
t � 1C Q�C

j

�� Q��
n�j�1�1

3
75 :

So, it follows that

��n � � ���1y.t/

D ��n

8
<̂
:̂
� Q�C

n�1y.t/ �
n�2X
jD1

2
64
� Q�C

j �1y
�
1 � Q�C

j

�

�
�
� Q��

n�j�1
�

�
t � 1C Q�C

j

�� Q��
n�j�1�1

3
75

9
>=
>;

D � Q�C
n y.t/ � ��1C Q�C

n�1y
�
1 � Q�C

n�1
�

� .��n/

�
t � 1C Q�C

n�1
���n�1

C
n�2X
jD1

2
64
� Q�C

j �1y
�
1 � Q�C

j

�

�
�
� Q��

n�j�1
� �

�
�
� Q��

n�j�1
�

�
�
� Q��

n�j�1 � �n

�
�

t � 1C Q�C
j

�� Q��
n�j�1��n�1

3
75

D � Q�C
n y.t/

�

2
64
�
t � 1C Q�C

n�1
���n�1

� .��n/
�

n�2X
jD1

�
t � 1C Q�C

j

�� Q��
n�jC1

��n�1

�
�
� Q��

n�jC1 � �n

�

3
75 y.0/;

as claimed, which completes the proof. ut
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Our next proposition provides for a more direct generalization of problem (7.110)
considered earlier.

Proposition 7.61. Suppose that 0 <
Pn�2

jD1 �j < 1, 1 <
Pn�1

jD1 �j < 2, and 1 <Pn
jD1 �j < 2. Then we find that

��n � � ���1y.t/

D � Q�y.t/ �
�
t � 2C Q�C

n�1
���n�1

� .��n/
y.1/

�
n�2X
jD1

2
4 1

�
�
� Q��

n�j�1 � �n

�
�

t � 1C Q�C
j

�� Q��
n�j�1��n�1

3
5 y.0/

�
"�

t � 2C Q�C
n�1
���n�1

� .��n/

�
1 � Q�C

n�1
� �

�
t � 2C Q�C

n�1
���n�2

� .��n � 1/

#
y.0/:

Proof. We first write

��n � � ���1y.t/

D ��n

8̂
<
:̂
� Q�C

n�1y.t/ �
n�2X
jD1

2
64
� Q�C

j �1y
�
1 � Q�C

j

�

�
�
� Q��

n�j�1
�

�
t � 1C Q�C

j

�� Q��
n�j�1�1

3
75

9>=
>;

D ��n� Q�C
n�1y.t/

�
n�2X
jD1

2
64
� Q�C

j �1y
�
1 � Q�C

j

�

�
�
� Q��

n�j�1
� ��n

��
t � 1C Q�C

j

�� Q��
n�j�1�1

	
3
75

D � Q�y.t/ �
1X

kD0

�j�2C Q�C
n�1y

�
2 � Q�C

n�1
�

� .��n � 1C j/

�
t � 2C Q�C

n�1
���n�2Cj

�
n�2X
jD1

"
� Q�C

j �1y
�
1 � Q�C

j

�

�
�
� Q��

n�j�1
�

�
�
�
� Q��

n�j�1
�

�
�
� Q��

n�j�1 � �n

�
�

t � 1C Q�C
j

�� Q��
n�j�1��n�1

#
:

Now notice both that

��2C Q�C
n�1y

�
2 � Q�C

n�1
�

� .��n � 1/
�
t � 2C Q�C

n�1
���n�2 D

�
t � 2C Q�C

n�1
���n�2

� .��n � 1/ y.0/
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and that

��1C Q�C
n�1y

�
2 � Q�C

n�1
�

� .��n/

�
t � 2C Q�C

n�1
���n�1

D
�
t � 2C Q�C

n�1
���n�1

� .��n/


�
1 � Q�C

n�1
�

y.0/C y.1/
�
:

So, we conclude that

��n � � ���1y.t/

D � Q�y.t/ �
�
t � 2C Q�C

n�1
���n�1

� .��n/
y.1/

�
n�2X
jD1

2
4 1

�
�
� Q��

n�j�1 � �n

�
�

t � 1C Q�C
j

�� Q��
n�j�1��n�1

3
5 y.0/

�
"�

t � 2C Q�C
n�1
���n�1

� .��n/

�
1 � Q�C

n�1
� �

�
t � 2C Q�C

n�1
���n�2

� .��n � 1/

#
y.0/:

And this completes the proof. ut
Propositions 7.60 and 7.61 again demonstrate that the sequential problems are

(potentially) different than the non-sequential problems and, in particular, isolate
these differences. Furthermore, with Propositions 7.60 and 7.61 in hand, we can
write down a number of existence results for sequential discrete FBVPs. But we
omit their statements here.

7.7 Systems of FBVPs with Nonlinear, Nonlocal Boundary
Conditions

In this section we shall demonstrate how we can apply our analysis of nonlocal dis-
crete fractional boundary value problems to systems of such problems. Essentially,
other than modifying the Banach space and associated cone in which we work, the
analysis is very similar. In particular, we are interested in the system

��1y1.t/ D �1a1 .t C 1 � 1/ f1 .y1 .t C 1 � 1/ ; y2 .t C 2 � 1//
��2y2.t/ D �2a2 .t C 2 � 1/ f2 .y1 .t C 1 � 1/ ; y2 .t C 2 � 1// ; (7.143)

for t 2 Œ0; b�N0 , subject to the boundary conditions
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y1 .1 � 2/ D  1 .y1/ , y2 .2 � 2/ D  2 .y2/

y1 .1 C b/ D �1 .y1/ , y2 .2 C b/ D �2 .y2/ ; (7.144)

where �i > 0, ai W R ! Œ0;C1/, i 2 .1; 2� for each 1 	 i 	 2, and for each i
we have that  i, �i W R

bC3 ! R are given functionals. We shall also assume that
fi W Œ0;C1/� Œ0;C1/ ! Œ0;C1/ is continuous for each admissible i. One point
of interest to which we wish to draw the reader’s attention is the fact that because it
may well occur that 1 ¤ 2, it follows, due to the inherent domain shifting of the
operator�

0 , that the two functions y1 and y2 appearing in (7.143) may be defined on
different domains. Evidently, this cannot occur in the integer-order problem—i.e.,
when 1, 2 2 N. Problem (7.143)–(7.144) was originally studied by Goodrich [94],
and the results of this section may be found in that paper.

We now wish to fix our framework for the study of problem (7.143)–(7.144). First
of all, we let Bi represent the Banach space of all maps from Œi � 2; : : : ; i C b�

Ni�2

into R when equipped with the usual maximum norm, k � k. We shall then put

X WD B1 � B2:

By equipping X with the norm

k .y1; y2/ k WD ky1k C ky2k;
it follows that .X ; k � k/ is a Banach space, too—see, for example, [74].

Next we wish to develop a representation for a solution of (7.143)–(7.144) as the
fixed point of an appropriate operator on X . To accomplish this we present some
adaptations of results from [31] that will be of use here. Because the proofs of these
lemmas are straightforward, we omit them.

Lemma 7.62 ([31]). Let 1 <  	 2 and h W Œ � 1;  C b � 1�N�1 ! R be given.
The unique solution of the FBVP ��y.t/ D h.tC�1/, y.�2/ D 0 D y.Cb/ is
given by y.t/ D Pb

sD0 G.t; s/h.sC�1/, where G W Œ�2; Cb�N�2�Œ0; b�N0 ! R

is defined by

G.t; s/ WD
8<
:

t�1.Cb�s�1/�1

�./.Cb/�1 � .t � s � 1/�1, 0 	 s < t �  C 1 	 b
t�1.Cb�s�1/�1

�./.Cb/�1 , 0 	 t �  C 1 	 s 	 b
:

Lemma 7.63 ([31]). The Green’s function G given in Lemma 7.62 satisfies:

(i) G.t; s/ � 0 for each .t; s/ 2 Œ � 2;  C b�N�2 � Œ0; b�N0 ;
(ii) maxt2Œ�2;Cb�N�2

G.t; s/ D G.s C  � 1; s/ for each s 2 Œ0; b�N0 ; and
(iii) there exists a number � 2 .0; 1/ such that

min
bC
4 �t� 3.bC/

4

G.t; s/ � � max
t2Œ�2;Cb�N�2

G.t; s/ D �G.s C  � 1; s/;

for s 2 Œ0; b�N0 .
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Now consider the operator S W X ! X defined by

S .y1; y2/ .t1; t2/ WD .S1 .y1; y2/ .t1/ ; S2 .y1; y2/ .t2// ; (7.145)

where we define S1 W X ! B1 by

S1 .y1; y2/ .t1/

WD ˛1 .t1/  1 .y1/C ˇ1 .t1/ �1 .y1/

C �1

bX
sD0

G1 .t1; s/ a1 .s C 1 � 1/ f1 .y1 .s C 1 � 1/ ; y2 .s C 2 � 1//

and S2 W X ! B2 by

S2 .y1; y2/ .t2/

WD ˛2 .t2/  2 .y2/C ˇ2 .t2/ �2 .y2/

C �2

bX
sD0

G2 .t2; s/ a2 .s C 2 � 1/ f2 .y1 .s C 1 � 1/ ; y2 .s C 2 � 1// I

note that, for j D 1, 2, we define the maps ˛j, ˇj W 
j � 2; j C b
�
Zj�2

! R by

˛j.t/ WD 1

�
�
j � 1�

�
tj�2 � 1

b C 2
tj�1

	

ˇj.t/ WD tj�1

. C b/j�1 ;

which occur in the definitions of S1 and S2 above. Moreover, the map .t; s/ 7!
Gj.t; s/ is precisely the map .t; s/ 7! G.t; s/ as given in Lemma 7.62 with  replaced
by j. We claim that whenever .y1; y2/ 2 X is a fixed point of the operator S, it
follows that the pair of functions y1 and y2 is a solution to problem (7.143)–(7.144).

Theorem 7.64. Let fj W R
2 ! Œ0;C1/ and

 j, �j 2 C
�

j � 2; j C b

�
Nj�2

;R
�

be given, for j D 1, 2. If .y1; y2/ 2 X is a fixed point of S, then the pair of functions
y1 and y2 is a solution to problem (7.143)–(7.144).

Proof. Omitted—see [94]. ut
The following lemma and its associated corollary are of particular importance in

the sequel. Because the proofs of each of these are straightforward, we omit them.
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Lemma 7.65. For each j D 1; 2, the function tj 7! ˛j
�
tj
�

is decreasing in tj, for
tj 2 
j � 2; j C b

�
Nj�2

. Also, it holds both that

min
tj2Œj�2;jCb�

Nj�2

˛j
�
tj
� D 0

and

max
tj2Œj�2;jCb�

Nj�2

˛j
�
tj
� D 1:

On the other hand, for each j D 1; 2, the function tj 7! ˇj
�
tj
�

is strictly increasing
in tj, for tj 2 
j � 2; j C b

�
Nj�2

. In addition, it holds that

min
tj2Œj�2;jCb�

Nj�2

ˇj
�
tj
� D 0

and that

max
tj2Œj�2;jCb�

Nj�2

ˇj
�
tj
� D 1:

Corollary 7.66. Let j D 1; 2 be given. Put Ij WD
h

bCj

4
;
3.bCj/

4

i
. Then there exist

constants M˛j , Mˇj 2 .0; 1/ such that

min
tj2Ij

˛j
�
tj
� D M˛jk˛jk

and

min
tj2Ij

ˇj
�
tj
� D Mˇjkˇjk:

Let us conclude this section with a remark.

Remark 7.67. Observe that unlike in the case of the integer-order problem (i.e.,
when 1 D 2 D 2), in the fractional-order problem we encounter a significant
problem with respect to the domains of the various operators insofar as it may occur
that Z1�2 ¤ Z2�2. As has been noted with different problems in previous sections,
this complication arises in the discrete fractional calculus due to the domain shifting
of the fractional forward difference and sum operators.

We now present the first of two theorems for the existence of at least one positive
solution to problem (7.143)–(7.144). Note that for this first existence result we shall
not assume that either  i .yi/ or �i .yi/, with i D 1; 2, is nonnegative for all yi � 0.
Rather, we shall make some other assumptions about these functionals.
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So, let us now present the conditions that we shall assume henceforth. We note
that conditions (F1) and (F2) are essentially the same conditions given by Henderson
et al. [121]. Moreover, condition (L1) is essentially the same condition (up to a
constant multiple) as given in [121, Theorem 3.1].

F1: There exist numbers f �
1 and f �

2 , with f �
1 , f �

2 2 .0;C1/, such that

lim
y1Cy2!0C

f1 .y1; y2/

y1 C y2
D f �

1 and lim
y1Cy2!0C

f2 .y1; y2/

y1 C y2
D f �

2 :

F2: There exist numbers f ��
1 and f ��

2 , with f ��
1 , f ��

2 2 .0;C1/, such that

lim
y1Cy2!C1

f1 .y1; y2/

y1 C y2
D f ��

1 and lim
y1Cy2!C1

f2 .y1; y2/

y1 C y2
D f ��

2 :

G1: For each j D 1; 2, the functionals  j and �j are linear. In particular, we
assume both that

 j
�
yj
� D

jCbX
iDj�2

cj
i�jC2yj.i/

and that

�j
�
yj
� D

jCbX
kDj�2

dj
k�jC2yj.k/;

for constants cj
i�jC2, dj

k�jC2 2 R.

G2: For each j D 1; 2, we have both that

jCbX
iDj�2

cj
i�jC2Gj.i; s/ � 0

and that

jCbX
kDj�2

dj
k�jC2Gj.k; s/ � 0;

for each s 2 Œ0; b�N0 , and in addition that

jCbX
iDj�2

cj
i�jC2 C

jCbX
kDj�2

dj
k�jC2 	 1

4
:
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G3: We have that each of  i .˛i/,  i .ˇi/, �i .˛i/, and �i .ˇi/ is nonnegative for
each admissible i—that is, i D 1, 2.

L1: The constants �1 and �2 satisfy

ƒ1 < �i < ƒ2;

for each i, where

ƒ1 WD max

(
1

2

"
bX

sD0
�G1

��
b C 1

2

�
C 1; s

�
a1 .s C 1 � 1/ f ��

1

#�1
;

1

2

"
bX

sD0
�G2

��
b C 1

2

�
C 2; s

�
a2 .s C 2 � 1/ f ��

2

#�1 )

and

ƒ2 WD min

(
1

4

"
bX

sD0
G1 .s C 1 � 1; s/ a1 .s C 1 � 1/ f �

1

#�1
;

1

4

"
bX

sD0
G2 .s C 2 � 1; s/ a2 .s C 2 � 1/ f �

2

#�1 )
;

where � 2 .0; 1/ is a constant defined by

� WD min
˚
M˛1 ;M˛2 ;Mˇ1 ;Mˇ2 ; �1; �2

�
;

where M˛1 , M˛2 , Mˇ1 , and Mˇ2 each comes from Corollary 7.66 and �1 and �2
are associated by Lemma 7.63 with G1 and G2, respectively. Recall that these are
defined on possibly different time scales.

In what follows we shall also make use of the cone

K WD
n
.y1; y2/ 2 X W y1; y2 � 0,

min
.t1;t2/2

�
bC1
4 ;

3.bC1/
4

	
�
�

bC2
4 ;

3.bC2/
4

	 Œy1 .t1/C y2 .t2/� � �k .y1; y2/ k,

 j
�
yj
� � 0, �j

�
yj
� � 0, for each j D 1; 2

o
;

(7.146)

where � is defined exactly as in the statement of condition (L1) above. This cone is
essentially a modification of the type of cone introduced by Infante and Webb [159].
Clearly, we have that K � X . In order to show that S has a fixed point in K, we must
first demonstrate that K is invariant under S—that is, S.K/ � K. This we now show.
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Lemma 7.68. Let S W X ! X be the operator defined as in (7.145). Then S W
K ! K.

Proof. Suppose that .y1; y2/ 2 K. We show first that

min
.t1;t2/2

�
bC1
4 ;

3.bC1/
4

	
�
�

bC2
4 ;

3.bC2/
4

	 ŒS1 .y1; y2/ .t1/C S2 .y1; y2/ .t2/�

� �kS .y1; y2/ k;

whenever .y1; y2/ 2 K.
So note that

min
t12

�
bC1
4 ;

3.bC1/
4

	 S1 .y1; y2/ .t1/

� M˛1k˛1k�1 .y1/C Mˇ1kˇ1k 1 .y1/

C �1

bX
sD0

G1 .t1; s/ a1 .s C 1 � 1/ f1 .y1 .s C 1 � 1/ ; y2 .s C 1 � 1//

� Q�1 max
t12Œ1�2;1Cb�

"
˛1 .t1/ �1 .y1/C ˇ1 .t1/  1 .y1/

C �1

bX
sD0

G1 .t1; s/ a1 .s C 1 � 1/ f1 .y1 .s C 1 � 1/ ; y2 .s C 1 � 1//
#

D Q�1kS1 .y1; y2/ k;
(7.147)

where e�1 WD min
˚
M˛1 ;Mˇ1 ; �1

�
, whence

min
t12

�
bC1
4 ;

3.bC1/
4

	 S1 .y1; y2/ .t1/ � Q�1kS1 .y1; y2/ k; (7.148)

as desired. In an entirely similar manner to (7.147), we deduce that

min
t22

�
bC2
4 ;

3.bC2/
4

	 S2 .y1; y2/ .t2/ � Q�2kS2 .y1; y2/ k; (7.149)

where Q�2 WD min
˚
M˛2 ;Mˇ2 ; �2

�
.
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Now, put � WD min f Q�1; Q�2g. Consequently, from (7.148)–(7.149) it follows that

min
.t1;t2/2

�
bC1
4 ;

3.bC1/
4

	
�
�

bC2
4 ;

3.bC2/
4

	 ŒS1 .y1; y2/ .t1/C S2 .y1; y2/ .t2/�

� min
.t1;t2/2

�
bC1
4 ;

3.bC1/
4

	
�
�

bC2
4 ;

3.bC2/
4

	 S1 .y1; y2/ .t1/

C min
.t1;t2/2

�
bC1
4 ;

3.bC1/
4

	
�
�

bC2
4 ;

3.bC2/
4

	 S2 .y1; y2/ .t2/

� . Q�1kS1 .y1; y2/ k C Q�2kS2 .y1; y2/ k/
� .�kS1 .y1; y2/ k C �kS2 .y1; y2/ k/
D �k .S1 .y1; y2/ ; S2 .y1; y2// k
D �kS .y1; y2/ k: (7.150)

So, from (7.150) we conclude that whenever .y1; y2/ 2 X , we find that

min
.t1;t2/2

�
bC1
4 ;

3.bC1/
4

	
�
�

bC2
4 ;

3.bC2/
4

	 ŒS1 .y1; y2/ .t1/C S2 .y1; y2/ .t2/�

� �kS .y1; y2/ k;
as desired.

We next show that for each j D 1; 2 we have  j
�
Sj .y1; y2/

� � 0 whenever
.y1; y2/ 2 K. Indeed, first note that

 j
�
Sj .y1; y2/

�

D �j

bX
sD0

jCbX
iDj�2

(
cj

i�jC2Gj.i; s/aj
�
s C j � 1�

� fj .y1 .s C 1 � 1/ ; y2 .s C 2 � 1//C  j
�
˛j
�
 j
�
yj
�C  j

�
ˇj
�
�j
�
yj
� )
:

(7.151)

But by assumptions (G2) and (G3) together with the nonnegativity of fj .y1; y2/ and
the fact that .y1; y2/ 2 K, we find from (7.151) that

 j
�
Sj .y1; y2/

� � 0;

for each j D 1; 2. An entirely dual argument, which we omit, shows that

�j
�
Sj .y1; y2/

� � 0;

too, whenever .y1; y2/ 2 K and j D 1; 2.
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Finally, it is clear from the definitions of both S1 and S2 that

S1 .y1; y2/ .t1/ � 0 and S2 .y1; y2/ .t2/ � 0;

for each t1 and t2, whenever .y1; y2/ 2 K. Therefore, we conclude that whenever
.y1; y2/ 2 K, it follows that S .y1; y2/ 2 K. Thus, S W K ! K, as desired. And this
completes the proof. ut

We now prove the first of our two main existence theorems, which we label
Theorem 7.69.

Theorem 7.69. Suppose that conditions (F1)–(F2), (G1)–(G3), and (L1) hold.
Then problem (7.143)–(7.144) has at least one positive solution.

Proof. We have already shown in Lemma 7.68 that S W K ! K. Furthermore, it is
evident that S is completely continuous.

We begin by observing that by condition (L1) there exists a number " > 0 such
that each of

max

(
1

2

"
bX

sD0
�G1

��
b C 1

2

�
C 1; s

�
a1 .s C 1 � 1/ �f ��

1 � "�
#�1

;

1

2

"
bX

sD0
�G2

��
b C 1

2

�
C 2; s

�
a2 .s C 2 � 1/ �f ��

2 � "�
#�1 )

	 �1, �2

(7.152)
and

�1, �2 	 min

(
1

4

"
bX

sD0
G1 .s C 1 � 1; s/ a1 .s C 1 � 1/ �f �

1 C "
�#�1

;

1

4

"
bX

sD0
G2 .s C 2 � 1; s/ a2 .s C 2 � 1/ �f �

2 C "
�#�1 )

:

(7.153)

holds. Now, given this number ", by condition (F1) it follows that there exists some
number r�

1 > 0 such that

f1 .y1; y2/ 	 �
f �
1 C "

�
.y1 C y2/ ; (7.154)

whenever k .y1; y2/ k < r1. Similarly, by condition (F2) and for the same number ",
there exists a number r��

1 > 0 such that

f2 .y1; y2/ 	 �
f �
2 C "

�
.y1 C y2/ ; (7.155)
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whenever k .y1; y2/ k < r2. Then by putting r1 WD min
˚
r�
1 ; r

��
1

�
, we find that each

of (7.154) and (7.155) is true whenever k .y1; y2/ k < r1. This suggests defining the
set �1 � X by

�1 WD f.y1; y2/ 2 X W k .y1; y2/ k < r1g ; (7.156)

which we shall use momentarily.
Now, let �1 be as in (7.156) above. Then for .y1; y2/ 2 K \ @�1 we find that

kS1 .y1; y2/ k

D max
t12Œ1�2;1Cb�N1�2

ˇ̌
ˇ̌
ˇ˛1 .t1/ �1 .y1/C ˇ1 .t1/  1 .y1/

C �1

bX
sD0

G1 .t1; s/ a1 .s C 1 � 1/ f1 .y1 .s C 1 � 1/ ; y2 .s C 2 � 1//
ˇ̌
ˇ̌
ˇ

	 r1

2
4

1CbX
iD1�2

c1i�1C2 C
1CbX

kD1�2
d1k�1C2

3
5

C �1

bX
sD0

G1 .s C 1 � 1; s/ a1 .s C 1 � 1/ �f �
1 C "

� k .y1; y2/ k

	 k .y1; y2/ k
"
1

4
C �1

bX
sD0

G1 .s C 1 � 1; s/ a1 .s C 1 � 1/ �f �
1 C "

�#
;

(7.157)

where we use the fact that S1 .y1; y2/ is nonnegative whenever .y1; y2/ 2 K.
However, by the choice of �1 as given in (7.152)–(7.153), we deduce from (7.157)
that

kS1 .y1; y2/ k 	 1

2
k .y1; y2/ k: (7.158)

We note that by an entirely dual argument we may estimate

kS2 .y1; y2/ k 	 1

2
k .y1; y2/ k: (7.159)

Thus, by combining estimates (7.152)–(7.159) we deduce that for .y1; y2/ 2 K\@�1

we have

kS .y1; y2/ k 	 1

2
k .y1; y2/ k C 1

2
k .y1; y2/ k D k .y1; y2/ k:
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Now, let " > 0 be the same number selected at the beginning of this proof. Then
by means of condition (F2) we can find a number Qr2 > 0 such that

f1 .y1; y2/ � �
f ��
1 � "� .y1 C y2/ (7.160)

and

f2 .y1; y2/ � �
f ��
2 � "� .y1 C y2/ ; (7.161)

whenever y1 C y2 � Qr2. Put

r2 WD max

�
2r1;

Qr2
�


; (7.162)

where, as before, we take

� WD min f Q�1; Q�2g :

Moreover, define the set �2 � X by

�2 WD f.y1; y2/ 2 X W k .y1; y2/ k < r2g : (7.163)

Note that if .y1; y2/ 2 K \ @�2, then it follows that

y1 .t1/C y2 .t2/ � min
.t1;t2/2

�
bC1
4 ;

3.bC1/
4

	
�
�

bC2
4 ;

3.bC2/
4

	 Œy1 .t1/C y2 .t2/�

� �k .y1; y2/ k
� Qr2: (7.164)

Now, define the numbers 0 < �1 < �2 by

�1 WD max

(&
1 C b

4
� 1 C 1

'
;

&
2 C b

4
� 2 C 1

')

and

�2 WD min

($
3.1 C b/

4
� 1 C 1

%
;

$
3.2 C b/

4
� 2 C 1

%)
I

we assume in the sequel that b is sufficiently large so that Œ�1; �2� \ N0 ¤ ¿. Then
for each .y1; y2/ 2 K \ @�2 we estimate
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S1 .y1; y2/

��
b C 1

2

�
C 1

�

D
1CbX

iD1�2
c1i�1C2y1.k/C

1CbX
kD1�2

d1k�1C2y1.k/

C �1

bX
sD0

"
G1

��
b C 1

2

�
C 1; s

�

� a1 .s C 1 � 1/ f1 .y1 .s C 1 � 1/ ; y2 .s C 2 � 1//
#

� �1

�2X
sD�1

G1

��
b C 1

2

�
C 1; s

�
a1 .s C 1 � 1/ �f ��

1 � �� � Œky1k C ky2k�

� 1

2
k .y1; y2/ k;

(7.165)

where to arrive at the first inequality in (7.165) we have used the positivity
assumption imposed on each of  1 and �1 whenever .y1; y2/ 2 K. Thus, we
conclude from (7.165) that

kS1 .y1; y2/ k � 1

2
k .y1; y2/ k: (7.166)

In a completely similar way, it can be shown that

kS2 .y1; y2/ k � 1

2
k .y1; y2/ k: (7.167)

Consequently, (7.160)–(7.167) imply that

kS .y1; y2/ k � k .y1; y2/ k; (7.168)

whenever .y1; y2/ 2 K \ @�2.
Finally, notice that (7.160) implies that the operator S is a cone compression

on K \ @�1, whereas (7.168) implies that S is a cone expansion on K \ @�2.
Consequently we conclude that S has a fixed point, say

�
y�
1 ; y

�
2

� 2 K. As
�
y�
1 ; y

�
2

�
is

a positive solution of (7.143)–(7.144), the theorem is proved. ut
Remark 7.70. Note that in the preceding arguments it is important that each of �1
and �2 (and thus � ) is a constant. That � is constant here is a reflection of the fact
that the Green’s function G satisfies a sort of Harnack-like inequality. Interestingly,
however, in the continuous fractional setting, this may (see [90]) or may not (see
[46]) be true. This is one of the differences one may observe between the discrete
and continuous fractional calculus.
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Remark 7.71. It is clear that Theorem 7.69 could be readily extended to the case of
n equations and 2n boundary conditions.

We now wish to present an alternative method for deducing the existence of at
least one positive solution to problem (7.143)–(7.144). In particular, instead of using
the cone given in (7.146), we shall now revert to a more traditional cone, whose use
can be found in innumerable papers. An advantage of this approach is that it shall
allow us to weaken hypothesis (G1). However, we achieve this increased generality
at the expense of having to assume a priori the positivity of each of these functionals
for all y � 0. In particular, for the second existence result we make the following
hypotheses.

G4: For i D 1, 2 we have that

lim
kyik!0C

 i .yi/

kyik D 0:

G5: For each i D 1, 2 we have that

lim
kyik!0C

�i .yi/

kyik D 0:

G6: For each i D 1, 2 we have that  i .yi/ and �i .yi/ are nonnegative for all
yi � 0.

L2: The constants �1 and �2 satisfy

ƒ1 < �i < ƒ2;

for each i D 1; 2, where

ƒ1 WD max

(
1

2

"
bX

sD0
�G1

��
b C 1

2

�
C 1; s

�
a1 .s C 1 � 1/ f ��

1

#�1
;

1

2

"
bX

sD0
�G2

��
b C 1

2

�
C 2; s

�
a2 .s C 2 � 1/ f ��

2

#�1 )

and

ƒ2 WD min

(
1

3

"
bX

sD0
G1 .s C 1 � 1; s/ a1 .s C 1 � 1/ f �

1

#�1
;

1

3

"
bX

sD0
G2 .s C 2 � 1; s/ a2 .s C 2 � 1/ f �

2

#�1 )
;
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where f �
i and f ��

i retain their earlier meaning from conditions (F1)–(F2), for each
i D 1; 2. Moreover, � is defined just as it was earlier in this section.

Remark 7.72. Observe that there do exist nontrivial functionals satisfying condi-
tions (G4) and (G5). For example, consider the functional given by

�.y/ WD Œy .t0/�
6 ;

where t0 is some number in the domain of y. Then it is clear that

0 	 lim
kyk!0C

Œy .t0/�
6

kyk 	 lim
kyk!0C

Œy .t0/�
6

y .t0/
D lim

kyk!0C
Œy .t0/�

5 D 0;

from which it follows that � satisfies conditions (G4)–(G5); this specifically relies
upon the fact that �.y/ is nonnegative for all y � 0.

We now present our second existence theorem of this section.

Theorem 7.73. Suppose that conditions (F1)–(F2), (G4)–(G6), and (L2) hold.
Then problem (7.143)–(7.144) has at least one positive solution.

Proof. Begin by noting that by condition (L2) that there is " > 0 such that

max

(
1

2

"
bX

sD0
G1

��
b C 1

2

�
C 1; s

�
a1 .s C 1 � 1/ �f ��

1 � "�
#�1

;

1

2

"
bX

sD0
G2

��
b C 1

2

�
C 2; s

�
a2 .s C 2 � 1/ �f ��

2 � "�
#�1 )

	 �1, �2

(7.169)
and

�1, �2 	 min

(
1

3

"
bX

sD0
G1 .s C 1 � 1; s/ a1 .s C 1 � 1/ �f �

1 C "
�#�1

;

1

3

"
bX

sD0
G2 .s C 2 � 1; s/ a2 .s C 2 � 1/ �f �

2 C "
�#�1 )

:

(7.170)

Now, for the number " determined by (7.169)–(7.170), it follows from conditions
(G4)–(G5) there exists a number �1 > 0 such that

�1 .y1/ 	 "ky1k; (7.171)
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whenever ky1k 	 �1, and there exists a number �2 > 0 such that

 1 .y2/ 	 "ky1k; (7.172)

whenever ky1k 	 �2. Put

�� WD min f�1; �2g :

We conclude that whenever k .y1; y2/ k < ��, each of (7.171) and (7.172) holds.
Now, for the same " > 0 given in the first paragraph of this proof, we find that

there exists a number �3 such that

f1 .y1; y2/ 	 �
f �
1 C �

�
.y1 C y2/ ; (7.173)

whenever k .y1; y2/ k < �3. Thus, by putting

��� WD min f��; �3g ;

we get that (7.171), (7.172), and (7.173) are collectively true.
So, define the set �1 � X by

�1 WD f.y1; y2/ 2 X W k .y1; y2/ k < ���g :

Then whenever .y1; y2/ 2 K \ @�1 we have, for any t1 2 Œ1 � 2; 1 C b�
N1�2

,

S1 .y1; y2/ .t1/

	 "ky1k C "ky1k

C �1

bX
sD0

G1 .t1; s/ a1 .s C 1 � 1/ f1 .y1 .s C 1 � 1/ ; y2 .s C 2 � 1//

	 2"ky1k C �1

bX
sD0

G1 .s C 1 � 1; s/ a1 .s C 1 � 1/ �f �
1 C "

� k .y1; y2/ k

	
�
2"C 1

3

	
k .y1; y2/ k;

(7.174)

where we have used condition (L2) together with (7.170). An entirely dual argument
reveals that

S2 .y1; y2/ .t/ 	
�
2"C 1

3

	
k .y1; y2/ k: (7.175)
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Therefore, putting (7.174)–(7.175) together we conclude that

kS .y1; y2/ k 	 k .y1; y2/ k;

whenever .y1; y2/ 2 K \ @�1 and " is chosen sufficiently small, which may be
assumed without loss of generality.

To complete the proof, we may give an argument essentially identical to the
second half of the proof of Theorem 7.69. We omit this, and so, the proof is
complete. ut
Remark 7.74. As with Theorem 7.69, it is clear how the results of this section can
be extended to the case in which (7.143) is replaced with n equations and boundary
conditions (7.144) are extended to 2n boundary conditions in the obvious way.
As with the corresponding generalization of Theorem 7.69, however, we omit the
details of this extension.

We conclude by providing an explicit numerical example in order to illustrate the
application of Theorem 7.69. This is the same example as the one presented in [94].

Example 7.75. Consider the boundary value problem

��1:3y1.t/ D �1a1

�
t C 3

10

�
f1

�
y1

�
t C 3

10

�
; y2

�
t C 7

10

��

��1:7y2.t/ D �2a2

�
t C 7

10

�
f2

�
y1

�
t C 3

10

�
; y2

�
t C 7

10

��
; (7.176)

subject to the boundary conditions

y1

��7
10

�
D 1

12
y1

�
13

10

�
� 1

25
y1

�
53

10

�

y1

�
213

10

�
D 1

30
y1

�
83

10

�
� 1

100
y1

�
73

10

�

y2

�
� 3

10

�
D 1

40
y2

�
17

10

�
� 1

150
y2

�
77

10

�

y2

�
217

10

�
D 1

17
y2

�
47

20

�
� 1

30
y2

�
107

20

�
; (7.177)

where we take

a1.t/ WD et�4,

a2.t/ WD et�4,
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f1 .y1; y2/ WD 5000e�y2 .y1 C y2/C .y1 C y2/ , and

f2 .y1; y2/ WD 7500e�y1 .y1 C y2/C .y1 C y2/ ,

with f1, f2 W Œ0;C1/ � Œ0;C1/ ! Œ0;C1/. It is clear from the statement of
problem (7.176)–(7.177) that we have made the following declarations.

 1 .y1/ WD 1

12
y1

�
13

10

�
� 1

25
y1

�
53

10

�

�1 .y1/ WD 1

30
y1

�
83

10

�
� 1

100
y1

�
73

10

�

 2 .y2/ WD 1

40
y2

�
17

10

�
� 1

150
y2

�
77

10

�

�2 .y2/ WD 1

17
y2

�
47

20

�
� 1

30
y2

�
107

20

�
(7.178)

Note, in addition, that y1 is defined on the set

�
� 7

10
;
3

10
; : : : ;

213

10


� Z

213
10

� 7
10

;

whereas y2 is defined on the set

�
� 3

10
;
7

10
; : : : ;

217

10


� Z

217
10

� 3
10

;

and we note that Z
213
10

� 7
10

\ Z

217
10

� 3
10

D ¿, as, toward the beginning of this section, we

indicated could occur in the study of problem (7.143)–(7.144). In particular, we have
chosen 1 D 13

10
, 2 D 17

10
, and b D 20. We shall select �1 and �2 below.

We next check that each of conditions (F1)–(F2), (G1)–(G3), and (L1) holds. It
is easy to check that (F1)–(F2) hold. On the other hand, since (7.178) reveals that
each of the functionals is linear in y1 and y2, we conclude at once that (G1) holds.
On the other hand, to see that conditions (G2)–(G3) hold, observe both that

1

12
C 1

25
C 1

30
C 1

100
D 1

6
	 1

4

and that

1

40
C 1

150
C 1

17
C 1

30
D 421

3400
	 1

4
:
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Furthermore, additional calculations show both that

jCbX
iDj�2

cj
i�jC2Gj.i; s/ � 0

and that

jCbX
kDj�2

dj
k�jC2Gj.k; s/ � 0;

for each j D 1; 2. So, we conclude that condition (G2) holds. Finally, one can
compute the following estimates.

 1 .˛1/ � 0:012

 1 .ˇ1/ � 0:012

 2 .˛2/ � 0:012

 2 .ˇ2/ � 0:0012

�1 .˛1/ � 0:00091

�1 .ˇ1/ � 0:018

�2 .˛2/ � 0:015

�2 .ˇ2/ � 0:000099

Consequently, condition (G3) is satisfied.
Finally, we check condition (L1) to determine the admissible range of the

parameters, �i for i D 1; 2. To this end, recall from [31, Theorem 3.2] that the
constant � in Lemma 7.63 is

� WD min

(
1�

3.bC/
4

��1

�
"�

3.b C /

4

��1
�
�
3.bC/
4

� 2
��1

. C b C 1/�1

. C b � 1/�1

#
;

�
bC
4

��1

.b C /�1

)
:

(7.179)
Thus, using the definition of � provided by (7.179), we estimate that

ƒ1 � max
˚
f ��
1 � 3:288 � 10�7; f ��

2 � 1:0322 � 10�7�

D max
˚
3:288 � 10�7; 1:0322 � 10�7�

D 3:337 � 10�7;
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whereas

ƒ2 � min
˚
f �
1 � 1:871 � 10�9; f �

2 � 1:363 � 10�9�

D min
˚
5001 � 1:871 � 10�9; 7501 � 1:363 � 10�9�

D min
˚
9:357 � 10�6; 1:022 � 10�5�

D 9:357 � 10�6:

So, suppose that

�1, �2 2 
3:337 � 10�7; 9:357 � 10�6� :

Then we conclude from Theorem 7.69 that problem (7.176)–(7.177) has at least one
positive solution. And this completes the example.

Remark 7.76. A similar example could be provided for Theorem 7.73.

Remark 7.77. We note that a class of functions satisfying conditions (F1)–(F2) are
given by the function f W R

nC ! Œ0;C1/ defined by

f .x/ WD C1e
�g.x/r � H.x/;

where g W R
nC ! Œ0;C1/, C1 > 0 is a constant, and H W R

nC ! R
nC is the vector

field defined by

H.x/ WD
nX

iD1

1

2
x2i ei;

where ei is the i-th vector in the standard ordered basis for R
n; note that by the

notation R
nC we mean the closure of the open positive cone in R

n—i.e., we put

R
nC WD fx 2 R

n W xi � 0 for each 1 	 i 	 ng � R
n:

More trivially, we remark that the collection of functions defined L .y1; y2/ D ay1 C
ay2, for a > 0, satisfies (F1)–(F2).

7.8 Concluding Remarks

In this chapter we have demonstrated several ways in which nonlocal elements may
occur in the discrete fractional calculus. Such elements may arise explicitly, as is
the case in the nonlocal BVP setting. On the other hand, the fractional sum and
difference themselves contain nonlocal elements, and this considerably complicates
the analysis and interpretation of fractional operators.
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In closing we wish to draw attention to the fact that due to this implicit nonlocal
structure, there are many open questions regarding the interpretation, particularly
geometric, of the discrete fractional difference. For instance, as alluded to earlier,
only recently has there been any development in our understanding of how the
sign of, say �

0y.t/ is related, for various ranges of , to the behavior of y itself.
Yet in spite of these recent developments, it seems that there is likely much to be
discovered in this arc of research.

Moreover, above and beyond pure geometrical implications, the nonlocal struc-
ture embedded within �

0y affects negatively the analysis of boundary and initial
value problems insofar as the attendant analysis is much more complicated and
there still remain some very basic open questions. For example, as we have seen
in this chapter, even the elementary problem of analyzing a particular Green’s
function associated with a given boundary value operator is very nontrivial, often
requiring arguments that while elementary are nonetheless technical. Furthermore,
many fundamental areas of study in the integer-order difference calculus presently
do not possess satisfactory analogues in the fractional-order setting. Among these is
oscillation theory, which has no satisfactory fractional-order analogue. On the one
hand, this is rather remarkable in recognition of the centrality of such results in the
integer-order theory. On the other hand, however, given the tremendous complexity
that the nonlocal structure of �

0y creates, perhaps it is unsurprising that such
gaps exist. As with some of the other questions surrounding the discrete fractional
calculus, it is unclear at present whether this gap can ultimately be filled in an at
once satisfactory and elegant manner.

All in all, this section has shown a few of the ways in which nonlocalities may
arise in the setting of boundary value problems. Moreover, we have seen how the
implicit nonlocal structure of the discrete fractional sum and difference complicate
in surprising ways their analysis. Finally, we hope that the reader has gained a
sense of some of the open and unanswered questions in the discrete fractional
calculus, questions whose solutions appear to be at once greatly complicated
and substantively enriched by the nonlocal structure of fractional operators. As a
concluding point, we wish to note that the interested reader may consult any of
the following references for additional information on not only local and nonlocal
boundary value problems, but also on other related topics in the discrete calculus
that we have touched upon in this and other chapters [1, 2, 5, 6, 8–12, 14–
30, 44, 45, 48, 51, 55–61, 68–73, 75, 79–82, 84–86, 97, 98, 100–103, 105–113,
115–118, 120, 122, 126–130, 132, 133, 136, 138, 140–144, 148–151, 154–158, 160–
166, 168–172]:

7.9 Exercises

7.1. Prove the result mentioned in Remark 7.14.



Solutions to Selected Problems

Chapter 1
1.6: �.5

2
/ D 3

4

p
	

1.10: For integers m and n satisfying m > n � 0,
�n

m

� D 0

1.11: (i)
�t

t

� D 1 for t ¤ �1;�2;�3; � � �
(ii)

�
1
3
2

� D 4
3	

(iii)
� 1
2
3
2

� D 0 (by convention)

(iv)
�p2C2p

2

� D 4C3p2
2

1.14: (ii) ep.t; 0/ D 1
2
.t C 2/2, t 2 N0

(iv) ep.t; 0/ D 30.tC1/
.tC5/.tC6/ ; t 2 N0

1.16: y.80/ D $487:54
1.17: 5:732 hours
1.31: (i) n.nC1/

2

(ii) n2.nC1/2
4

1.33: (i) y.t/ D c13t C c24t; t 2 N0

(iii) y.t/ D c1e1.t; a/ cos1.t; a/C c2e1.t; a/ sin1.t; a/; t 2 Na

(iv)

y.t/ D c1 cos1.t; 0/C c2 sin1.t; 0/

D a1
�p

2
�t

cos
�	 t

4

�
C a2

�p
2
�t

sin
�	 t

4

�

(v) y.t/ D c1.�2/t C c2t.�2/t; t 2 N0

(vi) y.t/ D c1.�3/t C c2t.�3/t
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1.34: (ii) y.t/ D c1.2
p
2/t cos.	

4
t/C c2.2

p
2/t sin.	

4
t/; t 2 Z

(iii) y.t/ D c12t C c2t2t C c3.�3/t; t 2 Z

1.37: D.t/ D � 1
2

C 3
2
.3/t

1.38: D.t/ D 2t cos. 2	
3

t/ � 1p
3
2t sin. 2	

3
t/; t 2 N1

1.39: D.t/ D 2t cos.	
3

t/C 1p
3
2t sin.	

3
t/; t 2 N1

1.40: (i) y.t/ D c12t C c23t C c34t; t 2 N0

(ii) y.t/ D c13t C c2t3t C c3.�2/t; t 2 N0

1.42: y.n/ D 2
3
2n C 1

3
.�1/n; n � 2

1.43: (iii) u.t/ D A2t cos
�
2	
3

t
�C B2t sin

�
2	
3

t
�
; t 2 N0

1.44: (i) u.t/ D A C B.�9/t; t 2 N0

(ii) u.t/ D A3t cos
�
	
2

t
�C B3t sin

�
	
2

t
�
; t 2 N0

(iii) u.t/ D A3t C B.�2/t C Ct.�2/t; t 2 N0

1.45: (iv) u.t/ D A3t C Bt.3/t C C.�3/t; t 2 N0

1.46: (i) y.t/ D A C B4t C 1
12

t4t

(ii) y.t/ D A3t C B.�2/t C 1
14
5t

1.47: (ii) y.t/ D A4t C B.�1/t C 1
20

t.4/t

(iii) y.t/ D A.2/t C B4t � 3t

1.48: (i) 1
2
3t.t2 � 3t C 3/C C

(iii)
� t
2

� � � t
3

� � t
�tC1
4

�C �tC2
5

�C C
1.49: 1

4
.n C 1/5nC1 � 1

16
5nC1 C 5

16

1.50: (i)
� t
6

� � � t
2

� � t
�tC1
7

�C �tC2
8

�C C
(ii) � t

2.tC1/.tC2/ � 1
2.tC2/ C C

1.53: y.n/ D 2n � 1
1.54: y.t/ D 50;000Œ.1:04/t � 1�
1.55: y.t/ D 63;000Œ.1:05/t � 1�, y.27:11/ � 64:5

1.58: (ii) y.t/ D 1
4
4t
� t
6

�C A4t

(iv) y.t/ D At C 1
2
t3 � 3

2
t2

1.63: (i) y.t/ D AtŠ
Pt�1

sD0 2s

.sC1/Š C BtŠ; t 2 N0

(ii) u.t/ D ˛.t � 1/ŠC ˇ.t � 1/ŠPt�1
sD1 2

s

sŠ ; t 2 N1

1.64: (iii) y.t/ D c16t�a C c26t�a
Pt�1

�Da
1

�C5 ; t 2 Na

1.65: (iii) y.t/ D c14t C c24t
Pt�1

�D1 �
4�
; t 2 N1

1.66: (i) y.t/ D A.t � 2/�1 C B.t � 3/�2; t 2 N2

(ii) y.t/ D A.t � 2/�4 C B.t � 3/�4Pt�1
kD5 1

k�4 ; t 2 N5

1.69:

y.t/ D 1

20
t5; t 2 N0

1.70:

x.t/ D 1

p2
� 1

p2
cosp.t; 0/
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1.80: (iv)

u.t/ D c1

2
4

1
1
4

C 1
2
t � 1

4
.�1/t

� 1
4

C 1
2
t C 1

4
.�1/t

3
5C c2

2
4

0
1
2

C 1
2
.�1/t

1
2

� 1
2
.�1/t

3
5

C c3

2
4

0
1
2

� 1
2
.�1/t

1
2

C 1
2
.�1/t

3
5

1.81: (ii) u.t/ D
�
2t C t2t�1
1
2
3t C 3

2

	

1.86: (ii) The trivial solution is globally asymptotically stable on Na:

1.90: �1;2 D 3
2

˙
p
5
2

1.91: �1 D �2 D 7
4

Chapter 2

2.10: (i) y.t/ D 4.3/t � 2.4/t; t 2 N0

(iii) y.t/ D 3.2/t � 3.4/t C 5
2
t.4/t; t 2 N0

2.11:

u.t/ D cos
�	
2

t
�
; v.t/ D sin

�	
2

t
�
; t 2 N0

2.12: (i) y.t/ D 2.3/t C .3/t�5u5.t/; t 2 N0

(ii) y.t/ D 4.6/t C 3
�� 1

3
C 1

5

�
u60.t/; t 2 N0

2.13:

(ii) y.t/ D 3

(iii) y.t/ D �1C 2t

2.14: (i) y.t/ D 4t; t 2 N0

(ii) y.t/ D 1
2
.3/t C 1

2
.5/t; t 2 N0

2.17: (ii) �
2
3
a 1 D 1

�. 13 /
.t � a/�

2
3

2.21: (i) 3
2
.t � 1/� 1

2

(iii) 15
p
	

8
.t2 � 7t C 12/:

2.24: (i) x.t/ D �.3/

�.5:7/
t4:7 � 0:0276t4:7; t 2 N�0:3:

2.26:

Œh1.�; a/ 
 ep.�; a/�.t/ D 1

p2
ep.t; a/ � 1

p
h1.t; a/ � 1

p2
; t 2 Na
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2.27:

Œep.�; a/ 
 eq.�; a/�.t/ D 1

p � q
ep.t; a/C 1

q � p
eq.t; a/; t 2 Na

Chapter 3

3.16: (i) u.t/ D c1 C c2
�
1
4

�t

3.17: (ii) x.t/ D c12a�t C c2.�4/a�tt
3.18: (i) x.t/ D c1 cos



	
2
.t � a/

�C c2 sin


	
2
.t � a/

�
; t 2 Na

3.24: (i) y.t/ D � 1
4

C 1
2
t C 1

4
3�t; t 2 N0

(iii) y.t/ D 1
6
.t � 2/3; t 2 N2

3.29: (i)

r�2
a Cosh3.t; a/ D 1

9
Cosh3.t; a/ � 1

9

D 1

18
.�2/a�t C 1

18
4a�t � 1

9
; t 2 Na

3.35: (i) x.t/ D 	 C 6p
	

t0:5

Chapter 4

4.2: Dqf .t/ D .1C q/t � 2s
4.7:

(ii) y.t/ D 1
21
.t � a/.t � 2a/.t � 4a/

4.8: (i) y.t/ D e3.t; a/ � 2e2.t; a/
(iv) y.t/ D e3.t; a/ cos 4

1C3�
.t; a/ � 1

4
e3.t; a/ sin 4

1C3�
.t; a/

Chapter 5

5.10: y.t/ D 1
26
.t � 2/.t � 8/.t � 26/
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mixed time scale, 362

S
scalar dot multiplication

mixed time scale, 377
sine

delta, 14
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sine function
mixed time scale, 378
quantum, 305
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Taylor’s formula
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370

U
uniqueness

inverse transform, 91
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unstable, 62

V
Variation of Constants
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delta case, 37
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