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Abstract. Shape information is an important cue for many computer
vision applications. In this work we propose an invariant shape feature
extraction, description and matching method for binary images, named
LISF. The proposed method extracts local features from the contour
to describe shape and these features are later matched globally. Com-
bining local features with global matching allows us to a obtaining a
trade-off between discriminative power and robustness to noise and occlu-
sion in the contour. The proposed extraction, description and matching
methods are invariant to rotation, translation, and scale and present
certain robustness to partial occlusion. The conducted experiments in
the Shapes99, Shapes216, and MPEG-7 datasets support the mentioned
contributions, where different artifacts were artificially added to obtain
partial occlusion as high as 60 %. For the highest occlusion levels LISF
outperformed other popular shape description methods, with about 20 %
higher bull’s eye score and 25 % higher accuracy in classification. Also, in
this paper, we present a massively parallel implementation in CUDA of
the two most time-consuming stages of LISF, i.e., the feature extraction
and feature matching steps; which achieves speed-ups of up to 32x and
34x, respectively.
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1 Introduction

Shape descriptors have proven to be useful in many image processing and
computer vision applications (e.g., object detection [1,2], image retrieval [3,4],
object categorization [5,6], etc.). However, shape representation and description
remains as one of the most challenging topics in computer vision. The shape
representation problem has proven to be hard because shapes are usually more
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complex than appearance. Shape representation inherits some of the most impor-
tant considerations in computer vision such as the robustness with respect to
the image scale, rotation, translation, occlusion, noise and viewpoint. A good
shape description and matching method should be able to tolerate geometric
intra-class variations, but at the same time should be able to discriminate from
objects of different classes.

In this work, we describe object shape locally, but global information is
used in the matching step to obtain a trade-off between discriminative power
and robustness. The proposed approach has been named Invariant Local Shape
Features (LISF), as it extracts, describes, and matches local shape features
that are invariant to rotation, translation and scale. LISF, besides closed con-
tours, extracts and matches features from open contours making it appropriate
for matching occluded or incomplete shape contours. Conducted experiments
showed that while increasing the occlusion level in shape contour, the difference
in terms of bull’s eye score, and accuracy of the classification gets larger in favor
of LISF compared to other state of the art methods.

Another important requirement for a promising shape descriptor is compu-
tational efficiency. Several applications demand real time processing or handling
large image datasets. General-Purpose Computing on Graphics Processing Units
(GPGPU) is the utilization of GPUs to perform computation in applications tra-
ditionally handled by a CPU, having obtained considerable speed-ups in many
computing tasks. In this work, we also propose a massively parallel implemen-
tation in GPUs of the two most time consuming stages of LISF, namely, the
feature extraction and feature matching stages. Our proposed GPU implemen-
tation achieves a speed-up of up to 32x and 34x for the feature extraction and
matching steps, respectively.

The rest of the paper is organized as follows. Section 2 discusses some shape
description and matching approaches. Section 3.1 presents the local shape feature
extraction method. The feature descriptor is presented in Sect. 3.2. Its robust-
ness and invariability to translation, rotation, scale, and its locality property are
discussed in Sect. 3.3. Section 4 describes the proposed feature matching schema.
The performed experiments and discussion are presented in Sect.6. Finally,
Sect. 7 concludes the paper with a summary of our proposed methods, main
contributions, and future work.

2 Related Work

Some recent works where shape descriptors are extracted using all the pixel infor-
mation within a shape region include Zernike moments [7], Legendre moments
[8], and generic Fourier descriptor [9]. The main limitation of region-based
approaches resides in that only global shape characteristics are captured, with-
out taking into account important shape details. Hence, the discriminative power
of these approaches is limited in applications with large intra-class variations or
with databases of considerable size.

Curvature scale space (CSS) [10], multi-scale convexity concavity (MCC) [11]
and multi-scale Fourier-based descriptor [12] are shape descriptors defined in a
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multi-scale space. In CSS and MCC, by changing the sizes of Gaussian kernels
in contour convolution, several shape approximations of the shape contour at
different scales are obtained. CSS uses the number of zero-crossing points at
these different scale levels. In MCC, a curvature measure based on the relative
displacement of a contour point between every two consecutive scale levels is
proposed. The multi-scale Fourier-based descriptor uses a low-pass Gaussian
filter and a high-pass Gaussian filter, separately, at different scales.

The main drawback of multi-scale space approaches is that determining the
optimal parameter of each scale is a very difficult and application dependent task.

Geometric relationships between sampled contour points have been exploited
effectively for shape description. Shape context (SC) [13] finds the vectors of
every sample point to all the other boundary points. The length and orientation
of the vectors are quantized to create a histogram map which is used to represent
each point. To make the histogram more sensitive to nearby points than to
points farther away, these vectors are put into log-polar space. The triangle-area
representation (TAR) [14] signature is computed from the area of the triangles
formed by the points on the shape boundary. TAR measures the convexity or
concavity of each sample contour point using the signed areas of triangles formed
by contour points at different scales. In these approaches, the contour of each
object is represented by a fixed number of sample points and when comparing two
shapes, both contours must be represented by the same fixed number of points.
Hence, how these approaches work under occluded or uncompleted contours is
not well-defined. Also, most of these kind of approaches can only deal with closed
contours and/or assume a one-to-one correspondence in the matching step.

In addition to shape representations, in order to improve the performance
of shape matching, researchers have also proposed alternative matching meth-
ods designed to get the most out of their shape representations. In [15], the
authors proposed a hierarchical segment-based matching method that proceeds
in a global to local direction. The locally constrained diffusion process proposed
in [16] uses a diffusion process to propagate the beneficial influence that offer
other shapes in the similarity measure of each pair of shapes. Authors in [17]
replace the original distances between two shapes with distances induced by
geodesic paths in the shape manifold.

Shape descriptors which only use global or local information will probably
fail in presence of transformations and perturbations of shape contour. Local
descriptors are accurate to represent local shape features, however, are very
sensitive to noise. On the other hand, global descriptors are robust to local
deformations, but can not capture the local details of the shape contour. In
order to balance discriminative power and robustness, in this work we use local
features (contour fragments) for shape representation; later, in the matching
step, in a global manner, the structure and spatial relationships between the
extracted local features are taken into account to compute shapes similarity. To
improve matching performance, specific characteristics such as scale and orienta-
tion of the extracted features are used. The extraction, description and matching
processes are invariant to rotation, translation and scale changes. In addition,
there is not restriction about only dealing with closed contours or silhouettes,
i.e. the method also extract features from open contours.
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The shape representation method used to described our extracted contour
fragments is similar to that of shape context [13]. Besides locality, the main
difference between these descriptors is that in [13] the authors obtain a his-
togram for each point in the contour, while we only use one histogram for each
contour fragment, i.e. our representation is more compact. Unlike our proposed
method, shape context assumes a one-to-one correspondence between points in
the matching step, which makes it more sensitive to occlusion.

The main contribution of this paper is a local shape feature extraction,
description and matching schema that (i) is invariant to rotation, translation and
scaling, (ii) provides a balance between distinctiveness and robustness thanks to
the local character of the extracted features, which are later matched using
global information, (iii) deals with either closed or open contours, and (iv) is
simple and easy to compute. An additional contribution is a massively parallel
implementation in GPUs of the proposed method.

3 Proposed Local Shape Feature Descriptor

Psychological studies [18,19] show that humans are able to recognize objects from
fragments of contours and edges. Hence, if the appropriate contour fragments of
an object are selected, they are representative of it.

Straight lines are not very discriminative since they are only defined by their
length (which is useless when looking for scale invariance). However, curves pro-
vide a richer description of the object as these are defined, in addition to its
length, by its curvature (a line can be seen as a specific case of a curve, i.e.,
a curve with null curvature). Furthermore, in the presence of variations such
as changes in scale, rotation, translation, affine transformations, illumination
and texture, the curves tend to remain present. In this paper we use contour
fragments as repetitive and discriminant local features.

3.1 Feature Extraction

The detection of high curvature contour fragments is based on the method pro-
posed by Chetverikov [20]. Chetverikov’s method inscribes triangles in a segment
of contour points and evaluates the angle of the median vertex which must be
smaller than ou,.; and bigger than «,,;,. The sides of the triangle that lie on
the median vertex are required to be larger than d,,;, and smaller than d,,q;:

Amin < ||p - p+|| < dmaz, (1)
dmin S ||p - p_|| S dmaz7 (2)
Qmin S « S Qmax, (3)

dmin and d,q, define the scale limits, and are set empirically in order to avoid
detecting contour fragments that are known to be too small or too large. ayin
and aunqz are the angle limits that determine the minimum and maximum sharp-
ness accepted as high curvature. In our experiments we set d,,;, = 10 pixels,
Amaz = 300 pixels, amin = 5°, and qynq, = 150°.
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Fig. 1. Detection of contour fragments. (a) Are candidates contour fragments those
contour fragments where it is possible to inscribe a triangle with aperture between ain
and Qmaz, and adjacent sides with lengths between dpin and dpmaz. If several triangles
are found on the same point or near points, the sharpest triangle in a neighborhood
is selected. (b) Noise can introduce false contour fragments (the contour fragment in
yellow). (¢) To counteract the false contour phenomenon we add another restriction,
candidate triangles will grow until another corner is reached (Color figure online).

Several triangles can be found over the same point or over adjacent points at
the same curve, hence it is selected the point with the highest curvature. Each
selected contour fragment i is defined by a triangle (p; , p;, pj), where p; is the
median vertex and the points p; and pj define the endpoints of the contour
fragment. See Fig. 1(a).

The Chetverikov’s corners detector has the disadvantage of not being very
stable to noisy contours or highly branched contours, which may cause that false
corners are selected. For example, see Fig. 1(b). In order to deal with this prob-
lem, another restriction is added to the Chetverikov’s method. Each candidate
triangle (p,:,pk,pz) will grow while the points p, and pz do not match any
p; point of another corner. Figure 1(c) shows how this restriction overcome the
false detection in the example in Fig. 1(b).

Then, each feature ¢; extracted from the contour is defined by (P;, T;), where
T, = (p;, pi,pj) is the triangle inscribed in the contour fragment and P; =
{p1,..,pn},pj € R? is the set of n points which form the contour fragment
G;, ordered so that the point p; is adjacent to the point p;_; and p;ii. Points
P1,Pn € P; match with points p;, pj € T;, respectively.

3.2 Feature Description

The definition of contour fragment given by the extraction process (specifically
the triangle (p; , pi, pj)) provides a compact description of the contour fragment
as it gives evidence of amplitude, orientation and length; however, it has low
distinctiveness due to the fact that different curves can share the same triangle.

In order to give more distinctiveness to the extracted features, we represent
each contour fragment in a polar space of origin p;, where the length r and the
orientation 6 of each point are discretized to form a two-dimensional histogram
of n, X ng bins:

H;(b) = |{w € P; : (w—p;) € bin(b)}|. (4)
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Note that for a sufficiently large number of n,. and ny this is an exact repre-
sentation of the contour fragment.

3.3 Robustness and Invariability Considerations

In order to have a robust and invariant description method, several properties
must be met:

Locality: The locality property is met directly from the definitions of inter-
est contour fragment and its descriptor given in Sects. 3.1 and 3.2. A contour
fragment and its descriptor only depend on a point and a set of points in a
neighborhood much smaller than the image area, therefore, in both the extrac-
tion and description processes, a change or variation in a portion of the contour
(produced, for example, by noise, partial occlusion or other deformation of the
object), only affects the features extracted in that portion.

Translation Invariance: By construction, both the feature extraction and
description processes are inherently invariant to translation since they are based
on relative coordinates of the points of interest.

Rotation Invariance: The contour fragment extraction process is invariant to
rotation by construction. An interest contour fragment is defined by a triangle
inscribed in a contour segment, which only depends on the shape of the contour
segment rather than its orientation. In the description process, it is possible to
achieve rotation invariance by rotating each feature coordinate systems until
alignment with the bisectrix of the vertex p;.

Scale Invariance: This could be achieved in the extraction process by extract-
ing contour fragments at different values of d,;, and di,q.. In the description
process it is achieved by sampling contour fragments (i.e., P;) to a fixed number
M of points or by normalizing the histograms.

4 Feature Matching

In this section we describe the method for finding correspondences between LISF
features extracted from two images. Let’s consider the situation of finding cor-
respondences between Ny features {a;}, with descriptors { H{}, extracted from
the query image and N¢ features {b;}, with descriptors {H?}, extracted from
the database image.

The simplest criterion to establish a match between two features is to estab-
lish a global threshold over the distance between the descriptors, i.e., each feature
a; will match with those features {b;} which are at distance D(a;,b;) below a
given threshold. Usually, matches are restricted to nearest neighbors in order
to limit multiple false positives. Some intrinsic disadvantages of this approach
limit its use; such as determining the number of nearest neighbors depends on
the specific application and type of features and objects. The mentioned app-
roach obviates the spatial relations between the parts (local features) of objects,
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which is a determining factor. Also, it fails in the case of objects with multi-
ple occurrences of the structure of interest or objects with repetitive parts (e.g.
buildings of several equal windows). In addition, the large variability of dis-
tances between the descriptors of different features makes the task of finding an
appropriate threshold a very difficult task.

To overcome the previous limitations, we propose an alternative for feature
matching that takes into account the structure and spatial organization of the
features. The matches between the query features and database features are
validated by rejecting casual or wrong matches.

4.1 Finding Candidate Matches

Let’s first define the scale and orientation of a contour fragment.

Let the feature ¢; be defined by (P;, T;), its scale s, is defined as the magni-
tude of the vector pi+ +p; , where piJr and p; are the vectors with initial point
in p; and terminal points in p;r and p; , respectively, i.e.,

s, = |p; +p; |- (5)

The orientation ¢, of the feature ¢; is given by the direction of vector p;,
which we will call orientation vector of feature ¢;, and is defined as the vector
that is just in the middle of vector pf‘ and vector p;, i.e.,

pi =D; +D; . (6)

where f)iJr and p;  are the unit vectors with same direction and origin that pi+
and p; , respectively.

We already defined the terms scale and orientation of a feature ¢;. In the
process of finding candidate matches, for each feature a;, its K nearest neigh-
bors {bﬁ( } in the candidate image are found by comparing their descriptors (in
this work we use x? distance to compare histograms). Our method tries to find
among the K nearest neighbors the best match (if any), so K can be seen as an
accuracy parameter. To provide the method with rotation invariance the feature
descriptors are normalized in terms of orientation. This normalization is per-
formed by rotating the polar coordinate system of each feature by a value equal
to —¢., (i.e., all features are set to orientation zero) and calculated their descrip-
tors. The scale and translation invariance in the descriptors is accomplished by
construction (for details see Sect. 3.2).

4.2 Rejecting Casual Matches

For each pair (a;, %), the query image features {a;} are aligned according to the
correspondence (a;, b%):

a; = (a;-s+t)- R(G(ai,bﬁ)),
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where s = s, /spx is the scale ratio between the features a; and b;?, t = pa, —Dpr
J J

is the translation vector from point p,, to point pzj, R(0(ai, bf)) is the rotation
matrix for a rotation, around point p,,, equal to the direction of the orientation
vector of feature a; with respect to the orientation of b?, (i.e., Pa; — Py )-

J

Once aligned both images (same scale, rotation and translation) according
to correspondence (a;, b?), for each feature a} its nearest neighbor b, in {b;C }is
found. Then, vector m defined by (I, ) is calculated, where [ is the distance
from point py, of feature b, to a reference point pe in the candidate object (e.g.,
the object centroid, the point p of some feature or any other point, but always
the same point for every candidate image) and ¢ is the orientation of feature
b, with respect to the reference point p,, i.e., the angle between the orientation
vector pp, of feature b, and the vector p,, the latter defined from point ps, to
point p,,

I =1lpo, — pell, (7)

¢ = arccos <pb"p'> : (8)
[IPo, ] [Pl

Having obtained m, the point p,, given by the point at a distance [ from
point py/ of feature a; and orientation ¢ respect to its orientation vector Pal, is
found,

po = pz; +1- COS(¢a; + (P)a (9)

P = pl, +1-sin(da; + ) (10)

Intuitively, if {(a;, b? ) is a correct match, most of the points p, should be con-
centrated around the point p,. This idea is what allows us to accept or reject a can-

didate match (a;, b§> With this aim, we defined a matching measure {2 between
features a; and b? as a measure of dispersion of points p, around point p,,

N -
Z‘—Ql |[P5 — pel|?
= = ) 11
\/ Ng (11)

Fig. 2. Matches between local shape descriptors in two images. It can be seen how
these matches were found even in presence of rotation, scale and translation changes.
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Using this measure, {2, we can determine the best match for each feature a;
of the query image in the candidate image, or reject any weak match having (2
above a given threshold Ag. A higher threshold means supporting larger defor-
mations of the shape, but also more false matches. In Fig. 2, the matches between
features extracted from silhouettes of two different instances of the same object
class are shown, the robustness to changes in scale, rotation and translation can
be appreciated.

5 Efficient LISF Feature Extraction and Matching

In this section, we present a massively parallel implementation in GPUs of the
two most time-consuming stages of LISF, i.e., the feature extraction and the
feature matching steps.

5.1 Implementation of Feature Extraction Using CUDA

As mentioned in Sect. 3.1, in the feature extraction step, for each point p; in the
contour, up to P triangles are evaluated, where P is the contour size. Each one of
these evaluations are independent from each other, so there is a great potential
for parallelism. We present a massively parallel implementation in CUDA of
this stage by obtaining in parallel the candidate triangle of each point p; in the
contour.

All the triangles of a point p; are evaluated in a block. The constraints of
each triangle (Eqs.1-3) are evaluated in a thread; triangles that fulfill these
constrains, i.e., candidate triangles, are tiled into the shared memory in order
to increase data reutilization and decrease global memory accesses. Later, in
each block the highest curvature candidate triangle of corresponding point p; is
selected. The final step, i.e., the selection of the shaper triangle in the neighbor-
hood, is performed in the host. As there are only a few candidate triangles in a
neighborhood, this is a task which is more favored to be performed in the CPU.

5.2 Implementation of Feature Matching Using CUDA

Finding candidate matches involves Ng x N¢ chi-squared comparisons of feature
descriptors, where Ng and N¢ are the number of features extracted from the
query and the database images, respectively. Also, rejecting casual matches needs
Ng x N¢ chi-squared comparisons after alignment. Therefore, a great potential
for parallelism is also present in these stages. We propose a massively parallel
implementation in CUDA for the chi-squared comparison of Ng x N¢ descriptors.

Given the sets of descriptors extracted from the query and the candidate
image, i.e., @ = {q1,92,...,qn, } and C = {c1,¢ca, ..., cNn. }, Tespectively, where
the size of each descriptor is given by n, x ng. To perform Ng x N¢ chi-squared
comparisons each value in descriptor g; is used N¢ times. In order to increase
data reutilization and decrease global memory accesses, @ and C' are tiled into
the shared memory. In each device block the chi-squared distances between every
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Fig. 3. Overview of the proposed feature comparison method in GPU.

pair of descriptors in @ C @ and b C C are computed, where |a| < Ng and
|b| < N¢. Then, all the comparison are obtained in |b| iterations, where in
the jth iteration the threads in the block compute the chi-squared distance of
the jth descriptor in b against every descriptor in a. Figure 3 shows a graphical
representation.

For values of Ng and N¢ such that the features and comparison results do
not fit in the device global memory, the data could be partitioned and the kernel
lunched several times.

6 Experimental Results

Performance of the proposed LISF method has been evaluated on three differ-
ent well-known datasets. The first dataset is the Kimia Shapes99 dataset [21],
which includes nine categories and eleven shapes in each category with variations
in form, occlusion, articulation and missing parts. The second dataset is the Kimia
Shapes216 dataset [21]. This database consists of 18 categories with 12 shapes in
each category. The third dataset is the MPEG-7 CE-Shape-1 dataset [22], which
consists of 1400 images (70 object categories with 20 instances per category). In
the three datasets, in each image there is only one object, defined by its silhouette,
and at different scales and rotations. Example shapes are shown in Fig. 4.

6.1 Shape Retrieval and Classification Experiments

In order to show the robustness of the LISF method to partial occlusion in the
shape, we generated another 15 datasets by artificially introducing occlusion
of different magnitudes (10 %, 20%, 30%, 45% and 60%) to the Shapes99,
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Fig.4. Example images and categories from (a) the Shapes99 dataset, (b) the
Shapes216 dataset, and (c) the MPEG-7 dataset.

iinah §

0% 10% 20% 30% 45% 60%

Fig.5. Example image from the MPEG-7 dataset with different levels of occlusion
(0%, 10 %, 20 %, 30 %, 45 % and 60 %) used in the experiments.

Shapes216 and MPEG-7 datasets. Occlusion was added by randomly choosing
rectangles that occlude the desired portion of the shape contour. A sample image
from the MPEG-7 dataset at different occlusion levels is shown in Fig. 5.

As a measure to evaluate and compare the performance of the proposed
shape matching schema in a shape retrieval scenario we use the so-called bull’s
eye score. Each shape in the database is compared with every other shape model,
and the number of shapes of the same class that are among the 2V, most similar
is reported, where N, is the number of instances per class. The bull’s eye score
is the ratio between the total number of shapes of the same class and the largest
possible value.

The results obtained by LISF (n, = 5, ng = 10, Ap = 0.9) were compared
with those of the popular shape context descriptor (100 points, n, = 5, ng = 12)
[13], the Zernike moments (using 47 features) [23] and the Legendre moments
(using 66 features) [8]. Rotation invariance can be achieve by shape context,
but it has several drawbacks, as mentioned in [13]. In order to perform a fair
comparison between LISF (which is rotation invariant) and shape context, in
our experiments the non-rotation invariant implementation of shape context is
used, and images used by shape context were rotated so that the objects had
the same rotation.

Motivated by efficiency issues, for the MPEG-7 CE-Shape-1 dataset we used
only 10 of the 70 categories (selected randomly) with its 20 samples each. The
bull’s eye score implies all-against-all comparisons and experiments had to be
done across the 18 datasets for the LISF, shape context, Zernike moments and
Legendre moments methods. There is no loss of generality in using a subset of
the MPEG-7 dataset since the aim of the experiment is to compare the behavior
of the LISF method against other methods, across increasing levels of occlusion.
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Fig. 6. Bull’s eye score comparison between LISF, shape context, Zernike moments
and Legendre moments in the (a) Shapes99, (b) Shapes216 and (c) MPEG-7 datasets
with different partial occlusions (0%, 10 %, 20 %, 30 %, 45 % and 60 %) (Color figure
online).

As a similarity measure of image a with image b, with local features {a;} and
{b;} respectively, we use the ratio between the number of features in {a,} that
found matches in {b;} and the total number of features extracted from a.

Figure 6 shows the behavior of the bull’s eye score of each method while
increasing partial occlusion in the Shapes99, Shapes216 and MPEG-7 datasets.
Bull’s eye score is computed for each of the 18 datasets independently.

As expected, the LISF method outperforms the shape context, Zernike
moments and Legendre moments methods. Moreover, while increasing the occlu-
sion level, the difference in terms of bull’s eye score gets bigger, with about
15-20 % higher bull’s eye score across highly occluded images; which shows the
advantages of the proposed method over the other three.

Figure 7 shows the top 5 retrieved images and its retrieval score for the beetle-
5 image with different occlusions. Top 5 retrieved images are shown for each
database at different occlusion levels, respectively (MPEG-7 with 0% to 60 %
partial occlusion). The robustness to partial occlusion of the LISF method can
be appreciated. Retrieval score of images that do not belong to the same class
as the query image are depicted in bold italic.

In a second set of experiments, the proposed method is tested and compared
to shape context, Zernike moments and Legendre moments in a classification
task also under varying occlusion conditions. A 1-NN classifier was used, i.e., we
assigned to each instance the class of its nearest neighbor. The same data as in the
first set of experiments is used. In order to measure the classification performance,
the accuracy measure was used. Accuracy measures the percentage of data that
are correctly classified. Figure 8 shows the results of classification under different
occlusion magnitudes (0 %, 10 %, 20 %, 30 %, 45 % and 60 % occlusion).

In this set of experiments, a better performance of the LISF method com-
pared to previous work can also be appreciated. As in the shape retrieval
experiment, while increasing the occlusion level in the test images, the bet-
ter is the performance of the proposed method with respect to shape context,
Zernike moments and Legendre moments, with more than 25 % higher results in
accuracy.
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Fig. 7. Top 5 retrieved images and similarity score. In each row retrieval results for
the beetle-5 image in the six MPEG-7 based databases. Red retrieval scores represent
images that do not belong to the same class of the query image (Color figure online).
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Fig. 8. Classification accuracy comparison between LISF, shape context, Zernike
moments and Legendre moments in the (a) Shapes99, (b) Shape 216, and (¢) MPEG-7
dataset, with different partial occlusions (0%, 10 %, 20 %, 30 %, 45 % and 60 %) (Color
figure online).

6.2 Efficiency Evaluation

The computation time of LISF has been evaluated and compared to other meth-
ods. Table1 shows the comparison of LISF computation time against shape
context, Legendre moments, and Zernike moments. The reported times corre-
spond to the average time needed to describe and match two shapes of the
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Table 1. Average feature extraction and matching time for two images of the MPEG7

database, in seconds.

Method Computation time (s)
Shape context 2.66
Legendre moments | 7.48
Zernike moments | 26.47
LISF_CPU 0.47
LISF_GPU 0.16

MPEG-7 database over 500 runs. The LISF_CPU, shape context, Legendre and
Zernike moments results were obtained on a single thread of a 2.2 GHz processor
and 8 GB RAM PC, and the LISF_GPU results were obtained on a NVIDIA
GeForce GT 610 GPU. As can be seen in Table 1, both implementations of LISF
are the least time-consuming compared with shape context, Legendre moments,
and Zernike moments.

In order to show the scalability of our proposed massively parallel implemen-
tation in CUDA, we reported the time and achieved speed-up while increasing
the contour size and the number of features to match for the feature extrac-
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Fig. 9. Computation time and achieve speed-up by the proposed massively parallel
implementation in CUDA wrt. the CPU implementation for the (a,b) feature extraction
and (c,d) feature matching stages of LISF (Color figure online).



220 L. Chang et al.

tion and feature matching stages, respectively. These results were obtained on a
NVIDIA GeForce GTX 480 GPU and compared with those obtained in a single
threaded Intel CPU Processor at 3.4 GHz.

As it can be seen in Figs.9(a) and 9(b), tested on contours of sizes ranging
from 200 to 10 000 points, the proposed feature extraction implementation on
GPU achieves up to a 32x speed-up and a 16x average speed-up. For the fea-
ture matching step (see Figs. 9(c) and 9(d)), the proposed GPU implementation
were tested for comparing from 50 vs. 50 to 290 vs. 290 features. The GPU
implementation showed linear scaling against exponential scaling of the CPU
implementation and obtained a 34x speed-up when comparing 290 vs. 290 LISF
features.

7 Conclusions and Future Work

As a result of this work, a method for shape feature extraction, description and
matching, invariant to rotation, translation and scale, have been developed. The
proposed method allows us to overcome the intrinsic disadvantages of only using
local or global features by capturing both local and global information. The
conducted experiments supported the mentioned contributions, showing larger
robustness to partial occlusion than other methods in the state of the art. It
is also more efficient in terms of computational time than the other techniques.
Also, we proposed a massively parallel implementation in CUDA of the two most
time-consuming stages of LISF, i.e., the feature extraction and feature matching
steps, which achieves speed-ups of up to 32x and 34x, respectively.

Moreover, the feature extraction process does not depend on accurate and
perfect object segmentation since the features are extracted from both the
contour and the internal edges of the object. Therefore, the method has great
potential for use in “real” images (RGB or grayscale images) and also, as a com-
plement to certain limitations of appearance based methods (e.g., SIFT, SURF,
etc.); particularly in object categorization, where shape features usually offer a
more generic description of objects. Future work will focus on this subject.
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