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Abstract. Information flow control extends access control by not only
regulating who is allowed to access what data but also the subsequent
use of the data accessed. Applications within communication networks
require such information flow control to depend on the actual data. For a
concurrent language with synchronous communication and separate data
domains we develop a Hoare logic for enforcing disjunctive information
flow policies. We establish the soundness of the Hoare logic with respect
to an operational semantics and illustrate the development on a running
example.

1 Introduction

Access control is a standard technique for guarding the confidentiality and
integrity of data. It may take the flavour of a discretionary policy where for
each file and user it is determined whether or not there is read-access (regarding
confidentiality) or write-access (regarding integrity). Alternatively, it may take
the flavour of a mandatory policy where files and users are characterised accord-
ing to some security lattice and where flows are only permitted as allowed by the
partial order. Examples include Bell and LaPadula [5] (for confidentiality) and
Biba [6] (for integrity). Typically, access control is implemented dynamically by
a reference monitor that halts execution when a policy is violated.

Information flow control goes one step further in attempting to ensure that
subsequent use of the data adheres to the intended policy. It may take the flavour
of a mandatory policy expressed using security lattices embodying confidential-
ity considerations (motivated by Bell and LaPadula) or integrity considerations
(motivated by Biba). Typically, information flow control is implemented stati-
cally by a type system that ensures that policies cannot be violated, and the
semantic guarantees are expressed using non-interference results [12,24]. Alter-
natively, it may take the flavour of a discretionary policy where data variables
are marked with security labels indicating which users may read (for confiden-
tiality) or write (for integrity) the data variables. A prominent example is the
Decentralized Label Model (DLM) [17,18], which is also implemented statically
by a type system enforcing the policies. Since the security labels can be seen as
elements of a lattice one might employ non-interference ideas for the semantic
characterisation.

Information Flow Control in Avionics: The increased use of wireless com-
munication within avionics gives rise to new security challenges that cannot be
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fully mitigated by current practices. In particular, there is a growing demand
for techniques for controlling the information flow between different security and
safety domains on-board and off-board the aircraft. Such techniques have to be
integrated with the existing software architectures, in particular the MILS (Mul-
tiple Independent Levels of Security) architecture [21]. The MILS architecture is
based on a strict separation of processes into partitions with isolated resources
and a (certifiable) separation kernel controlling (and limiting) the interprocess
communication (IPC) between the partitions [16]. This architecture provides a
compositional approach for validating the security of the system – however, the
constrained flow of information between the partitions being enforced by the
separation kernel is now being challenged.

The ARINC-811 report [10] explicitly addresses the security issues in avionics
and calls for separating the software in a number of security domains. This is
illustrated by a “closed domain” for highly critical applications controlling the
aircraft, a “private domain” for the less critical application operating the airline
and for informing and entertaining the passengers and a “public domain” for
the passenger owned devices. These domains will exchange information with one
another and with external domains as for example ground control. The Bell and
LaPadula approach and the Biba approach go some way towards controlling
the information flow but a more fine-grained control is needed to handle the
flexibility required in future avionics architectures.

An emerging challenge [16] is to let policies depend on the actual data. This
is illustrated for an avionics gateway where the possible interactions between
security domains depend not only on the security domains themselves but also
on the content of messages exchanged between them. The essence of the scenario
can be illustrated by a simple example: A multiplexer that merges data from
several sources, transport them over a joint channel, and then split them to reach
different targets. The different sources and targets belong to different security
domains and hence they are likely to have different security policies; the merged
data will include information about the intended source and destination. It then
becomes challenging to express the policy for the merged data, as it is dependent
on the data values specifying the intended source and destination.

Our Contribution: We extend discretionary information flow policies to deal
with content-dependent security policies in a setting inspired by the MILS archi-
tecture and adhering to the separation of the software into security domains as
advocated by the ARINC-811 report. We illustrate our approach on the mul-
tiplexer example mentioned above (and further elaborated in Sect. 2) and we
prove the correctness of our approach with respect to a co-inductive correctness
predicate defined by means of a formal semantics.

A language of concurrent processes each with their own memory and with
synchronous communication as the only means for exchange of data is intro-
duced in Sect. 3. It is equipped with a Structural Operational Semantics [20]
that is instrumented to record the use of data in the form of a flow relation;
for dealing with the implicit uses of data [12,24] we use the technique of “local
environments” of [20]. The flow relation captures the duality between readers
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and influencers that also will be present in the policies in the sense that forward
flows are appropriate for the constraints on influencers, whereas backward flows
are appropriate for the constraints on readers.

Our basic and disjunctive policies are introduced in Sect. 4. Basic policies are
concerned with channels as well as variables and are based on policies for readers
(confidentiality) and influencers (integrity) defined using ideas from DLM [17,18].
We extend on DLM by including also content-based policies characterising the
permissible value ranges of data. The policies are equipped with a partial order-
ing capturing the duality between confidentiality and integrity – as known from
other studies of access control and information flow control [14,15,17,18]. We
define what it means for a flow relation (from the semantics) to satisfy a set of
basic policies. Disjunctive policies are sets of basic policies and allow to shift
between policies as required by the value-range information; they are essential
for dealing with the motivating multiplexer example. We conclude by providing
a co-inductively defined notion of self-similarity for expressing what it means for
a system to satisfy a disjunctive security policy.

A combined Hoare logic and type system for verifying whether a system
adheres to the specified disjunctive policies is developed in Sect. 5. While type
systems have been used extensively for formulating information flow policies, the
need to consider the actual data values leads us to combining it with a Hoare
logic in order to determine the appropriateness of the basic security policies
contained in the overall disjunctive policy. The preconditions of the Hoare for-
mulae allow us to select the relevant basic security policies and to perform the
relevant check on the readers and influencers on just these policies; analogously,
the postconditions may restrict which security policies that are enforced for the
continuation of the process. Another advantage of using a Hoare logic is that
this allows to cleanly incorporate also the results of prior static analyses into
the information flow type system; this is needed in order to interact with the
approach of industrial users and is a need also discussed in [1]. Although we
are studying a concurrent language, the underlying Hoare logic is fairly stan-
dard because we are modelling a MILS architecture and therefore the individual
processes have no shared variables. The semantic correctness takes the form of
proving that typability is a self-simulation.

Related Work: The approach of [7] shares some of our aims of discretionary
information flow, but we deal with both confidentiality and integrity as well as
value ranges, we provide a clear explanation of the opposite directions of flow
that are appropriate for their formalisation, we deal with a concurrent language
rather than a purely sequential (functional) language, and we admit disjunc-
tive policies; although we do not consider the relationship to non-interference
our self-simulation based approach points in that direction. Our use of “local
environments” may be compared with the use of stacks in the monitoring rules
of [22] for achieving mandatory information flow for confidentiality.

The use of locks [8] would appear to have some relationship to value ranges
(whether or not a lock is taken) but the main purpose is that of modelling state-
ful policies. An interesting Hoare logic for dealing with mandatory information
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flow for confidentiality is considered for a rich concurrent language with proce-
dures in [2]; the Hoare logic permits dealing with data in the spirit of our value
ranges, but there is no consideration of integrity nor of any semantic notion of
correctness. The approach of [1] considers a Hoare logic directly relating pairs
of states thereby being able to express non-interference properties in a natural
manner. The development of [1] is proved sound, and while it deals with our
value ranges in a rather advanced manner, there is no consideration of neither
readers nor influencers nor of the difficulties of dealing with concurrency; indeed,
one of the strong points of our work is that we are able to use security policies
explicitly just as in the classical approaches and to do so in a concurrent setting.
Focusing instead on strongest postconditions (in the form of a dynamic logic)
the approach of [11] is able to directly formulate non-interference properties for
a notion of mandatory information flow policies for confidentiality — but again
without taking concurrency into account.

Many other papers deal with the Decentralized Label Model and informa-
tion flow policies with aims that differ from ours. As an example, [26] aims
at extending policies to give information about the availability of data (supple-
menting confidentiality and integrity of information), and [9] aims to connect the
confidentiality and integrity dimensions by ensuring that data of low integrity
cannot be used for deciding whether or not to declassify with respect to confiden-
tiality. Considering a synchronous data flow language, [25] considers trace-based
formulations of influencers and relates it to a non-interference property, and [13]
considers the application of mandatory policies to avionics.

2 Motivating Example

Our development is motivated by the example illustrated in Fig. 1: two producers
p1 and p2 send data to a multiplexer m over the channels in1 and in2, respectively.
The multiplexer wraps the data up and forwards it over the channel ch to a
demultiplexer d. The demultiplexer will then unwrap the data and forward it to
the consumers c1 and c2 while adhering to the policy that data from p1 is only
allowed to reach c1 and similarly data from p2 is only allowed to reach c2.

p1 in1
c1

m
ch

d

out1

out2p2 in2 c2

Fig. 1. The principals and channels of the multiplexer example.

We shall mainly be interested in the multiplexer and demultiplexer; we may
write their code as follows:

m : while true do
( in1?x1; ch!(1, x1)
⊕ in2?x2; ch!(2, x2) )

d : while true do
( ch?(y, z);

if y = 1 then out1!z else out2!z )
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Here the channel ch is dyadic while the other channels are monadic. The mul-
tiplexer iterates through a loop, where it non-deterministically chooses to read
from one of the channels in1 or in2 (as indicated by the operator ⊕), and then
sends the data on the channel ch tagged with the constant 1 or 2 to record the
source of the data. The demultiplexer also iterates through a loop; it will read a
message from the channel ch and decides from the tag of the message whether
the data itself has to be sent on the channel out1 or out2.

In the setting of the avionics gateway the principals may belong to the same
security domain or they may belong to different security domains.

The Policies: We now associate policies with the channels; there will be a con-
fidentiality part describing who is allowed to read the data sent on the channel,
and there will be an integrity part describing who is allowed to have influenced
the data sent on the channel.

Let us write Pi for the policy catering for data flowing from pi to ci (for
i = 1, 2). The data will first be sent over the channel ini and the integrity part
of our policy will express that only pi is allowed to influence the data sent on
this channel. The confidentiality part of the policy is more complex: clearly m
should be allowed to read the data, but we shall also allow d and ci to read,
since the data is to be passed from m to d and further on to ci. We formalise
this by specifying

Pi
i (ini) = {pi} Pi

r(ini) = {m, d, ci}

where we use the subscript i for the integrity part of the policy and the subscript
r for the confidentiality part.

Let us next consider the policy for the channel outi. Clearly d influences the
data but since the data originates from pi and has passed through m, we shall
include all three as influencers. However, there is only one reader, namely ci, so
we specify

Pi
i (outi) = {pi,m, d} Pi

r(outi) = {ci}
We are now left with the challenging task of specifying the policy for the (dyadic)
channel ch. We have policies for the tag field (ch.1) as well as the payload (ch.2)
of the messages and we may want to record this as follows (for i = 1, 2):

Pi
i (ch.1) = {m} Pi

r(ch.1) = {d, ci}
Pi
i (ch.2) = {pi,m} Pi

r(ch.2) = {d, ci} (1)

In the case of the payload we state that pi and m may be influencers of the data,
whereas d and ci will be the permitted readers of the data. For the tag field we
can omit pi from the set of influencers but otherwise the policy equals that of
the payload.

Unfortunately, information flow policies that are not content-based (like
DLM) do not allow us to have two distinct policies for the channel ch. This
means that we would need to settle for a policy merging the policies P1 and P2.
In particular, we would be forced to include both p1 and p2 as influencers of
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both out1 and out2. This means that the policy would be unable to provide the
required guarantees for the system.

Our Contribution: This motivates providing the desired security guarantees
by introducing disjunctive policies into a concurrent language with synchronous
communication. In this approach we allow the channel ch to have the disjunctive
policy {P1,P2}. To reduce the uncertainty as to which of the policies P1 and
P2 that actually applies we next incorporate a value-range component in our
policies. We will extend the policies of (1) with a record of the value of the tag
component of the messages (for i = 1, 2):

Pi
v(ch.1) = {i}

Our subsequent analysis is based on a combined type system and Hoare logic
that allows us to reason about the values of variables and hence the value of the
tag field of the messages. In this way our analysis allows us to guarantee that
data from p1 only reaches c1 and data from p2 only reaches c2.

3 Syntax and Instrumented Semantics

Preparing for the formal development we define the concurrent imperative lan-
guage used and we develop its instrumented operational semantics.

Syntax of Processes and Systems: A system consists of a fixed number of
principals running in parallel; each principal runs a process with its own local
state and exchanges messages with other principals by synchronous commu-
nication over channels. The syntax of processes (or statements) S, arithmetic
expressions a, boolean expressions b and systems Sys is:

S ::= skip | x := a | S1;S2 | if b then S1 else S2 | while b doS
| ch?x1..xk | ch!a1..ak | S1 ⊕ S2 | {X}S

a ::= n | x | a1 op a2

b ::= true | a1 rel a2

Sys ::= p1 :S1 || · · · || pn :Sn

We write x, y, z ∈ Var for variables, X ⊆ Var for sets of variables, and p ∈ Pr
for principals. We use ch for a polyadic channel name, n for unspecified con-
stants, op for unspecified arithmetic operators, rel for unspecified relational
operators, true for the boolean constant denoting truth, and we let u range
over Var ∪ Ch. We assume that Pr = {p1, · · · , pn} is the set of principals,
Var =

⊎
p∈Pr Varp is the union of mutually disjoint sets Varp of variables,

where each principal p is only allowed to use variables from Varp, and Ch =
{ch.1, · · · , ch.k | ch is a polyadic channel name with arity k} is the set of chan-
nel positions. Arithmetic and boolean expressions may contain variables but
neither channels nor principals. We denote by fv(·) the free variables occurring
inside arithmetic and boolean expressions.
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The statements are mostly self-explanatory; ch?x1..xk denotes the input of a
k-tuple of variables over the channel ch and the assignment of the components
to x1..xk, ch!a1..ak denotes the output of a k-tuple of values over the channel
ch, and S1 ⊕ S2 denotes the “external” non-deterministic choice between S1

and S2. The statement {X}S will be explained below; it will arise only during
execution in the manner of Structural Operational Semantics [20].

Instrumented Semantics for Processes: The semantics is based on a stan-
dard Structural Operational Semantics [20] where the states are mappings from
variables to values, i.e. σ ∈ Var → Val. The instrumentation amounts to adding
flows to the transitions; a flow F is a subset of pairs of variables, channels and
principals

F ⊆ (Var ∪ Ch ∪ Pr) × (Var ∪ Ch ∪ Pr)

and it provides a precise record of the explicit and implicit information flow. The
intuitive idea is that the value of the first component of a pair may influence the
value of the second component; in case the component is a channel position ch.i
we refer to the value being communicated in the i’th position of the channel and
in the case the component is a principal p it is instructive to think of it as the
program counter for the process p.

In order to handle communication, the transitions are also annotated with
the action taking place; an action α takes one of three forms:

α ::= ch!v1..vk | ch?v1..vk | τ

where the first two are for output and input over the channel ch and τ is an
internal action; here v1..vk denotes the sequence of values (from Val) being
communicated over the channel. We tacitly assume that arities match without
having explicitly to require this in the semantics.

The general form of the transitions for processes is

�p〈S;σ〉 F−→
α

〈S′;σ′〉

where the subscript p indicates the principal in which the process resides; here
configurations of the form 〈skip;σ〉 serve as terminal configurations. The defini-
tion is given in Fig. 2 (ignoring the two last rules concerned with systems) and
the most interesting clauses are explained below.

First, in the clause for assignment the flow clearly should include fv(a)×{x}
as the values of the free variables of a are used to compute the value of x.
Additionally we include (p, x) as the program counter of p also influences the
value of x. Furthermore, the program counter is also influenced by the assignment
so we also record the flow (fv(a) ∪ {p}) × {p}. The clause for skip can be viewed
as a special case only recording the flow {(p, p)} to express that a process owned
by principal p was active.

In the clause for conditionals and iteration we construct a block construct
of the form {fv(b)}S for recording the implicit flow that result from passing the
boolean condition b before embarking on the process S. This is in line with the
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�p〈skip; σ〉 F−→
τ

〈skip; σ〉 if F = {p} × {p}

�p〈x := a; σ〉 F−→
τ

〈skip; σ[x A→
 [[a]]σ]〉 if F = (fv(a) ∪ {p}) × {x, p}

�p〈S1; σ〉 F−→
α

〈S′
1; σ

′〉

�p〈S1; S2; σ〉 F−→
α

〈S′
1; S2; σ′〉

if S′
1 �= skip

�p〈S1; σ〉 F−→
α

〈skip; σ′〉

�p〈S1; S2; σ〉 F−→
α

〈S2; σ′〉

�p〈if b then S1 else S2; σ〉 F−→
τ

〈{fv(b)} S1; σ〉 if
B[[b]]σ = true and
F = (fv(b) ∪ {p}) × {p}

�p〈if b then S1 else S2; σ〉 F−→
τ

〈{fv(b)} S2; σ〉 if
B[[b]]σ = false and
F = (fv(b) ∪ {p}) × {p}

�p〈while b doS; σ〉 F−→
τ

〈({fv(b)} S);while b doS; σ〉 if
B[[b]]σ = true and
F = (fv(b) ∪ {p}) × {p}

�p〈while b doS; σ〉 F−→
τ

〈skip; σ〉 if B[[b]]σ = false and F = (fv(b) ∪ {p}) × {p}

�p〈ch!a1..ak; σ〉 F−−−−−→
ch!v1..vk

〈skip; σ〉 if
vi = A[[ai]]σ (for all i) and
F =

⋃
i≤k(fv(ai) ∪ {p}) × {ch.i, p}

�p〈ch?x1..xk; σ〉 F−−−−−→
ch?v1..vk

〈skip; σ[(xi 
→ vi)i≤k]〉 if F =
⋃

i≤k{ch.i, p} × {xi, p}

�p〈Si; σ〉 F−→
α

〈S′
i; σ

′〉

�p〈S1 ⊕ S2; σ〉 F−→
α

〈S′
i; σ

′〉
for i = 1, 2

�p〈S; σ〉 F−→
α

〈S′; σ′〉

�p〈{X} S; σ〉
{X} F

−−−→
α

〈{X}S′; σ′〉
if S′ �= skip

�p〈S; σ〉 F−→
α

〈skip; σ′〉

�p〈{X} S; σ〉
{X} F

−−−→
α

〈skip; σ′〉

�pi〈Si; σ〉 F−−−−−→
τ

〈S′
i; σ

′〉

〈p1 :S1 || · · · || pi :Si || · · · || pn :Sn; σ〉 F=⇒ 〈p1 :S1 || · · · || pi :S′
i || · · · || pn :Sn; σ′〉

�pi〈Si; σ〉
Fi−−−−−→

ch!v1..vk

〈S′
i; σ

′〉 �pj 〈Sj ; σ′〉
Fj

−−−−−→
ch?v1..vk

〈S′
j ; σ

′′〉

〈· · · || pi :Si || · · · || pj :Sj || · · · ; σ〉 F=⇒ 〈· · · || pi :S′
i || · · · || pj :S′

j || · · · ; σ′′〉
if F = (Fi ◦ ICh ◦ Fj) ∪ (Fi ◦ IVar∪Pr) ∪ (IVar∪Pr ◦ Fj) (and i �= j)

Fig. 2. Instrumented semantics of processes and systems.
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treatment of implicit flows using block labels [12,17,18] and technically uses the
technique of “local environments” developed in Structural Operational Seman-
tics [20].

This then requires us to define the semantics of the block construct just
created and in the clause for {X}S we use the operation {X}F defined by

{X}F = F ∪ (X × snd(F ))

where snd(F ) is the projection on the second components of the pairs in F . In
this way the implicit dependence on the variables of X is incorporated in the
flow of the statement.

The flows constructed for input and output are easiest to understand if ch!a
is thought of as ch := a and ch?x is thought of as x := ch with the obvious
extensions to polyadic output and input. Note that these clauses introduce the
channels in the flows and that this only happens when the action α is different
from τ .

Example 1. Consider the process d of Sect. 2 and assume that it performs the
action out1!z. This will give rise to the flow

F = {(z, out1), (z, d), (d, out1), (d, d)}
However there is an implicit dependence on the variable y of the test of the con-
ditional so the resulting flow will be {y}F which will add the two pairs (y, out1)
and (y, d) to F .

Instrumented Semantics for Systems: The configurations now take the form
〈p1 :S1 || · · · || pn :Sn;σ〉. Since we assumed that the n processes have mutually
disjoint sets of variables no confusion arises by using σ : Var → Val to denote
the state of the combined system. The transitions have the form

〈p1 :S1 || · · · || pn :Sn;σ〉 F=⇒ 〈p1 :S′
1 || · · · || pn :S′

n;σ′〉

where F is a system flow meaning that it is a flow that does not mention any
channels and hence

F ⊆ (Var ∪ Pr) × (Var ∪ Pr)

The semantics is defined by the last two rules in Fig. 2. The first rule embeds a
process action not involving communication (as indicated by the τ annotation
on the arrow) in the system level; since no communication takes place there
will be no mentioning of channels in F so indeed F ⊆ (Var∪Pr) × (Var∪Pr).
The second rule takes care of communication between processes; here we need to
combine the flows from the two processes taking part in the communication. First
we have the flow resulting from the communication over the channel (written
Fi ◦ ICh ◦Fj), then we have the remaining flows from the two processes (written
Fi ◦ IVar∪Pr and IVar∪Pr ◦ Fj); here we write IY for the identity relation on the
set Y (for Y being Var ∪ Pr or Ch) and use this relation to select the relevant
part of the flows Fi and Fj . Note that the resulting flow F is indeed a subset of
(Var ∪ Pr) × (Var ∪ Pr).
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Example 2. Returning to Sect. 2, suppose that p1 performs the operation in1!v
for some value v and that m is ready to perform the operation in1?x1. The flow
constructed for one step of execution of p1 and m will then be

F1 = {(p1, in1), (p1, p1)}
F2 = {(in1, x1), (in1,m), (m, x1), (m,m)}

These two flows are then combined into a flow for the overall communication:

F = {(p1, x1), (p1,m), (p1, p1), (m, x1), (m,m)}

Here the first two pairs come from the flow through the channel, the third pair
comes from F1 and the last two pairs come from F2.

4 Security Policies

We now introduce our security policies. We start with so-called basic policies
for influencers and readers, where we borrow ideas from [17,18]. We extend on
DLM in that the basic policies are content-based thanks to a component for
value ranges. We next introduce so-called disjunctive policies that are sets of
basic policies; they are needed to deal with the challenges illustrated in the
multiplexer example in Sect. 2.

Basic Policies: Our basic policies provide information for each variable and
channel about the principals that might have influenced their values, about the
principals that might be allowed to read their values, and about their actual
value range. Formally, a basic policy P is given by three component mappings

Pi : Poli = (Var ∪ Ch) → Labi influencers
Pr : Polr = (Var ∪ Ch) → Labr readers
Pv : Polv = (Var ∪ Ch) → Labv value range

where Labi = ℘(Pr), Labr = ℘(Pr)op, and Labv = ℘(Val).
The orderings � on Labi, Labr and Labv are obtained from those of the

powersets: for Labi it is the subset ordering ⊆ on the powerset ℘(Pr) of prin-
cipals, for Labr it is the superset ordering ⊇ on ℘(Pr) (because the notation
℘(Pr)op indicates that the natural ordering is the opposite, or dual, of the one for
powersets), and for Labv it is the subset ordering ⊆ on ℘(Val). The orderings
are lifted to policy components and basic policies in a pointwise manner.

Flows Adhering to Basic Policies: Weshall nowdefineapredicate sec(P, F, P ′)
that specifies when a flow F adheres to the basic policies P and P ′; here P will be
the policy that is relevant before the flow F whereas P ′ is the policy that is rele-
vant after the flowF .Aswe shall seeP will primarily be used toprovide information
about the permitted readers whereas P ′ will primarily be used to provide informa-
tion about the permitted influencers.
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We define the predicate sec(P, F, P ′) by

∀(p, u′) ∈ F : p ∈ P ′
i (u

′) ∧
∀(u, u′) ∈ F : (Pi(u) � P ′

i (u
′) ∧ Pr(u) � P ′

r (u
′)) ∧

∀(u, p′) ∈ F : p′ ∈ Pr(u) ∧
∀y ∈ Var \ (snd(F )) : (Pi(y) � P ′

i (y) ∧ Pr(y) � P ′
r (y))

The first line of the definition of sec(P, F, P ′) ensures that the principals p
recorded as an influencer of the variable or channel u′ is indeed permitted to
be an influencer according to the resulting policy P ′. The third line is analogous
and ensures that the principal p′ recorded as a reader of the variable or channel u
is indeed permitted to be a reader according to the initial security policy P . The
second line extends these considerations to the flow recorded between variables
and channels. Note that the definition considers the constraints on influencers
and readers to go in opposite directions: the partial order � amounts to ⊆ in the
case of influencers and to ⊇ in the case of readers. This observation is central
for the duality between the treatment of influencers and readers in our infor-
mation flow type system; it expresses that it is always secure to remove readers
and to add influencers. The fourth line merely ensures that we only make secure
changes to the policies for variables not recorded in the flow: we may include
more influencers and we may remove some readers for these variables.

The definition of sec(P, F, P ′) simplifies a bit when F is a system flow F in
that u and u′ now only need to range over variables rather than variables and
channels.

Disjunctive Policies: We shall introduce disjunctive policies P to be finite sets
{P 1, · · · , Pm} of basic policies each having the three components P i

i ∈ Poli, P i
r ∈

Polr, and P i
v ∈ Polv as explained above. Intuitively, this corresponds to a disjunc-

tive formula of basic policies where each basic policy only uses conjunction.
The state σ of a configuration in the semantics will determine whether or

not a policy P of P applies in that configuration. We write σ |= Pv to mean
∀x ∈ Var : σ(x) ∈ Pv(x) and use Pv for the logical formula

∧
x∈Var x ∈ Pv(x).

We do not require that for each σ there exists P ∈ P such that σ |= Pv

because there may be states that do not conform to the desired policy. Also we
do not require that for each σ there exists at most one P ∈ P such that σ |= Pv

although this may be a natural property to arrange in many cases and may
make the subsequent development more intuitive. In fact, the notation would
come close to what could be expressed using a notion of dependent types which
would constitute a more intuitive interface for the industrial programmer.

Example 3. Returning to the motivating example we consider the disjunctive
policy {P1,P2} consisting of just two basic policies. For the channels the specifi-
cation is given already in Sect. 2 and for the variables it is given by the following
table (for i, j ∈ {1, 2}):
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xj y z
Pi
r {cj ,m, d} {c1, c2, d} {ci, d}

Pi
i {pj ,m} {m, d} {pi,m, d}

Pi
v Z {i} Z

When no explicit specification is given, the policy is the least restrictive, allowing
no influencers, all readers and all values. Note that the policy for y (and indeed
also ch.1) allows c1 as well as c2 to learn the outcome of the test on the first
component of the message exchanged over ch.

Systems Adhering to Disjunctive Policies: We are now ready to explain
when a system adheres to a disjunctive policy. We shall take a co-inductive app-
roach and formulate a self-simulation condition in the manner of bi-simulation.

It will be useful to consider systems together with their preconditions. We
shall write

{φ1 ∧ · · · ∧ φn}p1 :S1 || · · · || pn :Sn

for a system p1 : S1 || · · · || pn : Sn that is intended only to be started in a
state σ satisfying the logical formula φ1 ∧ · · · ∧φn. We shall require that the free
variables of the formula φi are contained in Varpi (the variables belonging to
the process pi) thereby ensuring that φi only applies to Si. The simplest choice
of φ1 ∧ · · · ∧ φn would be true ∧ · · · ∧ true and we sometimes abbreviate it to
true; the usefulness of considering other choices of φ1 ∧ · · · ∧ φn will emerge in
the next section.

Definition 1. A predicate R on systems with preconditions is a self-simulation
with respect to P whenever

R({φ1 ∧ · · · ∧ φn}p1 :S1 || · · · || pn :Sn)

implies that

∀σ, σ′, S′
1 · · · S′

n,F :
〈p1 :S1 || · · · || pn :Sn;σ〉 F=⇒ 〈p1 :S′

1 || · · · || pn :S′
n;σ′〉

⇓
∃φ′

1, · · · , φ′
n :

R({φ′
1 ∧ · · · ∧ φ′

n}p1 :S′
1 || · · · || pn :S′

n) ∧
∀P ∈ P : σ |= (φ1 ∧ · · · ∧ φn ∧ Pv)

⇓
∃P ′ ∈ P :σ′ |= (φ′

1 ∧ · · · ∧ φ′
n ∧ P ′

v) ∧ sec(P,F , P ′)

The self-simulation part of the definition expresses that for all states, when-
ever one system configuration evolves into another system configuration and
the first system is in the relation R for a certain precondition, then there is
an updated precondition for the resulting system ensuring that it also is in the
relation R. The last three lines of the definition put extra requirements on the
relationship between the states, preconditions, policies and flows: whenever the
initial state satisfies the preconditions and some policy from P applies, then
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there must be some policy in P such that the next configuration satisfies the
updated preconditions and the latter policy applies; furthermore, the observed
flow F has to be acceptable with respect to the two policies. These requirements
may be easiest to appreciate in the case where the policy set P satisfies that for
each σ there is at most one (or perhaps exactly one) P ∈ P such that σ |= Pv.

As in the case of bi-simulation it is immediate to show that any union of
self-simulations is itself a self-simulation. This allows us to define self-similarity
in the same co-inductive manner as used for bi-similarity:

Definition 2. Self-similarity (with respect to P) is the largest self-simulation
(with respect to P) and it is denoted |=P (or simply |=).

A system p1 :S1 || · · · || pn :Sn respects the disjunctive policy P whenever it
is self-similar:

|=P {true ∧ · · · ∧ true}p1 :S1 || · · · || pn :Sn

5 Type System and Correctness

Given a disjunctive policy we now specify a type system for ensuring that
processes and systems obey the policy and we prove that a well-typed system
respects the disjunctive policy. To deal with the value-range components of poli-
cies, the type system is combined with a Hoare logic for reasoning about the
values of variables [3,4]. We already mentioned that using a Hoare logic allows
to cleanly incorporate also the results of prior static analyses into the information
flow type system.

Type System: The Hoare logic part of the type system is fairly simple because
we use local variables and synchronous communication (in the manner of MILS
[21] and ARINC-811 [10]) rather than shared variables between processes [23].
The judgement of the type system for processes has the form

X �p {φ}S{φ′}

where X is a set of implicitly used variables, p is the name of the principal in
which the process S executes, and φ and φ′ are the pre- and post-conditions of S
in the form of logical formulae over program variables in Varp. (We shall assume
that each Varp is sufficiently big to account for all logical variables needed in
the Hoare logic.)

The definition is given in Fig. 3 and requires some auxiliary notation. Given
a set X ⊆ Var we then define the mappings Pi[X] and Pr[X] in Labi and Labr,
respectively, by taking least upper bounds over the variables in X; to be specific:

Pi[X] =
⋃

x∈X Pi(x) Pr[X] =
⋂

x∈X Pr(x)

In Fig. 3 we shall use Pr[a;X] as a shorthand for Pr[fv(a) ∪ X] and Pi[a;X] as
a shorthand for Pi[fv(a) ∪ X] and similarly for boolean expressions b instead of
arithmetic expressions a. This notation is often used in an expression of the form
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X �p {φ}skip{φ′} if ∀P ∈ P : φ ∧ Pv ⇒ φ′ ∧ p ∈ Pr[X]

X �p {φ}x := a{φ′} if ∀P ∈ P : φ ∧ Pv ⇒ ∃P ′ ∈ P :⎛
⎝ φ′[a/x] ∧ P ′

v[a/x] ∧
Pi[x 
→ Pi[a; X]] � P ′

i ∧ p ∈ P ′
i (x) ∧

Pr[x 
→ Pr[a; X]] � P ′
r ∧ p ∈ Pr[a; X]

⎞
⎠

X �p {φ}S1{φ′′} X �p {φ′′}S2{φ′}
X �p {φ}S1; S2{φ′}

X ∪ fv(b) �p {φ ∧ b}S1{φ′}
X ∪ fv(b) �p {φ ∧ ¬b}S2{φ′}

X �p {φ}if b then S1 else S2{φ′}
if ∀P ∈ P : φ ∧ Pv ⇒ p ∈ Pr[b; X]

X ∪ fv(b) �p {φ ∧ b}S{φ}
X �p {φ}while b doS{φ ∧ ¬b} if ∀P ∈ P : φ ∧ Pv ⇒ p ∈ Pr[b; X]

X ∪ X0 �p {φ}S{φ′}
X �p {φ}{X0} S{φ′}

X �p {φ}ch!a1..ak{φ′} if ∀P ∈ P : φ ∧ Pv ⇒ ∃P ′ ∈ P :⎛
⎝ φ′ ∧ P ′

v ∧ ∧
i≤k ai ∈ P ′

v(ch.i) ∧
Pi[(ch.i 
→ Pi[ai; X])i≤k] � P ′

i ∧ ∧
i≤k p ∈ P ′

i (ch.i)
Pr[(ch.i 
→ Pr[ai; X])i≤k] � P ′

r ∧ ∧
i≤k p ∈ Pr[ai; X]

⎞
⎠

X �p {φ}ch?x1..xk{φ′} if ∀P ∈ P :
(

(∃x1..xk.φ ∧ Pv) ∧∧
i≤k xi ∈ Pv(ch.i)

)
⇒ ∃P ′ ∈ P :⎛

⎝ φ′ ∧ P ′
v∧

Pi[(xi 
→ Pi[ch.i; X])i≤k] � P ′
i ∧ ∧

i≤k p ∈ P ′
i (xi)

Pr[(xi 
→ Pr[ch.i; X])i≤k] � P ′
r ∧ ∧

i≤k p ∈ Pr[ch.i; X]

⎞
⎠

X �p {φ}S1{φ′} X �p {φ}S2{φ′}
X �p {φ}S1⊕ S2{φ′} if ∀P ∈ P : φ ∧ Pv ⇒ p ∈ Pr[X]

X �p {ψ}S{ψ′}
X �p {φ}S{φ′} if (φ ⇒ ψ) ∧ (ψ′ ⇒ φ′)

Fig. 3. Type system for processes.
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Pr[x 
→ Pr[a;X]] that denotes P ′
r defined by P ′

r (u) = Pr(u) whenever u �= x and
P ′
r (x) = Pr[a;X] and similarly for Pi[x 
→ Pi[a;X]].

Most axiom schemes and rules in Fig. 3 strengthen a precondition of the
form φ to the formula φ ∧ Pv that allows us to use the value-range information
from the appropriate basic policy in P. With the exception of assignment, input
and output, most axiom schemes and rules demand that the strengthened pre-
condition ensures that the principal p is correctly recorded as a reader of the
variables whose values are either used implicitly (typically by being a member
of the set X) or explicitly (typically fv(b)). As an example, the axiom scheme
for skip illustrates both points.

The axiom scheme for assignment is more complex because the state of the
system changes. It therefore considers all basic policies P whose value-range
component is consistent with the (strengthened) precondition and demands that
there is a basic policy P ′ that appropriately records the state change. The pat-
tern ∀P ∈ P : (· · · ) ⇒ ∃P ′ ∈ P : (· · · ) takes care of this and is in line with
the definition of self-simulation. The first line of requirements ensures that the
strengthened precondition establishes the formulae obtained from the strength-
ened postcondition by mimicking the effect of the assignment; the use of a
substitution [a/x] on a logical formula is classical for Hoare logic (when using
the weakest precondition approach). To be explicit, the notation Pv[a/x] means
a ∈ Pv(x) ∧ ∧

y∈Var\{x} y ∈ Pv(y). The second line of requirements ensures that
the new policy P ′ records all the influencers of the variable assigned due to both
implicit use of variables in X and explicit use of variables in a; additionally it
ensures that the influence on the principal p is recorded in the new policy P ′.
The third line of requirements ensures that the new policy P ′ records all the
readers of the variable assigned due to both implicit use of variables in X and
explicit use of variables in a; additionally it ensures that the reading within p of
X and a is recorded in the original policy P .

Once again note that the partial order for influencers is such that it is always
secure to add influencers, that the partial order for readers is such that it is
always secure to remove readers, and that the semantic underpinning of these
statement is expressed by sec(P, F, P ′) (and Theorem 1 below).

The axiom schemes for output and input are easiest to understand if ch!a
is thought of as ch := a and ch?x is thought of as x := ch. The rule for input
differs from assignment in that the pure Hoare logic component takes a strongest
postcondition approach (as opposed to the weakest precondition approach used
for assignment). The remaining axioms are rather standard from a Hoare logic
point of view.

The type system is lifted to systems as follows:

∅ �p1 {φ1}S1{true} · · · ∅ �pn {φn}Sn{true}

�P {φ1 ∧ · · · ∧ φn}p1 :S1 || · · · || pn :Sn

where we once more require that the free variables of the formula φi are contained
in Varpi (the variables belonging to the process pi) thereby ensuring that φi only
applies to Si.
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Example 4. Returning to the motivating example we shall now highlight some
of the steps in proving that the overall system guarantees the disjunctive security
policy P = {P1,P2}. To establish the judgement

∅ �m {true} ch!(1, x1) {true}
we will choose P ′ to be P1 independently of whether P is P1 or P2. To establish
the judgement

∅ �d {true} ch?(y, z) {true}
we will choose P ′ to be equal to P . Finally, to establish the judgement

{y} �d {y = 1} out1!z {y = 1}
we use the precondition y = 1 together with y ∈ Pv(y) to conclude that, even
though we only seem to know that P ∈ {P1,P2} it must be the case P = P1, and
we can therefore choose P ′ = P1 and complete the proof.

Correctness Results: Our overall correctness result shows that well-typed
programs satisfy self-similarity:

Theorem 1. If �P {true}Sys then |=P {true}Sys.

The proof is by directly showing that typability is a self-simulation:

Proposition 1. �P is a self-simulation with respect to P.

Among other things this establishes a subject reduction result (saying that typing
is preserved under evaluation).

6 Conclusion and Future Work

We have extended basic discretionary information flow policies for readers (con-
fidentiality) and influencers (integrity) to be dependent on content (values) and
have introduced disjunctive information flow policies to facilitate the content-
dependent shift between basic policies.

Our approach has been motivated by the challenges of the avionics gateway
(as illustrated by the multiplexer example in Sect. 2) suggested by the avion-
ics partners in the European Artemis Project SESAMO. Prior attempts at using
DLM uncovered a number of weaknesses of information flow policies that are not
able to incorporate content; however, the explicit use of security labels denot-
ing readers and influencers were considered extremely relevant. This motivated
our combination of Hoare logic assertions with classical security labels (unlike
approaches like [1] that do not admit classical security labels) and our introduc-
tion of disjunctive policies. We are currently working on developing annotations
for avionics software in C using dependent types and restricted logical formulae
as an interface to the underlying disjunctive information flow policies.

We developed a combined Hoare logic and type system (Sect. 5) for verifying
whether a system adheres to the specified disjunctive policies. Apart from the



Hoare Logic for Disjunctive Information Flow 63

technical convenience of using a Hoare logic as the basis of a type system it also
facilitates incorporating the results of prior static analyses into the information
flow type system; this is needed in order to interact with the approach of indus-
trial users. To obtain a stronger type system it would be useful to strengthen
the rule of consequence to admit analysis by cases

X �p {φ1}S{ψ1} X �p {φ2}S{ψ2}

X �p {φ}S{ψ}
if (φ ⇒ φ1 ∨ φ2) ∧ (ψ1 ⇒ ψ) ∧ (ψ2 ⇒ ψ)

although we are not going to claim any (relative) completeness results for the
combined Hoare logic and type system. For practical use one would need to
limit the logical assertions to a restricted format so as to support efficient type
inference.

The development has been performed for concurrent systems with synchro-
nous communication and local memory as required by MILS [21] and ARINC-
811 [10]. In addition to extensions with bypassing security policies it would be
feasible to add polymorphism of annotations, add a principal hierarchy, incorpo-
rate procedures and methods, borrowing from DLM and other information flow
policies.

Our semantic justification was based on an instrumented operational seman-
tics in the manner used in static program analysis (Sect. 3). It provided a semantic
interpretation that makes it clear that opposite directions of flow are appropriate
for confidentiality and integrity, and hence agrees with the intuition about the
duality of readers (always safe to remove some) and influencers (always safe to
add some) in information flow type systems. Based on this we took a co-inductive
approach to defining self-similarity (Sect. 4) borrowing from the development of
bi-simulations. Our main correctness results showed that typability suffices for
self-similarity (Sect. 5). Technically the proof amounted to showing that typa-
bility is itself a self-simulation.

This approach should not be seen as a dismissal of the value of a non-
interference result (meaning that the system is contained in the reflexive part
of a notion of bi-simulation). However, non-interference results are not easy to
“get right” as is discussed at length in [7] and adding concurrency only adds to
the complexities [14]: should non-interference be termination-sensitive, should it
be timing-sensitive, etc. In particular, the approaches of [1,11] do not directly
carry over because they do not deal with concurrent systems. While a non-
interference result would be a welcome additional development, we would like to
follow [7] in letting the non-interference result provide a stronger basis for the
instrumented semantics rather than being the primary mechanism for ensuring
the correctness of the type systems. This approach is in line with the research
in programming languages where the vast majority of program analyses are for-
mulated with respect to an understanding of program behaviour comparable
to our instrumented semantics; looking for further justification is possible and
considerations similar to those of non-interference are appropriate [19].
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The exposition provided in this paper is a simplification of our formal devel-
opment that has been checked using the Coq proof assistant (including the moti-
vating multiplexer example of Sect. 2).
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