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Pierpaolo Degano, after 117 pages of proofs



Preface

This Festschrift volume mainly contains 22 refereed research papers and one extended
abstract by close collaborators and friends of Pierpaolo Degano to celebrate him on the
occasion of his 65th birthday.

The foreword of this volume includes a laudatio illustrating the distinguished career
and the main scientific contributions by Pierpaolo and a portrait of him made by one of
his closest friends. The following sections are dedicated to the scientific papers on the
main research topics explored by Pierpaolo and still under his investigation.

Pierpaolo has worked on a large variety of topics including formal program
semantics, concurrency theory, systems biology and security, and much more.

Each contribution was carefully reviewed by one or two readers. The editors would
like to thank the several anonymous individuals for their assistance.

A preliminary version of this volume has been presented to Pierpaolo on June 19,
2015, during a one-day colloquium held in Pisa at the Department of Computer
Science.

Five eminent scientists and also friends of Pierpaolo gave their invited talk on that
occasion. We thank Ugo Montanari, Martín Abadi, Luca Cardelli, Joshua Guttman, and
Flemming Nielson for having accepted our invitation. Their contributions can be found
after the laudatio and the portrait of Pierpaolo.

We also would like to thank the Department of Computer Science and the
University of Pisa for their logistic support in the organization of the Colloquium.

With this book we want to celebrate Pierpaolo’s vision, beside his achievements,
and also to witness the great esteem and favor he has in the academic community.

August 2015 Chiara Bodei
Gian-Luigi Ferrari

Corrado Priami
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Pierpaolo Degano

Chiara Bodei1(B), Gian-Luigi Ferrari1, and Corrado Priami2

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
chiara.bodei@unipi.it

2 Dipartimento di Matematica, Università di Trento, Trento, Italy

1 The Man

Pierpaolo was born in 1950 in Udine, where he received the Hapsburg imprinting
he has always originally combined with his unpredictable nature. In 1969 he came
to Pisa to study Computer Science unaware that he would be soon adopted by
that little town, where people are generally often suspicious of strangers – but
sometimes they could can surprise you – and where so many students coming
from any part of Italy met and interact for a handful of years before entering
their adult life. The Pisan Laurea curriculum in Computer Science, founded in
1969 by the Faculty of Science, with the substantial boost of the then rector
Alessandro Faedo, has been the first in Italy. Most of the people did not believe
in this new curriculum, but they were very soon forced to change their mind: at
least 600 students attended that course, included Pierpaolo.

Pierpaolo was fascinated by the professors and by their pioneering work. He
was in particular mesmerized by professors Antonio Grasselli and Ugo Montanari.
Pierpaolo got his Laurea degree in 1973 under the supervision of Ugo Montanari in
Computer Science in Italy (till the first one founded in 1983 in Pisa), thus entering
and then greatly contributing to one of the most fertile academic family trees of
Italian Computer Science.

After his graduation (in Italy there were no PhD program at that time)
Pierpaolo got a temporary position at Istituto di Elaborazione dell’Informazione
(IEI) of the Italian Research Council (CNR). He moved at the University of
Pisa as assistant professor in 1981 and as associate professor in 1989. In 1990
he became full professor at the University of Parma in 1990 and then, back
again, in 1993 at the University of Pisa, where he served as head of Department
until 1996.

Besides his research activity, which is better illustrated in the next section,
it is worth mentioning his passion for teaching and his clear speech. His lectures
are careful and at the same time appealing, because Pierpaolo is able to make
also a structural operational semantic rule interesting and he is also capable to
hold the attention of students with witty remarks coming in the right moment.
Someone swears of having seen Pierpaolo somersaulting to reach the teacher’s
desk on the top of its platform, with students clapping with enthusiasm.

The same passion, along with a huge supply of patience, has been lavished
in educating and training the students he has supervised. Hours dedicated to
Socratically drive the minds of his students in creating new abstract conceptual
c© Springer International Publishing Switzerland 2015
C. Bodei et al. (Eds.): Degano Festschrift, LNCS 9465, pp. 1–6, 2015.
DOI: 10.1007/978-3-319-25527-9 1



2 C. Bodei et al.

frameworks in order to solve problems (the biggest challenge computer scientists
have to face) and more hours dedicated to drive the young untrained capacities
of his students in putting together reasonable proofs of non trivial statements.

Pierpaolo contributed to found and organize the PhD program in Computer
Science that, as we have just mentioned, was the first in Italy. Furthermore,
he is member of the Scientific Committee of the Post-Graduate School “Galileo
Galilei” since 2001 and its vice-president since 2002. He is the chairman of PhD
program in Computer Science since 2006 as well as the national coordinator
of the Italian PhD programs since 2007. Pierpaolo has been also president of
GRIN (Associazione Nazionale dei Professori di Informatica) from 1999 to 2003,
association he contributed to found. He is the chairman of IFIP Working Group
1.7, Theoretical Foundations of Security Analysis and Design.

He has been responsible for several research projects both national and inter-
national, scientific coordinator of many PhD schools, among the organizers of
various international conferences, as well as member of the editorial board of
national and international journals. He is currently a member of the Scientific
Council of the Microsoft Research - University of Trento Centre for Compu-
tational and Systems Biology. He also did research at leading universities and
research institutes, such as the École Normale Supérieure in Paris, the CWI of
Amsterdam and the University of Rennes.

2 His Research

It is quite a difficult task to give, in a few words, a complete account of the
rich and varied scientific production of Pierpaolo, whose beginning dates back
to 1979 and that counts, at the moment, around 200 scientific papers published
in refereed journals and in conference proceedings (without considering several
edited volumes). His research mainly concerns the semantics of concurrency,
the languages for distributed and mobile systems, and the techniques for the
verification of programs. He also tackled the application of formal methods to
the area of security, biological systems and adaptive systems.

He initially worked on theorem proving [38] and contributed to the unifi-
cation of logic and functional programming [1,7] but he soon devoted himself
to what has been the thread running through his entire scientific production:
the foundations of concurrency and distribution. Pierpaolo has made key contri-
butions to this field of research. Among them, only to name a few, we cite the
formalization of fairness as convergence in metric spaces [32]; synchronized graph
rewriting [33] modeling distributed systems; pioneering work on the partial order
and causal semantics of concurrent processes [24–28]. We also recall the introduc-
tion of causal trees [23] - a concurrent model able to faithfully express causality,
although being an interleaving model. After causal trees, proved trees [34] were
introduced, a parametric model to extract different types of concurrent seman-
tics. In the Nineties Pierpaolo Degano dedicated his investigation to causality
and to enriched semantics able to capture causality along with other concur-
rent properties [15,35,36]. At the end of the decade his research moved to the
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area of Control Flow Analysis. Pierpaolo is among the researchers who were the
forerunners to apply this static technique to process algebras, in order to verify
the security properties of models of distributed systems. In this period some
of his works [9,13] quickly became relevant in the whole area of security. To
security also belong the works in [8,10,11,14,16,31,39,40]. Since the early years
of the beginning millennium Pierpaolo Degano joined the new line of research
of systems biology, by applying the semantics of concurrency to biological sys-
tems [21,22,37], for instance with the aim of detecting the minimal genome of
a virtual cell [19,20] or of obtaining the first stochastic and discreet description
of synapses [17,18]. Recently his research activities focussed on the foundations
of secure service composition [2,3], usage policies [4,5], contract-based design [6]
and adaptive and pervasive systems [12,29,30]. The common thread of these
research activities is that appropriate security models are mandatory to ensure
that secured information is not shared intentionally in a way that compromises
the security goals and the concerned systems.

Summary. Pierpaolo Degano is a nice person, a first class scientist and teacher, a
discrete, but strong, efficient and reliable scientific leader and organizer, actively
supporting the young people and institutions crucial for our work and our area.
He is therefore esteemed and respected by colleagues, students, and friends all
over the world.

3 His Students

In the following pages, we list those among Pierpaolo’s students who have been
supervised by Pierpaolo for a PhD or for a Laurea (when the Ph.D. programme
was not yet well-established in Italy). Many of them are now active in universities
or in research centers, in Italy and abroad. And they have descendants as well,
still reported in our list. We are very glad that many of the people listed below
participated in the Festschrift celebration and also contributed to this volume.

1. Roberto Gorrieri - (with U. Montanari) - Università di Bologna
(a) Nadia Busi - Università di Bologna
(b) Riccardo Focardi - Università di Venezia

i. Matteo Maffei - Saarland University
ii. Matteo Centenaro - Università di Venezia
iii. Marco Squarcina - PhD student at Università di Venezia

(c) Marco Bernardo - Università di Urbino
i. Edoardo Bontà - Università di Urbino

(d) Gianluigi Zavattaro - Università di Bologna
(e) Mario Bravetti - Università di Bologna
(f) Alessandro Aldini - Università di Urbino
(g) Roberto Lucchi - Università di Bologna
(h) Claudio Guidi - Università di Bologna

2. Corrado Priami - Università di Trento; The Microsoft Research - University
of Trento Centre for Computational and Systems Biology
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(a) Linda Brodo - Università di Sassari
(b) Davide Prandi - Università di Trento
(c) Claudio Eccher - FBK Trento
(d) Radu Mardare - Aalborg University, Denmark
(e) Paola Lecca - University of Trento
(f) Federica Ciocchetta
(g) Debora Schuch da Rosa Machado - Natura, São Paulo, Brazil
(h) Maria Luisa Guerriero - Senior Scientist (physiological modeller) at

AstraZeneca
(i) Sean Sedwards - INRIA Rennes
(j) Alessandro Romanel - Università di Trento
(k) Lorenzo Dematté - Servizi ST, Trento
(l) Michele Forlin - Università di Trento

(m) Roberto Larcher - Software Engineer, Trento
(n) Alida Palmisano - National Cancer Institute, Biometric Research Branch
(o) Judit Zamborszky - Hungarian Academy of Sciences
(p) Nerta Gjata

3. Chiara Bodei - Università di Pisa
(a) Dung Dinh (with G. Ferrari)

4. Stefano Basagni (moved to Milan and Austin) - Northeastern University
(a) Luke Demoracski
(b) Rituparna Ghosh

5. Jean-Vincent Loddo (moved to Paris) - Université Paris 7
6. Michele Curti - Project Manager at SM Scientia Machinale
7. Massimo Bartoletti (with G. Ferrari) - Università di Cagliari

(a) Tiziana Cimoli - Università di Cagliari
(b) Alceste Scalas - Università di Cagliari

8. Roberto Zunino - Università di Trento
(a) Thanh Hong Vo - The Microsoft Research - University of Trento Centre

for Computational and Systems Biology
9. Davide Chiarugi (with M. Falaschi) - Max-Planck-Institute of Colloids and

Interfaces
10. Gabriele Costa - Università di Genova
11. Davide Cangelosi - Ospedale Gaslini (Genova)
12. Letterio Galletta (with G. Ferrari) - Post-Doc Università di Pisa
13. Gianluca Mezzetti (with G. Ferrari) - Post-Doc Aarhus University (DK)
14. Davide Basile (with G. Ferrari) - PhD student at Università di Pisa
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We were young, very young...
we had many dreams...
we had a long time, ahead...
we had no conditioning from the past...
we had the songs of Bob Dylan...
we were in the very early seventies.

1 Close Encounters

1.1 Encounter of the First Kind (when I Saw him)

It was a cloudy and cold evening in a rainy winter, as unusual in Pisa, where
a few days in the year present very low temperature; but, rain and clouds, all
the time... During the third year of my course of study in Physics, when I had
just found that Physics was not the long list of rules that my Teacher in High
School presented to us, poor pupils, I and two colleagues of mine, Mauro and
Carla, were performing very strange and difficult experience in Electronics. In
my small Group there was a tiny and nice maid from Lucca, one of the more
enchanting towns in Tuscany. She had been very careful, up that time, in our
measurements and the following data analysis; but, in the last days, something
appeared in her behaviour that made us to suspect some problem.

And in that dark evening I discovered the problem, simply giving a look out
of the window of our Lab, downstairs, on the road, where I saw a strange, skinny
guy, with long hair and bell-bottoms pants: he was waiting for the arrival of our
friend, Carla, who stopped her analysis to run down, in the arms of that strange
young man.

1.2 Encounter of the Second Kind (when I Heard him)

Some days later, I was walking just after the usual lunch at the students “Mensa”
(canteen), together with my colleague, Mauro. He was also my companion during
the High School studies, in the same small town, Piombino, that lies on the sea
cost, just in front of that wonderful paradise called “Arcipelago Toscano”, with
Elba Island and other seven sisters... We entered a Cafè, the most famous in
Pisa, haunted by students, called “Battellino”, that prepared the best quality
coffee in the town; we sat around a table, where we met two girls, also students
in Physics, but one year younger than us, R. and E. We started to discuss
c© Springer International Publishing Switzerland 2015
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about... something, I don’t remember what; but, suddenly, I heard very close
the voice of Carla that was talking with a guy who had his back to us. So I only
succeeded in hearing the voice of this guy, that, because of the long long hair
I supposed he was the same of some evenings ago. The place was really small,
smoky and noisy, but it was quite easy to distinguish the strange accent of this
guy. Perfect italian, also syntactically, and a reach vocabulary; but the accent
sounds very foreign! But, also, something sounded ancient and familiar to my
ears. Word after word, sentence after sentence, this mystery was explained to
me: the accent was the same of my mother, born in the town of Fiume (now
Rijeka, in Jugoslavia, at that time), but in Italy, when my grandfather was there
and met my grandmother. At this point, I was driven to meet and know that
guy, and to try to understand why he was so far from his town. But in a few
seconds, Carla and he disappeared in the rainy outdoor.

1.3 Encounter of the Third Kind (when I Touched him)

Many days after, may be there was a wonderful weather, as sometimes it happens,
also in Pisa, Carla and I were walking towards the Physics Institute, in Piazza
Torricelli, a very, very small square in Pisa down-town, hoping to meet others
colleagues to discuss some recent social events, very dramatic, that had upset
the already troubling political life in Italy, in that time: the early seventies. Just
before the entrance, I saw the same strange guy of the previous evenings, and I
recognized him at once: hair longer than I supposed, but eyes so bright and so
intense a gaze that I stopped to pronounce my jokes, as usually, waiting for his
first move. His first move, so, was a very strong handshake, to which, I answered
with the same strength, as usual. So, the first simple ordinary words: “How are
you?”, “What are you studying, here, in Pisa?”, “Where are you from?”. And
so, I discovered that it was really Computer Science that led Pierpaolo to Pisa.
And now, he is still here...

2 Lively Discussions

Well, I am sure that there are no subject, no argument, on which Pierpaolo
and I didn’t spent time, a lot of time, discussing; and, of course, from different
positions and opposite points of view, even if we have, substantially,... the same
opinions about the most part of arguments! Music, literature, politics, acad-
emic life, school of our children, place to spend holidays, the quality of a wine...
Therefore: discussion for the only pleasure to discuss, to push our criticism a bit
forward, and to know ourselves better and better. So, sometimes, we started to
defend opposite positions, independently from our own, deep, opinions. Discus-
sions with Pierpaolo is a creative experience, stimulating my best qualities; in
fact, his way to sustain his opinions is strongly rational, and logical, even if with
a large amount of emotional ardor. This doesn’t avoid to reach, often, a hard
contrast between the positions that are, sometimes, rather similar! Very inter-
esting! But, however, at the end, you can be sure to find a glass of good wine.
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And his deep, sincere smile; ironic sometimes. Just for example, I can remember
a vexata questio: was the music of Mozart romantic, or not? How many times
we started to discuss, without reaching a common opinion! From music to lit-
erature, and back again, with Beethoven, Haydn, Schubert, but also Goethe, as
testimonial of our opposite positions!

3 A Great Friend

Pierpaolo (although he is a Colleague of mine!), is one of my best friends, what-
ever meaning one will give to this wonderful word. Friend since more than 40
years, during the which we spent together many intense experiences, happy the
most, but also some dramatic. And after every moment, our friendship appeared
stronger and stronger. The friend Pierpaolo and his dear wife Carla, with their
fantastic daughter Ila, were very close to me in some dramatic moments of my
life. And their help has been really fundamental for my Family. It’s easy, and a
pleasure, for me remember the period when I was preparing my thesis in Physics,
period full of news into my life: the discovery, finally, that Physics, the exper-
imental physics is a very exciting and challenging field where one can find the
measure of his own will, and intelligence, of his ability, and a valid objective of
the life. Also new friends, in a new country, Switzerland and France, in a new
Lab., the most important in world for Physics, i.e. CERN, in Geneva. But when
finally, the moment of writing and typing the results of a two years work arrived,
again the friend was close to me, with a marvelous, red IBM typewriter (similar
to the famous RED IBM...), giving suggestions, helping in writing and correct-
ing the many pages that, one after one, were accumulated on the table; during
the night, during the sundays. But the most important contribution I received
from Pierpaolo, in that period, was in relation to decision, the hot decision, that
I had to take: to present the data already collected, as soon as possible, even
though they do not definitively probe the new ideas, or, otherwise, to delay the
completion of my thesis until the complete collection of the data that amounted
to at least six months. Pierpaolo said to me: “After two years of work, at the
beginning of a new academic year, it is better to put the word ’end’ to this work.
If you want to follow the complete results, you can remain still a few months,
but as a Doctor, no more as a Student”. And so I did. But, those few months
have become 40 years, the data were collected, analysed, and other experiments
were done; and now, when I’m approaching the date to retire, I am sure that
Pierpaolo’s advice was really good! And it is one of the best I ever received. But
not the alone advice Pierpaolo gave to me... The second one, unfortunately, can-
not be discussed here in details... It must be sufficient hint that if I’m a happy
husband and father, well, I have to thank a bit both Pierpaolo and Carla, and
this is a big deal.



Distributed Authorization with
Distributed Grammars

Mart́ın Abadi(B), Mike Burrows, Himabindu Pucha, Adam Sadovsky,
Asim Shankar, and Ankur Taly

Google, Mountain View, CA, USA
distrib-auth-grammar@google.com

Abstract. While groups are generally helpful for the definition of autho-
rization policies, their use in distributed systems is not straightforward.
This paper describes a design for authorization in distributed systems
that treats groups as formal languages. The design supports forms of
delegation and negative clauses in authorization policies. It also consid-
ers the wish for privacy and efficiency in group-membership checks, and
the possibility that group definitions may not all be available and may
contain cycles.

1 Introduction

Groups provide a useful level of indirection for authorization policies, in partic-
ular those described by access control lists (ACLs). When ACLs refer to groups,
the ACLs can be simple and short. For example, an ACL may permit access to
all principals in the group FriendlyClients, which itself consists of users in the
group Friends with devices in the group Devices via programs in the group
TrustedApps. The definitions of these groups can be managed separately from
the ACL, and shared by many other ACLs (e.g., [6]).

In distributed systems, the use of groups is not straightforward (e.g., [4,5]).
First, it requires a distributed scheme for naming groups. Even with such a
scheme, group definitions may not all be available at the time of an ACL check;
they may have unintended consequences or circularities that no single participant
in the system can detect locally; and the entities that control them may not all be
equally trusted. In addition, lookups of group membership may incur the costs
of remote communication; and, in general, there is no guarantee of atomicity
of lookups across groups. Finally, the lookups need to be secure and provide
appropriate privacy guarantees. No universal solution to these difficulties seems
likely to emerge because each system faces different trade-offs and constraints.

This paper describes a design for access control with groups in a new set
of libraries, tools, and services that aim to simplify the process of building dis-
tributed applications. Our design supports forms of delegation, via local names.
It also supports negative clauses in ACLs, with a conservative semantics when
group definitions are not available or contain cycles. Moreover, it addresses the
wish for privacy and efficiency in group-membership checks—at least in the
c© Springer International Publishing Switzerland 2015
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sense that the dissemination of group memberships occurs in response to rele-
vant queries, not promiscuously.

In this setting, each principal is identified with a public key, but it typically
has one or more human-readable names, which we call blessings.1 Concretely,
these blessings are granted in public-key certificate chains bound to the prin-
cipal’s public key. For example, a television set owned by a principal with the
blessing Alice may have the blessing Alice/TV. Here, TV is a local name, which,
much as in previous systems and languages for security (e.g., [2,7]), any principal
can generate and apply autonomously. Principals may have multiple blessings,
each reflecting the principal that granted it. For example, the same television
set may also have the blessing SomeCorp/TV123 from its manufacturer.

Blessings are the basis for authentication and authorization. Specifically, the
“Bless” operation allows a principal to extend one of its blessings and create a
blessing bound to another principal’s public key, thereby delegating the author-
ity associated with the blessing. For example, an ACL may include the clause
Allow Alice/TV, so that all principals with a blessing that matches Alice/TV
will have access to the object that the ACL protects, and a principal with the
blessing Alice may choose to grant the blessing Alice/TV to its television set.
In practice, the delegation of authority is seldom unconditional. Caveats [1] can
restrict the conditions under which blessings are usable, for instance limiting
their validity to a certain time period; we do not discuss these caveats further
in this paper, since their generation and validation precedes the access-control
checks on which we focus.

Our design supports groups that contain not only atomic names such as
Alice and TV, but also longer, compound blessings such as Alice/TV. Fur-
thermore, the definition of a group may refer to other groups at the top level
(e.g., “Friends includes OldFriends”) and as part of compound blessings (e.g.,
“FriendlyClients includes Friends/Devices/TrustedApps”). An important
theme of the design is to regard groups as formal languages, with group defi-
nitions inducing grammar productions. Unlike in traditional formal languages,
however, the grammar productions are distributed, so we have to consider con-
cerns such as communication costs, availability, and privacy. The analogy is
helpful despite these differences.

By now, many other systems support distributed authorization, in various
ways. On the other hand, the combination of local names, groups, and nega-
tive clauses is, to our knowledge, rather uncommon and subject to limitations.
Beyond the immediate value of our work, we hope that it contributes to shedding
light on some of the difficulties and options for systems with these features.

1 Strictly speaking, the term blessing refers to a certificate chain, and the term blessing
name refers to the human-readable name specified in the certificate chain. Blessing
name is often abbreviated to blessing when there is no risk of confusion, as in the
present paper. Below, we use the term blessing rather broadly: we consider that /-
separated sequences of names n1/ . . . /nk are blessings even when they might never
be related to public keys.
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The next section introduces the definitions of blessings, groups, ACLs, and
related concepts. Section 3 gives a semantics to blessing patterns. Section 4 pro-
vides a simple but impractical definition of the semantics of ACLs, as a speci-
fication. Section 5 then outlines a distributed implementation of this semantics.
Section 6 elaborates on the rationale for one delicate aspect of the semantics of
ACLs. Section 7 concludes.

2 Basics: Blessings, Groups, and ACLs

In this section, we define blessings, ACLs, and also blessing patterns, which are
generalizations of blessings that allow references to groups.

2.1 Ordinary Names and Group Names

We assume a set of group names, and a disjoint set of other names that we call
ordinary names. We let g range over group names, and n over ordinary names.

In our implementation, ordinary names and group names have quite different
forms and usages. In particular, each group name suffices for determining an
appropriate server who can answer questions about the group and for querying
that server. On the other hand, ordinary names are fundamentally local names,
simple strings that can be interpreted differently across a system. They may
refer to a variety of entities (users, services, programs, program versions, . . . ).
They may however be subject to conventions.

2.2 Blessings and Blessing Patterns

The syntax of blessings and blessing patterns is given by the following grammar:

B ::= n blessings
| n/B

P ::= n blessing patterns
| g
| n/P
| g/P

Here, B ranges over blessings and P over blessing patterns; / is a binary operator
for forming blessings and blessing patterns. Thus, a blessing is a non-empty
sequence of ordinary names, separated by /, while a blessing pattern is a non-
empty sequence of ordinary names and group names, separated by /. We take /
to be associative.

For example, if Alice and Phone are ordinary names and Friends and
Devices are group names, then:

– Alice and Alice/Phone are blessings, and they are also blessing patterns;
– so are Alice/Alice, Phone/Phone, and Phone/Alice, though they are not

necessarily meaningful—we do not have a type system or other constraints
that would prevent such expressions;
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– Friends, Friends/Phone, Alice/Devices, and Friends/Devices are all
blessing patterns, but not blessings.

We write AllBlessings for the set of all blessings. When B and B′ are bless-
ings, we write B � B′, and say that B is a prefix of B′, if the sequence of names
in B is a prefix of that in B′. We take this prefix relation to be reflexive, not
strict; that is, every blessing is a prefix of itself.

We often have to manipulate lists of blessings and lists of blessing patterns.
In particular, below, lists of blessings are an input to ACL checks; lists of blessing
patterns appear in group definitions. Therefore, we introduce syntactic categories
for them:

M ::= empty lists of blessings
| B, M

L ::= empty lists of blessing patterns
| L, P

We use the constant empty to represent the empty list, and use comma as a
binary operator for forming lists. We often omit empty, and for example may
write the list empty, Alice, Bob as Alice, Bob.

2.3 Groups

Group names are of two sorts: those for built-in groups and those for defined
groups. In both cases, a group can be thought of as a set of blessings.

Built-In Groups. Some groups are provided by the underlying platform, so do
not require extensional definition. The set of all blessings, to which we refer by
the name AllBlessings, is an example. Another example—of much narrower
interest—might be the set of blessings of the form n1/n2 such that n1 identifies
a sports team in a particular league and n2 identifies one of the players in n1’s
roster. We write BuiltInGroups for the set of names of these built-in groups.

In general, built-in groups may be implemented by fairly arbitrary pieces
of code that answer, in particular, membership queries. Below we discuss the
interface that such code should provide.

Formally, we assume a function Elts that maps each g ∈ BuiltInGroups to
a set of blessings (intuitively, the elements of g). In this paper, for simplicity,
the function Elts is fixed—in particular, independent of who computes it and
of the definitions of defined groups. For instance, we let Elts(AllBlessings) =
AllBlessings. As in this case, a set Elts(g) may be infinite.

Defining Groups. Other group names may be associated with definitions that
equate a group name with a list of blessing patterns:

g =def L
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Given a set DefSet of definitions {g1 =def L1, . . . , gk =def Lk}, we require
that the group names gi be pairwise distinct and distinct from elements in
BuiltInGroups. As long as each group name is associated with a server, this
requirement is easy to enforce in a distributed manner.

On the other hand, we do not require the absence of cycles in the definitions,
primarily because we do not count on being able to enforce this requirement in a
distributed manner. Secondarily, some simple cycles may occasionally be useful.
For example, the definitions

Gadgets =def TV, Devices
Devices =def Phone, Gadgets

have the effect of equating Devices with Gadgets while allowing two different
servers to include TV and Phone in this group. As another example, the definition

DeviceChains =def Devices, Devices/DeviceChains

lets DeviceChains consist of blessings formed by sequences of elements of the
group Devices. So, we may warn about cycles, and we may discourage their use,
but we aspire to provide a clean, helpful semantics at least for simple cycles, and
a conservative semantics for all cycles.

We allow the possibility that some group names are neither in BuiltInGroups
nor have a definition (at least not an available definition). We aim to provide a
conservative semantics for those names.

Time. Both the code associated with built-in groups and the definitions associ-
ated with other group names may change over time. They may even change during
an ACL check. Correctness expectations may have to be relaxed accordingly (for
example, so as to allow reordering queries to servers.) Although the definitions and
algorithms presented in this paper are mostly silent on this matter, we discuss it
briefly in Sect. 5.4.

2.4 ACLs

An ACL is a list of clauses, each of which permits or denies access to principals
that present blessings that match a particular blessing pattern:

A ::= empty ACLs
| A, Allow P
| A, Deny P

Our present implementation requires that all Allow clauses precede all Deny
clauses, but this paper treats a more general syntax with arbitrary alternations.

Our semantics of ACLs is order-dependent. Basically, later ACL entries will
win over earlier ones according to the specification of Sect. 4. For example, when
Alice is in the group Friends, the ACL Deny Alice, Allow Friends will permit
access with the blessing Alice but the ACL Allow Friends, Deny Alice will
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deny it. The default is to deny access, so for example neither the ACL empty nor
the ACL Allow Alice will permit access with the blessing Bob. The specification
of Sect. 4 also addresses other aspects of the semantics of ACLs, and in particular
the rules for matching blessings against the blessing patterns in clauses, which
rely on the prefix relation �.

We abbreviate ACLs by combining consecutive Allow clauses, for example
writing Allow Friends, Alice for Allow Friends, Allow Alice, and similarly
for consecutive Deny clauses.

We expect that many ACLs will be of the simple form Allow g, where g is
a group name. More generally, many may be of the form Allow P1, . . . , Pk, or
perhaps

Allow P1, . . . , Pk, Deny Pk+1, . . . , Pk+k′

where P1, . . . , Pk+k′ are blessing patterns. On the other hand, ACLs with many
alternations of Allow and Deny clauses

Allow P1, Deny P2, . . . , Allow Pk+k′−1, Deny Pk+k′

should arise only in advanced cases, as they can be hard to understand.
The current syntax does not allow naming ACLs. This limitation means that

sharing happens through named groups.

3 Semantics

Intuitively, each blessing pattern—and, in particular, each group name—denotes
a set of blessings. This section defines how we map blessing patterns to sets of
blessings.

3.1 The Meaning of Blessing Patterns

Assuming a semantics of group names (a mapping from group names to sets of
blessings, given as a parameter ρ), the function Meaning maps blessing patterns
and lists of blessing patterns to sets of blessings. It is defined inductively as
follows, first for blessing patterns:

Meaningρ(n) = {n}
Meaningρ(g) = ρ(g)

Meaningρ(n/P ) = {n/s | s ∈ Meaningρ(P )}
Meaningρ(g/P ) = {s/s′ | s ∈ Meaningρ(g), s′ ∈ Meaningρ(P )}

and then for lists of blessing patterns:

Meaningρ(empty) = ∅
Meaningρ(L, P ) = Meaningρ(L) ∪ Meaningρ(P )
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3.2 From Group Definitions to Grammars and Languages

A semantics of group names is basically a function ρ that maps each group name
to the set of members of the group. However, we have to decide what happens
when an expression (for instance, an ACL) refers, directly or indirectly, to a
group that has not been defined. In a distributed setting (when the definitions
are at different servers), we also have to decide what happens when the group
definition may exist but cannot be looked up, for whatever reason. Since we wish
to be conservative (fail-safe), our decision may be different in Allow and Deny
clauses. For this reason, we define not one function but two functions, called
ρ⇓ and ρ⇑. They coincide in the case in which all references to groups can be
resolved.

For the construction of ρ⇓, we regard a list of group definitions DefSet as
inducing formal languages, as follows.

– Ordinary names and / are terminals.
– Group names are non-terminals.
– We associate productions with the group definitions, for example turning a

definition
g1 =def Alice/Phone, g2/Phone

into the two productions
g1 → Alice/Phone
g1 → g2/Phone

– We also associate productions with each built-in-group name g: g → B for
each B ∈ Elts(g).

– Finally, we do not associate productions with any remaining group names
(those that are neither defined in DefSet nor built-in-group names).

For each group name g, we let ρ⇓(g) be the set of blessings generated from g by
these productions. Thus, the question of group membership can be reduced to
that of formal-language membership.

When Elts(g) is finite for each g ∈ BuiltInGroups, the productions above
constitute a context-free grammar. Otherwise, we still obtain a formal language
ρ⇓(g) for each group name g, though these need not be context-free languages.
More precisely, much as in formal-language theory, ρ⇓ is the least fixed-point of
the function F such that, for every g,

– F (ρ)(g) = Meaningρ(L) if g is defined by g =def L;
– F (ρ)(g) = Elts(g) for g ∈ BuiltInGroups; and
– F (ρ)(g) = ∅ otherwise.

The existence of this least fixed-point follows from the facts that Meaningρ is
monotone as a function of ρ and that Elts does not depend on ρ.

The construction of ρ⇑ is analogous, except that in the last case we let
F (ρ)(g) = AllBlessings. In particular, we still take a least fixed-point (not a
greatest fixed-point).
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In practice, we need not always compute least fixed-points: we may allow our-
selves to treat some group definitions as being unavailable whenever we wish—for
instance, when the corresponding server has failed, or when we have exhausted
our computational budget. The result will be a conservative approximation.
Section 5 follows this approach.

Regular expressions are fairly common in access control, for example in defin-
ing firewall rules. The Singularity security model used them for defining groups,
without negation, via a file-system name-space [8]. With the definitions above,
we go beyond regular languages, not because we expect to need the full power of
context-free languages (and perhaps more), but in order to avoid cumbersome
syntactic conditions in group definitions. Still, it is conceivable that restricting
attention to regular languages would have advantages.

4 Specifying Authorization Checks

A principal that has collected multiple blessings may present a subset for the
purposes of an authorization decision. It may decide not to present all its bless-
ings, perhaps because of concerns about performance or confidentiality. However,
it should not gain additional rights by virtue of withholding some blessings.

Accordingly, the function that performs authorization checks, IsAuthorized,
is applied to a list of blessings M and an ACL A. It decides whether access should
be granted according to A when the blessings in M are presented. It is defined in
terms of an auxiliary function IsAuthorized1(B,A) that is applied to a single
blessing B and an ACL A. This auxiliary function works by cases on the three
possible forms of A, namely (1) empty, (2) A′, Allow P for some A′ and P ,
and (3) A′, Deny P for some A′ and P . In the first case, it returns false; in
the second and the third, it checks B against P and against A′, then returns
an appropriate boolean combination of the results. If B happens to match both
Allow and Deny clauses in A, later clauses win over earlier ones. Since each
blessing B is treated separately, IsAuthorized(·, A) is monotonic in its first
argument, as desired.

IsAuthorized(M,A) = ∃B ∈ M.IsAuthorized1(B,A)

IsAuthorized1(B,A) =
case A of
empty : false

| A′, Allow P : (∃B′ ∈ Meaningρ⇓(P ).B′ � B) ∨ IsAuthorized1(B,A′)
| A′, Deny P : (¬∃B′ ∈ Meaningρ⇑(P ).B′ � B) ∧ IsAuthorized1(B,A′)

This definition relies on the mappings ρ⇓, ρ⇑, and Meaning, described in Sect. 3. It
is intended as a specification, without a directly evident concrete implementation.

ACL clauses that refer (directly or indirectly) to undefined groups are treated
conservatively by relying on ρ⇓ and ρ⇑ depending on the type of clause. This con-
servative treatment is done “one entry at a time”. In some cases, this approach
might yield slightly surprising (but safe) results. Let us consider, for example,
the unusual ACL

Allow Alice, Deny Friends, Allow Friends
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where Friends is a group name but it has no corresponding definition, or its
definition is unavailable, and Friends is not in BuiltInGroups. Suppose that
we wish to know whether this ACL allows access to a request with the blessing
Alice. We start from the end. The clause Allow Friends does not permit access,
because we make the conservative assumption that Friends is empty. The clause
Deny Friends denies access, because we make the conservative assumption that
Friends contains all blessings. So we never look at Allow Alice, and deny
access! Although this outcome may be counterintuitive, it is conservative, and
seems adequate because we do not expect to give pleasing results when groups are
undefined or their definitions are unavailable. One may certainly imagine more
elaborate approaches, perhaps with some form of symbolic constraint-solving.

The definition uses the prefix relation � (instead of requiring exact equality)
for checking both Allow and Deny clauses. While this consistency is certainly
attractive, the choice of � has different significance in the two cases:

– For Allow clauses, the use of the relation � is a matter of convenience. For
example, when one writes the ACL Allow Alice for an object that one wishes
to share with a principal with the blessing Alice, it is typically expedient
that this principal gain access even when this access may happen via a phone
with the blessing Alice/Phone. Thus, lengthening a blessing does not reduce
authority with respect to the Allow clauses in ACL checks.
The longer blessing is however not equivalent to the shorter one in other
respects: the longer blessing may trigger a Deny clause, and a principal that
holds the blessing Alice/Phone cannot in general obtain other extensions of
Alice, such as Alice/TV.
This semantics is definable from a semantics that requires exact equality. For
example, under the latter semantics, one could write the ACL

Allow Alice, Alice/AllBlessings

rather than Allow Alice. Conversely, even with the semantics that uses � it
is possible to define ACLs that insist on exact equality. For example, one can
write

Allow Alice, Deny Alice/AllBlessings

Alternatively,2 assuming that eob is a reserved name that appears in blessings
only at the end, one can write

Allow Alice/eob

– For Deny clauses, it generally does not make sense to forbid access with the
blessing B but to permit it with a longer blessing, from a security perspective.
Whoever has B would be able to extend it in order to circumvent the Deny
check.

2 In general, these two approaches do not always yield equivalent results. Sup-
pose that the group g is defined to contain Alice and Alice/Phone. The ACL
Allow g, Deny g/AllBlessings denies access with Alice/Phone, while the ACL
Allow g/eob allows access with Alice/Phone/eob. Both ACLs deny access with
Alice/Phone/FunnyApp and Alice/Phone/FunnyApp/eob.
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One may be tempted by an even weaker criterion for matching in Allow
clauses, which we call “prefix matching”. For example, with this criterion, the
ACL Allow Alice/Phone would permit access with the blessing Alice. The
main motivation for this decision is that denying this access has no clear security
benefit: whoever holds Alice could form Alice/Phone in order to gain access.
Section 6 discusses prefix matching in more detail and explains why we have not
adopted it.

5 An Implementation of Authorization Checks

The function IsAuthorized, as defined above, might be implemented by cal-
culating the functions ρ⇓, ρ⇑, and Meaning at the relying party, then applying
the definitions blindly. However, these calculations generally require knowledge
of the group definitions, which we may not want to disseminate for reasons of
efficiency and privacy. The relevant groups might even be infinite, so we can-
not enumerate them in general. Moreover, a full computation of Meaning is
sometimes not required for determining if some particular blessing is or is not a
member of the corresponding set of blessings. Therefore, we consider distributed,
query-driven implementations of IsAuthorized. We first reduce IsAuthorized
to a basic function R, then we discuss how to implement the required invocations
of R. Basically, we rely on a form of top-down parsing.

Other algorithmic approaches may perhaps be derived from work on formal
languages. More speculatively, the connection with formal languages suggests
problems in secure multiparty computation (e.g., [3]): if several parties hold
parts of a context-free grammar, can they cooperate to establish membership of
a string in the corresponding language while not revealing any other information?
General results on secure multiparty computation indicate that they can, but
an efficient solution does not seem straightforward.

5.1 An Auxiliary Function: R

Suppose that we wish to know whether a particular blessing is in Meaningρ(P ).
When the blessing is an ordinary name n, we may proceed as follows:

– If P = m or P = m/P1 or P = n/P1 or P = g/P1 then fail, for every m 
= n
and every group name g.

– If P = n then succeed.
– If P = g then ask a server responsible for g whether n is an element of g and

return the result.

When the blessing is a compound blessing n/B1, we may instead proceed as
follows:

– If P = m or P = m/P1 then fail, for every m 
= n.
– If P = n then fail.
– If P = n/P1 then recurse with B1 and P1.
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– If P = g then ask a server responsible for g whether n/B1 is an element of g
and return the result.

– If P = g/P1 then ask a server responsible for g whether there exist B2, B3

such that n/B1 = B2/B3, and B2 is an element of g, and if so recurse with
B3 and P1 (for each suitable B3, for completeness).

Thus, a server responsible for g needs to answer questions of the following forms:

– whether a blessing B is in Meaningρ(g),
– whether a blessing B can be written in the form B2/B3 where B2 is an element

of Meaningρ(g).

While each question of the latter kind can be reduced to several questions of the
former kind (one per prefix B2 of B), providing an interface for asking questions
of the latter kind allows a more direct, efficient interaction.

Therefore, we assume a function R with the following specification: R is such
that, given a blessing B and a set of blessings S, R(B,S) returns the set that
consists of

– ε if B ∈ S, and
– every blessing B′′ such that for some B′ we have B = B′/B′′ and B′ ∈ S.

Note that R(B,S) may, in general, contain both blessings and ε. For example, if
S = {n1, n1/n2, n1/n2/n3} then R(n1/n2, S) = {ε, n3}. The name R stands for
“rest”, “remainder”, or “residue”.

Below we consider how to implement R.

5.2 Reducing IsAuthorized to R

Using R, we can reformulate the definition of IsAuthorized:

IsAuthorized(M,A) = ∃B ∈ M.IsAuthorized1(B,A)

IsAuthorized1(B,A) =
case A of
empty : false

| A′, Allow P : R(B, Meaningρ⇓(P )) 
= ∅ ∨ IsAuthorized1(B,A′)
| A′, Deny P : R(B, Meaningρ⇑(P )) = ∅ ∧ IsAuthorized1(B,A′)

This formulation is equivalent to our original one, but closer to our implemen-
tation.

5.3 Implementing the Calls to R

Next we consider how to compute and how to approximate R(B, Meaningρ⇓(P ))
and R(B, Meaningρ⇑(P )) without fully expanding the definitions of ρ⇓, ρ⇑, and
Meaning. We present basic algorithms first, then elaborate on distributed imple-
mentations.
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We assume that we have R(B,Elts(g)) for each g ∈ BuiltInGroups. In prac-
tice, this assumption means that the code that implements a built-in group
g should offer an interface for asking queries of the form R(B,Elts(g)). Note
that R(B,Elts(g)) is always finite, even when Elts(g) is infinite. In the case of
AllBlessings, this set consists of ε and the proper suffixes of B. We write S(B)
for this set.

Basic Algorithms. Suppose that we want functions R⇓ and R⇑ such that:

R⇓(B,P ) = R(B, Meaningρ⇓(P ))
R⇑(B,P ) = R(B, Meaningρ⇑(P ))

where R⇓ and R⇑ have, as implicit parameter, the group definitions DefSet . For
brevity, we write RX when we wish to refer to both R⇓ and R⇑ (but, in an equation
such as RX(. . .) = . . . RX(. . .) . . . we mean the same RX on both sides). Given a
list of blessing patterns L = P1, . . . , Pk, we let RX(B,L) = ∪i=1..kRX(B,Pi).

The desired functions R⇓ and R⇑ satisfy the equations:

RX(n, n) = {ε}
RX(n,m) = ∅ if m 
= n
RX(n/B, n) = {B}
RX(n/B,m) = ∅ if m 
= n
RX(n,m/P ) = ∅
RX(n/B, n/P ) = RX(B,P )
RX(n/B,m/P ) = ∅ if m 
= n

RX(B, g) =

⎧
⎪⎪⎨

⎪⎪⎩

RX(B,L) if g =def L ∈ DefSet , or else
R(B,Elts(g)) if g ∈ BuiltInGroups, or else
∅ if X is ⇓, or else
S(B) if X is ⇑

RX(B, g/P ) = {s | ∃s′ 
= ε.s′ ∈ RX(B, g), s ∈ RX(s′, P )}
When oriented from left to right, these equations immediately suggest an algo-
rithm for computing RX(B,P ). This algorithm proceeds by cases on the form
of P . When P is not a group name and does not start with a group name,
the algorithm then proceeds by cases on the form of B. When P is a group
name g with a definition g =def L in DefSet , the algorithm unfolds this defini-
tion. When P is a group name g ∈ BuiltInGroups, the algorithm simply returns
R(B,Elts(g)), which we have according to our assumptions. Finally, if P is any
other group name g (so, a group name for which no definition or implementation
is available), the algorithm returns ∅ (for R⇓) or S(B) (for R⇑).

The computation of RX(B,P ) basically amounts to parsing B, top-down, as
an element of the formal language associated with P . It is common for top-down
parsing not to work, or not to work well, when any grammar productions are left-
recursive (of the form g → g . . . where g is a non-terminal). Here, left-recursion
could cause the algorithm to fall into an infinite loop. In theory, left-recursive
productions can always be avoided (in particular, by using Greibach normal
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form). In our setting, however, we do not wish to restrict or to rewrite group
definitions in order to prevent left-recursion.

Therefore, we prefer weakenings of the definition of R⇓ and R⇑ that work
without the assumption. For a conservative implementation, we require only:

R⇓(B,P ) ⊆ R(B, Meaningρ⇓(P ))
R⇑(B,P ) ⊇ R(B, Meaningρ⇑(P ))

Fortunately, it is not hard to adapt our algorithm to achieve these properties
while improving its efficiency and guaranteeing its termination. In particular, we
can allow calculations to terminate—with a conservative decision—whenever a
given computational budget has been exhausted. As a special case, we can allow
queries on servers to time out. Furthermore, by passing an additional argument
to R⇓ and R⇑, we can keep track of the set of groups that we have examined,
and terminate—again, with a conservative decision—when we detect a loop. We
have studied variants that detect all loops or only those loops that arise as a
result of left-recursion. Only the latter loops cause divergence, but the former
variant is a little simpler and, we expect, adequate for our purposes. (We omit
lengthy details on this point.)

Writing R⇓(B,P ) and R⇑(B,P ), respectively, for these approximations of
R(B, Meaningρ⇓(P )) and R(B, Meaningρ⇑(P )), we obtain a conservative imple-
mentation of IsAuthorized:

IsAuthorizedimp(M,A) = ∃B ∈ M.IsAuthorizedimp
1 (B,A)

IsAuthorizedimp
1 (B,A) =

case A of
empty : false

| A′, Allow P : R⇓(B,P ) 
= ∅ ∨ IsAuthorizedimp
1 (B,A′)

| A′, Deny P : R⇑(B,P ) = ∅ ∧ IsAuthorizedimp
1 (B,A′)

Thus, we replace occurrences of R with R⇓ for Allow checks and with R⇑ for Deny
checks.

5.4 Distribution

When ACLs and groups are defined in terms of other groups, it remains to spell
out how the corresponding servers contribute to an ACL check. This process may
be orchestrated by the client that requests access or by the entity that holds the
ACL. For example, if the ACL refers to a group g1 which is itself defined in terms
of a group g2, the client may obtain and present evidence about g1 and g2, or the
entity that holds the ACL may do the lookups for both groups. Alternatively,
this entity may contact a server responsible for g1, which in turn may contact a
server responsible for g2.

It is this alternative scheme that we adopt as our primary one:

– the evaluation of IsAuthorizedimp(M,A) happens locally at the entity that
holds A, with calls to others for evaluating RX ;
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– the evaluation of RX(B,P ) uses local recursive calls in all cases indicated
by the definition of RX , except in the case of RX(B, g), for which a server
responsible for g should be consulted (unless, as indicated above, this would
cause looping).

In practice, this scheme can be subject to many optimizations, such as caching,
batching of queries, and “pushing” of credentials by clients (e.g., [5]).

With this scheme, ACLs and the group memberships are partly revealed only
in response to queries (IsAuthorizedimp queries for the ACLs, RX queries for the
groups). An observer who can see enough message flows may also infer depen-
dencies, namely that particular ACLs or groups depend on certain other groups.
However, the full contents of ACLs and groups are not disclosed wholesale.

Without atomicity assumptions, it is possible that group definitions are
changing during the evaluation of IsAuthorizedimp(M,A). For example, let A
be the ACL Allow Friends, Deny Friends, and suppose that a member Alice is
being added to the group Friends. If the addition to the group happens between
the processing of the two clauses of the ACL, IsAuthorizedimp(Alice, A) will
return true, a behavior that could happen neither before nor after the addition.
We have considered techniques that prevent this behavior. One of them consists
in asking the servers responsible for the relevant groups to provide information
current as of the time of the ACL check of interest, via an extra “time” para-
meter for RX . Assuming that the servers keep a log of recent group changes,
this technique would help for ACL checks that complete reasonably fast, subject
to the limitations of clock synchronization. Whether such techniques are in fact
necessary remains open to debate.

6 On Prefix Matching

In this section we elaborate on prefix matching, described in Sect. 4, and explain
why we do not adopt it. Our reasons have to do with Deny clauses and groups;
they are weaker if either of those features is absent. Since we believe that prefix
matching is not essential for expressiveness or usability, we opted to omit it in
order to give a better treatment of those features.

The rationale for prefix matching is as follows. Suppose that a blessing B′

matches an ACL and that B � B′. Whoever holds B can extend it to B′,
thus passing the ACL check; therefore, not letting B match the ACL may cause
inconvenience and has no immediate benefit if B behaves maliciously. (It may
however protect against accidental misbehavior.)

Adopting prefix matching would mean, for example, that the ACL

Allow n1/n2

grants access when the blessing n1 is presented. Beyond this trivial example, it
is less clear what to do in other situations.

Let us consider the ACL
Allow n1/g
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and imagine that g is defined to be empty. Should access be granted when the
blessing n1 is presented? A positive answer would seem rather surprising, and
is not justified by the proposed rationale for prefix matching: there is no way to
extend n1 so that it matches n1/g exactly. Prefix matching for a blessing pattern
P (n1/g in this example) is about the prefixes of the blessings that match P ,
not the blessings that match the prefixes of P . In other words, it is about the
prefixes of the meaning of P , not the meaning of the prefixes of P .

Next let us consider the ACL

Allow n1/n2, Deny n1/n2

Should access be granted when the blessing n1 is presented?

– We could answer this question positively by computing the meaning of the
Allow clause (which, with prefix matching, implies authorizing n1), the mean-
ing of the Deny clause (which does not imply rejecting n1), and then taking
the difference. This behavior seems odd, and is not justified by the proposed
rationale for prefix matching: there is no way to extend n1 so that it matches
n1/n2 but does not match n1/n2.

– An alternative approach consists in computing all the blessings allowed by
the entire ACL (subtracting for Deny clauses, but without prefixing for Allow
clauses), and then adding all their prefixes. As the example illustrates, sub-
tracting for Deny clauses does not commute with adding prefixes. This alter-
native approach does conform to the rationale for prefix matching.

Unfortunately, the alternative approach appears difficult at best. Let us consider
the ACL

Allow n1/g1/eob, Deny n1/g2/eob

where g1 and g2 are group names and eob is our special terminator name. Accord-
ing to the alternative approach, access should be granted when the blessing n1

is presented if and only if there is some element of g1 that is not in g2. In the
general case where group definitions may contain cycles, we face the inclusion
problem for context-free languages, which is undecidable! Even without cycles,
we do not have a satisfactory solution. Straightforward algorithms that require
enumerating the members of g1 or the non-members of g2 seem unattractive
from efficiency and privacy perspectives.

7 Conclusion

As noted in the Introduction, many systems support distributed authorization.
Generally, their features include groups; sometimes, they also include forms of
negation, and more rarely compound names and local names. There is no canon-
ical solution to problems such as missing, unavailable, and circular group defi-
nitions, which are made more delicate by negation and compound names. The
pioneering article on Digital’s DSSA noted that “it is impractical, in a distrib-
uted environment where group nonmembership cannot be certified, to implement
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denial to arbitrary groups” [4]. Years later, SDSI allowed an operator NOT on
groups, requiring certificates of non-membership. In SDSI, the fundamental algo-
rithm for checking group membership worked entirely locally, by computing on
credentials; in contrast, we describe a distributed algorithm.

A salient aspect of our design, which mitigates those difficulties, is that ACLs
contain negative clauses but groups do not, and that ACLs cannot be reused for
defining groups or other ACLs. This choice also enables us to provide a liberal
semantics for ACLs (in which, for example, the ACL Allow Alice permits access
with Alice/Phone) distinct from that of groups (according to which a group
that contains Alice need not contain Alice/Phone). The semantics of ACLs
contrasts with the treatment of compound principals in previous work (e.g.,
[5,7,8]). There, an ACL that would grant access to Alice would generally not
automatically grant access to a compound principal of the form Alice op Phone,
where op is a binary operator, unless this operator happens to be conjunction
(∧). Conjunction hardly resembles /, for example because it is commutative;
other operators previously considered seem closer to /. Beyond these differences,
the fact that we have only one operator (/) and that it is associative allows us
to sharpen the helpful connection with formal languages.

The realization of our design is under way. While the design addresses expres-
siveness and semantic questions with some consideration for implementation
strategies, its realization may rely on a number of optimizations, such as caching.
It may also lead to the development of auxiliary tools and idioms; in particular,
further work on conventions and on grouping objects could be helpful in writing
and managing policies.

Acknowledgments. We are grateful to Cosmos Nicolaou and to Jǐŕı Šimša for helpful
comments on drafts of this paper.
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Abstract. Causal trees are one of the earliest pioneering contributions
of Pierpaolo Degano, in joint work with Philippe Darondeau. The idea
is to record causality dependencies in processes and in their actions. As
such, causal trees sit between interleaving models and truly concurrent
ones and they originate an abstract, event-based bisimulation seman-
tics for causal processes, where, intuitively, minimal causal trees repre-
sent the semantic domain. In the paper we substantiate this feeling, by
first defining a nominal, compositional operational semantics based on
History-Dependent automata and then we apply categorical techniques,
based on named-sets, showing that causal trees form the final coalgebra
semantics of a suitable coalgebraic representation of causal behaviour.

1 Introduction

Causal trees [7,8] are one of the key pioneering contributions of Pierpaolo Degano,
in joint work with Philippe Darondeau, to the field of concurrency. The idea is to
enrich Milner’s synchronisation trees, the classical model for interleaving seman-
tics, with causality information between the currently performed action and pre-
vious ones. As such, causal trees sit between interleaving models and truly concur-
rent ones. They differ from the non-sequential processes/event structures of Petri
nets (see [2,11] for a comparison between causal trees and event structures). In
fact, the causal tree semantics does not offer an operational setting, where a con-
current computation is seen as the equivalence class of all sequential computations
with concurrent events executed in any order. Rather, it suggests an abstract,
event-based bisimulation semantics, where minimal causal trees represent the
semantic domain. We will see in this paper that our categorical developments con-
firm this conclusion, since it turns out that causal trees form the final coalgebra
semantics of a suitable coalgebraic representation of causal behaviour (see [16] for
details about coalgebras).

At the syntax level, the basic idea is to have causal processes, i.e., processes in
which each sequential agent comes with the set of its past events, called causes.
When one agent performs an action, or two agents synchronise, a new event
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is generated and the causes of the involved agents are recorded in the label,
together with the action. These causes, updated with the new event, are then
assigned to the continuations of the agents. Correspondingly, the usual notion of
bisimulation becomes history preserving [10], because causes must be matched.

The main issue with causal semantics is that the state-space is usually infi-
nite, because the causes of causal processes grow after each transition. A solution
was proposed in [13] by Montanari and Pistore. They introduced a class of oper-
ational models, namely causal automata, for the causal semantics of Petri nets1.
Causal automata have no direct minimal realisations, but they can be mapped
(possibly provoking a state explosion) to equivalent ordinary automata, which
can in turn be minimised. Later, it was observed by the same authors that event
generation mechanisms of causal automata can be generalised to handle name
generation in nominal calculi. This led to History Dependent (HD-)Automata
[15]. They are automata featuring name allocation and deallocation, and were
initially intended for the π-calculus. Unlike causal automata and causal trees,
each state of an HD-automaton is equipped with a symmetry group, telling under
which permutation of names the state is invariant. This is essential to have min-
imal representatives.

HD-automata admit a categorical representation as coalgebras over named
sets [6], because states and transitions are indexed by sets of names. This per-
spective led to several results and generalisations. In [6,12], a connection between
HD-automata and the categorical operational semantics of the π-calculus [9] has
been established. More precisely, the former can be automatically derived from
the latter through a categorical equivalence. In [5] it is shown that this equiv-
alence is much more general: if the presheaf category on which coalgebras are
based has certain properties, then we have equivalent notions of named sets and
coalgebras over them.

Our original contribution is two-fold, as explained next.

History-Dependent Semantics for Causal Processes. In the first part of
our contribution we derive compact operational models for causal processes. In
Theorem 1 we show full abstraction w.r.t. Darondeau-Degano causal semantics
(DD-semantics for short). The state-space of our models is usually significantly
smaller, often finite instead than infinite, than the one produced by the corre-
sponding DD-semantics.

In order to do this, we represent events as names, and event generation as
name generation. States are special causal processes, called P-processes, with
the following features:

– they include a poset, describing the causal relations among the process’ events;
– they only keep track of immediate causes, that are the most recent events,

according to the poset, for each agent;
– they are canonical representatives of isomorphic processes.

1 An analogous concept of location automata was introduced in [14] for modelling the
location semantics of CCS.
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Transitions have history maps that record the correspondence between event
names along transitions. The semantics is history-dependent (HD-semantics in
short), in the sense that events may have different meanings depending on past
transitions.

The poset plays a crucial role in bisimilarity: two states can be compared
for bisimilarity only if their posets can be related via a suitable (partial) iso-
morphism. This ensures that bisimilar states have the same history of events,
which is essential for the correspondence with causal trees and, equivalently,
with history dependent bisimilarity.

Our work is based on [4], where an analogous semantics for causal processes
was first introduced. It was rather indirect and cumbersome, because it was
gradually built on top of the whole (possibly infinite) DD-semantics of a causal
process. Here HD-semantics is computed directly and more efficiently, via a
compositional, inductive procedure that starts from transitions of individual
agents in the basic, non-causal LTS.

Final Semantics. The second part of our work is concerned with represent-
ing our semantics of causal processes as coalgebras over named sets, i.e., HD-
automata. This construction enables us to use results from the well-established
theory of coalgebras. In particular, we have a final semantics and corresponding
minimal models. This construction crucially depends on states being equipped
with symmetry groups, formed by isomorphisms over the state’s poset under
which the state is invariant. This way, all bisimilar states have a unique repre-
sentative as a state with symmetries. A simple counterexample shows that this
cannot be achieved if symmetries are not considered.

We base our technical development on [5], where a general notion of named
set is introduced: symmetry groups are defined over a category C, and then
named sets are defined as families of such groups. To instantiate C, we introduce
a category P of posets, where symmetry groups are formed by poset automor-
phisms. Then we define HD-automata as coalgebras for a suitable behavioural
endofunctor on named sets, which captures causal information and event gener-
ation in transitions.

We provide a direct translation of causal HD-semantics into HD-automata.
Behavioural equivalence is preserved by the translation, and in Theorem2 we
prove that it is indeed induced by causal trees. Thus we can conclude that causal
trees, even if infinite, are the right abstract notion to represent causal semantics.
The finite case, represented by a finite minimal HD automaton, corresponds to
a causal tree with a finite number, up to isomorphism, of subtrees.2

2 As it is common in final semantics, the final coalgebra is typically an infinite object
that accounts for all possible behaviours, but the minimal representative of an HD-
automaton needs to account just for the behaviours of that automaton: it decomposes
uniquely the map from the HD-automaton to the final object into a surjective map-
ping from the HD-automaton to the representative and an embedding of the latter
into the final object.
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Structure of the Paper. In Sect. 2 we fix some notation on posets, recall the basic
ideas around causal processes and their semantics and introduce a very simple
running example, which is expressive enough to show all the key features of our
approach. In Sect. 3 we introduce P-processes, our main ingredient for address-
ing causal semantics with nominal techniques, together with the basic opera-
tions to combine them. In Sect. 4 we define a causal semantics for P-processes,
called HDC-bisimilarity and show that it agrees with the classical Darondeau
and Degano’s semantics (Theorem 1). Finally, in Sect. 5, we address the issue
of finding minimal models up-to HDC-bisimilarity, exploiting symmetries to the
purpose (Theorem 2). Due to space limitation, the reader must have some famil-
iarity with categories and coalgebras to appreciate the technical development
in Sect. 5, although this is not needed to understand the construction of the
operational model and to follow its application to the running example.

2 Background and Running Example

A poset over a set S is a pair O = (∣O∣,≼O), where ∣O∣ ⊆ S and ≼O is a reflexive,
transitive and antisymmetric (binary) relation on ∣O∣. We will sometimes write
posets as sets of elements and pairs, omitting reflexive and transitive pairs, for
instance {e1, e2 ≼O e3} is the poset with elements e1, e2, e3 such that e1 ≼O e1,
e2 ≼O e2 ≼O e3 ≼O e3. A morphism of posets O → O′ is a function σ∶ ∣O∣ → ∣O′∣
that preserves order, namely x ≼O y implies σ(x) ≼O′ σ(y). We say that σ reflects
order whenever σ(x) ≼O′ σ(y) implies x ≼O y; σ is an order-embedding whenever
it both preserves and reflects order. A set K ⊆ ∣O∣ is down-closed w.r.t. O whenever
y ∈K and x ≼O y implies x ∈K.

Throughout the paper we assume that posets are over a countable set of
event names E . We will model event generation via the following event allocation
operator, which takes a poset O and adds a new element e ∉ ∣O∣ to it, with a
given set of causes K ⊆ ∣O∣:

δ(O,K, e) = (O ∪ (K × {e}))∗ .

For example, δ({e1, e2 ≼O e3},{e1}, e) = {e1 ≼O e, e2 ≼O e3}

2.1 Abstract Posets

We assume a choice of isomorphism representatives for posets. We call such
representatives abstract posets. We write [O] for the canonical representative of
O and we assume a choice of an abstraction map αO ∶O → [O], to be exploited
in the definition of synchronised product of causal processes (see Fig. 2, where
we omit the subscript because it is clear from the context).

For abstract posets, the event allocation operator is simpler: we do not need
to specify e, as we can add a(ny) new event, up to isomorphism. Therefore the
abstract allocation operator δ(O,K) gives [δ(O,K, e)], for any e. We assume
the following operations:
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– the (injective) morphism old(O,K) embeds O into δ(O,K);
– new(O,K) ∈ δ(O,K) ∖ old(O,K)(O) gives the unique new event in δ(O,K).

For example, letting O = {e1, e2 ≼O e3}, if δ(O,{e1}) = {e2 ≼O e1, e3 ≼O e4} we
can have new(O,{e1}) = e1 and old(O,{e1})(ei) = ei+1 for i = 1,2,3.

These operations can be used to define the extension of σ∶O → O′ to a
morphism σ+K ∶ δ(O,K) → δ(O′, σ(K)) given by

σ+K(x) =

⎧

⎪
⎪

⎨

⎪
⎪

⎩

new(O′, σ(K)) if x = new(O,K)

old(O′, σ(K))(σ(y)) if x = old(O,K)(y)

The intuition is that σ+K does not mix up old and new events: it acts “as” σ
(modulo suitable embeddings) on events that were already in O, and maps the
new event in δ(O,K) to the new one in δ(O′, σ(K)). To ease notation, we will
just write σ+ when K is clear from the context.

2.2 Darondeau-Degano Causal Semantics

Let p, q, . . . denote sequential agents. Processes are generated by the following
grammar

t ∶∶= 0 ∣ p ∣ t1 ∥ t2

where 0 is a distinguished inactive agent and the operator ∥ is the parallel
composition of processes, which is associative and has unit 0.

Let Act be a set of actions such that, for each a ∈ Act, there is also a ∈ Act
(we let a = a). We assume a set of basic transitions for non-ε agents

Δ = {p
a
�→ t ∣ a ∈ Act}

such that the subset Δp = {p
a
�→ t ∈Δ} is finite, for all p. Notice that continuations

from an agent can be parallel compositions of agents.
Causal processes are process terms whose agents are decorated with finite

subsets of positive natural numbers, representing their causes. They are written3

K1 ⊢ p1 ∥ ⋅ ⋅ ⋅ ∥Kn ⊢ pn

where K1, . . . ,Kn ⊆ N
+ are finite. Intuitively, the cause 1 represents a dependency

with the last executed event, 2 with the one but last, and so on. The Darondeau-
Degano causal semantics (DD-semantics hereafter) is a labelled transition system
computed from basic transitions of agents. We illustrate it later via our running
example.

Bisimilarity for the DD-semantics is the standard LTS bisimilarity. We call
it DD-bisimilarity, denoted ∼dd. It has been shown (see, e.g., [1]) that DD-
bisimilarity is fully abstract w.r.t. causal trees.

3 Note that inactive agents of the form K ⊢ 0 are just disregarded.
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Example 1 (Running example). Consider two agents p1 and p2, with basic tran-
sitions

p1
a1
�→ p1 p2

a2
�→ p2 .

The DD-semantics of corresponding causal agents, for each set of causes K, is
the following

K ⊢ pi
K⊢ai
���→ δ(K) ∪ {1} ⊢ pi (i = 1,2).

The label shows the action ai and the set K of causes of the moving agent. A
new event is generated, canonically denoted 1, and is added to the causes of the
continuation agent. The old causes are incremented by one, written δ(K), to
avoid a clash between the new event and the old ones.

The DD-semantics of parallel composition is computed from that of single
agents. For instance

{2} ⊢ p1 ∥ {1} ⊢ p2
{1}⊢a2
����→ {3} ⊢ p1 ∥ {1,2} ⊢ p2

Here only the right component (p2) moved, its label (a2 with cause {1}) became
the overall one and its set of causes became {1,2}. Note that despite the same
symbol, the cause 1 in the source and label of the transition refer to a different
event than the one associated with the cause 1 in the target of the conclusion. The
left component is idle, but its event 2 needs to be incremented to avoid clashes
with the continuation of the moving agent. In general, δ needs to be applied to
causes of idle agents. If we have more than one moving agent, i.e., two agents
can do complementary actions K1 ⊢a and K2 ⊢a, their parallel composition can
do K1 ∪K2 ⊢ τ , and causes δ(K1 ∪K2) are assigned to both continuations of
synchronised agents.

In Fig. 1 we show a finite part of the DD-semantics of ∅ ⊢ p1 ∥ ∅ ⊢ p2: the
state-space is actually infinite. States are tagged with marks (1) to (4) that
will be used later to establish a correspondence with the named semantics (see
Example 2 and Fig. 4): for the moment they can be ignored.

Fig. 1. Part of the infinite LTS in the running example.
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3 P-processes

Since we want to apply nominal techniques to model causal semantics, we intro-
duce an abstraction of causal processes, where events are drawn from a set E
instead of N+.

Definition 1 (Nominal causal process). A nominal causal process (n-
process in short) is an expression of the form

K1 ⊢ p1 ∥ ⋅ ⋅ ⋅ ∥Kn ⊢ pn

where p1, . . . , pn are agents and K1, . . . ,Kn are finite subsets of E. We will use
k, k′, . . . to denote these processes.

We use finite posets over E to keep track of causal dependencies among events in
n-processes. We say that a n-process k is consistent with a poset O whenever, for
all agents K ⊢ p in k, K is down-closed w.r.t. O. Intuitively, agents in k contain
the whole history of their events, as described by O.

The history of events in a n-process can be augmented via the following
closure operator.

Definition 2 (Closure operator). Given K ⊆ ∣O∣ and O′ such that O is a
subposet of O′, the closure of K w.r.t. O′ is given by

K↓O′ = ⋃
x∈K

{y ∈ ∣O′∣ ∣ y ≼O′ x}

Its extension to n-processes is (K ⊢ p)↓O′ = (K↓O′) ⊢ p and distributes over par-
allel composition.

Given k consistent with O and O′ ⊇ O, k↓O′ is clearly consistent with O′.

Definition 3 (Causes, immediate causes). The sets of causes K (k) and
immediate causes icO(k) of a n-process k w.r.t. a poset O are recursively defined
by letting:

K (K ⊢ p) = K K (k1 ∥ k2) = K (k1) ∪K (k2)
icO(K ⊢ p) = maxO(K) icO(k1 ∥ k2) = icO(k1) ∪ icO(k2)

where maxO(K) is the set of maximal elements in K w.r.t. O.

The immediate causes of a n-process are events that are maximal with respect
to at least one of its agents.

We assume that we have canonical representatives of n-processes. Let Aut(O)
be the set of automorphisms on O, we pick a representative from {kφ ∣ φ ∈
Aut(O)}, for any k consistent with O. We introduce an abstraction operator
[k]O that, given k consistent with O, returns a canonical representative of k
that is consistent with [O] and a map that allows us to recover k from its
representative.
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Definition 4 (Process abstraction operator). Given a process k consistent
with O, the process abstraction operator [k]O gives a pair (k̂, ϕ̂) of a n-process
k̂ consistent with [O] and the isomorphism ϕ̂∶O → [O] such that kϕ̂ = k̂.

We now introduce the states of our causal semantics, namely P-processes.

Definition 5 (P-process). A P-process is a pair O ⊳ k where O is an abstract
poset and k is a n-process, such that:

1. ∣O∣ =K (k);
2. k is consistent with O;
3. for all agents K ⊢ p in k, K ⊆ icO(k);
4. [k]O = (k,ϕ), for some ϕ;

Condition 1 says that the causes recorded in O are all and only the ones men-
tioned in k; condition 2 guarantees that the causes of each component in k are
down-closed according to the order in O; condition 3 enforces only the most
recent causes to be recorded in agents; finally, condition 4, establishes that k is a
canonical representative. This makes event names local, i.e., there is no obvious
relation among events in different P-processes.

3.1 Operations on P-processes

We introduce some operations on P-processes. The first one computes the “min-
imal” P-process that can be formed from a given poset and n-process.

Definition 6 (Immediate causes reduction operator). Given a poset O
and a n-process k consistent with O, let OI be O restricted to icO(k) and define
normO(K ⊢ p) = K ∩ ∣OI∣ ⊢ p, distributing over parallel composition. Then the
immediate causes reduction operator is

ic(O,k) = [OI] ⊳ k̂

where [normO(k)]OI
= (k̂, ϕ̂), and we denote by �O,k� the map [OI] → O given

by (OI ↪ O) ○ ϕ̂−1.

Here the map [OI] → O records the original identity of events of the reduced
P-process.

We define an operation of amalgamated parallel composition, that allows us
to form the parallel composition of two P-processes O1 ⊳ k1 and O2 ⊳ k2. Since
events are local to P-processes, we need to specify how those in O1 and O2 are
related. We do this through amalgamations, that are cospans

O1
ε1
�→ O

ε2
←� O2

of order-embeddings such that ∣O∣ = img(ε1) ∪ img(ε2). We denote by am
(O1,O2) the set of all amalgamations of O1 and O2.
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Definition 7 (Amalgamated parallel composition). Given two n-processes
k1, k2, consistent respectively with O1 and O2, and an amalgamation ε = O1

ε1
�→

O
ε2
←� O2 ∈ am(O1,O2), we can form their amalgamated parallel composition

k1 ∣∣∣
ε
k2 = (k1ε1)↓O ∥ (k2ε2)↓O .

We extend the operator to P-processes O1 ⊳ k1 and O2 ⊳ k2 as follows:

O1 ⊳ k1 ∣∣∣
ε
O2 ⊳ k2 = O ⊳ k1 ∣∣∣

ε
k2 .

4 HD Causal Semantics

Our causal semantics for P-processes is inductively computed from basic transi-
tions of their agents. Transitions are of the following form

O ⊳ k
K⊢μ
��⇒

h
O′ ⊳ k′

Here O ⊳ k is performing an action μ ∈ Act ∪ {τ} with causes K ⊆ max(O).
Unlike the DD-semantics, K only contains the most recent events among the
causes of moving agents. This choice is sound, because down-closed sets, such as
causes of agents, are fully determined by their maxima. The poset O′ is δ(O,K)
reduced to immediate causes. The history map h∶O′ → δ(O,K) keeps track of
the original identity of events. The presence of history maps makes the semantics
history dependent, in the sense that the identity of events depend on the past
transitions.

4.1 Interleaved and Synchronised Product

Our SOS rules will use two operations of left/right interleaved product and
synchronised product to compute interleaving and synchronisation of two P-
processes. They are defined in Fig. 2. The definitions are complicated by the need
to deal with several embeddings, amalgamations, and removal of non-maximal
causes, but are otherwise straightforward.

Suppose we want to compute the interleaving behaviour of a P-process that
can be decomposed as an amalgamated parallel composition with amalgamation
O1

ε1
�→ O

ε2
←� O2. In defining the left interleaved product O′1 ⊳ k1⋉O2 ⊳ k2,

we assume that the left component has a transition to O′1 ⊳ k1, with causes
K1 ⊆max(O1) and history map h1∶O

′

1 → δ(O1,K1), while the right component
is O2 ⊳ k2 and is idle. We want to compute action causes, history map and
continuation of the interleaved transition. Action causes K⋉1 are those K1 of the
moving P-process, embedded in O via ε1 (the superscript ⋉ is just an annotation
to make clear that we are considering the left interleaved product). Some of them
may become non-maximal, so they must be removed. To compute continuation
and history map, we form a new amalgamation O′1

ν1
�→ δ(O,K⋉1 )

ω1
←� O2. Here
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Fig. 2. Operations to compute continuations of parallel P-processes in the HDC-
semantics.

the vertex poset models event allocation for the overall transition. We use this
amalgamation to compute parallel composition of k1 and k2. The resulting n-
process may contain non-immediate causes, so we use ic to discard them and to
compute a suitable history map h⋉, because we want to get a P-process. The
right interleaved product O1 ⊳ k1⋊O

′

2 ⊳ k2 is defined analogously.
The synchronised product is also similar. Now we assume that both compo-

nents move, and we know their action causes, history maps and continuations.
The action causes K1�K2 of the synchronisation are simply the union of all
action causes, embedded into O, namely ε1(K1) ∪ ε2(K2). Again, non-maximal
causes are removed. Overall continuation and history map are computed as in the
interleaved product, via a new amalgamation O′1

γ1○ν1
���→ δ(O,K1�K2)

γ2○ν2
←��� O′2.
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4.2 HDC-semantics and Bisimulation

The History Dependent causal semantics (HDC-semantics) is the smallest LTS
generated by the rules in Fig. 3.

Remark 1. Note that, given the particular nature of n-processes and P-processes,
each agent p will have at most one immediate cause to expose in a transition.
If a synchronisation is performed, at most two causes are recorded in the label
and only one event is added to the target.

Fig. 3. SOS rules for the HDC-semantics. The rule (Par-Left) has a symmetric one
(Par-Right), which is omitted.

The rule (Agent) says that an agent p can become a P-process with either
empty or singleton poset O. Any transition exhibits ∣O∣ as action causes, and goes
to a P-process where each agent has a single cause e. The history map takes e to
the maximal element of δ(O, ∣O∣). For instance, if O = {e}, δ(O,{e}) = {e1 ≼ e2},
and h(e) = e2.

The rules (Par-Left) ((Par-Right) is analogous, so it is omitted) and
(Sync) handle the (amalgamated) parallel composition of two P-processes. The
first two rules derive interleaving behaviour, and the latter derives a synchronisa-
tion between P-processes performing complementary actions. We use appropriate
product operations to compute the derived transition.

We now introduce bisimilarity for P-processes, called HDC-bisimilarity. It is
quite involved: when comparing two P-processes, we need to establish an explicit
correspondence between their events. This correspondence can be a partial func-
tion, because some events may not be observable. Then a P-process is allowed
to simulate a transition with a different transition, provided that this transition
can be mapped to the original one via the partial function.
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Definition 8 (HDC-bisimilarity). A HDC-bisimulation R is a ternary rela-
tion such that, whenever (O1 ⊳ k1, σ,O2 ⊳ k2) ∈ R:

– σ is a partial isomorphism (i.e., an isomorphism between subposets) from O1

to O2;
– if O1 ⊳ k1

K⊢a
��⇒

h1
O′1 ⊳ k′1 then σ is defined on K, and there are a transition

O2 ⊳ k2
σ(K)⊢a
���⇒

h2
O′2 ⊳ k′2 and σ′ such that (O′1 ⊳ k′1, σ

′,O′2 ⊳ k′2) ∈ R and the

following diagram commutes

O′1
h1 ��

σ′

��

δ(O1,K)

σ+

��
O′2 h2

�� δ(O2, σ(K))

– if O2 ⊳ k2
K⊢a
��⇒

h2
O′2 ⊳ k′2 then σ is defined on K, and there are a transition

O1 ⊳ k1
σ−1(K)⊢a
����⇒

h1
O′1 ⊳ k′1 and σ′ analogous to the previous item.

The greatest such bisimulation is denoted ∼hdc. We write O1 ⊳ k1 ∼
σ
hdc O2 ⊳ k2

to mean (O1 ⊳ k1, σ,O2 ⊳ k2) ∈∼hdc.

The commuting diagram essentially says that σ′ should act as σ on “old” events,
and preserve freshness of events. The identity of new and old events is specified
by the history maps.

Now we show how we can derive a HDC-semantics for (Darondeau-Degano)
causal processes that is fully abstract w.r.t. DD-bisimilarity.

Theorem 1. Consider the following implementation of event names and event
generation: E = N+ and δ(O,K) is the reflexive and transitive closure of

{(n + 1,m + 1) ∣ (n,m) ∈ ∣O∣} ∪ {n + 1 ∣ n ∈K} × {1}

with new(O,K) = 1 and old(O,K)(n) = n + 1. Then k1 ∼dd k2 implies
ic(O1, k1) ∼hdc ic(O2, k2), for any Oi consistent with ki (i = 1,2).

Example 2 (HDC-semantics for the running example). In order to derive the
HDC-semantics of ∅ ⊳ ∅ ⊢ p1 ∥ ∅ ⊢ p2, we start from the HDC-semantics of
agents

∅ ⊳ ∅ ⊢ pi
∅⊢ai
��⇒

id
{1}

{1} ⊳ {1} ⊢ pi {1} ⊳ {1} ⊢ pi
∅⊢ai
��⇒

h1
{1} ⊳ {1} ⊢ pi.

where h1∶ {1} → δ({1}) = {2 ≼ 1} maps 1 to itself. Then we derive other P-
processes using (Par-Left) and (Par-Right). The resulting HDC-semantics
is in Fig. 4, where states tagged with numbers (1) to (4) are “representations” of
states in Fig. 1 with the same mark, in the sense that they are obtained from the
latter by immediate causes reduction. Remarkably, this gives a finite state-space.
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Fig. 4. The finite LTS for the HDC operational semantics of our running example

5 Causal History-Dependent Automata with Symmetries

We now consider minimal models for our HDC-semantics, up to HDC-
bisimilarity. We do this by characterising HDC-semantics as History Dependent
(HD-)automata, that are coalgebras over a suitable category of named sets. We
call these coalgebras causal HD-automata (HDC-automata) because they will be
defined in such a way that their transition relation matches our HDC-semantics.
HDC-bisimilarity is then characterised as behavioural equivalence induced by
the final HDC-automaton.

One important feature of HDC-automata is the presence of symmetries over
states. Given an abstract poset O, a symmetry over O is a set Φ ⊆ Aut(O) (called
just permutations hereafter) such that id ∈ Φ and it is closed under composition.
States are of the form O ⊳Φ s, where Φ is a symmetry over O.

Symmetries are essential for a correct notion of minimal model. In the case of
ordinary labelled transition systems (LTSs), one can compute minimal versions
w.r.t. bisimilarity, where all bisimilar states have been identified. Bisimilar LTSs
have isomorphic minimal versions, so we may use any of them as canonical
representative of the class of bisimilar LTSs. For HDC-automata, if we remove
symmetries this fails: we may have minimal HDC-automata that are bisimilar
but not isomorphic. We provide an example that explains this phenomenon.
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Example 3. Consider the P-process {1,2} ⊳ {1} ⊢ p1 ∥ {2} ⊢ p2 of Example 2,
together with its two looping transitions. Consider the following HD-automaton

{1,2} ⊳ s

{1}⊢a1

h′3 ��

{2}⊢a2

h′4
��

h′3∶ {1,2} → {2 ≼ 1,3} =
⎧

⎪
⎪

⎨

⎪
⎪

⎩

1↦ 1
2↦ 3

h′4∶ {1,2} → {3 ≼ 1,2} =
⎧

⎪
⎪

⎨

⎪
⎪

⎩

1↦ 1
2↦ 2

Reminding that in Example 2 we had

h3∶ {1,2} → {2 ≼ 1,3} =
⎧

⎪
⎪

⎨

⎪
⎪

⎩

1↦ 1
2↦ 3

h4∶ {1,2} → {3 ≼ 1,2} =
⎧

⎪
⎪

⎨

⎪
⎪

⎩

1↦ 2
2↦ 1

we can note that h′3 = h3 and h′4 = h4 ○ (1 2) (the permutation (1 2) swaps 1
and 2). Suppose we want to find a minimal realisation of these HDC-automata.
They are not isomorphic, in the sense that there is no permutation on {1,2}
that, applied to labels and composed with history maps, turns transitions of the
former into transitions of the latter. However, we have

{1,2} ⊳ {1} ⊢ p1 ∥ {2} ⊢ p2 ∼
(1 2)
hdc {1,2} ⊳ s

so these states should be identified in some way. This way is provided by sym-
metries: minimal behaviour, according to ∼hdc, is invariant under (1 2), so we
can identify those states, provided that the resulting state is annotated with the
permutation (1 2).

In [5] a symmetry group over a category C is defined to be a collection
of morphisms in C[c, c], for any c ∈ ∣C∣, which is a group w.r.t. composition
of morphisms. Then generalised named sets are defined to be families of such
groups. Since our symmetries are over abstract posets, we instantiate C to the
following category.

Definition 9 (Category P). The category P has abstract posets as objects and
order-embeddings as morphisms.

We give an equivalent presentation of our named sets, closer to the original one
in [6]. Given a set S of morphisms and a morphism σ in P, we write S ○ σ for
the set {τ ○ σ ∣ τ ∈ S} (analogously for σ ○ S).

Definition 10 (Category Sym(P)). Let Sym(P) be the category defined as
follows:

– objects Φ are subsets of P[O,O] that are groups w.r.t. composition in P;
– morphisms Φ1 → Φ2 are sets of morphisms σ ○ Φ1 such that σ∶dom(Φ1) →

dom(Φ2) and Φ2 ○ σ ⊆ σ ○Φ1.

Definition 11 (Category NSet(P)). The category NSet(P) is defined as
follows:
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– objects are P-named sets, that are pairs N = (QN ,GN) of a set QN and a
function GN ∶QN → ∣Sym(P)∣. The local poset of q ∈ QN , denoted ∥q∥, is
dom(σ), for any σ ∈ GN(q).

– morphisms f ∶N →M are P-named functions, that are pairs (h,Σ) of a func-
tion h∶QN → QM and a function Σ mapping each q ∈ QN to a morphism
GM(h(q)) → GN(q) in Sym(P).

Then we can define the category of HDC-automata as coalgebras over a suit-
able endofunctor on NSet(P). Formally, this endofunctor is yielded by a cate-
gorical equivalence between pullback-preserving presheaves on P and NSet(P)
(cf. [3,4]). We give an informal description below.

Definition 12 (Category of HDC-automata). Let B∶NSet(P) →NSet(P)
be the following endofunctor

BN = Pf(L ×ΔN)

where:

– Pf ∶NSet(P) →NSet(P) is the finite powerset on NSet(P), mapping N to
its finite subsets that satisfy some requirements (see [6] for the corresponding
functor on named sets), equipped with a compatible symmetry group;

– L is a P-named set of labels whose elements are pairs (K,μ), where a ∈ Act∪
{τ} and K represents the causes of a;

– Δ∶NSet(P) → NSet(P) is the event generation functor, mapping N to a
P-named set made of pairs (q, e), with q ∈ QN and e ∈ ∥q∥ is an event marked
as fresh; the symmetry group is the subgroup of GN(q) that fixes e.

5.1 HDC-automata for P-processes

We now show how we can derive HDC-automata from the HDC-semantics. The
P-named set of states for these automata is defined as follows.

Definition 13 (P-named set of P-processes). The P-named set of P-
processes is (QP ,GP ), where:

– QP is the set of n-processes k such that O ⊳ k is a P-process and ∥k∥ = O;
– GP (k) = {φ ⊆ Aut(∥k∥) ∣ kφ = k};

We write O ⊳Φ k for k ∈ QP such that ∥k∥ = O and GP (k) = Φ.

Intuitively, in O ⊳Φ k, Φ is a set of permutations that do not affect the state.
Typically, when states are syntactic entities, we have Φ = {id}.

Transitions from O ⊳Φ k to O′ ⊳Φ′ k′ are derived from those between the
underlying P-processes. The idea is that we only keep one transition among the
set of transitions that can be computed from each other using permutations in

Φ and Φ′. Formally, we say that two transitions O ⊳ k
Ki⊢a
��⇒

hi

O′ ⊳ k′, i = 1,2, are
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symmetric whenever there are φ ∈ Φ and φ′ ∈ Φ′ such that K2 = φ(K1) and the
following diagram commutes

O′
h1 ��

φ′

��

δ(O,K1)

φ+

��
O′

h2

�� δ(O,K2)

The derivation is done by taking a canonical representative among symmetric
transitions. Clearly all other transitions can be reconstructed.

Bisimilarity for HDC-automata induced by the HDC-semantics can be char-
acterised as a slight variant of Definition 8, where permutations are taken into
account. It is a set of triples (O1 ⊳Φ1 k1, σ,O2 ⊳Φ2 k2) such that, for all φ1 ∈ Φ1

and every transition of O1 ⊳Φ1 k1, there is a transition of O2 ⊳Φ2 k2 obtained by
applying φ−12 ○σ ○φ1 to the former transition, for some φ2 ∈ Φ2. The commuting
diagram for the new map σ′, relating the continuations, now involves φ−12 ○σ○φ1.

It can be proved that this new notion of bisimilarity is fully abstract w.r.t
HDC-bisimilarity. Under the assumptions of Theorem1, this is equivalent to
DD-bisimilarity. Therefore we have our final theorem.

Theorem 2 (Causal trees, finally). Under the assumptions of Theorem1, the
final semantics of a P-process is a HDC-automaton that represents the causal
tree of the underlying causal process.

As mentioned, symmetries allow computing minimal realisations, where all
bisimilar P-markings are identified. More precisely, we can identify two states
O1 ⊳Φ1 k1 and O2 ⊳Φ2 k2 that are related by ∼σ

hdc, for some σ. Then σ becomes
part of the state symmetry. Actually, σ is a permutation between subposets of
O1 and O2, but it can be shown that all HDC-bisimilar states have the same
poset of observable events on which σ is defined. This means that σ is indeed a
permutation on that poset.

Example 4 (HDC-automaton for the running example). The HDC-automaton
for the running example can be derived by taking O ⊳

{id} k, for each P-process
O ⊳ k in Example 2. Its minimal realisation has the same shape and the same
transitions, but the state {1,2} ⊳ {1} ⊢ p1 ∥ {2} ⊢ p2 is equipped with symmetry
{id, (1 2)}.

6 Conclusion

In this paper we have revisited causal tree semantics under the new light offered
by nominal techniques, not available when causal trees were first introduced by
Pierpaolo Degano and Philippe Darondeau. While doing so, we have outlined a
general methodology for providing minimal realisation up to causal semantics.
The methodology is based on a nominal framework, here enriched with poset
information. While the work in this paper builds on the work in [3,4], Sect. 4



Causal Trees, Finally 43

provides causal processes with a direct, compositional definition of operational
semantics and of the associated bisimilarity. Moreover, the minimal realisation
is shown to provide a, possibly finite, causal tree semantics.
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Incremental Design with Information Flow Goals. Designers of secure
systems would like to be able to work incrementally. Having designed a fragment
of a system—and checked that it establishes some security goal—they would
like to be able to design additional portions and combine them. It is, however,
very difficult to ensure that the resulting composite system still establishes the
security goals that the initial fragment was found to have. Particularly when the
security goals are expressed as information flow properties, i.e. as limitations on
what a hostile observer can know about the behavior of a fragment.

Because this problem is so challenging, we focus only on a part of it. We
use a system model in which a set of processing elements (“nodes”) interact
by synchronous messages passing over a fixed set of unidirectional channels.
Execution never creates channels, or moves their endpoints, in this model. Thus,
we are emphasizing the part of the security composition problem that is about
message passing in fixed communication patterns.

Frames, Executions, and Local Runs. An instance of our model (a “frame”)
consists of a directed graph, together with an assignment of a set of permissible
traces to each node. In each event in a trace, a message is sent or received
through a channel attached to the node. Each execution is a partially ordered
set of events. The partially ordered set (E,�) is an execution if, for every node �,
the subset of E consisting of events on channels attached to � forms a trace of �,
under the given ordering �.

We understand the observations of the adversary as local runs. Let C be
a subset of the set of channels CH. Consider a partially ordered set of events
(EC ,�C) where every event e ∈ EC occurs on some channel c ∈ C. (EC ,�C) is
a local C-run if, for some execution (E,�), EC contains exactly the events of
E that occur on channels in C, and �C is the restriction of � to this subset.
That is, a local C-run is the part of some execution that happens on C. If A is
an execution, we write A � C for its restriction to the channels C.

We regard any observation the adversary makes as a local run on some set
of channels obs ⊆ CH. Thus, observing a particular local obs-run Bo tells the
observer that the global execution is a member of {A : A � obs = Bo}. Any other
global execution is incompatible with what he actually observed.

We also assume that the goal of the adversary is to learn about what local
runs may have happened on some set of channels src ⊆ CH that he does not

This abstract, which summarizes the motivation and results of [1], is dedicated in
warm friendship to Pierpaolo Degano.
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DOI: 10.1007/978-3-319-25527-9 5



Limited Disclosure and Locality in Graphs 45

immediately observe. The channels src are the source of the information; the
security designer may want to limit the flow of information from this source to
the channels obs. What the observer learns about the behavior at src when he
observes a particular local obs-run Bo? He learns that whatever local src-run has
occurred, it must be the restriction of some global execution compatible with Bo.
Thus, what he has learned is summarized in the set

{A � src : A � obs = Bo}.

We call this set Jsrc�obs(Bo). The subscripts give typing information: it is a set
of local src-runs, namely all those jointly compatible with the local obs-run Bo.

Non-disclosure and Limited Disclosure. The observer learns more when
this set Jsrc�obs(Bo) is smaller: his knowledge is a tighter approximation to what
has happened. He learns nothing at all about the behavior at src when it is as
large as possible, namely when it equals the set of all local src-runs. We call this
non-disclosure, and it adapts the non-deducibility [2] approach to our framework.

Unfortunately, few systems need to achieve non-disclosure. When there is
no causal connection between src and obs, there is no reason to include them
within the same system. What is more common is that we would like to limit the
disclosure from src to obs, so that some information is disclosed and some is not.
Consider for example a voting system. Figure 1 shows the voters v1, . . . , vk of a
precinct, their ballot box BB1, a channel delivering the results to the election
commission EC , and then a public bulletin board Pub that reports the results.

Fig. 1. A precinct with a single ballot box

The ballot box BB1 must disclose the numbers of voters in this precinct that
have voted for each of the candidates. But it should provide voter anonymity:
neither EC nor anyone observing the results Pub should be able to associate any
particular vote with any particular voter vi.

This is effectively a closure operator on Jsrc�obs(Bo), the set of local runs on
the source channels src = {c1, . . . , ck} that are compatible with any observations
on the channels obs = {d, p}. The closure operator requires that if a local run
Bs can occur on the ci, then any run obtained from Bs by permuting which vote
was received from which voter should be equally possible.

This operation of closing under permutations actually obeys a slightly stronger
property than being a closure operator. It satisfies the three properties:

Inclusion: For all sets S, S ⊆ f(S);
Idempotence: f is idempotent, i.e. for all sets S, f(f(S)) = f(S); and
Union: f commutes with unions: If Sa∈I is a family indexed by the set I, then
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f(
⋃

a∈I

Sa) =
⋃

a∈I

f(Sa). (1)

We will call any operator f that satisfies these three properties a blur opera-
tor. They are slightly stronger than closure operators, which satisfy Inclusion,
Idempotence, and Monotonicity. Monotonicity is equivalent to f(

⋃
a∈I Sa) ⊇⋃

a∈I f(Sa), i.e. only half of the equation in (1). We say that a set S is f-blurred
iff f is a blur operator and S = f(S).

We argue that any notion of limited disclosure from src to obs determines a
blur operator on the sets of local src-runs Jsrc�obs(Bo) (see [1, Lemma 22]).

The Cut-Blur Principle. It remains now to connect limited disclosure to the
graph structure of a frame. In our execution model, causal influence is propa-
gated locally along channels. Knowledge is determined by this causal influence,
although—in a synchronous model—knowledge is propagated in both directions.
If I receive a message on channel c, I know that my peer holding the other end
of the channel has sent it. But also conversely, if I transmit a message on c, I
know that my peer on the other end of c has (synchronously) received it. All
knowledge must be the consequence of some set of local inferences of these two
kinds. Therefore, consequences that are inferred by a remote observer must also
be available to a suitable intermediate observer.

We say that a set of channels cut is a cut set between src and obs if every
path in the undirected graph from an edge in one set to an edge in the other set
must include an edge in cut. We can now prove that if information flow from src
to cut is limited to within a blur operator f , then information flow from src to
obs is also limited to within f .

We call this the cut-blur principle. It follows almost directly from the blur
properties.

It justifies relying exclusively on a portion of a system—such as the ballot box
BB1 in Fig. 1—to blur the behaviors of the voters. If an observer at {d} cannot
determine the correct permutation of votes, then observers at {p} etc. cannot do
so either. We have justified relying on an information flow property in a larger
system in terms of the flow limitation achieved by the portion involving only the
voters and BB1.

Acknowledgments. I am grateful to Paul Rowe, my joint author in the underlying
work [1] on cuts and flow. See [1] for definitions and proofs, and for extensive discussion
of related work.
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Abstract. Information flow control extends access control by not only
regulating who is allowed to access what data but also the subsequent
use of the data accessed. Applications within communication networks
require such information flow control to depend on the actual data. For a
concurrent language with synchronous communication and separate data
domains we develop a Hoare logic for enforcing disjunctive information
flow policies. We establish the soundness of the Hoare logic with respect
to an operational semantics and illustrate the development on a running
example.

1 Introduction

Access control is a standard technique for guarding the confidentiality and
integrity of data. It may take the flavour of a discretionary policy where for
each file and user it is determined whether or not there is read-access (regarding
confidentiality) or write-access (regarding integrity). Alternatively, it may take
the flavour of a mandatory policy where files and users are characterised accord-
ing to some security lattice and where flows are only permitted as allowed by the
partial order. Examples include Bell and LaPadula [5] (for confidentiality) and
Biba [6] (for integrity). Typically, access control is implemented dynamically by
a reference monitor that halts execution when a policy is violated.

Information flow control goes one step further in attempting to ensure that
subsequent use of the data adheres to the intended policy. It may take the flavour
of a mandatory policy expressed using security lattices embodying confidential-
ity considerations (motivated by Bell and LaPadula) or integrity considerations
(motivated by Biba). Typically, information flow control is implemented stati-
cally by a type system that ensures that policies cannot be violated, and the
semantic guarantees are expressed using non-interference results [12,24]. Alter-
natively, it may take the flavour of a discretionary policy where data variables
are marked with security labels indicating which users may read (for confiden-
tiality) or write (for integrity) the data variables. A prominent example is the
Decentralized Label Model (DLM) [17,18], which is also implemented statically
by a type system enforcing the policies. Since the security labels can be seen as
elements of a lattice one might employ non-interference ideas for the semantic
characterisation.

Information Flow Control in Avionics: The increased use of wireless com-
munication within avionics gives rise to new security challenges that cannot be
c© Springer International Publishing Switzerland 2015
C. Bodei et al. (Eds.): Degano Festschrift, LNCS 9465, pp. 47–65, 2015.
DOI: 10.1007/978-3-319-25527-9 6
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fully mitigated by current practices. In particular, there is a growing demand
for techniques for controlling the information flow between different security and
safety domains on-board and off-board the aircraft. Such techniques have to be
integrated with the existing software architectures, in particular the MILS (Mul-
tiple Independent Levels of Security) architecture [21]. The MILS architecture is
based on a strict separation of processes into partitions with isolated resources
and a (certifiable) separation kernel controlling (and limiting) the interprocess
communication (IPC) between the partitions [16]. This architecture provides a
compositional approach for validating the security of the system – however, the
constrained flow of information between the partitions being enforced by the
separation kernel is now being challenged.

The ARINC-811 report [10] explicitly addresses the security issues in avionics
and calls for separating the software in a number of security domains. This is
illustrated by a “closed domain” for highly critical applications controlling the
aircraft, a “private domain” for the less critical application operating the airline
and for informing and entertaining the passengers and a “public domain” for
the passenger owned devices. These domains will exchange information with one
another and with external domains as for example ground control. The Bell and
LaPadula approach and the Biba approach go some way towards controlling
the information flow but a more fine-grained control is needed to handle the
flexibility required in future avionics architectures.

An emerging challenge [16] is to let policies depend on the actual data. This
is illustrated for an avionics gateway where the possible interactions between
security domains depend not only on the security domains themselves but also
on the content of messages exchanged between them. The essence of the scenario
can be illustrated by a simple example: A multiplexer that merges data from
several sources, transport them over a joint channel, and then split them to reach
different targets. The different sources and targets belong to different security
domains and hence they are likely to have different security policies; the merged
data will include information about the intended source and destination. It then
becomes challenging to express the policy for the merged data, as it is dependent
on the data values specifying the intended source and destination.

Our Contribution: We extend discretionary information flow policies to deal
with content-dependent security policies in a setting inspired by the MILS archi-
tecture and adhering to the separation of the software into security domains as
advocated by the ARINC-811 report. We illustrate our approach on the mul-
tiplexer example mentioned above (and further elaborated in Sect. 2) and we
prove the correctness of our approach with respect to a co-inductive correctness
predicate defined by means of a formal semantics.

A language of concurrent processes each with their own memory and with
synchronous communication as the only means for exchange of data is intro-
duced in Sect. 3. It is equipped with a Structural Operational Semantics [20]
that is instrumented to record the use of data in the form of a flow relation;
for dealing with the implicit uses of data [12,24] we use the technique of “local
environments” of [20]. The flow relation captures the duality between readers
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and influencers that also will be present in the policies in the sense that forward
flows are appropriate for the constraints on influencers, whereas backward flows
are appropriate for the constraints on readers.

Our basic and disjunctive policies are introduced in Sect. 4. Basic policies are
concerned with channels as well as variables and are based on policies for readers
(confidentiality) and influencers (integrity) defined using ideas from DLM [17,18].
We extend on DLM by including also content-based policies characterising the
permissible value ranges of data. The policies are equipped with a partial order-
ing capturing the duality between confidentiality and integrity – as known from
other studies of access control and information flow control [14,15,17,18]. We
define what it means for a flow relation (from the semantics) to satisfy a set of
basic policies. Disjunctive policies are sets of basic policies and allow to shift
between policies as required by the value-range information; they are essential
for dealing with the motivating multiplexer example. We conclude by providing
a co-inductively defined notion of self-similarity for expressing what it means for
a system to satisfy a disjunctive security policy.

A combined Hoare logic and type system for verifying whether a system
adheres to the specified disjunctive policies is developed in Sect. 5. While type
systems have been used extensively for formulating information flow policies, the
need to consider the actual data values leads us to combining it with a Hoare
logic in order to determine the appropriateness of the basic security policies
contained in the overall disjunctive policy. The preconditions of the Hoare for-
mulae allow us to select the relevant basic security policies and to perform the
relevant check on the readers and influencers on just these policies; analogously,
the postconditions may restrict which security policies that are enforced for the
continuation of the process. Another advantage of using a Hoare logic is that
this allows to cleanly incorporate also the results of prior static analyses into
the information flow type system; this is needed in order to interact with the
approach of industrial users and is a need also discussed in [1]. Although we
are studying a concurrent language, the underlying Hoare logic is fairly stan-
dard because we are modelling a MILS architecture and therefore the individual
processes have no shared variables. The semantic correctness takes the form of
proving that typability is a self-simulation.

Related Work: The approach of [7] shares some of our aims of discretionary
information flow, but we deal with both confidentiality and integrity as well as
value ranges, we provide a clear explanation of the opposite directions of flow
that are appropriate for their formalisation, we deal with a concurrent language
rather than a purely sequential (functional) language, and we admit disjunc-
tive policies; although we do not consider the relationship to non-interference
our self-simulation based approach points in that direction. Our use of “local
environments” may be compared with the use of stacks in the monitoring rules
of [22] for achieving mandatory information flow for confidentiality.

The use of locks [8] would appear to have some relationship to value ranges
(whether or not a lock is taken) but the main purpose is that of modelling state-
ful policies. An interesting Hoare logic for dealing with mandatory information
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flow for confidentiality is considered for a rich concurrent language with proce-
dures in [2]; the Hoare logic permits dealing with data in the spirit of our value
ranges, but there is no consideration of integrity nor of any semantic notion of
correctness. The approach of [1] considers a Hoare logic directly relating pairs
of states thereby being able to express non-interference properties in a natural
manner. The development of [1] is proved sound, and while it deals with our
value ranges in a rather advanced manner, there is no consideration of neither
readers nor influencers nor of the difficulties of dealing with concurrency; indeed,
one of the strong points of our work is that we are able to use security policies
explicitly just as in the classical approaches and to do so in a concurrent setting.
Focusing instead on strongest postconditions (in the form of a dynamic logic)
the approach of [11] is able to directly formulate non-interference properties for
a notion of mandatory information flow policies for confidentiality — but again
without taking concurrency into account.

Many other papers deal with the Decentralized Label Model and informa-
tion flow policies with aims that differ from ours. As an example, [26] aims
at extending policies to give information about the availability of data (supple-
menting confidentiality and integrity of information), and [9] aims to connect the
confidentiality and integrity dimensions by ensuring that data of low integrity
cannot be used for deciding whether or not to declassify with respect to confiden-
tiality. Considering a synchronous data flow language, [25] considers trace-based
formulations of influencers and relates it to a non-interference property, and [13]
considers the application of mandatory policies to avionics.

2 Motivating Example

Our development is motivated by the example illustrated in Fig. 1: two producers
p1 and p2 send data to a multiplexer m over the channels in1 and in2, respectively.
The multiplexer wraps the data up and forwards it over the channel ch to a
demultiplexer d. The demultiplexer will then unwrap the data and forward it to
the consumers c1 and c2 while adhering to the policy that data from p1 is only
allowed to reach c1 and similarly data from p2 is only allowed to reach c2.

p1 in1
c1

m
ch

d

out1

out2p2 in2 c2

Fig. 1. The principals and channels of the multiplexer example.

We shall mainly be interested in the multiplexer and demultiplexer; we may
write their code as follows:

m : while true do
( in1?x1; ch!(1, x1)
⊕ in2?x2; ch!(2, x2) )

d : while true do
( ch?(y, z);

if y = 1 then out1!z else out2!z )
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Here the channel ch is dyadic while the other channels are monadic. The mul-
tiplexer iterates through a loop, where it non-deterministically chooses to read
from one of the channels in1 or in2 (as indicated by the operator ⊕), and then
sends the data on the channel ch tagged with the constant 1 or 2 to record the
source of the data. The demultiplexer also iterates through a loop; it will read a
message from the channel ch and decides from the tag of the message whether
the data itself has to be sent on the channel out1 or out2.

In the setting of the avionics gateway the principals may belong to the same
security domain or they may belong to different security domains.

The Policies: We now associate policies with the channels; there will be a con-
fidentiality part describing who is allowed to read the data sent on the channel,
and there will be an integrity part describing who is allowed to have influenced
the data sent on the channel.

Let us write Pi for the policy catering for data flowing from pi to ci (for
i = 1, 2). The data will first be sent over the channel ini and the integrity part
of our policy will express that only pi is allowed to influence the data sent on
this channel. The confidentiality part of the policy is more complex: clearly m
should be allowed to read the data, but we shall also allow d and ci to read,
since the data is to be passed from m to d and further on to ci. We formalise
this by specifying

Pi
i (ini) = {pi} Pi

r(ini) = {m, d, ci}

where we use the subscript i for the integrity part of the policy and the subscript
r for the confidentiality part.

Let us next consider the policy for the channel outi. Clearly d influences the
data but since the data originates from pi and has passed through m, we shall
include all three as influencers. However, there is only one reader, namely ci, so
we specify

Pi
i (outi) = {pi,m, d} Pi

r(outi) = {ci}
We are now left with the challenging task of specifying the policy for the (dyadic)
channel ch. We have policies for the tag field (ch.1) as well as the payload (ch.2)
of the messages and we may want to record this as follows (for i = 1, 2):

Pi
i (ch.1) = {m} Pi

r(ch.1) = {d, ci}
Pi
i (ch.2) = {pi,m} Pi

r(ch.2) = {d, ci} (1)

In the case of the payload we state that pi and m may be influencers of the data,
whereas d and ci will be the permitted readers of the data. For the tag field we
can omit pi from the set of influencers but otherwise the policy equals that of
the payload.

Unfortunately, information flow policies that are not content-based (like
DLM) do not allow us to have two distinct policies for the channel ch. This
means that we would need to settle for a policy merging the policies P1 and P2.
In particular, we would be forced to include both p1 and p2 as influencers of
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both out1 and out2. This means that the policy would be unable to provide the
required guarantees for the system.

Our Contribution: This motivates providing the desired security guarantees
by introducing disjunctive policies into a concurrent language with synchronous
communication. In this approach we allow the channel ch to have the disjunctive
policy {P1,P2}. To reduce the uncertainty as to which of the policies P1 and
P2 that actually applies we next incorporate a value-range component in our
policies. We will extend the policies of (1) with a record of the value of the tag
component of the messages (for i = 1, 2):

Pi
v(ch.1) = {i}

Our subsequent analysis is based on a combined type system and Hoare logic
that allows us to reason about the values of variables and hence the value of the
tag field of the messages. In this way our analysis allows us to guarantee that
data from p1 only reaches c1 and data from p2 only reaches c2.

3 Syntax and Instrumented Semantics

Preparing for the formal development we define the concurrent imperative lan-
guage used and we develop its instrumented operational semantics.

Syntax of Processes and Systems: A system consists of a fixed number of
principals running in parallel; each principal runs a process with its own local
state and exchanges messages with other principals by synchronous commu-
nication over channels. The syntax of processes (or statements) S, arithmetic
expressions a, boolean expressions b and systems Sys is:

S ::= skip | x := a | S1;S2 | if b then S1 else S2 | while b doS
| ch?x1..xk | ch!a1..ak | S1 ⊕ S2 | {X}S

a ::= n | x | a1 op a2

b ::= true | a1 rel a2

Sys ::= p1 :S1 || · · · || pn :Sn

We write x, y, z ∈ Var for variables, X ⊆ Var for sets of variables, and p ∈ Pr
for principals. We use ch for a polyadic channel name, n for unspecified con-
stants, op for unspecified arithmetic operators, rel for unspecified relational
operators, true for the boolean constant denoting truth, and we let u range
over Var ∪ Ch. We assume that Pr = {p1, · · · , pn} is the set of principals,
Var =

⊎
p∈Pr Varp is the union of mutually disjoint sets Varp of variables,

where each principal p is only allowed to use variables from Varp, and Ch =
{ch.1, · · · , ch.k | ch is a polyadic channel name with arity k} is the set of chan-
nel positions. Arithmetic and boolean expressions may contain variables but
neither channels nor principals. We denote by fv(·) the free variables occurring
inside arithmetic and boolean expressions.
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The statements are mostly self-explanatory; ch?x1..xk denotes the input of a
k-tuple of variables over the channel ch and the assignment of the components
to x1..xk, ch!a1..ak denotes the output of a k-tuple of values over the channel
ch, and S1 ⊕ S2 denotes the “external” non-deterministic choice between S1

and S2. The statement {X}S will be explained below; it will arise only during
execution in the manner of Structural Operational Semantics [20].

Instrumented Semantics for Processes: The semantics is based on a stan-
dard Structural Operational Semantics [20] where the states are mappings from
variables to values, i.e. σ ∈ Var → Val. The instrumentation amounts to adding
flows to the transitions; a flow F is a subset of pairs of variables, channels and
principals

F ⊆ (Var ∪ Ch ∪ Pr) × (Var ∪ Ch ∪ Pr)

and it provides a precise record of the explicit and implicit information flow. The
intuitive idea is that the value of the first component of a pair may influence the
value of the second component; in case the component is a channel position ch.i
we refer to the value being communicated in the i’th position of the channel and
in the case the component is a principal p it is instructive to think of it as the
program counter for the process p.

In order to handle communication, the transitions are also annotated with
the action taking place; an action α takes one of three forms:

α ::= ch!v1..vk | ch?v1..vk | τ

where the first two are for output and input over the channel ch and τ is an
internal action; here v1..vk denotes the sequence of values (from Val) being
communicated over the channel. We tacitly assume that arities match without
having explicitly to require this in the semantics.

The general form of the transitions for processes is

�p〈S;σ〉 F−→
α

〈S′;σ′〉

where the subscript p indicates the principal in which the process resides; here
configurations of the form 〈skip;σ〉 serve as terminal configurations. The defini-
tion is given in Fig. 2 (ignoring the two last rules concerned with systems) and
the most interesting clauses are explained below.

First, in the clause for assignment the flow clearly should include fv(a)×{x}
as the values of the free variables of a are used to compute the value of x.
Additionally we include (p, x) as the program counter of p also influences the
value of x. Furthermore, the program counter is also influenced by the assignment
so we also record the flow (fv(a) ∪ {p}) × {p}. The clause for skip can be viewed
as a special case only recording the flow {(p, p)} to express that a process owned
by principal p was active.

In the clause for conditionals and iteration we construct a block construct
of the form {fv(b)}S for recording the implicit flow that result from passing the
boolean condition b before embarking on the process S. This is in line with the
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�p〈skip; σ〉 F−→
τ

〈skip; σ〉 if F = {p} × {p}

�p〈x := a; σ〉 F−→
τ

〈skip; σ[x A→
 [[a]]σ]〉 if F = (fv(a) ∪ {p}) × {x, p}

�p〈S1; σ〉 F−→
α

〈S′
1; σ

′〉

�p〈S1; S2; σ〉 F−→
α

〈S′
1; S2; σ′〉

if S′
1 �= skip

�p〈S1; σ〉 F−→
α

〈skip; σ′〉

�p〈S1; S2; σ〉 F−→
α

〈S2; σ′〉

�p〈if b then S1 else S2; σ〉 F−→
τ

〈{fv(b)} S1; σ〉 if
B[[b]]σ = true and
F = (fv(b) ∪ {p}) × {p}

�p〈if b then S1 else S2; σ〉 F−→
τ

〈{fv(b)} S2; σ〉 if
B[[b]]σ = false and
F = (fv(b) ∪ {p}) × {p}

�p〈while b doS; σ〉 F−→
τ

〈({fv(b)} S);while b doS; σ〉 if
B[[b]]σ = true and
F = (fv(b) ∪ {p}) × {p}

�p〈while b doS; σ〉 F−→
τ

〈skip; σ〉 if B[[b]]σ = false and F = (fv(b) ∪ {p}) × {p}

�p〈ch!a1..ak; σ〉 F−−−−−→
ch!v1..vk

〈skip; σ〉 if
vi = A[[ai]]σ (for all i) and
F =

⋃
i≤k(fv(ai) ∪ {p}) × {ch.i, p}

�p〈ch?x1..xk; σ〉 F−−−−−→
ch?v1..vk

〈skip; σ[(xi 
→ vi)i≤k]〉 if F =
⋃

i≤k{ch.i, p} × {xi, p}

�p〈Si; σ〉 F−→
α

〈S′
i; σ

′〉

�p〈S1 ⊕ S2; σ〉 F−→
α

〈S′
i; σ

′〉
for i = 1, 2

�p〈S; σ〉 F−→
α

〈S′; σ′〉

�p〈{X} S; σ〉
{X} F

−−−→
α

〈{X}S′; σ′〉
if S′ �= skip

�p〈S; σ〉 F−→
α

〈skip; σ′〉

�p〈{X} S; σ〉
{X} F

−−−→
α

〈skip; σ′〉

�pi〈Si; σ〉 F−−−−−→
τ

〈S′
i; σ

′〉

〈p1 :S1 || · · · || pi :Si || · · · || pn :Sn; σ〉 F=⇒ 〈p1 :S1 || · · · || pi :S′
i || · · · || pn :Sn; σ′〉

�pi〈Si; σ〉
Fi−−−−−→

ch!v1..vk

〈S′
i; σ

′〉 �pj 〈Sj ; σ′〉
Fj

−−−−−→
ch?v1..vk

〈S′
j ; σ

′′〉

〈· · · || pi :Si || · · · || pj :Sj || · · · ; σ〉 F=⇒ 〈· · · || pi :S′
i || · · · || pj :S′

j || · · · ; σ′′〉
if F = (Fi ◦ ICh ◦ Fj) ∪ (Fi ◦ IVar∪Pr) ∪ (IVar∪Pr ◦ Fj) (and i �= j)

Fig. 2. Instrumented semantics of processes and systems.
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treatment of implicit flows using block labels [12,17,18] and technically uses the
technique of “local environments” developed in Structural Operational Seman-
tics [20].

This then requires us to define the semantics of the block construct just
created and in the clause for {X}S we use the operation {X}F defined by

{X}F = F ∪ (X × snd(F ))

where snd(F ) is the projection on the second components of the pairs in F . In
this way the implicit dependence on the variables of X is incorporated in the
flow of the statement.

The flows constructed for input and output are easiest to understand if ch!a
is thought of as ch := a and ch?x is thought of as x := ch with the obvious
extensions to polyadic output and input. Note that these clauses introduce the
channels in the flows and that this only happens when the action α is different
from τ .

Example 1. Consider the process d of Sect. 2 and assume that it performs the
action out1!z. This will give rise to the flow

F = {(z, out1), (z, d), (d, out1), (d, d)}
However there is an implicit dependence on the variable y of the test of the con-
ditional so the resulting flow will be {y}F which will add the two pairs (y, out1)
and (y, d) to F .

Instrumented Semantics for Systems: The configurations now take the form
〈p1 :S1 || · · · || pn :Sn;σ〉. Since we assumed that the n processes have mutually
disjoint sets of variables no confusion arises by using σ : Var → Val to denote
the state of the combined system. The transitions have the form

〈p1 :S1 || · · · || pn :Sn;σ〉 F=⇒ 〈p1 :S′
1 || · · · || pn :S′

n;σ′〉

where F is a system flow meaning that it is a flow that does not mention any
channels and hence

F ⊆ (Var ∪ Pr) × (Var ∪ Pr)

The semantics is defined by the last two rules in Fig. 2. The first rule embeds a
process action not involving communication (as indicated by the τ annotation
on the arrow) in the system level; since no communication takes place there
will be no mentioning of channels in F so indeed F ⊆ (Var∪Pr) × (Var∪Pr).
The second rule takes care of communication between processes; here we need to
combine the flows from the two processes taking part in the communication. First
we have the flow resulting from the communication over the channel (written
Fi ◦ ICh ◦Fj), then we have the remaining flows from the two processes (written
Fi ◦ IVar∪Pr and IVar∪Pr ◦ Fj); here we write IY for the identity relation on the
set Y (for Y being Var ∪ Pr or Ch) and use this relation to select the relevant
part of the flows Fi and Fj . Note that the resulting flow F is indeed a subset of
(Var ∪ Pr) × (Var ∪ Pr).
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Example 2. Returning to Sect. 2, suppose that p1 performs the operation in1!v
for some value v and that m is ready to perform the operation in1?x1. The flow
constructed for one step of execution of p1 and m will then be

F1 = {(p1, in1), (p1, p1)}
F2 = {(in1, x1), (in1,m), (m, x1), (m,m)}

These two flows are then combined into a flow for the overall communication:

F = {(p1, x1), (p1,m), (p1, p1), (m, x1), (m,m)}

Here the first two pairs come from the flow through the channel, the third pair
comes from F1 and the last two pairs come from F2.

4 Security Policies

We now introduce our security policies. We start with so-called basic policies
for influencers and readers, where we borrow ideas from [17,18]. We extend on
DLM in that the basic policies are content-based thanks to a component for
value ranges. We next introduce so-called disjunctive policies that are sets of
basic policies; they are needed to deal with the challenges illustrated in the
multiplexer example in Sect. 2.

Basic Policies: Our basic policies provide information for each variable and
channel about the principals that might have influenced their values, about the
principals that might be allowed to read their values, and about their actual
value range. Formally, a basic policy P is given by three component mappings

Pi : Poli = (Var ∪ Ch) → Labi influencers
Pr : Polr = (Var ∪ Ch) → Labr readers
Pv : Polv = (Var ∪ Ch) → Labv value range

where Labi = ℘(Pr), Labr = ℘(Pr)op, and Labv = ℘(Val).
The orderings � on Labi, Labr and Labv are obtained from those of the

powersets: for Labi it is the subset ordering ⊆ on the powerset ℘(Pr) of prin-
cipals, for Labr it is the superset ordering ⊇ on ℘(Pr) (because the notation
℘(Pr)op indicates that the natural ordering is the opposite, or dual, of the one for
powersets), and for Labv it is the subset ordering ⊆ on ℘(Val). The orderings
are lifted to policy components and basic policies in a pointwise manner.

Flows Adhering to Basic Policies: Weshall nowdefineapredicate sec(P, F, P ′)
that specifies when a flow F adheres to the basic policies P and P ′; here P will be
the policy that is relevant before the flow F whereas P ′ is the policy that is rele-
vant after the flowF .Aswe shall seeP will primarily be used toprovide information
about the permitted readers whereas P ′ will primarily be used to provide informa-
tion about the permitted influencers.
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We define the predicate sec(P, F, P ′) by

∀(p, u′) ∈ F : p ∈ P ′
i (u

′) ∧
∀(u, u′) ∈ F : (Pi(u) � P ′

i (u
′) ∧ Pr(u) � P ′

r (u
′)) ∧

∀(u, p′) ∈ F : p′ ∈ Pr(u) ∧
∀y ∈ Var \ (snd(F )) : (Pi(y) � P ′

i (y) ∧ Pr(y) � P ′
r (y))

The first line of the definition of sec(P, F, P ′) ensures that the principals p
recorded as an influencer of the variable or channel u′ is indeed permitted to
be an influencer according to the resulting policy P ′. The third line is analogous
and ensures that the principal p′ recorded as a reader of the variable or channel u
is indeed permitted to be a reader according to the initial security policy P . The
second line extends these considerations to the flow recorded between variables
and channels. Note that the definition considers the constraints on influencers
and readers to go in opposite directions: the partial order � amounts to ⊆ in the
case of influencers and to ⊇ in the case of readers. This observation is central
for the duality between the treatment of influencers and readers in our infor-
mation flow type system; it expresses that it is always secure to remove readers
and to add influencers. The fourth line merely ensures that we only make secure
changes to the policies for variables not recorded in the flow: we may include
more influencers and we may remove some readers for these variables.

The definition of sec(P, F, P ′) simplifies a bit when F is a system flow F in
that u and u′ now only need to range over variables rather than variables and
channels.

Disjunctive Policies: We shall introduce disjunctive policies P to be finite sets
{P 1, · · · , Pm} of basic policies each having the three components P i

i ∈ Poli, P i
r ∈

Polr, and P i
v ∈ Polv as explained above. Intuitively, this corresponds to a disjunc-

tive formula of basic policies where each basic policy only uses conjunction.
The state σ of a configuration in the semantics will determine whether or

not a policy P of P applies in that configuration. We write σ |= Pv to mean
∀x ∈ Var : σ(x) ∈ Pv(x) and use Pv for the logical formula

∧
x∈Var x ∈ Pv(x).

We do not require that for each σ there exists P ∈ P such that σ |= Pv

because there may be states that do not conform to the desired policy. Also we
do not require that for each σ there exists at most one P ∈ P such that σ |= Pv

although this may be a natural property to arrange in many cases and may
make the subsequent development more intuitive. In fact, the notation would
come close to what could be expressed using a notion of dependent types which
would constitute a more intuitive interface for the industrial programmer.

Example 3. Returning to the motivating example we consider the disjunctive
policy {P1,P2} consisting of just two basic policies. For the channels the specifi-
cation is given already in Sect. 2 and for the variables it is given by the following
table (for i, j ∈ {1, 2}):
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xj y z
Pi
r {cj ,m, d} {c1, c2, d} {ci, d}

Pi
i {pj ,m} {m, d} {pi,m, d}

Pi
v Z {i} Z

When no explicit specification is given, the policy is the least restrictive, allowing
no influencers, all readers and all values. Note that the policy for y (and indeed
also ch.1) allows c1 as well as c2 to learn the outcome of the test on the first
component of the message exchanged over ch.

Systems Adhering to Disjunctive Policies: We are now ready to explain
when a system adheres to a disjunctive policy. We shall take a co-inductive app-
roach and formulate a self-simulation condition in the manner of bi-simulation.

It will be useful to consider systems together with their preconditions. We
shall write

{φ1 ∧ · · · ∧ φn}p1 :S1 || · · · || pn :Sn

for a system p1 : S1 || · · · || pn : Sn that is intended only to be started in a
state σ satisfying the logical formula φ1 ∧ · · · ∧φn. We shall require that the free
variables of the formula φi are contained in Varpi (the variables belonging to
the process pi) thereby ensuring that φi only applies to Si. The simplest choice
of φ1 ∧ · · · ∧ φn would be true ∧ · · · ∧ true and we sometimes abbreviate it to
true; the usefulness of considering other choices of φ1 ∧ · · · ∧ φn will emerge in
the next section.

Definition 1. A predicate R on systems with preconditions is a self-simulation
with respect to P whenever

R({φ1 ∧ · · · ∧ φn}p1 :S1 || · · · || pn :Sn)

implies that

∀σ, σ′, S′
1 · · · S′

n,F :
〈p1 :S1 || · · · || pn :Sn;σ〉 F=⇒ 〈p1 :S′

1 || · · · || pn :S′
n;σ′〉

⇓
∃φ′

1, · · · , φ′
n :

R({φ′
1 ∧ · · · ∧ φ′

n}p1 :S′
1 || · · · || pn :S′

n) ∧
∀P ∈ P : σ |= (φ1 ∧ · · · ∧ φn ∧ Pv)

⇓
∃P ′ ∈ P :σ′ |= (φ′

1 ∧ · · · ∧ φ′
n ∧ P ′

v) ∧ sec(P,F , P ′)

The self-simulation part of the definition expresses that for all states, when-
ever one system configuration evolves into another system configuration and
the first system is in the relation R for a certain precondition, then there is
an updated precondition for the resulting system ensuring that it also is in the
relation R. The last three lines of the definition put extra requirements on the
relationship between the states, preconditions, policies and flows: whenever the
initial state satisfies the preconditions and some policy from P applies, then
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there must be some policy in P such that the next configuration satisfies the
updated preconditions and the latter policy applies; furthermore, the observed
flow F has to be acceptable with respect to the two policies. These requirements
may be easiest to appreciate in the case where the policy set P satisfies that for
each σ there is at most one (or perhaps exactly one) P ∈ P such that σ |= Pv.

As in the case of bi-simulation it is immediate to show that any union of
self-simulations is itself a self-simulation. This allows us to define self-similarity
in the same co-inductive manner as used for bi-similarity:

Definition 2. Self-similarity (with respect to P) is the largest self-simulation
(with respect to P) and it is denoted |=P (or simply |=).

A system p1 :S1 || · · · || pn :Sn respects the disjunctive policy P whenever it
is self-similar:

|=P {true ∧ · · · ∧ true}p1 :S1 || · · · || pn :Sn

5 Type System and Correctness

Given a disjunctive policy we now specify a type system for ensuring that
processes and systems obey the policy and we prove that a well-typed system
respects the disjunctive policy. To deal with the value-range components of poli-
cies, the type system is combined with a Hoare logic for reasoning about the
values of variables [3,4]. We already mentioned that using a Hoare logic allows
to cleanly incorporate also the results of prior static analyses into the information
flow type system.

Type System: The Hoare logic part of the type system is fairly simple because
we use local variables and synchronous communication (in the manner of MILS
[21] and ARINC-811 [10]) rather than shared variables between processes [23].
The judgement of the type system for processes has the form

X �p {φ}S{φ′}

where X is a set of implicitly used variables, p is the name of the principal in
which the process S executes, and φ and φ′ are the pre- and post-conditions of S
in the form of logical formulae over program variables in Varp. (We shall assume
that each Varp is sufficiently big to account for all logical variables needed in
the Hoare logic.)

The definition is given in Fig. 3 and requires some auxiliary notation. Given
a set X ⊆ Var we then define the mappings Pi[X] and Pr[X] in Labi and Labr,
respectively, by taking least upper bounds over the variables in X; to be specific:

Pi[X] =
⋃

x∈X Pi(x) Pr[X] =
⋂

x∈X Pr(x)

In Fig. 3 we shall use Pr[a;X] as a shorthand for Pr[fv(a) ∪ X] and Pi[a;X] as
a shorthand for Pi[fv(a) ∪ X] and similarly for boolean expressions b instead of
arithmetic expressions a. This notation is often used in an expression of the form
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X �p {φ}skip{φ′} if ∀P ∈ P : φ ∧ Pv ⇒ φ′ ∧ p ∈ Pr[X]

X �p {φ}x := a{φ′} if ∀P ∈ P : φ ∧ Pv ⇒ ∃P ′ ∈ P :⎛

⎝
φ′[a/x] ∧ P ′

v[a/x] ∧
Pi[x 
→ Pi[a; X]] � P ′

i ∧ p ∈ P ′
i (x) ∧

Pr[x 
→ Pr[a; X]] � P ′
r ∧ p ∈ Pr[a; X]

⎞

⎠

X �p {φ}S1{φ′′} X �p {φ′′}S2{φ′}
X �p {φ}S1; S2{φ′}

X ∪ fv(b) �p {φ ∧ b}S1{φ′}
X ∪ fv(b) �p {φ ∧ ¬b}S2{φ′}

X �p {φ}if b then S1 else S2{φ′}
if ∀P ∈ P : φ ∧ Pv ⇒ p ∈ Pr[b; X]

X ∪ fv(b) �p {φ ∧ b}S{φ}
X �p {φ}while b doS{φ ∧ ¬b} if ∀P ∈ P : φ ∧ Pv ⇒ p ∈ Pr[b; X]

X ∪ X0 �p {φ}S{φ′}
X �p {φ}{X0} S{φ′}

X �p {φ}ch!a1..ak{φ′} if ∀P ∈ P : φ ∧ Pv ⇒ ∃P ′ ∈ P :
⎛

⎝
φ′ ∧ P ′

v ∧ ∧
i≤k ai ∈ P ′

v(ch.i) ∧
Pi[(ch.i 
→ Pi[ai; X])i≤k] � P ′

i ∧ ∧
i≤k p ∈ P ′

i (ch.i)
Pr[(ch.i 
→ Pr[ai; X])i≤k] � P ′

r ∧ ∧
i≤k p ∈ Pr[ai; X]

⎞

⎠

X �p {φ}ch?x1..xk{φ′} if ∀P ∈ P :
(

(∃x1..xk.φ ∧ Pv) ∧∧
i≤k xi ∈ Pv(ch.i)

)

⇒ ∃P ′ ∈ P :
⎛

⎝
φ′ ∧ P ′

v∧
Pi[(xi 
→ Pi[ch.i; X])i≤k] � P ′

i ∧ ∧
i≤k p ∈ P ′

i (xi)
Pr[(xi 
→ Pr[ch.i; X])i≤k] � P ′

r ∧ ∧
i≤k p ∈ Pr[ch.i; X]

⎞

⎠

X �p {φ}S1{φ′} X �p {φ}S2{φ′}
X �p {φ}S1⊕ S2{φ′} if ∀P ∈ P : φ ∧ Pv ⇒ p ∈ Pr[X]

X �p {ψ}S{ψ′}
X �p {φ}S{φ′} if (φ ⇒ ψ) ∧ (ψ′ ⇒ φ′)

Fig. 3. Type system for processes.
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Pr[x 
→ Pr[a;X]] that denotes P ′
r defined by P ′

r (u) = Pr(u) whenever u �= x and
P ′
r (x) = Pr[a;X] and similarly for Pi[x 
→ Pi[a;X]].

Most axiom schemes and rules in Fig. 3 strengthen a precondition of the
form φ to the formula φ ∧ Pv that allows us to use the value-range information
from the appropriate basic policy in P. With the exception of assignment, input
and output, most axiom schemes and rules demand that the strengthened pre-
condition ensures that the principal p is correctly recorded as a reader of the
variables whose values are either used implicitly (typically by being a member
of the set X) or explicitly (typically fv(b)). As an example, the axiom scheme
for skip illustrates both points.

The axiom scheme for assignment is more complex because the state of the
system changes. It therefore considers all basic policies P whose value-range
component is consistent with the (strengthened) precondition and demands that
there is a basic policy P ′ that appropriately records the state change. The pat-
tern ∀P ∈ P : (· · · ) ⇒ ∃P ′ ∈ P : (· · · ) takes care of this and is in line with
the definition of self-simulation. The first line of requirements ensures that the
strengthened precondition establishes the formulae obtained from the strength-
ened postcondition by mimicking the effect of the assignment; the use of a
substitution [a/x] on a logical formula is classical for Hoare logic (when using
the weakest precondition approach). To be explicit, the notation Pv[a/x] means
a ∈ Pv(x) ∧ ∧

y∈Var\{x} y ∈ Pv(y). The second line of requirements ensures that
the new policy P ′ records all the influencers of the variable assigned due to both
implicit use of variables in X and explicit use of variables in a; additionally it
ensures that the influence on the principal p is recorded in the new policy P ′.
The third line of requirements ensures that the new policy P ′ records all the
readers of the variable assigned due to both implicit use of variables in X and
explicit use of variables in a; additionally it ensures that the reading within p of
X and a is recorded in the original policy P .

Once again note that the partial order for influencers is such that it is always
secure to add influencers, that the partial order for readers is such that it is
always secure to remove readers, and that the semantic underpinning of these
statement is expressed by sec(P, F, P ′) (and Theorem 1 below).

The axiom schemes for output and input are easiest to understand if ch!a
is thought of as ch := a and ch?x is thought of as x := ch. The rule for input
differs from assignment in that the pure Hoare logic component takes a strongest
postcondition approach (as opposed to the weakest precondition approach used
for assignment). The remaining axioms are rather standard from a Hoare logic
point of view.

The type system is lifted to systems as follows:

∅ �p1 {φ1}S1{true} · · · ∅ �pn {φn}Sn{true}

�P {φ1 ∧ · · · ∧ φn}p1 :S1 || · · · || pn :Sn

where we once more require that the free variables of the formula φi are contained
in Varpi (the variables belonging to the process pi) thereby ensuring that φi only
applies to Si.
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Example 4. Returning to the motivating example we shall now highlight some
of the steps in proving that the overall system guarantees the disjunctive security
policy P = {P1,P2}. To establish the judgement

∅ �m {true} ch!(1, x1) {true}
we will choose P ′ to be P1 independently of whether P is P1 or P2. To establish
the judgement

∅ �d {true} ch?(y, z) {true}
we will choose P ′ to be equal to P . Finally, to establish the judgement

{y} �d {y = 1} out1!z {y = 1}
we use the precondition y = 1 together with y ∈ Pv(y) to conclude that, even
though we only seem to know that P ∈ {P1,P2} it must be the case P = P1, and
we can therefore choose P ′ = P1 and complete the proof.

Correctness Results: Our overall correctness result shows that well-typed
programs satisfy self-similarity:

Theorem 1. If �P {true}Sys then |=P {true}Sys.

The proof is by directly showing that typability is a self-simulation:

Proposition 1. �P is a self-simulation with respect to P.

Among other things this establishes a subject reduction result (saying that typing
is preserved under evaluation).

6 Conclusion and Future Work

We have extended basic discretionary information flow policies for readers (con-
fidentiality) and influencers (integrity) to be dependent on content (values) and
have introduced disjunctive information flow policies to facilitate the content-
dependent shift between basic policies.

Our approach has been motivated by the challenges of the avionics gateway
(as illustrated by the multiplexer example in Sect. 2) suggested by the avion-
ics partners in the European Artemis Project SESAMO. Prior attempts at using
DLM uncovered a number of weaknesses of information flow policies that are not
able to incorporate content; however, the explicit use of security labels denot-
ing readers and influencers were considered extremely relevant. This motivated
our combination of Hoare logic assertions with classical security labels (unlike
approaches like [1] that do not admit classical security labels) and our introduc-
tion of disjunctive policies. We are currently working on developing annotations
for avionics software in C using dependent types and restricted logical formulae
as an interface to the underlying disjunctive information flow policies.

We developed a combined Hoare logic and type system (Sect. 5) for verifying
whether a system adheres to the specified disjunctive policies. Apart from the
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technical convenience of using a Hoare logic as the basis of a type system it also
facilitates incorporating the results of prior static analyses into the information
flow type system; this is needed in order to interact with the approach of indus-
trial users. To obtain a stronger type system it would be useful to strengthen
the rule of consequence to admit analysis by cases

X �p {φ1}S{ψ1} X �p {φ2}S{ψ2}

X �p {φ}S{ψ}
if (φ ⇒ φ1 ∨ φ2) ∧ (ψ1 ⇒ ψ) ∧ (ψ2 ⇒ ψ)

although we are not going to claim any (relative) completeness results for the
combined Hoare logic and type system. For practical use one would need to
limit the logical assertions to a restricted format so as to support efficient type
inference.

The development has been performed for concurrent systems with synchro-
nous communication and local memory as required by MILS [21] and ARINC-
811 [10]. In addition to extensions with bypassing security policies it would be
feasible to add polymorphism of annotations, add a principal hierarchy, incorpo-
rate procedures and methods, borrowing from DLM and other information flow
policies.

Our semantic justification was based on an instrumented operational seman-
tics in the manner used in static program analysis (Sect. 3). It provided a semantic
interpretation that makes it clear that opposite directions of flow are appropriate
for confidentiality and integrity, and hence agrees with the intuition about the
duality of readers (always safe to remove some) and influencers (always safe to
add some) in information flow type systems. Based on this we took a co-inductive
approach to defining self-similarity (Sect. 4) borrowing from the development of
bi-simulations. Our main correctness results showed that typability suffices for
self-similarity (Sect. 5). Technically the proof amounted to showing that typa-
bility is itself a self-simulation.

This approach should not be seen as a dismissal of the value of a non-
interference result (meaning that the system is contained in the reflexive part
of a notion of bi-simulation). However, non-interference results are not easy to
“get right” as is discussed at length in [7] and adding concurrency only adds to
the complexities [14]: should non-interference be termination-sensitive, should it
be timing-sensitive, etc. In particular, the approaches of [1,11] do not directly
carry over because they do not deal with concurrent systems. While a non-
interference result would be a welcome additional development, we would like to
follow [7] in letting the non-interference result provide a stronger basis for the
instrumented semantics rather than being the primary mechanism for ensuring
the correctness of the type systems. This approach is in line with the research
in programming languages where the vast majority of program analyses are for-
mulated with respect to an understanding of program behaviour comparable
to our instrumented semantics; looking for further justification is possible and
considerations similar to those of non-interference are appropriate [19].
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The exposition provided in this paper is a simplification of our formal devel-
opment that has been checked using the Coq proof assistant (including the moti-
vating multiplexer example of Sect. 2).

Acknowledgement. We are supported by IDEA4CPS (DNRF 86-10) and benefitted
from discussions with Michael Paulitsch and Kevin Müller from Airbus.
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Abstract. This paper defines the “ultimate” formal semantics for Alice
and Bob notation, i.e., what actions the honest agents have to perform,
in the presence of an arbitrary set of cryptographic operators and their
algebraic theory. Despite its generality, this semantics is mathematically
simpler than any previous attempt. For practical applicability, we intro-
duce the language SPS and an automatic translation to robust real-world
implementations and corresponding formal models, and we prove this
translation correct with respect to the semantics.

1 Introduction

Alice-and-Bob notation is a simple and succinct way to specify security pro-
tocols: one only needs to describe what messages are exchanged between the
protocol agents in an unattacked protocol run. However, it has turned out to be
surprisingly subtle to define a formal semantics for such a notation, i.e., defin-
ing an inference system for how agents should compose, decompose and check
the messages they send and receive. Such a semantics is necessary in order to
automatically generate formal models and implementations from Alice-and-Bob
specifications. However, even modeling messages in the free algebra, defining the
semantics has proved far from trivial [11–13,20,22,23]. To make matters worse,
many modern protocols rely, for instance, on the Diffie-Hellman key agreement
where the algebraic properties of modular exponentiation are necessarily part
of the operational semantics, since the key exchange would be non-executable
in the free algebra. For practical purposes, one can augment the semantics with
support for just this special example like [27], but a general and mathematically
succinct and rigorous theory is desirable.

We give in this work a semantics for an arbitrary set of operators and their
algebraic properties. Despite this generality, the semantics is a much more suc-
cinct and mathematically simple definition than all the previous works (it fits
on half a page) because it is based on a few general and uniform principles to
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define the behavior of the participants. This semantics was inspired by the sim-
ilar works of [14,24], which we further simplify considerably. Our semantics is
also subsuming the previous works in the free algebra and limited algebraic rea-
soning, as they are instances of our semantics for a particular choice of operators
and algebraic properties (although this is not easy to show as explained below).
We thus see our semantics as one of our main contributions since, from a math-
ematical point of view, a simple general principle that subsumes the complex
definitions of many special cases is the most desirable property of a definition1.

This simple mathematical semantics, however, cannot be directly used as a
translator from Alice-and-Bob notation to formal models or implementations
since it entails an infinite representation and several of the underlying algebraic
problems are in fact not recursive in general. We thus consider a particular
set of operators and their algebraic properties that supports a large class of
protocols, including modular exponentiation and multiplication. This theory not
only subsumes the theories of previous papers, but also clarifies subtle details of
the behavior of operators that were left implicit previously. For this theory, we
define a low-level semantics that is much more complex than the mathematical
high-level one but it is computable, and we formally prove that the low-level
semantics is a correct implementation of the high-level one. The division into a
simple mathematical high-level semantics as a “gold standard” and a low-level
“implementable” semantics not only allows for a reasonable correctness criterion
of the low-level semantics, but is in our opinion a major advantage over previous
works that are a blending between mathematical and technical aspects.

To make our work applicable in practice, we have designed the Security Pro-
tocol Specification language SPS as a variant of existing Alice-and-Bob languages
that contains many novel features valuable in practice. In particular, our notion
of formats allows us to integrate the particular way of structuring messages of
real-world protocols like TLS, rather than academic toy implementations; at
the same time, we can use a sound abstraction of these formats in the formal
verification. We have implemented the low-level semantics in a translator that
can generate both formal models in the input languages of popular security pro-
tocol analysis tools (e.g., Applied π calculus in the syntax of ProVerif [10] or
ASLAN for AVANTSSAR [5]) and implementations in JavaScript for the execu-
tion environment of the FutureID project (www.futureid.eu). We have demon-
strated practical feasibility with a number of major and minor case studies,
including TLS and the EAC/PACE protocols used in the German eID card.

We proceed as follows: we give the syntax of SPS in Sect. 2 and an extension
of strands in Sect. 3. We define the semantics of SPS in Sect. 4 and discuss
the connections from SPS to implementations and formal models in Sect. 5. In
Sect. 6, we discuss related and future work, and conclude the paper.

1 We have learned that from Pierpaolo Degano, who is renowned for his ability to
explain complex things in a simple way.

www.futureid.eu
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2 SPS Syntax

In this section, we briefly introduce the syntax of SPS, which we will illustrate
by referring to the example protocol specification in SPS given in Listing 1.1,
in which two agents A and B use a symmetric key shk(A, B) to establish a fresh
Diffie-Hellman key and securely exchange a Payload message.

Protocol: example

Types:

Agent A,B;

Number g, Payload , X, Y;

Mappings:

shk: Agent ,Agent -> SymmetricKey;

Knowledge:

A: A, B, shk(A,B), g;

B: A, B, shk(A,B), g;

Actions:

A : Number X

A -> B : scrypt(shk(A,B), f1(A,B,exp(g,X)))

B : Number Y

B -> A : scrypt(shk(A,B), f1(B,A,exp(g,Y)))

A : Number Payload

A -> B : scrypt(exp(exp(g,Y),X), f2(Payload))

Goals:

Payload secret of A,B

Listing 1.1. Example Protocol in APS

We give the syntax of SPS in EBNF, where we set all meta-symbols in blue
and write Xs (for a non-terminal symbol X) to denote a comma-separated list
X(,X)∗ of X elements; Const and Func are alphanumeric strings starting with
a lower-case letter (e.g., g and scrypt in the example) and Var is an alphanu-
meric string starting with an upper-case letter (e.g., X in the example).

SPS ::= Types : (Type Idents; )∗

Mappings : (Func : Types → Type; )∗

Formats : (Func(Types); )∗

Knowledge : (Role : Msgs; )∗[where Role �= Role ( & Role �= Role )∗]
Actions : ( Role Channel Role : Msg | Role : Type Var)∗

Goals : ( Role authenticates Role on Msg | Msg secret of Roles )∗

Msg ::= Const | Var | Func(Msgs)
Ident ::= Const | Var | Func

Role ::= Const | Var

Type ::= Agent | Number | PublicKey | PrivateKey | SymmetricKey | Bool | Msg
Channel ::= [ • ] → [ • ]

We begin our explanation with the atomic elements: constants (Const) and
variables (Var). One may think of the variables as parameters of a protocol
description that must be instantiated for a concrete execution of the protocol;
in our example, the variables A and B shall be instantiated with concrete agent
names such as a, b or the intruder p2, whereas X and Y should be instantiated
with random numbers that are freshly chosen by A and B, respectively.

In the Types section, all constants and variables are declared with one of
the pre-defined types, where the type Msg subsumes all types. By default, the
2 We use p instead of i in honor of our “favorite intruder” Pierpaolo.
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interpretation of SPS is untyped, i.e., types are used only by the SPS translator to
check that the user did not specify any ill-typed terms. The types can however be
used to generate a more restrictive typed model and under certain conditions this
restriction is without loss of attacks [3]. The type Agent has a special relevance:
constants and variables of this type we call roles, and the symbol Role in the
above grammar must only be used for identifiers of type Agent (This is an
additional check we cannot directly express in a context-free grammar.).

While the semantics of Alice-and-Bob style languages that we give in the
next section is generic for an arbitrary set of function symbols and their algebraic
properties, the concrete implementation of SPS is for a set of fixed cryptographic
function symbols. These are asymmetric and symmetric encryption (crypt and
scrypt), digital signatures (sign), hash and keyed-hash functions (hash and
mac), and modular exponentiation (exp) and multiplication (mult). There are
of course corresponding operations for decryption and verification, but these
are not part of an SPS specification; instead, their use is derived by the SPS
translator according to the semantics in the next section.

In the Mappings section, one can specify a special kind of function symbols.
These do not represent any actual operation that honest agents or the intruder
can perform, but are used to describe the pre-existing setup of long-term keys.
In our example, the mapping shk assigns to every pair of agents a unique value
of type symmetric key; this is the easiest way to define shared keys for agents—
including the intruder who will then share keys shk(p, A) and shk(A, p) with
every other agent A. Public key infrastructures can be modeled in a similar way.

In the Formats section, one can specify a third kind of function symbols called
formats. They abstractly represent how the concrete implementation structures
the clear-text part of a message, such as XML-tags or explicit message-length
fields. A format thus basically represents a concatenation of information, but
in contrast to a plain concatenation operator as in other formal languages, the
abstract format function symbols allow us to generate implementations with real-
world formats such as TLS (see below). In the example, we have two formats: f1
is used to exchange the Diffie-Hellman half-keys together with the agent names,
and f2 indicates the transmission of the Payload message. For simplicity, we
model a payload message using a fresh random number Payload, representing
a placeholder for an arbitrary message (depending on the concrete application);
alternatively, this could be modeled using a mapping (e.g., payload(A, B)) that
A knows initially and sends to B after the key establishment.

The three kinds of function symbols are thus: the cryptographic function
symbols, the mappings and the formats. Except for the mappings, these are
all public: all agents, including the intruder, can apply them to messages they
know. Additionally, formats are transparent : every agent can extract the fields
of a format. We can now build composed messages with these function symbols,
where we assume the additional check that all SPS messages are well-typed (and
are used with the proper arity). As typing is not essential for this paper, we do
not discuss the details of the type expressions.
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In the Knowledge section, we specify the initial knowledge of each of the
protocol roles. This is essential as it determines how (and if) honest agents can
execute the protocol. For instance, if in the example we were to omit the item
shk(A, B) in the knowledge of role B, then B could not decrypt the first message
from A and thus not obtain A’s half key. Moreover, in the next step B would be
unable to build the response message for A. Also, as we will define below, this
specification indirectly determines the initial knowledge of the intruder: if a role
is instantiated with p, then the intruder obtains the corresponding knowledge
(in our case, all shared keys shk(A, B) where A = p or B = p). We require that all
variables in the knowledge section be of type Agent. Finally, one can optionally
forbid some instantiations of the roles, e.g., by the side condition A �= p or A �= B.

The Actions section is the core of the specification: it specifies the messages
that are exchanged between the roles. Additionally, we specify here explicitly
when agents freshly create new values. In our example, A first creates the secret
exponent X for the Diffie-Hellman exchange, computes the half-key exp(g, X),
inserts it into format f1 and encrypts the message with the shared key shk(A, B).
To send this message, A uses the standard insecure channel (denoted with →)
on which the intruder can read, intercept, and insert messages arbitrarily. SPS
also supports a notion of authentic, confidential, and secure channels as in [24],
denoted with •→ , →• and •→• , respectively. For instance, one may have spec-
ified the exchange of the half-keys without the encryption but using authentic
channels where the intruder can see messages, but not insert messages except
under his real name. This represents the assumption that the messages between
A and B cannot be manipulated by an intruder, e.g., in device pairing of mobile
devices, when A and B meet physically in a public place. The assumptions are
reflected only in the formal model (by restricting the intruder behavior on such
channels), while in the implementation it is the duty of the surrounding soft-
ware module to connect a properly secured channel to the protocol module. One
last point about the Actions section is that it shows the simplicity of an SPS
specification, i.e., this section is very similar to the way one would informally
describe a protocol in Alice and Bob notation.

In the final Goals section, we specify the goals the protocol aims to achieve.
SPS provides built-in macros for the standard secrecy and authentication goals.
In general, we instrument the description with events that reflect what is hap-
pening in the protocol execution, e.g., the event secret(A, B, Payload) reflects
that Payload is supposed to be a secret between A and B. We then define attack
states as predicates over these events. The events allow us to formulate security
goals in a protocol-independent way rather than referring to the messages of the
protocol.

3 Operational Strands

As a preparation for defining the SPS semantics, we first clarify the target lan-
guage, i.e., we define an extension of the popular strands [28] that we call oper-
ational strands. For space reasons (and since strands are very intuitive), we only
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summarize the five extensions we make and point to [4] for details. A concrete
example is shown in Fig. 1 and explained below.

First, send and receive steps can be annotated with a channel. Recall that
SPS supports default insecure channels as well as authentic, confidential and
secure ones. For the SPS semantics, this is only a label on the channels that is
left unchanged in the translation; for the semantics of operational strands, the
channels mean a restriction on the operations that the intruder can perform on
the channel as explained in [4]. In textual representation, we write send(ch, t)
and receive(ch, t) for sending and receiving message t over channel ch.

Second, we annotate each strand with the initial knowledge of the role it
represents, denoted by a box above the strand (we define knowledge formally
in Definition 2). The annotation has no meaning for the behavior of strands
and is only needed during the translation process. In textual representation, we
write the annotation with the knowledge M as M : steps at the beginning of the
strand.

Third, recall that the original strand spaces are used to characterize sets of
protocol executions and contain only ground terms. In contrast, we use them
like a “light-weight” process calculus: terms may contain variables (representing
values that are instantiated during the concrete execution). Also, we have the
construct fresh X where the variable X will be bound to a fresh value. An
important requirement is that operational strands are closed in the following
sense: every variable must be bound by first occurring in the initial knowledge,
in a fresh operation, in a macro (that we introduce shortly), or in a receive step.
A bound variable must not occur subsequently in a fresh operation (i.e., it cannot
be “re-bound”). In contrast, a bound variable may occur in a subsequent receive
step, meaning simply that the agent expects the same value that the variable
was bound to before.

Fourth, we extend strands with events (predicates over terms) to formu-
late security goals in a protocol-independent way. For instance, as we already
remarked above, we may use the event secret(A, B, Payload) to express that mes-
sage Payload is regarded as a secret between protocol roles A and B. Then we
can define (independent of the concrete protocol) a violation of secrecy as a
state where the intruder has learned Payload but is neither A nor B. We do not
give here more details on goals, because from a semantical point of view we just
treat the events as if they were messages on a special channel to a “referee” who
decides if the present state is an attack; the handling of these events is uniform
for a wide class of goals [3] and only limited by the abilities of current verification
tools. In textual representation, we will simply write event(t) where t is a term
characterizing the event.

Fifth, we add checks of the form s
.= t. The meaning is that the agent can

only continue if the terms s and t are equal and aborts otherwise. Also, we
have macros of the form Xi := t, which mean that we consider the same strand
with all occurrences of Xi replaced by t. This is helpful for generating protocol
implementations, because the result of a computation t is stored in a variable
Xi and does not need to be computed again later.
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A formal definition of operational strands can be given as a process (interact-
ing with a given environment). In the extended version [4], we define a semantics
as state-transition systems similar to [15], where a state (S;K;E) consists of a
set S of strands, a set K of messages that the intruder currently knows and
a set E of events that have occurred. For instance, if S contains the strand
send(insec, t).rest , where insec represents an insecure channel, then we can make
the transition to a successor state where t is added to K and the send step is
removed from the given strand.

4 SPS Semantics

Above we described the SPS syntax for a fixed set of cryptographic operators
(for which we later give a fixed set of algebraic equations). In this section, we
give a semantics that is parametrized over an arbitrary set of operators and
algebraic properties, inspired by [14,24]. One of the main contributions of our
work is to give this general definition of a semantics for Alice-and-Bob style
languages in a concise, mathematical way that is based on a few simple, general
principles. The semantics is a function from SPS to (operational) strands; this
function is in general not recursive because many of the underlying algebraic
reasoning problems are not. The value of this general definition is its simplicity
and uniformity: this is in fact the best mathematical argument why to define
a concept in a particular way and not differently. In the next section, we then
show that we can actually implement this semantics for the operators of SPS; in
fact, we define a “low-level” semantics that is a computable function from SPS
to strands (that is however so complicated that we give only an overview in this
paper) and prove that it coincides with the general “high-level” semantics.

4.1 Message Model

We define messages as algebraic terms and use the words message and term
interchangeably. We distinguish two kinds of messages: (1) the protocol messages
that appear in an SPS specification and (2) labels (or recipes) that are the
messages in the strands the semantics translates to. It is necessary to make this
distinction as the SPS specification reflects the ideal protocol run, while the
semantics reflects the actual actions and checks that an honest agent performs
in the run of the protocol. For the same reason, we will also distinguish between
two kinds of variables: protocol variables and label variables.

Definition 1. A message model is a four-tuple (Σ,V,L,≈). Σ is a countable
set of function symbols, all denoted by lower-case letters, where: Σ0 ⊆ Σ is
a countable set of constants, Σp ⊆ Σ is a finite set of public operators such
as public-key encryption, and Σm ⊆ Σ is a finite set of mappings (or private
operators), disjoint from Σp. We assume a global public constant � ∈ Σp ∩ Σ0.
V is a countable set of protocol variables. L = {X1,X2,X3 . . .} is a countable set
of label variables disjoint from Σ and V . ≈ is a congruence relation over ground
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terms over Σ (i.e., terms without variables), which are denoted by TΣ . A term is
thus a constant, a variable, or an application of a function (of Σ) on a term, and
we write TS(A) for the set of terms over signature S and variables from set A.

As we define in a deduction relation below, the public operators in Σp are
those functions that every agent and the intruder can apply to messages they
know, i.e., the cryptographic operators (including operators for decryption that
do not occur in the SPS specification) and the non-cryptographic formats. In
contrast, the mappings in Σm are private, like shk in our example protocol that
maps from two agents to their shared secret key, or inv that maps from public
to private keys.

Table 1. Example of an equational theory ≈

(1) dscrypt(k , scrypt(k ,m)) ≈ m (2) vscrypt(k , scrypt(k ,m)) ≈ �
(3) dcrypt(inv(k), crypt(k ,m)) ≈ m (4) vcrypt(inv(k), crypt(k ,m)) ≈ �
(5) open(sign(k ,m)) ≈ m (6) vsign(k , sign(inv(k),m)) ≈ �
For every f ∈ Σf with arity n and for every i ∈ {1, . . . , n}
(7) geti,f(f(t1, . . . , tn)) ≈ ti (8) verifyf(f(t1, . . . , tn)) ≈ �
(9) exp(exp(t1, t2), t3)) ≈ exp(t1, mult(t2, t3)) (10) mult(t1, t2) ≈ mult(t2, t1)

(11) mult(t1, mult(t2, t3)) ≈ mult(mult(t1, t2), t3)

Example 1. As a concrete example of a message model that is representative for
a large class of security protocols, let Σp contain all operators of the equations
in Table 1, where ≈ is the least congruence relation satisfying the equations. For
instance, scrypt represents symmetric encryption, dscrypt is the corresponding
decryption operator and vscrypt is a verifier : given a term t and a key k, it tells
us whether t is a valid symmetric encryption with key k. This models the fact
that most symmetric ciphers include measures to detect when the decryption
fails (e.g., when it is actually not an encrypted message or the given key is not
correct) and in concrete implementations this verification will be part of the
call to dscrypt. We emphasize that our message model explicitly describes such
fine details that most security protocol analysis tools silently assume; we could
similarly define a set of primitives that do not allow verification and the semantics
will accordingly define which verifications honest agents can and cannot do.

Similarly, the operators crypt, dcrypt and vcrypt formalize asymmetric
encryption, and sign, open and vsign formalize digital signatures.

Let Σf ⊆ Σp be a set of formats declared in an SPS specification. Then, for
each format f ∈ Σf of arity n, geti,f ∈ Σp is an extraction function for the i-th
field of the format (for all 1 ≤ i ≤ n) and verifyf ∈ Σp is a verifier to check
that a given message has format f.

Moreover, we have exp and mult for modular exponentiation and multipli-
cation as needed in many Diffie-Hellman-based protocols. As is often done, we
omit the modulus for ease of notation. Σp also contains hash and mac represent-
ing hash and keyed hash functions, respectively (hash and mac do not appear in
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Table 1 since they have no algebraic properties). Finally, a typical set of map-
pings could be: shk : Agent × Agent → SymmetricKey to denote a shared key
of two agents, pk : Agent → PublicKey for the public key of an agent, and
inv : PublicKey → PrivateKey for the private key corresponding to a given
public key. Although pk is typically publicly available, it should not be a public
operator as it does not correspond to a computation that honest agents or the
intruder can perform (rather the initial distribution of keys should be specified
in the knowledge section of SPS). 
�
Definition 2. A labeled message tl consists of a protocol message t ∈ TΣ(V )
and a label l ∈ TΣp

(L). A knowledge is a substitution of the form M = [X1 �→
t1, . . . ,Xn �→ tn], where Xi ∈ L and ti ∈ TΣ(V ). We call the set {X1, . . . ,Xn}
the domain of M and write |M | = n for the length of M . We may also refer to
M as a set of entries and write, e.g., M ∪ {Xj �→ tj} to add a new entry (where
Xj is not in the domain of M).

Intuitively, the label variables represent memory locations of an honest agent.
A label l is composed from label variables and public operators, and reflects what
actions an honest agent has performed on elements of its knowledge. A labeled
message tl expresses that an honest agent performed the actions of l to obtain
what the SPS specification represents by the term t. For instance, we represent
the initial knowledge of A in Listing 1.1 by [X1 �→ A, X2 �→ B, X3 �→ shk(A, B),
X4 �→ g] to express that A stores her name and B’s name in her memory locations
X1 and X2, a key shared with B in X3, and the group g in X4.

4.2 Message Derivation and Checking

We now define how honest agents can derive terms from their knowledge. This is
in the style of Dolev-Yao deduction relations, but extended to labeled messages
to keep track of the operations that have been applied. The relation has the form
M � tl where M is a knowledge and tl a labeled term.3

Definition 3. � is the least relation that satisfies the following rules:

M � tXi

Ax ,
[Xi �→ t ] ∈ M

M � tl

M � sm
Eq ,
s ≈ t, l ≈ m

M � tl11 . . . M � tlnn

M � f (t1, . . . , tn)f (l1,...,ln)

Cmp ,
f ∈ Σp

The rule Ax expresses that an agent can deduce any message that it has in
its knowledge, Eq expresses that deduction is closed under equivalence in ≈ (on
terms and their labels), and Cmp allows agents to apply any public operator to
deducible terms.

3 One may employ an entirely different model for the intruder (e.g., a cryptographic
one); using a Dolev-Yao style deduction for honest agents is simply the semantic
decision that they perform only standard public operations (that would be part of
a crypto API), but no operations that would amount to cryptographic attacks.
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Example 2. As an example, consider again the algebraic theory of Table 1 and
the knowledge M = [X1 �→ k,X2 �→ X,X3 �→ scrypt(k, exp(g, Y))]. M contains
three messages (or “memory locations”) X1, . . . ,X3 that we associate with the
corresponding messages of the SPS specification. We explain later how to reach
a particular memory state, but for the intuition let us just consider an example
scenario that would produce M for an agent A: the constant k could be part
of the initial knowledge of A, X could be her secret Diffie-Hellman exponent,
and the message stored in X3 could be what she received from another agent—
supposedly the Diffie-Hellman half-key exp(g, Y) encrypted with the key k. The
tricky part here is that in general A will be unable to check that the received
message has the correct form (i.e., that she did not receive just some garbage);
it is part of the semantics to describe what A can check and what messages she
will construct on the basis of the labels X1, . . . ,X3. Let us for instance consider
the case that A should now—according to the SPS specification—generate the
Diffie-Hellman full-key t = exp(exp(g, X), Y). That amounts to finding a label l
such that M � tl, i.e., that would produce the Diffie-Hellman key, if the received
message has the required form. Indeed, there is such a label as the following
proof tree shows:

M � XX2
Ax

M � kX1
Ax

M � scrypt(k, exp(g, Y))X3
Ax

M � dscrypt(k, scrypt(k, exp(g, Y)))dscrypt(X1,X3)
Cmp

M � exp(g, Y)dscrypt(X1,X3)
Eq

M � exp(exp(g, Y), X)exp(dscrypt(X1,X3),X2)
Cmp

M � exp(exp(g, X), Y)exp(dscrypt(X1,X3),X2)
Eq

In fact, we see the “recipe” to generate the term exp(exp(g, X), Y) in the label
exp(dscrypt(X1, X3),X2), i.e., A has to first apply decryption to term X3 using
the term X1 as decryption key; if the received X3 message was indeed of the right
form, this gives the other agent’s half-key (exp(g, Y) in SPS), and this is further
exponentiated with X2 to supposedly yield the full key (exp(exp(g, Y), X) in SPS).
Note that the semantics also tells us what happens if A in the actual execution
receives some improper term for X3: she will simply apply the operations to it
as prescribed and that may lead for instance to the protocol getting stuck (if
nobody else can generate the key) or to an attack (if the intruder manages to find
a term that breaks some security goals), or the garbage term may actually be
detected by the checks on messages that we describe next, which in this example
amounts to checking that the given term is indeed an encryption with the right
key. 
�

The definition of the checks that honest agents can make on their knowledge is
in fact based on the deduction relation �. The checks will be written as equations
between terms. To that end, we introduce the symbol .= and define .=-equations
as follows: an interpretation I is a total mapping from L to TΣ(V ) that we extend
to a function from TΣ(V ∪ L) to TΣ(V ) as expected; then we define I |= s

.= t
iff I(s) ≈ I(t), and extend this to (finite or infinite) conjunctions of equations
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A : X1 �→ A, X2 �→
B, X3 �→ shk(A, B),
X4 �→ g

B : X1 �→ A, X2 �→
B, X3 �→ shk(A, B),
X4 �→ g

fresh X

◦scrypt(shk(A,B),f1(A,B,exp(g,X)))◦
fresh Y

◦scrypt(shk(A,B),f1(B,A,exp(g,Y)))◦
fresh Payload

◦scrypt(exp(exp(g,X),Y),f2(Payload))◦

secret(A, B, Payload) secret(A, B, Payload)

A : X1 �→ A, X2 �→ B,
X3 �→ shk(A, B), X4 �→ g

fresh X5

◦scrypt(X3,f1(X1,X2,exp(X4,X5)))

◦ X6

vscrypt(X3, X6)
.
= �

X7 := dscrypt(X3, X6)
verifyf1(X7)

.
= �

X8 := get1,f1(X7)
X9 := get2,f1(X7)
X10 := get3,f1(X7)
X8

.
= X2

X9
.
= X1

fresh X11

◦scrypt(exp(X10,X5),f2(X11))

secret(X1, X2, X11)

(a) Example protocol (b) Operational strand of A

Fig. 1. (a) Example protocol, (b) Operational strand of A

as expected. We define φ |= ψ iff I |= φ implies I |= ψ for every interpretation
I; and φ ≡ ψ iff both φ |= ψ and ψ |= φ.

Definition 4. We define a complete set of checks ccs(M) for a knowledge M as
follows: ccs(M) =

∧{l1
.= l2 | ∃ m ∈ TΣ(V ).M � ml1 ∧ M � ml2}.

ccs(M) yields an infinite conjunction of checks that an agent can perform
on his knowledge. Intuitively, M � ml1 and M � ml2 expresses that, according
to the SPS specification, computing l1 and l2 should yield the same result m,
and the agent can thus check that they actually do. For instance, consider M =
[X1 �→ k,X2 �→ hash(m),X3 �→ scrypt(k,m)]. Amongst others, ccs(M) then
entails the checks φ = vscrypt(X1,X3)=̇� ∧ hash(dscrypt(X1,X3))

.= X2, i.e.,
the agent A can verify that X3 is an encryption and that X2 is the hash of the
content of the encrypted message X3. Note that there are many more equations
(e.g., X1

.= X1) and for every equation s
.= t, we also have h(s) .= h(t) for every

unary public operator h. However, it holds that ccs(M) ≡ φ, i.e., ccs(M) is
logically equivalent to φ and thus all other checks are redundant.

4.3 High-Level Semantics

Now we can put everything together to define the semantics of SPS specifications
by translation to operational strands. Figure 1(a) shows our example protocol
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in the style of message sequence charts. The first step towards an operational
semantics is to split the protocol into different strands, one for each role, as
indicated in Fig. 1(a) by the dotted line. We refer to the resulting strands as
plain strands. Each plain strand shows how the protocol looks like from the
point of view of that role in an ideal protocol run: what messages it is supposed
to send and what messages it receives. The second step towards the operational
semantics is to identify the precise set of actions, i.e., how messages are composed
or decomposed, and what checks need to be performed on received messages.
Figure 1(b) shows how this operational description looks like for role A of the
example (role B is very similar). Now we define the high-level semantics as a
function [[·]]H (with initial case [[·]]H0) that maps from plain strands like (a) to
the operational strands like (b).

In a nutshell, we use the labeled deduction M � tl to define how an agent
composes an outgoing message (or event), and we use the ccs function whenever
an agent receives a new message, formalizing the set of checks that the agent
can perform at this point. Note that this is an infinite conjunction and we later
show how to obtain an equivalent finite conjunction for the example theory.

Definition 5. [[·]]H translates from plain to operational strands as follows:
[[M : strand ]]H0 = M : ccs(M).[[strand ]]H(M)
[[receive(ch, t).rest ]]H(M) = receive(ch,X|M |+1).ccs(M ∪ [X|M |+1 �→ t]).

[[rest ]]H(M ∪ [X|M |+1 �→ t])
[[send(ch, t).rest ]]H(M) = send(ch, l).[[rest ]]H(M) where M � tl for some label l
[[event(t).rest ]]H(M) = event(l).[[rest ]]H(M) where M � tl for some label l
[[fresh X.rest ]]H(M) = fresh X|M |+1.[[rest ]]H(M ∪ {X|M |+1 �→ X})
[[0]]H(M) = 0

The first rule initializes the translation, by computing the checks that can
be made on the initial knowledge of the strands. The second rule says that each
received message is associated with a new label variable X|M |+1 in the agent’s
knowledge and afterwards we use ccs to generate all checks that the agent can
perform on the augmented knowledge. The third rule is for sending the SPS
protocol message t. Here we use the relation M � tl to require that the agent can
generate the required term t from the current knowledge M using the concrete
sequence of actions l; this is explained in more detail below. The event rule is
very similar to sending. The fifth rule translates the construct fresh X: we simply
pick a new label variable X|M |+1 that will store the fresh value in the translated
strand, and bind it in the knowledge to the protocol variable X. The final rule
is straightforward.

Let us continue Example 2, where we considered an agent with knowledge
M = [X1 �→ k,X2 �→ X,X3 �→ scrypt(k, exp(g, Y))]. (As explained above, this
may result from a strand that initially knows a key in X1, has freshly generated
an exponent X2, and has received the message X3.) Suppose that the next step is
send(insec, exp(exp(g, X), Y)) (in fact, in a more realistic example, it would be a
message encrypted with this term as a key). The semantics tells us to determine
any label l such that M � exp(exp(g, X), Y)l, which is possible for the label
l = exp(dscrypt(X1,X3),X2) as shown in the example previously. Thus, the
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translation can be in this case send(insec, exp(dscrypt(X1,X3),X2)). Note that
we said “can” here, because there are other labels, e.g., any label l′ such that
l ≈ l′.

More generally, given M and t, there is in general not a unique l such that
M � tl. First, consider the case that there is no such l. In this case, the agent
has no means (within the deduction relation) to obtain the term t from its cur-
rent knowledge. We thus say the protocol is non-executable and its semantics is
undefined. This executability check is an important sanity check on SPS spec-
ifications, ensuring that all steps of the protocol can actually be performed at
least when no intruder is interfering and the network does not loose messages.
Other formal specification language like Applied π that specify the different roles
separately as processes cannot have such an executability check, because unlike
SPS, there is no formal relationship between the messages that one role is send-
ing and another is receiving. Thus, if a modeler accidentally specifies messages
slightly differently in two processes, they may be unable to communicate and get
stuck in their execution; then a flawed protocol may be trivially verified as secure
because of the specification mistake. The executability check in SPS drastically
reduces the chance of such mistakes.

Second, if there is a label l, then there will typically be infinitely many of them
(trivially by performing redundant encryptions and decryptions). Our semantics
does not prescribe which of the labels has to be taken (and the implementation
below will take in some sense the simplest one). A key insight is that this does not
make the semantics ambiguous: if M � tl1 and M � tl2 then ccs(M) |= l1

.= l2.
Thus, since we always perform the checks on the knowledge after each received
message, we know that the choice of labels does not make a difference.

As an example, observe that the operational strand we have given in Fig. 1(b)
for our example protocol is correct according to this semantics (when resolving
the X := t macros): all outgoing messages have an appropriate label (for which
M � tl holds), and all checks s

.= t do indeed logically follow from ccs(M) for
the respective M . In fact, we claim that the checks are logically equivalent to
ccs(M), i.e., all other checks are redundant; it is part of the results of the next
section to prove that and derive the given checks automatically.

We emphasize the succinctness of the definitions: Definitions 2–5 together
fit on half a page and yet we define the semantics for an arbitrary set of cryp-
tographic operators and algebraic properties. We believe that this is the best
argument that the semantics of Alice-and-Bob notation should be defined this
way—deriving from simple, general, uniform principles. However, this simple
semantics cannot be directly used as a translator from Alice-and-Bob notation
to formal models or implementations as it entails an infinite representation and
several of the underlying algebraic problems are in fact not recursive in general.

Theorem 1. For a given strand S, the problem to compute a finite representa-
tion of [[S]]H , if it exists, is not recursive.

Proof Sketch. It is immediate that � is in general an undecidable relation (take
an undecidable ≈). Similarly, the relation {(M, s, t) | ccs(M) |= s

.= t} is
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undecidable. It follows that for given a knowledge M , the problem to compute
a finite conjunction φ, such that φ ≡ ccs(M), if one exists, is not recursive. 
�

4.4 Implementing the Semantics

Despite this general undecidability result, for a special theory we can give a
more low-level, procedural semantics that is actually computable and prove that
it correctly implements the high-level semantics. More specifically, we now sketch
how to actually compute the semantics for the example theory in Table 1 and
where we additionally require that the SPS specification (and thus the plain
strands) does not contain any destructors or verifiers.

Theorem 2. For our example theory in Table 1, for every strand S in which no
destructors or verifiers occur, [[S]]H can be finitely represented and it is recursive.

Implementation/Constructive Proof. First we split the problem into a construc-
tor and a destructor/verifier part (note they are not independent, e.g., in order
to decrypt a message one may need to first compose a key). We also split the
example theory into (i) equations C that describe destructors and verifiers (the
first 8 equations in the Table 1) and (ii) equations F that just “rearrange” terms
(the remaining equations). We then use equations C as rewrite rules and apply
them modulo F (working on F -equivalence classes); the resulting rewrite relation
→C/F is convergent and we consider only normalized terms.

For our example theory (Table 1), we define two functions, composeM (t) and
analyze(M,ϕ). First, composeM (t) implements the “constructor” part of the �
relation: find all labels l such that M � tl when using only constructors of Σp

(no destructors and verifiers) and using only equations from F . Note that the set
of such labels l is always finite. Second, analyze(M,ϕ) starts with a knowledge
M and a set of checks ϕ that have already been performed (so they do not
need to be checked again). It computes a pair (M ′, ϕ′). Here, M ′ is an analyzed
extension by all subterms that can be obtained by applying destructors and
normalizing the result; for this purpose, analyze calls the compose function to
compose decryption keys when necessary. Also, for each decryption, the analysis
will produce as part of ϕ′ a new macro Xi := l, where Xi is the label variable
in the augmented knowledge that holds the result of the decryption and l is the
recipe for obtaining it. Similarly, for each such decomposition step, we have a
check from the respective verifier that is also added to ϕ′. Further, analyze will
check for every term whether there is a different way to compose it (using again
the compose function) and, if so, generate the according checks. Finally, for all
pairs of terms where the root operator is mult (and analogously for exp), we
must check if the least common multiple can be generated from each of them.
For instance, knowing [X1 �→ ab,X2 �→ ac,X3 �→ b,X4 �→ c], we can derive the
check X1X4

.= X2X3.
We then show that for an analyzed knowledge, every derivable term can be

derived using only compose and the checks resulting from analyze are equivalent
to those of ccs modulo resolving the macros that analyze generates. Based on
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this, we obtain the following computable low-level semantics that translates from
plain strands to operational strands and mirrors the structure of the high-level
semantics:

[[M : strand ]]L0(∅,�) = M : ϕ.[[strand ]]L(M ′, ϕ) where (M ′, ϕ) = analyze(M,�)
[[receive(ch, t).rest ]]L(M,ϕ) = receive(ch,X|M |+1).ϕ′.[[rest ]]L(M ′, (ϕ ∧ ϕ′))

where (M ′, ϕ ∧ ϕ′) = analyze(M ∪ [X|M |+1 �→ t], ϕ)
[[send(ch, t).rest ]]L(M,ϕ) = send(ch, l).[[rest ]]L(M,ϕ) where l ∈ composeM (t)
[[event(t).rest ]]L(M,ϕ) = event(l).[[rest]]L(M,ϕ) where l ∈ composeM (t)
[[fresh X.rest]]L(M,ϕ) = fresh X|M |+1.[[rest]]L(M ∪ {X|M |+1 �→ X}, ϕ)
[[0]]L(M,ϕ) = 0

The full details of compose and analyze and the proofs of their correctness
can be found in [4]. Based on this, we also prove that the two levels of our
semantics ([[·]]H and [[·]]L) coincide, i.e., given the same plain strand as input,
they produce equivalent operational strands. 
�

5 Translations from Operational Strands

We now come to the “last mile” of the translation: to translate operational
strands into an actual implementation and into a formal model for automated
verification. Figure 2 shows this translation for the role A of our example in
Fig. 1(b); as target languages we have here JavaScript for protocol implementa-
tions and Applied π for the formal model4.

One can easily see a very close correspondence between the two translations:
roughly, they both use the same operators in the same way, only in the formal
model they are function symbols in an “abstract” term algebra, whereas in the
implementation they are corresponding API calls. It is one of the contributions
of this work to achieve such a close correspondence. While the use of crypto-
APIs is of course standard, our notion of formats extends this API idea also to
the non-cryptographic operations: all the technical details of parsing and pretty-
printing are hidden in the classes for the given formats. Of course, just like the
crypto-API, also the “non-crypto-APIs” require a robust implementation (that
does not suffer from buffer overflows, for instance), but we want to argue that
our setup with APIs is a suitable way to “cut the cake”.

The close correspondence allow us to argue that there is no systematic dis-
crepancy between formal model and implementation, if the function symbols
have the corresponding meaning—but that is indeed subtle. Comparing the
translation with the input strand of Fig. 1(b), there are only two significant
differences: all the explicit verifiers of the strands are removed and the imple-
mentation does not contain events; besides that, the translation is mainly adapt-
ing to the syntax of the target language. For this reason, we do not give here a
4 One may argue that JavaScript is not suitable for implementing security protocols,

but in fact, using systematic mechanisms such as our formats, we can produce robust
implementations that do not suffer from type flaw attacks, for instance. It is relatively
easy to adapt to other languages like Java or the AVANTSSAR Platform [5], e.g.,
for using the tool OFMC, for which we have implemented a connector.
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formal definition of the translation functions to JavaScript and Applied π (that
can be found in [4]), but only discuss a few interesting aspects.

5.1 Experimental Results

The translator has been implemented as part of the FutureID project and is
available at [4]. In the project, we have considered several real-world case studies
such as the TLS handshake [16] as one of the most widely used protocols, the
protocols EAC and PACE [19] that are used by the German eID card, and 30
smaller protocols. In particular, for our main case studies TLS, EAC and PACE,
we did implement the precise message formats of the standards [18]. As part of
FutureID, an execution environment has been defined that invokes the JavaScript
code with suitable values for the parameters [17]. For the formal verification, we
have used our case studies to check that ProVerif finds the known attacks in the
small examples and verifies all other protocols. The entire test suite runs in less
that 11 s on a 2.67 GHz machine.

5.2 JavaScript Translation

Crypto API. We of course rely on the execution environment to have suit-
able implementations of the cryptographic primitives, e.g., the exp operator
will in fact be mapped to elliptic curve cryptography. We assume that the call
dscrypt(k ,m) will fail (aborting execution) if m is not a message encrypted
with key k . This is why we do not include verifier checks in this translation.
For simplicity, we omitted the optional annotation of primitives with the precise
algorithm and key length (that is only necessary when using different ones in
the same protocol).

Formats. The notion of formats allows us to integrate the actual message for-
mats of real-world protocols like TLS. Similar to the cryptographic operators,
we also rely on an API and implementation of non-cryptographic operators: for
each format declared in the specification, we require a Java class that basically
contains a parser and a pretty printer for that format (a.k.a. serialization/de-
serialization). For the example format f1 the class f1 must have three member
variables of type byte string to represent the three fields of the form (as raw
data). It must have two constructors: the first takes three strings as input and
just stores them in the member variables (cf. the first new f1 in the example),
the second takes a single string and tries to parse it as format f1, and this may
fail (cf. the second new f1 in the example). Further, we have the geti() func-
tions to obtain the i-th field and encode() to output a string. For a more detailed
discussion of formats and TLS see [26].

5.3 Applied π Translation

Algebraic Properties. Let us start with the most subtle problem: the algebraic
properties of the cryptographic and non-cryptographic operators. We can express
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function proc_A(X1,X2 ,X3,X4,ch){

Number X5 = genNumber ();

ch.send(scrypt(X3,new f1(X1,X2,

exp(X4 ,X5)).encode ()));

var X6 = ch.receive ();

var X7 = dscrypt(X3 , X6);

f1 X7a = new f1(X7);

var X8 = X7a.get1();

var X9 = X7a.get2();

var X10 = X7a.get3();

if(X8 != X2) error ();

if(X9 != X1) error ();

Number X11 = genNumber ();

ch.send(scrypt(exp(X10 ,X5),

new f2(X11).encode ()));

}

let proc_A(x1 ,x2,x3,x4:bitstring ,ch:Chann)=

new x5:bitstring;

out(ch ,scrypt(x3,f1(x1,x2,

exp(x4 ,x5))));

in(ch,x6:bitstring);

let x7:bitstring = dscrypt(x3 ,x6) in

let x8:bitstring = f1get1(x7) in

let x9:bitstring = f1get2(x7) in

let x10:bitstring = f1get3(x7) in

if(x8 = x2) then

if(x9 = x1) then

new x11:bitstring;

out(ch ,scrypt(exp(x10 ,x5),

f2(x11)));

event secret(x1,x2 ,x11);

0.

Fig. 2. Translation to JavaScript and Applied π Calculus of role A of the example

cancelation, e.g., reduc forall m, k : bitstring; dscrypt(k, scrypt(k, m)) = m.
(and the translator will automatically generate corresponding rules for the get-
functions of the declared formats). However, during the verification process of
ProVerif, where processes get translated into Horn clauses, these destructors
get encoded into pattern matching—in the Horn clauses occur no destructors or
verifiers. This transformation corresponds to an implicit verifier: in our example,
the let x7 clause will fail if the message x6 is not of the form scrypt(x3, ·). Thus,
also the ProVerif translation does not have verifiers. While this is expressing the
algebraic theory we want at this point, directly formulating the equations for exp
and mult, ProVerif will not terminate. For standard Diffie-Hellman, it is sound
to restrict ourselves to the following equation that works with ProVerif [21,25]:

equation forall x, y : bitstring; exp(exp(g, x), y) = exp(exp(g, y), x).

The translator can only give a warning when the SPS specification is outside the
fragment for which the soundness result holds.

Process Instantiation. We formulate all possible instantiations of the protocol:
every role can be played by any agent, including the intruder, and we want to
allow for any number of sessions of the protocol in parallel. It is not trivial to
specify this manually, but the SPS compiler offers a systematic way to gener-
ate the instantiation. Recall that the initial knowledge of each role in the SPS
specification can only contain variables of type Agent and long-term keys have
to be specified using functions like shk. This allows us to instantiate the knowl-
edge for any value of the role variables. For our example, we have the following
specification (where the free name pub represents an insecure channel):
process
!new x:bitstring;out(pub ,x)|

!in(pub ,(b:bitstring )); proc_A(x,b,shk(x,b),g,pub)|
out(pub ,(p,b,shk(p,b),g))|

!in(ch ,(a:bitstring )); proc_B(a,x,shk(a,x),g,pub)|
out(pub ,(a,p,shk(a,p),g))
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The first replication operator generates an unbounded number of honest
agent names (in variable x) that are broadcast on pub. Then we generate an
unbounded number of instances of proc A for each x and each name b that we
receive from the public channel (thus, the intruder can choose who will play
role B). We also output on pub the initial knowledge that the intruder needs for
playing role A under his real name p. The last two lines are similar for role B.

6 Conclusions and Related Work

The formal definition of languages based on the Alice-and-Bob notation requires
one to identify the concrete set of actions that honest agents have to perform,
which is relevant both for a formal model for verification and for generating
implementations. Previous works have proposed fairly involved deduction sys-
tems for this purpose and there is no (even informal) justification why these
systems would be suitable definitions. Our high-level semantics [[·]]H , inspired
by [14,24], gives a mathematically succinct and uniform definition of Alice-and-
Bob notation following a few general principles, and at the same time it supports
an arbitrary set of operators and algebraic properties. The succinctness and gen-
erality is, in our opinion, a strong argument for this semantics as a standard. As
[[·]]H entails problems that are not recursively computable in general, we defined
the low-level semantics [[·]]L for a particular theory and proved its correctness
with respect to [[·]]H . While [[·]]L is similar (and similarly involved) as previous
definitions of semantics for the Alice-and-Bob notation [7,12,13,20,22,23], we
are the first to give a complete formal treatment of the key algebraic properties
for destructors, verifies, exponentiation and multiplication5.

With respect to other implementation generators like [27,29], our key
improvements are as follows. First, we give a uniform way to generate both
formal models and implementation from the operational strands, ensuring a
one-to-one correspondence between them. Second, replacing the abstract con-
catenation operator from formal models with formats allows us to generate code
for any real-world structuring mechanism like XML formats or TLS-style mes-
sages. The only work that provides similar features is [6], which however starts
at the π calculus level, comparable to the output of our low-level semantics. In
reference to works that consider the verification of the actual implementation
source code like [8], we agree with [9] that the converse problem, i.e., turning
formal models into code like in this paper, is harder. However, in the case of SPS
this extra effort takes a large part of the burden off the user, i.e., SPS carries
the task of formally verifiable implementations to a higher level of abstraction
without suffering from flaws that are abstracted away in the formal model.

Finally, we point out a strong similarity between our notion of knowledge
and the notion of frames in Applied π calculus [2]. We allow ourselves minor
5 Interestingly also the Festschrift for José Meseguer this year received a treatment

of Alice and Bob notation [7] that is very similar to our low-level semantics [[·]]L,
however cannot handle exponentiation and multiplication. Thus, we can conclude
that Pierpaolo received a strictly stronger Festschrift.
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deviations from the frame concept, in particular not using name restrictions;
instead, constants are by default not public in our setting. This makes the treat-
ment in this paper easier but does not fundamentally change the concept (or
its expressive power). For what concerns existing decision results for frames, the
deduction relation � has been studied, e.g., in [1]. It is known that deduction is
decidable for convergent subterm theories (like our equations (1)–(8)) and that
disjoint associate-commutative operators as in (9)–(11) can easily be combined
with it. Many results consider the static equivalence of frames which is interest-
ing for privacy properties, namely whether the intruder is able to distinguish two
frames (“knowledges”). In the SPS semantics, we have a substantially different
problem to solve: we have only one knowledge M (and it is the knowledge of
an honest agent) and we need to finitely characterize ccs(M), i.e., what checks
the agent can make on M to ensure that all received messages have the required
shape. This indeed has some similar traits to static equivalence: also here one
has to check pairs of recipes (albeit with respect to two frames). Despite this
similarity, the problems are so different that it seems not directly possible to re-
use decision procedures for static equivalence for computing ccs(M). Moreover,
our exp/mult theory is not yet supported in static equivalence results. A further
investigation and generalization, namely with inverses for mult, is part of our
ongoing research.
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gadducci@di.unipi.its

Abstract. The relation between process calculi and Petri nets, two fun-
damental models of concurrency, has been widely investigated. Many pro-
posals exist for encoding process calculi into Petri nets while preserving
some behavioural features of interest. We recently introduced a frame-
work where a net encoding can be defined uniformly for calculi with dif-
ferent communication patterns, including synchronous two-party, multi-
party, and asynchronous communication. The encoding preserves and
reflects several behavioural semantics, notably bisimulation equivalence.
The situation is less immediate for asynchronous calculi and trace seman-
tics: considering traces that arise when viewing asynchronous calculi as
a fragment of the synchronous ones, trace equivalence is not reflected
by the encoding. Focusing on CCS, we argue that this phenomenon is
related to the imperfect match between trace inclusion and may testing
preorder. We consider an alternative labelled transition systems where
the latter issue is solved, and we show that, indeed, the corresponding
trace semantics is preserved and reflected by the net encoding.

Keywords: Asynchronous CCS · (Open) Petri nets · Modular
encoding · May testing · Trace semantics

“Ci sono più reti di Petri in terra di quanti baci abbia dato Catullo.”
“There are more Petri nets in earth than kisses given by Catullo”

PD, circa 1989

1 Introduction

The theory of concurrency and distribution contains several studies on the rela-
tion between two fundamental models, process calculi and Petri nets. In partic-
ular, Petri nets have been used as the target for the encoding of many process
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calculi (and other textual formalisms). On the one hand, thanks to the simple
and immediate visual presentation of nets, a suitable encoding can clarify the
nature of concurrency and distribution in the formalism at hand. At the same
time, it can highlight if and how the different synchronisation mechanisms can
be represented in the net setting. On the other hand, the availability of many
tools and techniques for the analysis of net behavioural properties, like reachabil-
ity, boundedness, and deadlock-freedom, suggests that suitable encodings might
offer the possibility of a fruitful technology transfer. Indeed, there has been since
a long time an interest for the net encoding of calculi. Special attention has been
devoted to CCS. There are several papers which show how the handshaking com-
munication pattern of CCS (and π-calculus) can be implemented in the Petri
net setting in such a way that the operational behaviour of a process is (at
least) preserved by the encoding [15–17,26]. Pierpaolo was one of the initiators
of this line of research [12,13], also devoting some attention [14] to a less explored
paradigm, the multi-party communication pattern of e.g. CSP [18].

Most of those works exploit C/E systems, and are wired towards synchro-
nous communication patterns. In recent works [2,3] we showed how resorting
to the P/T paradigm, these ideas can be generalised in order to include asyn-
chronous communication. This has been exemplified in the asynchronous CCS
(ACCS) [7]. The encodings rely on open nets [4,8,22,24], a reactive extensions
of the ordinary net model equipped with open places and visible transitions, i.e.,
distinguished sets of places and transitions which are accessible to the environ-
ment: a net may then interact with its environment either asynchronously, by
exchanging tokens on open places, or by synchronising on visible transitions. We
identified fragments of CSP and ACCS, hereafter referred to as bound, which
can be mapped in a modular way into Petri nets via encodings that preserve
as well as reflect the standard operational semantics of the two calculi. Mod-
ularity here means that we identify suitable operators on nets which exactly
correspond to operators on processes, such that the encoding is built inductively
from a set of basic net constants, and at the same time it preserves structural
congruence. The term bound refers to limitations that are imposed to the use
of recursion/replication which will be made precise later. The fragments are
not Turing powerful (e.g., reachability is decidable), but expressive enough to
model infinite state systems where standard behavioural equivalences (barbed
bisimilarity for ACCS and trace equivalence for CSP) are undecidable.

Since most behavioural semantics for process calculi are based on their tran-
sition system, this correspondence at the operational level translates to a corre-
spondence between virtually any observational equivalence.

The situation is less clearly cut with trace semantics for ACCS, which is
in fact paradigmatic of a general problem of labelled operational semantics for
asynchronous calculi. This is witnessed by the relationship of may testing with
trace semantics, as explored in [7,11]: differently from the synchronous case, trace
inclusion does not correspond directly to the may preorder, but some adjustment
(working modulo some preorder on traces) is needed in order to take into account
the unobservability of message reception. This fact also causes a mismatch with
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the notion of trace for open Petri nets, which instead directly describes all the
possible interactions of a system with its environment. Indeed, it can be easily
observed that labelled transitions, and thus trace inclusion, are only preserved
but not reflected by our net encoding of ACCS processes. The problem can
be solved by resorting to a different LTS, that we call saturated LTS, proposed
in [11] (in turn inspired by [19]). The saturated LTS induces a notion of trace that
directly captures all the possible interactions with the environment and has an
immediate correspondence with the may preorder, namely the may preorder and
trace inclusion coincide. For these reasons it fits nicely with the aforementioned
encoding into open nets: the operational semantics via the saturated LTS is now
preserved and reflected, and thus also trace semantics.

Among other technology transfers, our work opens the way to the study of
testing semantics for Petri nets, so far scarcely investigated in the literature [20].

Synopsis. The paper is structured as follows. In Sect. 2 we recall the syntax,
operational semantics and may testing theory of ACCS. In Sect. 3 we present
the saturated LTS for ACCS, and we show that the corresponding notion of
trace semantics exactly corresponds to may preorder. In Sect. 4 we describe open
Petri nets with interfaces, and we define the modular encoding of (bound) ACCS
processes into open nets. Finally, in Sect. 5 we prove that the net encoding of
ACCS preserves and reflects saturated trace semantics. In Sect. 6 we then draw
some conclusions and provide pointers to future works.

2 Asynchronous CCS

Asynchronous process calculi are characterised by the fact that message sending
and reception are not synchronised. Rather, messages are sent and travel through
some media until they reach destination. Thus sending is non-blocking (i.e., a
process may send even if the receiver is not ready to receive), while receiving
is (processes must wait until a message becomes available). One can think that
output messages are buffered [25] or stored in some shared workspace [9].

Asynchronous π-calculus was originally introduced in [1,19]. Here we consider
a restriction – not featuring name passing – called asynchronous CCS (ACCS) [7,
11]. Besides the absence of name passing, the main difference with respect to the
syntax of the calculus in [1] is the presence of a guarded input replication !a.P ,
instead of the pure replication of a summation. Indeed, unguarded replication can
have (unrealistic) infinitely branching behaviour, especially when considering a
concurrent semantics. Just think of process !τ.ā, which can concurrently generate
an unbounded number of messages on channel a.

Definition 1 (ACCS processes). Let N be a set of names, ranged over by
a, b, c, . . . and let τ �∈ N be the silent action. We let γ, γ1, . . . range over the set
of guards N ∪ {τ}, υ, υ1, . . . over the set of visible actions V = N ∪ N , and
μ, μ1, . . . over the set of all actions A = V ∪ {τ}. A process is a term generated
by the syntax in Fig. 1. We let P,Q,R, . . . range over the set of processes P.
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P ::= 0 inactive process
⊕n

i=1γi.Pi summation
ā output
P | Q parallel
(νa)P restriction
!a.P replication

Fig. 1. ACCS processes.

The main difference with standard CCS is the absence of output prefixes.
The occurrence of an unguarded ā indicates a message that is available on some
communication media named a. It will disappear whenever it is received.

We assume the standard definition for the set of free names of a process P ,
which is denoted by fn(P ). Similarly, we assume that α-convertibility holds with
respect to the restriction operators (νa)P : the name a is restricted in P , and
thus it can be freely α-converted.

(Alt)
ρ permutation

⊕n
i=1γi.Pi = ⊕n

i=1γρ(i).Pρ(i)

(Par1)P | Q = Q | P
(Par2)P | (Q | R) = (P | Q) | R

(Res1)
X ∩ fn(P ) = ∅
(νX)P = P

(Res2)
X ∩ fn(C[0]) = ∅

C[(νX)P ] = (νX)C[P ]

Fig. 2. ACCS structural axioms: C[−] is a process context with no occurrence of !a.−.

Structural equivalence (≡) is the smallest congruence induced by the axioms
in Fig. 2, where C[−] denotes a process context such that the “hole” − does
not occur inside the scope of a replication !a. With respect to [1] we added an
axiom schema for distributing the restriction under each operator different from
replication, thus also under the sum and the prefix.

The operational rules in Fig. 3, taken from [7], arise as a direct rephrasing of
the rules of synchronous CCS restricted to the asynchronous fragment (whence
the subscript “s”). The behaviour of a process P is then described as a relation
over processes up to ≡, obtained by closing the rules under structural congruence.

Definition 2 (Labeled semantics). The labelled transition system for ACCS
processes is the relation S ⊆ P × A × P inductively defined by the set of rules
in Fig. 3, where P

μ−→s Q means that 〈P, μ,Q〉 ∈ S. Weak transitions P
w⇒sQ are

defined by the following rules, where w ∈ V∗ and ε denotes the empty trace.

P ( τ−→s)�Q

P
ε⇒sQ

P
v−→s Q

P
v⇒sQ

P
w1⇒sQ

w2⇒sR

P
w1w2⇒ sR
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We write P
w⇒s if there exists some Q such that P

w⇒sQ and we define the set
of traces of a process P as tracess(P ) = {w | P

w⇒s}.

(Act)
j ∈ {1, . . . , n}

⊕n
i=1γi.Pi

γj−→s Pj

(Repl)
!a.P

a−→s !a.P | P

(Par) P
μ−→s P ′

P | Q
μ−→s P ′ | Q

(Syn)
P

a−→s P ′, Q a−→s Q′

P | Q
τ−→s P ′ | Q′

(Res)
P

μ−→s P ′ μ {∈� a, a}
(νa)P

μ−→s (νa)P ′ (Out)
a | P

a−→s P

(Con)
P ≡ P ′, P ′ μ−→s Q′, Q′ ≡ Q

P
μ−→s Q

Fig. 3. ACCS labelled semantics.

Testing semantics equates processes that cannot be taken apart by the inter-
action with external observers. This is formalised via a notion of test.

Definition 3 (May testing preorder). An observer is an ACCS process that
can perform a distinguished output action � (the success action), with � �∈ N .
For process P and observer O, P may O if there exists a successful computation

of P | O, namely P | O
�⇒s. For processes P and Q, we write P �m Q (P ≡m Q)

if P may O implies Q may O (and vice versa) for all observers O.

The above definition can be (and usually is) hard to verify, since it requires
to take into account all possible observers. For synchronous languages like CCS
and π-calculus, this problem can be easily avoided by observing that �m coin-
cides with the standard trace inclusion. Unfortunately, this is no longer true for
asynchronous calculi. For instance, it is easy to see that a.b.P �m b.a.P and
a.a �m 0, but clearly neither in the former nor in the latter case the traces of
the first process are included in those of the second one.

A solution is devised in [7], by relying on the following order on traces.

Definition 4 (Trace order). The trace order for processes is the reflexive
and transitive relation ≤A⊆ V� × V� inductively defined by the set of rules in
Fig. 4 and closed under pre- and post-composition.

For processes P and Q, we write P ≤m Q if whenever w ∈ tracess(P ) then
w′ ∈ tracess(Q) for some w′ ≤A w.

The trace order takes into account the asynchronous nature of communica-
tions. The intuition is that, given a process P and a trace s, if P may offer s (for
a trace s, its dual s is defined in the obvious way), then it may also offer t for all
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t ≤A s. The inequality ε ≤A a is motivated by the fact that whenever a process
can exhibit a trace including an output message ā, it can offer the same trace
where ā has been removed, since output is non-blocking, hence any transition
that follows can be performed independently of the output. For a quite similar
reason, an output can be deferred as much as desired, whence the inequality
va ≤A av. Finally, if a process can emit an output on a and later input on the
same channel, then it can input its own message, leading to an internal move.
This motivates the last inequality ε ≤A aa.

ε ≤A a va ≤A av ε ≤A aa

Fig. 4. Trace ordering laws.

As shown in [7], the relevant fact concerning the relation ≤m is that t coin-
cides with the may preorder.

Theorem 1 (Alternative may testing). Let P , Q be ACCS processes. Then
P �m Q iff P ≤m Q.

Example 1. Consider the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕ τ.(d̄ | d.c̄)))
and Q = (νd)(τ.(d.c̄ | d.ē | d̄)). It is not difficult to see that P ≡m Q. For
instance, consider the trace ē, which can be obtained in P via the sequence
P

τ−→s (νd)(!d.ē | d̄ | d.c̄) τ−→s (νd)(!d.ē | ē | d.c̄) ē−→s (νd)(!d.ē | d.c̄), and the
trace is terminated as the replication is stuck. For Q we have the same trace via
Q

τ−→ (νd)(d.c̄ | d.ē | d̄) τ−→s (νd)(d.c̄ | ē) ē−→s (νd)(d.c̄).
A different execution is P

a−→s (νd)(!d.ē | ā | d̄ | d.c̄) ā−→s (νd)(!d.ē | d̄ |
d.c̄) τ−→s (νd)(!d.ē | ē | d.c̄) ē−→s (νd)(!d.ē | d.c̄). The corresponding traces a, aā
and aāē, can be matched in Q by ε ≤m a, ε ≤m aā and ē ≤m aāē.

Similar considerations lead to show that process a.ā ≡m 0, one of the idio-
syncratic features of asynchronous communication.

3 May Testing via Saturated Traces

In this section we show that the may preorder can be characterised in terms
of trace inclusion by resorting to traces defined on a different LTS for ACCS
processes, which originates from [11], in turn similar to [19]. We will see later,
in Sect. 4, that with this notion of trace there is a perfect match between trace
semantics for ACCS processes and for their net encodings.

Definition 5 (Saturated LTS). The saturated LTS for ACCS processes is the
relation R ⊆ P × A × P inductively defined by the set of rules in Fig. 5, where
P

μ−→ Q means that 〈P, μ,Q〉 ∈ R. For a process P , weak transitions (denoted by
P

w⇒) and the set of traces (denoted traces(P )) are defined as before.
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(Syn)
γ1 = a

⊕n
i=1γi.Pi | a

τ−→ P1

(Tau)
γ1 = τ

⊕n
i=1γi.Pi

τ−→ P1

(Repl)
!a.P | a

τ−→ !a.P | P
(Par) P

μ−→ P ′

P | Q
μ−→ P ′ | Q

(Res)
P

μ−→ P ′ μ {∈� a, a}
(νa)P

μ−→ (νa)P ′ (Con)
P ≡ P ′ P ′ μ−→ Q′ Q′ ≡ Q

P
μ−→ Q

(Out)
a | P

a−→ P
(In)

P
a−→ a | P

Fig. 5. Saturated labelled semantics.

The main novelty with respect to the previous set of rules is the presence
of rule (In), stating that the environment can freely provide output messages.
Dually, rule (Out) can be interpreted as the environment receiving (and thus
consuming) a message. Rules (Syn) and (Repl) now model internal reductions.
It is easy to see (indeed, this is the definition proposed in [11]) that −→ can be
alternatively defined as the least relation on P × A × P such that

–
μ−→s⊆ μ−→ and

– for all a ∈ N , P
a−→ P | a.

The relation between the two LTSs is summarized by the following lemma.

Lemma 1 (Non-saturated vs saturated). Let P, Q be ACCS processes.
Then

1. P
τ−→s Q iff P

τ−→ Q;
2. P

a−→s Q iff P
a−→ Q;

3. if P
a−→s Q then P

a−→ τ−→ Q.

Proof. It is easy to show that for any name a ∈ N , process P performs an
input P

a−→s Q iff P ≡ (νa1) . . . (νam)(⊕n
i=1γi.Pi | P ′), with γ1 = a �= ak for

k ∈ {1, . . . , m} and Q ≡ (νa1) . . . (νam)(P1 | P ′). Dually, process P performs an
output P

ā−→s Q iff P ≡ P ′ | ā. From these facts items (1)-(3) follow. ��
Example 2. Consider again the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕ τ.(d̄ |
d.c̄))) and Q = (νd)(τ.(d.c̄ | d.ē | d̄)) from Example 1. It can be seen that
P ≈T Q. For instance, consider the execution P

a−→ (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕
τ.(d̄ | d.c̄))) | ā

τ−→ (νd)(!d.ē | ā | d̄ | d.c̄) τ−→ ā(νd)(!d.ē | d̄ | d.c̄) τ−→ τ(νd)(!d.ē | ē |
d.c̄) τ−→ ē(νd)(!d.ē | ē | d.c̄) that generates the trace aāē, which in the previous
LTS could only be simulated up to ≤m.

In the saturated LTS we have that Q
a−→ (νd)(τ.(d.c̄ | d.ē | d̄)) | ā

ā−→
(νd)(τ.(d.c̄ | d.ē | d̄)) τ−→ (νd)(d.c̄ | d.ē | d̄) τ−→ (νd)(d.c̄ | ē) ē−→ (νd)(d.c̄ | ē),
which gives exactly the same trace.
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We can now prove that trace inclusion in the saturated LTS is a further
characterisation of the may preorder. In order to show this fact, we prove that
trace inclusion in the saturated LTS coincide with ≤m in the LTS of Definition 2.

Proposition 1 (Soundness). Let P be an ACCS process and w ∈ traces(P ).
If w′ ≥A w then w′ ∈ traces(P ).

Proof. The proof proceeds by induction on ≤A, but we need to strengthen the
inductive hypothesis. For a set of ACCS processes S, we define its closure C(S)
as the least set of processes such that

C(S) = S ∪ {P | a : P ∈ C(S) ∧ a ∈ N}.

Observe that (†) C(C(S)) = C(S) and (‡) if P
w⇒Q and P ′ ∈ C({P}), then

P ′ w⇒Q′ with Q′ ∈ C({Q}). Now, the proof that

if P
w⇒Q and w ≤A w′, then P

w′
⇒Q′ and Q′ ∈ C({Q})

is easily carried out and it immediately implies our statement. ��
Proposition 2 (Completeness). Let P be an ACCS process and w ∈
traces(P ). Then there exists w′ ≤A w such that w′ ∈ tracess(P ).

Proof. The statement is proved by induction on w. For the base case, if w = ε,
then by Lemma 1(1) P

ε⇒Q iff P
ε⇒sQ. For the inductive case, we distinguish two

sub-cases according to the first action in the trace.

– If w = aw′, then P
a⇒Q and w′ ∈ traces(Q). By Lemma 1(1–2), P

a⇒sQ. By

induction hypothesis, there exists w′′ ≤A w′ such that Q
w′′
⇒s. Therefore P

aw′′
⇒ s

and aw′′ ≤A w.
– If w = aw′, then P

ε⇒P ′ a−→ Q and w′ ∈ traces(Q). By definition of a−→ we have
that Q = P ′ | a. Relying on the fact that the set of traces of P | a can be
characterised as

traces(P ) ∪ {w1w2 | w1aw2 ∈ traces(P )} ∪ {w1aw2 | w1w2 ∈ traces(P )}

from w′ ∈ traces(P ′ | a) we have that
• If w′ ∈ traces(P ′), w = aw′ ≥A w′. By induction hypothesis, there exists

w′′ ≤A w′ such that P ′w′′
⇒s. Therefore P

w′′
⇒s and w′′ ≤A w.

• If w′ ∈ {w1w2 | w1aw2 ∈ traces(P )}, w = aw′ = aw1w2 ≥ w1aw2 ∈
traces(P ′). By induction hypothesis, there exists w′′ ≤A w1aw2 such that

P ′w′′
⇒s. Therefore P

w′′
⇒s and w′′ ≤A w.

• If w′ ∈ {w1aw2 | w1w2 ∈ traces(P )}, w = aw′ = aw1aw2 ≥A w1aaw2 ≥A

w1w2 ∈ traces(P ′). By induction hypothesis, there exists w′′ ≤A w1w2

such that P ′w′′
⇒s. Therefore P

w′′
⇒s and w′′ ≤A w. ��

Now, the desired result immediately follows.
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Theorem 2 (May testing via traces inclusion). Let P , Q be ACCS
processes. Then traces(P ) ⊆ traces(Q) iff P ≤m Q.

The result above is similar to [11, Theorem 1], which states that tracess(P ) ⊆
traces(Q) iff P �m Q. However, it is worth remarking that the latter theorem
does not imply ours.

Indeed, we believe that our work provides some interesting, despite prelimi-
nary, insights: soundness and completeness (Propositions 1 and 2) state exactly
that traces(P ) is the upward closure of tracess(P ) with respect to the order-
ing ≤A. The preorder ≤m is one of the standard ways to lift an ordering to its
powerset, and it is well-known that such a lifting coincides with the inclusion of
upward closure.

4 Open Petri Nets

Let X⊕ be the free commutative monoid over a set X and let 2X be the powerset
of X. An element m ∈ X⊕ is referred to as a multisets over X, since it can be
viewed as a function m : X → N (the set of natural numbers) associating a
multiplicity with each x ∈ X. A subset Y ⊆ X is often confused with the
multiset

⊕
y∈Y y. We write m1 ⊆ m2 if ∀x ∈ X, m1(x) ≤ m2(x). If m1 ⊆ m2,

the multiset m2 � m1 is defined as ∀x ∈ X m2 � m1(x) = m2(x) − m1(x). The
symbol 0 denotes the empty multiset. Given f : X → Y we denote its extension
to multisets by f⊕ : X⊕ → Y ⊕.

Definition 6 (Petri nets). A Petri net is a tuple N = (S, T, •(.), (.)•) where
S is the set of places, T is the set of transitions, •(.), (.)• : T → 2S are functions
mapping each transition to its pre- and post-set.

α

β

γ

δ

η

σ

a

α

1

β

2

γ

δ

η

−1

σ

−2

a

Fig. 6. Graphical representation of open Petri nets, on the right with interfaces.

In order to encode a process calculus into Petri nets we consider a reac-
tive generalisation of Petri nets, in the line of [4,8,22,24]. More precisely, nets
are endowed with distinguished sets of open places. They represent the places
through which the environment interacts with the net, by putting and removing
tokens visible from the environment. Open places carry a label, and hereafter
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we let N be the corresponding set of labels. The choice is driven by our need of
encoding ACCS channels: messages on channels would correspond to tokens in
places.

Definition 7 (Open Petri net). An open net is a triple ON = 〈N,O, λ〉,
where N is a net, O ⊆ S is a set of open places, and λ : O → N is an injective
labelling function.

A marked open net N is a pair 〈ON,m0〉, where ON is an open net and
m0 ∈ S⊕ is the initial marking.

The operational semantics of open nets is presented in Fig. 7. Rule (Step)
is the standard rule of P/T nets (seen as multiset rewriting), represented as a
silent action τ . The remaining rules model interaction with the environment.
They state that in an open place at any moment the environment can generate
(In) or remove a token (Out). Note that interactions based on exchanging tokens
is naturally asynchronous. For a word w ∈ V�, weak transitions m

w⇒m′ are
defined as in ACCS. Similarly, for the traces traces(N) of a marked open net N.

(Step) m = •t ⊕ m′ t ∈ T
m

τ−→ t• ⊕ m′ (In) s ∈ O

m
λ(s)−−−→ m ⊕ s

(Out) s ∈ O

m
λ(s)−−−→ m 
 s

Fig. 7. Operational semantics of open nets.

Example 3. A marked open net is shown in Fig. 6 (left). As usual, circles rep-
resent places and rectangles transitions. Arrows represent pre- and post-sets of
transitions. Bullets in places, referred to as tokens, represent the initial marking
m0 of the net. For the sake of readability, places are often provided with an
identifier, yet positioned outside of the corresponding item.

Any open place has a name which is placed inside the corresponding circle.
In particular, there is one open place, the green one, which is labelled by a.
Finally, in the initial marking m0 of the net, the places α and β are marked.
For example, by applying the (Step) rule in Fig. 7, we obtain the firing m0

τ−→
m1 = {γ, δ}. By applying again the same rule m1

τ−→ m2 = {γ, σ}, while by
the (In) rule m1

a−→ m3 = {γ, δ, a}. Moreover, by applying twice the (Step) rule,
m3

τ−→ m4 = {η, δ} and m4
τ−→ m5 = {η, σ}.

It is easy to see that the set of traces of this net consists of all and only the
traces w ∈ V� such that (1) only a and a occur in w; and (2) in every prefix of
w, the number of occurrences of a is larger than the number of occurrences of a.

4.1 Open Petri Nets with Interfaces

In order to allow for an inductive construction of open Petri nets from a set of
basic components, we enrich open nets with interfaces and suitable operators for
net composition along the interfaces.
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In the following, for each n ∈ N we denote by n+ the set {1, . . . , n}, by
n− the set {−1, . . . ,−n} and by 0 the empty set ∅. Also, for f : n+ → S and
g : m+ → S, we denote f + g : (n + m)+ → S the function (f + g)(x) = f(x) if
x ≤ n and g(x − n) otherwise (and similarly for n− and m−).

Definition 8 (Open nets with interfaces). Let l, r ∈ N. An open net with
left interface l and right interface r is a triple IN = 〈li, ON, ri〉, where ON is an
open net, li : l+ → S and ri : r− → S are the left and right interface functions,
respectively.

We denote by l+
li−→ ON

ri←− r− a net with left interface l+ and right interface
r−. With an abuse of notation, in the following we refer to the places belonging
to the image of the left interface function as left places, and similarly for the
places in the image of the right one. From now on we will denote the components
of an open net with interfaces by l+, li, ON, ri, and r−, possibly with subscript.

Graphically, a net with interfaces is represented as an open net, with the left
interface on the left and the right interface on the right, marked with incoming
and outgoing dotted arrows, respectively. Arrows of the left places are blue while
those of right places are red (grey when in b & w).

Example 4. A net with interfaces is shown in Fig. 6 (right). The left interface
consists of the places α, and β, while the right one contains η and σ. The places
labelled γ and δ are internal, i.e., they do not belong to the interfaces.

Relying on the notion of interface, we can define two suitable composition
operators on nets. Here we just provide an informal description: The reader is
referred to [2,3] for a detailed definition.

Definition 9 (Composition operations). Let IN1 = l+1
li1−−→ ON1

ri1←−− r−
1

and IN2 = l+2
li2−−→ ON2

ri2←−− r−
2 be (point-wise disjoint) nets with interfaces.

– When r1 = l2, their sequential composition IN1◦IN2 is the net with interfaces
l+1 and r−

2 obtained by taking the disjoint union of the nets N1 and N2 and
merging the open (right) places of N1 with the corresponding open (left) places
of N2.

– Their parallel composition IN1 ⊗IN2 is the net with interfaces (l1 + l2)+ and
(r1 + r2)− obtained by taking the disjoint union of the nets N1 and N2, and
merging the open places of N1 with the corresponding open places of N2.

– The restriction (νa)IN1 of IN1 with respect to a ∈ N is the net with interfaces
l+1 and r−

1 obtained by closing the open places labelled by a. We often generalise
the operator to any X ⊆ N .

After building the encoding of a process, we also need to fix its initial state.
This is accomplished by marking the the left places of the resulting open net.
To this end, the following operation will then be used.

Definition 10 (Marking). Let IN be a net with interfaces. The marking of
IN is the marked open net init(IN) = 〈ON,m0〉, where m0 =

⊎l+

n=1 li(n).
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4.2 From ACCS Processes to Nets

Exploiting the algebra of open nets outlined in the previous section, we introduce
an encoding for ACCS processes into open nets that preserves and reflects the
behaviour. The encoding will be restricted to bound processes, i.e., processes
where restrictions never occurs under replications.

Definition 11 (Bound ACCS processes). An ACCS process is called bound
if no restriction (νa)− occurs under replication.

Intuitively, by restricting to bound processes we avoid the generation of an
unbounded number of restricted (and thus conceptually different) names. This
will be essential to guarantee the finiteness of the Petri net encoding.

The encoding of a process is defined inductively starting from a set of constant
nets, those depicted in Fig. 8, which are then combined using the composition
operators on nets in Sect. 4.1. The net nil in Fig. 8(a), which is later used to
represent the inactive process, consists of a single unmarked place. The net outa
in Fig. 8(b) models the output action on a channel name a and it consists of a
single left place, which is also open. The net a in Fig. 8(c), where a ∈ N , is very
similar to the previous but it has an empty left interface. It is going to be used
to model additional free names in the encoding of a process. The net dupl i in
Fig. 8(d) is a combinator for the summation of prefixes (input and τ actions)
where i, the cardinality of the right interface, matches the number of prefixes
involved in the sum. The net replai in Fig. 8(e), where a ∈ N , is going to be
used as a combinator for replication. It allows for a new “parallel activation” of
the net which follows, each time a token is inserted in the open place a. Once
more, i is the cardinality of the right interface which will match that of the left
interface of the encoding of the process under the replication operator. The net
acta

i in Fig. 8(f), where a ∈ N , provides a combinator for the input action on a
channel a. It consists of a transition with two places in the pre-set, a left place
for the flow of control and the open place a modelling the channel on which the
input is required. Again, i is the cardinality of the right interface matching the
left interface of the encoding of the continuation of a. Finally, the net actτ

i in
Fig. 8(g) models a τ prefix: the only difference with respect to acta

i is the absence
of an open place modelling the channel.

The definition below introduces the net encoding of bound ACCS processes.

Definition 12 (Encoding for processes). Let P be an ACCS bound process.
The encoding of P , denoted by �P �, is defined as �P � = init(|P |), where |.| is
given by the inductive rules in Fig. 9, where l|P | and l|Pj | denote the left interfaces
of the corresponding encodings.

The encoding of an ACCS process P is built inductively by composing those
of its sub-processes, and by marking the places in the left interface of the resulting
net. The encoding contains one place for each operator !a, ⊕ and process 0 of P
and a place for each name of P , which are open just for free names. Transitions
mimic the control flow of a process, passing the token between its sequential
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1 a1 a

1

−1

−i

(a) nil (b) outa (c) a (d) dupl i

1

a −1

−i

1

a −1

−i

1

−1

−i

(e) replai (f) acta
i (g) actτ

i

Fig. 8. The constant nets stop, replai , outa, act
a
i , dupl i and actτ

i .

|0| = nil
|ā| = outa∣
∣⊕n

j=1γj .Pj

∣
∣ = dupln ◦ {⊗n

j=1(act
γj

l|Pj |
◦ |Pj |)}

|!a.P | = replal|P | ◦ |P |
|(νa)P | = (νa) |P |
|P | Q| = |P | ⊗ |Q|

Fig. 9. Encoding for ACCS processes.

components. It can be shown that the encoding respects structural congruence:
structurally equivalent processes are mapped into isomorphic nets and vice versa.

Example 5. ([Restricted and parallel processes]) Consider again the process Q =
(νd)Q1, with Q1 = τ.(d.c̄ | d.ē | d̄), which was introduced in Example 1. The
encoding |Q| is shown in Fig. 10. It is obtained by applying the init(·) operation
to the net (νd) |Q1|. In particular, |Q|1 is the result of the sequential composition
between dupl1 and actτ

1 ◦ |Q2|, where Q2 = d.c̄ | d.ē | d̄. In turn, the net |Q2| is
obtained by the parallel composition between d.c̄ | d.ē and d̄, where the former
is obtained via the parallel and sequential compositions of constant nets. The
places labelled by c, d, and e correspond to the output actions c̄, d̄, and ē of
Q2. They are all open in |Q2|, meaning that they represent free names of Q2.
The sub-net rooted at α is the encoding of the sub-process d.c̄, while the one
rooted at β encodes the sub-process d.ē. The place d is open in |Q1|, but since d
is restricted in Q, it is removed from the set of open places of |Q1| by applying
the restriction operation of nets.
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α

d

α′

β

c

e

Fig. 10. Net encoding the process (νd)(τ.(d.c̄ | d.ē | d̄)).

We denote by �P �Γ , the encoding of a bound process P with respect to a set
of names Γ , that is, �P �Γ = init(|P | ⊗ (⊗a∈Γ a)). The addition of the component
⊗a∈Γ a determines the presence in the encoding of a place for each channel in Γ
(which could possibly not occur free in P ). One can establish a correspondence
between the ACCS processes reachable from P , hereafter denoted by the set
reach(P ) = {Q : ∃w ∈ V�, P

w⇒sQ}, and the markings of �P �Γ , through which
we can relate internal reductions in ACCS processes and their encodings.

Theorem 3 (Process reductions as net firings). Let P be an ACCS bound
process and Γ a set of names. Then there is a function mP

Γ : reach(P ) → S⊕
�P �Γ

,
mapping any process Q ∈ reach(P ) into a marking of �P �Γ , such that

1. if Q
τ−→s R then mP

Γ (Q) τ−→ mP
Γ (R) in �P �Γ ;

2. if mP
Γ (Q) τ−→ m in �P �Γ then Q

τ−→s R with m = mP
Γ (R).

Proof. Since by Lemma 1(1) silent transitions in −→ and −→s are exactly the
same, the result follows from a straightforward adaption of [2, Theorem1]. ��

5 Traces in ACCS and in Open Nets

The correspondence between the reduction-based operational semantics of ACCS
processes and their net encodings immediately lifts to a preservation and reflec-
tion of various behavioural equivalence, notably weak and strong barbed bisim-
ilarity (see [2,3]). In this section we show that the correspondence holds also for
trace equivalence, as it is easily proved if the saturated LTS is considered.

We first observe a mismatch between the notion of trace for ACCS processes
in Sect. 2, which captures the interactive behaviour of a process only up to the
≤m preorder on traces, and that for Petri nets, which instead fully describe
all the possible interactions of a system with its environment. Indeed, for such
notion of trace, trace inclusion is not reflected by the net encoding of processes.

Example 6. Consider again the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕ τ.(d̄ |
d.c̄))) and Q = (νd)(τ.(d.c̄ | d.ē | d̄)) as introduced in Example 1. We already
observed there that aāē ∈ tracess(P ), while aāē �∈ tracess(Q). On the contrary,
the encodings of P and Q have exactly the same traces: indeed, this also happens
in the saturated LTS, as shown in Example 2.



100 P. Baldan et al.

We next prove that by considering traces for ACCS processes on the satu-
rated LTS of Sect. 3 there is a perfect match between trace semantics for ACCS
processes and for their encodings. More precisely, it is possible to prove that in
the saturated LTS the correspondence between transitions of an ACCS process
and those of its encoding, is not limited to internal reductions (as expressed by
Theorem 3) but extends to labelled transitions.

Theorem 4 (Labelled transitions as net firings). Let P be a bound ACCS
process, Γ a set of names and Q ∈ reach(P ). Then

1. if Q
v−→ R and v ∈ Γ ∪ Γ then mP

Γ (Q) v−→ mP
Γ (R) in �P �Γ ;

2. if mP
Γ (Q) v−→ m in �P �Γ then Q

v−→ R with m = mP
Γ (R).

Proof. 1. Assume that Q
v−→ R and v ∈ Γ ∪ Γ . We distinguish two cases. If

v = a ∈ Γ then by definition of the saturated semantics R = Q | ā. By
definition of the encoding a is an open place in �P �Γ , hence mP

Γ (Q) a−→
mP

Γ (Q) ⊕ a = mP
Γ (R).

If instead, v = ā ∈ Γ , then by definition of the saturated semantics it must
be Q ≡ R | ā. By definition of the encoding a is an open place in �P �Γ ,
hence mP

Γ (Q) ā−→ mP
Γ (Q) � a = mP

Γ (R).
2. Analogous. ��

Finally, by using the above result and by recalling that, by Lemma 1(1),
silent transitions in −→ and −→s coincide, we can conclude the following.

Corollary 1 (Preservation and reflection of trace semantics). Let P , Q
be ACCS bound processes and Γ a set of names such that fn((P ))∪fn((Q)) ⊆ Γ .
Then traces(P ) ⊆ traces(Q) iff traces(mP

Γ (P )) ⊆ traces(mQ
Γ (Q)).

6 Conclusions and Further Works

In this paper we investigated trace semantics and its may testing characterisation
for asynchronous calculi, focusing on asynchronous CCS, and their encodings
based on open Petri nets. By considering the LTS of [11,19], we proved that the
trace semantics is preserved and reflected by the encoding.

It has to be noted that Theorems 3 and 4 are reminiscent of the similar results
in [2,3], and they are actually made easier by the simpler net encoding for ACCS,
with respect to CSP, which is presented here. Also noteworthy is the possible
connection between the testing semantics and the minimal context semantics, as
originally proposed in [21]. We already explored the connection with weak and
strong barbed bisimilarities for ACCS in [6], and we do hope that the present
work will help cast further lights on other observational equivalences.

Indeed, observe that the results in the paper naturally suggests also a
notion of (may) testing semantics for Petri nets, where an observer is any other
net including some success transition. Few studies exist in the literature (see,
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e.g., [20]) and it seems non-trivial to understand whether may testing for nets
would coincide with trace equivalence. Differently from processes, the notion of
context for nets, intended as a expression built out of constants and sequential
and parallel composition, seems too powerful, since it allows for reusing the same
transition several times and to merge open places.

In [12], Pierpaolo and coauthors pointed out that a good encoding of a
(synchronous) calculus into nets should also preserve the intended degree of
concurrency. Our proposal seems to move away from this requirement in the
encoding of the replication !a.P (see Fig. 8(e)). Each unfolding step causes not
only its continuation P but also the following occurrences of a.P while, intu-
itively, these should be considered independent as !a.P is a finite shorthand for
a.P | a.P | . . . A solution to this problem – as suggested in a different context
in [10, Section 7.2] – could be found by using contextual nets [23] and replacing
the feedback edges in Fig. 8(e) with a single read arc. We did not adopt this solu-
tion in order to keep our model as simple as possible, and because we decided to
leave out of the scope of this paper any analysis of concurrency. The validity of
our choice is motivated by a general analysis concerning the concurrent features
of systems communicating by means of asynchronous interactions: as we showed
in [5], concurrency cannot be observed in such systems, and they include those
specified by ACCS and open Petri nets.
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whose initial lesson was introduced by the quotation in the first page. A scary moment,
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net encoding for calculi. In general terms, the insistence on the proof structure of a
computation in order to distill a suitable (concurrent) semantics for a calculus, which
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Abstract. Behavioural contracts are formal specifications of interaction
protocols between two or more distributed services. Despite the hetero-
geneous nature of the formalisms for behavioural contracts that have
appeared in the literature, most of them feature a notion of compli-
ance, which characterises when two or more contracts lead to correct
interactions between services respecting them. We discuss and compare
a selection of these notions in four different models of contracts: τ -less
CCS, session types, interface automata, and contract automata.

1 Introduction

Several recent works study behavioural contracts as a tool to formalise and disci-
pline correct interactions between distributed services [46]. Many of these works
define, or build upon, some notion of compliance (also called duality, confor-
mance, or agreement) between two or more contracts. Intuitively, compliance
between contracts guarantees that services respecting them will interact “cor-
rectly”, according to some notion of correctness which varies from approach to
approach. This notion is exploited e.g., to type-check whether the specification
of a service respects its contracts [33,42–45], or to dynamically compose services
with compliant ones [15,16,18].

To choose the most suitable notion of “correct behaviour” for a given dis-
tributed application, it would be desirable to have a clear understanding of the
actual properties enjoyed by various notions of compliance, and of the relations
among them. This is not an easy task, because the ecosystem of notions proposed
in the literature is wide and heterogeneous. Indeed, many different compliance
relations have been considered in the literature, and they have been defined
on, or applied to, a variety of different languages and formalisms, among which
session-types [17,22,23], Petri nets [8,56], process algebras [26–28,34,47] and
various automata-based models [20,21,37,51], among others.

In this paper we start a systematic investigation of compliance relations
between behavioural contracts. We aim for a semantic, language-independent
analysis, which abstracts from the actual formalism wherein contracts are given
meaning. Along the lines of the treatment of behavioural equivalences and pre-
orders in concurrency theory, we model contracts as states in Labelled Transition
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Systems (LTSs), with labels ranging over input, output, and internal actions.
This interpretation is straightforward for some models of contracts (e.g., inter-
face automata [37] are just finite-state LTSs), while others can be dealt with by
relating them to LTSs (e.g., session types and τ -less CCS processes induce an
LTS through their operational semantics). By exploiting this common ground,
we formalise different notions of compliance as relations between LTS states, and
we compare them in four classes of contracts: τ -less CCS [39], session types [43],
interface automata [37], and contract automata [20]. The results of our investi-
gation are reported in Sect. 4, and an overview of other related approaches, not
yet included in our formal comparison, is given in Sect. 5.

2 Contracts

In this Sect. 2 we provide a unifying ground for behavioural contracts. They will
be formalised as states of a Labelled Transition System (LTS) where labels are
partitioned into internal, input, and output actions. We will show that contracts
expressed in other formalisms (e.g., τ -less CCS and session types) can be inter-
preted as states of this LTS. All the compliance relations defined later on in
Sect. 3. will be formalised as binary relations between states.

2.1 Basics

Our treatment is developed within the LTS
(
U,Aτ , { �τ−→ | �τ ∈ Aτ}

)
, where:

– U is the universe of states (ranged over by p, q, . . .), also called contracts;
– Aτ (ranged over by �τ , �′

τ , . . .) is the set of labels, partitioned into input actions
?a, ?b, . . . ∈ A?, output actions !a, !b, . . . ∈ A!, and the internal action τ ;

– �τ−→ ⊆ U× U is a transition relation, for all �τ .

We let �, �′, . . . range over A = A?∪A!. We postulate an involution co(·) on A,
such that co(?a) = !a and co(!a) = ?a. The reducts of p are the states reachable
from p with an arbitrary sequence of transitions; we say that p is finite-state
when the set of its reducts is finite. A trace is a (possibly infinite) sequence

p0
�τ

(1)−−→ p1
�τ

(2)−−→ · · · . A τ -trace is a trace where �τ
(i) = τ , for all i (similarly for

τ -reduct). We denote with 0 a state with no outgoing transitions, and we will
interpret 0 as the success state. We show some (finite-state) contracts in Fig. 1.

Notation 1. We adopt the following notation:

– R∗ for the reflexive and transitive closure of a relation R
– p

�τ−→ when ∃p′ . p
�τ−→ p′. Further, we write p −→ when ∃�τ . p

�τ−→
– for a set L ⊆ A, we define L? = L ∩ A? and L! = L ∩ A!

– =⇒ = ( τ−→)∗ is the weak transition relation. We define �τ=⇒ as =⇒ �τ−→=⇒
– p ↓ = {� | p

�−→} are the barbs of p, and p⇓ = {� | p
�=⇒} are its weak barbs

– p ↑ is true when p has an infinite internal computation p
τ−→ p1

τ−→ p2
τ−→ · · ·



Compliance in Behavioural Contracts 105

The above notation for −→ is extended to =⇒ as expected.

Two contracts can be composed with the operator ‖, which formalises the
standard synchronisation à la CCS [52].

Definition 1 (Parallel composition). For all p, q ∈ U, we define the parallel
composition p ‖ q as the state in U whose transitions are given by the rules:

p
�τ−→ p′

p ‖ q �τ−→ p′ ‖ q
q

�τ−→ q′

p ‖ q �τ−→ p ‖ q′
p

�− →p′ q
co(�)−−−→ q′

p ‖ q τ−→ p′ ‖ q′

We describe in the following subsections some classes of contracts which have
been considered in the literature.

p1
τ

!a

!b

?c

τ

(1)

p2

τ

!a

τ
!b

τ
?c

τ

?d

(2)

p3

τ
!a

τ !b

(3)

p4

!a

!b

?c

?d

(4)

p5

?a

?b

(5)

Fig. 1. Some contracts.

2.2 Interface Automata

As a first subclass of the set U, we consider interface automata [37]. These are
finite-state automata, which can communicate through the synchronization of
input and output actions, and they can perform internal actions (possibly of
different kinds). Synchronization of input and output actions is obtained in [37]
by constructing the cartesian product of interface automata, with the restriction
that matching input and output actions must fire simultaneously.

To adapt interface automata to our framework, we collapse the different
internal actions to τ . Once this is done, interface automata simply correspond
to finite-state contracts. Note that in our framework we do not need to explic-
itly construct the cartesian product, since we obtain a contract with the same
behaviour through Definition 1. We then denote with IA the set of finite-state
contracts (so, IA ⊂ U). For instance, all the contracts in Fig. 1 belong to IA.

2.3 τ -less CCS

The contracts used in [32,34,47] are terms of the process calculus CCS without
τs [39]. Differently from Milners CCS [52], these have two kinds of choice. In an
internal choice C ⊕D the process decides which one of the two branches to follow,
whereas in an external choice C & D, the decision is taken by the environment.
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To have a simple embedding of τ -less CCS into our framework, we restrict
our study to the fragment where choices are prefix-guarded.

Definition 2 (τ-less CCS). τ -less CCS processes are terms with the syntax:

C ::=
˘

i∈I �i .Ci

∣
∣

⊕
i∈I �i .Ci

∣
∣ recX C

∣
∣ X

where (i) the set I is finite, (ii) the actions �i in internal/external choices are
pairwise distinct, and (iii) recursion is prefix-guarded.

We write 0 for the empty (internal/external) choice, and omit trailing occur-
rences of 0. We adopt the equi-recursive approach, by considering terms up-to
unfolding of recursion. The semantics of τ -less CCS is given below.

Definition 3. We denote with τC the set of contracts of the form C or [!a] C ,
with C closed, and transitions given by the following rules:

˘
i∈I �i .Ci

�k−→ Ck (k ∈ I)
⊕

i∈I �i .Ci
τ−→ [�k] Ck (k ∈ I) [�] C �−→ C

An external choice can always perform each of its actions. An internal choice⊕
i∈I�i .Ci must first commit to one of the branches �k .Ck, and this produces

a committed choice [�k] Ck, which can only perform the action �k. As a con-
sequence, a contract in τC may have several outgoing transitions (either input
or output), but internal transitions cannot be mixed with input/output ones.
There cannot be two internal transitions in a row, and after an internal transi-
tion, the target state will have exactly one outgoing transition. Contracts in τC
are finite-state, so τC ⊆ IA.

Example 1. The process C = !a⊕ !b⊕ ?c⊕ ?d is denoted by the contract p2 in
Fig. 1, while the contract p4 denotes the process !a&!b&?c&?d: indeed, since the
latter is an external choice, all the labels are enabled at the same time. Instead,
the contract p1 in Fig. 1 does not belong to τC, for two different reasons. First,
it has an internal transition at the same level of a non-internal one; second, there
are two consecutive internal transitions.

Note that, if we allowed internal actions in external choices, we would essen-
tially turn the choice into an internal one. Indeed, the abstraction operator of [31]
makes internal choices emerge from external ones. However, such abstraction
produces contracts which go beyond τC, and are instead contained in IA.

2.4 Session Types

Session types [43,44] are terms of a process algebra featuring a selection con-
struct (i.e., an internal choice among a set of branches, each one performing some
output), and a branching construct (i.e., an external choice among a set of inputs
offered to the environment). With the restriction given in Sect. 2.3 (i.e., choices
are prefix-guarded), and further assuming no channel passing, session types are
just a special case of τ -less CCS contracts, where the actions in internal choices
are all outputs, and the actions in external choices are all inputs.
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Definition 4 (Session types). Session types are τ -less CCS processes respect-
ing the following syntax:

T ::=
˘

i∈I?ai .Ti

∣
∣

⊕
i∈I !ai .Ti

∣
∣ recX T

∣
∣ X

We denote with ST the set of contracts of the form T or [!a] T , with T closed
and transitions given as in Definition 3. Note that all the outgoing transitions
from a state must have the same (internal/input/output) kind. It is easy to check
that ST ⊂ τC.

Example 2. The contract p4 in Fig. 1 represents the session type !a ⊕ !b. Since
it is an internal choice, according with Definition 3, there is a commit on the
chosen branch before actually firing the output action. The contract p4 does not
belong to ST because it has two output transitions on the same level, and they
are also mixed with input ones. The contract p2 does not belong to ST, because
it has a internal transition before an input transition.

While ST is a strict subset of τC, note that it is possible to encode the latter
in the former, as shown in [48].

2.5 Contract Automata

Contract automata [19,20] are similar to interface automata, from which they
differ in the interpretation of labels. Labels are either requests, modelling
resources/interactions expected from the environment, or offers, modelling
resources/interactions produced in exchange. Internal actions are not allowed.
The interaction between contract automata is obtained through a composition
operation, similar to that of interface automata. An interaction is considered
successful if all the requested actions are met, while the offered actions may be
ignored. Offered actions are considered to be available to the counterpart, which
can either choose to use or ignore them. This is similar to the intuition of external
choices in session types, so we model offers as actions in A?; symmetrically, we
model requests as actions in A!. The contracts obtained from contract automata
are finite-state and they have no internal actions. We denote them with CA.

Lemma 1. CA ⊂ τC, and ST ∩ CA �= ∅.
Proof. Since a contract automaton is finite-state, one can regard it as a set
of recursive equations of the form Xi =

˘
j�j .Cj , where Cj are τ -less CCS

processes. These can be turned into a τC contract applying Bekič’s lemma.
To show that ST ∩ CA �= ∅, it suffices to pick p5 in Fig. 1. ��

Example 3. The contract p4 in Fig. 1 belongs to CA: it fires input and output
actions at the same level and no τ is present. On the contrary, the contracts p1,
p2 and p3 do not belong to CA, because of the presence of internal transactions.
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U

IA (p1)

τC (p2)

CA (p4)ST (p3)
(p5)

Fig. 2. Relations between some classes of contracts (all the inclusions are strict).

2.6 Relations Between Classes of Contracts

Figure 2 relates the classes of contracts considered in the previous subsections,
and the derived class τC− = τC \ (ST ∪ CA). To show that all the inclusions
are strict, consider the contracts in Fig. 1. We have that p1 ∈ IA \ τC; p2 ∈
τC \ {ST ∪ CA}; p3 ∈ ST \ CA; p4 ∈ CA \ ST; p5 ∈ ST ∩ CA. To show IA ⊂ U,
it suffices to take an infinite-state contract.

3 Compliance Relations

In this section we survey some notions of compliance that have appeared in the
literature, and we formalise them as relations between contracts in the LTS of
Sect. 2. Since many of the original definitions apply to specific models, in order
to unify the study of these notions we had to adapt some of them. For instance,
some works focus on symmetric relations, while some others on asymmetric ones,
where one of the two contracts (e.g., playing the role of a client), may be allowed
to terminate interaction or to skip messages despite of the state of the other one
(e.g., playing the role of a server). For uniformity, in this paper we only consider
asymmetric relations. In most cases, a symmetric compliance relation �� can
be obtained by intersecting asymmetric compliance � with its inverse relation
(a notable exception is �may in Definition 6). Further, although some notions
of compliance in the literature are naturally multi-party (e.g., compatibility in
IA [37]), for uniformity we restrict them to the binary case, where only two
participants are involved.

Progress. We start by considering the notion of progress, where compliance is
interpreted as the absence of deadlock (on the client-side, since we are considering
the asymmetric relation). Formally, in Definition 5 we say that a contract p has
progress with q (in symbols, p �pg q) iff, whenever a τ -reduct of p ‖ q cannot
take internal transitions, then p has reached the success state.
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p6
τ

!a

τ

!a

τ

!a

(6)

p7
?b

(7)

Fig. 3. Two session types with an asynchronous semantics.

Definition 5 (Progress). We write p �pg q iff:

p ‖ q =⇒ p′ ‖ q′ � τ−→ implies p′ = 0

Example 4. Consider the pair of contracts (10) in Fig. 6. When composed
together, p10 and q10 can synchronise on label a, after which they both reach
success. Hence, p10 ��pg q10. The two contracts in (12) can synchronise forever,
so p12 ��pg q12. Consider now the pair (13): when composed together, we have
p13 ‖ q13

τ−→ τ−→ p′ ‖ 0 � τ−→, with p′ �= 0. Therefore, p13 ��pg q13, while q13 �pg p13.

This notion has been used e.g. in τ -less CCS [34], in session types (both
untimed [3] and timed [7]), and in types for CaSPiS [1]. Note that in asynchro-
nous session types [36] the progress-based compliance of Definition 5 can relate
contracts which arguably admit correct interactions. For instance, consider the
session types C6 = recX !a.X and C7 = ?b, and let p6 and p7 (displayed in
Fig. 3) denote their asynchronous semantics. In p6, internal actions are used to
enqueue outputs in a FIFO buffer; queued outputs can then be fired. The asyn-
chronous semantics of C7 (denoted by p7) is identical to the synchronous one.
Clearly, C6 ���pg C7, because C6 ‖ C7 is stuck. Instead, we have that p6 ��pg p7,
because the interaction of the two contracts produces an infinite τ -trace, even if
no synchronisation ever happens. Stricter notions of compliance, like e.g. those in
Definition 8 to 10, manage to avoid such “vacuous” progress, where two contracts
merely advance via internal τ -transitions (without ever synchronising).

May-testing compliance. The following three notions of compliance (Definitions 6
to 8) are inspired by the theory of testing in concurrent systems [38]. In Defini-
tion 6, a contract p is said may-testing compliant with q (in symbols, p �may q)
if there exists a finite τ -trace of p ‖ q which leads p to the success state.

Definition 6 (May-testing compliance). We write p �may q iff

∃q′ . p ‖ q =⇒ 0 ‖ q′

Example 5 The pair of contracts (15) in Fig. 6 can synchronise on a and then
succeed (on both sides); hence, p15 ��may q15. In (12), both contracts can fire
actions in a loop but they cannot terminate, so p12 ��may q12 and q12 ��may p12.

May-testing compliance assumes a cooperative scenario, where all the partic-
ipants collaborate to achieve a common goal: if there is a way for the interaction
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p8

τ
!payPal

τ !payCC p′
8

!payPal

!payCC q8

?payPal

?cancel

Fig. 4. Two client contracts p8, p′
8 and one service contract q8.

to succeed, it is enough, disregarding all the possible unsuccessful interactions.
This requires participants to pre-agree on their internal choices, and the sched-
uler to only permit the synchronisations leading to success. For instance, in (15)
the scheduler must not allow p15 and q15 to synchronise on b, since this would
prevent p15 from reaching the success state. The �may relation is similar to the
agreement relation used in CA [19], under the assumption that there are only
two contracts, and there exists a unique success state.

Example 6. Figure 4 shows two different ways to represent choices. The contracts
p8 and p′

8 model two clients of an online store, which want to pay by PayPal
(payPal) or by credit card (payCC). Instead, the contract q8 models an online
store which accepts payments with PayPal, or it allows clients to cancel the
transaction. Using progress-based compliance, we have p8 ��pg q8 and p′

8 �pg q8.
Instead, using may-testing compliance, we have that p8 �may q8 and p′

8 �may q8.
From this we may observe two facts. First, under progress-based compliance, p8
and p′

8 represent two different kinds of choice. The τ actions in p8 force Defini-
tion 5 to consider both paths; instead, in p′

8 the transition !payCC can be ignored
when testing compliance with q8, because no synchronisation on payCC can hap-
pen. So, in a sense the choice in p8 is made by the client, while that in p′

8 is
made by the scheduler (or by the server). Second, note that may-testing compli-
ance cannot discriminate between the two kinds of choice: indeed, Definition 6
assumes that all the choices are performed by an oracle, which always follows
the path (if any) leading to success.

Must-testing compliance. The notion of compliance in [2] is inspired to must-
testing [38]. This relation is stricter than may-testing, because it requires a
contract to reach success in all (sufficiently long) traces. Formally, we say that a
τ -trace r0 −→ r1 −→ · · · is maximal if it is infinite, or if it ends in a state rn such
that rn � τ−→. A contract p is must-testing compliant with q (in symbols, p �mst q)
if, in all the maximal τ -traces of p ‖ q, the contract p reaches the success state.

Definition 7 (Must-testing compliance). We write p0 �mst q0 iff

for all maximal τ -traces p0 ‖ q0
τ−→ p1 ‖ q1

τ−→ · · · : ∃i ≥ 0 . pi = 0

Example 7. Consider the pair of contracts (16) in Fig. 6. We have p16 ��mst q16:
indeed, there are two finite maximal τ -traces, and they lead both contracts to
success. For the pair (20), there are two infinite maximal τ -traces. In the first
trace, there is a finite number of synchronisations on a, then one synchronisation
on b, and finally the contract q20 loops forever with internal moves. Here, the
contract p20 reaches success after the synchronisation on b. In the other maximal
τ -trace, the two contracts synchronise on a forever, but p20 never reaches success.
Hence, we have that p20 ��mst q20 and q20 ��mst p20.
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Compared to may-testing compliance, in must-testing compliance we are
no longer assuming that participants are cooperative: indeed, p must succeed,
whatever internal choices q takes, and whatever synchronisations the scheduler
enables. In a sense, all the choices (of q, of the scheduler, and also of p) are
considered demonic, while in may-testing compliance they are all angelic.

p9

τ

!addItem

τ !checkOut
q9

?checkOut

?addItem

Fig. 5. The contract of an online store (q9) and of a client (p9).

Example 8. Consider the contract q9 of an online store, and the contract p9 of
one of its clients. The client can iteratively add items to the shopping cart, or
eventually choose to check out (and succeed). On the other side, the online store
acknowledges the chosen items, and it succeeds when the client checks out. These
contracts can be described in ST as p9 = recX !addItem.X⊕ !checkOut, and q9 =
recX ?addItem.X & ?checkOut. Note that there exists a maximal (infinite) trace
where the client always chooses to add a new item, hence by Definition 7 it follows
that p9 ��mst q9 and q9 ��mst p9. The fact that p9 ��mst q9 is somehow arguable.
Actually, Definition 7 is considering the choice between !addItem and !checkOut
as a demonic non-deterministic choice, and not as a proper internal choice of
the client. In the second interpretation of the choice, it would be reasonable to
say that p9 is compliant with q9, because the client always has the opportunity
to terminate. Instead, it is intuitively correct to say q9 is not compliant with p9,
because the store cannot internally choose to terminate the loop and succeed.

Should-testing compliance. We now present a notion of compliance inspired by
the theory of should-testing [29,53]. A contract p is should-testing compliant
with q (in symbols, p �shd q) if, after every possible finite τ -trace of p ‖ q, there
exists a subsequent (finite) τ -trace which leads p to the success state.

Definition 8 (Should-testing compliance). We write p �shd q iff

p ‖ q =⇒ p′ ‖ q′ implies ∃q′′ . p′ ‖ q′ =⇒ 0 ‖ q′′

A notion similar to the one in Definition 8 has been used in [26] (under the
name of correct contract composition), and in [9,56] (where it is named weak
termination). A stricter notion, called strong compliance in [28], also requires
that each output is matched by a corresponding input (similarly to interface
automata compatibility in Definition 11).

Example 9. Consider the pair of contracts (21) in Fig. 6. After each (finite)
sequence of internal actions of q21, the two contracts can synchronise and reach
success. Therefore, p21 ��shd q21. In the pair (11), even though the two con-
tracts enjoy progress, they can never reach the success state. Hence, we have
that p11 ��shd q11 and q11 ��shd p11.
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The previous example shows that, unlike progress, to be should-testing com-
pliant it is not enough that two contracts have infinite interactions, but at any
moment, it must be possible for them to succeed.

Example 10. Recall the contracts p9 and q9 from Example 8. We have that
p9 ��shd q9, because at each point of the interaction it is possible to make both
the client and the online store succeed. As remarked in Example 8, q9 �shd p9
may be counter-intuitive, because the success of the store relies on the assump-
tion that the client will eventually choose to check out.

The previous example highlights the difference among the three notions of
testing-based compliance in Definition 6 to 8. While in may-testing compliance
all choices are angelic and in must-testing compliance they are all demonic, in
should-testing compliance there are two kinds of choices. In the first part of the
computation, p ‖ q =⇒ p′ ‖ q′ in Definition 8, all the choices are demonic, while in
the second part, p′ ‖ q′ =⇒ 0 ‖ q′′, they are all angelic.

None of the notions of compliance studied in this section considers the case
where the choices of participant p are angelic, while those of its counterpart q
are demonic. The works [10,11] explore this research direction, by interpreting
contracts as multi-player concurrent games. However, since the setting is quite
different from ours (i.e., the contracts in [10,11] are event structures, while in
Sect. 2 we model them as states of an LTS), we do not include these game-
theoretic notions of compliance in this survey.

Behavioural compliance. Definition 9 below formalises in our setting the relation
called behavioural compliance in [47,49]. A contract p is compliant with q (in
symbols, p �beh q), if, in every possible τ -reduct p′ ‖ q′ of p ‖ q, two conditions
are satisfied: if the reduct is stuck, then p′ has reached success; otherwise, if
q′ alone can produce an infinite τ -trace, then p′ must be able to reach success
without further synchronisations.

Definition 9 (Behavioural compliance). We write p �beh q iff:

p ‖ q =⇒ p′ ‖ q′ implies
(
p′ ‖ q′ � τ−→ implies p′ = 0

) ∧ (
q′ ↑ implies p′ =⇒ 0

)

Example 11. The pair of contracts (18) in Fig. 6. can loop forever with internal
actions, but since neither p18 nor q18 can reach success, we have p18 ��beh q18
and q18 ��beh p18. For the pair (21), we have that q21 can prevent p21 from
reaching the success state, by following an infinite internal computation: hence,
p21 ��beh q21. However, q21 �beh p21, because q21 ‖ p21 never gets stuck (so, the
first condition in Definition 9 holds), and p21 cannot perform internal actions
(thus satisfying also the second condition).

Compared to must- and should-testing compliance, behavioural compliance
allows two contracts to synchronise forever, without ever reaching success: for
instance, in the pair (12) of Fig. 6, we have p12 �beh q12, while p12 ��mst q12
and p12 ��shd q12. Unlike the notion of progress, behavioural compliance does
not allow q (i.e., the participant playing the role of server) to produce infinite
vacuous interactions: for instance, we have that p21 �pg q21, but p21 ��beh q21.
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I/O compliance. In [17], a contract p is considered compliant with q (in symbols,
p �io q), if, in every possible τ -reduct p′ ‖ q′ of p ‖ q, the weak outputs of p′

are included in the weak inputs of q′; further, if p′ has no weak outputs but still
some weak inputs, then they include the weak outputs of q′.

Definition 10 (I/O compliance). We write p �io q iff p‖q =⇒ p′‖q′ implies:

p′⇓! ⊆ co(q′⇓?) ∧ (
(p′⇓! = ∅ ∧ p′⇓? �= ∅) =⇒ ∅ �= q′⇓! ⊆ co(p′⇓?)

)

Example 12. Consider the pair of contracts (19) in Fig. 6. We have that p19⇓! =
{!a} ⊆ co(q19⇓?) = co({?a, ?b}). After the synchronisation on a, p19 has no more
output actions, and one of its input actions (?c) is matched by a weak output of
q19. Hence, p19 �io q19. With similar arguments, we can show that q19 �io p19.
Consider now the pair (16). After the synchronisation on a, and after that q16
commits to the ?b branch, we have that one of the weak outputs of p16 (i.e., !c) is
not matched by any of the inputs of the reduct of q16, and so p16 ��io q16. Further,
the inputs of the reduct of q16 (i.e., ?c) do not include the weak co-outputs of
the reduct of p16, and so q16 ��io p16.

Note that, unlike the other notions of compliance seen so far, in I/O compli-
ance output actions are interpreted differently from input actions. This differ-
ence can be understood by interpreting Definition 10 as a game between the two
players p and q, similarly to the bisimulation game [54]. The first condition in
Definition 10 requires that, if p′ wants to do some output (possibly after some
τ -moves), then q′ must match it with its inputs; the second condition requires
that, if p′ is not going to do any outputs, but she wants to do some input,
then q′ must be ready (possibly after some τ -moves) to do some output, and q′

cannot have outputs other than those accepted by p′. I/O compliance coincides
with progress on synchronous session types (see Theorem 1 to 2). Instead, when
considering asynchronous session types, where the interaction between partici-
pants is mediated by two unbounded FIFO buffers, I/O compliance is equivalent
to a notion of compliance based on progress, orphan messages and unspecified
receptions [55]. Note that I/O compliance does not completely rule out vacuous
infinite interactions, as witnessed by the pair of contracts (21) in Fig. 6.

Interface automata compatibility. Definition 11 below formalises in our setting
the notion of compatibility between interface automata proposed in [37]. A con-
tract p is compliant with q (in symbols, p �ia q), if, in every possible τ -reduct
p′ ‖ q′ of p ‖ q, the outputs of p′ are included in the immediate inputs of q′. The
symmetric version of this relation (i.e., �ia ∩ �−1

ia ) is equivalent to the notion of
compatibility in [37], under the assumptions that there are only two automata,
and that all non-internal variables are shared.

Definition 11 (Interface Automata compatibility). We write p �ia q iff:

p ‖ q =⇒ p′ ‖ q′ and p′ !a−→ implies q′ ?a−→
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Example 13. Consider the pair of contracts (13) in Fig. 6. After the synchro-
nisation on a, the reduct of p13 has no more outputs, so p13 �ia q13 — even
though success has not been reached. The contract q13 has no outputs, and so
q13 �ia p, for all p. Consider now the pair (17). Even though in all reachable
τ -reducts p′ ‖ q′ of p17 ‖ q17, the outputs of p′ are included in the weak inputs
of q′, in the reduct where p′ and q′ have synchronised on a but q′ has not yet
performed its internal action, we have that the outputs p′ are not matched by
the immediate inputs of q′ (which are empty). Therefore, p17 ��ia q17. We also
have that q17 ��ia p17, because the output !a in q17 is not immediately matched
by the input ?a in p17, which is preceeded by an internal action.

The relation in Definition 11 differs from the others seen so far in several
aspects. First, output actions are interpreted differently from input actions (this
features is shared only with I/O compliance). Second, �ia is more sensitive to
internal actions: if an input action ?a is preceded by an internal action, then
it is not considered to match the output action !a. For instance, the contracts
p17 and q17 in Fig. 6 are compliant according to all the relations considered in
this Sect. 3, except �ia . Finally, unlike the other compliance relations (except�may), �ia does not guarantee progress, as established by Theorem 1. Indeed,
since input actions can be neglected, they can be left waiting forever, as in the
contracts in (13)–(15) in Fig. 6.

4 Comparing Compliance Relations

The main results of the paper are summarised in Table 1, which establishes
relations between the notions of compliance presented in Sect. 3. The table may
be interpreted as follows. Let the metavariable P range over sets of contracts.
If P occurs in row with label �i and column with label �j of Table 1, then:

∀p, q ∈ P : p �i q =⇒ p �j q (1)

Table 1. Comparison of compliance relations.
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Fig. 6. Some pairs of contracts.
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and the reference next to P points to the theorem where the inclusion is proved.
Instead, if ¬P(n) occurs in row with label �i and column �j of the table, then:

∃p, q ∈ P : p �i q ∧ p ��j q (2)

and (n) is the related counterexample, displayed in Fig. 6.

Theorem 1. We have the following inclusions in U×U. All the inclusions are
strict, and no inclusion exists (in U× U) where none is shown.

�mst ⊂ �shd ⊂ �may

∩ ∩
�beh ⊂ �pg ⊃ �io

Proof. The counterexamples to equalities are linked by Table 1. The inclusions in
the first row and �beh ⊆�pg are immediate from Definition 5 to 9. The inclusion�shd ⊆�pg follows by Definition 5, since �pg also allows for infinite computations
which can never reach success. The inclusion �io ⊆�pg is direct consequence of
Theorem 4.9(a) in [55]. To prove �mst ⊆�beh , assume p0 �mst q0, and let pk

and qk be such that p0 ‖ q0 =⇒ pk ‖ qk.
If pk ‖qk � τ−→, then the trace is τ -maximal, and so by p0 �mst q0 it follows that

pi = 0 for some i ≤ k. Hence, pk = 0.
If qk ↑, then we have an infinite τ -maximal trace:

p0 ‖ q0 =⇒ pk ‖ qk
τ−→ pk+1 ‖ qk+1

τ−→ pk+2 ‖ qk+2
τ−→ · · · (∀j ≥ 0 . pk+j = pk)

By p0 �mst q0, it follows that pi = 0 for some i ≥ 0. If i ≤ k, we already have
the thesis, since pi = pk = 0. Otherwise, if i > k, then it must be 0 = pi = pk.
So, we conclude that p0 �beh q0. ��
Theorem 2. ∀p, q ∈ ST : p �pg q =⇒ p �io q

Proof. Direct consequence of Theorem 4.9(b) in [55]. ��
Theorem 3. ∀p, q ∈ ST : p �pg q =⇒ p �ia q

Proof. By contradiction, assume that p �pg q but p ��ia q. Hence, there exists

p′, q′ and a such that p‖q =⇒ p′ ‖q′ with p′ !a−→ and q′ � ?a−→. By Definition 5, p �pg q
implies p′ �pg q′. By definition of ST, it cannot be q′ ↑, and the only outgoing
transition of p′ is !a.

Therefore, to have p′ �pg q′ it must be q′ ( τ−→)n q′′ ?a−→, for some q′′. Since

q′ � ?a−→, then it must be n > 0. This contradicts the definition of ST, which forbids
τ immediately before inputs. ��
Theorem 4. ∀p, q ∈ ST ∪ CA : p �io q =⇒ p �ia q

Proof. By contradiction, assume that p �io q but p ��ia q. Then, there exist
p′, q′ and a such that p ‖ q =⇒ p′ ‖ q′, with p′ !a−→ and q′ � ?a−→. However, by definition
of �io , we have !a ∈ co(q′⇓?), i.e. ?a ∈ q′⇓?. Since q ∈ ST∪CA, this implies that
?a ∈ q′ ↓, and so q′ ?a−→ — contradiction. ��
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Theorem 5. ∀p, q ∈ τC : p �pg q =⇒ p �beh q

Proof. Since q ∈ τC, then by Definition 3 it is not possible that q ↑, hence the
thesis follows by Definitions 5 and 9. ��

5 Related Work and Conclusions

We have given a unifying overview of some notions of compliance found in the
literature. Although our analysis is still preliminary and partial, as far as we
know ours is the first study which systematically organizes compliance relations
between behavioural contracts, specified in a general model as arbitrary LTSs.

Previous works survey compliance relations in restricted classes of contracts.
The work [24] proposes three notions of compliance for Web services, which are
modelled as deterministic contract automata (i.e., there are no internal transi-
tions, and a state cannot have two outgoing transitions with the same label).
Two of the proposed notions correspond to ��ia and ��may , while the other one
requires that, for all reachable states p′ ‖ q′, it holds p′ ↓ = co(q′ ↓); hence, this
relation is stricter than ��io . The work [30] surveys some compliance relations for
τ -less CCS contracts, while [22] considers higher-order session types (i.e., also
featuring session delegation). The latter work also studies how the choice of the
compliance relation impacts the type systems. Our investigation focuses instead
on compliance relations among arbitrary LTSs, of which τ -less CCS contracts
and (first-order) session types are a special case.

Much work remains to do: besides including other notions of compliance and
of contract, we also aim at classifying them according to some relevant criteria:
e.g., decidability, computational complexity, etc. Another property is whether
a compliance relation is preserved when passing from synchronous to asynchro-
nous semantics. For instance, in [17] it is shown that if two session types are
I/O compliant, then they will be such also in the presence of asynchrony, i.e.
when the communication is mediated by unbounded buffers. This is a relevant
property, because it allows to safely approximate an undecidable notion (e.g.,
compliance between asynchronous session types) with a decidable one (e.g., com-
pliance between synchronous session types).

The starting point of our investigation about compliance dates back to [12],
where the idea of defining a function invocation mechanism based on abidance
by behavioural contracts was first developed. In this setting, functions are spec-
ified in a λ-calculus enriched with side effects (called events), and contracts are
automata denoting sets of permitted sequences of events. Calling a function con-
sists in advertising a contract; any function with a behaviour conforming to the
contract can be dynamically bound to the callee. This call-by-contract mecha-
nism is further studied in [13,14], where techniques are developed to compose
untrusted services while guaranteeing to always respect contracts at run-time.

The notion of agreement introduced in [11] is built on an interpretation of
contracts as multi-player concurrent games on event structures. A participant
(with a given contract) agrees with another participant’s contract if she has a
strategy to interact with the other so that in each interaction she either wins, or



118 M. Bartoletti et al.

it is possible to blame the other participant for not honouring his obligations.
A relation between this notion of agreement and progress in session types is
shown in [10]: two session types are compliant according to Definition 5 when-
ever, in their encoding as event structures, all innocent strategies of the first
participant are winning. We expect that this game-theoretic interpretation of
compliance can lead to further correspondence results: for instance, we conjec-
ture that compliance between retractable contracts [5] (which is like progress,
but in a semantics which allows some internal choices to be rolled back), corre-
sponds to the existence of a winning cooperative strategy in their encodings at
event structures. Other notions of compliance which are coarser than progress
allow clients to skip some of the messages sent by the server [4], to asynchro-
nously match requests after the corresponding offers have been delivered [19], or
they use an external orchestrator with buffering capabilities to suitably rearrange
messages [6,34].

In asynchronous models, like e.g. communicating finite-state machines [25]
(CFSMs), asynchronous session types [45], and in the choreographies in [27], one
has to take into account for vacuous progress due to iterated output and buffering
of messages which are never read. Therefore, besides progress, in these asynchro-
nous models compliance usually requires that certain unsafe configurations, like
e.g. orphan messages and unspecified receptions, are not reachable [40]. Compli-
ance in these models is undecidable in general, e.g. the halting problem in Turing
machines can be reduced to reachability in CFSMs [25] (decidability only holds
under strong restrictions on the general model, e.g. by considering two CFSMs
with half-duplex buffers [35]). Algorithmic techniques to safely over-approximate
compliance have then been studied, e.g. in [21,41,50,51]. For instance, the results
in [50] guarantee that a set of asynchronous session types are compliant when-
ever it is possible to synthesise a choreography from them. To set asynchronous
notions of compliance in our framework, one has to interpret CFSMs / asyn-
chronous session types as contracts in the LTS of Sect. 2. Some first results in
this direction are presented in [55], which shows that for binary asynchronous
session types, I/O compliance is equivalent to a notion of compliance based on
progress, orphan messages and unspecified receptions.
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Abstract. Context-Oriented programming languages provide us with
primitive constructs to adapt programs behaviour depending on the evo-
lution of their operational environment. In this paradigm developers must
provide behaviour for any context a program may find in. A missing
behaviour causes a new kind of runtime error: an adaptation error. We
propose a novel mechanism, based on implicit function, that allows the
execution environment to supply such behaviour when the program is
not able to adapt. We assess our proposal extending a core functional
language designed for adaptivity. We integrate the mechanism in a type
and effect system, in the form of implicit coercions, showing that our
type discipline guarantees that no adaptation errors occur.

1 Introduction

The now longstanding trend towards mobility and ubiquity of computing plat-
forms is calling for the development of adaptive software components, that are
capable of dynamically modifying their behaviour depending on changes in their
execution environment and in response to the interactions with other components.
Current development practices take advantage of recent proposals in control the-
ory, artificial intelligence and programming languages to tackle this challenge. We
refer to [8,9,25] for a more comprehensive discussion.

Context-Oriented Programming (COP) [17] is a paradigm providing language
level support for adaptation, which is advocated to enhance the design and
development of ubiquitous and autonomic systems [26]. Standard programming
languages are extended in COP with suitable constructs to express context-
dependent behaviour in a modular fashion.

In [17] the fundamental constructs of COP are listed. The main concept is the
one of behavioural variation. A behavioural variation is a chunk of behaviour that
can be activated depending on the current working environment so to dynami-
cally modify the execution. The current working environment is represented by
c© Springer International Publishing Switzerland 2015
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the notion of context. The context is a stack of layers, i.e. properties identify-
ing the actual structure of the environment. In this setting a programmer can
(de)activate layers to represent changes in the environment. This (de)activation
mechanism is the engine of context evolution. Usually, behavioural variations are
bound to layers: the (de)activation of a layer correspond to the (de)activation of
a behavioural variation.

Degano et al. contributed to the foundations of the COP paradigm [14,15] by
giving a precise semantics to the key COP constructs in a typed core functional
language. A type and effect system is shown effective to guarantee that the
program will always be able to adapt during the execution, known the initial
context, and in reaction to any further context modification. The initial context
is the one at deployment, i.e. is the one immediately provided by the environment
where the application is installed. In the case of a mobile app, the deployment
context may contain all the features and peripherals offered by the device.

Typically, in the COP paradigm a programmer is supposed to detect and to
provide a behavioural variation for any context the application may find in. If
we only account for the deployment contexts, this is already a challenge. In the
mobile setting, this is known as fragmentation problem, e.g. more than 18000
different device models1 have Android installed. One way to tackle this problem
is to provide wrappers and abstractions, which allows uniform patterns to access
the resources.

In this work we envision a novel way of specifying and providing such wrap-
pers and abstractions at programming language level, in a way which is com-
patible within the COP paradigm. We propose to extend COP paradigm with
a mechanism based on implicit functions, that are applied in order to provide a
disciplined recover when (it is the case that) a program is not able to successfully
adapt to the deployment context. In particular, implicit functions allow a fine-
grained control of any failing adaptation attempt of the app and can be specified
in the deployment context by the hardware vendor, or provided seamlessly by
third-party software modules.

In the formal setting of [14], unsuccessfully adaptations are detected earlier
by the type and effect system. We aim at extending conservatively [14], in order
to deal with implicit functions retaining all guarantees of a strict type discipline.
Hence, the adaptation recovery provided by an implicit function need to be
casted into a seamless recovery of type safety. We will show how, at the level of
the type system, this mechanism can be expressed by implicit effect coercions, a
novel typing paradigm inspired by implicit type coercions (see [4,23,24]).

If implicit type coercions are programmable (as in their instantiation in
e.g. Scala and Haskell), they are an effective way to enhance existing libraries
and programs, while preserving type safety and modularisation. In Scala the
type system is allowed to rewrite any program expression by applying the set
of implicit functions in the scope, provided by the programmer, whenever that
expression is not able to type-check. When performing type coercion, implicit
functions change the type of an expressions so satisfying the type system.

1 http://opensignal.com/reports/2014/android-fragmentation/.
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In Haskell, implicit type conversions applies to typeclasses, which can be derived
by the programmer.

A novelty of our approach is that implicit functions are triggered by the
(missing) adaptation behaviour of a program, in order to generate a different
safe behaviour. In this sense we talk about effects coercions rather than type
coercions. Moreover, in our approach, the scope of the implicit functions follows
the one of a standard contextual information. Other proposals either use a global
scoping rule such that an implicit function can be applied extensively by the type
system (e.g. Haskell and [4]), or follow the program syntactical scoping rules
(e.g. Scala).

Now we discuss the stages required in order to extend [15] (not in the order in
which are presented in the paper). First, we extend the ContextML [15] language
with constructs for specifying implicit functions (Sect. 3). Next, we design a
type and effect system for ContextML (Sect. 5) with implicit effect coercions.
We exploit it for ensuring that programs adequately react to context changes
and for computing an abstract as effect representation of the overall behaviour.
This representation, in the form of History Expressions (Sect. 4), describes the
sequences of resource manipulation and communication with external parties in
a succinct form.

In the following we intuitively present our proposal through a motivating
example (Sect. 2), showing the way implicit functions allow for easily specifying
complex adaptive behaviour. This is also instrumental in displaying our method-
ology at a glance.

2 Motivating Example

In this Section we focus on some paradigmatic challenges that may arise when
developing a mobile app. We will walk-through some idiomatic ContextML snip-
pets, which demonstrate how the ContextML constructs allow to overcome these
challenges.

Our scenarios are inspired by the ShopSavvy 2 2 app. This app allows users
to share information about price, quality, and other features of a particular
commercial product. A user can publish the price of a product she found in
a shop close to her current location, together with a rating and options on its
quality. The product is identified by the app using its bar code. After the price is
published, the app suggests other stores where the same product can be obtained
at lower price, using the knowledge obtained by other users.

One of the main challenges that the developers of ShopSavvy 2 have to deal
with, is to make it adaptable. Adaptation mechanisms affect the program at
different stages in the development cycle: at design time all possible situations
that may occur at runtime have to be considered; at deploy time all the possible
kind of host devices need to be supported (each device offers a different set
of functionalities); at runtime the behaviour of the application depends on the

2 http://shopsavvy.mobi/.
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current location, on the signal strength, on the lighting conditions, etc., as well
on the interaction with the user.

Consider the simple feature that allows to identify a product by the picture
of its bar-code. In our example, at design time the developer has considered
the following situation: if the smartphone turns out to be a lower-end one, so
that the camera is not equipped with the focus function, an external service is
invoked through the Internet to recover the bar-code scan functionality.

We will now describe three different scenarios, which show how the adap-
tation mechanism offered by the developers deals with a device that offers no
focus functionality, and in particular we will show how the context can provide
the program with additional adaptation mechanisms which can be activated at
deployment time.

1. the connectivity is available, so the focus of the image can be recovered
through the external service;

2. the connectivity is not available, but the context provides the program with
a local function to compute an approximation of the image focus. The image
has a lower quality and there could be an increased probability the image is
not recognised as bar code;

3. the focus service is available, but the vendor of the smartphone is interested
in constraining the resource usage. In particular, the vendor wants to record
every time an app accesses to an online service. In this case, the code that
calls the online service is substituted at runtime by a module which stores
the information regarding the access before calling the online service.

ContextML naturally implements the adaptive behaviour described above
through the layered expressions. This construct is similar to standard pattern
matching where layers replace patterns. Indeed, an expression Layer. e repre-
sents a chunk of behaviour e to be executed only if the layer Layer is active in
the current context.

For example, the layer CameraFocus in the context may represent the
fact that the camera has the focus function available. Similarly, the layer
RemoteFocus may represent that the app can use a remote service for manipu-
lating the image.

The layered expression e that implements the functionality described above
is displayed in Fig. 1. First the event αclick is issued, which represents the action
of taking a picture by clicking on the cellphone. This event will be recorded in the
history of relevant events executed by the application. If the layer CameraFocus
is active in the context, then the function FocusImage is applied to the picture
img. Otherwise, the app performs a remote call procedure to the service, namely
CallService, sending the picture img if the RemoteFocus service is available in
the context.

We now discuss how the snippet of code e displayed in Fig. 1 manifests
the three behaviours described above. The Scenario (1) is equivalent to run
the expression e in a context where the layer CameraFocus is active, i.e.
[CameraFocus] � e. The current context is on the left-hand side of �, the pro-
gram to run is on the right-hand side. Note that in this section we use a sugared
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e

e =
α
CameraFocus

RemoteFocus

CameraFocus � e � (f ← (α , CameraFocus) , e)

f = λf x ⇒

RemoteFocus � (RemoteFocus)

(f ← (α , RemoteFocus) , e)

f = λf x ⇒ α , (RemoteFocus){x}

Fig. 1. The ContextML snippets implementing the scenarios

notation, that we will make more precise later on. Since in the context the layer
CameraFocus is active, the execution of e results in FocusImage(img).

If we run the expression e under the assumptions of the Scenario (2), the
execution would fail because no required layer is active in the context. However,
the context can handle this failure by exploiting the implicit construct, which
allows an application to run in scenarios not considered at design time. In the case
we consider the FocusApprox(img) routine is implicitly provided by the context,
so that an approximation of the focus of img can be computed.

This is shown in the Scenario 2 of Fig. 1 where the expression e, embedded
inside the implicit construct, runs in an empty context. The construct

implicit(f ← (αclick, CameraFocus) , e)

defines a function f which is invoked when the following conditions are met:

1. no layers defined in the layered expression of e are available in the current
context, i.e. the dispatch mechanism fails;

2. the layer CameraFocus is one of the layers which caused the dispatching
failure;

3. the last action executed by the program is αclick.
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In the Scenario 3 the implicit construct is used to modify the behaviour
of e, by providing a wrapper which manages the access to contextual resources.
This time the layer RemoteFocus is available in the context, and the dispatch
mechanism would succeed. However, the vendor wants to modify the behaviour
variation of e when it comes to handle the case RemoteFocus. This is achieved
by removing the relevant layer from the context using the construct without,
so that the remote service can only be used through the implicitly provided
function.

Scenario 3 of Fig. 1 shows the embedding of e inside an implicit and without
constructs which achieve the explained behaviour.

When the dispatching mechanism fails, the implicit f is executed, namely:

λf x ⇒ αaccess,with(RemoteFocus){x}
In the body of this function we first record the remote access by issuing the event
αaccess and then the layer RemoteFocus is re-activated. The layered expression of
e (bound to the parameter x) can now run successfully in the modified context.

We note that also in Scenario 2 the layered expression of e is passed as
argument to f . However in that case, the layered expression is discarded (indeed
the parameter x is never used), as the vendor has no interest in recovering the
original behaviour of e.

3 ContextML: A Context-Oriented ML Core

ContextML [15] is a fragment of ML designed to deal with adaptation, provid-
ing mechanisms to change the context and to define behavioural variations in
a functional style. In [14] we extended the language by introducing resources
manipulation, enforcement of security properties and communication.

We recall here the syntax of ContextML, omitting those constructs that are
not relevant for the purpose of this paper. In particular we do not detail the
without construct, but it can be easily derived from [14]. We propose a conser-
vative extension that includes the implicit effect coercions as a further adaptation
mechanism.

The resources of the systems are represented by identifiers, moreover they
can be made available in the context and manipulated by a fixed set of actions.

The syntax and the structural operational semantics of ContextML follow.

3.1 Syntax

Let N be the naturals, Ide a set of identifiers, LayerNames a finite set of layer
names, Res a finite set of resources identifiers and Act a finite set of actions for
manipulating resources. The syntax of ContextML is defined by the following
grammar:

n ∈ N x, f ∈ Ide L ∈ LayerNames

r ∈ Res α, β ∈ Act
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v, v1, v
′:: = n | L | () | λf x ⇒ e

e, e1, e
′:: = v | x | e1e2 | let x = e1 in e2 | e1 op e2 |

if e0 then e1 else e2 | with(e1) in e2 | lexp

implicit(v ← (α,L) , e) | eaux

lexp:: = L.e | L.e, lexp

eaux:: = with(L̄) in e2

The novelties of ContextML with respect to ML are the primitives for handling
resources, communication and some features borrowed from COP languages (for
their description we refer the reader to the seminal paper [17]). Usually, COP
paradigm has layers as expressible values; the with construct for manipulating
the context by activating layers (with(L̄) in e2 denotes an auxiliary expression
not used by the programmer but exploited in the dynamic semantics for interme-
diate configurations); layered expressions lexp, defined by cases each specifying
a context-dependent behaviour. The expression α(r) indicates that we access
the resource r through the action α, possibly causing side effects. In the lambda
abstraction λfx ⇒ e, the identifier f represents the abstraction itself within the
expression e. The implicit(v ← (α,L) , e) construct declares an implicit effect
coercion. Note that the value v appearing in the implicit is assumed to be a
lambda λfx ⇒ e for some identifier f . In the following, by abuse of notation
we will refer to that lambda by f , i.e. implicit(f ← (α,L) , e). The implicit
adds the function f to the context, thus allowing it to be applied whenever the
dispatching is about to fail, if L is one of the candidate for the dispatching and
the last action performed is α.

A few additional constructs, not present in the syntax, are used: e1; e2 which
is an abbreviation for (λfx ⇒ e2) e1 where x and f are not free in e2, and λ.e
which is a shorthand for λf ().e, for some f .

3.2 Dynamic Semantics

In [14] we endowed ContextML with a history dependent small-operational
semantics, only defined for closed expressions. Here we review and extend the
semantics to introduce rules for the new construct.

As usual we call histories the sequences of events occurring during program
execution. Events ev indicate activation layers, selection of behavioural varia-
tions and resource accesses. The syntax of events ev and programs histories η is
the following:

ev ::= �L | �L | Disp(L) | α(r) (1)
η ::= ε | ev | η η (2)

The event �L signals that the evaluation of a with body is started in a context
where the layer L is activated; the event Disp(L) signals that layer L has been
selected by the dispatch mechanism; the event α(r) marks that the action α has
been performed over the resource r.
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A context is a pair K = (C, I) where C is a stack of active layers like in [14]
and I is a stack recording the active implicit functions which could be applied
when a layered expression is about to fail. In the following, we denote an active
implicit by ι = f ← (α,L), an empty stack by [ ] and stack with n elements
a1, . . . , an, where a1 is the top by [a1 . . . , an].

Let a0 be a layer L or an active implicit ι, the notation a0 :: K means the
pushing of a0 on the corresponding element of K, i.e. C for layers and I for
implicits. If the element we are pushing is in the stack it is moved at the top.
Formally, we have the following

Definition 1 (Context extension). Let K = (C, I) be a context where C =
[L1, . . . , Ln] is a stack of layers and I = [ι1, . . . , ιm] is a stack of implicits, then

L :: K =

{
([Li, L1, . . . , Li−1, Li+1, . . . , Ln], I) if L = Li for some i

([L,L1, . . . , Ln], I) if L �= Li for all i

ι :: K =

{
(C, [ιj , ι1, . . . , ιj−1, ιj+1, . . . , ιm]) if ι = ιj for some j

(C, [ι, ι1, . . . , ιm]) if ι �= ιj for all j

The transitions have the form K � η, e → η′, e′, meaning that in the context
K, starting from a program history η, the expression e may evolve to e′ and the
history η to η′ in one evaluation step.

Figure 2 shows some semantics rules (most of them are inherited from ML).
We briefly comment on the ones for the relevant constructs.

The rules for with(e1) in e2 first evaluate e1 in order to obtain a layer L;
then, the body of the with construct, i.e. e2, is evaluated in a context extended
with L.

The rule action performs an action α over a resource r, yielding the unit
value () and extending η with α(r).

When a layered expression e = L1.e1, . . . , Ln.en has to be evaluated, the stack
of layers in the current context is inspected top-down to select the expression to
which e reduces. This mechanism is called dispatching and it is implemented by
the function Dsp which takes as input a stack of layers and a set of layers A:

Dsp(L′ :: K,A) =

{
L′ if L′ ∈ A

Dsp(K,A) otherwise

Note that to simplify the notation above we use the operator :: to perform a
sort of pattern matching. The function returns the first layer in the stack of the
context which matches one of the layers in the set A. If such a layer Li exists than
the premises of rule lexp� are satisfied, so that the layered expression e reduces
to the subexpression ei labelled by Li. If no layer matches, the dispatching
mechanism fails. This failure is represented in our semantics by the fact that
the function Dsp is undefined (denoted by ⊥). In case of dispatching failure,
the computation can continue if there exists an implicit in the context that can
be applied. The rule lexp× handles this case. To select an appropriate implicit
from the context we use the partial function Imdsp:
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K � η, e → η′, e′

1

K � η, e0 → η′, e′
0

K � η, e0 e1 e2 → η′, e′
0 e1 e2

2

K � η, 0 e1 e2 → η, e2

3

v �= 0

K � η, v e1 e2 → η, e1

1

K � η, e2 → η′, e′
2

K � η, e1 e2 → η′, e1 e′
2

2

K � η, e1 → η′, e′
1

K � η, e1 v → η′, e′
1 v

3

K � η, (λf x ⇒ e)v → η, e{λf x ⇒ e/f, v/x}

1

K � η, e1 → η′, e′
1

K � η, x = e1 e2 → η′, x = e′
1 e2

2

K � η, x = v e2 → η, e2{v/x}

1

K � η, e1 → η′, e′
1

K � η, (e1) e2 → η′, (e′
1) e2

2

K � η, (L) e → η L, (L̄) e

3

L :: K � η, e → η′, e′

K � η, (L̄) e → η′, (L̄) e′
4

K � η, (L̄) v → η L, v

K � η, α(r) → η α(r), ()

�
Dsp(K, {L1, . . . , Ln}) = Li

K � η, L1.e1, . . . , Ln.en → η Disp(Li), ei

×
Dsp(K, {L1, . . . , Ln}) = ⊥ Imdsp(K, α, {L1, . . . , Ln}) = f

K � ηα, L1.e1, . . . , Ln.en → ηα, f(λ.L1.e1, . . . , Ln.en)

1

f ← (α, L) :: K � η, e → η′, e′

K � η, (f ← (α, L) , e) → η′, (f ← (α, L) , e′)

2

v �= λg ⇒ e

K � η, (f ← (α, L) , v) → η, v

Fig. 2. A glimpse of ContextML semantic rules
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Imdsp(f1 ← (α1, L1) :: K,α,A) =

{
f1 if L1 ∈ A and α1 = α

Imdsp(K,α,A) otherwise

This function takes as argument a context K, an action α and a set of layers A.
Intuitively, it inspects the stack of implicits top-down in order to find a function f
recorded with the same action α and with a layer L which is in A. In the premises
of the rule lexp× the function Imdsp is invoked with the current context, the
last action stored in the history and with the layers of e = L1.e1, . . . , Ln.en.
If such a function f exists, the layered expression e reduces to the application
of f to λ.e. Otherwise, the program gets stuck signalling the occurrence of an
adaptation error, since both the rules lexp× and lexp� cannot be applied.

The rules for implicit(f ← (α,L) , e) evaluate the body e until it reduces to
a value v in a context where the stack of implicits is extended by the implicit
function f ← (α,L). In the rule impl2 we require that the value v is not a
function, indeed, the body e may rely on the implicit function f , which could be
no longer available on the application site of g.

Example 1. We show the running example using the code in Fig. 1, the rules of
Fig. 2, and a slightly modified version of scenario 3 in Fig. 1 showed below:

� implicit(f ← (αclick, RemoteFocus) , e) where
f = λf x ⇒ αaccess;with(RemoteFocus){x}

We provide now the rules applied to reduce the expression. The first rule
applied is impl1, where in the premise we apply the rule action:

1

(∅, f ← (α , RemoteFocus)) � ε, e → α , e′

� ε, (f ← (α , RemoteFocus) , e) →
α , (f ← (α , RemoteFocus) , e′)

where e′ = CameraFocus.FocusImage(img), RemoteFocus.CallService(img)

Note that at every step we need to apply the rule impl1 until e evaluates to
a value v. For brevity we omit to write the derivations from this rule and we
describe only the reductions for its premises. In (∅, f ← (αclick, RemoteFocus)) �
αclick, e

′ the standard dispatching mechanism for the layered expression e′ fails
because the stack of layers is empty. However the implicit allows the dispatching
to succeeds through the application of the rule lexp×:

(∅, f ← (αclick, RemoteFocus)) � αclick, e
′ → αclick, f(λ.e′)

By applying rules app3, action and with2 we obtain:

(∅, f ← (αclick, RemoteFocus)) � αclickαaccess�RemoteFocus,with(RemoteFocus){e}
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Now it is possible to apply rule with3, where in the premises we apply the rule:

As done before, for brevity we discuss only the premise of the next rule which
is again with3. This time the expression e′ is evaluated in a context where the
layer RemoteFocus occurs, hence the standard dispatching mechanism succeeds
and it possible to apply rule lexp�:

(RemoteFocus, f ← (αclick, RemoteFocus)) � ηαclick, e
′ → η′,CallService(img)

where η′ = ηαclickDisp(RemoteFocus)

Finally, assuming that after some reductions CallService(img) evaluates to a
value v, by applying rules with4 and impl2 we obtain the final configuration

� αclickαaccess�RemoteFocusαclickDisp(RemoteFocus)�RemoteFocus, v

4 History Expressions

History Expressions [5,6,28] are a simple process algebra providing an abstrac-
tion over the set of histories that a program may generate. We recall here the
definitions and the properties in [5] but we consider histories with a different set
of events ev, also endowing layer activation and dispatching.

Definition 2 (History Expressions). History Expressions are defined as fol-
lows:

H,H1 ::= ε empty H1 + H2 sum
ev events in (1) H1 · H2 sequence
h recursion variable μh.H recursion

The signature defines sequentialization, sum and recursion operations over sets
of histories containing events; μh is a binder for the recursion variable h.

The following definition exploits the labelled transition system in Fig. 3.

Definition 3 (Semantics of History Expressions). Given a closed H (i.e.
without free variables), we define its semantics �H� ⊆ (ev ∪ {↓})∗ to be the set
of histories

�H� = {w1 . . . wn | ∃H ′. H
w1−−→ · · · wn−−→ H ′} ∪ {w1 . . . wn ↓| H

w1−−→ · · · wn−−→ ε}

We remark that the semantics of a history expression is a prefix closed set of
histories, where a history terminated by the symbol ↓ represents a terminated
computation. Closed history expressions are partially ordered: H � H ′ means
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ε · H
ε−→ H α(r)

α(r)−−−→ ε μh.H
ε−→ H{μh.H/h}

H1
ev−→ H ′

1

H1 · H2
ev−→ H ′

1 · H2

H1
ev−→ H ′

1

H1 + H2
ev−→ H ′

1

H2
ev−→ H ′

2

H1 + H2
ev−→ H ′

2

Fig. 3. Transition system of History Expressions.

that the abstraction represented by H ′ is less precise than the one by H. The
structural ordering � is defined over the quotient induced by the (semantic
preserving) equational theory presented in [6] as the least relation such that
H � H and H � H + H ′. Clearly, H � H ′ implies �H� ⊆ �H ′�.

Back to the example in Sect. 2, assume that the function FocusImage uses no
resource and that the function CallService creates a remote connection through
the action αconn. Then, assume that the history expression over-approximating
the behaviour of expression e is H = αclick ·(CameraFocus+RemoteFocus ·αconn).
According to Definition 3 the semantics of H is the set

�H� ={ε, αclick, αclick CameraFocus, αclick CameraFocus ↓, αclick RemoteFocus,

αclick RemoteFocusαconn, αclick RemoteFocusαconn ↓}

5 ContextML Types

We extend here the ContextML type and effect system defined in [14] with
implicit effect coercion to deal with implicit functions. As usual, our type and
effect system computes an over-approximation of program behaviour in the form
of a history expression and ensures that the dispatching mechanism always suc-
ceeds at runtime, by applying the required implicit functions. Here, we only give
a logical presentation of our type and effect system, and we are confident that
an inference algorithm can be developed, along the lines of [28].

Our typing judgements have the form 〈Γ ;K;H〉 � e : τ � H: in the type
environment Γ , context K and accumulated history H, the expression e has
type τ and effect H. The accumulated history expression abstracts the histories
from which the evaluation of the relevant expression e starts.

Types are the same of [14], i.e. integers, unit, layers and functions:

σ ∈ ℘(LayerNames) P ∈ ℘ ((℘(LayerNames), I)

τ, τ1, τ
′ ::= int | unit | lyσ | τ1

P|H−−→ τ2

We denote by I the set of all possible stack of implicit functions. We annotate
types with sets of layer names for analysis reason. In layer types lyσ, the set σ
over-approximates the layers that an expression can be reduced to at runtime. In

function types τ1
P|H−−→ τ2, P is a set of preconditions, i.e. (υ, I) where I is a stack

of implicits. Each υ ∈ P over-approximates the set of layers that must occur in
the context in order to apply the function, and I predicts the stack of implicits
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τ ≤ τ

τ ′
1 ≤ τ1 τ2 ≤ τ ′

2 P 
 P
′ H 
 H ′

τ1
P|H−−→ τ2 ≤ τ ′

1
P

′|H′
−−−→ τ ′

2

σ ⊆ σ′

lyσ ≤ lyσ′

〈Γ ; K; H〉 � e : τ ′ 	 H ′ τ ′ ≤ τ H ′ 
 H

〈Γ ; K; H〉 � e : τ 	 H

Fig. 4. Subtyping rules

in the context of the application. The history expression H is the latent effect,
i.e. the sequence of events generated while evaluating the function.

The rules for subeffecting (H � H ′) and for subtyping (τ1 ≤ τ2) are in
Fig. 4. Through the rule Sref the subtyping relation is reflexive. The rule Sly

says that if an annotation σ is a subset of σ′, then a layer type lyσ is a subtype
of lyσ′ . As usual, a functional type is contravariant in τ1 but covariant in P, τ2
and H (rule Sfun). The ordering on the set of preconditions is defined as follows
P � P

′ iff ∀(υ, I) ∈ P .∃(υ′, I) ∈ P
′ . υ′ ⊆ υ, where ⊆ is the usual subset relation.

By the Tsub rule, we can always enlarge types and effects.
Figure 5 shows the rules of our type and effect system. Most of them are

inherited from that of ML, so we only comment in detail on the rules for the
new constructs. The rule Talpha gives expression α(r) type unit and effect
α(r). The rule Tly asserts that the type of a layer L is ly annotated with the
singleton set {L} and its effect is empty. In the rule Tfun we guess a set of
preconditions P, a type for the bound variable x and for the function f. For all
precondition (υ, I) ∈ P we also guess a context K ′. We require that preconditions
(υ, I) contain all the layers of K ′, in symbols |C| ⊆ υ, where |C| is the set of
layers active in the context K ′. Moreover, the context K ′ is composed by the
stack of implicits I predicted by the preconditions.

We determine the type of the body e under these additional assumptions.
Implicitly, we require that the guessed type for f , as well as its latent effect H,
fit with the ones of the body e. Additionally, we require that the resulting type
is annotated with P.

The rule Tapp is almost standard and reveals the mechanism of function
precondition. The application gets a type if there exists a precondition (υ, I) ∈ P

such that it is satisfied in the current context K. The effect is obtained by
concatenating the ones of e2 and e1 and the latent effect H. For example, the

function λf x ⇒ L1.0 is has type int
{L1}|···−−−−−→ int, this means that L1 must be

in the context in order to apply the function. The complete derivation tree for
such typing can be found in [14].

The rule Twith establishes that the expression with(e1) in e2 has type τ ,
provided that the type for e1 is lyσ (recall that σ is a set of layers) and e2 has type
τ in the context K extended by each of the layers in σ. The effect is the union of
the possible effects resulting from evaluating the body. This evaluation is carried
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〈Γ ; K; H〉 � e : τ 	 H

Γ (x) = τ

〈Γ ; K; H〉 � x : τ 	 ε 〈Γ ; K; H〉 � n : int 	 ε 〈Γ ; K; H〉 � () : unit 	 ε

〈Γ ; K; H〉 � L : ly{L} 	 ε 〈Γ ; K; H〉 � α(a) : unit 	 α(a)

∀(υ, I) ∈ P. 〈Γ, x : τ1, f : τ1
P|H−−→ τ2; K

′; H〉 � e : τ2 	 H K′ = (C, I) |C| ⊆ υ

〈Γ ; K; H〉 � λf x ⇒ e : τ1
P|H−−→ τ2 	 ε

〈Γ ; K; H〉 � e1 : τ1 	 H 〈Γ, x : τ1; K; H · H〉 � e2 : τ2 	 H ′

〈Γ ; K; H〉 � x = e1 e2 : τ2 	 H · H ′

〈Γ ; K; H〉 � e0 : 	 H 〈Γ ; K; H · H〉 � e1 : τ 	 H ′ 〈Γ ; K; H · H〉 � e2 : τ 	 H ′

〈Γ ; K; H〉 � e0 e1 e2 : τ 	 H · H ′

〈Γ ; K; H〉 � e1 : ly{L1,...,Ln} 	 H ′ ∀Li ∈ {L1, . . . , Ln}.〈Γ ; Li :: K; H · H ′ · Li〉 � e2 : τ 	 Hi

〈Γ ; K; H〉 � (e1) e2 : τ 	 H ′ ·
∑

Li

Li ·Hi· Li

〈Γ ; K; H · H2〉 � e1 : τ1
P|H−−→ τ2 	 H1 〈Γ ; K; H〉 � e2 : τ1 	 H2

∃(υ, I) ∈ P.υ ⊆ |C| ∧ K = (C, I)

〈Γ ; K; H〉 � e1e2 : τ2 	 H2 · H1 · H

�
{L1, . . . , Ln} ∩ |K| = J �= ∅ ∀i (1 ≤ i ≤ n).〈Γ ; K; H · Disp(Li)〉 � ei : τ 	 Hi

〈Γ ; K; H〉 � L1.e1, . . . , Ln.en : τ 	
∑

∀i (1≤i≤n)

Disp(Li) · Hi

×
{L1, . . . , Ln} ∩ |K| = ∅

B =
{

f ← (α, L) ∈ |K| | L ∈ {L1, . . . , Ln} ∧ {α ↓} = ( H ) ∩ {β ↓| β ∈ ev ∪ {ε}}}

∀ f ← (α, L) ∈ B.〈Γ ; K − f ← (α, L) ; H〉 � f(λ.L1.e1, . . . , Ln.en) : τ 	 H

∀i (1 ≤ i ≤ n).〈Γ ; K; H · Disp(Li)〉 � ei : τ 	 Hi

〈Γ ; K; H〉 � L1.e1, . . . , Ln.en : τ 	 H +
∑

∀i (1≤i≤n)

Disp(Li) · Hi

〈Γ ; f ← (L, α) :: K; H〉 � e : τ 	 H τ �= τ ′ P|H′
−−−→ τ ′′

〈Γ ; K; H〉 � (f ← (L, α) , e) : τ 	 H

Fig. 5. Typing rules
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on the different contexts obtained by extending K with one of the layers in σ.
The special events �L and �L express the scope of this layer activation.

By Tlexp� the type of a layered expression e is τ , provided that each sub-
expression ei has type τ and that at least one among the layers L1, . . . Ln occurs
in K. Since J is not empty, when evaluating a layered expression one of the
mentioned layers will be active in the current context so guaranteeing that the
layered expressions will correctly evaluate. The whole effect is the sum of the
effects Hj of those sub-expressions that can be evaluated at runtime, preceded
by Disp(Lj). When there is no guarantee that at least one of the layers L1, . . . Ln

occurs in K, the expression e could still evaluate to a value if an implicit was
defined to handle this situation. The rule Tlexp× collects in B all the implicit
functions f ← (L,α) in the context K such that α is the last action of H and L is
equal to some Li we are trying to dispatch. If the application of all the implicits
f in B to e type-check with type τ and effect H the overall expression inherits
those type and effect. In the definition of B we denote by Suffix(A) the set of
all suffixes of the language A, the condition Suffix(�H�) ∩ {β ↓| β ∈ ev ∪ {ε}}
verifies that the suffixes of length at most two of the histories in �H� are the
singleton set {α ↓}.

Note that such condition is decidable, because �H� is a context-free language,
the suffixes of a context-free language are context-free, the intersection with a
finite set gives a finite language (decidable) and finite language equivalence is
decidable. The rule Timpl establishes that an expression implicit(f ← (L,α) , e)
has the same type τ and effect H computed for the expression e in a context
extended with the implicit f ← (L,α). Of course, as required by the semantic
rule impl2, the typing rule rejects any expression e which is a functional value.

For technical reasons, we also need the rules to handle the auxiliary syntactic
construct with(L) in e2, we omit it being a trivial extension of [14] where the
typing environment is extended with the implicits stack.

Some typing examples can be found in the same source. Here we provide an
example involving the new constructs, using the rules in Fig. 5.

Example 2. Consider the following typing judgment:

� implicit(f ← (αclick, RemoteFocus) , αclick; e′)

where

f = λf x ⇒ αaccess;with(RemoteFocus){x ()}
e′ = CameraFocus.FocusImage(img), RemoteFocus.CallService(img)

In Fig. 6 the derivation tree of such judgment is shown. For typografica rea-
sons we only detail the application of the typing rules for implicit coercions,
layered expression and the with construct, omitting the others (replaced by
dots). For typographical reasons, we also shorten the RemoteFocus layer identi-
fier with RF. The first rule applied, that is the root of the derivation tree, is the
one that declares the implicit function Impl, where η = αclickαaccess and the
implicits stack I is [f ← (RF, αclick)]. In order to type the premises we need to
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Fig. 6. A fragment of derivation tree

apply the rule for the layered expression. The standard one Tlexp� fails because
there are no layers in the context, so we use Tlexp×, that applies the implicit
coercion. In the implicit function f , the construct with is used for modifying
the context, the typing rule applied is Twith. The application x() requires the
premises of the function bound with x (i.e. λ.e′) to be satisfied. The type of λ.e′

is unit
{({RF},∅)}|Disp(RF)·H−−−−−−−−−−−−−−→ τ , the precondition ({RF}, ∅) is obtained because in

the rule Tlexp� at the top, the context with only RF suffices to type-check.
Such precondition is then satisfied in the premises of Twith, since x() will be
typed in the context ({RF}, ∅).

Our type system enjoys the following soundness results.

Theorem 1 (Subject reduction). Let e be a closed expression,
if 〈Γ ;K;H〉 � e : τ � H and K � η, e → ηη′, e′ and η ∈ �H� then

〈Γ ;K;Hη′〉 � e′ : τ � H ′ with ηH � ηη′H ′

As a corollary we get that the history expression obtained as effect of an
expression e over-approximates the set of histories that may actually be gener-
ated during the execution of e.

Corollary 1 (Over-approximation). Let e be a closed expression, if
〈Γ ;K; ε〉 � e : τ � H and K � ε, e →∗ η, e′ then η ∈ �H�.

We also have the following result, where K � η, e � means that e is stuck.

Theorem 2 (Progress). Let e be a closed expression, if

∀Γ,K,H.〈Γ ;K;H〉 � e : τ � H and ∀η ↓∈ �H�. K � η, e �

then e is a value.

Subject reduction and progress prove the soundness of our type system.

Theorem 3 (Type safety). Let e be a closed expression, if

〈∅;K; ε〉 � e : τ � H and K � ε, e →∗ η′, e′ and K � η′, e′
�

then e′ is a value.
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6 Related Work

Numerous works have addressed the problem of adaptivity [8,9,25] and in par-
ticular at the level of the design and implementation of programming languages,
among which Context-oriented programming is a seminal paradigm.

So far, in the field of Context-Oriented Programming, most of the research
efforts has been directed towards the design and the implementation of concrete
languages. The survey by Salvaneschi et al. [27] discusses in detail the design of
languages, and that by Appeltauer et al. [3] analyses some implementations.

Here, we briefly discuss only foundational studies. Besides [14,15] there are
other contributions of Degano to the foundation of COP languages. In [13]
Degano et al. proposed MLCoDa a two component language for adaptation which
inherits many features from [14,15]: the first constituent is Datalog with nega-
tion to logically describe the context; the second one is a core ML, extended
with powerful primitives for context management and for expressing adapta-
tion. In [12] Degano et al. equipped MLCoDa with a two-step static analysis to
prevent adaptation failures: a type and effect system (at compile time) and
a control flow analysis (at load-time). During the type-checking of a program
a history expression is computed, over-approximating the capabilities that the
application needs at runtime. When entering a new context, before running the
program, the history expression is exploited to check that the application adapts
to the actual context, and those resulting from its evolution. In [7] Degano et al.
extend MLCoDa with primitives to enforce security policies on the code execution.
The results of the static analysis are used to instrument programs by inserting
further checks guaranteeing that no violation of the required security policies
occurs at runtime.

Another functional language is Contextλ [10] proposed by Clarke and Sergey
which extends the λ-calculus with layer definition, activation/deactivation and
a dispatching mechanism. Contextλ has no type system to ensure adaptation
because is designed to study the issues deriving from the combination of closures
and the special proceed construct, a sort of super invocation in object oriented
languages [17]. The problem arises when a proceed appears within a closure
that escapes the context where it was defined. This opens interesting semantic
issues because by escaping from a context the required layers could not be active
any longer. In [10] several ways to deal with this semantically relevant problem
have been proposed, yet to the best of our knowledge, the question is still open.

The majority of COP literature targeted object oriented languages. Indeed,
there are different papers extending Featherweight Java [19] with COP fea-
tures. Some of them focus on ensuring adaptation through a static type system.
In [11] ContextFJ is proposed including layers, scoped layers activation and
deactivation. Since layers may introduce methods not appearing in classes, a
type system ensures that there exists a binding for each dispatched method call.

A different model, based on Featherweight Java, called ContextFJ as well,
is introduced in [16]. Also in this case, a type system has been specified to
statically prevent erroneous invocations at runtime, but it prohibits layers from
introducing new methods that do not exist in the class and it has no construct
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for deactivating a layer. This means that every method defined in a layer has
to override a method with the same name in the class. The first restriction is
addressed in [18], the second one in [21]. Furthermore, ContextFJ was further
extended to include more complex features, e.g. first-class layers, inheritance and
subtyping between layers, and event-driven adaptation [1,2,20,22].

We now discuss some related works concerning implicits coercions, a useful
tool to simplify the life of programmers. Basic coercions are widespread in all
programming languages. For example the C language endows an automatic type
cast from int to double when only one of the operands of a primitive operation is
a double; in JavaScript type coercions rules allow to convert numbers to string
if specific conditions are met. Type system which deal with such mechanisms only
need to take into account a fixed set of coercion rules, specified by the language
designer. This is the same settings of early type-level investigations [4], where
the set of coercions was fixed once and for all.

Recent proposals extend implicit coercions allowing them to be program-
mable. In Scala [23] implicit functions can be defined in objects, the type sys-
tem is allowed to use them whenever they are visible in the scope, the import
directive makes them visible in the lexical scope. In Haskell the implicit type
coercions are tied together with the creation of typeclasses. The typing mecha-
nisms behind these implementations have inspired the extension in [24], where
a type system with programmable implicit is formalised.

To the best of our knowledge no previous work has shown the benefits of
implicits in COP. The closest to our approach is probably [29], where a core
calculus is developed and type coercions are shown effective to enhance the
behaviour of an existing program to track various kind of security relevant events.

7 Conclusions

In this paper we extended the previous COP proposal of Degano et al. [14] with
implicit effect coercion. We have shown that this new mechanism is an effective
tool for programming adaptivity, retaining the type safety guarantees of previous
approaches by Degano et al. [14,15].

In particular, we have introduced in the ContextML language the implicit
function construct, through which one can program a disciplined recover from
adaptation failures. Indeed, in our approach an implicit is triggered when the
dispatching mechanism is about to fail in order to generate a different safe
behaviour.

The original type and effect system by Degano et al. [14] was designed to
prevent adaptation failures to happen; this was achieved by computing an over-
approximation of the contexts that may arise at runtime and by ensuring that
the dispatching mechanism never fails. We extend the type and effect system
with implicit effect coercion: when a possible failure is detected the type system
searches whether there exists an implicit function to apply. If this search suc-
ceeds the program type-checks and its effect stores information about the new
behaviour.
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For simplicity, we have not introduced history based security policies in the
language. We have left this as future work, which can be accomplished by inte-
grating the approach of [14] with the implicit effect coercion. We believe implicit
effect coercion could be an useful tool for security, as highlighted in [29]: pro-
grams that are about to violate a security policy could be implicitly deviated
towards more safe behaviour.
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Abstract. Decentralised smart contracts represent the next step in the
development of protocols that support the interaction of independent
players without the presence of a coercing authority. Based on protocols
à la BitCoin for digital currencies, smart contracts are believed to be a
potentially enabling technology for a wealth of future applications. The
validation of such an early developing technology is as necessary as it is
complex. In this paper we combine game theory and formal models to
tackle the new challenges posed by the validation of such systems.

1 Introduction

The introduction of the BitCoin protocol in 2008 has strongly pushed forward
the development of decentralised distributed systems. BitCoin is decentralised
since it is not controlled by any central coercing authority. Rather, a computa-
tionally expensive distributed consensus over the internet certifies its transitions,
for instance preventing the double expenditure of immaterial money. Due to the
computational costs involved, the consensus of the whole BitCoin network over
the internet cannot realistically be overturned. Although BitCoin has been
highly volatile and associated to illegal activities, institutional players, including
governments and banks, as well as the general public, have shown interest in it.
BitCoin has started to appear as a potentially reliable and enabling technology.

Currently, the next step builds on top of BitCoin, aiming to introduce decen-
tralised distributed technologies on a larger scale. One example of this are decen-
tralised smart contracts, i.e. protocols designed to define self-enforcing contracts
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amongst untrusted and independent players. BitHalo is a paradigmatic, very
recent and innovative example of a decentralised smart contract.

The validation of such protocols is clearly highly desirable and, as usual,
very complex. Interestingly, the distributed and decentralised aspects of smart
contracts add to complexity since free choices and gaming strategies come into
play. Protocols are run by autonomous players, possibly mixing physical actions,
e.g. the shipment of goods, and computer-mediated ones, e.g. an electronic pay-
ment, without any possibility of a coercing central authority. Differently from
more traditional protocols, a sort of socio-economical aspect becomes relevant
for the validation of smart contracts.

In this paper, we analyse and validate dscp, an idealised smart contract
inspired by BitHalo. A distinguished feature of our approach is the combi-
nation of game theory and formal methods to suitably address the mentioned
complexity of the analysis and validation of smart contracts. Game theory has
been widely exploited to analyse how contracts are settled through bargaining
procedures (see, for instance, [21]) but the analysis of protocols that enforce
contracts is a novel area of application. Formal methods have been extensively
used for protocol validation, from security protocols to the more recent behav-
ioural contracts of application level protocols. However, it is worth remarking
that such kind of contracts and the contracts supported by BitHalo exist in
different contexts and for different purposes. Indeed, in behavioural contracts
the main focus is to ensure that the parallel composition of distributed par-
ticipants does not yield communication problems such as deadlocks (see, for
instance, [3,5,6]) or to analyse communication misbehaviours in untrusted set-
tings (see, for instance, [4]). Noticeably, BitHalo also embeds steps that depend
upon decisions made by human players, which do not appear in application level
protocols.

In our framework game theory and formal methods complement each other:
the former caters for the study of the gaming strategy aspects, while the latter
provide the grounds for a precise definition of the protocol and related working
hypotheses. Furthermore, the probabilistic framework we adopted allows us to
properly model uncertainty and non-determinism in players’ behaviour, and to
exploit effective automated techniques, like statistical model checking, to validate
the properties of the smart contract. To the best of our knowledge, the proposed
combined approach is here firstly applied to the validation of smart contracts.

A detailed analysis of dscp is carried out both analytically from the view-
point of game theory, and computationally, via the definition of a model, the
properties of interest, and their validation through probabilistic model check-
ing. Sensitivity of various parameters is studied, including monetary values and
fraudulence profiles of the players. Our combined analysis formally and quan-
titatively clarifies the intended behaviour of the protocol, which relies on a
deposit scheme to enforce trust. Sometimes, assumptions on the deposit scheme
may result in being unrealistic. Our analysis explores the details of the system
under the uncertainty introduced when the deposit enforcing trust assumption is
weakened.
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2 Bitcoin-Based Smart Contracts

Smart contracts [26,27] are protocols defining self-enforcing, digital contracts.
The main aim of such contracts is to guarantee fair exchanges between untrusted
and independent entities. The recent introduction of the BitCoin protocol [1]
by Satoshi Nakamoto1 in 2008 [22] allowed for decentralised smart contracts.
BitCoin provides decentralised virtual monetary instruments that can sup-
port contracts which do not require intermediaries, central repositories or single
administrators. The huge potential of these contracts calls for a formal analysis
and validation of their properties.

BitHalo [7,29] is a recently developed smart contract based on BitCoin.
It is supported by a freely available software platform and, to the best of our
knowledge, is the first off-blockchain, decentralized smart contract. A short intro-
duction to BitCoin and BitHalo follows.

2.1 BitCoin: A Protocol for Decentralised Applications

The first application of the BitCoin protocol has been the digital, decentralised,
partially anonymous currency called bitcoin (BTC), which is not redeemable for
gold, and not backed by any government or legal entity.

BTC total market capitalization ranges between three and four billion USD,
depending on the BTC/USD exchange rate (June 2015). There are nearly nine
million of BTC wallets (April 2015), reaching 100,000 transactions per day (Feb-
ruary 2015). The New York State Department of Financial Services has released
a regulatory framework for digital currencies [18] (June 2015). California and UK
government are considering similar options. BitCoin venture capitalist invest-
ments are expected to reach 1 billion USD by the end of 2015 [28].

Digital currency predecessors of BitCoin used centralised clearinghouse sys-
tems in order to address the problem of fraudulent transactions, exactly like tra-
ditional banking systems. However, these centralised structures provided them
with a potential single point of attack and failure, and they became easy targets
of governments, hackers, and criminal entities, and eventually failed.

BitCoin combined previous inventions such as b-money [13] and HashCash
[2], and introduced four critical innovations that eliminated the main weakness
of its predecessors [1]: (1) a decentralised peer-to-peer network that allows users
to transfer BTCs; (2) a trusted public ledger (called blockchain) with the list of
all transactions that took place within the system; (3) a process called mining
that let the BitCoin protocol act as decentralised clearinghouse and allows new
BTCs to be created through the solution (called proof-of-work, POW) of a math-
ematical problem based on a cryptographic hash algorithm; (4) a decentralised
transaction verification system.

These additions addressed the problem of double spending, where a coin is
spent twice, and other fraudulent transactions. Let consider a simple practical
example. Using (1) user A transfers to user B the money that he received in a

1 This name is believed to be a pseudonym.
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previous transaction T. Because of (2) each user in the BitCoin network can
check the blockchain and verify whether money from transaction T has been
already spent by A or not. Correctness of the blockchain information is given
in terms of consensus by the vast majority of the nodes in the network. This is
achieved with the points (3) and (4), which rely on distributed computational
resources and can be informally summarised as follows.

Each BitCoin node keeps a record of the blockchain, which literally is a
chain of blocks. Once mined and validated, blocks are assembled one after the
other to form the blockchain. The difficulty to find the POW, i.e. mine a new
block, is periodically adjusted to the current computing power of the participants
in such a way that a single block validation happens on average each 10 min [12].
The system contains an incentive for miners to validate transaction and finding
POWs in terms of BTCs and transaction fees.

Originally, the blockchain was just a long single chain of blocks, but more
recently it has a more complex topology with bifurcations and even “orphan”
isolated blocks. The longest chain, i.e. the chain which has the most POWs,
is independently selected by every node as the main chain, i.e. the blockchain.
In practice, if the block containing T is deep in the blockchain, the amount of
computational power needed to force a fork and rebuild an alternative, longest
chain with a modified T, makes invalidating T unfeasible.

Nakamoto’s idea of POW-based consensus makes unnecessary any central
trusted authority in charge of issuing currency and validating fast, secure, bor-
derless, and commission-fees free, financial transactions. The approach is applica-
ble to a variety of different fields, such as the registry of property (see, e.g., “The
Property Rights Project” [25]), fairness of elections, lotteries, digital notarisa-
tion, storage of personal and sensitive data, smart contracts and more.

2.2 BitHalo: Decentralised Smart Contracts

We consider here BitHalo as a paradigmatic example of smart contract. The
term “smart contract”, together with the idea of “smart property” [11], was
introduced by computer scientist Nick Szabo, during the early 1990’s [26].

The BitCoin scripting system already had a variety of script hashes aimed
at supporting different kinds of smart contracts [10]. However, BitHalo doesn’t
rely on those hashes because of known drawbacks in the BitCoin smart contract
protocol [10], as well as in some proposal based on it [9,20].

The purpose of BitHalo is to create unbreakable trade contracts without
the need of arbiters or escrow agents, lowering significantly the costs for the
two parties involved in the contract. Since it does not require trust, nothing in
the BitHalo system is centralised. It does not require a server, just the Inter-
net. Its peer-to-peer communication system allows the two parties to use email,
Bitmessage, IRC, or other methods to exchange messages and data. BitHalo is
off-blockchain in the sense that the record of BitHalo contracts is not kept in
the blockchain, and therefore the use of BitHalo will not bloat the blockchain.
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BitHalo can be used for bartering, self-insuring, backing commodities, per-
forming derivatives, making good-faith employment contracts, performing two-
party escrow, and more general business contracts.

Transactions are insured by a deposit in one of the supported digital curren-
cies (including BTC) on a joint account, double-deposit escrow. The BitHalo

protocol forces each party to uphold the contract in order to achieve the most
economically optimal outcome. In a typical contract exchanging a payment for
goods or services, the payment can be sent either separately, using checks, money
transfer, crypto-currencies, etc., or paid directly with the deposit. The deposit
will only be refunded to both parties on shared consent, which has to be expressed
by both parties. In the lack of expression of shared consent, the joint account
will self-destruct after a time-out. Time limits and deposit amounts are all flex-
ible and agreed upon by both parties. Dissatisfaction about the outcome of the
transaction by one of the parties, for instance because of theft or deception,
will lead to the destruction of the deposit due to the lack of shared consensus.
When the deposit exceeds the amount being transacted, the loss typically results
larger than the benefits possibly obtainable by a fraudulent behaviour. However,
deposits exceeding the transacted amount may be in some cases unfeasible. In
some situations, smaller deposits may incentivate one or both parties to break
the contract.

2.3 dscp, a Decentralised Smart Contract Protocol

While the BitHalo platform enables users to interact through several variations
of a core smart contract protocol, for the purposes of our analysis we fix here the
details of dscp, an idealised distributed and decentralised contracting protocol
that mimics one of the possible interaction modalities of BitHalo. The results
of the analysis of dscp, carried out by means of the contribution of both game
theory and formal verification, will be presented in the rest of the paper.

As standard, dscp allows two parties, i.e. the two players of the protocol, to
autonomously exchange money against goods without the need of a centralised
arbiter. It is worth remarking that the two players are completely independent,
not subject to any third party authority in the execution of the exchange pro-
tocol, and can, for instance, decide to leave the protocol at any time.

dscp is based on the mentioned notion of “enforced trust” in the fact that
none of the two parties will ever be in a position in which breaking the protocol
is for them advantageous. We will see that this, as expected, will be properly
enforced only when the deposit, whose payment is a pre-requisite for the execu-
tion of the protocol, exceeds the value of the goods.

dscp allows payments to be made disjointly from the trust-enforcing deposit.
This adds flexibility, e.g. users may want to pay in fiat currencies and use BTCs
only for the deposit (which can only be in crypto-currencies), and makes the set
of possible interactions richer and therefore more interesting to be analysed.

In our interpretation, we distinguish between the money m and the value
v belonging to a player of the protocol. The former being the cash availability
and the latter the asset value of the player. When a buyer (analogously a seller)
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successfully buys an item, their money will decrease, while the value of the goods
they possess will increase of the same quantity, assuming fair prices. We assume
that both price and value coincide, and the buyer and the seller give the same
value to a given item (other choices are possible, see Footnote 2). In an ideal world
with “robust” contracting protocols, the sum of money and value of each player
and therefore the overall value and money in the system should stay constant
in time. We will show that such a “wealth preservation property” holds when
the deposit exceeds the value/price2 (and players do not behave against their
interests). Autonomous players can decide to break the protocol because either it
is advantageous for them or because of contingencies and free human behaviour,
even if not necessarily advantageous. Examples are, respectively, breaking the
protocol when the consequent loss of the deposit is less than the advantage
obtained, and abandoning a transaction due to a too long response time of the
other party and, perhaps, a not too constraining deposit. Players’ free choices
may clearly break the conservation of wealth in the system. A player may gain
money while another may loose asset, or both may loose money because breaking
the protocol leads to the loss of deposits.

We will not model time explicitly. Consequences of time-outs like a too long
response are understood as the possibility for players to leave the protocol, and
negate consent, at any time.

Furthermore, we will consider probabilities, together with parameters like
money and value, to model players’ behaviour and their choice capabilities. This
will allow us to account for diverse player profiles.

These assumptions lead to a quite reach model where different aspects have
to be accommodated in order to fully describe the protocol and its implications
at various levels. These aspects range from the precise description of the possible
interplay of the two autonomous players, to the psycho-economical forces that
may drive their choices.

3 Game Theoretic Analysis of dscp

Once the terms of the contract are agreed, the two players - the buyer and
the seller - act independently of each other in the actual transaction, but the
choices of the former affect the result and the behaviour of the latter and vice
versa. Therefore, concepts and ideas from noncooperative game theory can be
exploited to analyse the transaction protocol and, as a consequence, the quality
of the agreement as well.

The agreement requires setting a price p for the item and the value of the
safety deposits of the buyer and seller, namely db and ds. Clearly, the buyer has
to consider the item worth paying p: turning the utility of the item for the buyer
into a (monetary) value vb, it must be greater than p. Similarly, the value vs that
2 We stick to a quite simple vision of trading. An interesting alternative would be

assuming that v < p for the seller and p < v for the buyer. In this case both would
have an incentive to come to the shared consent, both increasing their wealth. The
wealth preservation property would not hold. This is scope for future work.
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the seller assigns to the item has to be at most p. The determination of prices
is a central topic of economics that goes far beyond the aim of this paper, so we
will simply consider p as given and any pair of values vb ≥ p and vs ≤ p.

Table 1. “One shot” strategic game.

The role of the deposits is more relevant for our analysis: they are meant
to guarantee that the players will actually perform the transaction. The choice
of their value requires some kind of pre-transaction analysis of the transaction
itself by both sides. Imagining that both decide their full strategies at the very
beginning of the transaction in one shot, each player can analyse all the possible
outcomes as the result of the behaviour of both. Relying on game theory, this
analysis can be carried out modelling the transaction as a strategic or normal
game of two players (see, for instance, Sect. 2.1 in [24]).

A priori, once that the agreement is settled and the deposits paid, the buyer
can behave in the following ways: pay the item and confirm a satisfactory trans-
action, namely strategy [P/C], pay and leave the system denying a satisfactory
transaction [P/D], leave the system without paying [Lb]. Similarly, the seller
can ship the item and confirm a satisfactory transaction [S/C], ship and leave
the system denying a satisfactory transaction [S/D], leave the system without
shipping [Ls]. Each pair of strategies leads to an outcome given by a pair of
pay-offs, one for each player. The nine possible outcomes of the transaction are
given in Table 1 through a bimatrix where the top entry in each cell is the pay-off
for the seller and the bottom entry for the buyer.

Comparing the strategies of the buyer, [Lb] dominates [P/D] since the former
provides a better pay-off than the latter for any possible strategy of the seller: the
buyer would never select [P/D]. Notice that [P/C] dominates [P/D] weakly, that
is some payoffs are equal while none is better for the latter strategy. If p > db,
then [Lb] dominates [P/C] as well and the buyer would select the strategy [Lb]:
as a consequence, the seller shouldn’t have agreed such a price and deposit. The
comparison of the strategies of the seller is analogous: [Ls] dominates [S/D],



Validation of Decentralised Smart Contracts 149

[S/C] dominates [S/D] weakly; if p > ds, then [Ls] dominates [S/C] as well and
the seller would select the strategy [Ls].

Indeed, the technique of iterated elimination of dominated strategies shows
that, whenever p > db or p > ds, the strategy profile ([Lb], [Ls]) is the unique
Nash equilibrium of the game, that is the unique profile such that no player can
improve their own pay-off changing strategy while the other does not.

This basic analysis suggests that the players should agree deposits db ≥ p
and dp ≥ p. Indeed, in this case the successful transaction ([P/C],[S/C]) is a
Nash equilibrium as well.

Though the above formulation as a strategic game can be useful for a prelim-
inary analysis, it does not fully catch the nature of the actual transaction: the
choices are not taken altogether at the very beginning but somehow sequentially.
As the players are perfectly aware of the state of the system, this knowledge may
and actually does influence their next choices.

Fig. 1. The graph of the transaction protocol.
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The transaction can be described through the directed graph of Fig. 1. Each
node represents one possible state of the system, while each arc represents one
action that can be taken by one of the players in the state at the tail node leading
to the state at the head node. Node A0 represents the initial state (agreement
settled), while the nodes labelled with F represent the end of the transaction
with a specific outcome. Notice that there are five end (F) nodes and they match
the five different outcomes given in Table 1. The remaining nodes are labelled
with the player or the players that may take an action. Notice that the same
state/node may allow actions by both players: there is no player exclusively in
charge of the next move and they could also act simultaneously. In this latter
case no problem arises as considering arbitrarily one action before the other
leads eventually to the same state. A node is labelled with A if both players
can act, with B or S if only the buyer or the seller can act. The buyer can take
the following actions: pay the item (arc label P), confirm (C) or deny (D) a
satisfactory transaction after the item has been paid and shipped, and leave the
system at any state (L). Similarly, the seller can ship the item (S), confirm (C)
or deny (D) a satisfactory transaction, and leave the system (L). Each action
can be taken at most once. Moreover, leaving the system is a final choice: if one
player leaves the system after the other has shipped or payed, the next choice
of the latter does not affect the outcome and hence it can be ignored. Similarly,
shipping or paying, if not already done, is the unique sensitive choice after the
other player has left the system.

This description does not fit perfectly the definition of a sequential or exten-
sive game with perfect information (see Definition 89.1 in [24]), which requires
a unique player to be in charge of the next at each state. Anyway, concepts and
ideas can be borrowed from the theory of extensive games all the same.

In this framework a strategy of a player is a plan that provides one action for
each state at which the player can take action. Notice that pairing one plan of
the buyer and of the seller does not necessarily identify a unique outcome as the
order of moves at common nodes may determine different paths. Nevertheless,
backwards induction provides useful information on how the transaction is likely
to happen: as the players are supposed to act rationally, at each node they are
going to choose one action, if any exists, that necessarily leads to the best pay-off
between those that can be still reached from the current state; therefore, all the
“non-optimal” actions can be cancelled. Applying this idea backwards from the
final states (F) to the initial one (A0) provides only likely paths from the latter
to the former.

Figure 2 illustrates the result of the backwards induction supposing that the
safety deposits are larger than the price of the item, i.e. db > p and ds > p.
The picture shows that A1 is actually a time sensitive state for the buyer: after
having paid, the buyer has no advantage to leave the system rather than wait-
ing, potentially forever, for the seller to take some action. Similarly, A2 is time
sensitive for the seller. Thus, if they both rule out leaving the system at their
own time sensitive states, the unique paths left describe the ideal transaction:
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the buyer pays, the seller ships and both confirm a satisfactory transaction (no
matter in which order).

If the safety deposits are equal to the price, i.e. db = p and ds = p, the same
kind of analysis does not exclude any possible final state except F5 coming out
as the result of the following unreasonable behaviour: the buyer pays, the seller
ships and one of them denies a satisfactory transaction. Finally, if the deposits
are smaller than the price, the backwards induction provides only the final state
in which both leave the system without paying and shipping, as it was already
suggested by the strategic game given in Table 1.

In conclusion, the above analysis based on game theory suggests that the
players are likely to perform dscp satisfactorily if the deposits are larger than
the price, no matter how much bigger. It is worth stressing that the whole
analysis is based on the assumption that the seller, if not leaving earlier, ships
the right item and in turn the buyer, if not leaving earlier, pays exactly the
agreed price. The analysis of this kind of unfair behaviours is beyond the aim of
this paper.

4 Formal Verification of dscp

Players’ strategies under the hypotheses of a perfectly rational, utilitaristic and
deterministic behaviour have been analysed by means of game theory. It has also
been proved that a deposit exceeding the value of the traded goods guarantees
the fair execution of dscp under the mentioned hypotheses.

However, as observed, the requirement on the deposit might be unrealistic,
especially for expensive goods. It is therefore worth studying the protocol behav-
iour with smaller deposits, when players adopt a less strict and more realistic
behaviour, and also when considering the impact of different players’ profiles on
the protocol, e.g. honest and fraudulent ones.

This is done by defining a probabilistic formal model of dscp and exploiting
the prism probabilistic model checker [17] to validate the properties of interest.

4.1 Protocols, Contracts and Formal Verification

Communication and interaction protocols are not simple to design, verify, and
implement. A paradigmatic case is that of the well studied security protocols,
which can typically be described in terms of very few steps describing the par-
ticipants involved in the communication, the sharing of secrets among them,
and the information they generate and exchange during the protocol execution.
Their simplicity is however only apparent; designing a provably correct protocol
is very hard and there are several examples of security protocols found flawed
after having been considered correct for a few years, the paradigmatic exam-
ple being the Needham-Shroeder [23] protocol and the Lowe’s attack to it [19],
discovered by means of formal verification. Among the reasons behind such a
complexity, is the difficulty in formally identify an “attacker model” (and often
a precise definition of the security properties to guarantee/check).
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Fig. 2. The graph reduced by backwards induction (for db, ds > p).

Formal methods have been advocated as suitable tools for the rigorous specifi-
cation and verification of security protocols and their attacker models and several
formal approaches to the verification of security protocols have been successful.
For instance, the precise definition of the attacker model of Dolev-Yao [14] allows
the execution of protocols to be clearly described.

Various kind of contract protocols are being verified by means of formal
techniques. A key difference between security protocols and smart contracts like
dscp is the fact that the properties of interest of the latter escape the usual
domain of the properties of security protocols, hence providing new interesting
research directions. Intuitively, dscp aims to guarantee that one of the two
parties involved in a financial transaction cannot “cheat without a penalty”.
Although intuitively simple, such property alone is not satisfactory; in fact, the
penalty which one of the parties incurs in has to be compared to the advantage



Validation of Decentralised Smart Contracts 153

to cheat. Therefore, a crucial phase of dscp is the determination of the penalties
the two parties are agreeable with.

4.2 Markov Decision Processes

In the execution of dscp under the mentioned hypotheses, players can synchro-
nise their actions, exhibit probabilistic behaviour typically depending on the
state in which they are, and make non-deterministic and probabilistic choices.
A Markov Decision Process (MDP) conveniently describes decision making
processes that may depend on non-deterministic and random choices (see [15]
for an introduction to MDPs, associated temporal logics and their use in prism).

Informally speaking, an MDP can be understood a state-based automata
which first resolves the nondeterministic choice of the next action to be per-
formed, and then resolves the probabilistic choice amongst the possible next
states the chosen action may lead to.

prism supports MDPs and their analysis and simulation in process alge-
bra like settings. For instance, prism caters for synchronisation, i.e. different
automata synchronise on the execution of certain actions, which belong to some
specified synchronisation set. By “unfolding” the effects that non-deterministic
choices may have on probabilistic ones, non-determinism may be resolved and
the MDP reduced to a Discrete Time Markov Chain (DTMC).

prism also supports Temporal Logics for expressing properties of an MDP,
which can then be validated. For our purposes, validation will consist in an
approximated statistical approach: a suitable number of system evolutions are
explored in order to approximate the probability that a property of interest
holds. Probabilistic properties have been expressed in the PCTL logic [8,16],
whose temporal operators include, amongst others, Xφ, i.e. property φ holds in
the next state with a given probability, and Fφ, eventually a state satisfying φ
will be reached with a given probability.

4.3 A Probabilistic Model of dscp

The automaton in Fig. 3(a) formalises the assumptions about the functioning
of dscp outlined in Sect. 2.3, and makes other details unambiguous, such as
the choice that price and value coincide and are the same for both players.
Furthermore, we do not distinguish here between leaving (L) and denying (D) a
protocol. While such a distinction may be useful for more complete game theory
analyses, the two actions have in the current settings the same effect.

The automaton describes the behaviour of the buyer. The whole model of
dscp, an MDP, consists of this automaton and a symmetrical one for the seller,
which only swaps paying for shipping, highlighting the high symmetry of the
two roles under the assumptions made.

From the initial state 0 only the transition to state 1 is enabled and used
to reset the initial conditions of a protocol execution. Therefore it is not rele-
vant to the player behaviour. From state 1 only the deposit transition to state
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Fig. 3. Model and implementation of the Buyer’s player.

2 is enabled. This models the agreement and payment of the deposit and the
actual start of the protocol. Here deposit is a synchronisation action that the
two automata can only perform together. It is worth noting another synchroni-
sation action, i.e. ship, that appears in several states in a loop transition. This
represents the seller sending goods and has been modelled as a synchronisation,
as the buyer must be aware of the shipment, too. In order to avoid deadlocks,
the buyer is (almost) always ready to synch on ship. Symmetrically, the seller is
(almost) always ready to accept payments by synching on pay (this avoids both
being deadlocked on ship/pay, the other not being ready to synch).

State 2 is actually one of the two nodes where players can make a decision
(double arrow): either leave, and hence break the protocol, by moving to state
5 with loss of the deposit, or play their own part by moving to state 3, which in
this case leads to the payment of the agreed price. There is not synchronisation
here as this is a personal (a.k.a. internal) choice. The two branches of the arrow
are labeled with n : m. These are the two probabilities associated with each
branch for the case in which the buyer (seller, resp.) has (n) or has not (m)
received the goods (payment, resp.).

The modelling of such a probabilistic choice is key. If the buyer has received,
but not yet paid at this stage, the probabilities okP to follow the protocol and
koP to abandon it (both players loose the deposit) take into account the ratio of
the paid deposit over the price still to be paid (symmetrically, the deposit over
the value of the goods to be sent):

okP = min(1,

(
d

p

)r

) koP = 1 − okP

As expected, if p ≤ d the protocol is followed with probability 1 because there is
no gain in stealing the goods and loosing the deposit. Otherwise, the probability
decreases as much as the deposit is irrelevant with respect to the price/value.
Furthermore, we have added the exponential r to model the player’s attitude.
With r = 1/2, say, the value d/p is amplified towards 1, i.e. reducing the
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attitude to steal, as an honest player would typically do. With r ≥ 1 the effect
is the opposite, increasing the probability to steal.

If goods have not yet been received (m value on the arrow), it is assumed
that the buyer (seller) will proceed to payment (shipment) with P = 0.85, hence
following the protocol most of the times. This choice is worth some considera-
tion. As detected by game theory, this is a critical choice: players can abandon
now the protocol and loose the deposit, or proceed and be possibly driven to
an even larger loss (see the pay-offs of Sect. 3 when vs = vb = p). In the game
theory interpretation, then, abandoning now, after having paid the deposit, is a
plausible choice. This has informed our choice to retain a minimal probability
of abandoning. A possible alternative and indecisive P = 0.5, or any probability
leaning towards abandoning, would invalidate the spirit of the protocol, neglect-
ing the interest of the players to trade (see Footnote 2). Moreover, it should also
be considered that, although we do not model time explicitly, players may decide
to abandon the protocol and loose the deposit after a too long wait for the coun-
terpart to act, possibly not wanting to make the first move (it is worth remarking
here that in our idealised dscp, participants do not communicate directly). This
can be accounted for by the non-null 0.15 probability of abandoning the pro-
tocol at this stage. Such probability could be tailored on empirical data about
protocol usage.

It is worth remarking how aspects such as the utility and attitude of players
and some form of time-dependent events can be easily and clearly embedded in
the model, as done in the transition described above.

Finally, the co-existence of non-determinism and probabilistic choices in state
2 has to be noted. Informally speaking, according to MDP theory, this is dealt
with by first resolving the non-determinism between ship and the action regard-
ing the probabilistic choice about abandoning or continuing the protocol. Several
possibilities may arise, e.g. the seller might not be ready to synch on ship, mak-
ing the choice deterministic, or the buyer might follow a specific policy to resolve
non-determinism (the theory defines the concept of possible adversaries). A prob-
abilistic choice will be made only if the probabilistic action has been selected
when resolving non-determinism.

From state 3 only the pay action is enabled leading to the next choice state
4, with analogous conditions to state 2, the difference being that the player has
paid/shipped. If the player has already received they are happy, P = 1, to express
consent, i.e. move to state 6, otherwise, they are however more incentivised
to reach consent, P = 0.95. The 0.05 probability of abandoning the protocol
accounts for timeouts and other contingencies.

In state 5 the choice has been made and, although ship is still enabled, the
only synchronising exit action is KO, abandoning the protocol with the mutual
loss of deposits. Analogously for state 6, where it is still possible to synch on
KO if the counterpart abandons, otherwise the preferred choice (carried out
by a specific implementation of non-determinism) will be OK, back to state 0.
Variables representing players’ wealth are updated in the transitions from states
5 and 6.
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Figure 3(b) shows a snapshot of the prism code that illustrates how the model
is implemented. Each transition is labeled with the action name, if any, variable
s represents the current state and some tests are performed in the selection of
the next transition, e.g. the test received = false. Probabilistic choices are
represented by the + operator and preceded by the associated probabilities, e.g.
the expression (received? p ok : 0.85) in state 2.

Figure 3(c) shows the enabled actions in state 2 for both players. Here the
choice is probabilistic for both. The action leading the seller to state 3 has been
selected. Updates, including the state change, are shown for each action.

5 Validating dscp

5.1 Model Validation

A simple sanity check is presented in Fig. 4 to provide validation of the defined
model. This is based on the idea of wealth preservation within the system under
the assumptions made and ideal players’ behaviour (Sect. 2.3) and shows the
expected fair execution of the protocol: all buyer’s money is transformed into
value and correspondingly seller’s value is transformed into money with no loss.

5.2 Deposits, Prices and Players’ Profiles

Following the results of the game theory analysis and further considerations
about adding realism to the model, the case of a deposit smaller than the
price/value of goods is considered here. In this case, dscp may loose some of
its expected “enforced trust” effect on players. Under these assumptions it is
also of interest to explore how players with different attitudes towards behaving
fraudulently can perturbe the protocol.

Six profiles have been considered, for r = 0.5, inching towards honesty and
trust, r = 1 simply depending on the ratio between d and p, and r assuming
values in {1.5, 2, 2.5, 3}, a progressively more fraudulent attitude. The deposit
assumes values in {0, 2, 4, 6, 8, 10}, against a price of 10.

Validation has been carried out using PCTL logic to express the properties
of interest and exploiting the statistical model checking facilities provided by
prism, [17]. Starting again from the idea of wealth preservation, we have inves-
tigated the probability of one of the two symmetric players, both with the same
profile, reporting a loss of a certain percentage after a given amount of time.
Specifically, the tested property was

Pmax = ? [F < 700 SellerLossX]

which, informally, reads as “What is the probability that the seller will loose about
X% of their initial wealth within 700 time units?” The predicate SellerLossX
identifies all the states where seller wealth has been reduced by (X ± 5)%. The
operator F , finally, requires that the property SellerLossX will eventually be
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Fig. 4. Wealth preservation. The figure shows a sample of protocol executions, with
m = 1000 and v = 500, and sm = 500 and sv = 1000, the money and the value of
the buyer and the seller, respectively. Both cannot run up a debt i.e. transactions
would stop when one of the two runs out of money. The protocol is executed in “ideal”
conditions: the ratio between the deposit and the price of objects does not make it
convenient to break the protocol (p = sp = 10 and d = sd = 10), each player makes
fully rational and protocol compliant choices all the time (e.g. there are no minimal
probabilities to abandon the protocol as in the general model illustrated in Sect. 4.3).
The graph shows the results of a series of about 100 transactions between a typical
seller and a typical buyer, after which the sum of money and value is preserved for
both players and therefore for the whole system.

satisfied in the states reached by the repeated execution of the protocol. This
has to happen within 700 time units.

prism automatically validates such a formula by a statistical approach: a
sufficiently large number of simulations is run in order to asses the desired prob-
ability, as required by the Pmax = ? operator (10,000 simulations in our case
for each possible combination of profiles and deposits. Each simulation runs for
at most 1500 time units).

Figure 5(a) and (b) report probabilities of loosing 40 % of the initial wealth,
while Fig. 5(c) and (d) report probabilities of loosing 30 % of the initial wealth
for the seller and buyer, respectively. These results are about protocols run by
players with the same profile. Seller and buyer results are symmetric in all the
cases, as expected. The figures show a quite consistent probability of a 30 % loss,
up to about 0.3, and a tenfold lower probability for a 40 % loss.

Quite interestingly, a very low deposit, e.g. from 0 to 2 in the 30 % case, may
incentivate fraudulent behaviour due to “lack of risk”, however not much wealth
is lost, because of the scarce impact of the loss of a minimal deposit. Analogously,
a deposit close or equal to the price, 10 in this case, causes a phase switch as
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Fig. 5. Deposit and profiles sensitivity. Loss probability for different player profiles
within 700 time units. Different curves represent different profiles. Profiles less than 1
tend to be honest, those bigger fraudulent.

stealing becomes non-convenient (note the min operator in the definition of the
probability choices of players). A deposit close to the price, 3/4 of it say, results
in being the most harmful situation, combining the probability of fraudulent
behaviour with relevant loss following deposit loss.

Not surprisingly, profiles behave as expected. The honest one has a physiolog-
ical minimal loss due to those minimal probabilities of abandoning the protocol
even in potentially rewarding cases. Protocol executions in the presence of fraud-
ulent players report larger losses, proportional to the r parameter.

These results, beyond explicating the details of the functioning of the pro-
tocol, can be used to determine preferred player behaviour when operating in
untrustable environments. In those cases where a deposit equal to the price is
unfeasible, some sort of trade-off analysis between deposit, profiles and levels
of risk can be carried out through graphics like Fig. 5. For instance one might
wonder: which is the maximum deposit within a range that allows keeping the
risk of an X% loss below a given threshold? which is the minimum risk of such
a loss for a range of deposits? which fraudulence profiles can be tolerated when
one wants to keep the loss below a given threshold for a given deposit?



Validation of Decentralised Smart Contracts 159

5.3 Being Fraudulent Pays Off

As a final step, the different profiles are compared. This is done by letting an
honest buyer (r = 0.5) interact with a quite fraudulent (r = 1) seller (symmetri-
cal cases are analogous due to the symmetry of players). Results are reported in
Fig. 6 obtained by validating again the property of loosing about 30 % of wealth
within 700 time units.
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(a) Fraudulent seller
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(b) Honest buyer

Fig. 6. A fraudulent seller and an honest buyer. Figures shows the probability
of loosing about 30 % for a fraudulent seller (a), who will leave the protocol whenever
convenient with an high probability, and an honest buyer (b) who tend to follow the
protocol. The curve is drawn for different deposits in [0, 10] with 10 the price/value.

The fraudulent seller, Fig. 6(a), has an almost negligible probability of incur-
ring in a 30 % loss,%3 i.e. 0.02 in the worst case when d = 10 (which is when the
“enforced trust” by the deposit forces players to behave fairly and loss are only
due to the minimal probabilities of abandoning the protocol - Sect. 4.3).

For the honest buyer instead, Fig. 6(b), the risk is consistently higher, with a
peak half-way in the deposit scale, as expected. In the worst case the probability
of incurring in a 30 % loss is 0.5.

6 Conclusions

We analysed and validated dscp, an idealised protocol for decentralised smart
contracts, inspired by BitHalo. Several works can be found in literature on the
security of virtual currencies such as BitCoin. Our focus is on the validation
of players’ behaviour while carrying out a smart contract. Our methodological

3 It must be recalled that larger probabilities could hold for lesser-percentage losses,
e.g. the seller could have a 0.1 probability of a 20 %. Probabilities for different losses
can be determined, if of interest.
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approach to the validation of dscp combines game theory and formal verifica-
tion. Beyond the validation results, this kind of joint analysis applied to smart
contracts is, to the best of our knowledge, an innovative aspect of the paper.

Game theoretic models provide an analysis of the behaviour of the players
in the game/protocol under the assumption of perfect rationality and return
maximization. Such models also suggest conditions for agreeing on the contract.
The results are exploited to shape the actual behaviour of the system in a formal
model for automated validation. Furthermore, formal methods support the mod-
elling and simulation of aspects that game theory analysis calls out, noticeably,
the cases in which players should not agree on the contract.

The reported results of the combined framework we adopted show that this
is a promising approach, worth being further developed.

Several research directions are amenable to further investigations. More com-
plex game theory models and tools could be considered such as repeated games,
imperfect information, beliefs. As a consequence, smart contracts exhibiting
more sophisticated behaviour could be modelled. For instance one could con-
sider probability choices that may evolve as a result of the previous transac-
tions, different levels of trust on the other players, and perceived utility of items
larger/smaller than the agreed price. More complex and expressive models will
also require a more sophisticated approach to parameter calibration. This is an
interesting and open aspect of our approach, to be addressed in future work
when larger datasets about the usage and performances of smart contracts will
be available and hence usable to identify critical parameters.

Finally, smart contracts with multiple parties could be analysed through
similar techniques as well.
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Abstract. Control Flow Analysis (CFA) has been proven successful for
the analysis of cryptographic protocols. Due to its over-approximative
nature, the absence of detected flaws implies their absence also at run
time, while their presence only says that there is the possibility for flaws
to occur. Nevertheless, the static detection of a flaw can be considered
as a warning bell that alerts against a possible attack, of which the flaw
is the result. Reconstructing the possible attack leading to the detected
flaw is not trivial, though. We propose a CFA enriched with causal infor-
mation that accounts for attacker activity. In case a flaw is predicted, the
causal information provides a sort of climbing holds that can be escalated
to reconstruct the attack sequence leading to the flaw.

1 Introduction

A security protocol description is a list of messages exchanged by principals
that usually includes recurring terms, resembling rhymes in poem verses. The
entities involved in a cryptographic protocol do not indeed see each other and
necessarily base their respective trust on the presence of expected and known
terms in the received messages. Protocol messages are not merely a way to
transmit information, e.g. new session keys: they also ensure that the entities
really are who they declare they are, that their content is fresh, that a message is
the response to a previous challenge and so on. Nevertheless, the terms used to
confirm that messages are as expected sometimes do not suffice to guarantee that
a protocol will provide the desired security guarantees. Due to weaknesses in the
protocol design, attackers can forge messages that are unfortunately accepted by
legitimate parties, breaking the intended rhymes and leading to security attacks.

In the last decades, many formal techniques have been applied to cryptographic
protocols to detect possible flaws and attacks. In this work, we focus on the Con-
trol Flow Analysis (CFA) presented in [5], which soundly over-approximates the
behaviour of protocols described in the process algebra LySa. The analysis
addresses message authenticity, in the presence of a Dolev-Yao [11] attacker. This
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is achieved by tracking the origin and the destination of encrypted messages, and
verifying that a message encrypted by principal A and intended for B does indeed
come from A and reaches B only. This approach has been successfully applied to
many classical cryptographic protocols. Due to the over-approximative nature of
static analysis, if no violation of the message authentication property is detected,
then no violation will ever arise at run time. Instead, the existence of violations
at static time does not necessarily imply their existence at run time, but possi-
ble violations should be considered such as warnings bells and should be further
investigated. The CFA in [5] detects static violations, but it does not give many
hints on what could have gone wrong, because a violation is just the result or a
side effect of a possible attack. Determining the attacks sequences possibly leading
to the predicted violations is not straightforward.

In this paper, we begin to tackle this problem, by enriching the analysis in [5]
with additional information of causal nature that facilitates the reconstruction
of attack sequences in the presence of violations. In particular, we use LySa+, a
dialect of LySa where decryptions are performed on-the-fly inside inputs, when
receiving a message. This allows us to focus on the message tuples, in particular
the ones the attacker can forge, that can be correctly decrypted and accepted by
an input. The extended CFA still predicts the behaviour of protocols, as in [5],
by tracking the set of message tuples that are communicated over the network
and by recording the potential values of variables and possible violations. Our
extension consists of: (i) locally recording the output message tuples that can be
accepted for each input; (ii) annotating tuples with information somewhat rem-
iniscent of Sewell’s “colours” [17]. Information on annotated tuples can include
the name of the principal that has composed the tuple, the number of the step of
the protocol corresponding to the output, an identification code for the tuple and
whatever can be helpful for the investigation of a specific security property. The
tuples that are forged by the attacker come with a special annotation relating
the tuple to the attacker. This information is exploited to decorate the potential
values for the variables with causal information on their history.

Intuitively, our analysis enriches [5] with a sort of climbing holds that can be
escalated to reconstruct the attack leading to a detected potential flaw. When
the CFA reports a mismatch in the intended origin or destination of an encrypted
message, we can now discover the association to a specific tuple and in which
input the tuple has been accepted. At this point, we can try to reconstruct the
message exchange chain leading to this one, by observing the causal relation-
ships between this message and the previous ones, typically based on the use
of terms (nonces or keys) received before. Due to the information on the val-
ues received, it is possible to further climb up and to look for possible routes of
message sequences. Our running example, a flawed variant of the Wide Mouthed
Frog (WMF) protocol, is a lucky one, because we are able to uniquely recon-
struct the attack sequences related to the detected violations. This is good to
illustrate the approach but in general it is not guaranteed that a static violation
corresponds to one or more attacks. Since the static analysis provides an over-
approximation of the possible violations, false positives can arise. In this case the
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reconstruction can lead to spurious attacks. However, even in these cases, our
CFA gives hints for advancing educated guesses on the possible attack sequences,
if any. Furthermore, besides this backward reconstruction, the analysis can be
exploited forward, by determining, at each point, which tuples the attacker is
able to inject in the protocol, and how they can percolate in the rest of the
messages and impact on the protocol.

Our extension does not meaningfully increase the computational cost of the
analysis and therefore allows us to provide useful ingredients for the reconstruc-
tion of possible attack sequences while keeping the efficiency of [5].

Related Work. CFA has been extensively applied to protocol analysis, in par-
ticular on protocols expressed in LySa. Several kinds of annotations for this
calculus have been developed for validating various security properties. Besides
message authentication [5], freshness is addressed in [13] and violations due to
type flaw attacks are addressed in [4,12].

In the literature we also find various models based on causal information.
Strand Spaces [18] explicitly represent the causal interaction among protocol
events in a way that helps writing simple and informative security proofs. Secu-
rity Protocol Language [9] is equipped with a semantics based on Petri nets and
event structures that, again, make explicit the causal correlation among events.
Causal graphs have been specifically introduced in [3] to abstract away from pro-
tocol sessions, still capturing causality. Even in this case, the model explicitly
represents the causal interaction among protocol events.

In the spirit of the above models, we introduce causality to make the analysis
more informative. However, our approach is different: instead of equipping the
calculus with a causal semantics (e.g. along the lines of the one for π-calculus
in [10]), we enrich the standard one with causal information that helps under-
standing what might go wrong in a protocol. We collect causal information about
the interaction of events in order to enable more sophisticated reasoning on the
analysis result: causal information is only used when the protocol cannot be val-
idated by the analysis and does not have any semantic impact on the execution.

In [2] it is studied how to reconstruct attacks in the setting of ProVerif
tool. As in our framework, finding attack sequences when the analysis fails is
not trivial due to the approximations in the protocol model. The technique
proposed in [2] is based on the information provided by Horn clauses resolution
algorithm and does not involve causal information.

Structure of the Paper. The paper is organised as follows. In Sect. 2, we present
the LySa+ calculus. In Sect. 3, we recall the CFA of [5], we adapt it to LySa+,
and we introduce the annotations necessary for the extension. In Sect. 4, we show
how our approach works on a variant of the WMF protocol [8] that is subject
to attacks. We conclude in Sect. 5.
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2 The LySa+ Calculus

LySa+ is a dialect of LySa [5], a process algebra, in the line of the π-calculus [14],
with cryptographic primitives as in the Spi calculus [1]. In LySa there are no
channels: communication is on a single global network. Furthermore, in LySa,
pattern matching is incorporated into inputs and into decryptions, i.e. into those
language constructs where values can be bound to variables. In LySa+, decryp-
tions are directly embedded inside inputs and are performed on the fly when
receiving the corresponding outputs. This is not a completely novel feature, see
e.g. [3,7,15]. More precisely, our primitive for input tests the components of the
received message. If the received tuple matches the input pattern tuple, includ-
ing the encryptions, then the variables occurring in the input pattern tuple are
bound to the corresponding terms in the output tuple. Otherwise, the received
tuple is not accepted. Suppose e.g. to have a server S waiting a message that S
knows to include the name of the principal A, a nonce (which S still do not know),
and an encryption that S knows to include the name of the principal B together
with a key (which S still do not know). The input pattern tuple would be:
(A, xN , {B, xK}KAS

). If S receives the matching tuple 〈A,NA, {B,KAB}KAS
〉,

the variables xN and xK are bound to NA and to KAB , respectively.
The use of pattern matching directly embedded inside the input primitive

makes the control flow analysis simpler than having a separate matching con-
struct (e.g. as in π-calculus). In particular, all the tuples that do not match
either at the level of terms or at the level of encryptions are directly filtered out,
instead of being first accepted and then filtered out.

LySa+ consists of terms and processes, as presented in Table 1. Values, which
correspond to closed (i.e. without free variables) terms, are used to code keys,
nonces, messages and so on. Terms may be either terms E or pattern terms M .
Terms are used for modelling outputs including encryptions. Instead, for mod-
elling inputs including decryptions we use pattern terms. In particular, pattern
terms may contain variables that can receive their values, provided that the pat-
tern matching succeeds. We call these variables definition (or binding) variables,
while the others are called use variables. A definition occurrence is when a vari-
able gets its binding value, while a use occurrence is an appearance of a declared
variable where its binding value is used. As in [4], we syntactically obtain the
use/definition distinction: the definition occurrence of a variable x is denoted by
�x, while in the scope of the declaration, the variable appears as x.

In the syntax of terms E and the one of pattern terms M , N denotes the
set of names and X denotes the set of variables. Encryption terms are tuples of
terms E1, · · · , Ek encrypted under a term E0 representing a shared key, while
pattern encryption terms are tuples of terms M1, · · · ,Mk encrypted under a term
E0 (keys used to decrypt cannot be definition variables). Here, we only model
symmetric key protocols. Asymmetric ones can be similarly dealt (see [5]). We
assume perfect cryptography.

Another difference w.r.t. LySa consists in labelling each input in the syn-
tax of processes P . Labels X ∈ X (in blue in the pdf) are exploited to sup-
port the analysis and do not affect the dynamic semantics. Our pattern terms,
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Table 1. Syntax of LySa+.

E ::= terms
n ∈ N name
x ∈ X use variable
{E1, · · · , Ek}E0 symm. encryption

M ::= pattern terms
E term
�x (x ∈ X ) defining variable
{M1, · · · , Mk}E0 symm. encryption

P ::= processes
0 nil
〈E1, · · · , Ek〉.P output
(M1, · · · , Mk)X .P input (with matching)
P1 | P2 parallel composition
(ν n)P restriction
! P replication

in the form (M1, ..,Mk)X , are matched against tuples of terms (E1, .., Ek). In
the above example, the input should be (A, �xN , {B, �xK}KAS

)X and a possible
matching tuple 〈A,NA, {B,KAB}KAS

〉. Note that, at run time, each Ei only
includes closed terms, i.e. each variable composing each one of the Ei has been
bound in the previous computations. Instead, matching terms Mi may include
closed terms, variables to be bound or encryption pattern terms including, in
turn, closed terms and variables to be bound. Intuitively, the matching succeeds
when the closed terms, inside each Mi, pairwise match to the corresponding
terms inside Ei, and its effect is to bind the definition variables inside each Mi

to the corresponding closed terms inside each Ei. In the example, the definition
variables xN and xK are bound to the corresponding terms NA and KAB .

As in [5], we now extend the encryption terms and pattern terms in order to
deal with the property of message authentication studied there. To do this, we
decorate encryption terms and pattern terms with fixed labels, called crypto-
points � ∈ C (where C is a denumerable set disjoint from N and X ), and
with assertions specifying the origin and destination of encrypted messages.
Crypto-points are mechanically attached to program points where encryptions
and decryptions occur. Encryption terms and pattern terms are rendered as

{E1, · · · , Ek}�
E0

[dest L] and as {M1, · · · ,Mk}�
E′

0
[orig L]

where the assertions [dest L] and [orig L] specify the intended crypto-points L ⊆
C for decryption and for encryption. We shall write �� · �� for a term with all
annotations removed.

To simplify the definition of the control flow analysis in the next section, we
discipline the α-renaming of bound names. We stipulate that for each name n
there is a canonical representative �n�, and we demand that two names are α-
convertible only when they have the same canonical name. A similar assumption
applies to variables. The function �·� is then extended homomorphically to terms
(we will write E for �E� when unambiguous). Finally, we assume that the bound
names of a process are renamed apart and that they do not clash with the free
names; much in the same way variables are assumed to be all distinct.
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Table 2. Predicate Match and operational semantics, P →R P ′, parameterised on R.

��n�� = ��n′��
Match(��n��, ��n′��) Match(��n��, ���x��)

∧k
i=0 Match(��Ei��, ��Mi��) ∧ R(�, L′, �′, L)

Match({E1, · · · , Ek}�
E0

[dest L], {M1, · · · , Mk}�′
M0

[orig L′])

(Com)

∧j
i=1 Match(��Ei��, ��Mi��)

〈E1, · · · , Ek〉.P | (M1, · · · , Mk)X .Q →R P | Q[E1/M1, · · · , Ek/Mk]

(Par)
P →R P ′

P | Q →R P ′ | Q

(Res)
P →R P ′

(ν n)P →R (ν n)P ′

(Congr)
P ≡ Q ∧ Q →R Q′ ∧ Q′ ≡ P ′

P →R P ′

The semantics of LySa+ is given by the reduction rules in Table 2, mod-
ulo the structural congruence rules, here omitted because standard (see [5]),
and where we use a slightly modified notion of substitution applied to a process
P [E/x], which extracts and replaces the definition variables with the correspond-
ing terms, and leaves the other terms unchanged.

P [E/M ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P [x �→ E] if M = �x ∧ E ∈ N
P [E1/M1, · · · , Ek/Mk] if M = {M1, · · · ,Mk}�

E′
0
[dest L] ∧

E = {E1, · · · , Ek}�′

E0
[orig L′]

P otherwise

Moreover, we resort to the predicate Match, defined in Table 2, testing terms for
pattern matching. As expected, the pattern matching between two names in the
same equivalence class returns true, as well as the pattern matching between two
composite terms, whose subterms pointwise match. Matching a name against a
definition variable always succeeds.

To capture the message authentication property we are interested in, we con-
sider two variants of reduction relation →R, graphically identified by a different
instantiation of the relation R, which decorates the transition relation. One vari-
ant (→RM) checks annotations, the other one (→) discards them. In both cases,
the reduction relation is the least relation on closed processes, i.e. processes with
no free variables, that satisfies the rules in Table 2, where we assume to apply
our disciplined α-conversion whenever needed. More precisely,

– the reference monitor semantics, written P →RM Q, takes RM(�,L′, �′,L) =
(� ∈ L′∧�′ ∈ L); thus, decryptions may only occur at crypto-points designated
when the corresponding encryptions were made, and vice-versa, otherwise the
execution is stopped;

– the standard semantics, written P → Q, takes, by construction, R(�,L′, �′,L)
to be universally true and thus can be ignored.
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The rule (Com) expresses that an output prefix in 〈E1, · · · , Ek〉.P is matched
by an input (M1, · · · ,Mk).Q in case the Match predicate returns true for each
comparison (Ei,Mi), including the ones on the encryption subterms in Ei and
Mi. In case all comparisons are successful each Ei causes the substitution [Ei/Mi]
on the corresponding pattern term Mi. Moreover, when comparing an encryption
term with the corresponding encryption pattern term, in the reference monitor
semantics, we ensure that the crypto-point of the encrypted value is acceptable
at the decryption (i.e. � ∈ L′) and that the one of the decryption is acceptable
for the encryption (i.e. �′ ∈ L). The rules (Par), (Res) and (Congr) are standard.

Example 1. Consider the Wide Mouthed Frog protocol [8], aiming at establish-
ing a secret (symmetric) session key K between the two principals A and B
sharing master keys KA and KB , resp., with a trusted server S, in one of its
flawed variants (abbreviated hereafter WMF1), where the responder’s name is
not encrypted.

1. A → S : A,B, {K}KA

2. S → B : {A,K}KB

3. A → B : {m1, ...,mk}K

We now revisit in LySa+ the specification of the protocol in [5], where only
the legitimate part of the system is explicitly described. Since each principal
may play many different roles and many principals may use the protocol at the
same time, we assume to have n + 2 principals Ii (i ∈ {-1, 0, 1, · · · , n}). Each
of the “legitimate” principals (i ∈ {1, · · · , n}) may play the initiator role of A,
(Ii, A), as well as the responder role of B, (Ij , B). We assume there is a single
server S, modelled as (I-1, S). Instead, any principals outside the legitimate part
(i.e. potential attackers) are given the name I0 and may take on any role. Each
principal can participate in an unlimited number of concurrent runs.

0. (νn
i=1K

A
i )(νn

j=1K
B
j )

1. |ni=1 |nj = 1
j �= i

! (ν Kij)

〈Ii, A, I−1, S, Ii, A, Ij , B, {Kij}Ai

KA
i

[dest S]〉.
3. (ν m1ij) · · · (ν mkij)

〈Ii, A, Ij , B, {m1ij , · · · , mkij}Ai
Kij

[dest Bj ]〉

1′. | |ni=0 |nj=0 ! (Ii, A, I−1, S, Ii, A, Ij , B, {�xK
ij }S

KA
i

[orig A]). Xij

2. 〈I−1, S, Ij , B, {Ii, A, xK
ij }S

KB
j

[dest Bj ]〉.0

2′. | |nj=1 |ni=-1 ! (I−1, S, Ij , B, {Ii, A, �yij}Bj

Kij
[orig S]). Yij

3′. (Ii, A, Ij , B, {�zm1
ij , · · · , �z

mk
ij }Bj

yK
ij

[orig Ai]).
Zij

– Master keys (line 0) between the legitimate principals (in each of their roles)
and the server are unknown to outsiders, as well as session keys (line 1).

– The next three lines model the “legitimate” principals Ii (1 ≤ i ≤ n) in their
initiator roles. Each initiator wants to engage in a communication with any of
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the other “legitimate” principals Ij in their responder roles apart from itself
(1 ≤ j ≤ n and j �= i). An encrypted message sent from the principal Ii in
the initiator role is labelled with the crypto-point Ai and annotated with the
intended crypto-point for decryption such as S (line 1). Similarly, the principal
Ij in the responder role uses the crypto-point Bj , while the server uses S.

– The next two lines model the server. It is ready to handle requests from
principles inside as well as outside the legitimate part of the system (0 ≤
i, j ≤ n), but not from itself. Note that also agents outside the legitimate part
of the system share master keys KA

0 and KB
0 with the server that are not

restricted, and therefore available to the attacker.
– The last two lines model the legitimate principals Ij in their responder roles.

The match of the first decryption (line 2′) reveals the identity of the sender and
here we are prepared to receive input from any agent (−1 ≤ i ≤ n). Indeed,
whenever we do an input, we never restrict our attention to the legitimate
part of the system; semantically our encoding is indistinguishable from writing
one input, which matches the name of any principal.

3 Control Flow Analysis

The aim of the CFA in [5] was to statically verify a message authentication prop-
erty, by checking for each exchanged encryption, whether a messages encrypted
by a principal A and intended for principal B does indeed come from A and
reaches B only. More precisely, if the analysis does not predict any violation of
this message authentication property, then the reference monitor does not need
to abort the computation of a process P . Indeed, because of over-approximations,
the absence of static violations guarantees their absence also at run time, while
their existence does not imply their existence at run time. Nevertheless, possible
violations deserve to be investigated, because they can be the result of possible
attacks. In these cases, reconstructing attacks is not a trivial activity. To move a
step forward in this direction, we enrich the analysis in [5] with causal informa-
tion, whose usage can help in the reconstruction of possible attacks, when the
analysis predicts possible violations. We start by adapting the previous analysis
to LySa+ and then we extend it with the new features. In particular, the labels
used to decorate inputs are used to track the tuples coming from the network
that can be accepted in each input. The new pattern matching on inputs and
on included decryptions allows us to focus on the output tuples, included the
ones produced by the attacker, that can be accepted by an input in the analysed
protocol. There are other tuples that the attacker can send on the network, but
they are not interesting if they cannot be accepted by any principal in an input.

We recall that, being a context-insensitive CFA (see [16] for a comprehen-
sive overview of static analysis), each time in which more than a tuple can be
accepted by a particular input, the analysis records in each definition variable
all the possible values that can be bound there (one for each accepted tuple),
therefore losing precision. This mechanism mixes indeed the outcome of the pos-
sible computations and also breaks the possible association among bindings in
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Table 3. Analysis of terms, ρ |= E : ϑ, SMatch predicate, and analysis of processes,
(ρ, κ) |=RM P : ψ.

�n� ∈ ϑ

ρ |= n : ϑ

ρ(�x�) ⊆ ϑ

ρ |= x : ϑ

∧k
i=0 ρ |= Ei : ϑi ∧

∀V0, V1, · · · , Vk : ∧k
i=0 Vi ∈ ϑi ⇒ {V1, · · · , Vk}�

V0
[dest L] ∈ ϑ

ρ |= {E1, · · · , Ek}�
E0

[dest L] : ϑ

��n�� = ��n′��
SMatch(��n��,��n′��, ρ, X, ψ) SMatch(��n��,���x��,ρ, X, ψ)

ρ |= x : ϑ ∧ ��n�� E ϑ

SMatch(��n��,��x��, ρ, X, ψ)

ρ |= E : ϑ ∧ ∀ {V1, · · · , Vk}�
V0

[dest L] ∈ ϑ :

∧j
i=0 SMatch(Vi, Mi, ρ, X) ⇒ (¬RM(�, L′, �′, L) ⇒ ((�, �′), X) ∈ ψ)

SMatch(E, {M1, · · · , Mk}�′
M0

[orig L′], ρ, X, ψ)

∧k
i=1 ρ |= Ei : ϑi ∧

∀V1, · · · , Vk : ∧k
i=1 Vi E ϑi ⇒ 〈V1, · · · , Vk〉 ∈ κ ∧
(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM 〈E1, · · · , Ek〉.P : ψ

∀ 〈V1, · · · , Vk〉 ∈ κ : ∧k
i=1 SMatch(Vi, Mi, ρ, X, ψ) ⇒ 〈V1, · · · , Vk〉 ∈ ρ(X) ∧

∧k
i=1 Bind[Vi, Mi, ρ] ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (M1, · · · , Mk)X .P : ψ

(ρ, κ) |=RM 0 : ψ
(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (ν n)P : ψ

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM ! P : ψ

(ρ, κ) |=RM P1 : ψ ∧ (ρ, κ) |=RM P2 : ψ

(ρ, κ) |=RM P1|P2 : ψ

the same tuple. Consider, e.g., the following process P , receiving a tuple binding
two variables to be sent in the next output

P = (A, x, y)X .〈B, x, y〉
and in the presence of two possible matching tuples, i.e. 〈A, a, b〉 from the process
B and 〈A, c, d〉 from the process C. According to our analysis, both a and c can
be bound to x, and similarly b and d can be bound to y. As a consequence,
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Table 4. Dolev-Yao condition.

(1); {n•} ∪ �Nf� ⊆ ρ(z•)
(2) ∧k∈Aκ ∀ 〈V1, · · · , Vk〉 ∈ κ : ∧k

i=1 Vi ∈ ρ(z•)

(3) ∧
k∈A+

Enc
∀{V1, · · · , Vk}�

V0
[dest L] ∈ ρ(z•) :

V0 E ρ(z•) ⇒ (∧k
i=1 Vi ∈ ρ(z•) ∧ (¬RM(�, C, �•, L) ⇒ ((�, �•), Z•) ∈ ψ))

(4) ∧
k∈A+

Enc
∀V0, · · · , Vk : ∧k

i=0 Vi ∈ ρ(z•) ⇒ {V1, · · · , Vk}�•
V0

[dest C] ∈ ρ(z•)

(5) ∧k∈Aκ ∀V1, · · · , Vk : ∧k
i=1 Vi ∈ρ(z•) ⇒ 〈V1, · · · , Vk〉∈κ

still according to the analysis of the continuation of P , there are at least four
possible tuples for the next output: 〈B, a, b〉, 〈B, c, d〉, 〈B, a, d〉 and 〈B, c, b〉,
where only the first two can be produced at run time. This choice of decoupling
the values belonging to the same received tuple makes the analysis simple and
not expensive. Refining the analysis to gain precision is possible, but can eas-
ily lead to an exponential computational complexity. Here, we propose instead
to locally bind information on tuples in the places they are received, without
letting this information flow on the analysis, thus not increasing the computa-
tional cost of the original analysis [5]. The CFA will record indeed that both
〈A, a, b〉 and 〈A, c, d〉 can be accepted in the input labelled X. This information
can be useful, when trying to understand what can have gone wrong in a proto-
col. This technique is reasonable when dealing with protocols, where there are
few degrees of freedom, because communication must follow the scheduled steps.

The static approximation is represented by a triple (ρ, κ, ψ) (resp. a pair (ρ, ϑ)
when analysing a term E), called estimate for P (resp. for E), that satisfies the
judgements defined by the axioms and rules of Table 3, whose components are:

– ρ is the abstract environment that maps (i) the canonical variables to the
sets of closed canonical values that they may be bound to, and (ii) the input
variables X to the sets of output tuples that they may be accepted by the
input they are associated with.

– κ is the abstract network environment that includes all the message sequences
that may flow on the network.

– ψ is the error component, including the possibly empty set of “error mes-
sages” of the form ((�, �′),X) indicating that something encrypted at � was
unexpectedly decrypted at �′ in the input labelled X.

For each term E, the analysis determines a superset of the possible canonical
values that it may evaluate to. The judgement for terms (defined in the upper
part of Table 3) is

ρ |= E : ϑ

and expresses that ϑ ⊆ V is an acceptable estimate of the set of values that E
may evaluate to in the abstract environment ρ. Basically, the rules amount to
demanding that ϑ contains all the canonical values associated with the compo-
nents of a term; indeed, when fv(E) = ∅ we have ρ |= E : {�E�}. In the sequel,
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we will use the faithful test V E ϑ that holds if there is a value V ′ in ϑ that
equals V when ignoring the annotations.

A name n evaluates to the set ϑ, if its canonical representative �n� belongs
to ϑ. Similarly for a variable x, provided that ϑ includes the set of values to
which its canonical representative �x� is associated with. To produce the set ϑ,
the rule for k-ary encryption (i) finds the sets ϑi for each term Ei, (ii) collects
all k-tuples of values (V0, · · · , Vk) taken from ϑ0 × · · · × ϑk into values of the
form {V1, · · · , Vk}�

V0
[dest L] (iii) requires these values to belong to ϑ.

In the analysis of processes we focus on which values can flow on the network.
The judgement (defined in the lower part of Table 3) for processes is

(ρ, κ) |=RM P : ψ

We need two auxiliary predicates in the analysis rules. The first is a binding
predicate that checks whether the bindings for variables are correctly predicted.

Bind[V,M, ρ] =

⎧
⎪⎪⎨

⎪⎪⎩

V ∈ ρ(x) if M = �x ∧ V ∈ N
∧k

i=0Bind[Vi,Mi, ρ] if M = {M1, · · · ,Mk}�
M0

[dest L] ∧
V = {V1, · · · , Vk}�′

V0
[orig L′]

true otherwise

Furthermore, we have a predicate SMatch to check whether the values match
with the values associated with the corresponding terms in the pattern. The
predicate SMatch is defined in the central part of Table 3. The checks used by
SMatch are actually expressed using the faithful membership predicate, i.e. as
Vi E ϑi, because annotations are ignored for matching just as in the semantics.
For each encrypted value {V1, · · · , Vk}�′

V0
[dest L′] in ϑ the analysis checks whether

the values V0, . . . .Vk match (still ignoring annotations) with the values associated
with the corresponding terms in the pattern. If the check is successful then the
values predicted for the variables xi should point-wise contain the corresponding
values in Vi.

The rule for k-ary output (i) finds the sets ϑi for each term Ei, (ii) requires
that all k-tuples of values 〈V1, · · · , Vk〉 taken from ϑ1×· · ·×ϑk are in κ (i.e. they
can flow on the network), and (iii) requires that (ρ, κ, ψ) are also valid analysis
estimates of process P .

In the rule for input the terms M1, · · · ,Mk are used for matching values sent
on the network. Thus, this rule, by exploiting the SMatch predicate, checks
whether these terms can match with the values of any message 〈V1, · · · , Vk〉 in
κ. If the check is successful then the definition variables in the terms Mi in
the pattern input tuple can be bound to the corresponding terms included in
the values Vi. These checks are performed also at the level of encryptions, still
with the predicate SMatch, which also checks whether the destination or origin
assertions may be violated, i.e. if (� /∈ L′) or (�′ /∈ L) resulting in the entry
((�, �′),X) in ψ. The predicate SMatch has indeed a parameter X, to recall the
input in which the pattern matching is tested and to associate it to the entries
of the error component ψ (we will use Z• for the attacker, as clarified in the next
paragraph). This allows us to localise the possible violation.
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Note that in the case of input, we analyse the continuation process P only
when the pattern matching succeeds on its terms and subterms (encryptions).
This increases the precision of the analysis that is shown to rarely report errors
(false positives) on correct protocols.

The rule for the inactive process does not restrict the analysis result while
the rules for parallel composition, restriction, and replication ensure that the
analysis also holds for the immediate subprocesses.

Example 2. We now present the analysis of the WMF1 protocol, introduced in
Sect. 2. An estimate (ρ, κ, ψ) satisfying (ρ, κ) |=RM WMF1 : ψ is given by ψ = ∅
(attackers are not yet considered) and by the following non-empty ρ entries (for
1 ≤ i, j ≤ n, i �= j, and 1 ≤ l ≤ k) for

ρ : Xij �→ {〈Ii, A, I−1, S, Ii, A, Ij , B, {Kij}Ai

KA
i

[dest S]〉}
xK

ij �→ {Kij}
Yij �→ {〈I−1, S, Ij , B, {Ii, A, Kij}S

KB
j

[dest Bj ]〉}}
yK

ij �→ {Kij}
Zij �→ {〈Ii, A, Ij , B, {m1ij , · · · , mkij}Ai

Kij
[dest Bj ]〉}

zml
ij �→ {mlij}

whereas κ includes all the tuples listed in ρ(Xij), ρ(Yij) and ρ(Zij). Moreover,
observe that xK

ij and yK
ij are bound to the session key Kij , and that zml

ij is bound
to mlij , that indicates the communication of mlij from principal Ii to Ij .

Modelling the Attacker. We assume an active Dolev-Yao attacker [11], i.e. it
can eavesdrop, replay, encrypt, decrypt, and generate messages providing that
the necessary information is within his/her knowledge, which increases while
interacting with the network. We shall briefly recall how the CFA is used to
analyse protocols running in an insecure environment.

This scenario can be modelled as a process running in parallel with the
protocol process. Formally, we shall have Psys | P•, where Psys represents the
protocol process and P• is some arbitrary attacker. To get an account of the
infinitely many possible attackers, we find a formula FDY that characterises all
attackers P•: this means that whenever an estimate ρ, κ,Γ, ψ satisfies FDY , then
ρ, κ,Γ |= P• : ψ for all attackers P• (for a similar treatment see [5]). Intuitively,
the formula has to mimic how all the P• are analysed. As in [5], it is possible to
establish the correctness of the formula for LySa+.

The attacker process is parameterised on some attributes of Psys, e.g. the
length of all the encryptions occurred and of all the messages sent over the net-
work. Since we have no control over the canonical names and variables used of
attackers, we postulate a new canonical name n•, a new canonical variable z• and
a new input label Z•, not used in Psys , where all the canonical names and vari-
ables of the attacker are coalesced into. Similarly, annotations at encryption and
decryption points are added and are the trivial ones [dest C] and [orig C], and that
all crypto-points are replaced by the crypto-point �• not occurring in Psys .
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We are now ready to define the formula FDY
RM for expressing the Dolev-Yao

condition for LySa+ as the conjunction of the five components in Table 4, illus-
trating that: the attacker has some initial knowledge (1), that it may learn more
by eavesdropping (2) or by decrypting messages with keys already known (3),
that it may construct new encryptions using the keys the attacker knows (4) and
that it may actively forge new communications (5).

Extension of the Analysis. To statically add causal information useful in the
reconstruction of attacks, we annotate tuples with labels C ∈ C (in blue in the
pdf) corresponding to causal information, whose idea is somewhat reminiscent of
that of “colours” a là Sewell [17]. The more basic one is information that records
the principal that composes the tuple, but it can also include the number of
the step of the protocol corresponding to the output, an identification code for
the tuple and/or whatever can help in the investigation. Suppose we record the
name of the sender and the number of message. Then, back to our previous
example, we will have that Bmsg1 ::〈A, a, b〉, Cmsg1 ::〈A, c, d〉 ∈ ρ(X). Of course,
this information should be also present in the syntax of processes and in the
semantics, where output prefixes the (Com), respectively, are now in the form

Amsg ::〈E1, · · · , Ek〉.P
(Com)

∧j
i=1 Match(��Ei��, ��Mi��)

Amsg ::〈E1, · · · , Ek〉.P | (M1, · · · ,Mk)X .Q →R P | Q[E1/M1, · · · , Ek/Mk]

Also the treatment of the attacker should be adapted: the tuples that the attacker
can send on the network are recorded by the analysis with M• in front of (without
any message information, since the tuple can be used in every message step).
This is very important to track the “penetrability” of attacker tuples inside
protocols. The additional information on tuples recorded by the analysis can be
exploited to determine in which points the attacker is able to make principals
accept his/her messages in place of the “legitimate” ones.

The same information can be further exploited to decorate bindings. Each
definition variable could be associated with the value together with C ∈ C (in
violet in the pdf, to distinguish this use from the one of tuples) that represents
the recent history of the association, in this case, the “author” of the tuple
that causes that binding and the message step. In the example, we would have
{Bmsg1
 a, Cmsg1
c} ⊆ ρ(x) (where ρ is suitably extended).

Again, this information does not flow into the analysis, e.g., we still have
in κ the four tuples where the values come without history annotations on val-
ues: Pmsg2 ::〈B, a, b〉, Pmsg2 ::〈B, c, d〉, 〈B, a, b〉, Pmsg2 ::〈B, a, d〉 and Pmsg2 ::〈B, c, b〉.
Nevertheless, what this information preserves can offer useful hints to reconstruct
what happens in message exchanges, especially when an attacker is present in
the scenario. The adapted rules for output and input are as follows.
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∧k
i=1 ρ |= Ei : ϑi ∧

∀ �V1� , · · · , �Vk� : ∧k
i=1 Vi E ϑi ⇒ Amsg ::〈 �V1� , · · · , �Vk� 〉 ∈ κ ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM Amsg ::〈E1, · · · , Ek〉.P : ψ

∀ Amsg ::〈V1, · · · , Vk〉 ∈ κ : ∧k
i=1 SMatch(Vi, Mi, ρ, X, ψ) ⇒ Amsg ::〈V1, · · · , Vk〉 ∈ ρ(X) ∧

∧k
i=1 Bind[Amsg, Vi, Mi, ρ] ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (M1, · · · , Mk)
X .P : ψ

where the predicate Bind becomes

Bind[Amsg, V, M, ρ] =

⎧
⎪⎪⎨

⎪⎪⎩

Amsg�V ∈ ρ(x) if M = �x ∧ V ∈ N
∧k

i=0Bind[Amsg, Vi, Mi, ρ] if M = {M1, · · · , Mk}�
M0

[dest L]

∧ V = {V1, · · · , Vk}�′
V0

[orig L′]
true otherwise

Moreover, not to propagate the history information, we use a new function ��
to denote terms with history annotations removed and we force the predicate
SMatch to ignore history annotations in the ρ component, by overloading the
function ����. Back to our example, suppose that the output of the process P is
received and accepted by the process

Q = (B, x′, y′)X

In this case, we have that {Pmsg2
a, Pmsg2
c} ⊆ ρ(x′) and {Pmsg2
b, Pmsg2
d} ⊆
ρ(y′), i.e. the present analysis does not record the whole path of bindings, or
overall history, but just the last step. Of course, it is possible to further extend
the analysis in this direction. Finally, note that the information on the history
of bindings could be easily added to semantics, as well. We avoid it to keep the
presentation simple.

As in [5], it is possible to prove (the proofs are very similar) that our analysis
respects the operational semantics of LySa +, in both its versions, and that, when
the ψ component is empty, we can safely dispense with the reference monitor.

Theorem 1 (Subject reduction)
If P →R Q and (ρ, κ) |=RM P : ψ then (ρ, κ) |=RM Q : ψ.

Theorem 2 (Static check for reference monitor)
If (ρ, κ) |=RM P : ∅ then RM cannot abort P .1

1 i.e. whenever there exist no Q, Q′ such that P →∗ Q → Q′ and P →∗
RM Q /→RM,

where ∗ stands for the transitive and reflexive closure of the relation, and Q /→RM

stands for ¬∃Q′ : Q →RM Q′.
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4 Wide Mouthed Frog Variant 1: Study

We now extend the analysis of the WMF1 protocol of Sect. 3. In the presence of
an attacker, the ψ error component is no longer empty. In particular, an estimate
(ρ, κ, ψ) satisfying (ρ, κ) |=RM WMF1 : ψ is given by

ψ = {((Ai, Bj), Zij) | 1 ≤ i, j ≤ n ∧ i �= j} ∪ {((Ai, 	•), Z•) | 1 ≤ i ≤ n} ∪
{((	•, Bj), Zij) | 1 ≤ j ≤ n},

by the following entries2 (for 1 ≤ i, j ≤ n, i �= j, and 1 ≤ l ≤ k) for

ρ : Xij �→ {Amsg1ij ::〈Ii, A, I−1, S, Ii, A, Ij , B, {Kij}Ai

KA
i

[dest S]〉,
M• ::〈Ii, A, I−1, S, Ii, A, Ij , B, {Kij}Ai

KA
i

[dest S]〉,
M• ::〈Ii, A, I−1, S, Ii, A, Ij , B, {Kil}Ai

KA
i

[dest S]〉 with l �= j and j ∈ [0, n]}
xK

ij �→ {Amsg1ij �Kij , M•�Kil with l �= j and j ∈ [0, n]}
Yij �→ {Smsg2ij ::〈I−1, S, Ij , B, {Ii, A, Kij}S

KB
j

[dest Bj ]〉,
M• ::〈I−1, S, Ij , B, {Ii, A, Kij}S

KB
j

[dest Bj ]〉,
S
msg2
ij ::〈I−1, S, Ij , B, {Ii, A, Kil}S

KB
j

[dest Bj ]〉,
M• ::〈I−1, S, Ij , B, {Ii, A, Kil}S

KB
j

[dest Bj ]〉}
yK

ij �→ {Smsg2ij �Kij , S
msg2
ij �Kil}

Zij �→ {Amsg3ij ::〈Ii, A, Ij , B, {m1ij , · · · , mkij}Ai
Kij

[dest Bj ]〉,
M• ::〈Ii, A, Ij , B, {m1ij , · · · , mkij}Ai

Kij
[dest Bj ]〉,

M• ::〈Ii, A, Ij , B, {m1il, · · · , mkil}Ai
Kil

[dest Bl]〉}
zml

ij �→ {Amsg3ij �mlij , M•�mlil}

and by κ, which includes all the entries of ρ(Xij), ρ(Yij) and ρ(Zij) that are listed
above. Note that, besides the “legitimate” tuples produced by the principals, we
find all the tuples (prefixed by M• ::) produced by the attacker and accepted by
principals. Some of them (the one in black in the pdf) include exactly the same
terms of the tuples immediately above. They correspond to the “legitimate”
tuples of the protocol that the attacker can always intercept and send again.
These tuples cannot cause any harm if used in the same session, while they
can be exploited to mount parallel session attacks (see next paragraph). As a
consequence, for simplicity in this paragraph, we ignore the bindings they induce.

The ψ component entries, as established in [5], show that static authentica-
tion fails. The pairs (Ai, Bj) show that a value encrypted at Ai has wrongfully
been decrypted at Bj in the input labelled Zij (with i �= j); the pairs (Ai, �•)
show that a value created by Ai has been decrypted by the attacker (in the
attacker input Z•), while the pairs (�•, Bj) show that a value created by the
attacker has been decrypted at Bj in the input labelled Zij .

To check whether there really is a corresponding dynamic violation, it is
necessary to find an execution leading to the determined violation, possibly
2 Where the tuples produced by the attacker or due to its messages and the histories

of interest are indigo in the pdf.
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corresponding to an attack. This is not straightforward. Our aim here is to
show that our extended CFA can help us in systematically reconstructing the
attacks, corresponding to the violations predicted in ψ, and find again the attacks
reconstructed in [5] (reported here in Table 5), with the help of climbing holds.

Table 5. Attacks on WMF variation, where MX denotes the attacker pretending to be
the principal X.

A → MS : A, B, {K}KA

MA → S : A, B′, {K}KA

S → B′ : {A, K}KB′
A → MB : {m1 · · · mk}K

MA → B′ : {m1 · · · mk}K

Attack 1

A → MS : A, B, {K}KA

MS → S : A, M, {K}KA

S → M : {A, K}KM

A → MB : {m1 · · · mk}K

Attack 2

A → MS : A, B, {K}KA

MS → S : A, M, {K}KA

S → M : {A, K}KM

MA → S : A, B, {K}KA

S → B : {A, K}KB

M → B : {m1 · · · mk}K

Attack 3

We now try to backtrack in order to reconstruct the attack, whose side
effect is the violation corresponding to the entry ((Ai, Bj), Zij) in ψ. To sim-
plify, we consider i = 1 and j = 2, 3 (i �= j) and we investigate the instance
((A1, B2), Z12) of the first entry of ψ. In the same way, we can investigate the
instance ((A1, B3), Z13).

- The presence of ((A1, B2), Z12) is tested, when analysing the input/
decryption in B2, labelled Z12: (I1, A, I2, B, {�zm1

12 , · · · , �zmk
12 }B2

yK
12

[orig A1]). Z12

For reader’s convenience, in the table below, we place the input side by side
with the tuples that the analysis predicts as associated to its label Z12.

A
msg3
12 ::〈I1, A, I2, B, {m112, ..., mk12}A1

K12
[dest B2]〉

M• ::〈I1, A, I2, B, {m112, ..., mk12}A1
K12

[dest B2]〉
M• ::〈I1, A, I2, B, {m113, ..., mk13}A1

K13
[dest B3]〉

(I1, A, I2, B,{�z
m1
12 , ..., �z

mk
12 }B2

yK
12

[orig A1])
Z12

The pair (A1, B2) is in ψ because B2 �∈ {B3} and thus ¬RM(A1, {A1}, B2, {B3})
in the successful matching of the third tuple in the table

M• ::〈I1, A, I2, B, {m113, · · · ,mk13}A1
K13

[dest B3]〉
that leads to the binding for Z12 and for zms

12 , recorded by the analysis in
ρ(Z12) � M• ::〈I1, A, I2, B, {m113, · · · ,mk13}A1

K13
[dest B3]〉 and ρ(zms

12 ) � M•
ms13

where M•
ms13 stands for ms13 with history M•
. Note that the attacker can
produce this message by intercepting the message

Amsg313 ::〈I1, A, I3, B, {m113, · · · ,mk13}A1
K13

[dest B3]〉
and by modifying the name of the receiver from B3 to B2.

Statically speaking, interception can be detected by observing that the output
tuple Amsg313 ::〈I1, A, I3, B, {m113, · · · ,mk13}A1

K13
[dest B3]〉 ∈ κ and that therefore

each of its terms is in ρ(z•) (see rule (2) in Table 4).
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The third tuple statically matches with the input pattern, because ρ(yK
12) �

K13, with history Smsg213 
. This information points at the possible forged message
of the attacker that is acceptable by B2 in the input labelled Z12, where for
reader’s convenience, we add the destination assertion:

3′.MA1 → B2 : A1, B2, {m1, · · · ,mk}A1
K13

[dest B3]

that replaces the “legitimate” message expected by B2 from A1:

3.A1 → B2 : A1, B2, {m1, · · · ,mk}A1
K12

[dest B2]

corresponding to the tuple in ρ(Z12), (the first in the above table):

Amsg312 ::〈I1, A, I2, B, {m112, · · · ,mk12}A1
K12

[dest B2]〉
As a consequence, accepting the tuple, coming from the attacker instead of the
one from A1, suggests that the attacker could have intercepted the “legitimate”
message from A1 to B3 and could have injected its forged one. In other words,
it suggests the following message exchange.

3.A1 → MB3 : A1, B3, {m1, · · · ,mk}K13 [dest B3]
3′.MA1 → B2 : A1, B2, {m1, · · · ,mk}K13 [dest B2]

- To statically backtrack, we have to observe the causal relationship between
the third message and the second one. This consists in the use, in the third
message, of the key received by B2, in the second message, that binds the
variable yK

12. This relationship simply descends from the fact that in the input
(I1, A, I2, B,{�zm1

12 , · · · , �zmk
12 }B2

yK
12

[orig A1])Z12 , yK
12 is a use occurrence of the def-

inition variable bound in the previous input. We recall in the table below the
tuples that the analysis predicts as associated to Y12.

S
msg2
12 ::〈I−1, S, I2, B, {I1, A, K12}S

KB
2

[dest B2]〉,

M• ::〈I−1, S, I2, B, {I1, A, K12}S

KB
2

[dest B2]〉,

S
msg2
12 ::〈I−1, S, I2, B, {I1, A, K13}S

KB
2

[dest B2]〉
M• ::〈I−1, S, I2, B, {I1, A, K13}S

KB
j

[dest B2]〉

(I−1, S, I2, B,{I1, A, �y12}B2
KB

2
[orig S])Y12

Now, the possible value K13, with history Smsg213 
, is instantiated in the second
step of the protocol, when accepting the third tuple in the table above, leading
to the required binding for yK

12. This suggests the following message:

2′.S → B2 : S,B2, {A1,K13}S
KB

2
[dest B2]

- Again, the only binding with the previous steps is the use of the variable
xK
12 instantiated in the input (I1, A, I−1, S, I1, A, I2, B,{xK

12}S
KA

1
[orig A]X12) in S

as K13 with history M•
. We recall in the table below the tuples that the analysis
predicts as associated to X12.

A
msg1
12 ::〈I1, A, I−1, S, I1, A, I2, B, {K12}A1

KA
1

[dest S]〉

M• ::〈I1, A, I−1, S, I1, A, I2, B, {K12}A1
KA

1
[dest S]〉

M• ::〈I1, A, I−1, S, I1, A, I2, B, {K13}A1
KA

1
[dest S]〉

(I1, A, I−1, S, I1, A, I2, B,{�xK
12}S

KA
1

[orig A])X12
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The tuple responsible for the investigated binding is the third in the table above.
This suggests the corresponding output message:

1′.MA1 → S : A1, S,A1, B2, {K13}A1
KA

1
[dest S]

This tuple competes with the “legitimate” tuple:

Amsg112 ::〈I1, A, I−1, S, I1, A, I2, B, {K12}A1
KA

1
[dest S]〉

that corresponds to the message step

1.A1 → S : A1, S,A1, B2, {K12}A1
KA

1
[dest S]

By summarising, we have exploited the climbing holds provided by the CFA,
intuitively illustrated by the following schema

They have helped us in the reconstruction of the following attack, that can be
concisely represented by the first attack in Table 5.

1.A1 → MS : A1, S, A1, B3, {K13}A1
KA

1
[dest S]

1′.MA1 → S : A1, S, A1, B2, {K13}A1
KA

1
[dest S]

2′.S → B2 : S, B2, {A1, K13}S
KB

2
[dest B2]

3.A1 → MB3 : A1, B3, {m1, · · · , mk}K13 [dest B3]
3′.MA1 → B2 : A1, B2, {m1, · · · , mk}K13 [dest B3]

Similarly,we can reconstruct the attack leading to the inclusion of ((A1, �•), Z•)
in ψ, corresponding to the second attack in Table 5. Succinctly, this violation is due
to the decryption the attacker can perform of the intercepted tuple

Amsg312 ::〈I1, A, I1, B, {m112, · · · ,mk12}A1
K12

[dest B2]〉
because the attacker knows the key, i.e. K12 ∈ ρ(z•), and this is because, in the
second step, the server can send the tuple:

Smsg2ij ::〈I−1, S, I0, B, {I1, A, xK
10}S

KB
0

[dest B0]〉

where xK
10 � M•
K12, because the tuple, forged by the attacker,

M• ::〈I1, A, I−1, S, I1, A, I0, B, {K12}A1
KA

1
[dest S]〉
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can be accepted by S, in place of the “legitimate” one:

Ams112 ::〈I1, A, I−1, S, I1, A, I2, B, {K12}A1
KA

1
[dest S]〉

Further Extensions. The attack 3 in Table 5, corresponding to the inclusion of
((�•, Bj), Zij) in ψ, is a parallel session attack, because the attack is performed
in two runs. In this setting, indeed, the attacker can just intercept tuples in a
run of the protocol and send them in other runs, as they are or forged ad hoc. To
facilitate the reconstruction of the attack, the analysis should be further refined.
For lack of space, we just give the idea of how we can proceed. Information on
the run (in some way reminiscent of the treatment in [6]) can be appended to
the tuples and to the annotations in encryptions and decryptions, e.g.:

Smsg2ij , run k ::〈I−1, S, I0, B, {I1, A, xK
10}S run k

KB
0

[dest B0]〉

Also input variables, e.g. Xrun s
ij , should come with indication of the run. We can

also suppose not to consider the matching of the run labels when decrypting.
Of course, it is possible to do it and also to make it checkable at run time, by
suitably extending the relation RM. For similar annotations on runs, we can
follow [13].

To keep it simple, we just distinguish between two runs 1 and 2. The attacker
can e.g. replay the above message, stolen from run 1, in run 2 and make it
acceptable for S. The attacker could have attacked the previous run as in Attack
2 of Table 5 and therefore it could have learned the key A1 created for B2. As a
consequence, the replay allows the attacker to cheat on B2, by sending messages
encrypted with the key that B2 knows coming from A1.

In more detail, choosing i = 1 and j = 2, the violation arises in the input
labelled Zrun 2

12 in run 2, where B2 is waiting for the message of A1.

(I1, A, I2, B,{�zm1
12 , · · · , �zmk

12 }Brun 2
2

yK
12

[orig A1]Z
run 2
12 )

matching with the attacker’s tuple (note that attackers’s tuples come without
any run annotation, as well as the encryptions they can produce and send):

M• ::〈I1, A, I2, B, {m1• , · · · ,mk•}�•
K12

[dest C]〉

In this case, the message tuple produced by the attacker points at the fact that
the key K12, created by A1 for B2, is in its knowledge ρ(z•). This is due to an
attack sequence similar to the one seen for the second attack. Now, B2 knows the
key because S sends it in the previous message. The analysis indeed associates
the session key K12 with history Smsg2ij 
 to the variable yK

12. The direction to follow
for our investigation focusses on the way S is triggered to send K12. Actually,
besides the “legitimate” flow of the protocol, this can be due to the replay of
the initial message of A1 in the first run, i.e. in the input S in the second run

(I1, A, I−1, S, I1, A, I2, B,{�xK
12}S run 2

KA
1

[orig A]X12)
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the following attacker’s tuple can be accepted

M• ::〈I1, A, I−1, S, I1, A, I2, B, {K12}A1 run 1
KA

1
[dest S]〉

Looking at the run annotations, we can reconstruct that the message of the
attacker is the replay of the same message, between the same principals, but
belonging to the previous run:

Amsg1ij , run 1 ::〈I1, A, I−1, S, I1, A, I2, B, {K12}A1 run 1
KA

1
[dest S]〉

In all the above cases, we are lucky because each entry of the ψ component
corresponds to a violation that can arise at run time and that is bound to a
particular attack sequence of WMF1. In general, this is not guaranteed. Never-
theless, our CFA annotations should however help, by determining which tuples
the attacker is able to inject with impunity in the protocol, how they can per-
colate in the rest of the messages, and by giving hints for advancing educated
guesses of the attack sequences.

5 Conclusions

Attack reconstruction is a sort of crime reconstruction in which one tries to
determine the sequence of actions that led to a violation. It is inherently hard:
different pieces must be put together without knowing in advance how the result-
ing picture should be. When a protocol cannot be validated by CFA, and this
is not due to over-approximation, it is interesting to look for the attacks that
made the analysis fail. To achieve this goal, we have enhanced the CFA in [5]
with static causal evidences that add details to the crime scene and that help
establishing the attack sequence. We have shown that the obtained analysis is
effective and we have given an articulated example of attack reconstruction.

Our approach is different from existing proposals in the literature as it mixes
the power and efficiency of CFA with the clarifying nature of causal information,
without resorting to a causal semantics. This work constitutes a proof-of-concept
that the approach is viable but there are still many aspects that need to be
inspected. We intend (i) to formalise the reconstruction method and prove its
correctness: in particular, we would like to provide an algorithm to perform
reconstruction; (ii) to apply the technique to other kinds of protocols to check
how our approach scales; (iii) to explore more elaborated causal information,
e.g. by including many steps of history, to see to which extent this improves the
precision of the reconstruction method.
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Abstract. Due to the inherent limitations of wet-lab techniques, the
experimental data regarding cellular signaling pathways often consider
single pathways or a small subset of them. We propose a methodology
for composing signaling pathways data in a coherent framework. Our
method consists in specifying the signaling pathway as a computation-
ally executable model. We rely on the timed concurrent constraint lan-
guage ntcc to represent the system in hand as a set of stoichiometric-like
equations resembling the essential features of molecular interactions. The
main advantages of our approach stem from the use of constraints (for-
mulas in logic) and from modeling of discrete time clocks in ntcc. We
can deal with partial information, representing the fact that several fea-
tures of the biological system may be undetermined. We can explicitly
represent the time needed for a reaction to occur. We model and sim-
ulate some well known cross-talking networks, such as the TNFα, the
EGF and the insulin signaling pathways as well as their interactions.

1 Introduction

Experimental techniques in biology are facing an impressive improvement in the
last few years. However, an exhaustive characterization of the whole set of cellular
biochemical processes is a task which is still far from being accomplished. In this
paper, we report on a computational method designed for integrating biological
data in a coherent framework thus fostering a system-level understanding of the
studied phenomenon. Even though our method can be useful in more general
contexts, here we focus on its application to cellular signaling pathways.

Cellular signaling pathways consist in groups of interacting proteins belong-
ing to various functional classes, e.g., receptors, adaptor proteins and kinases
[14]. Each pathway is specialized in sensing and transducing particular environ-
mental signals such as growth factors, hormones, cytokines, light and nutrients.
c© Springer International Publishing Switzerland 2015
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Typically they are composed by a receptor molecule which senses the environ-
mental stimuli and a set of transductor molecules. These molecules are function-
ally coupled with the receptor and have the role of amplifying and transducing
the signal. The activation of a signaling pathway may trigger events such as
gene transcription, cell movement and secretion of particular molecules. More-
over, misfunctioning or defects in signaling pathways are often associated with
important diseases such as diabetes, immune disorders and cancer [14,18].

In living cells, individual signaling pathways do not act in isolation. Rather,
they cross talk, i.e. they either share one or more components or they interact
through long or short range feedback loops. Thus, the overall behavior of a cell
embedded in a given environment should be seen as the integrated response to
a variety of sensed signals coming from the outside [3,14]. The overall picture
that emerges from this description is that of a complex interaction network.
This complexity makes it hard to obtain the complete knowledge of the dynam-
ics underlying the functioning of whole cellular signaling pathways. In principle
it might be possible to study the complexity of signaling pathways relying on
experimental techniques. This approach could be used for observing and mea-
suring the evolution in time and space of the whole cellular network at all the
possible hierarchical levels, i.e. from the molecular dynamics to the whole-cell
level. This strategy is, in fact, hard to conceive even theoretically. In addition,
also the technical limitations inherent to the currently available experimental
methods makes it difficult to cope with this kind of “systemic” investigation.
What is possible to achieve experimentally are partial views of the complete
scenario, e.g. the behavior of a subset of the cellular signaling pathways or the
biochemical properties of their components. The information contained in these
frames need to be recomposed a posteriori for obtaining, at least, some sketches
of the complete picture.

Organizing the available information in a coherent framework is an hard task,
especially for taking into account the dynamics of the interactions. Computa-
tional models and, in particular, executable models [19] can provide some help
for tackling this issue. Executable models are descriptions of the studied sys-
tem that are specified through formalisms typical of computer science. We can
thus rely on well established techniques for studying the formal properties of the
model in hand that can be meaningful from a biological point of view, as shown,
e.g., in [5,6,10]. Thus it becomes possible to use the same framework for both
simulating the dynamics of the phenomena of interest and for assessing formally
their properties, with a clear advantage over modeling strategies grounding only
on simulation algorithms. Even though this approach might be of little help in
providing solutions to the biological complexity, it represents a useful way for
gaining insights on studied systems on the base of the existing information. In
this context a number of proposals relying on different formalisms and model-
ing techniques, have been presented in the last ten years and some of them are
reviewed in Sect. 6.

In this paper we present a computational methodology for describing mole-
cular interaction networks, which allows the organization of the existing knowl-
edge in a compositional fashion. We specify a biological system as a set of
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stoichiometric-like equations resembling the essential features of molecular inter-
actions. These equations are automatically parsed, translated and computed by
an interpreter written in the timed concurrent constraint programming (ntcc)
language [28,34].

The ntcc language is a model of concurrency based on the concurrent con-
straint programming [35] model where processes interact by posting and querying
constraints on a store of partial information. Constraints can be seen as formulas
in logic that assert some information about the system variables. For instance,
the process tell(x > 42) increases the information accumulated on the store
and states that the concentration of a given component x is greater than 42. A
process when y < 20 do tell(x < 70) ask whether the information y < 20 can
be deduced (i.e., entailed via logical rules) from the current store. In that case,
it executes tell(x < 70) and increases the information we know about x. The
ask construct in ntcc then offers a declarative way (via logic) of synchronizing
concurrent processes.

Processes in ntcc are also subject to timed constraints. This feature makes it
an ideal language to specify reactive systems, i.e., those that constantly interact
with the environment as in the case of signaling pathways. For instance, the
(timed) process when c do nextP queries whether c can be entailed from the
store in the current time-unit and then, executes P in the next time-unit. Hence,
the context where P is executed may be different from the current one due to
different signals/stimuli sensed from the next interaction with the environment.

The advantages of the methodology we propose here root in the above men-
tioned features of ntcc. In particular, this language allows us to represent partial
information, thus taking into account the fact that several features of the biolog-
ical system may be undetermined or affected by experimental errors [15]. Hence,
even in the absence of detailed information, our method makes it straightforward
building runnable models which can help in gaining insights on the behavior of
the studied system. When new knowledge becomes available, models can be eas-
ily refined with the new information. Moreover, differently from other methods
similar to ours that also rely on declarative languages (see, e.g., [17]), ntcc allows
us to model explicitly the time which is necessary for a reaction to occur. We
exploit our methodology for modeling and simulating some well known signaling
pathways, namely the TNFα, EGF, and insulin signaling pathways. For that,
we use BioWayS [9], a software tool implementing the methodology that allows
users to perform in silico experiments.

The rest of the paper is structured as follows. Section 2 describes the tem-
poral concurrent constraint programming model and the syntax of the ntcc
calculus. The model in ntcc is presented in Sect. 3 as well as a brief description
of its implementation in the tool BioWayS [9]. Section 4 presents the modeling
and simulation of the TNFα, EGFR and insulin systems. We then describe the
related works in Sect. 5, and conclude the paper in Sect. 6.

A preliminary short version of this paper was published in [11]. Here we give
many more details and explanations. We also present at length the models of
the TNFα, EGFR and insulin systems.



186 D. Chiarugi et al.

2 Concurrent Constraint Process Calculi

Concurrent systems, i.e. systems whose components act simultaneously and
potentially interacting with each other, are ubiquitous in several domains and
applications. They pervade different areas in science (e.g., as in biological, phys-
ical and chemical systems) and engineering (e.g., as in security protocols and
mobile systems).

Due to their complex forms of interaction, concurrent systems are difficult
to specify and reason on. In computer science, process calculi like the π-calculus
[27] and CCS [26], among sever others, have been proposed to investigate such
systems. Process calculi provide a mathematical language where concurrent sys-
tems can be modeled. They also offer a set of reasoning techniques to formally
describe and predict the behavior of the modeled system.

Concurrent Constraint Programming (CCP) [33] (see a survey in [30]) has
emerged as a simple and powerful declarative model for concurrency tied to logic.
A fundamental issue in CCP is the specification of concurrent systems by means
of constraints. A constraint, e.g., x > 42, represents partial information about
some variables: the value of x is unknown (or not precisely determined) but its
value is greater than 42. Constraints represent then a piece of information (or
partial information) upon which processes may act.

The type of constraints in CCP is not fixed but parametric on a constraint
system. A constraint system provides a signature from which constraints can be
constructed and an entailment relation |= specifying inter-dependencies between
these constraints.

Usually the notion of constraint system is set up as first-order theory over
a given signature (i.e., a set of predicate and function symbols). The inter-
dependency c |= d expresses that the information specified by d follows from
the information specified by c, e.g., (x > 42) |= (x > 0). For a formal definition
of a constraint system we refer the reader to [33,35,36].

Processes in CCP can change the state of the system by telling information
to the store (i.e., adding constraints), and synchronize by asking information to
the store (i.e., determining whether a given constraint can be entailed from the
store). Processes are then built from constraints and the following constructs:

Definition 1 (Syntax of CCP). Processes P,Q, . . . in CCP are built from
constraints c, d, ... by the following syntax:

P,Q := skip | tell(c) | when c do P | P ‖ Q | (localx)P | p(x)

The process skip does nothing thus representing inaction. The process tell(c)
adds c to the store, thus making it available to the other processes. The process
when c do P asks if c can be deduced from the store. If so, it behaves as
P . In other case, it remains blocked until the store contains at least as much
information as c.

The process P ‖ Q denotes P and Q running concurrently possibly commu-
nicating via the common store. The process (localx)P behaves like P , except
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that all the information on x produced by P can only be seen by P (i.e., x
is a local variable in P ). Finally, consider a (recursive) definition of the form
p(y) def= Q. The process p(x) triggers the execution of the body of the definition
and evolves into Q[x/y].

Timed CCP. The ntcc calculus [28] extends CCP to consider the execution
of CCP processes along time-units. In ntcc, time is conceptually divided into
time intervals (or time-units). In a particular time interval, a CCP process P
gets an input (constraint) c from the environment, it executes with this input as
the initial store, and when it reaches its resting point (i.e., no further evolution is
possible), it outputs the resulting store d to the environment. The resting point
determines also a residual process Q which is then executed in the next time
interval.

This view of reactive computation is particularly appropriate for program-
ming reactive systems in the sense of Synchronous Languages [2], i.e., systems
that react continuously with the environment at a rate controlled by the envi-
ronment.

Definition 2 (Syntax of ntcc). Processes P,Q, . . . in ntcc are built from
constraints c, d, ... by the following syntax:

P,Q := skip | tell(c) |
∑

i∈I

when ci do Pi | P ‖ Q |

(localx)P | p(x) | nextP | unless c nextP | �P | !P

The processes skip, tell(c), P ‖ Q, (localx)P and p(x) are similar to those
in CCP.

Assume a finite set of indexes I = {i1, i2, ..., in}. The process∑

i∈I

when ci do Pi represents a process that, in the current time interval, must

non-deterministically choose one of the Pi whose corresponding guard (con-
straint) ci is entailed by the store. The chosen alternative, if any, precludes
the others. If no choice is possible then the summation remains blocked until
more information is added to the store. If I is a singleton, then we recover the
ask process when c do P in CCP.

The process nextP delays the execution of P to the next time-unit. The
negative ask unless c nextP is also a unit-delay but P is executed in the next
time unit when c is not entailed by the final store at the current time interval.
This can be viewed as a (weak) time-out: It waits one time unit for a piece of
information or stimulus c to be present and if it is not, it triggers activity in the
next time interval.

The process �P corresponds to the unbounded but finite delay of the exe-
cution of P . It allows us to express asynchronous behavior through the time
intervals. Intuitively, �P means P + nextP + next 2P · · ·

The replication !P means P ‖ nextP ‖ next 2P ‖ · · · , i.e. unboundedly
many copies of P but one at a time. We note that some forms of recursive
definitions can be encoded into ntcc by using the ! operator [28], in particular,
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parameterless recursive definitions used in the models proposed here. For this
reason, the syntax of ntcc processes usually omits the process p(x). However,
for the sake of presentation, we shall continue using this kind of constructs.

3 Biochemical Interactions as Concurrent Processes

A biochemical pathway can be represented as a group of interconnected bio-
chemical reaction, having the form:

A + B ��� C C + D ��� E E + F ��� G · · ·
in which the product of a reaction is the reactant of another one. A signaling
pathway is a biochemical pathway supporting the transduction of signals in a
biological cell: molecules present in the external environment can affect cellular
behavior linked to a specific receptor on the cell membrane and triggering the
biochemical reactions of the receptor-dependent signaling pathways.

Let us consider the following reaction scheme:

Insulin + Insulin Receptor ��� Insulin Receptor P (1)

This equation represents the interaction between insulin and its receptor. We
abstracted away various details regarding chemical features, such as reaction rate
dependence from the temperature. These approximations are consistent with the
in-vitro experiments, where the temperature is kept constant. The reaction rate
will be considered at simulation time, embedded in stochastic parameters. This
equation represents the occurrence of the reaction of one insulin molecule and
its receptor (IR). This reaction causes the (auto)phosphorilation of the receptor
molecule, and triggers the following events of the signal transduction pathway.

The Mathematical Model. We shall represent the signaling pathway by a finite
set of equations of the form

r1 :
∑

i∈I

a1
iAi ���

∑

i∈I

b1iAi

. . .
rm :

∑

i∈I

am
i Ai ���

∑

i∈I

bmi Ai

(2)

In the sequel, we shall use n = |I| to denote the number of compo-
nents involved in the signaling pathway and m to denote the number of
equations (reactions) considered. The constants aj

1, ..., a
j
n and bj1, ..., b

j
n are the

stoichiometric coefficients. Therefore, aj
1A1, a

j
2A2, ..., a

j
3An are reactants, while

bj1A1, b
j
2A2, ..., b

j
3An are products. We also assume that each equation rj has

associated a duration dur(rj) defining the number of time-units required for
that reaction to produce the components on the right-hand side.

In the equation rj , aj
1 molecules of reactant A1 interacts with aj

2 molecules of
reactant A2, .... and with aj

n molecules of reactant An and are thus consumed,
yielding bj1 molecules of product A1, ... and bjn molecules of product An.
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Our idea is to represent sets of reaction schemes as ntcc processes. Before
given the technical details, let us elaborate on the advantages of having such
a (formal) model of the system. First at all, the ntcc model can be seen as a
declarative and runnable specification. With declarative we mean that interac-
tions and synchronization patterns can be neatly characterized by logical entail-
ment. Moreover, parallel composition (roughly speaking, conjunction in logic)
allows us to refine the model by adding new processes posting more precise
information when available. On the other side, with runnable we mean that the
operational semantics of the calculus [28] can be used to simulate the system as
we show in Sect. 3.2. Then, in silico experiments can be directly implemented
from the model.

Another interesting feature of the proposed ntcc model is its constraint-
based nature and the ability to deal with partial information. This shall allow
us to specify systems where we do not have a complete description of it. For
instance, we can observe the behavior of the system even if we only have a
partial information about the concentration of the reactants involved. Moreover,
the timed nature of ntcc allows us to precisely capture the time dependencies
between interactions.

Finally, another advantage of using CCP-based languages, is that they can be
endowed with logical semantics (see e.g., [1,25,28,31]). This provides a valuable
tool for the verification of the modeled system.

3.1 The Model in ntcc

The model we propose consists of three different components: a process to choose
the rule to be applied in each time-unit; the processes modeling the equations and
the processes changing the state of the concentrations of each reactant/product
according to the equation applied. In the following, we show some excerpts of
the model.

We assume a set of equations as in Eq. (2). Recall that n denotes the number
of components and m the number of equations. Our model involves the following
variables:

– eq: with domain 1, . . . m. If eq = j, then the equation rj is applied in the
current time-unit.

– x1, ..., xn: representing the current concentrations of the components
A1, ..., An respectively.

Choosing the Rule Scheme. This component of the model chooses non-
deterministically one of the equations to be applied by binding the variable eq.
This is done by means of the non-deterministic choice operator as follows:

choose
def
= when x1

1 ≥ a1
1 ∧ ... ∧ x1

n ≥ a1
n do tell(eq = 1)

+when x2
1 ≥ a2

1 ∧ ... ∧ x2
n ≥ a2

n do tell(eq = 2)
+ . . .
+when xm

1 ≥ am
1 ∧ ... ∧ xm

n ≥ am
n do tell(eq = m)
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Intuitively, the process choose selects non-deterministically one of the equations
such that the current concentration of each component is higher than the reac-
tant necessaries for the equation to take place (e.g., xi

j ≥ ai
j). This process binds

eq to the number of the equation chosen.
Improvements here can be done by adding the stochastic information about

the reaction rate of each equation (if it is known). In this case, the non-
deterministic operator is replaced by a probabilistic choice to take into account
such rates (see e.g., [23]).

Representation of the Reaction. A reaction rj is modeled by a process
binding the variables xj

i+ and xj
i− to aj

i and bji respectively. This variables deter-
mine how the concentration of the component Ai must be affected due to the
application of the reaction: aj

i units are consumed and bji units are produced.

equationj
def
= when eq = j do

next tell(xj
1− = aj

1 ∧ ... ∧ xj
n− = aj

n) ‖
next dur(rj)tell(xj

1+ = bj1 ∧ ... ∧ xj
n+ = bjn)

The process equationj checks if the selected equation is rj (i.e., eq = j).
Then, in the next time-unit, the concentration of the reactants is reduced. Recall
that dur(rj) stands for the duration of the reaction rj to take place. Then,
dur(rj) time-units later, the concentration of the right hand components are
incremented.

State of the System. Finally, we have a process that computes the current
concentration of the components according to the concentration of them in the
previous time-unit and the above mentioned variables xj

i+ and xj
i−.

init
def= tell(x1 ∈ in1..in

′
1) ‖ ... ‖ tell(xn ∈ inn..in′

n)

state
def= next ! (tell(x1 = x1.prev +

m∑

j=1

xj
1+ −

m∑

j=1

xj
1−) ‖

. . .

tell(xn = xn.prev +
m∑

j=1

xj
n+ −

m∑

j=1

xj
n−))

As a parameter of the simulation, the user must provide the range of the ini-
tial concentration of each component (ini, in

′
i above). The process init imposes

the needed constraints to assert that the initial concentration of a component
Ai should be a value between ini and in′

i. On the other side, the process state
updates the concentration of the components. As we explained before, the con-
centration of Ai in the current time-unit (i.e., xi) is calculated by taking the
value of xi in the previous time-unit (i.e., xi.prev) and: (1) adding the variables
x1
i+, ..., xm

i+ which are the components produced when a rule is applied, and (2)
subtracting x1

i−, ..., xm
i− which are the required reactants to apply a rule.

Finally, the whole system looks like this:

system
def= init ‖ state ‖ choose ‖ equation1 ‖ ... ‖ equationn
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Besides encoding reaction schemes, we can also introduce in the model spe-
cific processes to describe behaviors that we are interested in studying. For
instance, a process of the form �! tell(x = 0) models the fact that eventually,
in the future, the concentration of x will drop to zero. This process, running in
parallel with system, may be used to study the behavior of the system when a
disease suppresses certain component from the environment.

3.2 A Simulation Tool: BioWayS

We have implemented a simulation tool based on our model, which we have
called BioWayS and which is freely available on author’s web sites. This tool is
based on a interpreter of the ntcc calculus written in the Oz Languages (http://
www.mozart-oz.org/).

BioWayS takes as input a text file containing the initial parameters of the
simulation as well as the description of the equations. Then, it computes the
final stores of each time-unit and outputs the number of equation applied and
the concentration of each component. In the following sections we shall show
some examples of simulations executed in this tool.

4 In Silico Experimentation

We used our modeling technique to study some interconnected cellular signaling
pathways related to three receptors: Tumor Necrosis Factor Receptor I (TNFR1 -
a transmembrane protein specialized in binding a ligand molecule called Tumor
Necrosis factor α), Insulin Receptor (IR - a transmembrane protein special-
ized in binding insulin), and the Epidermal Growth Factor Receptor (EGFR -
a transmembrane protein specialized in binding the epidermal growth factor).
This choice is motivated by the fact that both structural and experimental data
regarding these pathways are relatively abundant. These data can be used to
verify the viability of the model comparing them with the output of the simula-
tion. A schematic representation of the considered network is depicted in Fig. 1.
Note that, for the sake of readability, the depicted graph does not represent all
the reactions actually occurring in the real cell.

4.1 The Biological Data

As reported in [20] some aspects of the dynamics of this network have been char-
acterized through wet-lab techniques typical of proteomics. Roughly speaking,
these techniques allow to measure the quantity (concentration or activity) of a
group of cellular proteins over a period of time. The amount of a given protein
may remain constant or may vary during the considered time interval depend-
ing on the experimental conditions. As an example, Fig. 2 reports a plot of the
time course of the concentration of the protein Akt measured in different experi-
ments in which the initial amount of Insulin, TNF and EGF was varied. Figure 3
reports the so-called “heat map” (see figure caption for details) corresponding
to the plot of Fig. 2.

http://www.mozart-oz.org/
http://www.mozart-oz.org/
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Fig. 1. Schematic representation of the considered signaling network. The colored
arrows describe different kinds of interaction: green = activation, blue = slow activa-
tion, red = inhibition. Taken from [20] (Color figure online).

Fig. 2. Time course of the amount of phosphorylated Akt protein (pAkt) measured
through proteomic techniques in different experimental conditions: 500I = 500 μM of
insulin; 100T = 100 μM of TNFα; 100T 500I = 100 μM of TNFα and 500I = 500 μM of
insulin. Taken from [20].

4.2 The Model

We consider now the set of signaling pathways composing the network outlined
in Fig. 1. Using a system-level approach, our aim is to build a model based on the
information available in the literature, adequate for describing the measured data
and, eventually, to make predictions regarding the modeled system. Our model
network is composed by 37 different kind of molecules (nodes) and 48 equations
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Fig. 3. Heat map for pAkt. Each vertical colored bar corresponds to a measurement of
pAkt concentration at a given time. Reading the bars from left to right it is possible to
obtain the time course of akt concentration plotted in Fig. 2: 1 corresponds to 100T, 2
to 500I and 3 to 100T 500I. The “color code” must be interpreted as: green indicates low
concentrations, black indicates intermediate concentrations, red indicates high concen-
trations. Note that, for better comparing the obtained results, the concentration values
expressed through the color code are not absolute values as they are normalized to the
maximum value obtained in all the measurements concerning the considered protein
performed in [20] (Color figure online).

(interactions). Each interaction is rendered by a “reaction rule” resembling the
corresponding chemical equation. Each rule is written in the format accepted
by BioWayS. The input for a simulation run is composed by the list of rules
(i.e. the model of the network), a set of parameters specifying the number of
copies for each involved molecule (i.e. the amount of reacting molecules) and the
length of the computation (i.e. the time length of the experiment). Noteworthy,
for each rule, it is possible to specify a parameter indicating the amount of time
needed for the corresponding reaction to occur. More precisely, this parameter
corresponds to the first passage time and is evaluated according to [29].

Note that, for estimating the first passage time for an enzymatically catalyzed
reaction, it is not necessary to know the details regarding the reaction’s mech-
anism and, thus, the kinetic constants (namely the elementary or microscopic
kinetic constants) related to each elementary step. Instead, the needed data are
the enzyme and substrate(s) concentrations, the enzyme-substrate(s) “affinity
constant(s)” and the overall (macroscopic or apparent) rate constant. The first
two parameters were taken from the literature or determined heuristically let-
ting their initial amounts ranging on reasonably realistic intervals estimated by
comparison with similar cases. The last parameter was estimated using Kin-
fer (http://www.cosbi.eu/index.php/research/prototypes/kinfer) and literature
data.

It is worth noticing that the choice of the above mentioned approach reflects
the need of building a “biochemically consistent” model using correctly the avail-
able data. This allows us to avoid common misconceptions such as the use of
apparent rate constants instead of the microscopic rate constants. This mistake
is often done in works relying on the Gillespie’s Stochastic Simulation Algo-
rithm (SSA) [21] for the (stochastic) simulation of biochemical pathways. This
Monte Carlo Based SSA, needs the knowledge of the microscopic rate constants,

http://www.cosbi.eu/index.php/research/prototypes/kinfer
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Fig. 4. Plot of the amount of tyrosine-phosphorylated IRS1 present at the end of
simulations in presence of EGF (arbitrary units). The plot should be compared with
that in Fig. 5. Taken from [20].

which are often impossible to measure and evaluate in biochemistry. To circum-
vent this problem, apparent rate constants are typically used. This introduces a
heavy approximation with unpredictable effects on the results of simulations.

According the underlying model, in each step of the computation, BioWay
chooses non deterministically one rule and simulates the occurrence of a chemical
reaction. Hence, what we observe is that reactant molecules are “consumed” and
new copies of other molecules are “produced” according to the reaction scheme1.

4.3 Experiments and Results

The in silico experiments were performed by simulating the model described
in Sect. 4.2 through BioWayS. In the first experimental session, we tuned the
model and tested its viability by comparing the simulations outputs with the
corresponding wet-lab data reported in [20]. In particular, the in silico experi-
ments were performed under different initial conditions mimicking the presence
of different combinations of insulin, TNFα and EGF in the extracellular envi-
ronment. For each combination of these three molecules, simulations differing in
time length were performed so to obtain time courses of the measured values,
namely, the amount of the various kind of molecules at the end of each computa-
tion. To measure the goodness of fit, we compared the “real” and “virtual” time
series through the X2 test (p > 0.05). In all the tested cases, the X2 test showed
that our results are consistent with wet-lab data. Some examples of these results
can be seen in Figs. 4 and 6. The reader may wish to compare these figures with
Figs. 5 and 2 respectively, representing the “real” counterparts.

For further validate our proposal, we studied particular cases of cross talk
among the considered signaling pathways. In particular, it is known by the lit-
erature [13] that the pathways regulated by TNFR1 and IR interact influencing
their signaling dynamics. Indeed, when TNFR1 receptor is active (i.e. when

1 This is the more general case. It may happen that the consumption of a reactant
does not lead to the production of other molecules or that, as in the case of enzymes,
a molecule takes part to a reaction but is not consumed by it.
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Fig. 5. Plot representing the time course of tyrosine-phosphorylated IRS1 as measured
in [20] in presence of 100 ng/ml of EGF. The plot should be compared with that in
Fig. 4.

Fig. 6. Plot representing the amount of phosphorylated Akt protein (pAkt) present
at the end of simulations in different experimental conditions corresponding to that
presented in Fig. 2. The plot should be compared with that in Fig. 2.

TNFα is bound) IR-dependent pathways are inhibited. In other words, TNFα
negatively interferes with insulin signaling. The effects of this cross-talk inter-
action can be observed through proteomic techniques monitoring the amount
of phosphorylated Insulin Receptor Substrate 1 (IRS1). This protein is specifi-
cally phosphorylated in different points, namely on tyrosine and serine residues2.
Phosphorylation on tyrosine enhances the activity (i.e. the catalytic capabilities)
of IRS1 and is typically performed by IR when is bound to insulin. Thus, tyrosine
phosphorylation of IRS1 characterizes the activation of IR-dependent signaling
pathways. Phosphorylation on serine residues decreases the activity of IRS1 and
prevents tyrosine phosphorilation. This typically occurs when certain signaling
pathways, such as TNFR dependent pathways, are active and leads to the inac-
tivation of IR-dependent signaling pathways. As it can be noticed in Fig. 1, while
the relationship between IR and IRS1 is structurally well characterized (IRS1

2 Proteins are composed by chains of aminoacyds. For biochemical reasons, aminoa-
cyds are often called residues.
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directly interacts with IR) the same thing cannot be said for TNFR and IRS1.
Indeed, even though it is well documented that the activation of TNFR1 leads to
the serine phosphorylation of IRS1 (and, thus, to the inhibition of tyrosine phos-
phorilation (see Fig. 8)) the structure of the pathway sustaining this interaction
is still unclear. Actually, the model presented in Sect. 4.2 is not able to reproduce
insulin/TNFα interference. This may depend on the fact that the experimental
substrate used in [20] is represented by a cell culture line (namely human colon
adenocarcinoma cells, ATCC) which, being cancerous cells, may not function as
the non-cancerous ones such as adipocytes.

Our hypothesis was that our model, being shaped on the findings reported in
[20], does not mimic “correctly” the insulin-TNF interactions. Some experimen-
tal evidences have lead to the characterization of a possible pathway responsible
of the cross-talk between insulin and TNFR pathways having this function [13]
(Fig. 7). To test our hypothesis, we inserted compositionally this pathway in
our model. Adding new knowledge compositionally turns out to be particularly
easy in our framework, due to the parallel composition operator in ntcc and the
synchronization of processes via entailment.

We then performed a new session of in silico experiments by simulating the
model through BioWayS under different initial conditions, mimicking the pres-
ence of insulin, TNFα or both in the extracellular environment. The results of
these experiments (see Fig. 9 for details) show that the trend of in silico behav-
ior resembles what happens for the real counterpart. In particular when both
IR-dependent and TNFR1-dependent pathways are active (i.e., when TNFα and
insulin are both present), the amount of tyrosine-phosphorylated IRS1 is lower
with respect to the case in which only IR-dependent pathways are active.

Summing up, our approach allows us to integrate different pieces of infor-
mation into a coherent framework, thus obtaining a model in which the experi-
mental results reported in [20] and [13] can be composed in a common picture.
Even though the model we propose is consistent with the available data, we are
aware that tailored experimental studies are needed for validating exhaustively
our results.

Fig. 7. Synoptical representation of the pathway linking activation of TNFR1 with
IRS1 serine phosphorylation reconstructed on the base of experimental evidences
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Fig. 8. Measured amount of phosphorylated IRS1 (pIRS1) in presence of only insulin
(−) or TNFα and insulin (+) measured at different time intervals (0,1,3,5 min). Note
that pIRS1 is lower when also TNFα is present in the extracellular medium

Fig. 9. Amount of tyrosine-phosphorylated IRS1 present at the end of the simulation
in different experiments, mimicking those reported in Fig. 8. The white columns rep-
resents the final amount of tyrosine-phosphorylated IRS1 (arbitrary units) when only
insulin is present in the environment. The colored columns represent the final amount
of tyrosine-phosphorylated IRS1 (arbitrary units) when both insulin and TNFα are
initially present. The histogram should be compared with those in Fig. 8.

5 Related Work

In this work we have presented the theoretical framework, while the work [9]
focuses on the implementation made by the tool BioWayS.

Many works in the literature describe computational models for biological
systems. They use many different formalisms, depending on the aspects to focus
on. Here we cite some examples of those approaches in the literature which are
closer to our methodology without the aim of being exhaustive.

In [8] the authors report on the specification and analysis of a VIrtual CEll
(VICE) modelling a hypothetical cell with a genome as basic as possible. They
use an enhanced version of the π-calculus and have implemented a prototype for
studying the behavior of VICE.



198 D. Chiarugi et al.

Petri Nets (PN), both in their classical version [22] and in their stochastic
ones [32] are one of the first approaches which has been used for modeling living
systems. Pathway Logic (PL) [37] is a symbolic approach to the modeling and
analysis of biological systems which is based on rewriting logic [24]. Rewriting
logic is a logical framework which allows one to easily formalize systems. The
states of a system are represented as elements of an algebraic data type, specified
by an equational theory. The applications of rewrite rules allow to describe local
transitions between states. A sequence of states corresponds to a computation,
and —in the case of biological systems—to pathways. Our methodology should
have the advantage of modeling the time of reactions and treat in a natural way
partial information.

The language Biocham was introduced in [16], and was designed for being be
very close to the classical rules biologists use to describe biochemical reactions.
For example, the formation of a complex composed by two proteins, A and B, is
governed by the rule A,B −→ A+B, where A,B models the presence of two sep-
arated proteins. The application of the rules is non-deterministic. Reaction rules
for kinetic expressions, such as the mass action law, for the Michaelis-Menten
kinetics and for the Hills kinetics, have been also implemented in Biocham [16].
We believe that we can model different sets of reaction rules by exploiting the
fact that our models do not require precise stoichiometric data. This is due to
the use of constraints for representing partial information.

A programming language similar to ours has been used for representing Bio-
logical systems in [4]. The work in [4] considers a language which is suitable for
modeling hybrid systems, i.e., a system which combines continuous and discrete
time evolutions. Some other major differences are as follows. We mainly focus on
deriving a simple representation of equations, which can be easily used by non
expert users. We model time duration of reactions as well as partial information,
like [4], but we present a new methodology which allows us to compose sev-
eral pathways and find results which normally requires the availability of more
refined data. We also refer the reader to [7] where a stochastic extension of CCP
is considered for the modeling of biological systems.

We note that there exist other formalisms which can exploit composition-
ality. For instance the formalisms which have an algebraic semantics, e.g. [4].
Another formalism which allows for a compositional development is possible in
the framework BioPepa [12], in which they define a new language for biological
modeling, while we want to show the suitability of an existing general purpose
language.

6 Concluding Remarks

We have described a methodology for representing biochemical systems in a com-
positional fashion. In our framework, a biological system is specified by a set of
stoichiometric-like equations which capture the essential features of molecular
interactions. These equations are then evaluated and computed by an inter-
preter written in a Timed Concurrent Constraint Programming language. Our
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approach allows us to model partial information as set of constraints, thus deal-
ing with the possible lack of precise information about some components of the
system. Differently from other approaches similar to ours, we are able also to
model the fact that a (bio)chemical reaction can occur within a certain time. We
have also implemented a software tool used here to study the system involving
TNFα, EGFR and insulin signaling pathways. In this context, we have shown
how our approach makes it possible to compose different pieces of information
coming from experimental studies, thus giving rise to a model which integrates
the available knowledge.

Acknowledgements. We thank the anonymous referees for their helpful comments.
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Abstract. Local policies have been proposed in [6] as a formalism for
efficient and effective policy verification and enforcement. The basic app-
roach consists of an enriched syntax of a programming language with a
scope operator that the developer uses to apply a local policy to a specific
portion of her code. Due to their fair expressiveness and modularity, they
have been successfully applied also to object-orienter languages and web
services. In this paper we apply the existing approach to the Android
application framework. To this aim, we present a novel programming
language, namely λ , which includes both the Android IPC logic and
local policies.

1 Introduction

The Android security framework aims to both “reduce the frequency and impact
of application security issues” and “avoid difficult decisions about security”1.
Oversimplifying, it consists of a permissions system and a monitor which dynam-
ically checks whether access operations have appropriate privileges. Permissions
are labels, e.g., a.p.INTERNET and a.p.CAMERA2, which precisely identify a set of
privileged operations. Such operations can be performed, typically by an appli-
cation, only after exhibiting the appropriate permission. Developers declare the
list of permissions requested by their applications and users inspect them before
installing the code. If a user agrees on the requested permissions, she confirms
the installation and the application obtains all the permissions in the list.

The main limitations of the permission system are the coarse-grained protec-
tion and the lack of a formal semantics. These drawbacks have been highlighted
by several authors. For instance, in [17,18] the authors show how the dynamic
permission checking of Android is ineffective when applications interact, i.e.,
they are not compositional. Moreover, after a systematic study of more than
thousand Android applications, Enck et al. [16] confirm that “many developers
fail to take necessary security precautions”.

Local policies [7,9] have been proposed by Bartoletti et al. as a formalism
for defining safety and liveness policies which admit both static verification and
runtime enforcement. Application developers attach one or more policies to a
piece of source code they want to secure through a language operator. A type

1 http://developer.android.com/training/articles/security-tips.html.
2 For brevity, we write a.p instead of android.permission.

c© Springer International Publishing Switzerland 2015
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and effect system is responsible for inferring behavioural models of the appli-
cations, namely history expressions. Then, the policies and history expressions
are automatically verified, through model checking. All the policies that pass
the verification are simply removed as they cannot be violated at runtime. The
others are dynamically enforced. Due to their modular nature, local policies have
been also successfully exploited for defining security policies of web services [8].

In this paper we present an extension of the Android security framework with
local policies. We show that the existing theory for web services can be adopted
for the Android applications. Since the theoretical framework is unchanged, our
proposal preserves all the existing formal guarantees, e.g., well-typed programs
cannot cause wrong executions. Interestingly, the application of local policies to
the Android application framework is even more natural than for web services
(see Sect. 7).

Structure of the Paper. In Sect. 2 we briefly present some preliminary notions
about the Android OS and applications. In Sect. 3 we present a case study with
the twofold objective of clarifying the Android framework and serving as a work-
ing example. Section 4 introduces our programming model based on an enriched
version of the λ-calculus, while Sect. 5 describes the type and effect system. Then,
in Sect. 7 we briefly discuss few relevant aspects and open issues. Finally, Sect. 8
concludes the paper.

2 Background

Below we briefly recall the Android OS structure and, in particular, its appli-
cation level. Moreover, we present the relevant aspects of the Android Security
Framework.

Android Application Framework. The Android Application Framework (AAF)
is mainly based on Java with few, still substantial, differences. The first one
is that Android does not mount a standard Java virtual machine. Instead, it
adopts a customized/optimized one called Art VM (which recently replaced the
Dalvik VM). Although using a different VM has noticeable effects (mostly the
usage of a distinct intermediate language), it does not impact on the semantics
of programs, as the Art VM is just another implementation of the interpreter
of the high level language3. Hence, we can neglect this aspect in the rest of the
paper.

The second and more interesting difference is the presence of Android-specific
APIs. These APIs provide high level abstractions of the underling system oper-
ations. Among them, inter-process communication (IPC) and application com-
ponents are of paramount importance. As a matter of fact, Android applications
use IPC to perform application-to-application invocations. Invocations activate
a component that the callee has published to the system (at install time).
3 More precisely, it is the interpreter of the intermediate language obtained from the

compilation of the high level one. As far as the compilation process is semantic-
preserving, the argument holds.
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Four types of components exist in Android, i.e., Activity, ContentProvider,
Service and BroadcastReceiver, and we briefly introduce them below. An Activ-
ity implements a graphic element of the application, i.e., a user interface and
its controls. ContentProviders mediate the access to data sources, e.g., data-
bases. Instead, a Service represents an asynchronous, background computation
often providing a binding between events and handlers, e.g., for geolocalization.
Finally, a BroadcastReceiver is an IPC dedicated component which handles
intents, i.e., IPC-specific objects carrying invocation data, coming from other
applications.

Components are contractually defined through a xml file, called manifest,
included in each application package. At installation time, Android retrieves the
list of application components from the manifest file. The list is registered and
made publicly visible among the existing applications to permit IPC invocations.

Android Security Framework. The Android Security Framework (ASF) consists
of a collection of security mechanisms residing at different levels of the OS struc-
ture. For instance, the original Android/Linux kernel implements DAC mecha-
nisms while, from OS version 4.4., SEAndroid supports MAC policies. Also, the
Art VM carries the same security mechanisms as a standard JVM, e.g., stack
inspection and application sandboxing.

Instead, at application level, Android exploits a permissions system for reg-
ulating the access to resources and components. Briefly, applications wanting to
access security critical resources, e.g., the storage card or the internet, must be
authorized by the user. The request is carried by the Android manifest which
includes a list of the permissions requested by the application, e.g., a.p.READ SD
and a.p.INTERNET. At installation time, the user is prompted with such list and,
if she confirms, the application is installed and receives all the requested permis-
sions. Since a manifest can also declare its own permissions, the mechanism can
be extended to application-specific resources.

Moreover, application can apply filters to their components. Filters are
declared in the manifest for restricting the access to the components. Briefly,
a filter consists of a list of permissions that an application must exhibit when
invoking the watched component.

At runtime, IPC calls are labeled with the permissions owned by the source
of the invocation. Then, IPC invocations are compared with the existing filters
and components declaring unsatisfied constraints, i.e., requiring at least one per-
mission that the caller does not own, are not triggered. If two or more compatible
receivers exist, the user must pick one.

3 Case Study

In order to present our methodology we propose the following case study. Smart-
Town is a mobile application allowing citizens to organize their urban life. The
application takes advantage of an existing ecosystem of components for planning
city travels and booking events. Users select among several events located in the
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urban area and schedule their visit through an interactive map. Then, the Smart-
Town triggers the existing applications dedicated to public transportation, event
booking and e-payment. We briefly introduce each application in the ecosystem.

WebPay is an application for electronic payments over the internet. It consists
of two components, WebPayReceiver (wpr) and WebPayActivity (wpa). Appli-
cations can trigger a payment by sending a pair p = (a, t). Then the application
displays WPA to ask the user whether she confirm the payment of a$ to t. If so,
the application performs the payment.

TubeRider provides a subway connection between the current position and a final
destination d. In consists of a TubeRiderReceiver (trr), which receives requests
carrying d, and a TubeRiderActivity (tra), which shows the subway map.

CabWhistle is a single-component taxi reservation application. External com-
ponents can invoke CabWhistleReceiver (cwr) by submitting a destination d for
requesting a taxi at the current location.

TableBooking allows for checking a list of restaurants and make reservations.
The TableBookingReceiver (tbr) can be invoked by submitting a date w. The
application uses w to search the restaurants having free tables and make a reser-
vation. The component TableBookingActivity (tba) is used to display the list of
restaurants.

MovieMania works in a similar way: MovieManiaReceiver (mmr) requires a date
w for reserving a seat and MovieManiaActivity (mma) displays the list of cinemas.

WebPayReceiver

WebPayActivity

WebPay

TubeRiderReceiver

TubeRiderActivity

TubeRider

CabWhistle

CabWhistleReceiver

TableBookingActivity

TableBookingReceiver

TableBooking

MovieManiaReceiver

MovieManiaActivity

MovieMania

Fig. 1. Applications and components participating in the SmartTown case study.
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Figure 1 depicts the applications and components described above. We use
rectangular boxes for the activities and rounded ones for receivers. Moreover, we
mark the publicly visible, interface receivers with the symbol ◦.

4 Programming Model

In this section we present the programming language λ (lamdba-droid), which
is an adaptation of λreq to the Android application framework.

Syntax. Briefly, that of λ amounts to the syntax of the λ-calculus enriched
with special operators for defining the scope of security policies and for declaring
invocations of Android components. The syntax of λ is the following.

e, e′::= ∗ | x | α | if b then e else e′ | λzx.e | ee′ | ϕ[e] | ψ〈e〉 | ipcrτ

The atomic expressions of λ are the empty term ∗, the variables x, y ∈ Var
and the access events α, β ∈ Act. Intuitively, access events denote all and only
the security relevant operations that a program can perform. Other expressions
are the conditional branches (where b stands for a boolean condition being imma-
terial for the current dissertation), function abstractions (where z denotes the
function itself in its body e) and function applications. The main differences
with the standard λ−calculus are policy framings and inter-process communica-
tions (IPC). Framings enclose an expression e to denote that it lays in the scope
of a security policy. Policies can be either safety (ϕ[e]) or liveness (ψ〈e〉) ones.
A detailed presentation of the used policy language can be found in [10]. Instead,
an IPC term ipcrτ represents a request for an Android component having type τ .
Each request is uniquely identified by a label r. Request types can be either 1 or

τ
(ϕ,ψ)−−−→ τ ′, where (ϕ,ψ) stand for security policies that the callee must comply

with. We omit ϕ and/or ψ from a request type when they are equal to tt.
As usual in λ-calculus, we feel free to use parentheses to improve the read-

ability and we introduce few abbreviations.

λx.e � λzx.e (with z �∈ fv(e)) λ.e � λx.e (with x �∈ fv(e)) e; e′ � (λ.e′)e

〈v, v′〉 � λf.(fv)v′ fst � λp.p(λx.λy.x) snd � λp.p(λx.λy.y)

τ × τ ′ � τ → τ ′ → (τ → τ ′ → τ ′′) → τ ′′ (for some τ ′′)

Briefly, we omit the function name z in λ terms when it is not referenced in
the function body and, under the same condition, we can also omit the formal
parameter x. Sequences e; e′ correspond to a function application. Then, we
define pairs 〈v, v′〉 and functions fst and snd to access the first and second
element of a pair (respectively). Finally, we introduce τ × τ ′ as an abbreviation
for the type of a pair.
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Table 1. Implementation of the components defined in Sect. 3.

Component Implementation

WebPayReceiver ewpr = λp.if ok then αidn; αnet; else ∗
TubeRiderReceiver etrr = λd.αcgl; (recr1 C × A)〈2, ticket@csc.com〉
CabWhistleReceiver ecwr = λd.αfgl; (recr2 C × A)〈10, whistle@trs.net〉; αsms; αcap

TableBookingReceiver etbr = λw.αnet; (recr3 C × A)〈50, booking@res.com〉
MovieManiaReceiver emmr = λw.(recr4 C × A)〈15, buy@cinema.tv〉; αnet

Moreover we define the following abbreviations which are specific for the four
kinds of Android components.

act(ϕ,ψ)
r � ipcr1

(ϕ,ψ)−−−→ 1 srv(ϕ,ψ)
r τ � ipcr(1 → 1)

(ϕ,ψ)−−−→ τ

rec(ϕ,ψ)
r τ � ipcrτ

(ϕ,ψ)−−−→ 1 prv(ϕ,ψ)
r τ → τ ′ � ipcr1

(ϕ,ψ)−−−→ (τ → τ ′)

Example 1. Consider again the components of Sect. 3. In Table 1 e provide an
implementation for all the components our case study.

Intuitively, WebPayReceiver (ewpr) receives payment coordinates p and, if the
user confirms (constant ok), accesses the user identity (αidn) and connects to
the payment service (αnet). Otherwise, no operation is carried out. TubeRider-
Receiver (etrr) gets a destination d, accesses the course-grained location of the
device (αcgl) and, finally, requests a payment of 2$ to the city subway company
(ticket@csc.com). Also notice that here we introduce the types for currency, i.e.,
C, and email addressed, i.e., A. Instead, CabWhistleReceiver (ecwr) uses the fine-
grained location of the device (αfgl), triggers a component for paying 10$ to the
taxi request service (whistle@trs.net), sends an SMS carrying the taxi request
(αsms) and captures the answer message (αcap). TableBookingReceiver (etbr)
receives a date w, accesses the network (αnet) and requests a payment of 50$ for
booking the restaurant (booking@res.com). Finally, MovieManiaReceiver (emmr)
requests a payment of 15$ for the cinema reservation system (buy@cinema.tv)
and uses the network to confirm the operation (αnet).

Example 2. We propose the following implementation for the SmartTown appli-
cation.

λ.(recr D)tdy; (recr′ L)loc

Briefly, the application consists of an activity which requests a reservation to
some event for today (tdy) and then requests a connection to the event location
(loc). Here we introduce types D and L for dates and locations, respectively.

Operational Semantics. The computation performed by a program, i.e., a term
of λ , consists of a sequence of steps. Each step is a transition from a source
configuration to a resulting one. Configurations are pairs 〈η, e〉 where η is
the current execution trace, i.e., the sequence of events generated so far by the
execution, and e the expression under evaluation. Transitions are denoted by →π
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where π is a finite mapping, called simple plan (hereafter just plan), between
IPC requests and a component id, defined as follows.

π, π′ ::= ∅ | r[
] | π ◦ π′

The symbol ∅ stands for the empty mapping, r[
] maps the request r to the
component labeled with 
 (we assume labels to be unique) and π ◦ π′ is the
composition of two plans. For brevity, we write π(r) = 
 whenever the plan π
maps r to 
.

Rules are mostly inherited from [8]. Below we recall them, also highlighting
the differences. In words, function application e1e2 proceeds by reducing the first
expression until a value is reached (rule (E-App1)), then e2 is also reduced to
a value (rule (E-App2)). Eventually (rule (E-App3)), the application reduces
to the function body where the formal parameter x and the function name

Table 2. Operational semantics

eluRemaN

(E-App1)
η, e1 π η , e1

η, e1e2 π η , e1e2

(E-App2)
η, e2 π η , e2

η, ve2 π η , ve2

(E-App3)
—

η, (λzx.e)v π η, e{v \ x, λzx.e \ z

(E-Ev)

—
η, α π ηα,

(E-If1)
B(b) = tt

η, if b then e1 else e2 π η, e1

(E-If2)
B(b) = ff

η, if b then e1 else e2 π η, e2

1)
η, e π η , e η |= ϕ

η, ϕ[e] π η , ϕ[e ]

2)
η |= ϕ

η, ϕ[v] π η, v

1)
η, e π η , e η |= ψ

η, ψ e π η , ψ e

2)
η |= ψ

η, ψ e π η, e

(E-Ipc1)
e : τ ∈ Cmp π(r) =

η, (ipcrτ)v π η, e v
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z are replaced with the actual value v and the function itself (respectively).
An event α extends the current trace η and reduces to ∗ (rule (E-Ev)). The
evaluation of conditionals branches is driven by two rules (rules (E-If1) and
(E-If2)). Depending on whether the guard b evaluates to tt or ff4, they reduce
to either the first or the second branch. Safety framing admits reduction of the
target expression e as the obtained trace complies with the policy ϕ (in symbols
η′ |= ϕ — rule (E-SF1)). When the expressions reduces to a value, the framing
operator can be removed if the current trace does not violate ϕ (rule (E-SF2)).
Dually, liveness framings permit reductions of their target till the current trace
does not satisfy the property ψ (rule (E-LF1)). Instead, when the trace satis-
fies ψ the frame is removed (rule (E-LF2)). Clearly, liveness properties cannot
be effectively enforced at runtime. Thus, their verification is demanded to the
static analysis procedure (see Sect. 5). IPC invocations require more attention.
An implicit invocation (rule (E-Ipc1)) is resolved by retrieving the function
e� ∈ Cmp provided by the current plan π. Also, its type τ must comply with
the requested one. Notice that, unlike previous proposals for web service com-
position [8], here we force an exact matching between the type of the request
and that of the callee. The motivation is that available web services are typi-
cally unknown to the caller and they are retrieved through a discovery phase.
Instead, the Android application framework uses types to establish predefined
connections between components. By design, application developers must know
the type of the component they want to invoke when writing their code5. Nev-
ertheless, this restriction does not affect the existing programming framework
(i.e., it has no effect on the rules of Table 2).

Example 3. We show the execution of the term (ewpr)v (for some value v) from
execution trace ε, under plan ∅. Also we assume B(ok) = true.

—
(E-App3)

ε, (ewpr)v ∅ ε, if ok then αidn;αnet; else

B(ok) = tt
(E-If1)

ε, if ok then αidn;αnet; else ∅ ε, αidn;αnet

—
(E-Ev)

ε, αidn ∅ αidn,
(E-App2)

ε, (λ.αnet)αidn ∅ αidn, (λ.αnet)
—

(E-App3)
αidn, (λ.αnet) ∅ αidn, αnet

—
(E-Ev)

αidn, αnet ∅ αidnαnet,

From top to bottom, we start by applying rule (E-App3) since both (ewpr) and
v admit no reductions. Then, we apply rule (E-If1) to the conditional statement.

4 We assume an evaluation function B to be defined.
5 http://developer.android.com/guide/components/intents-filters.html.

http://developer.android.com/guide/components/intents-filters.html
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Since, we assume the guard to evaluate to true, we reduce to the first branch. The
sequence αidn;αidn stands for (λ.αnet)αidn. Thus, we follow rule (E-App2) to
reduce the actual parameter of the function application. Such reduction requires
to apply rule (E-Ev). The computation terminates by applying rules (E-App3)
and (E-Ev) to the remaining terms.

5 Type and Effect

A type and effect system infers a behavioural model from each λ term. Models
are represented through history expressions which statically denote the execution
traces that the term generates at runtime. In this section we recall the type and
effect system for λreq and adapt to λ . For further details we refer the interested
reader to [8].

5.1 History Expressions

History expressions are all and only the terms respecting the following abstract
syntax.

H,H ′::= ε | h | α | H · H ′ | H + H ′ | ϕ[H] | ψ〈H〉 | μh.H | {πi � Hi}

An history expression can be the empty one ε, a variable h, a single access event
α, a sequence H ·H ′, a non-deterministic choice H+H ′, safety (liveness) framing
ϕ[H] (ψ〈H〉, resp.), a recursion μh.H or a planned selection {π1�H1 . . . πn�Hn}.
Most of the terms are straightforward and resemble their analogous in λ . Given
the plan π, a planned selection {π1 � H1 . . . πn � Hn} describes a computation
which behaves as Hi if π includes πi.

Denotational Semantics. The denotational semantics is a function �H�π
ρ map-

ping a history expression H to a set of execution traces H. Also, the denotational
semantics requires a plan π and a variable environment ρ. The denotational
semantics is defined by the following rules.

ε π
ρ = {ε} α π

ρ = {α} h π
ρ = ρ(h) H · H π

ρ = H π
ρ H π

ρ

H + H π
ρ = H π

ρ ∪ H π
ρ ϕ[H] π

ρ = [ϕ H π
ρ ]ϕ ψ H π

ρ = ψ H π
ρ ψ

μh.H π
ρ =

n>0
fn(!) where f(X) = H π

ρ{X/h}

{π1 1 . . . πn n} π
ρ =

i∈[1,n]

{πi i} π
ρ {∅ } π

ρ = H π
ρ

{π0 ◦ π1 } π
ρ = {π0 } π

ρ ∪ {π1 } π
ρ

{r[ ] } π
ρ =

H π
ρ if π(r) =

⊥ otherwise

Briefly, a history expression ε denotes the set only containing the empty trace,
similarly α denotes the singleton set {α} and the set denoted by a variable h
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is provided by the environment ρ. Sequences denote the set of traces obtained
through concatenation and choices correspond to sets union. Policy framings
result in sets of traces wrapped between two special events, i.e., [ϕ and ]ϕ (safety)
or 〈ψ and 〉ψ (liveness). Instead, a recursion corresponds to the least fixed point
of a function f (the symbol ! stands for trace truncation). A planned selection
denotes the finite union of the sets denoted by each selection, individually, and
similarly, composed plans results in set union. Finally, a selection denotes the
same set as the history expression H if the left-hand side r[
] is compatible with
the current plan π.

Example 4. Consider the history expression H = {r1[
1] �α, r2[
2] �μh.β ·h+ ε}
and the plan π = r1[
1] ◦ r2[
2]. We compute �H�π

∅ as follows.
�H�π

∅=�{r1[
1] � α, r2[
2] � μh.β · h + ε}�π
∅

=�{r1[
1] � α}�π
∅ ∪ �{r2[
2] � μh.β · h + ε}�π

∅
=�α�π

∅ ∪ �μh.β · h + ε�π
∅

={α} ∪ �μh.β · h + ε�π
∅

={α} ∪ {ε, β} ∪ {ε, β, ββ} ∪ {ε, β, ββ, βββ} ∪ · · ·

Validity. Valid history expressions are those denoting traces that never vio-
late the security policies they are subject to. Checking the validity of a history
expression can be reduced to a language inclusion problem. Intuitively, a spe-
cial class of finite state automata, namely Usage Automata, model the security
policies appearing in a history expression. A usage automaton accepts a trace if
and only if it violates the corresponding security policy. Then, the set of traced
generated by a history expression is compared with those accepted by the usage
automata (for the local policies) appearing in it. If an intersection exists, the
history expression denotes at least an illegal trace. For a detailed presentation
of the problem of model checking usage automata see [10,11].

5.2 Type and Effect System

The type and effect system is defined by the rules of Table 3. A typing judgement
has the form Γ �Cmp e : τ �H with the meaning that the expression e, under envi-
ronment Γ, has type τ and side effect H. Type environments are finite mapping
between variables and types (we write ∅ for the empty mapping and Γ;x : τ
for the environment mapping x to τ and behaving like Γ in the other cases).
A type can be the unit one 1 or a functional type τ

H−→ τ ′ where H stands for
the latent effect generated by the function upon invocation.

A term ∗ has type 1 and effect ε, while an access event α has type 1 and
effect α. Instead, the type for a variable x is provided by the environment Γ.
Functional abstraction requires more attention. We type a function λzx.e to
τ

H−→ τ ′ with effect ε if we can type the function body e to τ ′ and effect H under
the environment where proper bindings the function z and its parameter x have
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Table 3. Typing relation

eluRemaN

(T-Unit)

—
Γ Cmp ∗ : 1

(T-Ev)

—
Γ Cmp α : 1

(T-Var)

Γ (x) = τ

Γ Cmp x :

(T-Abs)

Γ ; z : τ
H−→ τ ; x : τ Cmp e : τ

Γ Cmp λzx.e : τ
H−→ τ

(T-App)
Γ Cmp e : τ

H−−→ τ Cmp e :

Γ Cmp ee : τ · H · H

(T-If)

Γ Cmp e1 : Cmp e2 :

Γ Cmp if b then e1 else e2 :

Γ Cmp e :

Γ Cmp ϕ[e] : [H]

Γ Cmp e :

Γ Cmp ψ e : H

(T-Wkn)

Γ Cmp e :

Γ Cmp e : + H

(T-Ipc)

τ = {τ ⊕r[ ] τ | e : τ ∈ Cmp ∧ τ ≈ τ}
Γ Cmp ipcrτ : τ

been defined. The type of an application is the right-hand side of the function
type and its effect is the concatenation of those generated by the functional term,
by its argument and the latent one. A conditional statement has type τ and effect
H if the same holds for its two branches. Policy framings have the same type as
their target e and a wrapped effect. Also, the weakening rule (T-Wkn) allows
for passing from an effect H to a more general one H + H ′. Finally, the rule for
planned selection requires to define three auxiliary operators, i.e., ⊕,≈ and �.
We say that τ ≈ τ ′ iff τ = τ ′ = 1 or

τ = τ1
·−→ τ2 τ ′ = τ ′

1
·−→ τ ′

2 and τ1 ≈ τ ′
1 and τ2 ≈ τ ′

2

Instead the operator ⊕r[�] combines a request type τ0
(ϕ,ψ)−−−→ τ1 with a component

type τ ′
0

H−→ τ ′
1 to obtain

τ0 ⊕r[�] τ
′
0

{r[�]�ϕ[ψ〈H〉]}−−−−−−−−−→ τ1 ⊕r[�] τ
′
1
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The last operator combines component types so that τ
H−→ τ ′ � τ

H′
−−→ τ ′ =

τ
H+H′
−−−−→ τ ′.6

Example 5. We type ewpr from Example 1 and we obtain the following deriva-
tion.

6 Policy Language

In this section we recall the policy language used for defining local policies and
we compare it with some existing proposals, as well as with the Android policy
framework.

Usage Automata. In [10] Usage Automata (UA) are used to specify local policies.
Intuitively, a UA resembles a a Büchi automaton. The main aspect to be noticed
is that whenever a trace η is accepted by a UA Aϕ, it means that η violates the
corresponding policy ϕ.7

Formally, a Usage Automaton Aϕ is a tuple 〈Act, Q, q0, F, δ〉 where:

– Act is the input alphabet,
– Q is a finite set of states,
– q0 ∈ Q \ F is the initial state,
– F ⊂ Q is the set of final states,
– δ ⊆ Q × Act × Q is a finite set of transitions.

We use q
α
� q as a shorthand for (q, α, q′) ∈ δ.

Given a trace η, we write η |= ϕ whenever η �∈ L(Aϕ), where L(Aϕ) is
the language accepted by the UA Aϕ. Conversely, we write η �|= ϕ whenever
η ∈ L(Aϕ).8

6 Notice that here we use a simplified version of the � operator. For the detailed
version see [8].

7 In this section we generally refer to local policies without distinguishing between
safety and liveness.

8 Notice that, although acceptance is only defined for ω-traces, we can extend finite
traces with τω where τ ∈ Act is a special event denoting the termination.
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Example 6. Consider the policy ϕ saying “never connect to the internet after
reading the user’s identity”. The corresponding UA is

q0 q1 q2

Act \ {αidn}

αidn

Act \ {αnet}

αnet

Act

Adequacy of the Policy Language. Since version 2.2 the Android framework
has been enriched with Device Administration APIs.9 These APIs can be used
to define advanced security policies over certain aspects of the application
behaviour. The available security policies include password format and usage,
encrypted data storage, screen lock time and camera disabling. Each of these
features can be encoded as local policies by mapping the corresponding behav-
iour to the system API triggering it. For instance, the following UA prevents its
target from accessing the camera.10

q0 q1

Act \ {αcam}

αcam

Act

Several authors investigated the Android policy framework and possible alter-
natives. Among them, few formalizations exist. For instance, in [2] the authors
use Hennessy-Milner logic (HML) for expressing security properties over execu-
tion and invocation traces. HML in possibly the least expressive logic of inter-
est for specifying security properties as it only permits to reason about finite
traces [19]. Hence, it is not clear whether HML actually surpasses the Android
policy framework.

A more precise characterization is presented in [1]. There, the authors pro-
pose a different implementation of the Android permission system and policy
language which substantially extend the existing one (being a proper subset).
Their policy language includes propositional logic, using Android permissions as
atomic propositions, and three modalities for declaring policies over the invoca-
tion of Android components. The modalities include

– direct � rules, i.e., formulae that a caller must (individually) fulfil to perform
an invocation;

– local ♦ rules, i.e., formulae that a component enforces over its ancestors and
descendants in the invocation stack, and;

– global � rules, i.e., formulae that must be evaluated against all the running
components as a whole.

9 http://developer.android.com/guide/topics/admin/device-admin.html.
10 Here αcam stands for the Android API CameraManager.openCamera(. . .).

http://developer.android.com/guide/topics/admin/device-admin.html
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Moreover, a rule can be sticky, i.e., it is attached to the components interacting
with the policy owner.

Android permissions are labels used to identify finite, disjoint sets of security-
relevant operations/actions. For instance, several methods of the class Socket are
associated to the permission INTERNET . Called P the set of all the permis-
sions p and Λ(p) the set of actions associated to p, we can assume Act =

⋃
p∈P

Λp.
Under this assumption, UA are at least as powerful as the local rules of [1].
To exemplify, consider a component C declaring the policy ♦¬INTERNET
which means that none of the components in the same stack of C can have
the INTERNET permission. The same behaviour can be obtained by defining
C = ϕ[e] where e is the implementation of the component and Aϕ is

q0 q1

Act \ ΛI

ΛI

Act

where ΛI is a shorthand for ΛINTERNET . Intuitively, a component can invoke
C only if its trace contains no actions of ΛI and, similarly, these actions cannot
be performed by the components possibly invoked by C itself.

Since a UA can deal with (i) individual actions (rather than sets of indistin-
guishable elements) and (ii) ω-regular languages, they can express a wider class
of policies than the local rules of [1]. Instead, global rules cannot be encoded
as local policies without assuming a unique entry point for all the application
executions, i.e., a root term/component invoking all the others. Summing up,
we claim that the local policies defined through UA are strictly more expres-
sive than the local rules of [1], but they cannot encode the global ones (under
reasonable assumptions).

7 Discussion

Below we discuss some open aspect which are relevant for motivating the feasi-
bility of the proposed approach and identifying possible limitations.

Applicability. There are typically two main objections to the application of local
policies for web services: (i) the source code of web services is not available for the
typing process (i.e., services are black boxes) and (ii) services appear/disappear
continuously as the network is an extremely dynamic environment (i.e., it is very
unlikely that a service is typed and executed under the same service repository).
Interestingly, these two limitations do not affect the Android environment. As
a matter of fact, Android applications consist of software packages containing
the application bytecode. The bytecode contains all the instructions that an
application executes. The type and effect system can be applied at install time,
i.e., when an application is installed and its components registered in the system.
Then, the verification process can be carried out whenever a new application is
installed (which we can expect to happen not very frequently).
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Implementation. Since the Android application framework is based on Java, we
can follow the approach already used in [4,5]. Briefly, the Android developers
attach their policies to the instructions contained in a Java block. Then, the
compiler applies the type and effect system and attaches the generated history
expressions to the Android package. History expressions can be added to the
application manifest through dedicated XML tags. The code receiver, i.e., the
mobile device, checks the history expressions by re-executing the typing rules or
with other techniques, e.g., proof carrying code [21]. Finally, the model checker
is executed to find possible policy violations. If no liveness policies are violated,
(reference monitors controlling) the unverified safety policies are injected through
instrumentation, e.g., as done in [15].

8 Conclusion

We presented an adaptation to the Android application framework of the app-
roach proposed in [8] for the security enforcement and verification of local poli-
cies. Android IPC interaction resembles the invocation of web services in a closed
environments (where services are known). Indeed, invocations carry a functional
interface for specifying what components can answer the request. For this reason,
the existing theory can be applied with minor adjustments also preserving the
theoretical guarantees. We claim that local policies can support a compositional
and fine-grained security framework for the Android OS.

Related work. In the last years, several authors targeted the Android security
framework. Most of the existing proposals focus on (i) extending the native
security policy, (ii) enhancing the Android Security Framework (ASF) with new
tools for specific security-related checks, or (iii) detecting vulnerabilities and
security threats. For instance, in [24] the (informal) Android security policy
is analysed in terms of effectiveness and some extensions are proposed. Besides,
in [20] the authors propose an extension to the basic Android permission systems
and some new policies built on top of the extended permission system. Moreover,
in [26] new privacy-related security policies are proposed for addressing security
problems related to users’ personal data. The authors of [22] propose a method
for monitoring the Android permissions system by properly customizing the
Android stack. Regarding detection, XManDroid [12] and Crowdroid [13] are
currently the most effective malware detection approaches. Instead, [3] reported
a vulnerability of the Android OS enabling a DoS attack, and [23] described
some exploitable covert channels.

Some works also present formalizations of the Android application and secu-
rity frameworks. In [25] the authors formalize the permission scheme of Android.
Briefly, their formalization consists of a state-based model representing entities,
relations and constraints over them. Also, they show how their formalism can
be used to automatically verify that the permissions are respected. Another for-
malization of the Android permission system is presented in [1]. Intuitively, the
authors describe the runtime composition of Android components and encode it
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as a satisfiability problem. Finally, a SAT solver automatically verifies whether
an invocation can lead to policy violations. A language-based approach to infer
security properties from Android applications is proposed by Chaudhuri [14].
The paper also proposes a type system that guarantees that well-typed programs
respect user data access permissions. A type and effect system for generating his-
tory expressions from Android applications is proposed in [2]. There the authors
also propose an alternative application market for the static verification of the
mobile applications.
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Abstract. Several type systems have been developed to address the
conformance between specifications and implementations, where types
are specifications and type-checking ensures the conformance relation.
In this paper, we take a different perspective and assume that program-
ming takes place only at the specification level, by using a type language
that captures protocols of interaction. Specifications provide the global
interaction scheme and lay the basis for an automatic (provably cor-
rect) generation of implementations. The latter is obtained by a transla-
tion into a rich formalism that relies on attribute-based communication,
whose expressiveness permits modeling in a natural way the symmetric
link between message recipient and emitter.

1 Introduction

Distribution is becoming a default condition of computing systems such as data-
bases hosted in cloud providers or services that support personal and professional
interaction, not to mention the materialization of the internet of things paradigm
that will allow our refrigerators to automatically shop on our behalf. To carry
out their tasks, such systems crucially rely on interaction for the purpose of
coordination or to pass information around. Distributed parties must then agree
on a common protocol of interaction in order to establish productive collabora-
tions. For unproductive examples, consider that one party is trying to send a
message that nobody will ever be willing to receive, or that some other party is
waiting for a message that will never arrive.

Reasoning on protocols of interaction is naturally carried out by considering
the global interaction scheme. Indeed, to understand the functioning of distrib-
uted systems it is certainly more adequate to reason on the global interaction
scheme rather than considering individually the local views of the different com-
ponents. For example, in the context of business protocols one typically specifies
system behavior considering a global view, and only afterwards she/he consid-
ers compliance of the actual implementation with the global specification. The
implementation is carried out by assembling different components each provid-
ing its individual contribution to achieve the prescribed goal. We illustrate the
notions of global and local views in Fig. 1, by means of a protocol adapted
from [11].
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Fig. 1. Global and local protocol views

This problem of relating global specifications with their distributed imple-
mentation has been addressed in the context of type systems based on multiparty
asynchronous session types by Honda, Yoshida and Carbone in [11]. There, spec-
ifications are given in the form of global types that are related to local types via
a projection mechanism. Local types are, in turn, related to site-level implemen-
tations via a typing relation. Recent approaches focus on releasing the burden
of a typed framework by synthesizing (inferring) the global types out of the
implementations [13] and by considering an intermediate specification language
somewhat in between global types and implementations [4], the latter being
inspired by the global protocol implementation language introduced in [3]. How-
ever, such approaches heavily rely on typing to ensure the overall soundness of
the framework.

In this paper, inspired by [3,4], we concentrate on specifications: given that
global specifications are the natural setting for reasoning on protocol correct-
ness, we consider them also as a natural programming mechanism. Then, in
order to transform global specifications in (concrete) implementations, we pro-
vide an automatic translation mechanism that permits synthesizing correct by
construction site-level implementations that guarantee conformance with the
interaction protocol prescribed by the global specifications. As target of our
transformation function we use a rich formalism called AbC [1,2] that relies on
a powerful communication model based on attributes. Communication takes
place in a broadcast fashion and communication links among components are
dynamically established by taking into account interdependences determined by
predicates over attributes. The AbC formalism permits modeling not only related
sets of interactions (sessions) but also singling out the participants involved at
each step of the protocol, even when multiple participants have access to the
communication medium.

We view our contribution as a proof of concept of an approach that aims
at developing behavior domain specific languages which are related to (more)
general purpose programming languages in a rigorous way. Such precise relation
supports the transference of properties from one language to the other, so any
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analysis performed on top of the specification can be directly conveyed to the
implementation, eliminating the conformance burden and lifting specification
languages to first-class actors in software development.

In the remainder of the document, we first introduce the language for global
protocol specification (Sect. 2) and the AbC formalism (Sect. 3). Then we present
the encoding of the former into the second (Sect. 4) and discuss its adequacy
(Sect. 5). A final section contains some concluding remark and suggestions for
future work.

2 Global Protocol Specifications

Our starting point is the language of global types introduced in [11], which we
adapt here to serve as language for global protocol specifications that explic-
itly specifies the interactions between the different components. An interaction
between parties A and B, in particular the case where A sends a message to B,
is denoted by A → B. We assume that in our model messages are labelled, i.e.,
two parties interact if one is willing to send a message with label � and the other
is willing to receive a message with the same label. For the sake of simplicity, we
omit communicated values and argue they can be added in a simple, or at least
orthogonal, way with respect to the development reported in this document.

We then denote by A → B(�).G a synchronization of A and B on message
�, after which the protocol proceeds to the stage specified by G. This basic
interaction construct is included (as a particular case) in a richer communica-
tion primitive which can be used to specify alternative behaviors. We denote by
A → B{�i.Gi}i∈I a synchronization between parties A and B on either one of
the �i messages (where i ∈ I), after which the protocol proceeds to the corre-
sponding Gi, being the choice determined by the emitting party. For example
Buyer → Seller{accept.G1; reject.G2} represents a synchronization between
parties Buyer and Seller on either an accept or a reject message, and the
choice will determine whether to proceed as specified by G1 and G2. It is the
Buyer responsibility to (internally) choose which one, while the Seller is ready
to synchronize on either of the (externally) chosen ones.

Example 1. Consider the following protocol specification in which a buyer (B1)
wants to buy an item from a seller (S), then the seller sends the price both to
the original buyer and to a second buyer (B2) who is willing to contribute to
the purchase. After that, B2 communicates to B1 the amount to which he can
contribute to the purchase and B1 communicates to the seller whether the price
is fine for him or not; in the former case he also sends his address and sets himself
to receive a date for the delivery.

G = B1 → S(item).S → B1(price).S → B2(price).B2 → B1(contrib).
B1 → S{ok.B1 → S(address).S → B1(date) + quit.end}

Protocols may also be specified using a parallel composition, denoted by
G1 ‖ G2, a terminated protocol end, and recursion μX.G which, combined with
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a recursion variable X, supports the specification of infinite behaviors. The com-
plete syntax for global protocols is presented in Fig. 2, where we assume given
an infinite set of participant names N , ranged over by A,B,C, an infinite set of
labels L, ranged over by �, and an infinite set of recursion variables X, ranged
over by X,Y,Z.

Fig. 2. Syntax of global protocols

In order to single out the sort of protocols we are interested in, we introduce
some auxiliary (syntactic) notions. We denote by n(G) the set of all participant’s
names of a global protocol G and by rn(G) the set of participants names which
are ready to output a message. The two sets are inductively defined as follows.

n(G) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{A,B} ∪ ⋃
i∈In(Gi) if G = A → B{�i.Gi}i∈I

n(G1) ∪ n(G2) if G = G1 ‖ G2

∅ if G = end
∅ if G = X
n(G′) if G = μX.G′

rn(G) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{A} if G = A → B{�i.Gi}i∈I

rn(G1) ∪ rn(G2) if G = G1 ‖ G2

∅ if G = end
∅ if G = X
rn(G′) if G = μX.G′

The set of participants is useful to identify independent parts of a protocol,
while the set of active emitting parties is used to single out those parties that are
willing to emit messages. Both notions are used to capture well-formed global
protocols, defined next.

Definition 1 (Well-formedness). A global protocol G is well formed, if � G
can be derived using the rules given in Fig. 3.

Fig. 3. Rules for well-formed global protocols
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Our notion of well-formedness is in line with the linearity conditions imposed
to global types in [11]. Let us now comment on rules of Fig. 3. The terminated
protocol and the recursion variable are well formed. The parallel composition
is well formed only if the two branches are well formed and independent. Inde-
pendence is guaranteed by disjointness of the sets of participants. Notice that
communication is captured by the interaction construct (· → ·), so parallel com-
position is different from the one found in many process algebra.

In A → B{�i.Gi} we also enforce that it is either A or B to initiate syn-
chronizations in any of the Gi branches. The rationale for this choice is message
loss in the underlying broadcast-like communication model: if the emitting party
is already active to send a message and the receiving party is not yet listening
then the message may be lost. We have grounded our presentation on a synchro-
nous communication model, which is not to be viewed as an imposition on the
implementation, but in our target implementation language message outputs are
carried out in a “fire and forget” fashion: if the receiving party is ready then the
message is received, otherwise the message is lost. Whenever necessary we may
introduce some additional communication steps in our protocol descriptions so
as to ensure parties are listening before sending messages.

Finally, the recursive protocol is well formed if the one step unfolding is well
formed. The one step unfolding is enough for our purposes as (i) recursive pro-
tocols that include parallel compositions are excluded due to the independence
condition (ii) participants willing to send a message in the next iteration must
be involved in the last interaction of the current iteration. Both conditions will
then hold for any number of unfoldings and protocol evolutions. To ensure the
unfolding is carried out only once while proving a protocol is well formed we
(pragmatically) replace the variable by the recursion body only and not by the
entire recursion. We assume recursive protocols are contractive, i.e., all variables
are guarded by an interaction construct, and that all variables are bound.

We now define the semantics of our protocol language, to endow the language
with a rigorous notion of behavior, which is instrumental for the establishment
of an operational correspondence between the specification and the implementa-
tion. In particular, the semantics keeps track of the synchronization information
in the transition labels, in order to establish the direct correspondence between
global protocols and site-level implementations. Transition labels are of the form
A → B(�), mentioning the parties involved in the synchronization and the mes-
sage label. We use α to range over the set of such transition labels, denoted by
I and defined by I = {A → B(�) | A,B ∈ N ∧ � ∈ L}.

We write G
α−→ G′ to say that protocol G evolves in one step to protocol G′

via synchronization α, if such transition can be derived using the rules in Fig. 4.
Well-formedness is invariant under protocol evolutions, as expressed in the

following proposition.

Proposition 1. If � G and G
α−→ G′ then � G′.

Proof. By induction on the derivation of G
α−→ G′ following expected lines. �	
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Fig. 4. Protocol operational semantics

A direct corollary of Proposition 1 is that well-formed protocols never reach
ill-formed configurations.

3 AbC

Having defined the language for global protocol descriptions we now present the
site-level implementation language, AbC [2], a core calculus centered on attribute-
based communication. We introduce a simplified version of AbC in the sense that
we abstract away from value passing. Systems in AbC are represented as sets of
parallel components. Each component is equipped with a set of attributes whose
values can be modified by means of internal actions. Communication among
components takes place in a broadcast fashion, with the distinctive feature that
only components satisfying the predicate specified by the emitting party over
specific attributes receive a given message, provided that they are willing to do
so and that the emitter also satisfies the predicates specified by the recipients.
The semantics for output actions in AbC is non-blocking while input actions
are blocking in that they can only take place through synchronization with
an available broadcasted message. Since we abstract away from value passing,
broadcasts here can be viewed as multiparty synchronization. Hence we say that
a process initiates a multiparty synchronization or that it is waiting for one.

Syntax and Semantics. The syntax of AbC is reported in Fig. 5. A system in
AbC consists of a number of components. A component C can be either the null
component 0, the process P with a set of attributes Γ , written Γ : P , or the

Fig. 5. AbC syntax

Fig. 6. Predicate satisfaction
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parallel composition C1 ‖ C2 of two components. In a component Γ : P we refer
to Γ as the attribute environment. We denote by C and P respectively the set
of AbC components and AbC processes.

A process P can be either the idle process 0, an action prefixed process, a
choice P1 + P2 between two processes, the recursive process μX.P or a process
variable X. There are three kinds of action prefixes. The attribute-based input
Π waits for a synchronization from any process whose attributes satisfy the
predicate Π; the attribute-based output @Π initiates a synchronization to all
the processes whose attributes satisfy the predicate Π; and the attribute update
[a := v] sets to v the value of attribute a.

We let variables a, b and their decorated versions to range over the set A
of all attributes. Moreover we let v and its decorated versions to range over
the set V of all possible attribute values. An environment of attributes Γ is a
function Γ : A → V; we write Γ (a) to indicate the value of the attribute a in
the environment Γ . A predicate Π can be either tt, or a check on the value of
a particular attribute (e.g. a = v), or the logic conjunction of two predicates
Π1 ∧ Π2, or the negation of a predicate ¬Π. We denote by Γ [a 
→ v] the update
of Γ defined as Γ [a 
→ v](a′) = Γ (a′) if a �= a′, v otherwise.

A predicate Π is satisfied by an environment Γ , written Γ |= Π, if Γ |= Π
can be derived by rules in Fig. 6. Predicate tt is satisfied by any environment
Γ ; predicate a = v is satisfied by Γ only if a belongs to the domain of Γ and its
value is equal to v; predicate Π1 ∧ Π2 is satisfied by Γ if both Π1 and Π2 are
satisfied by Γ ; predicate ¬Π is satisfied by Γ if Γ does not satisfy Π.

Fig. 7. Structural congruence for AbC

We use U to refer to the set of all possible assignments of the form [a := v],
and S to refer to the set of all possible synchronization predicates of the form
(Π,Πi∈1..n). We let u and its decorated versions to range over U , and s to
range over S, while we let β to range over the set U ∪ S. The operational
semantics of AbC is defined via a (labelled) reduction relation over components
→⊆ C × (U ∪ S) × C and a structural congruence relation ≡, which is a binary
relation over processes and components ≡⊆ P2 × C2. Relation ≡ is defined as
the smallest congruence on processes and components that satisfies the rules in
Fig. 7. Rules E.ParC, E.ParA and E.ParN correspond to the classical com-
mutative monoid laws for parallel ‖ (associativity, commutativity and identity
0); while rules E.ChN, E.ChC, and E.ChA model the commutative monoid
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Fig. 8. Transition rules for AbC

laws for choice + (with identity 0). Rule E.Gb allows for the garbage collection
of a component Γ : 0 that has finished its computation, rule E.Pr supports
lifting equivalence from process level to component level, and rule E.Rec deals
with unfolding/folding of recursive processes.

The relation −−−→ is defined as the smallest binary relation on components
that satisfies the rules of Fig. 8. Rule Eqv states that the reduction relation
is closed under structural congruence ≡. Rule Upd allows a process to update
its attribute environment. Rule Com regulates the multiparty synchronization:
when in the system there is an emitter Γ : @Π.P then all listener components
Γi : Πi.Pi of the system that can synchronize evolve accordingly. A listener
component Γi : Πi.Pi is able to synchronize if its environment satisfies the
emitter predicate and its predicate is satisfied by the emitter environment, that
is Γ |= Πi and Γi |= Π. Condition notr(C,Γ,Π), in the premises of the rule,
specifies that there are no other enabled listeners in the system so as to ensure
that all the available ones synchronize; said otherwise a listener cannot avoid
taking part in a synchronization for which it is enabled. Notation

∏n
i=1 Ci stands

for C1 ‖ . . . ‖ Cn, where there is no need to indicate how the latter expression
is parenthesized because the parallel operator is associative by rule E.ParA.
When n = 0 we have that

∏n
i=1 Ci = 0.

4 Synthesis of Global Protocols in AbC

We now define the synthesis from global protocol specifications to AbC.

Definition 2 (Synthesis). The synthesis [[·]] : G → C is a partial function
from a global protocol specification to an AbC component, defined on top of the
function (|·|) : G ×N → P, which is a partial function from a pair global protocol
specification, party name to an AbC process. Both functions are given in Fig. 9.

Before commenting on the synthesis procedure, let us explain the general idea
behind it. Each site (or party) of a global specification G is translated into a
component Γ : P where the attribute environment exhibits two attributes (with
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their respective values): id and lab. We assume that names id and lab are fixed
and distinct and are reserved to the synthesis function. As the name suggests
id is the attribute used to distinguish the identity of the site, and its value is
set to the site name (e.g., A), while attribute lab is used for branch selection
during the communication. These two attributes are sufficient to guarantee that
whenever in the global specification there is an interaction A → B{�i.GI}i∈I ,
between sites A and B, then site A will communicate only with site B, and site
B will synchronize on a specific label only with site A, being both conditions
ensured by the predicates over the two attributes.

The synthesis [[G]] is defined as the parallel composition of the synthesis of its
sites, as shown in Fig. 9. Let us note that each site is endowed with an attribute
environment containing the pair (id, A) with A ∈ n(G) being the identity of
the party. In this way each AbC (local) component generated by the synthesis is
univocally identified by its id attribute. The synthesis of a global specification
G with respect to a site A is given by the function (|G|)A.

The synthesis of a global specification (|A → B{�i.Gi}i∈I |)C , with A,B,C ∈
N , has three possible behaviors depending on the fact that:

C = A : we encode the interaction between A and B by first specifying that A
has to choose a particular label �i among the prescribed set (i ∈ I). This
is achieved by composing a sum of processes of the form [lab := �i].@(id =
B). (|Gi|)A, leaving the branch selection to be performed via attribute update.
Hence first the processes internally chooses a label and then communicates
its choice to the party B (which is the only component exhibiting the pair
(id,B)).

C = B : we encode that B receives from A a particular branch selection via
a specific label �i. This is why the result is a sum of processes of the form
(id = A) ∧ (lab = �i). (|Gi|) indicating the fact that each process in the
summation is able to synchronize with the component whose identity is A
on any particular label �i, where the summation includes the set of prescribed
labels.

C �= A and C �= B : the party C is not directly involved in the communication,
in which case we impose that in all branches the behavior of C has to be the
same (as in [11]), hence the translation corresponds to one of the branches.

The synthesis of a parallel composition G1 ‖ G2 with respect to a site C
is defined as the parallel composition of the synthesis of G1 and G2. Notice
that in a well-formed protocol site C will only be involved in at most one of
the parallel branches, so we are only interested in the case when at least one
the underlying synthesis (of G1 or G2) yields process 0. Recursion operator is
mapped into the corresponding operator of AbC, where we distinguish between
the case where site C has a role in the recursive protocol from the one he has
none, so as to avoid degenerate processes (e.g., μX.end). Specification recursion
variable X is mapped into the same (process) recursion variable X. Terminated
protocol specification end is translated into the idle process 0.
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Fig. 9. Synthesis of global protocol specifications in AbC

To better understand how the synthesis works, let us consider the following
example, where we use Π{A,�} to denote the predicate (id = A) ∧ (lab = �) that
is used in inputs to refer to the id of the message emitter and to the label � of
the message, and ΠA to denote the predicate (id = A) used in outputs to refer
to the id of the message receiver.

Example 2. Consider the global protocol specification of Example 1:

G = B1 → S(item).S → B1(price).S → B2(price).B2 → B1(contrib).
B1 → S{ok.B1 → S(address).S → B1(date) + quit.end}

Then the synthesis of G in AbC is given in Fig. 10, given n(G) = {B1, S,B2}.

Fig. 10. Encoding example
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5 Operational Correspondence

In this section we establish a precise operational correspondence between our
protocol description language and the site level implementations in AbC gener-
ated by the synthesis. The semantics of the languages presented earlier, where
transitions record synchronization information, supports the establishment of a
precise correspondence between each interaction in the global protocols and a
corresponding environment update (mimicking a choice) plus a communication
step in AbC. The actual semantics may be viewed as an instrumentation (adding
labels to reductions) of an unlabelled reduction relation like the one in, e.g., [2];
such an instrumentation does not add or remove any behavior from the models,
it simply decorates the behavioral trees with extra information.

Since the dynamic semantics of the synthesis involves environment updates
which are not initially prescribed by the synthesis, our results are parameterized
by environment updates. We introduce some auxiliary notation to handle envi-
ronment updates. We use σ to refer to an environment update based on a partial
function from participant names to message labels σ : N → L. Moreover, given
a component C, we denote by σ(C) the extension of the local environments in
C defined as σ(0) = 0, σ(C1 ‖ C2) = σ(C1) ‖ σ(C2) and σ(Γ : P ) = (σ(Γ )) : P .
The environment update is defined as σ(Γ ) = Γ [lab 
→ �] if (id, A) ∈ Γ and
σ(A) = � otherwise σ(Γ ) = Γ , hence the environment is updated accordingly
depending on whether σ specifies an update for a specific participant or not.

As a first step, we prove some auxiliary results that focus on single-threaded
global protocols, and we establish a normal form characterization of the result of
a synthesis. We start by ensuring that in a sequential protocol there is only one
party actively willing to emit an output, or, in other words, all parties except
one are waiting on a message input.

Lemma 1. Let G be such that � G, [[G]] is defined and either G = A →
A′{�i.Gi}i∈I or G = μX.A → A′{�i.Gi}i∈I . For all B such that B �= A we
have that there exist B′, �′

i, G
′
i, for i in some I ′, such that (|G|)B ≡ ∑

i∈I′(id =
B′) ∧ (lab = �′

i). (|G′
i|)B.

Proof. By induction on the definition of (|G|)B . We note that, by well-formedness,
all emitting parties must be engaged in the previous interaction, which leaves
out only the one emitting in the first interaction (A). The case for recursion
amounts to unfolding at the level of the target language. �	

From Lemma 1 and considering the definition of synthesis we may now char-
acterize in a precise way the structure of the result of a synthesis.

Proposition 2 (Synthesis Normal Form). Let G be such that � G, [[G]] is
defined and either G = A → A′{�i.Gi}i∈I or G = μX.A → A′{�i.Gi}i∈I . We
have that:

σ([[G]]) ≡ σ({(id, A)}) :
∑

i∈I [lab := �i].@(id = A′). (|Gi|)A

‖ σ({(id, A′)}) :
∑

i∈I(id = A) ∧ (lab = �i). (|Gi|)A′

‖ ∏
B∈n(G)\{A,A′}σ({(id,B)}) : (|Gk|)B
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for any k ∈ I, where, for every B ∈ n(G) \ {A,A′} we have that there exist
B′, �′

i, G
′
i for i in some I ′ such that (|Gk|)B ≡ ∑

i∈I′(id = B′)∧(lab = �′
i). (|G′

i|)B.

Proof. Immediate by Definition 2 (Synthesis) and by Lemma 1. We remark that
the synthesis for parties not involved in the initial interaction is guaranteed, by
definition, to be the same for all branches, so we may take any of them. �	

We also introduce the principle required to handle recursive protocols.

Lemma 2. If � μX.G and [[G]] is defined then σ([[μX.G]]) ≡ σ(
[[

G{μX.G/X}]]
).

Proof. By induction on the definition of σ([[μX.G]]) following standard lines. �	
In order to establish the wanted results about operational correspondence,

we define a function that allows us to rewrite (back and forth) the transition
labels of one model in the other, and introduce some auxiliary notation.

Definition 3 (Transition Label Correspondence). We take f as a func-
tion f : I → U × S defined as f(A → B(�i)) = ([lab := �i], (ΠB ,Π{A,�i})) and
its inverse f−1 : U × S → I.

In the following, we write C
f(α)−−−→ C1 instead of C

u−→ C ′ s−→ C1, with f(α) =
(u, s). Also, we use σα defined as σα(A) = � for α = A → B(�) and σα◦σ to refer
to the composition of σα and σ. We use σ to capture the environment updates
throughout system evolution, so as to match the updates caused by internal
choices associated to message outputs. We now establish the strict correspon-
dence between a single-threaded global protocol and its respective synthesis.

Lemma 3. Let G to be such that � G, [[G]] is defined and either G = A →
A′{�i.Gi}i∈I or G = μX.A → A′{�i.Gi}i∈I . For any α, u, s, σ we have that:

1. G
α−→ G′ then σ([[G]])

f(α)−−−→ σα ◦ σ([[G′]]);

2. if σ([[G]]) u−→ C ′ s−→ C then G
f−1(u,s)−−−−−→ G′ with C ≡ σα ◦ σ([[G′]]), where

f−1(u, s) = α. Moreover, if σ([[G]])
β−→ C ′′ then β = u and C ′′ ≡ C ′, and also

if C ′ β′
−→C ′′′ then β′ = s and C ′′′ ≡ C.

Proof.

1. By induction on the derivation of G
α−→ G′. The case of the recursive protocol

follows directly from the induction hypothesis and Lemma 2. Otherwise we
have that G = A → A′{�i.Gi}i∈I , and also that G′ = Gj and α = A → A′(�j)
for some j in I. From G = A → A′{�i.Gi}i∈I and � G we conclude by
Proposition 2 that:

σ([[G]]) ≡ σ({(id, A)}) :
∑

i∈I [lab := �i].@(id = A′). (|Gi|)A

‖ σ({(id, A′)}) :
∑

i∈I(id = A) ∧ (lab = �i). (|Gi|)A′

‖ ∏
B∈n(G)\{A,A′}σ({(id,B)}) : (|Gj |)B
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since j ∈ I, where, for every B ∈ n(G) \ {A,A′} we have that there exist
B′, �′

i, G
′
i for i in some I ′, such that (|Gk|)B ≡ ∑

i∈I′(id = B′) ∧ (lab =
�′
i). (|G′

i|)B . By Definition 3 we have that f(A → A′(�j)) = ([lab := �j ], (ΠA′ ,
Π{A,�j})). It is immediate to conclude that σ([[G]]) exhibits transition [lab :=
�j ] after which a (ΠA′ ,Π{A,�j}) transition as follows, where σα◦σ({(id, A)})=
{(id, A), (lab, �j)} and σα ◦ σ(Γ ) = σ(Γ ) elsewhere:

σ([[G]])
f(α)−−−→ σα ◦ σ({(id, A)}) : (|Gj |)A ‖ σα ◦ σ({(id, A′)}) : (|Gj |)A′

‖ ∏
B∈n(G)\{A,A′}σα ◦ σ({(id,B)}) : (|Gj |)B

hence, σ([[G]])
f(α)−−−→ σα◦σ([[Gj ]]) where Gj = G′ thus completing the proof of 1.

2. By induction on the derivation of σ([[G]]) u−→ C ′. The case of the recursive
protocol follows from induction hypothesis and Lemma 2. Otherwise we have
that G = A → A′{�i.Gi}i∈I , which together with � G gives us:

σ([[G]]) ≡ σ({(id, A)}) :
∑

i∈I [lab := �i].@(id = A′). (|Gi|)A

‖ σ({(id, A′)}) :
∑

i∈I(id = A) ∧ (lab = �i). (|Gi|)A′

‖ ∏
B∈n(G)\{A,A′}σ({(id,B)}) : (|Gj |)B

for any j ∈ I, where, for every B ∈ n(G) \ {A,A′} we have that there exist
B′, �′

i, G
′
i for i in some I ′ such that (|Gk|)B ≡ ∑

i∈I′(id = B′) ∧ (lab =
�′
i). (|G′

i|)B . We may observe that the only possible transition is [lab := �k]
for some k ∈ I as follows:

σ([[G]])
[lab:=�k]−−−−−→ C ′ ≡ {(id, A), (lab, �k)} : @(id = A′). (|Gk|)A

‖ σ({(id, A′)}) :
∑

i∈I(id = A) ∧ (lab = �i). (|Gi|)A′

‖ ∏
B∈n(G)\{A,A′}σ({(id,B)}) : (|Gk|)B

where we consider Gk instead of Gj since k ∈ I. At this point we may imme-
diately observe that the only possible transition, up to structural congruence,
has label (ΠA′ ,Π{A,�k}) as captured in the following:

C ′ (ΠA′ ,Π{A,�k})−−−−−−−−−→ C ≡ {(id, A), (lab, �k)} : (|Gk|)A

‖ σ({(id, A′)}) : (|Gk|)A′

‖ ∏
B∈n(G)\{A,A′}σ({(id,B)}) : (|Gk|)B

We remark that it is the only possible transition since there is only one out-
put, which specifies A′ as the receiving party. We also have that f−1([lab :=
�k], (ΠA′ ,Π{A,�k}) = α = A → A′(�k) and A → A′{�i.Gi}i∈I

α−→ Gk and also
that {(id, A), (lab, �k)} = σα ◦ σ{(id, A)} and σα ◦ σ({(id,B)}) = σ({(id,B)}
for B �= A from which we have C ≡ σα ◦ σ([[Gk]]). �	
Lemma 3 gives a precise symmetric correspondence between the behaviors of

a single-threaded global protocol and those of its synthesis, including an account
for the two-step evolution of the synthesis that is the only possible behavioral
path. We can now establish some compositionality principles that allow for lifting
our reasoning to parallel (well-formed thus independent) global protocols.
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Lemma 4. Let G1 and G2 be such that � G1 ‖ G2 and C ≡ σ([[G1 ‖ G2]]). We
have that C ≡ σ([[G1]]) ‖ σ([[G2]]).

Proof. By induction on the definition of σ([[G1 ‖ G2]]) following standard lines.�	
Lemma 5. Let G1 and G2 be such that � G1 ‖ G2 and C ≡ σ([[G1 ‖ G2]]). If

C
β−→ C ′ then there is C ′′ such that σ([[Gi]])

β−→ C ′′ and C ′ ≡ C ′′ ‖ σ([[Gj ]]) for
i, j such that {i, j} = {1, 2}.

Proof. By induction on the derivation of σ([[Gi]])
β−→ C ′′. Notice that if β is a

choice then the result follows trivially. Notice also that if β is a communication
then it can be confined to either G1 or G2 since, by well-formedness, G1 and
G2 have disjoint sets of participants and all communications in a result of a
synthesis are regulated by participant identifiers. �	

Lemmas 4 and 5 ensure we may reason on parallel branches of global protocols
separately, as both their synthesis and their behaviors are independent with
respect to (global protocol) parallel composition.

Before presenting our main result, we introduce auxiliary notation and a
predicate that help in the generalization of the relation between global protocols

and their synthesis. We abbreviate C
β1−→ C1

β2−→ . . .
βk−→ C ′ with C

β̄−→ C ′, where
β̄ = β1, β2, . . . , βk, and likewise for G

ᾱ−→ G′. In case β̄ = ∅ (or ᾱ = ∅) we
consider that C = C ′ (or G = G′, respectively). Also, σᾱ denotes σαk

◦ . . .◦σα2 ◦
σα1 where ᾱ = α1, α2, . . . , αk. When ᾱ = ∅ we consider σᾱ to be the empty
(no-effect) environment update. Finally, we introduce a predicate to check that
each α action has a corresponding β action given two respective traces. We write
ᾱ ⇐ β̄ if there are two injective mappings, say g and h, that map each αi to a βj

and to a βk such that αi ∈ ᾱ, βg(i), βh(i) ∈ β̄, g(i) < h(i) and αi = f−1(βj , βk).

Theorem 1 (Correspondence). Let G to be such that � G and [[G]] is defined.
For any α, σ, β̄ we have that:

1. if G
α−→ G′ then σ([[G]])

f(α)−−−→ σα ◦ σ([[G′]]);

2. if σ([[G]])
β̄−→ C ′ then there is s̄, ᾱ, G′ such that C ′ s̄−→ C and C ≡ σᾱ ◦ σ([[G′]])

and G
ᾱ−→ G′ and ᾱ ⇐ β̄, s̄.

Proof.

1. By induction on the derivation of G
α−→ G′, following non-surprising lines.

Notice that the base case follows directly from Lemma 3 while the case for
the parallel composition relies on Lemma 4.

2. By induction on the length of β̄. Base case when β̄ has length zero is immedi-
ate, and the case when β̄ has length one follows by induction on the derivation
of the transition of σ([[G]]) considering Lemmas 3 and 5.
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We sketch the proof for the case when β̄ has length n. Using Lemma 5 we
can trace the behavior u to the synthesis of a thread of G, say G1. Considering
Lemma 3 we have that β1 = u, hence σ([[G1]])

u−→ C1 and we also have that the
only possible behavior of C1 is such that C1

s−→ C ′
1 and, taking α1 = f−1(u, s),

G1
α1−→ G′

1 and C ′
1 ≡ σα1 ◦ σ([[G′

1]]). We consider two distinct cases: either (1)
s ∈ β̄ or (2) s �∈ β̄.

(1) Considering the only possible behavior of C1 is s we have that every transi-
tion between u and s in β̄ does not involve C1. Hence we may pull up front

s in β̄ yielding β̄′ such that σ([[G]])
β̄′
−→ C ′ and β′

1 = u = β1 and β′
2 = s,

hence α1 = f−1(β′
1, β

′
2) while for all other labels the relative position is

preserved. From G1
α1−→ G′

1 we have that there is G′ such that G
α1−→ G′.

Also from σ([[G1]])
u,s−−→ C ′

1 and C ′
1 ≡ σα1 ◦ σ([[G′

1]]) and from Lemma 4
we have that σ([[G]])

u,s−−→ C ′′ and C ′′ ≡ σα1 ◦ σ([[G′]]). At this point we

observe that σα1 ◦ σ([[G′]])
β′
3,...−−−→ C ′ and we are in the condition to apply

the induction principle so as to obtain there is s̄, ᾱ′, G′′ such that C ′ s̄−→ C

and C ≡ σᾱ′ ◦ σα1 ◦ σ([[G′′]]) and G′ ᾱ′
−→ G′′ and ᾱ′ ⇐ β′

3, . . . , s̄. The result

is immediate by observing that G
α1,ᾱ′
−−−→ G′′ and that α1, ᾱ

′ ⇐ β̄′, s̄ which
implies α1, ᾱ

′ ⇐ β̄, s̄.
(2) Since s �∈ β̄ we have that component C1 is not involved in any transition in

β2, . . .. Let us take G2 such that G ≡ G1 ‖ G2 hence σ([[G]]) ≡ σ([[G1]]) ‖
σ([[G2]]) (Lemma 4). We have that σ([[G2]])

β2,...−−−→ C2 and C ′ ≡ C1 ‖ C2.
At this point we may apply the induction principle so as to obtain there
is s̄, ᾱ, G′ such that C2

s̄−→ C and C ≡ σᾱ ◦ σ([[G′
2]]) and G2

ᾱ−→ G′
2 and

ᾱ ⇐ β2, . . . , s̄. From C2
s̄−→ C and C1

s−→ C ′
1 and C ′ ≡ C1 ‖ C2 we have that

C ′ s̄,s−−→ C ′
1 ‖ C. From C ≡ σᾱ ◦ σ([[G′

2]]) and C ′
1 ≡ σα1 ◦ σ([[G′

1]]) we have
that C ′

1 ‖ C ≡ σα1 ◦σ([[G′
1]]) ‖ σᾱ ◦σ([[G′

2]]) and hence, considering Lemma 4
and noticing that σs have no effect in independent branches, we have that
C ′

1 ‖ C ≡ σᾱ ◦ σα1 ◦ σ([[G′
1 ‖ G′

2]]). From G1
α1−→ G′

1 and G2
ᾱ−→ G′

2 and
G ≡ G1 ‖ G2 we have that G

α1,ᾱ−−−→ G′
1 ‖ G′

2. It is immediate to observe that
α1 ⇐ u, s which together with ᾱ ⇐ β2, . . . , s̄ yields α1, ᾱ ⇐ u, β2, . . . , s̄, s
thus completing the proof for this case. �	
Theorem 1 characterizes the correspondence between global protocols and

their synthesis in a general way: each action of the global protocol can be mim-
icked by a pair of actions in the synthesis; all behaviors of the synthesis com-
plemented by some (synchronization) steps can be traced back to behaviors of
the global protocols. The latter in particular assures there is no divergence in
the synthesis from what the global protocols prescribe. However, we are also
interested in a particular case of this correspondence when we consider coupled
actions in the synthesis (which are the only possible ones for single-threaded
protocols in the light of Lemma 3). In fact, observing that in the result of a
synthesis the only possible behavior is a choice (u), and that after a choice there
can only be one synchronization (s) we can focus on coupled actions in general.
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Corollary 1 (Correspondence Invariance). Let G to be such that � G and
[[G]] is defined. For any α1, α2, . . . , αk we have that G

α1−→ G1
α2−→ G2 . . .

αk−−→ Gk iff

[[G]]
f(α1)−−−→ σα1([[G1]])

f(α2)−−−→ σα2 ◦ σα1([[G2]]) . . .
f(αk)−−−−→ σαk

◦ . . . ◦ σα2 ◦ σα1([[Gk]])

Corollary 1 gives us a precise correspondence between global protocol speci-
fications and distributed site-level implementations, bidirectionally matching all
possible behaviors between protocols and implementations. The semantics of the
languages, where transitions are labeled with the synchronization information,
supports the establishment of the matching of the global protocols and their AbC
implementations. We may also observe the local environment changes as a con-
sequence of the evolutions in a precise way. Thanks to the equivalence between
protocols and their synthesis, we can concentrate on the specifications and take
conformance of the implementations for granted.

6 Conclusion and Related Work

This paper provides a proof of concept of a software development methodol-
ogy that consists in programming specifications and relying on provably correct
translations into more operational models. Taken at this level of generality, we
may consider instances of this methodology the development of compilers that
date back to the 50’s or more recent work on model-driven engineering and
domain specific languages, although not all of such instances support provably
correct translations. If we consider the specific realm of distributed systems,
and that of conformance of implementations with respect to specifications given
in the same language, we find several approaches that rely on behavioral rela-
tions [9,15]. However, to the best of our knowledge, none of the approach based
on behavioral relations aims at the automatic generation of implementations
from high level specifications.

One intensively pursued line of research is concerned with type systems that
provide a means to verify that implementations conform to the specifications
given by means of types. In particular for communication-centered systems, there
are several approaches based on session-types, see e.g. [10], which establish, via
a typing relation, a correspondence between system behavior and channel usage
protocols. Such relation typically involves a verification procedure, and at least
for explicitly typed languages, it requires reasoning on both the type and the
programming language. Here, we have taken a different approach by considering
only the language of specifications (types) and by relying on a provably correct
translation mechanism. In this way, we support programming at a higher abstrac-
tion level and avoid conformance checking, as the synthesized implementations
are correct by construction.

Our global protocol specification language corresponds to global types [11],
except that our messages have no contents. The similarities include the close
correspondence between our well-formedness conditions and the linearity condi-
tions [11] imposed to protocols. We argue that adding value passing is orthogonal
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to the present development, potentially raising specific challenges only in the case
of channel passing. The approaches described in [3,4] are perhaps the closest to
ours. In both approaches global protocol descriptions are session-typed in order
to ensure the correspondence with site-level implementations obtained by means
of a projection function. In our approach, the programmer does not have to deal
with two different specification languages and we entirely avoid type verification.
However, we do not deal with multiple sessions, each taking place in a different
medium, even if they could be modeled using AbC attributes in a straightforward
way. In our opinion, multiple sessions/protocols should not be given in a single
specification, we believe that it is necessary to follow fundamental programming
languages principles, namely modularity in order to tame complexity. We envi-
sion that distinct sessions should be specified via different modules, each of them
exposing communication interfaces where actual dependencies between different
sessions are specified.

Another closely related approach is reported in [7,8,12]. Indeed the basic idea
is the same: generating correct by construction implementations from specifica-
tions. Their language of global specifications is similar to ours, and a specialized
language is introduced for the purpose of implementations; [7] introduces also
value support, which, as mentioned before, we view as an orthogonal issue. The
main difference lays in the underlying site-level implementation language. We
take as starting point an attribute-based communication model and show that
it is general enough to support a directed synthesis procedure for session-like
interaction. Other approaches, to model the link between message recipient and
emitter either introduce specialized constructs or rely on typing to ensure that
messages are exchanged (in particular received) from the parties prescribed by
the choreography. Using AbC we specify in a natural way to whom a message is
to be sent and from whom a message is supposed to be received, as identity is
just a specific attribute that can be exposed. We also model sessions in a natural
way, again by handling them as attributes.

In our approach, the ability to express communicating partners in a natural
way helps ensure that AbC processes are complying with the global specification.
The communications prescribed by the global specification are guaranteed by
the communication attributes in a way somehow similar to the one enforced
by runtime monitors (e.g., [5,6]). In this context, we find of particular interest
dealing with the issue of adaptation with synthesis used to replace incorrect
programs with correct by construction ones.

We believe our approach can be extended to richer protocol specification
languages, involving more intricate protocol structures, such as multicast or
generic sequential composition. In fact multicast can be directly represented
in AbC. Departing from the setting of multiparty session types, we believe it
would be interesting to extend the language at the level of the way peers are
engaged to participate in protocols. Currently we rely on identifying the partic-
ipants by name. However, since our underlying communication model is based
on attributes, we can naturally accommodate identifying the processes involved
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in a protocol on a more qualitative basis, e.g., by choosing as interacting partner
the best rated one or the less active one.

Our ultimate aim is to find ways to convey our ideas into practice, so as to
show that techniques introduced in the formal methods community can have an
impact on the expedite development of reliable software, in the spirit of [14].
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Abstract. Research in the formal analysis of cryptographic protocols
has produced much good work in the solving of equality constraints,
developing new methods for unification, matching, and deducibility.
However, considerably less attention has been paid to disequality con-
straints. These also arise quite naturally in cryptographic protocol analy-
sis, in particular for analysis of indistinguishability properties. Thus
methods for deciding whether or not they are satisfiable could poten-
tially be quite useful in reducing the size of the search space by protocol
analysis tools. In this paper we develop a framework for reasoning about
disequality constraints centered around the paradigm of the most dis-
criminating Dolev-Yao attacker, who is able to detect a disequality if
it is satisfied in some implementation of the crypto-algebra satisfying
given equality properties. We develop several strategies for handling dis-
equalities, prove their soundness and completeness, and demonstrate the
result of experimental analyses using the various strategies. Finally, we
discuss how disequality checking algorithms could be incorporated within
symbolic reachability protocol analysis methods.

1 Introduction

The area of formal analysis of cryptographic protocols has been an active one
since the mid 1980’s. The idea is to verify protocols that use cryptography
to guarantee security against an attacker —commonly called the Dolev-Yao
attacker [9]— who has complete control of the network. One of the most popular
approaches to the formal verification of cryptographic protocols is model check-
ing, in which the interaction of the protocol with the attacker is symbolically
executed.

Many model checkers rely on logical features to symbolically analyze a proto-
col, either by carrying constraints, whose solutions determine whether an attack
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exists, or by including logical variables, whose possible instantiations determine
whether an attack exists. In these logical model checkers, several types of con-
straints need to be solved, or at least be checked for satisfiability. They include
equality constraints modulo equational properties (typically solved by equational
unification techniques), deducibility constraints, and disequality constraints of
the form t �= t′, also modulo some equational axioms.

Such disequality constraints appear quite often in many applications. The
simplest come from the symbolic description of attack states, where we may want
to specify that two functional expressions, or two principals must be different.
For example, we might want to specify a state in which Alice accepts a key K as
being shared with Bob, and Bob accepts a key K ′ as being shared with Alice, but
K �= K ′. Another related use of disequality constraints comes from the analysis of
indistinguishability properties, where the intruder needs to distinguish between
two protocol executions. In models such as [3,22] this is formulated in terms
of equality and disequality constraints that must be satisfied. We illustrate the
issues that can arise with the following protocol, which will be used as a running
example.

Consider the standard example of Diffie-Hellman without authentication, in
which two parties exchange Diffie-Hellman key halves and use them to con-
struct a shared key. This is subject to a man-in-the-middle attack in which the
attacker learns the contents of encrypted information sent between two honest
principals. The attack is performed by having the man-in-the-middle perform a
Diffie-Hellman key exchange with Alice (impersonating Bob) and another Diffie-
Hellman key exchange with Bob (impersonating Alice). Thus the attack can also
be described as one in which Alice sends an encrypted secret, apparently to Bob,
and Bob receives the same encrypted secret, apparently from Alice, but the key
used to encrypt the message sent by Alice and the key encrypting the message
received by Bob are different.

The equational theory used by the protocol is as follows. There is an oper-
ator ∗ which is associative and commutative (AC), a constant g used as a pub-
lic generator, an operator exp satisfying the equation exp(exp(g,N1), N2) =
exp(g,N1 ∗ N2), and encryption and decryption operators e and d respectively,
satisfying the equation d(K, e(K,X)) = X. These two equations can be oriented
as rewrite rules exp(exp(g,N1), N2) → exp(g,N1 ∗ N2) and d(K, e(K,X)) → X
that are confluent modulo the AC property of ∗. This makes equality in this the-
ory decidable by simplification to normal form with these two rules modulo AC.

Alice and Bob exchange Diffie-Hellman key pairs exp(g,NA) and exp(g,NB).
Then they respectively compute exp(exp(g,NA), NB) and exp(exp(g,NB), NA),
which are both equal to exp(g,NA ∗NB) by the equational theory. Alice uses the
result as a key to encrypt a fresh secret SA and sends it to Bob. The protocol is
seen differently by Bob and Alice, as shown in the second and third columns, by
using a variable X,Y , and Z for terms a participant cannot identify as having
been correctly generated.

Alice and Bob

A → B : exp(g, NA)

B → A : exp(g, NB)

A → B : e(exp(g, NA ∗ NB), SA)

Alice

A → B : exp(g, NA)

B → A :Z

A → B : e(exp(Z, NA), SA)

Bob

A → B :X

B → A : exp(g, NB)

A → B : e(exp(X, NB), Y )
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The attack we are looking for is one in which the Alice and Bob agree on the
secret but not on the key:

Alice

A → B : exp(g, NA)

B → A : Z

A → B : e(exp(Z, NA), SA)

Bob

A → B : X

B → A : exp(g, NB)

A → B : e(exp(X, NB), SA)

Constraints

exp(X, NB) �= exp(Z, NA)

An attack that leads to this result is described as follows:
Alice and Bob

1. A → IB : exp(g,NA)
2. IA → B : exp(g,NIA)
3. B → IA : exp(g,NB)
4. IB → A : exp(g,NIB )
5. A → IB : e(exp(g,NA ∗ NIB ), SA)
6. Intruder generates key exp(exp(g,NA), NIB ) and extracts SA

7. IA → B : e(exp(g,NB ∗ NIA), SA)
8. Disequality exp(g,NA ∗ NIB ) �= exp(g,NB ∗ NIA) is satisfied

Since the terms exp(g,NA ∗ NIB ) and exp(g,NB ∗ NIA) are both irreducible
by the rules and different modulo AC, we have exp(g,NA ∗NIB ) �=E exp(g,NB ∗
NIA), where E is the equational theory of exponentation specified by the above
two equations and the AC axioms.

However, if we construct the attack by working backwards from the attack
states, the disequality constraint contains variables X and Z, and we find our-
selves facing a choice:

Do we try to solve the constraint right away, or do we wait for later?

The easiest, but not the most efficient, way of handling the constraint is to ignore
it until the initial state is reached. At that point all the terms will be more instan-
tiated than at any earlier point in a backwards path to the intial state, and we
will be in a good position to check whether the constraint is solvable. However,
this means that it is possible that a number of searches with states where the dis-
equality constraint is in fact unsolvable will be kept alive until the initial state
is reached, thus bloating the search space when they could have been discarded
much earlier. This suggests trying to address the constraint earlier, in an attempt
to determine whether or not a constraint containing variables is satisfiable.

Satisfiability of disequalities between terms with variables is a non-trivial
problem, especially since checking for solvability must be performed modulo the
equational properties of the protocol’s cryptographic functions. Furthermore, the
problem of solving a set of disequalities for a given equational theory, known as
the disunification problem [6], is less well understood than the problem of unifi-
cation. It is very well understood when the theory has no axioms (the so-called
free case) and has been studied for various equational theories commonly used
in automated deduction following different methods, e.g., [1,4,5]. However, this
work has mostly concentrated on algorithms for solvability in the initial algebra
of the given equational theory, that is, the quotient TΣ/E of the algebra of ground
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terms TΣ modulo the equations E, where Σ is the set of symbols appearing in E.
For exclusive-or, for example, the initial algebra TΣ/XOR is the singleton set {[0]}
consisting of the XOR-equivalence class [0], so in this algebra all terms must be
equal and no disequalities can be satisfied. However, for cryptographic protocols
in the Dolev-Yao model we are generally interested in an infinite class of algebras
each consisting of: some finite set of constants, a countable set of nonces, and
terms that can be built from constants and nonces using other function symbols,
such as those describing decryption or concatenation. We may also ultimately
be interested in computational models, which include probability distributions
over n-length strings of 0’s and 1’s. This means that restricting disunification
problems to initial algebras, though possible, can sometimes be too restrictive
for cryptographic protocol verification.

In protocol verification we assume the worse, namely, that the attacker can
use knowledge of equalities and disequalities modulo the equational theory E
satisfied by the cryptographic functions to mount an attack. In particular we
assume that the attacker knows the theory E, but may not fully know the details
of the implementation, i.e., the algebra used to implement such cryptographic
functions. How can such an attacker maximize its chances to mount an attack? It
does so by using its knowledge about: (i) the messages that it has already learned;
(ii) the equational theory E; and (iii) disequalities modulo E, to try to mount an
attack in all ways possible. But how can disequalities modulo E be handled by the
attacker? In the absence of full knowledge by the attacker about the particular
implementation, its best bet, the one maximizing its chances, is to assume that
the attack can be mounted in some implementation, that is, that there is some
model of the equations E, i.e., some algebra satisfying the equations E, where
the disequalities can be solved, and then try all possible attacks under that
assumption. We call such an attacker a most discriminating Dolev-Yao attacker,
because the set of disequalities satisfiable in a given implementation is always
a (not necessarily strict) subset of those that hold in some implementation. In
the absence of knowledge about the implementation this increases the attacker’s
chances, since the attacker may be able to distinguish some disequalities actually
holding in the unknown implementation that it could not have distinguished if
it had mistakenly assumed some other implementation.

Two observations may be helpful here:

1. Full knowledge by the attacker of the actual implementation can be used to
reduce the number of attacks to be tried. However, for a complex implemen-
tation a symbolic method to decide solvability of disequalities between terms
with variables may not exist at all.

2. The most discriminating attacker will detect all inequalities that hold true
for a given implementation, but may also detect some false ones. However,
detecting false inequalities does not prevent the attacker from finding any
genuine attack that is possible when only the theory E is assumed.1

1 It is well-known that protocols proved secure modulo equational axioms E may
sometimes be attacked at the computational level. That is why the qualification
that an attack is possible “when only the theory E is assumed” is important here.
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This suggests the following protocol analysis strategy: (i) in the absence
of knowledge about the implementation details, the strongest formal analysis
possible modulo E is to assume a most discriminating Dolev-Yao attacker; but
(ii) if implementation details can safely be assumed and symbolic satisfiability of
disequalities assuming such an implementation is decidable, then this can be used
to reduce the state space, since symbolic states with unsatisfiable disequalities in
the given implementation will be detected and discarded earlier. In this paper we
focus on case (i), and study methods to: (a) decide satisfiability of disequalities
without knowledge of the implementation; and (b) reduce as much as possible
the state space when searching for an attack.

Let us further expand on these ideas. Suppose that we begin with an equa-
tional theory (Σ,E). Since the symbols Σ used in the actual model of interest
will be implemented in some (Σ,E)-algebra A, the most discriminating Dolev-
Yao attacker possible should be able to settle whether a disequality u �= v can
be satisfied in some such (Σ,E)-algebra A. As we show in this work, this will
be the case iff u �= v can be satisfied in the free (Σ,E)-algebra TΣ/E(X), where
the family of variables X has a countable set of variables for each sort. We fur-
thermore show that u �= v is satisfiable in TΣ/E(X) iff u �=E v. Therefore, if the
equality relation =E is decidable, the most-discriminating Dolev-Yao attacker
can be automated.

The automation can be made even more efficient if (Σ,E) has the finite vari-
ant property [7], so that E decomposes as E = B ∪ E0 with the equations E0

(oriented as rules) convergent and coherent modulo the axioms B that have a
finitary unification algorithm and so that each term t has a finite set of most
general E0, B-variants. The point is that a disequality u �= v may arise sometime
during the process of model checking symbolically the security of a given pro-
tocol; but as the symbolic reachability analysis proceeds, the disequality u �= v,
carried as a constraint, will become instantiated as uθ �= vθ by various substitu-
tions θ. Moreover uθ �= vθ could become unsatisfiable even though the original
u �= v was satisfiable. As we show in the paper, combining ideas from [7] with
ideas from our own work on how to reduce the state space during reachability
analysis by using irreducibility constraints[10], we can simultaneously achieve
two important goals:

1. automate a most discriminating Dolev-Yao attacker for general security
attacks, including attacks violating indistinguishability properties; and

2. reduce the space of reachable states, in some cases substantially, by using
irreducibility constrains and reducing the (Σ,E0 ∪ B)-satisfiability of dise-
qualities to the (Σ,B)-satisfiability of their variants using such constrains.

We have implemented this most discriminating Dolev-Yao attacker modulo
a theory (Σ,E) having the finite variant property in the Maude-NPA tool [14],
and have tested and experimented with several disequality checking strategies
to reduce the search space on a suite of benchmarks to obtain a better insight
about their effectiveness.

The rest of the paper is organized as follows. In Sect. 2 we provide some back-
ground on term rewriting. Section 3 recalls the symbolic reachability framework
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used in the Maude-NPA tool, which is extended as follows. First, in Sect. 4, we
extend the symbolic reachability framework by adding disequalities, and show
how the Maude-NPA is adapted to this new framework. Second, in Sect. 5, we
further extend the new symbolic reachability analysis containing disequalities
to also include variant generation for disequalities and checking their associated
irreducibility constraints, and again show how the Maude-NPA can be adapted
to this new combined framework. Third, in Sect. 6, we discuss how these refine-
ments for checking disequalities can be used to reduce the search space using
various checking strategies and show, using a suite of examples, how this can
pay off in practice. We then conclude in Sect. 7.

2 Background on Term Rewriting

We follow the classical notation and terminology from [24] for term rewriting
and from [18,19] for rewriting logic and order-sorted notions. We assume an
order-sorted signature Σ = (S,≤, Σ) with a partially ordered set of sorts (S,≤).
We also assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the
set of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding
order-sorted term algebras. We assume throughout that Σ has non-empty sorts,
that is, that TΣ,s �= ∅ for each s ∈ S. We write Var(t) for the set of variables
present in a term t. The subterm of t at position p is t|p, and t[u]p is the result
of replacing t|p by u in t. A substitution σ is a sort-preserving mapping from
a finite subset of X to TΣ(X ). The identity substitution is id. Application of
substitution σ to a term t is denoted tσ. The restriction of σ to a set of variables
V is σ|V . The composition of two substitutions is X(σ ◦ θ) = (Xσ)θ for X ∈ X .

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X ) have a common
typing t : s, t′ : s, s ∈ S. Given a set E of Σ-equations, provable equality in order-
sorted equational logic [19] defines a congruence relation =E on terms t, t′ ∈
TΣ(X ), also denoted E 
 t = t′. The E-subsumption order on terms TΣ(X )s,
written t �E t′ (meaning that t is more general modulo E than t′), holds if
∃σ tσ =E t′. For a set E of Σ-equations, a E-unifier for a Σ-equation t = t′ is a
substitution σ s.t. σ(t) =E σ(t′). For Var(t)∪Var(t′) ⊆ W , a set of substitutions
CSU W

E (t = t′) is said to be a complete set of E-unifiers of an equation t = t′

away from W iff: (i) each σ ∈ CSU W
E (t = t′) is an E-unifier of t = t′; (ii) for

any E-unifier ρ of t = t′ there is a σ ∈ CSU W
E (t = t′) such that σ|W �E ρ|W

(i.e. (∃τ) ∀x ∈ W xστ =E xρ); (iii) for all σ ∈ CSU W
E (t = t′), Dom(σ) ⊆

(Var(t) ∪ Var(t′)) and Ran(σ)∩W = ∅. If the set of variables W is irrelevant or
is understood from the context, we write CSUE(t = t′) instead of CSU W

E (t = t′).
We say CSUE(t = t′) is finitary if it contains a finite number of E-unifiers.

A Σ-rewrite rule is an oriented pair l → r, where l �∈ X , Var(r) ⊆ Var(l), and
l, r ∈ TΣ(X ) have a common typing l : s, r : s, s ∈ S. An (unconditional) order-
sorted rewrite theory is a triple (Σ,E,R) with Σ an order-sorted signature, E
a set of Σ-equations, and R a set of Σ-rewrite rules. The relation →R,E on
TΣ(X ) is defined as: t

p→R,E t′ (or →R,E) if p is a position of t, l → r ∈ R,
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t|p =E lσ, and t′ = t[rσ]p for some σ. A term u is in →R,E-canonical form (or is
R,E-irreducible) if there is no v such that u →R,E v.

A decomposition (Σ,B,E0) of an equational theory E is a rewrite theory that
satisfies the following properties: (i) B is regular, sort-preserving and uses top-
sort variables, (ii) B has a finitary unification algorithm, and (iii) the rules E0 are
convergent modulo B, i.e., sort-decreasing, confluent, terminating, and coherent
modulo B. Given a decomposition E = (Σ,B,E0), the E0, B-canonical form of
a term t is denoted by t↓E0,B . Given a decomposition E = (Σ,B,E0), an E0, B-
variant of a term t is a pair (t′, θ) such that t′ =B (tθ)↓E0,B . A decomposition
(Σ, B,E0) has the finite variant (FV) property if there is a complete and finite
set of most general variants for each term (see [15] for details). If a decomposition
(Σ,B,E0) of an equational theory E has the finite variant property, there is an
algorithm to compute a finite complete set CSUE(t = t′) of E-unifiers [15].

3 Symbolic Reachability Analysis by Narrowing

In this section we recall basic facts about narrowing modulo equations of [25]
using topmost rewriting as a semantic framework for symbolic reachability analy-
sis of protocols under algebraic properties. We first define reachability goals.

Definition 1 (Reachability goal). Given an order-sorted rewrite theory
(Σ,E,R), a reachability goal is defined as a pair t

?→∗
R,E t′, where t, t′ ∈ TΣ(X )s

for some sort s. It is abbreviated as t
?→∗ t′ when the theory is clear from the

context; t is the source of the goal and t′ is the target. A substitution σ is a R,E-
solution of the reachability goal (or just a solution for short) iff there is a substitu-
tion σ for which there is a sequence tσ →R,E u1 →R,E · · · →R,E uk−1 →R,E t′σ.

A set Γ of substitutions is said to be a complete set of solutions of t
?→∗

R,E t′

iff: (i) every substitution σ ∈ Γ is a solution of t
?→∗

R,E t′, and (ii) for any solution

ρ of t
?→∗

R,E t′, there is a substitution σ ∈ Γ more general than ρ modulo E, i.e.,
σ|Var(t)∪Var(t′) �E ρ|Var(t)∪Var(t′).

If in a goal t
?→∗

R,E t′, terms t and t′ are ground, then goal solving becomes a stan-
dard rewriting modulo E reachability problem. However, since we allow terms
t, t′ with variables, we need a mechanism more general than standard rewrit-
ing to find solutions of reachability goals. Narrowing generalizes rewriting by
performing unification at non-variable positions instead of the usual matching.
Specifically, narrowing instantiates the variables in a term by a E-unifier that
enables a rewrite modulo E with a given rule and a term position.

Definition 2 (Narrowing modulo E). Given an order-sorted rewrite theory
(Σ,E,R), the narrowing relation on TΣ(X ) modulo E is defined as t �σ,R,E t′

(or �σ if R,E is understood) iff there is p ∈ PosΣ(t), a rule l → r in R such
that Var(t) ∩ (Var(l) ∪ Var(r)) = ∅, and σ ∈ CSU V

E(t|p = l) for a set V of
variables containing Var(t), Var(l), and Var(r), such that t′ = (t[r]p)σ.
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The reflexive and transitive closure of narrowing is defined as t
σ
�∗

R,Et′ iff
either t = t′ and σ = id, or there are terms u1, . . . , un, n ≥ 1, and sub-
stitutions σ1, . . . , σn+1 s.t. t �σ1,R,E u1 �σ2,R,E u2 · · · un �σn+1,R,E t′ and
σ = σ1 · · · σn+1.

Soundness and completeness of narrowing for solving reachability goals is
proved in [25] for order-sorted topmost rewrite theories, i.e., rewrite theories
were all the rewrite steps happen at the top of terms.

3.1 Reachability Analysis in Maude-NPA

In this section we give a high-level summary of the general narrowing-based app-
roach implemented in Maude-NPA. For further information, please see [12,14].
Note that our treatment of symbolic reachability analysis modulo equations by
narrowing is completely general and tool-independent. We only use Maude-NPA
for illustration purposes to give examples, and also because its implementation
supports the irreducibility conditions discussed in this paper. Multiset rewrite
rules, used as a model for protocol analysis [2,20], is another example of topmost
rewrite theories where reachability properties are checked.

Given a protocol P, states are modeled as elements of an initial algebra
TΣP/EP , where ΣP is the signature defining the sorts and function symbols (for
the cryptographic functions and for all the state constructor symbols) and EP is a
set of equations specifying the algebraic properties of the cryptographic functions
and the state constructors. Therefore, a concrete state is an EP -equivalence class
[t] ∈ TΣP/EP with t a ground ΣP -term. However, we explore symbolic state
patterns [t(x1, . . . , xn)] ∈ TΣP/EP (X ) on the free (ΣP , EP)-algebra over a set of
sorted variables X .

In Maude-NPA [12,14], a state pattern in a protocol execution is a term t of
sort State, t ∈ TΣP/EP (X)State, which is a term of the form {S1& · · · &Sn&{IK}}
where & is an associative-commutative union operator with identity symbol ∅.
Each element in the set is either a strand Si (see below) or the intruder knowledge
{IK} (see below) at that state.

The intruder knowledge {IK} also belongs to the state and is represented as
a set of facts. There are two kinds of intruder facts: positive knowledge facts (the
intruder knows m, i.e., m∈I), and negative knowledge facts (the intruder does
not yet know m but will know it in a future state, denoted by m/∈I), where m
is a message expression.

A strand [16] represents the sequence of messages sent and received by
a principal executing the protocol and is represented as a sequence of mes-
sages [msg−

1 ,msg+2 ,msg−
3 , . . . ,msg−

k−1,msg+k ] such that msgi is a term of sort
Msg, msg− (also written −msg) represents an input message, and msg+ (also
written +msg) represents an output message. Strands are used to represent
both the actions of honest principals (with a strand specified for each pro-
tocol role) and the actions of an intruder (with a strand specified for each
intruder action). In Maude-NPA strands evolve over time; the symbol | is used
to divide past and future. Also, we keep track of all the variables of sort
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Fresh generated by a concrete strand. That is, all the variables r1, . . . , rj of
sort Fresh (corresponding to new, unguessable values such as nonces) gen-
erated by a strand are made explicit right before the strand, as follows:
:: r1, . . . , rj :: [ m1

±, . . . , mi
± | mi+1

±, . . . , mk
± ] where msg±

1 , . . . ,msg±
i are

the past messages, and msg±
i+1, . . . ,msg±

k are the future messages (msg±
i+1 is the

immediate future message). The nils are present so that the bar may be placed
at the beginning or end of the strand if necessary, but we often remove them,
except when there is nothing else between the vertical bar and the beginning
or end of a strand. A strand :: r1, . . . , rj :: [msg±

1 , . . . ,msg±
k ] is a shorthand for

:: r1, . . . , rj :: [nil | msg±
1 , . . . ,msg±

k , nil]. When it is necessary to identify a strand
to distinguish it from other strands, we will do so via a role name in parentheses
appearing before the strand, e.g. (Alice) :: r1, . . . , rk :: [msg±

1 , . . . ,msg±
n ].

Example 1. The strand specification of the Diffe-Hellman protocol described in
the Introduction is as follows. Note that we specify a strand for each honest
principal, namely Alice and Bob.

(Alice) :: r, r′::: [+(exp(g, n(A, r))),
−(X),
+(e(exp(X,n(A, r)), sec(A, r′)))] &

(Bob) :: r′′:: [−(Y ),
+(exp(g, n(B, r′′))),
−(e(exp(Y, n(B, r′′)),Sr))]

Intruder strands are also included for each function. For example, the intruder’s
capability to encrypt a message M with a key K is described by the strand:

[−(M),−(K),+(e(K,M))]

The protocol analysis methodology of Maude-NPA is then based on backward
reachability analysis, where we begin with one or more state patterns correspond-
ing to attack states, and want to prove or disprove that they are unreachable from
the set of initial protocol states. In order to perform such a reachability analysis
we must describe how states change as a consequence of principals performing
protocol steps and of the intruder actions. This can be done by describing such
state changes by means of a set RP of rewrite rules, so that the rewrite theory
(ΣP , EP , RP) characterizes the behavior of protocol P modulo the equations EP .

The following rewrite rules describe the general state transitions, where each
state transition implies moving the vertical bar of one strand:

{SS & [L | M−, L′] & {M∈I, IK}} → {SS & [L,M− | L′] & {IK}} (1)

{SS & [L | M+, L′] & {IK}} → {SS & [L,M+ | L′] & {IK}} (2)

{SS & [L | M+, L′] & {M /∈I, IK}} → {SS & [L,M+ | L′]& {M∈I, IK}} (3)

where variables L,L′ denote lists of input and output messages of the form m+

or m− within a strand, IK denotes a set of intruder facts (m∈I, m/∈I), and
SS denotes a set of strands. In a forward execution of the protocol strands,
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Rule (1) synchronizes an input message with a message already learned by the
intruder, Rule (2) accepts output messages but the intruder’s knowledge is not
increased, and Rule (3) accepts output messages and the intruder’s knowledge
is positively increased. For an unbounded number of sessions, we have extra
rewrite rules (one for each positive message in a protocol or intruder strand)
that dynamically introduce additional strands into a state.

{ SS & [ l1 |u+, l2 ] & {u/∈I,K} → {SS & {u∈I,K}} | [ l1, u+, l2 ] ∈ P} (4)

For example, the intruder capability [(X)−, (Y )−, (X ∗Y )+] produces the follow-
ing extra rewrite rule adding a new strand (when the rule is executed backwards)
if a message of the form X ∗ Y appears in the intruder knowledge:

{SS & [X−, Y − | (X ∗ Y )+] & {(X ∗ Y )/∈I, IK}} → {SS & {(X ∗ Y )∈I, IK}}
Therefore, the set of rewrite rules that define the forwards execution of a protocol
in Maude-NPA is RP = {(1), (2), (3)} ∪ (4).

The way to analyze backwards reachability is then relatively easy, namely,
to run the protocol “in reverse”. This can be achieved by using the set of rules
R−1

P , where v −→ u is in R−1
P iff u −→ v is in RP .

Example 2. The protocol of Example 1 can be modeled as a rewrite theory
(ΣP , EP , RP) where RP is the reversed version of the generic rewrite rules (1)–
(3) plus the rewrite rules for introducing new strands. The final pattern used
as an input to the backwards symbolic reachability analysis to find the attack
described in the Introduction is as follows, including both Alice and Bob at the
end of their execution and two generic variables for an unknown set of strands
and an unknown set of intruder facts, respectively:

{(Alice) ::r, r′:::[+(exp(g, n(A, r))),
−(X),
+(e(exp(X,n(A, r)), sec(A, r′))) | nil] &

(Bob) ::r′′::[−(Y ),
+(exp(g, n(B, r′′))),
−(e(exp(Y, n(B, r′′)), sec(A,r’))) | nil] &

SS &{(exp(X,n(A, r)) �= exp(Y, n(B, r′′))), IK}}
This pattern requires the intruder to distinguish the disequality exp(X,n
(A, r)) �= exp(Y, n(B, r′′)).

4 Distinguishing Disequalities Modulo
an Equational Theory

As explained in the Introduction, to increase our confidence in formal protocol
verification with an attacker capable to distinguish messages, we want to perform
such an analysis with the most discriminating possible attacker model. In this
section we make this more precise.
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We say that an attacker is able to “distinguish” two messages u and v if it
is able to distinguish the disequality u �= v, that is, to detect that the negation
¬(u = v) can be satisfied modulo an equational theory (Σ,E) for the protocol’s
cryptographic functions.

Assume that the equational theory satisfied by the cryptographic functions
of the given protocol is (Σ,E), with Σ an order-sorted signature with non-
empty sorts, and E a set of equations. Suppose now that a symbolic attack has
been found under the assumption that the attacker can distinguish a disequality
u �= v. Since the attack is symbolic, assuming −→y = Var(u = v), an actual attack
will exist if the variables −→y can be instantiated in a model of the equations E
such that u �= v still holds after instantiation.

The existence of an actual attack in some implementation can be made pre-
cise as follows. First of all, note that an implementation of the cryptographic
functions satisfying algebraic properties E is in fact a (Σ,E)-algebra A. How-
ever, the attacker may not fully know the details of such an implementation A.
Therefore, an attack is possible at all if:

1. An attack state 〈St, Ψ〉, with St a state pattern and Ψ =
∧n

i=1 ui �=E vi, can
be reached by symbolic reachability analysis modulo E from an initial state
of the protocol.

2. There is an implementation, i.e., a (Σ,E)-algebra A and an assignment a ∈
[−→x → A] with −→x = Var(Ψ) such that A, a |= Ψ .

But condition 2 is precisely the notion of satisfiability :

Definition 3. Given an equational theory (Σ,E), a conjunction of disequalities
Ψ =

∧n
i=1 ui �=E vi is (Σ,E)-satisfiable iff there is a (Σ,E)-algebra A and an

assignment a ∈ [−→x → A] with −→x = Var(Ψ) such that A, a |= Ψ . Equivalently, Ψ
is (Σ,E)-satisfiable iff there exists a (Σ,E)-algebra A such that A |= (∃−→x )Ψ .

Stated this way, the search for the most discriminating Dolev-Yao attacker
becomes the search for the most disequality discriminating (Σ,E) algebra. If we
are interested only in satisfiability of the disequalities, then we claim that such
an algebra is precisely TΣ/E , the free (Σ,E)-algebra on the variables X , where
for each sort s in Σ, Xs is a countably infinite set of variables.

Theorem 1. Let A be any (Σ,E)-algebra with Σ having non-empty sorts and
let Ψ =

∧n
i=1ui �=E vi be a conjunction of disequalities; then if A |= ∃Ψ , we

must have TΣ/E(X ) |= ∃Ψ . Furthermore, TΣ/E(X ) |= ∃Ψ iff for each ui �= vi

in Ψ , E 
 ui �= vi, i.e., ui �=E vi.

Proof. Let −→y = Var(Ψ). Without loss of generality we may assume that −→y ⊆ X .
Since A |= ∃Ψ , there is an assignment a : −→y −→ A such that A, a |= Ψ . We
claim that TΣ/E(X ) |= ∃Ψ with assignment [id] : X � x �→ [x]E ∈ TΣ/E(X ).
The proof is by contradiction. Suppose that it does not. This means that
TΣ/E(X ), [id] � Ψ . Therefore, there must be a j, 1 ≤ j ≤ n such that
TΣ/E(X ), [id] � uj �= vj . That is, such that [uj ]E = [vj ]E and, since Σ is a
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signature with non-empty sorts, this exactly means that E 
 uj = vj . Since
A |= E then, by the Completeness Theorem [19] for order-sorted equational
logic, A |= uj = vj . But this is a contradiction, since then A, a |= uj = vj , and
therefore A, a �

∧n
i=1ui �= vi. This proves the first part of the theorem. To see the

second part, apply the first part to A = TΣ/E(X ) itself. Then TΣ/E(X ) |= ∃Ψ

iff TΣ/E(X ), [id] |= Ψ , iff for each ui = vi, 1 ≤ i ≤ n in Ψ we have [ui]E �= [vi]E
in TΣ/E i.e., iff E 
 ui = vi, 1 ≤ i ≤ n as claimed. ��

We can now state more precisely what we mean by a most discriminating
Dolev-Yao attacker. This is an attacker who can determine whether or not a
disequality u �= v is satisfiable in some implementation of the cryptographic
functions such that the equations E hold, regardless of the choice of such an
implementation.

Corollary 1. A conjunction of disequalities Ψ =
∧n

i=1ui �= vi is (Σ,E)-
satisfiable iff ui �=E vi, 1 ≤ i ≤ n, iff TΣ/E(X ), [id] |= Ψ .

If the E equality relation t =E t′ is decidable, this corollary, therefore, gives
us a decision procedure that a most-discriminating Dolev-Yao attacker can use
to decide whether or not Ψ is satisfiable modulo E in some implementation of
the cryptographic functions where the equations E hold.

Let us illustrate these ideas with our running example.

Example 3. As explained in the Introduction, our running protocol is subject
to an attack where the intruder is finally able to distinguish the disequal-
ity exp(g,NA ∗ NIB ) �= exp(g,NB ∗ NIA). That is, the symbolic reachability
analysis from the attack pattern described in Example 2 reaches an initial
state where the variables of the disequality exp(X,n(A, r)) �= exp(Y, n(B, r′′))
have been instantiated in such a way that the intruder can check that it
is satisfiable modulo E. More specifically, in such an initial state the dise-
quality exp(X,n(A, r)) �= exp(Y, n(B, r′′)) is instantiated as the disequality
exp(g, n(A, r) ∗ n(i, r′)) �= exp(g, n(B, r′′) ∗ n(i, r′′)), where n(i, r′) and n(i, r′′)
denote two different nonces generated by the intruder. Since exp(g, n(A, r) ∗
n(i, r′)) �=E exp(g, n(B, r′′) ∗ n(i, r′′)) holds, because both sides are in canonical
form and different modulo AC, this disequality is indeed (Σ,E)-satisfiable.

We use the results proved in this section to define a generic framework to per-
form symbolic reachability analysis extended with disequality constrains modulo
an equational theory (Σ,E) in the next section. That is, given a protocol whose
cryptographic functions are modelled by an equational theory (Σ,E), we check
whether the intruder can distinguish certain disequalities in the free (Σ,E)-
algebra TΣ/E(X ).

4.1 Symbolic Reachability Analysis with Disequality Constraints

We present a tool-independent framework for symbolic reachability analysis that
extends narrowing modulo an equational theory by considering the satisfiability
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of disequalities. First, we extend the notion of a protocol state to include, besides
the usual information about its various strands and the intruder’s knowledge,
also the disequalities that need to be satisfied at the given stage of protocol
analysis. We express this notion by the concept of constrained state.

Definition 4 (Constrained State). Given an order-sorted topmost rewrite
theory (Σ,E,R) a constrained state is a pair 〈St, Ψ〉 consisting of a state expres-
sion St and a disequality constraint, i.e., a set Ψ of disequalities understood as
a conjunction Ψ =

∧n
i=1ui �=E vi of disequalities modulo E. Note that ui and

vi may not be subterms of St, since disequalities will be accumulated along an
execution path.

Given a protocol P, a constrained state 〈St, Ψ〉 is satisfiable if the constraint
set Ψ =

∧n
i=1ui �= vi is (Σ,E)-satisfiable, i.e. iff ui �=E vi, 1 ≤ i ≤ n.

Given a constrained state 〈St, Ψ〉 with Ψ =
∧n

i=1ui �= vi we define its seman-
tics [[〈St, Ψ〉]] as the set of all substitution instances of the form:

[[〈St, Ψ〉]] = {Stθ | θ ∈ [X → TΣP (X )] ∧ uiθ �=E viθ, 1 ≤ i ≤ n}

Then we have the following lemma, that allows us to simplify constrained
state.

Lemma 1 (Optimizations). Let (Σ,E,R) be an order-sorted topmost rewrite
theory, and 〈St, Ψ〉 a constrained state with Ψ =

∧n
i=1ui �= vi.

1. If there is an index j, 1 ≤ j ≤ n, such that uj =E vj, then [[〈St, Ψ〉]] = ∅.
2. If there is an index j, 1 ≤ j ≤ n, such that CSUE(uj = vj) = ∅, then

[[〈St, Ψ〉]] = [[〈St, Ψ ′〉]] where Ψ ′ =
∧n

i=1,i �=jui �= vi.

Proof. To prove case 1, note that, by Corollary 1, Ψ is then unsatisfiable.
To prove case 2, first observe that we always have [[〈St, Ψ〉]] ⊆ [[〈St, Ψ ′〉]].
We just need to prove the containment [[〈St, Ψ ′〉]] ⊆ [[〈St, Ψ〉]]. Thus, con-
sider Stθ ∈ [[〈St, Ψ ′〉]], i.e., we have uiθ �=E viθ for 1 ≤ i ≤ n, i �= j.
But since CSUE(uj = vj) = ∅ we must also have ujθ �=E vjθ, and therefore,
Stθ ∈ [[〈St, Ψ〉]], as desired. ��

4.2 Constrained Reachability Analysis in Maude-NPA

In this section we explain in detail how Maude-NPA can be fully adapted to
the framework described in Sect. 4.1 in order to perform constrained symbolic
reachability analysis for protocols satisfying the FV property.

The behavior of a protocol P is now modeled by a rewrite theory
(ΣP , EP , RP) whose states are constrained states, represented in Maude-NPA
as state expressions, i.e., as terms of sort State, where the disequality constraint
Ψ is seen as part of the intruder knowledge. That is, constrained state is of the
form:

{s1 & s2 & · · · & sn & {m1∈I, . . . ,mk∈I,m′
1 /∈I, . . . ,m′

j /∈I, u1 �= v1, . . . , ul �= vl}}
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where s1 & s2 & · · · & sn are strands.
The set of rewrite rules RP describing a protocol’s execution can be obtained

by adapting the rules in RP to consider constrained states. Since disequalities are
now part of the intruder knowledge, as explained above, Rules (1), (2), (3), and
(4) remain the same. Syntactically we can view �= as a new constructor symbol
added to the signature ΣP , so that we can now add disequality constraints u �= v
as new facts to the intruder knowledge.

A feature of Maude-NPA originally documented in [12, Definition 7] to per-
form case analysis by splitting a state based on the intruder knowledge, and
which has not been included in our latest presentations of Maude-NPA, can now
be described easily using disequalities. When there are two E-unifiable terms
t1∈I and t2∈I in the intruder knowledge of a state, it is possible that those
two terms will become E-equal in the initial state, though they may be different
modulo E in the current state. Thus the symbolic search needs to consider both
cases: t1 and t2 are different, or they are the same. In [12, Definition 7], this was
solved by splitting a state with t1∈I and t2∈I in the intruder knowledge into
two states: one in which t1 = t2, and another in which the disequality t1 �= t2 is
added to the state as a constraint.

To model this type of state splitting we just need two more rules that allow
Maude-NPA to check whether some facts in the intruder knowledge can be uni-
fied and, in such a case, create two versions of the same state, one where both
facts unify and another one where they are necessarily different, and, thus, add
a new disequality to the constrained state. These two cases are described by the
two rules below, respectively.

{SS & {M1∈I, (M1 = M2), IK}} → {SS & {M1∈I,M2∈I, IK}}
{SS & {M1∈I,M2∈I, (M1 �= M2), IK}} → {SS & {M1∈I,M2∈I, IK}}

However, Maude-NPA performs backwards narrowing and the equality con-
straint M1 = M2 can be simply solved by E-unification, just replacing the
first rule by the following rule where one variable M is used instead of the two
variables M1 and M2. Equational E-unification will provide the desired behavior
above, since by having the same variable M in two intruder facts, the equality
constraint M1 = M2 will be tested but also solved, simplifying the search space.

{SS & {M∈I, IK}} → {SS & {M∈I,M∈I, IK}} (5)
{SS & {M1∈I,M2∈I, (M1 �= M2), IK}} → {SS & {M1∈I,M2∈I, IK}}(6)

Therefore, the rewrite rules that define the forwards execution of a protocol in
Maude-NPA are now RP = {(1), (2), (3)} ∪ (4) ∪ { (5) ∪ (6)}.

In summary, by making explicit a feature already implicit in Maude-NPA,
namely that:

1 the intruder knowledge can be of the form IK = IK ′ &Ψ where IK ′ con-
sist entirely of facts M∈I and M ′ /∈I, and Ψ is a conjuction of disequality
constraints, and
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2 some rewrite rules such as rule (6) when applied backwards can add now
disequality constraints M1 �= M2 to the intruder knowledge,

we can seamlessly extend the semantic framework of Maude-NPA to one where:

(i) states of the form {SS & IK ′ &Ψ} do in fact correspond to constrained
states of the form 〈{SS & IK ′}, Ψ〉,

(ii) the semantics of such states is precisely [[〈{SS & IK ′}, Ψ〉]], and
(iii) narrowing is seamlessly extended to constrained states, allowing us to model

by rules (5) and (6) the case splitting of states that was already performed
before, but was formerly treated as a state optimization feature.

Note that, since Maude-NPA searches backwards, checking the unsatisfia-
bility of a state’s constraint can be used for state space reduction purposes.
More specifically, given a constrained state containing an unsatisfiable disequal-
ity, then no initial constrained state can be reached by searching backwards from
this constrained state and, thus, it can safely be discarded.

5 Symbolic Reachability with Disequalities
Modulo FVP Theories

Lemma 1 above defines two methods to improve the search space: (i) discard
a state with a disequality u �= v whenever u =E v, since both terms are equal
modulo the equational theory for any possible implementation of the crypto-
graphic functions, and (ii) remove disequalities of the form u �= v such that
CSUE(u = v) = ∅, since they are true for any possible implementation of the
cryptographic functions. In this section we consider a third method to improve
the search space by generating the variants of a disequality u �= v.

When the equational theory (Σ,E) has a decomposition (Σ,B,E0) satisfying
the Finite Variant Property (FVP) (see Sect. 2) and B has a finitely B-unification
algorithm, we can have a better satisfiability method for disequalities.

Corollary 2. Given an decomposition (Σ,B,E0) of an equational theory
(Σ,E), a disequality ∃−→y u �= v, with −→y = Var(u �= v), and a E0, B-normalized
substitution α ∈ [−→y → TΣ(X )], the following statements are equivalent:

1. TΣ/E(X ), [α]E |= u �= v

2. (uα)↓E0,B �=B (vα)↓E0,B

3. there exists an E0, B- variant (u′ �= v′, θ) of u �= v (where, as said above �=
is understood as a constructor symbol), and an E0, B-irreducible substitution
γ such that
(a) (uα)↓E0,B =B u′γ,
(b) (vα)↓E0,B =B v′γ,
(c) u′γ �=B v′γ, and
(d) α =B θγ
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Thus, given such an equational theory, we can improve the search space
by computing the variants of disequalities in the hope that we can detect an
inconsistency earlier in the search space. Note, however, the crucial irreducibility
requirements that for a disequality u �= v and one of its variants (u′ �= v′, θ) such
that α =B θγ we must have u′γ↓E0,B = u′γ, and v′γ↓E0,B = v′γ. That is, u′

and v′ must be kept irreducible under the allowed instantiations.
The computation of the variants of disequalities does not happen in a

void, but in the context of the constrained term 〈St, Ψ〉. Therefore, a con-
strained state 〈St, Ψ〉 is indeed a term where we can compute its variants
(〈St1, Ψ1〉, θ1), . . . (〈Stk, Ψk〉, θk), which will now come with extra irreducibility
conditions generated from certain subterms in both Sti and Ψi. Note that in
Maude-NPA a constrained state 〈{SS & {IK}}, Ψ〉 is represented as an extended
state of the form {SS & {IK ′, Ψ}}.

Example 4. For example, the constrained state shown below, which is obtained
after one backwards reachability step from the attack pattern of Example 2:

{(Alice) ::r, r′:::[+(exp(g, n(A, r))),−(X),
+(e(exp(X,n(A, r)), sec(A, r′))) | nil] &

(Bob) ::r′′::[−(Y ),+(exp(g, n(B, r′′))) |
−(e(exp(Y, n(B, r′′)), sec(A,r’)))] &

SS & {(exp(X,n(A, r)) �= exp(Y, n(B, r′′))), IK}}

has the following four variants, where the terms irr(M) are the irreducibility
requirements on the term M .

1. Applying the id substitution:

{(Alice) ::r, r′ : ::[+(exp(g, n(A, r))),−(X),
+(e(exp(X,n(A, r)), sec(A, r′))) | nil] &

(Bob) ::r′′::[−(Y ),+(exp(g, n(B, r′′))) |
−(e(exp(Y, n(B, r′′)), sec(A,r’)))] &

SS& {(exp(X,n(A, r)) �= exp(Y, n(B, r′′))),
irr(exp(X,n(A, r))), irr(exp(Y, n(B, r′′))), IK}}

2. Applying substitution {X �→ exp(g,NS)}, where NS is a variable of the sort
for product of nonces:

{(Alice) ::r, r′:::[+(exp(g, n(A, r))),−(exp(g,NS)),
+(e(exp(g, n(A, r) ∗ NS), sec(A, r′))) | nil] &

(Bob) ::r′′::[−(Y ),+(exp(g, n(B, r′′))) |
−(e(exp(Y, n(B, r′′)), sec(A,r’)))] &

SS & {(exp(g, n(A, r) ∗ NS) �= exp(Y, n(B, r′′))),
irr(exp(g, n(A, r) ∗ NS)), irr(exp(Y, n(B, r′′))), IK}}
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3. Applying substitution {Y �→ exp(g,NS′)}, where NS′ is a variable of the
sort for product of nonces:

{(Alice)::r, r′:::[+(exp(g, n(A, r))),−(X),
+(e(exp(X,n(A, r)), sec(A, r′))) | nil]&

(Bob)::r′′::[−(exp(g,NS′′)),+(exp(g, n(B, r′′))) |
−(e(exp(g, n(B, r′′) ∗ NS′)), sec(A,r’)))] &

SS &{(exp(X,n(A, r)) �= exp(g, n(B, r′′) ∗ NS′)),
irr(exp(X,n(A, r))), irr(exp(g, n(B, r′′) ∗ NS′)), IK}}

4. Applying substitution {X �→ exp(g,NS), Y �→ exp(g,NS′)}, where NS and
NS′ are variables of the sort for product of nonces:

{(Alice) ::r, r′:::[+(exp(g, n(A, r))),−(exp(g,NS)),
+(e(exp(g, n(A, r) ∗ NS), sec(A, r′))) | nil] &

(Bob) ::r′′::[−(exp(g,NS′)),+(exp(g, n(B, r′′))) |
−(e(exp(g, n(B, r′′) ∗ NS′), sec(A,r’)))] &

SS & {(exp(g, n(A, r) ∗ NS) �= exp(g, n(B, r′′) ∗ NS′)),
irr(exp(g, n(A, r) ∗ NS)), irr(exp(g, n(B, r′′) ∗ NS′)), IK}}

5.1 Constrained Symbolic Reachability Analysis
Modulo FVP Theories

In the following we explain in detail how both the framework for constrained
symbolic reachability analysis with disequalities presented in Sect. 4.1 and the
framework for symbolic reachability analysis with irreducibility constraints pre-
sented in [10] can be combined. A useful insight from [10] is that irreducibility
is context-sensitive. For example, in a symbolic state all terms in the intruder
knowledge as well as “negative” terms −M in strands corresponding to messages
received or to be received must indeed be irreducible; but positive terms +M ,
which typically describe cryptographic operations to be performed by a principal
before sending the resulting message M , need not be irreducible. This intuition
is captured by the notion of contextual rewrite theory.

Definition 5 (Contextual Rewrite Theory). [10] A contextual rewrite the-
ory is a tuple (Σ,B,E0, R, φ) where (Σ,B ∪ E0, R) is an order-sorted topmost
rewrite theory, (Σ,B,E0) is a decomposition of the equational theory (Σ,B∪E0),
and φ, called the irreducibility requirements, is a function mapping each f ∈ Σ
to a set of its arguments, i.e., φ(f) ⊆ {1, . . . , ar(f)}, where ar(f) is the number
of arguments of f . The set of maximal irreducible positions of a term t is denoted
by φ(t).

A term t is called φ,E0, B-irreducible (or just φ-irreducible) if for each
p ∈ φ(t), t|p↓E0,B =B t|p, and strongly φ-irreducible if for any E0, B-normalized
substitution σ, tσ is φ-irreducible.
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We extend the notion of constrained state (Definition 4) to the contextual
case.

Definition 6 (Contextual Constrained State). Given a contextual order-
sorted topmost rewrite theory (Σ,B,E0, R, φ) a constrained state is a term of
the form 〈St,Π, Ψ〉. More specifically, Π is a set of Σ-terms such that each term
w ∈ Π must be kept E0, B-irreducible (we say Π are the E0, B-irreducibility
constraints) and Ψ is a conjunction of disequalities modulo E0 ∪B. A contextual
constrained state is satisfiable iff (i) the constraint set Ψ is satisfiable; and (ii)
each w ∈ Π is irreducible.

Given a contextual constrained state 〈St,Π, Ψ〉 with Π = w1, . . . , wk and
Ψ =

∧n
i=1ui �= vi we define its semantics [[〈St,Π, Ψ〉]] in TΣ/E(X ) as the set of

all substitution instances of the form:

[[〈St,Π, Ψ〉]] = {Stθ | θ ∈ [X → TΣP (X )]∧ (uiθ)↓E0,B �=B (viθ)↓E0,B , 1 ≤ i ≤ n,
∧ wiθ = (wiθ)↓E0,B , 1 ≤ i ≤ k}

Essentially, the framework of [10] carries along the irreducibility constraints
Π associated to each state and performs some specific tasks:

1. Generate variants of all the subterms in a state St according to mapping φ,
that is, for subterms of St at positions φ(St); in Maude-NPA only the symbol
∈I for positive intruder facts and the symbol −( ) for input messages in

a strand have their arguments marked as irreducible by the irreducibility
function φ.

2. For each group of variants of the subterms of St at positions φ(St), add those
terms to Π as irreducibility constraints.

3. Include Π as irreducibility constraints in each equational unification problem
associated to backwards narrowing by using the concept of asymmetric equa-
tional unification (see [10]) so that the computed unifiers never invalidate the
irreducibility constraints.

In our extended framework for disequalities, the only added requirements
are that we must: (i) generate variants of disequalities Ψ ; and (ii) add to Π
irreducibility constraints associated to Ψ . But this can be easily done extending
Σ to a signature Σ �= by adding the symbol �= and specifying the irreducibility
of both arguments using the function φ.

5.2 Contextual Constrained Reachability Analysis in Maude-NPA

In this section we explain in detail how Maude-NPA can be fully adapted to
the framework described in Sect. 5.1 in order to perform contextual constrained
symbolic reachability analysis for protocols with FVP theories.

Given a protocol P its behavior is now modeled by a contextual constrained
rewrite theory (Σ �=

P , EP , RP , φ). Constrained states are represented in Maude-
NPA as regular states, that is, as terms of sort State, where the irreducibility
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information is also part of the intruder knowledge. That is, constrained states
〈St,Π, Ψ〉 are represented as extended states of the form:

{s1 & s2 & · · · & sn &
{m1∈I, . . . ,mi∈I,m′

1 /∈I, . . . ,m′
j /∈I,

irr(w1), . . . , irr(wl), u1 �= v1, . . . , uk �= vk}}

The set of rewrite rules RP describing a protocol’s execution is equivalent to
these in Sect. 4.2. Therefore, the rewrite rules that define the forwards execution
of a protocol in Maude-NPA is the same as in Sect. 4.2. The only difference is
how Maude-NPA establishes the positions of the function φ but this is simple:
φ( ∈I) = {1}, φ(−( )) = {1}, and φ( �= ) = {1, 2}.

In summary, we reuse an existing framework for irreducibility constraints in
Maude-NPA in the following way:

1. the intruder knowledge can be of the form IK = IK ′ & Π &Ψ , where IK ′

consist entirely of facts M∈I and M /∈I, Π is a list of terms w1, . . . , wk,
understood as irreducibility constraints, and Ψ is a conjunction of disequality
constraints, and

2. we add irreducibility information for the disequality symbol �= so that the
framework generates variants and adds irreducibility constraints automati-
cally.

We therefore seamlessly extend the semantic framework of Maude-NPA to one
where:

(i) states of the form {SS & {IK ′ & Π &Ψ}} do in fact correspond to contextual
constrained states of the form 〈{SS & {IK ′}}, Π, Ψ〉,

(ii) the semantics of such states is precisely [[〈{SS & {IK ′}}, Π, Ψ〉]], and
(iii) the framework for narrowing with irreducibility constraints of [10] is used.

6 Experiments

We have performed an experimental evaluation to compare the performance of
the different approaches, presented in this paper to deal with disequality con-
straints when performing symbolic protocol analysis modulo equational theories.
Table 1 gathers the results of our experiments, which are also available online
at http://www.dsic.upv.es/∼sescobar/Maude-NPA/disequalities.html. More specifi-
cally, we have analyzed several cryptographic protocols in the Maude-NPA tool,
considering the following approaches:

– Strategy 0: Search for an attack by starting from an attack pattern and going
backwards towards an initial state, where any disequality constraint included
in the attack pattern or added during the backwards process is ignored until
the initial state is reached.

http://www.dsic.upv.es/~sescobar/Maude-NPA/disequalities.html
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– Strategy A: We work as in strategy 0, but any disequality constraint included
in the attack pattern or added during the backwards process is checked for
equality. That is, we discard any state containing a disequality u �= v such
that u =E v. In reality, since E = B ∪ E0 with E0 convergent modulo B, we
discard any state containing a disequality u �= v such that u↓E0,B =B v↓E0,B .

– Strategy A + B: We work as in strategy A, but any disequality constraint
included in the attack pattern or added during the backwards process is
checked for unifiability. That is, given a state containing a disequality u �= v
such that CSUB∪E0(u = v) = ∅, we remove the disequality and keep the rest
of the state.

– Strategy A + C: We work as in strategy A but any disequality constraint
included in the attack pattern or added during the backwards process is
replaced by its variants and appropriate irreducibility constraints. That is,
given a state St containing a disequality u �= v (this easily generalizes to a
set of disequalities), we generate its variants (u1 �= v1, θ1), . . . , (uk �= vk, θk)
and obtain the appropriate states St1, . . . , Stk by replacing the disequality
u �= v by ui �= vi, adding two irreducibility constraints irr(ui) and irr(vi),
and applying the substitution θi to the resulting state. For each of the variant
states, we discard it if it contains a disequality u′ �= v′ such that u′ =B v′.

– Strategy A + B + C: We put together all three ideas A, B, and C. That
is, given a state St containing a disequality u �= v, we generate its variants
states St1, . . . , Stk. Now, for each one of the variant states, we discard it if
it contains a disequality u′ �= v′ such that u′ =B v′. And, furthermore, we
remove any disequality u′′ �= v′′ such that CSUB(u′′ = v′′) = ∅ satisfying the
irreducibility constraints, i.e., for every substitution ρ ∈ CSUB(u′′ = v′′) and
every irreducibility constraints irr(w) in the state, wρ is still E0, B-irreducible.

We have analyzed a suite of protocols already specified in Maude-NPA. Below
we describe in detail the experiments we have performed. Note that for some
protocols we have performed several analyses searching for different types of
attacks, i.e., starting from different attack patterns.

– For the Diffie-Hellman protocol described in the Introduction, we have per-
formed three analyses searching for three different attacks, namely: (i) the
attack described in the Introduction, (ii) a secrecy attack, and (iii) an
authentication attack. They correspond to labels “DH-diseq”, “DH-sec” and
“DH-auth” in Table 1, respectively.

– We have analyzed a protocol involving exclusive-or, namely “XOR-esorics”
(the running example protocol of [10]).

– For the standard Needham-Schroeder protocol [21] (NSPK) and its fixed ver-
sion proposed by Lowe in [17] (NSL) we have considered two types of attacks:
(i) a secrecy attack in which the intruder can learn a nonce generated by a hon-
est principal, referred as protocols “NSPK-sec” and “NSL-sec”, respectively;
and (ii) an authentication attack in the style of our running example, which
includes a disequality in the attack patter, referred as protocols “NSPK-diseq”
and “NSL-diseq”, respectively.
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– We have also analyzed two versions of the NSL protocol, namely the Needham-
Schroeder-Lowe Modified Protocol with ECB (following the informal specifica-
tion given in [8]), and a version in which one of the concatenation operators is
replaced by an exclusive-or, presented in [23]. These two protocols are labeled
in Table 1 as “NSL-ECB” and “NSL-XOR”, respectively. In both cases we
searched for a secrecy attack.

– Protocol “SecReT06” corresponds to a protocol with an attack using type
confusion and a bounded version of associativity presented in [13], whereas
protocol “SecReT07” is a short version of the Diffie-Hellman protocol that
was presented in [11].

– Finally, protocol “Indist-ENC” corresponds to a protocol involving cancella-
tion of encryption and decryption, presented in [22], for which we analyzed
an indistinghishability property.

Table 1 summarizes all the experiments. For example, the analysis of the
DH-diseq protocol using Strategy 0 generated 147 states, whereas the analysis
following Strategy A + B + C generated 105 states. The reader can check that
there is no clear conclusion about which strategy is the best: e.g., A + B + C
is the best for DH-auth but C is not good for DH-diseq and B is the key for
NSPK-diseq. For attack states that do not include disequalities (all protocol
analyses with the suffix “sec”) the strategies had no affect either way.

On the other hand, even if the search space associated to a protocol is bigger
or smaller depending on the strategy, the same results are always obtained. We
show the detailed execution of two protocols, DH-diseq and NSPK-diseq, for
strategies A+B and A+B +C; DH-diseq in Tables 2 and 3 and NSPK-diseq in
Tables 4 and 5. For DH-diseq, the best strategy was A + B and the reader can

Table 1. Total number of states generated for each protocol and each strategy

Protocol Strat. 0 Strat. A Strat. A + B Strat. A + C Strat. A + B + C

DH-diseq 147 90 90 105 105

DH-sec 113 113 113 113 113

DH-auth 129 129 129 129 115

XOR-esorics 22 22 22 22 22

NSPK-sec 27 27 27 27 27

NSPK-diseq 235 209 203 209 203

NSL-sec 19 19 19 19 19

NSL-diseq 254 225 265 225 265

NSL-ECB 85 85 85 85 85

NSL-XOR 24 24 24 24 24

SecReT06 6 6 6 6 6

SecReT07 9 9 9 9 9

Indist-ENC 5 5 5 5 5
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Table 2. States and execution time for DH-diseq protocol with Strategy A + B

1 2 3 4 5 6 7 8 9 10 11 12 Total

States 4 8 8 8 12 12 13 13 6 3 2 1 90

Time (s) 11,2 14,8 35,0 62,1 43,3 80,5 120,9 173,8 74,2 25,6 12,7 3,7 657,6

Table 3. States and execution time for DH-diseq protocol with Strategy A + B + C

1 2 3 4 5 6 7 8 9 10 11 12 Total

States 4 8 10 12 16 15 15 13 6 3 2 1 105

Time (s) 9,8 12,1 28,2 68,5 99,1 138,7 146,8 187,6 113,7 26 14,5 6,3 851,3

Table 4. States and execution time for NSPK-diseq protocol with Strategy A + B

1 2 3 4 5 6 7 8 9 Total

States 4 9 15 29 46 54 33 11 2 203

Time (s) 2,1 5,5 12,2 29,9 55,7 90,2 95,5 60,8 17,5 369,4

Table 5. States and execution time for NSPK-diseq protocol with Strategy A+B+C

1 2 3 4 5 6 7 8 9 Total

States 4 9 15 29 46 54 33 11 2 203

Time (s) 2,1 5,5 5,5 24,5 56,8 90,0 96,0 60,8 17,6 358,9

check that the number of states for A+B+C is increased already at the beginning
of the backwards search, since the variants of the disequalities are generated at
the very beginning. In this protocol, the backwards search is able to instantiate
the disequalities in the right form and, thus, variant generation becomes useless
because it generates multiple redundant paths leading to the same initial state.
However, those paths are discarded further below in the backwards search and
the two search spaces become the same from depth 8 on. The execution time is
clearly different, since variant generation is expensive. For NSPK-diseq, the best
strategy is to use B, either in A + B or A + B + C, thus Tables 4 and 5 show
that generating the variants of the disequalities helps to reduce the execution
time, since the strategy A + B implies a unifiability test using the whole theory
B ∪ E0 whereas A + B + C implies a unifiability test using only B.

We can give several conjectures as to why the performance of strategies B
and C were variable. For the case of C, variant generation can provide more
fine-grained control of disequalities, but the production of variants also gener-
ates more states, as shown by the analysis above. For the case of B, it is at first
harder to see why merely removing a disequality from a state, without removing
or adding any states, would have an effect on the number of states. However,
strategy B has an effect on Maude-NPA’s subsumption partial order reduction,
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in which (essentially) states that are subsumed by other states are discarded
as redundant. Removing a disequality constraint could have effects on the sub-
sumption relation either way. The solution here would appear to be integrate
strategy B more closely with the subsumption partial order reduction.

7 Conclusions

We have provided a framework for reasoning about disequalities in formal cryp-
tographic protocol analysis that takes into account the idea of a most discrim-
inating Dolev-Yao intruder who can detect any inequality that may hold in an
implementation. We have used this framework to develop a number of strate-
gies for handling disequalities, whose soundness and completeness we have also
proved in this paper. We have also implemented these strategies in Maude-NPA
and assessed their performance experimentally.

We do not expect the usefulness of this framework to stop here however. We
expect to continue to use it to refine our strategies and develop new ones. In
particular, we expect it to be helpful in the development and implementation of
disunification algorithms that can be applied to cryptographic protocol analysis,
a topic we are currently investigating.
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Abstract. Finite-net Multi-CCS is a CCS-like calculus which is able to
model atomic sequences of actions and, together with parallel composi-
tion, also multi-party synchronization. This calculus is equipped with a
labeled transition system semantics and also with an unsafe P/T Petri
net semantics, which is sound w.r.t. the transition system semantics. For
any process p of the calculus, the net associated to p by the semantics has
always a finite number of places, but it has a finite number of transitions
only for so-called well-formed processes. The main result of the paper is
that well-formed finite-net Multi-CCS processes are able to represent all
finite, statically reduced, P/T Petri nets.

1 Introduction

Labeled transition systems with finitely many states and transitions can be
expressed by the CCS [18] sub-calculus of finite-state processes, i.e., the sequen-
tial processes generated from the empty process 0, prefixing μ.p, alternative com-
position p1 + p2 and a finite number of process constants C, each one equipped
with a defining equation C

def
= p. This famous result of Milner offers a process cal-

culus to express, up to isomorphism, all finite-state labeled transition systems.
This paper addresses the same language expressibility problem for finite

labeled Place/Transition Petri nets without capacity bounds on places. We sin-
gle out a fragment (called finite-net processes) of an extension of CCS (called
Multi-CCS, fully described in [14]), such that not only all processes of this frag-
ment generate finite P/T nets, but also for any finite (statically reduced) P/T
net we can find a term of the calculus that generates it. This solves the open
problem of providing a process calculus representing finite P/T Petri nets, and
opens interesting possibilities of cross-fertilization between the areas of Petri
nets and process calculi. In particular, it is now possible, on the one hand, (i) to
define any (statically reduced) finite P/T net compositionally and (ii) to study
algebraic laws for net-based behavioral equivalences (such as net isomorphism)
over such a large class of systems; on the other hand, it is now possible (iii) to
reuse all the techniques and decidability results available for P/T nets [8] also
for this fragment of Multi-CCS, as well as (iv) define non-interleaving semantics,
typical of Petri nets [7], also for finite-net Multi-CCS.

Finite-net Multi-CCS includes the operator α.s of strong prefixing (in con-
trast to normal prefixing μ.t), which states that the visible action α is the initial
c© Springer International Publishing Switzerland 2015
C. Bodei et al. (Eds.): Degano Festschrift, LNCS 9465, pp. 262–282, 2015.
DOI: 10.1007/978-3-319-25527-9 17
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part of an atomic sequence that continues with the sequential process s. So, by
strong prefixing, a transition can be labeled with a sequence of visible actions.
This operator, introduced in [11,12] with a slightly different semantics, is also
at the base of multiparty synchronization, obtained as an atomic sequence of
binary CCS-like synchronizations. In finite-net Multi-CCS, parallel composition
may occur inside the body of a recursively defined constant C; on the contrary,
the restriction operator (νa) is not allowed in the body of C. So, a finite-net
process may be represented as (νL)t, where L is a set of actions (if L is empty,
the restriction operator is not present) and t a restriction-free process.

We equip finite-net Multi-CCS with a net semantics that, differently from
the approach by Degano et al. [4–6,19], uses unsafe P/T nets, as done in [9,10]
for a CCS sub-calculus without restriction, and in [1] for the π-calculus, where
however inhibitor arcs are used to model restriction. The approach extension to
restriction and strong prefixing is not trivial and passes through the introduction
of an auxiliary set of restricted actions i.e., actions which are only allowed to
synchronize. We prove that the net semantics associates a P/T net Net(p) to
any finite-net Multi-CCS process p, such that Net(p) has finitely many places;
if p is well-formed, then Net(p) has also finitely many transitions; intuitively,
process p is well-formed if the sequences that p may generate via strong prefixing
have never the possibility to synchronize. We also provide a soundness result,
i.e., p and Net(p) are bisimilar [18]. Finally, we also prove the representability
theorem: for any finite, statically reduced, P/T net N , we can find a well-formed,
finite-net Multi-CCS process pN such that Net(pN ) and N are isomorphic.

The paper is organized as follows. Section 2 contains some basic back-
ground. Section 3 introduces finite-net Multi-CCS and its labeled transition sys-
tem semantics. Section 4 defines the net semantics for the calculus, presents the
finiteness theorem (for any well-formed process p, Net(p) is finite), one example
of net construction and the soundness theorem (p and Net(p) are bisimilar).
Section 5 proves the language expressibility theorem, i.e., the representability
theorem mentioned above. Finally, some conclusions are drawn in Sect. 6. This
paper is an extended abstract of [15], where additional detail can be found.

2 Background

2.1 Labeled Transition Systems and Bisimulation

Definition 1. A labeled transition system (or LTS for short) is a triple TS =
(Q,A, →) where

• Q is the set of states,
• A is the set of labels,
• →⊆ Q × A × Q is the transition relation.

In the following q
a−→ q′ denotes (q, a, q′) ∈→. A rooted transition system is a

pair (TS, q0) where TS = (Q,A, →) is a labeled transition system and q0 ∈ Q is
the initial state. ��
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Definition 2. Given two LTSs TS1 = (Q1, A, →1) and TS2 = (Q2, A, →2)
a bisimulation between TS1 and TS2 is a relation R ⊆ (Q1 × Q2) such that if
(q1, q2) ∈ R then for all a ∈ A

• ∀q′
1 such that q1

a−→1 q′
1, ∃q′

2 such that q2
a−→2 q′

2 and (q′
1, q

′
2) ∈ R

• ∀q′
2 such that q2

a−→2 q′
2, ∃q′

1 such that q1
a−→1 q′

1 and (q′
1, q

′
2) ∈ R.

If TS1 = TS2 we say that R is a bisimulation on TS1. Two states q and q′ are
bisimilar, q ∼ q′, if there exists a bisimulation R such that (q, q′) ∈ R. ��

2.2 Place/Transition Petri Nets

We recall some basic notions on P/T Petri nets (see, e.g., [3,20,21] for an intro-
duction). We use here a non-standard notation that better suits our needs.

Definition 3. Let N be the set of natural numbers. Given a set S, a finite multi-
set over S is a function m : S → N such that the set dom(m) = {s ∈ S |m(s) 
=
0} is finite. The set of all finite multisets over S, Mfin(S), is ranged over by m.
A multiset m such that dom(m) = ∅ is called empty and is denoted with ∅, with
abuse of notation. We write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S. The operator
⊕ denotes multiset union: (m⊕m′)(s) = m(s)+m′(s). The operator � denotes
multiset difference: if m′ ⊆ m, then (m � m′)(s) = m(s) − m′(s). The scalar
product of a number j with m is (j ·m)(s) = j · (m(s)). A finite multiset m over
a finite set S = {s1, . . . , sn} can be represented as k1 · s1 ⊕ k2 · s2 ⊕ . . . ⊕ kn · sn,
where kj = m(sj) ≥ 0 for j = 1, . . . , n. ��
Definition 4. A labeled P/T Petri net is a tuple N = (S,A, T ), where

• S is the set of places, ranged over by s (possibly indexed),
• A is a set of labels, ranged over by a (possibly indexed), and
• T ⊆ (Mfin(S) \ ∅) × A × Mfin(S) is the set of transitions, ranged over by t

(possibly indexed), such that ∀a ∈ A ∃t ∈ T labeled a.

A P/T net is finite if both S and T are finite. A finite multiset over S is called
a marking. Given a marking m and a place s, we say that the place s contains
m(s) tokens. Given a transition t = (m,a,m′), we use the notation •t to denote
its pre-set m (which cannot be an empty marking), t• for its post-set m′ and

l(t) for its label a. Hence, transition t can be also represented as •t
l(t)−→ t•.

A P/T system is a tuple N(m0) = (S,A, T,m0), where (S,A, T ) is a P/T
net and m0 is a finite multiset over S, called the initial marking. ��

Note that our definition of T as a set of triples ensures that the net is transi-
tion simple, i.e., for any t1, t2 ∈ T , if •t1 = •t2 and t•1 = t•2 and l(t1) = l(t2), then
t1 = t2. Note also that we are assuming that a transition has a nonempty pre-set.
These are the only two constraints we impose over the definition of a P/T net
(cf [3,20,21]). The additional condition that the set A of labels is covered by T
(i.e., for each a ∈ A there exists t ∈ T with label a) is just for economy.
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Definition 5. Two P/T nets N1 = (S1, A, T1) and N2 = (S2, A, T2) are isomor-
phic — denoted by N1

∼= N2 — if there exists a bijection f : S1 → S2, homomor-
phically extended to markings, such that (m,a,m′) ∈ T1 iff (f(m), a, f(m′)) ∈ T2.
Two systems N1(m1) and N2(m2) are isomorphic if N1 and N2 are isomorphic
by f , which, additionally, preserves the initial markings: f(m1) = m2. ��
Definition 6. Given a P/T net N = (S,A, T ), we say that a transition t is
enabled at marking m, written as m[t〉, if •t ⊆ m. The execution of t enabled
at m produces the marking m′ = (m � •t) ⊕ t•, denoted by m[t〉m′. The set of
markings reachable from m, denoted by [m〉, is defined as the least set such that

• m ∈ [m〉 and
• if m1 ∈ [m〉 and, for some transition t ∈ T , m1[t〉m2, then m2 ∈ [m〉.

Given a P/T system N(m0) = (S,A, T,m0), we say that m is reachable if m
is reachable from the initial marking m0. A P/T system N(m0) = (S,A, T,m0)
is said safe if for all m ∈ [m0〉 and for all s ∈ S we have that m(s) ≤ 1. ��
Definition 7. Given a P/T system N(m0) = (S,A, T,m0), the interleaving
marking graph of N(m0) is the rooted LTS IMG(N(m0)) = ([m0〉, A,→,m0),
where the transition relation →⊆ Mfin(S)×A×Mfin(S) is defined by m

a−→ m′

if and only if there exists a transition t ∈ T such that m[t〉m′ and l(t) = a. ��
Definition 8. A P/T system N(m0) = (S,A, T,m0) is dynamically reduced if

• ∀s ∈ S ∃m ∈ [m0〉 such that m(s) ≥ 1, and
• ∀t ∈ T ∃m,m′ ∈ [m0〉 such that m[t〉m′. ��
Definition 9. Given a finite P/T net N = (S,A, T ), we say that a transition t
is statically enabled by a set of places S′ ⊆ S, denoted by S′[[t〉, if dom(•t) ⊆ S′.

Given two sets of places S1, S2 ⊆ S, we say that S2 is statically reachable in
one step from S1 if there exists a transition t ∈ T , such that S1[[t〉, dom(t•) 
⊆ S1

and S2 = S1 ∪ dom(t•); this is denoted by S1
t=⇒ S2. The static reachability

relation =⇒∗ ⊆ ℘(S)fin × ℘(S)fin is the least relation such that

• S1 =⇒∗ S1 and
• if S1 =⇒∗ S2 and S2

t=⇒ S3, then S1 =⇒∗ S3.

A set of places Sk ⊆ S is the largest set statically reachable from S1 if S1 =⇒∗ Sk

and for all t ∈ T such that Sk[[t〉, we have that dom(t•) ⊆ Sk.
Given a finite P/T system N(m0) = (S,A, T,m0), we denote by [[dom(m0)〉

the largest set of places statically reachable from dom(m0), i.e., the largest Sk

such that dom(m0) =⇒∗ Sk. A finite P/T net system N(m0) = (S,A, T,m0) is
statically reduced if all the places are statically reachable from the places in the
initial marking, i.e., if [[dom(m0)〉 = S. ��

If a finite P/T system N(m0) = (S,A, T,m0) is statically reduced, then all
the transitions in T are statically enabled by S. Moreover, if a P/T system N(m0)
is dynamically reduced, then it is also statically reduced. However, there are
statically reduced P/T systems that are not dynamically reduced. For instance,
the statically reduced P/T net system N(s1) = ({s1, s2, s3}, {a, b}, {(s1, a, s2),
(2 · s1, b, s3)}, s1) cannot reach dynamically place s3.
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3 Finite-net Multi-CCS

3.1 Syntax

Let L be a denumerable set of names (inputs), ranged over by a, b, . . .. Let L
be the set of co-names (outputs), ranged over by a, b, . . .. The set L ∪ L, ranged
over by α, β, . . ., is the set of visible actions. With α we mean the complement of
α, assuming that α = α. Let Act = L ∪ L ∪ {τ}, such that τ 
∈ L ∪ L, be the set
of actions, ranged over by μ. Action τ denotes an invisible, internal activity. Let
C be a denumerable set of process constants, disjoint from Act, ranged over by
A,B,C, . . .. The process terms are generated by the following abstract syntax

s ::= 0 μ.t α.s | s + s
t ::= s t | t C
p ::= t (νa)p

where we are using three syntactic categories: s, to range over sequential
processes (i.e., processes that start sequentially), t, to range over restriction-
free processes, and, finally p, to range over restricted processes.

As for CCS [18], term 0 is the terminated process, μ.t is a normally prefixed
process where action μ is first performed and then t is ready, Note that s + s′

is the sequential process obtained by the alternative composition of sequential
processes s and s′; hence we are restricting the use of + to so-called guarded sum.
Term t | t′ is the parallel composition of t and t′. (νa)p is process p where the
name a is made private by applying the restriction operator over a. Finally, C is
a process constant, equipped with a defining equation C

def
= t, i.e., the body of a

constant must be a restriction-free process. The only new operator of the calculus
is strong prefixing: α.s is a process, where the strong prefix α is the first action
of a transaction that continues with the sequential process s (provided that s
can complete the transaction). We sometimes use the syntactic convention of
writing (νa)((νb)p)) as (νa, b)p. Generalizing this convention, a finite-net Multi-
CCS process may be represented as (νL)t, where L is a set of actions (if L is
empty, the restriction operator is not present) and t is a restriction-free process.

The set P of processes contains those terms which uses only finitely many
constants and are, w.r.t. process constants they use, closed (all the constants

possess a defining equation) and guarded (for any defining equation C
def
= t, any

occurrence of a constant in t is within a normally prefixed subprocess μ.t′ of t).
Pseq is the set of sequential processes, i.e., those of syntactic category s. With
abuse of notation, P will be ranged over by p, q, r, . . . (hence p may denote any
kind of process terms, also sequential ones), possibly indexed.

Definition 10. For any finite-net Multi-CCS process p, we define the set of its
sequential subterms sub(p) by means of the auxiliary function (with the same
name, with abuse of notation) sub(p, ∅), whose second parameter is a set of
already known constants, initially empty.

sub(0, I) = {0} sub(μ.p, I) = {μ.p} ∪ sub(p, I)
sub(α.p, I) = {α.p} ∪ sub(p, I) sub((νa)p, I) = sub(p, I)
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sub(p1 + p2, I) = {p1 + p2} ∪ sub(p1, I) ∪ sub(p2, I)
sub(p1 | p2, I) = sub(p1, I) ∪ sub(p2, I)

sub(A, I) =

{
∅ A ∈ I,

sub(p, I ∪ {A}) A 
∈ I ∧ A
def
= p

��
Proposition 1. For any finite-net Multi-CCS process p, the set of its sequential
subterms sub(p) is finite. ��

3.2 Operational Semantics with LTSs

The operational semantics for the calculus is given by the LTS (P,A, −→ ),
where the states are the processes in P, A = {τ} ∪ (L ∪ L)+ is the set of labels
(ranged over by σ and composed of the invisible action τ and by sequences
of visible actions), and −→ ⊆ P × A × P is the minimal transition relation
generated by the rules listed in Table 1.

Table 1. Operational rules (symmetric rule (Sum2) omitted)

(Pref)
μ.p

μ−→ p
(Cong)

p ≡ p′ σ−→ q′ ≡ q

p
σ−→ q

(Sum1)
p

σ−→ p′

p + q
σ−→ p′

(Par)
p

σ−→ p′

p | q σ−→ p′ | q
(S-Pref)

p
σ−→ p′

α.p
α�σ−→ p′

α � σ =

{

α if σ = τ ,

ασ otherwise

(S-Res)
p

σ−→ p′

(νa)p
σ−→ (νa)p′

a, a �∈ n(σ)

(S-Com)
p

σ1−→ p′ q
σ2−→ q′

p | q σ−→ p′ | q′
Sync(σ1, σ2, σ)

Table 2. Synchronization relation Sync

Sync(α, α, τ)

σ �= ε

Sync(ασ, α, σ)

σ �= ε

Sync(α, ασ, σ)

We briefly comment on the rules that are less standard. Rule (S-pref) allows
for the creation of transitions labeled by sequences of actions. In order for α.p
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to make a move, it is necessary that p be able to perform a transition, i.e., the
rest of the transaction. Hence, if p

σ−→ p′ then α.p
α�σ−→ p′, where α � σ = α if

σ = τ , α � σ = ασ otherwise. Rule (S-Com) has a side-condition on the possible
synchronizability of σ1 and σ2. Relation Sync is defined by the axioms of Table 2.
Sync(σ1, σ2, σ) holds if at least one of the two sequences is a single action, say
σ1 = α, and the other starts with the complementary action α. Note that it is
not possible to synchronize two sequences. This means that, usually, a multi-
party synchronization can take place only among one leader, i.e., the process
performing the atomic sequence, and as many other components (the servants),
as is the length of the atomic sequence, where each servant executes one visible
action. This is strictly the case for so-called well-formed processes, i.e., processes
that do not allow for the synchronization of two sequences, not even indirectly
(see Definition 13). Rule (S-Res) is slightly more general than the corresponding
one for CCS, as it requires that no action in σ can be a or a (with n(σ) we
denote the set of all actions occurring in σ). There is one further rule, called
(Cong), which makes use of the structural congruence ≡, induced by the three
axioms in Table 3. Axioms E1 and E2 are for associativity and commutativity,
respectively, of the parallel operator. Axiom E3 is for unfolding and explains
why we have no explicit operational rule for handling constants in Table 1. Rule
(Cong) enlarges the set of transitions derivable from a given process p, as the
following example shows. The intuition is that a transition is derivable from
p if it is derivable from any p′ obtained as a rearrangement in any order (or
association) of all of its sequential subprocesses.

Table 3. Axioms generating the structural congruence ≡

E1 (p | q) | r = p | (q | r)
E2 p | q = q | p
E3 A = q if A

def
= q

Table 4. Multi-party synchronization among three processes

b.p
b−→ p

a.b.p
ab−→ p a.q

a−→ q

a.b.p | a.q
b−→ p | q b.r

b−→ r

(a.b.p | a.q) | b.r τ−→ (p | q) | r
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Example 1. Consider process (a.b.p | a.q) | b.r. The ternary synchronization
among them, (a.b.p | a.q) | b.r τ−→ (p | q) | r, can take place, as proved in Table 4,
without using rule (Cong). However, if we consider the very similar process
a.b.p | (a.q | b.r), then we can see that a.b.p is able to synchronize with both a.q
and b.r at the same time, only by means of rule (Cong). If we consider the
slightly different variant process (a.b.p | b.r) | a.q, we see easily that, without rule
(Cong), no ternary synchronization is possible, because Sync(ab, b, a) does not
hold. This example shows that, by using the axioms E1 and E2, it is possible to
reorder the servant subcomponents (in this example, subprocesses a.q and b.r)
in such a way that the actions they offer are in the expected order by the leader
process (in this example, a.b.p). ��

Two finite-net Multi-CCS processes p and q are bisimilar, written p ∼ q, if
there exists a bisimulation R ⊆ P × P such that (p, q) ∈ R.

4 Operational Net Semantics

4.1 Places and Markings

The finite-net Multi-CCS processes are built upon the denumerable set L ∪ L,
ranged over by α, of visible actions. We assume we have also L′ = {a′ | a ∈ L}
and L′ = {a′ | a ∈ L}, where L′ ∪ L′, ranged over by α′, is the set of auxiliary
restricted actions; by definition, each restricted action α′ corresponds exactly to
one visible action α. Set G = L ∪ L ∪ L′ ∪ L′ is the set of visible or restricted
actions, ranged over by γ. The set of all actions Actγ = G ∪ {τ}, ranged over by
μ (with abuse of notation), is used to build the set of extended, finite-net Multi-
CCS processes Pγ . The infinite set of places, ranged over by s, is SMCCS = Pγ

seq,
i.e., the set of all the sequential processes whose prefixes are in Actγ and whose
strong prefixes are in G.

Table 5. Decomposition function

dec(0) = ∅ dec(μ.p) = {μ.p}
dec(γ.p) = {γ.p} dec(p + p′) = {p + p′}
dec(p | p′) = dec(p) ⊕ dec(p′) dec(C) = dec(p) if C

def
= p

dec((νa)p) = dec(p){a′/a} a′ ∈ L′ is the restricted action corresponding to a

Function dec : Pγ → Mfin(SMCCS) (see Table 5) defines the decomposi-
tion of extended processes into markings. Process 0 generates no places. The
decomposition of a sequential process p produces one place with name p. This
is the case of μ.p (where μ can be any action in Actγ), γ.p and p + p′. Parallel
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composition is interpreted as multiset union. The decomposition of a restricted
process (νa)p — where a ∈ L — generates the multiset obtained from the
decomposition of p, to which the substitution {a′/a} is applied; the application
of the substitution {a′/a} to a multiset is performed elementwise. Finally, a
process constant is first unwound once (according to its defining equation) and
then decomposed. We assume that, in the decomposition of (νa)p, the choice
of the restricted name is fixed by the rule that associates to a visible action
a its unique corresponding restricted action a′. Note also that, as a finite-net
process is of the form (νL)t with L = {a1, a2, . . . , an}, it can be first translated
into the restriction-free process t{a′

1/a1} . . . {a′
n/an} (shortened as t{L′/L}, for

L′ = {a′
1, . . . , a

′
n} ⊆ L′), and then decomposed to obtain a multiset. This means

that we can restrict our attention to restriction-free processes built over Actγ ,
as a restricted process (νL)t in P is mapped via dec to the same marking of the
restriction-free process t{L′/L} in Pγ . Guardedness of constants is essential to
prove the following obvious fact.

Proposition 2. For any p ∈ Pγ , dec(p) is a finite multiset of places. ��
Of course, function dec is not injective, because it considers the parallel

operator as commutative, associative, with 0 as neutral element. As a matter
of fact, dec((p | q) | r) = dec(p | (q | r)), dec(p | q) = dec(q | p), dec(p |0) = dec(p),

dec(A) = dec(p) if A
def
= p, etc. However, one can prove that it is surjective.

4.2 Properties of Places and Markings

Function sub(−) can be extended to a finite set S of places (i.e., of sequential
processes) as sub(S) =

⋃
s∈S sub(s). The goal is to prove that the sequential

subterms of p are the same sequential subterms of dom(dec(p)). This property
will be useful in proving (Theorem1) that each place statically reachable from
dom(dec(p)) belongs to sub(p) (up to a possible renaming of bound names to
the corresponding restricted names), so that, since sub(p) is finite for any p, the
set of all the places statically reachable from dom(dec(p)) is finite as well.

Proposition 3. If p is restriction-free, then sub(p) = sub(dom(dec(p)), while if
p = (νL)t, then sub(p){L′/L} = sub(dom(dec(p))). ��

Now we define a notion of well-behaved set of places (and well-formed process),
which will be useful in the next section in proving that any transition sta-
tically enabled by a well-behaved set S is such that no synchronization of
sequences is possible (Proposition 6). As a matter of fact, the definition of rela-
tion Sync(σ1, σ2, σ) requires that at least one of σ1 or σ2 be a single action; this
is not enough to prevent that two sequences may synchronize, even if indirectly.
For instance, consider the three processes p1 = a.b.0, p2 = a.0 and p3 = b.c.0,
which may perform ab, a, bc, respectively; then a ternary synchronization is pos-
sible, because first we synchronize p1 and p2, by Sync(ab, a, b), getting a single
action b, which can be then used for a synchronization with p3, by Sync(b, bc, c);
in such a way, the two atomic sequences ab and bc have been synchronized. So,
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we would like to mark {p1, p2, p3} as not well-behaved and (p1 | p2) | p3 as not
well-formed. Some auxiliary definitions are needed.

Definition 11 (Initials for sequential processes). For any sequential
process p, In(p) ⊆ A is the set of initials of p, defined inductively as

In(0) = ∅ In(μ.p) = {μ}
In(α.p) = α � In(p) In(p1 + p2) = In(p1) ∪ In(p2)

where α � In(p) = {α � σ | σ ∈ In(p)}. ��
Definition 12 (Names in sequences of a sequential process). Let ns(p) ⊆
G be the set of (free) names occurring in sequences of length two or more of a
sequential process p. Set ns(p) is defined as the least set satisfying the following:

ns(0) = ∅ ns(α.p) = ns(p) ∪ {α} ∪ ⋃
σ∈In(p)∧σ �=τ n(σ)

ns(μ.p) = ns(dec(p)) ns(p1 + p2) = ns(p1) ∪ ns(p2)

where ns(−) is extended over a set S of places as ns(S) =
⋃

s∈S ns(s). ��
Definition 13 (Well-formed process and well-behaved set of places).
A set of places S is well-behaved if there exist no β ∈ G such that β ∈ ns(S)
and β ∈ ns(S). A process p is well-formed, denoted wf(p), if dom(dec(p)) is
well-behaved. ��
Example 2. Let us consider three processes p1 = a.b.0, p2 = a.0 and p3 = b.c.0.
Note that wf(pi) because {pi} is well-behaved for i = 1, 2, 3. We also have that
wf(p1 | p2), as no action of ns(p1) = {a, b} occurs complemented in ns(p2) = ∅.
However, it is not the case that wf((p1 | p2) | p3), because there exists an action,
namely b, such that b ∈ ns(p1) and b ∈ ns(p3). ��

4.3 Net Transitions

Let Aγ = {τ}∪G+, ranged over by σ with abuse of notation, be the set of labels,
and let →⊆ Mfin(SMCCS)×Aγ ×Mfin(SMCCS), be the least set of transitions
generated by the rules in Table 6, where in a transition m1

σ−→ m2, m1 is the
multiset of tokens to be consumed, σ is the label of the transition and m2 is the
multiset of tokens to be produced.

Let us comment the axiom and rules of Table 6. Axiom (pref) states that
if one token is present in the place μ.p then a μ-labeled transition is derivable
from marking {μ.p}, producing the marking dec(p). This holds for any μ, i.e.,
for the invisible action τ , for any visible action α as well as for any restricted
action α′. Transitions with labels containing restricted actions should not be
taken in the resulting net, as we accept only transitions labeled on A. However,
these transitions are useful in producing the required transitions, as two com-
plementary restricted actions can synchronize, producing a τ -labeled transition



272 R. Gorrieri

Table 6. Rules for net transitions (symmetric rule (sum2) omitted)

(pref)
{μ.p} μ−→ dec(p)

(sum1)
{p} σ−→ m

{p + p′} σ−→ m

(s-pref)
{p} σ−→ m

{γ.p} γ�σ−→ m
(s-com)

m1
σ1−→ m′

1 m2
σ2−→ m′

2

m1 ⊕ m2
σ−→ m′

1 ⊕ m′
2

Sync(σ1, σ2, σ)

or shortening the synchronized sequence. In rule (s-pref), γ ranges over visible
actions α and restricted ones α′; this rule requires that the premise transition
{p} σ−→ m be derivable by the rules, starting from the sequential process p. Rule
(sum1) and its symmetric (sum2) are as expected: the transition from place
p + p′ are those from places p and p′, as both p and p′ are sequential. Finally,
rule (s-com) explains how synchronization takes place: it is needed that m1 and
m2 perform synchronizable sequences σ1 and σ2, producing σ; here we assume
that Sync has been extended also to restricted actions in the obvious way, i.e., a
restricted action α′ can be synchronized only with its complementary restricted
action α′ or with a sequence beginning with α′. As an example, net transition
{a.b′.p, a.q, b′.r} τ−→ dec(p) ⊕ dec(q) ⊕ dec(r) is derivable as proved in Table 7.

Table 7. The proof of a net transition

(pref)

{b′.p} b′−→ dec(p)
(s-pref)

a.b′.p} ab′−→ dec(p)
(pref)

{a.q} a−→ dec(q)

{a.b′.p, a.q} b′−→ dec(p) ⊕ dec(q)

(pref)

{b′.r} b′−→ dec(r)

{a.b′.p, a.q, b′.r} τ−→ dec(p) ⊕ dec(q) ⊕ dec(r)

Note that the transitions generable by the rules can be labeled also with
restricted actions, while we are interested only in transitions that are labeled
on A = {τ} ∪ (L ∪ L)+. Hence, the P/T Petri net for finite-net Multi-CCS
is the triple NMCCS = (SMCCS ,A, TMCCS), where the infinite set TMCCS =
{(m1, σ,m2) | m1

σ−→ m2 is derivable by the rules and σ ∈ A} is obtained by
filtering out those transitions derivable by the rules such that no restricted name
α′ occurs in σ. For instance, in the example above, the derivable transition

{b′.p} b′
−→ dec(p) is not a transition in TMCCS because its label is not in A,

while {a.b′.p, a.q, b′.r} τ−→ dec(p) ⊕ dec(q) ⊕ dec(r) belongs to TMCCS .
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4.4 Properties of Net Transitions

Proposition 4. Let t = m1
σ−→ m2 be a transition derivable by the rules in

Table 6. Then, sub(dom(m2)) ⊆ sub(dom(m1)). ��

Proposition 5. If t = m1
σ−→ m2 is derivable by the rules and dom(m1) is

well-behaved, then dom(m2) is well-behaved. ��

Corollary 1. If S1 is well behaved and S1
t=⇒ S2, then S2 is well-behaved. ��

Now we want to prove that when a transition m
σ−→ m′, whose label σ 
= τ ,

involves in its proof some sequence of length greater than one, then the names
of σ are all contained in ns(dom(m)).

Lemma 1. If t = (m,σ,m′) is derivable by the rules of Table 6, and either
|σ| ≥ 2 or σ 
= τ and there exists a transition label σ′ in its proof tree with
|σ′| ≥ 2, then n(σ) ⊆ ns(dom(m)). ��
Corollary 2. If t = (m, γ,m′) is derivable by the rules of Table 6 by using rule
(s-com), then γ ∈ ns(dom(m)). ��

Note that transition t = (m,σ,m′) is derivable by the rules of Table 6 without
using rule (s-com) if and only if m is a singleton, i.e., |m| = 1. On the contrary,
rule (s-com) is used if and only if m is not a singleton, i.e. |m| ≥ 2.

Proposition 6. If t = (m,σ,m′) is derivable by the rules and dom(m) is well-
behaved, then the proof of t never synchronizes two sequences, not even indirectly.

Proof. By induction on the proof of t. If |m| = 1 is, then rule (s-com) is never
used, and so no synchronization of sequences is possible. Otherwise, by (s-com)
m = m1 ⊕ m2, m′ = m′

1 ⊕ m′
2, t1 = (m1, σ1,m

′
1) and t2 = (m2, σ2,m

′
2) are

derivable, with Sync(σ1, σ2, σ). As dom(m) is well-behaved, so are also dom(m1)
and dom(m2); hence, by induction, in the proofs of transitions t1 and t2 two
sequences are never synchronized. So, it remains to prove that the thesis holds
for the resulting σ. By definition of Sync, if σ = τ , then both σ1 and σ2 are
complementary actions, say σ1 = γ and σ2 = γ. If both t1 and t2 are derived by
using rule (s-com), then t synchronizes two sequences, even if indirectly; how-
ever, this is not possible, because Corollary 2 would ensure that γ ∈ ns(dom(m1))
and γ ∈ ns(dom(m2)), contradicting that dom(m1⊕m2) be well-behaved. There-
fore, t1 or t2 is derived without using rule (s-com) and so no synchronization
of sequences is produced. By definition of Sync, if σ 
= τ , then either σ1 or
σ2 is a sequence of length greater than one; w.l.o.g. assume that |σ1| ≥ 2 and
σ2 = γ. By Lemma 1, n(σ1) ⊆ ns(dom(m1)), in particular, γ ∈ ns(dom(m1)). If
t2 were derived by using rule (s-com), then t synchronizes two sequences, even
if indirectly; however, this is not possible, because Corollary 2 would ensure that
γ ∈ ns(dom(m2)), contradicting that dom(m1 ⊕ m2) be well-behaved. ��
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Remark 1. By the proof of the proposition above, it is clear that any transition
t = m1

σ−→ m2 derivable from a well-behaved set of places dom(m1) is such that
in the proof tree for t, whenever rule (s-com) is used with premise transitions t1
and t2, at least one of the two, say t1 w.l.o.g., is such that •t1 is a singleton and
l(t1) is a single action in Actγ . That is, any derivable transition t from a well-
behaved set of places dom(m1) is such that one sequential process s ∈ dom(m1)
acts as the leader of the multi-party synchronization, while the other sequential
components contribute each with a single action, acting as servants. ��

4.5 The Reachable Subnet Net(p)

Given a process p ∈ Pγ , the P/T system associated to p is the subnet of NMCCS

statically reachable from the initial marking dec(p). We indicate with Net(p)
such a subnet.

Definition 14. Let p be a process. The P/T system statically associated to p is
Net(p) = (Sp, Ap, Tp,m0), where m0 = dec(p) and

Sp = [[dom(m0)〉 computed in NMCCS,
Tp = {t ∈ TMCCS | Sp[[t〉}
Ap = {σ ∈ A | ∃t ∈ Tp, σ = l(t))}

The following two propositions present facts that are obviously true by construc-
tion of the net Net(p) associated to a finite-net Multi-CCS process p.

Proposition 7. For any p ∈ P, Net(p) is a statically reduced P/T net. ��
Proposition 8. For any restriction-free t ∈ P, let Net(t) = (S,A, T,m0).
Then, for any n ≥ 1, Net(tn) = (S,A, T, n · m0), where t1 = t and tn+1 = t | tn.

For any (νL)t ∈ P, let Net((νL)t) = (S,A, T,m0). Then, for any n ≥ 1,
Net((νL)(tn)) = (S,A, T, n · m0). ��

Definition 14 suggests a way of generating Net(p) with an algorithm based
on the inductive definition of the static reachability relation (see Definition 9):
Start by the initial set of places dom(dec(p)), and then apply the rules in Table 6
in order to produce the set of transitions (labeled on A) statically enabled at
dom(dec(p)), as well as the additionally places statically reachable by means of
such transitions. Then repeat this procedure from the set of places statically
reached so far. The problems with this algorithm are two:

• the obvious halting condition is “until no new places are statically reachable”;
of course, the algorithm terminates if we know that the set Sp of places stati-
cally reachable from dom(dec(p)) is finite; additionally,

• at each step of the algorithm, we have to be sure that the set of transitions
derivable from the current set of statically reachable places is finite.
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We are going to prove these two facts: (i) Sp is finite for any p ∈ P, and (ii)
for any well-formed process p, and for any set of places S, statically reachable
from dom(dec(p)), the set of transitions statically enabled at S is finite.

Theorem 1. For any p ∈ P, let Net(p) = (Sp, Ap, Tp,m0) be defined as in
Definition 14. Then, set Sp is finite.

Proof (Sketch). Any set of places, statically reachable from dom(m0), is composed
only of (possibly, one-time-renamed) sequential subterms of p; this can be proved
by induction on the static reachability relation =⇒∗ , using Propositions 3 and 4.
As sub(p) is finite, by Proposition 1, the thesis follows. ��

We now want to prove that for any well-formed finite-net Multi-CCS process
p, and for any set of places S ⊆ SMCCS , statically reachable from dom(dec(p)),
the set of transitions statically enabled at S is finite. Some auxiliary definitions
and results are necessary. Given a single place s ∈ S, by s � t we mean that
transition t = ({s}, σ,m) is derivable by the rules in Table 6, hence with σ ∈ Aγ .

Lemma 2. Set Ts = {t | s � t} is finite, for any s ∈ SMCCS. ��
Given a finite set of places S ⊆ SMCCS , let T1 be

⋃
s∈S Ts, i.e., the set of

all transitions, with a singleton preset in S, derivable by the rules with labeling
in Aγ . Set T1 is finite, being the finite union (as S is finite) of finite sets (as
Ts is finite for any s). If p is well-formed (i.e., if dom(dec(p)) is well-behaved),
then any S statically reachable from dom(dec(p)) is well-behaved by Corollary 1.
Let k ∈ N be the length of the longest label of any transition in T1. Remark 1
explains that if a multi-party transition t is derivable by the rules from the well-
behaved set dom(•t) ⊆ S, then its proof contains k+1 synchronizations at most,
each one between a transition (labeled with a sequence) and a singleton-preset
transition (labeled with a single action). Therefore, the set of all the transitions
statically enabled at a well-behaved set S can be defined by means of a sequence
of sets Ti of transitions, for 2 ≤ i ≤ k + 1, where each transition t ∈ Ti has a
preset •t composed of i tokens, as follows:

Ti = {(m1 ⊕ m2, σ,m′
1 ⊕ m′

2) |
∃σ1∃γ.(m1, σ1,m

′
1) ∈ Ti−1, (m2, γ,m′

2) ∈ T1,Sync(σ1, γ, σ)}
Note that T2 is finite, because T1 is finite; inductively, Ti+1, for 2 ≤ i ≤ k is

finite, because Ti and T1 are finite. The set TS of all the transitions statically
enabled at S is {t | t ∈ ⋃k+1

i=1 Ti ∧ l(t) ∈ A}, where only transitions labeled on A
are considered. TS is finite, being a finite union of finite sets; therefore, we have
the following result.

Proposition 9. If S ⊆ SMCCS is a well-behaved, finite set of places, then set
TS of all the transitions enabled at S is finite. ��
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Example 3. Consider the non-well-formed process p = (νa)(a.0 | (a.a.0 | a.0)).
We have that dec(p) = a′.0 ⊕ a′.a′.0 ⊕ a′.0, which is not well-behaved because
a′ ∈ ns(a′.a′.0) and a′ ∈ ns(a′.a′.0). Transition t1 = a′.0 ⊕ a′.a′.0 ⊕ a′.0 τ−→ ∅
is derivable, because first we synchronize a′a′ with a′, yielding a′, which is then
synchronized with a′, yielding τ . However, the occurrence of a′ produced by the
first synchronization may be used to synchronize an additional a′a′, yielding a′

again. Therefore, it is not difficult to see that also tn = a′.0 ⊕ n · a′.a′.0 ⊕
a′.0 τ−→ ∅, is statically enabled at dom(dec(p)), for any n ≥ 1. Hence, the set of
transitions statically enabled at dom(dec(p)) is infinite. ��
Theorem 2. For any well-formed, finite-net Multi-CCS process p, Net(p) =
(Sp, Ap, Tp,m0) is a finite, statically reduced, P/T net. ��
Example 4 (1/3 Semi-counter). For the well-formed process p = (νc)A, where

A
def
= inc.(A | (c.c.dec.0+c.0)), three occurrences of inc are needed to enable one

dec. Net(p) is the net (Sp, Ap, Tp,m0) we are going to construct, where the ini-
tial marking m0 is dec(p) = dec((νc)A) = dec(A){c′/c} = {inc.(A | (c.c.dec.0+
c.0))}{c′/c} = {s1}; place s1 is inc.(A{c′/c} | (c′.c′.dec.0 + c′.0)), where the
new constant A{c′/c} is obtained by applying the substitution {c′/c} to the

body of A: A{c′/c}
def
= inc.(A{c′/c} | (c′.c′.dec.0+ c′.0)). Now, only transition

t1 = {s1} inc−→ {s1, s2} is derivable from dom(m0) = {s1}, where s2 = c′.c′.dec.0+
c′.0 is a new statically reachable place. Note that s2 can produce two transitions

in Ts2 , namely t′ = {s2} c′c′dec−→ ∅ and t′′ = {s2} c′−→ ∅, but both are not labeled
with a sequence in A. However, these transitions can be composed by means of
rule (s-com), as shown in Table 8, to produce transition t2 = 3 · s2

dec−→ ∅, which
does not add any new reachable place. So, Sp = {s1, s2} and Tp = {t1, t2}. ��

Table 8. The proof of a net transition, where s2 = c′.c′.dec.0 + c′.0

(pref)

dec.0
dec−→ ∅

{s2, s2, s2} −→ ∅
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4.6 Soundness

Proposition 10. For any process p ∈ P, if p
σ−→ p′ then there exist t ∈ Tp and

p′′ ≡ p′ such that dec(p)[t〉dec(p′′) with l(t) = σ.

Proof. The proof is by induction on the proof of transition p
σ−→ p′. ��

Proposition 11. For any process p ∈ P, if there exists t ∈ Tp such that
dec(p)[t〉dec(p′) with l(t) = σ, then p

σ−→ p′.

Proof. By induction on (the definition of) dec(p) and then on the proof of t. ��
We are now ready to state the soundness theorem: the interleaving marking

graph associated to Net(p) is bisimilar to the LTS rooted in p.

Theorem 3 (Soundness). For any process p ∈ P, p ∼ dec(p).

Proof. If R = {(p, dec(q)) | p, q ∈ P ∧ p ≡ q} is a bisimulation, then the thesis
follows trivially, as p ≡ p. As a matter of fact, on the one hand, if p

σ−→ p′, then,
by Proposition 10, there exist a transition t, with l(t) = σ, and a process p′′, with
p′′ ≡ p′, such that dec(p)[t〉dec(p′′), and (p′, dec(p′′)) ∈ R. On the other hand,
if dec(q)[t〉dec(q′), with l(t) = σ, then, by Proposition 11, we have q

σ−→ q′; as
p ≡ q, by rule (Cong), p

σ−→ q′, and (q′, dec(q′)) ∈ R, as required. ��

5 A Process Term for Any Finite P/T Net

In this section we address the following problem: given a finite, statically reduced,
P/T Petri net system N(m0), labeled on L ∪ {τ}, can we single out a finite-net
Multi-CCS process pN(m0) such that Net(pN(m0)) and N(m0) are isomorphic?
The answer to this question is positive.

The translation from nets to processes we are going to present defines a
constant Ci in correspondence to each place si; the definition of the constant Ci

contains a summand composed of a new bound name yi, which is used in order
to distinguish syntactically all the constants bodies, so that no fusion of two
constants to the same place is possible when applying the reverse step from the
generated process term to its associated net. Moreover, the translation considers
a bound name xj

i for each pair (si, tj), where si is a place and tj is a transition;
such bound names are used to synchronize all the components participating in
transition tj . The constant Ci, associated to place si, has a summand cj

i for each
transition tj , which may be 0 when si is not in the preset of tj . Among the many
places in the preset of tj , the one with minimal index (as we assume that places
are indexed) plays the role of leader of the multiparty synchronization (i.e., the
process performing the atomic sequence of inputs xj

i to be synchronized with
single outputs x̄j

i performed by the other servant participants).

Definition 15. Let N(m0) = (S,A, T,m0) — with S = {s1, . . . , sn}, A ⊆ L ∪
{τ}, T = {t1, . . . , tk}, and l(tj) = aj — be a finite, statically reduced, P/T net
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system. Function INet(−), from finite, statically reduced, P/T net systems to
well-formed, finite-net Multi-CCS processes is defined as

INet(N(m0)) = (νL)(C1| · · · |C1
︸ ︷︷ ︸

m0(s1)

| · · · |Cn| · · · |Cn
︸ ︷︷ ︸

m0(sn)

)

where L = {y1, . . . , yn} ∪ {x1
1, . . . , x

1
n, x2

1, . . . , x
2
n, . . . , xk

1 , . . . , x
k
n}, and each Ci

has a defining equation

Ci
def
= c1i + · · · + ck

i + yi.0

where each cj
i , for j = 1, . . . , k, is equal to

• 0, if si 
∈ •tj;
• aj .Πj, if •tj = {si};
• xj

i .0, if •tj(si) > 0 and •tj(si′) > 0 for some i′ < i (i.e., si is not the leader
for the synchronization on tj);

• xj
i+1. · · · .xj

i+1
︸ ︷︷ ︸

•tj(si+1)

. . . . . xj
n. · · · .xj

n︸ ︷︷ ︸
•tj(sn)

.aj .Πj, if •tj(si) = 1 and si is the leader of the

synchronization (i.e., •tj(si′) > 0 for no i′ < i, while •tj(si′) > 0 for some
i′ > i);

• xj
i .0 + xj

i . · · · .xj
i︸ ︷︷ ︸

•tj(si)−1

. xj
i+1. · · · .xj

i+1
︸ ︷︷ ︸

•tj(si+1)

. . . . . xj
n. · · · .xj

n︸ ︷︷ ︸
•tj(sn)

.aj .Πj, otherwise (i.e., si is

the leader and •tj(si) ≥ 2).

Finally, process Πj is defined as Πj = C1| · · · |C1
︸ ︷︷ ︸

t•
j (s1)

| · · · |Cn| · · · |Cn
︸ ︷︷ ︸

t•
j (sn)

. ��

Note that INet(N(m0)) is a finite-net Multi-CCS process: in fact, the restric-
tion operator occurs only at the top level, applied to the parallel composition of a
number of constants; each constant has a body that is sequential and restriction-
free. Note also that INet(N(m0)) is a well-formed process: in fact, each strong
prefix is an input xj

i , and any sequence ends with an action aj ∈ A which is
either an input or τ ; hence, no synchronization of sequences is possible.

Example 5. Consider the net N(m0) of Fig. 1, where transition t1 is labeled
with a, t2 with b and t3 with c. Applying the translation above, we obtain the
(well-formed) finite-net Multi-CCS process

INet(N(m0)) = (νL)(C1 |C1 |C1 |C2 |C2)

where L = {y1, y2, y3} ∪ {x1
1, x

1
2, x

1
3, x

2
1, x

2
2, x

2
3, x

3
1, x

3
2, x

3
3}, and

C1
def
= (x1

1.0 + x1
1.a.C1) + (x2

1.0 + x2
1.x

2
1.x

2
2.b.0) + x3

2.x
3
2.c.C3 + y1.0

C2
def
= 0 + x2

2.0 + x3
2.0 + y2.0

C3
def
= 0 + 0 + 0 + y3.0

��
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s2s1

s3

2 3

a b c

2

Fig. 1. A simple net.

Now we are ready to state our main result, the so-called representability
theorem.

Theorem 4 (Representability theorem). Let N(m0) = (S,A, T,m0) be a
finite, statically reduced, P/T net system such that A ⊆ L ∪ {τ}, and let p =
INet(N(m0)). Then, Net(p) is isomorphic to N(m0).

Proof (Sketch). Assume that process p = INet(N(m0)) is as in Definition 15.

For notational convenience, (
∑k

j=1 cj
i ) + yi.0 is denoted by pi, i.e., Ci

def
= pi.

Let ρ = {L′/L} be a substitution that maps each bound name xj
i (or yi) to its

corresponding restricted name x′j
i (or y′

i) in L′, for i = 1, . . . , n and j = 1, . . . , k.
Let Net(p) = (S′, A′, T ′,m′

0). Then, m′
0 = dec(p) is the multiset

dec((νL)(C1| · · · |C1
︸ ︷︷ ︸

m0(s1)

| · · · |Cn| · · · |Cn
︸ ︷︷ ︸

m0(sn)

)) =

dec(C1| · · · |C1
︸ ︷︷ ︸

m0(s1)

| · · · |Cn| · · · |Cn
︸ ︷︷ ︸

m0(sn)

)ρ = m0(s1) · p1ρ ⊕ · · · ⊕ m0(sn) · pnρ.

because Ci
def
= pi for i = 1, . . . n and so dec(Ci) = {pi}. Hence, the initial places

are all of the form piρ, where such a place is present in m′
0 only if m0(si) > 0.

We assume that each place s′
i in S′ is of the form piρ, that are all distinct

because each pi contains one distinguishing summand yi.0. Hence, there is a
bijection f : S → S′ defined by f(si) = s′

i = piρ, which is the natural candidate
isomorphism function. Then it remains to prove that f is an isomorphism:

1. f(m0) = m′
0,

2. t = (m,a,m′) ∈ T implies f(t) = (f(m), a, f(m′)) ∈ T ′, and
3. t′ = (m′

1, a,m′
2) ∈ T ′ implies there exists t = (m1, a,m2) ∈ T such that

f(t) = t′, i.e., f(m1) = m′
1 and f(m2) = m′

2.

From items (2) and (3) above, it follows that A = A′.
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Proof of 1: Let m0 = k1 · s1 ⊕k2 · s2 ⊕· · ·⊕kn · sn, where ki = m0(si) ≥ 0 for
i = 1, . . . , n; note that, for simplicity’s sake, we have considered all the places: if a
place, say sh, is not in m0, then kh = 0. The mapping via f of the initial marking
is f(m0) = k1 ·f(s1)⊕k2 ·f(s2)⊕· · ·⊕kn ·f(sn) = k1 ·p1ρ ⊕ k2 ·p2ρ ⊕· · ·⊕ kn ·pnρ
= dec(C1| · · · |C1

︸ ︷︷ ︸
k1 times

| · · · |Cn| · · · |Cn
︸ ︷︷ ︸

kn times

)ρ = dec(p) = m′
0.

Proof of 2: we prove that, for j = 1, . . . , k, if tj = (m,a,m′) ∈ T , then t′j =
(f(m), a, f(m′)) ∈ T ′. From transition tj, we can derive the two processes Pj =
(C1ρ| · · · |C1ρ
︸ ︷︷ ︸

•tj(s1)

| · · · |Cnρ| · · · |Cnρ
︸ ︷︷ ︸

•tj(sn)

) and P ′
j = (C1ρ| · · · |C1ρ

︸ ︷︷ ︸
t•
j (s1)

| · · · |Cnρ| · · · |Cnρ
︸ ︷︷ ︸

t•
j (sn)

)

such that f(•tj) = dec(Pj) and f(t•j ) = dec(P ′
j).

According to Definition 15, for each Ci = pi, we have a summand cj
i in

pi, such that Qj = (cj
1ρ| · · · |cj

1ρ︸ ︷︷ ︸
•tj(s1)

| · · · | cj
nρ| · · · |cj

nρ
︸ ︷︷ ︸

•tj(sn)

). By inspecting the shape

of tj and the definition of the various cj
i ’s, one can get convinced that

(dec(Qj), l(tj), dec(P ′
j)) is a derivable transition. Hence, since each pi is a sum-

mation containing the summand cj
i , also (dec(Pj), l(tj), dec(P ′

j)) is derivable and
belongs to T ′, as required.

Proof of 3: The details can be found in [15]. ��

6 Conclusion

The class of finite-net Multi-CCS processes represents a language for describing
finite, statically reduced, P/T Petri nets. This is not the only language expressing
finite P/T nets: the first (and only other) one is Mayr’s PRS [17], which however
is rather far from a typical process algebra as its basic building blocks are rewrite
rules (or net transitions) instead of actions and, for instance, it does not contain
any scope operator like restriction.

A bit pretentiously, we claim that finite-net Multi-CCS is the language for
finite Petri nets. The main argument defending this claim is that the parallel
operator − ‖ − of a language able to express Petri nets is to be

• permissive: in a process p ‖ q, the actions p can perform cannot be prevented
by q. This requirement is necessary because P/T Petri nets are permissive
as well, meaning that if a transition t is enabled at a marking m, then t is
also enabled at a marking m′ ⊇ m; the parallel operator of Multi-CCS is
permissive, while this is not the case for other parallel operators, such as the
CSP one p ‖A q [16].

• Also, the parallel operator − ‖ − is to be ACI (associative, commutative, with
an identity); this requirement because the decomposition of a parallel process
into a marking has to reflect that a marking is a (finite) multiset.

• Moreover, the parallel operator should be able to express multi-party synchro-
nization, because a net transition, which may have a preset of any size, can
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be generated by means of a synchronization among many participants, actu-
ally as many as are the tokens in its preset. The Multi-CCS parallel operator
can model multi-party synchronization, by means of the interplay with the
strong prefixing operator. Other process algebras offer parallel operators with
multi-party synchronization capabilities, but in Multi-CCS multi-party syn-
chronization is “programmable”, meaning that we can prescribe the order in
which the various participants are to interact, independently of the syntactic
position they occupy within the global term and without resorting to a global
synchronization function, as in the case of some ACP dialects [2].

The multi-party synchronization discipline has been chosen as simple as pos-
sible: a sequence can synchronize with an action at a time, in the exact order
they occur in the sequence: we feel that the choices made in this paper are the
minimal ones that allows for the representability of finite P/T nets. Summing
up, any other language, if any, able to represent finite P/T Petri nets should pos-
sess these necessary features, which, altogether, seem to be exclusive of finite-net
Multi-CCS, or that at least are very rare in the panorama of process algebras.

Finally, a few observations about the differences of this paper with respect
to its earlier version [13]. First, the definition of finite-net Multi-CCS is a bit
simpler now, in order to capture the minimal language capable of representing
all finite P/T nets. Second, the net Net(p) associated to a process p is statically
reduced: this ensures that Net(p) and Net(p | p) are the same unmarked net, but
with a different initial marking; on the contrary, in [13] Net(p) was only dynam-
ically reduced. Third, the finiteness theorem was wrongly stated in [13]: in fact,
Net(p) is finite not for all finite-net processes, but only for well-formed finite-net
processes. Fourth, the construction of the finite-net process p = INet(N(m0))
from the net system N(m0) is inaccurate in [13], as Net(p) may have more
transitions than N(m0).

Acknowledgment. Massimo Morara is thanked for pointing out the inaccuracy in the
definition of the process INet(N(m0)) in [13]. The anonymous referees are thanked for
their comments, which will be considered for the full version [15].
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Abstract. Consulting dating on-line sites, or adopting greedy algo-
rithms, exhaustive search, approximation, and random search are some
of the strategies that can be used to find a soulmate. We discuss tech-
niques and show true life examples, leaving the choice of selecting the
most satisfactory method to the reader interested in such an activity.

Keywords: On-line dating · Mating complexity · Soulmate computabil-
ity · Algorithms for love

1 Introduction

Books, movies and songs are full of stories of people moving around in search of
a soulmate. The strategies are numerous, with different characteristics. Some are
fast and others take years; some are based on reasoning and calculations, others
on emotions, others are purely random; some make use of the most advanced
technologies; others, intuitive and naive, have been employed for centuries. Our
purpose is not to show which one is the most successful but only to describe a
set of observed strategies in terms of algorithmic techniques.

Dating on line is the last frontier for finding the soulmate. The search, done
through specialized Web sites, is the broadest possible because it can reach every-
body in the world through the net. Even if the sites do not precisely describe
the algorithms used for matching people, it is realistic to assume that the main
strategy is to match profiles with requirements. Each person gives a descrip-
tion of her/himself according to a list of characteristics and specifies a list of
requirements of the desired person. According to [1] the profiles of people used
by a popular site are not exactly those declared because people tend to enhance
social desirability for themselves, while a more accurate image can be rebuilt
from the Internet. The rationale is that our profile is better expressed by the big
quantity of our footsteps recorded in the network than by our own description of
ourselves. Data analysts can acquire this knowledge if they can access the right
amount of data. One site employs directly Facebook identities declaring that
this information is kept strictly confidential (see [2]). Other sites, specializing
in mating travelers interested in accidental company more than searching for
the true soulmate, connect people on the basis of their geographical locations.
Our aim, hopefully having some practical interest, is to show that the most used
matching strategies cover only one part of the spectrum and are possibly not
the best for finding the soulmate.
c© Springer International Publishing Switzerland 2015
C. Bodei et al. (Eds.): Degano Festschrift, LNCS 9465, pp. 283–291, 2015.
DOI: 10.1007/978-3-319-25527-9 18
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Nowadays people seek for the soulmate several times because life expectance
is longer and relationships do not necessarily last forever as before. So in different
periods of their life, and with an incredible optimism, a great number of persons
start the quest again hoping to eventually find the true soulmate. Since the
experience of these authors on real stories is limited, we refer to events taken
from cinema, books, and songs framing them into algorithmic structures, and
invite people to suggest other stories that can enter in our little collection of
examples.

2 Naive Approaches

A common method (and, in the opinion of many, the best method) for mating
people is through arranged marriages. It is based on a greedy algorithm that
in each step selects the choice that appears the best. This strategy not always
produces the optimal solution, but for many problems provides an acceptable
result. We can make whatever choice seems the best at the moment and then
solve subproblems that can arise later.

This is the way candidates are selected in arranged marriages, an ancient
tradition still maintained in several cultures as for instance in India. Parents
(or close relatives) are in charge of selecting the best opportunities for their
children, sometimes without even consulting the individuals concerned. This is
done through a sequence of choices that refine the set of possible candidates step
by step, until a final candidate remains. Similarly, weddings are arranged usually
between men from rich countries and women from poorer countries, as shown in
a movie where the two main characters are sensational Claudia Cardinale and
Alberto Sordi [8].

An important area of application relates to royal families. Royal weddings are
traditionally used to strengthen political and economical relationships between
nations. According to a greedy strategy first a target nation is selected. Then
the set is restricted to candidates with the required degree of nobility. Further
selections are then performed on other less relevant parameters to arrive to a
very small number of possible candidates. Sometimes, however, the most relevant
parameters are surprising. At the end of the nineteenth century the king of a
country now member of the European Union was convinced to marry a princess
of a small Balkan state for enhancing the phenotype of the royal species, because
she was very tall and the king was unusually short.

If the objective function is the enhancement of the diplomatic relations of the
two countries, this greedy strategy leeds to the optimal solution; if that function
accounts for the happiness of the marriage this strategy is probably quite weak.
However, there is evidence of counterexamples: the weddings of Joan of Castile,
called Joan the Mad, and Philip the Handsome of Austria (see for example [9]).
She was sixteen when she married him and it was lust at the first sight. She was
very passionate and felt madly in love with her handsome husband for her whole
life. They had six children in around six years, that is the time their marriage
lasted until the king died at the age of twenty eight. The story says that she was
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mad of jealousy for his unfaithfulness but recent studies show that she became
mad after being imprisoned for political reasons. She survived to Philip for half
a century in complete loneliness.

If the story of Joan and Philip, though sad, gleams of nobility and love,
very bitter is the story of the movie mentioned above where the bride arrives in
Australia from Italy with the hope of a better life, to discover a crude reality.
In this case the greedy algorithm produces a very poor result because, before
the marriage, they exchanged fake information. But even the smartest algorithm
fails if the initial data are incorrect.

Greedy algorithms are possibly inaccurate but they are “polynomially” fast.
If instead we want to explore all possibilities we must often adopt an exhaus-
tive strategy that may require exponential time. So the problem is practically
unsolvable if a complete exponential exploration is needed.

Giacomo Casanova, a gentleman from Venice of the eighteenth-century, has
become famous for his numerous, complicated and elaborate affairs with women.
His name is now synonymous with womanizer and his behavior is considered
inappropriate. However who knows if he simply wanted to find his soulmate
and used for this purpose an exhaustive search? If none of the women encountered
appeared to be adequate, he had to continue his search. Maybe if he found the
true soulmate he would have stopped his reckless behavior. So we discourage this
strategy at least for the long time that it can take. Hopefully better strategies
are possible as it will be shown in the following sections.

If one does not desire to have her/his future arranged by others, or to imple-
ment a searching strategy personally, can turn to the wealth of specialized
services offered by dating on-line sites without getting to know in detail the
algorithms used. These sites keep secret their algorithms, however, it seems rea-
sonable that a score function is computed from the profile and requirements of
the costumer and those of the available dates. The more appropriate is the func-
tion, and the more are the features taken into account, the better will be the
possible matching.

Based on the ranking of the score function the customer will be advised on
the best possible dates with whom she/he can start a first approach. Although
advertisement of the most popular current dating sites promise new and innova-
tive strategies, we can expect that they consist of a refinement of known match-
ing procedures now based on the study of long-lasting relations arising from big
Internet data [2]. Other sites are most sophisticated, like for example the one of
Pierluigi Crescenzi of Florence specializing in “incontri” (encounters) [3]. At the
end dating sites seem to merely use greedy algorithms, but their great success
relies on the possibility of reaching virtually everybody in the net.

3 Undecidability

The theory of computability is generally regarded as being highly abstract and
far from everyday human activities. A rebuttal, however, comes from the conduct
of Martin, the main character of Milan Kundera’s novel “The Golden Apple of
Eternal Desire” [4] who
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... is able to do something I’m incapable of. Stop any woman on any street.

And in fact, aside from his abominable habits, we take Martin as a paradigm of
strictly logical behavior.1

A great heritage of Alan Turing is the knowledge that, inter pares (among
Turing Machines, in that specific case), one cannot establish the behavior of
another if not simulating her or his actions. So, if in front of a dilemma one goes
on forever before taking a decision, no other can predict such a behavior in finite
time. Martin has tuned his dating algorithm on the basis of this knowledge.

Martin considers all women as algorithms of which he is the data. And he
knows that anyone of them may take infinite time before eventually accepting
him as a partner even for a single intimate encounter. Note that he does not
necessarily refer to a sexual encounter since

... those who do not go after anything but this last level are wretched, primitive

men.

So he proceeds developing different dating actions in parallel that will be pre-
sented here in geek style as a sequence of consecutive steps performed in discrete
times. These actions are integrated by a concurrent activity called sighting aimed
at recording names and other contact data of as many women as possible among
the ones that have attracted us as possibly desirable partners. In fact

from his vast experience, he has come to the conclusion that it is not as difficult,

for someone with high numerical requirements, to seduce a girl as it is to know

enough girls one hasn’t yet seduced.

He then proceeds with parallel courting steps, each one with a different sighted
woman, jumping from one adventure to the other until some of them would get
to a satisfactory conclusion without wasting too much time with women who are
slow in deciding.

The method is inspired by one adopted by Georg Cantor in his studies on
infinite sets. Refer to matrix M in Fig. 1 where M [i, j] shows the results of
courting phase i on woman j. The results are coded as Y for “yes”, N for
“no”, and W for “wait, can’t decide yet”. In particular women are labelled as
w1, w2, ... (in fact, although Martin can stop any woman the sighted set remains
denumerable) and courting steps are divided into phases p1, p2, ... associated with
the progressive number of encounters with any woman. We do not impose a limit
on the number of rows and columns of M because Martin has infinite patience
to go through successive steps, and has tremendous sighting possibilities so the
set of women grows continuously.

The arrows on M show the order in which Martin travels along his adven-
tures. This is a key point. Each entry of M will be reached in finite (although
possibly very long) time, so each woman that will decide for yes at some time

1 The relationship between Martin’s conduct and computability theory was pointed
out for the first time in [5].
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Fig. 1. The matrix M of Martin’s courting steps.

will be certainly reached and satisfied. To speed-up the process if a woman wj

decides for yes or no in phase pi, the entries in column j and rows > i are hence-
forth disregarded. So, although in the example the first sighted woman w1 is not
willing to take a decision in a short time (and possibly she will never take one),
the forth woman w4 will see her love dream come true in phase 1 in the seventh
step of Martin’s tour.

Now what about if woman w1 will never decide? In Martin’s strategy she has
to be visited at each step, that is forever. A person without a solid mathematical
background could be induced to stop dating with w1 after a certain number of
steps, deducing from her past behavior that she will never take a decision. But
Martin has learned from Turing that the halting problem is undecidable and
continues dating w1 with a hope of a final positive decision. On the other hand,
as the number of steps between the ones spent with w1 in phases i and i + 1 is
of order O(i) (in fact is upper bounded by the length of a diagonal in M), he
will waste less and less time in percent as the process goes on.

4 Complexity and Approximation

Although mathematically intriguing, the conduct of Martin raises a philosophical
problem on the very same concept of soulmate. The most prestigious advocate
of this concept was Plato that, in his Symposium, stated the existence and unic-
ity of the soulmate for any person (independently of the sex of both souls, as
it may be expected). The condition of existence confirms that searching for a
soulmate is a legitimate activity although the number of steps required maybe
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exceedingly large (and Martin is prepared for this). But the condition of unique-
ness contradicts Martin’s habit to accept any woman that says yes, unless a new
philosophical soulmate theory is set up.

On the other hand searching for perfection may be too demanding in every-
day life, so two ways of action are usually considered. First getting the best
among all possible acquaintances. Second, in case that best prefers somebody
else, contenting oneself with a good approximation. For example [6] all Ital-
ians know that Isaia, in despair for having lost Zazà in the crowd, turns to an
approximation:

Se non troverò / lei, ch’è tanto bella, / m’accontenterò / ’e trovà’a sorella...2

However we must clearly state what the term approximation means for us.
The problem can be described in the strict mathematical terms of a decision

process. Each actor in the game decides the characteristics that the soulmate
must have, grouping them in disjunctive clauses linked in a conjunction. This
gives rise to a classical Conjunctive Normal Form (CNF for brevity). So, just
for mentioning some characteristics usually sought for, we introduce the logical
variables:

a animal-rights activist / b: boring / g: gentle / i: intriguing / k: over 75 kilos

/ m: at most 29 / r: very rich

The sign ¬ will be used for complementing some of the variables, and disjunctive
clauses will be formulated in order to make the search not too much demanding.
For example the CNF:

F = (m ∨ r) ∧ (¬a ∨ g) ∧ (¬a ∨ i) ∧ (¬b) ∧ (g ∨ ¬m ∨ ¬r) ∧ (a ∨ k ∨ ¬r)

states that the mate must be either at most 29 or very rich - obviously better if
both (clause 1); if animal-rights activist, must be at least gentle and intriguing
(clauses 2 and 3 combined); absolutely cannot be boring (clause 4); etc. Note
that this CNF is satisfiable, for example for k, r = true and a, b,m = false,
no matter how gentle or intriguing the candidate will be. However adding two
simple clauses like (¬i) and (a∨b) the form becomes not satisfiable and the mate
cannot exist.

Unfortunately the CNF satisfiability problem is NP-complete, that is decid-
ing if a chosen set of clauses is satisfiable requires exponential time unless P =
NP. Then a long list of requests has a high probability to be useless and one
should content her/himself of a maximum satisfiability solution, that is select-
ing the maximum number of clauses that can be contemporarily satisfied. But,
unfortunately again, maximum satisfiability is NP-hard and the claim must
be further reconsidered, reducing the request to a number of clauses within a
guaranteed approximation ratio of the maximal solution.
2 If I won’t find her / who is so beautiful / I will settle for / finding her sister ...
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Alas, even this problem is intractable! Satisfiability approximation is in fact
APX-hard, that is it does not admit a polynomial-time approximation scheme
unless P = NP. The disconsolate mate seeker must abandon the idea of get-
ting a mathematically solid result and proceed heuristically. A squalid solution
will be built incrementally arranging the clauses in order of decreasing urgency
(a purely personal criterion with no mathematical counterpart) and then choos-
ing them one by one, discarding the clauses that are incompatible with the ones
already selected.

The wise says: “The optimality is difficult to obtain, the quasi-optimality
is usually good enough”. Attaining an approximate solution is the most com-
mon outcome of everyday problems, as it happens in the movie When Harry
met Sally [10]. The two have known each other for years, and are very good
friends. Their dating experiences with others continue to highlight their differ-
ent approaches to relationships and sex. Each one is involved in the search of the
perfect partner and each one, in different times, faces heavy defeats. They take a
long time to discover, only at the end of the story, that they were bound to each
other. In this case they accept the approximate solution of an only apparently
friend mate because in reality they find their true soulmate.

5 Randomized Algorithms

As known randomness may help in designing sequence of actions aimed at reach-
ing precise objectives, but there are cases in which relying on unpredictable
events helps a great deal. So randomness can be used to design efficient algo-
rithms expressed in rigorous mathematical terms. The family of randomized
algorithms called Monte Carlo uses random choices to obtain a probably cor-
rect result in a certainty short time. The result can then be wrong but the
probability of this event can be made as small as required.

In the novel of Milan Kundera The unbearable lightness of being [7] Tereza
meets Tomas by chance for the first time and immediately likes him. But how
can she know if he is really her true soulmate?

Tomas appears in the hotel restaurant at the same time as the radio is playing

Beethoven. We do not even notice the great majority of such coincidences.

If the seat Tomas occupied had been occupied instead by the local butcher,

Tereza never would have noticed that the radio was playing Beethoven. But

her nascent love inflamed her sense of beauty, and she would never forget that

music.

Tereza at every new coincidence becomes more and more aware that the
events bring her towards Tomas. The coincidence noticed by Tereza are five:

(1) Tomas appears in the restaurant where she works.
(2) When she notices him, the radio is playing Beethoven which has a particular

meaning for her.
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(3) Six is the number of the key of his room and this number is also the number
of a former Tereza’s house. (She also immediately informs him that she will
be free from work at six, but this seems more an advance than a coincidence).

(4) When she meets him after work he is sitting in her habitual bench.
(5) He is reading a book, that is, he is doing the same as her favorite activity.

Tereza reads chance events like signs from fate. As we blame her? She uncon-
sciously follows a Monte Carlo strategy. First of all, assume that a negative
reaction of Tomas is sufficient to establish that Tomas is not the good one, while
a random positive event must be taken with caution. Let us imagine that such
an event e happens. Still there is a probability p << 1 that the event is not
so positive, hence Tomas is not the soulmate. If n independent positive events
e1, e2, ..., en occur, each one with probability pi of being deceptive, Tomas is
not the soulmate with total probability P = p1 × p2 × ... × pn. P decreases for
increasing values of n, if n is sufficiently large the value P is so small that can
be neglected, also because is less than the probability that Tereza e Tomas die
in the next hour.

Tereza takes her decision after only five events and she falls in love with
Tomas precisely because of the coincidences: for her five events are sufficient.
If for example pi = 1/10 for all i, we have P = 1/105 that is indeed a safe
condition. If she were more cautious, she could have waited for further positive
events before deciding.

Kundera explains Tereza’s method of interpretation saying:

the individual composes his life according to the laws of beauty.

He criticizes those readers who are dismayed at the coincidences in a novel, since:

...it is right to chide man for being blind to such coincidences in his daily life.

For he thereby deprives his life of a dimension of beauty.

So Kundera speaks of beauty and we agree, but we are on the side of Tereza
because she followed a randomized algorithm that provably gives a very good
result.

6 Concluding Remarks

There is no much more to say, if not that all the algorithmic techniques discussed
above are aimed at satisfying the personal requests of single actors without
considering a global mating optimization as hopefully should be. This is why we
have not even mentioned the classical family of algorithms for finding optimal
matchings in bipartite graphs, like for example the ones for the well known
stable marriage problem solvable in polynomial time [11], and its possible more
demanding extensions that become exponentially difficult.

Global happiness is bitterly infringed in the name of selfish satisfaction.
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Abstract. The concept of active knowledge implementation on the basis
of the theory of structural program synthesis, modern technologies and
their necessary developments are considered. The theory is proposed for
technological description, accumulation, keeping, processing and appli-
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LITERACY is the capability of a
human being to describe, to keep,
to understand and to apply the
knowledge.

1 Introduction

During last years, the computing technologies have substantially changed our life.
In this simple technological paper we would like to look at new progressive tech-
nology – technology of active knowledge – that can be partially implemented right
now basing on the current scientific knowledge, accumulated in scientific computa-
tions, theoretical models of parallel computations [1–6], technological results and
current system software that are now in use or under development [7–16].

The approach to a possible pragmatic application of the theory of structural
program synthesis [6] to the development of the active knowledge technology is
discussed. The sum of the current theoretical results provides understanding of
the approaches to the solution of active knowledge problem. It is interesting now
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to look at how the problem could be solved and technologically1 implemented.
In this technological paper the problem of the current implementability of the
active knowledge technology is considered.

2 Active and Passive Knowledge

Principal idea. The problem of active knowledge technology creation was prin-
cipally solved in the frame of the theories of program synthesis. Below the tech-
nologically implementable approach, based on the theory of structural program
synthesis, that is ready for implementation right now, is mostly discussed.

2.1 Passive Representation of the Knowledge

There are now four main problems to utilize the knowledge represented in passive
form:

1. Currently existing phonetic systems of knowledge description, keeping and
processing are actually the systems of passive knowledge (texts, movies, etc.)
representation, i.e., this knowledge description cannot be applied directly,
automatically. Keeping in the hands a book(s) with the complete enough
description of the technology of a bridge construction, a desired/specified
bridge cannot be constructed automatically even after the magic incantations
were pronounced. This is so, because a computer doesn’t understand phonetic
text and unable to extract the knowledge from it.

2. In order to utilize such passive knowledge, the people should adopt (read,
understand and be able correctly to apply) a large body in the literature
of the subject. It takes generally about 25 and even more years. Also, the
technologies are now permanently under modifications and the process of
learning is being permanent.

3. A big volume of passive knowledge is already accumulated. Sometimes the pas-
sive knowledge is not in (intensive) use and even can be forgotten and lost.

4. Also application programs, implementing passive knowledge, are usually
developed as “black box” and cannot be automatically modified in accor-
dance with a user demands.

2.2 Active Representation of the Knowledge

In order to overcome the above mentioned problems, the knowledge should be
represented in active form that can be understood by a computer system and
applied automatically to solution of a certain specified problem. Active knowl-
edge representation should provide knowledge extraction from its description
and the knowledge use for solution of a certain application problem [13].
1 The term technological is used in order to denote that a specified object (the-
ory, model, problem, algorithm, program, etc.) can be implemented for practically
acceptable time and with necessary properties, with the use of acceptable number
of resources.
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Mathematical logic describes the way to solve the problem of active knowl-
edge representation, understanding and application in four steps:

– development of complete enough axiomatic theory (AT),
– application problem formulation in terms of the theory,
– derivation of a desirable algorithm for application problem solution (APS),
– generation of a program, implementing derived APS algorithm.

2.3 Logic Program Synthesis

The method is based on the sufficiently complete AT, describing an object
domain. Within the frame of this theory the necessary assertions are proved
or disproved from the set of axioms.

The fact is, the method is technologically not implementable, at least because
of too high complexity of APS algorithms derivation and the absence of a pos-
sibility to provide desirable pragmatic properties both derived APS algorithms
and implementing programs.

2.4 Technological Requirements to Representation

Technological description of AT should provide:

1. In order to avoid high complexity of APS algorithm derivation, an AT should
be described partially [14], only the necessary APS algorithms should be
derivable in the frame of the AT. This de facto means, that AT (knowledge
base of the partial object domain) description should be generated from a
problem formulation.

2. An AT is defined partially not taking care of completeness of the AT. Prac-
tically it means, that as a rule, an AT should be defined for solution the only
problem or, may be, for solution of few problems.

3. Derived APS algorithms should be represented as a set of recursively count-
able set of functional terms [17]. Therefore, a language of partial AT descrip-
tion should be a language for description of sets of all operations of functional
terms with their input and output variables. This language can be understood
by a computer. This is the basis for creation of new writing and literacy. Abil-
ity to operate with AT will define soon the literacy of human being.

4. An AT description should be easy extendable, in order to include into the
AT the descriptions of the other problems solutions when the need arises. It
should be simple technological (not scientific) work.

5. Program, implementing derived algorithm, should be generated automati-
cally and possess by all the desirable properties (arbitrary program is not
acceptable), like:
– to be executed in parallel;
– to be tunable (statically and dynamically) to all the available resources of

a computer system;
– able to be executed on heterogeneous distributed computer system;
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– with dynamic workload balancing;
– to have the demanded level of reliability;
– to be modified on a user demand,

and many other pragmatic properties.

3 Technological Notion of Knowledge

It is necessary to define a technologically implementable method to describe, to
accumulate and, what is the most important, correctly to exploit the knowledge,
represented in the active form, without knowledge adaptation by a human being
in all the thinkable details.

3.1 Structural Program Synthesis (SPS)

For the reason of high complexity of an APS algorithms derivation in the frame of
logic programming we are forced to use in practice the methods with lesser possi-
bilities for the knowledge description, but more suitable for computer processing.
One of such methods is based on imposing a structure on the knowledge base that
reflects the associative dependences between the objects of the object domain. In
the process of an algorithm derivation, the explicit representation of these depen-
dences in a computer permits to use the associative search instead of the random
search in logic programming. The method of structural program synthesis [6] is
based on this idea. Rephrased idea of structural program synthesis is:

– There is no any technological sense to develop the general theory for algo-
rithm derivation from functional specification. A partially defined AT can be
successfully used providing an acceptable quality both algorithms and imple-
menting programs.

– A desirable program should be constructed out of accumulated well-developed
ready-made modules each of which represents one step ((A,A ⊃ B) ⊃ B) of
APS derivation.

In the method of structural program synthesis (program synthesis on the basis
of computational models) the completeness of the theory is not considered at all.
In principle, the description of an object domain includes only that objects which
were already implemented in practice with an acceptable2 quality. The method
is based on a carefully designed partially defined object domain description, on
such partial AT, in which only necessary problems are well solved. Often, in such
partially defined AT, a solution of the only necessary problem is constructed.

The theory of structural program synthesis [6] satisfies all the above require-
ments. This method was applied to parallel implementation of different large-
scale numerical models [10,16] and the necessary experience was gained, algo-
rithms and programs were developed.
2 The term acceptable is used in order to denote that a specified solution, quality,
program, resources allocation, etc., can be used in practice because, for example,
better solution doesn’t exist or is not known now.
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3.2 The Notion of Knowledge

Omitting unnecessary here details, the program module (procedure, subroutine,
hardware block) will be considered to be atomic unit of an active knowledge.
Such module represents one step ((A,A ⊃ B) ⊃ B) of APS derivation. The exe-
cution of this module will result in the active knowledge application. The algo-
rithms, used into this module, implement the active knowledge. For instance, the
knowledge of arithmetic is now implemented inside the module called calculator.
From now nobody needs to know algorithms of arithmetic and mental arithmetic
in order successfully to utilize the arithmetic.

A set of all the knowledge units of an object domain (library of modules)
does not yet constitute the knowledge base, because on this set different rela-
tions exist, in particular, the relation of information dependencies or neighbor-
hood relation. These relations should also be described and implemented in a
generated program. Also for any module the (input) variables, to which only
this module is permitted to be applied for computing another (output) variables
should be described. Any module denotes the step of an APS algorithm deriva-
tion. Thus, knowledge base is actually a partially defined AT, represented by a
set of steps of an APS algorithm derivation. An example is given below.

With this technological definition of the active knowledge, the main objects
of knowledge processing will be algorithms and programs. Therefore, the well-
known methods of APS algorithms derivation and program synthesis can be
applied to the description and processing of the knowledge base [6].

4 Technological Model of Knowledge

Thus, let us consider shortly the computational model [6] as the basis for defin-
ition of the knowledge base.

4.1 The General Definition of the Program Synthesis Problem

The knowledge base (actually partially defined AT) in the method of structural
program synthesis constitutes a set of ready-made modules (programs, subrou-
tines). For each module the allowable sets of input and output variables are
defined. The solution of a specified problem is assembled out of these modules if
possible. If this is not possible, the AT is extended by adding new modules to the
knowledge base. Also, if the solution of a specified problem does not satisfy the
user, then some modules should be replaced by better modules or new modules
be added.

The general formulation of the program synthesis problem is:
Given:

– class S of input problem specifications,
– class P of resulting programs,
– equivalency relation ∼ on P ,
– quality relation > on P , that satisfies the axioms of the partial order.
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The algorithm A : S → P should be found such that:

– program p = A(s), p ∈ P , satisfies the specification s ∈ S,
– p is the best (in the sense >) program among {p | p = A(s)}.

In such a way, the algorithm A : S → P solves a program synthesis problem,
that is, for every specification s ∈ S, the algorithm A constructs an element
p = A(s), p ∈ P , which is the best program among all the programs solving a
specified problem s.

4.2 Computational Model Definition

Given [6]:

– The finite set X = {x, y, . . . , z} of variables for representation of different
computed values;

– The finite set F = {a, b, . . . , c} of functional symbols (operations, Fig. 1a),
m ≥ 0 is the number of input variables, n ≥ 0 is the number of output
variables;

– in(a) = (x1, . . . , xm) is a set of input variables, out(a) = (y1, . . . , yn) is a set
of output variables (Fig. 1), if i �= j → yi �= yj & xi �= xj .

Model C = (X,F) is called simple computational model (SCM). Operation
a ∈ F describes the possibility to compute the variables out(a) from the vari-
ables in(a), for example, with the use of a certain procedure. The model can be
graphically depicted (Fig. 1).

Fig. 1. Examples of operations, variables and model

Let V ⊆ X, F ⊆ F be given. A set of functional terms T (V, F ) is defined as
follows:

1. If x ∈ V , then x is a term t, t ∈ T (V, F ); in(t) = {x}; out(t) = {x}.
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2. Let {t1, . . . , ts} ⊆ T (V, F ) and a ∈ F, in(a) = (x1, . . . , xs) be given. The
term t = a(t1, . . . , ts) is included into T (V, F ) if ∀i(xi ∈ out(ti)), in(t) =⋃s

i=1 in(ti), out(t) = out(a). Here t = a(t1, . . . , ts) denotes that t is the term
a(t1, . . . , ts).

A term is depicted as a tree that contains both operations and variables of the
term.

We say that a term t computes a variable y if y ∈ out(t). A set of terms
T (V, F ) defines all the variables of the SCM that can be computed from V
variables. A set of terms TW

V = {t ∈ T (V, F ) | out(t) ∩ W �= ∅} computes all
those variables from W that can be computed from V variables.

Any such subset R ⊆ TW
V that ∀x ∈ W∃t ∈ R(x ∈ out(t)) is called (V,W )-

plan. This (V,W )-plan defines an algorithm computing the variables W from
the variables V . Here V and W denote the sets of input and output variables
of the algorithm, respectively. Everywhere further a recursively countable set of
functional terms is considered as a representation of an algorithm.

In order to satisfy all the technological requirements to AT representation,
the axioms are not used, they are not formulated. Instead, AT is representation
by the set of all possible in AT derivation steps. These steps (functions, modules)
actually constitute the computational model.

Interpretation. Let V ⊆ X be given. Interpretation I in the domain D is a
function that assigns:

– to every variable x ∈ V an entry dx = I(x) ∈ D, dx is a value of the variable
x in the interpretation I,

– to every operation a ∈ F , in(a) = {x1, x2, . . . , xm}, out(a) = {y1, y2, . . . , yn},
a computable function fa : Dm → Dn,

– to every term t = a(t1, t2, . . . , tm), a superposition of the functions is assigned
in accord with the rule I(a(t1, t2, . . . , tm)) = fa(I(t1), I(t2), . . . , I(tm)).

If t = a(t1, t2, . . . , tm) is an arbitrary term, in(a) = {x1, x2, . . . , xm}, out(a) =
{y1, y2, . . . , yn}, then I(out(a)) = val(t) = (d1, d2, . . . , dn) = fa(valx1(t1),
valx2(t2), . . . , valxn

(tn)).
Further it is assumed that for every function fa = I(a) there exists a module

(procedure) moda that can be used in a program to compute the function fa.

Correct Interpretation. If there exist two different terms t1 and t2, y ∈
out(t1) ∩ out(t2), in(t1) ∪ in(t2) ⊆ V , then valy(t1) = valy(t2) in the inter-
pretation I, and the interpretation I is called correct interpretation. In the
correct interpretation for any variable y, any pair of the terms t1 and t2,
y ∈ out(t1) ∩ out(t2) yields the same value, valy(t1) = valy(t2).

For definition of mass computations this model should be extended by inclu-
sion of indexed operations and indexed variables (arrays). This technical work
can be easily done. Obviously, in this extended model, a mass algorithm is rep-
resented by an infinite recursively countable set of functional terms.

A program that implements an algorithm, represented by a set of functional
terms, can be constructed with the procedure calls to moda in the order not
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contradicting to the information dependences between the operations imposed
by the terms structure. Usually, a run-time system is used to implement all the
calls in a proper order.

4.3 An Example of Knowledge Base, i.e. Partially Defined AT

Below (Fig. 3) the example of the description of the application partially defined
axiomatic theory TRIANGLE is given. The partially defined axiomatic theory
TRIANGLE is the part of an axiomatic theory GEOMETRY. The axiomatic
theory TRIANGLE does not describe the whole theory GEOMETRY, but only
that its part that provides the solution of the problem, formulated in Fig. 2.
Actually, the TRIANGLE is assembled out of the objects of GEOMETRY. The
problem formulation defines:
– the sets of input V = {x, z, γ, α} and output W = {s} variables of the

problem,
– the necessary partial AT in which only this problem can be solved is assem-

bled out of notions, valid for problem formulation and found in the active
knowledge base. An algorithm of the formulated problem solution is derived
on the partial AT and represented here as the set of two functional terms t1
and t2.

If some another problem is needed to be solved then new suitable modules
and variables should be included into the AT for this problem solution.

hyhx

z
y

x
V = {x, z, γ, α}; W = {s};
t1 = f1(x, d1(z, a(γ, α)));
t2 = f2(z, d2(x, a(γ, α)));

Fig. 2. Problem formulation

The capability to create similar knowledge base, to describe and to apply it
constitutes the nature of the new literacy for active knowledge description.

Next time it is necessary to draw the attention, that computational model
cannot contain unknown solution of a problem. It contains only well-known
units of knowledge (ready-made modules). This means, that with the use of the
method of structural program synthesis any user will be able to solve a problem
with the quality equal to the quality of the best known solution.
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Fig. 3. Partial axiomatic theory TRIANGLE

4.4 Particle-In-Cell Method

Particle-In-Cell method (PIC) is widely used for numerical modeling in physics
and chemistry [10,16]. But PIC is applied individually to the solution of an
individual problem of numerical modeling. Therefore, now the PIC application
cannot be formally described as a more or less complete AT. Fortunately, the
methods of PIC parallel implementation are now well known and can be formally
described within a partially described AT. This permits to generate a framework
for solution of a certain problem of numerical modeling in which a user develops
the sequential fragments of the codes whereas the whole parallel program is
automatically assembled/generated out of them, for more details see [10,15].

Parallel implementation of PIC includes parallel implementation such sophis-
ticated system algorithms as dynamic resources allocation, processes migration,
dynamic load balancing, dynamic tuning of an application program to all the
available resources, etc. Clearly, that solution of these problems should be for-
mally described within a partially described AT.

4.5 LuNA Project

The above described approach was implemented within the LuNA project of
fragmented programming system [10,11,13,15]. LuNA project is directed to the
elimination of parallel programming from the process of large scale numerical
models development. In fact LuNA is the system for implementation of AT,
described as computational model.

The LuNA fragmented programming system makes:

– accept as input the knowledge description of an object domain (computational
model here) and the lists of input and output variables,
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– a desired numerical algorithm(s) of a problem solution is derived and repre-
sented as recursively countable set of functional terms [6,17],

– the desirable program implementing the derived algorithm is automatically
generated. Both algorithm and program possess by all the desired/specified
pragmatic properties (to be executed in parallel, dynamic load balancing,
dynamic tuning to all the available resources, etc.).

Massivity and regularity of numerical algorithms allow generating parallel
programs of acceptable quality. One of the serious problem of LuNA implemen-
tation is the replacement of the well-known in sequential programming system
algorithms by distributed system algorithms with local interactions (DSALI),
especially DSALI for distributed resources allocation, optimization of the gener-
ated program execution, dynamic load balancing and many others problems of
dynamic optimization. LuNA is under permanent modification.

Now LuNA is able already to generate practical parallel programs imple-
menting different application of PIC methods for large-scale simulation.

4.6 New Literacy

Now the new incipient literacy, based on the capability of a human being to
create, to understand and to apply AT is arising. Technically, new writing lan-
guage (AT writing) may contain the facility for sets of modules and variables
description, like this is done in LuNA. New literacy (AT-literacy) includes also
the ability to create a proper AT.

Earlier, the human population was divided into the following groups:

– the literate people which were able to read and to write texts,
– the semiliterate people which were able to read but not to write texts,
– the illiterate people which could neither read nor write the texts.

The current human population also begins to become stratified, dividing into
the following groups:

– the illiterate people which mostly look at the screens and press the buttons,
may be, they know phonetic alphabet and are able to read the text. They are
usually not able to write reasonable texts.

– the semiliterate people who are able to read and to write phonetic texts. They
know some systems of passive knowledge representation and are able to read
and to adopt the knowledge in the passive representation,

– the literate people, who are able to operate with ATs and, certainly, will be
able to create, to process, to understand and to utilize the knowledge in the
active representation, in AT writing.

The current phonetic writing provides the accumulation of the knowledge in
a passive form. As a rule, with the use of this literacy a human being is able to
adopt and to apply the knowledge in one object domain, only.

The AT-literacy will practically infinitely extend the abilities of a human
being to adaptation of new object domains. This literacy will substantially
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change the representations of new scientific and industrial technologies. AT writ-
ing should provide at least a description of recursively countable sets of modules
and variables.

Instead of an object domain adaptation in all its details, only the ability
to formulate a problem will be needed. In this manner, for instance, 10 object
domains can be adopted.

The ability to formulate the problems will be the basis of education in the
future. Only a few people, good mathematicians, also experienced in parallel
computing technologies, will be doing by the most interesting work, i.e., the
development of the active knowledge bases.

5 Conclusion

Models of parallel computation are now successfully utilized in scientific and
industrial modeling. Above consideration demonstrates that these models will be
applied for modeling social phenomena too. AT writing will co-exists in parallel
with phonetic writing.

It seems, that next 50 or may be 100 years and even more IT community will
be doing by the creation of active knowledge bases: transformation of currently
accumulated passive knowledge bases into active form and creation new one.
This is not single-step process. The sphere of programming systems application
will be narrowing and instead the systems, implementing AT (like LuNA), should
be developed.

Finally, I would like to remark the following. The human society on its way to
more progressive organization meets many problems. Current American movies
often frighten us by extraterrestrials, monsters, etc. But new literacy is really far
more terrible thing, bad dream, that threaten to the humanity by degradation
(human population moronization) in next one or two centuries, because with the
use of active knowledge technology human beings do not need to think.

It is clear, that the uncontrolled development of any scientific discipline,
including such inoffensive thing as literacy, can lead to humanity self-destruction.
Therefore, united nations and states must provide a global control on applica-
tions of any new scientific result.

Hope, I am not fully right and this prediction will not be proved.
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Abstract. We investigate security enforcement mechanisms that run in
parallel with a system; the aim is to check and modify the run-time
behaviour of a possible attacker in order to guarantee that the sys-
tem satisfies some security policies. We focus on a CSP-like quantitative
process-algebra to model such processes. Weights on actions are mod-
elled with semirings, which represent a parametric structure where to
cast different metrics. The basic tools are represented by a quantitative
logic and a model checking function. First, the behaviour of the system
is removed from the parallel computation with respect to some security
property to be satisfied. Secondly, what remains is refined in two for-
mulas with respect to the given operator executed by a controller. The
result describes what a controller has to do to prevent a given attack.

1 Introduction

Security is frequently in conflict with functional requirements, such as costs,
execution times, and rates, as well as performance requirements of a system,
making 100 % security an impossible or overly expensive goal to be accomplished.
Therefore, the relevant question is not whether a system is secure, but rather
how much security it provides under such “soft” constraints.

In addition, we can use security-oriented metrics, as the vulnerability expo-
sure (the sum of known and unpatched vulnerabilities), the worst case loss (the
maximum money-value of the damage/loss that could be inflicted), the data
transmission exposure (the unencrypted data-transmission volume), or the detec-
tion performance (a measure of the effectiveness of the detection mechanisms
implemented on the system) [8]. Instead of a plain yes/no answer, quantita-
tive levels of security can express different degrees of protection, and allow a
security expert to reason about the trade-off between security and conflicting
requirements. Quantitative security analysis [19] has been already applied, e.g.,
to name a few, for quantifying the side-channel leakage in cryptographic algo-
rithms, for capturing the loss of privacy in statistical data analysis or information
flows, and for quantifying security in anonymity networks.

Concurrent languages (e.g., process algebras) are expressive enough to model
a system, a controller, and an attacker within the same formalism. As a proto-
typical example, in this work we choose Generalised Process Algebra (GPA) [9]
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featuring a CSP-style synchronisation; actions are weighted over a semiring
algebraic-structure. In a quantitative process, transitions are labelled with some
quantity, denoting a cost or a benefit associated with a step in the behaviour of
a system. Indeed, the main actors on stage are the GPA behaviour-descriptions
of (i) a system S, (ii) a controller C, and (iii) an attacker A, which all run
in parallel and may synchronise on a set of action L ⊆ Act. S represents the
correct behaviour of a (software) system, while A attempts to divert S from the
expected path. A controller is implemented to correct/mitigate a threat against
the system (insertion), suppress the impact of a threat (suppression), or ignore
it (acceptance), i.e., C �K A. These actors are required to follow a plot, defined
in terms of a formula φ in a c-semiring Hennessy-Milner Logic (c-HM ) [25].
Such formula specifies the requested behaviour, and its evaluation corresponds
to a semiring value, i.e., the amount of weight needed to follow that behav-
iour. Clearly, the overall cost depends on action-weights of S, C, as well as A,
and, more in particular, on the action performed by C in order to restrain the
behaviour of A (i.e., insertion, suppression, or acceptance).

Our main tool consists of a quantitative partial model-checking function
(QPMC) we use to remove S from the scene, since its performance is not sig-
nificant for our purposes: indeed we want to focus on the other two actors on
the stage. Hence, the specification of S is moved from S‖L(C �K A) to φ, which
becomes φ′ consequently to the application of the QPMC function to φ with
respect to S. The next and final step is the application of QPMC to refine φ′ in
a binary c-semiring Hennessy-Milner formula (c-HM 2) whose modalities repre-
sent the couple of action a1 and a2 that respectively represent the reaction of C
and A: if A plays a2, then C plays a1.

In this way, we are able to identify the requested property φ on the shoulders
of C and A, knowing exactly what C has to do for a given A. This corresponds
to an amount t of weight demanded to satisfy φ: if t is the requested level of
time-delay on the execution of S, when A introduces a delay then C has to react
to A by performing some action with the aim to maintain t. “Does C exist or
not exist? That is the question”. Therefore, in this paper we find an answer to
∃C ∀A S‖L(C �K A) |=t φ.

The main basic ideas behind this work are an advancement of what is pro-
posed in [25], where, among other results, we propose a unidimensional c-HM
logic and a similar QPMC function. The paper is organised as a five-act drama,
following the Freytag’s structure-pyramid.1 Section 2 is our exposition: we intro-
duce the necessary preliminary notions at the heart of our approach, i.e., semi-
rings, GPA, and definitions for quantitative control-rules, and the related work.
Then, Sect. 3 is the rising action part; it builds toward the point of greatest
interest, an approach to security of the presented ingredients. Afterwards, we
reach the climax in Sect. 4: there we show how to apply the QPMC function on
control-rules. During the falling action (Sect. 5) we provide an example of our
approach on the Chinese Wall policy, while Sect. 6 presents a dénouement, i.e.,
a resolution of the plot (conclusions and future work).

1 Freytag, Gustav. Die Technik des Dramas. Hirzel, 1872.
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2 Setting up the Scene

We start this section by introducing the algebraic formalism we adopt to repre-
sent quantitative metrics on which we evaluate countermeasures’ behaviour in
the following of the paper.

2.1 Semiring

Definition 1 (c-semiring [6]). A c-semiring is a five-tuple K = 〈K,+,×,0,1〉
such that K is a set, 1,0 ∈ K, and +,× : K × K → K are binary operators
making the triples 〈K,+,0〉 and 〈K,×,1〉 commutative monoids (semigroups
with identity), satisfying (i) (distributivity) ∀a, b, c ∈ K.a×(b+c) = (a×b)+(a×
c), (ii) (annihilator) ∀a ∈ A.a×0 = 0, and (iii) (top element) ∀a ∈ K.a+1 = 1.

The idempotency of + leads to the definition of a partial ordering ≤K over
the set K (K is a poset). Such partial order is defined as a ≤K b if and only if
a+b = b, and + becomes the least upper bound (lub) of the lattice 〈K,≤K〉. This
intuitively means that b is “better” than a. As a consequence, we can use + as
an optimisation operator that always chooses the best available solution. Other
properties can be derived on c-semirings [6]: (i) both + and × are monotone
over ≤K , (ii) × is intensive (i.e., a × b ≤K a), and (iii) 〈K,≤K〉 is a complete
lattice where 0 and 1 are its bottom and top elements, respectively.

Some examples of semiring instantiation are: boolean 〈{F ,T},∨, ∧,F ,T 〉
fuzzy 〈[0, 1], max,min, 0, 1〉, bottleneck 〈R+ ∪ {+∞},max, min, 0,∞〉, proba-
bilistic 〈[0, 1], max, ×̂, 0, 1〉 (known as the Viterbi semiring), weighted 〈R+ ∪
{+∞},min, +̂,+∞, 0〉. Capped operators stand for their arithmetic equivalent.

2.2 Quantitative Controller Operator

A controlling strategy [12] is a run-time execution trace of a controller C that
follows the behaviour of a target A. The resulting behaviour is denoted by C�KA,
where K is the semiring used for specifying quantities on each executed action so
that it is possible to quantitatively estimate the contribution of the countermea-
sures in the system workflow. Indeed, injecting a controller in a possible point of
failure may increase, e.g., the cost of the system, especially when it is activated
to react to an attack.

Generalized Process Algebra. In this paper we model both a controller
and a target as GPA processes [9]. GPA, i.e., Generalized Process Algebra, is a
quantitative process algebra, whose transitions are labelled by pairs (a, k) where
k is a quantity of a semiring associated to an action a.

Definition 2. The set L of agents, or processes, in GPA over a countable set
of transition labels Act and a semiring K is defined by the grammar

P :: = 0 | (a, k).P | P + P | P‖L P | X
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where a ∈ Act, k ∈ K, L ⊆ Act, and X belongs to a countable set of process
variables, coming from a system of co-recursive equations of the form X � P .
We write GPAK for the set of GPA processes labelled with weights in K.

In order to give the flavour of the meaning of GPA operators, we informally
describe their semantics:2 process 0 describes inaction or termination; (a, k).P
performs action a with weight k, and then it evolves into P ; P + P ′ non-
deterministically behaves as either P or P ′; P‖L P ′ describes the process in
which P and P ′ proceed concurrently and independently on all the actions that
are not in L. On the other hand, all the actions in L are synchronisation points,
meaning that the computation advances if and only if both P and P ′ perform
the same action in L at the same time. X � P allows to associate the behaviour
of a process P (body) with a process variable name X (identifier).

Semantics Definitions for Quantitative Control-Rules. To denote con-
troller and (its) target processes, hereafter we will use C and A respectively. The
alphabets of C, A, and of the resulting process C �K A are different. C may per-
form control actions of the form a, �a, �a.b for a, b ∈ Act, denoting respectively
the actions of acceptance, suppression, and insertion, which regulate the actions
of A. The resulting process C �K A may perform internal actions, denoted by τ ,
as a consequence of suppression. Each action of C, A, and C �K A is associated
with a value of a semiring K, i.e., (a, k), where k ∈ K is a quantity associated
with this action a.

Table 1. Semantics definitions for quantitative control-rules.

C
a,k→ C′ A

a,k′
→ A′

C �K A
a,k×k′

→ C′ �K A′
(A) C

�a,k→ C′ A
a,k′
→ A′

C �K A
τ,k×k′

→ C′ �K A′
(S) C

�a.b,k→ C′ A
a,k′
→ A′

C �K A
b,k→ C′ �K A

(I)

C follows the execution trace of A step by step, and it reacts to each step
of the target according to one of the rules in Table 1. Note that, neither the
controller nor the target performs τ actions independently.

The acceptance rule (A) in Table 1 constrains a controller and a target to
perform the same action, in order for it to be observed in the resulting behaviour.
In particular, if A performs an action a with a weight k′, and the same action is
performed by C with a weight k (so it is allowed on the system), then E �K F
performs a with an observed value that is the × of those of the controller and
target, i.e., k × k′.

The suppression rule allows C to hide an action a, but it counts its weight
because it has been executed by A anyway. Hence, the suppression rule (S) in
Table 1 allows the controller to hide target actions by performing a control action
�a with a measure k. The target wants to perform an action a with a weight k′,
but the action is not performed by the controlled entity and the observed result
2 The interested reader can find the formal semantics of GPA processes defined in [9].
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is a τ action, with the value computed as the product k × k′ of the suppressing
and the target actions. Then C �K A performs an action τ that suppresses action
a, i.e., a becomes invisible from external observation.

Finally, the insertion rule (I) in Table 1 describes the capability of correct-
ing some undesirable behaviour of a target A: it inserts another action in A’s
execution trace by performing a control action �a followed by an action b. The
insertion cost corresponds to the value of C only, i.e., k; this accounts for the
fact that A does not perform any action, but it rather stays in its current state.

2.3 Related Work

There is a significant bulk of work devoted to the enforcement of security mech-
anisms, e.g., [18,23,29]. As foremost examples (due to similarities with respect
to this work) we recall security automata [29], designed to prevent bad execu-
tions, and edit automata [4], which are able to edit their input sequences by
suppressing, inserting, or replacing observed actions. One can also use concur-
rent languages (e.g., process algebras), to model both the target and the control
system in the same formalism [17,23,26].

As a prototypical example, we choose GPA process algebra [9], featuring a
CSP-style synchronisation with actions weighted over a semiring. We add to it
control-operators in the style of edit automata, in order to study enforcement
strategies from the quantitative standpoint. Compared to the existing literature,
our work identifies an abstract approach to quantitative and multi-dimensional
aspects of security. The quest for a unifying formalism is witnessed by the sig-
nificant amount of inhomogeneous work in quantitative notions of security and
enforcement. The problem of finding an optimal control strategy is considered by
Easwaran et al. in [16] in the context of software monitoring, taking into account
rewards and penalties. In [27], the optimal policy can be derived by solving the
optimisation problem of a Markov Decision Process. Bielova and Massacci pro-
pose in [5] a notion of edit distance among traces, which extends to an ordering
over controllers. In [14], a notion of cost similar to the one we propose is used to
compare several enforcement mechanisms that are correct (in the boolean sense).
In this work, we follow some intuitive leads from [24] to move from qualitative
to quantitative enforcement, and generalise that idea by using semirings. In [15]
the possibility that the controller allows some policy violations is quantified over
traces for non-safety policies, where a controller cannot be both correct and fully
transparent. In [10], the authors use a notion of lazy controllers, which are able
to check the security of a system at some point in time, proposing a probabilis-
tic quantification of the expected risk. In the context of access control, Molloy
et al. [28] use a machine-learning approach to predict a decision for a given
request, and, at the same time, to balance the risk of error against the cost of
contacting the real mechanism to get a decision. Non-binary measures of security
have also been considered for access-control systems, e.g., in [11,30].

In [13], Degano et al. propose a formal framework to specify and enforce
quantitative security policies. The framework consists of (i) a stochastic process
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calculus to express the measurable space of computations in terms of Contin-
uous Time Markov Chains; (ii) a stochastic modal logic (a variant of CSL) to
represent the bound constraints on execution speed; (iii) potential or actual
enforcement mechanisms of quantitative security policies. The potential enforce-
ment computes the probability of policy violations, thus supporting the user
to accept/discard a component when the probability of security violation is
below/above a suitable chosen threshold. The actual enforcement computes
instead the deviation of execution speed from an acceptable rate.

In [7] the authors take advantage of an operational semantics with the aim
to predict quantitative measures on systems describing cryptographic protocols.
Moreover, they also introduce a possible attacker in the model. The transitions
of the system carry enhanced labels: rates are assigned to transitions by only
looking at these labels. Finally, transition systems are mapped to Markov chains
and an evaluation of system performance is obtained by using standard tools.

In [2] the authors investigate usage automata, a formal model for specifying
policies on the usage of resources. Usage automata extend finite state automata
with some additional features, parameters and guards, that improve their expres-
sivity. The authors check the decidability if a given computation complies with
a usage policy.

3 Quantitative Security Approach

In the literature on qualitative enforcement of secure systems, several approaches
have been developed, as we have recalled in Sect. 2.3. A possible approach for
the specification, analysis, and synthesis of secure systems is based on the open
system paradigm [22], where the considered system and a possible malicious
agent interacting with it are represented as two processes that work in parallel.

The same approach can be used when we pass from a qualitative to a quan-
titative analysis of such system S. The unspecified part of S is a component
whose behaviour is not known a priori, and we want S to be quantitatively
secure, whatever the behaviour of such unspecified components is. A is the pos-
sible attacker whose behaviour is a priori unknown; L ⊆ Act is the set of possible
synchronisation actions; thus S‖LA is the overall (partially specified) system, on
which we require that:

∀A S‖LA |=t φ.

φ is a logic formula expressing some behavioural requirements, such as secu-
rity requirements as well as performance or cost constraints (i.e., non-functional
requirements), and t denotes a required level of satisfaction: the evaluation of φ
with respect to S‖LA has to be equal to t. Formally,

Definition 3 (|=k). A process P satisfies a c-HM formula φ with a threshold-
value t, i.e., P |=t φ, if and only if the interpretation of φ on P is equal to t.
Formally: P |=t φ ⇔ t = �φ�P .

Even if it is not always possible to check all different behaviours of component
A, nevertheless it is possible to define distinct countermeasures that follow the
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rules of the controller operator �K defined in Table 1. These countermeasures are
specified as execution traces of a controller process denoted by C. They guarantee
the system to properly work by forcing the desired behaviour of unspecified
components, in such a way that the system satisfies φ according to a predefined
value t. Hence, the question here is if there exists an implementation that, by
monitoring the behaviour of an unspecified component A, guarantees S to satisfy
the required security property with a certain value t:

∃C ∀A S‖L(C �K A) |=t φ

First of all we apply a QPMC function inspired from the work in [25], with
the purpose to evaluate φ with respect to the behaviour of S. In this way we
obtain a new formula φ′ = φ//S

and we only have to monitor the attacker’s
behaviour A. φ′ represents the necessary and sufficient conditions that C �K A
has to satisfy in order to guarantee the security of S. Indeed, the problem we
have to solve reduces to the following one:

∃C ∀A (C �K A) |=t φ′ (1)

It is worth noting that we neither know the behaviour of the controller process
C, nor the one of attacker A. The only information we have is the semantics rules
of the controller operator �K. Based on that, we have developed a quantitative
partial model checking function able to refine the formula φ′ ∈ c-HM into a
binary formula φ′′ ∈ c-HM2 able to specify the set of quantitative controller
execution traces for any attacker execution trace. The basic idea is that, know-
ing the possible reaction rules that drive the behaviour of a controller and the
quantitative security requirements that S has to satisfy, it is possible to find
the necessary and sufficient condition both the controller and the target has to
quantitatively satisfy in order to assure the system security. Indeed, we consider
both the controller and the target behaviours as unknown.

To this aim, we propose a variant of a quantitative Hennessy-Milner logic, the
c-HM logic firstly proposed in [25]; thus, we can specify a property on couples of
actions, extending it to c-HM2 (see Sect. 3.1). Afterwards, we define a different
version of the QPMC function [25], allowing us to refine a formula φ′ with
respect to the semantics definition of the controller operator (see Sect. 4). This
refinement allows us to write each action of the execution trace of the controlled
process as a couple of actions, respectively representing the weight contribution
to that action of both the controller and the target.

3.1 Binary C-Semiring Hennessy-Milner Logic (c-HM2)

We start by assembling the transition system on which c-HM2 is defined:

Definition 4 (MLTS). A (finite) Multi-Labelled Transition-System (MLTS) is
a five-tuple MLTS = (S,Act2,K, T, s0), where S is the countable (finite) state-
space, s0 ∈ S is the initial state, Act2 is a finite set of transition labels, where
each label is a couple of labels in Act, i.e., the label 〈a1, a2〉 ∈ Act2 and a1, a2 ∈ L.
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K is a semiring used for the definition of transition weights, and T : (S ×Act2 ×
S) −→ K is the transition weight-function.

Definition 5 syntactically defines the correct formulas given over an MLTS.

Definition 5 (Syntax). Given an MLTS M = 〈S, Act2,K, T, s0〉, and let ã ∈
Act2, the syntax of a formula φ ∈ ΦM is as follows, where k ∈ K:

φ:: = k | φ1 = φ2 | φ1 + φ2 | φ1 × φ2 | φ1 � φ2 | 〈ã〉φ | [ã]φ

The semiring operators +, � (the glb), and × are used in place of classical
logic operators ∨ and ∧, in order to compose the truth values of two formulas
together. Truth values are all the k ∈ K. In particular, while false corresponds
to 0, we can have different degrees of true, where “full truth” is 1. As a reminder,
when the × operator is idempotent, then × and � coincide (Sect. 2.1). Moreover
we can use = to compare the evaluation of two formulas: the result is 1 if
they are both evaluated to the same k ∈ K, 0 otherwise (i.e., it corresponds
to ⇔ in boolean logic).3 Finally, we have the two classical modal operators,
i.e., “possibly” (〈·〉), and “necessarily” ([·]).

Table 2. Semantics of c-HM2.
∑

(∅) = 0 and �(∅) = 1.

The semantics of a formula φ is given on a finite MLTS M =
〈S,Act2,K, T, s0〉, where the set of states S corresponds to the set of finite
GPA processes. The purpose is to check the specification defined by φ over
the behaviour of a couple of GPA processes. The semantics of a formula,
� �M : (ΦM × S) −→ K (see Table 2), computes a semiring value associated
with a formula in a given state s ∈ S of an MLTS M .

In Table 2 and in the following (when clear from the context), we omit M
from � �M for the sake of readability. It is worth noting that, due to the expressive

3 We can think of further operators between formulas, e.g., {=, ≥, ≈ε}.
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power of c-HM2, we deal with safety properties, e.g., properties expressing that,
if something goes wrong, then it can be detected in a finite number of steps.

Note that, the notion of satisfiability given in Definition 3 holds also for a c-
HM2 formula φ on a binary MLTS M = 〈S,Act2,K, T, s0〉. A binary MLTS may
also represent a couple of processes composed as an independent combination of
two processes P1 and P2, hereafter denoted as (P1, P2).

Definition 6 (Binary Process). Let P1 and P2 be two GPA processes. A
binary process (P1, P2) ∈ GPA×GPA is the juxtaposition of two processes and
it is fully characterised by the following rule:

P1
(a,h)−−−→ P ′

1 P2
(b,s)−−−→ P ′

2

(P1, P2)
((a,b),h×s)−−−−−−−→ (P ′

1, P
′
2)

Note that, the semantic interpretation of a binary process is given through a
binary MLTS. In particular, according to the definition of binary transition func-
tion, the set of states of a binary process is the union of the two sets of states of
both the processes. In this way, either both processes perform an action being
in the same state or, they are asynchronous processes, i.e., both component P1

and P2 contribute in the transition of the combined process (P1, P2), even when
one of the two performs the 0 action.

4 Quantitative Partial Model Checking for Controller
Operator

In order to solve the problem in Eq. 1, we define a QPMC function with the
purpose to evaluate φ′ ∈ c-HM with respect to the application of controller
rules, i.e., to controller strategies. As a remainder, φ′ is obtained from the initial
φ by removing S from the parallel computation, and “adding” it to φ (φ′ = φ//S

,
see Sect. 3). Our goal in this section is to obtain a refinement of φ′, i.e., φ′′ ∈
c-HM2, which also depends on �K.

The QPMC function we use to achieve such goal is defined in Table 3. Being
the logic closed with respect to the QPMC function, the interpretation of the
formulas obtained through the application of the function is straightforward.
Theorem 1 proposes a result similar to the one in [1].

Theorem 1. Let C and A two processes in GPA such that C �K A ∈ GPA and
(C,A) is a binary process in GPA × GPA, K a totally ordered c-semiring with
k ∈ K, as well as φ′ a c-HM formula and φ′′ = W(C �K A,φ) a c-HM2 formula,
the following holds:

�φ′�(C�KA) = �φ′′�(C,A)

Due to this result, the problem in Eq. 1 can be simplified as follows:

∃C ∀A (C,A) |=t W(C �K A,φ′) (2)
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where W(C �K A,φ′) is a c-HM2 formula that describes, in a unique way for
each action of the process A, that the reaction of a controller C guarantees the
quantitative satisfaction of the initial system’s requirements. Hence, it is worth
observing that a security controller needs to make a decision in order to select
the best reaction (if any). This decision is supported by the quantitative value
associated to each reaction. However, in general, the decision for a single action
can change according to the actions previously executed by A. For instance, in
the Chinese Wall policy (see an example in Sect. 5), a user can a priori access to
a resource from any company, unless in the past she has accessed to a resource
from another company in the same conflict-of-interest class.

Moreover, dealing with quantitative aspects, it is important to distinguish
between the decision process, i.e., C, and the actual implementation of the con-
trolled process, i.e., C �K A. Indeed, it is possible to specify the best editing
strategy by associating particular costs with actions. For instance, by setting
the acceptance cost to a minimum, we showed that it is always the best strat-
egy to accept a correct action. Similarly, by associating an infinite cost with the
suppression of a particular action, we can model the concept of uncontrollable
action [3], that is, an action that has to be accepted, such as the tick of a clock.

Table 3. A QPMC function (i.e., W) for quantitative controller operator �K.
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5 A Simple Example

To exemplify our approach, let us consider a very simple example. For sake of
simplicity, we omit the system S: the goal is to show how the QPMC function
works with respect to controller operations. To do this, let us now consider
a well-known access-control policy for distributed systems: the Chinese Wall
policy.

To evaluate the security level of C �K A, each action is weighted with a semi-
ring value expressing a security-evaluation score for that action. Security, trust,
functionality, and performance can be represented by different semirings. In this
section, we use weights from S = 〈{i, l,m, g, e}, max,min, i, e〉, where the chain
insecure ≤ low ≤ medium ≤ good ≤ excellent models a set of security levels.
When we compose two levels together we choose the worst, while preference goes
to the higher level.

Given two sets of resources (e.g., files or data) V and W , such policy states
that one can choose to access either to V or to W , but if an access to V is
performed (setting the security level of access to V to e) then it is no more
possible to access to W ; consequently, the access to W has security level i.
Clearly, this also holds vice-versa, i.e., if we open an element x of W then we can
not access to any element in V . Note that, in this example, the required security
level to access to set W , i.e., l, is less than the required security level to access
to V , that is e. The reason is that V collects more sensitive information. The
Chinese Wall policy is expressed by a formula φ = φ1 + φ2 where

φ1 = [access V ]e × [access W ]i φ2 = [access W ]l × [access V ]i.

In this example, we consider an insertion controller �S, and we require C �S A to
satisfy the Chinese Wall policy with a security equal to g.

By using the QPMC function with respect to the controller operator �S, we
have that:

C �S A |=g φ ⇔ (C,A) |=g φ′

where φ′ = W(C �S A,φ) = φ′
1 + φ′

2, and

φ′
1 = W(C �S A,φ1) = (k(access V,access V )

access V × [(access V, access V )]e)
� (k(�access W.access V,access W )

access V

× [(�access W.access V, access W )]e)
× (k(access W,access W )

access W × [(access W, access W )]i)
� (k(�access V.access W,access V )

access W

× [(�access V.access W, access V )]i)
φ′
2 = W(C �S A,φ2) = (k(access W,access W )

access W × [(access W, access W )]l)
� (k(�access V.access W,access V )

access W

× [(�access V.access W, access V )]l)
× (k(access V,access V )

access V × [(access V, access V )]i)
� (k(�access W.access V,access W )

access V

× [(�access W.access V, access W )]i)
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According to Theorem 1, to verify if C�SA quantitatively satisfies the Chinese
Wall policy with a security level g, it is necessary and sufficient to evaluate φ′

with respect the binary process (C,A). A priori we do not know the behaviour
of A, however, due to the quantitative nature of the proposed framework, we
can infer some constraints on the controller process C, which help the synthesis
of the best controller, if it exists.

As a remainder, the weight of an accepted action is equal to the product (i.e.,
×) of the weights of both the actions respectively performed by C and A, while
the weight of an inserted action is equal only to the weight associated with the
action of C. This leads to the following considerations:

– If the attacker does not perform the correct action, e.g., it tries to access
to W after accessing to V (or vice versa), the controller C may insert the
correct action access V with an appropriate security level, e.g., better than
g. In this way, the controller assures that the Chinese Wall policy is satisfied
with the required security level g.

– If the attacker performs the correct action, but with a security level worse
than the required one, e.g., g in the example, the controller, accepting the
correct action, does not increase the level of security. Thus, the Chinese Wall
policy is not satisfied because the required security level is not respected.
This is the case in which both C and A perform a valid sequence of actions,
e.g., one access V each, but the level of one of these actions is worse than
g. In this case, the controller guarantees that the Chinese Wall Policy is
not violated by not changing the security level of the attacker actions, and
accepting the correct action. However, also in this case as well as in the
previous one, C can insert the correct action with the correct security level
in such a way to not halt the execution and, at the same time, guarantee
the satisfaction of φ. It is worth noting that, another possible scenario may
happen when an agent A try to access to W with a security level l. This
does not violate the requirement imposed by φ, but it violates the satisfac-
tion requirements, because l is worse than g. Also in this case, C can fix
the execution trace by inserting the correct action with a more appropriate
security level.

6 Conclusion

We have presented a verification framework to study quantitative properties
associated with a formula φ, i.e., properties with an associated weight. Such a
value is interpreted as how costly the verification of a property is. The conun-
drum has consisted in investigating controller-agents C accepting, suppressing,
or inserting actions in the behaviour of an attacker A, while considering the
correct functioning of a system S. The question we have address in this paper
is ∃C ∀A S‖(C �K A) |=t φ. As in Sect. 1, we again come across a triangled
structure: the drama triangle4 is a psychological and social model of human
4 First described by Stephen Karpman, M.D., in his 1968 article “Fairy Tales and
Script Drama Analysis”.
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interaction used in psychology and psychotherapy. At its vertices we find the
Victim (S), the Persecutor (A), and the Rescuer (C). With the aid of a QPMC
function we remove S from the global parallel computation (moving it into φ),
and we refine φ′ investigating the duties of C and A in order to satisfy φ: such
approach helps us to better understand C and A separately.

In the future we plan to extend this work in several ways. For instance, we
plan to have a multidimensional decomposition of properties, instead of a bi-
dimensional one as in this paper: we would like to follow the pioneering proposal
in [20], thus decomposing quantitative properties satisfied by an n-ary context
into n local quantitative constraints, each of them satisfied by a unary (quanti-
tative) context. Each context represents a different component of a distributed
system. In such a way, we can improve the approach by taking into account fully-
distributed systems with multiple components and attackers. Another direction
is the extension of the framework to use more than one measure in order to eval-
uate a context. Such measures can be combined and ordered, e.g., by using the
lexicographical ordering, in such a way that controlling strategies can be selected
with respect to the optimisation of the trade-off between some of them. Finally,
we would like to manage infinite contexts by extending our logic to deal with
fix-points; to achieve this goal, suggestions could come from the work in [21].
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Abstract. The idea of analysing real programs by process algebraic
methods probably goes back to the Occam language using the CSP
process algebra [43]. In [16,24] Degano et al. followed in that tradition
by analysing Mobile Agent Programs written in the Higher Order Func-
tional, Concurrent and Distributed, programming language Facile [47],
by equipping Facile with a process algebraic semantics based on true con-
currency. This semantics facilitated analysis of programs revealing subtle
bugs that would otherwise be very hard to find. Inspired by the idea of
translating real programs into process algebraic frameworks, we have in
recent years pursued an agenda of translating hard-real-time embedded
safety critical programs written in the Safety Critical Java Profile [33]
into networks of timed automata [4] and subjecting those to automated
analysis using the UPPAAL model checker [10]. Several tools have been
built and the tools have been used to analyse a number of systems for
properties such as worst case execution time, schedulability and energy
optimization [12–14,19,34,36,38]. In this paper we will elaborate on the
theoretical underpinning of the translation from Java programs to timed
automata models and briefly summarize some of the results based on this
translation. Furthermore, we discuss future work, especially relations to
the work in [16,24] as Java recently has adopted first class higher order
functions in the form of lambda abstractions.

1 Introduction

There is a growing interest in adopting Java technology in the real-time systems
domain as witnessed by the large research community working on several aspects
of realizing this goal. Notably, research has focused on devising appropriate
real-time systems models for Java to address inherent issues such as lack of
real-time tasks, high-precision clocks and a memory model not relying on (time
unpredictable) garbage collection. In particular, this has led to the development
of the Real-Time Specification for Java (RTSJ) [15] and the Safety Critical Java
(SCJ) [33] profile.

Java is usually implemented via a translation to Java Byte Code (JBC),
which is then either interpreted by a Java Virtual Machine (JVM) or further
translated to native code. To accommodate the real-time execution demands of
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the RTSJ and SCJ programming models the underlying execution environment,
the JVM, must exhibit temporal predictable behavior to allow reasoning about
timeliness. One way of achieving time predictable execution of the JVM is to
implement it in hardware, e.g. the aJile Systems [3] and the Java Optimized
Processor (JOP) project [39]. There are also a number of software implementa-
tions of the JVM facilitating time predictable execution on time predictable com-
modity hardware platforms. The FijiVM [41], Hardware Near Virtual Machine
(HVM) [30], JamaicaVM [2] and PicoPERC [40] are examples of this.

To address timing analysis of this environment, we have developed a tool,
TetaSARTS

1, that allows the real-time system to be developed in a platform
independent way. The tool is targeted at schedulability analysis of SCJ tasks
taking into account a refined system model that accounts for the exact release
patterns of the tasks, their relative releases, interleavings, and resource shar-
ing. In addition, the timing model is rich enough to facilitate analysis of other
properties pertaining to the verification of a real-time system including processor
utilisation and processor idle time, Worst Case Execution Time (WCET), Worst
Case Response Time (WCRT) taking into account pre-emption and task inter-
actions, and Worst Case Blocking Time (WCBT). TetaSARTS is the result of
merging the ideas from locally developed methods for timing analysis; TetaJ [26],
METAMOC [21], SARTS [14] and the TIMES [7] framework for schedulability
analysis using Uppaal [22]. TetaSARTS resembles an optimizing compiler
translating an SCJ system into a Network of Timed Automata (NTA) amenable
to model checking. The model is constructed such that model checking simu-
lates an abstract execution of the real-time tasks, taking into account the exact
execution environment and scheduling policy. It is built around a modular archi-
tecture that enables platform models to be replaced seamlessly, thereby making
it possible to conduct analysis of systems running on software implementations
of the JVM as well as hardware implementations of the JVM.

Although Java was not originally equipped with or designed for mathematical
foundations, the theoretical underpinnings of Java have by now been explored by
many researchers. In this paper we will elaborate on the theoretical underpinning
of the translation from Java programs to timed automata models and briefly
summarize some of the results.

The paper is organized as follows; Sect. 2 gives an overview of related work.
Section 3 gives an overview of the Safety Critical Java programming model.
Section 4 gives an overview of to implementations of the JVM supporting the
SCJ programming model. Section 5 presents the theoretical model of Timed
Automata. Section 6 presents an overview of the TetaSARTS tool. Section 7
presents the translation from JBC to Timed Automata and Sect. 8 presents
our conjecture that this translation is correct. Section 9 presents various opti-
mizations and Sect. 10 presents evaluation of the TetaSARTS tool. Section 11
presents the conclusions and future work, especially relations to the work in
[16,24] as Java recently has adopted first class higher order functions in the
form of lambda abstractions.
1
TetaSARTS can be downloaded at http://people.cs.aau.dk/∼luckow/tetasarts/.

http://people.cs.aau.dk/~luckow/tetasarts/
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2 Related Work

Roscoe et al. were probably the first to analyse real programs written in the
Occam language by process algebraic methods using the CSP process algebra
[43]. Degano et al. followed in that tradition by analyzing Mobile Agent Programs
written in the Higher Order Functional, Concurrent and Distributed, program-
ming language Facile [47], by equipping Facile with a process algebraic semantics
based on true concurrency [16,24]. This semantics facilitated analysis of pro-
grams revealing subtle bugs that would otherwise be very hard to find. More
recently Java programs have been analyzed for correct calling order of methods
using the Concurrency Workbench [29].

For analysing timing properties of systems, the traditional methods for
schedulability analysis include response time analysis [17]. For each task, the
response time is calculated, and the system is schedulable if the response times
for the tasks are less than their respective deadlines. Tools and techniques based
on the traditional methods tend to be rather conservative.

The TIMES [7] tool presents a model-based, control-flow sensitive technique
for schedulability analysis in which a specification for the real-time system is built
as a set of tasks modeling their timing properties e.g. cost, dependencies, and
deadlines. Supplementary code can be provided. This results in an NTA model
which is checked using the Uppaal [10] model checker. TIMES does not perform
timing analysis of the code associated with the tasks, which must be performed
using external WCET analysis tools such as aiT [25], METAMOC [21], WCET
Analyzer (WCA) [44] or TetaJ [26]. The aiT and METAMOC tools are targeted
at timing analysis of C-programs and use respectively a combination of abstract
interpretation and integer linear programming, and model checking. For Java,
either WCA or TetaJ can be used. WCA makes available two techniques for
timing analysis; model checking and Implicit Path Enumeration [32]. WCA,
however, is targeted at the JOP [39], a JVM implementation in hardware. For
dedicated schedulability analysis of Java programs, SARTS [14] can be used
which also employs a model-based technique itself inspired from TIMES.

Bandera [20] is a tool for generating automata descriptions for various model
checkers such as PROMELA for the SPIN [28] model checker given the program
source of the Java system. Java Pathfinder (JPF) [31] can also be used for
software model checking of Java real-time systems. TetaSARTS is inspired by
the idea of approaching software model checking by considering the translation
process from software to finite-state models as an optimising compiler.

3 The SCJ Real-Time Programming Model

Safety critical applications have different complexity levels. To cater for this the
SCJ programming model is based on tasks grouped in missions, where a mis-
sion encapsulates a specific functionality or phase in the lifetime of the real-time
system as a set of schedulable entities. The SCJ specification lets developers
tailor the capabilities of the platform to the needs of the application through
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three compliance levels. Level 0, provides a simple, frame-based cyclic executive
model which is single threaded with a single mission. Level 1 extends this model
with multi-threading via periodic and aperiodic event handlers, multiple mis-
sions, and a fixed-priority preemptive scheduler (FPS). Level 2 lifts restrictions
on threads and supports nested missions.

A mission encapsulates a specific functionality or phase in the lifetime of the
real-time system as a set of schedulable entities. For instance, a flight-control
system may be composed of take-off, cruising, and landing each of which can
be assigned a dedicated mission. A schedulable entity handles a specific func-
tionality and has release parameters describing the release pattern and temporal
scope e.g. release time and deadline. The release pattern is either periodic or
aperiodic.

Fig. 1. Overview of the mission concept [36].

The mission concept is depicted in Fig. 1 and contains five phases;

Setup where the mission objects are allocated during start-up of the system.
This phase is not considered time-critical.

Initialisation where all object allocations related to the mission or to the entire
applications are performed. This phase is time-critical in applications with
mode changes consisting of a sequence of missions.

Execution during which all application logic is executed and schedulable entities
are set for execution according to a pre-emptive priority scheduler. This
phase is time-critical.

Cleanup is entered if the mission terminates and is used for completing the
execution of all schedulable entities as well as performing cleanup-related
functionality. After this phase, the same mission may be restarted, a new
is selected, or the Teardown phase is entered. This phase is time-critical in
applications with mode changes consisting of a sequence of missions.

Teardown is the final phase in the lifetime of the application and comprises
deallocation of objects and release of locks etc. This phase is not time-critical.

SCJ introduces a memory model based on the concept of scoped memory
from the RTSJ, which circumvents the use of a garbage collected heap during
real-time execution, easing the verification of timing properties of SCJ systems.
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4 Real-Time Execution Platforms

The SCJ programming model provides a structuring framework for applications
with hard real-time requirements. Next such applications need an execution plat-
form. For applications written in C this is usually a hardware processor. How-
ever, Java applications are typically translated into JBC which are then either
interpreted or further translated into native code before execution, also called
ahead-of-time (AOT) execution, or during, also called just-in-time (JIT) execu-
tion. This approach entails a time predictable implementation of each JBC.

The simplest way to ensure a time predictable execution of each Jave Byte-
code is to implement the JVM in hardware. This is the approach taken by the
JOP [39]. The JOP is implemented on an FPGA (Altera Cyclone EP1C6Q240
or EP1C12Q240). The JOP has its own micro code instruction set with most
JBC having a one-to-one mapping. However, some are more complex and are
implemented as a sequence of JOP micro codes, some are even implemented in
Java. The end result is that for each JBC its execution can be bounded and its
WCET be determined. Important for WCET analysis of programs executing on
the JOP is that the JOP does not feature data caches, but features a method
cache which must be taken into account.

The HVM [30,45] is a lean JVM implementation intended for use in resource-
constrained embedded devices with as low as 256 KB ROM and 20 KB RAM.
It features both iterative interpretation, Java-to-C compilation (AOT), and a
hybrid of the two. The HVM employs JVM specialisation; a JVM is produced
specifically for hosting the JBC program of a given application. This is done using
the Icecap-tools Eclipse-plugin, which analyzes the JBC program and pro-
duces an executable for the target platform. The analyses and transformations
can be extended, and incorporate a number of (static) optimizations for improv-
ing performance of the JVM and for reducing its size. This includes receiver-type
analysis for potentially devirtualising method calls and intelligent class linking
which computes a conservative set of classes and methods that are used in the
application. Only this set will be embedded in the final HVM executable. It also
conservatively estimates the set of JBC that will actually be used. The HVM

is self-contained and does not rely on the presence of an OS or a C standard
library. The HVM has been ported to the Atmel AVR ATmega2560 microcon-
troller, Arduino and Lego EV3 [30].

5 Timed Automata

This section presents an overview of the Timed Automata formalism, based on
[5,9,11]. A Timed Automaton is a finite state machine extended with a finite set
of non-negative real-valued clock variables. Traditionally, vertices in the graph
are called locations, which are connected by edges. The set of clocks is denoted
by C. Clocks are distinguished from usual program variables in that their opera-
tions are limited to inspection and reset to zero. For traditional Timed Automata,
clocks implicitly increase their values with rate one as time progresses, that is,
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if time elapses by d, all clocks synchronously advance by d. Formally, a clock
valuation over the set of clocks, C, is a mapping v : C → R+, where R+ denotes
the set of non-negative reals. RC

+ denotes the set of all clock valuations. Then,
for a valuation v ∈ R

C
+ and a time delay, d ∈ R+, v + d is the clock valuation

that for each c ∈ C assigns v(c) + d. For a set of clocks X ⊆ C, v[Y ] is the valu-
ation assigning to each x ∈ Y zero (i.e. it is a reset of x) and v(x) when x �∈ Y .
A Timed Automaton can have conditions on the clock values called guards for
edges and invariants for locations. In general, conditions that depend on clock
values are clock constraints and B(C) is the set of conjunctions over sim-
ple constraints of the form x ∼ c (or x − y ∼ c), where x, y ∈ C, c ∈ N and
∼∈ {<,≤,=≥, >}. When a clock constraint on an edge is satisfied, that edge is
capable of being fired. Firing of an edge happens instantaneously. In locations,
clock constraints are used to constrain the time spent in that location.

Definition 1 (Timed Automaton). A Timed Automaton is a tuple A =
〈L, l0,Σ, C,E, I〉, where L is a set of locations, l0 ∈ L is the initial location,
C is the set of clocks, Σ is a set of (co-)actions (which are denoted by ! and ?,
respectively) and the internal τ -action, E ⊆ L × B(C) × Σ × 2C × L is the set of
edges between locations with a guard, an action, and a set of clocks to be reset.
I : L → B(C) is the map assigning to each location an invariant i.e. a clock
constraint.

In the following, l
g,a,r−−−→ l′ denotes 〈l, g, a, r, l′〉 ∈ E, where l, l′ ∈ L, g ∈ B(C),

a ∈ Σ, and r ∈ 2C . Guards and invariants will be considered as sets of clock
valuations, and v |= I(l) denotes that the clock valuation v satisfies I(l), i.e.
the clock constraints representing the invariant of location l.

The semantics of a Timed Automaton A = 〈L, l0,Σ, C,E, I〉 is a timed
labelled transition system 〈S, s0,→〉 where states are pairs (l, v) ∈ S ⊆ L × R

C
+

with v |= I(l), s0 = (l0, u0) is the initial state, and →⊆ S × (R+ ∪ A) × S is the
transition relation which can be either

(i) a delay transition (l, v) d−→ (l, v′) where d ∈ R+ is a delay and v′ = v + d if
∀d′ s.t. 0 ≤ d′ ≤ d =⇒ v + d′ |= I(l); or

(ii) a discrete transition (l, v) a−→ (l′, v′) if there exists an edge l
g,a,Y−−−→ l′ such

that v |= g, v′ = v[Y ] and v′ |= I(l′).

Timed Automata A1, . . . ,An can be composed into a Network of Timed
Automata using the CCS parallel composition operator, i.e., A1| · · · |An. Let
Aj = 〈Lj , lj0, C,A,Ej , Ij〉, with j = 1, 2, . . . , n be a Network of n Timed
Automata. The location is now defined as a vector l̄ = (l1, l2, . . . , ln). The nota-
tion l̄[l′i/li] denotes the update of location vector l̄ where the ith element li is sub-
stituted by l′i. The invariant functions are composed into a single function over
location vectors i.e. I(l̄) = ∧iIi(li). Again, the semantics of a Network of Timed
Automata can be defined as a timed labelled transition system 〈S, s0,→〉, where
states, S, are now defined by the set S = (L1×L2×. . .×Ln)×R

C
+, the initial state

defined by s0 = (l̄0, v0) ∈ S, and the transition relation, →⊆ S × (R+ ∪ A) × S,
can now either be
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(i) a delay transition (l̄, v) d−→ (l̄, v′) where d ∈ R+ is a delay and v′ = v + d if
∀d′ s.t. 0 ≤ d′ ≤ d =⇒ v + d′ |= I(l̄);

(ii) a discrete transition (l̄, v) a−→ (l̄[l′i/li], v′) if there exists an edge li
g,a,Y−−−→ l′i

such that v |= g, v′ = v[Y ] and v′ |= I(l̄′[l′i/li]); or
(iii) a synchronisation transition (l̄, v) τ−→ (l̄[l′j/lj , l

′
i/li], v′) for Timed Automata

Ai and Aj if there exist edges li
gi,c!,Yi−−−−→ l′i and lj

gj ,c?,Yj−−−−−→ l′j such that
v |= gi ∧ gj , v′ = v[Yi ∪ Yj ] and v′ |= I(l̄[l′j/lj , l

′
i/li]).

Note that the above definition follows the standard definition of the CCS parallel
composition operator. This will facilitate the simulation result presented later in
this paper. The definition given in [11] only allows internal transitions in clause
(ii) as the Network of Timed Automata (NTA) verified by the UPPAAL model
checker are closed systems and thus the parallel composition operator has an
implicit hiding operator.

6 TetaSARTS

TetaSARTS is a fully automated tool for conducting timing analysis, such as
schedulability analysis, of JBC real-time systems taking into account the partic-
ular execution environment consisting of either a software implementation of the
JVM on a commodity hardware platform or a hardware implementation of the
JVM. TetaSARTS employs a model-based technique for making a control-flow
sensitive analysis of the JBC real-time system. It keeps a tight correspondence
between the actual real-time system application code and the model used for
analysis, by generating TA models amenable to model checking using Uppaal.
A further benefit of using model checking is that a counterexample is provided
in case the system is non-schedulable.

Two options are available for representing the execution environment: an
explicit representation or an inline representation. The explicit representation
incorporates the control-flow of the JBC implementations used by the specific
JVM hosting the real-time system. To reflect the behavior of the JBC interpreter
of the JVM, this scheme is modelled as well. Simulating the execution of the
JVM is achieved by including TA models of the hardware. By using this option
TetaSARTS is conducting schedulability analysis by simulating an abstract
execution of the entire real-time system. This increases the overall complexity
of the analysed system, but also provides the potential for more precise analysis
since the dynamic behavior of e.g. caching and pipelining is accounted for. For
the inline representation TetaSARTS inlines the execution times of each of
the instructions in the model. These could be provided for various reasons; for
JOP, the execution times are fixed, and can be found in the documentation.
The inlined instruction execution times may also be available from a WCET
analysis tool or from a measurement-based approach by using a stopwatch. The
benefit of using an inline representation is simplicity; the dynamic behavior of
the execution environment is not incorporated in the simulation, but potentially
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at the expense of precision, because cache-effects and timing anomalies inherent
on many platforms, significantly influence instruction execution times.

TetaSARTS supports real-time tasks from SCJ with periodic or sporadic
release patterns. However, it assumes that all real-time tasks are created as part
of system initialisation, but future extensions will support the missing concepts
from SCJ. It also supports synchronisation mechanisms such as synchronised
methods in Java. The effect including synchronisation is reported in [14].

In the following sections we look at how an SCJ application is translated
into a set of timed automata and how optimizations akin to those found in
optimizing compilers can help reduce the model to cope with the inherent state
space explosion.

How the set of program automata is combined with timed automata modeling
the scheduler, sporadic and periodic task firing, the JVM and the hardware
platform, forming a NTA suitable for analysis with the UPPAAL model checker,
is reported in [38]. Schedulability analysis can be performed by verifying that
a deadlock state is never reachable within the feasibility interval [27]. This can
only be the case if one or more of the real-time tasks do not finish within their
deadlines. Thus schedulability is expressed by the Timed Computation Tree
Logic (TCTL) specification A� !deadlock.

7 From Java Byte Code to Timed Automata

To translate an SCJ application to an NTA, the SCJ program is first compiled
to JBC with a standard Java compile like javac. The resulting JBC forms the
starting point for the transformation. The original Java source code is only used
in relation to handling loops. TetaSARTS constructs an extended control flow
graph (CFG) in the Timed Intermediate Representation (TIR) format (see below)
for each method used in the system. The TIR is translated to a Timed Automaton
for each method. These are then combined into an NTA called the Program NTA.
The Program NTA captures the behavior of the system by simulating a control-
flow sensitive execution of each real-time task in the system. As depicted in Fig. 2
generating the Program NTA is a process composed of stages akin to those found
in an optimising compiler.

Javac Java ClassesSCJ system TA builder Per method TACFG builder Per method CFG

Fig. 2. From SCJ to TA

TetaSARTS initially identifies the real-time tasks of the system. With the
handlers of these as entry points, TetaSARTS explores the call-graph and lim-
its the construction of TIR to methods part of the reachable execution path. This
reduces the overall translation time remarkably since it avoids CFG reconstruc-
tion for all methods but the relevant ones. The TIR is subsequently decorated
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with loop bound information extracted from the original source code using a
comment-based approach where loop bounds are annotated using the format
//@loopbound = 〈loop〉.

The output of different Java compilers including javac, ECJ, Jikes and GCJ,
shows that all produced loop constructs are reducible [1], that is, they contain a
single loop header that is always visited when the loop is executed. Furthermore,
a reducible loop contains at least one back edge which returns control from the
loop body to the loop header. To identify reducible loops, TetaSARTS employs
a loop identification analysis based on the algorithm presented in [1]. When loops
have been identified, extracting the loop bound from the source code is trivial
since the source code line numbers are available from the JBC.

Generating TIR. The first step in the process is, for each method used in the
system, to generate the intermediate representation, TIR:

Definition 2 (TIR). TIR is an extended Control-Flow Graph G = 〈B,L,E〉
composed of basic blocks, B, edges, E ⊆ B × L × B, where l ∈ L decorates the
CFG with extra information such as loop bounds, JVM instructions and types.

A basic block is a linear sequence of instructions, i1, i2, . . . , in, that does not
contain jumps nor jump targets, hence having a single entry and a single exit
point. An edge, e = 〈b1, l, b2〉, connecting the two basic blocks, b1 and b2, denotes
that a control flow path exists between the last instruction of b1 and the first
instruction of b2. When basic blocks have been connected, the CFG is expanded
with nodes/edges for each instruction in a basic block. Thus each edge in TIR is
labeled with exactly one instruction.

We also introduce the operation succ(b) = {b′ | b, b′ ∈ B and 〈b, l, b′〉 ∈ E}.
Following the idea presented in [6] we introduce a transition system for a CFG
by defining: b

l−→ b′ whenever 〈b, l, b′〉 ∈ E.

Generating the NTA. We first introduce two sets of JBC instructions;
JBCInst contains all defined JBC instructions, and

CallInst = {invokevirtual, invokespecial, invokedynamic,

invokeinterface, invokestatic}
that is, all JBC instructions used for invocation that transfer control to another
method. For ease of notation, we also extend the use of succ to apply for use
with instructions i.e.

succb(i) = {inxt |〈b, l, b′〉 ∈ E and i ∈ l and 〈b′, l′, b′′〉 ∈ succ(b) and inxt ∈ l′}
The intuition is that succb(i) is the set of instructions immediately follow-

ing instruction i in the CFG, i.e. the instructions labeling edges with origin in
succ(b). We omit the subscript b from succb(i) when b is obvious from the con-
text.
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Definition 3 (Left Merging TAs). For convenience, we define the left merg-
ing operator of two TAs, � : TA × TA → TA:

�(〈L, l0,Σ, C,E, I〉, 〈L′, l′0,Σ
′, C ′, E′, I ′〉) = 〈L∪L′, l0,Σ∪Σ′, C∪C ′, E∪E′, I∪I ′〉

The left merge operator is easily generalized to take a set of TA as the second
argument.

Definition 4 (TIR Translation). Let CFG be the control-flow graph of method
m, chan : m → chanName be the function that provides a unique channel name,
chanName, for the method m, l0(m) be a unique new location for the method
m, lfirst be the location generated by genTAinst for the first instruction of CFG,
and similarly llast the location generated by genTAinst for the last instruction of
CFG. Then

TACFG = TAboil �
i∈b

b∈CFG

genTAinst(i)

where TAboil = 〈{l0, lfirst, llast}, l0, {chan(m)!, chan(m)?}, C,E, ∅〉,
with E = {l0

chan(m)?−−−−−−→ lfirst, llast
chan(m)!−−−−−−→ l0(m)},

and C =
{{execT ime} if Inline representation is used

∅ if Explicit representation is used

and where execT ime is used for monitoring the inlined instruction execution
times.

Generating the TA stubs for JBC instructions is parameterised on the par-
ticular type of that instruction such that

genTAinst(i) =
{

genTAcall(i) if i ∈ CallInst
genTAsim(i) if i ∈ JBCInst \ CallInst

That is, genTAcall generates the TA stub of JBC instructions that invokes meth-
ods, whereas genTAsim generates the TA of all other JBCs.

genTAcall and genTAsim are further parameterised depending on whether
the execution environment is explicitly modelled or inlined in the Program NTA

with static instruction execution times and without a JVM NTA and a Hardware

NTA.

genTAsim(i) =
{

genTAsimin
if inline representation is used

genTAsimexp
if explicit representation is used

genTAcall(i) =
{

genTAcallin if inline representation is used
genTAcallexp

if explicit representation is used

We also define the auxiliary function loc : TA → Location that returns the
initial location associated with a TA stub generated for an instruction, edge :
TA → Edge that returns the outgoing edges of the initial location of a generated
TA stub for an instruction, sync : Edge → chanName that returns the channel
name for an edge, and Callees : i → M where i ∈ CallInst that provides the
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set of potential receivers of a method call. Translating TIR to a Program NTA used
along with an explicit representation of the execution environment is performed
according to Definition 5.

Definition 5 (Explicit Representation Translation). For translating sim-
ple instructions, we use

genTAsimexp
: Instruction → TA = 〈L, l0,Σ, C,E, I〉

which is defined as:

genTAsimexp
(i) = 〈{li}, li, {jvm exec!}, ∅, E, ∅〉

where

E =
⋃

∀inxt∈
succ(i)

{〈

li
running[tID],jvm exec!,jvm inst:=�i�−−−−−−−−−−−−−−−−−−−−−−−−−→ loc(genTAinstr(inxt))

〉}

Method calling instructions are translated using

genTAcallexp
: Instruction → TA = 〈L, l0,Σ, C,E, I〉

which is defined as:

genTAcallexp
(i) = 〈{loc(genTAsimexp

(i)), lcall, lwait, lret}, loc(genTAsimexp
(i)),

{jvm exec!} ∪ {a!, a?|a ∈ chan(callees(i))}, ∅, E, I〉
where

E = edge(genTAsimexp
(i))

⋃

∀M∈
callees(i)

{〈

lcall
running[tID],chan(M)!−−−−−−−−−−−−−−−→ lwait

〉}

⋃

∀M∈
callees(i)

{〈

lwait
running[tID],chan(M)?−−−−−−−−−−−−−−−−→ lret

〉}

∪
{〈

lret
urgent−−−−→ loc(genTAinstr(inxt))

〉}

and

I = {〈lcall, execT ime == 0〉, 〈lret, execT ime == 0〉}
In Definition 5, the guard as generated by genTAsimexp

, ensures that the
edge can only be fired if the real-time task with ID tID is set to run as governed
by the scheduler. The urgent label means that the edge is fired immediately;
when being in lret, time is not allowed to progress and the edge is fired instan-
taneously. The update statement is used for communicating the instruction, i,
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to the JVM NTA. Furthermore, to initiate the simulation of i, a synchronisation
action is initiated on the jvm exec channel. Whenever the JVM NTA is capable of
processing a new instruction, it receives on jvm exec. The TA stub generated
by genTAcallexp

makes a non-deterministic choice between all possible receivers
of the call by generating an outgoing edge with a synchronisation action to the
respective TA simulating the receiver. Afterwards, the process waits in lwait until
the simulation of the callee finishes at which point the process synchronises on
the same synchronisation channel, transferring control back to the caller.

For generating the Program NTA for use with an inline representation of the
execution environment, we add the function wcet : i → N that returns the stat-
ically defined WCET for instruction i on the particular execution environment.
The translation is performed according to Definition 6.

Definition 6 (Inline Representation Translation). Translating simple
instructions is done using

genTAsimin
: Instruction → TA = 〈L, l0,Σ, C,E, I〉

which is defined as:

genTAsimin
(i) = 〈{li}, li, ∅, ∅, E, I〉

where

E =
⋃

∀inxt∈
succ(i)

{〈

li
execT ime==�wcet(i)�,execT ime:=0−−−−−−−−−−−−−−−−−−−−−−−→ loc(genTAinstr(inxt))

〉}

and

I = {〈li, execT ime ≤ �wcet(i)� && execT ime′ == running[tID]〉}
Translating method calling instructions is done using

genTAcallin : Instruction → TA = 〈L, l0,Σ, C,E, I〉
which is defined as:

genTAcallin(i) = 〈{loc(genTAsimin
(i)), lwait}, loc(genTAsimin

(i)),
{a!, a?|a ∈ chan(callees(i))}, ∅, E, I〉

where

E = edge(genTAsimin
(i))

⋃

∀M∈
callees(i)

{〈

loc(genTAsimin
(i)

execT ime==�wcet(i)�,chan(M)!,execT ime:=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait

〉}

⋃

∀M∈
callees(i)

{〈

lwait
chan(M)?,execT ime:=0−−−−−−−−−−−−−−−→ loc(genTAinstr(succ(i))

〉}
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Translation to an inline representation follows the same pattern as that for an
explicit representation. The notable difference is the inclusion of the instruction
execution times on the edges.

8 Correctness of Translation

In this section we conjecture that the translation of an SCJ application is cor-
rect. The correctness is stipulated through a simulation relation between TIR and
Program NTA, relying on results from [18] proving the correctness of the transla-
tion from Java to JBC and [6] proving simulation between JCB and CFG.

Conjecture 1. For each method m in an SCJ application, the TIR representation
of method m is in a simulation relation with the TA generated for m using
Definition 4 and the Explicit Representation Translation in Definition 5.

A proof of the above conjecture will follow the lines of [6]. There are two cases:

(1) The CFG of a method m can do a transition b
l−→ b′ whenever

〈b, l, b′〉 ∈ E where i ∈ l and i ∈ simexp, then genTAsimexp
(i)

running[tID],jvm exec!,jvm inst:=�i�−−−−−−−−−−−−−−−−−−−−−−−−−→ lloc where lloc ∈ loc(genTAinstr(inxt)).

(2) The CFG of a method m can do a transition b
l−→ b′ whenever 〈b, l, b′〉 ∈ E

where i ∈ l and i ∈ callexp then genTAcallin(i)
running[tID],jvm exec!,jvm inst:=�i�−−−−−−−−−−−−−−−−−−−−−−−−−→ lcall

running[tID],chan(M)!−−−−−−−−−−−−−−−→ lwait
running[tID],chan(M)?−−−−−−−−−−−−−−−−→ lret

urgent−−−−→ lloc where lloc ∈ loc(genTAinstr(inxt)).

Conjecture 2. For each method m in an SCJ application, the Program TA gen-
erated for m using Definition 4 and the Explicit Representation Translation in
Definition 5 is in a simulation relation with the Program TA generated for m
using Definition 4 and the Implicit Representation Translation in Definition 6.

A proof of the above conjecture will establish a simulation between the Explicit
Representation Translation and the Implicit Representation Translation, noting

that when genTAsimexp
(i)

running[tID],jvm exec!,jvm inst:=�i�−−−−−−−−−−−−−−−−−−−−−−−−−→ lloc where lloc ∈
loc(genTAinstr(inxt)) then genTAsimin

(i)
execT ime==�wcet(i)�,execT ime:=0−−−−−−−−−−−−−−−−−−−−−−−→ l′loc

where l′loc ∈ loc(genTAinstr(inxt)) for i ∈ simexp, and similarly matching tran-
sitions can be found for i ∈ callexp.

9 Analyses and Optimisations

To cope with the inherent problem of state space explosion, our method adopts
a variety of analyses, optimisations, and transformations to reduce the size of
each state and the state space that needs exploration. All transformations and
optimisations are incorporated without affecting the soundness of our method.
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Inlining TAs. Uppaal uses the CCS parallel composition operator for allow-
ing interleaving of actions as well as allowing hand-shake synchronisations. For
the parallel composition, A1 ‖ A2 ‖ · · · ‖ An, the product TA necessarily has to
be constructed. This is entirely syntactical, but turns out to be computationally
expensive which is the reason why Uppaal computes the product TA on-the-
fly during verification. To lower the verification time even more, TetaSARTS

inlines TAs wherever possible prior to the verification to reduce the size of the
product TAs. Inlining TAs involves a series of steps. First a TA dependency
graph is built over how TetaSARTS simulates invocation of methods using
synchronisation channels. Thus Definition 7 only applies for the modeling app-
roach adopted in TetaSARTS.

Definition 7 (TA Dependency Graph). A TA dependency graph G = 〈V,E〉
is a DAG where the vertices, V , represent the TAs of the NTA system, and edges,
E ⊆ V × V represent that a dependency exists between two TAs. Let Ai where
i ∈ {1, 2} be two TAs and let EAi

denote the set of edges in TA Ai. C denotes an
arbitrary synchronisation channel. A dependency among A1 and A2 is created
when there exists two edges, {eAi

, e′
Ai

} ∈ EAi
where i ∈ {1, 2} if

eA1 = 〈lA1

gA1 ,C!,uA1 ,rA1−−−−−−−−−−→ l′A1
〉 e′

A1
= 〈l′A1

C?−−→ l′′A1
〉

eA2 = 〈lA2

gA2 ,C!,uA2 ,rA2−−−−−−−−−−→ l′A2
〉 e′

A2
= 〈l′A2

C?−−→ l′′A2
〉

where {eA1 , e
′
A1

, eA2 , e
′
A2

| sync(e) = C where e ∈ EA1 ∪ EA2}, that is C is a
channel only appearing on edges eA1 , e

′
A1

, eA2 and e′
A2

in A1 and A2.

Assume that a dependency exists between the TAs A1 and A2 due to the
existence of edges eA1 , e′

A1
, eA2 , e′

A2
whose structure follows the definitions in

Definition 7. A new TA Ain is created such that Ain = A1 � A2 except that
{eA1 , e

′
A1

, eA2 , e
′
A2

} �∈ EAin
. In addition, two new edges are added to EAin

:

einit = 〈l′A1

gA1 ,τ,uA1−−−−−−−→ l′′A2
〉 eret = 〈l′A2

gA2 ,τ,uA2−−−−−−−→ l′′A1
〉

If the option of inlining the instruction execution times in the Program NTA

is enabled, TetaSARTS is capable of reducing the state space by aggregating
edges that are fired sequentially according to Definition 8.

Definition 8 (Sequentially Executing Instructions). Let i1, i2, . . . , in be
the sequence of instructions following an execution path in the program.
i1, i2, . . . , in are sequentially executing if ∀ik s.t. 1 ≤ k ≤ n then | succ(ik) |= 1

Edge aggregation is now performed according to Definition 9.

Definition 9 (Edge Aggregation). Let SeqInst be a set of sequentially exe-
cuting instructions according to Definition 8. The total execution of SeqInst is
then aggWCET =

∑
i∈SeqInst wcet(i).
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Let SeqLoc = {li | i ∈ SeqInst} and let SeqEdges denote the set of edges
with source location l s.t. l ∈ SeqLoc and let A be the TA with locations L s.t.
SeqLoc ⊆ L and edges E s.t. SeqEdges ⊆ E. A is updated s.t. L = L \ SeqLoc
and E = E \ SeqEdges

Let l and l′ denote the first and last location in SeqLoc. eagg is a new edge

s.t. eagg = 〈l execT ime==�aggWCET �−−−−−−−−−−−−−−−−−→ l′〉. Furthermore, the invariants of A are
updated s.t. 〈l, execT ime ≤ �aggWCET � && execT ime′ == running[tID]〉

JVM NTA Specialisation. Many embedded systems do not use floating point
arithmetic hence leaving out all the JBCs that handle doubles and floats. More-
over, many other JBCs are only rarely used. Due to this, our method employs an
analysis that conservatively estimates the set of JBCs the program is actually
using. The analysis traverses TIR and visits every instruction i. Whenever an
instruction i is visited such that i �∈ JBCInstused, it is added to JBCInstused.
All TAi such that i �∈ JBCInstused are removed from the final NTA.

Devirtualisation. From a static viewpoint, the run-time type of an object
can be any subclass of that type. Therefore, naively, a virtual method call site
is modelled as a nondeterministic choice between all possible callees which, in
cases with large class hierarchies, contributes significantly to the size of the state
space.

TetaSARTS employs static program analyses known from optimising com-
pilers to devirtualise virtual method calls or at least limit the amount of possibil-
ities of dynamically-dispatched methods. The methods are used when invoking
the callees function previously introduced. TetaSARTS makes available dif-
ferent approaches since the precision of devirtualisation comes at the cost of
increased NTA generation time:

Class Hierarchy Analysis (CHA) considers the declared type of the callee and
combines it with complete information about the class hierarchy. If a virtual
method call is made on method m where the declared type of the receiver is
denoted C and has subtypes {S1, S2, . . . , Sn}, then only C and the subtypes
that override m will be considered [23].

Rapid Type Analysis (RTA) is an extension to CHA which combines the informa-
tion about globally instantiated types and intersects it with the class hierarchy
information about the callsite as obtained by CHA [8].

Variable Type Analysis (VTA) makes a conservative estimate of the set of types
that may possibly reach each variable in methods [46].

10 Evaluation

In this section, we demonstrate the applicability of TetaSARTS using rep-
resentative examples of real-time systems, and evaluate on the effects of the
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optimisations. All results were obtained by running Uppaal on a machine with
an Intel Xeon X5670 @ 2.93 GHz and 32 GB of memory. The systems are:

Class Hierarchy consists of four classes forming a hierarchy of height four. Each
class overrides method compute() which performs a resource intensive calcu-
lation. Eight real-time tasks call different implementations of compute(). It
is used for showing the effect of employing receiver type analysis.

Sequential Computation is composed of ten real-time tasks performing cal-
culations using only a few conditional JBCs. This is used for demonstrating
the effect of edge aggregation.

Simple RTS consists of nine real-time tasks performing calculations using only
a few different JBCs. This system is used for demonstrating the effect of
JVM specialisation and inlining TAs.

Minepump is the classic text-book example of a minepump control system that
manages the operation of a water pump based on environmental conditions
such as water level and methane concentration [12,17,26].

Real-Time Sorting Machine (RTSM) is an example of an embedded real-
time system that manages two motors for sorting coloured bricks based on
measurements from sensory equipment [14].

MD5SCJ is based on five periodic tasks calculating the MD5 sum of a byte
array. The implementation of the MD5 task has been used in oSCJ [42].

For evaluating the effect of the optimisations, we have used an inline repre-
sentation of the JOP execution environment. The results are shown in Table 1.
As shown, all optimisations decrease the analysis time significantly. Especially
inlining TAs and JVM specialisation are evidently of high importance. Edge
aggregation is also important and should be enabled whenever an inline repre-
sentation of the execution environment is used. Using VTA for devirtualisation
is also recommended. As shown, having an exact representation of the execution
environment yields long verification times and high memory demands. This was
also anticipated due the number of TAs and their complexity. Further results
can be found in [35,37].

Table 2 shows the results of analysing representative examples of real-time
systems. The subscript indicates whether an explicit or an inline representation
of the execution environment is used.

11 Conclusion

In this paper we have given an overview of the Safety Critical Java Profile and
its programming model based on tasks grouped in missions, encapsulating a
specific functionality or phase in the lifetime of a hard real-time system as a set
of schedulable entities. We have given an overview of two execution platforms
for SCJ, the JOP [39] and the HVM [30,45] and we have given an overview of
the TetaSARTS tool for conducting schedulability analysis of JBC real-time
systems which is able to take into account the particular execution environ-
ment consisting of either a software implementation of the JVM and commodity
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Table 1. The effect of the optimisations.

System Optimisations Analysis time Mem. usage

Class hierarchy CHA 1 m 44 s 65 MB

Class hierarchy RTA 1 m 7 s 52 MB

Class hierarchy VTA 29 s 37 MB

Simple RTS All 27 s 70 MB

Simple RTS No TA inlining 3 m 59 s 360 MB

No JVM special

Seq. computation All 35 s 70 MB

Seq. computation No edge aggr 1 m 2 s 167 MB

Table 2. Results obtained using TetaSARTS.

System Exec. env Analysis time Mem. usage

RTSM JOPin 11 19 MB

RTSM JOPexp 17 m 19 s 166 MB

Minepump JOPin 1 s 12 MB

Minepump JOPexp 6 m 18 s 62 MB

Minepump HVMAV Rexp 15 h 25 m 16 s 17933 MB

embedded hardware or a hardware implementation of the JVM. TetaSARTS

keeps a tight correspondence between the actual real-time system application
code and the model used for analysis. We have briefly summarized some of the
results based on this translation.

The main contribution is an elaboration on the theoretical underpinning
of the translation from Java programs to timed automata models conjecturing
that a simulation relation can be established between CFGs of methods in the
system and their representations as TA. We conjecture the overall correctness by
transitivity, relying on results from [18] proving the correctness of the translation
from Java to JBC and from [6] proving simulation between JCB and CFG.

Our approach of analyzing real programs by process algebraic methods fol-
lows in the footsteps of [43] where programs in the Occam language are analyzed
using the CSP process algebra and [16,24] where Degano et al. analyzed Mobile
Agent Programs written in the Higher Order Functional, Concurrent and Dis-
tributed, programming language Facile [47].

Recently the Java language has been enhanced with anonymous higher order
functions in the form of lambda abstractions. This makes Java a full-fledged
higher order object oriented, functional and concurrent language. Furthermore,
even embedded JVM platforms, such as JOP and HVM now have support for
multi-core, and thus some level of true code migration incorporated. Thus we
expect that the work in [16,24] will become extremely relevant in the analysis
of systems for the Internet-of-Things, as Java moves into this territory.
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Abstract. Pierpaolo Degano has been an influential pioneer in the
investigation of Petri nets as models for concurrent process calculi (see
e.g. the well-known seminal work by Degano–De Nicola–Montanari also
known as DDM88). In this paper, we address the limits of classical Petri
nets by discussing when it is necessary to move to the so-called Transfer
nets, in which transitions can also move to a target place all the tokens
currently present in a source place. More precisely, we consider a simple
calculus of processes that interact by generating/consuming messages
into/from a shared repository. For this calculus classical Petri nets can
faithfully model the process behavior. Then we present a simple exten-
sion with a primitive allowing processes to atomically rename all the data
of a given kind. We show that with the addition of such primitive it is
necessary to move to Transfer nets to obtain a faithful modeling.

1 Introduction

The study of the relationship between two relevant computational models like
process calculi and Petri nets has attracted a lot of attention within the concur-
rency theory community since the second half of the 80s. One of the initial moti-
vations for associating to process calculi a Petri net semantics was to enrich the
formers with a truly concurrent semantics, instead of the interleaving semantics
usually given in terms of a labeled transition system. In particular, one of the
most influential work along this line of research is the seminal work by Degano, De
Nicola, and Montanari [7] which was inspired by the observation that in Milner’s
CCS [15], under the classical interleaving semantics, “causal dependencies remain
non-recoverable (for instance the behavior of α|β + α.β and that of α|β cannot be
differentiated)”. Another motivation for equipping process calculi with Petri net
semantics is to resort to analysis or decidability results well-known for Petri nets.
For instance, in [4] Petri nets were used to prove the decidability of termination in
a CCS-like process calculus with asynchronous communication via a shared repos-
itory of data. In fact, Petri nets represent one of the most interesting models for
infinite state systems in which properties like reachability, coverability, bounded-
ness, as well as many others, are still decidable (see [10] for a nicely written and
comprehensive survey about decidability results for Petri nets).
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In this paper we focus on a specific research problem that we have encoun-
tered in several papers dedicated to the study of the decidability of properties,
like termination and divergence, in several classes of process calculi. By termi-
nation in this paper we mean the existence of a completed finite computation,
while by divergence we mean the existence of an infinite computation. The proof
technique that we frequently adopted is based on translations from the process
calculi of interest to Petri nets, in order to resort to already known decidability
results for Petri nets.

In the already mentioned paper [4] we considered a calculus of processes
communicating via a common data repository by means of output, input, read,
and test for absence primitives. We first proved that, if data are guaranteed to
be in the data space immediately after the execution of an output operation, the
calculus is Turing complete (hence termination is undecidable). On the contrary,
if output operations are asynchronous, in the sense that emitted data become
available only after an unpredictable delay, the calculus is no longer Turing
powerful because termination turns out to be decidable. The proof exploited a
non-trivial Petri net semantics for the asynchronous version of the calculus.

In other papers we had to consider extended versions of Petri nets. For
instance, in [5] we considered a similar calculus with processes communicat-
ing via a common data space, but with a notify primitive instead of the test
for absence. The notify operation allows processes to register their interest in
the emission of a given kind of datum; when such a datum is produced, all
the registered processes receive a corresponding notification. For this calculus,
we considered Petri nets with Transfer arcs, that are arcs able to move all the
tokens present in a source place to a corresponding target place. On the contrary,
in [6] we considered Petri nets with Reset arcs, which are used to remove all the
tokens currently available in a place. In that paper, we considered a timed ver-
sion of shared data space communication, in which data have an associated time
out and must be cancelled when they expire. More recently, in [8] we considered
again Transfer Petri nets, but in the rather different context of BioAmbients,
a calculus where processes are placed inside nested locations and can execute
operations for entering, exiting or merging ambients.

Intuitively, in that papers we had to move to extended versions of Petri nets
due to the difficulty in the definition of appropriate encodings of the considered
calculi into classical Petri nets. The increased expressive power of Transfer or
Reset nets w.r.t. classical Petri nets has been investigated in [9]. In particular, we
have that properties like reachability and termination are decidable for classical
Petri nets while this is not the case for Transfer and Reset nets; properties like
boundedness is decidable for classical and Transfer nets while this is not the case
for Reset nets; and finally properties like divergence or coverability are decidable
for all of these classes of nets.1

1 In [9] a slightly different terminology is used: termination refers to the guarantee that
all the computations completes, thus corresponding to the negation of the property
that we call divergence in this paper.
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From a formal point of view, there are cases that strictly require to move from
classical to extended Petri nets to equip a process calculus with a faithful Petri
net semantics. To clarify this specific point, in this paper we fully formalize in a
simplified setting one of these cases. More precisely, we identify a basic calculus
of processes performing input and output operations on a shared data space,
extended with a primitive for renaming all the data of a given kind. We first
show that for the basic version of the calculus without renaming, it is possible
to define a faithful encoding by using classical Petri nets. By faithful encoding,
here we mean that there exists a one-to-one correspondence between process
reductions in the calculus and transition firings in the Petri net. Then we move
to the version of the calculus with the renaming primitive, and we show that
termination is undecidable for this version of the calculus. This undecidability
result shows that there exists no recursive encoding from the calculus to classical
Petri nets that preserves and reflects at least termination. Then we consider
Transfer Petri nets, and we show that with this extended version of Petri nets it
is again possible to define a faithful encoding. This also proves that divergence,
as well as boundedness and coverability, are decidable for the calculus with the
renaming primitive.

Structure of the Paper. In Sect. 2 we define the DS calculus, the initial version of
our language for processes communicating via input and output operations on a
common repository, and we present a faithful modeling of the DS calculus into
classical Petri nets. In Sect. 3, inspired by the copy-collect primitive proposed
in [17], we define the RenDS calculus that includes a new primitive ren(a, b)
that renames to b all the instances of a in the data space. For this calculus we
prove the undecidability of termination (hence also the impossibility to equip
RenDS with a termination preserving classical Petri net semantics) and then we
show a faithful modeling in terms of Transfer Petri nets. Section 4 draws some
concluding remarks.

2 The DS Calculus

In this section we present the syntax and the semantics of a simple calculus of
processes communicating by introducing and consuming data into/from a shared
repository.

Definition 1 (Processes). Let Name, ranged over by a, b, . . ., be a denumer-
able set of names. Processes are defined by the following grammar:

α :: = in(a) | out(a)
P :: =

∑
i∈I αi.Pi | !α.P | P |P

The basic process actions are in(a) and out(a) denoting the consump-
tion/emission of one instance of datum a from/into the shared data space. The
term

∑
i∈I αi.Pi denotes a process ready to perform any of the action αi, and

then proceed by executing the corresponding continuation Pi. We use 0 to denote
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such process in case I = ∅, and we will usually omit trailing 0. The replicated
process !α.P performs an initial action α and then spawns the continuation P
by keeping !α.P in parallel. Two parallel processes P and Q are denoted with
P |Q.

Example 1. As an example, we consider a simple producer-consumer system:

!in(prod).out(job).in(done).
(

out(prod) + out(end)
) |

!in(cons).
(

in(job).out(done).out(cons) + in(end)
)

The producer process is triggered by a prod datum; it produces a job request,
waits for the corresponding done message, and then nondeterministically decides
whether to continue with another job production phase or complete by emitting
the message end. The consumer process is triggered by a cons datum; it consumes
a job request, produces the corresponding done messages, and repeats until an
end message is received instead of a job request.

A system includes also a shared data space where data are stored and con-
sumed.

Definition 2 (Systems). A system is a pair 〈P,S〉 where P is a process and
S is a multiset over Name.

In the following, � stands for multiset union and with S(a) we denote the
number of instances of a in the multiset S.

Example 2. Let P be the process defined in Example 1. The system
〈
P, {prod, cons}〉

represents the initial state of the produced-consumer system where the data
space contains the two prod and cons data necessary to initially trigger the
producer and consumer processes, respectively.

In order to define the operational semantics of systems we first define a
labeled transition system on processes which indicates the possible input and
output actions, and then we define a transition relation on systems which defines
the effect of the execution of process actions on the shared data space.

Definition 3 (Process semantics). The semantics of processes is defined by
a labeled transition system on processes with two kinds of labels: in(a) and out(a).
The transition system is the least one satisfying the axioms and rules reported
in Table 1.

The PRE rule simply allows a sum process to execute one of its initial action
and then continue with the corresponding continuation. REPL allows !α.P to
execute α, spawn an instance of the continuation P , and keep !α.P in parallel.
Finally, PAR allows a parallel process to execute an action.

We can now complete the definition of the operational semantics taking into
account systems.
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Table 1. The transition system for processes (symmetric rule of PAR omitted).

Table 2. The reduction relation for systems (brackets in singletons are omitted).

Definition 4 (System semantics). The semantics of systems is defined by
the minimal transition system satisfying the rules in Table 2.

The transitions for systems simply allows processes to consume and introduce
data from/to the shared data space.

Example 3. Let
〈
P, {prod, cons}〉 be the producer-consumer system defined in

Example 2. According to the transition system in Definition 4, such system can
generate sequences of emissions and consumptions of prod and cons messages,
combined with the emissions and consumptions of job and done data. Such
sequences of actions could be either infinite, or –in case they are maximal, i.e.,
they cannot be extended– terminating with the production and consumption of
an end datum. In this last case, the data space is guaranteed to be finally empty
because all the job requests are consumed, as well as all the corresponding done
acknowledgement, and also the final end message is removed.

We now consider a Petri net semantics for this simple calculus. We first recall
the classical definition of Petri nets, then we discuss how to use them to model
the behavior of systems of our DS calculus.

Definition 5 (Petri nets). A Petri net is a tuple N = (S, T,m0), where S
and T are finite sets of places and transitions, respectively. A finite multiset
over the set S of places is called a marking, and m0 is the initial marking.
Given a marking m and a place p, we say that the place p contains a number of
tokens equal to the number of instances of p in m (written m(p)). A transition
t ∈ T is a pair of markings denoted with •t and t• (the preset and postset of
the transition, respectively). A transition t (also denoted with •t �→ t•) can fire
in the marking m if •t ⊆ m (where ⊆ is multiset inclusion); upon transition
firing the new marking of the net becomes n = (m \• t) � t• (where \ and � are
the difference and union operators for multisets, respectively). This is written as
m 
→ n.
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Fig. 1. Petri net for the producer-consumer example

Petri nets are graphically depicted by representing places with circles and
transitions with rectangles. Edges connect circles to rectangles: an edge from a
circle to a rectangle indicates a place in the preset of a transition, while an edge
from a rectangle to a circle indicates a place in the postset of a transition. Dots
inside circles represent tokens inside places.

Example 4. In Fig. 1 we depict a Petri net representing the behavior of the
producer-consumer system defined in Example 3. The behavior of the producer
process is reported on the left, while the consumer is on the right. Places in the
middle of the figure represent the possible data in the data space (prod, cons,
job, done and end) and the trailing empty 0 process.

We now discuss how to translate systems of the DS calculus into Petri nets.
The idea is to represent sequential processes and data by means of tokens inside
corresponding places. Sequential processes are of two possible kinds:

∑
i∈I αi.Pi

and !α.P . Parallel processes will be represented by a multiset of tokens, one for

Table 3. Process decomposition function
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Table 4. Petri net transitions

each sequential process composed in parallel. Formally, let P be a process, with
dec(P ) we denote the multiset defined in Table 3. The possible Petri net transi-
tions, denoted with T , are defined in Table 4. The execution of an in(a) action
consumes a token from place a, while an out(a) action produces such a token.
After execution of the action, tokens are produced in the places corresponding
to the process continuation. Notice that the transitions involving the replicated
processes !in(a).P or !out(a).P consume and then reproduce the corresponding
tokens; in this way the tokens remain available for future transitions involving
those replicated processes.

Definition 6. Let 〈P,S〉 be a system. We define the Petri net Net(P,S) =
(P, T,m0) as follows:

– S = {Q | Q is a sequential process in P} ∪ {a | a occurs in S or in P}
– T = {c �→ p ∈ T | dom(c) ⊆ S}
– m0 = dec(P ) � S
Example 5. It is easy to see that the Petri net in Fig. 1 corresponds to
Net(P, {prod, cons}) where 〈P, {prod, cons}〉 is the system in Example 2.

The strict correspondence between the process calculus and the Petri net
semantics is formalized as follows. We omit the proof of this correspondence
result because standard.

Proposition 1. Let 〈P,S〉 be a system, and Net(P,S) = (P, T,m0) be the
corresponding Petri net. Let Q be a process composed of sequential processes
occurring in P , and V be a multiset of data occurring in P or in S. We have
that 〈Q,V〉 → 〈Q′,V ′〉 if and only if dec(Q) � V 
→ dec(Q′) � V ′ in Net(P,S).

3 The RenDS Calculus: Shared Data Space with Renaming

We now consider an extension of the DS calculus with a primitive for renaming
all the data of a given kind. This renaming mechanism is inspired by the copy-
collect primitive proposed in [17]. In that paper, a language with multiple data
spaces is considered, and the copy-collect primitive is used to move all the data
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matching a given pattern from a source space to a target space. As in DS we
have only one data space, we adapt this primitive by considering an operation
ren(a, b) which changes to b all the instances of datum a in the data space. We
call RenDS this extended calculus.

The syntax of processes is the same as in Definition 1 with the addition of a
new action:

α :: = · · · | ren(a, b)

Example 6. We now consider an alternative version of the producer-consumer
example in which the producer can repeatedly produce job requests without
waiting for the indication that the previous job request has been accomplished.
When the consumer starts, only the job requests already issued will be served
while subsequent requests will remain pending.

!in(prod).out(job).
(

in(done) | out(prod)
) |

in(cons).ren(job, todo).
(

!in(todo).out(done) | in(prod)
)

The producer process is triggered by a prod datum; it produces a job request
and then waits for the done message, but in parallel reproduces the prod datum
to repeatedly issue an arbitrary number of requests. The consumer process is
triggered by a cons datum; as a first action renames all the job requests in
todo, and then it serves the todo activities. Subsequent job requests will remain
pending. The consumer has also the ability to stop the producer by consuming
the prod datum.

The semantics for processes is defined as in Table 1 with the addition of the
label ren(a, b), while the semantics of systems is defined by the two rules in
Table 2 with the addition of the following one for the renaming primitive:

P
ren(a,b)−→ P ′ S ′(a) = 0 S ′(b) = S(a) + S(b) ∀c ∈ {a, b}.S ′(c) = S(c)

〈P,S〉 → 〈P ′,S ′〉

Example 7. Let P be the process defined in Example 6. The initial system is
〈P, {prod, cons}〉 with prod and cons in the data space, to trigger the producer
and the consumer, respectively. It is worth to note that this system can either
have an infinite computation in which infinitely many job requests are issued, or
it terminates in such a way that the final system will contain the same number of
instances of the in(done) process and of the job datum, representing the pending
requests issued after the consumer transforms the current job requests into todo
data.

We now consider the problem of modeling with Petri nets the processes of the
new calculus RenDS. Intuitively, this translation is not easy to be defined due to
the impossibility to perform in the Petri net “global” actions that act atomically
on all the tokens currently present in a place. In fact, in classical nets, transitions
always consume the same amount of tokens. On the contrary, an operation like
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ren(a, b) has an effect which is dependent on the current system state, because
all the a data must atomically be renamed into b.

In order to formalize this negative result, i.e., classical Petri nets are not
sufficiently expressive to model the new calculus with renaming, we proceed
as follows. We start from the observation that the existence of a terminating
computation is decidable for Petri nets [13], then we prove that termination is
undecidable in RenDS. Hence we can conclude that there exists no computable
termination preserving encoding of RenDS into classical Petri nets. It is worth
to observe that for the DS calculus in Sect. 2, the presented encoding into Petri
nets obviously preserves termination (trivial corollary of Proposition 1), hence
termination is decidable in DS.

We prove the undecidability of termination in RenDS by reduction from the
halting problem in Random Access Machines (RAMs). A RAM [18], denoted
in the following with R, is a computational model composed of a finite set of
registers r1, . . . , rn, that can hold arbitrary large natural numbers, and by a
program composed by indexed instructions (1 : I1), . . . , (m : Im), that is a
sequence of simple numbered instructions, like arithmetical operations (on the
contents of registers) or conditional jumps. An internal state of a RAM is given
by (i, c1, . . . , cn) where i is the program counter indicating the next instruction
to be executed, and c1, . . . , cn are the current contents of the registers r1, . . . , rn,
respectively.

Without loss of generality, we assume that the registers contain the value
0 at the beginning and at the end of the computation, and that the execution
of the program begins with the first instruction (1 : I1). The assumption on
the initially empty registers is justified by the possibility to add to programs a
prologue that introduces the desired values in the registers, while the assumption
on the finally empty registers is justified by the possibility to add to programs a
conclusion that decrements all the registers to 0 before halting. In other words,
the initial configuration is (1, 0, . . . , 0). The computation continues by executing
the other instructions in sequence, unless a jump instruction is encountered. The
execution stops when the instruction Halt is reached. More formally, we indicate
by (i, c1, . . . , cn) →R (i′, c′

1, . . . , c
′
n) the fact that the configuration of the RAM

R changes from (i, c1, . . . , cn) to (i′, c′
1, . . . , c

′
n) after the execution of the i-th

instruction.
In [16] it is shown that the following two instructions are sufficient to model

every recursive function:

– (i : Succ(rj)): adds 1 to the content of register rj ;
– (i : DecJump(rj , s)): if the contents of register rj is not zero then decreases

it by 1 and go to the next instruction, otherwise jumps to instruction s.

We start by presenting how to encode RAM instructions into processes of
the RenDS calculus:

[[(i : Succ(rj))]] : !in(pi).out(rj).out(pi+1)
[[(i : DecJump(rj , s))]] : !in(pi).

(
in(rj).out(pi+1) + ren(rj , loop).out(ps)

)

[[(i : Halt)]] : in(pi).!in(loop).out(loop)
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The idea is to represent the content of the register rj with a corresponding
number of instances of the datum rj in the data space. The program counter
is modeled by a datum pi indicating that the i-th instruction is the next one
to be executed. The modeling of the i-th instruction always starts with the
consumption of the pi datum. An increment instruction on rj simply produces
one datum rj , while a decrement consumes such a datum. A faithful modeling of
a test for zero on rj should be able to detect the absence of data rj . As there are
no primitives for performing such a test, we consider a nondeterministic modeling
according to which a test for zero on rj could be successful even if the data space
contains some rj instances. But if this occurs, we use the renaming primitive to
atomically rename all the currently present rj data into loop data. The presence
of loop data forbids the possibility for the RAM modeling to terminate: in fact,
the encoding of a Halt instruction enters in an infinite loop in case there is at
least one datum loop in the data space.

We now present the full definition of our encoding. Let R be a RAM with m
instructions, and let (i, c1, . . . , cn) be one of its configurations. With

[[(i, c1, . . . , cn)]]R = 〈
∏

1≤i≤m

[[(i : Ii)]], {pi, r1, · · · , r1
︸ ︷︷ ︸
c1 times

, · · · , rn, · · · , rn
︸ ︷︷ ︸
cn times

} 〉

we denote the system representing the configuration (i, c1, . . . , cn).
We now prove that our encoding is termination preserving, from which we

conclude the undecidability of termination for the RenDS process calculus.

Theorem 1. Let R be a RAM. We have that R terminates if and only if
[[(1, 0, . . . , 0)]]R terminates.

Proof. We start with the only if part. Assume R terminates. We have that
[[(1, 0, . . . , 0)]]R can faithfully reproduce the terminating computation of R with-
out producing any loop data. This computation of [[(1, 0, . . . , 0)]]R terminates
because the encoding of the Halt instruction definitely consumes the program
counter datum, and remains blocked trying to consume a loop datum.

We now consider the if part. Assume that [[(1, 0, . . . , 0)]]R terminates. Every
terminating computation completes by reaching the encoding of a Halt instruc-
tion (all the other instructions are replicated and reproduce the program counter
datum before terminating) and never produce any loop datum (otherwise the
enconding of the Halt instruction perform an infinite loop). The RAM R can
execute an equivalent computation reaching a Halt instruction because the incre-
ment and decrement instructions can be obviously mimicked, as well as the test
for zero actions. In fact, such actions are surely executed when the tested register
is empty, otherwise a loop datum would have been produced. ��

As a trivial corollary, from the undecidability of the halting problem for
RAMs we can conclude the undecidability of termination for the RenDS calculus.

The undecidability of termination implies the impossibility to define a termi-
nation preserving encoding of the RenDS calculus into Petri nets. We can however
obtain a correspondence result if we move to Petri nets with Transfer arcs [12],
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allowing for the atomic movement of all the tokens currently present in a source
place to a target place. Transfer nets represent an interesting extension of Petri
nets; in [9] it has been proven that they are more expressive than classical Petri
nets because reachability (as well as termination) is no longer decidable, while
other properties like divergence, boundedness or coverability are still decidable.

Definition 7 (Petri nets with Transfer arcs). A Petri net with Transfer
arcs is defined as a Petri net N = (S, T,m0) with the difference that the transi-
tions t in T are now triples, containing besides the preset •t and the postset t•

also a partial function tf from places to places (transitions are now denoted with
•t

tf�→ t•). Given a transition •t
tf�→ t• we assume that dom(tf ) ∩• t = ∅, i.e. the

places in the preset of a transition t, cannot be source places for transfer arcs of
t. As for Petri nets, a transition t can fire in the marking m if •t ⊆ m; upon
transition firing the new marking becomes n where

n(p) =

{
m(p) −• t(p) + t•(p) +

∑
p′.tf (p′)=p m(p′) if p ∈ dom(tf )

t•(p) +
∑

p′.tf (p′)=p m(p′) if p ∈ dom(tf )

Intuitively, for places that are not sources of transfer arcs, besides the usual preset
and postset modifications, there is also the possibility to add tokens transferred
from corresponding source places of transfer arcs. For places which are sources of
transfer arcs, only the new introduced tokens must be taken into account because
the previously present tokens are consumed by the corresponding transfer arc.
Also in this case, the effect of the firing of a transition is written m 
→ n.

Typically, transfer arcs are depicted as arcs from places to places, connected
to the corresponding transition by a line.

Example 8. In Fig. 2 we depict a Petri net representing the behavior of the
producer-consumer system defined in Example 7. The behavior of the producer
process is reported on the left, while the consumer is on the right. Places in the
middle of the figure represent the possible data in the data space (prod, cons,
job, todo, done and end) and the trailing empty 0 process. Notice the transfer
arc from the job to the todo place, used by the consumer to take under consid-
eration all and only those job requests that have been already issued when the
consumer starts.

We now discuss how to translate systems of the RenDS calculus into Petri nets
with Transfer arcs. This translation is obtained as simple extension of the one
in Definition 6. Sequential processes and the decomposition function is defined
exactly as for the previous DS calculus. The unique difference is at the level of
transitions: we simply add transitions to model the renaming of data from a to b,
with a transfer arc from the place a to the place b. All other actions are modeled
as already done for the DS calculus. The new set of transitions, denoted with
Tren, is defined in Table 4 plus the new rules in Table 5.

Definition 8. Let 〈P,S〉 be a system of the RenDS calculus. We define the Petri
net with Transfer arcs Netren(P,S) = (P, T,m0) as follows:
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Table 5. Petri net transitions for renaming

• S = {Q | Q is a sequential process in P} ∪ {a | a occurs in S or in P}
• T = {c

t�→ p ∈ Tren | dom(c) ⊆ S}
• m0 = dec(P ) � S
Example 9. It is easy to see that the Transfer Petri net depicted in Fig. 1 cor-
responds to Netren(P, {prod, cons}) where 〈P, {prod, cons}〉 is the system in
Example 7.

We conclude by formalizing the correspondence between the operational
semantics of the RenDS calculus and the corresponding Petri net with Transfer
arcs. Also in this case we omit the proof of this correspondence result because
standard.

Proposition 2. Let 〈P,S〉 be a system of the RenDS calculus, and
Netren(P,S) = (P, T,m0) be the corresponding Petri net with Transfer arcs.

Fig. 2. Petri net for the producer-consumer example with renaming
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Let Q be a process composed of sequential processes occurring in P , and V be a
multiset of data occurring in P or in S. We have that 〈Q,V〉 → 〈Q′,V ′〉 if and
only if dec(Q) � V 
→ dec(Q′) � V ′ in Netren(P,S).

4 Conclusion

The relationship between traditional concurrency models like process calculi and
Petri nets has been one of those research topics, within the concurrency theory
community, to which Pierpaolo Degano gave a fundamental initial contribution
(see the seminal work [7]). A detailed description of the extremely vast literature
concerning the relationship between process calculi and Petri nets is out of the
scope of this paper. Here, we simply recall few relatively recent relevant papers.

In [1] a Petri net semantics is used to prove the decidability of termination
(called convergence in that paper) in a version of CCS with replication instead
of recursion, in which name restriction –usually called also name generation–
cannot occur inside replication. This syntactic limitation guarantees that only
boundedly many distinct names can be generated. In [14] a precise relationship
between name passing calculi –in particular the π-calculus– and classical Petri
nets has been established, by showing which are the precise restrictions to be
imposed to name-generation and name-passing mechanisms in order to resort
to a Petri net semantics. Open nets are instead used in [2] to equip with a net
semantics an asynchronous version of CCS with replication and a limited form
of restriction that cannot occur under the scope of a replication. Open nets are
classical Petri nets including open places and the possibility for distinct nets to
interact on open places. The advantage of Open nets is that they allow for a
compositional definition of the net encoding. Moreover, they naturally support
the modeling of restriction: free names (i.e. non restricted names) are modeled
with open places while bound names (i.e. restricted names) are modeled with
private places.

In this paper, we have focused on those cases in which in order to faith-
fully model a process calculus it is necessary to consider extended versions of
Petri nets. This happens, for instance, when the process calculus includes global
synchronization mechanisms. Classical Petri net transitions, in fact, always con-
sume a predefined amount of tokens from the input places, thus the number
of consumed tokens is independent from the current token distribution. Global
synchronization mechanisms, on the contrary, are defined as functions depending
on the current (global) state of the system.

In particular, we have formalized a simple data-centric calculus for which it
is possible to define a faithful classical Petri net semantics, and then we extend
it with a simple primitive that globally renames all the data of a given kind
that are currently available. We prove that the addition of this global primitive
strictly requires to move to an extended class of Petri nets (in this case we
consider Transfer Petri nets) in order to define a faithful net modeling. Formally
speaking, the encodings that we define between a process calculus and a Petri
net have a one-to-one correspondence between reductions in the process calculus
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and transition firings in the Petri net. The impossibility to define an encoding,
on the contrary, consider also weaker encodings in which only termination is
preserved (i.e. a process terminates if and only if its encoding in the Petri net
has a terminating computation).

Translating process calculi into Petri nets is useful because it allows for the
application of Petri net analysis techniques, or decidability results, back to the
initial process calculi. It is interesting to observe that there are cases in which also
extended versions of Petri nets fail, like for instance in [3]. In that paper, a process
calculus with replication and name generation is defined, for which it is possible
to produce unboundedly many different active processes due to the dynamic
generation of new names. The presence of unboundedly many different processes
forbids the application of Petri nets; in fact, Petri nets only has a predefined finite
amount of possible(and transitions). In that paper, the decidability of divergence
was proved by resorting to Well Structured Transition Systems (WSTS) [11], a
meta model which is more general than Petri nets (and their usual extensions)
and for which a rich set of interesting properties like divergence, coverability, or
those expressible by means of simple temporal logic, are proved to be decidable.
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Ozan Kahramanoğulları1,2, and Tommaso Schiavinotto2,3
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Abstract. Language-based modelling of biological systems is a grow-
ing field of research. Many proofs of concept have been published in the
last decade. We propose a domain specific language, imperative in style,
to step ahead of proof of concepts. Our DSL is compiled into C# and
exploits the benefits of C# optimising compilers to gain in time per-
formance of simulations. We report benchmarks of its implementation
relying on a mass-action model of the MAPK cascade and a Michaelis-
Menten model of the one-carbon metabolism.

1 Introduction

Systems biology is a growing field in which lab experiments and computa-
tional activities are increasingly integrated [20,22,23,30]. Modelling and sim-
ulation is used to better understand the dynamics of regulatory, signalling and
metabolic networks. Simulation techniques roughly span along two axis: deter-
ministic/stochastic and qualitative/quantitative techniques. In this paper we fix
our context in stochastic, quantitative approaches.

There are many formalisms that can be adopted to represent biological sys-
tems. Petri nets with their stochastic variants are surely the first formalism
adopted for simulating interacting systems [25,27] and have been then applied
to biological systems as well [19]. The graphical formalism of Petri nets is appeal-
ing and easy to visualize, but it makes it difficult to exploit compositionality of
nets to build models incrementally. Another modelling technique is based on the
chemical reaction formalism that lists all the reactions that a system can per-
form, i.e. on reaction networks (see [2] for an introduction). This formalism is
easy to read, but it suffers the combinatorial explosion problem that also classi-
cal ODE systems have (a species/a variable is needed for any state a component
of the system can pass through and this number is exponential with respect
to the binding/unbinding interactions) [9]. Among the main formalisms of this
class we mention P -systems [32]. Starting with the stochastic π-calculus [29],
stochastic process algebras emerged as a language-based modelling formalism
c© Springer International Publishing Switzerland 2015
C. Bodei et al. (Eds.): Degano Festschrift, LNCS 9465, pp. 354–374, 2015.
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for biology [1,3,5,28,31]. Kappa [7,8] has a special role, because it contributed
to the rule-based modelling approach mainly represented by BNG [13]. Similarly,
we mention beta-binders [31] and BlenX [10,12], because they are evolutions of
the stochastic π-calculus and have inspired our DSL. We further refine our ref-
erence context, considering language-based modelling formalisms for stochastic,
quantitative simulation of biological systems.

We propose a new language (�), specifically designed to model and simulate
biological systems. � is a DSL with an imperative core, which allows the modeler
to equip the representations of biological elements with local states that can
be updated when the elements react. � includes rule-based constructs to conve-
niently specify the most common state updates (e.g., protein association). Other
kinds of state updates can still be expressed by providing an imperative subrou-
tine to run whenever a given reaction occurs. The computational model of � is
reaction based to improve performance and readability in comparison to process
algebras. Indeed, using an imperative core allowed us to efficiently implement
� by compiling to C#, thereby avoiding the overhead of interpretation. At the
same time, modelers are often more familiar with imperative programming than
process algebras.

The underlying computational model of � is based on biological complexes
represented as unordered lists of their components with their multiplicity – i.e.,
as multisets. From the point of view of expressiveness, this poses � in the middle
of the spectrum: it is more expressive than formalisms representing only atomic
biochemical species, such as Petri nets, while being rougher than languages mod-
eling the full graph of the biochemical bonds in complexes, such as Kappa.

When using biochemical reaction networks, the modeler has to create a
unique species for each complex which might be created during the system evo-
lution, and do so ahead of time. This can also require the modeler to manually
specify a large amount of reactions, even if many of them are very similar. For
instance, to model the fact that a molecule in a complex may have two states
(e.g. because one of its sites can become phosphorylated) the modeler has to
duplicate the number of species for that complex. In �, the modeler does not
have to precompute the species ahead of time, and the redundancies in reactions
can often be captured using � rules.

When compared with graph-based languages which use a more detailed rep-
resentation for complexes, � loses some expressiveness. Still, in practice this is
often not a problem since the biological knowledge of the exact binding links
between components of a complex is not available most of the time. In such
cases, the modeler can be more comfortable to work in a language which does
not require to provide more information than what is actually known.

Finally, it is becoming fundamental to trace the location of species within
cells when studying the behaviour of their internal networks [21]. We therefore
equip our DSL with a simple notion of space and primitives to manage it and to
represent the movement of species.

Monte Carlo simulation is a keystone in our reference context and a special
role in simulation of biological systems is played by the Gillespie’s stochastic
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simulation algorithm (SSA) [15]. Under some assumptions, Gillespie proved this
algorithm to be exact with respect to the chemical master equation when simulat-
ing (bio-)chemical reactions. Many variants of this algorithm have been proposed
to improve its time performance, e.g. [14,16], sometimes resulting in approximate
results [4,17]. In our � implementation, we exploited the exact stochastic simu-
lation algorithm RSSA [35–37], which uses a probabilistic rejection mechanism
to speed up simulation. Roughly, RSSA performs a first approximate-but-fast
simulation step, and then validates its outcome. With high probability, the step
can be accepted as it is; instead, in the remaining cases, it is refined further so
that the outcome is exact.

The original contribution of this paper is twofold. First, we present our new
DSL for modelling biological systems, and describe its implementation. Second,
we benchmark our � implementation against several other tools for biological
system modeling and simulation.

2 � Design and Intuition

Building on the extensive experience we gained in the use of stochastic π-calculus
and BlenX for modelling biological systems, we stepped ahead with five main
design goals in mind:

1. Performance. The use of modelling and simulation techniques for real biolog-
ical systems is calling for better performances in comparison to the state of
the art of process algebras derived formalisms.

2. Local states. Process algebra derived languages and agent-based systems usu-
ally manage the change of state of a component of the system by exploiting
message passing and differentiation of processes. This mechanism is most of
the time too complex to express a change of state from inactive to active of
an element for which just a boolean flag would work fine.

3. Reactions vs. Processes. Chemical reactions are a well-known formalism to
represent biochemical pathways and allows the modeller to discuss models
with biologists in an easy way. Process-based representations are not so intu-
itive when the size of the system grows. This is because of the synchronisa-
tion issues and message passing between components that make it difficult to
involve biologists in the modelling activities.

4. Standard programming techniques. Process algebras is an advanced topic even
for computer scientists and their programming technique is not within the
background of most of the programmers and modellers. We opted for an
imperative style of programming which is familiar to most people having a
science background.

5. Space. It is becoming increasingly evident that cell compartments cannot be
ignored to precisely account for the mechanistic details of biological processes.
We opted for primitive notions of space and translocation in �.

The main performance bottleneck of process algebra based formalisms is the
need to check structural congruence of processes to count the number of ele-
ments of a given type in the system. Since this number is used in computing the
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transition rates of the system, an optimisation in this step would account for
a substantial time saving in simulation. In particular, a main challenge is iden-
tifying whether complexes (usually represented as graphs) represent the same
species. This amounts to deciding graph isomorphism, because we need to dis-
tinguish complexes made of the same elements when they are bound together
differently. For instance the complex ABC in which A is bound to B and to C
is usually distinct from the one in which B is bound to A and to C even if both
complexes are made of A, B and C.

In practice, biologists do not really know how the proteins in a complex
are bound together most of the time. If we keep the graph representation of
complexes we are forced to do assumptions on the structure of complexes that
are not supported by experimental evidence. Therefore, we decided to represent
complexes as multisets (a complex may contain more copies of the same element)
of boxes (biological components). We lose the expressivity of representing the
binding structure of complexes, but we gain in performance.

The advantage of process-based and agent-based systems over chemical
reactions is that an interaction can be associated with operations that mod-
ify the state of the system depending on the context, possibly modifying
agents/components not involved in the firing reaction. Our choice is then rep-
resenting components as boxes with an internal state that can be manipulated
by reaction rules equipped with pieces of imperative code that are run as side
conditions of the reaction. We extend the computational model of reactions with
the ability of implementing modifications to the system as a consequence of the
reaction selected.

Finally, � is designed to be an imperative language so to be familiar to most
potential users which are familiar with imperative programming. An additional
value of this choice is that we can easily run blocks of � code by compiling them
into C# and exploit the optimising compilers as well as the tools developed for
C#.

We refer to Fig. 1 to describe the modelling intuition of � and its dynamics.
A system is a multiset of complexes (Fig. 1a) - the blue layouts with green
ellipsis). A standalone box in the system is represented as a complex of just one
element (e.g., the complexes C4 and C5 in the figure). The type of boxes in
Fig. 1(a) are

A{x:int,y:real}; B{z:int}; G{}

and the complexes are

C1[A{x=0,y=.1}, A{x=5,y=.3}, B{z=1}, G{}, G{}],
C2[A{x=3,y=.1}, G{}],
C3[B{z=2}, B{z=2}], C4[G{}], C5[G{}]

To simplify the writing of reaction rules we adopt patterns so that we define
families of rules that apply to complexes with similar characteristics like all the
complexes that contain at least an A - this is what the pattern [A, ∗] in the assoc
rule expresses) in the figure to either (b) or (c). In this way, a modeler can write
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Fig. 1. � intuition. (a) A system is a multiset of complexes (C1–C5). Boxes may have
local variables. Reaction rules are defined on patterns that identify complexes to which
they can be applied and have code associated with to modify the system when the
reaction is fired. Special variables (product and reactant) are pre-defined to access the
elements of the complexes identified by the patterns. More than a complex can satisfy
a pattern: (b) and (c) are two possible target states of the first assoc rule. The main
types of rules are assoc to form complexes, dissoc to split complexes (from (c) to (d)),
substitute to replace an element with another one (from (d) to (e)) and dyn for general
rules (from (e) to (f)). Note that the syntax used in this picture is a simplification just
to convey the intuition of the language. The actual model is provided online [6].

a rule such as assoc [A, ∗] [B, ∗] to express that the presence of A and B in two
complexes can cause their association, e.g. because A and B have interaction sites
that can cause a bond between them. In such cases, the association rate might
simply be a constant (as in Fig. 1) or a more complex formula, which can also
depend on the whole complex, including the part matched by the wildcards ∗. In
the latter case, the modeler can write their own code to compute the wanted rate.
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In some models, the actual condition under which association is possible is more
involved that the mere presence of A and B in the complexes. In such cases �
allows to restrict association using when followed by the wanted condition, which
can be programmed by the modeler.

A complex matches a pattern if there is a bijection between the boxes in the
pattern and in the complex. If the pattern contains the special character ∗ that
matches any box, it is enough to find an injection from the boxes in the pattern
into the ones of the complex. For instance the patterns on the left columns in
Fig. 2 are matched by the complexes on the right columns.

[A,*] C1, C2

[B,*] C1, C3

[B] (no match)

[A,G] C2

[A,G,*] C1, C2

[A{x=3},*] C2

Fig. 2. Pattern matching in the complexes in Fig. 1(a). The patterns on the left match
with the complexes on the right.

The dynamics of systems is defined by reaction rules with code associated
that modifies the system after the reaction is performed. There are four reac-
tion rules: assoc (that merges two distinct complexes that match the patterns
in the rule); dissoc (removes from a complex that matches the first pattern
a sub-complex that matches the second pattern); substitute (replaces a com-
plex that matches the first pattern with a complex that matches the second
one); dyn (applies the code in the reaction to the complexes that match the
patterns). The reactions have stochastic rates that can be either constants or
user-defined functions. The code associated with a reaction can access the reac-
tants and the products through predefined variables reactant1, .., reactantn and
product1, .., productm; the index of each reactant/product follows the order in
which they appear in the rule. The actions that can be performed are deletion of
a box from a complex, spawning of some new boxes within a complex, movement
of a box from one complex to another, and update of the fields of boxes.

Consider the rule assoc leading from (a) to either (b) or (c) in Fig. 1. The first
computational step is the identification of all the complexes in (a) that match
the patterns in the rule. The first pattern is matched by C1 and C2 and the
second pattern is matched by C1 and C3 (see Fig. 2). C1 matches both patterns,
but its multiplicity in the system is one, so we cannot associate a C1 molecule
with another one of the same species. Therefore, the possible complexes resulting
from the assoc rule are C1 : C3 (not depicted in the figure), C2 : C1 (depicted
in (b)) and C2 : C3 (depicted in (c)).

The complex C2 : C1 is obtained by merging C2 and C1 and then applying
the code between the syntactic brackets react and end. The complex obtained
by the merge can be accessed by the variable product and the associated actions
are performed on the product. Hence a copy of the box G is removed and one
copy of H is added. Similarly, the complex C2 : C3 is generated. For the sake of
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completeness, note that the kill(G{}) command affects a complex which might
not have any G box inside – all we know is that it matches with the pattern
[A, ∗]. In such case, no G would be removed. Note that the modeler can also
check whether a G is present using an if conditional. Further, it is possible to
refine the pattern as [A,G, ∗] and prevent association when G is not present.

The stochastic rate and the concentrations of the complexes matching the
patterns determine which reaction to fire among the enabled ones through a race
condition.

Consider the rule dissoc leading from (c) to (d) in Fig. 1. We have to identify
the complexes matching the first pattern (and there is only C2 : C3) and remove
from the selected one the sub-complex made of exactly one H boxe (to avoid
ambiguities no ∗ is allowed in the second pattern of a dissoc). The application
of the rule generates a complex containing one A and two B and a complex
containing one H. We now run the code associated with the rule. We remove a
B from the first product complex and we move the remaining B from the first
product to the second one, resulting in the complexes C7 and C8.

Consider the rule substitute leading from (d) to (e) in Fig. 1. The complexes
that match the first pattern are C4 and C5. Assume that the stochastic simu-
lation algorithm selects C4. We then replace C4 with the complex specified in
the second position of the rule and we run the associated code to update the x
field to 4, yielding C9.

Consider the rule dyn leading from (e) to (f) in Fig. 1. C8 matches the first
pattern, C5 matches the second pattern and C9 matches the last pattern. The
rule dyn just runs its associated code. Therefore, we remove an H from C8
yielding C11, we add an H to C5 yielding C10 and we set x to 6 in C9.

We end this section by considering space. We included in � the primitive
type location to assign boxes to compartments and the reaction rule move to
let boxes move from one compartment to another one. An example is in Fig. 3.
Each compartment is associated with a name that acts as a location in the move
rule that translocates a complex matching the pattern in the rule accordingly.
The first rule in the figure translocates A from the extracellular space into the
cytosol. The second move rule shows that also the movement actions can have
code associated with them; in fact, the complex containing F is moved from the
cytosol to the nucleus and the x field of its D component is updated to 3. The
last move in the figure translocates the complex containing C from the organelle
to the cytosol. After the three move in Fig. 3 the system on the left is mapped
into the system on the right.

It is possible to write rules which affect only one compartment. For instance,
the rule assoc [A][B] in cytosol rate k allows [A] and [B] to associate only in
the cytosol compartment. Concretely, [A]@cytosol and [A]@extracellularspace
are handled as two distinct biochemical species. By comparison, writing
assoc [A][B] rate k would allow association to be performed in any compart-
ment. More specifically, if a copy of [A] and a copy of [B] are found in the same
compartment, they can associate with rate k. Association across compartments
is still prevented.
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Fig. 3. � space and movement: the basic type location is used to denote cell compart-
ments and the move reaction (that can also have a react part) is used to implement the
translocation of complexes from one compartment to another. The star on the arrow
denotes more than one step (three in this case).

3 � Syntax

Figure 4 reports the syntax of � in BNF form. Note that optional items are not
denoted as usual within square brackets because square brackets are tokens of
�. Therefore, we let 〈A〉∗, 〈A〉+, and 〈A〉? denote at least zero, at least one, and
at most one occurrence of A, respectively.

BasicType stands for a primitive type used in �: bool, int, real and location,
whereas BasicLiteral ranges over their values. The meaning of bool, int and real
is the usual one, whereas location represents the set of compartment names.

BoxDecl is the declaration of a box : it specifies a name for the box (Ide -
interpreted as the type of the box, hence BoxType) together with a possibly
empty sequence Ide : BasicType that are its fields and their types. The name
of the fields is unique inside the box. BoxExp represents a box having all its
declared fields instantiated. For example, A{x : int; y : real} is a declaration
of a box type A containing fields x and y of type int and real respectively, and
it can be instantiated as A{x = 3; y = 1.0}. We use Box to denote the set of all
possible box instantiations. A BoxPattern shares the same syntax of a BoxExp,
however it may not provide a value for all fields; this will be used for counting
and searching for boxes.

For any set S, we write mset S for the set of multisets over S, which we
sometimes identify with the set of functions S → N. CplxExp represents com-
plexes as multisets of boxes, i.e., it is a non-empty sequence of the form
Exp : BoxExp, where Exp is an integer expression that denotes the number of
instances of BoxExp in the complex. When Exp = 1, we can omit it. For instance,
[2 : A{x = 3; y = 1.0}, B{}] is a complex. We use Cplx = location×mset Box to
denote the set of all possible complexes.
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Fig. 4. Syntax of �.

The whole initial system state is defined by the Run clause. It specifies a
list of complexes of the form Exp1 : CplxExp@Exp2, where Exp1 is the initial
population of the complex in the system which is being modeled, and Exp2 is
the compartment the complex belongs to. Note that isolated boxes in a system
are actually represented by a singleton complex, made of just that box.
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The dynamics of the system is specified by multiset rewriting rules, which
continuously modify the system at hand (if no rule applies, the system does not
evolve further). Rules are based on complex patterns. A Pattern is a sequence
of BoxPattern, possibly followed by a wildcard ∗. A pattern without ∗ matches
with complexes having exactly the specified boxes, whereas the wildcard allows
the pattern to match with complexes including other boxes as well. The order in
which boxes appear in patterns is irrelevant: patterns are handled up to associa-
tivity and commutativity. A BoxPattern of the form B1{f1 = v1, . . . , fn = vn}
matches with a box B2{g1 = h1, . . . , gm = hm} if B1 = B2, n ≤ m and for each
i ∈ [1..n] there exists j ∈ [1..m] such that fi = gj and vi = hj . Then, we say
that a complex c ∈ Cplx matches with a pattern p, denoted with p � c, if one of
the following conditions holds:

– p does not end with ∗, and there is a bijective mapping θ between box patterns
in p and boxes in c, where correspondent elements match;

– p does end with ∗, and there is an injective mapping θ between box patterns
in p and boxes in c, where correspondent elements match.

The following example illustrates pattern matching.

Example 1. Consider complexes c1 = [A{x = 1}], c2 = [B{}], c3 = [A{x =
0}, A{x = 1}], c4 = [A{x = 1}, B{}] and c5 = [A{x = 1, y = 4}] and patterns
p1 = [A], p2 = [A,A], p3 = [A, ∗], p4 = [B], p5 = [B, ∗] and p6 = [A{x = 1}].
Then, only the following relations hold: p1 � c1, p1 � c5, p2 � c3, p3 � c1, p3 � c3,
p3 � c4, p3 � c5, p4 � c2, p5 � c2, p5 � c4, p6 � c1, p6 � c5. �

The rewriting rules specify stochastic rates rate Exp in their RateClause to be
applied stochastically. The rate expression can inspect the boxes in the reactants
via special variables reactanti, where i ranges from 1 to the number of reactants.
For instance,

assoc [A] [B, ∗] rate 5.2 ∗ reactant1.first(A{}).mass

states that the rule firing rate is proportional to the mass of (the box A of) the
first reactant. By default, rate expressions follow the mass action kinetics law,
and are implicitly multiplied by the abundance of each reactant. For instance,
in a system having 10 complexes [A] and 20 complexes [B,C], the rate men-
tioned above is implicitly multiplied by 10 · 20. Another common kinetics law
is Michaelis-Menten and it is expressed by RateValue mm. All the other kinetic
laws (e.g., Hill kinetics) can be defined by RateValue custom.

Expressions Exp of � are built from constants (BasicLiteral, Ide, null) through
logical operators, relational operators and arithmetic operators. It is also possible
to call functions. The expressions more peculiar to � are BoxOps to access fields
of boxes (Exp.Ide), to search for boxes within a complex (first), to count boxes
matching a pattern (count) or to spawn a new box (spawn). There are also
expressions acting on complexes (CplxOps) to spawn new complexes or count
existing ones.
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For instance, the expression spawn([2 : B{x = 3, y = 4}, 1 : A]) will spawn a
new complex comprising two B boxes and one A box, and evaluate to a reference
for such complex. After that, the expression count([A, ∗]) will evaluate to the
number of all the complexes in the current system having at least one A box,
including the one which has just been created. Furthermore, if c is a variable
referring to the complex we just spawned, c.first(B).y will evaluate to 4, while
c.count(B{x = 3}) will evaluate to 2, since two such boxes were created.

Finally, note that operators in expressions expect their arguments to be of
a compatible type, e.g. we can not sum non-numeric values such as complexes.
Further, most rules involving an Exp expect it to evaluate to a value of the
correct type (e.g. in rate Exp we expect a real number as the result of Exp. In
� this is checked statically through a simple, standard type system.

3.1 Rewriting Rules

We now discuss the rewriting rules, which control the evolution of a system.
� has five kinds of such rules, namely assoc, dissoc, dyn, move and substitute.
A rule

assoc p1 p2 RateClause react Block

allows pairs of reacting complexes matching with p1 and p2 to associate.
When that happens, the two reactant complexes merge their boxes and form
a new larger complex, mimicking the association of two macromolecules. The
RateClause specifies the conditions and speed under which association happens.
Its general form is

in Exp1 when Exp2 rate Exp3

requiring that (1) reactants have to be located in the compartment Exp1, (2)
the boolean condition Exp2 must be true, and (3) the reaction is performed
with stochastic rate Exp3 (according to mass action law, or the other laws
discussed earlier). The part “in Exp1” is optional: when missing, the associ-
ation is performed in every possible compartment. Similarly, the absence of
“when Exp2” causes the association to be always performed. The optional con-
straints “in Exp1 when Exp2” can also be applied to � rules other than assoc,
with analogous semantics.

When an assoc rule is fired, after the complexes are associated the code block
specified in the react part is run. This can access the newly formed product (via
a special product variable) and modify it further, e.g., by changing box fields,
or adding/removing boxes, or spawning entirely new complexes. For instance, a
rule

assoc [A{x = 3}, ∗] [B] rate 1.0 react product.first(A{x = 3}).x := 4; end

will generate complexes of the form [A{x = 4}, B, ∗], since the react block
changes the value of x.

A rule
dissoc p1 p2 RateClause react Block
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specifies the dual operation to assoc, i.e. the dissociation of a complex into two
subcomplexes. Here, p1 specifies the complex to break up, whereas p2 matches
with a subcomplex to separate. No wildcard ∗ is allowed in p2, since that would
cause an arbitrary random subcomplex to be detached. This restriction is rep-
resented in Fig. 4 by Patternno∗. In the case p2 has multiple matches inside the
reactant, we let all of them define an equally probable dissociation, hence effec-
tively dividing the rate among all the possible splits. In other words, the rate
in the rule is the cumulative rate of all the possible dissociations, and when the
rule is selected to fire a random match of p2 is chosen to be split from the rest
of the complex. After that, the react code block is run, and can access the new
complexes using the two special variables product1 and product2.

A rule
dyn p1 . . . pnRateClause react Block

is used to define a generic molecular dynamics. Its semantics is similar to the
one of assoc, except that no complex merge is performed, and the react code
block still has access to the unmerged complexes reactant1, . . . , reactantn.
This rule effectively subsumes assoc and (most forms of) dissoc, in that associa-
tion/dissociation can be programmed manually in the react code block, exploit-
ing the commands c1.assoc(c2) and c1.move(B{. . .}, c2). While dyn is a very
general-purpose mechanism, associations and dissociations are so common to
deserve their own constructs in the language. The modeler has to use dyn only
for, e.g., monomolecular reactions or reactions involving more than two reac-
tants.

A rule

substitute p1 . . . pn with CplxExp1 . . .CplxExpm RateClause react Block

is used when we want to substitute the complexes satisfying the patterns p1, . . . , pn

with the concrete complexes corresponding to CplxExp1, . . . ,CplxExpm. After
that, the code Block is run, possibly accessing the new complexes via producti.
Note that using substitute one can easily import standard reaction networks.
Indeed a chemical reaction A + B → C with rate k can simply be expressed by
substitute [A][B] with [C] rate k with no react block.

A rule

move p from Exp1 to Exp2 rate RateValue react Block

is used for moving the complexes satisfying a given pattern p from the compart-
ment identified by Exp1 to the one identified by Exp2. The code Block is then
run, possibly altering the moved complexes via the special variables producti.
It is worth noting that both move and substitute can be modeled using the dyn
rule. Despite such rules being theoretically redundant, they represent common
situations in biochemical reactions, hence they deserve their own construct.

The code blocks in rules are written in a simple statically-typed imperative
language. Variable types (Type) include all the basic ones (BasicType), boxes
(each BoxDecl declares a new type), and complexes (cplx). The value of a vari-
able having a box or complex type is a reference to those. A set of primitives
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allows one to freely access and modify boxes and complexes. For instance, adding
boxes in a complex is done via the expression Exp.spawn(BoxExp), which cre-
ates a box BoxExp inside complex Exp and evaluates to a reference to the new
box. Removing a box instead is done with the command Exp.kill(BoxPattern),
which searches for a box matching the pattern within complex Exp and deletes
it. Similar operations can be done at the complex level. New complexes are cre-
ated by the expression spawn(CplxExp@Exp) which creates a complex CplxExp
in compartment Exp, evaluating to a reference to the new complex. Existing
complexes are removed via Exp.kill(), where Exp evaluates to a reference to the
complex. It is also possible to merge two complexes, as it happens for associ-
ation (assoc). More generally, one can loop over all the boxes of a given type
in a complex using the command foreach b : BoxType in complex. Also, the
expression Exp.first(BoxPattern) returns a box matching BoxPattern among
those in complex Exp. Finally, � includes many common imperative constructs
such as assignment, conditional, while loops, and function calls, whose meaning
is standard.

Example 2. As a simple example, we provide an � model for the enzymatic reac-
tion shown below:

E + S
k1−−−⇀↽−−−

k−1

ES k2−→ EI k3−→ E + P

The first double arrow models an enzyme molecule (E) associating to and
dissociating from a substrate molecule (S). When associated, the complex ES can
react (second arrow): the enzyme changes the substrate into some intermediate
molecule (I). This reaction is not reversible. Then, the intermediate molecule can
dissociate from the enzyme, which releases a product (P) in the system (third
arrow). In �, we can model this behavior as follows. Below, the react blocks are
used to change S into I, and then I into P. Note that K1,K−1,K2,K3 are the
stochastic constants corresponding to k1, k−1, k2, k3, respectively (for a definition
of the translation from deterministic to stochastic rate constants see e.g., [38]).

E{} S{} I{} P{}
assoc [E] [S] rate K1

dissoc [E,S ] [S] rate K−1

substitute [E,S ] with [E{}, I{}] rate K2

dissoc [E, I ] [I] rate K3 react
product2.kill(I{});
product2.spawn(P{});

end;
run 100 : [E]; 100 : [S]; end �

Example 3. We want to model a macromolecule A which can be tagged using
some marker. The marker may be present in different quantities in different
molecules. Further, two molecules can interact, making the marker diffuse from
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one molecule to the other one, proportionally to the difference of marker amounts
the molecules have.

To model the scenario above, we use a box A with a real field marker for
storing the amount of marker. Coding the diffusion of the marker is then simple,
as shown below.

A{marker : real}
dyn [A] [A] rate K react

var a1 := reactant1.first(A{});
var a2 := reactant2.first(A{});
var delta := 0.50 ∗ (a1.marker − a2.marker);
a1.marker := a1.marker − delta;
a2.marker := a2.marker + delta;

end;
run 100 : [A{marker = 100.0}]; 100 : [A{marker = 0.0}]; end �

4 Performance Benchmark of �

In this section we first discuss some of the implementation choices we made. Then
we introduce the benchmark models we selected and discuss the performance of
� on those.

4.1 Implementation Choices

We developed an � implementation focusing on the expected performance.
A main choice we faced was whether � should be interpreted or compiled. While
an interpreter looked easier to build, a compiler could translate � to low level
code which is faster to execute. Eventually, we settled on building a compiler
which, given a � model, is able to generate C# code. This provides several benefits.
First, using an expressive imperative target language makes it easy to generate
code for �, which is also imperative. Second, we can leverage the existing com-
pilers from our target language to machine code and exploit the low level code
optimizations they perform. Third, using a typed target language provides more
confidence on the correctness of the translation, in the spirit of using a typed
assembly language [26]. For instance, we can map each � box type to its own
target type, preventing confusion. Lastly, by choosing C# we can integrate � with
the .NET platform thus allowing the modeler to call .NET functions written in
different languages, should this be needed.

When designing the data structures to store the � state, we faced more
choices. Our simulator does not precompute the reaction network before start-
ing the actual simulation, but generates new species (complexes) whenever they
appear in the simulated model. Whenever a new species appears, we match
it with all the patterns occurring in the rules at hand, and save the result of
the match for later usage. If a model uses p patterns and during its evolution
creates s species, we only need to perform p · s matches, independently of the
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length of the simulation. Note that the number of species can be infinite, either
because larger and larger complexes are formed by the model, or because boxes
are instantiated with infinitely make distinct field values. In such cases, we incur
a performance penalty only when a species is firstly created, and patterns are
matched against it. We do not pay any cost for species which do not occur in the
simulation run. This is unlike the approaches based on network precomputation,
which have to enumerate each species which might occur during the simulation,
and potentially generate a large network.

Once patterns and species are matched, we can simulate the CTMC deter-
mined by the � rules. Our implementation can either use the standard Gillespie
SSA (Direct Method) or the more efficient RSSA. In both cases, rate expressions
are evaluated to compute propensities whenever we need to update them. This
happens frequently for SSA and infrequently for RSSA.

Whenever a rule carrying a react code block is fired, our simulator runs
the block and compares how the state changed saving the differences in a cache,
together with the species that triggered the rule. Therefore, if the rule is triggered
again in the future, we can entirely skip the execution of the block and access the
cached result. This relies on the result of the block being determined completely
by the reactants. This property is ensured by the � semantics, with the only
exception of the count expression. Indeed, using count the � code can refer to
the current population of a species which does not appear as a reactant in the
rule at hand. We rule out this corner case with a simple static syntactic check.
When this check fails, we disable the caching of results for the rule at hand.

4.2 Performance

We compare � performance (both with direct method - SSA [15] - and with
the RSSA algorithm [36]) with Dizzy (both direct method and next reaction
method) and BNG (which, to the best of our knowledge, is based on a variant of
the direct method). We also compared � with BetaWorkbench [11], KaSim [24]
and SPiM [28]. These latter comparisons are not reported in the plots because
� turned out to be at least 10 times faster than all of these tools.

The selected models for benchmarks are a classical MAPK cascade model
and a new model of the one-carbon metabolism recently published in [34]. Both
models are made available [6]. The one-carbon metabolism model is made of 13
reactions with Michaelis-Menten rates. The model describes the folate cycle and
its connection to DNA methylation activity.

The reason for the choice of the MAPK and one-carbon metabolism models
is to compare the performance both with mass-action kinetics and Michaelis-
Menten kinetics. We start discussing the results of the MAPK model simulation
(see Fig. 5). We used 102, 103, 104, 105 as scaling factors for the number of mole-
cules in the systems. � is performing better than all the other tools and we
observe an increasing gain in performance of � as the scaling factor grows. We
also observe an almost linear growth of the simulation time with the scaling
factor. As expected, � with RSSA is always performing better than � with the
Direct Method.
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Fig. 5. Performance of � with direct method (SSA) and RSSA, Dizzy with direct
method (DM) and next reaction method (NRM), BNG running the MAPK model
with scaling factors (sf) 102, 103, 104, 105. The running times are averages of several
runs.

We used the MAPK model to study the overhead that � implementation is
introducing with respect to the RSSA algorithm used in isolation (see Fig. 6).
Also in this case we used the same scaling factors as before for the MAPK
model to see whether the overhead of the implementation depends on the number
of molecules in the system. We observe that the overhead is almost constant,
independent of the number of molecules and less than 5%.

To test � implementation of custom rate functions and the specific imple-
mentation for Michaelis-Menten (MM) dynamics, we used the one-carbon
metabolism model. The performance results are in Fig. 7. Custom rates intro-
duce a high overhead in the implementation and decrease considerably the per-
formance of �. The optimization for Michaelis-Menten dynamics is recovering

Fig. 6. Overhead introduced by the implementation of � on the RSSA algorithm, com-
paring � with RSSA and our standalone implementation of RSSA. Tests used the
MAPK model with different scaling factors (sf). The scale for the y axis is in seconds.
The running times are averages of several runs



370 R. Zunino et al.

most of the performance lost. Indeed, � with the Direct Method and the opti-
mization for MM dynamics is performing almost as good as BNG and Dizzy with
the Next Reaction Method. When � uses RSSA with MM dynamics, it becomes
the best performer with almost half of the time of the second best method.

Fig. 7. Performance of � with direct method and custom rates, direct method and
Michaelis-Menten rates (MM), RSSA with Michaelis-Menten rates, Dizzy with direct
method (DM), next reaction method (NRM), and BNG running the one-carbon
metabolism model. The running times are averages of several runs.

5 Conclusions

We presented a new DSL (�) for modelling and simulating biological systems. The
motivation underlying the design of � was to improve performance with respect to
available solutions in order to be able to address real case studies by maintaining
the compositionality features of process algebra based languages. To improve
performance we represented complexes as multisets of components rather than
graphs, thus avoiding the bottleneck due to checking graph isomorphism. We lose
structural information on complexes that however is rarely available in practice.
We also moved from a process-based computational model to a reaction-based
one to improve readability of models. Finally, to enlarge the community that
can program � we resorted to an imperative DSL associating components with a
local state that contains variables. This avoids the difficulty of managing state
change through message passing as it happens in process based models and eases
the understanding of the dynamics.

We used a MAPK model defined by mass action reactions and one-carbon
metabolism model with Michaelis-Menten kinetics to compare the performance
of � with other widely used tools like Dizzy and BNG, as well as with other
language-based simulators of biological systems like BetaWorkbench, SPiM and
KappaSim. � performed largely better than all the considered tools both in the
case of mass action and Michaelis-Menten dynamics. We also checked the over-
head introduced by the � implementation with respect to a standalone RSSA
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implementation and we showed that it is limited (at most 5%) and indepen-
dent of the number of molecules in the system. Of course, there are many
other tools against which we could compare our implementation: among these,
StochKit2 [33] appears to be one of the better optimized ones.

Finally, the simple structure of � allows us to easily map reaction-based mod-
els into � models, including the ones that are represented by graphical formalisms
such as Style [18]. Indeed, a tool for importing reaction networks has been devel-
oped [6].

Acknowledgments. The authors would like to thank the whole COSBI team for
fruitful discussions and extensive testing of the language implementation. This work
has been supported by a grant of the Provincia Autonoma di Trento.

A � Semantics

The semantics of an � model is given by assigning it a Continuous Time Markov
Chain (CTMC). The CTMC describes how the initial system, which is a multiset
of complexes, evolves over time. Obtaining a formal definition for this CTMC
poses no significant challenge, and can be done exploiting standard techniques.
We intuitively summarize its key ideas in this section, focusing only on the rules
of the form

dyn p1 . . . pn rate custom rateExp react block
dissoc p1 p2 rate custom rateExp react block

Indeed, all the other rules can be desugared into the above small kernel.
The set of complexes is defined as the set of all multisets over boxes

at a location from location, i.e., Cplx = location × mset Box, and we use
[box1, . . . , boxn]@loc to denote a generic element of Cplx. We define a system
μ ∈ Sys = mset Cplx as a multiset of complexes. In our formalization we store
boxes and complexes at specific addresses of the heap. The set of all these
addresses is denoted by Address, and we use α to range over it. We define
Environment = Ide → Address, the set of environments ρ, i.e., maps assign-
ing addresses to variables, and Store = Address → Value, the set of stores σ, i.e.,
maps assigning values to addresses. The set Value comprises basic type values,
locations, box values (represented as maps from fields to values), and complex
values. Complex values are represented as multisets of addresses pointing to the
contained boxes, the whole multiset being tagged with its location.

The formal CTMC definition for rules has to carefully count the number
of matches between the pattern tuple p1 . . . pn and the complexes in a system.
Since patterns can overlap (e.g. each of p1 = [A, ∗], p2 = [B, ∗] matches with
both complexes C1 = [A,B,X], C2 = [A,B, Y ]), we resort to canonic matches
to avoid counting the same combination many times (p1, p2 � C1, C2 should be
the same as p1, p2 � C2, C1).

Definition 1. The simple matches of a tuple of patterns p = 〈p1, . . . , pn〉 in a
system μ ∈ Sys is given by

simple(p, μ) = {C ∈ Cplxn | {C1, . . . , Cn} ⊆ μ ∧ p � C ∧ ∀i, j. Ci.loc = Cj .loc}
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Let < stand for any total strict ordering relation over Cplx. This induces the
lexicographic ordering on n-tuples of Cplx, which we shall also denote with <.
Further, let the relation ∼ hold between two complex tuples differing only by
the order of their components, i.e., when the first tuple is a permutation of the
second.

Definition 2. The canonic matches of a tuple of patterns p = 〈p1, . . . , pn〉 in a
system μ ∈ Sys is given by

canonic(p, μ) = {C ∈ simple(p, μ) | �C ′ ∈ simple(p, μ). C′ ∼ C ∧ C ′ < C}

We can now build the set of stochastic transitions associated to a dyn rule.
We generate a transition between states μ and μ′ for each canonic match in μ,
which makes the react code block to change μ into μ′.

Definition 3. Given a rule of the form dyn p rate rateExp react Block and two
systems μ, μ′, we generate the (decorated) set of rates of transitions as follows.

rates(μμ′ dyn p rate rateExp react Block) =⎧
⎪⎪⎨

⎪⎪⎩

〈C, a〉

∣
∣
∣
∣
∣
∣
∣
∣

C = 〈C1, . . . , Cn〉 ∈ canonic(p, μ) ∧ μ̂ = μ \ C ∧
〈ρ̂, σ̂〉 = alloc(reactant1 = C1, . . . , reactantn = Cn) ∧
a = value(E(rateExp)〈μ̂, ρ̂, σ̂〉) ∧
μ′ = μ̂ ∪ extractCplx(C(Block)〈μ̂, ρ̂, σ̂〉)

⎫
⎪⎪⎬

⎪⎪⎭

Above, we exploited some auxiliary operators, which we discuss now. Given a
multiset of complexes {C1, . . . Cn}, we denote with alloc(x1 = C1, . . . , xn = Cn)
the environment and store obtained by allocating the multiset in store and mak-
ing variables x1, . . . , xn refer to them. The operation extractCplx performs the
inverse operation, retrieving the multiset of complexes (i.e., an element of Sys)
which are in a store σ. Further, we assumed a (standard) semantics for expres-
sions and commands. (For the sake of simplicity, we neglect non terminating
programs.)

E : Exp × Sys × Environment × Store → Value × Store,
C : (Block ∪ Cmd) × Sys × Environment × Store → Store.

Handling dissoc is done similarly.

Definition 4. Given a rule of the form dissoc p1 p2 rate rateExp react Block,
and two systems μ, μ′, we generate the set of (decorated) rates of transitions as
follows.

rates(μ, μ′, dissoc p1p2 rate rateExp react Block) =⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈〈C1, θ〉, a〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

〈C1〉 ∈ canonic(p1, μ) ∧ p2, ∗ �θ C1 ∧ C2 = θ(p2)∧
μ̂ = μ \ {C1} ∧ 〈ρ̂, σ̂〉 = alloc(reactant1 = C1)∧
a = value(E(rateExp)〈μ̂, ρ̂, σ̂〉)/|{θ | p2, ∗ �θ C1}| ∧
〈ρ̂′, σ̂′〉 = alloc(product1 = C1 \ C2, productn = Cn)∧
μ′ = μ̂ ∪ extractCplx(C(Block)〈μ̂, ρ̂′, σ̂′〉)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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Defining the final CTMC only requires summing over rules. A CTMC here
is formalized as a function mapping two states (in Sys) to its transition rate.

Definition 5. Let R be a set of rules. We define CTMC(R) : Sys × Sys → R as
follows:

CTMC(R) = λμ, μ′.
∑

r∈RCTMC(r)(μ)(μ′)
CTMC(r) = λμ, μ′.

∑
〈−, a〉∈rates(μ,μ′,r)a
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