
Qingliang Chen · Paolo Torroni
Serena Villata · Jane Hsu
Andrea Omicini (Eds.)

 123

LN
AI

 9
38

7

18th International Conference
Bertinoro, Italy, October 26–30, 2015
Proceedings

PRIMA 2015:
Principles and Practice
of Multi-Agent Systems

Lecture Notes in Artificial Intelligence 9387

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Qingliang Chen • Paolo Torroni
Serena Villata • Jane Hsu
Andrea Omicini (Eds.)

PRIMA 2015:
Principles and Practice
of Multi-Agent Systems
18th International Conference
Bertinoro, Italy, October 26–30, 2015
Proceedings

123

Editors
Qingliang Chen
Jinan University
Guangzhou
China

Paolo Torroni
DISI
Università di Bologna
Bologna
Italy

Serena Villata
Inria - Sophia Antipolis-Méditerranée
Sophia Antipolis
France

Jane Hsu
National Taiwan University
Taipei
Taiwan

Andrea Omicini
DISI
Università di Bologna
Bologna
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-25523-1 ISBN 978-3-319-25524-8 (eBook)
DOI 10.1007/978-3-319-25524-8

Library of Congress Control Number: 2015951757

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Welcome to the proceedings of the 18th International Conference on Principles and
Practice of Multi-Agent Systems (PRIMA 2015) held in Bertinoro, Italy, during
October 26–30, 2015.

Originally started as a regional (Asia-Pacific) workshop in 1998, PRIMA has
become one of the leading and influential scientific conferences for research on
multi-agent systems. Each year, PRIMA brings together active researchers, developers
and practitioners from both academia and industry to showcase, share and promote
research in several domains, ranging from foundations of agent theory and engineering
aspects of agent systems, to emerging interdisciplinary areas of agent-based research.

The 2015 edition was a very special one, because this was the very first time that
PRIMA was brought to Europe since it emerged as a full-fledged international con-
ference in 2009. Previous successful editions were held in Nagoya, Japan (2009),
Kolkata, India (2010), Wollongong, Australia (2011), Kuching, Malaysia (2012),
Dunedin, New Zealand (2013), and Gold Coast, Australia (2014).

We received 94 submissions from 30 countries. Each submission was carefully
reviewed by at least three members of the Program Committee (PC) composed of 184
prominent world-level researchers and 27 additional reviewers. The review period was
followed by PC discussions moderated by Senior Program Committee (SPC) members.
The PRIMA SPC has been part of the PRIMA reviewing scheme since 2010, and this
year it included 22 members. At the end of the reviewing process, in addition to the
technical reviews, each paper received a summary meta-review by an SPC member.
The PC and SPC included researchers from 139 institutions located in 33 countries
world−wide.

Of the 94 submissions, PRIMA 2015 accepted 29 papers, with an acceptance rate of
31 %. In addition, 24 contributions were accepted as promising, but not fully mature
early innovation papers. All papers were presented at the conference. Each paper was
also invited to display a poster so as to enable further discussion. In addition to paper
presentations and poster sessions, the conference itself also included three workshops,
two tutorials, three keynote talks, and a demo session.

We nominated three papers for the PRIMA 2015 Best Paper Award:

– “Verification of Asynchronous Mobile-Robots in Partially–Known Environments”,
by Sasha Rubin, Florian Zuleger, Aniello Murano, and Benjamin Aminof

– “Potential of Heterogeneity in Collective Behaviors: a Case Study on Heteroge-
neous Swarms”, by Daniela Kengyel, Heiko Hamann, Payam Zahadat, Gerald
Radspieler, Franz Wotawa and Thomas Schmickl

– “Designing a Source-Level Debugger for Cognitive Agent Programs”, by Vincent
Koeman and Koen Hindriks

Authors of selected papers were invited to submit extended versions of their work to
several scientific journals, to further the impact of PRIMA 2015 via special issues and
fast tracks. A special issue of Fundamenta Informaticae will be devoted to more
theoritical work, whereas one by the Knowledge Engineering Review will focus on
emerging perspectives in the PRIMA scope. Finally, the Journal of Autonomous Agents
and Multi-Agent Systems will fast-track the processing of extended PRIMA best papers.

We would like to thank all individuals, institutions, and sponsors that supported
PRIMA 2015. Mainly we thank the conference delegates and the authors, who
answered our call for papers by submitting state-of-the-art research papers from all over
the world, confirming the role that PRIMA has gained as a leading international
conference in multi-agent system research. Without them, none of this would have been
possible. We also thank EasyChair for the use of their conference management system,
which allowed us to handle the reviewing process of a conference of this size, from the
early stages until the production of the present volume.

We are indebted to our PC and SPC members and additional reviewers for spending
their valuable time by providing careful reviews and recommendations on the sub-
missions, and for taking part in follow-up discussions. We are proud that all PRIMA
submissions received informative and constructive feedback. We nominated three PC
members for the PRIMA 2015 Best PC Member Award: Michael Winikoff, Stéphane
Airiau, and Fabio Paglieri; and three SPC members for the PRIMA 2015 Best SPC
Member Award: Rafael Bordini, Yves Demazeau, and Tony Bastin Roy Savarimuthu.
A special mention was made of additional reviewers Chiara Bassetti, Dave De Jonge,
and Fuyuki Ishikawa for providing very thorough and insightful reviews.

Special thanks to some individuals who have consistently supported this conference,
in particular the senior advisors of PRIMA 2015, Aditya Ghose, Guido Governatori,
and Makoto Yokoo, and the staff members and students of the Università di Bologna’s
Department of Computer Science and Engineering (DISI), especially Marco Prandini,
Enrico Denti, and Stefano Mariani for their efforts in the local and financial organi-
zation and management of the website: http://prima2015.apice.unibo.it. We also thank
the workshop and tutorial chairs, Matteo Baldoni, Mohammad Namazi, and Cristina
Baroglio, the conference secretariat in Bertinoro, in particular Roberta Partisani and
Michela Schiavi, Editorial Director Alfred Hofmann, and Editors-in-Chief Damian
Niwinski, Peter McBurney, Simon Parsons, Peter Stone, and Carles Sierra. Last but not
least, special thanks for to the wonderful invited talks given by Marc Cavazza, Michael
Mäs, and Franco Zambonelli.

Finally, we are very grateful to the sponsors who supported PRIMA financially,
making the conference accessible to a larger number of delegates, and supporting the
participation of keynote speakers:

– The Bertinoro Centre for Informatics, http://bici.eu
– The Università di Bologna’s Department of Computer Science and Engineering,

http://disi.unibo.it

VI Preface

http://prima2015.apice.unibo.it
http://bici.eu
http://disi.unibo.it

– The European Coordinating Committee for Artificial Intelligence, http://eccai.org
– Springer’s Lecture Notes in Computer Science, http://springer.com/computer/lncs

We hope you enjoy the proceedings!

August 2015 Qingliang Chen
Paolo Torroni
Serena Villata

Jane Hsu
Andrea Omicini

Preface VII

http://eccai.org
http://springer.com/computer/lncs

Organization

General Co-chairs

Jane Hsu National Taiwan University, Taiwan
Andrea Omicini Università di Bologna, Italy

Program Co-chairs

Qingliang Chen Jinan University, China
Paolo Torroni Università di Bologna, Italy
Serena Villata Inria Sophia Antipolis, France

Workshop Chairs

Matteo Baldoni Università di Torino, Italy
Mohammad Namazi University of Wollongong, Australia

Tutorial Chair

Cristina Baroglio Università di Torino, Italy

Finance and Organization Chairs

Enrico Denti Università di Bologna, Italy
Marco Prandini Università di Bologna, Italy

Web Chair

Stefano Mariani Università di Bologna, Italy

Senior Advisors

Aditya Ghose University of Wollongong, Australia
Guido Governatori NICTA, Australia
Makoto Yokoo Kyushu University, Japan

Senior Program Committee

Bo An Nanyang Technological University, Singapore
Tina Balke Dassault Systèmes/Quintiq, The Netherlands

Rafael Bordini Pontifícia Universidade Católica do Rio Grande do Sul,
Brazil

Hoa Khanh Dam University of Wollongong, Australia
Mehdi Dastani University of Utrecht, The Netherlands
Paul Davidsson Malmö University, Sweden
Yves Demazeau CNRS, France
Frank Dignum University of Utrecht, The Netherlands
Rino Falcone Institute of Cognitive Sciences and Technologies,

CNR, Italy
Guido Governatori NICTA, Australia
Katsutoshi Hirayama Kobe University, Japan
Takayuki Ito Nagoya Institute of Technology, Japan
Zhi Jin Peking University, China
Nicolas Maudet Université Paris 6, France
Julian Padget University of Bath, UK
David Pynadath University of Southern California, USA
Bastin Tony Roy

Savarimuthu
University of Otago, New Zealand

Karl Tuyls University of Liverpool, UK
Harko Verhagen Stockholm University/KTH, Sweden
Bo Yang Jilin University, China
Makoto Yokoo Kyushu University, Japan
Jie Zhang Nanyang Technological University, Singapore

Program Committee

Thomas Ågotnes University of Bergen, Norway
Stéphane Airiau Université Paris 6, France
Huib Aldewereld Delft University of Technology, The Netherlands
Natasha Alechina University of Nottingham, UK
Leila Amgoud Institut de Recherche en Informatique de Toulouse,

France
Giulia Andrighetto Institute of Cognitive Sciences and Technologies,

CNR, Italy
Grigoris Antoniou University of Huddersfield, UK
Alexander Artikis NCSR Demokritos, Greece
Guillaume Aucher University of Rennes 1/Inria, France
Fatma Başak Aydemir University of Trento, Italy
Nicola Basilico University of Milan, Italy
Ana L.C. Bazzan Universidade Federal do Rio Grande do Sul, Brazil
Francesco Belardinelli Université d’Evry, France
Salem Benferhat Université d’Artois, France
Jamal Bentahar Concordia University, Canada
Floris Bex Utrecht University, The Netherlands
Pierre Bisquert National Institute for Agricultural Research, France
Olivier Boissier ENS Mines Saint-Etienne, France

X Organization

Elise Bonzon Paris Descartes University, France
Vicent Botti Universitat Politècnica de València, Spain
Felix Brandt Technische Universität München, Germany
Daniela Briola University of Genova, Italy
Nils Bulling Delft University of Technology, The Netherlands
Ddac Busquets Imperial College London, UK
Elena Cabrio Inria Sophia Antipolis, France
Patrice Caire University of Luxembourg, Luxembourg
Cristiano Castelfranchi Institute of Cognitive Sciences and Technologies,

CNR, Italy
Marc Cavazza University of Teesside, UK
Marcello Ceci University of Bologna, Italy
Federico Cerutti University of Aberdeen, UK
Yin Chen South China Normal University, China
Shih-Fen Cheng Singapore Management University, Singapore
Amit Chopra Lancaster University, UK
Paolo Ciccarese Harvard Medical School and Massachusetts General

Hospital, USA
Marco Comerio University of Milano-Bicocca, Italy
Massimo Cossentino High Performance Computing and Network Institute,

CNR, Italy
Stefania Costantini University of L’Aquila, Italy
Mathieu D’Aquin The Open University, UK
Célia Da Costa Pereira Université Nice Sophia Anipolis, France
Nirmit Desai IBM T.J. Watson Research Center, USA
Marina De Vos University of Bath, UK
Mathijs De Weerdt Delft University of Technology, The Netherlands
Isabella Distinto ISTC-CNR Laboratory for Applied Ontology, Trento,

Italy
Juergen Dix Technical University of Clausthal, Germany
Sylvie Doutre Institut de Recherche en Informatique de Toulouse,

France
Jérôme Euzenat Inria and University of Grenoble, France
Xiuyi Fan Imperial College London, UK
Catherine Faron Zucker Université Nice Sophia Anipolis, France
Michael Fisher University of Liverpool, UK
Nicoletta Fornara Università della Svizzera Italiana, Switzerland
Katsuhide Fujita Tokyo University of Agriculture and Technology,

Japan
Naoki Fukuta Shizuoka University, Japan
Simone Gabbriellini GEMASS, CNRS and Paris-Sorbonne, France
Yang Gao Nanjing University, China
Guglielmo Gemignani University of Rome La Sapienza, Italy
Vladimir Gorodetsky St. Petersburg Institute for Informatics and Automation

of the Russian Academy of Sciences, Russia
Davide Grossi University of Liverpool, UK

Organization XI

Nicola Guarino ISTC-CNR Laboratory for Applied Ontology, Trento,
Italy

Akin Gunay Nanyang Technological University, Singapore
James Harland RMIT University, Australia
Koen Hindriks Delft University of Technology, The Netherlands
Reiko Hishiyama Waseda University, Japan
Xiaowei Huang University of Oxford, UK
Anthony Hunter University College London, UK
Wojciech Jamroga Polish Academy of Sciences, Poland
Yichuan Jiang Southeast University, China
Ozgur Kafali North Carolina State University, USA
Tony Kakas University of Cyprus, Cypus
Shohei Kato Nagoya Institute of Technology, Japan
Sabrina Kirrane Insight Centre for Data Analytics, Ireland
Yasuhiko Kitamura Kwansei Gakuin University, Japan
Sébastien Konieczny CNRS and Centre de Recherche en Informatique de

Lens, France
Andrew Koster Samsung Research Institute, Brazil
Bob Kowalski Imperial College London, UK
Kazuhiro Kuwabara Ritsumeikan University, Japan
Jérôme Lang Université Paris-Dauphine, France
Kate Larson University of Waterloo, Canada
Joao Leite New University of Lisbon, Portugal
Ho-Fung Leung The Chinese University of Hong Kong, China
Beishui Liao Zhejiang University, China
Churn-Jung Liau Academia Sinica, Taiwan
Marco Lippi University of Bologna, Italy
Chanjuan Liu Peking University, China
Fenrong Liu Tsinghua University, China
Rey-Long Liu Tzu Chi University, Taiwan
Brian Logan University of Nottingham, UK
Alessio Lomuscio Imperial College London, UK
Maite Lopez-Sanchez University of Barcelona, Spain
Emiliano Lorini Institut de Recherche en Informatique de Toulouse,

France
Marco Luetzenberger Distributed Artificial Intelligence Laboratory Berlin,

Germany
Xudong Luo Sun Yat-Sen University, China
Patrick MacAlpine University of Texas at Austin, USA
Samhar Mahmoud King’s College London, UK
Xinjun Mao National University of Defense Technology, China
Elisa Marengo Free University of Bozen-Bolzano, Italy
Viviana Mascardi University of Genova, Italy
Shigeo Matsubara Kyoto University, Japan
Toshihiro Matsui Nagoya Institute of Technology, Japan

XII Organization

Artur Mȩski Institute of Computer Science, Polish Academy of
Sciences, Poland

John-Jules Meyer University of Utrecht, The Netherlands
Roberto Micalizio University of Turin, Italy
Tim Miller University of Melbourne, Australia
Tsunenori Mine Kyushu University, Japan
Luis Moniz Pereira Universidade Nova de Lisboa, Portugal
Marco Montali Free University of Bozen-Bolzano, Italy
Pavlos Moraitis Paris Descartes University, France
Yohei Murakami Kyoto University, Japan
Yuu Nakajima Toho University, Japan
Hideyuki Nakanishi Osaka University, Japan
Timothy Norman University of Aberdeen, UK
Ann Nowé Free University of Brussels, Belgium
Eugénio Oliveira Universidade do Porto, Portugal
Nir Oren University of Aberdeen, UK
Sascha Ossowski Universidad Rey Juan Carlos Madrid, Spain
Fabio Paglieri Institute of Cognitive Sciences and Technologies,

CNR, Italy
Maurice Pagnucco The University of New South Wales, Australia
Odile Papini Aix-Marseille University, France
Simon Parsons King’s College London, UK
Duy Hoang Pham Posts and Telecommunications Institute of Technology,

Vietnam
Axel Polleres Vienna University of Economics and Business, Austria
Enrico Pontelli New Mexico State University, USA
Henry Prakken University of Utrecht, The Netherlands
Weronika Radziszewska University of Warsaw, Poland
Franco Raimondi Middlesex University, UK
Gopal Ramchurn University of Southampton, UK
Fenghui Ren University of Wollongong, Australia
Alessandro Ricci University of Bologna, Italy
Regis Riveret NICTA, Australia
Sergi Robles Universitat Autònoma de Barcelona, Spain
Juan Rodriguez Artificial Intelligence Research Institute, CSIC, Spain
Victor Rodriguez-Doncel Universidad Politécnica de Madrid, Spain
Francesca Rossi University of Padova, Italy and Harvard University,

USA
Antonino Rotolo University of Bologna, Italy
Ji Ruan Auckland University of Technology, New Zealand
Yuko Sakurai Kyushu University, Japan
Francesco Santini University of Perugia, Italy
Ken Satoh National Institute of Informatics, Japan
Luigi Sauro University of Naples Federico II, Italy
Claudia Schulz Imperial College London, UK
François Schwarzentruber ENS Rennes, France

Organization XIII

Sandip Sen University of Tulsa, USA
Luciano Serafini Fondazione Bruno Kessler, Italy
Yuping Shen Sun Yat-Sen University, China
Zhongzhi Shi Chinese Academy of Sciences, China
Carles Sierra Artificial Intelligence Research Institute, CSIC, Spain
Marija Slavkovik University of Bergen, Norway
Leon Sterling Swinburne University of Technology, Australia
Alina Strachocka University of Warsaw, Poland
Kaile Su Griffith University, Australia
Valentina Tamma University of Liverpool, UK
Yuqing Tang Carnegie Mellon University, USA
Andrea Tettamanzi Université Nice Sophia Antipolis, France
Michael Thielscher The University of New South Wales, Australia
Matthias Thimm University of Koblenz, Germany
Michaël Thomazo Technical University of Dresden, Germany
Xiangrong Tong Yantai University, China
Francesca Toni Imperial College London, UK
Fujio Toriumi The University of Tokyo, Japan
Nicolas Troquard Université Paris-Est Créteil, France
Kagan Tumer Oregon State University, USA
Luca Tummolini Institute of Cognitive Sciences and Technologies,

CNR, Italy
Paolo Turrini Imperial College London, UK
Andreea Urzica University Politehnica of Bucharest, Romania
Leon van der Torre University of Luxembourg, Luxembourg
Wiebe van der Hoek University of Liverpool, UK
Wamberto Vasconcelos University of Aberdeen, UK
Matteo Venanzi University of Southampton, UK
Maria Esther Vidal Universidad Simon Bolivar, Venezuela
Mirko Viroli University of Bologna, Italy
Toby Walsh NICTA and University of New South Wales, Australia
Can Wang Commonwealth Scientific and Industrial Research

Organisation, Australia
Chongjun Wang Nanjing University, China
Kewen Wang Griffith University, Australia
Wanyuan Wang Southeast University, China
Zhe Wang Griffith University, Australia
Michael Winikoff University of Otago, New Zealand
Brendon J. Woodford University of Otago, New Zealand
Feng Wu University of Sicence and Technology of China, China
Lijun Wu University of Electronic Science and Technology,

China
Adam Wyner University of Aberdeen, UK
Pinar Yolum Bogazici University, Turkey

XIV Organization

Neil Yorke-Smith American University of Beirut, Lebanon
Yifeng Zeng Teesside University, UK
Zhiqiang Zhuang Griffith University, Australia

Additional Reviewers

Balbo, Flavien
Banfi, Jacopo
Bassetti, Chiara
Beck, Zoltan
Cardoso, Henrique
Charrier, Tristan
Chen, Yingke
De Jonge, Dave
Havur, Giray
Ishikawa, Fuyuki
Kokkinogenis, Zafeiris
Li, Naiqi
Lopes, Fernando
Gustavo Nardin, Luis

Nide, Naoyuki
Pianini, Danilo
Ramos, Gabriel de Oliveira
Rebhuhn, Carrie
Sabatucci, Luca
Santos, Fernando
Sapienza, Alessandro
Shams, Zohreh
Szreter, Maciej
Tirea, Monica
Yliniemi, Logan
Razo-Zapata, Iván
Zhan, Jieyu

Organization XV

Contents

Regular Papers

Solving F3MDPs : Collaborative Multiagent Markov Decision Processes
with Factored Transitions, Rewards and Stochastic Policies 3

Julia Radoszycki, Nathalie Peyrard, and Régis Sabbadin

Managing Autonomous Mobility on Demand Systems for Better Passenger
Experience . 20

Wen Shen and Cristina Lopes

Norm Establishment in a Single Dimension Axelrod Model 36
Vinay Katiyar and David Clarance

Multi-agent Systems Meet Aggregate Programming: Towards a Notion of
Aggregate Plan . 49

Mirko Viroli, Danilo Pianini, Alessandro Ricci, Pietro Brunetti,
and Angelo Croatti

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness in
Multiagent Systems . 65

Alan White, Austin Tate, and Michael Rovatsos

Optimizing Long-Running Action Histories in the Situation Calculus
Through Search . 85

Christopher Ewin, Adrian R. Pearce, and Stavros Vassos

Semantics for Modelling Reason-Based Preferences. 101
Erica Calardo, Guido Governatori, and Antonino Rotolo

Strategy-Proof Cake Cutting Mechanisms for All-or-Nothing Utility 118
Takamasa Ihara, Shunsuke Tsuruta, Taiki Todo, Yuko Sakurai,
and Makoto Yokoo

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 134
Toshihiro Matsui, Marius Silaghi, Tenda Okimoto,
Katsutoshi Hirayama, Makoto Yokoo, and Hiroshi Matsuo

Dynamic Coalition Formation in Energy Micro-Grids 152
Muhammad Yasir, Martin Purvis, Maryam Purvis,
and Bastin Tony Roy Savarimuthu

On the Hierarchical Nature of Partial Preferences . 169
Luigi Sauro

http://dx.doi.org/10.1007/978-3-319-25524-8_1
http://dx.doi.org/10.1007/978-3-319-25524-8_1
http://dx.doi.org/10.1007/978-3-319-25524-8_1
http://dx.doi.org/10.1007/978-3-319-25524-8_2
http://dx.doi.org/10.1007/978-3-319-25524-8_2
http://dx.doi.org/10.1007/978-3-319-25524-8_3
http://dx.doi.org/10.1007/978-3-319-25524-8_4
http://dx.doi.org/10.1007/978-3-319-25524-8_4
http://dx.doi.org/10.1007/978-3-319-25524-8_5
http://dx.doi.org/10.1007/978-3-319-25524-8_5
http://dx.doi.org/10.1007/978-3-319-25524-8_6
http://dx.doi.org/10.1007/978-3-319-25524-8_6
http://dx.doi.org/10.1007/978-3-319-25524-8_7
http://dx.doi.org/10.1007/978-3-319-25524-8_8
http://dx.doi.org/10.1007/978-3-319-25524-8_9
http://dx.doi.org/10.1007/978-3-319-25524-8_10
http://dx.doi.org/10.1007/978-3-319-25524-8_11

Verification of Asynchronous Mobile-Robots in Partially-Known
Environments . 185

Sasha Rubin, Florian Zuleger, Aniello Murano, and Benjamin Aminof

Potential of Heterogeneity in Collective Behaviors: A Case Study on
Heterogeneous Swarms . 201

Daniela Kengyel, Heiko Hamann, Payam Zahadat, Gerald Radspieler,
Franz Wotawa, and Thomas Schmickl

Multi-agent Path Planning in Known Dynamic Environments 218
Aniello Murano, Giuseppe Perelli, and Sasha Rubin

Module Checking for Uncertain Agents . 232
Wojciech Jamroga and Aniello Murano

Towards Systematic Evaluation of Multi-agent Systems in Large Scale and
Dynamic Logistics . 248

Rinde R.S. van Lon and Tom Holvoet

Paraconsistent Multi-party Persuasion in TalkLOG 265
Barbara Dunin-Kȩplicz and Alina Strachocka

A Micro Study on the Evolution of Arguments in Amazon.com’s Reviews. . . . 284
Simone Gabbriellini and Francesco Santini

The Long-Term Benefits of Following Fairness Norms: A Game-Theoretic
Analysis. 301

Emiliano Lorini and Roland Mühlenbernd

Using Preferences in Negotiations over Ontological Correspondences 319
Terry R. Payne and Valentina Tamma

Designing a Source-Level Debugger for Cognitive Agent Programs. 335
Vincent J. Koeman and Koen V. Hindriks

Reflecting on Agent Programming with AgentSpeak(L) 351
Rem W. Collier, Seán Russell, and David Lillis

Checking the Reliability of Information Sources in Recommendation Based
Trust Decision Making . 367

Kamilia Ahmadi and Vicki H. Allan

Supporting Human-Robot Teams in Space Missions Using ePartners and
Formal Abstraction Hierarchies . 383

Tibor Bosse, Jurriaan van Diggelen, Mark A. Neerincx,
and Nanja J.J.J. Smets

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-25524-8_12
http://dx.doi.org/10.1007/978-3-319-25524-8_12
http://dx.doi.org/10.1007/978-3-319-25524-8_13
http://dx.doi.org/10.1007/978-3-319-25524-8_13
http://dx.doi.org/10.1007/978-3-319-25524-8_14
http://dx.doi.org/10.1007/978-3-319-25524-8_15
http://dx.doi.org/10.1007/978-3-319-25524-8_16
http://dx.doi.org/10.1007/978-3-319-25524-8_16
http://dx.doi.org/10.1007/978-3-319-25524-8_17
http://dx.doi.org/10.1007/978-3-319-25524-8_17
http://dx.doi.org/10.1007/978-3-319-25524-8_18
http://dx.doi.org/10.1007/978-3-319-25524-8_19
http://dx.doi.org/10.1007/978-3-319-25524-8_19
http://dx.doi.org/10.1007/978-3-319-25524-8_20
http://dx.doi.org/10.1007/978-3-319-25524-8_21
http://dx.doi.org/10.1007/978-3-319-25524-8_22
http://dx.doi.org/10.1007/978-3-319-25524-8_23
http://dx.doi.org/10.1007/978-3-319-25524-8_23
http://dx.doi.org/10.1007/978-3-319-25524-8_24
http://dx.doi.org/10.1007/978-3-319-25524-8_24

Flexible Reward Plans for Crowdsourced Tasks . 400
Yuko Sakurai, Masato Shinoda, Satoshi Oyama, and Makoto Yokoo

Majoritarian Group Actions . 416
Daniele Porello

Programming Deliberation Strategies in Meta-APL 433
Sam Leask and Brian Logan

Multi-context Systems with Preferences . 449
Tiep Le, Tran Cao Son, and Enrico Pontelli

A Dynamic-Logical Characterization of Solutions in Sight-limited
Extensive Games. 467

Chanjuan Liu, Fenrong Liu, and Kaile Su

Early Innovation Papers

Kinetic Description of Opinion Evolution in Multi-agent Systems: Analytic
Model and Simulations . 483

Stefania Monica and Federico Bergenti

An Agent-Based Model to Study Effects of Team Processes on Compliance
with Safety Regulations at an Airline Ground Service Organization. 492

Alexei Sharpanskykh and Rob Haest

Agent-Oriented Programming Languages as a High-Level Abstraction
Facilitating the Development of Intelligent Behaviours for Component-
Based Applications . 501

Seán Russell, G.M.P. O’Hare, and Rem W. Collier

Towards a Taxonomy of Task-Oriented Domains of Dialogue 510
Tânia Marques

Mechanism Design for Argumentation-Based Information-Seeking and
Inquiry . 519

Xiuyi Fan and Francesca Toni

Fair Assessment of Group Work by Mutual Evaluation with Irresponsible
and Collusive Students Using Trust Networks. 528

Yumeno Shiba, Haruna Umegaki, and Toshiharu Sugawara

Modeling the Effects of Personality on Team Formation in Self-assembly
Teams . 538

Mehdi Farhangian, Martin K. Purvis, Maryam Purvis,
and Bastin Tony Roy Savarimuthu

Contents XIX

http://dx.doi.org/10.1007/978-3-319-25524-8_25
http://dx.doi.org/10.1007/978-3-319-25524-8_26
http://dx.doi.org/10.1007/978-3-319-25524-8_27
http://dx.doi.org/10.1007/978-3-319-25524-8_28
http://dx.doi.org/10.1007/978-3-319-25524-8_29
http://dx.doi.org/10.1007/978-3-319-25524-8_29
http://dx.doi.org/10.1007/978-3-319-25524-8_30
http://dx.doi.org/10.1007/978-3-319-25524-8_30
http://dx.doi.org/10.1007/978-3-319-25524-8_31
http://dx.doi.org/10.1007/978-3-319-25524-8_31
http://dx.doi.org/10.1007/978-3-319-25524-8_32
http://dx.doi.org/10.1007/978-3-319-25524-8_32
http://dx.doi.org/10.1007/978-3-319-25524-8_32
http://dx.doi.org/10.1007/978-3-319-25524-8_33
http://dx.doi.org/10.1007/978-3-319-25524-8_34
http://dx.doi.org/10.1007/978-3-319-25524-8_34
http://dx.doi.org/10.1007/978-3-319-25524-8_35
http://dx.doi.org/10.1007/978-3-319-25524-8_35
http://dx.doi.org/10.1007/978-3-319-25524-8_36
http://dx.doi.org/10.1007/978-3-319-25524-8_36

Real-Time Conditional Commitment Logic. 547
Warda El Kholy, Mohamed El Menshawy, Amine Laarej,
Jamal Bentahar, Faisal Al-Saqqar, and Rachida Dssouli

A Double Auction Mechanism for On-Demand Transport Networks 557
Malcolm Egan, Martin Schaefer, Michal Jakob, and Nir Oren

Exploiting Social Commitments in Programming Agent Interaction 566
Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati,
and Roberto Micalizio

Social Continual Planning in Open Multiagent Systems: A First Study 575
Matteo Baldoni, Cristina Baroglio, and Roberto Micalizio

Security Games with Ambiguous Beliefs OfAgents 585
Hossein Khani and Mohsen Afsharchi

Introducing Preference-Based Argumentation to Inconsistent Ontological
Knowledge Bases . 594

Madalina Croitoru, Rallou Thomopoulos, and Srdjan Vesic

Compliant Business Processes with Exclusive Choices from Agent
Specification. 603

Francesco Olivieri, Matteo Cristani, and Guido Governatori

Probabilistic Perception Revision in AGENTSPEAK(L) 613
Francisco Coelho and Vitor Nogueira

Adaptive Multi-stage Optimisation for EV Charging Integration into Smart
Grid Control. 622

Christopher-Eyk Hrabia, Tobias Küster, Marcus Voß,
Francisco Denis Pozo Pardo, and Sahin Albayrak

Collaborative Judgement . 631
Ewa Andrejczuk, Juan Antonio Rodriguez-Aguilar, and Carles Sierra

Model Checking Resource Bounded Systems with Shared Resources via
Alternating Büchi Pushdown Systems . 640

Nils Bulling and Hoang Nga Nguyen

Integrating Conversation Trees and Cognitive Models Within an ECA for
Aggression De-escalation Training . 650

Tibor Bosse and Simon Provoost

Checking WELTLK Properties of Weighted Interpreted Systems via SMT-
Based Bounded Model Checking . 660

Agnieszka M. Zbrzezny and Andrzej Zbrzezny

XX Contents

http://dx.doi.org/10.1007/978-3-319-25524-8_37
http://dx.doi.org/10.1007/978-3-319-25524-8_38
http://dx.doi.org/10.1007/978-3-319-25524-8_39
http://dx.doi.org/10.1007/978-3-319-25524-8_40
http://dx.doi.org/10.1007/978-3-319-25524-8_41
http://dx.doi.org/10.1007/978-3-319-25524-8_42
http://dx.doi.org/10.1007/978-3-319-25524-8_42
http://dx.doi.org/10.1007/978-3-319-25524-8_43
http://dx.doi.org/10.1007/978-3-319-25524-8_43
http://dx.doi.org/10.1007/978-3-319-25524-8_44
http://dx.doi.org/10.1007/978-3-319-25524-8_45
http://dx.doi.org/10.1007/978-3-319-25524-8_45
http://dx.doi.org/10.1007/978-3-319-25524-8_46
http://dx.doi.org/10.1007/978-3-319-25524-8_47
http://dx.doi.org/10.1007/978-3-319-25524-8_47
http://dx.doi.org/10.1007/978-3-319-25524-8_48
http://dx.doi.org/10.1007/978-3-319-25524-8_48
http://dx.doi.org/10.1007/978-3-319-25524-8_49
http://dx.doi.org/10.1007/978-3-319-25524-8_49

Games with Communication: From Belief to Preference Change 670
Guillaume Aucher, Bastien Maubert, Sophie Pinchinat,
and François Schwarzentruber

Design Patterns for Environments in Multi-agent Simulations 678
Philippe Mathieu, Sébastien Picault, and Yann Secq

Commitments, Expectations, Affordances and Susceptibilities: Towards
Positional Agent Programming . 687

Giovanni Sileno, Alexander Boer, and Tom van Engers

Using Conceptual Spaces for Object Recognition in Multi-agent Systems. . . . 697
João Mario Lopes Brezolin, Sandro Rama Fiorini,
Marcia de Borba Campos, and Rafael H. Bordini

Author Index . 707

Contents XXI

http://dx.doi.org/10.1007/978-3-319-25524-8_50
http://dx.doi.org/10.1007/978-3-319-25524-8_51
http://dx.doi.org/10.1007/978-3-319-25524-8_52
http://dx.doi.org/10.1007/978-3-319-25524-8_52
http://dx.doi.org/10.1007/978-3-319-25524-8_53

Regular Papers

Solving F3MDPs: Collaborative Multiagent
Markov Decision Processes with Factored

Transitions, Rewards and Stochastic Policies

Julia Radoszycki, Nathalie Peyrard, and Régis Sabbadin(B)

INRA-MIAT (UR 875), 31326 Castanet-Tolosan, France
{julia.radoszycki,nathalie.peyrard,regis.sabbadin}@toulouse.inra.fr

Abstract. Multiagent Markov Decision Processes provide a rich frame-
work to model problems of multiagent sequential decision under uncer-
tainty, as in robotics. However, when the state space is also factored
and of high dimension, even dedicated solution algorithms (exact or
approximate) do not apply when the dimension of the state space and
the number of agents both exceed 30, except under strong assumptions
about state transitions or value function. In this paper we introduce
the F3MDP framework and associated approximate solution algorithms
which can tackle much larger problems. An F3MDP is a collaborative
multiagent MDP whose state space is factored, reward function is addi-
tively factored and solution policies are constrained to be factored and
can be stochastic. The proposed algorithms belong to the family of Policy
Iteration (PI) algorithms. On small problems, where the optimal policy
is available, they provide policies close to optimal. On larger problems
belonging to the subclass of GMDPs they compete well with state-of-
the-art resolution algorithms in terms of quality. Finally, we show that
our algorithms can tackle very large F3MDPs, with 100 agents and a
state space of size 2100.

Keywords: Multiagent markov decision processes · Policy gradient ·
Inference in graphical models

1 Introduction

Markov Decision Processes (MDPs) form a suitable tool for modelling and solv-
ing problems of multiagent sequential decision under uncertainty [19]. However,
direct application to domains like robotics, environmental management, etc.,
is not straightforward when the state representation is also factored. Several
algorithms have been proposed for MDPs with factored state and action spaces
(FA-FMDPs, [8,11]). However, they usually do not apply when the numbers of
agents and of state variables both exceed 20-30, except when drastic assumptions
about state transitions or value functions hold (see Section 2).

This work was funded by ANR-13-AGRO-0001-04.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-25524-8 1

4 J. Radoszycki et al.

In this article, we propose a new framework, F3MDP, which can be applied to
the approximate resolution of general multiagent MDPs with additive rewards.
F3 stands for triply factored, since we consider factored stochastic policies in
addition to factored transitions and rewards. To solve F3MDPs, we propose a
generic gradient-based Policy Iteration (PI) algorithm. We show that the eval-
uation of stochastic policies amounts to computing marginal probabilities in a
Bayesian network, which can be done exactly or approximately, using state-of-
the art tools. The policy update phase amounts to computing small changes
in the parameters of the stochastic policies, either along a single coordinate,
or along the gradient of the policy value. The latter can be computed either by
finite differences, or by computing the marginals of a modified Bayesian network.

In Section 2, we provide some background on FA-FMDPs and on the resolu-
tion of multiagent factored MDPs or Dec-POMDPs, related to our approach. In
Section 3, we present our main contribution. We introduce the F3MDP frame-
work and the generic gradient-based PI algorithm. In Section 4, we present
extensive experiments on FA-FMDPs, both random and inspired by a disease
management problem.

2 Background

2.1 FA-FMDP

The method we propose in this paper is dedicated to the resolution of station-
ary, finite or infinite-horizon multiagent factored MDPs (FA-FMDPs), where the
transition function is represented by a Dynamic Bayesian Network (DBN, [16]).
We consider the case of FA-FMDPs whose reward function is a sum of small scope
reward functions. Such an FA-FMDP is an MDP P =< S,A, P,R, T > with:

– Factored state space: S =
∏n

i=1 Si, where each Si is a finite set. The state
of the system at time t ∈ {0, . . . , T} is noted: st = (st

1, ..., s
t
n) ∈ S.

– Factored action space: A =
∏m

j=1 Aj , where each Aj , the action space of
agent j, is a finite set. The action at time t ∈ {0, . . . , T − 1} is noted:
at = (at

1, ..., a
t
m) ∈ A.

– Factored transition function: ∀t ∈ {0, . . . , T − 1}, P (st+1|st, at) =∏n
i=1 Pi(st+1

i |paP (st+1
i)) where paP (st+1

i) = paS
P (st+1

i)
⋃

paA
P (st+1

i),
paS

P (st+1
i) ⊂ {st

j , j = 1...n, st+1
j′ , j′ = 1...n, j′ �= i} and paA

P (st+1
i) ⊂ {at

k, k =
1...m}. Synchronous arcs are allowed, but the underlying directed graph
must be acyclic.

– Additive reward function: R(st, at) =
∑r

α=1 Rα (paR(Rt
α)), where

paR(Rt
α) ⊂ {st

j , j = 1...n} ∪ {at
k, k = 1...m}. R(st, at) is assumed positive

and bounded.
– 0 < T ≤ +∞ the horizon of the problem.

A stationary policy for an MDP is defined as a mapping δ : S 	→ A, which
decides the global action at according to the global state st. Its value for a given
initial state s0 ∈ S is V R,T

δ (s0) = E

[∑T
t=0 γtRt | s0, δ

]
, where 0 < γ ≤ 1 is a

Solving F3MDPs: Collaborative Multiagent Markov Decision Processes 5

given discount factor1. Solving an MDP amounts to finding a policy δ∗ which
has maximal value for all initial states : ∀s0 ∈ S,∀δ : S 	→ A, Vδ∗(s0) ≥ Vδ(s0)
(there always exists such a deterministic policy [19]).

Since optimal solutions of FA-FMDPs are out of reach, we will not try to
find a policy which is optimal for all states. We will consider a given initial
distribution on states P 0(s0), and search for a policy maximizing the expected
value with respect to P 0 : V R,T

δ (P 0) =
∑

s0 P 0(s0)V R,T
δ (s0). In order to be

stored in memory, the initial distribution must be represented as a Bayesian
network. Furthermore, we will limit our search to stationary policies, even in the
finite horizon case where the optimal policy may not be stationary, since they
can be more concisely described and are easier to interpret and compute.

2.2 Related Work in Collaborative Multiagent MDPs

In FA-FMDPs, deterministic optimal policies are lists of global mappings δ∗
j :

S → Aj . Computing and even representing such global policies may quickly
become too difficult when n increases. Therefore, most approaches for solving
large FA-FMDPs have tried to remediate this effect by computing approximate
policies. These policies are either (i) factored policies,

(∏
i∈Ij

Si

)
→ Aj , where

all Ij ⊂ {1, . . . , n} have small cardinality or (ii) factored parameterized policies,
where each local policy is moreover parameterized.

In the first family of approaches, several algorithms have been proposed for
collaborative multiagent MDPs that approximate the value function (see for
example [8], [26], [25]). Decentralized POMDPs (Dec-POMDPs, [1]) consider a
factored action space (decentralized multiagent setting) and local observations,
generating factored policies. However, the state space is most often not factored
and of small size, compared to the action space [4]. There are some exceptions,
however, where the state space is also factored. [5] consider independent obser-
vations and transitions. [12] assume V R,T

δ (s0) factorizes as a sum of functions
of reduced scopes of the initial state, a property which holds only in some spe-
cific subclasses of Dec-POMDPs, mostly when there are independent transitions.
They propose an EM algorithm for solving Dec-POMDPs which has great scal-
ability, and solves problems where |S|≈ 258, |A|≈ 240, |Ω|≈ 247.

Still in the first family, [17] propose an approach based on collaborative graph-
ical Bayesian games. The limiting factor for this approach is the horizon T
(the largest horizon considered is T = 6, with 100 agents). Graph-based MDPs
(GMDPs [3,21]) form a sub-class of FA-FMDPs which also belong to the first
family. In the GMDP framework, a single agent and a single reward function
are associated to each state variable and rewards, transition and policies are
assumed to have identical factorization structure. The algorithms proposed for
the GMDP framework either make an approximation of the value function as a
sum of functions of small scopes of the initial state ([6,18]), or a multiplicative
approximation ([3]).

1 The problem can be undiscounted, in the finite-horizon case, in which case γ = 1.

6 J. Radoszycki et al.

In the second family of approaches, [10] propose a stochastic gradient descent
algorithm to optimize policies in form of finite-state machine controllers for fac-
tored MDPs (the action space is not factored and of small size). Still in the second
family, [2,22] propose reinforcement learning algorithms which optimize param-
eterized policies for FA-FMDPs. The approach of [22] was applied to problems
with at most 40 agents (and fewer state variables). The simulation-based value
function gradient computation proposed in [2] can be applied to larger problems.
However, it is not feasible for problems involving thousands of parameters, which
will be the case when considering stochastic factored policies as we do.

The approach we propose is similar in spirit to the two approaches, in that we
deal with general FA-FMDPs and use approximations of marginal probabilities
of the corresponding DBN to evaluate policies. Then, while the EM approach of
[12] is a planning as inference approach, directly modelling a policy optimization
problem as an inference problem, we only use inference to evaluate policies and
maintain interleaved parameters’ update phases. As far as we know, no plan-
ning as inference approach has yet been proposed that would succeed in solving
general FA-FMDPs with as many variables as we do.

In the next section, we propose a new approach, belonging to the first family,
where stochastic factored policies with an a priori defined structure are consid-
ered. Our approach has the originality to mix inference methods for graphical
models for policy evaluation (as in planning as inference methods) and continu-
ous optimization algorithms for policy updates (as in policy gradient methods).
Its generality allows to easily incorporate any new inference method for graphi-
cal models, or any new continuous optimization algorithm, in order to improve
the quality or the speed of the resolution.

3 F3MDP

3.1 Stochastic Factored Policies and F3MDP

An F3MDP is an FA-FMDP with additive reward and stochastic factored poli-
cies (SFP). SFPs extend deterministic factored policies. They are defined as:
δ(at|st) =

∏m
j=1 δj(at

j |paδ(at
j)) where the δj(·|paδ(at

j)) are conditional probabil-
ity distributions and paδ(at

j) ⊂ {st
i, i = 1...n} ∪ {at

k, k = 1...m, k �= j}. We only
consider factored policies for which the graph of dependencies corresponding to
both the transition and the SFP is acyclic (see Figure 1). The problem we tackle
is that of optimizing SFPs for a given structure. An F3MDP is thus a tuple
P =< S,A, T, P, paδ, R, P 0 >. This framework is a particular case of factored
Dec-POMDP [17] where the agent’s observations are subsets of the state vari-
ables and the observation function is deterministic. It is useful in frameworks
like agriculture management where the agents, the farmers, can only observe
the fields they own (which are potentially disconnected) in the landscape. In
the case of full observability, choosing the best policy structure, i.e. defining
{paδ(at

j), j = 1...m} is an important and complex question that we leave for
further research. Figure 1 shows an example of transition, reward and policy
structures for an F3MDP with two agents and two state variables.

Solving F3MDPs: Collaborative Multiagent Markov Decision Processes 7

st1 st2 at
1 at

2

st+1
1 st+1

2 Rt
1 Rt

2

Fig. 1. Example of transition (in blue), reward (in green) and policy (in red) structures
of an F3MDP with two agents and two state variables. paP (st+1

1) = {st
1, a

t
1, s

t+1
2 },

paP (st+1
2) = {st

1, s
t
2, a

t
2}, paR(Rt

1) = {st
1, a

t
1}, paR(Rt

2) = {st
1, s

t
2, a

t
2}, paδ(a

t
1) = {st

1}
and paδ(a

t
2) = {at

1, s
t
2}. Here agent 2 observes the decision of agent 1 before acting.

A given SFP δ, together with transition functions and a given factored distri-
bution on initial states P 0 define a DBN in which the probability of a trajectory
(s, a)0:T =< s0, a0, ...aT−1, sT > is:

PT
δ ((s, a)0:T) = P 0(s0) ×

T−1∏

t=0

(
n∏

i=1

Pi(st+1
i |paP (st+1

i))
m∏

j=1

δj(at
j |paδ(at

j))

)

.

The value of a given SFP δ for a given initial distribution P 0, in the finite
horizon case2 with horizon T , is defined as:

(1)V R,T
δ (P 0) =

∑

(s,a)0:T

PT
δ ((s, a)0:T)

(
T∑

t=0

γtR(st, at)

)

.

Computing this expectation requires the evaluation of only some local marginals
of PT

δ ((s, a)0:T):

V R,T
δ (P 0) =

T∑

t=0

γt
r∑

α=1

∑

paR(Rt
α)

bt
α(paR(Rt

α))Rα(paR(Rt
α)),

where bt
α(·) is the marginal distribution over variables influencing reward α at

time t. It is computed by marginalizing PT
δ ((s, a)0:T) over all other state and

action variables from time 0 to time T . Note that the value is a sum of functions
with reduced scopes {paR(Rt

α)}α∈{1...r},t∈{0,...,T}. This decomposition is exact
and follows directly from the hypotheses of the framework.

There exist many implemented algorithms allowing to compute exact val-
ues or approximations of the marginals bt

α(·), such as the exact Junction Tree
2 In the infinite horizon case with discount, the infinite sum can be approximated by

a (large enough) finite horizon time T .

8 J. Radoszycki et al.

algorithm (JT, e.g. [24]), for problems with small treewidth, or the approximate
Loopy Belief Propagation algorithm (LBP, [7]). Monte-Carlo (MC) algorithms
can also be applied to approximate the SFP value directly.

3.2 Optimizing Stochastic Factored Policies in F3MDP

When we look for optimal stochastic factored policies, we are facing a continuous
constrained optimization problem:

F3MDP Optimization Problem

maximize
δ̄∈(R+)N

V R,T

δ̄
(P 0)

subject to
∑

aj∈Aj

δj(aj |paδ(aj)) = 1, ∀j,∀paδ(aj)

where δ̄ is the vector of coordinates {δj(aj |paδ(aj)), ∀j,∀paδ(aj)}. The number
of coordinates of δ̄ is:

N =
m∑

j=1

|Aj |
∏

k/Ak∈paA
δ (aj)

|Ak|
∏

k/Sk∈paS
δ (aj)

|Sk| (2)

When ∀j = 1...m, |Aj |= |A1|, |paA
δ (aj)|= |paA

δ (a1)|= z and ∀i = 1...n, |Si|= |S1|,
|paS

δ (aj)|= |paS
δ (a1)|= y, we have N = m|A1|z+1|S1|y which is much smaller

than the number of parameters of a deterministic global policy (m|S|= m|S1|n)
when z << m and y << n.

Theorem. The decision version of the F3MDP problem is NPPP -complete. See
appendix for the proof.

3.3 Approximate Policy Iteration Algorithms

The F3MDP optimization problem will not be solved exactly in practice since
(i) we will often only have access to an approximation of V R,T

δ̄
(P 0) and (ii) the

problem may have many local maxima since it was not shown to be convex (most
of continuous optimization algorithms are local optimization algorithms which
are guaranteed to converge to the global optimum only when the function is
convex). Thus we propose a family of Policy Iteration-like algorithms, alternating
approximate evaluations and local improvements of policies:

– Evaluation step: Given current SFP δq, V R,T

δ̄q (P 0) is evaluated, using for
instance, JT, LBP or MC.

– Update step: δq is improved to δq+1, using either a Gradient Ascent (GA)
or a Coordinate Ascent (CA) approach (see [14]).

Solving F3MDPs: Collaborative Multiagent Markov Decision Processes 9

Gradient Ascent Algorithms. PI-like gradient-ascent algorithms provide a
local maximum in δ̄ of the (potentially approximate) value V R,T

δ̄
(P 0)3. A simple

re-parameterization allows us to get rid of the constraints. We write:

∀j,∀aj ,∀paδ(aj) δj(aj |paδ(aj)) =
eθj(aj |paδ(aj))

∑
a′

j∈Aj
eθj(a′

j |paδ(aj))
,

where the coordinates θj(aj |paδ(aj)) take real values. θ has the same structure
as δ, and we define the vector of real-valued coordinates θ̄ analogously to δ̄ (both
have the same number of coordinates). Once reparameterized, the optimization
problem becomes:

max
θ̄∈RN

V R,T

θ̄
(P 0), (3)

where N is defined in Equation (2).
Using gradient-ascent approaches to solve the maximization problem of Equa-

tion 3 requires to be able to compute the gradient ∇θ̄V
R,T

θ̄
(P 0), either analyt-

ically, or numerically. It can be shown that the components
∂V R,T

θ̄
(P 0)

∂θ̄k
can be

expressed as the marginals of a DBN, derived from the one defining V R,T

θ̄
(P 0).

Thus, in theory, the gradient can be computed in the same way as V R,T

θ̄
(P 0)

itself, using e.g. the JT algorithm. However, this is often too costly in practice.
Therefore, we present a finite-difference approximation of the gradient, which
we used in the experiments: ∀k = 1...N ,

∂V R,T

θ̄
(P 0)

∂θ̄k
≈ V R,T

θ̄+ (P 0) − V R,T

θ̄
(P 0)

ε
, (4)

where θ̄+k = θ̄k + ε and ∀l �= k θ̄+l = θ̄l. V R,T

θ̄
(P 0) and V R,T

θ̄+ (P 0) are computed
or approximated, using JT, LBP or MC. ε is a small, positive, step value. Note
that a change in a single component θ̄k induces a change in several coordinates
of δ̄. Indeed, the policy δ̄+ associated to θ̄+ is given by :

δ̄+k =
δ̄keε

1 + (eε − 1)δ̄k

δ̄+g =
δ̄g

1 + (eε − 1)δ̄k
,∀g ∈ G(k) (5)

δ̄+g = δ̄g,∀g �∈ G(k),

where G(k) is defined as follows: If δ̄k = δj(aj |paδ(aj)), then g ∈ G(k) iff there
exists a′

j �= aj , δ̄g = δj(a′
j |paδ(aj)). Once computed the approximation of the

gradient by finite differences (using the formulas for θ̄+ or δ̄+ and the chosen
evaluation method), the update of parameter vector θ̄ is given by :

θ̄q+1 = θ̄q + ηq∇θ̄qV
R,T

θ̄q (P 0) (6)

3 They provide in fact a critical point, i. e. a point for which the gradient is the null
vector, which is a necessary but not sufficient condition to have a maximal point.

10 J. Radoszycki et al.

There exist several ways to choose the step ηq used in Equation (6) for updating
θ̄q in the gradient direction at iteration q [14]. It can be fixed once and for all.
Alternately, it can be chosen optimal, i.e. leading to the maximal increase in
V R,T

θ̄
(P 0). The Wolfe conditions step choice method can be seen as an interme-

diate method which performs well in practice. In our experiments, we compared
these three choice methods.

Coordinate Ascent Algorithms. In the case of binary agent spaces, using the
fact that ∀j,∀paδ(aj), δj(aj = 2|paδ(aj)) = 1 − δj(aj = 1|paδ(aj)), we can build
directly an unconstrained optimization problem, whose parameter vector is

δ̃ = {δj(aj = 1|paδ(aj)),∀j,∀paδ(aj)}.

This also reduces the number of coordinates to optimize to N ′ = N
2 and the

optimization problem becomes:

maximize
δ̃∈[0,1]

N
2

V R,T

δ̃
(P 0) (7)

Coordinate ascent is a derivative-free algorithm. It consists in cycling among
the N

2 coordinates δj(aj = 1|paδ(aj)) and trying to locally improve the value
by modifying the current coordinate δ̃k. Modifications can consist in consider-
ing a fixed step modification of the current coordinate, or optimizing the value
by changing the local coordinate (using the golden section search algorithm,
see [14]). If all coordinates have been left unchanged after a full cycle, a local
maximum has been found.

Since action variables are binary, the constraints are box-constraints and the
coordinate ascent algorithm is guaranteed to converge to a local maximum of
V R,T

δ̃
(P 0). Note that gradient ascent can compute the coordinates of the gradient

in parallel, while coordinate ascent is inherently sequential.

4 Experiments

We have performed extensive experiments on F3MDP problems with infinite
horizon, which is the most difficult case for our algorithm. In all experiments we
took a discount factor of γ = 0.9.

The different solution algorithms we have empirically tested are named in
the form Optim-Eval, where Optim is the optimization method (CA or GA) and
Eval is the evaluation method used, exact (JT) or approximate (LBP or MC).

Our code is in Matlab and uses calls to functions of the libDAI library [15] for
JT and LBP evaluation. We have used a Scilab implementation of the Mean-Field
Approximate Policy Iteration (MF-API) algorithm to solve GMDP problems [21].
In GMDPs, the transition, the reward and the policy are supposed to have the
same structure, and the objective is to find the best deterministic factored policy.
MF-API is based on a mean field evaluation of deterministic factored policies,
ie a ‘more approximate’ method than loopy belief propagation. Moreover, there

Solving F3MDPs: Collaborative Multiagent Markov Decision Processes 11

is no guarantee with this algorithm to improve the value of the policy at each
iteration. Experiments have been conducted on a 16 core server, and the gradient
ascent algorithm has been parallelized, using the Matlab Parallelization toolbox.

In Section 4.1, a comparison of the different evaluation algorithms is pro-
vided. In Section 4.2, we provide a comparison of the different PI-like algo-
rithms on small problems (n = 6 binary state variables, m = 6 agents
with binary action spaces and r = 6 reward functions), for which an opti-
mal global policy can be computed. We have used the Matlab MDP toolbox:
http://www.inra.fr/mia/T/MDPtoolbox to compute optimal global policies. In
Section 4.3, we provide an evaluation on large problems of random structure (15
state variables, and 15 agents with binary or ternary action spaces). Finally, in
Section 4.4, we illustrate the use of our PI-like algorithms on a large disease
management problem on a grid (25 binary state variables and 25 agents for the
first grid, 100 binary state variables and 100 agents for the second grid). We
have found no other implementation of an algorithm dedicated to F3MDP solu-
tion which can tackle so large problems. In Section 4.2, we used a natural policy
structure, in which paδ(aj) is the union of the state variables which (i) either
appear in a common reward factor Rα with aj or (ii) influence a state variable
jointly with aj (i.e. appear jointly in one set paP (st+1

i)).

4.1 Policy Evaluation Methods

In order to choose an approximate evaluation method, the marginal evaluation
method is important, but the horizon approximation, T̂ , also. Both may have an
impact on the evaluation error and the computation time. We have tested the
impact of the horizon approximation on small F3MDP problems, for which we
can go as far as T̂ = 100 (Table 1).

Table 1. Mean relative error and mean evaluation time for stochastic policies on 100
small random F3MDP (n = 6 binary state variables, m = 6 agents with binary action
spaces, r = 6 reward functions). For Monte-Carlo evaluation, the average value is taken
over 4000 trajectories.

Evaluation method MRE mean time (sec)

MC T̂ = 40 0.01 23.45

JT T̂ = 20 0.11 0.085

LBP T̂ = 20 0.11 0.049

MC T̂ = 100 6.8 × 10−4 66.05

JT T̂ = 100 2.4 × 10−5 1.1

LBP T̂ = 100 0.009 0.23

The error obtained when T̂ = 20 is significant (10%), but not worse with
LBP than with JT. MC provides good results for T̂ = 40 (1% error), and all
methods are quite precise for T̂ = 100, but are too slow to be incorporated in
an optimization algorithm.

12 J. Radoszycki et al.

Therefore, we have chosen to use the LBP algorithm with T̂ = 20 in the
evaluation step of our PI-like algorithms, as it offers a good compromise between
computation time and approximation error. The MC approach with T̂ = 40 (and
4000 trajectories) is used for comparing the values of the policies returned by
these algorithms, when exact evaluation is impossible.

4.2 Small F3MDP Problems

We have performed a series of experiments on small F3MDP problems for which
the exact optimal (global and not factored) policy can be computed, in order to
evaluate the policies returned by several Optim-Eval instanciations of our PI-like
algorithm (Table 2). The uniformpolicy is used for initializing the algorithms.Note
that the value of ηq is 0.1 inCAalgorithms,where policy parameters belong to [0, 1],
while it is 10 or 20 in GA algorithms where parameters can take any real value.

The Mean Relative Error (MRE) between the optimal and approximate poli-
cies is given, as well as the mean computation time. Since the optimal policy
is global, it may not possess the natural structure assumed in our algorithms.
Thus, the computed MRE is an upper bound of the MRE with respect to the
optimal factored policy.

Using the CA-JT or GA-JT algorithm, we get policies whose MRE is 2% of
the optimal global policy. Using GA-LBP or CA-LBP with various line search
methods gives similar results with MRE 12%. We also tried GA-JT for an
assumed random policy structure (with the same size as the natural policy struc-
ture), and obtained an MRE of 0.048 (0.02 with the natural structure) and a
mean execution time of 3.66 minutes (3.25 minutes with the natural structure).
We may reasonably think thus that, when no constrained policy structure is
given in the problem, the natural structure we proposed is a good choice. Here
GA is not parallelized, except when agents have ternary action spaces (in this
case there starts to be a computation time difference).

More generally, the slower is a given Optim-Eval algorithm, the greater it is
in terms of quality. The exact resolution is faster but it does not allow to find
the best factored policy with the constrained structure, while CA-JT or GA-JT
provide a locally optimal factored policy with this structure.

4.3 Large Random Problems

On random F3MDPs and GMDPs, with 15 agents, 15 state variables and 15
reward functions, the optimal global policy can no more be computed. We have
compared (i) CA-LBP, GA-LBP and MF-API on GMDPs with binary action
spaces and (ii) CA-LBP, GA-LBP and a uniform stochastic policy, on F3MDPs
(Table 3). For F3MDPs, we assumed a policy structure chosen at random, with
at most 9 parent variables per action variable. Algorithms were initialized with
the greedy policy in the case of GDMPs, and with the uniform policy otherwise.
The greedy policy is the deterministic factored policy which chooses actions
that maximize immediate rewards. For these problems, the parallelizability of

Solving F3MDPs: Collaborative Multiagent Markov Decision Processes 13

Table 2. Mean relative error to the optimal global policy of small random F3MDPs,
having n = 6 binary state variables, m = 6 agents with binary action spaces and r = 6
reward functions, averaged over 100 problems. The last two lines correspond to 100
problems with n = m = r = 5 and ternary action spaces.

Computed policy - step MRE mean time

Binary action spaces

GA-JT - ηq = 20 0.0200 3.25 min

GA-LBP - ηq = 20 0.1228 1.88 min

GA-LBP - ηq = 10 0.1214 2.47 min

GA-LBP - Wolfe step 0.1216 2.48 min

GA-LBP - optimal step 0.1217 2.63 min

CA-JT - ηq = 0.1 0.0222 5.14 min

CA-LBP - ηq = 0.1 0.1228 1.53 min

Exact (global policy) - 1.95 min

Ternary action spaces

GA-LBP - ηq = 20 0.1288 39.74s

Exact (global policy) - 43.44s

Table 3. Monte-Carlo evaluation of solution policies of large random F3MDPs and
GMDPs (15 agents and 15 state variables). Values are averaged over 5 problems. GA
is parallelized (8 cores).

Computed policy - initial policy - step Value (MC) mean time

GMDPs

CA-LBP - greedy - ηq = 0.1 99.492 6.31 min

GA-LBP - greedy - Wolfe step 99.538 39.91 sec

CA-LBP - uniform - ηq = 0.1 97.508 22.58 min

GA-LBP - uniform - Wolfe step 99.472 1.25 min

MF-API - greedy 99.684 1.16 sec

F3MDPs, binary action spaces

GA-LBP - uniform - Wolfe step 85.65 9.18 min

CA-LBP - uniform - ηq = 0.1 86.738 74.24 min

F3MDPs, ternary action spaces

GA-LBP - uniform - Wolfe step 76.47 14.97 min

CA-LBP not applicable −
Uniform policy 65,542 −

the GA-LBP algorithm makes it far faster than the CA-LBP algorithm, to the
price of a slight loss in quality.

On GMDPs, our PI-like algorithms provide good quality SFPs, compared
to MF-API, but they are slower. These good results in terms of quality, as the
ones obtained on small problems, encourage to apply PI-like algorithms on large
non-GMDP problems.

14 J. Radoszycki et al.

4.4 Large Disease Management Problems

We have considered very large F3MDP problems, inspired by the disease man-
agement problem modelled in the GMDP framework in [3,21]. Crop fields are
distributed on 5 × 5 or 10 × 10 grids. One binary state variable (uninfected
or infected crop) and one binary action variable (“normal” cropping system or
“treated” and left fallow) are attached to each crop field. Each binary action
variable is chosen independently by agents. Disease can spread to neighbouring
fields only. In the 10 × 10 grid case, the total number of parameters of an SFP
is N = 5184.

To make the initial GMDP model more realistic, we considered that treat-
ment occurs before disease spread and reduces the probability of contamination
of neighbouring fields. In this case, the problem is not a GMDP anymore. The
probability of infection becomes: P (ε, p1, n1, p2, n2) = ε+(1−ε)(1−(1−p1)n1(1−
p2)n2). p1 (resp. p2) is the probability of short distance contamination without
(resp. with) treatment, n1 (resp. n2) is the number of non treated (resp. treated)
infected neighbouring fields and ε is the probability of long-distance contami-
nation. The form of the reward function is the same as in [21], with maximal
reward ρ = 100. Table 4 displays the results for ε = 0.01, p1 = 0.6, p2 = 0.4 and
T̂ = 20 for LBP evaluation (using T̂ = 40 led to similar results). We compared
the CA-LBP and GA-LBP policies with the uniform stochastic policy and the
greedy policy. CA-LBP improves the value of the greedy policy by 30% in the
case of the 5 × 5 grid and 23% in the case of the 10 × 10 grid, while GA-LBP
converges to the greedy policy.

Table 4. Monte-Carlo evaluation of policies in the disease management problem.

Computed policy - step Value (MC) mean time

5 × 5 grid, uniform start

Uniform 10367 -

Greedy 13191 -

CA-LBP - ηq = 0.1 17264 1h16

GA-LBP - Wolfe step 13195 21min20

10 × 10 grid, uniform start

Uniform 40495 -

Greedy 52575 -

CA-LBP - ηq = 0.1 65068 43h42

GA-LBP - Wolfe step 52574 10h20

Finally, we considered a surveillance network situation inspired by the disease
management problem, in which factored expert policies are likely to perform well.
Namely, we have considered the 5 × 5 disease management problem, but each
agent chooses the management action in each crop, given the same information:
4 sites (site of coordinates (2,2) and the three symmetric ones) are monitored

Solving F3MDPs: Collaborative Multiagent Markov Decision Processes 15

Table 5. Monte-Carlo evaluation of policies in the disease management problem with
surveillance network.

Computed policy - step - T̂ Value (MC) mean time

5 × 5 grid, p = 0.2, uniform start

Uniform 11393 -

Greedy 13953 -

Policy 1 18911 -

Policy 2 18349 -

CA-LBP - ηq = 0.1 - T̂ = 20 15055 47.25min

GA-LBP - Wolfe step - T̂ = 20 14427 43.18sec

GA-LBP - Wolfe step - T̂ = 40 14480 3.8min

and everyone knows their state at the current time step. MF-API does not apply
to this non-GMDP problem. The CA-LBP and GA-LBP policies are compared
to the uniform policy, to the greedy policy and to expert policies, consisting in
treating a crop (i) if one of the closest observed crops is infected (Policy 1) or
(ii) if at least 3 observed crops are infected (Policy 2).

The results showed that CA-LBP and GA-LBP improve over uniform or
greedy, GA-LBP being faster but slightly worse than CA-LBP (Table 5). How-
ever, expert policies do better. In this example, expert policies are local maxima
of V R,T,LBP

θ (P 0). They are fixed points of CA-LBP and GA-LBP. In the gen-
eral case, when factored expert policies are available, initializing CA-LBP or
GA-LBP with them is a good way to evaluate them and to determine whether
they can be improved or are local maxima.

5 Concluding Remarks

We have proposed a generic framework, F3MDP, and a family of solution algo-
rithms for solving large size FA-FMDPs, by computing stochastic factored poli-
cies. Using this framework, we are able to deal with collaborative multiagent
MDPs with up to 100 agents and 2100 states.

Experiments have shown that the algorithms compute policies of better or
equivalent value than existing algorithms, when these are available. When prob-
lems are too large to solve with current approaches, the policies computed by
our algorithms improve over simple arbitrary policies. When expert knowledge
about solution policies is available, our approach can use it as an initialization,
and either improve these expert policies, or show that they cannot be locally
improved. Expert policies may also suggest a policy structure.

A reasonable use of CA-LBP and GA-LBP is thus to apply them on F3MDPs
in an iterative loop Expert Policy - Optimization - Expert interpretation. Note
also that the flexibility of our approach allows us to use in alternation the dif-
ferent algorithms : (i) use a few steps of GA-LBP to get fast close to a local
optimum then (ii) use of CA-LBP (if actions are binary) to eventually improve

16 J. Radoszycki et al.

the current value and (iii) in the end, use CA-MC or GA-MC, to optimize an
asymptotically unbiased estimation of the policy value.

The framework we propose here admits some other natural extensions. For
instance, partial observability is already handled, given that stochastic factored
policies only have access to partial observation (it is obvious in the last exper-
iment). It can be straightforwardly extended to the case of Dec-POMDPs with
factored state space, by considering observations and factored observation func-
tions, in addition to factored transitions and SFPs. The principle of the approach
presented here would be unchanged, provided that the dependency graph deter-
mined by transitions, SFPs and observation functions is acyclic.

References

1. Bernstein, D., Givan, R., Immerman, N., Zilberstein, S.: The complexity of
Decentralized Control of Markov Decision Processes. Mathematics of Operations
Research 27(4), 819–840 (2002)

2. Buffet, O., Aberdeen, D.: The Factored Policy-Gradient Planner. Artificial Intelli-
gence 173, 722–747 (2009)

3. Cheng, Q., Liu, Q., Chen, F., Ihler, A.: Variational Planning for Graph-Based
MDPs. Advances in Neural Information Processing Systems 26, 2976–2984 (2013)

4. Dibangoye, J.S., Amato, C., Buffet, O., Charpillet, F.: Exploiting separability
in multiagent planning with continous-state MDPs. In: Proceedings of the 13th
International Conference on Autonomous Agents and Multiagent Systems (2014)

5. Dibangoye, J. S., Amato, C., Doniec, A.: Scaling up decentralized MDPs through
heuristic search. In: Proceedings of the 28th Conference on Uncertainty in Artificial
Intelligence, pp. 217–226 (2012)

6. Forsell, N., Sabbadin, R.: Approximate linear-programming algorithms for graph-
based Markov decision processes. In: Proceedings of the 17h European Conference
on Artificial Intelligence, pp. 590–594 (2006)

7. Frey, B., Mackay, D.: A revolution: belief propagation in graphs with cycles. In:
Advances in Neural Information Processing Systems, pp. 479–485 (1998)

8. Guestrin, C., Koller, D., Parr, R.: Multiagent Planning with factored MDPs. In:
Advances in Neural Information Processing Systems, pp. 1523–1530 (2001)

9. Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: stochastic planning using
algebraic decision diagrams. In: Proceedings of the 15th Conference on Uncertainty
in Artificial Intelligence, pp. 279–288 (1999)

10. Kim, K-E., Dean, T., Meuleau, N.: Approximate solutions to factored Markov
decision processes via greedy search in the space of finite state controllers. In:
Proceedings of the 5th International Conference on Artificial Intelligence Planning
Systems, pp. 323–330 (2000)

11. Kim, K.-E., Dean, T.R.: Solving factored MDPs with large action space using
algebraic decision diagrams. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS
(LNAI), vol. 2417, pp. 80–89. Springer, Heidelberg (2002)

12. Kumar, A., Zilberstein, S., Toussaint, M.: Scalable multiagent planning using prob-
abilistic inference. In: Proceedings of the 22th International Joint Conference on
Artificial Intelligence (2011)

13. Littman, M., Goldsmith, J., Mundhenk, M.: The Computational Complexity of
Probabilistic Planning. Journal of Artificial Intelligence Research 9, 1–36 (1998)

Solving F3MDPs: Collaborative Multiagent Markov Decision Processes 17

14. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edition.
Springer (2008)

15. Mooij, J.M.: libDAI: A Free and open Source C++ Library for Discrete Approx-
imate Inference in Graphical Models. Journal of Machine Learning Research 11,
2169–2173 (2010)

16. Murphy, K.: Dynamic Bayesian networks: representation, inference and learning.
PhD Thesis, School of Computer Science, University of California, Berkeley (2002)

17. Oliehoek, F.A., Whiteson, S., Spaan, M.T.J.: Approximate solutions for fac-
tored dec-PODMPs with many agents. In: Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems (2013)

18. Peyrard, N., Sabbadin, R.: Mean field approximation of the policy iteration
algorithm for graph-based Markov decision processes. In: Proceedings of the Euro-
pean Conference on Artificial Intelligence, pp. 595–599 (2006)

19. Puterman, M.: Markov Decision Processes. John Wiley and Sons (1994)
20. Raghavan, A., Joshi, S., Fern, A., Tadepalli, P., Khardon, R.: Planning in factored

action spaces with symbolic dynamic programming. In: Proceedings of the 26th
AAAI Conference on Artificial Intelligence (2012)

21. Sabbadin, R., Peyrard, N., Forsell, N.: A Framework and a Mean-Field Algorithm
For The Local Conrtol of Spatial Processes. International Journal of Approximate
Reasoning 53(1), 66–86 (2012)

22. Sallans, B., Hinton, G.E.: Reinforcement Learning with Factored States and
Actions. Journal of Machine Learning Research 5, 1063–1088 (2004)

23. St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: approximate policy construc-
tion using decision diagrams. In: Advances in Neural Information Processing Sys-
tems, pp. 1089–1095 (2000)

24. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing Free-Energy Approxi-
mations and Generalized Belief Propagation Algorithms. IEEE Transactions on
Information Theory 51(7), 2282–2312 (2005)

25. Kok, J.R., Vlassis, N.: Collaborative Multiagent Reinforcement Learning by Payoff
Propagation. Journal of Machine Learning Rsearch 7, 1789–1828 (2006)

26. Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In:
Proceedings of the 19th International Conference on Machine Learning (2002)

Appendix: Demonstration of the Complexity Result

We prove here the Theorem of Section 3.2. In order to show that the F3MDP
problem is NPPP -hard, we will use a polynomial time reduction from the
EMAJSAT problem, which is known to be NPPP -complete [13].

Definition 1. EMAJSAT problem.
Let φ be a boolean formula over variables X1, . . . , Xn, with m clauses (φ =

(C1 ∧ . . . ∧ Cm)), and let k ∈ {1, . . . , n} be a fixed integer. The EMAJSAT deci-
sion problem consists in asking whether there exists an instantiation (x1, . . . , xk)
of the variables (X1, . . . , Xk) such that, for the majority of the possible instan-
tiations (xk+1, . . . , xn) of (Xk+1, . . . , Xn) φ is satisfied.

18 J. Radoszycki et al.

We are going to show a polynomial transformation of any instance (φ, k) of
EMAJSAT 4 into a F3MDP instance (P, 1

2) : an instance P is positive iff
there exists an SFP δ∗, with structure defined by the {paδ(aj)}j=1..m, of value
V R,T

δ∗ (P 0) > 1
2 . So, we are going to exhibit a transformation from EMAJSAT

instances into F3MDP instances such that the answer to the EMAJSAT prob-
lem is yes iff there exists a (deterministic) factored policy δ∗ of value greater
than 1

2 .
We build a F3MDP with binary decision variables (Xt

1, . . . , X
t
k), and with

state variables (Xt
k+1, . . . , X

t
n, Ct

1, . . . , C
t
m, Y t

1 , . . . , Y t
k). All variables take values

in {0, 1}, except variables Y t
l , which take values in {−1, 0, 1}. The initial prob-

ability distribution, the transition probabilities and the reward functions are
defined as:

– P 0(X0
i = 0) = P 0(X0

i = 1) = 1
2 ,∀i = k + 1, . . . , n.

– P 0(C0
j = 0) = 1,∀j = 1, . . . ,m.

– P 0(Y 0
l = −1) = 1,∀l = 1, . . . , k.

– Pi(Xt+1
i = xi|Xt

i = xi) = 1,∀i = k + 1, . . . , n,∀xi ∈ {0, 1}. The values of
the variables X0

i are drawn uniformly at random at the beginning, and then
remain unchanged through time.

– Pn+1(Ct+1
1 = 1|Ct

1 = 1 ∨ (Ct
1 = 0 ∧ Xt |= C1)) = 1 et ∀j = 2...m,

Pn+j(Ct+1
j |Ct

j = 1∨(Ct
j = 0∧Ct

j−1 = 1∧Xt |= Cj)) = 1. The local transition
probabilities linked to variables Cj are such that, for any instantiation X0 =
(x1, . . . , xn), at t = 1 C1

1 takes value 1 iff (x1, . . . , xn) |= C1, and then, at
any time t, Ct

j takes value 1 iff if (x1, . . . , xn) |= C1 ∧ . . . ∧ Cj .
– Pl(Y t+1

l = xl|Xt
l = xl) = 1,∀l = 1, . . . , k,∀xl ∈ {0, 1},∀t = 0, . . . , T −

1. Variables Yl are gadgets, which will be used jointly with gadget reward
functions, to ensure that non-deterministic policies cannot be optimal.

– Reward functions {Rl, l = 1 . . . k} are defined on pairs of variables (Xl, Yl).
Rl(xl, yl) = 0 if xl = yl and Rl(xl, yl) = −K if xl �= yl, where K > 1

γ2m .
– Reward function Rk+1 is defined on variable Cm : Rk+1(cm) = 1

γm if cm = 1
and Rk+1(cm) = 0 if cm = 0.

With this definition and the definition of the transition functions, it is guar-
anteed that any possible trajectory x0, . . . , xT incurs a positive or null sum of
rewards iff x0 = x1 = . . . = xT and a negative reward else. We consider, in
addition, that the horizon of the F3MDP is T = m. Furthermore, we consider
that paδ(Xt

l) = ∅,∀l = 1 . . . k.
Note that the reduction is polynomial in time. All transition tables and

reward functions have bounded size. In particular, since we consider 3-clauses,
in Pn+j(Ct+1

j |paP (Ct+1
j)), paP (Ct+1

j) involves five variables at most. In order
to complete the proof, we have to show that : (i) the optimal policy δ∗ of this

4 We exhibit a polynomial time reduction from EMAJSAT with 3-clauses to F3MDP,
benefiting from the known fact that an EMAJSAT instance can be rewritten as
an equivalent EMAJSAT instance, containing only 3-clauses (which may contain
polynomially more clauses and variables).

Solving F3MDPs: Collaborative Multiagent Markov Decision Processes 19

F3MDP is deterministic, and (ii) δ∗ has value greater than 1
2 iff if the answer to

the EMAJSAT problem is yes.
Fact (i) is proved by first showing that the value of an arbitrary stochastic

policy δ for the F3MDP model of an EMAJSAT instance (see equation (1)), is
upper bounded by a sum over all trajectories with variables (Xt

1 = x1, . . . , X
t
n =

xn) constant in time of a function g(x1, . . . , xn) :

∀δ, V R,T
δ (P 0) ≤

∑

x1,...,xn

(δ(x1, . . . , xk))m
P 0(xk+1, . . . , xn)g(x1, . . . , xn),

where g(x1, . . . , xn) = 1 if (x1, . . . , xn) |= φ and 0 else. Then, the deterministic
policy of optimal value, δ∗(∅) = (x∗

1, . . . , x
∗
k), is defined by:

(x∗
1, . . . , x

∗
k) = arg max

x1,...,xk

∑

xk+1,...,xn

P 0(xk+1, . . . , xn)g(x1, . . . , xn),

For any SFP δ, we have δ(x1, . . . , xk) ≤ 1,∀x1, . . . , xk and thus V R,T
δ (P 0) ≤

V R,T
δ∗ (P 0). So, the deterministic factored policy δ∗ is optimal for the F3MDP.

To prove fact (ii), let us consider a deterministic factored policy δ, corre-
sponding to a vector (x1, . . . , xk). P 0 determines a set of values (xk+1, . . . , xn)
at random (all vectors have identical probability 1

2n−k). Once all variables values
are fixed at time t = 0, it is easy to check that transitions are deterministic, and
that Cm

m = 1 iff (x1, . . . , xn) |= C1 ∧ . . .∧Cm. If this is verified, the corresponding
trajectory incurs a discounted sum of rewards γmRk+1(1) = 1. Thus, the value
of any determistic factored policy δ = (x1, . . . , xk) is:

V R,T
δ (P 0) =

∑

xk+1,...,xns.t.{x1,...,xn}|=φ

1
2n−k

This value is greater than 1
2 iff a majority of the 2n−k instantiations

{xk+1, . . . , xn} satisfy φ. So, EMAJSAT reduces to the F3MDP problem, and
the F3MDP problem is NPPP -hard. It is easier to show that the F3MDP prob-
lem belongs to the NPPP class (omitted here due to limited space), and thus
that the F3MDP problem is NPPP -complete.

Managing Autonomous Mobility on Demand
Systems for Better Passenger Experience

Wen Shen(B) and Cristina Lopes

Department of Informatics, University of California, Irvine, CA 92697, USA
{wen.shen,lopes}@uci.edu

Abstract. Autonomous mobility on demand systems, though still in
their infancy, have very promising prospects in providing urban popu-
lation with sustainable and safe personal mobility in the near future.
While much research has been conducted on both autonomous vehi-
cles and mobility on demand systems, to the best of our knowledge,
this is the first work that shows how to manage autonomous mobility
on demand systems for better passenger experience. We introduce the
Expand and Target algorithm which can be easily integrated with three
different scheduling strategies for dispatching autonomous vehicles. We
implement an agent-based simulation platform and empirically evaluate
the proposed approaches with the New York City taxi data. Experimen-
tal results demonstrate that the algorithm significantly improve passen-
gers’ experience by reducing the average passenger waiting time by up
to 29.82% and increasing the trip success rate by up to 7.65%.

Keywords: Autonomous vehicles · Mobility on demand · AMOD
Systems · Agent-based simulation

1 Introduction

As urbanization accelerates and city population continues to grow, more traffic
is generated due to the increasing demand for personal mobility as well as the
upswing of private car ownership [11]. This results in many severe problems
such as traffic congestion, air pollution and limited public space available for
the construction of parking areas and roads [4]. To solve these problems, it
is in urgent need of building a transportation system that not only satisfies
people’s mobility demand but is also more sustainable, efficient and reliable.
Although autonomous mobility on demand (AMOD) systems, which, due to
some technical, economical and governmental obstacles left to be overcome, are
still in their infancy, they hold very promising prospectus in meeting the need.
This is because AMOD systems have great potential to provide a safer, near
instantly available solution for personal mobility. Once such services have become
highly available and affordable, the collective transport solutions will eventually
transcend the traditional private ownership, which will significantly reduce the
traffic congestion, pollution and land use for parking purpose through system-
wide optimization and coordination. Besides, autonomous vehicles can also avoid
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 20–35, 2015.
DOI: 10.1007/978-3-319-25524-8 2

Managing Autonomous Mobility on Demand Systems 21

accidents caused by human errors, making them safer than conventional cars
driven by human drivers [18].

In recent years, much research has been conducted on autonomous vehicles.
However, most of the research focuses on the control of a single autonomous vehi-
cle to perform various tasks including picking up passengers and parking. While
interesting and important, it leaves much other territory uninvestigated, espe-
cially methodologies on managing systems of autonomous vehicles for personal
mobility. To bridge the gap and address the transportation problems brought by
city expansion and population growth, we study how to dispatch AMOD sys-
tems to improve passengers’ experience. In doing so, we introduce the Expand
and Target (EAT) algorithm. We then conduct agent-based simulation using
the AMOD simulation platform based on the MobilityTestbed [7][6] and the New
York City taxi data [10].

The rest of the paper is organized as follows: Section 2 briefly dis-
cusses the background and related work on autonomous vehicles, mobility
on demand(MOD) systems, and AMOD systems; Section 3 introduces three
scheduling strategies and the Expand and Target algorithm for managing AMOD
systems; Section 4 talks about the experiments for evaluating the proposed dis-
patching approaches for AMOD systems. Section 5 concludes this paper and
presents potential directions for further investigation.

2 Related Work

2.1 Autonomous Vehicles

An autonomous or automated vehicle is a vehicle capable of fulfilling transport
tasks such as motion and braking without the control of a human driver [18].
The development of autonomous vehicles relies on advances in computer vision,
sensing technology, wireless communication, navigation, robotic control as well
as technologies in automobile manufacturing [3]. Significant progresses have been
achieved in these fields over the past several decades. For example, LIDAR and
vision-based detection techniques (e.g., stereo vision) are extensively studied
in pedestrian, lane and vehicle detection [27][15][24]. Vehicular communication
systems make it possible for individual vehicles to share information (e.g., traf-
fic congestion, road information) from other vehicles in the vicinity, which can
potentially improve the operational safety of autonomous vehicles [26].

The shift from conventional cars to autonomous vehicles can substantially
reduce traffic accidents caused by human errors, given the fact that the operation
of autonomous vehicles does not involve human intervention [3]. It also increases
mobility for people who are unable or unwilling to drive themselves [3].

As technology advances, many prototypes of autonomous cars have been
designed and developed. Some examples of these include Google driver-less
car [21], Vislab’s BRAiVE [5], and BMW’s M235i [17], just to name a few.
These cars are also successfully tested in various real-world traffic environments,
making it possible and desirable to be integrated with MOD systems.

22 W. Shen and C. Lopes

2.2 Mobility on Demand Systems

To reduce private car ownership while also meeting the need for personal urban
mobility, Mitchell et al. introduces MOD systems [23][8]. The original purpose
of MOD systems is to complement mass transportation systems such as subways
and buses, providing commuters with the mobility for the first mile and the last
mile. A notable prototype is the CityCar [22].

The vehicles in current MOD systems are mainly light electric vehicles across
the main stations around the city , guided by human drivers or guideways,
which limits the scope of mobility and the development of the MOD systems.
If autonomous vehicles were integrated into the MOD systems, the AMOD sys-
tems would transform mobility and revolutionize the transportation industry by
offering more flexible and more convenient solutions for urban personal mobility.

2.3 Autonomous Mobility on Demand Systems

Due to lack of infrastructure, little research has been done on autonomous MOD
systems. Among the very few studies, Spieser et.al. [29] provides analytical guide-
lines for autonomous MOD systems using Singapore taxi data. The results show
that AMOD systems could meet the mobility need of the same population with
only 1/3 of the taxis that are current in operation. Zhang et al. [30] presents
a similar analysis using a queueing-theoretical model with trip demand data
in Manhattan, New York City. While interesting and innovative, the research
leaves a number of issues unexplored. For instance, how to efficiently manage
autonomous vehicles to enhance passengers’ experience?

Although numerous research addresses taxi dispatching problems using vari-
ous methodologies including techniques in multi-agent systems [2][28][13][1][12],
no or at least little research addresses methodologies on dispatching AMOD
systems for better user experience. Unlike conventional taxi dispatching sys-
tems where it is often difficult to coordinate because of human factors (e.g., the
drivers may not follow the dispatcher’s instructions carefully), the AMOD sys-
tems make it possible to implement a much higher level of autonomy through
delicate, system-wide coordination. Moreover, it is challenging to achieve near
instantly availability using conventional approaches. We try to bridge this gap
by introducing a new algorithm-the Expand and Target algorithm to effectively
manage AMOD systems.

3 Managing Autonomous Mobility on Demand Systems

In this section, we first discuss three scheduling strategies that are either com-
monly used in the taxi dispatching field or frequently studied in literature: the
No-Scheduling Strategy (NSS), the Static-Scheduling Strategy (SSS), and the
Online-Scheduling Strategy(OSS) [19].

For effective management of AMOD systems, we introduce the Expand
and Target (EAT) algorithm. This algorithm enables managing authorities of

Managing Autonomous Mobility on Demand Systems 23

AMOD systems to automatically and effectively dispatch autonomous vehicles
and meanwhile update adjacency schedule as well for better passenger experi-
ence: first, it increases the possibility of finding global optimal solutions; second,
it reduces computation time by avoiding looping all the possible vehicles; third, it
connects isolated areas with other dispatching areas and updates the adjacency
schedule automatically, which increases the dispatch success rate.

We then discuss methodologies on integrating the scheduling strategies with
the EAT algorithm to improve passengers’ experience, especially to reduce the
average passenger waiting time and increase the trip success rate.

3.1 Scheduling Strategies

No-Scheduling Strategy. In this strategy, the dispatcher assigns the nearest
idle taxi to an incoming call. If such a taxi can not be found, then the call will be
rejected. The dispatcher does not update the dispatching schedule. That is why
we call it the No-Scheduling Strategy or NSS. The NSS is the most commonly
used strategy in taxi dispatching applications [28].

Static-Scheduling Strategy. In SSS, the dispatcher keeps a schedule of the
dispatching process and updates it by appending an incoming call to the list
of processed requests. When a new call comes, the dispatcher searches for the
nearest taxi from all the vehicles (both idle and busy). It then estimates the time
from current position to the pickup location based on current traffic condition.
For a idle taxi, the dispatcher simply computes a trip plan directly from the
taxi’s current location to the pickup location. While for a taxi that is busy, the
dispatcher then calculates the remaining time needed for the taxi to complete
the current trip and then calculate a trip plan from the end point of the trip to
the pickup location. Then the dispatcher estimates the total time needed for this
taxi to arrive at the pickup location. In this way, the dispatcher selects a taxi
that can reach the passenger to be picked up in the quickest time. The dispatcher
does update the schedule of the dispatching process, but it never reschedules or
reassigns the requests. This strategy broadens the choice of taxis, but it scales
poorly due to one-time scheduling.

Online-Scheduling Strategy. The OSS is similar to the static approach
except that in the online strategy the schedules are always re-computed in
response to traffic variations such as delays or speedups. It is more cost effi-
cient than SSS but requires more computational power.

3.2 The Expand and Target Algorithm

We formally introduce the Expand and Target algorithm (see Algorithm 1). The
basic idea of the algorithm is described as follows:

– When the dispatcher receives a call c, it first identifies the neighborhood ac
that c originates from.

24 W. Shen and C. Lopes

– If area ac has no adjacent areas, it then searches for the nearest available
vehicle in area ac: if found, it assigns the vehicle to the call, and returns the
assignment; if not, it searches for the nearest available vehicle in all dispatch-
ing areas: if found, it adds the vehicle’s area ai as a neighbor of area ac (by
doing so, it removes the isolated dispatching area and updates the adjacency
schedule), assigns the vehicle to the call, and returns the assignment; if not
found, it rejects the call. Meanwhile, it updates the schedule.

– If area ac has other adjacent areas B̃ac
where the service is available, then

we define the dispatching area for call c as Bac
. Instead of searching for the

nearest available vehicle in ac, it first expands the dispatching area for c:
Bac

← B̃ac
∪ ac. We call this process as expand. The expansion is necessary

because it diminishes the possibility of finding local minimum: For example,
when a call is from the border of several areas, it is not sufficient to decide
whether a nearest available vehicle is in the current dispatching area or from
other areas without considering all the neighborhoods.

– After expansion, then target : it searches for the nearest available vehicle in
Bac

: if found, it assigns the vehicle to the call, returns the assignment and
terminates; if not found, then continues to expand the dispatching area Bac

using the previous strategy.

The Expand and Target algorithm dynamically expands the search space and
targets the autonomous vehicles, in which the expansion and targeting can be
viewed as a multi-agent, self-adaptive process. The algorithm assumes that the
dispatching system processes passengers’ requests in a First-Come, First-Served
(FCFS) manner. It is also suitable for dispatching systems using other policies
such as batch processing. However, modification of the algorithm is necessary
for such applications (though we do not explore it in this work).

3.3 Integration

To improve the performance of the dispatching system, we combine the three
scheduling strategies discussed in section 3.1 and the EAT algorithm, result-
ing in three integrated approaches: NSS-EAT, SSS-EAT, and OSS-EAT. The
incorporation is straightforward: when applying the EAT algorithm for dispatch-
ing autonomous vehicles, the dispatcher computes the nearest available vehicles
using the three different scheduling strategies respectively. There is a commonly
used searching method for taxi dispatching: when a call comes, the dispatcher
first searches for a nearest available taxi in the current dispatching area; if such a
taxi not found, then searches for an available taxi in an adjacent area. If the taxi
does not have adjacent areas, the dispatcher then rejects the call. We also inte-
grate this method with the three scheduling strategies as three control groups:
NSS, SSS, and OSS.

3.4 The Autonomous Mobility on Demand Simulation Platform

We implement the simulation platform for AMOD systems on top of the Mobil-
ityTestbed [7][6]. The MobilityTestbed is an agent-based, open-source simulation

Managing Autonomous Mobility on Demand Systems 25

Algorithm 1. Expand and Target
Precondition: c -an incoming call, V - autonomous vehicles in operation, and

A-dispatching adjacency schedule

1: procedure Expand and Target(c, V,A)
2: identify c′s dispatching area ac ∈ A
3: if area ac has adjacent areas (immediate neighbors) B̃ac ⊆ A then
4: //begin to expand:
5: Bac ← ac ∪ B̃ac

6: //begin to target:
7: if there are available vehicles in area Bac then
8: in area Bac , search for the nearest available vehicle v ∈ V
9: return assignment pair (v, c)

10: else
11: while a in Bac do
12: continue to expand within A
13: end while
14: return reject the call c
15: end if
16: else
17: if there are available vehicles in area c then
18: in area c, search for the nearest vehicle v ∈ V
19: return assignment pair (v, c)
20: else
21: if there are available vehicles in area A then
22: in area A, search for the nearest vehicle v ∈ V
23: //begin to update:
24: set the dispatching area v as a neighbor of area ac

25: return assignment pair (v, c)
26: else
27: reject the call c
28: end if
29: end if
30: end if
31: end procedure

26 W. Shen and C. Lopes

framework (written in Java) tailored for modeling and simulating on-demand
transport systems. It consists of three layers: the AgentPolis simulator [16], the
Testbed Core and the mechanism implementation [7][6]. The first two layers pro-
vide the Testbed API while the third layer enables users to implement their own
mechanisms or strategies for various on-demand transport systems. The mech-
anism implementation includes three agent logic blocks: the driver agent logic,
the dispatcher agent logic and the passenger agent logic. In AMOD systems,
no drivers are needed, so we replace the driver logic with the autonomous vehi-
cle agent logic. The MobilityTestbed does not work properly with large datasets
(e.g., a trip demand file larger than 1GB) due to poor memory management
schemes. Thus, We modify the Testbed Core to make the platform be able to
support large datasets.

This testbed also contains other components such as experiment manage-
ment, benchmark importer, and visualization and reporting. However, the orig-
inal experiment management component can only produce overall statistics,
whereas in real-world scenarios it is important and necessary to log the oper-
ational data periodically for future use. The benchmark importer component
provides benchmark data for studying on-demand transport systems, but it
is customized for traditional on-demand transport service and only deal with
small datasets. The visualization and reporting component, using Google Earth
to visualize daily mobility pattern of passengers and vehicles, does not work
properly with large-scale datasets. For these reasons, we discard all the three
components. To meet the needs of the experiment, we implement the data log-
ger component which enables the platform to efficiently log the operational data
periodically.

An overview of the AMOD platform based on the MobilityTestbed is shown
in Fig. 1. The simulation platform is composed of two layers- the mechanism
implementation layer and the simulation platform core layer, and an extension-
the data logger. The mechanism implementation includes three logic blocks: the
vehicle agent logic, the dispatcher agent logic, and the passenger agent logic.
The simulation platform core is built on the basis of the MobilityTestbed which
consists of the testbed core and the AgentPolis platform.

4 Experimental Analysis

To empirically evaluate the performance of the Expand and Target algorithm on
managing AMOD systems, we implement six different dispatching approaches
using the AMOD simulation platform on the basis of the MobilityTestbed and
OpenStreetMap [14]. We then perform experiments using the 2013 New York
City taxi data [10] and analyze the experimental results.

4.1 Evaluation Metrics

To evaluate the performance of the dispatching system from the passengers’
perspective, we select the following two metrics: the Average Passenger Waiting

Managing Autonomous Mobility on Demand Systems 27

Mechanism Implementation

Vehicle Agent Logic Dispatcher Agent Logic Passenger Agent Logic

D
ata

L
ogger

Simulation Platform Core

Autonomous Mobility on Demand Simulation Platform

Fig. 1. An overview of the Autonomous Mobility on Demand Simulation Platform
based on MobilityTestbed.

Time (TAPW) and the Trip Success Rate (RTS). This is because they are con-
sidered as the two most important indicators of passenger satisfaction (quality
of service) [19].

The average passenger waiting time is formulated as the following equation:

TAPW =
∑

i∈N (T p
i − T r

i)
|N | , (1)

where T p
i and T r

i are the pickup time and the request time of call i, respectively.
N is the set of calls and |N | is the number of calls in set N .

The trip success rate is defined as below:

RTS =
ns

n
, (2)

where ns is the number of successful trips and n is the number of calls.

4.2 The Datasets

We choose the 2013 New York City Taxi Data [10] to generate the trip demand.
This raw data takes up for about 21.23GB in CSV format, in which each row
represents a single taxi trip (including demand information). Table 1 shows a
small sample of data which we use in the experiments. In order to compute the
average passenger waiting time, the request time of the calls is needed. However,
there is no such information available in this dataset. To solve this problem,
we use the actual pickup time as the request time. We compute the pickup

28 W. Shen and C. Lopes

time and dropoff time using the A∗ routing algorithm [9]. Once a vehicle has
finished a trip, it immediately become idle unless a new assignment comes. In
the experiment, a passenger is assigned with a patience value, which indicates
the longest time that the passenger would like to wait for a car before he/she
cancels the request. We randomly generate the patience value for each passenger
from 60 seconds to 3600 seconds.

Due to failure or faults of data collection devices, the NYC Taxi Data con-
tains a large number of errors such as impossible GPS coordinates (e.g., (0,0)),
times, or distances. To remove these errors, we conduct data preprocessing after
which there are 124,178,987 valid trips left in total. The fleet consists of 12,216
autonomous vehicles with the same configurations such as load capacity and
speed capability.

Table 1. A small subset of the data used in trip demand generation

medallion pickup time dropoff time passenger count pickup log pickup lat dropoff log dropoff lat

2013002932 2013-01-02 23:43:00 2013-01-02 23:49:00 4 -73.946922 40.682198 -73.92067 40.685219

2013009193 2013-01-02 23:43:00 2013-01-02 23:54:00 2 -74.004379 40.747887 -73.983376 40.766918

2013007140 2013-01-02 23:46:00 2013-01-02 23:55:00 1 -73.869743 40.772369 -73.907898 40.767262

2013008400 2013-01-02 23:50:12 2013-01-02 23:56:41 3 -73.984756 40.768322 -73.983276 40.757259

The initial dispatching adjacency (see Fig. 2) is generated from the Pediaci-
ties New York City Neighborhoods GeoJSON data [25], in which there are 310
neighborhood boundaries in total. Fig. 3 shows the final adjacency schedule (71
neighborhood boundaries) using the Expand and Target algorithm with New
York taxi data.

As for the navigation map, we use the OpenStreetMap data for New York
City obtained from MAPZEN metro extracts [20] on April 9th, 2015. The size
of the OSM XML data file is about 2.19GB.

4.3 Experimental Settings

In the experiment, we implement the three integrated approaches described in
section 3: the NSS-EAT, the SSS-EAT, and the OSS-EAT. For comparison, we
also implement the three scheduling using the common approach described in
Section 3.3 as control groups: NSS, SSS, and OSS. The six AMOD systems share
the same experimental setup except the dispatching approaches.

In the simulation, the vehicle speed limit is 25 Miles/hour (40.2336
Km/hour). The maximum load capacity of an autonomous vehicle is 4 and the
maximum speed capacity is 100 Miles/hour. The A∗ algorithm is selected as
the routing algorithm. All other parameter settings are default as used in the
MobilityTestbed. The simulation is conducted on a quad-core 2.3 GHz machine
with 16 GB of RAM.

Managing Autonomous Mobility on Demand Systems 29

Fig. 2. Initial adjacency schedule from Pediacities New York City Neighborhoods Geo-
Json data shown on OpenStreetMap

Fig. 3. Final adjacency schedule using the Expand and Target algorithm shown on
OpenStreetMap

30 W. Shen and C. Lopes

4.4 Experimental Results

We compare both the average passenger waiting time (see Table 2) and the
trip success rate (see Table 3) of the AMOD systems using the six different
dispatching approaches with the 2013 New York City Taxi Data (from 01-01-
2013 to 12-31-2013).

Table 2 and Table 4 show that the EAT algorithm significantly reduces the
average waiting time, both monthly and yearly, with all the three scheduling
strategies. When the AMOD system follows the no-scheduling strategy, the EAT
algorithm shortens the monthly average passenger waiting time by up to 49.74%
(2.82 mins). The average passenger waiting time of the whole year is reduced
by 29.82%, from 8.14 mins to 6.27 mins. Considering the total number of the
trips in the year 2013, it saves 3,870,245.09 hours’ time for the passengers as
well as substantial reduction on operational cost and green gas emission (though
we do not calculate it due to limited availability of the parameters). In the
static-scheduling strategy scenarios, the EAT algorithm improves the system’s
performance by 26.42%, bringing the overall average waiting time down from
7.80 mins to 6.17 mins. As for the systems with online-scheduling strategy,
the yearly average waiting time is also diminished greatly by 26.51%. Though
the EAT algorithm considerably improves systems’ performance irrespective
of the scheduling strategies, it works best when associated with the NSS sce-
nario. This is because it is more prone to local minimum in the NSS scenario
than the others, while the EAT algorithm counteracts the effect by systematically
expanding the search space and updating the dispatching adjacency schedule.

From Table 3 and Table 4, we can see that the EAT algorithms increases
the trip success rate for systems with all the three scheduling strategies. The
improvement for both NSS and SSS systems is slight, and below 5% in most
months of the year. However, the improvement for the OSS system is significant,
and can be up to 11.12% monthly and 7.65% for the whole year. The reason
behind is that the combination of OSS and EAT provides the dispatcher sufficient
search space of vehicles and updated information of the traffic information to
target an optimal assignment.

Fig. 4 and 5 shows the daily average passenger waiting time and the trip
success rate of the AMOD systems using the six dispatching paradigms in April
2013. They demonstrate that the OSS-EAT system performs the best among all
the six systems, in measurement of both daily average passenger waiting time
and trip success rate. The NSS system has the highest daily average waiting time
in most case, however, it performs better than OSS according to the comparison
of daily trip success rate. The reason is not clearly known to us yet, though it
may be owing to the OSS system’s constantly updating of the traffic information.

In summary, the EAT algorithm significantly improves the performance of
AMOD systems with all the three scheduling strategies according to both the
metrics. Specifically, it significantly reduces the average passenger waiting time
by up to 29.82%. It increases the trip success rate by up to 7.65%.

Managing Autonomous Mobility on Demand Systems 31

Table 2. A comparison of the average passenger waiting time (in minutes) of the
AMOD systems using the six different dispatching approaches with the 2013 New
York City Taxi Data.

NSS SSS OSS

w/ EAT w/o EAT w/ EAT w/o EAT w/ EAT w/o EAT

Jan 6.71 8.87 6.68 8.01 6.03 7.45

Feb 6.99 9.11 6.82 8.17 6.12 7.62

Mar 7.43 9.21 7.39 9.15 6.98 8.51

Apr 5.67 8.49 5.66 7.23 5.01 6.74

May 5.11 7.30 5.04 6.78 4.78 6.08

June 6.85 8.43 6.76 8.10 6.14 7.97

July 6.68 8.56 6.37 7.81 6.19 7.55

Aug 4.88 6.67 4.85 6.50 4.64 6.16

Sept 8.60 10.28 8.52 10.21 7.33 8.68

Oct 6.98 8.83 6.83 8.75 6.17 7.78

Nov 5.89 7.64 5.73 7.65 5.22 7.06

Dec 4.16 5.65 4.05 6.18 3.91 5.30

year 6.27 8.14 6.17 7.80 5.62 7.11

Table 3. A comparison of the trip success rate(in percentage %) of the AMOD systems
using the six different dispatching approaches with the 2013 New York City Taxi Data.

NSS SSS OSS

w/ EAT w/o EAT w/ EAT w/o EAT w/ EAT w/o EAT

Jan 87.32 79.96 89.44 87.46 90.79 86.87

Feb 83.67 89.04 92.69 89.61 93.63 89.64

Mar 92.16 89.04 92.69 89.61 93.63 89.64

Apr 80.20 77.70 81.93 79.26 82.31 76.82

May 89.96 88.10 94.05 89.69 96.77 90.96

June 83.11 80.66 85.34 83.07 89.27 81.81

July 86.05 84.76 89.14 85.17 91.79 85.61

Aug 89.27 84.79 91.09 87.86 94.01 85.71

Sept 79.87 76.04 82.31 80.00 85.91 80.48

Oct 82.79 80.55 85.32 81.62 89.79 81.35

Nov 74.99 72.61 78.35 71.65 81.27 76.51

Dec 79.52 76.23 83.65 81.40 87.66 78.89

year 83.91 80.97 86.79 83.12 89.59 83.22

32 W. Shen and C. Lopes

Table 4. Performance improvement (in percentage %) of the AMOD systems on aver-
age passenger waiting time (TAPW (min)) and trip success rate (RTS %) brought by
the Expand and Target algorithm.

NSS SSS OSS

TAPW (min) RTS(%) TAPW (min) RTS(%) TAPW (min) RTS(%)

Jan 32.19 9.20 19.91 2.26 23.55 4.51

Feb 30.33 1.63 19.79 5.17 24.51 6.29

Mar 23.96 3.50 23.82 3.44 21.92 4.45

Apr 49.74 3.22 27.74 3.37 34.53 7.15

May 42.86 2.11 34.52 4.86 27.20 6.39

June 23.07 3.04 19.82 2.73 29.80 9.12

July 28.14 1.52 22.61 4.66 21.97 7.22

Aug 36.68 5.28 34.02 3.68 32.76 9.68

Sept 19.53 5.04 19.84 2.89 18.42 6.75

Oct 26.50 2.78 28.11 4.53 26.09 10.37

Nov 29.71 3.28 31.94 9.35 35.25 6.22

Dec 35.82 4.32 52.59 2.76 35.55 11.12

year 29.82 3.63 26.42 4.42 26.51 7.65

Fig. 4. Daily average passenger waiting time of AMOD systems using six different
dispatching approaches (New York Taxi Data, April 2013)

Managing Autonomous Mobility on Demand Systems 33

Fig. 5. Daily trip success rate (in percentage %) of AMOD systems using six different
dispatching approaches (New York Taxi Data, April 2013)

5 Conclusion and Future Work

Autonomous mobility on demand systems, which, though still in their infancy,
have very promising prospects in providing urban population with sustainable
and safe personal mobility service in the near future. While a lot of research has
been done on autonomous vehicles and mobility on demand systems, to the best
of our knowledge, this is the first work that shows how to manage autonomous
mobility on demand systems for better passenger experience.

To reduce the average passenger waiting time and increase the trip suc-
cess rate, we introduce the Expand and Target algorithm which can be easily
integrated with three different scheduling strategies for dispatching autonomous
vehicles. We implement the autonomous mobility on demand simulation plat-
form and conduct an empirical study with the 2013 New York City Taxi Data.
Experimental results demonstrate that the algorithm significantly improves the
performance of the autonomous mobility on demand systems: it reduces the over-
all average passenger waiting time by up to 29.82% and increases the trip success
rate by up to 7.65%; it saves millions of hours of passengers’ time annually.

While the results are impressive, there is still a long way to go towards a
society with near instantly available personal mobility. To facilitate research
in this emerging field, we are developing a robust, open-source, agent-based
simulation platform for autonomous mobility on demand systems from scratch.
Another interesting direction is to investigate and design novel mechanisms to
encourage passengers truthfully report their travel demand well in advance to

34 W. Shen and C. Lopes

the dispatcher so that better performance can be achieved. Moreover, it would
be useful to study machine learning techniques that can accurately predict pas-
sengers’ mobility patterns based on historical data.

Acknowledgments. The authors would like to thank Michal Jakob, Michal Certicky
and Martin Schaefer for sharing the source code of the MobilityTestbed and the Agent-
Polis platform, and providing other technical support regarding the development of
the AMOD simulation tool. The authors also wish to thank the anonymous reviewers
for their constructive comments.

References

1. Agussurja, L., Lau, H.C.: Toward large-scale agent guidance in an urban taxi
service (2012). arXiv preprint arXiv:1210.4849

2. Alshamsi, A., Abdallah, S., Rahwan, I.: Multiagent self-organization for a taxi
dispatch system. In: 8th International Conference on Autonomous Agents and
Multiagent Systems, pp. 21–28 (2009)

3. Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C., Oluwatola,
O.A.: Autonomous vehicle technology: A guide for policymakers. Rand Corporation
(2014)

4. Beirão, G., Cabral, J.S.: Understanding attitudes towards public transport and
private car: A qualitative study. Transport policy 14(6), 478–489 (2007)

5. Broggi, A., Buzzoni, M., Debattisti, S., Grisleri, P., Laghi, M.C., Medici, P.,
Versari, P.: Extensive tests of autonomous driving technologies. IEEE Transac-
tions on Intelligent Transportation Systems 14(3), 1403–1415 (2013)

6. Čertickỳ, M., Jakob, M., Ṕıbil, R.: Analyzing on-demand mobility services by
agent-based simulation. Journal of Ubiquitous Systems & Pervasive Networks 6(1),
17–26 (2015)

7. Čertickỳ, M., Jakob, M., Ṕıbil, R., Moler, Z.: Agent-based simulation testbed for
on-demand transport services. In: Proceedings of the 2014 International Conference
on Autonomous Agents and Multi-agent Systems, pp. 1671–1672 (2014)

8. Chong, Z., Qin, B., Bandyopadhyay, T., Wongpiromsarn, T., Rebsamen, B., Dai,
P., Rankin, E., Ang Jr, M.H.: Autonomy for mobility on demand. In: Intelligent
Autonomous Systems 12, pp. 671–682. Springer (2013)

9. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

10. Donovan, B., Work, D.: New york city taxi data 2010–2013 (2014). http://publish.
illinois.edu/dbwork/open-data/

11. Downs, A.: Still Stuck in Traffic: Coping with Peak-hour Traffic Congestion. Brook-
ings Institution Press (2005)

12. Gan, J., An, B., Miao, C.: Optimizing efficiency of taxi systems: scaling-up
and handling arbitrary constraints. In: Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, pp. 523–531 (2015)

13. Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-agent real
time scheduling system for taxi companies. In: 8th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2009), pp. 29–36.
Budapest, Hungary (2009)

http://arxiv.org/abs/1210.4849
http://publish.illinois.edu/dbwork/open-data/
http://publish.illinois.edu/dbwork/open-data/

Managing Autonomous Mobility on Demand Systems 35

14. Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Perva-
sive Computing 7(4), 12–18 (2008)

15. Huang, A.S., Moore, D., Antone, M., Olson, E., Teller, S.: Finding multiple lanes in
urban road networks with vision and lidar. Autonomous Robots 26(2–3), 103–122
(2009)

16. Jakob, M., Moler, Z., Komenda, A., Yin, Z., Jiang, A.X., Johnson, M.P.,
Pěchouček, M., Tambe, M.: Agentpolis: towards a platform for fully agent-based
modeling of multi-modal transportation. In: Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1501–1502
(2012)

17. Lavrinc, D.: BMW builds a self-driving car - that drifts. Wired Magazine (2014)
18. Lozano-Perez, T., Cox, I.J., Wilfong, G.T.: Autonomous robot vehicles. Springer

Science & Business Media (2012)
19. Maciejewski, M., Nagel, K.: Simulation and dynamic optimization of taxi services

in MATSim. VSP Working Paper (2013)
20. MAPZEN: Mapzen metro extracts: New york City (2015). https://mapzen.com/

data/metro-extracts
21. Markoff, J.: Google cars drive themselves, in traffic. New York Times (2010)
22. Mitchell, W.J.: Intelligent cities. UOC Papers 5, 1541–1885 (2007)
23. Mitchell, W.J.: Reinventing the automobile: Personal urban mobility for the 21st

century. MIT Press (2010)
24. Moghadam, P., Wijesoma, W.S., Feng, D.J.: Improving path planning and map-

ping based on stereo vision and lidar. In: Proceedings of the 10th International
Conference on Control, Automation, Robotics and Vision, pp. 384–389. IEEE
(2008)

25. Ontodia: Pediacities neighborhoods of New York city (2015). http://catalog.
opendata.city/dataset/pediacities-nyc-neighborhoods

26. Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., Cosenza, S.: Vehic-
ular communication systems: Enabling technologies, applications, and future out-
look on intelligent transportation. IEEE Communications Magazine 47(11), 84–95
(2009)

27. Premebida, C., Ludwig, O., Nunes, U.: Lidar and vision-based pedestrian detection
system. Journal of Field Robotics 26(9), 696–711 (2009)

28. Seow, K.T., Dang, N.H., Lee, D.H.: A collaborative multiagent taxi-dispatch sys-
tem. IEEE Transactions on Automation Science and Engineering 7(3), 607–616
(2010)

29. Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M.:
Toward a systematic approach to the design and evaluation of automated mobility-
on-demand systems: a case study in singapore. In: Road Vehicle Automation,
pp. 229–245. Springer (2014)

30. Zhang, R., Pavone, M.: Control of robotic mobility-on-demand systems: a
queueing-theoretical perspective (2014). arXiv preprint arXiv:1404.4391

https://mapzen.com/data/metro-extracts
https://mapzen.com/data/metro-extracts
http://catalog.opendata.city/dataset/pediacities-nyc-neighborhoods
http://catalog.opendata.city/dataset/pediacities-nyc-neighborhoods
http://arxiv.org/abs/1404.4391

© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 36–48, 2015.
DOI: 10.1007/978-3-319-25524-8_3

Norm Establishment in a Single Dimension
Axelrod Model

Vinay Katiyar and David Clarance()

Tata Research Development & Design Centre,
Plot 54-B, Hadapsar Industrial Estate, Pune 411013, India
{vinay.katiyar,david.clarance}@tcs.com

Abstract. In Axelrod norm models (Axelrod, 1986), the existence of a norm is
described in terms of two variables, namely Boldness and Vengefulness. This
tradition operates on the assumption that these two variables are independent.
In this paper we seek to investigate behavior when this assumption is violated.
In particular, we postulate a linear negative relationship between the two. We
find that in such a world, norm establishment is possible without a Metanorm.
Further we prove that this state is an Evolutionary Stable State (ESS). Finally,
we explore the role of initial states in bringing about varied behavior in the
presence of multiple ESSs.

1 Introduction

Norms are behavioral prescriptions that play an important role in guiding behavior in
human systems. These prescriptions can exist as formal centralized directives or as
unwritten codes of acceptable behavior. The emergence, spread and establishment of
norms has been studied across disciplines and in various forms. Anthropologists [1],
sociologists [2, 3] and economists [4, 5] amongst others have approached the pheno-
menon of norms from different perspectives. On the computational side of the spec-
trum, the multi-agent study of norms has progressed in various directions. Neumann
[6] broadly categorized the agent based simulation literature into two traditions: Sys-
tems of interactions with game-theoretic foundations and systems with cognitively
richer agents with its roots in artificial intelligence. Further, Savarimuthu et al. [7]
have divided these models into nine categories, some of which are off-line design,
learning, cognition, culture and evolution and sanction, with some models falling in
more than one category. On the basis of these classifications, this paper borrows from
the evolutionary game theoretic tradition where norm enforcement is based on indi-
vidual sanctions with Axelrod’s classic paper [8] being the point of reference.

In Axelrodian norm models, a game theoretic approach is taken where a set of
agents with bounded rationality take binary decisions. The existence of a norm is
described in terms of two factors, namely boldness and vengefulness. Boldness refers
to the propensity of an agent to defy a norm i.e. higher the boldness, higher the
likelihood of norm violation. Vengefulness describes an agent’s tendency to punish
non-conformers of that norm. High vengefulness translates to a high probability of
punishing a defector. A state of high boldness and low vengefulness describes norm

 Norm Establishment in a Single Dimension Axelrod Model 37

collapse. The opposite – low boldness and high vengefulness – characterizes norm
establishment.

Axelrod’s model serves as a benchmark in this tradition and several models have
been built on the basis of these two variables [10, 12, 13, 14, 15]. However in these
models, boldness and vengefulness have been taken to be independent. In this paper,
we seek to examine a case where this assumption is violated. We forward the claim
that the independence of these variables is a substantial assumption both in terms of
realism as well as in bringing about the model’s results. A violation of this indepen-
dence can take many forms. There could be a linear or non-linear relationship be-
tween boldness and vengefulness. This relationship could be positive or negative. To
see how much such an assumption contributes to the results of Axelrod’s model we
start with one possible violation and create a model where we postulate a linear nega-
tive relationship between boldness and vengefulness and analyze its effects on norm
establishment and spread.

We start with a brief review of Axelrod’s original paper, followed by a description
of some concepts from Galan and Izquierdo [9] that we will use later in the paper.
Following that we describe the model’s framework and its parameters. In section 4 we
discuss the experiments conducted and their results. We conclude with a discussion of
our contribution to the literature on norms and our future work in this direction.

2 Axelrod’s Norm Model

Axelrod describes the existence of a norm to the extent that individuals take a certain
decision and are punished if they do not [8]. He uses an evolutionary approach where
agents are not perfectly rational. In this approach a strategy that results in a higher
payoff for the agent under consideration is more likely to be reused, while one that
does not fare well is more likely to be discarded. Payoffs are arrived at on the basis of
the “norms game” which is described below.

At the beginning of the norms game, an agent has an option to defect or to coope-
rate, that is, whether to reject a norm or to adhere to it. A. An agent’s decision to de-
fect depends on his level of boldness. If the agent chooses to defect, he receives a
payoff of T while all the other agents are hurt by an amount H. The defector is caught
defecting with a probability S. If an agent i observers a player j defecting, agent i can
choose to punish j depending upon S and his vengefulness. If i does punish j, then j
gets a negative payoff (P). i’s payoff also decreases as there is a cost, E, of enforcing
the punishment. In a given population, each agent makes one choice in a generation.
After the scores are calculated, each agent with a score that is below the average pop-
ulation score does not reproduce. Those with a score greater than one standard devia-
tion above the mean reproduce once in the next generation. An agent with a score
lying between the mean and one standard deviation above the mean has two offspring.
The population is kept constant in every generation.

Axelrod showed that this game results in a collapse of norms, that is a state where
Boldness is high and Vengefulness is low. He then proposed a secondary process of a
metanorm that would further enforce the norm. Axelrod’s metanorm is a mechanism

38 V. Katiyar and D. Clarance

in which an agent who observes and does not punish another agent’s defection is pu-
nished. He showed that in the presence of this metanorm, the primary norm is estab-
lished.

3 Characterisation of Evolutionary Stable States (ESSs)

Galan and Izquierdo [9] re-implemented and analysed Axelrod’s models. In a series
of experiments which included running the model for a greater number of generations,
using different mutation rates, changing the payoff matrix and using different selec-
tion mechanisms they found that Axelrod’s metanorm game results were not as reli-
able as earlier thought to be. He had shown that if initial conditions were favourable
enough the Metanorm could prevent defection in every case. While Axelrod had re-
ported the results from 5 runs consisting of 100 generations each, Galan and Izquierdo
ran the model for 1000 runs consisting of 1 million generations each. They found that
in approximately 70% of the runs, norm collapse was observed by the end. Using this
as an example they called for several measures to be taken in agent based modelling
including replication, sensitivity analysis and of complementing simulation with ana-
lytical work.

To do so we use a concept of point stability which they call Evolutionary Stable
State [ESS] to check if a certain pair of values of boldness and vengefulness is truly a
point of global stability as suggested by experiments. Galan and Izquierdo define a
state to be an ESS if the following conditions are satisfied:

A is the set of all agents, and are the level of Boldness and Vengefulness of

agent i. I is the set of all incumbent agents and m is the mutant agent.

1. Every agent in the population A receives the same payoff.
 Exp Payoff Exp Payoff i, j A (1)

2. A single mutant agent m who changes his strategy (let be the new strate-
gy) gets a strictly lower expected payoff than any of the other agents in the
incumbent population, I A m .

 Exp Payoff Payoff , m A; i I ; b , v (2)

3. The mutant agent does not distort the composition of the population,

 Exp Payoff Exp Payoff i, j I m I , m A; b , v (3)

Given this description of an ESS, the necessary conditions for a state being an ESS,

assuming continuity of agent’s properties, for boldness is

 Norm Establishment in a Single Dimension Axelrod Model 39

For all mutant agents m, ∂ Payoff∂b ∂ Payoff∂b i I
 OR b 1 AND ∂ Payoff∂b ∂ Payoff∂b i I (4)

 OR b 0 AND ∂ Payoff∂b ∂ Payoff∂b i I

Similarly, the conditions for vengefulness can be define by replacing b with v in

equation (4). Let this corresponding equation for vengefulness be Equation (5)
Equations (4) and (5) are used to show that the only ESS in the “norm game” is the

state of norm collapse with 0 and = 1. In the “Metanorm game” Galan and
Izquierdo find two ESSs, one with norm collapse as observed before and one where
the norm is established with 1 and = 4/169.

In this paper, we provide analytical examples and mathematical proofs based on
the concepts defined above to substantiate results derived from simulations.

4 Model Description

We retain the base Axelrod model of the “norm game” but reduce the strategy space
to one dimension. Boldness and vengefulness are inversely related at the level of the
agent. As boldness increases/decreases, vengefulness decreases/increases. If boldness
is given by for agent i, then vengefulness is 1 – for agent i. The two collapse into
one variable that we call Prosocialness (ps). High prosocialness refers to low bold-
ness and therefore high vengefulness while low prosocialness refers to the opposite.
Prosocialness lies between 0 and 1. A detailed description of the model follows.

1. There are 100 agents and each agent has complete visibility.

2. As before, an agent makes a binary decision to cooperate or defect. The deci-

sion to defect depends on the level of Prosocialness, e.g. if Prosocialness is
0.7, then the agent defect with a probability of 0.3 and punishes defectors
with a probability of 0.7. If he defects he earns a higher payoff (D) as com-
pared to the payoff from cooperation (C). Defection imposes a hurt cost (H)
to the other agents. Upon defection an agent is liable to be punished with a
cost P if he is seen by other agents and if the agents choose to punish him.
There is an enforcement cost to punishment (E). At the end of each run, the
scores are calculated for each agent. Table 1 summarizes payoffs for the
norm game between two agents A and B.

40 V. Katiyar and D. Clarance

Table 1. Payoff Matrix

3. The expected score for the individual agents at the end of a single run is

given by the following equation:
 G α H ∑ β P γ ∑ δNNJ E ∑ θN (6)

 Where, α D if agent i has violated the norm C if agent i has not violated the norm

 β 1 if agent j has violated the norm0 if agent j has not violated the norm

 γ 1, if agent i has violated the norm0, if agent i has not violated the norm

 1, If j sees i violating norm and punishes0, Otherwise

 θ 1, If i sees j violating norm and punishes0, Otherwise

4. Each agent with a score below the mean randomly chooses an agent with a
score above the mean and tends towards the latter’s level of prosocialness
by 0.1 units. Suppose at time t, agent i possess a score Score and a Proso-
cialness level ps and agent j possess a score of Score and a Prosocialness
level of ps . Let the mean score at the end of time t be m. Assume that Score < m < Score . prosocialness values in the next period (t + 1) will be,

 ,
0.1 0.1, 0.1

(7)

 Reward
to A

Hurt to
B

Punishment by B
if B sees A violate

Enforcement cost for
B if punishing A

Agent A violates
norm

D H P E

Agent A complies
with norm

C - - -

 Norm Establishment in a Single Dimension Axelrod Model 41

 ,
0.1 0.1, 0.1

(8)

5. In every generation a mutation occurs in the population. With probability m,

an agent randomly changes his level of prosocialness to any level between 0
and 1. Mutation is an efficient system to ensure that the model reaches a
global equilibrium by not getting caught in a local equilibrium.

5 Experiments and Results

We run the following experiments on the model described above.
1. The base norm game using Axelrod’s parameters
2. Varying initial states.
3. Speed of convergence across different initial distributions of prosocialness.

Some common parameters used across the experiments are Mutation rate (µ) =
0.001 and probability of being seen () = 0.50. We performed 30 runs for each expe-
riment and each run consisted of 1000 generations. NetLogo 4.1.3 [11] was used as
the modelling environment. This agent based programmable environment allows for
autonomous agents, parameterization and in general met all our requirements.

5.1 Single Dimension Norm Game

We begin by running the model with Axelrod’s payoff matrix. The values are given
below.

Table 2. Axelrod’s payoff matrix

Each agent receives a prosocialness level based on a random draw from a uniform

distribution lying between 0 and 1. The game is played for 1000 generations.
We record the average prosocialness and the number of cooperators and defectors at
the end of each generation. Figure 1 show the number of cooperators and defectors for
1000 generations. We see that by the end all the agents cooperate. This shows that the
norm has been established. Further note that this takes place relatively quickly (within
150 generations).

 Reward
to A

Hurt to B Punishment by B
if B sees A violate

Enforcement cost for
B if punishing A

Agent A violates
norm

3 -1 -9 -2

Agent A complies
with norm

0 - - -

42 V. Katiyar and D. Clarance

Fig. 1. Norm establishment in the modified Norm Game

Figure 2 demonstrates how this happens. Agents with high prosocialness increase
while those who low prosocialness get crowded out. Each curve in the figure
represents the number of agents lying between a certain prosocialness range. A pro-
socialness range peaks to the right of the prosocialness range which lies just below it.
This shows that agents with higher levels of prosocialness receive higher payoffs and
hence are reproduced in subsequent generations. The system seems to settle at a pro-
socialness level of 1.

Fig. 2. Agents at different ranges of Prosocialness across generations

To check if this is indeed the case, taking into account Galan and Izquierdo’s con-
cern we conduct a mathematical analysis of an approximation of the model to search
for Evolutionary Stable States.

0
20
40
60
80

100
120

N
um

be
r o

f a
ge

nt
s

Genera! ons

Number of defectors Number of cooperators

0

20

40

60

80

100

N
um

be
r o

f a
ge

nt
s

Genera! ons
0.5 -0.6 0.6 -0.7 0.7 - 0.8
0.8 -0.9 0.9 - 1

 Norm Establishment in a Single Dimension Axelrod Model 43

5.2 ESSs in the One Dimension Norm Game

We begin by stating Galan and Izquierdo’s [9] necessary conditions in terms of our
model. From equation (4 and 5) and assuming continuity of the agent’s properties the
necessary conditions for a set of agents being an ESS are as follows:

For all mutant agents m,
 ∂Exp Payoff∂ps ∂Exp Payoff∂ps i I (9)

OR

OR ps 0 AND ∂Exp Payoff∂ps ∂Exp Payoff∂ps i I (11)

ps 1 AND ∂Exp Payoff∂ps ∂Exp Payoff∂ps i I (10)

Each statement described above in equation (9), (10) and (11) will be examined.

However before that we prove a supporting result that in an ESS, each agent must
play the same strategy. This result is then used in further proofs.

Statement 1: A necessary condition that a state is an ESS is that each agent must play
the same strategy.
Proof: Since for ESS each agent must receive the same payoff, from Equation (1) we
have: Exp Payoff Exp Payoff i, k A (12)

Let F Exp Payoff Exp Payoff = 0

 (13)

Therefore we have,

 F P ps ps E ps ps 0 ps ps

 (14)

Since i and k are arbitrary, each agent must play the same strategy in an ESS.

Statement 2: = 1 and ps = 0 are ESSs.
Proof: The expected payoff to player i is given by,

 Exp ps . C 1 ps D H. ∑ 1 ps, P . 1 ps . . ∑ ps, E . ps . ∑ 1 ps,
 (15)

44 V. Katiyar and D. Clarance

Further, ∂Exp Payoff∂ps H P 1 ps . 12 E . ps . 12

 (16)

E P D P . . ∑ ps, E . . ∑ 1 ps,

 (17)

Now since all the players follow the same strategy in an ESS (as proved in state-
ment 1) Let, ps PS, i (18)

Therefore, from equation 16, 17 and 18 we have, E P H P P E . PS (19)

and, E D P . n 1 . PS E . n 1 . 1 PS (20)

Using Axelrod’s parameters (Table 2) and from Equation 19 and 20,
 For PS 1, E P E P for n 3 (21)

And, For PS 0, E P E P for n 2 (22)

Hence for reasonable n ≥ 3, PS = 0 and PS = 1 are ESSs.

Statement 3: There exists no prosocialness level that lies between 0 and 1 and is an
ESS.
Proof: From equation 9, 18, 19 and 20 we have,

From Equation 23, we find that PS decreases from 0.27 to 0.18 as n increases from
3 to ∞. In our model the number of agents are 100, therefore, 0.18 . The ex-
pected payoff of an agent with 0.18 is -160.72. However this is not an ESS
because an agent with prosocialness 0.1 or 0 has a expected score of -160.40 and -160
respectively and can easily invade a state where all agents are at PS = 0.18.

 (23)

 Norm Establishment in a Single Dimension Axelrod Model 45

5.3 Norm Emergence under Different Initial States

The analysis presented above suggests that two ESSs exist. We observed only one
ESS (norm establishment with ps = 1) in the first set of results that we presented.
A question that arises is as follows: Under what conditions do we observe the model
settling at the second ESS (norm collapse with ps = 0)? In this section we seek to
address this question by varying the initial conditions of the model.

Table 3. Results of Experiments

Experiment no. Mean Defectors Co-operators Status
1 0.00 99.97 0.03 Collapse
2 0.10 99.20 0.80 Collapse
3 0.20 18.27 81.73 Established
4 0.30 6.13 93.87 Established
5 0.40 8.00 92.00 Established
6 0.50 5.63 94.37 Established
7 0.60 7.67 92.33 Established
8 0.70 5.97 94.03 Established
9 0.80 0.50 99.50 Established
10 0.90 0.30 99.70 Established
11 1.00 0.07 99.93 Established

We run the norm model with Axelrod’s parameters by setting the initial distribu-

tion of prosocialness as a normal distribution with means 0, 0.1, 0.2 and so on up to 1
respectively. The standard deviation in each case is set to 0.1. Each level was repeated
30 times for 1000 generations. The results are presented in Table 2. We can clearly
see that the norm is established across most distributions. However when prosocial-
ness is normally distributed with means 0 and 0.1 we observe that the norm collapses.
This substantiates our finding in Section 5.2.

Fig. 3. Average PS at the end of the simulations across distributions

0.00
0.20
0.40
0.60
0.80
1.00
1.20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00Fi
na

l P
S

di
st

ri
bu

tio
n

Initial PS distribution

46 V. Katiyar and D. Clarance

Figure 3 shows the average final prosocialness at each initial prosocialness distri-
bution. We find that the point where the system changes its behavior lies between 0.1
and 0.2. In the simulations of the above experiment we find that to the right of this
point, the model tends to reach a state of norm establishment and below this point we
observe norm collapse. To explore this further we calculate approximate expected
payoffs.

Figure 4 shows the expected payoff for different levels of prosocialness for the in-
cumbent population and two mutants. Each point has three bars associated with it.
The center bar shows the average payoff of the incumbent population. The bar to the
right shows the expected payoff of a mutant whose prosocialness is higher (by 0.1
units) than the incumbent population. Similarly the bar to the left indicates the payoff
of a mutant with lower prosocialness. Therefore this figure shows whether a mutant
has potential to invade the incumbent population.

Fig. 4. Expected Payoff for incumbents and mutants with different initial distributions.

We observe that here too the behavior of the system changes between 0.1 and 0.2.

To the right of this threshold point, a mutant with prosocialness that is higher than the
incumbent population will obtain a higher payoff and thus reproduce on average. To
the left of this point, a mutant with a prosocialness that is higher than the incumbent
population will receive a payoff that is lower. Therefore at this threshold point, the
change in payoff to a mutating agent must be the same as the change in payoff to the
incumbent population when the mutant changes his strategy. This is the condition
defined in statement 3. Hence the threshold point is approximately 0.18.

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
pe

ct
ed

 P
ay

of
f

Prosocialness
Mutant with lower PS Population Mutant with higher PS

 Norm Establishment in a Single Dimension Axelrod Model 47

5.4 Convergence in the Modified Norm Game

Finally we analyze the number of generations required for a modified norm game to
reach a steady state based on the initial distribution. We define convergence as the
point where 90% of the population is at the same level of Prosocialness and hence
uses the same strategy. We do not use a 100% criterion as mutation can cause one
single agent to change his prosocialness and hence bias the results. The results are
presented in Figure 5.

Fig. 5. Number of generations required for convergence.

We see that in general, the closer the initial distribution is to its ESS, the faster
there is convergence. The points to the left of 0.2 converge almost immediately to a
prosocialness of 0, while the time taken for the points to the right of 0.2 depend on
the distance from the point of prosocialness 1.

6 Conclusion

Norm models have traditionally assumed the independence of two variables – bold-
ness and vengefulness – that describe Axelrod’s world. We have attempted to investi-
gate the effects of a violation of such an assumption. In particular we postulate a li-
near negative relationship between the two. We find that in such a system, norms are
established without the enforcement of a Metanorm. We show through simulation
(Figure 1, 2), mathematically (Section 5.2) and through an analytical approximation
(Figure 4) that norm establishment is an Evolutionary Stable State. However, we also
find that there is an alternate stable state of Norm Collapse and that where the system
ultimately ends up depends on the initial distribution. Finally we show that the time
required for a system to converge depends on the initial distribution as well.

Through this paper we have attempted to throw light on the importance of relation-
ships between psychological variables at the level of an agent in an agent based
system. Different assumptions lead to different consequences and hence building a
relevant model must start with establishing correct micro-foundations. While this
paper has looked at a population where the two variables are negatively related in a
linear fashion, there are other relations possible. These could be linear or non-linear,

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
en

er
at

io
ns

 ta
ke

n
to

co

nv
er

ge

Initial distribution

48 V. Katiyar and D. Clarance

positive or negative. In the future we would like to explore different possible combi-
nations individually and together (mixed populations) to see how they affect norm
establishment and spread in Axelrodian norm systems.

Acknowledgement. We would like to acknowledge the inputs received from our colleagues
Vivek Balaraman, Meghendra Singh and Mayuri Duggirala that greatly improved this research
work.

References

1. Geertz, C.: The interpretation of cultures: Selected essays, vol. 5019. Basic books (1973)
2. Durkheim, E.: The Rules of Sociological Method. The Free Press, Glencoe (1950)
3. Hechter, M., Karl-Dieter, O., (eds): Social norms. Russell Sage Foundation (2001)
4. Akerlof, G.: The economics of caste and of the rat race and other woeful tales. The Quar-

terly Journal of Economics, 599–617 (1976)
5. North, D.C.: Institutions, institutional change, and economic performance. Cambridge

Univ Press (1990)
6. Neumann, M.: Homo socionicus: a case study of simulation models of norms. Journal of

Artificial Societies and Social Simulation 11(4) (2008)
7. Savarimuthu, B., Tony, R., Stephen, C.: Norm creation, spreading and emergence: A sur-

vey of simulation models of norms in multi-agent systems. Multiagent and Grid Systems
7(1), 21–54 (2011)

8. Axelrod, R.: The Evolution of Norms. The American Political Science Review 80(4),
1095–1111 (1986)

9. Galan, J.M., Izquierdo, L.R.: Appearances can be deceiving: Lessons learned
re-implementing Axelrod’s’ evolutionary approach to norms. Journal of Artificial Socie-
ties and Social Simulation 8(3) (2005)

10. Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)
11. Wilensky, U.: NetLogo: Center for Connected Learning and Computer-Based Modeling.

Northwestern University, Evanston (1999). http://ccl.northwestern.edu/netlogo/
12. Balaraman, V., Meghendra, S.: Exploring norm establishment in organizations using an

extended axelrod model and with two new metanorms. In: Proceedings of the 2014
Summer Simulation Multiconference. Society for Computer Simulation International
(2014)

13. Matsumoto, M.: Relationship between Norm-internalization and Cooperation in N-person
Prisoners’ Dilemma Games. Transactions of the Japanese Society for Artificial Intelli-
gence 21, 167–175 (2006)

14. Mahmoud, S., et al.: Efficient norm emergence through experiential dynamic punishment.
In: ECAI, vol. 12 (2012)

15. Mahmoud, S., et al.: Optimised reputation-based adaptive punishment for limited observa-
bility. In: 2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing
Systems (SASO). IEEE (2012)

Multi-agent Systems Meet Aggregate
Programming: Towards a Notion

of Aggregate Plan

Mirko Viroli(B), Danilo Pianini, Alessandro Ricci, Pietro Brunetti,
and Angelo Croatti

University of Bologna, Bologna, Italy
{mirko.viroli,danilo.pianini,a.ricci,p.brunetti,a.croatti}@unibo.it

Abstract. Recent works foster the idea of engineering distributed situ-
ated systems by taking an aggregate stance: design and development are
better conducted by abstracting away from individuals’ details, directly
programming overall system behaviour instead. Concerns like interaction
protocols, self-organisation, adaptation, and large-scaleness, are auto-
matically hidden under the hood of the platform supporting aggregate
programming. This paper aims at bridging the apparently significant
gap between this idea and agent autonomy, paving the way towards an
aggregate computing approach for multi-agent systems. Specifically, we
introduce and analyse the idea of “aggregate plan”: a collective plan to
be played by a dynamic team of cooperating agents.

1 Introduction

Self-organisation mechanisms support adaptivity and resilience in complex nat-
ural systems at all levels, from molecules and cells to animals, species, and entire
ecosystems.A long-standing aim in computer science is to find effective engineering
methods for exploiting such mechanisms to bring similar adaptivity and resilience
to a wide variety of complex, large-scale applications—in smart mobility, crowd
engineering, swarm robotics, etc. Practical adoption, however, poses serious chal-
lenges, since self-organisation mechanisms often trade efficiency for resilience and
are often difficult to predictably compose to meet more complex specifications.

On the one hand, in the context of multi-agent systems, self-organisation
is achieved relying on a weak notion of agency: following a biology inspiration,
agents execute simple and pre-defined behaviour, out of which self-organisation
is achieved by emergence [13]—ant foraging being a classical example. This app-
roach however hardly applies to open and dynamic contexts in which what is
the actual behaviour to be followed by a group of agents is to be decided (or
even synthesised) at run-time.

On the other hand, a promising set of results towards addressing solid engi-
neering of open self-organising systems are being achieved under the umbrella
of aggregate programming [5]. Its main idea is to shift the focus of system pro-
gramming from the individual’s viewpoint to the aggregate viewpoint: one no
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 49–64, 2015.
DOI: 10.1007/978-3-319-25524-8 4

50 M. Viroli et al.

longer programs the single entity’s computational and interactive behaviour, but
rather programs the aggregate (i.e., the collective). This is achieved by abstract-
ing away from the discrete nature of computational networks, by assuming that
the overall executing “machine” is a sort of computational continuum able to
manipulate distributed data structures: self-organisation mechanisms sit under
the hood, and are the key for automatically turning aggregate specifications into
individual behaviour. Aggregate programming is grounded in the computational
field calculus [10], its incarnation in the Protelis programming language [29], on
studies focussing on formal assessment of resiliency properties [35], and building
blocks and libraries built on top to support applications in the context of large
scale situated systems [3].

This paper aims at bridging the apparently significant gap between aggregate
programming and agent autonomy, paving the way towards a fruitful coopera-
tion by which stronger notions of agents (including deliberation and planning
capabilities) can closely relate to self-organisation mechanisms. This is achieved
by considering an aggregate program as a plan, what we call an “aggregate plan”,
operationally guiding the cooperative behaviour of a team of agents. Agents can
create aggregate plans or receive them from peers, and can deliberate to exe-
cute them or not in different moments of time. The set of agents executing an
aggregate plan forms a cooperating “dynamic team”, coherently bringing about
the social goal that the plan is meant to achieve, typically expressed in terms
of a final distributed data structure used as input for other processes or to feed
actuators (i.e., to make agents/devices move). The inner mechanisms of aggre-
gate computing smoothly support entering/quitting the team, making overall
behaviour spontaneously adapt to such dynamism as well as being resilient to
changes in environment conditions.

The remainder of this paper is organised as follows: Section 2 overviews aggre-
gate computing, Section 3 compares it with multi-agent systems and illustrates
the aggregate plan idea, Section 4 described an example scenario of a distributed
rescue activity by autonomous entities, Section 5 compares with alternative MAS
approaches, and finally Section 5 concludes and discusses future works.

2 Aggregate Computing

Most paradigms of distributed systems development, there including the multi-
agent system approach, are based on the idea of programming each single indi-
vidual of the system, in terms of its computational behaviour (goals, plans, algo-
rithm, interaction protocol), typically considering a finite number of “roles”, i.e.,
individual classes. This approach is argued to be problematic: it makes it compli-
cated to reason in terms of the effect of composing behaviours, and it forces the
programmer to mix different concerns of resiliency and coordination—using mid-
dlewares that externalise coordination abstractions and interaction mechanisms
only partially alleviate the problem [38,7].

These limits are widely recognised, and motivated work toward aggregate pro-
gramming across a variety of different domains, as surveyed in [2]. Historically

Multi-agent Systems Meet Aggregate Programming 51

such works addressed different facets of the problem: making device interaction
implicit (e.g., TOTA [23]), providing means to compose geometric and topo-
logical constructions (e.g., Origami Shape Language [25]), providing means for
summarising from space-time regions of the environment and streaming these
summaries to other regions (e.g., TinyDB [21]), automatically splitting computa-
tional behaviour for cloud-style execution (e.g., MapReduce [11]), and providing
generalisable constructs for space-time computing (e.g., Proto [24]).

Aggregate computing, based on the field calculus computational model [10]
and its embodiment in Protelis programming language [29], lies in the above
approaches and attempts a generalisation starting from the works on space-
time computing [5], which are explicitly designed for distributed operation in a
physical environment filled with embedded devices.

2.1 Computing at the Aggregate Level

The whole approach starts from the observation that the complexity of large-scale
situated systems must be properly hidden “under-the-hood” of the programming
model, so that composability of collective behaviour can be more easily supported
and allow to better address the construction of complex systems. Aggregate pro-
gramming is then based on the idea that the “machine” being programmed is
a region of the computational environment whose specific details are abstracted
away (perhaps even to a pure and uniform spatial continuum): the program is
specified as a manipulation of data constructs with spatial and temporal extent
across that region. Practically, since such “machine” is ultimately a collection of
communicating devices, the semantics of aggregate programming is given as a
mapping to a self-organising algorithm involving local interactions between such
devices.

As an example, consider the problem of designing crowd steering services
based on fully distributed, peer-to-peer interactions between crowd members’
smart-phones. In this example, smart-phones could interact to collectively esti-
mate the density and distribution of crowding, seen as a distributed data struc-
ture mapping each point of space to a real-value indicating the crowd estimation,
namely, a computational field (or simply field) of reals [23,10]. This can be in
turn used as input for actual steering services: warning systems for people nearby
dense regions (producing a field of booleans holding true where warning has to
be set), dispersal systems to avoid present or future congestion (producing a
field of directions suggested to people via their smartphones), steering services
to reach points-of-interest (POI) avoiding crowded areas (producing a field of
pairs of direction and POI name). Building such services in a fully-distributed,
resilient, and composable/reusable way is very difficult, as it comes to achieve
self-* behaviour by careful design of each device’s interaction with neighbours.
With aggregate programming, on the other hand, one instead naturally reasons
in terms of an incremental construction of continuous-like computational fields,
with the programming platform taking care of turning aggregate programs into
programs for the single device.

52 M. Viroli et al.

2.2 Constructs

The field calculus [10] captures the key ingredients of aggregate computation
into a tiny language suitable for grounding programming and reasoning about
correctness – recent works addressed type soundness [10] and self-stabilisation
[35] – and is then incarnated into a Java-oriented language called Protelis [29],
which we here use for explanation purposes. The unifying abstraction is that of
computational field, and every computation (atomic or composite) is about func-
tionally creating fields out of fields. Hence, a program is made of an expression
e to be evaluated in space-time (ideally, in a continuum space-time, practically,
in asynchronous rounds in each device of the network) and returning a field evo-
lution. Four mechanisms are defined to hierarchically compose expressions out
of values and variables, each providing a possible syntactic structure for e.

Application: λ(e1, . . . , en) applies “functional value” λ to arguments
e1, . . . , en, using call-by-value semantics and in a point-wise manner (output
in a space-time point depend on inputs at the same point). λ can either be a
“built-in” primitive (any non-aggregate operation to be executed locally, like
mathematical, logical, or algorithmic functions, or calls to sensors and actu-
ators), a user-defined function (that encapsulates reusable behaviour), or an
anonymous function value (x1, . . . , xn)->e (treated as a value, and hence pos-
sibly passed also as argument, and ultimately, spread to neighbours to achieve
open models of code deployment [10])—in the latter case Protelis ad-hoc syntax
is λ.apply(e1, . . . , en).

Dynamics: rep(x<-v){e} defines a local state variable x initialised with value
v and updated at each node’s computation round with the result of evaluating
the update expression e (which mentions x to mean the old value).

Interaction: nbr(e) gathers by observation a map at each neighbour to its
latest resulting value of evaluating e. A special set of built-in “hood” functions
can then be used to summarise such maps back to ordinary expressions, e.g.,
minHood(m) finds the minimum value in the range of map m.

Restriction: if(e){e1} else {e2} implements branching by partitioning the
network into two regions: where e evaluates to true e1 is evaluated, elsewhere e2
is evaluated. Notably, because if is implemented by partition, the expressions in
the two branches are encapsulated and no action taken by them can have effects
outside of the partition.

The above informal description roughly amounts to a denotational semantics
of Protelis, given as a transformation of data structures dislocated in space-time
[5]. An operational semantics, describing an equivalent system of local operations
and message passing between devices [10], can be sketched as follows. Given a
network of interconnected devices D that runs a main expression e0, computation
proceeds by asynchronous rounds in which a device δ ∈ D evaluates e0. The
output of each round at a device is an ordered tree of values, called value-
tree, tracking the result of computing each sub-expression encountered during

Multi-agent Systems Meet Aggregate Programming 53

evaluation of e0. Such an evaluation is performed against the most recently
received value-trees of neighbours, and the produced value-tree is conversely
made available to all neighbours (e.g., via broadcast in compressed form) for
their next round. Most specifically: nbr(e) uses the most recent value of e at
the same position in its neighbours’ value-trees, rep(x<-v){e} uses the value
of x from the previous round, and if(e){e1} else {e2} completely erases the
non-taken branch in the value-tree (allowing interactions through construct nbr
with only neighbours that took the same branch, called “aligned neighbours”).

2.3 Building Blocks and APIs

An example of aggregate program is the definition of a general building block G as
reported in Figure 1(top) and thoroughly discussed in [4]. It is a highly reusable
“spreading” operator executing two tasks: it computes a field of shortest-path
distances from a source region (indicated as a boolean field holding true on
sources) according to the supplied function metric (yielding a map from neigh-
bours to a distance value), then propagates values along the gradient of the
distance field away from source, beginning with value initial and accumulat-
ing along the gradient with function accumulate. A complementary operator is
C, which accumulates information back to the source down the gradient of a
supplied potential field; beginning with an idempotent null, at each device,
the local value is combined with “uphill” values using a commutative and asso-
ciative function accumulate, to produce a cumulative value at each device in the
source. Another operator S can be used to elect a set of leaders with approxi-
mate distance grain from each other.

On top of such building blocks one can incrementally define general-purpose
APIs. Some examples are shown in Figure 1(center), which culminate in func-
tions share and meanPathObstacles. The former is used to gather information
from an input field with a suitable accumulation function, broadcast it back
so that all devices agree on the result, and do so by sub-regions of a given
size partitioning the whole network. The latter computes in a fully-distributed
and network-independent way the complex task of gathering in a source node
the average amount of “obstacle” nodes (e.g. nodes sensing high traffic, or high-
pollution) that one would encounter if travelling towards a destination according
to a shortest-path: such information could be used to estimate the appropriate-
ness of moving towards that destination.

Finally, to support openness and dynamism of code injection and manage-
ment, our model support higher-order functions, allowing code (i.e., functions)
to be passed around and be treated as data to diffuse. This allows to store a
minimal code in each device, as show in Figure 1(bottom): function deploy is
used to let function g be spread from sources and be executed remotely, while
virtual-machine uses it to extract from environmental sensors the function to
be injected, the injection point, and the range of diffusion. This means that a
complex behaviour like that of functions share and meanPathObstacles needs
not be statically present in each device, but could have been injected dynami-
cally, received, and then executed by the set of involved devices.

54 M. Viroli et al.

// Spreads ’initial’ out of ’source’, using a given ’metric’ and ’accumulate’ update function
def G(source, initial, metric, accumulate) {

rep(dv <- [Infinity, initial]) { // generates a field of pairs: distance + value
mux(source) { // mux is a built-in ternary conditional operator

[0, initial] // value of the field at a source
} else { // lexicographic minimum of pairs obtained from neighbours

minHood([nbr(dv.get(0)) + metric.apply(), accumulate.apply(nbr(dv.get(1)))])
} // adding distance and accumulating.. then selcting min

}.get(1) // of the pair only second component is returned
}
// Spreads ’initial’ out of ’source’, using a given ’metric’ and ’accumulate’ update function
def C(potential, accumulate, local, null) { ... }
// Elects leaders distant approximately ’grain’ using a given ’metric’
def S(grain, metric) { ... }

// Computes minimum distance to ’source’
def distanceTo(source) {

G(source, 0, () -> {nbrRange}, (v) -> {v + nbrRange})
}
// Broadcasts ’value’ out of ’source’
def broadcast(source, value) {

G(source, value, () -> { nbrRange }, (v) -> {v})
}
// Share values obtained ’accumulation’ over ’field’ done into regions of ’regionSize’
def share(field,accumulation,null,regionSize){

let leaders = S(regionSize,() -> { nbrRange });
broadcast(leaders,C(distanceTo(leaders),accumulate,field,null))

}
// Activates nodes on a path region with ’width’ size connecting ’src’ and ’dst’
def channel(src, dest, width) {

distanceTo(src) + distanceTo(dest) <= broadcast(src,distanceTo(dest)) + width
}
// Gathers in sink the sum of ’value’ across ’region’
def summarize(sink, region, value) {

C(if (region) {distanceTo(sink)} else {Infinity}, +, value, 0)
}
// Gathers average level of obstacles ’obs’ in the ’size’-path from ’src’ to ’dest’
def meanPathObstacles(src, dest, size, obs) {

summarize(src, channel(src, dest, size), obs)/summarize(src, channel(src, dest, size), 1)
}

// Evaluate a function field, running ’g’ within ’range’ meters from ’source’, ’no-op’ elsewhere
def deploy (range, source, g, no-op) {

if (distance-to(source) < range) { broadcast(source,g).apply() } else {no-op.apply() }
}
// The entry-point function executed to run the virtual machine on each device
def virtual-machine () {

deploy(sns-range, sns-injection-point, sns-injected-fun, ()->0)
}

Fig. 1. Building blocks G, C, and S (top), elements of upper-level APIs (center), VM
bootstrapping code (bottom)

As one may note, an aggregate program never explicitly mentions a device’s
individual behaviour: it completely abstracts away from inner details of network
shape and communication technology, and only assumes the network is dense
enough for devices to cooperate by proximity-based interaction. Additionally, it
is showed that operators G, C and S, along with construct if and function appli-
cation mechanisms, form a self-stabilising set [4], hence any complex behaviour

Multi-agent Systems Meet Aggregate Programming 55

built on top is self-stabilising to any change in the environment, guaranteeing
resilience to faults and unpredicted transitory changes.

3 Aggregate Computing and Multi-agent Systems

In this section we draw a bridge between the agent-based approach and aggregate
computing: after discussing commonalities and differences, we introduce and
discuss the notion of aggregate plan.

3.1 Multi-agent Systems vs Aggregate Computing

Multi-agent systems and aggregate computing have some common assumptions
that worth being recapped, and which form the basic prerequisite for identifying
a common operating framework. First, they both aim at distributed solutions
of complex problems, namely, by cooperation of individuals that, though being
selfish, they are also social and hence be willing to bring about “social” goals
and objectives. Second, they both assume agents are situated in a physical or
logical environment, and work by perceiving a local context and acting on it,
there including exchanging messages and sensing/acting on the environment.
Finally, both approaches have been used to achieve self-organisation, typically
by engineering nature-inspired solutions (mostly from biology for agents, and
from physics for aggregate computing [39]).

On the other hand, multi-agent systems and aggregate computing have key
differences, both conceptually and methodologically. First, with aggregate com-
puting one programs the collective behaviour of individuals, whereas most agent
approaches provide languages to program an agent behaviour, either as a reactive
component exchanging messages adhering to given protocols, or as a proactive
component with declarative goals, a deliberation cycle, and carrying on plans.
Traditionally, weak forms of aggregation are considered in the MAS community
as well, including the use of coordination mechanisms and tools (e.g. via arti-
facts [27] or protocols [18]), social/organisational norms [1], commitments [22],
and so on. However, they either provide mere declarative constraints to agent
interaction (i.e., they do not operationally describe the aggregate behaviour to
carry on), or manage interactions between a typically small number of agents.

Second, agents feature autonomy as key asset. At least in the “stronger”
notion of agency, agents do not follow pre-determined algorithms, but provide
mechanisms to dynamically adapt their behaviour to the specific contingency:
they have some even minimal ability to negatively reply to an external request,
and to deviate from a previously agreed cooperative behaviour. On the other
hand, in aggregate computing, individuals execute the same program in quite
a rigid fashion: it is thanks to higher-order functions as developed in [10] that
individuals can be given very simple initial programs which are unique system-
wise, and later can execute different programs as a result of what function they
receive and start executing. This mechanism is actually key for the adoption of
aggregate computing mechanisms in multi-agent systems.

56 M. Viroli et al.

3.2 Aggregate Programs as Collective Plans

Though many ways of integrating aggregate computing and MAS exist (see a
discussion in last section), in this paper we develop on the notion of “aggregate
plan”: a plan that an agent can either create or receive from peers, and can
deliberate to execute or not in different moments of time, and which specifies an
aggregate behaviour for a team of agents.

Life-cycle of Aggregate Plans. In our model, aggregate plans are expressed
by anonymous functions of the kind ()->e, where e is a field expression possibly
calling API functions available as part of each agent’s library—functions like
those shown in Figure 1 (center). One such plan can be created in two different
ways, by suitable functions (whose detail we abstract away): first, it can be a sen-
sor (like sns-injected-function in Figure 1 (bottom)) to model the plan being
generated by the external world (i.e. a system programmer) and dynamically
deployed; second, it can model a local planner (e.g., a function plan-creation)
that synthesises a suitable plan for the situation at hand. When the plan is cre-
ated, it should then be shared with other agents, typically by a broadcasting
pattern, like the one implemented by function deploy—though, the full power
of field calculus can be used to rely on more sophisticated techniques for con-
straining the target area of broadcasting.

Agents are to be programmed with a virtual-machine-like code that makes
it participate to this broadcast pattern, so as to receive all plans produced
remotely in the form of a field of pairs of a description of the plan and its
implementation by the anonymous function. Among the plans currently avail-
able, by the restriction operator if the agent can autonomously decide which
one to actually execute, using as condition the result of a built-in deliberation
function that has access to the plan’s description.

Note that if/when an aggregate plan is in execution, it will make the agent
cooperatively work with all the other agents that are equally executing the same
aggregate plan. This “dynamic team” will then coherently bring about the social
goal that this plan is meant to achieve, typically expressed in terms of a final
distributed data structure, used as input for other processes or to feed actuators
(i.e., to make agents/devices move). The inner mechanisms of aggregate com-
puting smoothly support entering/quitting the team, making overall behaviour
spontaneously self-organise to such dynamism.

Mapping Constructs, and Libraries. As a plan is in execution, the opera-
tions of aggregate programming that it includes can be naturally understood as
“instructions” for the single agent, as follows:

– Function application amounts to any pure computation an agent has to
execute, there including algorithmic, deliberation, scheduling and planning
activities, as well as local action and perception.

– Repetition construct is instead used to make some local result of execution
of the aggregate plan persist over time, e.g. modelling belief update.

Multi-agent Systems Meet Aggregate Programming 57

– Restriction can be used inside a plan to temporarily structure the plan in
sub-plans, allowing each agent to decide which of them should be executed,
i.e., which sub-team has to be dynamically joined.

– Neighbour field construction is the mechanism by which information about
neighbour agents executing the same (sub-)plan can be observed, supporting
the cooperation needed to make the plan be considered as an aggregate one.

As explained in previous section, one of the assets of aggregate programming
is its ability of defining libraries of reusable components of collective behaviour,
with formally provable resilience properties. Seen in the context of agent pro-
gramming, such libraries can be used as libraries of reusable aggregate plans,
built on top of building blocks:

– Building block G is at the basis of libraries of “distributed action”, namely,
cooperative behaviour aimed at acting over the environment or sets of agents
in a distributed way. Examples include, other than broadcasting information
(broadcast) and reifying distances (distanceTo), also the possibility of fore-
casting events, creating network partitions, clusters or topological regions in
general.

– Building block C conversely supports libraries of “distributed perception”,
namely, cooperative behaviour aimed at perceiving the environment or infor-
mation about a set of agents in a distributed way. They allow gathering
“aggregate” values over space-time regions, like sums, average, maximum,
semantic combination [32], as well as computing consensus values [12].

– Building block S supports libraries requiring forms of explicit or implicit
leader elections, often needed to aggregate and then spread-back consensus
values.

The combination of building blocks G, C, S, and others [4], allow to define more
complex elements of collective adaptive behaviour, generally used to intercept
distributed events and situations, compute/plan response actions, and actuate
them collectively.

4 Case Study

As an exemplification of the above mentioned concepts, we propose a cooperative
teamwork case study. We imagine that a situation of emergency occurs in a
urban scenario. A group of rescuers is responsible of visiting the areas where
an unknown number of injured victims are likely to be located, and decide in
which order to assist them (e.g., to complete a triage). We suppose rescuers
carry a smart device, and are able to communicate with each other the position
of victims in their field of view. Such devices are equipped with a small VM
code (a minimal aggreate plan), which is responsible of computing and selecting
a collaborative strategy for exploring the area, and of displaying a coordinate
to go to. Rescuers do not initially know the exact position of victims: they
are required to get to the area by visiting a set of coordinates assigned by the
mission control, explore the surroundings, and assist any people they encounter
that require treatment.

58 M. Viroli et al.

4.1 An Aggregate Computing Approach

Our devices start with a simple plan, suggesting directions to reach given coor-
dinates assigned by the mission control.

As a rescuer sees a victim, it creates and injects a second, more advanced
plan, working as follows: if the rescuer sees a victim and nobody else is assisting
her, then it simply takes charge of assisting. If somebody else is already assisting
her, instead, the rescuer moves towards the closest known victim if any, relying
on the aggregate knowledge of all the other rescuers, namely taking into account
all the victims that had been seen by any other rescuer—namely, performing
a distributed observation. As a consequence, rescuers will tend to come close
to the areas where victims have already been found but not assisted yet. The
idea behind the plan is that it is likely that many victims are grouped, and as
such calling for more rescuers may raise the probability of finding them all. If
no victims have been discovered or all have been assisted, then the dynamic
aggregate plan is quit, and the initial plan of reaching the target destination
(former exploration strategy) is executed.

The collaborative strategy requires agents to collectively compute fields like
remaining, mapping each agent to the list of positions of nearby victims to be
assisted. Building, maintaining and manipulating distributed and situated data
structures like this one, and do so in a resilient way [35], is a fundamental brick
of any aggregate plan, and specifically, of the dynamic plan that in this scenario
an agent may decide to play. Aggregate computing can be used to smoothly
solve the problem by the following sub-plan:

– by function share a field of known victims can be created by the union of
single agent’s knowledge about victims, as reflected by their visual percep-
tion;

– similarly, again by function share, a field of victims currently assisted can
be created based on information coming from the agents actually assisting;

– by set subtraction, the field remaining is built that provides information
about victims not assisted yet;

– if field victims is empty, the plan is quit;
– otherwise, if there are no known remaining, the agent moves to the closest
assisted – where it is likely to find new victims;

– otherwise, the agent moves to the closest remaining, assisting the victim as
she is reached.

Once this plan and the original one are alive, each agent can autonomously
decide which one to follow.

4.2 Simulation

We have chosen to simulate our case study in an urban environment. There,
two groups of victims are displaced, and a group of rescuers starts its mission
from in-between those two groups. Initially, coordinates are generated by the
mission control, and are given to rescuers. Once the first victim is encountered,

Multi-agent Systems Meet Aggregate Programming 59

(a) Initial Situation (b) Default plan

(c) Victim is found, new plan is injected (d) Some agents leave their group

(e) Assistance is performed collabora-
tively

(f) Victims are found on a new area, and
some agents move towards them

Fig. 2. Simulation of the case study. Rescuers that follow their initial plan are pictured
in black, rescuers that are acting collaboratively are in blue, and rescuers that are
assisting are marked in purple. Victims are in red, until they receive assistance and
switch to green. The rescuers initially split in two groups, but when the first victim is
found, some of those going towards the other victim group decide to change their plan
and act collaboratively.

the aggregate plan becomes available. To simulate autonomous behaviour, we
assign a certain probability p that an agent accepts to follow the aggregate plan:
if it does not, it keeps moving towards the given coordinates. Each ten minutes
each agent reconsiders its decision to follow the aggregate plan, again according
to probability p.

We used Alchemist [28] as simulation platform. Alchemist supports simu-
lating on real-world maps, exploiting OpenStreetMaps data and imagery, and
leveraging Graphhopper for navigating agents along streets. The actual city used
as scenario is the Italian city of Cesena.

Section 4.2 shows some snapshots from a run executed with p = 0.75. Res-
cuers (black dots) visit the coordinates starting from a random one; as such,
they initially split in two sub-groups. At some point, one of them finds a victim.
The second plan becomes available, and some of the agents, both in the close

60 M. Viroli et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000

H
ur

ts
 s

uc
ce

ss
fu

lly
 tr

ia
ge

d

Time (simulated seconds)

p = 0.0
p = 0.25

p = 0.5
p = 0.75

p = 1.0

Fig. 3. Impact of our measure of autonomy p on the numer of victims assisted with
time. Mean of 100 runs for each value of p.

sub-group and in the group far away change their behaviour and start walking
towards such a victim. The number of rescuers that change their original direc-
tion and follows the new plan raises with p. With p = 1, all of them start chasing
a victim as soon as found, with p = 0 none of them does, and every one continues
to visit its waypoints. 1 − p can be seen as a measure of the likelihood that the
suggested plan is rejected by the freedom of autonomy: in this sense, it reflects
a measure of the level of autonomy of each agent.

Figure 3 shows how p impacts the performance of the system in our sce-
nario. Our expectation is that the results with very low p strongly depend on
how fortunate is the initial waypoints choice. In case the selection is rough or
approximate, the rescuers may end up not finding all the victims. The chart
confirms this expectation: the line for p = 0 rises very quickly (agents divide
their load pretty evenly), but the final result is that in 99 out of 100 runs some
of the victims are not discovered. It is worth observing the behaviour for p = 1:
initially, all the rescuers walk towards the first group that is found. Only when
this group is completely assisted, they start looking for more victims on differ-
ent places, hence the flat part of the black line. Once the second group is found,
all the rescuers are attracted towards that area, and the assisting procedure is
quickly completed: as shown, in fact, the number of successfully assisted victims
steeply rises. Intermediate values of p show a progressive change in behaviour
between the two extremes. A very solid and globally quick result is obtained
with p = 0.25, suggesting that the system takes advantage from both autonomy
in choice and collective decisions.

5 Related MAS Approaches

Alternative ways to implement the case study and similar systems with
MASs range from purely subjective approaches (agents realise coordination) to

Multi-agent Systems Meet Aggregate Programming 61

objective approaches (the coordination burden is externalised to coordination
media and/or organisation mechanisms) [26].

The simplest example for the subjective case is given by a well-known plat-
form like JADE [6], which does not provide any specific support to coordination
but only relies on speech-act/FIPA based communication protocols. In this case,
the design of such protocols should take into the account all the issues that we
implicitly manage at the aggregate level and achieve self-organisation. So, our
approach sits at a rather higher abstraction level and hence defines a much more
convenient engineering framework—JADE could of course be possibly used as a
low-level platform to support our agent-to-agent interactions.

More complex subjective approaches exploit Distributed AI techniques for
MAS coordination and teamwork—such as distributed scheduling and plan-
ning [16,20,33]. A main example for the first case is given by Generalized
Partial Global Planning (GPGP) and the TAEMS Framework for Distributed
Multi-agent systems [19]. A main example for the second case is given by
approaches based on Distributed (Partially Observable) Markov Decision Prob-
lems (Distributed (PO)MDPs) and Distributed Constraint Optimization Prob-
lems (DCOPs) [34]. While these approaches have been proven to be effective
in realistic domains, taking into the account the uncertainty of agent’s actions
and observations, they typically fail to scale up to large numbers of agents [34],
which aggregate computing smoothly addresses by construction.

On the objective side, a viable approach would be to rely on specific
coordination artifacts [27] (like tuple spaces and their variants). Using mod-
els/infrastructures like TuCSoN [14,36], or the chemical-inspired SAPERE app-
roach [37], one could couple each device with a networked shared space in which
tuple-like data chunks can be injected, observed, and get diffused, aggregated,
and evaporated by local coordination rules. Although proper coordination rules
could in principle be instrumented to achieve a similar management of compu-
tational fields, the functional nature of aggregate computing – that is crucial
to support reusability and composability – is difficult to mimick, if not by an
automatic compilation process.

A different objective approach is rooted on organisation/normative models
and structures, e.g., using Moise and a supporting platform like JaCaMo [7]—
which integrates the organisation dimension (based on Moise) with the agent
dimension (based on the Jason agent programming language) and the envi-
ronment one (based on the CArtAgO framework). In this case, the solution
would account to explicitly define the coordination among agents in terms of
the structural/functional/normative view of the organisation of the MAS. The
coordination aspect would be handled in particular by defining missions and
social schemas. The level of self-organisation supported in this case is limited to
the way in which individual agents are capable to achieve the individual goals
that are assigned and distributed by the organisational infrastructure, execut-
ing the “organisation program”. The functional description of the coordination
to be enacted at the organisation level – specified by missions – is essentially
a shared plan explicitly defining which goals must be done and in which order.

62 M. Viroli et al.

This approach is not feasible in the application domains for which aggregate com-
puting has been devised, where it is not possible (or feasible) in general to define
a priori such a shared static global plan. That is, it is possible to specify what
is the desired goal (e.g. what kind of spatial distribution of the human/agents
we want to obtain), but not its functional decomposition in subtasks/subgoals
to be assigned to the individual agents/roles.

6 Conclusion and Future Works

In this work we started analysing a bridge between multi-agent systems to aggre-
gate programming. Aggregate programming can be useful in MAS as an approach
that allows to specify the behaviour and goal of the MAS at the global level,
as a kind of shared plan abstracting from the individual autonomous behaviour.
This makes our work strongly related to existing literature in MAS dealing with
cooperative planning in partially observable stochastic domains [17], and deci-
sion making in collaborative contexts adopting formalized frameworks based on
a notion of shared plans [15]. In that perspective, there are many interesting
directions that can be explored in future work. A first one is to explore aggre-
gates composed by intelligent agents based on specific model/architecture such
as the BDI one, promoting a notion of aggregate stance that may integrate
with classical intentional stance [8]. A second direction is to explore the link
with approaches that investigate the use stigmergy and coordination based on
implicit communication in the context of aggregates of intelligent agents [9,30];
Finally, it would be interesting to integrate aggregate programming with agent-
oriented programming [31] and current agent programming languages, making
it possible to conceive agent programs that e.g. exploit both local plans – like in
the case of a BDI agent language like Jason – and global plans as conceived by
the aggregate level.

References

1. Artikis, A., Sergot, M.J., Pitt, J.V.: Specifying norm-governed computational
societies. ACM Trans. Comput. Log. 10(1) (2009)

2. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, chap. 16, pp. 436–501. IGI Global
(2013). http://arxiv.org/abs/1202.5509

3. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
IEEE Computer (2015)

4. Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising
applications. In: IEEE Workshop on Foundations of Complex Adaptive Systems
(FOCAS) (2014)

5. Beal, J., Viroli, M.: Space–time programming. Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences
373(2046) (2015)

http://arxiv.org/abs/1202.5509

Multi-agent Systems Meet Aggregate Programming 63

6. Bellifemine, F.L., Poggi, A., Rimassa, G.: Developing multi-agent systems with
JADE. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI),
vol. 1986, p. 89. Springer, Heidelberg (2001)

7. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent
oriented programming with jacamo. Science of Computer Programming 78(6),
747–761 (2013)

8. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press,
Nov. 1987

9. Castelfranchi, C., Pezzulo, G., Tummolini, L.: Behavioral implicit communication
(BIC): Communicating with smart environments via our practical behavior and
its traces. International Journal of Ambient Computing and Intelligence 2(1),
1–12 (2010)

10. Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation:
a higher-order calculus of computational fields. In: Graf, S., Viswanathan, M. (eds.)
Formal Techniques for Distributed Objects, Components, and Systems. LNCS,
vol. 9039, pp. 113–128. Springer, Heidelberg (2015)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

12. Elhage, N., Beal, J.: Laplacian-based consensus on spatial computers. In: 9th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2010), pp. 907–914. IFAAMAS (2010)

13. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Natural Computing 12(1), 43–67 (2013)

14. Gardelli, L., Viroli, M., Casadei, M., Omicini, A.: Designing self-organising envi-
ronments with agents and artefacts: A simulation-driven approach. International
Journal of Agent-Oriented Software Engineering 2(2), 171–195 (2008)

15. Grosz, B.J., Hunsberger, L., Kraus, S.: Planning and acting together. AI Magazine
20(4), 23–34 (1999)

16. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial
Intelligence 86(2), 269–357 (1996)

17. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

18. Kalia, A.K., Singh, M.P.: Muon: designing multiagent communication protocols
from interaction scenarios. Autonomous Agents and Multi-Agent Systems 29(4),
621–657 (2015)

19. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D.,
Podorozhny, R., Prasad, M., Raja, A., Vincent, R., Xuan, P., Zhang, X.: Evolution
of the GPGP/TAEMS domain-independent coordination framework. Autonomous
Agents and Multi-Agent Systems 9(1–2), 87–143 (2004)

20. Levesque, H.J., Cohen, P.R., Nunes, J.H.T.: On acting together. In: Proceedings
of the Eighth National Conference on Artificial Intelligence, AAAI 1990, vol. 1,
pp. 94–99. AAAI Press (1990)

21. Madden, S.R., Szewczyk, R., Franklin, M.J., Culler, D.: Supporting aggregate
queries over ad-hoc wireless sensor networks. In: Workshop on Mobile Comput-
ing and Systems Applications (2002)

22. Mallyak, A.U., Singh, M.P.: An algebra for commitment protocols. Autonomous
Agents and Multi-Agent Systems 14(2), 143–163 (2007)

23. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions: The TOTA approach. ACM Trans. on Software Engineering Methodologies
18(4), 1–56 (2009)

64 M. Viroli et al.

24. MIT Proto. http://proto.bbn.com/ (retrieved on January 1, 2012)
25. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape using

Biologically-inspired Local Interactions and Origami Mathematics. Ph.D. thesis,
MIT (2001)

26. Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engineer-
ing of agent systems. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.)
Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 179–202. Springer,
Heidelberg (2003)

27. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), June 2008

28. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with Alchemist. Journal of Simulation (2013)

29. Pianini, D., Viroli, M., Beal, J.: Protelis: Practical aggregate programming. In:
Proceedings of ACM SAC 2015, pp. 1846–1853. ACM, Salamanca, Spain, (2015)

30. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy:
towards a framework based on agents and artifacts. In: Weyns, D., Van
Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389,
pp. 124–140. Springer, Heidelberg (2007)

31. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)
32. Stevenson, G., Ye, J., Dobson, S., Pianini, D., Montagna, S., Viroli, M.: Combining

self-organisation, context-awareness and semantic reasoning: the case of resource
discovery in opportunistic networks. In: ACM SAC, pp. 1369–1376. ACM (2013)

33. Tambe, M.: Towards flexible teamwork. J. Artif. Int. Res. 7(1), 83–124 (1997)
34. Taylor, M.E., Jain, M., Kiekintveld, C., Kwak, J., Yang, R., Yin, Z., Tambe,

M.: Two decades of multiagent teamwork research: past, present, and future.
In: Guttmann, C., Dignum, F., Georgeff, M. (eds.) CARE 2009 / 2010. LNCS,
vol. 6066, pp. 137–151. Springer, Heidelberg (2011)

35. Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-
organising systems by self-stabilising fields. In: IEEE Conference on Self-Adaptive
and Self-Organising Systems (SASO 2015) (2015)

36. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implement-
ing self-organising coordination. In: Proceedings of ACM SAC 2009, volume III,
pp. 1353–1360. ACM, March 8–2, 2009

37. Viroli, M., Pianini, D., Montagna, S., Stevenson, G., Zambonelli, F.: A coordination
model of pervasive service ecosystems. Science of Computer Programming, June
18, 2015

38. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

39. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive
service ecosystems. International Journal of Pervasive Computing and Communi-
cations 7(3), 186–204 (2011)

http://proto.bbn.com/

CAMP-BDI: A Pre-emptive Approach for Plan
Execution Robustness in Multiagent Systems

Alan White(B), Austin Tate, and Michael Rovatsos

School of Informatics, Centre for Intelligent Systems and their Applications,
Artificial Intelligence Applications Institute, University of Edinburgh, Edinburgh, UK

a.g.white@sms.ed.ac.uk, a.tate@ed.ac.uk, mrovatso@inf.ed.ac.uk

Abstract. Belief-Desire-Intention agents in realistic environments may
face unpredictable exogenous changes threatening intended plans and
debilitative failure effects that threaten reactive recovery. In this paper
we present the CAMP-BDI (Capability Aware, Maintaining Plans)
approach, where BDI agents utilize introspective reasoning to modify
intended plans in avoidance of anticipated failure. We also describe an
extension of this approach to the distributed case, using a decentral-
ized process driven by structured messaging. Our results show significant
improvements in goal achievement over a reactive failure recovery mech-
anism in a stochastic environment with debilitative failure effects, and
suggest CAMP-BDI offers a valuable complementary approach towards
agent robustness.

Keywords: Multiagent teamwork · Belief-desire-intention · Planning ·
Capability · Robustness

1 Introduction

The Belief-Desire-Intention (BDI) approach is widely applied towards intelligent
agent behaviour, including within realistic domains such as emergency response.
Realistic environments are stochastic and dynamic; exogenous change during
execution can threaten the success of planned activities, risking both intention
failure and debilitative consequences. Current BDI architectural implementa-
tions typically employ reactive approaches for failure mitigation, replanning or
repairing plans after failure; Jason agents (Bordini and Hbner [2006]), for exam-
ple, define recovery plans explicitly triggered by goal failure(s). This may risk
additional costs associated with recovering from debilitated post-failure states
– or even risk recovery being impossible. Continuous short-term planning helps
handle uncertainty, but risks inadvertently stymieing long-term goals – such as
if resource requirements are not identified and subsequently lost to contention.

We suggest agents embodied with capability knowledge can use introspective
reasoning to proactively avoid plan failure. The CAMP-BDI (Capability Aware,
Maintaining Plans) approach presented in this paper allows agents to modify
intended plans when they are threatened by exogenous change – supporting use
of long term planning whilst allowing response to unanticipated world states.
We contribute the following components as part of our approach;
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 65–84, 2015.
DOI: 10.1007/978-3-319-25524-8 5

66 A. White et al.

– An algorithm for anticipatory plan repair behaviour, henceforth referred to as
maintenance

– Extension to the distributed hierarchical team case, using structured commu-
nication to drive individual adoption of responsibility for, and performance of,
maintenance

– A supporting architecture, providing the capability, dependency, and obliga-
tion knowledge required to support introspective reasoning during mainte-
nance

– A policy mechanism allowing runtime tailoring of maintenance behaviour

An experimental implementation of CAMP-BDI was evaluated against a
reactive replanning system, using a logistics environment where unpredictable
exogenous events could occur during intention execution. Our results were gath-
ered over multiple experimental runs, for several probabilities of negative failure
consequences. Our proactive approach was observed to hold a significant advan-
tage in goal achievement over a reactive approach, and to offer greater efficiency
(in terms of planning calls) at higher probabilities of negative failure conse-
quences (i.e. where it was more likely failure led to a world state that increased
difficulty of recovery planning).

2 Motivating Example

Our motivating example is a logistics domain, where goals require delivery of
cargo to a set location in a stochastic, dynamic, continuous and non-deterministic
environment. Uncertainty arises from agent health state, weather conditions
(rainstorms may flood roads or cause landslips), or emergence of ‘danger zones’
(hostile insurgent activity at a given location). Failure risks negative conse-
quences including vehicle damage (and, if already damaged, being rendered unus-
able), stranding off-road, or cargo destruction with possible toxic contamination
rendering roads unusable. Figure 1 depicts a Truck agent travelling a planned
route from location A to M, when road F→M is rendered unusable by flooding
– threatening Truck ’s intended activity, move(F , M).

We target environments where exogenous change causes divergence from the
beliefs held at intention formation, failure risks debilitation, and resource con-
tention prevents continual planning. This requires a pre-emptive approach; antic-
ipating failure risks and proactively altering plans to compensate. Behaviour

Fig. 1. Example of Truck executing a plan to travel from A to M.

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 67

must extend to both local and multiagent contexts; i.e. if Truck cannot main-
tain sufficient confidence in meeting an obligation, the dependent agent should
be able to compensate by modifying it’s local (dependent) intended plan.

3 Architecture Components

In order to support a pre-emptive approach and allow introspective examination
of intended plans, CAMP-BDI agents require the following meta-knowledge com-
ponents. We suggest these can be regarded as subsets of agent Beliefs, although
storage and retrieval semantics will be implementation-specific; the key element
is that CAMP-BDI agents must specifically distinguish and consequently use this
information in maintenance reasoning. Due to our approach of plan modification
to avoid threatened failure, we adopt Simari and Parsons [2006]’s definition of
an intention i as combining a goal and plan; i.e. i = {igoal , iplan}.

3.1 Capabilities

Capabilities define meta-knowledge regarding activities performable, and goals
achievable, by agents. Our capability model provides the information required for
introspective maintenance reasoning – it is also used to provide a representation
of such information when conveyed within a dependency contract, allowing our
algorithms to employ the same reasoning approach for both locally performed
and delegated activities.

We define an activity a as similar to a task in a Hierarchical Task Network;
where successful execution of a achieves some given state transition. A planned
activity may represent either an atomic action or a (sub)goal, where performance
of the latter entails execution of some subplan (i.e. an ordered sequence of activ-
ities). A capability c(a), denoting the holding agents ability to perform a, has
the following fields;

c(a) = <s, g(a), pre(a), eff(a), conf(a, Ba)>

– s: signature with name n and t parameters (s=n(t1,..., nt)); a specific capa-
bility instance c within the MAS can be uniquely identified by combining s
and (identifier of) the agent holding c(a).

– g(a): defines an associated goal – a set of atoms ground to a. This can be used
to distinguish between a defined purpose of a and its side-effects; i.e. fly and
drive would achieve the same goal state (to arrive at some location), but with
different total effects (eff (a), below).

– pre(a): preconditions (belief atoms) defining where a can be achieved - specif-
ically, where use of c(a) is not guaranteed to fail

– eff (a): the complete set of post-effects of using c(a) – i.e. eff (a) = g(a) ∪
side-effects(c(a)).

– conf : a × Ba → [0:1]; the confidence function; estimates the quality (in this
context indicating likelihood of success) of using c(a) to perform a, where
belief set Ba gives the execution context. This supports identification of where

68 A. White et al.

exogenous change decreases optimality of a planned a – i.e. conf (driveAlong(F,
M), B) is lower where B � slippery(F,M) than B � dry(F,M).

In summary, holding c(a) indicates that agent can achieve g(a), with total
post-effects eff (a), provided pre(a) holds in the execution context Ba, with the
level of quality indicated by conf.

3.1.1 Capability Typology

We define the type of a capability using two, overlapping categories;

Complexity: Primitive and Composite capabilities can be viewed as equivalent
to basic and high level activities (Dhirendra et al. [2010]). Primitive capabili-
ties represent atomic activities; Composites represent knowledge of one or more
plans to perform some activity, or the ability to form a plan under specified
preconditions. Each plan in an agent’s plan library is represented by exactly one
composite capability, meaning plans:capabilities have an n:1 relationship.

The activities found within plans will themselves correspond to capabilities.
Composites can be seen as representing refinement options for (sub)goal activ-
ities within plans (i.e. requiring execution of some subplan), and also support
continual planning by allowing reasoning whether plans exist for (as-yet unre-
fined) subgoals.

Locality: Internal capabilities represent activities an agent can perform itself;
External capabilities represent those advertised by others, where a can be per-
formed by delegation; as any decomposition is identified and performed by the
resultant obligant(s) (i.e. the advertising agent), external capabilities are always
primitive (e.g. are atomic from the dependant ’s perspective).

3.1.2 The Confidence Function

Certain state combinations may impact the likelihood of activity success, with-
out being significant enough to include within preconditions (the qualification
problem defined by McCarthy [1958]). The confidence function (conf (a, Ba)) is
used to allow reasoning whether exogenous change has increased risk of failure,
even where preconditions are not violated. A numerical value allows semantic-
independent comparison between different internal and/or external capabilities
for the same s, and supports varying levels of granularity (e.g.yes=1, maybe=0.5,
no=0).

Estimation depends on both the capability type and a itself. If a is unground,
confidence indicates the general ability of that agent to achieve g in Ba – an
abstract estimation. If a is ground, additional semantic information can be used
for specific estimation. Primitive capabilities will use a predefined calculation for
both abstract and specific estimation – such as considering both past execution
results (similar to Dhirendra et al. [2010]) and states in Ba. Implementation is
domain and agent specific, requiring appropriate analysis of both.

External capabilities use a fixed, abstract confidence value as received in
the relevant capability advertisement. Agents are unlikely to be able to share

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 69

semantic knowledge required for specific estimation, as recipients may lack the
modelling or sensory ability required to interpret. However, specific estimates
are provided for delegated activities through the external capability field of con-
tracts (see 3.2). We treat the actual advertisement process as implementation
specific.

Composite capability confidence derives from the set of plans represented by
that capability (Pcapability). Plan confidence is the minimum held in a constituent
activity (below, with conf expanded to consider a plan p as the first argument,
where Bp is the execution context of the first activity in p); Ba requires updating
with an’s effects to estimate the execution context of an+1.

conf(p, Bp) = mina∈pconf(a, Ba)

We assume the highest confidence plan is always selected for a goal. Com-
posite capability confidence is taken as the highest of a selectable plan (where
preconditions hold – if none are selectable, 0 is returned), where agoal is the
activity being performed using the composite capability and Bagoal

it’s execu-
tion context.

conf(agoal , Bagoal
) = max p∈Pcapability

pre(p)⊂Bagoal

conf(p, Bagoal
)

This equates to formation and traversal of an AND-OR tree, similar to goal-
plan trees described in Thangarajah et al. [2003], representing all potential plan
and subplan execution ‘paths’ required to decompose and achieve agoal. The
return value derives from visiting every leaf activity (O(n) worst case complex-
ity, for n leaf nodes), originating from either a primitive or external capability
confidence value. We assume cyclical loops cannot occur due to the decompo-
sitional nature of plans; this property is also required to prevent infinite loops
in agent activity itself. Use of advertised confidence for external capabilities –
rather than requesting potential dependants calculate a value locally – restricts
semantic knowledge requirements to the advertising agent.

There is considerable scope for domain specific optimization of confidence
calculation for both primitive and composite types. Average-case complexity
can also be improved in contexts where a minimum threshold is being tested by
using α-β pruning based on that threshold value. Finally, composite capabilities
representing runtime planning abilities will require custom implementation of
confidence estimation, similar to that used by primitive capabilities.

3.2 Obligation and Dependency Contracts

Our approach assumes dependency contracts are formed as early as possible, in
advance of execution, to reserve agent capabilities and protect against possible
agent resource contention. CAMP-BDI agents are aware of their obligation (to
perform some activity upon request) and dependency (activities to be performed
by some obligant) contracts. Contracts define mutual beliefs between dependants
and obligants regarding a delegated activity – our algorithms require the follow-
ing fields be represented and established during contract formation;

70 A. White et al.

– The activity to be performed by the obligant(s) for the dependant.
– Causal link states; states that will be established by planned dependant, as

effects of activities in the plan, prior to execution of the delegated activity.
– An external capability, used by obligant(s) to convey the (anticipated) post-

effects and confidence for the activity – the latter estimating the execution
context using the causal link states. If there is more than one obligant, the
individual obligant capabilities will be merged;
• Confidence is set as the minimum individual obligant confidence
• Preconditions are formed as the conjunction of all obligant preconditions
• Effects are set as the union of all obligant post-effects

– A maintenance policy, used to guide maintenance behaviour (see 3.3).

3.3 Maintenance Policies

A maintenance policy defines specific fields, applied to a defined set of agents
and/or capabilities, where both field values and the applicable agent-capability
set are modifiable during runtime;

– Threshold: the minimum confidence (quality) value for an activity; runtime
modification of this value also allows compensation for over-sensitive confi-
dence estimation

– Priority: guides relative prioritisation within maintenance behaviour, when
multiple activities in an iplan are identified as under threat

Maintenance policies are used to tailor maintenance behaviour; agent-
capabilities associated with activities that have greater (probability or sever-
ity) failure consequences can be given lower thresholds and higher priorities.
This assists balancing the additional computational costs of maintenance (lower
threshold values act to increase the likelihood of an agent attempting to identify
a confidence-raising modification of the iplan) against the benefits of avoiding
failure.

Contract maintenance policies merge dependant and obligant policies – these
are matched respectively to the capability mapped to the dependent’s igoal
(where iplan contains the delegated activity) and to that associated with the
obligant and delegated activity (obligant’s igoal). To restrict changes to a mini-
mal subset of the overall distributed plan, the merged maintenance policy uses
the most constrained field values (lowest threshold and highest priority values) to
ensure obligants must have attempted maintenance before informing dependants
of confidence changes.

4 The CAMP-BDI Algorithm

The reasoning cycle (algorithm 1) of a CAMP-BDI agent extends
Rao and Georgeff [1995]’s generic BDI algorithm with contract formation and
maintenance steps (the former to support information requirements of the lat-
ter). Intentions are selected before the maintain function attempts to diagnose

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 71

and correct threats to iplan , the performance of which may result in subsequent
modification. The maintain function is also called following receipt of obliga-
tionMaintained messages, which convey changes in how obligants will perform
a delegated activity and also signifies they have performed any required (possi-
ble) local maintenance. The formAndUpdateContracts function forms new, and
updates existing, dependency and obligation contracts; this executes after main-
tain, to account for plan modifications and/or inherited dependency contract
changes.

The maintain function (Algorithm 2) first forms a priority-ordered list
(agenda) of maintenance tasks – each representing a threatened activity. The
agent iterates through this agenda, terminating when a maintenance task is suc-
cessfully handled or the agenda emptied. The function handleMaintenanceTask
attempts to modify iplan to address the issue represented by a given maintenance
task, returning true if successful (false if iplan is unchanged).

Separating agenda formation and handling allows the former to prioritize
amongst the complete set of threatened activities. Decoupling of agenda forma-
tion (i.e. threat diagnosis) and handling processes also facilitates investigation
into alternate approaches for either.

In our motivating example (Fig. 1), handleAgenda would identify – using the
associated capability’s pre field – that flooding of F → M violates the precon-
ditions of move(F , M), and insert a corresponding maintenance task into the
agenda. A subsequent handlingMaintenanceTask call for that maintenance task
would (attempt to) modify iplan such that igoal can be achieved, either by avoid-
ing use of move(F ,M) or (if capable) removing the flooded state of F → M .

If there are multiple possible intentions (I �= ∅), the agent only attempts
to maintain the specific i ∈ I that has been selected for execution. We view
intention selection as goal driven behaviour, such that maintenance changes to
improve an iplan will not invalidate the original choice to select that i. This avoids
the cost of maintaining every potential intention prior to selection – especially as
maintenance of unselected intentions risks being rendered futile by subsequent
agent activity. We terminate after the first successfully handled maintenance
task, as modifications may invalidate other maintenance tasks in the agenda;
this also provides a guaranteed termination point. An alternative is to itera-
tively diagnose and handle until either an empty agenda is formed or handling
fails, but this is likely to result in significantly higher computational cost.

4.1 Maintenance Tasks

Maintenance tasks are data structures which define a threatened activity, details
of the threat and handling requirements. A maintenance task mt defines an
activity a, task type (preconditions or effects), estimated execution context Ba

for a, estimated confidence confa of a given Ba, and the maintenance policy mpa
associated with a and used to set confidence thresholds;

mt = < a, type, Ba, confa , mpa >

72 A. White et al.

Algorithm 1. The CAMP-BDI reasoning cycle with changes from
Rao and Georgeff [1995]’s generic algorithm highlighted as bold text,
denoting maintenance activities and contract formation/updates.

initializeState();
while agent is alive do

D ← optionGenerator(eventQueue, I, B);
i ← deliberate(D, I, B);
if i �= null & i not waiting on a dependency to complete then

i ← updateIntentions(D, I, B);
Bi ← estimated execution context of i;
maintain(i, Bi);
formAndUpdateContracts(i);
execute();

for each obligationMaintained message ∈ eventQueue do
idependency ← the associated dependant intention;
Bdependency ← estimated execution context of idependency ;
maintain(idependency , Bdependency);
formAndUpdateContracts(idependency);

for each obligation contract ∈ agent’s Obligations do
if i = ∅ then

iobgoal ← activity defined in obligation;

iobplan ← cached plan for obligation (to achieve iobgoal);

iob ← iobgoal , iobplan ;
Bob ← execution context estimated using (causal links in
obligation ∪ B);
maintain(iob, Bob);

formAndUpdateContracts(iob);

getNewExternalEvents();
I ← dropSuccessfulAttitudes();
I ← dropImpossibleAttitudes();
I ← postIntentionStatus();

Capability knowledge facilitates introspective reasoning for maintenance task
generation. Activities are mapped to – in precedence order – internal capabilities,
contract-contained external capabilities, and finally advertised external capabil-
ities; this assumes activities are only delegated where necessary and that agents
adopt the least complex (fewest activities) approach for performing any activ-
ity. If an activity can be met by several external capabilities, that with highest
general confidence is selected; mirroring the most likely criteria for obligant selec-
tion. Maintenance tasks are ordered in an agenda first by (mpa defined) priority,
then by precedence within the plan.

Preconditions maintenance task are generated where a’s preconditions do
not hold in Ba, but it is valuable to preserve a within the plan – either due
to it fulfilling a goal state, or to avoid (the costs of) cancelling a pre-existing

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 73

Algorithm 2. The maintain function
Data: i – An intention; a plan iplan to meet some goal igoal

Bi – The estimated execution context of the first activity in iplan
handled ← false;
agenda ← new empty Agenda;
agenda ← the agenda returned by formAgenda(igoal , iplan , Bi, agenda);
while ¬ handled & ¬ agenda.isEmpty() do

handled ← handleMaintenanceTask(agenda.removeTop());

update Dependency contracts;
if i is an Obligation then

update contract and send to the dependant in an obligationMaintained
message;

dependency contract for a. This type indicates maintenance should first attempt
to restore precondition states before considering modifications to replace a.

Effects maintenance tasks arise where either preconditions do not hold and
a does not require preservation, or confa is under mpa .threshold (a is of unac-
ceptable quality and at risk of failure). This indicates a should be replaced by
an activity sequence that will achieve the same post-execution effects as a.

4.2 Agenda Formation

Agenda formation (algorithm 3) employs recursion to support hierarchical plan
structures (i.e. where composite activities are achieved through sub-plans). Each
leaf activity (primitive activity or a composite which does not yet have an asso-
ciated subplan, as may occur when employing continual planning) is iterated
through in scheduled execution order. The getCapability function associates each
activity with it’s representative capability; this knowledge is used to identify
threats and insert representative maintenance tasks into the agenda, with Ba

finally being updated with activity effects (estimating the execution context
for the subsequent activity). The consolidate function merges multiple main-
tenance tasks for the same subplan into a single maintenance task within the
agenda, where appropriate. This consolidated maintenance task represents a
need to maintain the entire subplan containing those activities – avoiding recur-
rent costs of re-diagnosing and handling each threatened activity individually,
over multiple reasoning cycles.

4.3 Handling Maintenance Tasks

Handling a maintenance task (mt) requires modification of the iplan contain-
ing mt.a, by identification and subsequent insertion of a new maintenance plan
into iplan . This behaviour is performed through the handleMaintenanceTask
function (as called within the reasoning cycle given by Algorithm 1), which
uses submethods handlePreconditionsTask (Algorithm 4) and handleEffectsTask

74 A. White et al.

Algorithm 3. The formAgenda function
Data: g – a goal met, or composite activity performed, by p

p – plan of n activities {a0, a1, ..., an} to perform g
agenda – priority ordered list of maintenance tasks; empty in initial
(top-level) call
Ba – estimated execution context of a0 in p

Result: agenda updated with maintenance tasks for p
Ba updated with post-effects of p (used by recursion)

Bstart ← copy of Ba (for execution context estimation);
for each activity a ∈ p do

if a is abstract then
return agenda, Ba;

ca ← getCapability(a);
if ca = null then

Add effects type maintenance task for a in Ba to agenda;
Update Ba with effects of goal a;

else if ca primitive ‖ (ca composite & (a is not decomposed into a subplan))
then

if maintenance task mt found for leaf activity a then
add mt to agenda;
Update Ba with ca.eff(a);

else if ca composite & (a is decomposed into a subplan) then
pa ← subplan decomposing a;
agenda, Ba ← formAgenda(a, pa, Ba, agenda);

agenda ← consolidate(g, agenda, Bstart);

return agenda, Ba;

Algorithm 4. The handlePreconditionsTask function
Data: task – a maintenance task
Result: true if a plan was found and inserted
imt ← plan containing task .a;
ca ← getCapability(task .a);
Define planning problem proba, with initial state = task .Bmt and goal =
ca.pre(task .a);
if acceptable plan plana solving proba found then

Insert plana into imt as predecessor of task .a, and return true;

return false;

(Algorithm 5) for the preconditions and effects types respectively. Capability
knowledge is used to define an operator specification (reflecting currently acces-
sible capabilities) and form the maintenance planning problem.

If a preconditions maintenance task cannot be handled, the algorithm gen-
erates and attempts to handle an equivalent effects maintenance task – relaxing

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 75

Algorithm 5. The handleEffectsTask function
Data: task – a maintenance task
Result: true if a plan was found and inserted
imt ← intended plan containing task .a;
if imt is a hierarchical plan then

pmt ← subplan of imt containing a;

else
pmt ← imt;

Bmt ← task.Ba;
if a not last in imt ‖ a has subsequent dependencies then

ca ← getCapability(a);
Define planning problem proba, with initial state = Bmt and goal =
ca.effects(a);
if acceptable plan plana found for proba then

Replace a in pmt with plana ;
return true;

if a not first in imt ‖ a has preceding dependencies then
a ← goal achieved by pmt ;
ca ← getCapability(a);
Define proba , with initial state = Bmt and goal = ca.effects(a);
if acceptable plan plana found for proba then

Replace pmt from a inclusive with plana ;
return true;

while a �= root goal of imt do
a ← goal activity for pmt;
Bmt ← estimated execution context of a;
ca ← getCapability(a);
Define proba , with initial state = Bmt and goal = ca.effects(a);
if acceptable plan plana found for proba then

Replace pmt with plana ;
return true;

return false;

the (preconditions maintenance) problem to allow replacement of mt.a rather
than fail from violated preconditions. For example, if Truck cannot restore pre-
conditions for move(F,M) by unblocking road F→M, it will attempt to find an
alternate method to achieve the required goal state at(M).

4.3.1 Performing Preconditions Maintenance

Preconditions maintenance (Algorithm 4) attempts to generate a plan re-
establishing preconditions of mt.a, to be inserted prior to mt.a (similar to prefix
plan repair as defined by Komenda et al. [2014]). Generated maintenance plans
are only inserted where their confidence is above mt.mpa.threshold. This condi-

76 A. White et al.

tion attempts to prevent subsequent maintenance of the iplan arising from inser-
tion of a suboptimal confidence plan, but is not applied if mt.a is immediately
due to execute – we deem any non-zero confidence plan preferable over guaran-
teed failure. In our motivating example (Fig. 1), successful preconditions main-
tenance would insert a (sub)plan which, when completed, removes the flooded
state of road F → M before move(F , M) executes.

4.3.2 Performing Effects Maintenance

Effects maintenance attempts to substitute a subset of the plan containing mt.a,
with a new (sub)plan achieving identical effects. In our previous motivating
example (Fig. 1), successful effects maintenance would substitute a new sub-
plan for move(F , M) which achieves the associated igoal – e.g. reforming the
iplan such that Truck (given a current location at D) will now travel through a
(higher confidence offering) route D → E → I → L.

Our algorithm (algorithm 5) adopts a similar approach to HTN plan repair
– we use upwards recursion to re-refine composite activities (subgoals or the
root igoal), terminating when either an acceptable confidence (greater than
mt.mpa .threshold) maintenance plan is found and inserted, or the algorithm has
reached the level of igoal (i.e. attempted and failed to reform the entire iplan).
We trade-off the potential cost of multiple planning calls at goal/subgoal levels
against the stability costs of complete replanning (Fox et al. [2006]).

The algorithm also considers potential costs from dependency cancellation,
either from performing communication or the loss of external capability. Changes
in circumstance after initial contract formation may render potential obligants
subsequently unable to accept dependencies, even where now-cancelled depen-
dency contracts previously existed – potentially stymieing maintenance plan-
ning if that external capability was necessary. To account for dependencies, we
attempt two more restricted scope planning operations at the lowest level of iter-
ation (the subplan containing mt.a). Firstly, if dependency contracts have been
formed for mt.a or it’s successors in that subplan, the algorithm first attempts to
generate a maintenance plan that directly and solely replaces mt.a; retaining suc-
cessive activities and their associated dependency contracts. If any dependencies
precede mt.a, the algorithm may also attempt suffix plan repair (Komenda et al.
[2014]); where the generated maintenance plan replaces mt.a and it’s successors
in that subplan, but preserves preceding activities. These two more constrained
cases attempt to reduce disruption to a distributed plan performing team, at the
cost of (potentially) requiring multiple planner calls.

The algorithm will, in the worst case, iterate and attempt to plan all levels
of a hierarchical imt, including at the initial pmt level twice (once for a failed
preconditions maintenance task, and once for the replacement of mt.a only),
equivalent to O((n+2)p) complexity (where n is the number of plan levels, and
p the cost of planning). This, however, may still entail significant actual compu-
tational cost due to multiple planner invocations.

We are also investigating potential optimizations, including using policies to
define conditions where planning is intractable (i.e. if Truck had been damaged

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 77

to the extent any plan would have too low confidence) – allowing handling to
terminate early and effectively delegate to any dependent. Another alternative
is use of heterogeneous planners, allowing computationally restricted agents to
employ less flexible, but faster, approaches such as HTN planning or libraries.
Finally, it is trivial to modify the effects maintenance algorithm to only perform
top-level modification, if minimizing computational cost takes precedence over
maximizing plan stability.

5 Distributed Behaviour

MASs use co-operative teams of agents to achieve goals unattainable by individ-
uals; activity failure impacts other team members and threatens the success of
distributed plans. In our approach, we assume hierarchical agent teams arise from
delegation to, and decomposition into plans by, obligants. We define a decentral-
ized approach as the distribution of knowledge and capability across agents often
renders centralized approaches infeasible for realistic domains. We apply the pre-
viously defined individual maintenance algorithms to the distributed context,
using structured communication to drive successive adoption of maintenance
responsibility by individual agents at increasingly abstract levels of the decom-
positional team hierarchy (Fig. 2).

The supporting architecture is critical in supporting this behaviour; depen-
dency and obligation contracts allow specific capability information to be pro-
vided for a delegated activity. Placing external capabilities within contracts
makes this information available to dependants, whilst offsetting semantic knowl-
edge requirements to the actual obligant(s). As both internal and external capa-
bilities share the same representative model, this allows an agent’s maintenance
reasoning to regard delegated activities in the same manner as those (to be)
performed locally.

If an agent maintains an iplan where the igoal meets an obligation, the (wait-
ing) dependent agent is messaged after maintenance completes. Dependants are
viewed as quiescent during execution of a delegated activity; this allows mainte-
nance of a dependency to be triggered in response to obligants completing their
local maintenance. Obligants will maintain intentions both when performing (as

Fig. 2. The adoption of responsibility process in a hierarchical team, where B is an
obligant of A, and C and D are obligants for a joint activity in B ’s plan.

78 A. White et al.

an intention) an obligation, or when not presently pursuing any intention (Algo-
rithm 1) – in the latter case, such that idle agents will act to maintain mutual
beliefs with their dependent regarding the future achievement (or otherwise) of
that delegated activity.

Dependants adopt maintenance responsibility if and when their obligants
are unable to maintain confidence in their subpart of a greater distributed plan;
restricting changes in a distributed plan to the ‘lowest’ (most specific) agent
level. We informally refer to this as ‘percolation’ of maintenance responsibility
– in that responsibility gradually moves upwards in the team hierarchy, until an
agent has maintained an intention and produced an outcome acceptable to both
itself and any direct dependant. In our motivating example, if Truck is unable
to reach M (despite local maintenance), the dependant may alter it’s own iplan
to instead use a Helicopter (not hindered by flooding) as an obligant to achieve
the delivery igoal .

We can summarize the resultant behaviour in general terms (Fig. 2) as fol-
lows;

1. Agents C and D call maintain within local reasoning cycle(s).
2. C and D individually perform post-maintenance messaging; each sends a obli-

gationMaintained message to B that includes contracts updated to account
for any maintenance changes.

3. B calls it’s maintain method upon receipt of obligationMaintained messages
from all obligants. Information in the messaged, updated contracts is used to
update the contract held by B for that dependency, which will itself be sent
on to A after maintain completes.

4. B sends A post-maintenance messaging, again using obligationMaintained
messages.

5. A calls maintain upon receipt of B ’s post-maintenance message); as A is not
an obligation, no further messaging is required.

Contracts are employed to help synchronize this behaviour through defining
a common maintenance policy for that activity, applied by both obligant(s)
and dependant. As both share confidence threshold triggers, for a dependent to
diagnose and attempt to handle an effects maintenance task the obligant must
have first attempted the same. Although the above example indicates a linear
approach to dependency formation, indirect ‘self dependencies’ can emerge – for
example, in the above, D may form a dependency upon some other capability
of A in the course of performing it’s own intention.

Our overall design aims to replicate HTN plan repair, but over a distributed
plan; where each obligant’s intended plan can be seen as analogous to an HTN task
refinement. Agents assume responsibility for maintenance both when executing
their own planned activities (as in Algorithm 1), and in response to an obligant
maintaining it’s own intention for an obligation. In the latter case, the dependant
can use contractual information to judge whether that maintenance outcome is
acceptable by it’s own standards and modify the dependant iplan if not.

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 79

6 Evaluation

CAMP-BDI was implemented by extending the Jason agent framework
(Bordini and Hbner [2006]). We compared a MAS of CAMP-BDI agents against
a system using reactive replanning, in our previously described motivating logis-
tics domain. Three types of post-failure debilitation could occur, with defined
probabilities for cargo damage, cargo spillage (requiring roads to be decontam-
inated), and for agent damage (with graded degrees and associated confidence
loss). We evaluated performance under four probabilities: 0.2, 0.4, 0.6 and 0.8;
representing 20, 40, 60 and 80% chance of an activity failure resulting in debili-
tation. These probabilities were applied individually for each debilitation type,
albeit with cargo damage/spillage debilitation only possible if the failed activity
was to load, unload or move whilst carrying cargo. Results for ten experimental
runs, performed under fixed simulation seeds, were averaged and are presented
in Fig. 3. A system with no failure mitigation was used as a worst-case indicator.

Our results show CAMP-BDI enjoyed significant advantage in goal success
rate over replanning, increasing with the likelihood of debilitative failure conse-
quences (Fig. 3a); CAMP-BDI maintained around 95% goal achievement for all
consequence probability ranges, whilst replanning dropped from achieving 61.9%
of goals at probability 0.2, to 26.6% at 0.8. In all three graphs CAMP-BDI shows
fairly consistent performance; avoidance of failure (Fig. 3b) meant changes in
consequence probability were unlikely to impact performance. In contrast, accep-
tance of failure as a ‘trigger point’ for reactive recovery meant replanning faced
increasing difficulty in recovering (and achieving goals) from post-failure states
as debilitation became more likely.

Worst case behaviour remained more variable (although always worst), as
these agents would fail goals immediately upon activity failure regardless of

(a) y-axis; Average goals
achieved (%)

(b) y-axis; Average activity
success (%)

(c) y-axis; Average planner
calls per goal achieved

Fig. 3. Experimental results; x-axis denotes post-failure damage probability. CAMP-
BDI results are shown as solid lines, Replanning dashed, and Worst-Case dotted.

80 A. White et al.

debilitation (or otherwise) – unlike replanning, where agents would pursue the
intended goal until all options were exhausted, potentially failing in multiple
activities (with resultant accumulated debilitation) before recovery attempts
finally became futile. Goal and activity success rates of the worst case system
were similarly variable; as no recovery mechanism was employed, each goal fail-
ure could be attributed to a single activity failure. This contrasts with reactive
replanning, where agents would pursue an intended goal until all reactive replan-
ning options were exhausted; each goal failure was potentially associated with
multiple activity failures and consequent debilitations.

One obvious concern with a proactive approach is cost, particularly
with CAMP-BDI’s use of planning. Toyama and Hager [1997] note reactive
approaches hold an advantage in only expending their costs following definitive,
rather than potential, failure. Indeed, our results show CAMP-BDI performed
significantly more planning calls at lower consequence probabilities (Fig. 3c);
9.91 calls per goal, compared to 5.62 for replanning at the lowest consequence
probability. As the probability of post-failure debilitation increased, reactive
replanning became significantly less efficient; an average 19.51 planning calls
were required for each goal achieved at the highest consequence probability,
compared to 11.03 for CAMP-BDI. This reflects an increasingly likelihood of
debilitation stymieing reactive recovery – suggesting maintenance costs can be
balanced against those incurred by failure. It may also still be preferable to
employ a higher cost proactive approach, in domains where failure risks suffi-
ciently severe consequences – such as if delivery goals are concerned with trans-
port of nuclear waste or essential medical supplies.

7 Related Work

CAMP-BDI draws from a variety of existing work; our capability model captures
the concepts of know-how-to-perform, can-perform and know-how-to-achieve
defined by Morgenstern [1986]. Plan confidence estimation is similar to a subset
of TÆMS quality metrics (Lesser et al. [2004]), such as q min; future work may
investigate alternate estimation approaches. He and Ioerger [2003] also suggest
a quantitative estimation approach, in their case for producing maximally effi-
cient schedules. Sabatucci et al. [2013] suggests use of capabilities (representing
plans and viability conditions) to evaluate whether desires are achievable when
selecting intentions.

Waters et al. [2014] suggest an intention selection mechanism priori-
tising the most constrained options, favouring those with least coverage
(Thangarajah et al. [2012]), to increase the chance of all intentions completing.
This differs from CAMP-BDI through considering arbitration between options
in order to maximize intention throughput, rather than to ensure a specific
intention succeeds. Whilst not explored in this paper, CAMP-BDI capability
knowledge could facilitate similar reasoning during desire and intention selec-
tion. Plan execution monitoring approaches, such as SIPE (Wilkins [1983]), and
plan repair approaches, such as O-Plan (Drabble et al. [1997]), share concep-
tual similarities with CAMP-BDI as both respond to divergence from expected

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 81

states. CAMP-BDI differs through explicit focus on a multi-agent context, and
use of confidence estimation to identify suboptimal activities.

Braubach et al. [2005] define two types of goals driving agent proactivity;
those to achieve some state, and those to maintain it (over some defined period
or under set conditions). Duff et al. [2006] further distinguishes reactive and
proactive maintenance goals; the former requiring re-establishment of the state
once violated, the latter constraining goal and plan adoption to prevent violation.
In the reactive case, these drive adoption of achievement goals to re-establish
violated (maintained) states; CAMP-BDI could consequently be used to main-
tain resultant intentions.

Precondition maintenance in CAMP-BDI can be viewed as similar in out-
come to inferring proactive maintenance goals, corresponding to precondition
states, and active until the relevant activity executes. Effects maintenance can
be viewed as somewhat similar, in the sense that the loss of high-confidence
associated states trigger plan modification; although our approach does not nec-
essarily entail re-establishment of specific states if maintenance planning can
identify an acceptable, alternate combination of activities. We also assume that
plan formation mechanisms, used both in intention formation and maintenance
planning, will be implemented to recognise and respect any maintenance goals.

Work by Hindriks and Van Riemsdijk [2007] uses (limited) lookahead simi-
lar to CAMP-BDI, with regard to respecting proactive maintenance goals. They
identify potential violations from adopted goals and plans using a goal-plan tree
to anticipate future effects of adopted intentions. However, plans in this approach
are treated as pre-defined and immutable; anticipated violation is suggested as
best addressed by goal relaxation to allow alternative plan options. This may
not be a viable approach in certain domains, if goals cannot be safely relaxed.

Duff et al. [2006] suggest a similar predictive approach, again using a goal-
plan tree to filter goal adoption based upon effects of potentially usable plans.
CAMP-BDI varies by more explicitly considering exogenous change, rather than
potential goal/plan adoption, as a source of violation. Our approach also dif-
fers by focusing upon ensuring existing intentions avoid failure after exogenous
change – proactive maintenance goals are typically employed more as constraints
upon the formation and adoption of desires or intentions (although this encom-
passes adoption of subgoals and subplans in continual approaches).

Continual planning handles uncertainty by deferring planning decisions
(desJardins et al. [2000]) – including decomposing certain abstract activities only
upon execution. CAMP-BDI supports this approach, using composite capabilities
to reason whether abstract activities can be met by (sub)plans. If planning incor-
porates sensing – representing knowledge requirements through preconditions and
effects – these can be represented similarly within capabilities.

Markov Decision Processes (MDPs) are an alternate approach for acting
within stochastic domains, using state transition probabilities and rewards to
generate a policy defining the optimal activity in every possible state. Partially
Observable MDPs (POMDPs) remove total knowledge assumptions through a
probability map of state observations, used to infer actual states and define

82 A. White et al.

a solveable MDP. Whilst MDP approaches offer optimal behaviour, complex-
ity issues render them intractable as state space increases. Schut et al. [2002]
show BDI agents can handle relatively simple domains that are intractable for
MDPs and approximate MDP performance (depending on time costs of runtime
planning). Attempts to improve tractability typically involve abstraction – sim-
plifying state spaces at the cost of optimality (Boutilier and Dearden [1994]).

Although BDI is viewed as a (time-efficient) alternative to MDP approaches,
work has been performed to reconcile both; Simari and Parsons [2006] iden-
tify similarities and suggests possible mapping between policies and plans.
Pereira et al. [2008] extend that work by defining an algorithm to form deter-
ministic plans (for libraries) from POMDP policies – although this assumes the
latter are formable offline. There is a risk that transition probability information
is unavailable, or impractical to learn under domain time constraints. An MDP
specification of a complex domain can also be non-intuitive, restricting practi-
cal usability; Meneguzzi et al. [2011] suggest a method to map more intelligible
HTN domains onto MDPs – defining probabilities based upon state presence
within operator preconditions, rather than probabilities in the environment. We
defined CAMP-BDI under the assumption in realistic domains it is necessary
to use deterministic plans, due to the above intractability and domain knowl-
edge issues. A relationship can be envisaged between confidence estimation and
MDP transition probabilities – although the former only requires a scalar quality
estimate, rather than requiring exact probability estimation.

8 Conclusion

In this paper, we contribute CAMP-BDI – an approach towards distributed plan
execution robustness using pre-emptive plan modification or maintenance. We
have described the provision of capability knowledge, dependency contracts and
dynamically modifiable policies to support pre-emptive maintenance through
introspection, and depicted a structured messaging approach for extending that
individual agent behaviour to perform decentralized, distributed maintenance.
Whilst we do not argue all failures can be prevented – that CAMP-BDI can
replace reactive methods – we suggest it offers a valuable complementary app-
roach. Finally, our supporting architecture may be useful for other robustness
approaches or improving desire and intention selection; this helps justify the
analytical costs involved in defining capability specifications.

CAMP-BDI does require gathering domain and agent information to model
capability knowledge; consideration whether to employ our approach must bal-
ance the analytical and computational costs against the likelihood and severity
of failure costs. We believe this domain analysis is a reasonable requirement, as
such knowledge is used to form planning operators (or plan libraries) for agents.
Even if fully granular and/or probabilistic confidence estimation is not possible,
we view it as plausible for ‘risky’ world states to be identified and incorporated.
Time-weighted success records can potentially be used for confidence estimation;
similar to Dhirendra et al. [2010]’s use in learning plan execution contexts.

CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness 83

Our future work intends to focus upon maximizing gains from failure avoid-
ance whilst minimizing planning costs; such as using policies to regulate mainte-
nance behaviour, investigating potential specification of proactive maintenance
goals within policies, and methods to focus ‘computational expenditure’ where
avoiding failure is of greatest importance. Optimization of confidence estimation
and agenda formation remains another aspect of interest, although we anticipate
many of the most effective approaches will be domain specific.

Acknowledgments. This work was funded with support from EADS Innovation
Works. Alan White would like to extend additional thanks to Dr. Stephen Potter
for his invaluable help and advice. The authors and project partners are authorized to
reproduce and distribute reprints and online copies for their purposes, notwithstanding
any copyright annotation hereon.

References

Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using jason (tuto-
rial paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900,
pp. 143–164. Springer, Heidelberg (2006)

Boutilier, C., Dearden, R.: Using abstractions for decision theoretic planning with
time constraints. In: Proceedings of the 12th National Conference on Artificial Intel-
ligence, pp. 1016–1022. Morgan Kaufmann, San Francisco, CA (1994)

Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI
agent systems. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg
(2005)

desJardins, M.E., Durfee, E.H., Ortiz, C.L. Jr., Wolverton, M.J.: A Survey of Research
in Distributed, Continual Planning (2000)

Singh, D., Sardinia, S., Padgham, L., Airiau, S.: Learning context conditions for BDI
plan selection. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS 2010, pp. 325–332.
International Foundation for Autonomous Agents and Multiagent Systems, Richland
(2010)

Drabble, B., Dalton, J., Tate, A.: Repairing plans on-the-fly. In: Proceedings of the
NASA Workshop on Planning and Scheduling for Space (1997)

Duff, S., Harland, J., Thangarajah, J.: On proactivity and maintenance goals. In:
AAMAS 2006, pp. 1033–1040 (2006)

Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: replanning versus plan repair.
In: Proc. ICAPS, pp. 212–221. AAAI Press (2006)

He, L., Ioerger, T.R.: A quantitative model of capabilities in multi-agent systems. In:
Proceedings of the International Conference on Artificial Intelligence, IC-AI 2003,
vol. 2, pp. 730–736, June 23–26, 2003, Las Vegas, Nevada, USA (2003)

Hindriks, K.V., van Riemsdijk, M.B.: Satisfying maintenance goals. In: Baldoni, M.,
Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI),
vol. 4897, pp. 86–103. Springer, Heidelberg (2008)

Komenda, A., Novák, P., Pechoucek, M.: Domain-independent multi-agent plan repair.
J. Network and Computer Applications 37, 76–88 (2014)

84 A. White et al.

Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman,
D., Podorozhny, R., Prasad, M.N., Raja, A., Vincent, R., Xuan, P., Zhang, X.Q.:
Evolution of the GPGP/TÆMS Domain-Independent Coordination Framework.
Autonomous Agents and Multi-Agent Systems 9(1–2), 87–143 (2004)

McCarthy, J.: Programs with common sense. In: Proceedings of the Teddington Con-
ference on the Mechanisation of Thought Processes, pp. 77–84 (1958)

Meneguzzi, F., Tang, Y., Sycara, K., Parsons, S.: An approach to generate MDPs
using HTN representations. In: Decision Making in Partially Observable, Uncertain
Worlds: Exploring Insights from Multiple Communities, Barcelona, Spain (2011)

Morgenstern, L.: A first order theory of planning, knowledge, and action. In: Proceed-
ings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge,
TARK 1986, pp. 99–114, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc. (1986)

Pereira, D.R., Gonçalves, L.V., Dimuro, G.P., Costa, A.C.R.: Constructing BDI plans
from optimal POMDP policies, with an application to agentspeak programming. In:
Proc. of Conf. Latinoamerica de Informática, CLEI, vol. 8, pp. 240–249 (2008)

Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the
First International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319
(1995)

Sabatucci, L., Cossentino, M., Lodato, C., Lopes, S., Seidita, V.: A possible approach
for implementing self-awareness in JASON. In: EUMAS 2013, pp. 68–81 (2013)

Schut, M.C., Wooldridge, M.J., Parsons, S.: On partially observable MDPs and BDI
models. In: d’Inverno, M., Luck, M., Fisher, M., Preist, C. (eds.) UKMAS Workshops
1996-2000. LNCS (LNAI), vol. 2403, p. 243. Springer, Heidelberg (2002)

Simari, G.I., Parsons, S.: On the relationship between MDPs and the BDI architecture.
In: Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2006, pp. 1041–1048, New York, NY, USA. ACM
(2006)

Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: IJCAI 2003, pp. 721–726 (2003)

Thangarajah, J., Sardina, S., Padgham, L.: Measuring plan coverage and over-
lap for agent reasoning. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2012, vol. 2, pp. 1049–1056,
Richland, SC. International Foundation for Autonomous Agents and Multiagent
Systems (2012)

Toyama, K., Hager, G.: If at first you don’t succeed. In: Proc. AAAI, pp. 3–9, Provi-
dence, RI (1997)

Waters, M., Padgham, L., Sardina, S.: Evaluating coverage based intention selection.
In: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pp.
957–964, Paris, France, May 2014. IFAAMAS. Nominated for Jodi Best Student
Paper award (2014)

Wilkins, D.E.: Representation in a domain-independent planner. In: Proceedings of the
8th International Joint Conference on Artificial Intelligence, pp. 733–740, Karlsruhe,
FRG, August 1983 (1983)

Optimizing Long-Running Action Histories
in the Situation Calculus Through Search

Christopher Ewin1(B), Adrian R. Pearce1, and Stavros Vassos2

1 National ICT Australia and Computing & Information Systems,
The University of Melbourne, Melbourne, Australia

cjewin@student.unimelb.edu.au, adrianrp@unimelb.edu.au
2 Department of Computer, Control, and Management Engineering,

Sapienza University of Rome, Rome, Italy
vassos@dis.uniroma1.it

Abstract. Agents are frequently required to perform numerous, com-
plicated interactions with the environment around them, necessitating
complex internal representations that are difficult to reason with. We
investigate a new direction for optimizing reasoning about long action
sequences. The motivation is that a reasoning system can keep a window
of executed actions and simplify them before handling them in the normal
way, e.g., by updating the internal knowledge base. Our contributions
are: (i) we extend previous work to include sensing and non-deterministic
actions; (ii) we introduce a framework for performing heuristic search
over the space of action sequence manipulations, which allows a form of
disjunctive information; finally, (iii) we provide an offline precomputa-
tion strategy. Our approach facilitates determining equivalent sequences
that are easier to reason with via a new form of search. We demonstrate
the potential of this approach over two common domains.

As agents evolve, sense, and interact with the environment, the difficulty of main-
taining and reasoning about a representation of the world around them increases.
This is particularly significant in cases where an agent possesses incomplete infor-
mation, either in terms of its initial knowledge base or the effects of its actions,
due to the complexity of reasoning over this uncertainty. Yet actions frequently
occur that are capable of simplifying the underlying representation of an agent’s
knowledge base. An agent may, for example, be able to eliminate uncertainty
regarding particular facts by sensing, communicating with other agents, or per-
forming an action that brings the environment to a known state of affairs.

We investigate a new direction for optimizing reasoning over long action
sequences by means of analyzing and manipulating the sequence before rea-
soning with it. Consider a long-lived agent that operates for days or months
and is constantly performing actions while also reasoning about them, e.g., by
means of an agent program that interleaves search and execution. Keeping the
whole action history (possibly thousands or millions of actions) and relying on
a regression mechanism for answering queries about the current (and future
states) is impractical, therefore a progression mechanism is highly motivated.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 85–100, 2015.
DOI: 10.1007/978-3-319-25524-8 6

86 C. Ewin et al.

However, always progressing up to the final state may occasionally blow up the
size of the KB due to incomplete information and the way it is encoded in the
final state, which is an unnecessary effort if a subsequent action makes fluent
values known. We consider an approach that allows to combine both reason-
ing mechanisms. The agent may progress only up to a point but leave a final
sequence of actions for which queries about the current state will be answered
by means of regression. Before progressing over an action sequence, reordering
and eliminating actions can significantly reduce the effort needed to reach the
final state.

One simple example is the case of a “resetting” action that makes all pre-
vious actions in the sequence obsolete; therefore when reasoning over the whole
sequence of actions we can in fact simplify our deliberation method to only con-
sider the last “resetting” action and the actions that come after this. This is just
a special case, while in general there are many other ways to optimize reasoning
by manipulating an action sequence.

The work of [4] investigated this idea in the context of the situation calculus
[10,11] which provides a general and well-studied logical formalism for represent-
ing a dynamic domain as a first-order logical theory. Given a basic action theory
and a sequence of actions, the authors articulated the logical conditions that
allow the manipulation of an action sequence in two basic ways while preserving
the answer to all queries at the final state and future states of the domain. These
two basic operations are (i) swapping the order of two consecutive actions and
(ii) eliminating on action from the action sequence as being obsolete.

Such operations form the basis for investigating how transforming action
sequences can achieve computational gains in the context of a desired reasoning
task, e.g., performing projection queries that query the truth of conditions in a
future state of affairs or updating or progressing the domain representation to
reflect the current state of affairs after a sequence of actions has been performed.
In this paper we introduce a new search framework for finding equivalent action
sequences that are optimal with respect to the effort required to perform rea-
soning on the resulting final state. In order to achieve this it is necessary to
investigate a number of aspects, building on [4].

In particular, (i) we extend previous work on the conditions of reordering
and eliminating action to account for sensing and nondeterministic actions; (ii)
we introduce a rewriting framework for transforming sequences and propose a
local search setting for finding equivalent sequences with a minimal size based on
the notion of dominatable pairs; (iii) we adopt a view similar to databases, while
also allowing a form of disjunctive information, and investigate a more refined
local search setting where the intermediate effort for updating the representation
is taken into account based on the notions of progression speedup and progression
slowdown; (iv) we facilitate an offline precomputation strategy allowing efficient
online detection of swappability and elimination potential. Finally, to illustrate
the applicability of our results and framework, we show example runs over two
well-known domains.

Optimizing Long-Running Action Histories 87

1 Situation Calculus Basic Action Theories

The situation calculus as presented in [11] is a three-sorted first-order (FO) lan-
guage L with equality. The sorts are used to distinguish between actions, situa-
tions, and objects (everything else). A situation represents a world history as a
sequence of actions. The constant S0 is used to denote the initial situation where
no actions have occurred. Sequences of actions are built using the function symbol
do, such that do(a, s) denotes the successor situation resulting from performing
action a in situation s. We will typically use a to denote a variable of sort action
and α to denote a term of sort action, and similarly s and σ for situations.

A relational fluent is a predicate whose last argument is a situation, and
thus whose truth value can change from situation to situation. For example,
RobotAt(l, σ) may be used to represent that the robot lies at location l in situa-
tion σ. Actions need not be executable in all situations, and the predicate atom
Poss(α, σ) states that action α is executable in situation σ. Actions may also
have a sensing result: the special function sr(α, σ) denotes the sensing outcome
of action α when executed in situation σ [14].

We will restrict our attention to a language L with a finite number of rela-
tional fluent symbols, an infinite number of constant symbols, and a finite num-
ber of action symbols. Often we will focus on sentences in L that refer to a
particular situation. For this purpose, for any situation term σ, we define the set
of uniform formulas in σ to be all those first-order (FO) or second-order (SO)
formulas in L that do not mention any other situation terms except for σ, do
not mention Poss, and where σ is not used by any quantifier [7]. Finally, we use
δ to denote a sequence of actions of the form 〈α1, . . . , αn〉, and do(δ, S0) as a
shorthand for the situation term do(αn, · · · do(α1, S0)).

Within L, one can formulate action theories that describe how the world
changes as the result of the available actions. We focus on a variant of the basic
action theories (BATs) [11] of the following form,1

D = Dap ∪ Dss ∪ Dsr ∪ Duna ∪ D0 ∪ Dfnd, where:

1. Dap is the set of action precondition axioms (PAs), one per action symbol
A, of the form Poss(A(y), s) ≡ ΠA(y, s), where ΠA(y, s) is FO and uniform
in s. PAs characterize when actions are physically possible.

2. Dss is the set of successor state axioms (SSAs), one per fluent symbol F , of
the form F (x, do(a, s)) ≡ ΦF (x, a, s), where ΦF (x, a, s) is FO and uniform
in s. SSAs describe how fluents change between situations as the result of
actions.

3. Dsr is the set of sensing-result axioms (SRAs), one for each action symbol
A, of the form sr(A(y), s) = r ≡ ΘA(y, r, s), where ΘA(y, r, s) is FO and
uniform in s. SRAs relate sensing outcomes with fluents.

4. Duna is the set of unique-names axioms for actions.
5. D0, the initial knowledge base (KB), is a set of FO sentences uniform in S0

describing the initial situation S0.
1 For legibility, we typically omit leading universal quantifiers.

88 C. Ewin et al.

6. Dfnd is the set of domain independent axioms of the situation calculus, formally
defining the legal situations. A SO induction axiom is included in Dfnd.

2 Transforming Extended Action Sequences

We build upon [4] to consider reordering and dominating actions in the presence
of sensing actions and incomplete information. First, we review the notions of
always swappable and always dominated actions.

Definition 1 ([4]). Actions α and α′ are always swappable wrt D iff for
all F (x, s) in L, D − D0 |= ∀x.F (x, do(〈α, α′〉, S0)) ≡ F (x, do(〈α′, α〉, S0)).
Action α is always dominated by α′ wrt D iff for all F (x, s), D − D0 |=
∀x. F (x, do(〈α, α′〉, S0) ≡ F (x, do(α′, S0)).

Intuitively, when the specified condition holds then we can perform these trans-
formations in any action sequence δ in which α′ comes exactly after α and
preserve the final state we arrive after all actions in the sequence are executed.

Example 1. Consider a mobile robot whereby its position can be controlled only
by the action moveTo(l), which unconditionally moves the robot to location
l. Allow the robot’s position in situation σ to be represented by the fluent
RobotAt(v, σ). The SSAs for RobotAt(v, σ) can then be expressed as follows:

γ+
F (v, a, σ) ≡ a = moveTo(l) ∧ v = l, γ−

F (v, a, σ) ≡ a = moveTo(l) ∧ ¬v = l.

Allow similarly the robot’s direction to be represented by a flu-
ent RobotDir(v, σ) and controlled by an action turnTo(l). The SSAs for
RobotDir(v, σ) are then:

γ+
F (v, a, σ) ≡ a = turnTo(l) ∧ v = l, γ−

F (v, a, σ) ≡ a = turnTo(l) ∧ ¬v = l.

From Definition 1 we can observe that actions moveTo and turnTo are always
swappable, but neither action dominates the other.

We now reintroduce the definitions of the so-called single-value fluents. These
are treated in a way such that for a fluent F (x, v, s), the arguments x are con-
sidered as the input and the argument v as the (single) output of the fluent.

Definition 2 ([4]). Single-value fluents are fluents for which the following
holds: D |= ∀x, v{F (x, v, s) ⊃ ¬∃v′(F (x, v′, s) ∧ v′
= v)}.
For example, RobotAt(v, σ) may be naturally be considered a single value fluent
with an empty x term, requiring that the robot can be at only one location in
a given situation.

In this context it is natural to consider the so-called resetting actions that
preserve the property of single-value fluents. We will typically assume that
successor state axioms (SSAs) have the following form: F (x, v, do(a, s)) ≡
γ+

F (x, v, a, s) ∨ F (x, v, s) ∧ ¬γ−
F (x, v, a, s), where γ+

F and γ−
F are FO formulas

uniform in s encoding the positive and negative effects, respectively, of action a
on fluent F at situation s.

Optimizing Long-Running Action Histories 89

Definition 3 ([4]). The SSA for F (x, v, s) has resetting-actions iff
γ+

F (x, v, a, s) is a disjunction of formulas of the form: ∃z(a = A(y) ∧ v =
yi ∧ φ(y, s)), and γ−

F (x, v, a, s) is a disjunction of formulas of the form:
∃z(a = A(y) ∧ ¬v = yi ∧ φ(y, s)), where A is an action symbol, y contains x, z
corresponds to the remaining variables of y, yi is a variable in y, and φ(y, s)
(called a context formula) is a FO formula uniform in s. We also require that
γ+

F ,γ−
F come in pairs in the sense that for each disjunct in γ+

F there is one in γ−
F

that is identical except for the atom v = yi.

A ground resetting action “sets” a fluent atom to be true for a particular
ground input and ground output (both given as arguments of the action), and
at the same time “unsets” it to be false for all other outputs for the given
input. The SSAs modelled in Example 1 both have resetting actions. For ground
resetting actions we can rewrite the instantiated γ formulas in a normal form
that exposes the objects that are affected by the action, as in [4, Lemma 1], and
extract the effect-set from an SSA, which explicitly characterises the possible
effects of actions.

Definition 4 ([4]). Let α be a ground resetting action. The effect set Φ
of α is the set: {φ ⊃ F (c, d) | x = c ∧ v = d ∧ φ appears in (the simplified)
γ+

F (x, v, α, s)}.

We now extend this setting to account for sensing actions.

Definition 5. A is a resetting sensing action iff it has a sensing-result axiom
(SRA) of the form sr(A(y), s)=r≡ ∧

i[φi(y, r, s)⊃∨
j Fij(xij , zij , s)], where

{xij , zij}⊆{y, r}.
Recall that sensing actions differ from physical actions in that they can only
“filter” models of the BAT by means of adding an atom of the form sr(α, σ) to
the theory, hence requiring that the right-hand side of the corresponding SRA
holds. We model a sensing action as a set of implications (the conjuncts i), each
of which provides under the context condition φi, disjunctive information about
fluent atoms that are built using the arguments of the action and the sensing
result. We define the effect set for such actions similarly to physical actions.

Definition 6. Let α be a ground sensing resetting action along with a sensing
result. The effect set Φ of α is the set of all those formulas φi ⊃ ∨

ij Fij(cij , dij)
that appear in the instantiated (and simplified similarly as Definition 4) SRA.
The expanded effect set Φ∗ is the set where each element of Φ is broken down
to j elements of the form φi ⊃ Fij(cij , dij).

The resetting sensing actions require special treatment within the existing frame-
work, and except for the normal effect set we will use also expanded version that
characterizes all fluent terms that may be affected by a sensing action.

Sensing actions can be reordered in a manner similar to physical actions. The
key difference is that sensing actions may be reordered even if they affect the
contexts of other actions, as a fluent unaffected by action α, that was sensed

90 C. Ewin et al.

after performing action α must have held the same value prior to performing
α. The following theorems identify sound methods for determining whether two
actions can be swapped.

Theorem 1. Any two consecutive resetting sensing actions are always swap-
pable.

Theorem 2. Let action α1 be a resetting sensing action with expanded effect
set Φ∗

1, and α2 be a (physical) resetting action with effect set Φ2, that occurs
immediately before or after α1. Then α1 and α2 are always swappable if for all
elements of Φ2 of the form φ1 ⊃ F1(c1, d1), there does not exist an element of
Φ∗
1 of the form φ2 ⊃ F2(c2, d2) such that F1 = F2, c1 = c2 or s.t. φ1 mentions

F2(c2, e) for some e.

Theorem 3. Theorem 10 of [4] that specifies the condition according to which
α2 always dominates α1, holds also with resetting sensing actions when the
expanded effect set is used instead, for action α1.

We now turn our attention to actions with nondeterministic effects. A non-
deterministic action can be modelled as corresponding to a set of actions with
deterministic effects, and assuming that the agent does not know which of them
was performed [1]. This is typically handled in an epistemic version of situation
calculus, but one can also model the notion of the agent knowing some sentence
to hold in this setting, by means of entailment as follows.

Definition 7. We assume that the domain includes for each single-value fluent
F (x, v, s) a particular resetting action AF (x, v) with only effect to set the output
of F to be v for the input x. A widening ground action α∗ is defined as a finite set
of resetting actions {AF (c, d1), . . . , AF (c, dn)} for some fluent F . For a ground
sequence δ∗ with widening actions and a FO sentence φ(do(δ∗, S0)), we define
the unfolding of φ as the resulting sentence after recursively replacing all sub-
formulas of the form φ(do(α∗, σ) by ∀a.(a = α1 ∨ · · · ∨ a = αn) ⊃ φ(do(a, σ)),
where α∗ = {α1, . . . , αn} is a widening action.

The notion of the effect set then generalizes naturally to widening actions,
and our previous results about always swappable and always dominatable also
apply.

Definition 8. The effect set Φ of a widening action α∗ = {α1, . . . , αn} is the
union of the effect sets of actions αi.

Theorem 4. Widening actions follow the same conditions as physical actions
for always swappable and always domination, using the corresponding definition
for effect sets.

Our framework then allows for a practical alternative for reasoning with
widening actions in the context of regular BATs, as by reordering and eventually
eliminating such actions we can in some cases arrive back to having regular action
sequences and reason using the standard methods.

Optimizing Long-Running Action Histories 91

3 A Rewriting System and Search Framework

Section 2 and results in [4] show how to reorder and eliminate actions in the con-
text of single-valued fluents. We now look into finding preferred transformations.
First, we introduce some notation and a search framework.

Definition 9. Let δ be an action sequence of the form 〈α1, . . . , αn〉, and 1 ≤
i ≤ n− 1. We use ri to denote the swapping the position of actions αi and αi+1,
and ri(δ) to denote the resulting sequence. Similarly, we use ei to denote the
elimination of action αi in δ, and ei(δ) for the result.

Definition 10. AD = (A, →) is an abstract rewrite system, where A is the set
of all finite sequences of ground actions in a BAT D, and → is a binary relation
between sequences s.t. δ → δ′ iff there exists an i, 1 ≤ i ≤ n − 1, where n is the
size of δ, s.t. δ′ = ri(δ) and actions αi, αi+1 are always swappable in δ wrt D
or δ′ = ei(δ) and action αi+1 dominates αi δ wrt D. Also, ∗→ is the reflexive
transitive closure of → .

Essentially δ → δ′ is true when we can perform exactly one step of reordering or
eliminating, while δ

∗→ δ′ is true when δ′ can be derived by a finite number of
steps. This characterizes a class of sequences that are equivalent as follows.

Definition 11. For a sequence δ we define the set FSE(δ) of final-state equiv-
alent sequences as the set {δ′ | δ

∗→ δ′}.
Observe that the set {δ′ | δ

∗→ δ′} is finite, as the permutations of a finite sequence
δ are finite and sequences can only shrink to a smaller size, not grow. Depending
on which type of reasoning task we intend to apply over the action sequence,
the conditions that identify a preferred sequence may vary greatly. Without yet
committing to a particular reasoning task, one natural way is to consider minimal
length so that shorter sequences are to be preferred over longer ones.

Finding a sequence in FSE (δ) with a global minimal size can be posed as an
optimization problem where the objective function is the size of the sequence.
For example, a hill-climbing local search algorithm would work as follows: start
from the original sequence; at every iteration look into the current sequence δ
and all successors δ′ such that δ → δ′; keep a successor with minimal size smaller
than δ and continue; if one does not exist then return δ. Other methods could
be employed in a similar manner, e.g., simulated annealing.

The size of sequences is not a good choice though for evaluating the successors
toward a global minimal. This is because often it will be necessary to perform
several reordering steps before an elimination step can take place, which leads
to large plateaus. A better approach is to use a heuristic cost function that
evaluates our progress towards making the current sequence shorter. A simple
way to quantify this is to look over all pairs of actions in δ such that one can
dominate the other and measure how far they are to each other.

Definition 12. We define the set of dominatable pairs Dom(δ) as {(α, α′) | α
always dominates α′ in δ wrt D}. The dominatable pairs distance heuristic hei is

92 C. Ewin et al.

the function hei(δ) =
∑

(α,α′)∈Dom(δ) dist(α, α′), where dist(α, α′) is the distance
of the actions in terms of their index in δ.

Note that hill-climbing with hei is nonetheless not optimal. As with any
greedy local search algorithm that does not occasionally backtrack to sequences
with a lower heuristic cost value, hill-climbing with hei may decide to eliminate
an action too early. This is illustrated with the following example.

Example 2. Consider δ = 〈α1, α2, α3, α4〉 and Φ1, Φ2, Φ3, Φ4 the effect sets of
actions as follows: Φ1 = {G(x, v) ⊃ F (x, v)}, Φ2 = {� ⊃ G(x, v)} Φ3 = {� ⊃
F (x, v)} Φ4={�⊃F (x, v), G(x, v)⊃H(x, v)}. Then applying hill-climbing with
heuristic hei will perform only one transition δ →e3 δ′, resulting in a sequence
of length 3. The optimal approach follows the transitions: δ → r2〈α1, α3, α2, α4〉
→ e1〈α3, α2, α4〉 → r1〈α2, α3, α4〉 → e2〈α2, α4〉, resulting in a length 2. Note
that this cannot be obtained by any transformation from δ′.

More sophisticated heuristics can be specified based on the dominatable pairs,
also taking into account the interactions between the pairs through their effect
sets. In this way, for instance, an appropriate causal ordering can be defined that
requires certain eliminating steps to occur before others, avoiding the problem
illustrated in Example 2. We now look into optimizing the effort required to
reason wrt particular actions.

4 A Case of DBs with Disjunctive Information

Depending on the reasoning task we want to perform, the particular actions in
the sequence and their order may affect greatly the effort needed. We investigate
this in a setting inspired by databases. We focus on a particular type of KB
with disjunctive information, and look into the impact of manipulating action
sequences in the effort required to progress, i.e., update, the KB to the final
state after all actions are executed.

The KB is a database of possible closures that explicitly specifies a set of
possible worlds for single-valued fluents.

Definition 13. Let τ be a fluent atom of the form F (c, w, S0) with ground input
c and output w. The atomic closure χ of τ on d is the sentence: ∀w.F (c, w, S0) ≡
(w = d). The closure of vector τ = 〈τ1, . . . , τn〉 of distinct fluent atoms on a
ground input vector d = 〈d1, . . . , dn〉 of constants is the conjunction (χ1 ∧ . . . ∧
χn), where each χi is the atomic closure of τi on di.

A closure of τ expresses complete information about the output of all input-
grounded fluents in τ . For example, consider RobotAt(x, s) and RobotDir(x, s)
that represent information about the location and the direction of the robot.
Let χ1 be the the atomic closure of RobotAt(w,S0) on loc1 and χ2 the atomic
closure of RobotDir(w,S0) on north; , that is:

∀w.RobotAt(w,S0) ≡ (w = loc1), (χ1)
∀w.RobotDir(w,S0) ≡ (w = north). (χ2)

Optimizing Long-Running Action Histories 93

χ1 and χ2 express complete information about the location and the direction of
the robot. We can combine closure statements to express incomplete information.

Definition 14. A possible closures axiom (PCA) for a vector of input-grounded
fluents τ is a disjunction of the form (χ1 ∨ · · · ∨ χn), where each χi is a closure
of τ on a vector of constants dn of the same size.

A PCA for τ expresses disjunctive information about the output of all fluents in
τ , by stating how such outputs can be combined together (in n possible ways).

Example 3. Let χ1 and χ2 represent as before the atomic closures of
RobotAt(w,S0) on loc1 and RobotDir(w,S0) on north respectively. Let χ3 be the
closure of RobotAt(w,S0) on loc2 and χ4 the closure of RobotDir(w,S0) on east,
which both express complete information. Then ((χ1 ∧χ2)∨ (χ3 ∧χ4)) is a PCA
for 〈RobotAt(w,S0),RobotDir(w,S0)〉 which states two possible combinations for
the location and direction.

Using a set of PCAs we now define the form of the KB we want to consider.

Definition 15. A database of possible closures (DBPC) is a set D0 = {Ξτ1 ,
. . . , Ξτ�}, where each Ξτi is a PCA for τi s.t. τi ∩ τj = ∅, for all distinct i, j ∈
{1, . . . , }. For every i, each disjunct of Ξτi is called a possible closure wrt D0.

So, for every fluent atom τ with a ground input either the output of τ is
completely unknown in S0 (i.e., τ is not mentioned in D0) or there is just one
PCA Ξτi

(with τ ∈ τi) that specifies its output value in several possible “partial
worlds” (one per disjunct in the PCA). A PCA can be viewed also as a database
table which lists as rows, the possible partial worlds for a set of input-ground
fluent atoms. We will refer to the number of ground-input atoms in a PCA as
the width, and the number of disjuncts in PCA as the depth of the PCA. Note
that as the DBPC evolves under the effects of actions, more input-ground fluents
may need to be put together in a PCA in order to express the resulting state,
affecting the size of a PCA through the combinations of values that need to be
explicitly represented by means of a cross product. This increase or decrease of
the width and depth of the DBPC provides then a means for evaluating action
sequences wrt to the effort needed to update to the final state.

Definition 16. Let be the Φ the effect set of α, consisting of elements of the
form φ ⊃ ∨

n F (c, d). We define the progression speedup factor h+(α) of α as
the total number of elements in Φ such that (i) n = 1 (ii) F (c, d) appears in a
PCA in D0 with depth greater than 1 and (iii) condition (ii) is not true for any
fluent atom mentioned in φ. We define the progression slowdown factor h−(α)
of α as the total number of fluent atoms mentioned in φ in the elements of Φ
such that the atom appears in a PCA in D0 with depth greater than 1 plus the
number of members of the effect set with n > 1.

Note that sensing actions with an equivalent speedup factor are inherently
more desirable than physical actions as they allow all partial worlds inconsistent
with the sensed fluent to be removed, reducing the depth of the PCA. This is
demonstrated in the following example:

94 C. Ewin et al.

Example 4. Consider the robot described above with the initial situation D0 =
{((χ1 ∧ χ2) ∨ (χ3 ∧ χ4))}. The PCAs for the initial situation can be represented
by the following table:

RobotAt RobotDir
loc1 north
loc2 east

After performing the action moveTo(loc3) in the initial situation, the PCAs can
be represented by the following table:

RobotAt RobotDir
loc3 north
loc3 east

Now allow an action senseLocation, which returns the current location of the
robot. If the robot is initially at loc1, then the PCAs after performing this action
in the initial situation can be represented by the following table:

RobotAt RobotDir
loc1 north

Observe also that the notions of speedup and slowdown can help distinguish
between action sequences of the same size. In particular we can specify heuristic
cost functions for identifying the best permutation of a sequence that cannot be
simplified further by elimination steps. As this relates to reordering actions, we
use the ri notation to denote the heuristic functions.

Definition 17. The following are heuristic cost functions based on the effort
imposed by intermediate updates when progressing to the final state:

– speedup heuristic hri
+(δ) =

∑
α∈δ −h+(α);

– slowdown heuristic hri−(δ) =
∑

α∈δ h−(α);
– balanced heuristic hri

b (δ) =
∑

α∈δ h−(α) − h+(α).

Hill-climbing using these heuristics is not optimal, however. A key observation
is that they take into account only of disjunctive information in the initial state,
rather than considering the evolution of disjunctive information as actions occur
in the sequence. A more sophisticated approach would keep track of the fluents
mentioned in the PCAs and compare these to the fluents mentioned in the effect
set.

Example 5. Consider a simplified version of the Wumpus World domain [12,
Chapter7] with a senseBreeze(y1, y2) action, which senses whether one of two
surrounding locations contains a pit, and a sensePit(y) action, which senses
whether a particular location contains a pit. Allow fluent IsPit(x, s) to cap-
ture whether (from the point of view of the agent) that x contains a pit,
and let the initial situation be represented by the PCAs (χ1), (χ2), (χ3), (χ4),
with each χi being the closure of IsPit on loci. Now consider the sequence
〈senseBreeze(loc1, loc2), sensePit(loc1)〉 and assume that both sensing actions
return true. Progressing wrt the first action leads to the following DBPC, which
contains a single PCA shown as a table.

Optimizing Long-Running Action Histories 95

IsPit(loc1) IsPit(loc2)
true true
false false
true true

According to Definition 17, senseBreeze(loc1, loc2) has a speedup heuristic value
of 0 and a slowdown heuristic value of 1, while sensePit(loc1) has a speedup of
-1 and a slowdown 0. This motivates us to consider reordering the sensePit(loc1)
actions towards the start of the action sequence using Theorem 1. This leads to
the sequence 〈sensePit(loc1), senseBreeze(loc1, loc2)〉, which is final-state equiv-
alent wrt Definition 1. The DBPC after the first action in this sequence can be
represented as follows (which happens to be equivalent to the DBPC in the final
situation):

IsPit(loc1)
true

IsPit(loc2)
true
false

As expected, the DBPC for the final situation is the same for both sequences.
Note though that for the reordered sequence, table sizes are maintained between
1 × 1 and 1 × 2, as compared with the 2 × 3 table produced for the original
sequence, with a corresponding reduction in the cost progression.

5 An Offline Precomputing Step

We now examine the approach of precomputing actions off-line, in order to
determine whether any pair of actions can be reordered or eliminated. This
approach leads to a considerable increase in the efficiency of the online reasoning
task, at the cost of producing and maintaining a version of the effect sets for
each pair of action symbols in the domain. As an added benefit, the expensive
offline reasoning need only be executed once for every pair of action symbols in
the domain, rather than for every pair of ground actions in an action sequence.
We take each pair of unground action symbols in the domain, and reformulate
the γ+, γ− formulas of SSAs according to the following lemma:

Lemma 1. Let α be the unground resetting action A(y). Then, for each action
symbol A in the domain, γ+

F (x, v, α, s) is logically equivalent to a formula of the
form (x = w1 ∧ v = z1 ∧ φ1(s)) ∨ · · · ∨ (x = wm ∧ v = zm ∧ φm(s)), where each
of the w1, . . . ,wm is a vector of variables contained in y, each zi is a variable
in y and φ1(s), . . . , φm(s) are first-order and uniform in s. Each combination of
wi, zi must be distinct. Similarly, γ−

F(x, α, s) is logically equivalent to a formula
of the form (x = w1 ∧ ¬v = z1 ∧ φ1(s)) ∨ · · · ∨ (x = wm ∧ ¬v = zm ∧ φm(s)).

We now define a variation of the effect sets that encapsulates the same prop-
erty for unground actions:

Definition 18. Let α be an unground resetting action of the form A(y).
The effect set Φ of α is the set: {φ ⊃ F (x, v) | x = w ∧ φ ∧ v =
z appears in γ+

F (x, v, α, s)}.

96 C. Ewin et al.

We are now able to split the process of determining whether two actions
can be reordered into two parts: First, a more complex off-line precomputing
step that produces a set of equality relations between variables mentioned in the
action terms, which we call the online determination set (ODS). Second, a com-
paratively simple online procedure that verifies whether the equality relations
hold. We consider the case of conjunctive resetting actions, which have contexts
that are comprised of quantifier-free conjunctions of fluent atoms. We note that
these results are similar for resetting sensing actions.

Definition 19. Let F be a fluent symbol, x be a vector of variables and φ a
situation-suppressed conjunctive context formula. Then arg(F, x, φ) is the small-
est set such that for all y, v if F (y, v) appears in φ then y
= x is in arg(F, x, φ).

Theorem 5. Let actions α1 and α2 be consecutive conjunctive resetting actions
with effect sets Φ1, Φ2. Let Φ1 contain elements of the form φ1 ⊃ F1(w1, z1) and
Φ2 contain elements of the form φ2 ⊃ F2(w2, z2). Then the offline precomputing
step is as follows: For all combinations of elements in Φ1 and Φ2, add w1 =
w2 ⊃ z1
= z2, arg(F1, w1, φ2) and arg(F2, w2, φ1) to the ODS. Then α1 and α2

are always swappable if all formulas in the ODS evaluate to true.

Now, to eliminate α1 it is necessary to establish that the eliminating action
α2 will set the value of all fluents that could have been set by a1. That is,
the context of α1 implies the context of α2 for all fluents. To facilitate offline
precomputing for this task, we define a procedure eval(φ), which establishes
conditions between variables so that φ is a valid formula.

Definition 20. Let φ be a quantifier-free formula. eval(φ) is disjunction of all
unifications expressed as equality atoms between variables mentioned in φ, for
which φ is a valid formula

Theorem 6. Let action α1 and α2 be consecutive conjunctive resetting action
with effect sets Φ1, Φ2. Let φ1[F (w)] refer to the disjunction of all φ1 for which
φ1 ⊃ F (w, z) is in Φ1 for any z, and φ2[F (w)] refer to the disjunction of all φ2

for which φ2 ⊃ F (w, z) is in Φ2 for any z. Then the offline precomputing step
is as follows:

– For all w, add eval(φ1[F (w)] ⊃ φ2[F (w)]) to the ODS.
– For all elements of Φ1 of the form φ1 ⊃ F (w1, z1), for each element of Φ2

of the form φ2 ⊃ F (w2, z2) add arg(F,w1, φ2) to the ODS.

Then α1 and α2 are always swappable if all formulas in the ODS evaluate to
true.

Theorem 7. Determining whether two actions can be reordered or eliminated
can be done in time linear in the size of the ODS after off-line precomputing has
been completed.

Optimizing Long-Running Action Histories 97

6 Basic Optimization Scenarios

We now give some insights about the effectiveness of these technique using two
well-known domains, namely Sokoban [18] and the Wumpus World [12, Chapter7].
Progression and action sequence optimization are performed using a C program
that runs a greedy search over the space of possible action sequence manipulations,
using a combination of the dominatable pairs and progression speedup heuristics
defined earlier, with a horizon of 10 actions. The offline precomputing step is also
employed to simplify the effort required to determine action sequence modifica-
tions. Logical reasoning is performed using an Indigolog program [3].

We follow the modeling of Sokoban as a planning domain [5] and generate
long action sequences of length 5000 actions, by employing a simple agent whose
goal is to avoid repeated states. For the Wumpus World we consider action
sequences generated by the agent described in [13] in maps of size 8 × 8 and
10 × 10. Note that while Sokoban is well suited for using progression for query
answering, the Wumpus World, due to the type of incomplete information that
needs to be represented, is well suited for using regression. As we want to evaluate
our framework over both approaches, we solve projection queries via progression
in Sokoban and via regression in the Wumpus World.

We formalise the domains using resetting actions and perform reasoning for
answering a projection query that attempts to ‘map’ the domain by identifying
the locations of all known blocks/pits. For each action, the Indigolog program
implements a Poss axiom, providing the conditions under which the action can
be executed, as well as one or more effect axioms. For example, the moveFwd
action is specified as follows:

poss (moveFwd(L) , neg (offTheEdge (L))) .
causes (moveFwd(X) , locRobot , Y, Y=X) .

The top level control program is implemented as a series of prioritised inter-
rupts which specify the agent behaviour. Each interrupt consists of a guard or
condition under which it can be executed, and a small program to run. locRobot,
aliveWumpus and noGold are all fluents in the domain.

proc (mainControl ,
p r i o r i t i z e d i n t e r r u p t s (

[i n t e r r up t ([d i r] , and (aliveWumpus=true ,
i n l i n e (locRobot , d i r , locWumpus)) , [shoot (d i r)]) ,

i n t e r r up t (i sGold (locRobot)=true , [pickGold (locRobot)]) ,
i n t e r r up t (inDungeon=true ,
i f (noGold>0 ,[goto (l o c (1 , 1)) , c l imb] ,
[sme l l (locRobot) ,
s enseBreeze (locRobot) ,
senseGold (locRobot) ,
e xp l o r e g r i d

]))
])

) .

98 C. Ewin et al.

Table 1. Experimental results for Sokoban

Sequence opt. query total length

Original Progressed - 1.45 1.45 5000

Optimized Progressed 0.15 0.00 0.15 3

Table 2. Experimental results for Wumpus World

Sequence opt. query total length

Original Regressed (8×8) - 17.2 17.2 104

Optimized Regressed (8×8) 0.3 15.1 15.4 77

Original Regressed (10×10) - 41.0 41.0 167

Optimized Regressed (10×10) 0.6 37.2 37.8 125

We report the runtime following two approaches: (i) applying the reasoning
method (regression or progression) over the original action sequence in order to
answer the projection query, and (ii) optimizing first the sequence before apply-
ing the reasoning method. The results are reported in Table 1 and 2. Columns
opt and query represent the average time in milliseconds taken over 10 sequences.

We observe that the structure of Sokoban permits many elimination opera-
tions, with a substantial resultant speedup, that is in fact faster than progression.
This is a very interesting result as progression works extremely well for plan-
ning domains like Sokoban. For Wumpus World, none of the actions affecting
the agent’s knowledge of pit locations could be eliminated, hence the perfor-
mance improvement was far less significant. In a richer setting with overlapping
sensing information and physical action, this could prove much more beneficial,
drastically and efficiently simplifying the action sequence to a minimal length.

7 Related and Future Work

Our work is inspired by the idea of database query optimization and is based
on the framework of [4]. Here, we facilitate optimization search for finding min-
imal final state equivalent sequences, using offline/online techniques for more
efficient query answering. Parallels to classical planning exists [2] where pairs of
actions are classified and removed. Reordering actions is not considered by these
approaches, to-date. Note in the approach by Chrpa et al. preconditions of each
action must be considered, in contrast to our approach.

Löwe et al. [9] consider similar properties in the context of Dynamic Epis-
temic Logic planning. They define event models as being self-absorbing or com-
mutative, and demonstrate tractability results for models of this type. Löwe’s
self-absorbing actions corresponds to a special case of our dominatable actions
whereby both the dominatable and the dominating action are the same, while
commutative actions are similar to our reorderable actions. Yu et al. [19] use
these same notions to demonstrate the decidability of of explanatory diagnosis
for multi-agent systems under certain conditions.

Optimizing Long-Running Action Histories 99

The state representation that was used as the basis for evaluating the reason-
ing effort related to particular actions and action sequences, namely a DBPC,
is similar in expressiveness to other KB forms in the literature for incomplete
information, such as the so-called proper+ KBs [8]. With DBPCs we aimed for
a setting that is as close to the database case as possible, which allows to reuse
database functionality in the implementation of reasoning systems. In our future
work we intend to look into this type of implementation and a thorough inves-
tigation of the joint use of hei and hri heuristics in order to construct combined
heuristics.

Notice that ideas presented here could also be applied in other action for-
malisms such as the fluent calculus [16] and the event calculus [6,15]. Indeed, our
work shares some similarity to those that utilise constraints solvers, such as the
Flux system for implementing fluent calculus theories [17] which uses (among
other things) constraints to represent the effects implied to fluents with arith-
metic arguments. In Flux these constraints specify how the old value of fluents
relates to the new one, and are appended to the constraint store as the action
history grows. Periodically, Flux’s constraint store invokes heuristic techniques
for simplifying the history by eliminating redundant constraints. Our work could
be used to advantage in this setting to optimise action histories in more informed
ways inspired by temporal action properties, e.g., the effect of sensing, instead
of more low-level constraints.

8 Conclusions

We have shown how transforming action sequences facilitates a rewriting and
local search setting where the effort for updating can be based on notions of pro-
gression speedup and progression slowdown, and the minimal size of the sequence
can be estimated using the notion of dominatable pairs. The expanded framework
incorporates sensing and widening actions, the effects of which strongly motivate
reordering and elimination of actions. This work sets the ground for developing
novel optimization strategies and hybrid approaches in reasoning about action,
for utilisation in synchronous, concurrent and even asynchronous reasoning tasks.

We have further demonstrated a process for partially determining action
sequences transformations offline, enabling an agent to more efficiently compute
desirable transformations. For long running executions, such as agents operating
over protracted time periods, our approach provides a mechanism for answering
queries efficiently over the large action sequences generated.

Acknowledgments. NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through the ICT
Centre of Excellence Program.

100 C. Ewin et al.

References

1. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors (and
effectors) in the situation calculus. In: Dorst, L., Voorbraak, F., van Lambalgen, M.
(eds.) RUR 1995. LNCS, vol. 1093. Springer, Heidelberg (1996)

2. Chrpa, L., McCluskey, T.L., Osborne, H.: Determining redundant actions in
sequential plans. In: ICTAI, pp. 484–491 (2012)

3. De Giacomo, G., Levesque, H.: An incremental interpreter for high-level programs
with sensing. In: Levesque, H., Pirri, F. (eds.) Logical Foundations for Cognitive
Agents. Artificial Intelligence, pp. 86–102. Springer, Heidelberg (1999)

4. Ewin, C., Pearce, A.R., Vassos, S.: Transforming situation calculus action theories
for optimised reasoning. In: Proceedings of the Fourteenth International Conference
on Knowledge Representation and Reasoning, pp. 448–457 (2014)

5. Helmert, M.: Domains - ipc-2008, deterministic part (2010). http://ipc.informatik.
uni-freiburg.de/Domains (accessed February 13, 2015)

6. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1),
67–95 (1986)

7. Lin, F., Reiter, R.: How to progress a database. Artificial Intelligence 92(1–2),
131–167 (1997)

8. Liu, Y., Levesque, H.J.: Tractable reasoning with incomplete first-order knowledge
in dynamic systems with context-dependent actions. In: Proceedings of the 19th
International Joint Conference on Artificial intelligence, IJCAI 2005, pp. 522–527
(2005)

9. Löwe, B., Pacuit, E., Witzel, A.: DEL planning and some tractable cases. In:
van Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS, vol. 6953,
pp. 179–192. Springer, Heidelberg (2011)

10. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4, 463–502 (1969)

11. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

12. Russell, S., Norving, P.: Artificial Intelligence: A Modern Approach, second edn.
Prentice Hall (2003)

13. Sardina, S., Vassos, S.: The wumpus world in indigolog: a preliminary report. In:
Proceedings the Nonmonotonic Reasoning, Action and Change Workshop at IJCAI
(NRAC 2005), pp. 90–95 (2005)

14. Scherl, R., Levesque, H.J.: Knowledge, action, and the frame problem. Artificial
Intelligence 144(1–2), 1–39 (2003)

15. Shanahan, M.: The event calculus explained. In: Veloso, M.M., Wooldridge, M.J.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999)

16. Thielscher, M.: From situation calculus to fluent calculus: State update axioms as a
solution to the inferential frame problem. Artificial Intelligence 111(1–2), 277–299
(1999)

17. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programing 5(4–5), 533–565 (2004)

18. Wikipedia: Sokoban - Wikipedia, the free encyclopedia (2015). http://en.
wikipedia.org/wiki/Sokoban (accessed February 13, 2015)

19. Yu, Q., Wen, X., Liu, Y.: Multi-agent epistemic explanatory diagnosis via reasoning
about actions. In: Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence, IJCAI 2013, pp. 1183–1190. AAAI Press (2013)

http://ipc.informatik.uni-freiburg.de/Domains
http://ipc.informatik.uni-freiburg.de/Domains
http://en.wikipedia.org/wiki/Sokoban
http://en.wikipedia.org/wiki/Sokoban

Semantics for Modelling Reason-Based
Preferences

Erica Calardo1, Guido Governatori2(B), and Antonino Rotolo1

1 CIRSFID, University of Bologna, Bologna, Italy
2 Software Systems Research Group, NICTA, Brisbane, QLD, Australia

guido.governatori@nicta.com.au

Abstract. In [13] the authors developed a logical system based on the
definition of a new non-classical connective ⊗ originally capturing the
notion of reparative obligation. The operator ⊗ and the system were
proved to be appropriate for rather handling well-known contrary-to-duty
paradoxes. Later on, a suitable model-theoretic possible-world semantics
has been developed [4,5]. In this paper we show how a version of this
semantics can be used to develop a sound and complete logic of pref-
erence and offer a suitable possible-world semantics. The semantics is a
sequence-based non-normal one extending and generalising semantics for
classical modal logics.

1 Introduction

Theoretical and computational research in social choice theory is now recognised
as relevant and is well-established in the MAS community. Indeed, it deals with
the problem of how to aggregate in MAS individual preferences into a social or
collective preference in order to achieve a rational collective decision [11].

Preliminarily to any useful contribution in this area we need to develop suitable
formalisms and reasoning methods to represent and handle agents’ preferences.
In the current literature, we can find several approaches, among which the most
remarkable in computational social choice theory are perhaps the following [2]:

– conditional preference networks, or CP-nets [1];
– prioritised goals [7,17].

The second approach uses logical formalisms to describe the goals of the agents
whose preferences are modelled as propositional formulae. This allows for a man-
ageable and purely qualitative representation of preferences. Very recently, a new
proposal in this perspective has been advanced [16], which presents a modal logic
where a binary operator is meant to syntactically express preference orderings
between formulae: each formula of this logic determines a preference ordering
over alternatives based on the priorities over properties that the formula express.
The authors recall that such types of formalisms are in fact capable of represent-
ing not just orderings over alternatives but the reasons that lead to the prefer-
ences [18]. The formalism is then interestingly used in [16] to originally treat the
problem of collective choice in MAS as aggregation of logical formulae. The logic in
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 101–117, 2015.
DOI: 10.1007/978-3-319-25524-8 7

102 E. Calardo et al.

[16] is clearly inspired by the work in [3], which in turn has a number of similarities
with a system that was independently developed in [13] and where a Gentzen sys-
tem was proposed in a different but related area—deontic logic—to reason about
orderings on obligations. The idea that reasoning about preferences is crucial in
deontic logic was introduced in semantic settings long time ago [15] (for recent dis-
cussions, [14,21]). [13] is however based on the syntactic introduction of the new
non-classical operator⊗: the reading of an expression likea⊗b⊗c is thata is primar-
ily obligatory, but if this obligation is violated, the secondary obligation is b, and,
if the secondary (CTD) obligation b is violated as well, then c is obligatory. These
constructions can be used as well to reason about preferences. Thus, following the
approach in [13], let � be a non-classical consequence relation used to characterise
conditional preferences. An expression like

Resident � ¬Pay Taxes ⊗ ¬Pay Interest ⊗ Pay Minimum

can be intuitively viewed as a conditional preference statement meaning the
following:

1. if I’m resident in Italy, i.e. if Resident is the case, then not paying taxes is
my actual preference, but,

2. if it happens that I pay taxes, then my actual preference is rather not to pay
any interest, but

3. if I pay any interest, then my actual preference is pay a minimum.

Very recently, we have also devised a new semantics for ⊗ logics, which
extends neighbourhood models with sequences of truth sets [4,5]. In this paper
we take advantage of our previous work and offer some technical results for a
new preference logic. Our intent is to take the token from [16] and go deeper
into semantically investigating such modal logics.

The layout the paper is as follows. Section 2 presents the basic logical sys-
tem for ⊗ to represent and reason about preferences. The logic recalls some
intuitions from [4,5,13]. Section 3 defines a sequence neighbourhood semantics
suitable for the system which adjusts the one proposed in [4,5]. Sections 5 and 6
provide, respectively, soundness and completeness results. Some conclusions end
the paper.

2 A Logic for Reason-Based Preferences

Let us present in this section a new variant of the logic presented in [4,5,13], a
logic which was originally devised for modelling deontic reasoning and which is
here revised to reason about preferences. The language consists of a countable
set of atomic formulae. Well-formed-formulae are then defined using the usual
Boolean connectives and the n-ary connective ⊗, which is intended to syntacti-
cally formalise preference ordering among reasons. The language also includes
the modal operator Pr denoting the actual preferred reason or state of affairs: in
other words, Prp means that p is preferred. The interpretation of an expression

Semantics for Modelling Reason-Based Preferences 103

a ⊗ b is that b is a the most preferred reason or state of affairs, but, if a is not
the case then b is preferred.

Let L be a language consisting of a countable set of propositional letters
Prop = {p1, p2, . . . }, the propositional constant ⊥, round brackets, the boolean
connective →, the unary operator Pr, and a set of n-ary operators ⊗n for n ∈ N,
n > 0.

Definition 1 (Well Formed Formulae). Well formed formulae (wffs) are
defined as follows:

– Any propositional letter p ∈ Prop and ⊥ are wffs;
– If a and b are wffs, then a → b is a wff;
– If a is a wff and no operator ⊗n and Pr occurs in a, then Pra is a wff;
– If a1, . . . , an are wffs and no operator ⊗n and Pr occurs in any of them, then

a1 ⊗n · · · ⊗n an is a wff, where 1 ≤ n;1

– Nothing else is a wff.

We use WFF to denote the set of well formed formulas.

Other Boolean operators are defined in the standard way, in particular
¬a =def a → ⊥ and � =def ⊥ → ⊥.

We say that any formula a1 ⊗n · · · ⊗n an is an ⊗-chain. The formation rules
allow us to have ⊗-chain of any (finite) length, and the arity of the operator is
equal to number of elements in the chain; accordingly we drop the index m from
⊗m. Moreover, we will often use the prefix notation

⊗n
i=j ai for aj ⊗· · ·⊗an. In

addition we use the following notation:
⊗n

i=j ai⊗b⊗⊗m
k=l ck, where i, j ∈ {0, 1}.

The “a” part and “c” part are optional, i.e., they are empty when i = 0 or j = 0,
respectively. Otherwise the expression stands for the following chain of n+1+m
elements: a1 ⊗ · · · ⊗ an ⊗ b ⊗ c1 ⊗ · · · ⊗ cm

Let us define a Gentzen-style sequent calculus for ⊗.

Definition 2 (Sequents). Let � and � be two binary consequence relations
defined over P(WFF) × WFF. Thus expressions Γ � a and Γ � a are sequents
where Γ is a finite (and possibly empty) set of wffs, and a is a wff.

We use � for the consequence relation of classical propositional logic (see [10] for
an appropriate set of rules), and � for the consequence relation for the preference
logic of ⊗. The following axiom and rules define the sequent calculus E⊗ for �:

Γ, a � a (ID)

This axiom allows us to use assumptions in �.

� a

Γ � a
(PC)

1 We will use the prefix form ⊗1a for the case of n = 1.

104 E. Calardo et al.

The rule above allows us to import classical consequences in �.

Γ � a Δ � a → b

Γ,Δ � b
(MP)

The combination of (ID), (PC) and (MP) enables us to use the full power of
classical propositional logic in the right-hand side of the preference consequence
relation.

Γ, a � b Δ � a

Γ,Δ � b
(Cut)

� aj ≡ ak

Γ � (
⊗n

i=1 ai) ≡ (
⊗k−1

i=1 ai) ⊗ (
⊗n

i=k+1 ai)
(where j < k) (⊗-shortening)

Γ �
⊗p

k=0 ak ⊗ (
⊗n

i=1 b) ⊗ ⊗q
l=0 cl Δ, {¬b1, . . . ,¬bn} �

⊗m
j=1 dj

Γ,Δ,�
⊗p

k=0 ak ⊗ (
⊗n

i=1 b) ⊗ ⊗m
j=1 dj

(⊗-I)

Γ � (
⊗n

i=0 bi) ⊗ c ⊗ ⊗m
j=0 dj Δ �

∧n
i=0 ¬bi

Γ,Δ � Prc
(Pr-detachment)

Γ � Pra

Γ � ¬Pr¬a
(⊗-D)

Γ �
⊗n

i=1 ai

Γ �
⊗n−1

i=1 ai

(where n > 1) (⊗-⊥)

� b ≡ c

Γ � (
⊗n

i=0 ai ⊗ b ⊗ ⊗m
j=0 dj) ≡ (

⊗n
i=0 ai ⊗ c ⊗ ⊗m

j=0 dj)
(⊗-RE)

A few comments are in order.
The rule (⊗-shortening) corresponds to duplication and contraction2: for

example, a ⊗ b ⊗ a is equivalent to a ⊗ b. Intuitively, if I prefer not to get any
damage, but if this happens I prefer to be compensated, and, if the damage is
not compensated, then I prefer not to get any damage, this just means that my
primary preference is not to get any damage and my secondary preference is to
be compensated.

(Pr-detachment) is nothing but a rule allowing for detaching actual prefer-
ences from ⊗-chains, i.e, those preferences that hold in a given context. They
2 Contraction in a logical sense, which is different from the one usually adopted in pref-

erence theory and which is captured by the subsequent derived rule (⊗-contraction)
(see Section 4). For this reason, we prefer to use in this first case the term “shortening”.

Semantics for Modelling Reason-Based Preferences 105

reflect the intuitive reading of the ⊗ operator. Indeed, if a ⊗ b, the primary pref-
erence should hold, and, if a is factually false (¬a), then b must be preferred,
i.e., Prb.

(⊗-I) is a peculiar introduction rule for ⊗. Let us illustrate (⊗-I) by consid-
ering a simple instance of it as applied to a concrete example:

� ¬Pay Taxes ⊗ ¬Pay Interest Pay Taxes ∧ Pay Interest � ⊗Pay Minimum

� ¬Pay Taxes ⊗ ¬Pay Interest ⊗ Pay Minimum

The sequent of the left-hand side states that my primary preference is not to
pay taxes, but if this happens then my preference is not pay any interest (for
example, by paying them in due time without delay). The sequent of the right-
hand side rather states that, if I pay taxes and pay with interest (e.g., because
I was late), then my preference is to pay the minimum amount. Hence, (⊗-I)
states that there is a chain of preferences dealing iteratively with the fact that
my primary preference (not to pay any taxes) is not satisfied.

Schemata (⊗-D) and (⊗-⊥) ensure respectively internal and external consis-
tency of preferences, similarly as in standard modal logic [6]. (⊗-D) is nothing
but a simple generalisation of modal D [6], stating that it is not possible to have
both Pra and Pr¬a, indeed we have the following derivation:

Γ � Pra
Γ � ¬Pr¬a Δ � Pr¬a

Γ,Δ � ⊥
The logic of ⊗ inherits the standard consistency rule (i.e., derive Γ,Δ � ⊥

from Γ � a and Δ � ¬a) from the underlying classical propositional consequence
relation �. This clearly holds for any ⊗-chain. Given the preference chain n =�
a⊗b⊗c—meaning that a is preferred, and the second best preference is b, and the
third best preferred one is c—asserting that n does not hold, i.e., � ¬(a ⊗ b ⊗ c)
amounts to a contradiction. But what about if we just assert that b is not the
second best preference with respect to a, or that a is not actually preferred
without having ¬a? These two cases are subsumed by n, thus they should result
in a contradiction as well. (⊗-⊥) ensure this effect by allowing us to derive all
the initial (starting from the leftmost element) sub-chains of an existing ⊗-chain.
In other words, if

� ¬Pay Taxes ⊗ ¬Pay Interest ⊗ Pay Minimum

then we can conclude that the following hold, too:

� ¬Pay Taxes ⊗ ¬Pay Interest
� ¬Pay Taxes.

Finally, it should be intuitively clear that (⊗-RE) generalises for ⊗-formulae
the weakest inference rule for modal logics, i.e., the closure of � (here Pr) under
logical equivalence [6].

106 E. Calardo et al.

3 Sequence Semantics

Let us introduce the semantic structures that we use to interpret ⊗-formulas. In
fact, they are just an extension of neighbourhood frames for classical modal logics.

Definition 3. A sequence frame is a tuple F = 〈W,C 〉 where:

– W is a non empty set of worlds;
– C is a neighbourhood function with the following signature3

C : W �→ 2((2
W)n) for n ∈ N.

In general, a sequence frame is nothing but a structure where the stan-
dard neighbourhood function is replaced by a function that establishes an order
between elements (i.e., sets of worlds) of each neighbourhood associated to every
world. Figure 1 offers a pictorial representation of the intuition.

w

.

X1 X2 X3 . . .

.

Y1 Y2 Y3 . . .

c1

cn

Fig. 1. Sequence basic structure: X1, X2, X3, · · · ⊆ W and Y1, Y2, Y3, · · · ⊆ W

The following definitions introduce the notion of redundancy and the opera-
tions of zipping and s-zipping, i.e., operations that, respectively, remove repeti-
tions or redundancies occurring in ⊗-chains and in sequences of sets of worlds.
Intuitively, these operations are necessary because, despite the fact the language
allows for building expressions like a⊗b⊗a, these must be semantically evaluated
using the sequences of sets of worlds 〈‖a‖V , ‖b‖V 〉 (see rule (⊗-shortening)).

Definition 4. A formula A is redundant iff A =
⊗n

i=1 ai, n > 1 and ∃aj , ak,
1 ≤ j, k ≤ n, j �= k, such that aj ≡ ak.

Definition 5. Let A =
⊗n

i=1 ai be any redundant formula. We say that the non-
redundant B is zipped from A iff B is obtained from A by applying recursively
the operations below:
3 As done sometimes with the standard neighbourhood function, we use the notation
Cw to denote C (w).

Semantics for Modelling Reason-Based Preferences 107

1. If n = 2, i.e., A = a1 ⊗ a2, and a1 ≡ a2, then B, the zipped from, is Pra1;
2. Otherwise, if n > 2, then for 1 ≤ k ≤ n, if aj ≡ ak, for j < k, delete ⊗ak

from the sequence.

Let X = 〈X1, . . . , Xn〉 be such that Xi ∈ 2W (1 ≤ i ≤ n). We analogously say
that Y is s-zipped from X iff Y is obtained from X by applying the operations
below:

1. If n = 2 and X1 = X2, then its s-zipped from Y is 〈X1〉;
2. Otherwise, if n > 2, then for 1 ≤ k ≤ n, if Xj = Xk, for j < k, delete Xk

from the sequence.

Definition 6 (Models with Sequences and Truth of Formulae). A model
M is a pair 〈F , V 〉 where F is a frame and V is a valuation such that:

– for any non-redundant
⊗n

i=1 ai, |=V
w

⊗n
i=1 ai iff there is a cj ∈ Cw such that

cj = 〈‖a1‖V , . . . , ‖an‖V 〉;
– for any redundant

⊗n
i=1 ai, |=V

w

⊗n
i=1 ai iff

• ⊗k
f=1 af is zipped from

⊗n
i=1 ai, and

• |=V
w

⊗k
f=1 af .

– |=V
w Pra iff there is a cl ∈ Cw such that:
• cl = 〈‖a1‖V , . . . , ‖an‖V 〉;
• for some k ≤ n, ‖ak‖V = ‖a‖V ;
• for 1 ≤ j < k, w �∈ ‖aj‖V .

Figure 2 pictorially illustrates the types of models used for evaluating ⊗-formulae.
In fact, we use only finite sequences, of sets of worlds, closed under s-zipping. A
formula

⊗n
i=1 ai is true iff the corresponding appropriate finite sequence of sets

of worlds (without redundancies) is in Cw. Notice that the evaluation clause for
Pra works using sequences of length 1 or with longer sequences whenever a is
the k’s element of the ⊗-chain and the previous aj are such that w �∈ ‖aj‖V , i.e.,
the previous preferences have not been satisfied in w.

Definition 7 (Truth of Sequents). Let Γ � a be any sequent. Then,

|=V
w Γ � a iff, if ∀w′ ∈ W such that |=V

w′ Γ, then |=V
w′ a.

4 Choice Consistency: Contraction and Expansion

It is almost standard in social choice theory to assume two rationality conditions
of choice (which are related with the fact that a choice function is rationalis-
able) [11]: contraction consistency and expansion consistency. The former one is
“is concerned with keeping a chosen alternative choosable as the set is expanded
by adding alternatives dominated [. . .] in other choices”, while the latter one “is
concerned with keeping a chosen alternative choosable as the set is contracted
by dropping other alternatives” [20, page 65]. More precisely, contraction states
that if an agent chooses some alternative from a set S of alternatives and this

108 E. Calardo et al.

w

||a1||V ||a2||V

||b1||V ||b2||V

c1

cn

.

||an−1||V ||an||V

.

||bm−1||V ||bm||V

Fig. 2. Sequence models where finite sequences are used to evaluate the formulae⊗n
i=1 ai, . . . ,

⊗m
i=1 bi

alternative remains available in a subset S′ of S, then the agent chooses it from
S′. Expansion somehow works in the opposite direction and requires that, given
two sets S and S′ of alternatives such that S ⊆ S′, for all pairs of alternatives in
S, if one agent chooses them from S, then the agent still chooses from S′ both
of them or does not choose none of them. [11]. Although it has been argued that
one possibility, among others, to avoid Arrow’s impossibility result is precisely
is to relax one of those principles [2,11], these last are usually taken as basic
standards of rationality in choice theory.

Notice that such conditions hold as well in the framework proposed in [16],
where a simple semantic formulation is proposed, but no syntactic formalisation
is given. Our logic, too, satisfies both conditions and a simple formalisation is
possible.

Let us begin by considering contraction. Within our formalism, choices are
ordered via the ⊗ operator, while a simple way to select arbitrary sets of alterna-
tives is done by arbitrarily considering propositional formulae in the antecedents
of �-sequents. Hence, contraction can be easily represented as follows:

a �
⊗n

i=1 bi c � a

c �
⊗n

i=1 bi
(⊗-contraction)

(⊗-contraction) is clearly a derived rule, as it corresponds in our setting to logical
monotonicity with respect to �. In fact, suppose that any state where c holds is
also a state where a holds:

c � a
c � a a �

⊗n
i=1 bi

c �
⊗n

i=1 bi

From the semantic point of view, it is plain to see that (⊗-contraction) rule
does not require any specific frame condition because, by construction, if, for all

Semantics for Modelling Reason-Based Preferences 109

worlds w ∈ ‖a‖V and |=V
w

⊗n
i=1 bi, since ‖c‖V ⊆ ‖a‖V then for all v ∈ ‖c‖V we

trivially have that |=V
v

⊗n
i=1 bi.

The formulation of expansion is intuitive as well:

a �
⊗n

i=1 bi c �
⊗n

i=1 bi
� ((a ∨ d) → ⊗n

i=1 bi) ≡ ((c ∨ d) → ⊗n
i=1 bi)

(⊗-expansion)

Here, pairs of alternatives (more generally, pairs of sets of alternatives) are
selected by assuming the truth of a and c and we state that a certain choice from⊗n

i=1 bi is considered in both alternatives. Now, if pick up larger sets (which are
determined by disjunctively adding any arbitrary propositional formula d), then
either the same choice is preserved or it is abandoned in both alternatives.

Indeed, (⊗-expansion) holds, since inference rule (PC) allows us to import in
�-logic all consequences of classical logic4. The same idea can be easily checked
in our sequence semantics. Indeed, it is plain to see that (⊗-expansion) rule does
not require, too, any specific frame condition: if, for any worlds w ∈ ‖a‖V and
v ∈ ‖c‖V we have that |=V

w

⊗n
i=1 bi and |=V

v

⊗n
i=1 bi, since ‖a‖V ⊆ ‖a ∨ d‖V

and ‖c‖V ⊆ ‖c∨ d‖V , then, by simple set-theoretic considerations, for all worlds
w′ ∈ ‖a∨d‖V and v′ ∈ ‖c∨d‖V we have either (i) |=V

w′
⊗n

i=1 bi and |=V
v′

⊗n
i=1 bi,

or (ii) �|=V
w′

⊗n
i=1 bi and �|=V

v′
⊗n

i=1 bi.

5 Soundness Results

5.1 System E⊗

Let us prove in this section soundness results for the rules of system E⊗, which
consists of the following rules: (⊗-shortening), (Pr-detachment), (⊗-RE), (⊗-I),
(⊗-D), (⊗-⊥).

Lemma 1. (⊗-RE) is valid in the class of all sequence frames.

Proof. The result for (⊗-RE) trivially follows from the fact that the valuation
clause for any ⊗-formula

⊗n
i=1 ai, at any world w and with any valuation V ,

requires the existence of a sequence c ∈ Cw of truth sets 〈‖a1‖V , . . . , ‖an‖V 〉.
Then since for any i, ‖ai‖V = ‖bi‖V (ai ≡ bi for any frame and any valuation
by assumption) there is also a sequence 〈‖b1‖V , . . . , ‖bn‖V 〉 ∈ Cw.

Also (⊗-shortening) holds in general:

Lemma 2. (⊗-shortening) is valid in the class of all sequence frames.

Proof. The proof follows directly from the valuation clause of redundant formu-
lae, and from the definition of redundancy, zipping, and s-zipping.

4 The proof is a rather long, cumbersome, but in fact a routine exercise in sequent
calculi for classical propositional logic and is omitted. Just notice that ((a → b)∧(c →
b)) → (((a ∨ d) → b) ≡ ((c ∨ d) → b)) is a tautology.

110 E. Calardo et al.

Lemma 3. (Pr-detachment) is valid in the class of all sequence frames.

Proof. The proof trivially follows from the valuation clause for the operator Pr.

As we have shown, (⊗-contraction rule) is a derived rule and does not need
any specific investigation. In fact, it is plain to semantically see by construction
that, if, for all w ∈ Y and |=V

w

⊗n
i=1 ai and w ∈ Y , if X ⊆ Y then for all v ∈ X

we have |=V
v

⊗n
i=1 ai.

Let us now study additional rules that are not validated the class of all
sequence frames. Let us first consider the introduction rule for ⊗, which requires
extra semantic conditions.

Definition 8. Let F = 〈W,C 〉 be a frame. We say that F is ⊗-extended iff
for any w ∈ W and ci = 〈X1, . . . , Xn〉 ∈ Cw, if ∃i, j, such that i ≤ j ≤ n and
∀k, i ≤ k ≤ j, w ∈ W − Xk, then 〈Y1, . . . , Ym〉 ∈ Cw, then there exists c′ ∈ Cw

such that c′ is s-zipped from 〈X1, . . . , Xj , Y1, . . . , Ym〉.
Lemma 4. (⊗-I) is valid in the class of ⊗-extended sequence frames.

Proof. Let us assume for simplicity that all the formulae are zipped. Suppose,
for reductio, that ⊗-I does not hold in an ⊗-extended frame. Thus there is a
world w such that

|=V
w

∧
Γ ∧

∧
Δ �|=V

w

p⊗

k=0

ak ⊗ (
n⊗

i=1

bi) ⊗
m⊗

j=1

dj . (1)

This means that

〈‖a0‖V , . . . , ‖ap‖V , ‖b1‖V , . . . , ‖bn‖V , ‖d1‖V , . . . , ‖dm‖V 〉 /∈ Cw. (2)

From the assumption the premises of ⊗-I are true in w, and |=V
w

∧
Γ , thus

|=V
w

⊗p
k=0 ak ⊗ (

⊗n
i=1 bi) ⊗ c. Hence

〈‖a0‖V , . . . , ‖ap‖V , ‖b1‖V , . . . , ‖bn‖V , ‖c‖V 〉 ∈ Cw. (3)

Suppose that w ∈ ‖¬bi‖ (for 1 ≤ i ≤ n); therefore |=V
w

∧n
i=1 ¬bi. In addition,

again from the assumption, |=V
w

∧
Δ ∧ ∧n

i=1 ¬bi. From this and the truth of the
second premise of ⊗-I in w we obtain that |=V

w

⊗m
j=1 dj , which means that

〈‖d1‖V , . . . , ‖dm‖V 〉 ∈ Cw (4)

on the hypothesis that w ∈ ‖¬bi‖ for 1 ≤ i ≤ n. Since the frame is ⊗-extended

〈‖a0‖V , . . . , ‖ap‖V , ‖b1‖V , . . . , ‖bn‖V , ‖d1‖V , . . . , ‖dm‖V 〉 ∈ Cw (5)

which contradicts (2).

Let us consider rules for ensuring consistency, i.e., (⊗-D) and (⊗-⊥).

Semantics for Modelling Reason-Based Preferences 111

Definition 9 (Seriality). Let F = 〈W,C 〉 be a frame. We say that F is serial
iff ∀w ∈ W and ∀ci = 〈X1, . . . , Xn〉 ∈ Cw, there is no cj = 〈Y1, . . . , Ym〉 ∈ Cw

such that Yj = W −Xk if for all Xg, Yh, g < k ≤ n, h < j ≤ m, w /∈ Xg, w /∈ Yh.

Lemma 5. (⊗-D) is valid in the class of serial sequence frames.

Proof. The proof is straightforward. Consider any arbitrary sequent Γ � Pra
and suppose there is a serial frame F , a valuation V , and a world w such that

|=V
w Γ � Pra (6)

and

�|=V
w Γ � ¬Pr¬a. (7)

Hence, there is a world v such that |=V
v Pra and �|=V

v ¬Pr¬a. By the valuation
clause for Pr, this implies that

1. there exists an ⊗-chain
⊗m

j=1 dj true at v where (a) d1 = a, or (b) dh = a,

1 < h ≤ m, and |=V
v �

∧h−1
l=1 ¬dl,

2. there exists an ⊗-chain
⊗n

i=1 bi true at v where (i) b1 = ¬a, or (ii) bk = ¬a,
1 < k ≤ n, and |=V

v �
∧h−1

j=1 ¬bj .

From 1 we have that 〈‖a‖V , ‖d2‖V , . . . , ‖dm‖V 〉 ∈ Cv or 〈‖d1‖V , . . . , ‖dh−1‖V , ‖a‖V ,

‖dh+1‖V , . . . , ‖dm‖V 〉 ∈ Cv and v �∈ ‖d1‖V , . . . , ‖dk−1‖V .
From 2 we have that 〈W −‖a‖V , ‖b2‖V , . . . , ‖bn‖V 〉 ∈ Cv or 〈‖b1‖V , . . . , ‖bk−1‖V ,

W − ‖a‖V , ‖bk+1‖V , . . . , ‖bn‖V 〉 ∈ Cv and v �∈ ‖b1‖V , . . . , ‖bk−1‖V .
Hence, F is not serial, thus leading to a contradiction.

Definition 10 (⊗-seriality). Let F = 〈W,C 〉 be a frame. We say that F is
⊗-serial iff for any w ∈ W and for any finite sequence ci = 〈X1, . . . , Xn〉 ∈ Cw,
n > 1, the sequence 〈X1, . . . , Xn−1〉 ∈ Cw.

Lemma 6. (⊗-⊥) is valid in the class of ⊗-serial sequence frames.

Proof. The proof is straightforward. Consider any arbitrary sequent Γ �
⊗n

i=1 ai

and suppose there is an ⊗-serial frame F , a valuation V , and a world w such
that

|=V
w Γ �

n⊗

i=1

ai (8)

and

�|=V
w Γ �

n−1⊗

i=1

ai. (9)

Hence, there is a world v such that |=V
v

⊗n
i=1 ai and �|=V

v

⊗n−1
i=1 ai. By the

valuation clause for ⊗-chains, this implies that

112 E. Calardo et al.

1. there exists a sequence 〈‖a1‖V , . . . , ‖an‖V 〉 ∈ Cv, and
2. there is no sequence 〈‖a1‖V , . . . , ‖an−1‖V 〉 ∈ Cv.

Thus, F is not ⊗-serial, contrary to the assumption.

6 Semantic Completeness

6.1 Completeness of E⊗

In this section we shall provide a semantic completeness theorem via canonical
models for E⊗, as defined in Section 2.

Definition 11. Two sequents Γ � a and Δ � b are inconsistent if and only if
Γ ∪ Δ is a consistent set (i.e., Γ,Δ �� ⊥) and � a ∧ b → ⊥.

Let us start by constructing the worlds of a canonical model:

1. Let WC be the set of all possible maximal consistent sets of formulae in the
language of E⊗, constructed with a standard Lindenbaum procedure.

2. Take any w ∈ WC . Let:
(a) w+

0 := w;
(b) Let Γ1, Γ2, . . . be an enumeration of all the possible sequents in the lan-

guage (where Cl(v) is the closure of v under all the rules of the logic).
Set w+

n+1 := Cl(w+
n ∪ {Γn}) if

⋂
WC ∪ {Γn} is consistent; w+

n+1 := w+
n

otherwise.
(c) w+ :=

⋃
n∈N

w+
n .

3. Set W+ := {w+ | w ∈ WC}
Notice that clause (2b) of this construction guarantees that the set of sequents

is the same for any v+.

Definition 12 (E⊗-Canonical Models). A sequence model with sequences
M := 〈W+,C , V 〉 is a canonical model for E⊗ if and only if:

1. For any propositional letter p ∈ Prop, ‖p‖V := |p|E⊗ , where |p|E⊗ := {w ∈
W+ | p ∈ w}

2. Let C :=
⋃

w∈W Cw, where for each w ∈ W , Cw := {〈‖a1‖V , . . . , ‖an‖V 〉 |
a1 ⊗ · · · ⊗ an ∈ w} ∪ {〈‖a‖〉V | Pra ∈ w}, where each ai is a meta-variable
for a Boolean formula and a1 ⊗ · · · ⊗ an is zipped.

Lemma 7 (Truth Lemma). For any w ∈ W+ and for any formula or sequent
A, A ∈ w if and only if |=V

w A.

Proof. Given the construction of the canonical model, this proof is easy and can
be given by induction on the length of an expression A. We consider only a few
relevant cases.

Assume A has the form a1 ⊗ · · · ⊗ an and is redundant (clearly the case
for non redundant formulae is easier and does not need to be considered here).

Semantics for Modelling Reason-Based Preferences 113

Suppose ai ⊗ · · · ⊗ an ∈ w. Then, by ⊗-shortening, we have that the formula
b1 ⊗ · · · ⊗ bj , the zipped form of A, is also in w. By definition of canonical model
we have that there is a sequence 〈‖b1‖V , . . . , ‖bj‖V 〉 ∈ Cw. Following from the
semantic clauses given to evaluate ⊗-formulae, it holds that |=V

w a1 ⊗ · · · ⊗ an.
Now suppose that |=V

w a1 ⊗ · · · ⊗ an. By definition, there is a zipped formula
b1 ⊗ · · · ⊗ bj such that |=V

w b1 ⊗ · · · ⊗ bj . Thus, Cw contains an ordered j-tuple
〈‖b1‖V , . . . , ‖bj‖V 〉. By definition of Cw it follows that b1 ⊗ · · · ⊗ bj ∈ w and
by ⊗-shortening, all the unzipped forms of b1 ⊗ · · · ⊗ bj are also in w, including
a1 ⊗ · · · ⊗ an.

If, on the other hand, A has the form Prb and Prb ∈ w, then 〈‖b‖V 〉 ∈ Cw and,
by definition |=V

w Prb. Conversely, if |=V
w Prb, then there is an s-zipped sequence

〈‖c0‖V , . . . , ‖cn‖V , ‖b‖V , ‖d1‖V , . . . , ‖dm‖V 〉 ∈ Cw and for 0 ≤ i ≤ n, w �∈ ‖c‖i.
Thus, since any ci is Boolean and w is maximal, ¬c0, . . . ,¬cn ∈ w. Moreover⊗n

i=0 ci ⊗ b ⊗ ⊗m
j=1 dj ∈ w. Hence by the Pr-detachment rule, Prb ∈ w.

If A is a sequent Γ � a belonging to w, take any v+ ∈ W+ s.t. |=V
v+

∧
Γ .

By induction hypothesis, Γ ⊆ v+. By construction of v+, Γ � a ∈ v+, hence
a ∈ v+ and by induction hypothesis |=V

v+ a. Thus, |=V
w+ Γ � a. Conversely,

assume Γ � a �∈ w+. By construction of w+ it means that Γ is consistent with⋂
WC , i.e., Γ ⊆ ⋂

WC and Γ ⊆ w+. By induction hypothesis, |=V
w+

∧
Γ . Also,

a ∧ b → ⊥ for some b ∈ ⋂
WC , hence a �∈ w+ and by induction hypothesis

�|=V
w+ a.

For any sequent or formula A that is not derivable in E⊗ it holds that A �∈⋂
W+ and hence for any w+ ∈ W+, �|=V

w+ A by Lemma 7.

Lemma 8. The canonical frame for E⊗ is:

1. ⊗-Extended (as in Definition 8);
2. Serial (as in Definition 9);
3. ⊗-Serial (as in Definition 10).

Proof. The proof is straightforward.

1. Consider a world w+ such that (i)
⊗p

i=0 ai ⊗ ⊗n
j=1 bj ⊗ ⊗q

l=0 cl ∈ w+ and
(ii) ¬b1, . . . ,¬bn �

⊗m
k=1 dk ∈ w+. From (i) by Lemma 7

|=V
w+

p⊗

i=0

ai ⊗
n⊗

j=1

bj ⊗
q⊗

l=0

cl (10)

and thus

〈‖a0‖V , . . . , ‖ap‖V , ‖b1‖V , . . . , ‖bn‖V , ‖c0‖V , . . . , ‖cq‖V 〉 ∈ Cw+ . (11)

Suppose w+ ∈ W − ‖bi‖ for 1 ≤ i ≤ n. Again by Lemma 7, ¬bi ∈ w+ (for
1 ≤ i ≤ n), then from (ii) and the construction of w+,

⊗m
k=1 dk ∈ w+, and

114 E. Calardo et al.

⊗p
i=0 ai ⊗ ⊗n

j=1 bj ⊗ ⊗m
k=1 dk ∈ w+. Thus, by Lemma 7,

|=V
w+

m⊗

k=1

dk (12)

|=V
w+

p⊗

i=0

ai ⊗
n⊗

j=1

bj ⊗
m⊗

k=1

dk (13)

which means

〈‖d1‖V , . . . , ‖dm‖V 〉 ∈ Cw+ (14)
〈‖a0‖V , . . . , ‖ap‖V , ‖b1‖V , . . . , ‖bn‖V , ‖d1‖V , . . . , ‖dm‖V 〉 ∈ Cw+ . (15)

which show that the canonical model is ⊗-extended.
2. If, for reductio, there are a world w+ and two sequences belonging to Cw+

〈‖a1‖V , . . . , ‖am‖V , ‖b‖V , ‖c1‖V , . . . , ‖cm‖V 〉
〈‖d1‖V , . . . , ‖dj‖V ,−‖b‖V , ‖e1‖V , . . . , ‖ek‖V 〉,

w+ �∈ ‖ai‖V for each i and w+ �∈ ‖di‖V for each i, it would follow that both
Pra, and Pr¬a belong to w+, although by ⊗-D ¬Pr¬a ∈ w+.

3. The proof for ⊗-seriality is trivial and follows directly from the construction
of the canonical model and the presence of ⊗-⊥.

Corollary 1. The logic E⊗ is sound and complete with respect to the class of
sequence frames that are extended, serial, and ⊗-serial.

7 Conclusion and Related Work

This paper offered a semantic study of the ⊗ operator originally introduced
in [13] to model deontic reasoning and contrary-to-duty obligations. We showed
that a suitable Gentzen-style sequent calculus incorporating ⊗-expressions can
be characterised in a class of structures extending neighbourhood frames with
sequences of sets of worlds. We argued that the formalism and the semantics can
be employed, with some adjustments, to grasp various forms of reasoning about
reason-based preferences. In this perspective, our contribution may offer useful
insights for establishing connections between the proof-theoretic and model theo-
retic approaches to preference reasoning. Also, we showed that the logic validates
both Contraction and Expansion Consistency [11,16], thus satisfying two basic
rationality conditions in social choice theory.

The current logic falls within the research on prioritised goals [7,17], i.e., on
formalisms for describing the goals of the agents whose preferences are modelled
as propositional formulae. This allows for a purely qualitative representation of
preferences. Before the recent developments in MAS [2], the most extensive (and,
still the most advanced) work on preferences was done in the context of deontic
logic. A first line of inquiry was mainly semantic-based: deontic sentences are

Semantics for Modelling Reason-Based Preferences 115

interpreted in settings with ideality orderings on possible worlds or states [15].
This approach is quite flexible: depending on the properties of the preference
or ideality relation, different deontic logics can be obtained. This semantic app-
roach has been fruitfully renewed in the ‘90 for example by [19,22], and most
recently by works such as [14,21], which have confirmed the vitality of this line
of inquiry. The second line was proof-theoretic: in this second area, the Gentzen
system proposed in [13] was definitely seminal for us in developing the current
proposal. [13] is based on the introduction of the non-classical binary operator ⊗:
the reading of an expression like a⊗b is that a is primarily obligatory, but is this
obligation is violated, the secondary obligation is b. Inference rules introduced
by [13]—in particular, (⊗-shortening) and (⊗-I)—are proposed here, too.

In the context of preference logics several proposals can be mentioned [7,17,18].
However, two works have specifically inspired our effort: [16] and [3]. [16] is very
recent and presents a modal logic where a binary operator is meant to syntactically
express preference orderings between formulae: each formula of this logic deter-
mines a preference ordering over alternatives based on the priorities over prop-
erties that the formula express. While the formalism is interesting in that it can
represent not just orderings over alternatives but the reasons that lead to the pref-
erences [18], the modal logic for expressing individual preferences is in fact equiv-
alent to S5, which amounts to being a very strong and simple option (indeed, the
main concern in this work is preference aggregation): as we argued, weaker but
very expressive logics can be adopted. The qualitative choice logic (QCL) of [3]
is a propositional logic for representing alternative, ranked options for problem
solutions, using a substructural ordered disjunction. It offers a much richer alter-
native with respect to [16], showing a number of similarities with [13] (the two for-
malisms have been developed independently) and the one discussed here. A major
differences is, for instance, that the ⊗-detachment produces conclusions that are
modalised and not just factual. The semantics and proof theory of [3], though
based on similar intuitions, are however technically different from ours: seman-
tics is based on the degree of satisfaction of a formula in a particular (classical)
model. Consequences of QCL theories can be computed through a compilation
to stratified knowledge bases which in turn can be compiled to classical propo-
sitional theories. The consequence relation of [3] satisfies properties usually con-
sidered intended in nonmonotonic reasoning, such as cautious monotonicity and
cumulative transitivity.

The preference operator ⊗ has been combined with Defeasible Logic to pro-
vide a computationally oriented approach to modelling alternative goals of ratio-
nal agents to then select plans [8,9]. More recently [12] investigates different
forms of ⊗ detachment to identify different types of goal like mental attitudes
for agents.

A number of open research issues are left for future work. Among others, we
plan to explore decidability questions using, for example, the filtration methods.
The fact that neighbourhoods contain sequences of sets of worlds instead of sets
is not expected to make the task significantly harder than the one in standard
neighbourhood semantics for modal logics.

116 E. Calardo et al.

Second, we expect to enrich the language and allow for nesting of
⊗-expressions, thus having formulae like a ⊗ ¬(b ⊗ c) ⊗ d. We argued in [13]
that the meaning of those formulae is not clear in deontic reasoning. However, a
semantic analysis of them in the sequence semantics can clarify the issue. Indeed,
in the current language we can evaluate in any world w formulae like ¬(a ⊗ b),
which semantically means that there is no sequence 〈‖a‖V , ‖b‖V 〉 ∈ Cw. Con-
ceptually, expressions like that may express meta-preferences, i.e., preferences
about preference orderings. However, this reading poses interesting conceptual
and technical problems.

Finally, we plan to apply the our framework to social choice theory by check-
ing how our analysis impacts on the collective choice rules proposed in [16].

Acknowledgments. NICTA is funded by the Australian Government and the Aus-
tralian Research Council through the ICT Centre of Excellence program. Antonino
Rotolo was supported by the Unibo FARB 2012 project Mortality Salience, Legal and
Social Compliance, and Economic Behaviour: Theoretical Models and Experimental
Methods.

References

1. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)

2. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Multiagent
Systems, MIT Press (2012)

3. Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artif. Intell.
157(1–2), 203–237 (2004)

4. Calardo, E., Governatori, G., Rotolo, A.: A preference-based semantics for CTD
reasoning. In: Cariani, F., Grossi, D., Meheus, J., Parent, X. (eds.) DEON 2014.
LNCS, vol. 8554, pp. 49–64. Springer, Heidelberg (2014)

5. Calardo, E., Governatori, G., Rotolo, A.: A sequence semantics for deontic logic.
Under submission (2015)

6. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)
7. Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and suc-

cinctness of propositional languages for preference representation. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Ninth International
Conference (KR2004), pp. 203–212, Whistler, Canada, June 2–5, 2004 (2004)

8. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.W.N.: Preferences of
agents in defeasible logic. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI),
vol. 3809, pp. 695–704. Springer, Heidelberg (2005)

9. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.W.N.: Programming
cognitive agents in defeasible logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR
2005. LNCS (LNAI), vol. 3835, pp. 621–636. Springer, Heidelberg (2005)

10. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Springer (1983)
11. Gaertner, W.: A Primer in Social Choice Theory: Revised Edition. Oup Oxford

(2009)

Semantics for Modelling Reason-Based Preferences 117

12. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: The rational
behind the concept of goal. Theory and Practice of Logic Programming, forthcom-
ing

13. Governatori, G., Rotolo, A.: Logic of violations: A Gentzen system for reasoning
with contrary-to-duty obligations. Australasian Journal of Logic 4, 193–215 (2006)

14. Hansen, J.: Conflicting imperatives and dyadic deontic logic. J. Applied Logic
3(3–4), 484–511 (2005)

15. Hansson, B.: An analysis of some deontic logics. Nous 3, 373–398 (1969)
16. Jiang, G., Zhang, D., Perrussel, L., Zhang, H.: A logic for collective choice. In: Pro-

ceedings of the 2015 International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS 2015, pp. 979–987, Istanbul, Turkey, May 4–8, 2015 (2015)

17. Lang, J.: Logical preference representation and combinatorial vote. Ann. Math.
Artif. Intell. 42(1–3), 37–71 (2004)

18. Osherson, D., Weinstein, S.: Preference based on reasons. The Review of Symbolic
Logic 5, 122–147 (2012)

19. Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Studia Logica 57(1),
91–115 (1996)

20. Sen, A.: Social choice theory: A re-examination. Econometrica 45(1), 53–89 (1977)
21. van Benthem, J., Grossi, D., Liu, F.: Priority structures in deontic logic. Theoria

(2013)
22. van der Torre, L.: Reasoning about obligations: defeasibility in preference-based

deontic logic. PhD thesis, Erasmus University Rotterdam (1997)

Strategy-Proof Cake Cutting Mechanisms
for All-or-Nothing Utility

Takamasa Ihara(B), Shunsuke Tsuruta, Taiki Todo, Yuko Sakurai,
and Makoto Yokoo

Kyushu University, Fukuoka, Japan
{ihara,tsuruta}@agent.inf.kyushu-u.ac.jp,
{todo,ysakurai,yokoo}@inf.kyushu-u.ac.jp

Abstract. The cake cutting problem must fairly allocate a divisible
good among agents who have varying preferences over it. Recently,
designing strategy-proof cake cutting mechanisms has caught consider-
able attention from AI and MAS researchers. Previous works assumed
that an agent’s utility function is additive so that theoretical analy-
sis becomes tractable. However, in practice, agents have non-additive
utility functions over a resource. In this paper, we consider the all-
or-nothing utility function as a representative example of non-additive
utility because it can widely cover agents’ preferences for real-world
resources, such as the usage of meeting rooms, time slots for com-
putational resources, bandwidth usage, and so on. We first show the
incompatibility between envy-freeness and Pareto efficiency when each
agent has all-or-nothing utility. We next propose two strategy-proof
mechanisms that satisfy Pareto efficiency, which are based on a serial dic-
tatorship mechanism, at the sacrifice of envy-freeness. To address com-
putational feasibility, we propose an approximation algorithm to find
a near-optimal allocation in time polynomial in the number of agents,
since the problem of finding a Pareto efficient allocation is NP-hard.
As another approach that abandon Pareto efficiency, we develop an
envy-free mechanism and show that one of our serial dictatorship based
mechanisms satisfies proportionality in expectation, which is a weaker
definition of proportionality. Finally, we evaluate the efficiency obtained
by our proposed mechanisms by computational experiments.

1 Introduction

Mechanism design, which is a subfield of microeconomics and game theory devel-
ops collective decision making rules for multiple agents. Such a rule is expected
to satisfy several desirable properties, such as social efficiency, while each agent
addresses her own utility, i.e., is self-interested. Due to the growing needs for
agent technology and the Internet’s popularity, vigorous research on mechanism
design has been conducted in the AI and MAS research communities.

Cake cutting, which is a fundamental model of fair division [8], addresses fair
sharing of a whole cake that is usually done as an interval [0, 1]. This abstract
model can be applied in practice for sharing a divisible good, such as a meeting
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 118–133, 2015.
DOI: 10.1007/978-3-319-25524-8 8

Strategy-Proof Cake Cutting Mechanisms For All-or-Nothing Utility 119

room’s usage, time slots for computational resources, bandwidth usage, and so
on. Several cake cutting algorithms have been developed, such as cut-and-choose
and moving-knife [2]. In cake cutting, envy-freeness (EF) is one of the most
studied fairness properties. Cake allocation is said to be envy-free if, under it,
no agent envies any other agent. For instance, when there are only two agents,
any allocation produced from the cut-and-choose protocol satisfies EF.

Recently, AI and MAS researchers have studied such cake cutting problems
as mechanism design and proposed strategy-proof (SP) cake cutting mechanisms
[3,7,11]. A cake cutting mechanism asks each agent to declare her utility function
of the cake instead of indicating the point at which she would prefer to cut the
cake. In an SP cake cutting mechanism, it is guaranteed that reporting a true
utility function is a dominant strategy.

Although several SP mechanisms have been proposed in cake cutting, previ-
ous works assume that an agent’s utility function is additive and thus discount
non-additive utility functions. An all-or-nothing utility function is binary and
simple, but it is also a representative example of non-additive utility. As a typi-
cal real-world example, we select the following two examples. If we are allocated
a shorter time slot than required for a meeting room, we cannot hold our meet-
ing. Furthermore, when narrower bandwidth than is required is allocated for
watching a movie, the movie will be interrupted while we are watching it. In
these examples, even if each agent is allocated a piece which is less than her
requirement, her utility remains at 0.

We first show that there exist no cake cutting mechanisms that satisfy Pareto
efficiency (PE) and EF when an agent’s utility function is all-or-nothing; we
need to abandon either PE or EF. We develop two SP mechanisms based on
a serial dictatorship mechanism (SD): a randomized serial dictatorship mecha-
nism (RSD) and a sorted serial dictatorship mechanism (SSD) by abandoning
EF. In an SD, for a given ordering of agents, the agent who is ordered first is
assigned her top choice in a set of all possible outcomes. The agent ordered sec-
ond is assigned her top choice among a set of the remaining possible outcomes,
which is reduced based on the first agent’s choice, and so on. In an RSD, we
randomly sort the agents with equal probabilities and in an SSD, we sort the
agents by an increase of a required length. These mechanisms satisfy SP and
PE.

However, we also show that the problem of finding a PE allocation is NP-
hard. Thus, we propose an approximate algorithm to find an allocation close to
a PE allocation in the polynomial time of the number of agents. We apply this
approximate allocation algorithm to an RSD and an SSD, which are called as
an RSD by fixing the order of the allocation pieces (RSDF) and SSD by fixing
the order of the allocation pieces (SSDF).

We also propose a modified SSDF that satisfies EF at the sacrifice of PE. To
guarantee EF, we cannot use the random order of the agents. If we randomly
sort the agents, some losers envy the winners, since who wins depends on the
order of the agents. Therefore, we modify an SSDF by dividing the agents into
groups by the required length and sorting the groups of agents by an increase of

120 T. Ihara et al.

RSD
EF

SSDFSSDFRSDF

Proportionality
in Expectation Envy-freeness

Computational
Efficiency

Pareto
Efficiency

SSD

Fig. 1. Our results

the required length. If all allocation results (the winner candidates) are identical
for all the permutations of the agents in a dictator group, we allocate the pieces
to the winner candidates and go to the next turn. Otherwise, stop the procedure
and do not go to the next turn.

We finally show that there exist no mechanisms to simultaneously guaran-
tee both EF and proportionality in expectation (PPE). However, as a positive
result, we show that an RSD satisfies PPE. To sum up, our research results
obtained in this paper are shown in Fig. 1. Since we showed the incompatibility
between PE and EF, they are disjoint. For a similar reason, EF and PPE are
also disjoint. RSDF, SSDF, and EF-SSDF are computationally efficient, because
each mechanism can determine an allocation in the polynomial time of the num-
ber of agents. We compare the efficiency obtained by each proposed mechanism
using computational experiments and show that SSD outperforms the rest of
computational efficient mechanisms.

2 Related Works

Traditional Envy-Free Cake Cutting: Gamow and Stern [8] proposed a cake
cutting protocol that returns an envy-free allocation when only three agents
exist. Brams and Taylor [5] extended the results and proposed an algorithm
that returns an envy-free allocation by discrete procedures for any number of
agents. In another way, Austinproposed an algorithm that returns an envy-free
allocation for two agents, based on the well-known moving-knife protocol.

Mechanism Design for Cake Cutting: Brams et al. [4] investigated the effects of
strategic manipulations in cake cutting. Chen et al. [7] proposed a polynomial-
time cake cutting mechanism that satisfies strategy-proofness, proportionality,
envy-freeness, and Pareto efficiency under piecewise uniform utility (valuation)
functions. Mossel and Tamuz [11] proposed a randomized cake cutting mech-
anism that satisfies strategy-proofness, proportionality, and Pareto efficiency
under additive utility functions. Aziz and Ye [3] proposed a randomized cake
cutting mechanism that satisfies strategy-proofness and proportionality under
piecewise uniform and piecewise constant utility functions and is a special case
of additive utility functions.

Strategy-Proof Cake Cutting Mechanisms For All-or-Nothing Utility 121

Scheduling: Liu and Layland [10] discussed the problem of multiprogram schedul-
ing on a single processor. Garey and Johnson [9] showed that the problem of
examining whether all tasks are scheduled when both start-time and deadline
of a task are given is NP-complete. Carroll and Grosu [6] augmented the divis-
ible load theory with incentives and considered a case when processors might
misreport their true processing power.

3 Preliminaries

3.1 Model

Let N = {1, 2, . . . , n} be a set of agents and n = |N | be the number of agents.
The cake is represented as an interval [0, 1]. Let len(I) = y − x be the length of
a closed interval I = [x, y] ⊆ [0, 1] with x ≤ y. Also, let len(X) =

∑
I∈X len(I)

be the length of piece X of a cake, where I ∈ X indicates each disjoint interval
that consists of piece X.

We assume that the utility function of each agent i ∈ N is all-or-nothing;
binary utility, either 1 or 0.

Definition 1 (All-or-Nothing Utility Function). Agent i ∈ N is interested
in interval ri = [si, ei] ⊆ [0, 1] and requires a piece whose length is not shorter
than di ∈ (0, ei − si] in interval ri. ri is called a reference interval to agent i.

When piece Xi is allocated for agent i, her utility is defined as

Ui(Xi) =
{

1 ∃I s.t. I ⊆ Xi and len(I ∩ ri) ≥ di,
0 otherwise.

For example, this utility function represents an agent’s preference such that
she wants to use a meeting room for two hours in the afternoon. If an agent
wants to use the room for two hours from 13:00 through 15:00, the length of her
reference interval equals her required length.

By definition, any utility function Ui is automatically non-atomic. We also
assume that it is normalized.

Non-atomic: Ui([x, x]) = 0 for any x ∈ [0, 1],
Normalized: Ui([0, 1]) = 1.

Note that we can treat open/half-open intervals as closed intervals with respect
to agents’ utilities by the non-atomicity property.

Let U be the set of all possible all-or-nothing utility functions, which is com-
mon among all agents. Let U = (Ui)i∈N denote a profile of the utility functions
of agents N , U−i = (Uj)j∈N\{i} denote a profile of the utility functions of agents
N except for agent i, and (Ui, U−i) denote a profile of utility functions when
agent i reports Ui and the other agents report U−i.

Feasible allocation A of the cake to a set of agents N is represented as a tuple
(Ai)i∈N , where Ai indicates an allocation to a specific agent i ∈ N , Ai ∩Aj = ∅
for any pair i, j(= i) ∈ N , and

⋃
i∈N Ai ⊆ [0, 1]. Let AN denote the set of all

feasible allocations to N .

122 T. Ihara et al.

Mechanism f is a union of functions fN : Un → AN . That is, fN maps
a profile of utility functions reported by N to AN . For simplicity, we usually
abbreviate fN to f . For given profile U of utility functions, let f(U) denote the
pieces of cake returned by mechanism f , and let fi(U) denote the pieces of cake
allocated to agent i according to f(U).

3.2 Properties

We introduce desirable properties for cake cutting mechanisms. Fairness and
efficiency are considered necessary properties for the mechanisms and we also
require mechanisms to guarantee strategy-proofness. We first introduce envy-
freeness (EF) which is one representative fairness property.

Definition 2 (Envy-Freeness (EF)). Cake cutting mechanism f is said to
satisfy envy-freeness if for any U ∈ Un, any Ui ∈ U , and any i, j (= i) ∈ N ,
Ui(Ai) ≥ Ui(Aj).

We next introduce an efficiency property called Pareto efficiency (PE), which
guarantees the quality of the allocations obtained by the mechanisms. PE is
a well-studied efficiency property in mechanism design literature. For a given
allocation obtained by a PE mechanism, there exists no other allocation that
weakly raises the utilities of all agents and strictly raises the utility of at least
one.

Definition 3 (Pareto Efficiency (PE)). For a given N and U ∈ Un, allo-
cation A′ ∈ AN is said to Pareto dominate another allocation A ∈ AN if
Ui(A′

i) ≥ Ui(Ai) holds for any i ∈ N , with inequality strict for a j ∈ N . Cake
cutting mechanism f is said to satisfy Pareto efficiency if for any U ∈ Un, there
exists no allocation A′ ∈ AN where Pareto dominates A.

Finally, we define an incentive property called strategy-proofness (SP), which
guarantees that reporting a true utility function to a mechanism is the best
strategy; truth-telling is a dominant strategy, for every agent.

Definition 4 (Strategy-Proofness (SP)). Cake cutting mechanism f is said
to guarantee strategy-proofness if for any i ∈ N , any U−i ∈ Un−1, any Ui ∈ U ,
and any U ′

i ∈ U ,
Ui(fi((Ui, U−i))) ≥ Ui(fi((U ′

i , U−i))).

Truthfully declaring agent i’s reference interval [si, ei] and required length di
is the optimal strategy for maximizing utility regardless of other participants’
declarations. The revelation principle states that we can restrict our attention
to direct revelation protocols that are strategy-proof without loss of generality.

4 Incompatibility

We show that even if we do not require cake cutting mechanisms to satisfy SP,
there exists no cake cutting mechanisms that satisfy PE and EF, when each
agent has all-or-nothing utility.

Strategy-Proof Cake Cutting Mechanisms For All-or-Nothing Utility 123

Theorem 1. There exists no cake cutting mechanism that satisfies Pareto effi-
ciency and envy-freeness, when each agent’s utility function is all-or-nothing.

Proof. For the sake of contradiction, we assume there exists a cake cutting mech-
anism f that satisfies Pareto efficiency and envy-freeness. We first consider the
following case: there are only two agents N = {1, 2}, who have the same utility
function, i.e., for i ∈ {1, 2}, ri = [0, 1] and di = 1. We consider the following two
cases.
Case 1: We assume a whole cake [0, 1] goes to agent 1, but agent 2 does not
obtain any pieces of its. Obviously, agent 2’s utility is 0. However, by trading
agent 1’s allocated whole cake to agent 2, agent 2’s utility increases from 0 to
1. Thus, agent 2 envies agent 1. WLOG, we prove that agent 1 envies agent 2 if
we assume agent 2 obtains a whole cake. Thus, envy-freeness is not satisfied.
Case 2: Next consider other allocation results rather than Case 1. For such an
allocation, both the utilities of agents 1 and 2 are 0. If a designer allocates
a whole cake to either agent, the utility of the agent who allocates the cake
increases from 0 to 1, while the other agent’s utility remains 0. Pareto efficiency
is not satisfied. �

5 SP and PE Cake Cutting Mechanisms

Based on the incompatibility between PE and EF, we first investigate a strategy-
proof cake cutting mechanism that satisfies PE by abandoning EF. Our proposed
mechanism is based on a serial dictatorship that satisfies strategy-proof and
Pareto efficiency [1]. In a serial dictatorship mechanism (SD), for a given ordering
of agents, the agent who is ordered first is assigned her top choice from a set
of all possible outcomes. The agent ordered second is assigned her top choice
among a set of the remaining possible outcomes, which is reduced by the first
agent’s choice, and so on. By doing such a processing, Pareto efficent allocation
can be done because if an agent can’t get allocation, then other agent always
gets the interval she wants.

5.1 Randomized Serial Dictatorship Mechanism

In this subsection, we propose a randomized serial dictatorship mecha-
nism (RSD).

Mechanism 1 (Randomized Serial Dictatorship Mechanism)

1. Randomly order agents with equal probability.
2. For the k-th agent (k = 1, . . . , n), ask about her reference interval [sk, ek]

and required length dk as a dictator.
3. From the first agent to the n-th agent, select the k-th agent as a dictator

and determine her allocation to maximize her utility without changing the
utilities for the k − 1 agents who have been already asked.

124 T. Ihara et al.

Theorem 2. RSD satisfies strategy-proofness and Pareto efficiency.

Proof. We first show that RSD satisfies SP. A mechanism designer determines
agent i’s allocation to maximize her utility, while guaranteeing that the utility
of each agent whose assignment was already determined is unchanged even if a
winner’s assigned piece is moved. If there exists a piece of cake such that agent i’s
utility is 1, she receives it with a utility of 1. Agent i does not change the pieces
of cake that can be assigned to her by manipulating her declaration. Thus, the
best strategy for agent i is to truthfully declare her reference interval [si, ei] and
required length di.

We next show that RSD satisfies PE. We assume that agent i is a loser,
because she cannot receive any pieces of a cake and her utility is 0. This indicates
that her required length does not remain within her reference interval. If agent i’s
utility increases from 0 to 1, some winners, who are assigned to the pieces within
agent i’s reference interval, lose their assigned pieces and their utilities decrease
from 1 to 0. As a result, there exists no other allocation that weakly raises the
utilities of all agents and strictly raises the utility of at least one. �

We show an example to explain how a RSD mechanism works.

Example 1. We assume 6 agents and each agent declaration is as follows:

agent 1: [s1, e1] = [0.25, 0.7], d1 = 0.4, agent 2: [s2, e2] = [0.2, 0.4], d2 = 0.15,

agent 3: [s3, e3] = [0, 1], d3 = 0.2, agent 4: [s4, e4] = [0.4, 0.85], d4 = 0.3,

agent 5: [s5, e5] = [0.25, 0.45], d5 = 0.15, agent 6: [s6, e6] = [0.5, 1], d6 = 0.25.

To simplify our explanation, we assume that a mechanism designer determines
the order of agents as 1, 2, 3, 4, 5, and 6.

agent 1: [0.25, 0.65] is assigned to agent 1.
agent 2: No piece is assigned to agent 2, since a mechanism designer cannot

find a piece of length 0.15 within agent 2’s reference interval [0.2, 0.4], while
guaranteeing that agent 1’s utility is 1 by moving agent 1’s assignment of
length 0.4 within her reference interval [0.25, 0.7].

agent 3: [0.25, 0.65] goes to agent 1 and [0.65, 0.85] goes to agent 3.
agent 4: No piece is assigned to agent 4.
agent 5: No piece is assigned to agent 5.
agent 6: [0.25, 0.65] goes to agent 1, [0, 0.2] goes to agent 3, and [0.65, 0.9] goes

to agent 6.

As a result, the winners are agents 1, 3, and 6. The length of the union of the
allocated pieces is 0.4 + 0.2 + 0.25 = 0.85.

5.2 Sorted Serial Dictatorship Mechanism

Next, we develop a sorted serial dictatorship mechanism (SSD) as another type
of an SD mechanism. In an SSD, agents are sorted in increasing order by the
required length di.

Strategy-Proof Cake Cutting Mechanisms For All-or-Nothing Utility 125

Mechanism 2 (Sorted Serial Dictatorship Mechanism)

1. Ask each agent about her reference interval [si, ei] and required length di.
2. Sort the agents in increasing order of dk. When there exist multiple agents

with a certain length, their order is randomly determined with equal proba-
bility.

3. From the first agent to the n-th agent, select the k-th agent as a dictator
and determine her allocation to maximize her utility without changing the
utilities for the k − 1 agents who have already been asked.

Theorem 3. SSD satisfies strategy-proofness and Pareto efficiency.

Proof. We show that no agent improves her utility by manipulating her required
length, since the SSD is the same as the RSD without determining the order of
the agents using each agent’s required length.

Based on the definition of all-or-nothing utility, declaring d′
i such that d′

i < di
is useless, since the agent’s utility is 0 even if she receives d′

i in her reference inter-
val. Furthermore, when she declares d′

i such that d′
i > di, her turn is later than

her original turn that was determined by truthfully declaring di. This implies
that the pieces allocatable for her when she declares d′

i are reduced compared
with the case of truth-telling; her utility is not improved by declaring a longer
length than di.

As a result, to determine the order of agents, agent i has no incentive to
declare a longer or shorter length than the original di. �

We show an example to explain how an SSD mechanism works.

Example 2. We consider the same problem setting used in Example 1. A mech-
anism designer first sorts the agents by the increase of di. In this example, the
order of agents is determined as 2, 5, 3, 6, 4, and 1.

agent 2: [0.2, 0.35] is assigned.
agent 5: No piece is assigned to agent 5.
agent 3: [0.2, 0.35] goes to agent 2, and [0.35, 0.55] goes to agent 3.
agent 6: [0.2, 0.35] goes to agent 2, [0.35, 0.55] goes to agent 3, and [0.55, 0.8]

goes to agent 6.
agent 4: agent 4 obtains [0.4, 0.7], and it still holds that agents 2, 3, 6 have a

utility of 1: [0.2, 0.35] goes to agent 2, [0, 0.2] goes to agent 3, and [0.7, 0.95]
goes to agent 6.

agent 1: No piece is assigned to agent 1.

As a result, the winners are agents 2, 3, 4, and 6. The length of the union of the
allocated pieces is 0.15 + 0.2 + 0.25 + 0.3 = 0.9.

126 T. Ihara et al.

6 Integer Programming for Determining Pareto Efficient
Allocation

We propose an integer programming (IP) formula for finding a Pareto efficient
allocation in RSD and SSD. In an SD, according to the given order of the agents,
each agent chooses the best outcome from a set of all the outcomes she can
choose. For the k-th agent, her assignment is determined to maximize her utility
without changing the utilities of the k − 1 agents who were previously deter-
mined before agent k. For the k-th agent, we formalize the following formulation
to maximize an allocation decision variable by listing the allocation decision
valuables assigned to the k − 1 agents who were already asked.

We define some notations. For agent i ∈ N , let yi be a 0/1 decision variable
that denotes that agent i’s utility is 1. Let ai be the starting point of the piece
allocated to agent i. xi,j is a 0/1 decision variable where ai < aj is satisfied. In
words, xi,j = 1 holds if the starting point of the piece allocated to agent i is
placed ahead of agent j’s start point. Otherwise, xi,j = 0 holds. We denote a
large positive real number as M . Let W be a set of winners who were determined
until k-th agent’s turn comes.

Definition 5 (IP formulation to find the best allocation for the k-th
agent). The problem of finding the k-th agent’s best allocation in a serial dic-
tatorship mechanism is modeled as follows.

max yk

s.t. ∀j ∈ W, ej ≥ aj + dj ,−(i)
ek ≥ ak + dk − M(1 − yk),−(ii)
∀i, j ∈ W ∪ {k}, aj ≥ ai + di − M(1 − xi,j),−(iii)
∀i, j ∈ W ∪ {k}, xi,j + xj,i = 1,−(iv)
yk ∈ {0, 1},
∀i, j ∈ W ∪ {k}, xi,j ∈ {0, 1}.

If we have yk = 1, agent k is added to a list of winners W .

The objective function maximizes agent k’s decision variable. Constraint (i)
ensures that the end point of the reference interval for agent j ∈ W is not smaller
than the starting point of her allocated piece plus her required length, since
agent j was determined to be a winner. Constraint (ii) ensures that if agent k is
a winner, the end point of her reference interval is not smaller than the starting
point of a piece allocated to her plus her required length. Constraint (iii) ensures
that if agents i and j win, the piece allocated to agent i does not conflict with
the piece allocated to agent j. Constraint (iv) ensures that if agents i and j win,
the order of the pieces allocated to them is consistent.

Next compare the efficiency obtained in our proposed mechanisms with the
optimal allocation in the terms of the number of winners. A PE allocation in a
SD is not always the optimal allocation, since an SD narrows the outcome space

Strategy-Proof Cake Cutting Mechanisms For All-or-Nothing Utility 127

d2 d3

d1

Optimal allocation

Allocation in a SSD

Fig. 2. Comparison between an optimal allocation and an allocation in an SSD

by giving the order of agents. We find the optimal number of winners by solving
an IP formula. In an IP formula that maximizes the number of winners, we put
constraints (i) – (iv) in an IP formula defined in Def. 5 for all i ∈ N instead of
W ∪ {k}.

Theorem 4. In an RSD, for all possible permutation of the agents, 1/(n − 1)
is the worst-case ratio of the number of winners that can be obtained by an RSD
over the optimal number of winners.

Proof. In the worst-case analysis, we consider the situation where there are two
options to determine an allocation; either 1 winner or n− 1 winners. We assume
that 1 agent requires a whole cake [0, 1], and n− 1 agents require disjoint pieces
with length of 1/(n − 1). Their reference intervals are also disjoint: agent 2’s
reference interval [0, 1/(n−1)], agent 3’s reference interval [1/(n−1), 2/(n−1)],
and so on. When agent 1 is the first-ordered, the number of winners in a RSD
is 1, which is the worst-case. On the other hand, the optimal number of winner
is obviously n − 1. Thus, the worst-case ratio is 1/(n − 1). �

Theorem 5. The worst-case ratio of the number of winners can be obtained by
an SSD against the optimal number of winners is 1/2.

Proof. We prove this theorem using Fig. 2 by assuming the following: agent 1
requires d1 within [d2/2, d2/2+d1], agent 2 requires d2 within [0, d2], and agent 3
requires d3 within [d2, d2 + d3]. We also assume that d1 < d2 < d3 holds.

In an optimal allocation, agents 2 and 3 receive a piece of cake. On the other
hand, when we apply a SSD, the order of the agents is determined as 1, 2, and
3, based on a required length. Agent 1’s is the first-ordered and obtains a piece
of cake. Agents 2 and 3 do not get any cake.

As shown as this situation, when we sort the agents by the increase of required
length di, a piece assigned to one agent conflicts with at most two agents’ assign-
ments. Thus, the worst-case ratio is 1/2. �

Theorem 6. The problem of finding an efficient allocation in a serial dictator-
ship mechanism (SD) is NP-hard.

Proof. The allocation problem for the k-th agent is determining whether there
exists an allocation such that all agents including the k-th agent and the win-
ners who were determined before the k-th agent get a piece of cake. The problem
defined in Def. 5 corresponds to a sequencing problem with release times and
deadlines, which is known to be NP-complete [9]. Thus, a Pareto efficient allo-
cation problem for an SD is NP-hard. �

128 T. Ihara et al.

7 Approximate Allocation Algorithm

To address computational feasibility, we develop an approximate algorithm to
find an allocation close to a Pareto efficient allocation in a reasonable amount
of time. Intuitively, we consider that an agent who get left side of a cake will
get left side of a cake even if the number of agent increases. Specifically, our
proposed allocation algorithm allocates the pieces such that an agent can obtain
a utility of 1 from the left side of cake without changing the order of the allocated
pieces before the current dictator’s turn. We examine whether there remains a
piece with k-th agent’s required length in her reference interval by moving the
winners’ allocated pieces by keeping the relations among the allocated pieces.

Algorithm 1. Approximate allocation algorithm
Approximate allocation algorithm(OL)

w = 0
for i ← 1 to n do

for j ← 0 to w do
L = WL
k = w
while k ≥ j do

L[k + 1] = L[k]
k = k − 1

end while
L[j] = OL[i]
t = true
x = 0
for l ← 0 to w do

if x ≤ eL[l] − dL[l] then
aL[l] = max(x, sL[l])
x = aL[l] + dL[l]

else
t = false
break

end if
end for
if t = true then

WL = L
w = w + 1
break

end if
j = j + 1

end for

end for

Algorithm 1 represents the pseudocode of the approximate allocation algo-
rithm. OL denotes the order of agents, WL denotes a list of the current winners,
and L denotes a list of the tentative current winners. We apply this algorithm
to find an allocation for each agent in an RSD and an SSD instead of calculating
the formulation given in Def. 5 to find the best allocation for each dictator. We
call an RSD and an SSD using this approximate algorithm an RSD by fixing the
order of the allocated pieces (RSDF) and an SSD by fixing the order of the allo-
cated pieces (SSDF). We show that the computational time of our approximate
algorithm is polynomial for the number of agents.

Strategy-Proof Cake Cutting Mechanisms For All-or-Nothing Utility 129

Agent 3

Agent 2 Agent 1

Fig. 3. The points where an approximate algorithm examins whether a piece of agent 3
can be allocated

Theorem 7. Our proposed approximate algorithm produces a solution in O(n3).

Proof. Assume at most n agents. For each one, we examine at most n possibilities
to allocate the pieces for all n agents. The computational time of examining one
possibility is O(n). As a result, the computational time for our approximate
algorithm is O(n3). �

We finally analyze the worst-case ratio to compare between our mechanism
and Pareto efficient allocation in terms of the number of winners.

Theorem 8. The worst-case ratio between the number of winners obtained by
our algorithm and Pareto efficient allocation is 2/n.

Proof. The allocation result of our algorithm for the first and second agents is
the same as a PE allocation, since both algorithm examine whether a piece with
the second agent’s required length can be allocated either to the left or to the
right of the first agent’s allocated piece. For the third agent, our approximate
algorithm examines only 3 possibilities to put a piece with her required length
(Fig. 3). On the other hand, we examines 3! possibilities to find a PE allocation
by changing the order of the allocated pieces. Even if our approximate algorithm
cannot allocate any pieces to the the third agents or later-ordered agents, a PE
allocation can achieve n winners. As a result, the worst-case ratio is 2/n. �

Example 3. We show how an RSDF works by considering the same problem
setting used in Example 1. To simplify our explanation, we assume that a mech-
anism designer determines the order of agents as 1, 2, 3, 4, 5, and 6.

agent 1: [0.25, 0.65] is assigned to agent 1.
agent 2: No piece is assigned to agent 2.
agent 3: [0.25, 0.65] goes to agent 1 and [0.65, 0.85] goes to agent 3.
agent 4: No piece is assigned to agent 4.
agent 5: No piece is assigned to agent 5.
agent 6: No piece goes to agent 6, since there does not exist no pieces such that

agent 6 obtains the utility of 1 by fixing the order of the allocated pieces
among the winners, i.e., 1 and 3, from the left most point of cake, that is, 0.

The winners are agents 1 and 3. The length of the union of the allocated pieces
is 0.4 + 0.2 = 0.6.

130 T. Ihara et al.

8 Envy-Free Cake Cutting Mechanism

We propose an EF cake cutting mechanism when an agent’s utility function is all-
or-nothing by modifying SSDF. In an SSDF, the agents are sorted by the increase
of required length di, but they are randomly sorted with equal probability when
there exist multiple with a certain required length as an exceptional procedure.
Thus, our obtained allocation result depends on the order of the agents, and
some losers might envy the winners. To avoid such a dissatisfaction, we divide
the agents into groups by the required length di. Those who require a certain
length belong to a single group.

Mechanism 3 (Envy-Free SSDF, EF-SSDF)

1. Ask each agent about her reference interval [si, ei] and her required length di.
2. Allocate a piece with di when agent i’s reference interval does not overlap

any other agent’s reference.
3. Divide the agents into groups by di among the agents except those who were

allocated a piece in the previous procedure.
4. Sort the groups by an increase of di. We denote the k-th group as gk.
5. From the first group, i.e., k = 1, allocate the pieces to all the agents in gk,

if all the allocation results are identical for all the permutations of agents in
group gk, go to the next group gk+1. Otherwise, the agents in gk cannot obtain
any pieces of cake, and stop the mechanism. To determine the allocation for
each order, we apply our approximate algorithm.

Theorem 9. An EF-SSDF satisfies strategy-proofness and envy-freeness.

Proof. We show that EF-SSDF satisfies EF, since we show that it satisfies SP
in the same manner as SSD. In EF-SSDF, when a set of winner candidates
is identical independently of the order of the agents in a group, each winner
candidate obtains a piece of the required length in her reference interval. Thus,
the agents in a group do not envy each other. Furthermore, no losers envy the
winners, since the piece obtained by each winner is shorter than each loser’s
required length or does not conflict with her reference interval. �

Example 4. This example shows how a EF-SSDF works by considering the same
problem setting used in Example 1.

In an EF-SSDF, agents 2 and 5 belong to the first-ordered group g1, since
they require d2 = d5 = 0.15, which is the shortest length among the 6 agents.
We consider two types of orders of agents: 2 → 5 and 5 → 2. When agent 2
is the first-ordered, she is a winner candidate. On the other hand, agent 5 is a
winner candidate when agent 5 is the first-ordered. The mechanism is stopped
since the winner candidates are different in both cases. As a result, no pieces are
allocated to the agents.

Strategy-Proof Cake Cutting Mechanisms For All-or-Nothing Utility 131

9 Proportionality in Expectation

Next we consider proportionality which is another well-known fairness prop-
erty like EF. Based on the definition of all-or-nothing utility, since obviously no
mechanism satisfies proportionality, we introduce a weaker notation of it.

Definition 6 (Proportionality in Expectation (PPE)). Randomized cake
cutting mechanism f is said to guarantee proportionality in expectation, if for
any i ∈ N , any U ∈ Un, and any Ui ∈ U , Ui(fi(U)) ≥ 1

n .

If a randomized cake cutting mechanism satisfies PPE, for any i ∈ N , agent i’s
expected utility is at least 1/n. We show the impossibility theorem in which
no mechanisms simultaneously satisfy EF and PPE; fortunately, our proposed
mechanisms satisfy PPE.

Theorem 10. Under the all-or-nothing utility function, envy-freeness is incom-
patible with proportionality in expectation.

Proof. We assume that there exist a randomized cake cutting mechanism that
satisfies both of EF and PPE. Let’s consider how to allocate a cake for a set of
agents N such that [si, ei] = [0, 1] and di = 1 holds for any i ∈ N . If the whole
cake goes to agent j ∈ N , she is envied by the other agents. Thus, we cannot
allocate a whole cake to a single agent because of PPE. Furthermore, the other
allocation rules (except allocating a whole cake to an agent) do not work since
no agent can obtain a utility of 1. Thus, no mechanisms satisfy both EF and
PPE. �

Theorem 11. Our proposed randomized cake cutting mechanisms, such as RSD
and RSDF, satisfy proportionality in expectation.

Proof. In a randomized SD, each agent can be the first-ordered with probability
1/n. Thus, each agent’s expected utility is at least 1/n. �

10 Experimental Simulations

We experimentally evaluate the number of winners obtained by our proposed
mechanism to show that our approximate algorithm is reasonably efficient. The
simulations were run on Intel(R) Core(TM) i7-3960X CPU processors with
32.0GB RAM. The test machine ran Windows 7 Professional. We used CPLEX
Studio12.5, a general-purpose mixed integer programming package.

We denote the number of varieties of required length di as div. For example,
when div = 1 set, the length required by all agents is identical. di is randomly
chosen from [0.10−0.01(div−1), 0.10+0.01(div−1)]. si and ei are also randomly
selected from [0, 1 − di] and from [si + di, 1]. We set the number of agents to
n = 15 and n = 30. We vary div from 3 to 9 when n = 15 and from 5 to 15 when
n = 30. Figures 4(a) and 4(b) shows the average number of winners for solving
100 problem instances.

132 T. Ihara et al.

 0

 2

 4

 6

 8

 10

 3 4 5 6 7 8 9

N
um

. o
f w

in
ne

rs

div

Optimal
RSD
SSD

RSDF
SSDF

EF-SDFA

(a) n = 15

 0

 2

 4

 6

 8

 10

 12

 14

 5 6 7 8 9 10 11 12 13 14 15

N
um

. o
f w

in
ne

rs

div

RSD
SSD

RSDF
SSDF

EF-SDFA

(b) n = 30

Fig. 4. Average number of winners

Table 1. Run time of each program when n = 30

div RSD SSD RSDF SSDF EF-SSDF

5 2.2 × 105 ms 3.0 × 105 ms 1.5 × 102 ms 1.6 × 102 ms over 5.0 × 106 ms

15 2.3 × 105 ms 5.1 × 105 ms 1.7 × 102 ms 1.7 × 102 ms 1.4 × 103 ms

Figure 4 shows the average number of winners obtained by each mechanism.
When n = 15, we could calculate the optimal allocation and SSD obtained
almost the same number of winners as the optimal result on average. While
the RSD, SSD, RSDF and SSDF mechanisms are stable against the increase in
div and the increase in the number of winners is small, EF-SSDF has a large
increase since the increase in div reduces the possibilities of quickly stopping
the mechanism. The sorted SDs outperforms the randomized SDs. Furthermore,
RSDF and SSDF effectively find an allocation close to RSD and SSD (Tab. 1).

Figure 5 show the average utility obtained by each mechanism by varing
required length when n = 15 and div = 15. Although we theoretically show that

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

A
ve

ra
ge

 u
til

ity

di

1/30
RSD
SSD

RSDF
SSDF

EF-SSDF

Fig. 5. Average utility

Strategy-Proof Cake Cutting Mechanisms For All-or-Nothing Utility 133

the expected utility obtained by the randomized SDs is at least 1/n, RSD and
RSDF get better average utility than 1/30. Furthermore, the sorted SDs cannot
guarantee PPE theoretically, but when the required length is relatively small,
i.e., lower than 0.12, the sorted SDs including EF-SSDF obtain an average utility
that exceeds 1/30.

11 Conclusion

We investigated strategy-proof cake cutting mechanisms for the all-or-nothing
utility and proposed SP mechanisms based on a serial dictatorship mechanisms.
We also developed an approximate algorithm that effectively finds an allocation
close to Parato efficient allocation. Furthermore, we showed that our randomized
SD mechanisms satisfy proportionality in expectation. Future work will consider
cake cutting with more complex situations, or analyzing the effect of a different
type of manipulation from SP, such as false-name-manipulations.

Acknowledgments. This research was partially supported by JSPS KAKENHI
Grant Number 24220003, 15H02751, and 15K12101.

References

1. Abdulkadiroğlu, A., Sönmez, T.: Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica 66(3), 689–701
(1998)

2. Aziz, H., Ye, C.: New cake cutting algorithms: a random assignment approach to
cake cutting. The Computing Research Repository abs/1307.2908 (2013)

3. Brams, S.J., Jones, M.A., Klamler, C.: Better ways to cut a cake. Notices of the
American Mathematical Society 53(11), 1314–1321 (2006)

4. Brams, S.J., Taylor, A.D.: An envy-free cake division protocol. American Mathe-
matical Monthly, 9–18 (1995)

5. Carroll, T.E., Grosu, D.: Strategyproof mechanisms for scheduling divisible loads in
bus-networked distributed systems. IEEE Transactions on Parallel and Distributed
Systems 19(8), 1124–1135 (2008)

6. Chen, Y., Lai, J.K., Parkes, D.C., Procaccia, A.D.: Truth, justice, and cake cutting.
Games and Economic Behavior 77(1), 284–297 (2013)

7. Gamow, G., Stern, M.: Puzzle-math. Macmillan (1958)
8. Garey, M.R., Johnson, D.S.: Two-processor scheduling with start-times and dead-

lines. SIAM Journal on Computing 6(3), 416–426 (1977)
9. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-

real-time environment. Journal of the ACM (JACM) 20(1), 46–61 (1973)
10. Maya,A.,Nisan,N.: Incentive compatible twoplayer cake cutting. In:Goldberg,P.W.

(ed.) WINE 2012. LNCS, vol. 7695, pp. 170–183. Springer, Heidelberg (2012)
11. Mossel, E., Tamuz, O.: Truthful fair division. In: Kontogiannis, S., Koutsou-

pias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 288–299. Springer,
Heidelberg (2010)

Leximin Asymmetric Multiple Objective DCOP
on Factor Graph

Toshihiro Matsui1(B), Marius Silaghi2, Tenda Okimoto3,
Katsutoshi Hirayama3, Makoto Yokoo4, and Hiroshi Matsuo1

1 Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya 466-8555, Japan
{matsui.t,matsuo}@nitech.ac.jp

2 Florida Institute of Technology, Melbourne, FL 32901, USA
msilaghi@fit.edu

3 Kobe University, 5-1-1 Fukaeminami-machi Higashinada-ku, Kobe 658-0022, Japan
{tenda,hirayama}@maritime.kobe-u.ac.jp

4 Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
yokoo@is.kyushu-u.ac.jp

Abstract. Leximin AMODCOP has been proposed as a class of Multi-
ple Objective Distributed Constraint Optimization Problems, where mul-
tiple objectives for individual agents are optimized based on the leximin
operator. This problem also relates to Asymmetric DCOPs with the cri-
teria of fairness among agents, which is an important requirement in
practical resource allocation tasks. Previous studies explore only Leximin
AMODCOPs on constraint graphs limited to functions with unary or
binary scopes. We address the Leximin AMODCOPs on factor graphs that
directly represent n-ary functions. A dynamic programming method on
factor graphs is investigated as an exact solution method. In addition, for
relatively dense problems, we also investigate several inexact algorithms.

Keywords: Distributed constraint optimization · Asymmetric · Multi-
ple objectives · Leximin · Egalitarian

1 Introduction

Multiple Objective Distributed Constraint Optimization Problems (MOD-
COPs) [1,7] have been studied as an extension to DCOPs [2,8,12,16]. With
MODCOPs, agents cooperatively solve multiple objective problems. As a class
of MODCOPs, Leximin AMODCOP, where multiple objectives for individual
agents are optimized based on the leximin operator, has been proposed [15].
This problem also relates to Asymmetric DCOPs with a criteria of fairness
among agents [3,10,11]. The fairness among agents is an important require-
ment in practical resource allocation tasks [5,9–11]. For example, in a smart
grid, autonomous consumers should share power resource without unfairness on
their preferences considering relationship among them. Leximin is a well-known
egalitarian social welfare that represents the fairness/unfairness among agents.
Since maximization based on leximin ordering improves equality among agents,
the Leximin AMODCOP is considered as a fundamental class of DCOPs.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 134–151, 2015.
DOI: 10.1007/978-3-319-25524-8 9

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 135

The previous study [15] has proposed the Leximin AMODCOP on constraint
graphs for binary and unary functions. Constraint graphs of Asymmetric DCOPs
are represented as directed arc graphs, where nodes and directed arcs/edges
stand for variables and functions, respectively [3,9]. Therefore, the direction of
edges should be handled in solution methods. On the other hand, this class of
problems is well represented with factor graphs. In factor graphs, nodes stand
for variables or functions while non-directed edges stand for scopes of functions.
Since a function is separately treated as a node in factor graphs, the function
node is owned by an agent, where the function represents the preferences of the
agent. Therefore, there are no directions of edges that represent ownership of
the functions. Namely, asymmetric functions are naturally represented as factor
graphs without any modifications. In addition, factor graphs directly represent
n-ary functions.

In this paper, we evaluate several solution methods to Leximin AMODCOPs
on factor graphs. A dynamic programming method on factor graphs is inves-
tigated as an exact/approximation solution method in conjunction with other
inexact algorithms also applied to the factor graphs.

2 Preliminary

In the following, we present preliminaries of our study. Several definitions and
notations are inherited from the previous literatures [6,15].

2.1 DCOP

A distributed constraint optimization problem (DCOP) is defined as follows.

Definition 1 (DCOP). A DCOP is defined by (A,X,D,F), where A is a set
of agents, X is a set of variables, D is a set of domains of variables, and
F is a set of objective functions. The variables and functions are distributed
to the agents in A. A variable xn ∈ X takes values from its domain defined
by the discrete finite set Dn ∈ D. A function fm ∈ F is an objective func-
tion defining valuations of a constraint among several variables. Here fm repre-
sents utility values that are maximized. We also call the utility values of fm,
objective values. Xm ⊂ X defines the set of variables that are included in
the scope of fm. Fn ⊂ F similarly defines a set of functions that include xn

in its scope. fm is defined as fm(xm0, · · · , xmk) : Dm0 × · · · × Dmk → N0,
where {xm0, · · · , xmk} = Xm. fm(xm0, · · · , xmk) is also simply denoted by
fm(Xm). The aggregation F (X) of all the objective functions is defined as fol-
lows: F (X) =

∑
m s.t. fm∈F,Xm⊆X fm(Xm). The goal is to find a globally opti-

mal assignment that maximizes the value of F (X).

Each agent locally knows its own variables and related functions. A distributed
optimization algorithm is performed to compute the globally optimal solution.

136 T. Matsui et al.

2.2 Factor Graph, Max-Sum Algorithm and Bounded Max-Sum
Algorithm

The factor graph [2] is a representation of DCOPs, and is a bipartite graph
consisting of variable nodes, function nodes and edges. An edge represents a
relationship between a variable and a function. Figure 1(a) shows a factor graph
consisting of three variable nodes and three function nodes. As shown in the case
of a ternary function f2, the factor graph directly represents n-ary functions.

The Max-Sum algorithm [2] is a method for solving a DCOP by exploiting
its factor graph. Each node of the factor graph corresponds to an ‘agent’ referred
to as variable node or function node. Each such node communicates with neigh-
borhood nodes using messages to compute globally optimal solutions. A message
represents an evaluation function for a variable. A node computes/sends a mes-
sage for each variable that corresponds to a neighborhood node. Here the nodes
of functions in Fn are called the neighborhood function nodes of variable node
xn. Similarly, the nodes of variables in Xm are called the neighborhood variable
nodes of function node fm. A message payload qxn→fm

(xn) that is sent from
variable node xn to function node fm is represented as follows.

qxn→fm
(xn) =

{
0 if Fn = {fm}∑

fm′∈Fn\{fm}
rfm′→xn

(xn) otherwise (1)

A message payload rfm→xn
(xn) that is sent from function node fm to variable

node xn is represented as follows.

rfm→xn
(xn) = max

ε∈DXm\{xn}

(

fm(ε, xn) +
∑

xn′∈Xm\{xn}
qxn′→fm

(ε‖xn′)

)

(2)

Here maxε∈DXm\{xn} denotes the maximization for all assignments of variables
in Xm \ {xn}. A variable node xn computes a marginal function that is rep-
resented as zn(xn) =

∑
m s.t. fm∈Fn

rfm→xn
(xn). Since zn(xn) corresponds to

global objective values for variable xn, the variable node of xn chooses the value
of xn that maximizes zn(xn) as its solution. See [2] for the details of the algo-
rithm.

In the cases where a factor graph contains cycles, the Max-Sum algorithm
is an inexact method that may not converge, since the computation on dif-
ferent paths cannot be separated. In Bounded Max-Sum algorithm [13], a
cyclic factor graph is approximated to a maximum spanning tree (MST) using
a preprocessing that eliminates the cycles. For the computation of MST, the
impact of edge eij between function fi and variable xj is evaluated as weight
value wij = maxXi\{xj}

(
maxxj

fi(Xi) − minxj
fi(Xi)

)
. When a set of variables

Xc
i ∈ Xi is eliminated from the scope of function fi, the function is approximated

to f̃i = minXc
i
fi(Xi). Then, the Max-Sum algorithm is applied to the spanning

tree as an exact solution method. In this computation, a couple of bottom-up
and top-down processing steps based on a rooted tree are performed similarly
to DPOP [12].

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 137

2.3 Multiple Objective DCOP for Preferences of Agents

Multiple Objective DCOPs. Multiple objective DCOP [1] (MODCOP) is
a generalization of the DCOP framework. With MODCOPs, multiple objective
functions are defined over the variables. The objective functions are simultane-
ously optimized based on appropriate criteria. The tuple with the values of all
the objective functions for a given assignment is called the objective vector.

Definition 2 (Objective Vector). An objective vector v is defined as
[v0, · · · , vK], where vj is an objective value. The vector F(X) of objective func-
tions is defined as [F 0(X0), · · · , FK(XK)] , where Xj is the subset of X on which
F j is defined. F j(Xj) is an objective function for objective j. For assignment A,
the vector F(A) of the functions returns an objective vector [v0, · · · , vK]. Here
vj = F j(Aj).

Since there is a trade-off among objectives, objective vectors are compared
based on Pareto dominance [4,14]. Multiple objective problems generally have a
set of Pareto optimal solutions that form a Pareto front.

Social Welfare. With a social welfare that defines an order on objective vec-
tors, traditional solution methods for single objective problems can be applied to
choose a Pareto optimal solution. There are several criteria of social welfare [14]
and scalarization methods [4]. A traditional social welfare is defined as the sum-
mation

∑K
j=0 F j(Aj) of objectives. The maximization of this summation ensures

Pareto optimality. However, it does not capture the equality on these objectives.
Maximin maximizes the minimum objective value. While maximin improves the
worst case, it is not Pareto optimal. Maximin is also improved with summa-
tion that breaks ties of maximin ordering. See literatures [4,14] for the details
of above criteria. The study in [9] addresses a multiple objective Asymmetric
DCOP whose social welfare is based on Theil index. This social welfare also
represents inequality/fairness among agents. However, a local search algorithm
is employed to solve the problem, since the social welfare is non-monotonic.

Another social welfare, called leximin, is defined with a lexicographic order
on objective vectors whose values are sorted in ascending order.

Definition 3 (Sorted Vector). A sorted vector based on vector v is the vector,
where all the values of v are sorted in ascending order.

Definition 4 (Leximin). Let v and v′ denote vectors of the same length K+1.
Let [v0, · · · , vK] and [v′

0, · · · , v′
K] denote sorted vectors of v and v′, respectively.

Also, let ≺leximin denote the relation of the leximin ordering. v ≺leximin v′ if
and only if ∃t,∀t′ < t, vt′ = v′

t′ ∧ vt < v′
t.

The maximization on the leximin ordering ensures Pareto optimality. The lex-
imin is an ‘egalitarian’ criterion, since it reduces the inequality on objectives.

138 T. Matsui et al.

Leximin Asymmetric MODCOP on Preferences of Agents. Leximin
Asymmetric MODCOP (Leximin AMODCOP) [15] is a class of MODCOP,
where each objective stands for a preference of an agent. This problem also relates
to extended Asymmetric DCOPs with fairness or envy among agents [3,5,9–11].
Here each agent individually has its set of objective functions whose aggregated
value represents the preference of the agent. On the other hand, several agents
relate each other, since the subsets of their variables are contained in the scope
of the same function. A Leximin AMODCOP is defined as follows [15].

Definition 5 (Leximin AMODCOP). A Leximin AMODCOP is defined by
(A,X,D,F), where A, X and D are similarly defined as for the DCOP in Def-
inition 1. Agent i ∈ A has its local problem defined on Xi ⊆ X. ∃(i, j) s.t. i �=
j,Xi∩Xj �= ∅. F is a set of objective functions fi(Xi) for all i ∈ A. The function
fi(Xi) : Di0 × · · · × Dik → R represents the objective value for agent i based
on the variables in Xi = {xi0 , · · · , xik}. For an assignment A of variables, the
global objective function F(A) is defined as [f0(A0), · · · , f|A|−1(A|A|−1)]. Here
Ai denotes the projection of the assignment A on Xi. The goal is to find the
assignment A∗ that maximizes the global objective function based on the leximin
ordering.

In general cases, Leximin AMODCOPs are NP-hard, similar to DCOPs.
The operations in the solution methods for DCOPs are extended for the lex-

imin. The evaluation values are replaced by the sorted objective vectors, and the
comparison on objective values is extended with the leximin. Also, the addition
of objective values is extended as a concatenation operation of objective values.
The ‘addition’ of sorted vectors is defined as follows [15].

Definition 6 (Addition on Vectors). Let v and v′ denote vectors
[v0, · · · , vK] and [v′

0, · · · , v′
K′]. The addition v ⊕ v′ of the two vectors gives a

vector v′′ = [v′′
0 , · · · v′′

K+K′+1] where each value in v′′ is a distinct value in v or
v′. Namely, v′′ consists of all values in v and v′. As a normalization, the values
in v′′ are sorted in ascending order.

In Bounded Max-Sum algorithm and our proposed method, partial solutions
and related evaluation values are aggregated in a bottom up manner on a tree
structure. This aggregation can be naturally extended for the leximin based on
the similar operation whose correctness has been proven in [15].

x0 f0

x2

x1 f1

0 1

2

agent x0

f0

f2

x1

f2
f1

x2

(a) factor graph/AMODCOP (b) pseudo tree

tree edge
back edge

x0

f0

f2

x1

f1

x2

(c) separators

x2

x1 x0, x1

x0, x1

x0 x0

x2

x1

agent

(d) constraint graph/AMODCOP

f1
f0

f2

0 1

2

Fig. 1. AMODCOP on factor graph

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 139

Figure 1(a) shows a factor graph of the (Leximin) AMODCOP, where each
agent i has a variable xi and a function fi. Since factor graphs directly represent
n-ary functions, any asymmetric problems are well figured using this graph struc-
ture. Note that scope Xi of fi should contain xi. On the other hand, Figure 1(d)
shows the constraint graph of the same problem. It requires directed arcs to
represent the ownership of the functions. Solution methods for such constraint
graphs have to handle the direction of edges. Moreover, a hyper-edge is necessary
to represent an n-ray (ternary) function f2.

For cyclic factor graphs, the traditional Max-Sum algorithm is inexact.
Namely, an objective value is redundantly aggregated via different paths [2,17].
A possible approach to avoid the redundant aggregation is the computation
based on a spanning tree of the factor graph, similar to the Bounded Max-Sum
algorithm [13]. However, this approximation is not very promising, since it elim-
inates several relationships between functions and variables. That may decrease
the actual minimum objective value and the solution quality on leximin order-
ing.We therefore employ different types of algorithms.

3 Solution Methods for Leximin AMODCOPs on Factor
Graphs

As an exact solution method for Leximin AMODCOPs, we introduce a dynamic
programming algorithm based on pseudo trees of factor graphs. Then, we also
introduce an approximation method and a local search algorithm. Here we
assume that there are communication channels between any pairs of agents.

3.1 Dynamic Programming Based on Pseudo Tree

Several solution methods employ pseudo trees [8,12] to decompose problems on
constraint graphs. On the other hand, there are a few similar studies for factor
graphs [6]. We employ a solution method based on pseudo trees on factor graphs1.

Pseudo Trees on Factor Graphs. A pseudo tree on a factor graph is con-
structed in a preprocessing of the main optimization method. Here we employ a
DFS tree for a factor graph. The DFS graph traversal is initiated from a vari-
able node and performed for all nodes ignoring their types. Edges of the original
factor graph are categorized into tree edges and back edges based on the DFS
tree. Figure 1(b) shows a pseudo tree for the factor graph of Fig. 1(a). Based
on the factor graph and DFS tree, several related nodes are defined for each
variable/function node i as follows.

– Nbri: the set of i’s neighborhood nodes.
1 While the previous study employs cross-edge pseudo trees and a search algorithm [6],

we employ DFS trees and dynamic programming methods for the sake of simplicity.
The pseudo trees based on DFS trees have no cross-edges and do not need a dedicated
technique in [6].

140 T. Matsui et al.

– Nbrhi/Nbrli: the set of i’s neighborhood nodes in higher/lower depth.
– prnti: the parent node of i.
– Chldi: the set of i’s child nodes.
– Sepi the set of separators: i.e., the variables related both to the subtree

rooted at i and to i’s ancestor nodes.
– Sepi: the set of non-separator variables that i has to consider in addition to

the separators.
– Sephi

j : the set of function nodes that are higher neighborhood nodes of
variable node j. Here j is contained in Sepi.

The separators and non-separators are defined for variable node i as follows.

Sepi =
{{ } if i is the root node

{i} ∪ ⋃
j∈Chldi

Sepj otherwise (3)

Sepi =
{{i} if i is the root node

{ } otherwise (4)

Sephi
i =

{{ } if i is the root node
Nbrhi otherwise (5)

Sephi
k =

⋃

j∈Chldi

Sephj
k, where k ∈ Sepi ∧ k �= i ∧ (i is non-root node). (6)

The set of separators Sepi is empty in the root node, while other nodes aggregate
their own variable and separators of child nodes (Eq. (3)). Only root node i has
non-separator i (Eq. (4)). Non-root nodes set their own Sephi

i as Nbrhi (Eq. (5)).
For other nodes k in separators Sepi, node i sets Sephi

k aggregating Sephj
k of

child nodes j (Eq. (6)).
For function node i, the separators and non-separators are defined as follows.

Sepi =

⎛

⎝Nbrhi ∪
⋃

j∈Chldi

Sepj

⎞

⎠ \ Sepi (7)

Sepi = {l | l ∈ Nbrli, Seph′i
l = { }} (8)

Seph′i
k =

⎧
⎪⎪⎨

⎪⎪⎩

(
⋃

j∈Chldi,k∈Sepj

Sephj
k

)

\ {i} if k ∈ Nbrli

⋃

j∈Chldi,k∈Sepj

Sephj
k otherwise

(9)

Sephi
k = Seph′i

k , where k ∈ Sepi. (10)

Each node sets separators Sepi aggregating Nbrhi and separators of child
nodes. Then, non-separators Sepi are eliminated from Sepi (Eq. (7)). Here non-
separators in Sepi are the variable nodes whose topmost neighborhood func-
tion node is i (Eq. (8) and (9)). For child nodes j and nodes k in separators
Sepj , node i aggregates Sephj

k. Then, i is eliminated if k is i’s neighborhood

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 141

variable (Eq. (9)). After Sepi is set, Seph′i
k is also used to set Sephi

k for k in
Sepi (Eq. (10)). In above equations, if function node i is the highest neighbor-
hood node of variable node k, then k is not included in Sepi. This computation
is performed in a bottom-up manner from leaf nodes to the root node. It is pos-
sible to integrate the computation into the backtracking of the DFS traversal for
the pseudo tree. Figure 1(c) illustrates separators of the pseudo tree shown in
Fig. 1(b). For i = f1, Sepf1 = { }, Sepf1 = {x1} and Sephf1

x1
= { }. For i = x2,

Sepx2 = {x2}, Sepx2 = { } and Sephx2
x2

= {f2}. For i = f2, Seph′f2
x2

= { },
Sepf2 = {x2}, Sepf2 = {x0, x1}, Sephf2

x0
= { } and Sephf2

x1
= { }. For i = x1,

Sepx1 = {x0, x1}, Sepx1 = { }, Sephx1
x1

= {f0} and Sephx1
x0

= { }. Similar
computations are performed for the other nodes.

Dynamic Programming. Exploiting the pseudo tree on a factor graph, a
dynamic programming method consisting of two phases is performed. The com-
putation of the first phase is represented as follows.

g∗
i (Sepi) = maxleximin

Sepi

gi(Sepi ∪ Sepi) (11)

gi(Sepi ∪ Sepi) =

⎧
⎨

⎩

⊕

j∈Chldi

g∗
j (Sepj) if i is a variable node

fi(Xi) ⊕⊕

j∈Chldi

g∗
j (Sepj) otherwise (12)

Note that the above expressions include the cases such that Sepi = { } (the root
variable node) or Sepi = { } (non-root variable nodes and leaf function nodes).
In expression (12), for each assignment A of Sepi∪Sepi, compatible assignments
Ai of Xi and ASepj

of Sepj are aggregated. This computation is performed in
a bottom-up manner. As a result, each node i has its optimal objective vectors
g∗

i (Sepi) for the assignments of its separators and the subtree rooted at i.
The computation of the second phase is performed in a top-down manner.

The optimal assignment d∗
i of the root variable node i, that is also represented

as A∗
Sepi

= {d∗
i }, is determined so that g∗(A∗

Sepi
) = g(A∗

Sepi
∪ A∗

Sepi
). Namely,

g∗({}) = g(A∗
Sepi

). The optimal assignments of other variable nodes are deter-
mined by their parent or ancestor node. For each child node j of i, its opti-
mal separator Sepj is determined by i so that A∗

Sepj
⊆ A∗

Sepi
∪ A∗

Sepi
, where

g∗(A∗
Sepi

) = g(A∗
Sepi

∪ A∗
Sepi

). Note that the above expressions also include the

cases such that Sepi = { } or Sepi = { }. In the actual computation of the first
phase, each agent i propagates g∗

i (Sepi) to prnti. Then, in the second phase,
each agent i propagates A∗

Sepj
for each j in Chldi.

This solution method inherits most parts of the correctness and the time/s-
pace complexity from conventional methods based on dynamic programming
such as DPOP [12] and Bounded Max-Sum [13]. The overhead of operations
on sorted vectors for leximin can be estimated as almost O(n) for a sequential
comparison of values of vectors, where n is the size of sorted vector. The sort-
ing of values can be implemented as red-black tree whose time complexity is
O(log n) [15].

142 T. Matsui et al.

3.2 Approximation Method

In the above exact dynamic programming method, each node i computes a table
of objective vectors g∗

i (Sepi) for corresponding separators Sepi. Therefore, the
solution method is not applicable for the large number of separators. In such
cases, several approximation methods can be applied to eliminate several back
edges and corresponding separators. However, if the relationship between a vari-
able and a function is completely eliminated, the value of the variable is deter-
mined ignoring the actual values of other variables in the scope of the function.
As a result, the actual minimum objective value cannot be well controlled. That
may decrease the quality of solutions, since leximin ordering is very sensitive
to the minimum objective value. Here we employ another approach that fixes
several values of variables. To eliminate separators, we define a threshold value
maxnsep for the maximum number of separators. Based on the threshold value
maxnsep, the approximation is iteratively performed as multiple rounds. Each
round consists of the following steps.

– (Step 1) selection of the node with the maximum number of separators
(Fig. 2(a)).

– (Step 2) selection/fixation of the variable of the largest impact in the sepa-
rators (Fig. 2(b)).

– (Step 3) notification of the fixed variable (Fig. 2(c)).

In Step 1, each node i reports the number of separators in Sepi and its iden-
tifier. In actual computation, the computation is initiated by the root node in
a top-down manner (Fig. 2(1)). The information of the number of separators is
then aggregated in a bottom-up manner (Fig. 2(2)). Based on the aggregated
information, an agent j who has the maximum number is selected to elimi-
nate one of its separators. If |Sepj | is less than or equal to the threshold value
maxnsep, the iteration of rounds is terminated. Otherwise, the root node notifies
j so that j eliminates a separator (Fig. 2(3)).

x0

f0

f2

x1

f1

x2

(a) step 1 (b) step 2

x0

f0

f2

x1

f1

x2

(c) step 3

x0, x1

x0

f0

f2f1

x2

x1

(1)

(2)

(3) x0

f0

f2

x1

f1

x2

(4)

(7)

(5)

(6)

x2

x1 x0, x1

x0, x1

x0

x1 is fixed
by f2.

f2 is selected
by the root node.

f2 requests to
x0 and x1

x0 and x1 request to
their neighborhood nodes.

(8)

(9)

(10)

(double lines indicate initiators)

Fig. 2. Flow of approximation

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 143

In Step 2, node j eliminates a separator by fixing its value. First, for
each separator xk in Sepj , node j requests the variable node of xk to evalu-
ate the impact of variable xk (Fig. 2(4)). Then, for each neighborhood (func-
tion) node of fl in Nbrk, each variable node k of separator xk requests func-
tion node of fl to evaluate its impact (Fig. 2(5)). Each function node of fl

then returns the information of f⊥
l (xk) = minXi\{xk} fi(Xi) to variable node

of separator xk (Fig. 2(6)). f⊥
l (xk) represents the lower bound of fl for xk.

Then, for each fl, the boundaries are aggregated into sorted vectors so that
h⊥

k (xk) =
⊕

fl∈Nbrk
f⊥

l (xk). Then, lower bound h⊥⊥
k = minleximinxk

h⊥
k (xk)

and upper bound h⊥	
k = maxleximinxk

h⊥
k (xk) of h⊥

k (xk) are computed. Variable
node of xk returns h⊥⊥

k and h⊥	
k to node j (Fig. 2(7)). Now, node j determine

the separator xk̂ to be fixed so that k̂ = argminleximink h⊥⊥
k .

Note that the length of sorted objective vectors h⊥⊥
k can be different. In

such cases, ∞ is employed as a padding value. As a result, a longer vector that
affects more functions is selected in the case of a tie. We infer from the above
expression that xk̂ is a ‘risky’ variable, since it’s choice may be restricted to yield
lower objective values in future computations of the approximation. Therefore,
we prefer to fix this variable in advance. The value of xk̂ is fixed to dk̂ so that
h⊥	

k̂
= h⊥

k̂
(dk̂). Here we prefer the value corresponding to the maximum lower

bound.
In Step 3, node j propagates the information of Dk̂ = {dk̂} to its parent

node and child nodes (Fig. 2(8)). The propagation is terminated when Sepi

or Sepj s.t. j ∈ Chi in a node i do not contain xk̂. Then, the information of
termination is returned to node j (Fig. 2(9)). Then, node j notifies the root
node of the termination of a round (Fig. 2(10)).

Note that the above algorithm is a base line to clarify the flow of information.
We believe that there are several opportunities to optimize the message paths.
This approximation method is a heuristic algorithm focusing on the worst case.
Such a pessimistic approach is relatively reasonable for leximin ordering, since
the minimum objective value has a major influence on the quality of the solu-
tions. The upper bound objective value of each function, whose related variables
are fixed, is calculated by maximizing its objective values for the fixed variables.
However, the upper bound objective vector of an approximated solution can-
not be directly calculated, since the objective values are evaluated on leximin
ordering. Instead of that, the upper bound objective vector can be solved as the
optimal solution of an approximated problem with the upper bound values of the
functions. It also means that the technique of Bounded Max-Sum to calculate
upper bound objective values is unavailable for leximin ordering.

3.3 Local Search

Another inexact approach is based on local search methods. Here we employ
a local search method from a previous study [9]. While the original method is
designed for constraint networks, we adapt the method to (Leximin) AMOD-
COPs with factor graphs. This local search is cooperatively performed by each

144 T. Matsui et al.

1 Preprocessing:
2 let Nbr−

xi
denote (Nbri of xi) \ {fi}. let Nbr−

fi
denote (Nbri of fi) \ {xi}.

3 ANbrxi ← ⋃j(the owner agent of fj in Nbr−
xi

).

4 ANbrfi ← ⋃j(the owner agent of xj in Nbr−
fi

). ANbri ← ANbrxi ∪ ANbrfi .

5 send ANbri to j in ANbri. receive ANbrj from all j in ANbri.
6 BANbri ← ANbri ∪⋃j∈ANbri

ANbrj .

8 Main procedure:
9 choose the initial assignment dcuri of xi. // locally maximize fi.

10 until(cutoff){
11 send dcuri to all agents j in ANbrxi . receive dcurj from all agents j in ANbrfi .
12 Acur

i ← {(xi, d
cur
i)} ∪⋃

xj in Nbr−
fi

(xj , d
cur
j).

13 vcuri ← fi(Acur
i). send vcuri to agents j in ANbri. receive vcurj from agents j

in ANbri.
14 vcur

i ← {vcuri } ⊕⊕j in ANbri
{vcurj }.

15 choose the new assignment dnew
i under Acur

i \ {(xi, d
cur
i)}.

16 Anew
i ← {(xi, d

new
i)} ∪⋃

xj in Nbr−
fi

(xj , d
cur
j). vnew

i ← fi(Anew
i).

17 send dnew
i to all agents j in ANbrxi . receive dnew

j from all agents j in ANbrfi
.

18 foreach(xk in Nbr−
fi

){
19 Anew

i,k ← {(xi, d
cur
i)} ∪ (xk, d

new
k) ∪⋃

xj in Nbr−
fi

\{xk}(xj , d
cur
j).

vnew
i,k ← fi(Anew

i,k).
20 send vnew

i,k to the owner agent of xk.
21 }
22 receive vnew

j from all agents j in ANbrxi .
23 vnew

i ← {vnew
i }⊕ ⊕j in ANbrxi

{vnew
j } ⊕⊕k in ANbri\ANbrxi

{vcurk }.

24 if(vcur
i ≺leximin vnew

i){ vdifi ← max(0, vnew
i − vcuri). }else{ vdifi ← 0. }

25 send vdifi to all agents j in BANbri. receive vdifj from all agents j in BANbri
.

26 if(vdifi = maxj in BANbri∪{i} v
dif
j){ dcuri ← dnew

i . } // tie is broken by agent

IDs.
27 }

Fig. 3. local search (procedures of node i)

agent with its neighborhood agents. Since each agent i has its own variable node
xi and function node fi, the neighborhood agents ANbri of agent i are defined
as a set of agents who have a neighborhood node of xi or fi. Note that we denote
the neighborhood nodes of xi and fi as Nbri and Nbri, respectively. In addi-
tion, each agent i has to know its second order neighborhood agents BANbri.
BANbri is referred in decision making among agents. Since the variable of i’s
neighborhood agent j affects the functions of j’s neighborhood agents including
i, agent i should agree with agents within two hops. The above computations
are performed in a preprocessing (Fig. 3, lines 1-6).

After the initialization (Fig. 3, line 9), the local search is iteratively performed
as multiple rounds (lines 10-27). Each round consists of the following steps.

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 145

– (Step 1) notification of current assignments (lines 11 and 12).
– (Step 2) evaluation of current assignments (lines 13 and 14).
– (Step 3) proposal of new assignments (lines 15-17).
– (Step 4) evaluation of new assignments (lines 18-23).
– (Step 5) update of assignments (lines 24-26).

In Step 1, each agent i notifies the agents, whose functions relate to xi, of
the current assignment dcur

i of its own variable xi. Then, agents update the
related current assignments. In Step 2, each agent i evaluates the value of its
own function fi for the current assignment. The valuation of fi is announced to
neighborhood agents. Then, agents update the current valuations. In addition,
using the valuations, a sorted vector is generated. These valuations are stored for
future evaluation. In Step 3, each agent i chooses its new assignment dnew

i that
improves the valuation of fi under the current assignment of other variables.
Agent i then announces the new assignment dnew

i to the agents whose functions
relate to xi. In Step 4, each agent i evaluates the value of its own function fi

assuming that an assignment dcur
k in the current assignment is updated to dnew

k

by an agent who has xk. Agent i then returns the valuation to the agent of
xk. This process is performed for all variables in the scope of fi. Each agent
of xk receives and stores the valuation for dnew

k . Then, using the valuations, xk

generates a sorted vector for the case of dnew
k . In Step 5, each agent i compares

the sorted vectors for the cases of dcur
i and dnew

i . If the sorted vector for dnew
i

is preferred, the improvement ddif
i of the valuation of its own function fi is

evaluated. Otherwise, ddif
i is set to 0. Then, agent i notifies agents, within two

hops, of the improvement ddif
i . When its own improvement ddif

i is the greatest
value in the agents BANbri, dcur

i is updated by dnew
i .

4 Evaluation

4.1 Settings

Example Problems and Evaluation Values. We experimentally evaluated
the proposed method. A class of Leximin AMODCOPs is used to generate test
problems. The problems consist of n agents who have a ternary variable xi

(|Di| = 3) and a function fi of arity a. Objective values of the functions were
randomly set as follows. g9 2: a rounded integer value based on a gamma dis-
tribution with (α = 9, β = 2), similar to [13]. u1-10: an integer value in [1, 10]
based on uniform distribution. Results were averaged over 25 instances of the
problems. We evaluated the following criteria for a sorted objective vector v. scl:
a scalarized value of v shown below. sum: the total value of values in v. min:
the minimum value in v. wtheil/theil: WTheil social welfare and Theil index
shown below. As a normalization, each criterion (except ‘theil’) is divided by
the corresponding criterion of the upper limit vector. The upper limit vector is
defined as the vector consisting of maxXi

fi(Xi) for all agent i.

146 T. Matsui et al.

Scalarization of Sorted Vectors (scl). To visualize sorted vectors, we intro-
duce a scalar measurement. The scalar value represents the location on a dictio-
nary that is compatible with a lexicographic order on the leximin. Here the min-
imum objective value v⊥ and the maximum objective value v	 are given. With
these limit values, for a sorted vector v, a scalar value s(v) = s(v)(|A|−1) that
represents v’s location on the dictionary is recursively calculated as s(v)(k) =
s(v)(k−1) ·(|v	−v⊥|+1)+(vk−v⊥) and s(v)(−1) = 0. Here vk is the kth objective
value in sorted vector v. Since we consider the values in [v⊥, v] as the characters
in {c0, · · · , cv�−v⊥} that construct a word in the dictionary, |v	 − v⊥| + 1 is con-
sidered as the number of characters in the ‘alphabet’. In the case where |v	 − v⊥|
and the number of variables are large, we can use multiple precision variables in
the actual implementation. Below, we simply use ‘scl’ that denotes s(v).

Social Welfare Based on Theil Index (Wtheil/Theil). In a previous
study [9], a social welfare based on Theil Index has been employed. Originally,
Theil index is a criterion of unfairness defined as T = 1

N

∑i
N

(
xi

x ln xi

x

)
. Here x

denotes the average value for all xi. T takes zero if all xi are equal. The social
welfare is defined as WTheil = xe−T so that the average (summation) is inte-
grated to the fairness. We compared the results with Theil Index and WTheil.

BoundedMax-SumAlgorithm. As addressed in Subsection 2.3, the Bounded
Max-Sum algorithm can be adapted to leximin optimization problems. We evalu-
ated such a Bounded Max-Sum (Bounded Max-Leximin) algorithm. While there
are opportunities to modify the impact values of edges for minimum spanning
trees, we found that other types of impact values were not very effective. There-
fore, we simply employed the spanning trees of the original algorithm.

4.2 Results

First, we compared different criteria of optimization. In this experiment, we
employed exact algorithms based on dynamic programming, except the case
of WTheil as shown below. The aggregation and maximization operators of
the solution method were replaced by other operators similar to the previ-
ous study [5]. Those operators are correctly applied to the dynamic program-
ming based on pseudo trees. Table 1 shows the results of the comparison.
Here ‘ptmaxleximin’ denotes the proposed method based on pseudo trees. Com-
pared methods maximize the summation (‘ptmaxsum’) and the minimum value
(‘ptmaximin’), respectively. Additionally, ‘ptmaximinsum’ is an improved ver-
sion of ‘ptmaximin’ that maximizes the summation when two minimum values
are the same. Moreover, we also evaluated an exact solution method that maxi-
mizes WTheil (‘maxwtheil’). Since WTheil cannot be decomposed into dynamic
programming, we employed a centralized solver based on tree search. Due to the
time/space complexity of the solution methods, we evaluated the case of n = 15
and a = 3.

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 147

Table 1. Comparison with different opti-
mization criteria (n = 15, a = 3)

prb. opt. criteria scl sum min wtheil theil

g9 2 maxwtheil 0.563 0.815 0.637 0.799 0.031
ptmaximin 0.698 0.735 0.752 0.730 0.017

ptmaximinsum 0.699 0.769 0.752 0.763 0.019
ptmaxsum 0.513 0.818 0.596 0.797 0.037

ptmaxlexmin 0.699 0.759 0.752 0.755 0.016

u1-10 maxwtheil 0.636 0.888 0.668 0.879 0.010
ptmaximin 0.688 0.840 0.722 0.832 0.010

ptmaximinsum 0.691 0.882 0.722 0.874 0.009
ptmaxsum 0.599 0.888 0.632 0.878 0.013

ptmaxlexmin 0.692 0.875 0.722 0.869 0.008

* Problems were solved by exact algorithms.
* scl, sum, min and wtheil are ratio values to

the upper limit vector.
* To be maximized: scl, sum, min, wtheil. To be

minimized: theil.

Table 2. Size of pseudo tree (a=3)

n depth #leafs avg. max. max.

#branches |Sepi| ∏k∈Sepi
|Dk|

10 16 3 1.15 6 1558

20 30 7 1.18 11 447460

30 42 11 1.20 15 462162351

40 55 14 1.20 19 1.165E+11

50 65 18 1.21 25 1.156E+13

* Each factor graph consists of n variable
nodes and n function nodes.

The results in Table 1 shows that ‘ptmaxleximin’ always maximizes sorted
vectors on leximin ordering (‘scl’). Similarly, ‘ptmaxsum’ and ‘maxwtheil’ always
maximize summation (‘sum’) and wtheil, respectively. ‘ptleximin’, ‘ptmaximin’
and ‘ptmaximinsum’ maximize the minimum value (‘min’). While ‘ptmaximin-
sum’ relatively increases ‘scl’ in average, Theil index (‘theil’) of ‘ptleximin’ is
less than ‘that of ptmaximinsum’. Therefore, it is considered that ‘ptleximin’
improves fairness among agents. Table 2 shows the size of pseudo trees in the
case of a = 3. Due to the size of |Sepi|, even in the case of n = 20, the exact solu-
tion method is not applicable. Therefore, we did not compared exact methods
and approximate methods.

Next, we evaluated approximate methods and local search methods.
Figures 4-7 show the results in the case of g9 2 and a = 3. Here we evaluated
the following methods. bms: the original Bounded Max-Sum algorithm. bmlex-
imin: a Bounded Max-Sum algorithm whose values and operators are replaced
for leximin. lsleximin100/1000: the local search method shown in Subsection 3.3,
where the cutoff round is 100 or 1000. ptmaxleximin1/4/8: the approximation
method shown in Subsection 3.2, where the maximum size of |Sepi| is 1, 4 or
8. ptmaxleximin8 ub: the upper bound of ‘ptmaxleximin8’ that is addressed in
Subsection 3.2. While we also evaluated a local search which employs WTheil,
the results resemble that of ‘lsleximin’. It is considered that the both criteria
resemble and only work as a threshold in the local search. Therefore, we show
the results of ‘lsleximin’. Figure 4 shows the result of ‘scl’. The values of ‘bms’ and
‘bmleximin’ are relatively low, since those algorithms eliminate edges of factor
graphs. As a result, actual values of several variables are ignored by other nodes.
That decreases the minimum objective value and ‘scl’. However, the results of
‘bmleximin’ are slightly better than that of ‘bms’. When the maximum size of
|Sepi| is sufficient, ‘ptmaxleximin’ is better than other methods. On the other
hand, with the number of fixed variables, the quality of solutions decreases. The
local search method outperforms ‘ptmaxleximin’ around thirty agents. Also, the
local search method is better than Bounded Max-Sum/Leximin methods. Fig-
ures 5 and 6 show the results of ‘sum’ and ‘min’. The results show that ‘min’
mainly affects the quality of ‘scl’. Figure 7 shows the results of Theil index.

148 T. Matsui et al.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

ra
tio

to
up

pe
rl

im
it

ve
ct

or

number of agents

bms
bmleximin
lsleximin100
lsleximin1000
ptmaxleximin1
ptmaxleximin4
ptmaxleximin8
ptmaxleximin8_ub

Fig. 4. scl (g9 2, a=3)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50ra
tio

to
up

pe
rl

im
it

ve
ct

or

number of agents

bms
bmleximin
lsleximin100
lsleximin1000
ptmaxleximin1
ptmaxleximin4
ptmaxleximin8
ptmaxleximin8_ub

Fig. 5. sum (g9 2, a=3)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50ra
tio

to
up

pe
rl

im
it

ve
ct

or

number of agents

bms
bmleximin
lsleximin100
lsleximin1000
ptmaxleximin1
ptmaxleximin4
ptmaxleximin8
ptmaxleximin8_ub

Fig. 6. min (g9 2, a=3)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

10 20 30 40 50

th
ei

l

number of agents

bms
bmleximin
lsleximin100
lsleximin1000
ptmaxleximin1
ptmaxleximin4
ptmaxleximin8
ptmaxleximin8_ub

Fig. 7. theil (g9 2, a=3)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 5ra
tio

to
up

pe
rl

im
it

ve
ct

or

arity of function

lsleximin

ptmaxleximin8

Fig. 8. scl (g9 2, n=20)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 5ra
tio

to
up

pe
rl

im
it

ve
ct

or

arity of function

lsleximin

ptmaxleximin8

Fig. 9. scl (g9 2, n=50)

Even if ‘ptmaxleximin’ loses the best quality on leximin ordering, it still holds
relatively low unfairness.

Figures 8 and 9 show the results for different arities. Basically, the qual-
ity of solutions decreases with arities. On the other hand, the influence on
‘ptmaxleximin’ is not monotonic in the case of n = 20. It is considered that the
heuristic of approximation is affected both of arity and the number of nodes. Fig-
ures 10 and 11 show the cases of u1-10 and a = 3. While the results resemble the
cases of g9 2 and a = 3, ‘ptmaxleximin’ is slightly better. It is considered that
relatively uniform objective values mitigate the influence of the approximation.

While we presented base line approximation algorithms for the sake of sim-
plicity, we evaluated the total number of synchronized message cycles and the
total number of messages. Note that the current evaluation is not in the main
scope of this study. Tables 3 and 4 show the results of ‘lsleximin’ and ‘ptmaxlex-
imin’, respectively. While the approximation method requires relatively large

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 149

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50ra
tio

to
up

pe
rl

im
it

ve
ct

or

number of agents

bms
bmleximin
lsleximin100
lsleximin1000
ptmaxleximin1
ptmaxleximin4
ptmaxleximin8
ptmaxleximin8_ub

Fig. 10. scl (u1-10, a=3)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

10 20 30 40 50

th
ei

l

number of agents

bms
bmleximin
lsleximin100
lsleximin1000
ptmaxleximin1
ptmaxleximin4
ptmaxleximin8
ptmaxleximin8_ub

Fig. 11. theil (u1-10, a=3)

Table 3. Total number of cycles/messages (g9 2, n=50, a=3, lsleximin)
cutoff #converg. #cyc. #cyc. in converg. #msg. #msg. in converg.
round min. ave. max. min. ave max.

100 4 457 121 254 436 119903 31590 66249 113990
1000 6 3886 121 372 676 1017571 31590 98736 181640

Table 4. Total number of cycles/messages (g9 2, n=50, a=3, ptmaxleximin)
lmt. #cyc. #msg.

|Sepi| step1 step2 step3 DP total step1 step2 step3 DP total
1 4303 129 1386 128 5946 6639 3184 2075 198 12097
8 2480 73 936 128 3617 3829 2729 1422 198 8178

number of cycles, the total number of messages is less than that of local search,
where agents basically multicast messages to their neighborhood agents.

5 Related Works and Discussions

While pseudo trees on factor graph have been proposed in [6], we employ the
factor graphs to eliminate the directions of edges in the cases of Asymmetric
DCOPs on constraint graphs [3]. As a result, the obtained solution methods do
not handle the direction of edges that was necessary in the previous studies [3,10].
In addition, the factor graph directly represents n-ary functions.

Theil based social welfare WTheil has been proposed in [9]. However, that
social welfare cannot be decomposed into dynamic programming. We evaluated
exact algorithms that optimize leximin and WTheil, relatively. In our experi-
ment, the result shows that leximin is better than WTheil on the criteria of
leximin, maximin and Theil Index.

6 Conclusions

We propose solution methods for the leximin multiple objective optimization
problems with preferences of agents and employing factor graphs. A dynamic
programming method on factor graphs is employed as an exact/approximation
solution method in conjunction with other inexact algorithms also applied to fac-
tor graphs. The experimental results show the influences brought by the approx-
imation method on the leximin social welfare and factor graphs.

150 T. Matsui et al.

Our future research directions will include improvement of solution quality,
detailed evaluations of different criteria of fairness, and application of the pro-
posed method to practical problems instances.

Acknowledgments. This work was supported in part by KAKENHI Grant-in-Aid
for Scientific Research (C), 25330257.

References

1. Fave, D., Maria, F., Stranders, R., Rogers, A., Jennings, N.R.: Bounded decen-
tralised coordination over multiple objectives. In: 10th International Conference
on Autonomous Agents and Multiagent Systems, vol. 1, pp. 371–378 (2011)

2. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In: 7th International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 639–646
(2008)

3. Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., Meisels, A.: Asymmetric
distributed constraint optimization problems. J. Artif. Intell. Res. 47, 613–647
(2013)

4. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engi-
neering. Structural and Multidisciplinary Optimization 26, 369–395 (2004)

5. Matsui, T., Matsuo, H.: Considering equality on distributed constraint optimiza-
tion problem for resource supply network. In: 2012 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence and Intelligent Agent Technology, vol. 2,
pp. 25–32 (2012)

6. Matsui, T., Matsuo, H.: Complete distributed search algorithm for cyclic factor
graphs. In: 6th International Conference on Agents and Artificial Intelligence,
pp. 184–192 (2014)

7. Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., Matsuo, H.: Distributed search
method with bounded cost vectors on multiple objective dcops. In: Principles and
Practice of Multi-Agent Systems - 15th International Conference, pp. 137–152
(2012)

8. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)

9. Netzer, A., Meisels, A.: SOCIAL DCOP - social choice in distributed constraints
optimization. In: 5th International Symposium on Intelligent Distributed Comput-
ing, pp. 35–47 (2011)

10. Netzer, A., Meisels, A.: Distributed envy minimization for resource allocation. In:
5th International Conference on Agents and Artificial Intelligence, vol. 1, pp. 15–24
(2013)

11. Netzer, A., Meisels, A.: Distributed local search for minimizing envy. In: 2013
IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
pp. 53–58 (2013)

12. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimiza-
tion. In: 19th International Joint Conference on Artificial Intelligence, pp. 266–271
(2005)

Leximin Asymmetric Multiple Objective DCOP on Factor Graph 151

13. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate
decentralised coordination via the Max-Sum algorithm. Artif. Intell. 175(2),
730–759 (2011)

14. Sen, A.K.: Choice, Welfare and Measurement. Harvard University Press,
Cambridge (1997)

15. Matsui, T., Silaghi, M., Katsutoshi, H., Makoto, Y., Matsuo, H.: Leximin multiple
objective optimization for preferences of agents. In: 17th International Conference
on Principles and Practice of Multi-Agent Systems

16. Zivan, R.: Anytime local search for distributed constraint optimization. In: Twenty-
Third AAAI Conference on Artificial Intelligence, pp. 393–398 (2008)

17. Zivan, R., Peled, H.: Max/min-sum distributed constraint optimization through
value propagation on an alternating dag. In: 11th International Conference on
Autonomous Agents and Multiagent Systems, pp. 265–272 (2012)

Dynamic Coalition Formation in Energy
Micro-Grids

Muhammad Yasir(B), Martin Purvis, Maryam Purvis,
and Bastin Tony Roy Savarimuthu

Department of Information Science, University of Otago, Dunedin, New Zealand
{muhammad.yasir,martin.purvis,maryam.purvis,

tony.savarimuthu}@otago.ac.nz

Abstract. In recent years the notion of electrical energy micro-grids,
in which communities share their locally-generated power, has gained
increasing interest. Typically the energy generated comes from renew-
able resources, which means that its availability is variable-sometimes
there may be energy surpluses and at other times energy deficits. This
energy variability can be ameliorted by trading energy with a connected
main electricity utility grid. But since main electricity grids are subject
to faults or other outages, it can be advantageous for energy micro-grids
to form coalitions and share their energy among themselves. In this work
we present our model for the dynamic formation of such micro-grid coali-
tions. Our agent-based model, which is scalable and affords autonomy
among the micro-grids participating in the coalition (agents can join and
depart from coalitions at any time), features methods to reduce overall
discomfort, so that even when all participating micro-grids in a coalition
experience deficits; they can share energy so that overall discomfort is
minimized. We demonstrate the efficacy of our model by showing empiri-
cal studies conducted with real energy production and consumption data.

Keywords: Renewable energy · Multi-agent systems · Coalition forma-
tion · Micro-grids

1 Introduction

A micro-grid (MG) is a local energy system that provides for the generation, stor-
age, and consumption of electrical power within a community [8]. The function of
a micro-grid is to utilize the distributed local renewable energy resources (such as
wind and sun) and to satisfy power needs locally, thus minimizing the reliance on
nearby utility grids. As a result, the power losses during transmission are reduced.
Typically, a MG is connected to the nearby utility grid, so it can sell during sur-
plus generation (generation is more than demand) or buy during deficient gen-
eration (generation is less than demand) power from an energy utility company.
However, renewable energy sources are intermittent in nature and vary from hour
to hour, and even from minute to minute, depending upon local conditions [8].

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 152–168, 2015.
DOI: 10.1007/978-3-319-25524-8 10

Dynamic Coalition Formation in Energy Micro-Grids 153

This means that at any time, a MG may have an excess or shortage of power gen-
eration. Different energy management strategies are used to mitigate the impact of
supply variations, such as storage devices (batteries, fly wheels, capacitors, etc.),
forecasting techniques, demand load management, and backup generators. One of
the approaches to address this issue is the interconnection of nearby micro-grids
which, by trading among the communities, can reduce the impact of irregular-
ity with respect to renewable energy sources [8]. An agent-based architecture for
local energy distribution among micro-grids has been presented in Yasir et al. [22],
where each micro-grid represents a community which has its own power generation
based on renewable energy sources and also has its own electric energy demand
which varies hourly. Every community has a coordinator agent which, when it has
a power surplus or deficit, is responsible for power trading with other intercon-
nected communities or to the utility grid. We use that architecture as a basis on
top of which we build our energy trading model.

Due to the centralized nature of existing electric generation and distribution
systems, any technical fault or natural disaster can cause a wide-area blackout.
Such power outages from the utility grid will also affect communities having MGs
(hereafter interchangeably referred to simply as “communities”). Ordinarily MGs
are not able to fulfill all their power needs by themselves all the time. So when
a MG does not meet its demand, then the community will suffer hardship from
having to cope with an insufficient energy supply. For brevity, we will refer to this
hardship as “discomfort”, and we note that the discomfort level (as discussed fur-
ther below) is a nonlinear function of the energy deficit. So if the energy deficit is
doubled, then the discomfort level is more than doubled. In order to address this
problem, we believe that a useful approach is the formation of coalitions among
the communities. A coalition here is considered to be a group of MGs that can
distribute their electric power among each other. By operating in coalitions, com-
munities can reduce their overall discomfort level, even when there is no additional
external supply of energy.

In multi-agent systems, a coalition can be defined as a group of agents who
decide to cooperate in order to achieve joint goals [14]. According to [19], coali-
tion formation includes three activities: coalition structure generation, solving the
optimization problem of each coalition, and dividing the obtained value among the
agents. In this paper, our work is focused on the first activity of the coalition for-
mation. We introduce a cooperation mechanism for dynamic coalition formation
to reduce the overall discomfort level of the communities present in the system
over time. The goal of our mechanism is not to find the optimal solution, but to
find a satisfactory coalition match for the community in a non-deterministic envi-
ronment (where community demand and generation vary hourly without advance
knowledge) by relying on recent power and generation data.

The major contributions of this paper are twofold: 1) We have developed an
algorithm for dynamic coalition formation to reduce discomfort at two levels:
individual community level and at the system level (i.e. aggregation of commu-
nities). 2) We have investigated different power sharing mechanisms within the
coalition and their impact on the discomfort level of the community and the
system.

154 M. Yasir et al.

The rest of the paper is organized as follows. Related work on coalition
formation in smart grids is discussed in Section 2. In Section 3 we present the
problem scheme addressed in this work. Section 4 presents our approach to
addressing that problem. Experiments and discussion are covered in Section 5.
Section 6 presents conclusions and future work.

2 Related Work

Coalition formation in smart grids has been widely studied in the multi-agent
system community (see for example [18] [16] [11] [6]), and much of this work
has centered around two objectives: 1) reducing power losses and loads over the
utility grids by forming local coalitions among MGs and customers. 2) optimizing
monetary outcomes by trading power locally among MG participants.

Work in the first of these two areas has been conducted by studying coalitions
among MGs, between MGs and consumers, or between MGs and the utility grid
[17][3][6][13]. For example Chakraborty et al. [3] seek to reduce transmission
losses by encouraging power-trading among MGs based on locality. Wei et al. [6]
employ a game-theoretic coalition formation strategy to minimize power losses.
However, although these approaches seek to reduce transmission losses, they do
not address the coalition-formation process itself, as there are no mechanisms
for how distantly located MGs can form efficient coalitions. Also these studies
assume that the main utility grid is always available, so they have not considered
circumstances when the coalitions may be cut off from such grids.

Other MG coalition studies have focused on optimizing monetary outcomes
(the 2nd objective presented above) [4][5][13]. Some work has examined coalitions
of plug-in hydroelectric vehicles (PHEV), which can form coalitions in order to
have sufficient aggregate power to qualify for power trading markets [4][5]. In
such approaches there is a broker that represents the coalition, and the individ-
ual PHEVs have little autonomy. Mondal et al. [13] describe a model for MGs
competing with each other to attract consumer customers. In their work there
is no cooperation between the MGs, and hence no coalitions are formed.

In contrast, the goal of our coalition formation mechanism is to form coalitions
among the MGs in such a way that the members of a coalition complement their
weather and demand patterns. As a result, the coalition becomes more resilient
even during calamitous conditions and tries to reduce the aggregate discomfort
of the members. In our model, each community also has the autonomy to join or
leave the coalition by considering its demands, generation, and discomfort.

3 Problem Model

The scenario presented in our work concerns situations where communities hav-
ing MGs must rely on their production to meet their demand. In cases of their
own energy surpluses or deficits, they cannot get energy supplements from or
sell excesses back to the grid, which is now cut off from them. When a com-
munity encounters an energy deficit, it will suffer “discomfort” because of the

Dynamic Coalition Formation in Energy Micro-Grids 155

power shortage. We know from previous studies [1] [2] [20] that people or com-
munities are willing to pay more than 100% of the original electric tariff if the
power outage lasted for more than 24 hours. So we have assumed that there is
a continuous polynomial function that can represent the discomfort of the com-
munity. So when a deficit increases, the discomfort level increases non-linearly.
Supposing that dmdi is the demand of the community at a given time i, where
i is any hour of the day. geni is the generation of the community at given time
i, defi is the deficit of the community at time i, then we can calculate it as:

defi = Max[
dmdi − geni

dmdi
, 0] ∗ maxRange (1)

For simplicity we normalize the value of defi between 0 and 10, where 0
means no deficit (i.e. generation is more than or equal to the demand) and 10
means extreme deficit (i.e. no generation is produced locally). In Equation 1,
maxRange represents the maximum range of normalization i.e. 10.

The function for calculating the discomfort level is presented in Equation 2.
The value of discomfort is assumed to lie between 0 and 10 (where 0 means no
discomfort and 10 means extreme discomfort). This function takes defi as an
input and gives the discomfort level for time i. Mathematically this function can
be expressed as:

f(defi) = a ∗ defi + b ∗ (defi)2 + c ∗ (defi)3 (2)

where a = 0.1, b = -0.01 and c = 0.01. A plot of this function is given in Figure 1.

Fig. 1. Discomfort because
of deficit

For example, at a particular hour of the day, say
at 10 am, a community generates the electric power
of 200 kWh, and its demand for that hour is 350
kWh. So, by using Equation 1, we calculate the nor-
malized deficit value to be 4.28. By inserting this
value into Equation 2, the value of discomfort for
this hour becomes 1.02. The specific values used in
this function are not important and have been cho-
sen for illustration. We do believe, however, that the
non-linear shape of this function is generally repre-
sentative of how discomfort is related to power con-
sumption deficits.

Communities are assumed to be dispersed across
a varied geography such that some communities may sometimes have surplus
power generation(have more available power than their consumer demand levels
require) due to good wind or sun, while at the same time others may face deficits
and thereby suffer discomfort. The idea of coalition formation among the com-
munities is to help communities that suffer from extreme discomfort by receiving
support from those who have a much smaller level of discomfort. A community
in a coalition that offers assistance at one time would expect to receive reciprocal
assistance when it encounters energy deficit at a later point in time. To illus-
trate why this would be beneficial, let us consider a simplified example of just

156 M. Yasir et al.

two communities, C1 and C2. Suppose that during a certain hour of the day C1
has enough energy generation that exactly matches its demand (and hence has
a discomfort level of 0), while C2 has no energy generation at all (and so has a
discomfort level of 10). During another hour of the same day, both communities
C1 and C2 each have a power deficit level of 5 and so have discomfort levels of
1.5. This means that during the first hour period the aggregate discomfort of C1
and C2 is 10, and during the second hour period the aggregate discomfort level
of the two is 3 (computed using Equation 2, also shown in Figure 1). So over the
two hour period, the aggregate discomfort level is 13.0.

If C1 and C2 were to form a coalition for mutual assistance, then during the
first hour C1 might offer 10% of its power to C2. This would result in a discom-
fort level of 0.1 for C1 and a discomfort level of 7.48 for C2. During the other
mentioned hour of the day, C2 would reciprocate by giving 10% of its power
back to C1, meaning that C2’s power deficit will be 6 and C1’s deficit will be
4. Their corresponding discomfort values for this period would then be 2.4 for
C2 and 0.88 for C1, making their aggregate discomfort level is 7.48 + 0.1 + 2.4
+ 0.88 = 10.86. So even though C2 would give up some power when it is in a
deficit, it benefits from being in the coalition. Note that the new comfort level
is smaller than the discomfort level of 13 when no coalition is formed.

So operating within a coalition is likely to have beneficial results for all
parties. The most effective coalitions will be those for which the excesses and
deficits of community members complement each other. The worst periods for
some coalition members match up with better periods for others, who may even
have energy excesses during those periods.

Of course, energy generation conditions may change over time, and so the
most effective coalition combinations over a geographic area may thereby change,
too. It would be best if we would allow MG communities to have the autonomy
of moving to a new coalition if it so desires. So in the following we present
our examination of communities that operate in four different configurations: 1)
Standalone - there are no coalitions and no energy sharing. 2) Fixed coalitions
- there is a single, unchanging coalition arrangement. 3) Dynamic coalitions -
communities have the option of joining a different coalition at the beginning of
every day. 4) Centralized system - all communities are members of one single
coalition.

For all coalition configurations (thus not the standalone configuration), a
community may share its power with others when it has relatively low discom-
fort. Similarly, a community can receive power from the coalition if it has a
relatively high discomfort level. The details of energy sharing within coalitions
are described in the next section. The dynamic coalition arrangement allows
communities to change coalitions, and this coalition formation mechanism is
described in the next section. The centralized system considers a single large
coalition that is managed centrally. This system affords optimal energy swap-
ping, but offers less autonomy and has the vulnerability of a single point of failure
and high transmission losses. Since MGs are located at dispersed geograph-
ical locations, there will always be transmission losses associated with energy

Dynamic Coalition Formation in Energy Micro-Grids 157

transfer. These transmission losses are determined by the following formula:

PLoss
i = (Q2

i ∗ R/U2) + θ ∗ Qi (3)

where: PLoss
i is the transmission power loss during one hour (i) in watts (W)

from one community to another, Qi is the total amount of power transmitted
during hour i in kWh, R is the resistance of the distribution line between two
MGs, U is the optimal voltage of the line, and θ is the fraction of power lost in
the transformer during step up and step down process. The power lost during
transmission is taken into account by the receiving MG.

4 System Model

In this section, we present the dynamic coalition formation mechanism. As with
any coalition formation, the goal is to reduce the overall discomfort level of com-
munities present in the coalition. The value of a coalition (v(cj)) is represented
by:

v(cj) =
s∑

i=1

discomfort of communityi (4)

where j is the coalition number, s is the number of communities present in the
coalition j. The goal of coalition formation is to minimize the value of v(cj).

At the start of every day, two processes run in a coalition. In the first pro-
cess, communities in the coalition calculate the amount they can give and take
to/from the coalition for the next 24 hours by using their predicted demand
and forecasted generation categorized into the best and worst hours. We assume
that the forecasted wind pattern for the next 24 hours is up to 93% accurate [9].
Typically a community has twelve best and worst hours in a day. However, some-
times the best and worst hours may not be equal in number. Best hours are the
hours in which a community has no discomfort or less discomfort. During those
hours, the community can help other members of the coalition by sharing some
proportion of its generation. Worst hours are the hours in which a community
has less generation or no generation and it suffers from extreme discomfort. In
other words, the community suffers more discomfort and seeks some power from
the other members of the coalition to get some relief from its discomfort. Hence
as a result, its overall discomfort of the day will be reduced.

In the second process, a community is selected to be the coordinator agent
for the coalition. In this work, the coordinator agent is selected by lexicographic
order. The responsibility of the coordinator agent is to broadcast an invitation
message to other communities outside its coalition, identify the potential mem-
bers of the coalition for joining the coalition, and manage the power-sharing
distribution within the coalition.

There are two main phases of our coalition mechanism. The operational phase
deals with the power distribution within the coalition, and the recruitment phase
deals with recruiting other communities to join the coalition. First we discuss
the operational phase. At the beginning of every hour, the coordinator agent
calculates the total amount of electric power from coalition members who commit

158 M. Yasir et al.

to give to the coalition and distributes the amount proportionally among the
members of the coalition who are expecting the power from the coalition for the
particular hour. We assume that communities do not cheat and reveal correct
information about their give and take commitment.

A community can make a commitment about the amount of power to be
given or taken from the coalition by using two approaches: dynamic offer and
fixed offer. In a dynamic offer a community curtails a calculated at-the-time
percentage of its generation from its 12 best hours and gives to its coalition. In
return, the community expects the same amount back from the coalition during
its 12 worst hours. However, in fixed offer, a community has a certain fixed value
(in percentage) to curtail its generation from its best hours and then expect the
same amount to return back during its worst hours.

Algorithm 1 gives the pseudo-code of the fixed and dynamic offer of a commu-
nity to a coalition. At the beginning of each day, all communities in the system
calculate their best and worst hours of the next 24 hours by using predicted
demand and forecasted wind and sun information (line 1 of Algorithm 1). After
identifying the best and the worst hours of the next 24 hours, a community
aggregates the discomfort of the best and worst hours (line 4). For a fixed offer,
the community selects the fixed arbitrary value of percentage for curtailing its
generation from best hours (line 6 of Algorithm 1). If the selected value helps
in reducing the aggregate discomfort of the day, then the community makes the
offer otherwise the community does not participate in the coalition(lines 7-12
of Algorithm 1). However, for a dynamic offer (lines 13 to 30 of Algorithm 1),
the community looks at all the possibilities of curtailing its generation (from 1%
to 100%) from the best hours and observes its potential impact on the worst
hours (lines 14 to 23 of Algorithm 1). After assessing all the possibilities, the
community picks the best possible proportion (in percentage) for curtailing its
generation among all the possibilities (line 26) and then calculates the amount
of electricity to be given and taken to/from the coalition for the next 24 hours
(line 27 of Algorithm 1).

We now discuss, the recruitment phase. From a recruitment perspective, we
assume that the coalition is always looking for new communities to join the
coalition in order to reduce a coalition’s discomfort level. The coordinator agent
collects the best and worst hours information from all the members of the coali-
tion and categorizes the hours of the day into best hours and worst hours of the
coalition. For recruiting the new community in the coalition, the coalition fol-
lows the following steps: at the start of every day, the coordinator agent of each
coalition calculates the average discomfort of each hour of the next day by col-
lecting best and worst hours information from the members of the coalition. The
twelve hours with the lowest discomfort are ranked as the “best hours”, while
the remaining twelve hours are marked as the “worst hours”. The “best hours”
imply hours of the day during which the coalition can commit to sharing some
of its power with newcomer communities. The “worst hours” signify hours when
the coalition seeks to gain power assistance from a potential newcomer commu-
nity. After calculating best and worst hour information, the coordinator agent

Dynamic Coalition Formation in Energy Micro-Grids 159

Algorithm 1. Algorithms for fixed and dynamic offer of a community
input : Generation & demand of next 24 hours
output: Give & take amount for exisitng coalition

1 Calculate best and worst hours slot
2 Total discomfort in best hours =

∑
discomfort in best hour discomfort

3 Total discomfort in worst hours =
∑

discomfort in worst hour discomfort
4 Total actual discomfort = Total discomfort in best hours +

Total discomfort in worst hours
5 Algorithm for fixed offer
6 set certain value of α // value in percentage of generation

curtailment

7 Total new discomfort = Compatibility Check(Best & worst hours, α)
8 if Total new discomfort <Total actual discomfort then
9 Make Offer(α) // amount to be given and taken from the

coalition

10 else
11 No offer
12 end

13 Algorithm for dynamic offer
14 set i = 1% // cutail of generation in percentage

15 while i ≤ 100 do
16 Total new discomfort = Compatibility Check(Best & worst hours,i)
17 if Total new discomfort <Total actual discomfort then
18 Store order-pair (i, Total new discomfort) into discomfort-track-list
19 else
20 break
21 end
22 increment in i by 1

23 end
24 if discomfort-track-list then
25 Sort discomfort-track-list in ascending order w.r.t Total new discomfort
26 Pick the first order pair from discomfort-track-list & set the value of α
27 Make Offer(α) // amount to be given and taken from the

coalition

28 else
29 No offer
30 end

broadcasts the invitation message to join its coalition along with the informa-
tion of its average discomfort for the worst and best hours. A new community
must remain with the coalition it joins for at least one day. In addition to what
each coalition coordinator agent does, all communities also calculate their own
discomfort level at the end of each day (see Algorithm 2). If the existing dis-
comfort level of the community is less than its rolling average discomfort, then
the community is not interested in leaving its present coalition and will reject all
invitation messages (line 10 of Algorithm 2). Otherwise, the community analyzes

160 M. Yasir et al.

which coalition’s invitation suits it best. The community identifies the matched
and non-matched hours. Matched hours are those hours in which the invitation-
receiving community’s best and worst hours match the inviting coalition’s worst
and best hours. While the remaining hours of the invitation-receiving commu-
nity are declared as non-matched hours (line 2 of Algorithm 2). An invitation-
receiving community can only make offers to the inviting coalition if the matched
hours are present (line 3 of Algorithm 2).

The offer mentions how much electric power it can expect from coalition dur-
ing the community’s worst hours and how much power a community can give
to the coalition during the coalition’s worst hours. The offer could be either a
dynamic offer or a fixed offer. The community then makes offer for matched (by
using Algorithm 1) and non-matched hours (by using Algorithm 3). For non-
matched hours offer, a community calculates its average discomfort level over
the next 24 hours (line 1 of Algorithm 3). If the community employs a dynamic
offer mechanism, then the community offers a certain percentage of its genera-
tion (line 5 of Algorithm 3) to the coalition if the non-matched hour’s discomfort
is lower than the average discomfort of the next 24 hours. For example, if average
discomfort of the day is 5 and the discomfort of the non-matched hour 4 is 3, then
the value of ψ is 20% ((5-3)/10). However, if the non-matched hour’s discomfort
is higher than the average discomfort of the next day, then community expects
certain percentage of its deficit from the coalition (line 7 of Algorithm 3). In
contrast to dynamic offers, for a fixed offer of non-matched hours, a community
always uses fixed proportions for making offers for give and take to/from the
coalition. The offer made in non-matched hours either by using the dynamic
or fixed offer mechanism is always less than the offer made in matched hours.
Once a coalition receives an offer from a community, it calculates how much
the coalition’s average discomfort level would be decreased by inducting this
community. This calculation is done by adding and subtracting the power (the
amount offered by the prospective newcomer community) from the next day’s
data of the coalition and recalculating what the discomfort level would be. As
part of this calculation, the coalition also takes into consideration the location
of the prospective new member by calculating the expected transmission losses
associated with this community during power trading. These losses result in
deficits that affect the coalition’s discomfort level. The coalition then ranks the
offers in descending order in terms of how much they would reduce its discomfort
level, and then it selects the top community from the list and sends its willing-
ness to recruit the community. After receiving the willingness signal from the
coalition, the prospective community also performs the same calculations done
by the coalition and selects the best coalition that helps in reducing its own
discomfort level. The community then sends a joining message to that coalition,
while sending a refusal message to any other coalition.

Once the community joins the coalition, the community and coalition must
fulfill their commitments. We assume that there is no cheating in fulfilling these
commitments. However, sometimes the community or the coalition is unable
to comply with their commitments because they were not able to generate the

Dynamic Coalition Formation in Energy Micro-Grids 161

Algorithm 2. A community’s analysis of invitation
1 if current’s day discomfort value ≥ rolling average discomfort + β value then

// where β is the threshold value;
2 find matched and non-matched hours between community and invited

coalition;
3 if matched hours are found then
4 if community’s best hours = coalition’s worst hour & Vice versa then

// matched hours;
5 Make offer ;
6 Send offer to coalition;

7 else
8 Make offer for non-matched hours // Algorithm 3

9 else
10 Reject coalition’s invitation

11 else
12 Reject coalition’s invitation

required power due to the intermittent nature of renewable sources such as wind
and sun.

5 Simulation Results

In our experiments, we investigated two questions: 1) What would be the impact
on discomfort level of a community present in a coalition as compared to a
community in no coalition? 2) What is the impact of different power-sharing
mechanisms on the discomfort level (of a community and the system) in dynamic
coalition formation.

5.1 Experimental Setup

Our experiments involved forty communities (C1 to C40). Each community has
an average hourly consumption of 1150 kWh and a wind turbine or array of
solar photovoltaic (PV) of 2000 kW generation capacity. However, the power
generation values for an individual community will vary, due to the dispersed
geography involving different wind speeds and solar radiations.

It could be possible that a community having renewable energy generation
(either wind or solar PV) always or most of the time has surplus. Similarly, it
is possible that a community has no surplus or most of the time it faces deficit
of generation. For our model, we have chosen a general configuration such that
most of the communities are in deficit most of the time. However, our mechanism
is also applicable to situations where communities have a surplus most of the
time. In our system, 13 communities have arrays of solar PV and the rest of

162 M. Yasir et al.

Algorithm 3. Algorithm for making offers during non-matched hours by
a community
1 Calculate the average discomfort of the day;
2 if offer mechanism is dynamic then
3 foreach non-matched hours do
4 if average discomfort of the day ≥ discomfort of non-matched hour then
5 ψ = (average discomfort of the day) - (discomfort of non-matched

hour);
// ψ is the proportion of generation a community is

willing to give to coalition for the hour

6 else
7 η = (discomfort of the non-matched hour) - (average discomfort of

the day);
// η is the proportion of its deficit a community is

expecting to take from coalition

8 else
// offer mechanism is fixed;

9 α is the certain fixed value (in percentage);
10 if average discomfort of the day ≥ discomfort of non-matched hour then
11 community can give α of its generation to coalition
12 else
13 community expects α of its deficit from the coalition

them have wind turbines. The power generated by a wind turbine is calculated
by using the formula [12]:

P = 1/2ρAV 3Cp (5)

where P is the power in watts (W), ρ is the air density in kilograms per cubic
meter (kg/m3), A is the swept rotor area in square meters (m2), V is the wind
speed in meters per second (m/s), and Cp is the power co-efficient.

We obtained the wind speed (V) data of forty different New Zealand areas from
the National Institute of Water and Atmospheric (NIWA) database [21]. We also
obtained hourly power consumption data of forty different places from the Prop-
erty Services office of the University of Otago [15]. The assumptions made while
running our experiments are as follows. All communities are situated at sea level,
so the air density value of is 1.23 kg/m3. The blade length of the wind turbines is
45 meters (m). The cut-in and cut-out wind speeds of the turbines are 3 and 25
meters per second (m/s), respectively. Theoretically the maximum value of Cp is
59%, which is known as the Betz limit [12]. However, in practice the value of Cp is
in between 25%-45% [12], depending upon the height and size of the turbine. The
value of the power co-efficient (Cp) is 0.4 (i.e. 40%). Similarly, the power generated
by a solar PV is calculated by using the formula [7]:

E = A ∗ r ∗ H ∗ PR (6)

where E is the power in kilowatt-hour (KWh), A is the total solar panel area

Dynamic Coalition Formation in Energy Micro-Grids 163

(m2), r is the yield of solar panel (%). The value of r for PV module of 4kWp
is 15%, H is the solar radiation in kilo-Watt per meter square (kW/m2), PR
is performance ratio, which ranges between 0.5 and 0.9, with a default value of
0.75. We obtained the solar radiation (H) data of 13 different New Zealand areas
from the National Renewable Energy Laboratory [10].

Fig. 2. Proximity based coalition

The simulation runs for 4 years
(i.e. 48 months). At the start of the
simulation, there are four coalitions
present in the environment. Commu-
nities are initially assigned to each
coalition on the basis of proximity,
i.e. communities located in the same
region of the grid belong to one coali-
tion (see Figure 2). In Figure 2, house
symbols represent a community. The
arrow points to the centroid of the
coalition. The communities within a
coalition can transfer power among
each other by using nearest point in
the transmission line. The transmis-
sion lines are the black horizontal and
vertical lines intersecting at the cen-
ter of the figure. Transmission loss is
calculated by using Equation 3. The

initial value of R (resistance in Equation 3) in our experimental setup is 0.2
ohms per km. The value of θ is 0.02. The value of U is 33 kV. We setup the
distribution network within a square region of 500 km x 500 km.

Fig. 3. C1: Standalone vs. Coalition Fig. 4. C2: Standalone vs. Coalition

164 M. Yasir et al.

5.2 Results

All communities in the environment used our dynamic coalition formation mech-
anism. As stated above, we examined two areas: a) the effect of coalition sharing
and b) the effect of dynamic versus fixed offer.

Coalition vs no Coalition
In order to measure the effects of our dynamic coalition mechanism, we con-
ducted comparative experiments by using three other approaches: standalone,
fixed coalition, and the centralized system (discussed in Section 3). We show the
effectiveness of our coalition mechanism at two levels: at the individual commu-
nity level and at the system level (the aggregate result of all communities). Due
to space constraints, we are not able to show the results of all the communities
present in the environment. So at the community level, we have chosen two rep-
resentative communities (C1 and C2). The total power generation for C1 during
the simulated four years period was more than its demand, while the overall
generation of C2 was less than its demand during that period.

Fig. 5. System level: Standalone vs. Coali-
tion

Figures 3 and 4 show the discom-
fort level of community C1 and C2
over the simulated time period of four
years respectively. The results show
that the community employing the
standalone (no coalition) approach
suffers much more discomfort, as no
other community is able to help the
standalone community. The commu-
nity staying in a fixed coalition does
better compared to the community
in standalone mode, because, it gets
help from other members of the coali-
tion when it has severe discomfort
levels. However, when the community
employs our dynamic coalition app-
roach, it experiences lower discomfort
levels compared to using the alterna-
tive approaches. This is because, com-
munities present in a coalition that

complement each other for one day may not complement on the next day, as
the wind or solar pattern changes from minute to minute and the prediction
of wind pattern for more than 24 hours is not very accurate [9]. So our app-
roach lets the communities leave their original coalition (created on the basis of
proximity) and join the coalition that has a contrasting wind pattern or solar
radiation. Similarly, Figure 4 illustrates the discomfort level of community C2
for the simulated time period of four years. Again, when the community oper-
ates under the dynamic coalition formation suffers less discomfort compared to

Dynamic Coalition Formation in Energy Micro-Grids 165

the community configurations using the fixed coalition and the standalone app-
roach. Figure 5 shows the average discomfort of all 40 communities (i.e. the
system level result) in three configurations. It highlights that the dynamic coali-
tion is the best in reducing the discomfort of all the communities. The results
(Figure 3-5) clearly show that the dynamic coalition formation mechanism not
only helps in reducing the discomfort in the individual community, but it is also
helpful in reducing discomfort at the societal level. By employing our dynamic
coalition formation approach, communities find the coalitions that complement
the best and worst hours of each other. As a result, there is an overall reduction
in the discomfort at the system level.

Fig. 6. Comparison of C1’s discomfort
in different approaches

Fig. 7. Comparison of C2’s discomfort
in different approaches

Dynamic Coalition: Fixed vs Dynamic Offers
In Section 4, we described two methods (fixed and dynamic) of making offering
in the dynamic coalition formation mechanism. We compared these two meth-
ods with the centralized system at the community and at the system level. In
the fixed offer mechanism, we ran the experiments by varying the value of α
(Algorithm 1) i.e. 10%, 40% , and 80%.

Figure 6 depicts the result when C1 employed the two approaches for dynamic
coalition formation. The result shows that the fixed offer approach does not give
the optimal reduction in discomfort unless the community knows the best value
of α. However, in dynamic offers, C1 does not need to know the value of α
which gives the least possible discomfort. In our experiments, after trial and
error we found that the optimal value of α in fixed offers is 40%. Any increase
or decrease in the optimal value of α (i.e. 10% or 80%) results in the increase
of discomfort level. 40% is the optimal value of α for the configuration we had
in our experiments. However, this is likely to change based on the underlying
data (e.g. sun and wind), whereas dynamic offers always finds the best possible
value to offer, which results in reducing its discomfort without any trial and error

166 M. Yasir et al.

method on any data set. We also found that the dynamic coalition formation
by using dynamic offers is also significantly closer to the centralized system
which is considered to be the optimally arranged power sharing mechanism.
However, because of the centralized system’s single-point-of-failure nature, it is
not resilient. Similarly, Figure 7 shows the result of C2, where a similar trend of
result was observed. The dynamic offer mechanism gives the highest reduction
in discomfort and is closer to the centralized system approach.

Fig. 8. System’s discomfort level in low
losses configuration

At the system level, it was also
evident that the dynamic coalition
with dynamic offers performs better
than others. We ran our dynamic
coalition formation mechanism using
fixed and dynamic offers on low-
loss transmission systems. Results are
shown in Figure 8. We found the
dynamic coalition formation mecha-
nism using dynamic offer performs
better and closer to the central-
ized system. Hence by employing our
dynamic coalition formation using
dynamic offer, not only was the dis-
comfort reduced significantly, but it
also overcomes the issue of single-
point-of-failure present in the central-
ized system. We also conducted the
same set of experiments on high trans-

mission loss systems and found the same trends also exist.

6 Conclusion and Future Work

In this paper, we have presented our dynamic coalition-formation mechanism for
micro-grids when they operate in a situation where there is no available support
from a main utility grid. The goal of the coalition formation is to reduce the
discomfort of communities because of deficit power generation.

Experiments show that our mechanism of dynamic coalition formation using
dynamic offers is effective in reducing discomfort level (i.e. discomfort) of a
communities. We have also shown that, compared to the standalone, fixed coali-
tion, and dynamic coalition formation using fixed offer approaches, the dynamic
coalition with dynamic offers outperforms and reduces the discomfort level at
community and at the system level by considerable amounts. We believe the
mechanism presented in this paper can be used by remote (rural) communi-
ties to reduce their discomfort by improving the availability of power required
through local power sharing, while avoiding the reliance of the main utility grid.

For future work, we intend to introduce a split and merge algorithm for the
coalition, so that coalitions could merge with other coalitions in order to more
optimally reduce transmission losses.

Dynamic Coalition Formation in Energy Micro-Grids 167

References

1. Carlsson, F., Martinsson, P.: Does it matter when a power outage occurs? A choice
experiment study on the willingness to pay to avoid power outages. Energy Eco-
nomics 30(3), 1232–1245 (2008)

2. Carlsson, F., Martinsson, P., Akay, A.: The effect of power outages and cheap talk
on willingness to pay to reduce outages. Energy Economics 33(5), 790–798 (2011)

3. Chakraborty, S., Nakamura, S., Okabe, T.: Scalable and optimal coalition forma-
tion of microgrids in a distribution system. In: IEEE PES Innovative Smart Grid
Technologies, pp. 1–6, Europe, October 2014

4. de O Ramos, G., Burguillo, J.C., Bazzan, A.L.: Dynamic constrained coalition for-
mation among electric vehicles. Journal of the Brazilian Computer Society 20(1),
8 (2014)

5. Decker, K.S., Kamboj, S., Kempton, W.: Deploying power grid-integrated electric
vehicles as a multi-agent system. In: 10th International Conference on Autonomous
Agents and Multi-agent Systems, AAMAS, pp. 13–20, Taipei (2011)

6. Fadlullah, Z.M., Nozaki, Y., Takeuch, A., Kato, N.: A survey of game theoretic
approaches in smart grid. In: International Conference on Wireless Communica-
tions and Signal Processing, WCSP, Nanjing (2011)

7. Ganguli, S., Singh, J., Engineering, I., Engineering, E., Sangrur, T.: Estimat-
ing the Solar Photovoltaic generation potential and possible plant capacity in
Patiala. International journal of Applied Engineering Research 1(2), 253–260
(2010). Dindigul

8. Jacobson, M.Z., Delucchi, M.A.: Providing all Global Energy with Wind, Water,
and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of
Infrastructure, and Materials. Energy Policy 39(3), 1154–1169 (2011)

9. Labortay, N.R.E.: Solar and Wind Forecasting. http://www.nrel.gov/electricity/
transmission/resource forecasting.html. [Accessed on 10 April 2015]

10. Labortay, N.R.E.: Solar Radiation Research. http://www.nrel.gov/solar radiation/
facilities.html/. [Accessed on 13 May 2015]

11. McArthur, S., Davidson, E., Catterson, V., Dimeas, A.: Multi-Agent Systems for
Power Engineering ApplicationsPart I: Concepts, Approaches, and Technical Chal-
lenges. Power Systems 22(4), 1743–1752 (2007)

12. Miller, A., Muljadi, E., Zinger, D.S.: A Variable Speed Wind Turbine Power Con-
trol. Energy Convers. 12(2), 181–186 (1997)

13. Mondal, A., Misra, S.: Dynamic coalition formation in a smart grid: a game theo-
retic approach. In: 2013 IEEE International Conference on Communications Work-
shops (ICC), pp. 1067–1071. IEEE, Budapest (2013)

14. Oliveira, P., Pinto, T., Morais, H., Vale, Z.A., Praça, I.: MASCEM an electricity
market simulator providing coalition support for virtual power players. In: 15th
International Conference on Intelligent System Applications to Power Systems,
2009, ISAP 2009, pp. 1–6. IEEE, Curitiba (2009)

15. Pietsch, H.: Property service Division. http://www.propserv.otago.ac.nz/.
[Accessed on 25 September 2014]

16. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘Smarts’
Into the Smart Grid: A Grand Challenge for Artificial Intelligence. Communica-
tions of the ACM, 86–97 (2012)

17. Saad, W., Han, Z., Poor, H.: Coalitional game theory for cooperative micro-grid
distribution networks. In: 2011 IEEE International Conference on Communications
Workshops (ICC), pp. 1–5. IEEE, Kyoto (2011)

http://www.nrel.gov/electricity/transmission/resource_forecasting.html
http://www.nrel.gov/electricity/transmission/resource_forecasting.html
http://www.nrel.gov/solar_radiation/facilities.html/
http://www.nrel.gov/solar_radiation/facilities.html/
http://www.propserv.otago.ac.nz/

168 M. Yasir et al.

18. Saad, W., Han, Z., Poor, H.V., Bas, T.: Game Theoretic Methods for the Smart
Grid. Sig. Process. Mag. IEEE 29(5), 86–105 (2012)

19. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition struc-
ture generation with worst case. Artif. Intell. 111(1–2), 209–238 (1999)

20. Shaalan, A.M.: Outages Cost Estimation for Residential Sector. Journal of King
Abdulaziz University 12(2), 69–79 (2000)

21. The National Climate Database. NIWA, The National Institute of Water and
Atmospheric Research (2014)

22. Yasir, M., Purvis, M.K., Purvis, M., Savarimuthu, B.T.R.: Agent-based community
coordination of local energy distribution. Ai & Society, December 2013

On the Hierarchical Nature
of Partial Preferences

Luigi Sauro(B)

Department of Electrical Engineering and Information Technologies,
Università di Napoli “Federico II”, Naples, Italy

luigi.sauro74@gmail.com

Abstract. In this work we generalize classical Decision Theory by con-
sidering that a preference relation might not be total. Incomplete prefer-
ences may be helpful to represent those situations where, due to lack of
information, the decision maker would like to maintain different options
alive and defer the final decision. In particular, we show that, when
totality is pulled out, different formalizations of classical Decision The-
ory become not equivalent. We provide a hierarchical characterization
of such formalizations and show that some derived properties of classi-
cal Decision Theory, such as justification, no longer hold. Consequently,
whenever profitable, justification has to be reintroduced into the theory
as an independent axiom.

1 Introduction

In recent years, “Economic Paradigms in Multiagent Systems” has become a
fruitful area of research.1 Decision Theory and its axiomatic formalization of
preferences play a foundational role of such paradigms, thus, when we import
an economic paradigm into our field (e.g. Game Theory or Social Mechanism
Design), we are tacitly importing such a model of agent’s preferences.

In his pioneering work on Decision Theory [11], when delineating the very
basic properties of a preference relation ≺, Savage makes the following point:
given two potential outcomes f and g, it cannot be the case that f ≺ g and
g ≺ f at the same time. Clearly, this is logically equivalent to saying that either
f �≺ g or g �≺ f , which leads to three possible cases: (i) f �≺ g and g ≺ f , (ii)
f ≺ g and g �≺ f , or (iii) f �≺ g and g �≺ f . Then, he postulates that these
three cases are the only possible judgments concerning f and g. In particular,
the last case (f �≺ g and g �≺ f) allegedly implies that f and g are equivalent in
the sense that in any situation wherein these are the only two possible options,
the decision maker does not mind delegating to coin flipping. Consequently, in
classical Decision Theory a very fundamental property of a preference relation
is its totality.

From the theory’s very start, the hidden assumptions underlying this model
of an economic man has raised some criticisms, among which Simon’s was one
of the most influential:
1 A somewhat tautological piece of evidence is its being one of the topics of this

conference.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 169–184, 2015.
DOI: 10.1007/978-3-319-25524-8 11

170 L. Sauro

“This man is assumed to have knowledge of the relevant aspects of his
environment which, if not absolutely complete, is at least impressively
clear and voluminous. He is assumed also to have a well-organized and
stable system of preferences, and a skill in computation that enables
him to calculate, for the alternative courses of action that are available
to him, which of these will permit him to reach the highest attainable
point on his preference scale” [12].

Based on his criticism, Simon moved towards a problem-solving perspective
which was extremely influential in the field of Artificial Intelligence.2 However,
it would be wrong to look at Decision Theory and Problem Solving as Eteocles
and Polynices. To some extent, Simon’s criticism was already considered by the
founders of Decision Theory:

“It is conceivable and may even in a way be more realistic to allow for
cases where the individual is neither able to state which of two alter-
natives he prefers nor that they are equally desirable. How real this
possibility is, both for individuals and for organizations, seems to be an
extremely interesting question, but it is a question of fact. It certainly
deserves further study.” [10].

Several relevant application domains would advocate the foregoing consid-
erations. Preferences often result from complex trade-offs between different
attributes (functionalities, cost, Quality of Service, information disclosure risks,
etc.) a generic user may only have a vague idea of. Moreover, in some cases the
decision maker is actually a collectivity where internal debate does not easily
end up with a total preference.

Finally, from a MAS perspective, we generally develop software agents act-
ing on behalf of real users. Clearly, a related issue is how users’ preferences are
actually transferred to the delegated agents. If an agent admits total preferences
only, a user would be forced to pre-emptively disabimguate all (possibly unex-
pected) options and typically one is reluctant to identify indecisions due to lack
of knowledge or still trembling desires with indifference. Furthermore, albeit the
user conforms with a classical economic man, her preference relation could be
so voluminous and lacking of regularities that it could not be entirely and effi-
ciently injected into the software agent – even if ceteris paribus techniques are
adopted [7]. The foregoing arguments end up with the following consideration,
if Savage judged sufficient to consider three possible options (choose f , choose
g, and flip a coin), we propose a fourth one for the delegated agent: defer the
decision and ask the user again. This involves distinguishing between indifference
and incomparability.

Besides foundational issues and motivations, you may think that, from a
technical point of view, dealing with incomplete preferences is quite a straight-
forward task: it simply suffices to replace totality with reflexivity. In this work,
we show that this is not the case. Indeed, Classical Decision Theory can be mod-
elled by several formalizations which turn out to be variants of the same theory.
2 Together with Newell, he won the Turing Award in 1975.

On the Hierarchical Nature of Partial Preferences 171

However, we show that their equivalence is inherently guaranteed by the total-
ity axiom; as a consequence, by weakening totality in favour of reflexivity, the
resulting axiomatic systems characterize different notions of partial preference.
Clearly, any debate concerning which of these should be adopted would profit
from formal properties. Thus, we first start to delineate the hierarchical struc-
ture underlying such axiomatizations. Then, we point out some basic properties
that can be derived in any of the considered theory. Finally, we also identify a
justification property which may be useful to model how preferences are injected
from a user into the software agent. It turns out that the justification property
cannot be derived from any of the axiomatizations taken into account, therefore,
you have to buy it as an independent axiom. We also show that the justification
property allows to prove that gambling over incomparable alternatives never
comes up with a better outcome.

In Section 2, we show two motivating scenarios where considering preferences
as incomplete seems to be appropriate. In Section 3, we introduce four equivalent
variants of classical Decision Theory and enlighten mutual dependencies of their
axioms. Section 4 shows the hierarchical nature of different notions of partial
preferences obtained from the previous classical systems by replacing totality
with reflexivity. Section 5 shows some shared properties of partial preferences
whereas Section 6 focuses on the independent justification property. Section 7
examines previous investigations on partial preferences. Conclusions end the
paper.

2 Motivating Scenarios

In this section we introduce two scenarios where partial preferences seem to
provide a more natural way to describe a decision maker, or a software agent
behaving on its behalf, compared with total preferences.

In the first scenario, Bob wants to learn to play the piano and posts a request
on a consumer-to-consumer social network. Soon after, he receives offers from
two musicians, Carl and Mary. Carl provides two options: a 5 people class for 15
dollars per person or a one-to-one class for 35 dollars. Mary offers two similar
options: a 3 people class for 20 dollars per person or a one-to-one class for 40
dollars. Furthermore, they both offer a trial lesson. Regarding Carl’s options,
Bob thinks that 5 people are too many for a class, thus he prefers the one-to-one
option. On the contrary, he judges the price difference between Mary’s options
somewhat excessive, hence he prefers the 3 people class. If someone asked Bob
“Do you prefer Mary’s 3 people class or Carl’s one-to-one class?”, Bob would
probably answer “I do not know, I first have to attend the trial lessons”. Notice
that this is different from saying that the two options are equivalent, because in
that case Bob would simply flip a coin and choose one of them. On the contrary,
it is more natural to think that these options are initially incomparable and Bob
will use the trial lessons to disambiguate them.

More generally, in the absence of complete information it might be difficult
for an individual to figure out a consistent total order over the bids and choose
one of them in a single step. On the contrary, making a decision can be viewed

172 L. Sauro

as a multiple step process where offers are initially filtered according to a partial
preference relation. Then, depending on the resulting offers, an individual can
acquire further information and possibly refine her ranking.

In the second scenario, Alice’s father has finally agreed to buy her a smart-
phone, and now she is browsing Ebay for possible offers. Unfortunately, the
list is huge and patience is not Alice’s forte. So, she would like to be assisted
by a software agent to filter out undesired options. The software agent accepts
constraints such as maximum cost and size, color restrictions, etc., and also a
preference relation as a total order over bids. Then, according to the specified
preference relation, the agent returns the best offer. Clearly, Alice’s desires are
influenced by several attributes such as operating system, color, weight, brand,
and so on. For instance, she has a preference over operating systems in the follow-
ing decreasing order: OS1, OS2, and OS3; over colors: blue, red, black, white; and
over brands: Brand1, Brand2, Brand3. Furthermore, out of benevolence for her
father, given a specific model, the cheaper the better. However, such preferences
over single attributes do not constitute a total order. Moreover, Alice cannot
establish a priority over attributes, for instance she prefers a Brand3 phone with
operating system OS1 to a Brand2 with operating system OS2, but she prefers
a Brand1 OS2 phone to a Brand2 OS1. Alice soon realizes that providing a total
order to the software agent is frustrating and requires about the same effort as
comparing all the offers by herself. This scenario reveals the following issue: in
designing a software agent that behaves on behalf of real users, we have to take
into account how users can instruct the agent about their own preferences. In
electronic markets where the number of offers can be huge, it could be unfeasible
to transfer an exact representation of users’ desires into a software agent. In this
case, the agent should make do with an approximate representation of users’
desires as a partial order and return a restricted list of choices from which the
user can select the preferred one. As a further advantage, the user retains the
ability to apply unforeseen, situation-specific knowledge and preferences that
have not been formalized in advance.

3 Classical Preferences

In this section we introduce classical preference relations through four distinct
formalizations. Then, by proving their mutual equivalence, we show the various
interdependencies between their axioms. Such a result will be used in the next
section when we weaken such theories by allowing preferences to be partial.

First, some preliminary notions are needed. Let A be a finite set of alterna-
tives and Δ(A) the class of all probability distributions over A. In the deci-
sion making jargon, elements of Δ(A) are also called lotteries or outcomes.
Given two lotteries f, g ∈ Δ(A) and a real number α ∈ [0, 1], we denote with
αf + (1 − α)g, in short 〈α, f, g〉, the convex combination of f and g such that
〈α, f, g〉(a) = αf(a) + (1 − α)g(a), for all a ∈ A. Furthermore, for an alternative
a ∈ A, [a] denotes the degenerate distribution that assigns probability 1 to a
and probability 0 to all the other alternatives.

On the Hierarchical Nature of Partial Preferences 173

A (classical) preference relation � is a binary relation over lotteries in Δ(A)
which satisfies the following axioms:

1. f � g or g � f ;
2. if f � g and g � h, then f � h;
3. for each 0 ≤ α ≤ 1 and h, f � g iff 〈α, f, h〉 � 〈α, f, h〉;
4. if h ≺ 〈α, f, g〉 (resp. 〈α, f, g〉 ≺ h), for all 0 < α < 1, then f �≺ h (resp.

h �≺ g).

where, as usual, f ∼ g means that f � g and g � f , whereas f ≺ g means that
f � g and g �� f .

The first two axioms force � to be a total (hence reflexive) transitive relation,
that is a total preorder. Axiom 3 states that the preference between f and g is
preserved by diluition with h and, conversely, if we have a certain preference
between diluited lotteries, the same preference holds between the undiluited
lotteries f and g. Finally, axiom 4 is a very weak form of continuity, it just
prevents the case where the strict preference between a singleton h and the
closed line of all convex combinations involving f and g goes in one direction for
one end-point and in precisely the opposite direction for the entire remainder of
the segment.

It is worth noting that axioms 1–4 are not the only way to define classical
preference relations. Different equivalent axiomatizations have been proposed in
literature. For instance in [9] Myerson replaces 3 with axioms

6. if f ≺ g and 0 ≤ α < β ≤ 1, then 〈β, f, g〉 ≺ 〈α, f, g〉;
7. if f1 � g1, f2 � g2, and 0 ≤ α ≤ 1, then 〈α, f1, f2〉 � 〈α, g1, g2〉;
8. if f1 ≺ g1, f2 � g2, and 0 ≤ α ≤ 1, then 〈α, f1, f2〉 ≺ 〈α, g1, g2〉;

and axiom 4 with the axiom

9. if h � f and f � g, then there exists some 0 ≤ α ≤ 1 such that f ∼ 〈α, g, h〉.
Informally, axiom 6 establishes that � is monotonic under convex combinations.
Axiom 7 asserts a substitution principle: given a lottery between f1 and f2, if
we substitute each of them with a better outcome (i.e. g1 and g2, respectively),
then we obtain a better lottery. Axiom 8 is a strict version of 7. Finally, axiom 9
is a different notion of continuity assuring that the convex combinations of two
outcomes f and g encompass all possible gradations of the preference relation
between f and g.

Clearly, we can also consider mixed cases where only axiom 3 is replaced with
axioms 6–8 (respectively, axiom 4 with 9). Doing so, we obtain four different
axiomatizations of the Classical Decision Theory, namely CDT0, CDT1, CDT2,
and CDT3 (see Table 1). Generally speaking, we say that a set of axioms T2

entails another set of axioms T1, T1 ≤ T2, if and only if all the preference relations
satisfying T2 satisfy T1 as well. We show that CDT0–CDT3 are equivalent in
the sense that they characterize the same set of preference relations. First, we
need some preliminary results that point out the interdependencies among the

174 L. Sauro

Table 1. The four axiomatizations of classical preference relations CDT0, CDT1,
CDT2, and CDT3.

Axioms 1,2 Axiom 3 Axioms 6, 7, 8 Axiom 4 Axiom 9

CDT0 � � �
CDT1 � � �
CDT2 � � �
CDT3 � � �

axioms introduced above.3 Lemma 1 shows that to obtain axioms 6, 7 and 8
from axiom 3, totality is not needed. In particular, any preorder (i.e. transitive
and reflexive relation) which satisfies axiom 3 also satisfies axioms 6, 7 and 8.

Lemma 1. Let � be reflexive. Axioms 2 and 3 imply axioms 6, 7 and 8.

Proof. Assume that f ≺ g and 0 ≤ α < β ≤ 1. Let γ′ = β − α, γ = α
1−γ′ and

h = 〈γ, f, g〉. Since 0 ≤ α < β ≤ 1, both γ′ and γ are in the interval [0, 1]. Since
f ≺ g, axiom 3 implies 〈γ′, f, h〉 ≺ 〈γ′, g, h〉. Moreover, it is easy to see that
〈γ′, f, h〉 = 〈β, f, h〉 and 〈γ′, g, h〉 = 〈α, f, g〉. Consequently, axiom 6 holds.

Assume that f1 � g1, f2 � g2, and 0 ≤ α ≤ 1. Due to axiom 3 and
f1 � g1, 〈α, f1, f2〉 � 〈α, g1, f2〉. Analogously, axiom 3 and f2 � g2 imply that
〈α, g1, f2〉 � 〈α, g1, g2〉. Finally, by transitivity 〈α, f1, f2〉 � 〈α, g1, g2〉, hence
axiom 7 holds.

Finally, assume that f1 ≺ g1, f2 � g2, and 0 ≤ α ≤ 1. As in the previous case,
by axiom 3, 〈α, f1, f2〉 ≺ 〈α, g1, f2〉 and 〈α, g1, f2〉 � 〈α, g1, g2〉 which means that
〈α, f1, f2〉 ≺ 〈α, g1, g2〉. Therefore, also axiom 8 holds.

The following lemma goes in the opposite direction, however to obtain axiom 3
from 2, 7, and 8 we require � to be a total preorder.

Lemma 2. Axioms 1, 2, 7, and 8 imply axiom 3.

Proof. Let h be a lottery and 0 ≤ α ≤ 1. Let f1 = f , g1 = g and f2 = g2 = h, if
f � g, then by axiom 7 we have that 〈α, f, h〉 � 〈α, g, h〉.

Conversely, assume that for some gamble h and 0 ≤ α ≤ 1, 〈α, f, h〉 �
〈α, f, h〉. We apply the contrapositive of axiom 8, from 〈α, g, h〉 �≺ 〈β, f, h〉 we
obtain g �≺ f . Then, since � is a total relation, it holds that f � g.

The following two lemmas concern axioms 4 and 9. As expected, axiom 9
defines a stronger notion of continuity which alone suffices to derive axiom 4.
Conversely, we can get axiom 9 back from 4 with the help of totality and the
strict substitution principle.

Lemma 3. Axioms 1, 8 and 4 imply axiom 9.

3 Notice that, at the best of our knowledge, such an analysis of axioms’ interdepen-
dencies has not been shown elsewhere. In particular, it will also used in Section 4 to
show the hierarchical nature of partial preferences.

On the Hierarchical Nature of Partial Preferences 175

Proof. Assume h � f � g, notice that if h ∼ f (resp. f ∼ g) axiom 9 trivially
holds with α = 0 (resp. α = 1). It remains the case h ≺ f ≺ g. Let A = {α ∈
[0, 1] | f ≺ 〈α, g, h〉} and B = {α ∈ [0, 1] | 〈α, g, h〉 ≺ f}. Clearly, A ∩ B = ∅,
1 ∈ A and 0 ∈ B.

Assume that β1 and β2 are in A and β1 < β2, this means that f ≺ h1 and
f ≺ h2 where h1 = 〈β1, g, h〉 and h2 = 〈β2, g, h〉. It is easy to verify that for
each β1 ≤ β ≤ β2, there exists an 0 ≤ α′ ≤ 1 such that 〈β, g, h〉 = 〈α′, h1, h2〉.
Then, by applying axiom 8 with f1 = f2 = f , g1 = h1, and g2 = h2, it holds
that f ≺ 〈α′, h1, h2〉. Consequently, A is an interval of [0, 1]. Similarly, it can be
shown that B is an interval as well.

Let δ be the greatest lower bound of A and γ the least upper bound of B
– clearly, the least upper bound of A is 1 and the greatest lower bound of B
is 0. In case γ < δ, by the totality axiom we would have that for all λ ∈ (γ, δ)
f ∼ 〈λ, g, h〉 and hence the thesis. Assume then that γ = δ. Let k = 〈γ, g, h〉,
notice that for each 0 < α′ < 1, 〈α′, k, h〉 ≺ f and f ≺ 〈α′, g, k〉, then by axiom 4
f �≺ k and k �≺ f . By totality, f �≺ k implies k � f and k �≺ f implies f � k,
consequently f ∼ k and hence the thesis.

Lemma 4. Axiom 9 implies axiom 4.

Proof. By contradiction, assume that f ≺ h and for all 0 < α′ < 1, h ≺ 〈α′, f, g〉.
Let k = 〈α, f, g〉, for some 0 < α < 1. since f ≺ h and h ≺ k, by axiom 9 there
exists a β ∈ [0, 1] such that h ∼ 〈β, f, k〉. Therefore, we have that h ∼ 〈γ, f, g〉,
where γ = β + (1 − β)α belongs to the interval [α, 1]. This is a contradiction
because for all α′ ∈ [α, 1) h ≺ 〈α′, f, g〉 and for α′ = 1, f ≺ h.

Analogously, it can be proved that if for all 0 < α′ < 1, 〈α′, f, g〉 ≺ h, then
h �≺ g. Consequently, axiom 4 holds.

As final result, we use the previous lemmas to show that CDT0, CDT1, CDT2,
and CDT3 are variants of the same theory.

Theorem 1. Theories CDT0, CDT1, CDT2, and CDT3 are equivalent.

Proof. Let � be a relation satisfying CDT0. By the definition of CDT0 and
Lemma 2, � satisfies axion 3 and hence CDT1. Assume now that � satisfies
CDT1, by Lemma 1 � satisfies axioms 1, 8, and 4. Therefore, due to Lemma 3,
� also satisfies axiom 9 and hence CDT3. In turn, if � satisfies CDT3, by
applying Lemma 1, it satisfies CDT2 as well. Finally, Lemma 4 assures that
each � satisfying CDT2 satisfies CDT0 as well. In summary, it holds that

CDT0 ≥ CDT1 ≥ CDT3 ≥ CDT2 ≥ CDT0 .

Consequently, these formalizations are all equivalent.

4 Partial Preferences

In this section we assume that outcomes may be incomparable and subsequently
preference relations are modelled as (possibly partial) preorders. For this reason,
we weaken the totality in favour of reflexivity:

176 L. Sauro

1’. f � f ;

In particular, we focus on the theories PDT0, PDT1, PDT2 and PDT3 obtained
by replacing axiom 1 with 1’ in CDT0, CDT1, CDT2 and CDT3, respectively.

It is worth noting that the proof of CDT0–CDT3 equivalence makes use of
axiom 1 in Lemmas 2 and 3. We show that by weakening totality with reflexivity
PDT0–PDT3 are no longer equivalent. Lemma 5 simply applies Lemma 1 and 4
to reveal the entailment relations among PDT0–PDT3.

Lemma 5. The following conditions hold: (i) PDT0 ≤ PDT1, (ii) PDT0 ≤
PDT2, (iii) PDT1 ≤ PDT3, and (iv) PDT2 ≤ PDT3.

Proof. Conditions (i) and (iv) are a direct consequence of Lemma 1, whereas
conditions (ii) and (iii) derives from Lemma 4.

The following Lemmas 6–9 show that the entailment relations in Lemma 5
are actually strict.

Lemma 6. There exists a preference relation that satisfies PDT1 and does not
satisfy axiom 9. Consequently, PDT1 does not entail PDT2 and PDT3.

Proof. Let A = {a, b, c} and � be the preference relation � satisfying the fol-
lowing two conditions:

1. f ∼ g iff f = g;
2. f ≺ g iff f(a) < g(a).

First, we show that that � satisfies PDT1. Reflexivity and transitivity are imme-
diate. With respect to axiom 3, we distinguish two cases. The first case concerns
condition 1. For all α ∈ [0, 1] and ∀h ∈ Δ(A), the following chain of implications
holds:

f ∼ g ⇔ f = g

f = g ⇔ 〈α, f, h〉 = 〈α, g, h〉
〈α, f, h〉 = 〈α, g, h〉 ⇔ 〈α, f, h〉 ∼ 〈α, g, h〉 .

The second case takes into account condition 2, in particular for all α ∈ [0, 1]
and h ∈ Δ(A)

f ≺ g ⇔ f(a) < g(a)

f(a) < g(a) ⇔ αf(a) + (1 − α)h(a) < αg(a) + (1 − α)h(a) ⇔ 〈α, f, h〉 ≺ 〈α, g, h〉 .

With respect to axiom 4, per absurdum assume that for each α ∈ (0, 1), h ≺
〈α, f, g〉 and f ≺ h. On the one hand, f ≺ h implies f(a) < h(a), that is
h(a) = f(a) + δ, with δ > 0. On the other hand, for each 0 < α < 1, h(a) <

αf(a) + (1 − α)g(a). Now, let γ = g(a)−f(a)−δ
g(a)−f(a) . Since δ > 0, we have γ < 1.

Moreover, it is easy to verify that αf(a) + (1 − α)g(a) < h(a), for all γ < α <
1, a contradiction. Analogously, it can be proved that if for each α ∈ (0, 1),
〈α, f, g〉 ≺ h, then h �≺ g.

On the Hierarchical Nature of Partial Preferences 177

It remains to prove that � does not satisfy axiom 9. Let f , g and h be defined
as follows:

g =
1

2
[a] +

1

2
[b] + 0[c]

f = 0[a] + 0[b] + 1[c]

h =
1

8
[a] +

1

4
[b] +

5

8
[c]

By condition 2, f ≺ h ≺ g and by condition 1 〈α, f, g〉 ∼ h iff h = 〈α, f, g〉.
However, a and b have the same probability in any convex combination of f and
g, whereas they have different probabilities in h. This means that there does not
exist an α such that h = 〈α, f, g〉.
Lemma 7. PDT0 does not entail PDT2.

Proof. Consider the set of alternatives A = {a, b, c} and the preference relation
� defined in Lemma 6. We already know that � satisfies PDT1 and yet it does
not satisfy axiom 9 and hence PDT2. However, due to Lemma 5, � also satisfies
PDT0.

Lemma 8. There exists a preference relation that satisfies PDT2 and does not
satisfy axiom 3. Consequently, PDT2 does not entail PDT1 and PDT3.

Proof. Let A = {a, b} and � be the preference relation defined as follows, for all
f, g ∈ Δ(A),

f � g iff
1

g(b)
≤ 1

f(b)
or f = g = [a] .

Notice that, since 1
0 is undefined, [a] is comparable only with itself. Moreover,

in case f �= [a] and g �= [a], we have that g(b) − f(b) ≥ 0 (resp. g(b) − f(b) > 0)
iff f � g (resp. f ≺ g).

First, we show that all the axioms of PDT2 are satisfied. Reflexivity and
transitivity hold by construction. Assume that f ≺ g and 0 ≤ α < β ≥ 1. First,
notice that neither f nor g are [a], which is incomparable with all the other
lotteries. Let h = 〈β, f, g〉 and k = 〈α, f, g〉. It’s straightforward to see that
h(b)− k(b) = (β −α)(g(b)− f(b)). Since β > α and g(b) > f(b), h(b)− k(b) > 0,
subsequently 〈α, f, g〉 ≺ 〈β, f, g〉 and hence axiom 6 is satisfied.

Assume that f1 � g1 and f2 � g2. For some 0 ≤ α ≤ 1, let h = 〈α, f1, f2〉
and k = 〈α, g1, g2〉. Then, h(b)− k(b) = α(g1(b)− f1(b))+ (1−α)(g2(b)− f2(b)).
Now, consider the following four cases: Case 1) f1 = [a] and f2 = [a]. In this case
also g1 = g2 = [a], therefore trivially h � k. Case 2) f1 = [a] and f2 �= [a]. Then,
g1 = [a] and g2 �= [a] which means that both h and k are not [a]. Moreover,
since h(b) − k(b) = (1 − α)(g2(b) − f2(b)) and g2(b) − f2(b) is a positive number
by hypothesis, it holds that h � k. Case 3) f1 �= [a] and f2 = [a]. Analogously
to the previous case, it follows that h(b) − k(b) = α(g1(b) − f1(b)) ≥ 0, h � k.
Case 4) f1 �= [a] and f2 �= [a]. This means that also g1 �= [a] and g2 �= [a] and
hence both g1(b) − f1(b) and g2(b) − f2(b) are positive by construction. Then,

178 L. Sauro

h(b) − k(b) = α(g1(b) − f1(b)) + (1 − α)(g2(b) − f2(b)) ≥ 0, which means that
h � k. Since in all four cases h � k, axiom 7 holds. Analogously, in can be shown
that axiom 8 is satisfied as well.

Finally, let the antecedent of axiom 9 hold, h � f � g. If h = [a], then f
and g are equal to [a] too, this means that any α ∈ [0, 1] verifies f ∼ 〈α, g, h〉.
Therefore, assume that h �= [a] and consequently 0 < h(b) ≤ f(b) ≤ g(b) ≤ 1.
We distinguish two cases. In the first case h ∼ g, this means that h(b) = g(b) and
hence, as before, any α ∈ [0, 1] verifies f ∼ 〈α, g, h〉. In the second case, h ≺ g

(equivalently h(b) < g(b)). Then, by setting α = f(b)−h(b)
g(b)−h(b) , it is easy to verify

that α belongs to the interval [0, 1] and αh(b)+(1−α)g(b) = f(b). Consequently,
f ∼ 〈α, g, h〉.

It remains to prove that axiom 3 is not satisfied. Let f = [a], g = [b], h =
1
2 [a]+ 1

2 [b] and α = 1
2 . We have that 〈α, f, h〉 = 3

4 [a]+ 1
4 [b] and 〈α, g, h〉 = 1

4 [a]+
3
4 [b], consequently 〈α, f, h〉 � 〈α, g, h〉. However, since f and g are incomparable,
f �� g.

Lemma 9. PDT0 does not entail PDT1.

Proof. Consider A and � as defined in Lemma 8. We already know that �
satisfies PDT2 and yet it does not satisfy axiom 3 and hence PDT1. However,
due to Lemma 5, � also satisfies PDT0.

Finally, Theorem 2 summarizes the previous lemmas.

Theorem 2. The following relations hold: PDT0 < PDT1, PDT0 < PDT2,
PDT1 < PDT3, and PDT2 < PDT3. Moreover, neither PDT1 ≤ PDT2 nor
PDT2 ≤ PDT1.

Theorem 2 shows that the four axiomatizations PDT0–PDT3 actually character-
ize different sets of preference relations. Clearly, this gives room to debate which
of them is the most appropriate in general (if any) or with respect to a specific
application domain. It is out of the scope of the present work to go further on
foundational considerations, conversely we help fuel the debate by showing some
formal properties. A first of such properties is provided by Theorem 2 itself,
PDT0–PDT3 are not unrelated but lie in a hierarchy of strict entailments.

5 Common Properties of Partial Preferences

In this section, we show some properties that are valid in all PDT0–PDT3; as
such, they cannot be used to advocate any of them. Clearly, due to Theorem 2,
it will suffice to show that such properties hold in PDT0.

Given two distributions f, g ∈ Δ(A), we write f → g in case there exist ε > 0
and two alternatives a1 and a2 such that (i) [a1] ≺ [a2], (ii) g(a1) = f(a1) − ε,
g(a2) = f(a2) + ε, and (iii) for all a �= a1, a2, g(a) = f(a). Informally, when
f → g, g can be obtained from f by shifting a positive amount of probability
from an alternative a1 to a strictly preferred alternative a2. Then, denote by
f ⇒ g the transitive closure of →.

On the Hierarchical Nature of Partial Preferences 179

Theorem 3. Let � be a preference relation satisfying PDT0 and f, g ∈ Δ(A).
If f ⇒ g, then f ≺ g.

Proof. It suffices to show that f → g implies f ≺ g. Assume that for some
a1 and a2, where [a1] ≺ [a2], there exists ε > 0 such that f(a1) = g(a1) + ε

and f(a2) = g(a2) − ε. Let γ = g(a1) + g(a2) = f(a1) + f(a2), α = f(a2)
γ and

β = g(a2)
γ . Then, g can be written as 〈γ, g′, h〉 and f as 〈γ, f ′, h〉, where h is

a probability distribution such that h(a1) = h(a2) = 0, g′ = 〈β, [a2], [a1]〉 and
f ′ = 〈α, [a2], [a1]〉. Since [a1] ≺ [a2] and α < β, Axiom 6 implies that f ′ ≺ g′.
Then, due to Axiom 8, f ≺ g.

Another property that can be proved in PDT0 is dominance: if each alternative
coming from a distribution f is worse than all the alternatives from g, then f � g.
Preliminarily, given a distribution f ∈ Δ(A), the support of f , supp(f) = {a ∈
A | f(a) > 0}, is the set of alternatives to which f assigns positive probability.

Theorem 4. Let � be a preference relation satisfying PDT0 and f, g ∈ Δ(A).
If [a] � [a′], for all a ∈ supp(f) and a′ ∈ supp(g), then f � g.

Proof. We first show that for all a ∈ supp(f), [a] � g. The proof is by induction
on the cardinality n of supp(g) where the case n = 1 is trivial. Assume n > 1,
then g can be written as 〈α, [a′], g′〉, where a′ is a generic alternative from supp(g)
and g′(a′) = 0. Clearly, the distribution [a] can also be written as 〈α, [a], [a]〉. By
assumption a � a′ and, since the cardinality of g′ is n− 1, by induction [a] � g′.
Then, by applying Axiom 7 we have [a] � g.

Now, the proof is by induction on the cardinality m of supp(f) where the
base case m = 1 has been proved above. Assume m > 1 and let a ∈ supp(f), then
f can be written as 〈α, [a], f−a〉, where f−a(a) = 0 and f−a(a′) = f(a′)

1−f(a) for all
a′ ∈ supp(f) \ {a}. We already proved that [a] � g and by induction hypothesis
it holds also that f−a � g. Then, by writing g as 〈α, g, g〉 and applying Axiom 7
we have that f � g.

From Theorem 4, it is immediate to show that distributions over equivalent
alternatives are equivalent themselves.

Corollary 1. Let A′ ⊆ A be a subset of alternatives such that [a1] ∼ [a2], for all
a1, a2 ∈ A′. Then, for all lotteries f and g, if supp(f) ⊆ A′ and supp(g) ⊆ A′,
then f ∼ g.

6 The Justification Axiom

Clearly, by assuming possibly incomplete preferences, besides totality, some other
properties are lost too. Thus, an important issue is whether it is worth regaining
some of them. For instance, assume that f and g are incomparable lotteries and
let 0 ≤ α < β ≤ 1. Then, is it admissible that 〈α, f, g〉 ≺ 〈β, f, g〉? In [5] it has
been advocated that this may look inappropriate and, to some extent, the incom-
parability between distributions should persist also when they are combined. For
this reason a further axiom is considered:

180 L. Sauro

10. if 0 ≤ α ≤ 1, and 〈α, f1, f2〉 ≺ 〈α, g1, g2〉, then there exist j, k ∈ {1, 2} such
that fj ≺ gk.

Informally, the lottery 〈α, f1, f2〉 can be seen as a random choice which picks
f1 with probability α and f2 with probability 1 − α. Comparing 〈α, f1, f2〉
with another lottery 〈α, g1, g2〉 involves comparing four possible draws: (f1, g1),
(f1, g2), (f2, g1), and (f2, g2).4 If there is no draw in which the second compo-
nent is strictly better than the first one, axiom 10 requires that 〈α, g1, g2〉 is not
strictly preferred to 〈α, f1, f2〉.

In the perspective of the user-agent interaction, axiom 10 can be also seen as
follows: assume that the user tells the agent that 1

2 [a]+ 1
2 [b] is strictly preferred to

1
2 [c]+ 1

2 [d]. According to axiom 10, then, the agent will ask the user to justify this
claim in terms of degenerate lotteries. Consequently, such an axiom establishes
a bottom-up direction where the agent expects to be instructed on the simple
alternatives first and then on more complex lotteries.

The following theorem tells us that axiom 10 is independent from PDT0–
PDT3. Clearly, it suffices to show that axiom 10 is not entailed by PDT3.

Theorem 5. There exists a preference relation that satisfies PDT3 and does not
satisfy axiom 10.

Proof. We have to show that there exists a preference relation that satisfies
PDT3 and does not satisfy axiom 10. Let A = {a, b, c} and � be the preference
relation defined as follows:

1. f ∼ g iff f = g;
2. f ≺ g iff f(c) = g(c) and f(b) < g(b).

First, we show that � satisfies PDT3. Axioms 1 and 2 are trivial. Regarding
axiom 3, given a real number α ∈ [0, 1] and a lottery h ∈ Δ(A), let k1 = 〈α, f, h〉
and k2 = 〈α, g, h〉. By condition 1, it holds that:

f ∼ g ⇔ f = g ⇔ k1 = k2 ⇔ k1 ∼ k2 .

Moreover, by condition 2, we also have that f ≺ g iff f(c) = g(c) and f(b) < g(b)
iff k1(c) = k2(c) and k1(b) < k2(b) iff k1 ≺ k2. Therefore, axiom 3 is satisfied.

With respect to axiom 9, if f ∼ g (resp. h ∼ f), then f is trivially equivalent
to a convex 〈α, h, g〉 with α = 0 (resp. α = 1). Therefore, assume that h ≺ f ≺ g.
In this case, by construction, h(c), f(c), and g(c) are the same value v. This
means that the projection of h, f and g on the alternatives a and b lie on the
same straight line given by the equation x + y = 1 − v. Consequently, it is
straightforward to see that

α =
g(b) − f(b)

g(b) − h(b)
makes f = 〈α, h, g〉. Moreover, since h(b) < f(b) < g(b), α is in the interval
(0, 1). Consequently, axiom 9 is satisfied by �. It remains to show that � does

4 With probabilities α2, α(1 − α), α(1 − α) and (1 − α)2, respectively.

On the Hierarchical Nature of Partial Preferences 181

not satisfy Axiom 10. Let f1, f2, g1, and g2 be the following lotteries:

f1 =
7

40
[a] +

1

8
[b] +

7

10
[c]

f2 =
23

40
[a] +

1

8
[b] +

3

10
[c]

g1 =
1

8
[a] +

1

4
[b] +

5

8
[c]

g2 =
3

8
[a] +

1

4
[b] +

3

8
[c]

Let f be 〈 12 , f1, f2〉 and g be 〈 12 , g1, g2〉. Notice that for each i, j ∈ {1, 2}, fi(c) �=
gj(c) which means that fi and gj are incomparable. However, it is straightforward
to see that

f =
3

8
[a] +

1

8
[b] +

1

2
[c]

g =
1

4
[a] +

1

4
[b] +

1

2
[c]

and hence, by construction, f ≺ g.

Axiom 10 assures that if the supports of two lotteries f and g are pairwise
incomparable, then no strict preference between f and g can be derived. In
what follows f �≶ g means that f and g are incomparable according to a partial
preference �.

Lemma 10. Let f, g ∈ Δ(A) be such that, for all a ∈ supp(f) and a′ ∈ supp(g),
[a] �≶ [a′]. Then, either f �≶ g or f ∼ g.

Proof. Let nf = |supp(f)| and ng = |supp(g)|, we proceed by induction on
nf + ng. If nf + ng = 2, the thesis is obviously true. Otherwise, assume w.l.o.g.
that nf > 1 and let a ∈ supp(f). We can write f as 〈f(a), [a], f−a〉, where
f−a(a) = 0 and f−a(a′) = f(a′)

1−f(a) for all a′ ∈ supp(f) \ {a}. Since the support of
f−a is smaller than the one of f , we can apply the inductive hypothesis to the
pair f−a, g, obtaining that either f−a �≶ g or f−a ∼ g. We can also apply the
inductive hypothesis to the pair [a], g, obtaining that [a] �≶ g or [a] ∼ g. Assume
by contradiction that f 	
 g for some 	
∈ {≺,�}. By axiom 10, it holds [a] 	
 g
or f−a 	
 g, which is a contradiction.

Finally, the following generalization of Lemma 10 shows that alternatives that
are either incomparable or equivalent lead to distributions that are themselves
either incomparable or equivalent.

Theorem 6. Let f, g ∈ Δ(A) be such that, for all a ∈ supp(f) and a′ ∈ supp(g),
either [a] ∼ [a′] or [a] �≶ [a′]. Then, f �≶ g or f ∼ g.

Proof. The proof is very similar to the one of Lemma 10, where only the base
case is affected by the weakened assumption.

182 L. Sauro

Finally, axiom 10 has been motivated above by analysing which preferences
between f = 〈α, f1, f2〉 and g = 〈α, g1, g2〉 are admissible on the basis of the pref-
erences on the possible draws (f1, g1), (f1, g2), (f2, g1), and (f2, g2). In Table 2 we
perform such an analysis extensively. In particular, for each entry, the left-hand
side 	
1 	
2 	
3 	
4, with 	
∈ {∼,≺,�, �≶}, is a consistent combination f1 	
1 g1,
f1 	
2 g2, f2 	
3 g1, and f2 	
4 g2, whereas the right-hand side shows which
preference relations between f and g are consistent with PDT0 plus axiom 10.5

For example, the first entry is the case f1 ∼ g1, f1 ∼ g2, f2 ∼ g1, and f2 ∼ g2,
then according to axiom 7, f ∼ g is the only possibility. Conversely, in some

Table 2. Extensive analysis of axiom 10 in PDT0.

∼∼∼∼ ∼ ∼∼≺≺ ≺ ∼∼�� � ∼∼�≶ �≶ ∼ �≶
∼≺∼≺ ≺ ∼≺≺≺ ≺ ∼≺�∼ ∼ ∼≺�≺ ≺
∼≺�� � ∼≺��≶ ∼ ≺ � �≶ ∼≺�≶≺ ≺ ∼≺�≶ �≶ ∼ ≺ �≶
∼�∼� � ∼�≺∼ ∼ ∼�≺≺ ≺ ∼�≺� �
∼�≺�≶ ∼ ≺ � �≶ ∼��� � ∼��≶� � ∼��≶ �≶ ∼ � �≶
∼�≶∼�≶ ∼ �≶ ∼�≶≺≺ ≺ ∼�≶≺�≶ ∼ ≺ �≶ ∼�≶�� �
∼�≶��≶ ∼ � �≶ ∼�≶ �≶∼ ∼ ∼�≶ �≶≺ ≺ ∼�≶ �≶� �
∼�≶ �≶ �≶ ∼ �≶ ≺∼∼� ∼ ≺ � �≶ ≺∼≺∼ ≺ ≺∼≺≺ ≺
≺∼≺� ∼ ≺ � �≶ ≺∼≺�≶ ∼ ≺ �≶ ≺∼�� ∼ ≺ � �≶ ≺∼�≶� ∼ ≺ � �≶
≺∼�≶ �≶ ∼ ≺ �≶ ≺≺∼∼ ≺ ≺≺∼≺ ≺ ≺≺∼� ∼ ≺ � �≶
≺≺∼�≶ ∼ ≺ �≶ ≺≺≺∼ ≺ ≺≺≺≺ ≺ ≺≺≺� ∼ ≺ � �≶
≺≺≺�≶ ∼ ≺ �≶ ≺≺�∼ ≺ ≺≺�≺ ≺ ≺≺�� ∼ ≺ � �≶
≺≺��≶ ∼ ≺ � �≶ ≺≺�≶∼ ≺ ≺≺�≶≺ ≺ ≺≺�≶� ∼ ≺ � �≶
≺≺�≶ �≶ ∼ ≺ �≶ ≺�∼� ∼ ≺ � �≶ ≺�≺∼ ≺ ≺�≺≺ ≺
≺�≺� ∼ ≺ � �≶ ≺�≺�≶ ∼ ≺ � �≶ ≺��� ∼ ≺ � �≶ ≺��≶� ∼ ≺ � �≶
≺��≶ �≶ ∼ ≺ � �≶ ≺�≶∼� ∼ ≺ � �≶ ≺�≶∼�≶ ∼ ≺ �≶ ≺�≶≺∼ ≺
≺�≶≺≺ ≺ ≺�≶≺� ∼ ≺ � �≶ ≺�≶≺�≶ ∼ ≺ �≶ ≺�≶�� ∼ ≺ � �≶
≺�≶��≶ ∼ ≺ � �≶ ≺�≶ �≶∼ ≺ ≺�≶ �≶≺ ≺ ≺�≶ �≶� ∼ ≺ � �≶
≺�≶ �≶ �≶ ∼ ≺ �≶ �∼∼≺ ∼ ≺ � �≶ �∼≺≺ ∼ ≺ � �≶ �∼�∼ ∼ � �≶
�∼�≺ ∼ ≺ � �≶ �∼�� � �∼��≶ ∼ � �≶ �∼�≶≺ ∼ ≺ � �≶
�∼�≶ �≶ ∼ � �≶ �≺∼≺ ∼ ≺ � �≶ �≺≺≺ ∼ ≺ � �≶ �≺�∼ ∼ ≺ � �≶
�≺�≺ ∼ ≺ � �≶ �≺�� � �≺��≶ ∼ ≺ � �≶ �≺�≶≺ ∼ ≺ � �≶
�≺�≶ �≶ ∼ ≺ � �≶ ��∼∼ ∼ � �≶ ��∼≺ ∼ ≺ � �≶ ��∼� �
��∼�≶ ∼ � �≶ ��≺∼ ∼ ≺ � �≶ ��≺≺ ∼ ≺ � �≶ ��≺� �
��≺�≶ ∼ ≺ � �≶ ���∼ ∼ � �≶ ���≺ ∼ ≺ � �≶ ���� �
����≶ ∼ � �≶ ���≶∼ ∼ � �≶ ���≶≺ ∼ ≺ � �≶ ���≶� �
���≶ �≶ ∼ � �≶ ��≶∼≺ ∼ ≺ � �≶ ��≶∼�≶ ∼ � �≶ ��≶≺≺ ∼ ≺ � �≶
��≶≺�≶ ∼ ≺ � �≶ ��≶�∼ ∼ � �≶ ��≶�≺ ∼ ≺ � �≶ ��≶�� �
��≶��≶ ∼ � �≶ ��≶ �≶∼ ∼ � �≶ ��≶ �≶≺ ∼ ≺ � �≶ ��≶ �≶� �
��≶ �≶ �≶ ∼ � �≶ �≶∼∼�≶ ∼ �≶ �≶∼≺≺ ∼ ≺ �≶ �≶∼≺�≶ ∼ ≺ �≶
�≶∼�� ∼ � �≶ �≶∼��≶ ∼ � �≶ �≶∼�≶∼ ∼ �≶ �≶∼�≶≺ ∼ ≺ �≶
�≶∼�≶� ∼ � �≶ �≶∼�≶ �≶ ∼ �≶ �≶≺∼≺ ∼ ≺ �≶ �≶≺∼�≶ ∼ ≺ �≶
�≶≺≺≺ ∼ ≺ �≶ �≶≺≺�≶ ∼ ≺ �≶ �≶≺�∼ ∼ ≺ � �≶ �≶≺�≺ ∼ ≺ � �≶
�≶≺�� ∼ ≺ � �≶ �≶≺��≶ ∼ ≺ � �≶ �≶≺�≶∼ ∼ ≺ �≶ �≶≺�≶≺ ∼ ≺ �≶
�≶≺�≶� ∼ ≺ � �≶ �≶≺�≶ �≶ ∼ ≺ �≶ �≶�∼� ∼ � �≶ �≶�∼�≶ ∼ � �≶
�≶�≺∼ ∼ ≺ � �≶ �≶�≺≺ ∼ ≺ � �≶ �≶�≺� ∼ ≺ � �≶ �≶�≺�≶ ∼ ≺ � �≶
�≶��� ∼ � �≶ �≶���≶ ∼ � �≶ �≶��≶∼ ∼ � �≶ �≶��≶≺ ∼ ≺ � �≶
�≶��≶� ∼ � �≶ �≶��≶ �≶ ∼ � �≶ �≶ �≶∼∼ ∼ �≶ �≶ �≶∼≺ ∼ ≺ �≶
�≶ �≶∼� ∼ � �≶ �≶ �≶∼�≶ ∼ �≶ �≶ �≶≺∼ ∼ ≺ �≶ �≶ �≶≺≺ ∼ ≺ �≶
�≶ �≶≺� ∼ ≺ � �≶ �≶ �≶≺�≶ ∼ ≺ �≶ �≶ �≶�∼ ∼ � �≶ �≶ �≶�≺ ∼ ≺ � �≶
�≶ �≶�� ∼ � �≶ �≶ �≶��≶ ∼ � �≶ �≶ �≶ �≶∼ ∼ �≶ �≶ �≶ �≶≺ ∼ ≺ �≶
�≶ �≶ �≶� ∼ � �≶ �≶ �≶ �≶ �≶ ∼ �≶

5 Table 2 has been generate automatically via a Prolog program.

On the Hierarchical Nature of Partial Preferences 183

other cases (e.g. ≺�≶��≶) no axiom can be applied, consequently f can be in any
relationship with g.

Table 2 provides a close look on how the considered axioms propagate a
preference under convex combinations. In some cases f and g are comparable
even if some of the underlying draws are not so (e.g. ≺�≶�≶∼ results in f ≺ g).
Somewhat conversely, f and g can be incomparable even if all the underlying
draws are comparable (e.g. ≺�≺� admits f �≶ g).

7 Related Works

In Decision Theory, a theoretical investigation on partial preferences can be
found in [2,3,8]. Differently from our aim to compare different formulations, each
of these works considers a specific axiomatic system and investigates whether
utility functions can be used to represent partial preferences and how they have
to be generalized to gain a (sort of) Expected Utility Theorem back. In partic-
ular, the axiomatic system in [3] is essentially PDT1, whereas it can been seen
that the one used in [8] entails PDT3. Therefore, it is a natural question whether
some notion of generalized utility can be developed also for PDT0.

Recently, partial preferences have been employed in procurement auctions
modelling multi-cloud provisioning scenarios [1,4,6]. Somewhat surprisingly, it
has been shown that extending second price auctions to partial preferences does
not yield truthful mechanisms, since overbidding may be profitable in some con-
texts. This means that partial preferences may significantly change the theoreti-
cal properties of a mechanism. However, in these works partial preferences have
been defined as ad hoc conditions over bids.6 Therefore, we are confident that
the axiomatizations presented in this work enable to employ partial preferences
uniformly in the field of Mechanism Design and to estimate their impact.

Finally, the present paper starts from the seminal extended abstract [5]
where, at the best of our knowledge, the justification axiom has been taken
into consideration for the first time. Here, we generalize and extend [5] in sev-
eral aspects. First, in [5] a single axiomatic system is considered whereas here we
focus on comparing different axiomatic systems and show they are not equivalent.
Secondly, we complete [5], where no continuity axiom is present, by considering
two different notions of continuity. Finally, we prove that the justification prop-
erty cannot be derived from the previously considered axioms and hence has to
be taken as an independent axiom.

8 Conclusions

In this work we challenged the customary decision-theoretic assumption of total-
ity of the preference relations, on the basis of two real-world scenarios. This is
not a straightforward task, since different formalizations of the classical theory,

6 Actually, what is referred to as preference in [1] is rather a notion of dominance
among strategies.

184 L. Sauro

once totality is weakened in favour of reflexivity, are no longer equivalent. We
delineated a complete hierarchy for four different axiomatizations PDT0–PDT3

on the basis of standard entailment. We have also shown that some basic notions,
such as dominance, are still valid also in the weaker axiomatizations of partial
preferences. Somewhat conversely, we identified a classical property that can-
not be derived PDT0–PDT3 (and hence it has to be bought as an independent
axiom). On the one hand, we show that such a property grasps possibly desirable
conditions on how incomparability propagates over lotteries; on the other hand,
it delineates an agent-user interface where, even if the latter is not required to
provide a complete preference, the former may ask to justify some instructions
when they seems to be groundless.

References

1. Anisetti, M., Ardagna, C.A., Bonatti, P.A., Damiani, E., Faella, M., Galdi, C.,
Sauro, L.: E-Auctions for multi-cloud service provisioning. In: Proc. of the IEEE
International Conf. on Services Computing, SCC 2014, Anchorage, AK, USA, 27
June–2 July 2014

2. Aumann, R.J.: Subjective programming. Econometric Res. Prog. Re-search mem-
orandum vol. 22, Princeton University (1961). Also in Shelly, M.W., Bryan, G.L.,
(eds.) Human judgments and optimality. Wiley, New York (1964)

3. Aumann, R.J.: Utility Theory without the Completeness Axiom. Econometrica
30(3), 445–462 (1962)

4. Bonatti, P.A., Faella, M., Galdi, C., Sauro, L.: Towards a mechanism for incen-
tivating privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879,
pp. 472–488. Springer, Heidelberg (2011)

5. Bonatti, P.A., Faella, M., Sauro, L.: Partial preferences for mediated bargaining. In:
Proc. of the 2nd International Workshop on Strategic Reasoning, SR14, Grenoble,
France, 5–6 April 2014

6. Bonatti, P.A., Faella, M., Galdi, C., Sauro, L.: Auctions for partial heterogeneous
preferences. In: Proc. of Mathematical Foundations of Computer Science 2013–38th
International Symposium, MFCS 2013, Klosterneuburg, Austria, 26–30 August
2013

7. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H.: CP-nets: A Tool for Rep-
resenting and Reasoning with Conditional Ceteris Paribus Preference Statements.
Journal of Articial Intelligence Research 21, 135–191 (2004)

8. Dubra, J., Maccheroni, F., Ok, E.A.: Expected utility theory without the com-
pleteness axiom. Journal of Economic Theory 115(1), 118–133 (2004)

9. Myerson, R.B.: Game Theory: Analysis of Conict. Harvard University Press (1997)
10. van Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.

Princeton University Press (1994)
11. Savage, L.J.: The Foundations of Statistics. Wiley, NewYork (1954)
12. Simon, H.: A Behavioral Model of Rational Choice. Q. J. Econ. 69(1), 99–118

(1955). doi:10.2307/1884852

http://dx.doi.org/10.2307/1884852

Verification of Asynchronous Mobile-Robots
in Partially-Known Environments

Sasha Rubin2, Florian Zuleger1(B), Aniello Murano2, and Benjamin Aminof1

1 Technische Universität Wien, Vienna, Austria
zuleger@forsyte.at

2 Università Degli Studi di Napoli “Federico II”, Naples, Italy

Abstract. This paper establishes a framework based on logic and
automata theory in which to model and automatically verify that mul-
tiple mobile robots, with sensing abilities, moving asynchronously, cor-
rectly perform their tasks. The motivation is from practical scenarios
in which the environment is not completely know to the robots, e.g.,
physical robots exploring a maze, or software agents exploring a hostile
network. The framework shows how to express tasks in a logical language,
and exhibits an algorithm solving the parameterised verification problem,
where the graphs are treated as the parameter. The main assumption
that yields decidability is that the robots take a bounded number of
turns. We prove that dropping this assumption results in undecidability,
even for robots with very limited (“local”) sensing abilities.

1 Introduction

Autonomous mobile robots are designed to achieve some task in an environment
without a central control. Foundational tasks include, for example, rendezvous
(gather all robots in a single position) and reconfiguration (move to a new config-
uration in a collision-free way) [14,15,25]. This paper studies robots in partially
known environments, i.e., robots do not have global information about the envi-
ronment, but may know some (often topological) information (e.g., whether the
environment is connected, or that it is a ring of some unknown size) [14]. The
motivation for studying partially known environments is that in many practi-
cal scenarios the robots are unaware of the exact environment in which they
are operating, e.g., mobile software exploring a hostile computer network, or
physical robots that rendezvous in an environment not reachable by humans.

To illustrate, here is an example reconfiguration problem. Suppose that k
robots find themselves on different internal nodes of a binary tree, and each
robot has to reach a different leaf in a collision free way. Each robot can sense

Benjamin Aminof and Florian Zuleger were supported by the Austrian National
Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and
by the Vienna Science and Technology Fund (WWTF) through grant ICT12-059.
Aniello Murano was supported by FP7 EU project 600958-SHERPA. Sasha Rubin
is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 185–200, 2015.
DOI: 10.1007/978-3-319-25524-8 12

186 S. Rubin et al.

if its left (or right) child is occupied by a robot. One protocol for solving this
problem (assuming a large enough tree) is for each robot to execute ‘go to the
left child, then repeatedly go the right child’ until a leaf is reached. Each move
is guarded by a test that the child it wants to move to is not currently occupied.

As the example illustrates, we make the following modeling choices: environ-
ments are discrete (rather than continuous), robots have finite memory (rather
than being oblivious, or being Turing powerful), robots are nondeterminis-
tic (rather than probabilistic), robots move asynchronously (rather than syn-
chronously), and robots can sense the positions and the internal states of each
robot no matter where they are, i.e., they can perform “remote” tests (but can-
not leave information at visited positions).1 The assumption that robots move
asynchronously is motivated as follows: processes in distributed systems have no
common notion of time since they may be running with different internal clocks,
and thus a standard abstraction is to assume that processes’ actions are inter-
leaved, see [26]. There are two main ways to interleave the robots: an adversary
tries to make sure that the robots do not succeed [16], and a co-operator tries
to help the robots succeed (reminiscent of schedulers in strategic reasoning [7]).

In this paper we provide a framework for modeling and verifying that multiple
mobile robots achieve a task (under adversarial and co-operative interleavings)
in a partially-known environment. We now explain how we model the fact that
environments are partially-known. Fix a class G of environments (e.g., G is the
set of all lines, or all grids, or all rings). The parameterised verification problem
states: Given robots R, decide if they solve the task T on all graphs G ∈ G.
Requiring the robots to solve the task T on all graphs from a class G is how we
model that the robots operate in partially-known environments — the robots
know they are in a graph from G, but they do not know which one. In contrast,
the classic (non-parameterised) verification problem states: Given robots R and
a graph G ∈ G, decide if robots R solve the task T on G. In that setting, the
robots can be designed to exploit the exact structure (size, etc.) of the graph.

Aims and Contributions. The aim of this work it to provide a formal frame-
work in which one can reason (both mathematically and computationally) about
multiple mobile-robots, with sensing abilities, moving asynchronously in a dis-
crete, static, partially-known environment. We prove that parameterised veri-
fication is undecidable already for line-environments, and even for robots with
limited tasks (e.g., halting) which can only detect collisions. I.e., a robot can only
sense which other robots share its current position. This undecidability result
also holds for robots that move synchronously. On the other hand, we prove that
parameterised verification is decidable for scenarios in which the number of times
that the robots take turns is bounded.2 This decidability result is very robust:

1 The ability to sense positions is a form of vision, while the ability to sense internal
states is a form of communication

2 In the example reconfiguration problem, there is some ordering of the robots that
switches turns at most k times in which the stated robot-protocol succeeds. Also, for
every ordering of the robots that switches turns a sufficiently large number of times,
the protocol succeeds (“ordering” and “switching” are formalised in Section 3).

Verification of Asynchronous Mobile-Robots 187

it holds on a very general class of graphs called context-free sets of graphs which
include e.g., rings, trees, series-parallel graphs, but not grids; it also holds with
very powerful abilities called position-tests which allow each robot to remotely
test the positions of all the robots using formulas which include, e.g., the ability
to test connectivity, as well as state-tests that allow each robot to remotely test
the internal state of the other robots; it holds for tasks that are expressible using
a new logic MRTL (Multiple-Robot Task Logic), which can express many natural
tasks, e.g., reconfiguration, gathering, and “safe” variations (i.e., complete the
task without touching dangerous positions).

Related Work. The work closest to ours is [30] which also considered the
parameterised verification problem for multi-robot systems. However, in that
paper, the decidability result (and the corresponding logic RTL) was only for
one-robot systems (i.e., k = 1), and the undecidability result for k = 2 was for
multiple robots that move synchronously and have remote tests.

The distributed-computing community has proposed and studied a number
of models of robot systems, e.g., recently [8,10,13,17,18,24]. This literature is
mostly mathematical, and theorems from this literature are parameterised, i.e.,
they may involve graph-parameters (e.g., the maximum degree, the number of
vertices, the diameter), memory parameters (e.g., the number of internal states
of the robot protocol), and the number of robots may be a parameter. Only
recently has there been emphasis on formal analysis of correctness of robots in a
parameterised setting [4,22,23,27,29,30]. In these formal analyses, typically it is
the number of agents that is treated as the parameter [4,22,23,27]. In contrast, in
this paper (as in [30]) we apply formal methods to the parameterised verification
problem in which it is the environment that is parameterised.

Also, the formal-verification community has placed emphasis on distributed
models in which processes are stationary and interact by sending messages (e.g.,
in a broadcast or rendezvous manner) or by using guarded commands. The
parameterised verification problem for such distributed processes is, in general,
undecidable [31]. By simplifying the systems (e.g., restricting the mode of com-
munication, the abilities of the processes, the specification languages, etc.) one
can get decidable parameterised verification, recently e.g., [1–3,12].

We refer the reader to [30, Section 7] for an up-to-date and detailed discussion
of the connections between multi-robot systems, classic automata theory (i.e.,
graph-walking automata) and distributed systems (in particular, token-passing
systems). Finally, we mention that there is a smattering of work on parameterised
synthesis (called generalised planning in the AI literature) [11,19–21].

2 Background: Automata Theory

Write B∗ and Bω for the sets of finite and infinite sequences over alphabet B,
respectively. The empty sequence is denoted ε. Write [n] for the set {1, 2, · · · , n}.

Graphs and Trees. A Σ-graph, or graph, G, is a tuple (V,E,Σ, λ) where V is
a finite set of vertices, E ⊆ V × V is the edge relation, Σ is a finite set of edge

188 S. Rubin et al.

labels, and λ : E → Σ is the edge labeling function. A Δ-ary tree (for Δ ∈ N) is
a Σ-graph (V,E,Σ, λ) where (V,E) is a tree, Σ = [Δ] ∪ {up}, and λ labels the
edge leading to the node in direction i (if it exists) by i, and the edge leading
to the parent of a node (other than the root) is labelled by up. We may rename
the labels for convenience, e.g., for binary trees (Δ = 2) we let Σ = {lc, rc, up}
where lc replaces 1 and rc replaces 2.

Monadic Second-Order Logic. Formulas are interpreted in Σ-graphs G.
Define the set of monadic second-order formulas MSOL(Σ) as follows. Formulas
of MSOL(Σ) are built using first-order variables x, y, · · · that vary over vertices,
and set variables X,Y, · · · that vary over sets of vertices. The atomic formu-
las (when interpreted over Σ-graphs) are: x = y (denoting that vertex x is the
same as vertex y), x ∈ X (denoting that vertex x is in the set of vertices X),
edgσ(x, y) (denoting that there is an edge from x to y labeled σ ∈ Σ) and true
(the formula that is always true). The formulas of MSOL(Σ) are built from the
atomic formulas using the Boolean connectives (i.e., ¬,∨,∧,→) and variable
quantification (i.e., ∀,∃ over both types of variables). A variable that is not
quantified is called free. The fragment of MSOL(Σ) which does not mention set
variables is called first-order logic, denoted FOL(Σ). Write MSOLk(Σ) for for-
mulas with at most k many free first-order variables and no free set-variables.
We abbreviate z1, · · · , zk by z. We write φ(x1, · · · , xk) to mean that the free
variables from the formula φ are amongst the set {x1, · · · , xk} – note that the
formula φ(x1, · · · , xk) does not need to use all of the variables x1, · · · , xk. For
a graph G, and v1, · · · , vk ∈ V , we write G |= φ(v1, · · · , vk) to mean that
φ holds in G with variable xi simultaneously substituted by vertex vi (for
all i ∈ [k] for which xi occurs free in φ). Here are some examples of for-
mulas and their meanings: The formula ∀x(x ∈ X → x ∈ Y) means that
X ⊆ Y . Similarly, there are formulas for the set operations ∪,∩,=, and rel-
ative complement X \ Y . The formula edg(x, y) :=

∨
σ∈Σ edgσ(x, y) means

that there is an edge from x to y (here Σ is assumed to be finite). The for-
mula E∗(x, y) := ∀Z[(closedE(Z) ∧ x ∈ Z) → y ∈ Z] where closedE(Z) is
∀a∀b[(a ∈ Z ∧ E(a, b)) → b ∈ Z] defines the transitive closure of E. Generally,
MSOL can express the 1-ary transitive closure operator (e.g., [30]).

The Validity Problem and Courcelle’s Theorem. A sentence is a formula
with no free variables. Let Φ be a set of sentences, and let G be a set of graphs. The
Φ-validity problem of G is to decide, given φ ∈ Φ, whether for all graphs G ∈ G, it
holds that G |= φ. Unfortunately, the MSOL(Σ)-validity problem for the set G of
all Σ-graphs is undecidable. However, Courcelle’s Theorem states that MSOL-
validity of context-free sets of graphs is uniformly decidable, i.e., there is an
algorithm that given a description of a context-free set of graphs G and an MSOL-
sentence φ decides if every graph in G satisfies φ [9]. Context-free sets of graphs
are the analogue of context-free sets of strings, and can be described by graph
grammars, equations using certain graph operations, or MSOL-transductions of
the set of trees. Formally, G is context-free if it is MSOL-definable and of bounded
clique-width [9]. Examples include, for a fixed alphabet, the set of labeled lines,
rings, trees, series-parallel graphs, cliques, but not the set of grids.

Verification of Asynchronous Mobile-Robots 189

Automata and Regular Expressions. Ordinary regular-expressions over a
finite alphabet B are built from the sets ∅, {ε}, and {b} (b ∈ B), and the opera-
tions union +, concatenation ·, and Kleene-star ∗. Kleene’s Theorem states that
the languages definable by regular expressions over alphabet B are exactly those
recognised by finite automata over alphabet B. An ω-regular expression over
alphabet B is inductively defined to be of the form: expω, exp ·r, or r+r′, where
exp is an ordinary regular-expression over B, and r, r′ are ω-regular expressions
over B. An ω-regular language is one defined by an ω-regular expression. A vari-
ation of Kleene’s Theorem says that the languages definable by ω-regular expres-
sions over alphabet B are exactly the languages recognised by Büchi automata
over alphabet B (which are like finite automata except they take infinite words
as input, and accept if some accepting state occurs infinitely often).

3 The Model of Robot Systems

In this section we provide a framework for modeling multi-robot systems param-
eterised by their environment. Environments are modeled as Σ-graphs G and
robots are modeled as regular languages of instructions. An instruction either
tells the robot to move along an edge, or to test robot positions (e.g., a robot
can learn which other robots are at the same vertex as it is, or if there is a robot
north of it). Tests are formalised as logical formulas.

Instructions for Robots. Fix a number k of robots and a set of edge labels Σ.
A command is a symbol from {↑σ: σ ∈ Σ} ∪ {�}. The command ↑σ tells the
robot to move from its current vertex along the edge labeled σ, and the command
� tells the robot to stay at its current vertex. A position-test is a formula from
MSOLk(Σ). A state-test is an expression of the form “robot i is in state q”,
where i ∈ [k] and q is a symbol denoting a state of a robot (formally we may
assume that all robots have states from N, and that q ∈ N)3. A position test
τ(x1, · · · , xk) allows the robot to test that τ(x1, · · · , xk) holds in G, where xi

is the current vertex of robot Ri in G. Simple tests include “xi = xj” which
tests if robots i and j are in the same vertex (i.e., collision detection), and
“edg(xi, xj) ∨ edg(xj , xi)” which tests if robots i and j are adjacent. A test is a
state-test or a position-test. The instruction set insΣ,k consists of all expressions
of the form τ → κ where τ is a test and κ is a command.

Robots, Configurations, Runs. A k-robot ensemble is a vector of robots
〈R1, · · · , Rk〉 where each robot Ri = 〈Qi, δi〉, each Qi is a finite set of states,
and each δi ⊂ Qi × insΣ,k × Qi is a finite transition relation. For technical
convenience, we assume that robot i does not test its own state, i.e., no ins in
a transition (p, ins, q) ∈ δi contains any occurrences of state-tests of the form
“robot i is in state j”. We designate a subset Ii ⊆ Qi of the states of robot i

3 Note that, for ease of exposition, we do not explicitly allow Boolean combinations
of state-tests. However, these can be indirectly performed by chaining state-tests
(remembering the previous test results in the local state) to perform conjunctions,
and using nondeterminism for disjunctions.

190 S. Rubin et al.

as initial states, and a subset Ai ⊆ Qi of its states as accepting states. A state
p ∈ Qi is called halting if the only transition the robot has from p is (p, true, p).
Thus we model a halting robot as one that forever stays in the same state and
does not move. The halting states are denoted Hi ⊆ Qi.

Fix a Σ-graph G. A configuration c of 〈R1, · · · , Rk〉 on graph G is a pair
〈v, q〉 ∈ V k × ∏

i∈[k] Qi. A configuration is initial if q ∈ ∏
Ii. For a test τ and a

configuration c = 〈u, p〉, define c � τ to mean that configuration c makes τ true
in G. Formally, if τ is a position test then define c � τ iff G |= τ(u), and if τ is a
state-test, say “robot i is in state j”, then define c � τ iff pi = j. The following
definition of �i expresses that one configuration results from another after robot
i successfully executes an instruction, while the rest are idle: for i ∈ [k] and
configurations c = 〈w, q〉 , d = 〈v, p〉, write c �i d if pj = qj and wj = vj for all
j �= i, and there exists a transition (pi, τ → κ, qi) ∈ δi (i.e., of robot Ri) such
that c � τ (i.e., the current configuration satisfies the test τ) and, if κ =↑σ then
λ(wi, vi) = σ, and if κ =� then wi = vi.

Schedules and Runs. A schedule is a finite or infinite sequence S = s1s2s3 · · ·
where si ∈ [k]. A run ρ of 〈R1, · · · , Rk〉 on G starting with an initial config-
uration c according to schedule S is a finite or infinite sequence c1c2c3 · · · of
configurations such that c1 = c and for all i, ci �si

ci+1. The set (resp. sequence)
of positions of a run α = 〈v1, p1〉 〈v2, p2〉 · · · is the set of positions {v1, v2, · · · }
(resp. sequence v1v2 · · · of positions) of its configurations. In a similar way define
the set (resp. sequence) of positions of robot i on a run.

Orderings. A (finite) k-ordering is a string α ∈ [k]+, say of length N + 1, such
that αi �= αi+1 for 1 ≤ i ≤ N . Write ||α|| = N to mean that |α| = N + 1,
and say that α is N -switching. E.g., 171 is 2-switching. Say that a schedule S

follows α if S is in α1
∗α2

∗ · · · αN
∗αN+1

∗ or α1
∗α2

∗ · · · αN
∗αN+1

ω, i.e., robot α1

is scheduled for some (possibly no) time, then robot α2 is scheduled, and so on,
until αN+1 which can be scheduled forever. Similarly, an infinite k-ordering of
k robots is a string α ∈ [k]ω such that αi �= αi+1 for all i ∈ N. In this case write
||α|| = ∞. A schedule follows α if the schedule is in the set α1

∗α2
∗ · · · .

Robot Tasks. Robots should achieve some task in their environment. We give
some examples of foundational robot tasks [25]: A robot ensemble deploys or
reconfigures if they move, in a collision-free way, to a certain target configuration.
A robot ensemble gathers if, no matter where each robot starts, there is a vertex
z, such that eventually every robot is in z. A robot ensemble collaboratively
explores a graph if, no matter where they start, every node is eventually visited
by at least one robot. All of these tasks have safe variations: the robots complete
their task without entering certain pre-designated “bad” nodes.

Multi-Robot Task Logic — MRTL. We now define MRTL, a logic for formally
expressing robot tasks. We first define the syntax and semantics, and then we
give some example formulas. Later (in Lemma 1) we prove that, when restricted
to bounded-switching orderings, MRTL formulas (and therefore many interesting
natural tasks) can be converted into MSOL formulas over graphs.

Verification of Asynchronous Mobile-Robots 191

MRTL Syntax. Fix k ∈ N and Σ. Formulas of MRTLk are built, as in the
definition of MSOL(Σ) from Section 2, from the following atomic formulas: x = y,
edgσ (for σ ∈ Σ), x ∈ X, true, and the following additional atomic formulas
(with free variables X,x, y each of size k) ReachQ,HaltKQ , InftyQ and ReptKQ
where Q ∈ {∃,∀} and ∅ �= K ⊆ [k]. Denote by MRTL the set of formulas
∪kMRTLk.

MRTL Semantics. Formulas of MRTLk are interpreted over graphs G, and with
respect to k-robot ensembles R and a set of orderings Ω. Define the satisfaction
relation |=R,Ω :

– G |=R,Ω Reach∃(X,x, y) iff there is an ordering α ∈ Ω and there is a finite
run of R on G that uses a schedule that follows α, such that the run starts
with some initial configuration of the form 〈x, p〉 (i.e., p ∈ ∏

Ii), ends with
a configuration of the form 〈y, q〉 (i.e., q ∈ ∏

Qi), and for each i ∈ [k], the
set of positions of robot i on this run is contained in Xi.

– G |=R,Ω HaltK∃ (X,x, y) means the same as Reach∃ except that the last
tuple of states q has the property that i ∈ K implies that qi ∈ Hi (i.e., every
robot in K is in a halting state).

– G |=R,Ω Infty∃(X,x, y) means the same as Reach∃ except that the run is
infinite and, instead of ending in y, it visits y infinitely often.

– G |=R,Ω ReptK∃ (X,x, y) means the same as Reach∃ except that the run is
infinite, and infinitely often it reaches a configuration of the form 〈y, q〉 such
that i ∈ K implies that qi is an accepting state (i.e., qi ∈ Ai).

– G |=R,Ω Reach∀(X,x, y) is the same as Reach∃ except replace “there is an

ordering α ∈ Ω and there is a finite run...” by “ for every ordering α ∈ Ω

there is a finite run ...”. In a similar way, define HaltK∀ , Infty∀ and ReptK∀ .

Extend the satisfaction relation to all formulas of MRTLk in the natural way.

Example 1. The statement G |=R,Ω (∀x)(∃y)(∃X)Reach∃(X,x, y)∧(∧i,jyi = yj)
means that, no matter where the robots start in G, there is an ordering α ∈ Ω,
and a run according to a schedule that follows α, such that the robots R gather
at some vertex of the graph G. Replacing Reach∃ by Reach∀ means, no matter
where the robots start in G, for every ordering α ∈ Ω, the robots have a run
according to a schedule that follows α such that the robots gather at a vertex of
the graph. Note that by conjuncting with ∧iXi ∩ B = ∅ where B is an MSOL-
definable set of “bad” vertices, one can express “safe gathering”.

Example 2. Consider the statement G |=R,Ω (∀x)(∃y)[nonleaf(x) ∧diff(x) →
(leaf(y) ∧ diff(y) ∧ Reach∀(V k, x, y)] where G is a tree, nonleaf(x) is an
MSOL-formula expressing that every xi is not a leaf, leaf(y) is an MSOL-formula
expressing that every yi is a leaf, and diff(z) is an MSOL-formula expressing
that zi �= zj for i �= j. The statement says that, as long as the robots start
on different internal nodes of the tree G, for every ordering α ∈ Ω there is a
run of the robots R according to a schedule that follows α in which the robots
reconfigure and arrive at different leaves.

192 S. Rubin et al.

4 Reasoning about Robot Systems

We formalise the parameterised verification problem for robot protocols and
then study its decidability. The parameterised verification problem depends on
a (typically infinite) set of graphs G, a set of k-robot ensembles R, a k-robot task
written as an MRTLk formula T, and a set of k-orderings Ω.

Definition 1. The parameterised verification problem PVPT,Ω(G,R) is:
given a robot ensemble R from R, decide whether for every graph G ∈ G, G |=R,Ω

T (i.e., the robots R achieves the task T on G with orderings restricted to Ω).

Example 3. Let G be the set of all binary trees, R be the set of all k-robot
ensembles, let Ωb := {α ∈ [k]∗ : ||α|| = b} be the set of b-switch orderings, and
let T be the task expressing that if the robots start on different internal nodes of
a tree then they eventually reconfigure themselves to be on different leaves of the
tree, no matter which ordering from Ωb is chosen (cf. Example 2). We will see
later that one can decide PVPT,Ωb

(G,R) given b ∈ N. So, one can decide, given
b, whether the protocol from the reconfiguration example (in the Introduction)
succeeds for every ordering with b switches.

In Section 4.1 we show that the PVP is undecidable even on lines, for sim-
ple tasks, and allowing the robots very restricted testing abilities, i.e., a robot
can sense which of the other robots shares the same position with it, called
“local collision tests”. In Section 4.2 we show that we can guarantee decidability
merely by restricting the scheduling regime while allowing the robots full testing
abilities, including testing positions and states of other robots “remotely”.

4.1 Undecidability of Multi-Robot Systems on a Line

Our undecidability proof proceeds by reducing the halting problem of two
counter machines to the parameterised verification problem. An input-free 2-
counter machine (2CM) [28] is a deterministic program manipulating two non-
negative integer counters using commands that can increment a counter by 1,
decrement a counter by 1, and check whether a counter is equal to zero. We
refer to the “line numbers” of the program code as the “states” of the machine.
One of these states is called the halting state, and once it is entered the machine
halts. Observe that a 2CM has a single computation, and that if it halts then
the values of both counters are bounded by some integer n. The non-halting
problem for 2CMs is to decide, given a 2CM M, whether it does not halt. This
problem is known to be undecidable [28], and is usually a convenient choice for
proving undecidability of problems concerning parameterised systems due to the
simplicity of the operations of counter machines.

Let G be the set of all graphs that are finite lines. Formally, for every n ∈ N

there is a graph Ln = (Vn, En, Σ, λn) ∈ G, where Σ = {l, r}, Vn = [n], En =
∪i<n{(i, i + 1), (i + 1, i)}, and the label λn of an edge of the form (i, i + 1) is
r, and of the form (i + 1, i) is l. We now describe how, given a 2CM M, one

Verification of Asynchronous Mobile-Robots 193

can construct a robot ensemble R which can, on long enough lines, simulate the
computation of M. Our robots have very limited sensing abilities: a robot can
only sense if it at one of the two ends of the line or not, and it can sense which of
the other robots are in the same node as it is (“collision detection”). Note that
a robot does not know that another robot has collided with it (and then moved
on) if it is not scheduled while they both occupy the same node.

The basic encoding uses two counter robots C1 and C2. The current position
of Ci on the line corresponds to the current value of counter i, and it moves to
the right to increment counter i and to the left to decrement it. Each of these
robots also stores in its finite memory the current state of the 2CM. One dif-
ficulty with this basic encoding is how to ensure that the two counter robots
always stay synchronised in the sense that they both agree on the next com-
mand to simulate, i.e., we need to prevent one of them from “running ahead”.
A second difficulty is how to update the state of the 2CM stored by a counter
robot when it simulates a command that is a test for zero of the other counter.
Note that both of these difficulties are very easy to overcome if one robot can
remotely sense the state/position of the other robot. Since we disallow such
powerful sensing these difficulties become substantially harder to overcome. The
basic idea used to overcome the first difficulty is to add synchronisation robots
and have a counter robot move only if it has collided with the appropriate syn-
chronization robot. Thus, by arranging that the synchronization robots collide
with the counter robots in a round-robin way the latter alternate their sim-
ulation turns and are kept coordinated. In order to enforce this round-robin
behavior we have to change the encoding such that only every other position on
the line is used to encode the counter values. Thus, an increment or a decrement
is simulated by a counter robot moving two steps (instead of one) in the correct
direction. The basic ingredient in addressing the second difficulty is to add a
zero-test robot that, whenever one counter is zero, moves to the position of the
other counter’s robot, thus signaling to it that the first counter is zero.

Theorem 1. For every 2CM M, there is a robot ensemble R which, for every
n ≥ 5, simulates on the line Ln any prefix of the computation of M in which the
counters never exceed the value (n − 3)/2.

Proof. The ensemble R consists of 9 robots: the counter robots C0, C1, four
synchronisation robots R0, R1, R2, R3, a zero-test robot T , a zero robot Z that
marks the zero position of the counters, and a mover robot M whose role is
to ensure that the robots can simulate more than one command of M only if
their starting positions on the line are as in the initialised configuration escribed
below ((‡)). The value of a counter is encoded as half the distance between the
corresponding counter robot and the Z robot (e.g., if Z is in node 3 and C1 is
in node 7 then the value of counter 1 is 2).

(‡) (initialised configuration): robots R2, R3 are in node 1, robots R0, R1 are
in node 2, and the rest are in node 3.

The definition of the transitions of the robots has the important property
that there is only one possible run starting from the initialised configuration,

194 S. Rubin et al.

i.e., at each point in time exactly one robot has exactly one transition with a
test that evaluates to true. We assume that each robot remembers if it is at an
odd or even node. This can be done even without looking at the node by storing
the parity of the number of steps taken since the initialised configuration (‡).

Each command of the 2CM M is simulated by the ensemble using 4 phases.
For every i ∈ {0, 1, 2, 3}, phase i has the following internal stages: (1) the syn-
chronization robots arrange themselves to signal to robot Ri that it can start
moving to the right (this mechanism is described below (�)). (2) robot Ri moves
to the right until it collides with robot Cj (where j = i mod 2). It is an invariant
of the run that this collision is at an even node if i is odd, and vice-versa. (3)
robot Cj moves one step to the left or to the right, in order to simulate the
relevant half of the current command of M, as described below (†). (4) robot
Ri moves to the right until it reaches the end of the line. Observe that if during
this stage Ri collides with Cj then (unlike in stage 2) it is on a node with the
same parity as i (by the invariant, and since Cj moved one step in stage 3). This
parity information is used by Cj to know that it should not move, and by Ri to
know that it can continue moving to the right. (5) robot Ri moves to the left
until it reaches the beginning of the line (see (�)), which ends the phase (here,
as in the previous stage, the parity information is used to ignore collisions with
Cj). In case the other counter (i.e., counter 1 − j) is zero, stage (2) of phases
0, 1 are modified as follows: when robot Ri enters node 3 from the left it collides
with Z,C1−j and T ; then, T and R1 move to the right together, where T always
goes first, and then Ri follows in lock-step; at the end of stage 2 both T and Ri

collide with Cj , thus signalling to the latter that counter 1 − j is zero. A similar
modification to stages (4) and (5) makes T and Ri move in lock-step fashion all
the way to the right and then back to the left depositing T back in node 3.

(†): The operation performed by Cj in stage (3) of each phase is as follows.
In phase 0 robot C0 simulates the first half of the command, in phase 1 robot
C1 simulates the first half of the same command, in phase 2 robot C0 simulates
the second half of the command and in phase 3 C1 does so. For example, if the
command is “increment counter 0” then in phase 0 robot C0 moves right one step
(and updates its simulated state of M to be the next command of M), in phase 1
robot C1 moves right one step (and updates its simulated state of M), in phase
2 robot C0 moves again one step to the right (thus encoding an incremented
counter), and in phase 3 robot C0 moves left one step (thus, returning to its
previously encoded value). Simulating the other three increment and decrement
commands is done similarly. The only other command we need to simulate is of
the form ”if counter i is zero goto state p else goto state q”. Since this command
does not change the value of any counter it is simulated by each counter robot
going right in the first half of the simulation and left in the second half. The
internal state of M is updated to p or q depending on the value of the counter.
When simulating the first half of the command, robot Cj knows that counter j
(resp. 1 − j) is zero iff it sees Z (resp. T) with it.

(�): We now show that every arrangement of the synchronization
robots uniquely determines which one of them its turn it is to move. Let

Verification of Asynchronous Mobile-Robots 195

next(i) := i+1 mod 4,prev(i) := i−1 mod 4. An initial arrangement for phase
i is of the following form: Rprev(prev(i)), Rprev(i) are in node 1, and Ri, Rnext(i)

are in node 2. Note that the initialised configuration (‡) contains the initial
arrangement for phase 0. We let the initial arrangement for phase i signal that
the next robot to move is Rprev(prev(i)), which moves to the right, thus com-
pleting stage (1) of phase i. Hence, at the beginning of stage 2 the arrangement
is such that only Rprev(i) is left in node 1, which signals that Ri is the next
robot to move, as needed for stage (2). Just before the end of stage (5), robot Ri

returns to node 2 from the left, and the above arrangement repeats itself. Hence,
again it is Ri that moves, however, this time to the left (as indicated by its now
different internal memory). The resulting arrangement at the end of phase i is
thus: Rprev(i), Ri are in node 1 and Rnext(i), Rprev(prev(i)) are in node 2. Observe
that this is exactly the initial arrangement for phase next(i), as required. Note
that since robots have collision tests a robot can tell by sensing which other
robots are with it (and which are not) exactly which arrangement of the ones
described above it is in, and thus if it is allowed to move or not.

Finally, we describe how to amend the construction above by incorporating
the robot M to ensure that robots can only simulate the 2CM if they happen
to begin in the initialised configuration (‡), and otherwise the system deadlocks
after a few steps without any robot entering a halting state.4 Add to every
transition of robot Ri, for i ∈ {0, 1, 2, 3}, the additional guard that M is on
the same node with it. Thus, M enables the synchronisation robots to move,
and if M ever stops, then so does the simulation. Robot M behaves as follows.
It first verifies that the rest of the robots are in the initialised configuration by
executing the following sequence (and stopping forever if any of the conditions in
the sequence fail to hold): check that it is alone on the right-hand side of the line,
move left until it collides with C0, C1, Z, T , move one step left and check that it
collides with R0, R1, move one step left and check it is on the left-hand side of the
line and collides with R2, R3. Once it verified that the robots are on the nodes
specified by (‡), it starts “chasing after” the currently active synchronisation
robot, i.e., it remembers which robot is active and the direction it moves in, and
moves in that direction (if it does not currently collide with that robot). ��

From the previous theorem we can easily deduce that M halts iff there is a
run of the ensemble R (on a long enough line, and that fully simulates the run
of M) and in which the robots C0, C1 halt. We thus get:

Corollary 1. Let k = 9, G be the set of lines, R the set of k-robot ensembles
consisting of robots whose only tests are local collision tests and the ability to test
the left (resp. right) end of the line, Ω the set of all k-orderings, and T the MRTL

formula (∀x)(∀y)(∀X)¬Halt
{1}
∃ (X,x, y).5 Then PVPT,Ω(G,R) is undecidable.

4 One can modify the construction to remove the need for the M robot, however we
find the exposition with M clearer.

5 The formula expresses“for every initial configuration, and every scheduling of the
robots, robot 1 never enters a halting state”.

196 S. Rubin et al.

Suitable changes to the construction in Theorem 1 yield that other tasks, such
as “certain robots gather” or “certain robots reconfigure”, are also undecidable.

Remark 1. Note that in the construction, starting from the initialised configu-
ration, at most one robot can move at any time. Thus, allowing all robots that
can act to act, as in the synchronous model, does not change anything. So, with
minor modifications to deal with the initialisation phase, the theorem also holds
for the synchronous model. This strengthens the previously known fact that the
PVP is undecidable for synchronous robots on a line with remote testing abilities
(i.e., robot l can test if “robots i and j are in the same node”) [30].

4.2 Decidability of Multi-Robot Systems with Bounded Switching

The previous section shows that decidability cannot be achieved in very limited
situations. However, we now suggest a limitation on the orderings which guaran-
tees decidability without requiring any other restrictions. Thus it works on many
classes of graphs, robots, and tasks. We first describe, at a high level, the app-
roach we use to solve (restricted cases of) the parameterised verification problem
PVPT,Ω(G,R), cf. [30]. Suppose we can build, for every k-ensemble R of robots,
a formula φR,T,Ω such that for all graphs G ∈ G the following are equivalent:
i) G |= φR,T,Ω and ii) R achieves task T on G with orderings restricted to Ω.
Then, for every R and G, we would have reduced the parameterised verification
problem PVPT,Ω(G,R) to the ΦR,T,Ω-validity problem for G where ΦR,T,Ω is the
set of formulas {φR,T,Ω : R ∈ R}. We now show how to build an MSOL-formula
φR,T,Ω in case T is a formula of MRTL and Ω is a finite set of finite orderings.

We begin with a lemma that will be used as a building block. In the simplest
setting, the lemma says that for every i ∈ [k] there is an MSOL formula with
free variables x, y that holds on a graph G if and only if robot i can move in G
from xi to yi while all the other robots are frozen, i.e., xj = yj for j �= i.

Lemma 1 (From Robots to MSOL). Fix k, and let R be a k-robot ensem-
ble over instruction set insΣ,k. For every p, q ∈ ∏

Qi (k-tuples of states)
and ordering α ∈ [k]+, one can effectively construct an MSOL(Σ) formula
ψα,p,q(X,x, y) with free variables Xi, xi, yi (i ∈ [k]) such that for every graph G:
G |= ψα,p,q(X,x, y) if and only if there exists a run c of R on G according to a
schedule that follows α, starting from configuration c1 = 〈x, p〉 and reaching, for
some T ∈ N, the configuration cT = 〈y, q〉, such that for all i ∈ [k], the set of
positions of robot i on c1c2 · · · cT is contained in Xi.

Similarly one can construct ψ∞
α,p,q(X,x, y) so that for every graph G: G |=

ψ∞
α,p,q(X,x, y) if and only if there exists a run c of R on G according to a

schedule that follows α, starting from configuration c1 = 〈x, p〉 and reaching the
configuration 〈y, q〉 infinitely often, and such that the set of positions of robot i
on the run is contained in Xi (i ∈ [k]).

Proof. Fix k and R. We start with an auxiliary step. For i ∈ [k], states pi, qi ∈ Qi,
and s = (s1, · · · , si−1, si+1, · · · , sk) with sj ∈ Qj , we define an MSO-formula

Verification of Asynchronous Mobile-Robots 197

φi,pi,qi,s with free variables X,x, y, z where z = (z1, · · · , zi−1, zi+1, · · · , zk) such
that G |= φi,pi,qi,s if and only if the k-ensemble robot R has a run according to
a schedule in i∗ in which robot i starts in position x and state pi, and reaches
position y and state qi while only visiting vertices in X, and for j �= i, robot
j is in vertex zj and state sj and does not move or change state. This is done
as follows. Each robot Ri = 〈Qi, δi〉 is a finite automaton (without initial or
final states) over the finite alphabet insΣ,k. By Kleene’s theorem, we can build
a regular expression expi (that depends on pi, qi, s) over insΣ,k for the language
of the automaton Ri with initial state pi and final state qi. By induction on the
regular expressions we build MSOL formulas (with free variables X,x, y, z):

– ϕ∅ := false and ϕε := x = y ∧ x ∈ X,
– if τ ∈ MSOLk(Σ) is a position-test then

– ϕτ→↑σ
:= τ(z1, · · · , zi−1, x, zi+1, · · · , zk) ∧ edgσ(x, y) ∧ x, y ∈ X,

– ϕτ→� := τ(z1, · · · , zi−1, x, zi+1, · · · , zk) ∧ x = y ∧ x ∈ X,
– if τ is a state-test, say “robot j is in state l” (for j �= i and l ∈ Qj) then, if

sj = l then
– ϕτ→↑σ

:= edgσ(x, y) ∧ x, y ∈ X,
– ϕτ→� := x = y ∧ x ∈ X,

and otherwise if sj �= l, then ϕτ→↑σ
and ϕτ→� are defined to be false,

– ϕr+s := ϕr ∨ ϕs,
– ϕr·s := ∃w [ϕr(X,x,w, z) ∧ ϕs(X,w, y, z)],
– ϕr∗ := ∀Z[(clϕr

(X,Z, z) ∧ x ∈ Z) → y ∈ Z] where clϕr
(X,Z, z) is defined as

∀a, b [(a ∈ Z ∧ ϕr(X, a, b, z)) → b ∈ Z].

Then, define φi,pi,qi,s to be ϕexpi
(X,x, y, z). To prove the lemma proceed by

induction on the length l of α. Base case: For α = i ∈ [k], define ψi,p,q(X,x, y) by∧
j �=i xj = yj ∧Xj = {xj}∧φi,pi,qi,s(Xi, xi, yi, x1, · · · , xi−1, xi+1, · · · , xk), where

s = (p1, · · · , pi−1, pi+1, · · · , pk), if qj = pj for all j �= i, and otherwise the formula
is defined as false. Inductive case: For α ∈ [k]+, i ∈ [k], define ψα·i,p,q(X,x, y) by
∃z

∨
r

[
ψα,p,r(X,x, z) ∧ ψi,r,q(X, z, y)

]
and r varies over

∏
Qi. This completes

the construction of ψα. The construction of ψ∞
α is similar. ��

In Lemma 1, a variable Xi designates a set containing – but not necessarily
equal to – the positions of robot i along the run. If one wishes Xi to designate the
exact set of positions visited by robot i (in order to express, e.g., “exploration”),
then one needs to modify the construction of φi,pi,qi,s in the proof of the lemma.6

The required modifications are straightforward except for those to the definition
of ϕr∗ , which are more complicated.7

6 In [30] it is wrongly stated that one can transform an MSOL formula that says that
there is a run (satisfying some property) that stays within a set X, to one that says
that it also visits all of X, by simply requiring that X be a minimal set for which a
run satisfying the property exits.

7 Recall that ϕr∗ has free variables X, x, y, z, and its semantic in this case is that robot
i can reach y from x (with the other robots’ positions being z), visiting exactly X,
using a concatenation of sub-paths each satisfying ϕr. Intuitively, ϕr∗ existentially
quantifies over the stitching points of these sub-paths and uses appropriate sub-
formulas that are all satisfied iff one can find sub-paths that can be stitched to lead
from x to y and that cover all the positions in X.

198 S. Rubin et al.

Observe that this lemma can be used to express both collaborative and
adversarial scheduling. For instance, if Ω is a finite set of orderings, the for-
mula

∨
α∈Ω ψα,p,q(X,x, y) says that there is an ordering α ∈ Ω that the robots

can follow to go from x to y while staying in X, i.e., the ordering is chosen
collaboratively, while

∧
α∈Ω ψα,p,q(X,x, y) expresses that the ordering is chosen

adversarially.
Putting everything together, we solve the PVP for finite sets of orderings (and

thus for adversarial or co-operative b-switch orderings Ωb := {α : ||α|| = b}).

Theorem 2. There is an algorithm that given an edge-label set Σ, a number of
robots k ∈ N, a formula T of MRTLk, a finite set Ω of finite k-orderings, and a
description of a context-free set of Σ-graphs G, decides PVPT,Ω(G,R), where R

is the set of all k-ensembles of robots over insΣ,k.

Proof. Given R ∈ R build the formula φR,T,Ω by replacing every atomic for-
mula in T by its definition with respect to R. E.g., Reach∃(X,x, y) is replaced
by

∨
α∈Ω

∨
p

∨
q ψα,p,q(X,x, y), where p varies over

∏
i∈[k] Ii and q varies over

∏
i∈[k] Qi. Now, a routine induction on the structure of the formula T shows that

G |=R,Ω T if and only if G |= φR,T,Ω . By Lemma 1 the formula φR,T,Ω is in
MSOL(Σ). Finally, apply the fact that the MSOL-validity problem for context-
free sets of graphs G is uniformly decidable [9]. ��

5 Discussion

In [6,30] (see also the discussion before Theorem 1) it was shown that the PVP is
undecidable for two synchronous robots on a line, reachability tasks, and allow-
ing the robots “remote” position-tests. In Section 4.1 we substantially strengthen
this result and prove that the problem is still undecidable even if we only allow
robots “local” position-tests or even just local “collision tests”, both for robots
that move synchronously and asynchronously. The fact that the proof works for
both the synchronous and asynchronous models (Remark 1), strongly suggests
that limiting the robots’ sensing capabilities may not be a very fruitful direc-
tion for decidability. In Section 4.2 we showed that for asynchronous robots, if
one imposes a bound on the number of times the robots can switch, then PVP
is decidable for very general tasks (i.e., those expressible in a new logic called
MRTL), large classes of graphs (i.e., the context-free sets of graphs), and allowing
robots very powerful testing abilities (i.e., MSOL position-tests and state-tests).
This is the first parameterised decidability result of the PVP for multiple robots
where the environment is the parameter. Thus, our work indicates that if prac-
titioners want formal guarantees on the correctness of the robot protocols they
design, then they could design them in the framework given in this paper (i.e.,
finite-state, bounded-switching, powerful testing abilities).

A main limitation of our decidability result is the fact that the set of grids
is not context-free — grids are the canonical workspaces since they abstract
2D and 3D real-world scenarios. However, this limitation is inherent and not

Verification of Asynchronous Mobile-Robots 199

confined to our formalisation since the parameterised verification problem even
for one robot (k = 1) on a grid with only “local” tests is undecidable [6,30]. A
second limitation is that robots do not have a rich memory (e.g., they cannot
remember a map of where they have visited). Extending the abilities to allow
for richer memory and communication will result in undecidability, unless it is
done in a careful way. Also, the complexity of the decision procedure we gave
is very high. Again this is inherent in the problem since, e.g., already for one
robot on trees the PVP with the “explore and halt” task is ExpTime-complete
[30]. We leave for future research the problem of finding decidability results with
reasonable complexity for multi-robot systems that are rich enough to capture
protocols found in the distributed computing literature, e.g., [5,14,15,24].

References

1. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of
token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 262–281. Springer, Heidelberg (2014)

2. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014)

3. Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed
networks. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 375–387. Springer, Heidelberg (2015)

4. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibil-
ity results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y.,
Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 178–190. Springer, Heidelberg (2013)

5. Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots can learn
unlabeled directed graphs. Technical report, MIT (1995)

6. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS),
pp. 155–160 (1967)

7. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Heidelberg (2014)

8. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. T. Algorithms (TALG) 4(4), 42 (2008)

9. Courcelle, B., Engelfriet, J.: Book: Graph structure and monadic second-order
logic. a language-theoretic approach. Bull. EATCS 108, 179 (2012)

10. Das, S.: Mobile agents in distributed computing: Network exploration. Bull.
EATCS 109, 54–69 (2013)

11. De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player game structures for
generalized planning and agent composition. In: Fox, M., Poole, D., (eds.) AAAI,
pp. 297–302 (2010)

12. Delzanno, G.: Parameterized verification and model checking for distributed broad-
cast protocols. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571,
pp. 1–16. Springer, Heidelberg (2014)

13. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. Journal of Algorithms 51(1), 38–63 (2004)

200 S. Rubin et al.

14. Flocchini, P., Prencipe, G., Santoro, N.: Computing by mobile robotic sensors. In:
Nikoletseas, S., Rolim, J.D., (eds.) Theoretical Aspects of Distributed Computing
in Sensor Networks, EATCS, pp. 655–693. Springer (2011)

15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool (2012)

16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots:
the role of common knowledge in pattern formation by autonomous mobile robots.
In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741,
p. 93. Springer, Heidelberg (1999)

17. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theoretical Computer Science 345, 331–344 (2005)

18. Gasieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In:
Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS,
vol. 5344, pp. 14–29. Springer, Heidelberg (2008)

19. Hu, Y., De Giacomo, G.: Generalized planning: synthesizing plans that work for
multiple environments. In: Walsh, T., (ed.) IJCAI, pp. 918–923. AAAI (2011)

20. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933.
Springer, Heidelberg (2013)

21. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 108–127. Springer, Heidelberg (2013)

22. Kouvaros, P., Lomuscio, A.: Automatic verification of parameterised multi-agent
systems. In: Gini, M.L., Shehory, O., Ito, T., Jonker, C.M., (eds.) AAMAS,
pp. 861–868 (2013)

23. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of
robot swarms. In: Bonet, B., Koenig, S., (eds.) AAAI, pp. 2081–2088 (2015)

24. An, H.-C., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In:
Flocchini, P., Gkasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9.
Springer, Heidelberg (2006)

25. Kranakis, E., Krizanc, D., Rajsbaum, S.: Computing with mobile agents in dis-
tributed networks. In: Rajasekaran, S., Reif, J., (eds.) Handbook of Parallel Com-
puting: Models, Algorithms, and Applications, CRC Computer and Information
Science Series, pp. 8–1 – 8–20. Chapman Hall (2007)

26. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
27. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile

robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 237–251. Springer, Heidelberg (2014)

28. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall Inc (1967)
29. Murano, A., Sorrentino, L.: A game-based model for human-robots interaction.

In: Workshop “From Objects to Agents” (WOA), CEUR Workshop Proceedings,
vol. 1382, pp. 146–150. CEUR-WS.org (2015)

30. Rubin, S.: Parameterised verification of autonomous mobile-agents in static but
unknown environments. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind, E., (eds.)
AAMAS, pp. 199–208 (2015)

31. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

Potential of Heterogeneity in Collective
Behaviors: A Case Study
on Heterogeneous Swarms

Daniela Kengyel1(B), Heiko Hamann2, Payam Zahadat1, Gerald Radspieler1,
Franz Wotawa3, and Thomas Schmickl1

1 Artificial Life Laboratory at the Department of Zoology,
Karl-Franzens University Graz, Graz, Austria

daniela.kengyel@uni-graz.at
2 Department of Computer Science, University of Paderborn, Paderborn, Germany

heiko.hamann@uni-paderborn.de
3 Institute for Software Technology, Graz University of Technology, Graz, Austria

Abstract. Research in swarm robotics and collective behaviors is often
focused on homogeneous swarms. However, heterogeneity in behaviors
can be advantageous as we know, for example, from studies on social
insects. Our objective is to study the hypothesis that there are poten-
tial advantages of heterogeneous swarms over homogeneous swarms in an
aggregation scenario inspired by behaviors of juvenile honeybees. Even
without task switching – that is, with predefined, static roles for certain
swarm fractions – we find in our case study that heterogeneous swarms
can outperform homogeneous swarms for a predetermined set of basic
behaviors. We use methods of evolutionary computation to define behav-
iors imitating those found in honeybees (random walkers, wall followers,
goal finders, immobile agents) and also to find well-adapted swarm frac-
tions of different predetermined behaviors. Our results show that non-
trivial distributions of behaviors give better aggregation performance.

1 Introduction

In the field of swarm robotics the swarm was, at least early on, defined as
(quasi-)homogeneous [3]. This homogeneity referred primarily to the hardware
of the swarm robots because that would allow for mass production and conse-
quently for inexpensive swarms. The idea of mass production is followed to date
as seen in the kilobot robot [27] and experiments with 1000 robots [28]. Still,
a new trend pushes towards heterogeneous swarm research, such as the Swar-
manoid project [9]. Heterogeneity in the morphology of swarm members is also
seen in natural systems, such as polymorphism in ants [17]. Another concept
is to have heterogeneity in the behavior1. A swarm with heterogeneous behav-
iors can still be homogeneous concerning its hardware, hence, still allowing for
1 The term ‘behavior’ is used in its biological sense here, that is, it describes a set of

an organism’s actions. Within the computer science community it would be similar
to an agent’s strategy or policy and should not be mixed up with low-level behaviors
on the level of atomic actions (e.g., turning, gripping).

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 201–217, 2015.
DOI: 10.1007/978-3-319-25524-8 13

202 D. Kengyel et al.

mass production. The idea of heterogeneous behaviors in a swarm is that swarm
members have predetermined behavioral roles. For example, the polyethism of
honeybees [32], that is, taking over different tasks at different times in a bee’s life,
could be interpreted as a concept of heterogeneous behaviors because the bees
rarely switch their general tasks. This is in contrast to frequent task switching
in common task allocation and division of labor problems which could be inter-
preted as temporary heterogeneous behavior [6,7,29,37]. However, each swarm
member is typically capable of executing any of the tasks and tasks are switched
on demand. There is also the concept of behavioral castes “to describe groups
of individuals that perform the same set of tasks in a given period.” [10] If
tasks are performed for longer periods, agents might specialize, possibly even
permanently and hence form heterogeneous behaviors [26]. In natural systems
there are examples of swarms that are heterogeneous in their morphology and
that have morphology-dependent task switching behaviors [17,35]. In artificial
swarms there are also examples of heterogeneous swarms such the aboved men-
tioned Swarmanoid swarm robot project [9] or software approaches such as multi-
type ant colony optimization (MACO) [25]. Swarms that allow for frequent task
switching show generally high adaptivity to different work loads and environ-
mental conditions [4,23], but there are also task switching costs (e.g., switching
times) that decrease the efficiency [14,22]. Still, dynamic task switching is advan-
tageous in many situations and, for example, highly developed in many species
of social insects. Task partitioning and task switching behaviors are also subject
to research in evolutionary swarm robotics [11]. The evolution of heterogeneous
behaviors in a multiagent system is reported by [36].

In the following investigations we focus on an extreme case by not allowing
any task switching. Agents start with a predetermined behavior and keep it for
the whole experiment. The motivation is to simplify the swarm system and to
investigate the potential capabilities of such a static non-task-switching system.
We hypothesize that swarms with predetermined and fixed behavioral hetero-
geneity can outperform homogeneous swarms for certain sets of predetermined
behaviors. This idea is inspired by the behavior of juvenile honeybees that were
found to show several behavioral roles in an aggregation behavior while not
switching between them during the whole experiment [20,34]. Such a complex
swarm system with heterogeneous behaviors is an interesting research object in
itself but also as an inspiration for how to design swarm robotic systems. We
focus on an aggregation task in which the swarm has to find a single target
area or to choose between two target areas. In the latter case, the behavior
can also be interpreted as a collective-decision making process [12,15,34]. This
setting is subject to many studies on an algorithm for homogeneous swarms
called BEECLUST [1,2,5,13,16,18,19,21,30,31]. The BEECLUST algorithm
(see Fig. 1) is actually inspired by the above mentioned behavior of young hon-
eybees. Agents controlled by the BEECLUST algorithm move around randomly
(step 1 and step 2 create trajectories of straight lines interrupted by rotations
due to collision avoidance), whenever they meet another swarm member (step 3)

Potential of Heterogeneity in Collective Behaviors 203

1.) Each agent moves straight until it

perceives an obstacle O within

sensor range.

2.) If O is a wall the agent turns

away and continues with step 1.

3.) If O is another agent, the agent

measures the local potential field value.

The higher the scalar field value the

longer the agent stays still.

After this waiting period, the

agent turns away from the other

agent and continues with step 1.

Fig. 1. The BEECLUST algorithm [30].

they stop, measure the local potential field value (e.g., temperature, light, gas
concentration), wait for a time proportional to that value, and continue to move
randomly afterwards. As a result, the robots form clusters, which is followed
by a competition of growing and ‘dissolving’ robot clusters until one big cluster
remains with robots leaving and returning occasionally. The BEECLUST algo-
rithm simplifies the situation found in bees by reducing the different behavior
types to only one: random walk. BEECLUST implements a homogeneous app-
roach. The following work can be viewed as an extension of the BEECLUST
algorithm to the domain of heterogeneous behavior. In contrast to the study
reported in [20], here we investigate behavior compositions with arbitrary num-
bers that are optimized by evolutionary algorithms, we rely on a mathematical
model to represent the individual behavior types, and we investigate different
environments.

In this paper, we investigate the above mentioned hypothesis whether a
swarm that is heterogeneous in its behavior can outperform a homogeneous
swarm under the condition that there are only predetermined basic behaviors
and agents are not allowed to switch between them. The motivation is our find-
ing in the behavior of juvenile honeybees that take behavioral roles and never
switch them during the run of the experiment [20,34]. Aggregation at appropri-
ate spots within the bee hive is essential for survival of honeybees and hence we
follow that the observed heterogeneous swarm behavior is a well adapted prod-
uct of natural evolution. In this study, we investigate whether we can reproduce
that behavior in simulated agents and test the hypothesis whether heterogeneity
outperforms homogeneity in the investigated setting. The results of this study
might help to make the right design decisions for systems of swarm robots, such
as considering a heterogeneous approach in the first place and then choosing
appropriate compositions of predetermined behaviors.

In the following, we limit our case study to a selection of four predetermined
behavior types inspired by the biological system of juvenile honeybees. Our study
might be considered as an example of biomimicry research due to this choice.
However, we also motivate this choice by the opinion that these naturally evolved

204 D. Kengyel et al.

behaviors might be well adapted to the investigated task of aggregation. The
definition of the four behavior types found in juvenile honeybees and a novel
model to describe them are our next steps.

2 Four Behavior Types in Juvenile Honeybees

Honeybees (Apis mellifera) of age younger than 24 hours show four types of
behaviors when allowed to move in a bounded temperature field [34]. The exper-
iments were done in a circular arena surrounded by walls that cannot be climbed
by the bees. Heat lamps create a distinct temperature field and it is known that
juvenile honeybees have a preference for areas of 36◦C [21,31]. Each of the four
behavior types consists of up to two actions: moving and stopping. Except for
one type (immobile) all behavior types are combinations of both actions. Switch-
ing between the two actions is not considered task switching. The types differ
in their movement pattern; there are: random walker (no bias found, neither
due to walls nor due to temperature), wall follower (bias towards walls), goal
finder (bias towards warmer areas), and immobile agent (no or slow movement
only). See Fig. 2 for typical trajectories assigned to their respective behavior
type based on tracking data of young honeybees. Note, that the young honey-
bees never switch between the different behavior types during an experiment.

3 Mathematical Model of the Behavior Types

The behaviors of our agents are directly inspired by the behaviors observed in
young honeybees. These behaviors are logically separated in two components:
individual behavior aspects differ according to the four identified types and the
collective behavior aspects that are identical across all types except for the immo-
bile agents that do not show a reaction to social interactions because they only
stay stopped always.

3.1 Individual Behavior

We give a general, unified model here that is parametrized to describe all four
behavior types. These behavior types are instantiated through different sets of
parameters (see Section 3.3). An agent has a position x = (x0, x1)ᵀ (arena limits
are

√
x2
0 + x2

1 < 1), a heading φ ∈ [0, 2π), and a nominal velocity v ∈ [0, 5]
which is downscaled by discretization to v/100 per time step. An agent can
measure an environmental feature, which is temperature in the case of young
honeybees but it could also be light, ground color, gas concentration, etc. The
environmental feature is modeled by a potential field P (r), r ∈ R2. An agent’s
turning behavior depends on the environmental feature and/or random effects.
The parameter α ∈ [0, 1] is a weighting factor that determines how intensively an
agent follows the gradient of the potential field. A 100% greedy agent following
the gradient is defined by α = 1. An agent that moves randomly is defined

Potential of Heterogeneity in Collective Behaviors 205

by α = 0. Any intermediate value of α defines a corresponding agent that follows
the gradient to some extent but is also subject to noise. We define the change of
an agent’s heading (for simplicity without units) by

dφ(t)
dt

=α min
(

atan
(

∂P (x(t))
∂x0

,
∂P (x(t))

∂x1

)

, φmax

)

+ (1 − α)ξ(σ, t), (1)

for a stochastic process ξ based on Gaussian noise with zero mean, standard
deviation σ, and maximal turning angle φmax = 7/18π (φmax = 70◦). An agent’s
velocity (for simplicity without units) is defined by

dx
dt

=
(

cos φ(t)
sin φ(t)

)

v(t)m(t), (2)

for its current nominal speed v(t) and m(t) ∈ {0, 1} giving the agent’s current
state: m = 0 for stopped, m = 1 for moving. Note that the nominal speed v
is irrelevant in state stopped (m = 0). The transitions between stopped and

(a) Tracked bee trajectory
of type random walker.

(b) Tracked bee trajectory
of type wall follower.

(c) Tracked bee trajectory
of type goal finder.

(d) Tracked bee trajectory
of type immobile agent.

Fig. 2. Typical tracked trajectories of young honeybees (same length of experiment),
assigned to the four behavior types, start of trajectory at triangle, end at circle, 36◦C
target area at the left hand side of the arena.

206 D. Kengyel et al.

moving are modeled as probabilistic state machine with probability to move
again Pmove and probability to stop Pstop. Finally, the change of an agent’s
nominal speed v over time is modeled by a simple Markov chain. The interval of
possible velocities [0, 5] is discretized as a set of 51 velocities. For each of these
discrete velocities v we have a probability of increasing the velocity Pincr(v) by
one step (i.e., v′ = v + 1/50) and a symmetrical probability of decreasing the
speed 1 − Pincr(v) (i.e., we force a change). These probabilities Pincr define the
velocity distribution that results from our model.

3.2 Social Behavior

The agents’ social behavior, that is the interactions between agents, are homo-
geneous across all behavior types. They follow the definition of the behavioral
model of young honeybees [34] and the definition of the BEECLUST algo-
rithm [30]. Once two agents perceive each other, they stop their motion, measure
the local value of the potential field P , and wait for a certain period. This wait-
ing time w is modulated proportionally to the measured potential field value P .
It is defined by the function

w(P) =
tmaxP

2

θ + P 2
, (3)

for parameters tmax = 132 time steps and θ = 1.4 × 104. The parameters tmax

and θ are chosen to generate an appropriate relation between the frequency of
robot-robot encounters, the maximum of the potential field P , and the resulting
interval of occurring waiting times. During the waiting time all features of the
individual behavior are turned off (i.e., velocity v and agent state m are not rele-
vant). Once the waiting time has elapsed the agents do a u-turn of [−0.25π, 0.25π]
and start to move again following their individual behavior type.

3.3 Evolution of Parameters for Behavior Types

Data acquired from experiments with single, young honeybees2 are used to find
appropriate parameters for our mathematical model. These bee-derived data
were manually classified to the four behavior types. A parameter set (σ, α,

Table 1. Typical parameters for the four behavior types of our model: random walker
(RW), wall follower (WF), goal finder (GF), and immobile agent (IA).

RW WF GF IA

σ [radian] 0.090 0.0004 0.57 0.885
α 0.016 0 0.99 0.481
Pstop 0 0 0.007 0.163
Pmove 0 0 0.024 0.002

2 unpublished, publication in preparation.

Potential of Heterogeneity in Collective Behaviors 207

Pstop, Pmove, Pincr) for each behavior type is evolved using a simple genetic algo-
rithm. The population size is 100, we evolve for 100 generations, the mutation
rate is 0.25, we select based on proportionate selection, and 30 repetitions per
evaluation are done. In each evaluation the agent operates in an arena with only
one goal area to avoid side-effects of the symmetrical setting investigated in the
swarm experiments. The agent is initially positioned far from that goal area with
random orientation and random speed. The agent’s behavior is defined by the
considered parameter set and it is simulated for 1.5 × 104 time steps. During
the simulation all turns and changes of velocity are stored in a histogram of
turning angles and a histogram of velocities. The fitness function is a weighted
sum of two features: First, it rewards similarities in the histograms of the simu-
lated agent to the histograms acquired from the bee data. Second, type-specific
qualities, that are not directly represented by the histograms of turning angles
and velocities, are rewarded. In the case of the goal finder, turns towards the
goal (i.e., maximum in the potential field P) are rewarded. The gradient of the
potential field (∂P (x)

∂x1
, ∂P (x)

∂x2
)ᵀ defines the optimal direction for each position x.

For each time step, the difference between the agent’s direction and the optimal
direction is calculated. The sum of these differences is part of the fitness func-
tion and hence imposes a minimization problem. In the case of the wall follower,
time spent close to the wall is rewarded. This is done by defining three areas:
a ring-shaped area Rwall directly at the wall x ∈ Awall :

√
x2
0 + x2

1 > 0.47, a
circular area far from the wall x ∈ Acenter :

√
x2
0 + x2

1 < 0.4, and a second ring
in between x ∈ Aneutral : 0.47 <

√
x2
0 + x2

1 < 0.4. In each time step, the agent
is rewarded by a score of +1 when positioned on Awall, it receives a penalty
of −1 when positioned on Acenter, and it is treated neutral (±0) when posi-
tioned on Aneutral. This score needs to be maximized to evolve a wall following
agent. In the case of the immobile agent, staying stopped is rewarded which is

(a) Histogram of turning angles for all
4 behavior types.

(b) Histogram of velocities for all
4 behavior types (note logarithmic scale
on vertical axis).

Fig. 3. Histograms of turning angles and velocities for all four behavior types based
on the mathematical model and parameters as given in table 1 (averaged over 200 rep-
etitions of simulations, 1.5 × 104 time steps each).

208 D. Kengyel et al.

implemented by minimizing the agent’s average speed. In the case of the random
walker, no type-specific quality is defined.

The results of these evolutionary runs are shown in table 1 (except for the
50 values of Pincr). The resulting histograms of turning angles and velocities
(due to Pincr(v)) for these four behavior types as defined by our model and the
parameters given in table 1 are shown in Fig. 3. These results do not allow for
a simple interpretation but a few features can be discussed here. The lowest
peak for turning angle 0 is found for the random walker which indicates that
the turning angle distribution is close to a uniform distribution. The random
walker is also one of the fastest. The next peak for angle 0 is that of the goal
finder but it also has low values for extreme turning angles. Hence, the goal
finder approaches the goal area in a rather straight trajectory. In addition, the
goal finder moves slowly. The wall follower has a distribution of turning angles
that is close to a uniform distribution similarly to the random walker. However,
the maximal turning angle σ is small, which leads to the behavior of a wall
follower. Additionally there are two more peaks for big turning angles which
are the required corrections when following the curved wall around the circular
arena. The wall follower moves rather fast. In the case of the immobile agent the
turning angle is of limited relevance, instead its low average velocity is of more
importance.

4 Setup of Experiments

In the following experiments, the agents move in a circular arena with either
one goal area or two goal areas (see Fig. 4). Following our inspiration from the
honeybee experiments we define the potential field P as a temperature field here.

(a) One global goal area
at the right hand side of
the arena.

(b) A local goal area at
the left-hand side and a
global goal area at the
right-hand side.

Fig. 4. Experimental setup of the arena; the global goal area is located at the right-
hand side of the arena and contains temperatures between 36◦C and 30◦C. The local
goal area at the left-hand side of the arena contains temperatures between 32◦C and
30◦C. Each of the goal areas covers 11% of the arena.

Potential of Heterogeneity in Collective Behaviors 209

The potential field P is chosen in a way that there is a global optimum at the
right-hand side and an optional local optimum at the left-hand side of the arena.

In our experimental settings, these optima are located at the wall, see Fig. 4.
In the first experiment 4(a), there is a semi-circle area around the global optimum
on the right side. This area is called global goal area and has temperatures of
30◦C to 36◦C ranging from the boundary between the border of the semi-circle
and black area to the wall. In the second experimental setup we create a choice-
experiment. Additionally to the global goal area on the right side, there is a
semi-circle area around the local optimum on the left side. This area is called
local goal area and has a maximal temperature of 32◦C at the outer side and
30◦C at the boundary between the border of the semi-circle and black area. Each
of the goal areas covers 11% of the total arena.

5 Evolution of Behavior Type Compositions

A variation of evolutionary algorithms, called wolf-pack-inspired evolutionary
algorithm [38], is used to evolve the composition of behavior types in the swarm.
The algorithm maintains overlapping generations and considers a fixed max-
imum population size. Proportional selection (fitness-based) is used to select
individuals (i.e., compositions of behavior types) for mutation that fill empty
places in the population. In every generation, one of the individuals, that have
not been evaluated yet, is evaluated (alternatively the least evaluated individual
if all the individuals have been evaluated already). The algorithm maintains the
hierarchy in the population and keeps its diversity by removing older individ-
uals with an equal or lower fitness than a newly evaluated individual (with a
probability factor). The fitness function is defined by

F = G − L (4)

where G is the number of agents within the global goal area and L is the number
of agents within the local goal area (if there is one).

6 Results

For both experimental settings (one global goal and choice-experiment), we inves-
tigate the potential of heterogeneous swarms. As described in the above section,
we use evolutionary algorithms to adapt the swarm’s behavior-type composition
to the environment. The experiments are based on a fixed swarm size N = 15.
The results are based on n = 18 independent runs of the evolutionary algorithm
and the population of compositions was initialized to a random uniformly dis-
tributed setting of behavior types. The evolved approach is compared to the
fitness of several homogeneous swarm settings (Fig. 5) that were evaluated in
n = 100 independent simulation runs (no evolution because composition is pre-
determined). In the first three homogeneous swarm settings we use a swarm size

210 D. Kengyel et al.

of N = 15. For the last two settings we used a swarm size of N = 12 to test for
a potential density dependency.

First we focus on the experiment with only one goal area (Fig. 5(a)). The
median fitness for 15 random walkers is 7, for 15 goal finders it is 5, for 15 wall
followers it is 9, for 12 random walkers it is 6, and for 12 wall followers it is 8. For
the heterogeneous swarm optimized by evolution the median fitness is 10 (n =
18). The evolved behavior-type composition is found to be significantly better
than the homogeneous swarms (based on Wilcoxon rank sum test, p < 0.05).

Figure 5(b) shows the results of the choice experiment (global goal area and
local goal area). Here we compare the evolved heterogeneous behavior-type com-
position (first box plot, labeled ‘Evo’) to homogeneous behavior-type composi-
tions.

The median fitness for 15 random walkers is 2, for 15 goal finders it is 0,
for 15 wall followers it is 3, for 12 random walkers it is 2, and for 12 wall
followers it is 2. For the heterogeneous swarm optimized by evolution the median
fitness is 5.5 (n = 18). The evolved behavior-type composition is found to be
significantly better than the homogeneous swarms (based on Wilcoxon rank sum
test, p < 0.05). Hence, our heterogeneous approach is the most effective variant of
all tested configurations. The results for 12 random walkers and 12 wall followers
indicate no dependency on density. The motivation of this test is based on results
we report below and the consideration that immobile agents might potentially
be used to virtually decrease the agent density.

−1
5

−1
0

−5
0

5
10

15
Fi

tn
es

s

Evo 15 RW 15 GF 15 WF 12 RW 12 WF

* * * * *

(a) Setting with one goal area at the wall.

−1
5

−1
0

−5
0

5
10

15
Fi

tn
es

s

Evo 15 RW 15 GF 15 WF 12 RW 12 WF

* * * * *

(b) Setting with a global goal area and a
local goal area (choice experiment).

Fig. 5. Comparison of the best fitness between one evolved heterogeneous setting and
several homogeneous swarm settings for one goal area at the wall (left) and the choice
experiment on the right (global goal area and local goal area); heterogeneous swarm
(labeled ‘Evo’), homogeneous swarms with only random walkers (RW), goal finders
(GF), or wall followers (WF). In both settings, the heterogeneous swarm is significantly
better than all homogeneous swarms (based on Wilcoxon rank sum test, p < 0.05).
Other significances are not shown.

Potential of Heterogeneity in Collective Behaviors 211

0
2

4
6

8
10

12
M

ed
ia

n
am

ou
nt

 o
f b

eh
av

io
r t

yp
e

GF WF RW IA

Fitness: 10

(a) Results of the evolution with one goal
area. The plot shows the median amount of
behavioral types that are used to compose
a heterogeneous swarm with the highest fit-
ness.

0 20 40 60 80 100 120 140

0
5

10
15

evaluations

ag

en
ts

Behavior type
GF
WF
RW
IA

(b) Type frequencies of the best compo-
sition over evaluations

Fig. 6. Results of evolved swarm compositions with one goal area and all four behav-
ioral types: random walker (RW), goal finder (GF), wall follower (WF), and immobile
agent (IA).

Next, we evolve behavior-type compositions for different environments (one
or two goal areas) and different initializations of the composition populations. We
start with the setting that has only one goal area (see Fig. 4(a)). The evolution-
ary approach is as described above, that is, the initial population of compositions
is sampled from a random uniform distribution. For our analysis, we take the
best composition of the last population from each evolutionary run. The box
plots shown in Fig. 6(a) give a summary of these best compositions. The num-

0
2

4
6

8
10

12
M

ed
ia

n
am

ou
nt

 o
f b

eh
av

io
r t

yp
e

GF WF RW IA

Fitness: 5.5

(a) Median number of behavior types as
they occur in the best swarm composition.

0 20 40 60 80 100 120 140

0
5

10
15

evaluations

ag

en
ts

Behavior type
GF
WF
RW
IA

(b) Development of the best composition
that is evaluated at each time step.

Fig. 7. Results of the evolution for the choice experiment (local goal area and global
goal area) and all four behavioral types: random walker (RW), goal finder (GF), wall
follower (WF), immobile agent) (IA).

212 D. Kengyel et al.

ber of occurrences for each behavior type is given for the n = 18 best evolved
compositions. The median number of goal finders is 1.5, the median of wall fol-
lowers is 8.5, the median of random walkers is 2.5, and the median of immobile
agents is 1. It is counterintuitive that goal finders are relatively infrequent while
the high number of wall followers might seem reasonable because the goal area
is located at the wall. In Fig. 6(b) we give an overview of the type frequencies of
the current best compositions over the number of evaluations averaged over all
evolutionary runs. We started with compositions that are in average uniformly
distributed. During the first 10 evaluations the number of immobile agents is
decreased while the number of wall followers is increased quickly. The number
of random walkers increases initially but then decreases again. The number of
goal finders is decreased over a long period during the first 40 evaluations. After
about 100 evaluations a saturation effect is observed.

Next we investigate the choice experiment (local goal area on the left side
and a global goal area on the right side of the arena). The box plots of Fig. 7(a)
give the number of agents for each behavior type as they occurred in the best
compositions of n = 20 independent evolutionary runs. The median number of
goal finders is 1, the median of wall followers is 6, the median of random walkers
is 2.5, and the median of immobile agents is 4. As expected the number of goal
finders is smaller in comparison to the setting with only one goal (cf. Fig. 6(a))
because goal finders merely follow the gradient and the swarm separates between
the two goal areas. The number of wall followers is decreased, the number of
random walkers is increased in its variance, and the number of immobile agents
is increased in comparison to the one-goal setting. Especially the increase of
immobile agents is counterintuitive because they are of no direct use to maxi-
mize the fitness function. In Fig. 7(b) we give an overview of the type frequencies
of the current best compositions over the number of evaluations averaged over
all evolutionary runs. Starting from approximately uniformly distributed com-
positions the number of immobile agents first decreases and is then increased
slowly over about 120 evaluations at the cost of random walkers. After about
130 evaluations a saturation effect is observed.

7 Discussion

Concerning the results for the one-goal setting (Fig. 5(a) and 6) one would
expect that the best fitness in this setup is achieved by making exclusive use
of goal finders only. From our experience with the simulation we can tell that
too many goal finders actually block each other in areas before the goal area
which results in clusters outside of the goal area. Instead, a limited number of
goal finders turns out to be useful because such deadlock situations are then
avoided. They serve as seeds within the goal area and help agents of other types
to form clusters inside the goal area more easily, which is an example of how
the different behavior types create opportunities of cooperation between agents.
Most of the agents of the evolved heterogeneous swarms are wall followers. With
only one goal area present, the wall followers always end up in the goal area

Potential of Heterogeneity in Collective Behaviors 213

and form a cluster. In comparison, the number of random walkers is low. Their
approach to the goal area is slower because they might form clusters within the
center of the arena. Eventually, they join the cluster in the goal area and join
the wall followers. Therefore, in this setup a high amount of wall followers is the
better choice. In an extended study, that is in preparation, we have also done
experiments with goals not positioned at the walls. The number of wall followers
decreases for that setting as expected but the qualitative result of our study is
not influenced by the positions of the goal areas.

Concerning the results for the choice experiment (Fig. 5(b) and 7) the small
number of goal finders is explained by the fact that they are not able to distin-
guish between a global and a local goal area because they merely follow the local
gradient. Hence, they are not able to increase fitness (F = G − L). This is also
indicated by the zero median for homogeneous goal finder swarms (Fig. 5(b)).
Still, goal finders might be useful in a heterogeneous swarm to mark the goal
areas and to serve as social seeds that attract others. Compared to the results of
the experiment with only one goal area, the median amount of immobile agents
is higher. Intuitively it seems inappropriate to use any immobile agent because
they never enter the goal area when placed outside of it initially. However, they
are part of many evolved swarm compositions although the optimization algo-
rithm is effective [38] and we also do not enforce that all four behavior types
have to be included in the solution. Thus, additional experiments are required
to investigate the role of immobile agents and to find a sound explanation of
why immobile agents are useful for the swarm in both our model and also in the
natural swarms of honeybees. We can only speculate that immobile agents might
have the functionality of a barrier and might slow down or even block agents
that switch between goals. That way immobile agents might prevent other agents
from visiting the local goal area and hence might stabilize the whole decision-
making process. However, this requires more investigations and will be done in
future work.

8 Conclusion

In this paper we have investigated swarms of agents that are heterogeneous in
their behaviors. The idea is to simplify the swarm system by predefining static
roles for certain swarm fractions. Even for the investigated extreme case without
task switching, the heterogeneous swarm outperforms homogeneous swarms in
the investigated aggregation scenario for the selected, predetermined behavior
types. For now, all our results are based on one set of predetermined behaviors
and one kind of collective task. However, the selection of behaviors was not
arbitrary but inspired by results from biological experiments with juvenile bees.
Still, the generalization of this work is left for future work.

The evolved compositions of behavior types indicate a rather complex under-
lying system that creates nontrivial distributions of behaviors which might even
be perceived as counterintuitive. While the behavior types themselves were sim-
ple and predefined here, it is of course an option to determine the behavior types

214 D. Kengyel et al.

also by evolutionary computation or other methods of machine learning. How-
ever, for applications of swarm robotics, such as nanorobotics [24], it is attractive
to make use of simple predetermined behaviors.

The effectivity of the evolved behavior compositions is certainly interesting,
raises questions, and allows for different interpretations. While the four behav-
ior types all score low in homogeneous swarms, they allow for a much more
efficient aggregation behavior once combined. Obviously cooperation among dif-
ferent types is crucial and teamwork of a diverse team is essential. A tempt-
ing interpretation is that the results might be compared to findings in natural
swarms that rely on certain degrees of leadership [8]. Only leadership is difficult
to define here. The goal-oriented and greedy behavior of the goal finder is not
helpful for the swarm per se. It requires a random walker and a wall follower to
make use of the social seed within the goal area created by a goal finder. Hence,
we observe a sophisticated interplay of agents with different approaches and
capabilities that outperform their homogeneous counterparts as a heterogeneous
swarm.

Also note that the use of simulations is potentially the only means to investi-
gate the concept of predetermined behavioral roles in the natural complex system
of young honeybees. Following the common standards of experiment design in
biology it is not an option to use the same subjects (bees) in several replications
of the experiment. In our case here an initial experiment would be necessary
to label the bee with its behavioral role and in a second experiment we could
create the desired swarm composition of behavior types. However, the bee might
be influenced by the initial experiment and show a different behavior. Hence,
simulations are a useful tool to investigate this complex system of interacting
honeybees.

The results of this study support a core idea of swarm robotics that the
interplay of several simple behaviors generates complex behaviors due to mul-
tiple interactions. This case study’s main result is that heterogeneous swarms
based on predetermined behaviors without task switching can perform well. Our
approach is not limited to the study of the BEECLUST algorithm. Also other col-
lective behaviors can be explored, such as heterogeneity in the stimulus-response
functions of bees in their waggle-dance behavior [33]. In future work, we plan
to do a complete sensitivity analysis of the many paramters in our model. In
addition, we plan to work our way towards a generalization of our approach,
for example, allowing different sets of predetermined or even learned behaviors.
Although this study was guided by the biological inspiration of young honey-
bees’ behavior, our future research will focus more on engineering applications
of heterogeneous swarms in (evolutionary) swarm robotics.

Acknowledgments. This work is supported by: Austrian Science Fund (FWF):
P19478-B16 and P23943-N13 (REBODIMENT); EU FP7 FET-Proactive ‘ASSISIbf ’,
no. 601074; EU H2020 FET ‘flora robotica’, no. 640959.

Potential of Heterogeneity in Collective Behaviors 215

References

1. Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based
aggregation with a mobile robot swarm: a novel fuzzy-based method. Adaptive
Behavior 22(3), 189–206 (2014)

2. Arvin, F., Turgut,A.E.,Yue, S.: Fuzzy-based aggregationwith amobile robot swarm.
In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß,
R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 346–347. Springer, Heidelberg
(2012)

3. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M.
(eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005)

4. Berman, S., et al.: Optimized stochastic policies for task allocation in swarms of
robots. Robotics, IEEE Transactions on 25(4), 927–937 (2009)

5. Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of
robot swarms using the honeybee-inspired control algorithm beeclust. Mathemat-
ical and Computer Modelling of Dynamical Systems 18(1), 87–100 (2012)

6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford Univ Press (1999)

7. Campbell, A., Wu, A.S.: Multi-agent role allocation: issues, approaches, and multi-
ple perspectives. Autonomous Agents & Multi-Agent Systems 22, 317–355 (2011)

8. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433, 513–516 (2005)

9. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)

10. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future
Generation Computer Systems 16(9), 851–871 (2000)

11. Ferrante, E., Dúeñez Guzḿan, E., Turgut, A.E., Wenseleers, T.: Evolution of task
partitioning in swarm robotics. In: et al., V.T. (ed.) Proceedings of the Work-
shop on Collective Behaviors and Social Dynamics of the European Conference on
Artificial Life (ECAL 2013) (2013)

12. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized
aggregation triggers collective decision making in a group of cockroach-like robots.
Adaptive Behavior 17(2), 109–133 (2009)

13. Hamann, H.: Towards swarm calculus: Urn models of collective decisions and uni-
versal properties of swarm performance. Swarm Intelligence 7(2–3), 145–172 (2013)

14. Hamann, H., Karsai, I., Schmickl, T.: Time delay implies cost on task switching: A
model to investigate the efficiency of task partitioning. Bulletin of Mathematical
Biology 75(7), 1181–1206 (2013)

15. Hamann, H., Meyer, B., Schmickl, T., Crailsheim, K.: A model of symmetry breaking
in collective decision-making. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J.,
Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 639–648. Springer,
Heidelberg (2010)

16. Hereford, J.M.: Analysis of BEECLUST swarm algorithm. In: Proc. of the IEEE
Symposium on Swarm Intelligence (SIS 2011), pp. 192–198. IEEE (2011)

17. Hölldobler, B., Wilson, E.: The ants. Belknap Press of Harvard University (1990)
18. Kengyel, D., Schmickl, T., Hamann, H., Thenius, R., Crailsheim, K.: Embodiment

of honeybee’s thermotaxis in a mobile robot swarm. In: Kampis, G., Karsai, I.,
Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp. 69–76. Springer,
Heidelberg (2011)

216 D. Kengyel et al.

19. Kengyel, D., Thenius, R., Crailsheim, K., Schmickl, T.: Influence of a social gra-
dient on a swarm of agents controlled by the beeclust algorithm. Advances in
Artificial Life. In: Proceedings of the 12th European Conference on the Synthesis
and Simulation of Living Systems, ECAL 2013 12, pp. 1041–1048 (2013)

20. Kengyel, D., Wotawa, F., Schmickl, T.: Towards swarm level programming: The
role of different movement patterns in swarm systems. Swarm Intelligence (2014),
submitted

21. Kernbach, S., Thenius, R., Kornienko, O., Schmickl, T.: Re-embodiment of honey-
bee aggregation behavior in an artificial micro-robotic swarm. Adaptive Behavior
17, 237–259 (2009)

22. Khaluf, Y., Birattari, M., Hamann, H.: A swarm robotics approach to task alloca-
tion under soft deadlines and negligible switching costs. In: del Pobil, A.P., Chinel-
lato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014.
LNCS, vol. 8575, pp. 270–279. Springer, Heidelberg (2014)

23. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots
inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adap-
tive Systems (TAAS) 1(1), 4–25 (2006)

24. Lenaghan, S., Wang, Y., Xi, N., Fukuda, T., Tarn, T., Hamel, W., Zhang, M.:
Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Trans-
actions on Biomedical Engineering 60(3), 667–673 (2013)

25. Liu, X., Li, X., Shi, X., Huang, K., Liu, Y.: A multi-type ant colony optimization
(maco) method for optimal land use allocation in large areas. International Journal
of Geographical Information Science 26(7), 1325–1343 (2012)

26. Lorenz, K.: Vergleichende Verhaltensforschung: Grundlagen der Ethologie.
Springer (1978)

27. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: A low
cost robot with scalable operations designed for collective behaviors. Robotics and
Autonomous Systems 62(7), 966–975 (2014)

28. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

29. Schmickl, T., Crailsheim, K.: TaskSelSim: a model of the self-organization of the
division of labour in honeybees. Mathematical and Computer Modelling of Dynam-
ical Systems 14, 101–125 (2008)

30. Schmickl, T., Hamann, H.: BEECLUST: a swarm algorithm derived from honey-
bees. In: Xiao, Y. (ed.) Bio-inspired Computing and Communication Networks.
CRC Press, March 2011

31. Schmickl, T., Thenius, R., Möslinger, C., Radspieler, G., Kernbach, S.,
Crailsheim, K.: Get in touch: Cooperative decision making based on robot-to-robot
collisions. Autonomous Agents and Multi-Agent Systems 18(1), 133–155 (2008)

32. Seeley, T.D.: Adaptive significance of the age polyethism schedule in honeybee
colonies. Behavioral Ecology and Sociobiology 11, 287–293 (1982)

33. Seeley, T.D.: Honey bee foragers as sensory units of their colonies. Behavioral
Ecology and Sociobiology 34, 51–62 (1994)

34. Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., Crailsheim, K.: Dynamics
of collective decision making of honeybees in complex temperature fields. PLoS
ONE 8(10), e76250 (2013)

35. Wilson, E.: The relation between caste ratios and division of labour in the ant genus
Pheidole (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 16, 89–98 (1984)

36. Yong, C.H., et al.: Coevolution of role-based cooperation in multiagent systems.
IEEE Transactions on Autonomous Mental Development 1(3), 170–186 (2009)

Potential of Heterogeneity in Collective Behaviors 217

37. Zahadat, P., Crailsheim, K., Schmickl, T.: Social inhibition manages division of
labour in artificial swarm systems. In: Lio, P., Miglino, O., Nicosia, G., Nolfi,
S., Pavone, M. (eds.) 12th European Conference on Artificial Life (ECAL 2013),
pp. 609–616. MIT Press (2013)

38. Zahadat, P., Schmickl, T.: Wolfpack-inspired evolutionary algorithm and a
reaction-diffusion-based controller are used for pattern formation. In: Proceedings
of the 2014 Conference on Genetic and Evolutionary Computation, pp. 241–248.
GECCO 2014, ACM, New York, USA (2014)

Multi-agent Path Planning
in Known Dynamic Environments

Aniello Murano1, Giuseppe Perelli2(B), and Sasha Rubin1

1 Università di Napoli “Federico II”, Naples, Italy
2 University of Oxford, Oxford, England

perelli.gi@gmail.com

Abstract. We consider the problem of planning paths of multiple agents
in a dynamic but predictable environment. Typical scenarios are evacu-
ation, reconfiguration, and containment. We present a novel representa-
tion of abstract path-planning problems in which the stationary environ-
ment is explicitly coded as a graph (called the arena) while the dynamic
environment is treated as just another agent. The complexity of planning
using this representation is pspace-complete. The arena complexity (i.e.,
the complexity of the planning problem in which the graph is the only
input, in particular, the number of agents is fixed) is np-hard. Thus, we
provide structural restrictions that put the arena complexity of the plan-
ning problem into ptime(for any fixed number of agents). The importance
of our work is that these structural conditions (and hence the complexity
results) do not depend on graph-theoretic properties of the arena (such as
clique- or tree-width), but rather on the abilities of the agents.

1 Introduction

The path-planning problem is to find collision-free paths for mobile agents in an
environment that may contain obstacles [10,20,27,32]. Obstacles, which may not
always be stationary, are known if their size, locations, motions, etc. are fixed
ahead of planning.

For example, consider a building consisting of rooms, corridors between cer-
tain pairs of rooms, and a set of exits. Initially, a fixed number of people are
positioned in various rooms, and a flood begins in one of the rooms. At each
time step every agent can either stay where it is or move through a corridor to
an adjacent room. Suppose the flood spreads radially (i.e., at each time step it
reaches all adjacent rooms that are accessible via a corridor). The path planning
problem is to exhibit a sequence of actions for the agents that ensures they can
reach an exit before the flood traps them.

Other applications are to space exploration, warehouse management, intelli-
gent transportation, assembly or disassembly, and computer games (see [16] and
the references therein).

This work has been partially supported by the FP7 EU project 600958-SHERPA
and the ERC Advanced Grant “RACE” (291528) at Oxford. Sasha Rubin is a Marie
Curie fellow of the Istituto Nazionale di Alta Matematica.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 218–231, 2015.
DOI: 10.1007/978-3-319-25524-8 14

Multi-agent Path Planning in Known Dynamic Environments 219

The AI literature on planning has established that planning is intractable,
e.g., propositional STRIPS planning is pspace-complete [2]. To gain deeper
insight into what makes planning hard, one must study structural properties of
the problem, e.g., [19]:

For many discrete planning problems that we would like a computer to
solve, the state space is enormous (e.g., 10100 states). Therefore, substan-
tial effort has been invested in constructing implicit encodings of prob-
lems in hopes that the entire state space does not have to be explored
by the algorithm to solve the problem.

In this paper we propose an implicit representation (“encoding” in the lan-
guage above) of path-planning problems of mobile agents in which obstacles are
known, and agents should collaborate, rather than compete, to achieve some
goal. Know but dynamic environments, such as the flood in the example above,
are treated as agents.

Since our representation is exponentially compact, the associated decision
problem is pspace-complete (Theorems 1 and 2). This is true even for a fixed
number of agents, i.e., this high space complexity is not the result of the avail-
ability of more and more agents. The restricted path-planning problem assumes
that all the data is fixed in advance, except for the arena which is the input.
We prove that the complexity of the restricted path-planning problem, called
the arena complexity in the abstract, may be np-hard (Proposition 1); it is not
known if it can be pspace-hard. Thus, we describe cases that are solvable in
ptime in which the agent behaviour is restricted (Theorem 3): every agent is
either monotone or of bounded-extent. Informally, an agent is monotone if its
set of positions can only expand over time (or, only shrink over time). A typical
example is the flood: once a room is flooded it stays flooded. An agent is of
bounded-extent if it can only occupy a set of positions of bounded size (where
the bound does not depend on the size of the arena). A typical example are peo-
ple: each person in the building can occupy only one room at a time, no matter
how large the room is.

1.1 Related Work

Much work in robotics focuses on geometric reasoning, e.g., [18,30,32]. Although
our environment is discrete (i.e., a finite graph), it may represent a discretisation
of the geometric structure of the environment, e.g., a vertex may represent an
area not occupied by any of the obstacles. For a discussion of the subtle issues
involved in such a translation, see for instance [16].

Standard ways to deal with the fact that planning has, in general, high com-
putational complexity, is to use abstractions and heuristics, see for instance a
recent survey on path planning [27]. In contrast, in this paper we isolate com-
putationally tractable but interesting path-planning scenarious.

Standard ways to encode planning problems are logic-based: e.g., the situa-
tion calculus is a first-order logic in which the main objects are finite sequences of

220 A. Murano et al.

actions; and in the set-theoretical representation (such as STRIPS or the multi-
agent extension MA-STRIPS [1]) every state is an evaluation of a fixed number
of Boolean variables [10]. In contrast, our representation is graph-theoretic and
represents the positions of the agents on a graph. Although our planning prob-
lems can be expressed in these logical formalisms, this would hide the graphical
nature of the problem, see Section 5.

Our representation is related to multi-robot path-planning problems and puz-
zles [8,15,23,26,28]. In [15,26,28] the goal is to rearrange a group of robots in
a given graph, without colliding with each other or with obstacles. The non-
optimal version of that problem is in ptime [15]. We can encode the variation in
which more than one agent may move at a time [28], see Example 2. The motion-
planning problems and puzzles of [8,12] are pspace-complete. We use one such
puzzle to prove a pspace-hard lower bound on our path-planning problems, see
Theorem 2.

Monotonicity has been used to get ptime algorithms in the setting of propo-
sitional temporal planning [4]. That work studies a propositional representation
of planning problems in which the fluents (i.e., literals) are required to be mono-
tone, e.g., once removed a fluent can never be added in any plan of the plan-
ning problem. In contrast, the natural translation of our representation into the
propositional planning encoding does not preserve monotonicity, see Section 4.

Most of the planning literature, including this paper, focuses on attainment
goals of the form “a target configuration can be reached from some initial con-
figuration” [19]. In particular then, we can also model goals of the form “every
agent eventually reaches its target vertex in a collision-free way”.

Our formalisation and results are inspired by formal methods. Other work
in planning with the similar inspirations are an automata-theoretic approach
to planning [5], and planning as model checking [11,13,21,24,25,31]. These
papers also supply centralised planning algorithms, however their representa-
tion is based on transition-systems, and hence is not compact, as ours is.

2 Representation of the Path-Planning Problem

We describe how we represent the path-planning problem. Informally, all moving
entities (people, floods, fires) are considered to be agents. Agents operate in a
finite graph (V,E). At any given time, an agent can occupy a subset V , called its
position (e.g., a person occupies a single vertex, and a flood may occupy more
than one vertex). One may specify the legal positions L of the agents, e.g., that
agents cannot occupy overlapping vertices. An agent’s movements are governed
by its mobility relation Δ that relates its current position to its next possible
position (the fact that Δ is a relation, rather than a function, models that moves
may be nondeterministic). In Section 3 we will discuss how to specify L and Δ
(in particular these objects can be defined algorithmically, or by formulas, e.g.,
of first-order logic).

Formally, let k ∈ N (representing the number the agents). An arena is a finite
directed graph A = (V,E). Subsets of V are called positions. A (k-)configuration

Multi-agent Path Planning in Known Dynamic Environments 221

(over A) is an expansion of A by k many positions, i.e., 〈V,E, P1, · · · , Pk〉 where
each Pi ⊆ V is called the position of agent i (in the configuration). Note that an
agent can be in more than one vertex, e.g., a flood. A mobility relation (over A)
is a subset Δ of 2V × 2V such that (X,Y) ∈ Δ implies Y ⊆ X ∪ E(X), where
E(X) := {v ∈ V | ∃u ∈ X.(u, v) ∈ E}. The idea is that (X,Y) ∈ Δ means that
a player can move from position X to position Y but only along edges.

A (path-)planning domain is a tuple D = 〈A,L,Δ1, · · · ,Δk〉 where A =
(V,E) is an arena, L is a set of k-configurations of A, called the legal configu-
rations, and each Δi is a mobility relation over A. For k-configurations c, d over
A write c � d to mean that d results from c via simultaneous application of Δis,
formally: for c = 〈V,E, P1, · · · , Pk〉 and d = 〈V,E,Q1, · · · , Qk〉 define c � d iff
(Pi, Qi) ∈ Δi for all i ≤ k. An execution starting in configuration c is a finite
or infinite sequence π of configurations of A such that π1 = c and for all i, a)
πi ∈ L, and b) πi � πi+1.

A (path) planning instance is a tuple P = 〈D, I,G〉 where I and G are sets of
k-configurations over A called the initial configurations and goal configurations.
An execution π of P is called a solution if π1 ∈ I and there exists j such that
πj ∈ G.

Example 1 (Evacuation). To model the flood example from the introduction
with one person take k = 2, i.e., one agent is a person, and the other agent is
the flood. Consider an initial configuration of the form 〈V,E, {p}, {f}〉, i.e., the
person starts in some vertex s, and the source of the flood is in some vertex f .
The goal configurations are of the form ∪X⊆V 〈V,E, {t},X〉 for some vertex t.
The mobility of the person relates {v} to all those {w} such that (v, w) ∈ E or
v = w, i.e., the person can move to an adjacent position, or stay where it is.
The mobility of the flood relates X to the single set X ∪ E(X), i.e., the flood
expands radially. Thus a typical configuration in an execution is of the form
〈V,E, {v}, F 〉 for some v ∈ V and F ⊆ V . Finally, to specify that the person
cannot move into a flooded area, define the set of legal configurations L to be
those of the form 〈V,E, {v}, F 〉 such that v
∈ F .

P

E

P

E

P

E

P

E

Fig. 1. An evolution of a flood scenario. Player P cannot reach the exit E

In Figure 1 we represent a possible evolution of an instance of the Evacuation
scenario. The graph represents three floors of a building, connected by two lifts

222 A. Murano et al.

located at the sides. Each floor has three connected rooms. Moreover, there is
an exit point E at the basement, that is reachable from the central room of the
first floor. In the initial configuration, the flood is located in the leftmost top
room of the building, while Player P is in the rightmost top. At each step in
time, the flood spreads from flooded rooms to the connected unflooded rooms,
while P moves to some available room. Unfortunately for P, he gets stuck after
three units of time without reaching the exit point. It is not hard to see that, in
case the initial position of P is on a side of the second floor (or anywhere in the
first floor), he can safely reach the exit point.

Example 2 (Reconfiguration). The abstract path-planning problem requires a set
of k mobile robots to re-arrange themselves into a target configuration without
colliding with each other or fixed obstacles [28]. This can be modeled as follows.
There is one initial configuration, say 〈V,E, {v1}, · · · , {vk}〉, and one goal con-
figuration, say 〈V,E, {t1}, · · · , {tk}〉. The mobility relation for each agent is the
same as the mobility relation for the person in the previous example. Define the
set of legal configurations L to be those of the form 〈V,E, {v1}, · · · , {vk}〉 such
that vi
= vj for i
= j. This captures the fact that players should not collide.

Example 3 (Containment). Consider a variation of the flooding example in
which the goal of the people is to erect barriers in some of the rooms in order
to stop the flood from reaching a certain vertex (or cover a set of vertices). This
can be modeled by having extra agents that represent barriers. Each barrier
is associate with exactly one agent. When a barrier is placed on an unflooded
vertex then the flood cannot enter that vertex (this can be coded in the legal-
configurations). Agents can carry barriers with them or drop them when they
move rooms (this is also expressed in the legal-configurations).

3 Complexity of the Path-Planning Problem

In order to talk about the decision problem for path-planning, we need a way
to specify how the environment evolves no matter the size of the arena. For
instance, a flood expands radially in any arena. We formalize this as follows.

A mobility operator is a function F that maps an arena A to a mobility relation
F(A) over A. For k ∈ N, a k-configuration operator is a function C that maps
an arena A to a set C(A) of k-configurations over A. Informally, an operator is
tractable if there is an efficient algorithm that computes the relation it induces.
Formally, a mobility operator F is called tractable if there is a polynomial time
algorithm that given an arena A = 〈V,E〉, and a pair (X,Y) ∈ 2V × 2V , decides
whether (X,Y) ∈ F(A). Similarly, a configuration operator is tractable if there is
a polynomial time algorithm that, given an arena A = 〈V,E〉 and a configuration
c = 〈V,E, P1, · · · , Pk〉 over A decides whether c ∈ C(A). Note that the operators
in Examples 1 and 2 are tractable.

We assume, for the rest of this paper, that all operators are tractable.

Multi-agent Path Planning in Known Dynamic Environments 223

Remark 1. This tractability assumption implies � is tractable, i.e., there is a
ptime algorithm that given A and k-configurations c, d over A, decides whether
c � d.

Observe that fixing the following planning data

– k ∈ N,
– mobility operators Fi (for each i ≤ k),
– configuration operators L, I,G, and
– an arena A = 〈V,E〉,

uniquely determines a path-planning domain and a path-planning instance, i.e.,
the planning domain D = 〈A, L(A),F1(A), · · · ,Fk(A)〉 and the planning instance
P = 〈D, I(A),G(A)〉. Call this P the planning instance induced by the given
planning data, or simply the induced planning instance.

Definition 1. The path-planning problem asks, given as input the planning
data k,F1, · · · ,Fk, L, I,G,A, whether the induced path-planning instance has a
solution. The restricted path-planning problem fixes k,F1, · · · ,Fk, L, I,G and
asks, given an arena A as input, whether or not the induced path-planning
instance has a solution.

Remark 2. In order to talk about the complexity of this decision problem (and
also of the notion of a tractable operator), we should specify how these objects
are coded. We use any natural encoding. E.g., sets V are identified with sets
of the form {1, 2, · · · , N}; the number of robots k is written in unary; relations
(such as E ⊆ V × V and P ⊆ V) are coded by listing their elements; and a
tractable operator is coded as the state diagram of a ptime Turing machine (in
Remark 4 we will see how to express operators as formulas rather than machines).
The size of the planning data is the number of bits of its encoding. Note that
the size of an arena A = 〈V,E〉 is O(|V |2), and the size of a k-configuration over
A is O(|V |2 + |V |k).

Theorem 1. The path-planning problem can be solved in pspace, or time expo-
nential in |V | and k.

Proof. The number of configurations is O(2|V |k), and thus the brute force algo-
rithm takes exptime in |V | and k. However, since each configuration can be
written in polynomial space (in the size of V and k), one can search the reach-
able configuration space using a nondeterministic polynomial-space algorithm.
That is, the algorithm stores the current configuration c on its tape, nonde-
terministically guesses (in ptime) a legal configuration d (and writes it on its
tape), and then verifies that c � d (by Remark 1 the � relation is computable
in ptime). The algorithm begins by guessing (in ptime) a configuration in I(A)
and proceeds until the current configuration is in G(A). This algorithm halts if
and only if the induced planning problem has a solution. Now use the fact that
npspace = pspace. ��

224 A. Murano et al.

Corollary 1. For every k,F1, · · · ,Fk, L, I,G the restricted path-planning prob-
lem can be solved in pspace, or time exponential in |V |.

Since there are motion-planning problems that are pspace-hard (e.g., [8,12]),
the path-planning problem is also pspace-hard. For instance, generalised rush-
hour is a generalisation of a children’s puzzle in which the objective is to slide
cars in a grid-environment in order for a target car to reach a certain exit co-
ordinate. Solving generalised rush-hour is pspace-complete [8].

Theorem 2. The path-planning problem is pspace-hard.

Proof. We describe a reduction from generalised rush-hour (GRH) to path-
planning problems. Note that although [8] prove pspace-hardness when the
GRH instances consist of cars (1 × 2 vehicles) and trucks (1 × 3 vehicles), it
is known that using only cars suffice [29]. An instance of GRH consists of the
width w and height h of the grid, a number n of cars, and for each car an orien-
tation (horizontal or vertical) and co-ordinates of the head of each car (xi, yi).
We assume that the first car is the designated car, and that it has horizontal
orientation. Each car can only move, forwards or backwards, in the direction of
its orientation. The goal is to move the cars, one at a time, until the head of the
designated car reaches the right-hand-side of the grid.1

The main problem we have to solve is that in GRH one car moves at a time,
while in our path-planning problems agents move concurrently. We solve this
problem by treating the set of all cars as a single agent, i.e., let k = 1. This
introduces the problem that we need to be able to distinguish between different
cars. This is solved by placing each car on a disjoint copy of the grid. That is, a
GRH configuration is encoded by the arena w ×h×n grid so that if the head of
the ith car is (currently) at co-ordinate (a, b) then: if the car is horizontal then
this car is coded by the vertices a × b × i and (a + 1) × b × i, and if the car is
vertical then this car is coded by the vertices a × b × i and a × (b + 1) × i.

More precisely, given an instance of GRH define planning-data as follows.
Let k = 1, let the arena be the w ×h×n grid, formally it has V = [w]× [h]× [n]
and E = {((x, y, z), (x′, y′, z′)) : |x − x′| = 1 xor |y − y′| = 1 xor |z − z′| = 1}.
We only describe how the operators map grid arenas of the form a × b × c for
a, b, c ∈ N (on other arenas the maps may be arbitrary). The legal configuration
operator L maps the grid arena a × b × c to the set of configurations in which
there is exactly one car on each of the c-levels; the G operator maps the grid
arena a × b × c to the set of legal configurations in which the head of the first
car has y-coordinate equal to b; the I operator maps the grid arena w ×h×n to
the configuration encoding the initial layout of the GRH; the mobility operator
maps the grid arena a × b × c to the relation over V = [a] × [b] × [c] that relates
X to Y if the only difference between X and Y is that for some co-ordinate
i ≤ c, every element in X ∩ [a] × [b] × [i] moves one coordinate forwards in the

1 The original definition of GRH unnecessarily allows any of the cars to be the target,
the exit to be anywhere on the perimeter, and the target car to be horizontal or
vertical [8].

Multi-agent Path Planning in Known Dynamic Environments 225

direction of the orientation or every element moves one co-ordinate backwards
in the direction of orientation. This completes the description of the reduction.
It is not hard to see that the GRH has a solution if and only if the planning
instance induced by the constructed data has a solution. ��

Fig. 2. A representation of the encoding for Generalised Rush Hour (GRH) to path-
planning problem. On the left, an instance of GRH. The white rectangle represents
the position of the designated car, the black rectangles represent the position of the
other cars, the dashed square represents the exit point. On the right, the path-planning
representation.

It is not clear if there exists a restricted path-planning problem that is
pspace-hard. We remark that the proof just given does not work since a reduc-
tion would have to map an instance of generalised rush-hour (which includes the
initial layout) to an arena A (which does not include the initial configuration).
We do know the following:

Proposition 1. There exists k,F1, · · · ,Fk, L, I,G such that the restricted path-
planning problem is np-hard.

Proof. We reduce from the np-complete problem that asks if a given vertex
colouring of a graph by 3 colours is a proper colouring, i.e., that no two adjacent
vertices have the same colour. The idea is to use k = 3 agents, the initial con-
figurations are arbitrary colourings (i.e., I maps A to 〈A, P1, P2, P3〉 such that
Pi ∩ Pj = ∅ for i
= j), the mobility relations map A to the identity relation
on 2V (i.e., agents do not move), every configuration is a legal configuration
(i.e., L maps A to the set of all 3-configurations), and the goal configurations
are proper colourings (i.e., G maps A to 〈A, P1, P2, P3〉 such that (x, y) ∈ E and
x ∈ Pi, y ∈ Pj implies i
= j). It is immediate that the reduction that maps
A to the data k = 3,F1,F2,F3, L, I,G is computable in ptime, and that A is
3-colourable if and only if the constructed restricted path-planning problem has
a solution. ��

We now identify a general subclass of path-planning problems that are solv-
able in ptime. We use the following definitions.

226 A. Murano et al.

Definition 2. A mobility relation Δ is called:

– increasing if (X,Y) ∈ Δ ⇒ X ⊆ Y ,
– decreasing if (X,Y) ∈ Δ ⇒ Y ⊆ X,
– monotone if it is increasing or decreasing,
– size-decreasing if (X,Y) ∈ Δ ⇒ |X| ≥ |Y |.

A mobility operator F is called increasing (resp. decreasing, monotone, size-
preserving) if every mobility relation F(A) is increasing (resp. decreasing, mono-
tone, size-preserving).

A configuration operator C is called size-bounded if there is a constant B ∈ N

such that for every arena A, for every i ≤ k, the cardinality of Pi in every
configuration in C(A) is at most B.

Note that in Examples 1 and 2, the mobility operators of the players are
size-preserving, the mobility operator of the flood is increasing, and the initial-
configuration operators are size-bounded (for all the agents, including, although
we don’t need this fact, the flood).

The following theorem should be contrasted with the fact that Theorem 1
implies that the time-complexity of restricted path-planning problems is expo-
nential in |V |.
Theorem 3. Fix B ∈ N, and consider the planning problem in which one
restricts the input 〈k, L, I,G,F1, · · · ,Fk〉 so that I is size-bounded (by B), and
each mobility operator Fi is monotone or size-decreasing. The time complexity
of the restricted planning problem is polynomial in |V |.
Proof. The number N of reachable configurations is bounded above by a poly-
nomial in |V |. Indeed: N ≤ ∏

i≤k mi|V |ni where mi = 1, ni = 1 if the mobility
operator for agent i is monotone, and mi = 2, ni = B if the mobility operator for
agent i is size-preserving (since the number of subsets of V of size at most B is
bounded above by 2|V |B). In particular, the product is |V |O(k), i.e., polynomial
in |V | and exponential in k. Now, since the successor configuration relation � is
computable in ptime (see Remark 1) we can build the reachable configuration
space in ptime. Since the initial-configuration and goal-configuration operators
are tractable, we can compute the set of initial configurations and the set of
goal configurations in ptime. Now we test if there is a path from some initial
configuration to some goal configuration, which can be done in time quadratic
in N . ��
Remark 3. Thus, the planning instances from Examples 1 and 2 are solvable
in ptime. The algorithm in the proof of Theorem 3 shows that Example 1 is
solvable in time O(|V |2). With k people and one flood the algorithm runs in
time O(|V |k+1).

Remark 4. The reader who prefers logical specification languages (i.e., fol) to
computational ones (i.e., Turing Machines) may express their operators as formu-
las. Indeed, since the program-complexity of fol (i.e., the complexity of model-
checking fol on finite structures in which the formula is fixed and the structure
varies) is in ptime, deduce that every fol-definable operator is tractable.

Multi-agent Path Planning in Known Dynamic Environments 227

Informally, the descriptions of the operators in Examples 1 and 2 can be
expressed as formulas of fol in appropriate signatures.

More precisely, fix unary predicate symbols P1, · · · , Pk, A,B and a binary
predicate symbol E (we use standard notation, e.g., [7]). We assume we have
symbols for equality and set containment with their usual interpretations. A
mobility operator F is fol-definable if there is a first-order formula φ in the sig-
nature S = (E,A,B), such that for every S-structure M = (V M, EM, AM, BM)
we have that M |= φ if and only if (AM, BM) ∈ F((V M, EM)). For instance, the
mobility operator for the flood in Example 1 is definable using a fol-formula that
states that A and B are singletons, say A = {a}, B = {b}, and that (a, b) ∈ E,
e.g.,

∃x ∈ A.∃y ∈ B.∀z.(z ∈ A → x = z) ∧ (z ∈ B → y = z) ∧ (x, y) ∈ E.

Similarly, a configuration operator C is fol-definable if there is a first-order
formula φ in the signature (E,P1, · · · , Pk) such that for every S-structure M =
(V M, EM, PM

1 , · · · , PM
k) we have that M |= φ if and only if M ∈ C((V M, EM)).

For instance, a simple variation of the legal configurations in Example 2 is defin-
able by the fol-formula

∧
i�=j ¬∃x.x ∈ Pi ∧ x ∈ Pj .

4 Comparison with Other Representations

The goal of this section is to analyse the translations of the abstract path-
planning problems considered in this paper into standard representations of
planning problems, i.e., the set-theoretical representation and the classical rep-
resentation [10]. We illustrate by encoding the flood problem of Example 1.

A planning problem in the set-theoretical representation is a tuple S =
〈P,A, I,G〉 where:

– P is a finite set of atoms,
– ι ⊂ P is the initial state,
– G ⊂ P is the set of goal propositions,
– A is a set of actions, each action a is a tuple 〈pre+(a), pre−(a), add(a), del(a)〉

of subsets of P .

A state is a subset of P . A plan is any sequence (possibly empty sequence
〈〉) of actions π = 〈a1, a2, · · · , aN 〉. The state a(s) produced by applying action
a to state s is defined as follows: if pre+(a) ⊆ s and pre−(a) ∩ s = ∅, then
s′ := (s∪add(a))\del(a), and otherwise s′ := s. The state produced by applying
a plan π to a state s is defined inductively: 〈〉 (s) := s and 〈π, a〉 (s) := a(π.s).
A plan π is a solution if G ⊆ π(ι).

For simplicity of exposition we now encode the flood scenario of Example 1
into the set-theoretical representation. Let 〈V,E〉 be the underlying graph, q, r ∈
V be the starting positions of the person and the flood, respectively, and t ∈ V
the exit. Every vertex v of the graph is associated with two atoms pv, fv. The
meaning of pv is that the person currently occupies vertex v, and the meaning of

228 A. Murano et al.

fv is that vertex v is flooded. The initial state is ι = {pq, fr}. The goal G is the
set {tv}. For every triple 〈v, w, F 〉 ∈ E × 2V with v, w
∈ F , there is an action a
defined as follows:

– pre+(a) = {pv} ∪ {fz : z ∈ F} (if the person is at v and F is flooded...),
– pre−(a) = {fz : z
∈ F} (and nowhere else is flooded...),
– rem(a) = {pv} (then remove the person from v...),
– add(a) = {pw} ∪ {fz : ∃x ∈ F.(x, z) ∈ E} (and place the person at w and

expand theflood).

Then the person can escape the flood if and only if the planning problem S

has a solution.
The translation into the classical representation (i.e., states are ground lit-

erals in a first-order relational signature) is similar. In brief, there is a constant
v for each vertex, constants p and f for the agents, a relation at(x, y) that says
that agent x occupies vertex y, and for each triple (v, w, F) ∈ E × 2V there is
an action with precondition {at(p, v)} ∪ {at(f, z) : z ∈ F} ∪ {at(f, z) : z
∈ F}
and effects {at(p,w),¬at(p, v)} ∪ {at(f, z) : z ∈ E(F)}.

We now present a simple analysis. First, the size of both of the representations
is exponential in |V |. In contrast, the size of the representation in Example 1 is
polynomial in |V |. Second, since the actions of the agents are concurrent, none
of the actions are monotone, e.g., it is note the case that once a tuple is removed
from at (or a variable in the set-theoretic representation is removed) it is not
added later. In contrast, our representation neatly separates the abilities of the
multiple agents (i.e., some are monotone, others are not) even though the agents
behave concurrently. Third, consider the interaction graph for the set-theoretic
representation [3]: its vertices are the atoms, and there is an edge from atom x to
atom y if there is some action a such that x ∈ pre+(a)∪pre−(a)∪rem(a)∪add(a)
and y ∈ rem(a) ∪ add(a). The main result in [3] implies that if there is no
bound on the size of the strong connected components of the interaction graph
then the planning problem (i.e., the existence problem) is not in ptime unless
an established complexity-theoretic assumption fails. Note that the arena A =
〈V,E〉 embeds in the interaction graph. Thus there is no bound on the size of
the strongly connected components of the interaction graphs, even in the flood
example. In contrast, since our framework is tailored for path-planning problems
(and not general planning problems), we were able to exhibit ptime algorithms
for such path-planning problems on arbitrary arenas (Theorem 3).

5 Summary and Future Work

We exhibited a natural representation of path-planning problems in which the
arena and the positions of the agents in the arena are coded in a natural graph-
theoretic way, rather than as an evaluation of Boolean propositions (as in, e.g.,
the set-theoretical representation). Our formalism can represent static environ-
ments (e.g., fixed obstacles are coded by the lack of an edge in the graph) and

Multi-agent Path Planning in Known Dynamic Environments 229

dynamic but predictable environments (e.g., flooding). We gave a pspace algo-
rithm for solving the planning problem in these settings, which is also solvable
in time exponential in the number of robots k and the size of the arena |V |.

By restricting the abilities of the agents (to be monotone or size-preserving),
we showed that the planning problem can be solved in time polynomial in the
size of the arena, i.e., for a fixed number of agents k but a varying arena, these
restricted planning problems are ptime in the size of the arena |V |. The same
ideas can also be used to get ptime algorithms for b-bounded piecewise monotone
mobility relations, e.g., for b = 1 the flood starts spreading, but at some point
in time stops spreading and begins to recede. The reason is that the size of the
configuration space blows up, for each b-bounded piecewise monotone agent, by
a multiplicative factor of |V |b.

The main open question in this work is the exact complexity of restricted
planning-problems, i.e., is there a restricted planning-problem that is pspace-
hard? We know that there is a restricted planning-problem with three agents
that is np-hard (Proposition 1).

This paper opens up many avenues for extending the model and studying
the complexity: optimal planning, e.g., there are costs associated with moving
that need to be minimised [19] — our paper only deals with feasible planning,
i.e., “does there exist a plan”; adversarial agents that are non-deterministic or
probabilistic [6,9,14,17,22] — our paper only covers, implicitly, deterministic
adversaries, such as the flood; and more expressive goals, such as those express-
ible in temporal logics, [5,24] or quantitative goals — our paper only deals with
attainment/reachability goals; imperfect information, e.g., one does not know
the exact starting position of the flood, or one does not know the speed of the
flood.

References

1. Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled
multi-agent systems. In: Rintanen, J., Nebel, B., Beck, J.C., Hansen, E.A., (eds.)
ICAPS, pp. 28–35. AAAI (2008)

2. Bylander, T.: The computational complexity of propositional strips planning. Arti-
ficial Intelligence 69(1), 165–204 (1994)

3. Chen, H., Giménez, O.: Causal graphs and structurally restricted planning. J.
Comput. Syst. Sci. 76(7), 579–592 (2010)

4. Cooper, M.C., Maris, F., Régnier, P.: Monotone temporal planning: Tractability,
extensions and applications. J. Artif. Intell. Res. (JAIR) 50, 447–485 (2014)

5. De Giacomo, G., Vardi, M.Y.: Automata-theoretic approach to planning for tem-
porally extended goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809.
Springer, Heidelberg (2000)

6. Dean, T.L., Givan, R., Kim, K.: Solving stochastic planning problems with large
state and action spaces. In: Simmons, R.G., Veloso, M.M., Smith, S.F., (eds.) AIPS,
pp. 102–110. AAAI (1998)

7. Enderton, H.: A mathematical introduction to logic. Academic Press (1972)
8. Flake, G.W., Baum, E.B.: Rush hour is pspace-complete, or “why you should

generously tip parking lot attendants”. Theoretical Computer Science 270(1–2),
895–911 (2002)

230 A. Murano et al.

9. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Auto-
mated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool (2013)

10. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice.
Elsevier (2004)

11. Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M.
(eds.) ECP 1999. LNCS, vol. 1809. Springer, Heidelberg (2000)

12. Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for
multiple independent objects; PSPACE-hardness of the “warehouseman’s problem.
Technical report, Courant Institute of Mathematical Sciences, New York (1984)

13. Jamroga, W.: Strategic planning through model checking of ATL formulae. In:
Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004.
LNCS (LNAI), vol. 3070, pp. 879–884. Springer, Heidelberg (2004)

14. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial intelligence 101(1), 99–134 (1998)

15. Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on graphs,
the diameter of permutation groups, and applications. In: FOCS, pp. 241–250.
IEEE (1984)

16. Krontiris, A., Sajid, Q., Bekris, K.: Towards using discrete multiagent pathfinding
to address continuous problems. In: Proc, AAAI Workshop on Multiagent Pathfind-
ing (2012)

17. Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A stochastic model for operating
room planning with elective and emergency demand for surgery. European Journal
of Operational Research 185(3), 1026–1037 (2008)

18. J.-C. Latombe. Robot motion planning, volume 124 of International Series in Engi-
neering and Computer Science. Springer, 2012

19. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
20. Lumelsky, V.J., Stepanov, A., et al.: Dynamic path planning for a mobile automa-

ton with limited information on the environment. Automatic Control, IEEE Trans-
actions on 31(11), 1058–1063 (1986)

21. Mogavero, F., Murano, A., Vardi, M.Y.: Relentful strategic reasoning in
alternating-time temporal logic. Journal of Logic and Computation (2014) (to
appear)

22. Murano, A., Sorrentino, L.: A game-based model for human-robots interaction.
In: Workshop “From Objects to Agents” (WOA) CEUR Workshop Proceedings,
vol. 1382, pp. 146–150. CEUR-WS.org (2015)

23. Papadimitriou, C.H., Raghavan, P., Sudan, M., Tamaki, H.: Motion planning on a
graph (extended abstract). In: FOCS, pp. 511–520. IEEE (1994)

24. Pistore, M., Traverso, P.: Planning as model checking for extended goals in non-
deterministic domains. In: Walsh, T., (ed.) IJCAI, pp. 479–486. IJCAI/AAAI
(2001)

25. Pistore, M., Vardi, M.Y.: The planning spectrum - one, two, three, infinity. J. Artif.
Intell. Res. (JAIR) 30, 101–132 (2007)

26. Röger, G., Helmert, M.: Non-optimal multi-agent pathfinding is solved (since 1984).
In: Borrajo, D., Felner, A., Korf, R.E., Likhachev, M., López, C.L., Ruml, W.,
Sturtevant, N.R., (eds.) SOCS. AAAI (2012)

27. Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A., Belanger, N., Feyzeau, P.:
Path planning: a 2013 survey. In: Industrial Engineering and Systems Management
(IESM), pp. 1–8, October 2013

28. Surynek, P.: An application of pebble motion on graphs to abstract multi-robot
path planning. In: ICTAI, pp. 151–158. IEEE (2009)

Multi-agent Path Planning in Known Dynamic Environments 231

29. Tromp, J., Cilibrasi, R.: Limits of Rush Hour Logic Complexity. In: CoRR,
abs/cs/0502068 (2005)

30. van den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning
for multiple robots: optimal decoupling into sequential plans. In: Robotics Science
and Systems V (2009)

31. van der Hoek, W., Wooldridge, M.:Tractable multiagent planning for epistemic
goals. In: AAMAS, pp. 1167–1174. ACM (2002)

32. Wilfong, G.T.: Motion planning in the presence of movable obstacles. Ann. Math.
Artif. Intell. 3(1), 131–150 (1991)

Module Checking for Uncertain Agents

Wojciech Jamroga1 and Aniello Murano2(B)

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
w.jamroga@ipipan.waw.pl

2 Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione, Università
degli Studi di Napoli Federico II, Naples, Italy

aniello.murano@unina.it

Abstract. Module checking is a decision problem proposed in late 1990s
to formalize verification of open systems, i.e., systems thatmust adapt their
behavior to the input they receive from the environment. It was recently
shown that module checking offers a distinctly different perspective from
the better-known problem of model checking. Module checking has been
studied in several variants. Syntactically, specifications in temporal logic
CTL and strategic logic ATL have been used. Semantically, the environ-
ment was assumed to have either perfect or imperfect information about
the global state of the interaction. In this work, we rectify our approach
to imperfect information module checking from the previous paper. More-
over, we study the variant of module checking where also the system acts
under uncertainty. More precisely, we assume that the system consists of
one or more agents whose decision making is constrained by their observa-
tional capabilities. We propose an automata-based verification procedure
for the new problem, and establish its computational complexity.

Keywords: Module checking · Strategic logic · Imperfect information

1 Introduction

Module checking [20,22] is a formal method to automatically check for correct-
ness of open systems. The system is modeled as a module that interacts with
its environment, and correctness means that a desired property must hold with
respect to all possible interactions. The module can be seen as a transition
system with states partitioned into ones controlled by the system and by the
environment. The environment represents an external source of nondetermin-
ism, because at each state controlled by the environment the computation can
continue with any subset of its possible successor states. In consequence, we have
an infinite number of computation trees to handle, one for each possible behav-
ior of the environment. Properties for module checking are usually specified in
temporal logics CTL or CTL* [9,11].

It was believed for a long time that module checking of CTL/CTL* is a spe-
cial (and rather simplistic) case of model checking strategic logics ATL/ATL* [2].
Because of that, active research on module checking subsided shortly after its
conception. The belief has been recently refuted in [17]. There, it was proved
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 232–247, 2015.
DOI: 10.1007/978-3-319-25524-8 15

Module Checking for Uncertain Agents 233

that module checking includes two features inherently absent in the semantics of
ATL, namely irrevocability and nondeterminism of strategies. This made module
checking an interesting formalism for verification of open systems again.

In [18], we extended module checking to handle specifications in the more
expressive logic ATL. However, [18] focused on modules of perfect information,
i.e., ones where all the participants have, at any moment, complete and accurate
knowledge of the current global state of the system. The assumption is clearly
unrealistic, as almost all agents must act under uncertainty. In this paper, we
focus on that aspect, and investigate verification of open systems that include
uncertain agents. In fact, our study in [18] mentioned systems where the environ-
ment might have imperfect information. However, our treatment of such scenar-
ios did not really capture the feasible patterns of behavior that can be produced
by uncertain environments. Here, we give a new interpretation to the problem.
Moreover, we generalize ATL module checking to modules that include uncer-
tainty also on the part of the system. Finally, we investigate formal properties
of the new problem in terms of expressive power, automata-based algorithms,
and computational complexity.

Related Work. Module checking was introduced in [20,22], and later extended in
several directions. In [21], the basic CTL/CTL* module checking problem was
extended to the setting where the environment has imperfect information about
the state of the system. In [7], it was extended to infinite-state open systems
by considering pushdown modules. The pushdown module checking problem
was first investigated for perfect information, and later, in [4,6], for imperfect
information. [3,13] extended module checking to μ-calculus specifications, and
in [26] the module checking problem was investigated for bounded pushdown
modules (or hierarchical modules). Recently, module checking was also extended
to specifications in alternating-time temporal logics ATL/ATL* [18]. From a
more practical point of view, [24,25] built a semi-automated tool for module
checking in the existential fragment of CTL, both in the perfect and imperfect
information setting. Moreover, an approach to CTL module checking based on
tableau was exploited in [5]. Finally, an extension of module checking was used
to reason about three-valued abstractions in [10,14–16].

It must be noted that literature on module checking became rather sparse
after 2002. This should be partially attributed to the popular belief that CTL
module checking is nothing but a special case of ATL model checking. The belief
has been refuted only recently [17], which will hopefully spark renewed interest
in verification of open systems by module checking.

2 Verification of Open Multi-Agent Systems

We first recall the main concepts behind module checking of multi-agent systems.

2.1 Models and Modules

Modules in module checking [20] were proposed to represent open systems –
that is, systems that interact with an environment whose behavior cannot be

234 W. Jamroga and A. Murano

determined in advance. Examples of modules include: an ATM interacting with
customers, a steel factory depending on fluctuations in iron supplies, a Mars
explorer adapting to the weather conditions, and so on. In their simplest form,
modules are represented by unlabeled transition systems with the set of states
partitioned into those “owned” by the system, and the ones where the next
transition is controlled by the environment.

Definition 1 (Module). A module is a tuple M = 〈AP, Sts, Ste, q0,→,PV 〉,
where AP is a finite set of (atomic) propositions, St = Sts ∪ Ste is a nonempty
finite set of states partitioned into a set Sts of system states and a set Ste of
environment states, →⊆ St × St is a (global) transition relation, q0 ∈ St is an
initial state, and PV : St → 2AP is a valuation of atomic propositions that maps
each state q to the set of atomic propositions that are true in q.

Modules can be seen as a subclass of more general models of interaction,
called concurrent game structures [2].

Definition 2 (CGS). A concurrent game structure (CGS) is a tuple M =
〈AP,Agt, St, Act, d, o,PV 〉 including nonempty finite set of propositions AP ,
agents Agt = {1, . . . , k}, states St, (atomic) actions Act, and a propositional
valuation PV : St → 2AP . The function d : Agt × St → 2Act defines nonempty
sets of actions available to agents at each state, and the (deterministic) transition
function o assigns the outcome state q′ = o(q, α1, . . . , αk) to each state q and
tuple of actions αi ∈ d(i, q) that can be executed by Agt in q.

We will write di(q) instead of d(i, q), and denote the set of collective choice
of group A at state q by dA(q) =

∏
i∈A di(q). We will also use APM ,AgtM , StM

etc. to refer to the components of M whenever confusion can arise.
A pointed CGS is a pair (M, q0) of a CGS and an initial state in it.

2.2 Multi-Agent Modules

Multi-agent modules have been proposed in [18] to allow for reasoning about
open systems that are themselves implemented as a composition of several
autonomous processes.

Definition 3 (Multi-agent Module). A multi-agent module is a pointed con-
current game structure that contains a special agent called “the environment”
(e ∈ Agt). We call a module k-agent if it consists of k agents plus the environ-
ment (i.e., the underlying CGS contains k + 1 agents).

The module is alternating iff its states are partitioned into those owned by the
environment (i.e., |d(a, q)| = 1 for all a �= e) and those where the environment
is passive (i.e., |d(e, q)| = 1). That is, it alternates between the agents’ and
the environment’s moves. Moreover, the module is turn-based iff the underlying
CGS is turn-based.1

1 A CGS is turn-based iff every state in it is controlled by (at most) one agent. That
is, for every q ∈ St, there is an agent a ∈ Agt such that |d(a′, q)| = 1 for all a′ �= a.

Module Checking for Uncertain Agents 235

qc

choice

qrb qrw

qb

black

qpr qw

white

qer

error

(r
eq
b
,-
,-
) (reqw

,-,-)

(-,p
o
u
r,-)

(-
,i
gn
,-
)

(-,p
o
u
r,-)

(-,ign
,∗)

(-,pour,milk)

(-,-,milk)(-,-,-)

(-
,-
,-
)

(-,-,-)

(-,-,-)

Fig. 1. Multi-agent coffee machine Mcaf

We note in passing that the original modules from [20] were turn-based (and
hence also alternating). On the other hand, the version of module checking for
imperfect information in [21] assumed that the system and the environment can
act simultaneously.

Example 1. A multi-agent coffee machine is presented in Figure 1. The module
includes two agents: the brewer (br) and the milk provider (milky). The brewer’s
function is to pour coffee into the cup (action pour), and the milk provider can
add milk on top (action milk). Moreover, each of them can be faulty and ignore
the request from the environment (ign). Note that if br and milky try to pour
coffee and milk at the same time, the machine gets to an error state. Finally,
the environment has actions reqb, reqw available in state qc, meaning that it
requests black (resp. white) coffee. Since the module is alternating, we adhere
to the popular convention of marking system states as white, and environment
states as grey.

2.3 Module Checking

The generic module checking problem can be defined as follows. Assume a modal
logic L whose formulae are interpreted in pointed concurrent game structures
according to the semantic relation |=L .2 For example, L can be the computation
tree logic CTL [9,11] or alternating-time temporal logic ATL [2]. Given a CGS
M , the set of all infinite computations of M starting from the initial state q0
is described by an St-labeled tree that we call the computation tree of M and

2 We will omit the subscript whenever it is clear from the context.

236 W. Jamroga and A. Murano

denote by tree(M). The tree is obtained by unwinding M from q0 in the usual
way. We omit the formal construction for lack of space, and refer the interested
reader to [17,20]. By exec(M), we denote the set of all the trees obtained by
pruning some environment choices from tree(M) in such a way that, for each
node in the tree, at least one choice remains. Note that, from a mathematical
point of view, every tree T ∈ exec(M) is an infinite pointed concurrent game
structure with the same set of agents as M , and nodes in StT corresponding to
(some) sequences of states from StM . The extent of the pruning is encoded in the
actual set of nodes StT and the availability function dT

e that captures the actions
available to the environment in the nodes of the tree. Formally, T1 is a pruning
of T2 iff: (i) StT1 ⊆ StT2 , (ii) ActT1 ⊆ ActT2 , (iii) for every v ∈ StT1 , a �= e,
we have dT1

a (v) = dT2
a (v) and ∅ �= dT1

e (v) ⊆ dT2
e (v), (iv) oT1 = (oT2 | StT1), (v)

PV T1 = (PV T2 | StT1), and (vi) the root of T1 is the same as the root of T2.

Definition 4 (Module Checking). For a pointed CGS (M, q0) and a formula
ϕ of logic L, we say that (M, q0) reactively satisfies ϕ, denoted by M, q0 |=r

L ϕ, iff
for every tree T ∈ exec(M) we have that T |=r

L ϕ. Again, we will omit subscripts
if they are clear from context. The problem of deciding whether M reactively
satisfies ϕ is called module checking [22].

Note that, for most modal logics, M |=r
L ϕ implies M |=L ϕ but the converse

does not hold. Also, M �|=r
L ϕ is in general not equivalent to M |=r

L ¬ϕ.

Example 2. Consider the coffee machine from Example 1 with the CTL specifica-
tion EFwhite saying that there exists at least one possible path where eventually
white coffee will be served. Clearly, Mcaf |=

CTL
EFwhite. On the other hand,

Mcaf �|=r
CTL

EFwhite. Think of a line of customers who never order white coffee.
It corresponds to an execution tree of Mcaf that prunes off all nodes labeled
with qrw, and such a tree cannot satisfy EFwhite.

2.4 Reasoning about Strategic Behavior: Alternating Time Logic

Alternating-time temporal logic ATL/ATL* [2] generalizes the branching-time
logic CTL/CTL* [9,11] by means of strategic modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ
expresses that the group of agents A has a collective strategy to enforce temporal
property γ. The language ATL* is given by the grammar below:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γ U γ.

where A ⊆ Agt is any subset of agents, and p is a proposition. Temporal operators
X, U stand for “next” and “until”, respectively. The “sometime” and “always”
operators can be defined as Fγ ≡ �U γ and Gγ ≡ ¬F¬γ. Also, we can use
[[A]]γ ≡ ¬〈〈A〉〉¬γ to express that no strategy of A can prevent property γ.
Similarly to CTL, ATL is the syntactic variant in which every occurrence of a
strategic modality is immediately followed by a temporal operator.

Module Checking for Uncertain Agents 237

Given a CGS, we define the strategies and their outcomes as follows. A
strategy for agent a is a function sa : St → Act such that sa(q) ∈ da(q).3

A collective strategy for a group of agents A = {a1, . . . , ai} is simply a tuple
of individual strategies sA = 〈sa1 , . . . , sai

〉. The “outcome” function out(q, sA)
returns the set of all paths that can occur when agents A execute strategy sA

from state q on. Finally, for a path λ ∈ Stω, we use λ[i] to denote the ith
state on λ, and λ[i..∞] to denote the ith suffix of λ. The semantics |=ATL of
alternating-time logic is defined below:

M, q |= p iff q ∈ PV (p), for p ∈ AP ;
M, q |= ¬ϕ iff M, q �|= ϕ;
M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈A〉〉γ iff there is a collective strategy sA for A such that, for every
λ ∈ out(q, sA), we have M,λ |= γ.

M,λ |= ϕ iff M,λ[0] |= ϕ;
M,λ |= ¬γ iff M,λ �|= γ;
M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;
M,λ |= Xγ iff M,λ[1,∞] |= γ; and
M,λ |= γ1 U γ2 iff there is an i ∈ N0 such that M,λ[i,∞] |= γ2 and

M,λ[j,∞] |= γ1 for all 0 ≤ j < i.

Example 3. Consider the CGS from Figure 1. Clearly, Mcaf �|= 〈〈br〉〉Fwhite:
the brewer cannot provide the customer with white coffee on its own. In
fact, even both coffee agents together cannot guarantee that, since the cus-
tomer may never order white coffee: Mcaf �|= 〈〈br,milky〉〉Fwhite. On the other
hand, they can produce black coffee regardless of what the customer asks for:
Mcaf |= 〈〈br,milky〉〉Fblack. Finally, they can deprive the customer of coffee if
they consistently ignore her requests: Mcaf |= 〈〈br,milky〉〉G(¬black ∧ ¬white).

Embedding CTL* in ATL*. The path quantifiers of CTL* can be expressed in
the standard semantics of ATL* as follows [2]: Aγ ≡ 〈〈∅〉〉γ and Eγ ≡ 〈〈Agt〉〉γ. We
point out that the above translation of E does not work for several extensions of
ATL*, e.g., with imperfect information, nondeterministic strategies, and irrevo-
cable strategies. On the other hand, the translation of A into 〈〈∅〉〉 does work for
all the semantic variants of ATL* considered in this paper. Thanks to that, we
can define a translation atl(ϕ) from CTL* to ATL* as follows. First, we convert ϕ
so that it only includes universal path quantifiers, and then replace every occur-
rence of A with 〈〈∅〉〉. For example, atl(EG(p1∧AFp2)) = ¬〈〈∅〉〉F(¬p1∨¬〈〈∅〉〉Fp2).
Note that if ϕ is a CTL formula then atl(ϕ) is a formula of ATL. By a slight
abuse of notation, we will use path quantifiers A,E in ATL formulae whenever
it is convenient.

3 Unlike in the original semantics of ATL* [2], we use memoryless rather than perfect
recall strategies. It is well known, however, that the semantics based on the two
notions of strategy coincide for all formulae of ATL, cf. [2,27].

238 W. Jamroga and A. Murano

2.5 Module Checking of ATL* Specifications

ATL* module checking has been proposed and studied in [18]. The problem
can be defined by the straightforward combination of our generic treatment
of module checking from Section 2.3 and the semantics of ATL* presented in
Section 2.4.

Example 4. Consider the multi-agent coffee machine Mcaf from Example 1.
Clearly, Mcaf �|=r 〈〈br,milky〉〉Fwhite because the environment can keep request-
ing black coffee. On the other hand, Mcaf |=r 〈〈br,milky〉〉Fblack: the agents can
provide the user with black coffee whatever she requests. They can also deprive
the user of coffee completely – in fact, the brewer alone can do it by consistently
ignoring her requests: Mcaf |=r 〈〈br〉〉G(¬black ∧ ¬white).

The above formulae can be also used for model checking, and they would
actually generate the same answers. So, what’s the benefit of module checking? In
module checking, we can condition the property to be achieved on the behavior of
the environment. For instance, users who never order white coffee can be served
by the brewer alone: Mcaf |=r AG¬reqw → 〈〈br〉〉Fblack. Note that the same
formula in model checking trivially holds since Mcaf �|= AG¬reqw. Likewise,
we have Mcaf |= AG¬reqb → 〈〈br〉〉Fwhite, whereas module checking gives a
different and more intuitive answer: Mcaf �|=r AG¬reqb → 〈〈br〉〉Fwhite. That is,
the brewer cannot handle requests for white coffee on its own, even if the user
never orders anything else.

3 Imperfect Information

In Section 2, we summarized the main developments in module checking for
multi-agent systems with perfect information. That is, we implicitly assumed
that both the system and the environment always know the precise global state
of the computation. The framework was extended to handle uncertain envi-
ronments in [21] (for temporal logic specifications) and [18] (for specifications of
strategic ability). In this paper, we revise and extend our previous work from [18].
The novel contribution is threefold. First, we give a new interpretation of ATL
module checking for uncertain environments (Section 3.1). The one proposed
in [18], while mathematically sound, arguably does not capture the feasible pat-
terns of behavior that can be produced by uncertain environments. Secondly, we
generalize the problem to modules that include uncertainty also on the part of
the system (Section 3.2). Thirdly, we investigate formal properties of the new
problem, in terms of expressive power (Section 4) as well as algorithms and
computational complexity (Section 5).

3.1 Handling Environments with Imperfect Information

So far, we have only considered multi-agent modules in which the environment
has complete information about the state of the system. In many practical sce-
narios this is not the case. Usually, the agents have some private knowledge that

Module Checking for Uncertain Agents 239

the environment cannot access. As an example, think of the coffee machine from
Example 1. A realistic model of the machine should include some internal vari-
ables that the environment (i.e., the customer) is not supposed to know during
the interaction, such as the amount of milk in the container or the amount of
coins available for giving change. States that differ only in such hidden informa-
tion are indistinguishable to the environment. While interaction with an “omni-
scient” environment corresponds to an arbitrary pruning of transitions in the
module, in case of imperfect information the pruning must coincide whenever
two computations look the same to the environment.

To handle such scenarios, the definition of multi-agent modules was extended
as follows [18].

Definition 5 (Multi-agent Module with Uncertain Environment). A
multi-agent module with uncertain environment is a multi-agent module further
equipped with an indistinguishability relation ∼e⊆ St × St that encodes uncer-
tainty of the environment. We assume ∼e to be an equivalence.

We will additionally require that the available choices of the environment are
consistent with its indistinguishability relation.

Definition 6 (Uniformity of Modules). A multi-agent module with uncer-
tain environment is uniform wrt relation ∼e iff q ∼e q′ implies de(q) = de(q′).

In [18], we assumed that an uncertain environment can only prune whole
subtrees of the execution tree, and when it does, it must do it uniformly. This
was arguably a very rough treatment of how the environment can choose to
behave. We propose a more subtle treatment below.

Let M be a uniform multi-agent module with uncertain environment. First,
we extend the indistinguishability relation to the nodes in the computation tree
of M . Formally, two nodes v and v′ in tree(M) are indistinguishable (v ∼= v′)
iff (1) the length of v, v′ in tree(M) is the same, and (2) for each i, we have
v[i] ∼e v′[i]. Secondly, we will only consider prunings of tree(M) that are imper-
fect information-consistent. Formally, T ∈ tree(M) is imperfect information-
consistent iff it is uniform wrt ∼=. We denote the set of such prunings by execi(M).
Clearly, execi(M) ⊆ exec(M).

The module checking problem for uncertain environments is defined analo-
gously to the perfect information case:

Definition 7 (Module Checking for Uncertain Environments). Given a
multi-agent module with uncertain environment M and a formula ϕ of logic L,
the corresponding module checking problem is defined by the following clause:

M |=r,i
L ϕ iff T |=L ϕ for every T ∈ execi(M).

Example 5. Consider an extension of the multi-agent coffee machine from Exam-
ple 1, where the environment can choose to reset the machine while it is preparing
coffee. If the machine is reset after the coffee is poured but before it is served,
the system proceeds to the error state. Moreover, pressing reset in the error state

240 W. Jamroga and A. Murano

∼e∼e∼e

qc

choice

qrb
reqb

qrw
reqw

qb

black

qpr qw

white

qer

error

q⊥

out

(r
eq
b
,-
,-
) (reqw

,-,-)

(∗
,p
o
u
r,-)

(∗,
ig
n
,-
)

(∗
,p
o
u
r,-)

(∗,ign
,∗)

(∗,pour,milk)

(-,-,milk)(-,-,-)

(r
es
et
,-,

∗)

(reset,-,-)

(-,-,-)

(-
,-
,-
)

(-,-,-)

(-,-,-)

Fig. 2. Multi-agent coffee machine with reset Mcaf2

initiates a recovery procedure that brings the system back to the initial state
qc. On the other hand, if the system is not reset while in the error state then it
proceeds to the “out of order” state qout, and requires intervention of an external
repair crew. Furthermore, we assume that the environment has no access to the
local states of the system agents br,milky. Since states qrb, qrw, qpr, qer should
intuitively differ only in local states of those agents, they are indistinguishable
to the environment (see Figure 2). Note that we do not label states grey and
white anymore, as the module is not alternating.

Let us define the “recovery formula” as ϕrecv ≡ AG(error → AXchoice),
saying that the system always recovers after an error. Now we have for example
that Mcaf2 |=r,i ϕrecv → AG¬white. This is because the user cannot distinguish
between situations when an error has occurred, and ones where the coffee has
been poured and waits for milk to be added. If she chooses to reset the machine in
the first kind of nodes, she has to do reset also in the latter, and then white coffee
can never be completed. Thus, for such behaviors of the user, the agents cannot
provide her with white coffee anymore: Mcaf2 |=r,i ϕrecv → ¬〈〈br,milky〉〉Fwhite.

On the other hand, the agents retain the ability to serve black coffee whenever
it is requested – in fact, the brewer can make it on its own: Mcaf2 |=r,i ϕrecv →
AG(reqb → 〈〈br〉〉Fblack). Moreover, for such inputs, the agents cannot crash the
system: Mcaf2 |=r,i ϕrecv → ¬〈〈br,milky〉〉Fout, which is rather a good thing.
Finally, even if the user never tries recovery, the agents can keep the system
from crashing, and serve white coffee whenever it is requested (they simply avoid
pouring coffee and milk at the same time). Formally, let ϕnorecv ≡ AG(error →

Module Checking for Uncertain Agents 241

AX¬choice); then, Mcaf2 |=r,i ϕnorecv → 〈〈br,milky〉〉G¬out and Mcaf2 |=r,i

ϕnorecv → AG(reqw → 〈〈br,milky〉〉Fwhite).

3.2 Imperfect Information Module Checking

The treatment of module checking, presented in the previous section, allows for
uncertainty on the part of the environment, but assumes perfect information on
the part of the system. That is, the agents that comprise the system can always
fully observe the global state of the system, including each other’s variables as
well as the local state of the environment. Is this assumption realistic? Clearly
not. One can perhaps use perfect information models when the hidden informa-
tion is irrelevant for the agent’s decision making, i.e., the agents need only their
local views to choose their course of action (cf. the coffee machine example) but
even that is seldom justified.

Definition 8 (Multi-agent Module with Imperfect Information). A
multi-agent module with imperfect information is a multi-agent module further
equipped with indistinguishability relations ∼a⊆ St × St, one per agent a ∈ Agt.

Each multi-agent module with imperfect information M is required to be uni-
form wrt every relation ∼a in M .

Now we proceed analogously to Section 3.1. Let M be a multi-agent module
with imperfect information, and L be a suitable logic. Two nodes v and v′ in
tree(M) are indistinguishable to the environment (v ∼=e v′) iff (1) the length
of v, v′ in tree(M) is the same, and (2) for each i, we have v[i] ∼e v′[i]. Then,
execi(M) consists of all the prunings in exec(M) that are uniform wrt ∼=e. The
corresponding module checking problem is again defined by the clause:

M |=r,i
L ϕ iff T |=L ϕ for every T ∈ execi(M).

One thing remains to be settled. What logic is suitable for specification of
agents with imperfect information? In this paper, we use a semantic variant of
ATL* proposed in [27]. First, a (memoryless) strategy sa is uniform iff q ∼a q′

implies sa(q) = sa(q′). A collective strategy sA is uniform iff it consists of uni-
form individual strategies. Then, the semantics |=

ATLi
of “ATL* with imperfect

information” is obtained by replacing the clause for 〈〈A〉〉γ as follows:

M, q |= 〈〈A〉〉γ iff there is a uniform collective strategy sA such that, for every
a ∈ A, every q′ with q ∼a q′, and every λ ∈ out(q′, sA), we have M,λ |= γ.

Example 6. Let us go back to the multi-agent coffee machine with reset from
Example 5. We will now additionally assume that milky cannot detect the pour
action of the brewer, formally: qrw ∼milky qpr. Let us denote the resulting multi-
agent model by Mcaf3 . Then, the agents are still able to keep the machine from
crashing, even for users that do no recovery, but they are not able anymore to
guarantee that white coffee requests are served. Formally, Mcaf3 |=r,i ϕnorecv →
〈〈br,milky〉〉G¬out (the right strategy assumes that milky never pours milk), and
Mcaf3 �|=r,i ϕnorecv → AG(reqw → 〈〈br,milky〉〉Fwhite) (in a uniform strategy, if
milky decides to do no action at qrw, it has to do the same at qpr).

242 W. Jamroga and A. Murano

q0 q1

q2

win

q3

a

L

R
R

L

q0 q1

q2

win

q3

a

L

R
L

R

Fig. 3. Variants of the “poor duck problem” from [8]

4 Expressive Power of Imperfect Information Module
Checking

In this section, we show that ATL module checking offers a distinctly different
perspective when imperfect information is added. Before we proceed, we briefly
recall the notions of distinguishing power and expressive power (cf. e.g. [29]).

Definition 9 (Distinguishing and Expressive Power). Let L1 = (L1, |=1)
and L2 = (L2, |=2) be two logical systems over the same class of models M. By
[[φ]]|= = {(M, q) | M, q |= φ}, we denote the class of pointed models that satisfy
φ in the semantics given by |=. Likewise, [[φ,M]]|= = {q | M, q |= φ} is the set of
states (or, equivalently, pointed models) that satisfy φ in a given structure M .

L2 is at least as expressive as L1 (written: L1 �e L2 iff for every formula
φ1 ∈ L1 there exists φ2 ∈ L2 such that [[φ1]]|=1 = [[φ2]]|=2 .

L2 is at least as distinguishing as L1 (written: L1 �d L2 iff for every model
M and formula φ1 ∈ L1 there exists φ2 ∈ L2 such that [[φ1,M]]|=1 = [[φ2,M]]|=2 .

4

Note that L1 �e L2 implies L1 �d L2 but the converse is not true. For example,
it is known that CTL has the same distinguishing power as CTL*, but strictly
less expressive power. We also observe that module checking ATL* can be seen
as a logical system where the syntax is given by the syntax of ATL*, and the
semantics is given by |=r. For module checking “ATL* with imperfect informa-
tion”, the semantics is given by |=r,i. Thus, we can use Definition 9 to compare
the expressivity of both decision problems.

Theorem 1. The logical system (ATL*, |=r,i) has incomparable distinguishing
power (and thus also incomparable expressive power) to (ATL∗, |=r).

Proof. First we prove that there are multi-agent modules M,M ′ that satisfy the
same formulae of ATL* wrt the semantic relation |=r, but are distinguished by

4 Equivalently: for every pair of pointed models that can be distinguished by some
φ1 ∈ L1 there exists φ2 ∈ L2 that distinguishes these models.

Module Checking for Uncertain Agents 243

q0 q1

q2

win

q3

a, b

〈L, L〉
〈R, R〉

〈L
,R〉〈R

,L〉
〈L,R

〉

〈R,L
〉

〈L, L〉
〈R, R〉

q0 q1

q2

win

q3

a, b

〈L, L〉
〈L, R〉
〈R, R〉

〈R
,L〉 〈R,L

〉
〈L, L〉
〈L, R〉
〈R, R〉

Fig. 4. “Coordinated poor duck problem” with 2 agents a and b

an ATL* formula wrt the semantic relation |=r,i. As M , take the “poor duck”
model from Figure 3 (left) with q0 be the initial state, and add the environ-
ment agent e in such a way that it never influences the evolution of the system
(i.e., |de(q)| = 1 for all q ∈ St). Moreover, let M ′ be a modified variant of M
where the outgoing transitions from q1 are swapped, see Figure 3 (right). Clearly,
exec(M) = execi(M) = {T (M)}, and analogously for M ′ (there is only one way
how the environment can act). Thus, the semantic relation |=r (resp. |=r,i) coin-
cides on M and M ′ with |=

ATL
(resp. |=

ATLi
). Furthermore, M,M ′ are in strategic

bisimulation [1], and hence they satisfy the same formulae of ATL* wrt |=
ATL

.
On the other hand, M �|=ATLi

〈〈a〉〉Fwin and M ′ |=ATLi
〈〈a〉〉Fwin.

Secondly, we prove that there are multi-agent modules M,M ′ that satisfy
the same formulae of ATL* wrt the semantic relation |=r,i, but are distinguished
by an ATL* formula with the semantic relation |=r. As M and M ′, take now
the left hand side and right hand side models from Figure 4, respectively. Again,
the initial is q0 and the environment is idle in all states. We leave it for the
reader to check that in both models all the coalitions can only enforce trivial
path properties (i.e., ones that hold on all paths starting from q0, q1) by using
uniform strategies. Thus, M and M ′ satisfy the same formulae of ATLi*. On
the other hand, M �|=

ATL
〈〈a〉〉Fwin and M ′ |=

ATL
〈〈a〉〉Fwin.

5 Algorithms and Complexity

Our algorithmic solution to the problem of ATL* module checking with imperfect
information exploits the automata-theoretic approach. It combines and extends
that ones used to solve the CTL* module checking with imperfect information
and the ATL* model checking with perfect information problems. Precisely, we
make use of alternating parity tree automata on infinite tress and reduce the
addressed decision problem to the checking for automata emptiness. In this
section we first introduce some preliminary definition regarding these automata
and then we show how to use them to our purpose. For the sake of clarity we
also give a proper definition of infinite labeled trees.

244 W. Jamroga and A. Murano

Let Υ be a set. An Υ -tree is a prefix closed subset T ⊆ Υ ∗. The elements of
T are called nodes and the empty word ε is the root of T . For v ∈ T , the set
of children of v (in T) is child(T , v) = {v · x ∈ T | x ∈ Υ}. For v ∈ T , a (full)
path π of T from v is a minimal set π ⊆ T such that v ∈ π and for each v′ ∈ π
such that child(T , v′) �= ∅, there is exactly one node in child(T , v′) belonging to
π. Note that every infinite word w ∈ Υω can be thought of as an infinite path
in the tree Υ ∗, namely the path containing all the finite prefixes of w. For an
alphabet Σ, a Σ-labeled Υ -tree is a pair T = 〈T , V 〉 where T is an Υ−tree and
V : T → Σ maps each node of T to a symbol in Σ.

In nondeterministic tree automata, on reading a node of the input tree, it is
possible to send at most one copy of the automaton in every single child, in accor-
dance with the nondeterministic transition relation. Alternating tree automata,
instead, are able to send several copies of the automaton along the same child,
by means of a transition relation that uses positive Boolean combinations of
directions and states. The formal definition of alternating tree automata follows.
For more details we refer to [12,28].

Definition 10. An alternating tree automaton (ATA, for short) is a tuple A =
< Σ, D, Q, q0, δ, F >, where Σ is the alphabet, D is a finite set of directions,
Q is the set of states, q0 ∈ Q is the initial state, δ : Q × Σ → B+(D × Q) is
the transition function associating to each state and alphabet symbol a positive
Boolean combination of pairs (d, q), where d is a direction and q is a state, and
F is the accepting condition defined later.

To give an intuition on how an ATA A works, assume that it is in a state
q, reading a node tree labeled by σ and δ(q, σ) = ((0, q1) ∨ (1, q2)) ∧ (1, q1).
Then the automaton can just send two copies in direction 1 with state q1 and
q2, respectively. The connectives ∨ and ∧ in δ represent, respectively, choice
and concurrency. Nondeterministic tree automata are alternating tree automata
in which the concurrency feature is not allowed. A run of an alternating tree
automaton A on a Σ-labeled tree < T , V >, with T = D∗, is a (D∗×Q)-labeled
N-tree < Tr, r > such that the root is labeled with (ε, q0) and the labels of each
node and its successors satisfy the transition relation. A run 〈Tr, r〉 is accepting
iff all its infinite paths satisfy the acceptance condition. In this paper we are
interested in the parity acceptance condition and, as its special case, the Büchi
acceptance condition. A parity condition F maps all states of the automaton
to a finite set of colors C = {Cmin, . . . , Cmax} ⊂ N. Thus, F : Q → C. For a
path π, let m(π) be the maximal color that appears infinitely often along π.
Then, π satisfies the parity condition F iff m(π) is even. The Büchi acceptance
condition is a parity condition with only two colors, i.e., C = {1, 2}. By L(A) we
denote the set of trees accepted by A. We say that the automaton is not empty
if L(A) �= ∅. We name ATA along with the parity and Büchi conditions PATA
and BATA for short, respectively. In both cases of PATA and BATA emptiness
can be checked in EXPTIME [12].

In ATL* module checking with (im)perfect information given a module M
and an ATL* formula ϕ we check whether M |=r,(i) ϕ by checking whether

Module Checking for Uncertain Agents 245

T |= ϕ for every T ∈ exec(i)(M). Consequently, M �|=r,(i) ϕ iff there exists a tree
T ∈ execi(M) such that T |= ¬ϕ. In the perfect information case, to solve this
problem one can build a PATA A, accepting all such T trees and reduce the model
checking question “does M |=r ϕ ?” by checking for the automaton emptiness.
In particular, the automaton uses one direction for each possible decision and,
input trees and run trees have exactly the same shape. In the case of imperfect
information, we are forced to restrict our reasoning to uniform strategies and
this deeply complicates the construction of the automaton. Indeed, not all the
trees in execi(M) can be taken into consideration but only those coming from
uniform strategies. This has to be taken into account both on the side of the
environment agent, while performing the pruning, and the other players playing
in accordance with the modalities indicated by the ATL* formula. Uniformity
forces to use the same action in indistinguishable states. To accomplish this, the
automaton takes as input not trees T from execi(M), but rather corresponding
“thin” trees T ′ such that each node v′ in T ′ is meant to represent all nodes H in
T that are indistinguishable to v′. Then, the automaton will send to v just |H|
different states all with the same direction, to force all of them to respect the
same strategy. Thus, the input tree can be seen as a profile of uniform strategies,
e.g., once a uniform strategy has been fixed, it collects all the possible outcomes
obtained by combining this strategy with all possible uniform strategies coming
from the other players. It is worth noting that the run tree has the shape of the
desired T ∈ execi(M). In a way this is the witness of our automata approach.

To give few more details, let [St]∼i be the equivalence class build upon the
states that are indistinguishable to agent i. We use as directions of the automaton
Πi[St]∼i. Agents can then choose actions upon their visibility. The automaton
has to accept trees corresponding to uniform strategy profiles whose composition
with the module satisfy ¬ϕ. Thus, a run of the automaton proceeds by simulating
an unwinding of the module, pruned at each step according to the strategy
profile and the satisfiability of the formula is checked on the fly. Starting from
an ATL* formula the automaton we obtain is an exponential PATA. In case of
ATL, the automaton is a polynomial BATA. Since the module-checking problem
with imperfect information is 2EXPTIME-complete for CTL* and EXPTIME-
complete for CTL even in case the formula is of bounded size, we get the following
result.

Theorem 2. The module-checking problem with imperfect information is
2EXPTIME-complete for ATL* and EXPTIME-complete for ATL. For formulae
of bounded size the problem is EXPTIME-complete in both cases.

6 Conclusions

We have presented an extension of the module checking problem that handles
specifications of strategic ability for modules involving imperfect information. As
usual for computational problems, the key features are expressivity and complex-
ity. We show that this new variant of module checking fares well in both respects.

246 W. Jamroga and A. Murano

On one hand, the computational complexity is the same as that of module check-
ing CTL/CTL* with imperfect information. On the other hand, ATL/ATL*
module checking under imperfect information has incomparable expressive power
to ATL/ATL* module checking for perfect information, which means that the
two variants of the problem offer distinctly different perspectives at verification
of open systems.

In the future, we plan to characterize the correspondence of imperfect infor-
mation module checking to an appropriate variant of model checking (in the spirit
of [17]). We are also going to look at the relation of module checking to model
checking of temporal logics with propositional quantification [19,23]. Last but
not least, we would like to apply the framework to verification of agent-oriented
programs.

Acknowledgements. Aniello Murano acknowledges the support of the FP7 EU
project 600958-SHERPA. Wojciech Jamroga acknowledges the support of the FP7 EU
project ReVINK (PIEF-GA-2012-626398).

References

1. Ågotnes, T. , Goranko, V., Jamroga, W.: Alternating-time temporal logics with
irrevocable strategies. In: Proceedings of TARK XI, pp. 15–24 (2007)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time Temporal Logic. J.
ACM 49, 672–713 (2002)

3. Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module
checking with imperfect information. Inf. Comput. 223(1), 1–17 (2013)

4. Aminof, B., Murano, A., Vardi, M.Y.: Pushdown module checking with imper-
fect information. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 460–475. Springer, Heidelberg (2007)

5. Basu, S., Roop, P.S., Sinha, R.: Local module checking for CTL specifications.
Electronic Notes in Theoretical Computer Science 176(2), 125–141 (2007)

6. Bozzelli, L.: New results on pushdown module checking with imperfect information.
In: Proceedings of GandALF, EPTCS, vol. 54, pp. 162–177 (2011)

7. Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. Formal Methods
in System Design 36(1), 65–95 (2010)

8. Bulling, N., Jamroga, W.: Comparing variants of strategic ability: How uncertainty
and memory influence general properties of games. Journal of Autonomous Agents
and Multi-Agent Systems 28(3), 474–518 (2014)

9. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1981)

10. de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games:
uncertainty, but with precision. In: Proceedings of LICS, pp. 170–179. IEEE Com-
puter Society (2004)

11. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers
(1990)

Module Checking for Uncertain Agents 247

12. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science,
pp. 368–377. IEEE (1991)

13. Ferrante, A., Murano, A., Parente, M.: Enriched μ-calculi module checking. Logical
Methods in Computer Science 4(3–1), 1–21 (2008)

14. Gesell, M., Schneider, K.: Modular verification of synchronous programs. In: Pro-
ceedings of ACSD, pp. 70–79. IEEE (2013)

15. Godefroid, P.: Reasoning about abstract open systems with generalized mod-
ule checking. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855,
pp. 223–240. Springer, Heidelberg (2003)

16. Godefroid, P., Huth, M.: Model checking vs. generalized model checking: semantic
minimizations for temporal logics. In: Proceedings of LICS, pp. 158–167. IEEE
Computer Society (2005)

17. Jamroga, W., Murano, A.: On module checking and strategies. In: Proceedings of
the 13th International Conference on Autonomous Agents and Multiagent Systems
AAMAS 2014, pp. 701–708 (2014)

18. Jamroga, W., Murano, A.: Module checking of strategic ability. In: Proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems
AAMAS 2015, pp. 227–235 (2015)

19. Kupferman, O.: Augmenting branching temporal logics with existential quantifi-
cation over atomic propositions. Journal of Logic and Computation 9(2), 135–147
(1999)

20. Kupferman, O., Vardi, M.: Module checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

21. Kupferman, O., Vardi, M.: Module checking revisited. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 36–47. Springer, Heidelberg (1997)

22. Kupferman, O., Vardi, M., Wolper, P.: Module checking. Inf. Comput. 164(2),
322–344 (2001)

23. Da Costa, A., Laroussinie, F., Markey, N.: Quantified CTL: expressiveness and
model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 177–192. Springer, Heidelberg (2012)

24. Martinelli, F.: Module checking through partial model checking. Technical report,
CNR Roma - TR-06 (2002)

25. Martinelli, F., Matteucci, I.: An approach for the specification, verification and
synthesis of secure systems. Electronic Notes in Theoretical Computer Science
168, 29–43 (2007)

26. Murano, A., Napoli, M., Parente, M.: Program complexity in hierarchical mod-
ule checking. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 318–332. Springer, Heidelberg (2008)

27. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science 85(2), 82–93 (2004)

28. Thomas, W.: Automata on infinite objects. Handbook of Theoretical Computer
Science 2 (1990)

29. Wang, Y., Dechesne, F.: On expressive power and class invariance. CoRR,
abs/0905.4332 (2009)

Towards Systematic Evaluation of Multi-agent
Systems in Large Scale and Dynamic Logistics

Rinde R.S. van Lon(B) and Tom Holvoet

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
{Rinde.vanLon,Tom.Holvoet}@cs.kuleuven.be

Abstract. A common hypothesis in multi-agent systems (MAS) litera-
ture is that decentralized MAS are better at coping with dynamic and
large scale problems compared to centralized algorithms. Existing work
investigates this hypothesis in a limited way, often with no support for
further evaluation, slowing down the advance of more general conclu-
sions. Investigating this hypothesis more systematically is time consum-
ing as it requires four main components: (1) formal metrics for the vari-
ables of interest, (2) a problem instance generator using these metrics,
(3) (de)centralized algorithms and (4) a simulation platform that facili-
tates the execution of these algorithms. Present paper describes the con-
struction of an instance generator based on previously established formal
metrics and simulation platform with support for (de)centralized algo-
rithms. Using our instance generator, a benchmark logistics dataset with
varying levels of dynamism and scale is created and we demonstrate how
it can be used for systematically evaluating MAS and centralized algo-
rithms in our simulator. This benchmark dataset is essential for enabling
the adoption of a more thorough and systematic evaluation methodol-
ogy, allowing increased insight in the strengths and weaknesses of both
the MAS paradigm and operational research methods.

1 Introduction

In pickup and delivery problems (PDPs) a fleet of vehicles is tasked with trans-
porting customers or goods from origin to destination [23,27]. In dynamic PDPs
the orders describing the vehicles’ tasks arrive during the operating hours [1],
necessitating online assignment of vehicles to orders. The dynamic nature and
potential large scale of this problem makes exact algorithms often infeasible.

Decentralized multi-agent systems (MASs) are often presented as a good
alternative to centralized algorithms [3,6,29], MASs are especially promising for
large scale and dynamic problems due to their ability to make quick local deci-
sions. Previous work has shown that MASs can sometimes outperform centralized
algorithms in specific cases [3,18,19,20]. However, to the best of our knowledge
there has never been a systematic effort to compare centralized algorithms to
decentralized MASs with varying levels of dynamism and scale.

Although the previously mentioned papers each do a thorough evaluation of
a MAS applied to a logistics problem, it is often hard to do further comparisons
using these papers because of the lack of available problem data, source code or
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 248–264, 2015.
DOI: 10.1007/978-3-319-25524-8 16

Towards Systematic Evaluation of Multi-agent Systems 249

both. It has been argued before that this is a problem in science in general [8],
and in multi-agent systems literature in particular [16].

In this paper we introduce a dataset generator and a benchmark dataset of
the dynamic pickup and delivery problem with time windows (PDPTW) with
support for varying three variables. The degree of dynamism and urgency of
a dynamic PDPTW are two variables that were introduced before [14]. The
proposed dataset contains an additional variable, scale, that we define in the
context of PDPTW as a multiplier applied to the number of vehicles and orders
in a problem. Using this dataset it will be possible to systematically investigate
the following hypotheses in the context of PDPTW:

– Multi-agent systems perform better when compared to centralized algo-
rithms on very dynamic problem instances

– Multi-agent systems perform better when compared to centralized algo-
rithms on more urgent problem instances

– Multi-agent systems perform better when compared to centralized algo-
rithms on large scale problem instances

Investigating these hypotheses should lead to insight in the performance of both
decentralized MASs and centralized algorithms for PDPTWs. These insights
can then be used to make more informed decisions when designing a system
that needs to cope with dynamic, urgent and large scale problems. Additionally,
the dataset generator, the benchmark dataset instance and the simulator [15]
that we use are open sourced. This improves the reproducibility of the current
paper while presenting an opportunity for other researchers to investigate the
above hypotheses using their own algorithms.

The paper is organized as follows. First, the relevant literature is discussed
(Section 2) andwedefinedynamicPDPTWs including themeasures for dynamism,
urgency and scale and the measure for algorithm performance (Section 3). This is
followed by a description of the dataset generator and dataset benchmark instance
(Section 4). It is demonstrated how the hypotheses of dynamism, urgency and scale
can be investigated using the proposed benchmark instance (Section 5), leading to
the conclusion that the benchmark dataset facilitates a systematic and long term
research effort into these hypotheses (Section 6).

2 Related Work

Several literature surveys discuss the dynamic vehicle routing problem (VRP)
and its special case, dynamic PDPTW [1,5,24,26]. The dynamic PDPTW is
often treated as a stochastic problem where some a priori information is known
about the orders. This section only discusses papers that do not use a priori
information but view the problem from a completely dynamic perspective.

2.1 Centralized Algorithms

Madsen et al. [17] developed an insertion heuristic for the dynamic dial-a-ride-
problem (DARP) with time windows for moving elderly and disabled people.

250 R.R.S. van Lon and T. Holvoet

Potvin et al. [25] presented a learning system based on linear programming
that can learn an optimal policy taking into account decisions of an expert in
past scenarios. Mitrović-Minić et al. [22] presented an approach based on two
time horizons: a short time horizon aimed at achieving the short-term goal of
minimization of distance traveled, and a longer time horizon aimed at achieving
the long-term goal of facilitating the insertion of future requests. Gendreau et
al. [4] introduced a dynamic version of tabu search with a neighboring structure
based on ejection chains. When new requests arrive, the algorithm reacts by
insertion and ejection moves and with local search.

2.2 Multi-Agent Systems

An alternative approach to the dynamic PDPTW is using a decentralized MAS
instead of a centralized planner. Fischer et al. [3] used a MAS with the extended
contract net protocol for cooperative transportation scheduling and they showed
that its performance was comparable to existing operational research (OR) tech-
niques. Mes et al. [20] compared traditional heuristics with a distributed MAS
that uses a Vickrey auction to bid for new pickup and delivery requests when they
appear, showing that the MAS approach performs often better than traditional
heuristics. In subsequent work Mes and Van der Heijden [21] further improved
the performance of the MAS by introducing a look-ahead mechanism in which
bidding uses value functions to estimate the expected future revenue of inserting
a new order in an agent plan. Máhr et al. [19] thoroughly evaluated a MAS with
auctions and a mixed-integer program on real world data of a PDPTW. Their
results show that both approaches have comparable performance. Glaschenko
et al. [6] discussed the deployment of a MAS for a taxi company in London,
adopting the MAS led to an increase of taxi fleet utilization by 5 - 7 %.

3 Dynamic Pickup-and-Delivery Problems

We base our definition of dynamic PDPs on [14] which is an adaptation of the
definition of [4]. In PDPs there is a fleet of vehicles responsible for the pickup-
and-delivery of items. The dynamic PDP is an online problem, the customer
transportation requests are revealed over time during the fleet’s operating hours.
It is further assumed that the fleet of vehicles has no prior knowledge about the
total number of requests nor about their locations or time windows.

3.1 Formal Definition

For describing the dynamic PDP we adopt the formal definition of [14]. A sce-
nario, which describes the unfolding of a dynamic PDP, is defined as a tuple:

〈T , E ,V〉 := scenario,

Towards Systematic Evaluation of Multi-agent Systems 251

where

[0, T) := time frame of the scenario, T > 0
E := list of events, |E| ≥ 2
V := set of vehicles, |V| ≥ 1

[0, T) is the period in which the fleet of vehicles V has to handle all customer
requests. The events represent customer transportation requests. Since we con-
sider the purely dynamic PDPTW, all events are revealed between time 0 and
time T . Each event ei ∈ E is defined by the following variables:

ai := announce time

pi := [pL
i , pR

i) = pickup time window, pL
i < pR

i

di := [dL
i , dR

i) = delivery time window, dL
i < dR

i

pst i := pickup service time span
dst i := delivery service time span

ploci := pickup location
dloci := delivery location

tt i := travel time from pickup location to delivery location

Reaction time is defined as:

ri := pR
i − ai = reaction time (1)

The time window related variables of a transportation request are visualized in
Figure 1.

time0 T
ri

order i

ai pLi pRi dLi dRi
pickup time window

pi

delivery time window

di

Fig. 1. Visualization of the time related variables of a single order event ei ∈ E .

Furthermore we assume that:

– vehicles start at a depot and have to return after all orders are handled;
– the fleet of vehicles V is homogeneous;
– the cargo capacity of vehicles is infinite (e.g. courier service);
– the vehicle is either stationary or driving at a constant speed;
– vehicle diversion is allowed, this means that a vehicle is allowed to divert

from its destination at any time;

252 R.R.S. van Lon and T. Holvoet

– vehicle fuel is infinite and driver fatigue is not an issue;
– the scenario is completed when all pickup and deliveries have been made and

all vehicles have returned to the depot; and,
– each location can be reached from any other location.

Vehicle schedules are subject to both hard and soft constraints. The opening
of time windows is a hard constraint, hence vehicles need to adhere to these:

spij ≥ pL
i (2)

sdij ≥ dL
i (3)

Here, spij is the start of the pickup operation of order event ei by vehicle vj ;
similarly, sdij is the start of the delivery operation of order event ei by vehicle
vj . The time window closing (pR

i and dR
i) is a soft constraint incorporated into

the objective function, it is defined similarly to [4] and needs to be minimized:

min :=
∑

j∈V
(vttj + td {bdj , T }) +

∑

i∈E

(
td

{
spij , p

R
i

}
+ td

{
sdij , d

R
i

})
(4)

where
td {α, β} := max {0, α − β} = tardiness (5)

Here, vttj is the total travel time of vehicle vj ; bdj is the time at which vehicle
vj is back at the depot. In summary, the objective function computes the total
vehicle travel time, the tardiness of vehicles returning to the depot and the total
pickup and delivery tardiness.

We further impose the following hard constraints on the construction of sce-
narios to ensure consistency and feasibility of individual orders:

ri ≥ 0 (6)

dR
i ≥ pR

i + pst i + tt i (7)

dL
i ≥ pL

i + pst i + tt i (8)

These constraints are visualized in Figure 2. The reaction time constraint (eq. 6)

pi
psti tti

psti tti
di≥ 0, eq. 8

≥ 0, eq. 7

ai ≥ 0, eq. 6

order i

time0 T

Fig. 2. Visualization of the time window constraints of an order event ei ∈ E .

ensures that an order is always announced before its due date. The time window
constraints (eq. 7 and eq. 8) ensure that pickup and delivery time windows are
compatible with each other. Hence, a pickup operation started at any time within
pi guarantees feasibility of a delivery within di given that a vehicle is available
and respecting vehicle capacity, service time and travel time constraints.

Towards Systematic Evaluation of Multi-agent Systems 253

3.2 Dynamism

In this section we describe the measure for the degree of dynamism first defined
in [14]. Informally, a scenario that changes continuously is said to be dynamic
while a scenario that changes occasionally is said to be less dynamic. In the
context of PDPTWs a change is an event that introduces additional information
to the problem, such as the events in E . More formally, the degree of dynamism,
or the continuity of change, is defined as:

dynamism := 1 −

|Δ|∑

i=0

σi

|Δ|∑

i=0

σ̄i

(9)

where

Δ := {δ0, δ1, . . . , δ|E|−2} = {aj − ai|j = i + 1 ∧ ∀ai, aj ∈ E} (10)

θ := perfect interarrival time =
T
|E| (11)

σi :=

⎧
⎪⎪⎨

⎪⎪⎩

θ − δi if i = 0 and δi < θ

θ − δi +
θ − δi

θ
× σi−1 if i > 0 and δi < θ

0 otherwise

(12)

σ̄i := θ +

⎧
⎨

⎩

θ − δi

θ
× σi−1 if i > 0 and δi < θ

0 otherwise
(13)

This measure can compute the degree of dynamism of any scenario.

3.3 Urgency

In [14] urgency is defined as the maximum reaction time available to the fleet of
vehicles in order to respond to an incoming order. Or more formally:

urgency (ei) := pR
i − ai = ri (14)

To obtain the urgency of an entire scenario the mean and standard deviation of
the urgency of all orders can be computed.

3.4 Scale

Assigning a scale level to a PDP instance allows to conduct a scalability exper-
iment to investigate the existence of a correlation between the scale of a PDP
and the computation time and solution quality of an algorithm.

254 R.R.S. van Lon and T. Holvoet

In the context of computer systems scaling up is defined as maintaining a
fixed execution time per task while scaling the workload up in proportion to
the number of processors applied to it [7]. Analogously, scaling in the context of
PDPs can be defined as maintaining a fixed computation time per order while
scaling the workload (number of orders) up in proportion to the number of
vehicles in the fleet.

However, there are three factors that limit the usefulness of this definition.
First, it is known that PDPTWs are NP-hard [27], therefore an exact algorithm
for a PDPTW requires time that is superpolynomial in the input size. Therefore,
maintaining a fixed computation time per order when using an exact algorithm is
infeasible. When using an anytime algorithm (an algorithm that can be stopped
at any moment during its execution to return a valid solution) such as a heuristic,
maintaining a fixed computation time per order is trivial, but will likely have an
influence on the solution quality.

Second, the previously mentioned notion of urgency influences the amount
of available computation time. Within an order’s urgency period three activities
need to be performed, first a vehicle needs to be selected, then the selected vehicle
needs to drive towards the pickup location and it needs to perform the actual
pickup operation. The longer the computation of the vehicle selection takes, the
less time remains for the driving and picking up.

Third, depending on the degree of dynamism there may be many orders with
a small interarrival time. Each order that arrives while a computation takes
place forces a premature halt and subsequent restart of the algorithm. Therefore,
maintaining a fixed computation time per order is nonsensical for PDPTWs.

For these reasons, we define scaling in PDPTWs as maintaining a fixed
objective value per order while scaling the number of orders up in proportion
to the number of vehicles in the fleet. Using this definition, scaling up a scenario
〈T , E ,V〉 with a factor α will create a new scenario 〈T , E ′,V ′〉 where |V ′| = |V| ·α
and |E ′| = |E| ·α. To compute the objective value per order, the global objective
value needs to be divided by the number of orders.

4 Dataset

This section describes the construction of the scenario generator that creates
scenarios with specific levels of dynamism, urgency and scale. Using the scenario
generator a benchmark dataset is constructed.

4.1 Scenario Generator

To create a scenario generator capable of generating scenarios with specific levels
of scale, dynamism and urgency we adapted the generator developed in [14].

Controlling Dynamism of Time Series. Based on [14] we assigned a time
series generator method to a specific range of dynamism levels such that the
entire range [0, 1] is covered (Table 1).

Towards Systematic Evaluation of Multi-agent Systems 255

Table 1. Overview of dynamism ranges and the corresponding time series generator
used for generating scenarios in that range.

Dynamism range Time series generator

[0, .475) non-homogeneous Poisson process
[.475, .575) homogeneous Poisson process
[.575, .675) Normal distribution
[.675, 1] Uniform distribution

The non-homogeneous Poisson process that is used for [0, .475) has an inten-
sity function based on a sine wave with the following parameters:

λ(t) = a · sin(t · f · 2π − π · p) + h (15)
a = 1 amplitude (16)
f = 1 frequency (17)
p ∼ U(0, 1) phase shift (18)
h ∼ U(−.99, 1.5) height (19)

In order to keep the total number of events constant with different levels of
dynamism, the amplitude and height parameters are rescaled such that the total
area under the intensity function equals |E|.

For the [.475, .575) range we used the homogeneous Poisson process, with the
(constant) intensity function defined as:

λ(t) =
|E|
T = 30 (20)

The normal distribution for the [.575, .676) range is the truncated normal
distribution N

(
T
|E| , 0.04

)
with a lower bound of 0 and a standard deviation of

0.04. If a value x was drawn such that x < 0, a new number was drawn from the
distribution. Truncating a normal distribution actually shifts the mean, hence
the mean was rescaled to make sure the effective mean was equal to T

|E| .
In the [.675, 1] range a uniform distribution with mean T

|E| and a maximum
deviation from the mean, σ, is used. The σ value is (for each scenario again)
drawn from the truncated normal distribution N (1, 1) with bounds [0, 15]. If a
value σ is obtained from the distribution such that σ > 15 or σ < 0 a new value
is drawn. Since the mean is not scaled, the effective mean of σ is higher than 1.

Generating Comparable Scenarios with Different Dynamism, Urgency
and Scale Levels. The generator should be able to generate a set of scenarios
where all settings are the same except for dynamism, urgency and scale levels.
Also, any interactions between variables should be minimized, e.g. dynamism
should not correlate with time window intervals. This ensures that any effect
measured is solely caused by the difference in dynamism, urgency and or scale.

256 R.R.S. van Lon and T. Holvoet

Because the dataset generator is stochastic, the number of events |E| and the
degree of dynamism of a scenario can not be directly controlled. To construct a
consistent dataset, scenarios that do not have exactly |E| events are rejected. For
each desired dynamism level a bin with an acceptable deviation is defined, only
generated scenarios with a dynamism value that lies within a bin are accepted.

We further define the concept of office hours as the period [0,O) in which
new orders are accepted. To ensure feasibility of individual orders we need to
take into account the travel time, service time durations and urgency:

O = T − pstmax − dstmax −
⎧
⎨

⎩

2 · ttmax if u < 1
2 · ttmax

1
1
2

· ttmax − u otherwise
(21)

Here, pstmax and dstmax are the maximum pickup and delivery service times
respectively, ttmax is the maximum travel time between a pickup and delivery
location, and u is urgency.

The pickup and delivery time windows have to be randomly chosen while
respecting the constraints as set out by the urgency level and the announce
time. The pR

i is defined as the sum of ai and u, hence it follows that pL
i needs

to be between ai and the sum of ai and u:

pL
i =

{
∼ U(

ai, p
R
i − 10

)
if u > 10

ai otherwise
(22)

Here, 10 is the minimum pickup time window length unless urgency is less than
10, in that case the urgency level equals the pickup time window length. The
upper bound of dR

i can be defined as:

ubdR
i = T − tt(dloci, depotloc) − dsti (23)

This translates as the latest possible time to start the delivery operation such
that the delivery time window constraints are met and the vehicle can still be
back at the depot on time. The lower bound of dL

i was already defined in eq. 8:

lbdL
i = pL

i + psti + tti (24)

We define a minimum delivery time window length of 10, which then results in
an upper bound of dL

i :
ubdL

i = ubdR
i − 10 (25)

Based on these bounds we draw the opening of the delivery time window from
the following uniform distribution:

dL
i ∼ U(

lbdL
i ,max

(
lbdL

i , ubdL
i

))
(26)

To find dR
i we need to redefine the lower bound (from eq. 7) by using the actual

value of dL
i :

lbdR
i = min

(
max

(
pR

i + psti + tti, d
L
i + 10

)
, ubdR

i

)
(27)

Towards Systematic Evaluation of Multi-agent Systems 257

Finally, the closing of the delivery time window is defined as:

dR
i ∼ U(

lbdR
i , ubdR

i

)
(28)

For the pickup and delivery service times we choose psti = dsti = 5 minutes.
All locations in a scenario are points on the Euclidean plane. It has a size of

10 by 10 kilometer with a depot at the center of this square. Vehicles start at
the depot and have a constant travel speed of 50 km/h. All pickup and delivery
locations are drawn from a two dimensional uniform distribution U2(0, 10).

4.2 Benchmark Dataset

The benchmark dataset that we created for this paper has three levels for each of
the dimensions of interest resulting in a total of 3 · 3 · 3 = 27 scenario categories.
The dimensions of interest are dynamism, urgency and scale, the used values
are listed in Table 2a, the other parameters are listed in Table 2b. Since the

Table 2. Overview of the parameters used to generate the benchmark dataset.

(a) Dimensions

Dimension Values

Dynamism .2 .5 .8

Urgency 5 20 35

Scale 1 5 10

(b) Settings

Parameter Value

T 8 hours

|E| scale · 240
|V| scale · 10

generation of the order arrival times is a stochastic process the exact degree of
dynamism can not be controlled. Therefore, we define a dynamism bin using
a radius of 1% around each dynamism value. For this dataset, we consider a
scenario with dynamism d where b − .01 < d < b + .01 to have dynamism b,
where b is one of the dynamism bins listed in Table 2a.

For each scenario category 50 instances are generated, resulting in a total
of 50 · 27 = 1350 scenarios. Each scenario is written to a separate file with
the following name format: dynamism-urgency-scale-id.scen, for example
0.20-5-1.00-0.scen depicts a scenario with 20% dynamism, an urgency level
of 5 minutes, a scale of 1 and id 0. This format allows easy selection of a subset
of the dataset. The scenario file contains the entire scenario in JavaScript Object
Notation (JSON). Time in a scenario is expressed in milliseconds, distance in
kilometer and speed in kilometer per hour. A scenario is considered to be finished
when all vehicles are back at the depot and the current time is ≥ T .

The open source discrete time simulator RinSim [15] version 4.0.0 [13] has
native support for the scenario format. With RinSim it is easy to run the scenario
with centralized algorithms and multi-agent systems, allowing researchers to only
have to focus on their algorithms. For reproducibility, the code of the dataset
generator is released [11] as well as the dataset scenarios [10] and all other code
and results [9].

258 R.R.S. van Lon and T. Holvoet

5 Demonstration

As a demonstration a centralized algorithm is compared with a decentralized
multi-agent system on 10 instances of each category in the benchmark dataset,
resulting in a total of 270 experiments per approach. For reproducibility, the code
and results of this experiment are published on an accompanying web page [9]

5.1 Heuristics

Just as in [14] two well known heuristics are used, the cheapest insertion heuris-
tic (Algorithm 1) and the 2-opt optimization procedure (Algorithm 2). Since
the 2-opt procedure requires a complete schedule as input, it uses the cheapest
insertion heuristic to construct a complete schedule first. Both these algorithms
have been used in earlier work for vehicle routing problems [2,28].

Fig. 3. Comparison with mean relative cost versus dynamism for all levels of scale and
urgency. The error bars indicate one standard deviation around the mean.

Towards Systematic Evaluation of Multi-agent Systems 259

Input: 〈T , E, V〉; /* A scenario as input */
Data: S; /* the current schedule or ∅ */
Sbest = ∅

foreach e ∈ E, e /∈ S do
/* generate all PDP insertion points in the current schedule: */
insertions = generate insertion points(S)
for i ∈ insertions do

/* construct a new schedule by inserting e at insertion i */
Snew = construct(S,e,i)
if cost(Snew) < cost(Sbest) then

Sbest = Snew
end

end

end

Algorithm 1. Cheapest insertion heuristic, source code available in [12].

Input: S
Sbest = S
swaps = generate swaps(S)
foreach e ∈ swaps do

Snew = swap(S,e)
if cost(Snew) < cost(Sbest) then

Sbest = Snew
end

end
/* If a better schedule has been found, we start another iteration */
if Sbest �= S then

2-opt(Sbest)
end

Algorithm 2. 2-opt procedure, source code available in [12].

5.2 Centralized Algorithm

Each time a new order is announced the cheapest insertion heuristic is executed
to produce a new schedule for the fleet of vehicles. It is assumed that execution of
the algorithm is instantaneous with respect to the dynamics of the simulations.

5.3 Contract Net Protocol Multi-Agent System

The multi-agent system implementation is based on the contract net protocol
(CNP) as described by Fischer et al. [3]. For each incoming order an auction
is organized, when the auction is finished the order will be assigned to exactly
one vehicle. All vehicles always bid on each order, the bid contains an estimate
of the additional cost that including the new order in the vehicles assignment
would incur. This estimate is computed using the cheapest insertion heuristic as
described in Algorithm 1. The vehicle with the lowest bid will win the auction
and receive the order. Each vehicle computes a route to visit all its pickup and
delivery sites using the 2-opt procedure described in Algorithm 2.

260 R.R.S. van Lon and T. Holvoet

Fig. 4. Comparison with mean relative cost versus urgency for all levels of scale and
dynamism. The error bars indicate one standard deviation around the mean.

5.4 Results and Analysis

The results1 of the experiments are plotted along the dynamism, urgency and
scale dimension in Figures 3, 4 and 5 respectively. Although all results indi-
cate that the MAS performs better than the centralized algorithm, the current
experiment is too limited to verify the hypotheses posed in this paper. Instead,
we discuss the behavior of both algorithms with respect to the dimensions of
interest.

Dynamism. Figure 3 shows that the level of dynamism has very little influence
on the performance of both the MAS and the centralized algorithm. This lack
of effect is very consistent among all urgency and scale settings.

1 In [9] the raw results are published.

Towards Systematic Evaluation of Multi-agent Systems 261

Fig. 5. Comparison with mean relative cost versus scale for all levels of urgency and
dynamism. The error bars indicate one standard deviation around the mean.

Urgency. In Figure 4 a clear trend can be observed for both algorithms, the
less urgent orders are, the lower the average cost per order is. This effect can be
explained by the fact that when orders are less urgent, vehicles have more time
to handle other nearby orders first while still respecting the time windows.

Scale. Contrary to what one would expect, Figure 5 shows that the larger scale
the problem is the lower the average cost of an order. This surprising result can
be explained by the fact that computation time is ignored in our current setup,
this means that the algorithms have enough time to deal with greater complexity
of larger scale problems. The lower average cost per order can be explained by
the fact that with more vehicles the average distance of a new order to the closest
vehicle is smaller, resulting in reduced average travel times and tardiness.

262 R.R.S. van Lon and T. Holvoet

6 Conclusion

In this paper we present an open source dataset generator and benchmark dataset
instance of dynamic PDPTW with support for varying levels of dynamism,
urgency and scale. We demonstrate how to use the benchmark instance to com-
pare a decentralized MAS with a centralized algorithm. Although both algo-
rithms are too basic to generalize upon the results, this demonstration can form
a baseline to which future work can compare to. Using the work presented in this
paper, other researchers in the MAS and OR domains are empowered to conduct
thorough and systematic evaluations of their work. In our next paper we plan to
reap the benefits of this work by extending the comparison demonstration with
a state of the art centralized algorithm and an advanced MAS.

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven.

References

1. Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic pickup and delivery problems.
European Journal of Operational Research 202(1), 8–15 (2010). doi:10.1016/j.ejor.
2009.04.024

2. Coslovich, L., Pesenti, R., Ukovich, W.: A two-phase insertion technique of unex-
pected customers for a dynamic dial-a-ride problem. European Journal of Opera-
tional Research 175(3), 1605–1615 (2006). doi:10.1016/j.ejor.2005.02.038

3. Fischer, K., Müller, J.P., Pischel, M.: A model for cooperative transportation
scheduling. In: Proceedings of the 1st International Conference on Multiagent
Systems (ICMAS 1995), pp. 109–116, San Francisco (1995)

4. Gendreau, M., Guertin, F., Potvin, J.Y., Séguin, R.: Neighborhood search heuris-
tics for a dynamic vehicle dispatching problem with pick-ups and deliveries.
Transportation Research Part C: Emerging Technologies 14(3), 157–174 (2006).
doi:10.1016/j.trc.2006.03.002

5. Gendreau, M., Potvin, J.Y.: Dynamic vehicle routing and dispatching. In:
Crainic, T., Laporte, G. (eds.) Fleet Management and Logistics. Centre for
Research on Transportation, pp. 115–126. Springer, NewYork (1998). doi:10.1007/
978-1-4615-5755-5 5

6. Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-agent real
time scheduling system for taxi companies. In: Proceedings of 8th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 29–36
(2009)

7. Gunther, N.J.: Guerrilla Capacity Planning: A Tactical Approach to Planning
for Highly Scalable Applications and Services. Springer-Verlag New York Inc.,
Secaucus (2006). doi:10.1007/978-3-540-31010-5

8. Ince, D.C., Hatton, L., Graham-Cumming, J.: The case for open computer
programs. Nature 482(7386), 485–488 (2012). doi:10.1038/nature10836

9. van Lon, R.R.S.: Code and results, PRIMA 2015, August 2015. doi:10.5281/zenodo.
27365

10. van Lon, R.R.S.: Dynamism, urgency and scale dataset, August 2015. doi:10.5281/
zenodo.27364

http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1016/j.ejor.2005.02.038
http://dx.doi.org/10.1016/j.trc.2006.03.002
http://dx.doi.org/10.1007/978-1-4615-5755-5_5
http://dx.doi.org/10.1007/978-1-4615-5755-5_5
http://dx.doi.org/10.1007/978-3-540-31010-5
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.5281/zenodo.27365
http://dx.doi.org/10.5281/zenodo.27365
http://dx.doi.org/10.5281/zenodo.27364
http://dx.doi.org/10.5281/zenodo.27364

Towards Systematic Evaluation of Multi-agent Systems 263

11. van Lon, R.R.S.: PDPTW dataset generator: v1.0.0, August 2015. doi:10.5281/
zenodo.27362

12. van Lon, R.R.S.: RinLog: v2.0.0, August 2015. doi:10.5281/zenodo.27361
13. van Lon, R.R.S.: RinSim: v4.0.0, August 2015. doi:10.5281/zenodo.27360
14. van Lon, R.R.S., Ferrante, E., Turgut, A.E., Wenseleers, T., Vanden Berghe, G.,

Holvoet, T.: Measures for dynamism and urgency in logistics. In: CW Reports, vol.
CW686. Department of Computer Science, KU Leuven, August 2015

15. van Lon, R.R.S., Holvoet, T.: RinSim: a simulator for collective adaptive systems
in transportation and logistics. In: Proceedings of the 6th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO 2012),
pp. 231–232. Lyon (2012). doi:10.1109/SASO.2012.41

16. van Lon, R.R.S., Holvoet, T.: Evolved multi-agent systems and thorough evalu-
ation are necessary for scalable logistics. In: 2013 IEEE Workshop on Computa-
tional Intelligence In Production And Logistics Systems (CIPLS), pp. 48–53 (2013).
doi:10.1109/CIPLS.2013.6595199

17. Madsen, O.B.G., Ravn, H.F., Rygaard, J.M.: A heuristic algorithm for a dial-a-ride
problem with time windows, multiple capacities, and multiple objectives. Annals
of Operations Research 60(1), 193–208 (1995). doi:10.1007/BF02031946

18. Máhr, T., Srour, J.F., de Weerdt, M., Zuidwijk, R.: Agent performance in vehicle
routing when the only thing certain is uncertainty. In: Proceedings of 7th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS).
Estorial (2008)

19. Máhr, T., Srour, J.F., de Weerdt, M., Zuidwijk, R.: Can agents measure up? a com-
parative study of an agent-based and on-line optimization approach for a drayage
problem with uncertainty. Transportation Research: Part C 18(1), 99–119 (2010).
doi:10.1016/j.trc.2009.04.018

20. Mes, M., van der Heijden, M., van Harten, A.: Comparison of agent-based schedul-
ing to look-ahead heuristics for real-time transportation problems. European Jour-
nal of Operational Research 181(1), 59–75 (2007). doi:10.1016/j.ejor.2006.02.051

21. Mes, M., van der Heijden, M., Schuur, P.: Look-ahead strategies for dynamic
pickup and delivery problems. OR Spectrum 32(2), 395–421 (2010). doi:10.1007/
s00291-008-0146-3

22. Mitrović-Minić, S., Krishnamurti, R., Laporte, G.: Double-horizon based heuristics
for the dynamic pickup and delivery problem with time windows. Transportation
Research Part B - Methodological 38(8), 669–685 (2004). doi:10.1016/j.trb.2003.
09.001

23. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery prob-
lems. Part II: Transportation between pickup and delivery locations. 58(2), 81–117
(2008)

24. Pillac, V., Gendreau, M., Gueret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. European Journal of Operational Research 225(1), 1–11 (2013).
doi:10.1016/j.ejor.2012.08.015

25. Potvin, J., Dufour, G., Rousseau, J.: Learning vehicle dispatching with linear-
programming models. Computers & Operations Research 20(4), 371–380 (1993).
doi:10.1016/0305-0548(93)90081-S

26. Psaraftis, H.: Dynamic vehicle routing: Status and prospects. Annals of Operations
Research 61, 143–164 (1995). doi:10.1007/BF02098286

27. Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Trans-
portation Science 29(1), 17–29 (1995). doi:10.1287/trsc.29.1.17

http://dx.doi.org/10.5281/zenodo.27362
http://dx.doi.org/10.5281/zenodo.27362
http://dx.doi.org/10.5281/zenodo.27361
http://dx.doi.org/10.5281/zenodo.27360
http://dx.doi.org/10.1109/SASO.2012.41
http://dx.doi.org/10.1109/CIPLS.2013.6595199
http://dx.doi.org/10.1007/BF02031946
http://dx.doi.org/10.1016/j.trc.2009.04.018
http://dx.doi.org/10.1016/j.ejor.2006.02.051
http://dx.doi.org/10.1007/s00291-008-0146-3
http://dx.doi.org/10.1007/s00291-008-0146-3
http://dx.doi.org/10.1016/j.trb.2003.09.001
http://dx.doi.org/10.1016/j.trb.2003.09.001
http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://dx.doi.org/10.1016/0305-0548(93)90081-S
http://dx.doi.org/10.1007/BF02098286
http://dx.doi.org/10.1287/trsc.29.1.17

264 R.R.S. van Lon and T. Holvoet

28. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254–265 (1987). doi:10.1287/
opre.35.2.254

29. Weyns, D., Boucké, N., Holvoet, T.: Gradient field-based task assignment in
an agv transportation system. In: Proceedings of 5th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 842–849 (2006).
doi:10.1145/1160633.1160785

http://dx.doi.org/10.1287/opre.35.2.254
http://dx.doi.org/10.1287/opre.35.2.254
http://dx.doi.org/10.1145/1160633.1160785

Paraconsistent Multi-party Persuasion
in TalkLOG

Barbara Dunin-Kȩplicz and Alina Strachocka(B)

Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
{keplicz,astrachocka}@mimuw.edu.pl

Abstract. Some conflicts appearing in multi-agent settings may be
resolved via communication. In this paper, besides conflicts of opin-
ions, paradigmatically resolved by persuasion, we study resolution of
conflicting justifications of opinions. To cope with agents’ ignorance and
inconsistencies, often arising from perception and interactions, our for-
mal framework TalkLOG employs a 4-valued logic with two additional
logical values: unknown and inconsistent. Within TalkLOG we study such
properties of persuasion as: termination, soundness and completeness.
Another critical issue is complexity of agents’ communication, typically
interleaved with reasoning. In TalkLOG tractability of both aspects is
obtained thanks to the implementation tool: rule-based 4-valued lan-
guage 4QL.

1 Requirements for Resolving Conflicts via Persuasion

The overall goal of this research is a communication protocol for resolving conflicts
by a group of agents situated in dynamic and unpredictable environments where
up-to-date, unambiguous and complete information is hardly obtainable. Within
our dialogue system, TalkLOG, we introduce a new approach to logical modeling of
conversing agents, obeying the following principles of communication:
1. Agents’ informational stance is paraconsistent (i.e., tolerating inconsisten-

cies) and paracomplete (i.e., tolerating lack of information). Particularly,
inconsistent and incomplete conclusions do not terminate reasoning, but can
be further dealt with.

2. Agents are able to complete and disambiguate missing and ambiguous infor-
mation.

3. Flexible, multi-party conversations are considered.
4. Tractable protocols are built to allow for practical applicability.
5. Dynamics of communication model involves beliefs change during dialogue.

Contemporary approaches to flexible communication draw upon Walton and
Krabbe’s semi-formal theory of dialogue, adapting the normative models of
human communication to multi-agent settings. The dialogue that aims at resolv-
ing conflicts in their typology is persuasion, characterized as follows: “The

Supported by the Polish National Science Centre grants 2011/01/B/ST6/02769 and
CORE 6505/B/T02/2011/40.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 265–283, 2015.
DOI: 10.1007/978-3-319-25524-8 17

266 B. Dunin-Kȩplicz and A. Strachocka

initial situation of a persuasion dialogue (or critical discussion), is a clash or
conflict of points of view. The main goal is a resolution of the initial conflict by
verbal means. This means that if the dialectical process is to be successful at
least one of the parties involved in the conflict will have to change its point of
view at some stage in the dialogue. The internal aim of each party is to persuade
the others to take over its point of view” [1].

In the whole spectrum of approaches to persuasion starting from the seminal
volume [1], through more formal works [2,3], the two-party, two-valued models
prevail. Only recently multi-party aspects have been studied [4,5], while non-
classical approaches [6,7] did not treat inconsistencies as first-class citizens. In
contrast to them, the contribution of this paper is a formal, dynamic model of
a tractable, paraconsistent and paracomplete multi-party persuasion, featuring
Classical and Deep Persuasion, to solve conflicts of opinions and conflicts of
justifications of opinions, respectively. Opposed to [6,7], our solution is built
upon the four-valued logic of [8] with an intuitive semantics behind the two new
truth values: unknown (u) and inconsistent (i). Such choice permits to rationally
cope with agents’ ignorance and inconsistencies usually resulting from agents’
interactions and the complexity of the environment.

Another critical issue is complexity of agents’ communication, typically inter-
leaved with reasoning. Instead of reasoning in logical systems of high complexity,
in TalkLOG we query paraconsistent knowledge bases. To this end we use 4QL
- a DATALOG¬¬-like four-valued rule-based query language. In the light of
the new perspective we prove such properties of paraconsistent persuasion as:
termination, convergence to the merged outcome, soundness and completeness;
similarly to our results obtained for inquiry [9].

The paper is structured as follows. First, in Section 2 related work is reviewed.
Next, Section 3, briefly recalls the underpinnings of our solution. The main
matter convey Sections 4 and 5, concerning formalization of persuasion and
analysis of its properties, respectively. Finally, Section 6 concludes the paper.

2 Related Work

Walton and Krabbe introduced two types of semi-formal persuasion dialogues:
permissive (PPD - everyday conversations) and rigorous (RPD - model of rea-
soned argument). Their “persuasion dialogue generally takes the form of a
sequence of questions and replies, or attacks and defenses where each side takes
a turn to make a move. A move is a sequence of locutions advanced by a par-
ticipant at a particular point in the sequence of dialogue” [1]. As in PPD and
RPD replies cannot be postponed, since each player’s move has to pertain to the
adversary’s preceding move, these dialogue types do not offer a more nuanced
handling of the burden of proof, which is important for increased flexibility of
interlocutors. Moreover no formal properties are given.

PWA protocol [3], although suffered from similar modeling limitations (see
also [10] for discussion) was a formal approach allowing to analyze formal proper-
ties, among others, termination and outcomes of dialogues. Prakken’s system [2]
was the first to allow alternative replies and postponing replies, thus permitting

Paraconsistent Multi-party Persuasion in TalkLOG 267

much flexibility in persuasion. Conflict resolution in [3] hinged on the preference
relation between arguments, while in [2] on the priorities of reasoning rules. Still
all above mentioned approaches were two-party and required that support of an
argument was consistent.

Multi-party aspects were introduced to persuasion by Bonzon et al. [4], where
agents shared the set of arguments, but had different attack relations among
them. Although agents were privately assigned to two adverse groups, they inde-
pendently proposed moves to the central authority who selected the move to play.
The outcomes were juxtaposed with the merged argumentation system [11].

Several argumentation systems dealt with ignorance or inconsistency,
although not necessarily applied to persuasion. Sawamura et al. [7] proposed
a framework for multiple-valued argumentation (LMA) where agents can argue
using multi-valued knowledge base. In [6] ASPIC+, a framework for structured
argumentation with possible inconsistent knowledge bases and defeasible rules
was given. However, none of these formalisms handles inconsistency or lack of
information the way 4QL does. Usually the inconsistent premisses yield conclu-
sions (e.g., ’undecided’) which terminate the reasoning process, thus cannot be
further dealt with, unlike in our approach.

3 4QL as an Implementation Tool

TalkLOG uses the logical language introduced in [12–14]. This allows to encode
agents’ informational stance in the rule-based query language 4QL1 defined
in [12], further developed in [13], and based on the 4-valued logic of [8]. 4QL
features:

– Possibly many, perhaps distributed information sources.
– Four logical values (t, f, i, u).
– Unrestricted negation (in premisses and conclusions of rules).
– Simple tools: rules, modules and multi-source formulas to formulate and

enrich (lightweight versions of) (Local) Closed World Assumption, autoepis-
temic reasoning, default reasoning, defeasible reasoning, etc.

– Modular architecture to deal with unknown or inconsistent conclusions with-
out enforcing termination of the reasoning process.

– PTime complexity of computing queries while capturing all tractable queries.
For convenience, both the underlying 4-valued logic and 4QL are recalled from
[8,12–14] in Appendix2. In what follows all sets are finite except for sets of
formulas; domain and language are fixed and the programs and rules are ground.
We deal with the classical first-order language over a given vocabulary without
function symbols. Γ denotes the set of all facts; Π denotes the set of all rules.

The semantics of 4QL is defined by well-supported models, i.e., models con-
sisting of (positive or negative) ground literals, where each literal is a conclusion
of a derivation starting from facts. For any set of rules, such a model is uniquely
determined and computable in deterministic polynomial time O(Nk) where N

1 Open-source implementation of 4QL is available at 4ql.org.
2 Availalble at http://4ql.org/downloads/appendix.pdf.

4ql.org
http://4ql.org/downloads/appendix.pdf

268 B. Dunin-Kȩplicz and A. Strachocka

is the size of domain and k = max(s, t) where s is the maximal arity of relations
and t is the maximum number of free variables. As we deal here with ground
programs, t = 0. When s is a bound constant, what takes place in qualitative
not quantitative reasoning, being all practical applications of 4QL, tractability
is achieved.

4 Persuasion in TalkLOG

Although traditionally persuasion arises from a conflict of opinions [1], the
following example illustrates other possibilities.
Example 1 (John & Mark). Two friends John and Mark are saving up money
together (expressed by save(money)) and every week they are paying an agreed
amount into their common bank account. However, John wants to buy a motor-
cycle with that money (expressed by the rule save(money) :– buy(moto)) and
Mark plans to open a small bar (save(money) :– buy(bar)). As there is no out-
spoken initial conflict of opinions regarding saving money (save(money) is t for
both of them), classically, no persuasion can commence. However, the concealed
disagreement concerns their motivations. �
In TalkLOG, if the friends want to resolve the issue immediately (instead of fight-
ing over saved money later), they can enter into a discussion about their differing
motivations. Ultimately, as an outcome from such dialogue, they would:

– abandon one of the goals and focus on the other, or
– continue to save money for both goals, or
– give up on saving at all since they could not come to an agreement.

We formalize motivation (warrant or justification) as the proper proof of a for-
mula (see Def. 2). To this end, the notion of the dependence set of a literal � from
a program P is needed. Intuitively, it consists of literals reachable via backward
chaining on P from �.

Definition 1 (Dependence Set). Let � be a literal and P a 4QL program.
The dependence set of � from P , denoted DP,� is the set of literals such that:

– ¬�, � ∈ DP,�,
– if there is a rule �′ :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim in P , such that �′ ∈

DP,� then ∀j∈1..m∀k∈1..ij bjk,¬bjk ∈ DP,�. �

The proof of a literal � from a program P is a subprogram S of P generated
from the dependence set DP,� by taking all rules and facts of P whose conclusions
are in DP,�. Notice that proof may contain rules whose premisses evaluate to f or
u, thus do not influence the value of �. The definition of proper proof disregards
such rules.

Definition 2 (Proof, Proper Proof). Let � be a literal, P a 4QL program and
δ ∈ Γ ∪ Π a fact or a rule. The proof of l from P is a 4QL program S ⊆ P such
that δ ∈ S iff head(δ) ∈ DP,�. The proper proof (p-proof) or warrant of l from P
denoted Φl,P , is a subset of Sl,P such that δ ∈ Φl,P iff body(δ)(MSl,P

) ∈ {t, i}. �

Paraconsistent Multi-party Persuasion in TalkLOG 269

By equal/different motivations we mean equal/unequal p-proofs. By equal
opinions we mean equal valuations of the formulas representing opinions. Obvi-
ously, equality of warrants entails equality of opinions, but not the other way
around. We differentiate between cases where initial situation concerns conflict
of opinions or conflict of warrants and we are interested in how the initial
conflict is resolved, i.e., whether a common opinion or a common warrant has
been reached. Although [1] distinguish three types of points of view (opinions)
towards a topic of persuasion: positive, negative and one of doubt, in TalkLOG,
the ’doubtful’ point of view is expanded, distinguishing the cases when the doubt
results from ignorance or from inconsistency.

Definition 3 (Initial Conflict on Topic). Let:

– ϕ ∈ C be a ground literal, representing the topic of dialogue,
– P1 and P2 be two 4QL programs of agents A1 and A2,
– MP1 and MP2 be the well-supported models of P1 and P2 respectively,
– Φϕ,P1 and Φϕ,P2 be the p-proofs of ϕ from P1 and P2 respectively.

Then:
– an initial conflict on topic ϕ between A1 and A2 occurs when:

• ϕ(MP1) �= ϕ(MP2), or [conflict of opinion]
• Φϕ,P1 �= Φϕ,P2 [conflict of warrant]

– A1 and A2 share a common opinion on ϕ if ϕ(MP1) = ϕ(MP1),
– A1 and A2 share a common warrant on ϕ if Φϕ,P1 = Φϕ,P2 .

The goal of Classical Persuasion is a common opinion, while of Deep Per-
suasion - common warrant. Unless stated otherwise, the formalism concerns
both dialogues.

4.1 Locutions and Moves

In TalkLOG, the content of a locution is either an opinion (belief) of an agent,
represented by a literal ϕ together with its value v; or a piece of evidence,
represented by a fact or a rule δ together with its membership function μ(δ) (see
Definition 4 below).

Definition 4. Let P be a 4QL program and δ ∈ Γ ∪ Π be a fact or a rule.
Then:

μP (δ) def=

⎧
⎪⎪⎨

⎪⎪⎩

t when δ ∈ P ∧ ¬δ �∈ P ;
f when δ �∈ P ∧ ¬δ ∈ P ;
i when δ,¬δ ∈ P ;
u otherwise.

Definition 5. A locution is a tuple of the form 〈Agent,Dialogue, SpeechAct,

Content〉 for simplicity denoted further as SpeechActDialogue
Agent 〈Content〉, where:

– Agent is the identifier of the sender of the utterance: Agent ∈ XAg,
– SpeechAct is the type of locution: SpeechAct ∈ {assert, assertBel, concede,

why, retract, adopt, retractBel},
– Dialogue is the identifier of the dialogue: Dialogue ∈ XDial,

270 B. Dunin-Kȩplicz and A. Strachocka

– Content is the propositional content of locution, dependent on speech act
type. �

The format and intended meaning of locutions permitted in TalkLOG persuasion3,
i.e.:

– assertions of evidence or beliefs,
– questioning evidence or beliefs,
– concessions, retraction or adoption of evidence,
– retraction of beliefs,

are given in Tab. 1, where x ∈ XAg, d ∈ XDial and:

– ϕ ∈ C is a ground literal, δ ∈ Γ ∪ Π is a fact or a rule,
– v, μ(δ), v′ ∈ T is a truth value, such that v′ �= u,
– B is a body of a rule.4

Table 1. Formats and intended meaning of permissible locutions in TalkLOG persua-
sion.

Locution Type Format Intended Meaning

assert assertdx〈δ, μ(δ)〉 asserting attitude towards evidence δ

concede concededx〈δ, μ(δ)〉 conceding/agreeing with evidence δ

assertBel assertBeldx〈ϕ, v〉 asserting attitude towards an opinion ϕ

assertBel assertBeldx〈B, v〉 asserting attitude towards an opinion B

why whyd
x〈ϕ, v′〉 questioning opinion ϕ

retract retractdx〈δ〉 retracting evidence δ

adopt adoptdx〈δ〉 adopting evidence δ

retractBel retractBeldx〈ϕ, v〉 retracting opinion ϕ

The set of all locutions that match the format presented in Tab. 1 is denoted U .
A move is a sequence of locutions uttered by the same agent in the same time-
point. Moves denotes the set of all permissible persuasion moves (where neither
agent’s knowledge base nor its beliefs can change during a move), so in a single
move an agent cannot:

– assert different points of view towards the same belief,
– assert and retract the same belief,
– both (concede or assert) and (retract or adopt) a piece of evidence.

4.2 Dialogue Stores

TalkLOG persuasion merges two approaches:

– resolving conflicts of opinions via argumentation (and embedded 4QL mech-
anisms),

3 We skip ‘operational’ locutions like requestAll, join, leave for simplicity.
4 assertBel〈B, v〉 is a notation for a sequence of assertBel concerning literals in B.

Paraconsistent Multi-party Persuasion in TalkLOG 271

– employing dedicated conflict resolution methods to adjudicate between con-
flicting pieces of evidence. To this end we have chosen social choice theory
methods [15] (particularly, voting) for resolving conflicts unsolvable via argu-
mentation.

In the mentalistic approach [16–18] the semantics of locutions was defined by
means of their pre- and post-conditions; for a related paraconsistent semantics
consult [19]. However, recently pre-conditions are realized via relevance func-
tion (see Section 4.3), while post-conditions – as updates of so-called dialogue
stores. TalkLOG persuasion requires: Query (QS), Dispute (DS), Resolved Dis-
pute (RDS) and Commitment Stores (CS). This permits to validate correctness
of moves using public information [20] (i.e., these stores’ content) rather than
internal states of agents.

QS QS contains beliefs and questions uttered by agents. Agents may inspect
QS to find questions that need answering or opinions of others that can
be questioned.

DS DS contains pieces of evidence put forward by agents to support a belief
or respond to a question. Agents may query DS to support or undermine
a piece of evidence submitted by another agent.

RDS contains both traces of resolved conflicts as well as unanimously accepted
pieces of evidence. To comply with those decisions, participants are
required to adopt a piece of evidence accepted by the group (using adopt)
or abandon one (using retract locution) via voting, but consult e.g., [21].

CS CS contains the agreed-upon pieces of evidence, which once accepted are
never deleted. The fact that CS grows monotonically is important for
both complexity considerations and analysis of the properties of TalkLOG
persuasion.

QS contains tuples of the form 〈Q,F, V,X〉 where Q ∈ {bel, why} denotes tuple
type, F ∈ C ground literal, V ∈ T a point of view towards the formula, and
X ∈ XAg the sender. QS Update Function defines how QS changes after a move:

– assertBelA(ϕ, v) results in creating a new tuple 〈bel, ϕ, v,A〉,
– whyA(ϕ, v) results in creating a new tuple 〈why, ϕ, v,⊥〉,
– retractBelA(ϕ, v) results in removing 〈bel, ϕ, v,A〉 from QS, and, if that was

the last opinion v about ϕ in QS, removing also tuple 〈why, ϕ, v,⊥〉 (if one
exists).

Definition 6. Let F t
d : {bel, why} × C × T × XAg and mt = u1; . . . ;uk be the

move received at time t. Then, QS Update Function updateQS : F t
d×Moves → F t

d

is:

updateQS(S, u1; . . . ;uk) def=
{

updateQS(stepQS(S, u1), u2; . . . ;uk) if k > 1
stepQS(S, u1) if k = 1,

where stepQS : F t
d × U → F t

d is a one-step update function defined as follows:

272 B. Dunin-Kȩplicz and A. Strachocka

stepQS(S, u) def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S ∪ {〈why, ϕ, v,⊥〉} if u = whyd
A〈ϕ, v〉;

S ∪ {〈bel, ϕ, v,A〉} if u = assertBeldA〈ϕ, v〉;
S \ {〈bel, ϕ, v,A〉} if u = retractBeldA〈ϕ, v〉∧

∃〈bel,ϕ,v,A′〉∈S s.t. A′ �= A;
S \ {〈bel, ϕ, v,A〉, 〈why, ϕ, v,⊥〉} if u = retractBeldA〈ϕ, v〉∧

¬∃〈bel,ϕ,v,A′〉∈S s.t. A′ �= A;
S otherwise.

Definition 7 (Query Store). Let mt be the move received at time t,
and updateQS be the QS Update Function. Then, Query Store of per-
suasion d at time t, initiated by Ainit, is a finite set of tuples, denoted
QSt

d : {bel, why} × C × T × XAg, s.t.:

QSt
d

def=
{{〈bel, s, vi, Ainit〉} if t = 0

updateQS(QSt−1
d ,mt) otherwise

Dispute Store contains tuples of form 〈δ, nt, nf, ni, nu〉 : (Γ ∪ Π) × N
4. We will

write:
DS[δ, k] def= nk, DS[¬δ, k] def= DS[δ,¬k], where k ∈ T.

We use DS[δ] to test if an entry for δ is in DS, and DS[δ, k]++ to increment
nk counter for δ:

DS[δ] def=
{
t iff 〈δ, nt, nf, ni, nu〉 ∈ DS;
f iff 〈δ, nt, nf, ni, nu〉 �∈ DS;

DS[δ, k]++ def= {〈x, nt, nf, ni, nu〉 ∈ DS|x �= δ} ∪
{〈δ, xt, xf, xi, xu〉 ∈ DS : xk = DS[δ, k] + 1}

DS Update Function defines the way DS is updated after each move:
– assert results in creating a new tuple for the propositional content of asser-

tion (unless already exist) and increasing the support counter for the asserted
value,

– concede increases the support counter for the uttered value if the relevant
tuple exist in DS.

Definition 8. Let mt = u1; . . . ;uk be the move received at time
t, δ ∈ Γ ∪ Π; v ∈ T and V t

d : (Γ ∪ Π) × N
4. Then, DS Update Function

updateDS : V t
d × Moves → V t

d is:

updateDS(S, u1; . . . ;uk) def=
{

updateDS(stepDS(DS, u1), u2; . . . ;uk) if k > 1
stepDS(DS, u1) if k = 1

where stepDS : V t
d × U → V t

d is a one-step update function defined as follows:

stepDS(DS, u)
def
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X[δ, v] + + where X = DS ∪ {〈δ, 0, 0, 0, 0〉} and

u = assertdA〈δ, v〉 and DS[δ] = f;
DS[δ, v] + + if (u = assertdA〈δ, v〉 ∨ u = concededA〈δ, v〉)

and DS[δ] = t;
DS otherwise.

Paraconsistent Multi-party Persuasion in TalkLOG 273

Definition 9 (Dispute Store). Let mt be the move received at time t and
updateDS be the DS Update Function. Then, Dispute Store of persuasion d at
time t is a finite set of tuples, denoted as DSt

d : (Γ ∪ Π) × N
4 such that:

DSt
d

def=
{∅ if t = 0

updateDS(DSt−1
d ,mt) otherwise

The entries in RDS are of the form 〈(¬)δ, i〉 or 〈(¬)δ, o〉, meaning the piece
of evidence is either admitted (“in”) or rejected (“out”). After each increase of
support counter in DS for δ, the voting function is called, which, if there are
enough casting votes, adjudicates about δ (unlike the argumentation approach
where each move may change the status of an argument). Recall, that each agent
Ai votes with its μPAi

(δ).

Definition 10. Let Status = {i, o}, δ ∈ Γ ∪ Π, and n ∈ N be the
number of dialogue participants. Then, a voting function VF is any func-
tion V F : (Γ ∪ Π) × N

5 → Status2, such that V F (δ, nt, nf, ni, nu, n) = ∅ iff
nt + nf + ni + nu �= n, and if δ ∈ Π (a rule) then V F (δ, nt, nf, ni, nu, n) �= 〈i, i〉.
From several possible outcomes of voting over δ, we forbid accepting antithetic
rules (expressed by 〈i, i〉). If 〈a, b〉 is the outcome for δ, then a is the status of δ
and b of ¬δ.

Definition 11 (Resolved Dispute Store). Let mt be the move received at
time t, and:

– DSt
d be the Dispute Store of dialogue d at time t,

– V F be a voting function,
– δ ∈ Γ ∪ Π; v ∈ T; s1, s2 ∈ Status,
– n ∈ N be the number of dialogue participants.

Then, Resolved Dispute Store of persuasion d at time t is a finite set of tuples
denoted as RDSt

d : (Γ ∪ Π) × Status such that:

– RDS0
d = ∅

– RDSt
d = RDSt−1

d ∪ X, where: X = {〈δ, s1〉 ∪ 〈¬δ, s2〉 |
(a) conceded

S〈δ, v〉 ∈ mt ∨ assertdS〈δ, v〉 ∈ mt,
(b) 〈s1, s2〉 = V F (δ,DSt

d[δ, t],DSt
d[δ, f],DSt

d[δ, i],DSt
d[δ, u], n)}.

– RDSt
d = RDSt−1

d otherwise. �

Commitment Store is updated always after RDS is updated with an entry with
status “in”. The final value of the Deep Persuasion topic is evaluated within the
context of this store. In fact, CS is just an evolving 4QL program [22].

Definition 12 (Commitment Store). Let:

– RDSt
d be the Resolved Dispute Store of dialogue d at time t,

– mt be the message received at time t,
– δ ∈ Γ ∪ Π; v ∈ T.

Then, Commitment Store of a persuasion dialogue d at time t is a 4QL program
denoted CSt

d such that:

274 B. Dunin-Kȩplicz and A. Strachocka

– CS0
d = ∅

– CSt
d = CSt−1

d ∪ X, where X = {δ |
(a) conceded

A〈δ, v〉 ∈ mt ∨ assertdA〈δ, v〉 ∈ mt,
(b) 〈δ, i〉 ∈ RDSt

d},
– CSt

d = CSt−1
d otherwise. �

The conclusion of persuasion on topic s with initial value vi is the final value
vf of s, together with the justification (p-proof) Φs,CSt

d
for that value, obtained

in the dialogue. For the purpose of this paper we distinguish two termination
conditions:

– Impasse: when no agent has a relevant move to make,
– Common Opinion: when all agents agree on the value of the topic.

Definition 13. Let CSt
d be the Commitment Store of Deep Persuasion d ter-

minating at t, with the topic s of initial value vi. Then, the conclusion of d is
c = 〈vf , S〉 where:

– vf = s(MCSt
d
), where MCSt

d
is the well-supported model of CSt

d,
– S = Φs,CSt

d
, i.e., S is the p-proof of s from CSt

d.

Definition 14. Let QSt
d be the Query Store and CSt

d be the Commitment Store
of Classical Persuasion d terminating at t with n participants A1, . . . , An, with
the topic s of initial value vi. Then, the conclusion of d is c = 〈vf , S〉 where:

– n = |〈bel, s, vf ,X〉 ∈ QSt
d : X ∈ {A1, . . . An}|,

– S = Φs,CSt
d
, i.e., S is the p-proof of s from CSt

d.

Obtaining conclusion of terminated Deep Persuasion amounts to computing
the well-supported model of CSt

d just once, at the end of dialogue. Thus, this
problem is in O(Nk) (see Section 3) where N is the size of domain and k is
the maximal arity of relations. Obtaining conclusion of terminated Classical
Persuasion is in O(N) = |QSt

d| (QSt
d may possibly contain all beliefs of agents

at termination time).

4.3 Move and Locution Relevance

To ensure coherence and focus of persuasion, the notion of move relevance is
employed after [23]. As move is a sequence of locutions, relevance of each locution
is verified on the basis of dialogue stores’ content at the given timepoint t and
the locution content (arbitrarily, irrelevant locutions are ignored). For ease of
presentation, dialogue stores are updated after each relevant locution, so that
locution relevance can be defined without reference to preceding locutions in the
move. Relevant locutions are:

1. Assertions of a belief assertBeldS〈ψ, v〉 if it concerns:
(a) the topic of the dialogue,
(b) a belief asserted by another agent,
(c) premisses or head of a rule present in DS, or a fact present in DS.

2. Questions about a belief whyd
S〈ϕ, v〉 if the opinion v ∈ {t, f, i} about ϕ is in

QS.

Paraconsistent Multi-party Persuasion in TalkLOG 275

3. Assertions of a fact or rule assertdS〈δ, v〉 if
(a) a question about a belief concerning head(δ) is in QS,
(b) it is present in DS (an assertion works as concession then).

4. Concessions of a fact or a rule conceded
S〈δ, v〉 present in DS.

5. Retractions of a belief retractBeldS〈ϕ, v〉 if relevant belief of agent S is in
QS.

6. Adoptions of a fact or a rule adoptdS〈δ, v〉 if 〈δ, i〉 ∈ RDS.
7. Rejections of a fact or a rule rejectdS〈δ, v〉 if 〈δ, o〉 ∈ RDS.

An irrelevant move is a move without relevant locutions. Notice that an
irrelevant locution ui ∈ mt may be relevant at t′ �= t, but a non-permissible
move mt will not be permissible at any other time t′. Lemma 1 illustrates that
in a single move an agent can always utter its entire p-proof of a formula.
Lemma 1. If Φs,P �= ∅ and s(MP) = v, then while 〈why, s, v,⊥〉 ∈ QS there
exists a relevant move m = u1; . . . ;un s.t.5:

Φs,P =
⋃ {δ[μP (δ) ∈ {t, i}],¬δ[μP (δ) ∈ {f, i}] ∈ P :

∃i∈1..n ui = assert〈δ, μP (δ)〉 ∨ ui = concede〈δ, μP (δ)〉}.
Proof follows from move/locution relevance definition.

4.4 Working Example

The standard example [2] is adapted to the 3-agent case introducing agent Tom
and additional steps 4’ and 8’. The agents share an ontology, where module top
contains top-level beliefs while module news beliefs about a specific information
source (here a newspaper). At t = 0, Paul’s program P 0 consists of modules
top0P and news0P : P 0 = {top0P , news0P }. Olga’s and Tom’s programs are denoted
likewise. Table 2 concisely presents evolving programs of three agents. We refer
to their elements by numbers (e.g., rule ¬safe(car) :– high(maxspeed, car) from

Table 2. Evolving Programs of Paul, Olga and Tom.

Module top : P 0 O0 T 0 O4′
P 9

1. safe(car) :– has(airbag, car). × ×
2. ¬safe(car) :– news.reports(airbagExplosions, car),

news.reliable(airbagExplosions) ∈ {t, u, i}.
×

3. ¬safe(car) :– high(maxspeed, car). × × × ×
4. has(airbag, car). × × × ×
5. high(maxspeed, car). × × × ×

Module news : P 0 O0 T 0 O4′
P 9

6. ¬reliable(airbagExplosions) :–
concerns(airbagExplosions, technology).

× ×

7. reports(airbagExplosions, car). × × × × ×
8. concerns(airbagExplosions, technology). × × × × ×
5 [·] is the Iverson bracket.

276 B. Dunin-Kȩplicz and A. Strachocka

Table 3. Evolving Beliefs of Paul, Olga and Tom.

Literals from module top : P 0 O0 T 0 O4′
P 9

A. safe(car) t f f f i
B. has(airbag, car) t u t t t
C. high(maxspeed, car) u t t t t

Literals from module news : P 0 O0 T 0 O4′
P 9

D. reliable(airbagExplosions) f u u u f
E. reports(airbagExplosions, car) t t t t t
F. concerns(airbagExplosions, technology) t t t t t

Table 4. Conduct of Paul, Olga & Tom persuasion on subject safe(car).

t S mt ΔQSt DSt RDSt CSt

1 P assertBel〈A, t〉 +〈bel, A, t, P 〉 ∅ ∅ ∅
2 O why〈A, t〉 +〈why, A, t, ⊥〉 ∅ ∅ ∅
3 P assert〈1, t〉;

assertBel〈B, t〉;
assert〈4, t〉

+〈bel, B, t, P 〉 〈1, 1, 0, 0, 0〉, 〈4, 1, 0, 0, 0〉 ∅ ∅

4 T concede〈4, t〉;
assertBel〈A, f〉

+〈bel, A, f, T 〉 〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 0〉 ∅ ∅

4’ O concede〈4, u〉;
assertBel〈A, f〉

+〈bel, A, f, O〉 〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 1〉 〈4, i〉, 〈¬4, o〉 4

5 P why〈A, f〉 +〈why, A, f, ⊥〉, 〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 1〉 〈4, i〉, 〈¬4, o〉 4

6 T assert〈2, t〉;
assertBel〈E, t〉;
assertBel〈D, u〉;

+〈bel, E, t, T 〉,
+〈bel, D, u, T 〉

〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 1〉,
〈2, 1, 0, 0, 0〉

〈4, i〉, 〈¬4, o〉 4

7 P concede〈2, u〉;
assertBel〈D, f〉;
assert〈6, t〉;
assertBel〈F, t〉

+〈bel, D, f, P 〉,
+〈bel, F, t, P 〉

〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 1〉,
〈2, 1, 0, 0, 1〉, 〈6, 1, 0, 0, 0〉

〈4, i〉, 〈¬4, o〉, 4

8 O adopt〈4, t〉;
assert〈3, t〉;
assertBel〈C, t〉;
assert〈5, t〉

+〈bel, C, t, O〉, 〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 1〉,
〈2, 1, 0, 0, 1〉, 〈6, 1, 0, 0, 0〉,
〈3, 1, 0, 0, 0〉, 〈5, 1, 0, 0, 0〉

〈4, i〉, 〈¬4, o〉, 4

8’ T concede〈3, t〉;
concede〈5, t〉

〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 1〉,
〈2, 1, 0, 0, 1〉, 〈6, 1, 0, 0, 0〉,
〈3, 2, 0, 0, 0〉, 〈5, 2, 0, 0, 0〉

〈4, i〉, 〈¬4, o〉, 4

9 P concede〈3, u〉;
concede〈5, u〉

〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 1〉,
〈2, 1, 0, 0, 1〉, 〈6, 1, 0, 0, 0〉,
〈3, 2, 0, 0, 1〉, 〈5, 2, 0, 0, 1〉

〈4, i〉, 〈¬4, o〉,
〈3, i〉, 〈¬3, o〉
〈5, i〉, 〈¬5, o〉

4, 3,
5

9b P adopt〈3, t〉;
adopt〈5, t〉;
retractBel〈A, t〉

−〈bel, A, t, P 〉,
−〈why, A, t, ⊥〉,

〈1, 1, 0, 0, 0〉, 〈4, 2, 0, 0, 1〉,
〈2, 1, 0, 0, 1〉, 〈6, 1, 0, 0, 0〉,
〈3, 2, 0, 0, 1〉, 〈5, 2, 0, 0, 1〉

〈4, i〉, 〈¬4, o〉,
〈3, i〉, 〈¬3, o〉,
〈5, i〉, 〈¬5, o〉

4, 3,
5

Paraconsistent Multi-party Persuasion in TalkLOG 277

module top has number 3 and at t = 0 is present in Olga’s and Tom’s programs,
as indicated by × in columns O0 and T 0). Program P 0 uniquely determines the
well-supported model for modules top0

P and news0P (Mtop0
P

and Mnews0
P

resp.),
as given in Table 3. We refer to beliefs by capital letters (e.g., A for safe(car),
thus Mtop9

P
= {A,¬A,B,C}, but Mtop0

O
= {¬A,C}).

The complete dialogue conduct is given in Table 4, where column 4 shows
the change in Query Store between consecutive moves. We elaborate only on
the first few steps:

1 Paul: “My car is safe.” assertBel〈A, t〉
2 Olga: “Why is your car safe?” why〈A, t〉
3 Paul: “Since it has an airbag.” assert〈1, t〉; assertBel〈B, t〉; assert〈4, t〉
4 Tom: “That is true, but this does not

make your car safe.”
concede〈4, u〉; assertBel〈A, f〉

4’ Olga: “Yes, exactly.” concede〈4, u〉; assertBel〈A, f〉
5 Paul: “Why does that not make my care safe?
6 Tom: “Since the newspapers recently reported on airbags expanding without cause.
7 Paul: “Yes, that is what the newspapers say but that does not prove anything, since

newspaper reports are very unreliable sources of technological information.”
8 Olga: “Still your car is still not safe, since its maximum speed is very high.”
8’ Tom: “That’s right.”
9 Paul:OK, I was wrong that my car is safe.”

Notice that after Olga’s concession (Tab. 4, step 4’) her program should change,
adopting the fact has(airbag, car). Thus, her belief structure may change such
that new reasoning lines become available and/or the already uttered beliefs are
no longer up-to-date. The technical contribution of our solution allows to model
such dialogues.

In step 9b Paul retracts his original belief. However, he still disagrees with
others on that matter as safe(car) is f for Olga and Tom but it is i for Paul at
time t = 9 (see Table 3). Note that Impasse criterion is not met yet, since there
are still relevant moves to make, e.g., a concession of rule 1 by Olga and Tom.

5 Selected Properties

The following assumptions about participating agents allow us to verify quality
and completeness of the obtained results.
[Cooperativeness]. We deal with a finite set of n cooperative agents who do not

withhold information. This implicitly constraints the num-
ber of queries to dialogue stores per one locution. Agents’
belief bases are encoded as finite, ground 4QL programs
P1, . . . , Pn, that share a common ontology.

[Activeness]. In between join and leave, an agent must make at least
one relevant move.

278 B. Dunin-Kȩplicz and A. Strachocka

[Compliance]. Agents’ programs change during dialogue according to the
current state of RDS.

[Sincerity]. Agents do not lie about their beliefs nor contents of their
programs.

[Pragmatism]. Particular agents cannot repeat assert and concede locu-
tions.

Agents communicate one-to-all without coordination. Their final beliefs are
expressed by the well-supported models MP1 , . . . ,MPn

of the programs. Note
that agents can repeat assertBel locutions, provided they are separated by
retractBel: simply in the light of new evidence agents’ beliefs may change.

Theorem 1. Persuasion dialogues terminate.

Proof. Regardless the termination criterion, termination of persuasion follows
trivially from the fact that we deal with finite 4QL programs, and from the
assumptions of activeness (disallowing joining and leaving dialogue endlessly),
pragmatism (disallowing repeating specific locutions), sincerity (disallowing
inventing beliefs or evidence), compliance (disallowing infinitely expanding pro-
grams, since in the course of dialogue agents’ programs change only to reflect
resolved conflicts, so the size of CS can be bounded by the union of all partici-
pants’ programs). �

Theorem 2. Persuasion terminating on Impasse is a Deep Persuasion.

Proof Assume d is a persuasion dialogue on topic s terminating at t on Impasse
criterion, with participants A1, . . . , An, s.t. Ai’s program at t is P t

i . Then, Ai’s
p-proof of s at t is Φs,P t

i
, Ai’s value of s at t is s(MP t

i
) = vt

i and dialogue
conclusion is c = 〈vf , Φs,CSt

d
〉, where CSt

d is the Commitment Store of d at t and
vf = s(MCSt

d
). Assume d is not a Deep Persuasion, i.e., ∃iΦs,P t

i
�= Φs,CSt

d
. We

will consider the two cases separately: either vf is not commonly shared by all
agents, or it is.
Case 1: ∃i v

t
i �= vf . First assume vt

i �= u, so Φs,P t
i

�= ∅. Then, agent Ai has either:
1a. not revealed its current belief, thus could not (properly) prove it, or
1b. uttered its current belief but failed to provide a p-proof of it,
1c. uttered its current belief and provided a proof but other agents did not vote

for it,
1d. uttered its current belief and provided a proof but other agents refuted it.
(1a)

def≡ 〈bel, s, vt
i , Ai〉 �∈ QSt

d. Since assertBel concerning dialogue topic can
be uttered at any time (unless already present in QS), this contradicts our
assumptions (�) that d terminated on Impasse.

(1b)
def≡ ∃δ∈Φs,Pt

i

DSt
d[δ] = f. Consider ¬ (1a) ∧ (1b) holds. But,

〈why, s, vt
i ,⊥〉 ∈ QSt

d since why can be uttered at any time by anyone, if the
relevant belief is present in QS and the relevant tuple for why wasn’t uttered
yet. Thus, on Lemma 1, agent Ai has a relevant move consisting of all the facts
and rules from Φs,P t

i
, thus �.

(1c)
def≡ ∃δ∈Φs,Pt

i

: 〈δ, σ〉, 〈¬δ, σ〉 �∈ RDSt
d where σ ∈ Status. If ¬(1a) ∧ ¬(1b) ∧

(1c), then there is an agent who did not vote for entry δ. But asserting an

Paraconsistent Multi-party Persuasion in TalkLOG 279

attitude towards a piece of evidence is possible at any time (provided it is not a
repetition), thus �.

(1d)
def≡ ∃δ∈Φs,Pt

i

δ �∈ CSt
d. If ¬ (1a) ∧¬(1b) ∧¬ (1c) ∧ (1d) holds, at least one rule

or fact δ from Ai’s p-proof of s was not accepted by others. Since Ai still regards
δ as an element of p-proof at time t, it didn’t comply with group decision, thus
�.
So finally we have ¬ (1a) ∧ ¬(1b) ∧¬ (1c) ∧¬ (1d), so ∀δ∈Φs,Pt

i

δ ∈ CSt
d so

Φs,P t
i

⊆ CSt
d. Also ∀iCSt

d ⊆ P t
j (compliance). But ∃i : vt

i �= vf = s(MCSt
d
), so

P t
i \ CSt

d ∩ Φs,P t
i

�= ∅ but then �.
Back to Case 1 when vt

i = u. Then, Ai cannot provide a proof (Φs,P t
i

= ∅),
but vf �= u, so Φs,CSt

d
�= ∅. Assuming Ai is compliant, CSt

d ⊆ P t
i but since

Φs,CSt
d

�= ∅ and Φs,P t
i

= ∅ there is a nonempty relevant piece of P t
i \ CSt

d �= ∅
which influences the p-proof Φs,P t

i
and which was not shared by Ai, thus �.

Case 2.(∀i vt
i = vf). If vf = u then ∀iΦs,P t

i
= Φs,CSt

d
= ∅ trivially. Case when

vf �= u and ∃iΦs,P t
i

�= Φs,CSt
d

is analogous to (1c) and (1d) above. �
Since the common warrant may be obtained earlier than termination time

t imposed by Impasse, formally Deep Persuasion covers a wider set of dia-
logues than persuasion ending on Impasse. Since we cannot determine at run-
time whether a common warrant has been reached, in practice we use Impasse
criterion and in the sequel we restrict the notion of Deep Persuasion to Deep
Persuasion ending on Impasse.

Theorem 3. Persuasion terminating on Common Opinion is a Classical Per-
suasion.
Proof. Trivially from sincerity. �

5.1 Soundness, Completeness and Convergence to Merged Outcome

The merging operator
∑

(s) used in analysis of persuasion properties reflects
the nature of dialogue and is a consensual merge (see [11]) exploiting a voting
mechanism (see Definition 10) for conflict resolution. Merging is an iterative
procedure, achieved by joining p-proofs of the merge parameter s and resolving
conflicts on the way. The result of merging is a 4QL program defined as follows:

(
n∑

i=1

Pi

)

(s) def=
ITMAX⋃

IT=0

⎛

⎝
⋃

δ∈⋃ΦIT

IN(δ)

⎞

⎠ ,

where for IT ≥ 0, k ∈ T:
–

⋃
ΦIT def=

⋃
i=1..n Φs,P IT

i
,

– ITMAX
def= IT : ∀i=1..n : P IT+1

i = P IT
i ,

– P IT+1
i = P IT

i ∪ ⋃
δ∈⋃ΦIT IN(δ) \ ⋃

δ∈⋃ΦIT OUT (δ),
– IN(δ) = {δ[a = i],¬δ[b = i] : 〈a, b〉 ∈ V F (δ, nδ

t , n
δ
f , n

δ
i , n

δ
u, n)},

– OUT (δ) = {δ[a = o],¬δ[b = o] : 〈a, b〉 ∈ V F (δ, nδ
t , n

δ
f , n

δ
i , n

δ
u, n)}

– nδ
k = |{i ∈ 1..n : μP IT

i
(δ) = k}|.

280 B. Dunin-Kȩplicz and A. Strachocka

In each iteration, the conflicts in the union of all agents’ p-proofs are resolved
by voting6, whose outcomes (sets IN and OUT) are then used to update the
programs. The procedure stops naturally when agents’ programs stop changing.
The proof of s from such a merge is Φs,(

∑
i=1..n Pi)(s) while the value of the topic

s is s(M(
∑n

i=1 Pi)(s)).
Informally, soundness of persuasion means that any conclusion obtained in

the dialogue equals the conclusion obtained by a single agent reasoning from
a merged knowledge bases of dialogue participants. On the other hand, com-
pleteness of persuasion means that any conclusion obtained by reasoning from
merged knowledge bases of participants is obtainable by persuasion carried
out by these agents.

Definition 15. Persuasion dialogue d on subject s is sound iff whenever it
terminates at t with conclusion c = 〈vf , S〉, then if s(MCSt

d
) = vf then

s(M(
∑n

i=1 Pi)(s)) = vf .

Definition 16. Persuasion dialogue d on subject s is complete iff whenever it
terminates at t with conclusion c = 〈vf , S〉, then if s(M(

∑n
i=1 Pi)(s)) = vf then

s(MCSt
d
) = vf .

Theorem 4. Classical Persuasion is not sound and not complete.

Proof. As a counterexample consider group of agents G = {A,B} with programs
PA = {a :– b; b} and PB = {a :– ¬b;¬b} participating in dialogue d on subject
a. Assume A starts with assertBeldA〈a, t〉. From 2 possible moves, B chooses to
reply with assertBeldB〈a, t〉. Since |〈bel, a, t,X〉 ∈ QS2

d : X ∈ G| = |G|, dialogue
ends at t = 2 with a conclusion c = 〈t, ∅〉 (CS2

d is empty). However, conclusion
c′ obtained using any merging operator VF (see Def. 10) on A and B’s programs
is c′ = 〈u, ∅〉. �

A subset of Deep Persuasion dialogues called Iterated Deep Persuasion
can be distinguished when additional restrictions are put on agents regarding
querying dialogue stores, namely, when the below steps are repeated one after
another in a loop:
A. while (exists other relevant move) do not query DS nor RDS;
B. while (exists other relevant move) do not query RDS;
C. while (exists relevant move) play move; (i.e., query RDS)

Theorem 5. Iterated Deep Persuasion is sound and complete.

Proof. In Iterated Deep Persuasion, in each iteration IT (starting with IT = 0):
Loop A. Agents cannot see new evidence of other agents. Thus each agent i

individually (e.g. in one relevant move) reveals only its whole current
p-proof Φs,P IT

i
to others (interleaved with any assertBel or why locu-

tions). So
⋃

ΦIT def=
⋃

i=1..n Φs,P IT
i

is publicly available in DS after
this phase.

6 Note P not Φ in the subscript μP IT
i

(δ), since one may vote for δ even if absent from

the p-proof.

Paraconsistent Multi-party Persuasion in TalkLOG 281

Loop B. Agents receive access to evidence of others (can query DS). Each
agent i reveals its attitude towards any δ ∈ ⋃

ΦIT (even if not
in its p-proof of s), so after this phase ∀δ∈⋃ΦIT we have all
nδ

k = |{i ∈ 1..n : μP IT
i

(δ) = k}|, where k ∈ T. Thus, voting begins and
∀δ∈⋃ΦIT we obtain the sets IN(δ) and OUT (δ) s.t.:
IN(δ) = {δ[a = i],¬δ[b = i] : 〈a, b〉 ∈ V F (δ, nδ

t , n
δ
f , n

δ
i , n

δ
u, n)}, and

OUT (δ) = {δ[a = o],¬δ[b = o] : 〈a, b〉 ∈ V F (δ, nδ
t , n

δ
f , n

δ
i , n

δ
u, n)}.

After this step, RDSIT+1 = RDSIT ∪
⋃

δ∈⋃ΦIT

{〈δ, i〉 : δ ∈ IN(δ)} ∪
⋃

δ∈⋃ΦIT

{〈δ, o〉 : δ ∈ OUT (δ)}.

Loop C. Agents receive access to RDS thus eventually each agent’s program is
updated as follows:

P IT+1
i = P IT

i ∪
⋃

δ∈⋃ΦIT

IN(δ) \
⋃

δ∈⋃ΦIT

OUT (δ)

Since this is a Deep Persuasion, agents play until Impasse, i.e., when
∀i : P IT+1

i = P IT
i (when agents’ programs stop changing, in loop C all final

relevant moves are played if exist). Then, at termination time tt:

CStt
d =

⋃
{δ : 〈δ, i〉 ∈ RDStt

d } =
ITMAX⋃

IT=0

⋃

δ∈⋃ΦIT

IN(δ) =

(
n∑

i=1

Pi

)

(s),

so Φs,(
∑n

i=1 Pi)(s) = Φs,CStt
d

. �

Theorem 6. Deep and Classical Persuasion possibly converges to the merged
outcome.

Proof. Immediately from Thm. 5 and the fact that Classical Persuasion subsumes
Deep.

6 Conclusions

We presented a formalization of multi-party, paraconsistent and paracomplete
persuasion in TalkLOG, where agents can argue about beliefs with use of pieces
of evidence. Classical Persuasion [1] was investigated and extended to account
for more types of initial conflicts of opinion due to the 4-valued approach. More-
over we distinguished Deep Persuasion, which solves conflicts of justifications
of opinions, more common in tightly-coupled groups. We succeeded to obtain a
unified treatment of both dialogue types, which, in TalkLOG, are differentiated
only by termination criterion.

Our model is somewhat complex as it deals with 4 dialogue stores, retaining
the effects of agents’ moves and resolved conflicts. Such architecture permits
to achieve a protocol with public semantics. Specifically, we show that obtain-
ing conclusion of a terminated dialogue is tractable. Our contribution advances
the research on computational models of persuasion as we explicitly consider

282 B. Dunin-Kȩplicz and A. Strachocka

dynamics of belief revision in the course of dialogue. Moreover, we depart from
the traditional notion of conflict based on inconsistency, allowing instead for
a custom voting mechanism for conflict resolution.

The outcomes of TalkLOG dialogues are juxtaposed with the merged out-
comes of the individual informational stances of participants. A non-trivial merge
operator (inspired by [11]) exploited the same voting mechanism as in dialogue.
Finally, Classical Persuasion turned out to be neither sound nor complete, as
the same opinion may be justified by different, in extreme cases even antithetic
justifications, which may not be discovered. Thus, we naturally reached deeper
than just opinions, namely at their justifications, what led us to distinguishing a
new type of dialogue: Deep Persuasion. In a special class of Deep Persuasion, i.e.,
Iterated Deep Persuasion, soundness and completeness was obtained (assuming
again the same voting mechanism in dialogue and merge) at the price of limiting
flexibility of agents’ communication.

The results were obtained in a paraconsistent, nonmonotonic, multi-party
and dynamic setting. Extending this research, we will provide the proof of sound-
ness and completeness of all Deep Persuasion dialogues and investigate more
specific complexity results, following our previous work on inquiry [9].

Acknowledgments. The study is co-financed by the European Union under the
European Social Fund. Project PO KL „Information technologies: Research
and their interdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-
051/10-00 and by Warsaw Center of Mathematics and Computer Science.

References

1. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. State University of New York Press, Albany (1995)

2. Prakken, H.: Formal systems for persuasion dialogue. The Knowledge Engineering
Review 21(2), 163–188 (2006)

3. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some for-
mal inter-agent dialogues. J. Log. Comput. 13(3), 347–376 (2003)

4. Bonzon, E., Maudet, N.: On the outcomes of multiparty persuasion. In:
McBurney, P., Parsons, S., Rahwan, I. (eds.) ArgMAS 2011. LNCS, vol. 7543,
pp. 86–101. Springer, Heidelberg (2012)

5. Kontarinis, D., Bonzon, E., Maudet, N., Moraitis, P.: Regulating multiparty per-
suasion with bipolar arguments: discussion and examples. In: Modles Formels de
l’interaction (MFI 2011) (2011)

6. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument and Computation 1(2), 93–124 (2010)

7. Takahashi, T., Sawamura, H.: A logic of multiple-valued argumentation. In:
AAMAS, pp. 800–807. IEEE Computer Society (2004)

8. Vitória, A., Ma�luszyński, J., Sza�las, A.: Modeling and reasoning with paraconsis-
tent rough sets. Fundamenta Informaticae 97(4), 405–438 (2009)

9. Dunin-Kȩplicz, B., Strachocka, A.: Tractable inquiry in information-rich environ-
ments. In: Proceedings of the IJCAI 2015. AAAI Press (2015, to appear)

Paraconsistent Multi-party Persuasion in TalkLOG 283

10. Prakken, H.: Models of persuasion dialogue. In: Simari, G., Rahwan, I. (eds.) Argu-
mentation in Artificial Intelligence, pp. 281–300. Springer, NewYork (2009)

11. Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M., Marquis, P.:
On the merging of Dung’s argumentation systems. Artif. Intell. 171(10–15),
730–753 (2007)

12. Ma�luszyński, J., Sza�las, A.: Partiality and inconsistency in agents’ belief bases.
In: KES-AMSTA of Frontiers in Artificial Intelligence and Applications, vol. 252,
pp. 3–17. IOS Press (2013)

13. Sza�las, A.: How an agent might think. Logic J. IGPL 21(3), 515–535 (2013)
14. Ma�luszyński, J., Sza�las, A.: Living with inconsistency and taming nonmonotonicity.

In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2010. LNCS,
vol. 6702, pp. 384–398. Springer, Heidelberg (2011)

15. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. Multiagent
systems, pp. 213–283 (2012)

16. FIPA: (2002). http://www.fipa.org/
17. Cohen, P.R., Levesque, H.J.: Performatives in a rationally based speech act theory.

In: Meeting of the Association for Computational Linguistics, pp. 79–88 (1990)
18. Fisher, M.: Representing and executing agent-based systems. In: Proceedings

of the ECAI-1994 Workshop on Agent Theories, Architectures, and Languages,
pp. 307–324 (1994)

19. Dunin-Kȩplicz, B., Strachocka, A., Sza�las, A., Verbrugge, R.: Paraconsistent
semantics of speech acts. Neurocomputing 151, 943–952 (2015)

20. Chopra, A.K., Artikis, A., Bentahar, J., Colombetti, M., Dignum, F., Fornara, N.,
Jones, A.J.I., Singh, M.P., Yolum, P.: Research directions in agent communication.
ACM TIST 4(2), 20 (2013)

21. Dunin-Kȩplicz, B., Sza�las, A., Verbrugge, R.: Tractable reasoning about group
beliefs. In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNAI.
Springer, Heidelberg (2014)

22. Alferes, J.J., Brogi, A., Leite, J., Moniz Pereira, L.: Evolving logic programs. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, p. 50. Springer, Heidelberg (2002)

23. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Jour-
nal of Logic and Computation 15, 1009–1040 (2005)

http://www.fipa.org/

A Micro Study on the Evolution of Arguments
in Amazon.com’s Reviews

Simone Gabbriellini1 and Francesco Santini2(B)

1 GEMASS, CNRS & Paris-Sorbonne, Paris, France
simone.gabbriellini@cnrs.fr

2 Department of Mathematics and Computer Science,
University of Perugia, Perugia, Italy
francesco.santini@dmi.unipg.it

Abstract. In this work we present an exploratory study on arguments
in Amazon.com reviews. We manually extract positive (in favour of pur-
chase) and negative (against it) arguments from each review concerning
a selected product. Moreover, we link arguments to the rating score and
length of reviews. For instance, we show that negative arguments are
quite sparse during the first steps of such social review-process, while
positive arguments are more equally distributed. In addition, we con-
nect arguments through attacks and we compute Dung’s extensions to
check whether they capture such evolution through time. We also use
Preference-based Argumentation to exploit the number of appearances
of each argument in reviews.

1 Introduction

Recent surveys have reported that 50% of on-line shoppers spend at least ten
minutes reading reviews before making a decision about a purchase, and 26% of
on-line shoppers read reviews on Amazon prior to making a purchase.1

This paper reports an exploratory study of how customers use arguments in
writing such reviews. We start from a well acknowledged result in the literature
on on-line reviews: the more reviews a product gets, the more the rating tends
to decrease [26]. Such rating is, in many case, a simple scale from 1 to 5, where
1 is a low rating and 5 is the maximum possible rating.

This fact can be explained easily considering that first customers are more
likely to be enthusiast of the product, then as the product gets momentum,
more people have a chance to review it and inevitably the average rating tends
to stabilise on some values lower than 5. Such process, with a few enthusiast

S. Gabbriellini—The author is supported by ANR (Agence Nationale de la
Recherche) within the project DIFFCERAM (n. ANR-12-CULT-0001-01).
F. Santini—The author is supported by GNCS-INDAM “Efficient Methods for
Argumentation-based Decision Support”.

1 http://www.forbes.com/sites/jeffbercovici/2013/01/25/
how-amazon-should-fix-its-reviews-problem/.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 284–300, 2015.
DOI: 10.1007/978-3-319-25524-8 18

http://www.forbes.com/sites/jeffbercovici/2013/01/25/how-amazon-should-fix-its-reviews-problem/
http://www.forbes.com/sites/jeffbercovici/2013/01/25/how-amazon-should-fix-its-reviews-problem/

A Micro Study on the Evolution of Argumentsin Amazon.com’s Reviews 285

innovators followed by a majority that gets convinced by the formers (on a
lower level of enthusiasm), is a typical pattern in diffusion studies [26].

However, the level of disagreement in product reviews remains a challenge:
does it influence what other customers will do? In particular, what does it hap-
pen, on a lower level, that justifies such diminishing trend in ratings? Since
reviewing a product is a communication process, and since we use arguments
to communicate our opinions to others (and possibly convince them) [23], it is
evident that late reviews should contain enough negative arguments to explain
such a negative trend in ratings.

Our present study can be considered as “micro” because we focus on a single
product only, even if with a quite large number of reviews (i.e., 253). Unfortu-
nately, due to the lack of well-established tools for the automated extraction of
arguments and attacks, we cannot extend our study “in the large” and draw
more general considerations. We extracted by hand, for each review about the
selected product, both positive and negative arguments expressed, the associated
rating (from one to five stars), and the time when the review has been posted.
Afterwords, we analyse our data in terms of:

– how positive/negative arguments are posted through time.
– how many positive/negative arguments a review has (through time).

In particular, we argue that the reason why average ratings tend to decrease
as a function of time depends not only on the fact that the number of negative
reviews increases, but also on the fact that negative arguments tend to permeate
positive reviews, decreasing de facto the average rating of these reviews.

One interesting way to reason with arguments is to adopt a computational
argumentation approach. An Abstract Argumentation Framework (AAF), or
System, as introduced in a seminal paper by Dung [14], is simply a pair 〈A,R〉
consisting of a set A whose elements are called arguments and of a binary rela-
tion R on A, called “attack” relation. An abstract argument is not assumed
to have any specific structure but, roughly speaking, an argument is anything
that may attack or be attacked by another argument. The sets of arguments (or
extensions) to be considered are then defined under different semantics, which
are related to varying degrees of scepticism or credulousness.

The rest of the paper is structured as follows. Section 2 sets the scene where
we settle our work: we introduce related proposals that aggregate Amazon.com
reviews in order to produce an easy-to-understand summary of them. In Sec. 3 we
report the basic notions behind AAFs, as pioneered by Dung in 1995 [14]; we also
introduce Preference-based Argumentation [1], which we use with the purpose
to take advantage of the number of times each argument appears in review: we
consider it as a strength-score for arguments. Afterwards, in Sec. 4 we describe
the Amazon.com dataset from where we select our case-study. Section 5 plots
how both positive and negative arguments dynamically change through time,
zooming inside reviews with a more granular approach. In Sec. 6 we match
Dung’s semantics to the results advanced in Sec. 5; in particular, we show that
the increase of negative arguments during the final part of the review process

286 S. Gabbriellini and F. Santini

is also captured by the stable semantics, using its preference-based variant [1].
Finally, Sec. 7 wraps up the paper and hints direction for future work.

2 Literature Review

Electronic Word-of-Mouth (e-WoM) is the passing of information from person
to person, mediated through any electronic means. Over the years it has gained
growing attention from scholars, as more and more customers started sharing
their experience online [2,28,32,19,10]. Since e-WoM somewhat influences con-
sumers’ decision-making processes, many review systems have been implemented
on a number of popular Web 2.0-based e-commerce websites (e.g., Amazon.com2

and eBay.com3), product comparison websites (e.g., BizRate.com4 and Epin-
ions.com5), and news websites (e.g., MSNBC.com6 and SlashDot.org7).

Unlike recommendation systems, which seek to personalise each user’s Web
experience by exploiting item-to-item and user-to-user correlations, review sys-
tems give access to others’ opinions as well as an average rating for an item
based on the reviews received so far. Two key facts have been assessed so far:

– reporting bias: customers with more extreme opinions have a higher than
normal likelihood of reporting their opinion [2];

– purchasing bias: customers who like a product have a greater chance to buy
it and leave a review on the positive side of the spectrum [11].

These conditions produce a J-shaped curve of ratings, with extreme ratings
and positive ratings being more present. Thus a customer who wants to buy
a product is not exposed to a fair and unbiased set of opinions. Scholars have
started investigating the relation between reviews, ratings, and disagreement
among customers [24,13]. In particular, one challenging question is: does the
disagreement about the quality of a product in previous reviews influence what
new reviewers will post?

A common approach to measure disagreement in reviews is to compute the
standard deviation of ratings per product, but more refined indexes are possible
[25]. The next step is to detect correlations among disagreement as a function of
time [13,25]. We aim, however, at modelling a lower level, micro-founded mech-
anism that could account for how customers’ reviewing behaviour evolves over
time. We want to analyse reviews not only in terms of rating and length, but
also in terms of what really constitutes the review itself, i.e., the arguments
used by customers. We aim at explaining disagreement as a consequence of cus-
tomers’ behaviour, not only at describing it as a correlation among variables (an

2 http://www.amazon.com.
3 http://www.ebay.com.
4 http://www.bizrate.com.
5 http://www.epinions.com.
6 http://www.msnbc.com.
7 http://slashdot.org.

http://www.amazon.com
http://www.ebay.com
http://www.bizrate.com
http://www.epinions.com
http://www.msnbc.com
http://slashdot.org

A Micro Study on the Evolution of Argumentsin Amazon.com’s Reviews 287

analytical and micro-founded modelling of social phenomena is well detailed in
[22,20,27] - for an application in on-line contexts, see [16]).

However, before automatically reasoning on arguments, we have first to
extract them from a text corpora of on-line reviews. On this side, research is still
dawning, even if already promising [29,31]. In addition, we would like to men-
tion other approaches that can be used to summarise the bulk of unstructured
information (in natural language) provided by customer reviews. The authors
of [21] summarise reviews by i) mining product features that have been com-
mented on by customers, ii) identifying opinion sentences in each review and
deciding whether each opinion sentence is positive or negative, and, finally, iii)
summarising the results. Several different techniques have been advanced to this,
e.g., sentiment classification, frequent and infrequent features identification, or
predicting the orientation of opinions (positive or negative). Even if never citing
the word “argument”, we think [21] is strictly related to argument mining.

3 Abstract Argumentation Frameworks and Tools

In this section we briefly summarise the background information related to clas-
sical Abstract Argumentation Frameworks (AAFs) [14] and Preference-based
Argumentation (PAF) [1].

Definition 1 (AAF). An Abstract Argumentation Framework (AAF) is a pair
F = 〈A,R〉 of a set A of arguments and a binary relation R ⊆ A × A, called
the attack relation. ∀a, b ∈ A, aR b (or, a � b) means that a attacks b. An AAF
may be represented by a directed graph whose nodes are arguments and edges
represent the attack relation. A set of arguments S ⊆ A attacks an argument a,
i.e., S � a, if a is attacked by an argument of S, i.e., ∃b ∈ S.b � a.

Definition 2 (Defence). Given F = 〈A,R〉, an argument a ∈ A is defended
(in F) by a set S ⊆ A if for each b ∈ A, such that b � a, also S � b holds.

The “acceptability” of an argument can be defined under different seman-
tics σ, depending on the frequency of its membership to some sets, called
extensions : such semantics characterise a collective “acceptability” for argu-
ments. In Def. 3 we only report the original semantics given by Dung [14]:
σ = {adm, com, prf , stb, gde}, which respectively stand for admissible, com-
plete, preferred, stable, and grounded semantics.

Definition 3 (Semantics [14]). Let F = 〈A,R〉 be an AAF. A set S ⊆ A is
conflict-free (in F), denoted S ∈ cf (F), iff there are no a, b ∈ S, such that a � b
or b � a ∈ R. For S ∈ cf (F), it holds that i) S ∈ adm(F), if each a ∈ S is
defended by S; ii) S ∈ com(F), if S ∈ adm(F) and for each a ∈ A defended by
S, a ∈ S holds; iii) S ∈ prf (F), if S ∈ adm(F) and there is no T ∈ adm(F)
with S ⊂ T ; iv) S ∈ stb(F), if for each a ∈ A\S, S � a; v) S = gde(F) if
S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S.

288 S. Gabbriellini and F. Santini

a b c d e

Fig. 1. An example of AAF.

We also recall that the different requirements in Def. 3 define an inclu-
sion hierarchy on the extensions: from the most to the least stringent we have
stb(F) ⊆ prf (F) ⊆ com(F) ⊆ adm(F).

Moreover, we can also define a strength level for each argument, given any of
the semantics in Def. 3. A sceptically accepted argument proves to be stronger
than a credulously accepted one.

Definition 4 (Arguments acceptance-state). Given one of the semantics
σ in Def. 3 and a framework F , an argument a is i) sceptically accepted iff
∀S ∈ σ(F), a ∈ S, ii) a is credulously accepted if ∃S ∈ σ(F), a ∈ S and a is not
sceptically accepted.

Example 1. Consider F = 〈A,R〉 in Fig. 1, with A = {a, b, c, d, e} and
R = {a � b, c � b, c � d, d � c, d � e, e � e}. In F we have
adm(F) = {∅, {a}, {c}, {d}, {a, c}, {a, d}}, com(F) = {{a}, {a, c}, {a, d}},
prf (F) = {{a, d}, {a, c}}, stb(F) = {{a, d}}, and gde(F) = {a}. Hence, argu-
ment a is sceptically accepted in com(F), prf (F) and stb(F), while it is only
credulously accepted in adm(F).

Definition 5 (Preference-based Argumentation [1]). A preference-based
argumentation framework is a triplet 〈A,R,Pref 〉 where Pref is a partial pre-
ordering (reflexive and transitive binary relation) on A×A. The notion of defence
(see Def. 2) changes accordingly: let a and b be two arguments, we define b � a
iff R(b, a) and not a > b.

In the following of the paper we exploit two different reasoning-tools based
on Argumentation. ConArg8 [7,8,5] (ARGumentation with CONstraints) is an
Abstract Argumentation reasoner based on the Gecode library9, which is an
open, free, and efficient C++ environment where to develop constraint-based
applications. To encode preference-based problems we instead use the ASPAR-
TIX 10 system [15]. ASPARTIX relies on a fixed disjunctive Datalog program
that takes an instance of an argumentation framework as input, and uses an
Answer-Set solver for satisfying the semantics specified users. To specify the
pre-ordering on arguments, a fact pref /2 can be used. For example: pref (a, b)
specifies that argument a has a higher priority than argument b.

8 http://www.dmi.unipg.it/conarg/.
9 http://www.gecode.org.

10 http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/.

http://www.dmi.unipg.it/conarg/
http://www.gecode.org
http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/

A Micro Study on the Evolution of Argumentsin Amazon.com’s Reviews 289

4 Dataset

Amazon.com allows users to submit their reviews to the web page of each prod-
uct, and the reviews can be accessed by all users. Each review consists of the
reviewer’s name (either the real name or a nickname), several lines of comments,
a rating score (ranging from one to five stars), and the time-stamp of the review.
All reviews are archived in the system, and the aggregated result, derived by aver-
aging all the received ratings, is reported on the Web-page of each product. It
has been shown that such reviews provide basic ideas about the popularity and
dependability of corresponding items; hence, they have a substantial impact on
cyber-shoppers’ behaviour [11]. It is well known that the current Amazon.com
reviewing system has some noticeable limits [30]. For instance, i) the review
results have the tendency to be skewed toward high scores, ii) the ageing issue
of reviews is not considered, and iii) it has no means to assess reviews’ helpful-
ness if the reviews are not evaluated by a sufficiently large number of users.

For our purposes, we retrieved the “Clothing, Shoes and Jeweller” products
section of Amazon11. The dataset contains approximately 110k products and
spans from 1999 to July 2014, for a total of more than one million reviews. The
whole dataset contains 143.7 millions reviews.

We summarise here a quick description of such dataset:12

– the distribution of reviews per product is highly heterogeneous;
– the disagreement in ratings tends to rise with the number of reviews until a

point after which it starts to decay. Interestingly, for some highly reviewed
products, the disagreement remains high: this means that only for specific
products opinions polarise while, on average, reviewers tend to agree;13

– more recent reviews tend to get shorter, irrespectively of the number of
reviews received, which is pretty much expectable: new reviewers might
realise that some of what they wanted to say has already been stated in
previous reviews;

– more recent ratings tend to be lower, irrespectively of the number of reviews
received.

To sum up, it seems that the disagreement in previous reviews does not affect
much latest ratings - except for some cases which might correspond to products
with polarised opinions. This result has already been found in the literature [24].
However, it has also already been challenged by Nagle and Riedl [25], who found
that a higher disagreement among prior reviews does lead to lower ratings. They
ascribe their new finding to their more accurate way of measuring the disagree-
ment in such J-shaped distributions of ratings.

11 Courtesy of Julian McAuley and SNAP project (source: http://snap.stanford.edu/
data/web-Amazon.html and https://snap.stanford.edu).

12 Space constraints prevented us to show more detailed results here, but additional
plots are available in the form of research notes at http://tinyurl.com/pv5owct.

13 Polarisation only on specific issues has already been observed in many off-line con-
texts, see [3].

http://snap.stanford.edu/data/web-Amazon.html
http://snap.stanford.edu/data/web-Amazon.html
https://snap.stanford.edu
http://tinyurl.com/pv5owct

290 S. Gabbriellini and F. Santini

Table 1. Positive and negative arguments, with their number of appearances in reviews
between 2009 and July 2014.

ID Positive arguments #App. ID Negative arguments #App.
A the kid loved it 78 a it has a bad quality 18
B it fits well 65 b it is not sewed properly 17
C it has a good quality/price ratio 52 c it does not fit 12
D it has a good quality 44 d it is not full 11
E it is durable 31 e it is not as advertised 8
F it is shipped fast 25 f it is not durable 7
G the kid looks adorable 23 g it has a bad customer service 4
H it has a good price 21 h it is shipped slow 3
I it has great colors 21 i it smells chemically 3
J it is full 18 j you can see through it 3
K it did its job 11 k it cannot be used in real dance class 2
L it is good for playing 11 l it has a bad quality/price ratio 2
M it is as advertised 9 m it has a bad envelope 1
N it can be used in real dance classes 7 n it has a bad waistband 1
O it is aesthetically appealing 7 o it has bad colours 1
P it has a good envelope 2 p it has high shipping rates 1
Q it is a great first tutu 2 q it has no cleaning instructions 1
R it is easier than build your own 2 r it is not lined 1
S it is sewed properly 2 s it never arrived 1
T it has a good customer service 1 t it was damaged 1
U it is secure 1
V it is simple but elegant 1
W you can customize it 1
X you cannot see through it 1

One of the main aims of this work is to understand how it is that new
reviews tend to get lower ratings. Our hypothesis is that this phenomenon can
be explained if we look at the level of arguments, i.e., if we consider the dynamics
of the arguments used by customers, more than aggregate ratings.

Since techniques to mine arguments from a text corpora are yet in an early
development stage, we focus on a single product and extract arguments by hand.
We randomly select a product, which happens to be a ballet tutu for kids, and
we examine all the 253 reviews that this product received between 2009 and
July 2014. From the reviews, we collect a total of 24 positive arguments and 20
negative arguments, whose absolute frequencies are reported in Tab. 1.

There are of course many issues that arise when such a process is done by
hand. First of all, an argument might seem positive to a reader and negative to
another. For the purpose of this small example, we coded arguments together
and, for each argument, tried to achieve the highest possible agreement on its
polarity. A better routine, for larger studies, would be to have many coders
operate autonomously and then check the consistency of their results. However,
we didn’t find case where an argument could be considered both positive and
negative, maybe because the product itself didn’t allow for complex reasoning.
When we encountered a review with both positive and negative arguments, like
”the kid loved it, but it is not sewed properly”, we split the review counting
one positive argument and one negative argument. The most interesting thing
emerging from this study is the fact that, as reviews accumulate, they tend to
contain more negative bits, even if the ratings remain high.

A Micro Study on the Evolution of Argumentsin Amazon.com’s Reviews 291

5 Analysis

In Fig. 2, the first plot on the left shows the monthly absolute frequencies of
positive arguments in the specified time range. As it is easy to see, the number
of positive arguments increases as time goes by, which can be a consequence of a
success in sales: more happy consumers are reviewing the product. At the same
time, the first plot on the right shows a similar trend for negative arguments,
which is a signal that, as more customers purchase the product, some of them
are not satisfied with it. According to what we expect from the literature (see
Sec. 2), the higher volume of positive arguments is a consequence of the J-shaped
curve in ratings, i.e., a consequence of reporting and selection biases. What is

2010 2011 2012 2013 2014

0
10

20
30

40
50

POSITIVE ARGUMENTS

YEARS

N
U
M
B
E
R

O
F
A
R
G
U
M
E
N
T
S
P
E
R

M
O
N
T
H

2010 2011 2012 2013 2014

0
10

20
30

40
50

NEGATIVE ARGUMENTS

YEARS

N
U
M
B
E
R

O
F
A
R
G
U
M
E
N
T
S
P
E
R

M
O
N
T
H

2010 2011 2012 2013 2014

1
2

3
4

5

RATING (Positive Arguments)

YEARS

A
V
E
R
A
G
E

R
A
T
IN

G

2010 2011 2012 2013 2014

1
2

3
4

5

RATING (Negative Arguments)

YEARS

A
V
E
R
A
G
E

R
A
T
IN

G

2010 2011 2012 2013 2014

50
10
0

1
5
0

20
0

25
0

30
0

35
0

40
0

REVIEW LENGTH (Positive Arguments)

YEARS

A
V
E
R
A
G
E

N
U
M
B
E
R

O
F
C
H
A
R
A
C
T
E
R
S

2010 2011 2012 2013 2014

50
10
0

1
5
0

20
0

2
50

3
00

35
0

40
0

REVIEW LENGTH (Negative Arguments)

YEARS

A
V
E
R
A
G
E

N
U
M
B
E
R

O
F
C
H
A
R
A
C
T
E
R
S

Fig. 2. Argument trends: (row1) absolute frequency of arguments per month, (row2)
average rating of reviews per month, (row3) average review-length per month.

292 S. Gabbriellini and F. Santini

1 2 5 10 20 50

0
.0
5

0
.1
0

0
.2
0

0
.5
0

1
.0
0

POSITIVE ARGUMENTS

REPETITIONS

F
R
E
Q
U
E
N
C
Y

logn
plaw

1 2 5 10 20 50

0
.0
5

0
.1
0

0
.2
0

0
.5
0

1
.0
0

NEGATIVE ARGUMENTS

REPETITIONS
F
R
E
Q
U
E
N
C
Y

logn
powl

Fig. 3. Arguments distribution: probability of observing an argument repeated x times.

interesting to note though, is that the average review rating tends to decrease
with time, as shown by the second row of plots in Fig. 2. This holds both for
reviews containing positive arguments as well as for those containing negative
arguments. In particular, the second plot on the right shows that, starting from
2012, negative arguments start to infiltrate “positive” reviews, that is reviews
with a rating of 3 and above. Finally, the last row of plots in Fig. 2 shows that the
average length of reviews decreases as time passes; this happens both for reviews
with positive arguments and for reviews with negative arguments. However, such
a decrease is much more steep for negative ones than for positive ones.

In Fig. 3 we can observe the distribution of positive and negative argu-
ments.14 Regarding positive arguments, we cannot exclude a power-law model
for the distribution tail with x-min = 18 and α = 2.56 (pvalue = 0.54)15. We
also tested a log-normal model with x-min = 9, μ = 3.01 and σ = 0.81 (pvalue
= 0.68). We then searched a common x-min value to compare the two fitted
distributions: for x − min = 4, both the log-normal (μ = 3.03 and σ = 0.78)
and the power-law (α = 1.55) models still cannot be ruled out, with p − value
= 0.57 and pvalue = 0.54 respectively. However, a comparison between the two
leads to a two-sided pvalue = 0.001, which implies that one model is closer to
the true distribution - in this case, the log-normal model performs better. For
negative arguments, we replicated the distribution fitting: for xmin = 2, a power
law model cannot be ruled out (α = 1.78 and p-value = 0.22) as well as a log-
normal model (μ = 1.48 and σ = 0.96, pvalue = 0.32). Again, after comparing
the fitted distributions, we cannot drop the hypotheses that both the distribu-
14 We used the R poweRlaw package for heavy tailed distributions (developed by Colin

Gillespie). The logic of fitting procedures is presented in [18].
15 We used the relatively conservative choice that the power law is ruled out if pvalue

= 0.1, as in [12].

A Micro Study on the Evolution of Argumentsin Amazon.com’s Reviews 293

2010 2011 2012 2013 2014

0
.0
0

0
.0
5

0
.1
0

0
.1
5

POSITIVE ARGUMENTS

TIME

R
E
L
.
F
R
E
Q
.
O
V
E
R

A
L
L
A
R
G
U
M
E
N
T
S

2010 2011 2012 2013 2014

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

NEGATIVE ARGUMENTS

TIME
R
E
L
.
F
R
E
Q
.
O
V
E
R

A
L
L
A
R
G
U
M
E
N
T
S

Fig. 4. Relative cumulated frequencies for each positive and negative argument.

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

2010 2011 2012 2013 2014

5
10

15
20

FREQUENCIES OF NEW ARGUMENTS

TIME

C
U
M
U
L
A
T
IV

E
F
R
E
Q
U
E
N
C
IE

S

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

o
x

positive
negative

o

o

o

o

o
o

o

o
o

o
o
o

o

o
ooooo

oo

o

oo

2010 2011 2012 2013 20140
.0
0
2

0
.0
0
5

0
.0
2
0

0
.0
5
0

0
.2
0
0

0
.5
0
0

RATES OF NEW ARGUMENTS

TIME

R
A
T
E

x

x

x

x

x

x
x

x

x

xx
xx x

x

x
x

x

xx

o
x

positive
negative

Fig. 5. Left plot: cumulative frequencies of new positive and negative arguments per
month. Right plot: rate of new positive and negative arguments over total arguments
per month.

tions are equally far from the true distribution (two-sided pvalue = 0.49). In
this case, too few data are present to make a wise choice.

The plots in Fig. 4 show the cumulative frequencies of each single arguments
as a function of time. The frequencies are calculated over all the arguments
(repeated or new) across all reviews, so to give an idea of how much a single
argument represents customers’ opinion. Among the positive arguments (plot on

294 S. Gabbriellini and F. Santini

the left), there are four arguments that represent, taken together, almost 44% of
customers’ opinions. These arguments are: i) good because the kid loved it, ii)
good because it fits well, iii) good because it has a good quality/price ratio, iv)
good because it has a good quality. Negative arguments represent, all together,
less than 20% of opinions. As expected, they are less repeated and less frequent
than positive ones (see the right plot in Fig. 4). Among these arguments, two
of them have the higher impact: i) bad because it has a bad quality, ii) bad
because it is not sewed properly.

We have a clear view where the pros and cons of this product are stated as
arguments: not surprisingly, the overall quality is the main reason why customers
consider the product as a good or bad deal. Even among detractors, this product
is not considered expensive, but quality still is an issue for most of them.

The plots in Fig. 5 show the cumulative frequencies and the rate at which
new arguments are added as a function of time. In the left plot, it is interesting
to note that, despite the difference in volume (positive arguments are more cited
than negative ones), the cumulative frequencies at which positive and negative
arguments are added are almost identical. Positive arguments start being posted
earlier than negative ones, consistently with the fact that enthusiast customers
are the first that review the product. Moreover, it is interesting to note that no
new positive argument is added in the 2011-2013 interval, while some negative
ones arise in the reviews. Since 2013, positive and negative arguments follow a
similar trajectory. However, as can be noted in the second plot on the right, new
arguments are not added at the same pace. If we consider the total amount of
added arguments, positive ones are repeated more often than negatives, and the
rate at which a new positive argument is added is considerably lower than its
counterpart. This information sheds a light on customers’ behaviour: dissatisfied
customers tend to post new reasons why they dislike the product, more than just
repeating what other dissatisfied customers have already said.

6 A Computational Perspective

In addition to arguments (see Sec. 5), even attacks among them have been “man-
ually” extracted, with the purpose to represent all the knowledge as an AAF
(see Sec. 3). For some couples of arguments, this has been very easy: some pos-
itive arguments are the exact negation of what stated in the relative negative
argument (and vice versa). For instance, looking at Tab. 1, the tutu has a good
quality (D) and the tutu has a bad quality (a), or the tutu fits well (B) and the
tutu does not fit (c). For the sake of completeness, such easy-to-detect (bidirec-
tional) attacks are {B ↔ c, C ↔ l,D ↔ a,E ↔ f, F ↔ h, I ↔ o, J ↔ d,M ↔
e,N ↔ k, P ↔ m,S ↔ b, T ↔ g,X ↔ j}. Furthermore, we have identified some
other unidirectional and bidirectional attacks; the complete list of arguments is
visually reported with the graphical representation of the whole AAF, in Fig. 6.
Note that we also have two unidirectional attacks between two positive argu-
ments (Q → N and V → J), and one bidirectional attack between two negative
arguments (s ↔ h). Some of the reported attacks need the full sentences (or

A Micro Study on the Evolution of Argumentsin Amazon.com’s Reviews 295

Fig. 6. The final and complete AAF extracted from 253 reviews.

even the whole reviews) related to the extracted arguments, in order to be com-
prehended at full. Even if sometimes connections are hidden at first sight, we
tried to be as more linear as possible, thus avoiding too much subtle criticisms.

The complete AAF is represented in Fig. 6: circles represent positive argu-
ments, while diamonds represent negative ones. We have clustered most of the
arguments into four main subsets: a) product quality, b) product appearance, c)
shipping-related information, and d) price-related information. Four arguments
do not belong to any of these subsets (see Fig. 6).

By executing ConArg over the AAF in Fig. 6 we obtain {A,H,Q,R, V,W, i, k,
m, n, p, q, t} as the grounded extension. Such subset also corresponds to the
set of sceptically accepted arguments while considering the stable semantics
(see Sec. 3). The complete set of stable (and semi-stable) extensions counts
256 different instances, which exactly correspond also to the set of preferred
extensions. We also retrieve 6.651 complete extensions.

However, we consider all such information hard to be somehow analysed and
interpreted. For this reason we switch to considering preferences, i.e., PAF (see
Sec. 3). The main reason is that we can exploit further information concerning
a preference score associated with arguments: we consider the total number of
times each argument appears in the 253 reviews about the tutu. In practice, we
define a preference ordering based on the third and sixth columns in Tab. 1. For
instance, argument M (the tutu is as advertised) is preferred w.r.t argument e
(the tutu is NOT as advertised), since 9 > 8, that is it appears (slightly) more
frequently. Therefore, we completely define the partial order as requested by

296 S. Gabbriellini and F. Santini

Table 2. The subset of arguments taken in the single stable extension with PAF.

ID Positive #App. ID Negative #App.
A the kid loved it 78 b it is not sewed properly 17
B it fits well 65 d it is not full 12
C it has a good quality/price ratio 52 e it is not as advertised 8
D it has a good quality 44 g it has a bad customer service 4
E it is durable 31 i it smells chemically 3
F it is shipped fast 25 j you can see through it 3
G the kid looks adorable 23 n it has a bad waistband 1
H it has a good price 21 p it has high shipping rates 1
J it is full 18 q it has no cleaning instructions 1
K it did its job 11 r it is not lined 1
L it is good for playing 11 s it never arrived 1
M it is as advertised 9 t it was damaged 1
N it can be used in real dance classes 7
O it is aesthetically appealing 7
P it has a good envelope 2
R it is a great first tutu 2
V it is easier than build your own 2
W it is simple but elegant 1
X you can customize it 1

Def. 5 and we run ASPARTIX looking for stable extensions. The single outcome-
extension is represented in Tab. 2.

In order to show how the evolution of an AAF through time is computation-
ally captured in Dung’s semantics, we draw an AAF considering all the reviews
up to the end of 2013. On the other hand, we reckon it is not meaningful to
consider a screenshot of years 2010 (2 positive args), 2011 (7 positive args and 1
negative), and 2012 (12 positive and 5 negative args.). The 2013 AAF is in Fig. 7:
it contains 19 positive and 8 negative arguments, and it has been obtained by
projecting the AAF in Fig. 6 on arguments {A,B,C,D,E, F,G,H, I, J,K,L,O,
P,R, S, V,W,X, a, b, c, d, e, i, k, l}. The number of appearances is reported in
parentheses, for the sake of a compact representation. On such AAF we obtain 4
stable (and preferred) extensions, and 9 complete ones. The grounded extension
is {A,E, F,H,K,L, P,R, V,W,X, b, d, e, i, k}: the only arguments that survive to
the following two years of reviews are {A,H,R, V,W, i, k}. Even in this case, we
use PAF (see Sec. 3) to consider the number of appearances. The resulting stable
extension is 2013 = {A,B,C,D,E, F,G,H, I, J,K,L,O, P,R, V,W,X, b, d, e, i,
k}. We notice that only S (sewed properly) is excluded, defeated by not sewed
properly, which is repeated just one time more (2 > 1). Therefore, 18 out of 19
positive arguments are taken, while 3 out of 8 negative arguments are discarded.

The stable extension in Fig. 6 (i.e., with the final AAF) is Jul2014 = {A,B,C,
D,E, F,G, H, J,K,L,M,N,O, P,Q,R, V,W, b, d, e, g, i, j, n, p, q, r, s, t}. Hence,
according to the fact that after 2013 many new negative arguments appear (see
Sec. 5), we notice that the number of negative arguments increases in the stable
extension: {g, j, n, p, q, q, r, s, t} are the new negative arguments in Jul2014, while
only argument k disappears w.r.t 2013. Moreover, the most frequent negative
arguments ({b, d, e}) are taken both in 2013 and Jul2014: they survive even in
the final rush of reviews. Positive arguments remain substantially the same from
2013 to Jul2014: only {M,N,Q} pop up, while {I,X} disappear in Jul2014.

A Micro Study on the Evolution of Argumentsin Amazon.com’s Reviews 297

Fig. 7. The AAF extracted at the end of 2013.

Finally, we can notice that the new (Jul2014) negative arguments related to the
product ({j, n, q, r}) are associated to reviews with a high rating (j = 4/4/5,
n = 4, q = 4, r = 3), while those ones associated with the service ({g, p, s, t})
are associated with reviews with a low rating (g = 1/3/1/1, p = 4, s = 1, t = 2).

7 Discussion and Conclusions

In this paper we have proposed a first exploratory study on how to use Abstract
Argumentation to understand if using arguments can improve our knowledge
about social trends in product reviews. More in particular, we “enter” into an
Amazon.com review and we achieve a more granular view of it by considering
the different arguments expressed in each of the 253 reviews about the selected
product (a ballerina tutu). What we observe is that the frequency of negative
arguments (against purchasing the tutu) increases after some time, while the
distribution of positive arguments (in favour of purchasing the tutu) is more
balanced between the considered period. Moreover, while positive arguments
are always associated with high ratings (i.e., 4 or 5), negative arguments are
associated with low (as expected) but also high ratings. In addition, negative
arguments are more frequently associated with shorter reviews, while enthusiasts
tend to be less concise. To summarise, the aim is to “explode” reviews into
arguments and then try to understand how the behaviour of reviewers changes
through time, from the point of view of arguments.

In the second part of the paper, we link computational Abstract Argumen-
tation to the arguments extracted during the first sections. We use Preference-
based Argumentation [1] in order to take into account strength-scores, i.e, the
number of appearances of each argument in all the reviews. The goal here is
dual: first we show how the single outcome-extension (obtained by considering
the stable semantics) changes before and after negative arguments start increas-
ing. Moreover, we show how such extension can represent a simple and significant
screen-shot of what reviewers believe about the considered product.

298 S. Gabbriellini and F. Santini

Our present study can be considered as “micro” because we focus on a single
product only, even if with a quite large number of reviews (i.e., 253). Unfor-
tunately, due to the lack of well-established tools dedicated to the automated
extraction of AAFs, it is not so easy to extend our study “in the large” and
draw more general considerations (it will be part of future work). In our manual
extraction we noticed that, if extracting abstract arguments from natural lan-
guage is not easy, the process of recognising attacks is even more challenging,
due to subtle criticisms and, in general, ambiguities of natural languages.

In the future, we will widen our investigation by taking advantage of mining-
techniques, e.g., [31,29]. In addition, we plan to understand if tolerating a given
low amount of inconsistency (i.e., attacks) in extensions [6] can help softening
the impact of weak arguments (i.e., rarely repeated ones). Due to the possible
partitioning of arguments into clusters related to different aspects of a product
(e.g., either its quality or appearance), we also intend to apply coalition-oriented
semantics, as proposed in [9]. Moreover, we can exploit Value-based AAFs [4]
to associate each argument with a value representing a different product aspect
(e.g., shipping).

Following [17], we also plan to implement an Agent-Based Model with Argu-
mentative Agents to explore the possible mechanisms, from a user’s perspective,
that give raise to such trends and correlations among positive and negative argu-
ments.

References

1. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based
argumentation. In: UAI 1998: Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, pp. 1–7. Morgan Kaufmann (1998)

2. Anderson, E.W.: Customer satisfaction and word of mouth. Journal of Service
Research 1(1), 5–17 (1998)

3. Baldassarri, D., Bearman, P.: Dynamics of political polarization. American Socio-
logical Review 72, 784–811 (2007)

4. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)

5. Bistarelli, S., Rossi, F., Santini, F.: Benchmarking hard problems in random
abstract AFs: the stable semantics. In: Computational Models of Argument -
Proceedings of COMMA. Frontiers in Artificial Intelligence and Applications,
vol. 266, pp. 153–160. IOS Press (2014)

6. Bistarelli, S., Santini, F.: A common computational framework for semiring-based
argumentation systems. In: ECAI 2010–19th European Conference on Artificial
Intelligence. FAIA, vol. 215, pp. 131–136. IOS Press (2010)

7. Bistarelli, S., Rossi, F., Santini, F.: Enumerating extensions on random abstract-
AFs with Argtools, Aspartix, ConArg2 and Dung-O-Matic. In: Bulling, N., van der
Torre, L., Villata, S., Jamroga, W., Vasconcelos, W. (eds.) CLIMA 2014. LNCS,
vol. 8624, pp. 70–86. Springer, Heidelberg (2014)

A Micro Study on the Evolution of Argumentsin Amazon.com’s Reviews 299

8. Bistarelli, S., Rossi, F., Santini, F.: A first comparison of abstract argumenta-
tion reasoning-tools. In: ECAI 2014–21st European Conference on Artificial Intel-
ligence. FAIA, vol. 263, pp. 969–970. IOS Press (2014)

9. Bistarelli, S., Santini, F.: Coalitions of arguments: An approach with constraint
programming. Fundam. Inform. 124(4), 383–401 (2013)

10. Chatterjee, P.: Online reviews do consumers use them? In: Gilly, M.C., Myers-Levy,
J. (eds.) Proceedings of the ACR 2001, pp. 129–134. Association for Consumer
Research (2001)

11. Chevalier, J., Mayzlin, D.: The effect of word of mouth on sales: Online book
reviews. Journal of Marketing 43(3), 345–354 (2006)

12. Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data.
SIAM Review 51(4), 661–703 (2009)

13. Dellarocas, C.: The digitization of word of mouth: promise and challenges of online
feedback mechanisms. Management Science 49(10), 1407–1424 (2003)

14. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

15. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument and Computation 1(2), 147–177 (2010)

16. Gabbriellini, S.: The evolution of online forums as communication networks: An
agent-based model. Revue Francaise de Sociologie 4(55), 805–826 (2014)

17. Gabbriellini, S., Torroni, P.: A new framework for ABMs based on argumentative
reasoning. In: Kamiński, B., Koloch, G. (eds.) Advances in Social Simulation. AISC,
vol. 229, pp. 25–36. Springer, Heidelberg (2014)

18. Gillespie, C.: Fitting heavy tailed distributions: the powerlaw package. Journal of
Statistical Software 64(2) (2015)

19. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look
at the underlying process of word-of-mouth. Marketing Letters 12(3), 211–223
(2001)

20. Hedstrom, P.: Dissectin the Social: on the Principles of Analytical Sociology, 1st
edn. Cambridge University Press (2005)

21. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2004, pp. 168–177. ACM (2004)

22. Manzo, G.: Educational choices and social interactions: A formal model and a
computational test. Comparative Social Research 30, 47–100 (2013)

23. Mercier, H., Sperger, D.: Why do humans reason? Arguments for an argumentative
theory. Behavioral and Brain Sciences 34(2), 57–74 (2011)

24. Moe, W.W., Schweidel, D.A.: Online product opinions: Incidence, evaluation, and
evolution. Marketing Science 31(3), 372–386 (2012)

25. Nagle, F., Riedl, C.: Online word of mouth and product quality disagreement. In:
ACAD MANAGE. Proc. Meeting Abstract Supplement. Academy of Management
(2014)

26. Rogers, E.: Diffusion of Innovations, 5th edn. Simone & Schuster (2003)
27. Squazzoni, F.: Agent-Based Computational Sociology, 1st edn. Wiley (2012)
28. Stokes, D., Lomax, W.: Taking control of word of mouth marketing: the case of

an entrepreneurial hotelier. Journal of Small Business and Enterprise Development
9(4), 349–357 (2002)

300 S. Gabbriellini and F. Santini

29. Villalba, M.P.G., Saint-Dizier, P.: A framework to extract arguments in opinion
texts. IJCINI 6(3), 62–87 (2012)

30. Wang, B.C., Zhu, W.Y., Chen, L.J.: Improving the amazon review system by
exploiting the credibility and time-decay of public reviews. In: Proceedings of the
2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology, WI-IAT 2008, vol. 3, pp. 123–126. IEEE Computer Society
(2008)

31. Wyner, A., Schneider, J., Atkinson, K., Bench-Capon, T.J.M.: Semi-automated
argumentative analysis of online product reviews. In: Computational Models of
Argument - Proceedings of COMMA 2012. FAIA, vol. 245, pp. 43–50. IOS Press
(2012)

32. Zhu, F., Zhang, X.: The influence of online consumer reviews on the demand for
experience goods: the case of video games. In: Proceedings of the International
Conference on Information Systems, ICIS, p. 25. Association for Information Sys-
tems (2006)

The Long-Term Benefits of Following Fairness
Norms: A Game-Theoretic Analysis

Emiliano Lorini1(B) and Roland Mühlenbernd2

1 IRIT-CNRS, Toulouse University, Toulouse, France
lorini@irit.fr

2 University of Tübingen, Tübingen, Germany

Abstract. In this study we present a game-theoretic model of guilt in
relation to sensitivity to norms of fairness. We focus on a specific kind
of fairness norm à la Rawls according to which a fair society should be
organized so as to admit economic inequalities to the extent that they
are beneficial to the less advantaged agents. We analyze the impact of
the sensitivity to this fairness norm on the behavior of agents who play
a repeated Prisoner’s Dilemma and learn via fictitious play. Our results
reveal that a great sensitivity to the fairness norm is beneficial in the
long term when agents have the time to converge to mutual cooperation.

1 Introduction

Prototypical human and artificial societies (e.g., a community, an organization)
are populated by agents who have repeated encounters and can decide either to
collaborate with the others thereby acting cooperatively, or to exploit the work
of the others thereby acting selfishly. In a game-theoretic setting this kind of
situations can be represented as an iterated Prisoner’s Dilemma (PD) in which
agents in the population have repeated one-to-one interactions with others (i.e.,
at each round two agents in the population meet and play one-shot PD).

The aim of this work is to study how fairness norms tend to emerge in this
kind of societies in which agents are assumed (i) to be rational in the sense of
being expected utility maximizers, and (ii) to learn from their past experiences.
In the paper, we focus on a special kind of fairness norm à la Rawls [20] according
to which a fair society should be organized so as to admit economic inequalities
to the extent that they are beneficial to the less advantaged agents.

Our analysis is based on the general assumption that agents in the society
are heterogenous in the sense of being more or less sensitive to the fairness norm,
where an agent’s degree of norm sensitivity captures the extent to which the fair-
ness norm has been internalized by the agent. Norm internalization is a concept

Nobody argues that the art of navigation is not founded on astronomy because
sailors cannot wait to calculate the Nautical Almanac. Being rational creatures they
go to sea with it already calculated; and all rational creatures go out upon the sea
of life with their minds made up on the common questions of right and wrong, as
well as on many of the far more difficult questions of wise and foolish.
J.S. Mill, Utilitarianism [16, Chap.2]

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 301–318, 2015.
DOI: 10.1007/978-3-319-25524-8 19

302 E. Lorini and R. Mühlenbernd

that has been widely discussed in the literature in social sciences and multi-agent
systems [2,1,3,10,11]. The idea is that if a given norm is internalized by an agent
then there is no need for an external sanction, a reward or punishment to ensure
norm compliance. The agent is willing to comply with the norm because, if she
does not do this, she will feel (morally) bad. We study the conditions under
which an agent’s disposition to follow the fairness norm à la Rawls (i.e., the
agent’s sensitivity to the fairness norm) increases the agent’s individual benefit
in the long term. In other words, we aim at providing an utilitarian explanation
of the internalization of the fairness norm à la Rawls, that is to say, we aim at
explaining why rational agents with learning capabilities should become moti-
vated to follow the fairness norm à la Rawls even without external enforcement
(e.g., external sanctions, punishment).

The rest of the paper is organized as follows. In Section 2 we present a game-
theoretic model of guilt aversion which provides the static foundation of our anal-
ysis. The main idea of the model is that agents in a game are motivated both by
their personal utilities and by the goal of avoiding guilt feeling. It is assumed that
guilt feeling is triggered in case of the violation of an internalized norm. Specifi-
cally, the intensity of guilt feeling is proportional to the agent’s sensitivity to the
norm. In Section 3, we provide a dynamic extension of our model in order to for-
mally specify repeated interactions and learning in a game-theoretic setting. The
learning approach we use is the well-known fictitious play [7].1 Section 4 provides
some mathematical results about convergence for fictitious play in the case of iter-
ated PD in which agents are assumed to be more or less sensitive to the fairness
norm à la Rawls. Our mathematical analysis of convergence for fictitious play is
partial, as it only covers a subset of the set of possible values of norm sensitivity
for the agents in the population. Thus, in Section 5, we present some computa-
tional results about convergence for fictitious play which complements the analy-
sis of Section 4. Finally, in Section 6, we present some experimental results in the
case of iterated PD which highlight the relationship between an agent’s degree of
sensitivity to the fairness norm à la Rawls and her individual benefit in the long
term. Our results reveal that a great sensitivity to this fairness norm is beneficial
in the long term when agents have the time to converge to mutual cooperation.
As a side note, we would like to remark that a preliminary version of this work
by one of the authors has appeared in [9]. One limitation of this previous work is
that it was only applied to a specific instance of the Prisoner’s Dilemma and not
to the entire class. A second limitation is that, differently from the present work,
it was not supported by in-depth mathematical analysis of convergence for the fic-
titious play process. Finally, it did not contain any analysis of the way an agent’s
sensitivity to the fairness norm influences her benefit in the long term.

1 We preferred fictitious play over alternative ‘learning from the past’ models, since it
is i) deterministic, thus manageable to be analyzed formally, and ii) well-established
in the field.

The Long-Term Benefits of Following Fairness Norms 303

2 Game-Theoretic Model of Guilt Aversion

In this section, we present our game-theoretic model of guilt and of its influence
on strategic decision making. We assume that guilt feeling originates from the
agent’s violation of a certain norm. Specifically, the intensity of an agent’s guilt
feeling depends on two parameters: (i) how much the agent is responsible for the
violation of the norm, and (ii) how much the agent is sensitive to the norm. As
emphasized in the introduction, in our model the agent’s sensitivity to the norm
captures the extent to which the norm is internalized by the agent.

Our model assumes that an agent has two different motivational systems:
an endogenous motivational system determined by the agent’s desires and an
exogenous motivational system determined by the agent’s internalized norms.
Internalized norms make the agent capable of discerning what from his point of
view is good (or right) from what is bad (or wrong). If an agent has internalized a
certain norm, then she thinks that its realization ought to be promoted because
it is good in itself. A similar distinction has also been made by philosophers
and by social scientists. For instance, Searle [21] has recently proposed a theory
of how an agent may want something without desiring it and on the problem
of reasons for acting based on moral values and independent from desires. In
his theory of morality [13], Harsanyi distinguishes a person’s ethical preferences
from her personal preferences and argues that a moral choice is a choice that is
based on ethical preferences.

2.1 Normative Game and Guilt-dependent Utility

Let us first introduce the standard notion of normal-form game.

Definition 1 (Normal-form game). A normal-form game is a tuple G =
(N , (Si)i∈N ,U) where:

– N = {1, . . . , n} is a finite set of agents or players;
– for every i ∈ N , Si is agent i’s finite set of strategies;
– U : N −→ (

∏
i∈N Si −→ R) is an utility function, with U(i) being agent

i’s personal utility function mapping every strategy profile to a real number
(i.e., the personal utility of the strategy profile for agent i).

For every i ∈ N , elements of Si are denoted by si, s ′
i, . . . Let 2Agt∗ = 2N \

{∅} be the set of all non-empty sets of agents (alias coalitions). For notational
convenience we write −i instead of N \ {i}. For every J ∈ 2Agt∗, we define the set
of strategies for the coalition J to be SJ =

∏
i∈J Si. Elements of SJ are denoted by

sJ , s ′
J , . . . We write S instead of SN and we denote elements of S by s, s ′, . . . Every

strategy sJ of coalition J can be seen as a tuple (si)i∈J where agent i chooses the
individual strategy si ∈ Si. For notational convenience we write Ui(s) instead of
U(i)(s). As usual a mixed strategy for agent i is a probability distribution over Si.
Agent i’s set of mixed strategies is denoted by Σi and elements of Σi are denoted
by σi, σ

′
i, . . . The set of mixed strategy profiles is defined to be Σ = Σ1 × . . .×Σn

304 E. Lorini and R. Mühlenbernd

C D

C R, R S, T

D T, S P, P

Fig. 1. Prisoner’s dilemma (with player 1 being the row player and player 2 being the
column player).

and its elements are denoted by σ, σ′, . . . The utility function Ui reflects agent i’s
endogenous motivational system, i.e., agent i’s desires.

A well-known example of normal-form game is the Prisoner’s Dilemma (PD)
in which two agents face a social dilemma. The PD is represented in Figure 2.1.

Each agent in the game can decide either to cooperate (action C) or to defect
(action D) and has an incentive to defect. Indeed, it is assumed that, if an agent
defects, she gets a reward that is higher than the reward obtained in the case of
cooperation, no matter what the other agent decides to do. In other words, coop-
eration is strongly dominated by defection. The social dilemma lies in the fact that
mutual defection, the only Nash equilibrium of the game, ensures a payoff for each
agent that is lower than the payoff obtained in the case of mutual cooperation. The
Prisoner’s Dilemma can be compactly represented as follows.

Definition 2 (Prisoner’s Dilemma). A Prisoner’s Dilemma (PD) is a
normal-form game G = (N , (Si)i∈N ,U) such that:

– N = {1, 2};
– for all i ∈ N , Si = {C,D};
– U1(C,C) = R, U1(D,D) = P , U1(C,D) = S and U1(D,C) = T ;
– U2(C,C) = R, U2(D,D) = P , U2(C,D) = T and U2(D,C) = S;

and which satisfies the following two conditions:

(C1) T > R > P > S,
(C2) S = 0.

Condition (C1) is the typical one in the definition of the Prisoner’s Dilemma.
Condition (C2) is an extra normality constraint which is not necessarily assumed
in the definition of PD. It is assumed here to simplify the analysis of the evolution
of fairness norms.

The following definition extends the definition of normal-form game with a
normative component. Specifically, we assume that every outcome in a game is
also evaluated with respect to its ideality degree, i.e., how much an outcome in
the game conforms to a certain norm. Moreover, as pointed above, we assume
that an agent in the game can be more or less sensitive to the norm, depending
on how much the norm is internalized by her.

Definition 3 (Normative game). A normative game is a tuple NG =
(N , (Si)i∈N ,U, I, κ) where:

– (N , (Si)i∈N ,U) is a normal-form game;

The Long-Term Benefits of Following Fairness Norms 305

– I :
∏

i∈N Si −→ R is a function mapping every strategy profile in S to a real
number measuring the degree of ideality of the strategy profile;

– κ : N −→ R≥0 is a function mapping every agent in N to a non-negative
real number measuring the agent’s sensitivity to the norm.

For notational convenience we write κi instead of κ(i) to denote agent i’s sensi-
tivity to the norm.

Following current psychological theories of guilt [12], we conceive guilt as the
emotion which arises from an agent’s self-attribution of responsibility for the
violation of an internalized norm (i.e., a norm to which the agent is sensitive).
Specifically, intensity of guilt feeling is defined as the difference between the
ideality of the best alternative state that could have been achieved had the agent
chosen a different action and the ideality of the current state, — capturing the
agent’s degree of responsibility for the violation of the norm —, weighted by
the agent’s sensitivity to the norm. The general idea of our model is that the
intensity of guilt feeling is a monotonically increasing function of the agent’s
degree of responsibility for norm violation and the agent’s sensitivity to the
norm.

Definition 4 (Guilt). Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game.
Then, the guilt agent i will experience after the strategy profile s is played,
denoted by Guilt(i,s), is defined as follows:

Guilt(i,s) = κi × (max
s′
i∈Si

I
(
s ′
i, s−i) − I(s))

The following definition describes how an agent’s utility function is trans-
formed depending on the agent’s feeling of guilt. In particular, the higher the
intensity of guilt agent i will experience after the strategy profile s is played, the
lower the (transformed) utility of the strategy profile s for agent i. Note indeed
that the value Guilt(i,s) is either positive or equal to 0. Guilt-dependent utility
reflects both agent i’s desires and agent i’s moral considerations determined by
her sensitivity to the norm.

Definition 5 (Guilt-dependent utility). Let NG = (N , (Si)i∈N ,U, I, κ) be
a normative game. Then, the guilt-dependent utility of the strategy profile s for
agent i is defined as follows:

U ∗
i (s) = Ui(s) − Guilt(i,s)

It is worth noting that the previous definition of guilt-dependent utility is sim-
ilar to the definition of regret-dependent utility proposed in regret theory [14].
Specifically, similarly to Loomes & Sugden’s regret theory, we assume that the
utility of a certain outcome for an agent should be trasformed by incorporating
the emotion that the agent will experience if the outcome occurs.

2.2 Fairness Norms

In the preceding definition of normative game an agent i’s utility function Ui

and ideality function I are taken as independent. There are different ways of
linking the two notions.

306 E. Lorini and R. Mühlenbernd

For instance, Harsanyi’s theory of morality provides support for an utilitarian
interpretation of fairness norms which allows us to reduce an agent i’s ideality
function I to the utility functions of all agents [13]. Specifically, according to
the Harsanyi’s view, a fairness norm coincides with the goal of maximizing the
collective utility represented by the weighted sum of the individual utilities.

Definition 6 (Normative game with fairness norm à la Harsanyi). A
normative game with fairness norm à la Harsanyi is a normative game NG =
(N , (Si)i∈N ,U, I, κ) such that for all s ∈ S:

I(s) =
∑

i∈N

Ui(s)

An alternative to Harsanyi’s utilitarian view of fairness norms is Rawls’ view
[20]. In response to Harsanyi, Rawls proposed the maximin criterion of making
the least happy agent as happy as possible: for all alternatives s and s ′, if the
level of well-being in the worst-off position is strictly higher in s than in s ′, then
s is better than s ′. According to this well-known criterion of distributive justice,
a fair society should be organized so as to admit economic inequalities to the
extent that they are beneficial to the less advantaged agents.Following Rawls’
interpretation, a fairness norm should coincide with the goal of maximizing the
collective utility represented by the individual utility of the less advantaged
agent.

Definition 7 (Normative game with fairness norm à la Rawls). A
normative game with fairness norm à la Rawls is a normative game NG =
(N , (Si)i∈N ,U, I, κ) such that for all s ∈ S:

I(s) = min
i∈N

Ui(s)

In this paper we focus on fairness norm à la Rawls. In particular, we are
interested in studying the relationship between the agents’ sensitivities to this
kind of norm and their behaviors in a repeated game such as the Prisoner’s
Dilemma in which the agents learn from their past experiences. To this aim, in
the next section, we provide a dynamic extension of our model of guilt aversion.

3 Dynamic Extension

In the dynamic version of our model, we assume that every agent in a given
normative game has probabilistic expectations about the choices of the other
agents. These expectations evolve over time. The following concept of history
captures this idea.

Definition 8 (History). Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game.
A history (for NG) is a tuple H = ((ωi,j)i,j∈N , (ci)i∈N) such that, for all i, j ∈
N :

The Long-Term Benefits of Following Fairness Norms 307

– ωi,j : N −→ Δ(Sj) is a function assigning to every time t ∈ N a probability
distribution on Sj,

– ci : N −→ Si is a choice function specifying the choice of agent i at each
time point t ∈ N.

For every t ∈ N and sj ∈ Sj , ωi,j(t)(sj) denotes agent i’s subjective probability
at time t about the fact that agent j will choose action sj ∈ Sj . For notational
convenience, we write ωt

i,j(sj) instead of ωi,j(t)(sj). For all i, j ∈ N , t ∈ N and
s−i ∈ S−i we moreover define:

ωt
i(s−i) =

∏

j∈N\{i}
ωt

i,j(sj)

ωt
i(s−i) denotes agent i’s subjective probability at time t about the fact that the

other agents will choose the joint action s−i.
The following definition introduces the concept of agent i’s expected utility at

time t. Notice that the concept of utility used in the definition is the one of guilt-
dependent utility of Definition 5. Indeed, we assume a rational agent is an agent
who maximizes her expected guilt-dependent utility reflecting both the agent’s
desires and the agent’s moral considerations determined by her sensitivity to the
norm.

Definition 9 (Expected utility at time t). Let NG = (N , (Si)i∈N ,U, I, κ)
be a normative game, let H = ((ωi,j)i,j∈N , (ci)i∈N) be a history for NG and
let t ∈ N. Then, the expected utility of action si ∈ Si for the agent i at time t,
denoted by EU t

i(si), is defined as follows:

EU t
i(si) =

∑

s′
−i∈S−i

ωt
i(s

′
−i) × U ∗

i (si, s ′
−i)

As the following definition highlights, an agent is rational at a given time
point t, if and only if her choice at time t maximizes expected utility.

Definition 10 (Rationality at time t). Let NG = (N , (Si)i∈N ,U, I, κ) be a
normative game, let H = ((ωi,j)i,j∈N , (ci)i∈N) be a history for NG and let t ∈ N.
Then, agent i is rational at time t if and only if EU t

i(ci(t)) ≥ EU t
i(si) for all si ∈ Si.

We assume that agents learn via fictitious play [7], a learning algorithm
introduced in the area of game theory and widely used in the area of multi-
agent systems (see, e.g., [22]). The idea of fictitious play is that each agent best
responds to the empirical frequency of play of her opponents. The assumption
underlying fictitious play is that each agent believes that her opponents are
playing stationary strategies that do not depend from external factors such as
the other agents’ last moves.

Definition 11 (Learning via fictitious play). Let NG = (N , (Si)i∈N ,U, I, κ)
be a normative game and let H = ((ωi,j)i,j∈N , (ci)i∈N) be a history for NG. Then,

308 E. Lorini and R. Mühlenbernd

agent i learns according to fictitious play (FP) along H , if and only if for all j ∈
N \ {i}, for all sj ∈ Sj and for all t > 0 we have:

ωt
i,j(sj) =

obst
i,j(sj)

∑
s′
j∈Sj

obst
i,j(s ′

j)

where obs0i,j(sj) = 0 and for all t > 0:

obst
i,j(sj) =

{
obst−1

i,j (sj) + 1 if cj(t − 1) = sj

obst−1
i,j (sj) if cj(t − 1) �= sj

Note that obst
i,j(sj) in the previous definition denotes the number of agent

i’s past observations at time t of agent j’s strategy sj .
Two notions of convergence for fictitious play are given in the literature, one

for pure strategies and one for mixed strategies. Let H = ((ωi,j)i,j∈N , (ci)i∈N)
be a history. Then, H converges in the pure strategy sense if and only if there
exists a pure strategy s ∈ S and t̄ ∈ N such that for all i ∈ N :

ci(t) = si for all t ≥ t̄

On the contrary, H converges in the mixed strategy sense if and only if there
exists a mixed strategy σ ∈ Σ such that for all i ∈ N and for all si ∈ Si:

lim
t̄→∞

|{t ≤ t̄ : ci(t) = si}|
t̄ + 1

= σi(si)

Clearly, convergence in the pure strategy sense is a special case of convergence
in the mixed strategy sense.

It has been proved [18] that for every non-degenerate 2 × 2 game (i.e., two-
player game where each player has two strategies available) and for every history
H for this game, if all agents are rational and learn according to fictitious play
along H , then H converges in the mixed strategy sense. The fact that the game
is non-degenerate just means that, for every strategy of the second player there
are no different strategies of the first player which guarantee the same payoff to
the first player, and for every strategy of the first player there are no different
strategies of the second player which guarantee the same payoff to the second
player.2 A generalization of this result to 2 × n games has been given by [5].

4 Mathematical Analysis in the PD with Fairness Norm
à la Rawls

In this section, we provide convergence results for fictitious play in the case of
iterated Prisoner’s Dilemma in which players are more or less sensitive to the
fairness norm à la Rawls.
2 Miyazawa [17] assumed a particular tie-breaking rule to prove convergence of ficti-

tious play in 2 × 2 games.

The Long-Term Benefits of Following Fairness Norms 309

C D

C R, R −κ1P, T − κ2R

D T − κ1R,−κ2P P, P

Fig. 2. Prisoner’s Dilemma with transformed utilities according to fairness norm à la
Rawls.

The first thing we can observe is that for any possible combination of norm
sensitivity values for the two players, the behaviors of both players will converge
to mixed strategies. In particular:

Theorem 1. Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game with fairness
norm à la Rawls such that (N , (Si)i∈N ,U) is the Prisoner’s Dilemma and let
H = ((ωi,j)i,j∈N , (ci)i∈N) be a history for NG. Moreover, assume that every
agent in N learns according to fictitious play along H and is rational for all
t ≥ 0. Then, H converges in the mixed strategy sense.

Proof. For all possible values of κ1 and κ2, the transformed PD in which the
utility function Ui is replaced by U ∗

i for all i ∈ {1, 2} is non-degenerate. The
transformed PD is represented in Figure 2. Hence, the theorem follows from the
fact that, as observed in the previous section, fictitious play is guaranteed to
converge in the class of non-degenerate 2 × 2 games. �	

Our second result is the following theorem about convergence in the pure
strategy sense. The theorem highlights that if at the beginning of the learning
process every player has a uniform probability distribution over the strategies
of the other player and the value of norm sensitivity is lower than the following
threshold for cooperativeness

θtc =
P + T − R

R − P

for both players, then the two players will always play mutual defection. On the
contrary, if at the beginning of the learning process every player has a uniform
probability distribution over the strategies of the other player and the value of
norm sensitivity is higher than the threshold θtc for both players, then the two
players will always play mutual cooperation.

Theorem 2. Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game with fairness
norm à la Rawls such that (N , (Si)i∈N ,U) is the Prisoner’s Dilemma and let
H = ((ωi,j)i,j∈N , (ci)i∈N) be a history for NG. Moreover, assume that every
agent in N learns according to fictitious play along H and is rational for all
t ≥ 0, and that ω0

i,j(sj) = 0.5 for all i, j ∈ {1, 2} and for all sj ∈ {C,D}. Then:

– if κ1 < θtc and κ2 < θtc then c1(t) = c2(t) = D for all t ≥ 0,
– if κ1 > θtc and κ2 > θtc then c1(t) = c2(t) = C for all t ≥ 0.

310 E. Lorini and R. Mühlenbernd

Proof. Assume that every agent in N learns according to fictitious play along H
and is rational for all t ≥ 0, and that ω0

i,j(sj) = 0.5 for all i, j ∈ {1, 2} and for
all sj ∈ {C,D}. We are going to prove that, for all i, j ∈ {1, 2}, if κi > P+T−R

R−P

then EU 0
i (C) > EU 0

i (D) and that if κi < P+T−R
R−P then EU 0

i (D) > EU 0
i (C).

First of all, let us compute the values of EU 0
i (D) and EU 0

i (C):

EU 0
i (D) = 0.5 × P + 0.5 × (T − κi × (R − S))

= 0.5 × P + 0.5 × (T − κi × R)

= 0.5 × (P + T − κi × R)

EU 0
i (C) = 0.5 × R + 0.5 × (S − κi × (P − S))

= 0.5 × R + 0.5 × (−κi × P)

= 0.5 × (R − κi × P)

It follows that EU 0
i (D) > EU 0

i (C) if and only if P +T −κi ×R > R−κi ×P .
The latter is equivalent to κi < P+T−R

R−P . Therefore, we have EU 0
i (D) > EU 0

i (C)
if and only if κi < P+T−R

R−P . By analogous argument, we can prove that EU 0
i (C) >

EU 0
i (D) if and only if κi > P+T−R

R−P .
It is routine task to verify that, for all possible values of κ1 and κ2 in the

original normative game NG , the strategy profile (D,D) is a strict Nash equilib-
rium in the transformed PD depicted in Figure 2 in which the utility function
Ui is replaced by U ∗

i for all i ∈ {1, 2}. Hence, by Proposition 2.1 in [8] and the
fact that every agent is rational for all t ≥ 0, it follows that if κ1 < P+T−R

R−P and
κ2 < P+T−R

R−P then c1(t) = c2(t) = D for all t ≥ 0.
It is also a routine to verify that, if κi > T−R

R−S for all i ∈ {1, 2}, then the strat-
egy profile (C,C) is a strict Nash equilibrium in the transformed PD depicted in
Figure 2. Hence, by Proposition 2.1 in [8], the fact that every agent is rational
for all t ≥ 0 and the fact that P+T−R

R−P > T−R
R−S , it follows that if κ1 > P+T−R

R−P

and κ2 > P+T−R
R−P then c1(t) = c2(t) = C for all t ≥ 0. �	

5 Computational Results in the PD with Fairness Norm
à la Rawls

Theorem 2 shows that if both κ-values are smaller than the threshold for coopera-
tiveness θtc, both players converge to mutual defection, whereas if both κ-values
are greater than this threshold, both players converge to mutual cooperation.
Note that this does not cover the whole space of tuples of κ-values, c.f. how do
agents operate, if one value is smaller and the other value is greater that θtc? In
these terms we are faced with the more general question: for which combination
of κ-values do agents converge to mutual cooperation or to mutual defection
under fictitious play?

The Long-Term Benefits of Following Fairness Norms 311

To examine the convergence behavior of players under fictitious play for
different κ-values, we conducted multiple computations of repeated interactions,
for different game parameters and a large subset of the κ2-space. We recorded the
results and we managed to deduce the conditions determining the convergence
behavior that pertain perfectly with the data. These conditions are as follows.

For all normative gameswith fairness norm à laRawlsNG = (N , (Si)i∈N ,U, I, κ)

and history H = ((ωi,j)i,j∈N , (ci)i∈N) for NG that we computed such that
(N , (Si)i∈N ,U) is the Prisoner’s Dilemma, every agent in N learns according to fic-
titious play along H , is rational for all t ≥ 0, and ω0

i,j(sj) = 0.5 for all i, j ∈ {1, 2}
and for all sj ∈ {C,D}, the following three conditions were satisfied:

1. if (κ1 − limmx) × (κ2 − limmx) < curvmx then ∃t′ ∈ N : c1(t) = c2(t) = D
for all t ≥ t′,

2. if (κ1 − limmx) × (κ2 − limmx) > curvmx then ∃t′ ∈ N : c1(t) = c2(t) = C
for all t ≥ t′,

3. if (κ1 − limmx) × (κ2 − limmx) = curvmx then both players converge to a
mixed strategy,

whereby:

curvmx =
(

PT

(R + P)(R − P)

)2

limmx =
P 2 + R(T − R)
(R + P)(R − P)

Note that the equation (κ1 − limmx) × (κ2 − limmx) = curvmx defines a
separating curve between the convergence to mutual cooperation and mutual
defection: for at least one of both κ-values being less than given, the first condi-
tion holds and fictitious play converges to mutual defection, whereas for at least
one of both κ-values being greater than given, the second condition holds and
fictitious play converges to mutual cooperation. For each pair of κ-values that
fulfills the equation, the third condition holds and fictitious play converges to a
mixed strategy for each player. This curve can be defined as a function for the
convergence to a mixed strategy fmx over κ1-values3:

fmx(κ1) =
curvmx

κ1 − limmx
+ limmx

The function fmx is depicted in Figure 3. A necessary condition of function
fmx to be correct is that it has an intersection point for κ1 = κ2 = θtc, as proved
in Theorem 3. An implication of function fmx to be correct is the fact that the
value limmx is the asymptote of the function fmx, as proved in Theorem 4, and
therefore determines a lower bound for κ-values that enable the convergence to
mutual cooperation. Finally, note that the value curvmx determines the curva-
ture of the function. Since limmx and curvmx both depend on the parameters of
3 Note that the function forms an anallagmatic curve, c.f. it inverts into itself.

312 E. Lorini and R. Mühlenbernd

κ1

κ2 fmx(κ1)

θtc

θtc

limmx

limmx

Fig. 3. The dark gray/light gray area shows in accordance with Theorem 2 that if both
κ-values are smaller than the threshold for cooperativeness θtc = P+T−R

R−P
, both players

behave according to mutual defection (dark gray area), whereas if both κ-values are
greater than this threshold, both players behave according to mutual cooperation (light
gray area). The curve represents the function for non-convergence fmx and defines for
which combination of κ-values players converge to mutual cooperation (right of/above
the curve), converge to mutual defection (left of/below the curve) or converge to a com-
bination of mixed strategies (points of the curve). Note that i) limmx is the asymptote
of the function fmx, thus it defines a lower bound for mutual cooperation, and ii)
κ1 = κ2 = θtc is an intersection point of the curve.

the PD game, the asymptote and curvature of a function fmx can strongly differ
among different games. Figure 4 shows the different curves of function fmx for
different game parameters.

Theorem 3. κ1 = κ2 = θtc is an intersection point of function fmx.

Proof. We are going to show that fmx(θtc) = θtc:

fmx(θtc) =
curvmx

θtc − limmx

+ limmx

=

(
PT

(R+P)(R−P)

)2

P+T−R
R−P − P2+R(T−R)

(R+P)(R−P)

+ limmx

=

(
PT

(R+P)(R−P)

)2

(R+P)(P+T−R)
(R+P)(R−P) − P2+R(T−R)

(R+P)(R−P)

+ limmx

The Long-Term Benefits of Following Fairness Norms 313

=

(
PT

(R+P)(R−P)

)2

(R+P)(P+T−R)−(P2+R(T−R))
(R+P)(R−P)

+ limmx

=

(
PT

(R + P)(R − P)

)2

× (R + P)(R − P)

(R + P)(P + T − R) − (P 2 + R(T − R))
+ limmx

=

(
PT

(R + P)(R − P)

)2

× (R + P)(R − P)

PT
+ limmx

=
PT

(R + P)(R − P)
+ limmx

=
PT

(R + P)(R − P)
+

P 2 + R(T − R)

(R + P)(R − P)

=
PT + P 2 + R(T − R)

(R + P)(R − P)

=
PT + P 2 + RT − R2

(R + P)(R − P)

=
(P + T − R)(R + P)

(R + P)(R − P)

=
P + T − R

R − P
= θtc

�	
Theorem 4. limmx is the asymptote of function fmx.

Proof. We are going to show that lim
κ→+∞ fmx(κ) = limmx:

lim
κ→+∞ fmx(κ) = lim

κ→+∞

(
curvmx

κ − limmx
+ limmx

)

= lim
κ→+∞

(
curvmx

κ − limmx

)

+ limmx

= limmx

�	

6 Tournaments and Experimental Results

Let’s assume we have a mixed population in terms of sensitivity to fairness norm
κ. There might be individuals with high κ-values, with low κ-values or with no
sensitivity to that norm at all. In such a setup it is reasonable to ask how
beneficial fairness norm sensitivity might be. Is a low, middle or high sensitivity
rather detrimental or profitable - especially in comparison with the outcome of
the other individuals of the population?

To get a general idea of how beneficial a particular degree of sensitivity to
the fairness norm might be, we tested the performance of agents with differ-
ent κ-values in a tournament. Such a tournament was inspired by Axelrod’s
tournament of the repeated Prisoner’s Dilemma [4]. In Axelrod’s tournament a
number of agents play the repeated Prisoner’s Dilemma - pairwise each agent
against every other agent - for a particular number of repetitions. Each agent

314 E. Lorini and R. Mühlenbernd

θtc

limmx

θtc

limmx

θtc

limmx

fmx[G1]
fmx[G2]

fmx[G3]
κ1

κ2

0

2

4

6

8

0 2 4 6 8

Game G1 G2 G3

T 3 4 7
R 2 3 6
P 1 2 2
θtc 2 3 .75
limmx 1 1.4 .125
curvmx 1 2.56 ≈ .2

Fig. 4. Exemplary Prisoner’s Dilemma games G1 (T = 3, R = 2, P = 1), G2 (T =
4, R = 3, P = 2) and G3 (T = 7, R = 6, P = 2) and their corresponding values θtc,
limmx and curvmx (right table). The graph shows the corresponding curves of the
function fmx for each game. Note that the value curvmx behaves anti-proportional to
the curvature of the function.

updates her behavior according to a rule defined by its creator. The score of
each encounter is recorded, and the agent with the highest average utility over
all encounters wins the tournament.

In our tournament we also define a number of n agents 0, 1, 2, ..., n − 1,
where each agent plays against each other agent for a number of repetitions
tmax. In distinction from Axelrod’s tournament, all agents i) play the Prisoner’s
Dilemma as a normative game with fairness norm à la Rawls, and ii) have the
same update rule: fictitious play. Although the agents have the same update
rule, they differ in another crucial aspect: their sensitivity to the fairness norm.
To keep things simple, we predefine that their sensitivity is i) bounded above
by a value κmax ∈ R>0, and ii) equally distributes among the n agents, just by
ascribing sensitivity to the fairness norm κi = i×κmax

n−1 to agent i.4 A tournament
works as follows: for each pair of agents i, j we conducted a normative game with
fairness norm à la Rawls based on the Prisoner’s Dilemma for a number of tmax

repetitions, whereby agents i and j learn according to fictitious play along their
common history. For each agent i her average utility TUi - called tournament

4 Note that to ascribe a value of fairness norm sensitivity κ = i×κmax
n−1

to agent i
ensures that agent 0 has a sensitivity to the fairness norm of 0, agent n − 1 has one
of κmax, and all other agents’ sensitivity to the fairness norm are equally distributed
between these boundaries.

The Long-Term Benefits of Following Fairness Norms 315

κ

TU

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

θtc
tmax = 200tmax = 50tmax = 20tmax = 10

tmax κ∗

10 0.0
20 2.02
50 3.82
200 4.0

Fig. 5. The resulting tournament utilities of four different tournaments with 200 agents
each, pairwise playing a normative game with fairness norm à la Rawls based on a
Prisoners Dilemma game with T = 3, R = 2, P = 1 and S = 0. The right table shows
for each tmax parameter the appropriate optimal sensitivity to the fairness norm κ∗ of
the tournament’s winner.

utility - is computed, which is the average utility value an agent scored over all
interactions.

For a given set of agents A that participate in such a tournament, the winner
is the agent i ∈ A who obtains the maximal tournament utility TUi. We refer to
the winner’s κi value as the optimal fairness norm sensitivity κ∗, with respect
to her tournament utility:

κ∗ = κi with i = arg max
j∈A

TUj

We computed 4 tournaments, each with 200 agents playing a normative game
NG with fairness norm à la Rawls based on a Prisoner’s Dilemma with T = 3,
R = 2, P = 1 and S = 0. For such a game θtc is 2, and to ensure an equal
portion of cooperative and non-cooperative agents, we set κmax = 2 × θtc = 4.
The tournaments differed in the parameter for tmax, here we chose the values 10,
20, 50 and 200. Figure 5 shows the performance of each agent in the appropriate
tournament and the appended table shows the κ∗ value of each tournament’s
winner.

The results of the tournaments indicate that the optimal sensitivity to the
fairness norm is by any means dependent of tmax and θtc. To verify this indication
we computed a great number of further tournaments with different tmax and
κmax values. The results support de facto - without any exception - the following
two observations:

316 E. Lorini and R. Mühlenbernd

1. For two tournaments that differ solely in the parameters tmax and t′max,
whereby the tournaments’ optimal values of sensitivity to the fairness norm
are κ∗ and κ′∗, respectively, the following fact holds:

if tmax > t′max then κ∗ ≥ κ′∗

2. For every tournament it holds that:

κ∗ = 0 or κ∗ > θtc

The first observation unveils one condition for which a high sensitivity to
the fairness norm à la Rawls is beneficial. It tells us that κ∗ is monotonically
increasing in dependence of tmax, i.o.w. the value of the optimal sensitivity to
the fairness norm increases with the number of repetitions of a repeated game in
such a tournament. This result is in line with former insights, since i) we showed
in Section 4 that a high value of fairness norm sensitivity supports cooperative
behavior, and ii) we know from studies of repeated Prisoner’s Dilemma that
cooperative behavior is especially beneficial in combination with reputation [19],
a virtue that needs repetition to be established.

The second observation says that it is optimal either to have no sensitivity
to the fairness norm at all, or to have a sensitivity to the fairness norm that
ensures preliminary cooperativeness5. Which of both cases holds depends inter
alia on the number of repetitions tmax. By all means, it is never the case that
0 < κ∗ ≤ θtc. This stresses the fact that a great fairness norm sensitivity is only
beneficial if it not only enables a line of mutual cooperation, but it also implies
preliminary willingness to start it.

7 Conclusion and Perspectives

Our study presents a game-theoretic model of guilt in relation to sensitivity to
the norm of fairness à la Rawls. We i) employed this model on the Prisoner’s
Dilemma, and ii) worked out the convergence behavior under fictitious play for
any combination of the fairness norm sensitivity of both players. We found out
that a particular threshold for cooperation θtc plays a crucial role: it defines
for which combinations both agents cooperate of defect from the beginning,
and for which combinations they might learn to cooperate or to defect. In a
final experimental setup, we analyzed the performance of multiple agents with
different values of sensitivity to the fairness norm involved in a tournament of
repeated games. We revealed that i) a great sensitivity to the fairness norm is
the more beneficial, the higher the number of repetitions of the repeated game
is, and ii) the threshold for cooperation θtc defines a lower bound for a great
sensitivity to the fairness norm to be beneficial at all.

5 As we have shown in Theorem 2, if agents have a sensitivity to fairness κ > θtc, their
first move is to cooperate. This behavioral characteristic can be seen as preliminary
cooperativeness.

The Long-Term Benefits of Following Fairness Norms 317

A further observation - that was not elaborated here - was the fact that a
great sensitivity to a fairness norm is the more beneficial in a population, the
more other agents have a great sensitivity to that norm. This fact let us presume
that fairness norm sensitivity i) is a reasonable value for explaining multiple
cooperation in multi-player games like the public goods game, and ii) is a good
candidate to be analyzed under stability aspects of population dynamics, e.g. as
an evolutionary stable strategy [15], a standard concept in evolutionary game
theory. Such analyses are currently in progress and will be part of subsequent
studies. This line of future work will allow us to relate our analysis with existing
naturalistic theories of fairness according to which sensitivity to fairness norm
might be the product of evolution (see, e.g., [6]).

References

1. Andrighetto, G., Villatoro, D., Conte, R.: Norm internalization in artificial
societies. AI Communications 23, 325–339 (2010)

2. Andrighetto, G., Villatoro, D., Conte, R.: The role of norm internalizers in mixed
populations. In: Conte, R., Andrighetto, G., Campenni, M. (eds.) Minding Norms:
Mechanisms and Dynamics of Social Order in Agent Societies, pp. 153–174. Oxford
University Press, Oxford (2013)

3. Aronfreed, J.M.: Conduct and Conscience: The Socialization of Internalized
Control Over Behavior. Academic Press, New York (1968)

4. Axelrod, R.: The Evolution of Cooperation. Basic books (1984)
5. Berger, U.: Fictitious play in 2xn games. Journal of Economic Theory 120, 139–154

(2005)
6. Binmore, K.: Natural justice. Oxford University Press, New York (2005)
7. Brown, G.W.: Iterative solution of games by fictitious play. In: Koopmans, T.C.

(ed.) Activity Analysis of Production and Allocation, pp. 374–376. John Wiley,
New York (1951)

8. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press,
Cambridge (1998)

9. Gaudou, B., Lorini, E., Mayor, E.: Moral guilt: an agent-based model analysis. In:
Kamiński, B., Koloch, G. (eds.) Advances in Social Simulation. AISC, vol. 229,
pp. 95–106. Springer, Heidelberg (2014)

10. Gintis, H.: The hitchhiker’s guide to altruism: Gene-culture co- evolution, and the
internalization of norms. Journal of Theoretical Biology 220(4), 407–418 (2003)

11. Gintis, H.: The genetic side of gene-culture coevolution: internalization of norms
and prosocial emotions. Journal of Economic Behavior and Organization 53, 57–67
(2004)

12. Haidt, J.: The moral emotions. In: Davidson, R.J., Scherer, K.R., Goldsmith, H.
H. (eds.) Handbook of Affective Sciences, pp. 852–870. Oxford University Press
(2003)

13. Harsanyi, J.: Cardinal welfare, individualistic ethics, and interpersonal comparisons
of utility. Journal of Political Economy 63, 309–321 (1955)

14. Loomes, G., Sugden, R.: Regret theory: An alternative theory of rational choice
under uncertainty. Economic Journal 92(4), 805–824 (1982)

15. Smith, J.M., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973)
16. Mill, J.S.: Utilitarianism. Parker, Son & Bourn, West Strand (1863)

318 E. Lorini and R. Mühlenbernd

17. Miyazawa, K.: On the convergence of the learning process in a 2x2 non-zero-
sum two-person game, vol. 3. Princeton University Econometric Research Program
(1961)

18. Monderer, D., Shapley, L.S.: Fictitious play property for games with identical
interests. Journal of Economic Theory 68, 258–265 (1996)

19. Nowak, M., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–1298
(2005)

20. Rawls, J.: A Theory of Justice. Harvard University Press, Cambridge (1971)
21. Searle, J.: Rationality in Action. MIT Press, Cambridge (2001)
22. Vidal, J.M.: Learning in multiagent systems: an introduction from a game-theoretic

perspective. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) Adaptive Agents and
Multi-agent Systems, pp. 202–215. Springer-Verlag, Berlin (2003)

Using Preferences in Negotiations
over Ontological Correspondences

Terry R. Payne(B) and Valentina Tamma

Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
{T.R.Payne,V.Tamma}@liverpool.ac.uk

Abstract. The alignment of disparate ontology is of fundamental
importance to support opportunistic communication within open agent
systems, and as such has become an established and active research area.
Traditional alignment mechanisms typically exploit the lexical and struc-
tural resemblance between the entities (concepts, properties and indi-
viduals) found within the ontologies, and as such often require agents to
make their ontology available to an oracle (either one of the agents them-
selves or a third party). However, these approaches are used irrespectively
of whether they are suitable given the intended models underlying the
ontologies and hence their overlap, and usually require the disclosure of
the full ontological model. This prevents the agents from strategically
disclosing only part of their ontological model on the grounds of privacy
or confidentiality issues. In this paper we present a dialogue based mech-
anism that allows two agents with limited or no prior knowledge of the
other’s ontological model to determine whether it is possible to achieve
some form of alignment between the two ontologies. We show how two
agents, each possessing incomplete sets of private, heterogeneous (and
typically ambiguous) correspondences, can derive an unambiguous align-
ment from a set of ambiguous, but mutually acceptable correspondences
generated using an inquiry dialogue. The termination properties of the
dialogue are formally proved, and the presentation and instantiation of an
abstract preference-based argumentation is given. We demonstrate how
ambiguity can be eliminated through the use of undercuts and rebuttals,
given preference relations over the arguments.

1 Introduction

For an agent system to behave appropriately in uncertain or unknown envi-
ronments it should have an internal representation, or world model, of what it
perceives in the environment surrounding it. This representation is often inter-
nal to the agent, and defined within some logical theory (ontology) that is not
always fully shared with other agents, even within complex collaborative mod-
els, although it models common assumptions regarding how pertinent informa-
tion and knowledge is modelled, expressed and interpreted. When interoperation
between heterogenous systems is required, often joint operations are preceded
by an integration phase where the different knowledge models are reconciled and
possible implicit assumptions are clarified. However, this lack of explicit shared
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 319–334, 2015.
DOI: 10.1007/978-3-319-25524-8 20

320 T.R. Payne and V. Tamma

semantics can compromise more dynamic and opportunistic applications (e.g.
e-commerce, open-data or mobile systems).

Knowledge integration has traditionally depended on the creation of align-
ments between pairs of ontologies, where an alignment consists of a set of cor-
respondences between related entities. Many systems have been proposed that
align pairs of ontologies to find these sets of correspondences, known as align-
ments [2]; however, most rely on the ontologies to be fully shared, and no single
approach can provide a panacea for all ontology pairs. This raises the ques-
tion “what alignments or alignment mechanisms should be used by two agents
to align their ontologies?” The question is further exacerbated in those cases
when neither agent may be prepared to disclose all of its ontology. The notion
of privacy preserving information sharing has been advocated by a number of
previous efforts [1,5,6,13], which include use-cases that require some form of pri-
vacy preservation in either the schema or data (or both); including monitoring
healthcare crises, facilitating e-commerce, outsourcing, and end-to-end integra-
tion. More recently, the notion of preserving privacy when matching schemas
and ontologies was proposed to facilitate interoperation between different par-
ties when the possibility of sharing ontological knowledge is reduced [6,13].

The existence of alternate, pre-computed alignments has been exploited by
several recent alignment negotiation approaches, which aggregate the constituent
correspondences [7,11,12,16]. However, certain correspondences may be found
frequently by different alignment approaches, whereas others could be spurious
or erroneous, and only appear rarely, resulting in different levels of confidence
or weight. Alignment systems may also map entities from one ontology to differ-
ent entities in the other ontology, leading to ambiguity. Combining these would
result in undesirable behaviour, such as incoherence and inconsistency within the
ontologies, and thus render the alignment unusable. Furthermore, if we assume
that agents can acquire such alignments through past experience, it follows that
different agents will typically be aware only of a subset of the possible corre-
spondences between two ontologies, and thus the knowledge of one agent can
be very different to that of another. Hence, agents need to agree on what cor-
respondences are the most relevant to resolve ambiguous combinations, whilst
behaving rationally; i.e. only disclosing and proposing viable correspondences
whilst minimising the total number of beliefs disclosed.

In [15], we formally defined a novel inquiry dialogue that allows agents to
assert, counter, accept and reject correspondences shared by their peers. It
assumed that the agents had acquired correspondences from past encounters,
or from publicly available alignment systems, that were kept private, and that
each agent associated some weight to each known correspondence. As this knowl-
edge was asymmetric and incomplete (i.e. neither agent involved in the dialogue
is aware of all of the correspondences, and their private weight for each corre-
spondence could vary greatly), the agents engaged in an inquiry dialogue to:
1) ascertain the joint acceptability of each correspondence; and to 2) select an
unambiguous set of correspondences which reduced the possibility of the result-
ing alignment being incoherent. In this paper we significantly extend this work

Using Preferences in Negotiations over Ontological Correspondences 321

with an argumentation framework that permits the agents to independently
and deterministically resolve ambiguous cases (i.e. where several solutions could
result from the combination of different correspondences) resulting from the dia-
logue. This framework instantiates the abstract argumentation system presented
in [3,4,14] and determines consensus over the final alignment through the use
of undercuts and rebuttals, given preference relations over the arguments. This
paper characterises the properties of the dialogue in terms of the agents’ mental
attitudes and their effect on the dialogue termination.

This contribution complements the empirical analysis of the Correspondence
Inclusion Dialogue in [15] which demonstrated that the approach finds viable
solutions (typically 95% of the optimal solution found centrally with complete
information), and that the precision of the final alignment increases by up to
40% (when compared to the average performance of using individual alignments
in that dataset), whilst only slightly affecting recall.

The remainder of this paper is organised as follows: the Correspondence Inclu-
sion Dialogue is first summarised in Section 2, followed by termination and
complexity proofs for this dialogue in Section 3. A complete walkthrough based
on that originally published in [15] is then provided to illustrate the dialogue
(Section 4), and highlight the need for a mechanism for resolving ambiguity. The
preference-based argumentation framework is then introduced, and its applica-
tion to the selection of correspondences is presented and illustrated by means of
examples in Section 5. The contribution of the paper is discussed in Section 6,
and the paper then concludes in Section 7.

2 The Correspondence Inclusion Dialogue

In [15], the Correspondence Inclusion Dialogue(CID) was presented which
enabled two agents to exchange knowledge about ontological correspondences
resulting in an alignment that satisfies the following: 1) each agent is aware of
a set of correspondences, each with an associated weight ; 2) there should be no
ambiguity with respect to either the source entities in the resulting alignment,
or the target entities; 3) if there are alternative choices of correspondences, the
selection is based on the combined, or joint weight of both agents; 4) that no cor-
respondences should be selected where their joint weight is less than some defined
evidence-threshold ; and 5) the number of correspondences disclosed (i.e. whose
weight is shared in the dialogue) should be minimised. The rationale behind this
dialogue exploits the fact that whilst the agents involved seek to minimise the
disclosure of their ontological knowledge, some exchange of ontological knowledge
(at least the exchange of a subset of candidate correspondences) is necessary to
determine a consensual set of correspondences that will form the final alignment.
Thus, whilst the agents are assumed to be inherently self interested, there is also
the assumption that the agents will collaborate to determine an alignment that
can facilitate communication [10], as it is in the interest of all rational agents
involved to be able to communicate successfully.

322 T.R. Payne and V. Tamma

2.1 Ontologies, Correspondences and Beliefs

The agents negotiate over the viability of different correspondences that could
be used to align the two agents’ ontologies. The dialogue therefore assumes
that each agent commits to an ontology O, which is an explicit and formally
defined vocabulary representing the agent’s knowledge about the environment,
and its background knowledge (domain knowledge, beliefs, tasks, etc.). O is
modelled as a set of axioms describing classes and the relations existing between
them1 and Σ is the ontology signature; i.e. the set of class and property names
used in O. To avoid confusion, the sender’s ontology is denoted Ox, whereas
the recipient’s ontology is Ox̂. For agents to interoperate in an encounter, they
need to determine an alignment AL between the two vocabulary fragments Ox

and Ox̂ for that encounter. An alignment [9] consists of a set of correspondences
that establish a logical relationship between the entities (classes, properties or
roles, and instances) belonging to each of the two ontologies, and a set of logical
relations2. The universe of all possible correspondences is denoted C. The aim of
the dialogue is to select an unambiguous set of viable correspondences, AL ⊆ C,
which maps between the entities in Ox and Ox̂, and whose joint weight is at least
as great as the admissibility threshold ε. The function ent(c) returns the set of
entities e, e′ for a correspondence c.

Definition 1. A correspondence is a triple denoted c = 〈e, e′, r〉 such that
e ∈ Σx, e′ ∈ Σx̂, r ∈ {=}.

Agents associate a private, static weight3 κc to a correspondence c (where
0 ≤ κc ≤ 1) that represents the confidence the agent has in the correctness of c.
The tuple 〈c, κc〉 is a belief an agent holds on c. We refer to beliefs sent by x as
φ, the beliefs sent by x̂ (to x) as ψ, and the set of all beliefs is denoted B. The
function corr : B �→ C returns the correspondence c for some belief.

Each agent manages a private knowledge base, known as the Alignment Store
(Δ), which manages the beliefs an agent has over its correspondences, and a pub-
lic knowledge base, or Joint Belief Store (JB), which contains correspondences
that have been shared. We distinguish between the sender’s stores, Δx and JBx,
and the recipient’s stores, Δx̂ and JBx̂, respectively. The sender’s joint belief
store JBx (JBx̂ for the receiver) contains beliefs that are exchanged as part of
the dialogue and hence contains beliefs sent and received by x (conversely x̂).
Throughout the dialogue, both agents will be aware of all of the beliefs shared4;
i.e. JBx = JBx̂.

Within the dialogue, the agents try to ascertain the unambiguous correspon-
dences (i.e. where no entity appears more than once in the alignment) to include
1 Here we restrict the ontology definition to classes and roles.
2 We only consider logical equivalence (as opposed to subsumption (�)), as it has the

property that correspondences are symmetric; i.e. 〈e, e′, =〉 is logically equivalent to
〈e′, e, =〉, and thus can be easily used by either agent.

3 Although no assumptions are made regarding how this value is determined, it could
for example reflect the probability in the validity of the correspondence.

4 For this reason, we will not distinguish between the two stores JBx and JBx̂ in the
remainder of this paper.

Using Preferences in Negotiations over Ontological Correspondences 323

Fig. 1. The dialogue as a state diagram. Nodes indicate the agent whose turn it to
utter a move. Moves uttered by Alice are labelled with a light font / dashed edge,
whereas those uttered by Bob are labelled with a heavy font / solid edge.

in the final alignment AL, such that the joint weight of the correspondences
in AL are maximised, and greater than or equal to the admissibility threshold,
ε. This is used to filter out correspondences with a low κc, whilst minimising
the number of beliefs disclosed. The function joint : C �→ [0, 1] returns the joint
weight for some correspondence c ∈ C. This results in either: 1) κjoint

c for the
average of both weights for both agents (if both weights have been disclosed);
or 2) κest

c for a conservative, upper estimate if only one of the two weights is
known, such that κest

c ≥ κjoint
c [15].

Each agent takes it in turn to propose a belief regarding some correspondence,
and the other participant confirms that the actual joint weight is not below
threshold; i.e. κjoint

c ≥ ε. If a correspondence c is ambiguous (i.e. an alternative,
viable correspondence exists, which could be considered), then the agents can
propose an alternative correspondence using the object move. As agents exchange
beliefs, they determine the joint weight κjoint

c for each correspondence c.

2.2 The Inquiry Dialogue Moves

The dialogue consists of a sequence of communicative acts, or moves, whereby
agents take turns to assert the candidacy of some correspondence c (and its
associated weight) for inclusion in a mutually acceptable alignment, AL, and
respond to such assertions by: 1) confirming the acceptability of c; 2) rejecting
the acceptability of c; or 3) proposing alternate correspondences in the case of

324 T.R. Payne and V. Tamma

Table 1. The set M of legal moves permitted by the dialogue.

Syntax Description

〈x, join, nil, nil〉 Agents assert the join move to participate within the dialogue.

〈x, assert, φ, nil〉 The agent x will assert the belief φ for a correspondence c that
is believed to be viable for inclusion into the final alignment
AL, and is the undisclosed belief with highest private weight.

〈x, object, φ, φatt〉 An agent can object to some correspondence catt = corr(φatt)
if it knows of another correspondence c that shares one of the
two entities in catt, i.e. ambiguous(φ, φatt), and κest

c ≥ κjoint
catt .

The agent utters the object move to: 1) inform the recipient
of the senders private weight of the disclosed correspondence
catt through the belief φatt; and 2) propose an alternative cor-
respondence c by asserting the belief φ.

〈x, accept, φ, nil〉 If the agent received a belief ψ for c in the previous move, and
κjoint
c ≥ ε, then the agent can confirm this by accepting the

correspondence and sharing its own private weight in φ, where
corr(φ) = corr(ψ).

〈x, reject, ψ, nil〉 If the agent received a belief ψ for c in the previous move, but
was not viable (i.e. κjoint

c < ε), then the agent can reject this
simply by returning the original belief ψ.

〈x, endassert, nil, nil〉 If an agent has no more objections to make about the corre-
spondences negotiated since the previous assert, it can then
indicate this by uttering an endassert move. Once both agents
have uttered this move sequentially, a new assert move can be
uttered, or the dialogue can close.

〈x, close, nil, nil〉 If an agent has no more correspondences that could be viable,
but that have not been disclosed, then it utters a close move.
However, the dialogue does not terminate until both agents
utter a sequence of close moves (known as a matched-close).

ambiguity. Each agent discloses its private belief regarding c, and the agents
goals are to rationally identify an unambiguous set of correspondences deemed
viable by both agents, given an admissibility threshold ε. It assumes that only
two agents (referred to as Alice and Bob) participate in the dialogue, and that
each agent plays a role in each dialogue move, i.e. the agent is either a sender x
or recipient x̂.

The set of possible moves M permitted by the dialogue are summarised in
Table 1. The syntax of each move at time s is of the form ms = 〈x, τ, φ, φatt〉,
where x represents the identity of the agent making the move; τ represents
the move type; φ is a tuple that represents the belief that agent x has for a
correspondence and the weight it associates to that correspondence; whereas
φatt represents a belief for some correspondence that the agent is countering.
For some moves, it may not be necessary to specify one or either beliefs; in
which case they will be empty or unspecified (represented as nil).

Agents take turns to utter assert moves (i.e. to transition from state 3AB in
Figure 1). A sender x can also make multiple moves in certain circumstances,

Using Preferences in Negotiations over Ontological Correspondences 325

such as an accept or reject move (see states labelled 4A for Alice and 4B for Bob
in Figure 1). This enables an agent to accept or reject a disclosed correspondence
before making some other move (such as raising a object move), or signalling its
intention to end a negotiation round (through an endassert move).

2.3 Alignment Ambiguities

Ambiguities occur when more than one correspondence maps several entities in
the source ontology to a single entity in the target ontology (or vice versa).
This can result in logical incoherence (i.e. generate unsatisfiable concepts).
Objections can be made to an ambiguous belief, once it has been asserted. An
ambiguity can be determined if there is some entity that exists in the correspon-
dences of two beliefs.

Definition 2. An ambiguity occurs given beliefs φ, φ′, φ
= φ′ (denoted
ambiguous(φ, φ′)) iff ent(corr(φ)) ∩ ent(corr(φ′))
= ∅.

In the remainder of this paper, we present proofs for the properties of the
dialogue summarised above, and describe how the instantiation of a preference-
based argumentation system is used to identify unambiguous alignments.

3 Dialogue Properties

The ontology inquiry dialogue allows agents to identify viable correspondences
for inclusion in the final alignment, by determining arguments whose acceptabil-
ity is negotiated on the grounds of joint weight.

In the dialogue, the strategy underlying the assertion and the acceptance
of correspondences determine the agents’ mental attitudes. We follow [14] in
their classification and characterise the agents according to the stance taken
when facing assertion and acceptance. Let j and k be two agents engaged in
an ontology inquiry dialogue5. We redefine the careful, cautious and credulous
attitudes within the context of this dialogue:

Definition 3.

– An agent j is said to have a careful assertion attitude if it can assert any
correspondence c ∈ Δj with weight κc if no stronger correspondence c′ exists
in the alignment store Δj, i.e ∀c′ ∈ Δj : κc ≥ κc′ .

– An agent j is said to have a cautious acceptance attitude if it can accept
any correspondence c previously asserted by k with weight κc if no stronger
correspondence c′ exists in the alignment store Δj.

– An agent j is said to have a credulous acceptance attitude if it can accept any
admissible correspondence previously asserted by k , i.e. a correspondence c
with weight κc if κc ≥ ε, where ε is the admissibility threshold.

5 In this case j and k refer to the actual name of the agents rather than the role they
play in the dialogue.

326 T.R. Payne and V. Tamma

Given the formal definition of the moves for the ontology inquiry dialogue [15]
summarised in Table 1 it can be derived that an agent always displays a careful
assertion attitude, but it displays a credulous acceptance attitude when pre-
sented with the assertion of an admissible unambiguous correspondence. If the
correspondence is ambiguous then it shows a cautious attitude.

These attitudes determine the whether the dialogue terminates and the num-
ber of moves necessary for termination.

Proposition 1. The ontology inquiry dialogue with the set of moves M in
Table 1 will always terminate.

Proof. Both j and k have finite alignment stores Δj and Δk, as the set of possible
correspondences C is finite. In the dialogue the agents can propose the inclusion
of a correspondence in AL only once; when a correspondence is disclosed, it is
added to the joint belief store JB and its inclusion in the final alignment is
determined by the argumentation system.

The dialogue consists of a sequence of interactions, i.e. moves delimited by
assert – endassert that determines the candidacy of a correspondence c. When
c is asserted, it is either accepted, or countered with an object move which,
in turn, can be rejected. However, once a correspondence has been disclosed it
can no longer be retracted. If the dialogue does not end before every possible
correspondence is considered for inclusion, then it will end once the (finite) set
of assert moves regarding the possible correspondences (i.e. ⊆ (Δj ∪ Δk) as we
will only assert correspondences that are viable and grounded) have all been
made once.

Whilst is proposition guarantees that the dialogue terminates, it does not
offer much information regarding the length of the dialogue. The results of [14]
show how the dialogue formalism and mental attitudes of the agents determine
the precise bound.

Proposition 2. An ontology inquiry dialogue between the agents j and k will
terminate in O(|Δj ∪ Δk|) steps.

Proof. Agents in the dialogue will assert carefully and will accept either cred-
ulously or cautiously, depending on whether the asserted correspondence is
ambiguous. Hence, they will only assert a viable correspondence c that has the
highest weight, and can only accept a proposition c that is viable and unam-
biguous. Likewise, ambiguous correspondences will be accepted only if they have
the highest joint weight amongst the possible candidates. The ontology inquiry
dialogue can thus be seen as a series of interactions between j and k, delimited
by the assert – endassert moves, each aiming to establish the candidacy of the
correspondences. Hence the dialogue starts with one agent asserting c, to which
the second agent will either respond with an accept move, with a reject or an
object move. If c is either accepted or rejected, it will be followed by an endassert
that terminates the current interaction, and a new interaction can be initiated.
If the second agent believes more strongly in a correspondence c′ that shares one

Using Preferences in Negotiations over Ontological Correspondences 327

Fig. 2. Messages exchanged between Alice and Bob.

of the entities mapped in c, then it answers to the assertion with an object move
that proposes c′, a correspondence not yet disclosed that has the highest weight.
Now, the first agent can either accept this correspondence c′, or reject it, or try
to find a plausible alternative to object to it. This process will continue until the
first agent receives a correspondence c̄ that it can accept (either because it has
an acceptable joint weight or because it cannot find any other correspondence to
object to it). Analogously the second agent will only have the choice of accepting
or rejecting c̄ (as it has no other possible alternative).

The agents will take turns in iterating over these interactions until they have
no more correspondences to propose for inclusion in AL. This happens because
both agents can only construct a finite number of moves as the number of cor-
respondences to consider are finite and agents cannot propose a correspondence
twice or retract it, and therefore the dialogue terminates. Each of the interac-
tions can have a worst case length that is O(|Δj |) or O(|Δk|) depending on which
agent made the assert move, and each proposition in Δj and Δk can only be
asserted once, independently on how many interactions the agents go through
during the dialogue hence there can be at most O(|Δj ∪ Δk|).

4 Inquiry Dialogue Example

We illustrate the dialogue by means of an example. Two agents, Alice and Bob,
each possess a private ontological fragment, that provides the conceptualisation
for the entities that they use to communicate. Each agent has acquired a sub-
set of correspondences, and has associated a weight κc to each correspondence
(Table 2), in the range [0, 1]. Not every correspondence is known to every agent;
for example, Alice only knows about the correspondences 〈b, z,=〉, whereas she
knows nothing about 〈c, y,=〉. The weight κc associated with each known cor-
respondence c is also initially private. In Table 2 we summarise κc and joint(c)
for each c for the two agents, and illustrate the correspondences between the
entities in the two ontologies. We assume that both agents utilise a quality, or
evidence threshold ε = 0.45 to filter out correspondences with a low joint(c).

The example dialogue between Alice and Bob is presented in Figure 2. The
turn order is non-deterministic; in this example, Alice makes the first assert.

328 T.R. Payne and V. Tamma

Table 2. The private and joint weights for sample correspondences [15], and how they
map between ontological entities. Propositions representing the candidacy of corre-
spondence c is given by p.

p c κAlice
c κBob

c κjoint
c

i 〈a, x, =〉 0.8 0.6 0.7
j 〈b, x, =〉 0.5 0.8 0.65
k 〈b, w, =〉 0.6 0.4 0.5
l 〈b, z, =〉 0.9 — 0.45
m 〈c, y, =〉 — 0.2 0.1

The two agents initiate the dialogue by both uttering the join move (omitted
from Figure 2). Each exchange is shown, with its move identifier. As each belief
disclosed states the agent’s individual weight, values will differ depending on
the sender. For example, Bob discloses κBob

〈b,x,=〉 = 0.8 in move 4, whereas in
Alice’s response in move 5, she discloses κAlice

〈b,x,=〉 = 0.5. Each agent maintains an
estimate of the other agents upper bound, which reflects the maximum weight
an agent has in its undisclosed correspondences6.

Move 3: Alice selects one of her undisclosed correspondences with the high-
est κc; in this case, 〈b, z,=〉. Initially, Alice assumes Bob’s upper bound is 1, and
estimates the upper bound estimate for correspondence c (denoted jointest(c)) to
be 1

2 (0.9+1.0) = 0.95. As this is above her ε, she asserts the tuple 〈0.9, 〈b, z,=〉〉.
Move 4: As Bob was previously unaware of this correspondence, he calcu-

lates the actual joint(〈b, z,=〉) as 1
2 (0.9 + 0.0) = 0.45. Furthermore, Bob knows

of an alternative correspondence 〈b, x,=〉 that shares the entity b with Alice’s
asserted correspondence. He knows, from Alice’s previous assertion, that she
will possess no correspondences with κc greater than 0.9 (as she would have
asserted a belief with the highest κc), and therefore estimates an upper bound
on jointest(〈b, x,=〉) to be 1

2 (0.9 + 0.8) = 0.85. As this is greater than the actual
value for joint(〈b, z,=〉) = 0.45, he utters an object move, disclosing the alterna-
tive correspondence to Alice’s correspondence, with his κc values for both.

Moves 5-6: Alice has a lower κ〈b,x,=〉 = 0.5, and thus calculates joint(〈b, x,=
〉) = 1

2 (0.5 + 0.8) = 0.65. As 〈a, x,=〉 shares the entity x but has a higher
jointest(〈a, x,=〉) = 1

2 (0.8 + 1.0) = 0.9, Alice utters her own objection. Bob
computes the actual value (joint(〈a, x,=〉) = 1

2 (0.8 + 0.6) = 0.7); as he has no
other correspondences that could object to Alice’s objection, he accepts it.

To ensure that each agent takes turns in the negotiation, they follow an
accept or reject move with another utterance.

Moves 7-8: Bob could now follow the acceptance by closing the negotia-
tion or raising an alternative objection to one of the earlier proposed correspon-
dences (including those he disclosed). One such alternative is the correspondence
〈b, w,=〉, which again has the entity b in common with Alice’s original assertion.
Alice accepts the candidacy of this correspondence.

6 Note that the upper bound is not detailed here, but more information on how it is
used within the dialogue can be found in [15].

Using Preferences in Negotiations over Ontological Correspondences 329

Moves 9-10: At this point, Bob has no further correspondences that he
wants to disclose. However, whilst checking for possible objections, he discovers
that joint(〈b, x,=〉) ≥ joint(〈b, w,=〉), yet neither he or Alice had raised this objec-
tion. Despite the fact that both agents know the actual joint weights for both
correspondences, he utters the objection to Alice’s move. As this includes corre-
spondences that have already been disclosed, Alice simply responds by accepting
this objection (move 10).

Moves 11-14: Alice utters an endassert, signalling that she has no further
objections to the correspondences exchanged so far. Bob also has no further
objections, so also utters an endassert. At this point, as neither agent has any
other correspondences to assert, they both issue a close utterance, and the dia-
logue ends.

Fig. 3. The Final Attack Graph 〈Ag, �〉.

Each agent can now review the objections that were raised during the negoti-
ation rounds, and from these, resolve their attack graphs (Figure 3). As attacks
are resolved by finding the node with the highest value, attacks from 〈a, x,=〉
are resolved first. It attacks 〈b, x,=〉, which can no longer attack either 〈b, w,=〉
or 〈b, z,=〉. The next highest node is then considered (in this case 〈b, w,=〉),
which attacks 〈b, z,=〉. Thus the only nodes remaining in the graph are 〈a, x,=〉
and 〈b, w,=〉, which are added to the final alignment.

5 Arguing about Correspondence Inclusion

The abstract argumentation system presented in [3,14] forms the basis of our
approach to determine an alignment that resolves ambiguous correspondences,
and is generated whilst minimising the number of correspondences disclosed.
In [15], a heuristic approach for resolving ambiguous correspondences using
an attack graph 〈Ag,�〉 was given, based on Dung’s Abstract Argumentation
Framework [8]; where Ag ⊆ JB represented the set of viable but possibly
ambiguous beliefs, and 〈φ, φ′〉 ∈ � represented the attack relations between
beliefs (such that φ would attack φ′, and vice versa). Attacks were resolved by
comparing the joint weights of the beliefs in each attack relation. In this section,
we replace this heuristic approach with a preference-based argumentation sys-
tem that instantiates the general framework presented in [14] to support the
selection of mutually acceptable alignments. In this instantiation, agents gen-
erate and resolve propositions that assert the viability of correspondences for
inclusion in AL.

330 T.R. Payne and V. Tamma

In the argumentation system, the inclusion of a correspondence is modelled
as a member of a possibly inconsistent knowledge base Σ with no deductive
closure, which contains formulas of a propositional language L. Each proposition
pc denotes the fact that the correspondence c is included in the final alignment
AL, whereas if ¬pc holds then c is not to be included in AL. Under these
conditions, an argument in favour of including a correspondence c in AL is
defined as:

Definition 4. An argument is a pair A = (H,hc) where hc is a proposition of
L representing the inclusion of some correspondence c in the alignment AL, and
H is a subset of Σ such that:

1. H is consistent;
2. H � hc; and
3. H is minimal (i.e. no strict subset of H satisfies 1 and 2).

H is called the support of A while hc is the conclusion of A (denoted
support(A) and conclusion(A) respectively). The set of all arguments that can
be constructed from the knowledge base Σ is denoted A(Σ). However, as Σ is
inconsistent, arguments in A(Σ) will conflict, such that one argument can rebut
or undercut another as follows:

Definition 5. Let A1 and A2 be two arguments of A(Σ).

– A1 rebuts A2 iff h1 ≡ ¬h2 where h1 = conclusion(A1) and h2 = conclusion(A2).
– A1 undercuts A2 iff h1 = conclusion(A1), and ∃h2 ∈ support(A2) such that

h′ ≡ ¬h.

An argument can rebut a second argument iff the conclusion of one is the
negated conclusion of the other, whereas an argument is undercut iff there exists
some conclusion from another argument that directly contradicts (i.e. negates)
a proposition in the support of the first argument.

Example 1. Given the knowledge base Σ = {i,¬i, j, i ↔ ¬j} and three argu-
ments: a1 = ({j}, j), a2 = ({i, i ↔ ¬j},¬j), and a3 = ({¬i},¬i) then a1 rebuts
a2, as the conclusion of a1 = j contradicts the conclusion of a2 = ¬j; whereas a3

undercuts a2, as the conclusion of a3 = ¬i contradicts i in the support of a2.
The knowledge base Σ is constructed by each agent throughout the dialogue,

based on the beliefs added to JB. Each correspondence that is considered viable
(resulting from an accept or object move) is represented in Σ by a proposition.
Ambiguous pairs of correspondences (based on object moves) are modelled by
propositional formulae that admit one, but not both correspondences. Thus, if
we have two viable, ambiguous correspondences represented by the propositions
p and q, we can say p ↔ ¬q in support of one correspondence, and q ↔ ¬p
in support of the other. This results in inconsistency within Σ, which can be
resolved through the use of a rebut or an undercut.

Example 2. If the correspondence 〈c, y,=〉 is accepted (Table 2), and its candi-
dacy is represented by the proposition m, then {m} ⊆ Σ. If two new viable but

Using Preferences in Negotiations over Ontological Correspondences 331

ambiguous correspondences, 〈b, w,=〉 and 〈b, z,=〉 (represented by the propo-
sitions k and l respectively) appear in an object move, then {k, l, k ↔ ¬l, l ↔
¬k} ⊆ Σ.

To capture the fact that some correspondences have a stronger joint weight
than others, we assume that any set of propositions representing the candidacy
of those correspondences has a preference order over it:

Definition 6. CorrPref ⊆ C×C is a preference relation such that given two cor-
respondences c and c′, c is preferred to c′ (CorrPref (c, c′)) iff c is more strongly
believed than c′, i.e. κjoint

c > κjoint
c′ .

This results in a total preordering on the propositions in Σ. The preference
relation needs to be strict to ensure that one argument can always defeat another
(i.e. to resolve symmetric attacks). We also consider the inherent order in which
a correspondence c is added to the Joint Belief Store JB. We say before(c, c′)
holds iff c is added to the JB before c′, and preference over the set of propositions
is defined as:

Definition 7. Let pc, pc′ be propositions in Σ, where pc (pc′) states the inclu-
sion of the correspondence c (c′) in the final alignment AL. The ordering pc is
preferred to pc′ (pc � pc′) is determined by:

pc � pc′ =

{
CorrPref (c, c′) if κjoint

c > κjoint
c′

before(c, c′) if κjoint
c = κjoint

c′

The relation pc � pc′ captures the fact that the two agents mutually prefer
some correspondences over others, and this is reflected both in the joint weight
and sequence in which beliefs are disclosed. This ordering induces a stratification
of the knowledge base Σ into disjoint sets Σ1, Σ2, · · · , Σn, such that the propo-
sitions stated in Σi are all equally preferred and are more preferred than those
in Σj , where j > i. The preference level of a non-empty subset H of Σ, level(H),
denotes the number of the highest numbered stratum that has a member in H.

Definition 8. Let A1 and A2 be two arguments in A(Σ). A1 is preferred to A2

according to Pref iff level(support(A1)) ≥ level(support(A2)).
Following [14], we denote by �Pref the strict preordering associated with

Pref, and if Pref(A1, A2) we say that A1 is stronger than A2. These definitions
permit us to define the instantiation of the argumentation system that we use
to generate AL. We first define: Rebut ⊆ A(Σ) × A(Σ) as the binary relation
representing the defeat relation between arguments’s conclusions; and Undercut
⊆ A(Σ) × A(Σ) as the binary relation representing the defeat relation between
arguments. We can say:

Definition 9. An argumentation system AS is a triple 〈A(Σ),R,Pref〉 such
that:

– A(Σ) is the set of the arguments built from Σ;
– R represents all of the defeat relationships between arguments; i.e. R =

Rebut ∪ Undercut; and

332 T.R. Payne and V. Tamma

– Pref is the strict total preordering on A(Σ) × A(Σ).

The preference order allows us to characterise the different types of relation-
ships that can hold between arguments:

Definition 10. Let A1, A2 be two arguments of A(Σ).

– If A2 defeats A1 then A1 defends itself against A2 iff A1 �Pref A2. Other-
wise, A1 does not defend itself.

– A set of arguments S defends A iff: ∀B defeats A and A does not defend
itself against B, ∃C ∈ S such that C defeats B and B does not defend itself
against C.

Based on [8], we can say S ⊆ A(Σ) is conflict free iff ∀X,Y ∈ S, (X,Y) /∈ R.
The status of the arguments can then be evaluated as follows:

Definition 11. Given AS, for any X ∈ A(Σ), X is acceptable with respect to
some S ⊆ A(Σ) iff ∀Y s.t. (Y,X) ∈ R implies ∃Z ∈ S s.t. (Z, Y) ∈ R. Let
S ⊆ A be conflict free. Then S is an admissible extension iff X ∈ S implies X
is acceptable w.r.t. S.

– S is an admissible extension iff X ∈ S implies X is acceptable w.r.t. S;
– S is a complete extension iff X ∈ S whenever X is acceptable w.r.t. S;
– S is a preferred extension iff it is a set inclusion maximal complete extension;
– S is the grounded extension iff it is the set inclusion minimal complete

extension;
– S is a stable extension iff it is preferred and ∀Y /∈ S,∃X ∈ S s.t. (X,Y) ∈ R.

The definitions for the complete, preferred, grounded and stable semantics are
discussed further in [8]. However, we can say that X is sceptically (or credulously)
justified under the complete, preferred, grounded or stable semantics if X belongs
to all (respectively at least one) of these extensions.

Example 3. The agents, Alice and Bob, have acquired a subset of correspon-
dences between their respective ontologies based on the dialogue described in
Section 4, with the propositions p used to refer to the correspondences pre-
sented in Table 2. When the dialogue concludes, each agent generates its own
stratified version of the knowledge base Σ, containing the following propositions:

Σ0.7 = {i, i ↔ ¬j}
Σ0.65 = {j, j ↔ ¬i, j ↔ ¬k, j ↔ ¬l}
Σ0.5 = {k, k ↔ ¬j, k ↔ ¬l}
Σ0.45 = {l, l ↔ ¬j, l ↔ ¬k}

The eight arguments in favour of (or arguing against) the viability of each cor-
respondence can now be generated, which form the argumentation system AS,
whereby the preference ordering is based on the levels of each stratum.

a1 = ({i, i ↔ ¬j},¬j) a5 = ({j, j ↔ ¬l},¬l)
a2 = ({j, j ↔ ¬i},¬i) a6 = ({l, l ↔ ¬j},¬j)
a3 = ({j, j ↔ ¬k},¬k) a7 = ({k, k ↔ ¬l},¬l)
a4 = ({k, k ↔ ¬j},¬j) a8 = ({l, l ↔ ¬k},¬k)

Using Preferences in Negotiations over Ontological Correspondences 333

Given these arguments, we find that a1 undercuts a2, as ¬j contradicts j,
and a1 is preferred to a2 as level(support(a1)) ≥ level(support(a2)) = 0.7 ≥ 0.65.
As there are no other attacks on a1 (i.e. it defended itself), its conclusion ¬j
will undercut arguments a3 and a5, as its support is also preferred to that of
a3 and a5. The arguments a7 and a8 are no longer attacked by a3 and a5.
However, a7 undercuts a8 as ¬l contraddicts l ↔ ¬k, and 0.5 ≥ 0.45. Finally,
a7 undercuts a6, as the conclusion ¬l contradicts l in the support of a6, and
support(a7) �Pref support(a6). The conclusions of the remaining arguments, a1,
a4 and a7 = ¬j ∧ ¬l, resulting in the alignment AL = {〈a, x,=〉, 〈b, w,=〉}.

6 Discussion

One difference between the approach presented here and the work presented by
[14] is on the outcome of a dialogue. Proposition 5.6 in their paper proves that
an inquiry dialogue can terminate unsuccessfully; however this is not the case
here. In our dialogue, and given the agents mental attitudes, the agents will
take turns to propose the inclusion of correspondences that have a high weight
(for unknown correspondences the agents estimate the weights based on past
exchanges). Hence the dialogue will generate the set of all the correspondences
for which the agents agree that are viable candidates for inclusion in the final
alignment AL that are then stored in each of the agent’s joint belief stores.

The final alignment is determined by the argumentation process where each
agent independently resolves the argumentation graph. The strict ordering over
the propositions asserting correspondences and the undercut relation guaran-
tee that the two argumentation graphs are deterministic and always reach the
same conclusion, therefore ensuring that both agents converge to the same set of
mutually believed correspondences, the final alignment. If such set of correspon-
dences does not exist, the alignment generated will be the empty alignment. In
our case, therefore, an alignment will always be computed as result, as long as
the alignment stores of the agents are not empty. Then the question is whether
the alignment constructed is optimal. In [15] we empirically show that in the
majority of cases our mechanisms finds the optimal solution and when subopti-
mal solutions are found, they do not degrade the performance of the alignment.

7 Conclusions

This paper extends the work of [15] by providing further proofs over the proper-
ties of the Correspondence Inclusion Dialogue , and by instantiating and exploit-
ing an existing abstract preference-based argumentation system. We defined the
preference order based on the joint weight of each correspondence discussed using
the inquiry dialogue, and demonstrated how the inclusion of a correspondence
in the mutually acceptable final alignment could be modelled propositionally.

334 T.R. Payne and V. Tamma

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of the ACM SIGMOD 2003 International Conference
on Management of Data, pp. 86–97. ACM (2003)

2. Aguirre, J.L., Eckert, K., Euzenat, J., Ferrara, A., van Hage, W.R., Hollink, L.,
Meilicke, C., Nikolov, A., Ritze, D., Scharffe, F., Shvaiko, P., Sváb-Zamazal, O., dos
Santos, C.T., Jiménez-Ruiz, E., Grau, B.C., Zapilko, B.: Results of the ontology
alignment evaluation initiative 2012. In: Shvaiko, P., Euzenat, J., Kementsietsidis,
A., Mao, M., Noy, N.F., Stuckenschmidt, H. (eds.) CEUR Workshop Proceedings
on OM, vol. 946. CEUR-WS.org (2012)

3. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based
argumentation. In: Cooper, G.F., Moral, S. (eds.) UAI, pp. 1–7. Morgan Kaufmann
(1998)

4. Amgoud, L., Vesic, S.: Rich preference-based argumentation frameworks. Interna-
tional Journal of Approximate Reasoning 55(2), 585–606 (2014)

5. Clifton, C., lu, M.K., Doan, A., Schadow, G., Vaidya, J., Elmagarmid, A., Suciu,
D.: Privacy-preserving data integration and sharing. In: Proceedings of the 9th
ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, pp. 19–26. ACM (2004)

6. Cruz, I.F., Tamassia, R., Yao, D.: Privacy-preserving schema matching using
mutual information. In: Data & Applications Security XXI, pp. 93–944602.
Springer (2007)

7. Doran, P., Tamma, V., Payne, T.R., Palmisano, I.: Dynamic selection of ontological
alignments: a space reduction mechanism. In: Proc. IJCAI, pp. 2028–2033 (2009)

8. Dung, P.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-person Games. Artificial
Intelligence 77(2), 321–358 (1995)

9. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag (2007)
10. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and

Semantics: Speech Acts, vol. 3, pp. 41–58. Academic Press, San Diego (1975)
11. Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.:

Argumentation over ontology correspondences in MAS. In: Proceedings of AAMAS
2007, pp. 1285–1292 (2007)

12. Meilicke, C.: Alignment Incoherence in Ontology Matching. Ph.D. thesis,
Dissertation, Universität Mannheim, Mannheim (2011)

13. Mitra, P., Liu, P., Pan, C.C.: Privacy-preserving ontology matching. In: AAAI
Workshop on Context and Ontologies (2005)

14. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some
formal inter-agent dialogues. J. Logic and Computation 13(3), 347–376 (2003)

15. Payne, T.R., Tamma, V.: Negotiating over ontological correspondences with
asymmetric and incomplete knowledge. In: Proc. AAMAS 2014, pp. 517–524 (2014)

16. dos Santos, C.T., Quaresma, P., Vieira, R.: Conjunctive queries for ontology based
agent communication in MAS. In: Proc. AAMAS 2008, pp. 829–836 (2008)

Designing a Source-Level Debugger
for Cognitive Agent Programs

Vincent J. Koeman(B) and Koen V. Hindriks

Delft University of Technology, Delft, The Netherlands
v.j.koeman@tudelft.nl

Abstract. When an agent program exhibits unexpected behaviour, a
developer needs to locate the fault by debugging the agent’s source code.
The process of fault localisation requires an understanding of how code
relates to the observed agent behaviour. The main aim of this paper is
to design a source-level debugger that supports single-step execution of
a cognitive agent program. Cognitive agents execute a decision cycle in
which they process events and derive a choice of action from their beliefs
and goals. Current state-of-the-art debuggers for agent programs provide
insight in how agent behaviour originates from this cycle but less so in
how it relates to the program code. As relating source code to generated
behaviour is an important part of the debugging task, arguably, a devel-
oper also needs to be able to suspend an agent program on code locations.
We propose a design approach for single-step execution of agent programs
that supports both code-based as well as cycle-based suspension of an
agent program. This approach results in a concrete stepping diagram
ready for implementation and is illustrated by an implementation of a
source-level debugger for the GOAL agent programming language in the
Eclipse development environment.

1 Introduction

Debugging is the process of detecting, locating, and correcting faults in a com-
puter program [10]. A large part of the effort of a programmer consists of debug-
ging a program. This makes efficient debugging an important factor for both
productivity and program quality [26]. Typically, a defect is detected when a
program exhibits unexpected behaviour. In order to locate the cause of such
behaviour, it is essential to explain how and why it is generated [8].

A source-level debugger is a very useful and important tool for fault localiza-
tion that supports the suspension and single-step execution of a program [19].
Single-step execution is based on breakpoints, i.e., points at which execution
can be suspended [10]. Stepping through program code allows for a detailed
inspection of the program state at a specific point in program execution and the
evaluation of the effects of specific code sections.

Debuggers typically are source-level debuggers. However, most debuggers
available for agent programs do not provide support for suspending at a par-
ticular location in the source code. Instead, these debuggers provide support
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 335–350, 2015.
DOI: 10.1007/978-3-319-25524-8 21

336 V.J. Koeman and K.V. Hindriks

for suspension at specific points in the reasoning or decision cycle of an agent.
The problem is that these points are hard to relate to the agent program code.
In addition, these debuggers only show the current state, but do not show the
current point in the code where execution will continue. It thus is hard for a pro-
grammer to understand how code relates to effects on agent behaviour. Although
the role of an agent’s decision cycle in the generation of an agent’s behaviour
is very important, we believe that source-level debugging is also very useful for
agent-oriented programming.

In this paper, we propose a design of a source-level debugger for agent pro-
gramming. Arguably, such a tool provides an agent programmer with a bet-
ter understanding of the relation between an agent’s program code and its
behaviour. Part of the contribution of this paper is to propose a design app-
roach that is applicable to programming languages for cognitive agents.

The paper is organised as follows. In Section 2, we discuss related work on
(agent program) debugging. We also discuss the features of a few agent pro-
gramming languages in some detail, as these are important for the design of
a debugger for such languages. In addition, we discuss their current debugging
tools. Section 3 presents the design of a source-level debugger for agent programs.
We identify design principles and requirements that we use in our design, and
features that a source-level debugger for agent programs should have. A concrete
design is provided for the GOAL agent programming language [7] and some ini-
tial results about the use of this debugger are discussed. Section 4 concludes the
paper with recommendations for future work.

2 Issues in Debugging Cognitive Agent Programs

In this section, we briefly discuss what is involved in debugging a software system,
and analyse the challenges that a developer of cognitive agent programs faces.

2.1 Debugging and Program Comprehension

[11] provides a model of debugging derived from a general, somewhat oversim-
plified model of troubleshooting that consists of four debugging subtasks: (i)
program comprehension, (ii) testing, (iii) locating the error, and (iv) repairing
the error. Program comprehension, the first subtask in the model, is an impor-
tant subtask in the debugging process as a programmer needs to figure out why
a defect occurs before it can be fixed [13,14]. [6] argues that the main aim of pro-
gram comprehension during debugging is to understand which changes will fix
the defect. Based on interviews with developers, [16] concludes that the debug-
ging process is a process of iterative hypothesis refinement (cf. [24]). Gathering
information to comprehend source code is an important part in the process of
hypothesis generation. [15] also emphasizes the information gathering aspect in
program comprehension and the importance of navigating source code, which
they report is by far the most used information source during debugging (cf.
[19]). Similarly, [5] suggests to provide a variety of navigation tools at different

Designing a Source-Level Debugger for Cognitive Agent Programs 337

levels of granularity. In addition, reproducing the defect and inspecting the sys-
tem state are essential for fault diagnosis and for identifying the root cause and
a potential fix. It is common in debugging to try to replicate the failure [15,16].
In this process, the expected output of a program needs to be compared with
its actual output, for which knowledge of the program’s execution and design
is required. Testing is not only important for reproducing the defect and for
identifying relevant parts of code that are involved, but also for verifying that a
fix actually corrects the defect [24].

[5] identifies that it is difficult to locate a fault because a fault and the symp-
toms of a defect are often far removed from each other (cause/effect chasm).
As debugging is difficult, tools are important because they provide insight into
the behaviour of a system, enabling a developer to form a mental model of a
program [16,24] and facilitating navigation of a program’s source code (at run-
time) [15]. A source-level debugger is a tool that is typically used for controlling
execution, setting breakpoints, and manipulating a runtime state. The ability to
set breakpoints, i.e., points at which program execution can be suspended [10],
by means of a source-level debugger is one of the most useful dynamic debugging
tools available and is in particular useful for locating faults [19,24].

2.2 Challenges in Designing a Source-Level Debugger

Even though much of the mainstream work on debugging can be reused, the agent-
oriented programming paradigm is based on a set of abstractions and concepts
that are different from other paradigms [9,21]. The agent-oriented paradigm is
based on a notion of a cognitive agent that maintains a mental state and derives
its choice of action from its beliefs and goals which are part of this state. In a sense,
agent-oriented programming is programming with mental states.

Compared to other programming paradigms, agent-oriented programming
introduces several challenges that complicate the design of a source-level debug-
ger (cf. [14]). For example, many languages for programming cognitive agents
are rule-based [1,20]. In rule-based systems, fault localization is complicated by
the fact that errors can appear in seemingly unrelated parts of a rule base [25].
Moreover, a rule base does not define an order of execution. Due to this absence
of an execution order, agent debugging has to be based on the specific evaluation
strategy that is employed. Moreover, cognitive agent programs repeatedly exe-
cute a decision cycle which not only controls the choice of action of an agent
(e.g., which plans are selected or which rules are applied) but also specifies how
and when particular updates of an agent’s state are performed (e.g., how and
when percepts and messages are processed, or how and when goals are updated).
This style of execution is quite different from other programming paradigms, as a
decision cycle imposes a control flow upon an agent program, and may introduce
updates of an agent’s state that are executed independently of the program code
at fixed places in the cycle or when a state changes due to executing instructions
in the agent program. This raises the question of how to integrate these updates
into a single-step debugger.

338 V.J. Koeman and K.V. Hindriks

An agent’s decision cycle provides a set of points that the execution can
be suspended at, i.e. breakpoints. These points do not necessarily have a corre-
sponding code location. For example, receiving a message from another agent is
an important state change that is not present in an agent’s source, i.e., there
is no code in the agent program that makes it check for new messages. Thus,
two types of breakpoints can be defined: code-based breakpoints and (decision)
cycle-based breakpoints. Code-based breakpoints have a clear location in an
agent program. Cycle-based breakpoints, in contrast, do not always need to
have a corresponding code location. Together, these are referred to as the set of
pre-defined breakpoints that a single-step debugger offers. When single-stepping
through a program, these points are traversed. A user should also be able to
mark specific locations in an agent’s source at which execution will always be
suspended, even when not explicitly stepping. To facilitate this, a debugger has
to identify such a marker (e.g., a line number) with a code-based breakpoint.
These markers are referred to as user-defined breakpoints. A user should also be
able to suspend execution upon specific decision cycle events, especially when
those do not have a corresponding location in the source. This can for example
be indicated by a toggle in the debugger’s settings. Such an indication is referred
to as a user-selectable breakpoint.

2.3 Languages and Debugging Tools for Cognitive Agents

In this section, we will briefly discuss specific debugging tools as illustrations of
state-of-the-art debugging of cognitive agent programs. Moreover, we discuss the
main language features and the decision cycle of such an agent program, which
is most important in defining the semantics of a language. By understanding
the building blocks of a specific agent programming language, we can identify
the specific challenges that we will face in designing a source-level debugger for
such a language. Due to space constraints, we focus on two different languages
that are representative for both rule-based and Java-based agent programming
languages respectively: Jason [2] and Jadex [17]. In addition, being the target
of our implementation, we also discuss the GOAL language [7], which is also
rule-based. We have looked at the debugging tools that are currently available
for several other AOP languages like 2APL, Agent Factory, Jack, Jadex, and
JIAC [1,20] as well, from which we could confirm that source-level debugging
is not employed by any of them. Debugging is performed in a separate runtime
application that is able to step through a decision cycle in parts or as a whole.
When debugging or running an agent program, its source is not shown, and no
indication of the currently executed line of code is given.

For the selected platforms, we describe the basic language elements and
abstractions available for programming cognitive agents, whether any embedded
languages are used, e.g., for knowledge representation, and the decision cycle
that specifies how an agent program is executed. We also summarize the func-
tionality of the debugging tools that are available. The latest Eclipse plug-in has
been used as a starting point for the description of each programming language,

Designing a Source-Level Debugger for Cognitive Agent Programs 339

as the published papers about these languages often differ from the current
implementations because the languages are continuously developed.

Jason is a multi-agent programming language based on an extended version of
AgentSpeak [2]. A dedicated rule-based language is used for the formalization of
agent concepts. This language does not make use of any explicit embedded lan-
guage, but a variant of Prolog is used that supports annotations to for example
record the source of a belief. An agent is defined by a set of beliefs and a set of
plans. A Jason agent is a reactive planning system: events trigger plans. A plan
has a head that consists of a trigger event and a conjunction of belief literals rep-
resenting a context. A plan also has a body, which is a sequence of basic actions
or (sub)goals the agent has to achieve (or test) when the plan is triggered. A stack
of (partially initiated) plans is called an intention. An intention indicates a course
of action to handle a certain event. If a certain action in a plan fails or there is no
applicable plan for a (sub)goal in the plan being executed, the whole failed plan
is removed from the intention, and an internal event associated with that same
intention is generated, allowing a programmer to specify how a particular failure
is handled. If no such plan is available, the whole intention is discarded.

Decision Cycle. At the start of the decision cycle of a Jason agent, the list of
current events is updated, and a single event is selected for processing. For this
event, a set of applicable plans is determined, from which a single applicable
plan has to be chosen: the intended means for handling the event. Plans for
internal events are pushed to the current intention, whilst plans for external
events create a new intention. Finally, a single intention has to be selected to
be executed in the cycle. When all formulae in the body of a plan have been
executed (removed), the whole plan is removed from the intention, and so is
the achievement goal that generated it (if applicable). To handle the situation
in which there is no applicable plan for a relevant event, a configuration option
is provided to either discard such events or insert them back at the end of the
event queue.

Debugging Tools. Jason provides a separate runtime that includes a debugger.
This debugger can show the current and previous mental states of an agent,
though a user cannot edit a mental state. It is possible to execute one or more
(complete) decision cycles in a stepwise fashion, in which the agents can use
different execution modes. In the default asynchronous mode, an agent goes to its
next decision cycle as soon as it has finished its current cycle. In the synchronous
mode, all agents execute one decision cycle at every “global execution step”.
There is no easy access to program code while stepping or for relating state
changes to code executed, although there is a general console that displays log
messages, accompanied by several customizable logging mechanisms that can
be used by an agent. A plan can be annotated with a ‘breakpoint’ property
which indicates that execution should be suspended when any of the agents
start executing an intention with an instance of that plan. There are no other

340 V.J. Koeman and K.V. Hindriks

points like the evaluation of a plan’s head or any cycle-based events at which
this can be done.

Jadex is a language for programming intelligent software agents [17]. In its
latest version (BDI V3), Jadex uses annotated Java code to designate agent
concepts; there are no rule-based elements or embedded languages. Beliefs are
represented in an object-oriented fashion, and operations against a beliefbase
can be issued in a descriptive set-oriented query language. Goals are represented
as explicit objects contained in a goalbase that is accessible to the reasoning
component as well as to plans. An agent can have goals that are not currently
associated with a plan. Four types of goals are supported: perform (an action),
achieve (a world state), query (information about the world), and maintain. A
plan is a function with an annotation that specifies the circumstances under
which a plan may be selected. The function’s body provides a predefined course
of action. In addition, a context condition can be stated that must be true for
the plan to continue executing. Capabilities represent a grouping mechanism for
the elements of an agent, allowing closely related elements to be put together
into a reusable (scoped) module which encapsulates certain functionality.

Decision Cycle. A Jadex agent has no explicit decision cycle, but, similar to
Jack [23], when an agent receives an event, the reasoning engine builds up a
list of applicable plans for an event or goal from which candidate(s) are selected
and instantiated for execution. Jadex provides settings to influence the event
processing individually for event types and instances, though as a default, mes-
sages are posted to a single plan, whilst for goals many plans can be executed
sequentially until the goal is reached or finally fails (when no more plans are
applicable). Selected plans are placed in the ready list, from which a scheduler
will execute plans in a step-by-step fashion until a ‘waitFor’ method is called
(i.e., waiting for the completion of an action or a specific event) or the plan sig-
nificantly affects the internal state of the agent (i.e., by creating or dropping a
goal). After a plan waits or is interrupted, the state of the agent can be properly
updated, facilitating another plan to be scheduled after a certain goal has been
created for example.

Debugging Tools. A BDI V3 agent can be debugged by stepping an agent through
each plan step (as described above) whilst inspecting its mental state in a sep-
arate runtime. A user cannot modify the mental state at runtime, and no code
location is indicated whilst debugging. No user-defined or user-selected break-
point mechanism is available either. The Jadex developers suggest the standard
Java debugger can be used as well. However, the Java debugger does not operate
at the level of abstraction of a cognitive agent, which makes it more difficult for
a user to relate program code to agent behaviour. For example, the annotations
on functions create an execution flow that is not based on function calls (like reg-
ular Java), and will thus create jumps in the execution flow that can be unclear
for a user when not visualized properly.

Designing a Source-Level Debugger for Cognitive Agent Programs 341

GOAL is an agent programming language that uses a dedicated rule-based
language for the formalization of agent concepts [7]. GOAL is designed to allow
for any embedded knowledge-representation (KR) language to be used, although
currently only SWI-Prolog is supported. A mental state consists of a belief base,
a goal base, a percept base, and a mailbox. Declarative goals specify the state
of the environment that an agent wants to establish and are used to derive
an agent’s choice of action. Agents commit blindly to their goals, i.e., they drop
(achieve) goals only when they have been completely achieved. Agents may focus
their attention on a subset of their goals by using modules. A module can be
viewed as an abstract action that groups a set of decision making rules.

Decision Cycle. The decision cycle of a GOAL agent starts with the processing
of percept rules, allowing an agent to update its mental state according to the
current perception of the environment. Next, using this updated mental state,
an action is selected for execution by processing the rules that are present in
the currently executed module. If the precondition of a selected action holds,
its postcondition will be used to update the agent’s mental state, after which a
new cycle starts. Multiple actions can be executed at once by using an ‘action-
combo’, i.e., a combination of actions. A mental state update can lead to the
accomplishment of a goal, i.e., when a belief is inserted that matches a goal,
that goal is automatically deleted. In addition, the currently executed module
can change when it is exited, either by an exit-condition or an explicit command,
or when a new module is called. An exit-condition allows the termination of a
module when there are no more active goals or when no applicable action can be
determined (anymore). A call to a module will push that module on the agent’s
module stack so that when it is exited again, execution of the module that made
the call to the exited module will resume at that point.

Debugging Tools. The previous debugger for GOAL offers similar features to the
debugger of 2APL [4], i.e., facilitating the inspection of the mental state of a sin-
gle agent in a separate runtime and allowing specific steps of a decision cycle to
be executed in a stepwise fashion. Examples of such steps are the entry of a mod-
ule, rule condition evaluation, and action execution. This process of suspending
on specific cycle-based breakpoints can be controlled by a user through a list of
toggles. In addition, there is a user-defined breakpoint mechanism that suspends
execution when a specific line of code is executed. Although no code location
is indicated whilst debugging, this mechanism does operate at the source-level.
Various tabs of logging output can be used to discern an agent’s execution trace.
Finally, actions to alter the mental state of an agent can be executed, and the
mental state can be queried as well.

3 Design Approach for a Debugger for Cognitive Agents

In this section, we propose a design approach for a source-level agent debugging
tool that is aimed at providing a better insight into the relationship between

342 V.J. Koeman and K.V. Hindriks

program code and the resulting behaviour. A number of principles and require-
ments will be introduced to guide the design of a stepping diagram.

3.1 Principles and Requirements

We will list some important principles and requirements for a source-level debug-
ger that will be taken into account when designing such a debugger in the next
section. As our main objective is to allow an agent developer to detect faults
through understanding the behaviour of an agent, an important principle is
usability. More specifically, [19] indicates that a programmer should be able to
focus on the declarative semantics of a program, e.g. its rules, checking whether
a rule is applicable, how it interacts with other rules, and what role the different
parts of a rule play [25]. This is related to [5], which indicates that a debug-
ger should employ a traversal method for resolving large cause/effect chasms,
but without the need to go through indirect steps, intermediate subgoals, or
unrelated lines of reasoning. Side-effects pose an additional challenge, as they
might be part of a cause/effect chain, but cannot always be easily related to
locations in the code. Therefore, transparency is an important principle that
can be supported by providing a one-to-one mapping between what the user
sees and what the interpreter is doing whilst explicitly showing any side effects
that occur [18]. A debugger should also strive for temporal, spatial, and seman-
tic immediacy [22]. Temporal immediacy means that there should be as little
delay as possible between an effect and the observation of related events. Spatial
immediacy means that the physical distance (on the screen) between causally
related events should be minimal. Semantic immediacy means that the concep-
tual distance between semantically related pieces of information should be kept
to a minimum. As source-level debuggers aim to correlate code with observed
effects, immediacy is an important motivation for the use of such a debugger.

Breakpoints are an essential ingredient of single-step execution. Their main
purpose is to facilitate navigating the code and run (generated states) of a pro-
gram. As discussed in Section 2, a debugger for cognitive agent programming
languages can define two types of breakpoints: code-based and cycle-based. We
propose that for a source-level debugger, code-based breakpoints should be
preferred over cycle-based breakpoints when they serve similar navigational
purposes. In other words, when breakpoints show the same state, the code-based
breakpoint should be used as a starting point, as it is important to highlight the
code to increase a user’s understanding of the effects of the program. A good
example illustrating this point is the reception of percepts in the decision cycle
of a GOAL agent. As percepts are processed in the event module, the entry of
this module is a code-based breakpoint that can be identified with the processing
of percepts, i.e., the received percepts can be displayed when entering the event
module. This reduces the amount of steps that are required and improves the
understanding of the purpose of the event module as well.

In addition, [3] indicates that a user should be able to control the granular-
ity of the debugging process. In other words, a user should be able to navigate
the code in such a way that a specific fault can be investigated conveniently.

Designing a Source-Level Debugger for Cognitive Agent Programs 343

For example, a user should be able to skip parts of an agent program that are
(seemingly) unrelated to the fault, and examine (seemingly) related parts in
more detail. The common way to support this is to define three different step
actions: step into, step over, and step out. The stepping flow to follow after
each of these actions will have to be defined in order to provide a user with the
different levels of granularity that are required.

[8] and [19] indicate that at any breakpoint, a detailed inspection of an
agent’s mental state should be facilitated. The information about an agent’s
state should be visualized and customizable in multiple ways to support the
different kinds of searching techniques that users employ. In addition, the work
of [5] indicates that support for evaluable mental state expressions should
be provided. This will aid a user by supporting, for example, posing queries about
specific rule parts to identify which part fails. [19] indicates that modifying the
program’s state and continuing with a new state should be supported as well.
Thus, we propose that support for the modification of a mental state should
be provided. A user could for example be allowed to execute actions in a similar
fashion to posing queries in order to perform operations on an agent’s state.

3.2 Designing a Stepping Diagram

We propose a design approach for a source-level debugger for cognitive agent
programs as a set of steps. First, possible code-based breakpoints will be defined
by using the programming language’s syntax (Step 1). The relevance of these
code-based breakpoints to a user’s stepping process needs to be evaluated, lead-
ing to a set of points at which events that are important to an agent’s behaviour
take place (Step 2a). In addition, the agent’s decision cycle needs to be evalu-
ated for important events that are not represented in the agent’s source in order
to determine cycle-based breakpoints (Step 2b). These points will then be used
to define a stepping flow, i.e., identifying the result of a stepping action on each
of those points in a stepping diagram (Step 3). Finally, other required features
such as user-defined breakpoints (Step 4), visualization of the execution flow
(Step 5) and state inspection (Step 6) need to be handled. As an example, we
will provide a detailed design for the GOAL agent programming language, and
briefly discuss the potential design of a source-level debugger for some other
agent programming languages that were discussed in Section 2 as well.

Step 1: Syntax Tree. Inspired by [24], we propose that an agent’s syntax tree
can be used as the starting point for defining the single-step execution of an agent
program. Figure 1 (top part) illustrates an already slightly modified syntax tree
for a GOAL agent (see Section 2). Note that each node represents a specific type,
but not an instance. For example, one module usually consists of multiple rules,
as indicated by the labels on the edges. To slightly simplify this tree, we have
abstracted away the program level of a module and identify a module with a set of
rules. KR-specifics and syntactic sugar like nested rules have been left out as well.
An edge indicates a syntactic link, whilst a broken edge indicates a semantic link.

344 V.J. Koeman and K.V. Hindriks

Relevant semantic links need to be added in order to represent program execution
flow that is not based on the syntax structure alone.

Step 2a: Code-Based Breakpoints. The idea is that each node in a syntax
tree can be a possible code-based breakpoint (‘step event’). However, as the
actual source of some nodes is fully represented by their children, these non-
terminal nodes can be left out of the stepping process. Moreover, some nodes
might not be relevant to a user in order to understand an agent’s behaviour.
Here, we define a node that is relevant to agent behaviour as a point at which
(i) an agent’s mental state is inspected or modified, or (ii) a module is called
and entered.

State inspections allow a user to identify mismatches between the expected
and the actual result of such an inspection. In other words, if a user expects a
condition to fail, he should be able to confirm this (and the other way around).
Changes to a (mental) state are important to the exhibited behaviour of an agent
and it should always be possible to inspect it, as should module calls or entries as
they are important to the execution flow of an agent. In Figure 1, the breakpoints
thus identified have been indicated at the corresponding syntax node.

Step 2b: Cycle-Based Breakpoints. There are points at which important
behaviour occurs that a user would want to suspend the execution upon that
are not present in an agent’s syntax tree. For example, achieving a goal involves
an important mental state inspection (looking for a corresponding belief) and
modification (removing the goal) that are not represented in an agent program’s
source. Points like these that have no fixed correspondence in the code we call
cycle-based breakpoints. To include such a breakpoint, a toggle (setting) can be
added that provides a similar mechanism to user-defined breakpoints by always
suspending the execution upon such an event. The need for these cycle-based
breakpoints and additional explanations highlight an important challenge spe-
cific to agent-oriented programming. This results in the fact that we cannot
‘simply’ construct a source-level debugger by using an agent’s source code only.
Thus, a combination of both the syntax and the semantics of an agent is required
to account for all possible changes of an agent’s behaviour.

Step 3: Stepping Flow. Next, for each identified breakpoint, we need to
determine the result of a stepping action, i.e., the flow of stepping. Based on the
syntax tree, the stepping actions can be defined as follows:

– Into: traverse downward from the current node in the syntax diagram until
we hit the next breakpoint. In other words, follow the edges going down in
the tree’s levels until an indicated node is reached. If the current node is a
leaf (i.e., we cannot go down any further), perform an over-step.

– Over: traverse to the next node (i.e., to the right) on the current level until
we hit the next breakpoint. If there are none, perform an out-step.

Designing a Source-Level Debugger for Cognitive Agent Programs 345

– Out: traverse upward from the current node until we hit the next breakpoint,
whilst remaining in the current context. In other words, the edges going back
up in the tree’s levels should be traced until any applicable node, and then
from there back down again until any indicated node is reached (like an
into-step). Here, applicable refers to a ‘one-to-many’ edge of which not all
cases have been processed yet.

On the bottom part of Figure 1, the flow for the step into and step over actions
on each breakpoint has been illustrated. For readability, the step out action has
been left out. Note that the broken edge indicates a link to the event module. This
special module is executed after each action that has been performed in order to
process any new percepts or messages that have been received by the agent. After
the event module has been processed, depending on the rule evaluation order,
either the first rule in the module or the rule after the performed action will be
evaluated. In addition, a module’s exit conditions might have been fulfilled at
this point as well, which means that the flow may return to the action combo in
which the call to the exited module was made.

The extensive definition of an out-step is needed because, for example, when
stepping out of a user-defined action, purely following the edges until the previous
(upper) breakpoint would result in reaching the module node, whilst we actually
want to step to the next rule. Following this reasoning, the same result would be
obtained even when doing a step-into from the post-condition node. Therefore,
when traversing upward, we consider all nodes. In the mentioned example, both
the action combo and the rule nodes have been processed completely already, so
we will reach the module node. If the module contains any more rules, this node
will be still be applicable, and thus we traverse downward until the first indicated
node, which in this case is the next rule evaluation. If there are no more rules
to be executed, we continue upwards, exiting the current module entirely, thus
arriving back at the point where the call to the module was made (or finishing
the execution when we were in a top-level module).

The stepping flow after a user-selectable breakpoint can be dictated by the
existing (surrounding) node. For example, achieving a goal is only possible after
either executing a mental state action or applying a post-condition, so the step-
ping actions from the relevant node should be used when stepping away from a
goal-achieved breakpoint.

Step 4: User-Defined Breakpoints. User-defined breakpoints are usually
line-based. In other words, a user can indicate a specific line to break on, instead
of a code part. This breaking will always be done, even when not explicitly
stepping. Line-based user-defined breakpoints are a widely used mechanism of
convenience. However, some breakpoints can be at the same line as other break-
points. In this case, we pick the breakpoints that are on a higher level in the
tree in order to allow a user to still step into a lower level. In the case of GOAL,
actions and post-conditions cannot be used as a user-defined breakpoint, whilst
module entries, rule evaluations, and pre-conditions can.

346 V.J. Koeman and K.V. Hindriks

Fig. 1. A GOAL syntax tree with the relevant breakpoints indicated on the nodes that
are present at the different levels on one side, and the stepping flow between those
breakpoints illustrated on the other.

Designing a Source-Level Debugger for Cognitive Agent Programs 347

Step 5: Visualization. Each time the execution is suspended, the code that
is about to be executed is highlighted, and any relevant evaluations of (e.g.,
the values of variables referenced in a rule) of this highlighted code should be
displayed. These evaluations will improve a user’s understanding of the execution
flow. For example, if a rule’s condition has no solutions, a user will not expect
the rule’s action to be the next point at which the execution is suspended. Note
that such info is (usually) absent in cycle-based debuggers.

Problems can arise when the code evaluation does not help in making the
execution flow clear to a user. For example, stepping into an action’s precondi-
tion is a step that can lead to a completely different module, i.e., location in the
code base, which might be unexpected. Another example is the completion of an
action combo in a linear program, which can result in leaving the current module
depending on its exit conditions. To help a user understand these jumps through
code, the code evaluations that are shown can be augmented with additional
information indicating the source of the step. For example, when at a precon-
dition, besides the evaluation of the condition a user could also see “selected
external action: . . .”, which gives a hint about the reason why we arrived at
the action’s precondition. Similar explanations can be provided after other steps
that might not be clear to a user.

Step 6: State Inspection. Finally, the inspection and modification of a mental
state will not be discussed in detail here, as this is a more standard feature.
However, care should be taken to conveniently support all of those operations,
as they are important to the debugging process. In particular, we have added
features that allow the mental state of a GOAL agent to be sorted and filtered
(by search queries). This helps a user make sense of a mental state, especially
if it is very large. In addition, a single interactive console is provided in which
both mental state queries and actions can be performed in order to respectively
inspect or modify a mental state.

Application to Other Agent Programming Languages. Although we do
not have space to discuss this in detail here, the same design steps discussed
above can be applied to other programming languages in a similar fashion. The
syntax and accompanying decision cycle of a Jason agent, for example, can be
used in the same manner as described above. Although a Jason agent does not
have modules, it does consist of a number of (plan) rules. Obvious code-based
breakpoints would be the attempt to unify an event with a plan’s triggering
event, the following unification of a relevant plan’s context, and finally the exe-
cution of an applicable plan’s body. Special care would have to be taken to
inform a user about cycle-based breakpoints that do not have a corresponding
in the agent program, like the selection of events and intentions. For Jadex, the
set of available annotations that indicate the cognitive agent constructs can be
used as the base for the syntax tree. In contrast to the default Java debugging
flow, the ‘evaluation’ of such an annotation is an important points of interest.

348 V.J. Koeman and K.V. Hindriks

Care would have to be taken to make sure the execution flow between the anno-
tated functions or classes is clear to a user.

3.3 Evaluation

GOAL uses the Eclipse platform to provide a full-fledged development envi-
ronment for agent programmers, integrating all agent and agent-environment
development tools in a single well-established setting [12]. It includes a state-of-
the-art editor that features syntax highlighting, auto-completion, a code outline,
code templates, bracket matching, and code folding. Exchangeable support for
embedded KR languages is provided as well, and a testing framework for the
validation of agents based on temporal operators has been created. To evaluate
the source-level agent debugger design for GOAL, an implementation has been
created in this plug-in.1 For this implementation, some preliminary qualitative
studies have been performed on different groups of users at different times. These
evaluations were mainly performed through various online and offline surveys.
Even though it is difficult to precisely pinpoint the effects of just the source-level
debugging itself, we have obtained some useful qualitative feedback.

Before, we often got feedback about the difficulty of debugging an agent.
Now, we receive feedback about fundamental difficulties such as debugging mul-
tiple agents at once, indicating interesting directions for future work. Qualitative
evaluations show that users prefer the developed source-level debugger over a
cycle-based debugger, showing a promising positive trend that warrants further
evaluation of the usability of our work.

4 Conclusions and Future Work

We have proposed a source-level debugger design for agents that takes code
stepping more serious than existing solutions, aimed at providing a better insight
into the relationship between program code and the resulting behaviour. We
identified two different types of breakpoints for agent programming: code-based
and cycle-based. The former are based on the structure of an agent program,
whereas the latter are based on an agent’s decision cycle. We proposed concrete
design steps for designing a debugger for cognitive agent programs. By using the
syntax and decision cycle of an agent programming language, a set of pre-defined
breakpoints and a flow between them can be determined in a structured manner,
and represented in a stepping diagram. Based on such a diagram, features such as
user-defined breakpoints, visualization of the execution flow, and state inspection
can be handled as well. We have provided a concrete design for the GOAL agent
programming language, and briefly argued that our design approach can be
applied to other agent programming languages as well. A qualitative evaluation
by users has shown that they prefer the source-level (i.e., code-based) over a
purely cycle-based debugger.
1 See http://goalhub.github.io/eclipse for a demonstration of the debugger implemen-

tation and instructions on how to install GOAL in Eclipse.

http://goalhub.github.io/eclipse

Designing a Source-Level Debugger for Cognitive Agent Programs 349

In this work, we have focused on debugging challenges related to rule-based
reasoning and agent decision cycles. However, there are more challenges in debug-
ging cognitive agents that need to be addressed. One of these is the fact that
agents are (usually) connected to an environment. Two problems need to be
dealt with: (i) it can no longer be assumed that an environment is determin-
istic which makes it difficult to reproduce a defect, and (ii) such environments
typically cannot be suspended instantly which makes it difficult to understand
the context of a defect. Another problem is the fact that debugging multiple
agents at once is significantly more complicated than debugging a single agent.
This problem was mentioned the most in the qualitative feedback we obtained. In
addition, many programming languages for cognitive agents embed knowledge
representation (KR) languages like Prolog or a Web Ontology Language
(OWL). Some agent programming languages also embed (instead of extend) an
object-oriented programming language such as Java. This introduces the addi-
tional problem of how to employ the debugging frameworks that are available
for the embedded languages. Finally, to further analyse the effectiveness of a
source-level debugger in agent programming in general, a detailed design of a
source-level debugger for other agent programming languages can be of interest.
It would be specifically interesting to investigate the effect of a more complicated
decision cycle on the usability of a source-level debugger.

References

1. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.): Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Springer, US (2005)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons, Ltd, October 2007

3. Collier, R.: Debugging agents in agent factory. In: Bordini, R.H., Dastani, M.,
Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS (LNAI), vol. 4411,
pp. 229–248. Springer, Heidelberg (2007)

4. Dastani, M.: 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

5. Eisenstadt, M.: My hairiest bug war stories. Communications of the ACM 40(4),
30–37 (1997)

6. Gilmore, D.J.: Models of debugging. Acta Psychologica 78(1–3), 151–172 (1991)
7. Hindriks, K.V.: Programming rational agents in goal. In: Seghrouchni, E.F.A.,

Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming: Languages,
Tools and Applications, pp. 119–157. Springer, US (2009)

8. Hindriks, K.V.: Debugging is explaining. In: Rahwan, I., Wobcke, W., Sen, S.,
Sugawara, T. (eds.) PRIMA 2012. LNCS, vol. 7455, pp. 31–45. Springer, Heidelberg
(2012)

9. Hindriks, K.V.: The shaping of the agent-oriented mindset. In: Dalpiaz, F.,
Dix, J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNCS, vol. 8758, pp. 1–14.
Springer, Heidelberg (2014)

10. ISO: ISO/IEC/IEEE 24765:2010 systems and software engineering - vocabulary.
Technical report, Institute of Electrical and Electronics Engineers, Inc. (2010)

11. Katz, I.R., Anderson, J.R.: Debugging: An analysis of bug-location strategies.
Human-Computer Interaction 3(4), 351–399 (1987)

350 V.J. Koeman and K.V. Hindriks

12. Koeman, V.J., Hindriks, K.V.: A fully integrated development environment for
agent-oriented programming. In: Demazeau, Y., Decker, K.S., Bajo Pérez, J., De la
Prieta, F. (eds.) PAAMS 2015. LNCS, vol. 9086, pp. 288–291. Springer, Heidelberg
(2015)

13. Lam, D.N., Barber, K.S.: Comprehending agent software. In: Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent Sys-
tems. AAMAS 2005, pp. 586–593. ACM, New York (2005)

14. Lam, D.N., Barber, K.S.: Debugging agent behavior in an implemented agent sys-
tem. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PRO-
MAS 2004. LNCS (LNAI), vol. 3346, pp. 104–125. Springer, Heidelberg (2005)

15. Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., Fleming, S.: How
programmers debug, revisited: An information foraging theory perspective. IEEE
Transactions on Software Engineering 39(2), 197–215 (2013)

16. Layman, L., Diep, M., Nagappan, M., Singer, J., Deline, R., Venolia, G.: Debug-
ging revisited: Toward understanding the debugging needs of contemporary soft-
ware developers. In: ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 383–392, October 2013

17. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a bdi reasoning engine. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent
Programming, Multiagent Systems, Artificial Societies, and Simulated Organiza-
tions, vol. 15, pp. 149–174. Springer, US (2005)

18. Rajan, T.: Principles for the design of dynamic tracing environments for novice
programmers. Instructional Science 19(4–5), 377–406 (1990)

19. Romero, P., du Boulay, B., Cox, R., Lutz, R., Bryant, S.: Debugging strategies
and tactics in a multi-representation software environment. International Journal
of Human-Computer Studies 65(12), 992–1009 (2007)

20. Seghrouchni, A.E.F., Dix, J., Dastani, M., Bordini, R.H. (eds.): Multi-Agent Pro-
gramming: Languages. Tools and Applications. Springer, US (2009)

21. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Renz, W.: Validation of
BDI agents. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2006. LNCS (LNAI), vol. 4411, pp. 185–200. Springer, Heidelberg
(2007)

22. Ungar, D., Lieberman, H., Fry, C.: Debugging and the experience of immediacy.
Communications of the ACM 40(4), 38–43 (1997)

23. Winikoff, M.: Jack intelligent agents: an industrial strength platform. In: Bordini,
R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Pro-
gramming, Multiagent Systems, Artificial Societies, and Simulated Organizations,
vol. 15, pp. 175–193. Springer, US (2005)

24. Yoon, B.d., Garcia, O.: Cognitive activities and support in debugging. In: Proceed-
ings of Fourth Annual Symposium on Human Interaction with Complex Systems,
pp. 160–169, March 1998

25. Zacharias, V.: Tackling the debugging challenge of rule based systems. In: Filipe, J.,
Cordeiro, J. (eds.) Enterprise Information Systems. LNBIP, vol. 19, pp. 144–154.
Springer, Heidelberg (2009)

26. Zeller, A.: Why Programs Fail, Second Edition: A Guide to Systematic Debugging,
2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2009)

Reflecting on Agent Programming
with AgentSpeak(L)

Rem W. Collier(B), Seán Russell, and David Lillis

School of Computer Science, University College Dublin, Dublin, Ireland
{rem.collier,sean.russell,david.lillis}@ucd.ie

Abstract. Agent-Oriented Programming (AOP) researchers have suc-
cessfully developed a range of agent programming languages that bridge
the gap between theory and practice. Unfortunately, despite the in-
community success of these languages, they have proven less compelling
to the wider software engineering community. One of the main problems
facing AOP language developers is the need to bridge the cognitive gap
that exists between the concepts underpinning mainstream languages
and those underpinning AOP. In this paper, we attempt to build such a
bridge through a conceptual mapping that we subsequently use to drive
the design of a new programming language entitled ASTRA, which has
been evaluated by a group of experienced software engineers attending
an Agent-Oriented Software Engineering Masters course.

Keywords: Agent-Oriented programming · AgentSpeak(L) · ASTRA

1 Introduction

The Agent-Oriented Programming (AOP) paradigm is nearly 25 years old. Since
its inception, a number of established AOP languages have emerged, with the
most prominent being: 2/3APL [1,2], GOAL [3] and Jason [4]. However, while
these languages have received much critical success within the AOP community,
they have been less well received by the wider software engineering community.

A useful barometer for the view of this wider community has been the stu-
dents enrolled on an Agent-Oriented Software Engineering (AOSE) module that
is part of a Masters in Advanced Software Engineering offered at University Col-
lege Dublin since 2005. Students on this course typically have 5 or more years
of industrial software engineering experience and are senior software engineers
in their respective companies. During the course, the students are exposed to
an AgentSpeak(L)-based language, which has been one of AF-AgentSpeak [5],
Jason [4], and our most recent agent-programming language, ASTRA [6].

Each year, the students have been asked to provide informal feedback on the
AOP language(s) used and to comment on whether they would consider using
such a language in a live industry application. The common response has been
“no”, with typical criticisms being the lack of tool support and the perceived
learning curve required to master an AOP language.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 351–366, 2015.
DOI: 10.1007/978-3-319-25524-8 22

352 R.W. Collier et al.

The lack of tool support seems strange given the existence of mind
inspectors [7], advanced debugging techniques [8,9], and a range of analytical
tools [10,11]. However, after delving deeper, it became apparent to us that the
criticisms were directed more closely towards the quality of the Integrated Devel-
opment Environments (IDEs) provided and their limitations in terms of practical
features such as code completion, code navigation and formatting support. Over
the years, it has become apparent that developers become uneasy when stripped
of their traditional supports and that this engenders a feeling that the languages
are not production quality.

Conversely, the perceived learning curve is less unexpected. AOP, with its
origins in Distributed Artificial Intelligence, is underpinned by a quite different
set of concepts to mainstream software engineering, where there is a clear evolu-
tion from procedural programming languages to Object-Oriented Programming
(OOP) languages. Individuals attempting to learn about AOP are confronted
with a range of concepts - beliefs, desires and intentions; speech acts; plans -
that bear little relation to mainstream programming concepts. For many, this
can act as a significant barrier to learning how to program in an AOP language.

Perhaps the most common explanation of the relationship between AOP
and OOP is the comparison table presented in [12]. This table presents a very
high-level view of AOP and OOP that treats AOP as a specialisation of OOP.
Unfortunately, it provides little practical detail. For example, how does the state
of an object relate to the state of an agent? is there any correlation between how
behaviours are specified in OOP and how they are specified in agents? when and
how will a behaviour be executed?

Answering these questions requires a more detailed comparison of AOP and
OOP. However, when attempting to create a deeper comparison, it quickly
becomes evident that it is not possible. The main reason for this is that AOP,
unlike OOP, does not promote or enforce a consistent conceptual model (i.e. a
standard view of state, methods, messages, etc.). Instead, different languages
can, and are, based around quite different approaches. For example, AgentS-
peak(L) style languages are essentially event-driven languages. They define
context-sensitive event handlers that map events to partial plans. Conversely,
GOAL is, at its heart, an action selection language where rules identify the con-
text in which each action should be executed. The consequence of this diversity
is that it is more appropriate to compare specific styles of AOP language with
OOP rather than trying to over-generalise.

In this paper, we focus on understanding the relationship between AgentS-
peak(L) and OOP with the goal of trying to reduce the perceived cognitive gap.
Our approach is to start by identifying a mapping between AgentSpeak(L) and
OOP concepts in Section 2, which we then reflect on in Section 3. The purpose of
the reflection is to try tounderstandhowto improve thedesign ofAgentSpeak(L) to
better support developers wishing to learn the language. Following on from this, we
introduce a new member of the AgentSpeak(L) family called ASTRA that has been
designed in response to the findings of the previous section. Full details of ASTRA
are not provided in this paper. Instead, we focus on only the most pertinent fea-

Reflecting on Agent Programming with AgentSpeak(L) 353

tures. Finally, in Section 4 we present the relevant results of a wider survey carried
out on the most recent class of the M.Sc. in Advanced Software Engineering.

2 Relating AgentSpeak(L) to OOP

AgentSpeak(L) can be prosaically described as an event-driven language where
event handlers are fired based on both the triggering event and some context.
Events, which are either external (environment-based) or internal (goal-based),
are generated and added to an event queue. Events are then removed from this
queue and matched to a rule which is then executed. The matching process checks
both that the rule applies to the event and that the rule can be executed based on
a rule context that defines valid program states in which the rule may be applied.

More commonly, the event handlers are known as plan rules; the program
state is modeled as a set of beliefs, that are realized as atomic predicate logic
formulae; the events are also modeled as atomic predicate formulae (with some
additional modifiers); and the execution of plan rules is achieved through creation
and manipulation of intentions. Finally, external events are generated through
changes to the agent’s state (i.e. the adoption or retraction of a belief), and
internal events are generated through the declaration of goals.

It follows then, that an AgentSpeak(L) agent consists of an event queue, a set
of beliefs (state), a set of plan rules (event handlers), and a set of intentions that
are used to represent the execution of plan rules. Given that AOP is commonly
viewed as a specialization of OOP, and that agents are a special type of object,
the following outlines how AgentSpeak(L) concepts relate to OOP concepts from
the perspective of an OOP developer:

Beliefs are equivalent to fields. As indicated above, beliefs form the state
of an agent. In OOP, state is defined in terms of a set of fields that hold
values (or object references). If we consider a field, such as int value; this
could be modeled as a belief value(0). Here, the value 0 is chosen as it is the
default value for integer fields in many OOP languages. To be fully precise,
beliefs and fields are not the same. Whereas fields can be modeled using
beliefs, beliefs actually encompass more than this, including environment
information, global variables, etc.

Plan Rules are equivalent to methods. A plan rule associates a plan with
a triggering event and a context. Plans define behaviours and are basically
blocks of procedural code that are executed whenever a matching event is
processed and the rules context is satisfied. In OOP languages, procedural
code is defined within methods and is executed whenever the method signa-
ture is matched to a message that has been received by the object. Accord-
ingly, the AgentSpeak(L) equivalent of a method signature is the triggering
event (specifically the identifier and the number of arguments). The con-
text has no real equivalent in OOP, however, it can be viewed as providing
a form of method overloading based on state (i.e. when there are multiple
rules matching a given event, the context is used to identify which of the
rules should be executed).

354 R.W. Collier et al.

Goals are equivalent to method calls. Goals generate events. The are then
matched to rules, which are subsequently executed. Method calls generate
messages that are matched to methods that are executed. Typically, goals
are declared from within a plan. The result is that the plan component of
the selected rule is pushed onto the program (intention) stack and executed.

Events are equivalent to messages. Within AgentSpeak(L), events play a
similar role to messages in OOP. Events are used to trigger plan rules in the
same way that, for OOP languages, messages are used to invoke methods.
This can be somewhat confusing because “message” is also the term used
for communication between agents, however this is not the focus here. In
OOP, the set of messages that can be handled by an object is known as the
interface of the object. This set of messages corresponds to the signatures
of the methods that are defined in the objects implementing class(es). Given
our view of events being equivalent to OOP messages, then in AgentSpeak(L)
the interface of an agent is the set of events that it can handle.

Intentions are equivalent to threads Intentions represent the plans that
the agent has selected based upon the matching of events to plan rules.
The AgentSpeak(L) interpreter processes the intentions by executing the
instructions contained within the plan. In cases where the instruction is a
sub-goal, this results in an additional plan being added to the intention
which must be executed before the next instruction in the initial plan can
be executed. In most programming languages, this activity is modelled by
the program (call) stack. Intentions are simply the AgentSpeak(L) equiv-
alent of this. Given that an agent can have multiple concurrent intentions
whose execution is interleaved, it is natural to view an intention as being the
equivalent of a thread.

The above mappings are intended to relate the concepts of AgentSpeak(L) to
those present in OOP. The objective behind this is to try to reduce the cognitive
gap faced by individuals who know OOP and wish to learn an AOP language.
The benefit of doing this is that someone who is proficient in OOP can use these
mappings as a starting point for their study of the language.

3 Exploring the Implications

The mapping developed in Section 2 is not only potentially useful to developers
aiming to learn AgentSpeak(L), but it is also useful from a language developer’s
perspective as it raises questions about the set of features that may be appropri-
ate for AgentSpeak(L)-style languages. In this section, we explore some of the
consequences of adopting the above mapping.

3.1 Beliefs are Like Fields

Understanding the role of beliefs in AOP languages can be one of the most
challenging concepts to grasp. Certainly, at a high-level it is clear that beliefs

Reflecting on Agent Programming with AgentSpeak(L) 355

are the state, but many find it difficult to understand how beliefs relate to the
state of an object. As was discussed above, one simple way of associating beliefs
with object state is to demonstrate that beliefs are like fields. Fields are OOP’s
mechanism for defining the state of an object. Fields typically associate a label
with a container for values, for example String name = "Rem"; associates the
field name, of type String with the value “Rem”, which is itself a String literal.
In AgentSpeak(L), it is possible to do something similar, namely to declare a
fact, whose predicate corresponds to the field name, and which takes a single
argument, the value associated with the field, for example name("Rem");.

In OOP, there are a couple of operations that can be performed on a field:
(1) assigning a new value, for example, name = "George";; and (2) comparing
a value, for example name.equals("Rem"). In AgentSpeak(L), performing these
operations can be achieved as follows: (1) to assign a new value, you must first
drop the existing belief and then adopt a new belief with the new value, for
example, -name("Rem");+name("George"); and (2) to compare the value, you
can either perform a query of the agents beliefs, for example, ?name("Rem") or as
part of a plan rule context, for example <te> : name("Rem") <- It should
be noted here that the assignment operation, which is an atomic operation in
OOP is not an atomic operation in AgentSpeak(L).

An interesting observation of the above is that, in transitioning from OOP
(nominally Java) to AgentSpeak(L) the type of the field has been lost. Types can
be a powerful feature of a programming language that can be used to statically
verify the correctness of code. Specifically, in OOP, they can be used to identify
situations where the wrong type of data is assigned to a field, or where the
wrong type of data is passed to a method. Typically, AOP languages have used
dynamically typed variables - this reflects the logical origins of AOP, where
dynamically typed variables are common. For some developers, who come from
a background where the languages they have used are strongly typed, this can
be another significant hurdle to overcome.

One option for AOP language developers is to introduce a type system to
their language [13]. Within AOP, type systems can be applied at the (multi-)
agent level, and at the language level. (Multi-)agent types refer to the association
of types with agent instances, which can be used for engendering reuse [14] of
agent code or to support run-time substitution of agent instances [15].

The second use of type systems is to apply types to the terms of logical
formulae, as is typically done in ontology languages, such as RDF [16]. The
potential benefits of this are:

– improved readability: the meaning of the belief is clearer when the types
are known.

– static type checking: compile-time checks can be used to reduce the num-
ber of run-time errors.

To take full advantage of static typing, a number of additional supports are
required: correct forms for beliefs and (potentially) goals must be specified using
an ontological representation; signatures representing the potential actions must
be be specified in a similar way.

356 R.W. Collier et al.

1 Algorithm SelectionSort(A, n):
2 for j=1 to n-1 do
3 minIndex = j
4 for k=j+1 to n-1 do
5 if (A[minIndex] < A[k]) then
6 minIndex =k
7 if (minIndex <> j) then
8 temp = A[j]
9 A[j] = A[j+1]

10 A[j+1] = temp
11 return A

1 !do_sort ([7, 5, 12, 15, 3]);
2

3 +! do_sort(L) <-
4 _size(L, S);
5 !outerLoop(L, S, 0);
6 ?sorted(L2);
7 _print(L2).
8

9 +! outerLoop(L, S, X) <-
10 +min_index(X);
11 !innerLoop(L, S, X);
12 ?min_index(Z);
13 -min_index(Z);
14 !update(L, S, X, Z).
15

16 +! update(L, S, X, Z) : X < Z <-
17 _swap(L, X, Z, L2);
18 !outerLoop(L2, S, X+1).
19

20 +! update(L, S, X, Z) <-
21 !outerLoop(L, S, X+1).
22

23 +! outerLoop(L, S, X) <-
24 +sorted(L).
25

26 +! innerLoop(L, S, X) : X < S <-
27 _elementAt(L, X, T);
28 !compare(L, X, T);
29 !innerLoop(L, S, X+1).
30

31 +! innerLoop(L, S, X) <-
32 _skip ().
33

34 +! compare(L,X,T):min_index(Y)<-
35 _elementAt(L, Y, S);
36 !compare(L, X, Y, S, T).
37

38 +! compare(L, X, Y, S, T)
39 : S < T <-
40 -min_index(Y);
41 +min_index(X).
42

43 +! compare(L, X, Y, S, T) <-
44 _skip ().

Pseudo code AgentSpeak(L) code

Fig. 1. Two implementations of Selection Sort algorithm

3.2 Plans Rules as Methods

The equivalence of plan rules and methods posits a simple question: if algorithms
are a typical way for defining behaviour in OOP and methods are the common
mechanism for implementing algorithms, would it not be natural for somebody
learning AgentSpeak(L) to attempt to implement some established algorithms
using the agent language?

To investigate this in more detail, we decided to implement a common algo-
rithm using AgentSpeak(L). The choice of algorithm itself is not important, as
the question really being asked here is: can somebody learning an AOP language
apply their existing algorithmic problem solving skills easily in that language?

Reflecting on Agent Programming with AgentSpeak(L) 357

The result is illustrated in Figure 1. The left hand piece of code is standard
pseudo code for the selection sort algorithm. The right-hand piece of code is the
AgentSpeak(L) implementation of that algorithm. As can be seen, the AgentS-
peak(L) solution is far more complicated than the pseudo code - it is over 3 times
longer; one method has been mapped to 9 rules (the first rule in the AgentS-
peak(L) program actually calls the sorting algorithm); and it is not even all of
the code because 5 primitive actions are used (_size(...), _elementAt(...),
_swap(...), _print(...), and _skip()). In fact, there are a number of clear
issues with the AgentSpeak(L) solution:

1. Rule explosion occurs because in AgentSpeak(L) loops and selections are
implemented using rules. In fact, 2 rules are typically required for both if
statements and loops. In both cases, one rule is required where the guard
is true and one where the guard is false. Both rules must be provided in all
cases, even if they do nothing (failure to match an internal event to a rule is
equated to failure to achieve a sub-goal as there are no valid event handlers
for the given event).

2. Returning results is an issue in AgentSpeak(L) because the basic ver-
sion of the language does not allow values to be returned from a sub-goal
call. Instead, the value must be stored in a belief (in the global state) and
upon completion of the sub-goal, the value must be retrieved by querying
the global state. Such a convoluted approach clearly is not scalable given
AgentSpeak(L) supports multiple concurrent intentions.

3. Hidden code arises because AgentSpeak(L) has such limited semantics that
it is not able to directly perform simple operations such as swapping two
values. Instead a number of custom primitive actions are also needed (these
are not included in the code count) to implement this basic functionality. In
the code any statement that is prefixed by a is a primitive action.

4. Loss of readability due to the number of rules and the convoluted control
flow that results from it understanding the agent code is far more difficult
than understanding the pseudo code.

Admittedly, many would question the value in implementing a sorting algo-
rithm using an agent language, but again, the issue here is not the actual algo-
rithm, but that algorithms cannot be easily implemented in AgentSpeak(L).
Given the amount of time and effort that is put into teaching programmers to
think algorithmically, it seems inefficient to be promoting languages that do not
try to leverage those skills.

3.3 Intentions as Threads

In the mapping, we equate intentions with threads. Agents are commonly pre-
sented as being active objects, with their own thread of control. However, the
reality is that AgentSpeak(L) agents are more like multi-threaded processes, with
each intention being an individual thread. If this view is adopted as the correct
analogy for intentions, then our languages must be designed with this in mind.

358 R.W. Collier et al.

AgentSpeak(L) is not designed with such a view in mind. As was mentioned
above, sub-goals cannot return values. Instead, the value must be stored in the
global state of the agent and retrieved once the sub-goal has completed. It is
easy to see that such a scenario does not work well if intentions are like threads.
This is especially the case since intentions are normally interleaved, with the
agent executing one action for one intention per iteration of its execution cycle.

Consider, for example, an agent with two intentions, A and B, that both
need to sort a (different) list of numbers using the selection sort code of figure
1. On iteration i, intention A stores the sorted list in its global state. On the
next iteration (i+1), intention B stores its sorted list in the global state. Two
iterations later (after A and B have completed their sub-goals), A then attempts
to retrieve the sorted list from the memory. The agent has two beliefs - one
for each sorted list - based on the given program, it is ambiguous as to which
of the sorted lists will be returned. The result is that either A or B will have
the incorrect sorted list. Naturally, this problem can be overcome, but only by
further increasing the complexity of the program!

One solution would be to introduce support for mutual exclusion into AgentS-
peak(L). This would overcome the issue, but would require the mutual exclusion
to be applied prior to the first invocation of the !outerLoop(L, S, X) sub-goal.
The natural alternative is to allow sub-goals to return values.

3.4 Events are Like Messages

Perhaps the most contentious part of the mapping is the association of AOP
events and OOP messages. This can seem contentious because messages are a
well-defined concept in multi-agent systems that drive speech act based interac-
tion between agents. Further, it conflicts with Shoham’s analysis, which argues
that message passing in AOP is equivalent to message passing in OOP. In reality,
there is no conflict. The reason for the seeming inconsistency is that Shoham com-
pares agents and objects from an external (and high-level) perspective, whereas
our comparison of AgentSpeak(L) and OOP is more low-level. Further, the design
of AgentSpeak(L) did not consider inter-agent communication.

There are two basic approaches to handling the receipt of messages in AgentS-
peak(L). The first approach is the approach adopted in Jason. Here, a subset of
KQML is identified and the chosen speech acts are closely integrated with the
language. For example, receipt of a tell message results in the adoption a belief
based on the content of the message together with an annotation identifying the
sender of the message. Invoking a behaviour based on the receipt of a tell mes-
sage thus requires the creation of a plan rule whose triggering event matches the
belief adoption event created by the receipt of the message. The sending of mes-
sages is then supported through the provision of an internal action .send(...).
This approach fits the mapping presented in this paper because the semantics
of the receipt of messages are hidden from the programmer.

An alternative approach is to introduce a new message event type to model
the receipt of a message. This approach is more loosely coupled in that the receipt
of a message does not have a direct impact on the agent. Instead, the programmer

Reflecting on Agent Programming with AgentSpeak(L) 359

must implement a rule to handle the receipt of the message. The advantage of
this approach is that it is left to the programmer to determine how the agent
responds to the receipt of a message. For example, if an agent is informed of some
new fact, then the programmer can provide a rule to define whether or not the
agent should adopt the content as a belief. As before, sending of messages can
be achieved through a custom action (or alternatively, a custom plan operator).

Irrespective of the model chosen, it is clear that AOP messages are not the
same as OOP messages as ultimately, the behaviour resulting from the receipt of
the message is realised through the processing of an event. What is interesting
to note from the second model is the idea of increasing the number of event
types supported by the language. The benefit of adding new event types is that
the events can be specified in a way that all of the relevant data is encoded in
the event. This can result in a solution that is clearer and easier to follow that
trying to reduce every event to an annotated belief. The cost comes from the
fact that the implemented language must handle more event types.

4 ASTRA: AgentSpeak(L) with Bells and Whistles

The mapping presented in this paper is aimed at reducing the cognitive gap for
developers who are familiar with OOP and who wish to learn an AOP language.
In order to evaluate whether such a mapping can help, we have developed a new
implementation of AgentSpeak(L) called ASTRA. ASTRA is based upon Jason,
but includes a number of features that are inspired by the mapping presented
in this paper. In line with the rest of this paper, the syntax of ASTRA is based
upon Java syntax, which has been chosen so that the language will seem more
familiar to the user. In this section, we present only the most pertinent details
of ASTRA that reflect the points made in the paper. For more information on
the language, the reader is directed to [6].

4.1 The ASTRA Type System

ASTRA as a statically typed language that provides a typical set of primitive
types for use. Because ASTRA is built on Java, and in an effort to improve
the cohesion between the agent layer and the supporting functionality in the
Java layer, the set of primitive types is based upon Java’s type system. While
not exhaustive, all the necessary types are provided for, including 4 and 8 byte
integers (mapped to Java’s int and long types), 4 and 8 byte floating point
numbers (mapped to float and double types) as well as representations for
character and boolean values (mapped to char and boolean types).

In addition, ASTRA also supports the non-primitive types of character
strings which maps to the Java String class and a list type which maps to
a custom implementation of the java.util.List interface. Finally, ASTRA
allows the use of generic objects through the object type. Instances of objects
cannot be directly represented within the language but can be stored and passed
to internal and environment operations.

360 R.W. Collier et al.

ASTRA uses modules to represent internal libraries. The design of these
libraries is inspired by the use of annotations in CArtAgo [17]. Libraries allow
four kinds of annotation: terms, formulae, sensors and actions. Terms represent
basic calculations that can return a value. Formula methods are constructors
that return any logical formula instance in ASTRA (these can be simple boolean
values or more complex formulae). Sensors generate beliefs that are added to the
agent’s state. Actions represent internal actions that can be performed, returning
a boolean value indicating if the action was successfully performed. Figure 2
shows the declaration of a module containing a single term and action.

All of the components of the modules are typed. This enables the static ver-
ification of types for any usage of the library as well as for any value returned.
Terms, actions and formulae can be used in a manner intuitive to OOP program-
mers: Figure 3 shows an example of the use of a term to determine the largest
of two numbers before using an action to print it.

Modules must first be declared by linking the class to a name within the
agent, this declaration is shown in line 5 of the example. A consequence of this
method of declaration is that a single agent can create several copies of the same
module, each with a different name and state.

1 package ex;
2

3 import astra.core.Module;
4

5 public class MyModule extends
Module {

6

7 @TERM
8 public int max(int a, int b){
9 return Math.max(a, b);

10 }
11

12 @ACTION
13 public boolean printN(int n){
14 System.out.println(n);
15 return true;
16 }
17 }

Fig. 2. Java code declaring a module with
a term and action

1 package ex;
2

3

4 agent Bigger {
5 module MyModule m;
6

7

8 initial num(45, 67);
9 initial !init();

10

11

12 rule +!init() {
13 query(num(int X,int Y));
14 int n = m.max(X,Y);
15 m.printN(n);
16 }
17

18 }

Fig. 3. ASTRA code declaring and using
a module

It should be noted that ASTRA is not alone in considering strong typing
to be important in agent programming. The simpAL agent programming lan-
guage [13] also supports typing, and includes the ability to extend strong typing
to environment artifacts and to the agents themselves.

4.2 Extended Plan Syntax

ASTRA includes a number of extensions to the traditional AgentSpeak(L) plan
syntax. These extensions are added to combat the issues noted in Section 3.2.

Reflecting on Agent Programming with AgentSpeak(L) 361

The usefulness of constructs such as these is emphasised by Jason’s inclusion
of some of these procedural-style constructs (e.g. if statements, loops) in its
extended version of AgentSpeak(L). ASTRA attempts to provide a more com-
plete mapping between procedural-style pseudocode, as well as AOP features.

If statement the most basic form of flow control
While loop traditional method of repetition in programming
Foreach loop repeats the same actions for every matching binding of a formula
Try-recover block allows for the recovery from failed actions
Local variable declaration declares a variable for use within a plan rule
Assignment allows the value of a local variable to be changed
Query bind the values of beliefs to variables
Wait pauses execution until condition if true
When performs block of code when condition is true
Send sends message to another agent
Synchronized provides for mutual exclusion in critical sections

Figure 4 shows an implementation of selection sort as a single rule in ASTRA.
While this demonstrates only some elements of the extended plan syntax, when
compared to the Agentspeak(L) implementation given in Figure 1 it is much
easier to understand.

1 rule +!sort(list L, list R) {
2 R = L;
3 int j = 0;
4 while (j < P.size(R)) {
5 int minIndex = j;
6 int k = j+1;
7 while (k < P.size(R)) {
8 if (P.valueAsInt(R, minIndex) > P.valueAsInt(R, k))
9 minIndex = k;

10 k++;
11 }
12 if (minIndex ~= j) {
13 R = P.swap(R, minIndex , j);
14 }
15 j++;
16 }
17 }

Fig. 4. ASTRA rule for Selection Sort

4.3 Mutual Exclusion Support

In Section 3.3, the link between intentions and threads was established. This
introduces potential difficulties in the form of race conditions since multiple
intentions are, interleaved by their very nature. As such, it is necessary to provide
functionality to offset these difficulties. To facilitate removal of these high-level
race conditions, ASTRA includes support for synchronized blocks - sections of
the agent program that are labeled as critical sections.

362 R.W. Collier et al.

Code contained within a synchonized block can only be executed by a single
intention at a time. Synchronized blocks are declared using the synchronized
keyword but also require an identifier for the block. This allows multiple blocks
to be declared representing a common critical section. Once an intention enters
a synchronized block, all synchronized blocks with the same identifier are locked
and cannot be entered until the current intention is completed.

Figure 5 shows an example of ASTRA code with race conditions. This pro-
gram invokes the !init() goal twice, creating 2 intentions. In this situation,
there is no way to know the output of the program. If both intentions query the
belief at the same time the agent will only output the value of X at 0 and 1
(initial and incremented once). Figure 6 shows the same program with mutual
exclusion added through the use of a synchronized block. In this situation, the
output is guaranteed show the values of X at 0, 1 and 2.

1 agent Racy {
2 module Console C;
3

4 initial ct(0);
5 initial !init(), !init();
6

7

8 rule +!init() {
9 query(ct(int X));

10 +ct(X+1);
11 -ct(X);
12 }
13

14

15 rule +ct(int X) {
16 C.println("X = " + X);
17 }
18 }

Fig. 5. ASTRA code with race condi-
tions

1 agent Racy {
2 module Console C;
3

4 initial ct(0);
5 initial !init(), !init();
6

7 rule +!init() {
8 synchronized (ct_tok) {
9 query(ct(int X));

10 +ct(X+1);
11 -ct(X);
12 }
13 }
14

15 rule +ct(int X) {
16 C.println("X = " + X);
17 }
18 }

Fig. 6. ASTRA code with mutual exclu-
sion

5 Evaluation

In order to evaluate the concepts discussed in this paper, a survey was conducted
using 20 students from the M.Sc. in Advanced Software Engineering programme
in University College Dublin. The participants completed an Agent-Oriented
Software Engineering module as a component of their degree. The students are
full-time software engineers with an average experience of 7.65 years in industry.
The degree is completed part-time over a number of years where each module is
taught intensely for a single week of lectures and practical instruction.

Participants were asked to indicate their level of agreement with statements
relating to general agent-oriented programming as well as more specific areas of
interest to this work. The results were captured on a 5-point Likert scale. The
questions presented form only a subset of the overall survey that was performed,
full details of the survey and responses can be view in [18, pp.181–187].

Reflecting on Agent Programming with AgentSpeak(L) 363

The first group of questions relate to agent-oriented programming languages
in general and their benefit to the participant.

Q1 Agents are a useful level of abstraction.
Q2 I would consider using an AOP language in my (future) work.
Q3 AOP languages make distributed programming easier.
Q4 AOP languages make concurrent programming easier.
Q5 Studying AOP languages enhanced my understanding of distributed com-

puting

Fig. 7. Representation of Agents Survey results

The second group of questions relate to the participants’ perception of some
features of ASTRA and the impact this had on their ability to learn the language.

Q6 Static typing, and the verification this enables, are important.
Q7 Static typing is a necessary feature of AOP languages.
Q8 Static typing makes ASTRA code easy to read.
Q9 ASTRA was easy to learn.

Q10 I found it easy to apply my existing programming knowledge to ASTRA.
Q11 The syntax of ASTRA made it easy to understand.
Q12 There is a steep learning curve for ASTRA.
Q13 The lack of a debugger made ASTRA more difficult to learn.
Q14 ASTRA offers a good level of abstraction for programming distributed

systems.

The results from the first group of questions show that the participants gen-
erally consider agents to be a useful level of abstraction. However, only 40%

364 R.W. Collier et al.

Fig. 8. Representation of ASTRA Survey results

indicated that they would consider using AOP in their future work. This may
indicate that further work is required to address the criticisms raised Section 1.

The results from the second group of questions show that 75% of the partic-
ipants believe that static typing is important. However, of this 75%, only 53%
believe that it is a necessary feature for AOP languages. Regardless of the neces-
sity of static typing, 65% of the participants believed that static typing made
ASTRA code easier to read. Further, 65% of the participants also found the
syntax of ASTRA made it easy to understand. This may indicate that provision
of constructs more commonly available in OOP languages eases the transition
from procedural languages to ASTRA.

In terms of learning ASTRA, the majority of participants disagreed that there
is a steep learning curve. However, 75% of participants did believe that the lack
of a debugger made the learning process more difficult. While this agrees with
the informal feedback received previously, it is unclear whether this is a result
of the level of experience of the participants. The amount of industry experience
may make it more likely that the participants would utilise this level of support
more than less experienced students of AOP languages.

6 Conclusions

In this paper, we have presented a practical conceptual mapping between
AgentSpeak(L) and Object-Oriented Programming (OOP). The purpose of this
mapping has been to attempt to find a way of reducing the cognitive gap for
developers, experienced in OOP, who wish to learn Agent-Oriented Program-
ming (AOP). In developing the mapping, we are not attempting to reduce one
paradigm to the other, but instead aim to provide a stepping stone that will
help developers wishing to learn AOP make their first steps.

Reflecting on Agent Programming with AgentSpeak(L) 365

In addition to the benefit such a mapping provides for those wishing to
learn AgentSpeak(L), a second benefit is that it provides language designers
with valuable insights into how their languages might be used in practice. To
this end, Section 3 reflects on the mappings and identifies a number of possible
issues and potential opportunities:

1. the potential of using a type system to improve the link between the agent
and object layers and to reduce run-time defects through static type checks.

2. the provision of an extended suite of plan operators including a subset that
mirror the typical constructs offered in procedural languages to support the
use of existing algorithmic problem solving skills when developing agent
behaviours and the curtailing of rule explosion that was evident in Figure 1.

3. the provision of mutual exclusion support for intentions to facilitate man-
agement of critical sections.

4. the use of an extended suite of event types rather than attempting to force
all events to conform to AgentSpeak(L)’s original model of belief and goal
events.

While we believe that we have come to these conclusions through a novel
route, we do not claim to be the first to reach them. Certainly, Jason includes
support for atomic behaviours and has an extended suite of plan operators. In
terms of the latter, we do believe that our perspective offers some benefit: while
Jason does include support for if statements and for and while loops, we do
not believe that it offers support for local variable declaration or assiginment,
both of which are considered a core concept in pseudo code.

The principal outcome of our work has been to drive the development of
ASTRA, an implementation of AgentSpeak(L) that is targeted towards reduc-
ing the cognitive gap. In 2014, ASTRA was made available to students on the
M.Sc. in Advanced Software Engineering mentioned in the introduction. Stu-
dents learned ASTRA over a 5-day period, during which they wrote a range
of programs. On the last day, they were assigned a complex problem to solve
[18, pp.167–180] and were asked to complete a questionnaire relating to both the
problem and more generally agents. Details of the results of the relevant parts
of this questionnaire are presented in Section 5. We believe that the feedback
positively reflects our decision to include both the language level type system
and the suite of plan operators into ASTRA.

References

1. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

2. Dastani, M., van Birna Riemsdijk, M., Meyer, J.J.C.: Programming multi-agent
systems in 3APL. In: Multi-agent programming, pp. 39–67. Springer (2005)

3. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H., (eds.) Multi-Agent Programming,
pp. 119–157. Springer, US (2009)

366 R.W. Collier et al.

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

5. Russell, S., Jordan, H., O’Hare, G.M.P., Collier, R.W.: Agent factory: a frame-
work for prototyping logic-based AOP languages. In: Klügl, F., Ossowski, S. (eds.)
MATES 2011. LNCS, vol. 6973, pp. 125–136. Springer, Heidelberg (2011)

6. Astra language website. http://www.astralanguage.com/ (accessed June 21, 2015)
7. Collier, R.: Debugging agents in agent factory. In: Bordini, R.H., Dastani, M.,

Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS (LNAI), vol. 4411,
pp. 229–248. springer, Heidelberg (2007)

8. Hindriks, K.V.: Debugging is explaining. In: Rahwan, I., Wobcke, W., Sen, S.,
Sugawara, T. (eds.) PRIMA 2012. LNCS, vol. 7455, pp. 31–45. Springer, Heidelberg
(2012)

9. Lam, D.N., Barber, K.S.: Debugging agent behavior in an implemented agent sys-
tem. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 104–125. Springer, Heidelberg (2005)

10. Botia, J.: Debugging huge multi-agent systems: group and social perspectives
(2005)

11. Doan Van Bien, D., Lillis, D., Collier, R.W.: Space-time diagram generation for
profiling multi agent systems. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.)
ProMAS 2009. LNCS, vol. 5919, pp. 170–184. Springer, Heidelberg (2010)

12. Shoham, Y.: Agent-oriented programming. Artificial intelligence 60(1), 51–92
(1993)

13. Ricci, A., Santi, A.: Typing multi-agent programs in simpal. In: Dastani, M.,
Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837, pp. 138–157.
Springer, Heidelberg (2013)

14. Dhaon, A., Collier, R.W.: Multiple Inheritance in AgentSpeak (L)-Style Program-
ming Languages. In: Proceedings of the 4th International Workshop on Program-
ming based on Actors Agents & Decentralized Control, pp. 109–120. ACM (2014)

15. Baldoni, M., Baroglio, C., Capuzzimati, F.: Typing multi-agent systems via com-
mitments. In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNCS,
vol. 8758, pp. 388–405. Springer, Heidelberg (2014)

16. Emmons, I., Collier, S., Garlapati, M., Dean, M.: Rdf literal data types in practice.
In: The 7th International Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS 2011)

17. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: a framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

18. Russell, S.: Real-time monitoring and validation of waste transportation using
intelligent agents and pattern recognition. Ph.D. thesis, University College Dublin
(2015)

http://www.astralanguage.com/

Checking the Reliability of Information
Sources in Recommendation
Based Trust Decision Making

Kamilia Ahmadi(B) and Vicki H. Allan

Computer Science Department, Utah State University, Logan, UT, USA
k.ahmadi@aggiemail.usu.edu

Abstract. Trust is one of the measures commonly used to evaluate the
effectiveness of agents in cooperative societies. For building trust of a
specific target, agents utilize their direct experiences and recommenda-
tions from agents who had mutual experience with the target. Some
agents may provide false data due to misjudgment. Some others may
have biased or extreme behavior toward evaluating others. Having the
possibility of false data necessitate the existence of reliability checking
mechanisms in building trust. This research focuses on showing the effect
of reliability checking mechanisms on recommendation-based trust deci-
sion making.

Keywords: Recommendation-based trust · Decision making · Anti-bias
filtering · Outlier detection

1 Introduction

Multi-agent systems solve problems that are beyond the capability of a sin-
gle agent. Agents are autonomous, self-interested, and goal-driven, and interact
with each other to pursue the goals of the system [15]. The notion of cooper-
ation plays an essential role in the success of a multi agent system. In such a
society, agents might not be certain about the competencies and capabilities of
others. Even worse, agents need to consider the possibility of intentionally decep-
tive or erroneous information spread from peers. This possibility increases the
uncertainty associated with interactions. In addition, it introduces a significant
degree of complexity to decision-making approaches, such as task delegation and
information sharing in the society of agents [9,16].

Trust is a social control mechanism that reduces the uncertainty of interac-
tions, and helps in forming expectations about others. Agents who repeatedly
fail to complete promised tasks are socially excluded from activities. This social
control mechanism creates a form of supervision of the whole system in which
all agents are involved [8].

Some of the agents may intentionally provide false information while others
may do so because of misjudgment. Incorrect information has a direct effect

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 367–382, 2015.
DOI: 10.1007/978-3-319-25524-8 23

368 K. Ahmadi and V.H. Allan

on the accuracy of trust-based decision making. There are various sources of
false data such as correlated evidence (unintentional bias) and extreme opinions
(intentional bias). Correlated bias happens when multiple agents have a single
experience and use that in giving opinions about a trustee. The receiver consid-
ers them different experiences while they are referencing the same experience.
Extreme agents are another main source of false data, as rely more on negative
experiences than positive ones [3,10,16]. To avoid these sources of error, we need
a mechanism for checking the reliability of provided information. Approaches
for handling these situations include building reliability factor of recommenders,
detecting and removing the unfair ratings along with gathering more and recent
opinions [7,11,13].

In this research, agents use recommendation-based trust for evaluating the
choice of peers on which to rely. Agents use their so-called neighbors for recom-
mendations and they are categorized as Normal, Biased, or Extreme in terms of
expressing their opinions. Normal agents reflect their actual experiences with the
target while other modify it in different ways. Our society is robust, adaptive,
and decentralized giving agents the opportunity of changing their neighbors to
select strong peers. This reorganization is done without any external control or
a single source of management. In our model agents are heterogenous in terms of
their risk behaviors which is modeled as a continuous measure. Continuous mea-
sure of agent’s risk results in having agents with a range of risk behavior rather
than just three distinct types (Risk Seeking, Risk Neutral and Risk Averse). This
risk measure affects the agents’ interpretation of rewards. Risk-seeking agents
have an optimistic attitude toward the reward, while risk-averse agents are pes-
simistic and undervalue the actual reward of tasks. However, risk neutral agents
are objective and see the actual reward of an action. Reliability checking mech-
anisms is used to check the accuracy of provided information in building trust.
Utilizing reliability mechanisms, agents have a more accurate evaluation of their
peers, aiding them in the selection of cooperation partners.

2 Previous Work

Zhang et al (2008) proposed a personalized approach to deal with the problem of
unfair ratings [16]. Unfair rating occurs when a buying agent needs to rely on some
other agents for evaluating the trustworthiness of the seller agent. This approach
uses the private experience of buyer and adviser, along with public knowledge of
the adviser. They use a time window to exclude the old and repeated ratings in
order to avoid the situation where some advisers may flood the system. Also, their
approach provides a mechanism for buyers to rate the public knowledge. In this
model, a central unit of public knowledge is needed to help buyers to evaluate
the advisers. Since our model is decentralized, we do not have a central unit of
knowledge. Therefore, this personalized approach is not applicable.

Josang et al (2009) use a statistical filtering technique for excluding unfair
ratings [9]. In their model, unfair ratings are shown in cases where agents
have unfairly positive or negative opinions about other agents. They have two

Checking the Reliability of Information Sources 369

approaches of dealing with this issue, termed endogenous and exogenous dis-
counting. The assumption of endogenous discounting is that unfair ratings are
recognized by statistical properties of provided opinions. The exogenous dis-
counting method relies on external factors, such as the reputation of rater. This
reputation is used to determine the weight of the rating and comes from external
sources. The drawback of this model is the lack of effectiveness in the case of a
high percentage of unfair behavior (more than 30 percent of all of the opinions).
It seems that the model loses its effectiveness in the case of high numbers of
inconsistent behaviors. Our desired model checks the reliability of the provided
information regardless of the amount of unfair behaviors.

Burnett (2010) uses recommendation-based trust in ad-hoc societies [3]. Direct
experiences are used to build trust. When an agent has no direct experience with
a target, it uses the experiences of other nearby agents to build trust in the tar-
get. In highly dynamic societies, agents leave the community or newcomers join
frequently. Therefore, building trust based on experiences is not always feasible.
Burnett proposes a stereotyping method to build trust. Stereotyping tries to build
trust based on predefined features for those agents without relevant experiences.
In decision making, agents consider the context of the decision using concepts such
as risk, reward and cost of the action to satisfy the controls of the system. Sources
of unreliable recommendations in Burnett’s model are biased agents. Agents may
have different types of bias named perceptual bias, behavioral bias, prejudice, and
affinity. There are anti-bias filtering mechanisms like monitoring the agents, build-
ing reliability factors of recommenders and two stage learning phase mechanism.
Although this model satisfies some of our desired properties, there is a mismatch
with our proposed model. Our model is a self-adaptive one, which adapts itself
based on history and has some sort of dynamicity while the focus of Burnett’s
model is on ad-hoc organizations. Therefore, some approaches of Burnett’s model
are not employable in this research.

3 Our Proposed Model

Reliability checking mechanisms are necessary to check the accuracy of provided
information in recommendation-based trust. There are various sources of false
data like correlated evidence and biased/extreme agents. Normally when there
is a high chance of false data, there is a big variance between provided opinions.
Approaches for handling these situations include building reliability factor of
recommenders, detecting the unfair recommendations and gathering more and
recent opinions. More opinions help reduce the variance of data. Recent data is
more accurate than old data, especially in dynamic societies. Agents should not
depend on the recommendations which reflect old experiences [5,8,11]. In build-
ing trust, agents use the reliability checking mechanisms to evaluate the provided
information from recommenders. Our self-adaptive society allows agents to eval-
uate their cooperation peers and change their organizational link with them in a
decentralized way. Utilizing reliability checking mechanisms, we provide agents
with a better evaluation mechanism of selecting their cooperation peers, along
with avoiding tendentious recommendations.

370 K. Ahmadi and V.H. Allan

3.1 Task Domain

In our model, a task is represented as an incoming stream of multiple requested
services. These services are nodes (subtasks) of the tree. Each service instance
(SI) has a known skill and computation time. There is sequential dependency
between subtasks, which means that the parent SI must be executed before its
child SI. When all of the nodes in the tree are executed, the task is complete
[1]. Figure 1 shows the tree structure of a task.

Fig. 1. Nodes represent a service instance (SI). Arrows represent sequential dependency
between nodes of the tree. Each SI needs a special skill (S) and a computational amount
(C).

Each subtask has a deadline associated with it along with the specified
amount of utility associated with a complete task. The utility of a task is the
amount of reward (utility) the agent gets for investing resources on this sub-
task and finishing it before its deadline. Multiple agents need to cooperate with
each other in order to finish a task. Agents get reward if all of the task’s nodes
are completed before deadline. Therefore, the reward each agent gets not only
depends on its effort on finishing its own part before deadline but also it relies
on the performance of other agents who cooperated in finishing the task. In our
model, nodes with more dependents have bigger reward associated with them
since they are more critical in success of finishing the task tree. Thus agents have
incentive to give better priority to these nodes in their working queue (details of
the prioritization mechanism are explained in section 3.5). Expected time is the
average estimated time for finishing the task. If the agent cannot finish the task
by the expected time, the only punishment is decreasing its expected reward.
This mechanism aims to reward a sooner finishing time, which is better for the
system. Equation 1 and Equation 2 show the relationship between utility and
time. Here t stands for time.

AssignedUtilitytask =

|SIi|∑

i=0

(Utility(SIi)) (1)

Checking the Reliability of Information Sources 371

Utilitytask = AssignedUtilitytask − (ttaken
task − texpected

task) (2)

3.2 Agents’ Characteristics

Based on the agent model in [6], each agent has a set of skills Sx and known com-
putational capacity Cx needed for executing tasks and management. Formally,
an agent is defined in the form of Equation 3.

Agentx = 〈Sx, Cx〉 (3)

The amount of computational capacity is defined per time step and agents
cannot exceed it. Agents’ skills can be overlapping and their capabilities and
resources are limited in order to model real systems. Agents cooperate in finishing
a task and each agent executes a particular task and allocates the dependent
tasks to the capable neighbors. For executing a task, the agent must have the
skill required by the task and the cumulative load of the task has to be less than
the agent’s computational capacity. In order to explore various approaches, there
are three main types of agents defined in our model. Agents are categorized based
on the approaches they use to recommend others and they are termed biased,
extreme, and normal agents.

Biased agents form prejudiced opinions about other agents due to the exis-
tence of some attributes in the trustee. Features include difference of risk behav-
ior, personality, place of the target agent in the hierarchy and skill set. Biased
agents are positive toward agents that have similar features as they have (fewer
differences). Examples of this bias are numerous in human societies; members of
a same culture or nationality behave preferentially toward persons of the same
culture or nationality. Another important factor for biased agents is the place
of the trustee in hierarchy of their peer organization. Biased agents believe that
if the agent is proficient one, it should have better ranking in the hierarchy.
Therefore, agents behave negatively irrespective of other evidences [3].

Extreme agents focus on negative experiences in making opinion. For example
if they had 10 experiences with trustee and just one was negative, they rely
mostly on the bad experience. These agents are pessimistic and cautious in
evaluating others, regardless of the other good experience they might have had
with trustee [14].

Normal agents are neither biased nor extreme. These agents evaluate the
trustee based solely on their mutual experiences. They simply average the func-
tionality of the trustee based on their experiences and try to be accurate using
the history.

3.3 Self-Adaptive Agent Organization

An agent organization is defined as a set of agents and organizational links that
regulate the interaction between agents. Formally, organization is defined with
a tuple containing a set of agents and a set of organizational links based on

372 K. Ahmadi and V.H. Allan

Equation 4. Every link is in the form of Equation 5 which typei denotes the
relationship between agentx and agenty.

Organization = 〈Agents, Links〉 (4)

Link = 〈Agentx, Agenty, T ypei〉 (5)

In our case, the links control sources of recommendation as well as delegation
of tasks. There are four levels of relationship between agents (listed in order of
importance): (a) superior (obligation to satisfy), (b) subordinate (preferred del-
egation), (c) peer (low frequency of interaction) and (d) acquaintance (knowing
existence but having no interaction). The type of relationship between agents
specifies the amount of information they have about each other and shows the
preferences of agents in the task-passing mechanism. Figure 2 shows an example
of the organizational structure of agents.

Fig. 2. Example of organizational structure.() shows services of self. shows services of
subordinates. [] shows services of peers.

In our self-adaptive, agent organization, agents have the opportunity of eval-
uating their neighbors and can promote or demote their organizational links
with them in every iteration. The evaluation process is called Meta-Reasoning
and uses Satisfaction Measures based on Equation 6 and reliability factor of
agents. In the beginning, all of the agents have the reliability factor equal to 1.
Then, agents decrease the amount of reliability factor for those neighbors who
have been recognized as source of unfair recommendation in different situations.
Each agent aims to have more reliable and high satisfactory neighbor around it
for cooperation. In Equation 6, i stands for iteration, t indicates current itera-
tion, and numProvidedRequests is the number of times the agent cooperated
out of all of the times it has been requested for cooperation. Variable h is in the
range of [1, t − 1] and shows the amount of history that will be considered.

satisfaction =

∑t−1
i=t−h numProvidedRequests
∑t−1

i=t−h numRequsts
(6)

Checking the Reliability of Information Sources 373

Reorganization includes removing existing relations and creating new ones.
There is an associated load with it while gives the system the opportunity of
earning utility via new relations in future. Based on the specific type of rela-
tion between two agents, there are different possibilities of modifying the orga-
nizational links. Evaluation functions estimate the amount of utility and load
associated with changing a current relation between agentx and agenty to a
new type of relation. Loads consist of management load, communication load
and load of changing the relation, and are estimated based on history. Utility
is estimated based on past experiences with the type of new relation and the
effectiveness of agenty in terms of earned utility. More details on self-adaptive
agent organization can be found in our earlier publication in [2].

3.4 Recommendation-Based Trust

Agentx builds trust about a specific target based on experiences that can be
direct or from third parties. Although direct experiences (|D| in Equation 7)
have a stronger effect on the process of building trust, agentx also considers
the experiences provided by third parties in order to have better judgement.
The number of recommendations agentx needs to build trust about a target
depends on the risk behavior of agentx. Risk-averse agents need more recom-
mendations and more positive recommendations than risk-seeking ones. As we
explained in section 3.3, each agent keeps the most reliable and high satisfac-
tory neighbor around itself. Recommenders are picked from the neighbors which
recently interacted with the target (|R|), superiors of target (|S|), and agents
with the most iterations with the target (|M |). Then, agentx combines the expe-
riences with different weights (ξi) to determine the amount of trust for the target
based on Equation 7. Weights are based on the reliability of recommendation
providers along with a heuristic that establishes a preference order among the
recommenders.

Trustx→z =
∑

iε{|D|,|R|,|S|,|M | }
ξi ∗ Trust i

x→z
(7)

Since the primary goal of each agent is earning more utility, agents need to
have a motivation for providing a recommendation. Agents make opinion just
based on their direct experience with the target while trust is build based on
both direct experience and opinions from third-parties. One might think that
agents provide information now for others as a part of cooperation, and they
can expect that others will compensate for them in future. However, in most
cases (as in human societies), the expectation of future compensation is not
a sufficient reason to cooperate. Agents need to have a mechanism of mutual
benefit between trustor and recommender. In our model, giving an opinion is
considered as one kind of cooperation, and recommenders get a slight amount of
the subtask’s reward. This mechanism increases the incentive of recommenders
to cooperate and works as social control on the false information providers.

374 K. Ahmadi and V.H. Allan

3.5 Agents’ Queue Reprioritization Using Agent’ Strategy

Each agent has a limited amount of time and resources. While each agent is able
respond to one request per time-step, it might receive more than one request per
time step. Therefore, agents needs to prioritize requests in a waiting queue. For
prioritization purpose, agents benefit from Equation 8 which considers different
factors associated with the requested task. Factors are tasks deadline (D), tasks
utility (U), and strength of relationship with requestor (SR).

Priority = α1 × D + α2 × U + α3 × SR (8)

Each agent has a different weighting scheme (a1, a2, a3). This triplet is called
the strategy of the agent and indicates the order of importance of each factor.
Agents might be deadline-driven or greedily prefer gaining utility. Others may
prefer to satisfy their superiors to keep their relationship strong. Upon receiving
new request agents reprioritize their whole queue [1].

3.6 Evaluating Neighbors for Task Delegation Purposes

Finishing a task requires cooperation between multiple agents. Each agent uti-
lizes task-passing mechanism and allocates subtasks to different level of neigh-
bors. Figure 3 demonstrates this task-passing mechanism.

Fig. 3. Process of assigning a task to an agent. Priority of task passing starts from
agent’s subordinates, then peers and finally superiors.

Based on the task passing process, agentx starts from first level of neighbors
(which are subordinates) and runs the decision making algorithm (our earlier
publication [1]) to identify the best one from all of the volunteers. If there is no
capable subordinate, agentx goes through the same steps in the next level of
neighbors to find the optimal agent.

In the decision making algorithm, first Agentx sends a request to the target
agents containing the characteristics of the requested task. After receiving the

Checking the Reliability of Information Sources 375

request, agents who are capable of doing the task (in term of having the skills
needed for with task and enough computational capacity) send their responses
to agentx. Responses includes their best, average and worst case estimation time
of doing the task (which was specified in the request) along with the associated
probabilities of finishing the task by their estimated time. For estimations, each
agent utilizes the reprioritization algorithm explained in section 3.5 to find the
anticipated place of the task in its queue and following equations. Best case
scenario denotes the case where neither the preceding tasks in queue, nor the
requested task are delayed. Average case estimation allows half of the tasks to
be delayed, while the other half is not delayed. Finally, Worst case represents
the case where all tasks, including the requested task, are delayed. In all of the
equations the number of tasks in the queue is considered as n.

T (BestCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration
(9)

P (BestCase) = (1 − p(lateness))n (10)

T (AverageCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration
+

n

2
× T (lateness) (11)

P (AverageCase) = Cn
n
2

× (p(lateness)
n
2 (1 − p(lateness))

n
2) (12)

T (WorstCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration
+ n × T (lateness) (13)

P (WorstCase) = 1 − P (BestCase) − P (AverageCase) (14)

After all of the estimations, Agentx removes responses which are dominated
by other responses. Then it updates trust value for the remaining agents and
uses trust value to evaluate received responses. The next step includes mapping
the estimated times of the responses to utility using Equation 2. After finding
the reward of the task, Agentx calculates its interpretation of utility (IU)of
the responses based on Equation 15 and its own risk measure. Risk-seeking
agents have an optimistic attitude toward the reward, while risk-averse agents
are pessimistic and undervalue the actual reward of tasks. However, risk neutral
agents are objective and see the actual reward of an action.

IU = RewardRiskMeasure (15)

Agentx selects the optimal agent based on Expected Utility Theory [3,12].
Based on Equation 16, agentx evaluates different choices and selects the agent
with the highest expected utility.

E(c) = IUBest × PBest + IUAverage × PAverage + IUWorst × PWorst (16)

3.7 Sources of False Data and Reliability Checking Mechanisms

One of the primary sources of false data is called Correlated Evidence. This
problem happens when multiple agents observe a single interaction and use it in
making opinion about the trustee. Agents make opinion just based on their direct

376 K. Ahmadi and V.H. Allan

experience with the target while trust is build based on both direct experience
and opinions from third-parties. Since the experience is not identified in opinions,
the third party receives several communications which seems to be different
experiences while they all refer to a single interaction [8]. The tree structure
task domain which we used, prevents the occurrence of correlated evidence. In
our task domain, each task divides to multiples subtasks, and each subtask is
assigned to one agent. If the agent finishes the subtask successfully, the completed
subtask is used as a positive mutual experience between the agent who passed
the subtask and the agent who executed it. This experience reflects the amount
of utility the executer earned by accomplishing the subtask. In a case of task
failure, this failure negatively influences the mutual experience between parties.
Since each subtask is being done by just one agent, there are not any common
experiences between multiple agents; therefore, this model does not struggle with
the problem of correlated evidence.

The first step toward building trust is gathering recommendations. Then
agentx checks the age of gathered opinions. Recent data seems to be more accu-
rate than old data especially in our dynamic model. In our society, relations
between agents, reliability values, and personality of agents are evolving over
time. Therefore, agents should not confide in recommendations which primarily
reflect old experiences. For satisfying the acceptability of data, agentx excludes
old experiences in making opinion.

The other possible source of false data is opinions coming from biased and
extreme agents. As described in section 3.2, these agents do not provide opinions
based fairly on experiences. Therefore, their provided information is not persua-
sive. Normally when there is a high chance of false data, there is a big variance
between provided opinions. In statistics, an outlier is an observation point that
is distant from other observations and the opinions that are divergent from the
majority have the high chance of being inaccurate or deceptive [8].

In our model, agents provide their opinions in the numerical range of [0, 100].
Suppose agentx gathered 10 opinions about agenty, 9 out of the 10 report a value
between [80, 100] and just one recommender reports 10. Relying on the majority
of the agents’ opinions, there is a high chance of false data in this scenario as there
is a large variance between gathered recommendations. There might be a biased
or extreme agent on behind of that different opinions which needs to be detected.

In order to detect outlier points, we used the modified Z-score based on the
[4]. In Equations 17 and 18, x̃ and Ỹ denotes the median of the data. Then any
point of the data that has the modified Z-score with an absolute value of greater
than 3.5 is labeled as an outlier [4]. When agentx detects the outliers, it removes
them and gathers more opinions from possible recommenders.

Mi = 0.6745 ∗ (xi − x̃)/MAD (17)

MAD = median(|Yi − Ỹ |) (18)

Building Reliability Factor is another ways of dealing with unfair recommen-
dation providers. After detecting the outliers, agentx updates the reliability value

Checking the Reliability of Information Sources 377

of provider agents identified as outliers. Building reliability values about recom-
menders is similar to monitoring the agents over time. Instead of pursuing all of
the behaviors of the agents, agents keep a numerical value and update it after
each mutual experience of getting recommendation. Since getting recommenda-
tions adds cost to the system, it is not possible to gather the opinions of all poten-
tial recommenders. Costs include the message passing (communication cost) for
gathering recommendations and different levels of anti-biasing mechanism. There-
fore, agents mainly get recommendations based on the reliability value of agents.
Agents who do not have good reliability values are excluded from participating
in providing recommendations. Besides, since in our model agents get utility for
providing recommendation (which is an incentive for participating in providing
recommendations), this is a punishment for agents with a low reliability value.
Also as mentioned in section 3.3, the reliability value is one of the factors used in
evaluating neighbors for adaptation. Thus, adaptation helps agents to have strong
and more reliable agents in their neighborhood for cooperation.

4 Experiments and Results

4.1 What is the Effect of Anti-bias Filtering in System’s Profit?

We evaluate the effectiveness of the reliability checking mechanism based on the
performance of the organization measured as the system profit. Since agents
cooperatively execute a task, the accuracy of selecting peers leads in having bet-
ter completion rate of tasks and higher utility of the system. Reliability checking
mechanism helps the agents to evaluate their partners and pass the tasks to the
most suitable one. The system profit during each iteration is computed as the
summation of the profits of all individual agents. We use Equation 19 to calculate
the profit of agents per iteration using the amount of earned utility and the total
cost of that iteration. Costs include communication cost, reorganization cost and
cost of anti-bias filtering mechanisms. Cost is calculated using Equation 21.

Profitorg = Utilityorg − Costorg (19)

Utilityorg =
∑

iε{tasks}
Utility(taski) (20)

Costorg = Cost ∗
∑

xε{Agents}
numMessegesx +

∑

yε{AntiBiasMechanisms}
Costy+

R ∗
∑

xε{Agents} numReorgx

2

(21)

This experiment compares the profit of the system in two situations. In both
of these situations, agents use a decision-making algorithm described in section
3.6 while one utilizes reliability checking mechanism in building trust. Both of
the methods respect the hierarchy of the agent organization for delegating tasks;
they delegate the tasks in the following order: subordinates, peers, superiors, and
finally acquaintances. Using reliability checking mechanism, agents have a better
evaluation of others along with identifying unfair information providers. Figure
4 shows the effectiveness of reliability checking mechanism in the profit of the

378 K. Ahmadi and V.H. Allan

system. Anti-bias filtering helps agents to avoid the effect of malicious opinions
that lead them toward making more efficient decision in task passing. In this
experiment, 60 percent of agents are normal and the rest are biased (20 percent)
and extreme agents (20 percent). To avoid random effect on our results, the
graph shows the average profit of 100 runs of the simulation with 100 agents.

Fig. 4. Effect of Reliability Checking Mechanism on the profit of the system.

4.2 Does Anti-bias Filtering Always Help?

Anti-bias filtering mechanism imposes some costs to the system. Costs include
gathering recommendations, detecting and removal of unfair ratings, asking for
new recommendations to replace unfair recommendations, and building relia-
bility factors. Since the primary goal of agents is to increase the profit of the
system, they are interested in using reliability-checking mechanism if it benefits
the system. This experiment is designed to show the effect of anti-bias filtering
mechanism on the system’s profit in different configuration of the simulation.
In each situation, we change the ratio of normal agents versus biased/extreme
agents. Figure 5 shows the result of this experiment.

As it can be seen from the results, when majority of agents are biased/ex-
treme, reliability checking mechanism is not effective since it imposes a cost to
the system while not resulting in more benefit for the system. When most of
agents are biased or extreme, the marking of unfair recommendation gets less
efficient and may even results in removing fair recommendations due to their
difference with the average of other recommendations. Furthermore, it is inter-
esting to see that when all the agents are normal (N = 1), use of the anti-bias
filtering results in less profit for the system. This is also due to zero (or even
negative) benefit versus the imposed cost of reliability checking to the system.

Checking the Reliability of Information Sources 379

Fig. 5. Effect of Reliability Checking Mechanism on different configuration of the sys-
tem. N stands for the ratio of normal agents. For example when N=0.1 means that
10 percent of agents are normal and the other 90 percent are biased/extreme agents.
The numbers on the bars demonstrate the subtraction of the profit of the system using
anti-bias filtering from the profit of the system in the absence of anti-bias filtering in
decision making.

4.3 How Does Being Selective in Gathering Recommendation Help?

As we mentioned in the section 3.7, higher variance of the data indicates a
higher chance of unfair rating among gathered recommendations. In our frame-
work, agents adapt in every iteration in order to keep reliable and strong agents
around themselves. Agents use their neighbors in cooperatively executing tasks
along with using their opinions in building trust about a target agent. Therefore,
our structural organization along with being selective in gathering recommenda-
tions from neighbors results in reducing the chance of false data. This experiment
is designed to show the effectiveness of our proposed framework in reducing the
variance of recommendations in two situations. The first situation denotes the
case where agents are selective in gathering recommendations while they get
random recommendations in second situation. In this experiment, recommenda-
tions are in the range of [0, 100] and the results are the average of 100 runs for
100 agents in the simulation over time in order to avoid the randomness effect.

The result (in Figure 6) shows the difference of variance between random and
selective approaches. The numbers in this figure are the subtraction of variance
of recommendations in the selective approach from the random approach. This
figure demonstrates that the variance of gathered recommendations is lower when
agents are selective in getting recommendation comparing to when they get
recommendations from random agents. Another interesting observation is the

380 K. Ahmadi and V.H. Allan

Fig. 6. The difference of variance between random and selective approaches in gath-
ering recommendations over time. The numbers in this figure are the subtraction of
variance of recommendations in selective approach from random approach.

variation of variances’ differences over time. In early iterations, there are not that
many mutual experiences between agents, therefore the opinions are almost the
same without significant difference of being selective or random. While by passing
time, agents have enough experiences and information about each other which
specifically leads to having more accurate reliability values about each other.
Therefore, when using anti-bias filtering mechanism, agents identify unreliable
sources over time and avoid getting recommendation from them. As the result,
the variance differences reach a plateau after some time.

5 Conclusion and Future Work

In this research, agents have the opportunity of evaluating their cooperation
peers utilizing recommendation-based trust in a self-adaptive society. A self-
adaptive society lets the agents evaluate the effectiveness of their neighbors based
on the history and promote or demote the relationship with them in order to
keep the most useful and reliable cooperative neighbors around them. Each agent
builds trust about another agent using its own mutual experience with target
along with the recommendation of agents who had experience it in order to have
a variation of opinions.

Agents use the recommendation of other agents in building trust. Therefore,
having reliability mechanisms to check the accuracy of provided information is
necessary. Reliability checking mechanism used in this paper includes checking
the age of data, detecting the outlier opinions, gathering more opinion, and
building reliability values for agents. In addition, recommenders receive reward
in order to give incentive to the agents for their participation.

Checking the Reliability of Information Sources 381

In this model, we have three different types of agents. Biased agents making
opinion about a target not only based on the quality of their mutual experiences,
but also due to the existence of special features. Extreme agents are strict about
negative experiences and they can be considered as cautious agents who are
trying to notify all agents about any possibility of failure or lost. Normal agents
are the ones who neither biased, nor extreme. These agents try to reflect their
opinion exactly based on the history of experiences. Results show that reliability
checking mechanism helps the agents in better profit rate and less task failure.
Besides, it shows that by passing the times agents are less likely to use the
recommendation of biased and extreme agents.

Possible Future work is to extend biased and extreme agents to be more
complex. In this work, our biased opinions are only based on the existence of some
features. We can have different types of bias, like perceptual bias or behavioral
bias. It also would be interesting model other unfair behaviors pf agents such
as randomly recommending other rather than modelling biased and extreme
behaviors, there are other possibilities for . We can have more sophisticated
anti-bias filtering using Bayesian probability and statistical methods.

References

1. Ahmadi, K.: Decision Making Using Trust and Risk in Self-Adaptive Agent Orga-
nizati by Kamilia Ahmadi. Master’s thesis, Utah State University, April 2014.
http://digitalcommons.usu.edu/etd/2159/

2. Ahmadi, K., Allan, V.H.: Efficient self adapting agent organizations. In: Proceed-
ings of the 5th International Conference on Agents and Artificial Intelligence,
pp. 294–303. SciTePress - Science and Technology Publications (2013). http://
dx.doi.org/10.5220/0004261902940303

3. Burnett, C.: Trust Assessment and Decision-Making in Dynamic Multi-Agent Sys-
tems (2011). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.303.3137

4. Crosby, T.: How to Detect and Handle Outliers. Technometrics 36(3), 315–316
(1994). http://dx.doi.org/10.1080/00401706.1994.10485810

5. Falconem, R., Sapienza, A., Castelfranchi, C.: Trusting information sources
through their categories. In: Demazeau, Y., Decker, K.S., Bajo Pérez, J., De la
Prieta, F. (eds.) PAAMS 2015. LNCS, vol. 9086, pp. 80–92. Springer, Heidelberg
(2015)

6. Gershenson, C.: Artificial Societies of Intelligent Agents. Social Science Research
Network Working Paper Series, May 2003. http://ssrn.com/abstract=371641

7. Ghaffarizadeh, A., Allan, V.H.: History Based Coalition Formation in Hedonic
Context Using Trust. International Journal of Artificial Intelligence & Applications
4(4), 1–8 (2013). http://dx.doi.org/10.5121/ijaia.2013.4401

8. Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications. Commun.
Surveys Tuts. 3(4), 2–16 (2000). http://dx.doi.org/10.1109/comst.2000.5340804

9. Jøsang, A., Golbeck, J.: Challenges for robust trust and reputation systems. In:
5th International Workshop on Security and Trust Management (STM 2009), Saint
(2009). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.460.8885

10. Jøsang, A., Guo, G., Pini, M.S., Santini, F., Xu, Y.: Combining recommender and
reputation systems to produce better online advice. In: Torra, V., Narukawa, Y.,
Navarro-Arribas, G., Meǵıas, D. (eds.) MDAI 2013. LNCS, vol. 8234, pp. 126–138.
Springer, Heidelberg (2013)

http://digitalcommons.usu.edu/etd/2159/
http://dx.doi.org/10.5220/0004261902940303
http://dx.doi.org/10.5220/0004261902940303
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.303.3137
http://dx.doi.org/10.1080/00401706.1994.10485810
http://ssrn.com/abstract=371641
http://dx.doi.org/10.5121/ijaia.2013.4401
http://dx.doi.org/10.1109/comst.2000.5340804
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.460.8885

382 K. Ahmadi and V.H. Allan

11. Koster, A., Schorlemmer, M., Sabater-Mir, J.: Opening the black box of trust:
reasoning about trust models in a BDI agent. Journal of Logic and Computation
23(1), exs003–58 (2012). http://dx.doi.org/10.1093/logcom/exs003

12. Traub, M., Kaminka, G.A., Agmon, N.: Who goes there?: selecting a robot to reach
a goal using social regret. In: The 10th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2011, vol. 1, pp. 91–98. International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2011).
http://portal.acm.org/citation.cfm?id=2030484

13. Venanzi, M., Rogers, A., Jennings, N.R.: Trust-based fusion of untrustworthy
information in crowdsourcing Applications. In: Proceedings of the 2013 Interna-
tional Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2013,
pp. 829–836. International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2013). http://portal.acm.org/citation.cfm?id=2485052

14. Whitby, A., JÃsang, A., Indulska, J.: Filtering Out Unfair Ratings in Bayesian Rep-
utation Systems (2004). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.60.1789

15. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley Publishing, 2nd
edn. (2009). http://portal.acm.org/citation.cfm?id=1695886

16. Zhang, J., Şensoy, M., Cohen, R.: A detailed comparison of probabilistic approaches
for coping with unfair ratings in trust and reputation systems. In: Sixth Annual
Conference on Privacy, Security and Trust, pp. 189–200. IEEE, October 2008.
http://dx.doi.org/10.1109/pst.2008.16

http://dx.doi.org/10.1093/logcom/exs003
http://portal.acm.org/citation.cfm?id=2030484
http://portal.acm.org/citation.cfm?id=2485052
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1789
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1789
http://portal.acm.org/citation.cfm?id=1695886
http://dx.doi.org/10.1109/pst.2008.16

© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 383–399, 2015.
DOI: 10.1007/978-3-319-25524-8_24

Supporting Human-Robot Teams in Space Missions
Using ePartners and Formal Abstraction Hierarchies

Tibor Bosse1,2(), Jurriaan van Diggelen2, Mark A. Neerincx2,
and Nanja J.J.M. Smets2

1 Department of Computer Science, VU University Amsterdam,
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

t.bosse@vu.nl
2 Department of Perceptual and Cognitive Systems, TNO,

Kampweg 5, 3769 DE Soesterberg, The Netherlands
{jurriaan.vandiggelen,mark.neerincx,nanja.smets}@tno.nl

Abstract. Human space flight is a prototypical example of a complex, dynamic,
and safety-critical domain in which missions are performed by collaborative
teams of humans and technical systems. In such domains, intelligent electronic
partners (ePartners) can play a useful role in supporting human-robot teams in
their problem solving process whenever a non-nominal situation is encountered.
To enhance the supportive capabilities of such ePartners, this paper presents an
approach to formally represent the functionality of human-robot teams in terms
of different levels of abstraction. By establishing formal relations between do-
main knowledge at different abstraction levels and introducing reasoning rules
to navigate through these relations, ePartners are endowed with a number of
supportive functions, such as the ability to reason about the mission status,
make suggestions in non-nominal situations, and provide explanations. The ap-
proach is applied to a use case in the context of a manned space mission to
Mars. It has been implemented within a mobile application to assist robot-
astronaut teams during space missions, and has been tested in a pilot experi-
ment at the European Space Research and Technology Centre.

Keywords: ePartners · Human-robot teams · Abstraction hierarchy · Reasoning ·
Space missions

1 Introduction

A team of astronauts has landed on Mars. As part of their mission, three ‘actors’ are
involved in an Extra-Vehicular Activity (EVA): an engineer named Hannah, an astro-
naut named Albert, and a real-sized prototype of a Mars-rover, called Eurobot. Albert
is dedicated to the task of setting up a cache for exploratory traverses at a remote
location. While he uses the rover for transportation over the Mars surface towards his
destination, Hannah monitors him from the habitat using wireless network communi-
cation. Suddenly, when Albert is halfway to the desired location, the rover experi-
ences an error: one of the wheels fails to turn back to the original position. Since
the malfunctioning wheel is expected to cause a higher load on the rover’s battery,

384 T. Bosse et al.

following the original plan runs the risk of having to abandon the rover, walk back to
the habitat and lose valuable mission time. So what should Albert do? He discusses
the possibilities with Hannah, and several options come to their minds. Albert could
abort the mission and directly return to the habitat, but this would waste mission time.
He could set up the cache closer to the habitat, but this would reduce the benefit of the
cache. Or should he perhaps replace the current battery by one of the reserve batteries
(foreseen for the cache), to ensure his mission will not strand? All of these options
seem to make some sense, but how to decide which one is the best?

This simple scenario illustrates a fundamental challenge of human space flight be-
yond Low Earth Orbit (LEO): dealing with unforeseen conditions and events (which
will be inevitably present in these space missions) that require dynamic adjustments
of the astronaut-automation team operation. These conditions and events can be fail-
ures of machines, environmental barriers or dysfunction of humans due to high work-
load or unforeseen health issues. Most often, an adequate solution cannot be estab-
lished by one person alone, but results from collaboration and/or negotiation of a team
of astronauts and computers (e.g., wicked problem solving [5]). This is because the
solution may require knowledge, expertise, and capabilities that are distributed over
different team members and computer systems. Furthermore, there may not be one
optimal solution to a problem, but different solutions may exist with different pros
and cons. Such compromises can only be made by involving all interested parties in
the problem solving process (cf. [6]). Additionally, during these deep-space missions,
support to the astronauts by ground control is often not a viable solution due to ex-
pected communication constraints.

Given that such wicked problems of the type described above often occur under
time pressure, such incidents remain highly problematic. In this paper, we propose a
solution that involves using intelligent electronic partners (ePartners) that are able to
assist in the problem solving process [13]. The solution is illustrated for the domain of
human space flight, but in principle it applies to any safety-critical domain involving
collaborative missions of humans and technical systems in complex and dynamic
environments. More specifically, an approach is proposed to formally represent the
functionality of human-robot teams during safety-critical missions in terms of differ-
ent levels of abstraction. By establishing formal relations between knowledge at dif-
ferent abstraction levels and introducing reasoning rules to navigate through these
relations, ePartners are endowed with the ability to relate low-level problems (e.g., a
wheel is turned in a different angle) to higher level conclusions about the mission as a
whole (e.g., ‘safety is endangered’). As a result, they are able to support humans dur-
ing safety-critical missions, e.g., by reasoning about the mission status, making sug-
gestions in non-nominal situations, and providing explanations. The approach is in-
spired by research in the area of Cognitive Work Analysis (CWA) [17]. The informal
task models from CWA are made machine readable using techniques in Business
Process Management [1].

The remainder of this paper is structured as follows. First, in Section 2, our per-
spective on the use of ePartners within safety-critical missions is explained. Next, in
Section 3, a mission scenario and corresponding requirements for the envisioned
ePartner are discussed, which were developed in the context of the MECA-HEART

 Supporting Human-Robot Teams in Space Missions Using ePartners 385

project. In Section 4, a framework is proposed that enables ePartners to reason
through abstraction levels. An implementation of the framework is presented in Sec-
tion 5, and a pilot experiment to obtain initial feedback on its usability is described in
Section 6. Section 7 concludes the paper with a discussion.

2 ePartners

In [13], the use of intelligent agents as digital assistants is proposed as a means to
support humans and automation actors during safety-critical missions under dynamic
and high-demanding conditions. In general, such ePartners could assist in the problem
solving process in the following three main ways:

 They are aware of the current context in which the problem has occurred. They

inform their users of the constraints which are imposed by these contextual fac-
tors (e.g. resources being temporarily unavailable), but also suggest opportuni-
ties which are provided by the current context.

 They complement existing procedural rules (which are effective for solving the
simpler problems) by supporting knowledge-based solutions. These solutions
stem from a joint intelligent activity in which expertise and knowledge of a
problem, possessed by humans and computer systems, is brought together and
used to solve the problem.

 They streamline communication among (human or machine) team members.
They provide a consistent, pervasive and explanatory interface to different ma-
chine components (explanatory agent), and are capable of translating between
languages/ abstraction levels.

To further illustrate the ePartners’ problem-solving support, consider the scenario

sketched in the introduction. Here, it is assumed that each of the three ‘actors’ (i.e.,
astronaut Albert on EVA, remote engineer Hannah, and the Eurobot) has an ePartner
to support the team operations. An example situation where these ePartners could play
an important role is after an anomaly of the rover (e.g., the ‘wheel problem’ men-
tioned above). At this point, the actors enter a team decision making process that is
commonly characterised as Sense, Assess, Decide, Plan and Act [17]; see Figure 1.
The role of the ePartners in this process is to relieve humans as much as possible from
skill- and rule-based tasks (such as Sense and Assess). Another role is to ensure that
all relevant (human and machine) stakeholders are kept in the loop at the knowledge-
based tasks such as Decide. The envisioned core functions of an ePartner are:

 Procedural rules such as responding fast to an anomaly can be performed fully

automatically (e.g., using standard fault detection, isolation and recovery
(FDIR) procedures).

 The procedural responses, which implement local rover intelligence, are com-
plemented by the ePartner response that can apply its global intelligence (about
the environment, mission goals, etc.) to establish a knowledge-based solution.
The dashed line indicates the process that leads to a better solution (i.e. re-
planning the mission). This process is enabled by the ePartner and would not

386 T. Bosse et al.

have occurred without it. Without the ePartner the local solution (i.e. rover shuts
down) would have been the end solution.

 The cognitive task load of the human is minimised, but humans are taken into
the loop if needed. For example, this is the case when the decision is made to
change the mission objective.

 The Eurobot’s ePartner knows the rover and serves as a communication inter-
mediary that can interpret the rover’s sensor logs and raise the level of abstrac-
tion to a level which is shared among all team members.

Fig. 1. Overview of a joint human-robot team decision making process.

3 Scenario and Requirements

The project MECA-HEART (Mission Execution Crew Assistant - Human E-partner
Agent Robot Teaming) is a follow-up on the MECA project [2,12]. Within MECA
(and related projects), consortium members have been working on the type of prob-
lems mentioned above for a number of years. Using the situated Cognitive Engineer-
ing (sCE) design methodology [11], a uniform Requirements Baseline (RB) has been
established, which integrates a vast amount of state-of-the art ePartner knowledge,
concepts, and techniques developed by international academic and industry parties
and by the MECA consortium members themselves. The resulting RB (see [14]) was
used to develop first MECA prototypes and use these in a series of tests in analogue
long duration space missions.

 Supporting Human-Robot Teams in Space Missions Using ePartners 387

The particular MECA-HEART prototype aims to demonstrate MECA within its
envisioned technological environment, and to test its requirements baseline with the
design rationale. To this end, an ePartner will be developed that functions with hu-
mans in a space context, while being integrated with “real” space technologies such as
robots or alarm handling systems. It is envisioned that MECA will serve as a uniform,
user-friendly and trusted access point to all systems that the astronaut has to interact
with. This relieves the astronaut from uncoordinated streams of heterogeneous inputs
from various systems.

To focus the scope of these activities, a detailed mission scenario in the domain
of manned a manned space flight beyond Low Earth Orbit has been developed.
A description of the context of the mission is as follows:

Six astronauts and four rovers of varying types and sizes have landed on Mars. Basic infrastruc-
ture, like a habitat, electricity and wireless network communication is available. The rovers are
ready for deployment and are currently in the habitat. Part of the crew, consisting of two persons and
one rover, is dedicated to the task of setting up a cache for exploratory traverses at a remote location.
The shelter for the cache is currently stored in the habitat and can be carried by the rover to the
planned location. At the location, the shelter can be set up as a self-construction kit by unfolding it
and by fixing it on the ground by drilling holes in the surface and by placing the poles of the shelter
in these holes. The robot is equipped with a drill to do the drilling. The shelter is planned to be
placed on a relatively flat location around 12 km from the habitat. The exact location of the shelter
has not been decided yet as it depends on the presence of medium-sized stones that may make the
area unsuitable as an exploratory cache location, but are too small to be detected on imagery made
available to the crew. Communication with ground control on Earth is possible from the habitat, but
is delayed 8 minutes (one way) for the distance between Mars and Earth at the time shortly after
landing, and sometimes unavailable due to interference with the Sun.

The plan is carried out by an engineer who remains in the habitat, called Hannah, and an astronaut
on EVA, called Albert. Albert uses the Eurobot rover for transportation over the Mars surface, and
to help him with heavy work such as moving rocks and drilling holes. Hannah monitors the robot
and Albert from the habitat, and has access to various types of sensor data on the EVA team, which
is sent to the habitat periodically in predefined packages. The transmission cycle time for these
packages has to be specified manually. Furthermore, for most sensors (e.g. rover’s battery, spacesuit
air pressure, etc.) threshold values have been built in that automatically communicate alarms to the
habitat.

The initial plan of setting up the cache distinguishes four phases (to which we will
refer as use cases):

1. preliminary preparation: Albert and the robot are still in the habitat. To-

gether with Hannah, they pick a site on the map, and make a plan of the mis-
sion.

2. clearing the surface: Albert and the Eurobot travel to the planned location,
and clear the surface for the remote cache, while being monitored by Hannah
from the habitat.

3. construction: Albert and the Eurobot construct the cache on the location,
while being monitored by Hannah from the habitat.

4. return to habitat: Albert and the Eurobot return back to habitat, while being
monitored by Hannah from the habitat.

388 T. Bosse et al.

Two variants of the scen
of events without ePartner
ePartner support). The scen
nominal situation, blue line
mission. Figure 2 shows th
a successful mission. As sh
robot wheel failure (as men
nication failure. The desig
ePartner support (indicated
each branch.

Fig. 2. Problem

Fig. 3. Design

Following the sCE meth
tional) requirements for th
examples of these requirem

 The ePartner shall mo
 The ePartner shall ra

certain condition

1 As this paper focuses on th

phase, the details of the use
they are available in the foll

nario have been established: a problem scenario (a seque
support), and a design scenario (a sequence of events w

nario is summarised in Figure 2 and 3. Green lines show
es show an off-nominal situation and red lines show a fa
he problem scenario in which only one branch result
hown, several off-nominal situations may occur, such a
ntioned in the introduction), a battery failure and a comm
gn scenario (shown in Figure 3) shows the actors hav
 by its logo) which should result in a successful mission

m scenario with nominal and off nominal branches.

n scenario with nominal and off nominal branches.

hod, these scenarios have been related to a set of (ad
he ePartner, thus refining the RB developed earlier. So
ments are the following1:

onitor the current status of all actors and resources
aise an alarm when the status of some resource matche

he development phase rather than the requirements enginee
e cases and requirements are not included in this paper. Howe
owing document: [14].

ence
with

w the
ailed
s in
as a
mu-
ving
n in

ddi-
ome

es a

ering
ever,

 Supporting Human-Robot Teams in Space Missions Using ePartners 389

 The ePartner shall support crew in decision making process based on given
goals and constraints

 The ePartner shall propose resource reallocations that could solve process-
related problems

 The ePartner shall explain any proposed solutions to the user

To satisfy the requirements, one of the main capabilities that the ePartner should

have is the ability to reason about the various aspects of the mission at different levels
of abstraction. For instance, in case a problem occurs at the level of an individual
resource (e.g., a wheel is turned in a different angle, a communication system fails, or
an astronaut experiences stress), the system should be able to relate this to higher
level conclusions about the status of the mission as a whole (e.g., ‘safety is endan-
gered’ or ‘mission efficiency is compromised’), possibly via steps at intermediate
levels. Moreover, the system should be able to explain its reasoning process to
the user(s) in such a way that it is understandable and contains an appropriate level
of detail. Our detailed approach to realise this functionality is presented in the next
section.

4 Reasoning through Abstraction Levels

In this section, a framework is presented that enables ePartners to reason about safety-
critical missions at different levels of abstraction. First, as a conceptual framework to
refer to various aspects of a mission, the notion of abstraction hierarchy is introduced.
Next, we illustrate how the relevant information within such a hierarchy can be repre-
sented formally. Finally, a set of reasoning rules is introduced that allow ePartners to
reason about the dynamics of a mission.

4.1 Abstraction Hierarchy

The concept of abstraction hierarchy [16,17] refers to the hierarchical description of
the functionality of a socio-technical system. It is the result of an analytical process
called Work Domain Analysis. More specifically, an abstraction hierarchy has the
form of a graph with a number of layers, where the nodes at the upper layer denote
the purpose(s) of the system (e.g., ‘setting up a cache for exploratory traverses at a
remote location’) and the nodes at the lowest layer denote the physical objects (or
resources) involved in the system (e.g., astronauts, robots, batteries, …). Typically,
the following five layers are used: purpose – values – functions – processes – objects.
Nodes at one level can be connected to nodes at the next lower level, thereby express-
ing means-end relationships (for instance, a process ‘construct cache’ might require
several physical resources, such as an astronaut on EVA, a rover, and a drill).

Based on the cache construction mission scenario described above, an abstraction
hierarchy was developed, of which a fragment is shown in Figure 4. Note that this
hierarchy deviates at some points from the traditional 5-layered model introduced
above. First, the two highest layers (purpose and values) are not used. Second,
the notion of task is introduced, where a process is defined as a sequence of tasks in a

390 T. Bosse et al.

particular configuration. Hence, tasks can be considered more elementary sub-steps of
processes, such as drive to location, clear area and drill holes. Figure 4 depicts a
separate layer for the tasks, where the view has ‘zoomed in’ onto one of the tasks
(namely cache construction). Third, two additional layers have been added for so-
called capabilities and functionalities. These two new concepts have been introduced
to be able to establish relationships between, respectively, functions vs. processes, and
tasks vs. resources, in a flexible manner. After all, it is not always desirable to make
direct connections between these layers; for instance, instead of directly stating that
task fix cache requires resource Albert, it is more expressive to state that task fix
cache requires some functionality (e.g., ‘being able to fix a cache’), and that resource
Albert provides this functionality. In a similar manner, capabilities can be used as
flexible connections between functions and processes.

Fig. 4. Partial abstraction hierarchy for the cache construction mission.

4.2 Knowledge Representation

In the literature, abstraction hierarchies are mostly used in an informal manner, for
instance as guidelines for human engineers during interface design. Instead, in the
current paper we propose a mechanism to formalise abstraction hierarchies. As a re-
sult, the information at the different layers, as well as the relations between them, will
be machine-readable. This will enable intelligent systems such as the proposed ePart-
ner to process the information, and use it to generate dedicated support.

To formally model the semantics of abstraction hierarchies, the Object-Role Mod-
eling (ORM) framework is used. ORM models use graphical symbols that are based
on first order predicate logic and set theory, to enable modellers to create an unambi-
guous definition of an arbitrary universe of discourse [7]. As ORM is one of the
standards used by the European Space Agency, and many ORM models are already
available in the space domain, using it for our purpose was a logical decision.

 Supporting Human-Robot Teams in Space Missions Using ePartners 391

For the current project, an ORM ontology has been created to express all relevant
information for the cache construction mission scenario (i.e. all concepts and connec-
tions such as the ones shown in Figure 4). This ontology has been developed in the
form of a number of ORM models. An example ORM model (for a Process) is visual-
ised in Figure 5, where the rounded rectangles denote objects and the smaller boxes
denote roles, or relationships between objects. As can be seen in this figure, it con-
tains, among others, some of the concepts shown at the left hand side of Figure 4; for
instance, a Process may have a Task, a Task may be followed by another Task, a Task
requires a Functionality, and a Functionality may be provided by a Resource2. By
filling in these relations with scenario-specific information as shown in the right hand
side of Figure 4, propositions such as these may be formulated:

Process ‘cache construction’ has Task ‘plan mission’
Task ‘plan mission’ is followed by Task ‘drive to location’
Task ‘drive to location’ requires Functionality ‘transportation’
Resource ‘Eurobot’ provides Functionality ‘transportation’

Fig. 5. Example ORM model for a Process.

4.3 Reasoning Rules

So far, the ORM models can be used to express static information about the mission,
such as the fact that a task requires a particular functionality. However, an additional
mechanism is required to let the system reason about the dynamics of the mission.
Such reasoning is relevant, for instance, to conclude that the status of a task changes

2 This last relationship is not shown in Figure 5, as it is part of a separate ORM model.

392 T. Bosse et al.

once that task has been completed, but also to relate a malfunction in a resource to the
conclusion that a task, a process, or even the entire mission may be compromised.
One step further, it may be used by the system to come up with (several alternative)
solutions in case of problems, and with explanations about why a particular solution
would be a good one (i.e., by predicting the consequences of a suggested option).
Hence, for all of these derivations, some dynamic reasoning rules are required that
enable the system to make inferences and navigate between layers of the abstraction
hierarchy in a flexible manner.

To this end, a number of reasoning rules have been specified at a semi-formal
level. In total, four sets of rules (inspired by [9]) are distinguished:

 Observability rules (OR) serve to update the status of functions, processes,

tasks, resources, parameters, etc. This is done either based on user input or
based on rules that propagate the status of entities between different levels of
the abstraction hierarchy.

 Predictability rules (PR) aim to predict the status of various entities (in par-
ticular to monitor for compromised tasks and functions). For example, when a
resource conflict is identified for a task within a process, the task’s TaskStatus
becomes ‘InsufficientResources’.

 Directability rules (DR) serve to allow (human) actors to change the current
state of the system. This is done either by allocating tasks to roles, or by pro-
posing certain changes to improve the mission effectiveness (e.g. resource al-
locations, process changes, etc.).

 Notification rules (NR) serve to notify the actors of important changes (for ex-
ample, about a malfunctioning system or a predicted risk).

An example of an Observability Rule is shown below:

OR15: Set task run state to ‘busy’ (next task)
IF Process 'P' has ProcessStatus 'deployed'
AND Process 'P' has Task 'T1'
AND Process 'P' has Task 'T2'
AND Task 'T1' is followed by Task 'T2'
AND Event ‘E’ has completed Task ‘T1’
THEN Task 'T1' has TaskRunState 'finished’
AND Task 'T2' has TaskRunState 'busy’

This rules states, in a nutshell, that whenever a task T1 has ended, the Task Run
State (see Figure 5) of that task is changed to finished, and that of the next task within
that process is changed to busy. In total, about 40 of such reasoning rules have been
established for this case study. The majority of these rules are domain independent,
but a few of them are specific for the cache construction mission. An example of such
a specific rule is a Predictability Rule that concludes that a transportation task has
insufficient resources in case the wheels of the robot are turned in such a position that
they will use more battery power for the planned route than what is currently avail-
able. The complete list of rules is provided in [15].

 Supporting Human-Robot Teams in Space Missions Using ePartners 393

5 Implementation

To be able to demonstrate the usability of the ePartner in practice, it has been imple-
mented as a distributed software architecture. The architecture consists of two main
components: the MECA-HEART server (which comprises an SQL knowledge base, a
Django server, and a rule engine written in Python), and the MECA-HEART app.
As the technical details of the server are beyond the scope of this paper, they are not
further described here. Instead, in the remainder of this section we will focus on a
description of the app (from a user perspective), as this is the primary means of inter-
action between the user and the system.

The MECA-HEART app takes the form of an Android app running on a high-
resolution, large-screen tablet. It makes use of a graphical user interface, to which
user can provide input via touch, keyboard (where applicable), and voice (text dicta-
tion). An example screenshot of the interface is shown in Figure 6. The application
screen is divided into different fragments, some of which are visible all the time, and
others are shown or hidden depending on the context of operation:

 Menu bar: The Menu bar is always displayed at the top of the screen, and pro-
vides general context and control for the whole application. It contains the
MECA logo, a main menu (consisting of several tabs representing the main ob-
jects managed by the system), and a settings button. The tabs displayed in the
main menu refer, among others, to some of the layers in the abstraction hie-
rarchy, namely functions, processes, tasks and resources (see Figure 4).

 Embodied Conversational Agent (ECA): The ECA is a fragment occupying
the left side of the screen, visible all the time, providing a constant and clear
interface representing the ePartner providing continuous support to the user to
monitor the mission context, the status of all mission elements and offering to
the user interactive ways to communicate. It contains several components, in-
cluding the user’s name, an avatar representing the ePartner, a question box,
and a list of active notifications. Below the notifications, a small map shows
the surface area where the mission scenario develops and the approximate lo-
cation of the main resources. Finally, below this map, a real time image is
displayed which is sent from a webcam mounted on the Eurobot.

 Overview fragment: This fragment is shown in the central part of the screen
(spanning to the right when the Details fragment is not visible). When one of
the tabs of the Main menu is selected, the Overview fragment shows the list
of the selected type, queried from the KB. Each item of the list includes
an icon representing the type of object (function, process, task, or resource),
its name and a sort description, its current status and health, and the time
when it was updated. When an item is selected, it is highlighted and its de-
tails are displayed in the Details fragment that is shown at the right side of
the Overview fragment. The item’s background color can change to yellow,
indicating that its health is off-nominal.

 Details fragment: When an item is selected at the list of the Overview fragment,
more details about it are displayed in the Details fragment that opens at the right
side. The fragment hides automatically when another item is selected from the
Main menu and the list of objects is loaded into the Overview fragment. The
contents of the Details fragment depend on the specific object that is selected at

394 T. Bosse et al.

the Overview fragm
details of resource
tails change, includ

Fig. 6. Screenshot of the ap

The prototype has been
external systems (e.g., ro
(e.g., personal agendas or c
changes (e.g., the location o
wheel), and this informatio
formation in the Details fra
the update delay setting). A
automatically process the u
level conclusions about th
changes, the system will de
sponding task is compromis
rules) to the conclusion that
receive a warning notificat
the system will make a pro
rules). In principle, the resu
fragments of the user inter
with a multitude of detailed
flood”), the system provide

ment list. The example screenshot shown in Figure 6 provi
Albert. Depending on the type of resource selected, the

ding some attributes that are specific of each type of resour

pplication’s user interface, showing details of resource Albert.

set up in such a way that it can easily be integrated w
obots or alarm handling systems) or tablet applicati
chat functions). Note that, whenever the status of a resou
of a robot, the heart rate of an astronaut, or the position
on is written to the knowledge base, the corresponding
agment is updated automatically (depending on the valu
Additionally, the reasoning rules described in Section
updated information, enabling the system to draw high
he mission. For example, when the position of a wh
erive (using one of the Predictability rules) that the co
sed, which will propagate (using some of the Observabi
t the entire mission is endangered. As a result, the user w
tion (derived based on one of the Notification rules),
oposal to solve the problem (using one of the Directabi
ults of all of these steps can be visualised in one of the th
face. However, to prevent the user from being overloa
d warnings at the resource level (also referred to as “al
es feedback in terms of higher-level conclusions (such

ides
de-

rce.

.

with
ions
urce
of a

g in-
e of
4.3

her-
heel

orre-
ility
will
and
ility
hree
aded
arm
h as

 Supporting Human-Robot Teams in Space Missions Using ePartners 395

‘the mission is endangered’). Only if the user explicitly asks for more detailed expla-
nation, (s)he is able to view more details about the underlying reasoning process. This
approach allows the user to devote his or her cognitive resources to higher cognitive
processes (cf. Ecological Interface Design [18]).

6 Pilot Experiment

As a preliminary test of the usability of the ePartner within a (semi-)realistic envi-
ronment, a pilot experiment has been conducted at the European Space Research and
Technology Centre (ESTEC) in Noordwijk, the Netherlands. The design of the ex-
periment is explained in Section 6.1. The initial results are discussed in Section 6.2.

6.1 Design

The main aim of the experiment was to assess the appropriateness and accuracy of the
scenario, procedures, material, measurements, software and hardware, and to obtain
feedback from domain experts. Based on the results, the prototype, test-setting and
methods would be improved, thereby creating the necessary conditions for a quantita-
tive experiment at a later stage of the project.

The participant in the experiment was an adult male operator at ESTEC with experi-
ence in the space domain. He was asked to play a role as part of a team in a scenario
based evaluation: he conducted the evaluation as Albert, who had to go on EVA with
the rover to set-up a shelter for the cache. The other team member was played by a
MECA-HEART member and conducted the evaluation as Hannah, who stayed in the
habitat to monitor the mission. The scenario was played two times: first with ePartner,
and later without ePartner. In the condition with ePartner, both team members used a
tablet on which the MECA-HEART application was installed. In the condition without
ePartner, they could still use this app, but its functionality was limited by disabling all
support functions related to the framework presented in Section 4. As a result, they
would still have access to resource level information (such as locations of actors or bat-
tery levels), but no higher level interpretations of this information were made.

The tablet device used in the experiment by both team members was a Samsung
Galaxy Tab S with Android operating system. The participant conducting the role of
Albert had to perform the EVA with a rover, in this case this was the Eurobot demon-
strator at ESTEC. Other material used for the experiment included two walkie talkies
(for communication between Hannah and Albert), five batteries, a drill and an oxygen
tank (to load onto the rover and store in the cache), and a pop-up tent (to serve as
cache). Additionally, a Wizard of Oz (WoZ) control unit was used, enabling one of
the experimenters to inject events in the scenario to simulate, among others, some of
the off-nominal situations depicted in Figure 2 (such as a ‘wheel failure’ and a ‘com-
munication failure’). These events were simulated via the WoZ control unit as this
was more practical than actually making them happen in the physical world. Especial-
ly in these off-nominal situations, the ePartner was expected to have an added value in
supporting the team in successfully completing the mission.

396 T. Bosse et al.

During the experiment,
the low-level interaction
selected?, which buttons
made by the test participan
did this take?), and 3) qu
using the software.

Fig. 7. Impression of the pilo
tablet during the task ‘drive to
naut is interacting with the tab

6.2 Results

Preliminary results pointed
demonstrate the usability o
experts. In general, the ePa
during a scenario like this.
reports by the participant. F
automatically related this to
the system used these conc
participant (such as ‘abort
cache’, and ‘replacing the
responding explanation. Th
to maintain situation aware
situation during the conditi
ticipant was substantially l
e.g., about the wheel failur
needed more time) to effec
sion of the pilot experiment

 data was collected from various sources, including
logs of the ePartner software (e.g., which tabs

are clicked?), 2) the observed behavior and decisi
nt (e.g., how did he perform his tasks?, and how much t
uestionnaires which indicate the subjective experience

ot experiment at ESTEC. Left: astronaut is interacting with
o location’. The Eurobot is visible at the background. Right: as
blet during the task ‘fix cache’.

d out that the pilot experiment was an effective mean
f the prototype, and collect relevant feedback from dom

artner seemed to be a useful tool to support the participa
This was confirmed by anecdotal evidence and subjec

For example, when the wheel failure occurred, the ePart
o higher level conclusions about the mission status. In tu
clusions to propose a number of potential solutions to
ting the mission’, ‘changing the planned location of
current battery with a reserve battery’), along with a c

hese kinds of supportive measures allowed the particip
eness and quickly solve the problem. Instead, in the sa
ion without ePartner, the information presented to the p
less transparent (mainly consisting of low-level warnin
re). As a result, the participant had more difficulties (
ctively complete the mission. Figure 7 provides an imp
t.

: 1)
are

ions
time
e of

h the
stro-

s to
main
ants
tive
tner
urn,
the
the

cor-
pant
ame
par-
ngs,
(and
res-

 Supporting Human-Robot Teams in Space Missions Using ePartners 397

7 Discussion

In the literature on cognitive engineering, the notion of abstraction hierarchy is
well-established [16,17,18]. In [8], an overview is provided of studies in which the
abstraction hierarchy has been applied to different work domains, varying from proc-
ess control systems to air traffic control systems. However, in most cases, abstraction
hierarchies are used in an informal manner. As a result, the semantics of the underly-
ing knowledge are not represented in an unambiguous manner. Still, there are some
exceptions. For example, already in 1994, Bisantz and Vicente [3] developed a formal
representation of the abstraction hierarchy that formed the basis of a computer pro-
gram that reasons about a thermal-hydraulic process. And more recently, Ham [8]
proposed a semi-formal framework that combines the use of abstraction hierarchies
and living systems theory, and is illustrated by modelling the knowledge of a secon-
dary cooling system of nuclear power plants. Nevertheless, these systems are mainly
used before the execution of the process that is studied, for instance as guidelines for
human engineers during interface design. The current paper goes a step further as it
presents a machine-readable representation of abstraction hierarchies that is used by
an intelligent system (the ePartner) during execution of a mission. In particular, by
formalising the information at the different layers of the hierarchy (as well as the
relations between them), the system is able to reason about it dynamically, for in-
stance to generate dedicated support at runtime during safety-critical missions. An-
other advantage is that the current system applies to missions that involve teams of
both humans and robots, whereas the approaches mentioned above mainly focus on
technology-oriented engineering systems.

As opposed to the area of cognitive engineering, the literature in Artificial Intelli-
gence and Agent Technology contains a number of papers describing applications of
personal assistant agents that support humans during a particular task. However, most
of these applications are either aimed supporting one single user during a very spe-
cific task (e.g., time management [10]), or they present generic conceptual models
that have not been implemented within real world applications (e.g., [4]). In contrast,
the current paper presented a generic framework that has the ability to address
complex human-robot team missions (represented in terms of abstraction hierarchies),
and has actually been implemented and tested in a space environment, in interaction
with space technology.

Based on the preliminary results of the pilot experiment, the framework seemed to
be a suitable tool to support human-robot teams during these kind of space scenarios.
The astronaut seemed to process the presented information by the ePartner in the in-
tended way, and was able to use it to effectively adapt to off-nominal circumstances
and complete his mission. Also the user interface turned out to be easy to use.

As a follow up, the framework is currently being evaluated more extensively,
based on quantitative between-subject experiments involving a large number of par-
ticipants. Additionally, it will be further developed and extended in various ways,
among others by enriching the data models (of resources, tasks, processes, etc.), add-
ing more user interface visualisations, expanding the rule set, and increasing its inte-
gration with other services offered by mobile devices.

398 T. Bosse et al.

Acknowledgements. This research was conducted in the context of the MECA-HEART project,
funded by the European Space Agency under grant agreement 4000110730/14/NL/LvH. The
authors wish to thank Leo Breebaart, Antonio Olmedo Soler, and Joaquim Rosa for their work on
the implementation of the software, Jan Willem Baggerman for his contribution to the formal
Abstraction Hierarchy framework, and Frank Plassmeier for his input regarding the scenarios.

References

1. van der Aalst, W.M., ter Hofstede, A.H., Weske, M.: Business process management: a sur-
vey. In: van der Aalst, W.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12.
Springer, Heidelberg (2003)

2. Baker, C., Naikar, N., Neerincx, M.A.: Engineering planetary exploration systems:
integrating novel technologies and the human element using work domain analysis. In:
Proceedings of the 59th International Astronautical Congress (IAC 2008)

3. Bisantz, A.M., Vicente, K.J.: Making the abstraction hierarchy concrete. International
Journal on Human-Computer Studies 40, 83–117 (1994)

4. Bosse, T., Duell, R., Hoogendoorn, M., Klein, M., van Lambalgen, R., van der Mee, A.,
Oorburg, R., Sharpanskykh, A., Treur, J., de Vos, M.: A generic personal assistant
agent model for support in demanding tasks. In: Schmorrow, D.D., Estabrooke, I.V.,
Grootjen, M. (eds.) FAC 2009. LNCS(LNAI), vol. 5638, pp. 3–12. Springer, Heidelberg
(2009)

5. Coyne, R.: Wicked problems revisited. Design Studies 26, 5–17 (2005)
6. Fischer, G., Nakakoji, K.: Beyond the macho approach of artificial intelligence: empower

human designers — do not replace them. Knowledge-Based Systems 5(1), 15–30 (1992)
7. Halpin, T.: Object-role modeling (ORM/NIAM). In: Bernus, P. et al. (eds.) Handbook on

Architectures of Information Systems. International Handbooks on Information Systems,
pp 81–103. Springer Verlag (2006)

8. Ham, D.-H.: Modelling work domain knowledge with the combined use of abstraction hie-
rarchy and living systems theory. Cognition, Technology & Work, April 2015. Springer
Verlag (2015)

9. Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, M.B., Sierhuis,
M.: Coactive Design: Designing Support for Interdependence in Joint Activity. Journal of
Human-Robot Interaction 3(1), 43–69 (2014)

10. Myers, K., Berry, P., Blythe, J., Conley, K., Gervasio, M., McGuinness, D.L., Morley, D.,
Pfeffer, A., Pollack, M., Tambe, M.: An Intelligent Personal Assistant for Task and Time
Management. AI Magazine, Summer 2007, 47–61 (2007)

11. Neerincx, M.A.: Situated Cognitive Engineering for Crew Support in Space. Personal and
Ubiquitous Computing 15(5), 445–456 (2011)

12. Neerincx, M.A., Bos, A., Olmedo-Soler, A., Brauer, U., Wolff, M.: The mission execution
crew assistant: improving human-machine team resilience for long duration missions. In:
Proc. of the 59th Int. Astronautical Congress (IAC 2008) (2008)

13. Neerincx, M.A., Grant, T.: Evolution of Electronic Partners: Human-Automation Opera-
tions and ePartners During Planetary Missions. Journal of Cosmology 12,
3825–3833 (2010)

 Supporting Human-Robot Teams in Space Missions Using ePartners 399

14. Olmedo Soler, A., Smets, N., Neerincx, M.A., van Diggelen, J., Baggerman, J.W.,
Breebaart, L., Rosa, J., Plassmeier, F.: HEART Requirements. Technical report for the
ESA project MECA-HEART (2014).
http://www.crewassistant.com/docs/pub/MECA_HEART/MECA_HEART_WP1_D1a_sC
ET_report_v2.pdf

15. Plassmeier, F., Baggerman, J.W., Bosse, T., van Diggelen, J., Smets, N.: Mission Simula-
tion Specification. Technical report for the ESA project MECA-HEART (2015).
http://www.crewassistant.com/docs/pub/MECA_HEART/MECA_HEART-WP3-D2b-
MissionSimulationSpecs.pdf

16. Rasmussen, J., Lind, M.: Coping with complexity. Risø-M-2293, Electronics Department,
Risø Nat. Laboratory, Roskilde, Denmark (1981)

17. Vicente, K.J.: Cognitive Work Analysis: Towards safe, productive, and healthy computer-
based work. Lawrence Erlbaum Associates, Mahwah (1999)

18. Vicente, K.J.: Ecological interface design: Progress and challenges. Hum. Factors 44,
62–78 (2002)

Flexible Reward Plans for Crowdsourced Tasks

Yuko Sakurai1(B), Masato Shinoda2, Satoshi Oyama3, and Makoto Yokoo1

1 Kyushu University, Fukuoka, Japan
{sakurai,yokoo}@inf.kyushu-u.ac.jp

2 Nara Women’s University, Nara, Japan
shinoda@cc.nara-wu.ac.jp

3 Hokkaido University, Sapporo, Japan
oyama@ist.hokudai.ac.jp

Abstract. We develop flexible reward plans to elicit truthful predictive
probability distribution over a set of uncertain events from workers. In
general, strictly proper scoring rules for categorical events only reward
a worker for an event that actually occurred. However, different incor-
rect predictions vary in quality, and the principal would like to assign
different rewards to them, according to her subjective similarity among
events; e.g. a prediction of overcast is closer to sunny than rainy.

We propose concrete methods so that the principal can assign rewards
for incorrect predictions according to her similarity between events. We
focus on two representative examples of strictly proper scoring rules:
spherical and quadratic, where a worker’s expected utility is repre-
sented as the inner product of her truthful predictive probability and
her declared probability. In this paper, we generalize the inner product
by introducing a reward matrix that defines a reward for each prediction-
outcome pair. We first show that if the reward matrix is symmetric
and positive definite, both the spherical and quadratic proper scoring
rules guarantee the maximization of a worker’s expected utility when
she truthfully declares her prediction. We next compare our rules with
the original spherical/quadratic proper scoring rules in terms of the vari-
ance of rewards obtained by workers. Finally, we show our experimental
results using Amazon Mechanical Turk.

1 Introduction

Mechanism design is a subfield of game theory and microeconomics that studies
how to design mechanisms for good outcomes even when agents act strategi-
cally. Studies on mechanism design have been advanced by the AI and mul-
tiagent systems research communities. In particular, mechanisms for eliciting
or aggregating information about uncertain events from agents is becoming a
common research topic due to the expansion of prediction markets and crowd-
sourcing [5,4,3,8,14,15].

Prediction mechanisms aggregate forecasts of future events from agents to
accurately predict uncertain events. Strictly proper scoring rules incentivize an
agent to truthfully reveal her predictive probability distribution over uncertain
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 400–415, 2015.
DOI: 10.1007/978-3-319-25524-8 25

Flexible Reward Plans for Crowdsourced Tasks 401

events [2,6,9,13]. A variety of strictly proper scoring rules has been developed for
cases where only one alternative event occurs. In such existing rules, a principal
rewards an agent for predicting events that actually happened.

Consider an example of forecasting tomorrow’s weather, where a requester
asks a worker about the probabilities for sunny, overcast, and rainy. The
requester sets different similarities for each pair of alternative events. For exam-
ple, he considers overcast more similar to sunny than to rainy because rainfall
largely affects such activities as buying umbrellas or canceling/changing plans.
If the weather on the next day is overcast, the requester pays more to the per-
son who predicted a greater chance of sunny (sunny:40%, overcast:50%, and
rainy:10%) than one who predicted a greater chance for rain (sunny:10%, over-
cast:50%, and rainy:40%). Assigning rewards to incorrect predictions is also
attractive to workers. In theory, we generally assume that a worker has no
preference between a plan that only rewards correct outcomes and one that
also rewards incorrect outcomes. However, since various types of people work in
crowdsourcing services, we have to consider the existence of workers who prefer
rewards for incorrect predictions.

Assigning rewards to incorrect predictions is also attractive to agents. In
theory, if an agent is risk neutral, she has no preference between a plan that
only rewards the correct outcome and one that also rewards incorrect outcomes.
However, various types of people work in crowdsourcing services. Since assuming
that all of them are risk neutral is not realistic, we have to consider existence of
risk averse agents who will prefer some reward for incorrect predictions.

In this paper, we consider reward plans with which a requester can flexi-
bly design based on the similarity among categorical events/alternatives and
generalize strictly proper scoring rules to realize this idea. The requester can
also give different reward amounts for different non-actual events, based on
the similarity to the actual event. Predicting one outcome among categorical
events/alternatives is a well-known task, such as image labeling problems in
crowdsourcing services. The similarity among categorical events is determined
based on a requester’s subjective view in contrast to the case of predicting the
outcome of continuous values. We focus on the structure of a worker’s expected
utility of spherical and quadratic proper scoring rules. In them, we calculate a
worker’s expected utility by the inner product of her truthful predictions and
her declarations. We can set various rewards by generalizing this inner product
by introducing a reward matrix. The original proper scoring rules had a diagonal
reward matrix that only gives a reward when the worker’s prediction matches
the real outcome. We generalize them by introducing a non-diagonal reward
matrix, where a non-diagonal element represents the payment for a prediction
different from the actual outcome. We show that the worker’s expected reward is
maximized by truthfully declaring her predictive probability distribution if the
reward matrix is symmetric and positive definite. We also show that if the ratio
of the diagonal element (the reward paid for a correct outcome) to the sum of
all the elements does not exceed a certain proportion, e.g., 60%, a worker who
gives a predictive probability greater than a certain proportion, e.g., 84%, to the

402 Y. Sakurai et al.

event she considers most probable will receive a reward with smaller variance
from our proposed rules than the original rules.

We also experimentally evaluated our generalized spherical proper scoring
rules using Amazon Mechanical Turk (MTurk) and posted two types of tasks:
predicting highest temperature in a certain city and predicting exchange rate
movements. After executing a task, a worker chooses either the original spher-
ical proper scoring rule or our generalized spherical proper scoring rule for cal-
culating her reward. In the task of predicting highest temperature, 60% of 90
workers selected our rule. The average reward from our rule exceeded the origi-
nal rule, but its variance of reward was lower than the original rule. In the task
of predicting exchange rate movements, 52% of 60 workers selected our rule.

2 Related Work

Recently, studies related to proper scoring rules have gathered much attention
from AI and multi-agent system researchers. Here, we discuss several existing
works that are related to our research, i.e., those exploring extensions of the
original proper scoring rules.

Prelec (2004) proposed Bayesian truth serum (BTS) to elicit both an agent’s
private signal and the distribution prediction of all agent signals when assum-
ing they share a common prior. BTS gives high rewards to answers that are
more common than collectively predicted answers. Witkowski and Parkes (2012)
developed a robust BTS (RBTS) to elicit binary signals for small populations,
since BTS only works with many agents. Padanovic and Faltings (2013) gener-
alized RBTS to elicit non-binary signals for small populations, and Zhang and
Chen (2014) proposed knowledge-free peer prediction under weaker assumptions
than these previous works. Huang and Shoham (2014) modified the market scor-
ing rule (MSR), which is a sequential scoring rule, with a trade limit to reduce
the manipulability of prediction markets even if honest traders aren’t aware of
the manipulators.

Gneiting and Raftery (2007) proposed a continuous ranked probability score
(CRPS) to predict the outcome of continuous variables. Robu et al. (2012) devel-
oped a pricing mechanism based on CRPS to incentivize renewable distributed
energy resources to declare their production estimates, including the uncertainty
in them when they joined a cooperative. Akasiadis and Chalkiadakis (2013) also
applied CRPSs for shifting electricity consumption to give incentives to agents
to accurately and truthfully report their expected shifting capabilities.

3 Preliminaries

In this section, we explain the model of our problem settings.

Definition 1 (A set of categorical events/alternatives). We define E as
a set of categorical events/alternatives and assume |E| = m < ∞. Exactly one
event i ∈ E will occur in the future.

Flexible Reward Plans for Crowdsourced Tasks 403

Definition 2 (Predictive probability distribution). The predictive prob-
ability distribution of a worker over E is an m-tuple p = (p1, . . . , pm), which
means that she predicts that the ith event will occur with probability pi. 0 ≤ pi ≤ 1
for any i and

∑
1≤i≤m pi = 1 have to be satisfied.

When a requester asks workers to predict tomorrow’s weather, E is set to
{sunny, overcast, rainy}. Predictive probability distribution p = (0.7, 0.2, 0.1)
means that the worker considers the sunny probability to be 70%, the overcast
probability to be 20%, and the rainy probability to be 10%.

Based on a worker’s predictive probability distribution over E, she declares
her prediction to a requester.

Definition 3 (Declaration). The declaration of a worker is an m-tuple q =
(q1, · · · , qm), which means that she declares that the ith event will occur with
probability qi. ∀i, 0 ≤ qi ≤ 1 and

∑
1≤i≤m qi = 1 hold. She need not declare her

prediction truthfully and may strategically choose q.
Thus, q may not equal p.

A worker determines q and declares it to the requester, who rewards her
based on that declaration.

Definition 4 (Reward function). Reward function r(·) takes declaration q
as input and returns r(q) as a reward:

r(q) =

⎛

⎜
⎝

r1(q)
...

rm(q)

⎞

⎟
⎠ ,

where ri(q) ∈ R represents the reward for the occurrence of the ith event.

We assume reward function r(·) is fixed, which a worker knows when she deter-
mines her declaration.

A worker’s expected utility of prediction p is calculated as follows.

Definition 5 (Expected utility). Let u(p,q) denote a worker’s expected util-
ity when her prediction is p and her declaration is q. u(p,q) is given by

u(p,q) =
∑

1≤i≤m

piri(q) = p · r(q).

Here, we explain strictly proper scoring rules that have been proposed to give
an incentive for each worker to truthfully declare her prediction.

Definition 6 (Strictly proper scoring rule). r(·) is said to be a strictly
proper scoring rule if

u(p,p) > u(p,q)

holds for any p �= q.

404 Y. Sakurai et al.

The above definition of a strictly proper scoring rule means that a worker maxi-
mizes her expected utility by the truthful declaration (q = p) of her prediction.

There exists a variety of strictly proper scoring rules. We introduce two rep-
resentative examples.

Definition 7 (Spherical proper scoring rule). A spherical proper scoring
rule is defined by

ri(q) = α
qi√∑

1≤j≤m q2j

,

where α indicates the maximum amount of the scores.

Definition 8 (Quadratic proper scoring rule). A quadratic proper scoring
rule is defined by

ri(q) = α(2qi −
∑

1≤j≤m

q2j)

where α indicates the maximum amount of the scores.

A quadratic proper scoring rule does not always yield a non-negative reward.
Thus, the following slightly modified rule, ri(q) = α(2qi −

∑
1≤j≤m q2j +1) guar-

antees a positive reward, since penalizing a worker is not always feasible or
acceptable.

We use an inner product generated by symmetric positive definite matrix A
of size m × m:

A =

⎛

⎜
⎝

a1,1 . . . a1,m

...
. . .

...
am,1 . . . am,m

⎞

⎟
⎠ .

Definition 9 (Symmetry). Matrix A is symmetric if ai,j = aj,i holds for any
i, j.

Definition 10 (Positive definiteness). Matrix A is positive definite if
txAx > 0 holds for any x ∈ Rm with x �= 0.

When matrix A is symmetric and positive definite, the quadratic form,

(x,y)A = txAy,

becomes an inner product. We denote ||x||A =
√

(x,x)A.

4 Generalized Strictly Proper Scoring Rules

In this section, we consider strictly proper scoring rules that enable a requester to
design a flexible reward plan based on his subjective similarity among alternative
events. We focus on the structure of a worker’s expected utility for both spherical
and quadratic proper scoring rules. The expected utility can be represented as
an inner product of a worker’s declaration and her truthful prediction.

Flexible Reward Plans for Crowdsourced Tasks 405

4.1 Generalized Spherical/Quadratic Rules

We define a matrix to represent a reward plan determined by a requester based
on the similarity among alternative events.

Definition 11 (Reward matrix). We define an m × m reward matrix as A.
A diagonal element of ai,i represents the reward for correct outcomes, whereas
the non-diagonal elements of ai,j (j �= i) represent the reward of an incorrect
outcome.

If a requester gives no reward for events that did not occur, he sets ai,j = 0 for
any i �= j. If he guarantees non-negative rewards, ai,j ≥ 0 must be satisfied for
any i, j ∈ E.

We assume that this reward matrix A is symmetric and positive definite,
which enables us to define an inner product with respect to the reward matrix.
We can develop a reward function that gives higher rewards to the worker whose
declaration is closer to the truthful declaration by introducing this inner product.
As examples of such reward functions, we propose new rules by generalizing the
original spherical and quadratic proper scoring rules.

Definition 12 (Generalized spherical proper scoring rule). We define
the generalized spherical scoring rule for the i-th event as

rAi (q) = α

m∑

j=1

qj
aij

||q||A ,

where α is the maximum amount of the scores.

Theorem 1. The generalized spherical scoring rule maximizes a worker’s
expected utility when she truthfully declares her prediction.

Proof. The expected utility of a worker with prediction p and declaration q is
given by

uA(p,q) = α

m∑

i=1

pir
A
i (q) =

α

||q||A
m∑

i=1

m∑

j=1

piaijqj

= α
(p,q)A
||q||A .

From the Cauchy-Schwarz inequality, we obtain

uA(p,q) = α
(p,q)A
||q||A ≤ α

||p||A · ||q||A
||q||A

= α||p||A.

As a result, we guarantee that the generalized spherical scoring rule is strictly
proper, since u(p,q) is maximized when q = p holds.

406 Y. Sakurai et al.

If a requester sets A = I where I is an m×m identity matrix, this rule coincides
with the original spherical proper scoring rule.

Definition 13 (Generalized quadratic proper scoring rule). When a
worker declares q, the reward of the i-th event is calculated by

rAi (q) = α(2(Aq)i − ||q||2A),

where α is the maximum amount of the scores and (Aq)i means the i-th coordi-
nate of Aq.

Theorem 2. The generalized quadratic proper scoring rule maximizes a
worker’s expected utility when she truthfully declares her prediction.

Proof. The expected utility of a worker with prediction p and declaration q is
given by

uA(p,q) = α(2
m∑

i=1

piri(q) − ||q||2A)

= α(2pAq − ||q||2A)
= α(||p||2A − ||p − q||2A) ≤ α||p||2Aw.

If we regard u(p,q) as a function of q, it is maximized when q = p.

If a requester sets A = I where I is an m×m identity matrix, this rule coincides
with the original quadratic proper scoring rule.

We show an example to explain how to determine a reward matrix to
satisfy symmetry and positive definiteness. We assume that a worker pre-
dicts whether it will be sunny, overcast, or rainy on the next day, i.e., E =
{sunny, overcast, rainy}. If the next day’s weather is overcast, he gives less
reward for a rainy prediction than a sunny one because the incorrect prediction
causes him greater loss. For such case, the requester can design a reward matrix:

A =

⎛

⎝
1 − s s 0

s 1 − s − t t
0 t 1 − t

⎞

⎠ ,

4.2 Relations with Kernel and Continuous Ranked Probability
Scores

Gneiting and Raftery (2007) investigated the conditions where the ways of giving
rewards to the declared probability distributions are proper scoring rules. They
showed a class of proper scoring rules based on a negative definite kernel (kernel
score). The negative definite kernel score is represented as a quadratic form for
the declared probabilities with the quantified similarities among the alternatives
as the coefficient of the declared probabilities. Real-valued function g on E × E
is said to be a negative definite kernel if it is symmetric in its arguments and

Flexible Reward Plans for Crowdsourced Tasks 407

∑m
i=1

∑m
j=1 pipjg(i, j) ≤ 0 for all positive integers m and all p1, . . . pn ∈ R. Here,

g(i, j) indicates a function related to the difference between alternatives i and j.
The kernel score is calculated by the sum of average rewards that a worker

obtains when she truthfully declares her prediction and a negative definite ker-
nel. In other words, this means that we carry a penalty for incorrect predictions
against the average reward she obtains when her declaration is true. A kernel
score and our generalized quadratic scoring rule share common features of rep-
resentation. While the negative definite kernel score carries a penalty based on
differences between results and declarations, our rule applies a positive definite
and adds the scores based on the similarities among alternatives. In that sense,
our generalized quadratic proper scoring rule is one instance of negative defi-
nite kernel scores. On the other hand, our spherical proper scoring rule is not a
negative definite kernel score, since it is not represented as a quadratic formula.

A continuous ranked probability score (CRPS) is also known to be one
instance of kernel scores that predicts the outcome of continuous variables. Its
discretized version is considered a special case of our proposed general quadratic
scoring rules. A CRPS works on commutative distributions instead of probabil-
ity distributions. When p and q represent the predictive probability distribu-
tion and the worker’s declared distribution, their commutative distributions are
computed by Up and Uq, where U is a lower-triangular matrix whose non-zero
elements are all 1. CRPS is equivalent to computing t(p−q)tUU(p−q), which
is a special case of our generalized quadratic scoring rule where tUU = A.

Although CRPS has been extended to give different weights for different
cumulative intervals, which correspond to introducing diagonal matrix D and
using A = tUDU , the requester is given less flexibility in designing a reward
matrix than ours. On the other hand, our approach allows a requester to design
a reward matrix based on her subjective similarities among events, and it can
also be applied to spherical scoring rules as well as quadratic scoring rules.

5 Comparison Between the Original and Our Proposed
Rules

In this section, we compare the original proper scoring rules and our generalized
scoring rules in terms of the variance of reward. We expect that our proposed
rule can reward humans in real-world services. Thus, we give sufficient conditions
to satisfy the following: (i) our rules improve the guaranteed minimum reward
and (ii) the variance of reward obtained by our rules is lower than the variance
of reward obtained by the original rules.

For reward matrix A, we assume that

m∑

j=1

ai,j = 1 (1)

holds for any i ∈ E and also assume a symmetric positive definite matrix. This
condition means that the total reward is constant regardless of i.

408 Y. Sakurai et al.

In the following, we concentrate on our generalized spherical proper scoring
rule defined by Def. 12, since applying it provides more intuitive meaning than
the generalized quadratic proper scoring rule. We can prove the theorems for
the generalized quadratic proper scoring rule in the same manner. We regard a
worker’s reward from a spherical rule as

rAi (p) = α
(Ap)i
||p||A ,

by assuming that she declares a truthful prediction, i.e., q = p, since we already
proved that this rule is strictly proper in Theorem 1. Her expected utility is also
calculated by

uA(p,p) = α
(p,p)A
||p||A = ||p||A.

For simplicity, in this section, we assume that α = 1 and first show that we can
improve the guaranteed minimum reward if reward matrix A is non-negative.

Proposition 1. Assume that a worker truthfully declares p = (p1, p2, . . . , pm).
We set k = argmin1≤i≤mpi and obtain the following:

(1) rIi (p) > 0 implies rAi (p) > 0,
(2) rIk(p) ≤ rAi (p) for any i ∈ E.

Proof. (1) ai,i > 0 for any i, since A is positive definite. Thus, from the assump-
tion of non-negativity, we have

rAi (p) =

∑m
j=1 ai,jpj

||p||A ≥ ai,ipi
||p||A > 0.

(2) We first show ||p||I ≥ ||p||A. From ||p||I =
√
pIp and ||p||A =

√
pAp,

it suffices to show that p(I − A)p ≥ 0. In other words, we want to show
that I − A is a positive semi-definite matrix. Since Eq. (1) implies that the
maximal eigenvalue of A is 1 , any eigenvalue of I − A is non-negative and
I −A is thus positive semi-definite. Using this and pj ≥ pk for ∀ j, we obtain

rAi (p) =

∑m
j=1 ai,jpj

||p||A ≥
∑m

j=1 ai,jpk

||p||I = rIk(p).

We next show the sufficient conditions to satisfy the following: the variance
of reward obtained by our rules is lower than the variance of reward obtained by
the original rules. We first present a way of concisely calculating the variance of
rewards in a generalized spherical proper scoring rule.

For a generalized spherical scoring rule with reward matrix A, variance of
rewards V A(p) is given by

Flexible Reward Plans for Crowdsourced Tasks 409

V A(p)||p||A =
m∑

i=1

pi(rAi (p))2 − (
m∑

i=1

pir
A
i (p))2

=
m∑

i=1

pi(1 − pi)rAi (p)2 − 2
∑

1≤i<j≤m

pipjr
A
i (p)rAj (p)

=
m∑

i=1

pi
∑

j �=i

pjr
A
i (p)2 − 2

∑

1≤i<j≤m

pipjr
A
i (p)rAj (p)

=
∑

1≤i<j≤m

pipj(rAi (p) − rAj (p))2, (2)

from Eq. (1). Therefore, if we show the variance of the reward obtained by our
proposed rule is lower than the original rule, it suffices to show |rAi (p)−rAj (p)| <

|rIi (p) − rIj (p)| holds for all i �= j, since it implies V A(p) < V I(p).
We show an example where our rule can reduce the variance of reward

obtained by a worker.

Example 1. Consider a weather forecast. We set E = {sunny, overcast, rainy}

and A =

⎛

⎝
0.8 0.2 0
0.2 0.6 0.2
0 0.2 0.8

⎞

⎠.

If p = (0.7.0.3.0), then rA(p) = (0.85, 0.44, 0.08) and rI(p) = (0.92, 0.39, 0).
Here, |rAi (p)−rAj (p)| < |rIi (p)−rIj (p)| holds for all i �= j since the differences of
rewards are reduced among mutual elements, e.g., 0.85−0.08 = 0.77 > 0.92−0 =
0.92. From the previous proposition, this inequality implies that V A(p) < V I(p).
Thus, our rule reduces the variance of reward.

An agent’s reward is determined by her prediction p and naturally the vari-
ance of her reward also depends on her prediction. Therefore, the variance of
her rewards cannot always be diminished by just setting an appropriate reward
matrix. In Example 1, we consider another agent who predicts p = (0.5, 0.5, 0).
For this agent, our rule cannot reduce the variance of reward since V I(p) = 0
and V A(p) = 0.005 > 0 are calculated. In general, if V I(p) is extremely small,
no variance reduction can be attained unless the reward matrix is almost trivial.
Therefore, the following theorem shows that for any prediction p, a linear com-
bination of identity and constant matrix A guarantees that the variance of our
rules does not exceed the original rule. Intuitively, this means that we have to
make all diagonal elements (rewards for correct outcomes) identical to each other
and make all non-diagonal elements (rewards for incorrect outcomes) identical
to each other to reduce the variance of reward for any outcome.

Theorem 3. The following statements are equivalent.

(i) Reward matrix A is set to

A = sI +
1 − s

m

⎛

⎜
⎝

1 . . . 1
...
. . .

...
1 . . . 1

⎞

⎟
⎠ , (3)

410 Y. Sakurai et al.

where s is a constant value such that 0 < s ≤ 1 holds.
(ii) For any prediction p,

V A(p) ≤ V I(p)

holds.

Proof. To prove that (i) =⇒ (ii), we assume that Eq. (3) holds and that we have

rIi (p) − rIj (p) =
pi − pj
||p||I ,

rAi (p) − rAj (p) =
s(pi − pj)

||p||A .

Furthermore, we obtain

||p||A =
√

tpAp =

√

s||p||2I +
1 − s

sm
≥ √

s||p||I .

From these relations, we have

|rAi (p) − rAj (p)| ≤
√

s(pi − pj)
||p||I ≤ |rIi (p) − rIj (p)|,

which induces (i) =⇒ (ii).
To prove (ii) =⇒ (i), we first show ai,i = aj,j for any i, j. For the sake of

contradiction, we assume ai,i �= aj,j holds for some i �= j. We set p such that
pi = pj = 1

2 and pk = 0 for all k �= i, j. Then V I(p) = 0 holds since rIi (p) =
rIj (p) = 1

2 holds, while (Ap)i = ai,i+ai,j

2 and (Ap)j = aj,i+aj,j

2 hold. ai,j = aj,i

implies (Ap)i �= (Ap)j which leads to V A(p) > 0. This is a contradiction.
We next assume that ai,k �= aj,k for some i �= j, k. We set p such that

pi = pj = pk = 1
3 holds and obtain V I(p) = 0. On the other hand, V A(p) > 0

is satisfied, because (Ap)i = 1
3 (ai,i + ai,j + ai,k), (Ap)j = 1

3 (aj,i + aj,j + aj,k),
ai,i = aj,j and ai,j = aj,i imply (Ap)i �= (Ap)j .

We finally give the following sufficient condition that our rule can reduce the
variance of reward by setting an assumption about a worker’s probability.

Theorem 4. We assume that a requester sets x = mini∈E ai,i in reward
matrix A and let p = max1≤i≤m pi for i ∈ E. For a worker who predicts p
that satisfies

p(1 − p)
(2p − 1)2

p2 + (1 − p)2

>

(

p(1 − p) +
(1 − p)2

2

)(

(2x − 1) +
(1 − x)

p

)

(4)

her variance is reduced:
V A(p) < V I(p) (5)

holds.

Flexible Reward Plans for Crowdsourced Tasks 411

0.75

0.8

0.85

0.9

0.95

1

0.4 0.5 0.6 0.7 0.8 0.9

M
A

X
IM

U
M

 P
R

O
B

A
B

IL
IT

Y

REWARD OF DIAGONAL ELEMENTS

Fig. 1. Threshold Condition

Proof. We assume that p = p1. From Eq. (2), we have

V I(p) ≥ p1

m∑

i=2

pi
(p1 − pi)2

||p||2I

≥ p1(1 − p1)
(2p1 − 1)2

p21 + (1 − p1)2
(6)

On the other hand, we obtain

V A(p) ≤
∑

1≤i<j≤m

pipj
((Ap)i − (Ap)j)2

||p||2A

≤
(

p1(1 − p1) +
(1 − p1)2

2

)
(Ap)1

p1
.

From (Ap)1 ≤ a1,1p1 + (1 − a1,1) = (2p1 − 1)a1,1 + (1 − p1), (Ap)1 is a linear
function of a1,1. Thus, (Ap)1 increases along with the increase of a1,1 when
assuming p1 ≥ 0.5 and we have (Ap)1 ≤ (2p1 − 1)×x+(1− p1). Thus, we have

V A(p)

≤
(

p1(1 − p1) +
(1 − p1)2

2

)(

(2x − 1) +
(1 − x)

p1

)

.

(7)

From Eq. (6) and Eq. (7), we obtain Eq. (4).

We can verify the threshold conditions for ai,i and pi in this theorem, since it
shows a sufficient condition. When we set x = mini∈E ai,i and p = max1≤i≤m pi,
the following figure indicates a pair of (x, p) that satisfies Eq. (4).

412 Y. Sakurai et al.

Table 1. Prediction for a correct alternative for predicting highest temperature

Our rule Original rule

Average 43.9% 41.5%

Variance 0.086 0.073

Table 2. Reward Results for predicting highest temperature

Our rule Original rule

Average 26.91 27.03

Variance 41.94 288.21

Theorem 4 gives a sufficient condition where our rule is always guaranteed
to be lower than the original rule in terms of the variance of reward. In Fig. 1, if
the maximum probability is located above the curve calculated by Eq. (4), the
variance of reward of our rule is always lower than that of the original rule. In
the original rule, a worker who predicts that a certain alternative will be realized
with high probability can obtain a relatively high reward when her prediction is
correct. But her reward is reduced when her prediction is incorrect. Thus, the
variance of reward of the original rule is large for such a worker. On the other
hand, in our rule, we reduce the reward for a correct alternative more than the
original rule and reward semi-correct alternatives. As a result, for a worker who
has high probability for a certain alternative, her variance of reward becomes
small.

If the maximum probability is located below the curve, we consider a worker’s
knowledge for a task to be ambiguous. Since such a worker’s reward obtained in
the original rule is relatively low, her variance of reward is not always reduced
even if our rule is applied. In other words, in some cases, the variance of reward
in our rule exceeds the variance of reward in the original rule. However, this is a
tiny fraction of all cases. From Eq. (2), the variance of reward much depends on
the maximum value of pir

A
i (p). In our rule, when x = min ai,i is small, pi and

rAi (p) cannot be large simultaneously.

6 Experimental Evaluations

We compared the generalized and the original rules by using the Amazon
Mechanical Turk (MTurk) and posted two types of tasks. One predicted the
highest temperature in a certain city, and the other predicted changes in foreign
currency exchange rates. We gathered ten workers for each HIT. Each worker
was paid 10 cents per task and could also receive a bonus based on the scoring
rule. In this experiment, we adopted a spherical proper scoring rule. A worker is
asked to assign probabilities (discretized by 10% intervals) over three alterna-
tives. We rejected results by workers whose probabilities over three alternatives
did not add up to 100%. After assigning the probabilities, we also asked workers

Flexible Reward Plans for Crowdsourced Tasks 413

to choose either our spherical scoring rule or the original scoring rule to calcu-
late their bonus. To make a fair comparison between our proposed rule and an
existing rule, we set each reward matrix as follows:

– The original spherical scoring rule:

A =

⎛

⎝
50 0 0
0 50 0
0 0 50

⎞

⎠

– Our generalized spherical scoring rule:

A =

⎛

⎝
30 15 5
15 20 15
5 15 30

⎞

⎠

The average reward and variance of our proposed rule are lower than that of the
existing rule. We gave workers a concrete formula with which they can calculate
their bonus.

6.1 Task of Predicting Highest Temperature

We show the results of the tasks to predict the highest temperature in three
cities: Kyoto, London, and New York. For each city, we performed three sets
of experiments. We gathered 30 workers for each city; 54 workers selected our
scoring rule, and 36 selected the original rule. We show the results summed over
the three cities because we did not find any notable difference among the cities.

We show the results regarding the mean of the probabilities assigned to the
correct alternative and rewards. As shown in Table 1, the average probability
assigned to a correct alternative is higher with our scoring rule than with the
original scoring rule. Table 2 shows the results regarding rewards. The average
rewards paid to workers were lower with our rule than with the original rule.
The variance of rewards was smaller with our results than with the original rule.

6.2 Task of Predicting Exchange Rate Movements

In this subsection, we show the results for tasks that predicted the change in
foreign currency exchange rates on two consecutive days. A worker assigns prob-
abilities over three intervals of the percentages of changes from the currency
exchange rate of the first day: over 0.02%, −0.02% ∼ 0.02%, or below −0.02%.
We conducted two experiments for the exchange rate of Euro against USD and
for the exchange rate of JPY against USD, respectively.

We gathered 60 workers in total. 31 workers choose our rule and 29 workers
choose the original rule. As shown in Table 3, the average probabilities assigned
to a correct alternative was larger for workers who chose the original rule but the
difference was not large. However, the average was lower than that of the tasks
to predict weather, apparently because predicting currency exchange rates was
more difficult than predicting weather. Table 4 shows that the average rewards
were larger and their variance was smaller for workers who chose our rule.

414 Y. Sakurai et al.

Table 3. Prediction for a correct alternative for predicting exchange rate movement

Our rule Original rule

Average 32.2% 36.5%

Variance 0.049 0.056

Table 4. Results of rewards for predicting exchange rate movement

Our rule Original rule

Average 25.72 24.85

Variance 35.66 123.53

7 Conclusion

We investigated strictly proper scoring rules for truthfully eliciting predictions
over categorical events to allow requesters to determine a flexible reward plan
based on his subjective similarity among events. In our rule, a requester rewards
both a correct and semi-correct outcomes. We utilized the structure of a worker’s
expected utility for the original quadratic and spherical proper scoring rules and
generalized them by applying an inner product generated by a reward plan. The
properties of our proposed rules are as follows: (1) If a reward matrix is symmet-
ric and positive definite, our rules are strategy-proof. (2) Our rule incentivize
workers to sincerely declare the probabilities of all alternatives. (3) Both average
and variance of rewards of our proposed rules are lower than those of the exist-
ing scores. If we only care about reducing the variance, as shown in Theorem 3,
we have to make all diagonal elements (rewards for correct outcomes) identical
to each other and make all non-diagonal elements (rewards for incorrect out-
comes) identical to each other. However, this is too restricted and so we propose
our score to determine rewards for alternatives more flexibly according to the
similarities the requester considers.

Future work will apply our concept to other strictly proper scoring rules and
evaluate our rules for various tasks on MTurk. We also will consider an incentive
mechanism that is more understandable for workers.

Acknowledgments. This research was partially supported by JSPS KAKENHI
Grant Number 24220003, 15H02751, and 15H02782.

References

1. Akasiadis, C., Chalkiadakis, G.: Agent cooperatives for effective power consump-
tion shifting. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI 2013), pp. 1263–1269 (2013)

2. Brier, G.W.: Verification of forecasts expressed in terms of probability. Monthly
Weather Review 78(1), 1–3 (1950)

Flexible Reward Plans for Crowdsourced Tasks 415

3. Chen, Y., Gao, X.A., Goldstein, R., Kash, I.A.: Market manipulation with outside
incentives. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence
(AAAI 2011), pp. 614–619 (2011)

4. Chen, Y., Pennock, D.M.: Designing markets for prediction. AI Magazine 31(4),
42–52 (2010)

5. Conitzer, V.: Prediction markets, mechanism design, and cooperative game theory.
In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence
(UAI 2009), pp. 101–108 (2009)

6. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estima-
tion. Journal of the American Statistical Association 102(477), 359–378 (2007)

7. Huang, E.H., Shoham, Y.: Price manipulation in prediction markets:analysis and
mitigation. In: Proceedings of the 13th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2014), pp. 213–220 (2014)

8. Law, E., Ahn, L.V.: Human Computation. Morgan & Claypool Publishers (2011)
9. Matheson, J.E., Winkler, R.L.: Scoring rules for continuous probability distribu-

tions. Management Science 22(10), 1087–1096 (1976)
10. Prelec, D.: A bayesian truth serum for subjective data. Science 306(5695), 462–466

(2004)
11. Radanovic, G., Faltings, B.: A robust bayesian truth serum for non-binary signals.

In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI
2013), pp. 833–839 (2013)

12. Robu, V., Kota, R., Chalkiadakis, G., Rogers, A., Jennings, N.R.: Cooperative
virtual power plant formation using scoring rules. In: Proceedings of the 26th AAAI
Conference on Artificial Intelligence (AAAI 2012), pp. 370–376 (2012)

13. Savage, L.J.: Elicitation of personal probabilities and expectations. Journal of the
American Statistical Association 66(336), 783–801 (1971)

14. Witkowski, J., Parkes, D.C.: A robust bayesian truth serum for small populations.
In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI
2012), pp. 1492–1498 (2012)

15. Wolfers, J., Zitzewitz, E.: Prediction markets. Journal of Economic Perspectives
18(2), 107–126 (2004)

16. Zhang, P., Chen, Y.: Elicitability and knowledge-free elicitation with peer
prediction. In: Proceedings of the 13th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2014), pp. 245–252 (2014)

Majoritarian Group Actions

Daniele Porello(B)

Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy
danieleporello@gmail.com

Abstract. In this paper, we introduce a logic to reason about group
actions for groups that are defined by means of the majority rule. It is
well known that majoritarian aggregation is subject to irrationality, as
the results in social choice theory and judgment aggregation show. The
logic of action that we use here for modelling group actions is based on a
substructural propositional logic that allows for preventing inconsistent
outcome. Agency is modeled by means of a “bringing-it-about” modal
logic with coalitions. We show that, in this way, it is possible to obtain a
consistent model of agency of groups that are defined in an aggregative
manner.

1 Introduction

The rationality of group attitudes, such as beliefs, desires, intentions, and agency
is a central issue in the foundation of multiagent system. The concept of group
attitudes has been interpreted in different ways by a number of approaches. For
instance, Christian List [10] distinguishes between three kinds of collective atti-
tudes: aggregate, common, and corporate group attitudes. We are here interested
in the first two kinds. Common attitudes are ascribed to a group by requiring
that every member of the group share the same attitude. Common attitudes
have been presupposed by the approach to group actions based on collective
intentionality and joint action [26,10,12]. In this view, possible disagreements
among the members of the group are excluded. By contrast, an aggregative view
of group attitudes does not presuppose that the individuals that are members
of the group all share the same attitude. A group attitude can be ascribed to
the group by solving the disagreement by means of an aggregation procedure
such as the majority rule. This view is appealing, since it seems to be capable
of accounting for the common attitudes perspective, that implies unanimity, but
also for a number of situations in which it is reasonable to define a group attitude
without assuming that all the members of the group share a common attitudes.
For instance, in case we model parliaments, organizations, committees. Besides
being descriptively adequate to a number of modelling scenarios, non-unanimous
group attitudes are important also from the point of view of multiagent systems
and knowledge representation of group information. Consider the following sit-
uations involving artificial agents. Suppose three sensors have been placed in
different locations of a room and they are designed to trigger a fire alarm in case
they detect smoke. By viewing the three sensors as a group, we may investigate
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 416–432, 2015.
DOI: 10.1007/978-3-319-25524-8 26

Majoritarian Group Actions 417

what are the conditions that defines the group action, in this case, “trigger the
alarm”. By forcing unanimity, that is, by viewing group attitudes as common
attitudes, we are assuming that the three sensors as a group trigger the alarm
only in the case they all agree in detecting smoke. However, a unanimous view
of group actions may lead to lose a lot of relevant information: if the sensors dis-
agree, the alarm is simply not triggered, even if the disagreement may be caused,
for instance, by the fact that one of the three sensors is in a location that has
not been reached by the smoke yet. Unanimity appears to be a too restrictive
requirement in this case [20]. An aggregative view provides the formal means
to tailor the concept of group information to the specific scenario, by selecting
the appropriate aggregation procedure. Although an aggregative view of group
attitudes is desirable for many reasons, several results in social choice theory
and judgment aggregation show that many important aggregation procedures
are not capable of guaranteeing a rational outcome. One crucial example is the
majority rule [11]. As usual in the BDI approach to agency, at least a mod-
icum of rationality has to be presupposed in order to define an agent. An agent
cannot hold (synchronically) inconsistent attitudes, such as plans, commitments
or beliefs. When the outcome of an aggregation procedure is inconsistent, as in
the case of the majority rule, we simply cannot define a majoritarian group as
an agent. The solution that has been developed in the literature on judgment
aggregation is to give up procedures such as the majority rule and investigate
aggregation procedures that guarantee consistency [13].

In this paper, we are interested in pursuing a different strategy. We want to be
able to ascribe collective attitudes to groups even in the case individual attitudes
are aggregated by means of the majority rule. The motivation is that many
real scenarios actually use the majority rule to settle disagreement. Besides, the
majority rule has a number of desirable features such as it is simple to understand
and implement, preference aggregation is strategy-proof (when consistent) [3], it
has been associated to an epistemic interpretation justified by the Condorcet’s
jury theorem.

In order to avoid the inconsistency, as well as the irrationality caused by the
majority rule, we shall weaken the logic that we use to model group rationality
in order to ensure general consistency. For instance, we know that the major-
ity rule may return inconsistent sets of judgments. On a closer inspection, the
inconsistency is deeply intertwined with the principles of classical logic. In [19],
a possibility result for the majority rule has been provided by means of linear
logic [7,8]. We will build on that in order to develop a logic for majoritarian
groups attitudes, that is, groups whose attitudes are aggregatively defined by
means of the majority rule. In principle, our treatment can be instantiated to a
number of propositional attitudes such as beliefs, desires, intentions. We focus
here on action and agency and we model the situation in which a number of
agents submit proposals for action that have to be aggregated in a group action.

In order to model action and agency, we shall use a “bringing-it-about”
modality whose properties have been investigated for instance by [5,9]. A logic of
agency based on intuitionistic linear logic has been presented in [21]. Moreover, a

418 D. Porello

insightful discussion of bringing-it-about modalities for representing coalitional
ability has been done in [25]. A closely related work is [2]. There, the authors use
judgment aggregation in order to model group attitudes by relying on logics of
agency. The significant difference with respect to the present paper is that their
treatment applies to aggregation procedures that are known to guarantee con-
sistency, e.g. the premise based procedure [13], whereas here we are interested
in approaching the majority rule.

Modelling group actions in case of an aggregative view is simpler than mod-
elling common group actions in a number of aspects. Firstly, we do not need
to assume joint intentionality nor a shared goal. By definition of majoritarian
group, we are already assuming that individuals do have different goals [10].
For that reason, we are labelling the actions of the group by group actions and
not by joint action. Moreover, it means that intentionality and goals do not
need to enter the model for defining what a group action is [12]. That is, the
“bringing-it-about” modality is sufficient for this preliminary task.

The remainder of this paper is organized as follows. In the next section, after
presenting the basic notions of judgment aggregation, we shall introduce the prob-
lem of majoritarian group actions in an informal way by discussing a discursive
dilemma [11]. In Section 3, we see the basics of the propositional substructural
logic that we are going to use to build our model of group actions. In Section 4, we
enrich the propositional substructural logic by means of the modalities for agency.
Besides a number of technicalities, the difference with [21] is that we are going
to introduce coalitions in the spirit of [25]. Moreover, we are going to establish
soundness and completeness of the Hilbert system for our logic. In Section 5, we
approach our modelling of group actions and we show how to provide a consistent
modellisation of majoritarian aggregation. In particular, we show how to view dis-
cursive dilemmas as examples of the complex nature of group actions, rather than
a case of mere logical inconsistency. Finally, Section 6 concludes.

2 Background on Judgment Aggregation

We present now the basic definitions of the judgement aggregation (JA) setting
[13,6], which provides the formal counterpart of an aggregative view of collective
attitudes [10]. We slightly rephrase the definitions for the present application.
Let N be a (finite) set of agents. An agenda XL is a (finite) set of propositions
in the language LL of a given logic L that is closed under complements. i.e. non-
double negations. We let the logic L unspecified here, as we shall see two logics
for defining judgment sets. Moreover, we shall assume that the agenda does not
contain tautologies or contradictions, this is motivated in a number of papers in
JA [13] but it is also motivated here by the fact that we are assuming that it is
not meaningful to talk about tautological actions (cf. Section 4.2).

The standard definitions of the JA framework are the following. A judgement
set J is a subset of XL such that J is (wrt L) consistent (J �L ⊥), complete
(for all ϕ ∈ XL, ϕ ∈ J or ¬ϕ ∈ J) and deductive closed (if J �L ϕ and ϕ ∈ XL,
ϕ ∈ J). The definitions are presented in syntactic terms, by referring to a calculus

Majoritarian Group Actions 419

�L. The notion of consistency has been rephrased to cope with the logic that
we are going to introduce. Note that our definition are equivalent to their usual
model-theoretic counterparts.

Denote by J(XL) the set of all judgement sets on XL. A profile of judgements
sets J is a vector (J1, . . . , Jn), where n = |N |. An aggregator is then a function
F : J(XL)n → P(XL). The codomain of F is the powerset P(XL), therefore admit-
ting possibly inconsistent sets. Let Nϕ = {i | ϕ ∈ Ji}, the majority rule is defined
as follows: m : J(XL)n → P(XL) such that m(J) = {ϕ ∈ XL | |Nϕ| > n/2}.

In JA, the collective set F (J) is also assumed to be consistent, complete, and
deductively closed wrt. L. This defines the notion of collective rationality. The
classical results in JA show that the majority rule is not collectively rational.
That means that there exists an agenda and a profile of judgment sets such that
F (J) is not consistent. We present now a significant example.

We are endorsing an aggregative view of group attitudes, that means that
the attitudes that one can ascribe the group are obtained as outcomes of an
aggregation procedure [10]. Consider the following case of discursive dilemma
[11] on the agenda of propositions {A,B,A ∧ B,¬A,¬B,¬(A ∧ B)}.

A A ∧ B B ¬A ¬(A ∧ B) ¬B
1 yes yes yes no no no
2 no no yes yes yes no
3 yes no no no yes yes

maj. yes no yes no yes no

By majority, the group accepts A, because of 1 and 3, it accepts B, because
of 1 and 2, and it also has to accept ¬(A ∧ B). Therefore, one can see that the
group is inconsistent since, for instance, A and B entails A∧B which contradicts
¬(A ∧ B), i.e. A ∧ B, ¬(A ∧ B) � ⊥.

We are interested in representing majoritarian group reasoning and the out-
comes of an election by means of the bringing-it-about modality E. For instance,
suppose the group G is assumed to be the agent who is bringing about the
propositions accepted by majority. To express that, we write formulas such as
EGA, EGB, and EG¬(A∧B). By means, of the usual principles of the modality
E — for instance the axiom T : EGϕ → ϕ — we can infer again the inconsistency
between A ∧ B and ¬(A ∧ B).

We will see that a fundamental point in order to save collective rational-
ity in case of majoritarian decisions is to keep track of the coalitions that
are responsible for supporting the collectively accepted propositions [19]. In
order to do that, we want to reason about formulas that indicates that the
coalition{1, 3} brings about A, coalition {1,2} brings about B, and coalition
{2, 3} does not brings about (A ∧ B). We write such statements as follows:
E{1,3}A,E{1,2}B, E{2,3}¬(A∧B). We will see that the inconsistency in discursive
dilemmas is caused by mixing propositions that hold because they are supported
by a single coalition, e.g. E{1,3}A, and propositions that hold because they fol-
low from propositions that are supported by two distinct coalitions: for instance,
E{1,2,3}(A ∧ B) that follows from E{1,3}A and E{1,2}B.

420 D. Porello

In the next section, we will introduce a logic that is capable of distinguishing
two modes of combinations of propositions supported by coalitions, preventing
the majoritarian outcomes from inconsistency.

3 Background on Substructural Logics

We briefly introduce the basics of Linear Logic (LL). LL captures a resource-
sensitive reasoning that means that, for instance, wrt linear logic implication �,
modus ponens A,A � B � B is valid only if the right amount of assumptions
is given, so that A,A,A � B �� B. This implication has been interpreted as a
form of causal connection between the antecedent and the consequence [8]: the
antecedent is consumed by the causal process and it is not available for further
inferences. In order to achieve resource-sensitivity of the entailment, linear logic
rejects the global validity of the structural rules of the sequent calculus: contrac-
tion (C) and weakening (W). Rejecting (W) amounts to preventing monotonicity
of the entailment and rejecting (C) blocks the possibility of making indistin-
guishable copies of the assumptions. By rejecting (W) and (C), we are lead to
split the classical connectives into two classes: multiplicatives and additives. For
instance, the classical conjunction ∧ splits into two distinct operators: the mul-
tiplicative ⊗ (“tensor”) and the additive & (“with”) [7,8]. Since monotonicity
fails in general, the tensor conjunction for instance does not satisfy A ⊗ B �� B
nor A ⊗ B �� A, by contrast the additive conjunction does: A & B � A and
A & B � B. Analogous distinction can be made for disjunction. We will use
an intuitionistic variant of linear logic, thus we shall have the implication �
instead of the multiplicative disjunction. By slightly abusing the notation, we
will denote the additive disjunction by ∨.

For our purpose, the resource-sensitive nature of linear logic is fundamental
as it is capable of handling an important distinction between the truth makers of
a proposition: we will see that a formula A⊗B will be made true by two different
coalitions of agents, one supporting A and one supporting B, whereas A&B will
be made true by a single coalition, cf. [19]. For the sake of simplicity, we shall
stick to a fragment of intuitionistic linear logic (exponential-free). Moreover, as
we shall see in the next section, we assume distributivity of additive connective &
over ∨. Distributivity is not valid in linear logic. By slightly abusing the notation,
we shall call our fragment by ILLD1. The motivation for adding distributivity
is mainly technical: it is due to the fact that we can still prove soundness and
completeness wrt a simple Kripke-like model.

The language of ILLD, LILLD, then is defined as follows:

A ::= 1 | p | A ⊗ A | A & A | A � A | A ∨ A

where p ∈ Atom.

1 Note that, since distributivity hold, ILL D is also known as a contractionless relevance
logic [16], which is a decidable relevance logic [15]. We leave a proper comparison
with the families of substructural and relevance logics for future work.

Majoritarian Group Actions 421

3.1 Hilbert System for ILLD

We introduce the Hilbert system for ILLD, that has been basically developed
in [1], see also [24,16]. We define the Hilbert-style calculus by introducing a
list of axioms in Table 1 and by defining the following notion of deduction.
The concept of deduction of linear logic requires a tree-structure in order to
handle the hypothesis in the correct resource-sensitive way. This entails that, in
particular, in linear logic, every modus ponens application (cf. �-rule) applies
to a single occurrence of A and of A � B.

Table 1. Axioms of ILL

1. � A � A
2. � (A � B) � ((B � C) � (A � C))
3. � (A � (B � C)) � (B � (A � C))
4. � A � (B � A ⊗ B)
5. � (A � (B � C)) � (A ⊗ B � C)
6. � 1
7. � 1 � (A � A)
8. � (A & B) � A
9. � (A & B) � B

10. � ((A � B) & (A � C)) � (A � B & C)
11. � A � A ∨ B
12. � B � A ∨ B
13. (A � C) & (B � C) � (A ∨ B � C)
14. A & (B ∨ C) � (A & B) ∨ (A & C)
15. (A ∨ B) & (A ∨ C) � A & (B ∨ C)

The notion of proof in the Hilbert system is defined as follows.

Definition 1 (Deduction in H-ILLD). A deduction tree in H-ILLD D is induc-
tively constructed as follows. (i) The leaves of the tree are assumptions A � A,
for A ∈ LILLD, or � B where B is an axiom in Table 1 (base cases).

(ii) We denote by
D

Γ � A a deduction tree with conclusion Γ � A. If D and D′

are deduction trees, then the following are deduction trees (inductive steps).

D
Γ � A

D′

Γ ′ � A � B �-rule
Γ, Γ ′ � B

D
Γ � A

D′

Γ � B &-rule
Γ � A & B

3.2 Models of ILL

A Kripke-like class of models for ILLD is substantially due to Urquhart [27].
A Kripke resource frame is a structure M = (M, e, ◦,≥), where (M, e, ◦) is
a commutative monoid with neutral element e, and ≥ is a pre-order on M .

422 D. Porello

The frame has to satisfy the condition of bifunctoriality : if m ≥ n, and m′ ≥ n′,
then m ◦ m′ ≥ n ◦ n′. To obtain a Kripke resource model, a valuation on atoms
V : Atom → P(M) is added. It has to satisfy the heredity condition: if m ∈ V (p)
and n ≥ m then n ∈ V (p). The truth conditions of the formulas of LILLD in the
Kripke resource model M = (M, e, ◦,≥, V) are the following:

m |=M p iff m ∈ V (p).
m |=M 1 iff m ≥ e.
m |=M A⊗B iff there exist m1 and m2 such that m ≥ m1 ◦m2 and m1 |=M A

and m2 |=M B.
m |=M A & B iff m |=M A and m |=M B.
m |=M A ∨ B iff m |=M A or m |=M B
m |=M A � B iff for all n ∈ M , if n |=M A, then n ◦ m |=M B.

Denote ||A||M the extension of A in M, i.e. the set of worlds of M in which
A holds. A formula A is true in a model M if e |=M A.2 A formula A is valid
in Kripke resource frames, noted |= A, iff it is true in every model. The heredity
condition can be straightforwardly proved to extend naturally to every formula,
that is: For every formula A, if m |= A and m′ ≥ m, then m′ |= A. By means of
this semantics, it is possible to prove that ILL D is sound and complete wrt to
the class of Kripke models [27].

4 Linear Bringing-it-about Logic with Coalitions (Linear
BIAT C)

The (non-normal modal) logic of agency of bringing-it-about [5,9] has been tra-
ditionally developed on top of classical propositional logic. In [21], a version
of bringing-it-about based on ILL has been developed as a logic for modeling
resource-sensitive actions of a single agent. In the next section, we will propose
a version Linear BIAT with coalitions, based on ILLD. We simply label it Lin-
ear BIAT C. The bringing-it-about modality has been discussed in particular by
[5,9]. For each agent a in a set of agents A, the modality EaA specifies that agent
a ∈ A brings about A. The following principles captures the intended notion of
agency [5]:

1. If something is brought about, then this something holds.
2. It is not possible to bring about a tautology.
3. If an agent brings about two things concomitantly then the agent also brings

about the conjunction of these two things.
4. If two statements are equivalent, then bringing about one is equivalent to

bringing about the other.

2 When the context is clear we will write ||A|| instead of ||A||M, and m |= A instead
of m |=M A.

Majoritarian Group Actions 423

The logical meaning of the four principle is the following. The first item
corresponds to the axiom T of modal logics: EiA � A. It states that bringing-
it-about is effective: if an action is brought about, then the action affects the
state of the world, i.e. the formula A that represents the execution of the action
holds. The second item corresponds to the axiom ¬Ei� (notaut) in classical
bringing-it-about logic. It amounts to assuming that agents cannot bring about
tautologies. The motivation is that a tautology is always true, regardless what
an agent does, so if acting is construed as something that affects the state of
the world, tautologies are not apt to be the content of something that an agent
actually does. Item 3 corresponds to the axiom: EiA ∧ EiB → Ei(A ∧ B). We
shall discuss this principle in detail, when we will approach the linear version of
this logic. The fourth item allows for viewing bringing it about as a modality,
obeying the rule of equivalents: if � A ↔ B then � EiA ↔ EiB.

4.1 Axioms of Linear BIAT C

We assume a set of coalitions C that is closed by disjoint union �. In this version
of BIAT logic, agents are replaced by coalition. We admit singleton coalitions, in
that case the meaning of a coalition C in C is {i}. This move is similar to those
made in [25] to discuss coalitional ability. The language of Linear BIAT with
coalition, LLBIATC simply extends the definition of LILLD, by adding a formula
ECA for each coalition C ∈ C. The axioms of Linear BIAT C are presented in
Table 2. The Hilbert system is defined by extending the notion of deduction in
Definition 1 by means of the new axioms in Table 2 and of two new rules for
building deduction trees, cf. Definition 2.

A number of important differences are worth noticing, when discussing the
principle of agency in linear logics. Principle 1 is captured by Axiom 16, that is,
the linear version of T: EaA � A. Since in linear logics all the tautologies are
not provably equivalent, principle 2 changes into an inference rule, that is (∼
nec) in Definition 2: if � A, then ECA � ⊥. That means that, if a formula is a
theorem, a coalition that brings it about implies the contradiction3. Moreover,
the rule (ECre) captures the fourth principle.

The principle for combining actions (Item 3 in the list) is crucial here: it can
be interpreted in linear logic in two ways, namely, in a multiplicative way by ⊗
(Axiom 18) and in an additive way by & (Axiom 17) The distinction between
the two types of combination is crucial for preventing collective irrationality [19].
The point is that the multiplicative combination, in our interpretation, requires
two different winning coalitions that support the propositions, whereas the addi-
tive combination forces the same coalition to support both propositions. This
distinction is reflected by the resource-sensitive nature of the two conjunctions.
For instance, one can prove that C � A,D � B � C ⊗ D � A ⊗ B and
C � A,C � B � C � A & B, that is in the former case the combination of
hypotheses B⊗C is required, whereas in the latter only C is required. Therefore,

3 This amounts to negating ECA, according to intuitionistic negation.

424 D. Porello

Axiom 17 means that if the same coalition brings about A and brings about B,
then the same coalition can bring about the combination of A and B: A & B.

We define the disjoint union of two coalitions C � D by C ∪ D, if C ∩ D = ∅
and C � D = (C × {1}) ∪ (D × {0}), otherwise. Axiom 18 means that if a
coalition C brings about action A and coalition C ′ brings about action B then,
the disjoint union of two coalitions C�C ′ brings about the combination of actions
A ⊗ B. It is important to stress that the condition of disjointness of C and C ′

is crucial for modelling the group actions defined by majority in a consistent
way. In particular, the condition shows that the individuals that are member of
the coalition are all equally relevant to make the proposition accepted. Take for
instance the case of E{1,2}A and E{2,3}. If we enable the inference to E{1,2,3}A⊗B,
then we would lose the information concerning the possibly crucial contribution
of agent 2 in both coalitions.

Axiom 17 and 18 are reminiscence of Coalition Logic [17]. Note that we do
not assume any further axiom of coalition logic. For instance, no coalition mono-
tonicity. That is motivated by the fact that we are modelling profile-reasoning,
that is, we start by a fixed profile of individual attitudes and we want to capture,
by means of the modality E, how the group reasons about those propositions that
have been accepted by majority in that profile. In this setting, given a profile of
individual attitudes, there exists only one coalition that supports a proposition
that has been accepted by majority. This is a different perspective wrt coalition
logic and logic of coalitional ability [25].

Moreover, the principles for combining actions, such as Axiom 17 and 18,
have been criticized on the ground that coalitions C and D may have different
goals, therefore it is not meaningful to view the action of C � D as a joint
action. However, the aggregative view of group actions defined by means of the
majority rule presupposes that the group is not defined by means of a shared
goal. Therefore, Axioms 17 and 18 are legitimate from this point of view.

Table 2. Axioms of Linear BIAT

- All the axioms of ILL (cf. Table 1)
16 ECA � A
17 ECA & ECB � EC(A & B)
18 ECA ⊗ EDB � EC�D(A ⊗ B)

The following definition extends the concept of deduction to Linear BIAT C.

Definition 2 (Deduction in Linear BIAT C). A deduction tree in Linear
BIAT C denoted by D is inductively constructed as follows. (i) The leaves of the
tree are assumptions A � A, for A ∈ LLBIATC , or � B where B is an axiom in
Table 2 (base cases).

Majoritarian Group Actions 425

(ii) If D and D′ are deduction trees, then the trees in Definition 1 are also deduc-
tion trees in Linear BIAT. Moreover, the following are deduction trees (inductive
steps).

D
� A � B

D′

� B � A EC(re)� ECA � ECB

� A ∼ nec� ECA � ⊥

4.2 Models of Linear BIAT C

The semantics of the bringing-it-about modality is defined by adding a neighbor-
hood semantics on top of the Kripke resource frame. A neighborhood function
is a mapping N : M → P(P(M)) that associates a world m with a set of sets of
worlds (see [4]). The intuitive meaning of the neighborhood in this setting is that
it associates to each world a set of propositions that can be done by coalition C.
Neighborhood functions are related to effectivity function introduced in Social
Choice Theory [14] for modelling coalitional power.

In order to interpret the modalities in a modal Kripke resource frame, we
take one neighborhood function NC for every coalition C ∈ C and we define:

m |= ECA iff ||A|| ∈ NC(m)

Note that it is possible that m |= ECA, yet m′ �|= ECA for some m′ ≥ m.
That is, heredity may fail in the extension of |= for LLBIATC . We will then require
our neighborhood function to satisfy the condition that if some set X ⊆ M is
in the neighborhood of a world, then X is also in the neighborhood of all the
worlds that are above according to ≥.

if X ∈ NC(m) and n ≥ m then X ∈ NC(n) (1)

The rule (ECre) does not require any further condition on Kripke resource
frames, it is already true because of the definition of EC .

The rule (∼ nec) requires:

if (X ∈ NC(w)) and (e ∈ X) then (w ∈ V (⊥)) (2)

Axiom 16 requires:

if X ∈ NC(w) then w ∈ X (3)

We turn now to action compositions. Axiom 17 requires:

if X ∈ NC(w) and Y ∈ NC(w), then X ∩ Y ∈ NC(w) (4)

Let X ◦ Y = {x ◦ y | x ∈ X and y ∈ Y }, the condition corresponding to the
multiplicative version of action combination, Axiom 18, requires that the upper
closure of X ◦ Y , denote it by (X ◦ Y)↑, is in NC�D(x ◦ y):

if X ∈ NC(x) and Y ∈ ND(y) , then (X ◦ Y)↑ ∈ NC�D(x ◦ y) (5)

Summing up, Linear BIAT is evaluated over the following models:

426 D. Porello

Definition 3. A modal Kripke resource model is a structure M = (M, e, ◦,≥,
NC , V) such that:

– (M, e, ◦,≥) is a Kripke resource frame;
– For any C ∈ C, NC is a neighborhood function that satisfies conditions (1),

(2), (3), (4), and (5).
– V is a valuation on atoms, V : Atom → P(M).

Heredity is true as well for Linear BIAT C over modal Kripke resource models
for modal formulas, as an easy induction shows.

4.3 Soundness and Completeness

We approach now the proof of soundness and completeness of Linear BIAT C
wrt Kripke resource frames that satisfy the conditions we put. The proof for the
propositional case is mainly due to [27]. A proof of soundness and completeness
for Linear BIAT in case of as single agent is provided in [21,22]. The proof that
we present here is a simple adaptation of those proofs for the case of the Hilbert
system for Linear BIAT C.

Theorem 1 (Soundness of Linear BIAT with Coalitions). Linear BIAT C
is sound wrt the class of Kripke resource frames that satisfy (1) (2), (3), (4),
and (5): if Γ � A, then Γ |= A.

Proof. We only present the cases for axioms 17 and 18. The other cases are han-
dled in similar way in [21].

We show that axiom 17 is valid. That is, for every model, e |= ECA&ECB �
EC(A&B). That means, by definition of �, for every x, if x |= ECA&ECB, then
x |= EC(A & B). If x |= ECA & ECB, then x |= ECA and x |= ECB, that entails,
by definition of EC , that ||A|| ∈ NC(x) and |B|| ∈ NC(x). Thus, by condition
(4), we infer ||A|| ∩ ||B|| ∈ NC(x). That means x |= EC(A & B).

We show that axiom 18 is valid, e |= ECA ⊗ EDB � EC∪D(A ⊗ B). That is,
for every x, if x |= ECA ⊗ EDB, then x |= EC∪D(A ⊗ B). If x |= ECA ⊗ EDB,
then by definition of ⊗, there exist y and z, such that x ≥ y◦z and y |= ECA and
z |= EDB. Therefore, ||A|| ∈ NC(y) and ||B|| ∈ ND(z), this by condition (5), we
infer that (||A|| ◦ ||B||)↑ ∈ NC�D(y ◦ z). Thus, since x ≥ y ◦ z, by condition (5),
(||A|| ◦ ||B||)↑ ∈ NC�D(x), that is x |= EC�D(A ⊗ B).

We turn now to show completeness. Firstly, we define the canonical model,
which is adapted from [21].

In the following, �m is the multiset union. Also, we denote by Δ� = A1 ⊗
· · · ⊗ Am, for Ai ∈ Δ. Moreover, the extension of A in the canonical model is
|A|c = {Γ | Γ � A}.

Majoritarian Group Actions 427

Definition 4. Let Mc = (M c, ec, oc,≥c, N c, V c) such that:

– M c = {Γ | Γ is a finite multiset of formulas};
– Γ ◦c Δ = Γ �m Δ;
– ec = ∅;
– Γ ≥c Δ iff Γ � Δ∗;
– Γ ∈ V c(p) iff Γ � p;
– For every C ∈ C, N c

C(Γ) = {| A |c| Γ � ECA}.
Lemma 1. Mc is a modal Kripke resource model that satisfies (1) (2), (3), (4),
and (5).

Proof. We only show the case of condition (4), and (5), which differs from the
proof in [21].

Case of Condition (4). Suppose X ∈ N c
C(Γ) and Y ∈ N c

C(Γ). By definition of
N c

C , X ∈ {X =| A |c| Γ � ECA}, thus Γ � ECA is provable in the Hilbert
system. Analogously, Γ � ECB, where Y = |B|c. Then, we can prove in the
Hilbert system that Γ � ECA & ECB, by means of the &-rule:

D
Γ � ECA

D′

Γ � ECB
&-rule

Γ � ECA & ECB

By axiom 12 and �-rule (i.e. modus ponens), we conclude Γ � EC(A & B)
as follows:

Γ � ECA & ECB � ECA & ECB � EC(A & B)
�-rule

Γ � ECA & B

Since Γ � EcA & B, we have that ||A & B|| ∈ N c
C(Γ). Therefore, we can

conclude since ||A & B|| = ||A|| ∩ ||B|| = X ∩ Y .

Case of Condition (5). Assume X ∈ N c
C(Γ), Y ∈ N c

D(Δ). By definition of
canonical neighborhood, we have: Γ � ECA, Δ � EDB, where ||A|| = X and
||B|| = Y . We can prove that Γ,Δ � ECA ⊗ EDB as follows.

Γ � ECA � ECA � (EDB � (ECA ⊗ EDB)) (ax. 4)
�-rule

Γ � EDB � ECA ⊗ EDB Δ � EDB�-rule
Γ, Δ � ECA ⊗ ECB

By means of axiom 18, we infer Γ,Δ � EC�D(A ⊗ B).

Γ, Δ � ECA ⊗ ECB � ECA ⊗ EDB � EC∪D(A ⊗ B) (ax 13, C ∩ D = ∅)
�-rule

Γ, Δ � EC∪DA ⊗ B

Therefore, (||A|| ◦ ||B||)↑ ∈ N c
C�D(Γ ◦ Δ). We conclude by noticing that

(X ◦ Y)↑ = (||A|| ◦ ||B||)↑.

428 D. Porello

We are ready now to prove the truth lemma. The proof is as usual by induc-
tion on the complexity of the formula A and there is no significative difference
wrt the proof in [21]. We denote by Γ |=c A the satisfaction relation wrt the
canonical model.

Lemma 2 (Truth lemma). If Γ |=c A, then Γ � A.

As usual, by means of the truth lemma, one establishes completeness.

Theorem 2 (Completeness of Linear BIAT with Coalitions). Linear BIAT
C is sound wrt the class of Kripke resource frames that satisfy (1) (2), (3), (4),
and (5): If Γ |= A, then Γ � A.

5 Aggregative View of Group Attitudes

We want to interpret the relationship between individual and collective atti-
tudes by means of the logic Linear BIAT C. However, the majority rule is not
interpreted within the logic by means of a logic formula, as for instance in [23,
chapter4]. Recall that in intiuitionistic logics, one can define ∼ A = A � ⊥.

We want to associate to each individual judgment set Ji, that contains for-
mulas of an agenda defined in classical logic, a set J̄i of Ei-formulas of Linear
BIAT C. Recall that the additive connectives of Linear BIAT C are & and ∨ and
the multiplicative connectives are ⊗ and �.

If ϕ is a formula in classical logic, then its additive translation in Linear
BIAT C is defined as follows: p′ = p, for p atomic; (A ∧ B)′ = A′ & B′ and
(A ∨ B)′ = A′ ∨ B′.

For each individual judgment set Ji, we define the set J̄i = {Eiϕ
′ | ϕ ∈ Ji}.

That is, we view the elements of the agenda that are supported by an agent i as
actions that she/he is proposing to bringing about as a group action. Moreover,
it is easy to see that, if Ji is a judgment set (i.e. it is individually rational)
according to classical logic, then J̄i is a judgment set (individually rational) wrt
to Linear BIAT C.

Note that any J̄i cannot contain multiplicative formulas. Firstly, by the addi-
tive translation, any ϕ occurring in Eiϕ is additive (i.e. it contains only &, ∨,
∼). Secondly, J̄i cannot infer any multiplicative formula of the form Eiϕ, since
that the only axiom that would entail Eiϕ where ϕ is a multiplicative formula is
Axiom 18, but that demands making the disjoint union of coalitions, e.g. from
EiA,EiB one can only infer Ei�i(A ⊗ B).

This motivates the role of the additive translation ()′ in modelling individual
attitudes: by means of Linear BIAT C, we can view individual judgment sets as
supported by a single coalition, that is, the coalition made by the agent i who
is supporting her/his propositions. Therefore, multiplicative formulas cannot be
in the individual judgment sets, because they would require the attitudes of at
least another agent.

We associate now a set of formulas in Linear BIAT C to the set of formulas
obtained by majority m(J) for a given profile J. Denote such a set by JG. We
say that coalition C supports ϕ in profile J iff C = Nϕ. Thus,

Majoritarian Group Actions 429

J̄G = {ECϕ | ϕ ∈ m(J) and C supports ϕ in J} (6)

For instance, in the example of discursive dilemma in Section 2, we have the
following sets of formulas of Linear BIAT C:

J̄1 = {E1A,E1B,E1(A & B)}
J̄2 = {E2 ∼ A,E2B,E2 ∼ (A & B)}
J̄3 = {E3A,E3 ∼ B,E3 ∼ (A & B)}
J̄G = {E1,3A,E1,2B,E2,3 ∼ (A & B)}

Note that each set J̄i is consistent and complete wrt Linear BIAT C.4 We
show that J̄G is consistent, complete and deductively closed wrt Linear BIAT C.

Definition 5 (Majoritarian group reasoning). Majoritarian group reason-
ing is defined as the deductive closure wrt Linear BIAT C of J̄G: cl(J̄G).

By adapting the proof in [19], we can show that group reasoning by means
of Linear BIAT C is always consistent, that is, for every profile of judgment
sets, although m(J) may be inconsistent wrt classical logic, J̄G is consistent wrt
Linear BIAT C.

Theorem 3. For every profile J, majoritarian group reasoning cl(J̄G) is con-
sistent, complete, and deductively closed wrt Linear BIAT C.

Proof. In [19], it is proved that, for every agenda of formulas defined in the
language of additive linear logic, the majority rule is always consistent, i.e. for
any profile J, m(J) is consistent. The proof is based on the fact that, in additive
linear logic, every minimally inconsistent5 set has cardinality 2. This follows from
the fact that every deduction in the additive fragment of linear logic contains
exactly two formulas A � B, therefore every minimally inconsistent set must be
of the form A,∼ B �.

By means of the characterization in [13,6], one can infer that, if every min-
imally inconsistent subset of an agenda X has cardinality less then 3, then the
majority rule is consistent for every profile of judgment sets defined on X .

Thus, firstly, we need to show that every minimally inconsistent set in addi-
tive linear logic plus distributivity (axiom 14 and 15) has cardinality 2. We show
that this is the case. If every deduction in the additive fragment of Linear BIAT
contains exactly two formulas, then this holds also for the additive fragment
plus axioms 14 and 15. It is sufficient to notice that, if Γ � A is derivable in the
additive fragment, since axioms 14 and 15 are of the form ϕ1 � ϕ2, by means
of them and of the �-rule the number of formulas in the derivation does not
increase.

In order to conclude, it is enough to notice that if a set of formula S is
consistent (and S does not contain a tautology nor a contradiction), then, for

4 Note that J̄ is consistent iff it is not the case that J̄ � ⊥.
5 Recall that a minimally inconsistent set Y is an inconsistent set that does not contain

inconsistent subsets.

430 D. Porello

every i, S′ = {Eiϕ | ϕ ∈ S} is also consistent. Therefore, J̄G is consistent wrt the
additive fragment. Thus, cl(J̄G) is consistent and deductively closed wrt Linear
BIAT C.

Therefore, by reasoning in Linear BIAT C about the set of formulas that are
obtained by majority, i.e. about J̄G, we can consistently model the actions of
a majoritarian group. In order to exemplify that J̄G is consistent, we can show
that we can infer E{1,2}�{1,3}(A⊗B) from formulas in J̄G, however this does not
contradict E{2,3} ∼ (A & B).

Firstly,

E{1,3}A � E{1,3}A (as.) � E{1,3}A � (E{1,2}B � E{1,3}A ⊗ E{1,2}B) (ax 4)
�-rule

E{1,3}A � E{1,2}B � E{1,3}A ⊗ E{1,2}B)

Then,

E{1,3}A � E{1,2}B � E{1,3}A ⊗ E{1,2}B) E{1,2}B � E{1,2}B as.
�

E{1,3}A,E{1,2}B � E{1,3}A ⊗ E{1,2}B

Finally, by means of Axiom 18 and the �-rule:

E{1,3}A,E{1,2}B � E{1,3}A ⊗ E{1,2}B � E{1,3}A ⊗ E{1,2}B � E{1,3}�{1,2}(A ⊗ B)

E{1,3}A,E{1,2}B � E{1,3}�{1,2}(A ⊗ B)

In order to show that E{1,2}�{1,3}(A ⊗ B) and E{2,3} ∼ (A & B) are not
contradictory in Linear BIAT C, we can notice that A ⊗ B and ∼ (A & B) are
not inconsistent in linear logic. By looking at the semantics of the two formulas,
they in fact state quite different things: the former states that there are two
truth-makers x1 and x2 one for A and one for B, whereas the latter states that
the is no x such that x is both a truth-maker of A and truth-maker of B. The
reason why the version of J̄G in classical logic is inconsistent is that it mixes the
two interpretations. Indeed, J̄G turns inconsistent, if we are able to infer from it,
for some combination of coalitions C, EC(A&B). But this cannot be the case in
Linear BIAT C, because there is no coalition C that supports both A and B in
J̄G. Therefore, in this setting, the discursive dilemma shows the complex nature
of majoritarian reasoning, instead of being a mere logical inconsistency.

To conclude, our approach shows that it is in principle possible to talk about
majoritarian group actions, provided we keep track of the complex internal struc-
ture of the alleged group agent, that is, the relationship between its internal coali-
tions. We may be tempted to define an agent G, the majoritarian group agent,
who is responsible for all the group actions, i.e. of the formulas in J̄G. This can be
done for instance by means of the following definition: if ECϕ is in J̄G, for some C
and ϕ, then EGϕ. The agency of G, EG, needs to be carefully investigated because
it has to reflect the complexity of the structure of the coalitions. For instance, we
have to prevent axiom 17 to hold for EG. Otherwise, we will end up facing again

Majoritarian Group Actions 431

inconsistent outcomes: in the example above, EGA and EGB imply EG(A & B)
and that would contradict EG¬(A&B). By contrast, it is possible to prove that a
version of axiom 18 is harmless. We need to replace the disjoint union of coalitions
with an operation of composition such that it is idempotent on G: X •Y = X �Y ,
for X,Y �= G and G•G = G. By rephrasing Axiom 18 for G and •, we have Axiom
18’: EGA ⊗ EGB � EG•G=G(A ⊗ B). The reason why axiom 18’ does not lead to
inconsistency is that formulas in the scope of EG other than those introduced by
axiom 18’ are additive. Therefore, there is indeed a viable notion of majoritarian
group agent G, the definition of its agency can be approached by means of a modal-
ity EG that satisfies axiom 16, 18’ and rules (EG(re)) and (∼ nec) of Definition 2.
The actions of the majoritarian group depend on the structure of its coalition and
the formulas of linear logic can express such constraints. Suppose that A and B are
preconditions for the action O. We have two ways of expressing it, an additive and
a multiplicative way: EG(A & B) � EGO and EG(A ⊗ B) � EGO. In the former
case, O is pursued by the group only if a single coalition of agents would pursue A
and B; in the latter case, O is pursued even if the coalitions that support A and
B are different. This means that, in the example above, if the additive constraint
is assumed, then the group shall not pursue O, whereas in case the multiplicative
constraint is chosen, from EG(A⊗B) and EG(A⊗B) � EGO, we can infer that O
is performed. We leave the detailed treatment of EG and of its further principles
for future work.

6 Conclusion

We have seen that there is a viable alternative to classical logic for modelling
group actions, when group attitudes are defined by majority. We have used a logic
of bringing-it-about agency grounded on a propositional logic that is tailored
to reflect fine-grained aspects of majoritarian reasoning. Therefore, we enabled
the treatment of majoritarian groups as BDI agents, since we can show that,
for any circumstances, the group guarantees a modicum of rationality. Future
work concerns the study of the computational complexity of the proposed logic.
For instance, the logic of agency based on intuitionistic linear logic is proved
to be in PSPACE in [21]. Moreover, we plan to extend the treatment that we
have proposed to represent other types of collective propositional attitudes. It is
possible to provide decidable first-order versions of substructural logics in order
to view preference aggregation within judgment aggregation [18]. For other types
of attitude, such as beliefs, we plan to investigate the realm of substructural
epistemic logics.

References

1. Avron, A.: The semantics and proof theory of linear logic. Theor. Comput. Sci.
57, 161–184 (1988)

2. Boella, G., Pigozzi, G., Slavkovik, M., van der Torre, L.: Group intention is social
choice with commitment. In: De Vos, M., Fornara, N., Pitt, J.V., Vouros, G. (eds.)
COIN 2010. LNCS, vol. 6541, pp. 152–171. Springer, Heidelberg (2011)

432 D. Porello

3. Campbell, D.E., Kelly, J.S.: A strategy-proofness characterization of majority rule.
Economic Theory 22(3), 557–568 (2003)

4. Chellas, B.: Modal Logic: An Introduction. Cambridge University Press (1980)
5. Elgesem, D.: The modal logic of agency. Nordic J. Philos. Logic 2(2) (1997)
6. Endriss, U., Grandi, U., Porello, D.: Complexity of judgment aggregation. Journal

of Artificial Intelligence Research 45, 481–514 (2012)
7. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
8. Girard, J.-Y.: Linear logic: its syntax and semantics. In: Proceedings of the Work-

shop on Advances in Linear Logic, pp. 1–42. Cambridge University Press, New
York (1995)

9. Governatori, G., Rotolo, A.: On the Axiomatisation of Elgesem’s Logic of Agency
and Ability. Journal of Philosophical Logic 34, 403–431 (2005)

10. List, C.: Three kinds of collective attitudes. Erkenntnis 79(9), 1601–1622 (2014)
11. List, C., Pettit, P.: Aggregating sets of judgments: An impossibility result. Eco-

nomics and Philosophy 18(1), 89–110 (2002)
12. List, C., Pettit, P.: Group Agency. The possibility, design, and status of corporate

agents. Oxford University Press (2011)
13. List, C., Puppe, C.: Judgment aggregation: a survey. In: Handbook of Rational

and Social Choice. Oxford University Press (2009)
14. Moulin, H., Peleg, B.: Cores of effectivity functions and implementation theory.

Journal of Mathematical Economics 10(1), 115–145 (1982)
15. Ono, H.: Substructural logics and residuated latticesan introduction. Springer

(2003)
16. Paoli, F.: Substructural logics: a primer, vol. 13. Springer Science & Business Media

(2002)
17. Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12(1),

149–166 (2002)
18. Porello, D.: Ranking judgments in arrow’s setting. Synthese 173(2), 199–210 (2010)
19. Porello, D.: A proof-theoretical view of collective rationality. In: IJCAI 2013,

Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3–9, 2013 (2013)

20. Porello, D., Endriss, U.: Ontology merging as social choice: Judgment aggrega-
tion under the open world assumption. Journal of Logic and Computation 24(6),
1229–1249 (2014)

21. Porello, D., Troquard, N.: A resource-sensitive logic of agency. In ECAI 2014–21st
European Conference on Artificial Intelligence, August 18–22, 2014, Prague, Czech
Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014),
pp. 723–728 (2014)

22. Porello, D., Troquard, N.: Non-normal modalities in variants of linear logic (2015).
CoRR, abs/1503.04193

23. Rubinstein, A.: Economics and language: Five essays. Cambridge University Press
(2000)

24. Troelstra, A.S.: Lectures on Linear Logic. CSLI Publications (1992)
25. Troquard, N.: Reasoning about coalitional agency and ability in the logics

of “bringing-it-about”. Autonomous Agents and Multi-Agent Systems 28(3),
381–407 (2014)

26. Tuomela, R.: Social ontology: Collective intentionality and group agents. Oxford
University Press (2013)

27. Urquhart, A.: Semantics for relevant logics. J. Symb. Log. 37(1), 159–169 (1972)

Programming Deliberation Strategies
in Meta-APL

Sam Leask and Brian Logan(B)

School of Computer Science, University of Nottingham, Nottingham, UK
{svl,bsl}@cs.nott.ac.uk

Abstract. A key advantage of BDI-based agent programming is that
agents can deliberate about which course of action to adopt to achieve a
goal or respond to an event. However, while state-of-the-art BDI-based
agent programming languages provide flexible support for expressing
plans, they are typically limited to a single, hard-coded, deliberation
strategy (perhaps with some parameterisation) for all task environments.
In this paper, we present an alternative approach. We show how both
agent programs and the agent’s deliberation strategy can be encoded
in the agent programming language meta-APL. Key steps in the execu-
tion cycle of meta-APL are reflected in the state of the agent and can
be queried and updated by meta-APL rules, allowing BDI deliberation
strategies to be programmed with ease. To illustrate the flexibility of
meta-APL, we show how three typical BDI deliberation strategies can
be programmed using meta-APL rules. We then show how meta-APL
can used to program a novel adaptive deliberation strategy that avoids
interference between intentions.

1 Introduction

The BDI approach to agent programming has been very successful, and is per-
haps now the dominant paradigm in agent language design [8]. In the BDI app-
roach, agents select plans in response to changes in their environment, or to
achieve goals. In most BDI-based agent programming languages, plan selection
follows four steps. First the set of relevant plans is determined. A plan is rele-
vant if its triggering condition matches a goal to be achieved or a change in the
agent’s beliefs the agent should respond to. Second, the set of applicable plans
are determined. A plan is applicable if its belief context evaluates to true, given
the agent’s current beliefs. Third, the agent commits to (intends) one or more
of its relevant, applicable plans. Finally, from this updated set of intentions, the
agent then selects one or more intentions, and executes one (or more) steps of
the plan for that intention. This deliberation process then repeats at the next
cycle of agent execution.

Current APLs provide considerable syntactic support for steps one and two
(determining relevant applicable plans). However, with the exception of some
flags, the third and fourth steps can not be programmed in the APL itself.
No single deliberation strategy is clearly ‘best’ for all agent task environments.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 433–448, 2015.
DOI: 10.1007/978-3-319-25524-8 27

434 S. Leask and B. Logan

It is therefore important that the agent developer has the freedom to adopt the
strategy which is most appropriate to a particular problem.

Some languages allow the programmer to over-ride the default deliberation
cycle behaviour by redefining ‘selection functions’ in the host language (the
language in which the APL is itself implemented), e.g., [2], or by specifying the
deliberation strategy in a different language, e.g., [10]. Clearly, this is less than
ideal. If often requires considerable knowledge of how the deliberation cycle
is implemented in the host language, for example. Moreover, without reading
additional code (usually written in a different language), an agent developer
cannot tell how a program will be executed.

An alternative approach is to use procedural reflection. A reflective program-
ming language [11] incorporates a model of (aspects of) the language’s imple-
mentation and state of program execution in the language itself, and provides
facilities to manipulate this representation. Critically, changes in the underlying
implementation are reflected in the model, and manipulation of the represen-
tation by a program results in changes in the underlying implementation and
execution of the program. Perhaps the best known reflective programming lan-
guage is 3-Lisp [12]. However, many agent programming languages also provide
some degree of support for procedural reflection. For example, the Procedural
Reasoning System (PRS) [9] incorporated a meta-level, including reflection of
some aspects of the state of the execution of the agent such as the set of applica-
ble plans, allowing a developer to program deliberation about the choice of plans
in the language itself. Similarly, languages such as Jason [2] provide facilities to
manipulate the set of intentions. However the support for procedural reflection
in current state-of-the-art agent programming languages is often partial, in the
sense that it is difficult to express the deliberation strategy of the agent directly
in the agent programming language.

In this paper, we show how procedural reflection in the agent programming
language meta-APL [7] can be used to allow a straightforward implementation
of steps three and four in the deliberation cycle of a BDI agent, by allowing both
agent programs and the agent’s deliberation strategy to be encoded in the same
programming language. By exploiting procedural reflection an agent programmer
can customise the deliberation cycle to control which relevant applicable plan(s)
to intend, and which intention(s) to execute. To illustrate the flexibility of meta-
APL, we show how three typical BDI deliberation strategies can be programmed
using meta-APL rules. We then show how meta-APL can used to program a novel
adaptive deliberation strategy that avoids interference between intentions.

2 Specifying Deliberation Strategies

Many deliberation strategies are possible and it is impossible to consider them all
in detail. Instead we focus on three deliberation strategies that are representative
of deliberation strategies found in the literature and in current implementations
of BDI-based agent programming languages. The strategies are based on those
presented in [1], however the terminology has been changed to be more consistent

Programming Deliberation Strategies in Meta-APL 435

with usage in the BDI literature (e.g., ‘selecting a planning goal rule’ becomes
‘selecting a plan’ etc.), and the restriction in [1] that plans don’t have subgoals
has been removed.

The simplest deliberation strategy is a non-interleaved (ni) deliberation
strategy that executes a single intention to completion before adopting another
intention. Alternatively, the agent may pursue multiple goals in parallel, choosing
and executing plans for several (sub)goals at the same time. In [1] two parallel
strategies are described: the alternating (single action) (as) strategy, and the
alternating (multi action) (am) strategy. The (as) strategy first selects a plan
for an event (e.g., a belief update or (sub)goal) and then executes a single basic
action of one of the agent’s current intentitons. One common instantiation of
the (as) strategy is round robin scheduling (RR), in which the agent executes
one step of each intention at successive deliberation cycles. (RR) is the default
deliberation strategy used by Jason [2]. The (am) strategy first selects a plan
for an event and then executes a single basic action from each of the agent’s cur-
rent current intentions (i.e., it executes multiple actions per deliberation cycle).
(am) is the deliberation strategy used by 3APL [4].

However none of these strategies (or any other single strategy) is clearly
“best” for all agent task environments. For example, the (ni) strategy has the
advantage that it minimises conflicts between intentions. If the preconditions of
plans for each top-level goal are disjoint, and the preconditions for all subplans
(and actions) are established by preceding steps in the intention, then, if a set of
intentions can be executed at all in a given environment, they can be executed
by a (ni) strategy. However it has the disadvantage that the agent is unable
to respond to new goals until (at least) the intention for the current goal has
been executed. In many situations it is desirable that the agent progresses all
its intentions at approximately the same rate (i.e., achieves its top-level goals in
parallel). For example, if goals correspond to requests from users, we may wish
that no user’s request is significantly delayed compared to those of other users.
Conversely, the (as) and (am) strategies allow an agent to pursue multiple goals
at the same time, e.g., allowing an agent to respond to an urgent, short-duration
task while engaged in a long-term task. For example, round robin scheduling
attempts to ensure ‘fairness’ between intentions by executing a one step of each
intention in turn at each deliberation cycle. However these strategies can increase
the risk that actions in plans in different intentions will interfere with each other.
Such conflicts between intentions can sometimes be avoided by using atomic
constructs that prevent the interleaving of actions in a plan in one intention with
actions from plans in other intentions. However, it is difficult for the programmer
to ensure that all potential interactions between plan steps are encapsulated
within atomic constructs, and excessive use of atomic constructs may reduce the
responsiveness of the agent to an unacceptable degree.1 It is therefore important
that the agent developer has the freedom to choose the strategy that is most
appropriate to a particular problem.

1 We return to the problem of interference in Section 5.

436 S. Leask and B. Logan

3 Meta-APL

Meta-APL is a BDI-based agent programming language in which a programmer,
in addition to being able to write normal agent programs, can also specify the
deliberation cycle. This is achieved by adding to the language the ability to query
the agent’s plan state and actions which manipulate the plan state.

There are two key goals underlying the design of meta-APL:

– it should be possible to specify a wide range of deliberation cycles, e.g., the
deliberation cycles of current, state-of-the art agent programming languages

– it should be simple and easy to use, e.g., it should be easy to specify alter-
native deliberation strategies

The ability to express deliberation strategies (and other language features) in
a clear, transparent and modular way is a flexible tool for agent design. By
expressing a deliberation strategy in meta-APL, we provide a precise, declara-
tive operational semantics for the strategy which does not rely on user-specified
functions. Even low level implementation details of a strategy, such as the order
in which rules are fired or intentions are executed, can be expressed if necessary.

In this section, we briefly introduce meta-APL [7].2 A meta-APL agent con-
sists of an agent program and the agent state which is queried and manipulated
by the program. The agent program consists of an ordered sequence of sets of
rules. The agent’s state consists of two main components: the mental state, which
is a collection of atom instances, and the plan state which consists of a collec-
tion of plan instances and their properties. Atom instances are used to represent
beliefs, goals, events etc. Plan instances play a role similar to relevant, applicable
plans in conventional BDI agent programming languages.

3.1 Meta-APL Syntax

The syntax of Meta-APL is built from atoms, plans, clauses, macros, object
rules, and meta-rules, and a small number of primitive operations for querying
and updating the mental state and plan state of an agent.

Atoms. Atoms are built of terms. Terms are defined using the following disjoint
sets of symbols: IDs which is a non-empty totally ordered set of ids, Pred which is
a non-empty set of predicate symbols, Func which is a non-empty set of function
symbols, and Vars which is a non-empty set of variables.

2 A preliminary version of meta-APL was presented in [6]. The main differences
between the verson of meta-APL presented in [6] and that presented here, are that
the belief and goal bases have been merged into a single ‘mental state’, plan instances
are automatically deleted if any of the atoms forming the justification for the plan
(see below) are deleted, and plan instances must be explicitly scheduled for execution
(in [6] a single step of the root plan in each intention was executed at each cycle).

Programming Deliberation Strategies in Meta-APL 437

The syntax of terms t and atoms a is given by:

t =def x | f(t1, . . . , tm)
a =def p(t1, . . . , tn)

where f ∈ Func,3 p ∈ Pred, x ∈ V ars ∪ IDs, n ≥ 0, and m ≥ 0. For example,
a domestic robot (cf. [2]) may represent a belief that its supply of beer has been
depleted as:

belief(stock(beer, 0))

To distinguish between different instances of syntactically identical atoms (e.g.,
two instances of the same event), each atom instance is associated with a unique
id ∈ IDs.

The atom instances comprising the agent’s mental state can be queried and
updated using the following primitive operations:

– atom(i, a): an instance of the atom a has id i
– add-atom(i, a): create a new instance of the atom a and bind its id to i
– delete-atom(i): delete the atom instance with id i

For brevity, queries may be expressed in terms of atoms rather than atom
instances where the id is not important, i.e., the query a is true if the query
atom(, a) is true.

Plans. A plan is a textual representation of a sequence of actions the agent can
execute in order to change its environment or its mental state. Plans are built
of external actions, mental state tests, reified mental state actions and subgoals
composed with the sequence operator ‘;’. A plan π is defined as:

π =def ε | (ea | mt | ma | sg) ;π

where ε denotes the empty plan, ea is an external action of the form e(t1, . . . , tn),
e ∈ ActionNames and t1, . . . tn, n ≥ 0 are ground terms, mt is a mental state
test of the form ? q where q is a (primitive or defined) mental state query, ma
is a (primitive or defined) mental state action, and sg is a subgoal of the form
! g(u1, . . . , um) where g(u1, . . . , um) is an atom and u1, . . . um, m ≥ 0 are (pos-
sibly non-ground) terms. For example, the domestic robot may employ the fol-
lowing plan to scold its owner:

!at(robot, owner);
say(“You should drink no more than 3 units of alcohol per day!”)

Meta-APL distinguishes between generic plans, which are a static part of the
agent program, and plan instances — specific substitutions of generic plans gen-
erated during the execution of the program. The plan state of a meta-APL
agent may contain multiple instances of the same plan (e.g., if a plan is used to

3 In addition to standard functors, we assume Prolog-style list syntax.

438 S. Leask and B. Logan

achieve different subgoals). Each plan instance has a unique id , a current suffix
(the part of the instance still to be executed), one or more justifications, a sub-
stitution and (at most) one active subgoal. A justification is an atom instance
id . Informally a justification is a ‘reason’ for executing (this instance of) the
plan, e.g., an atom representing a belief or goal. In general, a plan instance may
have multiple justifications, and a justification may be the reason for adopting
multiple plan instances. The substitution θ = {x1/t1, . . . , xk/tk} specifies the
current binding of variables in the plan instance to terms. A subgoal is created
by the execution of a subgoal step ! g(u1, . . . , um), and is an instance of the atom
g(u1, . . . , um) which shares variables with the subgoal in the plan instance. Each
plan instance also has a set of execution state flags σ. σ is subset of a set of flags
Flags which includes at least intended, scheduled, stepped and failed, and
may contain additional user-defined flags, e.g., some deliberation strategies may
require a suspended execution state. The scheduled flag indicates that the plan
instance is selected to be executed at the current deliberation cycle. The stepped
flag indicates that the plan instance was executed at the last cycle. Finally, the
failed flag indicates that attempting to execute the plan instance failed, e.g.,
a mental state test returned false, or attempting to execute an external action
failed.

The plan instances comprising the plan state of an agent can be queried and
updated using the following primitive operations:

– plan(i, π): i is the id of an instance of the plan π
– plan-remainder(i, π): π is the textual representation of the (unexecuted) suffix

of the plan instance with id i
– justification(i, j): the plan instance with id i has the atom instance with id

j as a justification
– substitution(i, θ): the plan instance with id i has substitution θ
– subgoal(i, j): j is the id of the subgoal of the plan instance with id i, i.e.,
plan-remainder(i, ! g;π) and atom(j, g) such that j is the id of the instance
of g created by executing ! g in i

– state(i, σ): the plan instance with id i has execution state flags σ
– set-remainder(i, π) set the (unexecuted) suffix of the plan instance with id i

to π
– set-substitution(i, θ): set the substitution of the plan instance with id i to θ,

where θ may be an implicit substitution resulting from the unification of two
terms t(x) = t(a)

– set-state(i, σ) set the execution state flags of the plan instance with id i to σ
– delete-plan(i): delete the plan instance with id i, together with its suffix,

substitution and subgoal (if any)
– cycle(n): the current deliberation cycle is n

Clauses and Macros. Additional mental state and plan state queries can be
defined using Prolog-style Horn clauses of the form:

q ← q1, . . . , qn

Programming Deliberation Strategies in Meta-APL 439

where q1, . . . , qn are mental or plan state queries or their negation. Negation is
interpreted as negation as failure, and we assume that the set of clauses is always
stratified, i.e., there are no cycles in predicate definitions involving negations.
Clauses are evaluated as a sequence of queries, with backtracking on failure.

Additional mental state and plan state actions can be defined using macros.
A macro is a sequence of mental state and/or plan state queries/tests and
actions. Macros are evaluated left to right, and evaluation aborts if an action
or query/test fails. For example, the mental state action add-atom(a) which
does not return an instance id can be defined by the macro: add-atom(b) =
add-atom(, b). Macros can also be used to define type specific mental state
actions, e.g., to add an instance of the atom b as a belief and signal a belief
addition event as in Jason [2], we can use the macro

add-belief(b) = add-atom(belief(b)), add-atom(+belief(b))

Object Rules. To select appropriate plans given its mental state, an agent uses
object rules. Object rules correspond to plan selection constructs in conventional
BDI agent programming languages, e.g., plans in Jason [2], or PG rules in 3APL
[4]. The syntax of an object rule is given by:

reasons [: context] → π

where reasons is a conjunction of non-negated primitive mental state queries,
context is boolean expression built of mental state queries and π is a plan. The
context may be null (in which case the “:” may be omitted), but each plan
instance must be justified by at least one reason. The reason and the context are
evaluated against the agent’s mental state and both must return true for π to
be selected. Firing an object rule gives rise to a new instance of the plan π that
forms the right hand side of the rule which is justified by the atom instances
matching the reasons. For example, the following object rule selects a plan to
brings beer the robot’s owner:

has(owner,beer) : available(beer, fridge), not drunk(owner) →
!at(robot, fridge); open(fridge); get(beer); close(fridge);
!at(robot, owner); give(beer); ?date(d); add-atom(, consumed(beer, d))

Meta-rules. To update the agent’s state, specify which plan instances to adopt
as intentions and select which intentions to execute in a given cycle an agent
uses meta-rules. The syntax of a meta-rule is given by:

meta-context → m1; . . . ;mn

where meta-context is a boolean expressions built of mental state and plan state
queries and m1, . . . ,mn is a sequence of mental state and/or plan state actions.
When a meta-rule is fired, the actions that form its right hand side are immedi-
ately executed.For example, the following meta-rule selects a ‘root’ plan for an
intention when the agent has no current intention

not intention(), plan(i,) → add-intention(i)

440 S. Leask and B. Logan

Meta-APL Programs. A meta-APL program (D,R1, . . . ,Rk, A) consists of
a set of clause and macro definitions D, a sequence of rule sets R1, . . . ,Rk, and
a set of initial atom instances A. Each rule set Ri is a set of object rules or
a set of meta-rules that forms a component of the agent’s deliberation cycle.
For example, rule sets can be used to update the agent’s mental and plan state,
propose plans or create and execute intentions.

3.2 Meta-APL Core Deliberation Cycle

The meta-APL core deliberation cycle consists of three main phases. In the first
phase, a user-defined sense function updates the agent’s mental state with atom
instances resulting from perception of the agent’s environment, messages from
other agents etc. In the second phase, the rule sets comprising the agent’s pro-
gram are processed in sequence. The rules in each rule set are run to quiescence
to update the agent’s mental and plan state. Each rule is fired once for each
matching set of atom and/or plan instances. Changes in the mental and plan
state resulting from rule firing directly update the internal (implementation-
level) representations maintained by the deliberation cycle, which may allow
additional rules to match in the same or subsequent rule sets. Finally, in the
third phase, the next step of all scheduled object-level plans is executed. The
deliberation cycle then repeats. Cycles are numbered starting from 0 (initial
cycle), and the cycle number is incremented at each new cycle.

In the remainder of this section, we briefly summarise how the key steps in the
execution of meta-APL are reflected in the agent state — full details are given
in [5]. The firing of an object-level rule creates a new plan instance, together
with a justification associating the atom instances matching each mental state
query in the reasons of the object-level rule with the plan instance. The initial
substitution of the plan instance is the result of evaluating the mental state
queries in the reason and context of the corresponding object-level rule with the
mental state of the agent. The execution of a plan instance updates the agent’s
mental and plan state. The execution of a mental state query may update the
substitution of the plan instance. The execution of a mental state action may add
or remove an atom instance from the agent’s state. Deleting an atom instance
with id i also deletes all atom instances that have i as argument. In addition,
if any of the justifications of a plan instance are deleted, the plan instance,
together with any subgoal of the plan instance are also deleted (recursively).
The evaluation of a subgoal creates a new instance of the goal atom (with the
substitution of the plan instance applied to any variables in the goal), together
with a subgoal relation associating the plan instance and the new instance of the
goal atom. Executing an action in a plan instance also updates the plan-remainder
of the instance. The firing of a meta-rule immediately executes the meta-actions
on the RHS of the rule. The meta actions may add or delete atom instances, set
the state or substitution of a plan instance, or delete it.

Programming Deliberation Strategies in Meta-APL 441

4 Encoding Deliberation Strategies

In this section, we show how to encode the deliberation strategies given in Section
2 in meta-APL. We assume that we are given a user program expressed as a set
of meta-APL object rules R2, and we show how to execute this program under
the three different strategies. The encoding of each strategy takes the form of a
meta-APL program (D,R1,R2,R3, A), where D and R1 are a set of clause and
macro definitions and a set of meta-rules common to all deliberation strategies,
R2 is the user program, and R3 is the encoding of the deliberation strategy
itself.

We first define D and R1. D contains the following clause-definable plan
state queries:

– intention(i): the plan instance with id i is intended

intention(i) ← state(i, σ), member(intended, σ)

– intended-plan(j, i): the plan instance with id i is the intended means for the
reason (e.g., belief or goal event) with id j

intended-plan(j, i) ← justification(i, j), intention(i)

– executable-intention(i): the intention with id i has no subgoal (hence no
subintention)

executable-intention(i) ← intention(i), not subgoal(i,)

– scheduled(i): a step of the plan instance with id i will be executed at the
current deliberation cycle

scheduled(i) ← state(i, σ), member(scheduled, σ)

and the macro-definable plan state actions:

– add-intention(i): add the intended flag to the plan instance with id i

add-intention(i) = state(i, σ), set-state(i, σ ∪ {intended})

– schedule(i): add the scheduled flag to the plan instance with id i

schedule(i) = state(i, σ), set-state(i, σ ∪ {scheduled})

R1 contains meta-rules to remove non-intended plan instances from the pre-
vious cycle and to remove completed intentions:

R1 = plan(i,), not intended(i) → delete-plan(i)
executable-intention(i), plan-remainder(i, ε), justification(i, j),

not subgoal(, j) → delete-atom(j)
executable-intention(i), plan-remainder(i, ε), justification(i, j),

subgoal(k, j), substitution(k, s), substitution(i, s′)
→ set-substitution(k, s ∪ s′), delete-atom(j)

442 S. Leask and B. Logan

The first rule removes non-intended plan instances generated at the previous
cycle. The second rule removes the ‘root’ plan of a completed intention and
its associated triggering event (reason). The plan must have finished execution
(have an empty remainder), and be executable, i.e., have no pending subgoal.
(In the case that the plan body is empty but has an active child plans, the plan
instance should not be removed because any child plans would also be removed.)
The third rule removes a completed ‘leaf’ plan of an intention. The substitution
of the parent plan instance is extended with the substitution of the completed
plan instance, and the subgoal justifying the completed plan instance is deleted.

We can now define the deliberation strategies.

4.1 Non-interleaved (ni)

In the non-interleaved strategy (ni), the agent executes a single intention at a
time. It can be encoded as the following set of meta-rules:4

R3 = not intention(), plan(i,) → add-intention(i)
subgoal(, j), not intended-plan(j,), justification(i, j)

→ add-intention(i)
executable-intention(i) → schedule(i)

The first rule selects a ‘root’ plan for an intention when the agent has no current
intention. The plan is selected non-deterministically from the plan instances that
are generated by the execution of the program’s object-level rules. The second
rule extends an intention by adding a new ‘leaf’ plan for a subgoal for which
there is currently no intended plan. The third rule re-enables the (leaf) intention
for execution at the current cycle. Together, these rules ensure that the agent
progresses a single intention to completion, even though the meta-APL core
deliberation cycle generates all relevant applicable plan instances at each cycle.

4.2 Alternating (Single Action) (as)

In the (as) strategy, a plan instance from the set of plan instances generated
by the object-level rules is intended, and a single intention is scheduled for
execution. For the (as) strategy defined in [1], in which the intention to be
executed is chosen non-deterministically from the set of intentions, two meta-
rules suffice for implementation.

R3 = cycle(c), not(selected-plan(, c), intended-plan(j,)), justification(i, j)
→ add-intention(i), add-atom(, selected-plan(i, c))

not scheduled(), executable-intention(i) → schedule(i)

The first rule selects a plan instance for a reason (e.g., (sub)goal) j for which
there is no current intention, and adds the plan instance as an intention.
4 Encodings of variants of the (ni) and round robin strategies are given in [5].

Programming Deliberation Strategies in Meta-APL 443

To ensure that at most one plan instance is intended at each deliberation
cycle, we also record the fact that a plan has been selected at this cycle by
adding a selected-plan atom to the agent’s mental state. The second rule non-
deterministically selects an executable intention and schedules it.

For a round robin (RR) strategy, the implementation is slightly more
involved. To ensure fairness, we must keep track of which intention has been
least recently executed. There are several ways in which this could be done. We
adopt the the most straightforward approach, which is to explicitly record the
cycle at which each intention was last executed in the agent’s mental state. We
extend D with the clause and macro definitions

– least-recently-executed(i): the intention with id i is least recently executed

least-recently-executed(i) ← intention(i), intention(i′), not i = i′,

last-executed(i, c), last-executed(i′, c′), not c′ < c

– executed(i, c): record that the intention with id i was executed at cycle c

executed(i, c) = atom(j, last-executed(i,)), delete-atom(j),
add-atom(, last-executed(i, c))

The round robin strategy can then be encoded as:

R3 = cycle(c), not(selected-plan(, c), intended-plan(j,)), justification(i, j)
→ add-intention(i), add-atom(selected-plan(i, c))

not scheduled(), least-recently-executed(i), cycle(c)
→ schedule(i), executed(i, c)

The first rule non-deterministically selects a plan for a reason for which there is
no current intention, and is the same as in the simple (as) strategy above. The
second rule schedules the least recently executed intention, and records the fact
that it was last executed at the current deliberation cycle.

4.3 Alternating (Multi-action) (am)

In the alternating multiple (am) strategy, a plan instance from the set of plan
instances generated by the object-level rules is intended, and a single step of all
current intentions are executed at each cycle. This strategy can be encoded as:

R3 = cycle(c), not(selected-plan(, c), intended-plan(j,)), justification(i, j)
→ add-intention(i), add-atom(selected-plan(i, c))

executable-intention(i), not scheduled(i) → schedule(i)

The first rule non-deterministically selects a plan for a reason for which there
is no current intention and is the same as in the (as) strategy. The second rule
simply schedules all executable intentions.

444 S. Leask and B. Logan

5 An Adaptive Deliberation Strategy

It is straightforward to encode variations of the ‘standard’ deliberation strategies
considered in the previous section in meta-APL. For example, it is possible to
encode strategies that take preferences regarding plans into account as in [14].

However, in this section we illustrate the flexibility of meta-APL by present-
ing a novel adaptive deliberation strategy that combines features of both the
(ni) and (as) (or (am)) strategies. As noted in Section 2 the (ni) strategy has
the advantage that it minimises conflicts between intentions. However it has the
disadvantage that the agent is unable to respond to new goals until (at least) the
intention for the current goal has been executed. Conversely, the (as) and (am))
strategy allows an agent to pursue multiple goals at the same time. However it
can increase the risk that actions in plans in different intentions will interfere
with each other. In this section we define an adaptive strategy that interleaves
steps in intentions where this does not result in conflicts between intentions.
If conflicts are inevitable, it defers execution of one or more intentions in an
attempt to avoid the conflict. As such it avoids the need for the programmer to
insert atomic constructs that prevent the interleaving of actions in a plan in one
intention with actions from plans in other intentions.5

The adaptive strategy checks for conflicts between the postconditions of the
next action in each of the agent’s current intentions. If the postconditions con-
flict, e.g., if the next action in one intention would cause the agent to move to
the left while the next action in another intention would cause it move to the
right, execution of one of the intentions is deferred. At each deliberation cycle,
the strategy:

– computes the effects of the first action in the remainder of each intention
– checks the effects to identify conflicts
– if there are conflicts, defers the execution of one or more intentions

We will now explain how to encode this strategy in meta-APL, starting with
techniques for computing the effects of each type of plan element. Mental state
tests have no effects on the mental state or environment, and therefore cannot
cause a conflict of the kind described above. Similarly subgoals can’t give rise to
conflicts. Mental state actions are considered to conflict if they add and delete the
same atom. (For simplicity, we consider only addition and deletion here. It would
be straightforward to extend the check to simple forms of logical inconsistency.)
The effects of mental state actions can be determined by inspection of the code
and so require no additional information from the programmer. External actions
are considered to conflict if they result in incompatible states of the environment,
e.g., the fridge being open and it being closed. As this information can’t be
inferred from the program text, it must be provided by the programmer.

5 As with the use of atomic constructs, the approach we present here does not guar-
antee that a set of intentions can be executed successfully, e.g., where one intention
destroys a precondition required for the execution of another intention and which
can’t be regenerated.

Programming Deliberation Strategies in Meta-APL 445

There are several ways in which this could be done. For simplicity, we assume
that each external action has a single postcondition, i.e., actions are determinis-
tic. (This could be extended to, for example, make the postcondition dependent
on the agent’s current beliefs.) We further assume that the programmer spec-
ifies the effect of each external action as an ‘effect’ unit clause, and provides
a definition for a predicate ‘conflict’ that returns true if two postconditions
denote incompatible states of the environment. In the example below, ‘conflict’
is defined using a set of unit clauses, but again more complex approaches are
possible. Lastly, we assume that any macros appearing in plans in the user pro-
gram are inlined at the call site recursively when the plan suffix is returned by
the plan-remainder primitive.

An adaptive deliberation strategy can be encoded as follows. We extend D
with the clause definitions

– conflicting(i, i′): the next step in intentions with id i, i′ have incompatible
effects

conflicting(i, i′) ← intention(i), intention(i′), not i = i′,
plan-remainder(i, s ; . . .), plan-remainder(i′, s′ ; . . .),
conflicts(s, s′)

– conflicts(s, s′): the plan steps s and s′ have incompatible effects

conflicts(s, s′) ← effect(s, e), effect(s′, e′), conflict(e, e′)
conflicts(s, s′) ← effect(s, e), effect(s′, e′), conflict(e′, e)

We assume that the definitions of the predicates ‘effect’ and ‘conflict’ for external
actions are given in the ruleset R2 containing the user program. The adaptive
deliberation strategy itself is encoded as

R3 = executable-intention(i), not (scheduled(i), conflicting(i,))
→ schedule(i)

executable-intention(i), not scheduled(i), conflicting(i, i′), not i′ < i

→ schedule(i)

The first rule schedules all intentions that do not conflict with any other inten-
tion. The second rule schedules a single intention from a set of conflicting inten-
tions (chosen arbitrarily to be the one with lowest id). By permitting the exe-
cution of one conflicting intention per cycle, we avoid deadlock.

The approach above essentially implements single step lookahead. However
in many cases, an external action in a plan establishes a precondition for a later
step in the same plan (these are called p-effects in [13]). For example, the action
of going to a particular location such as the fridge may establish the precondition
for a later action which must be performed at that location such as opening the
fridge. We can extend the adaptive strategy to avoid this kind of conflict by
taking the preconditions of actions into account when evaluating conflicts. We
briefly sketch one way in which this can be done below.

446 S. Leask and B. Logan

The only changes required are to modify the definitions of the predicate
‘conflicting’ to consider plan suffices rather than the next steps of intentions,
and of the predicate ‘conflicts’ to consider both pre- and postconditions. (For
simplicity, we assume that each external action has a single precondition.)

conflicting(i, i′) ← intention(i), intention(i′), not i = i′,
plan-remainder(i, π), plan-remainder(i′, π′),
conflicts(π, π′)

conflicts(π, π′) ← effects(π, es), conditions(π′, cs),
member(e, es), member(c, cs), conflict(e, c)

conflicts(π, π′) ← effects(π′, es), conditions(π, cs),
member(e, es), member(c, cs), conflict(e, c)

The predicates ‘effects’ and ‘conditions’ return the set of postconditions and the
set of pre- and postconditions of a plan suffix π respectively, and are omitted
due to lack of space.

6 Related Work

The Procedural Reasoning System (PRS) [9] had a meta-level, namely the abil-
ity to program deliberation about the choice of plans in the language itself.
Since PRS, there have been several attempts to make the deliberation cycle of
agent programming languages programmable. For example, 3APL enables the
programmer to modify 3APL interpreter deliberation cycle [4]. It provides a col-
lection of Java classes for each mental attitude, where each class has a collection
of methods representing operations for manipulating this attitude. In order to
implement a particular deliberation cycle, the programmer should essentially
modify the interpreter to call the methods of those Java classes in a particular
order. This idea of extending 3APL with a set of programming constructs which
allowed the deliberation cycle to be programmed was proposed in an earlier paper
[3], where the authors explicitly consider the option of adding meta-actions to
3APL as basic actions, and programming the interpreter in 3APL itself. However
they argued against this approach on the grounds that it would give “too much”
expressive power to the programmer and would make the meta-level hard to
program. They opted instead for providing a simple separate language for pro-
gramming deliberation cycle which uses a small set of primitives. The language
is imperative and extends that proposed in [10], mainly by adding a primitive to
call a planner and generate a new plan. Plans can be compared on the grounds of
cost with the gain from achieving the goal, and a plan which has a cost less than
gain selected. We share the motivation for providing an ability for the program-
mer in an agent programming language to change the deliberation cycle on a
program-by-program basis, but believe that it is more natural and elegant to do
this in the same language, rather than joining together two different languages.

Programming Deliberation Strategies in Meta-APL 447

In [7] Doan et al show how Jason and 3APL programs (and their associ-
ated deliberation strategies) can be translated into meta-APL to give equivalent
behaviour under weak bisimulation equivalence.

There has also been a considerable amount of work on avoiding conflicts
between intentions in agent programming languages, e.g., [13,15,16]. While such
approaches can avoid more conflicts than the approach we present here, this work
focus on developing a single deliberation strategy that is ‘hardwired’ into the the
deliberation cycle of an agent programming language, and which cannot be easily
adapted by an agent developer to meet the needs of a particular application.

7 Conclusion

In this paper, we showed how procedural reflection in the agent programming
language meta-APL [7] can be used to allow a straightforward implementation
of the deliberation strategy of a BDI agent. To illustrate the flexibility of meta-
APL, we showed how three typical BDI deliberation strategies from [1] can be
programmed using meta-APL rules. We also showed how meta-APL can used to
program a novel adaptive deliberation strategy combines features of both a non-
interleaved and an alternating strategy to avoid interference between intentions.

By exploiting procedural reflection an agent programmer can customise the
deliberation cycle to control when to deliberate (as in the non-interleaved strat-
egy), which relevant applicable plan(s) to intend, and which intention(s) to exe-
cute. We argue this brings the advantages of the BDI approach to the problem
of selecting an appropriate deliberation strategy given the agent’s current state,
and moreover, facilitates a modular, incremental approach to the development
of deliberation strategies. In future work, we plan to explore more sophisticated
approaches to the selection of plan instances as in, e.g., [14], and intention recon-
sideration.

References

1. Alechina, N., Dastani, M., Logan, B., John-Jules, C.: Meyer. Reasoning about agent
deliberation. Autonomous Agents and Multi-Agent Systems 22(2), 1–26 (2010)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley Series in Agent Technology. Wiley (2007)

3. Dastani, M., de Boer, F., Dignum, F., Meyer, J.J.C.: Programming agent delibera-
tion: an approach illustrated using the 3APL language. In: Proceedings of the 2nd
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2003), pp. 97–104. ACM (2003)

4. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Programming multi-agent sys-
tems in 3APL. In: Multi-Agent Programming: Languages, Platforms and Applica-
tions, pp. 39–67. Springer (2005)

5. Doan, T.T.: Meta-APL: A general language for agent programming. PhD thesis,
School of Computer Science, University of Nottingham (2013)

448 S. Leask and B. Logan

6. Doan, T.T., Alechina, N., Logan, B.: The agent programming language meta-
APL. In: Dennis, L.A., Boissier, O., Bordini, R.H. (eds) Proceedings of the Ninth
International Workshop on Programming Multi-Agent Systems (ProMAS 2011),
pp. 72–87, Taipei, Taiwan, May 2011

7. Doan, T.T., Yao, Y., Alechina, N., Logan, B.: Verifying heterogeneous multi-agent
programs. In: Proceedings of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems, AAMAS 2014, pp. 149–156. International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland (2014)

8. Georgeff, M., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.J.: The belief-
desire-intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.)
ATAL 1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)

9. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of
AAAI 1987, pp. 677–682 (1987)

10. Hindriks, K.V., de Boer, F.S., van der Hoek, W., John-Jules, C.: Meyer. Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems 2(4),
357–401 (1999)

11. Rivières, J.D., Smith, B.C.: The implementation of procedurally reflective lan-
guages. In: Proceedings of the 1984 ACM Symposium on LISP and Functional
Programming, pp. 331–347. ACM, New York (1984)

12. Smith, B.C.: Reflection and semantics in lisp. In: Proceedings of the Symposium
on Principles of Programming Languages, pp. 23–35. ACM (1984)

13. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & avoiding interference
between goals in intelligent agents. In: Gottlob, G., Walsh, T. (eds.) IJCAI 2003,
Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence, pp. 721–726. Morgan Kaufmann, Acapulco (2003)

14. Visser, S., Thangarajah, J., Harland, J., Dignum, F.: Preference-based reasoning
in bdi agent systems. Autonomous Agents and Multi-Agent Systems, 1–40 (2015)

15. Waters, M., Padgham, L., Sardina, S.: Evaluating coverage based intention selec-
tion. In: Lomuscio, A., Scerri, P., Bazzan, A., Huhns, M. (eds) Proceedings of the
13th International Conference on Autonomous Agents and Multi-agent Systems
(AAMAS 2014), pp. 957–964. IFAAMAS (2014)

16. Yao, Y., Logan, B., Thangarajah, J.: SP-MCTS-based intention scheduling for BDI
agents. In: Proceedings of the 21st European Conference on Artificial Intelligence,
ECCAI. IOS Press, Prague, August 2014

Multi-Context Systems with Preferences

Tiep Le(B), Tran Cao Son, and Enrico Pontelli

Computer Science Department, New Mexico State University, Las Cruces, USA
{tile,tson,epontell}@cs.nmsu.edu

Abstract. This paper presents an extension of the Multi-Context Sys-
tems (MCS) framework to allow preferences to be expressed at the con-
text level. The work is motivated by the observation that a casual use
of preference logics at a context level in MCS can lead to undesirable
outcomes (e.g., inconsistency of the MCS). To address this issue, the
paper introduces the notion of a ranked logic, suitable for use with mul-
tiple sources of preferences, and employs it in the definition of weakly
and strongly-preferred equilibria in a Multi-Context Systems with Pref-
erences (MCSP) framework. The usefulness of MCSP is demonstrated
in two applications: modeling of distributed configuration problems and
finding explanations for distributed abductive diagnosis problems.

1 Introduction

The paradigm of Multi-Context Systems (MCSs) has been introduced in [9,12,
23,25,30] as a framework for integration of knowledge from different sources.
Since then, MCSs have been applied to a variety of domains, such as data inte-
gration and multi-agent systems [9,14,17]. Intuitively, a MCS in [9] consists of
several theories, referred to as contexts—e.g., representing agents or knowledge
bases. The contexts may be heterogeneous, in the sense that each context could
potentially rely on a different logical language and a different inference system,
such as propositional logic, first order logic, or logic programming. The con-
texts are interconnected via bridge rules, which model the contexts’ perception
of the environment and the dependencies among different contexts. Bridge rules
describe how the knowledge modeled in a context depends on the knowledge of
other contexts. The semantics of MCS in [9] is defined in terms of its equilib-
ria. Research has been performed to develop efficient distributed algorithms for
evaluating MCS, e.g., DMCS [14,17], and to generalize the MCS model beyond
the original design, e.g., [10,33].

By definition, the MCS framework is general, in that it is not specifically tied
to any language, inference system, or implementation. It is therefore necessary
to instantiate the framework with specific logics in order to apply it to con-
crete problems. End-users need to select what logics should be used to encode
the different contexts. Observe that each context of a MCS could be viewed
as a knowledge base or a belief of an agent, as highlighted by the motivating
examples used in the original paper that introduced the MCS framework. In
several applications, a context also needs to express the preferences of the agent.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 449–466, 2015.
DOI: 10.1007/978-3-319-25524-8 28

450 T. Le et al.

A natural solution to such requirement is the use of preference logics, which
have been proposed to represent and reason about preferences—e.g., in default
logic [5,7,16], in circumscription [3], in logic programming [4,6,8], or in more
general frameworks [11,15,22]. However, previously developed preference logics
have been designed for single agents. This raises the question of whether these
logics are suitable to express preferences in the context of a MCS, i.e., how would
a MCS whose contexts employ preference logics behave? The following example
highlights the need to address this question.

Example 1 (Dining Out). Consider two friends A and B who want to dine
together at a restaurant. A can only eat chicken (c) or lamb (l); B can only
eat fish (f) or steak (s). They want to share a bottle of wine. The restaurant
sells red (r) and white (w) wines. A knows that white (resp. red) wine could go
with chicken (resp. lamb); B knows that fish (resp. steak) should go with white
(resp. red) wine. A prefers chicken over lamb and B prefers steak over fish. The
two cannot afford two bottles of wine and neither of them can eat two dishes.
The story can be easily represented as a MCS (see Fig. 1) whose underlying
logics in the contexts of A and B are preference logics. In this example, we will
use CR-Prolog [4] (a preference logic) and Answer Set Optimization (ASO) [11]
(a preference logic built over answer set programming) to represent knowledge
base of A and B respectively.

Choices

w ← c w ← f
r ← l r ← s

← r, w ← w, r
← not c, not l s ← not f

prefer(r1, r2) ← f ← not s

Preferences
r1 : c

+← s > f ←
r2 : l

+←
Bridges

w ← (b : w) w ← (a : w)
r ← (b : r) r ← (a : r)

Context of A Context of B

Fig. 1. Two Contexts in CR-Prolog and ASO Logic

The first five rules encode the choice of each person; the sixth and seventh rules
in the context of A capture the A’s preferences; the sixth rule in the context of
B represents the B’s preferences. Specifically, in the context of A, the prefer-
ence rules r1 and r2 (i.e., c

+← and l
+←, respectively) and the fact prefer(r1, r2)

indicate that either the fact c or l can be added to make A’s knowledge con-
sistent, and that adding c is preferred to adding l. Likewise, in the context of
B, the preference rule s > f ← expresses that B prefers to have s than f
in its beliefs. The last two lines in each context encode its bridge rules. It is
easy to see that this MCS has no equilibrium under the semantics of ASO and
CR-Prolog. The context of A has a unique preferred answer set (or belief set)
{c, w, prefer(r1, r2)}, while B has a unique preferred answer set {s, r}; neither of

Multi-Context Systems with Preferences 451

them can be used to create an equilibrium. Observe that, if the preferences are
removed, the MCS would have two equilibria ({c, w, prefer(r1, r2)}, {f, w}) and
({l, r, prefer(r1, r2)}, {s, r}). Neither of these equilibria respects both A’s and
B’s preferences. However, these are the only possibilities for the two friends to
dine together given their preferences; and, all things considered, either of these
solutions is a reasonable one.

Observe also that {f, w} is an alternative belief set of B but is less preferred
than {s, r}. Furthermore, if {f, w} is considered as an alternative belief set of
B, then the MCS will have ({c, w, prefer(r1, r2)}, {f, w}) as an equilibrium. In
this equilibrium, A can have a preferred meal. Likewise, the MCS would have
({l, r, prefer(r1, r2)}, {s, r}) as an equilibrium in which B has a preferred meal. �

The above discussion shows that a straightforward use of preference logics in
a MCS can easily result in inconsistencies, due to the interactions between prefer-
ences. Our overall goal in this paper is to allow each agent (context) to express its
preferences and to provide an acceptable semantics for MCS with preferences. As
shown in Example 1, the difficulty lies in the interaction between preferences.
Example 1 also shows that methods for combining local preference logics are
needed. To this end, we define a preference logic that can be easily integrated
in the MCS framework. The main contributions of this paper are: (a) A general
notion, called ranked logic, that is suitable for combining preference logics; (b)
The formal definition of MCS with preferences (MCSP) and the notion of strong
and weak equilibria; and (c) Applications of MCSP in distributed configuration
problems and finding explanations for distributed abductive diagnosis problems.

2 Background

In this section, we review the basics of MCSs and two representative preference
logics (i.e., Answer Set Optimization and CR-Prolog) that will be used in the
later parts. Space limitation prevents additional preference logics to be included.

2.1 Multi-Context Systems

Heterogeneous non-monotonic multi-context systems (MCS) are introduced
in [9]. Its definition starts with a generic notion of a logic. A logic L is a tuple
(KBL, BSL, ACCL) where KBL is the set of well-formed knowledge bases of
L—each being a set of formulae. BSL is the set of possible belief sets; each
element of BSL is a set of syntactic elements representing the beliefs L may
adopt. ACCL : KBL → 2BSL describes the “semantics” of L by assigning to
each element of KBL a set of acceptable sets of beliefs.

Using the concept of logic, we can introduce the notion of multi-context
system. A MCS M = (C1, . . . , Cn) consists of contexts Ci = (Li, kbi, bri),
(1 ≤ i ≤ n), where Li = (KBi, BSi, ACCi) is a logic, kbi ∈ KBi is a spe-
cific knowledge base of Li, and bri is a set of Li-bridge rules of the form:

s ← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm) (1)

452 T. Le et al.

where, for each 1 ≤ k ≤ m, we have that: 1 ≤ ck ≤ n, pk is an element of some
belief set of Lck

, and kbi ∪ {s} ∈ KBi. Intuitively, a bridge rule r allows us
to add s to a context, depending on the beliefs in the other contexts. Given a
bridge rule r, we will denote by head(r) the part s of r. The semantics of MCS
is described by the notion of belief states. Let M = (C1, . . . , Cn) be a MCS. A
belief state is a sequence S = (S1, . . . , Sn) where each Si is an element of BSi.

Given a belief state S = (S1, . . . , Sn) and a bridge rule r, we say that r is
applicable in S if pv ∈ Scv

for each 1 ≤ v ≤ j and pk �∈ Sck
for each j+1 ≤ k ≤ m.

By app(B,S) we denote the set of the bridge rules r ∈ B that are applicable in S.
The semantics of a MCS M is defined in terms of particular belief states

(S1, . . . , Sn) that take into account the bridge rules that are applicable with
respect to the given belief sets. A belief state S = (S1, . . . , Sn) of M is an
equilibrium if, for all 1 ≤ i ≤ n, we have that Si ∈ ACCi(kbi ∪ {head(r) | r ∈
app(bri, S)}).

2.2 Logic Programs Under Answer Set Semantics (ASP)

A logic program Π is a set of rules of the form

c1 | . . . | ck ← a1, . . . , am, not am+1, . . . , not an (2)

where 0 ≤ m ≤ n, 0 ≤ k, each ai or cj is a literal of a first order language
and not represents negation-as-failure (naf). For a literal a, not a is called a
naf-literal. For a rule of the form (2), the left and right hand sides of the rule are
called the head and the body, respectively. Both the head and the body can be
empty. When the head is empty, the rule is called a constraint. When the body
is empty, the rule is called a fact.

For a ground instance r of a rule of the form (2), H(r) and B(r) denote the
left and right hand side of ←, respectively; head(r) denotes the set {c1, . . . , ck};
and pos(r) and neg(r) denote {a1, . . . , am} and {am+1, . . . , an}, respectively.

Consider a set of ground literals X. X is consistent if there exists no atom a
such that both a and ¬a belong to X. The body of a ground rule r of the form
(2) is satisfied by X if neg(r) ∩ X = ∅ and pos(r) ⊆ X. A ground rule of the
form (2) with nonempty head is satisfied by X if either its body is not satisfied
by X or head(r)∩X �= ∅. In particular, a constraint is satisfied by X if its body
is not satisfied by X.

For a consistent set of ground literals S and a ground program Π, the reduct
of Π w.r.t. S, denoted by ΠS , is the program obtained from Π by deleting
(i) each rule that has a naf-literal not a in its body with a ∈ S, and (ii) all
naf-literals in the bodies of the remaining rules.

S is an answer set (or a stable model) of a ground program1 Π [21] if it
satisfies the following conditions: (i) If Π does not contain any naf-literal (i.e.,
m = n in every rule of Π) then S is a minimal consistent set of literals that

1 A program with variables is viewed as a collection of all ground instances of its
rules.

Multi-Context Systems with Preferences 453

satisfies all the rules in Π; and (ii) If Π contains some naf-literal (m < n in
some rule of Π), then S is an answer set of ΠS . Note that ΠS does not contain
naf-literals, and thus its answer set is defined in case (i). A program Π is said
to be consistent if it has an answer set. Otherwise, it is inconsistent.

To increase the expressiveness of logic programming and simplify its use in
applications, ASP has been extended with several constructs such as:

• Weight constraint atom (e.g., [26]): atoms of the form

l {a1 = w1, . . . , an = wn, not bn+1 = wn+1, . . . , bn+k = wn+k} u (3)

where ai and bj are literals and l, u, and wj ’s are integers, l ≤ u. If all
wj = 1, the parts “= wj” are omitted. Such an atom is satisfied in a set of
literal X if l ≤ ∑

ai∈X wi +
∑

bn+k �∈X wn+k ≤ u.
• Aggregates atoms (e.g, [19,27,31]): Atoms of the form

f(S) op v (4)

where f ∈ {Sum;Count,Max,Min}; op ∈ {>,<,≥,≤,=}; v is a number;
and S is a set-literal that is of the form (i) {X | p(W)} where X is a vector
of variables, W is vector of parameters and constants such that each variable
in X also occurs in W ; or (ii) {{X | Y .p(W)}} where X and Y are vectors
of variables, W is vector of parameters and constants such that each variable
in X or Y also occurs in W .

Standard syntax for these types of atoms has been proposed and adopted in
most state-of-the-art ASP-solvers such as clasp [20] and dlv [13].

2.3 Answer Set Optimization (ASO)

An ASO program over a signature Σ [11] is a pair (Pgen, Ppref), where: Pgen is
a logic program over Σ, called the generating program, and Ppref is a preference
program. Pgen is used for generating answer sets and can be of any type. Its
semantics is required to be given in terms of sets of literals (or belief sets) that
are associated with programs. Given a set of atoms A, a Ppref over A is a finite set
of preference rules of the form Γ1 > · · · > Γk ← a1, . . . , an, not b1, . . . , not bm

where ai and bj are literals over A, and Γl are boolean combinations over A. A
boolean combination is a formula built from atoms in A by means of disjunction,
conjunction, strong negation (¬, which appears only in front of atoms), and
default negation (not, which appears only in front of literals). Given a preference
rule r, we denote body(r) = a1, . . . , an, not b1, . . . , not bm. An answer set S
satisfies the body of r, denoted by S |= body(r) iff S contains a1, . . . , an and
does not contain any b1, . . . , bm. The preference rule states that if an answer set
S satisfies the body of r, then Γ1 is preferred to Γ2, Γ2 to Γ3, etc. The satisfaction
degree of preference rule r in an answer set S (denoted vS(r)) is:

• vS(r) = 1, if (i) S �|= body(r), or (ii) S |= body(r) and S �|= Γl for each
1 ≤ l ≤ k;

• vS(r) = min{i : S |= Γi}, otherwise.

454 T. Le et al.

Given an ASO program P = (Pgen, Ppref), let S1 and S2 be answer sets of
Pgen, and Ppref = {r1, . . . , rn}. We write S1 < S2 if (i) vS1(ri) ≥ vS2(ri), for
1 ≤ i ≤ n, and (ii) for some 1 ≤ j ≤ n, vS1(rj) > vS2(rj). We refer to this
ordering as preference order between S1 and S2.

Example 2. Let us consider the ASO program from the context B. in Example 1,
PB = (PB

gen, PB
pref), where PB

gen is the program consisting of the first five rules
under answer set semantics and PB

pref = {s > f ←}. It is possible to show that
PB has two answer sets S1 = {s, r}, S2 = {f, w}, and S2 < S1.

2.4 CR-Prolog

CR-Prolog was introduced in [4]. CR-Prolog introduces an additional type of
rules, called consistency restoring rules (or cr-rules), of the form

r : c1 | . . . | ck
+← a1, . . . , am, not am+1, . . . , not an (5)

where r is the name of the rule and ci’s and aj ’s are literals as in the rule (2).
Observe that a cr-rule can be viewed as a normal rule by dropping its name and
replacing the connective +← with ←.

A CR-program P is given by a pair (P r, P c) where P r is a set of rules of the
form (2) and P c is a set of rules of the form (5). Let C be a subset of P c. By
P r ∪ C we denote the program consisting of rules in P r and the cr-rules in C
viewed as normal rules.

The answer sets of P are defined as follows. If P r is consistent, then any
answer set of P r is an answer set of P . Otherwise, an answer set of P is an
answer set of P r ∪C where C is a minimal subset of P c such that P r ∪{H(r) ←
B(r) | H(r) +← B(r) ∈ C} is consistent.

When multiple rules can be used in restoring the consistency of a program,
a preference relation in the form of prefer(r1, r2) can be added to the program
to force the application of more preferred cr-rules in restoring the consistency
of the program. It is assumed that prefer is a transitive and anti-symmetric
relation among cr-rules of a program. The semantics of CR-programs ensures
that if prefer(r1, r2) is specified then the rule r2 should be used in restoring the
consistency of the program only if no solution containing r1 is possible and the
two rules are never used at the same time.

Given a CR-program P = (P r, P c) and S1 and S2 be two answer sets of
P r ∪C1 and P r ∪C2, respectively. S1 is preferred to S2, denoted by S2 ≺cr S1 if
there exists some r1 ∈ C1\C2 and r2 ∈ C2\C1 such that prefer(r1, r2) ∈ S1∩S2.
The requirement on the prefer relation ensures that ≺cr is a partial order. Most
preferred answer sets of P are maximal elements with respect to the ≺cr.

Example 3. The knowledge base in the context of A from Example 1 is the CR-
Prolog program PA = (P r, P c) where P r consists of the first five rules and
P c consists of the 6th and 7th rule. It is possible to show that (P r, P c) has
two answer sets U1 = {c, w, prefer(r1, r2)} and U2 = {l, r, prefer(r1, r2)} with
U2 ≺cr U1.

Multi-Context Systems with Preferences 455

3 Ranked Logics

In this section, we develop the notion of a ranked logic that extends preference
logics and is suitable for representing and reasoning about preferences in a dis-
tributed setting. Observe that preference logics have been extensively studied in
several contexts, especially within non-monotonic logics. For example, preferred
default theories are investigated in [5,7,16]; circumscription with preferences are
studied in [3]; various approaches to dealing with preferences in logic program-
ming can be found in [4,6,8,11,15,22].

In general, preferences are integrated into a logic as follows. Given a logic
L = (KBL, BSL, ACCL), a preference logic over L, denoted by L<, is often
defined by:

• Extending the language KBL to allow preferences to be expressed at the
language level (e.g., between literals or rules of the language); and

• Modifying ACCL to create (or define) a new semantics function ACC<
L with

the following properties:
◦ It coincides with ACCL whenever the input knowledge base does not

contain preferences; and
◦ It returns a set of belief sets that are the candidate belief sets and are

maximal elements with respect to a partial ordering < over the set of
candidate belief sets.

The above general approach can be seen clearly from the definition of ASO with
respect to answer set programming (ASP). The ASP logic can be abstractly
viewed as a triple (KBASP , BSASP , ACCASP) where KBASP is the set of logic
programs, BSASP is the set of sets of literals (or set of answer sets), and ACCASP

is the semantic function that maps each program kb ∈ KBASP to its set of answer
sets (a member of 2BSASP). ASO first extends ASP by adding a component for
preference representation: the Ppref component. It then defines a partial order
among the answer sets of the program.

Example 1 shows that, in order to allow preferences in MCSs, a method for
combining preferences is needed. We next propose a general notion of a ranked
logic that extends the notion of preference logics to define an ordering among
belief sets from different knowledge bases. The intuition behind this ordering is
that the set of applicable bridge rules of a context can be different in different
equilibria. As such, for the context to be able to express the preferences of an
agent (within a context), such a combination of preferences becomes necessary.

Definition 1 (Ranked Logic).A ranked logic L is a tuple (KBL, BSL, ACCL, <L)
where

• (KBL, BSL, ACCL) is an arbitrary logic; and
• <L⊆ (KBL × BSL) × (KBL × BSL) is a partial order over pairs of knowl-
edge bases and belief sets satisfying the condition that if ((kb1, b1), (kb2, b2)) ∈
<L then bi ∈ ACCL(kbi) for i = 1, 2.

We will often write (kb1, b1) <L (kb2, b2) instead of the ((kb1, b1), (kb2, b2)) ∈
<L to describe the ordering <L in a ranked logic (KBL, BSL, ACCL, <L). Given

456 T. Le et al.

bi ∈ ACCL(kbi) for i = 1, 2 such that (kb1, b1) �<L (kb2, b2) and (kb2, b2) �<L

(kb1, b1), we say that (kb1, b1) and (kb2, b2) are incomparable, and denote it with
(kb1, b1) ∼ (kb2, b2).

For generality, Definition 1 does not require the underlying logic of a ranked
logic to be a preference logic. It is, however, sensible to discuss the requirement
for a ranked logic whose underlying logic is a preference logic. Ideally, we expect
that the ordering expressed by the ranked logic coincides with the ordering of its
underlying logic when it is projected on the first component, i.e., <L (kb) should
concede with the preference ordering of the underlying logic. Formally, given a
preference logic L< = (KBL, BSL, ACC<

L) over L = (KBL, BSL, ACCL), we
say that a ranked logic (KBL, BSL, ACCL, <L) faithfully extends L< if <L

contains all pairs of the form ((kb, S1), (kb, S2)) such that S1, S2 ∈ ACCL(kb)
and (S1, S2) is a member of the ordering < defined by ACC<

L .
In the following, we will be interested in a ranked logic, denoted by LASO,

defined as follows. Given a signature Σ, LASO = (KBASO,BSASO,ACCASO, <ASO)
is a ranked logic over Σ where

• KBASO is the set of ASO programs over Σ;
• BSASO is the set of answer sets of ASO programs over Σ;
• ACCASO maps each ASO program to its possible answer sets;
• <ASO is defined as follows: (kb1, S1) <ASO (kb2, S2) for kbi = (P i

gen, Ppref)
and Si ∈ ACCASO(kbi) where i = 1, 2 such that S1 < S2 with respect to
the ASO preference order defined over the set of rules Ppref .

Observe that the order <ASO extends the preference order defined by the ASO
logic, by considering ASO programs which have different generating programs
but the same preference program. It is easy to see that LASO is indeed a ranked
logic that faithfully extends ASO because (kb, S1) <ASO (kb, S2) if S1, S2 are
answer sets of the program kb and S1 < S2 according to the preference order
defined by ASO. For the program in Example 2, we have that (PB , S2) <ASO

(PB , S1).

Example 4. Consider the ASO program PB = (PB
gen, PB

pref) from the Exam-
ple 2. PB has two answer sets S1 = {s, r}, S2 = {f, w}, and S2 < S1. Thus,
(PB , S2) <ASO (PB , S1). Furthermore, let PB′

= (PB
gen ∪{w}, PB

pref) be another
ASO program, and PB′

has an unique answer set S3 = {f, w}. It is possible to
see that (PB′

, S3) <ASO (PB , S1)

As another example for ranked logic, we construct a ranked logic from CR-
Prolog. The ≺cr in section 2.4 is given only among answer sets of the same
CR-Prolog program (P r, P c). Thus, our first step is to define an extension ≺cr′

of ≺cr to give preferences among answer sets that are of different knowledge
bases. Let us consider two CR-programs Pi = (P r

i , P c), where i = 1, 2, and let
S1 and S2 be answer sets of P r

1 ∪C1 and P r
2 ∪C2, respectively (with C1 ⊆ P c and

C2 ⊆ P c). S1 is preferred to S2, denoted by S2 ≺cr′ S1, if there is r1 ∈ C1 \ C2

and r2 ∈ C2 \ C1 such that prefer(r1, r2) ∈ S1 ∩ S2.

Multi-Context Systems with Preferences 457

The preference order ≺cr′ enables the definition of a ranked logic Lcr′ , in a
similar way LASO is defined. More precisely, we define the ranked logic Lcr′ =
(KBcr′ ,BScr′ ,ACCcr′ , <cr′) over Σ:

• KBcr′ is the set of CR-Prolog programs over Σ;
• BScr′ is the set of answer sets of CR-Prolog programs over Σ;
• ACCcr′ maps each CR-Prolog program to its possible answer sets;
• <cr′ is defined as follows: (kb1, S1) <cr′ (kb2, S2) for kbi = (P r

i , P c) and
Si ∈ ACCcr′(kbi) where i = 1, 2 such that S1 ≺cr′ S2 with respect to the
≺cr′ preference order defined above.

Example 5. Let PA = (P r, P c) be the CR-Prolog program from Example 3. PA

has two answer sets U1 = {c, w, prefer(r1, r2)} and U2 = {l, r, prefer(r1, r2)}.
Since U2 ≺cr′ U1 in PA, we have (PA, U2) <cr′ (PA, U1). Furthermore, let
PA′

= (P r ∪ {r}, P c) be another CR-Prolog program, and it is possible to see
that PA′

has a unique answer set U3 = {l, r, prefer(r1, r2)}, and (PA′
, U3) <cr′

(PA, U1).

4 MCS with Preferences and Its Applications

In this section we extend the MCS framework with preferences. We achieve this
by requiring ranked logics to be used in each context. As it turns out, the only
required extension to the framework is a partial order between equilibria. We
will then present different applications of the framework.

4.1 MCS with Preferences

With the notion of a ranked logic, we can define the notion of a Multi-Context
Systems with Preferences (MCSP) as follows.

Definition 2 (Multi-Context Systems with Preferences). A multi-
context system with preferences M = (C1, . . . , Cn) consists of a collection of
contexts Ci = (Li, kbi, bri) where Li = (KBi, BSi, ACCi, <i) is a ranked logic,
kbi is a knowledge base kbi ∈ KBi, and bri is a set of Li-bridge rules.

By simply replacing “a logic Li” with “a ranked logic Li” in the definitions
of other notions (e.g., applicable, belief state, or equilibrium) in the MCS frame-
work, we obtain the definitions of their counterparts in the MCSP framework.
For brevity, we omit the precise definitions of these notions. From now on, when-
ever we refer to a context M , we assume that M is given as in Definition 2 if no
confusion is possible. Before we continue, let us define an additional notation.
For a MCSP M and an equilibrium S = (S1, . . . , Sn), by kbS

i we denote the
knowledge base kbi ∪ {head(r) | r ∈ app(bri, S)}.

Definition 3 (Weakly Preferred). Let M = (C1, . . . , Cn) be a MCSP where
Ci is a ranked logic Li = (KBi, BSi, ACCi, <i). Let S = (S1, . . . , Sn) and
E = (E1, . . . , En) be equilibria of M . We say that

458 T. Le et al.

• S is weakly preferred (or w-preferred) to E, denoted with E ≺w S, iff
◦ (kbE

i , Ei) <i (kbS
i , Si) or (kbS

i , Si) ∼ (kbE
i , Ei) for every i, 1 ≤ i ≤ n;

and
◦ (kbE

j , Ej) <j (kbS
j , Sj) for some j, 1 ≤ j ≤ n.

• S is weakly incomparable (or w-incomparable) to E, denoted with S ∼w E,
if S �≺w E and E �≺w S.

The definition of w-preferred belief sets provides a way for comparing the equi-
libria. Observe that because ranked logics define a partial order among belief
sets, we have that S ∼w E implies E ∼w S, and E ≺w S implies that S �∼w E.
It is easy to see that ≺w is not transitive in general, since the independence
between contexts can create a cycle of the form S ≺w U , U ≺w V , and V ≺w S.
We can define a stronger notion of preferred equilibrium as follows.

Definition 4 (Strongly Preferred). Let M = (C1, . . . , Cn) be a MCSP where
Ci is a ranked logic Li = (KBi, BSi, ACCi, <i). Let S = (S1, . . . , Sn) and
E = (E1, . . . , En) be equilibria of M . We say that

• S is strongly preferred (or s-preferred) to E, denoted with E ≺s S, iff
(kbE

j , Ej) <j (kbS
j , Sj) for 1 ≤ j ≤ n.

• S is strongly incomparable (or s-incomparable) to E, denoted with S ∼s E,
iff S �≺s E and E �≺s S.

Since the preference relation in a ranked logic is a partial order, the following
property holds.

Proposition 1. Let M = (C1, . . . , Cn) be a MCSP and S1, S2, S3 be three equi-
libria of M . Then, S1 ≺s S2 and S2 ≺s S3 imply S1 ≺s S3.

We note that, in Definition 3 and 4, Ei and Si (resp. Ej and Sj) are possibly
derived from different knowledge bases. Thus, the preference order between Ei

and Si (resp. Ej and Sj) are necessarily determined together with the knowledge
bases that they are derived from, like in Definition 1. We will now define the
notion of most preferred equilibrium.

Definition 5 (Most Preferred Equilibrium). Let M be a MCSP. An equi-
librium E of M is a most strongly (resp. most weakly) preferred equilibrium of
M iff there is no equilibrium E′ of M such that E ≺s E′ (resp. E ≺w E′).

The above definition deserves some discussion. In fact, by Definition 5, if
an equilibrium S is strongly/weakly-incomparable with all other equilibria,
S is most strongly/weakly preferred. From the preference perspective, this
is a reasonable view. For the two equilibria ({c, w, prefer(r1, r2)}, {f, w}) and
({l, r, prefer(r1, r2)}, {s, r}) from Example 1, we have that both are most
weakly preferred as well as most strongly preferred. Furthermore, the two are
strongly/weakly incomparable. We will now describe two applications of MCSP.

Multi-Context Systems with Preferences 459

4.2 Distributed Configuration Problems as MCSP

A Distributed Configuration Problem (DCP) typically consists of determining
arrangements of a set of components that satisfy a set of requirements and
constraints on how to connect the components. The components might come
from different sources and each source is governed by different entities. A DCP
can be specified by an extension of the logic LoCo [2]. A specification of a DCP
consists of the following:

• Components: A component is specified by its name (type), a unique iden-
tifier, and a vector of attributes. It is specified by a ground atom of the form
t(id,x).

• Connections: For every ordered set {ti, tj} of component types which are
potentially connected to each other, a predicate symbol ti2tj representing a
connection from ti to tj is introduced. For each ti(id,x), its connections to
components of type tj are axiomatized as

ti(id,x) ⇒ (∃ui

li
ID).[ti2tj(id, ID) ∧ tj(ID,y) ∧ φ(id, ID,x,y)] (6)

or

ti(id,x) ⇒ (∃ui

li
ID).[tj2ti(ID, id) ∧ tj(ID,y) ∧ φ(ID, id,y,x)] (7)

where formulas of the form φ(id, ID,x,y) express additional constraints of
connecting component id to component ID,2 and the formula ∃u

l x.γ(x,v)
says that the number of different x where γ(x,v) holds is restricted to be
within the range [l, u].

• Preference: A preference on how to connect a component ti(id,x) with
other components of the type tj (the predicate ti2tj is assumed to exist) is
specified by

ti(id,x) ∧ ∧k
�=1 tj(idj�

,yj�
) ∧ φ(id, 〈idj�

〉k
�=1,x, 〈yj�

〉k
�=1) ⇒

ti2tj(id, idj1) > · · · > ti2tj(id, idjk
)

(8)

where φ(id, 〈idj�
〉k
�=1,x, 〈yj�

〉k
�=1) expresses additional constraints for the

connection between components idi and components of type tj .
A DCP problem C is defined by a tuple 〈C,KB,Pre, Prob, Src, α〉 where C is
the set of all components of the problem, KB is the set of axioms of the form
(6) or (7) over C, Pre is a set of preferences of the form (8), Prob ⊆ C, Srcs is
a set of locations, and α is a function that assigns to each component t(id,x) a
unique source α(id) ∈ Src. For simplicity of the presentation, we often assume
that Src = {1, . . . , n} where n = |Src| when no confusion is possible.

A valid configuration (or configuration) of a problem C = 〈C, KB, Pre, Prob,

Src, α〉 is S where Prob ⊆ S such that S is subset minimal and S∪KB is consistent.
Let S be a configuration and r be a preference rule of the form (8). We say

that S satisfies r with the degree vS(r) = 1 if ti(id,x) �∈ S, there exists no � such

2 φ(id, ID,x,y) might be different from φ(ID, id,y,x).

460 T. Le et al.

that ti2tj(id, idj�
) ∈ K, or the additional constraint φ(id, 〈idj�

〉k
�=1,x, 〈yj�

〉k
�=1)

is not satisfied in S; otherwise, vS(r) = l if ti(id,x) ∈ S and l = min{s |
ti2tj(id, idjs

) ∈ S}. A configuration S1 is said to be more preferred than a
configuration S2, denoted by S2 ≺ S1, if (i) vS1(r) ≤ vS2(r) for every rule r of
the form (8); and (ii) vS1(r) < vS2(r) for some rule r of the form (8). A solution
of a DCP problem is a valid configuration S such that there does not exist the
valid configuration S′ where S′ �= S and S ≺ S′.

A configuration problem C = 〈C,KB,Pre, Prob, {1, . . . , n}, α〉 can be mod-
eled by a MCSP M(C) = (M1, . . . ,Mn) and the ranked logic of context Mi is
LASO whose underlying logic is answer set programming.
• Each kbq consists of:

◦ For each t(id,x) in C where α(id) = q, a fact of the form t(id,x), and a
preference rule ¬in(id) > in(id) ←.

◦ For each rule of the form (6) in KB such that α(id) = q, a set of rules of
the form:

0{ti2tj(id, ID)}1 ← ti(id,x), in(id), tj(ID,y), φL(id, ID,x,y).
← ti(id,x), in(id), not li{ti2tj(id, ID) : tj(ID,)}ui.

(9)
where φL(id, ID,x,y) is the encoding in ASP of the formula φ(id, ID,x,y)
in (6).

◦ For each rule of the form (7) in KB such that α(id) = q, a set of rules of
the form:

0{tj2ti(ID, id)}1 ← ti(id,x), in(id), tj(ID,y), φL(ID, id,y,x).
← ti(id,x), in(id), not li{tj2ti(ID, id) : tj(ID,)}ui.

(10)
where φL(ID, id,y,x) is the encoding in ASP of the formula φ(ID, id,y,x)
in (7).

◦ For each predicate ti2tj such that it exists some ti(ID,x) or some tj(ID,x)
where α(ID) = q, a rule of the form:

2{in(X), in(Y)}2 ← ti2tj(X,Y) (11)

◦ For each t(id,x) in Prob where α(id) = q, a fact of the form in(id).
◦ For each rule of the form (8) in Pre such that α(idi) = q, a preference rule

of the form

ti2tj(id, idj1)> . . . >ti2tj(id, idjk
) ← ti(id,x), tj(idj1 ,yj1), . . . , tj(idjk

,yjk
),

φL(id, 〈idj�
〉k
�=1,x, 〈yj�

〉k
�=1)
(12)

where φL(id, 〈idj�
〉k
�=1,x, 〈yj�

〉k
�=1) is the ASP encoding of

φ(id, 〈idj�
〉k
�=1,x, 〈yj�

〉k
�=1).

• Each brq consists of:

Multi-Context Systems with Preferences 461

◦ For each tj(id,x) in C such that α(id) = m and either ti2tj or tj2ti occurs
in kbq, a bridge rule of the form

tj(id,−→x)) ← (m : tj(id,−→x)) (13)
ti2tj(X,Y) ← (m : ti2tj(X,Y)) (14)
tj2ti(X,Y) ← (m : tj2ti(X,Y)) (15)

Given an equilibrium E = (E1, . . . , En) of M(C), let S(E) =
⋃n

i=1{t(id,x) |
in(id) ∈ Ei} ∪ ⋃n

i=1{ti2tj(id, id′) | ti2tj(id, id′) ∈ Ei}). The next proposition
relates M(C) and C:

Proposition 2. S is a solution of C iff there exists some most w-preferred equi-
librium E of M(C) such that S = S(E).

Let us illustrate the problem using an example.

Example 6 (Harbor problem). Two companies A and B operate their business
at harbor H. A needs to transport packages (type p) of different sizes and would
like to minimize the cost of renting containers (type c) from company B. B has
containers of different sizes as well. Preferably, A wants to use a container as
small as possible that fits the package’s size. We assume that each container
carries at most one package.

• Components. A component is either a package (type p) or a container
(type c). A package idi is represented by an atom of the form p(idi, s) where
s is the size of the package. A container idj is represented by an atom
of the form c(idj , s) where s is the size of the package. For simplicity of
the presentation, we often write p(idi, size(idi)) (resp. c(idj , size(idj))) to
represent a component;

• Connections. Let idi and idj be two components of the type package and
container, respectively. A connection axiom is specified as follows.

p(idi, size(idi)) ⇒ ∃1
1idj . [p2c(idi, idj) ∧ c(idj , size(idj)) ∧ size(idi) ≤ size(idj)]

c(idj , size(idj)) ⇒ ∃1
0idi. [p2c(idi, idj) ∧ p(idi, size(idi)) ∧ size(idi) ≤ size(idj)]

• Preferences. A preference for each package idi is of the form (assume that
there are k different containers)

p(idi, size(idi))∧
c(idj1 , size(idj1)) ∧ . . . ∧ c(idjk , size(idjk))∧

size(idj1) ≤ . . . ≤ size(idjk) ⇒ p2c(idi, idj1) > . . . > p2c(idi, idjk)

A harbor problem can be given by a DCP problem C = 〈C,KB,Pre, Prob, Src,
α〉 where C is a collection of packages and containers, KB is a set of connections
and preferences, and Prob ⊆ C, Src = {A,B}, and for x ∈ C, α(x) = A if x is
a package and α(x) = B otherwise.

462 T. Le et al.

4.3 Distributed Diagnosis and MCSP

Abductive diagnosis aims at finding an explanation as a cause for the observa-
tion. More formally, in finding the most generic diagnoses, we are seeking minimal
subsets of hypotheses that explain a collection of observations and respect some
background knowledge. Traditionally, diagnosis is considered as a centralized
application, i.e., background knowledge is a single knowledge base. Yet, back-
ground knowledge is naturally captured by distributed collection of knowledge
bases. For example, different departments in the hospital have the best under-
standing on different types of diseases. They usually need to interact with each
other to come up with a final diagnosis for patients, yet a department usually
only provides the other departments the necessary information.

Let M = (C1, . . . , Cn) be a MCS. In the following, we write lit(X) as the set
of all literals that appear in X where X could be the MCS M , a context Ci, a
knowledge base kb, or a belief state E = (E1, . . . , En). For Y ⊆ lit(M) and a
kbi in the context of Ci, kbi ⊕Y denotes kbi ∪ (lit(Ci)∩Y). We define M ⊕Y =
(C ′

1, . . . , C
′
n) where each C ′

i = (Li, kbi ⊕ Y, bri). A belief state E = (E1, . . . , En)
entails a set Y ⊆ lit(M), denoted by E |= Y , if Y ∩ lit(Ci) ⊆ Ei for i = 1, . . . , n.
M |= Y if for every equilibrium E of M , E |= Y .

Definition 6. A distributed abductive diagnosis (DAD) problem D is defined
by a tuple 〈M,H,O〉 where M is a MCS, H is a finite set of hypotheses, and O
is a finite set of observations such that H,O ⊆ lit(M).

We next define the notion of an explanation in DAD.

Definition 7. Let 〈M,H,O〉 be a DAD. An explanation for O in D is a subset
minimal K of H such that M ⊕ K has an equilibrium E and E |= O.

An explanation for the observations in a DAD problem 〈M,H,O〉 can be
found by adding a set of hypotheses K to M and then check for the entailment
M ⊕ K |= O and ensure that K is subset minimal. As it turns out, this could
be modeled using a MCSP whose underlying logics support the process of gen-
erating (the set K) and testing (for other conditions) can be used for computing
explanations of DAD problems. We next discuss how this can be done. In this
paper, we will use MCSP whose logics are ranked ASO logics over logic program
and its extensions.

Given a DAD problem D = 〈M,H,O〉 with M = (C1, . . . , Cn) and
Ci = (Li, kbi, bri), an explanation for D can be computed via the MCSP
Pdad(M,H,O) = (C ′

1, . . . , C
′
n), where C ′

i = (Li, kb′
i, br

′
i) and

• kb′
i = (Pgen, Ppref) in which3

Pgen = (kbi ∪ {1{¬h, h}1 ← | h ∈ kbi ⊕ H} ∪ {← not had(o),not o | o ∈ kbi ⊕ O},

had is a fresh predicate not occurring in M , and Ppref = {¬h>h ← | h ∈
kbi ⊕ H}.

3 For simplicity we are using ASP rules to extend the knowledge bases

Multi-Context Systems with Preferences 463

• br′
i = bri ∪ {had(o) ← (j : o) | o ∈ kbi ⊕ O ∧ o ∈ kbj ⊕ O, i �= j}.

Given an equilibrium E = (E1, . . . , En) of Pdad(M,H,O), let S(E) =⋃n
i=1{h | h ∈ (H ∩ Ei)}. We have the following result:

Proposition 3. For a DAD problem D = 〈M,H,O〉, H ′ is an explanation for
D iff there exists some most w-preferred equilibrium E of Pdad(M,H,O) such
that H ′ = S(E)

A concrete example for finding explanations for distributed abductive diagnosis
problem will be given in appendix II for space limitation.

5 Discussion

The work proposed in this paper is motivated by the observation that a casual
use of preference logics at the context level could make an MCS inconsistent.
The use of ranked logics at the context level of MCSs allows us to combine
preferences in MCSs without causing that problem. Our work is different from
the proposal in [18]. Specifically, while the work in [18] considers inconsistency
assessment of MCSs using preferences, our work in this paper aims to combine
preferences in MCSs.

Aggregation of preferences in multi-agent systems has been extensively stud-
ied in the literature (e.g., [1,28,29,34]) and provides an alternative approach to
combining preferences in MCS. It is therefore important to point out the differ-
ences between an approach to preferences based on aggregation and the approach
proposed in this paper. First, let us observe that the majority of approaches to
combining preferences in multi-agent systems focus on the voting problem and
the properties satisfied by a certain way of combining preferences. Such a voting
mechanism assumes that the aggregate function can access the preferences of
all agents in the system and is therefore suitable only for MCSs whose sources
of knowledge (or agents) can accommodate this requirement. Specifically, an
aggregation of preferences can only be applied to MCS when it is possible for all
contexts to directly or indirectly (via bridge rules and their propagation) provide
their preferences to a selected context, who might or might not be among the
contexts of the MCS and who will evaluate the preferences. Since MCSs were
originally developed to address the problem of not being able to share all infor-
mation among different contexts, an approach to combining preferences based
on aggregation is generally not suitable for all MCSs. Our approach is general
and can be applied to any MCS with preferences.

On the other hand, we observe that there are MCSs whose structure is well
suited for use with aggregation of preferences. For example, a hierarchical net-
work of information providers can be represented as a MCS for which prefer-
ences can be aggregated bottom-up and compared at the root node; in this
case, a method based on aggregation of preferences could be more appropriate.
Deciding when and how should an approach combining preferences based on
aggregation of preferences be applied to MCSs is an interesting question that we
plan to investigate in the future.

464 T. Le et al.

Our approach to combining preferences can also be extended to the recently
introduced framework for reasoning with heterogeneous knowledge bases [24].
The new proposal removes the explicit bridge rules within contexts. Information
exchanges between contexts are specified via shared atoms.

6 Conclusions and Future Works

In this paper, we showed that it is necessary to provide an approach to combining
local preferences in MCSs. Specifically, we argued that to maintain the privacy of
information in each context and to allow preferences to be expressed at the local
level, novel preference logics are needed. We presented an approach to address
this problem by defining the notion of a ranked logic and using it in the definition
of MCS with preferences. We defined two notions of preference ordering among
equilibria of a MCS. We related these two notions and showed how the proposed
approach can be applied in modeling distributed configuration problems and in
finding explanations for distributed abductive diagnosis problems.

Our goal in this paper was to develop a framework for integrating preferences
into MCS. As such, we did not discuss how most strongly/weakly-preferred equi-
libria can be computed. We note that there have been different implementations
of MCSs (e.g., [14,32]). We plan to extend these systems with preferences and
experiment with the proposed applications. We are currently investigating the
use of MCSP in modeling smartgrid domains where each context encodes a node
(e.g., a house, a power station) and the bridge rules represent the energy require-
ments (e.g., production, loads) at each context. A full version of this paper can
be downloaded at http://www.cs.nmsu.edu/∼tile/PRIMA15/prima15.pdf.

References

1. Arrow, K.J., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare,
vol. 2. North Holland, Elsevier (2011)

2. Aschinger, M., Drescher, C., Vollmer, H.: Loco – a logic for configuration problems.
In: Proceedings of ECAI 2012 (2012)

3. Baker, A., Ginsberg, M.: A theorem prover for prioritized circumscription. In:
Proceedingsof IJCAI 1989, pp. 463–467 (1989)

4. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules,
March 2003

5. Brewka, G.: Adding priorities and specificity to default logic. In: MacNish, C.,
Pearce, D., Pereira, L.M. (eds.) JELIA ’94. LNCS, vol. 838, pp. 247–260. Springer,
Heidelberg (1994)

6. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artificial
Intelligence 109, 297–356 (1999)

7. Brewka, G., Eiter, T.: Prioritizing default logic. In: Intellectics and Computational
Logic, Applied Logic Series, vol. 19, pp. 27–45. Kluwer (2000)

http://www.cs.nmsu.edu/~tile/PRIMA15/prima15.pdf

Multi-Context Systems with Preferences 465

8. Brewka, G.: Preferences in answer set programming. In: Maŕın, R., Onaind́ıa, E.,
Bugaŕın, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 1–10.
Springer, Heidelberg (2006)

9. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proceedings of AAAI 2007, pp. 385–390 (2007)

10. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In:
Proceedings of IJCAI 2011, pp. 786–791. AAAI Press (2011)

11. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Proceed-
ings of IJCAI 2003, pp. 867–872 (2003)

12. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Proceed-
ings of IJCAI 2007, pp. 268–273 (2007)

13. Citrigno, S., Eiter, T., Faber, W., Gottlob, G., Koch, C., Leone, N., Mateis,
C., Pfeifer, G., Scarcello, F.: The dlv system: model generator and application
frontends. In: Proceedings of the 12th Workshop on Logic Programming WLP,
pp. 128–137, September 1997

14. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic
multi-context systems. In: Proceedings of KR 2010 (2010)

15. Delgrande, J., Schaub, T., Tompits, H.: A framework for compiling preferences in
logic programs. Theory and Practice of Logic Programming 3(2), 129–187 (2003)

16. Delgrande, J., Schaub, T.: Expressing preferences in default logic. Artificial Intel-
ligence 123, 41–87 (2000)

17. Drescher, C., Eiter, T., Fink, M., Krennwallner, T., Walsh, T.: Symmetry break-
ing for distributed multi-context systems. In: Delgrande, J.P., Faber, W. (eds.)
LPNMR 2011. LNCS, vol. 6645, pp. 26–39. Springer, Heidelberg (2011)

18. Eiter, T., Fink, M., Weinzierl, A.: Preference-based inconsistency assessment in
multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS,
vol. 6341, pp. 143–155. Springer, Heidelberg (2010)

19. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

20. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

21. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Proceedings
of the Seventh International Conference, pp. 579–597 (1990)

22. Gelfond, M., Son, T.C.: Prioritized default theory. In: Selected Papers from
the Workshop on Logic Programming and Knowledge Representation 1997,
pp. 164–223 (1998)

23. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do
without modal logics. Artif. Intell. 65(1), 29–70 (1994)

24. Lierler, Y., Truszczynski, M.: An abstract view on modularity in knowledge repre-
sentation. In: Proceedings of AAAI 2015 (2015)

25. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12),
1030–1035 (1987). http://doi.acm.org/10.1145/33447.33448

26. Niemelä, I., Simons, P., Soininen, T.: Stable model semantics for weight constraint
rules. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) Logic Programming and Non-
monotonic Reasoning. LNCS, vol. 1730, pp. 317–331. Springer, Heidelberg (1999)

http://doi.acm.org/10.1145/33447.33448

466 T. Le et al.

27. Pelov, N., Denecker, M., Bruynooghe, M.: Partial stable models for logic programs
with aggregates. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI),
vol. 2923, pp. 207–219. Springer, Heidelberg (2003)

28. Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Aggregating partially ordered
preferences. J. Log. Comput. 19(3), 475–502 (2009)

29. Pozza, G.D., Rossi, F., Venable, K.B.: Multi-agent soft constraint aggregation - A
sequential approach. In: Proceedings of ICAART 2011, pp. 277–282 (2011)

30. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Pro-
ceedings of IJCAI 2005 (2005)

31. Son, T., Pontelli, E.: A Constructive Semantic Characterization of Aggregates in
Answer Set. Theory and Practice of Logic Programming 7(03), 355–375 (2007)

32. Son, T.C., Pontelli, E., Le, T.: Two applications of the ASP-Prolog system: decom-
posable programs and multi-context systems. In: Flatt, M., Guo, H.-F. (eds.) PADL
2014. LNCS, vol. 8324, pp. 87–103. Springer, Heidelberg (2014)

33. Tasharrofi, S., Ternovska, E.: Generalized multi-context systems. In: Proceedings
of KR 2014 (2014)

34. Xia, L., Conitzer, V., Lang, J.: Aggregating preferences in multi-issue domains
by using maximum likelihood estimators. In: Proceedings of (AAMAS 2010),
pp. 399–408 (2010)

A Dynamic-Logical Characterization of Solutions
in Sight-Limited Extensive Games

Chanjuan Liu1,4(B), Fenrong Liu2,4, and Kaile Su3,4

1 School of Electronics Engineering and Computer Science,
Peking University, Beijing, China

chanjuan.pkucs@gmail.com
2 Department of Philosophy, Tsinghua University, Beijing, China

fenrong@tsinghua.edu.cn
3 Institute for Integrated and Intelligent Systems, Griffith University,

Nathan, Australia
kailepku@gmail.com

4 Department of Computer Science, Jinan University, Guangzhou, China

Abstract. An unrealistic assumption in classical extensive game theory
is that the complete game tree is fully perceivable by all players. To
weaken this assumption, a class of games (called games with short sight)
was proposed in literature, modelling the game scenarios where players
have only limited foresight of the game tree due to bounded resources and
limited computational ability. As a consequence, the notions of equilibria
in classical game theory were refined to fit games with short sight. A
crucial issue that thus arises is to determine whether a strategy profile is
a solution for a game. To study this issue and address the underlying idea
and theory on players’ decisions in such games, we adopt a logical way.
Specifically, we develop a logic through which features of these games
are demonstrated. More importantly, it enables us to characterize the
solutions of these games via formulas of this logic. This work not only
provides an insight into a more realistic model in game theory, but also
enriches the possible applications of logic.

Keywords: Extensive games · Short sight · Dynamic logic · Solution
concept

1 Introduction

Game theory has been applied in many real-world domains, including those
involving multi-agent systems. In order to embed game-theoretic principles into
multi-agent systems, we need to deal with the logical aspects of game theory,
such as knowledge representation formalisms, reasoning about rationality and
decision making of agents. Indeed, the development of logics for reasoning about
game theoretic concepts have recently attracted much attention within the multi-
agent systems community [8,15]. In particular, there is much more work on
logical reasoning about extensive form games [2,4,5,12,14].
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 467–480, 2015.
DOI: 10.1007/978-3-319-25524-8 29

468 C. Liu et al.

Extensive Games with Short Sight (Egss) is a variant of extensive games, in
which players may have no access to the complete game structure. The reason
for Egss being proposed is as follow: It is known that the assumption of full
rationality in classical game theory is too strong. To weaken this assumption,
Grossi and Turrini [7] introduced the concept of short sight, modelling scenarios
in which players cannot see the terminal nodes due to their limited computational
power and not being omniscient, especially in large games like chess. To make it
clear, we consider a relatively simple game, Tic-Tac-Toe 1. Even for this game,
there are 362,880 (i.e., 9!) leaves in the complete game tree, not to mention the
number of all the intermediate nodes.

Example 1. Figure 1 shows a part of the Tic-Tac-Toe game tree. There are two
players: player 1(×) and player 2(◦). The solid arrows show the moves of player
1, and dotted arrows of player 2. v0 is the initial state.

Obviously, it is impossible for players to explicitly compute the complete game.
In fact, they can only predict a part of the future states at each node. In Figure 1,
we use the shaded area to represent the part that player 1 can see at v0.

Fig. 1. A Part of Tic-Tac-Toe game.

Games with short sight are of particular importance, as it can be used to
model multi-agent systems where agents have limited computational power.
Inspired by logics for classical extensive games [10], we aim to develop a logic
for reasoning about games with short sight. There are advantages for providing

1 The rule for Tic-Tac-Toe is: Two players take turns to mark the spaces in a 3×3 grid.
The player who succeeds in placing three respective marks in a horizontal, vertical,
or diagonal row wins the game.

A Dynamic-Logical Characterization of Solutions 469

such logical representation for games: First, logical representations are usually
succinct, and thus offer convenience for automated reasoning such as theorem
proving. It can be combined with model checking techniques to fulfill some tasks
such as to check whether a game has a certain property. Second, from the logical
perspective, how sight would act on and extend game logics is an interesting
exploration. This targeted logic should have the capacity of reasoning about
what players prefer, what they see, and what they do, and particularly, of char-
acterizing equilibrium solutions of Egss. Equilibrium solution models patterns of
behaviors with the property that no player wishes to deviate given other players’
strategies at every state. That is, it models players’ behavior in a steady state. It
is not only crucial to game theory, but also highly related to the study of other
fields or techniques, such as decision problem in computability theory, specifi-
cation description of model checking and steady states in automata theory. For
example, there are two frequently asked decision problems: Membership problem
(whether a given strategy profile is a member of the equilibrium concept or not)
and Emptiness problem (whether the set of solutions is empty).

Technically, to address the dynamics issues of Egss, we consider the standard
Propositional Dynamic Logic (PDL) [9], which was introduced by Fischer and
Ladner [6] as a formalism for reasoning about programs. PDL can be used to
describe the dynamic evolution of agent-based systems and to characterize play-
ers’ moves in game theory. However, it cannot express players’ preference and
observational ability in Egss. In this paper, we extend PDL with several modal
operators, resulting in a logic called Dynamic Logic for Short Sight (DLS). This
logic turns out to be feasible to reason about such game and its equilibrium
concept. In addition, we also give a sound and complete axiomatization for it.

The rest of the paper is organized as follows. In the following section, we
introduce extensive game with short sight as well as its equilibrium concept.
The syntax and semantics, and an axiomatization of DLS are given in Section
3. Section 4 is concerned with the representation of equilibrium concept in Egss
by the logic. We discuss its soundness and completeness in section 5. Finally, we
conclude this work with issues for further research.

2 Game Theoretical Notions

An extensive game with short sight is defined much like a classical extensive
game [10,13]. An essential difference that makes the former more realistic lies in
that we specify the players’ sights at each non-terminal node. To keep our logical
analysis in later sections as perspicuous as possible, we confine our attention to
finite extensive games in pure strategies with perfect information.

2.1 Extensive Game with Short Sight

The following definition is adapted from [7].

Definition 1. (Extensive game with short sight). An extensive game with short
sight (Egss) is a tuple S = (N,V,A, t,Σi,�i, s), where

470 C. Liu et al.

• N is a finite non-empty set of the players;

• V is a finite non-empty set of nodes, and A ⊆ V 2 a set of edges. (V,A)
is a directed, irreflexive tree. For any two nodes v and v′, if (v, v′) ∈ A, we call
v′ a successor of v, and A is also regarded as the successor relation. Leaves are
nodes having no successors, denoted by Z ⊆ V ;

• t is a turn function assigning a member of N to each non-terminal node;

• Σi is a finite set of strategies of player i. A strategy of player i is a function
σi : {v ∈ V \Z| t(v) = i} → V , which assigns a successor of v to each non-
terminal node when it is i’s turn to move;

• �i, a total order over V , is a preference relation2 for each player i ∈ N ;

• s, called sight function, is a function V \Z → 2V \{∅}, associating to each
node a nonempty set of nodes that players can see from a node in the game.

As usual, we use σ = (σi)i∈N to represent a strategy profile which is a com-
bination of strategies from all players and Σ to represent the set of all strategy
profiles. We define an outcome function O : Σ → Z assigning leaves to strategy
profiles. O(σ) is the outcome when the strategy profile σ is followed by all play-
ers. Particularly, O(σ′

i, σ−i) is the outcome if player i uses strategy σ′ while all
other players employ σ.

Sight function s has the following properties.

1. For node v, s(v) ⊆ V |v\{∅} and |s(v)| < ∞, where V |v represents the set of
nodes extending v (which includes v itself). The intuition is that sight at v
consists of a finite nonempty set of descendants of v.

2. v′ ∈ s(v) implies that v′′ ∈ s(v) for every v′′ � v′ with v′′ ∈ V |v, i.e. players’
sight is closed under predecessors, where relation � is the transitive closure
of the successor relation A. We call this property as ‘downward closed’.

Remark 1. Note that extensive games with short sight are different from games
with imperfect information. In the latter, players may be imperfectly informed
about some of the choices that have already been made. For each player, there
is a partition Ii of {v ∈ V |t(v) = i}, the nodes in any given member of Ii is
indistinguishable to player i. While the idea of short sight is that players can
distinguish the position they are currently in, but may have no ability to foresee
the future completely, i.e., the whole subtree following the current position.

2.2 Solutions for Egss

This section is devoted to introducing the solutions for Egss. First, we address
a fact that in Egss, players have a limited vision at each node, and each of the
visible part is actually a smaller Egss, called visible game.
2 Players’ preferences are defined over all vertices rather than over the terminal nodes

only. Players are assumed to have preferences over any two nodes, including the
internal ones [10].

A Dynamic-Logical Characterization of Solutions 471

Definition 2. (Visible games) Let S=(N,V,A, t, Σi,�i, s) be an Egss. Given
any non-terminal node v, agents’ sight at v forms an Egss

S	v= (N	v, V 	v, A	v, t	v,Σi	v,�i	v, s	v),
where

• N	v= { i| t(v) = i for some v ∈ s(v)}, is the set of players who will play at
some node within the sight at v;

• V 	v= s(v), is the set of nodes within the sight from node v. The terminal
nodes of S	v are those without successor nodes in V 	v, denoted by Z	v;

• A	v= A ∩ (V 	v×V 	v);
• t	v= V 	v\Z	v→ N satisfies t	v(v′) = t(v′);
• Σi	v is the set of strategies that are available at v and restricted to s(v), for

each player. It consists of elements σi	v such that σi	v(v′) = σi(v′) for each
v′ ∈ V 	v with t	v(v′) = i;

• �i	v= �i ∩ (V 	v×V 	v), represents each player i’s preference over V 	v.
• s	v(u) = V |u ∩ V 	v, for any u ∈ V 	v, i.e., the sight of each u ∈ V 	v is the

set of descendants of u restricted to V 	v.
We refer to the visible part S	v at each node v as a visible game at v. It

is easy to see that a visible game is obtained by restricting all the elements in
the whole game to the sight at v. Accordingly, we define the outcome function
O	v: Σ	v→ Z	v assigning leaf nodes of S	v to strategy profiles.

Remark 2. In this paper, we implicitly use s(v) to represent for each node v,
player t(v)’s sight at v. Therefore, S	v shows player t(v)’s view of the game at
v. Moreover, to avoid too much analysis on interactive knowledge of opponents’
sights and focus on the logical part, we simply assume that each current player
believes that others’ sight is the same as hers. However, our work bears future
extension with entanglement of such reasoning about the opponents.

Example 2. For the visible game S	v0 shown by the shaded part of Figure 1,
we have: N	v0=N ; V 	v0={v0, v1, v2, v4, v5}, A	v0={(v0, v1), (v0, v2), (v2, v4),
(v2, v5)}; t	v0(v0)=1, t	v0(v2)=2; Σi	v0 is restricted to the states that are within
sight s(v0). E.g., there is a σ, such that σ	v0= (σ1	v0 , σ2	v0), with O	v0(σ	v0) =
v5, where σ1	v0(v0) = v2 and σ2	v0(v2) = v5; s	v0(v2) = {v4, v5}.

Now we introduce the solution concept for Egss [7], matching the notion of
Subgame Perfect Equilibrium (SPE) for classical extensive games3. Intuitively, a
sight-compatible SPE is a strategy profile that is in accordance with a SPE of
the visible game S	v for each decision point v:
Definition 3. (Sight-compatible subgame perfect equilibrium) Let S=(G, s) be
an Egss and S	v be the visible game at v. A strategy profile σ∗ is a sight-
compatible SPE of S if for every nonterminal node v, there exists a strategy
profile σ	v that is a subgame perfect equilibrium of S	v and σt(v)	v(v) = σ∗

t(v)(v).

3 Since subgame perfect equilibrium is a basic notion in game theory [13], we only
give a brief introduction here: A strategy profile σ∗ is a subgame perfect equilibrium
(SPE) of a game G if for every player i, and each node v for which t(v) = i, it
holds that O|v(σ∗

i |v, σ∗
−i|v) �i O|v(σi, σ

∗
−i|v), for every strategy σi available to i in

the subgame G|v of G that follows node v, where G|v is the restriction of G to the
subtree rooted at v.

472 C. Liu et al.

3 Dynamic Logic for Short Sight

In this section, we propose a logic called Dynamic Logic for Short Sight (DLS),
for representing games with short sight. We enrich the Propositional Dynamic
Logic (PDL) with two modal operators: 〈≤i〉 and 〈�〉, to reason about players’
preferences over the possible outcomes, and players’ sights respectively.

3.1 Syntax and Semantics

The language DLS contains a non-empty but countable set of propositional
variables P , a non-empty but countable set of labels N , as well as a countable
set of labels Σ. The formulas of DLS is given by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈π〉ϕ | 〈≤i〉ϕ | 〈�〉ϕ
π ::= a | π;π | π ∪ π | π∗ | ϕ?,

where a ∈ N ∪ Σ, p ∈ P , i ∈ N .
We write [π]ϕ to abbreviate ¬〈π〉¬ϕ, and the same for other modalities.
The atomic programs in the language DLS come from Σ or N . That is,

any atomic program a is either σ or i, where σ ∈ Σ and i ∈ N . The set of all
programs consists of atomic programs and the complex programs built out of
atomic programs using the following operators:

– π1;π2 (Composition): Executing π1 and π2 sequentially,
– π1 ∪ π2 (Choice): Executing π1 or π2 non-deterministically,
– π∗(Iteration): Executing π a finite number of times,
– ϕ?(Test): It tests whether ϕ holds, and if so, continues; if not, it fails.

Up to games with short sight, the labels in DLS are interpreted as follows.

– The label N denotes the set of players.
– The label ≤i encodes player i’s preference relation.
– The label � encodes the sight for the current player, with 〈�〉ϕ intuitively

stating that “ϕ holds in some node within the current player’s sight at the
present node v.”

– The program σ ∈ Σ stands for players’ strategies. Intuitively, 〈σ〉ϕ holds at
a vertex v means that ϕ holds at the next node reached if σ is adopted.

– The program formula 〈i〉ϕ is read as “ϕ holds at one of the successor nodes
of the current node where it is player i’s turn to move”.

To guarantee the above interpretation in games, we can further restrict DLS
with the following features, making it suitable for games with short sight:

N is a non-empty and finite set such that for each i ∈ N , there is corre-
spondingly a player i in the game. Similarly, Σ is a finite set with elements
corresponding to profile strategies in the game.

As a modal language, the frames for DLS can naturally be represented by a
kind of Kripke structures:

A Dynamic-Logical Characterization of Solutions 473

Definition 4. (Game Frames and Models) Fix an Egss S. A frame FS for DLS
is defined as a tuple (V, {Rπ}π∈Π , R≤i

, R�), where for any player i, any strategy
profile σ, and any nodes v, v′:

vR≤i
v′ iff v′ �i v.

vR�v′ iff v′ ∈ s(v).
vRσv′ iff σt(v)(v) = v′.
vRiv

′ iff t(v) = i and (v, v′) ∈ A.

In frame FS , the set of worlds V corresponds to the set of nodes in S. The
relation Ri, corresponding to a subset of the edges of S, reflects player i’s ability
to reach some world.

A model for DLS is a pair (F, I), where F is a frame for DLS, and I is an
interpretation function P → 2V .

The truth conditions of modal formulas in DLS are as follows:
M,v |= p iff v ∈ I(p).
M,v |= ¬ϕ iff M,v � ϕ.
M,v |= ϕ ∧ ψ iff M,v |= ϕ and M,v |= ψ.
M,v |= 〈π〉ϕ iff for some v′, vRπv′, M,v′ |= ϕ.
M,v |= 〈≤i〉ϕ iff for some v′, vR≤i

v′, M,v′ |= ϕ.
M,v |= 〈�〉ϕ iff for some v′, vR�v′, M,v′ |= ϕ.

A model M is regular if the program connectives have the following intuitive
interpretations:

Rπ1;π2 = Rπ1 ◦ Rπ2 , Rπ1∪π2 = Rπ1 ∪ Rπ2 ,
Rπ∗ = (Rπ)∗, Rϕ? = {(v, v′) : M,v |= ϕ,with v, v′ ∈ V },

where Rπ1 ◦ Rπ2 is the relational composition of Rπ1 and Rπ2 , Rπ1 ∪ Rπ2 is
the non-deterministic choice of Rπ1 and Rπ2 , and (Rπ)∗ represents the reflexive
transitive closure of Rπ. In this paper, we are only interested in regular models.

As usual [1,3], we say that a formula ϕ is valid in a model M , M |= ϕ,
if for all states v in the model, M,v |= ϕ. ϕ is valid in F , F |= ϕ, if for all
interpretation functions I, (F, I) |= ϕ. Finally, a formula ϕ is valid, |= ϕ, if for
all frames F , F |= ϕ.

Example 3. To illustrate the language, take S as the game in Figure 1. Suppose
O(σ) = v11. Let M be the model for S in which I(p) = {v5, v11, v12}. Then

- M,v2 |= 〈2〉¬p, i.e., p is false at one of the successor nodes of
v2 by strategy of player 2 (namely v4).

- M,v0 |= 〈�〉p, i.e., there is a node v that can be seen from v0
and that satisfies p (namely, v5).

- M,v8 |= 〈σ〉〈≤1〉p, i.e., p is true at some node (namely, v12) that is preferable
by player 1 to some node, which is the successor of v8 by adopting strategy
σ (namely, v11).

Definition 5. (Subframe and Submodel) Given an extensive game with short
sight S, and any non-terminal node v in S, we can obtain a subframe FS�v for
S at v, where S	v=(N	v, V 	v, A	v, t	v,Σi	v,�i	v) is the visible game at v:

474 C. Liu et al.

FS�v is a tuple (V 	v, R≤i�v , Rπ�v , R��v), in which for any two nodes u, u′ in
the game S	v, i.e., u, u′ ∈ V 	v, the accessibility relations are defined as follows.

uR≤i�vu′ iff u′ �i	v u.
uR��vu′ iff u � u′.
uRσ�vu

′ iff u′ = σt(u)	v(u).
uRi�vu′ iff t	v(u) = i and (u, u′) ∈ A	v.

The intuition behind the definitions of the accessibility relations in subframes
is given in Definition 2.

A model MS�v is a pair (FS�v, I) where FS�v is a subframe for DLS and I is
an interpretation function I : P → 2V �v .

3.2 Axiomatization: Expressing Properties

Each frame for extensive games with short sight should satisfy certain properties,
which are defined by axiom schemas. Table 1 presents an axiomatization DLS
characterizing the validities of the language DLS in DLS-models4.

Interpreted on frames for Egss, the axioms in Table 1 have intuitive meanings:
K is used in all variants of the standard modal logic. T≤i

and 4 determine the
preference of players to be reflexive and transitive, and the sight of a player
is reflexive. D ensures that the node reachable by a strategy profile σ from a
node v is determined. P states that the strategy profile contains only the moves
that players can perform. E guarantees that whenever a program i is enabled,
there exists a σ that is enabled. A shows that at each node only one program is
enabled. Re lists the axioms for regular frames.

More interestingly, games with short sight take on some particular patterns.
We will put our emphasis on the following properties.

- �-reflexivity. Players’ sight is reflexive, since at every node, the node itself
is visible to players.

- intransitivity. Usually, the sight of a player is not transitive. Take Figure 1
as an example. Suppose s1(v2) = {v4, v5, v6}. Then it holds that v2 ∈ s1(v0),
v6 ∈ s1(v2) but v6 /∈ s1(v0).

- totality. It means that players’ preference is a total order, i.e., for any
two siblings v1 and v2 (any two children of any node), and any player i,
either v1 �i v2 or v2 �i v1.

- closure. Axiom C makes certain that players’ sight is closed under pre-
decessors, i.e., downward closed. If a node v′ is within sight si(v), then for
any node v′′ which locates between v and v′, it holds that v′′ ∈ si(v).

- uniformity. If a node v2 is within sight si(v), then it must also be within
sight si(v1), where v1 is any intermediate node between v and v2. E.g., for
the nodes v0, v2 and v5 in Figure 1, since player 1 can see v5 from v0, he can
also see v5 from v2.

4 For simplicity, we use 〈(σ)n〉 to represent applying σ for n times, i.e., 〈σ; σ · · · ; σ〉
︸ ︷︷ ︸

n

A Dynamic-Logical Characterization of Solutions 475

Table 1. Valid Principles of DLS

(1)Normal modal logic axioms

Name Axiom schema Frame property

Taut any classical tautology none

K
[≤i](p → q) → ([≤i]p → [≤i]q)

distribution[π](p → q) → ([π]p → [π]q)
[�](p → q) → ([�]p → [�]q)

(2)Axioms for extensive games

Name Axiom schema Frame property

D 〈σ〉ϕ → [σ]ϕ determinism

P 〈σ〉ϕ → ∨i∈N 〈i〉ϕ performability

E
∨

i∈N 〈i〉� → ∨σ∈Σ〈σ〉� enabled

A 〈i〉� → ∧j∈N\{i}[j] ⊥ asynchronization

F
∧

σ∈Σ

∨

n∈N

〈(σ)n〉 ⊥ finiteness

(3)Axioms for sight function and preference relation

Name Axiom schema Frame property

T≤i [≤i]ϕ → ϕ ≤i− reflexivity

T� [�]ϕ → ϕ �−reflexivity

4 [≤i]ϕ → [≤i][≤i]ϕ transitivity

C
(〈(σ)n〉ϕ → 〈�〉ϕ) →

closure
(
∧

k≤n〈(σ)k〉ϕ → 〈�〉ϕ)

U
(〈(σ)n〉ϕ → 〈�〉ϕ) →

uniformity
(〈(σ)n〉ϕ → ∧k≤n〈(σ)k〉〈�〉ϕ)

To

∧

i∈N

∧

σ∈Σ

∧

σ′∈Σ

(〈σ′〉ϕ → 〈σ〉〈≤i〉ϕ)
totality

∨(〈σ〉ϕ → 〈σ′〉〈≤i〉ϕ)

(4)Axioms for regular frames

Name Axiom schema Frame property

Re
〈π1; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ

regularity〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈ϕ?〉ψ ↔ (ϕ ∧ ψ)
〈π∗〉ϕ ↔ (ϕ ∨ 〈π〉〈π∗〉ϕ)
[π∗](ϕ → [π]ϕ) → (ϕ → [π∗]ϕ)

Inference rules:
Modus Ponens (MP), and Necessitation (Nec) for operators [π], [�] and [≤i].

4 Characterizing Solutions

Determining equilibrium solutions of games is a significant issue in game theory.
In this section, we illustrate how to characterize equilibrium concept for Egss
via formulas of DLS. We find the formula schema ϕ, s.t. any strategy profile σ
is an equilibrium of S iff FS |= ϕ.
Proposition 1. Let π(σ−N0) (where N0={i0, · · · , ik}⊆N , σ∈Σ) be an operator
with the following semantics: M,v |= 〈π(σ−N0)〉ϕ iff there is some v′ for which
M,v′ |= ϕ and v′ ∈ O|v(σ−N0 |v). Then π(σ−N0) is definable in DLS.

476 C. Liu et al.

Proof. The definition of π(σ−N0) is given as:
π(σ−N0)=df ((〈σ〉�)?; (σ ∪ i0 ∪ i1 ∪ · · · ∪ ik))∗; (¬〈σ〉�)?
The intuition is: π(σ−N0) executes non-deterministically one of the programs

i (i ∈ N0) or σ, as longs as σ is enabled. The program terminates when σ is no
longer enabled.

Particularly, we define π(σ) =df ((〈σ〉�)?;σ)∗; (¬〈σ〉�)?. In contradistinc-
tion, π(σ) reduces to a deterministic program that repeats σ until it terminates.

The accessibility relations are defined as:
vRπ(σ)v

′ iff v′ = O|v(σ|v).
vRπ(σ−N0)

v′ iff v′ ∈ O|v(σ−N0 |v). ��

Proposition 2. Let S=(N,V,A, t, Σi,�i, s) be an Egss. Then
(a) A strategy profile σ is a subgame perfect equilibrium (SPE) of S	v iff

for any formula ϕ, and any u ∈ V 	v\Z	v:
FS�v , u |= ∧

i∈N (〈π(σ)〉ϕ → [π(σ−i)]〈≤i〉ϕ).
(b) A strategy profile σ is a sight-compatible SPE of S iff for any formula

ϕ, and all v ∈ V \Z:
FS�v , v |= [�](

∧
i∈N (〈π(σ)〉ϕ → [π(σ−i)]〈≤i〉ϕ)).

Proof. (a) (⇒) assume
∧

i∈N (〈π(σ)〉ϕ→[π(σ−i)]〈≤i〉ϕ) is invalid at some state
u in FS�v . Then for some player i, 〈π(σ)〉ϕ → [π(σ−i)]〈≤i〉ϕ is invalid at u in
FS�v . Consequently, 〈π(σ)〉ϕ ∧ 〈π(σ−i)〉[≤i]¬ϕ is valid at u. It follows that σ is
not a subgame perfect equilibrium of S	v (refer to the definition of Subgame
perfect equilibrium [13]). Proof for (⇐) is similar.

(b) (⇒) assume [�](
∧

i∈N (〈π(σ)〉ϕ → [π(σ−i)]〈≤i〉ϕ) is invalid at the start-
ing point v of FS�v . Then there exists a node v′ such that (1) v′ ∈ s(v)
and (2) FS�v , v′

�

∧
i∈N (〈π(σ)〉ϕ → [π(σ−i)]〈≤i〉ϕ). By (2), σ is not a SPE

of S	v. Then by (1) it follows that σ is not a sight-compatible subgame
perfect equilibrium of S. (⇐), assume σ is not a sight-compatible subgame
perfect equilibrium of S. Then there exists a state v ∈ V such that for
any SPE σ∗ of S	v, σ �= σ∗. So σ is not a SPE of S	v. Then we have:
∃u ∈ V 	v such that FS�v , u |= ¬∧

i∈N (〈π(σ)〉ϕ → [π(σ−i)]〈≤i〉ϕ). It follows
that FS�v , v |= 〈�〉¬∧

i∈N (〈π(σ)〉ϕ → [π(σ−i)]〈≤i〉ϕ). By Dual, FS�v , v � [�]
(
∧

i∈N (〈π(σ)〉ϕ → [π(σ−i)]〈≤i〉ϕ). ��
By now, we have shown that DLS is well suited for capturing equilibrium

solutions in extensive games with short sight.

5 Soundness and Completeness

We now take a position to show the soundness and completeness results of DLS.
Theorem 1. DLS is sound w.r.t. the class of all DLS-models.

A Dynamic-Logical Characterization of Solutions 477

Proof. It is trivial to show that the rules preserve logical consequence. So this
proof boils down to a check of validity for the given axioms. Here we list the
proofs for some of the axioms, since others can be proved similarly.

For closure, let M,w |= (〈(σ)n〉ϕ → 〈�〉ϕ). It means that for any node v,
if v can be reached from w by going n steps according to σ, then v ∈ s(w).
Since sight function is downward closed, for any node u, if u can be reached
from w by going k (k ≤ n) steps according to σ, then u ∈ s(w). That is,
M,w |= (

∧
k≤n〈(σ)k〉ϕ → 〈�〉ϕ).

For uniformity, let M,w |= (〈(σ)n〉ϕ → 〈�〉ϕ). It means that for any node v,
if v can be reached from w by going n steps according to σ, then v ∈ s(w). By
uniformity of sight function, we deduce that for any node u, if u is an intermediate
node between w and v, i.e., u can be reached from w by k (k ≤ n) steps, and v
can be reached from u by n−k steps, then v ∈ s(u). Hence, M,w |= (〈(σ)n〉ϕ →∧

k≤n〈(σ)k〉〈�〉ϕ). ��
We prove completeness of DLS via finite canonical models [3]. We first explain

two notations for later use.

(1) Fischer-Ladner closure: The Fischer-Ladner closure of a formula φ is the
least set FL(φ) of formulas containing φ and such that (i) FL(φ) is closed
under subformulas and single negations ∼. (ii) If 〈π1;π2〉ϕ ∈ FL(φ) then
〈π1〉〈π2〉ϕ ∈ FL(φ). (iii) If 〈π1 ∪π2〉ϕ ∈ FL(φ) then 〈π1〉ϕ∨〈π2〉ϕ ∈ FL(φ).
(iv) If 〈π∗〉ϕ ∈ FL(φ) then 〈π〉〈π∗〉 ∈ FL(φ). (v) If 〈ϕ?〉ψ ∈ FL(φ) then
ϕ ∈ FL(φ) and ψ ∈ FL(φ).

(2) Atoms: A set of formulas A is an atom over a formula φ if it is a maximal
consistent subset of FL(φ). At(φ) is the set of all atoms over φ. Atoms are
generalization of maximal consistent sets.

Definition 6. (Canonical model) The canonical model Mφ over any formula φ

is the tuple (At(φ), {Rφ
π}π∈Π , Rφ

≤i
, Rφ

�, Iφ), where Iφ(p) = {A ∈ At(φ) | p ∈
A} for all propositional variables p, and for all atoms A,B ∈ At(φ), all basic
programs a, and any modal operators ξ ∈ {≤i,�},

ARφ
aB if Â ∧ 〈a〉B̂ is consistent;

ARφ
ξ B if for all ψ, ψ ∈ B implies 〈ξ〉ψ ∈ A;

For complex programs, inductively define the DLS-relations Rφ
π by Rφ

a in the
usual way using unions, compositions, and reflexive transitive closure and test.

We first obtain some useful lemmas.

Lemma 1. Any canonical model Mφ is a DLS-model.

Proof. It is sufficient to demonstrate that canonical models satisfy the properties
of DLS-models. We only show the proofs for some properties.

• Transitivity : For any A,B,C ∈ At(φ), suppose (A,B) ∈ Rφ
≤i

and (B,C) ∈
Rφ

≤i
. Then for any ψ ∈ C, we have 〈≤i〉ψ ∈ B, and 〈≤i〉〈≤i〉ψ ∈ A. By axiom 4,

i.e., 〈≤i〉〈≤i〉ψ → 〈≤i〉ψ, it holds that 〈≤i〉ψ ∈ A. It follows that (A,C) ∈ Rφ
≤i

.

478 C. Liu et al.

• Regularity : For composition ;, let A,B be any atoms in At(φ), suppose
(A,B) ∈ Rφ

π1;π2
. Then Â ∧ 〈π1;π2〉B̂ is consistent. By Axiom Re, we have Â ∧

〈π1〉〈π2〉B̂ is consistent. Then we can construct an atom C such that Â ∧ 〈π1〉Ĉ
and Ĉ ∧ 〈π2〉B̂ are both consistent. By definition of Rφ

π1
and Rφ

π2
, it follows that

(A,C) ∈ Rφ
π1

, and (C,B) ∈ Rφ
π2

. The arguments for ∪, ∗, ? are similar. ��

Lemma 2. (Existence Lemma) Let A be an atom and let 〈ξ〉ψ be a formula in
FL(X) with ξ ∈ {π,≤,�}. Then 〈ξ〉ψ ∈ A iff ∃B such that ARφ

ξ B and ψ ∈ B.

Proof. We first prove the (⇒) direction.
(1) For programs. Suppose 〈π〉ψ ∈ A. We can build an atom B such that

ψ ∈ B and ARφ
πB. The case of basic programs is trivial by [3].

For complex programs, we only show the case for test. (Please refer to [3]
for proofs of other cases): Suppose 〈ϕ?〉ψ ∈ A, then we have ϕ ∈ A and ψ ∈ A.
Then there is an atom B = A such that ARφ

ϕ?B and ψ ∈ B.

(2) For modalities 〈�〉 (or 〈≤i〉). Suppose 〈�〉ψ ∈ A. We will construct an
atom B such that ARφ

�B and ψ ∈ B. Let B− be {ψ} ∪ {ϕ|[�]ϕ ∈ A}. Then B−

is consistent. For suppose not. Then there are ϕ1, · · · , ϕn such that � (ϕ1 ∧ · · ·∧
ϕn) → ¬ψ, and it follows by an easy argument that � [�](ϕ1∧· · ·∧ϕn) → [�]¬ψ.
Hence � ([�]ϕ1∧· · ·∧[�]ϕn) → [�]¬ψ. Now [�]ϕ1∧· · ·∧[�]ϕn ∈ A thus it follows
that [�]¬ψ ∈ A. Then it holds that ¬〈�〉ψ ∈ A. Contradiction. Then let B be
any atom extending B−. By the process of construction, ψ ∈ B. Furthermore,
(a) for all formulas ϕ, [�]ϕ ∈ A implies ϕ ∈ B. Hence ARφ

�B. For suppose not,
then there exists ψ such that ψ ∈ B and 〈�〉ψ /∈ A. However, by (a), we have
that ψ ∈ B implies 〈�〉ψ ∈ A. Contradict.

The direction (⇐) can be proved similarly.
(1) For programs. We prove induction on the structure of π.

(1.1) For basic programs, i.e., π = a. Suppose there is an atom B such that
ARaB and ψ ∈ B. Then Â ∧ 〈a〉B̂ is consistent. As ψ is one of the conjuncts in
B̂, Â ∧ 〈a〉ψ is consistent. Since A is an atom and hence maximal consistent in
FL(φ), and 〈a〉ψ is in FL(φ), we have 〈a〉ψ must also be in A.

(1.2) For complex programs. In the case of π = π1;π2, and suppose ARπ1;π2B
and ψ ∈ B. Thus there is an atom C such that ARπ1C and CRπ2B and ψ ∈ B.
By the Fischer-Ladner closure conditions, 〈π2〉ψ belongs to FL(φ), hence by
the inductive hypothesis, 〈π2〉ψ ∈ C. Similarly, as 〈π1〉〈π2〉ψ ∈ A, we have
〈π1;π2〉ψ ∈ A by the properties of atoms. The case of π1 ∪ π2 is similar.

For test. Suppose ARϕ?B and ψ ∈ B. By Definition 6 and the above argument
for the basic programs, we have A = B, ϕ ∈ A and ψ ∈ A. Thus 〈ϕ?〉ψ follows
from the property that for all 〈ψ?〉ϕ ∈ FL(φ): 〈ψ?〉ϕ ∈ A iff ϕ ∈ A and ψ ∈ A.

For π with the form of ρ∗. Assume ARρ∗B and ψ ∈ B. Then there is a finite
sequence of atoms C0, · · · , Cn such that A = C0RρC1, · · · , Cn−1RρCn = B.
By a subinduction on n we prove that 〈ρ∗〉ψ ∈ Ci for all i; the required
result for A = C0 is then immediate. For base case n = 0. This means

A Dynamic-Logical Characterization of Solutions 479

A = B, and since � ρ∗〉ψ ↔ ψ ∨ 〈ρ〉〈ρ∗〉ψ, we have � ψ → 〈ρ∗〉ψ. Thus
〈ρ∗〉ψ ∈ A. For Inductive step. Suppose the result holds for n ≤ k, and that
A = C0RρC1, · · · , CkRρCk+1 = B. By the inductive hypothesis, 〈ρ∗〉ψ ∈ C1.
Hence 〈ρ〉〈ρ∗〉ψ ∈ A, for 〈ρ〉〈ρ∗〉ψ ∈ FL(φ). But 〈ρ∗〉ψ ↔ ψ ∨ 〈ρ〉〈ρ∗〉ψ. Hence
〈ρ∗〉ψ ∈ A.

(2) The cases for 〈≤i〉 and 〈�〉 follow from Definition 6. ��
Lemma 3. (Truth Lemma) For any canonical model Mφ over φ, any atom A,
and any formula ϕ ∈ FL(φ), Mφ, A |= ϕ iff ϕ ∈ A.

Proof. We do this by induction on the number of connectives. The base case
and the boolean case is trivial. It remains to deal with the modalities ξ. First,
it holds that:

Mφ, A |= 〈ξ〉ϕ iff ∃B(ARφ
ξ B ∧ Mφ, B |= ϕ) iff ∃B(ARφ

ξ B ∧ ϕ ∈ B) (†)
We now prove the (⇒) direction, the other direction is similar.
(1) For modality 〈�〉 (or 〈≤i〉), by the definition of Rφ

� (or Rφ
≤i

), it naturally
follows from (†) that 〈�〉ϕ ∈ A.

(2) For program π. By (†) and Existence Lemma, it holds that 〈π〉ϕ ∈ A. ��
The completeness theorem follows directly from the above lemmas:

Theorem 2. DLS is weakly complete w.r.t the class of all DLS-models.
Proof. it is sufficient to find, for any consistent formula φ, a model M and a
state w in M such that M,w |= φ. By Lindenbaum’s Lemma [3], there is an
atom A ∈ At(φ) such that φ ∈ A. Then by the Lemma 3, Mφ, A |= φ. So Mφ

and A are the model and the right state for ϕ respectively. ��

6 Discussion and Conclusion

By extending the standard PDL, we developed a dynamic logic called DLS for
reasoning about Egss and formulating the solutions. Overall, we provided a the-
oretical analysis and formal characterization of extensive games under a more
realistic model, viz., games with short sight. Meanwhile, this work draws a closer
connection between the fields of logic and game theory. In the literature, the
most related work is [11], which also proposed a logic for game with short sight.
But there are apparent differences, since we focused on the dynamic evolution
of games along with the interior structure of solutions, while the logic in [11]
took strategy profiles as primitive operators and put more emphasis on the final
outcomes of strategy profiles.

We have provided formula schemas specifying the features for a strategy
profile to be a solution. For further research, we would like to look into the model
checking problem on membership of the set of solutions. It should be interesting
to investigate the compare the complexity of model checking in games with short
sight compared with that in classical game model. To concentrate on the logical
part, we put on some restrictions on the game model in this paper. Therefore, it
would also be a possible direction to drop all these assumptions and go further
towards a complete practical model for games.

480 C. Liu et al.

Acknowledgments. This work is supported by the China Scholarship Council and
NSFC grant No. 61472369.

References

1. van Benthem, J.: Modal Logic for Open Minds. Center for the Study of Language
and Information Lecture Notes. Stanford University (2010)

2. van Benthem, J., Pacuit, E., Roy, O.: Toward a theory of play: A logical perspective
on games and interaction. Games 2(1), 52–86 (2011)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press
(2001)

4. Bonanno, G., Magill, M., Van Gaasback, K.: Branching time logic, perfect informa-
tion games and backward induction. Working Papers 9813, University of California,
Davis, Department of Economics (2003)

5. Cui, J., Luo, X., Sim, K.M.: A new epistemic logic model of regret games. In:
Wang, M. (ed.) KSEM 2013. LNCS, vol. 8041, pp. 372–386. Springer, Heidelberg
(2013)

6. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

7. Grossi, D., Turrini, P.: Short sight in extensive games. In: Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), pp. 805–812 (2012)

8. Halpern, J.Y., Pucella, R.: A logic for reasoning about evidence. Journal of Arti-
ficial Intelligence Research 26, 1–34 (2006)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. In: Handbook of Philosophical
Logic, pp. 497–604. MIT Press (1984)

10. Harrenstein, P., van der Hoek, W., Meyer, J.J.C., Witteveen, C.: A modal charac-
terization of Nash equilibrium. Fundamenta Informaticae 57(2–4), 281–321 (2003)

11. Liu, C., Liu, F., Su, K.: A logic for extensive games with short sight. In: Grossi, D.,
Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp. 332–336. Springer, Hei-
delberg (2013)

12. Lorini, E., Moisan, F.: An epistemic logic of extensive games. Electronic Notes in
Theoretical Computer Science 278, 245–260 (2011)

13. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
14. Ramanujam, R., Simon, S.E.: Dynamic logic on games with structured strategies.

In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Eleventh International Conference, KR 2008, Sydney, Australia, September 16–19,
pp. 49–58. AAAI Press (2008)

15. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, New York (2008)

Early Innovation Papers

Kinetic Description of Opinion Evolution
in Multi-agent Systems: Analytic Model

and Simulations

Stefania Monica(B) and Federico Bergenti

Dipartimento di Matematica e Informatica, Università Degli Studi di Parma,
Parco Area Delle Scienze 53/A, 43124 Parma, Italy
{stefania.monica,federico.bergenti}@unipr.it

Abstract. In this paper we consider multi-agent systems where interac-
tions among agents are modeled using a kinetic approach. While kinetic
theory aims at studying macroscopic properties of gases starting from
microscopic interactions among molecules, we are interested in modeling
the global behaviour of multi-agent systems on the basis of local interac-
tions among pairs of agents. In particular, here we study the dynamics of
opinion formation. Given a microscopic description of each single interac-
tion, we derive stationary profiles for the global opinion. Analytic results
are validated by simulations obtained by implementing the proposed the-
oretical model.

1 Introduction

In this paper a model for opinion formation in multi-agent systems is consid-
ered. Various approaches have been proposed in the literature to describe the
opinion evolution in a multi-agent system, among which it is worth recalling
those based on graph theory (e.g., [1]), on cellular automata (e.g., [2]), and on
thermodynamics (e.g., [3]).

In recent years, social interactions in multi-agent systems have been described
according to models inspired by kinetic theory of gases [4]. In particular, agent-
based cooperation models, such as that in [5], and large scale systems, such as
those in [6], could be modeled according to the kinetic framework. The same
approach could be also used in scenarios that involve general-purpose indus-
trial strength technology (see, e.g., [7,8]) and in the context of wireless sensor
networks (see, e.g., [9,10]). The literature on this topic gave birth to two new
disciplines, known as econophysics and sociophysics [11]. While econophysics
describes the evolution of market economy [12] or wealth distribution in a system
[13], sociophysics is aimed at modeling the evolution of social characteristics of
the system [14]. According to such new disciplines, exchanges of money or opin-
ion evolution can be modeled using the formalism of kinetic theory that describes
the interactions of molecules in a gas. Starting from the microscopic details of
the collisions between two molecules, kinetic theory derives macroscopic prop-
erties of gases. Similarly, the evolution of a global opinion in a society can be
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 483–491, 2015.
DOI: 10.1007/978-3-319-25524-8 30

484 S. Monica and F. Bergenti

described from a macroscopic viewpoint, starting from a model that describes
the effect of single interactions between a pair of agents [15]. More precisely, we
assume that each agent of the considered system is associated with an opinion v
defined in a given set I ⊆ R. The temporal evolution of the opinion distribution
f is described according to the Boltzmann equation, which typically describes
the evolution of gases. In this paper we investigate the opinion evolution of a
system starting from given stochastic rules that describe the effects of single
interactions. According to [16] each agent can interact with any other agent in
the system and it can change its opinion due to compromise, which is modeled
as a deterministic process, and to a randomly modeled diffusion process.

This paper is organized as follows. Section 2 describes the considered kinetic
model from an analytic viewpoint. Section 3 derives explicit formulas for the
stationary profiles in a specific case and it shows simulation results for different
values of the parameters of the model. Section 4 concludes the paper.

2 Kinetic Model of Opinion Formation

Sociophysics is based on the idea that social interactions among agents can be
described by generalizing the laws which describes binary interactions among
molecules. In kinetic theory, the molecules of a gas are typically associated
with their velocities at each instant t. Similarly, agents can be associated with
attributes that represent their characteristics, such as their richness and their
opinion. In the remaining of this paper, we associate to each agent a single scalar
parameter v in the interval I = [−1, 1] and we assume that it represents the agent’s
opinion. With this choice of the interval I, ±1 represent extremal opinions, while
values close to 0 correspond to moderate opinions. This choice is not restrictive
and the model we consider can be used in any other closed interval.

Following the approach of kinetic theory, the proposed model relies on the
definition of a function f(v, t) which represents the density of opinion v at time
t and which is defined for each opinion v ∈ I and for each time t ≥ 0. Since
f(v, t) is a density function, the following equality holds

∫

I

f(v, t)dv = 1. (1)

In order to describe the opinion evolution using a kinetic approach, we assume
that the function f(v, t) evolves according to the Boltzmann equation. In par-
ticular, we consider the following (homogeneus) formulation of the Boltzmann
equation

∂f

∂t
= Q(f, f)(v, t) (2)

where the left-hand side represents the temporal evolution of the distribution
function and Q is the collisional operator which takes into account the effects of
interactions.

In order to derive an explicit formula for the collisional operator Q, the
details of the binary interactions need to be described. In the considered model,

Kinetic Description of Opinion Evolution in Multi-agent Systems 485

the post-interaction opinions of two interacting agents are obtained by adding
to their respective pre-interaction opinions a contribution related to compromise
and a contribution related to diffusion, according to the following formula [17]

{
v′ = v + γC(|v|)(w − v) + η∗D(|v|)
w′ = w + γC(|w|)(v − w) + ηD(|w|) (3)

where the pair (v′, w′) denotes the post-interaction opinions of the two agents
whose pre-interaction opinions were (v, w). In (3) the second terms on the right-
hand side of the two equations model a compromise process, since they are
proportional to the difference between the opinions of the two interacting agents.
We consider values of the parameter γ in (0, 1

2), and the function C(·) is assumed
to be a (symmetric) function of the opinion. The third terms are related to
diffusion through η and η∗, which are supposed to be two random variables, and
function D(·). In the following we assume that the two functions C(·) and D(·)
satisfy

0 ≤ C(|v|),D(|v|) ≤ 1 ∀v ∈ I.

Moreover, we assume that both functions are nonincreasing with respect to the
absolute value of the opinion, coherently with the fact that, typically, extremal
opinions are more difficult to change.

Observe that if the diffusion term in (3) is neglected, then the post-interaction
opinions are deterministic and they only depend on the choice of γ and C(·).
From (3), since both γ and C(·) are positive, the contribution of compromise
is positive each time an agent interacts with another agent whose opinion is
greater while it is negative otherwise. Hence, the idea of compromise is respected,
since the difference between the opinions of the two agents is reduced after the
considered interaction. Moreover, the post-interaction opinion of an agent is
closer to its pre-interaction opinion than to that of the agent it interacts with
because, taking for instance the first equation of (3), since in our assumption
0 ≤ γC(|v|) ≤ 1/2, the following inequality holds

|v′ − v| = γC(|v|)|w − v| ≤ (1 − γC(|v|)) = |v′ − w|. (4)

The contribution of diffusion can be either positive or negative depending on
the value of the random variables η and η∗. In the following, we assume that such
random variables have the same statistics. In particular, we assume that their
average value is 0 and their variance is σ2 so that, defining their , the following
equalities hold

∫

B

ηϑ(η)dη =
∫

η∗ϑ(η∗)dη∗ = 0
∫

B

η2ϑ(η)dη =
∫

η2
∗ϑ(η∗)dη∗ = σ2 (5)

where B is the support of the two random variables η and η∗. The set B is
chosen to ensure that the post-interaction opinions v′ and w′ always belong to
the interval I where the opinion is defined.

486 S. Monica and F. Bergenti

Under these assumptions, the explicit expression of the collisional operator
Q defined in (2) can be finally written as

Q(f, f) =
∫

B2

∫

I

[
ϑ(η)ϑ(η∗)

1
J

f(′v)f(′w) − ϑ(η)ϑ(η∗)f(v)f(w)
]
dwdηdη∗ (6)

where ′v and ′w are the pre-interaction variables which lead to v and w, respec-
tively, ′W is the transition rate relative to the quadruple (′v,′ w, v, w) and J is
the Jacobian of the transformation of (′v,′ w) in (v, w) [16].

Instead of solving (2) we consider its weak form. In functional analysis, the
weak form of a differential equation is obtained by multiplying both sides of the
considered equation by a test function φ(·), a smooth function with compact
support, and then integrating the obtained equation. The weak form of the
Boltzmann equation can be derived from (2) and (6). Using a proper change of
variable in the integral, it can be written as:

d
dt

∫

I

f(v, t)φ(v)dv =
∫

B2

∫

I2
ϑ(η)ϑ(η∗)f(v)f(w)(φ(v′) − φ(v))dvdwdηdη∗. (7)

If we consider φ(v) = 1 in (7) then the following equation is obtained

d
dt

∫

I

f(v, t)dv = 0 (8)

as expected from (1). This property is analogous to mass conservation in a gas.
Considering φ(v) = v as test function in (7) and recalling (3) we obtain

d
dt

∫

I

f(w, t)vdv = γ

∫

B2

∫

I2
ϑ(η)ϑ(η∗)f(v)f(w)C(|v|)(w − v)dvdwdηdη∗

+
∫

B2

∫

I2
ϑ(η)ϑ(η∗)f(v)f(w)ηD(|v|)dvdwdηdη∗.

(9)

Defining the average value of the opinion at time t as

u(t) =
∫

I

f(v, t)v dv (10)

the left hand side of (9) corresponds to the derivative u̇(t) of the average opinion.
The first integral in the right hand side of (9) can be written in a simplified way
by proper manipulation as

γ

∫

I

f(v)C(|v|)dv

∫

I

vf(v)dv − γ

∫

I

f(v)C(|v|)vdv. (11)

The second integral in (9) is 0 because the average value of ϑ is 0, according
to (5). Therefore, from (9) and (11), it can be obtained that the derivative of
the average opinion u can be written as

u̇(t) = γu(t)
∫

I

f(v)C(|v|)dv − γ

∫

I

f(v)C(|v|)vdv. (12)

Kinetic Description of Opinion Evolution in Multi-agent Systems 487

Observe that if C is constant then, using (1), the right-hand side of (12) is 0 and
equation (12) becomes

u̇(t) = 0 (13)

i.e., the average opinion is conserved, namely u(t) = u(0). This property corre-
sponds to the conservation of momentum in gases.

We are interested in studying the behaviour of the distribution function
f(v, t) for large values of the time t and in deriving stationary profiles. In order
to simplify notation we first define a new temporal variable τ = γt where γ is
the coefficient related to compromise which appear in (3). Assuming that γ is
small, namely that each interaction causes small opinion changes, the function

g(v, τ) = f(v, t) (14)

describes the asymptotic behaviour of f(v, t). If we substitute f(v, t) with g(v, τ)
in (7) and use the Taylor series expansion of φ(v) around v in (7) [18]:

∂g

∂τ
=

λ

2
∂2

∂v2
(D(|v|)2g) +

∂

∂v
((v − u)g) (15)

where
λ = σ2/γ. (16)

From now on we assume that the function C(·) is constant and equal to 1.
We are now interested in studying stationary solutions of equation (15), which is
denoted as g∞ in the remaining of this paper. The stationary profiles are found
by imposing that the derivative of g with respect to τ is 0 and, from (15), they
can be found by solving the following second order partial differential equation

λ

2
∂2

∂v2
(D(|v|)2g) +

∂

∂v
((v − u)g) = 0. (17)

In the following section, the solutions of (17) are analyzed for a specific expression
of the diffusion function D(|v|) and for different values of the parameter λ.
Analytic results are also compared with simulations.

3 Stationary Behaviour of Opinion Distribution

In this section we derive the stationary profiles g∞ for the opinion density for a
specific diffusion function. As in the analytic derivation in Section 2, the com-
promise function C(|v|) is assumed to be constant and equal to 1. As observed in
Section 2, this choice leads to a constant value of the average opinion u(t). In the
following the dependence on t is omitted since u(t) is constant and, therefore,
the average opinion is denoted as u.

The stationary profiles are the solutions of (17) and, therefore, they depend
on the average opinion u, on the parameter λ (which is related to γ and σ2),
and on the choice of the diffusion function D(·). The results obtained with the
distribution function

D(|v|) = 1 − |v| (18)

488 S. Monica and F. Bergenti

are investigated in this paper. This function depends on v through its absolute
value, as required in (3). Moreover, it is a decreasing function of |v| and its image
is [0, 1], in agreement with the assumptions made in the previous section.

By considering the diffusion function D(|v|) defined in (18) in the system of
equations (3), which describes the effect of each single interaction between two
agents, one obtains

{
v′ = v + γ(w − v) + η(1 − |v|)
w′ = w + γ(v − w) + η∗(1 − |w|). (19)

In this case, we set the support of ϑ equal to B = (−(1 − γ), 1 − γ). This choice
guarantees that the post-collisional opinions belong to the interval I where they
are defined, as shown in [19].

In [19] it is shown that the stationary profile, namely the solution of (17), is

g∞(v) = cu,λ(1 − |v|)−2− 2
λ exp

(

− 2(1 − uv)
λ(1 − |v|)

)

(20)

where cu,λ is a proper constant which depends on the parameter of the model,
namely on the average opinion u and on λ and which must be set in order to
guarantee that g∞ is a probability density function.

The stationary profile g∞ defined in (20) is piecewise C1 and it is non-
differentiable in v = 0, as D(|v|). Moreover, the following equality holds

g∞(v;u, λ) = g∞(−v;−u, λ) (21)

meaning that the solution is symmetric with respect to the change of v and u
with −v and −u. In particular, if u = 0, equation (21) implies that g∞ is an
even function.

The stationary profile g∞ can then have one or two stationary points. All
the possible cases can be expressed as follows.

– If u = 0 then g′
∞(v) = 0 in two points symmetrical with respect to 0, namely

ṽ1,2 = ± λ
λ+1 .

– If u > 0 then the condition λ > −u is always satisfied, so that the positive
stationary point is always defined. The negative stationary point exists only
if λ > u. These conditions can be summarized as follows:

- if 0 < λ ≤ u then the unique stationary point is ṽ = u+λ
λ+1 and it is

positive;
- if λ > u then there are two stationary points with opposite signs, namely

ṽ1,2 = u±λ
λ+1

– If u < 0 then λ > u for all possible values of λ so that the negative stationary
point is always defined. The positive stationary point, instead, exists only if
λ > −u. These conditions can be summarized as follows:

- if 0 < λ ≤ −u then the unique stationary point is ṽ = u−λ
λ+1 and it is

negative;
- if λ > −u then there are two stationary points with opposite signs,

namely ṽ1,2 = u±λ
λ+1 .

Kinetic Description of Opinion Evolution in Multi-agent Systems 489

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

v

λ=1/3
λ=1
λ=3

Fig. 1. The stationary profiles g∞ relative to the average opinion u = 0 are shown
with solid lines for λ = 1/3 (blue line), λ = 1 (red line), λ = 3 (green line). Simulation
results are shown using dashed lines.

Observe that simple manipulations shows that

lim
v→0+

g′
∞(v) > 0 lim

v→0−
g′

∞(v) < 0 (22)

and, therefore, v = 0 is a non differentiable point. According to (22), the point
v = 0 can be considered as a point of minimum. Therefore, the stationary points
are points of maximum.

In Figs. 1 and 2 the plots of the functions g∞ defined in (20) are shown (solid
lines) for some values of u and λ. More precisely, Fig. 1 is relative to the case
with u = 0 and λ = 1/3 (blue line), λ = 1 (red line), and λ = 3 (green line).
As previously observed, the stationary profiles are even functions and they all
have two points of maximum, symmetric with respect to v = 0. The points of
maximum get closer to the extremes of I as λ increases.

Fig. 1 also shows simulations results (dashed lines). All these results are
obtained using 1000 agents. The initial opinion of each agent is randomly ini-
tialized in I in such a way that their average is u = 0. In order to obtain the
stationary profiles, a large number of interactions among agents must be con-
sidered. The results shown in Fig. 1 are obtained with 106 interactions. At each
iteration, two agents, among the 1000, are randomly chosen and their opinions
are updated according to (19). The (dashed) lines shown in Fig. 1 are relative to
the opinion distribution at the end of the 106 interactions. A comparison between
solid and dashed lines shows that simulation results fit the analytic plots. As a
matter of fact, the trends of the curves obtained by simulation are similar to the
curves obtained as analytic solutions of the model.

Fig. 2 shows the stationary profiles g∞ derived in (20) obtained when the
average opinion is u = 1/2. As in the previous case, three values of λ are con-
sidered, namely: λ = 1/3 (blue line), λ = 1 (red line), and λ = 3 (green line).
Observe that if λ = 1/3, then λ < u and the stationary profile has only one

490 S. Monica and F. Bergenti

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

v

λ=1/3
λ=1
λ=3

Fig. 2. The stationary profiles g∞ relative to the average opinion u = 1/2 are shown
with solid lines for λ = 1/3 (blue line), λ = 1 (red line), λ = 3 (green line). Simulation
results are shown using dashed lines.

(positive) point of maximum. If λ = 1 and if λ = 3, instead, the stationary
profile has two points of maximum, with opposite signs. Moreover, the value of
the positive maximum is greater than the negative one, in agreement with the
fact that the average opinion is u = 1/2.

Fig. 2 also shows the results of simulations obtained, once again, using 1000
agents (dashed lines). Such results are obtained considering 106 interactions as
in the previous case. At the beginning, the opinions are randomly initialized in
I so that their average is u = 1/2. In the simulator, pairs of agents are randomly
chosen and their opinions are updated according to (19). This process is iterated
106 times and the resulting density functions are shown in Fig. 2. As observed
when u = 0, simulation results are in agreement with analytic plots.

4 Conclusions

In this paper we consider a model for opinion formation in a multi-agent system
based on kinetic theory. As a matter of fact, the opinion evolution of the system
is described according to the Boltzmann equation and agents are reinterpreted
as the molecules of a gas. In the considered model, the opinion of an agent can
change because of compromise and diffusion. Assuming that the contribution
of compromise is proportional to the difference between the opinions of the two
interacting agents, we consider a specific expression for the diffusion process. We
analytically derive the asymptotic distribution of the opinion as a function of the
parameters of the model. Moreover, we performe simulations which, starting from
the microscopic model that describes single interactions between two agents,
allows obtaining the large time behaviour of the opinion distribution. Simulation
results are in agreement with the analytic framework.

Kinetic Description of Opinion Evolution in Multi-agent Systems 491

References

1. Tsang, A., Larson, K.: Opinion dynamics of skeptical agents. In: Proceedings of
13th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2014), Paris, France, May 2014

2. Monica, S., Bergenti, F.: A stochastic model of self-stabilizing cellular automata
for consensus formation. In: Proceedings of 15th Workshop “Dagli Oggetti agli
Agenti” (WOA 2014), Catania, Italy, September 2014

3. Schweitzer, F., Holyst, J.: Modelling collective opinion formation by means of active
brownian particles. European Physical Journal B, 723–732 (2000)

4. Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and
Montecarlo Methods. Oxford University Press, Oxford (2013)

5. Bergenti, F., Poggi, A., Somacher, M.: A collaborative platform for fixed and mobile
networks. Communications of the ACM 45(11), 39–44 (2002)

6. Bergenti, F., Caire, G., Gotta, D.: Large-scale network and service management
with WANTS. In: Industrial Agents: Emerging Applications of Software Agents in
Industry, pp. 231–246. Elsevier (2015)

7. Bergenti, F., Caire, G., Gotta, D.: Agents on the move: JADE for Android devices.
In: Procs. Workshop From Objects to Agents (2014)

8. Bergenti, F., Caire, G., Gotta, D.: Agent-based social gaming with AMUSE. In:
Procs. 5th Int’l Conf. Ambient Systems, Networks and Technologies (ANT 2014)
and 4th Int’l Conf. Sustainable Energy Information Technology (SEIT 2014), ser.
Procedia Computer Science, pp. 914–919. Elsevier (2014)

9. Monica, S., Ferrari, G.: Accurate indoor localization with UWB wireless sen-
sor networks. In: Proceedings of the 23rd IEEE International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE
2014), Parma, Italy, pp. 287–289. June 2014

10. Monica, S., Ferrari, G.: Optimized anchors placement: an analytical approach in
UWB-based TDOA localization. In: Proceedings of the 9th International Wireless
Communications & Mobile Computing Conference (IWCMC 2013), Cagliari, Italy,
pp. 982–987. July 2013

11. Chakraborti, B.K., Chakrabarti, A., Chatterjee, A.: Econophysics and Socio-
physics: Trends and Perspectives. Wiley, Berlin (2006)

12. Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for simple market econ-
omy. Journal of Statistical Physics 120, 253–277 (2005)

13. Slanina, F.: Inelastically scattering particles and wealth distribution in an open
economy. Physical Review E 69, 46–102 (2004)

14. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Interna-
tional Journal of Modern Physics C 11, 1157–1166 (2000)

15. Weidlich, W.: Sociodynamics: a systematic approach to mathematical modelling
in the social sciences. Harwood Academic Publisher, Amsterdam (2000)

16. Toscani, G.: Kinetic models of opinion formation. Communications in Mathemat-
ical Sciences 4, 481–496 (2006)

17. Monica, S., Bergenti, F.: A Kinetic Study of Opinion Dynamics in Multi-Agent
Systems. In: Proceedings of 14th Conference of the Italian Association for Artificial
Intelligence (AI*IA 2015), Ferrara, Italy, September 2015

18. Toscani, G.: One-dimensional kinetic models of granular flows. ESAIM. Mathe-
matical Modelling and Numerical Analysis 34, 1277–1291 (2000)

19. Monica, S., Bergenti, F.: Simulations of opinion formation in multi-agent systems
using kinetic theory. In: Proceedings of 16th Workshop “Dagli Oggetti agli Agenti”
(WOA 2015), Napoli, Italy, pp. 97–102. June 2015

© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 492–500, 2015.
DOI: 10.1007/978-3-319-25524-8_31

An Agent-Based Model to Study Effects of Team
Processes on Compliance with Safety Regulations

at an Airline Ground Service Organization

Alexei Sharpanskykh() and Rob Haest

Faculty of Aerospace Engineering, Delft University of Technology,
Kluyverweg 1, 2629 HS Delft, The Netherlands

{o.a.sharpanskykh,r.c.s.haest}@tudelft.nl

Abstract. Maintaining high levels of safety under conditions of ever increasing
air traffic is a challenging task. Failures to comply with safety-related regula-
tions are often considered to be important contributors to safety occurrences.
To address the issue of compliance, approaches based on external regulation of
the employees’ behavior were proposed. Unfortunately, an externally imposed
control is often not internalized by employees and has a short-term effect on
their performance. To achieve a long-term effect, employees need to be inter-
nally motivated to adhere to regulations. Theories from social sciences propose
that team processes play an important role in the dynamics of individual moti-
vation. In this paper an agent-based model is proposed, by which the impact of
social interaction and coordination in teams of platform employees on their in-
dividual motivation and compliance with safety regulations at an airline ground
service organization are explored. The model was simulated and partially vali-
dated by a case study performed at a real airline ground service organization.
The model was able to reproduce behavioral patterns of compliance of the plat-
form employees in this study.

Keywords: Compliance · Agent-based model · Motivation · Cognitive models ·
Social contagion

1 Introduction

The amount of air traffic increases with every passing year. The performance pres-
sures imposed nowadays on the actors in air transportation make it difficult to achieve
safety targets formulated by regulatory organizations. According to the aviation statis-
tics [2], most of the safety occurrences happen not during the flight, but on the
ground, e.g., during aircraft ground handling operations and aircraft maintenance
operations. Decreasing the number of ground safety occurrences has a high priority in
many airlines in different countries. To achieve this aim some airlines use Ramp Line
Operations Safety Assessments (LOSA) [2] - a monitoring tool for measuring and
identifying the adherence to safety regulations on the platform. Unfortunately, the
introduction of ramp LOSA in the ground service organization under study did not
result in a decrease in the number of ground safety occurrences.

 An Agent-Based Model to Study Effects of Team Processes on Compliance 493

To achieve a long-term compliance, employees need to be internally motivated to
adhere to regulations [3]. In this paper, based on a theoretical fundament from social
sciences we build an agent-based model to explore the role of team processes in indi-
vidual motivation and compliance of platform employees with safety regulations in an
airline ground service organization. In particular we consider a specific task of the
aircraft arrival procedure - Foreign Object Damage (FOD) check. Foreign object is
any object that should not be located near aircraft as it can damage aircraft or injure
personnel. According to [1], the improper execution of FOD checks costs airlines and
airports millions of dollars every year. Nevertheless, the ramp LOSA statistics
showed that FOD checks are often not performed by platform employees.

The proposed model elaborates the motivation and decision making of the platform
employees whether or not to perform the FOD check. In this elaboration, next to so-
cial also cognitive and organizational factors are taken into account. Furthermore, the
model includes individual and social learning of agents representing the employees
and addresses two modes of reasoning of agents – explicit rational and implicit auto-
matic (habits). At the social level we are particularly interested in how coordination
influences the motivation and compliance with safety regulations of the agents. In the
organization under study, first implicit coordination was used in the teams, when the
FOD check task was not explicitly allocated to any team member, but to the team as a
whole, and could be executed by any team member who decides to do so. After some
time, a new arrival procedure was introduced, which used explicit coordination. In
this case, the FOD check task was explicitly assigned to a specific team member. We
identified by simulation that in the case of implicit coordination a high level of com-
pliance was maintained in the presence of a high managerial control and the level of
compliance dropped quickly when the control decreased to a lower level. On the con-
trary, in the case of explicit coordination the compliance did not decrease significantly
in the presence of low control. These simulation outcomes are well supported by the
ramp LOSA statistics from the real ground service organization.

The paper is organized as follows. In the following Section 2 the theoretical basis
of the model is described. In Section 3 the proposed agent-based model is provided.
Main results from the simulation study are discussed in Section 4. The paper ends
with conclusions and discussions.

2 Theoretical Background

The theoretical basis of the model comprises several theories from social sciences
described below. These theories address human needs, the way how humans reason
about their needs and make choices to act based on this reasoning. All the theories
used for the model development have a good empirical support.

Self-determination theory [3] is a theory of human motivation, which addresses
people’s universal, innate psychological needs and tendencies for growth and fulfill-
ment. Specifically, the theory postulates three types of basic needs:

- the need for competence concerns the people’s inherent desire to be effective
in dealing with the environment;

494 A. Sharpanskykh and R. Haest

- the need for relatedness concerns the universal disposition to interact with, be
connected to, and experience caring for other people;

- the need for autonomy concerns people’s universal urge to be causal agents, to
experience volition.

In line with other motivation theories [6, 7], in addition to the needs listed above,
the need for safety was added, which is particularly relevant for the ground service
organization, in which physical injuries are not uncommon.

Based in needs individual goals can be defined. Higher level individual goals may
be refined in goal hierarchies as described in [8]. To achieve or maintain his or her
goals, an individual considers different behavioral options (actions or plans). One of
the theories that explains why individuals choose one option over another is the Ex-
pectancy Theory of Motivation by Vroom [7]. According to the theory, when an indi-
vidual evaluates alternative possibilities to act, he or she explicitly or implicitly makes
estimations for the following factors: expectancy, instrumentality and valence.

Expectancy refers to the individual’s belief about the likelihood that a particular act
will be followed by a particular outcome (called a first-level outcome). Its value va-
ries between 0 and 1.

Instrumentality is a belief concerning the likelihood of a first level outcome result-
ing into a particular second level outcome; its value varies between -1 and +1. A
second level outcome represents a desired (or avoided) state of affairs that is reflected
in the agent’s goals.

Valence refers to the strength of the individual’s desire for an outcome or state of
affairs; it is also an indication of the priority of goals.

Values of expectancies, instrumentalities and valences may change over time, in
particular due to individual and social learning. The motivational force of an individu-
al i to choose option to act k is calculated as:

, , , ,

1 1

() () () ()
n m

k i kl i h i klh i
l h

F t E t V t I t

 (1)

Here Ekl,i(t) is the strength of the expectancy that option k will be followed by out-
come l; Vh,i(t) is the valence of the second level outcome (a goal) h; Iklh,i(t) is per-
ceived instrumentality of outcome l for the attainment of outcome h for option k.

The Vroom’s theory describes the process of rational decision making. However,
repetitive actions such as occur during aircraft handling may over time become auto-
matic, i.e., a habit. The dual process theory [5] distinguishes System 1 and System 2
thinking. While System 2 is used for rational, rule-based and analytic thinking, Sys-
tem 1 is associated with unconscious, implicit and automatic reasoning. Depending on
the dynamics of environmental changes, an individual switches between the systems.
Both systems are used in the model and the case study considered in the paper.

3 The Agent-Based Model

To develop the model, an extensive one year study was performed at a real ground
service organization. The data were gathered by observation, questionnaires and in-
terviews with employees playing different roles in the organization. The collected

 An Agent-Based Model to Study Effects of Team Processes on Compliance 495

data were separated in two data sets. The first set contained data on the organizational
context (i.e., formal organizational structures and processes, norms and regulations)
and on local processes and characteristics of the organizational agents. This dataset
was used for the model initialization. To represent the uncertainty and variability of
the components of the model, most of the parameters were specified by intervals with
a uniform distribution. The second set contained data describing global organizational
or systemic properties (such as ramp LOSA statistics), which were used for the model
validation. Because of the space limitations, only a part of the model is described
below. For the complete model description please refer to [9].

Specification of Decision Making of Agents
Decision making by the Platform Employee agents whether or not to perform FOD
check was modeled by using the Vroom’s expectancy theory (Fig. 1). To initialize the
expectancies, instrumentalities and valences of the model for each agent three classes
of values were introduced: Low, Medium and High. Most of the numerical scales of
these parameters were divided equally among the classes: Low for [0, 0.33), Medium
for [0.33, 0.67), and High for [0.67, 1].

The expectancy theory model was used for System 2 reasoning. When the same
operations were routinely executed by a Platform Employee agent, the agent’s System
2 reasoning was gradually shifting to System 1 reasoning – a habit had been formed.
This shift was modeled by the dynamics of agent’s i openness parameter i:

 min() () (()) ,i i i it t t t t (2)

where min
i is the minimum perceptive openness of agent i (set to 0.1 in the simu-

lation), is the rate of transition from System 2 to System 1. It depends on the ex-
ecution frequency of the operation by the agent, as well as on the agent’s personal
characteristics. In the simulation =0.015, meaning that it takes around two months
to form a new habit.

When procedural rules change, an agent needs to adapt to a new situation and re-
consider options by switching from System 1 to System 2: the agent i’s openness is
set to its initial value (0)i and the process of the new habit formation starts again.

A similar expectancy theory model was created for option 2 – ‘Not to perform
FOD check’. It has the same types of parameters, but their values are different.

In the simulation, every time when an agent i considers explicitly (System 2) or
implicitly (System 1) whether or not to perform FOD check, motivation forces F1,i and
F2,i for both options are calculated by (1). Then, the agent performs FOD check with
probability (Fmax+F1,i)/(2Fmax+F1,i+F2,i). The normalization with Fmax is used to com-
pensate for the negative values of the instrumentalities.

Specification of Agent Learning and Social Interaction
Two types of learning were modeled: individual and social learning of agents.

An agent learns individually by observing a feedback from the environment on its
action. In the decision making model from Fig. 1, the individual learning was realized
by updating values of expectancies (E) based on the following observations:

496 A. Sharpanskykh and R. Haest

Fig. 1. Decision making model of a Platform Employee agent for performing FOD check based
on the Expectancy Theory with expectancies (E), instrumentalities (I), states (S) and valences
(V). For readability purposes the time parameter and agent indexes were omitted.

- An agent observes whether or not a reprimand from other agents is provided,
when the agent does not comply with regulations (E111, E112, E113).

- After the successful execution of a task, an agent observes how much time it
took and how it influenced the execution time of the operation (E11, E12).

- When an agent does not perform a FOD check, a safety occurrence could oc-
cur. The agent is able to observe such occurrences (E13, E14).

Furthermore, the Platform Employee agents are able to observe the execution of
operations by other agents in their teams and to learn from these agents by verbal
communication. Social learning is modeled as the process of social contagion [4]. By
this process expectancies Ekl,i(t) were updated as:

 Ekl,i(t+t) = Ekl,i(t)+ kl,i(t)t (3)

Here kl,i(t) = jT j,i(t)(Ekl,j(t) - Ekl,i(t))/ jT j,i(t) is the amount of change of the agent
i’s state; T is the set of the agents in the team. A weight j,i [0,1] is the degree of in-
fluence of agent j on agent i defined as:
 j,i(t)=i(t)j(t)ji (4)

 An Agent-Based Model to Study Effects of Team Processes on Compliance 497

Table 1. The goals and states of the decision making model provided in Fig.1.

Goals States
G1 Achieve a high level of competence
 G1.1 Achieve the highest time efficiency
 G1.2 Prevent aircraft, equipment and/or
 infrastructural damage

G2 Achieve a high level of occupational
 safety
 G2.1 Prevent personal injury

G3 Maintain sense of belonging and
 attachment to colleagues
 G3.1 Maintain high team acceptance
 G3.2 Maintain high management acceptance

G4 Achieve a high control over own
 behavior and goals
 G4.1 Achieve a high level of freedom in the
 execution of tasks
 G4.2 Achieve high psychological ownership

 of rules

S1 Action saves time
S2 Action costs additional time
S3 Action results in aircraft, equipment or
 infrastructural damage
S4 Action prevents aircraft, equipment or
 infrastructural damage
S5 Action results in personal injury
S6 Action prevents personal injury
S7 Action is in alignment with the team
 member norms
S8 Action is not in alignment with the
team
 norms
S9 Action is in alignment with sector
 management norms
S10 Action is not in alignment with sector
 management norms
S11 Reprimand received from team mem-
ber
S12 Reprimand received from team leader
S13 Reprimand received from sector
 manager

i(t) and j(t) are the agent characteristics – the openness of information recipient
agent i and the expressiveness of information provider agent j, and [0,1] is the
strength of the information channel between the two agents.

Identification of Shared Beliefs, Norms and Values of (Groups of) Agents
By field observations and interviews a team norm was identified. The norm applies to
situations in which a team arrives too late at an aircraft stand while the aircraft is
waiting for the docking process. To save time, the FOD check is omitted and the ar-
rival procedure starts directly. Field data revealed that employees who execute the
check in the described situation get a social reprehension from other team members.
This influences the achievement of goal G3.1, which is driven by the alignment of the
decision option with the team norms and team leader norms.

The Team Leader agent’s and Sector Manager agent’s norms are in line with the
organizational regulations.

Specification of Coordination Mechanisms in Teams of Agents
Before the introduction of the new arrival procedure the tasks were coordinated im-
plicitly, in an ad-hoc manner. In particular, the FOD check task was executed by dif-
ferent members, who had decided to perform it or was not executed at all. This way of
working is described by the model provided above.

498 A. Sharpanskykh and R. Haest

After the introduction of the new procedure each agent in the team was assigned a
specific task. Field study data indicated that the probability for team member repri-
mands and team leader reprimands have increased significantly due to the explicit
task division. Thus, in the decision making model of the agent responsible for the
FOD check the relevant parameters were changed for the new procedure.

4 Simulation Study

We consider a real scenario, which occurred in the past and consists of five periods:

Before the introduction of the new arrival procedure, when implicit coordination was
used in the teams:

P1: the first period with a limited managerial control over the execution of the plat-
form operations and limited safety information provision.

P2: the second period (8 weeks) with a high managerial control after many safety
occurrences happened in the first period.

P3: the third period in which the release of managerial control occurs over time.

Transition to the new arrival procedure, which includes explicit coordination:
P4: in the fourth period information sessions were organized to explain the purpose

and effects of the procedural change to the employees. High managerial control
was applied in the first months after the introduction of the new procedure.

P5: in the fifth period after one month after the introduction of the new procedure the
intensity of information provision and the managerial control decreased.

A team consists of 5 agents: a team leader and 4 platform employees. In the simu-
lation the agents in the teams communicate with each other in a random order.

In line with the empirical findings, two types of agents in the teams are modeled:
more expressive agents with i [0.5, 0.9] and less expressive agents with i [0.1, 0.5].
Each agent can be of either type with an equal probability. The openness of an agent i
is assigned a wide range [0.1, 0.9] to represent the diversity of agents. In each simula-
tion run the agents’ parameters are randomly instantiated from the uniformly distributed
intervals introduced above.

In the simulation, one simulation day is divided in three shifts. During normal op-
erations, on average, the arrival procedure is executed three times at each shift. The
simulated time period is 200 working days.

In the following we discuss the dynamics of the motivational forces obtained in the
simulation. In period P1, after the initialization phase, most of the agents have a rela-
tively constant motivational force for both decision options. The motivational forces
to perform FOD checks are low as the organization neither sufficiently controls the
execution of operations nor creates a sufficient awareness about the importance of
FOD checks. Some agents in the team even prefer not to perform the check. By the
end of the phase the agents function in System 1 mode of reasoning. In the beginning
of P2 the organization introduces more frequent managerial control and reprimands.
To adapt to the new circumstances, the agents switch to System 2 mode of reasoning.

 An Agent-Based Model to Study Effects of Team Processes on Compliance 499

Such a change results in an increased motivation to perform FOD checks and a de-
creased motivation not to do so of all agents in all teams. The differences in motiva-
tion are explained by differences in the individual characteristics of the agents. How-
ever, when after 8 weeks the control and information provision is gradually removed,
the agents start gradually returning to their previous state. This form of motivated
behavior is known in the literature as externally regulated behavior [3]. These beha-
vioral patterns were also observed in the organization under study.

The introduction of the new procedure with the explicit coordination results in P4
in a higher motivation levels to perform FOD check and a lower motivation levels not
to perform the check than in the previous three phases (Fig.2). Thus, the decision
options have become better discriminated than in the previous periods. In P5 the ma-
nagerial control is gradually removed. However, the motivational forces not to per-
form FOD check do not increase significantly. This effect can partly be explained by
a better information provision and the social control.

Fig. 2. The motivational forces of the agents in a team to perform FOD check (left) and to not
perform FOD check (right) in the periods P4 and P5 with the explicit coordination in the teams.
The dashed vertical line indicates the beginning of fourth period (increased control).

The model simulation outcomes were also compared to the ramp LOSA statistics
of the FOD checks execution in the ground service organization. The model was able
to capture the trends in the real ramp LOSA data. The Student’s two-sample t-test
performed on real and simulated data for periods P1-P3 supported the null-hypothesis
at the significance level 5%. The statistics about periods P4 and P5 is currently insuf-
ficient to draw substantiated conclusions. However the gathered data indicated that
the compliance has increased substantially, which is in line with the simulation model
prediction. The model predicts that the compliance with safety regulations will not
drop as much as in P3 after the managerial control is decreased in P5. Thus, according
to the model, the agents will not return to the safety-compromising habits.

0 200 400 600 800 1000 1200 1400 1600 1800
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of decisions

200 400 600 800 1000 1200 1400 1600 1800
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Number of decisions

500 A. Sharpanskykh and R. Haest

5 Discussion and Conclusions

In this paper a formal agent-based motivation model is presented, based on an inte-
grated theoretical basis from social sciences. All the theories used for the model de-
velopment were extensively validated by experiments with human subjects.

In the study presented in the paper a good agreement is demonstrated between the
simulated data obtained using the proposed model and the real data from the ground
service organization under study. Based on the developed model, global sensitivity
analysis was performed to identify parameters with the highest impact on the com-
pliance both in the implicit and explicit coordination case. This analysis indicated that
the parameters that define social relations and processes in teams are of the utmost
importance in the case of explicit coordination. More detailed results on the sensitivi-
ty analysis are presented in [9].

To the best knowledge of the authors, it is a first attempt to approach the problem
of compliance in airline ground service organizations by a model-driven simulation
study of the employees’ motivation.

References

1. Boeing: Foreign object debris and damage prevention (1998).
http://www.boeing.com/commercial/aeromagazine/aero_01/textonly/s01txt.html

2. de Boer, R.J., Koncak, B., Habekotté, R., van Hilten, G.J.: Introduction of ramp-LOSA at
KLM Ground Services. In: Human Factors of Systems and Technology, Human Factors and
Ergonomics Society Annual Meeting. Shaker Publishing, Maastricht (2011)

3. Deci, E.L., Vansteenkiste, M.: Self-determination theory and basic need satisfaction: Under-
standing human development in positive psychology. Ricerche di Psichologia 27,
17–34 (2004)

4. Hegselmann R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis
and simulation, J. of Artificial Societies and Social Simulation 5(3) (2002)

5. Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, New York (2011)
6. McClelland, D.C.: Human motivation. CUP Archive (1987)
7. Pinder, C.C.: Work Motivation in Organizational Behavior. Prentice-Hall, NJ (1998)
8. Popova, V., Sharpanskykh, A.: Formal Modelling of Organisational Goals Based on Per-

formance Indicators. Data and Knowledge Engineering 70(4), 335–364 (2011)
9. Sharpanskykh, A., Haest, R.: An agent-based model to study effects of team processes on

compliance with safety regulations at an airline ground service organization. Technical re-
port, TU Delft (2015). http://homepage.tudelft.nl/j11q3/papers/tech_report_182014.pdf

Agent-Oriented Programming Languages
as a High-Level Abstraction Facilitating

the Development of Intelligent Behaviours
for Component-Based Applications

Seán Russell(B), G.M.P. O’Hare, and Rem W. Collier

School of Computer Science, University College Dublin, Dublin, Ireland
{sean.russell,gregory.ohare,rem.collier}@ucd.ie

Abstract. Developing behaviours for complex component based sys-
tems is a difficult task. This paper evaluates the use of agent-oriented
programming languages as a high level abstraction for performing this
task. Evaluation carried out objectively shows that participants com-
pleted more tasks and subjectively they perceived that it was easier to
use when compared with the same tasks performed using Java.

Keywords: Agent-oriented programming languages · Component based
applications · Ease of development

1 Introduction

The development and maintenance of intelligent behaviours for complex sys-
tems, such as wireless sensor network applications, is a difficult task. In order
to successfully implement these behaviours, a developer may require detailed
knowledge of the underlying component system or the application itself.

Previous research has investigated the integration of component frameworks
with multi-agent systems [1]. This work utilised agents as both a method of
control of the component system as well as a facility for the introduction of
intelligent behaviours. This paper has developed the concept further, focusing
on the integration of multi-agent systems and a component based wireless sensor
network middleware to facilitate the development of intelligent wireless sensor
network applications. The main assertion of these works is that the integration
provides an accessible means to quickly alter the behaviour of the system.

The purpose of this work is to evaluate the accuracy of this assertion. As such,
there is no focus on the intelligence of the agents or the behaviours that they are
used to implement. More abstractly, this assertion can be viewed as the use of
agent-oriented programming languages as a higher-level abstraction for the addi-
tion of behaviours to a component-based application. Intelligent behaviours are
introduced through the integration of an environment abstraction technology. A
desirable side-effect is that this allows the use of a number of compatible agent-
oriented programming languages. Documentation of the environment specifies
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 501–509, 2015.
DOI: 10.1007/978-3-319-25524-8 32

502 S. Russell et al.

the interface that is presented by the environment abstraction and behaviours
are written with respect to this. As such, it is possible to effect the operation of
a complex system with little or no detailed knowledge of the underlying infras-
tructure.

2 Background

Within this study, students were required to perform a number of tasks based
on the development of intelligent behaviours for a component-based system.
This section will briefly introduce the technologies involved. Both problems in
the evaluation involved the development of behaviours for a wireless sensor net-
work application named WAIST (Waste Augmentation and Integrated Shipment
Tracking).

WAIST is an intelligent transportation system that enables the monitoring
of waste in transit, with the intention of identifying instances of illegal dump-
ing [2]. The application is built on the SIXTH middleware for the sensor web [3].
The SIXTH middleware is built on the Open Services Gateway Initiative frame-
work (OSGi) [4], which provides a flexible component framework enabling the
addition, removal and update of services at runtime.

2.1 OSGi

The OSGi specification describes a modular system and a service platform
for the Java programming language [4]. This system implements a complete
and dynamic component model, something that does not exist in standalone
Java/VM environments. Components, coming in the form of bundles for deploy-
ment, can be remotely installed, started, stopped, updated, and uninstalled with-
out requiring a reboot. Application life cycle management is implemented via
APIs that allow for remote downloading of management policies. This function-
ality is quite useful in a sensor network application as it allows the deployment
and removal of bundles in line with the addition and removal of sensors.

2.2 SIXTH

SIXTH is a Java-based Sensor Web Middleware incorporating sensed data from
diverse sources. This includes physical devices, such as sensors, as well as cyber
resources, such as Internet resources [3]. Based on OSGi, applications can be
built using SIXTH through the addition of bundles containing application code.
SIXTH provides the resources to route and filter the data that is introduced
such that additional bundles need only state the type of data that they require.
This data is then delivered to specific parts of the application for processing.

SIXTH also provides mechanisms for reconfiguring the operation of the sen-
sors on the fly. The tasking service is provided that can be used to specify the
a change in behaviour to a particular sensor (this will be encapsulated into a
message and be delivered to the appropriate bundle in the system). A tasking

Agent Abstractions for Component-Based Applications 503

message, if accepted as valid, is translated by an adaptor’s message wrapper
implementation, which performs transformation into a native messaging format
for that platform, which is then passed to the sensor node.

2.3 WAIST

As WAIST is built using the SIXTH middleware it is also based on the OSGi
component system. WAIST utilises a number of sensors to track the location
and activity of shipments of waste in transit in real time.

– A single GPS sensor attached to the truck carrying the shipment
– Multiple acceleration sensors attached to individual containers of waste

within the shipment
– Multiple light sensors attached to individual containers of waste within the

shipment
– Contact sensors attached to lids of individual containers

These sensors are combined to maintain a record of the location of the shipment
at all times as well as to attempt to determine if illegal dumping has occurred.
Pattern recognition is used to determine the state of containers within the ship-
ment and with context of state of other containers as well as location this can
be used to determine if illegal dumping has occurred.

3 Agent-Oriented Programming Languages

Agent-oriented programming (AOP) is a software development paradigm aimed
at creating entities known as intelligent agents [5] or rational agents [6]. Agents
are situated in environments in which they perceive and act. An issue that
repeatedly has to be dealt with, from a software development point of view, is
how to connect agents to environments. The design and implementation of the
interaction between the agents and the environment often requires substantial
effort, even though most environments and agent systems are implemented in
Java. Commonly this can hinder the exploitation of the full potential of the
environment by multi-agent systems [7].

3.1 Environment Abstraction

In order to mitigate the impact of the problem, this work utilises an environment
layer to simplify the integration of agents and their environment. The two most
well-known environment layer technologies in the area of agent programming
are the Environment Interface Standard (EIS) [8] and the Common Artifacts for
Agents Open framework (CArtAgO) [9].

CArtAgO was chosen for use within this work due to the difficulties integrat-
ing EIS (EIS environments are loaded from the local file space using a dedicated
Java class loader). CArtAgO easily integrates with OSGi, which is also designed
to manage class loading for the component based system.

504 S. Russell et al.

3.2 ASTRA

While the integration of CArtAgo and SIXTH is not tied to a single agent-
oriented programming language, one was chosen for use during the evaluation
of this work. ASTRA, an implementation of Agentspeak(TR), is a logic-based
agent programming language that combines AgentSpeak(L) [10] (implementa-
tion based on Jason [11]) with Teleo-Reactive [12] functions. ASTRA provides a
large number of features, such as typing of variables, support for multiple inher-
itance [13] and integration with multiple environment abstractions (including
CArtAgo). Further detail on the ASTRA language is available in [14].

4 Integration

The integration of the CArtAgo environment abstraction with SIXTH takes the
form of a single OSGi bundle. The bundle contributes a number of artifacts, each
designed to provide an agent with information about the middleware or allow
some measure of control. These artifacts provide functionality and information
in a generic manner. In this way they can be useful to all applications built using
SIXTH.

4.1 Basic Functionality

The basic integration of CArtAgo and SIXTH provides the following artifacts
relevant to the problems in the evaluation: the BundleArtifact allowing inter-
actions with OSGi bundles and the RetaskerArtifact allowing actuation in the
sensor network.

4.2 Expanded Functionality in WAIST

As this system was designed to enable the support of complex applications built
using SIXTH, the basic functionality may not provide enough information or
control. Figure 1 shows the design of the integration with WAIST. Agents in
the system are not only capable of utilising artifacts designed to interact with
SIXTH but also those designed to interact with WAIST. This allows the creation
of artifacts that are specific to the application and capable of finer detail and
control.

This extensibility is exploited in WAIST to provide a number of artifacts that
interact directly with the application. The artifacts provided that are relevant
to the problems in the evaluations are: the GPSDataArtifact which presents the
location information of the shipments and the DeploymentArtifact which pro-
vides information about the shipments and configures messages for the SIXTH
tasking service.

Agent Abstractions for Component-Based Applications 505

Agent
Bundle

SIXTH
CArtAgo
Bundle

WAIST
CArtAgo
Bundle

Agents

Artifacts

SIXTH
Bundles

Code Interaction

Artifact Use

WAIST
Bundles

Fig. 1. CArtAgO Artifacts usage Example

5 Evaluation

Evaluating programming languages, methodologies, paradigms and toolkits is
a matter of some discussion and debate within the wider software engineering
community. For systems like this, the principal aim is to make it easier for
developers to perform particular tasks. Specifically, it should facilitate developers
in implementing reliable, predictable, understandable behaviours for component
based applications.

Commonly, the notion of “programmer effort” is used in attempting to quan-
tify the amount of work a programmer must undertake to complete some pro-
gramming task. A number of studies have used objective measures to quantify
programmer effort. Although not specifically based in the agent domain, these
metrics can help inform a choice of metric for agent-oriented programming and
have previously been used as such [15].

When performing an evaluation such as this, a common approach is to use
two groups of participants. Each group is presented with a common problem
to solve, with all factors other than the subject of the evaluation being kept
equal [16,17]. This evaluation utilises two independent problems such that the
students, cannot gain an advantage by having completed the first problem that
would skew the results.

5.1 Problems

Two problems were developed, each containing a number of distinct tasks. The
first problem was based on analysing incoming GPS readings and performing
actions and the second was based on managing the OSGi bundles of the appli-
cation. This section will describe both of these problems briefly, however for
further detail the full problem specifications have been included in [18]. These
include the materials describing how the same precesses can be achieved using
Java as were described in the preceding sections.

506 S. Russell et al.

The design of the problems as a number of small tasks allows the use of a
more concrete metric than those based on lines of code. The solutions can be
analysed in terms of the number of tasks completed, the principle is the same
as in [16] where time taken is used.

Problem 1. This problem was designed such that the students would undertake
a number of tasks that would conceivably be a part of the WAIST application.
While it was not strictly necessary to solve all problems in the order provided,
most tasks have a reliance on the previous task. Based on the concept of GPS
and acceleration sensors within a number of trucks, the students were required to
complete the following tasks: a) Access and b) maintain a record of the most up
to date location for each shipment, c) detect when shipments fall below a speed
threshold, d) record the duration of time below a speed threshold, e) activate
sensors within a shipment when it is below a speed threshold.

Problem 2. This problem was designed such that the students would undertake
a number of tasks based on the management of the bundles in the WAIST
application. Based on this premise, the students were required to carry out the
following tasks: a) Access and b) maintain a record of all the bundles within the
application, c) search for new bundles to be installed, d)install and start new
bundles, e) update bundles to newer versions when found.

5.2 Participants

A user trial that was conducted using students from the MSc in Advanced Soft-
ware Engineering programme in University College Dublin. Twenty participants
with average number of years experience in industry of of 7.4 ± 5.1 years were
asked to solve two problems relating to the use of the WAIST system. The
students all indicated some level of experience with Java and had experience
with ASTRA during the class. All students indicate that they had little or no
experience with using OSGi and no students had previously used SIXTH.

The students were randomly assigned to one of two groups. Group A
attempted the first problem using ASTRA and group B using Java. This was
then reversed for the second problem such that all students had attempted one
problem in each language. The students had one hour to complete each problem
after which they were required to submit the work they had completed. Students
were incentivised to complete both problems by requiring them to be finished
and submitted as a component of their grades at a later date.

The aim of this work was to reduce the required effort when implementing
intelligent behaviours in a complex system. Naturally it can be assumed that a
programmer sufficiently competent with the technologies in use could implement
the behaviours using those technologies. However, the intention of this work is
to show that programmers with a lesser understanding of tools such as SIXTH
and OSGi benefit from the higher level abstractions provided through CArtAgO.
This study was intended to ascertain whether the use of the system reduced the
effort required by a developer to implement a solution.

Agent Abstractions for Component-Based Applications 507

5.3 Results

The source code of the solutions was analysed in order to measure the number
of tasks completed within the allotted time. Table 1 shows the average number
of tasks completed for each problem and language combination. The class the
participants were studying takes place over a one week period, the evaluation
took place on a Friday afternoon and was the last commitment of the students. As
such, a number of students did not stay to complete the second problem, which
was perceived as the more difficult problem. The students had been randomly
distributed into two groups, however 1 student mistakenly believed that he was
assigned to group A when he was in fact assigned to group B.

Table 1. Number of tasks completed

Problem Group Language Number of Number of Average Standard deviation
submissions tasks tasks solved

1 A ASTRA 11 5 2.63 1.15
1 B Java 9 5 0.67 0.47
2 B ASTRA 4 5 1 0.70
2 A Java 7 5 0.86 1.72

Table 1 displays an obvious improvement in the number of tasks completed
when using ASTRA over the number of tasks completed using Java particularly
for the first problem. There still exists an improvement in the second problem,
however due to the number of students who did not submit any work, no con-
clusions can be drawn from this.

5.4 Survey

In order to attain a subjective analysis of the programmer effort involved in
the completion of the problems, the students were asked to respond to a survey.
Students were asked to indicate their level of agreement with statements relating
to their experience level with a number of technologies and their experiences with
the problems they completed. The results were captured on a 5 point Likert scale.
The following statements relating to the problems were made:

Q1 The supporting information for solving the problem in ASTRA was ade-
quate.

Q2 The supporting information for solving the problem in Java was adequate.
Q3 Using ASTRA made the problems easier to complete.
Q4 ASTRA was easier to use than Java.
Q5 ASTRA was easier to modify than Java.
Q6 My ASTRA solution was more readable than my Java solution.

The responses to the questions are contained in Table 2 where the percentage
is given for each of the responses. The average and standard deviation of the
responses is calculated, where strongly disagree is 1, agree is 2, neither agree or
disagree was 3, agree was 4 and strongly agree is 5. The responses for a number
of statements were partially positive, primarily questions 3, 4 & 6.

508 S. Russell et al.

Table 2. Question responses

Question Strongly Disagree Neither agree Agree Strongly Mean SD
disagree or disagree agree

1 0% 35% 20% 45% 0% 3.1 0.89
2 10% 30% 20% 40% 0% 2.9 1.04
3 0% 10% 30% 45% 15% 3.65 0.85
4 0% 30% 30% 30% 10% 3.2 0.98
5 0% 35% 45% 20% 0% 2.85 0.73
6 0% 20% 30% 35% 15% 3.45 0.97

6 Conclusions and Future Work

A number of methods were utilised to evaluate the efficacy of this work as a
means to simplify the implementation of intelligent behaviours. These were based
on a class of masters students studying Agent-Oriented Software Engineering as
part of an MSc in Advanced Software Engineering.

The first method measured the number of tasks completed by the students
within a fixed amount of time. The results of the two problems were detailed,
and show that students completed a greater number of tasks when using ASTRA
compared to the same tasks completed in Java.

The subjective analysis carried out re-enforces the objective assessment. The
results show that there was a perception amongst the students, that using
ASTRA rather than Java made the problems easier to complete with 55% of the
participants either agreeing or strongly agreeing as opposed to 10% disagreeing.

Further work is required to address issues with the evaluation such as the
limited time available to complete the problems and possible bias in the questions
of the survey. Ideally a greater number of participants would be found.

Acknowledgments. This research has been supported by the Irish Environmental
Protection Agency (EPA) and Science Foundation Ireland (Grant 07/CE/I1147).

References

1. Lillis, D., Collier, R.W., Dragone, M., O’Hare, G.M.P.: An Agent-Based Approach
to Component Management. In: Proceedings of the 8th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2009), Budapest, Hun-
gary, International Foundation for Autonomous Agents and Multiagent Systems,
pp. 529–536, May 2009

2. Russell, S., O’Grady, M.J., Diamond, D., Ziókowski, B., O’Hare, G.: Monitoring
and Validating the Transport of Waste. Pervasive Computing, IEEE 12(1), 42–43
(2013)

3. Carr, D.: The SIXTH Middleware: Sensible Sensing for the Sensor Web. Ph.D
thesis, University College Dublin, Dublin, Ireland (2015)

4. OSGi Alliance: OSGi Specifications. http://www.osgi.org/Specifications/Home
Page

http://www.osgi.org/Specifications/HomePage
http://www.osgi.org/Specifications/HomePage

Agent Abstractions for Component-Based Applications 509

5. Jennings, N.R., Wooldridge, M.J.: Applications of Intelligent Agents. In: Jennings,
N., Wooldridge, M. (eds.) Agent Technology, pp. 3–28. Springer, Berlin Heidelberg
(1998)

6. Wooldridge, M.J.: Reasoning about rational agents. MIT press (2000)
7. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-

tiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)
8. Behrens, T., Hindriks, K.V., Bordini, R.H., Braubach, L., Dastani, M., Dix, J.,

Hübner, J.F., Pokahr, A.: An interface for agent-environment interaction. In:
Collier, R., Dix, J., Novák, P. (eds.) ProMAS 2010. LNCS, vol. 6599,
pp. 139–158. Springer, Heidelberg (2012)

9. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: a framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

10. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

11. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

12. Nilsson, N.J.: Teleo-reactive programs for agent control. JAIR 1, 139–158 (1994)
13. Dhaon, A., Collier, R.W.: Multiple inheritance in agentspeak (L)-style program-

ming languages. In: Proceedings of the 4th International Workshop on Program-
ming Based on Actors Agents & Decentralized Control, pp. 109–120. ACM (2014)

14. Collier, R.W.: ASTRA Programming Language. http://astralanguage.com
15. Lillis, D., Collier, R.W., Jordan, H.R.: Evaluation of a conversation management

toolkit for multi agent programming. In: Dastani, M., Hübner, J.F., Logan, B.
(eds.) ProMAS 2012. LNCS, vol. 7837, pp. 90–107. Springer, Heidelberg (2013)

16. Hochstein, L., Basili, V.R., Vishkin, U., Gilbert, J.: A pilot study to compare
programming effort for two parallel programming models. Journal of Systems and
Software 81(11), 1920–1930 (2008)

17. VanderWiel, S., Nathanson, D., Lilja, D.: Complexity and performance in parallel
programming languages. In: Proceedings Second International Workshop on High-
Level Parallel Programming Models and Supportive Environments, pp. 3–12. IEEE
Computer. Soc. Press (1997)

18. Russell, S.: Real-time monitoring and validation of waste transportation using
intelligent agents and pattern recognition. Ph.D thesis, University College Dublin
(2015)

http://astralanguage.com

Towards a Taxonomy of Task-Oriented Domains
of Dialogue

Tânia Marques(B)

School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
tmarques@inf.ed.ac.uk

Abstract. To deal with a broad spectrum of domains, intelligent agents
have to generate their own task-oriented dialogue that stems from the
need to interact with another agent when solving their own individual
task. Most work created to date has either been focused on the task or
on the dialogue, but not on both. A taxonomy that describes how the
characteristics of a domain determine the types of dialogue needed would
be useful, both for understanding how to create agents that are more
adaptable to different domains, and also to facilitate reusing previous
work. In this paper, we present a number of dimensions that could be
included in such a taxonomy, and illustrate how they could be used to
determine the nature of dialogue needed in a particular type of domain.

Keywords: Agent communication · Taxonomy · Task-oriented dialogue

1 Introduction

Creating agents who are able to automatically determine how to function in
different domains — in other words, agents who adapt their interactions to the
domain-level problem they are facing — would be a useful addition to the state of
the art models of interaction, which typically are tuned manually to the specific
domain of application. This is only possible if the agents communicate with
other agents when the task demands it. To date most of the work in the agents
community has focused on creating agents that are very good at solving a given
task when communication is not needed [1,2], very good at communicating when
recipes to solve the task are given [3,4], or very good only in very specific settings
[5,6]. It is necessary to bridge the gap between these trends of research to create
more flexible agents, capable of dealing with a broader spectrum of domains.

A taxonomy showing how the characteristics of a particular type of domain
influence the dialogue needed can be a useful tool. It would help understand
what is required of dialogue when building task-oriented domain-independent
agents, adaptable to several tasks and situations. It would make explicit the
connection between the task and the potential dialogue, while helping grounding
the communication to the physical task-domain. Forging the link between task
and the discourse can also be of value for reusing work that was previously
done in the literature by understanding how it correlate with the domain task.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 510–518, 2015.
DOI: 10.1007/978-3-319-25524-8 33

Towards a Taxonomy of Task-Oriented Domains of Dialogue 511

For instance, if the agents need to perform a joint plan, then work related to
argumentation might be relevant for them to exchange arguments about the
adequacy of a certain plan.

The purpose of this paper is to discuss the need of a taxonomy that forges
a link between the task and dialogue for agent interaction by showing a first
attempt to create it, and explaining how this taxonomy could be used. To that
end, we describe a number of dimensions that define task-oriented domains in
terms of characteristics that might influence the types of dialogue needed in
such domains. It should be noted that this is an initial attempt where the sim-
ple case of one on one interaction between agents, and a common language is
assumed.The dimensions described should not be seen as an exhaustive list of all
independent dimensions needed to describe a task-oriented domain. Nor should
the taxonomy be seen as the only one that should be used.

This paper is structured as follows: related work is described in Section 2.
Section 3 is divided in two parts: we start by presenting a number of dimen-
sions used to characterize task-oriented domains, and then we describe how a
taxonomy could be created from the dimensions presented. Some examples illus-
trating its use can be found in section 4. Section 5 concludes by presenting some
limitations of the taxonomy presented here and future work.

2 Related Work

In the literature, several taxonomies were proposed for the classification of speech
acts [7,8]. These were intended for describing human language and are unneces-
sarily expressive for multi-agent systems. The Foundation for Intelligent Physical
Agents (FIPA) [9] uses a small subset of those speech acts in the ACL language
such as request and inform. Their focus was on defining a minimal subset of
generic models of communication semantics, rather than on how the speech acts
can actually be used based on the task being performed. Our taxonomy does not
aim to classify speech acts or the minimal set needed to communicate like the
previous works do. Instead, it attempts to use the existing classifications and
the task being performed to help identify the types of speech acts that might be
needed by a particular agent.

In the area of argumentation, Walton and Krabbe [10] have provided a tax-
onomy to determine which type of dialogue should be used by identifying the
goal behind it (see Figure 1). Their dialogue typology is composed of six formal
models:

– Information-Seeking: agents ask for information from the other party;
– Inquiry: the two parties attempt to answer a question whose answer is

unknown by both, but may be answered with their joint knowledge;
– Persuasion: one party attempts to change the other party’s beliefs;
– Negotiation: the participants bargain over the allocation of resources;
– Deliberation: the parties collaborate to know which course of action should

be done in which situation;
– Eristic: the participants quarrel verbally to vent grievances.

512 T. Marques

We are interested in understanding how a similar taxonomy can be created
for task-oriented agents where communication is not defined by the goal of the
dialogue, but it is instead determined by the characteristics of the domain and
the task to be performed.

Fig. 1. A categorization to determine the type dialogue, according to Walton and
Krabbe pp. 81 [10].

3 Taxonomy

Creating a taxonomy that tells us which type of dialogue is going to be needed
by a particular agent can only be achieved if we understand the task and domain
where the agent operates. In this section, we look at some dimensions that can
be found in the literature, and attempt to understand how they could be used
to develop a taxonomy of task-oriented domains of dialogue.

3.1 Finding Dimensions of Task-Oriented Domains

In this section, we present a number of dimensions that characterize task-oriented
domains. This allows us to identify how domains determine the communication
that is performed by an agent, and consequently, it also tell us something about
the implementation requirements behind such an agent. This list is not exhaus-
tive and there is not enough evidence to say that these dimensions are totally
independent. In spite of that, we believe that it is representative of the type of
dimensions that must be found to create a taxonomy of task-oriented domains
of dialogue.

Observability. There is a great incentive to use communication in domains with
partial observability and/or incomplete information. Planning for decentralized

Towards a Taxonomy of Task-Oriented Domains of Dialogue 513

agents with partial information of the world is significantly more complex than
planning for a single agent [11], but if information is shared between agents,
the number of possible belief-states is reduced and the problem becomes equiva-
lent to single-agent planning. Cooperative map acquisition by agents is another
example where sharing information has been shown to be beneficial [12] to reduce
the time needed for acquiring a plausible map. Lack of information is also an
issue when the goal of the agents is finding an equilibrium strategy, where no
agent could gain from changing strategy, because it might not be possible to find
any equilibrium with the known information. In such a scenario, the agents’ best
choice would be to announce private information [13].

The communication mechanisms in partial observable domains can usually be
seen as information-seeking. The questions, however, will depend on the nature
of the domain. If the agent needs to acquire knowledge concerning the current
state, then this can be seen as a transmission of actions and/or observations
using speech acts such as inform or assert. When the agent seeks to know the
likely outcome of the action, then its questions will possibly be requests of the
information known by the other agent regarding that action. In the particular
case where the questions stem from not knowing the opponent, then the agents
will most likely ask about the other’s intentions. If it is not possible to confirm
the information given by the other agents, then information-seeking will only
make sense if the agents are sincere, and sincerity is a rational principle only
when the preference functions of the agents align [14].

Types of Actions. The actions that an agent can perform in a determined
setting will influence whether dialogue is needed. If there is a finite amount of
resources, the agent might want to ask for some of the resources from the other
agent (e.g. [15]). This exchange requested is an action that the agent is unable to
perform by itself. In a similar fashion, there may also exist actions that the other
agent is able to prevent this agent from executing. For example, if the other agent
blocks this agent’s path. These actions which are naturally dependent of the
interaction of the agents are called public in multi-agent planning. They include
joint actions, where agents need to synchronize to perform them simultaneously.
In contrast, private actions cannot be influenced by other agents and are thus
independent of the interaction [16].

Succinctly, we can consider three types of actions: actions that need to be
performed by the other agent — usually actions that have to be requested to be
executed or avoided — to allow this agent to perform a certain action, private
actions that the agent can perform by itself, and joint actions where both agents
need to perform it simultaneously. Depending on the action’s type, the agents
may decide to jointly plan their activity by using a dialogue of deliberation, or
may decide to be more competitive and use a process of negotiation [17].

Preferences Over Costs. Communication is not necessarily advantageous in
all domains, and it may even be better to avoid it, especially when the cost
incurred is too high or the available bandwidth is very restricted. The solution

514 T. Marques

may be to be selective in the type of messages that are exchanged, as for exam-
ple in [18], where the agents only send the messages that are the most valuable
for team performance, or it could even be finding solutions that do not involve
communication such as the one proposed in [19], where agents use deduction
based on sensory information. However, there are also cases where the cost of
the task exceeds the communication cost. For example, in domains presented in
[21] where the agents can reduce the walked distance if they exchanged their
individual tasks amongst themselves. Depending on the domain, the agent will
have a stronger preference over minimizing the cost of the communication or the
cost of the task.

Available Interactions. Dialogue is also influenced by the interactions that
can be performed between agents in a certain domain. In [20] Tan discusses
three types of interaction in cooperative settings: sharing observations, sharing
actions that happened, and sharing learned policies or plans. In other settings,
exchange of resources (e.g. [15]), or exchange of tasks might also be available
(e.g. [21]). The availability of resources is usually scarce and limited, thusly the
exchange of resources is more likely to be competitive and require negotiation.
On the other hand, the sharing of observations or plans if under an assumption
of sincerity is less likely to be competitive, leading to deliberative dialogues.

3.2 Creating a Taxonomy

In section 3.1, we identified four dimensions of task-oriented domains that seem
to influence the existence of dialogue and its characteristics: observability, types
of actions, preferences over costs, and available interactions. Now, we need to
understand how they relate to specific types of dialogue. The categorization of
dialogues proposed by Walton and Krabbe [10] mainly focuses on argumentative
settings, but can also be used for a broader range of domains due to the hetero-
geneity of the categories. Most of the speech acts proposed by FIPA (Foundation
for Intelligent Physical Agents) in the ACL language [9], the standard language
for agent communication, can also be mapped into these categories. For instance
some of its speech acts such as propose correspond to a dialogue of negotiation,
and query can be seen in information-seeking dialogue. Therefore, it seems to be
justifiable to use this categorization to create an initial model of how a taxonomy
for task-oriented domains of dialogue could look like.

From the literature presented, we can see a prevalence of: (a) information-
seeking, corresponding to information sharing; (b) negotiation in competitive
settings; and (c) deliberation when performing joint tasks. This does not mean
that other types of dialogue are not relevant. Negotiation benefits from persua-
sion and inquiry is a type of information seeking. However, for now, we will
focus on the information-seeking, negotiation and deliberation. These categories
of dialogue are presented in table 1, along with the a set of speech acts from
FIPA associated with each category, the benefit for the agent of using it, and
some research fields that might be relevant for creating multi-agent system with
that type of dialogue.

Towards a Taxonomy of Task-Oriented Domains of Dialogue 515

Table 1. Types of dialogue used in the taxonomy

Type of Dialogue FIPA Speech Acts Benefit Fields of Interest

Negotiation

propose;
accept-proposal;
reject-proposal;
call-proposals

Reach agreement; Get
the best deal to oneself

Automated negotiation;
Argumentation;

Preferences handling

Deliberation request; agree; refuse
Reach agreement; Build

a joint plan

Argumentation; Shared
plans generation;

Automated planning

Information-Seeking
inform; query; confirm;

disconfirm

Share information;
Common understanding

of the world

Knowledge
representation;

Automated reasoning;
Belief revision

No Dialogue — Avoid cost of dialogue
Centralized multi-agent

planning; Offline
optimization

Considering the types of dialogue and the dimensions presented, we inferred
the relations illustrated in Figure 2. Our reasoning is that an agent might not
need to communicate when it has full observability and there are no actions
that it cannot perform by itself or that are influenced by other agents. Even
so, the agent might decide to communicate if the cost of the task could be
decreased by doing so. This is usually possible when an agent may exchange
tasks or resources, otherwise the agent will not benefit from the interaction.
There are two distinct cases to consider when communication is needed: the
case with partial observability and the one with full observability. In the former,
the agent’s priority will usually be to exchange information if that is possible
(e.g. observations, outcomes, intentions). In both cases, the agents would benefit
from interacting when performing a joint task. If they are able to exchange plans,
then the agents might recur to the use of deliberation, or they might as well
simply negotiate tasks and resources if it is not possible to reason cooperatively
about the plans to be performed. Even when the agents are not performing a
joint task, there might be actions or exchanges that are needed or may affect the
agent’s goal. This corresponds to the case where the agent needs to communicate,
but it is not able to exchange information and it is not performing a joint action.
Negotiation of resources or tasks might be suitable in such cases to bargain with
the other agent in order to obtain what is needed to reach its goals.

The categories used in the taxonomy are not mutually exclusive and it is
possible for agents to require more than one type of dialogue in a certain domain.
As stated before, this is only an initial attempt to create a taxonomy for task-
oriented domains of dialogue, and more work is needed to fully understand how
communication is influenced by the task and the domain. Yet, it is possible to
imagine some examples were this taxonomy could be useful. We present two
examples of this in the following section.

4 Examples

In this section, we present two examples of how the taxonomy presented could be
useful for creating multi-agent systems. In the first example, we use the taxon-
omy to identify the type of dialogue for a given domain. In the second example,

516 T. Marques

Fig. 2. A categorization to determine the type dialogue that the agents need to perform
taking in consideration the domain they inhabit.

we explain how the taxonomy could potentially help in the creation of more
flexible agents able to deal with different domains.

Example 1. The most obvious application of the taxonomy is to identify the
most adequate type of dialogue for a particular domain. We will exemplify this
with two agents whose task is to vacuum a number of rooms separated by walls
that are not soundproof. For efficiency purposes, the agents will avoid repeated
work. Looking at the taxonomy, it seems that an information-seeking dialogue
fits this problem. Communication is needed, because there is partial informa-
tion (the agents do not see which rooms have been vacuumed), and information
exchange is possible (the walls are not soundproof). After knowing the type of
dialogue, the concrete speech acts that might be useful can be found in table 1. In
this particular case, the speech act inform might be enough for this system. The
different types of dialogues are also closely related to certain fields of research.
Thusly, it can give us an idea that the work done in knowledge representation
and belief revision might be relevant for modeling this multi-agent system.

Example 2. Another potential application of such taxonomy is the creation of
more flexible agents that can deal with several domains. Imagine an agent or
a set of agents able to generate the different types of dialogue presented in the
taxonomy. If the agent was able to identify the dialogue needs from the domain
description given, then it could use a subset of algorithms or sub-agents that
can deal with such a dialogue. In other words, given a description of a domain

Towards a Taxonomy of Task-Oriented Domains of Dialogue 517

and task, the agent would look at the task, and decide if it could solve the task
without communication, and if it discovers that it can not, then it would proceed
to see if there is partial information in the world, and so on. For this, the agent
must have some algorithm to obtain the input needed. For example, if the agent
identifies the type of dialogue as negotiation, then it knowns that it needs to
create a set of deals with the resources available, and generate a dialogue of
negotiation. This is a theoretical abstract use of the taxonomy, but it shows that
it might be possible to create more flexible communicative agents, if we identify
how the domain correlates with the types of dialogue needed in it.

5 Conclusions and Further Work

In this paper, we presented an initial study of how to create a taxonomy where
domains are categorized according to a number of dimensions which determine
the dialogue required by agents inhabiting those domains. We believe that such
a taxonomy can help identify the requirements for creating more flexible agents
able to deal with different domains, and it can give insights of how work created
in different areas of research correlate with each other. The taxonomy presented
is simple, and there is still a lot of work to be done. For example, it is not easy to
understand how preferences over the communication can influence the dialogue.
In the future, we plan to look at the literature to identify the different techniques
used to reduce or avoid communication overhead and how they influence the
types of dialogue. We also intend to drop the assumption regarding the agents’
honesty. We imagine that these directions will lead to a more accurate taxonomy,
where there might be very little or no dialogue when the communication cost
is very high or when trust between agents is not possible. Another possible
direction consists of analyzing how dialogue is influenced by the absence of a
shared language amongst the agents. We predict that this might increase the
negotiation required even in domains where this type of dialogue is not common,
due to the need of agreeing on a symbol for a particular object when its definition
differs amongst agents. It would also be interesting to explore how the social
needs of the other agents may also affect the agent’s actions in a certain domain.

Acknowledgments. The research presented in this paper has been funded by the
European Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 567652 ESSENCE: Evolution of Shared Semantics in Computational
Environments (http://www.essence-network.com/).

References

1. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, San Francisco (2004)

2. Meneguzzi, F., de Silva, L.: Planning in BDI agents: a survey of the integration of
planning algorithms and agent reasoning. The Knowledge Engineering Review 30,
1–44 (2015)

http://www .essence-network.com/

518 T. Marques

3. Rahwan, I., Simari, G.R. (eds.).: Argumentation in artificial intelligence, vol. 47.
Springer (2009)

4. Jennings, N.R., Faratin, P., et al.: Automated negotiation: prospects, methods and
challenges. Group Decision and Negotiation 10(2), 199–215 (2001)

5. Nicoletta, F., Viganó, F.: Colombetti. M.: Agent communication and artificial insti-
tutions. Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

6. Goldman, C.V., Zilberstein, S.: Optimizing information exchange in cooperative
multi-agent systems. In: the 2nd international joint conference on Autonomous
agents and multiagent system, pp. 137–144. ACM (2003)

7. Austin, J.L.: How To Do Things With Words. In: Urmson, J.O., Sbisà, M. (eds.).
Oxford, Oxford University Press (1975)

8. Searle, J.R.: A taxonomy of illocutionary acts. Language in Society 5(1–23),
344–369 (1975)

9. O’Brian, P.D., Nicol, R.C.: FIPA: Towards a Standard for Software Agents. BT
Technology Journal 16(3), 51–59 (1998)

10. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Inter-
personal Reasoning. State University of New York Press, SUNY Series in Logic and
Language (1995)

11. Bernstein, D.S., Givan, R., et al.: The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research 27(4), 819–840 (2002)

12. López-Sánchez, M., Esteva, F., et al.: Map generation by cooperative low-cost
robots in structured unknown environments. In: Autonomous Agents. Springer
(1998)

13. Jackson, M.O., Simon, L.K. et al.: Communication and equilibrium in discontinu-
ous games of incomplete information. Econometrica, pp. 1711–1740 (2002)

14. Asher, N., Lascarides, A.: Strategic Conversation. Semantics and Pragmatics 6(2),
1–62 (2013)

15. Gal, Y., Grosz, B. et al.: Colored Trails: a Formalism for Investigating Decision-
Making in Strategic Environments. In: Workshop on Reasoning, Representation
and Learning in Computer Games, pp. 25–30. AAAI Press, Menlo Park (2005)

16. Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled
multi-agent systems. In: The 8th International Conference on Automated Planning
and Scheduling, pp. 28–35 (2008)

17. Doran, J.E., Franklin, S.R.J.N., et al.: On cooperation in multi-agent systems. The
Knowledge Engineering Review 12(3), 309–314 (1997)

18. Roth, M., Simmons, R., Veloso, M.: What to communicate? Execution-time deci-
sion in multi-agent POMDPs. In: Distributed Autonomous Robotic Systems 7,
pp. 177–186. Springer (2006)

19. Genesereth, M.R., Ginsberg, M.L., Rosenschein, J.S.: Cooperation without com-
munication, Heuristic Programming Project, Computer Science Department,
pp. 51–57. Stanford University (1984)

20. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents.
In: The 10th international conference on machine learning, pp. 330–337 (1993)

21. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for
Automated Negotiation Among Computers. MIT Press, Cambridge (1994)

Mechanism Design for Argumentation-Based
Information-Seeking and Inquiry

Xiuyi Fan and Francesca Toni(B)

Imperial College London, London, UK
{xf309,ft}@imperial.ac.uk

Abstract. Formal argumentation-based dialogue systems have attracted
considerable research interest in the past. Most research in this area intro-
duce “dialectical wrappers” over argumentation formalisms to model ver-
bal interactions amongst agents, resulting in different dialogue models for
different types of dialogues, e.g. inquiry or persuasion. In this work, we
take a different approach by deploying a single dialogue model for differ-
ent types of dialogues, focusing in particular on information-seeking and
inquiry, yet equipping agents with different (game-theoretic) strategies
and different utility functions in different dialogue types. We prove that the
resulting dialogue-based mechanisms implement, in dominant strategies,
appropriate social choice functions for the two types of dialogues we con-
sider. Thus, we show the feasibility of studying agents in argumentation-
based dialogues in game-theoretic, mechanism design terms.

1 Introduction

Formal argumentation-based dialogue systems have attracted considerable
research interest in the past, e.g. see [11,2,9,7]. Work in this area predominantly
introduces dialogue protocols connecting dialectical concepts, e.g. utterances and
successful dialogues, with argumentation concepts, e.g. arguments and argu-
mentation semantics. Most such existing dialogue models are built for specific
types of dialogues, e.g. [11] is built for persuasion and [2] is built for inquiry.
In this work, we obtain models for two types of dialogues, i.e. information-
seeking and inquiry, by adapting an existing, generic dialogue model [4,7], based
on Assumption-based Argumentation (ABA) [3,12] as the underlying argumen-
tation formalism. This dialogue model is generic in that it is neutral as to which
type of dialogues it is applied to. We provide suitable instantiations of this
generic model by studying agent strategic behaviours, in two specific types of
dialogues we consider.

We view dialogues as games and utterances as actions in these games; agents
in different dialogues have different utility profiles and thus choose different
actions. Following Walton and Krabbe’s characterisation of information-seeking
and inquiry dialogues in [13], summarised in Table 1, in these dialogue types,
agents can thus be understood as having different objectives, corresponding to
different utility profiles, and need to determine the appropriate information to
disclose within the utterances they make.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 519–527, 2015.
DOI: 10.1007/978-3-319-25524-8 34

520 X. Fan and F. Toni

Table 1. Information-seeking and inquiry dialogues (from [13]).

Information-seeking Inquiry Dialogue

Initial Situation: Personal ignorance General ignorance
Main Goal: Spreading knowledge Growth of knowledge & agreement
Participant’s Aims: Gain, show or hide knowledge Find a “proof” or destroy one

By using the dialogue model of [4,7] we choose ABA as the underlying argu-
mentation formalism. ABA is suitable for our proposed model of information-
seeking and inquiry dialogues as it allows sub-argument level modelling of agents’
knowledge: as we illustrate later, agents are thus able to jointly construct argu-
ments via dialogues. Other forms of structured argumentation, e.g. ASPIC+
[10], would also serve this purpose. We use ABA because it underpins our cho-
sen dialogue model [4,7]. Main building blocks of this dialogue model include
legal-move functions, defining dialogue protocols, and strategy-move functions,
defining agent behaviours.

The challenge of this work is twofold. Firstly, in order to study dialogues using
game theoretic concepts, we need to map dialogue notions into game notions.
It is expected that such a mapping is systematic in the sense that dialogues
of different types share a common ground, i.e. generic dialogue models can be
mapped to “generic game models”. Secondly, to properly model agents in differ-
ent types of dialogues, different agent utilities need to be defined. The defined
utilities need to reflect agents behaviours in these dialogues. We overcome both
challenges in this work.

The main contribution of this work is to prove that the game-theoretic analy-
sis we provide results in mechanisms that implement dominant strategies, in a
mechanism-design sense [8]. This means that rational agents engaged in these
types of dialogues will truthfully disclose information leading to successful out-
comes of these dialogues.

2 Background and Preliminaries

In addition to the standard ABA framework definition given in [3], we use the
related and rule-related notions defined in [5].

Agents have private beliefs in some internal representation. When they inter-
act dialectically they exchange information in a shared language. We assume that
this language is that of ABA, namely agents exchange rules, assumptions and
their contraries, expressed in some shared underlying logical language L. Thus,
agents can be thought of as being equipped with ABA frameworks. We will often
use the ABA framework an agent is equipped with to denote the agent itself. We
will focus on the case of two agents, α = 〈L,R1,A1, C1〉 and β = 〈L,R2,A2, C2〉.
The joint framework (of α and β) is FJ = α � β = 〈L,R1 ∪ R2,A1 ∪ A2, CJ 〉,
where CJ(α) = C1(α)∪C2(α), for all α in A1∪A2.1 We will assume that α, β and
α�β are flat, in line with [3]. Intuitively, FJ = α�β amounts to the beliefs that

1 We assume that Ci(α) = {} if α �∈ Ai, for i = 1, 2.

Mechanism Design for Argumentation-Based Information-Seeking 521

the two agents would hold collectively, if they were prepared to disclose them
truthfully.

We use ABA dialogues given in [4,7], with notions including legal-move func-
tions. To generate dialogues fulfilling agents’ aims, strategy-move functions [5]
are used. A strategy-move function for agent x is a mapping φ : D × Λ �→ 2Ux

(D denotes the set of all dialogues; Λ denotes the set of all legal-move functions;
Ux denotes all possible utterances from x), such that, given λ ∈ Λ and δ ∈ D:
φ(δ, λ) ⊆ λ(δ). Given a dialogue δ = 〈u1, . . . , un〉 between agents x, y compati-
ble with a legal-move function λ and a strategy-move function φ for x, if for all
utterances um made by x, um ∈ φ(〈u1, . . . , um−1〉, λ), then x uses φ in δ. If x
and y both use φ, then δ is constructed with φ.

There are three particular strategy-move functions we use in this work: thor-
ough (φh), non-attack thorough (φnh) and pass (φp) strategy-move functions [5].
Informally:

– A dialogue constructed with φh contains all information that is relevant to
the topic from both agents. Dialogues constructed with φh have the desirable
property that admissible arguments obtained in the dialogue are admissible
in the joint ABA framework of the two agents (see Theorem 1 in [5]).

– Agents using φnh utter all rules and assumptions, but not contraries that
are related to some utterance in the dialogue.

– Agents using φp make the claim and utter no rule, assumption or contrary
in the dialogue.

We use standard Mechanism Design (e.g. see [8]) notions including type, out-
come, social choice function, strategy, and dominance. To study agent behaviours
in a framework of games, we map dialogue notions into game-theoretic notions,
as follows.

Definition 1. [6] The types for agents α, β are θα = α and θβ = β.

In ABA dialogues, we view utterances as agents’ actions, as follows.

Definition 2. [6] The action spaces for agent x ∈ {α, β} is 2Ux

.

We define the dialogue strategy for an agent x as the set of utterances made
by x in a dialogue.

Definition 3. [6] Given a dialogue Dβ
α(χ) = δ, the dialogue strategy sδ

x for agent
x ∈ {α, β} with respect to δ is such that sδ

x(θx, δ) = {u|u = 〈x, , , , 〉 ∈ δ}.
Since sδ

x returns the set of utterances made by x in δ, which is determined by
the strategy-move function φ used by x, we can thus equate a dialogue strategy
used by an agent with the strategy-move function used by this agent in this
dialogue.

Given a dialogue δ, the ABA framework drawn from δ captures all informa-
tion disclosed by both agents in δ. Thus, we let the game-theoretic outcome be
the ABA framework drawn from a dialogue, formally:

522 X. Fan and F. Toni

Definition 4. [6] The outcomes are O = {F|F ∈ AF(L) and F = Fδ for some
δ ∈ D}.

The outcome function maps agent actions to outcomes as follows.

Definition 5. [6] The outcome function for σ1 ∈ Σ1, σ2 ∈ Σ2 is: g(σ1, σ2) =
σ1 � σ2.

Note that notions given in this section are generic and do not depend on the
types of dialogues agents are engaged in. These notions serve as the common
ground for both information-seeking and inquiry dialogues, introduced in the
next two sections.

We will illustrate notions/results in the context of the following example
(used in [5]), adapted from the movie Twelve Angry Men, an example of argu-
mentative reasoning [1]. We focus on the reasoning of two jurors: juror 8, played
by Henry Fonda (α), and juror 9, played by Joseph Sweeney (β). These agents
need to decide whether to condemn a boy, accused of murder, or acquit him, after
a trial where two witnesses have provided evidence against the boy. According
to the law, the jurors should acquit the boy if they do not believe that the trial
has proven him guilty convincingly.

Example 1. Table 2 gives the ABA frameworks of α and β (as indicated in
the rightmost column) as well as their joint framework FJ (given by the
entire leftmost column). The components of these ABA frameworks should
be self-explanatory. For example, the first rule says that the boy should be
deemed to be innocent if it cannot be proven guilty. This can be assumed (as
boy not proven guilty ∈ A1 = A2 = AJ) but can be objected to, by proving its
contrary (boy proven guilty). The second and third rules provide ways to prove
this contrary, and they rely upon assumptions in turn, etc.

3 Information Seeking Dialogues

Following [5], we model information-seeking dialogues as engaging a questioner
agent α posing a topic, χ, and an answerer agent β uttering information of
relevance to χ. The purpose is to spread knowledge about arguments for χ. We
assume that the questioner contributes no information, apart from initiating the
dialogue; and the answerer is interested in conveying information for χ, but not
against. In ABA terms, the initial situation is that some A
 χ is in β but is not
in α; and the main goal is to find δ such that all A
 χ in β are in Fδ.

Example 2. (Example 1 continued.) An information-seeking dialogue is shown
in Table 3, in which the questioner queries about w1 not believable.

In this example β is the questioner and α is the answerer. Note that here
all rules used are known to the answerer only. The (game-theoretic) outcome of
this dialogue is the framework Fδ = 〈L,Rδ,Aδ, Cδ〉, in which:

Mechanism Design for Argumentation-Based Information-Seeking 523

Table 2. ABA frameworks for Example 1. L is implicit here and in all examples as it
contains all sentences in rules, assumptions, and contraries.

Rules: (RJ)

boy innocent ← boy not proven guilty α, β
boy proven guilty ← w1 is believable α, β
boy proven guilty ← w2 is believable α, β
w1 not believable ← w1 contradicted by w2 α
w1 contradicted by w2 ← α
w2 not believable ← w2 has poor eyesight α
w2 has poor eyesight ← β
w2 is blond ← β
w1 is poor ← β

Assumptions: (AJ)

boy not proven guilty α, β
w1 is believable α, β
w2 is believable α, β

Contraries: (CJ)

C(boy not proven guilty) = {boy proven guilty} α, β
C(w1 is believable) = {w1 is not believable} α, β
C(w2 is believable) = {w2 is not believable} α, β

Table 3. Information-seeking dialogue for the two agents in example 1.

〈β, α, 0, claim(w1 not believable), 1〉
〈α, β, 1, rl(w1 not believable ← w1 contradicted by w2), 2〉
〈α, β, 2, rl(w1 contradicted by w2 ←), 3〉

Rδ = {w1 not believable ← w1 contradicted by w2,
w1 contradicted by w2 ←};

Aδ = {}; for all a ∈ Aδ, C(a) = {}.

The instantiation of the mechanism design paradigm to dialogue types
requires the definition of suitable utility functions, matching the motivations
of agents engaged in the dialogues. In the case of information-seeking, the ques-
tioner agent can be deemed to be solely interested in posing the question, whereas
the answerer agent is interested in disclosing any argument for the claim in ques-
tion. This leads to the following definition of information-seeking utilities:

Definition 6. Given an outcome Fδ = 〈L,Rδ,Aδ, Cδ〉 drawn from δ = Dα
β (χ),

the information-seeking utilities of agents α and β = 〈L,Rβ ,Aβ , Cβ〉 are

– vα(δ, α) =

{
1 if χ ∈ L;
0 otherwise.

– vβ(δ, β) = −|U1| − |U2| where2
• U1 = {u ∈ Rβ ∪ Aβ | there is some v ∈ Rδ such that u is related to v or

χ but u is not in Fδ}; and
• U2 = {u|u is in Fδ but not in β}.

2 Given a set S, |S| denotes the cardinality of S.

524 X. Fan and F. Toni

In the remainder of this section, agents are equipped with information-seeking
utilities vα and vβ as in Definition 6.

The following theorem sanctions that for agents with information-seeking
utilities, φp is the dominant strategy for the questioner agent; and φnh is the
dominant strategy for the answerer agent.

Theorem 1. Given Dα
β (χ) = δ, if δ is constructed with α using φp and β using

φnh, then the dialogue strategy sδ is dominant.

We define the social choice function for Information-seeking (IS) as follows:

Definition 7. The IS social choice function is: fis(θα, θβ) = 〈L,Rf ,Af , Cf 〉, in
which:

– Rf = {ρ ∈ θβ |ρ is rule-related to χ in θβ};
– Af = {a ∈ θβ |a is rule-related to χ in θβ};
– Cf (a) = {} for all a ∈ Af .

The intuition of Definition 7 is that the “common good” for both agents in
information-seeking can be viewed as the answerer agents putting forward all
arguments for the claim in question but nothing else. So truthful information is
passed from the answerer agent to the questioner agent.

The next theorem sanctions that the questioner agent using φp and the
answerer agent using φnh not only maximise their own utilities, but also meet
the common good.

Theorem 2. GivenDα
β (χ) = δ, if δ is constructed withα usingφp and β usingφnh,

then the mechanism M = (Σ, sδ) implements the IS social choice function fis.

4 Inquiry Dialogues

The specification of inquiry dialogues seen in Table 1 lends itself to several
argumentation-based interpretations. In [5] , we consider two such interpretations
and accordingly formulate inquiry dialogue in two ways, in I-Type I dialogues,
the initial situation is that it is uncertain if χ is admissible in FJ ; the main goal
is that testing the admissibility of χ in FJ ; and in I-Type II dialogues; the initial
situation is that there is no argument A
 χ in either α or β; and the main goal
is testing whether A
 χ is in FJ .

Example 3. An I-Type inquiry dialogue is shown in Table 43. Here, we can see
that the (game theoretic) outcome Fδ is the joint framework of the two agents
FJ (Table 2).

The utility functions of agents engaged in I-TYPE I dialogues is defined as
follows:
3 Here, guilty, W1, not W1, contradicted, W2, not W2 are shorthands for

boy proven guilty, w1 is believable, w1 not believable, w1 contradicted by w2,
w2 is believable, w2 not believable, respectively.

Mechanism Design for Argumentation-Based Information-Seeking 525

Table 4. Inquiry dialogue for the two agents in example 1.

〈α, β, 0, claim(boy innocent), 1〉
〈β, α, 1, rl(boy innocent ← boy not proven guilty), 2〉
〈α, β, 2, asm(boy not proven guilty), 3〉
〈β, α, 3, ctr(boy not proven guilty, guilty), 4〉
〈α, β, 4, rl(guilty ← W1), 5〉
〈β, α, 5, asm(W1), 6〉
〈α, β, 6, ctr(W1, not W1), 7〉
〈α, β, 7, rl(not W1 ← contradicted), 8〉
〈α, β, 8, rl(contradicted ←), 9〉
〈β, α, 4, rl(guilty ← W2), 10〉
〈α, β, 10, asm(W2), 11〉
〈β, α, 11, ctr(W2, not W2), 12〉
〈α, β, 12, rl(not W2 ← W2 has poor eyesight), 13〉
〈β, α, 13, rl(W2 has poor eyesight ←), 14〉

Definition 8. Given an outcome Fδ = 〈L,Rδ,Aδ, Cδ〉 drawn from some δ, the
I-Type I utility of agent x = 〈L,Rx,Ax, Cx〉 is vx(Fδ, x) = −|U1| − |U2| where
– U1 = {u ∈ Rx ∪ Ax ∪ Cx| there is some v ∈ Rδ ∪ Aδ ∪ Cδ such that u is

related to v but u is not in Fδ}; and
– U2 = {u|u is in Fδ but not in x}.

In the remainder of this section, until Definition 10, agents are equipped
with I-Type I utilities vα and vβ as in Definition 8. Intuitively, this definition
of I-Type I utility reflects that agents engaged in this type of dialogues are
interested in finding out the acceptability of the claim in question, with respect
to the joint knowledge. The following result identifies agent strategy functions
that are dominant for agents with I-Type I utility functions.

Theorem 3. Given Dα
β (χ) = δ, if δ is constructed with φh, then the dialogue

strategy sδ is dominant.

In order to characterise the common good for agents in I-Type I dialogues,
we define the following social choice function for I-Type I:

Definition 9. Let FJ = θα � θβ. The I-Type I social choice function is:
fi1(θα, θβ) = 〈L,Ri1,Ai1, Ci1〉, in which:

– Ri1 = {ρ ∈ FJ |ρ is related to χ in FJ};
– Ai1 = {a ∈ FJ |a is related to χ in FJ};
– Ci1(a) = CJ(a) for all a ∈ Ai1.

The intuition of Definition 9 is that the common good for agents in I-Type I
dialogues is that the acceptability of the claim in question is thoroughly examined
with respect to the joint knowledge held by both agents. Thus any information
related to the claim in question in one agent’s internal knowledge base must be
disclosed. The following theorem sanctions that dialogues constructed with φh

meet this common good.

526 X. Fan and F. Toni

Theorem 4. Given Dα
β (χ) = δ, if δ is constructed with φh, then the mechanism

M = (Σ, sδ) implements the I Type-I social choice function.

By altering the utility functions, we can model agents’ behaviour in I-Type
II agents too, as follows. Since agents in I-Type II aim at jointly finding all
arguments for the claim in question, there is no need for them to utter contraries
that may lead to arguments attacking the claim.

Definition 10. Given an outcome Fδ drawn from some I-Type II dialogue δ =
Dα

β (χ), the utility of agent x = 〈L,Rx,Ax, Cx〉 is vx(δ, x) = −|U1| − |U2| where
– U1 = {u|u ∈ Rx ∪ Ax such that u is rule-related to χ but u is not in Fδ};

and
– U2 = {u|u is in Fδ but not in x}.

In the remainder of this section agents are equipped with utilities vα and vβ

as in Definition 10. Similarly to Theorem 3, the following theorem sanctions that
φnh is a dominant strategy for both agents in I-Type II dialogues.

Theorem 5. Given Dα
β (χ) = δ, if δ is constructed with φnh, then the dialogue

strategy sδ is dominant.

Similarly to the case of I-Type I dialogues, we define the social choice function
for I-Type II dialogues as follows. The common good for agents in I-Type II is
on finding all rules and assumptions that form arguments for the claim.

Definition 11. Let FJ = θα �θβ = 〈L,RJ ,AJ , CJ 〉. The I-Type II social choice
function is: fi2(θα, θβ) = 〈L,Ri2,Ai2, Ci2〉, in which:

– Ri2 = {ρ ∈ RJ |ρ is rule-related to χ in FJ};
– Ai2 = {a ∈ FJ |a is rule-related to χ in FJ};
– Ci2(a) = {} for all a ∈ Ai2.

Dialogues constructed with φnh meet the common good for both agents.

Theorem 6. Given Dα
β (χ) = δ, if δ is constructed with φnh, the mechanism

M = (Σ, sδ) implements the I Type-II social choice function fi2.

5 Conclusions

Formal argumentation-based dialogue systems have attracted considerable
research interest in the past, e.g. see [11,2,9,7]. Different protocols were proposed
to model agents in different types of dialogues. Less work has been devoted
to understanding agents’ strategic behaviours in dialogues. In this work, we
study the modelling of information-seeking and inquiry dialogues with game
theoretical notions. Continuing our previous work in modelling agents’ interests,
strategies and actions in persuasion dialogues, we show that a generic correspon-
dence between dialectical concepts and game notions can be established. Thus,

Mechanism Design for Argumentation-Based Information-Seeking 527

this works links argumentation-based dialogues with games. We establish a nat-
ural equivalence between agents’ dialectical strategies and their game theoretical
strategies.

One of the main observations of this work is that by analysing two different
types of dialogues, we establish some common ground for modelling dialogues
with game-theoretic notions and recognise that altering agents’ utility profiles
alone is sufficient for modelling different agent behaviours in different types of
dialogues. With this setting, we can also look at agent behaviours in a mech-
anism design perspective in which certain social choices are fulfilled, naturally
corresponding to the aims of the dialogues.

We believe that the utility functions we have defined are natural. In any case,
in the future, we would like to explore other utility settings for information-
seeking and inquiry dialogues and study game theoretical modelling of other
types of dialogues, including deliberation and negotiation.

Acknowledgments. This research was supported by the EPSRC TRaDAr project
Transparent Rational Decisions by Argumentation: EP/J020915/1.

References

1. Alcolea-Banegas, J.: Teaching argumentation theory and practice: the case of 12
angry men. In: Blackburn, P., van Ditmarsch, H., Manzano, M., Soler-Toscano, F.
(eds.) Tools for Teaching Logic. LNCS, vol. 6680, pp. 1–8. Springer, Heidelberg
(2011)

2. Black, E., Hunter, A.: An inquiry dialogue system. JAAMAS 19, 173–209 (2009)
3. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In:

Argumentation in Artificial Intelligence, pp. 199–218. Springer (2009)
4. Fan, X., Toni, F.: Assumption-based argumentation dialogues. In: Proc. IJCAI

(2011)
5. Fan, X., Toni, F.: Agent strategies for ABA-based information-seeking and Inquiry

dialogues. In: Proc. ECAI (2012)
6. Fan, X., Toni, F.: Mechanism design for argumentation-based persuasion. In: Proc.

COMMA. IOS Press (2012)
7. Fan, X., Toni, F.: A general framework for sound assumption-based argumentation

dialogues. Artificial Intelligence 216, 20–54 (2014)
8. Jackson, M.: Mechanism theory. In: Derigs, U. (ed.) Optimization and Operations

Research. EOLSS Publishers, Oxford (2003)
9. McBurney, P., Parsons, S.: Dialogue games for agent argumentation. In: Argumen-

tation in Artificial Intelligence, pp. 261–280. Springer (2009)
10. Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a

tutorial. Argument & Computation 5(1), 31–62 (2014)
11. Prakken, H.: Formal systems for persuasion dialogue. Knowledge Engineering

Review 21(2), 163–188 (2006)
12. Toni, F.: A tutorial on assumption-based argumentation. Argument & Computa-

tion, Special Issue: Tutorials on Structured Argumentation 5(1), 89–117 (2014)
13. Walton, D, Krabbe, E.: Commitment in Dialogue: Basic concept of interpersonal

reasoning. State University of New York Press (1995)

Fair Assessment of Group Work by Mutual
Evaluation with Irresponsible and Collusive

Students Using Trust Networks

Yumeno Shiba, Haruna Umegaki, and Toshiharu Sugawara(B)

Department of Computer Science and Communications Engineering,
Waseda University, Tokyo 1698555, Japan

{y.shiba,h.umegaki}@isl.cs.waseda.ac.jp, sugawara@waseda.jp

Abstract. We propose a fair peer assessment method for group work
using a multi-agent trust network. Although group work is an effective
educational method, accurately assessing individual students is not easy.
Mutual evaluation is often used for such assessment, but often presents
some potential problems such as irresponsible evaluations and collusion.
Our method identifies and excludes such cheating and unfair ratings on
the basis of trust networks that are often used to evaluate sellers in
e-market places by using customers’ ratings. We assume a group-work
course in a semester in which students mutually evaluate other group
members a few (three to five) times. We introduce the iterative method
for alternately generating trust networks using cluster-trust values, which
represent similarity of evaluations in a cluster network. We experimen-
tally show that our method can find the irresponsible students and collu-
sive groups and considerably improve accuracy of final marks with only
a few chances for mutual evaluations, and thereby, can provide useful
information for assessments to instructors.

1 Introduction

Group work is an effective educational method and widely used in universities
and at companies. For example, students in a programming course doing group
work are divided into a number of groups, and then the individual group mem-
bers collaboratively work on assignments provided by the instructor. This pro-
cess of collaboration enables students to obtain knowledge from each other [3],
improve their cooperation skills [7], and learn leadership [2,5]. Although group
work is an appropriate method to study practical subjects such as programming
in which learning-by-doing is more effective than lecture-style rote learning [1],
instructors often cannot identify the specific contributions of individual students,
especially in large classes. As a result, they tend to give the same scores to all
students in the same group by reviewing the group outcome.

However, this often leads to unfair individual assessments, so serious students
may complain and lose their motivation to work hard. For example, all the work
is sometimes done by only a few students, and less motivated (free-rider) students

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 528–537, 2015.
DOI: 10.1007/978-3-319-25524-8 35

Fair Assessment of Group Work by Mutual Evaluation 529

do not participate in the collaboration at all [5]. Such free-rider students are likely
to be more numerous in large classes [8], because instructors cannot monitor all
activities. Mutual evaluation by peer assessment is one effective way to reduce
such unfairness of assessment because students can observe the activities of other
students in the same group. However, there are some issues to be addressed
in mutual evaluation, such as irresponsible evaluations, hard/soft ratings, and
collusion groups. In addition, correct evaluation is difficult for students because
they are required to have enough knowledge for evaluations.

The purpose of this paper is to propose a fair assessment in group work using
an iterative-rating method based on trust networks generated from mutual eval-
uations submitted by students. A trust network is a technique used in e-market
places [13] to rate sellers by customers opinions. Because many irresponsible and
hostile raters exist, the trust network is often used to identify raters whose com-
ments are trustworthy or not [6]. We use this network: in a trust network, nodes
are students, and edges express similarity/consistency of evaluations between
nodes. The method then extracts the mutually consistent clusters in the net-
work and only uses evaluations done by students there. The authors [10] already
proposed a simple method for fair assessment based on a trust network and
demonstrated its effectiveness through a multi-agent simulation. However, our
method was not accurate enough, and thereby, assumed less-realistic situations
where students evaluate their group members every week (so 15 or 16 chances for
mutual evaluations in a semester) [10]; this burdens students, but fewer chances
for mutual evaluation decrease the accuracy. We could not address the issue of
collusion, either.

The contributions of this paper are two-fold. First, we introduce the itera-
tive trust network generation method and apply it to assessment more accurate
than that proposed previously [10]. For this purpose, we introduce a cluster-
trust value, meaning the degree of mutual trustworthiness within the clusters.
The cluster-trust values were originally proposed by Zeng et al. [12], who called
them group-trust degree, but we calculate them iteratively, i.e., we build an ini-
tial trust network, calculate cluster-trust values, revise the network on the basis
of the cluster-trust values, and iterate these processes several times to obtain
a stable network. By doing this, we can exclude irresponsible students whose
evaluations are incidentally close to the accurate ones in a certain evaluation.
Second, we also propose a strategy against groups of colluders, by strategically
comparing the submitted evaluations. This method extended from [10] consid-
erably improves the accuracy of the final assessment, so even only three to five
chances for evaluation in a semester are enough; this makes our method more
realistic and reasonable to give characteristic information for final assessments.

2 Model and Issues

Let A = {1, . . . , n} be a set of agents that correspond to students participating
in group work. Classwork in a semester continues for L weeks, and students
have to participate in group work every week. A group consists of gm agents,

530 Y. Shiba et al.

thus �|A|/gm� groups exist in each classwork (assuming some groups have gm +
1 agents). The groups are arranged in the first class and may be rearranged
(regrouped) a few times during the course of the semester. For agent i, let Gk

i

be the group to which i belongs in the k-th week. Thus, agents i and j belong
to the same group in the k-th week if Gk

i = Gk
j . We define Gk

−i = Gk
i \ {i}. We

denote the frequency of regrouping in a semester by positive integer, SG. The
agents mutually evaluate other group members SG times in the final weeks of
the current groups. For example, if SG = 1, the group is arranged only once, at
the beginning of the course, and the agents evaluate mutually in the final week
of the semester. Agent i ∈ A has parameter γi, positive integers ranging from
one to 100, representing i’s contribution degree to the group work. We introduce
our simple mutual evaluation scheme using five-point ratings. Ideally, the final
ratings must be determined on the basis of γi. This correspondence between
the value of a contribution and the correct rating is denoted by Rc as listed in
Table 1.

Table 1. Correspondence Table

Five-point rating Rc(γi) 5 4 3 2 1

Values of γi 100 – 81 80 – 61 60 – 41 40 – 21 20 – 1

Agents consider the ratings of others in the same group and submit them to
the instructors. Agents do not evaluate themselves, and evaluation results are
hidden from others. We consider two types of students in evaluation: responsible
and irresponsible. Responsible students try to rate others carefully by considering
the contributions to the group work, while irresponsible students rate others
without consideration such as random and flat ratings. In addition, there might
be a number of collusion groups. Thus, when two or more students in the same
collusion group belong to the same working group, they give each other the best
rating (five points) regardless of their contributions. We assume no correlation
between being (ir)responsible in evaluations and belonging to a collusion group.

Because it is often difficult for responsible agents to give accurate ratings
as shown in Table 1, we introduce parameter δki,j , called an uncertainty factor,
to express inaccuracies caused by such difficulty in mutual evaluation. Thus,
responsible agent i gives Rc(γj + δki,j) as the (absolute) rating of agent j ∈ G−i

in the k-th week, where δki,j is selected in accordance with the normal distribution
N(0, σ2) at every evaluation opportunity. However, since it is still difficult for
students to give an absolute evaluation, we also consider a relative evaluation,
where agent i gives the bonus rating denoted as

bi(j0) = min{Rc(γj0 + δki,j0) + 1, 5},

to j0 and bi(j0) − (Rc(γj0 + δki,j0) − Rc(γj + δki,j)) to agents j ∈ Gk
−j0

, where
j0 = arg max

j∈Gk
i

(γj + δki,j), which is the best contributor in Gk
i identified by i.

Fair Assessment of Group Work by Mutual Evaluation 531

Hence, j0 will receive the highest score bi(j0) from i, and the others will receive
the relative ratings. Behaviors of irresponsible agents are described in Section 4.

We assume that the current evaluation method for group work is based only
on the group outcomes, as it is difficult to differentiate individuals in all groups.
The final rating of agent i with the conventional evaluation method, ci, is deter-
mined by

∀i ∈ Gk, ci = round(
∑

1≤k≤L

o(Gk
i)/L), (1)

where round is the round-off function and o(Gk
i) is the rating of the group

outcome in the k-th week. We assume that 1 ≤ o(Gk
i) ≤ 5 is determined correctly

by instructors. We use the average value of formula (1) as the benchmark for
our proposed method.

3 Fair Assessment Using Cluster-Trust and Collusion
Strategies

3.1 Initial Trust Network by Submitted Evaluations

A trust network is a graph in which nodes represent agents and edges represent
the distance between nodes. We briefly describe the process for generating the
trust network since we have already explained it elsewhere [10]. We start from
the simplest trust network N = (A,E) whose set of nodes is A and set of edges is
empty (E = ∅). After the mutual evaluation in the k-th week, edge li1,i2 between
agents i1 and i2 in the same group Gk

i1
(= Gk

i2
) is added to E (if it does not exist)

and its k-th distance is defined as

dk(li1,i2) =

√∑
j∈Gk

i1
\{i1,i2}(e

k
i1 j − eki2 j)2

|Gk
i1

\ {i1, i2}| , (2)

where eki j is agent i’s rating for j in the k-th week. At the end of the semester,
the average distance of edge li1,i2 is calculated as

D(li1,i2) =

∑
1≤k≤L Mk(i1, i2) · dk(li1,i2)

∑
1≤k≤L Mk(i1, i2)

, (3)

where Mk(i1, i2) is the member function, which is defined as Mk(i1, i2) =
1 if agents i2 ∈ Gk

i1
, and Mk(i1, i2) = 0 otherwise. Note that E =

{li1,i2 | Mk(i1, i2) = 1 for 1 ≤ ∃k ≤ L}.
Then, we eliminate edges whose average distances are longer than Ts which

is called the separation threshold:

E′ = {l ∈ E|D(l) < Ts}.

By referring to E′, we identify the sets of the connected clusters (connected
components), N1, N2, . . . , where we denote Ni = (Ai, Ei) and are sorted in

532 Y. Shiba et al.

descending order (so, |Ai| ≥ |Ai+1|). Then, we find the minimal integer ms

satisfying ∑

1≤i≤ms

|Ai| > |A|/2.

The set of the selected agents, which is denoted by Q = ∪1≤i≤ms
Ai, forms the

cluster (sub-network) and is the majority of the non- or less-conflicting evalua-
tions. How to decide the value of separation threshold is describe in [10].

Since mutual evaluation may not be done every week realistically, we define
evaluation-timing function P (k) = 1 if all students have a chance of mutual
evaluation in the k-th week, and P (k) = 0 otherwise. The evaluation of agent i
by other agents up to the k0-th week is denoted by ui(k0), which is defined as

ski =
∑

j∈G̃k
−i

ekj i/|G̃k
−i| (4)

ui(k0) = round

(∑
1≤k≤k0

P (k) · fe(ski , o(G
k
i))∑

1≤k≤k0
P (k)

)

, (5)

where G̃k
−i = Gk

−i ∩ Q, and fe is the evaluation function ranging from 1 to 5 in
accordance with the rating of the group outcome o(Gk

i) and mutual evaluation
ski . Function fe is the evaluation function by the instructor’s policy. Thus, the
values of ski should be accurate but are actually affected by irresponsibility and
collusion. We try to make them more accurate by excluding such assessments.

3.2 Cluster-Trust Value

The cluster set Q in Section 3.1 sometimes includes irresponsible students
because their evaluations are incidentally close to the accurate ones in some
evaluations. We introduce the concept of cluster-trust values to exclude such
irresponsible students who are less trusted inside the cluster consisting of many
responsible students.

For agent i ∈ A and the cluster to which i belongs, Nm, the cluster-trust
value expresses how much i is trusted by other agents in Nm. The cluster-trust
value of i in Nm is calculated as

g(i,Nm) =
1

∑
j∈Am,i �=j g(j,Nm)

∑

j∈Am,i �=j

g(j,Nm) · tji, (6)

where Nm = (Am, Em) is the cluster to which i belongs after edges in Section 3.1
have been eliminated. Parameter tji is the direct trust degree from j to i. We
define tji = 0 if i and j have no edge between them; otherwise tji is defined
as follows. If i has more neighbor agents in Nm with whom i is connected with
high cluster-trust value edges, then g(i,Nm) will become higher. Parameter tji

Fair Assessment of Group Work by Mutual Evaluation 533

corresponds to a normalized value expressing the similarly between evaluations
by i and j, and is defined as

tji =

{
1 − D(lj,i)/2 if (D(lj,i) ≤ 2),
0 otherwise.

(7)

Note that if the average difference in evaluations is more than two points in our
five-point rating scheme, the two agents’ attitudes to mutual evaluations are not
similar, and thus, they do not trust each other.

3.3 Iterative Calculation of Cluster Values and Trust Networks

Trust networks are iteratively revised by excluding the untrusted agents and
adding trusted agents identified by the cluster-trust values. We start with
g(i,Nm) = ginit , which is a certain initial value where 0 ≤ ginit ≤ 1. Then, we
calculate the cluster-trust values for ∀i ∈ Q by Eq. (6). After that, we exclude
the agents with g(i,Nm) ≤ Tth from their cluster.1 For all clusters, Nm, we
repeat the following excluding steps:

1. Calculate g(i,Nm) for ∀i ∈ Nm.
2. Look for agents whose g(i,Nm) is smaller than Tth .
3. If these agents exist, the agent who has the lowest value of g(i,Nm) is

excluded from the cluster Nm and returns to the first step.

In the excluding steps, irresponsible students who were incidentally included
in Q are excluded, but a few responsible students may also be excluded. So, we
recover such responsible students. Let Z be the set of agent i and cluster Nm

where i was excluded from Nm in the excluding steps and Zh be an empty set.
Then, the following recovering steps are repeated for ∀(i,Nm) ∈ Z.

1. Agent i is temporarily added to Nm.
2. Calculate g(i,Nm), and if it is bigger than or equal to Tth , add (i,Nm) to

Zh.
3. Remove i from Nm and return to the first step.
4. Finally, for ∀(i,Nm) ∈ Zh, i is added to Nm.

Then, Q = ∪1≤i≤ms
Ai is calculated again. We iterate the excluding and recov-

ering steps several times until no changes in trust networks are observed.

3.4 Strategies Against Collusive Students

We introduce the strategy against collusive students after generating the trust
network. This strategy detects collusive students and excludes their ratings.
High-contributing students receive high ratings regardless of whether they col-
lude or not. However, uncooperative or low-contributing students have more
1 We set the value of Tth to be appropriate to our method, but this leaves room for

improvement.

534 Y. Shiba et al.

incentive to collude and might initiate or join collusive groups because they can-
not receive high ratings without cheating. Thus, we have to exclude false high
ratings given to such students.

We assume that agent i has an incentive to collude if its rating is expected
to be low. Let S be the set of agents that satisfy si(L) ≤ 3, and we can assume
that agents in S have the incentive, where

si(k0) =

∑
1≤k≤k0

P (k) · ski∑
1≤k≤k0

P (k)
. (8)

Then, for i ∈ S, we look for another agent j ∈ Q that mutually gave the high
(or maximum) rating to i:

Bi = {j | ∃k, eki j = ekj i = 5} and B = ∪i∈SBi.

If j ∈ Bi, j is the student suspected of colluding student with i. Then, we redefine
G̃k

−i = Gk
−i ∩ Q ∩ ¬Bi in Eq. (4) and re-calculate ui(L).

4 Experiments

4.1 Experimental Setup

We examined how accuracy can be improved by our proposed method by com-
paring the resulting marks with those derived by only using the initial trust
networks (ITN), which is called the ITN method and corresponds to the method
proposed in [10], and by using the conventional method described in Section 2.
We also investigated how many ratios of (ir)responsible students can be identi-
fied within the limited classes in a semester. In this experiment, we assume that
the number of agents (|A|) is 500 and groups are randomly created. The con-
tributions γi of agents are uniformly selected between one and 100. We also
set L = 16 and gm = 5. The evaluation of the outcome of a group, G, is
defined as o(G) = Rc(maxi∈G γi) because high-contributing students cannot
afford to submit low-quality outcomes and often the outcome is mainly the
result of work done by such students. The evaluation policy by the instructor is
set to fe(ski , o(G

k
i)) = ski × o(Gk

i)/5. The cluster-trust values are initially set as
ginit = 0.5.

We introduce four types of irresponsible agents: random, flat, and extremely
soft/hard raters. Random raters evaluate others randomly, and flat raters give
the same value (but with different values for each evaluation). The extremely
hard raters always give 1 or 2 and the extremely soft raters always give 4 or 5.
We varied the ratio of irresponsible agents to responsible agents (RIA) from 0%
to 45% and assumed (and hoped) that there were fewer irresponsible agents than
responsible agents. The four types of irresponsible agents were generated at the
same ratios. Note that there is no correlation between capability, contribution,
and responsibility in the evaluations. Responsible agents try to but cannot always
evaluate others correctly. Variance σ2 to decide the uncertainty factors was set
to 32. We also conducted the experiments to evaluate our method for detecting
collusive students, but due to the page limitations, the results are omitted here.

Fair Assessment of Group Work by Mutual Evaluation 535

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0% 15% 30% 45%

D
is

ta
n
c
e
 f

ro
m

 c
o
rr

e
c
t

m
a
rk

s

Ratio of irresponsible agents (%)

Conventional method

Mutual evaluation only (MEO)

ITN method

Proposed method

Fig. 1. Distances from correct marks with
different methods (SG = 5).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
is

ta
n
c
e
 f

ro
m

 c
o
rr

e
c
t

m
a
rk

s

Number of regrouping

ITN method

Proposed method

Fig. 2. Distances from correct marks with
varying SG (RIA is 45%).

4.2 Experimental Results and Discussion

Figure 1 plots the average distances between the final marks and the correct
marks, which were calculated by

∑
i∈A |Rc(γi)−ui(L)|/|A|. Note that the mutual

evaluation-only (MEO) method in Fig. 1 indicates the case when students’ final
marks were decided using all submitted evaluations (by believing all students
were responsible). The figure clearly indicates that the assessment by the con-
ventional method was the worst because there were many free-riders and the
individual contributions were not considered. In the MEO method, the distances
increased almost linearly from 0.038 to 0.481 as RIA increased, because irrespon-
sible evaluations considerably worsened the accuracy of the final marks. However,
they were still better than those with the conventional method. The distances
lowered between 0.038 and 0.313 in the ITN method. Finally, our proposed
method always resulted in the most accurate assessment. In particular, when
RIA is large (45%), the proposed method could reduce the distances (0.181)
approximately 42% compared with that (0.313) in the ITN method [10]. This
result suggested that the proposed method could exclude irresponsible students
effectively.

The distances from the correct marks when using the ITN method or the
proposed method by changing the frequencies of regrouping, SG, are plotted
in Fig. 2, where RIA was fixed to 45% (the worst case). This figure indicates
that the number of regrouping, SG, and the distances were negatively corre-
lated in the ITN method, because when SG was large, the resulting networks
were complex and thus, the initial trust networks were not accurate enough to
decide the marks. Conversely, the distance from correct marks and the number
of regrouping, SG, were positively correlated in the proposed method. We think
that mutual evaluation with SG = 4 or 5 is realistic in actual courses, and of
course, the proposed method outperformed the ITN method in this case.

The experimental results provide a few suggestions for our method in group
work. By introducing the iterative process consisting of calculation of cluster-

536 Y. Shiba et al.

trust values and revision of trust networks, we can exclude disputable evaluations
submitted by irresponsible and collusive students. We think that the final marks
should be decided from diversified standpoints and not by only a specific method.
For example, excluding irresponsible evaluations must be important but might
ignore different and minor opinions. Actually, there are some studies on mutual
evaluations from multiple viewpoints [4,9,11]. For example, Fellens [4] proposed
the original review sheets for this purpose. We know that the ratings should not
be decided only by our method but it can provide useful information to instruc-
tors who decide the final marks by taking into account multiple viewpoints.
In addition, our method is useful to eliminate incentives for being a free-rider
and for cheating behavior, because irresponsible and collusive students can be
detected with high probability, but the gain by doing so is quite small.

5 Conclusion

We proposed a method for fairly and accurately assessing group work by using
mutual evaluation in which some students may evaluate others irresponsibly and
collude with some friends. First, we described our model of group work in a multi-
agent context where students were represented as agents and also explained the
five-point rating that was used in our mutual evaluation. Then, we proposed
the fair assessment method through mutual evaluation based on a trust network
with cluster-trust values. We experimentally examined how well our proposed
method could improve the accuracy of final marks compared with those by the
previous method [10] and the conventional method in which instructors decide
the final marks only from the outcomes of groups. Students are always flexible
and more complex, so instructors should decide the actual final marks from mul-
tiple standpoints. We believe that the resulting ratings with our method can be
used as a reference for instructors’ decisions. Furthermore, our method is suited
for computerized education, since it is easy to automate evaluations.

Acknowledgments. This work is partly supported by KAKENHI (25280087).

References

1. Allen, B., Crosky, A., Mcalpine, I., Hoffman, M., Munroe, P.: A blended approach
to collaborative learning: can it make large group teaching more student-centred.
In: Proceedings of the 23rd Annual ASCILITE Conference, pp. 33–41. University
Press (2006)

2. Brutus, S., Donia, M.B.L.: Improving the Effectiveness of Students in Groups With
a Centralized Peer Evaluation System. Academy of Management Learning and
Education 9(4), 652–662 (2010). Academy of Management

3. Ettington, D.R., Camp, R.R.: Facilitating Transfer of Skills between Group
Projects and Work Teams. Journal of Management Education 26(4), 356–379
(2002). Sage Publications

Fair Assessment of Group Work by Mutual Evaluation 537

4. Fellenz, M.R.: Toward Fairness in Assessing Student Groupwork: A Protocol for
Peer Evaluation of Individual Contributions. Journal of Management Education
30(4), 570–591 (2006). Sage Publications

5. Hall, D., Buzwell, S.: The problem of free-riding in group projects: Looking beyond
social loafing as reason for non-contribution. Active Learning in Higher Education
(2012)

6. Jiang, S., Zhang, J., Ong, Y.S.: An evolutionary model for constructing robust trust
networks. In: Proceedings of the 2013 International Conference on Autonomous
Agents and Multi-agent Systems. AAMAS 2013, pp. 813–820. International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2013)

7. McCorkle, D.E., Reardon, J., Alexander, J.F., Kling, N.D., Harris, R.C., Iyer, R.V.:
Undergraduate Marketing Students, Group Projects, and Teamwork: The Good,
the Bad, and the Ugly? Journal of Marketing Education 21(2), 106–117 (1999).
Sage Publications

8. North, A.C., Linley, P.A., Hargreaves, D.J.: Social Loafing in a Co-operative Class-
room Task. Educational Psychology 20(3), 389–392 (2000). Taylor and Fancis

9. Sadler, P.M., Good, E.: The impact of peer-grading on student learning. Educa-
tional Assessment 11(1), 1–31 (2006). Taylor and Fancis

10. Shiba, Y., Sugawara, T.: Fair assessment of group work by mutual evaluation
based on trust network. In: Proceedings of the 2014 IEEE Frontiers in Education
Conference (FIE), pp. 1–7. IEEE Xplore (2014)

11. Topping, K.J.: Peer Assessment. Theory into Practice 48(1), 20–27 (2009). Taylor
and Fancis

12. Zeng, J., Gao, M., Wen, J., Hirokawa, S.: A hybrid trust degree model in social
network for recommender system. In: Proceedings of the 2014 IIAI 3rd Interna-
tional Conference on Advanced Applied Informatics (IIAIAAI), pp. 37–41. IEEE
Xplore (2014)

13. Zhang, L., Jiang, S., Zhang, J., Ng, W.K.: Robustness of trust models and com-
binations for handling unfair ratings. In: Dimitrakos, T., Moona, R., Patel, D.,
McKnight, D.H. (eds.) IFIPTM 2012. IFIP AICT, vol. 374, pp. 36–51. Springer,
Heidelberg (2012)

© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 538–546, 2015.
DOI: 10.1007/978-3-319-25524-8_36

Modeling the Effects of Personality on Team Formation
in Self-assembly Teams

Mehdi Farhangian(), Martin K. Purvis, Maryam Purvis,
and Bastin Tony Roy Savarimuthu

Information Science, University of Otago, Dunedin, New Zealand
Mehdi.farhangian@otago.ac.nz

Abstract. Optimizing the performance of teams in modern organizations is an
important managerial function, and particularly so in contexts where new teams
must continually be formed voluntarily, such as with software development,
crowd-sourcing platforms, and even the formation of scientific collaborative
teams. In many such cases, team performance is significantly influenced by the
makeup of participant personalities and temperaments and goes beyond the
analysis of individual skills. In this study, we present a team-assemblage model
that is primarily influenced by knowledge of the past performance of team
members and their personalities. Our goal is to provide a model, which can be
parameterized for specific organizational contexts, for policy makers and man-
agers to assess potential teams formed in dynamic circumstances. To provide
real-world validation for our approach, we extracted data from the Python En-
hancement Proposal (PEP) process, which involves the repeated self-assembly
of software teams from a common pool of developers. We then used agent-
based simulation to enact our model with PEP data to predict team grouping
formation and resulting team performances.

Keywords: Multi-agent systems · Social Simulation · Personality · Team per-
formance · Team formation

1 Introduction

Clearly the performance of teams cannot be simply predicted as an extension of indi-
vidual performance and the issue of predicting team performance is becoming more
important with today’s increased employment of temporary teams [1]. Examples of
temporary teams include crowdsourcing platforms, scientific collaboration teams,
open source software development teams, and online games. In today’s rapidly evolv-
ing world, teams are often assembled from a larger network of related people. But
there is little understanding concerning how this self-assembly team formation proc-
ess should be carried out.

In order to understand the mechanisms governing the composition of social groups,
Ruef et al. [2] conducted a survey and analysed a data set of organizational teams from
a sample of the U.S population. They concluded that homophily and network constraints
based on strong ties have the most significant influence on group composition.

 Modeling the Effects of Personality on Team Formation in Self-assembly Teams 539

In addition to such empirical studies, some further studies investigated team as-
sembly mechanisms by using computer simulations. Guimera et al. [3] proposed a
model for self-assembly in teams based on three parameters: team size, the fraction of
newcomers, and the tendency of incumbents to repeat previous collaborations. A team
model developed by Johnson et al. [4] showed the average tolerance level and attrib-
ute range for each population affects individuals’ decisions for team coalition.

Since previous collaboration experience is a major factor for self-assembly
(as suggested by other researchers i.e. [2]), the model that we present in this paper
considers both human factors for group assembly and also knowledge of past per-
formance. In particular, we posit that key human factors arise from personality types,
and we consider them in the team-assembly process. Thus, a model is developed on
the basis of theoretical and empirical literature on personalities and team behavior.
This conceptual model is then implemented as an agent-based computer simulation
consisting of simple rules and principles.

Although one might simply posit a model based on the relationship between
personality and team performance, the literature in this domain suggests that rules
cannot be generalized without considering situational forces such as organizational
structure and the types of tasks. Nevertheless, in volatile environments where new
teams must be rapidly assembled, some locally-known knowledge must be used to
construct the team [11], and this often comes down to local familiarity with past
performances and awareness of personality types. We have constructed our model on
this basis and have tested it with real-world data from such a team-assembly
environment.

The rest of the paper is organized as follows: Section 2 discusses psychological
personality models and reviews the literature about the relationship between personal-
ity and team performance. Section 3 presents our proposed rules and principles about
team-formation mechanisms and our agent-based model. Section 4 is a presentation of
some general experiments and results based on our team-formation model. Section 5
is a specification of the model in the domain of small software development teams
and serves as both a practical example and a basis for validating the model principles.
Section 6 contains the conclusion.

2 Personality

In agent-based modelling, agent personality characterizes agent motivations,
behaviour, and thoughts. There have been several simplified schemes developed over
the years to profile human personality, the most popular of which seem to be the Five
Factor Model (FFM or “Big Five”) [5] and the Myer-Briggs Type Indicator (MBTI)
scheme [6]. In our work we have employed the MBTI scheme, since (a) it appears to
have the most accumulated field data and (b) the FFM model suffers from the disad-
vantage of identifying and measuring only positive “qualities” of personality. As a
consequence, it seems, most people who do not want to be judged are more likely to
self-identify their MBTI personality types.

540 M. Farhangian et al.

The history of MBTI goes back to Carl Jung, who developed an initial scheme of
psychological types that included the notion of introversion and extraversion [7].
Myers added additional elements to this arrangement, and it has evolved into the
MBTI scheme [8], which has four “dimensions” of human personality: Extraversion
vs. Introversion (where people focus their attentions), iNtuition vs. Sensing
(the way that people gather information), Thinking vs. Feeling (the way that people
make decisions) Judgmental vs. Perceptive (the way that people deal with the outer
world). The 16 possible type combinations are typically referred to by an abbreviation
of four letters—the initial letters of each of their four type preferences. For instance:
ISFJ represents introversion (I), sensing (S), feeling (F), and judgmental (J).

In our model, a number between 0 and 100 indicates the personality of agents in
each dimension. For example for the Extraversion-Introversion (EI) dimension, a
value between 0 and 50 means that a person is extraverted, and a value between 50
and 100 means s/he is introverted.

2.1 Personality and Team Performance

There is interest in evaluating how personality affects team performance, but we
recognize that understanding human personality and its effects on performance are
enormous subjects in themselves, and we do not pretend to treat this subject in all its
depths here. Nevertheless, there are some commonly held notions concerning
variations of human temperament and personality that have been developed over the
past century, and we take advantage of some of them.

During task activities, the team’s personality composition strongly influences the
success in finishing a task. Tziner [9] mentioned two social psychological perspec-
tives that account for how team composition affects performance:
 Similarity theory predicts that homogeneous teams will be more productive

because of the mutual compatibility of the members.
 Equity theory predicts team performance is higher in heterogeneous groups be-

cause of complementarity among members.
In order to model this aspect of team performance, we introduce two indicators [10]
that are used in conjunction with the MBTI measures:
 Team Personality Diversity (TPD): the variance with respect to a particular

personality trait among team members.
 Team Personality Elevation (TPE): a team’s mean level for a particular personal-

ity trait.
For both similarity and equity theory, TPD, which measures team heterogeneity

and homogeneity, is significant. Teams generally high in terms of TPD are described
as heterogeneous, whereas teams that are low in terms of TPD are homogeneous.
Research findings regarding the relationship between TPD and group effectiveness
are mixed. Different tasks have different requirements, for instance, some may require
a high level of cognition and complex thinking, while some others may require a high
degree of coordination and teamwork. In our environment, we considered two types
of tasks:

 Modeling the Effects of Personality on Team Formation in Self-assembly Teams 541

 Structured ‒ tasks that are straightforward and do not require planning.
 Open-ended (or ‘cognitive’) ‒ tasks that require more creativity and imagination

(for example, surveying tasks and finding suitable strategies).

Wiersema and Bantel [11], noting that team homogeneity brings about a shared

language among team members and improves integration and communication fre-
quency, suggested homogeneous teams are likely to perform better on tasks that re-
quire high coordination. In contrast, Bantel [12] predicted that homogeneous teams
would perform poorly (because of lack of openness) on tasks requiring new resources
of information, and they recommended heterogeneous teams for tasks that require a
high level of creativity.
 Thus, we know that TPD and TPE do not uniquely predict team performance, but
based on the literature discussed above, we assume that for structured tasks low
TPDis likely to have a positive effect on team performance. For open-ended tasks,
high TPD is likely to positively affect team performance.

3 Proposed Team formation mechanism

In order to develop principles and rules of our agent-based model, we made the fol-
lowing assumptions based on the literature on MBTI personality (i.e. [13]).
iNtuition-Sensing. We assume that intuitive types are more likely to record their past
experiences about team performance.
Thinking-Feeling. In our model it is assumed feelers choose new team members
based on their familiarity with them, rather than for logical reasons such as expe-
rience.
Judging-Perceiving, We assume team members with judging personalities are more
likely to refrain from changing their team and prefer to continue with the existing
team, while employees with perceiving personalities are more flexible and more like-
ly to change their teammates.
Extraversion-Introversion, We assume employees with extraverted personalities
connect with more people in their social network.

In our team formation mechanism, two types of people are involved, which we call
requesters and contributors. Requesters start a project and, seeking collaborators from
sources such as crowdsourcing platforms, attempt to recruit the required people and
complete the work for projects. Contributors are the recruited people who contribute
to the tasks. The personality of requesters and contributors determine their team’s
overall behavior.

To form teams, we proposed a first-price auction-based algorithm, comprising
requester and contributor agents. In this system, a virtual currency is assigned to both
requesters and contributors. Both of them try to be part of a team that gives the high-
est chance to increase their wealth in this virtual currency. Their performance in the
task is presented in Formula 1:

542 M. Farhangian et al.

 1 (1)

 indicates the value that agent assigns to agent after performing a task, and
 indicates the performance of the team in task and presented in

Formula 2. 100 | | (2)
where indicates the heterogeneity of team and is calculated based
on the average of the standard deviation in each personality dimension and presented
in Formula 3. is the nature of task that shows the level of how open-
ended and structured the task is and can be a number between 0 and 50. 0 indicates
that the task is extremely structured, while 50 indicates the task is extremely open-
ended. , , , , , and , represent the standard deviation of team in Extra-
verted/Introverted (E-I), iNtutive/Sensing (N-S), Thinking/Feeling (T-F) and Judg-
ing/Perceiving (J-P), respectively. , , , , (3)

In the agent model, an agent’s individual decision about team formation is deter-
mined based on two factors: Past success and Familiarity.
 Past success: the history of previous team performance.
 Familiarity: the history of social interaction of agents.

As mentioned in the assumptions in Section 3, past-success is a more important factor
for people with sensing personality, and familiarity is a more important factor for
people with feeling personality. So requester offers to the contributor as pre-
sented in Formula 4.

 (4)

In this formula, is the sensing-intuition personality of the requester . is the
thinking-feeling personality dimension of the requester , and represents
the interaction of agent with agent and is calculated as Formula 5, where im-
proves whenever agent interacts with agent as presented in Formula 6.

 10 (5)

 0.1 (6)
When contributors receive bids, they select the requester with the highest expected
payoff. indicates the payoff of contributor by joining team and is presented in
Formula 7.
 (7)

Apart from performing a task, agents interact with each other. The probability of inte-
raction is based on the extent to which they have an extraverted personality and the

 Modeling the Effects of Personality on Team Formation in Self-assembly Teams 543

probability of leaving a team or firing a contributor is related to the Judging personali-
ty index of agents .

4 Experiments and Results

Experiments have been conducted using NetLogo. In the initial settings, agents repre-
sent requesters and contributors. Four numbers between 0 and 100 are randomly as-
signed to each personality dimension for each agent. A number between 0 and 50
represents the degree of a task’s being structured or open-ended. The number of re-
quired contributors for each task is a random number between 2 and 4. In each time
step, new tasks are added to the environment, and the simulation is terminated after
100-time steps. To account foro the randomness of the assigned values, performances
are reported as averages over 100 simulation runs.

We were interested in investigating the most popular team compositions.
To explore this further, from our simulation data, we added labels to the variables
about team personality, such as TPD-EI, TPD-NS, TPD-TF, TPD-JP, TPE-EI, TPE-
NS, TPE-TF, TPE-JP, as “Very Low”, “Low”, “Medium”, “High”, and “Very High”.
Observations are summarized in Figure 1. These results will be further discussed and
compared in the validation section, where we compare them with the particular do-
main presented in the next section.

Fig. 1. Team composition (for open-ended tasks)

5 Validation

our model and simulation represent a considerable simplification, and its usefulness
needs to be validated with real data. As we mentioned earlier, generating general rules
that determine the relationship between team performance and personality is not
straightforward. Nevertheless, some further validation would be valuable, and this is
always an issue with agent-based modelling. Some researchers have suggested that
data mining techniques applied to real projects can be useful in this regard (e.g. [14]).
To pursue this idea, we have chosen a specific application domain and investigated a
real case study by extracting data from the Python Enhancement Proposal (PEP)
process.

544 M. Farhangian et al.

A PEP is a document that describes a new feature to be developed by a small team
for Python, for which developers use mailing lists as the primary forum for discussion
about the Python language's development. We obtained access to 363 PEPs catego-
rized into three labelled categories: process, information, and standard track. There
are temporary teams associated with each PEP, where certain team members work
together for one task but may change the team for another task.

We are primarily interested to find useful information to show the relationship be-
tween personality and performance of teams of developers. In order to identify the
personality of developers, some steps were required. Using similar methods as [15],
we developed a formula to determine the personality of people from their texts. In-
itially, the data was extracted from three social networking websites (Quora.com,
Reddit.com, and Collegeconfidential.com) where people self-reported their MBTI
personalities. After extracting data and texts of 228 users in Quora, we employed the
Linguistic Inquiry and Word Count LIWC tool [16] to analyze each textual fragment.
After generating the value of all the variables in our Quora samples, we used Pearson
correlation to find correlations between personality and these variables, and we consi-
dered the variable combinations having their correlation at the 0.01 level to be signifi-
cant. These correlations were then cross-tested against 25 users in Reddit and 135
users in College Confidential, and they were shown to be 65% and 73% accurate. We
then applied our proposed formula to determine the personality of Python developers
based on their own texts that were publicly available on the Internet.

After determining the personalities of the developers in the four dimensions, we
calculated the TPE and TPD in each dimension and labeled them in a similar way to
the previous experiments.

Bayesian theory was adopted for our computational model to predict the probabili-
ty of success based on TPE and TPD in each dimension. We employed the WEKA
machine learning software tool to generate and test the Naïve Bayes model on the
PEPs data. By using the NaiveBayesSimple algorithm, the probability of each condi-
tion is computed. Based on these probabilities, we can estimate the probability of
success in each task based on team composition personality.

New experiments were developed and the roles of requester and contributor were
assigned to agents randomly. For each round, agents update their beliefs about suc-
cess and familiarity with other agents based on their sensing and feeling personalities,
respectively. The decision about changing the team is related to the perceiving perso-
nality. However, unlike the previous experiments, the performance of each team is not
determined by Formula 2. Instead, the performance is determined by the conditional
probabilities calculated from data extracted from the PEPs. In summary, apart from
the performance calculation, other settings are similar to the previous experiments.

Our interest is to determine the most popular team composition. We assume the na-
ture of tasks in software development is more open-ended and that a higher degree of
collaboration is required. The most basic validation is comparing the results about the
team composition in the open-ended tasks (Figure 1) and the new results which are
summarized in Figure 2.

 Modeling the Effects of Personality on Team Formation in Self-assembly Teams 545

Fig. 2. The composition with data extracted from performance in PEPs

The data shows our model’s ability to generate context-dependent behavior. The
results show the frequency of team composition in the simulation with open-ended
tasks corresponds very well with the simulation results when performance is derived
from PEPs. Comparison of Figure 1 and Figure 2 reveals most cases have similar
trends, and teams have evolved similarly. If only the comparison of “High” and
“Low” is considered as the main criterion, we observe that the model predicts 7 (all
variables in the team composition apart from TPD-EI) out of 8 variables correctly and
has 87.5 % accuracy. This demonstrates that our model can be used to predict future
team formation where teams are formed on a temporary basis.

6 Conclusion

The modeling approach outlined in this research can be used for researchers to have
a better understanding about the mechanisms behind the team-formation process.
In addition, it can be of use to policy makers whose aim is discovering the most
efficient team composition to perform certain types of tasks. We argue that there is no
universally successful personality configuration, and success is often significantly
related to contextual forces.

We applied our model to a specific domain (PEPs). We determine the personalities
of software developers in PEPs. Finally, based on these relationships and employing
Bayesian theory, we extracted data about the probability of success in various team
composition conditions. We then ran a new set of experiments based on the data ex-
tracted from the PEPs. The new results present some similarities with the previous
experiments. The observations from two sets of experiments were similar in term of
teams’ evolutions. These results show the ability of the proposed model in team-
formation prediction.

Further experiments and validations must be performed before our results can be
generalized. We thus encourage the execution of similar studies of other globally
distributed teams to validate our outcomes.

References

1. Contractor, N.: Some assembly required: leveraging Web science to understand and enable
team assembly. Philos. Trans. A. Math. Phys. Eng. Sci. 371(1987), 20120385 (2013)

2. Ruef, M., Aldrich, H., Carter, N.: The structure of founding teams: Homophily, strong ties,
and isolation among US entrepreneurs. Am. Sociol. Rev. (2003)

546 M. Farhangian et al.

3. Guimerà, R., Uzzi, B., Spiro, J., Amaral, L.A.N.: Team assembly mechanisms determine
collaboration network structure and team performance. Science 308(5722), 697–702
(2005)

4. Johnson, N., Xu, C., Zhao, Z., Ducheneaut, N., Yee, N., Tita, G., Hui, P.: Human group
formation in online guilds and offline gangs driven by a common team dynamic. Phys.
Rev. E 79(6), 066117 (2009)

5. Costa, R.R.M., Paul, T.: Professional manual: revised NEO personality inventory
(NEO-PI-R) and NEO five-factor inventory (NEO-FFI). Odessa, FL Psychol. Assess.
Resour. (1992)

6. Myers, I.: The myers-briggs type indicator. Consult. Psychol. Press (1962)
7. Jung, C.G.: Psychological types: or the psychology of individuation. Harcourt, Brace

(1921)
8. Myers, I.B., McCaulley, M.H., Most, R.: Manual: A guide to the development and use of

the Myers-Briggs Type Indicator. Consult. Psychol. Press (1985)
9. Tziner, A.: How Team Composition Affects Task Performance: Some Theoretical Insights.

Psychol. Rep. 57(3f), 1111–1119 (1985)
10. Neuman, G.A., Wagner, S.H., Christiansen, N.D.: The Relationship between Work-Team

Personality Composition and the Job Performance of Teams. Gr. Organ. Manag. 24(1),
28–45 (1999)

11. Wiersema, M., Bantel, K.: Top management team demography and corporate strategic
change. Acad. Manag. J. (1992)

12. Bantel, K.: Strategic Planning Openness The Role of Top Team Demography. Gr. Organ.
Manag. (1994)

13. Bradley, J.H., Hebert, F.J.: The effect of personality type on team performance. J. Manag.
Dev. 16(5), 337–353 (1997)

14. Remondino, M., Correndo, G.: Data mining applied to agent based simulation. In: Pro-
ceedings of the 19th European Conference on Modelling and Simulation, Riga, Latvia
(2005)

15. Rigby, P., Hassan, A.: What can oss mailing lists tell us? a preliminary psychometric text
analysis of the apache developer mailing list. In: Fourth International Workshop on Mining
Software Repositories (MSR 2007: ICSE Workshops 2007), pp. 23–23 (2007)

16. Pennebaker, J.: Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence
Erlbaum Associates, p. 71 (2001)

Real-Time Conditional Commitment Logic

Warda El Kholy1, Mohamed El Menshawy1,2, Amine Laarej1,
Jamal Bentahar1(B), Faisal Al-Saqqar3, and Rachida Dssouli1

1 Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, Canada

w elkh@encs.concordia.ca, moh marzok75@yahoo.com, laarej.amine@gmail.com,

bentahar@ciise.concordia.ca, rachida.dssouli@concordia.ca
2 Faculty of Computers and Information,

Menoufia University, Shibeen El-Kom, Egypt
3 Faculty of Engineering and Computer Science,

Concordia University, Montreal, Canada
f alsaqq@encs.concordia.ca

Abstract. A considerably large class of multi-agent systems (MASs)
employed in real-time environments requires the possibility to express
time-critical properties. In this paper, we develop a system of temporal
logic RTCTLcc, an extension of CTL modalities and interval bound until
modalities with conditional commitment and their fulfillment modalities.
This logic allows us to formally model the interaction among autonomous
agents using conditional commitments and to combine qualitative tempo-
ral aspects together with real-time constraints (time instants or intervals)
in order to permit reasoning about qualitative and quantitative require-
ments and their specifications. We point out that useful properties of
MASs, which are required to express temporal constraints as a funda-
mental part of functional requirements can be expressed in RTCTLcc.
We also argue that time-critical properties expressed in executable action
languages in other contributed approaches can be expressed in RTCTLcc.

Keywords: Multi-Agent Systems · Real-time · Conditional
commitments · Qualitative and quantitative requirements

1 Introduction

Social and objective commitments among pairs of interacting agents within
multi-agent systems (MASs) have been acknowledged as a powerful engineering
tool to represent, model, and reason about the content of multi-agent interac-
tions [2,9]. They also provide a fundamental basis for addressing the challenge
of checking and validating the compliance of autonomous agents’ behaviors with
preset specifications [3,8,12]. Temporal logics, such as LTL [16], CTL [3,6,8,12],
and CTL∗ [11] have been successfully extended with temporal modalities to rep-
resent and reason about social commitments and some of related commitment
actions. What makes commitment languages special is that they include modal-
ities needed for modeling interaction among agents, which cannot be expressed
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 547–556, 2015.
DOI: 10.1007/978-3-319-25524-8 37

548 W. El Kholy et al.

in pure temporal logics. All commitment languages, however, have paid more
heed to deal with qualitative temporal commitment properties used to check the
correctness of commitment protocols [8,10,12] and business models having social
semantics [7,17]. With these specification languages, we can express qualitative
commitment properties such as whenever the customer accepts the offer, the
merchant conditionally commits to eventually deliver goods provided that the
customer sends the payment. This property obviously places no bound constraint
on the time that might elapse before the delivery of goods.

Although qualitative properties are in principle desirable to express vari-
ous formal specifications (e.g., safety and liveness properties [11]), there is a
considerably large class of MASs employed in real-time environments. The class
requires the possibility to express time-critical properties. Such properties indeed
express the occurrences of events at time instants or within time intervals, and
play an essential role in verifying the correctness of systems’ specifications. The
most utilized timing constraint is deadline, i.e., the time instant before which
the required result must be actually delivered. Consider the following examples
to clarify quantitative properties that are important and relevant in real and
practical systems, but ignored in temporal commitment logics. In a business
protocol, we might need to affirm a quantitative correctness property such as
once the payment is received, the merchant must commit to deliver goods to the
customer within bounded time, for instance, 2 time units (days) during which
only a certain set of preparation steps is performed. In the car rental business
scenario discussed in [4], a customer needs first to sign a contract with a car
rental agency. The customer is accordingly obliged to return back the car at a
certain bounded time, namely, 5 days from the day of signing the rental con-
tract. In a typical service-level agreement, there is a commitment to maintain
network connectivity during bounded times (e.g., at Concordia university, the IT
department performs the maintenance process every last Friday in each month).

The current research questions are: 1) how temporal deadline constraints
can be modeled in the commitment logical languages? 2) how can we define
unbounded modalities from bounded ones? and 3) how can we express qualita-
tive and quantitative properties using the same specification commitment logical
language? The contribution of the paper is the development of an expressive
logical language called RTCTLcc that allows us to address these research ques-
tions. RTCTLcc particularly extends our CTLcc (CTL plus conditional commit-
ments and their fulfillment modalities [6]) with quantitative modalities in a sys-
tematic fashion. We adopt CTLcc as the semantics of conditional commitments
and their fulfillment achieve all operational semantic rules commonly agreed on
in the literature and meet all Singh’s reasoning postulates [16], as shown in [6].
We in fact follow Emerson et al.’s methodology to develop a real-time CTL logic
(RTCTL) to deal with different sorts of real-time applications [13].

This work continues as follows. In Section 2, we present the extended version
of the interpreted system formalism introduced in our previous work [3,8] and
define the syntax and semantics of RTCTLcc. In Section 3, we discuss the related
work. We conclude and identify future research directions in Section 4.

Real-Time Conditional Commitment Logic 549

2 Extended Version of Interpreted Systems and RTCTLcc

The formalism of interpreted systems [14] provides a very popular framework
to model MASs. In [3,6,8], we extended this formalism with sets of shared
and unshared variables to account for agent communication. Specifically, the
extended version of interpreted systems is composed of a set A = {1, . . . , n} of
n agents plus the environment agent e. Each agent i ∈ A is characterized by:

1. Li is a finite set of local states. Each local state li represents the whole
information about the system that the agent has at a given moment.

2. V ari is a set of at most n − 1 local variables (i.e., |V ari| ≤ n − 1) to model
communication channels through which values are sent and received.

3. Acti is a finite set of local actions available to the agent including the null
action in order to account for the temporal evolution of the system.

4. Pi : Li → 2Acti is a local protocol function, producing the set of enabled
actions that might be performed by i in a given local state.

5. ιi ⊆ Li is the set of initial states of the agent i.
6. τi : Li ×Act1 × . . .×Actn ×Acte → Li is a local transition function, defining

a local state from another local state and a joint action a = (a1, . . . , an, ae),
one for each agent and environment agent.

The environment agent e, which captures the information that might not per-
tain to a specific agent, is characterized by Le, V are, Acte,Pe, ιe and τe. The
notion of social state (termed global state in [14]) represents the screenshot of
all agents in the system at a certain moment. A social state s ∈ S is a tuple
s = (l1, . . . , ln, le) where each element li ∈ Li represents the i’s local state along
with the environment state le. The set of all social states S ⊆ L1 × . . .×Ln ×Le

is a subset of the Cartesian product of all local states of all agents and the envi-
ronment agent. All local transition functions are combined together to define a
social transition function τ : S × Act1 × . . . × Actn × Acte → S in order to give
the overall transition function for the system. Let li(s) denotes the local state
of agent i in the social state s and the value of a variable x in the set V ari at
li(s) is denoted by lxi (s). A communication channel between i and j does exist
iff V ari ∩ V arj �= ∅. For the variable x ∈ V ari ∩ V arj , lxi (s) = lxj (s′) means
the values of x in li(s) for i and in lj(s′) for j are the same. Finally, the valua-
tion function V : PV → 2S defines what atomic propositions are true from the
set PV at system states. To summarize, the extended version of the interpreted
system formalism is given by the following tuple IS+ =

({Li, V ari, Acti,Pi, τi,

ιi}i∈A, {Le, V are, Acte,Pe, τe, ιe},V)
.

Definition 1 (RTCTLcc models, adopted from [6]). A conditional com-
mitment model M =

(
S, I, T, {∼i→j | (i, j) ∈ A2},V)

is generated from
IS+ =

({Li, V ari, Acti,Pi, τi, ιi}i∈A, {Le, Acte,Pe, τe, ιe},V)
by synchronising

joint actions of n + 1 composed agent models as follows:

– S ⊆ L1 × . . . × Ln × Le is a set of reachable social states for the system.
– I ⊆ ι1 × . . . × ιn × ιe is a set of initial states for the system such that I ⊆ S.

550 W. El Kholy et al.

– T ⊆ S × S is a total temporal relation (i.e., each state has at least one suc-
cessor) defined by (s, s′) ∈ T iff there exists a joint action (a1, . . . , an, ae) ∈
ACT = Act1 × . . . × Actn × Acte such that τ(s, a1, . . . , an, ae) = s′.

– ∼i→j⊆ S×S is a social accessibility relation defined for each pair (i, j) ∈ A2

by s ∼i→j s′ iff the following conditions hold: 1) li(s) = li(s′); 2) (s, s′) ∈ T ;
3) V ari ∩ V arj �= ∅ and ∀x ∈ V ari ∩ V arj we have lxi (s) = lxj (s′); and 4)
∀y ∈ V arj−V ari we have lyj (s) = lyj (s

′).
– V : PV → 2S is a valuation function defined as in IS+.

Following Emerson et al. [13], each transition in our quantitative temporal model
M takes a single time unit for execution from one state to another state. The
underlying real-time model is discrete and has a tree-like structure. The model
M is unwound into a set of execution paths in which each path π = s0, s1, . . .
is an infinite sequence of social states increasing simultaneously over time such
that si ∈ S and (si, si+1) ∈ T for each i ≥ 0. π(k) is the k-th state of the path
π. The set of all paths starting at s is denoted by Π(s).

Definition 2 (Syntax of RTCTLcc). The syntax of RTCTLcc is as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕ U ϕ) | E(ϕ U [m..n] ϕ)

| A(ϕ U [m..n] ϕ) | CC | Fu

CC ::= WCC(i, j, ϕ, ϕ) | SCC(i, j, ϕ, ϕ)
Fu ::= FuW (i,WCC(i, j, ϕ, ϕ)) | FuS(i, SCC(i, j, ϕ, ϕ))

where:

– p ∈ PV is an atomic proposition. ¬ and ∨ are the usual Boolean connectives.
– E and A are the existential and universal quantifiers on paths.
– X, G and U are CTL path modal connectives standing for “next”, “globally”,

and “until”, respectively.
– m and n ∈ N

+ are natural numbers denoting the bounds of time intervals.
– U [m..n] stands for interval bound until. This operator is used to abbreviate

other bounded operators (e.g., F [m..n], U≤n and U=n, see Table 1).
– i and j ∈ A are two agents. WCC, SCC, FuW and FuS stand for weak

and strong conditional commitment and their fulfillments, respectively [6].

From these syntactical rules, the formula EXϕ is read as “there exists a path
such that at the next state of the path ϕ holds”, EGϕ is read as “there exists a
path such that ϕ holds globally along the path”, and E(ϕ U ψ) is read as “there
exists a path such that ψ eventually holds and ϕ continuously holds until then”.
E(ϕ U [m..n] ψ) (respectively, A(ϕ U [m..n] ψ)) can be read as “there exists a path
such that (respectively, for all paths) ψ eventually holds at time instant i within
the interval [m..n] and ϕ continuously holds from m until then”. We introduce
the formula A(ϕ U [m..n] ψ) in the syntax of RTCTLcc because the equivalent
one from E is not compact and depends on other three operators (see Table 1).

The formula WCC(i, j, ψ, ϕ) (respectively, SCC(i, j, ψ, ϕ)) is read as “agent
i weakly (respectively, strongly) commits towards agent j to consequently sat-
isfy ϕ once the antecedent ψ holds”. Intuitively, weak commitments can be

Real-Time Conditional Commitment Logic 551

activated even if the antecedent will never be satisfied, while strong com-
mitments are solely established when there is a possibility to satisfy their
antecedents. The commitment antecedents and consequences can be quantitative
and/or qualitative formulae. The formula FuW (i,WCC(i, j, ψ, ϕ)) (respectively,
FuS(i, SCC(i, j, ψ, ϕ))) is read as “the weak (respectively, strong) conditional
commitment WCC(i, j, ψ, ϕ) (respectively, SCC(i, j, ψ, ϕ)) is fulfilled”.

Definition 3 (Semantics of RTCTLcc). Given the model M , the satisfaction
of RTCTLcc formula ϕ in a state s, denoted by (M, s) |= ϕ, is recursively defined
as follows:

– (M, s) |= p iff s ∈ V(p),
– (M, s) |= ¬ϕ iff (M, s) � ϕ,
– (M, s) |= ϕ ∨ ϕ iff (M, s) |= ϕ or (M, s) |= ϕ,
– (M, s) |= EXϕ iff ∃π ∈ Π(s) such that (M,π(1)) |= ϕ,
– (M, s) |= EGϕ iff ∃π ∈ Π(s) such that ∀k ≥ 0, (M,π(k)) |= ϕ,
– (M, s) |= E(ϕ U ψ) iff ∃π ∈ Π(s) such that ∃k ≥ 0, (M,π(k)) |= ψ and

∀j, 0 ≤ j < k, (M,π(j)) |= ϕ,
– (M, s) |= E(ϕ U [m..n] ψ) iff ∃π ∈ Π(s) such that ∃i,m ≤ i ≤

n, (M,π(i)) |= ψ and ∀j,m ≤ j < i, (M,π(j)) |= ϕ,
– (M, s) |= A(ϕ U [m..n] ψ) iff ∀π ∈ Π(s) such that ∃i,m ≤ i ≤

n, (M,π(i)) |= ψ and ∀j,m ≤ j < i, (M,π(j)) |= ϕ,
– (M, s) |= WCC(i, j, ψ, ϕ) iff ∀s′ ∈ S such that s ∼i→j s′ and (M, s′) |=

ψ, (M, s′) |= ϕ,
– (M, s) |= SCC(i, j, ψ, ϕ) iff (1) ∃s′ ∈ S such that s∼i→j s′ and (M, s′) |=

ψ, and (2) (M, s) |= WCC(i, j, ψ, ϕ),
– (M, s) |= FuW (i,WCC(i, j, ψ, ϕ)) iff ∃s′ ∈ S such thats′ ∼i→j

s and (M, s′) |= WCC(i, j, ψ, ϕ) and (M, s) |= ϕ ∧ ¬WCC(i, j, ψ, ϕ),
– (M, s) |= FuS(i, SCC(i, j, ψ, ϕ)) iff ∃s′ ∈ S such thats′ ∼i→j

s and (M, s′) |= SCC(i, j, ψ, ϕ) and (M, s) |= ψ ∧ ¬SCC(i, j, ψ, ϕ).

With respect to the defined semantics, other propositional connectives can be
abbreviated in terms of the above as usual: ∧ for conjunction, ⇒ for implication,
≡ for equivalence, and � for constant true proposition. In Table 1, we define
some qualitative and quantitative modalities. From the table, k in the formula
E(ϕ U≤k ψ) reflects the “maximum number of permitted transitions along a path
before the eventuality ϕ U ψ holds” [13]. In this sense, EF=k ψ can be read as
“there exists a path such that ψ eventually holds exactly at k time instant along
the path”. The pressing question is whether or not we can define unbounded
modalities from the bounded ones? Following Emerson et al.’s strategy in [13],
the unbounded modalities can be defined from the analogous bounded ones when
the bounded time exists. For example, A(ϕ U ψ) = ∃k ≥ 0 s.t . A(ϕ U≤k ψ). We
conclude by illustrating how RTCTLcc can be utilized to express the properties
that consider an explicit bound on the time instant.

Example 1. Let q=receivePayment and p=deliverGoods be two propositions,
then the formula AG(WCC (Mer ,Cus, q ,EF≤3p)) specifies that along all paths

552 W. El Kholy et al.

Table 1. Some abbreviations of RTCTLcc

Qualitative abbreviations Quantitative abbreviations

EFϕ � E(� U ϕ) EF ≤kϕ � E(� U≤k ϕ) � E(� U [0..k] ϕ)

AGϕ � ¬EF¬ϕ EF [m..n]ϕ � E(� U [m..n]ϕ)

A(ϕ U ψ) � AF ≤kϕ � A(� U≤k ϕ) � A(� U [0..k] ϕ)

¬E(¬ϕ U (¬ψ ∧ ¬ϕ)) ∧ ¬EG¬ϕ AF [m..n]ϕ � A(�U [m..n]ϕ)

AFϕ � A(� U ϕ) EG≤kϕ � ¬AF ≤k¬ϕ

AXϕ � ¬EX¬ϕ EG[m..n]ϕ � ¬AF [m..n]¬ϕ

AG≤kϕ � ¬EF ≤k¬ϕ

AG[m..n]ϕ � ¬EF [m..n]¬ϕ

E(ϕ U=k ψ) � E(ϕ U [k..k] ψ)

Fig. 1. shows an
RTCTLcc model
where the proposi-
tion p holds at some
future state of every
possible path from
s0 to s4 and the
proposition q holds
at all states in all
paths from s0 to s2,
formally, (M, s0) |=
AF ≤4p ∧ AG≤2q.

Level4

q

q

qq

p

ppppp

Level0

Level1

Level2

Level3

the merchant globally commits to deliver goods to the customer within at most
3 days once she received the agreed payment.

Example 2. Consider the car rental scenario discussed in the introduction.

1. The formula AG(SCC (Cus,Age,EF disposeCar ,EF=5 returnBackCar))
expresses that the customer is obliged to return back the rental car to the
agency on exactly 5 days as soon as the rental contract is disposed.

2. The customer is obliged to pay the whole rental amount on the first three days
of the rental period: AG(SCC (Cus,Age,EF disposeCar ,EF [1 ..3]payment)).
After 2 days from disposing the rental car, the customer sends the agreed
payment, which conducts the fulfillment of the commitment: EF (FuS (Cus,
SCC (Cus,Age,EF disposeCar ,EF [1 ..3]payment))).

3. The agency is committed to the customer to withdraw the broken car and
reimburse the remaining days within 2 days from the end of the rental period
as soon as the customer notifies for breaking down: AG(SCC (Age,Cus,
EF≤5notifyBrokenCar ,EF withdrawBrokenCar ∧ EF [5 ..7]reimburse)).

Other examples in the introduction can be formalized in a similar manner.

Real-Time Conditional Commitment Logic 553

3 Related Work

There are only two logical approaches that have defined formal semantics for
conditional commitments, a universal type of social commitments, in the lit-
erature. The first approach is the one introduced by Singh [16]. In this app-
roach, the author extended LTL with two modalities to represent and reason
about two different types of conditional commitments (practical and dialecti-
cal). In the second approach, we extended CTL with four modalities to rep-
resent and reason about two types of conditional commitments (weak and
strong) and their fulfillments [6]. The semantic rules of weak conditional com-
mitments function as the ones introduced in [16]. The resulting logical lan-
guage is so-called CTLcc. Since unconditional commitments can be treated
as a special case of conditional commitments when the antecedent is true:
C(i, j, ϕ) � WCC(i, j,�, ϕ) � SCC(i, j,�, ϕ), we beneath discuss the current
approaches that develop only temporal unconditional commitment logics. Among
these approaches, El Menshawy et al. [10] developed CTLC, an extension of CTL
with unconditional commitment modality. El Menshawy et al. [8] improved the
definition of the accessibility relation introduced in [10] to have a new semantics
for unconditional commitment and fulfillment modalities. The new logic is called
CTLC+. The authors in [11] developed a branching time temporal logic called
ACTL∗c by extending CTL∗ with temporal modalities to represent and reason
about unconditional commitments and all related actions. The authors in [1]
introduced a temporal logic called CTLKC+, a combination of CTL modalities,
knowledge modality and unconditional commitment modality. It is known that
temporal logics are time-abstract with regard to the occurrence of events in the
past and future without referencing to the precise timing of events. Therefore,
temporal-logics-based approaches discussed above are not suitable to represent
and reason about deadlines of commitments that incorporate metrics or real-
time constraints as in real-life business scenarios. The current approach extends
CTLcc with real-time constraints in the bounded operators to rigorously address
this limitation.

Mallya et al. [15] enriched CTL with: predicates to reason about commit-
ments and fulfillment and violation actions; and two existential and universal
quantifiers to capture temporal deadlines in the commitment consequences. Our
interval bound until operators along with existential and universal quantifiers
can model their temporal quantifiers in a reasonable way. From Mallya et al.’s
approach, let p be a proposition representing a ticket as an offer, so the proposi-
tion [d1, d2]p denotes that the ticket will be an offer in the interval beginning at
d1 and ending at d2. In our approach, WCC (TrCom,Cus,�,EF [1 ..24] p)) means
that the travel company weakly commits to a customer to eventually make the
ticket as an offer, which is only valid for an entire day (i.e., 24 hours). However,
our quantified time intervals are not abstracted as propositions, as done in [15].

In the literature of agent communication, parallel with modeling commit-
ments as temporal modalities, there are executable action languages [4,5], such
as event calculus and causal logic C+, which model commitments as fluents. A
fluent is a property, which has different values at different time points or can hold

554 W. El Kholy et al.

within time intervals. The current approaches use Boolean fluents, which have
two possible values: true (hence commitments hold) and false (hence commit-
ments do not hold). The operational semantics of commitment actions is defined
by a set of axioms. In the event calculus formalism, this operational semantics is
as follows: action occurrences are defined by the use of happens predicates, the
effects of actions are defined by the use of initiates and terminates predicates and
the fluents values are defined by the use of initially, holdsAt and holdsFor predi-
cates. Although these executable action languages are very easily and efficiently
implemented for executable system specifications, the underlying time model is
linear (unlike our time branching model) and there is no formal semantics for
commitments. Chesani et al. [4] extended the current event calculus formalism
with data, variables, and metric time to deal with temporal aspects (e.g., dead-
lines). Like our approach, the authors argued that metric time is missing in
temporal logics (e.g., LTL, CTL and CTL∗). From [4], consider the following
axiom:

create(promise(Ag1 ,Ag2 , deliverGoods),C (Ag1 ,Ag2 , property(e(T1 ,T2),
deliverGoods)),T) ← T1 is T + 1, T2 is T + 3.

Now, suppose we observed the following event: promise(Mer ,Cus, deliverGoods)
at time20. Since the signature of this event copeswith thedescriptionof create(. . .),
then Mer becomes committed to deliver the requested goods between time
21 and time 23: C (Mer ,Cus, property(e(21 , 23), deliverGoods)). The Chesani
et al.’s axiom can be defined using our logic as follows: EF=20promise(Mer,
Cus, deliverGoods)∧SCC(Mer,Cus,�, EF [21..23]deliverGoods). Our approach
can also extend the content language expressions in FIPA-ACL with interval oper-
ators to express assortment sets of temporal requirements, as done in [18].

4 Conclusion

We have shown how to extend the qualitative conditional commitment logic
CTLcc to the quantitative logic called RTCTLcc. The new logic is suitable for
time-bounded reasoning about real-time MASs computing where the interac-
tion among agents is modeled by conditional commitments and their fulfillment
actions. We have also pointed out how quantitative properties expressed in the
extended version of event calculus can be rigorously expressed in RTCTLcc. As
future work, we plan to develop a transformation algorithm to automatically
transform the problem of model checking RTCTLcc into the problem of model
checking RTCTL [13], so that the use of NuSMV is feasible. Given that, we plan
to develop symbolic algorithms for bounded operators and implement them on
top of our symbolic model checker MCMAS+ [6] to compare between direct and
indirect verification techniques. We also plan to consider arbitrary durations
in our model’s transitions to have different levels of temporal deadlines and to
reduce extra verification work resulting from the use of unit measure steps.

Acknowledgments. The authors would like to thank NSERC (Canada) and
Menoufia University (Egypt) for their financial support.

Real-Time Conditional Commitment Logic 555

References

1. Al-Saqqar, F., Bentahar, J., Sultan, K., Wan, W., Khosrowshahi, E.: Model check-
ing temporal knowledge and commitments in multi-agent systems using reduction.
Simulation Modelling Practice and Theory 51, 45–68 (2015)

2. Baldoni, M., Baroglio, C., Marengo, E., Patti, V.: Constitutive and regulative
specifications of commitment protocols: A decoupled approach. ACM Transactions
on Intelligent Systems and Technology 4(2), 22 (2013)

3. Bentahar, J., El-Menshawy, M., Qu, H., Dssoulia, R.: Communicative commit-
ments: Model checking and complexity analysis. Knowledge-Based Systems 35,
21–34 (2012)

4. Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and monitoring
social commitments using the event calculus. Autonomous Agents and Multi-Agent
Systems 27(1), 85–130 (2013)

5. Desai, N., Singh, M.: A modular action description language for protocol com-
position. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence,
pp. 962–967 (2007)

6. El-Kholy, W., Bentahar, J., El-Menshawy, M., Qu, H., Dssouli, R.: Conditional
commitments: Reasoning and model checking. ACM Transaction on Software
Engineering and Methodology 24, 9:1-9-49 (2014)

7. El-Kholy, W., Bentahar, J., El-Menshawy, M., Qu, H., Dssouli, R.: Modeling and
verifying choreographed multi-agent-based web service compositions regulated by
commitment protocols. Expert Systems with Applications 41, 7478–7494 (2014)

8. El-Menshawy, M., Bentahar, J., El-Kholy, W., Dssouli, R.: Reducing model check-
ing commitments for agent communication to model checking ARCTL and GCTL*.
Autonomous Agent Multi-Agent Systems 27(3), 375–418 (2013)

9. El-Menshawy, M., Bentahar, J., Dssouli, R.: Verifiable semantic model for agent
interactions using social commitments. In: Dastani, M., El Fallah Segrouchni, A.,
Leite, J., Torroni, P. (eds.) LADS 2009. LNCS, vol. 6039, pp. 128–152. Springer,
Heidelberg (2010)

10. El-Menshawy, M., Bentahar, J., Dssouli, R.: Symbolic model checking commitment
protocols using reduction. In: Omicini, A., Sardina, S., Vasconcelos, W. (eds.)
DALT 2010. LNCS, vol. 6619, pp. 185–203. Springer, Heidelberg (2011)

11. El-Menshawy, M., Bentahar, J., Kholy, W.E., Dssouli, R.: Verifying conformance
of multi-agent commitment-based protocols. Expert Systems with Applications
40(1), 122–138 (2013)

12. El-Menshawy, M., Benthar, J., Qu, H., Dssouli, R.: On the verification of social
commitments and time. In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.)
AAMAS, pp. 483–490. IFAAMAS (2011)

13. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal rea-
soning. Real-Time Systems 4(4), 331–352 (1992)

14. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press (1995)

15. Mallya, A.U., Yolum, I., Singh, M.P.: Resolving commitments among autonomous
agents. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 166–182.
Springer, Heidelberg (2004)

556 W. El Kholy et al.

16. Singh, M.: Semantical considerations on dialectical and practical commitments.
In: Proceedings of 23rd AAAI Conference on Artificial Intelligence, pp. 176–181
(2008)

17. Telang, P., Singh, M.: Specifying and verifying cross-organizational business mod-
els: An agent oriented approach. IEEE Transactions on Service Computing 5(3),
305–318 (2012)

18. Verdicchio, M., Colombetti, M.: Dealing with time in content language expressions.
In: van Eijk, R.M., Huget, M.-P., Dignum, F.P.M. (eds.) AC 2004. LNCS (LNAI),
vol. 3396, pp. 91–105. Springer, Heidelberg (2005)

A Double Auction Mechanism for On-Demand
Transport Networks

Malcolm Egan1, Martin Schaefer1(B), Michal Jakob1, and Nir Oren2

1 Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

martin.schaefer@fel.cvut.cz
2 Department of Computing Science, University of Aberdeen, Aberdeen, UK

Abstract. Market mechanisms play a key role in allocating and pric-
ing commuters and drivers in new on-demand transport services such
as Uber, and Liftago in Prague. These services successfully use differ-
ent mechanisms, which suggests a need to understand the behavior of
a range of mechanisms within the context of on-demand transport. In
this paper, we propose a double auction mechanism and compare its per-
formance to a mechanism inspired by Liftago’s approach. We show that
our mechanism can improve efficiency and satisfy key properties such as
weak budget balance and truthfulness.

Keywords: Double auction · On-demand transport · Taxis

1 Introduction

Lead globally by Uber, several on-demand transport services—including Grab-
Taxi in Singapore and Liftago in Prague1—are rapidly making a transition from
the traditional taxi model to market-based approaches. These approaches are
characterized by dynamic pricing, both for commuters and drivers.

An important, but not widely acknowledged, aspect of the transition to
market-based approaches is that different on-demand transport services are using
different mechanisms. For instance, Uber utilises a mechanism where commuter
prices and driver payments are set using a data-driven approach. On the other
hand, companies such as Liftago in Prague and GrabTaxi in Singapore have
implemented an auction-based mechanism where drivers bid for commuter jour-
neys. Determining which approach is better is difficult; while both companies
are financially viable, they (mainly) operate in different cities.

The success of such different pricing approaches reveals a need to understand
how various market mechanisms behave within the context of on-demand trans-
port systems. While auction and posted price mechanisms have been extensively
studied in a range of domains, this is not the case for the two-sided markets that
arise in on-demand transportation. So far, the only work investigating the prop-
erties of these mechanisms is either aligned with Uber’s mechanism [1,4,5] or
1 https://www.uber.com/, http://grabtaxi.com, https://www.liftago.com/

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 557–565, 2015.
DOI: 10.1007/978-3-319-25524-8 38

https://www.uber.com/
http://grabtaxi.com
https://www.liftago.com/

558 M. Egan et al.

targeted at on-demand transport services with salaried drivers [3]. In particular,
there has not been an evaluation of auction-based mechanisms, such as those
adopted by Liftago and GrabTaxi.

In this paper, we introduce a market mechanism for on-demand transport
services that aligns more closely with Liftago’s approach rather than the one
adopted by Uber. In particular, our mechanism is based on a double auction,
which means that both commuters and drivers bid for a journey. Although com-
muter bidding is not widely used at present, double auctions are known to be
highly efficient—forming a benchmark for other approaches—and the service
is accessible to all commuters when there is not significant financial inequality
(e.g., in on-demand transport services targeted at businesses).

In contrast with standard applications of double auctions [6], goods (i.e.,
journeys) in on-demand transport systems are heterogeneous. Furthermore, on-
demand transportation systems are large scale. Therefore, any new approach
must be able to both cope with the domain’s heterogeneity, and directly address
the scalability challenge. To this end, we show that our mechanism naturally
decomposes the large-scale market into a number of smaller scale sub-markets,
which can be run in parallel. We also provide key properties of our mechanism,
including conditions when truthfulness holds. We show via simulations that our
mechanism can achieve both a higher number of trades and efficiency, compared
with a benchmark auction mechanism inspired by Liftago’s approach.

2 System Model

In this section, we develop an agent-based model including commuters, drivers,
and the provider (e.g., Uber or Liftago). Our model captures the private pref-
erences of commuter and drivers, and forms the basis for our proposed double
auction mechanism, which we describe in Section 3. We consider the common
scenario where pre-booking and ridesharing are not supported.

Underlying our model is the road network. This is represented by a directed
graph G = (V,E). In the graph, the set of nodes V represents possible pick-up
and drop-off locations of commuters. The set of edges E represents the direct
routes between locations in V , which can be traversed by the drivers. Associated
to each edge e ∈ E are: a pick-up location u ∈ V ; a drop-off location w ∈ V ; a
cost2 ce ∈ [0,∞) for a vehicle to traverse edge e ∈ E; and an edge traversal time
τe ∈ Z+.

We consider a discrete time model, where the market mechanism is run every
T minutes. We assume that all commuters are willing to accept a delay of T
minutes on top of the time that it takes their allocated driver to reach their
pick-up location. This is not a strong assumption when T is sufficiently small;
e.g., 10 minutes.

We now detail our assumptions on commuter and driver preferences.

2 Such costs could arise due to fuel consumption and vehicle wear and tear.

A Double Auction Mechanism for On-Demand Transport Networks 559

2.1 Commuter Preferences

Commuter i desires a journey with immediate pick-up at a location ui ∈ V
and drop-off location vi ∈ V , which is reported to the provider. Each commuter
i has a maximum price, pi,max, she is prepared to pay for the journey. This
is determined by two factors: the distance of the journey; and the maximum
price-rate (in euros/km), ri,max, that she is prepared to pay, known only to
the commuter. The value of ri,max reflects commuter i’s desire for the journey
and her beliefs about how much alternative transportation options will cost. As
such, ri,max captures the effect of competition between providers—if there is an
alternative, ri,max will be less than what the alternative provider is offering.

The maximum price that commuter i will pay for their journey is given
by pi,max = ri,maxRi, where Ri is the distance of the requested journey between
pick-up location ui and drop-off location vi, dependent on the road network. The
maximum price pi,max determines how much commuter i will bid to be trans-
ported in our double auction mechanism (described in Section 3). The utility of
commuter i that pays price p is pi,max − p if allocated and zero otherwise.

2.2 Driver Preferences

Drivers are profit-seeking; that is, each driver j seeks to obtain a minimum profit
for each journey. The profit that driver j will receive, Sj , from transporting com-
muter i is given by Sj = rj,iRi−cRi−cRj,i, where Ri is the distance of commuter
i’s requested journey, c is the cost per kilometer (due to fuel consumption as well
as vehicle wear and tear), Rj,i is the distance from driver j’s initial location to
commuter i’s pick-up location, and rj,i is the price-rate per kilometer that driver
j receives for transporting commuter i. The price-rate rj,i is determined by our
mechanism detailed in Section 3.

Each driver j is only willing to transport a passenger if a minimum profit tar-
get, Sj,min, is met; that is if Sj ≥ Sj,min. The minimum profit Sj,min determines
how much driver j will bid for a journey in our double auction mechanism which
reflects the expectations of the driver including journey duration. The utility of
driver j is Sj − Sj,min if she is allocated and zero otherwise.

3 Proposed Market Mechanism

In this section, we introduce our double auction market mechanism. The purpose
of the mechanism is to allocate commuters to drivers and determine how much
commuters pay for their journeys as well as the payment drivers receive. In this
setting, each commuter’s requested journey is treated as a good that is bought by
commuters from drivers. Unlike the usual double auction setup [6], journeys are
not homogeneous, with each journey different: the pick-up location and journey
distance varies from commuter to commuter; and the distance between each
driver’s initial location and each commuter’s pick-up location also differs for
each driver-commuter pair.

560 M. Egan et al.

Journey heterogeneity means that standard double auction mechanisms—
designed for homogeneous goods—cannot be directly applied. To deal with
this problem, we introduce a market decomposition algorithm in Section 3.1,
which decomposes the market into a number of approximately homogeneous
sub-markets. This allows us to exploit the desirable properties of the McAfee
mechanism [6] in each sub-market, which we describe in Section 3.2. The approx-
imately homogeneous nature of each sub-market causes bidders to behave dif-
ferently compared with homogeneous markets. The properties of our mechanism
are described in Section 3.3.

3.1 Sub-Market Decomposition

The first component of our mechanism is a method to decompose the market
(consisting of commuters and drivers) at the time the mechanism is run. The
purpose of the decomposition is to generate a number of approximately homo-
geneous sub-markets that can be run in parallel.

To generate the sub-markets, first observe that each driver j’s valuation of
a journey is in terms of their profit, whereas each commuter i’s valuation is in
terms of price. In order to compare the bids, the provider converts the bid of
commuter i to an effective profit. That is, the net profit received by a potential
driver k that serves commuter i will be Sk,i = pi,max − cRi − cRk,i, where Rk,i

is the distance between the initial location of driver k to the pick-up location
of commuter i. Observe that the heterogeneity in the market arises because Ri

and Rk,i differ for each driver-commuter pair.
To generate a homogeneous sub-market, we need to ensure that Ri and Rk,i

are the same for each driver-commuter pair. This occurs in two situations: either
all commuters are in the same location, have a journey with the same distance,
and each driver is at the same distance from each commuter (e.g., an airport);
or all drivers are in the same location, and each commuter has the same distance
journey with pick-up locations at the same distance from each driver (e.g., a city
center).

In practice, the conditions for a homogeneous sub-market will not normally
occur exactly ; instead, we need to settle for approximate homogeneity. This can
be achieved for the first situation as follows (illustrated in Fig. 1):

– Situation I (Commuter-centric):
• K commuters are treated as being in the same location if the pick-up

locations of all K commuters do not differ by more than a distance δ;
i.e., ‖uk − uc‖ ≤ δ, ∀k, where uc is the centroid of the pick-up locations
of all K commuters.

• K commuters having the same the journey distance if their journey
distances {Ri} do not differ pairwise by more than a distance ε; i.e.,
|Rk − Rl| ≤ ε, ∀k, l.

• N drivers are treated as being at the same distance from the commuters
if distances from their initial location to the centroid, uc, do not differ
pairwise by more than a distance γ; i.e., |Rk,c − Rl,c| ≤ γ, ∀k, l, where

A Double Auction Mechanism for On-Demand Transport Networks 561

Rk,c is a distance to the centroid of all pick-up locations from initial
position of driver k.

The second driver-centric situation can be formed similarly (we omit details due
to space constraints).

Fig. 1. Illustration of sub-market formation in Situation I.

To generate the sub-markets, the parameters ε, δ and γ need to be tuned.
This will typically rely on statistics from the network. The sub-markets are then
formed using an algorithm based on K-mean clustering. We examine the effect
of these parameters and the resulting approximate homogeneity on a realistic
on-demand transport network in Section 4.

3.2 Double Auction Mechanism

We now detail our proposed double auction mechanism, which consists of two
phases:

1. Decompose the on-demand transport market into approximately homoge-
neous sub-markets using the approach detailed in Section 3.1;

2. Allocate commuters to drivers:
– While there is a sub-market with at least one commuter and driver in the

sub-market, run a double auction in that sub-market using the McAfee
rule (detailed below).

– If there is only one commuter (or driver) in the sub-market, then run a
sealed bid second price auction where a trade occurs only if the commuter
(or driver) accepts the journey (based on their valuation as detailed in
Section 2).

A key feature of our mechanism is that it decomposes the potentially large scale
market into a number of sub-markets, which can be run in parallel. As such,
we are able to automatically group desirable commuters and drivers together,
which is important in practice as it reduces the need for drivers to respond to a
large number of commuter offers.

562 M. Egan et al.

We now detail how commuters and drivers are allocated in the second phase
of our mechanism when there is at least one commuter and driver in a sub-
market. The basic idea of the allocation is to match the commuters that bid
the most to drivers that bid the least, which maximizes the number of efficient
trades. The additional steps are based on the McAfee mechanism [6] to ensure
high efficiency (with bounded loss) and truthfulness (discussed further in the
following sections).

(i) (Initialization) Commuters broadcast {bi}Ki=1 (the maximum price they are
prepared to pay for their journey), and drivers broadcast {sj}Nj=1 (the min-
imum profit they are prepared to receive for their next journey).

(ii) For each commuter, compute b′
i = bi − cRmax − cR0,max, where Rmax is

the maximum journey distance and R0,max is the maximum distance of the
driver from a passenger. Note that both Rmax and R0,max are parameters
of the sub-market (determined by δ and ε, as detailed in the previous sub-
section). This allows the bids of the commuters and drivers to be compared
as they are both in terms of profit.

(iii) Sort commuters: b′
(1) ≥ b′

(2) ≥ · · · ≥ b′
(K); drivers: s(1) ≤ s(2) ≤ · · · ≤ s(N).

(iv) Compute the number of efficient trades: k∗ = max{k : b′
(k) ≥ s(k), b′

(k+1) <

s(k+1)} and compute p0 = 1
2 (b′

(k+1) + s(k+1)).
(v) Check the McAfee condition:

(a) If p0 ∈ [s(k∗), b
′
(k∗)], then the actual prices for the drivers and commuters

are s = b′ = p0 and all k∗ efficient pairs are allocated;
(b) Otherwise the prices for the drivers and commuters are s = s(k∗), b′ =

b′
(k∗) and k∗ − 1 pairs are allocated.

(vii) Commuters are then required to pay b′ + cRmax + cR0,max and each driver
j who transports commuter i is paid s + cRi + cRj,i.

3.3 Mechanism Properties

The approximate homogeneity in the sub-markets that arise in our mechanism
means that not all properties of standard double auctions hold. We now state
without proof (due to space constraints) the key properties of our mechanism.

Proposition 1. The mechanism is weak budget balanced and individually ratio-
nal.

Proposition 2. The mechanism is ex interim truthful when agents are risk
averse3. However, the mechanism is not ex post truthful when agents are risk
neutral.

3 Recall that ex interim means that agents know their own preferences, but not for the
others, and risk averse means that agents act by maximizing their minimum utility
(as opposed to the average in the risk neutral case)

A Double Auction Mechanism for On-Demand Transport Networks 563

Note that the standard McAfee mechanism for homogeneous goods is ex post
truthful for risk neutral agents [6]. The restriction to ex interim truthfulness
with risk averse agents is a consequence of approximate homogeneity in each
sub-market. These properties suggest that our mechanism is useful in practice
as it ensures that the provider does not lose money on each journey (weak
budget balance), as well as ensuring that drivers and commuters have incentives
to participate (the mechanism is individually rational). In the next section, we
investigate the efficiency (i.e., sum of drivers’ and commuters’ utilities) of our
mechanism via simulation and compare with a benchmark mechanism inspired
by Liftago’s approach.

4 Simulation Results

In this section, we evaluate the efficiency of our mechanism via simulation. Our
mechanism is benchmarked against an approach inspired by Liftago’s mecha-
nism; namely, a sealed bid second price auction, where the commuter accepts
the journey if the second highest bid is less than the maximum price she is
prepared to pay. Our simulation study is based on the commuter demand pro-
file in the Mobility Services Testbed [2] for the city of Hague. We assume that
there are 20 available drivers and 100 commuters throughout the road network
at the beginning of a mechanism run, at a peak hour. We set the time between
mechanism runs as 10 minutes and the cost per kilometer as c = 0.3 euros.

In figures 2(a) to 3(b), we evaluate the efficiency and number of trades in a
single commuter-centric sub-market (as detailed in Section 3.1), and the depen-
dence on the parameter choices (i.e., for δ, γ). Although this does not evaluate
the long-term network-wide performance of our mechanism, it provides insight
into how the choices of these parameters affect efficiency and how a single sub-
market compares to the benchmark. The maximum price-rate that each com-
muter is prepared to accept and the minimum profit a driver is willing to receive

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

16

Cluster radius [m]

of

 tr
ad

es

DA
SPSB .

(a) Plot of number of trades vs. the
commuter cluster radius, δ.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

16

18

Annulus bound [m]

of

 tr
ad

es

DA
SPSB .

(b) Plot of number of trades vs. width
of the driver annulus, γ.

Fig. 2. Effect of sub-market parameters on the number of trades.

564 M. Egan et al.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8
x 10

4

Cluster radius [m]

S
um

 o
f u

til
iti

es

DA
SPSB .

(a) Plot of efficiency vs. the commuter
cluster radius, δ.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6
x 10

4

Annulus bound [m]

S
um

 o
f u

til
iti

es

DA
SPSB .

(b) Plot of efficiency vs. the width of
the driver annulus, γ.

Fig. 3. Effect of sub-market parameters on the efficiency (i.e., sum of drivers’ and
commuters’ utilities).

is drawn from the beta distribution (a highly flexible distribution with bounded
support), with parameters αr = 1, βr = 1 on support [0, 2.5] (for the price-rate)
and αs = 1, βs = 2.5 on support [0, 10] (for the minimum profit). We note that
a similar preference model was also used in [3].

Observe in figures 2(a) to 3(b) that using a choice of ε = δ = γ = 5 km,
our mechanism outperforms the benchmark in terms of both number of trades
(i.e., number of commuters served) and the efficiency. Importantly, the number
of trades and efficiency is dependent on the parameter choices, which suggests
further improvements are possible by optimizing our mechanism to tailor it to a
particular city in order to outperform the benchmark.

5 Conclusions

We have proposed a double auction mechanism to allocate commuters and
drivers in on-demand transport systems. We showed that our mechanism has
a number of desirable properties including the ability to run sub-markets in
parallel, weak budget balance, individual rationality, truthfulness, and high effi-
ciency. A drawback of our mechanism introduced in this paper is that it is static,
which means that it only runs in discrete time. As such, our current focus and
future work is to develop online double auction mechanisms for on-demand trans-
port systems, along with methods to optimize the sub-market parameters. The
long-term and global system performance of our mechanism also remain open
issues.

Acknowledgments. Supported by the European Commission under MyWay, a col-
laborative project part of the Seventh Framework Programme for research, technolog-
ical development and demonstration under grant agreement no 609023. Further sup-
ported by the European social fund within the framework of realizing the project

A Double Auction Mechanism for On-Demand Transport Networks 565

“Support of inter-sectoral mobility and quality enhancement of research teams at
Czech Technical University in Prague”, CZ.1.07/2.3.00/30.0034. Period of the projects
realization 1.12.2012-30.6.2015.

References

1. Borgs, C., Candogan, O., Chayes, J., Lobel, I., Hazerzadeh, H.: Optimal multiperiod
pricing with service guarantees. Management Science 60(7), 1792–1811 (2014)

2. Čertický, M., Jakob, M., Ṕıbil, R.: Analyzing on-demand mobility services by agent-
based simulation. Journal of Ubiquitous Systems & Pervasive Networks 6(1), 17–26
(2015)

3. Egan, M., Jakob, M.: A profit-aware negotiation mechanism for on-demand trans-
port services. In: Proc. European Conference on Artificial Intelligence (ECAI) (2014)

4. Gan, J., An, B., Miao, C.: Optimizing efficiency of taxi systems: scaling-up and
handling arbitrary constraints. In: Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2015) (2015)

5. Gan, J., An, B., Wang, H., Sun, X., Shi, Z.: Optimal pricing for improving effi-
ciency of taxi systems. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI) (2013)

6. McAfee, R.: Dominant strategy double auction. Journal of Economic Theory 56(2)
(1992)

Exploiting Social Commitments in Programming
Agent Interaction

Matteo Baldoni(B), Cristina Baroglio, Federico Capuzzimati,
and Roberto Micalizio

Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
matteo.baldoni@unito.it

Abstract. Modeling and regulating interactions among agents is a crit-
ical step in the development of Multiagent Systems (MASs). Some recent
works assume a normative view, and suggest to model interaction proto-
cols in terms of obligations. In this paper we propose to model interac-
tion protocols in terms of goals and commitments, and show how such a
formalization promotes a deliberative process inside the agents. The pro-
posal is implemented via JaCaMo+, an extension of JaCaMo, in which
Jason agents can interact, while preserving their deliberative capabilities,
by exploiting commitment-based protocols, reified by special CArtAgO
artifacts.

Keywords: Social computing · Agent programming · Commitments
and goals · Agents & Artifacts · JaCaMo

1 Introduction

Many researchers claim that an effective way to approach the design and devel-
opment of a MAS consists in conceiving it as a structure composed of four main
entities: Agents, Environment, Interactions, and Organization [6,13,14]. Such
a separation of concerns enjoys many advantages from a software engineering
point of view, since it enables a modular development of code that eases code
reuse and maintainability. Currently, there are many frameworks that support
the realization of one of these components (e.g., [4,8]). To the best of our knowl-
edge, JaCaMo [5] is the the most complete among the well-established proposals,
providing a thorough integration of the three components agents, environments,
and organizations into a single programming framework.

A recent extension to JaCaMo [25] further enriches the framework by intro-
ducing an interaction component. The interaction component allows regulat-
ing both agent interactions and the interactions between agents and environ-
ment. More precisely, an interaction component encodes –in an automaton-
like shape– a protocol, in which states represent protocol steps, and transitions
between states are associated with (undirected) obligations. Such protocols pro-
vide a guideline of how a given organizational goal should be achieved. Inter-
action components, as defined in [25], however, present also some drawbacks.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 566–574, 2015.
DOI: 10.1007/978-3-319-25524-8 39

Exploiting Social Commitments in Programming Agent Interaction 567

Works such as [11] show the importance, for the agents to be autonomous, to
reason about the social consequences of their actions by exploiting constitutive
norms that link the agents’ actions to their respective social meanings. However,
an interaction component operates as a coordinator that, by relying on obliga-
tions, issues commands about what an agent has to do, and when. This impedes
agents from reasoning on the normative effects of their actions. On the one hand,
obligations are not constitutive norms, on the other hand, the social meaning of
such commands is not known to the agents but only implicitly encoded within
the protocol. Agents lose part of their deliberative power since, once they join an
interaction component, they have no other choice but deciding whether satisfying
or not those obligations they are in charge of, while the rationale behind these
obligations remains hidden to them. Consequently, this approach does not suit
those situations where interaction is not subject to an organizational guideline,
such as when interaction is among agents and each agent decides what is best for
itself [24], or when guidelines amount to declarative, underspecified constraints
that still leave agents the freedom to take strategic decisions on their behavior.
We thus propose a complementary approach to [25] which better supports the
deliberative capabilities of the agents.

When organizational goals are not associated with corresponding guidelines,
agent deliberation is crucial for the achievement of goals. An agent has to act
not only upon its own goals, but also upon what interactions could be necessary
for achieving these goals. In other terms, an agent has to discover how to ful-
fill a goal by interacting with others. It is important to underline that when
agents can fully exploit their deliberative capabilities, they can take advan-
tage of opportunities (flexibility), and can find alternative ways to get their
goals despite unexpected situations that may arise (robustness). To this aim, we
present JaCaMo+, an agent platform, that builds upon JaCaMo [5], where Jason
agents engage commitment-based interactions which are reified as CArtAgO arti-
facts. CArtAgO is a framework based on the A&A meta-model [19,23] which
extends the agent programming paradigm with the first-class entity of artifact:
a resource that an agent can use, and that models working environments. The
environment is itself programmable and encapsulates services and functionalities,
making it active. JaCaMo+ artifacts represent the interaction social state and
provide the roles agents enact. The use of artifacts enables the implementation
of monitoring functionalities for verifying that the on-going interactions respect
the commitments and for detecting violations and violators. The well-known
gold miners scenario is used as an example.

2 Social Commitments for Programming

The heart of our proposal is that whenever organization-driven guidelines are
missing, the interactions among the agents should be supported by the very
fundamental notions of goal and engagement. So, we propose to complement
the interaction protocol in [25], and more in general organizational and nor-
mative approaches [12,15,18], with an interaction artifact that can be used by

568 M. Baldoni et al.

the agents as a common ground. Our interaction artifacts encode the notion
of engagement as social commitment [20]. A social commitment models the
directed relation between two agents: a debtor and a creditor, that are both
aware of the existence of such a relation and of its current state: A commitment
C(x, y, s, u) captures that agent x (debtor) commits to agent y (creditor) to
bring about the consequent condition u when the antecedent condition s holds.
Antecedent and consequent conditions are conjunctions or disjunctions of events
and commitments. A commitment is autonomously taken by a debtor towards
a creditor on its own initiative, instead of dropping from an organization, like
obligations. Unlike obligations, commitments are manipulated by agents through
the standard operations create, cancel, release, discharge, assign, delegate [20].
Since debtors are expected to satisfy their engagements, commitments have a
normative value, providing social expectations on the agents’ behaviors, as well
as obligations.

The choice of commitments is, thus, motivated by the fact that they are
taken by an agent as a result of an internal deliberative process, that creates
social relationships with a normative flavour. This preserves the autonomy of
the agents and is fundamental to harmonize deliberation with goal achievement.
The agent does not just react to some obligations, but it rather includes a delib-
erative capacity by which it creates engagements towards other agents while it
is trying to achieve its goals (or to the aim of achieving its goals). Citing Singh
[21], an agent would become a debtor of a commitment based on the agent’s
own communications: either by directly saying something or having another
agent communicate something in conjunction with a prior communication of the
debtor. That is, there is a causal path from the establishment of a commitment
to prior communications by the debtor of that commitment. By contrast, obli-
gations can result from a deliberative process which is outside the agent; this is
the case of the interaction component in [25]. This is the reason why we believe
that the introduction of a deliberative process on constitutive rules that rely on
obligations would not really support the agents’ autonomy.

Commitment-based protocols assume that a (notional) social state is avail-
able and inspectable by all the involved agents. The social state traces which
commitments currently exist between any two agents, and the states of these
commitments according to the commitments lifecycle. Commitments can be used
by agents in their practical reasoning together with beliefs, intentions, and goals.
In particular, Telang et al. [22] point out that goals and commitments are one
another complementary: A commitment specifies how an agent relates to another
one, and hence describes what an agent is willing to bring about for another
agent. On the other hand, a goal denotes an agent’s proattitude towards some
condition; that is, a state of the world that the agent should achieve. An agent
can create a commitment towards another agent to achieve one of its goals; but
at the same time, an agent determines the goals to be pursued relying on the
commitments it has towards others.

Exploiting Social Commitments in Programming Agent Interaction 569

3 JaCaMo+

JaCaMo [5] is a platform integrating Jason (as an agent programming language),
CArtAgO (as a realization of the A&A meta-model [23]), and Moise (as a support
to the realization of organizations). JaCaMo+ extends the CArtAgO and Jason
components of the standard JaCaMo. Artifacts are enriched with an explicit rep-
resentation of commitments and of commitment-based protocols. The resulting
class of artifacts reifies the execution of commitment-based protocols, including
the social state of the interaction, and enables Jason agents both to be noti-
fied about the social events and to perform practical reasoning also about the
other agents (this is possible thanks to the social expectations raised by com-
mitments). Specifically, a JaCaMo+ artifact encodes a commitment protocol,
that is structured into a set of roles. By enacting a role, an agent gains the
rights to perform social actions, whose execution has public social consequences,
expressed in terms of commitments. If an agent tries to perform an action which
is not associated with the role it is enacting, the artifact raises an exception that
is notified to the violator. Instead, when an agent performs a protocol action
that pertains to its role, the social state is updated accordingly by adding new
commitments, or by modifying the state of existing commitments. Since an arti-
fact is a programmable, active entity, it can act as a monitor of the interaction
in progress, detecting violations that it can ascribe to the violator without the
need of agent introspection. By focusing on an artifact, an agent registers to be
notified of events that are generated inside the artifact: when the social state
is updated, the JaCaMo+ artifact provides such information to the focusing
JaCaMo+ agents by exploiting proper observable properties. Agents are, thus,
constantly aligned with the social state.

Jason [8] implements in Java, and extends, the agent programming language
AgentSpeak(L). Jason agents have a BDI architecture. Each has a belief base,
and a plan library. It is possible to specify achievement (operator ‘!’) and test
(operator ‘?’) goals. Each plan has a triggering event (causing its activation),
which can be either the addition or the deletion of some belief or goal. JaCaMo+
extends JaCaMo by allowing the specification of plans whose triggering events
involve commitments. JaCaMo+ represents a commitment as a term cc(debtor,
creditor, antecedent, consequent, status) where debtor and creditor identify
the involved agents (or agent roles), while antecedent and consequent are the
commitment conditions. Status is the commitment state (the set being defined in
the commitments life cycle [16]). Commitment operations are realized as internal
operations of the new class of artifacts we added to CArtAgO. Thus, they cannot
be invoked directly by the agents, but the protocol actions will use them as
primitives to modify the social state.

A Jason plan is specified as triggering event : 〈context〉 ← 〈body〉. The
triggering event denotes the events the plan handles, the context specifies the
circumstances when the plan could be used, the body is the course of action
that should be taken. Commitments can be used both in the context and
in the body. Otherwise than beliefs, their assertion/deletion can only occur
through the artifact, in consequence to a social state change. The following

570 M. Baldoni et al.

template shows a Jason plan triggered by the addition of a commitment in the
social state: +cc(debtor, creditor, antecedent, consequent, status) : 〈context〉 ←
〈body〉. More precisely, the plan is triggered when a commitment, that unifies
with the one in the plan head, appears in the social state. The syntax is the
standard for Jason plans. Debtor and creditor are to be substituted by the
proper roles. The plan may be devised so as to change the commitment sta-
tus (e.g. the debtor will try to satisfy the comment), or it may be devised
so as to allow the agent to react to the commitment presence (e.g., collect-
ing information). Similar schemas can be used for commitment deletion and for
the addition/deletion of social facts. Further, commitments can also be used in
contexts and in plans as test goals (?cc(. . .)), or achievement goals (!cc(. . .)).
Addition or deletion of such goals can, as well, be managed by plans; for exam-
ple: +!cc(debtor, creditor, antecedent, consequent, status) : 〈context〉 ← 〈body〉.
The plan is triggered when the agent creates an achievement goal concerning a
commitment. Consequently, the agent will act upon the artifact so as to create
the desired social relationship. After the execution of the plan, the commitment
cc(debtor, creditor, antecedent, consequent, status) will hold in the social state,
and will be projected onto the belief bases of all agents focusing on the artifact.

4 JaCaMo+ Gold Miners

The CLIMA VII gold miners scenario consisted of developing a multi-agent
system to solve a cooperative task in a dynamically changing environment: a
grid-like world where agents could move from one cell to a neighbouring cell if
it contained no agent or obstacle. Gold could appear in the cells. Agent teams
were expected to explore the environment, avoid obstacles and compete with
another agent team for collecting as much gold as they could and deliver it to
the depot. Each agent can carry one gold nugget at a time (we say that an agent
that is not carrying gold is free). Agents had a local view on environment, their
perceptions could be incomplete, and their actions could fail.

1 @goldpercepted [atomic]
2 +c e l l (X,Y, gold) : f r e e & not gold (X,Y) & enactment id (My Role Id)
3 & not cc (My Role Id , , Assigned , Drop , " DETACHED ")
4 <− +gold (X,Y) ; commitToDropGold (X,Y) .
5 @goldperceptedswitch [atomic]
6 +c e l l (X,Y, gold) : not f r e e & not ca r ry ing (,) & not gold (X,Y)
7 & hand l ing go ld (OldX ,OldY) & not changed
8 <− . d r op in t en t i on (handle (gold (,))) ;
9 +gold (X,Y) ; +changed ; −hand l ing go ld (OldX ,OldY) ;

10 changeGoldToPursue (X,Y) ; communicateGoldPosition (OldX ,OldY) .
11 +c e l l (X,Y, gold) : not gold (X,Y)
12 <− communicateGoldPosition (X,Y) .
13 @commitgoldfree [atomic]
14 +gold (X,Y) : f r e e & pos (myX, myY) & not bet (X,Y)
15 <− j i a . d i s t (X1 ,Y1 ,X2 ,Y2 , Dist) ; bid (X,Y, Dist) ; +bet (X,Y) .
16 +gold (X,Y) : not bet (X,Y)
17 <− i gnore (X,Y) ; +bet (X,Y) .
18 @p2gold [atomic]
19 +cc (My Role Id , , , drop (X,Y) , " DETACHED ")
20 : enactment id (My Role Id)
21 <− − f r e e ; ! i n i t h and l e (gold (X,Y)) .

Listing 1.1. The gold miner agent code in JaCaMo+.

Exploiting Social Commitments in Programming Agent Interaction 571

We used four miners, each executing the same code, part of which is reported
in Listing 1.1, the code is at http://di.unito.it/2COMM. The four agents are
randomly positioned within the map and start searching for gold. A JaCaMo+
commitment protocol artifact is also created and shared by all the miners. All
miners focus on the artifact and, thus, will be notified of changes occurred to its
observable properties. This simple mechanism is, for instance, used for handling
the case when an agent bumps into gold –cell(X, Y, gold), gold perceived by
agent in a certain cell– but, since it is already carrying a gold nugget to the
depot, it cannot pick it up (11-12). Then, it communicates its discovery to its
team mates, so that someone else can handle the newly found gold. To this aim,
it invokes the artifact operation communicateGoldPosition(X, Y), which causes
the assertion of an observable property in the social state, which is notified to all
agents in their belief bases as the belief gold(X, Y). When the agent that finds the
gold is free (2-4), it creates (commitToDropGold(X, Y)) a detached commitment
towards all other agents, C(My Role Id,Others,�, drop(X,Y)), of which it is
the debtor, to bring the newly found gold to the depot. This will, in turn, activate
the plan at lines 19-21 to handle that nugget. If, instead, the agent is not free
because when it found the gold it was actually aiming at another nugget, the
agent will change its plans (6-10), setting as gold to pick up the newly found
nugget, and will communicate, through the artifact, the coordinates of the gold
it was previously aiming at, so that someone else can handle it. This is done by
the operations changeGoldToPursue(X, Y), which withdraws the commitment
to drop the assigned nugget and creates a commitment to drop the just perceived
one, and communicateGoldPosition(OldX, OldY).

The appearence of the belief gold(X, Y) in an agent’s belief base triggers a
plan. A free agent (14-15) will execute the artifact operation bid, which causes
the creation of a conditional commitment : if allocated the task, the agent will
collect the gold. So, bid creates a social engagement, whose debtor is the bid-
ding miner, and the creditor is the whole class of team mates. The agent is
requested to include one or more behaviors for managing such a commitment
and, in particular, for managing the case in which it is Detached, i.e. when the
gold nugget is allocated to the agent. This is possible because bid and the com-
mitment C(mineri, all miners, allocated(X,Y,mineri), drop(X,Y)) are tied by
the social meaning of the operation in an explicit way, and this information
is available to the programmer who will add to the agent program plans for
handling the commitment state changes it needs to handle. Knowing the social
meanings of artifact operations is sufficient for coordinating with others cor-
rectly. Agents that are not free just ignore the new gold (line 16). It is possible
to distinguish the two cases by properly defining the plan context.

Instead, in [7] the relation between bid and nugget allocation (the latter is
a consequence of the former), that is fundamental to the programmer, is hidden
inside the the leader agent. The miner communicates its bid and the leader
tells it if it is allocated the gold. Gold allocation triggers a plan to drop the
gold to the depot. The subtle difference with our proposal is that in this case
gold allocation is but a signal, so the miner is programmed to react to signals.

http://di.unito.it/2COMM

572 M. Baldoni et al.

The causal relation, that ties the plan to the event that activates it, is not
expressed explicitly; it is in the structure of the protocol for interacting with the
leader. So, for instance, it is nothing that can be reasoned about nor it can be
exploited for defining a programming methodology [2].

In our case, instead, the connection between the event “commitment
detached” and the associated plan is not only causal, but the plan has the aim of
satisfying the consequent condition of the commitment that triggers it (drop(X,
Y)), i.e. of accomplishing an explicit and shared social engagement. The signal
that notifies gold allocation is not relevant to the agent, at the point that it does
not even appear in the code nor in the commitment. It is the detachment of the
commitment itself that causes handling the gold. There is no need of knowing
or using logics, that are internal to the protocol (artifact), for programming the
agent. Social meanings are the key.

5 Conclusions

We presented JaCaMo+, an extension to JaCaMo that enables social behaviors
into its agents. We started from the interaction protocols based on obligations
proposed in [25]. However, obligation-based protocols reduce agent interactions
to messages that an agent is obliged to send to another agent; that is, social
relationships among agents are not handled directly. Thus, an obligation-based
protocol can be adopted when an organization gives guidelines about how inter-
actions should be carried on, but it is not applicable where similar guidelines
are not available. To cope with these challenging situations, our intuition is to
define an interaction in terms of goals and commitments. Commitments, in fact,
are at the right level of abstraction for modeling directed relationships between
agents. Moreover, since commitments have a normative power, they enable the
agents to reason about the behavior of others.

One of the strongest points of JaCaMo+ is the decoupling between the design
of the agents and the design of the interaction – that builds on the decoupling
between computation and coordination done by coordination models like tuple
spaces. The decoupling allows us to change the definition of the artifact without
the need of changing the agents’ implementation. So, in the gold miners scenario,
allocation can be FIFO, based on the miners’ position, or take into account fur-
ther contextual information like day time, known differences in the equipment of
the miners, difficulty in reaching the nugget location. All these different policies
can be implemented in a way that des not have an impact on the miners’ code.

JaCaMo (with interaction [25]) and JaCaMo+ do not equally support auton-
omy. JaCaMo with interaction just offers an agent to follow a predetermined path
(a guideline) in which the agent has to fulfill a precise pattern of obligations.
JaCaMo+, instead, offers an agent a tool, the interaction artifact, through which
it can communicate with other agents and act together with others. The choice,
however, of how and when being involved into an interaction remains up to the
agents. The adoption of commitments, in fact, assures that an agent assumes the
responsibility for a task only when, by its own choice, performs a specific action
on the interaction artifact. An interaction that is based only on obligations hin-
ders agents when they need to adapt to unforeseen conditions (flexibility) or

Exploiting Social Commitments in Programming Agent Interaction 573

when they need to react to unwanted situations (robustness). The agent, in fact,
is not free to delegate obligations, schedule them differently, etc. All it can do
is to perform the actions that, instructed by the interaction protocol, resolve its
obligations. Protocols in [25] aim at defining guidelines to the use of resources
in an organization. This, however, limits the modularity of interaction protocols
because protocols depend on operations that are defined in the organization and
there is no explicit association of which actions pertain to which roles. JaCaMo+
interaction protocols, instead, include the definitions of the needed operations,
and specify which of them will empower the various role players.

The shift from obligations to commitments is beneficial in many respects.
First, the autonomy of the agents is better supported because they are free in
deciding how to fulfill their goals. It follows that agents are deliberative, and
this paves the way to self-* applications, including the ability to autonomously
take advantage from opportunities, and the ability of properly reacting to unex-
pected events (self-adaptation). Moreover, the interplay between goals and com-
mitments opens the way to the integration of self-governance mechanisms into
organizational contexts. Thus, our concluding claim is that directly addressing
social relationships increases the robustness of the whole MAS.

In the future, we intend to investigate how agents can leverage on their
deliberative capabilities, and use it not only to program interactions, but to
plan social interactions. Moreover, the modular nature of the implementation
facilitates the development of extensions for tackling richer, data-aware contexts
[9,10,17]. We are also interested in tackling, in the implementation, a more
sophisticate notion of social context and of enactment of a protocol in a social
context [3], as well as to introduce a typing system along the line of [1].

Acknowledgments. This work was partially supported by the Accountable Trustwor-
thy Organizations and Systems (AThOS) project, funded by Università degli Studi di
Torino and Compagnia di San Paolo (CSP 2014).

References

1. Baldoni, M., Baroglio, C., Capuzzimati, F.: Typing multi-agent systems via com-
mitments. In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNCS,
vol. 8758, pp. 388–405. Springer, Heidelberg (2014)

2. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Empowering agent coor-
dination with social engagement. In: Proc. of XIV Int. Conf. of the Italian Associ-
ation for Artificial Intelligence (2015) (to appear)

3. Baldoni, M., Baroglio, C., Chopra, A.K., Singh, M.P.: Composing and verifying
commitment-based multiagent protocols. In: Proc. of 24th Int. Joint Conference
on Artificial Intelligence, IJCAI 2015 (2015)

4. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley & Sons (2007)

5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6), 747–761
(2013)

574 M. Baldoni et al.

6. Boissier, O., Hübner, J.F., Ricci, A., Sichman, J.S.: Multi-agent oriented program-
ming, 2015. Tutorial at AAMAS 2015 (2015)

7. Bordini, R.H., Hübner, J.F., Tralamazza, D.M.: Using Jason to implement a team
of gold miners. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 304–313. Springer, Heidelberg (2007)

8. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons (2007)

9. Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and monitoring social
commitments using the event calculus. Autonomous Agents and Multi-Agent Sys-
tems 27(1), 85–130 (2013)

10. Chopra, A.K., Singh, M.P.: Cupid: commitments in relational algebra. In: Proc. of
the 29th AAAI Conf., pp. 2052–2059. AAAI Press (2015)

11. Criado, N., Argente, E., Noriega, P., Botti, V.: Reasoning about constitutive norms
in BDI agents. Logic Journal of IGPL 22(1), 66–93 (2014)

12. Dastani, M., Grossi, D., Meyer, J.-J.C., Tinnemeier, N.: Normative multi-agent
programs and their logics. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008.
LNCS, vol. 5605, pp. 16–31. Springer, Heidelberg (2009)

13. Demazeau, Y.: From interactions to collective behaviour in agent-based systems.
In: Proc. of the 1st. European Conf. on Cognitive Science, Saint-Malo (1995)

14. Hammer, F., Derakhshan, A., Demazeau, Y., Lund, H.H.: A multi-agent approach
to social human behaviour in children’s play. In: Proc. of the IEEE/WIC/ACM
Int. conf. on Intelligent Agent Tech. IEEE Comp. Soc. (2006)

15. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
AAMAS, vol. 1, pp. 177–184. IFAAMAS (2009)

16. Meneguzzi, F., Telang, P.R., Singh, M.P.: A first-order formalization of commit-
ments and goals for planning. In: AAAI. AAAI Press (2013)

17. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware
commitment-based multiagent system. In: Proc. of AAMAS, pp. 157–164.
IFAAMAS/ACM (2014)

18. Okouya, D., Fornara, N., Colombetti, M.: An infrastructure for the design and
development of open interaction systems. In: Winikoff, M. (ed.) EMAS 2013.
LNCS, vol. 8245, pp. 215–234. Springer, Heidelberg (2013)

19. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. JAAMAS 17(3), 432–456 (2008)

20. Singh, M.P.: An ontology for commitments in multiagent systems. Artif. Intell.
Law 7(1), 97–113 (1999)

21. Singh, M.P.: Commitments in multiagent systems some controversies, some
prospects. In: The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi,
chapter 31, pp. 601–626. College Publications, London (2011)

22. Telang, P.R., Singh, M.P., Yorke-Smith, N.: Relating goal and commitment seman-
tics. In: Dennis, L., Boissier, O., Bordini, R.H. (eds.) ProMAS 2011. LNCS, vol.
7217, pp. 22–37. Springer, Heidelberg (2012)

23. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. JAAMAS 14(1), 5–30 (2007)

24. Yolum, I., Singh, M.P.: Commitment Machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002)

25. Zatelli, M.R., Hübner, J.F.: The interaction as an integration component for the
JaCaMo platform. In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.) EMAS 2014.
LNCS, vol. 8758, pp. 431–450. Springer, Heidelberg (2014)

Social Continual Planning in Open Multiagent
Systems: A First Study

Matteo Baldoni(B), Cristina Baroglio, and Roberto Micalizio

Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
{matteo.baldoni,cristina.baroglio,roberto.micalizio}@unito.it

Abstract. We describe a Multiagent Planning approach, named Social
Continual Planning, that tackles open scenarios, where agents can join
and leave the system dynamically. The planning task is not defined from
a global point of view, setting a global objective, but we allow each agent
to pursue its own subset of goals. We take a social perspective where,
although each agent has its own planning task and planning algorithm, it
needs to get engaged with others for accomplishing its own goals. Coop-
eration is not forced but, thanks to the abstraction of social commitment,
stems from the needs of the agents.

Keywords: Continual Planning · Multi-agent Planning · Social com-
mitments

1 Introduction

The ability to plan one’s own activities, even in dynamic and challenging sce-
narios such as Multiagent Systems (MAS), represents a key feature in many
real-world applicative domains (see e.g., logistics, air traffic control, rescue mis-
sions, and so on). Not surprisingly, planning in MAS is drawing the attention
of an ever growing number of researchers, as witnessed by the new series of
Distributed and Multi-Agent Planning Workshops hosted by ICAPS.

The term Multiagent Planning (MAP) refers to a planning task in which a set
of planning agents, each equipped with its own tools and capabilities, has to syn-
thesize a joint solution (i.e., a joint multiagent plan). The planning task usually
involves a number of interdependent subgoals, so that some form of coordina-
tion among the agents is necessary to solve the problem. Different methodologies
have been proposed in the literature. Besides centralized approaches (e.g., [3]),
which fall outside the above notion of MAP, the other distributed solutions can
be categorized into three main families, depending on when the coordination
among the agents is actually performed: after the planning phase [7], interleaved
with the planning process [8,9,13], or before the planning search [6].

In all the above approaches, the planning task defines a global objective to be
achieved by means of a “joint solution” involving the capabilities of the agents.
Moreover, the set of agents to be involved is known in advance and cannot
change during the planning process; the system is therefore closed. In this paper
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 575–584, 2015.
DOI: 10.1007/978-3-319-25524-8 40

576 M. Baldoni et al.

we deal with a different planning problem, and propose a methodology named
Social Continual Planning (SCP), to tackle it. We consider the planning problem
of an agent situated in an open multiagent system. The agent may resort on
other agents for solving a task of its own interest. The agent plans both its own
actions, and its interactions with others whenever it is not capable, or it deems
as not convenient, to execute certain steps in autonomy. The focus is not on
negotiation, but on the framework through which an agent seeks the help by
the others, and on the engagements that bind agents to supporting each other.
Interaction is not limited to communication but it is a process through which
the involved agents progress each in the solution of its own task. Engagements
are binary social relationships, that are established dynamically and that create
expectations on the involved agents behavior. An agent autonomously decides
(plans) when to bind to another one to do something.

More precisely, we take a social perspective in the sense that, even though
each agent has its own planning task and uses its own planning algorithm, the
agent has still to get engaged with others in order to accomplish its own goals.
The interactions that an agent has with others will, in general, allow both parties
to get closer to their own goals. Cooperation is not forced to the agents just
because their are part of the system, but rather cooperation stems from the needs
of the agents within the system, and endures as far as the parties take advantage
of it. In other terms, we propose a form of (agent) planning which is situated in a
multiagent system, where an agent not only has to plan its own actions, but has
also to plan its social relationships with other agents. Since the coordination has
to be planned, it must be supported by a proper abstraction that enables one
agent to create expectations about the behaviors of others. To this end, in this
paper we adopt social commitments [14]. Interestingly, a recent work by Telang
et al. [16] shows how goals and commitments are strongly interrelated by means
of a set of practical rules. This supports our intuition that commitments may
play a central role, together with beliefs and goals, in the synthesis of a plan in
a multiagent setting. [2] describes an early implementation, and exemplifies the
approach in a logistic scenario.

2 Related Work and Background

Multiagent Planning. To the best of our knowledge, the SCP problem has
not been tackled in the literature, so far. SCP is however rooted in multiagent
and distributed planning that, since the seminal work by Boutilier et al. [3],
has addressed the problem of finding a coordinated, joint solution to a given
planning task. In the early, centralized methodologies to multiagent planning,
agents are seen as resources to be managed so as to achieve the global goal.
More recently, distributed approaches allow the planning search to be distributed
among the agents; however, the definition of the planning task is still centralized;
see for instance the MA-STRIPS formalization [4]. Distributed approaches can be
distinguished on how the planning and coordination phases are actually carried
on. First attempts to coordinating plan after the planning phases [7] suffered

Social Continual Planning in Open Multiagent Systems 577

from a sever drawback: whenever conflicts were detected between any two plans,
the agents had to revise their plans accordingly. Thus, the domain knowledge
about conflicts and constraints was not used actively during the planning phase,
but only a posteriori to verify the correctness of the joint solution. This drawback
is overcome by approaches (see e.g., [8,9,13]) in which the coordination and
planning phases are interleaved. These approaches rely on the exchange of various
kinds of information, such as partial plans, or states inferred during the search,
so that conflicts are discovered as soon as possible, and corrections can be made
while the planning phase is still in progress. A last family of approaches set
the coordination phase before the planning one (see e.g., [6]). Such solutions,
however, assume that all the possible conflicts are known in advance and globally
defined.

Commitments. As stated in the introduction, SCP is a novel methodology of
planning driven by social engagements; in particular, in this paper we focus on
social engagements that can be modeled as social commitments (simply com-
mitments below), first introduced in [14]. Commitments arise, exist, are satis-
fied, revoked, or otherwise manipulated, all in a social context (i.e., social state
below); commitments have therefore a life cycle that evolves as a consequence
of the operation performed by agents on them [11,12,15]. More formally, a com-
mitment C(x, y, s, u) formalizes a relationship between an agent x, playing the
role of debtor, and another agent y, playing the role of creditor : the debtor is
committed towards the creditor to bring about a consequent condition u, when-
ever an antecedent condition occurs s. Antecedent and consequent conditions
are conjunctions or disjunctions of events and commitments and they concern
only the observable behavior of the agents.

Notably, there have been some recent attempts to integrate commitments in
planning problems, see [11,12,15] which as well as our work rely on the rules pro-
posed in [16]. The idea of translating pragmatic rules into a planning language is
first proposed in [15], where the Hierarchical Task Network (HTN) formalization
is used. HTNs, however, are used at design time to model and verify commitment
protocols [11]; thus, the point of view of these works is still centralized. In this
work we will consider a STRIPS-like representation of the pragmatic rules, and
use them for generative planning in a context where a centralized point of view
is missing. In other terms, in this paper the interactions via commitments are
not outlined within pre-designed HTNs, but have to be discovered at execution
time by the planning search.

Goal Formalization. The notion of goal plays an important role not only from
the point of view of planning, but also in general whenever one has to design and
develop intelligent agents. In this paper, we take advantage of the formalization
initially proposed in [17], and subsequently revised in [16]; specifically, a goal G
is a tuple G(x, p, r, q, s, f), where x is the agent pursuing G, p is a precondi-
tion that must be satisfied before G can be considered active, r is an invariant
condition that holds until the achievement of G, q is a post-condition (effect)
that becomes true when G is successfully achieved, and finally, s and f are the

578 M. Baldoni et al.

success and failure conditions, respectively. As well as commitments, goals have a
life cycle in which state transitions are triggered by the execution of proper goal
actions [16].

Pragmatic Rules. The relation between goals and commitments has been stud-
ied in [16], and it has been formalized in terms of practical rules, which capture
patterns of pragmatic reasoning, in terms of changes to the configuration of an
agent. Specifically, the configuration of an agent x is the tuple Sx = 〈B,G, C〉
where B is its set of beliefs about the current snapshot of the world, G is the set
of agent’s goals, and C its set of commitments; i.e., commitments in which x is
involved either as debtor or as creditor.

The operational semantics of pragmatic rules is given via guarded rules in
which Si are configurations having form S1−→S2

guard ; where guard is a condition
over the current agent’s beliefs and commitments; whereas S1 −→ S2 is a state
transition involving a change in the state of commitments or goals; usually it
corresponds to an operation on goals or commitments. Pragmatic rules are dis-
tinguished into: (1) rules from goals to commitments, they involve commitments
that are used as a means to achieve some goal; and (2) rules from commit-
ments to goals, they involve goals that are used as a means to achieve either the
antecedent (if the agent at issue is debtor) or the consequent (if creditor) condi-
tion of a commitment. Some rule examples are reported in Table 1 (subscripts
denote the state of commitments and goals as discussed in [16]).

For instance, the entice rule tackles the situation in which (only) by creating
the commitment can the agent satisfy its goal: If G is active and C is null, x
creates an offer to another agent. The deliver rule, on the other hand, allows an
agent to discharge one of its commitments by activating the goal appearing in the
consequent condition: If C becomes detached (i.e., goal G2 has been satisfied),
then debtor x activates a goal G1 to bring about the consequent.

3 The Social Continual Planning Problem

A Social Continual Planning (SCP) system is an open environment inhabited by
heterogeneous and independent agents. Each agent has its own planning task,
and can perform a specific set of actions. A Social Continual Planning Problem
is a planning problem of an agent, situated within an SCP system, which, for
being solved, requires the agent to plan also a set of engagements, realized as
social commitments, with other agents in the system. Agents can join and leave
the system dynamically; however, we assume that no agent leaves the system as

Table 1. Examples of practical rules from [16]

Goals-to-Commitments 〈GA,CN 〉
create(C)

entice 〈GT∨F ,CA〉
cancel(C)

withdraw offer

Commitments-to-Goals
〈GN

1 ,CD〉
consider(G1)∧activate(G1)

deliver
〈GN

2 ,CC〉
consider(G2)∧activate(G2)

detach

Social Continual Planning in Open Multiagent Systems 579

long as there are active commitments involving it either as debtor or as creditor.
More formally, an SCP system is a tuple 〈U ,A,S) where:

– U is a finite set of propositional atoms, whose truth value can be observed by
all the agents in the SCP; U represents a sort of common language through
which agents can interact. Atoms in this set are used to describe the state
of the environment shared by the agents. In addition, these are the atoms
that can appear as antecedents and consequents of the commitments.

– A is a set of agents; each agent i ∈ A is associated with a configuration which
extends the agent configuration we have already introduced. Specifically, the
agent configuration for agent i is a tuple 〈Bi,Gi, Ci, Actsi, Socsi〉: Bi, Gi, and
Ci are as before; whereas:

• Actsi is a set of actions agent i can perform; it is partitioned into:
Φi is a set of “physical” actions; as usual, these actions are defined
in terms of preconditions and effects, which can be both conditions
on environment atoms (i.e., in U) or on internal (agent-dependent)
atoms that are not globally traced (i.e., the internal state of an agent
is private).
Σi is a set of social actions; preconditions and effects are defined in
terms of goals in Gi and commitments in Ci. More precisely, each
social action corresponds to a pragmatic rule from goals to commit-
ments. Indeed, we consider these pragmatic rules as actions because,
as we discuss below, they can be used by an automated planner to
plan interactions with other agents. Note that while goals in Gi are
private (only agent i can see and manipulate them), commitments
in Ci have a social value: whenever i changes the state of a commit-
ment in Ci, this change becomes visible to all the other agents in the
system (see S).

• Socsi is a the set of pragmatic rules from commitments to goals adopted
by an agents; from our point of view these rules define the social strategy
of agent i. Thus, these rules are not used during the planning search,
but rather to decide which goals should be pursued.

– S is the social state shared by all the agents in the SCP system at hand.
The social state can be partitioned into two subsets:

• SC is the set of all the active commitments defined between any two
agents in A; in particular, for each agent i ∈ A, Ci ⊆ S, Ci is the
projection of S over all the commitments in which i appears either as
debtor or as creditor.

• SE is the set of all the propositional atoms describing the environment
that hold at a given time; in particular, SE ⊆ U .

Given an SCP system 〈U ,A,S〉, let i ∈ A be an agent, that is described by
the tuple 〈Bi,Gi, Ci, Actsi, Socsi〉. An SCP problem for i amounts to finding a
plan, composed by Actsi and Socsi, to achieve Gi starting from Bi. In particular:

– Bi is the initial state of the planning task i is responsible for; such a state
is a set of atoms possibly occurring in U , but also occurring in a private set

580 M. Baldoni et al.

of atoms describing the internal state of i, and hence these atoms are not
traced within the SCP system. We only assume that i joins the SCP system
iff S ∪ Bi �|= ⊥.

– Gi is a list of goals the agent has to achieve; each goal can be an atom or a
conjunction of atoms in U and possibly in the private set of agent’s atoms.
Note that, differently from classical planning, it is not required that all the
goals in Gi hold in a unique system state.

– Ci is initially empty.
– Φi is a set of domain-dependent actions agent i can directly perform whenever

their preconditions hold. For instance, in a logistic domain, a truck-agent can
perform action drive, whereas a plane-agent can fly.

– Σi can be initialized in different ways; in fact, differently from Φi, this set
needs not to be static; on the contrary, it could change over time according to
contextual conditions. In our preliminary implementation, we have adopted
a very simple solution. Let us consider the entice rule above1. The objective
of this rule is to create a commitment of the form C(i, j, s, u), in order to
“entice” another agent j to bring about s, which is of interest for i. At this
initial stage, however, i cannot know which condition u is of interest for j.
Surely enough, i knows which atoms it can directly achieve by performing
its physical actions. Thus, for each atom s ∈ U such that s never appears
as an effect of any action in Φi, agent i creates a template entice-s whose
effect is the creation of a commitment C(i, , s, u), where denotes any agent
willing to satisfy s, and u is any atom in U that appears in the effects of at
least one physical action in Φi. Of course, since the entice-s template can
be instanced in different ways, depending on the actual u condition, agent i
will offer first the conditions, that from its point of view, are the cheapest
to achieve.

– Socsi is a static set of rules, decided at design time, that defines the social
behavior of i; namely, how an agent is reliable for bringing about the conse-
quent and antecedent conditions of the commitments in Ci.

Social Continual Planning: the Strategy. The SCP strategy we propose,
sketched in Algorithm 1, is a form of continual planning (see e.g., [5]) in which
generative planning is interleaved with plan execution. The main difference with
other approaches is that to achieve a goal, an agent plans not only its own actions,
but also its engagements with others, and depending on how these interactions
carry through, the agent may decide to perform some replanning or to pursue a
different goal.

An agent i follows the SCP strategy as far as there are goals in Gi to be
achieved or Ci is not empty. This second condition assures that an agent does

1 Other rules are treated consequently.

Social Continual Planning in Open Multiagent Systems 581

Algorithm 1. Social Continual Planning Strategy
SCP-Strategy(Bi, Gi, Ci, Actsi, Socsi)
1. while Gi �= ∅ ∨ Ci �= ∅ do
2. on S change update Gi using Socsi

3. g ← pick up a goal from Gi

4. π ← plan to g
5. status ← execute π
6. if status equals success then
7. Gi ← Gi \ {g}
8. end if
9. end while

not leave the system when it is still involved in some active commitments.2

At each iteration, the agent checks for updates in the social state S (line 2);
any change occurring in S, in fact, can have an impact on the set Gi of goals.
For instance, a new commitment C(j, , s, u) appearing in SC could draw the
attention of agent i when u is a condition that i needs but it cannot achieve on
its own, and at the same time i knows how to obtain s. In such a case, i could
accept to be the creditor : s is added to Gi (i will eventually bring about s). On
the other hand, the occurrence of a new atom in SE could make the achievement
of a goal g in Gi no longer necessary, so g is dropped. Of course, these agent’s
decisions are driven by the Socsi behavioral rules.

Once Gi has been updated, agent i selects one goal g from Gi (line 3); and
synthesizes a plan π reaching g (line 4). It is worth noting that any off-the-
shelf planner can be used to synthesize π since from the point of view of the
planner there is no distinction between social and physical actions (both kinds
of actions are translated into PDDL, see below). We only assume that in case
the used planner produces a partial-order plan (POP), π is one of the possible
linearizations of such a POP.

After the planning step, the agent can start the execution of π (line 5), which
contains both physical actions in Φi, and social actions in Σi. The execution of
π proceeds one action a at a time and in the order. If a is a physical action, it
is immediately executed, and its effects on atoms in U are made available to all
the other agents via SE . If a is a social action, e.g., an entice-s action, the
action execution affects SC with the addition of a new commitment C(i, , s, u),
which has to be picked up by some other agent. The execution of π is therefore
suspended; indeed, the entice-s action is part of π only in case the atom s is
a precondition for some subsequent action, and hence the plan execution cannot

2 In principle, an agent may remaining situated within the system indefinitely, wait-
ing for agents to cooperate with. For example, in a logistic domain, a shipper has
the high-level objective of earn money by offering its transportation facilities. This
objective does not immediately translate into an initial goal G, but rather it is better
modeled in terms of pragmatic rules (i.e., both social actions in Σ, and behavioral
rules in Socs), so as the shipper is willing to accept requests from other agents, but
also offers itself shipment services to others.

582 M. Baldoni et al.

proceeds without s. In case an agent j is interested in u, it accepts the offers
by finalizing the commitment in C(i, j, s, u), and eventually it will bring about
s. As soon as s is satisfied, i proceeds with the execution of its plan (u will be
added to Gi the next time i checks for changes in S). When all the actions in π
are performed, the execution phase terminates in success state (i.e., g has been
achieved), and hence g is removed from Gi (line 7).

However, it is also possible that no agent is interested in the service u offered
by i. To avoid an indefinite wait, i sets up a timer. As soon as the time runs out,
the commitment is canceled from SC , and the plan execution terminates with a
failure state. Since g has not been achieved, it is not removed from Gi. At the
next iteration of the strategy, i first checks whether g is still required (line 2),
and then tries to find an alternative plan reaching it (line 4) that may require a
different instantiation for the entice-s action (i.e., with a different condition
offered as consequent of the commitment).

Intuitively, the correctness of the approach relies on the coherence and con-
vergence properties discussed in [16]. In particular, the goal convergence property
states that in the situation in which agent i has a goal G1=G(i, p1, r1, q1, s, f1),
another agent j has a goal G2=G(j, p2, r2, q2, s, f2), and there exists a commit-
ment C1 = C(i, j, s, u) ∈ SC , then, there is a finite sequence of pragmatic rules
that leads to G2’s state equaling G1’s state. This means that whenever agent j
brings about s, satisfying its internal goal G2, then, also agent i has its own goal
G1 indirectly satisfied. This demonstrates the correctness of the SCP strategy
in the sense that whenever a plan π, synthesized by i, contains an entice action
entice-s, which actually creates the commitment C1, then the plan is:
1. feasible: no action a in π has open preconditions (i.e., atoms that are neither

provided by the initial state nor by any previous action); this implies that
the preconditions that agent i cannot directly produce, are obtained via
cooperation with others;

2. correct : if each action is performed successfully, g holds in SE at the end
of π; as noted above, the execution of social action implies the cooperation
with other agents.

4 Discussion and Conclusions

In this paper we addressed the SCP problem, and proposed the SCP strategy as
a possible solution. Differently from MAP approaches, where a predefined team
of agents has to find a joint plan solving a given planning task, here we deal with
situations in which each agent is given a planning task which is independent of
the others’ ones. The challenge, thus, is not to find a joint plan, but to find a
plan for each agent that solves the agent’s planning task taking advantage of the
cooperation with other agents. Moreover, agents are free to join and leave the
system dynamically.

The novelties of our proposal are not limited to the openness of the agent
team. While in approaches to MAP agents can be thought of as resources used for
solving the given planning task, in SCP agents are seen as autonomous entities.

Social Continual Planning in Open Multiagent Systems 583

This change implies that an agent cannot order another agent to do a job, but
the agent can just make an offer, and as we have seen, social commitments come
at handy to model this kind of relations. More importantly, however, we have to
observe that an agent receiving an offer, being an autonomous entity, can accept
or reject the offer depending on its contextual conditions and its local goals. A
rational agent, in fact, should accept an offer only if the offer brings along some
advantages, otherwise the offer should be put aside. It is worth noting how the
SCP strategy supports the decoupling of agents, that just share environment
objects, whereas they are independent for all the other respects. In particular,
each agent can implement its social strategy (i.e., pragmatic rules in Socs and
Σ) according to local criteria. Moreover, the planning algorithm each agent uses
can be tailored to meet optimization functions that are relevant for the agent
itself. Note also how the cooperation among the agents do not require that an
agent knows the action templates of others (as for instance happens in [13]),
and, hence, also the agents’ privacy is preserved.

Many lines of research and improvement are possible. In the near future we
aim at engineering the implementation of the SCP strategy by exploiting one
of the many agents platforms available. In particular, the JaCaMo+ platform
[1] seems to be a good candidate since it naturally supports the notions of
commitments and social states. In addition, the social behavioral rules in Socs
could find an easy implementation as Jason plans (used to program JaCaMo+
agents). Also the integration with a planner does not seem to raise to much
troubles; as demonstrated in [10] where Jason plans have been integrated with
generative planning.

Acknowledgments. This work was partially supported by the Accountable Trustwor-
thy Organizations and Systems (AThOS) project, funded by Università degli Studi di
Torino and Compagnia di San Paolo (CSP 2014).

References

1. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Programming with com-
mitments and goals in JaCaMo+. In: Proce. of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2015), pp. 1705–1706.
International Foundation for Autonomous Agents and Multiagent Systems (2015)

2. Baldoni, M., Baroglio, C., Micalizio, R.: Exploring multiagent cooperation via
social continual planning. In: Cortellessa, G., Magazzeni, D., Maratea, M., Serina,
I. (eds.) Proc. of 6th Italian Workshop on Planning and Scheduling, IPS 2015,
Ferrara, Italy, September 2015. CEUR-WS.org Workshop Proceedings (2015)

3. Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic dynamic programming with
factored representations. Artificial Intelligence 121(1–2), 49–107 (2000)

4. Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled
multi-agent systems. In: Proceedings of the Eighteenth International Conference
on Automated Planning and Scheduling, ICAPS, Sydney, Australia, pp. 28–35,
September 14–18, 2008

5. Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent envi-
ronments. Autonomous Agents and Multi-Agent Systems 19(3), 297–331 (2009)

584 M. Baldoni et al.

6. Buzing, P., Ter Mors, A., Valk, J., Witteveen, C.: Coordinating self-interested
planning agents. Autonomous Agents and Multi-Agent Systems 12(2), 199–218
(2006)

7. Cox, J.S., Durfee, E.H., Bartold, T.: A distributed framework for solving the multi-
agent plan coordination problem. In: Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 821–827. ACM
(2005)

8. Durfee, E.H., Lesser, V.R.: Partial global planning: A coordination framework
for distributed hypothesis formation. IEEE Transactions on Systems, Man and
Cybernetics 21(5), 1167–1183 (1991)

9. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman,
D., Podorozhny, R., Prasad, M.N., Raja, A., et al.: Evolution of the gpgp/taems
domain-independent coordination framework. Autonomous Agents and Multi-
Agent Systems 9(1–2), 87–143 (2004)

10. Meneguzzi, F., Luck, M.: Leveraging new plans in AgentSpeak(PL). In: Baldoni,
M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS
(LNAI), vol. 5397, pp. 111–127. Springer, Heidelberg (2009)

11. Meneguzzi, F.R., Telang, P.R., Singh, M.P.: A first-order formalization of commit-
ments and goals for planning. In: Proc. of the 27th AAAI Conference on Artificial
Intelligence. AAAI Press (2013)

12. Meneguzzi, F.R., Telang, P.R., Yorke-Smith, N.: Towards planning uncertain com-
mitment protocols. In: Proc. of the 2015 Int. Conf. on Autonomous Agents and
Multiagent Systems, AAMAS, pp. 1681–1682. ACM (2015)

13. Nissim, R., Brafman, R.I.: Distributed heuristic forward search for multi-agent
planning. Journal of Artificial Intelligence Research (JAIR) 51, 293–332 (2014)

14. Singh, M.P.: An ontology for commitments in multiagent systems. Journal of
Artificial Intelligence in Law 7(1), 97–113 (1999)

15. Telang, P.R., Meneguzzi, F.R., Singh, M.P.: Hierarchical planning about goals and
commitments. In: Int. Conf. on Autonomous Agents and Multi-Agent Systems,
AAMAS 2013, pp. 877–884. IFAAMAS (2013)

16. Telang, P.R., Singh, M.P., Yorke-Smith, N.: Relating goal and commitment seman-
tics. In: Dennis, L., Boissier, O., Bordini, R.H. (eds.) ProMAS 2011. LNCS,
vol. 7217, pp. 22–37. Springer, Heidelberg (2012)

17. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedu-
ral goals in intelligent agent systems. In: Fensel, D., Giunchiglia, F., Mc Guinness,
D.L., Williams, M.-A. (eds.) Proc. of the 8th Int. Conf. on Principles and Knowl-
edge Representation and Reasoning (KR-2002), pp. 470–481. Morgan Kaufmann
(2002)

Security Games with Ambiguous Beliefs
of Agents

Hossein Khani1(B) and Mohsen Afsharchi2

1 Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
Hossein.Khani8564@gmail.com

2 University of Zanjan, Zanjan, Iran
Afsharchim@znu.ac.ir

Abstract. Currently the Dempster-Shafer based algorithm and Uni-
form Random Probability based algorithm are the preferred methods
of resolving security games, in which security forces are able to iden-
tify attackers and need only to determine their strategies. However this
model is inefficient in situations where resources are limited and both the
identity of the attackers and their strategies are ambiguous. The intent
of this study is to find a more effective algorithm to guide the security
forces in choosing which outside forces with which to cooperate given
both ambiguities. We designed an experiment where security forces were
compelled to engage with outside forces in order to maximize protection
of their targets. We introduced two important notions: the behavior of
each agent in target protection and the tolerance threshold in the tar-
get protection process. From these, we proposed an algorithm that was
applied by each security force to determine the best outside force(s) with
which to cooperate. Our results show that our proposed algorithm is safer
than the Dempster-Shafer based and Uniform Random Probability based
algorithm.

Keywords: Ambiguous games · Tolerance threshold · Behavior ·
Optimistic · Pessimistic · Self-confidence · Security games

1 Introduction

With the current state of politics, economics, and conflicting ideologies, security
has become an ever increasing concern and the driving force behind much strate-
gic development. For example, the security game-solving algorithm of DOBSS
serves as the core of the ARMOR system, which has been successfully utilized
in security patrol schedule at Los Angeles International Airport [1,2].

In such situations, limited resources pose a constant challenge issue to pro-
viding full security coverage. Examples of limitations include restricted finances,
manpower, supplies, etc. Security forces must often recruit outside forces to aid
in the protection of their targets. The situation becomes further exacerbated
when information on the outside forces is unavailable or ambiguous. Ambiguous

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 585–593, 2015.
DOI: 10.1007/978-3-319-25524-8 41

586 H. Khani and M. Afsharchi

information refers to the uncertainty of security forces in relation to the objec-
tive and behavior of outside forces were they to engage in such a cooperation
process.

Much literature on the topic of security games attempts to address the issues
involved with ambiguous information. In these games, the security forces cannot
assign a probability value to how the outside force will respond(i.e., whether
these forces will behave more like attackers or security forces in a cooperation
process). Here Bayesian models cannot be applied as they require that the secu-
rity forces be able to assign a precise probability value for the outside forces.
Based on the need of security forces to form cooperation processes, and on the
ambiguity of the decision framework, we proposed a model that uses the Cho-
quet Expected Utility [3] and two factors to determine which outside forces are
selected as appropriate cooperators. From the security forces and outside force’s
point of view, an appropriate cooperator is one with whom cooperation leads to
an increase in payoff for the security forces.

The rest of the article is organized as follows. Section 2 recaps the Cho-
quet Expected Utility and its usage in decision-making. Section 3 introduces our
security game as a formal game and proposes an algorithm to solve it. Section
4 describes the experiments conducted to evaluate the performance of the algo-
rithm. Finally, Section 5 concludes our article.

2 Background

This section outlines some background information and describes key compo-
nents of decision-making in ambiguity. In this study, the cooperation process
model is based on that employed by Shehory and Sykara and Sless, Hazon, and
Kraus in their respective studies[4,5].

Marinacci el al. studied details of cooperation of the agents in the presence
of ambiguity [6]. The ambiguous setting was described by Paolo Ghirardato [7]
as an extension of maximum expected utility which is introduced by Savage[8].
The Ellsberg paradox is an example of an uncertain domain that shows the
importance of studying ambiguous situations and how they differ from certain
situations[9]. The Ellsberg Paradox concerns subjective probability theory, which
fails to follow the expected utility theory. To handle ambiguous situations, com-
puter scientists defined some real-valued function as neo-additive probabilities,
called capacities. Using these capacities, the Choquet Expected Utility was intro-
duces as a generalization of expected utility.

In the presence of ambiguity, the majority of agents respond by behaving
cautiously. Such cautious behavior is referred to as ambiguity-aversion. Bade
[10] explains the effect of ambiguity aversion on equilibrium outcomes based on
the relaxation of randomized strategy. In contrast, a minority of agents behave
more carelessly, which is referred to as ambiguity-preference. The majority of
the time, agents do not act purely in accordance to either ambiguity aversion
or ambiguity preference, but rather somewhere in between. Wakker [11] further
extends the notions of ambiguity to arbitrary events and characterizes optimistic

Security Games with Ambiguous Beliefs of Agents 587

and pessimistic attitudes. More details can be found in the extended version of
this article[12].

The problem in this study is defined in the context of a battlefield in which
n security forces try to protect n vital resources, while the enemy tries to pene-
trate their defense and commit espionage. When the security forces employ out-
side forces to reinforce their strength, they cannot determine for certain which
resources are being targeted. Each security force d is responsible for protecting
only one of the targets (t) with the use of its ability (at

d), and as a result, it
must provide the outside force with compensation (btd) from the owner of the
target. The main issue is that both security and outside forces cannot assign a
precise probability to one another. we will categorize outside forces into three
types: (1) helpful, which help fortify the protection of targets,(2) mildly harmful,
which inflict minimal damage such as a minor security breach, and (3) extremely
harmful, which cause more severe damage such as extensive physical damage and
casualties.

Thus the goal of the security forces become choosing appropriate cooperators
among outside forces that will result in an increase in the obtained payoff. Both
security and outside forces in the battlefield use two factors to assess the ambi-
guity of one another. Security force d uses ”behavior” and ”tolerance threshold”
to assess. Behavior is defined as an ordered pair of the amount of energy that the
security force assigns to protect the target t and the expected payoff obtained
from the owner of target (at

d, b
t
d) . ”Tolerance threshold” is defined as a num-

ber between zero and one which is applied by security force d as a measure to
assess the response of others TT t

d. This value is based on the amount of energy
the security force uses in the protection process. For example, suppose security
force d wants to choose an outside force p as a cooperator. The security force d
assesses its ambiguity about outside force p using the following method:

If btp
at
p

≤ TT t
d holds, the security force d can confidently determine the type of

outside force p. There is no ambiguity; the assistant is loyal. On the other hand,
if btp

at
p

> TT t
d holds, the security force d cannot verify the loyalty of the outside

force p and ambiguity about type of the outside force is present. The ambiguity
degree of security force d in regard to outside force p in a cooperation process
to protect target t, σt

d,p, can be computed as follows:

σt
d,p =

log2(
btp
at
p

− TT t
d)

log2TT t
d

(1)

We can verify the behavior of this function by exploring the impact of different
variables, such as tolerance threshold.

Suppose the outside force p has a specific behavior (at
p, b

t
p) to deal with the

target t. The more impatient the security force d is in dealing with the target
t, the lower its tolerance threshold becomes and the numerator of the fraction
increases. Moreover, a decrease in the tolerance threshold results in a decrease
in the denominator. Meanwhile, increase in the numerator and decrease in the
denominator lead to an increase in the ambiguity degree of security force d

588 H. Khani and M. Afsharchi

towards outside force a, (σt
d,p). Inversely, the more patient the security force d

is, the higher it’s tolerance threshold. In this case, the numerator of the function
will be lower and the denominator higher, which translates to a decrease in the
ambiguity degree.

3 Methods and Materials

Formal Definition of the Game

Using the information obtained from the framework, we define our game as
(N,T,B, S, r, U, PI) such that:

1. N = (D,P) is the set of both security and outside forces, where d shows the
set of security forces and p is the set of outside forces.

2. T contains elements of Ti which represents the type set of either security
force or outside force i.

3. B = {Bi|i ∈ N} represents the behavior set of security and outside forces.
4. S = Sd ×Sp where Sd = Sp = {s1, s2, ..., sn} is the pure strategy set of both

security and outside forces representing the different values for each of their
respective tolerance thresholds.

5. r = {ri(w, Tj)|i, j ∈ N} and ri(w, Tj) is the real payoff obtained by either
the security force or outside force i when it cooperates with one of the other
members of set N (j). w is the ordered pair of the amount of ability used
by j and the amount of ability used by i.

6. U = {Ui(si, (aj , bj))|i, j ∈ N & si ∈ Si & (aj , bj) ∈ B} is the payoff that i
expects to obtain according to strategy profile S while it cooperates with j
whose behavior is defined as (aj , bj).

7. PI is the set of initial beliefs π of both security and outside forces about one
anothers types.

The optimal strategy of the security force is one where the different, possible
values for its tolerance threshold are examined and the one that maximizes payoff
is selected. In our security game, first the security force commits to al strategy,
then the outside forces try to determine a strategy for themselves [13]. Because
each security force is responsible for protecting only one target, we suppose
that the expected payoff is obtained through all available outside forces in the
cooperation. It is also worth mentioning that the expected payoff of the outside
force is to be received from the security force, regardless of the attendance of
the other outside forces in the cooperation.

The security force finds its optimal strategy in two phases. In the first phase,
it needs to recognize which one of the outside forces is willing to participate in
the cooperation process. An outside force is willing when the payoff the security
force expects to obtain from cooperation is higher than its previously obtained
payoff. In the second phase, the security force d compares different strategies on
the basis of the amount of payoff it expects.

Security Games with Ambiguous Beliefs of Agents 589

The security force uses formula (1) to assess how its behavior is ambiguous
from the view of the others, and using the following formula it computes the
expected payoff for each outside force:

Up(sp, (ad, bd)) = bp((1 − σt
p,d)π(tp) + σt

p,d[αmaxtdrp(ad, td) +
(1 − α)mintdrp(ad, td)]). (2)

This formula is a variant of formula (4). Note the difference between the
number of arguments of function Ud and Up. It is important to know that in
formula (6) and (8), if σt

p,d = 0, these formulas are reduced to Savage Expected
Utility. If α = 0 both security and outside forces are pessimistic and if α = 1,
they are optimistic.

The security force then compares, for each outside force, the different strate-
gies that the outside force can choose on the basis of its corresponding expected
payoff and determines whether it’s the optimal strategy. The security force finds,
for each prospective cooperation, optimal strategy and corresponding expected
payoff of each outside force using:

Up(s∗
p, (ad, bd)) ≥ Up(s

′
p, (ad, bd)) ∀s

′
p ∈ Sp (3)

In the second phase, the security force evaluates its options through a similar
process used in the first phase. Using formula (5), it quantifies ambiguity degrees
and from formula (6) the corresponding expected payoff for each strategy.

ud(sd, (ap, bp)) = (1 − σt
d,p)π(tp) + σt

d,p[αmaxtprd(ap, tp)
+(1 − α)mintprd(ap, tp)]. (4)

In this formula, σt
d,p is the ambiguity degree of the security force in relation to

the outside force p. This value can be computed by formula (5). π(tp) is the
initial belief the security force has in regard to the types of the outside force p,
tp represent a specific type from all available types of the outside forces. α is
the degree of optimism, which shows how optimistic the security force is in its
computations.

Suppose the set of outside forces who cooperate with the security force to
protect the target t is shown by Ct; thus, the total payoff which is obtained by
security force d to protect target t is represented by:

Ud((sd, sp), B) = btd × Σi∈Ct
ud(sd, bi) (5)

Given the security force’s strategy sd, if the optimal response strategies of the
outside force are s∗

a, then s∗
d is the security forces optimal strategy if:

Ud(s∗
d, s

∗
p, B) ≥ Ud(s

′
d, s

∗
p, B) ∀s

′
d ∈ Sd (6)

The time complexity of the algorithm is computed in the theorem below.
Theorem 1. In security games with ambiguous force types, the com-
plexity of finding optimal pure strategies of a selected security force, is
O(#players,#outcomes).

590 H. Khani and M. Afsharchi

Proof. Each pure strategy to which the (first security or outside) force may
commit will induce a subgame for the remaining forces. We can solve each such
subgame recursively to find all of its optimal strategy profiles; each of these will
give the original first (first security or outside) force some utility. Those that give
the first (first security or outside) force maximum utility correspond exactly to
the optimal strategy profiles of the original game.

Note that if the security force d assesses the type of the outside force p as a
cooperator inaccurately, i.e. Tp is the extremely harmful but the security force
miscategorizes it as a helpful type, the real obtained payoff by the security force
would decrease.

4 Experiments

In this section, we evaluate our model via experimentation. One of the more
realistic works is done by Zhang and his colleagues[14]. To see a more concrete
discussion about the details visit the extended version of this article[12].

We begin by evaluating the impact of changing the quantity of both security
and outside forces on the outcome of our proposed algorithm (CEU-based solu-
tion algorithm) and D-S theory based algorithm. We observe that in the worst
case, the number of true detections in our algorithm is more than the number of
true detections in D-S theory based algorithm. In one scenario we assume both
security and outside forces have ambiguity-preference (the degree of optimism
of all agents are high) and in another scenario we assume both security and out-
side forces have neither ambiguity aversion nor ambiguity preference(the degree
of optimism of both security and outside forces are moderate). Figure 1 shows
that having ambiguity aversion or preference has no impact on the CEU-based
algorithm. Figure 2 evaluates the impact of changing the number of strategies
both security and outside forces can choose from the output of two (D-S based
and CEU-based) algorithms. We also show the differences in sensitivity of these
two algorithms in Figure 3. We find the sensitivity measure using the following:

Sensitivity =
#of True Positives

#of True Positives + #of False Negatives
(7)

To explore the errors in the two (D-S based and CEU-based) algorithms, we use
MRSE measure (Mean Root Square Error). We find the normalized MRSE value
for each algorithm and refer to the difference between them as the distance of
the worst penalties(Figure (4)).

Observation 1. Our model guarantees more safety than the model based on
D-S theory even when taking varying degrees of optimism into account.

Observation 2. The Choquet Expected Utility solution based algorithm is safer
than the model based on D-S theory, even when considering varying number of
types and strategies for each agent.

Security Games with Ambiguous Beliefs of Agents 591

(a) alpha=0.5 (b) alpha=0.7

Fig. 1. Comparison of the performance of CEU-based solution algorithm with D-S
theory based solution algorithm.(number of types=3, number of strategies=8)

(a) number of strategies=4 (b) number of strategies=8

Fig. 2. Comparison of the performance of CEU-based solution algorithm with D-S
theory based solution algorithm considering varying number of types and strategies for
each agent.(number of types=4)

(a) number of strategies=4 (b) number of types=5

Fig. 3. Comparison of the sensitivity of D-S Based algorithm and CEU-Based algo-
rithm considering a varying number of types for each agent(number of agents=40).

592 H. Khani and M. Afsharchi

(a) Comparison by vary-
ing number of strategies

(b) Comparison by vary-
ing number of types

Fig. 4. Comparison of D-S Based algorithm and CEU-Based algorithm based on dis-
tance of the worst penalties.

5 Conclusion and Future Work

This paper proposes a new paradigm of security games in which the security
forces need the assistance of outside forces in order to provide constant protection
of their targets, due to their limited capabilities,they cannot determine with
confidence which cooperators to select. The algorithm we developed based on the
Choquet Expected Utility guarantees more safety than the current model based
on D-S theory, regardless of both security and outside forces being ambiguity-
averse or ambiguity-preference. Our model is more sensitive than D-S theory
based model and as a result it is more efficient than Uniform Random probability
based algorithm. In addition, the Mean Root Square Error (MRSE) shows that
errors in the CEU-based algorithm are fewer than those in D-S theory based
algorithm. Overall our model offers a viable, real world solution to determining
the best course of action in the presence of ambiguous information.

As the future works we are going to deal with equilibria issues in our preposed
framework and show how that different types of contingent ambiguity affect
equilibrium behavior.

Acknowledgement. We would also like to show our gratitude to Fariba Massah for
comments that greatly improved the manuscript.

References

1. Tambe, M.: Security And Game Theory: Algorithms, Deployed Systems. Lessons
Learned. Cambridge University Press, Cambridge (2011)

2. Pita, J., Jain, M., Marecki, J., Ordonez, F., Portway, C., Tambe, M., Western,
C., Paruchuri, P., Kraus, S.: Deployed ARMOR protection: the application of a
game theoretic model for security at the Los Angeles International Airport. In:
Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems: Industrial Track, pp. 125–132 (2008)

3. Marinacci, M.: Ambiguous Games. Games and Economic Behavior 31(2), 191–219
(2000)

Security Games with Ambiguous Beliefs of Agents 593

4. Shehory, O., Sykara, S.: Multi-agent Coordination through Coalition Formation.
In: Rao, A., Singh, M., Wooldridge, M. (eds.) ATAL1997. LNCS(LNAI), vol. 1365,
pp. 143–154. Springer, Heidelberg (1997)

5. Sless, L., Hazon, N., Kraus, S., Wooldridge, M.: Forming coalitions and facilitating
relationships for completing tasks in social networks, AAMAS (2014)

6. Marinacci, M., Montrucchio, L.: Introduction to the Mathematics of Ambiguity.
Dipartimento di Statistica e Matematica Applicata and ICER Universit di Torino
(2003)

7. Ghirardato, P.: Ambiguity. Universita di Torino, Dipartimento di Matematica
Applicata and Collegio Carlo Alberto (2010)

8. Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)
9. Segal, U.: The Ellsberg Paradox and Risk Aversion: An Anticipated Utility

Approach. University of Toronto, Department of Economics (1985)
10. Bade, S.: Ambiguous act equilibria. Games and Economic Behavior 71(2), 246–260

(2011)
11. Wakker, P.: Testing and characterizing properties of nonadditive measures through

violations of the sure thing principle. Econometrica 69, 1039–1060 (2001)
12. abs/1508.02035 [cs.AI]
13. Pita, J., Jain, M., Ordonez, F., Portway, C., Tambe, M., Western, C., Paruchuri,

P., Kraus, S.: Using game theory for Los Angeles airport security. AI Magazine
30(1), 43–57 (2009)

14. Zhang, Y., Luo, X., Ma, W.: Security Games with Ambiguous Information about
Attacker Types. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS, vol. 8272,
pp. 14–25. Springer, Heidelberg (2013)

http://arxiv.org/abs/1508.02035

Introducing Preference-Based Argumentation
to Inconsistent Ontological Knowledge Bases

Madalina Croitoru1, Rallou Thomopoulos2, and Srdjan Vesic3(B)

1 INRIA, LIRMM, University Montpellier 2, Montpellier, France
2 INRA GraphIK, Montpellier, France

3 CRIL, CNRS - University of Artois, Lens, France
vesic@cril.fr

Abstract. Handling inconsistency is an inherent part of decision mak-
ing in traditional agri-food chains – due to the various concerns involved.
In order to explain the source of inconsistency and represent the existing
conflicts in the ontological knowledge base, argumentation theory can
be used. However, the current state of art methodology does not allow
to take into account the level of significance of the knowledge expressed
by the various ontological knowledge sources. We propose to use prefer-
ences in order to model those differences between formulas and evaluate
our proposal practically by implementing it within the INRA platform
and showing a use case using this formalism in a bread making decision
support system.

1 Introduction

Querying several heterogeneous data sources while taking into account the onto-
logical information [19] recently received growing interest both from academia
and from industry. Consider the platform developed in the French Institute for
Research in Agronomy (INRA) to link agronomy insights with socio-economic
developments and behaviour of various stakeholders involved: farmers, con-
sumers, biologists or industrial partners1.

In such practical applications, the knowledge (obtained from several sources)
might be inconsistent. Different inconsistency methods have been devised in
order to reason with such knowledge [7,18]. Argumentation theory [16] is another
method for dealing with inconsistent knowledge [5,22]. It not only allows to
resolve inconsistency; furthermore, the reasons why certain formulas are not
compatible can be highlighted and presented to a user in form of arguments. The
logic-based argumentation ontological instantiation using the Datalog+/- family
of languages has already shown the practical interest in using argumentation for
query answering explanation in OBDA [2,3].

While argumentation-based techniques have already been successfully
applied in agronomy (for instance in traditional agri-food chains [25] or packag-
ing conception [24]) the current state of art methodology does not allow to take

1 see e.g. the MEANS initiative, http://www6.inra.fr/means eng/.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 594–602, 2015.
DOI: 10.1007/978-3-319-25524-8 42

http://www6.inra.fr/means_eng/

Introducing Preference-Based Argumentation 595

into account the degree of significance of the knowledge expressed by the various
knowledge sources. In the INRA platform handling preferences is fundamental,
since not all participants provide information of equal importance, regarding the
scope, priority and urgency of the issues considered. Such handling needs to be
generic: presupposing a total order (or any property) of the preference relation
would induce some loss of generality that will limit the practical applicability.

The research task of this paper is to define the first preference-based argu-
mentation system that works with inconsistent ontologies, study its properties
and apply it to a bread conception scenario within INRA.

2 Knowledge Representation

We consider the well known rule-based Tuple-Generating Dependencies
(Datalog+/-) family of languages that generalise certain subsets of Descrip-
tion Logics [4,12]. Here we restrict ourselves to Datalog+/- classes where the
skolemised chase is finite (Finite Expansion Sets). Due to the space restrictions,
we do not recall the technical details of this language. The interested reader is
referred to the technical report [14] containing all the definitions, proofs, more
explanations and more examples, which can be found on-line at http://www.
cril.fr/∼vesic.

Example 1. Consider a knowledge base K = (F ,R,N) where:

– F contains the following facts:
− F1 = Bread(bleuette) ∧ ContaminantFree(bleuette)
− F2 = ∃ e ExtractionRate(e,bleuette)
− F3 = ∃ f (FiberContent(f,bleuette) ∧ High(f))

– R consists of the following rules:
− R1 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧ PesticideFree(x) → Mod-
erate(y))
− R2 = ∀ x,y,z (Bread(x) ∧ ExtractionRate(y,x) ∧ FiberContent(z,x) ∧
High(z)

→ Intensive(y))
− R3 = ∀ x (Bread(x) ∧ ContaminantFree(x)

→ PesticideFree(x) ∧ MycotoxinFree(x))
– N contains the following negative constraint:

− N = ∀ x (Intensive(x) ∧ Moderate(x)) →⊥
K is inconsistent since (F ,R) |= N . Indeed, F1 and R3 allow to deduce

PesticideFree(bleuette). Combined to F2 and R1 we obtain Moderate(e). F1, F2,
F3 and R2 deduce Intensive(e), violating the negative constraint N .

If a knowledge base K = (F ,R,N) is inconsistent, everything is entailed from
it. A common solution for knowledge bases where preferences are not considered
[7,18] is to construct maximal (with respect to set inclusion) consistent subsets
of facts, called repairs. We define Repair(K) = {F ′ ⊆ F | F ′ is maximal for ⊆
R-consistent set}. In Example 1, we have three repairs: {F1, F2}, {F2, F3} and
{F1, F3}.

http://www.cril.fr/~vesic
http://www.cril.fr/~vesic

596 M. Croitoru et al.

2.1 Argumentation

For a set of formulae G = {G1, . . . , Gn}, notation
∧

G is used as an abbreviation
for G1 ∧ . . . ∧ Gn.

Definition 1. An argument (w.r.t. K) is a tuple a = (F0, F1, . . . , Fn) where:

– (F0, . . . , Fn−1) is a derivation sequence with respect to K
– Fn is an atom, a conjunction of atoms, the existential closure of an atom or

the existential closure of a conjunction of atoms such that Fn−1 |= Fn.

Example 2 (Example 1 Cont.). As an example of an argument, built with
F1 and R3, consider a = ({Bread(bleuette) ∧ ContaminantFree(bleuette)},
{Bread(bleuette) ∧ ContaminantFree(bleuette), P esticideFree(bleuette)
∧ MycotoxinFree(bleuette)}, P esticideFree(bleuette)).

For an argument a = (F0, ..., Fn) we denote Supp(a) = F0 and Conc(a) = Fn.
For a set S ⊆ F of facts, Arg(S) is defined as the set of all arguments a such
that Supp(a) ⊆ S. For a set E of arguments, Base(E) =

⋃
a∈E Supp(a).

Definition 2. Let K be a knowledge base and let a and b be two arguments. The
argument a attacks argument b, denoted (a, b) ∈ Att, if and only if there exists
ϕ ∈ Supp(b) such that the set {Conc(a), ϕ} is R-inconsistent.

Given a knowledge base K, the corresponding argumentation framework
AFK is (A = Arg(F), Att) where A is the set of arguments that can be con-
structed from F and Att is the corresponding attack relation as specified in
Definition 2. The notion of conflict-freeness and the semantics are defined in
the usual way [16]. For an argumentation framework AS = (A, Att) we denote
by Extσ(AS) the set of its extensions with respect to semantics σ. (All the
definitions are available in the technical report [14].)

3 Preference Handling

A preference based knowledge base is a 4-tuple K = (F ,R,N ,≥) composed of
four finite sets of formulae: a set F of facts, a set R of rules, a set N of constraints
and a set ≥ of preferences. The preference relation ≥ is defined over the facts
F . We put no constraints on the preference relation except that it has to be
reflexive and transitive.

Example 3. Let us consider the following preference-based knowledge base:

– F contains the following facts:
− F1 = ExtractionRate(T65,bleuette)
− F2 = Bread(p) ∧ ExtractionRate(τ ,p) ∧ Moderate(τ)
− F3 = Bread(p) ∧ SaltAdjunction(s,p) ∧ Reduced(s)
− F4 = Bread(p) ∧ ExtractionRate(τ ,p) ∧ Intensive(τ)
− F5 = Bread(p) ∧ Crusty(p) ∧ SaltAdjunction(s,p) ∧ Maintained(s)

Introducing Preference-Based Argumentation 597

– R consists of the following rules:
− R1 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧ Moderate(y) →
Digestible(x))
− R2 = ∀ x,z (Bread(x) ∧ SaltAdjunction(z,x) ∧ Reduced(z) → LowSalt(x))
− R3 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧ Moderate(y) → Pesticide-
Free(x))
− R4 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧ Intensive(y) → High-
Fiber(x))
− R5 = ∀ x,z (Bread(x) ∧ Crusty(x) ∧ SaltAdjunction(z,x) ∧ Maintained(z)
→ ConsumerFriendly(x))

– N contains the following negative constraints:
− N1 = ∀ x (Intensive(x) ∧ Moderate(x)) →⊥
− N2 = ∀ x (Reduced(x) ∧ Maintained(x)) →⊥

– ≥ is defined by the experts as follows:
F3 and F4 express nutritional concerns, F2 expresses a sanitary concern, F5

a sensorial concern, while F1 is neutral.
In the PNNS programme recommendation, nutritional concerns take priority
over sanitary ones, which take priority over sensorial ones.
The preference relation ≥ is thus defined by:
F3 ∼ F4 > F2 > F5, while F1 is incomparable with the other facts.

The preferences on the facts are used to refine the set of repairs of an inconsis-
tent knowledge base. Consider here the three notions introduced by Staworko et
al. [23]: locally optimal (LO), Pareto optimal (PO) and globally optimal (GO).
We denote the set of LO (resp. PO, GO) repairs of K by Repairlo(K) (resp.
Repairpo(K), Repairgo(K)).

Definition 3 ([23]). Let K = (F ,R,N ,≥) be a knowledge base and A′ ∈
Repair(K) one of its repairs.

– A′ is a locally optimal repair iff there exist no ϕ ∈ A′ and ψ ∈ F \ A′ such
that ψ > ϕ and (A′ \ {ϕ}) ∪ {ψ} is an R-consistent set

– A′ is a Pareto optimal repair iff there exist no X ⊆ A′, X �= ∅ and ψ ∈ F \A′

such that
• for every ϕ ∈ X we have ψ > ϕ
• (A′ \ X) ∪ {ψ} is an R-consistent set.

– A′ is a globally optimal repair iff there exist no X ⊆ A′, X �= ∅ and Y ⊆
F \ A′ such that

• for every ϕ ∈ X there exists ψ ∈ Y such that ψ > ϕ
• (A′ \ X) ∪ Y is an R-consistent set.

4 Preference Ranking

First note that the attack relation considered in this paper does not depend
on the preference relation ≥. Its goal is to underline the conflicts between the
arguments coming from conflicts from the knowledge base. Those conflicts still
exist even if some piece of information is preferred to another one. So in our
framework all attacks succeed.

598 M. Croitoru et al.

Definition 4. Let K = (F ,R,N ,≥) be a knowledge base, AFK the correspond-
ing argumentation framework, let σ be a semantics and E an extension with
respect to σ.

– E is a locally optimal (LO) extension iff there exists no ϕ ∈ Base(E) and
ψ ∈ F \ Base(E) such that Arg((Base(E) \ {ϕ}) ∪ {ψ}) is a conflict-free set
and ψ > ϕ.

– E is a Pareto optimal (PO) extension iff there exists no X ⊆ Base(E) and
ψ ∈ F \Base(E) such that X �= ∅ and Arg((Base(E)\X)∪{ψ}) is a conflict-
free set and for every ϕ ∈ X we have ψ > ϕ.

– E is a globally optimal (GO) extension iff there exists no X ⊆ Base(E) and
Y ⊆ F such that X �= ∅ and Arg((Base(E) \ X) ∪ Y) is a conflict-free set
and for every ϕ ∈ X there exists ψ ∈ Y such that ψ > ϕ.

We denote by Extlo
σ (AFK) (resp. Extpo

σ (AFK), Extgo
σ (AFK)) the sets of

locally (resp. Pareto, globally) optimal extensions under semantics σ.

Example 4 (Example 3 Cont.). We obtain the following stable / preferred exten-
sions :
ext1 = Arg({F1, F2, F3}), ext2 = Arg({F1, F2, F5}), ext3 = Arg({F1, F3, F4}),
ext4 = Arg({F1, F4, F5}).

In this example, extension ext3 is the best according to all crite-
ria (LO, PO, GO). Selecting this extension yields the following conclu-
sions: ExtractionRate(T65,bleuette), Bread(p), SaltAdjunction(s,p), Reduced(s),
ExtractionRate(τ ,p), Intensive(τ),
LowSalt(p)), HighFiber(p)).

5 Theoretical Evaluation

This section contains the theoretical evaluation of our proposal. It shows that the
result returned by the argumentation system is equivalent to that returned by
using repairs. We also show that our argumentation framework satisfies the pos-
tulates for instantiated argumentation systems. Finally, we study the properties
of our system in case when the preference relation is total.

We now show that there is a full correspondence between the result obtained
by using our preference-based argumentation system and the result obtained by
using the repairs of the given inconsistent ontological knowledge base.

Proposition 1. Let K = (F ,R,N ,≥) be a knowledge base and AFK the cor-
responding preference-based argumentation system. Let σ be preferred or stable
semantics and β ∈ {lo, po, go}. Then:

Extβ
σ(AFK) = {Arg(A′) | A′ is a β repair of K}.

We can show that the preference-based argumentation framework we propose
in this paper satisfies the rationality postulates for instantiated argumentation

Introducing Preference-Based Argumentation 599

frameworks [13]: direct and indirect consistency and closure. The details are
omitted due to space restrictions, but can be found in the technical report [14].

In the case when ≥ is total, Pareto optimal and globally optimal repairs coin-
cide. Furthermore, it can be shown that PO repairs (and GO repairs) coincide
with preferred subtheories [11] of K. However, using LO repairs may still yield
a different result. For the exact definitions and the proofs, the reader is referred
to the technical report [14].

The next example shows that LO repairs do not coincide with PO repairs
even in the case when ≥ is a total order.

Example 5. Let K = (F ,R,N ,≥) with F = {whiteBread(B), wholeWheat-
Bread(B), organicWholeWheatBread(B)}, R = ∅, N = {∀x (whiteBread(x) ∧
wholeWheatBread(x) → ⊥), ∀x (whiteBread (x) ∧ organicWholeWheatBread(x)
→ ⊥)}, and let whiteBread(B) ≥ wholeWheatBread(B) ≥ organicWholeWheat-
Bread(B).

Set A′ = {wholeWheatBread(B), organicWholeWheatBread(B)} is a locally
optimal repair but is not a Pareto optimal repair.

6 Qualitative Evaluation

The evaluation of the implemented system was done via a series of interviews
with domain experts. The first point to highlight is that our initial approach with
experts included no preference expression. The experts themselves raised the
question of the importance attached to the different pieces of knowledge modeled
in the system. Moreover, in some cases experts hesitated on the relevance of some
facts or rules. From that first step of the project, the need to take into account
different levels of importance among arguments became obvious. Preferences
were introduced from that point.

The knowledge and reasoning procedures were implemented using the
COGUI knowledge representation tool, with an extension of 2000 lines of sup-
plemental code. Three experts have validated our approach: two researchers in
food science and cereal technologies of the French national institute of agronomic
research, specialists respectively of the grain-to-flour transformation process and
of the breadmaking process, and one industrial expert - the Director of the French
National Institute of Bread and Pastry.

Four scenarios were evaluated. These scenarios concern four kinds of con-
sumers: obeses (fiber preference), people with iron deficiency (micronutrient
preference), people with cardiovascular disease (decreased salt preference) and
vegetarians (limited phytic acid), which produces different sets of goals. For each
scenario, the system proposes several output recommendations. The audience for
decreasing salt tips the balance in favour of a recommendation for the T80 bread,
while the audience for decreasing phytic acid pushes to specify recommendations
towards a natural sourdough bread or a conservative T65 bread. The results were
considered as explainable by experts, but not obvious, since many considerations
had to be taken into account.

600 M. Croitoru et al.

Let us focus on the case of vegetarians. Phytic acid, which is contained in
the outer layers of the wheat grain, is known to limit the bioavailability of
cations, including essential minerals such as coper, zinc or iron, which must
be preserved especially for vegetarians. Therefore the conservative solution of
T65 bread can be explained by the fact that the current T65 bread contains
few outer grain layers, thus limiting the phytic acid risks. However, natural
sourdough bread has a lower pH level. This acidity interferes with the activity
of phytic acid, thus avoiding the decrease of mineral bioavailability. Now why
chose one solution rather than another one? This point could be highlighted by
the system. Indeed, the choice depends on the ordering of consumer preferences.
Favouring organoleptic aspects of bread (e.g. crusty, white, honeycombed bread)
leads to chose the T65 solution, whereas favouring nutritional aspects (e.g. fibers,
vitamins, satiety) leads to the natural sourdough solution.

7 Conclusion and Related Work

We introduced the first preference-based argumentation system that works with
inconsistent ontological knowledge bases and studied its properties. We also
applied it to an agronomy scenario.

A two-step approach for preference-based argumentation was proposed
recently [1]. In that work, the authors propose a general argumentation frame-
work that can be instantiated in different ways. They propose to take into
account both attacks and preferences in the first phase; the second phase uses
only preferences to refine the result. The main difference is that we show it is
possible to define an instantiation in which taking attacks and preferences into
account is done in completely separated phases: namely, in our approach the
first phase (inconsistency resolution) is done without looking at the preferences.

The links between argumentation semantics (stable, preferred, grounded) and
different semantics in inconsistent ontological knowledge bases, such as AR, IAR
or ICR were recently studied [15]. The present paper is more general since it also
takes into account the preference relation between the sources.

The ASPIC+ system [22] has also recently studied using preferences and
structured argumentation. This approach imposes restrictions on the preference
relation and, of course, does not consider equivalence results with the inconsis-
tent ontology query answering semantics or preference based repair selection.
Another related contribution comprises constructing an argumentation frame-
work with ontological knowledge allowing two agents to discuss the answer to
queries concerning their knowledge without one agent having to copy all of their
ontology to the other [10]. However the authors do not consider preferences. Let
us also mention the work of Kaci [17], which only considers symmetrical attack
relations.

Binas and McIlraith [9] use argumentation in order to answer inconsistent
queries. The authors use the similar definitions of argument and attack as in this
paper but only consider propositional logic. Benferhat et al. [6] consider that
a formula should be deduced if no stronger reasons for deducing its negation

Introducing Preference-Based Argumentation 601

exist. Recently, in OBDA, preference handling methods have been extended to
Datalog+/- families and DL-Lite knowledge bases [8,20,21].

References

1. Amgoud, L., Vesic, S.: Rich preference-based argumentation frameworks. Interna-
tional Journal of Approximate Reasoning 55, 585–606 (2014)

2. Arioua, A., Tamani, N., Croitoru, M.: On conceptual graphs and explanation of
query answering under inconsistency. In: Hernandez, N., Jäschke, R., Croitoru, M.
(eds.) ICCS 2014. LNCS, vol. 8577, pp. 51–64. Springer, Heidelberg (2014)

3. Arioua, A., Tamani, N., Croitoru, M., Buche, P.: Query failure explanation in
inconsistent knowledge bases using argumentation. In: Proceedings of the Fifth
International Conference on Computational Models of Argument (COMMA 2014),
pp. 101–108 (2014)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of
the 19th International Joint Conferences on Artificial Intelligence (IJCAI 2005),
pp. 364–369 (2005)

5. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and
inconsistent knowledge bases. In: Proceedings of the 9th Conference on Uncertainty
in Artificial intelligence (UAI 1993), pp. 411–419 (1993)

6. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling
of inconsistent knowledge bases: a comparative study part 2: the prioritized case.
In: Logic at Work: Essays Dedicated to the Memory of Helen Rasiowa, vol. 24,
pp. 437–511. Physica-Verlag (1999)

7. Bienvenu, M.: On the complexity of consistent query answering in the presence of
simple ontologies. In: Proceedings of the 26th Conference on Artificial Intelligence
(AAAI 2012), pp. 705–711 (2012)

8. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic
knowledge bases under preferred repair semantics. In: Proceedings of the 28th
Conference on Artificial Intelligence (AAAI 2014), pp. 996–1002 (2014)

9. Binas, A., McIlraith, S.A.: Peer-to-peer query answering with inconsistent knowl-
edge. In: Proceedings of the 11th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2008), pp. 329–339 (2008)

10. Black, E., Hunter, A., Pan, J.Z.: An argument-based approach to using multiple
ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 68–79.
Springer, Heidelberg (2009)

11. Brewka, G.: Preferred subtheories: an extended logical framework for default rea-
soning. In:1 Proceedings of the 11th International Joint Conference on Artificial
Intelligence (IJCAI 1989), pp. 1043–1048 (1989)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

13. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Arti-
ficial Intelligence Journal 171(5–6), 286–310 (2007)

14. Croitoru, M., Thomopoulos, R., Vesic, S.: Introducing preference-based argumen-
tation to inconsistent ontological knowledge bases. CNRS - University of Artois,
Technical report, CRIL (2015)

15. Croitoru, M., Vesic, S.: What can argumentation do for inconsistent ontology query
answering? In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS,
vol. 8078, pp. 15–29. Springer, Heidelberg (2013)

602 M. Croitoru et al.

16. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
Journal 77, 321–357 (1995)

17. Kaci, S.: Refined preference-based argumentation frameworks. In: Proceedings
of the Third International Conference on Computational Models of Argument
(COMMA 2010), pp. 299–310 (2010)

18. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010)

19. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the
21st Symposium on Principles of Database Systems (PODS 2002), pp. 233–246
(2002)

20. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in
Datalog+/- ontologies. In: Proceedings of the 20th European Conference on Arti-
ficial Intelligence (ECAI 2012), pp. 558–563 (2012)

21. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Complexity of inconsistency-tolerant
query answering in Datalog+/-. In: Informal Proceedings of the 26th International
Workshop on Description Logics, pp. 791–803 (2013)

22. Modgil, S., Prakken, H.: A general account of argumentation and preferences.
Artificial Intelligence Journal 195, 361–397 (2013)

23. Staworko, S., Chomicki, J., Marcinkowski, J.: Preference-driven querying of inconsis-
tent relational databases. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S.,
Fischer, F., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J.
(eds.) EDBT 2006. LNCS, vol. 4254, pp. 318–335. Springer, Heidelberg (2006)

24. Tamani, N., Croitoru, M., Buche, P.: Conflicting viewpoint relational database
querying: An argumentation approach. In: Proceedings of the 13th International
Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2014),
pp. 1553–1554 (2014)

25. Thomopoulos, R., Croitoru, M., Tamani, N.: Decision support for agri-food chains:
a reverse engineering argumentation-based approach. Ecological Informatics (2014)

Compliant Business Processes with Exclusive
Choices from Agent Specification

Francesco Olivieri1, Matteo Cristani1, and Guido Governatori2(B)

1 Department of Computer Science, University of Verona, Verona, Italy
2 NICTA, Queensland Research Laboratory, Spring Hill, Australia

guido.governatori@nicta.com.au

Abstract. In this paper we analyse the problem of synthesising com-
pliant business processes from rules-based declarative specifications for
agents. In particular, we consider the approach by [1,2] and we propose
computationally efficient algorithms to combine plans extracted from the
deliberation of an agent to generate the corresponding business processes
with exclusive choice patterns.

1 Introduction

The standard architectures for cognitive agents (e.g., the BDI architecture) dis-
tinguish three phases: the deliberation phase where agents deliberate what are
their goals; then in the plan selection phase, the agent selects, based on the out-
come of the first phase, which plan to actuate from her plan library; finally, in the
last phase, the agent executes the selected plan. [1,2], in addition to the inclu-
sion of norms, propose a different approach where an agent is defined by a set
of rules describing the environment where the agent is situated, the capabilities
of the agent (the actions or tasks the agent can perform, the conditions under
which the agent can perform them, and the effects they generate), the aims of
the agent, and the norms the agent is subject to. Given a set of facts describ-
ing a situation, the agent deliberates using its rule base to determine whether
a particular outcome is attainable without violating the relevant norms. Given
the information in the rule base, the deliberation contains information about the
tasks to be performed (and the relative order in which they have to be executed)
to reach the objective. Thus, the deliberation effectively generates a plan. [3,4]
propose an efficient algorithm to extract such plans and to visualise them in
form of business process models.

A business process model is a compact (graphical) representation of a set of
activities and the order in which they have to be executed to reach a business
objective. The tasks or activities are connected by control flow connectors. In
particular, the basic control flow connectors are: sequence (task t′ directly follows
task t), And split or parallel split (all tasks in all the branches are executed),

G. Governatori—NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through the
ICT Centre of Excellence Program.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 603–612, 2015.
DOI: 10.1007/978-3-319-25524-8 43

604 F. Olivieri et al.

exclusive choice or X-Or split (only the tasks in one of the branches are exe-
cuted), And join (all tasks in the incoming branches must have been executed),
and X-Or join (one branch must have been executed). A business process model
can be seen as a set of sequences of tasks, which corresponds to a set of plans.
One of the advantages of business process models being that they provide an
intuitive (graphical) representation that can be understood by the stakehold-
ers of the business process, and that they can be executed by workflow engines.
While rules (and, in general, declarative specifications) can provide powerful and
flexible representation languages, and the individual rules can be easily under-
stood by stakeholders and domain experts (including rules modelling norms),
it can be daunting to understand what is going on with large knowledge bases.
To mitigate this problem, [3,4] propose to translate a case (set of facts) into a
business process model (i.e., a model guaranteed to comply with the applicable
norms and fulfilling the predefined objective).

The approach in [3,4] has the limitation that it synthesises business pro-
cesses without exclusive choices. This is due to the following two factors: the
logic underlying the declarative agent specifications (Defeasible Logic, a scepti-
cal non-monotonic logic) and the use of a consistent set of facts as input for the
case. However, nothing prevents us from considering different (and incompatible)
sets of facts as input. For each set, we can generate the resulting business process
and we could join them using each business processes as a branch in a global
X-Or block. However, this would defy the purpose of aiming at compact rep-
resentations. In this paper, we address the problem of how to generate business
process models with exclusive choice patterns starting from a set of cases (each
represented by a set of facts encoding, for example, standard configurations and
most common choices) and a set of declarative specifications for an agent.

2 Logic

The aim of this section is to give some basic notions of the logic presented in
a series of works [1,2] and to make the reader acquainted with the intuitions
behind such a logic apparatus while avoiding instead the technicalities.

DL is typically sceptical, meaning that it allows rules for opposite conclusions.
In the situation where rules for opposite literals are activated (may fire), the logic
does not produce any inconsistency but it simply does not draw any conclusion
unless a preference (or superiority) relation states that one rule prevails over the
other. A defeasible theory D is defined as a structure (F,R,>), where (i) F is a
set denoting simple pieces of information that are considered to be always true
(e.g., a fact is that “Sylvester is a cat”, formally cat(Sylvester)), (ii) R contains
two finite sets of rules: defeasible rules and defeaters, (iii) > ⊆ R×R is a binary
relation. A rule is an expression r : A(r) ↪→ C(r), and consists of: (i) a unique
name r, (ii) the antecedent A(r) which is a finite set of (modal) literals, (iii) an
arrow ↪→ ∈ {⇒,�} denoting, respectively, defeasible rules and defeaters, and
(iv) its consequent C(r) which is a single literal (or a chain of modal literals, see
below). A defeasible rule can be defeated by contrary evidence; for example the

Compliant Business Processes with Exclusive Choices 605

rule representing “cats typically eat birds” is “cat(X) ⇒ eat birds(X)”, means
that if something is a cat, then we may conclude that it eats birds, unless there is
evidence proving otherwise. Defeaters are special rules whose only purpose is to
defeat defeasible rules by producing contrary evidence. The superiority relation
> is used to define when one rule may override the conclusion of another one,
e.g., given the rules “r : cat(X) ⇒ eat birds(X)” and “s : domestic cat(X) ⇒
¬eat birds(X)”, if we state that “s > r”, then Sylvester does not to eat birds.

A defeasible conclusion is a tagged literal and can have one of the following
form: (1) +∂q which means that q is defeasibly provable in D, and (2) −∂q
which means that q is refuted, or not defeasibly provable in D. The idea of
+∂ derivation being that a given literal q is defeasibly provable if either it is
definitely provable, or we argue by using the defeasible part of the theory. In
the latter case, ∼q must be not definitely provable, and there must exist an
applicable strict or defeasible rule for q. Finally, every attack on such a rule is
either discarded, or defeated by a stronger rule supporting q.

The logic of [1,2] is equipped with modal rules and operators to capture the
obligations an agent has to comply with and the goal-like mental attitudes of
the agent. However, such components are not needed to synthesis the plans an
agent commits to, and, for the purpose of this paper they can be considered as
simple conditions literals.

Given a defeasible theory D, we define the set of positive and negative conclu-
sions as the extension of the theory. The positive extension is noted by E+(D),
the negative one by E−(D). More formally the positive and negative extensions
are defined as follows: E+(D) = {p|D � +∂p} and E−(D) = {p|D � −∂p}.

Observation. An extension is characteristic of a specific set of facts: fixed the
rules and the superiority relation, two different sets of facts may lead to two
distinct extensions.

Exclusive Choice Patterns. Here we describe three possible variants to effec-
tively model exclusive choice patterns in defeasible logic.

When we consider only a single literal t, a choice pattern is a set of rules
proving t. Typically, such rules have distinct sets of antecedents. On the contrary,
an exclusive choice pattern must not consider a single literal, but a set of distinct
literals, t1, . . . , tn. These literals must share, to a certain extent, the same sets
of antecedents (activation elements). What do we mean by to a certain extent?
Recall that literals in our theory are conceptually divided between condition-
and task-literals. Hence, t1, . . . , tn must have a common set of activation task-
literals, while differing on the activation condition-literals. For instance, in the
following scenario

r1 : a, b, c1 ⇒ t1 r2 : a, b, c2 ⇒ t2,

t1 and t2 share the set of common activation task-literals (a and b), while the
distinctive activation condition-literals are c1 for t1, and c2 for t2. Hereafter,
condition-literals are denoted by cs with a subscript notation.

606 F. Olivieri et al.

The key distinction between a choice and an exclusive choice is that, in the
former, every alternative can be executed at the same time while, in the exclusive
choice, once an alternative is executed, none of the others can. Thus, the logic
must exhibit structures to prevent the execution of all the other alternatives
once a choice is made. This can be easily handled by the use of defeater rules.

Variant 1 sees a preferred task (say t1) while all the other alternatives are of
equal importance with respect to one another. Formally,

r1 : Δ ⇒ t1
ri : Δ,Γi ⇒ ti for 1 < j ≤ n

d1j : t1 � ∼tj for 1 < j ≤ n
dij : ti � ∼tj for 1 ≤ i, j ≤ n, i 	= j.

Δ the set of common activation task-literals; Γi denotes the set of condition-
literals distinctive for task-literal ti. Task t1 is the default choice: as such, no
activation conditions are needed. Defeaters d1i and dij ensure that once an alter-
native is chosen, no other can.

Variant 2 considers none of the tasks involved to be preferred to the others.

ri : Δ,Γi ⇒ ti dcij : ti � ∼tj for 1 ≤ i, j ≤ n, i 	= j.

A different form of this second variant excludes sets Γis from playing a role in
the choice of which branch to run. We think that such a variation is conceptually
weak given that there should always be some way to discriminate why running
an alternative instead of another. Nonetheless, in the following algorithms, it
will be trivially calculated.

Variant 3 There are situations where a branch of the exclusive choice pattern
does not actually perform any action, but it is just used to skip the run to the
end of the X-Or join gate (we can see it like an empty branch).

r1 : Δ,Γ1 ⇒ t1
ri : Δ,Γi ⇒ ti for 1 < i ≤ n

ri1 : ti ⇒ t1 for 1 < i ≤ n
d1j : Γ1 � ∼ti for 1 < i ≤ n
dij : ti � ∼tj for 1 < i, j ≤ n and i 	= j.

Here, the execution of t1 prevents the execution of any other ti.

3 Algorithms

In [3,4], we presented methodologies to compute a process graph starting by a set
of declarative specifications being able to describe: (i) the system’s environment,
(ii) the active norms and (iii) a set of goals (called outcomes) the system aims
to achieve. The execution of that step was possible upon previous computations
on a series of algorithms which efficiently compute which actions the system is

Compliant Business Processes with Exclusive Choices 607

meant to perform in order (i) to achieve a set of goals (ii) while it does not to
violate certain norms (or to compensate all the violated ones) [1,2]. The input
of [1,2]’s algorithms was (1) the underlying modal logic (of the type of the one
presented in Section 2), and (2) an assignment to the set of facts. The output
was an extension. We recall that, fixed the rules, distinct set of facts (typically)
generate different extensions. Given a set of facts, some rules are activated to
produce certain effects and these effects may, in turn, activate other rules which
produce other effects (and so on). Therefore, the positive extension represents
all the active literals. This means that if the literal stands for a condition, such
a condition is fulfilled (for instance, the norm is not violated or compensated);
if the literal stands for a task, that task will be executed in the corresponding
process.

The algorithms of [3,4] started from a single extension. The focus, and nov-
elty, of the present research being that such an assignment to the set of facts
may well not be the only one resulting in a compliant situation. This is typi-
cal in business practices as we argued above where, instead of a single case, we
consider multiple (possibly incompatible) cases corresponding to scenarios the
agent has to deal with. Before showing the algorithmic results for the exclusive
choice pattern computation, we briefly describe of how [3,4]’s algorithms work.
The idea of those algorithms is to start from a set of proved goals and from each
one of them to navigate backwards the derivation tree by considering only those
literals in the positive extension. This procedure is then recursively iterated on
each of those literals. This schema naturally captures the three main features of
a process graph: (1) sequence, given a literal p, if a belongs to a certain A(r)
such that C(r) = p, then in the graph there is an edge linking node A to node
P; (2) parallel execution, if also literal b is in A(r) then it is natural that nodes
A and B are linked to P by and And Join gate; (3) choice, many rules proving
p represent different alternatives to obtain p and we link them to P through an
Or Join gate. Once this backwards phase ended, the process graph is synthe-
sised by recognising co-occurrence patterns and by removing condition-literals,
substituted by labelled edges.

X-OR Pattens Algorithms. The algorithms we describe hereafter recognise
exclusive choice patterns. Algorithm 1 (X-Or) has been designed to be a proce-
dure invoked by the main algorithm of [3,4] after the condition-task elimination
has taken place. Let us understand the basic principles behind it by helping us
with the following examples.

Example 1. Let D be the theory, with empty superiority relation, such that

r1 : a, c1 ⇒ t1 r2 : a, c2 ⇒ t2 r3 : t1 ⇒ b r4 : t2 ⇒ b d12 : t1 � ∼t2 d21 : t2 � ∼t1.

Here, if we have the two distinct assignments F ′ = {a, c1} and F ′′ = {a, c2},
then task-literals t1 and t2 are in an exclusive choice pattern. Indeed, (i) t1 is
proved only when using F ′ (and symmetrically for t2 with F ′′), (ii) t1 and t2
share the activation task a, (iii) c1 (resp. c2) is the unique activation condition

608 F. Olivieri et al.

for t1 (resp. t2), and (iii) the activation of one task defeats the activation of
the other through the presence of defeaters d12 and d21. Finally, both t1 and t2
derive b. We can thus close the pattern by linking T1 and T2 to an X-Or Join
gate-node, which in turn is followed by B.

Exclusive choice variants described in Section 2 are useful to define some the-
oretical properties and to give the reader an understanding of which differences
distinguish one variant from another. Their common, focal point being that the
tasks in the exclusive choice share a set of activation task-literals while other
sets of condition-literals are characteristic of which choice-branch to run. Given
that Algorithm 1 X-Or’s execution begins after the condition nodes have been
removed from the graph, to gather for such activation requirements is not trivial,
as following Example 2 points out.

Example 2. Let D be the theory, with empty superiority relation, such that

r1 : b, c3 ⇒ t1 r2 : d ⇒ t1 r3 : a ⇒ c1
r4 : c1 ⇒ c3 r5 : t1 ⇒ e r6 : a, b, d, c2 ⇒ t2
r7 : t2 ⇒ e r8 : e ⇒ f d12 : t1 � ∼t2 d21 : t2 � ∼t1.

Given two assignments to the set of facts (e.g., F ′ = {a, b, d, c3} and F ′′ =
{a, b, d, c2}), are t1 and t2 in an exclusive choice pattern? Yes, they are. Appar-
ently, the immediately previous activation task-literals of t1 are b and d only
(resp. due to r1 and r2), while for t2 are a, b and d. What about a for t1? a
is the antecedent of r3 for proving c1 which, in turn, is used by r4 to prove c3.
Recall that, once the process graph is made, synthesis Phase 2 sees nodes C1 and
C3 being removed from the graph and substituted by a labelled arc connecting
A directly to And-Jr1 . Thus, task-node A can be seen as an activation task of
T1. Therefore, activation tasks of t1 are the same of t2 even if, in case of t1,
they come from four distinct rules, while in case of t2 from the single r5. Is that
nonetheless correct? Again, the answer is yes, provided that, for every each ti
in the exclusive choice pattern, all its activation literals are derived in the same
extension.

Before the detailed description of the algorithms, we introduce the two last
preliminary notions. A task dependency graph is essentially a dependency graph
where we consider task-literals only. The task dependency graph of D, TDG(D),
is the directed graph defined as follows: the set of vertices is VTDG(D) =
{t|t is a task-literal in D}. The set of arcs is ETDG(D) = {(a, b)|∃r ∈ Rsd[b] : a ∈
A(r) and a, b ∈ VTDG(D); or ∃r1, . . . , rn ∈ Rsd : a ∈ A(r1), b = C(rn), C(rj) /∈
VTDG(D) j < n, and C(ri) ∈ A(ri+1)}. Given the task dependency graph
TDG(D) and a task-literal l in it, define Reachability(l) as the set of nodes
reachable from a l. Formally Reachability(l) = {M ∈ VTDG(D)|∃M1, . . .Mn :
(L,M1), (Mi,Mi+1) ∈ ETDG(D) and M = Mn}. Notice that computing the task
dependency graph and the set of reachable nodes is quadratic in the number of
vertices.

Algorithm 1 (X-Or) is the main procedure, which invokes its subroutines
Algorithm 2 (BackwardTasksProj) and Algorithm 3 (ifX-Or). Algorithm 1

Compliant Business Processes with Exclusive Choices 609

Algorithm 1. X-Or

1: Compute the task-dependency graph TDG

2: alreadyXed ← ∅, conditionsLabels ← ∅, XJoin ← ∅
3: for T ∈ V \ alreadyXed. ∃i, j. t ∈ E+

i (D) and t �∈ E+
j (D) with i, j ≤ m, i �= j do

4: backwardTasks ← BackwardTasksProj(T)

5: XORtasks ← ifX-Or(T, i, backwardTasks)

6: if XORtasks �= ∅ then

7: XJoin(Tl) ← Reachability(tl)

8: closure ← ⋂
1≤l≤n

XJoin(Tl)

9: closure ← closure \ {P ∈ closure | P depends on Q ∈ closure or P is not a task-node}
10: Tfinal ← XORtasks ∩ closure

11: V ← V ∪ {XOr-ST1,...,Tn ,XOr-JT1,...,Tn} with T1, . . . ,Tn ∈ XORtasks

12: for Tl ∈ XORtasks \ {Tfinal} do

13: E ← E ∪ {(L,XOr-St1,...,tn) | L ∈ inV (Ti)} \ {(L,Ti)}
14: E ← E ∪ {e = (XOr-ST1,...,Tn ,Ti)}
15: label(e) ← conditionLabels(Ti)

16: if closure �= ∅ then

17: if Tfinal �= null then

18: E ← E ∪ {(XOr-JT1,...,Tn ,Tfinal)} ∪ {(L,XOr-JT1,...,Tn) | ∃1 ≤ j ≤ n. L ∈
inV (Tfinal) ∩ XJoin(Tj)} \ {(L,Tfinal) | L ∈ inV (Tfinal) ∩ XJoin}

19: else

20: for P ∈ closure do

21: E ← E ∪ {(L,XOr-JT1,...,Tn) | ∃1 ≤ j ≤ n. L ∈ inV (P) ∩ XJoin(Tj)} \
{(L,P) | L ∈ inV (P) ∩ XJoin} ∪ {(XOr-JT1,...,Tn ,P)}

22: alreadyXed ← alreadyXed ∪ XORtasks

is conceptually divided in two phases. During the first phase of the main algo-
rithm, it collects the tasks appearing in an exclusive choice pattern. The second
phase starts if an X-Or has been found and manages the graph operations
needed to insert the X-Or Split and X-Or Join into the process graph.

In the first phase, for every task-node, Algorithm 1 gathers (a) the acti-
vation tasks and (b) the activation conditions. It stores the tasks in the set
backwardTasks and the conditions in conditionLabels. conditionLabels is an
array of arrays and will be afterwards used to label edges: for each task that will
be present in the X-Or pattern, there is a set where to store all the activation
conditions.

Steps (a) and (b) are performed by Algorithm 2: it stores all nodes with an
outgoing edge towards the node under examination in the set premises (T in
the algorithm). The information about such nodes is provided by inV (T). We
say that, for any node X, inV (X) = {Y ∈ V | (Y,X) ∈ E} denotes the set of all
nodes reaching X. All elements stored in premises are now analysed. For every
of such element P, if P is a task node, then we do not need to further analyse P’s
predecessors: we simply save it in bwTasks and update conditionLabels(T). We
update conditionLabels(T) by adding to it the label of each edge e connecting P
to a node previously analysed (that is, a node in pastPrem). The edge labelling
process recursively collects conditions occurring between tasks, as illustrated
in Example 2. In case P is an And-Jr or an Or-JN node, we update premises
with P’s immediate predecessors (inV (P)). In case P is an Or-J node, we update
conditionLabels as the previous case, while in case is an And-Jr node, we also

610 F. Olivieri et al.

Algorithm 2. BackwardTasksProj

1: procedure BackwardTasksProj(node T)

2: bwTasks ← ∅, premises ← inV (T), pastPrem ← T

3: while premises �= ∅ do

4: Let P be the first element of premises

5: switch (Node type of P)

6: case P is a task node:

7: conditionLabels(P) ← conditionLabels(P) ∪ labels(e) for each e ∈ {e′ ∈
E | e′ = (P,L) and L ∈ pastPrem}

8: premises ← premises \ {P}
9: bwTasks ← bwTasks ∪ {P}
10: case P is and And-Jr node:

11: conditionLabels(P) ← conditionLabels(P) ∪ {c is condition-literal | c ∈ A(r)} ∪
labels(e) for each e ∈ {e′ ∈ E | e′ = (P,L) and L ∈ pastPrem}

12: premises ← premises ∪ inV (P) \ {P}
13: case P is and Or-JP node:

14: conditionLabels(P) ← conditionLabels(T) ∪ labels(e) for each e ∈ {e′ ∈
E | e′ = (P,L) and L ∈ pastPrem}

15: premises ← premises ∪ inV (P) \ {P}
16: end switch

17: pastPrem ← pastPrem ∪ {P}
18: return bwTasks

add to conditionLabels all the condition-literals present in A(r). Notice that
subscript r uniquely identifies the corresponding And-J node.

Once Algorithm 2 has done collecting such information, the execution returns
to Algorithm 1 which invokes Algorithm 3 to discover whether an exclusive choice
pattern actually exists. To do so, Algorithm 3 searches for all eligible task nodes.
A node T′ is eligible if (i) task-literal t′ is in (at least) a positive extension E+

j

“not used” by any other task in the X-Or pattern. For instance, let us assume
we are considering an X-Or pattern between T1, T2 and T3, and we know that
there are five extensions. If t1 is in E+

1 , while t2 is in E+
2 and E+

3 , then t3 must
have been proved in E+

4 or E+
5 .

If T′ is eligible, Algorithm 2 is invoked to compute whether the activation
tasks of T′ are the same of T’s. If that is the case, Algorithm 3 lastly inspects
whether a suitable defeaters’ structure exists. The execution now returns to
Algorithm 1: if an exclusive choice pattern has been found, the algorithm passes
to the second phase and performs the operations described hereafter, otherwise
it proceeds in controlling the next candidate node. The computation of tasks
in XORtasks gives knowledge of where to insert the X-Or Split gate-node
(X-Or-ST1,...,Tn

in notation, where T1–Tn are the nodes in the exclusive choice
pattern). We now need to understand where to insert the X-Or Join gate-
node (X-Or-JT1,...,Tn

in notation). For each task Tl in XORtasks we store in
XJoin (a set of sets) the task-nodes reached by Tl. If the intersection of such Tls
(closure) is not empty, the exclusive choice pattern is well structured; otherwise
the declarative specifications were poorly written and, consequently, no X-Or-J
can be inserted into the process graph.

When closure is not empty, we need to remove from it all the gate-nodes along
with those nodes that depend on nodes in closure. The operations described

Compliant Business Processes with Exclusive Choices 611

Algorithm 3. ifX-Or

1: procedure ifX-Or(task T, index i, set TbwTasks)

2: Xtasks ← {T}, extensions ← {i}
3: for T′ ∈ V \ alreadyXed \ Xtasks s.t. ∃j �∈ extensions. t′ ∈ E+

j (D) do

4: TjTasks ← BackwardTasksProj(T′, j)
5: if TjTasks = TbwTasks then Xtasks ← Xtasks∪{T′}, extensions ← extensions∪{j}
6: supp ← ∅
7: if ∃!Ti ∈ Xtasks s.t. conditionLabels = ∅ then

8: for Tj ∈ Xtasks with j �= i do

9: if ∃d ∈ Rdft [∼tj].A(d) = {ti} then

10: for Tk ∈ Xtasks with k �= i, j do

11: if ∃d ∈ Rdft [∼tj].A(d) = {tk} then supp ← supp ∪ {Tj}
12: if

(
supp �= ∅) then return supp

13: supp ← ∅
14: for Tj ∈ Xtasks do

15: for Tk ∈ Xtasks with k �= j do

16: if ∃d ∈ Rdft [∼tj].A(d) = {tk} then

17: if ∃d ∈ Rdft [∼tk].A(d) = {tj} then supp ← supp ∪ {Tj}
18: return supp

above serve exactly to this purpose: to eliminate nodes like F from closure.
Finally, if one of the task in closure belongs to XORtasks as well, we have an
instance of Variant 3. We first identify such a task-node (Tfinal in notation),
and then we link the X-Or-JT1,...,Tn

to it (Lines 17–18). In both circumstances,
edges from a node in Xjoin towards a node in closure are erased and substituted
to proper connect them to the new inserted X-Or-ST1,...,Tn

node (resp. Lines
18 and 21).

The structure of the algorithms and the operations used in the algorithms
indicate that the complexity of the problem investigated in this paper remains
polynomial. A thorough analysis is left for future work.

4 Conclusion and Related Work

In this paper we addressed the theoretical issue of how to synthesise compliant
business process models incorporating exclusive choice patterns from declarative
agent specifications. We proposed computationally efficient algorithms to merge
alternative plans into a single business process model. The suitability of the
approach to model real life applications is left for future work.

Our approach departs from the standard BDI architecture and agent pro-
gramming languages implementing it [5,6], and extensions with norms in several
respects [7]. While in the above mentioned approaches the agent has to select
predefined plans from a library, we propose that the agent generates on the fly
a set of plans to meet the objectives without violating the norms. [8] present
norm-aware agents; a norm-aware agent can deliberate on its goals, norms, and
sanctions before deciding which plan to select and execute. In this respect, our
agents are norm-aware. [9] provide an account of goals by integrating BDI failure
mechanisms with HTN planning techniques. HTN planing is notoriously unde-
cidable even if no variables are allowed, or PSPACE-hard if some restrictions are

612 F. Olivieri et al.

given. The main feature of their CANA is that, if a plan fails, alternative plans
are tried. Compared to theirs, our framework has the advantage that we gen-
erate all the possible plans at design time. [10] “force” the notion of obligation
within the STRIPS framework for agent planning. Their framework is lacking in
at least two aspects if compared to ours: (i) they cannot specify the motivational
aspects of BDI agents, (ii) their framework cannot generate alternative plans or
process graph as we do.

References

1. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S., Cristani, M.: Picking up
the best goal. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A.
(eds.) RuleML 2013. LNCS, vol. 8035, pp. 99–113. Springer, Heidelberg (2013)

2. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: The ratio-
nale behind the concept of goal. Theory and Practice of Logic Programming (in
Press)

3. Olivieri, F., Governatori, G., Scannapieco, S., Cristani, M.: Compliant business
process design by declarative specifications. In: Boella, G., Elkind, E., Savarimuthu,
B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS, vol. 8291,
pp. 213–228. Springer, Heidelberg (2013)

4. Olivieri, F.: Compliance by design: Synthesis of business processes by declarative
specifications. Ph.D. thesis, Griffith University and University of Verona (2015)

5. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

6. Bordini, R.H., Hübner, J.F.: BDI Agent programming in agentspeak using Jason
(Tutorial Paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI),
vol. 3900, pp. 143–164. Springer, Heidelberg (2006)

7. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N., eds.:
Normative Multi-Agent Systems. Leibniz-Zentrum fuer Informatik

8. Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents. In: van
der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M., eds.: AAMAS, IFAAMAS,
pp. 1057–1064 (2012)

9. Sardiña, S., Padgham, L.: A BDI agent programming language with failure
handling, declarative goals, and planning. Autonomous Agents and Multi-Agent
Systems 23(1), 18–70 (2011)

10. Panagiotidi, S., Vázquez-Salceda, J.: Towards practical normative agents: a
framework and an implementation for norm-aware planning. In: Cranefield, S.,
van Riemsdijk, M.B., Vázquez-Salceda, J., Noriega, P. (eds.) COIN@AAMAS&
WI-IAT. LNCS, vol. 7254, pp. 93–109. Springer, Heidelberg (2012)

Probabilistic Perception Revision
in AGENTSPEAK(L)

Francisco Coelho(B) and Vitor Nogueira

Departamento de Informática, Escola de Ciências e Tecnologia,
Universidade de Évora, Alentejo, Portugal

{fc,vbn}@di.uevora.pt

Abstract. Agent programming is mostly a symbolic discipline and, as
such, draws little benefits from probabilistic areas as machine learning
and graphical models. However, the greatest objective of agent research
is the achievement of autonomy in dynamical and complex environments
— a goal that implies embracing uncertainty and therefore the entailed
representations, algorithms and techniques. This paper proposes an inno-
vative and conflict free two layer approach to agent programming that
uses already established methods and tools from both symbolic and prob-
abilistic artificial intelligence. Moreover, this method is illustrated by
means of a widely used agent programming example, GoldMiners.

1 Introduction and Motivation

Agent autonomy is a key objective in Artificial Intelligence (AI). Complex envi-
ronments, like the physical world where robots must delve, impose a degree of
uncertainty that challenges symbolic processing. But while a probabilistic app-
roach, currently expressed in Machine Learning (ML) and Probabilistic Graphi-
cal Models (PGMs) [14], is required for certain aspects of autonomy, a great deal
of agent programming is better handled by declarative programming (e.g. Pro-
Log) and more specifically, Beliefs, Desires and Intentions (BDI) architectures
for autonomous agents, part of symbolic AI.

Symbolic and probabilistic areas of AI are not necessarily incompatible. Con-
sider for example distribution semantics [18] and markov logic [8]. From there
two paths exist towards the interplay of symbolic and probabilistic AI: extend-
ing PGMs with logical representations, in Statistical Relational Learning (SRL)
[18], and extending logic programming languages with probability, in Proba-
bilistic Logic Programming (PLP) [11,12]. For autonomous agents the symbolic
vs. probabilistic division persists. Symbolic architectures, such as BDI, describe
agent behavior on the basis of metaphors (e.g. goals, beliefs, plans) drawn from
human behavior while the principle of Maximum Expected Utility (MEU) guides
probabilistic AI but there is only seminal work blurring that division.

Concerning agents programming Jason [6] is a popular AgentSpeak(L)

(ASL) [17] interpreter and framework, triggering a considerable amount of
research (e.g. [5]). The BDI architecture in general, including ASL and Jason

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 613–621, 2015.
DOI: 10.1007/978-3-319-25524-8 44

614 F. Coelho and V. Nogueira

in particular, outline a set of symbolic data structures and processes with more
or less detailed semantics. However we can see these agents in trouble when their
environment becomes stochastic. This assertion is supported by the experiment
plotted in Figure 3: the GoldMiners (GM) is a virtual scenario used in the 2006
Multi-Agent Programming Contest [3] edition, now part of Jason’s examples.
The two playing teams reach scores that are clearly reduced even with a small
amount of sensor misreadings. It turns out that Bayesian Networks (BNs) are
representations of dependency of random variables and, thus, natural candidates
to represent probabilistic beliefs. But replacing symbolic beliefs by BNs is not
trivial in part because changing the symbolic nature of beliefs entails recon-
siderations about the BDI architecture (e.g. the beliefs base must unify with
plans contexts; changing these to a distribution will break the semantic of such
unifications).

Our proposal is, at large, to wrap a layer of probabilistic techniques around
certain symbolic processes without altering those processes or associated seman-
tics. Here we illustrate this approach by focusing on the perception. In a stochas-
tic environment, with a certain probability, values reported by sensors differ from
the actual value. If sensor reported values are directly used by the deliberation
process then performance suffers a penalty that results from the illusions about
the truth of the environment. But sensor misreadings can be partially corrected
under certain conditions using probabilistic methods. Our task is to find out
if with such corrections performance degradation is attenuated and the added
complexity has little impact in the deliberation cycle.

The remainder of this paper is organized as follows: next are provided the
main concepts of these areas, followed, in section 2, by a general description of
the percept-correction function (PCF) in the BDI architecture and a specific
instantiation for the GM scenario extended with sensor misreadings. Section 3
presents a particular experiment on that scenario and respective results. In the
last section the authors draw some conclusions on that experiment and outline
future research.

1.1 State of the Art

Here we outline the groundwork of our proposal: the ASL language, its inter-
preter Jason, together with PGMs, Dynamic Bayesian Networks (DBNs), and
Hidden Markov Models (HMMs).

AGENTSPEAK(L) and JASON. BDI is the predominant architecture used for
defining intelligent agents. ASL [17] can be described as a logic programming
based language geared towards the BDI architecture. Jason [4,6] implements
the operational semantics of an extension of ASL and its deliberation cycle is
depicted in Figure 1. In this cycle, the environment generates percepts that are
processed by a belief-revision function (BRF). Each change in the beliefs base
generates an event. Goals in the set of events represent different desires that
the agent selects by the function SE . The selected event entails applicable plans
(options) instantiated from the plans library. Selection of a plan among appli-
cable ones is performed by the function SO and included in the set of (current)

Probabilistic Perception Revision in AgentSpeak(L) 615

Percepts BRF

Beliefs

Events

Plans Library

Generate Options

SE

SO

Intentions

SI

Action

Fig. 1. The Jason deliberation process outlined, with the BRF highlighted. Percepts
are processed to generate events and update the beliefs base. Available options are
instantiated plans triggered by one event (selected by SE) and compatible with the
current beliefs. One option (defined by SO) is then appended to the intentions, where
SI chooses an action.

intentions. Finally function SI selects one action from the set of intentions the
one (action). Although the BRF evaluation is not part of the ASL specifica-
tion it is a necessary component of the architecture. The default one that comes
with Jason “simply updates the belief base and generates the external events in
accordance with current percepts. In particular, it does not guarantee belief con-
sistency.” [4] (nevertheless, in [1], the authors present a polynomial-time belief
revision algorithm that restores belief base consistency when there are derived
inconsistencies). Jason is used as the ASL framework and scenario simulator
in this work.

Hidden Markov Models and Dynamic Bayesian Networks. HMM is a
well-known framework to deal with latent variables in stochastic processes [2,14,
16]. A (discrete) system state at time step t is described by a random variable
X(t) that verifies the markov condition Pr(X(t+1) | X(0:t)) = Pr(X(t+1) | X(t)).
This distribution is the transition model of the system. If X(t) is hidden but a
sensor model Pr(Y (t) | X(t)) is known then the filter problem is to compute the
distribution of X(t) given an initial state, x(0) , and a sequence of observations,
y(1:t) . The forward algorithm is a common procedure to compute Pr(X(t)) that
requires a belief about the previous environment state, x̂(t−1) , updates it with
the transition model and corrects that update with the sensor model and current
sensor reading, y(t) . The major problem with a näıve approach of HMMs is that
the size of the transition model is quadratic in the number of system states. DBNs
tries to minimize this problem by exploiting independences in the structure of the
system to, hopefully, produce smaller representations of the transition and sensor
models. The general HMM and DBN frameworks can be used directly to describe
agent related problems. Perceptions are represented by the observation model
and actions by an observed variable, say a(t) . The transition model becomes
Pr(X(t) | X(t−1) , A(t)) and the sensor model Pr(Y (t) | X(t) , A(t)). DBN are used
in this work to correct agent perceptions. In this specific case the transition and
sensor models have many independence relations that are exploited to obtain
“small” matrices. The next section describes the construction of such models.

616 F. Coelho and V. Nogueira

2 Probabilistic Perception Correction

Here we illustrate how probabilistic methods can be used to improve performance
in the GM noisy scenario without changing original the symbolic processing.

Currently the problem of extending ASL with probabilistic features is mostly
directed to belief representation and addressed by many authors [9,10,13,15,
19] but isn’t yet fully solved. An alternative and less intrusive application of
probabilistic AI to ASL, proposed here, targets the processes instead of the
data structures. Bounding probabilistic techniques to the computation of certain
ASL functions (e.g. the BRF, SE ,SO,SI functions, as in figure 1) promises a
number of advantages. Since the computations of those functions are unspecified
in ASL (and overwritable in Jason), probabilistic techniques can be used there
without invalidating previous work. So symbolic and probabilistic AI have clearly
separated roles and each is used to solve “familiar” problems in the respective
domain while both simultaneously contribute to the agent behavior. Symbolic
programming uses unchanged ASL programs to define high level agent behavior,
with plans, beliefs, etc. while probabilistic algorithms process low level noisy
signals — with BNs, influence diagrams, etc.

Defining certain functions of ASL as tasks to be solved by probabilistic tech-
niques seems a promising technique to address open problems in agent autonomy,
using already known theory and tools. Next we describe the setup of an example
of this interplay of symbolic and probabilistic techniques. This experiment uses
original ASL programs designed for a (mostly) deterministic scenario; adds sen-
sor misreadings, the respective rate being defined by a parameter; re-defines the
computation of the BRF with the help of a probabilistic process and records the
performance of agents. The outcome of the first two steps is depicted in Figure 3
where performance degradation is associated with increased sensor misreadings.

Problem Statement: (Noisy) GoldMiners. The GM competition is
described in [7]. A miner is equipped with a 3 × 3 grid of sensors, Y0:8, that
scans its neighborhood. Each sensor reports the content of a cell, that can be
one of empty, obstacle, gold or miner. The miner can also select one action of
up, down, left, right, pick, drop and skip. Non-determinism is present as incom-
plete perception and action failure and in the examples in Jason noise increases
the probability of action failure in proportion to current cargo. Values depicted
in Figure 3 result from the Jason simulator with noisy sensors. The “noise”
parameter is the rate of cell misreadings. Sensors are independent but equally
parameterized: the value reported by each sensor depends only on the noise
parameter and cell content.

Proposal: Percept-Correction Function. Our proposal to recover agent per-
formance is to prepend a percept-correction function (PCF) to the BRF applying
probabilistic knowledge of the environment (see Figure 2). Correction of percep-
tions is an inference problem in the framework of HMMs and DBNs .

The formal problem statement is: In the GM simulation extended with sensor
noise parameter θ, update the estimate of cells content x̂′

0:8 given the previous esti-
mate x̂0:8, current action A′ = a′ and sensor readings Y ′

0:8 = y′
0:8. For notation

Probabilistic Perception Revision in AgentSpeak(L) 617

Detail current belief revision. to include perception correction before symbolic BRF.

Percepts BRF

Beliefs Percepts PCF

Sensors Belief

sBRF

Beliefs

Fig. 2. Inclusion of percept-correction function (PCF) before the original, symbolic,
BRF (denoted by sBRF) to correct noisy perceptions. The Sensors Belief is a dis-
tribution of sensor values and independent of the (symbolic) beliefs used in the BDI
deliberation.

Table 1. Neighbors in the grid sensor. The function N(i) defines the set of neighbors
of sensor i. From this topology follow independence statements of the form X ′

i ⊥
⊥ X\N(i) | XN(i) where \N(i) is a short-hand to 1 : 8 \ N(i).

N(0) = {0, 1, 3} N(1) = {0, 1, 2, 4} N(2) = {1, 2, 5}
N(3) = {0, 3, 4, 6} N(4) = {1, 3, 4, 5, 7} N(5) = {2, 4, 5, 8}
N(6) = {3, 6, 7} N(7) = {4, 6, 7, 8} N(8) = {5, 7, 8}

simplicity we write X = X(t−1)
0:8 ,X ′ = X(t) , etc. A resolution is as follows. Given

the previous estimate x̂, current action a′ and sensor reading y′, the update is

Pr(X ′ | x̂, a′, y′) ∝ Pr(y′ | X ′) Pr(X ′ | x̂, a′) (1)

and perception correction is the maximum a posteriori (MAP) of each sensor,

x̂′
i = args max Pr(X ′

i = s | x̂, a′, y′) (2)

where s ranges over all (four) sensor values. The args max computation doesn’t
require normalizing the right side of Equation 1, a welcome simplification but
direct calculation doesn’t scale to the grid sensor. Each location has four dif-
ferent values so the state space has 49 and for each action the corresponding
transition has 49×2 parameters. Numbers of this magnitude render intractable a
direct HMM approach. Fortunately, the grid sensor entails many independence
statements that reduce the number of transition and observation parameters to
a convenient size:
1. Sensor values are independent between them so instead of a “big” transition

we only need to deal with nine “small” transitions, one for each sensor;
2. Updated values of each sensor depend only on the action and the previous

values of neighbor sensors, defined in Table 1. This can be further refined
when the action is considered (e.g. for the “up” action the “bottom” neigh-
bors are irrelevant);

3. The observed value of a sensor depends only on the corresponding cell con-
tent;

Using these independence statements the transition and observation models can
be described by relatively small matrices and the computations of Equations 1

618 F. Coelho and V. Nogueira

and 2 become acceptable for the inclusion of the PCF in the BDI deliberation
process. The sensor model is very simple:

Pr(Y ′
i = x | X ′

i = x) = 1 − θ, ∀x (3)

for noise parameter θ. The transition model, more complex than the sensor
model, is explained in the next sub-section.

Resolution: Transition Model. The transition model is based on a few sim-
plifying assumptions about the environment:
1. The state of the environment only changes by effect of the miner’s actions. In

particular detected miners do not move and gold doesn’t “appear” in empty
cells;

2. The miner never moves to “obstacle” or “miner” cells;
3. The content of unscanned cells is uniformly distributed over all possible

values;
The state of a sensor depends only on the action and previous values of the

neighbors. Different actions entail different schemes for the transition parame-
ters, easier to describe one action at a time.

Action “skip”. In this case the miner doesn’t change the environment state;
Action “pick”. The miner removes a gold from its location, if one exists;
Action “drop”. The miner adds a gold in its location, if that cell is empty;
Action “up”. The miner moves up and the sensors that enter unscanned

cells are {0, 1, 2}. For these cells the scanned value is uniformly distributed. Each
one of the other sensors scans the cell previously above it;

Remaining actions (“right”, “down” and “left”.) These are similar to
“up”;

These descriptions can be easily translated into conditional probabilities that
completely define the transition model for the sensor grid. That model can be
used by the forward algorithm outlined before and Equations 1 – 2 to correct
perceptions.

3 Results

The proposed approach requires support on the effect it may have on agents per-
formance. Our option was to gather empirical evidence to guide further research.

Implementation Notes. Jason already provides a simulator for the original
GM. Its object-oriented nature helps the construction of a noisy variant by
overriding some classes and methods. Computation of the PCF uses two libraries
developed by the authors, one (at https://github.com/fmgc/jpgm) targeted to
the sparse representation of matrices and related operations and a second one
(at https://github.com/fmgc/ngm) bridging the operations of the first library to
the noisy GM scenario. These are minimal libraries providing only the necessary
support here.

Empirical Results. Evaluation of the effect of the PCF uses three teams: a

https://github.com/fmgc/jpgm
https://github.com/fmgc/ngm

Probabilistic Perception Revision in AgentSpeak(L) 619

0.000 0.025 0.050 0.075 0.100

0

10

20

30

Sensor noise

G
at

he
re

d
go

ld
s

Effect of Perception Correction

dummy
smart

corrected

Fig. 3. Sensor noise (horizontal axis) vs. agent performance measured by gathered golds
(vertical axis). Performance of the “dummy”, “smart” and “corrected” teams under
various levels of sensor noise are plotted. Each data point summarizes the number of
gathered golds by team in a given noise value and consists of the mean (black line) and
standard variation (band of dotted lines) of ten samples. The results of the “corrected”
team are clearly above the others.

“dummy” team that barely uses any ASL features; a “smart” team that makes
heavy use of ASL but not the PCF and a “corrected” team that has the same
ASL programs of the “smart” team and uses the PCF. Performance of each
team is the number of gathered golds after a given number of time-steps and
the sensor noise rate is set at five values: 0.000, 0.025, 0.050, 0.075 and 0.100. A
run is defined by a team and a noise value and simulates the GM scenario for
700 time-steps. At the end the number of gathered golds is recorded. Each run
(team, noise) is launched ten times and those runs are summarized by the mean
and standard variation of the number of gathered golds. The final result are
fifteen pairs of (mean, standard variation), plotted in Figure 3.

4 Conclusion

These results provide empirical support to further research the interplay of sym-
bolic and probabilistic AI specifically concerning BDI agent architectures.

There seems to be no major theoretical obstacles to generalize this method
to other domains and applications. However probabilistic inference in general
is intractable [2] despite factorization methods and efficient algorithms for spe-
cific graph structures (e.g. DBN, Junction Tree). Probabilistic learning was not
considered here, although unsupervised bayesian learning seems tailored to suit
autonomous agents since the benefits of self-reconfiguration might prove critical.
Again, adoption of such features stumbles into the computational complexity of
the problem.

620 F. Coelho and V. Nogueira

For relatively simple scenarios the definition of the transitions of the proba-
bilistic model of the environment used by the PCF can be done “by hand” but
for problems with large number of variables this raises an usability problem with
no easy resolution. This is also an issue with probabilistic methods, not specific
to this work.

One particular problem with this symbolic/probabilistic separation is that
there can be inconsistencies between the probabilistic model and the symbolic
beliefs. Also the advantages of a single, coherent and theoretically sound language
cannot be easily discarded. Seemingly in opposition to this line of research,
an unified symbolic and probabilistic framework using Markov Logic (MkL),
Statistical Relational Learning (SRL) or Probabilistic Logic Programming (PLP)
for example, could, in principle, simplify the semantic study of agent behavior
and formal verification of agent programs.

Future Work. The major application area seems to include robotics where
intrinsically noisy perception is one of the major obstacles to symbolic controls.
Hopefully this line of research might facilitate such integration. Further devel-
opment of this work folds into four major lines: formal specification and seman-
tics to support verification of agent programs, guaranteed behavior, etc; further
applications of probabilistic methods to symbolic agent programming (e.g. use
of influence diagrams to sort actions in the intention selection); simulations in
virtual environments is a key step in robotics. Jason already provides a large
set of scenarios ready to explore in the lines of the GM example presented here;
deployment in physical robots like the ardrone or twopi is a major challenge given
the (usual) computation and real-time constraints of such platforms.

Acknowledgments. The people around us, the flow of life, the internet. And, of
course, the gracious money provider, Fundação para a Ciência e Tecnologia.

References

1. Alechina, N., Bordini, R.H., Hübner, J.F., Jago, M., Logan, B.: Belief revision for
agentspeak agents. In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems AAMAS 2006 (2006)

2. Barber, D.: Bayesian reasoning and machine learning. Cambridge University Press
(2012)

3. Behrens, T., Dix, J., Köster, M., Hübner, J.: Special issue about multi-agent-
contest II. Ann. Math. Artif. Intell. 61 (2011)

4. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using jason
(Tutorial Paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI),
vol. 3900, pp. 143–164. Springer, Heidelberg (2006)

5. Bordini, R.H., Hübner, J.F.: Semantics for the jason variant of agentspeak (plan
failure and some internal actions). In: ECAI, pp. 635–640 (2010)

6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley (2007)

7. Dastani, M., Dix, J., Novák, P.: The second contest on multi-agent systems based
on computational logic. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS (LNAI), vol. 4371, pp. 266–283. Springer, Heidelberg (2007)

Probabilistic Perception Revision in AgentSpeak(L) 621

8. Domingos, P., Kok, S., Poon, H., Richardson, M., Singla, P.: Unifying logical and
statistical AI. AAAI 6, 2–7 (2006)

9. Fagundes, M.S.: Integrating BDI model and Bayesian Networks. Master’s thesis,
Universidade Federal do Rio Grande do Sul (2007)

10. Fagundes, M.S., Vicari, R.M., Coelho, H.: Deliberation process in a BDI model with
bayesian networks. In: Ghose, A., Governatori, G., Sadananda, R. (eds.) PRIMA
2007. LNCS, vol. 5044, pp. 207–218. Springer, Heidelberg (2009)

11. Fierens, D., den Broeck, G.V., Renkens, J., Shterionov, D., Gutmann, B.,
Thon, I., Janssens, G., Raedt, L.D.: Inference and learning in probabilistic
logic programs using weighted boolean formulas, pp. 1304–6810 (04 2013).
http://arxiv.org/abs/1304.6810

12. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of proba-
bilistic logic programs from interpretations. In: Gunopulos, D., Hofmann, T.,
Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911,
pp. 581–596. Springer, Heidelberg (2011)

13. Kieling, G.L., Vicari, R.M.: Insertion of probabilistic knowledge into BDI agents
construction modeled in bayesian networks. In: 2011 International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS), pp. 115–122. IEEE
(2011)

14. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
The MIT Press (2009)

15. Luz, B., Meneguzzi, F., Vicari, R.: Alternatives to threshold-based desire selection
in bayesian BDI agents. In: 1st International Workshop on Engineering Multi-
Agent Systems (2013)

16. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press (2012)
17. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.

In: Van de Velde, W., Perram, J.W. (eds.) Agents Breaking Away. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

18. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming
(ICLP 1995) (1995)

19. Silva, D.G., Gluz, J.C.: AgentSpeak(PL): A new programming language for BDI
agents with integrated bayesian network model. In: International Conference on
Information Science and Applications (2011)

http://arxiv.org/abs/1304.6810

Adaptive Multi-stage Optimisation for EV
Charging Integration into Smart Grid Control

Christopher-Eyk Hrabia(B), Tobias Küster, Marcus Voß,
Francisco Denis Pozo Pardo, and Sahin Albayrak

Faculty of Electrical Engineering and Computer Science, DAI-Labor,
Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

christopher-eyk.hrabia@dai-labor.de

Abstract. The increasing amount of both, renewable energy production
and electric vehicle usage, puts considerable stress on smart grids, mak-
ing it necessary to synchronize vehicle charging with energy production,
but also allowing to use those vehicles as additional energy storages. In
this paper, we combine machine learning and evolutionary algorithms to
create near-optimal vehicle charging schedules from incomplete informa-
tion. Using multi-agent systems and process modelling techniques, the
different stages can easily be combined and distributed. The result is
a reusable and extensible solution that is used for optimizing charging
schedules in many different project settings.

Keywords: Multiagent systems · Distributed information systems ·
Optimisation · Charge scheduling · Smart grids · Machine learning

1 Introduction and Problem Statement

To avoid the “long tailpipe”, a sustainable electrified transport needs to be
powered by energy coming from renewable energy resources. Therefore many
countries are setting targets for both, the penetration of electric vehicles (EV)
and a higher share of renewable energy [2]. However, this poses new challenges to
the energy system, namely due to the high volatility of energy production and
consumption and its distribution on lower voltage levels of the grid. Further,
a high share of EV – especially with fast charging technologies – may impose
substantial strains on local parts of the electricity grid. As a response, more
intelligence is emerging on all levels of the energy system into the so-called smart
grid. Smaller confined parts of the smart grid, which are behaving from the grid’s
perspective as a single producer or load, are referred to as microgrids [6]. They
are characterized by a large share of distributed (renewable) energy resources
(DER), storage, and an intelligent control system, enabling microgrids to be
even capable of acting (temporarily) independent of the surrounding distribution

This work was partially funded by the German government under the funding ref-
erence numbers 16SBB005C (NaNu!), 16SBB016E (Micro Smart Grid EUREF) and
16SBB014A (Smart E-User).

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 622–630, 2015.
DOI: 10.1007/978-3-319-25524-8 45

Adaptive Multi-stage Optimisation for EV Charging Integration 623

grid (islanding). Moreover, a quantification of benefits for optimisation efforts
in EV charging showed savings up to 45% [4].

This problem domain of combining the energy system with a sustainable
transportation was investigated in several applied research projects [12]. The
solution discussed here affects three ongoing research projects. First, MSG
EUREF focuses on software architectures and optimisation procedures for micro-
grids and smart distribution feeders. The EUREF site encompasses several pro-
ducers (photovoltaic plants, wind plants, and a combined heat and power plant
(CHP)) and consumers (different smaller buildings, a immersion heater, and
most importantly 22 EV charging points), as well as about 150 kWh of stor-
age. Due to missing EV usage data we need to predict when vehicles will be
connected, and how much they will need to charge, such that those charges
can then be scheduled optimally depending on the current scenario (peak shav-
ing, economic optimisation, renewable usage, islanding). In contrast NaNu! has
to cope with a system of exchangeable batteries for medium-weight delivery
trucks. The test scenario is being evaluated with a 12t carrier vehicle with a
maximum capacity for 8 batteries. The goal of the project is to optimize the
allocation of batteries to vehicles as well as the actual charging times to ensure
that the vehicles will have enough energy to accomplish their routes and at the
same time reducing overall charging costs. Vehicle usage prediction is not an
issue here, since the delivery routes are known in advance. The project Smart
E-User focuses on integrating electric fleets in companies, combining dynamic
route planning and energy management. The route planning component selects
the most energy-efficient routes; the energy management system then has to
optimize and coordinate the charging times of different locations, taking into
account the restrictions imposed by the routing system, but also by electrical
requirements of each location.

All projects are going to be integrated into real world test-beds with different
smart grid configurations. As a consequence, we are dealing with a large amount
of different system setups, which we are aiming to address in one generic modu-
lar solution. Due to new and varying requirements in current projects we had to
extend former solutions [11] to the one presented in this paper. By implement-
ing a high modular system we can for instance cope in a flexible manner with
changing optimisation goals such as aligning EV charging with renewable produc-
tion, flattening EV charging loads, supporting islanding operation, or decreasing
charging costs. In contrast, the previous solution was more monolithic and less
flexible and missing data was not addressed.

Different authors have proposed similar systems for optimizing vehicle charg-
ing in smart micro grids (e.g., [8,9,13]). Often, they employ one agent per vehicle
and their agents negotiate the charging times in a decentralized way. While our
system is also distributed, the optimisation itself is centralized. Also, optimisation
focuses mostly on a single aspect, e.g., load smoothness, while in our work we are
using a multi-criterion optimisation, balancing several conflicting goals. There are
limited studies that present models for learning EV usage data for smart charging
integration, which could be argued with the lack of good data sets. Hence, Ashtari
et al. collected data for 75 vehicles to evaluate their stochastic driving behaviour

624 C.-E. Hrabia et al.

model [1]. Goebel and Voß use the publicly available data set of 445 non-electric
vehicles of the Puget Sound Regional Council [14] to analyse the distribution of the
first daily departure time for application in intelligent charge control. They apply
a sliding window approach, which produced suitable accuracy only to a sub-class
of commuters [5].

In this work we are focusing on the experience made in the three aforemen-
tioned German research projects from the Electromobility Showcase initiative
Berlin-Brandenburg or “Schaufenster Elektromobilität Berlin-Brandenburg”. In
particular we are introducing our solution for a modular and adaptive charge
scheduling solution (Sections 2 and 3) that can cope with a variety of require-
ments induced by different scenarios and contexts. The evaluation of parts of
the system with over a year of historic data is shown in Section 4.

2 System Architecture

The implemented architecture is based on our common energy domain model [12]
and takes into account required forecasts, resource allocation, integration with
other Supervisory Control and Data Acquisition (SCADA) components and
demand scheduling. As stated in the problem description, it was an important
requirement to design a common modular solution, able to adapt to dynamic
environments and varying operation modes. Hence, it was a natural choice to
follow a multiagent approach and split different modules into roles or behaviour
units, i.e. agent descriptions. Following this paradigm allows for using avail-
able frameworks with their provided low-level infrastructure. The motivation for
splitting the optimisation process into several stages has following objectives:

– To structure and simplify the complex multi-objective optimisation process
with a wide spectrum of scenario descriptions by using a division into smaller
and more specific domains.

– To enable a flexible configuration and orchestration at runtime, allowing the
online deployment of improvements or different scenarios.

– To transparently distribute the several components of the system as well as
the different stages of the optimisation to different machines on the network.

– To enable additional potentials for future extensions like integrating com-
peting optimisation strategies, running in parallel on distributed machines.

– To allow for simplified parallelisation and improved robustness of the opti-
misation via distribution to different redundant agents [11].

These stages are specified with interfaces that are implemented by one or
more agents for each stage. Moreover, it is possible to have several different
instances of one stage running in sequence or parallel, for instance of enabling
a multi-level prediction or integrating feedback loops. Thereby, some stages are
mandatory and some are optional. Those four stages are:

Adaptive Multi-stage Optimisation for EV Charging Integration 625

1. Enhancing input information with prognoses and heuristics [optional]
2. Allocation of resources
3. Meta-heuristic optimisation of the schedule
4. Post-optimisation for special requirements [optional]

In the first stage, the process is initiated with a scheduling request, con-
taining information about availability of resources, time period and other meta
information. The first stage aims for enhancing the scheduling request by using
predictions or heuristics to make assumptions about missing or incomplete data,
like the availability of EV. Further, it allows to forecast non-deferrable consump-
tion and renewable energy, as well as predicting the controllability of the CHP.
The second stage takes all available information about the resources including
given constraints and allocates an EV for each booking, batteries (if exchange-
able) to an EV, and EVs to charging points, which can be complex or trivial,
depending on the scenario. The third stage takes care of the optimisation, result-
ing in a charging schedule. The fourth stage can be used to integrate further
post-processing steps.

Figure 1 shows the optimisation process modelled with the Business Process
Modelling Notation (BPMN). Using our “Visual Service Design Tool” process
editor (VSDT), the stages can be orchestrated visually to facilitate an improved
end-user experience. The diagram is directly executable, and is deployed to a
JIAC agent, which is interpreting the process diagram and invoking the different
optimisation stages accordingly [7,10].

Fig. 1. Orchestrating the optimisation stages with BPMN process modelling

A stage, or agent, can be added, removed, replaced or reconfigured during
runtime at any time. This allows for comparison of different configuration against
each other. Moreover, we are able to run particular optimisation components
in a central location (MSG EUREF) or distributed directly to the charging
station (Smart E-User). Moreover, we are able to adjust this configuration during
runtime in order to deal with connection problems or maintenance requirements.

3 Implementation of Optimisation Stages

The four optimization stages have been implemented in different ways, according
to the requirements in the different projects.

626 C.-E. Hrabia et al.

– Vehicle availability prediction (Stage 1): Using machine learning to predict
bookings, and thus when to expect charging vehicles, from historical data.

– Prosumer prediction (Stage 1): Using machine learning to predict production
of PV and wind, as well as non-deferrable consumption.

– Allocation of resources (Stage 2): Allocation of vehicles to bookings, batteries
to vehicles (if applicable), and charging stations to batteries.

– Meta-heuristic optimisation of the schedule (Stage 3): Optimization of charg-
ing schedules using evolutionary algorithms, quality assessment of results.

– Heuristic baseline algorithm (Stage 3): Naive ‘baseline’ algorithm, charging
as soon as a vehicle is connected to the charging station.

– Post-optimisation (Stage 4): Aggregation of results, data conversion, etc.

In the following, we will take a closer look at the two most relevant stages:
Vehicle prediction and stochastic optimization.

3.1 Stage 1: Vehicle Availability Prediction

In order to deal with the missing booking information in the project MSG
EUREF we have trained a model of the EV usage behaviour at our test site
that enables long-term scheduling without any vehicle booking information. The
learning process is using an ANN (artificial neural network) with two hidden lay-
ers, similar to [15], and was developed on historical data from 15 months with
a resolution of 3 minutes. We used information about consumption of charg-
ing stations to determine whether a car was available/connected at a time slot
based on a minimal consumption threshold (consumption > 0.5kW). The period
of available cars are interpreted as charging bookings. The resulting statistics for
the labelled data show a mean of 0.8 with standard deviation of 1.1 in a range
of 0 to 7 chargings. Based on the acquirable information several variables have
been evaluated as input features for the learning process:

– Timestamp: Separated into minute of day, month, weekday and day of month
– Day is holiday: Separated into school holiday and public holiday
– Weather: Temperature, humidity, wind speed, wind direction and amount of
precipitation and insolation

The most effective features have been selected with an exhaustive search
using all available feature combinations and time aggregations from 3min (origi-
nal resolution), 15min, 30min and 60min. We received the best results with 3min
resolution and the features minute of day, day of week, month, school holiday and
public holiday. Furthermore, the ANN configuration with 100 training cycles, a
learning rate of 0.5 and momentum of 0.2 was determined through manual selec-
tion. The model has been trained with a 10-fold cross-validation using stratified
sampling on normalized data. Training and testing was executed on the set of
12 months, while keeping 3 months for evaluation (see Section 4.1).

During runtime the model serves as initial prognosis model that is adapted in
short-term by using feedback from external Operation & Control. The adaptation
adjusts the initial prediction for a certain time period and decaying influence
with the difference between predicted value and real life measurement.

Adaptive Multi-stage Optimisation for EV Charging Integration 627

3.2 Stage 3: Meta-Heuristic Optimisation of the Schedule

For finding the optimal charging schedule, we make use of evolutionary algo-
rithms [3], particularly a variant of (μ/ρ + λ) evolution strategy. That means,
in each iteration, starting with μ parents, λ offspring are created, whereas each
offspring is recombined from ρ randomly chosen parents and afterwards mutated.
The resulting offspring are assessed and the best μ are selected as parents for
the next generation. This is repeated until the quality converges.

Implementation of Optimisation Algorithm. The evolutionary algorithm
itself is generic; only recombine and mutate functions are domain specific. Those
are selected randomly amongst several variations. Generally speaking, recombi-
nation happens between charging intervals, while mutation happens within.

– For recombination, different charging intervals are taken from different par-
ents,whereas either all charging intervals for one storage, or all intervals
within a certain time frame are taken from the same parent. This way, charg-
ing intervals that “co-evolved” remain together.

– For mutation, one charging interval is selected randomly and modified, e.g.,
by changing the charging power or start/end times. There can be more than
one charging (or discharging) event within one charging interval.

Quality Assessment. In order to determine the best schedule with the highest
quality the charging process is simulated, keeping track of different metrics:

– Missed Booking : Fulfilment of requested kWh of bookings
– Overcharging : Storages charged beyond their maximum capacity
– Changes in Charging Power : Total number of changes in charging power
– Sum Energy Cons.: Sum and difference of energy consumption per step
– Energy Price: Total energy cost according to current (variable) tariff
– Green Energy : Total percentage of “green” energy used
– Drawn from/Fed into Grid : Total energy drawn from/fed into the grid
– Similarity : A measure of similarity to the previous schedule

All of those metrics mi are weighted with a factor wi and combined in a
fitness function f(x) =

∑
wi·mi(x). The optimization result is determined by the

selected weights, focusing on one aspect or using a well-balanced combination.

4 Evaluation

The feasibility of the optimised schedule is highly dependent on the quality of the
booking prognoses. Thus, we evaluate the different stages individually, so that
the quality of the prognoses does not affect the optimisation. The evaluation
uses the configuration and historical data from the MSG EUREF project.

628 C.-E. Hrabia et al.

4.1 Booking Prognoses

We applied the trained model, as described in Section 3.1, to an evaluation set
of unknown data of three months (June to August 2014), reaching an overall
accuracy of 61.54%. Figure 2 visualises the model applied on averaged input
attributes from the period of one year. Since the testbed is located on an indus-
try campus, most charging activity is during day time. The diagram shows that
the data has high variability, and that our model is hence only able to provide
a general trend over a week approaching daily peaks during work days. Further-
more, it needs to be considered that our model is formulated to predict integer
numbers, as this is the currently needed input for the optimisation.

0

0.5

1

1.5

2

2.5

3

3.5

0:
00

3:
27

6:
54

10
:2

1
13

:4
8

17
:1

5
20

:4
2

0:
09

3:
36

7:
03

10
:3

0
13

:5
7

17
:2

4
20

:5
1

0:
18

3:
45

7:
12

10
:3

9
14

:0
6

17
:3

3
21

:0
0

0:
27

3:
54

7:
21

10
:4

8
14

:1
5

17
:4

2
21

:0
9

0:
36

4:
03

7:
30

10
:5

7
14

:2
4

17
:5

1
21

:1
8

0:
45

4:
12

7:
39

11
:0

6
14

:3
3

18
:0

0
21

:2
7

0:
54

4:
21

7:
48

11
:1

5
14

:4
2

18
:0

9
21

:3
6

N
um

b
er

 o
f C

ha
rg

in
g

V
eh

ic
le

s

Time

Mean with STD

Predic on

Fig. 2. Prognosis of the number of charged EV of a mean weak (Sun. to Sat.) over the
period of Oct. 2013 to Oct. 2014 in comparison to the historical mean with STD.

Although the model is not able to give an accurate prediction from a problem
independent perspective, it gives still a lot of useful information we did not have
before. As shown in Figure 2, our model gives a conservative prediction of the
number of available vehicles in general. Such underestimation of how many cars
are available for the optimisation is still superior to load optimisation without
having any information about available EVs at all. Furthermore, we are able to
predict the time with no available vehicles with good performance.

4.2 Charge Scheduling Optimisation

For the evaluation of the optimisation algorithm (Section 3.2) we used four differ-
ent configurations: Simple uses the heuristic baseline algorithm, charging vehicle
batteries directly on plug in and using local storages to myopically buffer and
retrieve surplus energy. This closely resembles the regular process at the site.
No Vehicle information uses the Simple algorithm for vehicle batteries and the
optimisation for local storages. Representing the worst case, with no available
vehicle bookings and manually charged vehicles. Full Vehicle information uses
the optimisation for scheduling vehicle batteries and local storages, correspond-
ing to the highest degree of freedom for optimisation and accurate booking prog-
noses. Vehicle Consumption information models vehicle usage as uncontrollable
consumer, but with accurate prognosis, optimising local storages only.

Adaptive Multi-stage Optimisation for EV Charging Integration 629

In Table 1 the results of our evaluation w.r.t our quality metrics are given.
Optimising stationary batteries only, while vehicles are charged unpredictably,
has the worst performance, due to interferences, like charging EVs while hav-
ing heavy load or low production. Providing information about EV usage and
making them controllable allows to outperform the simple algorithm. Surpris-
ingly, modelling EV usage just as consumer forecast has superior performance
relative to the others, even though it has fewer degrees of freedom. However, in
that last case the first four metrics and thus the overall quality are not entirely
comparable with the others, due to the missing bookings and generally lower
number of total charging events. Further, our scenario does not consider EVs
with vehicle-to-grid capabilities, as they are not yet commonly available.

Table 1. Normalised charge scheduling quality as mean over 30 randomly selected test
periods of 24 hours in a period of one year. 0=best, 1=worst result

In summary, our evaluation shows that modelling the vehicle booking or
consumption behaviour is crucial to achieve good optimisation results, but if
EV bookings are not available, then predicting EV usage as simple consumption
forecast can be sufficient. However, this comparison will have to be reconsidered
once the system is fully deployed in real life in cooperation with the operation
& control module and the complete adaptation feedback loop.

5 Conclusion

In this paper, we presented an agent-based solution for integrating the EV charg-
ing processes within the operations of a wide set of smart micro-grid setups,
enabling the required level of modularity and adaptive capabilities. The evalua-
tion shows that having different stages to accomplish different tasks in the opti-
misation process helps to enhance the results, enabling better response times
and balancing the served charges. However, there are still open issues related
to this context. For validating this work, different configurations of this system
will be tested in real environments. In particular, we will develop an alternative
implementation for stage 1 that focuses on predicting pure vehicle consump-
tion instead of complete booking behaviour. Furthermore, based on the not yet
deployed NaNu! project, it will be possible to specifically evaluate the resource
allocation stage, as well as the evaluation of all stages working together.

630 C.-E. Hrabia et al.

References

1. Ashtari, A., Bibeau, E., Shahidinejad, S., Molinski, T.: PEV charging profile pre-
diction and analysis based on vehicle usage data. IEEE Transactions on Smart
Grid 3(1), 341–350 (2012)

2. Bundesregierung: Energiekonzept für eine umweltschonende, zuverlässige und
bezahlbare Energieversorgung, September 2010. http://www.bundesregierung.
de/ContentArchiv/DE/Archiv17/ Anlagen/2012/02/energiekonzept-final.pdf
(accessed April 1, 2015)

3. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Computing
Series. Springer, Heidelberg (2003)

4. Goebel, C.: On the business value of ICT-controlled plug-in electric vehicle charging
in California. Energy Policy 53, 1–10 (2013)

5. Goebel, C., Voß, M.: Forecasting driving behavior to enable efficient grid integra-
tion of plug-in electric vehicles. In: IEEE Online Conference on Green Communi-
cations (GreenCom), pp. 74–79. IEEE (2012)

6. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C.: Microgrids. IEEE Power
and Energy Magazine 5(4), 78–94 (2007)

7. Hrabia, C.-E., Pardo, F.D.P., Küster, T., Albayrak, S.: Multi-stage smart grid
optimisation with a multiagent system (demonstration). In: Proc. of 14th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2015) (2015)

8. Kamboj, S., Pearre, N., Kempton, W., Decker, K., Trnka, K., Kern, C.: Exploring
the formation of electric vehicle coalitions for vehicle-to-grid power regulation. In:
Proceedings of the 1st International Workshop on Agent Technologies for Energy
Systems (ATES 2010), Toronto, Canada, pp. 1–8 (2010)

9. Kempton, W., Udo, V., Huber, K., Komara, K., Letendre, S., Baker, S., Brunner,
D., Pearre, N.: A test of vehicle-to-grid (V2G) for energy storage and frequency
regulation in the pjm system. Technical report, University of Delaware, November
2008

10. Küster, T., Lützenberger, M., Albayrak, S.: A formal description of a mapping
from business processes to agents. In: Proc. of 3nd Int. Workshop on Engineering
Multi-Agent Systems (EMAS) (2015)

11. Küster, T., Lützenberger, M., Voß, M., Freund, D., Albayrak, S.: Applying heuris-
tics and stochastic optimization for load-responsive charging in a smart grid archi-
tecture. In: Proc. of 5th IEEE PES Innovative Smart Grid Technologies (ISGT)
European 2014 Conference (2014)

12. Lützenberger, M., Masuch, N., Küster, T., Keiser, J., Freund, D., Voß, M., Hrabia,
C.-E., Pozo, D., Fähndrich, J., Trollmann, F., Albayrak, S.: Towards a holistic
approach for problems in the energy and mobility domain. Procedia Computer
Science 32, 780–787 (2014)

13. Markel, T., Bennion, K., Kramer, W., Bryan, J., Giedd, J.: Field testing plug-in
hybrid electric vehicles with charge control technology in the Xcel energy territory.
Technical report, National Renewable Energy Laboratory, August 2009

14. Puget Sound Regional Council. Traffic choices study: Summary report (2008)
15. Zhang, H.-T., Xu, F.-Y., Zhou, L.: Artificial neural network for load forecasting in

smart grid. In: 2010 International Conference on Machine Learning and Cybernet-
ics (ICMLC), vol. 6, pp. 3200–3205, July 2010

http://www.bundesregierung.de/ContentArchiv/DE/Archiv17/_Anlagen/2012/02/energiekonzept-final.pdf
http://www.bundesregierung.de/ContentArchiv/DE/Archiv17/_Anlagen/2012/02/energiekonzept-final.pdf

Collaborative Judgement

Ewa Andrejczuk1,2(B), Juan Antonio Rodriguez-Aguilar1, and Carles Sierra1

1 Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain
2 Change Management Tool S.L., Barcelona, Spain

{ewa,jar,sierra}@iiia.csic.es

Abstract. In this paper we introduce a new ranking algorithm, called
Collaborative Judgement (CJ), that takes into account peer opinions of
agents and/or humans on objects (e.g. products, exams, papers) as well
as peer judgements over those opinions. The combination of these two
types of information has not been studied in previous work in order to
produce object rankings. We apply CJ to the use case of scientific paper
assessment and we validate it over simulated data. The results show
that the rankings produced by our algorithm improve current scientific
paper ranking practice based on averages of opinions weighted by their
reviewers’ self-assessments.

1 Introduction

In many areas of our lives we are used to the process of assessing and being
assessed. We pass exams at the University, we go through job interviews, we
undergo research project reviews, we are evaluated by our employers, etc. Arti-
ficial Intelligence research has focused on the assessment process for long and a
number of algorithms have been developed to assist in assessing the performance
of humans or artificial agents. Indeed large number of trust and reputation mod-
els have been proposed [3,12,15–17].

Surprisingly, to our knowledge, no significant effort has been put in the devel-
opment of algorithms that use judgement information over such assessments.
We consider exam marks unjust, interview outcomes biased, and review reports
unfair, and we normally comment about these opinions on our performance with
friends and relatives. We think that this kind of information is very important as
it can be key to build the reputation of assessors. A bad assessor can be detected
by the assessing community if they were allowed to simply express their opinions
about the bad assessor. Actually, in many social networks this kind of informa-
tion is collected (“was this recommendation useful to you?”), and they present
this information to users but how the sites use this information to rank recom-
mendations is never clearly explained if it is used at all.

Similarly, in the area of multiagent systems, agents’ performance is key to
build teams and coalitions [10]. Team formation and coalition formation are key
for many applications related to multiagent cooperation, e.g. RoboCup rescue
team [8,13], Unmanned Aerial Vehicles (UAVs) operations [5], team formation
in social networks [7]. Both team formation and coalition formation focus on
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 631–639, 2015.
DOI: 10.1007/978-3-319-25524-8 46

632 E. Andrejczuk et al.

forming the best possible group of agents (be it either a team or a coalition)
to accomplish some tasks of interest given some limited resources. Hence, it is
key in these processes to count on an assessment of the expected capabilities of
the agents to recruit. With this aim, many trust models have been developed in
the past to model agent behaviour [9,11], but judgements have again never been
used to our knowledge.

In this paper we present an algorithm, called Collaborative judgement (CJ),
which wants to go a step further in the use of judgements. CJ takes into account
judgements on opinions to build reputation values on assessors and then use
them as the basis to aggregate the opinions of a group of assessors. In current
recommender systems the opinions about an object are aggregated using weights
or not. When no weights are used, the final opinion is just an average of all
the opinions (e.g. Amazon, TripAdvisor). When they are used the aggregated
opinion is a weighted average using self-assigned weights. This is very common
in Conference Management Systems like Confmaster or Easychair. In this paper
we will compare CJ with the standard algorithm that weights opinions with the
assessors self-assessments. We will call this simple algorithm Self-Assessment
Weighted Algorithm (SAWA).

Here we will particularize the problem of peer judgement to the case of Con-
ference Paper reviewing. The need to improve the way conferences (and to some
extend journals) assess papers is key for scientific progress and its pitfalls have
been discussed recently, see for instance the NIPS experiment: http://blog.mrtz.
org/2014/12/15/the-nips-experiment.html. Some researchers have been trying
to ameliorate the situation by improving the paper assignment process [1]. How-
ever, there is a growing phenomenon in which reviews are not made nor super-
vised by the expert member of the program committee but by someone to whom
the reviewing task was delegated (e.g. a PhD student). This would invalidate
this potential improvement. Here we propose to adapt CJ to detect those non-
expert reviewers and dismiss their opinions from the final decision on accepting
a paper. Henceforth, the notation we will use will be based on the ontology of a
conference: papers, reviewers, marks, . . .

In Section 2 we present the ranking algorithm that we benchmark in Section 4
against SAWA, presented in Section 3. Then, in Sections 5 and 6 we discuss the
results and summarise our main achievement and outline our future work.

2 Collaborative Judgement

We first introduce the notation (focused on the case of paper assessment), which
we will use in the rest of the paper.

Definition 1. A conference is a tuple 〈P,R,E, o, v〉, where

– P = {pi}i∈P is a set of papers.
– R = {rj}j∈R is a set of reviewers.
– E = {ei}i∈E ∪ {⊥} is a totally ordered evaluation space, where ei ∈ N and

ei < ej iff i < j and ⊥ stands for the absence of evaluation.

http://blog.mrtz.org/2014/12/15/the-nips-experiment.html
http://blog.mrtz.org/2014/12/15/the-nips-experiment.html

Collaborative Judgement 633

– o : R × P → E is a function giving the opinions of reviewers on papers.
– v : R × R × P → E is a function giving the judgements of reviewers over

opinions on papers.1 Therefore, a judgement is a reviewer’s opinion about
another reviewer’s opinion.

In general we might have different dimensions of evaluation, that is a num-
ber of E spaces over which to express opinions and judgements. For instance,
originality, soundness, etc. but for simplicity reasons we will assume that the
evaluation of a paper is made over a single dimension. Actually, the ‘overall’
opinion is what is aggregated in real systems.

The steps of the CJ algorithm applied over a conference 〈P,R,E, o, v〉 are as
follows:

1. Compute the agreement level between reviewers ri and rj , a : R × R →
[0, 1] ∪ {⊥}. If the reviewers had some papers to review in common then the
judgements on the opinions, in case they exist, and the similarity between
the opinions over the common papers are combined as follows:

a(ri, rj) =

{∑
pk∈P s(ri,rj ,pk)

|Pij |·d if Pij = {pk ∈ P |o(ri, pk) �= ⊥, o(rj , pk) �= ⊥} �= ∅
⊥ otherwise

where d is the maximum distance in the evaluation space and:

s(ri, rj , pk) =

{
v(ri, rj , pk) if v(ri, rj , pk) �= ⊥
Sim(o(ri, pk), o(rj , pk)) otherwise

and Sim stands for an appropriate similarity measure. When no explicit
judgements are given, the similarity in opinions is considered a good heuristic
for them. The more similar a review is to my opinion, the better I judge that
opinion.

2. Compute a complete Trust Graph as an adjacency function matrix C =
{cij}i,j∈R.

cij =

⎧
⎪⎨

⎪⎩

a(ri, rj) if a(ri, rj) �= ⊥
max

h∈chains(ri,rj)

∏

(k,k′)∈h

a(rk, rk′) otherwise

where chains(ri, rj) is the set of sequences of reviewer indexes connecting i
and j. Formally, a chain h between reviewers i and j is a sequence 〈l1, . . . , lnh

〉
such that l1 = i, lnh

= j, and a(rk, rk+1) �= ⊥ for each pair (k, k + 1) of
consecutive values in the sequence. To compute this step we use a version
of Dijkstra’s algorithm that instead of looking for the shortest path (using
+ and min) it looks for the path with the largest arc product (using · and
max). The running time of the Dijkstra algorithm can take O(n log n), where
n = |R|, if using priority queues [2].

1 In tools like ConfMaster (www.confmaster.net) this information could be gathered
by simply adding a private question to each paper review, answered with elements
in E, one value in E for the judgement on each fellow reviewer’s review.

www.confmaster.net

634 E. Andrejczuk et al.

3. Compute a reputation for each reviewer in R, {ti}i∈R, by using Eigentrust [6].
In order for this to be applicable we need to guarantee that the graph C
is aperiodic and strongly connected. In this step we obtain a global trust
value for each reviewer. In vectorial notation, the trust vector is assessed
as t̄ = limk→∞ t̄k+1 with t̄k+1 = CT t̄k and t̄0 = ē being ēi = 1/|ē|. The
complexity of the Eigentrust algorithm used in this step is O(n2). In our
case, we cannot force the values in a row of C to add up to 1, as required by
the Eigentrust algorithm, so we do normalize the trust vector as generated
after each step to guarantee convergence.

4. Compute the final opinion on objects as a weighted average of the opinions
of those that expressed an opinion. The weights are the reputation of those
expressing an opinion:

oCJ(pj) =

∑
i∈{i∈R|o(ri,pj) �=⊥} t̄i · o(ri, pj)

∑
i∈{i∈R|o(ri,pj) �=⊥} t̄i

3 The SAWA Algorithm

We will benchmark CJ against the algorithm used by the conference management
systems mentioned in the introduction, which we call in this paper SAWA. We
assume there is a function r : R × P 	→ [0, 1] that keeps how confident each
reviewer feels about her opinion on a paper. So the aggregated opinion on a
paper is computed as:

oSAWA(pj) =

∑
i∈{i∈R|o(ri,pj) �=⊥} r(i, pj) · o(ri, pj)

∑
i∈{i∈R|o(ri,pj) �=⊥} r(i, pj)

4 Evaluation

In this section we validate the algorithm via simulation. We show that CJ behaves
according to expectations with respect to SAWA. The hypotheses we are inter-
ested in are:

H1 CJ rankings get closer to the true quality of a paper when the
number of good reviewers increase.2

H2 Ceteris paribus, the better the reviewers, the larger the improve-
ment of CJ with respect to SAWA.

H3 The overall trust on reviewers positively correlates with the num-
ber of good reviewers.

We next explain the experimental setting and three experiments providing
support to these hypotheses.

2 See next subsection for our representation of a good reviewer.

Collaborative Judgement 635

4.1 Experimental Setting

We assume a set P = {p1, . . . , pn} of papers and a function for their true qual-
ity in a range [0, 1],3 q : P → [0, 1]. We use the following evaluation space
E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is rather common in the context of paper
reviewing. We assume two types of reviewers: good and bad, with the following
behaviour:

– Good Reviewer. She provides fair opinions and fair judgements. Her opinion
on any paper pk is always close to its true quality q(pk). We assume the
absolute value of the difference between the opinion of a reviewer and the true
quality (as a percent) follows a beta distribution, Beta(α, β), very positively
skewed, for instance with α = 1 and β = 30. For each paper pk reviewed
by a good reviewer, we sample the reviewer’s associated beta distribution
for a percentage difference, apply it to the paper quality q(pk) (up or down
randomly) and round the result to fit an element in E. Her judgements on
someone’s opinion are close to 0 if the opinion is far from the true quality
of the paper, and close to 1 otherwise. We implement this as the following
function:

v(ri, rj , pk) = 1 − |o(rj , pk) − q(pk)|
and self-judgements from Beta(5, 2), slightly negatively skewed.
We assume that when a good reviewer judges a bad reviewer she samples
a value in E from a beta distribution rather positively skewed: Beta(2, 40).
The intuition is that good reviewers poorly mark bad reviews.

– Bad Reviewer. She provides unfair opinions, because she is incompetent, but
provides reasonable judgements as she can interpret the opinions of others
as being informative or not. Thus, we sample opinions from Beta(20, 12) —
rather central with a slight negative skew, judgements for good reviews and
self-judgements from Beta(5, 2) as for good reviewers —negatively skewed,
and judgements on bad reviews from Beta(2, 5) —slightly positively skewed.
The overall idea is that bad reviewers stay mostly in the central area of the
evaluation space.

We use Sim(x, y) = (|E| − 1 − |τ(x) − τ(y)|)/(|E| − 1) as a simple linear
similarity function where τ is a function that gives the position of an element in
the ordered set E.

Experiment 1: We set an increasing percentage of good reviewers, from
none to 100%. We plot the improvement, that is, the error reduction, using
the Mean Absolute Error of the values generated by the two ranking meth-
ods (CJ and SAWA) and the true quality of the papers. That is, we plot
(1 − (MAE(OCJ , q)/MAE(OSAWA, q))) · 100 where

MAE(f, g) =

∑
pj∈P |f(pj) − g(pj)|

|P | .

3 Assessing the true quality of an object may be difficult and it is certainly a domain
dependent issue.

636 E. Andrejczuk et al.

In Figure 1 we see this improvement for 10 runs of the algorithms. We observe
that CJ improves SAWA and the improvement becomes larger than 10% and
statistically significant for percentages of good reviewers between 20% and 80%.
These results support H1.

Fig. 1. Percentage of error
improvement of CJ over SAWA
with the error measured as the
Average Mean Absolute Error
with respect to the true quality of
papers for increasing percentages of
good reviewers. The parameters are
those explained in the experimental
setup.

Experiment 2: As mentioned before, we model good reviewers’ opinions with a
Beta(α, β) very positively skewed from which we sample the difference between
the reviewer’s opinion and the true quality. With α = 1 and β > 30 the expert is
frequently telling the true quality in her opinions (specially because we discretise
the sampled values into our evaluation space —i.e. almost all the distribution
mass is rounded to a distance of 0 with respect to the true quality). In figure 2
we plot the improvement of CJ with respect to SAWA for α = 1 and increas-
ing values of β (better reviewer behaviour). We observe that the improvement
asymptotically grows to 16%, and hence this supports Hypothesis H2.

Fig. 2. Improvement of CJ over
SAWA as the reviewers’ quality
increases (with fixed α = 1 and
increasing β values). This plot is for
a population with 50% good review-
ers and 50% bad reviewers.

Experiment 3: In Figure 3 we see the increasing mutual trust between reviewers
as the average of all values in matrix C with respect to an increasing percentage
of good reviewers. This supports Hypothesis H3.

Collaborative Judgement 637

Fig. 3. Increasing mutual trust of
reviewers for an increasing percent-
age of good reviewers.

5 Discussion

One issue worth discussing is the feasibility of getting real data to model q(·).
We mentioned before that this is obviously a domain dependent issue and that
it can be difficult to obtain. For instance, in the case of paper review, what is the
true quality of a paper? It seems impossible to answer this question. We could
get data on impact of papers and assume that impact relates to quality. This can
be done for the papers that were accepted and published, but not for those that
were rejected. Therefore, the validation of the algorithm results will necessarily
be partial. This will always be controversial as the use of any quality metric
would always be debatable. It is in this context that our algorithm contributes
since the key assumption of our algorithm is: when there is no clear-cut method
to determine the quality of an object, then the true quality can be determined by
the social acceptance of the opinions expressed by experts.

Another issue worth mentioning is that reviewer quality depends on the par-
ticular subarea of a conference. In general, our opinions are fair or not depending
on our competences. Thus, CJ should consider this dimension as many existing
trust models do [10,14]. The inclusion of a semantic dimension on trust and
reputation requires defining an ontology of the domain and semantic distances
between the elements in the vocabulary. This represents no technical problem
and will basically increase the complexity of the computation proportionally to
the granularity of the vocabulary.

6 Conclusions and Further Work

In this paper we introduced CJ. It is a new ranking algorithm that takes into
account peer opinions of agents and/or humans as well as peer judgements over
those opinions. We applied CJ to the use case of scientific paper assessment and
we validated it over simulated data. The results show that the rankings produced
by this new algorithm (under (reasonable) assumptions on reviewer behaviour)
improve current scientific paper ranking practice. The use of this algorithm in
the context of agent team formation is key as it will provide a sound method

638 E. Andrejczuk et al.

to assess the capabilities of agents by observing peer opinions and judgements
made by agents and humans.

Part of the future work is centred on evaluating CJ over real data. We are
planning to get data from a commercial bank about the skills of team mem-
bers. That is, employees work in teams to solve tasks that require specific skills.
Team members record opinions on their team-mates’ skills and judgements on
the opinions after anonymisation. We are also discussing the extension of func-
tionalities of a major conference management system so that we can get data on
judgements in conferences in the near future.

At simulation level we want to further explore the sensitiveness of the results
for varying parameter settings, including the impact of similarity functions as
these have not been relevant in the reported experiments. Finally, the modelling
of malicious reviewers (those who know the quality of a paper and deliberately lie
about it) will be considered. We expect that our method might help in detecting
those reviewers.

In many settings, including conference paper rankings, the actual numerical
value is not the key element but the order between alternatives. CJ produces
a partial ranking among alternatives, that is, there can be ties between objects
(e.g. papers). We plan to compare CJ vs SAWA using the generalisation of the
Kendall Tau distance proposed in [4] to compare partial rankings.

Finally, this algorithm is an important milestone on our path to develop
methods to build agent and human teams to solve complex tasks that balance
capabilities and mutual relationships.

Acknowledgments. The first author is supported by an Industrial PhD scholarship
from the Generalitat de Catalunya. This work is also supported by the CollectiveMind
project (Spanish Ministry of Economy and Competitiveness, grant number TEC2013-
49430-EXP) and the COR project (TIN2012-38876-C02-01).

References

1. Charlin, L., Zemel, R.S., Boutilier, C.: A framework for optimizing paper matching.
CoRR, abs/1202.3706 (2012)

2. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education (2001)

3. de Alfaro, L., Shavlovsky, M.: Crowdgrader: Crowdsourcing the evaluation of home-
work assignments. Thech. Report 1308.5273, arXiv.org (2013)

4. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing and aggre-
gating rankings with ties. In: Proceedings of the Twenty-Third ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’04,
pp. 47–58. ACM, New York (2004)

5. Haque, M., Egerstedt, M., Rahmani, A.: Multilevel coalition formation strategy
for suppression of enemy air defenses missions. Journal of Aerospace Information
Systems 10(6), 287–296 (2013)

6. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: Proceedings of the 12th International
Conference on World Wide Web, WWW ’03, pp. 640–651. ACM, New York (2003)

Collaborative Judgement 639

7. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’09, pp. 467–476. ACM, New York (2009)

8. Nair, R., Tambe, M., Marsella, S.C.: Team formation for reformation in multiagent
domains like RoboCupRescue. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.)
RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 150–161. Springer, Heidelberg (2003)

9. Osman, N., Gutierrez, P., Sierra, C.: Trustworthy advice. Knowl.-Based Syst. 82,
41–59 (2015)

10. Osman, N., Sierra, C., McNeill, F., Pane, J., Debenham, J.K.: Trust and matching
algorithms for selecting suitable agents. ACM TIST 5(1), 16 (2013)

11. Osman, N., Sierra, C., Sabater-Mir, J.: Propagation of opinions in structural
graphs. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI 2010–19th Euro-
pean Conference on Artificial Intelligence, Lisbon, Portugal, 16–20 August 2010.
Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 595–600. IOS
Press (2010)

12. Piech, C., Huang, J., Chen, Z., Do, C., Ng, A., Koller, D.: Tuned models of peer
assessment in moocs. In: Proc. of the 6th International Conference on Educational
Data Mining (EDM 2013) (2013)

13. Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decentralized coor-
dination in robocup rescue. Comput. J. 53(9), 1447–1461 (2010)

14. Sierra, C., Debenham, J.K.: Trust and honour in information-based agency. In:
Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) 5th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hako-
date, Japan, 8–12 May 2006, pp. 1225–1232. ACM (2006)

15. Walsh, T.: The peerrank method for peer assessment. In: Schaub, T., Friedrich, G.,
O’Sullivan, B. (eds.) ECAI 2014–21st European Conference on Artificial Intelli-
gence, 18–22 August 2014, Prague, Czech Republic - Including Prestigious Appli-
cations of Intelligent Systems (PAIS 2014). Frontiers in Artificial Intelligence and
Applications, vol. 263, pp. 909–914. IOS Press (2014)

16. Wu, J., Chiclana, F., Herrera-Viedma, E.: Trust based consensus model for social
network in an incompletelinguistic information context. Applied Soft Computing
(2015)

17. Zhang, J., Ghorbani, A.A., Cohen, R.: A familiarity-based trust model for effective
selection of sellers in multiagent e-commerce systems. Int. J. Inf. Sec. 6(5), 333–344
(2007)

Model Checking Resource Bounded Systems
with Shared Resources via Alternating Büchi

Pushdown Systems

Nils Bulling1(B) and Hoang Nga Nguyen2(B)

1 Delft University of Technology, Delft, The Netherlands
N.Bulling@tudelft.nl

2 School of Computer Science, University of Nottingham, Nottingham, UK
Hoang.Nguyen@nottingham.ac.uk

Abstract. It is well known that the verification of resource-constrained
multi-agent systems is undecidable in general. In many such settings,
resources are private to agents. In this paper, we investigate the model
checking problem for a resource logic based on Alternating-Time Tempo-
ral Logic (ATL) with shared resources. Resources can be consumed and
produced up to any amount. We show that the model checking problem
is undecidable if two or more of such unbounded resources are avail-
able. Our main technical result is that in the case of a single shared
resource, the problem becomes decidable. Although intuitive, the proof
of decidability is non-trivial. We reduce model checking to a problem over
alternating Büchi pushdown systems. An intermediate result connects to
general automata-based verification: we show that model checking Com-
putation Tree Logic (CTL) over (compact) alternating Büchi pushdown
systems is decidable.

1 Introduction and Related Work

Research on resource-constrained multi-agent systems has become a popular
topic in recent years, e.g. [1–3,7,8,13]. In particular, the verification of strategic
agents acting under resource-constraints has been investigated by researchers;
many of these approaches extend the alternating-time temporal logic (ATL) [4]
with actions that, in the general case, consume or produce resources. If no bound
on the possible amount of resources is given the model checking problems are
easily undecidable [8]. Exceptions are possible if restrictions are imposed on the
language [3] or on the semantics [1,13]. In many settings, resources are private
to agents, each agent has its own set of resources. In [13] resources are shared
and a resource money is used to claim resources. The authors present a decidable
model checking result which is possible as the amount of resources is bounded.
In this paper we are interested in the model checking problem where resources
are shared and unbounded ; resources can be consumed and produced without
an upper bound on the total number of resources. The setting is rather natural.
Resources are shared in e.g., the travel budget of a computer science department.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 640–649, 2015.
DOI: 10.1007/978-3-319-25524-8 47

Model Checking Resource Bounded Systems with Shared Resources 641

All departmental members compete for the travel budget. Parts of the travel
money of a successful grant application will be credited to the department’s
budget; there is no a priori bound on the total budget.

In this paper, we show that the model checking problem for the resource
agent logic RAL [8] considered here is undecidable in general when there are
more than two of such unbounded shared resources. This result follows as a
corollary from [3,8] where model checking resource bounded systems with pri-
vate, unbounded resources has been proved undecidable. Secondly, we show that
model checking RAL is decidable in case of a single shared, unbounded resource.
Although this seems intuitive, as a single unbounded resource can intuitively
be encoded by a single stack/counter, its proof is (technically) non-trivial and
is based on a reduction to alternating Büchi pushdown systems [5,15]. We first
introduce compact alternating Büchi pushdown systems (CABPDSs) to encode
the resource bounded models of our logic such that the runs of the automaton
can be related to execution trees of a given set of agents in the model. We show
that model checking CTL over these systems is decidable using results of [15].
Finally, we reduce model checking RAL to model checking CTL over CABPDSs.
These results extend work on model checking CTL over pushdown systems where
atomic propositions can be given by regular languages [15]. The latter results,
in turn, are based on [5] where reachability of alternating pushdown systems
and model checking problems over pushdown systems with standard labelling
functions are investigated. Model checking CTL over pushdown systems and its
computational complexity have also been considered in [6]. Our model check-
ing problem is also related to reachability in Büchi games [10]. Many complexity
results about ABPDSs and their variants are known and established in the above
mentioned pieces of work. In our future research we plan to determine the exact
computational complexity of the model checking problem for resource agent logic
(RAL) over 1-unbounded resource bounded models.

The paper is organised as follows. In Section 2 we introduce our version
of resource agent logic with shared resources. In Section 3 we recall alternat-
ing Büchi pushdown systems (ABPDSs) and variants thereof. We propose com-
pact ABPDSs for encoding our models. We show that model checking CTL over
them is decidable. In Section 4 we give our main decidability result for a single
unbounded resource and also conclude undecidability for the general setting with
more than 1-unbounded shared resource. Finally, we conclude in Section 5. Due
to lack of space, we have to skip details and proofs. An extended version of this
paper can be found in [9].

2 Resource Agent Logic

In this section we define the logic resource agent logic RAL and resource-bounded
models. The framework is essentially based on [3]. But, in this paper we are
intersted in shared resources. There is a common pool of resources and agents
compete for them. There are more dimensions along which resources can be clas-
sified [9], one of these dimensions is boundedness. A resource is called unbounded

642 N. Bulling and H.N. Nguyen

if there is no a priori bound on the number of available resources, in princi-
ple they can be produced without limit. Settings with only bounded resources
are often decidable [8]. In the following we consider unbounded resources and
assume that Res is a finite non-empty set of such unbounded, shared resource
types. A (shared) endowment (function) η : Res → N0 specifies the available
shared resources of the resource types Res in the system; i.e., η(r) is the number
of shared resources of type r. With En we denote the set of all possible endow-
ments. A special minimal endowment function is denoted by 0̄. It expresses that
there are no resources at all.

Syntax. Resource agent logic (RAL) is defined over a set of agents Agt and a set
of propositional symbols Π. RAL-formulae1 are essentially generated according
to the grammar of ATL [4] as follows: ϕ ::= p | ¬ϕ | ϕ∧ϕ | 〈〈A〉〉↓Xϕ | 〈〈A〉〉↓ϕUψ |
〈〈A〉〉↓Gϕ where p ∈ Π is a proposition and A ⊆ Agt is a set of agents.

A formula 〈〈A〉〉↓ϕ is called flat if ϕ contains no cooperation modalities. The
operators X, U, and G denote the standard temporal operators expressing that
some property holds in the next point in time, until some other property holds,
and now and always in the future, respectively. The eventually operator is defined
as macro: Fϕ = �Uϕ (now or sometime in the future). The cooperation modal-
ity 〈〈A〉〉↓ assumes that all agents in Agt act under resource constraints. The
reading of 〈〈A〉〉↓ϕ is that agents A have a strategy compatible with the currently
available resources to enforce ϕ. This means that the strategy can be executed
given the agents’ resources. Thus, it is necessary to keep track of resource pro-
duction and consumption during the execution of a strategy.

Semantics. We define the models of RAL as in [3]. We also introduce a special
class of these models in which agents have an idle action in their repertoire that
neither consumes nor produces resources. Note that a model with idle actions is
a special case of the general model.

Definition 1 (RBM, iRBM, Unbounded). A resource-bounded model
(RBM) is given by M = (Agt, Q,Π, π,Act, d, o,Res , t) where Res is a set of
shared, unbounded resources, Agt = {1, . . . , k} is a set of agents; π : Π → 2Q

is a valuation of propositions; Act is a finite set of actions; and the function
d : Agt × Q → 2Act\{∅} indicates the actions available to agent a ∈ Agt at
state q ∈ Q. We write da(q) instead of d(a, q), and use d(q) to denote the set
d1(q) × . . . × dk(q) of action profiles in state q. Similarly, dA(q) denotes the
action tuples available to A at q. o is a transition function which maps each
state q ∈ Q and action profile α = (α1, . . . , αk) ∈ d(q) (specifying a move for
each agent) to another state q′ = o(q,α). Finally, the function t : Act×Res → Z

models the resources consumed and produced by actions. We define prod(α, r) :=
max{0, t(α, r)} (resp. cons(α, r) := min{0, t(α, r)}) as the amount of resource
r produced (resp. consumed) by action α. For α = (α1, . . . , αk), we use αA to

1 Note that we slightly change the notation in comparison with [8] where 〈〈A〉〉↓ has
the meaning of 〈〈A〉〉↓

Agt. Moreover, we only use operators that refer to the currently
available resources in the system.

Model Checking Resource Bounded Systems with Shared Resources 643

denote the sub-tuple consisting of the actions of agents A ⊆ Agt. We call an
RBM k-unbounded if |Res| = k for a natural number k.

An RBM with idle actions, iRBM for short, is an RBM M such that for
all agents a, all states q, there is an action α ∈ da(q) such that for all resource
types r in M we have that t(α, r) = 0. We refer to this action (or to one of them
if there is more than one) as the idle action of a and denote it by idle.

A path λ ∈ Qω is an infinite sequence of states such that there is a transition
between two adjacent states. A resource-extended path λ ∈ (Q × En)ω is an infi-
nite sequence over Q×En such that the restriction to states (the first component),
denoted by λ|Q, is a path in the underlying model. The projection of λ to the
second component of each element in the sequence is denoted by λ|En. We define
λ[i] to be the i + 1-th element of λ, and λ[i,∞] to be the suffix λ[i]λ[i + 1]
A strategy2 for a coalition A ⊆ Agt is a function sA : (Q × En)+ → ActA such
that sA((q0, η0) . . . (qn, ηn)) ∈ dA(qn) for (q0, η0) . . . (qn, ηn) ∈ (Q×En)+. Such a
strategy gives rise to a set of (resource-extended) paths that can emerge if agents
follow their strategies. A (q, η, sA)-path is a resource-extended path λ such that
for all i = 0, 1, . . . with λ[i] := (qi, ηi) there is an action profile α ∈ d(λ|Q[i]) such
that: (i) q0 = q and η0(r) = η(r) for all r ∈ Res (describes initial configuration);
(ii) sA(λ[0, i]) = αA (A follow their strategy); (iii) λ|Q[i + 1] = o(λ|Q[i],α)
(transition according to α); (iv) for all α′ ∈ ActAgt\A and for all r ∈ Res:
ηi(r) ≥ ∑

a∈Agt\A cons(α′
a, r) +

∑
a∈A cons(αa, r) (enough resources to per-

form the actions are available); and (v) ηi+1(r) = ηi(r) +
∑

a∈Agt prod(αa) −∑
a∈Agt cons(αa) for all r ∈ Res. Condition (iv) models that the opponents

have priority when claiming resources.
The (q, η, sA)-outcome of a strategy sA in q, out(q, η, sA), is defined as the

set of all (q, η, sA)-paths starting in q. We also refer to this set as an execution
tree of A. Truth is defined over an RBM M, a state q ∈ Q, and an endowment
η. The semantics is given by the satisfaction relation |=. Here, we only present
clauses for two types of formulae: M, q, η |= p iff p ∈ Π and q ∈ π(p); and
M, q, η |= 〈〈A〉〉↓ψUϕ iff there exists a strategy sA for A such that for all λ ∈
out(q, η, sA), there is an i with i ≥ 0 and M, λ|Q[i], λ|En[i] |= ϕ such that for
all j with 0 ≤ j < i it holds that M, λ|Q[j], λ|En[j] |= ψ. The other clauses are
given analogously, cf. [9]. The model checking problem is to determine whether
M, q, η |= ϕ holds.

Example. We illustrate the framework by extending the introductory example
on the departmental travelling budget. Consider a department which consists of
a dean d, two professors p1, p2 and three lecturers l1, l2, and l3. The department’s
travel budget is allocated annually and can be spent to attend conferences. There
are three categories to request money: premium, advanced, and economic. All
options are available to the dean, the last two to professors, and only the last
one to the lecturers. For instance, if the cost of attending PRIMA is, depending
2 We note that differently from [1,3,8], our notion of strategy takes the history of states

as well as the history of endowments into account. In the setting considered here
such strategies are more powerful than strategies only taking the state-component
into account.

644 N. Bulling and H.N. Nguyen

on the category, $2000, $1000, and $500, respectively, then with an available
budget of $4000 not all lecturers can be sure to be able to attend PRIMA.
Because, the dean and the professors could all decide to attend PRIMA and
to request the advanced category. In that case, only $1000 would remain, not
enough for all lecturers to attend; formally specified, 〈〈d, p1, p2〉〉↓F(d ∧ p1 ∧ p2 ∧
¬〈〈{l1, l2, l3}〉〉↓F(l1∧l2∧l3)) is true where a proposition x expresses that “person”
x is attending PRIMA. Equivalently, ¬〈〈{l1, l2, l3}〉〉↓F(l1 ∧ l2 ∧ l3)) is true; this
highlights that the opponents have priority in claiming resources. However, by
collaborating with the professors, they have a strategy which allows all lecturers
to attend, independent of the actions of the dean: i.e., 〈〈{p1, p2, l1, l2, l3}〉〉↓F(l1 ∧
l2 ∧ l3).

3 Model Checking CTL over Büchi Pushdown Systems

We first review existing results on alternating Büchi pushdown systems
(ABPDSs). Then, we use these results to give an automata-theoretic approach
to model check CTL-formulae over compact ABPDSs. The latter will be used to
encode RBMs in Section 4.

3.1 Alternating Büchi Pushdown Systems

An alphabet Γ is a non-empty, finite set of symbols. Γ ∗ denotes the set consisting
of all finite words over Γ including the empty word ε. Typical symbols from Γ are
denoted by a, b, . . . and words by w, v, u, We read words from left to right. As
before, we assume that Π denotes a finite, non-empty set of propositions. We use
words to represent the stack content. We say that word w = a1 . . . an is on the
stack if a1 is the lowest symbol, followed by a2 and so forth. The symbol on top is
an. An alternating pushdown system (APDS) is a tuple P = (P, Γ,Δ) where P is
a non-empty, finite set of control states, Γ a non-empty, finite (stack) alphabet,
and Δ ⊆ (P × Γ) × 2P×Γ ∗

a transition relation [5,16]. We call P a pushdown
system (PDS) if (s, a)ΔX implies |X| = 1 where X ∈ 2P×Γ ∗

. An alternating
Büchi pushdown system (ABPDS) B = (P, Γ,Δ, F) is defined as a APDS but a
set of accepting states F ⊆ P is added. In the following we focus on ABPDSs, but
most of the definitions do also apply to APDSs and PDSs with obvious changes.
A transition (p, a)Δ{(p1, w1), . . . , (pn, wn)} represents that if the system is in
state p and the top-stack symbol is a then the ABPDS B is copied n-times where
the ith copy changes its local state to pi, pops a from the stack and pushes wi

on the stack, 1 ≤ i ≤ n. For a transition rule (p, a)Δ{(p1, w1), . . . , (pn, wn)}
and a stack content w ∈ Γ ∗ we say that (p,wa) is an immediate predecessor
of {(p1, ww1), . . . , (pn, wwn)}. We write (p,wa) ⇒B {(p1, ww1), . . . , (pn, wwn)}.
A configuration of B is a tuple from CnfB = P × Γ ∗. A c-run ρ of B, where c is
a configuration of B, is a tree in which each node is labelled by a configuration
such that the root of the tree is labelled by c. If a node labelled by (p,w) has
n (direct) child nodes labelled by (p1, w1), . . . , (pn, wn), respectively, then it is
required that (p,w) ⇒B {(p1, w1), . . . , (pn, wn)}. We use RB(c) to denote the set

Model Checking Resource Bounded Systems with Shared Resources 645

of all c-runs and RB =
⋃

c∈CnfB RB(c). We note that a run in a PDS P is simply
a linear sequence of configurations. A ρ-path, ρ ∈ RB(c), is a maximal length
branch κ = c0c1 . . . of ρ starting at the root node c. We shall identify ρ with its
set of paths and write κ ∈ ρ to indicate that κ is a ρ-path. Again, in the case of
a PDS P a run and a path in it are essentially the same. We say that κ ∈ ρ is
accepting if a state of F occurs infinitely often in configurations on κ. A run is
accepting if each path κ ∈ ρ is accepting; and a configuration c is accepting if
there is an accepting run ρ ∈ RB(c). The language accepted by B, L(B), is the
set of all accepting configurations.

A nice property of an ABPDS is that its set of accepting configurations is
regular, in the sense that it is accepted by an appropriate automaton which is
defined next. An alternating automaton [5] is a tuple A = (S,Σ, δ, I, Sf) where
S is a finite, non-empty set of states, δ ⊆ S × Σ × 2S is a transition relation,
Σ an input alphabet, I ⊆ S a set of initial states, and Sf ⊆ S a set of final
states. The automaton accepts (s, w) ∈ S ×Σ∗ iff s ∈ I and each state reached
after the automaton has read w is a final state. The language accepted by A is
denoted by L(A). A language is called regular if it is accepted by an alternating
automaton. We recall the following result from [15]:

Theorem 1 ([15]). For any ABPDS B there is an effectively computable alter-
nating B-automaton A such that L(A) = L(B).

3.2 Model Checking CTL Over ABPDSs

We first consider model checking Computation Tree Logic (CTL) over PDSs.
We assume that the reader is familiar with CTL and refer to [9,12] for details.
Essentially, the cooperation modalities of RAL are replaced by the existential and
universal path quantifiers E and A, respectively. The formula Eϕ expresses that
there is a path along which ϕ holds; analogously, Aϕ expresses that ϕ holds along
all paths. The problem of CTL model checking over PDSs has been considered
in, e.g., [5,6,15]. We now recall from [15] how the problem is defined. First,
the PDS is extended with a labelling function lab to give truth to propositional
atoms. In [15] two alternatives are considered. The first alternative assigns states
to propositions, lab : Π → 2P . The second alternative assigns configurations to
propositions, lab : Π → 2P×Γ ∗

. In the following we only consider the second,
more general alternative as this is the one we shall need for model checking
RAL. For this type of labelling function we need a finite representation. We call
lab regular if there is an alternating automaton Ap with L(Ap) = lab(p) for
each p ∈ Π. We are ready to give the semantics of CTL-formulae over a PDS
P = (P, Γ,Δ), c ∈ CnfP , and a regular labelling function lab : Π → 2P×Γ ∗

. The
semantic clauses are defined in the usual way, due to space contraints we present
one clause only and refer to [9] for further details: P, c, lab |= EGϕ iff there is a
c-run ρ = c0c1, . . . ∈ RP(c) such that P, ci, lab |= ϕ for all i ≥ 0.

The authors of [15] give a model checking algorithm which uses ABPDSs.
They construct from P, lab and ϕ, an ABPDS BP,ϕ such that P, (p,w), lab |= ϕ
iff ((p, ϕ), w) ∈ L(BP,ϕ). The ABPDS is essentially the product of the PDS P

646 N. Bulling and H.N. Nguyen

with the closure cl(ϕ) of ϕ3, in particular states of BP,ϕ are tuples (p, ψ) ∈
P × cl(ϕ). The existential and universal path quantifiers of the formula cause
the alternation of the ABPDS.

For our later results, we need to be able to define the truth of CTL-formulae
over ABPDSs rather than PDSs. Let an ABPDS B be given. We first discuss
what it means that B, c, lab |= Eϕ. As before, we interpret it as: there is a run
ρ ∈ RB(c) on which ϕ holds. However, given that ρ is a tree in the case of
ABPDSs (or a set of paths) we need to explain how to evaluate ϕ on trees. We
require that ϕ must be true on each path κ ∈ ρ on the run. This can nicely
be illustrated if B is considered as a two player game where player one decides
which transition to take, and player two selects one of the child states. Thus,
Eϕ expresses that player one has a strategy in the sense that it can enforce a
run ρ such that player two cannot make ϕ false on any path κ ∈ ρ. For a given
configuration c ∈ CnfB, and a regular labelling lab, the semantic rules have the
following form [9]: B, c, lab |= EGϕ iff there is a c-run ρ ∈ RB(c) such that for
all paths c0c1 . . . ∈ ρ it holds that B, ci, lab |= ϕ for all i ≥ 0.

Our reduction of model checking RAL to an acceptance problem over ABPDSs
relies on an encoding of an 1-unbounded iRBM as an ABPDS. Roughly speak-
ing, the stack is used to keep track of the shared pool of resources. A technical
difficulty is that an action may consume several resources at a time, whereas
an ABPDS can only read the top stack symbol. Therefore, we introduce a more
compact encoding of an ABPDS which allows to read (and pop) more than one
stack symbol at a time.

Given a natural number r ≥ 1, an r-compact ABPDS (CABPDS) is a tuple
C = (P, Γ,Δ, F, r) where all ingredients have the same meaning as in an ABPDS
with the exception that Δ ⊆ P × Γ≤r × 2P×Γ ∗

where Γ≤r =
⋃r

i=1 Γ i denotes
the set of all non-empty words over Γ of length at most r. This models that the
selection of the next transition can depend on up to the top r stack symbols.
All notions introduced so far are also used for CABPDSs. A CABPDS is no
more expressive than a “standard” ABPDS. In [9] we show how to construct an
ABPDS B(C) from a given CABDS C such that c ∈ L(C) iff c ∈ L(B(C)), for all
configurations c ∈ P ×Γ ∗. As for ABPDSs, we can use CABPDSs as models for
CTL. We obtain the following result:

Theorem 2. For a given CABPDS C, a regular labelling function lab, and a
CTL-formula ϕ there is an effectively computable alternating automaton AC,ϕ

such that for all configurations c = (p,w) ∈ CnfC the following holds: C, c, lab |= ϕ
iff ((p, ϕ), w) ∈ L(AC,ϕ).

4 (Un-)Decidable Model Checking Result

First, we consider the general case of k-unbounded iRBMs4 with k ≥ 2.
In [3,8] it is shown that most variants of RAL with two resource types are

3 The closure cl(ϕ) is the set of all subformulae of ϕ.
4 Note that undecidability proofs wrt. iRBMs are stronger than those for RBMs.

Model Checking Resource Bounded Systems with Shared Resources 647

undecidable. This has been proved by reductions of the halting problem of two-
counter automata [14] to the different model checking problems. Two counter
automata are finite automata extended with two counters. The undecidability
proofs of [3,8] can be adapted to our setting. We obtain the following result:

Proposition 1 (Corollary of [3,8]). Model checking RAL (with shared
resources) over k-unbounded iRBMs with k ≥ 2 is undecidable.

Second, we show decidability over 1-unbounded RBMs. In the following
we assume that M = (Agt, Q,Π, π,Act, d, o,Res , t) consists of of a single
unbounded shared resource. Moreover, let A be a set of agents and Ā = Agt\A.
As there is only one resource, we can simplify the notation. We write η for η(r),
cons(α) instead of cons(α, r) and so on. Also, for an action profile αA we use
cons(αA) (resp. prod(αA)) to refer to

∑
a∈A cons(αa) (resp.

∑
a∈A prod(αa)).

Furthermore, for a natural number x, [x]1 is used to refer to a sequence || . . . |
of x lines each representing one element on the stack, i.e. [x]1 corresponds to
the unary encoding of x. We write [0]1 = ε. Similarly, we use [y]10 to refer
to the ternary encoding of y = [x]1 for a natural number x. We define the
following auxiliary functions where q is a state in M, αA a joint action of
A and αĀ a joint action of Ā: ΔmaxĀ(q) = max{cons(αĀ) | αĀ ∈ dĀ(q)};
ΔconA(q,αA) = cons(αA) + ΔmaxĀ(q); and ΔprdA(q,αA,αĀ) = ΔmaxĀ(q) −
cons(αĀ) + prod((αA,αĀ)). The number ΔmaxĀ(q) denotes the worst case
consumption of resources of the opponents at q, that is the maximal amount
of resources they could claim. The number ΔconA(q,αA) is the consumption of
resources if A executes αA and the opponents choose their actions with the worst
case consumption; this models a pessimistic view. This is valid as the proponents
can never be sure to have more resources available. Finally, ΔprdA(q,αA,αĀ)
denotes the number of resources that need to be produced after (αA,αĀ) was
executed at q. It is the sum of the number of resources produced by (αA,αĀ),
and the difference between the consumption of the estimated worst case behav-
ior of the opponents and the consumption of the actions which were actually
executed by Ā.

From M and A, we define an r-compact ABPDS where r = [maxq,αA,αĀ
{

ΔconA(q,αA),ΔprdA(q,αA,αĀ)}]1 is the maximal number which is ever con-
sumed or produced.

Definition 2 (CM,A). The r-compact ABPDS CM,A is the CABPDS
(S, Γ,Δ, F, r) where S = F = Q, Γ = {|}, and for all q ∈ Q, αA ∈ dA(q)
we have that
(q, [ΔconA(q,αA)]1)Δ{(o(q, (αA,αĀ)), [ΔprdA(q,αA,αĀ)]1) | αĀ ∈ dĀ(q)}.

The CABPDS CM,A encodes the outcome sets out(q, sA, η) for any state q
and strategy sA. To show our main decidable result, we need to extend RBMs
with regular labelling functions π : Π → 2Q×En as done in Section 3.2 for PDSs.
Now, suppose that we want to model check M, q0, η |= 〈〈A〉〉↓ϕ where 〈〈A〉〉↓ϕ
is a flat formula. Firstly, we construct the CABPDS CM,A which accepts the
outcome sets of A. Let lab be the labelling function defined as: (q, [η]1) ∈

648 N. Bulling and H.N. Nguyen

lab(p) iff (q, η) ∈ π(p). Then, we have that: M, q0, η |= 〈〈A〉〉↓ϕ if, and only
if, CM,A, (q0, [η]1), lab |= Eϕ. By Theorem 2 this can be efficiently solved by
constructing an alternating automaton ACM,A,Eϕ that accepts ((q0,Eϕ), [η]1) iff
the above equivalence is true.

Finally, this procedure can be combined with the standard bottom-up model
checking approach used for CTL∗ [11]. Firstly, the innermost (flat) formulae ψ of
ϕ are considered. We can compute the regular set of configurations at which each
of these subformulae ψ hold and replace the subformula by a fresh propositions
pψ. Then, we extend the regular labelling of M such that pψ is assigned the
configurations at which ψ is true (Theorem 2). Applied recursively, we obtain:

Theorem 3. The model-checking problem for RAL (with shared resources) over
1-unbounded RBMs is decidable.

5 Conclusions

In this paper, we have introduced a variant of resource agent logic RAL [8] with
shared resources, which can be consumed and produced. We showed that the
model checking problem is undecidable in the presence of at least two unbounded
resource types. Our main technical result is a decidability proof of model checking
RAL with one shared, unbounded resource type. Otherwise, we impose no restric-
tions, in particular nested cooperation modalities do not reset the resources avail-
able to agents. This property is sometimes called non-resource flatness. In order
to show decidability, we first show how CTL can be model-checked with respect
to (compact) alternating Büchi pushdown systems extending results on model
checking CTL over pushdown and alternating pushdown systems [5,15]. A com-
pact alternating Büchi pushdown system allows to read and to pop more than
one symbol from its stack at a time. It is used for encoding resource bounded
models in order to apply the automata-based model checking algorithm.

Acknowledgments. We would like to thank Natasha Alechina and Brian Logan for
the many discussions on this topic and their valuable comments.

References

1. Alechina, N., Logan, B., Nguyen, H.N., Raimondi, F.: Decidable model-checking for
a resource logic with production of resources. In: Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI-2014), pp. 9–14. ECCAI. IOS Press
(2014)

2. Alechina, N., Logan, B., Nguyen, H.N., Rakib, A.: Resource-bounded alternating-
time temporal logic. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 481–488. IFAA-
MAS (2010)

3. Alechina, N., Bulling, N., Logan, B., Nguyen, H.N.: On the boundary of
(un)decidability: decidable model-checking for a fragment of resource agent logic.
In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 1494–1501
(2015)

Model Checking Resource Bounded Systems with Shared Resources 649

4. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal
of the ACM 49(5), 672–713 (2002)

5. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

6. Bozzelli, L.: Complexity results on branching-time pushdown model checking.
Theoretical Computer Science 379(1), 286–297 (2007)

7. Bulling, N., Farwer, B.: Expressing properties of resource-bounded systems: the
logics RTL∗ and RTL. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS,
vol. 6214, pp. 22–45. Springer, Heidelberg (2010)

8. Bulling, N., Farwer, B.: On the (un-)decidability of model checking resource-
bounded agents. In: Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI 2010), vol. 215, pp. 567–572. IOS Press (2010)

9. Bulling, N., Nguyen, H.N.: Model checking resource bounded systems with shared
resources via alternating Büchi pushdown systems. Technical report. ArXiv e-prints
(2015)

10. Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R.
(eds.) ICALP 2002. LNCS, vol. 2380, p. 704. Springer, Heidelberg (2002)

11. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
12. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons

using branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1981)

13. Della Monica, D., Napoli, M., Parente, M.: Model checking coalitional games in
shortage resource scenarios. In: Proceedings of the 4th International Symposium
on Games, Automata, Logics and Formal Verification (GandALF 2013). EPTCS,
vol. 119, pp. 240–255 (2013)

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

15. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems.
Theoretical Computer Science 549, 127–145 (2014)

16. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient algorithms for alternat-
ing pushdown systems with an application to the computation of certificate chains.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 141–153. Springer,
Heidelberg (2006)

© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 650–659, 2015.
DOI: 10.1007/978-3-319-25524-8_48

Integrating Conversation Trees and Cognitive Models
Within an ECA for Aggression De-escalation Training

Tibor Bosse1,2() and Simon Provoost1

1 Department of Computer Science, VU University Amsterdam,
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

{t.bosse,s.j.provoost}@vu.nl
2 Department of Training and Performance Innovations, TNO,

Kampweg 5, 3769 DE Soesterberg, The Netherlands

Abstract. Traditionally, Embodied Conversational Agents communicate with
humans using dialogue systems based on conversation trees. To enhance the
flexibility and variability of dialogues, this paper proposes an approach to inte-
grate conversation trees with cognitive models. The approach is illustrated by a
case study in the domain of aggression de-escalation training, and a preliminary
evaluation in the context of a practical application is presented.

Keywords: Virtual training · Aggression de-escalation · Cognitive modelling

1 Introduction

Embodied Conversational Agents (ECAs) can be defined as computer-generated
characters ‘that demonstrate many of the same properties as humans in face-to-face
conversation, including the ability to produce and respond to verbal and nonverbal
communication’ [7]. ECAs have been put forward as a promising means for the train-
ing of social skills [11]. Indeed, in recent years, various systems have been designed
involving ECAs that enable users to develop their social abilities (e.g., [12]).

An important requirement to effectively train users in developing their social skills,
is believability of ECAs, as believable agents permit their conversation partners to
‘suspend their disbelief’, which is an important condition for learning [3]. In [8], be-
lievability is defined by three dimensions, namely aesthetic, functional, and social
qualities of agents, which can be related, respectively, to the agent’s physical appear-
ance, behaviour, and interaction style. With respect to physical appearance and inter-
action style, much progress has been made in recent years: graphics are becoming
increasingly realistic, and the mechanisms to interact with ECAs are changing from
purely text-based systems to sophisticated multi-modal interfaces [17].

With respect to the behaviour of ECAs, some steps forward have been made as
well, regarding both verbal and non-verbal aspects. For non-verbal behaviour, recent
work addresses systems to generate realistic facial expressions, head movements, and
body gestures [13]. Instead, the focus of the current work is on verbal behaviour, i.e.,
on dialogues. The traditional approach to drive the verbal behaviour of ECAs during

 Integrating Conversation Trees and Cognitive Models within an ECA 651

a human-agent dialogue is to use conversation trees, i.e. tree structures representing
all possible developments of the dialogue, where users can decide between different
branches using multiple choice. Although this approach can be successful due to its
transparency, an important limitation of conversation trees is that they are quite rigid.
Consequently, the resulting behaviour of the ECAs is often perceived as stereotypical
and predictable. This can be overcome by constructing large conversation trees with
many branches, but this approach is highly labour-intensive and difficult to re-use.

As an alternative, several authors have proposed the use of cognitive models to en-
dow ECAs with more sophisticated behaviour (e.g., [10,14,16]). Using such models,
agents base their behaviour not only on their current observations (or input), but also
on internal states, such as their emotions and personality. As a consequence, this ap-
proach potentially results in more varied and human-like behaviour from the perspec-
tive of the human conversation partner. Elaborating upon these ideas, the current re-
search attempts to further bridge the gap between traditional approaches based on
conversation trees (which are transparent, but rigid), and more novel approaches
based on cognitive models (which are flexible, but abstract). It does so by presenting
an approach that not only enables flexible dialogues, but that can also easily be inte-
grated with existing systems in the gaming industry based on conversation trees. The
approach is illustrated by a specific case study in the domain of simulation-based
training for aggression de-escalation.

The remainder of this paper is structured as follows. In Section 2, the context in
which this research was conducted is described, namely a project on aggression de-
escalation training. Next, Section 3 introduces the underlying dialogue system that is
used within this project, and Section 4 presents an approach to integrate the system
with a cognitive model. Section 5 describes a practical application that has been used
to test the resulting behaviour of the system. Section 6 concludes the paper with a
discussion.

2 Aggression De-escalation Training

In domains such as law enforcement and public transport, aggressive behaviour
against employees is an ongoing concern. According to a recent study in the Nether-
lands, around 60% of the employees in the public sector have been confronted with
such behaviour in the last 12 months [1]. Being confronted with (verbal) aggression
has been closely associated with psychological distress, which in turn has a negative
impact on work performance. Responses to aggression range from emotions like an-
ger and humiliation through intent to leave the profession. In case of severe incidents,
employees may even develop post-traumatic stress syndrome [4].

To deal with aggression, a variety of techniques are available that may prevent es-
calation [2,5]. These include verbal and non-verbal communication skills, conflict
resolution strategies, and emotion regulation techniques. The current paper is part of a
project that explores to what extent simulation-based training using ECAs can be an
effective method for employees to develop these types of social skills1. In the

1 More information on this project can be found at http://stress.few.vu.nl.

652 T. Bosse and S. Provoost

envisioned training environment, a trainee will be placed in a virtual scenario involv-
ing verbal aggression, with the goal of handling it as adequately as possible. The sce-
narios emphasise dyadic (one-on-one) interactions. For instance, the trainee plays the
role of a tram driver, and is confronted with a virtual passenger who starts intimidat-
ing him in an attempt to get a free ride. The trainee observes the behaviour of the
ECA, and has to respond to it by selecting the most appropriate responses from a
multiple choice menu2. Additionally, the trainee is ‘monitored’ during the task by an
‘intelligent tutor’, i.e. a piece of software that observes his behaviour and provides
personalised support.

The main learning goal of the training system is to help trainees develop their emo-
tional intelligence: they should be able to recognise the emotional state of the (virtual)
conversation partner, and choose the right communication style. In this respect, an im-
portant factor is the distinction between reactive and proactive aggression that is made
within psychological literature: reactive aggression is characterised as an emotional
reaction to a negative event that frustrates a person’s desires (e.g. a passenger becomes
angry because the tram is late), whereas proactive aggression is the instrumental use of
aggression to achieve a certain goal (e.g. a passenger intimidates the driver in an attempt
to ride for free) [15]. Hence, one of the key differences between these two types is the
presence or absence of anger. To decide whether they are dealing with a reactive or a
proactive aggressor, trainees should pay attention to specific cues that point to the pres-
ence or absence of emotion in the (virtual) conversation partner, such as a trembling
voice or frequent arm gestures.

Based on the type of aggressive behaviour that is observed, the trainee should se-
lect the most appropriate communication style. More specifically, when dealing with
a reactive aggressor, empathic, supportive behaviour is required to de-escalate a situa-
tion, for example by ignoring the conflict-seeking behaviour, by actively listening to
what the aggressor has to say, and by showing understanding for the situation. In-
stead, when dealing with a proactive aggressor, a more dominant, directive type of
intervention is assumed to be most effective. In this case, one should make it clear
that aggressive behaviour is not acceptable, and that such behaviour will have conse-
quences [2,5]. By ensuring that the ECAs respond in an appropriate manner to the
chosen responses (e.g. a reactive aggressor calms down when approached in a suppor-
tive manner, but becomes even more angry when approached in a directive manner),
the system will provide implicit feedback on the chosen communication style.

3 Dialogue System

The proposed training system is based on the InterACT software, developed by the
company IC3D Media3. InterACT is a software platform that has been specifically
designed for simulation-based training. It uses state-of-the-art game technology that
builds upon recent advances in the entertainment gaming industry. Unlike most exist-
ing software, it focuses on smaller situations, with high realism and detailed

2 Although our research as a whole explores a variety of modalities (such as speech, facial

expressions and gestures), the current paper has an emphasis on text-based interaction.
3 See http://www.interact-training.nl/ and http://ic3dmedia.com/.

 Integrating Conversation Trees and Cognitive Models within an ECA 653

 interactions with virtual characters. True-to-life animations and photo-realistic char-
acters are used to immerse the player in the game. An example screenshot of a train-
ing scenario for the public transport domain is shown in Figure 1. In this example, the
user plays the role of the tram driver that has the task of calming down an aggressive
virtual passenger.

To enable users to engage in a conversation with an ECA, a dialogue system based
on conversation trees is used. The system assumes that a dialogue consists of a se-
quence of spoken sentences that follow a turn-taking protocol. That is, first the ECA
says something (e.g. “I forgot my public transport card. You probably don’t mind if I
ride for free?”). After that, the user can respond, followed by a response from the
ECA, and so on. In InterACT, these dialogues are represented by conversation trees,
where vertices are either atomic ECA behaviours or decision nodes (enabling the user
to determine a response), and the edges are transitions between nodes.

Fig. 1. Example screenshot of the InterACT environment.

The atomic ECA behaviours consist of pre-generated fragments of speech, syn-
chronised with facial expressions and possibly extended with gestures. Scenario de-
velopers can generate their own fragments using the motion capture software Face-
Shift4, using a Microsoft Kinect camera. As the recorded fragments are independent
from a particular avatar, they can be projected on arbitrary characters.

Each decision node is implemented as a multiple choice menu that allows the user
to choose between multiple sentences. In the current version, for every decision node,
four options are used, which can be classified, respectively, as letting go, supportive,
directive, and call for support. Here, the supportive and directive option relate to the
communication styles explained earlier. The other two options are more ‘extreme’
interventions, which according to a national protocol for aggression management
should be applied, respectively, in case the aggressor has calmed down or in case the
aggression is about to escalate into physical violence [5]. Figure 1 illustrates how

4 See http://www.faceshift.com/

654 T. Bosse and S. Provoost

these four options can be instantiated in terms of concrete sentences (option A-D).
Additionally, the choice of the user determines how the scenario continues
(or whether it ends immediately) by triggering a corresponding branch in the tree.

Although this approach works well, there is a risk that the behaviour of the ECAs
becomes predictable in the long term. For example, in the situation shown in Figure 1,
choosing option C (the ‘directive’ option) will always result in the ECA becoming
irritated, no matter how often the scenario is played, or what has happened before.
This problem can be overcome by endowing the agent with internal states [6] that are
either set beforehand (e.g. whether the agent is a reactive or a pro-active aggressor) or
are the result of earlier interactions (e.g. a state of anger that gradually increases du-
ring the scenario). Our approach to realise this will be explained next.

4 Integration with a Cognitive Model

To endow the ECAs with internal states, an existing cognitive model of aggression is
used [5,18]. Although the details of the model are left out of the current paper, a high-
level overview of the knowledge on which the model is based is shown in Table 1.
This table describes how the agent’s mental state changes depending on the type of
de-escalation approach that it observes (which is similar to [19]).

Table 1. Impact of various de-escalation approaches on the agent’s mental state.

observed approach reactive aggression proactive aggression

letting go remains constant remains constant

supportive decreases increases

directive increases decreases

call for support remains constant remains constant

Our approach to connect this model of aggression to the dialogue system is de-

picted in Figure 2. The integrated system consists of three elements (dialogue system,
human user, and cognitive model) that interact based on the following information
flow:

 from dialogue system to user: The dialogue system continuously keeps track of which node
in the conversation tree is active. As mentioned in Section 3, nodes are either atomic ECA
behaviours or decision nodes (implemented as multiple choice menus). In a typical conver-
sation tree, each ECA behaviour is followed by a decision node. This means that whenever
the dialogue system shows information to the user, an ECA behaviour fragment is pre-
sented (i.e. the virtual character says something, accompanied with facial expressions and
gestures) right before the multiple choice menu is displayed.

 from user to cognitive model (1): Next, the user has to select an option from the multiple
choice menu. The options correspond to the different types of observations used in the
cognitive model (i.e., [letting_go, supportive, directive, call_for_support]).

 Integrating Conversation Trees and Cognitive Models within an ECA 655

 from user to cognitive model (2): In addition, the user’s emotional state is provided as in-
put to the cognitive model as well. One of the simplest ways of achieving this is to ask the
user to provide a subjective indication of how much emotion (s)he experiences during
every interaction. A more advanced solution (which will be used in other stages of the cur-
rent project) is to determine the user’s emotional state based on various sensor measure-
ments like heart rate, electrodermal activity, and facial expressions.

 from cognitive model to dialogue system: Based on the observed verbal and non-verbal be-
haviour of the user, the cognitive model determines the level of aggressiveness of the ver-
bal and non-verbal behaviour to be produced by the ECA. Next, these two variables (ag-
gression intensity values of verbal and non-verbal behaviour) are transferred to the dia-
logue system, which uses them to decide how the conversation continues. Currently, this is
done by defining for each point in the dialogue, a number of alternative sentences with
varying levels of aggressiveness. For example, in case the user (playing the tram driver)
has just chosen the sentence ‘Your chip card is out of credit’, and the ECA’s verbal behav-
iour should have an aggressiveness level between 0 and 0.2, then it will respond with a
statement like ‘I understand that sir, but unfortunately I am in a hurry. Could you please let
me hitch a ride?’. Instead, when it should have an aggressiveness level between 0.8 and 1,
it will respond with ‘Seriously? What do you want me to do, miss this ride? Come on, it's
just one stop, man!’. In a similar manner, the variable for the ECA’s non-verbal behaviour
determines its amount of emotional expression (e.g. by using more arm gestures).

Fig. 2. Overview of the integrated system.

5 Practical Application

The integrated system as described in the previous section is currently being imple-
mented in the InterACT environment. To already get an idea of the proposed mecha-
nism’s performance, its behaviour has been studied in the context of a practical appli-
cation. To this end, a ‘light’ version of the system has been implemented in Matlab5.
Basically, the application follows the same information flow as depicted in Figure 2,
only the behaviour of the ECA is not visualised in a graphical environment; instead,
its utterances and non-verbal behaviour are described in a textual format.

5 The application can be downloaded from http://www.cs.vu.nl/~tbosse/STRESS.

ECA behaviour fragment +
multiple choice menu

dialogue
system

user
cognitive

model
selected options +

emotional state

nonverbal +
verbal behaviour

656 T. Bosse and S. Provoost

Additionally, a simple feedback module has been implemented. The goal of this
module is to provide the user with feedback on his or her performance at the end of a
training scenario. Essentially it checks whether the situation was successfully de-
escalated or not, and in the latter case, it analyses what the cause of this unsuccessful
de-escalation was. In this analysis, several types of mistakes are distinguished such as
1) the user failed to judge the type of aggression (i.e. reactive or proactive) correctly,
2) the user failed to apply the appropriate communication style (supportive or direc-
tive), and 3) the user failed to control his or her own emotional state. The decision
tree that is used by the module is shown in Figure 3. Here, a green end state indicates
successful de-escalation, whereas a red end state indicates unsuccessful de-escalation.
Based on the specific end state a corresponding feedback message is generated, repre-
sented by the numbers in the figure. For example, in case a scenario is classified as
category (6), the following feedback is presented:

6. The user applies the wrong approach towards a proactive aggressor.
”You correctly judged the nature of the aggression, but you used the wrong verbal ap-
proach. A proactive aggressor should always be approached in a directive manner. Act-
ing supportively is likely to make the aggressor think he can walk all over you, and that
his aggressive behaviour is going to get him what he wants.”

Fig. 3. Overview of the feedback system.

To test the Matlab application, a specific scenario has been worked out in the con-
text of a man who is running late for the custody hearing for his daughter, and has no
cash money to pay for a tram ticket. A group of users (students and researchers in
Artificial Intelligence) have extensively played the scenario, by systematically vary-
ing the parameter settings of the cognitive model. A complete overview of the sce-
nario, as well as an illustration of some of the resulting conversations, is provided in
[18].

 Integrating Conversation Trees and Cognitive Models within an ECA 657

Based on this preliminary evaluation, we can conclude that the application was
evaluated positively, in the sense that no instances of unrealistic dialogue flow were
reported. This is a nice finding in itself, but it becomes more valuable in combination
with the observation that the proposed approach allowed us to create a large variation
in scenarios with relatively limited effort. This has to do with the fact that cognitive
models enrich an ECA with internal states, and that these states basically keep track
of the history of the conversation. To start with, we can now use threshold values to
determine which verbal response to activate when the ECA has a certain internal emo-
tional state. Moreover, by designing additional verbal statements that contain lan-
guage of an increasingly aggressive nature but otherwise carry the same message,
every user choice can now be followed by a wider variety of ECA responses. Lastly,
adjusting the parameter settings that regulate the rate at which the ECA’s internal
state changes, makes it possible to endow the ECA with a virtually unlimited number
of personality types. A more extensive explanation of these benefits is presented
in [6].

6 Discussion

The current paper presented a system for simulation-based training of aggression de-
escalation skills using Embodied Conversational Agents. By integrating a cognitive
model of aggression within a dialogue system based on conversation trees, the system
benefits from the advantages of both methods: on the one hand, the use of the dia-
logue system (based on pre-recorded conversation fragments) guarantees highly real-
istic animations. This is particularly important for a domain like aggression de-
escalation, in which the ECAs ideally induce some kind of ‘stress response’ in their
human conversation partners. On the other hand, the use of a cognitive model ensures
that the ECAs are endowed with internal states, which enables them to take the his-
tory of the interaction into account when generating their behaviour. As a result, the
resulting conversations provide more variation, and are therefore perceived as less
predictable. Our first results based on the Matlab application pointed out that users
indeed appreciated the conversations as interesting and not too predictable on the
longer term.

This is by no means the first paper that attempts to enrich ECAs with more flexible
behaviour. Without trying to provide an exhaustive overview, some related ap-
proaches are presented in [10,14,16]. The current paper does not attempt to compete
with the above approaches in the sense that it claims to generate more variation in
scenarios. Instead, one of the main assets of the proposed approach is its simplicity: it
allows designers to generate variation in scenarios using a relatively light-weight and
easy to use cognitive model. At the same time, it is compatible with state-of-the-art
software in the gaming industry that uses traditional conversation trees, such as the
InterACT environment. As a result, the approach takes the best of both worlds: on the
one hand it can be connected to graphically realistic 3D environments, yet it offers
more flexibility than most pre-scripted approaches that are typically used in industry.
Another contribution is the fact that the approach has been implemented and tested in
the context of a real world domain: aggression de-escalation.

658 T. Bosse and S. Provoost

Note that the approach is based on the deliberate decision to work with pre-
generated conversation fragments. An interesting alternative is to generate utterances
‘at runtime’ using a combination of natural language generation techniques and text-
to-speech software [9]. Such an approach has the advantage that it results in even less
predictable ECA behaviour (from the user’s perspective), but a drawback is that it is
difficult to guarantee a natural development of the conversation, and that the resulting
speech is typically perceived as less realistic by the user.

Regarding the interaction in the other direction (i.e., from user to ECA), our cur-
rent system uses the easily controllable, but relatively rigid method of multiple choice
menus. In ongoing research, we are exploring the possibilities to give the user more
freedom by taking an intermediate approach: the user is still asked to choose between
certain options; however these options are not completely pre-defined sentences,
but ‘classes of responses’ corresponding to the different communication styles
[letting_go, supportive, directive, call_for_support]. Using this approach, the user is free to
choose his or her preferred wording, as long as it fits in a category. A sentiment
analysis module will then relate the utterance to the right category, allowing for
snatural continuation of the dialogue. In addition to such extensions, future work will
address a more extensive evaluation of the approach. This will not only be done with
the presented Matlab application, but also with the complete ECA-based training
system and with end users.

Acknowledgements. This research was supported by funding from the National Initiative
Brain and Cognition, coordinated by the Netherlands Organisation for Scientific Research
(NWO), under grant agreement No. 056-25-013. The authors would like to thank Karel van den
Bosch for a number of fruitful discussions.

References

1. Abraham, M., Flight, S., Roorda, W.: Agressie en geweld tegen werknemers met een pub-
lieke taak (in Dutch). DSP, Amsterdam (2011)

2. Anderson, L.N., Clarke, J.T.: De-escalating verbal aggression in primary care settings.
Nurse Pract. 21(10), 95, 98, 101–102 (1996)

3. Bates, J.: The role of emotions in believable agents. Communications of the ACM 37(7),
122–125 (1994)

4. Bonner, G., McLaughlin, S.: The psychological impact of aggression on nursing staff. Br.
J. Nurs. 16(13), 810–814 (2007)

5. Bosse, Tibor, Provoost, Simon: Towards aggression de-escalation training with virtual
agents: a computational model. In: Zaphiris, Panayiotis, Ioannou, Andri (eds.) LCT.
LNCS, vol. 8524, pp. 375–387. Springer, Heidelberg (2014)

6. Bosse, Tibor, Provoost, Simon: On conversational agents with mental states. In: Brinkman,
Willem-Paul, Broekens, Joost, Heylen, Dirk (eds.) IVA 2015. LNCS, vol. 9238, pp. 60–64.
Springer, Heidelberg (2015)

7. Cassell, J., Sullivan, J., Prevost, S., Churchill, E.: Embodied Conversational Agents. MIT
Press, Cambridge (2000)

8. De Angeli, A., Lynch, P., Johnson, G.: Personifying the e-market: a framework for social
agents. In: Hirose, M. (ed.) Proc. of Interact 2001, pp. 198–205. IOS Press (2001)

 Integrating Conversation Trees and Cognitive Models within an ECA 659

9. van Deemter, K., Krenn, B., Piwek, P., Klesen, M., Schroeder, M., Baumann, S.: Fully
generated scripted dialogue for embodied agents. Artificial Intelligence 172(10),
1219–1244 (2008)

10. Gebhard, Patrick, Kipp, Michael, Klesen, Martin, Rist, Thomas: Adding the emotional
dimension to scripting character dialogues. In: Rist, Thomas, Aylett, Ruth S.,
Ballin, Daniel, Rickel, Jeff (eds.) IVA 2003. LNCS (LNAI), vol. 2792, pp. 48–56.
Springer, Heidelberg (2003)

11. Kenny, P., Hartholt, A., Gratch, J., Swartout, W., Traum, D., Marsella, S., Piepol, D.:
Building interactive virtual humans for training environments. In: Proc. of 2007 Interser-
vice/Industry Training, Simulation and Education Conference, Orlando, FL (2007)

12. Kim, J., Hill, R.W., Durlach, P., Lane, H.C., Forbell, E., Core, C., Marsella, S.,
Pynadath, D., Hart, J.: BiLAT: A game-based environment for practicing negotiation in a
cultural context. International Journal of AI in Education 19(3), 289–308 (2009)

13. Lee, Jina, Marsella, Stacy C.: Nonverbal behavior generator for embodied conversational
agents. In: Gratch, Jonathan, Young, Michael, Aylett, Ruth S., Ballin, Daniel, Olivier, Pa-
trick (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 243–255. Springer, Heidelberg
(2006)

14. Mateas, M., Stern, A.: Façade: an experiment in building a fully-realized interactive dra-
ma. In: Game Developers Conference (GDC 2003), San Jose, CA, USA (2003)

15. Miller, J.D., Lyna, D.R.: Reactive and proactive aggression: Similarities and differences.
Personality and Individual Differences 41(8), 1469–1480 (2006)

16. Muller, T.J., Heuvelink, A., van den Bosch, K., Swartjes, I.: Glengarry glen ross: using
BDI for sales game dialogues. In: The Eighth Annual AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment (2012)

17. Nijholt, A., Heylen, D.: Multimodal Communication in Inhabited Virtual Environments.
International Journal of Speech Technology 5(4), 343–354 (2002)

18. Provoost, S.: A computational model of aggression de-escalation. M.Sc. Thesis, VU Uni-
versity Amsterdam (2014). http://hdl.handle.net/1871/50480

19. Smith, C., et al.: Interaction Strategies for an Affective Conversational Agent. Presence
20(5), 395–411 (2011)

Checking WELTLK Properties of Weighted
Interpreted Systems via SMT-Based Bounded

Model Checking

Agnieszka M. Zbrzezny(B) and Andrzej Zbrzezny

IMCS, Jan D�lugosz University, Al. Armii Krajowej 13/15,
42-200 Czȩstochowa, Poland

{agnieszka.zbrzezny,a.zbrzezny}@ajd.czest.pl

Abstract. We present a SMT-based bounded model checking (BMC)
method for weighted interpreted systems (i.e. interpreted systems in
which every agent includes a weight function that associates with each
local action a weight, which is an arbitrary natural number) and for
properties expressible in the existential fragment of a weighted linear
temporal logic with epistemic components (WELTLK). We implemented
the standard BMC algorithm and compared it with the SAT-based BMC
method for the same systems and the same property language on two
multi-agent systems: a weighted bit transmission problem and a weighted
generic pipeline paradigm. For the SAT-based BMC we used the PicoSAT
solver and for the SMT-based BMC we used the Z3 solver.

1 Introduction

The problem of model checking [2] is to check automatically whether a struc-
ture M defines a model for a given modal (temporal, epistemic, etc.) formula.
Bounded model checking (BMC) is a verification technique designed for finding
counterexamples, and whose main idea is to consider a model curtailed to a spe-
cific depth to search for an execution (or a set of executions) of a system under
consideration of some length k, which constitutes a counterexample for a tested
property.

Multi-agent systems (MAS) are composed of many intelligent agents that
interact with each other. The agents can share a common goal or they can
pursue their own interests. Also, the agents may have deadline or other timing
constraints to achieve intended targets. As it was shown in [3], knowledge is a
useful concept for analysing the information state and the behaviour of agents
in multi-agent systems.

Partly supported by National Science Centre under the grant No.
2014/15/N/ST6/05079.
The study is co-funded by the European Union, European Social Fund. Project PO
KL “Information technologies: Research and their interdisciplinary applications”,
Agreement UDA-POKL.04.01.01-00-051/10-00.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 660–669, 2015.
DOI: 10.1007/978-3-319-25524-8 49

Checking WELTLK Properties of Weighted Interpreted Systems 661

The formalism of interpreted systems (IS) was introduced in [3] to model
multi-agent systems (MAS) [7], which are intended for reasoning about the
agents’ epistemic and temporal properties. The formalism of weighted inter-
preted systems (WIS) [9] extends IS to make the reasoning possible about not
only temporal and epistemic properties, but also about agents’s quantitative
properties.

SMT-based bounded model checking (BMC) consists in translating the exis-
tential model checking problem for a modal logic and for a model to the satis-
fiability modulo theory problem (SMT-problem) of a quantifier-free first-order
formula.

The original contributions of the paper are as follows. First, we propose a
SMT-based BMC technique for WIS and for WELTLK. Second, we report on the
implementation of the proposed BMC method as a new module of a verification
system, and evaluate it experimentally by means of a modified generic pipeline
paradigm [6] and a modified bit transmission problem [4].

2 Preliminaries

In this section we explain some notations used through the paper, and recall
the definition of weighted interpreted systems [8] and the syntax and semantics
of WELTLK[8]. In what follows we omit the operators DΓ , EΓ , and CΓ since
the syntax, the semantics and the translations of them can be found in [9], and
moreover, we do not use them in the benchmarked formulae.

WIS. Let Ag = {1, . . . , n} denote a non-empty and finite set of agents, and E
be a special agent that is used to model the environment in which the agents
operate and PV =

⋃
c∈Ag∪{E} PVc be a set of propositional variables, such that

PVc1

⋂ PVc2 = ∅ for all c1, c2 ∈ Ag ∪ {E}. The weighted interpreted system
(WIS) is a tuple

({Lc, Actc, Pc, tc,Vc, dc}c∈Ag∪{E}, ι),

where Lc is a non-empty set of local states of the agent c, S = L1× . . .×Ln ×LE
is the set of all global states, ι ⊆ S is a non-empty set of initial states, Actc is a
non-empty set of possible actions of the agent c, Act = Act1 × . . .×Actn ×ActE
is the set of joint actions, Pc : Lc → 2Actc is a protocol function that define
rules according to which actions may be performed in each local state, tc :
Lc × Act → Lc is a (partial) evolution function, Vc : Lc → 2PV is a valuation
function assigning to each local state a set of propositional variables that are
assumed to be true at that state, and dc : Actc → IN is a weight function.

For a given WIS we define: (1) a set of all possible global states S = L1× . . .×
Ln×LE ; by lc(s) we denote the local component of agent c ∈ Ag∪{E} in a global
state s = (�1, . . . , �n, �E); and (2) a global evolution function t : S × Act → S as
follows: t(s, a) = s′ iff for all c ∈ Ag, tc(lc(s), a) = lc(s′) and tE(lE(s), a) = lE(s′).
In brief we write the above as s

a−→ s′.
Now, for a given weighted interpreted system we define a weighted model (or

simply a model) as a tuple M = (Act, S, ι,V, d), where:

662 A.M. Zbrzezny and A. Zbrzezny

–Act = Act1 × . . . × Actn × ActE is the set of all the joint actions,
–S = (L1 × . . . × Ln × LE) is the set of all the global states
–ι = (ι1 × . . . × ιn × ιE) is the set of all the initial global states,
–V : S → 2PV is the valuation function defined as V(s) =

⋃
c∈Ag∪{E} Vc(lc(s)),

T ⊆ S×Act×S is a transition relation defined by the global evolution function
as follows: (s, a, s′) ∈ T iff s

a−→ s′.
–d : Act → IN is the “joint” weight function defined as follows: d((a1, . . . ,
an, aE)) = d1(a1) + . . . + dn(an) + dE(aE).

Given a WIS one can define the indistinguishability relation ∼c⊆ S × S for
agent c as follows: s ∼c s′ iff lc(s′) = lc(s). Further, a path in M is an infinite
sequence π = s0

a1−→ s1
a2−→ s2

a3−→ . . . of transitions. For such a path, and for j ≤
m ∈ IN, by π(m) we denote the m-th state sm, by πm we denote the m-th suffix
of the path π, which is defined in the standard way: πm = sm

am+1−→ sm+1
am+2−→

sm+2 Next, by π[j..m] we denote the finite sequence sj
aj+1−→ sj+1

aj+2−→ . . . sm

with m − j transitions and m − j + 1 states, and by Dπ[j..m] we denote the
(cumulative) weight of π[j..m] that is defined as d(aj+1) + . . . + d(am) (hence 0
when j = m). By Π(s) we denote the set of all the paths starting at s ∈ S, and
by Π =

⋃
s0∈ι Π(s0) we denote the set of all the paths starting at initial states.

WELTLK. Let I be an interval in IN of the form: [a, b) or [a,∞), for a, b ∈ IN
and a
= b. The WELTLK is the existential fragment of WLTLK [9], defined by
the following grammar:

ϕ ::= true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | XIϕ | ϕUIϕ | ϕRIϕ | Kcϕ
The semantics of the WLTLK is the following. A WLTLK formula ϕ is true
along the path π (in symbols M, π |= ϕ) iff M, π0 |= ϕ, where:

M, πm |= α ∧ β iff M, πm |= α and M, πm |= β,
M, πm |= α ∨ β iff M, πm |= α or M, πm |= β,
M, πm |= XIα iff Dπ[m..m + 1] ∈ I and M, πm+1 |= α,
M, πm |= αUIβ iff (∃i ≥ m)(Dπ[m..i] ∈ I and M, πi |= β and

(∀m ≤ j < i)M, πj |= α),
M, πm |= αRIβ iff (∀i ≥ m)(Dπ[m..i] ∈ I implies M, πi |= β) or (∃i ≥ m)

(Dπ[m..i] ∈ I and M, πi |= α and (∀m ≤ j ≤ i)M, πj |= β),
M, πm |= Kcα iff (∀π′ ∈ Π)(∀i ≥ 0)(π′(i) ∼c π(m) implies M, π′i |= α),
M, πm |= Kcα iff (∃π′ ∈ Π)(∃i ≥ 0)(π′(i) ∼c π(m) and M, π′i |= α).

The satisfiability relation |= which indicates truth of a WELTLK formula in
the model M at some state s of M is defined as in [9]. A WLTLK formula ϕ
holds in the model M (denoted M |= ϕ) iff M, π |= ϕ for some path π ∈ Π.
The model checking problem asks whether M |= ϕ.

3 SMT-Based Bounded Model Checking

In this section we present an outline of the bounded semantics for WELTLK and
define a SMT-based BMC for WELTLK, which is based on the BMC encoding

Checking WELTLK Properties of Weighted Interpreted Systems 663

presented in [8]. The main difference between the SAT-based encoding and the
SMT-base encoding is the representation of symbolic states, symbolic actions,
and symbolic weights. In effect, the SMT-based encoding is the generalization of
the propositional encoding. Both the SAT-based BMC and SMT-based BMC are
based on the notion of the bounded semantics, the definition of which requires
the concept of k-paths and loops.

3.1 Bounded Semantics

Let M be a model, and k ∈ IN a bound. A k-path πl is a pair (π, l), where π is
a finite sequence s0

a1−→ s1
a2−→ . . .

ak−→ sk of transitions. A k-path πl is a loop
if l < k and π(k) = π(l). Note that if a k-path πl is a loop, then it represents
the infinite path of the form uvω, where u = (s0

a1−→ s1
a2−→ . . .

al−→ sl) and
v = (sl+1

al+2−→ . . .
ak−→ sk). Πk(s) denotes the set of all the k-paths of M that

start at s, and Πk =
⋃

s0∈ι Πk(s0).
The bounded satisfiability relation |=k which indicates k-truth of a WELTLK

formula in the model M at some state s of M is also defined in [8]. A WELTLK
formula ϕ is k-true in the model M (in symbols M |=k ϕ) iff ϕ is k-true at some
initial state of the model M.

The model checking problem asks whether M |= ϕ, but the bounded model
checking problem asks whether there exists k ∈ IN such that M |=k ϕ. The
following theorem states that for a given model and a WELTLK formula there
exists a bound k such that the model checking problem (M |= ϕ) can be reduced
to the bounded model checking problem (M |=k ϕ).

Theorem 1.Let M be a model and ϕ a WELTLK formula. Then, the following
equivalence holds: M |= ϕ iff there exists k ≤ |M| · |ϕ| · 2|ϕ| such that M |=k ϕ.

Proof.The theorem can be proved by induction on the length of the formula ϕ
(for details one can see [8]).

3.2 Translation to SMT

SMT-solvers extend the capabilities of SAT-solvers by allowing for the first order
formulae that can be defined over several built-in theories, and types other than
Booleans. To encode the BMC problem for WELTLK and WIS by means of SMT,
we consider a very weak fragment of logics that can be handled by modern SMT
solvers: quantifier-free logic with individual variables ranging over the natural
numbers.

Let M be a model, ϕ a WELTLK formula, and k ≥ 0 a bound. The pre-
sented SMT encoding of the BMC problem for WELTLK is based on the BMC
encoding of [9,10], and it relies on defining the quantifier-free first-order formula:
: [M, ϕ]k := [Mϕ,ι]k ∧ [ϕ]M,k which is satisfiable if and only if M |=k ϕ holds.

664 A.M. Zbrzezny and A. Zbrzezny

The definition of [Mϕ,ι]k assumes that the states and the join actions of M,
and the sequence of weights associate to the join actions are encoded symboli-
cally, which is possible, since both the set of states and the set of joint actions
are finite. Formally, each state s ∈ S is represented by a vector

Let c ∈ Ag ∪ {E}. The definition of the formula [M, ϕ]k assumes that

–each global state s ∈ S is represented by a valuation of a symbolic state
w = (w1, . . . , wn, wE) that consists of symbolic local states and each symbolic
local state wc is an individual variable ranging over the natural numbers;

–each joint action a ∈ Act is represented by a valuation of a symbolic action
a = (a1, . . . , an, aE) that consists of symbolic local actions and each symbolic
local action ac is an individual variable ranging over the natural numbers;

–each sequence of weights associated with the joint action is represented by a
valuation of a symbolic weights d = (d1, . . . , dn+1) that consists of symbolic
local weights and each symbolic local weight dc is an individual variable
ranging over the natural numbers.

Further, in order to define [Mϕ,ι]k we need to specify the number of k-paths
of the model M that are sufficient to validate ϕ. To calculate this number, we
use the following auxiliary function ([9]) fk : WELTLK → IN that is defined as
follows: fk(true) = fk(false) = fk(p) = fk(¬p) = 0, for p ∈ PV; fk(α ∧ β) =
fk(α) + fk(β); fk(α ∨ β) = max{fk(α), fk(β)}; fk(XIα) = fk(α); fk(αUIβ) =
k ·fk(α)+fk(β)+1; fk(αRIβ) = (k+1) ·fk(β)+fk(α)+1; fk(Kcα) = fk(α)+1.

Now, since in the BMC method we deal with the existential validity, the num-
ber of k-paths sufficient to validate ϕ is given by the function f̂k : WELTLK →
IN that is defined as f̂k(ϕ) = fk(ϕ) + 1.

Given the above, the j-th symbolic k-path πj is defined as the following

sequence of transitions: w0,j
a1,j ,d1,j−→ w1,j

a2,j ,d2,j−→ . . .
ak,j ,dk,j−→ wk,j , where wi,j

are symbolic states, ai,j are symbolic actions, and di,j are sequences of symbolic
weights, for 0 ≤ i ≤ k and 1 ≤ j ≤ f̂k(ϕ).

Let w and w′ be two different symbolic states, d a sequence of symbolic
weighs, a a symbolic action, and u be a symbolic number. We assume definitions
of the following auxiliary quantifier-free first-order formulae: p(w) - encodes the
set of states of M in which p ∈ PV holds, Is(w) - encodes the state s of the model
M, Hc(wc, w

′
c) - it encodes equality of two local states, such that wc = w′

c for
c ∈ Ag ∪ E ; T (w, (a, d),w′) - encodes the transition relation of M, DI

a,b;c,d(πn)
for a ≤ b and c ≤ d - if a < b and c < d, then it encodes that the weight
represented by the sequences δa+1,n, . . . , δb,n and δc+1,n, . . . , δd,n belongs to the
interval I; if a = b and c < d, then it encodes that the weight represented by
the sequence δc+1,n, . . . , δd,n belongs to the interval I; if a < b and c = d, then
it encodes that the weight represented by the sequence δa+1,n, . . . , δb,n belongs
to the interval I; if a = b and c = d, then DI

a,b;c,d(πn) is true iff 0 ∈ I.

Checking WELTLK Properties of Weighted Interpreted Systems 665

The formula [Mϕ,ι]k, which encodes the unfolding of the transition relation
of the model M f̂k(ϕ)-times to the depth k, is defined as follows:

[Mϕ,ι]k :=
∨

s∈ι

Is(w0,0) ∧
f̂k(ϕ)∨

j=1

w0,0 = w0,j ∧
f̂k(ϕ)∧

j=1

k∨

l=0

l = uj∧ (1)

f̂k(ϕ)∧

j=1

k−1∧

i=0

T (wi,j , (ai,j , di,j),wi+1,j)

where wi,j , ai,j , di,j , and uj are, respectively, symbolic states and actions, and
sequences of symbolic weights and numbers, for 0 ≤ i ≤ k and 1 ≤ j ≤ f̂k(ϕ).

Let Fk(ϕ) = {j ∈ IN | 1 ≤ j ≤ f̂k(ϕ)}, and [ϕ][m,n,A]
k denote the translation

of ϕ along the n-th symbolic path πm
n with the starting point m by using the

set A ⊆ Fk(ϕ). Then, the next step is a translation of a WELTLK formula ϕ to
a quantifier-free first-order formula [ϕ]M,k := [ϕ][0,1,Fk(ϕ)]

k .

Definition 1(Translation of the WELTLK formulae). Let M be a model,
ϕ a WELTLK formula, and k ≥ 0 a bound. We define inductively the translation
of ϕ over a path number n ∈ Fk(ϕ) starting at the symbolic state wm,n as shown
below, where n′ = min(A), hU = hU(A, fk(β)), and hR = hR(A, fk(α)).

[true][m,n,A]
k := true, [false][m,n,A]

k := false,
[p][m,n,A]

k := p(wm,n), [¬p][m,n,A]
k := ¬p(wm,n),

[α ∧ β][m,n,A]
k := [α][m,n,gl(A,fk(α))]

k ∧ [β][m,n,gr(A,fk(β))]
k ,

[α ∨ β][m,n,A]
k := [α][m,n,gl(A,fk(α))]

k ∨ [β][m,n,gl(A,fk(β))]
k ,

[XIα][m,n,A]
k :=

{
dm,n ∈ I ∧ [α][m+1,n,A]

k , if m < k
∨k−1

l=0 (dl,n ∈ I ∧ wk,n = wl,n ∧ [α][l+1,n,A]
k), if m = k

[αUIβ][m,n,A]
k :=

∨k
j=m((dm+1,n + . . . + dj,n) ∈ I ∧ [β][j,n,hU(k)]

k ∧
∧j−1

i=m[α][i,n,hU(i)]
k) ∨ (

∨m−1
l=0 l = un ∧ wk,n = wl,n∧

∨m−1
j=0 (j > un ∧ [β][j,n,hU(k)]

k ∧ ∨m−1
l=0 (l = un ∧ DI

m,k;l,j(πn))
∧∧j−1

i=0 (i > un → [α][i,n,hU(i)]
k) ∧ ∧k

i=m[α][i,n,hU(i)]
k),

[αRIβ][m,n,A]
k :=

∨k
j=m((dm+1,n + . . . + dj,n) ∈ I ∧ [α][j,n,hR(k)]

k ∧
∧j

i=m[β][i,n,hR(i)]
k) ∨ (

∨m−1
l=0 (l = un ∧ wk,n = wl,n)∧

∨m−1
j=0 (j > un ∧ [α][j,n,hR(k)]

k ∧ ∨m−1
l=0 (l = un ∧ DI

m,k;l,j(πn))
∧∧j

i=0(i > un → [β][i,n,hR(i)]
k) ∧ ∧k

i=m[β][i,n,hR(i)]
k)∨

((d1,n + . . . + dk,n) ≥ right(I) ∧ ∧k
j=m((dm+1,n + . . . + dj,n)

∈ I → [β][j,n,hR(k)]
k)) ∨ ((d1,n + . . . + dk,n) < right(I)

∧∧k
j=m((dm+1,n + . . . + dj,n) ∈ I → [β][j,n,hR(k)]

k)∧
∨k−1

l=0 [(wk = wl) ∧ ∧k
j=l(DI

m,k;l,j(πn) → [β][j,n,hR(k)]
k)]),

[Kcα]
[m,n,A]

k :=
∨

s∈ι Is(w0,n′) ∧ ∨k
j=0([α][j,n

′,gs(A)]
k ∧ Hc(wm,n,wj,n′)),

666 A.M. Zbrzezny and A. Zbrzezny

The theorem below states the correctness and the completeness of the trans-
lation. It can be proven by induction on the complexity of the given WELTLK
formula.

Theorem 2.Let M be a model, and ϕ a WELTLK formula. Then for every
k ∈ IN, M |=k ϕ if, and only if, the propositional formula [M, ϕ]k is satisfiable.

4 Experimental Results

We have performed the experiments using two benchmarks: the weighted generic
pipeline paradigm (WGPP) WIS model [8,9] and the weighted bit transmission
problem (WBTP) WIS model [9]. For computing the experimental results we used
a computer equipped with Intel i7-3770 3.4 GHz processor, 32 GB of RAM, and
the operating system Linux with the kernel 4.0.5. We set the CPU time limit
to 1800 seconds. Moreover, in order to compare the SMT-based BMC method
(SMT-BMC for short) with with the SAT-based BMC method (SAT-BMC for
short), we have asked the authors of [9] to provide us the binary version of
their implementation of SAT-BMC and we have obtained the requested binaries.
Furthermore, our SMT-based BMC algorithm is implemented as a standalone
program written in the programming language C++. For SAT-BMC we used
the state of the art SAT-solver PicoSAT [1], and for the SMT-BMC we used the
state of the art SMT-solver Z3. [5].

Let Min denote the minimum cost needed to ensure that Consumer receives
the data produced by Producer. Further, let a ∈ IN and b ∈ IN be the costs of
sending, respectively, bits by Sender and an acknowledgement by Receiver. The
specifications we consider for the WGPP and WBTP systems, respectively, are:

–ϕ1= KPG[Min,Min+1)ConsReceived, which expresses that Producer knows
that always the cost of receiving by Consumer the commodity is Min.

–ϕ2= KPG(ProdSend → F[0,Min−dP (Produce))ConsReceived), which states
that Producer knows that always if she/he produces a commodity, then Con-
sumer receives the commodity and the cost is less than Min−dP (Produce).

–ϕ3= KPG(ProdSend → KCKPF[0,Min−dP (Produce))ConsReceived), which
states that Producer knows that always if she/he produces a commodity,
then Consumer knows that Producer knows that Consumer has received the
commodity and the cost is less than Min − dP (Produce).

–ϕ4= KCG(ProdReady → X[dP (Produce),dP (Produce)+1)ProdSend), which
expresses that Consumer knows that the cost of producing of a commod-
ity by Producer is dP (Produce).

–ψ1 = G[a+b,a+b+1)(recack → KSend(KR(
∨2n−2

i=0 i))) - the property says that
if an ack is received by Send, then Send knows that Rec knows at least one
value of the n-bit numbers except the maximal value, and the cost is a + b.

–ψ2 = G[a+b,a+b+1)(KSend(
∨2n−1

i=0 (KR(i))) – the property says that Send
knows that Rec knows the value of the n-bit number and the cost is a + b.

Checking WELTLK Properties of Weighted Interpreted Systems 667

Note, that we describe specifications as universal formulae, for which we ver-
ify the corresponding counterexample formulae that are interpreted existentially
and belong to WELTLK. Moreover, for every specification given, the correspond-
ing WELTLK formula holds in the model of the benchmark.

4.1 Performance Evaluation

The experimental results show that the SMT-BMC is sensitive to scaling up the
size of the benchmarks, but it is not sensitive to scaling up the weights, while
the SAT-based BMC is more sensitive to scaling up the weights.

From Fig. 1 one can observe that the SAT-BMC is able to verify the formula
ϕ1 for WGPP with 65 nodes and basic weights (bw for short) and is able to
verify the same formula for WGPP with 45 nodes and bw multiplied by 1000000,
whereas the SMT-BMC is able to verify the formula ϕ1 for WGPP with 35 nodes

 0

 50

 100

 150

 200

 250

 300

1 3 5 7 9 15 25 35 45 50 60 65

M
em

or
y

in
 M

B

Number of Nodes

Memory usage for a WGPP, ϕ1

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 3 5 7 9 15 25 35 45 50 60 65

T
im

e
in

 s
ec

.

Number of Nodes

Total time usage for a WGPP, ϕ1

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 5 10 15 20 25 30 35

M
em

or
y

in
 M

B

Number of Nodes

Memory usage for a WGPP, ϕ2

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 5 10 15 20 25 30 35

T
im

e
in

 s
ec

.

Number of Nodes

Total time usage for a WGPP, ϕ2

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3 4 5 6 7 8 9 10 11 12 13

M
em

or
y

in
 M

B

Number of Nodes

Memory usage for a WGPP, ϕ3

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
in

 s
ec

.

Number of Nodes

Total time usage for a WGPP, ϕ3

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2000 3000 4000 5000 6000 7000 8000 900010000

M
em

or
y

in
 M

B

Number of Nodes

Memory usage for a WGPP, ϕ4

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2000 3000 4000 5000 6000 7000 8000 900010000

T
im

e
in

 s
ec

.

Number of Nodes

Total time usage for a WGPP, ϕ4

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5 6 7 8 9 10 11 12 13

M
em

or
y

in
 M

B
.

Number of bits

Memory usage for a WBTP, ψ1

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

1 2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
in

 s
ec

.

Number of bits

Total time usage for a WBTP, ψ1

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 3 4 5 6 7 8

M
em

or
y

in
 M

B
.

Number of bits

Memory usage for a WBTP, ψ2

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8

T
im

e
in

 s
ec

.

Number of bits

Total time usage for a WBTP, ψ2

SAT, x=1
SMT x=1

SAT, x=1000000
SMT x=1000000

Fig. 1. SMT- and SAT-based BMC: WGPP with n nodes, WBTP with n bits integer
value.

668 A.M. Zbrzezny and A. Zbrzezny

regardless of the bw. Moreover, the memory usage for SMT-BMC is lower than
for SAT-BMC for the considered formula. Both the SAT-BM and SMT-BMC
are able to verify the formulae ϕ2 and ϕ3 for WGPP with the same number of
nodes. For ϕ2 the memory usage by the SMT-BMC is three times higher than by
the SMT-BMC, yet the SMT-BMC method consumes less time. For the formula
ϕ3 both the SAT-BMC and SMT-BMC use almost the same amount of memory,
but the total time usage for the SAT-BMC is up to six times higher than for
the SMT-BMC. The SAT-BMC is able to verify the formula ϕ4 9000 for WGPP
with 10000 nodes and bw and for WGPP with 9000 nodes and bw multiplied by
1000000, whereas the SMT-BMC is able to verify the formula ϕ4 only for WGPP
with 8000 nodes regardless of the basic weights. However, SMT-BMC consumes
three times less memory than SAT-BMC.

The SAT-BMC is able to verify the formula ψ1 for WBTP with 13 bits,
whereas SMT-BMC is able to verify ψ1 for WBTP with 12 bits, however time
usage for WBTP with 12 bits is three times less for SMT-BMC compared to
SAT-BMC. Both the methods are able to verify the formula ψ2 with the same
number of bits, however time usage and memory usage for SMT-BMC is slightly
larger compared to SAT-BMC.

5 Conclusions

We have proposed a SMT-based BMC verification method for model checking
WELTLK properties interpreted over the weighted interpreted systems. We have
provided a preliminary experimental results and also compared our method with
the corresponding SAT-based technique. The comparison shows that both the
approaches are complementary, and that the SMT-based BMC method is worth
of interest. In future work, we would like to explore whether it is possible to
foresee which of the two BMC methods might perform better for a given system
and a given formula.

References

1.Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation (JSAT) 4, 75–97 (2008)

2.Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
3.Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT

Press, Cambridge (1995)
4.Lomuscio, A., Sergot, M.: A Formalisation of Violation, Error Recovery, and

Enforcement in the Bit Transmission Problem. Journal of Applied Logic 2(1),
93–116 (2004)

5.de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6.Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg
(1993)

Checking WELTLK Properties of Weighted Interpreted Systems 669

7.Wooldridge, M.: An Introduction to Multi-Agent Systems, 2nd edn. John Wiley &
Sons (2009)

8.Woźna-Szcześniak, B.: SAT-based bounded model checking for weighted deontic
interpreted systems. In: Correia, L., Paulo Reis, L., Cascalho, J. (eds.) EPIA 2013.
LNCS, vol. 8154, pp. 444–455. Springer, Heidelberg (2013)

9.Woźna-Szcześniak, B., Zbrzezny, A.M., Zbrzezny, A.: SAT-based bounded model
checking for weighted interpreted systems and weighted linear temporal logic. In:
Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.)
PRIMA 2013: Principles and Practice of Multi-Agent Systems. LNCS, vol. 8291,
pp. 355–371. Springer, Heidelberg (2013)

10.Zbrzezny, A.: A New Translation from ECTL∗ to SAT. Fundamenta Informaticae
120(3–4), 377–397 (2012)

Games with Communication: From Belief
to Preference Change

Guillaume Aucher1(B), Bastien Maubert2(B), Sophie Pinchinat3(B),
and François Schwarzentruber4(B)

1 IRISA - INRIA / Université de Rennes 1, Rennes, France
guillaume.aucher@inria.fr

2 LORIA - CNRS / Université de Lorraine, Nancy, France
bastien.maubert@gmail.com

3 IRISA / Université de Rennes 1, Rennes, France
sophie.pinchinat@irisa.fr

4 IRISA - ENS Rennes, Rennes, France
francois.schwarzentruber@ens-rennes.fr

Abstract. In this work we consider simple extensive-form games with
two players, Player A and Player B, where Player B can make announce-
ments about his strategy. Player A has then to revise her preferences
about her strategies, so as to better respond to the strategy she believes
Player B will play. We propose a generic framework that combines meth-
ods and techniques from belief revision theory and social choice theory
to address this problem. Additionally, we design a logic that Player A
can use to reason and decide how to play in such games.

1 Introduction

Communication between players is a notion that arises naturally in a variety
of contexts in game theory, and that led to the theory of games where players
can communicate [4,5,11]. We are interested in non-cooperative games with two
players, say Player A and B, in which Player B makes announcements about his
strategy, before the game starts. Just as the cheap talks in [4], this preliminary
communication round does not directly affect the payoffs of the game.

We illustrate our research problem with a classic example from [11] in which
communication between players improves the payoff of both players. The exten-
sive form game is described in Figure 1. Player A can go left or right. If A goes
left, she gets 1$ and B gets 0$. If A goes right, player B can in turn choose to go
left or right. If B goes left, he gets 100$ and A gets 0$, if B goes right both get
99$. The solution given by the classic backward induction algorithm, which relies
on the hypothesis that players are rational, is the following: A thinks that if she
goes right, B will go left to maximize his payoff, and A will get 0$. Therefore,
A prefers to move left, and gets 1$.

On the other hand, let us assume that the players communicate and trust
each other, and that B tells A: “If you move right, I will move right”. As a
consequence, A thinks she would better move right since she would collect 99$
instead of 1$: as such, A has revised her preferences about her own strategies.
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 670–677, 2015.
DOI: 10.1007/978-3-319-25524-8 50

Games with Communication: From Belief to Preference Change 671

A

1, 0 B

0, 100 99, 99

Fig. 1. Motivating example

Notice that in this example, B’s announcement could have been reflected
by pruning the game, in the spirit of Public Announcement Logic [9]: we could
have removed the moves (in the example, just one) of B that do not conform
to his announcement, in this very case by ruling out his left move, and have
recomputed a strategy of A by backward induction in the pruned game.

However, the pruning technique, although attractive in practice, has some
serious limitations. First, we cannot guarantee that in any game, every announce-
ment of B amounts to pruning the game, in particular those relying on condi-
tional statements. Second, B can make a series of successive announcements,
possibly conflicting each other. In that case, A will need to aggregate these
announcements in order to revise her beliefs on what B will play. This phe-
nomenon cannot be represented straightforwardly by means of a series of destruc-
tive prunings of the game, and we propose to work on the level of B’s strategies
instead.

Preliminary announcements can be motivated by various reasons, such as
trying to coordinate with the other player or to mislead him in order to get a
better payoff. After these announcements, Player A needs to revise her strategy
so as to better respond to what Player B pretends to play. Notice that depending
on the context, the confidence Player A has on Player B’s commitment about
his annoucements varies widely. In this work, like in belief revision theory [6], we
assume that Player A always trusts Player B’s last announcement, which has
also priority over the previous announcements.

The question we consider is the following:

How can Player A take into account the announcements of Player B
about his strategy in order to update her preferences on her strategies?

This question can be decomposed into:

Question 1: How can Player A revise her beliefs about Player B’s prefer-
ences on his strategies?
Question 2: How can Player A update her preference about her strategies
on the basis of these beliefs?

672 G. Aucher et al.

Regarding Question 1, we propose to apply classical belief-revision tech-
niques1 to represent what A believes about B’s strategy and update these
beliefs when B makes announcements. There exist several ways to perform this
update/revision, but our approach aims at remaining as general as possible by
not selecting a particular one, and by leaving the choice to peak the update
mechanism that reflects how trustworthy B’s announcements are considered.

The main originality of our contribution lies in the solution we offer for
Question 2, by combining techniques and methods from game theory and from
social choice theory [2]: informally, each possible strategy of B is seen as a voter,
who votes for strategies of A according to the payoff A would obtain in the play
defined by both strategies. Individual votes are then aggregated to define the
new preferred strategy of A. Here again we do not choose a particular type of
ballot nor a precise aggregation method, but rather leave it open and free to be
set according to the kind of strategy one wants to obtain: for instance, one that
has best average payoff against B’s most plausible strategies, or one that is most
often a best response.

The paper is organized as follows. In Section 2, we set up the mathemati-
cal framework we use to model games and communication/announcements. In
Section 3, we develop the solution to the revision of beliefs, and in Section 4 we
expose our proposal for the revision of preferences. Based on the developped set-
ting, we propose in Section 5 a logic that Player A can use to reason and decide
how to play. Section 6 illustrates our framework on a more complex example.

2 Games and Announcements

We consider two-player extensive-form games in which at each decision node two
distinct moves are available. A finite rooted binary tree (simply called tree from
now on) is a prefix-closed finite set T ⊂ {0, 1}∗. Elements of T are called nodes,
ε is the root, if w · a ∈ T , with a ∈ {0, 1}, then w is called the parent of w · a and
w ·a is called the left (resp. right) child of w if a = 0 (resp. a = 1). If a node has
no child, it is a leaf, otherwise it is an interior node. A tree is called complete if
every interior node has exactly two children. If T, T ′ are trees such that T ⊆ T ′,
we say that T is a subtree of T ′.

A game between A and B is a tuple G = (T, νA, νB) where T is a complete
tree, and if we note L ⊆ T the set of leaves of T , then νA : L → N is the
utility function for A, νB : L → N is the utility function for B. Interior nodes
are partitioned between nodes of A (NA) and those of B (NB), such that T =
NA � NB � L.

Given a game G = (T, νA, νB), a strategy2 for A (resp. B) is a subtree σA

(resp. σB) of T such that every node in σA ∩ NA (resp. σB ∩ NB) has exactly

1 Typically, A initially believes that B will play one of the strategies given by the
classical backward-induction algorithm. Then B may announce a piece of information
that is in contradiction with this belief, which thus needs to be revised.

2 To be precise these are reduced strategies, but they are sufficient for what we present
here.

Games with Communication: From Belief to Preference Change 673

one child, and every node in σA ∩ NB (resp. σB ∩ NA) has exactly two children.
Two strategies σA and σB define a unique path, hence a unique leaf in the tree
T , that we shall write ˆσAσB. We note ΣA and ΣB the set of all strategies for A
and B, respectively.

For a strategy σA ∈ ΣA, we define its value val(σA) as the minimum utility
it can bring about for A: val(σA) := minw∈L νA(w). The value of a strategy for
Player B is defined likewise.

The language Player B uses to make the announcements about his strategies
is the bimodal language L2, the syntax of which is:

ψ ::= p | ¬ψ | ψ ∧ ψ | ♦iψ

where p ∈ {turnA, turnB} and i ∈ {0, 1}.
For i ∈ {0, 1}, we write 	 for ¬(p ∧ ¬p), �iψ for ¬♦i¬ψ, �ϕ for �0ϕ ∧ �1ϕ,

and movei for ♦i	, meaning that the strategy at this point chooses direction i.

Example 1. For instance, in the example of Figure 1, the strategy of B consisting
in playing the action leading to 99, 99 is ♦1♦1	.

Given a game G = (T, νA, νB), a strategy σ can be seen as a Kripke structure
with two relations (one for left child, one for right child). The valuations of
propositions turnA and turnB are given by the partition between positions of
Player A and Player B. Formally, the truth conditions are defined inductively
as follows:

σ,w |= turna if w ∈ Na, a ∈ {A,B}
σ,w |= ¬ψ if σ,w
|= ψ
σ,w |= ψ ∧ ψ′ if σ,w |= ψ and σ,w |= ψ′

σ,w |= ♦iψ if w · i ∈ σ and σ,w · i |= ψ

3 Belief Revision: From Announcements to Beliefs

We now represent the beliefs A has about what B is more likely to play, and
how these beliefs evolve as B makes new announcements.

From a purely semantic point of view, the framework of belief revision theory
[1,7] can be roughly described as follows. Given a universe U of possible worlds,
a player ranks each possible world via a ranking function κ : U → N, also called
belief state, such that κ−1(0)
= ∅. This ranking induces a plausibility preorder
between possible worlds: among two possible worlds, the one with the lowest
rank is considered to be more plausible than the other by the player. Given a
ranking function κ, the set of most plausible worlds for the player is the set
κ−1(0).

The impact of a new piece of information on these beliefs is modelled by a
revision function which takes a ranking function together with the new informa-
tion, and returns the revised ranking function that induces the new belief state of
the player. Many such revision functions exist in the literature, that correspond
amongst other things to various degrees in the trust put in the received informa-
tion, the reluctance to modify one’s beliefs, etc (see e.g. [10]). Formally, if one

674 G. Aucher et al.

chooses say formulas of propositional logic PL to represent new pieces of infor-
mation, a revision function is a binary function ∗ : (U → N) × PL → (U → N),
and given F ∈ PL, a belief state κ is changed into κ ∗ F .

In our framework, the universe U = ΣB is the set of Player B’s strategies,
and the new pieces of information are modal formulas of L2, representing B’s
announcements about his strategy. For a belief state κ, κ−1(0) is then what A
believes B is the most likely to play. Initially, we assume that A has an a priori
belief, represented by κ0, that may for example arise from the very values of the
strategies:

κ0(σB) := max
σ′
B∈ΣB

val(σ′
B) − val(σB) (1)

The revision function signature is now (ΣB → N)×L2 → (ΣB → N), and we
can use any kind of revision function. For example here, we present the classic
moderate revision [8,10], written ∗m, and defined by: for κ, ψ ∈ L2 and σ ∈ ΣB,

(κ ∗m ψ)(σ) =

⎧
⎪⎨

⎪⎩

κ(σ) − minσ′|=ψ κ(σ′) if σ |= ψ

maxσ′|=ψ κ(σ′) + 1 + κ(σ)
−minσ′ �|=ψ κ(σ′) if σ
|= ψ

The moderate revision makes all the possible worlds that verify the announce-
ment ψ more believed than those which do not; it preserves the original order
of preference otherwise.

4 Voting: From Beliefs to Preferences

The belief Player A has about B’s strategy induces some preference over A’s
strategies. We describe a mechanism that, given a belief state κ, computes a
preference set Pκ ⊆ ΣA. This preference set is made of all the strategies that
should be preferred by A if she believes that B will play a strategy in κ−1(0).
This mechanism relies on voting systems.

A plethora of different voting systems have been proposed and studied [3],
verifying different properties one may want a voting system to verify (majority
criterion, Condorcet criterion etc). Since we are interested in quantitative out-
comes, we argue that a relevant choice is to use a cardinal voting system [12].
In a cardinal voting system, a voter gives each candidate a rating from a set of
grades; we take here grades in N. Take a set of n candidates, C = {c1, . . . , cn},
and a set of m voters, V = {v1, . . . , vm}. A ballot is a mapping b : C → N and
a voting correspondence is a function rC : (C → N)m → 2C\{∅} that takes a
vector (b1, b2, . . . , bm) of ballots (one for each voter) and returns a nonempty set
of winning candidates3. In this work we take as an example the range voting
system, but the method is generic and any other cardinal voting system can
be used. Range voting works as follows: for each candidate, we sum the grades
obtained in the different ballots, and the set of winners is the set of candidates

3 It is called a voting rule if there is a unique winner.

Games with Communication: From Belief to Preference Change 675

who share the highest overall score: if bi is voter i’s ballot, for i ∈ {1, . . . , m},
rC is defined by

rC(b1, . . . , bm) := argmax
c∈C

m∑

i=1

bi(c).

We aim at electing the strategies of Player A that she should prefer with regard
to the most plausible strategies of Player B. Therefore, the set of candidates
consists in Player A’s possible strategies (C = ΣA), and each of Player B’s
most plausible strategie is seen as a voter (V = κ−1(0)). We assume that Player
A prefers strategies that in average give her the best payoff, which leads us
to define ballots as follows. For each strategy σB ∈ κ−1(0), we let bσB

be the
ballot that assigns to each σA ∈ ΣA the payoff of A in the play ˆσAσB, that is
bσB

(σA) = νA(ˆσAσB). In other words, each voter ranks the candidates according
to the corresponding payoff for Player A. The voting system aggregates these
“individual” preferences in order to obtain a “collective” preference Pκ against
all strategies of κ−1(0), defined by:

Pκ := rC(bσ1
B
, . . . , bσm

B
), whenever κ−1(0) = {σ1

B, . . . , σm
B }.

Remark 1. Note that we could use more of the information we have by letting
all strategies in ΣB vote, and weigh their votes according to their respective
plausibility.

5 A Logic for Strategies, Announcements and Preferences

We present the formal language LSAP , where SAP stands for “Strategies,
Announcements and Preferences”, to reason about Player A’s preferences con-
cerning her strategies, and how these evolve while Player B makes announce-
ments about his strategy. The syntax of LSAP is the following:

ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | PAϕ | [ψ!]ϕ

where ψ ∈ L2.
The formula PAϕ reads as ‘ϕ holds in all the preferred strategies of Player A’;

[ψ!]ϕ reads as ‘ϕ holds after Player B announces that her strategy satisfies ψ’.
LSAP formulas are evaluated in models of the form (κ, σA), where κ is the

belief state of Player A and σA ∈ ΣA is the strategy A is considering. The truth
conditions are given inductively as follows:

(κ, σA) |= ψ if (σA, ε) |= ψ
(κ, σA) |= ¬ϕ if (κ, σA)
|= ϕ
(κ, σA) |= ϕ ∧ ϕ′ if (κ, σA) |= ϕ and (κ, σA) |= ϕ′

(κ, σA) |= PAϕ if for all σ′
A ∈ Pκ, (κ, σ′

A) |= ϕ
(κ, σA) |= [ψ!]ϕ if (κ ∗m ψ, σA) |= ϕ

676 G. Aucher et al.

A

60, 0 B

50, 100 A

50, 50 B

100, 50 0, 100

Γ Δ

L R

γ δ

� r

Fig. 2. Second example game

6 Example

Consider the game in Figure 2. By backward induction, we get that B chooses r,
A thus chooses γ, B chooses L, and finally A chooses Γ , obtaining 60$ while B
gets nothing. B would therefore like A to change her mind and play Δ on the first
move, so that he can play L and get 100. The problem is that if he announces that
he will do so, then A will stick to her strategy, as she will know that changing
it will give her a payoff of 50 instead of 60. So B announces, instead, that he
commits to play either L, or R and then � (we note this strategy R�), but not
Rr. This announcement can be described by the following L2-formula:

ψ = �(turnB → move0) ∨ ���(turnB → move0)

Consider now the following LSAP -formula:

ϕ = turnA ∧ PAmove0 ∧ [ψ!]PAmove1

ϕ expresses that it is Player A’s turn to play, and that in all her preferred
strategies she goes left (i.e. she plays Γ), but in case Player B announces ψ,
Player A prefers to play differently, namely moving right.

Now, considering this game, moderate revision, range voting, with the initial
belief ranking κ0 of Equation (1) on Page 674, and any strategy σA ∈ ΣA, one
can check that indeed we have:

(κ0, σA) |= ϕ

This is because going right ensures A a better mean-payoff against B’s most
plausible strategies after the announcement ψ, which are L and Rl. However,
consider now the classic plurality voting system, where each voter only gives one
voice to its preffered candidate (here, the one that ensures A the best outcome),

Games with Communication: From Belief to Preference Change 677

and where the winner is the one with most votes for him. This amounts to
electing A’s strategy that is most often a best response against B’s most plausible
strategies. Using this instead of range voting system, one can verify that after
the announcement, the vote results into a tie, with strategy Γ of A obtaining
one vote (from B’s strategy L), and strategy Δδ receiving the other one (from
strategy Rl). Therefore, PAmove1 does not hold in the state resulting from the
announcement, so that we have:

(κ0, σA)
|= ϕ

7 Conclusion

Our work contributes to the study of games with communication. We have
defined a generic framework that uses belief revision techniques to take into
account communication, and voting for choosing strategies to play. A specific
revision function and voting system may characterize the behavior of Player A
(trustful, optimistic, etc), and the kind of strategies she wants (best mean pay-
off, most often best-response. . .). Investigating the theoretical properties of the
agent’s behavior in terms of combinations of revision and voting mechanisms is
left for future work.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530
(1985)

2. Arrow, K.J., Sen, A.K.: Handbook of social choice and welfare, vol. 19. North
Holland (2002)

3. Brams, S.J., Fishburn, P.C.: Voting procedures. Handbook of social choice and
welfare 1, 173–236 (2002)

4. Crawford, V.P., Sobel, J.: Strategic information transmission. Econometrica:
Journal of the Econometric Society, pp. 1431–1451 (1982)

5. Farrell, J., Rabin, M.: Cheap talk. The Journal of Economic Perspectives, 103–118
(1996)

6. Gärdenfors, P.: Knowledge in Flux (Modeling the Dynamics of Epistemic States).
Bradford/MIT Press, Cambridge (1988)

7. Gärdenfors, P., Rott, H.: Belief revision. Handbook of Logic in Artificial Intelligence
and Logic Programming, vol. 4, pp. 35–132 (1995)

8. Nayak, A.C.: Iterated belief change based on epistemic entrenchment. Erkenntnis
41(3), 353–390 (1994)

9. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
10. Rott, H.: Shifting priorities: simple representations for twenty-seven iterated theory

change operators. Towards mathematical philosophy, pp. 269–296 (2009)
11. van Benthem, J.: Logical dynamics of information and interaction. Cambridge

University Press (2011)
12. Vasiljev, S.: Cardinal voting: the way to escape the social choice impossibility.

Available at SSRN 1116545 (2008)

Design Patterns for Environments
in Multi-agent Simulations

Philippe Mathieu, Sébastien Picault(B), and Yann Secq

SMAC Team, CRIStAL UMR CNRS 9189,
University of Lille – Science and Technology, 59655 Villeneuve d’Ascq Cedex, France

{philippe.mathieu,sebastie.picault,yann.secq}@univ-lille1.fr
http://cristal.univ-lille.fr/SMAC

Abstract. In the field of multi-agent based simulation (MABS), the
concept of environment is omnipresent, though poorly defined. We argue
here that depending on the modeling of space and of relations between
agents, only a few efficient implementations can be set up. We aim at
formalizing the core functions of environments, so as to highlight the
computational answers to possible modeling choices. This unifying app-
roach leads to the identification of four paradigmatic Design Patterns,
associated with specific atomic environments, which can be composed in
order to tackle complex situations.

Keywords: Environments · Modeling · Parsimony · Engineering ·
Design patterns

1 Introduction

In this paper, we focus on the definition and on the implementation of the con-
cept of “environment” in MABS. It is generally admitted that agents act “in an
environment” [1,2], and most of the time “environments are simply assumed as
given” [3]. Indeed everybody is supposed to know what an environment is, but
this implicit reference to common sense makes the environment the neglected
concept in MABS design. Hence, the term itself refers to heterogeneous realities,
from an abstract description of an “habitat” (in an ecological sense) where the
agents “live”, to the hardware/software execution infrastructure of a platform [4]
and interoperability issues [5,6]. Some exceptions are found in Agent-Based Sim-
ulation, where the issue is crucial [7,8]. Several criteria for characterizing envi-
ronments have been proposed by [2, ch. 2] (e.g. accessibility, determinism, static
vs. dynamic, continuous vs. discrete), yet a close reading shows that they are
not exactly environment features, but rather peception, cognition and action
capabilities of the agents that are situated in it.

In contrast, [4] addresses crucial issues such as eliciting the link between
agents and environments, the need for a taxonomy of environments, or the essen-
tial role of topological relations. Indeed, in order to act each agent needs to know
on which other agents it can perform actions (including communication). As the
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 678–686, 2015.
DOI: 10.1007/978-3-319-25524-8 51

Design Patterns for Environments in Multi-agent Simulations 679

agent has only a limited (local) perception, it can (must) interact only with its
neighbors. Thus, the main issue is: how does an agent determine its neighbors?
Essentially, the environment ought to be an answer to this question.

Our goal in this paper is to search for a minimal, formal definition of what
the term “environment” can mean in a MABS, and to show how to reduce the
diversity of environments found in existing MABS to a few combinable patterns,
as suggested by [9]. We argue that the choice of appropriate techniques for
modeling environments only depends on a very limited number of criteria, as in
the classical Design Patterns used in software engineering [10].

In the following, each entity of the simulation model is represented by an agent
as suggested in [11,12]. We also assume discrete time, so that, at each time step,
the MABS contains a set of agents, denoted by At. At this stage we do not
assume any special hypothesis regarding the capabilities of action, perception or
cognition of those entities. From the environment indeed, “objects”, “artifacts”
or “agents” are undiscernible (proactivity being an internal feature). Obviously
though, everything is not meant to be reified by agents: depending on the analysis
level required in the model, there is a granularity level, beyond which would-be
entities are modeled by an aggregated information (see § 2.2).

In the next section, we propose a minimal abstract definition of a MABS
environment; then, we describe four patterns induced by modeling and imple-
mentation choices; finally, we explain how those patterns may be composed for
building usual MABS environments.

2 Formalizing the Concept of Environment

We advocate that there are two main roles devoted to the environment in a
MABS: first, to place agents so as to define neighborhood and accessibility rela-
tionships; second, to provide spatial information, which reflects underlying levels
that would not be reified through agents.

2.1 First Purpose: Placing Agents

We suppose a set E composed of “places” which can host agents, and can be arbi-
trarily chosen w.r.t the nature of the world to be modeled. To determine accessi-
bility relations from one place to the others, we also suppose a distance function
d : E × E → R

+ ∪ {+∞}, so that (E, d) is a metric space in which the distance
induces a topology. This minimalistic description covers many situations, e.g. the
usual 3D space (E = R

3) with the euclidean distance; a 2D grid with the Moore
neighborhood (E = Z

2, d being the Chebychef distance); a continuous 2D “toric”
space of width w and height h (quotient space E = R

2/(wZ ×hZ)); an acquain-
tance network (graph, i.e. a set E of nodes, endowed with the geodesic distance);
etc. “Non situated” agent corresponds to a singleton E = {p}, endowed with the
trivial distance ∀x, y d(x, y) = 0. Generally only a subset E ⊂ E is used in the
simulation.

Since the first purpose of the environment is to locate agents, E must be
endowed with a function designed to provide the agents with a position at each

680 P. Mathieu et al.

time step: post : At → E . Then, an environment can be defined as a subset E of
a metric space (E, d) endowed with a family of functions (post)t∈[0,Tmax] which
give the successive positions of agents within E. Those functions can often be
specified only in extension; besides, each agent a is responsible for handling the
value of post(a) (e.g. as an attribute). Moreover, the transition between post and
post+1 is itself the consequence of the behavior of each agent. Nevertheless, this
function-based description also covers cases where positions can be specified in
intension (e.g. trajectories following physical laws). We also define the reciprocal
function of the position, i.e. the content of a point of the environment, as follows:
∀p ∈ E , contt(p) = {a ∈ At | post(a) = p}.

From this formalization, we claim that two features can discriminate between
several kinds of environments and their possible implementation: first, the nature
of the metric space (E, d) (continuous, lattice, graph, singleton...), and second,
the decision (or need) to provide explicitly those functions, especially contt.
Indeed, the behavior of agents crucially depends on their neighborhood func-
tion, devoted to identifying their neighbors, i.e. with whom they can interact,
namely νt : At → ℘(At). Among an infinite variety of possible functions, a
simple example is the topological ball centered on the position of a and of radius
r: νr

t (a) = {a′ ∈ At � {a} | d(post(a), post(a′)) ≤ r}. The computational cost
of computing a neighborhood may require a time/space compromise between
algorithmic efficiency and data structures. Thus a given neighborhood function
may be implemented through several forms, as explained in section 3.

2.2 Second Purpose: Providing Information

Depending on the modeling scale, some underlying levels may require a macro-
scopic approximation. For instance, pheromones, as entities (molecules) should
be represented by agents (endowed with physico-chemical behaviors: brownian
motion, evaporation, degradation). But, in practice, they are usually aggregated
numerically (like the concentration in chemistry) and mapped to a discretized
space (the cells of a grid), in the mere intend of reducing the computational
cost of handling a large number of entities, but at the expense of approximat-
ing diffusion phenomena. The MAS literature does not agree on any convention
for naming such a purely informational representation. The concept of field,
already used in reactive navigation or for pheromones (Potential Fields [13] and
Mean Fields [14]) seems a convenient way of modeling any kind of “informa-
tion” afforded by the environment (e.g. gravitation forces, temperature, obsta-
cles) and not reified by agents. A field is thus a function which maps points of E
to any set of information pieces I; e.g. the pheromone level in grid cells would
be: pherot : Z

2 → R
+, defined in extension and changing at each time step

through a classical diffusion-evaporation algorithm [15]. A field can sometimes
be defined in intension, e.g. the gravity field in the usual 3D space g : R

3 → R
3

which maps each point to an acceleration vector.
We especially emphasize this representation of spatial information through

field functions, because the modeling decision (or needs) of representing those
functions in an explicit way or not, leads to specific constraints regarding the
implementation of the environment.

Design Patterns for Environments in Multi-agent Simulations 681

3 Four Fundamental Patterns

We intend to show that a limited number of implementation families can be
identified for MABS environments, depending on the nature of the metric space
(E, d), and on the choice of reifying (or not) contt. Our point here is not to
aim at a normative approach, nor at a comprehensive listing of cases, but rather
at describing recurrent typical usages and their distinctive features. We intro-
duce below the four fundamental patterns we have identified, with their princi-
ples, advantages and drawbacks. We show how to handle efficiently the search
for neighbors and the motion of agents, i.e. how to actually compute the val-
ues of the functions νr

t and post+1 for each agent (resp. neighbors(a,r) and
move to(a,p)). Finally, we indicate when each pattern is best suited.

3.1 The “AgentSet” Pattern

Principle. Each agent is endowed with an attribute pos containing post(a).
The environment is reduced to a set of agents (At) and the distance function d.

Algorithm 1. Calculation of the neighbors of an agent (AgentSet pattern)
neighbors(ai, r):
N ← ∅
for aj ∈ At, aj �= ai do

if d(post(ai), post(aj)) ≤ r then
N ← N ∪ {aj}

end

end
return N

Advantages and Drawbacks. Only the function post is explicitly reified. Con-
versely, the computational complexity of neighbor perception in the simulation
is in O(n2), where n = |At|. Indeed, each agent has to check its distance to the
(n − 1) other agents (algorithm 1). However, when an agent moves, it only has
to modify its pos attribute as follows: move to(ai, p) : post+1(ai) ← p.

Usages. The AgentSet pattern proves convenient for implementing plain envi-
ronments containing a small number of agents, otherwise finding the neighbors
is costly. It is also suited for fields given in intension, since the corresponding
functions have just to be implemented together with the set of agents and the
distance function.

3.2 The “StandardGrid” Pattern

Principle. In many models, the environment to build is a discrete space orga-
nized as a geometric lattice, indexable by a system of discrete coordinates of
dimension k (such as E = Z

k). The discrete positions can also be seen as “cells”.

682 P. Mathieu et al.

To implementation such environments, the structure of the latter pattern is
endowed with a grid, i.e. a tessellation of the environment, through a k-dimension
array containing sets of agents. This explicit reification of function contt pro-
vides a direct access to all agents situated on any point (or “cell”) p. Besides,
all points adjacent to p are retrieved easily, either by their coordinates or by
cross-references between cells: hence, an immediate calculation of the neighbor
points of p (neighborhood in algorithm 2).

Algorithm 2. Neighbors calculation
(StandardGrid pattern)

neighbors(ai, r):
N ← ∅
neighborhood ← {p ∈ E | d(post(ai), p) ≤
r}
for c ∈ neighborhood do

N ← N ∪ contt(c)
end
return N�{ai}

Algorithm 3. Movement of
an agent (StandardGrid pat-
tern)

move to(ai, p):
if post(ai) �= p then

contt+1(post(ai)) ←
contt(post(ai)) � {ai}
contt+1(p) ← contt(p) ∪ {ai}

end
post+1(ai) ← p

Advantages and Drawbacks. Direct access to all agents on a point provides
a considerable speed-up of neighbors search, since they are necessarily on the
same cell as ai or on adjacent cells. Finding the neighbors of n agents within a
radius of r (algorithm 2), has a cost in O(n.rk) (e.g., with a Moore neighborhood
and k = 2, neighbors are in a square of (2r + 1)2 cells). Conversely, moving an
agent requires more complicated updates than in the previous pattern, in order
to ensure consistency between post+1 and contt+1 (algorithm 3).

Usages. This pattern fits environments based on integer coordinates, especially
if the average perception radius r̄ of the agents (within which they search their
neighbors) fulfils r̄k
 n. It is also well suited to represent field functions even
when given in extension (yet, assuming that those fields are defined on discrete
coordinates): the values of the field on each point are held by a k-dimension
array as well. This pattern also handles obstacles easily, when represented either
by agents (which prevent the access to their cell), or by fields, or by the distance
function (topology of the cells). Noteworthy, this grid-based approach is obvi-
ously not limited to square tessellations; many simulations e.g. in geography use
hexagons [16], which also constitute a lattice of R

2. We can also mention a very
frequent simplification of this pattern: when the model assumes that two agents
cannot occupy the same position, then the grid is simply a k-dimension array of
agents (instead of a set of agents).

3.3 The “AggregateGrid” Pattern

Principle. The previous pattern cannot be used when the environment is
based on a continuous space, because of the practical impossibility to pro-

Design Patterns for Environments in Multi-agent Simulations 683

vide exhaustive adjacency relations. Yet, if the function contt cannot be reified
as such, a discrete approximation can be build by “projecting” the continu-
ous positions in E on a discrete space E ⊂ E. Therefore, a discretization of
E, depending on a mesh size m, must be defined: cellm : E → E. In other
words we need: ∀c ∈ E,∃c′ ∈ E, c′ �= c such that d(c, c′) ≤ m. For instance,
taking E = R

2, it is quite natural to choose E = Z
2; then a simple dis-

cretization function would be: ∀(x, y) ∈ R
2, cellm(x, y) = (x

m�, y
m�) (where

u� denotes the floor of u). An “aggregate” form of the function contt can
then be defined, so as to calculate the set of all agents situated in a “cell”
c: ∀c ∈ E, cell contmt (c) = {a ∈ At | cellm(post(a)) = c}.

Now, the function cell contmt can be reified exactly like in the previous pat-
tern, through a k-dimension array cell cont which contains sets of agents (the
set of all agents situated in cell cellm(p)).

Algorithm 4. Neighbors calculation
(AggregateGrid pattern)

neighbors(ai, r):
N ← ∅
c0 ← cellm(post(ai))
neighborhood ← {p ∈ E | d(c0, p) ≤ � r

m
	}

for c ∈ neighborhood do
for aj ∈ cell contmt (c), aj �= ai do

if d(ai, aj) ≤ r then
N ← N ∪ {aj}

end

end

end
return N

Algorithm 5. Movement of an
agent (AggregateGrid pattern)

move to(ai, p):
if cellm(post(ai)) �= cellm(p) then

cont cellt+1(post(ai)) ←
cont cellt(post(ai)) � {ai}
cont cellt+1(p) ←
cont cellt(p) ∪ {ai}

end
post+1(ai) ← p

Advantages and Drawbacks. Due to the discretization of the continuous
space, this pattern benefits from the computational speed-up of a grid structure
(cf. algorithm 4). At the same time, the arbitrary size of the mesh m allows a
fine tuning of this discretization if needed: the computational cost of neighbors
detection for n agents, within a radius of r, is in O(n.(� r

m�)k.q) (where �u�
denotes the ceiling of u and q the density of agents i.e. the average number of
agents in each cell). Again, the counterpart is a more complicated technique for
updating the content of cells when agents move (cf. algorithm 5).

Usages. This pattern is relevant for modeling continuous environments con-
taining a large number of agents. It can be also useful for implementing a dis-
crete environment where the “natural” mesh size of 1 would be quite inefficient
(i.e. when r̄ � 1). Like in the StandardGrid pattern, the representation of
fields is quite straightforward, provided that the mesh size m leads to a realistic
approximation w.r.t. the spatial scale of the field. This approach can be extended
to other tessellation methods (e.g. hexagons in the plane), including partition

684 P. Mathieu et al.

methods suited for heterogeneous spatial distribution of agents (e.g. Voronoi,
quadtrees, etc.): the key principle is that each cell must have direct access to
adjacent cells.

3.4 The “SocialNet” Pattern

Principle. Each agent owns an attribute acquaintances which contains the
set of all agents it knows and can interact with. Then post is bijective, i.e. the
key issue is not knowing the places where the agents are situated, but rather
the accessibility relations between places. Here, the topology of the environ-
ment comes first, because acquaintances relations are equivalent to the adjacency
matrix of a graph (possibly directed if some acquaintances are not reciprocal):
∀i, j, eij = 1 if aj ∈ acquaintancest(ai), 0 otherwise.

Thus, two very different situations may occur. If agents are allowed to interact
with their own acquaintances only, the neighbors(ai, r) function is defined only
for r = 1, and trivially returns the acquaintances attribute. The environment
can be considered “virtual” (or “purely communicating” [1]), being distributed
through the acquaintances lists. On the contrary, if agents are allowed to interact
within a wider range, then the cost of the corresponding breadth-first search of
“neighbors” within a radius of r, is in O(q̄r) (with q̄ the average size of acquain-
tances lists). Instead, the distance function can be reified through a distance
matrix (δij) where ∀i, j δij = d(post(ai), post(aj)). It gives the shortest paths
in the graph (computed using e.g. the Floyd-Warshall algorithm [17]). Then,
the determination of the neighbors follows the same method as in the AgentSet
pattern (algorithm 1).

Advantages and Drawbacks. The trivial case is quite simple to implement.
In the second situation, using a distance matrix provides the ability for any agent
to interact with neighbors within an arbitrary radius. Yet, if changes occur in
the acquaintances relations, this matrix has to be updated by recomputing the
shortest paths, which is in O(n3) in the Floyd-Warshall algorithm.

Usages. This pattern is naturally suited to “social” environments though it
actually only assumes topological hypotheses regarding the accessibility relations
between agents, regarded as nodes of a graph. Obviously, the approach can
be extended with few transformations in situations where acquaintances are
associated with weights.

4 Combining Patterns

The pattern-based approach to environments we defend here, is rather a continu-
ation of the method sketched in [9], than an attempt to build a unique, complex,
monolithic first-class abstraction which is able to deal with all concerns at the
same time as proposed in [18]. Without prejudging the interest of such inte-
grated models for the analysis, design or implementation of MAS, we prefer to
follow an orthogonal approach which ensures on the contrary a clear separation

Design Patterns for Environments in Multi-agent Simulations 685

of concerns (in the same sense as in software engineering). Therefore we argue
that it is more advisable to combine several of those fundamental patterns.

For instance, in a case where simulated robots have to explore a building,
they are indeed situated in a continuous environment where they find obstacles
(other entities), and at the same time may exchange information with their
peers (the network of their acquaintances). Thus, “the” environment is actually
a combination between the “AggregateGrid” and the “SocialNet” patterns. The
neighbors of a robot is composed of, on the one hand, the entities perceived
in the 3D surrounding space, and on the other hand, other robots that can be
reached through radio communications.

Noteworthy, a multi-agent based simulation platform like NetLogo [19] actu-
ally provides an implementation for each of the patterns we propose, although
not explicitly identified as such. The “AgentSet” is a native data type in the
NetLogo language, which contains the collection of all agents of a kind. The
“StandardGrid” pattern is a built-in feature due to the existence of NetLogo
patches, which are 1 × 1 square cells discretizing the environment. The “Aggre-
gateGrid” pattern is realized by the fact that each NetLogo “turtle”, which is
endowed with floating-point coordinates, is located on a single patch (hence
patches implement the two patterns simultaneously). The “SocialNet” pattern
is provided by the ability to build links between turtles (and use them to detect
“link-neighbors”). Besides, those NetLogo concepts do not imply any special
use either as physical or social features, and are meant to be used together for
implementing the various needs of a simulation model.

Thus, we note that our pattern-based approach leads to a unification of
concepts of physical and social environments, that are usually kept distinct.
Besides, it also pushes the designer to decompose “the” environment of the
MAS, which is usually seen as a rather complex whole, into as many atomic
environments as needed, each one with a univocal purpose and implementation.

5 Conclusion and Perspectives

In this paper, we assume two main purposes for an “atomic environment”: the
spatial or social placement of agents, and the provision of information that can-
not be represented by agents at the chosen modeling scale. Thus, an atomic
environment is defined primarily as a space, endowed with a distance measure,
with positioning and content functions, and aimed at finding agents and neigh-
bors of agents: those features lead to a limited number of design patterns. The
four patterns presented here seem to cover a wide range of applications in agent-
based simulation.Besides, instead of modeling a single, complex environment in a
MAS, we recommend to rather combine several patterns with a clear separation
of concerns and purposes.

References

1. Ferber, J.: Multi-Agent Systems. An Introduction to Distributed Artificial Intelli-
gence. Addison Wesley (1999)

686 P. Mathieu et al.

2. Russell, S., Norvig, P.: Artificial Intelligence. Prentice Hall (1995)
3. Okuyama, F.Y., Bordini, R.H., da Rocha Costa, A.C.: ELMS: an environment des-

cription language for multi-agent simulation. In: Weyns, D., Van Dyke Parunak, H.,
Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 91–108. Springer,
Heidelberg (2005)

4. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Envi-
ronments for multiagent systems state-of-the-art and research challenges. In:
Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI),
vol. 3374, pp. 1–47. Springer, Heidelberg (2005)

5. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: a framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

6. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard
for agent platforms. Ann. Math. Artif. Intell. 61(4), 261–295 (2011)

7. Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic envi-
ronments in multi-agent simulation. J. Auton. Agents and Multi-Agent Systems
(JAAMAS) 14(1), 87–116 (2007)

8. Weyns, D., Holvoet, T.: A reference architecture for situated multiagent systems.
In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS
(LNAI), vol. 4389, pp. 1–40. Springer, Heidelberg (2007)

9. Schelfthout, K., Coninx, T., Helleboogh, A., Holvoet, T., Steegmans, E.,
Steegmans, E., Weyns, D.: Agent implementation patterns. In: Workshop on Agent-
Oriented Methodologies, 17th Annual ACM Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), pp. 119–130 (2002)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of
Reusable Object-Oriented Software. Addison Wesley (1994)

11. Kubera, Y., Mathieu, P., Picault, S.: Everything can be agent! In: 9th Int. Joint
Conf. on Auton. Agents and Multi-Agent Systems (AAMAS), pp. 1547–1548 (2010)

12. Picault, S., Mathieu, P.: An interaction-oriented model for multi-scale simulation.
In: 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 332–337. AAAI
(2011)

13. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers (1991)
14. Van Dyke Parunak, H.: Between agents and mean fields. In: Villatoro, D.,

Sabater-Mir, J., Sichman, J.S. (eds.) MABS 2011. LNCS, vol. 7124, pp. 113–126.
Springer, Heidelberg (2012)

15. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies.
In: 1st European Conf. on Artifical Life (ECAL), pp. 134–142. Elsevier (1991)

16. Sanders, L., Pumain, D., Mathian, H., Guérin-Pace, F., Bura, S.: SIMPOP: a
multi-agents system for the study of urbanism. Environment and Planning B 24,
287–305 (1997)

17. Floyd, R.: Algorithm 97: shortest path. Communications of the ACM 5(6), 345
(1962)

18. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. J. Auton. Agents and Multi-Agent Systems (JAAMAS) 14(1),
5–30 (2007)

19. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/
netlogo/

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

Commitments, Expectations, Affordances
and Susceptibilities: Towards Positional Agent

Programming

Giovanni Sileno(B), Alexander Boer, and Tom van Engers

Leibniz Center for Law, University of Amsterdam, Amsterdam, The Netherlands
{g.sileno,aboer,vanengers}@uva.nl

Abstract. The paper introduces an agent architecture centered around
the notions of commitment, expectation, affordance, and susceptibility.
These components are to a certain measure at the base of any agent sys-
tem, however, inspired by research in explanation-based decision making,
this contribution attempts to make explicit and start organizing under
the same operationalization neglected figures as negative commitment,
negative expectation, etc.

Keywords: Cognitive architectures · Positional programming · PACK ·
Reactive systems · Petri nets

1 Introduction

As the myth tells, even if he knew that all sailors who had done it went lost into
the open sea, Ulysses wanted to hear the voices of the Sirens. To achieve this goal,
the sail direction set, he put some wax in his companions’ ears and asked them to
bind him to the mainmast with the strongest rope. He also ordered not to follow
any of his requests before destination. Eventually, he succeeded, and we, listening
to his story, can understand why. However, are we able to fully represent it with
current agent-based languages? The story refers to notions as conditional persis-
tent commitment (Ulysses desiring to jump off towards the Sirens, and insisting
on trying it even if bound to the mainmast), positive expectation (about the fact
that the sirens were along that specific path), which find some correspondence
in most common BDI representations. However, in modeling those characters,
we may easily identify other notions at stake, as e.g. negative affordance (asso-
ciated with the overall plan preventing Sirens’ effect), disability (Ulysses bound
to the mast), negative susceptibility (the sailors to Ulysses’ requests) and no-
susceptibility (the sailors to Sirens’ voices). The purpose of the present work is
to identify and consider these “neglected” positions as first-class citzens, and to
start operationalizing them in practical reasoning terms.

1.1 Background and Motivation

The initial idea behind this contribution grew out from our work in institutional
modeling (see e.g. [1]). In a formal institution, each actor is bound to other
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 687–696, 2015.
DOI: 10.1007/978-3-319-25524-8 52

688 G. Sileno et al.

actors according to the legal relationships derived from the role he is enacting.
Hohfeld [2], for instance, identified positions as duty, claim, power and liabil-
ity as the fundamental components to describe the legal configurations holding
between two parties.1 Being our general objective to model complex institu-
tional scenarios, including scenarios of non-compliance, the composition of mere
institutional roles is however not satisfactory (e.g. a seem-to-be normal sale may
hide a money-laundering scheme). Roles need to be enriched with an explicit
intentional component, or, in other words, with an explicit link between motives
and institutional aspects. This requirement brought us to the exploration of the
agent-role concept [3].

Reflecting on the interactions between the institutional and agent compo-
nents, we discovered deeper underlying connections between the two domains:
where institutional positions identify extrinsic commitments and abilities, agentic
positions identify intrinsic commitments and abilities.2 In practice, the correl-
ativeness of the institutional positions of two parties can be put in analogy to
the correlativeness between agent and environment. This epistemological leap
allowed us to explore figures that are usually overlooked in agent modeling, but
which are important in the legal domain. For instance, negative action – in the
two forms of lack of action or actively preventing another outcome – is equally
relevant to attribute responsibility [4].

To confirm this representational need, we attempted to review other agent
languages/platforms considering the categories we will introduce in the paper.
Except Jason [6], built upon AgentSpeak(L) [7], those considered (2APL [8],
GOAL [9], ALP [10] and DALI [11]) refer only to default negation and introduce
some form of declarative goals. Losing the difference between null and negative
polarity, all negative positions we will introduce conflate. On the other hand,
without declarative goals, modeling mutual interactions between goals is much
more complex. Even if these and other representational limits may be overcome
with adequate extensions, our idea is to approach the issue from an alternative
direction: to start from stronger representational requirements, and to construct
the reasoning platform on top of those. Rather than rational choice theory, the
foundations of our contribution are to be found in cognitive research as e.g. [5],
focusing on explanation-based decision making.

The paper proceeds as follows. First, we define the foundations of the mod-
eling language, i.e. the notion of position and the two types of negation (§ 2).
Second, we analyze in some detail the position types (§ 3). Third, we briefly draft
their operationalization in a practical reasoning framework (§ 4). Discussion and
future developments end the paper.

1 These relations bring specific inter-dependencies: e.g. if a party has a duty to perform
a certain action, then there is another party that has a claim towards the first. At
the same time, if a party is in a certain position (e.g. duty to A), this precludes the
same party to be in another position (e.g. no-duty to A).

2 Extrinsic means that it is the result of social, normative forces, external to the
agency: the agent cannot change such position, even if he may still neglect or overlook
it. Intrinsic means that the agent has in principle control over it.

Towards Positional Agent Programming 689

+

0

−

not not

neg

(a) positive, negative, null posi-
tions and negation operators.

+ −

0

neg

not not

neg

−+

(b) positional triple as a Petri net.

Fig. 1. Triangle of contrariety and relative Petri net model.

2 Modeling Language: Positions and Negations

The proposed modeling language is centered around the notion of position.
In general, a position is a local state of the system that can be related to
other positions in dimensional terms. For instance, in a classic logic system,
each proposition can be put in relation with its negation. In this framework,
however, we consider the dimensional characterization associated to the triangle
of contrariety.3 In addition to positive (+) and negative (−) polarities, we con-
sider a null (0) polarity. For instance, black is certainly not white, but e.g. gray
is not white as well. Similarly, prohibition is the opposite of obligation, but they
are both not the same as faculty. Different operators can then be considered for
those negations: neg and not, illustrated in Fig. 1a. The first corresponds to
classic negation (or strong negation), relying on the duality/opposition of two
notions (e.g. black/white, obligation/prohibition). The second operator removes
the polarity; the null position states a certain qualification cannot be concluded
neither positively, nor negatively. In other words, restricting ourselves to the
terms proposed by that bipolar frame, undecidability holds. To a certain extent,
this can be associated to default negation.

Using this pattern, given any position, we can construct a triple of positions.
Only one of the three may hold at a certain time. The three symbols +, −,
0, can be interpreted both in state and transition terms: i.e. as identifying a
certain local state of this positional triple, or as identifying the event bringing
about that state. Exploiting this two-fold interpretation, and the focus on local
states, we ground our language to the computational model given by the Petri
net notation, as in Fig. 1b (see e.g. [14] for an introduction to Petri nets).

3 Cognitive Components

3.1 Commitment

Commitment identifies a general motivational component, i.e. an internal cog-
nitive mechanism which eventually converges or plays a role in driving towards
3 The triangle of contrariety (with nodes A, E, Y) can be derived from the Aristotelian

square (A, E, O, I), with Y = O ∧ I, see e.g. [12,13]. In relation to Hohfeld, see [1].

690 G. Sileno et al.

commitment
@ target

success
reference

failure
reference

precondition
expiration
condition

failure
operation

success
operation

Fig. 2. Operational structure of commitment

action or action avoidance. Following the triangle of contrariety, commitment
can be declined into the positions of positive commitment, negative commitment
and no-commitment.

Positive Commitment. A positive commitment position can be specified via the
elements illustrated in Fig. 2.4

The target identifies what the agent is committed to. The precondition repre-
sents the situation in which the commitment is instantiated. If the precondition
is present, the resulting element is a conditional commitment, as in ‘If I listen
to the Sirens’ voice, I want to follow them’. The success reference corresponds
to the specification on how to recognize its satisfaction (usually a proxy of the
target). The success operation describes what to perform after the commitment
is recognized as satisfied. The failure reference/operation identify how to recog-
nize/what to do when the commitment fails. These may be used to instantiate
backup commitments. The expiration condition expresses situations that remove
the commitment, independent from the ones defined in success or failure.

The structure allows to distinguish easily achievement goals from mainte-
nance goals, depending on the presence in success operation of the removal the
commitment (cf. [15]). Similarly, a commitment is called non-persistent instead
of persistent if it nullifies itself after that the failure is recognized (cf. [16] for
analogous institutional notions). For instance, Ulysses’ intent to reach the sirens
is persistent, as he continues to strive even when he acknowledges of not being
able to be freed from the rope.

Negative Commitment. A negative commitment reflects a negative position of
the agent towards a reference. In practice, the agent is committed to avoid the
situation expressed in the target. The structure is the same as the previous
one, apart that the recognition of the target situation (what the agent does not
want) is encoded in the failure field this time. On the other hand, the success
field reference is a situation in which this “negative” desire has been respected.

4 The gray transitions are not part of this module, but highlight that this structure is
operational only if some mechanism evaluates the associated expressions.

Towards Positional Agent Programming 691

The positive and negative specifications of commitment offer two different
frames to the modeler. For instance, in ‘I want to listen to the sirens before we
arrive at destination’, reaching the destination can be interpreted as an event
making explicit the failure of the commitment. If we consider a rephrasing the
previous statement ‘I do not want to arrive at destination before listening to
the sirens’, the success and failure fields are the same of the previous case. As a
human reader, however, we recognize that the two phrases transport a different
pragmatic meaning. The first case is clearly a matter of direct planning; in the
second, there is an implicit reference to something that is blocking the path
towards the desired outcome. See § 4.1.

No Commitment. A no commitment position corresponds to the absence of com-
mitment towards the reference. Consequently, there are no failures, no successes
to be accounted.

3.2 Expectation

If commitments are essential for the definition of the subject, expectations reflect
the situatedness of the subject in the world. What the agent expects from the
world is what he believes the world is, actually and potentially.

Positive Expectation. The structure of expectation is the same as that of com-
mitment, and, therefore, a similar analysis of the components applies. If there is
no precondition, the expectation is a belief about what is currently holding. The
target defines the propositional content of the belief. The precondition specifies
how the expectation can be formed. The success/failure referents are used to
specify the means to verify/defeat the expectation, and they are usually built
upon primitive perceptions or on other expectations. Differently, the expiration
condition can be used to put a limit to such expectations, e.g. ‘after the rain,
the wind flows for a couple of hours’.

Negative Expectation. A negative expectation specifies what the agent thinks it
is not the case or impossible. For instance ‘Sirens do not exist’. It can be used
to include constraints in the knowledge base of the agent.

No Expectation. This position states that the agent has not constructed any
belief about the matter: it is an agnostic position. For instance, ‘I do not know
whether sirens exist’, or ‘I don’t know whether people follow the sirens when
they hear their voice’.

3.3 Affordance

In its traditional form, an affordance reifies the possibility of the agent to adopt
a certain behaviour in certain conditions to achieve a certain result [17]. Affor-
dances interact with commitments to define which behaviour the agent will
perform.

692 G. Sileno et al.

inhibition

affordance
@ target

precondition
expiration
condition

commitment

action

Fig. 3. Operational structure of affordance.

Positive Affordance. The structure to specify affordances is illustrated in Fig. 3.
Its components can be compared to those of action languages: the precondi-
tion is basically a pre element, while the target identifies what the agent would
achieve with that action, a subset of a traditional post element. Precondition
and expiration elements are like in the previous structures. The action element
corresponds to a plan of actions. The inhibition field identifies a situation in
which the affordance, although available, cannot be used. This can be exploited
to solve conflicts raised at motivational level. See § 4.1.

Negative Affordance. Negative affordance, or negative power, reflects on the
ability of the agent to adopt a certain plan to prevent to reach a certain state of
affairs. For instance, Ulysses perceives that his plan provides him with a negative
affordance about falling for the sirens. In principle, the situation expressed by
the target represents what is going to occur if the action is not performed.

Disability. The absence of any type of association between the behaviour of
the agent to a certain target corresponds to disability. In general, given a cer-
tain action, infinite disabilities can be expressed (all of that cannot be achieved
via that action). This would be redundant and uninteresting information to be
maintained. When disability is expressed explicitly, usually it is because it settles
domain limitations to an existing ability.

3.4 Susceptibility

The positional triple correlative to affordance is susceptibility. The agent is sus-
ceptible to a certain event if he has some reaction to its occurrence, at least at
epistemic level.

Positive Susceptibility. Positive susceptibility describes the attention of the agent
around a potential situation, identified by the target, whose occurrence is asso-
ciated to a certain reaction. The structure is similar to that of affordance, apart
from the renaming of action with reaction. Interestingly, all conditional posi-
tions can be transformed using susceptibility. A more general mechanism is then

Towards Positional Agent Programming 693

unveiled: all situations accounted in the structures have to be aligned with ade-
quate susceptibilities. See § 4.2.

Negative Susceptibility. At the opposite polarity, we find negative susceptibility.
If the stimulus described by the target occurs, then the agent generates a nega-
tive commitment towards what is specified in the reaction field. The sailors on
Ulysses’ boat receives orders from their captain to untie him. While usually they
would have followed those, now they avoid doing what he asks.

No Susceptibility. The absence of susceptibility is unresponsiveness or no sus-
ceptibility. For instance, because of the wax in the ears, sailors are unresponsive
to the voice of the Sirens. As with no-affordance, this serves to define the bound-
aries of an existing domain of susceptibility.

4 Operationalization

4.1 From Commitment to Action

To operationalize the connection between commitment and action, we relate
these four cognitive components using the prevent-acquire-cure-keep (PACK)
psychological framework [18]: the presence/absence of a positive/negative con-
dition guides the agent to select a certain behaviour, in order to promote/demote
such condition. This can be translated with the following rules:

Acquire (A). If you have a commitment towards a certain target, not holding
at the moment, and an associated affordance is available, then use it.

Keep (K). If you have a commitment towards a certain target, which is hold-
ing at the moment, and you have a negative affordance associated with its
negation, then use it. Furthermore, if there are available affordances that
may produce this outcome as expected side-effect, inhibit them.5

Prevent (P). If you have a negative commitment towards a certain target,
which is not holding at the moment, and you have a negative affordance
towards it, then use such affordance. Similarly to the keep case, we also have
to consider to inhibit affordances with undesired side-effects.

Cure (C). If you have a negative commitment towards a certain target, which
is holding at the moment, and you have the affordance associated with its
negation, then use such affordance.

Current agent platforms focus mostly on the first reasoning pattern. Integrat-
ing the others, however, we are able to explain the pragmatic difference between
the two rephrasing of commitment given in § 3.1. The positive characterization
triggers a mechanism A targeting the goal; the negative one a mechanism P in
order to avoid not to bring about the goal. The two frames activate and interact
with different distributions of affordances and expectations.
5 This solution is simplistic: mutually excluding commitments would inhibit both affor-

dances. A natural correction would be to introduce priorities between commitments.

694 G. Sileno et al.

4.2 From Commitment to Monitoring

Not all what the agent may perceive or infer from his knowledge is relevant to
his commitments. The relevance relation can be extracted from the commitment
specifications, considering two directions: forward, i.e. identifying potential situ-
ations enabling changes, because of preconditions, expiration conditions related
to current positions and potential positions addressed by the PACK; backward,
i.e. circumscribing success and failure references, necessary to readdress the cur-
rent configuration. Both forward and backward components are required for the
viability of the system. The first allows to respond adequately to changes in the
environment. The second provides the means for steering, enabling repair, and
for reifying errors in expectations, useful for adaptation purposes.

Identifying the primitive expectations relevant to a certain commitment con-
figuration is however not sufficient. Expectations may for instance expire, the
agent still requiring such knowledge. Agents have typically to start a specific
course of action to retrieve missing information. This evidence-oriented focus is
particularly relevant for our intended institutional applications (see § 1.1).

5 Discussion and Further Developments

The paper traces an outline of an agent architecture based on commitments,
expectations, affordances, and susceptibilities, distinguished in positive, negative
and null positions. For reasons of space, it overlooks technical details, preferring
to give a wide overview of the system. A preliminary proof-of-concept of the
architecture is being developed at the moment, and we are evaluating further
elements (for instance, the suspension of commitments, cf. [19]).

Our aim is to fill a representational gap experienced while modeling com-
plex institutional scenarios with current agent-based platforms. Such models
are intended to be used for simulation, and for model-based diagnosis or similar
abductive processes. Interestingly, the resulting architecture may be used as well
to model characters in narratives, as the proposed Ulysses’ story.

The agents we target are non-reflective: they cannot modify their own scripts.
However, contrary to what the Petri net notation may suggest, they may show
proactivity, as a consequence of maintenance goals.

Another important issue we are confronted with is of a computational nature.
Kowalski et al. have convincingly argued that there are widespread confusions
about the different natures of production and declarative rules [20], which we
think can be aligned with some of the problems observable in e.g. deontic logic
with contrary-to-duty obligations, in analytic philosophy with dispositions, etc.
Our hypothesis is that, focusing on a computational model like Petri nets, con-
structed upon the notion of causation (and therefore, on local states), we are
able to put aside the problem, still exploiting the advantage of formal grounding.

In the past, other authors worked already on connecting agents with Petri nets
[21–23], especially for model checking reasons, but the models they proposed do
not primarily focus on agent cognition. This work essentially aims to start filling
this gap.

Towards Positional Agent Programming 695

References

1. Sileno, G., Boer, A., van Engers, T.: On the interactional meaning of fundamental
legal concepts. In: Proc. Int. Conf. Legal Knowledge and Information Systems -
JURIX 2014, pp. 39–48 (2014)

2. Hohfeld, W.N.: Fundamental legal conceptions as applied in judicial reasoning.
The Yale Law Journal 26(8), 710–770 (1917)

3. Boer, A., van Engers, T.: An agent-based legal knowledge acquisition methodology
for agile public administration. In: Proc. Int. Conf. on Artificial Intelligence and
Law - ICAIL 2011, pp. 171–180 (2011)

4. Lehmann, J., Breuker, J.A., Brouwer, P.W.: Causation in AI & Law. Artificial
Intelligence and Law 12(4), 279–315 (2004)

5. Pennington, N., Hastie, R.: Reasoning in explanation-based decision making. Cog-
nition 49, 123–163 (1993)

6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons Ltd. (2007)

7. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language.
In: Proc. Workshop on Modelling Autonomous Agents in a Multi-Agent World
(1996)

8. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

9. Hindriks, K.V.: Programming rational agents in GOAL. In: Multi-agent Program-
ming: Languages, Platforms and Applications, pp. 119–157 (2009)

10. Kowalski, R., Sadri, F.: From Logic Programming towards Multi-agent systems.
Annals of Mathematics and Artificial Intelligence 25, 391–419 (1999)

11. Costantini, S., Tocchio, A.: DALI: An Architecture for Intelligent Logical Agents.
In: Proc. Workshop on Architectures for Intelligent Theory-Based Agents (AITA)
(2008)

12. Blanché, R.: Sur l’opposition des concepts. Theoria 19(3), 89–130 (1953)
13. Béziau, J.Y.: The Power of the Hexagon. Logica Universalis 6(1–2), 1–43 (2012)
14. Bobbio, A.: System modelling with Petri nets. In: Systems Reliability Assessment,

pp. 102–143 (1990)
15. Hindriks, K.V., van Riemsdijk, M.B.: Satisfying maintenance goals. In:

Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007.
LNCS (LNAI), vol. 4897, pp. 86–103. Springer, Heidelberg (2008)

16. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In:
Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 194–209. Springer, Heidelberg (2010)

17. Gibson, J.: The ecological approach to visual perception. Houghton Mifflin, Boston
(1979)

18. Ogilvie, D.M., Rose, K.M.: Self-with-other representations and a taxonomy of
motives: two approaches to studying persons. Journal of Personality 63(3), 643–679
(1995)

19. Meneguzzi, F., Telang, P., Singh, M.: A first-order formalization of commitments
and goals for planning. In: Proc. 27th AAAI Conference on Artificial Intelligence,
pp. 697–703 (2013)

20. Kowalski, R., Sadri, F.: Integrating logic programming and production systems in
abductive logic programming agents. In: Polleres, A., Swift, T. (eds.) RR 2009.
LNCS, vol. 5837, pp. 1–23. Springer, Heidelberg (2009)

696 G. Sileno et al.

21. Behrens, T., Dix, J.: Model checking with logic based petri nets. In: Proc. of
CLIMA (2007)

22. Celaya, J.R., Desrochers, A.A., Graves, R.J.: Modeling and analysis of multi-agent
systems using petri nets. Journal of Computers 4(10), 981–996 (2009)

23. Purvis, M., Cranefield, S.: Agent modelling with petri nets. In: Proc. Computa-
tional Engineering in Systems Applications - CESA 1996, pp. 602–607 (1996)

Using Conceptual Spaces for Object Recognition
in Multi-agent Systems

João Mario Lopes Brezolin(B), Sandro Rama Fiorini,
Marcia de Borba Campos, and Rafael H. Bordini

Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre,
Rio Grande do Sul, Brazil

joao.brezolin@acad.pucrs.br, srfiorini@gmail.com,

{marcia.campos,rafael.bordini}@pucrs.br

Abstract. The development of a system to support the mobility of blind
or visually impaired users requires the development of an agent capable
of performing the recognition of perceived objects as well as determin-
ing their location within the physical space. Taking into account the
principle that conceptual representations can improve the object recog-
nition process, the work presented here proposes the integration of a
conceptual-space level into the BDI agent architecture. Such integration
is developed on top of the resources of the Jason agent platform and
the CSML API for conceptual-space models. In this paper, we present a
practical example showing how to integrate conceptual representations
into the agent reasoning cycle.

Keywords: BDI architecture · Conceptual spaces · CSML API · Jason

1 Introduction

The development of a system to support the mobility of blind or visually
impaired users requires the development of an agent capable of performing the
recognition of perceived objects as well as determining their location within the
physical space. Conceptual spaces is a framework for concept representation that
allows one to represent similarity between objects and concepts [7]. It is particu-
larly interesting for object recognition and classification. Conceptual spaces can
be thought of as geometric spaces, in which points represent objects and regions
represent concepts. The dimensions of a conceptual space denote the qualities in
which these entities can be compared. The distance metric encodes the similarity
between object/concepts. In order to improve the agent’s abilities in regards to
object recognition, our work proposes the integration of a level of representation
based on conceptual spaces into the architecture of BDI agents. We extend and
use the Jason platform [3] to support the design of systems that incorporate
such conceptual inference processes into the agent reasoning cycle. In our work,
the representation of conceptual spaces is established with the aid of the Con-
ceptual Space Markup Language (CSML). Based on the algebra proposed by
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): PRIMA 2015, LNAI 9387, pp. 697–705, 2015.
DOI: 10.1007/978-3-319-25524-8 53

698 J.M.L. Brezolin et al.

Adams and Raubal [1], CSML allows users to specify conceptual databases and
manage them with the aid of a programming interface.

This paper presents the first results towards the integration of these resources
and its contribution to the development of a system to support the mobility of
blind or visually impaired users. First, we review the main aspects of the BDI
architecture, the theory of conceptual spaces, and the role of the computational
platforms used in our implementation. Next, we present a practical example,
through which we detail the customisations made on the existing platforms to
enable our proposed conceptual inference integration. We then draw conclusions
from this study.

2 BDI Architecture, Conceptual Spaces, and Related
Computational Platforms

The BDI (Beliefs, Desires, Intentions) architecture is a commonly used app-
roach for the development of systems of rational agents situated in complex
and dynamic environments [15]. Agents are active entities able to analyse and
act on their environment. The BDI (Beliefs, Desires, Intentions) architecture
established the basis for the development of the AgentSpeak(L) programming
language.

The Jason platform for the development of multi-agent systems [3] was devel-
oped based on an extended version of the AgentSpeak language. It supports
inter-agent communication through performatives based on the theory of speech
acts [11]. Following on ideas from the AgentSpeak language, also in the Jason
variant an agent is defined through the specification of the initial state of its
belief base and its plan library. In addition to supporting the basic syntax of
the language AgentSpeak, Jason has support for additional features such as the
use of annotations in beliefs and plans, support to customised functions devel-
oped in Java and incorporated as internal actions, a Java class for environment
specification, and the possibility of customisation of agent architectural features.

In the conceptual spaces approach, concepts are represented by regions in
a multidimensional geometric space where objects are projected as points or as
vectors of points [7]. Conceptual space is structured by quality dimensions that
are endowed with a geometric structure and a specific metric that allows one
to measure distances between objects. This mechanism enables inferences on
degrees of similarity between the objects represented in the space. That is, two
objects may have a high degree of similarity if the computed distance between
the points which represent them is small in relation to a domain-specific thresh-
old. Otherwise, if this threshold is exceeded, these objects may not be considered
(sufficiently) similar. The decomposition of space into convex regions is deter-
mined by the existence of a cell that intersects a set of half-plans and establishes
the point containing the most representative element of the region. Decompo-
sition of space into regions provides the basis for the notions of property and
concept. A property is represented as a convex region of a domain in a concep-
tual space (e.g., a region denoting the red colour), while concepts are represented

Using Conceptual Spaces for Object Recognition in Multi-agent Systems 699

as sets of regions in a number of domains. For example, the concept of apple
is composed of regions in domains such as colour, shape, and texture, among
others. An individual object is represented by a vector that indexes points in
regions of the conceptual space.

Seeking to motivate the development of real applications based on the theory
of conceptual spaces, Adams and Raubal [1] proposed an algebraic model for
conceptual spaces. This algebra laid the foundation for the development of the
CSML language, which supports the hierarchical representation of the elements
composing a conceptual space according to the algebra they proposed in [2]. For
example, the definition of concepts is followed by the definition of the domain
regions composing it. Along with the definition of the concept ID is the definition
of its prototype instance as shown in the code snippet below:

<csml:Concept csml:ID="# RedApple"

csml:prototypeID ="# RedApplePrototype ">

<csml:Region

csml:ID="# RedAppleColorRegion "

csml:domainID ="# Color">

<csml:AMatrix > ... </csml:AMatrix >

<csml:qVector > ... </csml:qVector >

<csml:bVector > ... </csml:bVector >

</csml:Region >

...

</csml:Concept >

Along with the language specification, the authors developed an API to sup-
port the use of CSML files. The API provides resources to create, compare,
manipulate, and validate CSML content with the aid of a reasoner. Available
under GPL license, the API also allows customisation of its code to suit the
need of a particular system. This API serves for the purpose of this work due
to its features and the fact that integration with the Jason framework is facili-
tated because both software platforms were developed in the same programming
language.

3 Integration of a Conceptual Space Model into the
Reasoning Cycle of BDI Agents

This study is largely driven by the goal of developing a system to aid the mobility
of those who are visually impaired. Orientation and mobility (O&M) skills help
people who are blind or visually impaired know where they are, where they want
to go (orientation), and how to get there safely and independently by walking or
using some form of transportation (mobility). The identification of landmarks
and obstacles are examples of information that is extracted from the environment
by the individual in order to establish their spatial orientation [10]. The objects
perceived in the environment are identified by their peculiar characteristics (e.g.,
colour, shape, size) and by their position in the physical space. Both types of
information are used to help those who are visually impaired in the development
of their cognitive map.

700 J.M.L. Brezolin et al.

In our proposal, conceptual spaces sit between the symbolic belief base and
the perceptual level of the agent. The conceptual inference process involves deter-
mining the appropriate conceptual representation to identify objects perceived in
the environment. This process can be initiated at the subconceptual level where
the percepts (i.e., units of sensorial representation) received by the agent are
mapped into domains of the conceptual space. As a result, a vector that indexes
points of regions of the conceptual space is generated, establishing a conceptual
representation for an observed object, which can be associated with a symbolic
belief that can in turn be manipulated by the agent. It should be also noted
that the process of recognising objects is noisy, and also at times the properties
observed from an object may not be sufficient to categorise it. In our current
work, the agents will have to manage observations that represent concepts with
partial descriptions.

In regards to the architecture of BDI agents, it can be said that the process
of belief acquisition is one of the essential building blocks on which the con-
ceptual reasoning for BDI agents can be implemented. In its default method, a
Jason agent receives information from the environment then stores it in a list of
percepts. The new elements of this list are then compared to the elements of the
agent’s belief base. If a belief is present in the percept list but is not present in
the belief base, it is added to the latter. If a belief is found in the belief base but
is no longer in the list of percepts, it must be removed from the agent’s belief
base [3]. To allow conceptual inference, it is necessary to modify this process by
adding new features to it, since it is now necessary to evaluate if new perceptions
received by the agent’s sensorial apparatus can compose a complete conceptual
description of the observed object through the conceptual space representation.
Thus, it is necessary to project the data captured by the sensors of the agent
onto domains of the conceptual space, with the help of the CSML API.

The customised code used to execute this task in the belief acquisition process
is detailed in Algorithm 1. When a percept is received, and before it is added to
the belief base, it is necessary to check whether it refers to an object property.
If it does, information must be extracted to identify from which object this
perception was originated (line 4). This will allow us to recover a list of the pre-
viously stored percepts that also refers to the same object (line 8). This list is
created with the aid of Jason’s (BeliefBase class) method getPercepts, which
recovers from the agent’s belief base all beliefs marked as originating from per-
ception of the environment (line 5). The set composed of information extracted
from previous and current beliefs allows the generation of a temporary CSML
specification of a concept instance that can be compared to concept specifica-
tions stored in the CSML database (lines 6–10). From the percepts stored in
the belief base it is possible to extract information about domains and points
to which each one of these percepts refer and add it to the temporary concept
instance (lines 7–10). Next, it is necessary to compare the conceptual structure of
the built instance to the structure of the concepts in the CSML model. With the
aid of the CSML API’s reasoner, a set of candidate concepts is generated by com-
paring the shared domains between the temporary instance and the concepts in

Using Conceptual Spaces for Object Recognition in Multi-agent Systems 701

Algorithm 1. Attempt to Recognise an Object through a Newly Perceived
Property
1: function recognise(literal l)
2: Elected ← null
3: if isObjectProperty(l) then
4: id ← extractID(l)
5: P ← getPercepts()
6: I ← CreateInstance()
7: for all p ∈ P do
8: I ← buildInstance(p, id)
9: end for
10: I ← buildInstance(l)
11: C ← getConcepts()
12: N ← sharedDomains(C, I)
13: Elected ← ClosestConcept(I, N)
14: if (distance(Elected, I) > threshold) then
15: Elected ← null
16: end if
17: if (Elected) then
18: for all p ∈ P do
19: removeBel(p, id)
20: end for
21: cl ← createLiteral(Elected(id))
22: cl ← AddAnnot(TPercept, csmlDB, csmlIns(I))
23: end if
24: end if
25: if (Elected) then
26: return(cl) � object was recognised as cl
27: else
28: return(l) � no recognition was possible
29: end if
30: end function

the CSML specification (line 12). If this set is non-empty, the distances between
the projected points of the temporary instance and the prototypes of each con-
cept in that set are computed and the concept with the smallest distance is
selected (line 13). The value computed for the distance between the elected con-
cept and the temporary instance is compared to a predefined domain-threshold.
If the value is above such threshold, the chosen concept receives a null value
(lines 14–16). Otherwise, the respective concept is chosen to represent the per-
ceived object. All previous beliefs about proprieties of the object used to classify
it can then be removed from the agent’s belief base because they will be replaced
by the concept representation just chosen (lines 18–20). A new belief that repre-
sents the object as a concept instance is then generated (line 21). For example,
if the elected concept was “apple”, the new belief will state that an instance of
this concept were found in the environment (e.g., apple(obj2), where obj2 is
the object ID). It is important to preserve the (meta) information that this new

702 J.M.L. Brezolin et al.

belief was originated from perception of the environment. This will aid in future
interactions of the agent because it will be able to retrieve information about
this object from the list of perceptual beliefs. It is also important to associate
information about the conceptual space model and the instance that originated
this object/concept belief (line 22). This will help the agent in recovering the
object properties in future interaction processes if necessary. Last, it is checked
whether the current or the generated belief should be returned to be (re)included
in the belief base (lines 25–29). If the selection of a representative concept was
not possible, then the object property itself is returned to be, as usual, added to
the agent’s belief base as any other (perceptual) belief referring to a property of
that (so far) unrecognised object.

Besides the object classifications, the conceptual level can also be useful to
retrieve information about objects that were already recorded in the CSML
Database. One intuitive way to do this is by using a Jason internal action as
described in Algorithm 2.

Algorithm 2. getCSMLObject Internal Action
1: function getCSMLObject(Term ObjI, ObjC, ObjD, ObjQ, ResV)
2: I ← getInstances(ObjC)
3: for all i ∈ I do
4: if sameID(i, ObjI) then
5: N ← getQDimension(i, ObjD)
6: v ← getQV alue(N, ObjQ)
7: end if
8: end for
9: return unifies(v, ResV);
10: end function

Initially, the function receives five arguments that allow us to set the param-
eters to retrieve information from the CSML database: the object instance about
which the information is required, the name of the concept that was assigned to
the object instance in question, the domain, and its respective quality dimen-
sion. The last parameter will be used to return a result to the AgentSpeak plan
calling this internal action. The first argument helps determine the CSML file
that will be used to recover the required instance information (lines 2–8). When
the instance is found (line 4), it is necessary to select the specific domain having
the quality dimension required (line 5). Finally, from set of quality dimensions
of the domain it is possible to filter the specific quality dimension and get its
respective point value (line 6). The value recovered is then unified with the last
argument received by the function for the result of the execution of this function
to be returned to the AgentSpeak plan. An example of the use of both algorithms
is presented in the next section.

Using Conceptual Spaces for Object Recognition in Multi-agent Systems 703

4 A Practical Example of the Use of Conceptual
Information in Multi-agent Systems

To exemplify how conceptual information can be used by an agent, consider the
following scenario implemented in Jason where an agent has the goal of helping
a visually impaired user to find a specific object in a room (in this case, a red
apple). To achieve this goal, the agent has first to identify where the object of
interest is, as well as to determine the path to its location.

Fig. 1. Target Object Recognition Scenario

Figure 1(a) shows the expected movement of the agent in the environment
and the location of the objects recognised by the agent. Figure 1(b) shows how
this scenario was adapted to a Jason environment. To get closer to the objects
to be checked, the agent has to help the user to get at the end of the hall.

In order to execute this task, the agent has first to determine the depth of
the hall. This information is already present in the CSML database and can be
recovered with the aid of the customised internal action described in the previous
section, which is called by the plan shown in the code snippet below:

1: +at(hall ,hall1) :

2: <- myp.getCSMLObject (hall ,hall1 ,shape ,depth ,D);

3: -+hall_depth(D);

First, the agent realises that it is in a location “hall1” that was already clas-
sified as a “hall”. This enables the agent to use an internal action to retrieve the
required information from the CSML database (line 2). When the internal action
is called, the following parameters are informed: the object instance (hall1), the
concept name (hall), the domain (shape) and its respective quality dimension
(depth). As a result of the execution of the internal action, the information
retrieved from the CSML Database is added or updated as an agent belief (line
3). When the user reaches the end of the hall, the agent performs a new reading
of the environment. On the left-hand side, the agent finds a green object that

704 J.M.L. Brezolin et al.

does not correspond to the characteristics expected of the desired object, but it
might be used as a landmark. On the right-hand side, the agent will find two
red objects which might be the object desired by the visually impaired user. The
agent only perceived the objects’ positions and colors and try to classify each
one of them by executing Algorithm 1, but those objects cannot yet be clas-
sified. Both objects are therefore recorded as unrecognised. By checking those
objects positions on the grid, the agent can determine that the desired objects
are to the right of the green object. The green object also allows them to find a
safe path to get near the unrecognised objects. When the user gets next to the
landmark object, the agent assigns the first red object as the nearest. When the
agent becomes close to the first object, it receives information about the object’s
shape. The information does not match the expected (apple) shape. The first
object cannot be classified as the desired object so the agent needs to approach
the second object. When the agent gets there, it receives the perceptual informa-
tion that this object has a rounded shape.The similarity measure is computed
and the value is found to be below the threshold. A new perceptual belief is
added to the agent’s belief base indicating that this particular object refers to
an instance of the concept apple.

5 Conclusion

In this paper, we described initial steps towards integrating a knowledge rep-
resentation level based on the conceptual spaces paradigm into a BDI agent
architecture. We have also shown how this integration can contribute towards
the development of a system to support the mobility of blind or visually impaired
users. In our approach, we used the Jason platform and the CSML API to build
the necessary infrastructure to establish a process of conceptual inference for
BDI agents. We proposed and demonstrated the use of an algorithm establish-
ing the similarity of concept representations based on the use of a function that
computes the distance between the spatial representations of an observation and
prototypical instances of candidate concepts to represent that observed object.
Finally, we exemplified how information from the conceptual database can be
retrieved by using a Jason internal action that we developed.

References

1. Adams, B., Raubal, M.: A metric conceptual space algebra. In: Hornsby, K.S.,
Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756,
pp. 51–68. Springer, Heidelberg (2009)

2. Adams, B., Raubal, M.: Conceptual Space Markup Language (CSML): Towards
the cognitive semantic web. In: International Conference on Semantic Computing
(2009)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley and Sons, New York (2007)

4. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1999)

Using Conceptual Spaces for Object Recognition in Multi-agent Systems 705

5. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical
reasoning. Computational Intelligence (1988)

6. Edelman, S., Shahbazi, R.: Renewing the respect for similarity. Front. Comput.
Neurosci. 6, 45 (2012)

7. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press,
Cambridge (2000)

8. Gärdenfors, P.: The Dynamics of Thought. Springer, Dordrecth (2005)
9. Giudice, N.A., Legge, G.E.: Blind navigation and the role of technology. In: Engi-

neering Handbook of Smart Technology for Aging, Disability, and Independence.
Wiley and Sons, New York (2008)

10. Long, R.G., Giudice, N.A.: Establishing and maintaining orientation for orientation
and mobility. In: Foundations of Orientationand Mobility. American Foundation
for the Blind, New York (2010)

11. Moreira, Á.F., Vieira, R., Bordini, R.H.: Extending the operational semantics of a
BDI agent-oriented programming language for introducing speech-act based com-
munication. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003.
LNCS (LNAI), vol. 2990, pp. 135–154. Springer, Heidelberg (2004)

12. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Proceedings of the 7th European Workshop on Modelling Autonomous Agents
in a Multi-agent World: Agents Breaking Away (1996)

13. Steels, L., Baillie, J.: Shared grounding of event descriptions by autonomous robots.
Robotics and Autonomous Systems (2003)

14. Wassermann, R.: Revising Concepts. In: Fifth Workshop on Logic, Language, Infor-
mation and Comunication (WoLLIC) (1998)

15. Wooldridge, M.J.: Introduction to Multiagent Systems. Wiley and Sons, New York
(2002)

16. Klapiscak, T., Bordini, R.H.: JASDL: a practical programming approach com-
bining agent and semantic web technologies. In: 6th International Workshop on
Declarative Agent Languages and Technologies VI (2008)

Author Index

Afsharchi, Mohsen 585
Ahmadi, Kamilia 367
Albayrak, Sahin 622
Allan, Vicki H. 367
Al-Saqqar, Faisal 547
Aminof, Benjamin 185
Andrejczuk, Ewa 631
Aucher, Guillaume 670

Baldoni, Matteo 566, 575
Baroglio, Cristina 566, 575
Bentahar, Jamal 547
Bergenti, Federico 483
Boer, Alexander 687
Bordini, Rafael H. 697
Bosse, Tibor 383, 650
Brezolin, João Mario Lopes 697
Brunetti, Pietro 49
Bulling, Nils 640

Calardo, Erica 101
Capuzzimati, Federico 566
Clarance, David 36
Coelho, Francisco 613
Collier, Rem W. 351, 501
Cristani, Matteo 603
Croatti, Angelo 49
Croitoru, Madalina 594

de Borba Campos, Marcia 697
Dssouli, Rachida 547
Dunin-Kȩplicz, Barbara 265

Egan, Malcolm 557
Ewin, Christopher 85

Fan, Xiuyi 519
Farhangian, Mehdi 538
Fiorini, Sandro Rama 697

Gabbriellini, Simone 284
Governatori, Guido 101, 603

Haest, Rob 492
Hamann, Heiko 201
Hindriks, Koen V. 335
Hirayama, Katsutoshi 134
Holvoet, Tom 248
Hrabia, Christopher-Eyk 622

Ihara, Takamasa 118

Jakob, Michal 557
Jamroga, Wojciech 232

Katiyar, Vinay 36
Kengyel, Daniela 201
Khani, Hossein 585
Kholy, Warda El 547
Koeman, Vincent J. 335
Küster, Tobias 622

Laarej, Amine 547
Le, Tiep 449
Leask, Sam 433
Lillis, David 351
Liu, Chanjuan 467
Liu, Fenrong 467
Logan, Brian 433
Lopes, Cristina 20
Lorini, Emiliano 301

Marques, Tânia 510
Mathieu, Philippe 678
Matsui, Toshihiro 134
Matsuo, Hiroshi 134
Maubert, Bastien 670
Menshawy, Mohamed El 547
Micalizio, Roberto 566, 575
Monica, Stefania 483
Mühlenbernd, Roland 301
Murano, Aniello 185, 218, 232

Neerincx, Mark A. 383
Nguyen, Hoang Nga 640
Nogueira, Vitor 613

O’Hare, G.M.P. 501
Okimoto, Tenda 134
Olivieri, Francesco 603
Oren, Nir 557
Oyama, Satoshi 400

Pardo, Francisco Denis Pozo 622
Payne, Terry R. 319
Pearce, Adrian R. 85
Perelli, Giuseppe 218
Peyrard, Nathalie 3
Pianini, Danilo 49
Picault, Sébastien 678
Pinchinat, Sophie 670
Pontelli, Enrico 449
Porello, Daniele 416
Provoost, Simon 650
Purvis, Martin K. 152, 538
Purvis, Maryam 152, 538

Radoszycki, Julia 3
Radspieler, Gerald 201
Ricci, Alessandro 49
Rodriguez-Aguilar, Juan Antonio 631
Rotolo, Antonino 101
Rovatsos, Michael 65
Rubin, Sasha 185, 218
Russell, Seán 351, 501

Sabbadin, Régis 3
Sakurai, Yuko 118, 400
Santini, Francesco 284
Sauro, Luigi 169
Savarimuthu, Bastin Tony Roy 152, 538
Schaefer, Martin 557
Schmickl, Thomas 201
Schwarzentruber, François 670
Secq, Yann 678
Sharpanskykh, Alexei 492

Shen, Wen 20
Shiba, Yumeno 528
Shinoda, Masato 400
Sierra, Carles 631
Silaghi, Marius 134
Sileno, Giovanni 687
Smets, Nanja J.J.M. 383
Son, Tran Cao 449
Strachocka, Alina 265
Su, Kaile 467
Sugawara, Toshiharu 528

Tamma, Valentina 319
Tate, Austin 65
Thomopoulos, Rallou 594
Todo, Taiki 118
Toni, Francesca 519
Tsuruta, Shunsuke 118

Umegaki, Haruna 528

van Diggelen, Jurriaan 383
van Engers, Tom 687
van Lon, Rinde R.S. 248
Vassos, Stavros 85
Vesic, Srdjan 594
Viroli, Mirko 49
Voß, Marcus 622

White, Alan 65
Wotawa, Franz 201

Yasir, Muhammad 152
Yokoo, Makoto 118, 134, 400

Zahadat, Payam 201
Zbrzezny, Agnieszka M. 660
Zbrzezny, Andrzej 660
Zuleger, Florian 185

708 Author Index

	Preface
	Organization
	Contents
	Regular Papers
	Solving F3MDPs: Collaborative MultiagentMarkov Decision Processes with FactoredTransitions, Rewards and Stochastic Policies
	1 Introduction
	2 Background
	2.1 FA-FMDP
	2.2 Related Work in Collaborative Multiagent MDPs

	3 F3MDP
	3.1 Stochastic Factored Policies and F3MDP
	3.2 Optimizing Stochastic Factored Policies in F3MDP
	3.3 Approximate Policy Iteration Algorithms

	4 Experiments
	4.1 Policy Evaluation Methods
	4.2 Small F3MDP Problems
	4.3 Large Random Problems
	4.4 Large Disease Management Problems

	5 Concluding Remarks
	References

	Managing Autonomous Mobility on Demand Systems for Better Passenger Experience
	1 Introduction
	2 Related Work
	2.1 Autonomous Vehicles
	2.2 Mobility on Demand Systems
	2.3 Autonomous Mobility on Demand Systems

	3 Managing Autonomous Mobility on Demand Systems
	3.1 Scheduling Strategies
	3.2 The Expand and Target Algorithm
	3.3 Integration
	3.4 The Autonomous Mobility on Demand Simulation Platform

	4 Experimental Analysis
	4.1 Evaluation Metrics
	4.2 The Datasets
	4.3 Experimental Settings
	4.4 Experimental Results

	5 Conclusion and Future Work
	References

	Norm Establishment in a Single Dimension Axelrod Model
	1 Introduction
	2 Axelrod’s Norm Model
	3 Characterisation of Evolutionary Stable States (ESSs)
	4 Model Description
	5 Experiments and Results
	6 Conclusion
	References

	Multi-agent Systems Meet Aggregate Programming: Towards a Notion of Aggregate Plan
	1 Introduction
	2 Aggregate Computing
	2.1 Computing at the Aggregate Level
	2.2 Constructs
	2.3 Building Blocks and APIs

	3 Aggregate Computing and Multi-agent Systems
	3.1 Multi-agent Systems vs Aggregate Computing
	3.2 Aggregate Programs as Collective Plans

	4 Case Study
	4.1 An Aggregate Computing Approach
	4.2 Simulation

	5 Related MAS Approaches
	6 Conclusion and Future Works
	References

	CAMP-BDI: A Pre-emptive Approach for Plan Execution Robustness in Multiagent Systems
	1 Introduction
	2 Motivating Example
	3 Architecture Components
	3.1 Capabilities
	3.1.1 Capability Typology
	3.1.2 The Confidence Function

	3.2 Obligation and Dependency Contracts
	3.3 Maintenance Policies

	4 The CAMP-BDI Algorithm
	4.1 Maintenance Tasks
	4.2 Agenda Formation
	4.3 Handling Maintenance Tasks
	4.3.1 Performing Preconditions Maintenance
	4.3.2 Performing Effects Maintenance

	5 Distributed Behaviour
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Optimizing Long-Running Action Histories in the Situation Calculus Through Search
	1 Situation Calculus Basic Action Theories
	2 Transforming Extended Action Sequences
	3 A Rewriting System and Search Framework
	4 A Case of DBs with Disjunctive Information
	5 An Offline Precomputing Step
	6 Basic Optimization Scenarios
	7 Related and Future Work
	8 Conclusions
	References

	Semantics for Modelling Reason-Based Preferences
	1 Introduction
	2 A Logic for Reason-Based Preferences
	3 Sequence Semantics
	4 Choice Consistency: Contraction and Expansion
	5 Soundness Results
	5.1 System E

	6 Semantic Completeness
	6.1 Completeness of E

	7 Conclusion and Related Work
	References

	Strategy-Proof Cake Cutting Mechanisms for All-or-Nothing Utility
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Model
	3.2 Properties

	4 Incompatibility
	5 SP and PE Cake Cutting Mechanisms
	5.1 Randomized Serial Dictatorship Mechanism
	5.2 Sorted Serial Dictatorship Mechanism

	6 Integer Programming for Determining Pareto Efficient Allocation
	7 Approximate Allocation Algorithm
	8 Envy-Free Cake Cutting Mechanism
	9 Proportionality in Expectation
	10 Experimental Simulations
	11 Conclusion
	References

	Leximin Asymmetric Multiple Objective DCOP on Factor Graph
	1 Introduction
	2 Preliminary
	2.1 DCOP
	2.2 Factor Graph, Max-Sum Algorithm and Bounded Max-Sum Algorithm
	2.3 Multiple Objective DCOP for Preferences of Agents

	3 Solution Methods for Leximin AMODCOPs on Factor Graphs
	3.1 Dynamic Programming Based on Pseudo Tree
	3.2 Approximation Method
	3.3 Local Search

	4 Evaluation
	4.1 Settings
	4.2 Results

	5 Related Works and Discussions
	6 Conclusions
	References

	Dynamic Coalition Formation in Energy Micro-Grids
	1 Introduction
	2 Related Work
	3 Problem Model
	4 System Model
	5 Simulation Results
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion and Future Work
	References

	On the Hierarchical Nature of Partial Preferences
	1 Introduction
	2 Motivating Scenarios
	3 Classical Preferences
	4 Partial Preferences
	5 Common Properties of Partial Preferences
	6 The Justification Axiom
	7 Related Works
	8 Conclusions
	References

	Verification of Asynchronous Mobile-Robots in Partially-Known Environments
	1 Introduction
	2 Background: Automata Theory
	3 The Model of Robot Systems
	4 Reasoning about Robot Systems
	4.1 Undecidability of Multi-Robot Systems on a Line
	4.2 Decidability of Multi-Robot Systems with Bounded Switching

	5 Discussion
	References

	Potential of Heterogeneity in Collective Behaviors: A Case Study on Heterogeneous Swarms
	1 Introduction
	2 Four Behavior Types in Juvenile Honeybees
	3 Mathematical Model of the Behavior Types
	3.1 Individual Behavior
	3.2 Social Behavior
	3.3 Evolution of Parameters for Behavior Types

	4 Setup of Experiments
	5 Evolution of Behavior Type Compositions
	6 Results
	7 Discussion
	8 Conclusion
	References

	Multi-agent Path Planning in Known Dynamic Environments
	1 Introduction
	1.1 Related Work

	2 Representation of the Path-Planning Problem
	3 Complexity of the Path-Planning Problem
	4 Comparison with Other Representations
	5 Summary and Future Work
	References

	Module Checking for Uncertain Agents
	1 Introduction
	2 Verification of Open Multi-Agent Systems
	2.1 Models and Modules
	2.2 Multi-Agent Modules
	2.3 Module Checking
	2.4 Reasoning about Strategic Behavior: Alternating Time Logic
	2.5 Module Checking of ATL* Specifications

	3 Imperfect Information
	3.1 Handling Environments with Imperfect Information
	3.2 Imperfect Information Module Checking

	4 Expressive Power of Imperfect Information Module Checking
	5 Algorithms and Complexity
	6 Conclusions
	References

	Towards Systematic Evaluation of Multi-agent Systems in Large Scale and Dynamic Logistics
	1 Introduction
	2 Related Work
	2.1 Centralized Algorithms
	2.2 Multi-Agent Systems

	3 Dynamic Pickup-and-Delivery Problems
	3.1 Formal Definition
	3.2 Dynamism
	3.3 Urgency
	3.4 Scale

	4 Dataset
	4.1 Scenario Generator
	4.2 Benchmark Dataset

	5 Demonstration
	5.1 Heuristics
	5.2 Centralized Algorithm
	5.3 Contract Net Protocol Multi-Agent System
	5.4 Results and Analysis

	6 Conclusion
	References

	Paraconsistent Multi-party Persuasion in TalkLOG
	1 Requirements for Resolving Conflicts via Persuasion
	2 Related Work
	3 4QL as an Implementation Tool
	4 Persuasion in TalkLOG
	4.1 Locutions and Moves
	4.2 Dialogue Stores
	4.3 Move and Locution Relevance
	4.4 Working Example

	5 Selected Properties
	5.1 Soundness, Completeness and Convergence to Merged Outcome

	6 Conclusions
	References

	A Micro Study on the Evolution of Arguments in Amazon.com's Reviews
	1 Introduction
	2 Literature Review
	3 Abstract Argumentation Frameworks and Tools
	4 Dataset
	5 Analysis
	6 A Computational Perspective
	7 Discussion and Conclusions
	References

	The Long-Term Benefits of Following Fairness Norms: A Game-Theoretic Analysis
	1 Introduction
	2 Game-Theoretic Model of Guilt Aversion
	2.1 Normative Game and Guilt-dependent Utility
	2.2 Fairness Norms

	3 Dynamic Extension
	4 Mathematical Analysis in the PD with Fairness Norm à la Rawls
	5 Computational Results in the PD with Fairness Norm à la Rawls
	6 Tournaments and Experimental Results
	7 Conclusion and Perspectives
	References

	Using Preferences in Negotiations over Ontological Correspondences
	1 Introduction
	2 The Correspondence Inclusion Dialogue
	2.1 Ontologies, Correspondences and Beliefs
	2.2 The Inquiry Dialogue Moves
	2.3 Alignment Ambiguities

	3 Dialogue Properties
	4 Inquiry Dialogue Example
	5 Arguing about Correspondence Inclusion
	6 Discussion
	7 Conclusions
	References

	Designing a Source-Level Debugger for Cognitive Agent Programs
	1 Introduction
	2 Issues in Debugging Cognitive Agent Programs
	2.1 Debugging and Program Comprehension
	2.2 Challenges in Designing a Source-Level Debugger
	2.3 Languages and Debugging Tools for Cognitive Agents

	3 Design Approach for a Debugger for Cognitive Agents
	3.1 Principles and Requirements
	3.2 Designing a Stepping Diagram
	3.3 Evaluation

	4 Conclusions and Future Work
	References

	Reflecting on Agent Programming with AgentSpeak(L)
	1 Introduction
	2 Relating AgentSpeak(L) to OOP
	3 Exploring the Implications
	3.1 Beliefs are Like Fields
	3.2 Plans Rules as Methods
	3.3 Intentions as Threads
	3.4 Events are Like Messages

	4 ASTRA: AgentSpeak(L) with Bells and Whistles
	4.1 The ASTRA Type System
	4.2 Extended Plan Syntax
	4.3 Mutual Exclusion Support

	5 Evaluation
	6 Conclusions
	References

	Checking the Reliability of Information Sources in Recommendation Based Trust Decision Making
	1 Introduction
	2 Previous Work
	3 Our Proposed Model
	3.1 Task Domain
	3.2 Agents' Characteristics
	3.3 Self-Adaptive Agent Organization
	3.4 Recommendation-Based Trust
	3.5 Agents' Queue Reprioritization Using Agent' Strategy
	3.6 Evaluating Neighbors for Task Delegation Purposes
	3.7 Sources of False Data and Reliability Checking Mechanisms

	4 Experiments and Results
	4.1 What is the Effect of Anti-bias Filtering in System's Profit?
	4.2 Does Anti-bias Filtering Always Help?
	4.3 How Does Being Selective in Gathering Recommendation Help?

	5 Conclusion and Future Work
	References

	Supporting Human-Robot Teams in Space Missions Using ePartners and Formal Abstraction Hierarchies
	1 Introduction
	2 ePartners
	3 Scenario and Requirements
	4 Reasoning through Abstraction Levels
	5 Implementation
	6 Pilot Experiment
	7 Discussion
	References

	Flexible Reward Plans for Crowdsourced Tasks
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Generalized Strictly Proper Scoring Rules
	4.1 Generalized Spherical/Quadratic Rules
	4.2 Relations with Kernel and Continuous Ranked Probability Scores

	5 Comparison Between the Original and Our Proposed Rules
	6 Experimental Evaluations
	6.1 Task of Predicting Highest Temperature
	6.2 Task of Predicting Exchange Rate Movements

	7 Conclusion
	References

	Majoritarian Group Actions
	1 Introduction
	2 Background on Judgment Aggregation
	3 Background on Substructural Logics
	3.1 Hilbert System for ILLD
	3.2 Models of ILL

	4 Linear Bringing-it-about Logic with Coalitions (Linear BIAT C)
	4.1 Axioms of Linear BIAT C
	4.2 Models of Linear BIAT C
	4.3 Soundness and Completeness

	5 Aggregative View of Group Attitudes
	6 Conclusion
	References

	Programming Deliberation Strategies in Meta-APL
	1 Introduction
	2 Specifying Deliberation Strategies
	3 Meta-APL
	3.1 Meta-APL Syntax
	3.2 Meta-APL Core Deliberation Cycle

	4 Encoding Deliberation Strategies
	4.1 Non-interleaved (ni)
	4.2 Alternating (Single Action) (as)
	4.3 Alternating (Multi-action) (am)

	5 An Adaptive Deliberation Strategy
	6 Related Work
	7 Conclusion
	References

	Multi-Context Systems with Preferences
	1 Introduction
	2 Background
	2.1 Multi-Context Systems
	2.2 Logic Programs Under Answer Set Semantics (ASP)
	2.3 Answer Set Optimization (ASO)
	2.4 CR-Prolog

	3 Ranked Logics
	4 MCS with Preferences and Its Applications
	4.1 MCS with Preferences
	4.2 Distributed Configuration Problems as MCSP
	4.3 Distributed Diagnosis and MCSP

	5 Discussion
	6 Conclusions and Future Works
	References

	A Dynamic-Logical Characterization of Solutions in Sight-Limited Extensive Games
	1 Introduction
	2 Game Theoretical Notions
	2.1 Extensive Game with Short Sight
	2.2 Solutions for Egss

	3 Dynamic Logic for Short Sight
	3.1 Syntax and Semantics
	3.2 Axiomatization: Expressing Properties

	4 Characterizing Solutions
	5 Soundness and Completeness
	6 Discussion and Conclusion
	References

	Early Innovation Papers
	Kinetic Description of Opinion Evolution in Multi-agent Systems: Analytic Model and Simulations
	1 Introduction
	2 Kinetic Model of Opinion Formation
	3 Stationary Behaviour of Opinion Distribution
	4 Conclusions
	References

	An Agent-Based Model to Study Effects of Team Processes on Compliance with Safety Regulations at an Airline Ground Service Organization
	1 Introduction
	2 Theoretical Background
	3 The Agent-Based Model
	4 Simulation Study
	5 Discussion and Conclusions
	References

	Agent-Oriented Programming Languages as a High-Level Abstraction Facilitating the Development of Intelligent Behaviours for Component-Based Applications
	1 Introduction
	2 Background
	2.1 OSGi
	2.2 SIXTH
	2.3 WAIST

	3 Agent-Oriented Programming Languages
	3.1 Environment Abstraction
	3.2 ASTRA

	4 Integration
	4.1 Basic Functionality
	4.2 Expanded Functionality in WAIST

	5 Evaluation
	5.1 Problems
	5.2 Participants
	5.3 Results
	5.4 Survey

	6 Conclusions and Future Work
	References

	Towards a Taxonomy of Task-Oriented Domains of Dialogue
	1 Introduction
	2 Related Work
	3 Taxonomy
	3.1 Finding Dimensions of Task-Oriented Domains
	3.2 Creating a Taxonomy

	4 Examples
	5 Conclusions and Further Work
	References

	Mechanism Design for Argumentation-Based Information-Seeking and Inquiry
	1 Introduction
	2 Background and Preliminaries
	3 Information Seeking Dialogues
	4 Inquiry Dialogues
	5 Conclusions
	References

	Fair Assessment of Group Work by Mutual Evaluation with Irresponsible and Collusive Students Using Trust Networks
	1 Introduction
	2 Model and Issues
	3 Fair Assessment Using Cluster-Trust and Collusion Strategies
	3.1 Initial Trust Network by Submitted Evaluations
	3.2 Cluster-Trust Value
	3.3 Iterative Calculation of Cluster Values and Trust Networks
	3.4 Strategies Against Collusive Students

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results and Discussion

	5 Conclusion
	References

	Modeling the Effects of Personality on Team Formation in Self-assembly Teams
	1 Introduction
	2 Personality
	3 Proposed Team formation mechanism
	4 Experiments and Results
	5 Validation
	6 Conclusion
	References

	Real-Time Conditional Commitment Logic
	1 Introduction
	2 Extended Version of Interpreted Systems and RTCTLcc
	3 Related Work
	4 Conclusion
	References

	A Double Auction Mechanism for On-Demand Transport Networks
	1 Introduction
	2 System Model
	2.1 Commuter Preferences
	2.2 Driver Preferences

	3 Proposed Market Mechanism
	3.1 Sub-Market Decomposition
	3.2 Double Auction Mechanism
	3.3 Mechanism Properties

	4 Simulation Results
	5 Conclusions
	References

	Exploiting Social Commitments in Programming Agent Interaction
	1 Introduction
	2 Social Commitments for Programming
	3 JaCaMo+
	4 JaCaMo+ Gold Miners
	5 Conclusions
	References

	Social Continual Planning in Open Multiagent Systems: A First Study
	1 Introduction
	2 Related Work and Background
	3 The Social Continual Planning Problem
	4 Discussion and Conclusions
	References

	Security Games with Ambiguous Beliefs of Agents
	1 Introduction
	2 Background
	3 Methods and Materials
	4 Experiments
	5 Conclusion and Future Work
	References

	Introducing Preference-Based Argumentation to Inconsistent Ontological Knowledge Bases
	1 Introduction
	2 Knowledge Representation
	2.1 Argumentation

	3 Preference Handling
	4 Preference Ranking
	5 Theoretical Evaluation
	6 Qualitative Evaluation
	7 Conclusion and Related Work
	References

	Compliant Business Processes with Exclusive Choices from Agent Specification
	1 Introduction
	2 Logic
	3 Algorithms
	4 Conclusion and Related Work
	References

	Probabilistic Perception Revision in AGENTSPEAK(L)
	1 Introduction and Motivation
	1.1 State of the Art

	2 Probabilistic Perception Correction
	3 Results
	4 Conclusion
	References

	Adaptive Multi-stage Optimisation for EV Charging Integration into Smart Grid Control
	1 Introduction and Problem Statement
	2 System Architecture
	3 Implementation of Optimisation Stages
	3.1 Stage 1: Vehicle Availability Prediction
	3.2 Stage 3: Meta-Heuristic Optimisation of the Schedule

	4 Evaluation
	4.1 Booking Prognoses
	4.2 Charge Scheduling Optimisation

	5 Conclusion
	References

	Collaborative Judgement
	1 Introduction
	2 Collaborative Judgement
	3 The SAWA Algorithm
	4 Evaluation
	4.1 Experimental Setting

	5 Discussion
	6 Conclusions and Further Work
	References

	Model Checking Resource Bounded Systems with Shared Resources via Alternating Büchi Pushdown Systems
	1 Introduction and Related Work
	2 Resource Agent Logic
	3 Model Checking CTL over Büchi Pushdown Systems
	3.1 Alternating Büchi Pushdown Systems
	3.2 Model Checking CTL Over ABPDSs

	4 (Un-)Decidable Model Checking Result
	5 Conclusions
	References

	Integrating Conversation Trees and Cognitive Models Within an ECA for Aggression De-escalation Training
	1 Introduction
	2 Aggression De-escalation Training
	3 Dialogue System
	4 Integration with a Cognitive Model
	5 Practical Application
	6 Discussion
	References

	Checking WELTLK Properties of Weighted Interpreted Systems via SMT-Based Bounded Model Checking
	1 Introduction
	2 Preliminaries
	3 SMT-Based Bounded Model Checking
	3.1 Bounded Semantics
	3.2 Translation to SMT

	4 Experimental Results
	4.1 Performance Evaluation

	5 Conclusions
	References

	Games with Communication: From Belief to Preference Change
	1 Introduction
	2 Games and Announcements
	3 Belief Revision: From Announcements to Beliefs
	4 Voting: From Beliefs to Preferences
	5 A Logic for Strategies, Announcements and Preferences
	6 Example
	7 Conclusion
	References

	Design Patterns for Environments in Multi-agent Simulations
	1 Introduction
	2 Formalizing the Concept of Environment
	2.1 First Purpose: Placing Agents
	2.2 Second Purpose: Providing Information

	3 Four Fundamental Patterns
	3.1 The ``AgentSet'' Pattern
	Principle.
	Advantages and Drawbacks.
	Usages.

	3.2 The ``StandardGrid'' Pattern
	Principle.
	Advantages and Drawbacks.
	Usages.

	3.3 The ``AggregateGrid'' Pattern
	Principle.
	Advantages and Drawbacks.
	Usages.

	3.4 The ``SocialNet'' Pattern
	Principle.
	Advantages and Drawbacks.
	Usages.

	4 Combining Patterns
	5 Conclusion and Perspectives
	References

	Commitments, Expectations, Affordances and Susceptibilities: Towards Positional Agent Programming
	1 Introduction
	1.1 Background and Motivation

	2 Modeling Language: Positions and Negations
	3 Cognitive Components
	3.1 Commitment
	3.2 Expectation
	3.3 Affordance
	3.4 Susceptibility

	4 Operationalization
	4.1 From Commitment to Action
	4.2 From Commitment to Monitoring

	5 Discussion and Further Developments
	References

	Using Conceptual Spaces for Object Recognition in Multi-agent Systems
	1 Introduction
	2 BDI Architecture, Conceptual Spaces, and Related Computational Platforms
	3 Integration of a Conceptual Space Model into the Reasoning Cycle of BDI Agents
	4 A Practical Example of the Use of Conceptual Information in Multi-agent Systems
	5 Conclusion
	References

	Author Index

