
Extracting Contextual Information
from Scientific Literature Using

CERMINE System

Dominika Tkaczyk(B) and �Lukasz Bolikowski

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Warsaw, Poland
{d.tkaczyk,l.bolikowski}@icm.edu.pl

Abstract. CERMINE is a comprehensive open source system for extract-
ing structured metadata and references from born-digital scientific litera-
ture. Among other information, the system is able to extract information
related to the context the article was written in, such as the authors and
their affiliations, the relations between them or references to other arti-
cles. Extracted information is presented in a structured, machine-readable
form. CERMINE is based on a modular workflow, whose loosely coupled
architecture allows for individual components evaluation and adjustment,
enables effortless improvements and replacements of independent parts of
the algorithm and facilitates future architecture expanding. The imple-
mentation of the workflow is based mostly on supervised and unsupervised
machine-learning techniques, which simplifies the procedure of adapting
the system to new document layouts and styles. In this paper we out-
line the overall workflow architecture, describe key aspects of the system
implementation, provide details about training and adjusting of individual
algorithms, and finally report how CERMINE was used for extracting con-
textual information from scientific articles in PDF format in the context of
ESWC 2015 Semantic Publishing Challenge. CERMINE system is avail-
able under an open-source licence and can be accessed at http://cermine.
ceon.pl.

1 Introduction

Academic literature is a very important communication channel in the scientific
world. Keeping track of the latest scientific findings and achievements, typically
published in journals or conference proceedings, is a crucial aspect of the research
work. Unfortunately, studying scientific literature, and in particular being up-
to-date with the latest positions, is difficult and extremely time-consuming. The
main reason for this is huge and constantly growing volume of scientific liter-
ature, and also the fact, that publications are mostly available in the form of
unstructured text.

Semantic publishing addresses these issues by the enhancement of scholarly
data with metadata and interlinking, allowing the machines to better understand
the structure, meaning and relations of published information. Machine-readable
c© Springer International Publishing Switzerland 2015
F. Gandon et al. (Eds.): SemWebEval 2015, CCIS 548, pp. 93–104, 2015.
DOI: 10.1007/978-3-319-25518-7 8

http://cermine.ceon.pl
http://cermine.ceon.pl


94 D. Tkaczyk and �L. Bolikowski

metadata describing scholarly communication, for example metadata related to
citations, authors, organizations, research centres, projects or datasets, facilitates
solving tasks like building citation and author networks, providing useful tools
for intelligent search, detecting similar and related documents and authors, the
assessment of the achievements of individual authors and entire organizations,
identifying people and teams with a given research profile, and many more.

Unfortunately, in practice good quality metadata is not always available,
sometimes it is missing, full of errors or fragmentary. In such cases there is a need
to automatically extract the metadata directly from source documents, often
stored in PDF format. Such automatic analysis of PDF documents is challenging,
mainly due to the vast diversity of possible layouts and styles used in articles. In
different documents the same type of information can be displayed in different
places using a variety of formatting styles and fonts. For instance, a random
subset of 125,000 documents from PubMed Central [5] contains publications from
nearly 500 different publishers, many of which use original layouts and styles in
their articles. What is more, PDF format does not preserve the information
related to the document’s structure, such as words and paragraphs, lists and
enumerations, or the reading order of the text. This information has to be reverse
engineered based on the text content and the way the text is displayed in the
source file.

These problems are addressed by CERMINE [13] — a comprehensive, open-
source tool for automatic metadata extraction from born-digital scientific lit-
erature. CERMINE’s extraction algorithm performs a thorough analysis of the
input scientific publication in PDF format and extracts:

– a rich set of the document’s metadata, including the title, authors, their affil-
iations, emails, abstract, keywords, year of publication, etc.,

– a list of bibliographic references along with their metadata.

Designed as a universal solution, CERMINE is able to handle a vast variety
of publication layouts reasonably well, instead of being perfect in processing
a limited number of document layouts only. This was achieved by employing
supervised and unsupervised machine-learning algorithms trained on large and
diverse datasets. It also resulted in increased maintainability of the system, as
well as its ability to adapt to previously unseen document layouts.

CERMINE is based on a modular workflow composed of a number of steps
with carefully defined input and output. By virtue of such workflow architecture
individual steps can be maintained separately, making it easy to perform evalu-
ation or training, improve or replace one step implementation without changing
other parts of the workflow. CERMINE web service, as well as the source code,
can be accessed online at http://cermine.ceon.pl [14].

The system is participating in ESWC 2015 Semantic Publishing Challenge.
Its task is to mine PDF articles from CEUR workshop proceedings in order to
extract the information related to the context in which the papers were written.

This article describes the overall extraction workflow architecture and key
steps implementations, provides details about the training of machine-learning
based algorithms, and finally reports how CERMINE was used for information
extraction in the context of ESWC 2015 Semantic Publishing Challenge.

http://cermine.ceon.pl


Extracting Contextual Information from Scientific Literature 95

2 System Overview

CERMINE accepts a scientific publication in PDF format on the input. The
extraction algorithm inspects the entire content of the document and produces
two kinds of output in NLM JATS format [3]: the document’s metadata and
bibliography.

CERMINE’s web service can be accessed at http://cermine.ceon.pl. The code
is available on GitHub at https://github.com/CeON/CERMINE. The system
provides also a REST service that allows for executing the extraction process by
machines. It can be accessed using cURL tool:

$ curl -X POST --header "Content-Type: application/binary" -v \
--data-binary @article.pdf http://cermine.ceon.pl/extract.do

2.1 Models and Formats

CERMINE’s input document format is PDF, currently the most popular format
for storing the sources of scientific publications. A PDF file contains by design
the text of the document in the form of a list of chunks of various length speci-
fying the position, size, and other geometric features of the text, as well as the
information related to the fonts and graphics. Unfortunately, the format does
not preserve any information related to the logical structure of the text, such
as words, lines, paragraphs, enumerations, sections, section titles or even the
reading order of text chunks.

The inner model of the document used during CERMINE’s analysis is a
hierarchical structure that holds the entire text content of the article, while
also preserving the information related to the way elements are displayed in the
corresponding PDF file. In this representation an article is a list of pages, each
page contains a list of zones, each zone contains a list of lines, each line contains a
list of words, and finally each word contains a list of characters. Each structure
element can be described by its text content and bounding box (a rectangle
enclosing the element). The structure contains also the natural reading order for
the elements on each structure level and labels describing the role of the zones.
The model can be serialized using XML TrueViz format.

The original output format of the extraction process is NLM JATS [3]. JATS
(Journal Article Tag Suite) defines a rich set of XML elements and attributes for
describing scientific publications. Documents in JATS format can store a wide
range of structured metadata of the document, hierarchical full text and the
bibliography in the form of a list of references along with their metadata.

Recently added functionality, essential for the semantic publishing challenge,
is exporting information extracted from a set of articles as LOD dataset in RDF
format. Currently exported dataset contains only the relevant subset of extracted
metadata.

2.2 System Architecture

CERMINE’s extraction workflow (Fig. 1) is composed of the following stages:

http://cermine.ceon.pl
https://github.com/CeON/CERMINE


96 D. Tkaczyk and �L. Bolikowski

Fig. 1. CERMINE’s extraction workflow architecture. At the beginning the geometric
structure is extracted from the input PDF file. Then metadata and bibliography are
extracted in two parallel paths.

[A] Basic structure extraction stage — analysing the input PDF file in order
to construct its geometric hierarchical representation by executing the fol-
lowing steps:
[A1] Character extraction — extracting individual characters with their

coordinates and dimensions from the input PDF using iText library [2].
[A2] Page segmentation — constructing the document’s geometric hier-

archical structure containing pages, zones, lines, words and characters,
using enhanced Docstrum algorithm [11].

[A3] Reading order resolving — determining the reading order for all
structure elements using bottom-up heuristic-based algorithm.

[A4] Initial zone classification — classifying the document’s zones into
categories: metadata, body, references and other using Support Vector
Machines classifier.

[B] Metadata extraction stage — extracting a rich set of document’s meta-
data from zones labelled as metadata by executing the following steps:
[B1] Metadata zone classification — classifying the document’s zones

into specific metadata classes using Support Vector Machines classifier.
[B2] Metadata extraction — extracting atomic metadata information

from labelled zones using a list of simple rules.
[B3] Affiliation parsing — identifying organization, address and country

in affiliation strings using Conditional Random Fields classifier.
[C] Bibliography extraction stage — extracting a list of parsed citations from

zones labelled as references by executing the following steps:
[D1] Reference extraction — dividing the content of references zones into

individual reference strings using K-Means clustering.
[D2] Reference parsing — extracting metadata information from refer-

ences strings using Conditional Random Fields token classifier.



Extracting Contextual Information from Scientific Literature 97

3 Metadata Extraction Algorithms

This section provides details about the implementations of key steps of the work-
flow. More information about the system implementation can be found in [13].

3.1 Geometric Structure Extraction

Structure extraction is the initial phase of the entire workflow. Its goal is to create
a hierarchical structure of the document preserving the entire text content of the
input document and also features related to the way the text is displayed in the
PDF file.

Geometric structure extraction is composed of three steps:

1. Character extraction — extracting individual characters from the input PDF
document.

2. Page segmentation — joining individual characters into words, lines and
zones.

3. Reading order determination — calculating the reading order for all structure
levels.

The purpose of character extraction is to extract individual characters from
the PDF stream along with their positions on the page, widths and heights. The
implementation is based on open-source iText [2] library. We use iText to iterate
over PDF’s text-showing operators. During the iteration we extract text strings
along with their size and position on the page. Next, extracted strings are split
into characters and their individual widths and positions are calculated.

The goal of page segmentation is to create a geometric hierarchical structure
storing the document’s content, consisting of pages, zones, lines, words and char-
acters. Page segmentation is implemented with the use of a modified bottom-up
Docstrum algorithm [11]. In this approach, the histograms of nearest-neighbor
pairs of individual characters are analyzed in order to estimate the text ori-
entation angle and also within-line and between-line spacings. This allows to
determine text lines and finally group lines into zones.

A PDF file contains by design a stream of strings that undergoes extraction
and segmentation process. As a result we obtain pages containing characters
grouped into zones, lines and words, all of which have a form of unsorted bag of
items. The aim of setting the reading order is to determine the right sequence
in which all the structure elements should be read. The algorithm is based on a
bottom-up strategy: first characters are sorted within words and words within
lines horizontally, then lines are sorted vertically within zones, and finally we
sort zones using heuristics taken from [4], making use of an observation that
the natural reading order descends from top to bottom, if successive zones are
aligned vertically, otherwise it traverses from left to right.

3.2 Content Classification

The goal of content classification is to label each zone with a functional class. The
classification is done in two stages: initial classification assigns general categories



98 D. Tkaczyk and �L. Bolikowski

(metadata, references, body, other), while the goal of metadata classification is to
classify all metadata zones into specific metadata classes (abstract, bib info, type,
title, affiliation, author, correspondence, dates, editor, keywords). Content classi-
fication is a crucial stage of the entire analysis and, along with page segmentation
have the biggest impact on the extraction results.

Both classifiers use Support Vector Machines and their implementation is
based on LibSVM library [7]. The classifiers differ in SVM parameters, but in
both cases the best parameters were found by performing a grid-search using
a set of 100 documents from PubMed Central Open Access Subset (PMC) and
maximizing mean F1 score obtained during a 5-fold cross validation.

In order to perform zone classification, each zone is transformed into a vector
of feature values, which are to a great extent the same for both classifiers. The
initial and metadata classifiers use 83 and 62 features, respectively:

– geometrical — based on attributes such as the dimensions and coordinates,
distance to the nearest zone, free space below and above the zone, etc.,

– lexical — based upon keywords characteristic for different parts of narration,
that is: affiliation, acknowledgment, abstract, references, article type, etc.,

– sequential — based on sequence-related information, eg. class of the previous
zone, presence of the same text blocks on the surrounding pages, etc.,

– formatting — eg. font size in the current and adjacent zones, the amount of
blank space inside zones etc.,

– heuristics — eg. uppercase word count, percentage of numbers in a text block,
if each line starts with enumeration-like tokens, etc.

3.3 Author and Affiliation Extraction

As a result of classifying the document’s fragments, we usually obtain a few
regions labelled as author or affiliation. In this step we extract individual author
names and affiliations and determine relations between them.

In general the implementation is based on heuristics and regular expressions,
but the details depend on the article’s layout. There are two main styles used in
different layouts: (1) author names are grouped together in a form of a list, and
affiliations are also placed together below the author’s list, at the bottom of the
first page or even just before the bibliography section (an example is shown in
Fig. 2), and (2) each author is placed in a separate zone along with its affiliation
and email address (an example is shown in Fig. 3).

In the case of a layout of the first type (Fig. 2), at the beginning authors’
lists are split using a predefined lists of separators. Then we detect affilia-
tion indexes based on predefined lists of symbols and also geometric features.
Detected indexes are then used to split affiliation lists and assign affiliations to
authors.

In the case of a layout of the second type (Fig. 3), each author is already
assigned to its affiliation by being placed in the same zone. It is therefore enough
to detect author name, affiliation and email address. We assume the first line of
such a zone is the author name, email is detected based on regular expressions,



Extracting Contextual Information from Scientific Literature 99

Fig. 2. An example fragment of a page from a scientific publication with authors and
affiliations zones. In this case the relations author-affiliation (coded with colors) can
be determined with the use of upper indexes.

Fig. 3. An example fragment of a page from a scientific publication with authors and
affiliations zones. In this case the relations author-affiliation can be determined using
the distance and other geometric features of the text.

and the rest is treated as the affiliation string. In the future we plan to implement
this step using a supervised token classifier.

3.4 Affiliation Parsing

The goal of affiliation parsing is to recognize affiliation string fragments related
to institution, address and country. Additionally, country names are decorated
with their ISO codes. Figure 4 shows an example of a parsed affiliation string.

Fig. 4. An example of a parsed affiliation string. Colors mark fragments related to
institution, address and country.

Affiliation parser uses Conditional Random Fields classifier and is built on
top of GRMM and MALLET packages [10]. First affiliation string is tokenized,
then each token is classified as institution, address, country or other, and finally
neighbouring tokens with the same label are concatenated. The main feature
used by token classifier is the classified word itself. Additional features are all
binary: whether the token is a number, whether it is all uppercase/lowercase



100 D. Tkaczyk and �L. Bolikowski

word, whether it is a lowercase word that starts with an uppercase letter, whether
the token is contained by dictionaries of countries or words commonly appearing
in institutions or addresses. Additionally, the token’s feature vector contains not
only features of the token itself, but also features of two preceding and two
following tokens.

Fig. 5. A fragment of the references section of an article. Marked lines are the first
lines of their references. After detecting these lines, the references section content can
be easily split to form consecutive references strings.

3.5 References Extraction

References zones detected by content classifiers contain a list of reference strings,
each of which can span over one or more text lines. The goal of reference strings
extraction is to split the content of those zones into individual reference strings.
This step utilizes unsupervised machine-learning techniques, which allows to
omit time-consuming training set preparation and learning phases, while achiev-
ing very good extraction results.

Every bibliographic reference is displayed in the PDF document as a sequence
of one or more text lines. Each text line in a reference zone belongs to exactly one
reference string, some of them are first lines of their reference, others are inner
or last ones. The sequence of all text lines belonging to bibliography section can
be represented by the following regular expression:

[fontsize=\small]
(

<first line of a reference>
(

<inner line of a reference>*
<last line of a reference>

)?
)*

In order to group text lines into consecutive references, first we determine
which lines are first lines of their references. A set of such lines is presented in
Fig. 5. To achieve this, we transform all lines to feature vectors and cluster them



Extracting Contextual Information from Scientific Literature 101

into two sets. We make use of a simple observation that the first line from all
references blocks is also the first line of its reference. Thus the cluster containing
this first line is assumed to contain all first lines. After recognizing all first lines
it is easy to concatenate lines to form consecutive reference strings.

For clustering lines we use KMeans algorithm with Euclidean distance metric.
As initial centroids we set the first line’s feature vector and a vector with the
largest distance to the first one. We use 5 features based on line relative length,
line indentation, space between the line and the previous one, and the text
content of the line (if the line starts with an enumeration pattern, if the previous
line ends with a dot).

3.6 Reference Parsing

Reference strings extracted from references zones contain important reference
metadata. In this step metadata is extracted from reference strings and the
result is the list of document’s parsed bibliographic references. The information
we extract from the strings include: author (author’s fullname), title, source
(journal or conference name), volume, issue, pages, year and DOI. An example
of a parsed reference is shown in Fig. 6.

Fig. 6. An example of a bibliographic reference with various metadata information
highlighted using different colors, these are in order: author, title, journal, volume,
issue, pages and year.

First the reference strings are tokenized. The tokens are then transformed
into vectors of features and classified by a supervised classifier. Finally the neigh-
bouring tokens with the same label are concatenated, the labels are mapped into
final metadata classes and the resulting reference metadata record is formed.

The heart of the implementation is the classifier that assigns labels to ref-
erence string tokens. For better performance, the classifier uses slightly more
detailed set of labels than the target ones: first name (author’s first name or
initial), surname (author’s surname), title, source (journal or conference name),
volume, issue, page first (the lower bound of pages range), page last (the upper
bound of pages range), year and text (for separators and other tokens without
a specific label). The token classifier employs Conditional Random Fields and is
built on top of GRMM and MALLET packages [10].

The basic features are the tokens themselves. We use 42 additional features
to describe the tokens:

– Some of them are based on the presence of a particular character class, eg.
digits or lowercase/uppercase letters.



102 D. Tkaczyk and �L. Bolikowski

– Others check whether the token is a particular character (eg. a dot, a square
bracket, a comma or a dash), or a particular word.

– Finally, we use features checking if the token is contained by the dictionary
built from the dataset, eg. a dictionary of cities or words commonly appearing
in the journal title.

It is worth to notice that the token’s label depends not only on its feature
vector, but also on surrounding tokens. To reflect this in the classifier, the token’s
feature vector contains not only features of the token itself, but also features of
two preceding and two following tokens.

After token classification fragments labelled as first name and surname are
joined together based on their order to form consecutive author names, and
similarly fragments labelled as page first and page last are joined together to form
pages range. Additionally, in the case of title or source labels, the neighbouring
tokens with the same label are concatenated.

Since the dataset used for training the token classifier does not contain
enough references with DOI, the classifier is not responsible for extracting this
information. DOI is recognized separately by matching a regular expression
against the citation string.

Finally, the type of the reference (journal paper, conference proceedings or
technical report) is detected by searching for specific keywords in the reference
string.

4 Semantic Publishing Challenge of ESWC 2015

CERMINE system participated in Task 2 of Semantic Publishing Challenge of
ESWC 2015 conference. The system is able to extract data sufficient for answer-
ing queries related to affiliations and citations (the first 5 queries out of 10 total,
Q2.1 — Q2.5).

Solving queries Q2.1 (Affiliations in a paper) and Q2.2 (Papers from a coun-
try) relies on the following system features: document title extraction, authors
and affiliations extraction, establishing relations author — affiliations, detecting
country in the affiliation string.

Solving queries Q2.3 (Cited Works), Q2.4 (Recent Cited Works) and Q2.5
(Cited Journal Papers) relies on the following system features: extracting cita-
tions from a document, detecting DOI, title and year in the citation string,
recognizing the type of a citation.

The following changes were made to the system in order to prepare it for the
challenge:

– An additional step for generating the LOD dataset in RDF format was added
to the original extraction workflow.

– The metadata classifier was retrained on a slightly extended set of documents,
with the addition of documents of ACM layout.

– Heuristics for extracting authors and affiliations from hybrid zones (the second
type described in Sect. 3.3, shown in Fig. 3) were added.



Extracting Contextual Information from Scientific Literature 103

0

20

40

60

80

100

Query 2.1 Query 2.2 Query 2.3 Query 2.4 Query 2.5

sc
or

e measure
Precision
Recall
F−score

Fig. 7. The results of the evaluation of CERMINE in the SemPub Challenge. The
figure shows mean precision, recall and F-score values for queries Q2.1 — Q2.5.

– Extracting DOI from reference strings based on regular expressions was imple-
mented.

– Additional step for recognizing the type of the reference was added.

Originally both zone classifiers were trained with the use of a set of 2,551
documents randomly chosen from GROTOAP2 dataset [12]. Since GROTOAP2
was built using PMC resources, the dataset does not contain documents of ACM
layout. For the purpose of the challenge, additional set of 165 ACM documents
was manually chosen from computer science conferences and manually labelled.
The combined set of 2,716 documents was used to retrain the metadata classifier.

Affiliation dataset used for affiliation parser training contains 8,267 parsed
affiliations from PMC resources. For reference parser training we used Cite-
Seer [8], Cora-ref [9] and PMC resources combined together into a set of 4,000
references.

The LOD dataset generated by the workflow contains currently only the
information needed to answer the challenge queries. More precisely, the dataset
contains the following resources: volumes, documents, authors, affiliations (repre-
senting the relations between the document, author and organization), countries
and citations. For all properties we use Dublin Core [1] and vCard [6] ontologies.

During the challenge 5 queries for each query type (50 single queries in total)
were executed on the generated LOD dataset and the results were compared
with the gold standard. The comparison was done after some normalization of
the output and partial matches were also taken into account. For each query
precision and recall were measured.

Figure 7 shows the mean scores of CERMINE for each query type Q2.1 —
Q2.5. Since the generated LOD dataset did not contain any information support-
ing solving queries Q2.6 — Q2.10, all the scores for these queries were equal to 0.
Table 1 shows the average precision, recall and F-score achieved by CERMINE
over all queries, as well as only over the supported queries Q2.1 — Q2.5.



104 D. Tkaczyk and �L. Bolikowski

Table 1. The results of the evaluation of CERMINE in the SemPubl Challenge. The
table lists the average precision, recall and F-score over all queries, as well as only for
the first 5 queries. The scores for queries Q2.6 — Q2.10 were all equal to 0.

Queries Q2.1 — Q2.10 Q2.1 — Q2.5

Precision 36.9 % 73.8 %

Recall 41.7 % 83.4 %

F-score 38.1 % 76.2 %

5 Conclusions and Future Work

The article presents CERMINE — a system for extracting both metadata and
bibliography from scientific articles in a born-digital form. CERMINE is very
useful for digital libraries and similar environments whenever they have to deal
with documents with metadata information missing, fragmentary or not reliable.
The modular architecture makes CERMINE flexible and easily maintainable.

CERMINE was designed as a universal solution, and therefore is able to
handle a vast variety of potential publication layouts reasonably well, instead of
being perfect in processing a limited number of document layouts only. This was
achieved by employing supervised and unsupervised machine-learning algorithms
trained on large, diverse datasets.

The system is open source and available online at http://cermine.ceon.pl.

References

1. Dublin Core. http://dublincore.org/
2. iText. http://itextpdf.com/
3. NLM. http://dtd.nlm.nih.gov/archiving/
4. PdfMiner. http://www.unixuser.org/∼euske/python/pdfminer/
5. PubMed. http://www.ncbi.nlm.nih.gov/pubmed
6. vCard. http://www.w3.org/TR/vcard-rdf/
7. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM TIST

2(3), 27 (2011)
8. Giles, C.L., Bollacker, K.D., Lawrence, S.: Citeseer: An automatic citation index-

ing system. In: Proceedings of the 3rd ACM International Conference on Digital
Libraries, pp. 89–98 (1998)

9. McCallum, A., Nigam, K., Rennie, J.: Automating the construction of internet
portals with machine learning. Inf. Retrieval 3, 127–163 (2000)

10. McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit (2002)
11. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans.

Pattern Anal. Mach. Intell. 15(11), 1162–1173 (1993)
12. Tkaczyk, D., Szostek, P., Bolikowski, L.: GROTOAP2 - the methodology of creat-

ing a large ground truth dataset of scientific articles. D-Lib Magazine (2014)
13. Tkaczyk, D., Szostek, P., Fedoryszak, M., Dendek, P.J., Bolikowski, L.: CER-

MINE: automatic extraction of structured metadata from scientific literature.
Int. J. Doc. Anal. Recogn. (IJDAR), 1–19 (2015). http://dx.doi.org/10.1007/
s10032-015-0249-8. doi:10.1007/s10032-015-0249-8

14. Tkaczyk, D., et al.: Cermine: Cermine 1.6 (2015). http://dx.doi.org/10.5281/
zenodo.17594

http://cermine.ceon.pl
http://dublincore.org/
http://itextpdf.com/
http://dtd.nlm.nih.gov/archiving/
http://www.unixuser.org/~euske/python/pdfminer/
http://www.ncbi.nlm.nih.gov/pubmed
http://www.w3.org/TR/vcard-rdf/
http://dx.doi.org/10.1007/s10032-015-0249-8
http://dx.doi.org/10.1007/s10032-015-0249-8
http://dx.doi.org/10.1007/s10032-015-0249-8
http://dx.doi.org/10.5281/zenodo.17594
http://dx.doi.org/10.5281/zenodo.17594

	Extracting Contextual Information from Scientific Literature Using CERMINE System
	1 Introduction
	2 System Overview
	2.1 Models and Formats
	2.2 System Architecture

	3 Metadata Extraction Algorithms
	3.1 Geometric Structure Extraction
	3.2 Content Classification
	3.3 Author and Affiliation Extraction
	3.4 Affiliation Parsing
	3.5 References Extraction
	3.6 Reference Parsing

	4 Semantic Publishing Challenge of ESWC 2015
	5 Conclusions and Future Work
	References


