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Abstract

This chapter consists of two parts. In the first part, a compact tutorial exposition

of the principles of matched filtering for the biological scientist is introduced.

The concept of matched filtering for detecting desired signals buried in noisy

measurement signals is presented. It is shown that the matched filter is another

name for the correlation detector or replica-correlation detector, which exploits

prior knowledge in the form of an exemplar (or replica) of the desired signal. An

example detection problem is used to demonstrate the matched filtering

approach. The detection methodology comes from hypothesis testing algorithms

in Bayesian detection theory. This Bayesian approach provides very powerful

methods for evaluating detection performance in the form of the Receiver

Operating Characteristic (ROC) curve and the statistical confidence interval

about the probability of correct classification. It is shown that the matched filter

can be an effective detection tool when exemplars of the desired signal are

available a priori. In the second part, several key examples of matched filters in

the auditory systems of several selected vertebrates are provided.

5.1 Part I Principles of Matched Filtering

This section presents a compact tutorial exposition of the principles of matched

filtering for the biological scientist. The matched filter is a concept from

communications and radar theory (Van Trees 1968; Whalen 1971; Kay 1998;

Papoulis 1965) that has been applied widely to various other applications in science

and engineering (Carpranica and Moffat 1983; Wehner 1987; Clark et al. 1999,

2000, 2009; Waltz and Llinas 1990; Clark 1999; Jazwinski 1970; Candy 2006). It is

a statistical signal processing algorithm designed for detecting the existence of a

desired signal that is buried in a noisy measurement signal. In general and for our

purposes, a “signal” can be interpreted to be a scalar or multidimensional construct;

e.g., a time series, an image, a three-dimensional volume, a video sequence, etc.

The fundamental mathematical approaches are common to all of these modalities.

For tutorial purposes, we focus here on the fundamental matched filtering approach

for a time series. The literature in matched filtering is vast, and a full understanding

of the concept requires a great deal of study. This section endeavors to encapsulate

the most important principles of matched filtering so as to aid the biologist in

processing experimental data. The concepts are introduced with the idea that the

reader can consult the referenced literature for in-depth treatments.
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Imagine that we are conducting a scientific experiment involving a physical

process that generates a noisy discrete-time temporal signal (time series). Our goal

is to make a judgment or decision about whether or not the noisy measured signal

contains a particular desired signal component of interest to us. We can say that we

wish to detect the desired signal component. More specifically, imagine that we

have a real noisy measured discrete-time signal

x nð Þ ¼ a n� n0ð Þ þ n nð Þ Noisy Measurement Signalð Þ ð5:1Þ
where a n� n0ð Þ is a time delayed version of the desired signal a(n) that we wish to
detect, v(n) is noise (undesired component of the signal), n denotes the discrete time

index, n¼ 0, 1, 2,. . ., N� 1, n0 is the time delay, and the sampling interval T is

normalized to one (i.e., T¼ 1 s, so nT¼ n). We assume that the arrival time n0 of the
desired signal a(n� n0) is unknown to the user.

Perhaps the simplest way to detect the signal a(n) in the noisy measurement x(n)
is to choose various values of a threshold γ and compare the amplitude values of

x(n) to that threshold at each value of time n. This is often called a “threshold

detector” that uses the raw signal x(n) as the decision statistic (the quantity we

compare to the threshold). At each time instant n, if x(n) is less than the threshold γ,
then we declare that a(n) is not present in the measurement at time n. If x(n) is
greater than or equal to the threshold γ, then we declare that a(n) is present in the

measurement at time n. Of course, our declarations will vary as we vary the

threshold value. This section discusses methods for dealing with the various

declarations and measuring the performance of the detection algorithm.

Note that the terms “detection” and “classification” are often used interchange-

ably, for good reason. Detection theory is often regarded as a subset of classification

theory. Classification generally describes methods for multidimensional hypothesis

testing, but detection theory was originally developed for scalar (one dimensional)

hypothesis testing. The distinction is not nearly as important as understanding their

common underlying concepts.

Imagine now a scenario in which we have prior information about the desired

signal a(n). In the signal processing world, we always welcome prior knowledge

because we are often able to incorporate it into our processing algorithms to give us

an advantage. In many applications (especially in communication and radar

systems), we have available exemplars of the signal a(n) we wish to detect. In

radar, for example, we have a pulse generator and antenna system that create waves

in the form of a transient pulse which are propagated through a channel, reflect from

a physical target, propagate back through the channel, and are measured by the

antenna and radar system. In this scenario, we have prior knowledge of the

transmitted transient pulse used to interrogate the target, because we generated it

ourselves. We can, of course, generate additional exemplars of the transmitted

pulse. The issue now is whether or not we can use this prior knowledge to help us

detect such a transient pulse in a measured waveform. The idea behind the correla-
tion detector is that we can.
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5.1.1 The Correlation Detector

The term “correlation detector” refers to a signal detection algorithm that cross-

correlates the measured data with a replica or exemplar of the desired signal. It is

also sometimes called a “correlator” or a “replica correlator.” The basic idea behind

the correlation detector is to use the mathematical operation called cross-correla-
tion to scan the measured signal x(n) with an exemplar of a(n). The cross-

correlation result is Rax(k), a time waveform that is a function of the time delay

k between a(n) and x(n) during the correlation process. The premise of the correla-

tion detector is that the cross-correlation waveform will be large when the mea-

surement x(n) contains nonzero a(n) and small when it does not. The correlation

detector uses the cross-correlation waveform Rax(k) (or a function of Rax(k)) as the
decision statistic in a threshold detection algorithm. The hope is that using Rax(k) as
the decision statistic will give better detection performance than that which would

be obtained by using the raw signal x(n) as the decision statistic. This hoped-for

result is generally realized in practice. Prior knowledge is very helpful.

5.1.2 Section Organization

In the remainder of this section, we introduce the matched filter by examining an

example detection problem and showing the steps in the detection process. We

show that the matched filter is really another name for the correlation detector and

why. We then step through the process of detecting a signal buried in a noisy

measurement and develop the appropriate measures for evaluating detector perfor-

mance. We show that the matched filter can be an effective detection tool when

exemplars of the desired signal are available a priori.

5.2 An Example Detection Problem

The data for an example event signal detection problem are depicted in Fig. 5.1. The

top signal is a transient “event waveform” a(n) representing a physical event that

we wish to detect. In this particular case, this event is a dissolver acid time series

from a chemical processing plant. The middle signal is a delayed version of the

transient waveform with delay equal to n0. The bottom signal denotes the noisy

measurement signal x nð Þ ¼ a n� n0ð Þ þ n nð Þ. The noise v(n) is statistically white,

zero mean and Gaussian distributed with noise variance σ2n ¼ :599. We denote this

as nðnÞ � Nð0, σ2n Þ. Clearly, the noise power is fairly large, so the desired event

signal a(n) is significantly obscured in the measurement. This leads us to define the

concept of signal-to-noise ratio.
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5.2.1 Define the Signal-to-Noise Ratio (SNR)

Consider a noisy measured signal as described in Eq. 5.1. In a nice theoretical

simulation experiment, we can easily know the desired signal a(n) and the noise

v(n) separately, because we create them ourselves. However, in many real-world

experiments, we can measure only the sum in Eq. 5.1. In some experiments, the

measured signal consists of pre-event noise (before a signal event occurs) followed

in time by the sum of the event signal a(n) and the noise v(n). This occurs in, for
example, seismic event signals. In this case, we can cut out a section of pre-event

noise and compute its noise variance. In some rare applications, we have available

a noiseless signal a(n) before the physical system corrupts it (e.g., in

communications and radar).

Let us assume for now that we have prior knowledge that allows us to separate

the desired signal from the noise. In general, we define the signal-to-noise ratio

(SNR) as follows (Kay 1998; Candy 2006):

Fig. 5.1 Simulated measurement signal x(n) created for our matched filtering example: (Top)
Exemplar of the transient event waveform a(n) we wish to detect in the noise measurement.

(Middle) Time delayed version a(n� n0) of the transient waveform. (Bottom) Measured event plus

noise signal x nð Þ ¼ a n� n0ð Þ + n nð Þ. The signal-to-noise ratio is SNR¼ 20 dB. The magnitude

units are arbitrary and the temporal sampling period T¼ 1
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SNR≜
Signal energy

Noise variance
Signal‐to‐noise ratioð Þ ð5:2Þ

≜
Ea

σ2n
ð5:3Þ

where the energy in signal a(n) is given by

Ea ≜
Xn1
n¼n0

a2 nð Þ ð5:4Þ

and we calculate the energy in signal a(n) over the time interval between appropri-

ate time indices n0 and n1. We denote the noise variance by σ2v . We can express the

SNR in the commonly used units of decibels (dB) by applying the following

definition:

SNRðdBÞ≜ 10log10
Ea

σ2n

��
ð5:5Þ

¼ 10log10½R�, where R≜Ea=σ
2
n ð5:6Þ

Note that in a simulation experiment, once we have computed Ea for our

particular signal and we know our desired SNR(dB), we can solve for the noise

variance required to achieve that SNR(dB). If we define Q as follows, then we have:

Q≜ SNRðdBÞ=10 ð5:7Þ

R ¼ 10Q ð5:8Þ

σ2v ¼ Ea=R ð5:9Þ
Consider a numerical example: Let Ea¼ 4.2632 and the desired SNR(dB)¼ 40.

Then, we see that Q¼ 4, R¼ 104, and σ2v ¼ 4:2532e� 4. Note that in applications

such as the seismic event signal described earlier, we can define an approximate

SNR, call it SNRE, that consists of the ratio of the energy in the measured signal

x(n) and the noise variance (Clark and Rodgers 1981). This is one way in which we
can cope with the lack of prior knowledge.

5.3 The Matched Filter Detector

The term matched filter is another name for the correlation detector. The funda-

mental principle of matched filtering is to exploit the prior knowledge we have

about the desired signal of interest a(n) to build a correlation detector. One might

ask the question, “Then why do we call the correlation detector a matched filter?”

The answer lies in the meaning of the mathematical operation of correlation, as we

show next.
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5.3.1 Convolution and Filtering

Given two discrete-time signals a(n) of length M samples and x(n) of length

N samples, we can define the convolution y(n) of the two signals as follows:

yðnÞ ¼ aðnÞ * xðnÞ ¼
X1
k¼�1

aðkÞxðn� kÞ

¼ xðnÞ * aðnÞ ¼
X1
k¼�1

xðkÞaðn� kÞ ðConvolutionÞ ð5:10Þ

We see that convolution is commutative. The convolution operation can be

interpreted as “flipping” (reversing) one of the two signals in time, then sliding it

in time across the other signal and multiplying each of the values of the two signals

together at each time sample and summing the products (Oppenheim and Schafer

1975). The time-reversal operation is described mathematically by x(�n) and

a(�n). The key concept is that a linear filtering operation in the time domain can

be written as a convolution summation (Oppenheim and Schafer 1975). Thus, if we

filter a signal x(n) with a linear filter impulse response a(n), then that filtering

operation is written as a convolution of the form in Eq. 5.11. Note that the

convolution of a signal of length N with a signal of length M has length

Nc¼NþM� 1.

5.3.2 Correlation vs. Convolution

The correlation of two real discrete-time signals a(n) of length M samples and x(n)
of length N samples is written as follows:

RaxðnÞ¼ aðnÞ * xð�nÞ ¼
X1
k¼�1

aðkÞxðnþ kÞ

¼ xðnÞ * að�nÞ ¼
X1
k¼�1

xðkÞaðnþ kÞ ¼ RxaðnÞ ðCorrelationÞ ð5:11Þ

We see from this equation that correlation is commutative, and the correlation

operation can be written in terms of the convolution operation. If we do the

convolution operation without reversing one of the two signals in time, then we

get the correlation operation. We recall that the convolution operation reverses one

of the signals in time before sliding it across the other signal. If we reverse one of

the signals before doing the convolution, then the convolution reverses it again, so

the result is an operation with a signal that has been reversed twice. This is

equivalent to the correlation operation.
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5.3.3 The Matched Filter

We are ready now to see why we call the correlation detector a matched filter. If we
interpret the exemplar signal a(n) to be the impulse response of a linear filter, then if

we convolve a(n) with x(n), we are filtering the measurement x(n) with a filter
matched to the signal of interest a(n). We have chosen a filter impulse response that

is matched to the desired signal of interest a(n). Because correlation is equivalent to
convolution (with one of the signals flipped in time), we can think of the correlation

operation as a filtering operation. Because the chosen filter impulse response is a

signal matched to the desired signal, we call this filtering operation matched
filtering. Of course, the term “matched filter” does not explicitly mention the fact

that the filter output is used as the test statistic in a threshold detector, so the reader

must infer that information without help from the name.

Figure 5.2 depicts the general block diagram for a matched filter detector,

showing the filter, the test statistic, and the threshold test. In order to maximize

detector performance and enable the proper measurement of performance, it can be

shown (Kay 1998) that the threshold test must be conducted at the time sample

corresponding to the largest value (peak) of the test statistic r[y(n)]. Letting n*
denote the time index corresponding to the peak of the test statistic, we conduct the

threshold test at r[y(n*)].

5.3.4 Example: Applying the Matched Filter to Our Example
Signals

Figure 5.3 depicts an example of a correlation detector scheme. We see that the

scheme consists of a cross-correlation operation, a test statistic and a thresholding

operation. Note the plots depicting the various signals at each step of the scheme.

Note the very low noise level in the plot of the absolute value of the cross-

correlation. This demonstrates a key property of the matched filter, that the matched

filter maximizes the SNR at the output of the filter/correlator. We discuss the

processing scheme in detail in the following sections.

Fig. 5.2 General matched filter block diagram. Letting the time sample at which the test statistic

is maximum be denoted by n*, note that the threshold test is conducted at the peak r[y(n*)] of the
test statistic r. Ideally, n* ¼ n0. The decision threshold is denoted by γ
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5.4 Bayesian Binary Hypothesis Testing and Performance
Measurement

Bayesian detection theory provides a rigorous foundation for evaluating detector

performance (Whalen 1971; Van Trees 1968). Assume that we have a noisy

one-dimensional (scalar) measured discrete-time signal (time series) as in Eq. 5.1.

In general, the desired signal a(n) can be deterministic or stochastic, and the noise

v(n) is modeled as stochastic and uncorrelated (statistically white) or correlated

(statistically colored). In this tutorial, we model the desired signal a(n) as deter-
ministic (Papoulis 1965). We treat the noise as either uncorrelated or correlated.

Most textbooks focus on the special case when the noise is Gaussian distributed

(Whalen 1971; Kay 1998; Van Trees 1968), and for that case, the reader is directed

to the references. For generality, this tutorial makes no assumptions about the form

of the noise distribution.

We can use binary hypothesis testing to make decisions or declarations about
whether or not the desired signal a(n) is present in the measurement. The hypothesis

that a(n) is not present in measurement x(n) is denoted H0, and the hypothesis that

a(n) is present in x(n) is denoted H1.

H0 : xðnÞ ¼ n ðnÞ ðNull Hypothesis: Desired Signal Not PresentÞ
H1 : xðnÞ ¼ aðn� n0Þ þ n ðnÞ ðAlternative Hypothesis: Desired Signal PresentÞ

ð5:12Þ
Notice that this problem definition assumes that we do not know in advance the

arrival time n0 of the signal of interest a(n� n0). We must estimate the arrival time

as part of the detection/classification process. As depicted in Figs. 5.2 and 5.3, the

Noisy Measurment Signal

Test at the

Threshold

k = Correlation Lag Index

Exemplar of the Signal We Wish to Detect
- From Prior Knowledge

x(n) = a(n – n0) + v(n)

y(k) = Rxa(k)

r [Rxa (k)] = |Rxa (k)|

r [Rxa (k)]

peak r [Rxa (k*)]

H0 (k* )

H1 (k* )

0

0 50 150 250 350100 200
time index

x(n)

x(
n)

h(n)

300

Cross-
Correlation

Threshold
Test

Test
Statistic

400

0 50 150 250 350100 200
time index

300 400

5

0

1

h(
n)

0.5

1.5

-5

x(n) y(k)

a(n)

a(n)

kk*

Fig. 5.3 Block diagram for the example problem. Letting the correlation lag index at which the

test statistic is maximum be denoted by k*, note that the threshold test is conducted at the peak of

the test statistic, r Rxa k*ð Þ½ � ¼ ��Rxa k*ð Þ��
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general matched filter includes computing a test statistic r[y(n)]. This test statistic
can take many forms; however, probably the most commonly used is the absolute

value of the correlation result y(n), as shown in the figure. Recall from before that

this threshold test is conducted at the time sample at which the test statistic is

maximum (Kay 1998). For our case, the test statistic is the absolute value of the

cross-correlation. Because the correlation lag index is different from the signal time

index n, we denote the lag index by k, and we denote the lag index at which the test
statistic is maximum by k*. This index k* corresponds to the arrival time n0 of the
desired signal a(n�n0). Expressed mathematically, we define k* as the correlation

lag index that satisfies:

max
k∈ ½0,N�M�

jRxaðkÞj ð5:13Þ

Recall that N is the number of time samples in x(n) andM is the length of a(n). The
set of k values over which to search is [0, N � M] because that is the range over

which the cross-correlation is affected by the signal a(n) (Kay 1998). The decision

is made when the test statistic evaluated at k* is compared with the threshold γ:

r½Rxaðk*Þ� ⋛
H1

H0

γ ðDecision RuleÞ ð5:14Þ

5.4.1 The Confusion Matrix (or Contingency Table)

Each time the hypothesis test is conducted, one of four events can occur: (1) H0 is

true and we declare H0, (2) H0 is true and we declare H1, (3) H1 is true and we

declare H1, and (4) H1 is true and we declare H0. The first and third alternatives

correspond to correct choices. The second and fourth alternatives correspond to

errors. The confusion matrix (or contingency table) depicted in Fig. 5.4 summarizes

these four events, their associated probabilities, and the method for computing the

four probabilities. The Bayes test assumes that there exist prior probabilities

(priors) for the hypotheses and costs associated with the four courses of action.

The priors P(H0) and P(H1) represent information available about the source prior

to conducting the experiments. The costs for the four possible courses of action are

given by C00, C10, C11, and C01, where Cij is the cost of deciding Hi given that Hj is

true. Once the costs have been assigned, the decision rule is based on minimizing

the expected cost, which is known as the Bayes risk ℜ (Van Trees 1968; Whalen

1971; Kay 1998):

ℜ ¼
X1
i¼0

X1
j¼0

CijPðHi

��HjÞPðHjÞ ðBayes RiskÞ ð5:15Þ

We assume throughout this discussion that the cost of an incorrect decision is higher

than the cost of a correct decision. In other words, C10 > C00 and C01 > C11.
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Note that in the confusion matrix, the probabilities in the two columns of the

matrix each sum to one. An important special case of the Bayes criterion is that in

which a correct classification is assigned zero cost and an incorrect classification is

assigned full cost. In this case, we assign C00¼C11¼ 0 and C01¼C10¼ 1. Inserting

these values in the Bayes Risk of Eq. 5.15 and using the fact that P (error) þ
P(correct classification)¼ 1, we obtain the probability of correct classification.

Note that Pcc is the weighted sum along the main diagonal of the confusion matrix,

weighted by the priors:

P Correct Classificationð Þ ¼ PCC ¼ P H1;H1ð Þ þ P H0;H0ð Þ ð5:16Þ

¼ PðH1

��H1ÞPðH1Þ þ PðH0

��H0ÞPðH0Þ ð5:17Þ
Often in practice, there exists insufficient information about an experiment to allow

the user to assign the values of the prior probabilities P0 and P1. In this case, it

is common to assume that the priors are equal (no information), so

PðH0Þ ¼ PðH1Þ ¼ 1
2
. Under this condition, the probability of correct classification

becomes

Fig. 5.4 Confusion matrix (contingency table): the two hypotheses are denoted H0, the null

hypothesis, and H1, the alternative hypothesis. Note that for the special case in which the prior

probabilities are equal P H0ð Þ ¼ P H1ð Þ ¼ 1
2

� �
, the probability of correct classification becomes

PCC ¼ 1
2
PD½ + 1� PFAð Þ�. Note that we construct one confusion matrix for each value of the

decision threshold γ
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PCC ¼ 1

2
½PðH1

��H1Þ þ PðH0

��H0Þ� ð5:18Þ

This can now be written in terms of the probability of detection and probability

of false alarm as follows:

PCC ¼ 1

2
PD þ 1� PFAð Þ½ � Probability of Correct Classificationð Þ ð5:19Þ

5.4.2 Bayesian Hypothesis Testing for Multidimensional (Vector)
Data

Let us now generalize our discussion. Our example problem specifies a scalar

measurement signal x(n). However, in general, we can have a vector of

J observations denoted as follows.

X ¼ x1; x2; . . . ; xJ½ �T Observation Vectorð Þ ð5:20Þ
The observations xj, j¼ 1, 2,. . ., J are called features of the physical process

being observed, and T denotes the vector transpose. In our example problem, the

vector has one element x(n), the measurement signal. We assume throughout this

discussion that the cost of an incorrect decision is higher than the cost of a correct

decision. In other words, C10 > C00 and C01 > C11. Under this assumption, the

detector that minimizes the Bayes risk is given by the following (Van Trees 1968):

f ðX ��H1Þ
f ðX ��H0Þ

⋛
H1

H0

PðH0ÞðC10 � C00Þ
PðH1ÞðC01 � C11Þ ðBayes Decision CriterionÞ ð5:21Þ

where f ðX��H1Þ denotes the conditional probability density function (pdf) of the

observation vector X given that hypothesis H1 is true, and f ðX��H0Þ denotes the

conditional pdf of X given that hypothesis H0 is true (Kay 1998). The ratio of the

conditional densities is called the likelihood ratio and is denoted by Λ X
� �

:

ΛðXÞ ¼ f ðX��H1Þ
f ðX��H0Þ

ðLikelihood RatioÞ ð5:22Þ

Because this is a ratio of two functions of a random variable, the likelihood ratio is a

random variable. A very important result is that regardless of the dimensionality of

the observations X; the likelihood ratio Λ X
� �

is a one-dimensional variable. This

idea is of fundamental importance in hypothesis testing. Regardless of the dimen-

sion of the observation space, the decision space is one dimensional. The quantity

on the right-hand side of the relation (5.21) is the threshold of the test and is denoted

by γ:
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γ≜
P H0ð Þ C10 � C00ð Þ
P H1ð Þ C01 � C11ð Þ Decision Thresholdð Þ ð5:23Þ

Thus, the Bayes criterion leads to a likelihood ratio test:

ΛðXÞ ⋛
H1

H0

γ ðLikelihood Ratio TestÞ ð5:24Þ

We see that the test threshold allows for weighting according to the priors and the

costs. This allows the user flexibility in choosing a threshold that is best for the

problem at hand. Note that if we have available the conditional pdfs or estimates of

them, we can construct the confusion matrices (one for each value of the threshold)

by integrating under the pdfs as depicted in Fig. 5.6. In most practical problems, we

do not have the pdfs, so we construct the confusion matrices using the threshold

method shown in Fig. 5.2.

5.4.3 Training and Testing Phases of the Detection Process

In order to measure detection performance, we must be able to conduct con-

trolled experiments in which we know the correct experimental outcomes

(“ground truth”) a priori (Duda and Hart 1973; Duda et al. 2001). This is a

very important point that is often overlooked. Our use of the threshold detector

occurs in phases. (1) First, in the Training Phase, we conduct controlled

experiments in which the ground truth is known in order to construct a Receiver

Operating Characteristic (ROC) curve from which we determine the appropriate

operating threshold for the detector. We use a set of known “training data”

during this phase. (2) Second, in the Testing Phase, we use the selected

operating threshold on a set of “testing data,” from which we produce opera-

tional detection results. The remainder of this section concentrates on the

training phase. Note that the training and testing process involves a considerable

“leap of faith” in which we assume that the training data are representative of

the test data. Therefore, extreme care must be taken to ensure that this assump-

tion is valid. Otherwise, interpretations of the processing results may be

meaningless.

The user should carefully design the experiments so the statistical sample size

(number of data samples we can use for performance evaluation) is large enough to

enable the computation of meaningful confidence intervals (see the following two

subsections). Figure 5.5 summarizes some rules of thumb for picking the training

and testing data sets. Using ground truth, we create a labeled data set in which each

data sample is labeledH0 orH1. Rule of Thumb 1:We generally want to have a large

sample size (approximately 100 or 1,000 or more). However, the real world often

does not allow us this luxury. Rule of Thumb 2: If the data are Gaussian distributed,
we need a minimum of about 30 or more samples to obtain reasonable confidence
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interval estimates (Hogg and Craig 1978). If our sample size is small, we turn to

“hold one out” and bootstrap algorithms for estimating confidence intervals (Zoubir

and Iskander 2004). Even with these methods, we cannot take too seriously any

results with very small sample sizes. Rule of Thumb 3: Generally, we should set

aside about 60 % of our labeled samples for the training phase and the other 40 %

for the testing phase (Hand 1981; Devijver and Kittler 1987). Hard Rule: Never test
on the training set. That is cheating and leads to improper inferences. Despite

warnings, many people continue to do this. Please do not become one of them.

5.4.4 The Receiver Operating Characteristic (ROC) Curve

A Receiver Operating Characteristic (ROC) curve is constructed to quantify the

tradeoff between the probability of detection PD and the probability of false alarm

PFA versus the detection threshold γ, as depicted in Fig. 5.6 (Whalen 1971; Duda

et al. 2001; Duda and Hart 1973; Van Trees 1968; Kay 1998). Note that this requires

the construction of one confusion matrix for each value of the threshold. We vary

the value of the decision threshold γ over the full range of values of the decision

statistic r[y(n)]. For each measurement signal in the ensemble, at the time

sample n*, we compare the decision statistic to the decision threshold as in

Fig. 5.2. If r[y(n*)]<γ, we declare that H0 is true. If r[y(n*)]�γ, we declare that

H1 is true.

Fig. 5.5 (Left) Training data sets for controlled experiments are depicted on the left side. These

include the standard labeled training and testing sets, as well as a possible blind test set that can be

used if enough data are available. When using this, we can ask some unbiased users to conduct the

experiment. (Right) The unlabeled test set is used after training and testing in the controlled

experiments. To minimize the “leap of faith,” these data should be representative of the data in the

training and testing sets
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Once we have the ROC curve, we choose the “operating threshold” γ* to be the

one that maximizes PD(γ) and minimizes PFA(γ) . This threshold value is found at

the “knee” of the ROC curve at the appropriate SNR for the experiment. Note that
this knee occurs for the threshold value at which the probability of correct classifi-
cation PCC is maximum. We denote this by Pcc(γ*).

5.4.5 Statistical Confidence Interval About the Probability
of Correct Classification

The author believes that “the ROC curve is not finished until we have computed the

confidence interval on the probability of correct classification.” Unfortunately, this

last step is almost always overlooked by most practitioners. Pcc is not a determin-

istic quantity. It can be viewed as a random variable with an associated distribution.

The classifier/detector performs a random experiment, the outcome of which

can be classified in one of two mutually exclusive and exhaustive ways: success

or failure. Success means that the classification is correct. Failure means that

the classification is incorrect. Let N equal the number of independent trials.

Let p ¼ Pcc ¼ the probability of correct classification. Assume that the true value

p is the same on each repetition. Let q ¼ 1 � p ¼ probability of error. For the

classification problem in which we conduct an experiment, we can calculate the

estimated quantities in the confusion matrix. The maximum likelihood estimate of

p is given by p̂ and is the estimated P̂CC computed in the confusion matrix. We can

Fig. 5.6 The Receiver Operating Characteristic (ROC) curve can be constructed by integrating

the conditional probability density functions depicted on the left. This, of course, assumes that the

pdfs or estimates of them are available. If not, then we generally use the confusion matrix method
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write the confidence interval about the true value of p as follows, where α, a
probability, is the significance of the test.

P L < p < Uf g ¼ 1� α Confidence Interval about pð Þ ð5:25Þ
where L and U are the lower and upper bounds, respectively, of the confidence

interval. The most common interpretation is to read the confidence interval relation

above as follows: “With confidence 1� α, the true p lies between L andU.” However,
this interpretation is not generally supported by statistical rigor. The preferred inter-

pretation is: “Prior to the repeated independent performances of the random experi-

ment, the probability is 1� α that the random interval (L, U) includes the unknown

fixed point (parameter) p (Hogg and Craig 1978).” For our example problem, we

arbitrarily choose α¼ 0.05 so we have a “95 percent confidence interval.”

There exists a significantly large literature on how to compute the lower and

upper bounds L and U. In most practical cases, the author prefers to use bounds that

do not assume a particular distribution and which can be used for both small and

large sample sizes N. To this end, a reasonable set of bounds is the following (Hogg
and Craig 1978):

L ¼ Np̂ þ 2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np̂ 1�p̂ð Þþ1

N þ 4

r
Lower Bound on pð Þ ð5:26Þ

U ¼ Np̂ þ 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np̂ 1�p̂ð Þþ1

N þ 4

r
Upper Bound on pð Þ ð5:27Þ

We can evaluate L and U and plot them versus the true p and the estimated p̂; for
various values of the sample size N, as in Figs. 5.8 and 5.10. These plots are very

instructive in showing how confidence intervals tighten as the sample size

increases. Bootstrap techniques for estimating confidence intervals from the data

for small sample sizes are discussed in Zoubir and Iskander (2004).

5.5 Processing for the Example Problem

5.5.1 Experiment Design for the Example Problem

The training data were created so as to allow the computation of the confusion

matrices necessary for computing the ROC curve and the confidence interval on Pcc.

Please refer to Fig. 5.5. For the null hypothesis H0, we simulated an ensemble of

P¼ 300 labeled realizations (each realization is labeled H0) of the simulated

measurement waveform x(n) specified in Eq. 5.15 in which the desired signal

a(n)¼ 0. Each realization of x(n) is different because each has a different realiza-

tion of the stochastic process v(n). For hypothesis H1, we created an ensemble of

P¼ 300 labeled realizations of the simulated measurement waveform x(n) in which
the desired signal a(n) is nonzero. Again, each realization of a(n) is different
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because each has a different realization of the stochastic process v(n). These
ensembles are sufficient to compute the performance indices. For controlled testing
purposes, we can similarly simulate two more labeled ensembles of realizations of

the stochastic process x(n). For blind controlled testing, we can similarly simulate

two additional labeled ensembles. For uncontrolled testing, we can similarly

simulate two more unlabeled ensembles.

5.5.2 Processing Results for the Example Problem

For our example, we have no prior knowledge from which to derive prior

probabilities P(H0) and P(H1) so we assume that the two hypotheses are equally

likely, and PðH1Þ ¼ PðH0Þ ¼ 1
2
. Under this condition, the expression for Pcc is

simplified, as shown in Eq. 5.19.

Fig. 5.7 Example problem for SNR¼ 3 dB: the ROC curve is plotted given the sample size

P¼ 300 samples per class (300 for H0 and 300 for H1). The abscissa is probability of false alarm

PFA, and the ordinate is probability of detection PD computed using confusion matrices. The knee

of the curve (marked by a circle) occurs at PCCðγ*Þ ¼ :698, PFAðγ*Þ ¼ :21 and PDðγ*Þ ¼ :60. The
corresponding operating detection threshold is γ*¼ 0.37
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Figure 5.7 depicts a ROC curve constructed for our threshold detector example

in which the SNR is 3 dB. We see that with this low SNR, the curve is far away from

the desired upper left-hand corner of the diagram, and the knee of the curve (marked

by a circle) occurs at PCC γ*
� � ¼ :667, PFA γ*

� � ¼ :36 and PD γ*
� � ¼ :76. Figure 5.8

presents the confidence interval about the PCC for this example in which the SNR is

3 dB. For our problem, the number of samples (signals) in the training data for both

Fig. 5.8 Example problem for SNR¼ 3 dB: the abscissa is p̂ ¼ the maximum likelihood

estimate of the probability of correct classification. The ordinate is p ¼ the true value of the

probability of correct classification. The 95 % (1� α ¼ :95) confidence interval bounds ðL,UÞ
¼ ð:66, :734Þ for the probability of correct classification are plotted, given the sample size N¼ 600

and p̂* ¼ PCCðγ*Þ ¼ :698 (the green vertical line). Note that the confidence interval tightens as

the sample size N increases
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H0 and H1 is N¼ 600 and the estimate of PCC γ*
� � ¼ p̂ ¼ :667. The green vertical

line depicts p̂ , and the curves it crosses depict the lower and upper bounds on p. We

see that the confidence interval is given by P :627 < p < :704ð Þ ¼ :95. The

corresponding operating detection threshold is γ*¼ 0.36. For tutorial purposes,

the figure also shows what the bounds would be if N¼ 10 and N¼ 1000. We see

that for small N, the bounds are very wide and for large N, the bounds are much

narrower, as expected.

In Fig. 5.9, the SNR is 20 dB and the ROC curve lies in the desired upper left-

hand corner. Here, the knee of the curve occurs at PCCðγ*Þ ¼ :997, PFAðγ*Þ ¼ :01

and PD γ*
� � ¼ :99. The corresponding operating detection threshold is γ* ¼ 0:91.

Figure 5.10 shows the confidence interval for N¼ 600 and p̂ ¼ :993. The estimated

95 % confidence interval is given by Pð:988 < p < :997Þ ¼ :95. We see the clear

performance improvement that occurs with increased SNR.

Fig. 5.9 Example problem for SNR¼ 20 dB: the ROC curve is plotted given the sample size

P¼ 300 samples per class (300 for H0 and 300 for H1). The abscissa is probability of false alarm

PFA, and the ordinate is probability of detection PD computed using confusion matrices. The knee

of the curve (marked by a circle) occurs atPCCðγ*Þ ¼ :997, PFAðγ*Þ ¼ :01 and PD(γ*)¼ 0.99. The

corresponding operating detection threshold is γ*¼ 0.96
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5.5.3 Conclusions

In this chapter, we introduce the concept of matched filtering for detecting desired

signals buried in noisy measurement signals. We show that the matched filter is

another name for the correlation detector, which exploits prior knowledge in the

form of an exemplar of the desired signal. We use an example detection problem to

Fig. 5.10 Example problem for SNR¼ 20 dB: The abscissa is p̂ ¼ the maximum

likelihood estimate of the probability of correct classification. The ordinate is p ¼ the true value

of the probability of correct classification. The 95 % (1� α¼ 0.95) confidence interval bounds

ðL,UÞ ¼ ð:988, :999Þ for the probability of correct classification are plotted, given the sample size

N¼ 600 and p̂* ¼ PCCðγ*Þ ¼ :997 (the green vertical line). Note that the confidence interval

tightens as the sample size N increases
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demonstrate the matched filtering approach. We see that the detection methodology

comes from hypothesis testing algorithms in Bayesian detection theory. This Bayes

approach gives us very powerful methods to choose the detection threshold and

evaluate detection performance in the form of the Receiver Operating Characteris-

tic (ROC) curve and the statistical confidence interval about the probability of

correct classification. We show that the matched filter can be an effective detection

tool when exemplars of the desired signal are available a priori.

5.6 Part II Auditory Matched Filtering: Biological Examples
from Selected Vertebrates

According to the auditory matched filter hypothesis (Capranica and Moffat 1983),

auditory information processing in sub-mammalian vertebrates (e.g., fishes,

amphibians, reptiles, and to some extent birds) relies on extensive peripheral

prefiltering. In other words, the auditory sensory filter (ear) is often tuned to signals

of biological importance to the species so that less post-processing is required by

the reduced central nervous systems in these species. In contrast, mammals can

afford to “take in” all sensory input and rely on their superior brain power to sort out

the meaning behind the message. The optimum receiver strategy, according to one

formulation of the matched filter hypothesis, is to “design” a bias into the frequency

response of the auditory system (Capranica and Moffat 1983; Wehner 1987).

Rather than a high-fidelity flat frequency response (no bias), the receiver’s auditory

system should have a frequency response which closely matches the envelope of the

energy spectrum of the emitter’s call. This ensures that the receiver maximizes the

signal-to-noise ratio in the frequency domain for that particular call. Figure 5.11

illustrates the decision criterion of such a matched filter detector. The received

Receiver’s Matched Filter

Pout>θNo Yes Signal presentSignal absent

Fig. 5.11 Schematic diagram for the decision criterion of a matched filter detector. Signal

propagation through the environment results in a noisy signal at the input to the receiver’s matched

filter. If the power output (Pout) of the filter exceeds a certain threshold (θ), the receiver decides

that the emitter’s signal is present. If Pout remains below this θ, the receiver decides that no signal
is present. By adjusting the internal threshold, the reliability of the receiver’s decision can be

modulated (Modified from Capranica and Rose (1983))
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signal has been contaminated by unwanted noise. After passing through the filter,

the receiver must make a decision if the signal is present or not. One decision

criterion is to simply ask if the power (energy per unit time) output of the matched

filter at any time exceeds some internal threshold (θ); if it has, the signal is present;
if not, the signal is not present. But this statistical decision-making process depends

critically on the setting of θ. If θ is set too low, the false alarm rate will be high; if θ
is set too high, the receiver runs the risk of missing some of the signals (Capranica

and Moffat 1983). In the following section, we have chosen several examples from

the literature of sub-mammalian vertebrates which appear to exhibit a conspicuous

match between the properties of their acoustic signals and the tuning of their

auditory systems and thus provide evidence biological matched filters (Wehner

1987).

5.6.1 Weakly Electric Fish

5.6.1.1 Correspondence of Electric Organ Discharge
and Electroreceptor Tuning

The wavelike electric organ discharge (EOD) in some gymnotoid species of South

American weakly electric fish is one of the most regular of all known biological

phenomena (Heiligenberg 1991). The internal fluctuation in the EOD rate is

ca. 0.01 %. In these fish, the electric field is generated by the electric organ located

in the tail, and the field is sensed by electroreceptors in the head region. In a

landmark study of gymnotoids, the EOD frequencies of three species were recorded

and compared to the best frequencies (BFs) of a population of tuning curves

obtained electrophysiologically from individual fibers innervating electroreceptors

(Hopkins 1976). Figure 5.12 is a plot of the electroreceptor BFs versus the EOD

frequencies from the same fish, for three different species. Clearly, there is a high

degree of matching between the electroreceptor tuning and the EOD rate.

5.6.1.2 Effect of Androgens on the Matched Filter
Meyer and Zakon (1982) confirmed the strong matching between the EOD dis-

charge rate and electroreceptor tuning in another species of South American weakly

electric fish—Sternopygus. Moreover, they demonstrated that systematic treatment

of these fish with androgens—in this case 5α-dihydrotestosterone (DHT)—lowered

their EOD rate. Concomitantly, DHT caused decreases in electroreceptor best

frequencies over a 2-week period, maintaining the close match between discharge

frequency and receptor tuning. Thus, electroreceptor tuning is dynamic and it

parallels natural shifts in the EOD frequency.

5.6.2 Anuran Amphibians

To help ensure that an appropriate behavioral response is evoked during acoustic

communication, the anuran auditory system is often tuned to salient spectral and/or
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temporal features of the conspecific call (Frishkopf et al. 1968; Capranica and

Moffat 1975; Capranica and Rose 1983). The elegant coevolution of this relatively

straightforward acoustic system has made anurans an extremely valuable

neuroethological model for the study of acoustic communication.

5.6.2.1 The Puerto Rican Coqui (Eleutherodactylus coqui)
The Puerto Rican Coqui frog, Eleutherodactylus coqui (Anura: Leptodactylidae), is
abundant in Puerto Rico where it can be found at altitudes from sea level to over

1,000 m above sea level (a.s.l.). Males of this arboreal amphibian are territorial,

spaced several meters from each other, and call from tree branches or vegetation

from sunset to shortly after midnight throughout 11 months of the year. They

produce a characteristic two-note call (“Co-Qui”) in which each note has a different

significance for each sex: males use the “Co”-note for territorial defense, while

females are attracted to the “Qui”-note (Narins and Capranica 1976, 1978). In this

species, the advertisement calls and snout-vent length (SVL) both exhibit an

altitudinal gradient such that at 30 m.a.s.l., small males produce short, rapidly
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Fig. 5.12 Plot of the electroreceptor BFs versus the EOD frequencies from the same fish, for three

different species of South American weakly electric fish (Sternopygus macrurus, Eigenmannia
virescens, and Apteronotus albifrons). Clearly, there is a high degree of matching between the

electroreceptor tuning and the EOD rate. The diagonal line shows perfect correspondence between
EOD frequency and BF (From Hopkins (1976))
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repeating, high-pitched calls, whereas at 1,000 m.a.s.l., males are larger and the

calls are longer, lower pitched, and repeated more slowly (Narins and Smith 1986).

For example, the “Co”-note frequency produced by males at 30 m.a.s.l. is about a

third of an octave higher in frequency than that produced by males at 1,000 m.a.s.l.

More recently, it was found that the spectral contents of the males’ “Co”-note calls

and the frequency to which the inner ear is most sensitive are tightly correlated and

change concomitantly along this same altitudinal gradient (Meenderink et al. 2010).

In that study, advertisement calls of males of E. coquiwere recorded in situ along an
altitudinal gradient ranging from 30 to 1,005 m.a.s.l. Following the recordings,

males were captured and transported to a nearby lab in Puerto Rico where,

the following day, distortion product otoacoustic emissions (DPOAEs) were

measured from the anesthetized males. This was done by sweeping two primary

tones ( f1 and f2) from low frequencies to high frequencies and plotting the ampli-

tude of the resulting third-order distortion product emission (2f1-f2) versus the lower
primary frequency, f1, resulting in a DPOAE audiogram. From this audiogram, the

frequency that results in maximum DPOAE amplitude (FmaxDP) can be identified

and interpreted as the frequency to which the ear is most sensitive, or the frequency

to which the ear is “tuned” (Meenderink et al. 2010). This frequency was then

plotted against the frequency of the animal’s “Co”-note in its advertisement call.

The resulting strong correlation (Fig. 5.13) is good evidence for a close match

between the call note frequency (signal) and the peripheral auditory tuning

(receiver characteristic) along the entire altitudinal gradient inhabited by these

vocal animals. It was suggested that the animal’s body size, conditioned by the

calling site temperature, determines the frequencies of the emitted calls and the best

sensitivity of the inner ear (Meenderink et al. 2010).

5.6.2.2 Ultrasonic Frogs

The Concave-Eared Torrent Frog (Odorrana tormota)
Odorrana tormota (previously Amolops tormotus) is known only from two

provinces in central China (Zhou and Adler 1993). This species has unusually

high-pitched calls containing substantial energy in the ultrasonic frequency range

(above 20 kHz), and its hearing extends from less than or equal to 1 kHz to

approximately 35 kHz (Narins et al. 2004; Feng et al. 2006), dramatically exceed-

ing previously reported upper limits of anuran frequency sensitivity1 (e.g., 8 kHz,

Loftus-Hills and Johnstone 1970; 5 kHz, Fay 1988). Playback experiments in the

animal’s natural habitat demonstrated that the ultrasonic elements are behaviorally

relevant, and thus this extraordinary upward extension into the ultrasonic range of

both the harmonic content of the advertisement calls and the frog’s hearing sensi-

tivity is likely to have coevolved in response to the intense, predominantly

1Another sympatric species, Odorrana graminea (formerly O. livida), also has an extended high-

frequency range (to 22–24 kHz) despite lacking the sunken tympana of O. tormota (Feng

et al. 2006; Liu et al. 2014).
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low-frequency ambient noise from local streams (Narins et al. 2004; Feng

et al. 2006; Feng and Narins 2008). Because amphibians are a distinct evolutionary

lineage from microchiropterans and cetaceans [which have evolved ultrasonic

hearing to minimize spectral overlap in the frequency bands used for sound

communication (Sales and Pye 1974) and to increase hunting efficacy in darkness

(Bradbury and Vehrencamp 2011)], ultrasonic perception in amphibians represents

a new example of independent evolution. Moreover, this example illustrates how a

matched filter, when subject to selection pressure in the form of ambient noise, can

respond appropriately to maintain the signal-to-noise ratio necessary for communi-

cation of biologically significant signals.

The Hole-in-the-Head Frog (Huia cavitympanum)
In addition to Odorrana tormota, only one other anuran species, Huia
cavitympanum, is currently known to have recessed tympanic membranes (Inger

1966). Odorrana tormota and H. cavitympanum are both southeast Asian species in

the family Ranidae, yet they do not overlap in geographical distribution and are

unrelated at the generic level (Cai et al. 2007; Stuart 2008). The habitats in which

the frogs are found, however, are remarkably similar; males of both species call in

close proximity to rushing streams that produce substantial broadband background

noise. Given the similarity of the species’ acoustic environment and peripheral

auditory morphology, Arch et al. (2008) predicted that they may have converged on

the use of ultrasound for intraspecific communication. Recordings of the calls of

H. cavitympanum in their natural habitat in Borneo obtained with ultrasonic detec-

tion and recording equipment demonstrated that males of this species are able to

produce calls that are comprised entirely of ultrasound (Arch et al. 2008). To test

Fig. 5.13 Scatter plot

showing the relationship

between the frequency at

maximum DPOAE amplitude

(FmaxDP) and the dominant

Co-note frequency in the call

of the Puerto Rican Coqui

frog, Eleutherodactylus
coqui. Data points indicate
median values � interquartile

ranges. Gray circles, 2f1-f2;
black stars, 2f2-f1. The
diagonal (dashed) line
represents equality between

Co-note frequency and

FmaxDP (From Meenderink

et al. (2010))
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the hypothesis that these frogs use purely ultrasonic vocalizations for intraspecific

communication, a series of acoustic playback experiments with male frogs in their

natural calling sites was performed (Arch et al. 2009). These workers found that the

frogs responded with increased calling to broadcasts of conspecific calls containing

only ultrasound. The field study was complemented by electrophysiological

recordings from the auditory midbrain and by laser Doppler vibrometer

measurements of the tympanic membrane’s response to acoustic stimulation.

These measurements revealed that the frog’s auditory system is broadly tuned

over high frequencies, with peak sensitivity occurring within the ultrasonic fre-

quency range (>20 kHz). Thus, H. cavitympanum is the first non-mammalian

vertebrate reported to communicate with purely ultrasonic acoustic signals.

Structural Basis of the Matched Filter
In a detailed study of the inner ears of the three species of frog known to detect

ultrasounds (Odorrana tormota, Odorrana graminea, and Huia cavitympanum),
Arch et al. (2012) attempted to identify morphological correlates of high-frequency

sound detection. These workers found that the three ultrasound-detecting species

have converged on a series of small-scale functional modifications of the basilar

papilla (BP), the high-frequency hearing organ in the frog inner ear. These

modifications include (1) reduced BP chamber volume, (2) reduced tectorial mem-

brane mass, (3) reduced hair bundle length, and (4) reduced hair cell soma length.

While none of these factors on its own could completely account for the ultrasonic

sensitivity of the inner ears of these species, the combination of these factors

appears to extend their hearing bandwidth and thus facilitate high frequency/

ultrasound detection. Similar morphological modifications are seen in the inner

ears ofO. chloronota—a poorly known species from the mountains of Laos. In fact,

the striking similarity of the BP features of O. chloronota to those of the three

amphibian species known to detect ultrasound suggests that this species is a

potential candidate for high-frequency hearing sensitivity. These data form the

foundation for future functional work probing the physiological bases of ultrasound

detection by a non-mammalian ear (Fig. 5.14).

5.6.2.3 Eupsophus roseus: A Leptodactylid Frog from the South
American Temperate Forest

In a recent test of the matched filter hypothesis, Moreno-Gomez et al. (2013) sought

to test the concordance between the acoustic sensitivity of female frogs of E. roseus
and (a) the spectral characteristics of the advertisement calls of conspecific males

and (b) the spectral characteristics of the ambient noise in which these frogs breed.

Audiograms measured from the torus semicircularis in the midbrain of anesthetized

females exhibited two sensitivity peaks: one in the low-frequency range (LFR

<700 Hz) and the second in the high-frequency range (HFR >700 Hz). Advertise-

ment calls of conspecific males were characterized by three dominant harmonics of

which the second and third fell within the bandwidth of the lowest thresholds in the

female’s HFR. In fact, the mean cross-correlation coefficient between the

audiograms and the conspecific vocalization spectra was 0.4 (95 % CI: 0.3–0.5).
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This coefficient was significantly higher than that between the audiograms and the

background noise spectra over the 4 months for which data were available

(Moreno-Gomez et al. 2013). Both this measured concordance and the mismatch

between the auditory sensitivity of E. roseus females with both the local abiotic and

biotic background noise are interpreted as adaptations to increase the signal-to-

noise ratio in this communication system.

5.6.3 Birds

5.6.3.1 Unmatched Filters Between Predators and Prey
By exploiting call frequencies heard well by conspecifics but poorly by a prey

species, animals may use a species-specific “private channel” to their advantage.

Basilar Papilla

H. cavitympanum US O. tormota US O. graminea US O. chloronota US ?

O. graminea

R. pipiens

H. cavitympanum

O. tormota

O. chloronota

A. daorum

R. pipiens Non-US A. daorum Non-US

R. pipiens

Fig. 5.14 Comparison of morphometric data from the basilar papillae of six amphibians. (a)
Recess entrance area (REA); (b) Epithelium surface area (ESA); (c) Hair cell count (HCC); (d)
Hair cell soma length; (e) Hair cell bundle length. Numbers indicate sample sizes. Letters denote
statistically significant differences in pairwise comparisons using Tukey’s post hoc analysis with

α¼ 0.05. If a pair of species shares a common letter, they are not significantly different in that trait.

Horizontal bars indicate the three amphibian species known to detect ultrasound (US). Vertical
arrow indicates putative ultrasound detector—O. chloronota. Inset (upper right) shows the BP

from Rana pipiens, a North American species known not to detect ultrasound (Non-US) (Modified

from Arch et al. (2012))
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Using the method of constant stimuli in an operant positive reinforcement condi-

tioning procedure, behavioral audiograms of the great tit (Parus major) and its

principal avian predator, the European sparrowhawk (Accipiter nisus), were deter-
mined (Klump et al. 1986). The hawk was 6.5 dB more sensitive than the tit at

2 kHz—the best frequency of both species. Although the high-frequency cutoff was

very similar in both species, at 8 kHz, the great tit was about 30 dB more sensitive

than the sparrowhawk. Figure 5.15 shows the differences in the unmasked

thresholds between the sparrowhawk and the great tit at various frequencies.

When confronted by a European sparrowhawk, the great tit uses three different

vocalizations: (a) the mobbing call (dominant frequency: 4.5 kHz), (b) the scolding

call (dominant frequency: 4 kHz), and (c) the “seeet” call (dominant frequency:

8 kHz). The latter call is mainly used by the great tit when it detects a sparrowhawk

flying at some distance (Klump et al. 1986) and is the aerial predator call described

by Marler (1955). At the dominant frequency of the “seeet” call, the hearing of the

great tit is 30 dB more sensitive than that of the European sparrowhawk. This

example illustrates that prey species may warn other potential prey of an impending

predator by exploiting the mismatch between predator and prey auditory

sensitivities.

5.6.4 Conclusions

In this chapter, the concept of matched filtering for detecting desired signals buried

in noisy measurement signals is presented. It is shown that the matched filter is

another name for the correlation detector or replica-correlation detector, which

exploits prior knowledge in the form of an exemplar (or replica) of the desired

signal. An example detection problem is used to demonstrate the matched filtering
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approach. The matched filter can be an effective detection tool when exemplars of

the desired signal are available a priori. In the second part, several key examples of

matched filters in the auditory systems of several selected sub-mammalian

vertebrates are provided. These auditory systems implement matched filters by

sculpting the receiver characteristics to the spectral and temporal features of the

species-specific signals of biological importance. With the examples provided, it is

hoped that the reader will more fully appreciate the adaptive value of the matched

filter concept for reducing the effective noise and thus maximizing the signal-to-

noise ratio.
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