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Abstract. Demand Response (DR) in residential sector is considered to play a
key role in the smart grid framework because of its disproportionate amount of
peak energy use and massive integration of distributed local renewable energy
generation in conjunction with battery storage devices. In this paper, first a quick
overview about residential demand response and its optimization model at single
home and multi-home level is presented. Then a description of state-of-the-art
optimization methods addressing different aspects of residential DR algorithms
such as optimization of schedules for local RE based generation dispatch, bat-
tery storage utilization and appliances consumption by considering both cost and
comfort, parameters uncertainty modeling, physical based dynamic consumption
modeling of various appliances power consumption at single home and aggre-
gated homes/community level are presented. The key issues along with their
challenges and opportunities for residential demand response implementation
and further research directions are highlighted.

Keywords: Demand response � Distribution grid � Home energy management
system � Price-based programs � Renewable generation � Battery storage � Load
scheduling

1 Introduction

Deployment of smart grid technologies and integration of information and communi-
cation infrastructure in the existing electricity grid has brought immense automation,
control and visualization in the grid. With the advent of ubiquitous data networks and
advanced metering infrastructure (AMI) that enables bi-directional communication, the
demand side energy management (DSM) has now attained an intelligent outlook in the
smart grid framework. DSM is the cost-effective tool to intelligently control the cus-
tomers’ load demand; in general, it focuses on load shaping i.e. modifying the energy
consumption pattern of users over time and at the same time improves service quality
and customer satisfaction. Major thrust areas of DSM are: (1) demand response (DR) -
an approach to reduce customers’ consumption by shifting, shaving and shaping the
electricity load in response to a peak energy signal from the power utility and (2) en-
ergy efficiency and energy conservation programs. Appropriate load-shifting is foreseen
to be even more crucial with increasing penetration of distributed generation like
roof-top solar photovoltaic (PV) in conjunction with/without battery energy storage
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system (BESS), plug-in hybrid electric vehicles (PHEV), power intensive HVAC loads
and usage of intelligent appliances, making the customer load profile more stochastic.

Therefore, intelligent DSM algorithm to reduce peak load and manage the satis-
factory quality of power has gained a lot of attention at the customer segment in the
distribution network. Though, very limited papers [1, 2] that summarize the DSM
algorithms and relevant technical challenges broadly in smart grid available in the
literature, however, it is found that few recent residential DR algorithms covering
state-of-the-art, key issues and research challenges are not properly highlighted.
Therefore, this paper solely focuses on DR algorithms for residential customers at
individual and multi-user levels (community segment) and highlights their benefits and
challenges in effective design and implementation. The rest of the paper is organized as
follows. Section 2 provides a background of the different scenarios of the problem.
Section 3 provides a quick glance of optimization model used to describe the problem.
Section 4 reviews important and recent DSM mechanisms individual and group of
cooperative/competitive consumers. Finally, Sect. 6 provides identified challenges and
opportunities for future research.

2 Residential Demand Response and Home Energy
Management

A typical smart home consists of various types of power appliances, local renewable
energy generation (such as rooftop solar PV, small wind turbine) with/without a
battery energy storage, and an electric vehicle (EV) networked together to a home
energy management system (HEMS) which is real enabler of residential demand
management. HEMS is the key element comprises of a desktop or an embedded
system that runs GUI monitoring software applications, as well as a communication
technologies like ZigBee, Wi-Fi, etc. It is also to be noted that HEMS should have
machine learning, pattern recognition, prediction capabilities and interface with the
user [3] and demand response aggregator/community EMS. Loads in the residential
sector are classified by EPRI’s load database used by National Energy Modeling
System (NEMS) into nine types viz. space cooling, space heating, water heating, cloth
drying, cooking, refrigeration, freezer, lighting, others [4]. Based on their demand
management potential, these are classified as critical loads - which might affect the day
to day life of consumers when controlled. On the other hand, loads which do not have
a major impact on consumer lifestyle are treated as controllable. Demand Response
(DR) is effective mechanism which can provide residential consumers with an
opportunity to reduce energy consumption costs and simultaneously help the utility to
reduce the peak-to-average ratio (PAR) of power. Apart from peak load management,
it provides various other applications and benefits like context-aware, power saving
services, automation services, etc.

Depending on the price-scheme used, some DR programs may operate in real-time,
whereas others may work on a day/hour ahead scheduling basis. The most general DR
algorithm is typically formulated as an optimization problem that helps to minimize the
cost of consumption of electricity on the customer side or maximize the profit on the
utility side. Subject to a set of operating constraints like user comfort levels, priority
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and operating patterns of appliances, weather conditions, etc., and data uncertainty and
user behavior considerations as shown in Fig. 1 The formulation of the algorithm and
the load control strategy depends on the type of loads, typical usage patterns, working
cycles, uncertainty considerations, behavior modeling, technical constraints and dis-
tributed renewable generation and storage facilities available, etc., Hence, demand
response potential of various appliances needs to be assessed for designing a DR
algorithm.

However individual customer demand control mechanisms will have undesirable
effects like peak rebound problem, blackout or brownouts, disturbing the load diversity
if not properly coordinated. To avoid these side effects and further benefit the multiple
consumers by utilizing the demand diversity and energy resources for grid oriented
objectives and cost minimization. These multi customer demand management mech-
anisms mostly control/coordinate the task scheduling of appliances and dispatch of
local distributed energy resources of customers community. This kind of scenario
requires a distributed architecture with robust and generic model in order to handle the
system complexity. Hence either coordinative multi-agent based optimization tech-
niques or by competitive game-theoretic methods are used which are supervised by an
aggregator/community EMS.

3 Demand Response Optimization Model: Mathematical
Framework

A typical residential demand management is a mixed-integer non-linear programing
problem with characteristics of stochastic, dynamic, multi-objective and multi-actor.
Based on the types of loads, and pricing schemes and nature of decision variables
involved, and the ability to include uncertainties, scalability, responsiveness, com-
munication requirements, various mathematical formulations and optimization
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Fig. 1. Inputs and outputs for a typical smart home residential DR algorithm
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techniques have been suggested for DR management. In this section, a comprehensive
description about the optimization model for individual home case and group of homes
case related to a day ahead scheduling scenario is provided. Also a brief description
about how they can be extended to real-time conditions.

3.1 DR Optimization Model: Single Home

Objectives: DR optimization problem is to manage the electrical consumption, gen-
eration and storage resources of the customer over a period of time (typically a day)
divided into time slots of a few minutes to the extent of an hour. The objectives could
be:

1. Minimize the total electricity cost, usage cycle cost of the battery storage
2. Minimize the inconvenience experienced by the users for delayed operation of time

and power shiftable appliances and thermal discomfort level operation of HVAC
loads out of their lower/upper limit of the user’s comfort zone.

3. Maximization of local generation and storage resources by self-use (or) buy-
ing/selling from/to the grid.

4. Minimization of peak demand and/or peak-to-average ratio (PAR).

The optimization model for above objectives are considered from [2] is given below for
ready reference.

min:
X

t2T
ct � yt � dt � zt � ðRU

t � aUt þRL
t � aLt Þþ EBþ

t � Rb þEB�
t � Rb

� �� �

min:
X

t2T
a �
X

s2S
f Sst þ b �

X

e2CB
f CBet

 !
; max:

P
t2T

EPV
t � Enet

t

� �

l � EToT
t

and min:
Lpeak
Lavg

ð1Þ

Where ct; dt are buying, selling cost of energy and yt; zt are energy brought and
injected into the grid at time t 2 T .RU

t ;R
L
t can be reward paid/penalty collected

depending on demand request satisfaction of high and low limits at time t 2 T
respectively. aUt ; a

L
t are binary variables indicating the constraint satisfaction. Rb is

battery storage system utilization cost per cycle, EBþ
t ;EB�

t are t is the time slot.a;b are
weights and f Sst ; f

CB
et are discomfort associated with shiftable, comfort based appliances

respectively. And ERES
t ;Enet

t ;ETOT
t and l are energy generated, net generation, total

demand and energy conversion parameter respectively. And Lavg average load demand
and Lpeak is peak load demand.

Constraints: A residential customer has four major types of appliances based on
controllability: fixed/critical, time-shiftable, power-shiftable, comfort based and local
renewable energy generation and storage devices. The major constraints could be
energy balance and equality and inequality constraints of loads. A brief description of
the constraints are:
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Fixed/Critical Loads: whose power consumption and usage cannot be controlled
(refrigeration, lighting, TV etc.).

Time Shiftable: are that can only be shifted in time and operates on its own power
consumption pattern (e.g., washing machine, dishwasher).

Power Shiftable: are the appliances which have a prescribed energy requirement
depending upon the usage of customer (e.g., pool pump, EV). Their constraint mod-
eling can be found in [5].

Comfort Based: The devices that are used to control a physical variable that influences
the user’s comfort (e.g., HVAC, water heater). Modeling details are presented in [6].

Local Energy Generation and Storage Systems: The local RE based generators such as
PV, micro wind turbine, can be either used locally, stored in a battery or injected into
the grid depending the buying and selling pricing [7].

This kind of day ahead model’s tentative scheduling is extended to real time by a
second stage short term stochastic programing problem for optimal scheduling and
control; where the time interval is typical a few minutes for considering demand
response signal and the uncertainties in price, load demand and local generation
forecast etc., with receding time interval. A multi time scale model predictive approach
for stochastic modeling is presented in [8].

3.2 DR Optimization Model: Community Level/Aggregated Customer
Level

In this case, a community of residential user’s will cooperate/negotiate with
Aggregator/Community energy management system (CEMS) in managing the power
exchange with the grid. The goal of a typical coordinated model is to minimize the
global daily energy bill of the group of users by scheduling the users with in their
allowable time limits.

min
X

u2U

X

t2T
ct:y

u
t � dtz

u
t

� � ð2Þ

The first term is the cost of energy purchase and the second one cost of energy
selling. Where yut ; z

u
t energy brought and injected into the grid at time t 2 T by the user

u 2 U is total number of users. The constraints could be total peak load of the users
cannot exceed global peak power, network operational constraints, etc. the detailed
modeling of the constraints can be found in [9].

4 Residential DR Algorithms: State-of-the-Art

A critical review of very recent DR algorithms for residential energy management is
presented in this section. The focus is on the works related to single home and
multi-home scenarios, their targets and solution techniques used. And how they tackled
the challenges related to work like data uncertainty handling, user behavior modeling,
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customer involvement, pricing scenarios, cases with and without distributed RE based
generation considerations. It was expected that the total number of publications would
go up to 500 by the end of 2014 [1].

4.1 DR Methods at Individual Home Level

Single user optimization methods are defined to control load and energy resources of
customer. Several classical and heuristic algorithms and techniques are proposed for
scheduling and control of appliances along with/without distributed energy resources,
under day ahead and real-time pricing environments. Genetic Algorithm (GA) is
considered in [10] for load scheduling in an environment containing distributed RE
based generation with an objective of peak load minimization and compared with
mixed integer linear programing (MILP) approach. Along the same lines, an MILP
problem formulation is proposed in [11] to minimize electricity cost subjecting to
energy phase and operational constraints. In [12] proposed a convex programing
(CP) optimization model for and demonstrated its computation complexity reduction
capabilities. A multiple knapsack method is proposed (MKP) [13] for optimal load
scheduling.

Real time pricing (RTP) is combined with inclining block rate (IBR) model in [14] to
address the problem of possibility that most appliances may operate during the time with
the lowest electricity price which may damage the entire electricity system due to the
high PAR and solved using GA. Authors in [15] developed an Adaptive Neuro-Fuzzy
Inference System (ANFIS) enabled Master Controller (MC) for HEM, where MC
schedules the appliances as per user desires and communicates the same with the
appliance nodes and ANFIS predicts the customer profiles and sends it to an aggregator.

To tackle the problem of uncertainty and randomness in the considered data many
stochastic and robust algorithms that are used are: A typical automated optimization
based residential load control scheme using RTP combined with IBR is proposed in
[16] which predicts the price ahead time interval. An model predictive control
(MPC) based appliance scheduling algorithm is proposed in [17] for buildings, for both
thermal and non-thermal appliances. Where as in [8], a two timescale based MPC is
proposed for DR considering stochastic optimization model. The authors in [18] pro-
posed a control strategy for peak load reduction by adjusting set point temperature of
HVAC loads with in customers preferred tolerance levels by comparing the retail price
with threshold price level set by consumers. The uncertainty in behavior of consumer
appliance usage is addressed by fuzzy-logic approach in [19]. A least square SVM
mechanism for predicting load demand is presented in [20].

An integrated planning and controlling approach for optimal energy management in
residential areas with RE based generation is proposed in [21]. The problem of
renewable source and electricity price variations is addressed in [22, 24] by dynamically
allocating different priorities to appliances according to their status and scheduling them
according to the predicted output of renewable sources and the electricity market price
forecasting. For customers who need to schedule their consumption, generation and
storage, in [23] the authors have proposed an optimization algorithm for power
scheduling using MILP. A simple and robust optimization technique is proposed in [22]
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considering uncertainties in price, renewable power generation prediction. A real time
DR algorithm for limiting the load based on user comfort levels or priorities of appli-
ances is given in [25] and its hardware demonstration in [26].

The challenge of consider multiple conflicting objectives with a meaningful balance
between them, is partially addressed in [27, 27] by proposing a framework and indices
for considering cost, user’s convenience and comfort as a mixed objective function and
demonstrated with a real data based simulation. Whereas [29] has a multi objective
optimization along with uncertainties in the input data. Authors in [30] proposed and
demonstrated a task scheduling cum energy management strategy for demand response
management in a smart home. But these individual control techniques leads to large
peaks during low cost periods and causes rebound peak, service interruptions etc., and
to address these problems, the control strategies for community level energy man-
agement and DR algorithm has been proposed in literature.

4.2 DR Methods at Community Level/Aggregated Homes

Optimization methods for aggregated users are two types: (1) centralized scheduling
(optimization approaches) – an extension of single customer methods to multiuser level
and (2) distributed scheduling can be competitive or collaborative approaches (Game
theoretic approaches) based on load diversity. The problem scenario and the distributed
optimization schemes applied are as discussed below.

In [31], an incentive-based consumption scheduling scheme was proposed for
multiple users connected to a single source and solved using coordinate ascent method.
Game theoretic approaches are given in [32, 33]. Using an optimal stopping approach
defined in [34], a real-time distributed scheduling scheme [35] considering randomness
in pricing, appliance priority and power constraint to tackle peak load is presented. The
optimization model that adapts the hourly load level in response to forecasted hourly
electricity prices is presented in [36].

Authors of [9] have proposed two approaches for evaluating the real-time
price-based demand response management for residential appliances namely, stochastic
optimization and robust optimization. In [37] a scalable and robust Lagrange relaxation
approach (LRA) has been proposed for minimizing energy cost and maximizing
consumer satisfaction taking into consideration of variations in renewable generation
and price uncertainties. An online algorithm, called Lyapunov-based cost minimization
algorithm (LA), which jointly considers the energy management and demand response
decisions is proposed in [38]. Vickrey–Clarke–Groves (VCG) auction based mecha-
nism for maximizing social welfare of aggregated users is presented in [39].

Authors in [40–42] have proposed a distributed and coordinated control approaches
respectively with focus on overcoming the peak rebound problem. On similar grounds
in [43] general algebraic modeling (GAMS), in [44] Stackelberg non-cooperative game
theory, agent-based model is developed in [45, 46] Q- learning an online reinforcement
learning method is proposed for distributed control of time shiftable appliances. Ref-
erence [47] focuses on PHEV in which the authors have proposed a distributed
algorithm whereas previous works solely dealt with centralized algorithms. In [48]
authors proposed two different approaches for residential load scheduling combined
with bi-directional energy trading using their EV’s.
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To tackle the demand uncertainties and randomness in real time environment in
[49] DRSim, a physical simulator is proposed, which can be used to analyze algorithms
performance at different case studies.

In [50] proposed an enhancement to the decentralized approach for deferrable and
thermal loads of large group of customers. It showed that by adjusting to agent’s
behavior for market prices, by using adaptive Widrow-Hoff learning rule for deferrable
load pattern and modeling their thermal load profile variations. Their strategy gives the
emergent behavior of a centrally coordinated mechanism. A single approach will not
suit for all the needs in [51] a comparison of various coordinated algorithms viz.
balancing responsible, round robin, negotiation and centralized algorithms for a
community with multiple house agents for appliance scheduling with respect to
diversity, participation of community and amount of peak load reduction.

Table 1. DR optimization methods overview

Individual home level Aggregated homes level

Typical
objectives

Min. of cost/Max. of comfort/Min.
of peak load/Max. of
self-consumption of local RE
generation (or) combination of
these.

Min. of cost, Min. of carbon
emissions and Max. of social
welfare

Typical
constraints

Thermostatic and non-thermostatic
controlled appliances, BESS, EV
and their parameter limits, time &
usage limits.

Non-thermostatic controlled
appliances, BESS, EV constraints
and price & load uncertainties,
distribution network operational
constraints etc.,

Optimization
methods

GA [14, 18], ANFIS [15],
CP [12], MPC [17],
MILP [11], PSO [54], MKP [13]

GT [32, 33], MILP [33], Stochastic
[9], LRA [37], LA [38], GAMS
[43], Q-learning [46],
Stackelberg GT [47], Heuristic
[53], Agent based model [45]

Architecture
and
components

Single customer with Home energy
manager that communicates with
utility/aggregator.

Hierarchical architecture with
distributed agents (i.e., home
energy managers), centralized
agent (aggregator or community
energy manager)

Benefits and
limitations

Self-use of renewable energy, cost
and discomfort minimization,
Privacy and

Limitations are peak rebound, black
out.

System wide perspectives, social
network based sharing the useful
information for mutual benefit.

Difficulty in coordination between
house agents, dependency on
aggregator, privacy issues.

Popular
simulation
platforms
used

PSCAD, MATLAB along with its
optimization, fuzzy logic and
ANFIS capabilities and solvers
like GAMS.

JADE [55], GridLab-D [56],
MATLAB environments. Most of
the times a combination of these
E.g. Agent-based architecture
modelling of household devices
in MATLAB and agents in JADE
[57].
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Although a large number of papers are available on DR algorithms for residential
consumers, very few [52, 53] have focused on including power generation by addition
of RE based generation at single home level and distributed generation (DG) at the
community level respectively, considering together with their intermittent nature. This
is one of the major challenges in going ahead with smart grid implementation. An
overview of individual and multi user level approaches is presented in Table 1.

5 Residential DR: Key Issues, Opportunities and Challenges
in Implementation

Based on the above survey, the derived important aspects, identified key issues and
challenges for DR optimization methods implementation in residential sector and
research directions are:

• Firstly an intelligent HEMS system [58] interconnected with local RE based energy
sources, battery storage and loads is required at the consumer end for DR partici-
pation. The participation of the user depends on economic DR programs and effi-
cient and secure information tools from the Aggregator or utility.

• Some works focused only on mathematical modeling and solution strategy for case
specific simulation studies. Research works considering a realistic problem sce-
narios and possible problems, potential effects and cost benefit analysis is the
further scope for research.

• In single home scenario, as the number of objectives increases, the tradeoffs are
likely to become complex. Also the weightage to the objectives are likely to change
with respect to customer’s requirement. Hence the effectiveness of fuzzy stochastic
multi-objective programing [59] approaches and evolutionary multi and
many-objective optimization algorithms [60] needs to be explored to address the
challenges in modeling the DSM optimization problem to real scenarios.

• The choice of solution strategy or algorithm depends on many factors user load
diversity, amount of user participation, tariff structure etc. there is a need for a
unified and robust solution which fits to most of the problem case scenarios.

• Popularly, two level time scales are used for demand management namely a day
ahead scheduling typically one hour to 12 min interval and an intraday/online
optimization with time interval of few minutes as tradeoff between problem com-
putational complexity, uncertainty considerations and useful optimal solution.
Similarly, two level control optimization have been used namely individual cus-
tomer level and aggregated level. Developing effective techniques for coordination
between these strategies remain open.

• Implementation of effective real time renewable generation and load demand
forecasting methods and challenges associated still needs to be addressed. Algo-
rithms based on machine learning, state space models, and ANN’s can be further
explored [61].

• As suggested in Sect. 4 of [62], exploring and studying the applications of various
game theoretic methods for multi-home level demand response management needs
to be looked at.
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Table 2. A summary of Key Issues along with their challenges and opportunities

Key issues Challenges Opportunities

Load modelling DR enabled physical based
load modeling helps to know
the consumption changes
with respect to customer
behavior and utility signals.
The key is to develop a
characteristic model with
following qualities
comprehensive, reasonably
aggregated and DR enabled
as in [64].

Development of a
sophisticated load model
based on historical data,
physical parameters,
occupant comfort and DR
signals at the user operation.

E.g. Weather based model helps
for precool and/or arrival
departure preparation,
reduced comfort settings of
cooling load for DR response
participation.

Consumer behaviour
modeling

Model complexities depends
on various parameters

Exploring the use of machine
learning, fuzzy logic and
ANFIS systems

Seamless integration of
hardware & software
platform

Since multiple ICTs are used at
different levels of
communication with mesh
networking between devices
and EMS for control. The
issue of communication
protocol for integration of
HEM interoperability with
smart phone, Tablets etc.,

HEMS with support of
multiple communication
protocols and development
of standards- based open
platform for easy integration.

Computational &
integration
challenges at
individual level

A coordination is required
between costumer level
HEMS and community level
Aggregator for DR
management.

Having an integrated and
hierarchical multistage
optimization strategy with
time receding interval.

DR integration
challenges
aggregated-customer
level

Peak rebound occurs multiple
users adopt similar
algorithms for load
scheduling/may not
cooperate with aggregator.

Uncertainty in generation,
interactions of multiple
renewable resources with
network.

Exploring the usage of
stochastic game-theoretic
approaches for interactive
decisions.

Self-use by storing in a battery
during peak times for
increased system flexibility.
Buy/sell to grid or supply
local load.

Coordination strategies How to obtain coordination
between HEMS and Hybrid
Grid connected inverter with
Rooftop solar PV and battery
storage.

Coordination between HEMS
and CEMS/Aggregator.

Development of a hybrid grid
connected inverter’s having
programmable discharge
power, time and duration for
ON/OFF control by a
HEMS.

(Continued)
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• Penetration of Plugin-electric vehicles and distributed energy resources brings an
increased flexibility in load shaping and integration challenges [63], effective
scheduling algorithms to reduce their impact needs to be further studied.

• Dynamic modeling and scheduling of appliances power consumption, prediction of
price and uncertainties in renewable energy, making DR context-aware are issues
needs to be addressed by collecting a large set of time-series data.

Finally, a summary of key issues and their challenges and opportunities are pre-
sented in Table 2.

6 Conclusion

This paper presents the background of smart home energy management functions and
optimal DR models for residential users. And reviewed recent methods addressing
different aspects of single and multi-user residential energy management and demand
response. Based on this review, it is observed that different modelling approaches are
explored for household devices, uncertainty in forecasted data and user behavior, and
multiple conflicting objectives. Also many scheduling optimization techniques and

Table 2. (Continued)

Key issues Challenges Opportunities

Forecasting of local RE
based power
generation and load
demand

Near real-time generation
forecast models depends on
local weather profile, time
interval, site specific
physical shading and
clouding effects etc.,

Load demand depends on uses
occupancy, behaviour,
season, time of the day etc.,

Time-series and Neural
network models needs to be
explored for short term
generation forecasting with
consideration of uncertainty
in weather parameters.

Demand prediction and
uncertainty modeling by
machine learning together
with model predictive
approaches

Creating Awareness DR programs are usually
voluntary, resulting in
self-selection, limitation in
cost effectiveness and
participation

Customer education and
focusing on marketing and
adaptation strategies

Pricing structure Need for profitable and
attractive dynamic pricing
structure

Designing a simpler pricing
scheme with dynamic
dependency on power and
time of use

Privacy and security User’s data gives critical
information about a user life
style which puts a user at
risk.

Data encryption, safe cloud
storage systems needs to be
explored to ensure privacy
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methodologies are proposed; however, these methods should be further studied by
applying on a similar problem scenarios for appreciating their relative merits, suit-
ability, computational complexities, and integration challenges.

Coordination of day-ahead scheduling and real-time demand response in a home
needs to be focused by considering time receding optimization strategies, for inte-
gration of RE based generation and loads under the scenario of real-time pricing with
effective uncertainty consideration and moderate computational complexity. Devel-
opment of case specific single home and aggregated home models with common set of
time-series data such as device consumption pattern, occupancy patterns, and roof-top
PV/Wind generation for over a period of time for future research and analysis.

At aggregated home levels, cooperative methods will use have more impact on
efficient and economic operation of micro grid/distribution network environment. The
future optimization tools for residential homes must offer intelligent ways for collective
management of electric loads and resources of the multiple customers with effective
coordination/negotiation strategies between HEMS and CEMS/aggregator for overall
optimization.
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