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Abstract In recent years, next generation sequencing technology, coupled with an
assay that is capable of detecting genome-wide chromatin interactions, has produced
a massive amount of data and led to a greater understanding of long-range, or spatial,
gene regulation mechanisms. Hence, the traditional one-dimensional linear view of
a genome, which is especially prevalent in statistical and mathematical modeling,
is inadequate in many genomic studies. Instead, it is essential, in studying genomic
functions, to estimate the three-dimensional (3D) structure of a genome. The avail-
ability of genome-wide interaction data necessitates the development of analytical
methods to recover the underlying 3D spatial chromatin structure, but challenges
abound. One particular issue is the excess of zeros, especially with higher resolution,
or inter-chromosomal, data. This leads to questions concerning the appropriateness
of using the Poisson distribution to model such data. In this article, we introduce a
truncated Poisson Architecture Model (tPAM) to directly model sequencing counts
with many zeros. We carried out an extensive simulation study to evaluate tPAM
and to compare its performance with an existing method that uses the Poisson dis-
tribution to model the counts. We applied tPAM to reconstruct the underlying 3D
structures of two data sets, one of human and one of mouse, to demonstrate its util-
ity. The analysis of the human data set considered chromosomes 14 and 22 jointly,
thereby illustrating tPAM’s capability of analyzing inter-chromosomal data. On the
other hand, the mouse analysis was focused on a region on chromosome 2 to evalu-
ate tPAM’s performance for recovering structure with loci in different topologically
associated domains.
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1 Introduction

The spatial (three-dimensional, or 3D) organization of a genome is closely linked
to its biological function, and thus, full understanding of the genomic structure is
essential. In recent years, the ability to identify long-range chromatin interactions
genome-wide, known as looping, aided by next generation sequencing technology,
has been truly revolutionary in genomic and epigenetic research. The most well-
known assay for detecting chromatin interaction, Hi-C [14], produces a library of
products that are pairs of fragments in close proximity to each other in the cell
nucleus but may be far apart in terms of their chromosomal locations (and may
even be on different chromosomes). The library is then analyzed through massively
parallel DNA sequencing, producing a catalog of interacting fragments that can be
organized into a two-dimensional matrix (known as a contact matrix) of contact
counts. Figure1 provides an example of a contact matrix for chromosomes 14 and
22 based on data from [14], showing only some of the contact counts for illustration
purposes. In addition to Hi-C, other assays for detecting genome-wide long-range
interactions have also been developed, such as ChIA-PET [6] and TCC [12].

Despite spectacular advances in molecular technologies that allow for unprece-
dented identifications of genome-wide chromatin interactions, our understanding of
3D organization of genomes is still coarse and incomplete, especially for complex
organisms such as humans and mice. This is partly due to the massive amount of
data that prove to be extremely difficult to analyze. In addition to its size, the features
of the data also pose challenges, rendering conventional statistical methods ineffec-
tive. To tackle these issues, analytical approaches have been proposed to understand
the spatial organization of the genome based on Hi-C long-range looping data. The
approaches can be classified into optimization-based and modeling-based.

For optimization-based approaches, the idea is to first translate each pairwise con-
tact count into a distance using a biophysical property. One then obtains a consensus
3D structure by minimizing some objective function, such as the total “differences”
between the translated distances and those inferred from the hypothesized 3D archi-
tecture [1, 4, 5, 13, 17, 21]. Many of the optimization methods are based on metric
or non-metric multi-dimensional scaling [2, 4, 17]. For this type of approach, nor-
malization of the data is key [11].

Modeling-based approaches, on the other hand, are all based on probability mod-
els that describe the relationship between the contact counts with the 3D physical
distance. The contact counts are modeled either by a normal distribution to account
for variability in the estimation [16] or by a Poisson distribution [10, 18] with its
intensity parameter assumed to be related to the physical distance by an inverse
relationship. Statistical inferences on the 3D structure (together with other model
parameters) are made either by maximum likelihood [18] or through casting the
problem into a Bayesian framework [10, 16].

As discussed earlier, aHi-C experiment produces contact counts that are organized
as a 2D matrix for a given resolution. For example, the data matrix shown in Fig. 1
is based on a 1 Mb (megabases) resolution. If there is sufficient sequencing depth,
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Fig. 1 Contact matrix of
Hi-C data. The two diagonal
blocks correspond to
intra-chromosomal contacts
among loci in chromosome
14 and 22, respectively,
while the two
off-diagonal blocks
depict inter-chromosomal
contacts between loci
in chromosomes 14 and 22.
Note that the matrix is
symmetric

a higher resolution matrix can lead to a finer and more useful 3D structure, but
there tends to be more zero entries in the contact matrix, rendering the Poisson
distribution inadequate for modeling the data. To remedy the problem, in this paper,
we propose a truncated Poisson Architecture Model (tPAM) by using a truncated
Poisson distribution without the zero counts. We carried out an extensive simulation
study to evaluate tPAM and to compare its performance with an existing method
[10] that uses the Poisson distribution to model the counts. We applied tPAM to
reconstruct the underlying 3D structures of two data sets, one of human and one
of mouse, to demonstrate its utility. The analysis of the human data set considered
chromosomes 14 and 22 jointly, thereby illustrating its capability of analyzing inter-
chromosomal data. On the other hand, the mouse analysis was focused on a region
on chromosome 2 to evaluate tPAM’s performance for recovering a structure with
loci in different topologically associated domains (TADs).

2 Methods

2.1 The tPAM Model

Consider a set of n fragments (also referred to as loci), each being represented by a
point in the 3Dspace.Collectively, they are denoted byΩ ≡ {pi = (px

i , py
i , pz

i ); i =
1, . . . , n}. Let di j denote the Euclidean distance between loci i and j , that is,

di j =
√

(px
i − px

j )
2 + (py

i − py
j )

2 + (pz
i − pz

j )
2. (1)

The contact counts of these n loci are organized into a 2Dmatrix, with yi j denoting
the contact count (the (i, j) entry of the matrix), which represents the interaction
intensity between loci i and j . Based on these data (y = {yi j , 1 ≤ i < j ≤ n}; note
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that the matrix is symmetric), the goal is to make inference about the coordinates,
Ω , of the 3D structure.

We assume that the contact counts follow a truncated Poisson distribution, with
its intensity parameter linked to the 3D distance and other covariates through a log-
linear model. More specifically, the Poisson model was built under the assumption
that two loci in close proximity in 3D space are likely to interact more, which leads
to the following model for the Poisson intensity parameter λi j :

log λi j = α0 + α1 log di j + xT
i jβ, (2)

where xT
i j = (x1

i j , . . . , x K
i j ) and β = (β1, . . . , βK )T denote the vector of K covariates

and its associated vector of coefficients, respectively. Typical covariates include GC
content, fragment length, mappability score, and potentially also restriction enzyme
to take care of systematic bias and to normalize data [10, 20]. Under the assumption
that the physical 3D distance between two loci is inversely related to the contact
counts [14], the restriction of α1 < 0 is imposed in the model.

Letting θ denote the collection of all model parameters, we have the following
log-likelihood function:

log p(y|θ,Ω) ∝
∑ ∑
(i, j)∈I

{
yi j log λi j − log(eλi j − 1)

}
, (3)

whereI denotes the index set of non-zero contact counts, that is,I = {(i, j); yi j �=
0, 1 ≤ i < j ≤ n}. This model, which excludes the zero contact counts, is referred
to as the truncated Poisson Architecture Model (tPAM).

We remark that model (2) suffers from non-identifiability because the estimated
structure, Ω̂ , is not invariant to scale, rotation, reflection, and translation. To resolve
this issue, without loss of generality, we can fix α0 to be an arbitrarily predefined
quantity. Note that α0 controls the scale of the 3D structure, thus fixing α0 will
effectively lead to the structure being estimated only up to a scale. However, this is
not an issue since the relative distance does not affect the predicted structure and
its correlation with genomic functions [21]. Following [10], we further place the
following restrictions on Ω to make it estimable, as four conditions on the structure
are sufficient to uniquely determine the 3D structure:p1 = (0, 0, 0),p2 = (px

2 , 0, pz
2)

with pz
2 > 0, p3 = (px

3 , py
3 , pz

3) with py
3 > 0, and pn = (px

n , 0, 0) with px
n > 0.

2.2 MCMC Procedure for Parameter Estimation

To make inferences about the 3D coordinates, we devise a Markov chain Monte
Carlo (MCMC) sampling procedure as follows. We write the posterior distribution
of Ω (main parameters of interest), together with nuisance parameters θ , as

p(Ω, θ |y) ∝ p(y|Ω, θ)p(Ω)p(θ). (4)
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The first component of Eq. (4) corresponds to the likelihood as given in (3), that is,

p(y|Ω, θ) =
∏ ∏
(i, j)∈I

LP{λi j (Ω, θ)}, (5)

where LP(.) denotes the zero-truncated Poisson distribution and

λi j (Ω, θ) = exp
(
α0 + α1 log di j + xT

i jβ
)
. (6)

The remaining parts of (4) describe the distributions for p and θ , which are assigned
non-informative priors: p(Ω) ∝ 1, p(α1) ∝ I (α1 < 0), and p(β) ∝ 1.

To accommodate the estimable conditions imposed on Ω , we consider an iso-
metric transformation, with details provided in Appendix A. To sample from the
posterior distributions of θ , we use Metropolis-Hastings algorithms, and in partic-
ular the Gibbs sampler whenever the conditional distribution of a parameter is of
a commonly known one. In sampling the posterior of Ω , we employ Hamiltonian
MCMC to more effectively handle the high correlations among the samples [7]. In
the following, we briefly describe the updating schemes. Let ϑ denote the current
estimates of (Ω, θ) at iteration t , and ϑ−a denote ϑ without the element a.

• Updating of α1.
We base on the current αt

1 to sample a candidate α∗
1 from proposal distribution

Jα(α∗
1 |αt

1), a normal distribution with mean αt
1 and predefined proposal σ 2

α1
, and

calculate the ratio of the densities

r = p(α∗
1 |y, ϑ−α1)

p(αt
1|y, ϑ−α1)

, (7)

where p(α∗
1 |y, ϑ−α1) ∝ p(y|ϑ−α1 , α

∗
1). Accept α∗

1 as αt+1
1 with probability equal

to min(r, 1); otherwise αt+1
1 = αt

1.• Updating of βk , k = 1, . . . , K .

We base on the current β t
k to sample a candidate β∗

k from proposal distribution
Jβ(β∗

k |β t
k), a normal distribution with mean β t

k and predefined proposal σ 2
β , and

calculate the ratio of the densities

r = p(β∗
k |y, ϑ−βk )

p(β t
k |y, ϑ−βk )

, (8)

where p(β∗
k |y, ϑ−βk ) ∝ p(y|ϑ−βk , β

∗
k ). Accept β∗

k as β t+1
k with probability equal

to min(r, 1); otherwise β t+1
k = β t

k .• Updating of Ω .
Based on an analogy with physical systems, Hamiltonian Monte Carlo intro-
duces an additional parameter vector vi = (vx

i , vy
i , vz

i )
T corresponding to para-

meter pi and updates both of them together in a new Metropolis-Hastings algo-
rithm. Specifically,weuseHamiltonian functions definedby H(pi , vi ) = U (pi ) +
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K (vi ), where U (pi ), a potential energy, is assigned − log{p(pi |y, ϑ−pi )}, while
K (vi ), a kinetic energy, is defined as vi

T vi/2. Then we consider the following
joint density of (pi , vi |y, ϑ−pi ) using the Hamiltonian function H(pi , vi ):

p(pi , vi |y, ϑ−pi ) ∝ exp{−H(pi , vi )} = exp{−U (pi )} exp{−K (vi )}. (9)

HamiltonianMCMC then proceeds in three stages. First, we sample random auxil-
iary variables vx

i , vy
i , and vz

i from N (0, 1). Then we simultaneously update (pi , vi )

to obtain a proposal vector (p∗
i , v∗

i ) using a leapfrog method (see Appendix B).
In the last stage, we accept the proposed vector (p∗

i , v∗
i ) using the Metropolis-

Hastings method where the ratio is given by

r = exp{−H(p∗
i , v∗

i ) + H(pi , vi )}. (10)

Accept p∗
i as pt+1

i with probability min(r, 1); otherwise pt+1
i = pt

i .

3 Application to Two Hi-C Datasets

We demonstrate the utility of tPAM by applying it to two Hi-C datasets. The appli-
cation to the first dataset illustrates tPAM’s ability of analyzing inter-chromosomal
data with many zero contact counts. Its performance is also evaluated by compar-
ing the structure inferred to distances obtained from limited experimental validation
data. The second application aims to explore how tPAM performs with modularized
structures, the TADs, also known as topological domains [3].

3.1 Human Lymphoblastoid Cell Line Hi-C Data

We applied tPAM to the Hi-C data produced by [14]. In fact, there are two Hi-C
experiments performed on the same karyotypical normal human lymphoblastoid cell
line, which are combined into a single data set in our analysis given their high repro-
ducibility [14]. We focused on chromosome 14 and 22, as experimental validation
data based on Fluorescence In Situ Hybridization (FISH) are available for several
loci on these two chromosomes and are publicly available [14]. Specifically, [14]
discussed interesting features of spatial interactions, based on the FISH measures,
among 4 loci on chromosome 14 (L1, L2, L3, and L4, located in that linear order) and
4 loci on chromosome 22 (L5, L6, L7, and L8, in that linear order) using the FISH
experiment. In particular, the spatial 3D distance between L2 and L4 was observed by
FISH experiments to be smaller than that between L2 and L3, despite the fact that L2

is farther apart from L4 than from L3 in terms of their linear 1D distances. A similar
observation was made for (L6, L7, L8), in that the spatial 3D distance between L6
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Fig. 2 Reconstructed 3D
structure of chromosomes 14
and 22. a Joint 3D structure
of chromosomes 14 and 22,
with each loci marked by a
ball, among them positions
of L1 through L8 are labeled
and marked by black balls; b
3D structure of chromosome
14, with a different
orientation than that of the
joint structure for better
visualization; c 3D structure
of chromosome 22, with a
different orientation than that
of the joint structure for
better visualization. These
figures were drawn using the
R package ‘rgl’

and L8 is significantly smaller than that between L6 and L7. The resolution used is
1 Mb, which leads to 89 loci in chromosome 14 and 36 loci in chromosome 22.

We ran the MCMC procedure for 1.1 × 106 iterations, with the first 105 iterations
for burn-in and the remaining 106 iterations for obtaining 10,000 posterior samples
after thinning. The convergence of the posterior samples was confirmed by several
diagnostic statistics, including those developed by [8, 9, 15]. The 3D structure iden-
tified by tPAM is given in Fig. 2a. For a better visualization of the structure in each of
the chromosomes, we also provide Fig. 2b, c with different orientations. We can see
from these figures that, indeed, L2 and L4 are much closer in terms of their spatial
distance compared to L2 and L3, and L6 and L8 are closer compared to L6 and L7.
These observations are consistent with the results of [14] that the pairs of (L2, L4)

and (L6, L8) are brought to close proximity through chromatin looping.
To further evaluate the performance of tPAM,we compare its estimates of pairwise

distances to those of FISH, the gold standard measurements. To make it possible to
compare due to scale differences (recall we set α0 arbitrarily), we first calculated
a unitless distance d̃(Li , L j ) by dividing each distance d(Li , L j ) by the median
distance between L3 and L4 (the largest distance among all pairs). Note that the
median is taken over 100 measurements for FISH and 10,000 estimates for tPAM.
The results, given in Fig. 3, show that the tPAM estimates agree well with the FISH
measurements. In fact, the FISH measurements (100 measures for each pair) are
much more variable compared to the tPAM estimates, as evident from the larger
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Fig. 3 Assessment of
performance of tPAM in
comparison with FISH
measurements. For each pair
of loci for which FISH
measurements are available,
boxplots are used to
summarize the results for the
100 FISH measurements (left
box) and 10,000 tPAM
estimates (right box)

boxes, longer whiskers, and existence of outliers in the boxplots. The results also
confirm that the distance between L2 and L4 is indeed smaller than that between L2

and L3 or L3 and L4, and L6 is located closer to L8 than to L7.

3.2 Mouse Embryonic Stem Cell Hi-C Data

We applied tPAM to a mouse embroyonic stem cell line [3] generated at 40 Kb
resolution (i.e. interaction frequencies are available for regions of 40 Kb in length).
We used the bias-corrected Hi-C count data directly, as libraries of factors that are
known to cause systematic biases are not available to us. In particular, we focused
on the segment of chromosome 2 from base pair (bp) 73720001 to bp 75440000,
as this segment is believed to contain two TADs [3]. Loci within the same domain
interact with each other much more than across domains, and thus the two domains
should be well separated in 3D space. The data based on a 40 Kb resolution lead to a
contact matrix of dimensions 43 by 43. Application of tPAM yielded the estimated
3D structure depicted in Fig. 4. We can see, from the figure, that the 19 loci within
the segment from bp 73720001 to bp 74480000 are located close to one another
in 3D space (red balls), whereas the remaining 24 loci within the segment from bp
74480001 to bp 75440000 make up the other cluster (green balls) in 3D space. As
it turns out, these two clusters of loci do correspond to the two TADs discussed in
[3]. In MCMC sampling, 3 × 105 and 7 × 105 iterations were executed respectively
for burn-in and statistical inference. Thinning resulted in 10,000 posterior samples
for structure estimation. Convergence of the sample was confirmed by the diagnostic
measures described in Sect. 2.
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Fig. 4 Reconstructed 3D
structure of mouse data. Loci
within the two topological
domains are denoted by two
different colors

4 Simulation Study

As we can see from the analysis results of the human Hi-C data, the inferred 3D
structure from tPAM leads to consistent results with FISH experimental data. Never-
theless, the aptness of the 3D structure as a whole was not adequately assessed due
to the limited number of loci involved in the FISH experiment. Similarly, although
the analysis of the Hi-C mouse data yielded results that support the concept of
compartmentalization of a chromosome [3, 14], the within compartment (domain)
organization was not assessable. Therefore, to more fully evaluate the performance
of tPAM, we conducted a simulation study in this section using two underlying 3D
structures, which will serve as the “gold standard”. We further compared the perfor-
mance of tPAM with BACH, a Bayesian inference method proposed by [10] based
on the Poisson model. The simulation settings and results are presented in two sub-
sections below, but we first describe several assessment criteria for comparing the
performances between tPAM and BACH.

4.1 Performance Assessment

We consider three criteria to assess the performance of the methods. The first is the
overall goodness of fit of a model by comparing the observed with their predicted
values from the model. More specifically, our measure is the Pearson χ2 goodness
of fit statistic, which is given by

χ2 =
∑ ∑
(i, j)∈I

(yi j − λ̂i j )
2

λ̂i j

/n(I ), (11)

where I is the index set denoting all non-zero contact counts as defined in Sect. 2
and n(I ) denotes a size of the set I .
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Given that, in our simulation, the underlying structure is known, we can also
devise two other criteria that make use of the true underlying distance between a pair
of loci. Recall that the structure estimated is accurate up to a scaling factor, γ , which
is estimated by the least squares model as follows:

γ̂ = argmin
γ

⎧
⎨
⎩

∑ ∑
1≤i< j≤n

(di j − γ d̂i j )
2

⎫
⎬
⎭ . (12)

Note that, as mentioned above, the fact that tPAM or BACH can only estimate the
structure up to a scale is not an issue, because the relative distance does not affect the
predicted structure nor its correlation with genomic functions [21]. After scaling the
estimated structure Ω̂ by the factor estimate γ̂ , we can compare the true structure
with the estimated structure after appropriate isometric transformation. This leads to
the proposal of the following two measures:

Dmean = 1

n

n∑
i=1

||pi − γ̂ p̂i ||
d̄p

× 100 (13)

Dmax = max
1≤i≤n

||pi − γ̂ p̂i ||
d̄p

× 100, (14)

where d̄p is the average pairwise distance derived from the true underlying structure
Ω . Thus, these two measures compute respectively the average- and the maximum-
coordinate departure of loci (based on the estimated architecture) from the corre-
sponding true ones (based on the true architecture). As we will see below, the true
structures are being specified completely either based on the helix model or the
estimated mouse model for the purpose of the simulation study.

4.2 Helix Structure

We consider a helix model with 50 loci. We chose this model for our first simulation
as a helix structure has been used as a means of modeling chromatin in the statistical
literature [19]. We denote the helix structure by Ωh = {pi , i = 1, . . . , 50}. The 3D
location of each locus, pi = (px

i , py
i , pz

i ), is constructed as

px
i = cos(θi ), py

i = sin(θi ), pz
i = Lθi/(2π), (15)

where L = 0.2 and θi = π i/4. To mimic real data, we also include three covariates,
{xl,i , xg,i , xm,i , i = 1, . . . , 50}, to capture systematic bias, leading to the following
simulation model:

log λi j = α0 + α1 log di j + βl log(xl,i xl, j ) + βg log(xg,i xg, j ) + log(xm,i xm, j ). (16)
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We setα0 = 3.5, andα1 = −1.5,βl = βg = 0.3 and simulated xl,i ∼ Unif(0.2, 0.3),
xg,i ∼ Unif(0.4, 0.5) and xm,i ∼ Unif(0.9, 1), where Unif(.) denotes a uniform dis-
tribution. To simulate the excess of zero situation in real data, we considered the
following zero-inflated Poisson model:

P(Yi j = 0) = π + (1 − π)e−λi j ,

P(Yi j = yi j ) = (1 − π)
λ

yi j

i j e−λi j

yi j ! , yi j = 1, 2, . . . . (17)

In other words, the above represents a mixture of a point mass at 0 and a Poisson
distribution with intensity parameter λi j , with the mixing proportion being π . In our
simulation, we considered four mixing proportions: π = 0.0, 0.1, 0.2, and 0.3. Note
that the setting with π = 0.0 corresponds to the BACH model of [10] and as such,
BACH is expected to perform well.

The results are presented in Table1. In MCMC sampling, 105 ∼ 106 iterations
were run for burn-in and an additional 106 ∼ 2 × 106 iterations were executed for
posterior sampling to obtain 104 realizations for inference after thinning. The con-
vergences of the posteriors were confirmed by the diagnostics described in Sect. 2.
As we can see from the table, across all three criteria, tPAM performs significantly
better than BACH for the settings when π �= 0. More specifically, tPAM yielded
significantly smaller average and maximum relative departure from the true Ωh (all
p-values <10−3 based on paired-t tests). This is to be expected as BACH, based on
Poisson, cannot adequately accommodate the excess of zeros. We are also reassured
to see that, even when π = 0, the underlying setting of BACH, tPAM still performs
as well as BACH or may even be viewed as slightly better based on all three criteria.
We can further observe that the results of tPAM are fairly consistent for different
zero inflation proportions (i.e. similar values under the same criterion), demonstrat-
ing the robustness of tPAM to excess of zeros in the observed data, and hence data
with different resolutions. In contrast, BACH’s performance gets worse (with larger
criterion value) as the inflation proportion becomes larger.

Table 1 Performance evaluation of tPAM and BACH with the Ωh 3D structure

π Model Dmean (%) Dmax (%) χ2

0.0 BACH 26.37 (17.70) 63.99 (39.26) 1.04 (0.13)

tPAM 23.70 (11.15) 60.11 (29.99) 0.98 (0.11)

0.1 BACH 39.14 (17.79) 96.66 (35.83) 2.03 (0.24)

tPAM 23.65 (12.94) 57.12 (32.38) 0.98 (0.13)

0.2 BACH 61.07 (25.41) 140.84 (51.43) 3.94 (0.44)

tPAM 25.79 (11.74) 59.96 (28.19) 0.95 (0.19)

0.3 BACH 62.65 (20.06) 142.05 (40.83) 7.16 (0.70)

tPAM 26.49 (16.67) 65.56 (46.17) 0.88 (0.07)
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Table 2 Performance evaluation of tPAM and BACH with the Ωm 3D structure

π Model Dmean (%) Dmax (%) χ2

0.0 BACH 49.85 (5.14) 93.60 (7.43) 1.23 (0.04)

tPAM 39.57 (7.55) 74.16 (15.08) 1.80 (0.76)

0.1 BACH 65.26 (11.20) 109.40 (15.63) 1.65 (0.17)

tPAM 42.51 (9.45) 77.26 (14.93) 1.42 (0.56)

0.2 BACH 77.65 (13.52) 124.67 (19.56) 3.43 (0.36)

tPAM 43.00 (8.63) 79.56 (15.25) 1.62 (0.71)

0.3 BACH 84.41 (15.36) 139.94 (23.14) 6.90 (0.88)

tPAM 46.67 (20.76) 89.78 (45.03) 1.36 (0.52)

4.3 Mouse Model

Using the mouse structure Ω̂m and the α̂1 value estimated by tPAM in Sect. 3.2,
we let log λi j = 3 + α̂1 log di j , where di j is the pairwise distance inferred from the
estimated structure Ω̂m .We simulated datasets of {Yi j } from the zero-inflated Poisson
model (17) with π = 0.0, 0.1, 0.2, and 0.3. In MCMC sampling, 7 × 105 ∼ 106

iterations were run for burn-in, and afterward 5 × 105 ∼ 106 iterations were run to
obtain 104 realizations for inference after thinning. As with the helix simulation,
the convergences of the posteriors were confirmed by the diagnostics described in
Sect. 2. The results are given in Table2, from which, one can see that tPAM clearly
outperformsBACH forπ �= 0 (all p-values≤10−4 based on paired-t tests), consistent
with the results for the helix model. Similarly, when π = 0.0, the underlying model
for BACH, tPAM is seen to perform just as well. The robustness of tPAM to the
proportion of zero-inflation component, and the lack of such for BACH, is once
again observed.

5 Conclusion and Discussion

The spatial organization of a genome has gained a great deal of continuing attention
in recent years, as the structure is intimately linked to the biological functions of the
genome, especially on long-range gene regulation. To turn experimental data into
accurate estimates of spatial chromatin structures, a number of analytical methods
have been proposed, including those that make use of the Poisson distribution to
model the contact counts. Recognizing the sparsity of the contact matrix for inter-
chromosomal interactions and with higher resolutions, in this paper, we propose a
truncated Poisson model as a solution to accommodate this feature of data so that
it is robust to resolution specification. Applications of tPAM to two existing data
sets, one human and one mouse, illustrate its utility, as the results are consistent with
those obtained from the limited FISH validation data. For the mouse data, with a 40
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Fig. 5 Reconstructed 3D
structure of chromosome 22
with 500 Kb resolution

Kb resolution, we see two clear TADs, reflecting chromatin long-range interaction
in a “domain scale”. Within each domain, with such an intermediate resolution, we
can see looping within each domain, perhaps representing spatial interaction within
a gene structure. For the human data, the analysis was performed at a 1 Mb resolu-
tion following the original analysis [14], which appears to capture the broad looping
feature of chromatin organization, but fine scale looping within gene structures are
largely unobserved. Inspired by the mouse data results with intermediate resolution,
we carried out an additional analysis for constructing the 3D structure of chromosome
22 at a 500 Kb resolution. We observe that the result (Fig. 5) preserves the “domain
level” looping, with locus L6 still closer to L8 than to L7. Furthermore, the finer
structure now also depicts more “local level” looping. Nevertheless, a more com-
prehensive study with even higher resolution is needed to study spatial interactions
within gene structures, especially between promoters and enhancers.

Our simulation study, with two underlying structures, further substantiates the
appropriateness of tPAM for analyzing Hi-C data, and more clearly showcases its
ability to handle the sparsity of the contact matrix. The different mixing proportions
in the zero-inflated model can be viewed as representing different resolutions, thus
clearly demonstrating the robustness of tPAM to varying resolution level. This is in
contrast to an existing method based on the Poisson model, in which one can see
that the results are quite sensitive to the level of resolution: as the resolution gets
finer and finer, the deviation from the “true” gets larger and larger for each of the
evaluation criteria, compared to the stable feature of the tPAM values.

Computational feasibility is a major concern for genomic data, but the concern is
even greater for chromatin interaction data as the size of the data is O(n2)when there
are n genomic loci, an order of magnitude increase compared to analysis of linear
chromosomal data. In this regard, tPAMhas the added advantage as its computational
cost is greatly reduced by excluding the zero counts. As such, higher resolution data,
which lead to a much larger contact matrix (i.e. larger n), does not necessarily result
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in more computational cost due to the sparsity nature of the matrix. In contrast, for
methods based on the Poisson distribution, the computational cost increases with
higher resolution data.
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Appendices

A. Isometric Transformation

To make Ω uniquely estimable, instead of incorporating the restrictions on Ω into
prior, we employed a group of isometric (distance preserving) mappings. Suppose
we sample Ω t at iteration t . For simplicity, we let Ω denote the transformed one
throughout the rest of this appendix.

Step 1. p1 → (0, 0, 0).
To place pt

1 at the origin (0, 0, 0), we apply a translation operationRτ such
that

Rτ : pt
i → pt

i − pt
1. (18)

Let Ω = {p1, . . . , pn} be the translated architecture.
Step 2. pn → (px

n , 0, 0) with px
n > 0.

a. pn → (px
n , 0, pz

n).
To placepn on the xz-plane,we apply a rotation operationRz̊ with associated
matrix Rz̊ , clockwise-rotation matrix on pn about the z-axis, sending it to
the xz-plane:

Rz̊ =
⎡
⎣

cosφ1 sin φ1 0
− sin φ1 cosφ1 0

0 0 1

⎤
⎦ ,

where,

cosφ1 = px
n/

√
(px

n )2 + (py
n )2,

sin φ1 = py
n/

√
(px

n )2 + (py
n )2.
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Let Ω = {p1, . . . , pn} be the rotated architecture.
b. pn → (px

n , 0, 0).
To place pn on the x-axis, we apply a rotation operationRẙ with associated
matrix Rẙ , a clockwise-rotation matrix around the y-axis:

Rẙ =
⎡
⎣

cosφ2 0 sin φ2

0 1 0
− sin φ2 0 cosφ2

⎤
⎦ ,

where

cosφ2 = px
n/

√
(px

n )2 + (pz
n)2,

sin φ2 = pz
n/

√
(px

n )2 + (pz
n)2.

Let Ω = {p1, . . . , pn} be the rotated architecture.

Step 3. p2 → (px
2 , 0, pz

2) with pz
2 > 0.

To place p2 on the xz-plane, we apply a counter-clockwise rotation about
the x-axis Rx̊ with associated matrix Rx̊ :

Rx̊ =
⎡
⎣
1 0 0
0 cosφ3 − sin φ3

0 sin φ3 cosφ3

⎤
⎦ ,

where

cosφ3 = pz
2/

√
(py

2 )
2 + (pz

2)
2,

sin φ3 = py
2/

√
(py

2 )
2 + (pz

2)
2.

Let Ω = {p1, . . . , pn} be the rotated architecture.
Step 4. p3 → (px

3 , py
3 , pz

3) such that py
3 > 0.

To satisfy py
3 > 0, if py

3 < 0, reflect p as

Rr f l : py
i → −py

i . (19)

Let transformationI be the composite of the five isometric transformations,Rτ ,
Rz̊ , Rẙ , Rx̊ , and Rr f l in the following way: I ≡ Rr f lRx̊RẙRz̊Rτ . Then I is
an isometric (distance-preserving) transformation and the transformed coordinates
satisfy the following estimability conditions on p : p1 = (0, 0, 0), p2 = (px

2 , 0, pz
2)

with pz
2 > 0, p3 = (px

3 , py
3 , pz

3) with py
3 > 0, and pn = (px

n , 0, 0) with px
n > 0.
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B. Leapfrog Method for Hamiltonian MCMC

In the second stage of Hamiltonian MCMC, we simultaneously update (pi , vi ) to
obtain a proposal vector (p∗

i , v∗
i ) using a leapfrog method which involves a leap scale

ε and a repetition number L:

(1) For each of x, y, z, update vx
i , vy

i , vz
i as

v(.)
i ← v(.)

i + 1

2
ε

d log p(p(.)
i |y, ϑ−pi )

dp(.)
i

. (20)

(2) Repeat the following updates L − 1 times:

v(.)
i ← v(.)

i + 1

2
ε

d log p(p(.)
i |y, ϑ−pi )

dp(.)
i

, p(.)
i ← p(.)

i + εv(.)
i . (21)

(3) Update vx
i , vy

i , vz
i as

v(.)
i ← v(.)

i + 1

2
ε

d log p(p(.)
i |y, ϑ−pi )

dp(.)
i

. (22)

(4) The updated pi and vi constitute a proposal vector (p∗
i , v∗

i ).
In the leapfrog method, the essential quantities to evaluate are

d log p(px
i |y, ϑ−pi )

dpx
i

=
∑
j �=i

(
yi j − λi j

eλi j

eλi j − 1

)
α1

px
i − px

j

δ2i j

, (23)

d log p(py
i |y, ϑ−pi )

dpy
i

=
∑
j �=i

(
yi j − λi j

eλi j

eλi j − 1

)
α1

py
i − py

j

δ2i j

, (24)

d log p(pz
i |y, ϑ−pi )

dpz
i

=
∑
j �=i

(
yi j − λi j

eλi j

eλi j − 1

)
α1

pz
i − pz

j

δ2i j

. (25)
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