
111© Springer International Publishing Switzerland 2016 
R. Madonna (ed.), Stem Cells and Cardiac Regeneration, Stem Cell Biology 
and Regenerative Medicine, DOI 10.1007/978-3-319-25427-2_7

    Chapter 7   
 Epigenetic Regulation of Cardiac 
Regeneration       

       Silvia     Agostini    ,     Marco     Matteucci    ,     Valentina     Casieri    , 
    Gaia     Papini    , and     Vincenzo     Lionetti         

7.1         Self-Regeneration of the Adult Human Heart 

 A small percentage of  cardiomyocyte’s proliferation   occurs in adult human heart 
(Bergmann et al.  2009 ). This extraordinary phenomenon was demonstrated through 
the measurement of the amount of 14C incorporated into the DNA of cardiomyo-
cytes of individuals born before and after the nuclear bomb tests and the comparison 
with the levels of atmospheric 14C. Interestingly, the detectable pool of new cardio-
myocytes ranged from 1 % per year in young adults to 0.45 % in the elderly. While 
these renewal rates cannot support the endogenous  myocardial self-regeneration   in 
response to injury, they have nonetheless encouraged the study of any regulatory 
mechanism able to enhance it. Heart failure is an  heterogeneous disease   and recent 
scientifi c reports have demonstrated that the improvement of  intercellular cross-talk   
is essential to foster a more effective adaptive response to injury (Tirziu et al.  2010 ). 
Less than a third of the total cell number of the adult myocardium consists of cardio-
myocytes, which communicate with a broad pool of additional cell types, such as 
smooth muscle cells, endothelial cells, fi broblasts, mast cells, immune system-related 
cells and progenitor cells (Bu et al.  2009 ). The  myocardial homeostasis   implies dif-
ferent cell-to- cell and cell-to-matrix connections, which form a mature and self-reg-
ulated functional unit (Ausoni and Sartore  2009 ). These distinct cell pools also 
interact via a variety of soluble  paracrine  ,  autocrine and endocrine factors  , which 
require a stable apparatus of gene expression (Lionetti et al.  2010a ,  b ). Recent studies 
of developmental biology and integrative physiology have highlighted the role played 
by epigenetic modifi cations as common regulatory pathway of cell function and 
threshold of cell turnover in adult’s heart (Romano and Lionetti  2013 ). The epigen-
etic signals in fact activate, maintain, and change the cardiac transcriptional status 
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underlying the tissue ability to tolerate the microenvironmental stress without losing 
functional coherence. All epigenetic pathways remodel chromatin and ensure the 
maintenance of cardiac homeostasis during several cell divisions and across genera-
tions without altering the DNA sequence. Lack of  gene function   and the cell death 
follow the failure of balancing epigenetic signals. Specifi c signaling pathways may 
drive the phenotype of cardiac resident cells at transcriptional and post-transcrip-
tional levels in healthy and damaged hearts (Lionetti and Ventura  2013a ,  b ). In par-
ticular, the following pathways play a key role in the self-regulation of the epigenetic 
state of adult cardiac cells:  DNA methylation  ,  histone modifi cations  , and  RNA-based 
modulation   (Issa and Baylin  1996 ).  

7.2     The Epigenetic Memory of Cardiac Cells: A Prelude 
to Myocardial Regeneration 

 The  epigenetic memory   relies on the ability of cardiac cells to translate environmental 
cues in adaptive response and it remains unchanged after several cell divisions. 
High levels of DNA methylation lead to maintenance of cell epigenetic memory 
(Sanchez-Freire et al.  2014 ). In addition, histone modifi cations support epigenetic 
inheritance mechanisms of adult cardiac cells during transient or persistent expo-
sure to different microenvironments (Schlingman et al.  2014 ). Histone modifi ca-
tions, which determine the structure and function of the chromatin, transmit stable 
epigenetic information between proliferating cells. Finally, pool of regulatory small 
 noncoding RNAs (ncRNAs)   regulate the expression of factors leading to histone 
modifi cations, such as the Polycomb-group proteins (Mathiyalagan et al.  2014 ). 

7.2.1     DNA Methylation 

 In cardiac cells  the   magnitude of DNA methylation at the  C5 position   of CpG 
islands is a balance of two  biological processes  : (1) de novo methylation or 
(2) maintenance of methylation during cellular DNA replication. Based on recent 
fi ndings, the maintenance of methylation assumes a relevant biological role as DNA 
replication occurs in cardiomyocytes during adulthood (Bergmann et al.  2009 ). 
Cardiac DNA demethylation is specifi cally regulated by Ten-eleven  translocation 
methylcytosine dioxygenase enzymes (TET)      that oxidizes the methyl group of spe-
cifi c methylcytosines (Kinney et al.  2011 ). 

 The balance between DNA methylation or demethylation affects the expression 
and function of  genes   which regulate cardiac function. For example, low levels of 
circulating methylated  Long Interspersed Nucleotide Elements-1   ( LINE-1  ) gene, a 
biomarker of systemic DNA methylation (Yang et al.  2004 ), predicts intolerance to 
myocardial ischemia in elderly individuals (Baccarelli et al.  2010 ). Moreover, DNA 
hypermethylation even limits contractile function of rodent cardiomyocytes chroni-
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cally exposed to  norepinephrine-induced hypertrophy   (Xiao et al.  2014 ). Different 
levels of DNA methylation in normal and failing hearts suggest that changes of epig-
enomic patterns affect the ability to predict the development of heart failure in humans 
(Movassagh et al.  2011 ). It is conceivable that high levels of DNA methylation repre-
sent an  adaptive mechanism   underlying the response to injury by adult 
cardiomyocytes. 

 Despite this fascinating hypothesis, DNA methylation does not affect tyrosine 
kinase-type cell surface receptor HER3 and Homeobox B13 genes, which play a 
key role in the expression of adaptive cardiac features in response to sustained 
 contractile dysfunction   (Haas et al.  2013 ).  

7.2.2     Histone Modifi cations 

  Histones   are basic proteins of the  chromatin   (H1, H2A and B, H3 and H4) that 
form the nucleosome after binding DNA. Histone modifi cations include the  fol-
lowing   enzymatic processes: acetylation (Taylor and Liew  1976 ), phosphoryla-
tion (Akhtar and Itzhaki  1977 ; Liew and Sole  1978 ), methylation (Kaneda et al. 
 2009 ), ADP-ribosylation (Martinez-Zamudio and Ha  2012 ), biotinylation 
(Kuroishi et al.  2011 ),  ubiquitination   (Zhang  2003 ) and  sumoylation   (Wang and 
Dasso  2009 ). 

 The balance between histone acetyltransferases ( HATs  )    or deacetylases ( HDACs  ) 
modulates DNA transcription in adult cardiac cells of  animal   models and humans 
(Miyamoto et al.  2006 ; Lee et al.  2007 ; Hariharan et al.  2010 ). In particular, nuclear 
 HATs   play a key role in cardiac hypertrophy (Qiao et al.  2014 ) and dilation 
(Miyamoto et al.  2006 ). However, loss of HATs activity causes the death of embryos 
due to serious cardiac congenital defects in p300 knock-in mice, where embryonal 
stem cells do not respond to cardiomyogenic factors (i.e.: BMP-2) (Shikama et al. 
 2003 ). 

 In 2010, we were one of the fi rst to show that the early pharmacological inhibition 
of cardiac class I HDACs by intramyocardial injection of low dose of hyaluronan 
mixed estersof butyric and retinoic acid ( HBR)   induces the expression of paracrine 
factors that enhance angiogenesis (i.e.: vascular endothelial growth factor, VEGF) 
and survival/proliferation (i.e.: hepatocyte growth factor, HGF) of adult rat cardio-
myocytes bordering the infarct zone. All these changes have preserved the cardiac 
function in a rodent model of myocardial infarction (Lionetti et al.  2010a ,  b ). Other 
investigators have confi rmed our data  in vivo  (Zhang et al.  2012 ). Preliminary 
evidences provided by us have also shown that HBR hampers cell proliferation and 
migration of  cardiac fi broblasts  , attenuates the differentiation to myofi broblasts and 
inhibits collagen expression (Cavallini et al.  2011 ). These evidences support the 
hypothesis that the inhibition of class I  HDAC   ) differently affects the myocardial 
epigenetic memory depending on the cell type. 

 Histone  H3 phosphorylation   at serine-10, a different histone modifi cation, is 
detectable in proliferating cardiomyocytes of heart exposed to unloading conditions 
(Canseco et al.  2015 ) or stimulated with growth factors (Illi et al.  2005 ). In addition, 
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Histone H3 Ser-10 phosphorylation leads to transcription of Mef2, a  transcription 
factor   that induces cell growth (Awad et al.  2013 ). 

 Mono-, di- or tri-methylation of arginine or lysine residues of histone H3 and H4 
leads to active or repressed states of chromatin in murine adult cardiac cells 
(Chaturvedi et al.  2014 ). Loss of methylation at lysine K4 of histone H3 (H3K4) 
increases intracellular calcium levels resulting in improved contractile function 
(Stein et al.  2011 ). The role of histone  biotinylation  , ADP-ribosylation and 
 sumoylation      in myocardial adaptive response to stressors is still unknown.  

7.2.3     RNA-Based Epigenetic Modulators 

 MicroRNAs (miR) are  small non-coding RNAs  , long about 22 nucleotides, that 
degrade the complementary mRNA after binding the RNA-induced silencing complex 
( RISC     )    (Brennecke et al.  2005 ). To date,  miRNAs   play a role as pathophysiological 
hallmark of cardiac disease/repair at post-trascriptional level. For example, high cir-
culating levels of miR-1, 21, 133a, 208 and 499 are detectable after myocardial injury 
(Zile et al.  2011 ). 

 In addition,  plasma levels   of cardiac muscle-enriched miR (i.e.: miR-133a and 
208a) increase in patients with coronary artery disease (Fichtlscherer et al.  2010 ). 
The profi le of circulating miRNAs may be helpful to identify cardiovascular patients 
even at earlier and later stages of disease. They are also helpful to track the short- 
and long-term effects of different regenerative approach. In fact, high levels of miR-
323- 3p and -652 are detected in untreated patients affected by  acute coronary 
syndrome   compared to healthy controls up to 4 months post-hospitalization (Pilbrow 
et al.  2014 ) and signifi cantly improve the risk stratifi cation in combination with 
established biomarkers of cardiac dysfunction, such as high levels of N-terminal of 
the prohormone brain natriuretic peptide (NT- proBNP     ) and low left ventricular 
ejection fraction (Pilbrow et al.  2014 ). Recent studies even highlighted the role of 
miRNAs as epigenetic paracrine mediators of  cell-to-cell/cell-to-matrix interactions   
in adult heart.  Cardioprotective and proangiogenic   miRNAs are released into  exo-
somes  , nanosized extracellular vesicles, which are detectable in  myocardial intersti-
tium   and have a strong therapeutic potential (Cervio et al.  2015 ). 

 Long non-coding RNAs ( LncRNAs     ),    long about 200 nucleotides, play a role in 
regulating cardiac physiological traits at both transcriptional and post- transcriptional 
levels, even if they lack signifi cant protein-coding potential (Guttman et al.  2009 ). 
Despite LncRNAs expression being affected by  cardiovascular disorders   (Ounzain 
et al.  2015 ), their epigenetic role in mediating myocardial regeneration is still not 
well defi ned. Emerging evidences suggest that LncRNAs modulate the expression 
of miRNAs during hypertrophic response of adult cardiomyocytes to stressors, as 
angiotensin II (Wang et al.  2014 ). 

 Deregulated  epigenetic patterns   through LncRNAs expression underlies the lack 
of angiogenic ability of coronary endothelial  cells   in response to hypoxia. For 
example, lower levels of metastasis-associated lung adenocarcinoma transcript 1 

S. Agostini et al.



115

(MALAT1), a lncRNA highly expressed in  hypoxic adult endothelial cells  , inhibit 
endothelial cell proliferation and VEGF-dependent vessel growth (Michalik et al. 
 2014 ). A recent study demonstrated that lncRNAs have a differential abundance in 
exosomes, indicating a selective loading by producing cells (Gezer et al.  2014 ).   

7.3     Epigenetic Modifi cations in Regenerating Myocardium 

  Epigenetic   modifi cations are emerging as endogenous mechanisms sustaining car-
diac self-renewing properties and are therapeutic candidates for regeneration of 
heart failure. 

7.3.1      DNA Methylation   

 Leferovich et al. ( 2001 ) have observed a high cardiac regenerative potential in 
MRL/MpJ mice, which show cells arrested in the G2/M phase and high activity of 
matrix metalloproteinases. In particular, the heart of adult MRL/MpJ mice shows 
high levels of DNA methylation and retains embryonic features (Górnikiewicz et al. 
 2013 ). However, the heart of these mice does not heal after myocardial infarction 
(Cimini et al.  2008 ) and I/R injury (Abdullah et al.  2005 ). This observation suggests 
that the microenvironment promotes the switch on DNA methylation peak from 
embryonic to adult profi le therefore limiting the regenerative potential of the myo-
cardium. This model may be helpful to detect the genes responsible of the low 
regenerative capacity of adult heart. Recent studies have demonstrated that Notch- 
responsive promoters, which support cardiomyocytes proliferation in zebrafi sh 
heart (Zhao et al.  2014 ), show higher levels of permanent CpG DNA methylation in 
 adult murine cardiomyocytes   of infarcted hearts compared to healthy ones 
(Felician et al.  2014 ). Notch- responsive promoters are permanently silenced by 
DNA methylation. 

 Conversely, another study has shown that the pharmacological inhibition of 
DNA methylation in rodent stem cells induces protein expression of  homeobox pro-
tein Nkx2.5  , transcription factor GATA binding protein 4 ( GATA4)         and cardiac 
troponin T which trigger the differentiation to cardiac lineage (Naeem et al.  2013 ). 
Therefore, the modulators of levels of DNA methylation are therapeutic candidate 
to enhance myocardial regeneration.  

7.3.2     Histone Modifi cations 

  HATs   activation increases acetylation of lysine K9 and K14 of histone H3 at physi-
ological level, reduces levels of DNA CpG methylation, and recovers the ability 
of mesenchymal stem cells to proliferate and differentiate to cardiac lineage in the 
presence of oxidative stress (Vecellio et al.  2014 ). 
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 Conversely, the inhibition of HDACs induces the proliferation of adult rodent 
cardiomyocytes both   in vitro  and  in vivo    (Majumdar et al.  2012 ). In small and large 
animal models of heart failure, myocardial histone acetylation increase the expres-
sion and release of paracrine factors, such as the  hepatocyte growth factor (HGF)         
(Iwasaki et al.  2005 ) or the vascular endothelial growth factor (VEGF) (Tao et al. 
 2011 ). 

 Some growth factors may in turn activate HDACs. For example,  VEGF   play an 
epigenetic role by inducing the degradation of HDAC7 via phospholipase C gamma-
inositol- 1,4,5-trisphosphate kinase signal pathway, which prevents the HDAC7- 
mediated inhibition of cell proliferation, as observed in mature endothelial cells 
(Margariti et al.  2010 ). 

 Recent studies have highlighted the epigenetic role of other important paracrine 
factors involved in  myocardial angiogenesis  . Li et al. ( 2014 ) have demonstrated that 
carbon monoxide enhances the levels of histone acetylation, which in turn improves 
 endothelial cell migration  , and increases the angiogenic ability of human endothe-
lial cells (Lionetti et al.  2010a ,  b ; Agostini et al.  2015 ) following the treatment with 
inhibitors of class I HDACs. These data refute previous  in vitro  studies demonstrat-
ing that the maintenance of HDAC activity induces angiogenesis (Kim et al.  2001 ; 
Mottet et al.  2007 ). 

 Furthermore, Mezentseva et al. ( 2013 ) have demonstrated  in vitro  that low levels 
of methylation at lysine9 of histone H3 leads to reprogramming of bone marrow 
stem cells towards a cardiac lineage. 

 These studies encourage the development of novel and safer histone modulators 
also to optimize the cardiac differentiation of  circulating bone marrow  -derived stem 
cells engrafted in the failing heart.  

7.3.3      RNA-Based Epigenetic Modulators   

 The cardiac delivery of miR-590 and -199 promoted  cell cycle   re-entry of adult 
cardiomyocytes and enhanced  cardiomyocyte proliferation   in infarcted murine 
heart (Eulalio et al.  2012 ). These data are in accord with previous studies suggesting 
that endogenous miRNAs act as endogenous regulators of  cell reprogramming   and 
as therapeutic targets in the setting of novel avenue in cell-free cardiac regeneration. 
However, miRNAs even may exert negative effect on cell function. 

 Bonauer et al. ( 2009 ) have shown that high levels of  miR-92a   inhibits the forma-
tion of new blood vessels, which play a relevant role in the functional recovery of 
 murine infarcted heart  . In light of this evidence, the synthesis of miRNA antagonists 
may be a helpful tool to promote  myocardial regeneration  . In fact, treatment with 
selective LNA-modifi ed anti-miR-15 prevented loss of hypoxic cardiomyocytes, 
reduced infarct scar size and preserved cardiac function in murine infarcted heart 
(Hullinger et al.  2012 ). Interestingly, stable myocardial down- regulation of miR-24 
enhances angiogenesis and blood perfusion in the myocardium surrounding the 
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infarct area and improves cardiac function despite promoting apoptosis of fi broblasts 
and cardiomyocytes (Meloni et al.  2013 ). 

 To date, it remains unclear whether the modulation of single miR-dependent path-
way is suffi cient to trigger cardiomyocyte’s proliferation in regenerating the adult 
infarcted heart. The selective inhibition of miRNA-15 even increases the rate of pro-
liferation of adult cardiomyocytes and signifi cantly improves the  cardiac   function of 
 infarcted murine heart   (Porrello et al.  2013 ). Conversely, other investigators found 
that an effective proliferation of adult cardiomyocytes require the combined action of 
several miRNAs, such as miR17-92 cluster (Chen et al.  2013 ). Jayawardena  et al . 
(Jayawardena et al.  2012 ) have demonstrated in mice that a cocktail of miR-1, -133, 
-208 and -499 restores the post-ischemic loss of cardiomyocyte’s pool with a popula-
tion of fi broblast-derived  cardiomyocytes   due to gene reprogramming. All these 
fi ndings suggest that mir-crine mechanisms hold great promise as therapeutic candi-
dates for the development of personalized myocardial regeneration. 

 Regulatory miRNAs are naturally released by  cardiomyocytes  ,  endothelial cells  , 
 fi broblasts   or  cardiac/endothelial progenitor cells  , as demonstrated in adult mice 
(Brás-Rosário et al.  2013 ).  Exosomes   containing miRNAs are released into the 
extracellular microenvironment by adult cardiomyocytes (Wang et al.  2014 ), car-
diac fi broblasts (Bang et al.  2014 ), endothelial cells (Ong et al.  2014 ) and cardiac 
progenitor cells (Vrijsen et al.  2010 ). 

  Exosomes   secreted by human cardiac progenitor cells ( CPCs  )    contain higher 
amounts of miRNA210, 132 and 146a-3p compared with human cardiac fi broblasts 
(Barile et al.  2014 ). Each miRNA acts on specifi c pathways;  miRNA210   inhibits 
cardiomyocyte’s apoptosis through the down regulation of ephrin A3 and protein-
tyrosine phosphatase 1B (PTP1B) expression, while miRNA132 increases the 
angiogenic ability of mature endothelial cells through the down regulation of 
 RasGAP-p120 expression  . The single intramyocardial injection of CPCs-derived 
exosomes hampers cardiac remodeling and preserves left ventricular ejection fraction 
of infarcted rat heart in a dose-dependent manner. Conversely, fi broblasts- derived 
exosomes did not exert any cardioprotective effects.  Other   investigators have found 
similar fi ndings in a murine model of heart failure (Ibrahim et al.  2014 ). 

 Some investigators are developing new methods to increase the endogenous 
release of  cardioprotective exosomes   containing miRNAs. Original study found that 
high levels of hypoxia-inducible factor-1 (HIF-1), a transcription factor that protects 
against ischemia and highly expressed in human failing heart (Lionetti et al.  2014 ), 
increase the release of exosomes containing miRNA126 and 210 (Ong et al.  2014 ). 
Therefore, the exosomes have the potential to circumvent many limitations of stem 
cells transplantation for therapeutic applications in cardiac regenerative medicine. 

 Recently, it has been shown that  exosomes   deliver  LncRNAs   (Gezer et al.  2014 ). 
To date, a few studies have characterized the regenerative potential of LncRNAs in 
the adult heart. For example, the LncRNA steroid receptor RNA activator 1 ( SRA1  )    
regulates the expression of myogenic differentiation 1 (MyoD1) (Caretti et al.  2006 ) 
and is essential for myocardial function. Further investigations should  be   encouraged 
to better address the therapeutic potential of exosomes containing LncRNAs.   
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7.4     Conclusions and Perspectives 

 Studies conducted so far have provided convincing experimental evidences that 
different epigenetic mechanisms underlie the changes of the cardiac physiological 
traits during myocardial regeneration. The pleiotropic non-invasive modulation of 
the epigenetic threshold of resident cardiac cells by drugs or diet is a frontier of 
investigation that should be encouraged in order to overcome the limitations that 
hinder an effi cient structural and functional recovery of the adult heart in an epi-
genetic manner. In fact, emerging scientifi c evidences have shown that it is possible 
to modulate the cardiac epigenome and to induce cardiac benefi ts by the regular 
intake of lower doses of active plant compounds, such as barley beta-glucan 
(Agostini et al.  2015 ), or by the administration of selected exosomes (Barile et al. 
 2014 ). To best of our knowledge, the cardiac repair following the administration of 
the potential epigenetic modulators will be more effective at lower doses and 
mainly focused to histone or RNA-based modifi cations. Further translational inves-
tigations should be conducted in large animal models of heart failure and humans 
to better address dose, timing and route of administration.     
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