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1 Prove & Run, 75017 Paris, France
{oana.andreescu,thomas.jensen,stephane.lescuyer}@provenrun.com

2 INRIA Rennes - Bretagne Atlantique, Rennes, France

Abstract. In the context of interactive formal verification of complex
systems, much effort is spent on proving the preservation of the sys-
tems invariants. However, most operations have a localized effect on the
system, which only really impacts few invariants at the same time. Iden-
tifying those invariants that are unaffected by an operation can substan-
tially ease the proof burden for the programmer. We present a depen-
dency analysis for a strongly-typed, functional language, which computes
a conservative approximation of the input fragments on which the oper-
ations depend. It is a flow-sensitive interprocedural analysis that handles
arrays, structures and variant data types. For the latter, it simultane-
ously computes a subset of possible constructors. We have validated the
scalability of the analysis to complex transition systems by applying it
to a functional specification of the MINIX operating system.

1 Introduction

Algebraic data types (structures and variants) and associative arrays are funda-
mental building blocks when representing, grouping and handling complex data
efficiently. However, operations manipulating them are rarely concerned with
the entire compound input data structure. Most frequently, they depend only
on a limited subset of their input. A complete specification of such an operation
will not only stipulate that the output possesses a certain property but will also
include its framing requirements, i.e. the part of the input that it operates on.
Specifying and proving the preservation of logical properties for the unmodified
part is a particular manifestation of the more general frame problem [8] – a
notoriously cumbersome task in formal software verification, imposing unneces-
sary manual effort [9].

The verification of a given property can be simplified if we can determine
the input fragments on which the property depends. This is the purpose of the
dependency analysis presented in this paper. Our analysis targets a functional
language that handles immutable algebraic data types and arrays. Furthermore,
it is designed to be used on programs as well as on specifications. In contrast
to the vast majority of static analyses that are mostly used only on actual code
and in an essentially purely automatic setting, our analysis is thought of as a
companion tool to be exploited in the middle of interactive program verification.
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1.1 A Motivating Example

The work reported in this paper is motivated by the formal verification of oper-
ating systems. To illustrate the problem that we are addressing, consider an
abstract process manager and the data structures for its fundamental com-
ponents: process and thread, shown in Fig. 1a. A process is an executing
instance of an application that can consist of multiple threads that share the
same address space. A thread is a path of execution within a process and it
is modeled as a structure having fields such as the thread’s identifier and the
memory region for its stack. The current state of a thread is defined as a vari-
ant having three alternatives: READY, BLOCKED, RUNNING. Similarly, a process
is a structure including an identifier for the currently running thread and an
array of possibly inactive threads associated with it. Whether a thread in the
thread array is active or has terminated is indicated by a variant of type
option thread = | Some(thread th) | None.

Fig. 1. Example - data structures and functions of an abstract process manager

The signature of a Boolean function disjoint stacks, written in a mod-
eling language that we will present in Sect. 2, is shown in Fig. 1b. It verifies a
fundamental property of a valid process state, namely that the stack regions of
all active threads associated with the input pr are disjoint. Its result depends
only on the array threads of the input pr and for each active thread element
only on the field stack. All other input sub-elements are irrelevant to the result.

Another function run thread has two possible execution scenarios: true and
invalid id. It stops the currently running thread and starts the one having the
identifier given as an input. If it is valid, then a new process new pr is returned
for which current thread is set to new id. In the array threads, the state of
the thread identified by new id is set to RUNNING. The function’s precondition
stipulates that the disjoint stack property holds for the input pr and that the
input thread is READY. Proving the property’s preservation is intuitively easy once
the function’s effects and the input subset on which disjoint stack depends
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are known. Automatically proving the preservation of invariants concerning only
fields or elements that have not been altered by a transition in the system would
considerably diminish the number of proof obligations.

This is precisely the issue that we are addressing: the delimitation of the
input subset on which the output depends, given an operation with a compound
input. We define dependency as the observed part of a structured domain and
strive to obtain type-sensitive results, distinguishing between the sub-elements
of arrays and algebraic data types and capturing the dependency specific to each.
The targeted results mirror – in terms of dependency – the layered structure of
compound data types.

Generally, our dependency analysis targets complex transition systems. These
are characterized by states defined by compound data structures and transitions,
i.e. state changes, that map an input state to an output state. In particular, we
are applying it to an abstract model of an operating system, stemming from
ProvenCore [6], an ongoing project revolving around a fully secure micro-kernel.

ProvenCore, inspired by MINIX 3.1, is a general-purpose micro-kernel that
ensures isolation. Its proof is based on multiple refinements between successive
models, from the most abstract, on which the isolation property is defined and
proved, to the most concrete, i.e. the actual model used for code generation.

The global states of the abstract layers are complex structures with multiple
compound fields. Commands such as fork, exec, exit can be executed. Each of
these receives as an input the global state before executing the command and
returns the state of the system after execution. Most supported commands affect
only a handful of invariants, leading to a much more complex, but fundamentally
similar version of the situation depicted by our introductory example.

Outline. The rest of this paper is structured as follows: in Sect. 2 we underline the
specificities of our modeling language. The defined abstract domain of dependen-
cies is described in Sect. 3. It is followed in Sect. 4 by an in-depth presentation of
our analysis at an intraprocedural level and in Sect. 5 by a summary of it at an
interprocedural level. In Sect. 6 we discuss the results obtained on two abstract
layers of ProvenCore. Finally, in Sect. 7 we review related work.

2 The Modeling Language

In this section we present the unified programming and specification language
that we will be analyzing. It is an idealized version of a language developed
at Prove & Run1 and designed to facilitate proofs and to allow users to write
both the implementation and the specification of programs. It is purely func-
tional, side-effect free and strongly-typed. The basic building blocks of programs
written in our language are predicates, the equivalent of functions in common
programming languages. In addition to the common built-in primitive types tra-
ditionally available, structures and variants are also provided. The language is
designed to write code that will subsequently be proven, so it allows the definition
1 http://www.provenrun.com/.

http://www.provenrun.com/
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of various types of logical specifications, ranging from pre- and postconditions,
local assertions and loop invariants to inductive predicates.

2.1 Types and Statements

For defining the language we are working on, we let T be the universe of type
identifiers and T0 ⊂ T the set of base types identifiers. Furthermore, let F be
the set of structure field identifiers and C the set of variant constructors.

t := | τ ∈ T0 base types
| structure{f1 : t, . . . , fn : t} fi ∈ F , 1 ≤ i ≤ n structures
| variant[C1(t e1) | . . . | Cm(t em)] Ci ∈ C , 1 ≤ i ≤ m variants
| arrayt〈t〉 arrays

A structure is a data type grouping elements of different types called fields
and represents the Cartesian product of its fields’ types. A variant is the disjoint
union of different types. It represents data that may take on multiple forms,
where each form is marked with a specific tag called the constructor. Arrays
group a collection of data of the same type (given in angle brackets) into a
single entity; each element is selected by an index whose type is included (as
denoted by the superscript) in the array’s definition.

A program in our language is a collection of predicates. A predicate has input
and output parameters and a body of statements of the form shown in Table 1.

Table 1. Supported statements

statement := | p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm] (1) predicate call

| e1 = e2 (2) equality test

| o := e (3) assignment

| s := {e1, . . . , en} (4) create structure s

| {o1, . . . , on} := s (5) structure destructuring

| o := s.fi (6) access field fi

| s′ := {s with fi = ei} (7) update field fi

| s′ = 〈f1, . . . , fk〉s′′ (8) test equality on fields f1, ..., fk

| v := Cp[ep] (9) create v with constructor Cp

| switch(v) as [o1| . . . |on] (10) variant destructuring

| v ∈ {C1, . . . , Ck} (11) variant possible

| o := a[i] (12) array access at index i

| a′ := [a with i = e] (13) array update at index i

The first statement represents a generic predicate call and is described later in
Sect. 2.2. All other statements could be seen as special cases of it, representing
calls to built-in predicates. Statement (2) is a call to the “=” predicate, that
checks whether its two inputs are equal. Similarly, (3) is a call to the assignment
predicate “:=”. Both are generic and can be applied on any supported type of
the language.
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The statements (4)–(8) are structure-related. (4) creates a new structure s
with e1; . . . ; en as field values. (5) returns the values of all the fields of s in the
output parameters o1; . . . ; on. Statement (6) returns the value of the fi field.
As previously mentioned, we are focusing on a purely functional language and
consider immutable algebraic data structures and arrays. Therefore, setting the
value of a structure’s field, shown in (7), returns a new structure where all fields
have the same value as in s, except fi which is set to ei. Statement (8) verifies if
the values of the given subset of fields of two structures s′ and s′′ are equal.

Statements (9) − (11) are variant-related. (9) creates a new variant v using
the constructor Cp with ep as an argument. Statement (10) is used for matching
on the different constructors of an input variant v. Statement (11) verifies if the
input variant v was created with one of the constructors in {C1, . . . , Ck}. This
could be obtained with a variant switch, but for practical considerations it has
been provided as a built-in predicate.

The last two statements are array-related. (12) returns the value of the i-th
cell of the input array a. Similarly to (7), updating the i-th cell of an array –
shown in (13) – has a functional nature. It returns a new array where all cells
have the same value as in a, except the i-th cell which is set to e.

2.2 Exit Labels

Besides input and output parameters, the declaration of a predicate also includes
a non-empty set of exit labels. When called, a predicate exits with one of the
specified exit labels, thus summarizing and returning to its callers further infor-
mation regarding its execution.

Table 2. Statements and their exit labels

Exit labels constitute the main specificity of the language. They can denote
different exceptional execution scenarios and act as exit codes, similarly to excep-
tions and exit status return values in other programming languages. For example,
the predicate run thread(process pr, int new id) introduced in Sect. 1 has
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two exit labels: true, corresponding to a successful execution and invalid id,
indicating that the given identifier is invalid. Labels also offer a convenient way
to model a Boolean result. Frequently, a Boolean output value can be replaced by
declaring two possible exit labels: true for a successful execution of the predicate
and false for its opposite. This is illustrated by the previously defined property
disjoint stacks(process pr) (in Fig. 1b).

Exit labels play an important role with respect to control flow management.
Complex control flow is expressed and directed by catching and transforming
labels. Furthermore, they condition the existence of output parameters, as these
are associated to the exit labels of a predicate. Whenever a predicate exits with
an exit label λ, all the outputs associated to it are effectively produced, whereas
all other outputs are discarded. If no output is associated to an exit label, it
means that no output is generated when the predicate exits with this particular
label. We can now explain the generic predicate call statement (1) from Table 1:
the predicate p is called with inputs e1, . . . , en and yields one of the declared
exit labels λ1, . . . , λn, each having its own set of associated output variables ō.

As shown in Table 2, statement (10) will have an exit label corresponding
to each constructor of the given input variant. Statements (2), (8) and (11) are
bi-labeled, using true and false as logical values. Statements (12) and (13) are bi-
labeled as well. However, unlike the previously mentioned statements, they use
the label false as an “out of bounds” exception and generate an output only for
the label true.

2.3 The Control Flow Graph

In the following we will work with a control flow graph representation of the
predicates’ bodies. The nodes represent program states, and the edges are defined
by statements with a particular exit label λ.

The control flow graph Gp = (N,E) of a predicate p has a node ni ∈ N for
each program point. For each statement s at program point ni that can execute
and reach program point nj with exit label λk, an edge (ni, nj) is added to Gp

and labeled with s and λk. Gp has a single entry node nin ∈ N corresponding
to the program point associated to the first statement of p. The set of exit nodes
nout ⊂ N consists of the nodes associated to each possible exit label λk of the
predicate.

In practice, all the outgoing edges of a node ni ∈ N bear the different cases
of the same statement s found at program point ni. Thus, the edges are labeled
with the same statement s and there is an edge labeled s, λk for each possible
exit label λk of s. However, the analysis does not depend on this special case.

The subfigures in Fig. 2 show the control flow graph of the following predi-
cate: predicate thread(process p, int i) -> [true: thread ti | None | oob]

which receives a process p and an index i as inputs and returns the i-th
active thread of the input process (the process and thread types are defined
in Fig. 1a). If the i-th thread is inactive, it exits with the exit label None. In
the case of an “out of bounds” exception, the exit label oob is returned. For
better readability, Fig. 2b gives the control flow of the same predicate where we
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have labeled the nodes with statements of the predicate and the edges with their
exit labels.

Fig. 2. Example – control flow graph of predicate thread

3 Abstract Domain of Dependencies

The goal of our analysis is to detect the input subset on which the outputs of a
predicate may depend. More precisely, the analysis makes a conservative approx-
imation and must guarantee that what is marked as not needed is definitely not
needed.

The first step towards such results is the definition of an abstract domain of
dependencies D, shown below. The domain δ ∈ D is defined inductively from the
three atomic cases �, � and ⊥, mimicking the structure of the concrete types:

δ := | � | � | ⊥ atomic cases
| {f1 
→ δ1 ; . . . ; fn 
→ δn} f1 , . . . , fn fields (i)

| [C1 
→ δ1 ; . . . ;Cm 
→ δm ] C1, . . . , Cm constructors (ii)

| 〈δ〉 (iii)

| 〈δdefault � i : δexc〉 i array index (iv)

For atomic types the dependency is expressed in terms of the domain’s atomic
cases: � (least precise), denoting that everything is needed and �, denoting that
nothing is needed. The third atomic case ⊥, denoting impossible, is explained
below. The dependency of a structure (i) describes the dependency on each of its
fields. For arrays we distinguish between two cases, namely arrays with a general
dependency applying to all of the cells (iii) and arrays with a general dependency
applying to all but one exceptional cell, for which a specific dependency is known
(iv). For variants (ii), the dependency is expressed in terms of the dependencies
of its constructors, expressed in terms of their arguments’ dependencies. Thus,
a constructor having a dependency mapped to � is one for which nothing but
the tag has been read, i.e. its arguments, if any, are irrelevant for the execution.
For variants, we also include the information that certain constructors cannot
occur. The third atomic case – ⊥ – is introduced for this purpose. We perform
a “possible-constructors” analysis simultaneously, which computes for each exe-
cution scenario, the subset of possible constructors for a given value, at a given
program point. All constructors that cannot occur are marked as being ⊥. This
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Table 3. � – comparison of two domains

atomic value is the lower bound of our domain and hence, the most precise value.
The final abstract domain is a closure of all these combined recursively.

The partial order relation � ⊆ D × D used to compare dependency domains
is detailed in Table 3. The greatest element is � (Top) and ⊥ is the least
(Bot). Instances of identical structure and variant types are compared pointwise
(Str, Var). For arrays without known exceptional dependencies we compare the
default dependencies applying to all array cells (ADef). If exceptional depen-
dencies are known for the same cell, these are additionally compared (AI). For
arrays with known exceptional dependencies for different cells, we compare each
dependency on the left-hand side with each one on the right-hand side (AIJ).
The comparison of � with structures (�Str), variants (�Var) and arrays (�A,
�AI) is a pointwise comparison between � and the dependency of each sub-
element.

Table 4. Join operation
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The defined join operation ∨ : D × D → D is detailed in Table 4. It is a
commutative operation for which the undisplayed cases are defined with respect
to their symmetrical counterparts. The operation is total: joining incompatible
domains such as a structure and a variant or two structures having different field
identifiers, results in �. Join is applied pointwise on each sub-element; ⊥ is its
identity element and � is its absorbing element. Joining � and the dependency of
a structure, variant or array is applied pointwise. The value obtained by joining
δ and δ′ is an upper bound of the two:

δ � δ ∨ δ′ ∧ δ′ � δ ∨ δ′, ∀ δ, δ′ ∈ D.

It is not a least upper bound as a consequence of the non-monotonic approxima-
tions made for arrays (rule AIJ).

Besides join, a reduction operator ⊕ : D × D → D has been defined as well.
This is a recursive, commutative, pointwise operation. The need for such an
operator is a consequence of the possible-constructors analysis that we perform
simultaneously. Following the same execution path, the same constructors must
be possible. Thus, the reduction operator is used in order to combine dependen-
cies on the same execution path and consists in performing the intersection of
constructors in the case of variants and the union of dependencies for all other
types. Its identity element is � and its absorbing element is ⊥. The reduce oper-
ator between �, and the dependency of a structure, variant or array is applied
pointwise. Two instances of identical variant types are pointwise reduced.

Finally, the projections summarized in Table 5, have been defined on a depen-
dency domain δ and are used to express the data-flow equations of Sect. 4:

.f : D → D projection of a field’s dependency

@C : D → D projection of a constructor’s dependency

〈i〉 : D → D projection of a cell’s dependency

〈∗ \ i〉 : D → D projection of an array’s dependency outside cell i
〈∗〉 : D → D projection of an array’s general dependency

Table 5. Dependency projections

They are partial functions, and can only be applied on domains of the corre-
sponding kind. For instance, the field projection .f only makes sense for atomic
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domains or structured domains with a field named f , which should be the case
if the domain represents a variable of a structured type with some field f . For
any of the atomic domains δa, applying any of the defined projections yields δa.

4 Intraprocedural Analysis and Data-Flow Equations

Intraprocedural Domains. Dependency information has to be kept at each point
of the control flow graph, for each variable of the environment Γ , that maps
input, output and local variables to their types. An intraprocedural domain Δ :
V → δ is thus a mapping from variables to dependencies, and is associated
to every node of the control flow graph, representing the dependencies at the
node’s entry point. A special case is the mapping which maps all variables to ⊥,
which we call Unreachable. In particular it is associated to nodes that cannot be
reached during the analysis. Also, if any of the variables of Δ is marked as ⊥,
the entire node collapses, becoming Unreachable.

For any node of the control flow graph associated to an intraprocedural
domain Δ, Δ(x) retrieves the dependency associated to the variable x. If a
mapping for x does not currently exist, Δ(x) retrieves �. Forgetting a variable x
from a reachable intraprocedural domain, Δ \ x, removes its mapping. The ∨, �
and ⊕ operations are extended pointwise to an intraprocedural domain, for each
variable and its associated dependency domain δv. In particular, Unreachable is
the bottom of this intraprocedural lattice.

Table 6. Statements – representations and data-flow equations

Data-Flow Equations. Our dependency analysis is a backward data-flow analy-
sis. For each exit label, it traverses the control flow graph starting with its
corresponding exit node and marking all other exit points as Unreachable. The
intraprocedural domain for the currently analyzed label is initialized with its
associated output variables mapped to �. The analysis traverses the control
flow graph and gradually refines the dependencies until a fixed point is reached.
Table 6 summarizes the representation and general equation of the statements.
For each statement, the presented data-flow equation operates on the intraproce-
dural domains of the statement’s successor nodes. The intraprocedural domain
at the entry point of the node is obtained by joining the contributions of each
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outgoing edge. The contribution of an edge (ni, nj) labeled with s and λ is given
by �s�λ(Δnj

) where �s�λ(.) is the transfer function of the edge labeled s, λ.
Tables 7, 8, 9, 10 define the transfer functions for each built-in statement of

our language, whereas the general case of a predicate call and its corresponding
equation will be detailed in the following section.

Table 7 presents the transfer functions for statements which are not type-
specific. For equality tests (1) both of the inputs e1, e2 are completely read,
whether the test returns true or false. The transfer functions therefore, reduce
the domain of the corresponding successor node with a domain consisting of
e1 and e2 both mapped to �. In the case of assignment (2), the dependency of
the written output variable o is forgotten from the successor’s intraprocedural
domain, thus being mapped to � and forwarded to the input variable e.

Table 7. Generic statements – data-flow equations

The data-flow equations given in Table 8 correspond to structure-related
statements. For the Eqs. (3), (4), (5) and (6) we assume that the variable s is
of type structure{f1 : t, . . . , fn : t} for some fields fi, 1 ≤ i ≤ n. The equation
(3) refers to the creation of a structure: each input ei is read as much as the
corresponding field fi of the structure is read. The destructuring of a structure
is handled in (4): each field fi is needed as much as the corresponding variable oi

is. When accessing the i-th field of a structure s (5), only the field fi is read, and
only as much as the access’ result o itself. The equation (6) treats field updates:
the variable ei is read as much as the field fi is. The structure s is read as much
as all the fields other than fi are read in s′. Finally, the equations given in (7)

handle partial structure equality tests, and the transfer functions are the same
for the labels true or false: for both compared structures s′ and s′′, all the fields
in the given set f1, . . . , fk are completely read, and only those.

The data-flow equations given in Table 9 correspond to variant-related state-
ments. They follow the same principles as those used for structure-related state-
ments above. Note that the transfer functions for the switch (9) and possible
constructor test (10) introduce ⊥ dependencies for constructors which are known
to be impossible on the considered edge. In particular, since ⊥ is an absorb-
ing element for ⊕, these transfer functions erase, for every constructor which is
known to be locally impossible, all the dependency information possibly attached
to said constructor in the successor nodes. This is the actual raison d’être for
the reduction operator, since using ∨ to combine a successor domain and a local
contribution would lose this information.
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Table 8. Structure-related statements – data-flow equations

Table 9. Variant-related statements – data-flow equations

Finally, the equations for array-related statements are given in Table 10. We
assume for both that the context is fixed and that I is the distinguished set of
input variables for the analyzed predicate. This set is used to make sure that
exceptions in array dependencies are only registered to variables in I and not
local or output variables. The reason for such a constraint is a pragmatic one:
input variables are not assignable in our language, and therefore they always
represent the same value intraprocedurally. Otherwise, each time a variable is
written by a statement, we would need to traverse all the dependencies in the
domain to erase or reinterpret the occurrences where this variable appears as an
exception. Only recording exceptions for input variables makes this kind of costly
traversal useless, and since only exceptions about input variables make sense at
the interprocedural level (see Sect. 5), we do not lose much precision by doing
so. The transfer functions for (11) and (12) thus take care of making adequate
approximations when exceptions cannot be introduced. As for the cases when the
array access exits with the false label, note that the contribution to the array
a is 〈�〉, which is strictly less precise than �. The operation makes implicit
bounds checking and this can thus be seen as accounting for the fact that no



128 O.F. Andreescu et al.

cell in a has been read, but the “length” or “support” of a has been read, hence
it would not be true to claim that the result of the statement did not depend
on a at all. Similarly, a variant dependency [C1 
→ �, . . . , Cn 
→ �] mapping all
constructors to nothing has not read any value in any of the constructors, but
may still depend on the variant’s constructor itself.

Table 10. Array-related statements – data-flow equations

5 Interprocedural Dependencies

Exit labels, presented in Sect. 2.2, constitute an increased source of expressiv-
ity, as they indicate the scenario that was observed while executing a predicate.
We incorporate this expressivity in our dependency results, by computing spe-
cific dependencies for each possible execution scenario. Therefore, our analysis is
performed label by label and interprocedural dependency domains associate an
intraprocedural domain to each exit label of the analyzed predicate. The variable
key-set of each associated intraprocedural domain comprises the inputs of the
analyzed predicate. A label that cannot be returned is mapped to an Unreach-
able intraprocedural domain. This is a form of path-sensitivity [10]. However, we
favor the term label-sensitivity for this characteristic, as it seems to be a more
natural choice applied to our case and the language we are working on.

An interprocedural domain of a predicate p is thus defined as follows:

Dp : Λp → Δ, where Λp the set of output labels of predicate p

For each analyzed label of a predicate, the analysis starts by initializing the
intraprocedural domain mapped to it, with the output variables associated to
the exit label. To avoid making any false supposition, these are initially mapped
to the most general dependency, namely �. Subsequently, as described in Sect. 4,
the dependency information is gradually refined until a fixed point is reached.
The execution scenarios denoted by the exit labels of a predicate are mutually
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exclusive. Therefore, during the analysis of a particular exit label, all other exit
labels of the predicate are mapped to Unreachable. After reaching a fixed point,
the intraprocedural domain is filtered so that only input variables appear in
the variable set. As explained in Sect. 4, the intraprocedural domains are built
such that only input variables may appear as exception indices in dependencies
computed for arrays. This invariant is preserved throughout the analysis.

A substitution must be performed on interprocedural domains. This consists
in substituting all occurrences of formal input parameters of a predicate by the
corresponding effective input parameters. The substitution operation is denoted
by � (σ) where σ is a substitution from formal to effective parameters.

We proceed by detailing the equation corresponding to a call to a predicate:

p(e1, . . . , en)[λ1 : ō1 | . . . | λm : ōm]

having the following signature:

p(ε1, . . . , εn)[λ1 : ω̄1 | . . . | λm : ω̄m]

The general equation form applies:

Δn =
∨

n
s,λi−−→ni

�p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]�λi
(Δni

)

The transfer functions for the predicate call statement are deduced from the
predicate’s interprocedural domain in the following fashion:

�p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]�λi(Δ) = (Δ \ ōi)
⊕

j∈{1,...,n}
ej �→ depi

j

where depi
j = Dp(λi)(εj) � (ε̄ �→ ē)

Namely, the mappings for the outputs ō associated to a label λi are removed,
and the contribution of a call to each input ej stems from the contribution of
the interprocedural domain for label λi and formal input εj . In these, all the
formal input parameters ε̄ in array dependency domains are substituted by the
corresponding effective input parameters from ē.

Semantics. We conclude this section by briefly presenting the two possible
interpretations of the results of our analysis. Considering an intraprocedural
result Δλ

p for a predicate p and label λ, a first interpretation of our dependency
analysis is an equivalence relation on tuples of values ≈Δλ

p
which relates values

that only differ in places on which p, λ does not depend. It can be used for
applying congruence modulo reasoning to predicate calls. Namely, if we write
p(v̄) λ:w̄−−→ to denote that applying p to the values v̄ yields the exit label λ with
outputs w̄, then if p is applied in turn to two input data structures ū and v̄
that are congruent w.r.t. ≈Δλ

p
, the predicate will exercise the same execution

scenario:
ū ≈Δλ

p
v̄ =⇒ p(ū) λ:w̄−−→ =⇒ p(v̄)�

��
�

μ:z̄−−→
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Furthermore, identical outputs will be obtained:

ū ≈Δλ
p

v̄ =⇒ p(ū) λ:w̄−−→ =⇒ p(v̄) λ:z̄−−→ =⇒ w̄ = z̄

whereas this first interpretation focuses on the dependency part of the analysis,
it is also possible to focus on the possible constructors part of the analysis. This
additional interpretation is a characteristic function 1Δλ

p
on input values which

constrains the space of inputs that can make p exit with label λ. It denotes the
necessary conditions on inputs according to the observed execution scenario and
can be used as an inversion lemma when reasoning on calls to a predicate:

p(ū) λ:w̄−−→ =⇒ 1Δλ
p
(ū)

A detailed presentation of these semantics is out of the scope of this paper
but in order to give a good intuition of the adequation between the interpretation
and the lattice operations described in Sect. 3, we can give some fundamental
properties relating the domain operations and these interpretations:

v̄ ≈� w̄ ⇐⇒ v̄ = w̄ v̄ ≈∅ w̄ ∧ v̄ ≈⊥ w̄ ∀v̄, w̄ 1� = 1∅ = 	→ 1

1⊥ = 	→ 0 Δ � Δ
′

=⇒ ≈Δ ⊇ ≈Δ′ Δ � Δ
′

=⇒ 1Δ ⊆ 1Δ′

≈Δ⊕Δ′ ⊆ ≈Δ ∩ ≈′
Δ 1Δ ∧ 1

′
Δ =⇒ 1Δ⊕Δ′

The soundness of the second interpretation as well as the well-formedness of
our dependency domains have been proven in Coq2.

6 Preliminary Results and Experiments

Our analysis has currently been applied on two abstract layers of ProvenCore,
described in Sect. 1. These are the Refined Security Model (RSM), an abstract
layer situated just underneath the top-most layer of the refinement chain and the
Functional Specifications (FSP) layer, a model closely resembling the most con-
crete layer (Target of Evaluation Design – TDS) but using data structures and
algorithms that facilitate reasoning. Each layer is characterized by a global state
with numerous fields and different transitions, i.e. supported commands. Various
invariants and properties characterize their states. For example, the FSP’s state
contains 14 fields; it is characterized by approximately 50 invariants. In the TDS,
these figures are doubled. Each invariant is concerned with a different subset of
the global state’s fields. Some of the invariants concern all the processes held in
the process store. However, most transitions affect only a few of these fields. We
have applied our analysis at a medium-scale on the RSM and FSP layers. The
results for over 660 predicates having approximately 11000 lines of code have
been computed in 1.5 s.

One of the analyzed predicates from the FSP layer is:
predicate proc_mem_auth_ok(proc proc) -> [true | false] verifying a funda-
mental property that has to hold for all processes in the process store of proc. It
2 The corresponding files are provided: http://ajl2015.ddns.net/ajl2015/proveCoq.

http://ajl2015.ddns.net/ajl2015/proveCoq
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refers to the relevance of memory permissions and states that every process has
permissions covering a valid range of memory addresses inside its virtual space.
The process type is a structure with 26 fields, of which 11 are compound data
types themselves. Among these, 2 fields are arrays, 3 fields are variants and 6
others are structures with a number of fields ranging from 3 to 17 fields.

The dependency results computed by our analysis for this predicate are shown
below. The analysis detects that for each of the possible execution scenarios, the
outcome depends only on 2 out of the 26 fields, namely the stackframe and the
memory permissions. The dependency on the stackframe is confined to only one
of the 3 fields: the data and stack segment. The memory permissions are given
by a variant with 3 constructors, denoting reading and writing permissions or
the absence of any permission. Furthermore, besides pinning down the outcome’s
dependency on 2 out of the 26 fields of the process structure, the analysis also
detects that the absence of any memory permission, indicated by the constructor
NONE of the mem auth variant, is ⊥ for the false execution scenario. In other words,
unused permissions cannot threaten the property proc mem auth ok.

The relevant memory permissions property is thus only threatened by transi-
tions that add memory permissions or change a process’ virtual space layout.
Only 3 transitions out of the 25 belong to this category: exec which resets the
process’ segments, do auth read and do auth write which add permissions. In
particular, transitions deleting memory permissions do not impact the property
since the absence of permissions, as shown by the dependency of the construc-
tor NONE for the false label, is an impossible case when the property does not
hold. This is one of the practical advantages of tracking constructor possibilities
simultaneously.

Space constraints prevent us from discussing other examples here. However,
various other examples are provided on the webpage3 dedicated to our analysis.

7 Related Work

The frame problem and its manifestations in the software verification process –
detecting program properties that remain unchanged under a certain operation
– are notorious. First described in 1969 [8], the frame problem is still a target
for full automation in the software verification realm. A complete specification of
a program will necessarily include frame properties. However, though necessary,
frame properties are tedious and repetitive. Two prominent solutions to the
3 http://ajl2015.ddns.net/ajl2015/.

http://ajl2015.ddns.net/ajl2015/
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frame problem come from separation logic [4] and ownership types [1]. However,
it is argued that the problem itself should not impose such annotation-heavy
solutions. Simpler, automatic solutions for their specification and verification
would allow programmers to concentrate on the truly challenging part [9].

The dependency results computed by our analysis are similar to primitive
read and write effects used in ownership type systems [1]. Write effects in our
case are implicit and include strictly the output variables associated to an exit
label. Read effects can only refer to input variables of a predicate. Also, read
effects comprise the whole execution of a method even if they are irrelevant for
the method’s results. We however, ignore read effects on which the output does
not depend, reflecting only those which contribute to the observed result. A
technique for declaring and verifying read effects in an ownership type system is
presented in [1]. We use static analysis to automatically detect them.

Our dependencies are similar to the influence sets presented by Leino and
Müller [5]. Influence sets are represented as sets of heap locations and they are
used to specify the parts of the program state that are allowed to impact the
return values. Reasoning about heap locations is beyond the scope of our analy-
sis. We treat mappings between variables and values, analyze their evolution in a
side-effect free environment and express dependencies as input-output relations.

Static dependence or liveness analyses are typically used for code optimiza-
tion, dead code elimination [7] and compile time garbage collection, but only
seldom for program verification. One case we are aware of comes from Frama-
C [2], where it is used in a purely automatic setting and unlike our analysis it does
not handle unions and arrays. A plug-in based on the available value analysis [3]
computes lists of input and output locations for each function, distinguishing
between operational, functional and imperative inputs.

8 Conclusion

We have presented a flow-sensitive, path-sensitive, interprocedural dependency
analysis that handles arrays, structures and variants. For the latter it simulta-
neously computes a subset of possible constructors. We have defined our own
abstract dependency domain and obtain dependency information that mirrors
the layered structure of compound data types.

The main original traits of our contribution stem from its design as an analy-
sis meant to be used as a companion tool during interactive program verification,
in an unified manner on programs as well as on specifications.

An obvious first challenge is to address the issue of context-sensitivity. We
plan to introduce lazy components in our interprocedural dependency summaries
and to inject in them the current intraprocedural context on an as-needed basis.
Early experiments show much promise in terms of improved precision, with only
a marginal decrease in performance.

Our long-term goal is to combine the dependency analysis with a correlation
analysis, meant to detect relations between inputs and outputs. By uncovering
relations (preorders and equivalences) between inputs and outputs, after having
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detected that a property only depends on unmodified parts and unifying the
results, the preservation of invariants for the unmodified parts could be inferred.
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