
A Logical Approach for Behavioural
Composition of Scenario-Based Models

Juliana Küster Filipe Bowles1(B), Behzad Bordbar2,
and Mohammed Alwanain2

1 School of Computer Science, University of St Andrews, Jack Cole Building,
North Haugh, St Andrews KY16 9SX, UK

jkfb@st-andrews.ac.uk
2 School of Computer Science, University of Birmingham, Edgbaston,

Birmingham B15 2TT, UK
{b.bordbar,m.i.alwanain}@cs.bham.ac.uk

Abstract. As modern systems become more complex, design appro-
aches model different aspects of the system separately. When considering
(intra and inter) system interactions, it is usual to model individual sce-
narios using UML’s sequence diagrams. Given a set of scenarios we then
need to check whether these are consistent and can be combined for a
better understanding of the overall behaviour. This paper addresses this
by presenting a novel formal technique for composing behavioural mod-
els at the metamodel level through exact metamodel restriction (EMR).
In our approach a sequence diagram can be completely described by
a set of logical constraints at the metamodel level. When composing
sequence diagrams we take the union of the sets of logical constraints for
each diagram and additional behavioural constraints that describe the
matching composition glue. A formal semantics for composition in accor-
dance with the glue guides our model transformation to Alloy. Alloy’s
fully automated constraint solver gives us the solution. Our technique
has been implemented as an Eclipse plugin SD2Alloy.

Keywords: Sequence diagrams · Behavioural composition · Event
structures · Alloy

1 Introduction

As modern systems become more complex, design approaches model different
aspects of the system separately. When considering (intra and inter) system
interactions, it is usual to model individual scenarios using UML’s sequence
diagrams. Given a set of scenarios we then need to check whether these are con-
sistent and can be combined for a better understanding of the overall behaviour.
The overall behaviour of the system can be obtained step by step by composing
individual scenario-based models.

Composing systems manually can only be done for small systems. As a
result, in recent years, various methods for automated model composition have
c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 252–269, 2015.
DOI: 10.1007/978-3-319-25423-4 16

A Logical Approach for Behavioural Composition of Scenario-Based Models 253

been introduced [4,6,13,15,18–21,23]. Most of these methods involve introduc-
ing algorithms to produce a composite model from smaller models originating
from partial specifications [13]. By contrast, in this paper we focus on the compo-
sition of models via constraint solvers. This corresponds to producing a number
of constraints capturing models and using an automated solver to find a solution
that produces the composed model. In this paper, we use Alloy [12] for finding
the solution. Using Alloy for model composition is an active area of research
[19,23]. Whilst most existing research focuses on static models, the focus of this
paper is on dynamic models. The proposed method in this paper consists of
two steps. First, create the logical constraints that uniquely characterise each
model by restricting the metamodels. Second, produce behavioural constraints
for combining the models. These consist of constraints indicating how elements
from both models may be matched and additional constraints such as orderings
that may have to be preserved. The augmented model for the composition (if
existing) needs to satisfy the conjunction of all these constraints. The composed
model is semantically equivalent to one obtained by an enriched form of par-
allel composition with synchronisation and additional constraints on permitted
combined behaviour. The automatic generation of such a solution is the main
novelty and contribution of this paper.

In general, metamodels represent the model elements and their relationships.
Logical statements written in the context of metamodels play a key role in
expressing the well-definedness of model elements, defining model equality, and
so on. We extend the use of logical constraints and for a given model we produce
further constraints to uniquely determine the model. We refer to the process of
identifying such logical constraints as Exact Metamodel Restriction (EMR). As
we show in this paper, EMR can be used in the automated instantiation of mod-
els via constraint solvers. For example, in [2] starting from any UML sequence
diagram, using the Alloy model finder for the sequence diagram metamodel and
correct set of constraints, Alloy can be used to automatically recreate the original
sequence diagram. Given any two models M1 and M2 representing two partial
specifications (e.g., two sequence diagrams), through EMR we produce two sets
of constrains L1 and L2 on their metamodels that uniquely identify them. To
compose the two models we may require all constraints in the two sets to be
true. This would be a very restrictive form of composition. Instead we give the
designer a novel way to influence the obtained composition by specifying behav-
iour that should never occur or sequences of events that must occur in a given
order. In other words, it allows the designer to prioritise on specified behaviour.
We refer to these additional constraints as behavioural composition glue and
present a formal semantics for it.

The notion of glue is not new and is also used within software architecture
to describe and formalise component connectors [1,8]. Our interpretation of glue
here is nonetheless more generic and not only a syntactic matching between
component elements. Our behavioural glue gives us a new set of constraints Lg

which specifies how the models should be glued together to produce the intended
composition. Given the sets of constraints L1, L2 and Lg, and provided there

254 J.K.F. Bowles et al.

are no conflicts between them, the models can be composed automatically using
Alloy. If there are conflicts between the constraints, Alloy will point out the
conflicting statements so that we can redesign the models or the constraints used
for the composition. Although the focus of work is on sequence diagrams, the
suggested method can be applied to all models with a trace-based semantics. We
have applied the method to sequence diagrams and produced an Eclipse plugin
which was described in [2]. This work considerably extends the work in [2] by
going beyond composition based on syntactic matching of model elements and
focusing on the formalisation of behavioural glue for composition.

The paper is organised as follows. Section 2 describes interactions in UML
and introduces an example which is used throughout the paper to illustrate our
approach. Section 3 introduces labelled event structures (LES), our semantic
interpretation of interactions and a guide to the correct composition solution.
Section 4 shows the transformation into Alloy. Composition is treated with LES
in Sect. 5 and with Alloy in Sect. 6. Related work is described in Sect. 7. Section 8
concludes the paper.

2 Interactions in UML

Sequence diagrams are described in UML’s superstructure specification [17] both
through a concrete and an abstract syntax. The concrete syntax consists of the
graphical notation for a sequence diagram, whereas the abstract syntax is given
by a metamodel which defines all the elements of a sequence diagram model
and their possible relationships. An instance of the metamodel corresponds to a
concrete sequence diagram.

Concrete Syntax: An interaction captured by a sequence diagram involves
a group of objects which exchange messages between each other to achieve a
particular goal. Each object has a vertical dashed line called lifeline showing the
existence of the object at a particular time. Points along the lifeline are called
locations (a terminology borrowed from LSCs [11]) and denote the occurrence
of events. The order of locations along a lifeline is significant denoting, in gen-
eral, the order in which the corresponding events occur. An interaction between
several objects consists of one or more messages, but may be given further struc-
ture through so-called interaction fragments. There are several kinds of interac-
tion fragments including seq (sequential behaviour), alt (alternative behaviour),
par (parallel behaviour), neg (forbidden behaviour), assert (mandatory behav-
iour), loop (iterative behaviour), and so on [17].

Consider the following sequence diagrams which show a slightly adapted
example from [10]. Figure 1 (left) shows an interaction with two consecutive
interaction fragments (a parallel followed by an alternative fragment), and Fig. 1
(right) shows a different interaction involving the same instances and a few
additional messages.

In both diagrams, all messages are sent asynchronously between objects a
and b (only message new is sent by b to a). The locations along the lifeline of
object a are shown explicitly in both diagrams. The importance of locations is

A Logical Approach for Behavioural Composition of Scenario-Based Models 255

l9

alt

l0
l1

l2

l3
l4

l5

l6

l7

l8

par

sd 1
a:A b:B

m1

i

m2

j

m3

l4

sd 2
a:A b:B

m5

l0

l6

l7

l8

m1

l2
new

l3

l1

m2

l5
m4alt

Fig. 1. Two sequence diagrams with fragments involving the same object instances.

described later in the paper. In particular, the distinction between the syntactic
notion of a location on a sequence diagram from its semantic counterpart of an
event will be clarified. In Fig. 1 messages i and m1 are sent/received in parallel
followed by message j or message m2 (alternative), and further followed by
message m3 (irrespective of the previous alternative choosen). In Fig. 1, three
messages are sent/received before reaching an alternative fragment and choosing
between messages m4 or m5. These diagrams will be used to show how we can
compose diagrams under certain constraints.

Abstract Syntax: A metamodel can be understood as a model of a collec-
tion of models. A metamodel is usually a structural model given as a UML class
diagram often with additional constraints given in UML’s constraint language
OCL. Metamodels can be built for both static and dynamic models but focus
only on the structural aspects of the model. In this paper we look at sequence
diagrams. The metamodel of a sequence diagram, also known as an interaction,
shows the structure of such a diagram in terms of the model elements present and
their relationships. The dynamic interpretation is not given in the metamodel,
and must be defined separately. See ours in Sect. 3.

The UML superstructure specification [17] defines the interaction’s meta-
model in a package showing different elements and their relationships separately
in different diagrams. To make the presentation simpler, we use a subset of the
metamodel for interactions and show it as one class diagram in Fig. 2. We capture
the main notions that we need for the present paper.

An Interaction contains zero or more instances of Lifeline, Message and
InteractionFragment. A Message usually has a sendEvent MessageEnd and a
receiveEvent MessageEnd associated to it. In the present paper, we assume
that MessageEnd (an abstract class) is always a special kind of Occurrence

Specification called MessageOccurrenceSpecification (not shown). It is pos-
sible for a Message to have been found, or similarly lost, in which case it does not
have a sendEvent or a receiveEvent. A Message cannot be simultaneously found
and lost. A Message has attributes messageKind and messageSort (not shown
in the diagram). These attributes have a type with the same name which are

256 J.K.F. Bowles et al.

InteractionConstraint

InteractionOperand

interactionOperator:InteractionOperatorKind

CombinedFragment

GeneralOrdering

Message

+events

{ordered}

+covered

* 1

+sendEvent

* *

*

+guard

*

+enclosingOperand

0..1

1

+operand1..*

0..1

0..1

*

0..1

*

+next 1

*

*

+covered

+coveredBy
+fragment

0..1
+enclosingInteraction

0..10..1

0..1 0..1
+receiveEvent

11

InteractionFragment

OccurrenceSpecification Lifeline

Interaction

MessageEnd

Fig. 2. The interactions metamodel.

enumeration types used to indicate whether a message is lost, found, complete
or unknown (MessageKind), or a synchronous/asynchronous call, create Message

and so on (MessageSort). A Lifeline has attributes for the name and class

associated to the object that is denoted by the lifeline (not shown in the dia-
gram). An InteractionFragment is an abstract class which is further specialised
into an OccurrenceSpecification, an Interaction, a CombinedFragment or an
InteractionOperand. The locations mentioned in Sect. 2 correspond to instances
of OccurrenceSpecification. These are the ordered events that cover a Lifeline.
A GeneralOrdering represents a binary relation between two Occurrence

Specifications. The metamodel contains relations before and after, but we
restrict ourselves to a relation next which is all we require for our purposes.
A CombinedFragment has an attribute interactionOperator of enumeration type
InteractionOperatorKind (par, alt, seq, loop, assert, and so on), and contains
one or more operands which are InteractionOperands. An InteractionOperand

may have a guard which is an InteractionConstraint. An InteractionOperand

encloses either several OccurrenceSpecifications, an Interaction or another
CombinedFragment indicating nesting of fragments.

An instance of the metamodel represents a concrete interaction or sequence
diagram. The interaction from Fig. 1 can be captured using the abstract syntax
as an instance of the metamodel (not shown here).

We have developed a tool SD2Alloy that takes a sequence diagram described
by its abstract syntax and transforms it into an Alloy model. Alloy [12] is a
declarative textual modeling language based on first-order relational logic. Alloy
is supported by a fully automated constraint solver Alloy Analyzer which enables
the analysis of system properties by searching for instances of the model. It is
possible to check whether certain properties of the system are present. This is
achieved via an automated translation of the model into a Boolean expression,

A Logical Approach for Behavioural Composition of Scenario-Based Models 257

which is then analysed by SAT solvers such as SAT4J [5] embedded within the
Alloy Analyzer.

3 Semantics of Interactions

The dynamic interpretation of interactions is done in this paper using labelled
event structures [22]. Several possible semantics for sequence diagrams have been
defined (see [16] for an overview). Labelled event structures (LESs) are very
suitable to describe the traces of execution in sequence diagrams being able to
capture directly the notions available such as sequential, parallel and iterative
behaviour (or the unfoldings thereof) as well as nondeterminism. For each of the
notions we use one of the relations available over events: causality, nondetermin-
istic choice and true concurrency. LESs are the only true-concurrent semantics
for sequence diagrams available and first defined in [14]. We recall the main
notions used for modelling sequence diagrams with LES. We later extend our
semantics to model composition of diagrams with glue constraints.

Prime event structures [22], or event structures for short, describe distributed
computations as event occurrences together with binary relations for expressing
causal dependency (called causality) and nondeterminism (called conflict). The
causality relation implies a (partial) order among event occurrences, while the
conflict relation expresses how the occurrence of certain events excludes the
occurrence of others. From the two relations defined on the set of events, a
further relation is derived, namely the concurrency relation co. Two events are
concurrent if and only if they are completely unrelated, i.e., neither related by
causality nor by conflict. The formal definition as defined for instance in [22] is
as follows.

Definition 1. An event structure is a triple E = (Ev,→∗,#) where Ev is a
set of events and →∗,# ⊆ Ev × Ev are binary relations called causality and
conflict, respectively. Causality →∗ is a partial order. Conflict # is symmetric
and irreflexive, and propagates over causality, i.e., e#e

′ →∗ e
′′ ⇒ e#e

′′
for all

e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent, e co e

′
iff ¬(e →∗ e

′ ∨e
′ →∗

e ∨ e#e
′
).

We omit further technical details on the model, but note that for the appli-
cation of event structures as a semantic model for sequence diagrams we use
discrete event structures. Discreteness imposes a finiteness constraint on the
model, i.e., there are always only a finite number of causally related predeces-
sors to an event, known as the local configuration of the event (written ↓ e). A
further motivation for this constraint is given by the fact that every execution
has a starting point or configuration.

Event structures are enriched with a labelling function μ : Ev → L that maps
each event onto an element of the set L. This labelling function is necessary to
establish a connection between the semantic model (event structure) and the
syntactic model (here a sequence diagram). The labelling function used here
is a partial function. Intuitively, each location marked along a lifeline of an

258 J.K.F. Bowles et al.

object in a sequence diagram corresponds to one (possibly more) event(s) in
the labelled event structure. The set of labels used could be the set of locations
in a sequence diagram but is usually more concrete information on what the
location represents: the initialisation of an object, sending/receiving a message,
beginning/ending an interaction fragment, etc.

(j,s) #

g0

g1

g2 g3

g4

g5

g6 g7

g81 g82

g91 g92

(m1,r)(i,r)

(m2,r)

(m3,r)(m3,r)

(j,r)

e0

e1

e2 e3

e4

e5

e6 e7

e81 e82

e91 e92

(m1,s)(i,s)

(m2,s)

(m3,s)(m3,s)

#

Fig. 3. Model for sequence diagram sd1.

Let I denote the set of objects involved in the interaction described by
sequence diagram SD, and Mes the set of asynchronous messages exchanged.
Let the set of labels L be given by L = {(m, s), (m, r) | m ∈ Mes}. An event
with label (m, s) corresponds to the sending of message m whereas an event with
label (m, r) indicates the receipt of message m.

Definition 2. A model MSD = (E,μ) for a sequence diagram SD is obtained
by composition of the models Ma = (Ea, μa) of each object instance a ∈ I. In
MSD, the set of events is given by Ev =

⋃
a∈I Eva, and event labels are as before,

that is, μ(e) = μa(e) for e ∈ Eva. Let m be a message sent between object a and
object b, and let E1 ⊆ Eva with μa(e1) = (m, s) for all e1 ∈ E1, and E2 ⊆ Evb

with μb(e2) = (m, r) for all e2 ∈ E2. Then necessarily |E1| = |E2| and for each
e1 ∈ E1 there is a unique e2 ∈ E2 for each e1 such that e1 → e2 and local conflict
#a propagates over → to obtain conflict # in M .

More details on the semantics of sequence diagrams using LES can be found in [14].
The overall event structure model for the diagram from Fig. 1 is given in

Fig. 3. Conflict propagation is not shown explicitly but is as expected and prop-
agates over the new causality relations gained from communication. For example,
e6#ae7 and consequently e6#e7. In addition, since e7 → g7 by conflict propaga-
tion we also have e6#g7.

A Logical Approach for Behavioural Composition of Scenario-Based Models 259

Definition 3. Let MSD = (E,μ) be a model for sequence diagram SD where
E = (Ev,→∗,#) is an event structure. A subset of events C ⊆ Ev is a con-
figuration in E iff it is both (1) conflict free: for all e, e′ ∈ C,¬(e#e′) and (2)
downwards closed: for any e ∈ C and e′ ∈ Ev, if e′ →∗ e then e′ ∈ C. A maximal
configuration denotes a trace.

For example, the following is a trace for Fig. 3: C = {e0, e1, e2, e3, e4, e5, e7, e82,
e92, g0, g1, g2, g3, g4, g5, g7, g82, g92} which denotes the occurrence of m2 and
not j.

4 Exact Metamodel Restriction

We propose a method that considers both the structure and dynamic interpre-
tation of a sequence diagram when producing an Alloy model. The model is
obtained by exact metamodel restriction, that is, by considering the abstract
syntax of a diagram and constraints obtained from the dynamic (LES based)
interpretation we generate the exact solution in Alloy that corresponds to the
intended sequence diagram. This approach is also used to obtain a composed
model for two (or more) sequence diagrams later on.

Alloy’s syntax and semantics will be apparent in the following rules and code
snippets, but we recall some main notions beforehand. Data domains are defined
using signatures (keyword sig) and represented as sets. Just as in object-oriented
languages, a signature may extend another signature, in which case the domain
defined by the first is a subset of the domain of the extended signature. A signa-
ture that is declared independently of any other is called a top-level signature.
Extensions of a signature are mutually disjoint, as are top-level signatures. A
signature can also be abstract in which case its domain only contains elements
that belong to its extending signatures. In addition, signatures may contain fields
which are captured by relations. Axioms in Alloy are called facts which can be
given a name. These must hold at any time. Alloy formulae often use the atomic
predicate in (inclusion), standard connectives from first-order logic, and quanti-
fiers all (universal) and some (existential). In general, expressions in Alloy are
built using set theoretical relational operators and constants.

All interaction metamodel elements of Fig. 2 are transformed into top-level
signatures in Alloy, and separate transformation rules treat each one. We
omit the basic rules for Lifeline, Message and Event (denoting Occurrence
Specification). It suffices to say that the lifeline transformation rule cre-
ates a domain called Lifeline as an abstract signature. Furthermore, each
lifeline object has fields name and class. For each concrete instance declared
in a sequence diagram we obtain declarations. The Event signature has a field
cover which corresponds to a relationship with a lifeline it belongs to, and a
field next which corresponds to a relationship with a set of events. This rela-
tionship corresponds to the immediate causality relation from our labelled event
structures. The Message signature has two fields send and receive both cor-
responding to one event. We have additional facts to indicate the order of the

260 J.K.F. Bowles et al.

events associated to a message. Messages also have a name which are introduced
when creating a concrete message as shown below.

1 one sig sd1_i extends Message {name:one i}
2 one sig sd1_m1 extends Message {name:one m1}
3 lone sig sd1_m2 extends Message {name:one m2}
4 lone sig sd1_j extends Message {name:one j}
5 one sig sd1_m3 extends Message {name:one m3}

The lines above show the declaration of the messages from sd1 (see Fig. 1
on the left). In Alloy, we cannot have two signatures with the same name. Since
messages may be repeated accross different sequence diagrams we avoid this
problem by adding the information from which diagram it belongs to, in this
case sd1. Similarly for sd2.

one sig sd2_m1 extends Message {name:one m1}
one sig sd2_m2 extends Message {name:one m2}

Some of the messages (lines 3–4 above) are declared as lone (a multiplicity
keyword in Alloy meaning 0 or 1), while others are one (exactly one). This has to
do with the fact that messages within an alternative fragment are not guaranteed
to occur. We will explain this in more detail later on.

6 lone sig e2 extends Event{}
7 lone sig e3 extends Event{}
8 lone sig e6 extends Event{}
9 lone sig e7 extends Event{}

10 lone sig e9 extends Event{}
11 lone sig g2 extends Event{}
12 lone sig g3 extends Event{}
13 lone sig g6 extends Event{}
14 lone sig g7 extends Event{}
15 lone sig g9 extends Event{}
16

17

18 // assigning events to messages
19 fact {sd1_i.send=e2 and sd1_i.receive=g2 and
20 sd1_m1.send=e3 and sd1_m1.receive=g3 and
21 sd1_j.send=e6 and sd1_j.receive=g6 and
22 sd1_m2.send=e7 and sd1_m2.receive=g7 and
23 sd1_m3.send=e9 and sd1_m3.receive=g9}

Lines 6–15 above declare the sd1 events corresponding to sending/receiving
a message. All events are declared as lone as their occurrence is dependent on
whether the associated message is sent/received. For consistency, we use the
same event names as used in our semantic model for the same diagram (see
Fig. 3). Incidentally, we do not need to duplicate events e9 and g9 since Alloy
will produce two solutions to represent the two possible alternative executions.
In order to associate messages and events, we add a fact in line 19 to specify
this. The following fact EventToLifeline connects the model events to the
lifelines.

25 fact EventToLifeline{
26 e2.cover=L1 and g2.cover=L2 and e3.cover=L1
27 ...
28 e9.cover =L1 and g9.cover =L2 }

A Logical Approach for Behavioural Composition of Scenario-Based Models 261

Rule 1 - Combined Fragment: A combined fragments has an interaction
operator (given by type) and one or more interaction operands. An interaction
operand covers a set of Events, CombinedFragments, or both.

29 abstract sig CombinedFragment{
30 operand:set InteractionOperand ,type:one CF_TYPE}
31

32 abstract sig InteractionOperand
33 {cover:set Event + CombinedFragment }
34

35 fact{all e:Event| lone op: InteractionOperand |
36 e in op.cover }
37

38 fact{all cf:CombinedFragment |
39 lone op:InteractionOperand | cf in op.cover }
40

41 fact{all op:InteractionOperand |
42 one cf:CombinedFragment | op in cf.operand }

Lines 29–33 define the abstract signatures for combined fragments and inter-
action operators with the fields mentioned. Fragment nesting is given by the fact
that an InteractionOperator may cover a CombinedFragment. In addition,
three facts impose further constraints on the elements of these domains. Fact on
line 35 states that every event e belongs to at most one InteractionOperand,
and fact on line 38 states that every combined fragment cf belongs to at most
one interaction operand (indicating fragment nesting). Finally, fact in line 41
states that all interaction operands are operands of a combined fragment.

Rule 2 - Alternative Fragment:

43 // alt: exactly one operand will be executed
44 fact Alt -Execution {all cf: CombinedFragment |
45 (cf.TYPE = cf_TYPE_ALT) => # cf.operand = 1}

In order to preserve the semantics of alternative combined fragments, the
fact above states that exactly one operand is executed. Note the # in line 44
corresponds to Alloy’s cardinality operator. A consequence of this fact is that
every time we run the code a different set of events (associated with a particular
operand) may be executed, but every time we only execute one operand of an
alternative fragment.

The Alloy code lines below describe an alternative fragment with two
operands and no guards, as is the case of the second combined fragment from
sd1 of Fig. 1.

46 one sig sd1_CF2 extends CombinedFragment {}
47 lone sig sd1_CF2_Op1 extends InteractionOperand {}
48 lone sig sd1_CF2_Op2 extends InteractionOperand {}
49 fact{all cf: sd1_CF2 | cf.TYPE = CF_TYPE_ALT }

At the model elements level, the first step is to define the combined fragment
and its operands (lines 46–49). Notice the lone keyword at the beginning of the
operand signatures. This is necessary as only one operand will be able to execute
in accordance with the fact Alt-Execution (line 44). Line 48 specifies the type
of sd1 CF2 (the second combined fragment of sd1) as an alternative fragment.

262 J.K.F. Bowles et al.

50 fact OperandToCF{
51 sd1_CF2_Op1 in sd1_CF2.operand
52 sd1_CF2_Op2 in sd1_CF2.operand }
53

54 fact EventToCF{
55 e6 in sd1_CF2_Op1.cover and g6 in sd1_CF2_Op1.cover
56 and e7 in sd1_CF2_Op2.cover and
57 g7 in sd1_CF2_Op2.cover}

The fact OperandToCF connects each operand of the second combined frag-
ment of sd1 to its combined fragment, while the fact EventToCF connects the
events declared earlier belonging to this combined fragment to the corresponding
operands.

Rule 3 - Parallel Fragment: The representation of a parallel combined
fragment is similar to that of an alternative combined fragment, but without
the fact Alt-Execution. The Alloy model for sd1, which contains a parallel
combined fragment, must show a parallel execution of its operands. In other
words, the events covered by different operands can occur in an arbitrary order
in accordance with our LES interpretation.

To capture the notion of GeneralOrdering from the metamodel where it
captures a binary relationship between two instances of OcurrenceSpecification,
here events, is as follows.

Rule 4 - GeneralOrder: A GeneralOrdering represents a binary relation-
ship between two events. This is specified in Alloy by a fact specifying the order
in which all messages and their underlying events occur along the lifelines of the
corresponding object instances. The transitive closure of the general ordering is
irreflexive.

58 fact GeneralOrder {
59

60 all l: L1 + L2, ev1:sd1_cf1.operand.cover ,
61 ev2:sd1_cf2.operand.cover | ev1.cover = l
62 and ev2.cover = l => ev2 in ev1.^next
63 and
64 all l: L1, ev1:sd1_cf2.operand.cover ,
65 ev2:e9 | ev1.cover = l => ev2 in ev1.^next
66 and
67 all l: L2, ev1:sd1_cf2.operand.cover ,
68 ev2:g9 | ev1.cover = l => ev2 in ev1.^next
69 }

In the above fact we make use of the unary operator ∧c to denote the tran-
sitive closure of c. The fact GeneralOrder depicts the order of the element
in the sd1 Fig. 1. Lines 60–62 state that all events ev1 and ev2 such that ev1
belongs to the first combined fragment and ev2 belongs to the second combined
fragment, if they cover the same lifeline then ev2 belongs to the transitive closure
of ev1.next, that is, it necessarily occurs after ev1. Note that ev1 �= ev2 since
they are elements from different extensions of CombinedFragment and necessar-
ily disjoint in Alloy. Lines 64–68 show that the occurrence of an event e9 or g9
must be preceded by the occurrence of events covered by the second combined
fragment. In other words, sending/receiving message m3 can only occur if the
combined fragments have executed beforehand.

A Logical Approach for Behavioural Composition of Scenario-Based Models 263

5 Semantics of Composition

We define the semantics of composition for sequence diagrams in the context
of labelled event structures. We restrict ourselves to the composition of two
diagrams. The case for the composition of a finite number of diagrams can be
generalised from here. In the sequel, let SD1 and SD2 be two sequence diagrams,
with sets of instances and messages given by I1, I2, Mes1 and Mes2 respectively.

When composing diagrams SD1 and SD2 we consider interleaving and
shared behaviour. In the case of interleaving, the diagrams evolve completely
autonomously of one another. That is, the interleaving of diagrams SD1 and
SD2 is written SD1 ‖ SD2 and equivalent to par(SD1, SD2). In other words,
the composition is behaviourally equivalent to a diagram with a par fragment
and two operands where each operand contains the behaviour described in SD1

and SD2 respectively.
The model for SD1 ‖ SD2, MSD1‖SD2 = (E,μ), is an event structure where

Ev = Ev1 ∪Ev2, all relations are preserved, and μ(e) is defined for all e iff μi(e)
is defined for some i ∈ {1, 2} in which case μ(e) = μi(e). For shared instances
o ∈ I1 ∩ I2 we further match the initial events for o in Ev1 and Ev2. Recall that
an initial event for an object is an event for which ↓ e = {e} which means that
the local configuration only contains itself (cf. Sect. 3). We use ↓ Evo to indicate
the singleton containing the initial event of instance o.

The composition of diagrams with shared behaviour is written SD1 ‖G SD2

where G indicates the composition glue. In this paper we go beyond a syntactic
matching of objects and/or messages from the different diagrams. We assume
that the composition glue can in addition impose restrictions on the occurrences
of messages, their ordering, and so on. The case of basic syntactic matching was
treated informally in [2] and we cover behavioural composition glue here which
subsumes syntactic matching.

We define the composition of two models formally in two stages. First we
define the model obtained by syntactic matching of objects and messages of
both models. We then take the glue constraints and apply a restriction on the
matched composed model that satisfies the glue constraints.

Let Δ ⊆ L1×L2 ∪ I1×I2 be a binary relation over labels or instances satisfying
if (l, l′) ∈ Δ and (l, l′′) ∈ Δ then l′ = l′′; and if (l′, l) ∈ Δ and (l′′, l) ∈ Δ then
l′ = l′′. We call Δ a matching over labels and instances. Let Ev1 (and similarly
Ev2) correspond to the set of events in Ev1 with a label not matched in Δ.

Definition 4. Let M1 = (E1, μ1) and M2 = (E2, μ2) be models for sequence dia-
grams SD1 and SD2, and Δ be a matching over labels and instances. SD1 ‖Δ SD2

is a matched composition model for Δ given by MΔ = (E,μ) such that events in
MΔ are given by

Ev = Ev1 ∪ Ev2 ∪
{(e1, e2)|(L(e1), L(e2)) ∈ Δ}∪

{(e1, e2)|(e1 ∈↓ Evi1 , e2 ∈↓ Evi2 and (i1, i2) ∈ Δ)}

264 J.K.F. Bowles et al.

The labels are unchanged, that is, μ(e) = μi(e) for e ∈ Evi with i ∈ {1, 2} and
μ(e1, e2) = μ1(e1) = μ2(e2). Event relations in MΔ are derived from the relations
in M1 and M2 as follows (e1, e2) →∗ e iff (e1 →∗

1 e or e2 →∗
2 e); ei → e′

i iff
ei →∗

i e′
i; and (e1, e2) →∗ (e′

1, e
′
2) iff (e1 →∗

1 e′
1 and e2 →∗

2 e′
2). Similarly for the

conflict relation with additional conflict derived from propagation over causality.

According to the above definition, the event pairs (e1, e2) in Ev correspond
to events matched by Δ or denoting initial events for shared objects. Relations
and labels are preserved in the composition as expected.

If the model obtained above is a valid labelled event structure then a com-
position for SD1 and SD2 according to Δ exists. Otherwise the models are not
composable.

Proposition 1. Let M1 = (E1, μ1) and M2 = (E2, μ2) be models for sequence
diagrams SD1 and SD2, and Δ be a matching over instances and labels. The
diagrams are composable according to Δ iff the matched composition model
MΔ = (E,μ) is a well defined labelled event structure.

A case that illustrates a non composable model is one where the same two
messages (say m1 and m2) are sent in the reverse order in two diagrams. The
model obtained by matching the respective send/receive events in both diagrams
would lead to an invalid labelled event structure as the model would contain a
cycle which is not allowed. We illustrate the idea of shared behaviour further with
the example from Sect. 2 to obtain the composition of sd1 of Fig. 1. We consider
the matching of messages and lifelines with the same name, i.e., messages m1
and m2, and lifelines for object a and object b. There is a matched composition
model MΔ for sd1 and sd2 as shown in Fig. 4. It shows the matched initial events
(e.g., (e0, f0)) and events matched by Δ (e.g., (e3, f1) for label (m1, s)). Event
relations are derived from the original relations and any conflict that arises from
propagation over the extended causality relation. In this case, e6#(e7, f3) since
e6#e7 and consequently also e6#f4, and so on.

We want to allow a designer to add further constraints on the expected com-
position by for example specifying behaviour that should never occur (forbidden
events) or sequences of events that must occur in a given order, and so on.
This can be seen as a way to give priority to certain specified interactions, and
eliminates some of the possible traces in the composed model.

In the following, let M1 = (E1, μ1) and M2 = (E2, μ2) be composable models
over Δ for sequence diagrams SD1 and SD2 with Δ a matching over labels and
instances. Let MΔ = (E,μ) be the matched composed model obtained, and Γ
be the set of maximal configurations (traces) in MΔ.

Definition 5. A behavioural glue for MΔ = (E,μ) is given by G = (Evg,→∗
g,

#g, Fvg) where Evg, Fvg ⊆ Ev are subsets of events that occur in E, and →∗
g,

#g ⊆ Evg × Evg are binary relations (causality and conflict) defined over the
events in Evg. Events in Fv are forbidden events.

A behavioural glue G as defined above may contain relations over events
which disagree with the relations in MΔ. However, we can always obtain an

A Logical Approach for Behavioural Composition of Scenario-Based Models 265

(m3,r)

#

#f6 h5 h6

f4 h4

f5
(m4,s) (m5,s) (m4,r) (m5,r)

e1

e2

e4

e5

e6

e81 e82

e91 e92

(i,s)

(m3,s)

(j,s)

(e0,f0)

g1

g4

g5

g6 (g7,h3)

g81 g82

g91 g92

(i,r)

(j,r)

(g0,h0)

(e3,f1)
(m1,s) g2 (g3,h1)

h2

(m1,r)

f2
(new,r) (new,s)

(m2,s)
(e7,f3)

(m2,r)

(m3,s) (m3,r)

#

Fig. 4. Matched composition model.

equivalent glue G′ that preserves the relations in MΔ = (E,μ) by considering
all the events that violate the original relations as forbidden events. We omit a
formal proof here, but illustrate the idea with an example.

Definition 6. A composed model SD1 ‖G SD2 for relation preserving glue G is
given by MG = (EG, μG) such that it corresponds to MΔ by removing all traces
t ∈ Γ such that Fv ∩ t �= ∅.

neg

a:A b:B
sd G1

j

G2 a:A b:B

m3

m2

sd

Fig. 5. Examples of behavioural glue.

Consider the two cases of
behavioural glue as shown in
Fig. 5. The behavioural glue G1
imposes that the occurrence of
message j is forbidden in the com-
posed model. Glue G2 imposes
that for m3 to occur, m2 must have
happened before.

For G1 we have G1 = (∅, ∅, ∅, {e6, g6}) where the events associated to message
j are forbidden. This means that the composed model for sd1 and sd2 wrt G1
removes all traces which contain events e6 and g6 from the matched composition
model shown in Fig. 4. Since the events in ↓ e5 (and similarly ↓ g5) belong to
another valid trace they are not removed. We obtain a composed model which is
identical to the matched composition model but where the highlighted relations
and events have been removed (i.e., events e6, e81, e91, g6, g81, g91 and relations).

For G2 we consider an equivalent glue which preserves the relations,
namely G2 = (Evg2,→∗

g2, ∅, Fvg2) where Evg2 = {(e7, f3), (g7, h3), e92, g92},
Fvg2 = {e91, g91} and the causality relation is such that →∗

g2=
{((e7, f3), e92), ((g7, h3), g92)}. In this case we need to remove all traces which
contain e91 and g91 from the matched composition model shown in Fig. 4. The
composed model for sd1 and sd2 wrt G2 coincides with the composed model wrt
G1 described earlier. This follows because the traces affected by the forbidden

266 J.K.F. Bowles et al.

events are the same. We show how the model is generated automatically with
Alloy in the next section.

6 Composition with Alloy

We describe how the formal composition semantics from the previous section
is integrated in our SD2Alloy approach. We capture the syntactic matching of
labels and instances (given by Δ in Sect. 5) by additional axioms (facts). The
following describes the syntactic matching of labels and instances (lifelines) for
our example.
fact LifelineMatching{
// matching lifelines from sd1 and sd2
all l1:sd1_L1 , l2:sd2_L2 |
(l1.name=l2.name && l1.class=l2.class) => #l2=0
}
fact MessageMatching{
// matching message sd1_m1 and sd2_m1
all m:sd1_m1 , n: sd2_m1 |
(m.name=n.name) => #n=0 and #sd2_e3=0 and #sd2_g3=0

// matching message sd1_m2 and sd2_m2
all m:sd1_m2 , n:sd2_m2 |
(m.name =n.name) => #n= 0 and #sd2_e7=0 and #sd2_g7=0
}

The fact LifelineMatching matches the shared lifelines in both diagrams,
and the fact MessageMatching matches the messages with the same name. The
idea in Alloy is that the messages and events from one of the models are kept
(here sd1) and the others are hidden by limiting its occurrence to zero (i.e., its
cardinality is zero).

The examples of behavioural glue introduced in Fig. 5 can be captured as
facts in Alloy. G1 and G2 are given in the following facts.

fact Glue1{#sd1_j=0
all sd1_j_send:sd1_e6 , sd1_j_receive:sd1_g6 |
#sd1_j_send =0 and #sd1_j_receive =0}

fact Glue2{
#sd1_m3=# sd1_m2
all sd1_m2_send:sd1_e7 , sd1_m3_send:sd1_e9 |
sd1_m3_send in sd1_m2_send .^ next

all sd1_m2_receive:sd1_g7 , sd1_m3_receive:sd1_g9 |
sd1_m3_receive in sd1_m2_receive .^ next
}

Glue1 states that j does not occur and in addition the associated events also
do not occur. Glue2 states that every time m3 occurs it must occur with m2. In
other words, m2 must have happened before. Again, we control occurrence with
the cardinality operator #. In addition, the behavioural glue for G2 also defines
the order between m3 and m2 and underlying send and receive events.

As we have seen in the previous section, the effect of each behavioural glue in
the composed model is identical. This has been checked with Alloy, and message
j does not occur in any solution obtained. Traces obtained with our tool have a
direct correspondence with the traces of our semantic model.

A Logical Approach for Behavioural Composition of Scenario-Based Models 267

7 Related Work

Zhang et al. [23] and Rubin et al. [19] use Alloy for the composition of class
diagrams. They transform UML class diagrams into Alloy and compose them
automatically. They focus on composing static models and the composition code
is produced manually. Widl et al. [21] deal with composing concurrently evolved
sequence diagrams in accordance to the overall behaviour given in state machine
models. They make direct use of SAT-solvers for the composition. Liang et al. [15]
present a method of integrating sequence diagrams based on the formalisation
of sequence diagrams as typed graphs. Both these papers focus on less complex
structures. For example, they do not deal with combined fragments which can
potentially cause substantial complexity.

Composition is also important in other domains such as aspect-oriented mod-
elling. Whittle and Jayaraman [3] introduce a tool called MATA for weaving
based on sequence diagrams. They put less emphasis on the semantics of the
composition. Grønmo et al. [10] propose a semantics-based technique for weav-
ing behavioural aspects into sequence diagrams. The example we use in this
paper is an adaptation of the example introduced there. However, we have a
true-concurrent semantics and consider and treat parallelism in interactions. In
subsequent work, Grønmo et al. [9] propose the conformance issue for aspects
in ensuring that the woven always leads to the same result regardless of the
order in which aspects are applied. When looking at the integration of several
model views or diagrams, Bowles and Bordbar [6] present a method of mapping
a design consisting of class diagrams, OCL constraints and sequence diagrams
into a mathematical model for detecting and analysing inconsistencies.

Checkik et al. [7] identify model integration operators, such as merge, weave,
and composition, and describe each operator along with its applicability. In
addition, they provide a set of desirable criteria (completeness, non-redundancy,
minimality, totality, soundness) to evaluate the merge operator. This is a direc-
tion orthogonal to our research and remains an area for future investigation.

8 Conclusion

This paper presents an automated method for sequence diagram composition.
The outline of the method involves the creation of logical constraints that
uniquely identify each component sequence diagram as an instance of the meta-
model. To combine the models, logical constraints that synchronise the two mod-
els are produced. Some of these logical constraints declare matching elements and
some are to enforce behaviour involved in the composition, such as specifying
behaviour that should never occur or sequences of events that must occur in a
given order. This makes it possible for a designer to give priority to certain spec-
ified interactions, which is considered in the solution by eliminating unwanted
traces from an initial matched model obtained.

To ensure correctness of the composition process, we have formalised the
semantics of the composition with the help of labelled event structures. The

268 J.K.F. Bowles et al.

result obtained automatically with Alloy preserves our formal interpretation
of parallel composition with synchronisation glue. Our Alloy-based automated
method of composition has been implemented as an Eclipse plugin for the com-
position of sequence diagrams. Throughout the paper a small example of com-
posing sequence diagrams inspired by an example from [10] related to weaving
aspects is used.

References

1. Allen, R., Garlan, D.: Formalizing architectural connection. In: ICSE 1994, pp.
71–80. IEEE Computer Society Press (1994)

2. Alwanain, M., Bordbar, B., Bowles, J.: Automated composition of sequence dia-
grams via alloy. In: Pires, L., Hammoudi, S., Filipe, J., das Neves, R. (eds.) MOD-
ELSWARD 2014, pp. 384–391. SciTePress (2014)

3. Araújo, J., Whittle, J.: Aspect-oriented compositions for dynamic behavior mod-
els. In: Moreira, A., Chitchyan, R., Araújo, J., Rashid, A. (eds.) Aspect-Oriented
Requirements Engineering, pp. 45–60. Springer, Heidelberg (2013)

4. Araújo, J., Whittle, J., Kim, D.: Modeling and composing scenario-based require-
ments with aspects. In: RE 2004, pp. 58–67. IEEE Computer Society Press (2004)

5. Berre, D.L., Parrain, A.: The SAT4j library, release 2.2 - system description. J.
Satisfiability, Boolean Model. Comput. 7, 59–64 (2010)

6. Bowles, J., Bordbar, B.: A formal model for integrating multiple views. In: ACSD
2007, pp. 71–79. IEEE Computer Society Press (2007)

7. Chechik, M., Nejati, S., Sabetzadeh, M.: A relationship-based approach to model
integration. Innovations Syst. Softw. Eng. 8(1), 3–18 (2012)

8. Fiadeiro, J.L., Lopes, A., Wermelinger, M.: Chapter 5. A mathematical seman-
tics for architectural connectors. In: Backhouse, R., Gibbons, J. (eds.) Generic
Programming. LNCS, vol. 2793, pp. 178–221. Springer, Heidelberg (2003)

9. Grønmo, R., Runde, R., Møller-Pedersen, B.: Confluence of aspects for sequence
diagrams. Softw. Syst. Model. 12(4), 789–824 (2013)

10. Grønmo, R., Sørensen, F., Møller-Pedersen, B., Krogdahl, S.: Semantics-based
weaving of UML sequence diagrams. In: Vallecillo, A., Gray, J., Pierantonio, A.
(eds.) ICMT 2008. LNCS, vol. 5063, pp. 122–136. Springer, Heidelberg (2008)

11. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

12. Jackson, D.: Software Abstractions: Logic. Language and Analysis. MIT Press,
Cambridge (2006)

13. Klein, J., Hélouët, L., Jézéquel, J.: Semantic-based weaving of scenarios. In: AOSD
2006, pp. 27–38. ACM (2006)

14. Küster-Filipe, J.: Modelling concurrent interactions. Theoret. Comput. Sci. 351,
203–220 (2006)

15. Liang, H., Diskin, Z., Dingel, J., Posse, E.: A general approach for scenario integra-
tion. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 204–218. Springer, Heidelberg (2008)

16. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a
survey. Softw. Syst. Model. 10, 489–514 (2011)

17. OMG: UML: Superstructure. Version 2.4.1. OMG, document id: formal/2011-08-06
(2011). http://www.omg.org. Accessed 6 January 2012

http://www.omg.org

A Logical Approach for Behavioural Composition of Scenario-Based Models 269

18. Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing sequence models using
tags. In: Proceedings of MoDELS Workshop on Aspect Oriented Modeling (2006)

19. Rubin, J., Chechik, M., Easterbrook, S.: Declarative approach for model composi-
tion. In: MiSE 2008, pp. 7–14. ACM (2008)

20. Whittle, J., Araújo, J., Moreira, A.: Composing aspect models with graph trans-
formations. In: Proceedings of the 2006 International Workshop on Early Aspects
at ICSE, pp. 59–65. ACM (2006)

21. Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits,
H.: Guided merging of sequence diagrams. In: Czarnecki, K., Hedin, G. (eds.) SLE
2012. LNCS, vol. 7745, pp. 164–183. Springer, Heidelberg (2013)

22. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science, Semantic Modelling,
vol. 4, pp. 1–148. Oxford Science Publications, Oxford (1995)

23. Zhang, D., Li, S., Liu, X.: An approach for model composition and verification. In:
NCM 2009, pp. 1102–1107. IEEE Computer Society Press (2009)

	A Logical Approach for Behavioural Composition of Scenario-Based Models
	1 Introduction
	2 Interactions in UML
	3 Semantics of Interactions
	4 Exact Metamodel Restriction
	5 Semantics of Composition
	6 Composition with Alloy
	7 Related Work
	8 Conclusion
	References

