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Abstract. The ABS modelling language targets concurrent and dis-
tributed object-oriented systems. The language has been designed to
enable scalable formal verification of detailed executable models. This
paper provides evidence for that claim: it gives formal specifications of
safety properties in terms of histories of observable communication for
ABS models as well as formal proofs of those properties. We illustrate
our approach with a case study of a Network-on-Chip packet switching
platform. We provide an executable formal model in ABS of a generic
m X n mesh chip with an unbounded number of packets and verify sev-
eral crucial properties. Our concern is formal verification of unbounded
concurrent systems. In this paper we show how scalable verification can
be achieved by compositional and local reasoning about history-based
specifications of observable behavior.

1 Introduction

In this paper we address the formal verification of unbounded concurrent sys-
tems and show how scalable verification of functional behavior can be achieved
by means of compositional and local reasoning about history-based specifica-
tions of observable behavior. To focus on high-level design, we consider models
of the targeted systems. These models should be sufficiently abstract to facili-
tate reasoning, yet sufficiently concrete to faithfully reflect the data and control
flow of the targeted system. ABS is a formal, executable modeling language
for concurrent and distributed systems [26], specifically targeting this level of
abstraction: (i) it combines functional, imperative, and object-oriented program-
ming styles, allowing intuitive, modular, high-level modeling of concepts, domain
and data; (ii) ABS models are fully executable and model system behavior
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precisely [3]; (iii) ABS can model synchronous as well as asynchronous commu-
nication; (iv) ABS has been developed to provide the foundations for scalable
formal verification: there is a program logic as well as a compositional proof
system [17] that makes possible to prove global system properties by reasoning
about object-local invariants; (v) ABS comes with an IDE and a range of analy-
sis as well as productivity tools [41], specifically, there is a formal verification
tool called KeY-ABS [18].

For scalable verification, we focus on behavioral properties specified in terms
of communication histories. Communication histories have been used to give fully
abstract semantics to concurrent object-oriented systems (e.g., [25]), describ-
ing observable behavior while abstracting from implementation detail. A fully
abstract semantics captures the minimal information needed to characterize
equivalence in all program contexts [32]. Hence, communication histories are
the natural choice of specification formalism for compositional verification. We
specify monitor-like invariants relating local states to local observable behavior,
and compose specifications purely in terms of communication histories.

We provide empirical evidence of our scalability claim by way of a case
study on a Network-on-Chip (NoC) [30] packet switching platform called ASPIN
(Asynchronous Scalable Packet Switching Integrated Network) [37]. Our goal
is to prove the correctness of an ABS model of an ASPIN NoC of arbitrary,
unbounded size with respect to safety properties expressed in terms of commu-
nication histories. Concretely, we prove that “no packets are lost” and that “a
packet is never sent in a circle”. The main contributions of this paper are (i) a
formal model of a generic m x n mesh ASPIN chip in ABS with unbounded
number of packets, as well as a packet routing algorithm; (ii) the formal specifi-
cation using communication histories of safety properties which together ensure
that no packets are lost; and (iii) compositional and highly automated formal
proofs, done with KeY-ABS, that the ABS model of ASPIN fulfills these safety
properties.!

ABS was developed with the explicit aim to enable scalable verification of
detailed, precisely modeled, executable, concurrent systems. Our paper shows
that this claim is justified. Our work is the first compositional verification (in the
sense made precise in Sect. 6) of a generic NoC model unbounded in the number
of nodes and packets. It has been achieved with manageable effort and thus
shows that our approach based on deductive verification is a viable alternative
for the verification of concurrent systems.

Paper overview: Sect.2 briefly introduces the modeling language ABS and
Sect. 3 details formal specification based on communication histories, Sect. 4 pro-
vides background on deductive verification with expressive program logics, and
Sect. 5 presents the ASPIN NoC case study. Section 6 explains how we achieved
the formal specification and verification of the case study and gives details about
the exact properties proved as well as the necessary effort. Section 7 sketches some
directions for future work, Sect. 8 discusses related work and Sect. 9 concludes.

! The complete model with all formal specifications and proofs is available at https: //
www.se.tu-darmstadt.de/se/group-members/crystal-chang-din/noc.
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2 The ABS Modeling Language

ABS [26] is a behavioral specification language for developing abstract executable
models of concurrent, distributed, and object-oriented systems. ABS offers a
clean integration of concurrency and object orientation based on concurrent
object groups (COGs). ABS permits synchronous as well as asynchronous com-
munication [27], akin to Actors [1] and Erlang processes [7]. ABS offers a range
of complementary modeling alternatives in a concurrent and object-oriented
framework that integrates algebraic datatypes and functional and imperative
programming styles with a Java-like syntax and a formal semantics [26]. Com-
pared to object-oriented programming languages, ABS abstracts from low-level
implementation choices such as imperative data structures. Compared to design-
oriented languages like UML diagrams, it models data-sensitive control flow and
it is executable. We now briefly introduce the functional and imperative layers
of ABS.

The functional layer of ABS is used to model computations on the internal
data of concurrent objects. It allows modelers to abstract from implementation
details of imperative data structures at an early stage in the software design
and thus allows data manipulation without committing to a particular low-level
implementation choice. This layer combines a simple language for parametric
algebraic data types (ADTs) and a pure first-order functional language which
includes expressions such as variables, values, constructors, functions, and case
expressions. ABS has a library with four predefined basic types (Bool, Int, String
and Unit), and parametric datatypes (e.g., lists, sets, and maps). The predefined
datatypes come with arithmetic and comparison operators, and the parametric
datatypes have built-in standard functions. The type Unit is used as a return
type for methods without explicit return value. All other types and functions
are user-defined.

The imperative layer of ABS addresses concurrency, communication, and
synchronization in the system design, and defines interfaces, classes, and meth-
ods in an object-oriented style. In ABS, each concurrent object group (COG)
has its own thread of execution where one process is active and the others are
suspended on a process queue. Classes can be active in the sense that their run
method, if defined, automatically triggers a process upon creation. Statements
are standard for sequential composition si; s2, and for skip, if, while, and return
constructs. In addition, ABS includes statements await and suspend for the
explicit suspension of active processes, so scheduling in ABS is cooperative. The
statement suspend unconditionally suspends the execution of the active process
and moves this process to the queue. The statement await g conditionally sus-
pends execution: the guard g controls thread release and consists of Boolean
conditions and return tests (explained in the next paragraph). Just like expres-
sions, the evaluation of guards is side-effect free. However, if g evaluates to false,
the process is suspended and the execution thread becomes idle. When the exe-
cution thread is idle, an enabled task may be selected from the process queue by
means of a default scheduling policy. The language also includes COG creation
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new C(€), method calls olm(€), and future dereferencing fr.get (here € denotes
a lists of expressions).

Communication and synchronization are decoupled in ABS. Communica-
tion is based on asynchronous method calls, denoted by assignments of the
form fr=o!m(€) to future variables fr. Here, o is an object expression, m a
method name, and € are expressions providing actual parameter values for the
method invocation. (Local calls are written this!m(e).) A future denotes a “mail-
box” where the return value to the method call can be retrieved. After calling
fr=o0lm(e), the variable fr refers to the corresponding future and the caller may
proceed without blocking. Two operations on future variables control synchro-
nization in ABS [13]. First, the guard await fr? suspends the active process unless
a return to the call associated with fr has arrived, allowing other processes in
the COG to execute. Second, the return value is retrieved by the expression
fr.get, which blocks all execution in the COG until the return value is available.
For example, the statement sequence fr=olm(€);z=fr.get contains no suspen-
sion statement and, therefore, encodes commonly used blocking calls, abbrevi-
ated x=o0.m(e) (often referred to as synchronous calls). Futures are first-class
citizens of ABS and can be passed around as method parameters. If the return
value of a call is of no interest, the call may occur directly as a statement olm(e)
with no associated future variable. This corresponds to asynchronous message
passing. The details of the sequential execution of several threads inside a COG
are not used in the verification techniques showcased in this paper and therefore
we focus on single-object COGs (i.e., concurrent objects) in the sequel.

3 Observable Behavior

A distributed system can be specified by the externally observable behavior of
its constituents. The behavior of each component is reflected in the possible
communication histories over observable events [22]. Theoretically this is justi-
fied, because communication histories can be used for fully abstract semantics of
object-oriented languages [25]. Here, we strive for compositional communication
histories of asynchronously communicating systems. Therefore, it is appropriate
to record separate events for object creation, method invocation, reaction upon
a method call, resolving a future, and for fetching the value of a future. Each of
these events is witnessed by merely one object, namely the generating object.
Figure 1 illustrates the relation among the observable events associated with
an asynchronous method call. Assume that an object o calls a method m on
an object o/ with parameter values €, and assume that u denotes the identity
of the associated future. An invocation message is sent from o to o’ when the
method is invoked. This is reflected by the invocation event invEv(o,0’,u,m,€),
generated by o. An invocation reaction event invREv(o,0’,u, m,€) is generated
by o' once m starts to execute. When m has terminated, object o’ generates the
future event futEv(o’,u,m,e), reflecting that u receives the return value e. The
fetching event fetREv(o,u,e) is generated by o once the value of the resolved
future is accessed. References u to futures bind all four event types together
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and allow to filter out those events from an event history that relate to the
same method invocation. Since future identities may be passed to other objects
0", these objects may also fetch the future value; this is reflected by the event
fetREv(0" u,e), generated by o” in Fig. 1. Based on these events, we formalize
the notion of a communication history.

invREv(o,0,u, m,e)

| futEv(o’, u,m,e) o

fetREv(o" ,u,€)

invEv(o, 0’ u, m, ) 0\

fetREv(o,u,e€)

Fig. 1. Communication events and when they occur in the history

Definition 1 (Communication History). The communication history H of
a system of objects O is a sequence of events, as defined above, such that each
event in H is generated by an object in O.

For a history H, we let H/o abbreviate the projection of H to the events
generated by o. Since each event is generated by a single object, it follows that
the projections of a history to two different objects are disjoint.

Definition 2 (Local History). For a (global) history H and an object o, the
projection H /o is the local history of o.

For a method call with future u, the possible ordering of the associated events
is described by the regular expression

invEv(o,0',u,m,€) - invREv(0,0’,u, m,€) - futEv(o’,u, m, e)[-fetREv(, u, €)]*
for some fixed o, o', m, €, e, and where “-” denotes concatenation of events, “_”
denotes arbitrary values. Thus, the return value from a method call may be read
several times (or not at all), each time with the same value, namely the value
given in the preceding future event.
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A communication history H is wellformed if the order of communication
events follows the pattern defined above, the identities of generated futures are
fresh, and the communicating objects are non-null.

Lemma 1. The global history H of a system modeled with ABS and derived
from its operational semantics, is wellformed.

The formal definition of wellformedness and a proof of Lemmal are given in
[16].

Invariants. Safety properties [4] take the form of history invariants, which are
predicates over all finite sequences in the (prefix-closed) set of possible histories.

The class invariant serves as a contract for a class in ABS: Class invariants
express a relation between the internal state of class instances and their observ-
able communication. Class invariants are specified by a predicate over the class
attributes and the local history. A class invariant must hold after the initializa-
tion of an object, it must be maintained by all methods, and it must hold at all
processor release points (i.e., await, suspend) [15].

A global history invariant can be obtained from the class invariants associated
with all objects in the system, adding wellformedness of the global history. This
is made more precise in Sect. 6.2.

4 Deductive Verification

KeY-ABS [18] is a deductive verification system for constructing formal proofs
about ABS programs, based on the KeY theorem prover [8]. A formal proof is
a sequence of reasoning steps to show the truth of a formula (a theorem). The
formal proof must lead without gaps from axioms to the theorem by applying
proof rules.

The program logic of KeY-ABS is first-order dynamic logic for ABS (ABSDL)
[17,18]. For a sequence of executable ABS statements S and ABSDL formulae
P and @Q, the formula P — [S]Q expresses: If the execution of S starts in a
state where the assertion P holds and the program terminates normally, then
the assertion @ holds in the final state. Thus, given an ABS method m with body
mb and a class invariant I, the ABSDL formula I — [mb]I expresses that the
method m preserves the class invariant. KeY-ABS uses a Gentzen-style sequent
calculus to prove ABSDL formulae. In sequent notation P — [S]Q is written

I''P+[5Q,A

where I' and A stand for (possibly empty) sets of side formulae. A sequent
calculus as realized in ABSDL essentially constitutes a symbolic interpreter for
ABS. For example, the assignment rule for local program variables is

I'+ {v := e}[rest]p, A
I't [v=ejrest]o, A
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where v is a local program variable and e is a pure (side effect-free) expression.
This rule rewrites the formula by moving the assignment from the program into
a so-called update [8], as {v := e} shown above, which captures state changes.
The symbolic execution continues with the remaining program rest. Updates
can be viewed as explicit substitutions that accumulate in front of the modality
during symbolic program execution. Updates can only be applied to formulae or
terms. Once the program to be verified has been completely executed and the
modality is empty, the accumulated updates are applied to the formula after the
modality, resulting in a pure first-order formula. Below we show a more complex
proof rule, which captures asynchronous method invocation:

I't (0 #null Awt(h)), A
I' - (futureIsFresh(u, h) —
{fr := u|| h:= h- invEv(this, 0, u, m,€)}[rest]p), A
I't [fr = o'm(e); rest]¢p, A

asyncCall

The rule has two premisses and splits the proof in two cases. The first premiss (on
top) ensures that the callee is non-null and the current history h is wellformed.
The second case introduces a constant u which represents the future generated
for the result of this method invocation. The left side of the implication ensures
that u is fresh in h and the right side updates the history by appending the
invocation event generated by this call. We refer to [17] for the other ABSDL
rules as well as soundness and completeness proofs of the ABSDL calculus.

type Pos = Pair<Int, Int>; // (x,y) coordinates
type Packet = Pair<Int, Pos>; // (id, destination)
type Buffer = Int;
data Direction = N | W | S | E | NONE;
'/ north, west, south, east, the direction for not moving

data Port = P(Bool inState , Bool outState, Router rld, Buffer buff);

// (input port state, output port state, neighbor router id, buffer size)
type Ports = Map<Direction, Port>;

Fig. 2. ADTs for the ASPIN model in ABS

5 The Network-on-Chip Case Study

Network-on-Chip (NoC) [30] is a packet switching platform for single chip sys-
tems which scales well to an arbitrary number of resources (e.g., CPU, memory).
The NoC architecture is an m x n mesh of switches and resources which are
placed on the slots formed by the switches. The NoC architecture is essentially
the on-chip communication infrastructure.

Asynchronous Scalable Packet Switching Integrated Network (ASPIN) [37] is
an example of a NoC with routers and processors. ASPIN has physically distrib-
uted routers in each core. Each router is connected to four neighboring routers
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interface Router{
Unit setPorts(Router e, Router w, Router n, Router s);
Unit getPk(Packet pk, Direction srcPort);}

class Routerlmp(Pos address, Int buffSize) implements Router {
Ports ports = EmptyMap;
Set<Packet> receivedPks = EmptySet; // received packages

Unit setPorts(Router e, Router w, Router n, Router s){
ports = map[Pair(N, P(True, True, n, 0)), Pair(S, P(True, True, s, 0)),
Pair(E, P(True, True, e, 0)), Pair(W, P(True, True, w, 0))];}

Unit getPk(Packet pk, Direction srcPort){
if (addressPk(pk) != address) {
await buff(lookup(ports,srcPort)) < buffSize;
ports = put(ports,srcPort,increaseBuff(lookup(ports,srcPort)));
this!redirectPk(pk,srcPort); }
else { // record that packet was successfully received
receivedPks = insertElement(receivedPks, pk); } }

Unit redirectPk(Packet pk, Direction srcPort){

Direction direc = xFirstRouting(addressPk(pk), address);
await (inState(lookup(ports,srcPort)) == True)

& & (outState(lookup(ports,direc)) == True);
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), False));
ports = put(ports, direc, outSet(lookup(ports, direc), False));
Router r = rld(lookup(ports, direc));
Fut<Unit> f = rlgetPk(pk, opposite(direc)); await f?;
ports = put(ports, srcPort, decreaseBuff(lookup(ports, srcPort)));
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), True));
ports = put(ports, direc, outSet(lookup(ports, direc), True)); } }

Fig. 3. A model of an ASPIN router using ABS

and each core is locally connected to one router. ASPIN routers are split into
five separate modules (north, south, east, west, and local) with ports that have
input and output channels and buffers. ASPIN uses input buffering for storage:
each input channel has an independent FIFO buffer. Packets arriving from dif-
ferent neighboring routers (and from the local core) are stored in the respective
FIFO buffer. Communication between routers uses a four-phase handshake pro-
tocol with request and acknowledgment messages between neighboring routers
to transfer a packet. In ASPIN, the distributed X-first algorithm routes packets
from input channels to output channels: packets first move along the X (hori-
zontal) axis of the grid, and afterwards along the Y (vertical) axis to reach their
destination. We model the functionality and routing algorithm of ASPIN in ABS
starting from a model by Sharifi et al. [35,36], written in Rebeca [38]. In Sect. 6
we will formally verify our model using ABSDL.

We model each router as a concurrent object that communicates with other
routers through asynchronous method calls. The algebraic data types used in our
model are given in Fig. 2. We abstract from the local communication to cores, so
each router has four ports and each port has an input and output channel, the
identifier rld of the neighbor router, and a buffer. Packets are modeled as pairs
that contain the packet identifier and the final destination coordinate.
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def Direction xFirstRouting(Pos destination, Pos current) =
case x(current) < x(destination) {

True => E
False => case x(current) > x(destination) {
True => W;
False => case y(current) < y(destination) {
True => S;
False => case y(current) > y(destination) {
True => N;

False => N’ONE; T

Fig. 4. X-first routing algorithm in ABS

The ABS model of a router is shown in Fig. 3. Method setPorts initializes the
ports in a router and connects it to the neighbor routers. Packets are transferred
using a protocol expressed by two methods redirectPk and getPk. The internal
method redirectPk is called by the router to redirect a packet to a neighbor router.
The X-first routing algorithm in Fig. 4 selects the port direc (and consequently
the neighbor router). The parameter srcPort determines the local input buffer in
which the packet is temporarily stored. As part of the communication protocol,
the input channel of srcPort and the output channel of direc are blocked until the
neighbor router confirms receipt of the packet, using f = rlgetPk(...); await f?
statements to simulate request and acknowledgment messages (here r is the Id
of the neighbor router). The method getPk checks if the final destination of the
packet is the current router, if so, it stores the packet, otherwise it temporarily
stores the packet in the srcPort buffer and redirects it. The model uses standard
library functions for maps and sets (e.g., put and lookup) and observers as well
as other functions over the ADTs (e.g., addressPk, inState, decreaseBufT).

6 Formal Specification and Verification of the Case Study

We now formalize and verify safety properties for the ABS NoC model in ABSDL
using the KeY-ABS verification tool. The application is based on the theory
presented in Sects. 3 and 4, ensuring the correctness of the results. Our approach
uses local reasoning about RouterImp objects and establishes a system invariant
over the global history from invariants over the local histories of each object.

6.1 Local Reasoning

Observe that the four-event semantics for asynchronous communication outlined
in Sect. 3 keeps the local histories of different objects disjoint. This makes it pos-
sible to reason locally about each object in terms of the local histories. Lemmas 2
and 3 present the history-based class invariants for Routerlmp. We then discuss
the proof obligations verified by KeY-ABS that stem from reasoning about our
model in terms of these class invariants. Figure 5 illustrates the explanations.
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this next

invEwv (this,this,uq ,redirect Pk, (pk,s)) thislredirectPk(pk,s)
invR Ev (this,this,uq ,redirectPk, (pk,s))

invEv(this,next,us,getPk,(pk,d))

next!getPk(pk,d)

A 4

invR Ev (this,next,us,getPk,(pk,d))

await f? == True SfutEv(next,us,getPk,.)

futBEv(this,uq,redirectPk,_) H---

Fig. 5. Communication history between a router and its neighboring router next, to
which the package is sent

Lemma 2. Every time a router R terminates an execution of the getPk method,
R must either have sent an internal invocation to redirect the packet or have
stored the packet in its receivedPks set.

We formalize this lemma as an ABSDL formula (slightly beautified):

Vip,u.0 < iy <len(h) A futEu(this, u, getPk, ) = at(h,i1)
=
Fig, pk . 0 < iy < i1 A invREv(_, this, u, getPk, (pk, _)) = at(h,iz) A
((dest(pk) # address(this) =
Jig . ia < i3 < i1 A invEv(this, this, _, redirectPk, (pk, _)) = at(h,is)) V
(dest(pk) = address(this) = pk € receivedPks))

Here, “” denotes a value without interest. The function len(s) returns the length
of sequence s, at(s,i) the element located at index i of sequence s, dest(pk) the
destination address of packet pk, and address(r) the address of router 7.

This formula expresses that for every future event ev; of getPk with future
identifier w in history h (capturing a termination of getPk), there is a corre-
sponding invocation reaction event ev, that contains the sent packet pk. This is
achieved by pattern matching with u in the preceding history. If this router is the
destination of pk, then pk must be in its receivedPks set, otherwise an invocation
event of redirectPk containing pk must occur in the history between ev; and evs.
This invariant captures the properties of the state and is prefix-closed.?

2 In the heap model of KeY-ABS, a heap value can potentially be modified when a
process is released. Therefore, to prove the above property we need a slightly stronger
invariant expressing that the address of a router in the heap is rigid (cannot be
modified by any other process). Due to a current technical limitation of the tool,
we proved the invariant for a slightly simplified model where the router address is
a parameter of getPk. This modification does not affect the overall behavior of the
model and will be lifted in future work.
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Lemma 3. Fvery time a router R terminates an execution of the redirectPk
method, the input and output channels used to redirect the fetched packet are
released, and the packet has been redirected to a neighbor router through an invo-
cation of the getPk method.

Again, we formalize this lemma as an ABSDL formula:

Vu . futEu(this, u, redirectPk, ) = at(h,len(h) — 1)
=
iy, i, pk,srcP,dirP .0 < i1 <9 <len(h) —1 A
(invREv(this, this, u, redirectPk, (pk,srcP)) = at(h,i1) A
invEv(this, _, _, getPk, (pk, opposite(dirP))) = at(h,iz)) A
(inState(lookup(ports, srcP)) A outState(lookup(ports, dirP)))

This formula expresses that whenever the last event in the history h is a future
event of redirectPk method (capturing termination of redirectPk), there are cor-
responding invocation reaction and invocation events which we find by pattern
matching with the same future and packet in the previous history. The source
port srcP and the direction port dirP used in the latest execution of redirectPk
can be found in these two events. The input channel of srcP and the output
channel of dirP must be released in the current state. This invariant captures
the properties of the current state and is prefix-closed.

All three methods of Routerlmp satisfy both invariants. The statistics for
verifying the lemmas by KeY-ABS is given below (in terms of the proof size):

setPorts getPk redirectPk

nodes | branches | nodes | branches | nodes | branches
Lemma?2 | 1638 |12 11540 | 108 27077 | 200
Lemma3| 214 | 1 1845| 11 4634 | 34

KeY-ABS provides heuristics and proof strategies that automate large parts of
the proof construction. The remaining user input typically consists of universal
and existential quantifier instantiations.

6.2 System Specification

A system property of an ABS program can be formulated as a global history
invariant, which holds for all finite sequences in the prefix-closed set of possible
global histories. The global history of an ABS program consists of the local
histories of each object in the system, and is wellformed according to Lemma 1.
We now want to derive a global system specification from the history-based class
invariants of the system’s objects.

The basis for local reasoning in the proof system for ABS is that class invari-
ants must be satisfied at process release points and after method termination
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(see Sect. 3), but class invariants need not be prefix-closed. Consequently, a local
history invariant is in general weaker than the class invariant. For compositional
reasoning, we may therefore need to weaken the class invariants in order to trans-
form class invariants into prefix-closed history invariants. The system invariant
can then be obtained directly from the history invariants of the composed objects
since the local histories are disjoint. The proof rule for compositional reasoning
about ABS programs is given and proved sound in [17], by which we obtain a
system invariant below for the NoC model.

Let Iinis(h) denote the conjunction of the class invariants Ige:pi(this, h) and
Iredirect P (this, h), defined in Lemmas2 and 3, where h is the local history of
this object. The class invariants are already prefix-closed and need not be weak-
ened. Define a system invariant I(H) as the conjunction of the instantiated class
invariants of all Routerlmp objects r in the system:

I(H) & wf(H) A A I.(H/r)

(r:Routerlmp) Enewop, (H)

Here, H denotes the global history of the system and I,.(H/r) denotes the his-
tory invariant of r applied to the local history H/r of a router r as obtained
by projection from H (Definition2). The function newy,(H) returns the set of
Routerlmp objects generated within the system execution, as captured by H.
History wellformedness, denoted wf(H ), ensures a proper ordering of the events
that belong to the same method invocation. Each wellformed interleaving of the
local histories represents a possible global history. As a consequence, we obtain:

Theorem 1. FEvery time a router R terminates an execution of the redirectPk
method, the pair of input and output channels used to redirect the fetched packet
are released, and a neighbor router of R must either have sent an internal invo-
cation to redirect the packet further or have stored the packet in its receivedPks
set. Hence, the network does not drop any packets.

More Properties. Besides Theorem 1 we proved in a similar fashion that a packet
always moves towards its destination. This follows from two lemmas that hold
locally and are proven with KeY-ABS: (i) whenever a router redirects a packet
then it moves one step closer to its destination, and (ii) when a packet arrives at
its destination then its distance to it becomes zero. The proof of (i) for redirectPk
has 5178 nodes and 80 branches, the one of (ii) for getPk has 13401 nodes and
110 branches. As corollary we obtain that a packet is never sent in a circle.

Effort. The modeling of the NoC case study in ABS took ca. two person weeks.
Formal specification and verification was mainly done by the first author of
this paper who at the time was not experienced with the verification tool KeY-
ABS. The effort for formal specification was ca. two person weeks and for formal
verification of Lemmas 2, 3 ca. one person month, but this included training to
use the tool effectively. Subsequent specification and verification of the property
that a packet always moves towards its destination merely took one working day.
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7 Future Work

Deadlock Analysis. In addition to history-based invariants, it is conceivable to
prove other properties, such as deadlock-freedom. Deadlocks may occur in a sys-
tem, for example, when a shared buffer between processes is full and one process
can decrease the buffer size only if the other process increases the buffer size. This
situation is prevented in the ABS model by disallowing self-calls before decreas-
ing the size of the buffer (the method invocation of getPk within redirect Pk
in our model is an external call). It is possible to argue informally that our
ABS model of NoC is indeed deadlock-free, but a formal proof with KeY-ABS is
future work. The main obstacle is that deadlocks are a global property and one
would need to find a way to encode sufficient conditions for deadlock-freedom
into the local histories. There are deadlock analyzers for ABS [20], but these,
like other approaches to deadlock analysis of concurrent systems, work only for
a fixed number of objects.

Extensions of the Model. The ASPIN chip model presented in this paper can be
extended with time (e.g., delays and deadline annotations) and scheduling (e.g.,
FIFO, EDF, user-defined, etc.) using Real-Time ABS [9]. A timed model would
allow to run simulations and obtain results about the performance of the model.
Adding scheduling to the model would make it possible to reason about the
ordering of sent packets (using FIFO scheduling) or to express priority of packets.
It is also possible to change the routing algorithm (Fig.4) without the need to
alter the Routerlmp class (Fig.3). Then one may compare the performance of
different routing algorithms by means of simulations.

8 Related Work

Early work on verifying concurrent systems was non-compositional: interference
freedom tests were used for shared variable concurrency [34] and cooperation
tests for synchronous message passing [6]. Compositional approaches were intro-
duced for shared variables in the form of rely-guarantee [28] and for synchro-
nous message passing in the form of assumption-commitment [33]. Extending
these principles for compositional verification, object invariants can be used to
achieve modularity (e.g., [24]). Communication histories first appeared in the
object-oriented setting [12] and then for CSP [22]. Soundararajan developed an
axiomatic proof system for CSP using histories and projections [39], and Zwiers
developed the first sound and complete proof system using histories [43]. Rea-
soning about asynchronous method calls and cooperative scheduling using his-
tories was first done for Creol [19] and later adapted to Dynamic Logic [2]. Din
introduced a proof system based on four communication events, significantly
simplifying the proof rules [15] and extended the approach to futures [16,17].
This four-event proof system is the basis for KeY-ABS [18].

The pure history-based proof system of ABS requires strong hiding of local
state: the state of other objects can only be accessed through method calls, so
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shared state is internal and controlled by cooperative scheduling. Consequently,
specifications can be purely local. More expressive specifications require signifi-
cantly more complex proof systems; e.g., modifies-clauses in Boogie [24] or frac-
tional permissions [21] in Chalice [31]. To specify fully abstract interface behavior
these systems need to simulate histories in an ad hoc manner (e.g., [24, Fig. 1]).
A combination of permission-based separation logic [5] and histories has recently
been proposed for modular reasoning about multithread concurrency [42].

Formal analysis of NoC systems is usually done in specialized formalisms.
Notably, xMAS is a language with a small set of primitives for specifying abstract
microarchitectural models of communication fabrics [14]. It supports, for exam-
ple, deadlock detection [40], model checking in Verilog by inferring inductive
invariants for xMAS models [11], and compositional model-checking of bounded
latency properties [23]. Among the approaches based on general specification
formalisms, ACL2 has been used for non-compositional analysis of, e.g., mes-
sage loss and deadlock-free routing (e.g., [10]). Event-B has been used to model
and gradually refine 3D NoC systems in [29], and invariants for the models are
verified using the Rodin tool. Similar to our work their modeling approach does
not assume a specific number of routers. In contrast to our work their approach
is based on a global specification of behavior which includes the assumption that
a message can only be transferred a finite number of times before it reaches its
destination (technically, their switch event is “anticipated”).

Sharifi et al. [35,36] used the actor-based language Rebeca to study deadlock-
freedom and successful package sending for the ASPIN chip and the X-first
routing algorithm by means of non-compositional model-checking techniques.
They work with configurations of fixed size, which triggered our interest in the
verification of ASPIN models in a compositional and scalable manner. Compared
to the Rebeca model, the ASPIN model in ABS is decoupled from the routing
algorithm and uses object-oriented modeling concepts and high-level concurrency
control, which makes it more compact and easier to comprehend. In contrast to
most previous work, our approach works for an unbounded number of objects
and it is valid for generic NoC models for any m x n mesh in the ASPIN chip
as well as any number of sent packets.

9 Conclusion

We presented an approach to scalable verification of unbounded concurrent and
distributed systems which allows global safety properties to be established using
local verification rules and symbolic execution. The approach is realized in the
proof system KeY-ABS, developed for the ABS modeling language. We demon-
strated the viability of our verification approach by proving the correctness of
safety properties for an ABS model of an ASPIN NoC of arbitrary, unbounded
size. This is possible in our proof system, because each class invariant is indepen-
dent of its class instances and properties are specified in terms of local commu-
nication histories. The paper develops a formal model of the case study, explains
how local specifications are formalized using communication histories, and uses



History-Based Specification and Verification of Scalable Concurrent 231

KeY-ABS to obtain formal proofs of global properties such as “no packets are
lost” and “a packet is never sent in a circle”. This is, to the best of our knowl-
edge, the first time that scalable, history-based reasoning techniques have been
applied to NoC systems. Our work also shows that a general purpose modeling
language and verification framework for concurrent and distributed systems is
adequate for NoC systems. After an initial modeling and training effort, system
properties can be specified and verified within hours or few days.

Acknowledgements. The authors gratefully acknowledge valuable discussions with
Richard Bubel.
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