
Comparing and Evaluating Organizational
Models: A Multi-agent Programming

Contest Case Study

Mariana Ramos Franco(B) and Jaime Simão Sichman

Laboratório de Técnicas Inteligentes (LTI),
Escola Politécnica (EP), Universidade de São Paulo (USP), São Paulo, Brazil

mafranko@usp.br, jaime.sichman@poli.usp.br

Abstract. An important subset of multi-agent systems (MAS) are
based on organizational models. These models try to define pre-defined
intended agent interaction patterns. Given an application domain, how-
ever, the choice of a particular organizational model that better solves
the problem is still an open problem. In order to guide this choice, a MAS
developer must have the opportunity to test distinct organizational mod-
els easily. In this work, we compare and evaluate different organization
models of a MAS, whose goal is to evolve in the “Agents on Mars” sce-
nario proposed in the Multi-Agent Programming Contest (MAPC).

1 Introduction

Recently, there have been a movement towards the explicit design and use of
organizations in multi-agent systems (MAS). An organization helps to better
model the problem being tackled, and it helps to increase the system’s efficiency,
by defining the MAS structure and the rules which the agents must follow to
achieve individual and system level goals. However, in many cases it is difficult
to define the organizational model that best solves the problem.

Trying to contribute to this issue, we present in this paper an experimental
analysis of the overall result of different organization-oriented MAS, which were
created for the “Multi-Agent Programming Contest” scenario.

2 Background

2.1 Agent Organizational Models

Organization is a complex notion: there are several views, definitions, and
approaches to characterize them, addressing different issues: it is a supra-
individual phenomena [1], it is defined by the designer or by the actors involved
[2], and it is a pattern of predefined [3] or emergent [4] cooperation.

We will adopt here the following definition [5]:

c© Springer International Publishing Switzerland 2015
A. Ghose et al. (Eds.): COIN 2014, LNAI 9372, pp. 182–196, 2015.
DOI: 10.1007/978-3-319-25420-3 12



Comparing and Evaluating Organizational Models 183

“An organization is a supra-agent pattern of emergent cooperation or prede-
fined cooperation of the agents in the system, that could be defined by the designer
or by the agents themselves, in order to achieve a purpose.”

One important issue is the relation between organizational constraints and
agents’ autonomy, as studied by Castelfranchi [6]. When seen as a predefined
cooperation pattern, an organization aims to constrain the agents’ autonomy. In
fact, this limitation aims to guarantee that the global goals are achieved in an
optimized way. If agents strictly follow their organizational constraints, they will
know what to do, when and with whom to interact in crucial problem solving
situations.

Given that an organization constrains the agents’ autonomy, a further step
is to investigate how this limitation can be properly engineered and designed.
Coutinho et al. [7] propose some modeling dimensions for organizational design:
(i) the structural dimension, mainly composed of notions like roles and groups,
as used in the AGR model [8]; (ii) the interactive dimension, characterized by
dialogical interaction structures, as used in the Electronic Institutions model [9];
(iii) the functional dimension, formed by goal/task decomposition structures, as
proposed by the TAEMS model [10]; and (iv) the normative dimension, in which
we find the concepts of norms, rights, rules, like used in the OPERA model [11].

However, the organizational design problem has not been solved so far by
researchers in business and management domains. This problem can be stated
as: how to find an optimal constraint set that could guarantee global efficiency
for a given task scenario? The same problem arises concerning multi-agent orga-
nizations [12].

In this paper, we present a comparison and evaluation of different organiza-
tion models, that were applied to “Agents on Mars” scenario, described next.

2.2 MAPC

The “Multi-Agent Programming Contest”1 (MAPC) is held every year since
2005, and it is an attempt to stimulate research in MAS programming tech-
niques [13]. In the contest, two teams of agents are located in the same envi-
ronment and compete directly in a scenario set by the organizers. By being a
direct competition, it is an interesting testbed to evaluate and compare different
systems, allowing to identify strengths and weaknesses, and thus promoting the
development of all participants.

Since 2011, a scenario called “Agents on Mars” has been used. In this sce-
nario, two teams of 28 agents compete to explore and dominate the best top
wells of the planet. The environment is represented by a weighted graph, where
the vertices denote wells and possible locations for the agents, and the edges
indicate the possibility of crossing from one vertex to another with an energy
cost for the agent. Each vertex has a value corresponding to its water well use-
fulness, and this value is used to calculate the value of the areas occupied by the
agents.
1 http://multiagentcontest.org.

http://multiagentcontest.org


184 M.R. Franco and J.S. Sichman

A zone is a subgraph covered by a team according to a coloring algorithm
based on the notion of domain [14]. Several agents from different teams can
be located in a single vertex, but the team with the highest number of agents
dominates this vertex, which receives the dominant team color. An uncolored
vertex inherits the color from its neighbourhood dominant team. Hence, if the
graph contains a subgraph with a colored border, all the nodes that are within
this boundary receive the same color. This means that an agent team may cover
a subgraph which has more vertices than the number of its members. Figure 1
shows a map with the colored subgraphs.

Fig. 1. “Agents on Mars” scenario.

At the beginning of the simulation, the map is unknown to the agents. Thus,
each team needs to explore the graph before starting to conquer areas, since the
agents have a limited view of the map and only perceive their neighbour vertices.
Additionaly, sometimes a team needs to sabotage the other team to increase its
area, or to defend areas in order not to lose them to the opponent.

Each team consists of 28 players, that can play 5 different roles: explorers
(Exp), sentinels (Sen), saboteurs (Sab), inspectors (Ins) and repairers (Rep).
These roles define the characteristics of each agent, such as life level, maximum
energy, strength, and visibility. The roles also limit the possible actions that
the agent can perform in the environment, as shown in Table 1. For instance,
explorers can find water wells and help to explore the map, while sentinels have
long distance sensors and thus can observe larger areas, saboteurs can attack and
disable enemies, inspectors can spy opponents, and repairers can repair damaged
agents.



Comparing and Evaluating Organizational Models 185

Table 1. “Agents on Mars” roles and actions.

Explorer Repairer Saboteur Sentinel Inspector

Recharge x x x x x

Attack x

Parry x x x

Goto x x x x x

Probea x

Surveyb x x x x x

Inspectc x

Buy x x x x x

Repair x

Skip x x x x x
a A priori, the agents have no knowledge about the value of water
wells. A team only gets the full value of a vertex after one agent
in the team has analyzed the water well.
b Initially, the agents do not know the cost of crossing from one
vertex to another. An agent needs to survey it to find the value
of each edge.
c This action collects information about the opponents present
in neighboring vertices, such as energy and role.

A team receives a cash reward whenever it reaches a major milestone. This
reward can be used to empower the agents, increasing, for instance, their max-
imum energy or strength. Different milestones can be reached during a com-
petition, such as dominating areas with fixed values (e.g., 10 or 20), having
performed a successful number of attacks or successful defenses. If not used, the
reward is added to the team’s total score.

The goal of each team is to maximize its score, defined as the sum of the values
obtained by the occupied zones with the earned (and not yet spent) rewards in
each step of the simulation, as shown in Eq. 1:

score =
steps∑

p=1

(zonesp + rewardsp) (1)

We present next a proposal of an agent team, called LTI-USP, based on
different organizational models, to solve this problem.

3 LTI-USP Agent Team

3.1 Architecture

The architecture of the LTI-USP team is shown in Fig. 2. In this architecture,
we used BDI agents. Each agent is composed of plans, a belief base and its own



186 M.R. Franco and J.S. Sichman

Fig. 2. LTI-USP team architecture.

world model. The agent decides which plan will be executed according to its
beliefs and the local view of the world.

The world model consists of a graph developed in Java, using simple data
structures and classes. It captures every detail received from the MASSim con-
test server, such as explored vertices and edges, opponents’ position, disabled
teammates, etc. At each step, the agent’s world model is updated with the per-
cepts received from the MASSim server, and with the information received from
the other agents.

Some of the percepts received from the MASSim server are also stored in
the agent’s belief base, such as the agent’s role, energy, position and team’s
rewards, thus allowing the agent to have a direct access to these information
without having to access its world model. Percepts about vertices, edges and
other agents were not stored in the belief base so as to not compromise the
agent’s performance, as it could be very expensive to update and to access the
belief base with so much information. Moreover, since we wanted to update a
belief whenever a new instance was inserted (instead of adding a second one),



Comparing and Evaluating Organizational Models 187

we decided to use an indexed belief base in which some beliefs are unique and
indexed for faster access.

Our team was developed using JaCaMo2. JaCaMo [15] is a platform for
multi-agent programming which supports all levels of abstractions – agent,
environment, and organization – that are required for developing sophisticated
MAS, by combining three separate technologies: Jason3 [16], for programming
autonomous agents; CArtAgO4 [17], for programming environment artifacts; and
Moise5 [18], for programming multi-agent organizations.

Jason is a Java-based interpreter for an extended version of the AgentSpeak
programming language, suitable for programming BDI agents.

CArtAgO is a framework for environment programming based on the A & A
meta-model [19]. In CArtAgO, the environment can be designed as a dynamic
set of computational entities called artifacts, organized into workspaces, possibly
distributed among various nodes of a network [15]. Each artifact represents a
resource or a tool that agents can instantiate, share, use, and perceive at runtime.
For this project, we did not create any new artifact; we only made use of the
organizational artifacts provided in Moise.

Moise [18,20] is an organizational model for MAS based on three comple-
mentary dimensions: structural, functional and normative. The model enables a
MAS designer to explicitly specify its organizational constraints, and it can be
also used by the agents to reason about their organization. We used the Moise
model to define the agent’s roles, groups and missions.

Agents communicate with the MASSim server through the EISMASSim
environment-interface included in the contest software-package. EISMASSim is
based on EIS6 [21], which is a proposed standard for agent-environment inter-
action. It automatically establishes and maintains authenticated connections to
the server and abstracts the communication between the MASSim server and the
agents to simple Java-method-calls and call-backs. In order to use this interface,
we extended the JaCaMo default agent architecture to perceive and to act not
only on the CArtAgO artifacts, but also on the EIS environment as well.

3.2 Strategies

The main strategy of our team is to divide the agents into two or more subgroups:
one in charge of attacking the opponents (infantry), and the others (squads)
in charge of occupying the best zones in the graph. Moreover, regarding the
agents’ roles, we decided not to map the five types specified in the scenario
(Exp, Ins, Rep, Sab and Sen) directly to the roles in our team. Instead, we
defined additional different roles in our system according to the adopted strategy,
as shown in Fig. 3.
2 Available at http://jacamo.sourceforge.net/.
3 Available at http://jason.sourceforge.net/.
4 Available at http://cartago.sourceforge.net/.
5 Available at http://moise.sourceforge.net/.
6 Available at http://sourceforge.net/projects/apleis/.

http://jacamo.sourceforge.net/
http://jason.sourceforge.net/
http://cartago.sourceforge.net/
http://moise.sourceforge.net/
http://sourceforge.net/projects/apleis/


188 M.R. Franco and J.S. Sichman

Fig. 3. LTI-USP Team structural specification.

Each of these roles has a mission associated to it, and can be played by one
or more type of agents. For example, the map explorer role can be played only
by the explorer type, while the soldier role can be played by all types of agents.
Below we describe the missions related to each role:

– map explorer (Exp): Explores the whole graph by probing every vertex and
surveying all edges on its path;

– map explorer helper (Exp): Helps the map explorer to explore the graph,
but only in the first 250 steps. After that, the agent leaves this role to adopt
the soldier role in the best zone subgroup;

– soldier (all types): Tries to occupy one of the best zones indicated by the
coordinator agent. When all the vertices of the designated best zone are
occupied the soldier starts to look to the neighbour vertices of the team’s
zone to which he can move to increase the zone size;

– guardian (Sab): Defends the subgroup best zone by attacking any opponent
that is close to the team’s zone, or trying to invade it;

– medic (Rep): Occupies the center of the designated best zone and is responsi-
ble for repairing the agents in the subgroup, or other agents which eventually



Comparing and Evaluating Organizational Models 189

need to be repaired, such as the map explorer. In our team, the damaged
agents move to the repairers position in order to be repaired;

– zone explorer (Exp): Explores the team’s zone by probing the vertices whose
values are unknown. When all vertices are probed, the zone explorer helps
the soldiers to increase the zone size;

– saboteur (Sab): Attacks any close opponent, or the opponent who occupies
a good vertex;

– sentinel (Sen): Tries to sabotage the opponent by moving inside its zone;
– repairer (Rep): Follows the saboteur, but always staying two vertices away

from it, in order to be prepared to repair the saboteur when necessary, but
without taking too much risk;

– coordinator (none): Agent internal to our system which does not commu-
nicate with the MASSim server. It builds its local view of the world through
the percepts broadcasted by the other agents. Whenever the world model is
updated, it computes which are the best zones in the graph and send this
information to the other agents. The coordinator is also responsible for cre-
ating the organizational artifacts, in the beginning of the simulation, and for
distributing the groups, roles and missions among the other agents, in order
to eliminate the performance issues caused by two or more agents trying to
adopt the same role in a group, or trying to commit to the same mission.

The best zone in the map is obtained by calculating for each vertex the sum
of its value with the value of all its direct and second degree neighbours. The
vertex with the greatest sum of values is the center of the best zone. Zones with
the sum of values below 10 are not considered in the calculation7. The same
computation is performed again to determine if there is a second, third and
fourth best zone, and so on, but this time removing the vertices belonging to the
first best zone from the analysis. If the number of best zones is smaller than the
number of squads, the first best zone is designated to the subgroups without
specific best zone.

4 Experiments and Results

4.1 Experiments

In the MAPC, each team plays against each other team three times, and the
team that wins most matches wins the overall tournament. Each match has 750
steps and the map is randomly generated, thus from one match to another the
number of vertices, edges and high-valued areas can change.

The fact that the number of high-valued areas may change leads in some
cases to situations where to protect a single best area is a better strategy, while
in other cases it would be better to divide the team in smaller groups to try to
gain control over several areas. Therefore, we have performed some experiments
7 This threshold value was obtained empirically, by analyzing the results of previous

editions of the contest.



190 M.R. Franco and J.S. Sichman

Table 2. LTI-USP team configurations.

Team Squad Soldiers Guardians Medics Zone explorers Agents

TG1 1 20 1 1 1 23

TG2 1 10 1 1 1 13

2 7 1 1 1 10

TG3 1 5 1 1 1 8

2 5 1 1 1 8

3 4 1 1 1 7

TG4 1 3 1 1 1 6

2 3 1 1 1 6

3 3 1 1 1 6

4 3 0 1 1 5

Table 3. Scenarios properties.

Vertex Edges (thinning factor) Possible zones

SC1 400 1110 (20 %) 9

SC2 500 1345 (40 %) 6

SC3 600 1234 (10 %) 6

to analyse how the number of squads in our team can impact in its overall
performance.

The experiments consisted of four teams (TG1, TG2, TG3 and TG4), all
of them with the structure shown in Fig. 3, except with respect to the number
of squads as shown in Table 2. These teams competed in three different sce-
narios/maps (SC1, SC2 and SC3), described in Table 3. In this table, possible
zones means areas in the map with high value vertices, that are hence possible
candidates for a best zone. These scenarios are also represented in Fig. 4.

The number of vertices and edges shown in Table 3 were chosen according to
the parameters set in the MAPC, in which the maps had from 400 to 600 vertices
and the thinning factor, i.e., the number of removed edges from a complete
connect graph in percent, varies from 10 % to 60 %.

4.2 Results

For each scenario previously described, we performed 10 simulations for each
of the following matches: TG1 vs TG2, TG1 vs TG3, and TG1 vs TG4. The
data collected in all simulation were: (i) the winner, (ii) the teams’ final scores
and (iii) the score conquered in each step for each of the two competing teams.
Table 4 shows a summary of the number of wins for each team by match and
scenario.



Comparing and Evaluating Organizational Models 191

(a) SC1 (b) SC2

(c) SC3

Fig. 4. Experiment scenarios.

Given the results, we used a hypothesis test, the Wilcoxon T test, to define
for each match if the 10 simulations were sufficient or not to conclude that a team
was better than other in a determined scenario. The Wilcoxon T test (also called
Wilcoxon signed-rank test) is a non parametric test for dependent samples that
can indicate with some stated confidence level if a particular population tends
to have larger values than other.

The results of this analysis are shown in Table 5, where the values correspond
to the p-value result of the Wilcoxon T test applied on the final score of the 10
simulations performed for each match. A p-value lower than 0.05 indicates that
the results observed in the 10 simulations are enough to conclude that a certain
team tends to obtain higher scores than other.

The results obtained for each scenario are analysed in the following
subsections.



192 M.R. Franco and J.S. Sichman

Table 4. Results summary - number of wins.

TG1×TG2 TG1×TG3 TG1×TG4

SC1 2× 8 4× 6 1× 9

SC2 0× 10 0× 10 0× 10

SC3 4× 6 1× 9 2× 8

Table 5. Wilcoxon T test

TG1 x TG2 TG1 x TG3 TG1 x TG4

SC1 0.02881 0.5787 0.005196

SC2 0.0115 0.002879 0.0002057

SC3 0.1655 0.06301 0.02323

Scenario 1. In the first scenario, the teams with more squads won most of the
simulations against TG1 (control team) and, given the p-values of the Wilcoxon
T test, we can conclude that TG2 and TG4 are better than TG1, but for TG3
we can not conclude the same.

Figure 5 shows the final scores of the 10 simulations for the match TG1 vs
TG3. Analysing the simulations where TG1 defeats TG3, we were able to identify
why we have good results for TG2 against TG1, while this has not occurred when
TG3 played against TG1. TG3 divides its agents in three squads to occupy three
different zones in the map, while TG1 uses all its agents (apart from those used
to attack the opponent and to explore the map) to try to conquer the best zone
in the map. In this first scenario, there is a unique huge high valued area in
the left bottom of map, which is easily conquered by TG1 since the number of
agents from TG3 that will fight for the same zone is not enough to defeat the

Fig. 5. Scenario 1: Final scores for TG1 vs TG3.



Comparing and Evaluating Organizational Models 193

Fig. 6. Scenario 1 - TG1 (blue) vs TG3 (green) (Color figure online).

Fig. 7. Scenario 2: TG1 (green) vs TG4 (blue) (Color figure online).

opponent (Fig. 6). Besides that, the score summed from the two others TG3’s
squads was lower than the score obtained by TG1 in the best zone.

Scenario 2. In contrast with the first scenario, the second one does not has a
huge high valued area, and all possible best zones have almost the same value,
which is good for the teams with more squads, as shown in Fig. 7.

Scenario 3. The third scenario, as the first one, has an unique huge high valued
area which now is located in the top of the map, but in this scenario TG2 did
not performed as well as in the first scenario.



194 M.R. Franco and J.S. Sichman

Fig. 8. Scenario 3: Final scores for TG1 vs TG2.

Fig. 9. Scenario 3: TG1 (blue) vs TG2 (green) (Color figure online).

Figure 8 shows the results of the 10 simulations for the match TG1 vs TG2,
where it is possible to see that TG2 narrowly lost two simulations for TG1.

Comparing the match TG1 vs TG2 in this scenario with the first one, we
were able to identify that in this third scenario, TG2 does not find in some
simulations the best zone in the map, since the zone is not so spread out as in
the first scenario. In these cases, TG1 won when it was able to find the best zone
and TG2 not, as depicted in Fig. 9.

5 Conclusions

The problem of determining an appropriate or best MAS organization for a given
scenario is a key problem in MAS research, and empirical approaches can be very



Comparing and Evaluating Organizational Models 195

useful in this regard. Aiming to contribute in this issue, we presented an evalu-
ation of different organizations over three distinct scenarios of the Multi-Agent
Programming Contest case study. To validate our observations, a statistical test,
the Wilcoxon T test, was used to detect differences in the performance of the
organizations.

The results obtained by confronting the four LTI-USP teams, even though
they can suggest that TG4 is the best organizational choice, are not conclusive
since the number of scenarios used in our evaluation was relatively small, and
the scenario can greatly impact the performance of the team as we showed in
Sect. 4.2.

Therefore, in future work we intend to increase the number of different tested
scenarios, and also evaluate different structures of organizational models, chang-
ing not only the number of squad but also other parameters, for instance the
number of agents in charge of attacking the opponents.

Another possibility is to use the results obtained in this study to develop a
team capable of reorganizing according to the characteristics of the environment.
As discussed in [22], the reorganization is an important aspect in MAS, since the
environment is most often not static. Therefore, MAS should be able to modify
your organization to adapt to changes in the environment.

Acknowledgements. Jaime Simão Sichman is partially supported by CNPq and
FAPESP/Brazil.

References

1. Gasser, L.: Organizations in multi-agent systems. In: Pre-proceedings of the 10th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World.
IMAG, Annecy, France (2001)

2. Malone, T.W.: Modeling coordination in organizations and markets. In: Bond,
A.H., Gasser, L. (eds.) Readings in Distributed Artificial Intelligence, pp. 151–158.
Morgan Kaufmann Publishers Inc, San Mateo (1987)

3. Bernoux, P.: La Sociologie des Organisations. Seuil, Paris (1985)
4. Morin, E.: La Méthode (1): La Nature de la Nature. Seuil, Paris (1977)
5. Boissier, O., Sichman, J.S.: Organization oriented programming. In: Tutorial Notes,

3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), New York, USA, August 2004

6. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. In:
Wooldridge, M.J., Jennings, N.R. (eds.) Intelligent Agents. LNCS(LNAI), vol. 890,
pp. 56–70. Springer, Heidelberg (1995)

7. Coutinho, L.R., Sichman, J.S., Boissier, O.: Modelling dimensions for agent orga-
nizations. In: Dignum, V. (ed.) Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, pp. 18–50. IGI Global, Hershey
(2009)

8. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organi-
zations in multi-agents systems. In: Demazeau, Y. (ed.) Proceedings of the 3rd
International Conference on Multi-Agent Systems, pp. 128–135. IEEE Computer
Society Press, Paris, France (1998)



196 M.R. Franco and J.S. Sichman

9. Esteva, M., Rodŕıguez-Aguilar, J.-A., Sierra, C., Garcia, P., Arcos, J.-L.: On the
formal specification of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

10. Decker, K.S.: TÆMS: a framework for environment centered analysis and design
of coordination mechanisms. In: O’Hare, G.M.P., Jennings, N. (eds.) Foundations
of Distributed Artificial Intelligence, pp. 429–447. Wiley, Baffins Lane (1996)

11. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. Ph.D. thesis, University of Utrecht, Utrecht, The Netherlands (2004)

12. Horling, B., Lesser, V.R.: A survey of multi-agent organizational paradigms.
Knowl. Eng. Rev. 19(4), 281–316 (2004)

13. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.F.: The multi-agent
programming contest 2011: a Résumé. In: Dennis, L., Boissier, O., Bordini, R.H.
(eds.) ProMAS 2011. LNCS, vol. 7217, pp. 155–172. Springer, Heidelberg (2012)

14. Behrens, T., Köster, M., Schlesinger, F.: The multi-agent programming contest
2011: a Résumé. Program. Multi-Agent Syst. 2012, 155–172 (2011)

15. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. (2011)

16. Bordini, R., Hübner, J., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason. Wiley-Blackwell, Chichester (2007)

17. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Auton. Agent. Multi-Agent Syst. 23(2), 158–192
(2010)

18. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organi-
sations with organisational artifacts and agents. Auton. Agent. Multi-Agent Syst.
20(3), 369–400 (2009)

19. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a & a meta-model for multi-agent
systems. Auton. Agent. Multi-Agent Syst. 17(3), 432–456 (2008)

20. Hübner, J., Sichman, J., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels. Int.
J. Agent-Orient. Softw. Eng. 1–27 (2007)

21. Behrens, T.M., Dix, J., Hindriks, K.V.: The environment interface standard for
agent-oriented programming - platform integration guide and interface implemen-
tation guide. Technical report IfI-09-10, Department of Informatics, Clausthal Uni-
versity of Technology (2009)

22. Dignum, V.: Handbook of Research on Multi-agent Systems: Semantics and
Dynamics of Organizational Models. Information Science Reference. IGI Global,
Hershey (2009)


	Comparing and Evaluating Organizational Models: A Multi-agent Programming Contest Case Study
	1 Introduction
	2 Background
	2.1 Agent Organizational Models
	2.2 MAPC

	3 LTI-USP Agent Team
	3.1 Architecture
	3.2 Strategies

	4 Experiments and Results
	4.1 Experiments
	4.2 Results

	5 Conclusions
	References


