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Abstract. Current monitoring solutions are not well suited to mon-
itoring large data centers in different ways: lack of scalability, scarce
representativity of global state conditions, inability in guaranteeing
persistence in service delivery, and the impossibility of monitoring multi-
tenant applications. In this paper, we present a novel monitoring archi-
tecture that strives to address these problems. It integrates a hierarchical
scheme to monitor the resources in a cluster with a distributed hash
table (DHT) to broadcast system state information among different mon-
itors. This architecture strives to obtain high scalability, effectiveness and
resilience, as well as the possibility of monitoring services spanning across
different clusters or even different data centers of the cloud provider. We
evaluate the scalability of the proposed architecture through an exper-
imental analysis and we measure the overhead of the DHT-based com-
munication scheme.

Keywords: Monitoring architecture · Cloud Computing · Large-scale ·
Scalability · Multi-tenancy

1 Introduction

Cloud Computing is the most adopted model to support the processing of large
data volumes using clusters of commodity computers. According to Gartner,
Cloud Computing is expected to grow 19 % in 2012, becoming a $109 billion
industry compared to a $91 billion market last year. By 2016, it is expected to
be a $207 billion industry. This esteem compares to the 3 % growth expected in
the overall global IT market. Several companies such as Google [1], Microsoft [2],
and Yahoo [3] process tens of petabytes of data per day coming from large data
centers hosting several thousands nodes. According to [4], from 2005 to 2020,
the digital universe will grow by a factor of 300, from 130 EB to 40000 EB, or
40 trillion GB (more than 5200 GB per person in 2020). From now until 2020,
the digital universe will about double every two years.

In order to satisfy service level agreements (SLAs) and to keep a consistent
state of the workflows in this tangled layout, such growing large infrastructures
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are usually monitored through a multitude of services that extract and store mea-
surements regarding the performance and the utilization of specific hardware and
software resources. These monitoring tools are operated by cloud providers and
offered to the services’ owners, but also ad-hoc monitoring solutions are designed
in order to satisfy the requirements of big companies which own their private
cloud infrastructures. For example, Sony uses the closed-source Zyrion Traverse
database [5] to claim the monitoring of over 6000 devices and applications over
twelve data centers across Asia, Europe and North America. The virtual data
layer within the solution collects half a million resource data streams every five
minutes.

This scenario requires the design of an advanced monitoring infrastructure
that satisfies several properties:

1. Scalability. It must cope with a large amount of data that must be collected,
analyzed, stored and transmitted at real-time, so as to take timely corrective
actions to meet SLAs.

2. Effectiveness. It must provide an effective view of the system state condi-
tions that can be used for management purposes and to identify the causes of
observed phenomena. It must also adapt its monitoring functions to varying
conditions in order to accommodate variable resources, system errors, and
changing requirements.

3. Resilience. It must withstand a number of component failures while contin-
uing to operate normally, thus ensuring service continuity. Single points of
failure must be avoided for providing persistence of service delivery.

4. Multi-tenancy. It must be able to monitor applications distributed over
different data centers in order to better perform troubleshooting activities in
dynamic environments such as cloud scenarios.

We state that none of the existing solutions fulfills all these requirements. In
this paper we overcome state-of-the-art limits with a novel open-source monitor-
ing infrastructure. We propose a hybrid architecture for a quasi real-time mon-
itoring of large-scale, geographically distributed network infrastructures spread
across multiple data centers, designed to provide high scalability, effectiveness
and resilience. Here, the term hybrid refers to the use of two different commu-
nication schemes: a hierarchical one and a P2P-based one. Each data center is
equipped with its own decoupled monitoring infrastructure; each monitor adopts
a hierarchical scheme that ensure scalability with respect to the number of
monitored resources, in a subset of the whole architecture. Communications
between data centers are performed through the root managers, software mod-
ules responsible for orchestrating the whole process. The root managers of every
decentralized monitor are connected through a custom communication module
that implements the P2P Pastry DHT routing overlay [6]. In this way, a ser-
vice distributed across several data centers can be jointly monitored through the
appropriate root managers. The internal operations of the monitor are geared
towards effectiveness objectives. We provide real-time access to single perfor-
mance samples or graphs, as well as more sophisticated analysis that aim at



102 M. Andreolini et al.

identifying system or application states for anomaly detection, capacity plan-
ning, or other management studies. Every single component in the infrastructure
is designed to be resilient to failures. Whenever possible, we enrich the existing
software modules with redundancy and failover mechanisms. Otherwise, we auto-
matically restart the modules in case of failure.

The rest of this paper is organized as follows. Section 2 evaluates the current
state-of-the-art in the area of large-scale system monitoring. Section 3 describes
the design decisions supporting the described requirements, provides a high level
architecture of the entire monitoring infrastructure, motivates the choice of the
software components and discusses various implementation details. Section 4
investigates the theoretical scalability limits of the proposed architecture fig-
ured out from experimental scenarios. Finally, Sect. 5 concludes the paper with
some remarks and future work.

2 Related Work

Current state-of-the-art monitoring tools do not guarantee scalability, effective-
ness, resilience and multi-tenancy objectives. Fully centralized monitors cannot
scale to the desired number of resource data streams. For example, the prototype
system introduced in [7], which uses Ganglia [8] and Syslog-NG to accumulate
data into a central MySQL database, shows severe scalability limits at only 64
monitored nodes, each one collecting 20 resource data streams every 30 s. Here,
the main bottleneck is related to the increasing computational overhead occur-
ring at high sampling frequencies. On the other hand, lowering the sampling
frequency (commonly, once every five minutes) can make it difficult to spot
rapidly changing workloads which in turn may entail the violation of SLAs [9].

Concerning resilience, the vast majority of both open-source and commercial
monitoring infrastructures like OpenNMS [10], Zabbix [11], Zenoss [12] and Cacti
[13] are not adequate or designed to address failures, especially if combined with
the ability to gather and support millions of resource data streams per second.

In terms of effectiveness, most open-source monitoring tools only partially
address this aspect. For example, Graphite [14] and Cacti provide only trend-
ing analyses, Nagios [15] provides alerting, while Chukwa [16] and Flume [17] are
designed exclusively to collect resource data streams or logs. Also current decen-
tralized, per-data-center, hierarchical monitors such as Ganglia [18] are limited
to efficiently compute averages of measures spanning over several nodes. How-
ever, the complexity of current workloads in modern data centers calls for more
sophisticated processing, such as the identification of correlations among different
resource data streams, or the detection of anomalies in the global system state.

Astrolabe [19] is a hybrid solution that combines a hierarchical scheme with
an unstructured P2P routing protocol for distributed communications as our pro-
posal does. While it is resilient and highly scalable in terms of data collection and
storage, it lacks in effectiveness and its manageability is a complex task since it
incurs a lot of network traffic. Unstructured systems do not put any constraints on
placement of data items on peers and how peers maintain their network connec-
tions and this solution suffers from non-deterministic results, high network com-
munication overload and non-scalability of bandwidth consumption [20].
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While collection and network monitoring were addressed in many works with
significant results [21–23], the state-of-the-art technology in multi-tenant mon-
itoring is a very niche field. In fact, none of the previous works deals with a
multi-tenant environment. At the best of our knowledge, the only open contri-
bution in this sense is given by [24]: it extends monitoring based on data stream
management systems (DSMS) with the ability to handle multiple tenants and
arbitrary data; however it does not address resilience in terms of single points
of failure, it has no implemented prototype, and it does not present any type of
analysis to support the proposed architectural choices.

The fuzzy DHT algorithm proposed in this paper addresses the issue of join-
ing the need for advanced lookup features with the need to preserve the scala-
bility of DHTs. Other studies propose flexible queries. For example, Liu et al.
propose a system to support range queries [25], other researchers propose key-
word queries based on inversed indexes [26,27], while Tang et al. introduce
semantic searches on the CAN DHT [28]. However, all these proposals require
separate search services or introduce a completely new routing mechanism. Our
approach is different from these proposals for three main reasons. First, the fuzzy
DHT algorithm allows the deployment of novel services with only slight modifica-
tions to the existing overlay networks, thus allowing a simpler deployment of the
fuzzy DHT based overlay. Second, the proposed algorithm is explicitly designed
to provide multiple keyword-based searches, which are convenient for locating
resources based on attributes. Finally, our algorithm is explicitly designed with
efficiency as a primary goal.

3 Architecture

The early decisions that inspired the design of the proposed architecture share
four important goals: (1) to dominate the complexity of the monitoring prob-
lem (Scalability), (2) to tune the monitoring activities according to different
objectives (Effectiveness), (3) to avoid single points of failure (Resilience), and
(4) to monitor services spanning across different clusters or data centers (Multi-
tenancy). This section details the architecture design of our proposal, with
particular emphasis to the design decisions that allow the achievement of the
mentioned goals. Figures 1 and 2 present the high level architecture of the moni-
toring infrastructure. The interested reader can read a more detailed description
in [29,30].

We propose a hybrid architecture using a hierarchical communication scheme
to ensure scalability and a P2P-based communication scheme to allow multi-
tenancy. In our opinion, a hybrid solution is the only viable alternative for scaling
to an arbitrary number of data centers and the huge problem size makes it
literally impossible to deploy any kind of centralized infrastructure. Even worse,
service centralization would not be fault-tolerant. For these reasons, each cluster
in our architecture is equipped with an independent monitoring infrastructure.

In order to scale to millions of data streams per sample interval, it is manda-
tory to shift preliminary computations (such as the sampling of a resource and
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the performing of sanity checks on sampled data) as close as possible to the
edge of the monitored infrastructure. Failure to do so would result in a system
that unnecessarily processes potentially useless data. For this reason, collected
resource data streams are initially filtered (or marked as invalid, anomalous) on
the monitored nodes where a collection agent receives the samples from several
probe processes. Probe processes are responsible for collecting periodically per-
formance and/or utilization samples regarding a set of hardware and software
resources. The collection agent performs preliminary validity checks on them,
that are executed through dynamic, pluggable modules that receive in input
the data stream and respond with TRUE or FALSE. If at least one check fails,
the stream is tagged as invalid, but it is never discarded; this facilitates later
debugging operations. The following checks are implemented now: missing value,
value out of range, sequence of null values. Then, the collection agent updates
the resource data streams and sends them to a set of associated collector nodes.
We consider both the sending of uncoded (without compression) and coded (loss-
less compression) data. A detailed description of the collection agent has been
presented by the authors in [31].

The collector node is the main component of the distributed cluster data filter.
It receives the checked and coded resource data streams, performs the necessary
decoding, applies low cost analyses on decoded data, and stores their results
for a real-time plot or further analysis. In the former case, processing stops and
the user is able to see immediately the behavior of the resource data streams. In
order to support real-time analytics at large scale, at this level we adopt analytic
approaches having linear computational complexity and adaptive implementa-
tion. Linear solutions permit to understand system behavior in real-time, so as
to diagnose eventual problems and take timely corrective actions to meet service
level objectives. Adaptivity allows analytic approaches to accommodate variable,
heterogeneous data collected across the multiple levels of abstraction present in
complex data center systems. Example analyses we implemented at this stage
include:

1. computing moving averages of resource data streams, in order to provide a
more stable representation of a node status;

2. aggregating (both temporally and spatially) node state representations to
obtain global views of the cluster state conditions;

3. extracting trends for short-term prediction of resource consumption and of
cluster state conditions;

4. detecting state changes and/or anomalies occurring in data streams for the
erase of alarms and the adoption of recovering strategies;

5. correlating node state representations in order to identify dependencies
among different nodes in the cluster and to exclude secondary flows.

Nodes and cluster state representations are then sent to two different stor-
ages: one for real-time plotting of the decoded and analyzed resource data
streams, and one for non-real-time later processing at highest levels. The former
storage for real-time plotting is handled by a modified version of OpenTSDB [32]
that is able to plot a real-time short-term prediction of the resources trend. This
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analysis is performed using a linear regression and a Gaussian kernel. The lat-
ter storage for non-real-time processing, called data sink, receives data destined
to further processing performed by the distributed analyzer described shortly.
This solution reduces the number of files generated from one per node per unit
time to a handful per cluster [33]. To enhance the performance of the storage
engine, we chose to pack the resource data streams (few bytes per each) in larger
chunks (64 KB by default) and to write them asynchronously to a distributed
file system that can be scaled to the appropriate size by easily adding back-end
nodes. In order to provide a homogeneous software layer (eg., Hbase coupling)
and an open-source platform, and in order to support a map-reduce paradigm,
the best possible choice is the Hadoop Distributed File System (HDFS). It allows
extremely scalable computations, it is designed to run on commodity hardware,
it is highly fault-tolerant, it provides high throughput access to application data,
and it is suitable for applications that have large data sets.

In the latter case, data is made available to the distributed analyzer system. Its
purpose is to compute more sophisticated analyses on the resource data streams,
such as aggregation of information coming from different clusters, identification
of correlated components in the system, anomaly detection and capacity plan-
ning. The data streams resulting from these analyses are persistently stored in
the distributed data storage. Here, data is available as (key, value) pairs, where
“key” is a unique identifier of a measure and “value” is usually a tuple of values
describing it (e.g., timestamp, host name, service/process, name of the monitored
performance index, actual value). The distributed analyzer system is composed
by a set of analyzer nodes. Each analyzer node runs arbitrary batch jobs that
analyze the state representation data streams of nodes and clusters. At this
stage, we admit the implementation of more computational expensive analyses
with respect to those applied at the cluster level. Now, analyses are applied only
to small sets of representative information (i.e., nodes and cluster state represen-
tations) from which we require to obtain relevant information for management
with high levels of accuracy. For example, analyses implemented at data center
level are:

1. aggregation of cluster state representations to obtain global views of the data
center state conditions;

2. long-term prediction of clusters and data center state conditions computed
at different temporal scales and with different prediction horizons;

3. detection of changes and anomalous events in data center state conditions
with the identification of which node(s) in the different clusters is the culprit.

We choose the Pig framework for the implementation of the analysis scripts [34].
Pig offers richer data structures over pure map-reduce, for example multivalued
and nested dictionaries. Each Pig script is compiled into a series of equivalent
map-reduce scripts that process the input data and write the results in a parallel
way. Our scripts implement the analyses mentioned above. Further analyses
can be easily supported by our architecture and implemented to satisfy more
sophisticated requests.
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Both the reduced streams representing the system state and the resource
data streams processed by OpenTSDB must be written into a data storage. For
the sake of performance, it is possible to avoid the reuse of the same structured
storage. As matter of facts, the data storage:

– must scale with an increasing number of data streams;
– must be fault tolerant;
– should be designed towards the data management.

In this context, we choose Apache HBase [35] also because of the fact that
it includes the homogeneity and the reuse of components. In our architecture,
the HBase storage is responsible to preserve all the analyzed information about
nodes, clusters and data center. Apache HBase is a distributed column-oriented
database built on top of HDFS, designed from the ground-up to scale linearly
just by adding nodes. It is not relational and it does not support SQL, but thanks
to the proper space management properties, it is able to surpass a traditional
RDBMS-based system by hosting very large and sparsely populated tables on
clusters implemented on commodity hardware.

The information regarding the data center asset is stored in a distributed
configuration database. In this way, we strive to avoid possible inconsistencies
mainly due to a service being migrated or receiving more resources. The monitor-
ing infrastructure associates data streams to the identifiers of the corresponding
monitored resource. The configuration database is needed to store all information
related to the asset of a cluster. Asset-related information includes a description
of the resource metadata (name, id), placement (IP of the hosting node or vir-
tual machine), sampling period, and a description of the time interval during
which the resource is supposed to be assigned to a service. We think that it is
a good idea to use off-the-shelf Configuration Management DataBase Systems
(CMDBs). A CMDB is a repository of information related to all the compo-
nents of an information system, and contains the details of the configuration
items in the IT infrastructure. However, the majority of CMDBs is not natively
fault tolerant. We address this shortcoming by replicating both its Web front-
end and DB back-end. The configuration management database of our choice is
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OneCMDB. It is an open-source CMDB for data centers that can store configura-
tions such as hardware, software, services, customers, incidents, problems, RFCs
and documents. OneCMDB conforms to IT Management best practice declared
by the Information Technology Infrastructure Library. It adopts a client-server
paradigm and it is used in large production environments with thousands of
configuration items. An enhanced graphical user interface enables more effective
system operations.

Each monitoring infrastructure is orchestrated by a root management system,
a software component that organizes the workflow of monitoring operations and
provides a programmable monitoring interface to the user (Fig. 3). All the root
managers dislocated on different data centers are interconnected by an efficient
DHT overlay routing network. In this first version of our prototype, the other
main task carried out by a root manager is to forward early notifications of anom-
alies in the internal state of some resources to other interested, subscribed root
managers. In this way, it is possible to anticipate the performance degradation
of services depending on these failing resources.

The orchestration module is the heart of the monitoring system since it
orchestrates the operations of the other aforementioned components (collector,
data filter, analyzer). One of its main tasks is to trigger and to abort the execu-
tion of batch jobs in the distributed cluster data filter and in the analyzer nodes.
The communication module is a simple messaging system used to interact with
the other components of the monitoring architecture in order to communicate
relevant information (such as anomalies in some resource state) to other moni-
toring systems dislocated in different data centers. The root manager node also
receives commands from the user interface; these commands are forwarded to
and processed by the orchestration module. The user interface is basically a
Web-based application running on any selected node. It manages the resources
owned by an application and provides a programmable dashboard with figures of
merit, diagrams and configuration parameters (monitored nodes, resources, per-
formance indexes, sampling intervals). Each cluster and each monitored process
is represented using embedded OpenTSDB graphs, while the system view is rep-
resented using a similar but customized interface that supports also long-term
predictions, aggregation analysis, detection and capacity planning. The failover
module ensures fault tolerance by identifying which root managers are compro-
mised and by restoring a safe state. To this purpose, each root manager runs
part of the replica of the other root managers in the same data center. If a root
manager fails, the replica becomes the master until the former one is restored.

When a service is installed on the nodes, the collection and analysis processes
supply this information to the root management system, which stores it into the
distributed configuration database. At each application deployment, a list of the
involved nodes is defined. A unique key is associated to this list; both the key
and the list are shared through the DHT with each root management system.
The root management system responsible for the largest number of involved
nodes selects its best root manager on the basis of multiple configurable metrics.
Finally, the selected root manager becomes the service leader.
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Each data center is composed by a set of root manager nodes connected
through a Pastry-based Distributed Hash Table (DHT) called fuzzy DHT, which
has been presented and simulated in [30]. We chose Pastry [6] because it is
a generic, scalable and efficient substrate for P2P applications that forms a
decentralized, self-organizing and fault-tolerant overlay network. Pastry provides
efficient request routing, deterministic object location, and load balancing in
an application-independent manner. Furthermore, it provides mechanisms that
support and facilitate application-specific object replication, caching, and fault
recovery. For example, it is possible to efficiently lookup all CPU utilization
time series in a given cluster (or a replica if the origin source is unavailable).
The DHT communication module implements all the needed overlay routing
functions. The root management system is built upon a set of custom Python
and Java modules. The DHT is implemented through the freepastry libraries.
The publish-subscribe mechanism used to broadcast alerts to the interested root
managers is implemented through Scribe [36]. We previously discussed these
aspects from a security point-of-view in [37].

We used exclusively open-source tools that can be modified and adapted for
our goals. We used GNU/Linux Debian, Ubuntu and Fedora OSs in different
experimental testbeds, enhanced with the software packages from the Cloudera
repository (CDH4). The languages used for the deployment of our modules are
Bash (v4.2.36), Python (v2.7), Java (v1.6), JavaScript and C (where efficiency
is needed, such as in our modified monitor probes). The batch processing frame-
work is Hadoop, version 2.0. Our choice is motivated by the dramatic scalability
improvement with respect to traditional RDBMS-based data storage architec-
tures under random, write-intensive data access patterns [38]. To avoid single
points of failure and to ensure service continuity, we enforce redundancy of every
component of the monitoring architecture. Whenever possible, we deploy our
solution using software that can be easily replicated. In other cases, we wrap the
component through custom scripts that detect failures and restart it, in case.

We implemented the user interface using the Django MVC framework and the
JQuery library to enhance the presentation of data. The responsiveness of the
application is improved through the adoption of AJAX-based techniques and
the Web server Apache v.2.2.

4 Analysis

We perform experimental analyses for evaluating the ability of the proposed
monitoring architecture in satisfying all requirements of scalability, effectiveness,
resiliency and multi-tenancy. Due to the limited space, in this section we only
report analysis results about the scalability of our solution. We evaluate the
scalability of the proposed architecture in terms of number of monitored resource
data streams. In particular, we aim to find out:

– how many resource data streams can be monitored per node (intra-node scal-
ability);

– how many nodes can be monitored in a cluster (intra-cluster scalability).
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Highest level scalability (intra-data center scalability) is left for future exten-
sions and strongly depends on both resource behaviors and aggregation results
obtained through analytics computed in the distributed analyzer system. In this
paper, we used the Amazon EC2 IaaS platform. In the considered infrastructure,
the backing storage is shared across the instances (EBS), and the theoretical net-
work connectivity is up to 1Gbps. The virtual machines are running instances
of the TPC-W and RUBiS benchmark suites. MapReduce jobs queries are used
for data distribution and analysis. We perform Map-Reduce versions of several
performance analyses having different computational costs, including the moving
average and the Principal Component Analysis (PCA) over more than 1 h of data
collected from 2048 monitored nodes. We emphasize that the results are strongly
influenced by the resource consumption of the TSDB component, and the tuning
of this trade-off is out of the scope of this paper. However, we measure that the
PCA (i.e., the most computational expensive analysis) requires an average of
5 min when computed over 8 collector nodes using around the 85 % of CPU (the
12.5 % was used for collector process). This result shows that the behavior of a
single cluster during the collection of over more than 6M of resource data streams
per second can be analyzed (in batches) within quasi real-time constraints.

In each monitored node, one probe is dedicated to system-related perfor-
mance monitoring through the output of the vmstat and sar monitors. The
remaining probes are process-related through pidstat and nethogs2 monitors.
This system probe collects 25 different performance indexes, while each process
probe collects 23 different resource data streams. The sampling interval is con-
figured at 1 s for each probe in order to emulate the most challenging scenario.

4.1 Intra-node Scalability

In the first experimental testbed, we evaluate how many resource data streams
can be handled for each monitored node. We use one collector node and one
analyzer node running a single script that computes the moving average for every
resource data stream. The detail of the resources of the monitored node is the
following: micro instance, 613 MB memory, up to 2 EC2 Compute Units (Dual-
Core AMD Opteron (tm) Processor 2218 HE, cpu 2.6 GHz, cache size 1,024 KB),
EBS storage, dedicated network bandwidth of theoretically 100 Mbps per node.

Table 1 reports the average resource consumption (percentage of CPU, mem-
ory (RAM) and network (NET) utilization) of the collection agent as a function
of the number of monitored resource data streams. We performed tests on both
uncoded (without compression) and coded (lossless compression) data in order
to evaluate the impact of compression on the scalability of the different resources.
Then, we evaluate how the use of the Adaptive algorithm that we proposed in [39]
improves the scalability of our architecture. The Adaptive algorithm is able to
adapt the frequency of sampling and data updating to minimize computational
and communication costs, while guaranteeing high accuracy of monitored infor-
mation. From these tests, we see that at intra-node level, sending data streams
has a negligible impact on the network bandwidth, despite the fact that it is
reduced of about 50 % by using lossless compression and more than 80 % by
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Table 1. Average resource utilization of the collection agent.

#probes #resource
data
streams

Without compression Lossless compression Adaptive algorithm

CPU
(%)

RAM
(%)

NET
(%)

CPU
(%)

RAM
(%)

NET
(%)

CPU
(%)

RAM
(%)

NET
(%)

1 25 0.0 0.4 0.005 0.3 0.4 0.002 0.1 0.5 0.001

2 48 0.1 0.5 0.009 0.5 0.5 0.004 0.1 0.5 0.002

4 94 0.1 0.6 0.019 1.1 0.6 0.009 0.2 0.7 0.004

8 186 0.1 1.0 0.041 1.8 0.9 0.019 0.3 1.0 0.008

16 370 0.3 1.4 0.085 2.9 1.4 0.041 0.4 1.4 0.016

32 738 0.5 2.5 0.173 4.1 2.6 0.083 0.6 2.7 0.032

64 1474 0.6 4.7 0.352 6.0 4.8 0.162 0.8 4.6 0.069

128 2946 0.9 9.4 0.681 9.8 9.3 0.337 1.2 9.5 0.127

256 5890 2.5 18.7 1.392 23.1 18.3 0.641 3.1 18.8 0.266

using the Adaptive algorithm. We see also that the most used resource without
data compression or with Adaptive algorithm is the memory, while with lossless
compression the most used resource is the CPU. At 128 probes, both the CPU
and memory utilizations are less than 10 %. This threshold is commonly used as
the largest fraction of resource utilization that administrators are comfortable
devoting to monitoring. We have adopted this threshold as our target maximum
resource utilization for the monitoring system. Hence, on each monitored node,
we can collect up to 128 probes for a total of 2,946 resource data streams per
second. We recall that a period of one second is much shorter than commonly
adopted sampling periods that typically do not go below one minute.

4.2 Intra-cluster Scalability

In the following set of experiments, we consider nodes within a cluster, monitored
with the same probe setup. We measure the resource consumption of the collec-
tor at cluster level with or without compression efforts and with the Adaptive
algorithm.

Table 2 reports the average resource consumption of the collector node as a
function of the number of monitored nodes. From this table, we see that without
compression the most used resource is the network that allows the monitoring
of at most 64 nodes (or 188,544 resource data streams) in a cluster. On the
contrary, compressing data strongly impacts the CPU utilization. Despite that,
the compression of data allows to monitor more than 128 nodes or 2, 946 · 128 =
377, 088 resource data streams per second. By using the Adaptive algorithm we
are able to monitor up to 512 nodes per collector, meaning 1.5M resource data
streams per second.
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Table 2. Average resource utilization of the collector in the distributed cluster data
filter.

#monitored
nodes

#resource
data
streams

Without
compression

Lossless
compression

Adaptive
algorithm

CPU
(%)

NET
(%)

CPU
(%)

NET
(%)

CPU
(%)

NET
(%)

1 2946 0.1 0.971 0.6 0.450 0.1 0.189

2 5892 0.1 1.943 0.9 0.899 0.1 0.355

4 11784 0.2 3.838 2.0 1.797 0.2 0.748

8 23568 0.4 7.763 3.6 3.594 0.4 1.463

16 47136 0.9 15.421 8.1 7.186 0.9 3.001

32 94272 1.9 31.055 17.1 14.374 1.9 5.872

64 188544 3.2 61.980 33.6 28.751 3.2 11.711

128 377088 - - 69.9 57.539 6.1 23.404

256 754176 - - - - 12.5 47.096

512 1508352 - - - - 23.7 93.691

Table 3. Average resource utilization of a collector process.

#monitored nodes #resource data streams Collector

#nodes CPU (%) NET (%)

256 754176 1 12.5 47.096

512 1508352 2 12.8 48.327

1024 3016704 4 12.2 46.851

2048 6033408 8 12.4 46.908

As further result, we add collector nodes and increment the number of mon-
itored hosts to evaluate the scalability of the distributed cluster data filter.
Table 3 reports the average resource utilization across the collector nodes. We
keep adding collectors up to 2,048 monitored nodes. We also add more HDFS
and HBASE nodes to support the write throughput when the number of nodes
becomes higher than 256. We keep 256 as limit in the number of nodes since
overcoming the 50 % of incoming network bandwidth of the collector node means
overcoming the 100 % of outcoming bandwidth. In this scenario, by using the
Adaptive algorithm we are able to monitor about 6M resource data streams by
using an average 12.5 % of CPU and 47.3 % of network bandwidth.

This analysis on scalability reveals that the proposed architecture is able to
collect and process:

– more than 2900 resource data streams per second, from 128 probes, on a single
monitored node, with a resource utilization <10 %;
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Table 4. Average resource utilization of a TSDB process over the distributed cluster
data filter.

#graphs #resource data streams CPU (%) NET In (%) NET Out (%)

10 4500 10,3 0,077 0,131

25 11250 25,1 0,163 0,265

50 22500 49,8 0,329 0,538

100 30000 66,4 0,432 0,714

100 45000 98,2 0,671 1,099

– more than 754000 resource data streams per second, from 256 different mon-
itored nodes using a single collector node;

– more than 6000000 resource data streams per second per cluster.

By using the TSDB component, every collector node provides the real-time plot-
ting. In Table 4, we report the resource consumption of this process. In this test-
bed we request an increasing number of graphs (from 10 to 100) and we set
a refresh rate of 15 s for each graph. As for the collector process, the memory
consumption of the TSDB component is negligible with respect to the CPU
consumption. The TSDB process uses about the 66 % of CPU while plotting
100 graphs (i.e. 30000 resource data streams) for each collector node every 15 s.
Moreover, Table 4 shows that both the incoming and outcoming network band-
width consumptions are negligible if compared to the network consumptions of
the collector process. By using the 12.5 % and the 66.4 % of CPU for the collector
and TSDB respectively, more than the 20 % of spare CPU can be used for other
purposes like the execution of the Distributed sample storage jobs.

4.3 DHT Scalability

In the last section we evaluate the efficiency of the DHT-based communica-
tion mechanism. Table 5 shows the average number of exchanged messages per
lookup process as a function of the number of root managers in the monitoring
infrastructure. We compare our implementation with two other popular P2P
communication schemes: a flood-based system (like the one provided by the
Gnutella file sharing network) and a probabilistic flood-based one. We observe
that every algorithm shows an increment in the traffic generated with each query.
However, the overhead growth of the flood-based and probabilistic flood algo-
rithms is much more evident than the overhead growth of the fuzzy DHT algo-
rithm. The main reason of this overhead lies in the fact that, for every lookup
performed, the number of nodes to visit is much higher. The probabilistic flood-
based algorithm can randomly decide to not forward queries across nodes; this
explains the reduced overhead with respect to the pure flood-based solution.
On the other hand, the better scalability of fuzzy DHT is due to its ability to
route queries only to a reduced fraction of nodes that have an high probability
of hosting the requested resource.
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Table 5. Number of exchanged messages as a function of overlay network size.

Root
managers

Messages
fuzzy DHT

Messages
flood-based

Messages
probabilistic
flood-based

1 1 1 1

2 2 2 1

4 2 4 2

8 3 7 5

16 4 15 13

32 5 31 26

64 6 62 48

5 Conclusions

In this paper, we proposed a novel hybrid architecture for monitoring large-scale,
geo-graphically distributed network infrastructures spread across multiple data
centers. Architectural choices are made in order to satisfy scalability, effective-
ness, resiliency and multi-tenancy requirements. These choices are mandatory
when you have to support gathering and analysis operations of huge numbers of
data streams coming from cloud system monitors. The proposed architecture is
already integrated with on-line analyzers working at different temporal scales.
Our preliminary experiments show the potential scalability limits of the moni-
toring system: more than 6M of resource data streams per cluster, per second.
All these operations of data streams are carried out within real-time constraints
in the order of seconds thus demonstrating that huge margins of improvement
are feasible.
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