
Context-Aware Provisioning and Management
of Cloud Applications

Uwe Breitenbücher1(B), Tobias Binz1, Oliver Kopp2, Frank Leymann1,
and Matthias Wieland2

1 Institute of Architecture of Application Systems,
University of Stuttgart, Stuttgart, Germany

{breitenbuecher,binz,leymann}@informatik.uni-stuttgart.de
2 Institute for Parallel and Distributed Systems,

University of Stuttgart, Stuttgart, Germany
{kopp,wieland}@informatik.uni-stuttgart.de

Abstract. The automation of application provisioning and manage-
ment is one of the most important issues in Cloud Computing. How-
ever, the steadily increasing number of different services and software
components employed in composite Cloud applications leads to a high
risk of unintended side effects when different technologies work together
that bring their own proprietary management APIs. Due to unknown
dependencies and the increasing diversity and heterogeneity of employed
technologies, even small management tasks on a single component may
compromise the whole application functionality for reasons that are nei-
ther expected nor obvious to non-experts. In this paper, we tackle these
issues by introducing a method that enables detecting and correcting
unintended effects of provisioning and management tasks in advance
by analyzing the context in which the tasks are executed. We validate
the method practically and show how context-aware expert management
knowledge can be applied fully automatically to provision and manage
running Cloud applications.

Keywords: Application management · Provisioning · Context ·
Automation · Cloud computing

1 Introduction

Cloud Computing enables enterprises to outsource their IT efficiently due to
properties such as pay-on-demand computing [25]. To exploit these properties
for their offerings, Cloud providers have to automate their processes for appli-
cation provisioning and management. Therefore, a lot of tools and management
technologies have been developed. However, due to specific requirements on
employed Cloud services and software components, proprietary systems of differ-
ent providers often have to be combined in Complex Composite Cloud Applica-
tions [20]. Unfortunately, automating the provisioning and management of such

c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 151–168, 2015.
DOI: 10.1007/978-3-319-25414-2 10

152 U. Breitenbücher et al.

applications is a difficult challenge because their management technologies typ-
ically provide proprietary and heterogeneous management APIs, security mech-
anisms, and data formats which need to be integrated, too [8]. This leads to
a high risk of unexpected side effects when a task unintentionally affects mul-
tiple parts of an application. Thus, managing such applications requires (i) a
deep technical insight in each technology and (ii) an overall understanding of
the system. In many cases, only experts are able to execute management tasks
correctly. However, they also reach their limits when a management task has to
be executed on a complex application whose exact structure and runtime state
are not documented: Unknown relations and dependencies between components
that directly influence each other’s functionality lead to a serious management
challenge. Thus, if the context, in which a management task is executed, is not
explicitly known, understood, and considered, there is a high risk of unintended
side effects. In addition, as manually executing management task in large sys-
tems is slow, costly, and error prone, Cloud application management must be
automated [14,20,30].

In this paper, we present an approach that enables applying expert man-
agement knowledge for provisioning and management tasks in a certain context
automatically to running applications. We introduce an abstract (i) Context-
Aware Application Management Method and (ii) present a fully automated real-
ization of this method for the provisioning and management of applications to
validate its practical feasibility. The method introduces Declarative Manage-
ment Description Models (dmdm) to describe management tasks declaratively
including their context in a formal model. This enables experts to detect unin-
tended impacts and side effects of management tasks through analyzing them
in the context in which they are executed. We show that an individual con-
text analysis is often required due to the heterogeneous nature of the involved
components and management technologies—which is not possible using imper-
ative approaches such as workflows or scripts. The automated realization of the
method validates the method’s practical feasibility. It enables organizations to
operate a variety of different applications consisting of heterogeneous compo-
nents without the need to employ or educate specialized experts that have the
required technical knowledge. This paper is an extended version of a former
work [10] we presented at the 4th International Conference on Cloud Computing
and Services Science (CLOSER 2014). While the former paper considers only
application management, we show in this paper how the method can be used
also for the provisioning of applications by introducing Automated Provisioning
Patterns.

In the next section, we describe limitations of existing management automa-
tion approaches and present a motivating scenario in Sect. 3. Section 4 presents
the method, which is automated in Sect. 5. In Sect. 6, we present the paper’s
new contribution: We apply the method to application provisioning and intro-
duce Automated Provisioning Patterns. In Sect. 7, we describe related work.
Section 8 concludes the paper and gives an outlook on future work.

Context-Aware Provisioning and Management of Cloud Applications 153

2 Limitations of Imperative Management Approaches

To automate application management, the execution of management tasks is
often described imperatively using executable processes implemented as work-
flows [26], scripts, or programs. If an application is crucial to the business of an
enterprise, errors that possibly result in system downtime are not acceptable.
Therefore, often only the robust and reliable workflow technology can be used
that provides features such as fault handling and compensation mechanisms [26].
Nevertheless, before executing such workflows, they must be verified to ensure a
correct implementation. Unfortunately, the context, in which the management
tasks are executed, is not explicitly described and, thus, not visible in such
processes. As a result, management processes cannot be analyzed by experts
in consideration of the management tasks’ context as only operation calls, ser-
vice invocations, or script executions on the directly affected components are
described in workflows, but not the surrounding environment: Experts see only
the directly affected part of the application, not the whole application structure.
Thus, other application components that may be affected indirectly, too, cannot
be considered in this analysis. For example, if the database of a Web-based appli-
cation shall be replaced by a database from a different vendor, the application’s
Web Server may require a certain database connector to be installed for con-
necting to the new database. If this dependency is not considered and handled
by the management workflow that replaces the database through installing the
required connector, too, the application cannot connect to its database anymore.
This quickly results in system downtimes caused by errors that are neither easy
to find nor to fix. Thus, the most important requirement to enable context-aware
management is a formal model that describes both the management tasks as well
as their context.

3 Motivating Scenario

In this section, we describe the motivating scenario that is used to explain the
proposed method and its realization. The scenario describes a business applica-
tion that consists of a PHP-based Web frontend and a PostgreSQL database.
The frontend shall be migrated from one Cloud to another. Because the applica-
tion evolved over time, it is currently hosted on two Clouds: The PHP frontend is
hosted on Microsoft’s public Cloud offering “Windows Azure”, the PostgreSQL
database on Amazon’s PaaS offering “Relational Database Service (RDS)”. The
PHP frontend runs on an Apache HTTP Server (including PHP-module) which
is installed on an Ubuntu Linux operating system that runs in a virtual machine
hosted on Azure. The management task that has to be executed is migrating
the PHP frontend to Amazon’s IaaS offering “Elastic Compute Cloud (EC2)”
to reduce the number of employed Cloud providers. This migration results in
two issues that compromise the application’s functionality if they are not con-
sidered in advance: (i) Missing database driver and (ii) missing configuration of

154 U. Breitenbücher et al.

the database service. To migrate the PHP frontend, we have to create a new vir-
tual machine on Amazon EC2, install the Apache HTTP Server and the PHP-
module, and deploy the corresponding PHP files. This works without further
configuration issues. However, connecting the PHP application to the database
is not as easy as it seems to be: Simply defining the database configuration of
the PHP frontend by setting the database’s endpoint, username, and password
is not sufficient. Here, a technical detail of the underlying infrastructure needs
to be considered: The PHP-module of the Apache HTTP Server needs different
database drivers to connect to different types of databases. Thus, if the Post-
greSQL driver gets not installed explicitly on the server, the PHP frontend is not
able to connect to the database. However, this is not easy to recognize as appli-
cations often employ MySQL databases whose drivers are typically installed
together with the PHP-module. Thus, installing the required driver for Post-
greSQL might be forgotten. The second issue is even more difficult to foresee
if the administrator is not an expert in Amazon RDS: Databases running on
Amazon RDS are per default not accessible from external components. To allow
connections, a so-called “Security Group” must be defined to configure the fire-
wall. This group specifies the IP-addresses which are allowed to connect to the
database. Both issues result in breaking the application’s functionality as the
frontend can not connect to the database. The reason for both problems lies
in ignoring the context in which the tasks are executed: (i) If an application
shall connect to a certain database, the application’s runtime environment must
support this kind of database. (ii) Accessing a database hosted on Amazon RDS
requires also more than simply writing endpoint information into a configuration
file as the firewall of the service has to be configured, too. Thus, for these tasks,
the context in the form of the infrastructure that hosts the database and the
database type has to be considered to recognize the problems. However, both
problems cannot be detected if the migration is implemented using traditional
approaches such as management workflows or scripts: A wrong process possibly
models only the steps for (i) shutting down the old virtual machine on Azure,
(ii) creating the new virtual machine on Amazon EC2, (iii) installing the Apache
Web Server and the PHP-module, (iv) deploying the frontend, and (v) setting
the database’s IP-address, name, port, username, and password in the fron-
tend’s configuration. However, this process neither provides information about
the database’s type nor which infrastructure is employed. Thus, the context, in
which the management tasks are executed, is not described and the problems
can not be detected.

4 Context-Aware Application Management Method

The Context-Aware Application Management Method provides a means to con-
sider the context in which management tasks on application components or
relations are executed. The method is shown in Fig. 1 and separates between a
declarative description of the management tasks to be executed and the final
executable management process. In the following subsections, we explain each
step in detail.

Context-Aware Provisioning and Management of Cloud Applications 155

Context-Aware
Applica on Management

Method

1. Capture
Applica on as
Formal Model

2. Create
Declara ve

Management
Descrip on

Model

3. Analyze
Declara ve

Management
Descrip on

Model

4. Adapt
Declara ve

Management
Descrip on

Model

5. Create
Impera ve

Management
Descrip on

Model

6. Execute
Impera ve

Management
Descrip on

Model

Fig. 1. Context-Aware application management method.

4.1 Step 1: Capture Application as Formal Model

First, the application to be managed is described as a formal model. This model
captures the application structure and its state, i.e., (i) all components such
as Web Servers, virtual machines, or installed applications, (ii) the relations
between them, e.g., database connections, and (iii) their runtime information.
The semantics of these model elements are described using types, e.g., a com-
ponent may be of type “ApacheHTTPServer”, a relationship of type “SQLCon-
nection”. To enable a precise definition of the elements, types can be inherited:
The “ApacheHTTPServer” type is a subtype of “HTTPServer”. Runtime infor-
mation is described as element properties, e.g., the “ApacheHTTPServer” has
the properties “IP-Address” and “Port” that specify its endpoint. Their schema
is defined by the type of the element. This formalization of the running applica-
tion provides a detailed, structured, and machine readable means to document
a current snapshot of the application structure and all runtime information.

4.2 Step 2: Create Declarative Management Description Model

In the second step, the desired management tasks are described based on the
formal model. Therefore, we introduce the Declarative Management Description
Model (dmdm) that extends the formal model captured in Step 1 by a declar-
ative description of the management tasks to be executed on components and

156 U. Breitenbücher et al.

relations. This model declares management tasks in an abstract manner without
technical implementation details and specifies the target component or relation
of each task. A dmdm is not executable as it describes only what has to be
done, but not how—all technical details are missing. For example, a dmdm may
declare a “Create” task on an added relation of type “SQLConnection” between
a PHP application and a SQL database, which means that the connection has
to be established. However, it provides neither technical implementation details
nor specifies the control flow between multiple different management tasks.

4.3 Step 3: Analyze Declarative Management Description Model

The dmdm created in the previous step captures a snapshot of the applica-
tion and the abstract management tasks to be executed. The model describes
the whole context in which tasks are executed by modelling all components
and relations of the application that might be affected. In the third step, man-
agement tasks are analyzed in their context by experts of different domains
to detect unexpected impacts leading to unintended side effects. dmdms enable
cooperation between different experts and separate concerns based on a uniform,
structured, and formal model: Apache HTTP Server experts are able to detect
that the installation of a certain database connector is required, experts of the
Amazon Cloud are able to configure the Security Group in order to allow con-
nections from the external PHP frontend of the application. Thus, dmdms can
be analyzed by multiple experts of different domains in a cooperative manner.

4.4 Step 4: Adapt Declarative Management Description Model

After the expert analysis, found problems have to be resolved to achieve the
desired management goals. Therefore, the dmdm is adapted in this step by the
respective experts to enable a correct execution of the tasks: Components, rela-
tions, and tasks of the dmdm may be added or reconfigured. For example, the
missing database connector found in the analysis of the previous step is resolved
by adding the task to install the required connector on the Web Server. Thus,
each task was verified in its respective context in the previous step and gets cor-
rected if necessary in this step. However, if tasks are added or reconfigured, all
tasks have to be analyzed again for correctness as the context changes through
this adaptation. This may lead to new problems and unintended side effects on
other components or relations that have to be found. Therefore, Step 3 and Step 4
are repeated until no new problems are found and all tasks were considered in
the final context. This ensures that also the adaptations are checked.

4.5 Step 5: Create Imperative Management Description Model

The verified and adapted Declarative Management Description Model result-
ing from the previous step describes the tasks to be performed declaratively in
an abstract manner—only what management tasks have to be performed, but

Context-Aware Provisioning and Management of Cloud Applications 157

not how. Thus, the model is not executable as the technical realization is not
described. Therefore, an executable process model that implements the manage-
ment tasks declared in the dmdm must be created. As this process model imper-
atively describes how the tasks have to be executed, we call these management
processes Imperative Management Description Models (imdm). An imdm can
be executed using an appropriate process engine and describes also the control
flow and data handling between the management tasks. The imdm has to imple-
ment exactly the semantics of the management tasks described by the adapted
Declarative Management Description Model resulting from the previous step.

4.6 Step 6: Execute Imperative Management Description Model

In the last step, the imdm is executed to perform the desired management tasks
on the real running application. Therefore, a process engine is employed to run
the process. As a result, the changes described by the tasks are applied to the
running application in consideration of the context.

5 Realization and Validation

The presented method enables combining declarative management descriptions,
which include all relevant context information to verify the tasks, and imper-
ative processes, which are employed to actually perform the tasks on running
applications. Thus, it combines two different types of Management Description
Models which enables benefiting from advantages of both worlds. Therefore, the
presented method provides the basis for enabling automated context-aware appli-
cation provisioning and management. In this section, we validate the proposed
method by showing a fully automated implementation using existing frame-
works. We describe our prototypical realization for all steps of the method in
the following.

5.1 Formalizing Applications Using Enterprise Topology Graphs

In Step 1, the application structure and runtime information have to be captured
as formal model. We use Enterprise Topology Graphs (etg) [5] as model lan-
guage as they are a common way to formalize such information. etgs are directed
graphs that describe the application’s structure as topology model that contains
each component as typed node and each relation as typed edge. Runtime infor-
mation is captured as properties of the respective model element. Thus, etgs
can be used to model the context in which a management task is executed. As
etgs support the XML-format, they are machine readable. On the left of Fig. 2,
the etg of the motivating scenario is shown. Binz et al. showed that etgs of
running applications can be discovered fully automatically using the etgs Dis-
covery Framework [3]. Thus, the first step of formalizing the application to be
managed can be automated by using this framework.

158 U. Breitenbücher et al.

5.2 Automating the DMDM Creation

Capturing application snapshots as etg models provides a means to describe
the context in which a management task is executed. Therefore, to create the
dmdm in Step 2, we use the discovered etg and annotate the management tasks
to be executed directly at the affected components and relations of the etg.
In Breitenbücher et al. [6], we introduced so-called Desired Application State
Models, which provide exactly this type of model for describing tasks to be exe-
cuted declaratively in the context in which they have to be executed based on
etgs. Figure 2 shows the Desired Application State Model that describes our
migration motivating scenario (rendered using Vino4TOSCA [11]). The colored
circles with the symbols inside represent the management tasks to be executed
in the form of so-called Management Annotations [6]. A Management Anno-
tation describes a task to be performed in a declarative way: It defines only
the type of the task and possible configuration properties, but not how to exe-
cute it. The green colored “Create-Annotations” with the star inside declare
that the corresponding elements have to be created, whereas the red colored
“Destroy-Annotations” with the “x” inside declare that the elements have to
be destroyed. Management Annotations can be also bound declaratively to non-
functional requirements in the form of policies that must be fulfilled when exe-
cuting the task [9,13]. Annotating management tasks to etgs, i.e., creating a
dmdm, can be automated, too: Desired Application State Models can be gen-
erated by applying so-called Automated Management Patterns to etgs [6]. An
Automated Management Pattern consists of a (i) Topology Fragment and a

(hostedOn)

(SQLConnec on)

Legend:

File: Frontend.zip
URL: 129.78.43.72:80/Frontend

Frontend
(PHP)

HTTPPort: 80
Username: Admin
Password: w1j4vg!osb
PHPModule: Installed

(ApacheHTTPServer)

SSHCreden als: […]
IP-Address: 129.78.43.72

(Ubuntu12.04VM)

User: MyAzureAccount
Password: h94jfds!fg3

(WindowsAzure)

Name: BA_DB
User: u4001
Password: a7ju2vf!b
Port: 5432
Host: […]

Database
(PostgreSQLDB)

User: MyAmazonAccount
Password: a8u8u29uer8u234

(AmazonRDS)

File: Frontend.zip
URL:

Frontend
(PHP)

HTTPPort: 80
Username: Admin
Password: w1j4vg!osb
PHPModule: Installed

(ApacheHTTPServer)

SSHCreden als: […]
IP-Address:

(Ubuntu12.04VM)

User: MyAmazonAccount
Password: a8u8u29uer8u234

(AmazonEC2)

Fig. 2. Desired Application State Model after applying the idiom (simplified).

Context-Aware Provisioning and Management of Cloud Applications 159

Missing Database Driver CAMTA

Transforma onAnnotated Topology Fragment

(ApacheHTTPServer)

(hostedOn)

(PostgreSQLDB)(PHP)

Fig. 3. camta that recognizes the problem of missing PostgreSQL database connector.

(ii) Topology Transformation. The Topology Fragment describes the applica-
tion structure to which the pattern can be applied. Thus, the pattern can be
applied to all etgs that match this fragment. The Topology Transformation
implements the pattern’s solution as executable transformation that automati-
cally annotates the Management Annotations to be executed to the input etg.
We distinguish between Semi-Automated Management Patterns, which provide
an abstract solution of a pattern that must be refined for concrete use cases
manually, and Fully-Automated Management Idioms, which provide an already
refined solution [7]. For example, the Desired Application State Model shown in
Fig. 2 is the result of applying the “Migrate PHP Application to Amazon EC2
Idiom”. Thus, the only manual step is selecting a Fully-Automated Management
Idiom.

5.3 Context-Aware Task Analyzer

After the Desired Application State Model was created automatically by apply-
ing an Automated Management Pattern, it has to be analyzed by experts in
Step 3 and adapted if necessary in Step 4. As we aim for automating the whole
method realization, also these two steps need to be automated. Therefore, we
introduce the concept of Context-Aware Management Task Analyzers (camta)
that provides a means to capture context-aware expert management knowledge
in a form that enables a fully automated application to the Desired Applica-
tion State Model resulting out of the previous step. The notion of camtas is
detecting and correcting problems by analyzing the tasks in their context and
adapting the model if necessary fully automatically without manual interaction.
Therefore, a camta consists of two parts: (i) An Annotated Topology Fragment
and a (ii) Transformation, similarly to Automated Management Patterns. The
Annotated Topology Fragment is a small topology that specifies the manage-
ment tasks in a certain context for which the camta is able (i) to analyze
correctness and (ii) to provide expert management knowledge required to adapt
the model if necessary. The fragment is used for matchmaking of camtas and
Desired Application State Models: If the camta’s fragment matches elements

160 U. Breitenbücher et al.

and Management Annotations in the model, the Context-Aware Management
Task Analyzer is able to analyze exactly that part. Thus, the Annotated Topol-
ogy Fragment is used to select the camtas that have to be applied to analyze
the dmdm in Step 3 fully automatically. For adapting the model in Step 4,
each camta implements a context-aware transformation that transforms the
input Desired Application State Model fully automatically if necessary. There-
fore, the transformation checks if the tasks specified in the camta’s Topology
Fragment can be executed safely: If yes, the transformation returns the unmod-
ified model. If not, the transformation adds or configures components, rela-
tionships, or tasks for correcting the Desired Application State Model. Figure 3
shows a camta that analyzes the tasks of establishing a SQL connection from
a PHP application hosted on an Apache HTTP Server to a PostgreSQL data-
base. The shown camta is able to analyze if establishing a SQLConnection
in the context of a PHP Application running on the Apache HTTP Server to
a PostgreSQL database is possible. This is expressed by its Annotated Topol-
ogy Fragment on the left. The transformation shown on the right analyzes the
Desired Application State Model, finds out whether the PostgreSQL connector
driver is missing, and adds the corresponding model elements and tasks to the
model if necessary. Thus, based on two camtas, the Desired Application State
Model, which results from applying a Fully-Automated Management Idiom, gets
adapted fully automatically to resolve the issues of the missing database con-
nector and Security Group configuration. The respective camtas insert two
different Management Annotations into the Desired Application State Model:
(i) A “ConfigureSecurityGroup-Annotation” that is attached to the Amazon-
RDS node and an “InstallDriver-Annotation” attached to the Apache HTTP
Server node. The ConfigureSecurityGroup-Annotation configures the Amazon-
RDS instance in a way that the database is accessible by the Apache HTTP
Server. The InstallDriver-Annotation declares that the required connector for
PostgreSQL databases must be installed. As Desired Application State Models
typically specify multiple tasks to be executed in the form of Management Anno-
tations that need to be analyzed in their context, multiple different camtas are
needed to check the correctness of the whole model. As they may change the
model, all camtas need to be applied every time after one camta transformed
the model to ensure that all Management Annotations are validated in the cur-
rent context. As soon as input and output model do not change anymore after
applying all matching camtas, Step 4 is finished.

5.4 Management Plan Generation

After the dmdm was analyzed for correctness and adapted in the previous steps,
the resulting model is not executable as it describes the tasks to be performed
only declaratively, i.e., without implementation and control flow: The dmdm has
to be transformed into an executable imperative model in Step 5. Therefore, we
employ the Management Planlet Framework presented in Breitenbücher et al. [6]
that employs Management Planlets to translate Desired Application State Mod-
els fully automatically into executable BPEL workflows. Management Planlets

Context-Aware Provisioning and Management of Cloud Applications 161

Create Ubuntu12.04VM on AmazonEC2

(AmazonEC2)

User: *
Password: *

SSHCreden als: *
Type: *
…

(Ubuntu12.04VM)

(hostedOn)

Annotated Topology Fragment Workflow

P

Fig. 4. Management Planlet that creates an Ubuntu12.04 virtual machine on Amazon’s
infrastructure service Elastic Compute Cloud (EC2).

provide the low-level imperative management logic to execute the declarative
Management Annotations used in Desired Application State Models and sup-
port defining functional as well as non-functional requirements [9,13]. They serve
as generic management building blocks that can be orchestrated to implement
a higher-level management task. A Management Planlet consists of two parts:
(i) Annotated Topology Fragment and (ii) a workflow. The fragment exposes the
Planlet’s functionality and is used to find Planlets that are capable of execut-
ing the specified management tasks in the respective context. For example, the
Planlet shown in Fig. 4 is capable of executing the Create-Annotation attached
to an Ubuntu12.04VM node if this node has to be hosted on AmazonEC2. The
Planlet’s workflow implements exactly the management logic required to create
this virtual machine on EC2. Based on these fragments, Planlets can be orches-
trated to an overall management plan that performs all annotations defined in
the Desired Application State Model. Therefore, the framework employs a Plan
Generator that transforms Desired Application State Models into executable
workflows.

6 Context-Aware Cloud Application Provisioning

In this section, we present the new contribution of this paper that focuses
on the context-aware provisioning of applications. We show how the Context-
Aware Application Management Method presented in Sect. 4 can be used also for
context-aware provisioning and show afterwards how this variant of the method
can be automated by introducing the concept of Automated Provisioning Pat-
terns.

162 U. Breitenbücher et al.

File: Frontend.zip
URL:

Frontend
(PHP)

HTTPPort: 80
PHPModule: Installed
…

(ApacheHTTPServer)

SSHCreden als: […]
IP-Address:

(Ubuntu12.04VM)

User: MyAmazonAccount
Password: a8u8u29uer8u234

(AmazonEC2)

File: Frontend.zip
URL:

Frontend
(PHP)

Fully-Automated PHP Applica on on
AmazonEC2 Provisioning Idiom

Transforma on Topology Fragment

(PHP)

AmazonEC2.User = MyAmazonAccount
AmazonEC2.Password = a8u8u29uer8u234

Fig. 5. Transformation of an application topology model (left) to a Desired Application
State Model (right) by applying a Fully-Automated Provisioning Idiom.

6.1 Provisioning Variant of the Method

The original method for management consists of six steps and starts with captur-
ing the application to be managed as formal model describing the application’s
structure and state. This model provides the entry point to define the manage-
ment tasks to be executed. In our realization, all following steps are based on the
original etg that provides the basic context. In terms of provisioning, such an
instance model does not exist as no etg is available for non-provisioned applica-
tions. Therefore, the first step has to be removed if the method shall be applied
to application provisioning. Thus, the method directly starts with creating the
dmdm. As a result, we define Step 1 of the method as optional to enable using
the method for both application provisioning as well as executing management
tasks—the following steps are identical. However, to automatically create the
dmdm for the provisioning in the form of a Desired Application State Model,
this requires a special kind of pattern since Automated Management Patterns
and Idioms require an input etg to be transformed. Therefore, we introduce
Automated Provisioning Patterns in the following subsection.

6.2 Automated Provisioning Patterns and Provisioning Idioms

We distinguish also for the provisioning between patterns and idioms by intro-
ducing (i) Semi-Automated Provisioning Patterns and (ii) Fully-Automated Pro-
visioning Idioms. Both consist of a (i) Topology Fragment and a (ii) Topology
Transformation, similar to the management approach. However, their input is
not the etg of a running application but an application topology model of the
desired application. This model is either empty or describes single nodes and rela-
tions of the desired application deployment—but without runtime information.

Context-Aware Provisioning and Management of Cloud Applications 163

Fully-Automated PHP Applica on on
AmazonEC2 Provisioning Idiom

Transforma on Topology Fragment

(PHP)

Application Topology
Model

Desired Application
State Model

Application Topology
Model

Desired Application
State Model

Fully-Automated Scalable PHP Applica on
on Amazon Beanstalk Provisioning Idiom

Transforma on Topology Fragment

PHP PHP

Fig. 6. Two classes of Automated Provisioning Patterns/Idioms: topology-dependent
(top) and topology-independent (bottom).

The Topology Fragment is matched against the topology model and the transfor-
mation works on the matching elements. Semi-Automated Provisioning Patterns
generate Desired Application State Models that need to be refined afterwards,
i.e., they insert nodes or relations of abstract types that must be refined to a
concrete type manually. In addition, added Management Annotations may need
to be configured or additional annotations may need to be added. For example,
an inserted abstract “InfrastructureService” node must be refined manually to a
concrete node type, e.g., “AmazonEC2”. Fully-Automated Provisioning Idioms
generate already refined Desired Application State Models that can be used
directly for the plan generation. For example, Fig. 5 shows an idiom for host-
ing a PHP application on EC2. The idiom consumes the application topology,
which was created manually by an administrator in Step 2, and requests user and
password of the Amazon account as input. The topology model contains only a
PHP node describing the files to be deployed. The idiom’s transformation inserts
concrete infrastructure nodes, relations, and Management Annotations that are
already refined for this concrete use case. Thus, the resulting Desired Applica-
tion State Model can be used directly for the plan generation. In Step 2, multiple
provisioning patterns and idioms can be applied to build complex applications.

6.3 Topology-Dependent and Topology-Independent Patterns

In this section, we present two different classes of Automated Provisioning Pat-
terns: (i) Topology-dependent and (ii) topology-independent. We do not dis-
tinguish between patterns and idioms in this section because this difference is
not important for the following considerations. Therefore, we refer to both as
Automated Provisioning Patterns. The first class of topology-dependent patterns
specify a Topology Fragment that must match corresponding elements in an

164 U. Breitenbücher et al.

application topology model to which the pattern shall be applied. For exam-
ple, the idiom shown in Fig. 6 on the top is in this class and can be applied
to all application topology models that contain PHP nodes. This kind of Auto-
mated Provisioning Patterns can be used to complete or change an incomplete
application topology model including the specification of the corresponding Man-
agement Annotations to be executed to provision the model. Thus, they might
really transform an application topology into a Desired Application State Model,
i.e., they may change properties of already specified nodes and relations, add or
remove nodes and relations, and insert the required Management Annotations.
In contrast to this, topology-independent patterns do not specify a Topology
Fragment. Thus, they can be applied to every application topology model, even
to empty ones that do not specify any node or relation at all. Patterns in this
class only insert new nodes, relations, and annotations to create a Desired Appli-
cation State Model but do not change the existing elements, as shown in Fig. 6
on the bottom. This kind of Automated Provisioning Patterns can be used to
capture complete application architecture templates that can be inserted at once
without transforming the original topology model elements. For example, a com-
plete scalable LAMP (Linux, Apache, MySQL, PHP) stack hosted on a certain
Cloud provider can be implemented as Fully-Automated Provisioning Idiom.

7 Related Work

Context-aware systems adapt their functionality and behaviour using context
information about the environment. An often used definition for context was
given by Dey [15]: “Context is any information that can be used to character-
ize the situation of an entity, where an entity can be a person, place, physical
or computational object”. An important type of context information, which is
often neglected, is the state and structure of an application to be managed. In
this paper, we use this type of context information to verify, configure, and exe-
cute management tasks on applications and their infrastructure. The automated
realization of the presented management method provides, therefore, the basis
to implement Context-aware Cloud Application Management Systems.

To model and manage context information, many frameworks have been
developed in the past years. There are simple, widget-like frameworks for sensor
information such as the Context Toolkit [16] and systems that support smart
environments like Aura [23] or Gaia [31]. Different types of development frame-
works, e.g., the framework of Henricksen and Indulska [22], and context man-
agement platforms, e.g., the Nexus Platform [21], were developed that aim at
efficient provisioning of context information within a global scope. These frame-
works use Context Models as an abstraction layer between applications and
the technical infrastructure that gathers the context data. However, there is
no framework that manages context information for application management
in the form of the Declarative Management Description Models introduced in
this paper, which provide a kind of Context Model that (i) enables capturing
the environment in which management tasks are executed and (ii) the manage-
ment tasks themselves described in a declarative fashion. In the realization, the

Context-Aware Provisioning and Management of Cloud Applications 165

context is captured in a domain-specific data structure in the form of etgs.
Furthermore, no sensors integration has to be achieved because the context is
detected on the fly using the etg Discovery Framework [3]. Thus, the context is
always up to date and does not have to be stored or managed using additional
tooling.

There are several approaches that enable describing application topologies
including runtime information and dependencies. Scheibenberger and Pansa [32]
present a generic meta model to describe resource dependencies among IT
infrastructure components. They separate the static view, which captures func-
tional and structural aspects, from the dynamic operational view, which captures
runtime information. In contrast to the employed concept of etgs in the valida-
tion, their approach enables to model dependencies between component proper-
ties. The method’s realization may be extended to capture also such fine-grained
dependencies if necessary that may help experts to analyze possible impacts of
a certain management task. The Common Information Model (CIM) [17] is a
standard that provides an extensible, object-oriented data model used to capture
information about different parts of an enterprise. It also provides a specification
to describe application structures including dependencies. However, all these
works may be used to formalize the application structure, dependencies, and
runtime information, but they provide no means to model also the management
tasks to be executed as required to implement a dmdm.

There are several frameworks that employ declarative descriptions to gen-
erate workflows such as Eilam et al. [18], Maghraoui et al. [28], and Keller
et al. [24]. The first two focus mainly on provisioning of applications whereas the
third also considers application management. In general, the proposed method
can be adapted and applied to all approaches that transform declarative descrip-
tions into imperative processes. However, it must be ensured that the declarative
descriptions (i) provide the whole context and (ii) that the management tasks
to be executed are described by this model somehow. In a former work [12],
we showed how declarative provisioning descriptions can be transformed auto-
matically into imperative workflows based on the TOSCA standard [4,29]. The
application to be provisioned is described as topology model describing all appli-
cation components and relations. As the tasks to be executed are obvious and
the whole context of the provisioning is provided by this model in the form of
the topology, the method can be adapted for this standards-based provisioning
approach, too.

There are several pattern-based approaches that focus on the automation of
application provisioning and deployment. For example, Lu et al. [27] use patterns
to automate the deployment of applications. However, they employ model-based
patterns that are different from the kind of patterns and idioms we consider
in this paper. Their patterns are defined as topology models that are used to
associate or derive the corresponding logic required to deploy the combination
of nodes and relations described by the topology, similarly to our concept of
Management Planlets. Fehling et al. [19] show how architectural Cloud patterns
can be applied using a provisioning tool. However, all available approaches do

166 U. Breitenbücher et al.

not generate models that declaratively specify the abstract management tasks to
be executed following a concept such as Management Annotations. Nevertheless,
as the context is typically provided by the employed models, the general idea of
the method can be applied to most of these approaches, too.

The model-driven SOA deployment platform presented by Arnold et al. [1,2]
supports formally capturing topology-based deployment models at different lev-
els of abstraction—ranging from abstract models, which they call patterns, to
concrete models. This classification is similar to our approach of differentiating
patterns and idioms and enables non-expert administrators to safely compose
and iteratively refine deployment patterns, which results in fully-specified topolo-
gies with bindings to concrete resources. However, in contrast to our automated
patterns and idioms, their patterns and concrete models capture only the struc-
ture and constraints of a composite solution and do not specify the management
or provisioning tasks to be executed. In Arnold et al. [2], they present an app-
roach how these patterns can be realized automatically and introduce Parame-
terized Reconfiguration Patterns that are conceptually similar to our Automated
Provisioning Patterns: They define preconditions in the form of existing model
elements and specify new elements to be provisioned. Similarly, Parameterized
Reconfiguration Patterns also define input parameters that are used to configure
the provisioning. The result of applying such patterns are models specifying the
desired application state, but without the tasks to be executed. Nevertheless,
the general idea of the method can be applied to this approach, too.

8 Conclusions

In this paper, we introduced an abstract Context-Aware Application Manage-
ment Method that enables applying context-aware provisioning and management
expertise. We showed that separating models for context-aware analysis and
management task execution provides a powerful means to benefit from advan-
tages of both worlds. Therefore, we employed abstract Declarative Management
Description Models for describing the context as well as the management tasks
to be executed themselves that are transformed into Imperative Management
Description Models. The presented method is validated by an automated proto-
typical realization for application provisioning and management using the Man-
agement Planlet Framework. We plan to integrate non-functional requirements
into the method and its realization and to apply both to the OASIS standard
TOSCA.

Acknowledgements. This work was partially funded by the BMWi project Cloud-
Cycle (01MD11023).

References

1. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Pattern
based SOA deployment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 1–12. Springer, Heidelberg (2007)

Context-Aware Provisioning and Management of Cloud Applications 167

2. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Auto-
matic realization of SOA deployment patterns in distributed environments. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 162–179. Springer, Heidelberg (2008)

3. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Automated discovery and
maintenance of enterprise topology graphs. In: SOCA 2013, pp. 126–134. IEEE,
December 2013

4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014)

5. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the cloud
through enterprise topology graphs. In: CLOUD 2012, pp. 742–749. IEEE, June
2012

6. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based runtime
management of composite cloud applications. In: CLOSER 2013, pp. 475–482.
SciTePress, May 2013

7. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Automating cloud application
management using management idioms. In: PATTERNS 2014, pp. 60–69. IARIA
Xpert Publishing Services, May 2014

8. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wettinger, J.: Integrated
cloud application provisioning: interconnecting service-centric and script-centric
management technologies. In: Panetto, H., Dillon, T., Eder, J., Bellahsene, Z.,
Ritter, N., De Leenheer, P., Dou, D., Meersman, R. (eds.) ODBASE 2013. LNCS,
vol. 8185, pp. 130–148. Springer, Heidelberg (2013)

9. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wieland, M.: Policy-aware
provisioning of cloud applications. In: SECURWARE 2013, pp. 86–95. IARIA
Xpert Publishing Services, August 2013

10. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wieland, M.: Context-aware
cloud application management. In: CLOSER 2014, pp. 499–509. SciTePress, April
2014

11. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA:
a visual notation for application topologies based on TOSCA. In: Dillon, T.,
Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S.,
Cruz, I.F., Meersman, R., Panetto, H. (eds.) OTM 2012, Part I. LNCS, vol. 7565,
pp. 416–424. Springer, Heidelberg (2012)

12. Breitenbücher, U., et al.: Combining declarative and imperative cloud application
provisioning based on TOSCA. In: IC2E 2014, pp. 87–96. IEEE, March 2014

13. Breitenbücher, U., et al.: Policy-aware provisioning and management of cloud appli-
cations. Int. J. Adv. Secur. 7(1&2), 15–36 (2014)

14. Brown, A.B., Patterson, D.A.: To err is human. In: EASY 2001, p. 5, July 2001
15. Dey, A.K., Abowd, G.D., Salber, D.: Managing Interactions in Smart Environ-

ments. A Context-Based Infrastructure for Smart Environments, pp. 114–128.
Springer, London (2000)

16. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Hum. Comput.
Interact. 16, 97–166 (2001)

17. Distributed Management Task Force: Common Information Model (2010)
18. Eilam, T., et al.: Pattern-based composite application deployment. In: Integrated

Network Management, pp. 217–224. IEEE (2011)

168 U. Breitenbücher et al.

19. Fehling, C., Leymann, F., Retter, R., Schumm, D., Schupeck, W.: An architectural
pattern language of cloud-based applications. In: PLoP 2011. ACM, October 2011

20. Fehling, C., Leymann, F., Rütschlin, J., Schumm, D.: Pattern-based development
and management of cloud applications. Future Internet 4(1), 110–141 (2012)

21. Großmann, M., et al.: Efficiently managing context information for large-scale sce-
narios. In: PerCom 2005. IEEE (2005)

22. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: PerCom 2004. IEEE (2004)

23. Judd, G., Steenkiste, P.: Providing contextual information to pervasive computing
applications. In: PerCom 2003. IEEE (2003)

24. Keller, A., Hellerstein, J.L., Wolf, J.L., Wu, K.L., Krishnan, V.: The CHAMPS
system: change management with planning and scheduling. In: NOMS 2004, pp.
395–408. IEEE (2004)

25. Leymann, F.: Cloud computing: the next revolution in IT. In: The Photogrammet-
ric Record, pp. 3–12, September 2009

26. Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice
Hall PTR, USA (2000)

27. Lu, H., Shtern, M., Simmons, B., Smit, M., Litoiu, M.: Pattern-based deployment
service for next generation clouds. In: SERVICES 2013, pp. 464–471. IEEE, June
2013

28. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.V.:
Model driven provisioning: bridging the gap between declarative object models and
procedural provisioning tools. In: van Steen, M., Henning, M. (eds.) Middleware
2006. LNCS, vol. 4290, pp. 404–423. Springer, Heidelberg (2006)

29. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0, May 2013

30. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,
and what can be done about it? In: USITS. USENIX Association, June 2003

31. Roman, M., Campbell, R.H.: Gaia: enabling active spaces. In: SIGOPS 2000, pp.
229–234. ACM (2000)

32. Scheibenberger, K., Pansa, I.: Modelling dependencies of it infrastructure elements.
In: BDIM 2008, pp. 112–113. IEEE, April 2008

	Context-Aware Provisioning and Management of Cloud Applications
	1 Introduction
	2 Limitations of Imperative Management Approaches
	3 Motivating Scenario
	4 Context-Aware Application Management Method
	4.1 Step 1: Capture Application as Formal Model
	4.2 Step 2: Create Declarative Management Description Model
	4.3 Step 3: Analyze Declarative Management Description Model
	4.4 Step 4: Adapt Declarative Management Description Model
	4.5 Step 5: Create Imperative Management Description Model
	4.6 Step 6: Execute Imperative Management Description Model

	5 Realization and Validation
	5.1 Formalizing Applications Using Enterprise Topology Graphs
	5.2 Automating the DMDM Creation
	5.3 Context-Aware Task Analyzer
	5.4 Management Plan Generation

	6 Context-Aware Cloud Application Provisioning
	6.1 Provisioning Variant of the Method
	6.2 Automated Provisioning Patterns and Provisioning Idioms
	6.3 Topology-Dependent and Topology-Independent Patterns

	7 Related Work
	8 Conclusions
	References

