
123

Markus Helfert · Frédéric Desprez
Donald Ferguson · Frank Leymann
Víctor Méndez Muñoz (Eds.)

International Conference in Cloud Computing
and Services Sciences, CLOSER 2014
Barcelona Spain, April 3–5, 2014
Revised Selected Papers

Cloud Computing
and Services Sciences

Communications in Computer and Information Science 512

Communications
in Computer and Information Science 512

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Markus Helfert • Frédéric Desprez
Donald Ferguson • Frank Leymann
Víctor Méndez Muñoz (Eds.)

Cloud Computing
and Services Sciences
International Conference in Cloud Computing
and Services Sciences, CLOSER 2014
Barcelona Spain, April 3–5, 2014
Revised Selected Papers

123

Editors
Markus Helfert
School of Computing
Dublin City University
Dublin 9
Ireland

Frédéric Desprez
LIP/Inria
Ecole normale supérieure de Lyon
Lyon
France

Donald Ferguson
Dell
Round Rock
USA

Frank Leymann
University of Stuttgart
Stuttgart
Germany

Víctor Méndez Muñoz
Universitat Autònoma de Barcelona
Bellaterra
Spain

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-25413-5 ISBN 978-3-319-25414-2 (eBook)
DOI 10.1007/978-3-319-25414-2

Library of Congress Control Number: 2015952478

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This book includes extended and revised versions of a set of selected papers from
CLOSER 2014 (the 4th International Conference on Cloud Computing and Services
Science), held in Barcelona, Spain, in 2014, organized and sponsored by the Institute
for Systems and Technologies of Information, Control and Communication
(INSTICC). This conference was held in cooperation with the Association for Com-
puting Machinery - Special Interest Group on Management Information Systems.

The purpose of the CLOSER series of conferences is to bring together researchers,
engineers, and practitioners interested in the emerging area of cloud computing. The
conference has five main tracks, namely, “Cloud Computing Fundamentals,” “Services
Science Foundation for Cloud Computing,” “Cloud Computing Platforms and Appli-
cations,” “Cloud Computing Enabling Technology,” and “Mobile Cloud Computing
and Services.”

The three keynotes provided by Helge Meinhard (CERN, IT Department,
Switzerland), Ignacio Martín Llorente (OpenNebula Director and CEO and Full Pro-
fessor at UCM, Spain) and Paulo Gonçalves (Inria-DANTE, France) addressed
cutting-edge questions in open discussion with the conference members.

CLOSER 2014 received 127 paper submissions from all continents. From these, 21
papers were published and presented as full papers, 40 were accepted as short papers,
and another 27 for poster presentation. These numbers, leading to a full-paper
acceptance ratio of 17 % and an oral paper acceptance ratio of 48 %, show the intention
of preserving a high-quality forum for the next editions of this conference.

This book contains the revised papers selected among the best contributions taking
also into account the quality of their presentation at the conference, assessed by the
session chairs. Therefore, we hope that you find these papers interesting, and we trust
they represent a helpful reference for all those who need to address any of the afore-
mentioned research areas.

We wish to thank all those who supported and helped to organize the conference.
On behalf of the conference Organizing Committee, we would like to thank the
authors, whose work mostly contributed to a very successful conference, the keynote
speakers, and the members of the Program Committee, whose expertise and diligence
were instrumental for the quality of the final contributions. We also wish to thank all
the members of the Organizing Committee, whose work and commitment was
invaluable. Last but not least, we would like to thank Springer for their collaboration in
getting this book to print.

April 2015 Markus Helfert
Frédéric Desprez
Donald Ferguson
Frank Leymann

Víctor Méndez Muñoz

Organization

Conference Chair

Markus Helfert Dublin City University, Ireland

Program Co-chairs

Frédéric Desprez LIP/Inria, France
Donald Ferguson Dell, USA
Frank Leymann University of Stuttgart, Germany
Víctor Méndez Muñoz Universitat Autònoma de Barcelona, UAB, Spain

Organizing Committee

Marina Carvalho INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Ana Guerreiro INSTICC, Portugal
André Lista INSTICC, Portugal
Filipe Mariano INSTICC, Portugal
Andreia Moita INSTICC, Portugal
Carla Mota INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Cátia Pires INSTICC, Portugal
Ana Ramalho INSTICC, Portugal
Susana Ribeiro INSTICC, Portugal
Rui Rodrigues INSTICC, Portugal
André Santos INSTICC, Portugal
Fábio Santos INSTICC, Portugal
Mara Silva INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Antonia Albani University of St. Gallen, Switzerland
Vasilios Andrikopoulos University of Stuttgart, Germany
Cosimo Anglano Università del Piemonte Orientale A. Avogadro, Italy
Ashiq Anjum University of Derby, UK
Claudio Ardagna Università degli Studi di Milano, Italy
Danilo Ardagna Politecnico di Milano, Italy

Alvaro Arenas Instituto de Empresa Business School, Spain
José Enrique

Armendáriz-Iñigo
Universidad Pública de Navarra, Spain

Matthew Arrott University of California San Diego, USA
Benjamin Aziz University of Portsmouth, UK
Zeina Azmeh I3S Laboratory, University of Nice - Sophia Antipolis,

France
Amelia Badica University of Craiova, Romania
Henri E. Bal Vrije Universiteit, The Netherlands
Janaka Balasooriya Arizona State University, USA
Costas Bekas IBM Zurich Research Lab, Switzerland
Karin Bernsmed SINTEF ICT, Norway
Nik Bessis University of Derby, UK
Luiz F. Bittencourt IC/UNICAMP, Brazil
Stefano Bocconi TU Delft, The Netherlands
Sergey Boldyrev HERE Maps, Finland
Anne Boyer Loria - Inria Lorraine, France
Francisco Brasileiro Universidade Federal de Campina Grande, Brazil
Iris Braun Dresden Technical University, Germany
Andrey Brito Universidade Federal de Campina Grande, Brazil
Ralf Bruns Hannover University of Applied Sciences and Arts,

Germany
Anna Brunstrom Karlstad University, Sweden
Rebecca Bulander Pforzheim University of Applied Science, Germany
Tomas Bures Charles University in Prague, Czech Republic
Massimo Cafaro University of Salento, Italy
Manuel Isidoro

Capel-Tuñón
University of Granada, Spain

Miriam Capretz University of Western Ontario, Canada
Eddy Caron École Normale Supérieure de Lyon, France
Noel Carroll University of Limerick, Ireland
John Cartlidge University of Bristol, UK
Humberto Castejon Telenor, Norway
Rong N. Chang IBM T.J. Watson Research Center, USA
Davide Cherubini Alcatel-Lucent Ireland, Ireland
Augusto Ciuffoletti Università di Pisa, Italy
Daniela Barreiro Claro Universidade Federal da Bahia (UFBA), Brazil
Christine Collet Grenoble Institute of Technology, France
Thierry Coupaye Orange, France
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Tommaso Cucinotta Alcatel-Lucent, Ireland
Eduardo Huedo Cuesta Universidad Complutense de Madrid, Spain
Edward Curry National University of Ireland, Galway, Ireland
Eliezer Dekel IBM Research Haifa, Israel
Yuri Demchenko University of Amsterdam, The Netherlands

VIII Organization

Frédéric Desprez LIP/Inria, France
Khalil Drira LAAS-CNRS, France
Michel Dubois University of Southern California, USA
Ake Edlund Royal Institute of Technology, Sweden
Erik Elmroth Umeå University, Sweden
Mohamed Eltoweissy Virginia Polytechnic Institute and State University,

USA
Robert van Engelen Florida State University, USA
Donald Ferguson Dell, USA
Stefano Ferretti University of Bologna, Italy
Mike Fisher BT, UK
Ian T. Foster Argonne National Laboratory and University

of Chicago, USA
Geoffrey Charles Fox Indiana University, USA
Chiara Francalanci Politecnico di Milano, Italy
Maria Ganzha SRI PAS and University of Gdansk, Poland
David Genest Université d’Angers, France
Fekade Getahun Addis Ababa University, Ethiopia
Chirine Ghedira IAE - University Jean Moulin Lyon 3, France
Lee Gillam University of Surrey, UK
Katja Gilly Miguel Hernandez University, Spain
Andrzej Goscinski Deakin University, Australia
Anna Goy University of Turin, Italy
George A. Gravvanis Democritus University of Thrace, Greece
Patrizia Grifoni CNR, Italy
Stephan Groß Technische Universität Dresden, Germany
Carmem Satie Hara Universidade Federal do Paraná, Brazil
Benjamin Heckmann University of Applied Sciences Darmstadt, Germany
Markus Helfert Dublin City University, Ireland
Frans Henskens University of Newcastle, Australia
Neil Chue Hong University of Edinburgh, UK
Marianne Huchard Lirmm Université Montpelier 2, France
Mohamed Hussien Suez Canal University, Egypt
Sorin M. Iacob Thales Nederland BV, The Netherlands
Ilian Ilkov IBM Nederland B.V., The Netherlands
Anca Daniela Ionita University Politehnica of Bucharest, Romania
Fuyuki Ishikawa National Institute of Informatics, Japan
Hiroshi Ishikawa Tokyo Metropolitan University, Japan
Ivan Ivanov SUNY Empire State College, USA
Martin Gilje Jaatun SINTEF ICT, Norway
Keith Jeffery Independent Consultant (previously Science

and Technology Facilities Council), UK
Meiko Jensen Independent Centre for Privacy Protection

Schleswig-Holstein, Germany
Yiming Ji University of South Carolina Beaufort, USA
Ming Jiang University of Leeds, UK

Organization IX

Xiaolong Jin Chinese Academy of Sciences, China
Jose Fernando Rodrigues Jr. Universidade de São Paulo, Brazil
Eric Jul Alcatel Lucent, Ireland
David R. Kaeli Northeastern University, USA
Yücel Karabulut VMware, USA
Daniel S. Katz University of Chicago, USA
Gabor Kecskemeti MTA Sztaki, Hungary
Attila Kertesz MTA Sztaki, Hungary
Claus-Peter Klas FernUniversität in Hagen, Germany
Carsten Kleiner University of Applied Sciences and Arts Hannover,

Germany
Geir M. Køien University of Agder, Norway
Dimitri Konstantas University of Geneva, Switzerland
George Kousiouris National Technical University of Athens, Greece
László Kovács MTA Sztaki, Hungary
Marcel Kunze Karlsruhe Institute of Technology, Germany
Young Choon Lee University of Sydney, Australia
Miguel Leitão ISEP, Portugal
Wilfried Lemahieu KU Leuven, Belgium
Fei Li Vienna University of Technology, Austria
Kuan-ching Li Providence University, Taiwan
Donghui Lin Kyoto University, Japan
Shijun Liu School of Computer Science and Technology,

Shandong University, China
Pedro Garcia Lopez University Rovira i Virgili, Spain
Suksant Sae Lor HP Labs, UK
Simone Ludwig North Dakota State University, USA
Glenn Luecke Iowa State University, USA
Theo Lynn Dublin City University, Ireland
Shikharesh Majumdar Carleton University, Canada
Elisa Marengo Università degli Studi di Torino, Italy
Pierre Maret Université de Saint Etienne, France
Ioannis Mavridis University of Macedonia, Greece
Richard McClatchey CCCS, University West of England, UK
Jose Ramon Gonzalez

de Mendivil
Universidad Publica de Navarra, Spain

Andreas Menychtas National Technical University of Athens, Greece
Mohamed Mohamed TELECOM SudParis, France
Owen Molloy National University of Ireland, Galway, Ireland
Marco Casassa Mont Hewlett-Packard Laboratories, UK
Rubén Santiago Montero Universidad Complutense de Madrid, Spain
Christine Morin Institut national de recherche en informatique et en

automatique (Inria), France
Kamran Munir University of the West of England (Bristol, UK), UK
Víctor Méndez Muñoz Universitat Autònoma de Barcelona, UAB, Spain

X Organization

Hidemoto Nakada National Institute of Advanced Industrial Science
and Technology (AIST), Japan

Philippe Navaux UFRGS - Federal University of Rio Grande Do Sul,
Brazil

Lee Newcombe Capgemini, UK
Jean-Marc Nicod Institut FEMTO-ST, France
Bogdan Nicolae IBM Research, Ireland
Christophe Nicolle Laboratoire Le2i – University of Bourgogne, France
Mara Nikolaidou Harokopio University of Athens, Greece
Karsten Oberle Alcatel-Lucent Bell Labs, Germany
Alexander Paar TWT GmbH Science and Innovation, Germany
David Padua University of Illinois at Urbana-Champaign, USA
Federica Paganelli CNIT – National Interuniversity Consortium for

Telecommunications, Italy
Claus Pahl Dublin City University, Ireland
Michael A. Palis Rutgers University, USA
George Pallis University of Cyprus, Cyprus
David Paul The University of Newcastle, Australia
Juan Fernando Perez Imperial College London, UK
Dana Petcu West University of Timisoara, Romania
Giovanna Petrone University of Turin, Italy
Jean-Marc Pierson Université Paul Sabatier, Toulouse 3, France
Agostino Poggi University of Parma, Italy
Antonio Puliafito Università degli Studi di Messina, Italy
Juha Puustjärvi University of Helsinki, Finland
Li Qi Research Institute of Internet of Things,

The Third Research Institute of MPS, China
Francesco Quaglia Sapienza Università di Roma, Italy
Arcot Rajasekar University of North Carolina at Chapel Hill, USA
Arkalgud Ramaprasad University of Miami, USA
Manuel Ramos-Cabrer University of Vigo, Spain
Nadia Ranaldo University of Sannio, Italy
Andrew Rau-Chaplin Dalhousie University, Canada
Christoph Reich Hochschule Furtwangen University, Germany
Alexander Reinefeld Zuse Institute Berlin, Germany
Norbert Ritter University of Hamburg, Germany
Tarcísio da Rocha Universidade Federal de Sergipe, Brazil
Luis Rodero-Merino Galician Research and Development Center in

Advanced Telecomunications (GRADIANT), Spain
Jonathan

Rouzaud-Cornabas
CNRS/Inria/Université de Lyon/ENS Lyon, France

Rizos Sakellariou University of Manchester, UK
Elena Sanchez-Nielsen Universidad De La Laguna, Spain
Patrizia Scandurra University of Bergamo, Italy
Erich Schikuta Universität Wien, Austria
Lutz Schubert Ulm University, Germany

Organization XI

Michael Schumacher University of Applied Sciences Western Switzerland,
Switzerland

Wael Sellami Faculty of Sciences Economics and Management, Sfax,
Tunisia

Giovanni Semeraro University of Bari Aldo Moro, Italy
Carlos Serrao ISCTE-IUL, Portugal
Armin Shams Sharif University of Technology, Iran,

Islamic Republic of
Keiichi Shima IIJ Innovation Institute, Japan
Adenilso da Silva Simão Universidade de São Paulo, Brazil
Marten van Sinderen University of Twente, The Netherlands
Richard O. Sinnott University of Melbourne, Australia
Frank Siqueira Universidade Federal de Santa Catarina, Brazil
Cosmin Stoica Spahiu University of Craiova, Romania
Josef Spillner Technische Universität Dresden, Germany
Satish Srirama University of Tartu, Estonia
Ralf Steinmetz Technische Universität Darmstadt, Germany
Burkhard Stiller University of Zürich, Switzerland
Yasuyuki Tahara The University of Electro-Communications, Japan
Domenico Talia University of Calabria and ICAR-CNR, Italy
Yoshio Tanaka National Institute of Advanced Industrial Science

and Technology, Japan
Cedric Tedeschi IRISA - University of Rennes 1, France
Gilbert Tekli Telecom St. Etienne, Lebanon
Joe Tekli Antonine University (UPA), Lebanon
Guy Tel-Zur Ben-Gurion University of the Negev (BGU), Israel
Vagan Terziyan University of Jyväskylä, Finland
Maria Beatriz Toledo State University of Campinas, Brazil
Orazio Tomarchio University of Catania, Italy
Johan Tordsson Umeå University, Sweden
Paolo Trunfio Università della Calabria, Italy
Francesco Tusa University College London, UK
Astrid Undheim Telenor ASA, Norway
Geoffroy Vallee Oak Ridge National Laboratory, USA
Kurt Vanmechelen Universiteit Antwerpen, Belgium
Luis M. Vaquero HP Labs, UK
Athanasios Vasilakos University of Western Macedonia, Greece
Massimo Villari University of Messina, Italy
Sabrina de Capitani di

Vimercati
Università degli Studi di Milano, Italy

Bruno Volckaert Ghent University, Belgium
Hiroshi Wada NICTA, Australia
Maria Emilia M.T. Walter University of Brasilia, Brazil
Chen Wang CSIRO ICT Centre, Australia
Dadong Wang CSIRO, Australia
Martijn Warnier Delft University of Technology, The Netherlands

XII Organization

Marco Winckler University Paul Sabatier (Toulouse 3), France
Jan-Jan Wu Academia Sinica, Taiwan
Hany F. El Yamany Suez Canal University, Egypt
Bo Yang University of Electronic Science and Technology

of China, China
Ustun Yildiz University of California, San Diego, USA
Michael Zapf Georg Simon Ohm University of Applied Sciences,

Germany
Wolfgang Ziegler Fraunhofer Institute SCAI, Germany

Additional Reviewers

Laeeq Ahmed PDC, Royal Institute of Technology, Sweden
Christophe Bobineau Grenoble Institute of Technology, France
Damien Borgetto Institut de Recherche en Informatique de Toulouse

(IRIT), France
Philip Church Deakin University, Australia
José Cordeiro Polytechnic Institute of Setúbal/INSTICC, Portugal
Alevtina Dubovitskaya HES-SO Valais Wallis, EPFL, Switzerland
Eugen Feller Inria, France and Lawrence Berkeley National Lab,

USA
Antonios Gouglidis University of Macedonia, Greece
Katarina Grolinger Western University, Canada
Christos Grompanopoulos University of Macedonia, Greece
Leo Iaquinta University of Milano-Bicocca, Italy
Sotiris Kotsiantis Educational Software Development Laboratory,

University of Patras, Greece
Wubin Li Umeå University, Sweden
Giovanni Maccani National University of Ireland Maynooth, Ireland
Ketan Maheshwari Argonne National Laboratory, USA
Martin Meyer Dublin City University, Ireland
Cataldo Musto Università degli studi di Bari, Italy
P.-O. Östberg Umeå University, Sweden
Nikos Parlavantzas IRISA, France
Plamen Petkov Dublin City University, Ireland
Eduardo Roloff UFRGS, Brazil
Petter Svärd Umeå University, Sweden
Luis Tomas Umeå University, Sweden

Invited Speakers

Helge Meinhard, CERN, IT Department, Switzerland
Paulo Gonçalves, Inria-DANTE, France
Ignacio Martín Llorente, OpenNebula Director and CEO and Full Professor at UCM,

Spain

Organization XIII

Contents

Invited Paper

A Cloud for Clouds: Weather Research and Forecasting on a Public
Cloud Infrastructure. 3

J.L. Vázquez-Poletti, D. Santos-Muñoz, I.M. Llorente, and F. Valero

Papers

Semantic Generation of Clouds Privacy Policies . 15
Hanene Boussi Rahmouni, Kamran Munir, Marco Casassa Mont,
and Tony Solomonides

Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions. . . . 31
Paolo Bonacquisto, Giuseppe Di Modica, Giuseppe Petralia,
and Orazio Tomarchio

An Economic Model for Utilizing Cloud Computing Resources via Pricing
Elasticity of Demand and Supply . 47

Soheil Qanbari, Fei Li, Schahram Dustdar, and Tian-Shyr Dai

Reducing Complexity in Service Development and Integration 63
Per-Olov Östberg and Niclas Lockner

Generating Secure Service Compositions . 81
Luca Pino, George Spanoudakis, Andreas Fuchs, and Sigrid Gürgens

A Scalable Monitor for Large Systems. 100
Mauro Andreolini, Marcello Pietri, Stefania Tosi,
and Riccardo Lancellotti

A Data Location Control Model for Cloud Service Deployments 117
Kaniz Fatema, Philip D. Healy, Vincent C. Emeakaroha,
John P. Morrison, and Theo Lynn

From Regulatory Obligations to Enforceable Accountability Policies
in the Cloud . 134

Walid Benghabrit, Hervé Grall, Jean-Claude Royer, Mohamed Sellami,
Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen,
Anderson Santana De Oliveira, and Karin Bernsmed

Context-Aware Provisioning and Management of Cloud Applications 151
Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann,
and Matthias Wieland

http://dx.doi.org/10.1007/978-3-319-25414-2_1
http://dx.doi.org/10.1007/978-3-319-25414-2_1
http://dx.doi.org/10.1007/978-3-319-25414-2_2
http://dx.doi.org/10.1007/978-3-319-25414-2_3
http://dx.doi.org/10.1007/978-3-319-25414-2_4
http://dx.doi.org/10.1007/978-3-319-25414-2_4
http://dx.doi.org/10.1007/978-3-319-25414-2_5
http://dx.doi.org/10.1007/978-3-319-25414-2_6
http://dx.doi.org/10.1007/978-3-319-25414-2_7
http://dx.doi.org/10.1007/978-3-319-25414-2_8
http://dx.doi.org/10.1007/978-3-319-25414-2_9
http://dx.doi.org/10.1007/978-3-319-25414-2_9
http://dx.doi.org/10.1007/978-3-319-25414-2_10

A Distributed Cloud Architecture for Academic Community Cloud 169
Shigetoshi Yokoyama and Nobukazu Yoshioka

New Governance Framework to Secure Cloud Computing 187
Ahmed Shaker Saidah and Nashwa Abdelbaki

Towards Modelling Support for Multi-cloud and Multi-data
Store Applications . 200

Marcos Aurélio Almeida da Silva and Andrey Sadovykh

Experimenting with Application-Based Benchmarks on Different Cloud
Providers via a Multi-cloud Execution and Modeling Framework 213

Athanasia Evangelinou, Nunzio Andrea Galante, George Kousiouris,
Gabriele Giammatteo, Elton Kevani, Christoforos Stampoltas,
Andreas Menychtas, Aliki Kopaneli, Kanchanna Ramasamy Balraj,
Dimosthenis Kyriazis, Theodora Varvarigou, Peter Stuer,
Leire Orue-Echevarria Arrieta, Gorka Mikel Echevarria Velez,
and Alexander Bergmayr

Author Index . 229

XVI Contents

http://dx.doi.org/10.1007/978-3-319-25414-2_11
http://dx.doi.org/10.1007/978-3-319-25414-2_12
http://dx.doi.org/10.1007/978-3-319-25414-2_13
http://dx.doi.org/10.1007/978-3-319-25414-2_13
http://dx.doi.org/10.1007/978-3-319-25414-2_14
http://dx.doi.org/10.1007/978-3-319-25414-2_14

Invited Paper

A Cloud for Clouds: Weather Research
and Forecasting on a Public Cloud Infrastructure

J.L. Vázquez-Poletti1(B), D. Santos-Muñoz2, I.M. Llorente1, and F. Valero3

1 Departamento de Arquitectura de Computadores y Automática,
Facultad de Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain

jlvazquez@fdi.ucm.es
2 Agencia Estatal de Meteoroloǵıa, 28071 Madrid, Spain

3 Departamento de F́ısica de la Tierra, Astronomı́a y Astrof́ısica II,
Facultad de Ciencias F́ısicas, Universidad Complutense de Madrid,

28040 Madrid, Spain

Abstract. The Weather Research & Forecasting (WRF) Model is a high
performance computing application used by many worldwide meteoro-
logical agencies. Its execution may benefit from the cloud computing
paradigm and from public cloud infrastructures in particular, but only if
the parameters are chosen wisely. An optimal infrastructure by means of
cost can be instantiated for a given deadline, and an optimal infrastruc-
ture by means of performance can be instantiated for a given budget.

1 Introduction

Cloud computing allows elastic, dynamic and on-demand provision of resources.
Many applications, especially pertaining to the high performance computing
area, have seen in the cloud a great ally for their optimal execution [1]. The
appearance of public cloud providers, offering cloud services and charging only
by usage, has created an interesting scenario where certain processes can be
externalized, reducing the overall costs considerably [2].

However, the migration of scientific applications to public cloud infrastruc-
tures can be challenging. An example is the optimal selection of the provision
parameters by means of cost and performance. An optimal computing perfor-
mance setup will correspond to a specific budget and vice versa. With this
in mind, we provide the optimal parameters for the execution of the Weather
Research & Forecasting Model (WRF) on a public cloud infrastructure such as
Amazon Web Services.

The present contribution starts with an overview of WRF in the next Section,
followed by a short discussion on the use of public cloud infrastructures in Science
(Sect. 3). Then, our approach for this particular problem is described in Sect. 4
and the paper ends with some conclusions.

This research was supported by the following projects: ServiceCloud (MINECO
TIN2012-31518), MEIGA-METNET PRECURSOR (AYA201129967C0502) and
Desarrollo y evaluacin de tcnicas de prediccin por conjuntos de eventos meteorolgicos
extremos (MINECO CGL2011-25327).

c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-25414-2 1

4 J.L. Vázquez-Poletti et al.

2 A Model to Forecast them All

The Weather Research & Forecasting (WRF) modelling system [3,4] is the result
of an effort conducted by a collaborative partnership of different research agen-
cies and universities to provide a next-generation data assimilation system and
forecast model that advances both the understanding and prediction of mesoscale
weather, accelerating the transfer of research advances into operation.

Two dynamical cores and data assimilation systems are continuously devel-
oped to create a state-of-the-art modelling system: the Advanced Research WRF
(ARW) [3], supported by the NCAR Mesoscale and Microscale Meteorology Divi-
sion, and the WRF-NMM (NMM)1, supported by the Developmental Testbed
Center (DTC).

WRF is designed to be a portable, flexible, and state-of-the-art code, espe-
cially efficient when executed in a massively parallel computing environment. It
offers various physics options and can be used in a broad spectrum of applications
across scales, ranging from meters to thousands of kilometers. It is currently used
in many worldwide meteorological agencies and adopted by a huge community
of users (over 20,000 in over 130 countries).

Several works have been conducted on WRF and other models from a mete-
orological point of view [4]. Also, the computational cost of high resolution sim-
ulations [5] and the ensemble prediction systems [6] have been studied. The
execution of WRF is a typical high performance computing problem [7,8]. More-
over, different technologies ranging from multi-core computing clusters [9] to
GPU [10] have been used.

However, the execution of WRF on cloud computing infrastructures has not
been studied yet. As it will be explained in the next section, a specific type of
these infrastructures offer an interesting environment. This is because cost, a
metric that has gained much relevance nowadays, is managed in a different way.

3 Public Clouds for Science

Public cloud infrastructures are those where the bare metal resources are main-
tained by a different institution than that using their resources. A public cloud
provider usually charges the usage of its services by unit of time, having to take
care of the physical infrastructure on which their cloud is built.

This pay as you go model allows the user to scale the required services while
sticking to a given budget. However, public clouds do not offer control of the
lower layers, so providers make the users choose between preconfigured sets of
services.

Many scientific applications have benefited from the usage of public cloud
infrastructures [11], specially those pertaining to the high performance computing
area, where the required physical machines needed to palliate the computational
peaks that break the budget [12]. Even, the usage of a physical infrastructure could
be discouraged at all depending on the size and type of computational problem to
be solved [13].
1 http://www.dtcenter.org/wrf-nmm/users/docs/user guide/V3/.

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/

A Cloud for Clouds: Weather Research and Forecasting 5

Executing scientific applications on a public cloud brings up some challenges
that may discard this solution. The first one is about porting the application
to the new environment. Although all architectures may be virtualized, other
requirements could not be satisfied by a given provider. Moreover, a vendor
lock-in may occur if there are no alternatives to the chosen infrastructure, or
moving to another provider represents a great effort.

Application data security is a great challenge. The user has not total con-
trol of the physical machine where the instances are running and the data is
transmitted over the Internet, where the connection can be eavesdropped.

Another challenge is data transfer by means of bandwidth and price. A great
bottleneck in the execution of the application may appear if the data repository
cannot be moved to the public cloud infrastructure.

The same applies to the components involved in the overall process. The level
of parallelism could be increased and the resulting tasks could be distributed,
but network latencies may decrease the application performance.

An optimal selection of provision parameters is needed once these challenges
have been overcome. These parameters cannot pursue a unique solution by means
of cost and performance, but a compromise between the two metrics.

In the present study we have worked at the lowest level of the cloud service
model (Infrastructure as a Service) by using virtual machines provided by Ama-
zon Web Services. Additionally relied on the next layer (Platform as a Service)
for automatic node deployment.

4 Bringing the Clouds on the Cloud

The chosen version of WRF-ARW was 3.4.1, based on the forecast system physics
suite run operationally at the National Centers for Environmental Prediction
(NCEP). For our study we compiled it with the Distributed Memory and Mes-
sage Passing Interface (MPI) option.

The next Section explains the differences between two data sets used to feed
WRF and therefore provide different computational results. Section 4.2 describes
the used infrastructure, and Sect. 4.3 shows and discusses the results.

4.1 A Tale of Two Models

Two different data sets pertaining to the most well-know and state-of-the-art
global forecast systems have been used to run WRF: the Improved Forecast
System from the European Centre for Medium-Range Weather Forecast (IFS-
ECMWF) and the Global Forecast System from the National Center for Envi-
ronmental Predictions (GFS-NCEP). Both models have different configurations
and characteristics for producing realistic weather forecast.

The target area for this study has a resolution of 5× 5 km (horizontal) and
28 levels (vertical), covering the Iberian Peninsula with a 301× 250 grid points
mesh. The simulations were carried out on a single run (starting at 00 UTC)
with a 48-h forecast horizon.

6 J.L. Vázquez-Poletti et al.

Fig. 1. Integration domains for GFS-NCEP global model data. The inner domain is
the common one between WRF simulations initialized by both global models.

Table 1. Used Amazon EC2 instance characteristics. One EC2 Compute Unit (ECU)
provides the equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon
processor.

Type Family vCPU ECU Memory (GB) Storage (GB) Network perf

m1.small General 1 1 1.7 1× 160 Low

cc2.8xlarge Compute 32 88 60.5 4× 840 10 Gigabit

m2.4xlarge Memory 8 26 68.4 2× 840 High

Two different commercial policies are maintained by NCEP and ECMWF.
Meanwhile the data for GFS-NCEP are allocated in a public server, the ECMWF
has established a year cost for the use of the IFS-ECMWF data, which is
$207,002.19 for this particular study.

The spatial extension of the IFS-ECMWF data has been selected to cover
the outer domain in Fig. 1. Although it only feeds the inner domain in this study,
the large spatial area coverage allows generating other integration domains over
Europe and Northern Africa that could be interesting for other meteorological
forecast areas.

4.2 Cloud Infrastructure

As stated before, we have chosen Amazon Web Services and, in particular, we
relied on the Elastic Compute Cloud service, which focuses on the provision of
virtual machines (instances).

A Cloud for Clouds: Weather Research and Forecasting 7

Fig. 2. Examples of both cluster types deployed in Amazon EC2 and used during the
experiments.

From the large list of offered instance types, we took into consideration those
from Table 1. Hourly usage prices are $0.06 for m1.small, $2.40 for cc2.8xlarge
and $3.50 for m2.4xlarge.

In order to deploy computing clusters in Amazon, we used StarCluster2, a
PaaS solution that allows the automation and simplification of the building,
configuration and management of Amazon EC2 instances. As shown at Fig. 2,
two different clusters with variable number of nodes were deployed for running
the experiments.

4.3 Computational Results

Figure 3 shows the execution times when using model data types on both cluster
types with variable number of nodes. The cc2.8xlarge cluster scales worse as
execution time is increased with more than 4 computing nodes. On the other
hand, execution time with the m2.4xlarge cluster is decreased when adding nodes
but seems to stabilize with the highest number used in the experiments.

Another interesting aspect is that the same number of m2.4xlarge instances
team up less processor cores than using cc2.8xlarge ones (see Table 1), but exe-
cution times are the lowest while using the same data types.

This behavior is justified by the high I/O properties of the m2.4xlarge
instances. Being memory oriented, they totally overcome the lack of processors
compared with the cc2.8xlarge ones.
2 http://star.mit.edu/cluster/.

http://star.mit.edu/cluster/

8 J.L. Vázquez-Poletti et al.

T
im

e
(h

)

Instances
 7

 2

ECMWF cc2.8xlarge

 3

 4

 5

 6

 1 2 3 4 5 6 8

GFS cc2.8xlarge
GFS m2.4xlarge

ECMWF m2.4xlarge

 1

Fig. 3. Comparison of execution times for GFS and ECMWF with different number
of Amazon EC2 instances.

On the other hand, execution times with different data models change dra-
matically from one instance type to the other. While in the m2.4xlarge cluster
the differences are minor, using the free data set (GFS) produces higher execu-
tion times in the other cluster.

Figure 4 shows the execution costs for each proposed solution categorized by
data set and instance type. These costs correspond to those charged by Amazon
per hour and used instance, which were specified in the previous section.

The execution costs evolve almost in the same way as the execution times
in Fig. 3. However, the inflection point is moved from 4 computing nodes to 5.

C
os

t (
$)

Instances
 7

 20

ECMWF cc2.8xlarge

 40

 60

 80

 100

 120

 1 2 3 4 5 6 8

GFS cc2.8xlarge
GFS m2.4xlarge

ECMWF m2.4xlarge

 0

Fig. 4. Comparison of execution costs for GFS and ECMWF with different number of
Amazon EC2 instances.

A Cloud for Clouds: Weather Research and Forecasting 9

C
/P

Instances
 7

 100

ECMWF cc2.8xlarge

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 8

GFS cc2.8xlarge
GFS m2.4xlarge

ECMWF m2.4xlarge

 0

Fig. 5. Comparison of C/P values for GFS and ECMWF with different number of
Amazon EC2 instances.

Before it, the highest costs correspond to the m2.4xlarge cluster, independently
of the used data set. Then, they turn to produce the lowest costs. In average,
the ECMWF data set is the one producing a fair cost over the time.

The values shown at Fig. 5 correspond to a metric introduced in [3.2] that
associates cost and performance (C/P) and provides another point of view while
deciding which is the optimal infrastructure for executing WRF. This metric is
obtained by multiplying the infrastructure cost and the total execution time.

Being the best infrastructure that producing the lowest C/P value, the
cc2.8xlarge cluster provides better results below 5 machines. The ECMWF data
set is the optimal no matter which cluster is. However, the difference with GFS
is reduced when moving to the m2.4xlarge cluster.

C
os

t (
$)

Instances

GFS cc2.8xlarge

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6

GFS m2.4xlarge

ECMWF m2.4xlarge

 20

 0
 7 8

ECMWF cc2.8xlarge

Fig. 6. Comparison of execution costs for GFS and ECMWF with different number of
Amazon EC2 instances.

10 J.L. Vázquez-Poletti et al.

C
/P

Instances
 7

 100

ECMWF cc2.8xlarge

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 8

GFS cc2.8xlarge
GFS m2.4xlarge

ECMWF m2.4xlarge

 0

Fig. 7. Comparison of C/P values for GFS and ECMWF with different number of
Amazon EC2 instances.

As explained before, using the ECMWF data set is not free. Its annual fee is
$207, 002.19 when requested by a non-research purposes (VAT included).

In order to integrate the license cost in our study, we calculated the hourly
fee of the data set, which is $23.61. This way, Fig. 6 shows the new comparison
of execution costs.

As it can be seen, the license price has a dramatic effect in the compared
to the previous comparison (Fig. 4). There is no single setup in which using
the ECMWF data set is cheaper than GFS, with the exception of an 8 sized
m2.4xlarge cluster.

On the other hand, Fig. 7 shows the new comparison of C/P values. This time,
the GFS data set turns to be optimal when used in both a cc2.8xlarge cluster (1
to 4 nodes) and the m2.4xlarge cluster (5 to 8 nodes). The best setup when using
the ECMWF data set is the m2.4xlarge cluster with no less than 6 nodes.

5 Conclusions

Cloud computing has been postulated as a great aid for applications demanding
HPC power. Nowadays, the cloud and in particular public infrastructures have
provided solutions to a great number of applications from a wide range of areas.
However, the cloud offers a new level of indetermination when deciding the best
execution parameters.

Along the present contribution we have provided experimental results of exe-
cuting WRF, a meteorological HPC application, on the Amazon EC2 public
cloud infrastructure. We have identified the optimal execution parameters by
means of performance, cost and a metric that relates both, when considering
different decision elements. These comprise different data sets and the instance
types, throwing interesting experimental results that allow a given meteorologi-
cal agency to understand better the elements to consider when externalizing the
execution of WRF to a public cloud provider.

A Cloud for Clouds: Weather Research and Forecasting 11

For future work we have two main directions. The first one is to provide a
model that will allow to choose between the cloud and a physical infrastructure,
like in [13], profiling the most used hardware setups done by meteorological
agencies. The second direction is to provide an HTC cloud execution model for
WRF, assuming a continuous execution with deadlines.

References

1. Deelman, E., Juve, G., Malawski, M., Nabrzyski, J.: Hosted science: managing
computational workflows in the cloud. Parallel Process. Lett. 23, 14 (2013)

2. Alford, T., Morton, G.: The economics of cloud computing (2009). http://www.
boozallen.com/insights/insight-detail/42656904

3. Skamarock, W., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M.G.,
Huang, X., Wang, W.: A description of the Advanced Research WRF version 3.
Technical report, National Center for Atmospheric Research (2008)

4. Kieran, A., Santos-Munoz, D., Valero, F.: Comparison of wind speed forecasts from
MM5 and WRF ARW ensemble prediction systems over the Iberian Peninsula. In:
Proceedings of 12th WRF Users’ Workshop (2012)

5. Martin, M.L., Santos-Munoz, D., Morata, A., Luna, M.Y., Valero, F.: An objetively
selected case heavy rain event in the Western Mediterranean Basin: a study through
diagnosis and Numerical Simulations. Atmos. Res. 81, 187–205 (2006)

6. Santos-Munoz, D., Martin, M.L., Valero, F., Morata, A., Pascual, A.: Verification
of a short-range ensemble precipitation prediction system over Iberia. Adv. Geosci.
25, 55–63 (2010)

7. Michalakes, J., Chen, S., Dudhia, J., Hart, L., Klemp, J., Middlecoff, J.,
Skamarock, W.: Development of a next generation regional weather research and
forecast model. Developments in Teracomputing. In: Proceedings of 9th ECMWF
Workshop on the Use of High Performance Computing in Meteorology (2001)

8. Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W.,
Wang, W.: The weather reseach and forecast model: software architecture and
performance. In: Proceedings of 11th ECMWF Workshop on the Use of High Per-
formance Computing in Meteorology (2004)

9. Shainer, G., Liu, T., Michalakes, J., Liberman, J., Layton, J., Celebioglu, O.,
Schultz, S.A., Mora, J., Cownie, D.: Weather Research and Forecast (WRF) model
performance and profiling analysis on advanced multi-core HPC clusters. In: Pro-
ceedings of 11th LCI International Conference on High-Performance Clustered
Computing (2008)

10. Michalakes, J., Vachharajani, M.: GPU acceleration of numerical weather predic-
tion. Parallel Process. Lett. 18, 531–548 (2008)

11. Sterling, T., Stark, D.: A high-performance computing forecast: partly cloudy.
Comput. Sci. Eng. 11, 42–49 (2009)

12. Vázquez-Poletti, J.L., Barderas, G., Llorente, I.M., Romero, P.: A model for effi-
cient onboard actualization of an instrumental cyclogram for the mars metnet
mission on a public cloud infrastructure. In: Jónasson, K. (ed.) PARA 2010, Part
I. LNCS, vol. 7133, pp. 33–42. Springer, Heidelberg (2012)

13. Guerrero, G.D., Wallace, R.M., Vazquez-Poletti, J.L., Cecilia, J.M., Garcia, J.M.,
Mozos, D., Perez-Sanchez, H.: A performance/cost model for a CUDA drug discov-
ery application on physical and public cloud infrastructures. concurrency Comput.
Pract. Experience 26, 1787–1798 (2013)

http://www.boozallen.com/insights/insight-detail/42656904
http://www.boozallen.com/insights/insight-detail/42656904

Papers

Semantic Generation of Clouds
Privacy Policies

Hanene Boussi Rahmouni1,3(&), Kamran Munir1,
Marco Casassa Mont2, and Tony Solomonides4

1 Centre for Complex Cooperative Systems, Department of Computer Science
and Creative Technologies, University of the West of England, Bristol, UK

{hanene2.rahmouni,kamran2.munir}@uwe.ac.uk
2 Hewlett-Packard Labs, Cloud and Security Lab, Bristol, UK

marco_casassa-mont@hp.com
3 Digital Security Research Unit, Sup’Com,

University of Carthage, Tunis, Tunisia
4 Center for Biomedical Research Informatics (CBRI) Research Institute,

NorthShore University Health System, Evanston, USA
asolomonides@northshore.org

Abstract. The governance of privacy and personal information on cloud envi-
ronments is challenging and complex. Usually many regulatory frameworks
intervene to reflect diverse privacy wishes from several stakeholders. This
includes data owners, data and services providers and also the end users.
Focusing mainly on medical domains, this issue is particularly important due to
the sensitivity of health related data in international data protection law. It is
therefore essential to integrate heterogeneous privacy requirements in a semantic
model and rules. Thereafter, overlaps, contradictions and similarities of privacy
wishes could be detected and a final access control context would be captured
before it is finally mapped to clouds operational policies. This paper describes a
ontology-based semantic model of privacy requirements along with a logical
formalism for mapping SWRL (Semantic Web Rule Language) privacy rules to a
policy language that is implementable on clouds environments namely XACML.
The underline implementation requirements for our formalism will be also
explained.

Keywords: Privacy policies � OWL � SWRL � XACML � Cloud

1 Introduction

The protection of patients’ privacy in a pan-European cloud infrastructure is chal-
lenging and requires combined solutions from legislation, organisational and social
frameworks. In this regards, a European public cloud infrastructure is still a challenging
goal to attend [1], but necessary for those nations wishing to collaborate for the
advancement of medical research and public health. This challenge arises primarily due
to the lack of harmonisation in legal frameworks governing privacy and data protection
in Europe, not least the European Data Protection directive 95/46/EC [2, 3, 4]. For
example, consent is not handled in the same way in Italy as in the UK. In Italy, consent

© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 15–30, 2015.
DOI: 10.1007/978-3-319-25414-2_2

could be provided for a broad purpose of data processing; whereas in the UK, obtaining
a specific consent is a legal obligation [5, 6]. On top of this, there are significant
conceptual and technical issues in-particular when expressing, interpreting and deriving
operational consequences out of high-level policies. Finally, despite the attention that
has been paid to security concerns for public and private clouds; such as infrastructure
integrity and access control (typically authentication and authorization), this does not
naturally extend to cover privacy concerns (often requiring context and purpose
specification). Although they are newly emerging paradigms, clouds are very similar in
many aspects to other distributed computing environments. Particularly, clouds are
similar to large-scale systems that are based on virtualised technologies such as Grid
systems [7]. These systems have high capabilities for sharing data and resources
through the Internet. However they often fall short of providing measurable proof of
compliance, which is required throughout the complete data sharing process. This is
different than the case of traditional centralised systems, where the data security focus
was directed only towards data access transactions. As such, it is an on-going challenge
to search for ways to narrow the gaps between the various legal, technical, social and
organizational aspects of the problem.

The approach presented in this paper is an attempt to show that the use of Semantic
Web technologies [8] can allow both the specification and enforcement of privacy
requirements that traditional access control languages and mechanisms cannot achieve.
We start from the high-level regulations that govern privacy and data protection in
Europe and we progress towards the integration of privacy constraints interpreted from
them within access controls specifications. For this matter, policies’ decisions cannot be
deduced from data identifiers and access control conditions that are evaluated against
their attributes’ values. Instead, the evaluation of privacy policies requires more
information about resources; and hence, we face the need to record metadata about the
protected resources in a computational infrastructure. We believe, the existing access
control solutions for the cloud need to evolve in order to allow for such integration and
in order to enable enforcement of the full range of privacy constraints.

Although semantic based languages can adequately capture and conceptually
specify the contexts, facts and rules necessary for reasoning about data manipulation
obligations, it is rather not suitable for implementation in a cloud context. This is due to
the necessity for answering two major clouds requirements namely performance and
standardisation. In order to enable better interoperability, while exchanging data in the
cloud, it is important to use standard data management languages and services. This
includes both standard access control and security languages [7]. Moreover, the use of
semantic access control languages requires customised enforcement architectures that
are different from the ones adopted on the cloud infrastructure and that are designed to
enforce policies specified in a standard format. A similar change might be very
expensive from the point of view of clouds services and infrastructure providers. In
order to be easily enforced at the cloud’s system-level, we suggest that the presented
policies should eventually be specified in a way that conforms to a widely adopted
policy language or standard. In particular, a standard that has proven efficiency in the
enforcement of privacy policies. Our choice is the eXtensible Access Control Mark-up
Language (XACML) [9]. It is worth mentioning; and in order to eliminate confusion,
that in the context of this work, we do not claim that XACML can handle privacy

16 H.B. Rahmouni et al.

constraints in exactly the same way as it handles security constraints. The limitations of
XACML, both as a policy language and as an enforcement mechanism, have been
detailed in the literature [10, 11, 12]. Also additional limitations are presented in Sect. 3
of this paper. In this work, we seek to overcome some of these limitations. For a note to
the readers, additional effort was also made in later version of XACML [30].

The remaining paper is organised as follows: Sect. 2 starts by clarifying the theory
presented in this paper in comparison and continuation to the allied work that we have
been doing previously in this domain. This Sect. 2 also clarifies the major contributions
presented in this paper. Section 3 presents a synopsis of the main technologies on
which we have based our privacy specification and enforcement approach, which are
presented in later Sects. 4, 5 and 6. In particular, the Sect. 4 discusses the SWRL-based
privacy policies specifications and Sect. 5 shows how they can be rewritten in a syntax
conforming to the XACML standard. In Sect. 6, formalism for mapping SWRL privacy
rules into XACML access controls is presented. This is followed by the requirements
and recommendations for implementing the projected formalism in Sect. 7; and finally,
the conclusions and relevant future orientations are presented in Sect. 8.

2 Semantic Modeling of Legal Privacy Requirements
for Access Controls

In [13, 14], we have described how Semantic Web technologies have been used to
classify the resources that we would like to protect. At that stage the resources were
specified using the metadata captured within an ontology. We have also shown in this
existing work, how different scenarios of data/resource sharing have been modelled
within the same ontology. In this paper, we describe extensions to the previous model
(with necessary metadata added) and extend the data sharing scenarios to include
privacy policy contexts. We then show how this allows the specification and editing of
privacy and access control policies in terms of existing concepts within the ontology.
There is research reported in the literature (such as [15, 16, 17]) that has looked at the
use of ontologies and Semantic Web technology in order to allow a better specification
and enforcement of security and authorisation policies. Among these, only the “Con-
sequence” project has looked at an approach that integrates requirements from
high-level policies through the means of controlled natural language [17]. This
approach translates high-level policies extracted from data sharing agreements into a
natural language-like formalism in order to allow enforceability. This work did not stop
at the control of access to data, but has rather focussed on ways of controlling any type
of data usage even after the data were shared with a party belonging to an external
domain. This functionality is worth further consideration and is discussed in the future
work section of this paper. In comparison, the actual status of our approach allows the
disclosure of data handling policies to external parties receiving personal data, but does
not enforce these policies within the receiver’s domain. However, the work in [17]
included little effort to integrate within access control policies, privacy requirements
that are interpreted from primary legislation (text law). It made rather a focus only on
traditional security services such as authorisation and the trust aspect of it. Hence this
approach couldn’t fit in a solution aiming for the big picture of regulatory compliance.

Semantic Generation of Clouds Privacy Policies 17

This is because usually traditional security requirements covers only a very specific
subset of jurisdictional requirements that are not general enough to cover any case of
data sharing that might arise in the future.

3 An Overview of SWRL and XACML

In this section, an overview of the semantic web rule language (SWRL) and the
extensible access control markup language XACML is presented. In this regard, an
analysis of their expressiveness capabilities and utility for enforcing privacy policies in
a cloud environment is also elaborated.

SWRL, the Semantic Web Rule Language (SWRL) [8] is based on a combination
of the OWL-DL [17] and some sublanguages of the Rule Mark-up Language (RuleML)
[18]. SWRL includes a high-level abstract syntax for Horn-like rules in both the
OWL-DL and OWL-Lite sublanguages of OWL [19]. The proposal extends the set of
OWL axioms to include Horn-like rules. It thus enables the rules to be combined with
an OWL knowledge base. Some model-theoretic semantics are given to provide the
formal meaning for OWL ontologies, including rules written in an abstract syntax.
With the combination of an XML syntax based on RuleML, the OWL XML Presen-
tation Syntax and an RDF [19] concrete syntax based on the OWL RDF/XML
exchange syntax, SWRL presents an illustration of the extension of description logic
into defeasible description logic [20]. This makes it a promising technology for the
modelling of regulations.

The proposed rules are of the form of an implication between an antecedent (body)
and a consequent (head). The intended meaning can be read as: whenever the condi-
tions specified in the antecedent hold, then the conditions specified in the consequent
must also hold. Both the antecedent (body) and consequent (head) consist of zero or
more atoms. An empty antecedent is treated as trivially true (i.e. satisfied by every
interpretation), so the consequent must also be satisfied by every interpretation; an
empty consequent is treated as trivially false (i.e., not satisfied by any interpretation), so
the antecedent must also not be satisfied by any interpretation. Multiple atoms are
treated as a conjunction. Note that rules with conjunctive consequents could easily be
transformed into multiple rules, each with an atomic consequent [21]. Atoms in these
rules can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where C is an
OWL description class, P is an OWL property, and x,y are either variables, OWL
individuals or OWL data values. It is easy to see that OWL DL becomes undecidable
when extended in this way as rules can be used to simulate role value maps [21].

XACML [9] is an XML specification and syntax for expressing policies controlling
the access to information through the Internet. It provides the enterprises with a flexible
and structured way of managing access to resources. The specification language is
based on a subject-target-action-condition policy syntax specified in an XML docu-
ment. As specified in the Fig. 1 [9] a Policy is composed of a Target, which identifies
the set of capabilities that the requestor must expose along with a set of rules some
Rules varying from one to many. Every Rule contains the specific facts needed for the
access control decision-making. It also has an evaluation Effect, which can be either
Permit or Deny. At policy evaluation time a policy combining algorithm is used to deal

18 H.B. Rahmouni et al.

with (permit/deny) conflicts that might arise in the rule decisions. A Target is com-
posed of four sub-elements: Subjects, Actions, Resources, and Environments. Beyond
what is described in the Fig. 1, each target category is composed of a set of target
elements, each of which contains an attribute identifier, a value and a matching
function. Such information is used to check whether the policy is applicable to a given
request. This could be specified in the condition section of a rule.

In most of the cases the language defines controls as a collection of attributes
relevant to a principle. It includes both conditional authorisation policies and policies to
specify post conditions such as notifications to data subject. Like other policies lan-
guages that are based on XML/XACML lacks the required semantics to allow for
semantic heterogeneity and interoperability, especially when managing data access
within environments that involve multiple organisations. The different data access
requests coming from users in different organisations might refer to the same data item
with different naming. Additional semantics are needed in order to allow semantic
alignment to the different terms used to describe the same data item [15]. Moreover
dealing with dynamic attributes such as the user’s age or hierarchical attributes for
example the user’s role requires some additional semantics and integrated reasoning
[22, 23, 24].

Fig. 1. XACMLv2’s data flow model.

Semantic Generation of Clouds Privacy Policies 19

4 A SWRL-Based Privacy Policy Specification

We have examined the legal privacy rules and obligation dictated in many jurisdic-
tional texts and we have noted that the rules are specified according to a specific
vocabulary describing many conceptual entities. These entities are usually associated
together in different combinations in order to build generic rules that could be modelled
in the form of if-then rule template. Following this assumption and similarly to the
work done in [31] that simplifies policies dictated by the Ontario’s Freedom of
Information and Protection of Privacy Act (FIPAA) [32, 33], we have expressed the
policies specified by European data protection text law in a more simplified way using
the different concepts that constitute its vocabulary. These concepts were captured in an
OWL ontology that we have described in the previous work [13, 14, 31]. The policies
were then matched to the rule template.

Privacy-Rule-Template:
If
[Context] and [Condition on User], [Condition on data], [Condition on Purpose],
[Condition on Other] (Including checking for privacy requirements)
Then
Allow [action] and Impose [Obligation]

The rule privacy-rule-template could be adapted and specialised, according to the
context of application, in order to represent privacy requirements in a case based
manner. On this basis, we have rewritten privacy policies interpreted from text law as
SWRL rules using the OWL classes and properties specified in our privacy ontology.
The rule conforms syntactically to the SWRL human readable syntax:

Antecedent Clause implies Consequence Clause
Or, in a different notation: Antecedent → Consequent
Adapting the rule to an access control policy format, it must conform to the fol-

lowing template:

Here we explain our SWRL privacy policies specification through a concrete rule
example and a cloud data-sharing scenario:

Example: Purpose Compatibility Rule: In order to clearly explain our approach
we start by specifying an example of high-level policy extracted from European pri-
vacy legislation. The policy is further taken trough series of transformations towards an
operational status in the format of XACML syntax. In this example, we show how we
model the privacy policy stating [4] that:

“A user may access a patient mammogram for a stated purpose provided that the patient has
given informed consent for a specific processing purpose and the stated processing purpose is
compatible with the purpose consented for”.

We present below the application of the generic template of SWRL privacy rules to
this rule example. For this we adopt a human readable SWRL syntax.

20 H.B. Rahmouni et al.

We denote by (R, T, Con, E and Ob) respectively the Rule elements (Rule,
Target, Conditions, Effect and Obligations) described in the abstract
syntax of privacy rules given above. The rule template is therefore rewritten as follows:

In order to implement our rule example, we need to apply it to a concrete
data-sharing scenario. For this we present the example of data sharing in the cloud
described in Fig. 2. The scenario we have chosen describes a case of data sharing in the
health domain. We assume that two medical doctors belonging each to a different
hospital in different European member states for example UK and Italy form the two
data sharing parties. To be more precise, one of the medical doctors would like to get a
second opinion on a patient’s Mammogram.

The data will be exchanged on a cloud platform and it is required that the cloud
security services could identify the right policy to apply in order to allow the sharing of
the data, but in a lawful way. Since we are looking at a pan-European context, it
wouldn’t be always the case that the data processing law is interpreted and imple-
mented in one member state in exactly the same way as in another. Stating as an
example, when processing health data for the purpose of medical research, the patient
consent must be a specific consent when referring to the law in the UK or France.
However consent could be broad or general consent when referring to an Italian law.

For this more context information should be provided in the privacy rules speci-
fication for the cloud security processes in order to be able to make the right decision. It
is therefore essential to indicate in the rule implementation the sender and receiver’s
locations and the member state from which the shared data comes. An instantiation of

Fig. 2. A cloud data-sharing scenario.

Semantic Generation of Clouds Privacy Policies 21

R in the context of the rule example and the cloud data-sharing scenario is then
interpreted in the Fig. 3.

In this SWRL rule example OWL properties and classes were used to describe the
different element of the privacy rule target T, for example hasSender is an owl object
property specifying the sender s involved in the data sharing ?x. Other properties are
also used to declare T including hasReceiver, hasPurpose for specifying the receiver of
the data and the purpose of sharing respectively. The OWL property concerning is used
to capture the resource being shared. Since the scenario involves the sharing of patient
?pt mammograms we have denoted the shared resource/object as ?m.

The second part of the rule antecedent are the conditions section and it shows the
constraints the target elements should satisfy in order to infer the effect and obligations
shown in the rule consequent section.

5 Mapping an Access Control SWRL Rule to an XACML
Conforming SWRL Rule

For easy mapping to an XACML rule, the SWRL rule has to be specified in terms of
attributes of only the generic entities that constitute an XACML Rule Target (see
above) and other elements that are used to specify the general policy that the rule in
question belongs to, e.g. the purpose of processing. In this regard, the OWL property:

Provided (Patient, Informed Consent)

is a property of the patient whose data is to be shared and indicates that the patient has
provided informed consent. The patient or the data subject is not one of the XACML
“Rule Target” components; therefore, we express the same condition in terms of
property of the class “O” (the resource or object. In our case it is the data the subject is
requesting access to). The result is presented in Table 1. Note that we do not need to
translate provided(?pt, InformedConsent) as we are not keeping constraints about
patients in the XACML version of the rule. For example, in the XACML conforming
SWRL Rule, the consent is an attribute of the object and not of the patient any more.

Fig. 3. Instantiation of the privacy rule template.

22 H.B. Rahmouni et al.

The rule described above is an extension or privacy aware version of traditional
access control rules that pays no significant attention to privacy constraints and obli-
gations. If specified in SWRL syntax, an example of this traditional access control rule
would look as shown in the following instantiation of the privacy rule template (Fig. 4).

The only constraints the rule above tests for before allowing the disclosure of the
data is the role of the subject or requestor. In this case, the role of the subject must be a
medical doctor of the patient whose data is to be disclosed.

XACML was designed to notate access control policies and to provide a reference
framework for their enforcement. Its major focus is on security policies, although
privacy is mentioned in the specification of version 2.0 [9]. It is verbose and complex
and still lacks expressiveness. The XACML version 3.0 however, seems to provide a
better privacy specification profile [30]. We have also noticed that some examples
included in the XACML privacy profile, which were supposed to specify a policy
compliant with the “specific and compatible purpose” privacy principle, in fact test for

Table 1. Logical mapping from SWRL rule to XACML conforming SWRL rule.

Fig. 4. Instantiation of the privacy rule template.

Semantic Generation of Clouds Privacy Policies 23

equality or matching of purposes rather than compatibility of purposes. We believe this
is due to the language’s lack of semantics and reasoning ability with regards to privacy
constraints on protected data. If this lack is not addressed, a straightforward mapping
from SWRL policies to XACML will not be possible. From the examples of the SWRL
access control and privacy rules presented earlier in this paper, we conclude that
privacy obligations should be specified for each rule as they are matched according to
the data sharing context that we declare to be unique for each rule. This is different
from the way obligations are specified in XACML. Obligations in XACML are related
to a policy and not to the individual rules that a policy is made up of. We have resolved
this problem by allowing each policy to include only one rule and its applicable
obligations. Indeed, this decision was already implicit at the time we designed our
SWRL privacy aware access control policies. For it, we decided to include one rule per
policy. In fact, dealing with more then one privacy obligation at once might require a
large amount of contextual information. Therefore, the equivalent SWRL rule would
become too long and less readable.

6 Mapping of an XML Conforming SWRL Rule
to an XACML Policy

In this section, we present an attempt to formalise a mapping of a SWRL rule to an
XACML policy.

There is some existing work that has looked at formalisms of XACML with many
purposes in mind such as in [25, 29, 27, 28, 29]. In particular, the work presented in
[25, 26] has started from a BNF representation of an XACML rule and has produced a
DL formalism that allows the mapping of an XACML rule to DL syntax. Our approach
takes into consideration the syntactic difference between DL and SWRL. SWRL is an
extension of OWL-DL that can be mapped to DL syntax. It has inherited Horn-like
propositional logic syntax from RuleML and this characteristic would influence the
deviation from a DL formalism provided in [25, 26]. The mapping process has already
started from the previous section when we have transformed our SWRL access control
rule into an XACML conforming representation. This was done by translating all the
properties occurring in the antecedent and consequent to properties applied only on
concepts that could be identified in the set of entities that occur in the XACML
language model. After the transformation, we suggest that our SWRL access control
rules can be generalised under the following formalism.

Formalism1:

We denote by:

• R: an OWL concept representing an access control rule.
• Tgt: the target of a rule R that usually constitutes of the elements Subject, Object,

Action and Purpose.

24 H.B. Rahmouni et al.

• Con: the constraints to be imposed on the different elements of a target and that
should be satisfied in order for the decisions specified in the consequence clause to
be satisfied.

• Eft: the effect of a rule R that could be a Permit or Deny
• Ob: the set of obligations that could be associated with the rule R

Formalism 1 may be mapped to Formalism 2 as described below:

Formalism 2:

Where i, j and k are natural numbers ranging, respectively, over the number of rule
target elements (0..3), the number of properties in our ontology (0..n), and the number
of obligations that would be associated with the rule R (0..m), and where:

• ∧ with limits is the symbol for multiple conjunctions;
• Pd denotes an OWL property used for declaration of the target elements of a rule R;
• Pc denotes an OWL property used for specifying constraints on the elements

constituting a target of a rule;
• C represents a given class of our ontology with C0, C1, C2 and C3 representing

respectively the entities constituting the elements of a target of a rule in the order:
Subject, Object, Action and Purpose;

• Eft is an OWL property specifying the effect of a rule R, its value is a literal e where
e belongs to {permit, deny}.

Table 2 provides a one to one mapping of the entities constituting an XACML rule
and Formalism 2.

Table 2. Logical formalism of SWRL access control rules.

Semantic Generation of Clouds Privacy Policies 25

In order to be able to translate our SWRL rules to XACML rules we suggest
allowing a one to one mapping between our SWRL Formalism 2 and the BNF for-
malism of an XACML rule provided in [25, 26]. To achieve this, we have extended the
XACML BNF notation with the purpose element of a rule target and the rule obli-
gations clause. The mapping is described in Table 3.

Based on the above one to one mapping, we mapped the purpose compatibility
SWRL rule produced earlier to the XACML Rule presented in Fig. 5. In this rule,

we have chosen to name the sender and receiver specified previously in the cloud
scenario (Sect. 4) as Dr_House and Dr_Casa respectively. Other context variable from
the objet to be shared and the sharing purpose were also replaced with some values. We
have chosen M1 to indicate the mammogram being sent by Dr_House and the sending
purpose were specified as SecondOpinionOnTreatment.

Table 3. SWRL to XACML mapping

26 H.B. Rahmouni et al.

7 Mapping SWRL Rules to XACML Rules

In order to further automate the mapping of SWRL rules to XACML rules, we rely on
mapping templates where we can specify for each OWL property an equivalent
XACML attribute ID. Furthermore, we need a detailed one to one mapping between the
OWL axioms specifying conditions/constraints on the different elements of a rule target

<Rule RuleId = “1” Effect=”Permit”>
<Target>
<Subjects>< Attribute AttributeId=“Subject-Id” DataType= “String”>
<AttributeValue> Dr_House </attributeValue>
< Attribute AttributeId = “Location” DataType= “String”>
<AttributeValue> UK </attributeValue>
< Attribute AttributeId = “Receiver-Id” DataType= “String”>
<AttributeValue> Dr_Casa</attributeValue>
< Attribute AttributeId = “Receiver-Location” DataType= “String”>
<AttributeValue> Italy </attributeValue>
< Attribute AttributeId = “Role” DataType= “String”>
<AttributeValue> Doctor </attributeValue>
</Subjects>
<Resources>< Attribute AttributeId = “ResourceId” DataType= “String”>
<AttributeValue> M1</AttributeValue>
< Attribute AttributeId = “Consent” DataType= “Boolean”>
<AttributeValue> true</AttributeValue>
</Resources>
<Action> >< Attribute AttributeId = “Action-Id” DataType= “String”>
<AttributeValue>send</AttributeValue></Action>
<Purpose>
<Attribute AttributeId= “purpose-id” DataType=”String”>
<AttributeValue> SecondOpinionOnTreatment</AttributeValue>
</Attribute>
<Attribute AttributeId= “compatibleWith” DataType= “bag”>
</Attribute>
</Purpose>
</Target>
<Condition
<Function FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string-equal”/>
 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string-is-in”>

-- Consent-Purpose is the purpose for which the data subject has consented or the purpose for
which the data (Resource) is legally stored on the grid database we have specified this purpose as
an attribute of the resource in question--
<ResourceAttributeDesignator attributeId= Consent Purpose DataType = “string”/> BreastCan-
cerDiagnosisAndTreatment
</ResourceAttributeDesignator>
</Apply>
<Apply>
<PurposeAttributeDesignator attributeId= “CompatibleWith” DataType = “bag”/>
</Apply>
</Condition>
</Rule>

Fig. 5. Privacy aware XACML rule.

Semantic Generation of Clouds Privacy Policies 27

and the standard XACML functions that could be used as alternatives to these axioms
once applied on XACML attribute-ids.

In most of the cases, an XACML equality function/predicate would be the relevant
function to allow the translation of an OWL property constraint. The two operands of
the equality are first, the attribute_id that should hold the name of the OWL property
and second the attribute value that should be the same as the OWL property value.
XACML distinguishes between several equality checking functions depending on the
data types of the operands. The equality functions in XACML include string-equal,
Boolean-equal, Integer-equal and other types. Deciding on which one we need to select
is based on a mapping between the OWL data type of the property value and XACML
data types. If the property value is determined by an object property then an XACML
attribute matching function of type string should be used. If the property value is
determined by a data type property, then the XACML attribute matching function
should have the same type as the data type property value. The work presented in [25,
26] provides a detailed mapping of XACML data types to OWL data types. A reverse
mapping is needed in our case, since we are interested in mapping OWL axioms to
XACML conditions instead.

8 Summary and Future Work

We have used OWL and SWRL to model high level policies interpreted from European
and national data protection law as privacy aware access control policies. The high
expressiveness power of semantic web languages allowed the integration of privacy
requirements highlighted in text law such as requirements of consent and other safeguards
of patient rights as policy constraints. Additionally we have used mapping templates to
transform the Semantic Web access control policies into a de-facto and highly portable
standard of access control notably XACML which is used in clouds security infrastruc-
tures. Among many investigated scenarios we have chosen the “Medical Images
Exchange” example in order to validate the work. This permitted to conclude that the use
of ontologies and semantic technologies could provide relatively easy interpretation of
legislation at an operational level. Few challenges were faced when conducting this work
that we have overcome by mapping the SWRL privacy policies to XACML policies. An
interesting future work in this area for us is to produce an extended XACML enforcement
architecture that is able to adequate the added semantic layer for the SWRL to XACML
mapping task. This will require both an implementation of the mapping formalism and
testing it on the extended enforcement architecture. A java implementation of the SWRL
to XACML mapping tool is in progress.

References

1. Brandic, I., Dustdar, S., Anstett, T., Schumm, D., Leymann, F., Konrad, R.: Compliant
cloud computing (C3): architecture and language support for user-driven compliance
management in clouds. In: IEEE 3rd International Conference on Cloud Computing (2010)

28 H.B. Rahmouni et al.

2. EC.Directive 95/46/ECofthe European Parliament and of the Council (1995) (cited 2010).
http://ec.europa.eu/justice/policies/privacy/law/index_en.htm#directive

3. McCullagh, K.: Study of data protection: harmonization or confusion? In: Proceeding of the
21st BILETA Conference: Globalisation and Harmonisation in Technology Law. Malta
(2006)

4. Beyleveld, D., Townend, D., Rouillé-Mirza, S., Wright, J.: Implementation of the Data
Protection Directive in Relation to Medical Research in Europe. Ashgate Publishing
Limited, UK (2004). ISBN-10: 0754623696

5. Iversen, A., Liddell, K., Fear, N., Hotopf, M., Consent, W.S.: Confidentiality and the data
protection act. Br. Med. J. (Clin. Res. Ed.) 332(7534), 165–169 (2006)

6. Italian Personal Data Protection Code (2003). http://www.privacy.it/privacycode-en.html.
Legislative Decreeno. 196 of 30 June 2003 (cited 2012)

7. The Open Cloud Standards Incubator (OCSI): Architecture for Managing Clouds, White
Paper from the Open Cloud Standards Incubator 1.0, DMTF DSP-IS0102 (2010). http://
www.dmtf.org/standards/published_documents/DSP-IS0101_1.0.pdf

8. Horrocks, I., et al.: SWRL: a semantic web rule language combining OWL and RuleML
(2004). http://www.w3.org/Submission/SWRL/. Accessed 2013

9. OASIS XACML: eXtensible Access Control Markup Language (XACML), version 2.0
(2005). http://docs.oasisopen.org/xacml/2.0/XACML-2.0-OSNORMATIVE.zip

10. Casassa Mont, M., Crosta, S., Kriegelstein, T., Sommer, D.: PRIME architecture V2.
Deliverable D14.2.c. (2007). https://www.primeproject.eu/prime_products/reports/arch/pub_
del_D14.2.c_ec_WP14.2_v1_Final.pdf. Accessed 2014

11. Sommer, D., Casassa Mont, M., Pearson, S.: PRIME architecture V3. Deliverable 14.2.d
(2008). https://www.primeproject.eu/prime_products/reports/arch/pub_del_D14.2.d_ec_
WP14.2_v3_Final.pdf. Accessed 2014

12. Casassa Mont, M., Shen, Y., Kounga, G., Pearson, S.: EnCoRe project deliverable D2.1.
Technical Architecture for the First Realized Case Study [Online] (1.0) (2010). http://www.
encoreproject.info. Accessed June 2014

13. Rahmouni, H.B., Solomonides, T., Casassa Mont, M., Shiu, S.: Privacy compliance and
enforcement on European healthgrids: an approach through ontology. Philos. Trans. R. Soc.
368, 4057–4072 (2010)

14. Rahmouni, H.B., Solomonides, T., Casassa, M.M., Shiu, S., Rahmouni, M.A.: Modeldriven
privacy compliance decision support for medical data sharing in europe. Methods Inf. Med.
50(4), 326–336 (2011)

15. Muppavarapu, V., Chung, S.M.: Semantic-based access control for grid data resources in
open grid services architecture - data access and integration (OGSA-DAI). In: 20th IEEE
International Conference on Tools with Artificia lIntelligence (ICTAI 2008), Dayton, Ohio,
USA. IEEE Computer Society (2008)

16. Gowadia, V., Scalavino, E., Lupu, E., Aziz, B.: The consequence project, deliverable D3.1:
models and framework for meta-data generation and policy infrastructure (2008). http://
www.consequenceproject.eu/Deliverables_Y1/D3.1.pdf

17. Matteucci, I., Petrocchi, M., Sbodio, M.L.: CNL4DSA – a controlled natural language for
data sharing agreements. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, Sierre, Switzerland. ACM (2010)

18. Boley, H., et al.: Schema specification of RuleML 1.0 (2010). http://ruleml.org/1.0/.
Accessed 2012

19. Bechhofer, S., et al.: OWL web ontology language reference (2004). http://www.w3.org/TR/
owl-ref/. Accessed 2013

Semantic Generation of Clouds Privacy Policies 29

http://ec.europa.eu/justice/policies/privacy/law/index_en.htm%23directive
http://www.privacy.it/privacycode-en.html
http://www.dmtf.org/standards/published_documents/DSP-IS0101_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP-IS0101_1.0.pdf
http://www.w3.org/Submission/SWRL/
http://docs.oasisopen.org/xacml/2.0/XACML-2.0-OSNORMATIVE.zip
https://www.primeproject.eu/prime_products/reports/arch/pub_del_D14.2.c_ec_WP14.2_v1_Final.pdf
https://www.primeproject.eu/prime_products/reports/arch/pub_del_D14.2.c_ec_WP14.2_v1_Final.pdf
https://www.primeproject.eu/prime_products/reports/arch/pub_del_D14.2.d_ec_WP14.2_v3_Final.pdf
https://www.primeproject.eu/prime_products/reports/arch/pub_del_D14.2.d_ec_WP14.2_v3_Final.pdf
http://www.encoreproject.info
http://www.encoreproject.info
http://www.consequenceproject.eu/Deliverables_Y1/D3.1.pdf
http://www.consequenceproject.eu/Deliverables_Y1/D3.1.pdf
http://ruleml.org/1.0/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

20. Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining description logic and defeasible
logic for the semantic web. In: Antoniou, G., Boley, H. (eds.) Rules and Rule Markup
Languages for the Semantic Web: Third International Workshop, RuleML. Lecture Notes in
Computer Science, pp. 170–181. Springer, Heidelberg (2004)

21. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.
Int. J. Hum. Comput. Stud. 43(4–5), 907–928 (1995)

22. Demchenko, Y., Koeroo, O., de Laat, C., Sagehaug, H.: Extending XACML authorisation
model to support policy obligations handling in distributed applications. In: Proceedings of
the 6th International Workshop on Middleware for Grid Computing. ACM (2008)

23. Priebe, T. et al.: Supporting attribute-based access control with ontologies. ARES, pp. 465–
472 (2006). doi:10.1109/ARES.2006.127

24. Damiani, E., De Capitani di Vimercati, S., Fugazza, C., Samarati, P.: Extending policy
languages to the semantic web. In: Fraternali, P., Koch, N., Wirsing, M. (eds.) ICWE 2004.
LNCS, vol. 3140, pp. 330–343. Springer, Heidelberg (2004)

25. Kolovski, V.: Formalizing XACML using defeasible description logics. Technical report
TR-233-11. University of Maryland - College Park (2006)

26. Kolosvki, V.: Logic-based framework for web access control policies. Ph.D. thesis, Digital
Repository at the University of Maryland, College Park, Md (2008)

27. Kolovski, V., Hendler, J.: XACML policy analysis using descriptionlogics (2008). http://
www.mindswap.org/*kolovski/KolovskiXACMLAnalysis-JCSSubmission.pd. Accessed
2012

28. Masi, M., Pugliese, R., Tiezzi, F.: Formalisation and implementation of the XACML access
control mechanism. In: Livshits, B., Scandariato, R., Barthe, G. (eds.) ESSoS 2012. LNCS,
vol. 7159, pp. 60–74. Springer, Heidelberg (2012)

29. Bryans, J.W., Fitzgerald, J.S.: Formal engineering of XACML access control policies in
VDM ++. In: Proceedings of the Formal Engineering Methods 9th International Conference
on Formal Methods and Software Engineering, Boca Raton, FL, 14–15 November 2007

30. OASIS XACML: eXtensible Access Control Markup Language (XACML), version 3.0
(2013) http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf. Accessed 2013

31. Rahmouni, H.B., Solomonides, T., Casassa Mont, M., Shiu, S.: Ontology based privacy
compliance for health data disclosure in Europe. Ph.D. thesis, University of the West of
England, Bristol (2011)

32. Powers, C., Adler, S., Wishart, B.: EPAL translation of the freedom of information and
protection of privacy act. In: White Paper, IBM Tivoli and Information and Privacy
Commissioner, Ontario (2004)

33. Ontario: freedom of information and protection of privacy act (2008). http://www.elaws.gov.
on.ca/html/statutes/english/elaws_statutes_90f31_e.htm. Accessed 2013

30 H.B. Rahmouni et al.

http://dx.doi.org/10.1109/ARES.2006.127
http://www.mindswap.org/%7ekolovski/KolovskiXACMLAnalysis-JCSSubmission.pd
http://www.mindswap.org/%7ekolovski/KolovskiXACMLAnalysis-JCSSubmission.pd
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://www.elaws.gov.on.ca/html/statutes/english/elaws_statutes_90f31_e.htm
http://www.elaws.gov.on.ca/html/statutes/english/elaws_statutes_90f31_e.htm

Dynamic Pricing in Cloud Markets: Evaluation
of Procurement Auctions

Paolo Bonacquisto, Giuseppe Di Modica, Giuseppe Petralia,
and Orazio Tomarchio(B)

Department of Electrical, Electronic and Computer Engineering,
University of Catania, V.le A. Doria 6, 95125 Catania, Italy

{Paolo.Bonacquisto,Giuseppe.DiModica,Giuseppe.Petralia,
Orazio.Tomarchio}@dieei.unict.it

Abstract. One of the fundamental principles which cloud computing
paradigm builds upon is that resources in the cloud may be accessed
“on-demand”, i.e., when they are required and for just the time they
are required. This intrinsic technologic feature encouraged the cloud
commercial providers to adopt the pay-per-use pricing mechanism as it
turned to be the most convenient and the easiest to implement. Though
pay-per-use ensures significant incomes to providers, still providers expe-
rience an underutilization of their computing capacity. It is a matter of
fact that unemployed resources represent both a missed income and a
cost to providers. In this paper a procurement auction market is pro-
posed as an alternative sell mechanism to maximize the utilization rate
of providers’ datacenters. Benefits for the providers are achieved through
the use of an adaptive strategy that can be easily tuned to cater for the
provider’s own business needs. Also, in the paper the resort to resource
overbooking within the provider’s strategy has been analyzed. The pro-
posal’s viability was finally proved through simulation tests conducted
on the Cloudsim simulator.

Keywords: Cloud market · Procurement auction · Bidding strategy ·
Cloud simulations

1 Introduction

Cloud computing aims to provide computing resources to customers like pub-
lic utilities such as water and electricity [3]. In an Infrastructure-as-a-Service
(IaaS) cloud environment, physical resources are packaged into distinct types of
virtual machines (VMs) and offered to customers. A cloud customer, on the other
hand, will purchase VMs to run his applications, by looking for specific resource
requirements in terms of CPU, memory and disk. Given the finite capacity for
each type of resources in each data center, a fundamental problem faced by IaaS
provider is how to select the price and allocate resources for each type of VM
services in order to best match the interests of the customers while maximiz-
ing his revenue [9]. This issue is further complicated by the fact that, differently
c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 31–46, 2015.
DOI: 10.1007/978-3-319-25414-2 3

32 P. Bonacquisto et al.

from traditional utility markets, cloud demand is strongly time varying and often
burstly.

The resource allocation and trading mechanisms used by the current cloud
computing systems are inefficient and inflexible due to the flat rate pricing model
adopted. We argue that a fixed price-based resource allocation currently in use in
cloud computing systems do not provide an efficient allocation of resources and
do not maximize the revenue of the cloud providers. In a previous work [8], we
already showed that a better alternative would be to use auction-based resource
allocation mechanisms. In this paper we address issues related to the bidding
strategies adopted by providers of computing resources in the context of pro-
curement auctions. We try to analyze all the factors that mainly impact the
strategic choices of providers in the acquisition of the goods allocated through
auctions. The purpose of this work is not to devise an optimal bidding strategy,
but rather, to prove that any strategy will have its objective guaranteed by the
procurement mechanism. We also devised a tentative provider’s strategy which
adapts its aggressiveness to the earlier mentioned factors. In the addressed mar-
ket scenario, we stress that our attention is devoted to the optimization of the
utilization rate of providers’ data centers and the utility of providers.

The remainder of the paper is structured as follows. Section 2 makes a review
of the literature and gives some rationale of the work. Section 3 introduces the
proposed idea and delves into technical details about procurement auctions,
while Sect. 4 describes the proposed adative strategy. In Sect. 5 simulation results
are presented and discussed. Finally, the work is concluded in Sect. 6.

2 Related Work

All main commercial IaaS providers impose a fixed price for the use of one hour
of computing capacity1. So far, the only provider which successfully proposed an
alternative approach to the fixed-price is Amazon with its Spot Instance model2.
This model enables the customer to bid for what they call unused computing
capacity. Virtual machines are charged the Spot Price, which is set by Amazon
and fluctuates periodically depending on the supply/demand rate for computing
capacity. The Spot Instance model represents the very first attempt to build up
a virtual market of computing resources regulated by market prices, i.e., prices
which dynamically fluctuate according to offer and demand. In spite of this, the
model is still unclear (the formula of price fluctuation is not known) and is not
proved to be resistant to potential malicious behaviors of customers [16]. Fur-
thermore in [1] authors prove that the Amazon’s Spot Price is not market driven,
rather is typically generated as a random value near to the hidden reserve price
within a tight price interval. The consideration stemming from this observation
is that a provider, being an interested party, may not be a guarantee for the

1 http://aws.amazon.com/ec2/, http://www.microsoft.com/windowsazure/, http://
www.rackspace.com/.

2 http://aws.amazon.com/ec2/spot-instances/.

http://aws.amazon.com/ec2/
http://www.microsoft.com/windowsazure/
http://www.rackspace.com/
http://www.rackspace.com/
http://aws.amazon.com/ec2/spot-instances/

Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions 33

correctness of the price determination. Instead, a third party broker should be
in charge of calling out prices in auction-based contexts.

A quick review of the recent literature reveals that researchers are prone to
apply auction mechanisms to the problem of the allocation (read “sale”) of com-
puting resources. In [14] authors propose a marketplace of computing resources
where prices are determined using an exchange market. In [6] authors discuss
several strategies that cloud providers should adopt in order to reach high per-
formance and to overcome most of criticisms of auctions like high overheads and
high latency using techniques like overbooking and Flexible Advanced Reserva-
tions. They propose several bidding functions but each one takes into account
only one parameter among those monitored by a cloud provider.

For the majority of researchers, combinatorial auctions are the most appropri-
ate sale mechanism for allocating virtual machines in the cloud. In combinatorial
auctions the participants bid for bundles of items rather than individual items
[7]. This mechanism seems to perfectly fit the Cloud context, as customers usu-
ally need to acquire not just one resource but a bunch of resources (e.g., one for
hosting the database server, one for the application server and one for the web
server). In [16] authors propose a suite of computationally efficient and truth-
ful auction-style pricing mechanisms, which enable customers to fairly compete
for resources and cloud providers to increase their overall revenue. [17] proposes
a combinatorial auction-based protocol for resource allocation in grids. They
considered a model where different grid providers can provide different types
of computing resources. Buyya et al. [4] propose an infrastructure for auction-
based resource allocation across multiple cloud systems. In [15] authors address
the scenario of multiple resource procurement in the realm of cloud computing.
In the observed context, they pre-process the user requests, analyze the auction
and declare a set of vendors bidding for the auction as winners based on the
Combinatorial Auction Branch on Bids (CABOB) model.

The discussed works mainly focus on solving the problem of the optimal sale
of resources in combinatorial auctions, which is known to be NP-hard. The work
we propose, instead of defining yet another sub-optimal allocation algorithm,
takes a different direction. The profit of a provider strongly depends on its capa-
bility of keeping the hosts’ average occupancy rate as high as possible. For their
nature, computing resources can be regarded as perishable goods that need to be
sold within a certain time frame otherwise they get wasted. Not selling a virtual
machine in a given slot time means a profit loss for the provider, who anyway
is spending money to keep the physical machines up and running. We then look
at the trade of computing resources from a new perspective, in which providers,
in the aim of maximizing their data center’s occupancy rate, may be willing to
attract customers by lowering the offer price. On their turn, customers may get
what they need, at the time they need it, at a price which is lower than the
standard price at which they usually buy. We advocate that the market model
best fitting this perspective is the one which guarantees the sale of computing
resources through procurement auctions [2]. Procurement auctions [10] (also
called reverse auctions) reverse the roles of sellers and buyers, in the sense that

34 P. Bonacquisto et al.

the bidders are those who have interest in selling a good (the providers), and
therefore the competition for acquiring the right-to-sell the good is run among
providers.

3 A Procurement Auction Market

The purpose of this work is not to convince providers to abandon the direct-
sell mechanism in favor of the procurement-based market. Providers have their
regular customers, who issue requests which most of the times have a well known
timing. For this kind of requests the most appropriate model is the direct-
sell/fixed-price, in that it provides guarantees for both the provider and the
customer. What we propose is the adoption of an alternative, dynamic pricing
model for selling what is usually referred to as the unused capacity, i.e., the resid-
ual capacity that, on average, the provider is not able to sell through direct-sell.

Let us define the utilization rate U(t) as the fraction of the overall unused
capacity committed to serve customers’ requests at the time t. The lower the
U , the higher the profit loss for the provider. In the aim of maximizing the
utilization rate (minimizing the residual capacity) providers need to adopt new
selling strategies. The simplest strategy could just be lowering the price per
computing unit. We argue that providers, in the aim of avoiding the “waste” of
computing capacity, are willing to give up a portion of profit per computing unit
(same as it happens for sale of perishable goods).

In this paper we propose the design of a market of computing capacity (see
Fig. 1), to which any provider is admitted, and where computing resources can
be sold through auction-based allocation schemes. The perspective is that of pro-
curement auctions, where an initial price is called out and bidders iteratively have
to call lower prices to win. The market mechanism is the following. Customers
communicate their computing demand to the market. A broker will take care of
requests. For each specific demand, the broker (auctioneer) will run a public auc-
tion to which any provider (bidder) can participate and compete for “acquiring”
the demand. The winning provider (who offered the lowest price) will eventually
have to serve the demand. Being the auctions open to the participation of mul-
tiple providers, the competition is granted. Providers will have to fight in order
to gain the right-to-serve the demand. Bidding strategies enforced by providers
can range from the most conservative to the most aggressive. The determination
of the final price is driven only by the evaluation that each provider has on the
goods to acquire (i.e., the customer’s demand to be served). Customers will get
their demand served at the lowest price. Further, they will have no more the
burden to search for providers, as providers are gathered in the market.

We focus on three different types of procurement auctions. The common part
of the three auction mechanisms is the auction preparation, which provides that
upon the arrival of a demand, the broker issues a public “call for proposal” (CFP)
to invite providers. The CFP shall specify a minimum set of auction parameters
including the start-provision time, the stop-provision time, the initial price (from
which discount bids are expected), the bidding rules (who can bid and when,

Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions 35

Customers Cloud Providers
(bidders)

Broker
a ctioneer

Computing
Capacity
requests

Start
auction

Provider A

auctioneer

Select
winner

Provider B

Cloud MarketPlace

Provider C

Fig. 1. The cloud marketplace scenario.

restrictions on bids) and the clearing policy (when to “terminate” the auction,
who gets what, at what price). After collecting the willingness of providers to
participate in the auction, the preparation phase ends up and the bargain starts
according to what is specified in the bidding rules and the clearing policy. What
characterizes one auction mechanism from another one is the information spec-
ified in the bidding rules and the clearing policy. For our purpose, in this paper
the following auction types will be addressed: English Reverse (ER), First Price
Sealed Bid (FPSB) and Second Price Sealed Bid (SPSB) [12].

4 A Provider’s Adaptive Strategy

Main objective of this work is the study of an adaptive strategy for the providers
that participate in procurement auctions. By strategy we mean a set of rules
producing the decisions a provider should take to maximize their own business
objective. Basically, a strategy shall drive the provider in choosing the right
actions to be undertaken when competing for the acquisition of a good (e.g.,
whether to participate in a given auction, to bid in a given round, not to bid,
which price to offer). In the strategy design, the first step was to outline the main
factors that may impact such choices. Secondly, we tried to devise a dynamic
strategy which accounts for the just mentioned factors and smoothly adapt their
fluctuations. Finally, we set up and configured a test environment to analyze the
results produced by the strategy.

According to the literature, the behavior of an auction’s participant is mainly
driven by the information the participant has on the value of the good being
sold [10]. In respect to this information, two basic auction models are possible:
(1) the private-value model, where each bidder has an estimate of the good for
sale, and that estimate is private and unaffected by others’ estimates, and (2) the
pure common-value model, where the actual value of the object is the same for
everyone, but bidders have different private information on how much that value
actually is. Combined models can also be derived from the cited ones.

36 P. Bonacquisto et al.

If we better analyze the context of cloud auctions, a computing resource can
be seen as a good whose actual value (price) is common to all providers. In fact,
though for computing resources we can not yet speak of conventional “market
prices”, all providers in their regular sales adopt well known, leveled prices. We
can then conclude the actual values of such kind resources are somewhat common
to providers. In the context of a procurement auction of computing resources, the
estimate Epi of the i-th provider for a given good may differ from the estimate
Epj of the j-th provider according to the diverse needs each provider may have
in pursuing their own business objective.

Primary objective of a provider is to maximize what is referred to as Utility.
Given a resource to be allocated through an auction sale, the provider’s Util-
ity for that request is defined as the difference between the winning bid price
and the evaluation that the provider gives to the resource [16]. Of course, the
provider aims at maximizing the average utility for the resources they compete
for. Recalling the considerations made earlier, in the context of an auction sale
of spare resources this objective can be pursued: (a) by keeping the data center’s
utilization as high as possible; (b) by bidding prices higher than the personal
evaluation (which we will refer to as lower bound) and (c) by choosing the most
profitable combination of customers’ request to serve.

We identified a non-exhaustive list of factors which may strongly influence
the strategy of a provider in a procurement auction.

– The duration of the customer task (demand) to be served (L). The longer the
task, the higher the profitability for the provider, since the required capac-
ity will be committed for a longer time. A provider, then, might prefer to
participate in auctions where long tasks are traded.

– The type of VM instance required to serve the customer task (T). Of course,
the profitability of a task is directly proportional to the task’s requirements
in terms of amount of computing capacity per hour, so providers may be
motivated in pointing on auctions calling for a higher capacity/hour. But
depending on the actual utilization level of both each single host and the
whole data center, it might not be possible to serve further tasks requiring
high capacity VMs.

– The gap between the potential revenue obtainable from serving the task the
standard way (i.e., through the fixed-price market) and that obtainable by
serving the task at the price called by the auctioneer (Gr). The revenue for
serving a task is given by the L times the price (P) of the resource that
will serve the task. This factor strongly depends on the provider’s enforced
revenue policy. A provider pointing on auctions to sell their unused capacity
might accept a much lower revenue (bidding a lower price) in the case that
expenses are already covered. Conversely, the provider might not be willing
to excessively lower the price in the case that expenses are not yet covered.

– The utilization of the particular physical machine that is going to serve the
customer’s request. The marginal revenue, in fact, is affected by the utilization
level of a host: if a host is already running and serving other tasks, adding
more tasks to that host “costs” less than activating a new host.

Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions 37

Finally, some considerations need to be made about the lower bound. Each
strategy must envision an “exit condition”, which represents the condition that,
when verified, forces the exit of the provider from the auction. When the provider
decides to participate in an auction, they will have to set the lower bound price,
which represents the maximum discount that the provider is willing to offer for
the good being traded in that auction. Of course, this parameter only makes sense
in multi-rounds auctions, as in single round auctions actually exit is imposed by
the mechanism itself at the end of the first round. The lower bound parameter
actually represents the evaluation of the provider for a given good (customer’s
request). It incorporates all provider’s consideration regarding the costs for exe-
cuting a VM, managing a VM’s life cycle and supporting the customer.

The objective of a strategy is to suggest the provider the price to call for the
next bid. In calling a price, a strategy may be more or less “aggressive”, i.e.,
may propose higher or lower discounts. We discuss two different strategies. One
is driven by randomness (aggressiveness is randomly chosen auction by auction,
round by round). The other is adaptive, in the sense that is able to adapt the
aggressiveness according to the above listed factors. For this kind of strategy,
the aggressiveness can be tuned by adequately weighting the factors.

Recalling a formula presented in [11], the adaptive strategy will suggest the
next bid as:

bid =
n − 1

n − (1 − α)
∗ lastWinningBid (1)

where n is the number of bidders participating in the auction and lastWinning
Bid is the price of the bid that won the last round. In case of single-round
auctions and in the case of first rounds of multi-round auctions, lastWinningBid
will be the auction’s starting price. The parameter α is calculated as follows:

α = w1 ∗ U(t) + w2 ∗ L

Lmax
+ w3 ∗ Pa

Pf
+ w4 ∗ Tvm

Tmax
+ w5 ∗ H(t) (2)

As we can see in the Eq. 2, α depends on:

– U(t), the current utilization rate of the pool of spare resources; the less U(t),
the higher α, so the evaluated bid price will decrease (in a reverse auction,
lowering the bid price means pointing to gain the good). As expected, the
aggressiveness of a strategy increases with the reduction of the utilization
rate.

– L
Lmax

, the ratio between the time period for which the computing resource
is requested and the maximum time period for which a resource can be
requested3. The ratio will increase for requests with longer execution time.
The provider will be more aggressive in auctions where longer customer tasks
are negotiated, as those ensure a higher utilization of the data center and, as
a consequence, higher revenues.

3 In real situations the time period for which a resource can be requested has no
bound; in our simulation we will take into account tasks lasting no longer than 24 h.

38 P. Bonacquisto et al.

– Pa

Pf
the ratio between the resource’s starting price in the auction and the cor-

responding price in the standard fixed-price market. The provider’s aggres-
siveness will be higher when the price at the start of a round is closer to
the reference price (price at which resources are traded in regular markets, or,
direct-sell price). The more the round price decreases, the lesser the provider’s
aggressiveness.

– Tvm

Tmax
the ratio between the computing power of the resource being traded

in the auction and the computing power of the highest resource. This factor
increases the provider’s aggressiveness in the case of customer tasks demand-
ing high computing power. The higher the requested computing power, the
higher the task’s initial price. Further, a highly demanding task requires a
bigger capacity on the data center, thus increasing the overall utilization rate.

– H(t), the current utilization of the host on which the customer task to serve
will be scheduled. This factor increases the α parameter and, therefore,
increases the provider’s aggressiveness. Recalling a previous consideration,
the provider is more conservative in their strategy if for serving a task a new
physical machine has to be activated.

Each parameter is weighted by a factor (w1,w2,w3,w4,w5), for which the
following constraint applies:

5∑

i=1

wi = 1 (3)

Different combinations of weights lead to different strategies. Finally, in the
adaptive strategy the lower bound price will depend on α according to the fol-
lowing equation:

Lb = Pf ∗ (1 − discount) (4)

where discount is
discount = (0.5 ∗ α) ± rand ∗ 0.03 (5)

and Pf is the price of the resource advertised in the standard fixed-price market.
The maximum discount on the fixed price is evaluated as the 50% of α; the
higher alpha, the lower the bound. A variability of 3% was also introduced to
model a differentiation among providers, which reflects their respective personal
evaluations.

4.1 Resource Overbooking

The auction mechanism causes a waste of computing resources at the provider’s
end. A provider may participate in many auctions (say m) at the same time.
For each auction, no matter they win or lose, the provider will have to reserve
a pool of resources to accommodate the customer’s request for which they are
competing. The number of auctions every provider will participate depends on
the instant capacity of their free computing resources. In general, provider will
win n auctions, being n <= m, thus, for the duration of all m auctions there
may be a waste of resources proportional to the number of lost auctions (m−n).

Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions 39

To overcome this limitation, the provider may decide to participate in more
auctions and compete for customers’requests which they are not potentially able
to meet. This mechanism, also known as resource overbooking, contributes to
decrease the resource waste on the one hand, but on the other may bring to
situations where the provider runs out of computing resources and may not
honor one or more contracts signed at the time they won the auctions. In this
cases, the risk compensation principle is applied [13], and the provider will incur
penalties which are proportional to their actual bid.

In order to implement such mechanism in our market, we let the provider
count on an amount of virtual computing capacity (namely, overbooking capac-
ity) which is set to 20 % of their real capacity. The provider is then able to par-
ticipate in m + o auctions, where o is proportional to the overbooking capacity.
This way the number of won auctions will increase, and the provider’s utilization
rate will get closer to 1. In the case the provider won more auctions than those
they are actually able to serve, a penalty is due. When an auction appoints as
winner a provider who is not eventually able to honor a request, the second best
bidding provider is chosen. If, again, the latter is not able to serve the request,
the third best is chosen, and so on. In this chain, all providers are subjected to
penalties. The penalty is a monetary cost calculated as:

penaltyit =
Pi − bidit

Pi − winnerBidi
∗ Pi ∗ durationi (6)

where penaltyit is the penalty for the i-th CFP due by provider t, Pi is the
auction’s starting price, bidit is the bid called by provider t, winnerBidi is the
winner’s bid price and durationi is the time frame for which the computing
resource is required by the customer. This law aims at penalizing the providers
in a way that is proportional to their risk attitude. The auction winner who is
eventually unable to meet the request will pay a penalty of Pi ∗ durationi. The
following best bidders (2nd, 3rd, etc.) who on their turn are not able to serve
the request will pay a lower penalty as their bid is higher than the winner’s. If
all participating providers happen to fail the provision due to the overbooking,
the auction will be closed and a new auction will be called up.

5 Experimental Results

To prove the viability of our proposal a simulative approach was undertaken.
A procurement market prototype was implemented on the well-known Cloudsim
simulator [5]. We developed a new component (the Auctioneer) and mod-
ified the behavior of other existing components (Datacenter, Broker and
Cloudlet). Cloudlet is the component of Cloudsim representing the task sub-
mitted by the customer, while Datacenter is representative of the provider that
will compete for acquiring the task.

To test the adaptive strategy, we created a set of 11 Datacenters, ten of which
adopt the proposed adaptive strategy, while one adopts a Random strategy : the
latter makes its bids using the same equation of the adaptive strategy (Eq. 1),

40 P. Bonacquisto et al.

Table 1. Weight setting for the datacenters’ strategies.

Datacenter ID Strategy w1 w2 w3 w4 w5

DC1 Adaptive 0.6 0.1 0.1 0.1 0.1

DC2 Adaptive 0.1 0.6 0.1 0.1 0.1

DC3 Adaptive 0.1 0.1 0.6 0.1 0.1

DC4 Adaptive 0.1 0.1 0.1 0.6 0.1

DC5 Adaptive 0.1 0.1 0.1 0.1 0.6

DC6 Adaptive 0.2 0.2 0.2 0.2 0.2

DC7 Adaptive 0.2 0.2 0.2 0.2 0.2

DC8 Adaptive 0.2 0.2 0.2 0.2 0.2

DC9 Adaptive 0.2 0.2 0.2 0.2 0.2

DC10 Adaptive 0.2 0.2 0.2 0.2 0.2

DC11 Random

where the α parameter is assigned random values in the [0,1] range, without any
specific objective to pursue. The weights characterizing the α parameter (Eq. 2)
are shown in Table 1. As the reader may notice, strategies were expressly split
in unbalanced, for which Datacenters point on just one factor, and balanced, for
which all the weights are assigned the same value.

The objective of the simulation is to show that strategies actually guide
Datacenters in the choice of tasks to compete for. Every Datacenter counts 70
hosts, each characterized by the following features:

– number of cores uniformly chosen in the range (64,128,256,512);
– RAM: 320 GB;
– Storage: 10 TB.

A core is modeled in CloudSim with a capacity of 2400 Mips.
Datacenters offer a restricted number of virtual machines (VM) configura-

tions (instance types), which go from the very minimalist to the most powerful
one. We will then assume that customers’ demand will address the following VM
instance types:

– General Purpose
• M1.small - 32/64-bit architecture, 1 vCPU, 1 ECU, 1.7 GB RAM, 160 GB

Storage, Low Bandwidth;
• M1.medium - 32/64-bit architecture, 1 vCPU, 2 ECU, 3.75 GB RAM, 410 GB

Storage, Moderate Bandwidth;
• M1.large - 64-bit architecture, 2 vCPU, 4 ECU, 7.5 GB RAM, 820 GB Stor-

age, Moderate Bandwidth;
• M1.xlarge - 64-bit architecture, 4 vCPU, 8 ECU, 15 GB RAM, 1.6 TB Stor-

age, High Bandwidth;
• M3.xlarge - 64-bit architecture, 4 vCPU, 13 ECU, 15 GB RAM, 0 Storage,

Moderate Bandwidth;

Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions 41

– Compute Optimized
• C1.medium - 32/64-bit architecture, 2 vCPU, 5 ECU, 1.7 GB RAM, 350 GB

Storage, Moderate Bandwidth;
• C1.xlarge - 64-bit architecture, 8 vCPU, 20 ECU, 7 GB RAM, 1.6 TB Stor-

age, High Bandwidth;
– Memory Optimized

• M2.xlarge - 64-bit architecture, 2 vCPU, 6.5 ECU, 17.1 GB RAM, 420 GB
Storage, Moderate Bandwidth.

Two experiments were conducted. The first was intended to assess the effec-
tiveness of the proposed provider’s strategy; in the second the impact of the
overbooking mechanism was studied.

5.1 First Experiment

In the first battery of simulation we submitted 25000 cloudlets having a uni-
formly distributed length in the range (1,24) h and requiring a uniformly dis-
tributed VM type in the set of the VMs listed above. The interarrival times
of the cloudlets are distributed accordingly to a Poisson distribution, with λ =
0.1 (10 s is the maximum time that lapses between the arrivals of two consec-
utive cloudlets). From early results, we noticed that the adaptive strategy of
each Datacenter guarantees the achievement of the objective, regardless of the
specific auction type.

The main parameter we measured is the utilization rate of the Datacenters,
which is depicted in Fig. 2. We can observe that all the Datacenters (DC) pur-
suing one (or a combination) of these two objectives (1) to acquire VMs that
require high capacity in terms of computing resources and (2) to obtain longer
lasting tasks, actually reach an high level of utilization rate (in Table 1 DC2 and
DC4 respectively).

DC11, that adopts the Random strategy, reaches an high level of utiliza-
tion rate too, because it can easily win auctions for tasks that do not meet the
objectives of other Datacenters (i.e. low performing VMs, short tasks). DC1’s
objective is to optimize the utilization rate; in the graph it can be noticed that
after reaching an utilization rate between 60 % and 80 %, it is not able to further
increase it, as its objective has almost been reached: the strategy’s aggressiveness
decreases so that no further auctions are won. The Datacenter obtaining the low-
est utilization rate (around 20 %) is DC3; its strategy exhibits low aggressiveness
as its objective is to acquire cloudlets with a price not too far from the standard
on-demand fixed-price. However, as it can be seen in Fig. 3 where the revenue
loss percentage of the Datacenters is shown, the objective of DC3 guarantees
the lowest revenue loss. Datacenters with balanced strategy also avoid revenue
losses while, at the same time, reaching a better utilization rate than DC3.

Finally, we report some graphs showing the cloudlet characteristics of auc-
tions won by two specific Datacenters. Figure 4(a) shows the rate of auctions won
by DC2, grouped by the length of the cloudlets expressed in hours. DC2 mainly
won cloudlets with a length of more than eleven hours (the reader may check in

42 P. Bonacquisto et al.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

seconds

Pe
rc

en
ta

ge
 U

til
iz

at
io

n

Datacenter 1
Datacenter 2
Datacenter 3
Datacenter 4
Datacenter 5
Datacenter 6
Datacenter 7
Datacenter 8
Datacenter 9
Datacenter 10
Datacenter 11

Fig. 2. Datacenters utilization: ER auction.

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

DatacentersID

Pe
rc

en
ta

ge

Fig. 3. Revenue loss percentage per datacenter.

Table 1 that the weight of parameter related to the length of the cloudlets is the
highest). Figure 4(b) depicts the auctions won by DC4. It mainly wins auctions
requiring high performing VMs, as its strategy is set to point on those VM types.

5.2 Second Experiment

We created a set of 8 Datacenters each enforcing an adaptive strategy with bal-
anced weights (w = 0.2). First, the simulator was fed with 40.000 cloudlets hav-
ing a length uniformly distributed in the range (1,12) h and poissonian arrivals
with λ = 0.01. In Fig. 5(a) we may notice that all datacenters reach an utiliza-
tion very close to 100 %. This is due to the fact that cloudlets are long-lived
(in terms of time required by the task) and distant enough in time (100 s is
the cloudlets’ interarrival time). We then repeated the simulation with the same
number of cloudlets but with a length uniformly distributed in (1,6) and pois-
sonian arrivals with λ = 0.06 (17 s between consecutive cloudlets). In this case
the average utilization decreases to 70–80%, as shown in Fig. 5(b).

Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions 43

1−1011
12

13

14

15

16

17

18

19 20

21

22

23

24
M1

MM1
L

M1
XL

M3
XL

C1
M

C1
XL

M2
XL

Fig. 4. Auctions won by DC2 and DC4, grouped by the Cloudlets’ length (a) and the
VM type (b).

The reason behind the poor performance obtained in the second case is easily
explained. Being the interarrival time shorter, datacenters simultaneously engage
in many auctions. Each datacenter happens to win a subset of these auctions,
which are also short-lived (very short in time), thus it will not be able to commit
all the capacity. In this specific case it may be of help to opt on the overbooking.
To this purpose we ran a new simulation, where the cloudlet’s parameters did not
change, but four of the eight datacenters (DC1,DC2,DC3 and DC4 respectively)
were configured to use a 20 % overbooking (i.e., those Datacenters could count on
an extra virtual pool of computing resources whose size was 20 % the datacenter’s
nominal capacity).

Figure 6(a) shows that the overbooking datacenters (depicted in red) reach
a very high utilization (close to 100 %). The side effect is of course that they
incur penalties, which have been evaluated with the formula in 6. The revenue
of datacenters enforcing the overbooking drops below the revenue of datacenters
which do not use overbooking, as depicted in Fig. 6(b). The reader may notice
that, despite the incurred penalties, datacenters enforcing the overbooking do
have an acceptable revenue.

Last consideration is on single round auctions. As depicted in the Fig. 7 both
the First and the Second Price Sealed Bid did not provide encouraging results
in terms of utilization. This is because these types of auctions resolve in a very
short time and the utilization of resources is not as dynamic as it actually is
in multi-round auctions. We have then compared the performance of the First
and the Second Price Sealed Bid auctions focusing on the average utility of the
provider. As depicted in Fig. 8, the second price auction guarantees, on average,
a better utility. This kind of auction, in fact, let the datacenter bid its real
evaluation of the cloudlet preventing the utility from excessively decreasing.

44 P. Bonacquisto et al.

0 0.5 1 1.5 2 2.5
x 10

6

0

0.2

0.4

0.6

0.8

1

seconds

%
 U

til
iz

at
io

n

Datacenter 1
Datacenter 2
Datacenter 3
Datacenter 4
Datacenter 5
Datacenter 6
Datacenter 7
Datacenter 8
Total Capacity

0 1 2 3 4 5 6 7
x 10

5

0

0.2

0.4

0.6

0.8

1

seconds

%
 U

til
iz

at
io

n

Datacenter 1
Datacenter 2
Datacenter 3
Datacenter 4
Datacenter 5
Datacenter 6
Datacenter 7
Datacenter 8
Total Capacity

Fig. 5. Datacenters utilization WITHOUT overbooking for λ = 0.01 (a) and λ =
0.06 (b).

0 1 2 3 4 5 6 7
x 10

5

0

0.2

0.4

0.6

0.8

1

seconds

%
 U

til
iz

at
io

n

Datacenter 1
Datacenter 2
Datacenter 3
Datacenter 4
Datacenter 5
Datacenter 6
Datacenter 7
Datacenter 8
Total Capacity

0 2 4 6 8
0

1000

2000

3000

4000
Datacenters Revenue & Penalty: English Auction

DatacentersID

R
ev

en
ue

s

Fig. 6. Performance of overbooking datacenters: utilization rate (a) and incurred penal-
ties (b) (Color figure online).

0 1 2 3 4 5 6 7
x 10

5

0

0.2

0.4

0.6

0.8

1

seconds

%
 U

til
iz

at
io

n

Datacenter 1
Datacenter 2
Datacenter 3
Datacenter 4
Datacenter 5
Datacenter 6
Datacenter 7
Datacenter 8
Total Capacity

0 1 2 3 4 5 6 7
x 10

5

0

0.2

0.4

0.6

0.8

1

seconds

%
 U

til
iz

at
io

n

Datacenter 1
Datacenter 2
Datacenter 3
Datacenter 4
Datacenter 5
Datacenter 6
Datacenter 7
Datacenter 8
Total Capacity

Fig. 7. Datacenters utilization WITH overbooking for auction types FPSB (a) and
SPSB (b).

Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions 45

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

DatacentersID

A
ve

ra
ge

 U
til

ity

Fig. 8. Utility comparison between FPSB and SPSB.

6 Conclusions

Cloud computing has stimulated a great interest both in the academic commu-
nity and in business contexts. More and more IT players look at this technology
as a great opportunity of increasing their profit. Though several studies report
the cloud services’ market revenue is rocketing, economists say the business
potential of cloud computing is not yet fully exploited. There is not yet an open
market of cloud resources where providers and consumers can meet to satisfy
their needs. In this paper we propose a market of resources where demand and
offer of resources can be matched in auction-based sales. Specifically, we looked
at this market from the perspective of the provider, who needs a strategy to allo-
cate at best their unused computing capacity. We proposed an adaptive strategy
that, suitably tailored to the provider’s business objective, will help them to
maximize the revenue in the context of procurement auctions. Also, the resource
overbooking mechanism has been investigated as an optional strategy providers
may adopt in order to increase their revenue. Simulations run to test the pro-
posed approach gave encouraging results, by showing that each provider is able
to reach their objectives by finely tuning the weights associated to their strat-
egy. In the future, more factors will be taken into account in the definition of
the provider’s strategy. Further, the business models of the broker of resources
(auctioneer) will also be investigated, in order to prove that a market model
based on procurement auctions can yield profit for all market actors.

46 P. Bonacquisto et al.

References

1. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing
amazon ec2 spot instance pricing. In: 2011 IEEE Third International Conference
on Cloud Computing Technology and Science (CloudCom), pp. 304–311 (2011)

2. Bonacquisto, P., Di Modica, G., Petralia, G., Tomarchio, O.: A strategy to optimize
resource allocation in auction-based cloud markets. In: Proceedings - 2014 IEEE
International Conference on Services Computing, SCC 2014, Anchorage, Alaska,
USA, Jun 2014

3. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision,
hype, and reality for delivering it services as computing utilities. In: 10th IEEE
International Conference on High Performance Computing and Communications
(HPCC 2008), pp. 5–13, Sep 2008

4. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Park, J.H.,
Yang, L.T., Yeo, S.-S., Hsu, C.-H. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

5. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Softw. Pract. Experience 41, 23–50
(2011)

6. Chard, K., Bubendorfer, K.: High performance resource allocation strategies for
computational economies. IEEE Trans. Parallel Distrib. Syst. 24(1), 72–84 (2013)

7. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. The MIT Press,
Cambridge (2005)

8. Di Modica, G., Petralia, G., Tomarchio, O.: Procurement auctions to trade com-
puting capacity in the Cloud. In: 8th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC 2013), Compiegne, France, Oct
2013

9. Di Modica, G., Tomarchio, O.: Matching the business perspectives of providers
and customers in future cloud markets. Cluster Comput. 18(1), 457–475 (2015)

10. Klemperer, P.: Auction theory: a guide to the literature. J. Econ. Surv. 13(3),
227–286 (1999)

11. McAfee, R.P., McMillan, J.: Auctions and bidding. J. Econ. Lit. 15, 699–738 (1987)
12. Parsons, S., Rodriguez-Aguilar, J.A., Klein, M.: Auctions and bidding: a guide for

computer scientists. ACM Comput. Surv. 43(2), 1–59 (2011)
13. Phillips, R.: Pricing and Revenue Optimization. Stanford University Press, CA

(2005)
14. Risch, M., Altmann, J., Guo, L., Fleming, A., Courcoubetis, C.: The gridecon plat-

form: a business scenario testbed for commercial cloud services. In: Altmann, J.,
Buyya, R., Rana, O.F. (eds.) GECON 2009. LNCS, vol. 5745, pp. 46–59. Springer,
Heidelberg (2009)

15. Vinu Prasad, G., Rao, S., Prasad, A.: A combinatorial auction mechanism for
multiple resource procurement in cloud computing. In: 2012 12th International
Conference on Intelligent Systems Design and Applications (ISDA) (2012)

16. Wang, Q., Ren, K., Meng, X.: When cloud meets ebay: towards effective pricing
for cloud computing. In: INFOCOM, 2012 Proceedings IEEE, pp. 936–944 (2012)

17. Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine
instances in clouds. J. Parallel Distrib. Comput. 73(4), 495–508 (2013)

An Economic Model for Utilizing Cloud
Computing Resources via Pricing Elasticity

of Demand and Supply

Soheil Qanbari1(B), Fei Li1, Schahram Dustdar1, and Tian-Shyr Dai2

1 Distributed Systems Group, Technical University of Vienna, Vienna, Austria
{qanbari,Li,dustdar}@dsg.tuwien.ac.at

2 Institute of Finance, National Chiao-Tung University, Hsinchu, Taiwan
d88006@csie.ntu.edu.tw

http://dsg.tuwien.ac.at, http://financelab.nctu.edu.tw

Abstract. In this study, we elaborate two economic variables which
have direct impact on prospective aspects of trading like Cloud resource
allocation over future demands. These variables are Pricing Elasticity of
Demand (PEoD) and Pricing Elasticity of Provisioning (PEoP). To lever-
age the pricing elasticity of upcoming demand and supply, we employ
financial option theory as a method to alleviate the risk in resource pro-
visioning over future demands. Our approach finds the optimal option
price of the federated resource in the Cloud to come to an equilibrium
between PEoD and PEoP. The asset equilibrium price occurs when the
supply resource pool matches the aggregate demand indicating an opti-
mal resource utilization. This study proposes a novel Cloud Asset Pricing
Tree (CAPT) model that finds the optimal premium price of the Cloud
federation options efficiently. The CAPT enables cloud service providers
to make proper decisions when to trade options in advance and when
to exercise them to achieve more economies of scale. Our empirical evi-
dences suggest that utilizing the CAPT model, exploits the Cloud feder-
ation market as an opportunity for more resource utilization and future
capacity planning.

Keywords: Cloud price elasticity · Asset pricing · Financial options ·
Cloud federation · Cloud computing

1 Introduction

Cloud providers offer APIs associated with their pool of configurable computing
resources (e.g., virtual machines) so that clients can access and utilize them by
deploying their packages in runtime environments [7]. In a Cloud market, the
right to benefit from these pools of Cloud resources with their utilization inter-
faces, can be delivered as “On-Demand” or “Reserved” instances. For clients,
the reserved instances (RIs) are more reliable and economic assets. As a proof,
the unit of a resource being studied here is an Amazon EC2 Standard Small

c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 47–62, 2015.
DOI: 10.1007/978-3-319-25414-2 4

48 S. Qanbari et al.

Instance (US East) at a price1 of $0.060/hour for an on-demand instance and
for a reserved instance, costs $0.034/hour with an upfront payment of $61/year,
which is almost half price. Therefore, financially, clients are more attracted to
RIs. Faced with such dilemma, RIs pose the concern of less future utilization
as far as it is not used by either the current or other on-demand clients. This
motivates providers to take the opportunity to achieve more resource utilization
by keeping all instances in use. Providers may reallocate unused RIs of current
owner to other on-demand clients to keep all resources utilized. This approach
makes the RIs unavailable for the current owner. Obviously, it is an obligation
for providers to assure the availability of RIs associated with owners, otherwise,
lack of resources leads to unmet demands and, while reflecting the SLA viola-
tions, leads to financial consequences and penalties. To assure asset availability
when lacking resources, providers can seek for more affordable and cost-efficient
Cloud open markets to outsource their clients demands. In addition to the fact
that Cloud open marketplaces (e.g., Zimory, SpotCloud) and federation offerings
(e.g., CloudKick, ScaleUp) offer more resource utilization mechanisms, they also
enable further cost reduction due to the market competitive advantage among
providers.

The decision to outsource the request to the federation parties is relatively
dependent to the asset’s price. In a similar model, the Amazon Web Services
(AWS) also offer a spot instance pricing model, where the price fluctuates as
the market supply and demand changes, and the spot instances will be provi-
sioned to the bidders who won the competition. As soon as the asset’s spot price
goes above the winning bid, resources will be released. In open Cloud markets,
the providers hardly can rely on such mechanism since there is no guarantee as
they might lose the resources when the asset price crosses their bid. In order to
encourage providers to benefit from the Cloud market, we need a dynamic eco-
nomic model that keeps resource and financial elasticity sustainably balanced by
controlling the asset price oscillation while demand and supply fluctuate. To this
end, our contribution is twofold: (i) Analyzing the financial options and pricing
elasticity concepts in Cloud federation market. (ii) The flexible pricing model
that calculates the optimal premium price of the federation options efficiently
and accurately.

The paper continues with a motivation scenario in support of an elastic eco-
nomic model for pricing Cloud federation assets at Sect. 2. Section 3 presents the
basic concepts and preliminaries where the conceptual basis and mathematical
models are detailed. Based on this, CAPT pricing model is derived in Sect. 4.
We simulate and evaluate our CAPT model and numerical results will be given
in Sect. 5 to support the efficiency of our model. Subsequently, Sect. 6 surveys
related works. Finally, Sect. 7 concludes the paper and presents an outlook on
future research directions.

1 http://aws.amazon.com/ec2/pricing/.

http://aws.amazon.com/ec2/pricing/

An Economic Model for Utilizing Cloud Computing Resources 49

2 Motivation

Along with elastic resource provisioning, providers may face the limitations and
insufficiency of their own resource pool supply. In effect, they can transfer the
risk of lacking resources to the federation markets. Federation markets can be of
interest for providers as well as for consumers. Clients may profit from lower costs
and better performance, while providers may offer more sophisticated services
[7]. However, hereinafter we focus on the provider perspective. Thus providers
can benefit from the increasing capacity and diversity of federated resources.
In our model, we employ financial option theory as an interface to elastically
allocate an extra pool of federated resources. In finance, an option2 is a contract
which gives the buyer (the owner) the right, but not the obligation, to buy or
sell an underlying asset or instrument at a specified strike price on or before a
specified date.

Fig. 1. Resource utilization in Cloud federation using options.

Pricing elasticity and resource trading among federation members lead to
competitive contracting process, which aims at finding reasonable and fair price
of the asset. The contracting process is to write an option that contains future
aspects of trading. For instance, whenever the provider lacks the required
resources, then can take advantage of exercising such options to allocate cor-
responding resources respectively. Using options, providers take the rights to
provision seller’s resources which match their demands among parties at a price
equal or above to their expectation of the asset payoff. Now, the concern is, how
to price an option to be reasonable for both parties? Obviously, option pricing is
an elastic process [5], sensitive to the fluctuation of the asset price determined by
supply and demand between federation parties in spot market. As a consequence,
pricing elasticity that comes in two types of Demand and Provisioning may drive
a wedge between the buying and selling price of an asset. Thus controlling the
pricing elasticity of the demand and provisioning with respect to their effects on
revenue stream by fair pricing of such options appears to be vital. This paper
aims at addressing the pricing elasticity of the asset in federation market by
fair pricing of the option. The option price is determined by a broker acting on
behalf of the Cloud federation and therefore standardised across the federation.
2 http://en.wikipedia.org/wiki/Option (finance).

http://en.wikipedia.org/wiki/Option_(finance)

50 S. Qanbari et al.

This option gives the right to obtain an instance at a given price, established at
the agreement’s stipulation time.

In this scenario, at stage 1 as shown in Fig. 1, the clients request for on-
demand and RIs and keep using them. At stage 2 another client benefits from
the existing RI. As soon as the RI is suspended, Provider A can utilize this
instance by reallocating it to unmet on-demand request. Therefore, upon lacking
resources, any incoming on-demand request at stage 3 will be responded by
reallocation of the RI at 4 to a new client. At this moment, stage 5, Provider
A buys an option from federation broker as a supporting mechanism for future
resource capacity planning. The provider avoids buying resources at a price that
is higher than the one charged to its own customers. As soon as the previous
client claims for the RI at 6 which is now allocated to the request 3, the provider
will take advantage of the option signed with Provider B by exercising it at 7
and the Provider B has an obligation to provision the promised resources at 8.
Our focus lies on stages 5 and 7 where the provider is looking for a well priced
option to be exercised later to achieve more utilization. In our federation model,
Provider A is the demander and Providers B & C are the resource suppliers in
the federated environment.

The fact that future valuation of federated assets depends on the correlated
elasticity between provisioning and demand, suggests that the optimal utilization
of an asset is primarily driven by its price volatility in open Cloud markets. This
influences the trend of providers to be more concentrated on controlling this pric-
ing elasticity. Although the elasticity of a demand is an initial impetus in asset
valuation, the pricing elasticity of the demand might lead to inefficient revenue
generation. For instance, the resource demand can be affected to a greater degree
by minor changes in asset price. This leads to a question, how can volatility in
price cause so much sensitivity in future demands? The reason is amplification.
Blame is usually laid on asset price fluctuation and dynamic valuation. The
price changes in federation market will be propagated across providers (such as
domino effects), causing more sensitivity and concerns on provider’s demand.
The next question is, how can we control the pricing elasticity and decrease
Cloud market sensitivity to future asset price changes? In this study we employ
financial option theory which takes care of future valuation of the asset. Then
by using the Binomial-Trinomial Tree (BTT) option pricing [3] methodology, we
control the Cloud asset price changes and its propagation through the market.
As the option price rises or falls, our CAPT model will adjust its structure to
the price volatility to come up with an option price that is predictable and fair
for both option holder and writer.

3 Terms and Preliminaries

In this section we present basic concepts, economic terms and numerical methods
and their interpretations considered in the study.

An Economic Model for Utilizing Cloud Computing Resources 51

3.1 Cloud Federation Contracts

In finance, an option is a contract but the major difference arise from the rights
and obligations of an option’s buyer and seller. A Call option gives the buyer the
right, but not the obligation, to purchase the underlying asset at a specified price
(the strike or exercise price) during the life of the option. The cost of obtaining
this right is known as the option’s “premium” which is the price that is offered
in the exchange. We use the term premium for an option premium in this study.
The option buyer’s loss is limited to the premium paid. When you own a Call,
what you do by exercising your right is to Call for Resource Provisioning from
provider that offered the Call to you. The buyer’s right becomes the seller’s
obligation when the option is exercised. An American option can be exercised
at any time during the life of the contract while European option can only be
exercised at maturity date. The CAPT is modeled with American call options.

American options are provided by a pool of providers and purchased by
other providers as a hedge to cover potential excess demand. Using this method,
providers are able to re-sell on-demand VMs that have previously been sold as
RI. If the RI owner decides to use the instance then rather than violate an SLA,
the excess demand can be covered by exercising previously purchased options to
enable Cloud-bursting using the federated pool of resources. The option pricing
model determines an option price that is inelastic (such that supply and demand
are not highly sensitive to price), thereby reducing self-reinforcing oscillations
in supply and demand. The paper demonstrates that the option pricing model
converges to a more stable price over time and the simulated provider increases
profit from outsourcing provisioning using options.

3.2 Cloud Asset Pricing Elasticity

In Cloud systems, elasticity is the ability to automatically increase or decrease
resource allocation to asset instances as demand fluctuates. Cloud financial elas-
ticity is a measure of how much resource buyers and sellers respond to changes
in market conditions. It’s a measure of the responsiveness of quantity demanded
or provisioned to a change in one of its determinants like price or quality. In this
paper we address the Cloud federation asset pricing elasticity. The law of demand
states that a fall in the price of a resource raises the quantity demanded. To be
more specific, the price elasticity of demand measures how willing providers are
to buy less or more options as its price rises or falls. To sum up, the concept of
Price Elasticity of Demand (PEoD) measures of how much the resource quan-
tity demanded due to a price change. And the Price Elasticity of Provisioning
(PEoP) measures how much the resource quantity provisioned due to a price
change [8]. The PEoD and PEoP formulas are:

PEoD =
(%Change in Quantity Demanded)

(%Change in Price)
(1)

PEoP =
(%Change in Quantity Provisioned)

(%Change in Price)
. (2)

52 S. Qanbari et al.

3.3 Pricing Elasticity Interpretation

Regarding interpretation, we analyze the Cloud asset price elasticity only with
their absolute values. The PEoD variable values, denote how sensitive the demand
for an asset is to a price change. In financial markets, the rule is if a provider’s
asset has a high elasticity of demand, the more the price goes up, the fewer
consumers will buy and try to economise their needs. Correspondingly, in Cloud
federation markets, a very high price elasticity suggests that when the price of a
resource goes up, our provider will be more sensitive and demand for less assets
or buy less call options. Conversely, when the price of that resource goes down,
then the provider will demand for more assets or buy more call options. A very
low price elasticity implies just the opposite, that changes in price have little
influence on demand or exercising the call. To sum up, when demand is price
inelastic, total revenue moves in the direction of a price change. When demand
is price unit elastic, total revenue does not change in response to a price change.
When demand is price elastic, total revenue moves in the direction of a quan-
tity change. In order to see whether the price is elastic or inelastic we use the
following rule of thumb:

VM PEoD =

⎧
⎪⎨

⎪⎩

> 1 Demand is price elastic.
= 1 Demand is unit elastic.
< 1 Demand is price inelastic.

(3)

Next is price elasticity of provisioning in federation resource supply pool.
The law of supply states that higher prices raise the quantity supplied. The
price elasticity of supply measures how much the quantity supplied responds to
changes in the price. Supply of a good is said to be elastic if the quantity supplied
responds substantially to changes in the price. Supply is said to be inelastic if the
quantity supplied responds only slightly to changes in the price. PEoP denotes
how sensitive the provisioning of an asset is to a price change. In Cloud federation
markets, a very high price elasticity of provisioning suggests that when the price
of a resource goes up, Cloud federation members will be more sensitive to price
changes and provision more assets or sell more call options to make more profit.
Thus, the resource quantity supplied can respond substantially to price changes.
Same as PEoD, in order to see whether the price is elastic or inelastic in PEoP,
we use the following rule of thumb:

VM PEoP =

⎧
⎪⎨

⎪⎩

> 1 Provisioning is price elastic.
= 1 Provisioning is unit elastic.
< 1 Provisioning is price inelastic.

(4)

Finding the right balance between these two polar approaches of PEoD and
PEoP to come to a new equilibrium is a challenge as we address it using our
CAPT model. In equilibrium, asset aggregate demand has to equal the asset sup-
ply. To be more specific, in our evaluation, we will show that our pricing model,
calculates the fair price of the option that makes the demand, price inelastic
and provisioning, price elastic. This leads to increasing demand, regardless of
the asset price oscillation.

An Economic Model for Utilizing Cloud Computing Resources 53

3.4 Assumptions

It is an indication that the following assumptions underlying our model has been
considered for the proper positioning of this study. In a Cloud market, resources
are virtualized to abstract concepts like virtual machines (VMs) and assumed
as intangible assets. They are also seen as assets as long as associated with a
contract that can be exercised by an option. Federation formation pose some
concerns like contract management, data policies, SLA violations and etc. We
believe these concerns should be addressed in the business models agreed among
parties.

4 CAPT Model

The option pricing can be represented by numerical methods like trees. This
section shows how to generate the CAPT tree for pricing options. The model
benefits from the Binomial and Trinomial tree methods as detailed below. This
section shows how to generate the CAPT tree for pricing options.

4.1 Binomial Tree

Binomial tree model is a numerical pricing method that approximates option
price. Let a derivative on S(t) initiates at time 0 and matures at time T . A
lattice partitions this time span into n equal-distanced time steps and specifies
the value of S(t) at each time step which denotes the Cloud asset price. Let the
length between two adjacent time steps be Δt ≡ T/n. The established Cox-Ross-
Rubinstein (CRR) binomial tree [2] is shown in Fig. 2. As we move forward in
time, each asset price S can either move upward to become Su with probability
Pu, or move downward to become Sd with probability Pd ≡ 1 − Pu. The CRR
lattice adopts the following solution:

u = eσ
√

Δt, d = e−σ
√

Δt, Pu =
erΔt − d

u − d
, Pd =

erΔt − u

d − u
(5)

where σ is price volatility, Δt is duration of a step and r denotes the interest
rate.

4.2 Trinomial Tree

A trinomial tree can be built in a similar way to the binomial tree but has three
possible paths (up, down, and stable) per node leading to more efficient pricing.
The jump sizes (u, d) can be calculated in a similar way with doubled time
spacing. The transition probabilities are given as:

Pu =

(
e

rΔt
2 − e−σ

√
Δt
2

eσ
√

Δt
2 − e−σ

√
Δt
2

)2

Pd =

(
eσ

√
Δt
2 − e

rΔt
2

eσ
√

Δt
2 − e−σ

√
Δt
2

)2

(6)

54 S. Qanbari et al.

Fig. 2. CRR binomial pricing tree.

Pm = 1 − Pu − Pd (7)

Now it is possible to find the value of the underlying asset, S for any sequence
of price movements. It will generate a directed graph with nodes labeled as asset
prices and edges connecting nodes separated by one time step and a single price
up, down and middle jumps as Nu, Nd, Nm, where the price after i period at
node j (or after i ups and j downs) is given by: S(i,j) = uNudNdmNmS(t0) where
Nu + Nd + Nm = i. Finally, in both binomial and trinomial tree methods, the
option value can be computed by standard backward induction method.

4.3 Growing the CAPT Tree

This section visualizes how the BTT tree is constructed for pricing the options
briefly. In this model as illustrated in Fig. 3 the root of the tree is the node
S which is formed by a trinomial tree and the rest of the tree is constructed
using binomial method with the first two time steps truncated. The barriers (the
black nodes) are H0 and L0 at time T0 and H1 and L1 at time T0+T1. These
barriers define the allowable range for the price fluctuation of the underlying
asset serving to limit both, profits and losses, for federation parties. The tree
adjusts and adapts its structure to the price volatility and the moving barriers to
come up with an option price that is predictable and fair for both option holder
and writer.

The combinatorial pricing algorithm [4] is used to evaluate the option values
on the three CRR trees as shown in Fig. 3, with root nodes A, B, and C. The
option price of the CAPT at node S is also evaluated by the backward induction
method.

An Economic Model for Utilizing Cloud Computing Resources 55

Fig. 3. Cloud option pricing using bino-trinomial tree.

4.4 The Role of Double Barriers

A barrier option is a cloud contract whose payoff depends on whether the Cloud
underlying resource price path ever touches certain price levels called the barri-
ers. A knock-in barrier option comes into existence if the resource price touches
the barrier(s) before the maturity date, whereas a knock-out one ceases to exist
if the resource price touches the barrier(s) before maturity.

The barrier(s) can also be moving due to the pricing elasticity of the resource
which is a measure of relative quantity response to a change expressed in mone-
tary parameters like price. A barrier event occurs when the Cloud resource price
crosses the barrier level. For a continuous barrier option, the underlying stock
price is monitored continuously from time 0 to time T. For instance, the pay-
off of a continuous double-barrier option on Amazon Cloud small on-demand
instance3 with a low barrier L and a high barrier H is:

{
max(θST − θX, 0), if Ssup < H and Ssup < H,

0, otherwise,
(8)

3 Amazon EC2 Small Instance: 1.7 GiB of memory, 1 EC2 Compute Unit, 160 GB of
local instance storage, 32-bit or 64-bit platform.

56 S. Qanbari et al.

where Sinf = inf0≤t≤T St and Ssup = sup0≤t≤T St. The prices L and H are
the critical price levels as the option value freezes at zero once the stock price
reaches L or H.

The payoff of a discrete barrier option depends on whether the resource
price is above (or below) the barrier(s) at certain predetermined dates called the
monitoring dates. Assume the barriers at times T1, T2, ..., Tm are L1, L2, ...,
Lm, respectively. Then the payoff of a discrete moving-double-barrier knock-out
option with high barrier Hi and low barrier Li at time Ti (1 ≤ i ≤ m) is:

{
max(θST − θX, 0), if Hi > STi

for 1 ≤ i ≤ m,

0, otherwise,
(9)

The barrier prices L1 and H1 at time t1, L2 and H2 at time t2, and so on are
critical points as the option value freezes at zero when the resource price is lower
than Li or higher than Hi at time ti, where 1 ≤ i ≤ m. In summary, the high
barrier behaves like a price ceiling where imposes a limit on how high a spot
instance price can be charged. Conversely, the low barrier indicates price floors
by attempting to prevent the price from falling below a certain level. Price floors
exposes limits on how low a spot instance price can be charged. These barriers
specify the lowest and highest amount a client can legally pay a provider.

5 Model Evaluation

Now, we present results from our simulation observation that show the efficiency
of our model. We have implemented a Cloud federation environment using Cloud
simulation platform, CloudSim [1]. The simulated Cloud federation uses our
option pricing model for trading assets and VM provisioning. The unit of resource
being observed is an Amazon EC2 Standard Small Instance (US East). At the
date of simulation (Sept 2013), resources advertised at a price of $0.085/hour
for an on-demand instance. For RIs, the same type instance for 12 months costs
$0.034/hour. For evaluation purposes, (i) the reserved capacity of the data center
is considered as steady constant value during simulation. (ii) to economize the
equations, we do not take into account the operational costs (i.e., hardware
and software acquisition, staff salary, power consumption, cooling costs, physical
space, etc.) of the data center. It imposes a constant value within the model.

5.1 Simulation Setup

The simulation environment is developed to capture the behavior of our CAPT
model in Cloud federation where supply and demand fluctuate in daily pat-
terns directly inspired by real-world market. For a provider, who benefits from
this market, simulation was implemented with a resource pool capable of 400
simultaneous running VMs capacity including reserved and on-demand. We have
implemented the following three components on top of CloudSim simulator. Fur-
ther details of our option-based federation simulator entities and settings are as
follows.

An Economic Model for Utilizing Cloud Computing Resources 57

CAPT Request Generator (ReqG). The workload pattern generation was
needed in order to mimic the real world IaaS Cloud requests. We implemented
CAPT-ReqG agent to create jobs by using the Cloudlet class in CloudSim. In our
model, each job has an arrival time as we scheduled the workload on a daily-basis
pattern and a duration time which is the holding time of the instance by the
job and metered to charge the consumer respectively. Given that our workload
follows daily pattern based on normal Gaussian distribution for the 24 h of a
day and considering standard business hours (from 9 to 17) as peak hours, we
generate a randomly distributed arrival time for requests in each specific hour.
The load decreased 60% on weekends.

CAPT Resource Allocator (ResA). We have developed the CAPT-ResA
agent to determine the association between jobs and federated resources. Our
allocation policy finds a mapping between the batch of jobs outsourced to the
federation and VMs associated to options. In the simulation, the VM provisioning
policy is extended to best fit with respect to the option status. The providers
are implemented using DataCenter class in CloudSim, as it behaves like an
IaaS provider. The CAPT-ResA receives requests from CAPT-ReqG, allocates
resources and binds the jobs to the VMs accordingly. For resource allocation,
we have used shared pool strategy. In case of arriving a new on-demand job,
the agent checks if the number of currently running on-demand jobs exceeds the
capacity of on-demand pool and if so, it will allocate VMs from its reserved pool
while buying an option from federated Cloud. As soon as it receives requests
which can not be met in-house, the agent will exercise the options that were
bought before and outsource the new jobs to federated pool.

CAPT Option Handler (OptH). Our CAPT-OptH agent implements the
option pricing model as detailed in Sect. 4. It also routes the option exercising
request to the CAPT-ResA agent to have the requested resource provisioned.
The pricing policy is set to resource/hour consumed for each instance, for the
duration an instance is launched till it is terminated. Each partial resource/hour
consumed will be charged as a full hour. There are six metrics that affect the
CAPT option pricing, (i) the current stock price, S0 set to $0.034/hour (ii) the
exercise price (spot price), K is generated based on Amazon spot price observed
pattern. (iii) the time to option expiration T set to 1 month (iv) the volatility σ
which is the range and speed in which a price moves, set to 31.40%per annum.
It is observed by the cloudexchange.org4 which is real-time monitoring of Ama-
zon EC2 spot prices. (v) the interest rate, r is set to 19.56% per annum since
the Amazon EC2 SLA5 interest rate is 1.5% per month and (vi) the dividend
expected during the life of the option is set to $5.17. Both High and Low barriers
are set to $0.039 and $0.030. The simulation was run 50 times. The experiment
duration is set to 6 months and the mean value of the results is evaluated to
mimic the real-world environment.
4 https://github.com/tlossen/cloudexchange.org.
5 http://aws.amazon.com/agreement/.

https://github.com/tlossen/cloudexchange.org
http://aws.amazon.com/agreement/

58 S. Qanbari et al.

5.2 Evaluation Measure

There are four empirical measures as we care to specify and observe their behav-
ior during the simulation: (i) Provider’s profit (Ppr), which our model claims to
ensure the optimal utilization of the resources for providers. The profit measure-
ment equation is:

Ppr = Ron + Rres + R(op,exe) − C(op,pre) − C(gen) (10)

where Ron and Rres are the providers’ total revenue received over their own
on-demand and RIs. R(op,exe) is the revenue of exercising the options since the
option exercise price is less than their own instance price sold to their clients
before. C(op,pre) denotes the premium to be paid for the purchase of the option
which our model calculates accurately. Finally, C(gen) covers general costs of
provider as we assumed a constant value. (ii) Second measure is QoS Violations
(QoSv), that holds the number of rejected or unmet reserved and on-demand
instances reflecting the SLA violations. Third and forth measures are (iii) Price
Elasticity of Demand (εD) and (iv) Price Elasticity of Provisioning (εP) where
their absolute values are highly correlated with the asset price changes. Their
computation is done with these equations:

εD(vm) =
%ΔQd

%ΔPvm

and εP (vm) =
%ΔQp

%ΔPvm

(11)

The εD(vm) and εP (vm) denote the price elasticity of demand and provisioning
of an asset, and measures the percentage change in the quantity of VM demanded
and provisioned per 1% change in the price of its option premium. Our economic
model should make εD(vm) “price inelastic” and εP (vm) “price elastic” as
interpreted in Sect. 3.2.

Table 1. Cloud federation market simulation summary (6 months).

Instance↓ Mea-
sures →

Workload QoS violations Profit Price elasticity Options

Reserved On-demand In-house Option PEoD PEoP Bought Exercised

Amazon
m1.small

98455 0 0 35293.63 3339.97 0.095 1.28 25676 14020

5.3 Results and Debate

The aggregate results imply utility and are reported as summary in Table 1.
Results show that those providers are able to reach an utilization rate of 95%
and achieve gains both from the in-house instances and from those obtained by
exercising the option’s rights from other providers of the federation. Taking these
results together, four points stand out in this simulation. First, is the profit made
from exercising options. To interpret this, note that in our approach, providers
buy the options that its exercise price are less than their own VM provisioning
price. As observed, providers were able to meet 86% of an incoming requests

An Economic Model for Utilizing Cloud Computing Resources 59

by inhouse provisioning and outsourced 14% of their demands to the federa-
tion, in which are fully provisioned to celebrating 8.7% more profit. Second, is
the achievement over the QoS agreed with the client for resource delivery. For
both reserved and on-demand, no QoS violation (no unmet request) is detected.
Third, as our results indicate, the value of pricing elasticity of demand (PEoD)
is kept less than 1 denoting that the demand became “price inelastic” serving to
increasing demand, regardless of the asset price oscillation. From the federation
perspective (resource suppliers side), the value of pricing elasticity of provi-
sioning (PEoP) is more than 1 denoting that the provisioning became “price
elastic” indicating the providers are flexible enough to adapt the amount of
resources they provision. These values are consistent with the number of options
purchased and exercised, leading to more economies of scale. Finally, is the uti-
lization value, which is considerable. This indicates that optimal utilization of
resources is achieved to exploit the efficiency and accuracy of our model.

To form a basis for comparison, our next two figures depict the dependen-
cies between option pricing elasticity and its demand and provisioning. Figure 4,
shows how CAPT controls the option pricing elasticity and converges to a more
stable price smoothly. Our approach finds the optimal option price of the feder-
ated resource in the Cloud to come to an equilibrium between PEoD and PEoP.
The asset equilibrium price occurs when the supply resource pool matches the
aggregate demand indicating an optimal resource utilization. From the provi-
sioning perspective, the PEoP over 1 indicates an elastic supply. Since the asset
pricing elasticity is controlled, we see a synchronous correlation between price
and supply changes. As a result, the total revenue moves in the direction of price
change.

6 Related Work

In relation to our approach, there are some alternatives that propose federation
economic model more focused on the provider’s perspective. A broker-based fed-
eration approach has been proposed by [9,10,14]. These studies decouple the
brokerage strategies and federation economic valuation. Zhang proposes an eco-
nomic model for the evaluation of the economic value of Cloud Computing Fed-
eration in providing one computing unit such as the power and human resources
[15]. Just as Clouds enable users to cope with unexpected demand loads, a
Federated Cloud will enable individual Clouds to cope with unforeseen varia-
tions of demand. Authors in [6] investigate the application of market-oriented
mechanisms based on the General Equilibrium Theory of Microeconomics to
coordinate the sharing of resources between the Clouds in the federated environ-
ment. In [16], authors present an online resource marketplace for open Clouds
by adopting an eBay style transaction model based on auction theory. Here
[11] establishes a novel economic sharing model to regulate capacity sharing in
a federation of hybrid Cloud providers. The idea of financial options is used
by [12] as a financial model for pricing Cloud compute commodities by using
Moore’s law on depreciation of asset values, to show the effect of depreciation of

60 S. Qanbari et al.

Fig. 4. Resource price elasticity controlled via options.

Cloud resource on QoS. In [13] authors incorporate financial options as a market
model for federated Cloud environments. In contrast to existing approaches, we
use financial option theory for asset trading and propose a dynamic and adaptive
option pricing model which enhance profit by controlling the pricing elasticity
of demand and provisioning in the Cloud federation.

7 Conclusions and Outlook

Providers consider federations as an alternative pool of resources to their
expected consumption growth. Their demand to use the federated asset is depen-
dent to the pricing elasticity of demand, as if the elasticity is high, then they will
be more careful on buying options. In this paper, we proposed a financial option
pricing model to address the pricing elasticity concerns in above situation. Our
economical model is for implementing a future market of virtualized resources in
a system where a federation of Cloud providers is used to reduce risks and costs
associated with the capacity planning of Cloud providers. Providers will benefit
by this model to make decisions when to buy options in advance and when to
exercise them to achieve more economies of scale.

So far, we have proposed an economic model that considers future aspects
of trading like capacity planning or resource allocation over upcoming demands.
The CAPT model empowers vendors to get additional resources as and when
required. This economic model aims for the leverage of demand and supply form
the IaaS provider and third party providers point of view, finding suboptimal
price policies between resources ownered by the provider and options to external

An Economic Model for Utilizing Cloud Computing Resources 61

providers using Cloud bursting when needed. This study covers two aspects of
resource elasticity: Resource Quantity and Price. As an outlook, our future work
includes further extension to the model that can also support the Quality of
Service (QoS) aspect in federation environment.

Acknowledgements. The research leading to these results is sponsored by the
Doctoral College of Adaptive Distributed Systems at the Vienna University of Technol-
ogy as well as the Pacific Controls Cloud Computing Lab (PC3L) (http://pc3l.infosys.
tuwien.ac.at/), a joint lab between Pacific Controls, Dubai, and the Distributed Sys-
tems Group at the Vienna University of Technology.

References

1. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, A.F., Buyya, R.: Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw. Pract. Exper. 41(1), 23–50 (2011).
http://dx.doi.org/10.1002/spe.995

2. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J.
Financ. Econ. 7(3), 229–263 (1979)

3. Shyr Dai, T., dauh Lyuu, Y.: The bino-trinomial tree: a simple model for efficient
and accurate option pricing. J. Deriv. 17(4), 7–24 (2010)

4. Dai, T.-S., Lyuu, Y.-D.: An efficient, and fast convergent algorithm for barrier
options. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 251–
261. Springer, Heidelberg (2007)

5. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes.
Internet Comput. IEEE 15(5), 66–71 (2011)

6. Gomes, E.R., Vo, Q.B., Kowalczyk, R.: Pure exchange markets for resource shar-
ing in federated clouds. Concurr. Comput. Pract. Exper. 24(9), 977–991 (2012).
http://dx.doi.org/10.1002/cpe.1659

7. Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., Kunze, M.: Cloud federa-
tion. In: Computing (c), pp. 32–38 (2011)

8. Mankiw, N.G.: Elasticity and its applications. In: Principles of Microeconomics,
6th edn, pp. 89–109. Harvard University (2012)

9. Raj, G.: An efficient broker cloud management system. In: Proceedings of the Inter-
national Conference on Advances in Computing and Artificial Intelligence, ACAI
2011, pp. 72–76. ACM, New York (2011). http://doi.acm.org/10.1145/2007052.
2007067

10. Rogers, O., Cliff, D.: A financial brokerage model for cloud computing. J. Cloud
Comput. 1(1), 1–12 (2012). http://dx.doi.org/10.1186/2192-113X-1-2

11. Samaan, N.: A novel economic sharing model in a federation of selfish cloud
providers (2013)

12. Sharma, B., Thulasiram, R., Thulasiraman, P., Garg, S., Buyya, R.: Pricing cloud
compute commodities: a novel financial economic model. In: 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp.
451–457 (2012)

13. Toosi, A., Thulasiram, R., Buyya, R.: Financial option market model for federated
cloud environments. In: 2012 IEEE Fifth International Conference on Utility and
Cloud Computing (UCC), pp. 3–12 (2012)

http://pc3l.infosys.tuwien.ac.at/
http://pc3l.infosys.tuwien.ac.at/
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/cpe.1659
http://doi.acm.org/10.1145/2007052.2007067
http://doi.acm.org/10.1145/2007052.2007067
http://dx.doi.org/10.1186/2192-113X-1-2

62 S. Qanbari et al.

14. Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda,
A., Fong, L., Masoud Sadjadi, S., Parashar, M.: Cloud federation in a
layered service model. J. Comput. Syst. Sci. 78(5), 1330–1344 (2012).
http://dx.doi.org/10.1016/j.jcss.2011.12.017

15. Zhang, Z., Zhang, X.: An economic model for the evaluation of the economic value
of cloud computing federation. In: Zhang, Y. (ed.) Future Wireless Networks and
Information Systems. LNEE, vol. 141, pp. 571–577. Springer, Heidelberg (2012)

16. Zhao, H., Yu, Z., Tiwari, S., Mao, X., Lee, K., Wolinsky, D., Li, X., Figueiredo,
R.: Cloudbay: enabling an online resource market place for open clouds. In: 2012
IEEE Fifth International Conference on Utility and Cloud Computing (UCC), pp.
135–142 (2012)

http://dx.doi.org/10.1016/j.jcss.2011.12.017

Reducing Complexity in Service Development
and Integration

Per-Olov Östberg(B) and Niclas Lockner

Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{p-o,lockner}@cs.umu.se

Abstract. The continuous growth and increasing complexity of distrib-
uted systems software has produced a need for software development
tools and techniques that reduce the learning requirements and com-
plexity of building distributed systems. In this work we address reduc-
tion of complexity in service-oriented software development and present
an approach and a toolkit for multi-language service development based
on three building blocks: a simplified service description language, an
intuitive message serialization and transport protocol, and a set of code
generation techniques that provide boilerplate environments for service
implementations. The toolkit is intended for use in the eScience domain
and is presented along with a performance evaluation that quantifies
toolkit performance against that of selected alternative toolkits and tech-
nologies for service development. Toolkit performance is found to be com-
parable to or improve upon the performance of evaluated technologies.

Keywords: Creo · Service-Orientated Architecture · Service develop-
ment

1 Introduction

In this paper1 we discuss reduction of complexity in service-based software devel-
opment; present a toolkit that demonstrates an approach to reduced complexity
service description, development, and integration; and evaluate the communica-
tion efficiency of the presented toolkit against a set of alternative technologies
and toolkits for service and distributed system component development.

Cloud computing has in recent years evolved to an established paradigm for
provisioning of IT capacity. While this approach can offer several benefits com-
pared to traditional static provisioning, e.g., facilitation of more flexible service
types [4] and improvements in cost and energy efficiency of large-scale comput-
ing [5,25], it also places focus on a current and growing problem in distributed
computing: the increasing complexity of development and management of sys-
tems in distributed computing environments [13].

1 This paper is an invited extended version of the paper Creo: Reduced Complexity
Service Development presented at CLOSER 2014.

c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 63–80, 2015.
DOI: 10.1007/978-3-319-25414-2 5

64 P.-O. Östberg and N. Lockner

Service-Oriented Computing (SOC) is a popular approach to software devel-
opment and integration in large-scale distributed systems. SOC is argued to be
well suited for cloud environments as it places focus on representation of logic
components as network-accessible services, and aims to facilitate development
and integration of systems through coordination of service interactions. At archi-
tecture level, Service-Oriented Architectures (SOAs) define service interfaces as
integration points and address system composition at interface or protocol level.
While a number of SOA techniques have emerged, service development and inte-
gration are still complex issues and there exists a need for development tools
that provide non-complex and low-learning-requirement environments for effi-
cient development of service-based systems.

To illustrate these issues, we here take the perspective of eScience applica-
tion development. In eScience2, distributed computing techniques are used to
create collaborative environments for large-scale scientific computing. In com-
parison to commercial software stacks, scientific computing tools are typically
prototype-oriented, produced in projects with limited software development bud-
gets, and often composed of heterogeneous components developed in multiple
languages and environments. In addition, eScience applications also often use
distributed or parallel programming techniques to exploit parallelism inherent
to computational problems, further increasing the complexity of implementation
and management of eScience software stacks. As many current eScience efforts
are approaching construction of virtual infrastructures using cloud technology,
they here serve as illustrative examples of the difficulties of developing multi-
language software stacks in heterogeneous distributed computing environments.

In this work we address reduction of complexity in service-based software
development, and present an easy-to-use toolkit for efficient cross-language inte-
gration of software services. The toolkit is based on three core components: a
simplified syntax service description language, a transparent data serialization
and transmission protocol, and a set of code generation tools designed to abstract
complexity in service and service client development.

The remainder of the paper is structured as follows: Sect. 2 presents project
background and a brief survey of related work, Sect. 3 outlines the proposed
approach and toolkit, and Sect. 4 discusses use cases for the approach. In the
second half of the paper, Sect. 5 contains a performance evaluation quantifying
toolkit performance against selected alternative service development technolo-
gies, followed by conclusions and acknowledgements in Sect. 6.

2 Related Work

A number of tools for service development and middleware construction exist,
ranging in complexity and abstraction levels from very simple fine-grained
interprocess communication tools to advanced middleware construction toolkits
featuring advanced data marshalling, call translation, and remote reference count-
ing techniques. In general there exists trade-offs between complexity and efficiency
2 Computationally intensive science in highly distributed network environments.

Reducing Complexity in Service Development and Integration 65

that make service technologies more or less suitable for certain situations, and
many technologies have been developed for specific application scenarios.

For example, direct interprocess communication technologies such as tradi-
tional remote procedure calls (RPC) [6] and Java Object Serialization (JOS) [16]
(over sockets) provide transparent development models but offer little in ways of
complexity abstraction. Other approaches such as Java Remote Method Invoca-
tion (RMI) [26] and the Microsoft Windows Communication Framework
(WCF) [14] offer development models tightly integrated into mature commercial
software development environments, but lose some applicability in multi-platform
application scenarios. There exists also standardized approaches to multi-language
and multi-platform service development, e.g., the Common Object Request Bro-
ker Architecture (CORBA) [24], but while such standardized approaches typically
are very expressive and capable of application in multiple programming styles, e.g.,
object-orientation and component-oriented development, this general applicabil-
ity often comes at the price of very steep learning curves and high development
complexity.

In service-oriented architectures, programming models such as SOAP and
REST-style web services are widely used due to features such as platform inde-
pendence, high abstraction levels, and interoperability. The SOAP approach to
web services favors use of standardization of XML-based service description and
message formats to facilitate automated generation of service interconnection
code stubs, dynamic service discovery and invocation techniques, and service
coordination and orchestration models. SOAP-style web services are however
often criticized for having overly complex development models, inefficiencies
in service communication, and low load tolerances in servers (although devel-
opments in pull-based parser models have alleviated some of the performance
issues [11]).

The REpresentational State Transfer (REST) [8] web service model is often
seen as a light-weight alternative to the complexity of SOAP-style web ser-
vices. The REST approach discourages standardization (of message formats),
promotes (re)use of existing wide-spread technology, and aims to give service
developers more freedom in, e.g., choice of data representation formats and API
structures. While this approach facilitates a development model well suited for
smaller projects, it is sometimes argued to lead to more tightly coupled service
models (that require service client developers to have knowledge of service-side
data structures) and introduce technology heterogeneity in large systems.

Although service models are considered suitable for large-scale system inte-
gration, and some understanding of the applicability of web services has been
gained [20], neither approach fully addresses the requirements of service-oriented
software development and a number of technologies for hybrid service-RPC
mechanisms have emerged. These include, e.g., interface definition language
(IDL) based technologies such as Apache Thrift [22], an RPC framework for scal-
able cross-language service development, Apache Avro [2], a data serialization
system featuring dynamic typing, and Google protocol buffers [10], a method for
serializing structured data for interprocess communication. For high performance

66 P.-O. Östberg and N. Lockner

data serialization and transmission, there also exists a number of non-IDL based
serialization formats and tools such as Jackson JSON [12], BSON [15], Kryo [7],
and MessagePack [9].

In addition to trade-offs for technical performance and applicability, tools
and development models often impose high learning requirements in dimensions
orthogonal to the task of building distributed systems. For example, the Dis-
tributed Component Object Model (DCOM) requires developers to understand
data marshalling and memory models, Java RMI distributed garbage collection,
CORBA portable object adapters (type wrappers), and SOAP web services XML
Schema (for type definition and validation). As distributed systems are by them-
selves complex to develop, debug, and efficiently analyze, there exists a need for
software development tools that provide transparent and intuitive development
models, and impose low learning requirements.

In this work we build on the service development model of the Service Devel-
opment Abstraction Toolkit [17], and investigate an approach to construction
of development tools focused on reducing complexity of service-based software
development. The aim of this approach is to combine the high abstraction levels
of SOAP-style web services (using a simplified service description syntax) with
the communication efficiency of more direct RPC-style communication tech-
niques, and produce tools with low learning requirements that efficiently facili-
tate service development. As the work is based on code generation, the approach
can be seen akin to development of a domain-specific language [23] for service
description, but the main focus of the work is to reduce overhead for exposing
component logic as network-accessible services. The work is done in eScience
settings, and presented results are primarily intended to be applied in scien-
tific environments, e.g., in production of tools, applications, and middlewares
for scientific simulation, experimentation, and analysis.

3 Creo

Service-oriented architectures typically expose components and systems as plat-
form independent, network-accessible services. While this approach gracefully
abstracts low-level integration issues and provides for high-level architecture
design models, it can often lead to practical integration issues stemming from,
e.g., complexity in service development models, steep learning curves of service
development tools, and lack of distributed systems development experience in
service client developers.

In this paper we build on earlier efforts presented in [17,19], and propose
an approach to service development that places the responsibility of service
client development on service developers. As this shift in responsibility intro-
duces noticeable additional complexity in service development, e.g., in require-
ments for multi-language service client development, we note a need for tools to
support the approach and present Creo - a service development toolkit based on
simplified service description and automated code generation.

The Creo toolkit is aimed to reduce complexity in construction of network-
accessible services by providing a development model that lowers learning

Reducing Complexity in Service Development and Integration 67

requirements and increases automation in service development. While the toolkit
is designed to be simple to use and targeted towards developers with limited dis-
tributed systems development experience, it also strives to provide service com-
munication performance high enough to motivate use of the toolkit in mature
service development scenarios.

To limit the scope of the work, we have initially designed the toolkit to
support development of services in a single language (Java), and service client
development in four languages common in eScience environments: C, C#, Java,
and Python. The toolkit implementation patterns are however transparent and
modularized, and all modules are designed to be extensible to code generation
in additional languages. The intent of the toolkit is to provide robust service
communication stubs in general purpose programming languages that can later
be used to build integration bridges into special purpose environments such as
R, Mathematica, and Matlab.

The choice of Java as service language is motivated by the language’s rich
development APIs, robustness in performance, platform independence, and wide-
spread adoptance in operating systems and server platforms. The design philos-
ophy of the toolkit can be summarized as supporting advanced implementation
of services while keeping generated code for clients as transparent, light-weight,
and free of external dependencies as possible.

To combine the ease-of-use of high abstraction level tools with the commu-
nication performance of more fine-grained approaches, the toolkit development
model is based on the service description approach of SOAP-style web services
combined with a customized version of the RASP protocol presented in [19]. The
toolkit service development process can be summarized in three steps:

1. Service Description. Service type sets and interfaces are defined in a custom
service description (interface definition) language.

2. Communication Code Generation. Service and service client communication
stubs are generated from service descriptions.

3. Service Integration. Logic components are exposed as services through imple-
mentation of generated service interfaces, and service clients are implemented
based on the generated communication stubs for service interconnection.

In all steps of this process, the toolkit aims to reduce the complexity of service
development by providing intuitive tools and formats for service description,
data representation, and code generation.

3.1 Service Description

For data type and service interface definition, the toolkit employs a service
description language comprised of three parts:

– Annotations. Define code generation parameters, e.g., service package names.
– Types. Specifies a primitive type set and basic type aggregation mechanisms.
– Interfaces. Define interfaces in terms of methods and method signatures.

68 P.-O. Östberg and N. Lockner

Listing 1.1. Sample Creo service description.

// annotations

@PACKAGE("packagename")

// type definitions

struct MetaData

{

String description;

long timestamp;

}

struct Data

{

MetaData metadata;

double [] samples;

}

// interface definitions

interface DataService

{

void storeData (Data[] data);

Data retrieveData (String description);

}

To reduce the learning requirements for use of the toolkit, the toolkit’s service
description language format is based on the block syntax of the C/C++ family
of languages. In the interest of simplicity, the primitive type set is restricted
to a basic type set commonly occurring in most programming languages: byte,
short, int, long, float, double, char, and String. The language supports
direct aggregation of primitive types in structs and arrays as well as construc-
tion of compound types via aggregation of structs. This allows construction
of hierarchical data types such as trees, but not direct definition of cyclic data
types such as graphs. Listing 1.1 contains an example service description demon-
strating the aggregation mechanisms of the Creo service description language.
The example contains a basic type consisting of primitive types (MetaData), an
aggregated type consisting of a struct and an array (Data), as well as a service
interface (DataService) defining methods to store and retrieve Data instances.

While alternative representation formats with more advanced features exist,
e.g., schema-based type set and data validation in XML and WSDL, the design
philosophy of this work is to reduce complexity rather that offer advanced fea-
tures. The goal of the description language is to provide a convenient format
that has great expressive power, is as unambiguous as possible, and introduces
as few learning requirements as possible. The primitive type set defined, as well
as the concept of aggregation of fields in records and arrays, are prevalent in
programming languages and should prove intuitive to developers regardless of
background. To minimize the learning requirements of the tool, the type inter-
pretations and syntax of the description language are based on a subset of the
well-known Java programming language.

Reducing Complexity in Service Development and Integration 69

Fig. 1. Byte layout of the Creo protocol request message for the sendData() method
of Listing 1.1. Data encoded in the order defined in service descriptions, arrays and
strings prefixed with item counts. Byte block sizes and primitive types in black, protocol
preamble (protocol and method ids) and aggregated (struct and array) types in red
(Color figure online).

3.2 Data Representation

To promote transparency, the representation format specified in service descrip-
tion also directly outlines the data structures used in data serialization and trans-
mission. For language and platform independence, all values are transformed to
and from network byte order in transmission and support code is generated for
programming languages not supporting description language features (e.g., byte
order transformation, string classes, or array types). For aggregated types, types
are serialized in the order declared (and stored in memory), with size counters
prefixing data for array types and strings. As data are declared and stored in
hierarchical structures (trees), data serialization is essentially a left-wise depth-
first traversal of data trees, where individual node values are stored sequentially.
In terms of invocation semantics, Creo defines call-by-value semantics for invo-
cation of remote service methods. As data are serialized by value, the use of
reference and pointer types inside data blocks passed to services is not sup-
ported. In particular, use of circular references (e.g., cyclic graphs) may lead to
inefficient transmission performance or non-terminating loops.

For efficiency in transmission (i.e. minimization of system calls and alignment
of network packet sizes to maximum transfer units), all data are serialized and
deserialized via transmission buffers located in the generated code stubs. The
protocol used for transmission of data between clients and services (illustrated in
Fig. 1) is a customized version of the Resource Access and Serialization Protocol
(RASP) of the StratUm framework [19]. The description language does not sup-
port encoding of explicit exception messages for propagating error information
across process boundaries.

3.3 Code Generation

Service integration code is typically provided in one of two forms: APIs or service
communication stubs. To reduce complexity in service client development, and
increase the transparency of the service communication mechanisms, the Creo
toolkit uses a code generation approach centered around immutable wrapper
types and call-by-value interfaces. The aim of this design is to make use of gen-
erated client code as intuitive as possible, and to facilitate a client development
model that doesn’t require prior distributed systems development experience.

70 P.-O. Östberg and N. Lockner

Use of code generation techniques rather than APIs fundamentally assumes
that service descriptions rarely change (as service-oriented architectures tend
to be designed in terms of service interfaces), and have the added benefits of
allowing strongly typed languages to catch type errors earlier while keeping
service client implementations loosely coupled to services.

Code Generator. From a high level, the Creo toolkit can be seen to be com-
posed of three components: a service description parser, a framework generator,
and a custom package generator. To promote flexibility and facilitate adaptation
to new requirements, e.g., support for new programming languages or represen-
tation formats, the architecture of the toolkit is designed to be modular and
extensible. The separation of code generation for frameworks and custom pack-
ages (i.e. code specific to data types and services defined in service descriptions)
serves to facilitate third party implementation of code generator plug-ins. With
this separation it is possible to contribute plug-in modules to support alternative
implementations of, e.g., data serialization routines and client implementations,
without having to deal with generation of framework code.

The service description parser is constructed using a combination of in-
memory compilation of the service description types (after replacing selected
keywords to make service descriptions Java compliant), use of the Java reflec-
tion API (to validate description structures), and a custom language parser (that
extracts parameter information). To isolate code generators from document pars-
ing, the parser provides a full internal API that completely describes the type
sets and document structures of service descriptions.

Generated Code - Framework. To establish a uniform model for client-
service communication, all service client code implements a framework model for
connection establishment, data serialization, and transmission capabilities. This
framework is structured around an identified core feature set that includes, e.g.,
primitive type representation and serialization (including network byte order
transformations), array and string wrapper types (for languages not providing
such types), and socket-level read and write transmission buffers.

The purpose of the framework is to separate service and client logic inde-
pendent of the types and services defined in service descriptions, and reduce
the complexity of generating code for service-dependent logic. Implementation
of this framework pattern keeps all service client implementations lightweight
and compatible with the service implementation, which facilitates development
of client implementations in additional languages. On the service side, the frame-
work code is connected to the service-dependent code through a provider-pattern
implementation for service data type serializer factories.

Generated Code - Service Side. On the service side, the generated frame-
work is extended with a lightweight service hosting environment containing basic
server functionality such as thread and service management. The architecture of

Reducing Complexity in Service Development and Integration 71

the service framework is based on the principle of abstracting as much as pos-
sible of the service boilerplate code required to expose components as services.
It is the intent of the toolkit that service implementation should consist only of
two steps - generation of the service framework from a service description file
and implementation of a service (Java) interface.

The basic structure of the generated services is designed around the informa-
tion flow in the system; a server hosts services, parses incoming requests, and
passes request messages onto an incoming message queue for the requested service.
The service implementation processes requests, generates and pushes response
messages onto the outgoing message queue for the service. The server continu-
ously monitors all service message queues and sends response messages when avail-
able. The core of the generated service framework is message-oriented and defined
around the concept of asynchronous message queues, and does not restrict ser-
vice implementations to use of only synchronous request-response communication
patterns. However, while service implementations are free to define their own com-
munication patterns in terms of the messages exchanged between clients and ser-
vices, use of asynchronous communication patterns requires modifications of the
generated service clients to fully support such exchanges. For reference, an asyn-
chronous client (in Java) is provided with the generated service framework.

Generated Code - Client Side. The architecture of the generated service
clients uses the same pattern in all implementing service client languages (C, C#,
Java, and Python), and is designed to abstract fine-grained service communica-
tion tasks. A service API is generated exposing the methods defined in service
descriptions, and all data are managed in immutable wrapper types based on
the types defined in service descriptions. Service communication details, such as
connection establishment and data marshalling, are abstracted by clients stubs.

The underlying philosophy of the toolkit is that it should be the responsi-
bility of the service developer to provide integration code (service clients) and
APIs for services, and the toolkit aims to abstract as much as possible of that
process. To promote transparency, all client code generated is designed to follow
the same design pattern and all generated service client code is designed to be as
homogeneous as possible in architecture, code structure, and API functionality
support. When applicable, all code is generated along with sample build envi-
ronment data files (e.g., makefiles for C and ant build files for Java). In-memory
compilation and generation of Java Archive (JAR) files are supported for Java.

4 Use Cases

To illustrate toolkit use, we here briefly discuss example application scenarios in
the eScience domain. Intended use cases for the Creo toolkit include:

– Coordinated multi-language and multi-platform logging and configuration.
Scientific applications in the eScience domain often consist of multiple

72 P.-O. Östberg and N. Lockner

components and systems developed in multiple programming languages. Coor-
dinated logging of application state information can be very useful for visual-
ization and management of application processes, which can be achieved by,
e.g., developing a database accessor component in Java and exposing it as a
service using the Creo toolkit. Client stubs generated by the toolkit can then
be used to coordinate system logs from multiple sources without introducing
external dependencies in systems. Similarly, multi-component systems can also
use this technique to coordinate system configuration, allowing dynamic mon-
itoring, reconfiguration, and scaling of systems (use cases from the StratUm
[19] project).

– Multi-component system integration. Aequus [18] is a decentralized fairshare
scheduling system designed for use in distributed computing environments
such as high performance and grid computing infrastructures. While the core
of the system is developed in Java, the system also contains specialized com-
ponents and tools developed in other languages, e.g., scheduler integration
plug-ins in C and visualization and statistics tools implemented in Python
and Matlab. Use of the Creo toolkit allows smooth integration of different
parts of the Aequus system without extensive distributed systems develop-
ment effort.

– System evaluation experiments. Distributed computing infrastructure systems
constructed as service-oriented architectures often require simulation exper-
iments for testing and validation of functionality. The previously mentioned
Aequus system is developed and evaluated using emulated system environ-
ments for system tests and scalability simulations. In these settings the Creo
toolkit provides not only mechanisms for easy integration of multiple simula-
tion components for surrounding systems (e.g., batch schedulers and account-
ing systems), but also the means for construction of large-scale emulation
systems where system evaluation experiments can be run without modifica-
tions of the evaluated systems themselves.

– Application cloud migration. Many eScience applications are initially devel-
oped for use on single machines and later (for performance and scalability
reasons) transformed into multi-component systems that use parallel and dis-
tributed computing techniques to exploit parallelism inherent to the compu-
tational problems modeled. As part of this process, staging of applications
into cloud environments often requires some form of reformulation of com-
putational algorithms to better adapt to scalability (e.g., data parallelism or
horizontal cloud elasticity) models. The Creo toolkit can here be used to, e.g.,
build staging and monitoring tools or to facilitate remote communication with
applications running in cloud data centers.

Use cases such as these illustrate not only the expressive power of tools for ser-
vice development and component integration, but also the importance of keeping
such tools simple and reducing the complexity of building distributed systems.
Use of development tools with steep learning curves or advanced knowledge
requirements for, e.g., serialization formats, marshalling techniques, and trans-
mission formats, can greatly add to the complexity of building

Reducing Complexity in Service Development and Integration 73

Table 1. A brief overview of the feature sets of the evaluated service technologies.

Creo Thrift PB SOAP REST RMI

Interface type IDL IDL IDL IDL protocol stubs

Integration style stubs stubs API API/stubs API/protocol stubs

Data format binary text/binary binary text text/binary binary

distributed systems. For many purposes, and prototype development in par-
ticular, reduction of complexity and ease-of-use often outweigh the additional
features of more advanced approaches.

5 Evaluation

Service-based software design is an area with many competing approaches to
service development and integration, making objective evaluation of new tools
non-trivial. In this work we identify three abstraction levels for development
toolkits; low (fine-grained message level integration), intermediary (remote pro-
cedure call communication), and high (service-oriented component integration);
and evaluate the proposed toolkit against selected tools from each abstraction
level in the dimensions of serialization overhead, transmission overhead, and ser-
vice response time. To facilitate future comparisons against third party tools,
we select well-established and easily accessible tools for the evaluation.

For low level abstractions we compare the performance of the toolkit against
that of Apache Thrift [3], a software framework for scalable cross-language ser-
vice development, and Google Protocol Buffers (PB) [10], a message serializa-
tion framework developed for cross-platform integration. As the toolkit primarily
targets service development in Java, we have for high and intermediary levels
selected Java-based tools. For intermediary level we evaluate two related tech-
nologies: Java Remote Method Invocation (RMI) [26], an object-oriented remote
procedure call mechanism that supports transfer of serialized Java objects and
distributed garbage collection, and Java Object Serialization (JOS) [16], the
object serialization technology used by Java RMI. For high level, we evaluate
the toolkit against two popular web service technologies: REST web services
(using the RESTlet framework version 2.0.15 [21]) and SOAP web services (using
the Apache Axis 2 SOAP framework version 1.6.2 [1]). Table 1 provides a brief
comparison of the feature sets of the evaluated service technologies.

5.1 Testbed and Experimental Setup

To evaluate the technical performance of the toolkit we measure three facets of
service communication performance; serialization overhead, transmission over-
head, and response time; and quantify these against corresponding measurements
of selected alternative tools. Serialization overhead is here defined in terms of the
computational capacity used for generation and parsing of service messages, and

74 P.-O. Östberg and N. Lockner

is included in tests as it can heavily impact the execution footprint of service-
based tools. Transmission overhead is here defined to be the additional band-
width requirements introduced by service data representation formats, and is
measured by quantitative comparison of total message sizes and message pay-
load (raw data) sizes. Service response time is here defined as the round-trip
makespan of a service invocation, as seen from the service invoker perspective,
and used to quantify the throughput performance of client-service combinations.
To isolate the communication overhead components introduced by service tools
in response time measurements, thin service implementations (that incur mini-
mal service request processing times) are used.

Tests are performed using three types of request data; coarse-grained data
(byte chunks), fine-grained number-resolved data (integer and double values),
and fine-grained string-resolved data (text segments). For each test and request
type, tests are performed with request sizes grown by orders of magnitude (blocks
of 1 k, 10 k, 100 k, 1 M, 10 M and 100 M bytes). Coarse-grained requests consist
of large chunks of bytes without structured format. For clients based on Creo,
Thrift, PB, RMI, and JOS coarse-grained data are sent as raw byte arrays. For
REST-based clients, requests are sent in HTTP POST requests as raw bytes with
the MIME type “application/octet-stream”. In SOAP-based clients, request data
are encoded as Base64-encoded strings.

Data for fine-grained requests are created by aggregating 64 16-byte tuples
(two 4-byte integers plus an 8-byte double for number-resolved data, two 4-
character strings plus an 8-character string for string-resolved data) to form a
1024-byte data block. Larger data blocks are then formed by aggregating data
blocks in groups of 10, for example, by aggregating ten 1 k data blocks to form
a 10 k data block, ten 10 k data blocks to form a 100 k data block, etc.

For serialization overhead and service response time tests, all tests are done
by measuring the client-side makespans of full operations, starting at the point
of client invocation and ending when the client receives a uniform size 4-byte
service response message. To isolate overhead components, all measurements are
performed in closed loop system settings using sequential invocation patterns
on dedicated machines with no competing load and isolated network segments.
Experiments are repeated multiple (at least ten) times and average values are
computed on the median measurements in experiments to minimize the impact
of external factors on measurements. Parallel invocation tests are used to eval-
uate the load sensitivity and scalability of service tools. All services used in
measurements are implemented in Java and service clients are implemented in
C, C#, Java and Python. For tests of the service response time of REST and
SOAP tools, message serializations are performed in JSON (using the reference
library of http://json.org) and XML (using JAXB) respectively.

All tests are run on a dedicated symmetric cluster where nodes are equipped
with dual 16 core 2.1 GHz AMD Opteron 6272 processors and 54 GB RAM.
Nodes are interconnected with 1 Gbps links and networks are configured using
MTU sizes of 1500 bytes. All nodes run Ubuntu Linux 14.04 kernel version 3.13,

http://json.org

Reducing Complexity in Service Development and Integration 75

Fig. 2. Creo, Thrift, and PB message serialization time. Axes logarithmic.

Fig. 3. Message serialization time for Java-based tools. Axes logarithmic.

OpenJDK 1.7, Python 2.7.5, Mono 3.2.8, GLib 2.40, and GCC 4.8.2. All software
are accessible from Ubuntu repositories.

5.2 Serialization Overhead

To isolate measurements of data serialization overhead it is necessary to make
some modifications to the default behavior of the tools tested in serialization
overhead tests. For example, to avoid impacting serialization overhead measure-
ments with differences in data transmission behaviors (e.g., different types and
sizes of transmission buffers), Creo, Thrift, and PB service clients (generated
code and/or runtime libraries) are in tests modified to write directly to preal-
located buffers instead of sending packets. Additionally, all tool’s service clients
are modified so that they do not read data from services after invocations.

To avoid modifications of Java RMI stacks, we here include measurements
of the underlying serialization technology used (JOS) and assume measure-
ments are representative of the serialization overhead of RMI. To quantify the
serialization overhead of JOS, ObjectOutputStream instances are wrapped

76 P.-O. Östberg and N. Lockner

Fig. 4. Message transmission (size) overhead. Horizontal axes logarithmic.

around non-buffered dummy output streams (no data transferred to underly-
ing sockets). After modifications, serialization overhead tests are performed in
the same way as service response time tests.

Results from data serialization overhead tests are visualized in Figs. 2 and 3.
For ease of comparison, test results for multi-language tests (comparing Creo
to Thrift and PB) using fine-grained data tests are presented individually, sep-
arating tests using number-resolved and string-resolved data. As can be seen in
Fig. 2, Creo improves upon the performance of Thrift for fine-grained data with
an average of factors 1.15 to 3.72 for C#, Java, and Python clients. Compared
to the less mature Thrift C clients, Creo shows improvements of factors 31.07 to
34.99. When compared to Protocol Buffers, Creo shows performance improve-
ments only for Python (ranging from factors 1.62 to 2.69) and string serialization
in C (factor 2.16). When comparing the performance of Creo against that of other
Java-based tools (illustrated in Fig. 3), Creo exhibits performance improvements
of factors 6.10 to 34.54, which is attributed to use of more complex serialization
techniques and text-resolved data representation formats in the other high-level
tools. These tests illustrate the magnitude of serialization overhead incurred by
complex serialization techniques, as well as the impact serialization overhead can
have on service execution footprint and performance. For example, the JAXB
serialization engine used in the SOAP tests is unable to process messages of sizes
100 MB in standalone settings, indicating a potential source for load issues when
used inside service engines.

5.3 Transmission Overhead

To evaluate transmission overhead and response time for service communica-
tion a simple server component that counts and returns the number of bytes
in requests is used. Service invocation makespan is measured on the client
side and used to quantify transmission overhead for service invocations with
known request payload sizes. Apache Thrift supports transmission of data using
three protocols: text-resolved JSON and two binary protocols: TBinaryProtocol

Reducing Complexity in Service Development and Integration 77

Fig. 5. Creo, Thrift, and PB service response time. Axes logarithmic.

Fig. 6. Service response time for Java-based tools. Axes logarithmic

and TCompactProtocol, where the former sends data as-is and the latter uses
variable-length encoding of integers. The purpose of this encoding scheme; which
for example encodes 16-bit integers as 1–3 bytes, 32-bit integers as 1–5 bytes,
and 64-bit integer as 1–10 bytes; is to reduce the size of payload and commonly
occurring metadata such as the length of strings, arrays, and collections. Pro-
tocol Buffers supports a similar scheme for variable-length encoding of integers,
that in investigation incurs a minor performance overhead for a reduction in
representation size. However, in tests we primarily use Thrift’s TBinaryProtocol
(and Protocol Buffer’s corresponding non-compression encoding scheme) as it is
supported in all languages, and evaluate the efficiency of variable-length encod-
ing schemes in the languages supported (and quantify it against that of Creo
and the binary protocol) in separate tests.

For ease of comparison, test results for compact binary representation for-
mats (Creo, Thrift, PB, and JOS) and text-resolved formats (JSON REST
and XML SOAP) are presented separately. As can be seen in Fig. 4(a), binary
encoding schemes represent data efficiently and fine-grained data are (with the

78 P.-O. Östberg and N. Lockner

exception of Thrift strings) represented with overhead within a factor of 2 in size
for Creo, Thrift, PB and JOS. As can be seen in Fig. 4(b), the use of text-resolved
representation formats can introduce significant overhead for fine-grained data,
ranging in tests in factors between 2 and 4 for JSON REST and XML SOAP
(both of which are unable to process messages of size 100 MB in tests).

5.4 Service Response Time

Having roughly quantified the impact of potential overhead sources for data
serialization and transmission, we analyze the communication performance of the
evaluated tools in terms of service request response times. Using closed system
loop settings (sequential invocations of services deployed in isolated systems),
we measure invocation makespan from the client perspective and use it as a
measurement of service response time. To verify the transfer of results from
sequential tests to (more realistic) parallel invocation scenarios, we also validate
results in separate parallel invocation tests.

Results from response time tests are visualized in Figs. 5 and 6. Figure 5
illustrates comparison of the response time of Creo, Thrift, and PB services.
On average, Creo improves on the response time performance of Thrift for fine-
grained data on average of factors 1.24 to 3.14 for C#, Java, and Python clients.
Compared to Thrift C clients, Creo shows improvements of factors 9.93 to 15.20.
However, for coarse-grained data (unstructured binary data, not illustrated in
graphs), Thrift service response times are on average 16.6 % (C), 21.8 % (C#),
21.3 % (Java), and 15.9 % (Python) lower than that of Creo (performance aver-
ages calculated for request sizes of 1 MB, 10 MB, and 100 MB). Similarly, Pro-
tocol Buffer service response times are also on average 2.8 % (C), 9.7 % (C#),
11.0 % (Java), and -3.5 % (Python) lower than that of Creo. The higher response
times of Creo for coarse-grained data are attributed to the use of asynchronous
message queues and immutable data structures on the service side, which cause
redundant data replications in message transmission.

When comparing the response time of Creo to that of other Java-based tools
(illustrated in Fig. 6), we note performance improvements ranging from 1.53
to 5.34 (RMI), 19.52 to 41.78 (REST), and 21.65 to 26.26 (SOAP) for fine-
grained data, and comparative performance for coarse-grained data. As expected
from analysis of serialization and transmission overhead, REST and SOAP web
services exhibit response time performance degradations from the use of text-
based representation formats and associated message serializations.

6 Conclusions

In this work we investigate an approach to service-based software development
and present a toolkit for reduction of complexity in service development and
distributed component integration. The architecture of the toolkit is designed
to be modular and extensible, and places focus on transparency and reduction
of complexity. To reduce learning requirements, the toolkit employs a service

Reducing Complexity in Service Development and Integration 79

description language based on the syntax and type interpretations of the well-
known Java language. The service description language defines a set of primitive
types and mechanisms for aggregation of types in arrays and structs.

The toolkit supports generation of code for construction of Java-based ser-
vices as well as service clients in Java, C, C#, and Python. The toolkit uses
the same code generation pattern for all languages, which defines immutable
types that directly wrap the data types and aggregation patterns defined in ser-
vice descriptions. For transparency, the service communication protocol serializes
data in the order and types defined in the service description language.

A performance evaluation quantifying toolkit performance (in terms of mes-
sage overhead and service response time) against Java Object Serialization, Java
RMI, SOAP web services, REST web services, Apache Thrift, and Google Pro-
tocol Buffers is presented. Toolkit performance is found to be comparable to or
improve upon the performance of the alternative techniques.

Acknowledgements. The authors acknowledge Mikael Öhman, Sebastian Gröhn,
and Anders Häggström for work related to the project. This work is done in col-
laboration with the High Performance Computing Center North (HPC2N) and is
funded by the Swedish Government’s strategic research project eSSENCE and the
Swedish Research Council (VR) under contract number C0590801 for the project Cloud
Control.

References

1. Apache, Apache Web Services Project - Axis2, July 2014. http://ws.apache.org/
axis2

2. Apache, Apache Avro, July 2014. http://avro.apache.org/
3. Apache, Apache Thrift, July 2014. http://thrift.apache.org/
4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,

Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

5. Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q.,
Pentikousis, K.: Energy-efficient cloud computing. Comput. J. 53(7), 1045–1051
(2010)

6. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls. ACM Trans.
Comput. Syst. (TOCS) 2(1), 39–59 (1984)

7. Esoteric Software, Kryo, July 2014. https://github.com/EsotericSoftware/kryo
8. Fielding, R.T.: Architectural styles and the design of network-based software archi-

tectures. Ph.D thesis, University of California (2000)
9. Furuhashi, S.: MessagePack, July 2014. https://github.com/msgpack/msgpack/

10. Google, Protocol Buffers, July 2014. https://developers.google.com/protocol-
buffers/

11. Govindaraju, M., Slominski, A., Chiu, K., Liu, P., Van Engelen, R., Lewis, M.J.:
Toward characterizing the performance of SOAP toolkits. In: Proceedings of the
Fifth IEEE/ACM International Workshop on Grid Computing, pp. 365–372. IEEE
(2004)

12. Jackson, July 2014. https://github.com/FasterXML/jackson

http://ws.apache.org/axis2
http://ws.apache.org/axis2
http://avro.apache.org/
http://thrift.apache.org/
https://github.com/EsotericSoftware/kryo
https://github.com/msgpack/msgpack/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/FasterXML/jackson

80 P.-O. Östberg and N. Lockner

13. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36,
41–50 (2003)

14. Mackey, A.: Windows communication foundation. In: Introducing. NET 4.0, pp.
159–173. Springer (2010)

15. MongoDB Inc., BSON, July 2014. http://bsonspec.org
16. Oracle, Java Object Serialization, July 2014. http://docs.oracle.com/javase/7/

docs/platform/serialization/spec/serialTOC.html
17. Östberg, P.-O., Elmroth, E.: Increasing flexibility and abstracting complexity in

service-based grid and cloud software. In: Ivanov, I., Leymann, F., van Sinderen,
M., Shishkov, B. (eds.) Proceedings of CLOSER 2011 - International Conference on
Cloud Computing and Services Science, pp. 240–249. SciTePress, Noordwijkerhout
(2011)

18. Östberg, P.-O., Espling, D., Elmroth, E.: Decentralized scalable fairshare schedul-
ing. Future Gener. Comput. Syst. - Int. J. Grid Comput. eScience 29, 130–143
(2013)

19. Östberg, P.-O., Hellander, A., Drawert, B., Elmroth, E., Holmgren, S., Petzold, L.:
Reducing complexity in management of escience computations. In: Proceedings of
CCGrid 2012 - The 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pp. 845–852 (2012)

20. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big web
services: making the right architectural decision. In: Proceedings of the 17th Inter-
national Conference on World Wide Web, pp. 805–814. ACM (2008)

21. Restlet, Restlet Framework, July 2014. http://restlet.org
22. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: scalable cross-language services

implementation. Facebook White Pap. 5, 8 (2007)
23. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated

bibliography. sigplan Not. 35(6), 26–36 (2000)
24. Vinoski, S.: Distributed object computing with CORBA. C++ Rep. 5(6), 32–38

(1993)
25. Walker, E.: The real cost of a CPU hour. Computer 42(4), 35–41 (2009)
26. Wollrath, A., Riggs, R., Waldo, J.: A distributed object model for the Java system.

Comput. Syst. 9, 265–290 (1996)

http://bsonspec.org
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://restlet.org

Generating Secure Service Compositions

Luca Pino1(✉), George Spanoudakis1, Andreas Fuchs2,
and Sigrid Gürgens2

1 Department of Computer Science,
City University London, London, UK

{luca.pino.1,g.e.spanoudakis}@city.ac.uk
2 Fraunhofer Institute for Secure Information Technology,

Darmstadt, Germany
{andreas.fuchs,sigrid.guergens}@sit.fraunhofer.de

Abstract. Ensuring that the compositions of services that constitute service-based
systems satisfy given security properties is a key prerequisite for the adoption of the
service oriented computing paradigm. In this paper, we address this issue using a
novel approach that guarantees service composition security by virtue of the gener‐
ation of compositions. Our approach generates service compositions that are guar‐
anteed to satisfy security properties based on secure service orchestration (SESO)
patterns. These patterns express primitive (e.g., sequential, parallel) service orches‐
trations, which are proven to have certain global security properties if the individual
services participating in them have themselves other security properties. The paper
shows how SESO patterns can be constructed and gives examples of proofs for such
patterns. It also presents the process of using SESO patterns to generate secure
service compositions and presents the results of an initial experimental evaluation
of the approach.

Keywords: Software services · Secure service compositions · Security
certificates

1 Introduction

The security of service based systems (SBS), i.e., systems that are composed of distributed
software services, has been a critical concern for both the users and providers of such
systems [3, 17, 24]. This is because the security of an SBS depends on the security of the
individual services that it deploys, in complex ways that depend not only on the particular
security properties of concern but also on the exact way in which these services are
composed to form the SBS. Consider, for example, the case where the property required
of an SBS is that the integrity of any data D, which are passed to it by an external client,
will not be compromised by any of its constituent services that receive D. The assessment
of this property requires knowledge of the exact services that constitute the SBS, the exact
form of the composition of these services and the data flows between them, and a guar‐
antee that each of the constituent services of SBS that receives D will preserve its integ‐
rity. Such assessments of security are required both during the design of an SBS and at

© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 81–99, 2015.
DOI: 10.1007/978-3-319-25414-2_6

runtime in cases where one of its constituent services S needs to be replaced and, due to the
absence of any individual service matching it, a composition of services must be built to
replace S. Whilst the construction of service compositions that satisfy functional and
quality properties has been investigated in the literature (e.g., [1, 2, 27]), the construction
of secure service compositions is not adequately supported by existing research.

In this paper, we present an approach for generating compositions of services, which
are guaranteed to satisfy certain security properties. Our approach is based on the appli‐
cation of SEcure Service Orchestration patterns (SESO patterns). SESO patterns specify
primitive service orchestrations, which are proven to have particular global (i.e., compo‐
sition level) security properties, if their constituent services satisfy other service-level
security properties. A SESO pattern specifies the order of the execution (e.g., sequential,
parallel) of its constituent services and the data flows between them. It also specifies
rules dictating the security properties that the constituent services of the pattern must
have for the orchestration to satisfy a global security property. These rules express
security property relations of the form IF P THEN ∧i=1,…,nPi where P is a global security
property required of the service orchestration and Pi are security properties, which must
be satisfied by the services of the pattern for P to hold. These security property relations
are formally proven. The constituent services of a SESO pattern are abstract “place‐
holder” services that need to be instantiated by concrete services when the pattern is
instantiated.

When a constituent service S of an SBS needs to be replaced at runtime and no single
alternative service S’ satisfying exactly the same security properties as S can be found,
SESO patterns can be applied to generate compositions of other services that have
exactly the same security properties as S and could replace it within SBS. SESO patterns
determine the criteria (security, interface and functional) that should be satisfied by the
services that could instantiate them. These criteria are used to drive a discovery process
through which the pattern can be instantiated. If this process is successful, i.e., different
combinations of services that satisfy the required criteria and fit with the orchestration
structure of the pattern are discovered, any combination (composition) of services that
is built according to the pattern is guaranteed to have the required global security prop‐
erty by construction.

An earlier account of our approach has been given in [20, 22]. In this paper, we
extend [22] by presenting the method that underpins the proof of security properties
in SESO patterns, showing additional examples of concrete proofs of security prop‐
erties for specific SESO patterns, and presenting the composition algorithm that
generates secure service compositions that functionally relevant to the needed
service.

The rest of this paper is organized as follows. Section 2 presents an overview of our
approach. Section 3 discusses the validation of SESO patterns and provides examples
of proofs of security properties for some patterns. Section 4 discusses the encoding of
SESO patterns. Section 5 presents the SESO pattern driven service composition algo‐
rithm. Section 6 provides the results of an initial experimental evaluation of our
approach. Section 7 overviews related work. Finally, Sect. 8 provides conclusions and
directions for future work.

82 L. Pino et al.

2 Overview

The service composition approach that we present in this paper extends a general frame‐
work developed at City University to support runtime service discovery [28]. This
framework supports service discovery driven by queries expressed in an XML based
query language, called SerDiQueL, which supports the specification of interface, behav‐
ioural and quality discovery criteria. The execution of queries can be reactive or proac‐
tive. In reactive execution, the SBS submits a query to the framework and gets back any
services matching the query that are discovered by the framework. In proactive execu‐
tion, the SBS submits to the framework queries that are executed in parallel, to find
potential replacement services that could be used if needed, without the need to initiate
and wait for the results of the discovery process at this point [28].

To take into account service security requirements as part of the service discovery
process, we have extended the above framework in two ways. Firstly, we have extended
SerDiQueL to enable the specification of the security properties that are required of
individual services as querying conditions (the new language is called A-SerDiQueL).
Secondly, we have developed a module supporting the generation of possible compo‐
sitions of services that could replace a given service in an SBS in cases where a discovery
query cannot find any single matching service. The generation of service compositions
is based on the approach presented in this paper. In particular, this paper focuses on the
process of searching for and constructing secure service compositions and the SESO
patterns used in this process.

The key problems during the composition process are to ensure that the constructed
composition of services: (a) provides the functionality of the service that it should
replace, and (b) satisfies the security properties required of this service. To address (a),
our approach uses abstract service workflows. These workflows express service coor‐
dination processes that realize known business processes through the use of software
services with fixed interfaces. Such workflows are available for specific application
domains such as telecom services (IBM BPM Industry Packs [13]), logistics (RosettaNet
[25]), and are often available as part of SOA architecting and realization platforms (e.g.,
IBM WebSphere). Service workflows are encoded in an XML based language that
represents the interfaces, and the control and data flows between the workflow activities.

To address (b), we are using SESO patterns. These patterns are based on primitive
service orchestrations that have been proposed in the literature (e.g., sequential and
parallel service execution) but augment them by specifying concrete security properties
P1,…, Pn that must be provided by the individual services that instantiate the pattern for
the overall orchestration to satisfy a required security property P0. The derivation of these
security properties is based on rules that encode formally proven relations between the
security properties of the individual placeholder services of the pattern and the security
property required of the entire service orchestration represented by the pattern. Once
derived through the application of rules, the security properties required of the individual
partner services of the orchestration are expressed as queries in A-SerDiQueL. These
queries are then executed to identify concrete services with the required security proper‐
ties, which could instantiate the placeholder services of the pattern. If such services are
found the pattern is instantiated. The pattern instantiation process is gradual and, if it is

Generating Secure Service Compositions 83

completed successfully, a new concrete and executable service composition that satisfies
the overall security property guaranteed by the pattern is generated.

A key element of our approach is the formal validation of the relations between the
security properties of the individual placeholder services of a SESO pattern and the
security property of the entire composition expressed by the pattern. The validation of
such relations is discussed in the next section.

GetISIN GetEURQuote EURtoUSD

Symbol ISIN EUR value USD value

StockExchange

Fig. 1. Composition to replace GetStockQuote.

To illustrate our approach assume that a Stock Broker SBS that uses an operation
GetStockQuote from a service StockQuote to obtain price quotations for a given stock.
GetStockQuote takes as input a string Symbol identifying a stock and returns the current
value of that stock in USD. If StockQuote becomes unavailable at runtime, then it
becomes necessary to replace it with another service or a service composition (if no
single replacement service can be discovered). A composition that may replace Stock‐
Quote is shown in Fig. 1. This composition contains three activities connected by two
sequential patterns (indicated as dashed areas in workflow). The first placeholder of the
outer sequence contains the activity GetISIN, which converts the Symbol identifying the
Stock into the ISIN (another unique stock identifier). The second placeholder corre‐
sponds to the inner sequence. Within this inner sequence, the first placeholder is the
activity GetEURQuote that involves StockExchange and returns the current stock value
in EUR given the Stock ISIN. The second placeholder is the activity EURtoUSD, which
converts a given amount from EUR to USD.

3 Validating Secure Service Compositions

In this section we introduce our approach for formally proving security properties of
service compositions. This is based on generic models of service systems that take into
account the different types of agents and actions that can be part of such systems. We
then transform SESO patterns into different compositions of generic system models and
show that such compositions satisfy specific security properties given that the individual
system models satisfy some other security properties. In particular, we show that a
sequential composition of two generic service models provides specific data integrity
properties. Instantiating these service models with the concrete services of our example
results in assurance that their sequential composition satisfies the respective concrete
data integrity properties.

The task of formally validating the security of a service composition requires a three-
step approach. It starts with a formal model of the service to be replaced and the formal
models of the services to be composed. Firstly, the service composition is represented

84 L. Pino et al.

in terms of a formal model derived from the models of the individual services by applying
a set of formal construction rules. These rules project the respective security properties
of each of the composed services as well as the targeted property of the service to be
replaced into the composed system. Secondly, additional properties are added to the
composed system regarding the behaviour of the orchestrator, i.e., the primitive service
orchestration pattern. Finally, the desired property is verified using the properties of the
composed services and the orchestrator.

For the formal system representation and validation of security properties we utilize
the Security Modeling Framework SeMF developed by Fraunhofer SIT [9–11]. In
SeMF, a system specification is composed of a set ℙ of agents and a set Σ of actions,

 denoting the actions of agent P, and other system specifics that are not needed in
this paper and are thus omitted. The behaviour B of a discrete system Sys can then be
formally described by the set of its possible sequences of actions. Security properties
are defined in terms of such a system specification. Relations between different formal
models of systems are partially ordered with respect to different levels of abstraction.
Formally, abstractions are described by so called alphabetic language homomorphisms
that map action sequences of a finer abstraction level to action sequences of a more
abstract level while respecting concatenation of actions. Language homomorphisms
satisfying specific conditions are proven to preserve specific security properties, the
conditions depending on the respective security property. Further information about
SeMF can be found in [9–11].

Based on the representations of each of the service systems in the composition,
we present a general construction rule using homomorphisms that map the service
composition onto the individual services by preserving the individual services’
security properties. This allows us to deduce the respective security properties to be
satisfied by the composition. The different SESO patterns are translated into behav‐
iour of the orchestrator regarding the invocation of the respective services. This
includes functional and security related property statements. Based on this informa‐
tion it is possible to deduce the overall security properties of the composition system
and validate whether they meet the expected results. In the next three sections, we
illustrate our approach by exemplarily proving a specific data integrity property. The
formal representation of services, composition and security properties is given in
terms of generic agents and actions that are later instantiated by the SESO patterns
towards concrete services and security properties. While our example focus on a
single property on a specific set of orchestrations, our approach can handle various
different orchestrations patterns, proving different instantiations of various security
properties regarding integrity and confidentiality [21].

3.1 Formal Representation of Generic Service Composition

The formalization of a generic composition structure for service based systems is based
on the following types of agents:

• Clients C. These are agents that use the service. They are thus specific to the service,
and their actions are derived from the service’s WSDL.

Generating Secure Service Compositions 85

• Service S. This is the agent representing the service’s communication interface
(corresponding to its WSDL).

• Backend Agents S-*. These are service specific agents representing the implementa‐
tion specifics, i.e. the internal functionality of a certain service (e.g. a backend storage
used by the service).

• Global agents G-*←representing third parties that are known to be identical for all
services (e.g., some service providing external information).

• R (the “rest of the word”). This is a default global external agent that is used to
represent any agent other than those identified in C, S-* and G-*.

In the following, we denote (i) the system model of the service to be replaced by a
composition by , (ii) the system models of the services and to be composed by

 and , respectively, and (iii) the composition system by . The sets of agents and
actions are denoted analogously (i.e. by , , for). We mark service specific
agents with the corresponding superscripts. We also mark global agents, even though being
global, with superscripts in order to indicate the context of invocation (i.e. a global agent
G-A being invoked by is denoted by . A generic system with service , client

, a backend agent and a global agent can for example be instantiated by a
service StockbrokerService using a backend storage service StockbrokerService-Storage for
logging of client data and a global service StockExchange for actually retrieving the stock
data.

Fig. 2. Service Composition.

The principal idea of substituting a service by a composition is depicted in Fig. 2.
More specifically, we assume two services and to act independently of (i.e., not to
invoke) each other and utilize an orchestration engine for their composition that takes
the roles of both the clients and of and respectively, as well as the role
of the service in to be replaced. Any global agent of will be part of the
composition system and will be invoked by either or . Furthermore, backend agents
of will be removed, their functionality will be provided by the services or or
their backend agents which will be part of the composition as well. This gives rise to
the following set of agents of the composition:

86 L. Pino et al.

We then view the systems Sys0, Sys1 and Sys2 as homomorphic images of the
composed system Sysc.

In order to determine the action set of the composition we use a generic renaming
function that replaces all occurrences of agent in an action by Q. Based
on this function, we define functions that formalizes the
orchestrator taking the roles of as follows:

The resulting set of actions of the composed system is then as follows:

 represents additional actions taken by the orchestration engine beyond the
communication with client and services. These actions depend on the specific orches‐
tration pattern used and will be discussed in the next section.

Now we need to assure that for all actions in exists an equivalent provided
by either or , i.e. the above set of actions must satisfy the following:

Since the functions are injective we can now use their inverse image in order
to define the homomorphisms that map the composition system onto the abstract
systems: each homomorphism abstracts to . Regarding the actions corre‐
sponding to those in , is simply the inverse of , and all other actions are mapped
onto the empty word. Hence for we define as
follows:

These homomorphisms serve as a means to relate not only the models of the
individual systems to the composition model but also to relate - under certain condi‐
tions - their security properties. A homomorphism that fulfills certain conditions
“transports” a security property from an abstract system to the concrete one, i.e. if
the conditions are satisfied and the property holds in the abstract system, the corre‐
sponding property will also hold in the concrete system. Thus, the homomorphism
preserves the property. The conditions that must be satisfied depend on the property

Generating Secure Service Compositions 87

in question; see [9, 10] for example. We use this approach to prove specific security
properties for a composition of services based on the security properties of these
services.

3.2 Formally Representing Sequential Composition

Our methodology for service composition has been applied to various different patterns,
proving different instantiations of various security properties (see [21] for more details).
In the following, we will focus on a specific case for a sequential service composition
that corresponds to the example introduced in Sect. 2.1 in order to illustrate our approach.
We assume the original service to invoke a global agent (denoted by). For
its substitution, the pattern for sequential composition of services realizes the subsequent
invocation of two services and , where the output of serves as input for . The
global agent will be invoked by either or (denoted by and ,
respectively).

The actions of the systems are constructed from the generic service operations op0,
op1, and op2 (that represent the operations of concrete services’ WSDL) as prefix,
followed by one of the suffixes IS, IR, OS, OR to represent InputSend, InputReceive,
OutputSend, OutputReceive, respectively. This naming scheme corresponds to our
method of transforming a service’s WSDL into sets of agents and actions introduced in
[12]. The actions of the global agents, not being part of the service’s WSDL, do not
follow this notation. This leads to the following specification of systems Sysi:

with i = 0,1,2, and j = 0,1 for , and j = 0,2 for .
In the system , when receives some data data0 from the client, before

forwarding it to the global agent it applies a function . In our stockbroker example
introduced in Sect. 2.1, this function could for instance remove the client’s name or
account). The global agent (StockExchangeService in the example) acts on receiving the
input and produces the output (say, the stock value in Euros and the bill
for the service provided). The global agent’s input and output may or may not be func‐
tionally related. Such a relation is necessary in case an integrity property shall be
expressed that involves the complete sequence of actions, starting with the client
providing the input data and ending with the client receiving the final output. The case
we investigate below considers only half of this sequence, starting with the global
agent’s output, thus a relation between global agent’s input and output is not needed.
Accordingly, returns to . The service then applies a function and
sends the result to the client. The stockbroker service in our example could for instance
remove the bill and just keep the stock value, and convert it to US dollar.

88 L. Pino et al.

In the sequential composition pattern, the orchestrator forwards data0 received from
C0 to S1. In case it is S1 that invokes the global agent, before doing so the service computes

 (removes the client’s name and account) and sends this to . As in ,
the global agent produces and returns this to . Note that input as well as output
of the global agent are the same as in (otherwise the global agent would not be
global). Now applies (removes the global agent’s bill) and sends to
the orchestrator. These data are then forwarded by the orchestrator to S2 who applies f2

(converts euro to dollar) and returns which the orchestrator finally
returns to the client. A similar sequence of actions occurs if the global agent is invoked
by . In a more complex scenario the orchestrator can for example alter (e.g., split) the
client data and combine the output of with some data resulting from the client’s input
and send this to . A proof for this more complex construction is achievable analogously
to the one presented below.

The agent and action sets of the composition are constructed as specified in the
previous section, using the functions r0, r1 and r2. Function r0 for example maps action
op0-IS(C0, S0, data0) onto op0-IS(C0, O, data0), hence h0(op0-IS(C0, O, data0)) =
op0-IS(C0, S0, data0), while h0(op2-OR(O, S2, f2(data2))) = h0(r2(op2-OR(C2, S2,
f2(data2)))) = ε., with data1: = data0 and .

3.3 Validation of Integrity Preserving Compositions

Our approach of proving security properties of service compositions is generic and has
already been applied to various integrity and confidentiality properties (see [21] for more
details). As an example of such proofs, we will now present the proof regarding a specific
data integrity property of S0 being provided by the orchestration specified above. The
definition of (data) integrity that we assume in our example is taken from RFC4949, i.e.
“The property that data has not been changed, destroyed, or lost in an unauthorized or
accidental manner.” [26]. In SeMF, this property of data integrity is expressed by the
concept of precedence: pre(a, b) holds if all sequences of actions that contain
action b also contain action a. Obviously, precedence is transitive (we omit the trivial
proof). Further, precedence is preserved by any homomorphism if (see [11]
for a proof). With all
precedence properties are preserved in the following, with denoting the orches‐
trator assumptions (see P4 and P5 below).

Out of the many properties related to integrity and sequential composition we now
investigate one that is related to transmission of data between a global agent and a client
which results into four different properties. On the one hand, we can investigate the
integrity of data transmitted from the client to a global agent vs. the one transmitted from
a global agent to the client. On the other hand, we can differentiate between the global
agent being invoked by either or . Exemplarily we use the case where invokes
the global agent and assume to provide the following integrity property: Each time
client receives data from service , this data originates from the global agent that
was properly manipulated by . Formally:

Generating Secure Service Compositions 89

As explained above, precedence shall be preserved by h0 (as constructed in Sect. 3.1).
Since the global agent’s action in the composition is identical to the one in , it must
receive the same input in order for the composition to achieve the same functionality,
hence . Also, what receives in the composition must be identical to what it
receives in . This implies which results in the following property of the
composition (corresponding to P1’) that we want to prove:

For our proof, we assume that the services Sys1 and Sys2 provide the properties:

The homomorphisms h1 and h2 as constructed in Sect. 3.1 preserve these precedence
properties. Accordingly, the corresponding properties in are:

In addition, the orchestrator must act according to the pattern (as specified in
Sect. 3.2), i.e., satisfy the following properties:

Proof. Assume there is with . Property P5
implies that . By P3, and further

. In the next step, Property P4 implies that
. By P2, we can deduce , i.e.

, and which implies
that property P1 holds.

Due to the simplicity of the precede property, the above proof is simple. In [21] we have
proven other integrity properties (e.g. the global agent being invoked by). We have also

90 L. Pino et al.

proven several confidentiality properties. All proofs use the approach presented in this
paper: (i) deriving the formal model of the service composition from the formal models of
the individual services, (ii) relating these models by using property preserving homomor‐
phisms and thus representing the individual services’ security properties in terms of the
composition model, and (iii) using appropriate security properties to be satisfied by the
orchestrator. Whilst we assume the orchestrator to behave correctly and hence to satisfy
these additional properties, the security properties we assume for the individual services
of the composition are translated into inference rules, which are then used in order to
construct a concrete service compositions. The proofs of security properties for specific
SESO patterns need to be constructed offline and encoded in the patterns as rules. At
runtime, the rules encoding the patterns are used to deduce the security properties that must
be satisfied by the candidate services that may instantiate the pattern.

4 Secure Service Orchestration Patterns

Proofs of security properties, like the one that we discussed in Sect. 3, form the basis of
SESO patterns in our approach. More specifically, an SESO pattern encodes: (a) a prim‐
itive orchestration describing the order of the execution and the data flow between
placeholder services, and (b) the implications between the security properties of these
services and the security property of the whole orchestration. The placeholder services
within a primitive orchestration can be atomic activities (i.e., abstract partner services)
or other patterns. The implications in (b) are of the form:

These implications reflect proofs of security properties, developed based on the
approach discussed in Sect. 3. They are encoded as inference rules and used during the
composition process to infer the security properties that would be required of the place‐
holders of a pattern P for it to satisfy ρP. The benefit of encoding proven implications
as inference rules is that there is no need to reason from first-principles when attempting
to construct compositions of services, based on SESO patterns.

To be more specific, SESO patterns and implications of the above form are encoded
as Drools production rules [8]. Drools is a rule-based reasoning system supporting
reasoning driven by production rules. Production rules in Drools are used to derive
information from data facts stored in a Knowledge Base (KB). A production rule in
Drools has the general form: when <conditions> then <actions>. When a rule is applied,
the rule engine of Drools checks, through pattern matching, whether the conditions of
the rule match with the facts in the KB and, if they do, it executes the actions of the rule.
This execution can update the contents of the KB. Table 1 shows the encoding of integ‐
rity in the sequential orchestration pattern that was presented in Sect. 3.3 as a Drools
rule. This rule uses the following definitions of integrity:

Generating Secure Service Compositions 91

Table 1. Integrity Rule for Sequential SESO Pattern.

Definition 1. The integrity of data X generated by a global agent GA and sent to the
client by S1: IntegrityGA2C(Si, GA, fi(X)) = pre(act(GA, _, X), opi-OR(Ci, Si, fi(X)))

Definition 2. The end-to-end integrity of the data, from input to output (i.e. the property
investigated in a former version of this work [22]): IntegrityE2E(Si, X, Y) =
pre(opi-IS(Ci, Si, X), opi-OR(Ci, Si, Y)).

Using such more abstract security properties in the rules avoids the need to
encode in the rule the formalism that the proof is based on. This makes it also
possible to use SESO patterns proven through different formalisms in our approach.

Returning to the rule in Table 1, lines 3–9 describe the primitive orchestration
that the security property refers to. More specifically, the rule can be applied when
a sequential pattern ($P) with two placeholders, i.e., activity $S1 followed by
activity $S2, is encountered. Activity $S1 interacts with a global agent $GA1 that
generates output $outGA. The rule defines the parameters of these activities: $S1
has an output parameter $f1-outGA, that is a function of $outGA, and $S2 uses
the input parameter $f1-outGA in order to generate the output parameter $f1-f2-
outGA, as shown in Table 1. Line 10 describes the original security requirement
requested on the composition pattern $rhoP, i.e. integrity on the pattern $P of the
data $f2-f1-outGA originally generated by $GA1. This requirement is equiva‐
lent to the property P1 presented in Sect. 3.3. Lines 12–14 (i.e., the then part of the
rule) specify the security properties that are required of the activities of the pattern
in order to guarantee $rhoP, namely: (i) integrity on the output ($f1-outGA) of
$S1 generated by $GA1, as stated by the precedence property P2, and (ii) end-to-end
integrity on the input ($f1-outGA) and output ($f2-f1-outGA) of $S2, as
required from P3. Additionally, we assume the framework executing the orchestra‐
tion to satisfy properties P4–P5, hence these need not be mentioned in the rule.

92 L. Pino et al.

Finally, according to the rule, once the original requirement $rhoP is guaranteed
by the new ones, it can be removed from the KB.

Similar encodings of other SESO patterns have been expressed using this approach.
SESO pattern encoding rules, like the one presented above, are used during the composi‐
tion process to infer the security properties that are required of the concrete services that
may instantiate the placeholder services in a workflow. This process is discussed next.

5 SESO Pattern Driven Service Composition

The service composition process is carried out according to the algorithm shown in
Table 2. This algorithm is invoked when an SBS service needs to be replaced but the
service discovery query specified for it cannot identify any single service matching it.

In such cases, the structural part of the query, which defines the operations that a
service should have and the data types of the parameters of these operations, is used to
retrieve from the repository of the discovery framework abstract workflows that can
provide the required service functionality. An abstract workflow represents a coarse
grained orchestration of activities, which collectively offer a specific functionality, and
is exposed as a composite service. Such workflows are fairly common (e.g., [5, 19]) and
result from reference process models in specific domains [13, 25]. The activities of an
abstract workflow are orchestrated through a process consisting of the primitive orches‐
trations that underpin the security patterns, as discussed in Sect. 4. If such workflows
are found the generation of a service composition is attempted by trying to instantiate
each abstract workflow.

As shown in Table 2, initially, the algorithm identifies the abstract workflows that
could be potentially used to generate a composition that can provide the operations of
the required service (see function in line 3). This is based on the
execution of the query associated with the service to be replaced (). If such workflows
are found, the algorithm continues by starting a process of instantiating the activities of
each of the found workflows with services. The activities of the workflows are instan‐
tiated progressively, by investigating each workflow W in a depth-first manner. More
specifically, the algorithm takes the first unassigned activity A in W (in the control flow
order) and builds a query based on the workflow specification and the discovery query

. In particular, the structural part of is taken from the description of A in the abstract
workflow. The security conditions in are generated through the procedure

.
This procedure infers the security conditions for A based on the Drools rules that

encode the SESO patterns detected within the current workflow. More specifically, all
the information about the workflow, its patterns, activities, security properties and
requirements are put into the KB. Then the rules that represent the detected SESO
patterns are fired (i.e. applied), propagating the requirements through the workflow. The
generated requirements for the unassigned activity are then retrieved and converted to
query conditions. The propagation of security requirements is possible as each workflow
can be seen as a recursive application of primitive orchestrations.

Generating Secure Service Compositions 93

Table 2. Service Composition Algorithm.

Figure 3 shows the order of propagation through the use of the rules, on a workflow
shown in (c). A security requirement ρS is initially given for a service S (Fig. 3(a)). The
first rule that will be fired by Drools is the one for the outermost pattern of the workflow:
a choice pattern (i.e., the if-then-else primitive orchestration in Fig. 3(b)). The security
requirement is then propagated by the relevant rule (if such a rule exists) to the place‐
holders A and B returning the requirements ρA1, …, ρAn and ρB1, …, ρBm (with n, m ≥ 0
and n + m ≥ 1). For each security requirement ρAi (with i = 1, …, n), a rule is fired to
propagate the requirement to the sequential pattern that instantiates A (Fig. 3(c)). This
process generates the security requirements for placeholders C and D.

If a security requirement cannot be propagated to the atomic activity level (e.g., no
rules are defined for the given pattern or security property) then Drools returns an error
state to point out that a security requirement cannot be guaranteed by the existing set of
rules. This ensures that no security requirements are ignored.

After constructing , the query is executed by the runtime discovery framework in
[28] to identify a list of candidate services for . The candidate services (if any) are
then used to instantiate the activity A in W. Note that the composition algorithm imple‐
ments a depth-first search in the composition generation process in order to explore fully
the instantiation of a particular activity within a pattern before considering other activ‐
ities. This spots dead-ends sooner than a breadth-first search.

94 L. Pino et al.

As an example of applying the algorithm in Table 2, consider the Stock Broker
example introduced in Sect. 2.1. Suppose that the Stock Broker SBS has a security
requirement regarding integrity of the output data of its StockQuote service, and
would consider replacement services that can offer the same operation only if they
satisfy this particular security requirement. To deal with potential problems with
StockQuote at runtime (e.g., unavailability), Stock Broker can subscribe a service
discovery query QSQ for replacing StockQuote to the discovery framework and
request its execution in proactive mode. QSQ should specify the functional and
security properties that the potential replacement services of StockQuote must have.
If the execution of QSQ results in discovering no single service matching it (i.e., when
single service discovery fails), the service composition process is carried out. At this
stage, according to the algorithm of Table 2, the framework will query the abstract
workflow repository to locate workflows matching QSQ.

Suppose that this identifies the abstract workflow WSQ shown in Fig. 1 that matches
the query. This workflow contains a sequence of three activities: GetISIN, GetEURQuote
and EURtoUSD. The framework then infers the security properties required for each of
the services that could instantiate the activities of WSQ and uses them to query for such
services. Initially, a rule for integrity of data D on a sequential pattern with the global
agent generating D in the second activity is fired on the external sequential pattern. This
rule and the related proof are given in [21] (Sect. 3.3.3, case 2). The rule is applied
because the property required for the external sequential pattern is that the output of the
workflow (i.e., USD value) must have been computed from the value returned by Stock‐
Exchange. From the required security property, the rule derives only one property about
the integrity of USD value (again, from the value coming from StockExchange) for the
inner sequential pattern. This newly generated property fires the rule shown in Table 1
resulting in two security properties: (1) integrity from the global agent StockExchange
to the client for GetEURQuote output EUR value, and (2) end-to-end integrity on inputs
and outputs of EURtoUSD.

Fig. 3. Recursive applications of secure service orchestration patterns.

Generating Secure Service Compositions 95

After the application of the rules, we derive the required property for the first
unassigned activity GetISIN. In this instance, no security properties are requested
from the first activity. This means that the query used to instantiate the workflow
consists only of the interface required for GetISIN. In a similar way, a query speci‐
fying the required interface is created for the second activity, GetEURQuote. This
query, however, will include also the security property required for the activity i.e.,
integrity of EUR value that is passed from StockExchange to the client. The query
is then executed and the discovered services are used to instantiate the workflow.
Note that in the discovery process, services are considered to satisfy the required
security properties only if they have appropriate certificates asserting these proper‐
ties. Similarly for the last activity, EURtoUSD, a query is generated from the service
interface and the required security properties and then executed, and the workflow
gets instantiated by the results. After the replacement service is fully composed, the
service composition is published in a BPEL execution engine and its WSDL is sent
to the Stock Broker SBS in order to update its bindings.

6 Tool Support and Experiments

To implement and test our approach, we have developed a prototype realizing the
composition process and integrated it with the runtime service discovery tool described
in Sect. 2. The prototype gives the possibility to select a service discovery query and
execute it to find potential candidate services and service compositions. If alternative
service compositions can be built, the alternatives are presented to the user who can
select and explore the services in each of them.

Early performance tests of our approach have been carried out using service registries
of different sizes. Table 3 shows average execution times for single service and service
composition discovery obtained from using our tool on an Intel Core i3 CPU (3.06 GHz)
with 4 GB RAM. The reported times are average times taken over 30 executions of each
discovery query. In the experiments, we used service registries of four sizes (150, 300,
600 and 1200), 25 abstract workflows and 3 patterns.

As shown in the table, the time required for building service compositions is consid‐
erably higher than the time required for single service discovery. The main part of this
cost comes from the process of discovering the individual services to instantiate the
partner links of the composition. Although the overall composition time is high, its
impact is not as significant, since as we discussed in Sect. 2 our framework can apply
discovery and service composition in a proactive manner, i.e., discover possible service
compositions in parallel with the operation of an SBS and use them when a service needs
to be replaced. Furthermore, the cost of compositions can be reduced or kept under a
given threshold by controlling the number of alternative compositions that the algorithm
in Table 2 builds. In [28], the authors have shown the benefits of a proactive execution
of the service discovery process used in our approach. Hence, we believe that the proac‐
tive generation of compositions could also reduce execution time but this would need
to be confirmed experimentally.

96 L. Pino et al.

Table 3. Execution times (in msecs).

Registry size 150 300 600 1200

Single service discovery time 194 275 355 642

Composition discovery time 777 2214 4943 12660

No. of generated compositions 4 12 24 40

7 Related Work

Existing work in service composition has focused on creating compositions that have
certain functional and quality of service properties (e.g., [1, 2, 14, 17, 23, 24, 27]) and
provides only basic support for addressing security properties in service composition,
which is the main focus of our approach.

The creation of service compositions that satisfy given security properties has
been a focus of work on model based service composition (e.g., [4, 6, 7]). In this
area, service compositions are modeled using formal languages and their required
properties are expressed as properties on the model. Our approach to composition is
also model based. However, it uses model based property proofs to identify how
overall security properties of compositions can be guaranteed through the security
properties of the individual components (services) of the composition. Existing work
on model based service composition could provide proofs of additional security
properties, which could be used to extend the patterns used in our approach, even if
they use different formalisms. The compositionality results for information flows
discussed in [18], for example, can be easily converted into SESO patterns.

Other work on service composition focuses on discovering services that have given
security properties (e.g., [3, 5, 15, 16, 19]). Some of these approaches focus on specific
types of security properties (e.g., [16, 19]) whilst other focus on how to express and
check security properties but only for single partner services of a composition (e.g., [3,
5, 15]). In contrast, our approach can support arbitrary security properties and properties
of entire service compositions.

Two ontology-based frameworks for automatic composition are described in [15]
and [19]. The first framework defines a set of metrics for selecting amongst different
compositions but provides limited support for security. The second framework intro‐
duces hierarchies of security properties but does not support the construction of
secure service compositions. In [16] planning techniques have been used to build
sequential compositions guarantying access control models, and [5] introduces an
approach to security aware service composition that matches security requirements
with external service properties. The focus of [3] is on generating test-based virtual
security certificates for service compositions, derived from the test-based security
certificates of the external services that form the composition.

Generating Secure Service Compositions 97

8 Conclusion

In this paper, we have presented an approach supporting the discovery of secure service
compositions. Our approach is based on secure service orchestration (SESO) patterns.
These patterns comprise specifications of primitive orchestrations describing the order of
the execution and the data flow between placeholder services, and rules reflecting formally
proven relations between the security properties of the individual placeholders and the
security property of the whole orchestration. The formal proofs (and patterns) developed
so far cover different integrity and confidentiality properties for different forms of primi‐
tive orchestrations. During the composition process, the proven relations between security
properties are used to deduce the actual properties that should be required of the indi‐
vidual services that may instantiate an orchestration for the orchestration to satisfy specific
security properties as a whole. In order to facilitate reasoning, SESO patterns are encoded
as Drools rules. This enables the use of the Drools rule based system for inferring the
required service security properties when trying to generate a service composition.

Our approach has been implemented and integrated with a generic framework
supporting runtime service discovery that is described in [28]. We are currently investi‐
gating the validity of our approach through a series of focus group evaluations. We are also
investigating further SESO patterns (e.g., for availability), and conducting further perform‐
ance and scalability analysis of our prototype. We are also exploring the use of heuristic
controls over the number of compositions generated by the algorithm to speed up the
processing.

Acknowledgements. The work reported in this paper has been partially funded by the EU F7
project ASSERT4SOA (grant no.257351).

References

1. Aggarwal, R., et al.,: Constraint driven web service composition in METEOR-S. In:
Proceedings of the IEEE International Conference on Services Computing (SCC 2004),
pp. 23–30 (2004)

2. Alrifai, M., Risse, T., Nejdl, W.: A hybrid approach for efficient Web service composition
with end-to-end QoS constraints. ACM Trans. Web 6(2), 7:1–7:31 (2012)

3. Anisetti, M., Ardagna, C., Damiani, E.: Security certification of composite services: a test-
based approach. In: Proceedings of the IEEE 20th International Conference on Web Services,
pp. 475–482 (2013)

4. Bartoletti, M., Degano, P., Ferrari, G.L.: Enforcing secure service composition. In:
Proceedings of the 18th Computer Security Foundations Workshop (CSFW), pp. 211–223.
IEEE Computer Society (2005)

5. Carminati, B., Ferrari, E., Hung, P.C.K.:. Security conscious web service composition. In:
Proceedings of the International Conference on Web Services (ICWS), pp. 489–496. IEEE
Computer Society (2006)

6. Deubler, M., et al.: Sound development of secure service-based systems. In: Proceedings of
2nd International Conference on Service Oriented Computing, pp. 115–124 (2004)

7. Dong, J., Peng, T., Zhao, Y.: Automated verification of security pattern compositions. Inf.
Softw. Technol. 52(3), 274–295 (2010)

98 L. Pino et al.

8. Drools. http://www.jboss.org/drools/
9. Gürgens, S., Rudolph, C., Ochsenschläger, P.: Authenticity and provability - a formal

framework. In: Rees, O., Frankel, Y., Davida, G.I. (eds.) InfraSec 2002. LNCS, vol. 2437,
pp. 227–245. Springer, Heidelberg (2002)

10. Gürgens, S., Ochsenschläger, P., Rudolph, C.: Abstractions preserving parameter
confidentiality. In: di Vimercati, S., Gollmann, D., Syverson, P.F. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 418–437. Springer, Heidelberg (2005)

11. Gürgens, S., et al.: D05.1 Formal Models and Model Composition. ASSERT4SOA Project,
Technical report (2011). http://assert4soa.eu/public-deliverables/

12. Gürgens, S., et al.: D05.3 Model Based Certification Artefacts. ASSERT4SOA Project,
Technical report (2013). http://assert4soa.eu/public-deliverables/

13. IBM BPM industry packs. http://www.ibm.com/software/products/us/en/business-process-
manager-industry-packs/

14. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation for web service composition
using workflow patterns. In: Proceedings of the 8th IEEE International Enterprise Distributed
Object Computing Conference, pp. 149–159 (2004)

15. Khan, K.M., Erradi, A., Alhazbi, S., Han, J.: Security oriented service composition: A
framework. In: Proceedings of International Conference on Innovations in Information
Technology (IIT), pp. 48–53 (2012)

16. Riabov, A.V., Liu, Z., Lelarge, M.: Automatic composition of secure workflows. In: Ungerer,
T., Yang, L.T., Jin, H., Ma, J. (eds.) ATC 2006. LNCS, vol. 4158, pp. 322–331. Springer,
Heidelberg (2006)

17. Majithia, S., Walker, D.W., Gray, W.A.: A framework for automated service composition in
service-oriented architectures. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS
2004. LNCS, vol. 3053, pp. 269–283. Springer, Heidelberg (2004)

18. Mantel, H.: On the composition of secure systems. In: Proceedings of the 2002 IEEE
Symposium on Security and Privacy (SP2002). IEEE Computer Society (2002)

19. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the semantic
web. VLDB J. 12(4), 333–351 (2003)

20. Pino, L., Spanoudakis, G.: Constructing secure service compositions with patterns. In:
Proceedings of 2012 IEEE 8th World Congress on Services, pp. 184–191 (2012)

21. Pino, L., et al.: D02.2 ASSERT aware service orchestration patterns. ASSERT4SOA Project,
Technical report (2012). http://assert4soa.eu/public-deliverables/

22. Pino, L., Spanoudakis, G., Gürgens, S., Fuchs, A.: Discovering secure service compositions.
In: Proceedings of the International Conference on Cloud Computing and Services Science
(2014)

23. Ponnekanti, S.R., Fox, A.: Sword: a developer toolkit for web service composition. In:
Proceedings of the 11th World Wide Web Conference, pp. 7–11 (2002)

24. Raman, B., et al.: The SAHARA model for service composition across multiple providers.
In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, pp. 1–14.
Springer, Heidelberg (2002)

25. RosettaNet. Available: http://www.rosettanet.org/
26. Shirey, R.: Internet Security Glossary, Version 2. RFC 4949 (Informational), IETF (2007).

Available: http://www.ietf.org/rfc/rfc4949.txt
27. Tan, W., Fan, Y., Zhou, M.: A petri net-based method for compatibility analysis and

composition of web services in business process execution language. IEEE Trans. Autom.
Sci. Eng. 6(1), 94–106 (2009)

28. Zisman, A., Spanoudakis, G., Dooley, J., Siveroni, I.: Proactive and reactive runtime service
discovery: A framework and its evaluation. IEEE Trans. Softw. Eng. 39(7), 954–974 (2013)

Generating Secure Service Compositions 99

http://www.jboss.org/drools/
http://assert4soa.eu/public-deliverables/
http://assert4soa.eu/public-deliverables/
http://www.ibm.com/software/products/us/en/business-process-manager-industry-packs/
http://www.ibm.com/software/products/us/en/business-process-manager-industry-packs/
http://assert4soa.eu/public-deliverables/
http://www.rosettanet.org/
http://www.ietf.org/rfc/rfc4949.txt

A Scalable Monitor for Large Systems

Mauro Andreolini1(B), Marcello Pietri2, Stefania Tosi2,
and Riccardo Lancellotti2

1 Department of Physics, Computer Science and Mathematics,
University of Modena and Reggio Emilia, Via Campi 213/a, 41125 Modena, Italy

mauro.andreolini@unimore.it
2 Department of Engineering “Enzo Ferrari”, University of Modena

and Reggio Emilia, Via Vignolese 905/b, 41125 Modena, Italy
{marcello.pietri,stefania.tosi,riccardo.lancellotti}@unimore.it

Abstract. Current monitoring solutions are not well suited to mon-
itoring large data centers in different ways: lack of scalability, scarce
representativity of global state conditions, inability in guaranteeing
persistence in service delivery, and the impossibility of monitoring multi-
tenant applications. In this paper, we present a novel monitoring archi-
tecture that strives to address these problems. It integrates a hierarchical
scheme to monitor the resources in a cluster with a distributed hash
table (DHT) to broadcast system state information among different mon-
itors. This architecture strives to obtain high scalability, effectiveness and
resilience, as well as the possibility of monitoring services spanning across
different clusters or even different data centers of the cloud provider. We
evaluate the scalability of the proposed architecture through an exper-
imental analysis and we measure the overhead of the DHT-based com-
munication scheme.

Keywords: Monitoring architecture · Cloud Computing · Large-scale ·
Scalability · Multi-tenancy

1 Introduction

Cloud Computing is the most adopted model to support the processing of large
data volumes using clusters of commodity computers. According to Gartner,
Cloud Computing is expected to grow 19 % in 2012, becoming a $109 billion
industry compared to a $91 billion market last year. By 2016, it is expected to
be a $207 billion industry. This esteem compares to the 3 % growth expected in
the overall global IT market. Several companies such as Google [1], Microsoft [2],
and Yahoo [3] process tens of petabytes of data per day coming from large data
centers hosting several thousands nodes. According to [4], from 2005 to 2020,
the digital universe will grow by a factor of 300, from 130 EB to 40000 EB, or
40 trillion GB (more than 5200 GB per person in 2020). From now until 2020,
the digital universe will about double every two years.

In order to satisfy service level agreements (SLAs) and to keep a consistent
state of the workflows in this tangled layout, such growing large infrastructures
c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 100–116, 2015.
DOI: 10.1007/978-3-319-25414-2 7

A Scalable Monitor for Large Systems 101

are usually monitored through a multitude of services that extract and store mea-
surements regarding the performance and the utilization of specific hardware and
software resources. These monitoring tools are operated by cloud providers and
offered to the services’ owners, but also ad-hoc monitoring solutions are designed
in order to satisfy the requirements of big companies which own their private
cloud infrastructures. For example, Sony uses the closed-source Zyrion Traverse
database [5] to claim the monitoring of over 6000 devices and applications over
twelve data centers across Asia, Europe and North America. The virtual data
layer within the solution collects half a million resource data streams every five
minutes.

This scenario requires the design of an advanced monitoring infrastructure
that satisfies several properties:

1. Scalability. It must cope with a large amount of data that must be collected,
analyzed, stored and transmitted at real-time, so as to take timely corrective
actions to meet SLAs.

2. Effectiveness. It must provide an effective view of the system state condi-
tions that can be used for management purposes and to identify the causes of
observed phenomena. It must also adapt its monitoring functions to varying
conditions in order to accommodate variable resources, system errors, and
changing requirements.

3. Resilience. It must withstand a number of component failures while contin-
uing to operate normally, thus ensuring service continuity. Single points of
failure must be avoided for providing persistence of service delivery.

4. Multi-tenancy. It must be able to monitor applications distributed over
different data centers in order to better perform troubleshooting activities in
dynamic environments such as cloud scenarios.

We state that none of the existing solutions fulfills all these requirements. In
this paper we overcome state-of-the-art limits with a novel open-source monitor-
ing infrastructure. We propose a hybrid architecture for a quasi real-time mon-
itoring of large-scale, geographically distributed network infrastructures spread
across multiple data centers, designed to provide high scalability, effectiveness
and resilience. Here, the term hybrid refers to the use of two different commu-
nication schemes: a hierarchical one and a P2P-based one. Each data center is
equipped with its own decoupled monitoring infrastructure; each monitor adopts
a hierarchical scheme that ensure scalability with respect to the number of
monitored resources, in a subset of the whole architecture. Communications
between data centers are performed through the root managers, software mod-
ules responsible for orchestrating the whole process. The root managers of every
decentralized monitor are connected through a custom communication module
that implements the P2P Pastry DHT routing overlay [6]. In this way, a ser-
vice distributed across several data centers can be jointly monitored through the
appropriate root managers. The internal operations of the monitor are geared
towards effectiveness objectives. We provide real-time access to single perfor-
mance samples or graphs, as well as more sophisticated analysis that aim at

102 M. Andreolini et al.

identifying system or application states for anomaly detection, capacity plan-
ning, or other management studies. Every single component in the infrastructure
is designed to be resilient to failures. Whenever possible, we enrich the existing
software modules with redundancy and failover mechanisms. Otherwise, we auto-
matically restart the modules in case of failure.

The rest of this paper is organized as follows. Section 2 evaluates the current
state-of-the-art in the area of large-scale system monitoring. Section 3 describes
the design decisions supporting the described requirements, provides a high level
architecture of the entire monitoring infrastructure, motivates the choice of the
software components and discusses various implementation details. Section 4
investigates the theoretical scalability limits of the proposed architecture fig-
ured out from experimental scenarios. Finally, Sect. 5 concludes the paper with
some remarks and future work.

2 Related Work

Current state-of-the-art monitoring tools do not guarantee scalability, effective-
ness, resilience and multi-tenancy objectives. Fully centralized monitors cannot
scale to the desired number of resource data streams. For example, the prototype
system introduced in [7], which uses Ganglia [8] and Syslog-NG to accumulate
data into a central MySQL database, shows severe scalability limits at only 64
monitored nodes, each one collecting 20 resource data streams every 30 s. Here,
the main bottleneck is related to the increasing computational overhead occur-
ring at high sampling frequencies. On the other hand, lowering the sampling
frequency (commonly, once every five minutes) can make it difficult to spot
rapidly changing workloads which in turn may entail the violation of SLAs [9].

Concerning resilience, the vast majority of both open-source and commercial
monitoring infrastructures like OpenNMS [10], Zabbix [11], Zenoss [12] and Cacti
[13] are not adequate or designed to address failures, especially if combined with
the ability to gather and support millions of resource data streams per second.

In terms of effectiveness, most open-source monitoring tools only partially
address this aspect. For example, Graphite [14] and Cacti provide only trend-
ing analyses, Nagios [15] provides alerting, while Chukwa [16] and Flume [17] are
designed exclusively to collect resource data streams or logs. Also current decen-
tralized, per-data-center, hierarchical monitors such as Ganglia [18] are limited
to efficiently compute averages of measures spanning over several nodes. How-
ever, the complexity of current workloads in modern data centers calls for more
sophisticated processing, such as the identification of correlations among different
resource data streams, or the detection of anomalies in the global system state.

Astrolabe [19] is a hybrid solution that combines a hierarchical scheme with
an unstructured P2P routing protocol for distributed communications as our pro-
posal does. While it is resilient and highly scalable in terms of data collection and
storage, it lacks in effectiveness and its manageability is a complex task since it
incurs a lot of network traffic. Unstructured systems do not put any constraints on
placement of data items on peers and how peers maintain their network connec-
tions and this solution suffers from non-deterministic results, high network com-
munication overload and non-scalability of bandwidth consumption [20].

A Scalable Monitor for Large Systems 103

While collection and network monitoring were addressed in many works with
significant results [21–23], the state-of-the-art technology in multi-tenant mon-
itoring is a very niche field. In fact, none of the previous works deals with a
multi-tenant environment. At the best of our knowledge, the only open contri-
bution in this sense is given by [24]: it extends monitoring based on data stream
management systems (DSMS) with the ability to handle multiple tenants and
arbitrary data; however it does not address resilience in terms of single points
of failure, it has no implemented prototype, and it does not present any type of
analysis to support the proposed architectural choices.

The fuzzy DHT algorithm proposed in this paper addresses the issue of join-
ing the need for advanced lookup features with the need to preserve the scala-
bility of DHTs. Other studies propose flexible queries. For example, Liu et al.
propose a system to support range queries [25], other researchers propose key-
word queries based on inversed indexes [26,27], while Tang et al. introduce
semantic searches on the CAN DHT [28]. However, all these proposals require
separate search services or introduce a completely new routing mechanism. Our
approach is different from these proposals for three main reasons. First, the fuzzy
DHT algorithm allows the deployment of novel services with only slight modifica-
tions to the existing overlay networks, thus allowing a simpler deployment of the
fuzzy DHT based overlay. Second, the proposed algorithm is explicitly designed
to provide multiple keyword-based searches, which are convenient for locating
resources based on attributes. Finally, our algorithm is explicitly designed with
efficiency as a primary goal.

3 Architecture

The early decisions that inspired the design of the proposed architecture share
four important goals: (1) to dominate the complexity of the monitoring prob-
lem (Scalability), (2) to tune the monitoring activities according to different
objectives (Effectiveness), (3) to avoid single points of failure (Resilience), and
(4) to monitor services spanning across different clusters or data centers (Multi-
tenancy). This section details the architecture design of our proposal, with
particular emphasis to the design decisions that allow the achievement of the
mentioned goals. Figures 1 and 2 present the high level architecture of the moni-
toring infrastructure. The interested reader can read a more detailed description
in [29,30].

We propose a hybrid architecture using a hierarchical communication scheme
to ensure scalability and a P2P-based communication scheme to allow multi-
tenancy. In our opinion, a hybrid solution is the only viable alternative for scaling
to an arbitrary number of data centers and the huge problem size makes it
literally impossible to deploy any kind of centralized infrastructure. Even worse,
service centralization would not be fault-tolerant. For these reasons, each cluster
in our architecture is equipped with an independent monitoring infrastructure.

In order to scale to millions of data streams per sample interval, it is manda-
tory to shift preliminary computations (such as the sampling of a resource and

104 M. Andreolini et al.

 Data Center Data Center

...

... Data Center

inter-cluster DHT

 Root Management
 System

...

...

User Interfaceroot
manager

root
manager

 Distributed Analyzer System

.....Analyzer
Node

Analyzer
Node (key, value)

pairs

(key, value)
pairs

......

 Cluster

 Distributed Configuration
 Management Database

...

 Cluster ...

root
manager

 Cluster
...

root
manager

 Cluster ...

root
manager

...

 Cluster
...

root
manager

...

Distributed
data storage

...

 Cluster

 Cluster

...

...

embedded
graphs

Fig. 1. Monitoring system architecture overview.

...
Collection Agent

resource

 Distributed cluster data filter

.......

 Performance samples

 Data chunks

 (key, value) pairs

Distributed sample storage
(cluster)

 Cluster

...

 Monitored Node

Collector
Node

Collector
Node

resource

Monitored
Node

...

...

embedded
graphs

to analyzer nodes

distributed
data storage

to root
manager

Fig. 2. Cluster architecture.

A Scalable Monitor for Large Systems 105

the performing of sanity checks on sampled data) as close as possible to the
edge of the monitored infrastructure. Failure to do so would result in a system
that unnecessarily processes potentially useless data. For this reason, collected
resource data streams are initially filtered (or marked as invalid, anomalous) on
the monitored nodes where a collection agent receives the samples from several
probe processes. Probe processes are responsible for collecting periodically per-
formance and/or utilization samples regarding a set of hardware and software
resources. The collection agent performs preliminary validity checks on them,
that are executed through dynamic, pluggable modules that receive in input
the data stream and respond with TRUE or FALSE. If at least one check fails,
the stream is tagged as invalid, but it is never discarded; this facilitates later
debugging operations. The following checks are implemented now: missing value,
value out of range, sequence of null values. Then, the collection agent updates
the resource data streams and sends them to a set of associated collector nodes.
We consider both the sending of uncoded (without compression) and coded (loss-
less compression) data. A detailed description of the collection agent has been
presented by the authors in [31].

The collector node is the main component of the distributed cluster data filter.
It receives the checked and coded resource data streams, performs the necessary
decoding, applies low cost analyses on decoded data, and stores their results
for a real-time plot or further analysis. In the former case, processing stops and
the user is able to see immediately the behavior of the resource data streams. In
order to support real-time analytics at large scale, at this level we adopt analytic
approaches having linear computational complexity and adaptive implementa-
tion. Linear solutions permit to understand system behavior in real-time, so as
to diagnose eventual problems and take timely corrective actions to meet service
level objectives. Adaptivity allows analytic approaches to accommodate variable,
heterogeneous data collected across the multiple levels of abstraction present in
complex data center systems. Example analyses we implemented at this stage
include:

1. computing moving averages of resource data streams, in order to provide a
more stable representation of a node status;

2. aggregating (both temporally and spatially) node state representations to
obtain global views of the cluster state conditions;

3. extracting trends for short-term prediction of resource consumption and of
cluster state conditions;

4. detecting state changes and/or anomalies occurring in data streams for the
erase of alarms and the adoption of recovering strategies;

5. correlating node state representations in order to identify dependencies
among different nodes in the cluster and to exclude secondary flows.

Nodes and cluster state representations are then sent to two different stor-
ages: one for real-time plotting of the decoded and analyzed resource data
streams, and one for non-real-time later processing at highest levels. The former
storage for real-time plotting is handled by a modified version of OpenTSDB [32]
that is able to plot a real-time short-term prediction of the resources trend. This

106 M. Andreolini et al.

analysis is performed using a linear regression and a Gaussian kernel. The lat-
ter storage for non-real-time processing, called data sink, receives data destined
to further processing performed by the distributed analyzer described shortly.
This solution reduces the number of files generated from one per node per unit
time to a handful per cluster [33]. To enhance the performance of the storage
engine, we chose to pack the resource data streams (few bytes per each) in larger
chunks (64 KB by default) and to write them asynchronously to a distributed
file system that can be scaled to the appropriate size by easily adding back-end
nodes. In order to provide a homogeneous software layer (eg., Hbase coupling)
and an open-source platform, and in order to support a map-reduce paradigm,
the best possible choice is the Hadoop Distributed File System (HDFS). It allows
extremely scalable computations, it is designed to run on commodity hardware,
it is highly fault-tolerant, it provides high throughput access to application data,
and it is suitable for applications that have large data sets.

In the latter case, data is made available to the distributed analyzer system. Its
purpose is to compute more sophisticated analyses on the resource data streams,
such as aggregation of information coming from different clusters, identification
of correlated components in the system, anomaly detection and capacity plan-
ning. The data streams resulting from these analyses are persistently stored in
the distributed data storage. Here, data is available as (key, value) pairs, where
“key” is a unique identifier of a measure and “value” is usually a tuple of values
describing it (e.g., timestamp, host name, service/process, name of the monitored
performance index, actual value). The distributed analyzer system is composed
by a set of analyzer nodes. Each analyzer node runs arbitrary batch jobs that
analyze the state representation data streams of nodes and clusters. At this
stage, we admit the implementation of more computational expensive analyses
with respect to those applied at the cluster level. Now, analyses are applied only
to small sets of representative information (i.e., nodes and cluster state represen-
tations) from which we require to obtain relevant information for management
with high levels of accuracy. For example, analyses implemented at data center
level are:

1. aggregation of cluster state representations to obtain global views of the data
center state conditions;

2. long-term prediction of clusters and data center state conditions computed
at different temporal scales and with different prediction horizons;

3. detection of changes and anomalous events in data center state conditions
with the identification of which node(s) in the different clusters is the culprit.

We choose the Pig framework for the implementation of the analysis scripts [34].
Pig offers richer data structures over pure map-reduce, for example multivalued
and nested dictionaries. Each Pig script is compiled into a series of equivalent
map-reduce scripts that process the input data and write the results in a parallel
way. Our scripts implement the analyses mentioned above. Further analyses
can be easily supported by our architecture and implemented to satisfy more
sophisticated requests.

A Scalable Monitor for Large Systems 107

Root management system

 Communication

 System
 analyzer

 Distributed
 cluster data

filter

 DHT

 User

 Service
orchestration

 Failover

To another
failover
module

 CMDB

Fig. 3. The root management system.

Both the reduced streams representing the system state and the resource
data streams processed by OpenTSDB must be written into a data storage. For
the sake of performance, it is possible to avoid the reuse of the same structured
storage. As matter of facts, the data storage:

– must scale with an increasing number of data streams;
– must be fault tolerant;
– should be designed towards the data management.

In this context, we choose Apache HBase [35] also because of the fact that
it includes the homogeneity and the reuse of components. In our architecture,
the HBase storage is responsible to preserve all the analyzed information about
nodes, clusters and data center. Apache HBase is a distributed column-oriented
database built on top of HDFS, designed from the ground-up to scale linearly
just by adding nodes. It is not relational and it does not support SQL, but thanks
to the proper space management properties, it is able to surpass a traditional
RDBMS-based system by hosting very large and sparsely populated tables on
clusters implemented on commodity hardware.

The information regarding the data center asset is stored in a distributed
configuration database. In this way, we strive to avoid possible inconsistencies
mainly due to a service being migrated or receiving more resources. The monitor-
ing infrastructure associates data streams to the identifiers of the corresponding
monitored resource. The configuration database is needed to store all information
related to the asset of a cluster. Asset-related information includes a description
of the resource metadata (name, id), placement (IP of the hosting node or vir-
tual machine), sampling period, and a description of the time interval during
which the resource is supposed to be assigned to a service. We think that it is
a good idea to use off-the-shelf Configuration Management DataBase Systems
(CMDBs). A CMDB is a repository of information related to all the compo-
nents of an information system, and contains the details of the configuration
items in the IT infrastructure. However, the majority of CMDBs is not natively
fault tolerant. We address this shortcoming by replicating both its Web front-
end and DB back-end. The configuration management database of our choice is

108 M. Andreolini et al.

OneCMDB. It is an open-source CMDB for data centers that can store configura-
tions such as hardware, software, services, customers, incidents, problems, RFCs
and documents. OneCMDB conforms to IT Management best practice declared
by the Information Technology Infrastructure Library. It adopts a client-server
paradigm and it is used in large production environments with thousands of
configuration items. An enhanced graphical user interface enables more effective
system operations.

Each monitoring infrastructure is orchestrated by a root management system,
a software component that organizes the workflow of monitoring operations and
provides a programmable monitoring interface to the user (Fig. 3). All the root
managers dislocated on different data centers are interconnected by an efficient
DHT overlay routing network. In this first version of our prototype, the other
main task carried out by a root manager is to forward early notifications of anom-
alies in the internal state of some resources to other interested, subscribed root
managers. In this way, it is possible to anticipate the performance degradation
of services depending on these failing resources.

The orchestration module is the heart of the monitoring system since it
orchestrates the operations of the other aforementioned components (collector,
data filter, analyzer). One of its main tasks is to trigger and to abort the execu-
tion of batch jobs in the distributed cluster data filter and in the analyzer nodes.
The communication module is a simple messaging system used to interact with
the other components of the monitoring architecture in order to communicate
relevant information (such as anomalies in some resource state) to other moni-
toring systems dislocated in different data centers. The root manager node also
receives commands from the user interface; these commands are forwarded to
and processed by the orchestration module. The user interface is basically a
Web-based application running on any selected node. It manages the resources
owned by an application and provides a programmable dashboard with figures of
merit, diagrams and configuration parameters (monitored nodes, resources, per-
formance indexes, sampling intervals). Each cluster and each monitored process
is represented using embedded OpenTSDB graphs, while the system view is rep-
resented using a similar but customized interface that supports also long-term
predictions, aggregation analysis, detection and capacity planning. The failover
module ensures fault tolerance by identifying which root managers are compro-
mised and by restoring a safe state. To this purpose, each root manager runs
part of the replica of the other root managers in the same data center. If a root
manager fails, the replica becomes the master until the former one is restored.

When a service is installed on the nodes, the collection and analysis processes
supply this information to the root management system, which stores it into the
distributed configuration database. At each application deployment, a list of the
involved nodes is defined. A unique key is associated to this list; both the key
and the list are shared through the DHT with each root management system.
The root management system responsible for the largest number of involved
nodes selects its best root manager on the basis of multiple configurable metrics.
Finally, the selected root manager becomes the service leader.

A Scalable Monitor for Large Systems 109

Each data center is composed by a set of root manager nodes connected
through a Pastry-based Distributed Hash Table (DHT) called fuzzy DHT, which
has been presented and simulated in [30]. We chose Pastry [6] because it is
a generic, scalable and efficient substrate for P2P applications that forms a
decentralized, self-organizing and fault-tolerant overlay network. Pastry provides
efficient request routing, deterministic object location, and load balancing in
an application-independent manner. Furthermore, it provides mechanisms that
support and facilitate application-specific object replication, caching, and fault
recovery. For example, it is possible to efficiently lookup all CPU utilization
time series in a given cluster (or a replica if the origin source is unavailable).
The DHT communication module implements all the needed overlay routing
functions. The root management system is built upon a set of custom Python
and Java modules. The DHT is implemented through the freepastry libraries.
The publish-subscribe mechanism used to broadcast alerts to the interested root
managers is implemented through Scribe [36]. We previously discussed these
aspects from a security point-of-view in [37].

We used exclusively open-source tools that can be modified and adapted for
our goals. We used GNU/Linux Debian, Ubuntu and Fedora OSs in different
experimental testbeds, enhanced with the software packages from the Cloudera
repository (CDH4). The languages used for the deployment of our modules are
Bash (v4.2.36), Python (v2.7), Java (v1.6), JavaScript and C (where efficiency
is needed, such as in our modified monitor probes). The batch processing frame-
work is Hadoop, version 2.0. Our choice is motivated by the dramatic scalability
improvement with respect to traditional RDBMS-based data storage architec-
tures under random, write-intensive data access patterns [38]. To avoid single
points of failure and to ensure service continuity, we enforce redundancy of every
component of the monitoring architecture. Whenever possible, we deploy our
solution using software that can be easily replicated. In other cases, we wrap the
component through custom scripts that detect failures and restart it, in case.

We implemented the user interface using the Django MVC framework and the
JQuery library to enhance the presentation of data. The responsiveness of the
application is improved through the adoption of AJAX-based techniques and
the Web server Apache v.2.2.

4 Analysis

We perform experimental analyses for evaluating the ability of the proposed
monitoring architecture in satisfying all requirements of scalability, effectiveness,
resiliency and multi-tenancy. Due to the limited space, in this section we only
report analysis results about the scalability of our solution. We evaluate the
scalability of the proposed architecture in terms of number of monitored resource
data streams. In particular, we aim to find out:

– how many resource data streams can be monitored per node (intra-node scal-
ability);

– how many nodes can be monitored in a cluster (intra-cluster scalability).

110 M. Andreolini et al.

Highest level scalability (intra-data center scalability) is left for future exten-
sions and strongly depends on both resource behaviors and aggregation results
obtained through analytics computed in the distributed analyzer system. In this
paper, we used the Amazon EC2 IaaS platform. In the considered infrastructure,
the backing storage is shared across the instances (EBS), and the theoretical net-
work connectivity is up to 1Gbps. The virtual machines are running instances
of the TPC-W and RUBiS benchmark suites. MapReduce jobs queries are used
for data distribution and analysis. We perform Map-Reduce versions of several
performance analyses having different computational costs, including the moving
average and the Principal Component Analysis (PCA) over more than 1 h of data
collected from 2048 monitored nodes. We emphasize that the results are strongly
influenced by the resource consumption of the TSDB component, and the tuning
of this trade-off is out of the scope of this paper. However, we measure that the
PCA (i.e., the most computational expensive analysis) requires an average of
5 min when computed over 8 collector nodes using around the 85 % of CPU (the
12.5 % was used for collector process). This result shows that the behavior of a
single cluster during the collection of over more than 6M of resource data streams
per second can be analyzed (in batches) within quasi real-time constraints.

In each monitored node, one probe is dedicated to system-related perfor-
mance monitoring through the output of the vmstat and sar monitors. The
remaining probes are process-related through pidstat and nethogs2 monitors.
This system probe collects 25 different performance indexes, while each process
probe collects 23 different resource data streams. The sampling interval is con-
figured at 1 s for each probe in order to emulate the most challenging scenario.

4.1 Intra-node Scalability

In the first experimental testbed, we evaluate how many resource data streams
can be handled for each monitored node. We use one collector node and one
analyzer node running a single script that computes the moving average for every
resource data stream. The detail of the resources of the monitored node is the
following: micro instance, 613 MB memory, up to 2 EC2 Compute Units (Dual-
Core AMD Opteron (tm) Processor 2218 HE, cpu 2.6 GHz, cache size 1,024 KB),
EBS storage, dedicated network bandwidth of theoretically 100 Mbps per node.

Table 1 reports the average resource consumption (percentage of CPU, mem-
ory (RAM) and network (NET) utilization) of the collection agent as a function
of the number of monitored resource data streams. We performed tests on both
uncoded (without compression) and coded (lossless compression) data in order
to evaluate the impact of compression on the scalability of the different resources.
Then, we evaluate how the use of the Adaptive algorithm that we proposed in [39]
improves the scalability of our architecture. The Adaptive algorithm is able to
adapt the frequency of sampling and data updating to minimize computational
and communication costs, while guaranteeing high accuracy of monitored infor-
mation. From these tests, we see that at intra-node level, sending data streams
has a negligible impact on the network bandwidth, despite the fact that it is
reduced of about 50 % by using lossless compression and more than 80 % by

A Scalable Monitor for Large Systems 111

Table 1. Average resource utilization of the collection agent.

#probes #resource
data
streams

Without compression Lossless compression Adaptive algorithm

CPU
(%)

RAM
(%)

NET
(%)

CPU
(%)

RAM
(%)

NET
(%)

CPU
(%)

RAM
(%)

NET
(%)

1 25 0.0 0.4 0.005 0.3 0.4 0.002 0.1 0.5 0.001

2 48 0.1 0.5 0.009 0.5 0.5 0.004 0.1 0.5 0.002

4 94 0.1 0.6 0.019 1.1 0.6 0.009 0.2 0.7 0.004

8 186 0.1 1.0 0.041 1.8 0.9 0.019 0.3 1.0 0.008

16 370 0.3 1.4 0.085 2.9 1.4 0.041 0.4 1.4 0.016

32 738 0.5 2.5 0.173 4.1 2.6 0.083 0.6 2.7 0.032

64 1474 0.6 4.7 0.352 6.0 4.8 0.162 0.8 4.6 0.069

128 2946 0.9 9.4 0.681 9.8 9.3 0.337 1.2 9.5 0.127

256 5890 2.5 18.7 1.392 23.1 18.3 0.641 3.1 18.8 0.266

using the Adaptive algorithm. We see also that the most used resource without
data compression or with Adaptive algorithm is the memory, while with lossless
compression the most used resource is the CPU. At 128 probes, both the CPU
and memory utilizations are less than 10 %. This threshold is commonly used as
the largest fraction of resource utilization that administrators are comfortable
devoting to monitoring. We have adopted this threshold as our target maximum
resource utilization for the monitoring system. Hence, on each monitored node,
we can collect up to 128 probes for a total of 2,946 resource data streams per
second. We recall that a period of one second is much shorter than commonly
adopted sampling periods that typically do not go below one minute.

4.2 Intra-cluster Scalability

In the following set of experiments, we consider nodes within a cluster, monitored
with the same probe setup. We measure the resource consumption of the collec-
tor at cluster level with or without compression efforts and with the Adaptive
algorithm.

Table 2 reports the average resource consumption of the collector node as a
function of the number of monitored nodes. From this table, we see that without
compression the most used resource is the network that allows the monitoring
of at most 64 nodes (or 188,544 resource data streams) in a cluster. On the
contrary, compressing data strongly impacts the CPU utilization. Despite that,
the compression of data allows to monitor more than 128 nodes or 2, 946 · 128 =
377, 088 resource data streams per second. By using the Adaptive algorithm we
are able to monitor up to 512 nodes per collector, meaning 1.5M resource data
streams per second.

112 M. Andreolini et al.

Table 2. Average resource utilization of the collector in the distributed cluster data
filter.

#monitored
nodes

#resource
data
streams

Without
compression

Lossless
compression

Adaptive
algorithm

CPU
(%)

NET
(%)

CPU
(%)

NET
(%)

CPU
(%)

NET
(%)

1 2946 0.1 0.971 0.6 0.450 0.1 0.189

2 5892 0.1 1.943 0.9 0.899 0.1 0.355

4 11784 0.2 3.838 2.0 1.797 0.2 0.748

8 23568 0.4 7.763 3.6 3.594 0.4 1.463

16 47136 0.9 15.421 8.1 7.186 0.9 3.001

32 94272 1.9 31.055 17.1 14.374 1.9 5.872

64 188544 3.2 61.980 33.6 28.751 3.2 11.711

128 377088 - - 69.9 57.539 6.1 23.404

256 754176 - - - - 12.5 47.096

512 1508352 - - - - 23.7 93.691

Table 3. Average resource utilization of a collector process.

#monitored nodes #resource data streams Collector

#nodes CPU (%) NET (%)

256 754176 1 12.5 47.096

512 1508352 2 12.8 48.327

1024 3016704 4 12.2 46.851

2048 6033408 8 12.4 46.908

As further result, we add collector nodes and increment the number of mon-
itored hosts to evaluate the scalability of the distributed cluster data filter.
Table 3 reports the average resource utilization across the collector nodes. We
keep adding collectors up to 2,048 monitored nodes. We also add more HDFS
and HBASE nodes to support the write throughput when the number of nodes
becomes higher than 256. We keep 256 as limit in the number of nodes since
overcoming the 50 % of incoming network bandwidth of the collector node means
overcoming the 100 % of outcoming bandwidth. In this scenario, by using the
Adaptive algorithm we are able to monitor about 6M resource data streams by
using an average 12.5 % of CPU and 47.3 % of network bandwidth.

This analysis on scalability reveals that the proposed architecture is able to
collect and process:

– more than 2900 resource data streams per second, from 128 probes, on a single
monitored node, with a resource utilization <10 %;

A Scalable Monitor for Large Systems 113

Table 4. Average resource utilization of a TSDB process over the distributed cluster
data filter.

#graphs #resource data streams CPU (%) NET In (%) NET Out (%)

10 4500 10,3 0,077 0,131

25 11250 25,1 0,163 0,265

50 22500 49,8 0,329 0,538

100 30000 66,4 0,432 0,714

100 45000 98,2 0,671 1,099

– more than 754000 resource data streams per second, from 256 different mon-
itored nodes using a single collector node;

– more than 6000000 resource data streams per second per cluster.

By using the TSDB component, every collector node provides the real-time plot-
ting. In Table 4, we report the resource consumption of this process. In this test-
bed we request an increasing number of graphs (from 10 to 100) and we set
a refresh rate of 15 s for each graph. As for the collector process, the memory
consumption of the TSDB component is negligible with respect to the CPU
consumption. The TSDB process uses about the 66 % of CPU while plotting
100 graphs (i.e. 30000 resource data streams) for each collector node every 15 s.
Moreover, Table 4 shows that both the incoming and outcoming network band-
width consumptions are negligible if compared to the network consumptions of
the collector process. By using the 12.5 % and the 66.4 % of CPU for the collector
and TSDB respectively, more than the 20 % of spare CPU can be used for other
purposes like the execution of the Distributed sample storage jobs.

4.3 DHT Scalability

In the last section we evaluate the efficiency of the DHT-based communica-
tion mechanism. Table 5 shows the average number of exchanged messages per
lookup process as a function of the number of root managers in the monitoring
infrastructure. We compare our implementation with two other popular P2P
communication schemes: a flood-based system (like the one provided by the
Gnutella file sharing network) and a probabilistic flood-based one. We observe
that every algorithm shows an increment in the traffic generated with each query.
However, the overhead growth of the flood-based and probabilistic flood algo-
rithms is much more evident than the overhead growth of the fuzzy DHT algo-
rithm. The main reason of this overhead lies in the fact that, for every lookup
performed, the number of nodes to visit is much higher. The probabilistic flood-
based algorithm can randomly decide to not forward queries across nodes; this
explains the reduced overhead with respect to the pure flood-based solution.
On the other hand, the better scalability of fuzzy DHT is due to its ability to
route queries only to a reduced fraction of nodes that have an high probability
of hosting the requested resource.

114 M. Andreolini et al.

Table 5. Number of exchanged messages as a function of overlay network size.

Root
managers

Messages
fuzzy DHT

Messages
flood-based

Messages
probabilistic
flood-based

1 1 1 1

2 2 2 1

4 2 4 2

8 3 7 5

16 4 15 13

32 5 31 26

64 6 62 48

5 Conclusions

In this paper, we proposed a novel hybrid architecture for monitoring large-scale,
geo-graphically distributed network infrastructures spread across multiple data
centers. Architectural choices are made in order to satisfy scalability, effective-
ness, resiliency and multi-tenancy requirements. These choices are mandatory
when you have to support gathering and analysis operations of huge numbers of
data streams coming from cloud system monitors. The proposed architecture is
already integrated with on-line analyzers working at different temporal scales.
Our preliminary experiments show the potential scalability limits of the moni-
toring system: more than 6M of resource data streams per cluster, per second.
All these operations of data streams are carried out within real-time constraints
in the order of seconds thus demonstrating that huge margins of improvement
are feasible.

References

1. Dean, J., Lopes, J.: MapReduce: simplified data processing on large clusters. In:
OSDI 2004, 6th Symposium on Operating Systems Design and Implementation,
USENIX Association (2004)

2. Calder, B., et al.: Windows Azure storage: a highly available cloud storage ser-
vice with strong consistency. In: SOSP 2011, 23rd ACM Symposium on Operating
System Principles. ACM (2011)

3. Shvachko, K., et al.: The hadoop distributed file system. In: MSST 2010, 26th
Symposium on Massive Storage Systems and Technologies. IEEE Computer Society
(2010)

4. Gantz, J., Reinsel, D.: The digital universe in 2020: big data, bigger digital shad-
ows, and biggest growth in the far east (2012). http://www.emc.com/leadership/
digital-universe/iview/big-data-2020.htm

5. Traverse: distributed, scalable, high-availability architecture (2010–2013). http://
www.zyrion.com/company/whitepapers

http://www.emc.com/leadership/digital-universe/iview/big-data-2020.htm
http://www.emc.com/leadership/digital-universe/iview/big-data-2020.htm
http://www.zyrion.com/company/whitepapers
http://www.zyrion.com/company/whitepapers

A Scalable Monitor for Large Systems 115

6. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

7. Litvinova, A., Engelmann, C., Scott, S.L.: A proactive fault tolerance framework
for high-performance computing. In: PDCN 2010, 9th IASTED International Con-
ference on Parallel and Distributed Computing and Networks (PDCN2010). ACTA
Press (2010)

8. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia distributed monitoring sys-
tem: design, implementation, and experience. Parallel Comput. 30, 817–840 (2004)

9. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manag. 11, 57–81 (2003)

10. Surhone, L.M., Tennoe, M.T., Henssonow, S.F.: OpenNMS. Betascript Publishing,
Mauritius (2011)

11. Olups, R.: Zabbix 1.8 Network Monitoring. Packt Publishing, Birmingham (2010)
12. Badger, M.: Zenoss Core Network and System Monitoring. Packt Publishing Ltd.,

Birmingham (2008)
13. Kundu, D., Lavlu, S.: Cacti 0.8 Network Monitoring. Packt Publishing,

Birmingham (2009)
14. Davis, C.: Graphite - Scalable Realtime Graphing (2013). http://graphite.wikidot.

com
15. Josephsen, D.: Building a Monitoring Infrastructure with Nagios. Prentice Hall,

Upper Saddle River (2007)
16. Rabkin, A., Katz, R.: Chukwa: a system for reliable large-scale log collection. In:

LISA 2010, 24th International Conference on Large Installation System Adminis-
tration. USENIX Association (2010)

17. Hoffman, S., Souza, S.D.: Apache Flume: Distributed Log Collection for Hadoop.
Packt Publishing, Birmingham (2013)

18. Sacerdoti, F.D., Katz, M.J., Massie, M.L., Culler, D.E.: Wide area cluster moni-
toring with Ganglia. In: Proceedings of Cluster Computing (2003)

19. Renesse, R.V., Birman, K.P., Vogels, W.: Astrolabe: a robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21, 164–206 (2003)

20. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: ICS 2002, 16th International Conference on Super-
computing. ACM (2002)

21. Babu, S., Subramanian, L., Widom, J.: A data stream management system for
network traffic management. In: NRDM 2001, 1st Workshop on Network-Related
Data Management (2001)

22. Cranor, C., Johnson, T., Spataschek, O.: Gigascope: a stream database for network
applications. In: SIGMOD 2003, 2003 ACM SIGMOD International Conference on
Management of Data. ACM (2003)

23. Voicu, R., Newman, H., Cirstoiu, C.: MonALISA: an agent based, dynamic ser-
vice system to monitor, control and optimize distributed systems. Comput. Phys.
Commun. 180, 2472–2498 (2009)

24. Hasselmeyer, P., d’Heureuse, N.: Towards holistic multi-tenant monitoring for vir-
tual data centers. In: NOMS 2010, 2010 IEEE/IFIP Network Operations and Man-
agement Symposium Workshops. IEEE Computer Society (2010)

25. Liu, B., Lee, W.C., Lee, D.L.: Supporting complex multi-dimensional queries in
p2p systems. In: Proceedings of 25th IEEE International Conference on Distributed
Computing Systems (ICDCS 2005), Columbus, OH (2005)

http://graphite.wikidot.com
http://graphite.wikidot.com

116 M. Andreolini et al.

26. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Endler,
M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 21–40. Springer,
Heidelberg (2003)

27. Joung, Y.J., Fang, C.T., Yang, L.W.: Keyword search in dht-based peer-to-peer
networks. In: Proceedings of 25th IEEE International Conference on Distributed
Computing Systems (ICDCS 2005), Columbus, OH (2005)

28. Tang, C., Xu, Z., Mahalingam, M.: psearch: information retrieval in structured
overlays. SIGCOMM Comput. Commun. Rev. 33, 89–94 (2003)

29. Andreolini, M., Pietri, M., Tosi, S., Balboni, A.: Monitoring large cloud-based
systems. In: CLOSER 2014, 4th International Conference on Cloud Computing
and Services Science. SCITEPRESS Digital Library (2014)

30. Andreolini, M., Lancellotti, R., Yu, P.S.: A flexible and efficient lookup algorithm
for peer-to-peer systems. In: IPDPS 2009, 23rd IEEE International Parallel and
Distributed Processing Symposium. IEEE Computer Society (2009)

31. Andreolini, M., Colajanni, M., Pietri, M.: A scalable architecture for real-time
monitoring of large information systems. In: NCCA 2012, 2nd IEEE Symposium
on Network Cloud Computing and Applications. IEEE Computer Society (2012)

32. Sigoure, B.: OpenTSDB, a distributed, scalable Time Series Database (2010).
http://opentsdb.net

33. Andreolini, M., Colajanni, M., Tosi, S.: A software architecture for the analysis of
large sets of data streams in cloud infrastructures. In: CIT 2011, 11th IEEE Inter-
national Conference on Computer and Information Technology. IEEE Computer
Society (2011)

34. Olston, C., et al.: Pig Latin: a not-so-foreign language for data processing. In:
SIGMOD 2008, 2008 ACM SIGMOD International Conference on Management of
Data. ACM, New York (2008)

35. George, L.: HBase: The Definitive Guide. O’Reilly Media, Sebastopol (2011)
36. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: a large-scale

and decentralized application-level multicast infrastructure. IEEE J. Sel. Areas
Commun. (JSAC) 20, 1489–1499 (2002)

37. Marchetti, M., Colajanni, M., Messori, M.: Selective and early threat detectionin
large networked systems. In: CIT 2010, 10th IEEE International Conference on
Computer and Information Technology. IEEE Computer Society (2010)

38. Leu, J.S., Yee, Y.S., Chen, W.L.: Comparison of map-reduce and SQL on large-
scale data processing. In: ISPA 2010, 1st International Symposium on Parallel and
Distributed Processing with Applications. IEEE Computer Society (2010)

39. Pietri, M., Tosi, S., Andreolini, M., Colajanni, M.: Real-time adaptive algorithm
for resource monitoring. In: CNSM 2013, 9th International Conference on Network
and Service Management, Zurich, Switzerland, CNSM (2013)

http://opentsdb.net

A Data Location Control Model for Cloud
Service Deployments

Kaniz Fatema1(B), Philip D. Healy1, Vincent C. Emeakaroha1,
John P. Morrison1, and Theo Lynn2

1 Irish Centre for Cloud Computing and Commerce,
University College Cork, Cork, Ireland

kafatema@ucc.ic
2 Irish Centre for Cloud Computing and Commerce,

Dublin City University, Dublin, Ireland

Abstract. A data location control model for Cloud services is presented.
The model is intended for use by Cloud SaaS providers that collect
personal data that can potentially be stored and processed at multi-
ple geographic locations. It incorporates users’ location preferences into
authorization decisions by converting them into XACML policies that are
consulted before data transfer operations. The model also ensures that
the users have visibility into the location of their data and are informed
when the location of their data changes. A prototype of the model has
been implemented and was used to perform validation tests in various
Cloud setups. These scenarios serve to demonstrate how location control
can be integrated on top of existing public and private Cloud platforms.
A sketch is also provided of an architecture that embeds location control
functionality directly into the OpenStack Cloud platform. We further
propose an enhancement to the model that alters its behaviour from
being restrictive to prescriptive so that Cloud providers can copy data
to a non-preferred locations in case of emergency. Under this approach,
the number of authorized vs unauthorized transfers can be made publicly
available by the provider as an assurance measure for consumers.

Keywords: Authorization system · Access control · Data location ·
XACML · Cloud computing

1 Introduction

Cloud Computing offers a new style of computing that allows consumers to pay
only for the services used and frees them from the management overhead of
the underlying infrastructure. Although Cloud Computing has gained signifi-
cant traction in recent years, surveys have consistently shown that consumers’
concerns around security and loss of control over data are hindering adoption
[7,23]. Additionally, the physical location of data can have an impact on its vul-
nerability to disclosure and can have implications for service quality and legal

c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 117–133, 2015.
DOI: 10.1007/978-3-319-25414-2 8

118 K. Fatema et al.

consequences [1,13]. Many regulations such as HIPAA and the EU Data Protec-
tion Directive impose restrictions on the movement of data between geographical
locations. Data location therefore represents a sensitive issue for Cloud service
providers. Existing and potential customers seek assurance that Cloud service
providers will act as faithful stewards of information entrusted to them, and
the provider itself wishes to avoid falling foul of data protection rules and other
regulations.

However, these concerns must be balanced against the Cloud provider’s desire
to maintain redundancy and operational efficiency. There are a number of valid
reasons for copying data to geographically dispersed locations such as risk miti-
gation, reduce operational expenditure, maintenance and localised caching for a
better performance. Enterprises that offer Cloud services must therefore balance
the benefits of migrating data against concerns relating to trustworthiness in the
eyes of users and regulatory compliance.

Users’ concerns about how their data are disseminated and used can be
addressed by allowing them to specify policies about how they wish their data
to be used and assuring them of the enforcement of this policy. In the context of
data location, this assurance can be provided in two ways (a) with a transparency
mechanism that allows users to view the locations where their data are being
stored and (b) with a notification mechanism that informs them when there is
a change to the status quo. If the users’ policies are to carry any weight then
they must be consulted before operations are performed that would result in
movement or remote duplication so that violations can be avoided.

A means of addressing this challenge is to implement an authorization system
that inputs queries relating to data relocation and returns results that indicate
the permissibility of the proposed actions. Of course, such a system is of little
value unless it is appropriately integrated into the service provider’s internal
processes and mechanisms. As such, there is a residual trustworthiness issue in
that the users must trust that this integration has taken place and that the
decisions of the authorization system are being honoured. These issues could
be addressed through independent verification mechanisms such as trustmarks,
audits and assurance services [17].

Although the basic concept of an authorization system [9,15] is to protect
access to secured resources, it may play an important role in Cloud data man-
agement since Cloud service delivery can involve significant amounts of data
transmission and storage. SaaS providers offering services, such as web applica-
tions, may accumulate a large amount of personal data like names, addresses,
medical records, purchase history and so on during the operation of the service.
The management, processing and storage of such data while considering cus-
tomers’ data location choices is challenging. This paper describes a mechanism
for SaaS providers, who might in turn be using services from IaaS and PaaS
layers, to incorporate the location choices of their customers while managing
and storing data in Clouds. The ISO/IEC 10181-3:1996 standard access con-
trol framework is used as the technological foundation. The following issues are
addressed:

A Data Location Control Model for Cloud Service Deployments 119

1. Capturing users’ location preferences as policies that can be automatically
consulted, providing an authorization mechanism for data movement deci-
sions that takes user-specific policies into account, providing users with vis-
ibility into the location of their data and ensuring that users are informed
when the location of their data changes.

2. Testing the validity of the model by deploying it into various Cloud setups.
3. A proposal to allow prescriptive as well as restrictive behaviour to allow

data transfers in case of emergency while quantifying the location assurance
provided by the provider.

The remainder of this paper is organized as follows: Sect. 2 presents an analy-
sis of related work. Section 3 provides background information on authorization
systems and how they can play a role in Cloud data management. Section 4
presents the design of the proposed location control model, while Sect. 5 pro-
vides the technical details and Sect. 6 provides the results of validation tests.
Finally, Sect. 7 concludes the paper and suggests future research directions.

2 Related Work

The Data Location Assurance Service proposed by Noman et al. is based on an
approach where the Cloud service provider sends regular updates to enterprises
about the location of their data [20]. The enterprise in turn provides location
assurance to users by providing information on whether the data are in their
preferred location in a simple yes/no format. This approach relies heavily on
the trustworthiness of the Cloud service provider. Massonet et al. describe how
negotiation can be used to integrate service providers’ policies with those of
infrastructure providers in a federated Cloud environment [18]. The infrastruc-
ture provider’s security policy states the availability of logging facilities, log-
ging type and monitoring, while the service provider’s policy states its security
requirements. A virtual machine is migrated to a site only if its security policy
matches with the security requirements of the service provider. An audit log is
created from the collaboration of between service provider and infrastructure
provider. The location of data is identified through the presence of data centre’s
certificate in the audit log. Neither of these systems allow for detailed location
preferences, such as multiple preferred geographic regions, to be collected from
end users and enforced automatically.

Numerous implementations of policy-based authorization have been proposed
in order to protect access to sensitive data in the Cloud [4,6,14]. A distributed
authorization system architecture for Cloud services was proposed by Almutairi
et al. where each Cloud layer has a virtual resource manager that protects access
to the virtualized resources of its layer using an access control module [2]. Ries
et al. proposed a policy-based approach to location issues [21]. However, infor-
mation on how to incorporate location into policy or how to enforce policies is
missing there.

In contrast to other policy languages, such as P3P [8], EPAL [3], PERMIS [5]
and FlexDDPL [22], XACML (an OASIS standard) provides both a policy lan-
guage and an access control decision request/response language and also specifies

120 K. Fatema et al.

Initiator

ADF/PDP

Target
AEF/PEP

Submit
Access
Request

Decision
Request Decision

Present
Access
Request

Fig. 1. ISO/IEC 10181-3 access control framework (ACF).

a policy evaluation engine. Chadwick et al. have modified the XACML model to
allow multiple policy languages and multiple policies of independent authorities
to be supported by the model, making it suitable for use in Cloud scenarios [6].
We chose to adopt XACML for our location control model due to its standard-
ised format and built-in enforcement mechanism. It is also the most widely used
language for defining security policy [24].

3 Background Information

In this section, we present some background information on authorization sys-
tems and how the location control model can be integrated with Cloud deploy-
ments. We further specify the scope and constraints of our solution.

3.1 Authorization Systems

Access control/authorization is a process of determining whether a request to
access (e.g. read, write, delete, copy, etc.) a resource object (e.g. file, database,
program, system component) by a subject (e.g. user, system or process) should
be granted or denied. The access control/authorization system can grant or
deny the request based on whether or not certain policy constrains have been
satisfied. ISO/IEC 10181- 3:1996 [15] defines a generic access control framework
(ACF) as shown in Fig. 1. It consists of four components: (i) initiators (subjects),
(ii) targets (resource objects), (iii) access control enforcement functions (AEFs) –
commonly known as policy enforcement points (PEPs) – and (iv) access control
decision functions (ADFs) – commonly known as policy decision points (PDPs).
The initiators submit access requests (also known as user requests) that specify
the operation to be performed on the target. The AEF transforms the request
into one or more decision requests (also known as authorization queries) and
sends these to the ADF. The ADF decides whether a decision request should be
granted or denied based on the provided policies and sends the decision back to
the AEF.

An access decision can contain obligations, such as sending e-mail to the data
subject or recording the permitted access in a log. These obligations are enforced
by the PEP while executing the access decision.

A Data Location Control Model for Cloud Service Deployments 121

Fig. 2. Location aware Cloud usage model.

3.2 Use Case

Figure 2 shows an overview of our system model and how it integrates with Cloud
deployments. The model considers interactions among three different groups
of stakeholders: (i) Cloud IaaS/PaaS providers, (ii) Cloud SaaS providers and
(iii) End users.

Cloud IaaS/PaaS Providers – For the purposes of this use case, we assume that
the Cloud service providers are either IaaS or PaaS providers who offer vir-
tualized resources/environment to the enterprises (i.e., the SaaS providers) as
services. The services are offered in separate regions, as shown in Fig. 2. They
deploy resource instances and data according to the instructions of their cus-
tomers and do not move data without being instructed by the customers. For
example, Amazon EC2 provisioning currently works in this manner. Each region
is identified by a unique name and is accessed via specified access points that act
as a gateways to the service. Each region may consist of a number of availability
zones, as shown in Fig. 2, where the instances and data can be copied to provide
better availability in the event of a failure. Customers can choose one or more
availability zones where their data and service instances can be replicated.

Cloud SaaS Providers – Cloud SaaS providers are the customers of IaaS and
PaaS services. They compose their SaaS services over the IaaS or PaaS services
to offer them to the end users. These services may be designed to collect and
process the end users’ personal data. Depending on their organizational needs,
a SaaS provider can choose to put their services in more than one regions and a
number of availability zones in each region. SaaS providers are typically enter-
prises that manage the customers’ data and are responsible for instructing the
Cloud IaaS/PaaS providers correctly about which data are to be stored in which
regions.

End Users/Data Owners – End users are the persons who are consuming the
service. SaaS providers may collect personal data from end users which are later
stored and processed in the Cloud environment. The end users who are sharing
their personal data are referred to as data owners.

122 K. Fatema et al.

Fig. 3. The Cloud service manager (CSM) manages services and data in different Cloud
regions.

This model assumes data to be of any format which should have two prop-
erties: (i) it should be identified by one uniquely identifiable name, DataID, and
(ii) it is expected to be treated as one unit while actions (e.g. copy, read, write)
are performed on it. The idea of having a unique identifier within a Cloud is not
an impractical assumption as each Cloud user has a unique account which can be
used or combined to form the unique identifier. In federated scenarios involving
multiple participants a number of Cloud and identifier linking mechanisms can
be used to create a globally unique identifier.

The granularity of data depends on the application scenario. It can be applied
to a file or a set of files grouped under one folder, or a database entry. The unique
identifier of the data, DataID, and the identifier of the policy, PolicyID, that is
applicable for protecting the data, are linked together by the model. This linking
will allow the policy that is relevant for that data to be evaluated while a request
for performing an action (e.g. copy, read, write) on data is received. As policy is
linked to a DataID regardless of the format of data the model will protect the
access of any type of data based on the relevant policy.

4 Data Location Control

This section presents the technical details of the model and how its functionality
can be extended to make it a prescriptive model from a restrictive one. The
core of our approach is a Cloud service manager (CSM) that manages access to
all Cloud data and services using an authorization system. The authorization
system evaluates two types of policies when making an access decision based
upon an access request. The first is the organizational administrative policy
that specifies the enterprise roles and their attributed actions on services or
data (e.g., a marketing officer can execute a service, read the data and so on) or
the roles of other external services to perform actions on their protected data.
This administrative policy is executed for all access requests. The second type of
policy consulted is the data owner’s specific policy. All the data owners’ policies

A Data Location Control Model for Cloud Service Deployments 123

are stored in the data owners’ policy store. The service manager also includes a
user authentication information table for managing user authentications, a region
information table that details the regions where each data set, identified by a
DataID is stored and a data-policy linking table that correlates each PolicyID to
a DataID in order to retrieve the correct policy of the data owner for a specific
data set. Figure 3 depicts how the region service manager receives instructions
from the authorization system on where to store or retrieve data.

4.1 Intra-Service Interaction Strategy

This section discusses the interaction strategy used to manage data locations
within a SaaS deployment. The discussion is partitioned into four catagories:
inputting data, accessing data, updating data location and checking location.

Data Input – To use the SaaS, the end users first need to register for it. During
the registration process, the user specifies authentication information (typically
a user name and password or credentials) that is stored by the service provider
to identify the user. The authentication information provided by each user is
associated with a DataID that identifies the data of this user. The user provides
a policy expressing her preferred primary location for storing the data. It also
specifies alternative locations where data can be moved for different reasons, for
example, to achieve better performance or cheaper cost. The data owner’s policy
is provided with a PolicyID, which is also linked to the DataID in the data-policy
linking table as shown in Fig. 3. Each DataID is linked to a region information
table that contains the current locations of the data identified by the DataID.
This information is updated whenever the data location changes.

Accessing Data – All the requests for accessing data (e.g. reading the data or
processing the data) goes to the CSM’s authorization system. The CSM first
gets the data owner’s PolicyID in the data-policy linking table and retrieves the
policy from the data owners’ policy store. The administrative policy and the data
owner’s policy are evaluated against the access request. If the policies evaluations
are successful, the requested access is granted. The authorization system can be
configured with various static conflict resolution strategies [12] or can obtain the
conflict resolution strategy dynamically [19] to resolve the conflicts between the
administrative policy and data owner’s policy.

Updating Data Location – The Cloud service administrator continuously mon-
itors the performance of the services. If there is a need to copy the data to
another location, she places a permission request to the CSM authorization sys-
tem. The CSM accesses the data owner’s policy and the administrative policy to
evaluate them as described previously. If the policy allows for copying to the new
location, then the data are copied and the region information table is updated to
reflect these changes. If the user requires notification upon data location change,
then the authorization system enforces this through the obligation enforcer.

Checking Location – When a user wants to query the location of her data, she
first logs in to the service with her access credentials so that the service can

124 K. Fatema et al.

identify the data she owns. To allow the user access the region information,
either the administrator’s policy or the data owner’s policy has to allow it as the
authorization system evaluates these policies to determine the access right. If any
of the policies return “Grant” then the user is given the requested information.

4.2 Inter-cloud Data Outsourcing

To achieve better efficiency and scalability, SaaS providers may need to outsource
the processing of end users’ data. To realise this strategy, the SaaS provider
maintains an external Cloud information table to store the information of the
external Cloud services with copies of the data for each DataID. This table is
linked with the region information table that contains the information of regions
where the SaaS provider host its own service and originally stores the data, as
seen in Fig. 4.

The SaaS provider’s administrative policy expresses which external services
are allowed to access their protected data and each data owner’s policy specifies
the allowed locations where his/her data can be copied. When an external service
requests permission from the CSM’s authorization system to transferring data
to a certain location of their Cloud, the administrative policy along with each
data owner’s policy are evaluated. If the administrative policy or the data owner
policy does not allow data transfer to the specified locations, then the permis-
sion is denied. If the request is accepted, the data along with the policy of the
data owner are sent to the external service. A Service Level Agreement (SLA)
negotiation process may take place between the SaaS provider and the exter-
nal service provider in order to ensure that the data owner policy is respected
upon any access request to the data. The external service provider may use the
same PolicyID and DataID or may assign new IDs according to its organiza-
tional format. When assigning new IDs, there must be a link to the old ones for
traceability. The external service provider maintains the outsourced data loca-
tion similar to the approach described in Sect. 4.1. However, in this case access
is granted based on the data owner’s policy since the external service provider
might have a different administrative policy.

A scheme similar to that for viewing location information as mentioned in
Sect. 4.1 is provided to allow data owners to view their data location entries in the
external Cloud information table. To view the data location information, there
are two options. The end user (data owner) can access this information through
the default SaaS originally hosting her data. The default SaaS provider is then
responsible for acquiring this information from the external service provider.
The external service provider’s administrative policy can be written in a way to
allow this access. This can be specified in the SLA document with the external
service provider. Alternatively, since the external service provider evaluates the
data owners policy upon receipt of an access request for a user’s data, the data
owner’s policy can be used to allow the necessary access to the data location
information. Figure 4 shows how data location can be controlled by the CSM’s
authorization systems for two different service managers.

A Data Location Control Model for Cloud Service Deployments 125

Authz
System

data

Admin
Policy

 Cloud 1 service

Region info

External
Cloud info

Internal communication
External communication

 Cloud 2 service

Data -
Policy

Linking
Table

Data
Owners
Policy Region Service

 Manager

data

Cloud 1 service Manager

Authz
System

data

Admin
Policy

Region info

External
Cloud info

Data -
Policy

Linking
Table

Data
Owners
Policy Region Service

 Manager

data

 Cloud 2 service Manager

Fig. 4. Controlling data location across multiple Clouds.

4.3 Quantifying Location Assurance

The location control model was originally designed as a purely restrictive mea-
sure to prevent the copying of users’ data to non-preferred locations [11]. How-
ever, the model could alternatively be integrated into a Cloud service in a fashion
that does not preclude the provider from copying data in emergency situations
(such as natural disasters or power outages) to a location that may not be the
users’ preferred location. Hence rather than being prescriptive, the model can
be used to recommend to the administrator whether a location is preferred by
the user or not. In this case the CSM will copy data to a location if a “Permit”
decision is obtained from the authorization system. A “Deny” decision from the
authorization system will inform the Cloud provider that the location is not
preferred by the user. The Cloud provider might still continue to copy the data
to a non-preferred location in case of emergency provided that the obligation to
e-mail the user is executed. The location control model can use this information
to quantify the provider’s level of compliance. The compliance level is calculated
as the proportion of authorized vs unauthorized transfer, and can be expressed
as a percentage, l = (a/t) ∗ 100, where l is the level of location assurance, a is
the number of authorized transfers and t is the total number of transfers made.
Furthermore, this facility can help the provider to maintain a balance between
operational need and users’ location preferences.

5 Implementation

This section presents the technical details required for a practical implementation
of the proposed location control model.

126 K. Fatema et al.

5.1 Data Presentation

Figure 5 shows an example of user registration interface of the location control
model. A unique account name is requested from the user which is used as the
DataID and PolicyID in this case. XML is chosen as the internal representation
format of data as it allows the data to be easily structured in separate elements
which can be easily identified, modified and extended. However, alternate repre-
sentation schemes, such as database tables or NoSQL entries could also be used.
The personal information section of the registration page, as illustrated in Fig. 5,
is converted into XML before storage within the Cloud service.

5.2 Policy Creation

Although the policies expressed as XML are human readable to an extent, the
format is not particularly user-friendly. In our model, the data owner is pre-
sented with a web interface, see Fig. 5 (implemented with PHP) for indicating
location preferences. The interface works like a template for policy; the policy
document is created automatically based on the locations that the user selects.
The prototype implementation of the interface can be found online1. After the
customer’s location preferences have been entered, the resulting XACML request
context containing user’s policy (as PolicyContents element) is generated where
Location is defined as an Environment attribute in our XACML policy. This
request context is then sent to the authorization system via a SOAP call.

5.3 Visibility for Data Owners

As described in Sect. 4, the location information for each user’s data is referenced
in the region information table of the CSM. As the policies that are evaluated
against an access request to decide whether or not the access request should be
granted, there needs to be a policy to allow the data owner to access the entries
in the region information table for his/her data. This can be placed either inside
the Cloud administrative policy set or the data owner’s policy set. When it is
stored in the Cloud Administrator’s policy set, it has to be written in a generic
way without requiring each individual user’s credential to be specified in the
policy. An example of such a policy is: If the credential of the requester matches
the data owner’s credential then allow access to the Region Information of that
specific data. The result of such a generic policy is that there will exist only one
policy for this purpose in the system. This policy will match the credential of the
data owner, which is passed to the authorization system from the Authentication
Information table, with the credential presented by the requester while making
an access request to the service.

Alternatively, the policy to allow data owners to access the region information
of their data can be placed in the data owners’ policy sets. The policy would allow
the requester presenting the appropriate credential to access region information
1 http://143.239.71.90:8013/data location/User registration.html.

http://143.239.71.90:8013/data_location/User_registration.html

A Data Location Control Model for Cloud Service Deployments 127

for his/her data. A drawback with this approach is that the size of policy for
each data owner will be increased which may lead to significant growth in the
size of the overall policy store. On the other hand, a benefit of this approach
is that it would ease the process of distributed enforcement of the data owner’s
policy in a remote Cloud as the data owner’s policy will be passed to the remote
Cloud service and no extra mechanism will be needed to identify the data owner.

With the first approach, the user credential and the administrative policy
would also need to be passed to the remote service in order to allow the user to
access location information from an external Cloud. The remote service would
need to make sure that these user credentials are stored correctly and passed
to the request contexts and would also need to integrate the received adminis-
trative policy with its own administrative policy. We therefore chose the second
approach to ease the distributed enforcement of our location control model.

5.4 CSM Implementation

The CSM prototype was implemented using PHP. It in turn uses an open source
authorization system that is implemented in Java as a web service and is available
online2. This authorization system receives requests as XACMLAuthzDecision-
Query elements of the SAML profile of XACML and returns decisions in the
form of XACMLAuthzDecisionStatementType elements. The system can store
policy that comes with the request context and allows the policy of the data
owner to be stored. It maintains the data-policy linking table for the provided
DataID and PolicyID. It can return obligations if configured appropriately in the
policy and can retrieve policy for a relevant DataID which is passed by the CSM
to remote authorization systems via SOAP calls. The remote authorization sys-
tem receiving a request based on its policy either accepts the request and stores
the policy or rejects the request. The authorization system can be configured to
use various conflict resolution rules for combining the decisions of administrative
policy and data owners’ policy. The details of the conflict resolution rules can be
found in [10]. In this instance, the deny-overrides conflict resolution rule is used.
The rationale behind this choice is that it will ensure that if either the admin-
istrative policy or the data owner’s policy returns a “Deny” the final decision
will be a “Deny”. The final decision will be a “Grant” only if one of the policies
returns a “Grant” but no other policy has returned a “Deny”.

We have implemented the Authentication Information table and Region
Information table as MySQL tables.

6 Validation

A number of tests were performed to validate the model using various Cloud
setups. These validation tests verified the correctness of various functional
aspects of the model, including: the translation of data owners’ location prefer-
ences into policy, the storage of the data and policy in the desired locations, the
2 http://sec.cs.kent.ac.uk/permis/downloads/Level3/standalone.shtml.

http://sec.cs.kent.ac.uk/permis/downloads/Level3/standalone.shtml

128 K. Fatema et al.

execution of the policies and obligations, the surfacing of location information
to the user.

This testing was performed using two Cloud setups. The first was a vSphere
private Cloud and the other was a public Cloud. This section describes how
the model performed under these scenarios and also provides a guideline for
implementing a location aware OpenStack Cloud so that the model can be used
to control the data location there.

The location control model can be used to control the locations of users’ data
in any Cloud environment provided that the following requirements are met: the
Cloud should be organized into number of regions and each region should have
a distinguished access point/endpoint, there should be a server or VM where
the CSM can be installed and this should be used to control access to the data
in the Cloud regions, each data and policy should have a unique ID (which is
already being maintained by the CSM implementation).

Controlling Data Location in vSphere Private Cloud. The prototype
implementation of the location control model was initially deployed on a vir-
tual machine running in a vSphere private Cloud with ESXi host. The virtual
machine was configured with one virtual core Intel Xeon E5620 CPU running
at 2.4 GHz with 2 GB of memory. Another virtual machine with an identical
configuration was used to mimic a remote storage location. Different directories
of the remote storage location were used to denote different regions which were
distinguished by the unique directory paths. The model copied data to locations
by connecting to the remote storage via SSH and transferring a file containing an
XML representation of a user’s data of size less than 1KB via the SCP protocol.
All of the functionality described above was found to operate correctly in both
of the private and public Cloud setups.

An additional objective was to determine the performance overhead of the
system. By averaging over the response times of 100 requests in total in the
vSphere Cloud setup it was found that it takes approximately 0.04 s in order
to process a transaction that (a) identifies the correct data location and actions
to perform on that data; and (b) queries the authorization system, obtains a
response and updates the database accordingly; which indicates that at least 25
requests can be handled per second by the current implementation of the model.
In contrast, a 0.2 s overhead was observed for connecting to the remote storage
via SSH and transferring a file containing an XML representation of a loyalty
card of size less than 1KB via SCP. Therefore, for this particular scenario the
overhead of using the location control model was found to be negligible compared
to the overall cost of performing remote data transfers.

Controlling Data Location in a Public Cloud. The prototype implemen-
tation of the model was used to control the location of data in a public Cloud
using Amazon S3. Amazon has published the end point for each its regional
services which is used to call the services at a specific location. A bucket was
created in each region of the Amazon Cloud which can be reached only through

A Data Location Control Model for Cloud Service Deployments 129

Fig. 5. Location control model interface for user registration.

the unique endpoint of that region. The CSM was installed in a machine with an
Intel core i7-2670QM CPU running at 2.2 GHz with 6 GB memory. Each user’s
data item was copied as an S3 object to the bucket of a region based on his/her
policy. The Location Preference section of Fig. 5 shows how the options were pro-
vided to users for choosing data location preferences in Amazon Cloud regions
in the form of combo-box. Every time a data item was copied to a region the
data location table of the CSM was updated and the location information was
e-mailed to the user (if requested). However, to verify whether the data item
was copied in the desired location of the public Cloud we used an S3 browser
which gives visibility into all the buckets and S3 objects in each bucket. The
left window of Fig. 6 shows the output of the model when a data storage request
was successful, the lower right window shows the files that have been generated
for a unique account name ‘alice10’. The file ‘alice10 Request.xml’ contains the
XACML request context that has been generated based on the location prefer-
ences of the user, the file‘alice10 Response.xml’ contains the response that was
obtained from the authorization system (these two files are kept in local stor-
age only for verification purpose) and the file‘alice10.txt’ is the data file that
is stored in the Cloud which we can see in the upper right window in the S3
browser that is has been stored in the EU West region (Ireland).

Guideline for Implementation in OpenStack. Here we sketch how to
integrate location awareness into open Cloud platforms such as OpenStack.
The deployment of the location control model in OpenStack requires that the

130 K. Fatema et al.

Fig. 6. Storing data to Amazon simple storage service (S3).

Region 1 Region 2

Compute

Cloud PaaS/SaaS

OpenStack Cloud IaaS

End User

Region 1 End point Region 2 End point

Dashboard Authentication

Storage

Networking

Compute

Storage

Networking

Fig. 7. Location aware Cloud usage model.

OpenStack Cloud should to be deployed into a number of regions. Each region
should have its own API endpoints. In the simplest approach, in one of the vir-
tual machine the location control model will be installed and this VM will work
as a controller for data access/copy. This VM will also be responsible for storing
users’ policies and linking the policies to the data by the DataID.

For OpenStack, obvious integration points include: Horizon, the web-based
dashboard that controls all OpenStack components; Keystone, which manages
the authentication and authorization of services and users; Swift, which provides
object store functionality; and Cinder, which provides block storage. OpenStack
supports the concepts of geographically dispersed regions with separate end-
points [16], providing a good fit with the data location control model described
in Sect. 4. Under this scenario, as seen in Fig. 7, one Keystone and Horizon is
shared between the regions to provide a common access control and dashboard,

A Data Location Control Model for Cloud Service Deployments 131

while distributed Swift and Cinder components allow for complete separation of
storage by region. The object storage functionality provided by Swift provides an
easier starting point for the integration of location control compared to Cinder
as it deals with named, atomic units of data. A first step would be to assign a
Swift object to each user to keep data. Since a data set is identified by a DataID
in the Location Control Model we assume that the user’s Swift object ID can be
used as DataID if it can identify the same object in all regions.

Based on the preferences of the user the location control model will exe-
cute instructions for storing Swift objects in the desired region by calling the
appropriate API endpoint. The copy instruction will be executed by finding the
desired object from its current region and then copying it to a desired region by
using the appropriate region API endpoint and Swift object ID for data.

7 Conclusions and Future Work

The data location control model presented here allows SaaS providers to manage
the location of end users’ data based on their preferences. It also empowers users
with the ability to get up-to-date location information for their data and the
assurance that they will be notified when their data change location. A drawback
of this approach is that it relies on the trustworthiness of the provider who must
be trusted to integrating requests to the authorization system into their software
and procedures and honour the resulting output. Hence, end users cannot verify
that location information provided to them is actually true. However, these issues
could be addressed by trustmarks and other third-party verification methods.
Crytographic techniques could also be used to enhance the trustworthiness of
the model. For example, the data could be encrypted using a key that can must
be obtained through a request to the authorization system.

Our prototype stored the data as files in XML format. However, the model
could also be used to protect access to collections of files, such as medical records
composed of a variety of files in various formats. Future work will focus on
improving the granularity of policies to allow for selective disclosure of data.
This granularity could be extended to database entries where one single row
can be identified by DataID and selective disclosure can be provided for various
items represented by columns of that row. Future work will examine the issues
around running the authorization system in a federated Cloud scenario, how well
do the region boundaries of each provider correlate with those of the others?

Acknowledgements. The research work described in this paper was supported by
the Irish Centre for Cloud Computing and Commerce, an Irish national Technology
Centre funded by Enterprise Ireland and the Irish Industrial Development Authority.

References

1. Albeshri, A., Boyd, C., Nieto, J.G.: Geoproof: proofs of geographic location for
cloud computing environment. In: 2012 32nd International Conference on Distrib-
uted Computing Systems Workshops (ICDCSW), pp. 506–514 (2012)

132 K. Fatema et al.

2. Almutairi, A., Sarfraz, M., Basalamah, S., Aref, W., Ghafoor, A.: A distributed
access control architecture for cloud computing. IEEE Softw. 29(2), 36–44 (2012)

3. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (EPAL 1.2). Submission to W3C (2003)

4. Basescu, C., Carpen-Amarie, A., Leordeanu, C., Costan, A., Antoniu, G.: Man-
aging data access on clouds: a generic framework for enforcing security policies.
In: 2011 IEEE International Conference on Advanced Information Networking and
Applications (AINA), pp. 459–466 (2011)

5. Chadwick, D., Zhao, G., Otenko, S., Laborde, R., Linying, S., Nguyen, T.A.: PER-
MIS: a modular authorization infrastructure. Concurrency Comput. Pract. Expe-
rience 20(11), 1341–1357 (2008)

6. Chadwick, D.W., Fatema, K.: A privacy preserving authorisation system for the
cloud. J. Comput. Syst. Sci. 78(5), 1359–1373 (2012)

7. Chen, D., Zhao, H.: Data security and privacy protection issues in cloud com-
puting. In: 2012 International Conference on Computer Science and Electronics
Engineering (ICCSEE), vol. 1, pp. 647–651. IEEE (2012)

8. Cranor, L.F.: P3P: making privacy policies more useful. IEEE Secur. Priv. 1(6),
50–55 (2003)

9. De Capitani di Vimercati, S., Samarati, P., Jajodia, S.: Policies, models, and lan-
guages for access control. In: Bhalla, S. (ed.) DNIS 2005. LNCS, vol. 3433, pp.
225–237. Springer, Heidelberg (2005)

10. Fatema, K., Chadwick, D.W., Lievens, S.: A multi-privacy policy enforcement sys-
tem. In: Fischer-Hübner, S., Duquenoy, P., Hansen, M., Leenes, R., Zhang, G.
(eds.) Privacy and Identity Management for Life. IFIP AICT, vol. 352, pp. 297–
310. Springer, Heidelberg (2011)

11. Fatema, K., Healy, P., Emeakaroha, V.C., Morrison, J.P., Lynn, T.: A user data
location control model for cloud services. In: International Conference on Cloud
Computing and Services Science, CLOSER 2014 (2014)

12. Godik, S., Anderson, A., Parducci, B., Humenn, P., Vajjhala, S.: Oasis extensible
access control 2 markup language (XACML) 3. Technical report OASIS (2002)

13. Gondree, M., Peterson, Z.N.J.: Geolocation of data in the cloud. In: Proceedings
of the Third ACM Conference on Data and Application Security and Privacy, pp.
25–36. ACM (2013)

14. Iskander, M.K., Wilkinson, D.W., Lee, A.J., Chrysanthis, P.K.: Enforcing policy
and data consistency of cloud transactions. In: 2011 31st International Conference
on Distributed Computing Systems Workshops (ICDCSW), pp. 253–262. IEEE
(2011)

15. ISO. Information technology - open systems interconnection - security frameworks
for open systems: Access control framework (1996)

16. Jackson, K.: OpenStack Cloud Computing Cookbook. Packt, Birmingham (2012)
17. Lynn, T., Healy, P., McClatchey, R., Morrison, J., Pahl, C., Lee, B.: The case for

cloud service trustmarks and assurance-as-a-service. In: International Conference
on Cloud Computing and Services Science CLOSER 2013 (2013)

18. Massonet, P., Naqvi, S., Ponsard, C., Latanicki, J., Rochwerger, B., Villari, M.: A
monitoring and audit logging architecture for data location compliance in federated
cloud infrastructures. In: 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Ph.D. Forum (IPDPSW), pp. 1510–1517
(2011)

19. Mohan, A., Blough, D.M.: An attribute-based authorization policy framework with
dynamic conflict resolution. In: Proceedings of the 9th Symposium on Identity and
Trust on the Internet, pp. 37–50. ACM (2010)

A Data Location Control Model for Cloud Service Deployments 133

20. Noman, A., Adams, C.: DLAS: data location assurance service for cloud computing
environments. In: 2012 Tenth Annual International Conference on Privacy, Security
and Trust (PST), pp. 225–228. IEEE (2012)

21. Ries, T., Fusenig, V., Vilbois, C., Engel, T.: Verification of data location in cloud
networking. In: 2011 Fourth IEEE International Conference on Utility and Cloud
Computing (UCC), pp. 439–444. IEEE (2011)

22. Spillner, J., Schill, A.: Flexible data distribution policy language and gateway
architecture. In: 2012 IEEE Latin America Conference on Cloud Computing and
Communications (LATINCLOUD), pp. 1–6. IEEE (2012)

23. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

24. Turkmen, F., Crispo, B.: Performance evaluation of XACML PDP implementa-
tions. In: Proceedings of the 2008 ACM workshop on Secure web services, pp.
37–44. ACM (2008)

From Regulatory Obligations to Enforceable
Accountability Policies in the Cloud

Walid Benghabrit1, Hervé Grall1, Jean-Claude Royer1, Mohamed Sellami5(B),
Monir Azraoui2, Kaoutar Elkhiyaoui2, Melek Önen2,
Anderson Santana De Oliveira3, and Karin Bernsmed4

1 Mines Nantes, 5 rue A. Kastler, 44307 Nantes, France
{walid.benghabrit,herve.grall,

jean-claude.royer}@mines-nantes.fr
2 EURECOM, Les Templiers,

450 Route des Chappes, 06410 Biot, Sophia Antipolis, France
{monir.azraoui,kaoutar.elkhiyaoui,melek.onen}@eurecom.fr

3 SAP Labs France, 805 avenue du Dr Donat Font de l’Orme,
06250 Mougins, Sophia Antipolis, France
anderson.santana.de.oliveira@sap.com

4 SINTEF ICT, P.O. Box 4760, Sluppen, 7465 Trondheim, Norway
Karin.Bernsmed@sintef.no

5 ISEP, 10 rue de Vanves, 92130 Issy Les Moulineaux, France
mohamed.sellami@isep.fr

Abstract. The widespread adoption of the cloud model for service deliv-
ery triggered several data protection issues. As a matter of fact, the
proper delivery of these services typically involves sharing of person-
al/business data between the different parties involved in the service
provisioning. In order to increase cloud consumer’s trust, there must be
guarantees on the fair use of their data. Accountability provides the nec-
essary assurance about the data governance practices to the different
stakeholders involved in a cloud service chain. In this context, we pro-
pose a framework for the representation of accountability policies. Such
policies offer to end-users a clear view of the privacy and accountabil-
ity clauses asserted by the entities they interact with, as well as means
to represent their preferences. Our framework offers two accountability
policy languages: (i) an abstract language called AAL devoted for the
representation of preferences/clauses in an human readable fashion, and
(ii) a concrete one for the implementation of enforceable policies.

Keywords: Accountability · Data protection · Framework · Policy lan-
guage · Policy enforcement

1 Introduction

According to [1], accountability regards the data stewardship regime in which
organizations that are entrusted with personal and business confidential data are
c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 134–150, 2015.
DOI: 10.1007/978-3-319-25414-2 9

From Regulatory Obligations to Enforceable Accountability Policies 135

responsible and liable for processing, sharing, storing and otherwise using the
data according to contractual and legal constraints from the time it is collected
until when the data is destroyed (including onward transfers to third parties).
Obligations associated to such responsibilities can be expressed in an account-
ability policy, which is a set of rules that defines the conditions under which an
accountable entity must operate.

Today, there is neither an established standard for expressing accountability
policies nor a well defined way to enforce these policies. Since cloud services
often combine infrastructure, platform and software applications to aggregate
value and propose new cloud applications to individuals and organizations, it is
fundamental for an accountability policy framework to enable “chains of account-
ability” across cloud services addressing regulatory, contractual, security and
privacy concerns.

In the context of the EU FP7 A4Cloud project1 we are currently working
on defining a framework where accountability policies will be enforceable across
the cloud service provision chain by means of accountability services and tools.
Accountable organizations will make use of these services to ensure that obliga-
tions to protect personal data and data subjects’ rights2 are observed by all who
store and process the data, irrespective of where that processing occurs. Under
the perspective of the concept of accountability, we have elicited the following
types of accountability obligations that must be considered while designing our
policy framework:

– Access and Usage Control rules - express which rights should be granted or
revoked regarding the use and the distribution of data in cloud infrastruc-
tures, and support the definition of roles as specified in the Data Protection
Directive, e.g. data controller and data processor.

– Capturing privacy preferences and consent - to express user preferences about
the usage of their personal data, to whom data can be released, and under
which conditions.

– Data Retention Periods - to express time constraints about personal data
collection.

– Controlling Data Location and Transfer - clear whereabouts of location
depending on the type of data stored and on the industry sector processing the
data (subject to specific regulations) must be provided. Accountability poli-
cies for cloud services need to be able to express rules about data localization,
such that accountable services can signal where the data centers hosting them
are located. Here we consider strong policy binding mechanisms to attach
policies to data.

– Auditability - Policies must describe the clauses in a way that actions taken
upon enforcing the policy can be audited in order to ensure that the policy
was adhered to. The accountability policy language must specify which events
have to be audited and what information related to the audited event have to
be considered.

1 The Cloud Accountability Project: http://www.a4cloud.eu/.
2 This work mainly focus on the European Data Protection directive [2].

http://www.a4cloud.eu/

136 W. Benghabrit et al.

– Reporting and notifications - to allow cloud providers to notify end-users and
cloud customers in case of policy violation or incidents for instance.

– Redress - express recommendations for redress in the policy in order to set
right what was wrong and what made a failure occur.

In this paper we provide a cloud accountability policy representation frame-
work designed while considering the aforementioned requirements. We define an
abstract yet readable language, called AAL, for accountability clauses represen-
tation in a human readable fashion. We also define a concrete policy enforcement
language, called A-PPL, as an extension of the PPL [3] language. The proposed
framework, offers the means for a translation from abstract clauses expressed in
AAL to concrete policies in A-PPL.

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 gives an overview on the main components of our policy representation
framework. We present the abstract accountability policy language we propose
in Sect. 4 and the concrete one in Sect. 5. Section 6 describes a realistic use case
as a proof of concept to our work. Section 7 discusses our work and presents
directions for future work.

2 Related Work

In the following, we provide an overview of related work in the field. We organize
this section along the following categories that relate to our contribution in
this paper: accountability in computer science, obligations in legal texts and
directives, enforcement and policy languages.

2.1 Accountability

There is a recent interest and active research for accountability which overlap
several domains like security [4–6], language representation [7,8], auditing sys-
tems [9,10], evidence collection [11,12] and so on. However, only few of them
consider an interdisciplinary view of accountability taking into account legal
and business aspects. We particularly emphasize the work from [6,9] since they
provide a general, concrete view and yet an operational approach.

Regarding tool supports and frameworks we can find several proposals [12–
14], but none of them provides a holistic approach for accountability in the
cloud, from end-user understandable sentences to concrete machine-readable rep-
resentations. In [11], authors propose an end-to-end decentralized accountability
framework to keep track of the usage of the data in the cloud. They suggest an
object-centered approach that packs the logging mechanism together with users’
data and policies.

2.2 Obligations in Regulations

There is an international trend in protecting data, for instance in Europe with
Directive 95/46/EC [2], the HIPAA rules [15] in the USA and the FIPPA act [16]

From Regulatory Obligations to Enforceable Accountability Policies 137

in Canada. As an example, Directive 95/46/EC states rules to protect personal
data in case of processing or transferring data to other countries. There exist
some attempts to formalize or to give rigorous analyses of this kind of rules.
In [7] the authors present a restricted natural language SIMPL (SIMple Privacy
Language) to express privacy requirements and commitments. In [17] the authors
describe a general process for developing semantic models from privacy policy
goals mined from policy documents. In [18], the authors develop an approach
where contracts are represented by XML documents enriched with logic meta-
data and assistance with a theorem prover. In [8] the authors provide a formal
language to express privacy laws and a real validation on the HIPAA and GLBA
[19] sets. These works either are not end-to-end proposals, only cover data pri-
vacy not accountability or are only formal proposals without an enforcement
layer.

2.3 Enforcement and Policies

A number of policy languages have been proposed in recent years for machine-
readable policy representation. We reviewed several existing policy languages
(see [20] for details). We present here the results of our analysis of existing policy
languages. Rather than designing a new policy language for accountability, we
leverage a concrete existing language that covers most of the accountability
obligations listed in Sect. 1. We aim at extending it with features that enable
the expression of accountability policies.

The first step of our analysis is to check to which extent the selected policy
languages can express the accountability obligations. None of the languages we
reviewed enables the expression of all these obligations. However, they may focus
on one or several of the accountability obligations. For example, PPL [3] can be
used to express access and usage control rules, privacy preferences and policies
and it enables the notifications. From this first analysis, we classify our selected
policy languages into four categories: (i) Access Control: eXtensible Access Con-
trol Markup Language (XACML, [21]); (ii) Privacy: The Platform for Privacy
Preferences (P3P, [22]), the Primelife Policy Language (PPL, [3]) and SecPal
for Privacy (SecPal4P, [23]); (iii) Policy specification for security: Conspec [24]
and Ponder [25]; (iv) Service Description: The Unified Service Description Lan-
guage (USDL, [26]), SLAng [27] and WS-Policy [28,29]. Note that one language
can belong to several categories. We also argue that we cannot define from our
selected set of languages an additional category Accountability language. In par-
ticular, most of the languages do not provide means to express logging, reporting
and audit obligations that are essential to support accountability. Therefore, the
design of the accountability language we propose in the following sections rep-
resents an unprecedented attempt to express accountability obligations via a
policy language.

In a second step, we analyze the extensibility of the reviewed languages in
order to extend one of the languages with accountability features. We focus
on XML-based languages, since XML [30] provides many extension points to
extend the language. In addition, XML is a standard and well documented.

138 W. Benghabrit et al.

Policy Representation
Framework

Human/Machine Readable
Representation (AAL)

Machine Understandable
Representation (A-PPL)

Human Readable
Accountability obligations

(1)

(2)

Cloud
Actor

(M)

Fig. 1. Overview on the accountability policy representation framework.

Thus adding extension to an XML-based language is fairly simple. Languages
such as XACML, P3P and PPL use XML to define policies related to access
control and privacy. In our work we consider PPL since it provides elements
that capture the best accountability obligations.

As a result of this survey, we focus our effort on the extension of PPL.
Extending PPL for accountability has also been investigated on other papers,
concurrently and independently from our work. Contemporaneous work by Butin
et al. [31] leverages PPL to design logs for accountability. They identify the lack
of expressiveness of PPL as far as the creation of logs for accountability is con-
cerned. They also discuss the fact that the PPL does not allow to specify the
content of the notification in a data handling policy. Similarly, Henze et al. [32]
identify location of storage and duration of storage as the two main challenges in
cloud data handling scenarios. They propose to use PPL to specify data anno-
tations that contain the data handling obligations (e.g. “delete after 30 days”).
Without giving more details, they propose to extend PPL with an attribute that
specifies a maximum and a minimum duration of storage and with an element
that restricts the location of stored data. Our proposed language also addresses
these two challenges and we give in Sect. 5 the details of the extensions that
solve these issues.

3 The Cloud Accountability Framework

In this section, we provide an overview of our proposed policy representation
framework. Such framework must allow end-users to easily express their account-
ability clauses and preferences and even be complete and rigorous enough to be
run by a policy execution engine. Hence we are faced with the following dilemma:
the policy must be written by an end-user, which does not necessarily have skills
in a certain policy language and the policy must be machine understandable
at the same time. Machine understandable means that sentences can be read,
understood and executed by a computer.

From Regulatory Obligations to Enforceable Accountability Policies 139

In this context, we propose a policy representation framework (see Fig. 1)
that allows a user, step (1) in Fig. 1, to express his accountability needs in a
human readable fashion and (2) offers the necessary means to translate them
(semi-)automatically3 to a machine understandable format.

Accountability as it appears in legal, contractual and normative texts about
data privacy make explicit four important roles that we consider in our proposal:

– Data subject: this role represents any end-user which has data privacy con-
cerns, mainly because he outsourced some of its data to a cloud provider.

– Data processor: this role is attributed to any computational agent which
processes some personal data. It should act under the control of a data con-
troller.

– Data controller: it is legally responsible to the data subject for any violations
of its privacy and to the data protection authority in case of misconduct.

– Auditor: it represents data protection authorities which are in charge of the
application of laws and directives.

3.1 Step (1). Human/Machine Readable Representation

To express accountability clauses we define an Abstract Accountability Language
(AAL), which is devoted to expressing accountability clauses in an unambiguous
style and which is close to what the end-user needs and understands. As this
is the human readable level, this language should be simple, akin to a natural
logic, that is a logic expressed in a subset of a natural language.

For instance, a simple access control clause to state that “the data d cannot
be read by all agents” will be formulated in a human/machine readable fashion
using our accountability language as “DENY ANY:Agent.READ(d:Data)”. Details
on the AAL syntax are provided in Sect. 4.

3.2 Step (2). Machine Understandable Representation

In this step (called the mapping), the accountability clauses expressed in AAL
are (semi-)automatically translated into a machine understandable policy. We
target a policy language that is able to enforce classic security means (like access
or usage controls) but also accountability clauses. Such automatic translation
may need several passes, due to the high level of abstraction of AAL.

As analyzed in Sect. 2, the PrimeLife Policy Language (PPL) [3] seems the
most convenient language for privacy policies representation. It can be extended
to address specific accountability obligations such as auditability, notification or
logging obligations. Hence, we propose an extension to PPL, A-PPL for account-
able PPL, which supports such obligations. The details of this extension are
described in Sect. 5.
3 Here “semi” means that sometimes human assistance could be needed.

140 W. Benghabrit et al.

4 Abstract Language

We introduce in this section AAL (Abstract Accountability Language), which is
devoted to expressing accountability clauses in an unambiguous human
readable style. The AAL concepts are presented in Sect. 4.1, its syntax in Sect. 4.2
and we provide an outlook on our approach for a machine understandable rep-
resentation of AAL policies in Sect. 4.4.

4.1 AAL Concepts

As explained in [9] an accountable system can be defined with five steps: preven-
tion, detection, evidence collection, judgment and punishment. We follow this
line for the foundation of our accountability language. In AAL, usage control
expressions represent the preventive description part. Audit expressions encom-
pass the detection, evidence collection and judgment parts. Finally, rectification
expressions represent the punishment description part. We use the term rectifica-
tion since these expressions don’t cover only punishment, but also remediation,
compensation, sanction and penalty. Thereby, an AAL sentence is a property
(more formally a distributed system invariant) expressing usage control, audit-
ing and rectification. The general form of an AAL sentence is: UsageControl
Auditing Rectification and the informal meaning is: try to ensure the usage
control, in case of an audit, if a violation is observed then the rectification applies.
The reader should also note that there are two flavors of AAL sentences:

– User preferences: expressing the clauses a data subject wants to be satisfied,
for instance he does not want its data to be distributed over the network or
only used for statistics by a given data processor, and so on.

– Processor clauses: these are the clauses the data processor declares to ensure
regarding the data management and processing.

Finally, as many policy representation languages, we consider permission, obliga-
tion and prohibition in AAL. They occur in various approaches, like in PPL, or in
the ENDORSE project4. Permission, obligation and prohibition are respectively
expressed in AAL sentences with these keywords: PERMIT, MUST and MUSTNOT/
DENY, as advocated by the IETF RFC 2119 [33].

4.2 AAL Syntax

Figure 2 shows the syntax of AAL using a Backus-Naur Form (BNF) [34] like
syntax. AAL allows the expression of Clauses representing actions that have to
be met either in an accountability policy or preference. A Clause has one usage
expression and optionally an audit and a rectification expression:
ActionExp (′AUDITING′ ActionExp)? (′IF VIOLATED THEN′ ActionExp)?. The
expression ActionExp of a clause can be either atomic or composite.
4 http://ict-endorse.eu/.

http://ict-endorse.eu/

From Regulatory Obligations to Enforceable Accountability Policies 141

Fig. 2. Excerpt of the AAL Syntax.

As an example, consider the user preference of a data subject who grants
read access to an agent A on its data D. This usage control is a permission,
which can be expressed as follows.
PERMIT A.READ(D:Data)

But the full accountability sentence does imply that an auditor B will audit
the system and, in case of violations, can sanction the data controller C.
PERMIT A.READ(D:Data)
AUDITING MUST B.AUDIT(C.logs)
IF_VIOLATED_THEN MUST B.SANCTION(C)

Further examples of user preferences and clauses expressed in AAL are pro-
vided in Sect. 6.

4.3 Semantics and Verification

We define formal semantics for AAL based on a pure temporal logic approach.
However, since we need data and agent quantification we precesiley rely on a
first-order linear temporal logic [35]. The translation is rather straightforward,
except that the audit process introduces a new modality with a specific formal
interpretation (see [36] for details). From this interpretation it is possible to check
the consistency of an AAL formula or the compliance of two AAL clauses using
a logical prover. This last feature is explicitly suitable to match user preferences
and processor clauses. Furthermore, principles for abstract component design
have been defined and can be checked with a model-checker. We present these
design principles in [37], how to translate them in the µ-calculus and how to
verify AAL clauses with the mCRL2 toolset [38].

4.4 Machine Understandability

Generating machine understandable policies from accountability preferences and
clauses written in AAL can be easily done when dealing with usage control

142 W. Benghabrit et al.

clauses. However, this mapping is less obvious for clauses with temporal modal-
ities and with auditing. The main issue for such mapping is the gap between
the AAL language, which is property-oriented, and the machine understandable
language, which is operational. To fill this gap we need more artifacts, Fig. 3
provides an overview on our proposed mapping process.

Policy Representation Framework

Technology Model Pivot Model

Human Readable
Accountability obligations

Human/Machine
Readable Representation

Temporal Logic
for Accountability

Machine Understandable
Representation Policy Calculus

(1)

(2)

(2'.1)

(2'.3)

(2'.2)

(AAL)

(A-PPL)

Fig. 3. Overview on the machine understandable translation of AAL.

According to this figure, we can see that going from a human/machine read-
able representation in AAL to a machine understandable representation of the
accountability preferences/clauses (arrow numbered (2) in Fig. 3) is done through
three steps:

– (2’.1). First, a temporal logic is used to make more concrete AAL sentences
as temporal logic properties. Indeed, in an accountability policy we should
represent the notions of permission, obligation and prohibition. In addition,
there is a need to express conditions and various logical combinations. Fur-
thermore, one important thing is to have time, at least logical discrete time,
for instance to write: “X writes some data and then stores some logs”. Our
target is a temporal logic with time, one concrete candidate is mCRL2 [38].

– (2’.2). Second, a policy calculus is used to describe the operational semantics
associated to the concrete properties defined in (2’.1). This calculus is based
on the concept of reference monitor [39] for both the agents and the data
resources. It relies on a previous work for distributed agent communicating
via messages [40]. This operational semantics provides means for abstractly
executing the temporal logic expressions. This process is known as “program
synthesis”, starting from a property it generates a program ensuring/enforcing
the property.

– (2’.3). Finally, the generated policy using our policy calculus is (semi-)
automatically translated to a machine understandable policy based on prede-
fined transformation rules. Our target is the A-PPL extension of PPL which
is described in the next section.

From Regulatory Obligations to Enforceable Accountability Policies 143

5 Concrete Language

Our accountability policy representation framework maps AAL clauses to con-
crete and operational machine understandable policies. As already mentioned
in Sect. 2.3, in order not to define yet another completely new language to map
accountability obligations to machine-understandable policies, we conducted a
preliminary study on existing languages and among all the possible candidates,
PPL seems the one that best captures the accountability concepts. Therefore,
in this section, we present how A-PPL extends PPL to address accountability
obligations.

PPL implicitly identifies three roles: the data subject, data controller, third-
party data controller and data processor roles. Besides, PPL defines an obligation
as a set of triggers and actions. Triggers are events related to the obligation that
are filtered by a condition and that trigger the execution of actions. Therefore,
PPL defines markups to declare an obligation. Inside the obligation environment,
one can specify a set of triggers and their related actions.

5.1 Extension of Roles

To address accountability concerns in a cloud environment, it might be neces-
sary to include in the policy a reference to the role of the subject to which the
policy is applied to. For instance, in PPL, it was not possible to identify the data
controller. We therefore suggest adding to the PPL <Subject> element a new
attribute, attribute:role, for this purpose. Furthermore, in addition to the
four roles PPL inherently considers (data subject, data controller, downstream
data controller, data processor), A-PPL extends PPL with one additional role.
We add the auditor role that is considered as a trusted third-party that can con-
duct independent assessment of cloud services, information systems operations
performance and security of the cloud implementation. This new role is impor-
tant to catch accountability specific obligations such as auditability, reporting
notification and possibly redress.

5.2 Extension of Actions and Triggers

We add to PPL a set of new A-PPL actions and triggers in order to map account-
ability obligations. We introduce two new triggers that relate to access control.
We propose TriggerPersonalDataAccessPermitted and TriggerPersonal-
DataAccessDenied. They fire actions based on the result of an access decision
taken on a piece of data. In other words, if the evaluation of the access control
on the targeted data results is Permit, TriggerPersonalDataAccessPermitted
may trigger an action specified in the policy. Symmetrically, TriggerPersonal-
DataAccessDenied triggers actions when an access on a piece of data is denied.
We also enhance the action of logging ActionLog and notification ActionNotify
that already exist in PPL. For instance, while PPL currently enables notification

144 W. Benghabrit et al.

thanks to the ActionNotifyDataSubject, A-PPL defines a new and more gen-
eral ActionNotify action in which one can define the recipient of the notification
thanks to a newly defined parameter recipient. Moreover, the additional noti-
fication type parameter defines the purpose of the notification which can be, for
example, policy violation, evidence or redress notification. On the other hand,
the current ActionLog action in PPL fails to capture accountability obligations.
The new ActionLog action in A-PPL introduces many additional parameters to
provide more explicit information on the logged event. For example, timestamp
defines the time of the event, and Resource location identifies the resource
the action was taken on. We also create two actions related to auditability:
ActionAudit that creates an evidence request and ActionEvidenceCollection
that collects requested evidence. In addition, auditability requires the definition
of two new triggers related to evidence: TriggerOnEvidenceRequestReceived
that occurs when an audited receives an evidence request and TriggerOn
EvidenceReceived that occurs when an auditor receives the requested evidence.
Similarly, when an update occurs in a policy or in a user preference, the update
may trigger a set of actions to be performed. Thus, we create two additional
triggers: TriggerOnPolicyUpdate and TriggerOnPreferenceUpdate. Finally,
to handle complaints that a data subject may file in the context of remedia-
bility, we define the trigger TriggerOnComplaint that triggers a set of specific
actions to be undertaken by an auditor or/and a data controller.

6 Validation

In this section we validate our policy representation framework by extracting
obligations from one of the use cases documented in the A4Cloud public deliv-
erable DB3.1 [41] and illustrate their representation in AAL and A-PPL.

6.1 The Health Care Use Case

This use case concerns the flow of health care information generated by medical
sensors in the cloud. The system, which is illustrated in Fig. 4, is used to support
diagnosis of patients by the collection and processing of data from wearable
sensors. Here, we investigate the case where medical data from the sensors will
be exchanged between patients, their families and friends, the hospital, as well
as between the different Cloud providers involved in the final service delivery.

In this use case the patients are the data subjects from whom personal data
is collected. The hospital is ultimately responsible for the health care services
and will hence act as one of the data controllers for the personal data that will
be collected. The patients’ relatives may also upload personal data about the
patients and can therefore be seen as data controllers (as well as data subjects,
when personal data about their usage of the system is collected from them).
As can be seen in Fig. 4, the use case will involve cloud services for sensor data
collection and processing (denoted cloud provider “X”), cloud services for data
storage (denoted cloud provider “Y”) and cloud services for information sharing

From Regulatory Obligations to Enforceable Accountability Policies 145

Fig. 4. An overview over the main actors involved in the health care use case.

(denoted cloud provider “M”), which will be operated by a collaboration of
different providers. Since the primary service provider M, with whom the users
will interface, employs two sub-providers, a chain of service delivery will be
created. In this particular case, the M platform provider will be the primary
service provider and will act as a data processor with respect to the personal
data collected from the patients. Also the sub-providers, X and Y, will act as
data processors. The details of the use case are further described in [41].

6.2 Obligations for the Use Case

We have identified a number of obligations for this use case, which needs to be
handled by the accountability policy framework. Here we list three examples
and we explain how they will be expressed in AAL and mapped into A-PPL.
Note that the complete list of obligations is much longer, but we have chosen
to outline those that illustrate the most important relationships between the
involved actors. Due to space limitations we do not include the complete A-PPL
policies here; the reader is referred to the project documentation [20] to see the
full policy expressions.

Obligation 1: The Data Subject’s Right to Access, Correct and Delete Personal
Data. According the Data Protection Directive [2], data subjects have (among
others) the right to access, correct and delete personal data that have been
collected about them. In this use case it means that the hospital must allow
read and write grant access to patients as well as relatives with regard to their
personal data that have been collected and stored in the cloud. There must be
also means to enforce the deletion of such data.

The AAL expression catching the clauses associated to the patient is:
FORALL D:Data WHERE d.subject = Patient

(PERMIT Patient.READ(D) AND

146 W. Benghabrit et al.

PERMIT Patient.WRITE(D) AND
PERMIT Patient.DELETE(D))

AUDITING
MUST Auditor.AUDIT(hospital.logs)

IF_VIOLATED_THEN
MUST Auditor.SANCTION(hospital)

The condition D.subject=Patient expresses that this clause only concerns
the personal data of the Patient. This clause also expresses the audit and recti-
fication obligations that have to be ensured by an external Auditor.

Using the accountability policy representation framework, the AAL expres-
sion will be mapped into two different A-PPL expressions; one for permit-
ting read and write access to the patients and another one for enforcing the
data controller to delete the personal data whenever requested. Read and write
access control is achieved through XACML rules. Regarding deletion of data, a
patient can express data handling preferences that specify the obligation that
the data controller has to enforce to delete the personal data. This obligation can
be expressed using the A-PPL obligation action ActionDeletePersonalData,
which will be used by the patient to delete personal data that has been collected
about him.

An explicit audit clause implies that information related to the usage control
property are logged (the amount and the nature of this information is not dis-
cussed here). Thus the audit clause is translated into an AuditAction which is
responsible to manage the interaction with the auditor. This runs an exchange
protocol with the auditor which ends with two responses: either no violation of
the usage has been detected or a violation exists. In the latter, some rectification
clauses should be specified.

In the sequel we only consider usage control clauses since the translation
process for audit and rectification is similar to the previous example.

Obligation 2: The Data Controller Must Notify the Data Subjects of Security or
Personal Data Breaches. This obligation defines what will happen in case of a
security or privacy incident. In AAL it will be expressed by the hospital as:
FORALL pRelatives:Agent IN Patient.relatives
IF hospital.VIOLATEPOLICY () THEN
MUST hospital.NOTIFY[Patient]("incident") AND
MUST hospital.NOTIFY[pRelatives]("incident")

In A-PPL, such notification is expressed through the obligation action
ActionNotify. It takes as parameters, the recipient of the notification (here,
the data subject) and the type of the notification (here, security breach).

Obligation 3: The Data Processor Must, upon Request, Provide Evidence to the
Data Controller on the Correct and Timely Deletion of Personal Data. To
express the timely deletion of personal data, which in addition will be logged to
be used as evidence, the following AAL expression can be used by the provider M:

MUST M.DELETE(D:Data) THEN
MUST M.LOGS("deleted", D, currentDate)

From Regulatory Obligations to Enforceable Accountability Policies 147

In A-PPL, the obligation trigger TriggerPersonalDataDeleted combined
with the obligation action ActionNotify will notify the data subject of the
deletion of its data. In addition, if necessary, the obligation action ActionLog
will allow the provider M to log when personal data have been deleted.

The three examples that we have provided in this section represent a snap-
shot of the full power of AAL and A-PPL. In [41] we outline more examples of
obligations for the health care use case, which among other things demonstrate
how informed consent can be gathered from the patients before their data is
being processed, how the purpose of personal data collection can be specified
and controlled, how the data processor M can inform the hospital of the use of
sub-processors and how the data processors can facilitate for regulators to review
evidence on their data processing practices.

7 Conclusions

Dealing with personal data in the cloud raises several accountability and privacy
issues that must be considered to promote the safety usage of cloud services. In
this paper we tackle the issue related to accountability clauses and preferences
representation. We propose a cloud accountability policy representation frame-
work. This framework enables accountability policy expression in a human read-
able fashion using our abstract accountability language (AAL). Also, it offers
the means for their mapping to concrete enforcement policies written using our
accountability policy language (A-PPL). Our framework applies the separation
of concerns principle by separating the abstract language from the concrete one.
This choice makes both contributions, i.e. AAL and A-PPL, self-contained and
allows their independent use. The ability of our framework to represent account-
ability clauses/preferences was validated through a realistic use case.

Our future research work will focus on the mapping from AAL to A-PPL.
As part of our implementation perspectives, we are currently working on two
prototypes. An AAL editor that assists end-users in writing their preferences/-
clauses and implements the required artifacts to map them to concrete policies in
A-PPL. We also started the development of an A-PPL policy execution engine
that will be in charge of interpreting and matching A-PPL policies and prefer-
ences

Acknowledgements. This work was funded by the EU’s 7th framework A4Cloud
project.

References

1. Pearson, S., Tountopoulos, V., Catteddu, D., Südholt, M., Molva, R., Reich, C.,
Fischer-Hübner, S., Millard, C., Lotz, V., Jaatun, M.G., Leenes, R., Rong, C.,
Lopez, J.: Accountability for cloud and other future internet services. In: Cloud-
Com, pp. 629–632. IEEE (2012)

148 W. Benghabrit et al.

2. Directive, E.U.: Directive 95/46/EC of the European Parliament and of the Council
of 24 October 1995 on the protection of individuals with regard to the processing
of personal data and on the free movement of such data (1995). http://ec.europa.
eu/justice/policies/privacy/docs/95--46-ce/dir1995-46 part1 en.pdf

3. Ardagna, C.A., Bussard, L., De Capitani Di Vimercati, S., Neven, G., Paraboschi,
S., Pedrini, E., Preiss, S., Raggett, D., Samarati, P., Trabelsi, S., Verdicchio,
M.: Primelife policy language (2009). http://www.w3.org/2009/policy-ws/papers/
Trabelisi.pdf

4. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.,
Sussman, G.J.: Information accountability. Commun. ACM 51, 82–87 (2008)

5. Xiao, Z., Kathiresshan, N., Xiao, Y.: A survey of accountability in computer net-
works and distributed systems. Secur. Commun. Netw. 5, 1083–1085 (2012)

6. Pearson, S., Wainwright, N.: An interdisciplinary approach to accountability for
future internet service provision. Int. J. Trust Manag. Comput. Commun. 1, 52–72
(2013)

7. Le Métayer, D.: A formal privacy management framework. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 162–176.
Springer, Heidelberg (2009)

8. DeYoung, H., Garg, D., Jia, L., Kaynar, D., Datta, A.: Experiences in the log-
ical specification of the HIPAA and GLBA privacy laws. In: 9th Annual ACM
Workshop on Privacy in the Electronic Society (WPES 2010), pp. 73–82 (2010)

9. Feigenbaum, J., Jaggard, A.D., Wright, R.N., Xiao, H.: Systematizing “account-
ability” in computer science. Technical report YALEU/DCS/TR-1452, University
of Yale (2012)

10. Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a theory of accountability
and audit. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp.
152–167. Springer, Heidelberg (2009)

11. Sundareswaran, S., Squicciarini, A., Lin, D.: Ensuring distributed accountability
for data sharing in the cloud. IEEE Trans. Dependable Secure Comput. 9, 556–568
(2012)

12. Haeberlen, A., Aditya, P., Rodrigues, R., Druschel, P.: Accountable virtual
machines. In: 9th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI, pp. 119–134 (2010)

13. Wei, W., Du, J., Yu, T., Gu, X.: Securemr: a service integrity assurance framework
for mapreduce. In: Proceedings of the 2009 Annual Computer Security Applications
Conference, pp. 73–82. IEEE Computer Society, Washington, DC (2009)

14. Zou, J., Wang, Y., Lin, K.J.: A formal service contract model for accountable SaaS
and cloud services. In: International Conference on Services Computing, pp. 73–80.
IEEE (2010)

15. US Congress: Health insurance portability and accountability act of 1996, privacy
rule. 45 cfr 164 (2002). http://www.access.gpo.gov/nara/cfr/waisidx 07/45cfr164
07.html

16. Legislative Assembly of Ontario: Freedom of information and protection of privacy
act (r.s.o. 1990, c. f.31) (1988)

17. Breaux, T.D., Anton, A.I.: Deriving semantic models from privacy policies. In:
Sixth IEEE International Workshop on Policies for Distributed Systems and Net-
works (POLICY 2005), pp. 67–76 (2005)

18. Kerrigan, S., Law, K.H.: Logic-based regulation compliance-assistance. In: Inter-
national Conference on Artificial Intelligence and Law, pp. 126–135 (2003)

19. US Congress: Gramm-leach-bliley act, financial privacy rule. 15 usc 6801–6809
(1999). http://www.law.cornell.edu/uscode/usc sup 01 15 10 94 20 I.html

http://ec.europa.eu/justice/policies/privacy/docs/95--46-ce/dir1995-46_part1_en.pdf
http://ec.europa.eu/justice/policies/privacy/docs/95--46-ce/dir1995-46_part1_en.pdf
http://www.w3.org/2009/policy-ws/papers/Trabelisi.pdf
http://www.w3.org/2009/policy-ws/papers/Trabelisi.pdf
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html

From Regulatory Obligations to Enforceable Accountability Policies 149

20. Garaga, A., de Oliveira, A.S., Sendor, J., Azraoui, M., Elkhiyaoui, K.,
Molva, R., Önen, M., Cherrueau, R.A., Douence, R., Grall, H., Royer, J.C.,
Sellami, M., Südholt, M., Bernsmed, K.: Policy Representation Framework.
Technical report D:C-4.1, Accountability for Cloud and Future Internet Ser-
vices - A4Cloud Project (2013). http://www.a4cloud.eu/sites/default/files/D34.
1%20Policy%20representation%20Framework.pdf

21. OASIS Standard: eXtensible Access Control Markup Language (XACML)
Version 3.0. 22, January 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.html

22. Marchiori, M.: The platform for privacy preferences 1.0 (P3P1.0) speci-
fication. W3C recommendation, W3C (2002). http://www.w3.org/TR/2002/
REC-P3P-20020416/

23. Becker, M.Y., Malkis, A., Bussard, L.: S4p: A generic language for specifying
privacy preferences and policies. Technical report MSR-TR-2010-32, Microsoft
Research (2010)

24. Aktug, I., Naliuka, K.: ConSpec - a formal language for policy specification. Elec-
tron. Notes Theor. Comput. Sci. 197, 45–58 (2008)

25. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The ponder policy specification
language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol.
1995, pp. 18–38. Springer, Heidelberg (2001)

26. Barros, A., Oberle, D.: Handbook of Service Description: USDL and Its Methods.
Springer Publishing Company, Incorporated, New York (2012)

27. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: a language for defining service
level agreements. In: Proceedings of the The Ninth IEEE Workshop on Future
Trends of Distributed Computing Systems, pp. 100–106. IEEE Computer Society,
Washington, DC (2003)

28. OASIS Web Service Security (WSS) TC: Web Services Security: SOAP Mes-
sage Security 1.1 (2006). https://www.oasis-open.org/committees/download.php/
16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

29. OASIS Web Services Secure Exchange (WS-SX) TC: WS-Trust 1.4 (2012).
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata
01-os-complete.html

30. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML). World Wide Web J. 2, 27–66 (1997)

31. Butin, D., Chicote, M., Le Métayer, D.: Log design for accountability. In: IEEE
CS Security and Privacy Workshops (SPW), pp. 1–7 (2013)

32. Henze, M., Großfengels, M., Koprowski, M., Wehrle, K.: Towards data handling
requirements-aware cloud computing. In: 2013 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom) (2013)

33. Bradner, S.: IETF RFC 2119: Key words for use in RFCs to Indicate Requirement
Levels. Technical report (1997)

34. Knuth, D.E.: Backus normal form vs. backus naur form. Commun. ACM 7, 735–
736 (1964)

35. Fisher, M.: Temporal representation and reasoning. In: van Harmelen, F.,
Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 513–
550.
Elsevier, Amsterdam (2008)

36. Benghabrit, W., Grall, H., Royer, J.-C., Sellami, M., Bernsmed, K., De Oliveira,
A.S.: Abstract accountability language. In: Zhou, J., Gal-Oz, N., Zhang, J., Gudes,
E. (eds.) IFIPTM 2014. IFIP AICT, vol. 430, pp. 229–236. Springer, Heidelberg
(2014)

http://www.a4cloud.eu/sites/default/files/D34.1%20Policy%20representation%20Framework.pdf
http://www.a4cloud.eu/sites/default/files/D34.1%20Policy%20representation%20Framework.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://www.w3.org/ TR/ 2002/ REC-P3P-20020416/
http://www.w3.org/ TR/ 2002/ REC-P3P-20020416/
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.html

150 W. Benghabrit et al.

37. Benghabrit, W., Grall, H., Royer, J.C., Sellami, M.: Accountability for abstract
component design. In: 40th EUROMICRO Conference on Software Engineering
and Advanced Applications, SEAA, Verona, Italia (2014)

38. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P.,
Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its
recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013).
LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013)

39. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3,
30–50 (2000)

40. Allam, D., Douence, R., Grall, H., Royer, J.C., Südholt, M.: Well-Typed Services
Cannot Go Wrong. Rapport de recherche RR-7899, INRIA (2012)

41. Bernsmed, K., Felici, M., Oliveira, A.S.D., Sendor, J., Moe, N.B., Rübsamen, T.,
Tountopoulos, V., Hasnain, B.: Use case descriptions. Deliverable, Cloud Account-
ability (A4Cloud) Project (2013)

Context-Aware Provisioning and Management
of Cloud Applications

Uwe Breitenbücher1(B), Tobias Binz1, Oliver Kopp2, Frank Leymann1,
and Matthias Wieland2

1 Institute of Architecture of Application Systems,
University of Stuttgart, Stuttgart, Germany

{breitenbuecher,binz,leymann}@informatik.uni-stuttgart.de
2 Institute for Parallel and Distributed Systems,

University of Stuttgart, Stuttgart, Germany
{kopp,wieland}@informatik.uni-stuttgart.de

Abstract. The automation of application provisioning and manage-
ment is one of the most important issues in Cloud Computing. How-
ever, the steadily increasing number of different services and software
components employed in composite Cloud applications leads to a high
risk of unintended side effects when different technologies work together
that bring their own proprietary management APIs. Due to unknown
dependencies and the increasing diversity and heterogeneity of employed
technologies, even small management tasks on a single component may
compromise the whole application functionality for reasons that are nei-
ther expected nor obvious to non-experts. In this paper, we tackle these
issues by introducing a method that enables detecting and correcting
unintended effects of provisioning and management tasks in advance
by analyzing the context in which the tasks are executed. We validate
the method practically and show how context-aware expert management
knowledge can be applied fully automatically to provision and manage
running Cloud applications.

Keywords: Application management · Provisioning · Context ·
Automation · Cloud computing

1 Introduction

Cloud Computing enables enterprises to outsource their IT efficiently due to
properties such as pay-on-demand computing [25]. To exploit these properties
for their offerings, Cloud providers have to automate their processes for appli-
cation provisioning and management. Therefore, a lot of tools and management
technologies have been developed. However, due to specific requirements on
employed Cloud services and software components, proprietary systems of differ-
ent providers often have to be combined in Complex Composite Cloud Applica-
tions [20]. Unfortunately, automating the provisioning and management of such

c© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 151–168, 2015.
DOI: 10.1007/978-3-319-25414-2 10

152 U. Breitenbücher et al.

applications is a difficult challenge because their management technologies typ-
ically provide proprietary and heterogeneous management APIs, security mech-
anisms, and data formats which need to be integrated, too [8]. This leads to
a high risk of unexpected side effects when a task unintentionally affects mul-
tiple parts of an application. Thus, managing such applications requires (i) a
deep technical insight in each technology and (ii) an overall understanding of
the system. In many cases, only experts are able to execute management tasks
correctly. However, they also reach their limits when a management task has to
be executed on a complex application whose exact structure and runtime state
are not documented: Unknown relations and dependencies between components
that directly influence each other’s functionality lead to a serious management
challenge. Thus, if the context, in which a management task is executed, is not
explicitly known, understood, and considered, there is a high risk of unintended
side effects. In addition, as manually executing management task in large sys-
tems is slow, costly, and error prone, Cloud application management must be
automated [14,20,30].

In this paper, we present an approach that enables applying expert man-
agement knowledge for provisioning and management tasks in a certain context
automatically to running applications. We introduce an abstract (i) Context-
Aware Application Management Method and (ii) present a fully automated real-
ization of this method for the provisioning and management of applications to
validate its practical feasibility. The method introduces Declarative Manage-
ment Description Models (dmdm) to describe management tasks declaratively
including their context in a formal model. This enables experts to detect unin-
tended impacts and side effects of management tasks through analyzing them
in the context in which they are executed. We show that an individual con-
text analysis is often required due to the heterogeneous nature of the involved
components and management technologies—which is not possible using imper-
ative approaches such as workflows or scripts. The automated realization of the
method validates the method’s practical feasibility. It enables organizations to
operate a variety of different applications consisting of heterogeneous compo-
nents without the need to employ or educate specialized experts that have the
required technical knowledge. This paper is an extended version of a former
work [10] we presented at the 4th International Conference on Cloud Computing
and Services Science (CLOSER 2014). While the former paper considers only
application management, we show in this paper how the method can be used
also for the provisioning of applications by introducing Automated Provisioning
Patterns.

In the next section, we describe limitations of existing management automa-
tion approaches and present a motivating scenario in Sect. 3. Section 4 presents
the method, which is automated in Sect. 5. In Sect. 6, we present the paper’s
new contribution: We apply the method to application provisioning and intro-
duce Automated Provisioning Patterns. In Sect. 7, we describe related work.
Section 8 concludes the paper and gives an outlook on future work.

Context-Aware Provisioning and Management of Cloud Applications 153

2 Limitations of Imperative Management Approaches

To automate application management, the execution of management tasks is
often described imperatively using executable processes implemented as work-
flows [26], scripts, or programs. If an application is crucial to the business of an
enterprise, errors that possibly result in system downtime are not acceptable.
Therefore, often only the robust and reliable workflow technology can be used
that provides features such as fault handling and compensation mechanisms [26].
Nevertheless, before executing such workflows, they must be verified to ensure a
correct implementation. Unfortunately, the context, in which the management
tasks are executed, is not explicitly described and, thus, not visible in such
processes. As a result, management processes cannot be analyzed by experts
in consideration of the management tasks’ context as only operation calls, ser-
vice invocations, or script executions on the directly affected components are
described in workflows, but not the surrounding environment: Experts see only
the directly affected part of the application, not the whole application structure.
Thus, other application components that may be affected indirectly, too, cannot
be considered in this analysis. For example, if the database of a Web-based appli-
cation shall be replaced by a database from a different vendor, the application’s
Web Server may require a certain database connector to be installed for con-
necting to the new database. If this dependency is not considered and handled
by the management workflow that replaces the database through installing the
required connector, too, the application cannot connect to its database anymore.
This quickly results in system downtimes caused by errors that are neither easy
to find nor to fix. Thus, the most important requirement to enable context-aware
management is a formal model that describes both the management tasks as well
as their context.

3 Motivating Scenario

In this section, we describe the motivating scenario that is used to explain the
proposed method and its realization. The scenario describes a business applica-
tion that consists of a PHP-based Web frontend and a PostgreSQL database.
The frontend shall be migrated from one Cloud to another. Because the applica-
tion evolved over time, it is currently hosted on two Clouds: The PHP frontend is
hosted on Microsoft’s public Cloud offering “Windows Azure”, the PostgreSQL
database on Amazon’s PaaS offering “Relational Database Service (RDS)”. The
PHP frontend runs on an Apache HTTP Server (including PHP-module) which
is installed on an Ubuntu Linux operating system that runs in a virtual machine
hosted on Azure. The management task that has to be executed is migrating
the PHP frontend to Amazon’s IaaS offering “Elastic Compute Cloud (EC2)”
to reduce the number of employed Cloud providers. This migration results in
two issues that compromise the application’s functionality if they are not con-
sidered in advance: (i) Missing database driver and (ii) missing configuration of

154 U. Breitenbücher et al.

the database service. To migrate the PHP frontend, we have to create a new vir-
tual machine on Amazon EC2, install the Apache HTTP Server and the PHP-
module, and deploy the corresponding PHP files. This works without further
configuration issues. However, connecting the PHP application to the database
is not as easy as it seems to be: Simply defining the database configuration of
the PHP frontend by setting the database’s endpoint, username, and password
is not sufficient. Here, a technical detail of the underlying infrastructure needs
to be considered: The PHP-module of the Apache HTTP Server needs different
database drivers to connect to different types of databases. Thus, if the Post-
greSQL driver gets not installed explicitly on the server, the PHP frontend is not
able to connect to the database. However, this is not easy to recognize as appli-
cations often employ MySQL databases whose drivers are typically installed
together with the PHP-module. Thus, installing the required driver for Post-
greSQL might be forgotten. The second issue is even more difficult to foresee
if the administrator is not an expert in Amazon RDS: Databases running on
Amazon RDS are per default not accessible from external components. To allow
connections, a so-called “Security Group” must be defined to configure the fire-
wall. This group specifies the IP-addresses which are allowed to connect to the
database. Both issues result in breaking the application’s functionality as the
frontend can not connect to the database. The reason for both problems lies
in ignoring the context in which the tasks are executed: (i) If an application
shall connect to a certain database, the application’s runtime environment must
support this kind of database. (ii) Accessing a database hosted on Amazon RDS
requires also more than simply writing endpoint information into a configuration
file as the firewall of the service has to be configured, too. Thus, for these tasks,
the context in the form of the infrastructure that hosts the database and the
database type has to be considered to recognize the problems. However, both
problems cannot be detected if the migration is implemented using traditional
approaches such as management workflows or scripts: A wrong process possibly
models only the steps for (i) shutting down the old virtual machine on Azure,
(ii) creating the new virtual machine on Amazon EC2, (iii) installing the Apache
Web Server and the PHP-module, (iv) deploying the frontend, and (v) setting
the database’s IP-address, name, port, username, and password in the fron-
tend’s configuration. However, this process neither provides information about
the database’s type nor which infrastructure is employed. Thus, the context, in
which the management tasks are executed, is not described and the problems
can not be detected.

4 Context-Aware Application Management Method

The Context-Aware Application Management Method provides a means to con-
sider the context in which management tasks on application components or
relations are executed. The method is shown in Fig. 1 and separates between a
declarative description of the management tasks to be executed and the final
executable management process. In the following subsections, we explain each
step in detail.

Context-Aware Provisioning and Management of Cloud Applications 155

Context-Aware
Applica on Management

Method

1. Capture
Applica on as
Formal Model

2. Create
Declara ve

Management
Descrip on

Model

3. Analyze
Declara ve

Management
Descrip on

Model

4. Adapt
Declara ve

Management
Descrip on

Model

5. Create
Impera ve

Management
Descrip on

Model

6. Execute
Impera ve

Management
Descrip on

Model

Fig. 1. Context-Aware application management method.

4.1 Step 1: Capture Application as Formal Model

First, the application to be managed is described as a formal model. This model
captures the application structure and its state, i.e., (i) all components such
as Web Servers, virtual machines, or installed applications, (ii) the relations
between them, e.g., database connections, and (iii) their runtime information.
The semantics of these model elements are described using types, e.g., a com-
ponent may be of type “ApacheHTTPServer”, a relationship of type “SQLCon-
nection”. To enable a precise definition of the elements, types can be inherited:
The “ApacheHTTPServer” type is a subtype of “HTTPServer”. Runtime infor-
mation is described as element properties, e.g., the “ApacheHTTPServer” has
the properties “IP-Address” and “Port” that specify its endpoint. Their schema
is defined by the type of the element. This formalization of the running applica-
tion provides a detailed, structured, and machine readable means to document
a current snapshot of the application structure and all runtime information.

4.2 Step 2: Create Declarative Management Description Model

In the second step, the desired management tasks are described based on the
formal model. Therefore, we introduce the Declarative Management Description
Model (dmdm) that extends the formal model captured in Step 1 by a declar-
ative description of the management tasks to be executed on components and

156 U. Breitenbücher et al.

relations. This model declares management tasks in an abstract manner without
technical implementation details and specifies the target component or relation
of each task. A dmdm is not executable as it describes only what has to be
done, but not how—all technical details are missing. For example, a dmdm may
declare a “Create” task on an added relation of type “SQLConnection” between
a PHP application and a SQL database, which means that the connection has
to be established. However, it provides neither technical implementation details
nor specifies the control flow between multiple different management tasks.

4.3 Step 3: Analyze Declarative Management Description Model

The dmdm created in the previous step captures a snapshot of the applica-
tion and the abstract management tasks to be executed. The model describes
the whole context in which tasks are executed by modelling all components
and relations of the application that might be affected. In the third step, man-
agement tasks are analyzed in their context by experts of different domains
to detect unexpected impacts leading to unintended side effects. dmdms enable
cooperation between different experts and separate concerns based on a uniform,
structured, and formal model: Apache HTTP Server experts are able to detect
that the installation of a certain database connector is required, experts of the
Amazon Cloud are able to configure the Security Group in order to allow con-
nections from the external PHP frontend of the application. Thus, dmdms can
be analyzed by multiple experts of different domains in a cooperative manner.

4.4 Step 4: Adapt Declarative Management Description Model

After the expert analysis, found problems have to be resolved to achieve the
desired management goals. Therefore, the dmdm is adapted in this step by the
respective experts to enable a correct execution of the tasks: Components, rela-
tions, and tasks of the dmdm may be added or reconfigured. For example, the
missing database connector found in the analysis of the previous step is resolved
by adding the task to install the required connector on the Web Server. Thus,
each task was verified in its respective context in the previous step and gets cor-
rected if necessary in this step. However, if tasks are added or reconfigured, all
tasks have to be analyzed again for correctness as the context changes through
this adaptation. This may lead to new problems and unintended side effects on
other components or relations that have to be found. Therefore, Step 3 and Step 4
are repeated until no new problems are found and all tasks were considered in
the final context. This ensures that also the adaptations are checked.

4.5 Step 5: Create Imperative Management Description Model

The verified and adapted Declarative Management Description Model result-
ing from the previous step describes the tasks to be performed declaratively in
an abstract manner—only what management tasks have to be performed, but

Context-Aware Provisioning and Management of Cloud Applications 157

not how. Thus, the model is not executable as the technical realization is not
described. Therefore, an executable process model that implements the manage-
ment tasks declared in the dmdm must be created. As this process model imper-
atively describes how the tasks have to be executed, we call these management
processes Imperative Management Description Models (imdm). An imdm can
be executed using an appropriate process engine and describes also the control
flow and data handling between the management tasks. The imdm has to imple-
ment exactly the semantics of the management tasks described by the adapted
Declarative Management Description Model resulting from the previous step.

4.6 Step 6: Execute Imperative Management Description Model

In the last step, the imdm is executed to perform the desired management tasks
on the real running application. Therefore, a process engine is employed to run
the process. As a result, the changes described by the tasks are applied to the
running application in consideration of the context.

5 Realization and Validation

The presented method enables combining declarative management descriptions,
which include all relevant context information to verify the tasks, and imper-
ative processes, which are employed to actually perform the tasks on running
applications. Thus, it combines two different types of Management Description
Models which enables benefiting from advantages of both worlds. Therefore, the
presented method provides the basis for enabling automated context-aware appli-
cation provisioning and management. In this section, we validate the proposed
method by showing a fully automated implementation using existing frame-
works. We describe our prototypical realization for all steps of the method in
the following.

5.1 Formalizing Applications Using Enterprise Topology Graphs

In Step 1, the application structure and runtime information have to be captured
as formal model. We use Enterprise Topology Graphs (etg) [5] as model lan-
guage as they are a common way to formalize such information. etgs are directed
graphs that describe the application’s structure as topology model that contains
each component as typed node and each relation as typed edge. Runtime infor-
mation is captured as properties of the respective model element. Thus, etgs
can be used to model the context in which a management task is executed. As
etgs support the XML-format, they are machine readable. On the left of Fig. 2,
the etg of the motivating scenario is shown. Binz et al. showed that etgs of
running applications can be discovered fully automatically using the etgs Dis-
covery Framework [3]. Thus, the first step of formalizing the application to be
managed can be automated by using this framework.

158 U. Breitenbücher et al.

5.2 Automating the DMDM Creation

Capturing application snapshots as etg models provides a means to describe
the context in which a management task is executed. Therefore, to create the
dmdm in Step 2, we use the discovered etg and annotate the management tasks
to be executed directly at the affected components and relations of the etg.
In Breitenbücher et al. [6], we introduced so-called Desired Application State
Models, which provide exactly this type of model for describing tasks to be exe-
cuted declaratively in the context in which they have to be executed based on
etgs. Figure 2 shows the Desired Application State Model that describes our
migration motivating scenario (rendered using Vino4TOSCA [11]). The colored
circles with the symbols inside represent the management tasks to be executed
in the form of so-called Management Annotations [6]. A Management Anno-
tation describes a task to be performed in a declarative way: It defines only
the type of the task and possible configuration properties, but not how to exe-
cute it. The green colored “Create-Annotations” with the star inside declare
that the corresponding elements have to be created, whereas the red colored
“Destroy-Annotations” with the “x” inside declare that the elements have to
be destroyed. Management Annotations can be also bound declaratively to non-
functional requirements in the form of policies that must be fulfilled when exe-
cuting the task [9,13]. Annotating management tasks to etgs, i.e., creating a
dmdm, can be automated, too: Desired Application State Models can be gen-
erated by applying so-called Automated Management Patterns to etgs [6]. An
Automated Management Pattern consists of a (i) Topology Fragment and a

(hostedOn)

(SQLConnec on)

Legend:

File: Frontend.zip
URL: 129.78.43.72:80/Frontend

Frontend
(PHP)

HTTPPort: 80
Username: Admin
Password: w1j4vg!osb
PHPModule: Installed

(ApacheHTTPServer)

SSHCreden als: […]
IP-Address: 129.78.43.72

(Ubuntu12.04VM)

User: MyAzureAccount
Password: h94jfds!fg3

(WindowsAzure)

Name: BA_DB
User: u4001
Password: a7ju2vf!b
Port: 5432
Host: […]

Database
(PostgreSQLDB)

User: MyAmazonAccount
Password: a8u8u29uer8u234

(AmazonRDS)

File: Frontend.zip
URL:

Frontend
(PHP)

HTTPPort: 80
Username: Admin
Password: w1j4vg!osb
PHPModule: Installed

(ApacheHTTPServer)

SSHCreden als: […]
IP-Address:

(Ubuntu12.04VM)

User: MyAmazonAccount
Password: a8u8u29uer8u234

(AmazonEC2)

Fig. 2. Desired Application State Model after applying the idiom (simplified).

Context-Aware Provisioning and Management of Cloud Applications 159

Missing Database Driver CAMTA

Transforma onAnnotated Topology Fragment

(ApacheHTTPServer)

(hostedOn)

(PostgreSQLDB)(PHP)

Fig. 3. camta that recognizes the problem of missing PostgreSQL database connector.

(ii) Topology Transformation. The Topology Fragment describes the applica-
tion structure to which the pattern can be applied. Thus, the pattern can be
applied to all etgs that match this fragment. The Topology Transformation
implements the pattern’s solution as executable transformation that automati-
cally annotates the Management Annotations to be executed to the input etg.
We distinguish between Semi-Automated Management Patterns, which provide
an abstract solution of a pattern that must be refined for concrete use cases
manually, and Fully-Automated Management Idioms, which provide an already
refined solution [7]. For example, the Desired Application State Model shown in
Fig. 2 is the result of applying the “Migrate PHP Application to Amazon EC2
Idiom”. Thus, the only manual step is selecting a Fully-Automated Management
Idiom.

5.3 Context-Aware Task Analyzer

After the Desired Application State Model was created automatically by apply-
ing an Automated Management Pattern, it has to be analyzed by experts in
Step 3 and adapted if necessary in Step 4. As we aim for automating the whole
method realization, also these two steps need to be automated. Therefore, we
introduce the concept of Context-Aware Management Task Analyzers (camta)
that provides a means to capture context-aware expert management knowledge
in a form that enables a fully automated application to the Desired Applica-
tion State Model resulting out of the previous step. The notion of camtas is
detecting and correcting problems by analyzing the tasks in their context and
adapting the model if necessary fully automatically without manual interaction.
Therefore, a camta consists of two parts: (i) An Annotated Topology Fragment
and a (ii) Transformation, similarly to Automated Management Patterns. The
Annotated Topology Fragment is a small topology that specifies the manage-
ment tasks in a certain context for which the camta is able (i) to analyze
correctness and (ii) to provide expert management knowledge required to adapt
the model if necessary. The fragment is used for matchmaking of camtas and
Desired Application State Models: If the camta’s fragment matches elements

160 U. Breitenbücher et al.

and Management Annotations in the model, the Context-Aware Management
Task Analyzer is able to analyze exactly that part. Thus, the Annotated Topol-
ogy Fragment is used to select the camtas that have to be applied to analyze
the dmdm in Step 3 fully automatically. For adapting the model in Step 4,
each camta implements a context-aware transformation that transforms the
input Desired Application State Model fully automatically if necessary. There-
fore, the transformation checks if the tasks specified in the camta’s Topology
Fragment can be executed safely: If yes, the transformation returns the unmod-
ified model. If not, the transformation adds or configures components, rela-
tionships, or tasks for correcting the Desired Application State Model. Figure 3
shows a camta that analyzes the tasks of establishing a SQL connection from
a PHP application hosted on an Apache HTTP Server to a PostgreSQL data-
base. The shown camta is able to analyze if establishing a SQLConnection
in the context of a PHP Application running on the Apache HTTP Server to
a PostgreSQL database is possible. This is expressed by its Annotated Topol-
ogy Fragment on the left. The transformation shown on the right analyzes the
Desired Application State Model, finds out whether the PostgreSQL connector
driver is missing, and adds the corresponding model elements and tasks to the
model if necessary. Thus, based on two camtas, the Desired Application State
Model, which results from applying a Fully-Automated Management Idiom, gets
adapted fully automatically to resolve the issues of the missing database con-
nector and Security Group configuration. The respective camtas insert two
different Management Annotations into the Desired Application State Model:
(i) A “ConfigureSecurityGroup-Annotation” that is attached to the Amazon-
RDS node and an “InstallDriver-Annotation” attached to the Apache HTTP
Server node. The ConfigureSecurityGroup-Annotation configures the Amazon-
RDS instance in a way that the database is accessible by the Apache HTTP
Server. The InstallDriver-Annotation declares that the required connector for
PostgreSQL databases must be installed. As Desired Application State Models
typically specify multiple tasks to be executed in the form of Management Anno-
tations that need to be analyzed in their context, multiple different camtas are
needed to check the correctness of the whole model. As they may change the
model, all camtas need to be applied every time after one camta transformed
the model to ensure that all Management Annotations are validated in the cur-
rent context. As soon as input and output model do not change anymore after
applying all matching camtas, Step 4 is finished.

5.4 Management Plan Generation

After the dmdm was analyzed for correctness and adapted in the previous steps,
the resulting model is not executable as it describes the tasks to be performed
only declaratively, i.e., without implementation and control flow: The dmdm has
to be transformed into an executable imperative model in Step 5. Therefore, we
employ the Management Planlet Framework presented in Breitenbücher et al. [6]
that employs Management Planlets to translate Desired Application State Mod-
els fully automatically into executable BPEL workflows. Management Planlets

Context-Aware Provisioning and Management of Cloud Applications 161

Create Ubuntu12.04VM on AmazonEC2

(AmazonEC2)

User: *
Password: *

SSHCreden als: *
Type: *
…

(Ubuntu12.04VM)

(hostedOn)

Annotated Topology Fragment Workflow

P

Fig. 4. Management Planlet that creates an Ubuntu12.04 virtual machine on Amazon’s
infrastructure service Elastic Compute Cloud (EC2).

provide the low-level imperative management logic to execute the declarative
Management Annotations used in Desired Application State Models and sup-
port defining functional as well as non-functional requirements [9,13]. They serve
as generic management building blocks that can be orchestrated to implement
a higher-level management task. A Management Planlet consists of two parts:
(i) Annotated Topology Fragment and (ii) a workflow. The fragment exposes the
Planlet’s functionality and is used to find Planlets that are capable of execut-
ing the specified management tasks in the respective context. For example, the
Planlet shown in Fig. 4 is capable of executing the Create-Annotation attached
to an Ubuntu12.04VM node if this node has to be hosted on AmazonEC2. The
Planlet’s workflow implements exactly the management logic required to create
this virtual machine on EC2. Based on these fragments, Planlets can be orches-
trated to an overall management plan that performs all annotations defined in
the Desired Application State Model. Therefore, the framework employs a Plan
Generator that transforms Desired Application State Models into executable
workflows.

6 Context-Aware Cloud Application Provisioning

In this section, we present the new contribution of this paper that focuses
on the context-aware provisioning of applications. We show how the Context-
Aware Application Management Method presented in Sect. 4 can be used also for
context-aware provisioning and show afterwards how this variant of the method
can be automated by introducing the concept of Automated Provisioning Pat-
terns.

162 U. Breitenbücher et al.

File: Frontend.zip
URL:

Frontend
(PHP)

HTTPPort: 80
PHPModule: Installed
…

(ApacheHTTPServer)

SSHCreden als: […]
IP-Address:

(Ubuntu12.04VM)

User: MyAmazonAccount
Password: a8u8u29uer8u234

(AmazonEC2)

File: Frontend.zip
URL:

Frontend
(PHP)

Fully-Automated PHP Applica on on
AmazonEC2 Provisioning Idiom

Transforma on Topology Fragment

(PHP)

AmazonEC2.User = MyAmazonAccount
AmazonEC2.Password = a8u8u29uer8u234

Fig. 5. Transformation of an application topology model (left) to a Desired Application
State Model (right) by applying a Fully-Automated Provisioning Idiom.

6.1 Provisioning Variant of the Method

The original method for management consists of six steps and starts with captur-
ing the application to be managed as formal model describing the application’s
structure and state. This model provides the entry point to define the manage-
ment tasks to be executed. In our realization, all following steps are based on the
original etg that provides the basic context. In terms of provisioning, such an
instance model does not exist as no etg is available for non-provisioned applica-
tions. Therefore, the first step has to be removed if the method shall be applied
to application provisioning. Thus, the method directly starts with creating the
dmdm. As a result, we define Step 1 of the method as optional to enable using
the method for both application provisioning as well as executing management
tasks—the following steps are identical. However, to automatically create the
dmdm for the provisioning in the form of a Desired Application State Model,
this requires a special kind of pattern since Automated Management Patterns
and Idioms require an input etg to be transformed. Therefore, we introduce
Automated Provisioning Patterns in the following subsection.

6.2 Automated Provisioning Patterns and Provisioning Idioms

We distinguish also for the provisioning between patterns and idioms by intro-
ducing (i) Semi-Automated Provisioning Patterns and (ii) Fully-Automated Pro-
visioning Idioms. Both consist of a (i) Topology Fragment and a (ii) Topology
Transformation, similar to the management approach. However, their input is
not the etg of a running application but an application topology model of the
desired application. This model is either empty or describes single nodes and rela-
tions of the desired application deployment—but without runtime information.

Context-Aware Provisioning and Management of Cloud Applications 163

Fully-Automated PHP Applica on on
AmazonEC2 Provisioning Idiom

Transforma on Topology Fragment

(PHP)

Application Topology
Model

Desired Application
State Model

Application Topology
Model

Desired Application
State Model

Fully-Automated Scalable PHP Applica on
on Amazon Beanstalk Provisioning Idiom

Transforma on Topology Fragment

PHP PHP

Fig. 6. Two classes of Automated Provisioning Patterns/Idioms: topology-dependent
(top) and topology-independent (bottom).

The Topology Fragment is matched against the topology model and the transfor-
mation works on the matching elements. Semi-Automated Provisioning Patterns
generate Desired Application State Models that need to be refined afterwards,
i.e., they insert nodes or relations of abstract types that must be refined to a
concrete type manually. In addition, added Management Annotations may need
to be configured or additional annotations may need to be added. For example,
an inserted abstract “InfrastructureService” node must be refined manually to a
concrete node type, e.g., “AmazonEC2”. Fully-Automated Provisioning Idioms
generate already refined Desired Application State Models that can be used
directly for the plan generation. For example, Fig. 5 shows an idiom for host-
ing a PHP application on EC2. The idiom consumes the application topology,
which was created manually by an administrator in Step 2, and requests user and
password of the Amazon account as input. The topology model contains only a
PHP node describing the files to be deployed. The idiom’s transformation inserts
concrete infrastructure nodes, relations, and Management Annotations that are
already refined for this concrete use case. Thus, the resulting Desired Applica-
tion State Model can be used directly for the plan generation. In Step 2, multiple
provisioning patterns and idioms can be applied to build complex applications.

6.3 Topology-Dependent and Topology-Independent Patterns

In this section, we present two different classes of Automated Provisioning Pat-
terns: (i) Topology-dependent and (ii) topology-independent. We do not dis-
tinguish between patterns and idioms in this section because this difference is
not important for the following considerations. Therefore, we refer to both as
Automated Provisioning Patterns. The first class of topology-dependent patterns
specify a Topology Fragment that must match corresponding elements in an

164 U. Breitenbücher et al.

application topology model to which the pattern shall be applied. For exam-
ple, the idiom shown in Fig. 6 on the top is in this class and can be applied
to all application topology models that contain PHP nodes. This kind of Auto-
mated Provisioning Patterns can be used to complete or change an incomplete
application topology model including the specification of the corresponding Man-
agement Annotations to be executed to provision the model. Thus, they might
really transform an application topology into a Desired Application State Model,
i.e., they may change properties of already specified nodes and relations, add or
remove nodes and relations, and insert the required Management Annotations.
In contrast to this, topology-independent patterns do not specify a Topology
Fragment. Thus, they can be applied to every application topology model, even
to empty ones that do not specify any node or relation at all. Patterns in this
class only insert new nodes, relations, and annotations to create a Desired Appli-
cation State Model but do not change the existing elements, as shown in Fig. 6
on the bottom. This kind of Automated Provisioning Patterns can be used to
capture complete application architecture templates that can be inserted at once
without transforming the original topology model elements. For example, a com-
plete scalable LAMP (Linux, Apache, MySQL, PHP) stack hosted on a certain
Cloud provider can be implemented as Fully-Automated Provisioning Idiom.

7 Related Work

Context-aware systems adapt their functionality and behaviour using context
information about the environment. An often used definition for context was
given by Dey [15]: “Context is any information that can be used to character-
ize the situation of an entity, where an entity can be a person, place, physical
or computational object”. An important type of context information, which is
often neglected, is the state and structure of an application to be managed. In
this paper, we use this type of context information to verify, configure, and exe-
cute management tasks on applications and their infrastructure. The automated
realization of the presented management method provides, therefore, the basis
to implement Context-aware Cloud Application Management Systems.

To model and manage context information, many frameworks have been
developed in the past years. There are simple, widget-like frameworks for sensor
information such as the Context Toolkit [16] and systems that support smart
environments like Aura [23] or Gaia [31]. Different types of development frame-
works, e.g., the framework of Henricksen and Indulska [22], and context man-
agement platforms, e.g., the Nexus Platform [21], were developed that aim at
efficient provisioning of context information within a global scope. These frame-
works use Context Models as an abstraction layer between applications and
the technical infrastructure that gathers the context data. However, there is
no framework that manages context information for application management
in the form of the Declarative Management Description Models introduced in
this paper, which provide a kind of Context Model that (i) enables capturing
the environment in which management tasks are executed and (ii) the manage-
ment tasks themselves described in a declarative fashion. In the realization, the

Context-Aware Provisioning and Management of Cloud Applications 165

context is captured in a domain-specific data structure in the form of etgs.
Furthermore, no sensors integration has to be achieved because the context is
detected on the fly using the etg Discovery Framework [3]. Thus, the context is
always up to date and does not have to be stored or managed using additional
tooling.

There are several approaches that enable describing application topologies
including runtime information and dependencies. Scheibenberger and Pansa [32]
present a generic meta model to describe resource dependencies among IT
infrastructure components. They separate the static view, which captures func-
tional and structural aspects, from the dynamic operational view, which captures
runtime information. In contrast to the employed concept of etgs in the valida-
tion, their approach enables to model dependencies between component proper-
ties. The method’s realization may be extended to capture also such fine-grained
dependencies if necessary that may help experts to analyze possible impacts of
a certain management task. The Common Information Model (CIM) [17] is a
standard that provides an extensible, object-oriented data model used to capture
information about different parts of an enterprise. It also provides a specification
to describe application structures including dependencies. However, all these
works may be used to formalize the application structure, dependencies, and
runtime information, but they provide no means to model also the management
tasks to be executed as required to implement a dmdm.

There are several frameworks that employ declarative descriptions to gen-
erate workflows such as Eilam et al. [18], Maghraoui et al. [28], and Keller
et al. [24]. The first two focus mainly on provisioning of applications whereas the
third also considers application management. In general, the proposed method
can be adapted and applied to all approaches that transform declarative descrip-
tions into imperative processes. However, it must be ensured that the declarative
descriptions (i) provide the whole context and (ii) that the management tasks
to be executed are described by this model somehow. In a former work [12],
we showed how declarative provisioning descriptions can be transformed auto-
matically into imperative workflows based on the TOSCA standard [4,29]. The
application to be provisioned is described as topology model describing all appli-
cation components and relations. As the tasks to be executed are obvious and
the whole context of the provisioning is provided by this model in the form of
the topology, the method can be adapted for this standards-based provisioning
approach, too.

There are several pattern-based approaches that focus on the automation of
application provisioning and deployment. For example, Lu et al. [27] use patterns
to automate the deployment of applications. However, they employ model-based
patterns that are different from the kind of patterns and idioms we consider
in this paper. Their patterns are defined as topology models that are used to
associate or derive the corresponding logic required to deploy the combination
of nodes and relations described by the topology, similarly to our concept of
Management Planlets. Fehling et al. [19] show how architectural Cloud patterns
can be applied using a provisioning tool. However, all available approaches do

166 U. Breitenbücher et al.

not generate models that declaratively specify the abstract management tasks to
be executed following a concept such as Management Annotations. Nevertheless,
as the context is typically provided by the employed models, the general idea of
the method can be applied to most of these approaches, too.

The model-driven SOA deployment platform presented by Arnold et al. [1,2]
supports formally capturing topology-based deployment models at different lev-
els of abstraction—ranging from abstract models, which they call patterns, to
concrete models. This classification is similar to our approach of differentiating
patterns and idioms and enables non-expert administrators to safely compose
and iteratively refine deployment patterns, which results in fully-specified topolo-
gies with bindings to concrete resources. However, in contrast to our automated
patterns and idioms, their patterns and concrete models capture only the struc-
ture and constraints of a composite solution and do not specify the management
or provisioning tasks to be executed. In Arnold et al. [2], they present an app-
roach how these patterns can be realized automatically and introduce Parame-
terized Reconfiguration Patterns that are conceptually similar to our Automated
Provisioning Patterns: They define preconditions in the form of existing model
elements and specify new elements to be provisioned. Similarly, Parameterized
Reconfiguration Patterns also define input parameters that are used to configure
the provisioning. The result of applying such patterns are models specifying the
desired application state, but without the tasks to be executed. Nevertheless,
the general idea of the method can be applied to this approach, too.

8 Conclusions

In this paper, we introduced an abstract Context-Aware Application Manage-
ment Method that enables applying context-aware provisioning and management
expertise. We showed that separating models for context-aware analysis and
management task execution provides a powerful means to benefit from advan-
tages of both worlds. Therefore, we employed abstract Declarative Management
Description Models for describing the context as well as the management tasks
to be executed themselves that are transformed into Imperative Management
Description Models. The presented method is validated by an automated proto-
typical realization for application provisioning and management using the Man-
agement Planlet Framework. We plan to integrate non-functional requirements
into the method and its realization and to apply both to the OASIS standard
TOSCA.

Acknowledgements. This work was partially funded by the BMWi project Cloud-
Cycle (01MD11023).

References

1. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Pattern
based SOA deployment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 1–12. Springer, Heidelberg (2007)

Context-Aware Provisioning and Management of Cloud Applications 167

2. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Auto-
matic realization of SOA deployment patterns in distributed environments. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 162–179. Springer, Heidelberg (2008)

3. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Automated discovery and
maintenance of enterprise topology graphs. In: SOCA 2013, pp. 126–134. IEEE,
December 2013

4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014)

5. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the cloud
through enterprise topology graphs. In: CLOUD 2012, pp. 742–749. IEEE, June
2012

6. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based runtime
management of composite cloud applications. In: CLOSER 2013, pp. 475–482.
SciTePress, May 2013

7. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Automating cloud application
management using management idioms. In: PATTERNS 2014, pp. 60–69. IARIA
Xpert Publishing Services, May 2014

8. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wettinger, J.: Integrated
cloud application provisioning: interconnecting service-centric and script-centric
management technologies. In: Panetto, H., Dillon, T., Eder, J., Bellahsene, Z.,
Ritter, N., De Leenheer, P., Dou, D., Meersman, R. (eds.) ODBASE 2013. LNCS,
vol. 8185, pp. 130–148. Springer, Heidelberg (2013)

9. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wieland, M.: Policy-aware
provisioning of cloud applications. In: SECURWARE 2013, pp. 86–95. IARIA
Xpert Publishing Services, August 2013

10. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wieland, M.: Context-aware
cloud application management. In: CLOSER 2014, pp. 499–509. SciTePress, April
2014

11. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA:
a visual notation for application topologies based on TOSCA. In: Dillon, T.,
Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S.,
Cruz, I.F., Meersman, R., Panetto, H. (eds.) OTM 2012, Part I. LNCS, vol. 7565,
pp. 416–424. Springer, Heidelberg (2012)

12. Breitenbücher, U., et al.: Combining declarative and imperative cloud application
provisioning based on TOSCA. In: IC2E 2014, pp. 87–96. IEEE, March 2014

13. Breitenbücher, U., et al.: Policy-aware provisioning and management of cloud appli-
cations. Int. J. Adv. Secur. 7(1&2), 15–36 (2014)

14. Brown, A.B., Patterson, D.A.: To err is human. In: EASY 2001, p. 5, July 2001
15. Dey, A.K., Abowd, G.D., Salber, D.: Managing Interactions in Smart Environ-

ments. A Context-Based Infrastructure for Smart Environments, pp. 114–128.
Springer, London (2000)

16. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Hum. Comput.
Interact. 16, 97–166 (2001)

17. Distributed Management Task Force: Common Information Model (2010)
18. Eilam, T., et al.: Pattern-based composite application deployment. In: Integrated

Network Management, pp. 217–224. IEEE (2011)

168 U. Breitenbücher et al.

19. Fehling, C., Leymann, F., Retter, R., Schumm, D., Schupeck, W.: An architectural
pattern language of cloud-based applications. In: PLoP 2011. ACM, October 2011

20. Fehling, C., Leymann, F., Rütschlin, J., Schumm, D.: Pattern-based development
and management of cloud applications. Future Internet 4(1), 110–141 (2012)

21. Großmann, M., et al.: Efficiently managing context information for large-scale sce-
narios. In: PerCom 2005. IEEE (2005)

22. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: PerCom 2004. IEEE (2004)

23. Judd, G., Steenkiste, P.: Providing contextual information to pervasive computing
applications. In: PerCom 2003. IEEE (2003)

24. Keller, A., Hellerstein, J.L., Wolf, J.L., Wu, K.L., Krishnan, V.: The CHAMPS
system: change management with planning and scheduling. In: NOMS 2004, pp.
395–408. IEEE (2004)

25. Leymann, F.: Cloud computing: the next revolution in IT. In: The Photogrammet-
ric Record, pp. 3–12, September 2009

26. Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice
Hall PTR, USA (2000)

27. Lu, H., Shtern, M., Simmons, B., Smit, M., Litoiu, M.: Pattern-based deployment
service for next generation clouds. In: SERVICES 2013, pp. 464–471. IEEE, June
2013

28. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.V.:
Model driven provisioning: bridging the gap between declarative object models and
procedural provisioning tools. In: van Steen, M., Henning, M. (eds.) Middleware
2006. LNCS, vol. 4290, pp. 404–423. Springer, Heidelberg (2006)

29. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0, May 2013

30. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,
and what can be done about it? In: USITS. USENIX Association, June 2003

31. Roman, M., Campbell, R.H.: Gaia: enabling active spaces. In: SIGOPS 2000, pp.
229–234. ACM (2000)

32. Scheibenberger, K., Pansa, I.: Modelling dependencies of it infrastructure elements.
In: BDIM 2008, pp. 112–113. IEEE, April 2008

A Distributed Cloud Architecture
for Academic Community Cloud

Shigetoshi Yokoyama(✉) and Nobukazu Yoshioka

National Institute of Informatics, Tokyo, Japan
{yoko,nobukazu}@nii.ac.jp

Abstract. This study describes a new approach to cloud federation architecture
for academic community cloud. Two basic approaches have been proposed to
deal with cloud burst, disaster recovery, business continuity, etc., in community
clouds: standardization of cloud services and multi-cloud federation. The stand‐
ardization approach would take time; i.e., it would not be effective until there are
enough implementations and deployments following the standard specifications.
The federation approach places limitations on the functionalities provided to
users; they have to be the greatest common divisor of the clouds’ functions. Our
approach is “cloud on demand”, which means on-demand cloud extension deploy‐
ments at remote sites for inter-cloud collaborations. Because we can separate the
governance of physical resources for cloud deployment and the governance of
each cloud by this approach, each organization can have full control on its cloud.
We describe how the problems of the previous approaches are solved by the new
approach and evaluate a prototype implementation of our approach.

Keywords: Inter-cloud · Community cloud · Cluster as a service · Bare-Metal
provisioning · Academic cloud

1 Introduction

Private clouds get some benefit from the consolidations made possible by using
virtualization technology. However an individual organization cannot reduce IT
costs significantly through the use of its own private cloud because it must have on
hand the maximum IT resources needed to deal with peak traffic.

In order to better utilize IT resources, a hybrid cloud solution is feasible in some
situations. A hybrid cloud consists of a private cloud and public cloud; the private cloud
deals with flat traffic and the public cloud covers peak traffic. However, when security
matters, it is not feasible to send all the peak traffic to the public cloud.

It is important to think about sharing IT resources among private clouds to ensure
better utilization and security at the same time. This idea can be viewed as a private
cloud hosting service.

Table 1 describes the characteristics of public, private and hybrid clouds. Cloud users
have to decide what kind of cloud they want to use, depending on their applications.
A hybrid cloud integrates private and public clouds vertically. It assigns peak traffic of

© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 169–186, 2015.
DOI: 10.1007/978-3-319-25414-2_11

applications that do not necessarily need strong security to the public cloud. It cannot
fit the situation in which all peak traffics have to be dealt with securely.

On the other hand, a community cloud is a way to keep clouds independent from one
another while getting flexibility and security at the same time. In fact, there has been a
lot of activity on ways to establish community clouds. The approaches can be catego‐
rized into two kinds. One is standardization of cloud services and the other is multi-
cloud federation. The standardization approach would take time; i.e., it would not be
effective until there are enough implementations and deployments following the
standard specifications. The federation approach places limitations on the functionalities
provided to users; they have to be the greatest common divisor of the clouds’ functions.

We propose a new approach, called “cloud on demand”, which integrates many
private clouds horizontally and shares IT resources among them to accommodate peak
traffic. By applying this solution, users can get good IT resource utilization like in a
public cloud and have the level of security of a private cloud.

In this paper, we introduce our cloud on demand solutions called dodai and colony
and describe a real cloud on demand service that was recently deployed as the research
cloud of our research institute, National Institute of Informatics (NII).

This paper is organized as follows. Section 2 describes the previous approaches.
Section 3 introduces the cloud on demand solution. Section 4 shows a prototype imple‐
mentation. We summarize our evaluation of case studies in Sect. 5 and conclude in Sect. 6.

Table 1. Characteristics of cloud solutions.

Cost Security Ease of
Application
Development

Public Cloud Strong for peak traffic
pattern

Depends on public cloud
provider policy and
management

Has public cloud
architecture
constraints

Private Cloud Strong for flat traffic
pattern

Depends on
controllable private
cloud management

Can choose
application
architecture

Hybrid Cloud Strong for flat + peak
traffic pattern

Depends on
controllable
deployment
architecture
and private cloud
management

Has hybrid cloud
architecture
constraints

Community Cloud Strong for small to big
and flat to peak
traffic

Depends on
controllable private
cloud management

Can choose
application
architecture

2 Previous Approaches

In this section, we describe the previous approaches, which are cloud standardization
and cloud federation.

170 S. Yokoyama and N. Yoshioka

2.1 Cloud Standardization

One of the famous cloud standardization activities is the Global Inter-Cloud Technology
Forum (GICTF) [4]. Its mission is as follows:

– Promote the development and standardization of technologies to use cloud systems.
– Propose standard interfaces that allow cloud systems to interwork with each other.
– Collect and disseminate proposals and requests regarding the organization of tech‐

nical exchange meetings and training courses.
– Establish liaisons with counterparts in the U.S. and Europe, and promote exchanges

with relevant R&D teams.

GICTF has produced a number of white papers, including “Use Cases and Functional
Requirements for Inter-Cloud Computing”, “Technical Requirements for Supporting the
Inter-cloud Networking”, “Inter-cloud Interface Specification Draft (Inter-cloud Protocol)”
and “Inter-cloud Interface Specification Draft (Cloud Resource Data Model).”

There are other similar standardization activities like the Open Cloud Standards
Incubator, Cloud Storage Technical Work Group, Open Cloud test bed and Open Cloud
Computing Interface Working Group [7].

The use cases they deal with are as follows:

U1. Guaranteed performance during abrupt increases in load
U2. Guaranteed performance regarding delay
U3. Guaranteed availability in the event of a disaster or a large-scale failure
U4. Service continuity
U5. Market transactions via brokers
U6. Enhanced convenience by service cooperation.

The clouds maintain independence from one another and collaborate with each other
through standard interfaces. This approach seems to be the ultimate solution for
community clouds but it will take time to get a consensus from all the communities on
the standard.

2.2 Cloud Federation

Cloud federation is the practice of interconnecting the cloud computing environments of
multiple service providers for the purpose of loads balancing traffic and accommodating
spikes in demand. Cloud federation requires one provider to federate the computing
resources of the cloud providers. Cloud federation consists of the following components:

Application: a set of virtual machines and data volumes connected by a virtual
network to be deployed at the IaaS level.

Portal: a common entry point for multiple cloud providers. A user submits an appli‐
cation to the portal. The portal selects providers to run the application. Usually, the portal
can only offer functionalities that are the greatest common divisor of the providers.

This approach tries to cover use cases U1, U2, U3, U4 and U5. In contrast, we assume
that the main purpose of establishing community clouds is to accommodate use cases
U1, U2, U3 and U4. That is, our cloud on demand solution focuses on these use cases.

A Distributed Cloud Architecture for Academic Community Cloud 171

3 Cloud on Demand

Our approach is different from the previous ones. Figure 1 is an overview of our cloud on
demand solution. There are two service components. One is called Cluster as a Service [9],
and the other is called the inter-cloud object storage service [10, 11]. Cluster as a Service
is a service by which users create clusters consisting of physical servers, and it can deploy
software components for building an IaaS.

The inter-cloud object storage service lets users store objects, like machine
images, as if they were using a local cloud object storage service. Physically, each
cloud is connected to a high-speed wide area network, such as SINET-4 [8]. The
network connections are made by using network functionalities like L2VPN and
VPLS. The physical servers can be located in the same L2 network segment if the
same VLAN–ID is assigned to them. The physical servers that are assigned different
VLAN-IDs are securely separated from the other network segments.

Through this design, we can generate physical machine clusters in inter-cloud
environments on which we can deploy IaaS software like OpenStack, Eucalyptus, and
others in our favourite configurations for each.

In addition, we configure a distributed inter-cloud object storage service using
open source software like OpenStack swift for storing machine images.

Fig. 1. Architecture overview.

To allocate the application execution environments, we deploy an IaaS cluster on
demand on physical servers and deploy the application virtual machine cluster on it.
In this case, the IaaS cluster uses the inter-cloud object storage service to launch
virtual machines from machine images that have been prepared for the application
cluster. IaaS clusters themselves are not necessarily destroyed after each the applica‐
tion execution. The life cycle of the IaaS is independently controlled by the applica‐
tion execution environment managers.

172 S. Yokoyama and N. Yoshioka

3.1 Cluster as a Service (CaaS)

Cluster as a Service is designed as follows:

(1) Two-layer implementation

The lower layer takes care of physical machine cluster management. The upper layer
handles virtual machine cluster management. Moreover, each layer is program‐
mable with web APIs.

(2) The lower layer

The lower layer handles the operating systems of each node composing a cluster.
Nodes can be allocated to clusters dynamically from software and securely sepa‐
rated by using network technology, like virtual LAN in the allocation.

(3) The upper layer

The upper layer deals with deploying IaaS software such as OpenStack and Eucalyptus.
It also can deploy PaaS software. The layer has configuration management tools to ease
deployment on the nodes of clusters.

An actual deployment example is depicted in Fig. 2.

Fig. 2. Cluster as a service.

3.2 Inter-cloud Object Storage Service

Figure 3 depicts the service from the user’s view point. Users of these clouds can
share objects, simply by dropping objects in inter-cloud-containers. Users explicitly
specify the locations where they want to store objects.

A Distributed Cloud Architecture for Academic Community Cloud 173

Fig. 3. Inter-cloud storage service.

4 Prototype

4.1 CaaS Overview

We developed Cluster as a Service by which a private cloud can be deployed from
common computer resources.

The cloud on demand solution has a resource pool from which each private cloud allo‐
cates IT resources as they need them and releases them when they are not using them
(Fig. 4). The security is guaranteed by separating the network segments for each private
cloud. When servers are released, the cloud on demand solution erases the storage before
it allocates it to the other private clouds. For rapid elastic allocation, some servers in the
resource pool have to be ready to run. These servers are moved from the resource pool
network segment to the target private cloud network segment by changing the network
configuration.

Fig. 4. Cluster as a Service.

174 S. Yokoyama and N. Yoshioka

4.2 Requirements of CaaS

Req. (1) Computer resources must be dynamically allocated to the clusters of different
private clouds
Req. (2) Clusters must be securely separated.
Req. (3) Software components of the cloud must be easily deployed on the clusters.

4.3 Design of CaaS

CaaS is designed to satisfy these requirements:

(1) Two-layer implementation

The lower layer takes care of Req. (1) and Req. (2). The upper layer handles Req. (3).
Moreover, each layer is programmable with web APIs.

(2) Lower layer

The lower layer handles the operating systems of each node composing a cluster for
using machine images. Nodes can be allocated to clusters dynamically from software
and securely separated by using network technology, like virtual LANs, in the allocation.
The lower layer also deals with erasing storage when servers are released. A prototype
of this layer is dodai-compute [2].

(3) Upper layer

The upper layer deals with deploying IaaS/PaaS software such as Hadoop, Grid Engine,
OpenStack, and eucalyptus. Configuration management tools make it easy to deploy
software on the nodes of clusters. A prototype of this layer is dodai-deploy [3].

4.4 Dodai-Compute

The lower layer dodai-compute is a system based on OpenStack nova to control oper‐
ations (such as run instances from an image) on physical machines instead of VMs.
Figure 5 illustrates the architecture of dodai-compute. The run instances, terminate
instances, start instances, stop instances, reboot instances and associate address opera‐
tions on physical machines can be done via EC2 APIs. The architecture of dodai-
compute is as follows. Dodai-compute uses PXEboot via a cobbler library to bootstrap
physical machines corresponding to run instance API calls. It also uses an OpenFlow
controller to assign network segments to the physical machine. IPMI is used to control
physical machines corresponding to the start instance, stop instance and reboot instance.
The terminate instance operation is used to move physical machines to the machine pool
network segment. The OpenFlow controller does this operation. The disks are physically
cleaned up and become ready for the next launch. The associate address operation is
done by an agent in each physical machine instance.

VLANs are used on some private clouds. When IaaS is deployed on them, we use
OpenFlow technology, instead of VLAN, in order to separate network segments for each
private cloud.

A Distributed Cloud Architecture for Academic Community Cloud 175

4.5 Dodai-Deploy

The upper layer of dodai-deploy’s specification and its prototype are described in this
section. Dodai-deploy has the following functionalities:

(1) Installation configuration proposal creation

Dodai-deploy runs according to a user installation plan called a ‘proposal.’

(2) Installation and un-installation

Software components are installed according to a proposal on target physical machine
nodes and virtual machine nodes. Dodai-deploy can un-install software components, as
well.

(3) Test installation result

Automatic testing of the deployed IaaS and PaaS is an important functionality of
dodai-deploy. Users can use these functionalities through a Web GUI and CLI.

Fig. 5. Dodai-compute architecture.

Fig. 6. Dodai-deploy architecture.

176 S. Yokoyama and N. Yoshioka

Figure 6 illustrates the architecture of dodai-deploy. The dodai-deploy server gener‐
ates manifest files for the puppet configuration tool [6] when users submit proposals
requesting installations. The architecture was designed with fast deployment in mind
to cope with the growing number of target machines. Parallel deployment is the key
to achieving this goal but dependencies among software components have to be used
to make usable deployment strategies. The actual parallel deployment procedure uses
MCollective [MCollective (2013)] to control many puppet clients.

4.6 Colony

We describe how to implement a geographically distributed inter-cloud storage service.
Storage-I in Fig. 7 should be a network-aware object storage service in order to make
the remote application deployment rapid. The prototype uses OpenStack Swift as the
base software. A prototype of this inter-cloud storage service is colony [1].

OpenStack Object Storage (code-named Swift is open source software for creating
redundant, scalable data storage using clusters of standardized servers to store peta-bytes
of accessible data). It is not a file system or real-time data system, but rather a long-term
storage system for large amounts of static data that can be retrieved, leveraged, and
updated. Object Storage uses a distributed architecture with no central point of control,
providing greater scalability, redundancy and permanence.

Objects are written to multiple hardware devices, with the OpenStack software
responsible for ensuring data replication and integrity across the cluster. Storage
clusters scale horizontally by adding new nodes. Should a node fail, OpenStack
works to replicate its content from other active nodes. Because OpenStack uses soft‐
ware logic to ensure data replication and distribution across different devices, inex‐
pensive commodity hard drives and servers can be used in lieu of more expensive
equipment.

Swift has proxy nodes and auth nodes acting as the front-end and storage nodes acting
as the back-end for accounts, containers, and object storage.

Fig. 7. Software components of colony.

A Distributed Cloud Architecture for Academic Community Cloud 177

The internal software components of the service are shown in Fig. 7. The caching
component makes the machine image launch fast. The dispatcher selects the nearest
object replica in object storage service-I, even if there is no copy in the local cache.

4.6.1 How the Original Swift Works
The basic mechanism of downloading and uploading objects in the original Swift is as
follows:

(1) GET
The proxy server randomly chooses a replica from the ring and asks the storage server
to send the object in which the replica resides.

(2) PUT
The proxy server knows the storage servers to which object replicas from the ring should
be put and sends the objects to the all storage servers. The PUT operation ends when
the all replica writes finish.

This implementation is based on an assumption that the replicas are concentrated in
the network, for example, in the same data center. However, in our context, this assump‐
tion is not valid. Actually, if we apply the original OpenStack swift to storage-I, the GET
and PUT operations take time when the randomly selected replica is far away. This is
the reason why we have to make the Swift software network-aware.

4.6.2 Network-Aware OpenStack Swift
(1) How to make Swift network-aware
In the put operation, all replicas are written in the same site as the proxy server instead
of writing them to the location the ring specifies. The replicas of the original positions
are made asynchronously by the object replicator. After confirming the replication, the
local copies corresponding to the replicas are deleted. In the get operation, the ‘nearest’
replica, instead of a random one, is chosen by the mechanism described in the next
section. The proxy server works with the cache mechanism as well.

(2) How to measure network distance
We use the zone information in the ring for the network distance measurement. The zone
information consists of fixed decimal numbers, and we can allocate them freely. There‐
fore, we can use these decimal numbers to specify actual locations. Let’s say the nodes in
data center #1 are from zone-100 to zone-199, the nodes in data center #2 are from
zone-200 to zone-299, and so on. By using this sort of convention, the software can know
the network distance without our having to modify the ring structure or code related to it.

5 Evaluation

In order to evaluate the prototype in a real context, we deployed and evaluated our cloud
on demand solution as NII’s research cloud (called gunnii). We also evaluated the
prototype in a number of user scenarios.

178 S. Yokoyama and N. Yoshioka

5.1 Evaluation Environment

We deployed cloud on demand solution as our research cloud providing bare-metal cloud
service to NII researchers on July, 2012. An overview of gunnii from the users’ view‐
point is shown in Fig. 8. NII researchers can extend their existing research clusters to
this research cloud on demand.

Fig. 8. Overview of the NII research cloud, gunnii.

Figure 9 shows how we use OpenFlow technologies with dodai-compute in this
configuration. Dodai-compute provisions bare-metal clusters by using PXEboot and
IMPI interfaces and allocates the bare-metal machines in OpenFlow closed networks,
regions, on demand. It also connects these regions to corresponding existing closed
networks of research groups, which are assigned individual VLAN-IDs by setting up
suitable flow tables in OpenFlow switches.

Fig. 9. Gunnii’s architecture.

A Distributed Cloud Architecture for Academic Community Cloud 179

5.2 User Scenario According to U1 (Guaranteed Performance Against a Abrupt
Increase of the Load)

We also set up two private clouds. One was an OpenStack [5] IaaS private cloud (private
cloud-A), on which web services of a simulated e-commerce company were hosted. The
other was a Hadoop PaaS private cloud of a business intelligence company (private
cloud-B), which was used for analyzing big data like web service usage logs.

The traffic of private cloud-A decreased during the period from 2 am to 5 am. To
increase the utilization of IT resources, allocations to these two clouds changed
depending on the amount of traffic in private cloud-A.

The business intelligence company was supposed to give daily feedback to the
e-commerce company by using the big hadoop cluster on demand.

(1) Cost evaluation
We verified the cloud on demand operations according to the user scenarios in gunnii.

The verification points were as follows:
1. Can we change the size of the two clouds dynamically?
2. Can the services run continuously on the clouds even during the size change?

Figure 10 shows the verification environment. Private cloud-A consisted of two servers:
a master node which had master software components of OpenStack diablo software
and included OpenStack nova, glance, swift, keystone and horizon and slave software.
The other server only had slave software like nova compute and swift object servers.

Fig. 10. Verification environment.

First, two servers were allocated to private cloud-A by using dodai-compute and
OpenStack software components were deployed with dodai-deploy. In order to check
verification point 2, a virtual machine was launched on one of the OpenStack nova-
computes.

When private cloud-A’s traffic reached a peak, dodai-compute allocated another
server to it and dodai-deploy configured the cloud to have three servers (Fig. 11).

During this rerun, the application connection to the virtual machine was not inter‐
rupted. Nova-api and other software were continuously available to users. This was
possible because dodai-deploy can notice that software components are deployed and
services are running already on the two pre-existing servers. It deploys software

180 S. Yokoyama and N. Yoshioka

components only to the newly allocated server. Moreover, through the OpenStack nova
mechanism, the nova-scheduler automatically recognizes the new nova-compute.

On the other hand, when a bigger hadoop cluster is needed, private cloud-A should
release a server. In this experiment, we released the most recently allocated server, because
it was not the server on which the virtual machine was running. In a real situation,
however, we would need to monitor the allocations of virtual machines by nova-compute
and need to live migrate some of them to servers that will not be released (Fig. 12).

Fig. 12. Private cloud reduction.

In the experiment, the newly allocated server was released by using a dodai-compute
terminate-instance call. OpenStack nova detected the loss of one server for nova-
compute, and it did not try to launch virtual machines on that server later.

(1) Security
We verified that the network separation of the OpenFlow controller and the disk cleanup
process in machine pool segment maintained the security of the user information. It was
impossible to get into other clusters through the network and impossible to retrieve any
information of the previous user from the physical machines.

Fig. 11. Private cloud expansion.

A Distributed Cloud Architecture for Academic Community Cloud 181

(2) Ease of Application Development
We verified that the cluster networks did not have restrictions on broadcast or multi‐
cast. Users can develop applications with network multicasting functionalities on
elastic private environments. Moreover, we evaluated the deployment performance
of dodai-deploy for OpenStack and Hadoop. Because of the concurrent deploy‐
ments to the target nodes, the performance was almost flat regarding the number of
nodes. However, for Hadoop, there was an 8 % increase in deployment time in going
from n = 7 to n = 8. The increase was due to the CPU constraints of the dodai-deploy
server (Fig. 13). We should be able to avoid this by scaling up or scaling out the
dodai-deploy server.

Fig. 13. Deployment performance of dodai-deploy.

5.3 User Scenario According to U2 (Guarantee Regarding Delay)

In this scenario, a user of a service provided by a cloud system goes on a business
trip to a remote location. Because the longer physical distance causes a longer
network delay from the site where the service is provided, the user may experience
performance degradation as far as the response time goes.

(1) Extension to wide area network configuration
The evaluation environment of gunii was in a data center configuration. However,
our cloud on demand solution architecture allows for an easy extension to a wide
area network. Figure 14 shows how we can make this extension.

(2) Delay
The delay stays practically small because the cloud on demand solution can deploy
the corresponding service in a data center nearer to the user.

182 S. Yokoyama and N. Yoshioka

Fig. 14. Cloud on demand in a wide area network configuration.

5.4 User Scenario According to U3 (Guaranteed Availability in the Event of a
Disaster or a Large-Scale Failure)

In this scenario, the cloud system of a municipality is damaged in a natural disaster and
cannot continue to provide its services.

The disaster recovery operations used the resources of the remote municipalities
(Such measures would be pre-arranged).

(1) Cloud migration
We developed a cloud migration tool which can migrate OpenStack IaaS from site-A to
site-B by using dodai-compute, dodai-deploy and colony, and we demonstrated it in
public. It stored the OpenStack user database and snapshots as well as configuration
information for dodai regularly at site-A and restored them after reconstruction of the
OpenStack at site-B using dodai (Fig. 15).

Fig. 15. Cloud migration.

A Distributed Cloud Architecture for Academic Community Cloud 183

Moreover, we could migrate any software supported by dodai-deploy, i.e., Open‐
Stack, Hadoop, GridEngine and Eucalyptus.

(2) Performance of inter-cloud object storage PUT and GET
By making the object storage service OpenStack swift network-aware, the inter-cloud
object storage is almost equal in performance to local object storage for PUT and GET,
which is described in [12].

5.5 User Scenario According to U4 (Service Continuity)

Normally, if a provider suspends its business, its customers need to re-register with
different providers for similar services. To avoid such a situation, resources, applica‐
tions, and customer ID data for the services provided by one provider can be transferred
to the cloud systems of other providers in advance. Then, if its business is suspended,
its consumers can use similar services provided by the other providers.

(1) Cloud migration
As described in the previous section, however it not necessary for dodai to regularly
store a user database, snapshots, or configuration information.

(2) Performance of inter-cloud storage PUT and GET performance
Same as in the previous section.

6 Conclusions

We proposed a solution called cloud on demand and described a prototype implemen‐
tation based on the dodai and colony projects. The cloud-on demand was proved to be
feasible in the actual user scenarios in one data center. This architecture can be extended
to wide area networks using SINET L2VPN and VPLS services if we plug the upper
link from the OpenFlow switches into the SINET directly

We are now constructing a new prototype of cloud on demand upon SINET, and we
will evaluate its performance in this wide area network environment.

7 Future Work

In the BIG DATA scenario, data and processing components should be close enough to
each other, because the network latency often causes significant performance degrada‐
tion. Since the process size tends to be much smaller than data size, it is better for the
process move to data. One of the merits to use data centers is to put the process and the
data in the same place to reduce the network latency. In a sense, because the data have
“gravity”, data gather other data and those data attract processes.

In addition to that, the number of data centers that are cloud based is getting bigger
recently. These data centers’ infrastructure can be used in multi-tenant context. Because
of this multi-tenancy, effective management can be realized with software controlled
infrastructures. We are expecting to have cloud based hyper-huge data centers because
of this trend.

184 S. Yokoyama and N. Yoshioka

The scenario above works for the archive type data when the volume of BIG DATA
matters. If we think about velocity of BIG DATA like real-time stream data processing,
we have to slightly change the scenario. In this case, the network latency makes the
process components move to the source of the data stream. This means we need to have
distributed data center instead of centralized data center because the sources of the data
streams are distributed. The distributed data centers have to be multi-tenant for effective
resource usage as well as the centralize data centers do. This concludes that we need to
have cloud based distributed data center, which is the definition of distributed cloud and
its position can be seen in Fig. 16.

Fig. 16. The position of the distributed cloud.

In the context of distributed cloud discussion, there is comparison between few mega data
centers versus many micro data centers [13]. If we want to satisfy both volume and velocity
scenarios at the same time, we need to have the distributed cloud in the following sense.

Distributed cloud = Virtual cloud upon few mega DCs and many micro DCs

Virtual cloud providers allocate resource from real cloud providers as bare metal
machines or virtual ones. Using those machines virtual the cloud providers deploy clus‐
ters for each tenant according to their requests as shown in Fig. 16.

The distributed cloud is an extension of the cloud federation architecture described
in this paper (Fig. 17).

Fig. 17. Virtual Cloud Provider.

A Distributed Cloud Architecture for Academic Community Cloud 185

Acknowledgements. We would like to thank all the contributors to the dodai project, especially
Shin-ichi Honiden, Yoshitaka Kuwata, Masashi Ochida, Osamu Habuka, Takahiro Shida, Guan
Xiaohua, Motonobu Ichimura, Takahiko Yuzawa and Daishi Kimura.

References

1. https://github.com/nii-cloud/colony. Accessed 27th February 2014
2. https://github.com/nii-cloud/dodai-compute. Accessed 27th February 2014
3. https://github.com/nii-cloud/dodai-deploy. Accessed 27th February 2014
4. http://www.gictf.jp/index_e.html. Accessed 27th February 2014
5. http://openstack.org/. Accessed 27th February 2014
6. http://puppetlabs.com/. Accessed 27th February 2014
7. Sakai, H.: Standardization activities for cloud computing. NTT Tech. Rev. 9(6), 1–6 (2011)
8. http://www.sinet.ad.jp/index_en.html?lang=English. Accessed 27th February 2014
9. Yokoyama, S.: Cluster as a Service for self-deployable cloud applications. In: 2012 12th

IEEE/ACM International Symposium Cluster, Cloud and Grid Computing (CCGrid), pp.
703–704 (2012)

10. Yokoyama, S.: An academic community cloud architecture for science applications. In: 2012
IEEE/IPSJ 12th International Symposium on Applications and the Internet (SAINT), pp. 108–
112 (2012)

11. Yokoyama, S., Yoshioka, N., Ichimura, M.: Intercloud object storage service: colony. In:
CLOUD COMPUTING 2012, The Third International Conference on Cloud Computing,
GRIDs, and Virtualization, pp. 95–98 (2012)

12. Yokoyama, S.: A network-aware object storage service. In: The 2nd International Workshop
on Network-aware Data Management to be held in conjunction with SC12, pp. 556–561
(2012)

13. Hamilton, J.: On delivering embarrassingly distributed cloud services. In: HotNets (2008)

186 S. Yokoyama and N. Yoshioka

https://github.com/nii-cloud/colony
https://github.com/nii-cloud/dodai-compute
https://github.com/nii-cloud/dodai-deploy
http://www.gictf.jp/index_e.html
http://openstack.org/
http://puppetlabs.com/
http://www.sinet.ad.jp/index_en.html%3flang%3dEnglish

New Governance Framework to Secure Cloud Computing

Ahmed Shaker Saidah(✉) and Nashwa Abdelbaki

School of Information and Communication Technology,
Center for Informatics Science, Nile University, Cairo, Egypt

ahmed.shaker@nileu.edu.eg, nabdelbaki@nileuniversity.edu.eg

Abstract. Cloud computing is enabling proper, on-demand network access to a
shared pool of computing resources that is elastic in reserve and release with
minimal interaction from cloud service provider. As cloud gains maturity, cloud
service providers are becoming more competitive, which increase the percentage
of cloud adoption. But security remains the most cited challenge in Cloud. So,
while we are progressing in cloud adoption, we have to define key elements of
our cloud strategy and governance. Governance is about applying policies relating
to used services. Therefore, it has to include the techniques and policies that
measure and control how we manage cloud. In this paper, we develop an inno‐
vative governance model. We changed and tuned the Guo, Z., Song, M. and Song,
J governance model from theoretical model into practical model using Cloud
Control Matrix (CCM). But, governance model alone will not allow us to bridge
the gap between control requirements, technical issues and business risks. As a
result, we introduce a new Cloud governance framework using the processes on
the new Cloud governance model and controls in CCM. The Framework focuses
on using business drivers to guide cloud governance activities while considering
cloud risks as part of the organization’s risk management processes.

Keywords: Security framework · Governance model · Cloud computing

1 Introduction

Cloud Computing is a new term for an old service with new features. Many of us used
to have an e-mail account during the last two decades. Data location, storage and
processing are usually unknown to the user. In fact, this was a kind of Cloud service.
Cloud was known as on demand infrastructure in the 90s and as Grid/Utility computing
in the 2000s. Clouds and Grids are common in their vision, architecture and technology,
but they differ in security, programming model, business model, compute model, data
model and applications [1]. Earlier in these days, it was too risky to store our data outside
organization premises; safety was a concern.

Data is the most valuable asset in any organization. It can be categorized as PI
(personal information) or organizations’ data. Nowadays, all Internet users intensively
process and store data on the Cloud. Cloud Computing depends on sharing of resources
to gain economies of scale. It focuses on maximizing the effectiveness of the shared

© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 187–199, 2015.
DOI: 10.1007/978-3-319-25414-2_12

resources. Despite the benefits promised by Cloud computing, we see that essential
improvement on technologies and operations governance are needed to enable widely
adoption of Cloud services [2].

The best way to protect data outside organization premises is to define a policy to
organize the relation between the owner and service provider. Policy definition requires
well-developed information security governance framework [3].

It is mandatory for any organization to follow a framework for establishing infor‐
mation security governance environment. The framework will be utilized by the business
across the organization [4]. We create a new Cloud governance framework for helping
organization to govern the Cloud services. It is a measurable, sustainable, continually
improving and cost effective framework on an ongoing basis [5, 6].

The rest of this paper is organized into six sections. Section 2 discusses related
works in governance and Cloud computing. We will go through existing Guo’s Model
and show the gap between its theoretical model and practical world, and will go
through the pros and cons of the model. We propose our new Cloud Computing defi‐
nition in Sect. 3. Section 4 illustrates our proposed new model of Cloud Governance.
Our new governance framework is introduced in Sect. 5. Finally, conclusion and
future work are presented in Sect. 6.

2 Related Work

Cloud Computing is a relatively new term in the computing world. The definition of
Cloud Computing from NIST (2009) is very common and almost all other definitions
are part of this definition [7].

Cloud Computing becomes a huge market. Relations between services inside the
Cloud are complicated. Virtualization vendors use different APIs. This creates many
obstacles and challenges when moving between Clouds. Infrastructure inside the Cloud
contains many layers of shared resources. Software licensing and end users license and
agreement have many parameters and stages [8]. Federations and access control between
service provider premises and end user premises become vague [9].

The Cloud services become a self-service through websites. Customers can
customize orders by themselves, which mean that they need to access the Cloud via all
connectivity facilities. The user can increase or decrease the usage of the resources that
is distributed across all provider premises.

Cloud Computing service models (SaaS, PaaS, IaaS) can be deployed in public,
private or mixed model. User Control is varying from model to other and increasing or
decreasing depending on the features and capabilities provided by the service provider
or needed by the customer, (Fig. 1) [10].

In SaaS model as an example, the Cloud user accesses the web service through any
type of connectivity via web browsers, and he does not have control to the infrastructure
or applications running in the Cloud.

All of these features and facilities maximize security risks on the Cloud, open many
doors for hijacking, and increase possible system vulnerabilities. Risks will be elimi‐
nated or mitigated by a robust governance framework [11, 12].

188 A.S. Saidah and N. Abdelbaki

Governance consists of policies, guidance, processes and decision-rights for a given
area of responsibility. Corporate governance is to align processes and policies with
business to ensure arrival to the business objectives. IT governance is part of the corpo‐
rate governance and focuses on IT decisions and policies to ensure that IT assets are
used according to the approved policies and procedures [13].

IT assets are huge and distributed between customer and service provider premises.
They are classified into many types like people, policies, and equipment. It may be inside
the organization or outsourced. Here, governance is required to control and maintain
assets.

In many organization success stories, there is a harmony between managing the IT
assets and decisions made by management. DELL Supply chain success story is an
example of this harmony [14].

IT governance is responsible for aligning the IT assets with the business goals and
strategy to deliver values to the entity. Cloud Computing Governance is part of the IT
governance in the organization’s governance hierarchy.

Governance is to control and secure our data outside our organization premises. It
will align business speed to the Cloud and will cope with market demands. It helps also
to initiate a new IT operating model [15].

Organizations must ensure that the level of access they request is guaranteed into
the Service-Level Agreement (SLA); uptime must be audited regularly to ensure that it
conforms to the SLA [16]. There are many ways to mitigate risks in the Cloud using
technologies and policies [17]. Cloud governance makes the decision easier and balances
the investments and risks while gaining the Cloud benefits [18, 19].

Processes, policies, tools and even organization personnel will be unified under one
framework that makes the workflow easier and give the business some elasticity on
applying the framework.

A Cloud governance should contain processes to apply Cloud Computing inside
the organizations and applied controls to facilitate it. Moreover, it must adopt the

Fig. 1. Control level of Cloud Computing.

New Governance Framework to Secure Cloud Computing 189

organizational roles and responsibilities to ensure better support of implementing
Cloud Computing governance. Finally, it should use all available technology tools
that will help to apply the governance framework.

When implementing security governance, we need well-articulated policies and
procedures including controls. Security controls is the key to apply security governance.
CSA CCM is a well-defined industrial security control list [20]. We will distribute these
controls on the theoretical Guo’s model for aligning the model with the Cloud market.
We will demonstrate CSA CCM and Guo’s model in the next two subsections [21].

2.1 Cloud Control Matrix

The Cloud Security Alliance (CSA) Cloud Controls Matrix (CCM) is an initiative from
CSA to determine the baseline of security. It leads the Cloud market and helps customers
assessing the risks of all Cloud domains.

The CSA CCM provides a controls framework that covers almost all Cloud security
domains. CSA relates it to the standards already in the market for IT Governance like
COBIT. They mapped controls to the industry and practical life that help during the
process of transferring the Guo’s Model from theoretical model to practical model.

As a framework, the CSA CCM offers to the organization the required structure and
details related to information security tailored to the Cloud industry. It covers all Cloud
aspects and controls. Some controls are covered in IT governance models and other
controls, related to the Cloud system, are brand new.

By mapping these controls to security standards that are already implemented in the
market like COBIT and HIPPA, it helps in pointing to information security control
required by business and management strategy [22].

The main target of CSA CCM is to provide a standard management to security and
operational risk that will face any organization implementing Cloud Computing in its
infrastructure. This matrix is mitigating and minimizing security threats and vulnera‐
bilities in the Cloud by providing controls to each domain that covers almost all Cloud
security related topics.

CSA CCM contains eleven domains that cover all security issues related to Cloud
computing. They divide it by function. It means that controls related to legal issues will
be a domain and controls related to data governance will be a domain and so on.

Compliance is the first domain. It has six controls that cover audits, regulations, and
intellectual property. It also reviews legislative, regulatory and contractual requirement.
Data governance has eight controls that manage data objects containing information. It
classifies and assigns responsibilities, communication, labelling, policies, and data
destruction. Facility security has eight controls that secure working environment like
physical access, site authorization and asset management. Human resource security has
three controls that cover aspects related to humans like background screening and
employment termination.

Information security is the largest domain in CSA CCM; it has thirty-four controls that
take care of security management, policy, user access, training, benchmarking, encryp‐
tion, security incidents, infrastructure and auditing. Legal is the domain that controls agree‐
ments and reviews contracts with the national and international laws. It has only two

190 A.S. Saidah and N. Abdelbaki

controls. Operation management is taking care of resources planning and managing proce‐
dures and equipment. Risk management is a very important part of the matrix. It predicts
all risks happening in the Cloud or the project. It delivers a plan to control and mitigate
risks. Release management controls planned changes in production environment and set
policies and procedures to apply the new changes. It has five controls.

Resiliency is responsible for business continuity planning and environmental risks
mitigation. It has eight controls. Security architecture is the last domain containing
fifteen controls that address all regulatory requirements for customer access, data
security, network security including infrastructure and applications.

2.2 Guo’s Governance Model

The Guo’s Governance Model can be identified as the first proposed academic gover‐
nance model to our knowledge (Fig. 2). It outlines the necessary components for Cloud
governance. It was created based on four objectives of Cloud governance, which are
service, policy, risk, and compliance management. It classifies the components of Cloud
governance into three categories; policy, operational and management activities.

Fig. 2. Guo’s governance model

There is a gap between the model and the real world, which we cover in this paper.
We contribute in this paper to close this gap. The gap in the model can be identified after
we apply controls in the CCM to the Guo’s model. The CCM is a list of controls extracted
from real Cloud business. We can apply it to any Cloud Computing system and be sure
that most security aspects are covered. It helps transferring the theoretical model to an
applicable one.

First missing corner in the model is the aligning with business strategy. The gap
between IT and organizational alignment obstructs the adoption of Cloud computing.
In Cloud Computing system, an organization’s IT team has to be upgraded from being

New Governance Framework to Secure Cloud Computing 191

only technologists towards being also information and business experts. Therefore, the
organization should determine how Cloud Computing could best serve its business needs
while addressing how it may affect its current IT organization and governance.

In the Cloud, the traditional roles of CIO, IT support, service provider and even user
are changing dramatically. Organization applying security roles should align it with the
whole organization’s roles. It has to assure the harmony between controls and roles
governing the organization. This integration makes implementation easier and changes
the way employees can accept and apply these roles and responsibilities. This is the
second missing corner.

Roles and responsibilities may change during or after implementation of the Cloud
system. Therefore, change management should have a well-defined strategy because of
the nature of Cloud. It changes periodically and rapidly more than any other fixed
systems. Replacing defective items, applying patches, or upgrading firmware are a few
examples of the change procedures needed in Cloud environments. Taking resources
down for change, applying efficient change management techniques is a key to survive
in the Cloud. Change management is the third missing corner in the model.

Feedback process in a successful system improves the efficiency and reliability.
Using Cloud feedback process gives all parties the ability to ensure that the system
performs as expected. Guo’s model does not clearly state this type of feedback. Service
feedback is the fourth missing point in the model.

Due to asset distribution in the Cloud environment, asset management will be an
important part of Cloud governance. It should be stated clearly. Assets management
changes depending on the type of implementation and the agreements between the
parties. Asset management is another missing point in the model.

Last missing point is the exit strategy. It contains contract ending, data and systems
maintenance and it manages assets before and after exit. A Cloud exit strategy should
be as simple as putting data in the Cloud, but this is far from the case, especially in case
of proprietary public Clouds.

3 Our Proposed Definition of Cloud Governance

Cloud governance definition is still in the developing mode. Cloud Computing Use
Discussion Group (2010) defines Cloud governance as “the controls and processes that
make sure policies are enforced [23]”. Many organizations and groups define the Cloud
Computing governance in a different way.

According to our definitions, defining policies is important, but defining processes
to apply these policies is more important. Cloud governance model should be aligned
with corporate governance and IT governance. Moreover, it has to comply with organ‐
ization strategy to accomplish business goals.

In our experience, Cloud governance has to support business strategy and to ensure
service value, service quality and security irrespective of the control and locations of
the services. Therefore, we define Cloud governance as:

“Cloud governance is a framework applied to all related parties and business processes in a
secure way, to guarantee that the organization’s Cloud supports the goals of organization strat‐
egies and objectives.”

192 A.S. Saidah and N. Abdelbaki

4 New Model Prespective

Cloud governance is challenging. Technology is faster than the standards. We have to
take into consideration the future expansion and update.

Building Cloud governance increases the ability to its technology to grow not to
hinder it [24]. The governance process guarantees the rights of all stakeholders.

The challenge is the trade-off to achieve a governance model’s implementation plan
agreed by all parties. The plan should be elastic and customizable to all models and
business cases. The plan has to tolerate moving between the Service Providers (SP) and
their customers.

The vague nature of information interchange, the ubiquitous connectivity and the
old static controls, all require new thinking with regard to Cloud computing. How can
we implement the governance model without knowing the practical controls from real
world and its implementation?

Therefore, what we already did is transforming the Guo’s model to an applicable
framework. We distribute controls under each model and its components to illus‐
trate the practical implementation of the governance. We categorize the controls into
two main categories, normal controls and key controls. We reserve developing the
criteria to measure each control for future publications.

As we have seen, the Guo’s model is not a process oriented. To overcome the problem,
we redefine its three models (policy, operational, and management) to be processes. Then,
we correlate the different CCM controls to each relevant process. Thereafter, we create new
processes for the controls that are not relevant to any existing process.

We have to go deeply inside each model to determine the related controls to achieve
the goal of this model. The model should be understandable and the structure of the
model should be logical and reasonable.

To solve these issues we add, modify and update few categories of the Guo’s model
(Table 1). In the Management Model, we define clearly the Roles and Responsibilities
under the Security Management. We use it in aligning Cloud system roles with the
organization’s roles and responsibilities. In addition, we have added Service improve‐
ment to the Service Management to be used as a key of the feedback to increase system
reliability and efficiency.

Change Management will be part of the Management Model due to the rapid
changes in the Cloud service either from the customer side or from the provider side.

Under the Operational Model, we define the asset management, configuration
management and capacity planning. It supports the organization to operate its own Cloud
or the Cloud services they use. Moreover, we have added Capacity planning to enforce
changing the way of thinking inside the organization regarding the Cloud service. It
helps in the planning phase and it guides the organizations to meet future changing
demands of its services. Moreover, it supports the organization to take the right decision
about Cloud service.

Finally, we have added the exit policy to be stated clearly and be defined in any
contract separately to well define the procedures to be done to maintain user systems
and data after ending the Cloud service or moving to a new provider. It supports both
sides to be secure before or after service contracting.

New Governance Framework to Secure Cloud Computing 193

Now we have processes in the new model and each process has its own controls.
Each control has inputs and outputs. Control’s measures and tools depend on the

deployment model. We create a framework and put each process in its suitable stage.
The new framework is a conceptual structure to serve and guide organizations in
Cloud Computing adoption process.

Table 1. New cloud governance model.

5 New Cloud Governance Framework

The changes being driven by Cloud Computing and the growing sophistication of attackers
do represent new challenges. We solve these challenges by creating the Cloud Governance
Framework to control people, data, applications and infrastructure. Our security frame‐
work provides a more integrated, intelligent approach to Cloud Governance.

194 A.S. Saidah and N. Abdelbaki

An intelligent framework must improve itself continuously; it has to have a feedback
and service improvement process. We develop a new framework with five stages to
achieve this goal (Fig. 3).

It also solves the weakness of organization strategy alignment. The stages are:

• Strategic trigger
• Define and align
• Build and implement
• Deliver and measure
• Operate and feedback

Fig. 3. New Cloud governance framework.

Strategic Trigger is the first stage. It is the event that initiates the need to use the
Cloud computing. Business need is the main trigger for using the Cloud services. Other
trigger may be gaining market share due to strong competition in market. The company
needs a competitive edge. We use Cloud services to comply with a standard or a govern‐
ment rule. The major trigger is the technical need. An SP delivering services needs
technically a Cloud service [24]; for example, E-mail services.

This stage contains four processes. Business process management policy defines
interrelations between Cloud-based services. It analyses the business and considers the
service process reuse. Service discovery finds and discovers the existing services and
available technologies for new services. Capacity planning reviews the existing envi‐
ronment and future business extensions to plan the best way technically and financially
to achieve business goals. Exit policy is mandatory. Business needs changes to cope with
the market. It may require ending the Cloud service. Exit the Cloud service is more
complicated than joining and entering it. A well-defined plan is mandatory before
starting to use Cloud service.

New Governance Framework to Secure Cloud Computing 195

Define and Align stage is the planning phase of adopting the Cloud service or trans‐
forming the existing environment to the Cloud. It ensures that the Cloud services are
aligned to the business needs and actively supports them. Organizations using a Cloud
require their service to be successful. If processes and services are implemented,
managed and supported in the right way, the business will be more successful. This
means cost reduction, revenue increase, and achieving its business objectives. It is the
most important phase helping the decision makers with the economic and technical
preparations for Cloud services.

This stage contains six Processes. Data Policy defines data’s physical and logical
model, in addition to data performance and stability. Service policy builds a service
dictionary. It analyses the integration and separation of the service based on deployment
model. Policy management determines and reviews the service policy. Moreover, it
reviews the violation and solves the policy conflicts in order to prevent further problems.
Risk management defines risks when moving to the Cloud. It plans a mitigation process
and determines residual risks. Risk plan has to be reviewed with the organization and
provider policies. Jurisdiction is an important process. Law and regulations vary from
country to another. Organizations must review country laws where data is to be stored
and processed. Integration is a mandatory process if you have an existing infrastructure.
It plans the integration between the existing environment and the Cloud service.

Build and Implement stage covers issues related to people, processes and infrastruc‐
ture technology. It ensures cost-effective and the high quality provision of Cloud service
necessary to meet business needs. The blurred lines between the traditional technology
and Cloud services management means that an updated approach to managing Cloud
implementation is needed. This stage contains eight processes. Authentication deter‐
mines the authentication mechanism that will be used in the Cloud and between organ‐
ization systems and Cloud. Authorization is the level of access that will be granted to
users from the organization side and from the provider side as well. Metadata repository
is the storage of policy. It considers the location of polices and roles. Asset management
monitors and maintains things of value to an organization. It manages the logical and
physical assets and even human assets. Configuration management and documentation
establishes and maintains performance, functional and physical attributes. It also estab‐
lishes and maintains configurations within Cloud service throughout its life. Roles and
responsibility is a dictionary, which determines the roles and the responsibility of each
contributor in the Cloud service. Privacy considers the data encryption and the location
privacy. Access takes care of the access policy in the Cloud because of using shared
resources.

Deliver and Measure stage ensures that the implemented service is aligned with the
planned services. It measures and compares the outputs with the references that were
determined before. This stage contains four processes. Service delivery is moving the
service to the execution environment. SLA Management ensures that all service levels
are met. It reviews contract for penalties. Errors and expectation management reviews
the current environment with the planned one. It analyses the running systems and
reports the existing errors. Auditing and logging track all the activities and defines
whom, when and where this activity was done. It helps during external and internal
auditing.

196 A.S. Saidah and N. Abdelbaki

Operate and Feedback stage is the final stage in the framework. Feedback for many
organizations becomes a temporary project recalled only in case of malfunction or failure
that affects the business. After resolving the issue, the concept is forgotten until the next
failure occurs. The most important task starts after implementation. How do we gain
benefits of using the new service? How do we measure, report and operate the new
service to improve the service delivery? This requires wise decisions to operate and
control feedback. It clearly defines goals, documented procedures, and identified roles
and responsibilities.

This stage contains four processes. Monitoring collects transaction and access data
to present a service statistics. It helps the management to review the existing environ‐
ment and to plan for the future expansion. Adaptation/transformation manages the
unavoidable consequences and changes in the running service. Service improvement
assesses measures and improves all the system components. It uses the data collected
in the execution phase. Change management transforms the service to a desired future
state. Due to rapid changes in technology, the organization must cope with these
changes. All changes have to be approved from all parties.

We can apply this framework to any Cloud system. We need controls and tools that
can activate each process inside the framework. We have to state controls under each
model and its components. We classify the controls into two types, key control and
normal control. Key control is the control that will be mandatory and necessary to apply
this process into the framework. Normal control is the control that has some inputs but
is not mandatory to achieve the main goals of the process. We have distributed ninety-
eight controls from CSA-CCM on each process in the framework. Then, we determine
the key and normal control. We can use this framework in the future to serve the “the
Security as a Service” model (SecaaS). So the SecaaS providers will have much wider
view and capabilities than any customer to provide such a service to customers and will
have the ability technically and financially to facilitate all of these controls. Due to
limited space, we reserve publishing the process controls details to future publications
with a detailed explanation to each control and its relation and impact to the processes.

6 Conclusion and Future Work

A Cloud system has different deployment models and architecture. Although it offers
an economy of scale solution to the market, it creates new risks and challenges in the
IT environment. In this paper, we introduce our new Cloud Computing governance
model that represents a perspective combination of theoretical and practical implemen‐
tation. We turn the Guo’s theoretical model to a practical model to enable applying it to
the industry. We identify the gap using CCM, and then identify controls related to each
process and its effect using CCM. We add, modify and update the missing corners in
the model. We create a new governance framework. It is a five stages framework with
a service feedback. Each stage has few processes. Each process contains controls. Each
control has inputs, outputs, and tools to activate and measure it. The framework is suit‐
able for all Cloud deployment models. In the future, we will apply the new governance
model and framework to all Cloud models (SaaS, PaaS, and IaaS). We will specify inputs

New Governance Framework to Secure Cloud Computing 197

and outputs to each control. We will define the RACI (Responsible, Accountable,
Consulted, and Informed) Model and identify persons that must be informed and
accountable based on the deployment model. In addition, we will extract and develop
SLA from the new Cloud governance model. We will relate controls effect directly to
the SLA.

References

1. Foster, I., Zhao,Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree
compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10, 12–16 Nov
2008

2. Popović, K., Hocenski, Z.: Cloud computing security issues and challenges. In: MIPRO,
Proceedings of the 33rd International Convention, pp. 344, 349, 24–28 May 2010

3. Borgman, H.P., Bahli, B., Heier, H., Schewski, F.: Cloudrise: exploring cloud computing
adoption and governance with the TOE framework. In: 46th Hawaii International Conference
Fiona System Sciences (HICSS) (2013)

4. Mukherjee, K., Sahoo, G.: Cloud computing: future framework for e-Governance. Int. J.
Comput. Appl. 7(7), 0975–8887 (2010)

5. Li, X.-Y., Zhou, L.-T., Shi, Y., Guo, Y.: A trusted computing environment model in cloud
architecture. In: International Conference on Machine Learning and Cybernetics (ICMLC),
pp. 2843–2848, 11–14 July 2010

6. Ahmad, R., Janczewski, L.: Governance life cycle framework for managing security in public
cloud: from user perspective. In: 2011 IEEE International Conference on Cloud Computing
(CLOUD), pp. 372–379, 4–9 July 2011

7. NIST, The NIST Definition of Cloud Computing (NIST Special Publication 800-145), Sep
2012

8. Li, J.Z., Chinneck, J., Woodside, M., Litoiu, M.: Deployment of services in a cloud subject
to memory and license constraints. In: IEEE International Conference on Cloud Computing,
CLOUD 2009, pp. 33–40, 21–25 Sept 2009

9. Copie, A., Fortis, T., Munteanu, V.I., Negru, V.: From cloud governance to IoT governance.
In: 27th International Conference on Advanced Information Networking and Applications
Workshops (WAINA), pp. 1229–1234, 25–28 March 2013

10. NIST, NIST Cloud Computing Security Reference Architecture (NIST Special Publication
500-299) (2012)

11. Furht, B., Escalante, A.: Handbook of Cloud Computing. Springer, Heidelberg (2010)
12. Sixth Annual Meeting of the Internet Governance Forum, SOP Workshop 116: Cloud

governance (2011)
13. McWiliams, G., White, J.: Dell to derail: Get into gear online. Wall Street J. Bl, 1 December

1999
14. Mather, T., Kumaraswamy, S., Latif, S.H.: Cloud Security and Privacy. Oreilly, Sebastopol

(2009)
15. ISACA (Information Systems Audit and Control Association): IT control objectives for cloud

computing: controls and assurance in the cloud. IN: ISACA (2011)
16. Guidelines on Security and Privacy in Public Cloud Computing (NIST Special Publication

800-144), NIST (2012)
17. ENISA, Cloud Computing Risk Assessment (2009). http://www.enisa.europa.eu/act/rm/files/

deliverables/cloudcomputing-risk-assessment

198 A.S. Saidah and N. Abdelbaki

http://www.enisa.europa.eu/act/rm/files/deliverables/cloudcomputing-risk-assessment
http://www.enisa.europa.eu/act/rm/files/deliverables/cloudcomputing-risk-assessment

18. Morin, J., Aubert, J., Gateau, B.: Towards cloud computing SLA risk management: issues
and challenges. In: 2012 45th Hawaii International Conference on System Science (HICSS),
pp. 5509–5514, 4–7 Jan 2012

19. Cloud Security Alliance (2012). https://cloudsecurityalliance.org/research/ccm/
20. Guo, Z., Song, M., Song, J.: A governance model for cloud computing. In: 2010 International

Conference on Management and Service Science (MASS), pp. 1–6, 24–26 Aug 2010
21. Sahibudin, S., et al.: Combining ITIL, COBIT and ISO/IEC 27002 in Order to Design a

Comprehensive IT Framework in Organizations. In: Second Asia International Conference
on Modeling & Simulation, AICMS 2008, pp. 749–753 (2008)

22. Cloud Computing Use Cases group (2011). http://cloudusecases.org/
23. Internet Governance Forum (IGF), workshop 116, Security, Openness and Privacy – Cloud

Governance (2011). http://www.intgovforum.org/cms/component/chronocontact/?
chronoformname=WSProposals2011View&wspid=116

24. Borgman, H.P., Heier, H., Bahli, B.: Cloudrise: opportunities and challenges for IT
governance at the dawn of cloud computing. In: 45th Hawaii International Conference on
System Sciences, Big Island (2012)

New Governance Framework to Secure Cloud Computing 199

https://cloudsecurityalliance.org/research/ccm/
http://cloudusecases.org/
http://www.intgovforum.org/cms/component/chronocontact/?chronoformname=WSProposals2011View&wspid=116
http://www.intgovforum.org/cms/component/chronocontact/?chronoformname=WSProposals2011View&wspid=116

Towards Modelling Support for Multi-cloud
and Multi-data Store Applications

Marcos Aurélio Almeida da Silva(✉) and Andrey Sadovykh

Research and Development, SOFTEAM, 8 Parc Ariane Immeuble Le Jupiter, SOFTEAM,
78284 CEDEX, Guyancourt, France

{marcos.almeida,andrey.sadovykh}@softeam.fr

Abstract. The support to cloud enabled databases varies from one cloud provider
to another. Developers face the task of supporting applications living in different
clouds, and therefore of supporting different database management systems. To
these developers, the challenge lies in understanding the differences in expres‐
sivity between data stores and the impact of such differences on the rest of the
application. The advent of the NoSQL movement increased the complexity of
this task by leveraging the creation of a large number of cloud enabled database
management systems employing slightly different data models. In this paper, we
will present a modelling approach that will allow developers to consider the
impact of these features to different concrete deployment scenarios in multiple
clouds. This approach is currently being developed on the JUNIPER and MODA‐
Clouds FP7 projects.

Keywords: Data stores · NoSQL · Data migration · Modelling

1 Introduction

A decade after the advent of the first cloud based solutions, it is clear to companies that
migrating to cloud platforms is cost effective [1]. The success of the cloud lead to the
advent of multiple cloud provider offerings. As in any nascent market, there are no
established standards. Economically speaking, on the one hand, the multiplication of
offerings reduces the prices and makes cloud and multi-cloud applications more and
more interesting to companies. On the other hand, the consequent fragmentation of the
market, makes the life of cloud developers harder, since it increases the complexity of
the development and maintenance of applications.

In this paper we focus on the challenges related to data stored on the cloud. The
problem stems from the fact that different cloud providers support different database
management systems (DMS). Developers have then a high degree of flexibility, ranging
from the one they have on Infrastructure As a Service providers, in which virtually any
DMS can be installed; to the one they have in the Platform as A Service providers, which
usually support only a very specific subset of DMSs. Finally, in Software as a Service
providers, developers are usually only able to store data opaquely behind provider
specific APIs.

© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 200–212, 2015.
DOI: 10.1007/978-3-319-25414-2_13

The consequences of the fragmentation of the support of DMSs by cloud providers
are amplified by the so-called NoSQL “movement”. It consists of a series of DMSs that
strip the well-known SQL based relational DMSs from some for their characteristics in
order to increase their performance. The problem is that different applications usually
have different performance bottlenecks, which leads to different sets of optimizations
that need to be applied to SQL DMSs to make them adapted to each application. This
lead to the existence of a myriad of NoSQL DMSs, based on slightly different sets of
optimizations upon traditional DMSs or even based on completely different data models,
fine-tuned to specific applications.

For a developer, building and maintaining a cloud application means dealing with
all this fragmentation. The main hypothesis of this paper is that in order to deal with
these concerns, one, first of all, needs to understand the differences in expressivity
between the data models provided by different DMSs. In this paper we are going to
present the main concepts behind most used cloud DMSs. We’ll use this classification
in a case study in which we identify the best DMSs to support parts of the data manip‐
ulated by an application. These concepts will then be applied on a concrete modelling
approach to describe static and dynamic aspects of DMSs.

The present work presents part of the ongoing work in the EU FP7 projects MODA‐
Clouds and JUNIPER. These projects intend to tackle multi DMS challenges by means
of model driven approaches to allow developers to model applications on a very high
level. Developers can then have their models analysed by automated tools and to have
code automatically generated from it. The MODAClouds project focuses on public
clouds and in providing automated tools to help data design. The JUNIPER project
focuses on private clouds and in providing analysis tools to make sure that a particular
set of DMSs respects a given set of real time constraints.

This paper is structured as follows. Section 2 details the context of data manage‐
ment in multi cloud applications and introduces the fragmentation of databases in
this domain. This section also presents a motivating example on these kinds of appli‐
cations. Section 3 presents the most important concepts used in multi-cloud DMSs,
and a modelling approach to support them. Finally, Sect. 3 applies the modelling
approach to the motivating example. To conclude, Sects. 4 and 5 present related
works and conclusions of this paper.

2 Multi-cloud Applications and the NoSQL “Movement”

2.1 Overview

Clouds started as ways to offer all this as a service, in a “pay as you” go way. That means
that a cloud provider would create a big data centre, and would use it to offer virtual
machines to clients. On top of purely infrastructure driven cloud solutions, platform
driven ones came into being. In this case, cloud providers do not offer virtual machines
and storage device, but instead, they offer software platforms. The customer then is only
responsible for installing their application on the provided platform while the cloud
provider will dimension the needed machines, storage and load balance strategies for
the user’s application [2].

Towards Modelling Support for Multi-cloud 201

The main disadvantage of clouds is that users have much less flexibility than in a
“on premises” solution. Each cloud provider provides only a limited set of configurations
of machines, storage and platforms, while on premise solutions allow for unlimited sets
of configurations. Each cloud is also optimized for a limited range of applications, i.e.
some clouds are optimized to running applications involving fast running queries and
long running background processes; while others may also accept long running queries
over data. One way to mitigate this heterogeneity problem is to use multiple cloud
providers, putting parts of the application on each provider, trying to find the best match
between the cloud and the application [3, 4].

As one could expect, the data storages supported by each cloud provider vary from
one offering to another. This is so, because data storage is nowadays a much complicated
matter than it was years ago. It doesn’t consist anymore of choosing between traditional
relational databases or home grown file based data formats. Now, developers have a
myriad of Data Management Systems (DMS), each of them optimized to a particular
set of data structures. This is the result of the NoSQL “movement”, which in fact intends
to improve the efficiency of relational DMSs by constraining the data structures they
support and the queries that they can answer.

The downside for the programmer is that designing a cloud application is not only
a matter of choosing the “cheapest cloud provider”, but choosing the provider that
supports the DMSs backed by the best data structures to represent the application data.
One still needs to think about the cost and performance costs involved in transferring
data from one cloud to another, and consequently from one DMS and backed data struc‐
ture to another.

The main objective of this paper is helping developers in choosing the best DMSs
for their data and in understanding, by the use of models, the performance and
expressiveness trade-offs involved in moving data from one DMS to another. In order
to do so, we intend to provide a model of the data structures and queries supported by
existing NoSQL and SQL based DMS. Developers will then be able to develop high
performance applications, losing as least as possible when moving data from one DMS
to another.

2.2 Motivating Example: The MiC Application

The MiC (Meeting in the Cloud) application [5] is a social network which allows users
to maintain user profiles in which they register they topics of interests. The MiC appli‐
cation then groups users by similarity, allowing users to interact with their “best
contacts”, based on the answers given by each user in their profiles.

Figure 1 presents a simplified view of the data model behind the MiC application. It
stores, Messages posted by UserProfiles in Topics associated to Questions.
UserRatings store ratings given by UserProfiles to Topics. UserRatings
also include Pictures of users. Finally, and UserSimilarity stores pairs of
similar users.

202 M.A. Almeida da Silva and A. Sadovykh

Fig. 1. The data model of the MiC Application.

When developing the MiC application, developers need to decide on using an infra‐
structure or platform as a service solution; and then on which specific provider the
application is going to be deployed. When it comes to designing the data layer of the
application, the developer has to decide on which DMSs will be reused and which part
of the data is going to be stored on each DMS.

In order to illustrate the complexity of these choices, let us suppose the developers
want to use platform as a service cloud providers, in order to reduce the cost of managing
the infrastructure and to focus on the application design. Suppose they want to choose
between Microsoft Azure, Heroku and Google App Engine.

Without going into the details on each DMS, Table 1 shows that each provider
includes a variety of different data stores. Each DMS supports slightly different kinds
of data, with different levels of details.

Table 1. Comparing possible platform as a service providers for the MiC application.

Provider DMS

Microsoft azure Table Service, Blob Service

Heroku Postgres, Cloudant add-on

Google app engine Datastore, Blobstore

Towards Modelling Support for Multi-cloud 203

For example, on the one hand, blob services support hash like structures that asso‐
ciate binary data to unique keys. On the other hand, table services, Google Datastores
and the Cloudant add-on store multiple pieces of data associated to a single key. The
former are optimal for queries on leys, while the later may support filters and more
complex queries on the values associated to each key.

This paper focuses on the static and dynamic trade-offs involved in storing different
kinds of data in different DMSs, eventually in different cloud providers. The cost opti‐
mization involved in this task is out of the scope of the present paper.

3 Cloud Based DMS Concepts and Comparison

In this section we present the main concepts concerning the data design in Big Data
Real-time systems. These concepts are going to be presented in Sect. 3.1 and used to
compare the most popular DMSs in Sect. 3.2.

3.1 Main Concepts

The main concepts related to data structures are summarized in Fig. 2. They are based
on an extensive review of relational and NoSQL DMSs initially published in [6]. The
first aspect to be dealt with at this section is the underlying data abstraction supported
by the database. That is important because storing the same data under different data
abstractions may lead to data loss and/or increase the complexity of the application code.

Fig. 2. Kinds of Data Structure related concepts.

204 M.A. Almeida da Silva and A. Sadovykh

The next aspect is the one of how each system uniquely identifies data stored in it.
This is usually done by means of a piece of data called Key. Notice that keys are dispen‐
sable in object oriented databases; because objects are unique by themselves, no matter
the data they contain. Keys may be atomic or composed of many pieces of data (they
are then called Composite keys). Additionally, File paths are special kinds of keys that
uniquely identify documents in file systems. Finally, keys may be Ordered or not.

The Values stored in the database are represented differently from one system to
another. They can represent Single or Multiple columns containing primitive types only
or Documents, which stand for non-structured blobs of information. Finally, columns
may be Single or Multi-valued.

Links between different pieces of information are established differently in different
kinds of database. In tuple based ones, Foreign-keys are generally used, while in object
oriented ones Relationships are used. A relationship is a direct link from an object to
another, allowing navigation usually in constant time. Foreign-keys link two tuples by
adding the key from one tuple as part of the columns represented in another. Lookups
from tuples using foreign-keys may vary from logarithm time complexity in single
primitive ordered keys, to linear time in non-ordered keys.

Different tools also provide different strategies for Aggregating data. Tuple spaces
and Regions group objects or tuples in different containers, so that items that are most
accessed together (from a single region) can be retrieved more quickly. Tuple spaces
differ from regions by the fact that they are also a concurrent programming mechanism:
processes can put and take tuples from the tuple space, i.e. no two processes can take
the same tuple at the same time. The third aggregation technique is called Column
families. In this case, the columns that form each tuple are grouped into families of
columns that should be stored together, accelerating analysis over the whole column
(e.g. summing all values).

3.2 Comparing Cloud Based DMSs

Table 2 presents and compares the main kinds of Big Data databases based on the
concepts presented in the previous section and presents the main implementations for
each category of database.

Distributed file systems represent data as an association between file paths (used
as keys) and documents (that represent file content). The underlying data abstraction
paradigm is the object oriented one, i.e. files are not uniquely identified by their content,
but only by their paths (usually, several paths may point to a single file).

The Key-value stores represent data as simple tuples containing simple primitive
keys and a single column of data. Ordered key-value stores support ordered keys, and
therefore allow retrieval of ranges in linear time on the length of the range, whereas in
Key-value systems this operation may be quadratic. Document stores are also a special
case of key-value stores in which the single column in each row (apart from the key)
can store an arbitrarily complex document. Notice that these four kinds of data stores
may be referred to generally as Key-value stores.

Towards Modelling Support for Multi-cloud 205

Table 2. Comparing cloud enabled databases.

Category Data
Abstr.

Keys Values Links Aggregation Examples

Distributed file
systems

Object Primitive
(File Path)

Document – – HDFS,
Lustre

Key-value store Tuple Primitive Single
Column

– – Amazon
DynamoDB

Ordered
key-value store

Tuple Ordered Single
Column

– – Memcache DB,
Redis

Document store Tuple Primitive Document – – MongoDB,
CouchDB,
Riak SimpleDB

Big table Tuple Primitive Multiple
Columns

– Column
Families,
Regions

Google
BigTable,

Cassandra,
HBase

Object
database/RDF
store

Object – Multiple
Columns

Relation‐
ships

– Neo4j,
RavenDB,

FlockDB,
InfiniteGraph

Multivalued data‐
bases

Tuple Multiple
Multivalued
Columns

– jBASE, Caché

Tuple store Tuple – Multiple
Columns

– Tuple
Spaces

Gigaspace,
Javaspaces,

Tarantool

Relational data‐
base

Tuple Composite
Primitive

Multiple
Columns

Foreign
Keys

– MySQL

Big tables are tuples with a primitive key and multiple columns aggregated in fami‐
lies and rows that can be grouped into regions. Object databases represent objects
which contain multiple columns (or fields) and are connected by means of relationships.
Multivalued databases are systems that allow more than one value to be stored at a
time for a column. Expressiveness and Performance Trade-offs

Tuple stores are databases that support tuple spaces. Finally, Relational databases
are tuple based databases supporting composite keys and foreign keys.

206 M.A. Almeida da Silva and A. Sadovykh

3.3 Modelling Approach

Figure 3 shows the basis of the modelling approach developed in the JUNIPER project
applied to the MiC application. The JUNIPER project deals with the problem of multiple
clouds and multiple data stores by means of a modelling approach describing applica‐
tions in terms of big computation and storage units called programs. Programs commu‐
nicate by means of well-defined interfaces, and communication overhead is dealt with
by means of code generation.

Fig. 3. JUNIPER modelling approach applied to the MiC example.

11 programs compose the MiC application. The NewPost, DisplayQuestion,
Download, ShowCase, and Register programs provide, each of them, part of the
interface to the user. The Message, CPU Log and User programs, implement business
logic and interface with the DMS program (called Database). The CPU monitoring
and Compute Similarity programs are responsible respectively of computing moni‐
toring information (for bug fixing purposes, and similarity information between user
profiles). UML ports and lollipop notations are used to represent the communication
channel between programs.

As shown in Fig. 4, DMSs are represented by means of programs specialized in data
storage. The interface of these DMS programs is tailored to support the data modelling
concepts under each DMS. For example, ordered and unordered key value stores differ
on the supported methods, since the former are able to perform sequential searches on
data while the later are not. Under the JUNIPER modelling approach, specific

Towards Modelling Support for Multi-cloud 207

implentations of the different concrete DMSs under the interfaces provided in Fig. 4,
will be provided. This will allow application developers to interoperate similar databases
located in different clouds and to promptly notice the semantic difference between the
DMSs supported by each cloud and to adapt the application code appropriately.

Fig. 4. Different DMS programs represented in JUNIPER approach (Operation parameters and
return values omitted for the sake of simplicity).

The modelling approach presented up to now is based on UML, a standard modelling
language. The main drawback of UML in this context is that some of the data modelling
related concepts presented at this section are not supported by UML. That is why, in the
JUNIPER project, we extend UML with the missing concepts.

Three big data related concepts are not supported by UML: (i) the concept of Key
is not supported. Since UML is an object-oriented language, instances are objects by
default. The concepts of (ii) vertical and (iii) horizontal partitions are also not
supported by UML since for UML they are regarded as concepts too specific to be dealt
by UML.

In JUNIPER, we use the standard mechanism of profiles provided by UML to extend
the language. Table 3 presents the four new stereotypes will be added to the language,
and the existing concepts they extend. The key stereotype will be added to .entity
attributes, indicating that the tagged attributes identify uniquely the object. The Verti‐
calPartition stereotype will be added to classes representing such partitions. UML
Dependencies will be used to link vertical partitions to the columns on the same family.
The HorizontalPartition stereotype will be added to an entity class stating that the
instance of this classes will be partitioned according to the values of their keys.

208 M.A. Almeida da Silva and A. Sadovykh

Table 3. UML profile with missing concepts.

Stereotype UML meta-class

Key Attribute

VerticalPartition Class

HorizontalPartition Class

Figure 5 illustrates the use of the mapping presented on the current and previous
subsections. The UserProfile entity got an id attribute that uniquely identifies the
UserProfiles (i.e. it is a key for this entity), the topics of a UserProfile can
be stored on an external vertical partition (i.e. not on the same partition as the rest of the
user profile information) and the UserProfile is tagged as having horizontal parti‐
tions enabled, i.e. instances may be partitioned on different machines to make access to
their information faster.

Fig. 5. Extension of the MiC application data model with (big) data modelling concepts.

With a combination of an extended UML profile for data modelling, and a library of
DMS high level instantiable DMSs models, our approach will allow developers to
represent either static (data types, structure and partitioning concerns) and dynamic
(DMS available interfaces and parameters). Designers and developers can therefore
support multiple clouds and (big) data stores. They can support different stores imple‐
menting the same/similar interfaces and without drastic changes on the applications
code, or support different DMSs and know, because of the models, the semantic differ‐
ences between DMSs.

4 Related Work

The main problem addressed by this paper is the one of understanding and documenting
the trade-offs between different cloud DMSs, in order to optimize the deployment of
application data in multiple clouds. Past work has tried to address this problem but in
different ways. We classify these works into two categories: (i) the ones that try to hide
this complexity from the developer, (ii) the ones that allow the developer to work on
surpassing such complexity.

Towards Modelling Support for Multi-cloud 209

We consider that approaches in the first category are not best suited to developers that
need to extract the most from cloud data stores, since any black box that hides the real
complexity of the DMSs is going to be efficient only in a restricted set of situations. The
present work falls in the second category, but differently from other works, that try to
provide tools under which the developer can himself try to bridge the semantic gap between
different tools, we show explicitly the gap and the involved gaps to the developer.

In the first category we would put the systems that try to automatically bridge the gap
between different database categories. This group starts out by the tools that facilitate the
use of relational data stores by object oriented applications [7–9].

In the non-relational world some tools try to do the same. A first set of tools [10–15]
reuses the concepts defined by JPA, which is a very popular system of annotations over
Java code (i.e. an object oriented model of data), to translate an object oriented model
represented by a set of Java classes into a non-relational databases. Other tools do the same
thing for relational models [16, 17]. They provide a relational SQL-based interface to non-
relational NoSQL databases, allowing existing relational modelling approaches to be
reused to model non-relational databases. Finally, Spring Data [18], provides different
interfaces for different NoSQL databases.

This comes with the drawback of the inherent loss of information in the translation
process or the loss of object-orientedness in the object oriented model in some corner
cases.

Other approaches do not try to hide the non-relational concepts behind relational ones,
but instead, propose unified abstract modelling languages. These languages try to repre‐
sent the common concepts that are present in many different non-relational stores in a
uniform way. Two examples of such languages are FQL [19] and UnQL [20]. The former
received this name because it was created to support “federations” of databases. A federa‐
tion of databases is a set of data stores, possibly storing data under different paradigms
(relational or non-relational). The FQL language is then based on SQL but is able to query
non-relational data bases. Its main drawback is that it supports only data retrieval, i.e. it
provides no Data Definition Language. A similar approach for dealing with federated data‐
bases can be found in [21]. The UnQL language stands for Unstructured Query Language.
It follows a similar approach, but is limited to unstructured (and therefore non-relational
databases). It is targeted only to data stores containing JSON documents.

On the second category we will find tools such as such as Pentaho [22] and Yahoo!
Pipes [23], which are Data Integration tools. They offer visual editors that allow one to
describe how data coming from different sources, following different schemas and data
types can be mapped into different data types and then fed to other systems. The semantic
gap between different DMSs needs to be understood and filled by the developer.

In scientific literature, some papers also discuss the differences between the offerings
of cloud providers and their supported DMSs. A good example of this kind of work is
[24]. In this work, the different cloud providers are described along with their features and
storage solutions. However the referred paper focuses on runtime characteristics (security,
load balancing, fault tolerance etc.) and not on the impact of the design time storage
choices to the cloud application.

More recent works such as [25–27] go into the concepts behind different DMSs, their
runtime properties, preferred use cases and supported queries. However these works are

210 M.A. Almeida da Silva and A. Sadovykh

usually restricted to some specific kinds of cloud storage (usually variations of key-
valued stores), and compare tools mostly based on runtime characteristics instead of
design time ones.

5 Conclusion

The multiplication of cloud providers has both positive and negative impacts on indus‐
trial applications. On the positive side, we have the increasing availability and multi‐
plicity of cloud providers that allows for the existence of clever applications profiting
from the best of different providers. On the negative side, we have the fragmentation of
the market that makes developing such applications much harder. In particular, main‐
taining them (fixing bugs and eventually moving to other clouds) becomes much harder
than for regular non-cloud applications.

In this paper we investigated this problem in the point of view of the developer that
needs to design data structures and applications that will be potentially deployed on
different clouds and on different data management systems (DMS). More specifically,
we investigated the main concepts behind the different DMS, the semantic gap between
different databases, and proposed a modelling approach to take them into account.

The present work is actually being implemented as part of the FP7 projects MODA‐
Clouds and JUNIPER. Code generation is actually supported as a module to the Modelio
open source modelling environment. In MODAClouds, the code and model generators
are coupled with architecture and data definition tools that allow the analysis of the
application behaviour and the generation of application and data deployment scripts. In
JUNIPER, the code and model generation tools described here are coupled with real-
time analysis tools, to help developers optimize their design w.r.t the real-time
constraints of the applications.

As future works, we are currently working providing a library of DMSs types/inter‐
faces and code generation support from models to actual implantation. Our objective is
to allow developers to reuse them on their real-time big data pipelines. An extension of
the model presented in this paper with concerns unrelated to data structures (i.e. support
to transactions, programming language integration etc.) is also under consideration for
future works.

Acknowledgements. The research reported in this article is partially supported by the European
Commission grants no. FP7-ICT-2011-8- 318484 (MODAClouds) and FP7-ICT-2011-8- 318763
(JUNIPER).

References

1. Rackspace, 88 per cent of cloud users point to cost savings, according to Rackspace Survey,
13 February 2013. http://blog.rackspace.co.uk/in-the-industry/88-per-cent-of-cloud-users-
point-to-cost-savings-according-to-rackspace-survey/. Accessed June 2013

Towards Modelling Support for Multi-cloud 211

http://blog.rackspace.co.uk/in-the-industry/88-per-cent-of-cloud-users-point-to-cost-savings-according-to-rackspace-survey/
http://blog.rackspace.co.uk/in-the-industry/88-per-cent-of-cloud-users-point-to-cost-savings-according-to-rackspace-survey/

2. Khajeh-Hosseini, A., Greenwood, D., Sommerville, I.: Cloud migration: a case study of
migrating an enterprise IT system to IaaS. In: 2010 IEEE 3rd International Conference on
Cloud Computing (CLOUD), Miami, FL (2010)

3. Liu, T., Katsuno, Y., Sun, K., Li, Y.: Multi cloud management for unified cloud services
across cloud sites. In: IEEE International Conference on Cloud Computing and Intelligence
Systems (CCIS), Beijing (2011)

4. Singh, Y., Kandah, F., Zhang, W.: A secured cost-effective multi-cloud storage in cloud
computing. In: IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Shanghai (2011)

5. Giove, F., Longoni, D., Shokrolahi Yancheshmeh, M., Ardagna, D., Di Nitto, E.: An approach
for the development of portable applications on PaaS clouds. In: Proceedings of the 3rd
International Conference on Cloud Computing and Service Science (CLOSER 2013) (2013)

6. SOFTEAM; University of York, D5.1 – Foundations for MDE of Big Data Oriented Real-
Time Systems (2013)

7. DB-UML Database Modeling Tool. http://argouml-db.tigris.org/. Accessed 8 November
2013

8. Hibernate: Relational Persistence for Java and .NET. http://hibernate.org. Accessed 8
November 2013

9. DeMichiel, L.: JSR 131:Java Persistence API, Version 2.0, Sun Microsystems (2009)
10. Acid House. https://github.com/eiichiro/acidhouse. Accessed 8 November 2013
11. Kundera. https://github.com/impetus-opensource/Kundera. Accessed 8 November 2013
12. PlayORM. https://github.com/deanhiller/playorm. Accessed 8 November 2013
13. DataNucleus Access Platform. http://www.datanucleus.org/. Accessed 8 November 2013
14. Hibernate Object/Grid Mapper. http://www.hibernate.org/subprojects/ogm.html. Accessed 8

November 2013
15. Morphia. http://code.google.com/p/morphia/. Accessed 8 November 2013
16. Toad for Cloud. http://toadforcloud.com/index.jspa. Accessed 8 November 2013
17. eobjects.org MetaModel. http://metamodel.eobjects.org/index.html. Accessed 8 November

2013
18. Spring Data. http://www.springsource.org/spring-data. Accessed 8 November 2013
19. Federated Unfied Query Language, FunQL. http://funql.org/. Accessed 8 November 2013
20. UnQL Specification. http://www.unqlspec.org. Accessed 8 November 2013
21. JBoss Teiid. http://www.jboss.org/teiid/. Accessed 8 November 2013
22. Pentaho. http://www.pentaho.com/. Accessed 8 November 2013
23. Yahoo Pipes. http://pipes.yahoo.com/pipes/. Accessed 8 November 2013
24. Rimal, B., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In: Fifth

International Joint Conference on INC, IMS and IDC, 2009. NCM 2009, Seoul (2009)
25. Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Record 39, 12–27 (2010)
26. Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: 2011 International

Conference on Cloud and Service Computing (CSC), Hong Kong (2011)
27. Moniruzzaman, A.B.M., Hossain, S.A.: NoSQL database: new era of databases for big data

analytics - classification, characteristics and comparison. Int. J. Database Theor. Appl. 6, 1–
14 (2013)

212 M.A. Almeida da Silva and A. Sadovykh

http://argouml-db.tigris.org/
http://hibernate.org
https://github.com/eiichiro/acidhouse
https://github.com/impetus-opensource/Kundera
https://github.com/deanhiller/playorm
http://www.datanucleus.org/
http://www.hibernate.org/subprojects/ogm.html
http://code.google.com/p/morphia/
http://toadforcloud.com/index.jspa
http://metamodel.eobjects.org/index.html
http://www.springsource.org/spring-data
http://funql.org/
http://www.unqlspec.org
http://www.jboss.org/teiid/
http://www.pentaho.com/
http://pipes.yahoo.com/pipes/

Experimenting with Application-Based Benchmarks
on Different Cloud Providers via a Multi-cloud Execution

and Modeling Framework

Athanasia Evangelinou1(✉), Nunzio Andrea Galante2, George Kousiouris1,
Gabriele Giammatteo2, Elton Kevani1, Christoforos Stampoltas1, Andreas Menychtas1,

Aliki Kopaneli1, Kanchanna Ramasamy Balraj2, Dimosthenis Kyriazis1,
Theodora Varvarigou1, Peter Stuer3, Leire Orue-Echevarria Arrieta4,

Gorka Mikel Echevarria Velez4, and Alexander Bergmayr5

1 Department of Electrical and Computer Engineering, NTUA, 9 Heroon Polytechnioy Street,
15773 Athens, Greece

{aevang,gkousiou,ameny,alikikop,dimos}@mail.ntua.gr,
eltonkevani@hotmail.com, stampoltaschris@gmail.com,

dora@telecom.ntua.gr
2 Research and Development Laboratory, Engineering Ingegneria Informatica S.p.A.,

V. R. Morandi, 32, 00148 Rome, Italy
{NunzioAndrea.Galante,gabriele.giammatteo,

Kanchanna.RamasamyBalraj}@eng.it
3 Spikes Research Department, Spikes, Mechelsesteenweg 64,

2018 Antwerp, Belgium
peter.stuer@spikes.be

4 ICT-European Software Institute Division, TECNALIA, Parque Tecnológico Ed #202,
48170 Zamudio, Spain

{Leire.Orue-Echevarria,Gorka.Echevarria}@tecnalia.com
5 Business Informatics Group, TU Vienna, Favoritenstraße 9-11/188-3,

1040 Vienna, Austria
bergmayr@big.tuwien.ac.at

Abstract. Cloud services are emerging today as an innovative IT provisioning
model, offering benefits over the traditional approach of provisioning infrastruc‐
ture. However, the occurrence of multi-tenancy, virtualization and resource
sharing issues raise certain difficulties in providing performance estimation
during application design or deployment time. In order to assess the performance
of cloud services and compare cloud offerings, cloud benchmarks are required.
The aim of this paper is to present a mechanism and a benchmarking process for
measuring the performance of various cloud service delivery models, while
describing this information in a machine understandable format. The suggested
framework is responsible for organizing the execution and may support multiple
cloud providers. In our work context, benchmarking measurement results are
demonstrated from three large commercial cloud providers, Amazon EC2, Micro‐
soft Azure and Flexiant in order to assist with provisioning decisions for cloud
users. Furthermore, we present approaches for measuring service performance
with the usage of specialized metrics for ranking the services according to a
weighted combination of cost, performance and workload.

© Springer International Publishing Switzerland 2015
M. Helfert et al. (Eds.): CLOSER 2014, CCIS 512, pp. 213–227, 2015.
DOI: 10.1007/978-3-319-25414-2_14

Keywords: Benchmarking · Cloud services · Multi-cloud · Performance
benchmarking

1 Introduction

Performance of cloud environments has started to gain significant attention in the recent
years and is now related to more extensive concepts such as availability, competency
and reliability [4]. After promises for infinite resources and on-demand scalability, the
issues of cloud environments instability with regard to performance issues of the allo‐
cated resources have begun to arise [3]. Thus, for a successful cloud migration process,
the issue of provider performance is a key factor that should be taken into account, in
order to save money but also guarantee a (as much as possible) stability in the migrated
application with respect to service-level agreements. In [17], both the wide range of
applications deployed in cloud environments and the variability of cloud services are
detected; thus, measurement practices are required. Cloud benchmarks play a significant
role in the wide-spread adoption of cloud services, providing end-to-end performance
evaluation across different application areas and pricing of cloud offerings [16]. As
identified in our previous work [1], a significant gap in existing research is the lack of
such descriptions in current metamodels regarding Cloud infrastructures. However,
different providers may have their own metrics and strategies for guaranteeing cloud
QoS. Thus, there is the need of a modeling framework in order to incorporate the related
information and provide a more abstracted and common way for identifying perform‐
ance aspects of cloud environments.

In our approach, the benchmarking process is based on the identification of a set of
representative application types that correspond to various common applications that
can be met in real life. For these types suitable benchmarks are identified that provide
representative application scenarios and capture services abilities in the respective field.
The main aspect of interest for the selection of the benchmarks was the ability to have
application level workloads characterization. The major aim of this process is to abstract
performance of cloud services to a suitable degree that can be understood and used by
the majority of cloud non performance-aware individuals.

Given the extent of cloud computing environments, many factors can affect the
performance of cloud services and their resources. The main performance aspects of
cloud computing as analysed by the ARTIST approach can be summarized as:

(a) Heterogeneous and unknown hardware resources: the computing resources offered
by the cloud providers are unknown to the external users. Available information
may be limited to number of cores for example, memory sizes or disk quotes.
According to a study on Amazon platform conducted by Aalto University [5], the
variation between the fast instances and slow instances can reach 40 %. In some
applications, the variation can even approach up to 60 %.

(b) Different configurations: even in the existence of the same hardware however, the
way this resource is configured plays a significant role in its performance. The same
applies for software configurations (e.g. a DB instance over a virtual cluster) or
variations in the software development.

214 A. Evangelinou et al.

(c) Multi-tenancy and obscure, black box management by providers: cloud infrastruc‐
tures deal with multiple different users that may start their virtual resources on the
same physical host at any given time. However, the effect of concurrently running
VMs for example significantly degrades the actual application performance.

(d) VM interference effects. Studies [6, 7] show that combined performance varies
substantially with different combinations of applications. Applications that rarely
interfere with each other achieve performance to the standalone performance.
However, some combinations interfere with each other in an adverse way.

(e) Virtualization is a technology used in all cloud data centers to ensure high utilization
of hardware resources and better manageability of VMs. According to the afore‐
mentioned studies despite the advantages provided by virtualization, they do not
provide effective performance isolation. While the hypervisor (a.k.a. the virtual
machine monitor) slices resources and allocates shares to different VMs, the behav‐
iour of one VM can still affect the performance of another adversely due to the
shared use of resources in the system. Furthermore, the isolation provided by virtu‐
alization limits the visibility of an application in a VM into the cause of performance
anomalies that occur in a virtualized environment.

All these aspects along with the fact that cloud providers are separate entities and no
information is available on their internal structure and operation, make it necessary to
macroscopically examine a provider’s behavior with regard to the offered resources and
on a series of metrics. This process should be performed through benchmarking, by
using the suitable tools and tests. One of the key aspects is that due to this dynamicity
in resources management, the benchmarking process must be iterated over time, so that
we can ensure as much as possible that different hardware, different management deci‐
sions (e.g., update/reconfiguration/improvement of the infrastructure) are demonstrated
in the refreshed metric values, but also observe key characteristics such as performance
variation, standard deviation etc. Finally, the acquired information should be represented
in a machine understandable way, in order to be used in decision making systems.

In software engineering, metamodeling concepts are increasingly being used for
representing a certain kind of information in a more abstracted level. During the last
years, several proposals for cloud modeling concepts emerged supporting different
scenarios, such as MODAClouds [18], which proposes a model-based migration
approach similar to ARTIST. Nevertheless, the first one focusses on the migration of
cloud-based software between cloud providers and their interoperability, while ARTIST
on the migration of software artefact to cloud-based software as a means of software
modernization. With regard to our work, following the metamodel definition, concrete
instances for specific cloud providers and services can be created in order to describe
the target environments of the migrated applications. Thus, during the deployment
phase, the provider that fits best to the application type being migrated will be selected.

The aim of this paper is to provide such mechanisms to address the aforementioned
issues. A benchmarking framework designed in the context of the FP7 ARTIST project
is presented in order to measure the ability of various cloud offerings to a wide range of
applications, from graphics and databases to web serving and streaming. The framework
consists of a software suite for benchmarking cloud platforms in order to extract
performance-related data and to include it in the cloud models. What is more, we define

Experimenting with Application-Based Benchmarks 215

a metric, namely Service Efficiency (SE), in order to rank different services based on a
combination of performance, cost and workload factors. YCSB and DaCapo are the two
benchmarks used in the performance testing. The first one is a framework that facilitates
comparisons of different NoSQL databases, while DaCapo benchmarking suite meas‐
ures JVM related aspects. Measurement results are demonstrated after the implementa‐
tion of Service Efficiency on various known cloud environments.

The paper is structured as follows: In Sect. 2, an analysis of existing work is
performed; in Sect. 3, the description of the ARTIST tools for mitigating these issues is
presented; in Sect. 4, a case study on three cloud commercial providers Amazon EC2,
Microsoft Azure and Flexiant is presented; conclusions and future work is contained in
Sect. 5.

2 Related Work

Related work around this paper ranges in the fields of performance frameworks, avail‐
able benchmark services and description frameworks and is based in the according
analysis performed in the context of the ARTIST [1]. With regard to the former, the
most relevant to our work is [12]. In this paper, a very interesting and multi-level cloud
service comparison framework is presented, including aspects such as agility, availa‐
bility, accountability, performance, security and cost. Also an analytical hierarchical
process is described in order to achieve the optimal tradeoff between the parameters.
While more advanced in the area of the combined metric investigation, this work does
not seem to include also the mechanism to launch and perform the measurements.
Skymark [13] is a framework designed to analyze the performance of IaaS environments.
The framework consists of 2 components – Grenchmark and C-Meter. Grenchmark is
responsible for workload generation and submission while C-Meter consists of a job
scheduler and submits the job to a cloud manager that manages various IaaS Clouds in
a pluggable architecture. Skymark focuses on the low level performance parameters of
cloud services like CPU, Memory etc. and not on elementary application types.

CloudCmp [14] provides a methodology and has a goal very similar to our approach
to estimate the performance and costs of a Cloud deployed legacy application. A poten‐
tial cloud customer can use the results to compare different providers and decide whether
it should migrate to the cloud and which cloud provider is best suited for their applica‐
tions. CloudCmp identifies a set of performance metrics relevant to application perform‐
ance and cost, develop a benchmarking task for each metric, run the tasks on different
providers and compare. However CloudCmp does not seem to define a common frame‐
work for all the benchmark tasks.

With regard to benchmarking services, the most prominent are CloudHarmony.com
and CloudSleuth.com. The former utilizes a vast number of benchmarks against various
cloud services, offering their results through an API.

However, there are two aspects that can be improved with relation to this approach.
Initially it is the fact that too many benchmarks are included in the list. We believe that a
more limited scope should be pursued in order to increase the focus of the measure‐
ments. Furthermore, the measurement process is not repeated on a regular basis, in order

216 A. Evangelinou et al.

http://CloudHarmony.com
http://CloudSleuth.com

to investigate aspects such as deviation. For CloudSleuth, the focus is solely on web-based
applications and their response time/availability. Their approach is very worthwhile, by
deploying an elementary web application across different providers and monitoring it
constantly, however it is limited to that application type.

With regard to description frameworks, a number of interesting approaches exist.
According to the REMICS project [2] PIM4Cloud, which is focused in both private and
public Clouds, has been defined to provide support to model the applications and also
to describe the system deployment on the cloud environment. PIM4Cloud is imple‐
mented as a profile for UML and a metamodel which is capable to describe most of the
features of a system that will be deployed in a Cloud environment. It is organized in four
packages (Cloud Provider domain, Cloud Application domain, Physical Infrastructure
domain and Resource domain).

FleRD [8] is a flexible resource description language for inter-provider communi‐
cation in virtual networks architectures. It appears enhanced with regard to realism and
generality (ability to describe real world topologies), extensibility, grouping and aggre‐
gation. FleRD is mainly focused around networking elements, however its concepts of
modeling more information for QoS of networks has influenced our approach.

EDML [9] defines a XML syntax for declaring internal and external general parsed
entities. VXDL [10] is an XML-based language that describes Virtual Private eXecution
Infrastructure (ViPXi) which is a time-limited organized aggregation of heterogeneous
computing and communication resources. VXDL can describe resources, networks’
topology that are virtual but are also, to some extent, adapted to physical ones and finally
to represent timeline.

The implementation of DADL [11] is based on the prediction that future businesses
will use allocated resources from different Clouds such as public or private to run a single
application. DADL was developed as an extension of SmartFrog (framework for deploying
and managing distributed software systems based on java) and it is used to specify appli‐
cation architecture and cloud resources that are necessary for an application to run. There
are elements to describe QoS features such as CPU speed, number of cores etc.

The main issue with the aforementioned approaches, which most of them support
description of QoS terms, is the fact that in many cases the standard ways (CPU cores,
frequency etc.) of describing capabilities are not sufficient to demonstrate the actual
performance of virtualized resources. Thus a new approach based on benchmark scores
should be pursued that would indicate the direct capability of a resource service to solve
a particular computational problem. The descriptions defined in this paper are revolved
around this test-based approach.

3 Benchmarking Approach in Artist

The benchmarking approach followed in the context of ARTIST has the following
targets:

• Identify a set of common application types and the respective benchmarks to measure
the performance of cloud services

• Create a framework that is able to automatically install, execute and retrieve the
benchmark results, with the ability to support multiple providers

Experimenting with Application-Based Benchmarks 217

• Investigate aspects of cloud service performance with regard to variation and ability
across a wide range of potential applications

• Define a machine understandable way of representing this information and improved
metrics that will characterize more efficiently the services.

The use case diagram for the benchmarking suite appears in Fig. 1. We envisage that
the capabilities of the toolkit will be exploited by an entity (“Benchmarks Provider”)
that will be responsible for performing and obtaining the tests, similar to the role of
CloudHarmony.com. This entity will utilize the various aspects of the toolkit in order
to create provider models that have concrete results and metrics per service offering,
that are stored on the ARTIST repository, so that an external entity (“Model User”) may
be able to retrieve and consult them. More details on each part of the process are
presented in the following paragraphs.

Fig. 1. Use case diagram for the ARTIST Benchmarking process and tools.

3.1 Application Benchmark Types

The main target of the application benchmark types is to highlight a set of common and
popular application tests that can be used in order to benchmark provider’s offerings.
Thus each offering may have a performance vector indicating its ability to solve specific
problems or cater for a specific type of computation. The set of application benchmarks
used in ARTIST appears in Table 1.

Table 1. Benchmark tests used in the ARTIST platform.

Benchmark test Application type

YCSB Databases

Dwarfs Generic applications

Cloudsuite Common web aps like streaming, web serving etc.

Filebench File system and storage

DaCapo JVM applications

218 A. Evangelinou et al.

3.2 Models of Necessary Information

In order to exploit the information from the benchmark execution, a suitable machine
understandable format should be in place in order to store results and utilize them in
other processes like service selection. For achieving this, suitable model templates have
been designed. These templates include all the relevant information needed, such as
measurement aspects (number of measurements, statistical information like standard
deviation etc.), test configurations and workload profiles.

Initially these templates had been defined as an XML schema and in later stages they
were incorporated into a suitable sub-metamodel developed in the context of the
ARTIST project (CloudML@ARTIST metamodel). In this sub-metamodel, which is
portrayed in (Fig. 2), the workloads are static (and the default ones defined by each
benchmark) in order to be able to compare the performance of different services on the
same examined workload. For simplicity purposes we have defined one universal
enumeration that includes the default workloads from all the aforementioned categories.
Also for the Cloudsuite case, each category reports a large number of statistics, that are
case specific. In order to simplify the descriptions, we have kept only the generic average
score to be included in the model instances. However the remaining information will be
kept during benchmark execution in a raw data DB, in order to be used in case an inter‐
ested party needs the entire range of information.

Fig. 2. Performance metamodel for incorporation of application stereotypes information in
CloudML@ARTIST.

3.3 Benchmarking Suite Architecture

The Benchmarking Suite Architecture appears in Fig. 3. The user through the GUI
(Fig. 4) may set the conditions of the test, selecting the relevant benchmark, workload

Experimenting with Application-Based Benchmarks 219

conditions, target provider and service offering. Furthermore, through extended inter‐
faces, the results of the benchmarking process may be viewed and categorized based on
different types of workload, VM and test types.

Fig. 3. Overall System Architecture.

Fig. 4. GUI for selecting and configuring tests on provider offerings.

This process is performed in two stages. Initially the user enters the necessary infor‐
mation for data retrieval (Fig. 5), including information on the test dates, SE metric
configuration (for more info on the SE metric check Sect. 3.4), instance type, test type
and workload. The results are displayed via a third interface (Fig. 6) that contains the
average score for the selected test, along with the SE metric result. Furthermore, the raw
data lines from which the scores are extracted are returned.

This information is passed to the Benchmarking Controller which is responsible for
raising the virtual resources on the target provider and executing the tests. The former
is based on the incorporation of Apache LibCloud project, in order to support multiple
provider frameworks. The latter needs to install first the tests, through the utilization of
an external Linux-like repository that contains the scripts related to the different phases
of installation and execution of each test. Once the tests are installed (through a standard
repo-based installation), the workload setup scripts are transferred to the target machines
and the execution begins.

220 A. Evangelinou et al.

The configuration of initial tests was modified in order to achieve some extra desir‐
able figures like the number of iterations and extended run time. After the execution
results are transferred back and processed in order to be included in the model descrip‐
tions, following the template definition highlighted in Sect. 3.2. In addition, a mysql raw
database schema created and provided in case the results from the benchmark tests
needed to be stored locally. The database structure is portrayed in Fig. 7.

At the moment the two parts (GUI and Controller) are not integrated, however the
benchmarking controller which is the main backend component can also be used stand‐
alone to perform measurements on the various application types. Installation instructions
can be found in [15].

3.4 Service Efficiency Metric Description

In order to better express the performance ability of a service offering, we considered
the usage of a metric that would fulfill the following requirements:

Fig. 5. Filtering information for historical data.

Fig. 6. Result display and statistical information.

Experimenting with Application-Based Benchmarks 221

• Include workload aspects of a specific test
• Include cost aspects of the selected offering
• Include performance aspects for a given workload
• Give the ability to have varying rankings based on user interests
• Intuitively higher values would be better

Following these points, we considered that positive factors (e.g. workload aspects)
should be used in the numerator and negative on the denominator (cost and Key
Performance Indicators that follow a “higher is worse” approach). Furthermore, normal‐
ization should be used in order to have a more generic rating. Usage of sum would be
preferable over product, since the former enables us to include weight factors. Thus such
a metric can answer a potential question of the sort: “what is the best service to run my
web streaming application, when I am interested more on a cheap service?”.

The resulting formula of Service Efficiency is the following (Eq. 1):

(1)

Fig. 7. Raw database structure.

222 A. Evangelinou et al.

Where s scaling factor

l: workload metric
f: KPI or cost metric
w: weight factor

The resulting metric can be compared between different offerings, potentially of
different providers but on the same workload basis. However the incorporation of work‐
load is necessary since it affects the performance and thus ranking of the services. Usage
of different workloads may display a different optimal selection, based on the anticipated
workload conditions for the application that needs to be deployed.

4 Metric Case Study on Three Selected Cloud Providers: Amazon
EC2, Microsoft Azure and Flexiant

In order to experiment initially with the defined metrics and investigate differences in
VM performance, we utilized workloads from both DaCapo benchmarking suite and
YCSB benchmark framework. However the Benchmarking Controller apart from
DaCapo and YCSB supports the managing execution of three more benchmarks
included in Table 1, such as Dwarfs, CloudSuite and Filebench. Nevertheless, in this
work, only the aforementioned ones have been tested.

DaCapo is designed to facilitate performance analysis of Java Virtual Machines, while
YCSB measures databases performance. The selected workloads from each test were
running on instances in three different cloud environments: Amazon EC2, Microsoft Azure
and Flexiant. Regarding Amazon EC2, different types of VM instances were selected while
for Microsoft Azure and Flexiant the tests were running on the same VM instances during
the entire benchmarking process. Information regarding the selected benchmarking work‐
loads and the VM instance characteristics are presented in Tables 2 and 3 respectively.

The execution of the tests took place at specific hours (daily and at different time
intervals) during a period of two weeks and the average values were extracted for each
case. Moreover, the different time zones of the three respective regions were taken into
consideration so that the peak hours were the same in each zone. Then the metric SE
described in Sect. 3.4 was applied with the following form:

Different weights were given to the performance and cost aspects (50–50, 90–10)
and a normalization interval was considered (1–10). We avoided using a normalization
interval including 0 since it may lead to infinite values for some cases. One should
compare between same color bars, indicating similar workloads. From the graphs it is
evident how the ranking of a potential VM rating can change based on the aspect that
we are most interested in.

For example, both the weighted decision (50–50) and the performance-based selection
(90–10) in the DaCapo case for ‘workload fop’ suggest Azure as the best choice (Fig. 8).
However the overall results may not be favorable for Flexiant due to the fact that we only

Experimenting with Application-Based Benchmarks 223

measured large VM instances. Another interesting result derives from the fact that since the
Service Efficiency metric includes the cost factor, we conclude that the smaller VMs give
better results and the selection of small instances are more efficient. Moreover, it is worthy
to mention that for the DaCapo case the Service Efficiency values for the large VM
instances which were tested, are lower than the values for small or medium VM instances.
Despite the fact that the performance of a large VM instance is approximately double than
the performance of a small or medium instance, the cost is significantly higher, approxi‐
mately 3.5 times (Fig. 9). Thus, taking into consideration that the Service Efficiency is
inversely proportional to cost, this is expected.

Table 2. DaCapo and YCSB application benchmark type.

DaCapo YCSB

xalan: transforms XML documents into HTML
ones

A: Update heavy workload

tomcat: runs a set of queries against a tomcat
server retrieving and verifying the resulting
webpages

B: Read mostly workload

pmd: analyzes a set of Java classes for a range of
source code problems

C: Read only

jython: interprets pybench Python benchmark D: Read latest workload

h2: executes a JDBC benchmark using a number
of transactions against a banking model appli‐
cation

E: Short ranges

fop: parses/formats XSL-FO file and generates a
PDF file

F: Read-modify-write

eclipse: executes jdt performance tests for the
Eclipse IDE

avrora: simulates a number of programs running
on a grid of AVR micro-controllers

Table 3. VM instance characteristics.

Cloud Provider VM instance Region

Amazon EC2 t1.micro N.Virginia

m1.medium N.Virginia

m1.large N.Virginia

Microsoft Azure small Standard Ireland

Flexiant 4 GB RAM- 3CPU Ireland

224 A. Evangelinou et al.

Fig. 8. Implementation of the metric on application-based benchmarks across different cloud
providers and different type of VM instances and variable workload (higher score is better).
Comparison should be made between columns with similar color (identical workload conditions)
(Color figure online).

Fig. 9. Performance time in ms for DaCapo and YCSB workloads.

Moreover, the performance for the given workloads is similar across the Amazon
and Azure instances. This is probably due to the fact that the maximum computational
threshold of the VM was not reached. For Flexiant the performance is significantly lower
and this behaviour seems to be related to a configuration of the VM in the Flexiant
environment which was outside of our control.

In addition, for all the tested VM instances the performance for the “Short Ranges”
workload, ‘workload_e’, is approximately three times lower than the other workloads.
Thus, independently from the VM size (small, medium or large) the ‘workload_e’ seems
to be three times slower than other workloads which were tested.

Experimenting with Application-Based Benchmarks 225

5 Conclusions

The emergence of cloud computing has led to a plethora of various offerings by multiple
providers, covering different needs of the consumer. However significant questions
emerge for the efficiency of these pay-per-use resources, mainly with regard to various
application types, in this highly dynamic management environment. In this paper a
multi-Cloud measurement framework has been presented, that has the aim of investi‐
gating these performance issues of the virtualized offerings. The framework utilizes a
variety of application related benchmarks in order to cover a wide range of application
types and it mainly focuses on investigating aspects such as service efficiency with
relation to cost.

A combined metric (Service Efficiency) is also proposed in order to combine work‐
load, performance and cost aspects in a single rating for comparing cloud offerings across
different providers. A case study on 3 cloud providers has indicated the application of
such a metric to characterize the offerings based on this combination.

For the future, we intend to complete the integration of the framework (currently
missing the integration between GUI and Benchmark Suite Controller). However the
Benchmarking Controller for the execution of the tests can be used also as standalone,
following the instructions in [15]. Another interesting aspect would also be the incor‐
poration of other non-functional aspects such as availability in the main SE metric.

Finally, the implementation of the measurements in more instance types and for all
the benchmarks defined in Sect. 3.1 is one of our major goals for the future.

Acknowledgements. The research leading to these results is partially supported by the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°
317859, in the context of the ARTIST Project.

References

1. ARTIST Consortium (2013), Deliverable D7.2 v1.0- PaaS/IaaS Metamodelling
Requirements and SOTA. http://www.artist-project.eu/sites/default/files/D7.2%20PaaS
%20IaaS%20metamodeling%20requirements%20and%20SOTA_M4_31012013.pdf

2. REMICS Consortium (2012), Deliverable D4.1 v2.0 - PIM4Cloud. http://www.remics.eu/
system/files/REMICS_D4.1_V2.0_LowResolution.pdf

3. Kousiouris, G., Kyriazis, D., Menychtas, A., Varvarigou, T.: Legacy applications on the
cloud: challenges and enablers focusing on application performance analysis and providers
characteristics. In: Proceedings of the 2012 2nd IEEE International Conference on Cloud
Computing and Intelligence Systems (IEEE CCIS 2012), Hangzhou, China, 30 October–1
November 2012

4. Hauck, M., Huber, M., Klems, M., Kounev, S., Muller-Quade, J., Pretschner, A., Reussner,
R., Tai, S.: Challenges and opportunities of Cloud computing. Karlsruhe Reports in
Informatics 19, Karlsruhe Institute of Technology - Faculty of Informatics (2010)

5. Ou, Z., Zhuang, H., Nurminen, J.K., Ylä-Jääski, A., Hui, P.: Exploiting hardware
heterogeneity within the same instance type of Amazon EC2. In: Proceedings of the 4th
USENIX Conference on Hot Topics in Cloud Computing (HotCloud 2012), p. 4. USENIX
Association, Berkeley (2012)

226 A. Evangelinou et al.

http://www.artist-project.eu/sites/default/files/D7.2%2520PaaS%2520IaaS%2520metamodeling%2520requirements%2520and%2520SOTA_M4_31012013.pdf
http://www.artist-project.eu/sites/default/files/D7.2%2520PaaS%2520IaaS%2520metamodeling%2520requirements%2520and%2520SOTA_M4_31012013.pdf
http://www.remics.eu/system/files/REMICS_D4.1_V2.0_LowResolution.pdf
http://www.remics.eu/system/files/REMICS_D4.1_V2.0_LowResolution.pdf

6. Kousiouris, G., Cucinotta, T., Varvarigou, T.: The effects of scheduling, workload type and
consolidation scenarios on virtual machine performance and their prediction through
optimized artificial neural networks. J. Syst. Softw. 84(8), 1270–1291 (2011). doi:10.1016/
j.jss.2011.04.013. Elsevier

7. Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., Pu, C.: An analysis of performance
interference effects in virtual environments. In: IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 200–209, April 2007

8. Schaffrath, G., Schmid, S., Vaishnavi, I., Khan, A., Feldmann, A.: A resource description
language with vagueness support for multi-provider cloud networks. In: International
Conference on Computer Communication Networks (ICCCN 2012), Munich, Germany
(2012)

9. Charlton, S.: Model driven design and operations for the Cloud. In: OOPSLA 2009, 14th
Conference Companion on Object Oriented Programming Systems Languages and
Applications, pp. 17–26 (2009)

10. Charão, A.S., Primet, P.V.-B., Koslovski, G.P.: VXDL: virtual resources and interconnection
networks description language. In: Kudoh, T., Mambretti, J., Vicat-Blanc Primet, P. (eds.)
GridNets 2008. LNICST, vol. 2, pp. 138–154. Springer, Heidelberg (2009)

11. Mirkovic, J., Faber, T., Hsieh, P., Malayandisamu, G., Malavia, R.: DADL: Distributed
Application Description Language. USC/ISI Technical report ISI-TR-664 (2010)

12. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of Cloud computing services.
Future Gener. Comput. Syst. 29(4), 1012–1023 (2013). ISSN 0167-739X http://dx.doi.org/
10.1016/j.future.2012.06.006

13. Iosup, A., Prodan, R., Epema, D.: Iaas cloud benchmarking: approaches, challenges, and
experience. In: Proceedings of the International Conference on High Performance
Networking and Computing (SC), MTAGS 2012, pp. 1–8. IEEE/ACM (2012)

14. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public Cloud providers. In:
Proceedings of the 10th ACM SIGCOMM Conference on Internet measurement (IMC 2010),
pp. 1–14. ACM, New York (2010). doi:10.1145/1879141.1879143, http://doi.acm.org/
10.1145/1879141.1879143

15. ARTIST Consortium, Deliverable D7.2.1 v1.0- Cloud services modelling and performance
analysis framework (2013). http://www.artist-project.eu/sites/default/files/D7.2.1%20Cloud
%20services%20modeling%20and%20performance%20analysis
%20framework_M12_30092013.pdf

16. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.: Benchmarking in
the Cloud: what it should, can, and cannot be. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012.
LNCS, vol. 7755, pp. 173–188. Springer, Heidelberg (2013)

17. Milenkoski, A., Iosup, A., Kounev, S., Sachs, K., Rygielski, P., Ding, J., Cirne, W.,
Rosenberg, F.: Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios.
Technical report SPEC-RG-2013-001 v.1.0.1, SPEC Research Group - Cloud Working
Group, Standard Performance Evaluation Corporation (SPEC), April 2013

18. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P., Mosser, S., Matthews,
P., Gericke, A., Balligny, C., D’Andria, F., Nechifor, C.-S., Sheridan, C.:
MODACLOUDS: a model-driven approach for the design and execution of applications
on multiple clouds. In: ICSE MiSE: International Workshop on Modelling in Software
Engineering, pp. 50–56. IEEE/ACM (2012)

Experimenting with Application-Based Benchmarks 227

http://dx.doi.org/10.1016/j.jss.2011.04.013
http://dx.doi.org/10.1016/j.jss.2011.04.013
http://dx.doi.org/10.1016/j.future.2012.06.006
http://dx.doi.org/10.1016/j.future.2012.06.006
http://dx.doi.org/10.1145/1879141.1879143
http://doi.acm.org/10.1145/1879141.1879143
http://doi.acm.org/10.1145/1879141.1879143
http://www.artist-project.eu/sites/default/files/D7.2.1%2520Cloud%2520services%2520modeling%2520and%2520performance%2520analysis%2520framework_M12_30092013.pdf
http://www.artist-project.eu/sites/default/files/D7.2.1%2520Cloud%2520services%2520modeling%2520and%2520performance%2520analysis%2520framework_M12_30092013.pdf
http://www.artist-project.eu/sites/default/files/D7.2.1%2520Cloud%2520services%2520modeling%2520and%2520performance%2520analysis%2520framework_M12_30092013.pdf

Author Index

Abdelbaki, Nashwa 187
Almeida da Silva, Marcos Aurélio 200
Andreolini, Mauro 100
Azraoui, Monir 134

Benghabrit, Walid 134
Bergmayr, Alexander 213
Bernsmed, Karin 134
Binz, Tobias 151
Bonacquisto, Paolo 31
Breitenbücher, Uwe 151

Dai, Tian-Shyr 47
De Oliveira, Anderson Santana 134
Di Modica, Giuseppe 31
Dustdar, Schahram 47

Echevarria Velez, Gorka Mikel 213
Elkhiyaoui, Kaoutar 134
Emeakaroha, Vincent C. 117
Evangelinou, Athanasia 213

Fatema, Kaniz 117
Fuchs, Andreas 81

Galante, Nunzio Andrea 213
Giammatteo, Gabriele 213
Grall, Hervé 134
Gürgens, Sigrid 81

Healy, Philip D. 117

Kevani, Elton 213
Kopaneli, Aliki 213
Kopp, Oliver 151
Kousiouris, George 213
Kyriazis, Dimosthenis 213

Lancellotti, Riccardo 100
Leymann, Frank 151
Li, Fei 47
Llorente, I.M. 3

Lockner, Niclas 63
Lynn, Theo 117

Menychtas, Andreas 213
Mont, Marco Casassa 15
Morrison, John P. 117
Munir, Kamran 15

Önen, Melek 134
Orue-Echevarria Arrieta, Leire 213
Östberg, Per-Olov 63

Petralia, Giuseppe 31
Pietri, Marcello 100
Pino, Luca 81

Qanbari, Soheil 47

Rahmouni, Hanene Boussi 15
Ramasamy Balraj, Kanchanna 213
Royer, Jean-Claude 134

Sadovykh, Andrey 200
Saidah, Ahmed Shaker 187
Santos-Muñoz, D. 3
Sellami, Mohamed 134
Solomonides, Tony 15
Spanoudakis, George 81
Stampoltas, Christoforos 213
Stuer, Peter 213

Tomarchio, Orazio 31
Tosi, Stefania 100

Valero, F. 3
Varvarigou, Theodora 213
Vázquez-Poletti, J.L. 3

Wieland, Matthias 151

Yokoyama, Shigetoshi 169
Yoshioka, Nobukazu 169

	Preface
	Organization
	Contents
	Invited Paper
	A Cloud for Clouds: Weather Research and Forecasting on a Public Cloud Infrastructure
	1 Introduction
	2 A Model to Forecast them All
	3 Public Clouds for Science
	4 Bringing the Clouds on the Cloud
	4.1 A Tale of Two Models
	4.2 Cloud Infrastructure
	4.3 Computational Results

	5 Conclusions
	References

	Papers
	Semantic Generation of Clouds Privacy Policies
	Abstract
	1 Introduction
	2 Semantic Modeling of Legal Privacy Requirements for Access Controls
	3 An Overview of SWRL and XACML
	4 A SWRL-Based Privacy Policy Specification
	5 Mapping an Access Control SWRL Rule to an XACML Conforming SWRL Rule
	6 Mapping of an XML Conforming SWRL Rule to an XACML Policy
	7 Mapping SWRL Rules to XACML Rules
	8 Summary and Future Work
	References

	Dynamic Pricing in Cloud Markets: Evaluation of Procurement Auctions
	1 Introduction
	2 Related Work
	3 A Procurement Auction Market
	4 A Provider's Adaptive Strategy
	4.1 Resource Overbooking

	5 Experimental Results
	5.1 First Experiment
	5.2 Second Experiment

	6 Conclusions
	References

	An Economic Model for Utilizing Cloud Computing Resources via Pricing Elasticity of Demand and Supply
	1 Introduction
	2 Motivation
	3 Terms and Preliminaries
	3.1 Cloud Federation Contracts
	3.2 Cloud Asset Pricing Elasticity
	3.3 Pricing Elasticity Interpretation
	3.4 Assumptions

	4 CAPT Model
	4.1 Binomial Tree
	4.2 Trinomial Tree
	4.3 Growing the CAPT Tree
	4.4 The Role of Double Barriers

	5 Model Evaluation
	5.1 Simulation Setup
	5.2 Evaluation Measure
	5.3 Results and Debate

	6 Related Work
	7 Conclusions and Outlook
	References

	Reducing Complexity in Service Development and Integration
	1 Introduction
	2 Related Work
	3 Creo
	3.1 Service Description
	3.2 Data Representation
	3.3 Code Generation

	4 Use Cases
	5 Evaluation
	5.1 Testbed and Experimental Setup
	5.2 Serialization Overhead
	5.3 Transmission Overhead
	5.4 Service Response Time

	6 Conclusions
	References

	Generating Secure Service Compositions
	Abstract
	1 Introduction
	2 Overview
	3 Validating Secure Service Compositions
	3.1 Formal Representation of Generic Service Composition
	3.2 Formally Representing Sequential Composition
	3.3 Validation of Integrity Preserving Compositions

	4 Secure Service Orchestration Patterns
	5 SESO Pattern Driven Service Composition
	6 Tool Support and Experiments
	7 Related Work
	8 Conclusion
	References

	A Scalable Monitor for Large Systems
	1 Introduction
	2 Related Work
	3 Architecture
	4 Analysis
	4.1 Intra-node Scalability
	4.2 Intra-cluster Scalability
	4.3 DHT Scalability

	5 Conclusions
	References

	A Data Location Control Model for Cloud Service Deployments
	1 Introduction
	2 Related Work
	3 Background Information
	3.1 Authorization Systems
	3.2 Use Case

	4 Data Location Control
	4.1 Intra-Service Interaction Strategy
	4.2 Inter-cloud Data Outsourcing
	4.3 Quantifying Location Assurance

	5 Implementation
	5.1 Data Presentation
	5.2 Policy Creation
	5.3 Visibility for Data Owners
	5.4 CSM Implementation

	6 Validation
	7 Conclusions and Future Work
	References

	From Regulatory Obligations to Enforceable Accountability Policies in the Cloud
	1 Introduction
	2 Related Work
	2.1 Accountability
	2.2 Obligations in Regulations
	2.3 Enforcement and Policies

	3 The Cloud Accountability Framework
	3.1 Step (1). Human/Machine Readable Representation
	3.2 Step (2). Machine Understandable Representation

	4 Abstract Language
	4.1 AAL Concepts
	4.2 AAL Syntax
	4.3 Semantics and Verification
	4.4 Machine Understandability

	5 Concrete Language
	5.1 Extension of Roles
	5.2 Extension of Actions and Triggers

	6 Validation
	6.1 The Health Care Use Case
	6.2 Obligations for the Use Case

	7 Conclusions
	References

	Context-Aware Provisioning and Management of Cloud Applications
	1 Introduction
	2 Limitations of Imperative Management Approaches
	3 Motivating Scenario
	4 Context-Aware Application Management Method
	4.1 Step 1: Capture Application as Formal Model
	4.2 Step 2: Create Declarative Management Description Model
	4.3 Step 3: Analyze Declarative Management Description Model
	4.4 Step 4: Adapt Declarative Management Description Model
	4.5 Step 5: Create Imperative Management Description Model
	4.6 Step 6: Execute Imperative Management Description Model

	5 Realization and Validation
	5.1 Formalizing Applications Using Enterprise Topology Graphs
	5.2 Automating the DMDM Creation
	5.3 Context-Aware Task Analyzer
	5.4 Management Plan Generation

	6 Context-Aware Cloud Application Provisioning
	6.1 Provisioning Variant of the Method
	6.2 Automated Provisioning Patterns and Provisioning Idioms
	6.3 Topology-Dependent and Topology-Independent Patterns

	7 Related Work
	8 Conclusions
	References

	A Distributed Cloud Architecture for Academic Community Cloud
	Abstract
	1 Introduction
	2 Previous Approaches
	2.1 Cloud Standardization
	2.2 Cloud Federation

	3 Cloud on Demand
	3.1 Cluster as a Service (CaaS)
	3.2 Inter-cloud Object Storage Service

	4 Prototype
	4.1 CaaS Overview
	4.2 Requirements of CaaS
	4.3 Design of CaaS
	4.4 Dodai-Compute
	4.5 Dodai-Deploy
	4.6 Colony
	4.6.1 How the Original Swift Works
	4.6.2 Network-Aware OpenStack Swift

	5 Evaluation
	5.1 Evaluation Environment
	5.2 User Scenario According to U1 (Guaranteed Performance Against a Abrupt Increase of the Load)
	5.3 User Scenario According to U2 (Guarantee Regarding Delay)
	5.4 User Scenario According to U3 (Guaranteed Availability in the Event of a Disaster or a Large-Sca ...
	5.5 User Scenario According to U4 (Service Continuity)

	6 Conclusions
	7 Future Work
	References

	New Governance Framework to Secure Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	2.1 Cloud Control Matrix
	2.2 Guo’s Governance Model

	3 Our Proposed Definition of Cloud Governance
	4 New Model Prespective
	5 New Cloud Governance Framework
	6 Conclusion and Future Work
	References

	Towards Modelling Support for Multi-cloud and Multi-data Store Applications
	Abstract
	1 Introduction
	2 Multi-cloud Applications and the NoSQL “Movement”
	2.1 Overview
	2.2 Motivating Example: The MiC Application

	3 Cloud Based DMS Concepts and Comparison
	3.1 Main Concepts
	3.2 Comparing Cloud Based DMSs
	3.3 Modelling Approach

	4 Related Work
	5 Conclusion
	References

	Experimenting with Application-Based Benchmarks on Different Cloud Providers via a Multi-cloud Execu ...
	Abstract
	1 Introduction
	2 Related Work
	3 Benchmarking Approach in Artist
	3.1 Application Benchmark Types
	3.2 Models of Necessary Information
	3.3 Benchmarking Suite Architecture
	3.4 Service Efficiency Metric Description

	4 Metric Case Study on Three Selected Cloud Providers: Amazon EC2, Microsoft Azure and Flexiant
	5 Conclusions
	References

	Author Index

