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Abstract The most important feature of a semiconductor for the purpose of energy
harvesting, such as photovoltaic cells and photocatalysts, is that the number den-
sities of electrons and holes in a semiconductor is much smaller than in a metal and
those densities can be easily altered by external excitation such as light irradiation.
From a thermodynamic viewpoint, even though the internal energies of electrons
and holes are fixed at the band-edge energies of the conduction and the valance
bands, respectively, their free energies, which is equivalent to quasi Fermi levels,
can be altered significantly by the logarithm of electron/hole density. The larger
density of electrons (holes) reduces their entropy and their free energy gets closer to
the internal energy, i.e., the conduction (valence) band edge energy. The free
energy difference between electrons and holes in a semiconductor is the potential to
exert work externally, and it corresponds to the terminal voltage for a photovoltaic
cell. Such accumulation of electrons and holes upon the absorption of photons is the
common working principle for photovoltaic cells and photocatalysts. The following
properties are therefore important for a semiconductor to serve as a good material
for photovoltaic cells and photocatalysts:

(1) strong light absorption per volume;
(2) slow recombination between electrons and holes, which necessitates as small

density of crystal defects as possible not only inside the semiconductor but
also at the surface;

(3) efficient transport of electrons and holes to different regions that accepts
electrons or holes selectively.
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1 Electrons and Holes in a Semiconductor

A characteristic of a semiconductor is the existence of bands as a result of
hybridization among the orbitals with valence (highest energy) electrons as shown
in Fig. 1. It should be emphasized that a band is the collection of quantum states,
the wave function of which spreads over an entire crystal. Fermi-Dirac distribution
of electrons in the bands, which is a thermodynamic principle as will be described
in Sect. 8, makes one of the bands in a semiconductor, which is called as the
valence band, almost fully occupied by electrons and another band just above the
valence band is made almost empty and it is called as the conduction band. At a
temperature higher than zero kelvin, for the sake of minimizing the total free energy
of the system, some electrons occupy the states in the conduction band and cor-
respondingly some vacant states exist in the valence band. An electron surrounded
by unoccupied states in the conduction band move among neighboring quantum
states upon external force, which is the quantum-mechanical view of electrons’
motion in a semiconductor. Similarly, a vacancy in the valence band, which is
surrounded by the states occupied by electrons, switch from a state to a neighboring
one upon external force; this is the quantum-mechanical view of holes’ motion. For
electrons and holes to achieve equilibrium in a certain spatial range of a semi-
conductor, they have to migrate in the range. For the thermodynamics of electrons
and holes in a semiconductor, therefore, our interest is focused on the electrons and
holes that can move spatially. Those mobile electrons and holes are often referred to
as carriers since they carry charges. This is why we focus on a smaller number of
electrons in the conduction band and neglect abundant electrons in the lower-energy
bands including the valence band. In the same manner, we focus on a small number
of holes in the valance band and neglect all the vacant quantum states that exist in
the conduction band and the bands with higher energies.

A characteristic of semiconductors is that the concentrations of electrons and
holes can be altered by doping. In this chapter, we refer to concentration as the

Fig. 1 A schematic energy diagram of atomic quantum states and bands in a silicon crystal. One
s- and three p- orbitals form four degenerated sp3 hybrid orbitals. The orbitals with the highest
energy (sp3) interfere with each other due to the spatial overlap of orbitals and a set of stabilized
states (the valance band) and un-stabilized states (the conduction band) are formed
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number density in a unit volume. Fermi-Dirac distribution of electrons imposes a
law of mass action in which the product between electron concentration n and hole
concentration p is determined by several material parameters as well as
temperature,

np ¼ NcNv exp � Eg

kT

� �
; ð1Þ

where Nc (Nv) are the effective density of states in the conduction (valance) band,
Eg is the bandgap, k is the Boltzmann constant and T is absolute temperature.
Approximately, the effective density of states for electrons (holes) in the conduction
(valence) band is the maximum number of quantum states that electrons (holes) can
occupy. It is, as well as the bandgap, a parameter unique to a semiconductor
material. For example, the values for GaAs at 300 K is as follows: Nc = 4.7 × 1017

cm−3, Nv = 9.0 × 1018 cm−3 and Eg = 1.42 eV, resulting in the concentrations of
electrons n and holes p if no impurity exist, n = p=4.7 × 106 cm−3. The value is
called intrinsic carrier concentration ni where “intrinsic” means a pure semicon-
ductor without any impurity.

The relationship in Eq. (1) also holds true when dopant atoms exist in a semi-
conductor. Adding atoms with extra valance electrons to a semiconductor (n-type
doping) increases the concentration of electrons according to the concentration of
dopant atoms, and the concentration of holes decreases to keep the relationship in
Eq. (1) as depicted in Fig. 2. Similarly, the dopant atoms with insufficient valance
electrons increases the concentration of holes (p-type doping) and the concentration

Fig. 2 Concentrations of electrons and holes in a semiconductor with different doping conditions.
The relevant energies are also shown; Ec the conduction-band edge, Ev the valence-band edge, EF

the Fermi level (for both electrons and holes), �Un the averaged internal energy of elctrons, �Up: the
averaged internal energy of holes. Sn denotes entropy for electrons and Sp is entropy for holes
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of electrons decreases accordingly. Such an interaction between the concentrations
means equilibrium between electrons and holes. The situation is analogous to H+

and OH− ions in an electrolyte.

2 Free Energy of Electrons in a Semiconductor:
An Intuitive Picture

A variety of semiconductor heterostructures can be fabricated by combining
semiconductors with different bandgaps and doping concentrations. A typical
example of a silicon pn junction is shown in Fig. 3. It should be emphasized that a
n-type-doped semiconductor contains the same density of free electrons and posi-
tive ions of dopant atoms, resulting in the neutral charge density. The ions are
bound to the lattice of silicon atoms. Similarly, a p-type semiconductor contains
both free holes and negative ions of dopant atoms. At the pn junction, electrons
and holes migrate and combine with each other, and they disappear. As a result,
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Fig. 3 The band lineup of a silicon pn junction. The bottom cartoon depicts the distribution of
dopant ions (B− and As+) as well as electrons and holes. At the junction, depletion region is
formed where electrons and holes are absent due to recombination and an electric field emerges as
a result of negative and positive charges of dopant ions
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the negative ions in the p-region and the positive ions in the n-region, which are
immobile because they compose chemical bonds with the host silicon atoms, forms
charge distribution and an electric field emerges. Since the energy of an electron,
which is the vertical axis of the band diagram, is affected not only by the existence
of neighboring atomic cores but also by such an electric field spreading over a large
number of atomic cores, the energies of all the electron states (and the vacuum state
as the origin of electrons’ energy states) changes as a function of the position in the
pn junction. This is a well-known band bending that emerges when different kinds
of semiconductors (and metals) are put together. The band bending prevents
electrons and holes from both migrating to the junction front and disappearing by
recombination. As a result of these two competing processes at the junction front,
the recombination of electrons and holes and the emergence of the electric field that
prevents the additional supply of electrons and holes, establish equilibrium for the
concentrations of electrons and holes.

Such equilibrium can be described in terms of thermodynamics. The criteria of
thermodynamic equilibrium is the balance of free energy. It is therefore vital to
obtain the free energies for electrons and holes. In general, free energy F for an
ensemble of particles is described as

F ¼ E � TS; ð2Þ

where E is internal energy, T is temperature and S is entropy. Conventional dis-
cussion on the behavior of electrons and holes employs energy per a particle, not for
a mole of particles as is often employed in chemistry, and here we also discuss all
the energies per a particle. Let us neglect the term associated with a work by
volume expansion and use Helmholtz free energy (this is not exactly correct as we
can see in the following section).

According to the Fermi-Dirac distribution of electrons, a majority of electrons
and holes exist at the states with the energy close to the band edges. More precisely,
the averaged energy of electrons in the conduction band is

Eavr electronsð Þ ¼ Ec þ 3
2
kT : ð3Þ

The detailed derivation is found in Sect. 9. The term (3/2)kT can be regarded as
the averaged kinetic energy of a particle moving in 3-dimensional space and this
term is negligibly small compared with Ec since kT is approximately 1/40 eV at
room temperature while Ec takes an order of eV. In this section, we will neglect the
term (3/2)kT.

The entropy for an electron approximately takes the form

S ¼ �kln
n
Nc

� �
: ð4Þ
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This can be derived based on the definition of entropy in statistical
mechanics:

S ¼ 1
n

� �
k lnW ; ð5Þ

where W is the number of possible arrangements for n electrons to occupy their
places out of Nc sites, with n and Nc as numbers in a unit volume. The denominator
n is for the purpose of obtaining entropy per a single electron.

To obtain Eq. (4) from Eq. (5), a well-known mathematical relationship is used

W ¼ Nc!

Nc � nð Þ!n! ; ð6Þ

with Stirling’s approximation:

ln x! � x ln xð Þ � x: ð7Þ

In most cases, n is much smaller than Nc and an approximation Nc � n � Nc

is used.
The discussion above leads to the expression for the free energy of an electron:

EFn ¼ Ec þ kTln
n
Nc

� �
; ð8Þ

where the subscript n of EFn denotes electrons. Equation (8) actually is well known
in solid state physics as Fermi level for electrons. This is not at all a coincidence but
has a profound meaning; Fermi level is equivalent to free energy if we apply
thermodynamics to the electrons in a semiconductor!

It is important to exaggerate the difference between internal energy and free
energy. For an electron in a semiconductor, its internal energy is fixed at the edge of
the conduction band Ec (if we neglect the contribution of kinetic energy (3/2)kT).
On the other hand, the free energy of an electron can be altered by electron con-
centration n by adding dopant atoms for example. The larger electron concentration
is, the closer its free energy approached to its internal energy by the reduction of
entropy term TS. In other words, increasing electron concentration boosts the free
energy through the reduction in entropy.

3 The Energy of Holes

It is important to recognize that the energy of a hole takes the opposite sign with
respect to the energy of an electron that has been removed to make the hole. Let us
consider two states with and without a hole as in Fig. 4. The energy of a hole is
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obtained by taking the difference in the total energy between the state 2 with a hole
and the state 1 without a hole.

Eh ¼
X
state 2

E �
X
state 1

E: ð9Þ

The only difference between the two states is the absence of an electron in the state
2 and the total energy of the state 2 can be equalized to that of the state 1 by adding
the energy of a missing electron Ee.X

state 1

E ¼
X
state 2

EþEe: ð10Þ

From Eqs. (9) and (10), it is clear that the sign of energy is opposite between an
electron and a hole:

Eh ¼ �Ee: ð11Þ

This complexity stems from the concept of holes: a hole is not a real particle but a
virtual one describing the vacancy of an electron. As a result, both the internal
energy and the free energy of a hole should be accompanied by a negative sign, or
these energies increases downwards in an energy diagram, when the energy of a
hole is discussed simultaneously with that of an electron.

We can now discuss on the free energy of a hole in analogy to the one for an
electron. The internal energy of a hole is approximately the energy of the valance
band edge Ev. The entropy of a hole can be described using the hole concentration
p and the effective density of states Nv in the valence band, which can be regarded
as the maximum number of the states that holes can occupy:

k

E

One electron vacancy 
in the valence band

(one hole)

k

EState 1 State 2

ke

Ee

Fig. 4 Two states with and
without a hole. In the state 2,
an electron has been removed,
leading to the appearance of a
hole in the valance band
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S ¼ �kln
p
Nv

� �
: ð12Þ

Then the free energy of a hole can be obtained as

�EFp ¼ �Ev þ kTln
p
Nv

� �
; ð13Þ

where the subscript p of EFp denotes holes. Both the free energy EFp and the internal
energy Ev are accompanied by a negative sign because they are the energies for a
hole. The entropy term, however, has the same sign as the formula for an electron
(Eq. (8)) because the derivation of entropy depends solely on the combination of
particles occupying the states, regardless of whether the particle is real or virtual.

Equation (13) can be converted to a famous form:

EFp ¼ Ev � kTln
p
Nv

� �
; ð14Þ

which is identical to the expression of the Fermi level for holes. Fermi level is
identical to free energy not only for electrons but also for holes. Interestingly,
Eq. (14) can be derived from the formula of electron free energy (Eq. (8)) using the
low of mass action (Eq. (1)) and the relationship

Eg ¼ Ec � Ev: ð15Þ

This fact indicates that electron free energy and hole free energy take the same
value, i.e., both particles are in equilibrium, when the law of mass action holds true.

4 Equilibrium of Electrons and Holes in a pn Junction

In a semiconductor under equilibrium, i.e., without an external work, electrons and
holes take the same free energy and it changes according to doping as depicted in
Fig. 2. When a junction of p- and n-type semiconductors is in equilibrium, ther-
modynamics imposes the equal free energy (or Fermi level) for the entire region of
the structure. At the same time, apart from the junction front, i.e., outside the
depletion region, the concentrations of electrons and holes never changes from the
original value before forming the junction, and the free energy (or Fermi level) stays
at the same position with respect to the band edges. These two requirements result in
the band bending in the depletion region and the size of the band-edge offset is equal
to the difference in the free energies in p- and n- regions. The exact shape of the band
bending is determined by electrostatics: the distribution of charge density in the
vicinity of the junction front, which emerges as a result of the depletion of electrons
and holes, results in the band bending according to Poisson’s equation.
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As depicted in Fig. 3, most of electrons exist in the n-region because of the slope
of the band-edge energy Ec accelerates the electrons whose energy is close to Ec to
the direction of the n-region. However, some of the electrons in the n-region have
sufficient kinetic energy to climb up the slope of Ec and migrate to the p-region.
From the n-region to the p-region, electron concentration n decreases exponentially
as the band-edge energy Ec increases, following

n ¼ Nc exp �Ec � EF

kT

� �
; ð16Þ

which is the relationship transformed from Eq. (8), with the constant free energy
EFn. Hole concentration similarly follows the relationship upon a change in Ev,

p ¼ Nv exp �EF � Ev

kT

� �
; ð17Þ

which is converted from Eq. (14).

5 Free Energies of Electrons and Holes in a Metal
and a Schottky Junction

For metals, electrons occupy the quantum states to the middle of a band and there is
no bandgap on the top of the states occupied by electrons. In this situation,
according to Fermi-Dirac distribution, the concentrations of electrons and holes are
so large that the entropy of electrons and holes is almost zero. Accordingly, the free
energy of electrons corresponds to the energy top of the quantum states that
electrons occupy at 0 K. (At a temperature higher than 0 K, some electrons are
excited to higher-energy states than the energy top at 0 K). Above the electron free
energy, a lot of unoccupied quantum state exist and they can exchange electrons
with occupied states upon external force, leading to free motion of holes as well as
electrons. Therefore, we can assume that a collection of holes exist at the energy
states neighboring to electrons and the free energy of holes takes the same value as
that of electrons in a metal. Note that the entropy of electrons and holes in a metal is
almost zero and the free energy is independent of the concentration of electrons and
holes, resulting in a constant value of the free energies for electrons and holes
across the spatial axis.

We can now discuss the equilibrium for a junction between a metal and a semi-
conductor: a Schottky junction. Similarly to the case of a semiconductor pn junction,
free energy is equalized for the entire structure and the position of the free energy
with respect to the band edges is preserved for a semiconductor region apart from the
junction (i.e., outside the depletion region). As depicted in Fig. 5, the free energy
takes the same value across the entire structure. The band bending in a semiconductor
emerges in order to equalize the free energies in a metal and that in a semiconductor,
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which had been different before forming the junction. The band bending is formed as
a result of electron depletion in a part of semiconductor close to the junction, i.e., a
depletion region. The electrons which initially existed there accumulates in the metal
region close to the junction front. Nevertheless, the locally large concentration of
electrons in the metal never affects the free energy in that region.

In reality, it often the case that a set of quantum states exist at the surface of a
semiconductor because of the breakage of periodicity in atomic arrangement at the
surface. These states often exist in the middle of the bandgap, which we call surface
states or interfacial states. If electrons occupy these states, the free energy of
electrons at the surface of a semiconductor is clamped to the energy of surface states
because the density of such surface states is so small that the occupancy of states by
electrons is large, making entropy almost zero. As a result, the electron free energy
in a semiconductor aligns to the energy of surface states, which also determines the
extent of band bending in the depletion region, as depicted in Fig. 6. Such a

Fig. 5 The band lineup for a Schottky junction between a metal and an n-type semiconductor. The
distribution of electrons, holes and ionized impurities is also shown at the bottom schematic

Fig. 6 The band lineup for a Schottky junction with trap states at the surface of a semiconductor
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phenomena is often called as Fermi level pinning. When a semiconductor with such
as surface state forms a junction with a metal, the band bending in a semiconductor
is already determined by the energy of surface states and the misalignment of the
electron free energy between the metal and the semiconductor is compensated by
the appearance of the electric double layer at the metal/semiconductor interface.
This is a very thin layer, less than a couple of nanometers, in which the opposite
charges (electrons and holes) face each other between the metal and the semicon-
ductor sandwiching the metal/semiconductor interface. The reason why we deal
with such a complicated band alignment here is that the situation is quite similar to
the interface between an electrolyte and a semiconductor which inevitably appears
in photocatalysis and photoelectrochemistry using semiconductors.

6 Non-equilibrium in a Semiconductor

So far, we have discussed situations without external work applied to a semicon-
ductor and the law of mass action has been always applicable. Here we will discuss
situations in which some external work increases the concentrations of electrons
and holes in a semiconductors from their equilibrium values.

The most readily-understandable situation may be the generation of
electron-hole pairs in a semiconductor upon the absorption of photons. A photon
absorbed in a semiconductor creates a pair of an electron and a hole by exciting an
electron from a state in the valance band to another one in the conduction band.
Such extra electrons and holes recombine and disappear as a successive event. The
balance of the rates between generation and recombination determines the con-
centrations of electrons and holes upon light absorption by a semiconductor. Such
concentrations of both electrons and holes are clearly larger than the values
determined by the law of mass action (Eq. (1)). The electrons and holes in such a
situation are no more in equilibrium. The increase in the concentration makes
entropy smaller for both electrons and holes and the values defined by Eqs. (8) and
(14) now take different values between electrons and holes. We call the value of EFn

and EFp as quasi Fermi level for electrons and holes, respectively. Since electrons
and holes are no longer in equilibrium, we have to define quasi free energies
individually for electrons and holes.

The behavior of (quasi) free energies, or (quasi) Fermi levels, upon light
absorption is depicted in Fig. 7. For an intrinsic semiconductor, light irradiation
increases the concentrations of both electrons and holes by Δn and Δp, respectively,
where Δn = Δp. Quasi Fermi levels approach to the band edge energies following
Eqs. (8) and (14) upon an increase of electron and hole concentrations to n + Δn,
p + Δp, respectively. Then a splitting Δμ (= EFn−EFp) emerges between the quasi
free energies of electrons and holes. If we are able to take an electron and a hole out
of the semiconductor under light irradiation while avoiding their recombination, the
pair of an electron and a hole can generate external work if they can recombine at a
place outside the semiconductor and release the difference of free energies Δμ. The
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splitting between the quasi Fermi levels for electrons and holes, Δμ, is therefore
very important as a measure of the maximum work if a pair of an electron and a
hole is extracted out of a semiconductor.

For a n-type semiconductor without light irradiation, the electron concentration is
determined by the dopant concentration ND, and the hole concentration p is very
small so that the product ND p satisfies the law of mass action. Upon light absorption,
the electron and the hole concentrations increase by Δn and Δp, respectively. But Δn
is much smaller than the initial electron concentration ND and almost no change is
brought about in the electron quasi Fermi level EFn. On the other hand, the hole
concentration increases substantially from the initial value p, leading to a substantial
shift of the hole quasi Fermi level EFp to the direction of valence-band-edge energy.
For a p-type semiconductor, similarly, only the electron quasi Fermi level moves
upon light absorption. In this manner, for a doped semiconductor, only the quasi
Fermi level of minority carriers moves upon light absorption and the quasi Fermi
level of majority (doped) carriers is almost never changed.

7 Semiconductor Device Structures for Energy Harvesting
from Light

Based on the considerations on non-equilibrium of carriers in a semiconductor, let
us look at a couple of structures including a semiconductor which serve for energy
harvesting from light. The first example is a semiconductor photocatalyst. Figure 8
depicts its conceptual structure. Here, two metals with different Fermi levels are

Fig. 7 The positions of Fermi levels and quasi Fermi levels for semiconductors in equilibrium and
under light irradiation. For the latter (bottom row), the dotted lines denoted as EF indicates the
position of Fermi levels without light irradiation for reference. n and p denote electron and hole
concentration, respectively, and N means the concentration of dopants with the subscripts D as
donor and A as acceptor, respectively
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attached to a semiconductor particle which is slightly doped to be n-type.
Theoretically, an intrinsic semiconductor can serve for energy harvesting from
light. In reality, however, it is often difficult to obtain a genuinely intrinsic semi-
conductor with extremely high purity. In addition, slight doping helps deactivate
crystal defects as centers for electron-hole recombination without photon emission,
i.e., a process leading to energy dissipation, by filling the quantum energy states in
the band gap associated with crystal defects. It is therefore realistic to apply a slight
doping to a bulk of semiconductor. Figure 8 supposes such a situation in which an
entire semiconductor particle is doped to be slightly n-type.

Under a dark condition, the Fermi level in the metal C is aligned to the Fermi
level of the semiconductor so that the slope of Ec in the vicinity of the junction
favors the transport of electron to the metal C while hole transport to the metal C is
conversely blocked by the slope of Ev. The mismatch of Fermi level between the
metal A and the semiconductor forms a large band bending, which blocks (favors)
the transport of electrons (holes) to the metal A. Note that no net transport of
carriers exist in the junction under equilibrium and the discussion on the ease of
transport here is only for the carriers that exist in excess of the equilibrium

Fig. 8 The left-bottom schematic depicts an idealized semiconductor photocatalyst with two
metals serving as selective contacts for electrons and holes. The metals also function as catalysts
for the transfer of electrons and holes to the molecules in an electrolyte. Three diagrams depicts
band lineup and (quasi) Fermi levels before making a contact, a contact under dark and
illumination. For the band lineup under illumination, the vacuum level is omitted because its
misalignment between an electrolyte and a semiconductor is not straightforward; it is affected by
the electric double layer at the electrolyte/semiconductor interface and is strongly dependent on the
surface. The level denotes as “H+/H2” is the redox potential for H2 evolution from H+, which is
described in another chapter. Similarly, the level with the notation “O2/H2O” is the redox potential
for O2 evolution from H2O
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concentration upon external work such as light illumination. Since the semicon-
ductor here is n-type, almost no holes exist and we normally focus on the transport
of electrons. This is why we call the junction with the metal C as “ohmic” (con-
ductive) and the junction with the metal A as Schottky (rectifying or inslative under
a zero bias condition).

Upon illumination, the generation of extra electrons and holes in the semicon-
ductor splits the quasi Fermi levels for electrons and holes. The remaining band
bending still favors the transport of electrons to the metal C and that of holes to the
metal A. As a result, an electron-hole pair with the difference of free energy Δμ is
split to the different directions, making it possible to extract work Δμ out of the
semiconductor.

Now, the electrons in the metal C and the holes in the metal A have the free
energies, i.e., quasi Fermi levels: EFn for the electrons and EFp for the holes,
respectively. These values are determined by the band-edge energies of the semi-
conductor bulk and the concentrations of electrons and holes that exist in the
semiconductor based on Eqs. (8) and (14). On the other hand, there exists a rela-
tionship between the band-edge energies of semiconductors and the standard
electrode potentials for a variety of redox reactions in an electrolyte, as is described
in the previous chapter. If, as is the situation in Fig. 8, the free energy of the
electrons in the metal C, EFn, exists at the upper side of a redox reaction, electrons
can be transferred from the metal C to the molecules in an electrolyte participating
in the reaction. Note that this is a consideration in terms of thermodynamics and just
the possibility of the reaction progress is predicted; nothing is known about the rate
of the electron transfer. Similarly, if the free energy of the holes in the metal A, EFp,
exists at the lower side of a redox reaction, holes can be transferred from the metal
A to the molecules in an electrolyte participating in the reaction. It should be kept in
mind that the energy of holes increases downwards in an energy diagram that
depicts the energy of an electron. This is an ideal operation mode of a semicon-
ductor photocatalyst in an electrolyte; a semiconductor particle with the surface
modified by two appropriate kinds of metals can serve for water splitting upon light
irradiation.

Of course, if we expand the size of the hypothetical structure in Fig. 8 and
connect two electrical wires to the metals A and C, we can extract electrons and
holes to an external device with the difference in the free energies Δμ between
electron and holes. This is a photovoltaic cell using one Schottky junction (at the
interface with the metal A) and the other junction that favors the transfer of
the majority carriers in the semiconductor (in this case, electron) at the
semiconductor/metal interface, which is often called ohmic junction.

As for a photovoltaic cell, it is more common to use a semiconductor pn junction
for the purpose of separating electrons and holes to different electrodes. A typical
solar cell employs a pn junction in the vicinity of a surface as depicted in Fig. 9. In
this example, a thicker region is n-type but it can be p-type with an n-region at the
surface. The back side is contacted to the metal C with ohmic band alignment by
employing a metal with its original Fermi level a bit larger than the Fermi level of
the n-type semiconductor, similarly to the case in Fig. 8. As for the metal contacting
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to the p-region of the semiconductor, the metal A is assumed to have the same
Fermi level as the one in the semiconductor p-region for the simplicity of the
picture. The resultant slope of the conduction-band-edge energy, Ec, favors
the majority of electrons with smaller kinetic energies to migrate to the direction of
the metal C. Since the electrons are in equilibrium across the device structure, a
small fraction of electrons exist in the vicinity of the metal A, where Ec is much
larger, but the majority exist in the n-region and the metal C. Similarly, the majority
of holes prefers moving to the direction of the metal A owing to the slope of Ev.

Under illumination, similar to the case of a photocatalyst in Fig. 8, the quasi
Fermi levels are split and band bending becomes smaller, but still a slope of Ec and
Ev exist and it separates electrons and holes to different directions. The electrons in
the metal C and the hole in the metal A have different free energies and they can
make external work if they are led to an external device.

If we compare the situations in Figs. 8 and 9, it is clear that a Schottky junction
and a pn junction work in a similar manner to separate electrons and holes. The
maximum difference in free energy (or quasi Fermi levels) Δμ is obtained when
intensive light absorption generates abundant electrons and holes accumulated in
the conduction and the valence bands, respectively. In this situation, a large electron
(hole) concentration makes it difficult for the positive donor (negative acceptor)
ions in a crystal lattice to exist unaccompanied by electrons (holes), where naked
ions are the source of a depletion region as depicted in Figs. 3 and 5. Such difficulty
of making a depletion region makes the bands flat upon the existence of abundant
electrons and holes in a semiconductor. This favors large Δμ as is understandable by
the band-lineup charts in Figs. 8 and 9. Such a flat-band situation, however, lacks

Fig. 9 Upper schematic
depicts a typical photovoltaic
cell using a semiconductor pn
junction with two metals
serving as contacts for
electrons and holes,
respectively. Bottom two
diagrams depict the band
lineup and (quasi) Fermi
levels under dark and
illumination
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electric field inside, making it difficult to drive electrons and holes to the separated
electrodes. This is called “open-circuit” situation when we can obtain the maximum
Δμ (or voltage in the case of a photovoltaic cell) while no current is obtained.

One practical disadvantage of Schottky junction is that it is not easy to make a
large band bending in the semiconductor. Even though an appropriate metal is
employed which have a sufficiently large difference in Fermi level with respect to
the one in a semiconductor, the existence of semiconductor surface states prevents a
large band bending as expected from the difference in Fermi levels. On the other
hand, it is relatively easy to have a large band bending at a pn junction and this is
why a pn junction is a common structure in photovoltaic devices for the separation
of electrons and holes.

8 Fermi-Dirac Distribution of Electrons in the Bands
and Effective Density of States

This section can be skipped if the reader is not so familiar with solid-state physics.
More detailed discussion is found in many textbooks on semiconductor physics
such Refs. [1] and [2].

Here we will review a conventional theory on how electrons populate in the
conduction and the valence bands and we will find a connection to the thermo-
dynamic treatment of the concentrations of electrons and holes in a semiconductor.
An ordinary discussion of electron occupancy of the quantum states in a semi-
conductors first assumes Fermi level, EF. As depicted in Fig. 10, the electron
density in each energy segment n(E) is determined by the product between the
density of states in the conduction band De(E) and the probability of an electron
occupying a state at energy E, f(E).

E

f(E)

E

D(E)

E

n(E)

T = 0 K

E

f(E)

E

n(E)

T > 0 K

EF

Density of the 
states unoccupied 
by electrons

Density of 
quantum states

Occupancy 
probability

Electron 
density

Conduction 
band

Valence 
band

bandgap

Fig. 10 Distribution of electrons along its energy in the bands of a semiconductor
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n Eð Þ ¼ De Eð Þf Eð Þ; ð18Þ

where

De Eð Þ ¼ 4p
2m�

e

h2

� �3
2

E � Ecð Þ12; ð19Þ

i.e., the density of states increases according to the square root of the energy
distance from the edge of the conduction band, where m�

e is the effective mass of an
electron in the conduction band and h is the Planck constant. f(E) takes a
well-known form of Fermi-Dirac distribution with a reference energy EF, which we
call Fermi level.

f Eð Þ ¼ 1

exp E�EF
kT

� �þ 1
: ð20Þ

With EF positioned at a certain energy in the bandgap, at 0 K, electrons occupy the
valence band completely and the conduction band is completely empty. At a
temperature above 0 K, the function f(E) makes a small portion of the states in the
conduction band occupied by electrons and some of the states in the valence band
become empty, which states are regarded as holes.

The total electron concentration is obtained by integrating n(E) along the energy
over the conduction band.

n ¼ Z1

Ec

De Eð Þ exp �E � EF

kT

� �
dE ¼ 2

2pm�
ekT

h2

� �3
2

exp �Ec � EF

kT

� �
; ð21Þ

where f(E) is approximated since E � EF � kT:

f Eð Þ � exp �E � EF

kT

� �
; ð22Þ

meaning that Fermi-Dirac distribution is approximated as Boltzmann distribution if
the energy of our interest is far enough from EF. Equation (21) can be summarized
as

n ¼ Nc exp �Ec � EF

kT

� �
; ð23Þ

with

Nc ¼ 2
2pm�

ekT
h2

� �3
2

: ð24Þ
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The intuitive interpretation of Eq. (23) is that all the electrons take the energy of EC

and the density of quantum states NC are concentrated at the same energy. The
exponential term is the probability of electrons occupying the quantum states at the
energy EC with the origin of energy taken at EF.

Interestingly, Eq. (23) is completely the same as Eq. (16) that was converted
from Eq. (8), indicating that the Fermi level for electrons distribution along the
energy axis is in essence the free energy of electrons according to a thermodynamic
interpretation.

In a similar manner, the concentration of holes is obtained as:

p ¼ Nv exp �EF � Ev

kT

� �
: ð25Þ

where Nv is the effective density of states for holes. This is equivalent to the
thermodynamic expression, Eq. (14). Multiplying the concentrations of electrons
n and holes p with Eqs. (23) and (25) yields the law of mass action in Eq. (1). Here
the relation in Eq. (15) is used. The discussion above clarifies that the thermody-
namic treatment of carrier concentrations in a semiconductor is another viewpoint
of Fermi-Dirac distribution of electrons in a semiconductor.

9 Detailed Derivation of Electron/Hole Free Energies
in a Semiconductor

This section can be skipped if the reader is not so familiar with solid-state physics.
The detailed discussion is in Ref. [3].

Let us first obtain the averaged energy of the electrons in the conduction band.

h�ei ¼ 1
ne

Z1

Ec

EDe Eð Þf Eð ÞdE ¼ Ec þ 3
2
kT : ð26Þ

Similarly, the averaged energy of the holes in the valence band is:

�h�hi ¼ 1
nh

Z�1

Ev

�Eð ÞDh Eð Þf Eð ÞdE ¼ �Ev þ 3
2
kT; ð27Þ

where Dh(E) is the density of states in the valence band, which takes the form of
Eq. (19) with a substitution of me with mh, effective mass of a hole in the valence
band.

Here, the tedious process of calculation is omitted but we certainly get the
relationship in Eq. (3). Because the kinetic energy of electrons and holes in
3-dimensional space is (3/2)kT, electrons and holes in a semiconductor can be
regarded as monoatomic ideal gases. Then, we can apply the precise formulation of
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entropy for a monoatomic ideal gas due to 3-dimensional translational motion,
which is known as Sackur-Tetrode equation [4]:

S ¼ k
5
2
þ ln

2pm�
ekT

h2

� �3
21
n

 !( )
; ð28Þ

where n is the electron concentration. Here we describe the derivation for the
electrons but similar treatment is possible for holes. Using Eq. (24), we can obtain
the expression

TS ¼ kT ln
Nc

n

� �
þ 5

2
kT: ð29Þ

Therefore, admitting that �e corresponds to the internal energy of an electron U,
Gibbs free energy of an electron is

G ¼ UþPV � TS ¼ h�eiþPV � TS ¼ Ec þ 3
2
kT

� �
þ kT � kT ln

Nc

n

� �
þ 5

2
kT

� �

¼ Ec þ kT ln
n
Nc

� �
¼ EFn:

ð30Þ

Here, ideal gas equation PV = kT is used and the last equator corresponds to Eq. (8).
Now we can confirm that the Fermi level for the electrons in a semiconductor is
equivalent to the Gibbs free energy for an electron in the viewpoint of thermody-
namics. Similar derivation confirms that the Fermi level for holes is equivalent to
the Gibbs free energy of a hole.
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