
Andrej Brodnik
Jan Vahrenhold (Eds.)

 123

LN
CS

 9
37

8

8th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2015
Ljubljana, Slovenia, September 28 – October 1, 2015, Proceedings

Informatics
in Schools
Curricula, Competences, and Competitions

Lecture Notes in Computer Science 9378

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Andrej Brodnik · Jan Vahrenhold (Eds.)

Informatics
in Schools

Curricula, Competences, and Competitions

8th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2015
Ljubljana, Slovenia, September 28 – October 1, 2015
Proceedings

ABC

Editors
Andrej Brodnik
Faculty of Computer and Information Science
University of Ljubljana
Ljubljana
Slovenia

Jan Vahrenhold
Institut für Informatik
WWU Münster
Münster
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-25395-4 ISBN 978-3-319-25396-1 (eBook)
DOI 10.1007/978-3-319-25396-1

Library of Congress Control Number: 2015950925

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 8th International Conference
on Informatics in Schools: Situation, Evolution and Perspectives (ISSEP 2015).
The conference was held at the University of Ljubljana, Slovenia, from September
28 to October 1, 2015.

ISSEP is a forum for researchers and practitioners in the area of informatics
education, in both primary and secondary schools (K–12 education). It provides
an opportunity for educators to reflect upon the goals and objectives of this
subject, its curricula and various teaching/learning paradigms and topics, pos-
sible connections to everyday life, and various ways of establishing informatics
education in schools. This conference also has an interest in teaching/learning
materials, various forms of assessment, traditional and innovative educational
research designs, the contribution of informatics to the preparation of individ-
uals for the 21st century, motivating competitions, and projects and activities
supporting informatics education in schools.

The ISSEP series started in 2005 in Klagenfurt, with subsequent meetings
held in Vilnius (2006), Toruń (2008), Zürich (2010), Bratislava (2011), Olden-
burg (2013), and Istanbul (2014). The 8th ISSEP conference was hosted by the
University of Ljubljana, Faculty of Computer and Information Science.

The conference received 36 submissions. Each submission was reviewed by
at up to four Program Committee members and evaluated on its quality, origi-
nality, and relevance to the conference. Overall, the Program Committee wrote
106 reviews. The committee selected 14 papers for inclusion in the LNCS pro-
ceedings, leading to an acceptance rate of 38.9%. The decision process was made
electronically using the EasyChair conference management system.

In addition to the accepted contributions, this volume also contains abstracts
of the invited lectures by Tim Bell (Christchurch), Maria Knobelsdorf (Ham-
burg), and Miha Kos (Ljubljana).

ISSEP was federated with a teacher conference for K–12 teachers. The con-
ference was geared toward teachers from Austria, Italy, and Slovenia, although
teachers from other countries also participated. The decision to federate the
teacher conference and ISSEP was made so as to bring the results of computer
science education research closer to the practising K–12 teachers. Morevover,
since the participation at the teacher conference was international, the conference
also provided a forum for the international exchange of ideas and experiences.

We would like to thank all the authors who responded to the call for papers,
the invited speakers, the members of the Program Committee, the external re-
viewer, and – last but not least – the members of the Organizing Committee.

August 2015 Andrej Brodnik
Jan Vahrenhold

Organization

Program Committee

Erik Barendsen Radboud University Nijmegen and Open
Universiteit, The Netherlands

Andrej Brodnik (Chair) University of Ljubljana and University
of Primorska, Slovenia

Michael Caspersen Aarhus University, Denmark
Valentina Dagiene Vilnius University, Lithuania
Barbara Demo Università di Torino, Italy
Ira Diethelm Carl-von-Ossietzky-Universität Oldenburg,

Germany
Kathi Fisler Worcester Polytechnic Institute, UK
Yasemin Gülbahar Ankara University, Turkey
Juraj Hromkovič ETH Zürich, Switzerland
Peter Hubwieser Technische Universität München, Germany
Peter Micheuz Alpen-Adria-Universität Klagenfurt, Austria
Ralf Romeike Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Jože Rugelj University of Ljubljana, Slovenia
Carsten Schulte Freie Universität Berlin, Germany
Chris Stephenson Google
Maciej M. Sys�lo Nicolaus Copernicus University Toruń, Poland
Josh Tenenberg University of Washington, USA
Françoise Tort Ecole Normale Supérieure de Cachan, France
Jan Vahrenhold (Chair) Westfälische Wilhelms-Universität Münster,

Germany

Posters

Matija Lokar University of Ljubljana, Slovenia

Workshops

Peter Micheuz Alpen-Adria-Universität Klagenfurt, Austria

VIII Organization

Teacher Conference

Mojca Bernik University of Maribor, Slovenia
Barbara Demo Università di Torino, Italy
Claudio Mirolo Università di Udine, Italy
Peter Micheuz Alpen-Adria-Universität Klagenfurt, Austria

External Reviewer

Filiz Kalelioğlu Ankara University, Turkey

Organizing Committee

Andrej Brodnik University of Ljubljana, Slovenia
Boštjan Borič University of Ljubljana, Slovenia
Gašper Fele-Žorž University of Ljubljana, Slovenia
Matevž Jekovec University of Ljubljana, Slovenia
Nataša Mori University of Ljubljana, Slovenia

Sponsoring Institution

University of Ljubljana, Faculty of Computer and Information Science

Invited Lectures
(Abstracts)

Surprising Computer Science

Tim Bell

University of Canterbury,
Christchurch, New Zealand
tim.bell@canterbury.ac.nz

http://www.cosc.canterbury.ac.nz/tim.bell/

Abstract. Much of what we can do with Computer Science seems like
magic, such as searching billions of items in a fraction of a second, or
decrypting a secure message without needing to know the key that was
used to encrypt it. Other parts are surprising — surely given a fast
enough computer we can find the optimal solution to a problem? This
paper investigates magical and paradoxical ideas in computer science,
and how these relate to Computer Science education.

The Theory Behind Theory - Computer Science
Education Research Through the Lenses of

Situated Learning

Maria Knobelsdorf

Universität Hamburg, Computer Science Department
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

knobelsdorf@informatik.uni-hamburg.de

Abstract. This paper introduces key characteristics of the situated learn-
ing approach and discusses from that perspective questions of pedagogy
and educational research in Theory of Computation. This discussion ex-
emplifies how a change in learning theories alters the unit of analysis,
thus reframing research questions and potential answers. In its conclu-
sion, this paper provides an outlook on potential research questions in
secondary Computer Science Education.

Doubtology - About Common Sense, Doubt and
Critical Thinking

Miha Kos

Ustanova Hǐsa eksperimentov, Trubarjeva ulica 39, 1000 Ljubljana, Slovenia

Abstract. Our society is facing a pandemic illness without a name but
with clear symptoms: apathy in place of passionate curiosity, looking for
a quick and easy way to learn instead of striving for in-depth knowledge,
being compliant and conformant instead of thinking critically. This talk
will focus on curiosity and critical thinking, two of the most important
driving forces behind the learning process. What are we doing wrong
during education which often seems to be stifling curiosity instead of
nurturing it? How do we excite the power of imagination and curiosity
and light the spark that will cause students to learn by themselves?
Feeling curious already?

Throughout almost twenty years of experience running the Science Centre, I
gradually realized that it is not a centre of science that I am running. Promotion
of Science is just one of the tools used in order accomplish our main mission –
inspiring curiosity and critical thinking.

Our society is facing a pandemic illness without a name but with clear symp-
toms of apathy in place of curiosity and learning, looking for easy but shallow
ways of acquiring knowledge, no interest in seeking the answers to bothering
questions, misinterpretation of dialog as being just two monologues, believing
instead of having doubts, critical thinking, checking and proving...

There isn’t a single country that would claim their educational system is
perfect, or even that it is good. Experts are wondering when and where in the
education process this curiosity is lost.

Curiosity is something every single human being is born with. Not only hu-
mans, many animals start their lives being curious. Curiosity is a driving force
for the learning process. It is fuel for the trial and error process – learning by
mistakes that are nothing more than personal learning experiences. Instead we
have an educational system that despises mistakes rather than looks at them as
a necessary learning optimisation method and encouraging them.

Imagine a curious child raising a hand in order to get the attention of the
teacher and ask a question, pose a proposition or express a personal idea of the
topic. This is one of the crucial moments that will define the future level of
curiosity of the whole class.

There is a right and a wrong course of action. The teacher could respond with:
“That’s a good question/idea! Let’s talk about it.”“I don’t know the answer. Does
anyone have any ideas?” “Wow, great idea. What if we also take into account
that ...”“This is a question that also bothered great scientists at that time.” ...

XIV M. Kos

The other response (that demands less effort) might be: “Don’t interrupt the
class!” “You should know that by now!” “What a crazy/stupid idea.” “We will
talk about it later.”“We have already discussed this. Listen more carefully next
time!”“Can someone please explain the idea to him/her. I am tired of repeating
the same thing all over again and again.” ...

One can guess which option is a “curiosity multiplier” and which is the “cu-
riosity killer”. Both options directly signal to the curios person (but also to the
whole class) the value of being curious, but one option is treating this curiosity
as a virtue (the holy grail for creativity) while the other shows that the curiosity
does not pay, that the curiosity is punished.

Curiosity is a very tangible substance that each teacher should nurture through-
out life. It triggers the passion for learning and creativity. It is also important
as a teacher to exercise the answer “I don’t know”. It is precious to admit the
mistakes one makes while teaching (especially if the teacher is alerted to the
mistake by some doubtful student). This shows that everyone makes mistakes.
Moreover it gives the teacher the feedback that 1) students are curious, 2) that
they do care what the teacher is communicating, 3) that they don’t just believe
what they hear, 4) that they know to doubt and to think critically.

A good teacher is not a teacher at all. A good teacher is an inspirer that
amplifies curiosity and encourages doubts and critical thinking. Inspired students
will learn by themselves.

Contents

Invited Papers

Surprising Computer Science . 1
Tim Bell

The Theory Behind Theory - Computer Science Education Research
Through the Lenses of Situated Learning . 12

Maria Knobelsdorf

Research Papers

Robotics Activities–Is the Investment Worthwhile? 22
Ronit Ben-Bassat Levy and Mordechai (Moti) Ben-Ari

Dimensions of Programming Knowledge . 32
Andreas Mühling, Peter Hubwieser, and Marc Berges

Defining Proficiency Levels of High School Students in
Computer Science by an Empirical Task Analysis Results
of the MoKoM Project . 45

Jonas Neugebauer, Johannes Magenheim, Laura Ohrndorf,
Niclas Schaper, and Sigrid Schubert

Classification of Programming Tasks According to Required Skills and
Knowledge Representation . 57

Alexander Ruf, Marc Berges, and Peter Hubwieser

Online vs Face-To-Face Engagement of Computing Teachers for their
Professional Development Needs . 69

Sue Sentance and Simon Humphreys

Programming in Scratch Using Inquiry-Based Approach 82
Jǐŕı Vańıček

Best-Practice Papers and Country Reports

Olympiad in Computer Science and Discrete Mathematics 94
Athit Maytarattanakhon, Vasiliy Akimushkin, and Sergei Pozdniakov

CS Unplugged: Experiences and Extensions . 106
Irena Demšar and Janez Demšar

XVI Contents

Computing at School in Sweden – Experiences from Introducing
Computer Science within Existing Subjects . 118

Fredrik Heintz, Linda Mannila, Karin Nyg̊ards, Peter Parnes,
and Björn Regnell

A Snapshot of the First Implementation of Bebras International
Informatics Contest in Turkey . 131

Filiz Kalelioğlu, Yasemin Gülbahar, and Orçun Madran

Introducing a New Computer Science Curriculum for All School Levels
in Poland . 141

Maciej M. Sys�lo and Anna Beata Kwiatkowska

Work-in-Progress and Discussion Papers

Analyzing the Twitter Data Stream Using the Snap! Learning
Environment . 155

Andreas Grillenberger and Ralf Romeike

Is Coding the Way to Go? . 165
Violetta Lonati, Dario Malchiodi, Mattia Monga,
and Anna Morpurgo

Visual Literacy in Introductory Informatics Problems 175
Françoise Tort and Béatrice Drot-Delange

Author Index . 183

Surprising Computer Science

Tim Bell

University of Canterbury,
Christchurch, New Zealand
tim.bell@canterbury.ac.nz

http://www.cosc.canterbury.ac.nz/tim.bell/

Abstract. Much of what we can do with Computer Science seems like
magic, such as searching billions of items in a fraction of a second, or
decrypting a secure message without needing to know the key that was
used to encrypt it. Other parts are surprising — surely given a fast
enough computer we can find the optimal solution to a problem? This
paper investigates magical and paradoxical ideas in computer science,
and how these relate to Computer Science education.

Keywords: Computer science education, magic, paradoxes, fraud.

1 Introduction

It was only one generation ago that a computer was something that many people
had no access to, and those who did have access perhaps shared one for a whole
household, or queued up to use one in their place of work. Now it is common
for each of our students to have multiple computing devices that are queuing
up to be used — perhaps a desktop computer at home, a smartphone in their
pocket, a laptop or tablet in their bag, a computer in a lab at school, and even
a few old devices lying around that are no longer used or valued. With this
transition has come the development of computing into a highly competitive
consumer market where devices and software (typically “apps”) are purchased
through streamlined systems that enable consumers to keep up with the very
latest offerings.

The arrival of very compact yet powerful computing devices such as smart-
phones and tablets, along with services such as search engines, social networks
and online media, have created a digital ecology where the device and the soft-
ware become impenetrable to the user; in fact, most devices would have their
warranties voided if a student tried to look inside them, and online services pro-
tect themselves from letting users understand how they work, let alone being
able to modify them. The opacity of such systems has essentially immunised a
generation from believing they could understand what is going on behind the
scenes. The curious might wonder how it is possible to search billions of web
pages in a fraction of a second, or to accept hundreds of hours of video uploads
every minute, or store thousands of songs in a device that weighs the same as
a few coins. This puts the hardware and software of the digital revolution into

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 1–11, 2015.
DOI: 10.1007/978-3-319-25396-1_1

http://www.cosc.canterbury.ac.nz/tim.bell/

2 T. Bell

the realm of magic — we’ve seen it happen with our own eyes, but have no
explanation for how it might work.

As teachers we can use the magic to get students excited, and our teaching can
be thought of as showing students how the magic works. It is also important to
help new teachers get beyond the magic and engage with the great ideas behind
it.

In this paper we explore ideas from computer science that are indeed magic,
but look at how we can reveal the magic to students, at the same time not
wanting to lose the fascination of the discipline. We begin by reflecting on the
ambiguously named area of “coding,” and then look at how computer science
has literally been used as the basis of magic tricks. From here we explore some
paradoxes and surprises that arise in the discipline, and then look at how some
people have used the mystery to perpetrate frauds. The conclusion discusses the
lessons this provides for computer science education.

2 The Secret Code

If digital systems remain a mystery, then our main experience with them will be
as users rather than builders. Lee et al. point out that students can engage with
technology much better if they transition from using the technology, to modifying
it, and creating new artefacts [13]. This reflects Rushkoff’s “Program or be
programmed” theme [14]: if we are not empowered to create new technology
then we are doomed to fit in with whatever is created for us by technocrats.

From an economic point of view, any society that trains its children to be users
is doomed to pay for products created by others. With regards to citizenship, if
we are uninformed users then we are locked into accepting whatever technologies
are made available to us, unless we are prepared to reject new developments
altogether. Schulte and Knoblesdorf highlight the power of the belief that people
have that they might never understand how computers work by drawing an
analogy with the “muggles” (people without magical powers) in the Harry Potter
stories [15]; the challenge is to convince people that they can develop these
powers, and operate as an insider. Given the growing awareness that students
need to engage with technology, it’s not surprising there has been a movement
back to bare-bones systems such as the Raspberry Pi [17], which invite the user
to modify and create, rather than just use.

As more countries are introducing computer science and computational think-
ing into their curriculum, teachers are having to overcome fear and confusion that
they have around the digital world so that they can teach areas such as computer
science and computational thinking to their students in a way that is authentic
and engaging. Much of the value of having ways to reveal the “secrets” behind
the technology is that it is important for empowering new teachers to feel that
they could teach this important discipline.

The recent growth of interest in the topic of “coding” (used as a buzz word
for programming) has had a role in opening up this mystery to the public. The
word “code” is mysterious and has several meanings in computer science, which

Surprising Computer Science 3

all adds to the confusion for outsiders. It conjures up the idea of secret codes,
and the public may have come across the term in contexts such as the Enigma
codes or the fictional Da Vinci code. There is a sense that for such codes, once
the secret key is known then everything is revealed. Organisations that have
worked to help students learn to code give them the opportunity to break into
this mysterious world, and having the opportunity to engage with this prior to
a student’s teenage years is valuable [6]. Of course, learning to “code” doesn’t
really unlock all the secrets, but it can be a powerful enabler that helps young
students to engage with the basic principles and get over the initial hurdle of
not knowing what programming is. In principle, learning just the basics of any
Turing-complete language (e.g. selection, iteration and variables) is sufficient to
be able to write any program. but understanding programming properly takes
years,1 and given the development of new languages, there will always be more
to learn.

This sense of the word “coding” is rather specific. Even in the limited context
of software development, traditionally the part of programming that is “coding”
might be the most routine part, simply converting a design to code. In contem-
porary contexts it often refers to the whole process of designing, implementing,
testing and debugging software. Thus even when referring to programming, “cod-
ing” has acquired two meanings, much like the word “hacker” can be a positive
reference to broad technical prowess, but can also have a strongly pejorative
sense.

To add to the confusion, the term “code” is ambiguous and pervasive in com-
puter science. When applied to data, the term “code” appears in source coding,
channel coding, and cryptographic coding. Each of these are about represent-
ing data to transmit and store it efficiently, reliably, and securely. To add to
the confusion, in computing we have “source code,” which is quite different to
“source coding!” And then source code is compiled to machine code, which is
also referred to as the object code, or even as the “binary” of a program.

This leads us to the most widespread code in computing: “binary”. It is
widespread because it is the fundamental representation in digital devices —
the word “digital” is often used to describe the new technology (e.g. “digital
revolution”), and the term primarily refers to the binary digits that are funda-
mental to all computing devices. This brings its own paradox — if you ask a
group of students if they are aware that computers store only zeroes and ones,
this is likely to elicit a positive response, yet the truth is there are no actual
zeroes or ones stored in a computer. There are high and low voltages in mem-
ory, pits and lands on optical disks, high and low pitches on modems,2 black
and white stripes on bar codes, but no zeroes or ones! The bit is an abstract
representation of a physical phenomenon; physical bits use space and energy.

1 Norvig discusses this in his essay “Teach yourself programming in ten years”
(http://norvig.com/21-days.html).

2 To be accurate, modems often use four or more sounds, and other methods to encode
multiple bits.

http://norvig.com/21-days.html

4 T. Bell

Ultimately every code mentioned in this section is eventually represented in
binary, and hence understanding binary code can be a powerful enabler for stu-
dents of computer science, and indeed for the general public. It is a common
topic in computing curricula, and there are many resources for teaching it (a
survey of games for teaching CS found more resources for teaching binary than
any other topic [8]), but often it is taught in a very limiting way, focussing on
how to convert between decimal and binary. This could give the impression that
computer scientists spend a lot of time doing these conversions, but the real
point is to understand the power — and limitations — of this representation.
For example, a 16-bit number doesn’t have twice the range of an 8-bit number;
24-bit colour isn’t three times better than 8-bit colour; and a 2048-bit encryption
key isn’t just twice as strong as a 1024-bit key (in fact, in principle a 1025-bit
key is twice as good as a 1024-bit key).

Binary representations have relevance when matched to human needs: humans
can perceive millions of colours, so an 8-bit or 16-bit palette isn’t sufficient to
out-perform human perception; we can detect time delays of 0.1 seconds, so
a 10Mbps connection will introduce a perceivable delay if downloading a one
megabyte photo; and someone attacking an encryption key may find the data
useful if cracked in less than a day, so a 56-bit key is not sufficient.3

The basics of binary representation can be taught very simply, and to large
groups, using the CS Unplugged activity with around 5 to 8 cards (one per bit),
with each card having the corresponding value visible, or not visible. Figure 1
shows eight students holding such cards to show 179 dots. Asking the audience
if each card is needed to display a number elicits yes/no responses that illus-
trate how a value can be communicated using just two distinct signals. Asking
questions such as “what is the largest number they can represent,” “what is
the smallest number they can represent,” and “how often is the right-hand bit
flipped when counting” enables the audience to engage with the patterns around
binary numbers. For the students holding the cards, it is an opportunity to find
out how simple a bit is!

A key point about digital representations is that they are fundamentally differ-
ent from analogue representations. Because of channel coding (error correction)
information can be stored and transmitted with an expectation of an exact copy
being retrieved; because of source coding (compression) this can be done in suf-
ficiently little time and space that humans find it useful (e.g. storing thousands
of songs on a pocket size device); and because of encryption coding the data can
be stored and transmitted on public systems with good assurance of privacy for
the data.

Binary may appear to be a secret code to outsiders, but it is easily explained,
and unlocks the ability to conceive what is actually happening in our digital
world.

3 Until 1999, the US government regulated encryption keys stronger than 56 bits. In
1999, a 56-bit encrypted code was cracked in less than one day
(https://en.wikipedia.org/wiki/DES_Challenges).

https://en.wikipedia.org/wiki/DES_Challenges

Surprising Computer Science 5

Fig. 1. Students acting as bits to illustrate binary representation to an audience

3 Communicating the Magic

As well as the mystery of “code”, much of what we can do with Computer Science
seems like magic, such as searching billions of items in a fraction of a second, or
sharing a secure message without having to send the key that was used to encrypt
it. It is valuable to be able to share this magic with an audience in a relatively
short time to help them see that it can be understood. The discipline (magic)
behind computing is commonly mixed up with how to use computers (e.g. digital
literacy, or the vague term “ICT” [7]), so we need to be able to clearly show the
difference, whether talking to key influencers (including parents, grandparents,
or education officials) or the students themselves.

Many presenters have done this by literally using magic tricks based on ideas
from computing. This is a useful approach because it impresses the audience and
creates a lot of motivation to find out how it works. When the secret is revealed,
it empowers the audience as they understand the concept.

Examples of magic being used to expose computer science to the public include
a show based on CS Unplugged material [2], the Villanova magic schools [9], the
CS4FN magic shows [5] including books on “The Magic of Computer Science4”,
public lectures on the “wonders of informatics” [10], books based on analogies
with magic and fairy tales (e.g. Kubica’s “Computational Fairy Tales” [11] and
“Best Practices of Spell Design” about programming [12], and Bueno’s “Lau-
ren Ipsum” [4]), and the Aachen Infosphere “Zauberschule Informatik5” (magic
school of computer science). The idea that programming is creating something
out of thoughts has also been used to describe it as magic (e.g. by Werner
et al. [18] and in the CSTA K-12 standards [16]), and there are even pro-
gramming lessons based on creating “spells” (e.g. the Code Spells challenge,
http://codespells.org/).

4 Available for free download from http://www.cs4fn.org/magic/magicdownload.php
5 http://schuelerlabor.informatik.rwth-aachen.de/modul/zauberschule-infor

matik-ein-erster-einblick-die-welt-der-informatik

http://codespells.org/
http://www.cs4fn.org/magic/magicdownload.php
http://schuelerlabor.informatik.rwth-aachen.de/modul/zauberschule-informatik-ein-erster-einblick-die-welt-der-informatik
http://schuelerlabor.informatik.rwth-aachen.de/modul/zauberschule-informatik-ein-erster-einblick-die-welt-der-informatik

6 T. Bell

Each of these approaches engages an audience by creating mystery, and then
revealing how a clever idea or concept can be used to give the illusion of some
kind of magical power. They are provided in formats that make them accessible
to an audience that might be sceptical, and isn’t prepared to invest a lot of time
or effort into understanding computer science, possibly based on their incorrect
belief that it would be a waste of time for them to try.

4 Paradoxes and Surprises

Some parts of computer science are simply paradoxical or surprising. Creating an
awareness of this can help students to take a more curious view of phenomena
surrounding computing, and help to demonstrate how there’s a lot more to
computer science than learning to program.

For example, a student might believe that given a fast enough computer we
can find the optimal solution to a problem. An example that shatters this idea
is the travelling salesman problem, where (for example) a courier must visit a
number of houses to drop off parcels, and they would like to minimise the time
and fuel used to do this.

Figure 2a shows the problem being solved by brute force, evaluating every
possible route, for seven locations. This version takes about half a minute to
find the solution. After showing it to students, we can ask how long they think
it would take to solve the problem for twice as many locations. Typically they
will estimate that it is twice as long (about a minute), and are surprised to
find out that it is actually several years (Figure 2b). The surprise is easily ex-
plained by considering the combinatoric explosion of possibilities. However, the
impossibility of the approach becomes clearer as the number of locations is in-
creased further, to the point where even the fastest possible computer would
take centuries to solve it for a relatively small number of locations.

(a) (b)

Fig. 2. Solving the TSP for (a) 7 locations and (b) 14 locations

The surprise occurs in the opposite direction when considering binary search.
Figure 3 shows a student searching for a number hidden under one of 15 cups;

Surprising Computer Science 7

to look under each cup they must surrender a lollie (candy), and they have only
5 lollies to start with. This seems futile, but by using a binary search (which
students will often work out for themselves), they can eliminate half of the cups
with each probe. Given that 4 lollies is sufficient to search 15 cups, the students
are then asked how many would be needed for 30 cups. The natural reaction is
that it would be twice as many, but they soon realise that only one more probe
is needed to cope with twice the number of items. Extending this, students can
work out how easy it is to search 1000 cups (10 probes), a million cups (20
probes), or even 1,000,000,000 cups (30 probes). At this point it becomes clear
that a search engine that can search billions of items in a fraction of a second
isn’t so magic — you just need to use the right algorithm.

Fig. 3. Searching for a value hidden under cups

These two examples show a simple concept: that the time taken by a program
isn’t necessarily proportional to the amount of input. These ideas help us return
to the magic and beauty of computer science — they aren’t tricks, but are just
the way things are if you work through the concepts. Things might not be as
expected, but we can understand and predict them if we think it through.

Other paradoxes and surprises that come up include:

– one of the fastest sorting algorithms (quicksort) is slowest when given a list
of identical items (unless you take special measures);

– for NP-complete problems, a child could design a small problem that they
know the solution for (e.g. the dominating sets problem [3], presented in an
unplugged format as the “Tourist Town” problem6), but a computer would
take billions of years to solve it using even the best known algorithms;

– randomness can help make algorithms run faster (for example, hashing is
best when the function is random);

6 http://csunplugged.org/dominating-sets/

http://csunplugged.org/dominating-sets/

8 T. Bell

– finding the shortest path in a graph is easy (and regularly used by GPS
devices), yet finding the longest path is NP-hard and therefore no good
solution is known;

– lossless compression expands more files than it reduces;
– secure password checking systems don’t store passwords, yet they can check

if you’ve entered the right password; and
– you can set up a secure communication encryption code in front of an eaves-

dropper, who knows every detail of the method and all the information you
have exchanged with your friend, and yet they can’t make sense of the com-
munication between you and your friend (Public-key cryptography).

All of these are concepts that can be exposed to relatively young students with
the right scaffolding, and yet help us to maintain the intrigue of the subject.

5 The Dark Side of Magic

Because of the digital revolution we have been through, society has become used
to new inventions that seem too good to be true: web sites that store billions of
videos, devices that can locate where an overseas friend is within a few metres,
web sites that automatically label photos with the names of the people in them,
and systems that can send spare parts through the internet, to be printed where
they are needed. The phrase “too good to be true” is also used as a warning
that something might be a fraud, and by seeing technology as magic, users have
become desensitised to this possibility. A common example is that millions of
spam emails can be generated with a few lines of program code, but to the user
it appears that they’re receiving an email specific to them, for example, from
their own bank or ISP, unaware that thousands of others have received the same
email, but for them it was the wrong bank. This illusion is now well known,
and yet sufficient people fall for it that there are still billions of spam emails
sent every day. Understanding how technology works helps users to avoid being
caught out.

Another example of fraud that has succeeded from ignorance of computing
principles is a series of startup companies that each claimed to be able to com-
press any file by a significant amount, and later reconstruct the original exactly.
Examples include the “Wider Electronic Bandwidth” company announced in
Byte magazine in June 1992 [1], “Adam’s Platform” (1998), Madison Priest’s
“Magic Box” (c1994), and the “NearZero” system (2001).

In the case of “NearZero”, the claim was that any file could be compressed
to about 7% of its original size. As with the others, demonstrations were given
to potential investors showing files being replaced with very small compressed
versions, which were then expanded back to their original size. Since this would
speed up networks and increase disk storage by a factor of 15, investors flocked
to get in early on the system, and many millions of dollars were sunk into the
company. None of the systems ever resulted in a commercial product, and a lot
of people were left out of pocket.

Surprising Computer Science 9

There are several explanations for why such a system isn’t possible; one is that
if any file can be compressed then its own compressed files can be compressed,
and thus any file could be reduced to one byte (or even one bit!), which doesn’t
allow for many files to be represented. The claim could be exposed by providing
257 different 16-bit files, and asking to have them all compressed to 1 byte; two of
them will have identical representations and can’t be decompressed accurately.
A similar argument (based on the pigeon-hole principle) can be used to show
that every lossless compression method must expand at least as many files as it
reduces.

The demonstrations themselves involved the digital equivalent of a magician’s
smoke and mirrors: the compression program would typically copy the file being
compressed to an unused part of the disk and replace it with the “compressed”
file. The decompression process involved simply copying it back, with suitable
delays introduced to make it look like some work was being done. The viewer was
misdirected by having them focus on the compressed file, making them oblivious
to the disk usage going up because of the copied file appearing in a hidden
location.

This is a somewhat extreme example of the general public being duped out of
millions of dollars because of a lack of understanding of basic principles, in this
case, data representation. However, there are many important decisions that
people make around digital technology; issues like our privacy, our ability to
verify authenticity of online interactions, and the ability of organisations and
governments to monitor individuals are all heavily impacted by issues such as
the encryption, storage, and transmission of data. It is important for society to
have some understanding about the technologies that permeate our lives and
relationships, in the same way that understanding the science behind other in-
novations (such as genetic modification or nuclear power) enables us to have
informed opinions on their benefits and risks.

6 Conclusion

The view of digital systems as magic can be both disempowering (if it can’t be
understood, it’s not worth trying) and exciting (it’s a mystery worth solving).
Our challenge is to help students — and more urgently, teachers — overcome
the view that it is so magic that they couldn’t understand it, yet still retain
the fascination that makes it an attractive discipline that is full of surprises and
mysteries. As countries adopt computer science as a mainstream topic in schools,
the largest hurdle they are facing is preparing teachers for this new discipline.
This means that enabling teachers to see both the magic of the topic, and that
they can also understand the magic, is crucial to the success of new curricula
built around how to be a creator of technology, rather than a user. Getting
students, and teachers, past the initial hurdle so that they have some insight
into how the magic works is a vital step, and learning computational thinking
and programming early with the right tools empowers students to take on bigger
challenges.

10 T. Bell

Perhaps there is a concern that revealing the tricks behind the magic will
remove the fascination of the subject. Sometimes in a magic show the audience
is told how a trick works so they can see that they could do it themselves. Then,
just when they think they can understand it, the magician takes the trick one
step further and does something that once again seems impossible. The beauty of
computer science is that there is always one more trick, one more challenge, one
more unsolved problem. The world of digital technology has infinite possibilities,
and with creative people developing new ideas, there is no risk that we will lose
the sense of magic around this exciting field. The challenge is to get them started.

Acknowledgments. The author is grateful to James Atlas and Caitlin Duncan
for valuable input to this paper. The photographs are courtesy of Sam Jarman
and students at Chisnallwood Intermediate School, taken by Jack Morgan and
Gerard MacManus.

References

1. Microbytes: instant gigabytes? Byte Magazine 17(6), 45 (1992)
2. Bell, T.: A low-cost high-impact computer science show for family audiences. In:

Australasian Computer Science Conference 2000 (ACSC 2000), Canberra, Aus-
tralia, January 31-February 3, pp. 10–16 (2000)

3. Bell, T.C., Witten, H.I., Fellows, M.: Computer Science Unplugged: Off-line activ-
ities and games for all ages (original book) (1999), http://csunplugged.org

4. Bueno, C.: Lauren Ipsum: A Story About Computer Science and Other Improbable
Things. No Starch Press (2014)

5. Curzon, P., McOwan, P.W.: Engaging with computer science through magic shows.
In: Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2008, pp. 179–183. ACM, New York (2008)

6. Duncan, C., Bell, T., Tanimoto, S.: Should your 8-year-old learn coding? In: Pro-
ceedings of the 9th Workshop in Primary and Secondary Computing Education -
WiPSCE 2014, pp. 60–69. ACM Press, New York (2014)

7. Furber, S. (ed.): Shut down or restart? The way forward for computing in UK
schools. The Royal soceity, London (2012)

8. Gibson, B., Bell, T.: Evaluation of games for teaching computer science. In: The
8th Workshop in Primary and Secondary Computing Education (WiPSCE 2013)
(2013)

9. Hess, K.L., Papalaskari, M,-A., Weinstein, R., Styer, R., Way, T., Lagalante, A.:
Special session-creation of the Milwaukee School of Magic. In: 37th Annual Fron-
tiers in Education Conference-Global Engineering: Knowledge Without Borders,
Opportunities Without Passports, FIE 2007, pp. S1F–1. IEEE (2007)

10. Hromkovic, J.: Algorithmic Adventures: From Knowledge To Magic. Springer,
Heidelberg (2009)

11. Kubica, J.: Computational Fairy Tales. CreateSpace Independent Publishing Plat-
form (2012)

12. Kubica, J.: Best Practices of Spell Design. CreateSpace Independent Publishing
Platform (2013)

13. Lee, I., Martin, F., Apone, K.: Integrating computational thinking across the K-8
curriculum. ACM Inroads 5(4), 64–71 (2014)

http://csunplugged.org

Surprising Computer Science 11

14. Rushkoff, D.: Program or be programmed: Ten commands for a digital age. OR
Books (2010)

15. Schulte, C., Knobelsdorf, M.: Attitudes towards computer science – computing
experiences as a starting point and barrier to computer science. In: Proceedings
of the Third International Workshop on Computing Education Research – ICER
2007, p. 27. ACM Press, New York (2007)

16. Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunniff, D.,
Owens, B.B., Stephenson, C., Verno, A.: CSTA K-12 Computer Science Standards:
Revised 2011. Technical report, New York (2011)

17. Upton, E., Veloso, M., Gadgil, A., White, T., Monks, B., Malkin, R.: Today’s
engineering heroes. IEEE Spectrum 52(3), 39–49 (2015)

18. Werner, L., Denner, J., Campe, S., Kawamoto, D.C.: The fairy performance as-
sessment. In: Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education - SIGCSE 2012, p. 215. ACM Press, New York (2012)

© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 12–21, 2015.
DOI: 10.1007/978-3-319-25396-1_2

The Theory Behind Theory - Computer Science
Education Research Through the Lenses of Situated

Learning

Maria Knobelsdorf

Universität Hamburg, Computer Science Department
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

knobelsdorf@informatik.uni-hamburg.de

Abstract. This paper introduces key characteristics of the situated learning ap-
proach and discusses from that perspective questions of pedagogy and educa-
tional research in Theory of Computation. This discussion exemplifies how a
change in learning theories alters the unit of analysis, thus reframing research
questions and potential answers. In its conclusion, this paper provides an out-
look on potential research questions in secondary Computer Science Education.

1 Introduction

In the research community of Computer Science Education (CS Ed), the awareness
for discussing and explicitly incorporating theoretical frameworks into research is
constantly rising [17], [6]. Theories and concepts of how individuals learn play an
important role in educational research because they not only affect which research
questions are posed and what kind of data collection and analysis methods are chosen,
but more importantly influence the development of pedagogical concepts and inter-
ventions. While cognitivist and constructivist concepts of learning are established
frameworks in CS Ed, recent theories and related discourses from educational psycho-
logical research are still being introduced and discussed. Theories that go under the
names situated learning [17], sociocultural learning [23], situated cognition theory
[3], distributed intelligence [21], or activity theory [11] have been developed over the
last three decades and started to become more important in field of CS Ed research,
see for example [2], [10], [14], [16], [22], [26]. Likewise, in other educational disci-
plines the situated cognition theory became influential [19], which also inspired the
development of comparable approaches for secondary CS Ed [7], [13]. These new
approaches extend and challenge established beliefs and understanding of learning
and therefore the corresponding research programs and their achievements in related
pedagogies and didactics.

In this paper, I summarize key characteristics of the situated learning approach and
discuss from that perspective questions of pedagogy and educational research in CS
Ed. For this matter, I rely on previous work, i.e., especially [26], a review of
sociocultural cognition theory, as well as [15], [13], [14], where parts of concepts and
arguments presented in this paper have been already introduced and discussed.

 The Theory Behind Theory - Computer Science Education Research 13

In particular, I summarize modifications to the pedagogy of an undergraduate Theory
course held at the University of Potsdam, Germany. Here, I contributed to by taking
into account the pedagogical approach of cognitive apprenticeship which led to a
significant reduction of the course’s failure rates in the final exam [15]. I will reflect
these changes from the perspective of situated learning and draw conclusions for fur-
ther research investigations in the educational scope of Theory of Computation.

The situated learning perspective represents a paradigm change from many other
kinds of psychological frameworks [25]. Some of the concepts do not have straight-
forward mappings to established psychological theories, and must be understood as
part of a larger, but different, theoretical whole. Such a paradigm shift in psychologi-
cal theory may engender the kinds of cognitive dissonance for the readers that are also
felt by an experienced imperative programmer on first encountering an object-
oriented language. Therefore, readers with a strong background in CS and cognitive
theories may find it challenging to adopt and appreciate this way of thinking. Howev-
er, the useful new lenses that the approach offers is worth the endeavor because it
significantly broadens our understanding of learning on which sustained innovation
research for CS Ed can unfold.

2 Theoretical Framework

2.1 The Situated Learning Perspective

The cognitive view on learning has its roots in cognitive psychology and artificial
intelligence research. Learning is conceptualized as a process in which individuals
create a mental representation of a specific knowledge entity in their minds. A per-
son’s cognitive processes operate on such mental models, are based on logic-like rules
of inference, and are understood to happen solely in the person’s mind. Hence, the
approach focuses on the question how specific knowledge is acquired and represented
in the mind of an individual ([26], p. 5-6). The cognitive approach was criticized for
being too much focused only on the single student and solely on his or her cognitive
process while neglecting the social and cultural environment in which students’ learn-
ing takes place [1], [3], [7].

The situated learning approach has its roots in Russian cultural-historical psychol-
ogy developed by Vygotsky [27] and was strongly influenced by insights from artifi-
cial intelligence, as well as developmental psychological research ([26], p. 5-6). From
a situated perspective, learning is conceptualized as a process of enculturation into a
domain-specific community. The latter is often called “Community of Practice”
(CoP), a term coined by Lave and Wenger [17], in order to emphasize “practices in
which individuals have learned to participate, rather than on knowledge that they have
acquired” ([7], p. 8). From this perspective, the goal of learning is to become a full
member of a CoP.

In the trajectory of participation, individuals of a CoP learn to interact with each
other mediated by material and representational systems, which are often metaphori-
cally referred to as tools. In this context, the term “tool” denotes material objects such
as pencils, hammers, automobiles, or coffee machines as well as representational
systems such as “language; various systems for counting; mnemonic techniques;

14 M. Knobelsdorf

algebraic symbol systems; works of art; writing; schemes, diagrams, maps, and me-
chanical drawings” and similar ([28], p. 137). Both aspects of a tool affect the materi-
al and mental activity of an individual in a CoP.

Tools do not simply arise de novo in the hands and minds of individual actors. Ra-
ther, they are provided to individuals by the surrounding culture of a CoP, accreting
over time and, passed from one generation to the next. As Pea points out, tools “rep-
resent some individual’s or some community’s decision that the means thus offered
should be reified, made stable, as a quasi-experiment form, for use by others. In terms
of cultural history, these tools and the practices of the user community that accompa-
ny them are major carriers of patterns of previous reasoning” ([21], p. 53). Cultural
practices of tool use evolve in tandem with the evolution of the tool. Therefore, tools
represent socially distributed cultural entities that implicitly embed collective
knowledge of their use ([26], p. 8-10).

2.2 Implications for Research and Formal Education

One of the most important implications for educational research is that the under-
standing and specific skills that students develop during an activity depend strongly
on the tools used to carry out the activity. In consequence, mental processes, tool use,
and interaction with the world are regarded to be tightly bound together: “This has the
important implication that when understanding learning, we have to consider that the
unit that we are studying is people in action using tools of some kind (see Wertsch,
1991, 1998; Säljö 1996). The learning is not only inside the person, but in his or her
ability to use a particular set of tools in productive ways and for particular purposes.”
([24], p. 147). In addition, Greeno points out that “[w]hen an analysis of an individu-
al's knowing is proposed, the analysis should be an account of the ways that the per-
son interacts with other systems in the situation. Just presenting hypotheses about the
knowledge someone has acquired, considered as structures in the person’s mind, is
unacceptably incomplete, because it does not specify how the other systems in the
environment (including other people) contribute to the interaction.” ([7], p. 8).

Regarding formal education, a major critique is that parts of practices and tool use
of a CoP are singled out, formalized, and organized around a curriculum with courses,
assignments, and tests. This is depriving a community’s practice of the coherent
whole it represents within the community making it difficult for students to adopt the
practice and become engaged. Lave and Wenger argue that learning in conventional
schools “is predicated on claims that knowledge can be decontextualized” (p. 40) and
“suggest that learning occurs through centripetal participation in the learning curricu-
lum of the ambient community. Because the place of knowledge is within a communi-
ty of practice, questions of learning must be addressed within the development cycles
of that community” ([17], p. 100). Therefore, educational settings in school need to
embed curriculum topics in authentic contexts in which students can better recognize
the full meaning and reasons of specific practices and tools of a CoP.

Ben-Ari among others has pointed out that formal education of a specific domain
has slightly different goals as well as constraints than traditional apprenticeship-like
settings of education. Besides economical reasons, secondary but also tertiary

 The Theory Behind Theory - Computer Science Education Research 15

education is designed to enable students broad participation in different domains or
subfields of a domain and preclude a premature determination of future occupation
([2], p. 88). Students are supposed to enculturate into different domains enough to get
acquainted with a broad range of practices from different disciplines or subfields and
later on choose a specialization in order to fully grow into the CoP of their choice.

On the other hand, a school also represents a CoP with a specific culture, practices,
tools, members, etc. and Greeno points out that “[m]ethods of instruction are not only
instruments for acquiring skills; they also are practices in which students learn to
participate. In these practices, students develop patterns of participation that contrib-
ute to their identities as learners, which include the ways in which they take initiative
and responsibility for their learning and function actively in the formulation of goals
and criteria for their success.” ([7], p. 9). In consequence, when discussing education-
al settings and related research more attention needs to be paid how student encultura-
tion takes place and how the curriculum, pedagogical approaches, teacher education,
etc. are supporting students in this process.

Collins et al. argue that in traditional apprenticeship tasks or activities required to
be accomplished by the students make sense for them because it is part of a coherent
whole and arises from the demands of a specific workplace [5]. For this matter, edu-
cational settings need to put forward all aspects of practices and tools of a community
and teach them with regard to students’ enculturation process. Especially in higher
education, where students are supposed to adopt the expertise of a particular scientific
community, it is not enough paid attention “to the reasoning and strategies that ex-
perts employ when they acquire knowledge or put it to work to solve complex or real-
life tasks. […] To make real differences in students’ skill, we need both to understand
the nature of expert practice and to devise methods that are appropriate to learning
that practice” ([5], p. 38-39).

In the next section, the situated learning approach and these implications will be
discussed within the context of Theory of Computation.

3 Enculturation into Theory of Computation Community

At German universities, Theory of Computation is considered one of the fundaments
of academic CS education and introductory courses to Theory of Computation are an
integral part of undergraduate CS Ed programs. This is also the case at the department
of CS at the University of Potsdam, Germany. The Theory of Computation courses
cover the foundations of automata, programming languages, computability, and com-
putational complexity. The corresponding concepts, theories, and algorithms are
strongly mathematical in nature, regarding formalized inscriptions used for the dis-
course as well as a strong focus on mathematical proofing of presented theories and
approaches (for better overview see for example [9]). By introducing idealized math-
ematical models of the computer and discussing methods for designing and analyzing
them, students are supposed to develop the ability of thinking abstractly about compu-
tational processes and models. However, before the introduced modifications in the

16 M. Knobelsdorf

course’s pedagogy many students had problems in achieving these goals and failure
rates in final exams were very high (usually between 30-60%).

From the situative perspective, Theory of Computation is a specific CoP within the
bigger community of CS. The Theory community includes members which mostly
work at academic institutions like universities and therefore the discourse of the
community is strongly based on academic research practices. In addition, the commu-
nity’s culture is strongly affected by mathematical practices and inscriptions. Aca-
demic education in this field can be regarded as the first step towards enculturation
into this specific CoP. Since members of this community teach Theory courses at the
university, consequently the pedagogy of these courses implicitly represents the
community’s beliefs and practices of how to enculturate newcomers. This includes
the topics covered in these courses as well as goals and assumptions of how students
are supposed to learn and work successfully. This needs to be taken into account
when arguing for changes or improvements of established pedagogies in this field.

3.1 Teaching Practices: Theory of Computation

Until the course setup and its pedagogical approach were modified, the Theory course
consisted of the following components, which are typical for an introductory CS
course in Germany:

• Approximately 90-120 minutes of lectures per week given by a faculty member
who presents the course topics, central concepts, algorithms, and their proofs and
illustrates them with examples.

• Weekly homework assignments based on the current lecture topics, which students
are expected to solve individually and submit in writing for reviewing and grading
by tutors (usually senior students). Handing in homework can but doesn’t need to
be mandatory.

• Approximately 90 minutes student session per week attended by approximately 25-
30 students and chaired by teaching assistans, during which students are expected
to present their solutions to last weeks’ homework assignment. The objective of
these sessions is to give them an opportunity to check the correctness of their solu-
tions and discuss them with the group.

• Summative assessment by the end of the course including several assignments to
be solved in written form.

Within this pedagogical approach it was implicitly assumed that during the lectures
students can follow and understand the presented concepts, theorems, and correspond-
ing proofs, and are also able to deduce from the presented practices how to handle and
work on the weekly homework assignments by themselves. In addition, student ses-
sions were supposed to serve students as verification and improvement of their self-
directed development of practices in Theory of Computation. However, teaching as-
sistants reported that students had difficulties coping with the contents of the course
due to its abstract and theoretical nature and that students seemed not to know how to
tackle weekly homework assignments.

 The Theory Behind Theory - Computer Science Education Research 17

The situated learning theory drew attention to the Theory practices and how they
were taught in the course. It was observed that these were not addressed and exposed
sufficiently. Since all lecture topics were prepared in advance for a smooth presenta-
tion, students did not experience the enormous effort it took to create them, especially
since the historical dimension of this field was not part of the curriculum. In conse-
quence, students did not experience on a regular basis how the teacher or professor
(who represents the expert member of the Theory of Computation CoP) is approach-
ing a new problem, trying out different approaches, making mistakes, taking notes,
etc. before creating a solution.

Altering the pedagogy of the course, the main idea was to use student sessions to
demonstrate and discuss relevant techniques of how to solve specific problems so that
students are better prepared to solve their homework by themselves (for more details
see scaffolding & fading method [5]). Also, the textbook used in the course was cho-
sen with regard to a strong emphasis on explaining and reflecting presented approach-
es [9].

Furthermore, important tools in Theory of Computation are mathematical inscrip-
tions and visualizations both created with pen and paper or chalk and blackboard.
These tools are used to describe, specify, and reason about ideas, approaches, exam-
ples and potential solutions. We found it important to demonstrate and explain stu-
dents how these tools are meant to be used in this field of discourse. For this reason,
we offered specific preparatory exercises that were solved jointly during the student
sessions and served as a preparation for the homework assignments. These preparato-
ry exercises included detailed written solutions with extensive reflections and expla-
nations of the solution, providing insights about the used technique, method or strate-
gy. Also, the solutions explicated how mathematical inscriptions are used in this field
and are expected to be used by the students when they turn in their homework.

Redesigning the student sessions, the major change was to align the preparatory
exercises with homework assignment in respect to structure and content. This means
that in each session the same type and amount of problems was used for the exercises
as well as for the homework assignments. In addition, it corresponds to students’ ac-
tivities during final exam, where students have to formulate a written solution for an
assignment, which then will be graded by tutors under supervision of the instructors.
In order to understand the expectations, especially with respect to the very strict and
formal character of solutions to assignments, students need to train this skill and to
receive a weekly feedback about their efforts. Since the final exam represents a situat-
ed activity particularly relevant of the overall pedagogy of the course, we believed
that students must be prepared for this as well, especially when this is their very first
university exam. For this reason, we also started to offer a pre-exam after the first half
of the course. The pre-exam gave students an opportunity to practice the assessment
situation and explicates what will be expected from them during the finals.

Students acknowledged the described pedagogical changes. In a survey conducted
during the course, they reported to feel comfortable with the weekly homework and
overall expectations of the course since they would know how to work on their as-
signments. As a result, the failure rate decreased 60% to below 10% while keeping
the requirements for final exams comparable to those of the previous years. However,

18 M. Knobelsdorf

other CS colleagues, with whom we talked about this approach, were concerned that
students are not fully acquainted with what they called “real” Theory of Computation.
They argued that students are just trained to understand and apply presented solutions
and are not learning to develop solutions to given computational problems on their
own. This argument is very important because it emphasizes 1) how relevant the abil-
ity of solving computational problems is in the community of Theory of Computation
in comparison to understanding given solutions and 2) the expectation that students
should develop this ability without any scaffolding and from the very beginning of
attending a Theory course. We argued that in order to be able to develop solutions to
theoretical computational problems students should first understand and apply given
solutions and the success of our students proved this approach to be right. However,
there is no substantial empirical evidence showing how students best develop this
important ability in Theory of Computation and what kind of pedagogy is required for
supporting this adequately. Investigating this research question would require reveal-
ing the community’s implicit beliefs about educational goals and pedagogical practic-
es in this subfield of CS.

3.2 CS Students’ Engagement in Theory of Computation

Since the majority of CS graduates do not pursue a research career in Theory of Com-
putation, it can be concluded that except for a temporary enculturation, CS students
do not intend to become full members of the Theory of Computation CoP. In addition,
in the survey conducted during the Theory course at the University of Potsdam, most
CS students reported that they did not find the course topics to be particularly interest-
ing and only attended the course because it was mandatory. When asked for detailed
reasons, most students explained that the purpose of studying Theory of Computation
was unclear to them. Therefore, it seems to beimportant to explicitly provide students
with reasonable rationales for studying this field of CS in order to foster their interest
in becoming more engaged in Theory practices.

One line of reasoning for including Theory of Computation into the CS curriculum,
which is voiced regularly in the community, is that prospective computer scientists
should be familiar with the theoretical underpinning of computing. Students who
intend to become members of the software engineering community need to be famil-
iar with topics like complexity or design and analysis of algorithms. For this matter,
short examples of a topic’s possible applicability are usually provided during the lec-
ture and this was also the case in the course at the University of Potsdam. The chal-
lenge is that CS students really start to understand this argument much later in their
education and therefore require additional reasons to spark their interest when being
newcomers to the Theory of Computation CoP.

In line with the purpose of enculturating students, presenting students with compu-
tational problems and teaching them practices of how to develop solutions and proof
their correctness both emphasize the CoP’s focus on these activates. In addition, it can
be helpful to explain how theoretical computer scientists are motivated to work on
computational problems. Addressing this goal, Chesñevar et al. [4] introduced “bio-
graphical notes, videos and articles associated with the historical context in which the

 The Theory Behind Theory - Computer Science Education Research 19

theory of computing emerged as a new discipline” (p. 8). The authors reported that
students responded very well to this historical perspective of theoretical CS, devel-
oped a deeper understanding, and became therefore more engaged. It seems that the
historical perspective is a good approach not only to help students in creating meaning
but also the teachers of the course to reflect and emphasize on the reasoning and strat-
egies of creating this body of knowledge. Nevertheless, it is not yet clear if under-
standing the CoP’s motivation will actually make it meaningful for students as well.
In this context, another research question is how practices of Theory can contribute to
students’ practices of other CS fields, e.g., modeling or programming and – if there is
evidence for such transfer – how this can be used to engage students in addition.

4 Conclusion and Outlook

This paper introduced key characteristics of the situated learning theory and discussed
questions of pedagogy and educational research in the field of Theory of Computation
from this perspective. This discussion exemplifies how the change in learning theories
alters the unit of analysis, thus reframing research questions and potential answers.
Situated learning theories focus on a unit formed by individuals, interacting with each
other and with tools emphasizing patterns of participation and the culture of learning
in this unit of analysis.

Discussing questions of learning and formal education in the field of Theory of
Computation is exemplary because tertiary education in this field is usually imple-
mented by the members of the related (scientific) Community of Practice (CoP). The
trajectory of enculturation is intended to start with introductory courses to Theory of
Computation and leads to advanced seminars with open problems from the field. On
the other hand, introductory courses to programming are more complex regarding the
questions of community belonging and enculturation. The latter is meant towards a
CS community, but this is a shared roof of different subcommunities of CS with in
parts very different belief systems, practices, tools, or traditions and therefore differ-
ent cultures of learning and practices of enculturation. These can be for example: web
development in the field of e-commerce, the development of embedded aviation sys-
tems, or distributed development of operating systems in open source projects. The
relation to these different CoPs becomes particularly challenging when creating
meaningful learning situations and teaching students programming practices beyond
presentations of factual knowledge of programming syntax and exemplifying simple
algorithms. What seems to be complex regarding tertiary CS education is even more
so in secondary CS education. For instance, in Germany the primary goal of second-
ary CS Ed is not to engage and prepare students for tertiary CS Ed, but rather to ena-
ble students to interact consciously and well informed with information technology
and use modeling skills “for understanding and solving problems in other fields of
inquiry but also as tools for exploring and producing cultural artifacts” ([12], p. 6).
Programming or coding is explicitly not regarded to be the most important practice
students are supposed to adopt in CS class. From the situative perspective, this notion
of CS Ed can be questioned as follows: What is the related CoP of these taught prac-
tices? What kinds of practices and tools determine the activities of this community
and are they incorporated in the educational standards? What is the culture of learning

20 M. Knobelsdorf

and what are the practices of enculturation in CS class? What kind of pedagogy sup-
ports this enculturation and how does it need to be implemented regarding CS teacher
education and lesson design? However, all these questions just refer to the notion of
secondary CS Ed envisioned by the CS Ed community.

Student engagement is yet another facet to be taken into account: What kind of en-
culturation did students encounter before taking a CS class in high school? What are
their expectations and belief systems regarding information technology and CS and is
this aligned with the notion of CS Ed we are offering in secondary schooling? How is
offered CS Ed contributing to their evolving identity as learners? Using a theoretical
framework based on situated learning, Kolikant and Ben-Ari (2008) investigated how
students and their teachers in a concurrent and distributed computing course in high
school were interacting with each other. They observed different cultures of students
and teachers that lead to a “clash of culture” and in consequence to learning difficul-
ties in the CS classroom [16], see also ([26], p. 16). In order to overcome the cultural
clash, Kolikant and Ben-Ari created a fertile zone of cultural encounter, a pedagogical
innovation that bridges between student beliefs and expectations of CS and the lan-
guage and formalisms of the professional culture presented by the CS teacher. This
study exemplifies how the situated learning approach leads to questions of education-
al research and pedagogy beyond knowledge acquisition.

References
1. Anderson, J.R., Reder, L.M., Simon, H.A.: Situative versus cognitive perspectives: Form

versus substance. Educational Researcher 26(1), 18–21 (1997)
2. Ben-Ari, M.: Situated learning in computer science education. Computer Science Educa-

tion 14(2), 85–100 (2004)
3. Brown, J.S., Collins, A., Duguid, P.: Situated Cognition and the Culture of Learning. Edu-

cational Researcher 18(1), 32–42 (1989)
4. Chesñevar, C.I., González, M.P., Maguitman, A.G.: Didactic strategies for promoting sig-

nificant learning in formal languages and automata theory. In: Proceedings of the 9th An-
nual SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2004), pp. 7–11. ACM (2004)

5. Collins, A., Brown, J.S., Holum, A.: Cognitive apprenticeship: Making thinking visible.
American Educator 6(11), 38–46 (1991)

6. Daniels, M., Pears, A.: Models and methods for computing education research. In: Proc.
Australasian Computing Education Conference (ACE). CRPIT, vol. 123, pp. 95–102
(2012)

7. Gramm, A., Hornung, M., Witten, H.: Email for you (only?): design and implementation
of a context-based learning process on internetworking and cryptography. In: Proceedings
of the 7th Workshop in Primary and Secondary Computing Education (WiPSCE),
pp. 116–124. ACM, New York (2012)

8. Greeno, J.G.: On claims that answer the wrong questions. Educational Researcher 26(1),
5–17 (1997)

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation, 3rd edn. Pearson (2006)

10. Hundhausen, C.D.: Toward Effective Algorithm Visualization Artifacts: Designing for
Participation and Communication in an Undergraduate Algorithms Course. Doctoral The-
sis, University of Oregon, US (1999)

 The Theory Behind Theory - Computer Science Education Research 21

11. Kaptelinin, V., Nardi, B.: Acting with Technology –Activity Theory and Interaction De-
sign. MIT Press, Cambridge (2004)

12. Knobelsdorf, M., Magenheim, J., Brinda, T., Engbring, D., Humbert, L., Pasternak, A.,
Schroeder, U., Thomas, M., Vahrenhold, J.: Computer Science Education in North-Rhine
Westphalia, Germany – A Case Study. ACM Transactions on Computing Education 15(2)
(2015)

13. Knobelsdorf, M., Tenenberg, J.: The context-based approach iniK in light of situated and
constructive learning theories. In: Diethelm, I., Mittermeir, R.T. (eds.) ISSEP 2013. LNCS,
vol. 7780, pp. 103–114. Springer, Heidelberg (2013)

14. Knobelsdorf, M., Isohanni, E., Tenenberg, J.: The reasons might be different – why stu-
dents and teachers do not use visualization tools. In: Proceedings of the 12th Annual Finn-
ish/Baltic Sea Conference on Computer Science Education (Koli), pp. 1–10. ACM, New
York (2012)

15. Knobelsdorf, M., Kreitz, C., Böhne, S.: Teaching theoretical computer science using a
cognitive apprenticeship approach. In: Proceedings of the 45th ACM Technical Symposi-
um on Computer Science Education (SIGCSE), pp. 67–72. ACM, New York (2014)

16. Kolikant, Y.B.-D., Ben-Ari, M.: Fertile Zones of Cultural Encounter in Computer Science
Education. Journal of the Learning Sciences 17(1), 1–32 (2008)

17. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge
University Press (1991)

18. Malmi, L., Sheard, J., Simon, B.R., Helminen, J., Kinnunen, P., Korhonen, A., Myller, N.,
Sorva, J., Taherkhani, A.: Theoretical underpinnings of computing education research:
what is the evidence? In: Proceedings of the International Workshop of Computing Educa-
tion Research (ICER), pp. 27–34. ACM, New York (2014)

19. Nentwig, P.M., Demuth, R., Parchmann, I., Gräsel, I., Ralle, B.: Chemie im Kontext: Situ-
ated Learning in Relevant Contexts while Systematically Developing Basic Chemical
Concepts. Journal of Chemical Education 84(9), 1439–1444 (2007)

20. Nunes, T.: What organizes our problem solving activities? In: Resnick, L., Saljo, R.,
Pontecorvo, C., Burge, B. (eds.) Discourse, Tools, and Reasoning: Essays in Situated Cog-
nition, pp. 288–311. Springer (1997)

21. Pea, R.: Practices of distributed intelligence and designs for education. In: Salomon, G.
(ed.) Distributed Cognition: Psychological and Educational Considerations, pp. 47–87.
Cambridge University Press (1993)

22. Peters, A.-K., Rick, D.: Identity development in computing education: theoretical perspec-
tives and an implementation in the classroom. In: Proceedings of the 9th Workshop in
Primary and Secondary Computing Education (WiPSCE), pp. 70–79. ACM, New York
(2014)

23. Rogoff, B.: The Cultural Nature of Human Development. Oxford University Press (2003)
24. Säljö, R.: Learning as the use of tools: a sociocultural perspective on the human-

technology link. In: Littleton, K., Light, P. (eds.) Learning with Computers, pp. 144–161.
Routledge, New York (1998)

25. Sfard, A.: On Two Metaphors for Learning and the Dangers of Choosing Just One. Educa-
tional Researcher 27(2), 4–13 (1998)

26. Tenenberg, J., Knobelsdorf, M.: Out of Our Minds: A Review of Sociocultural Cognition
Theory. Computer Science Education 24(1), 1–24 (2014)

27. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes.
Harvard University Press (1978)

28. Vygotsky, L.S.: The instrumental method in psychology. In: Wertsch, J.V., Sharpe, M.E.
(eds.) The Concept of Activity in Soviet Psychology (1981)

Robotics Activities–Is the Investment

Worthwhile?

Ronit Ben-Bassat Levy and Mordechai (Moti) Ben-Ari

Department of Science Teaching
Weizmann Insitute of Science

Rehovot 76100 Israel
{ronit.ben-bassat,moti.ben-ari}@weizmann.ac.il

http://www.weizmann.ac.il/sci-tea/benari/

Abstract. Young people are deterred from studying science, technol-
ogy, engineering and mathematics (STEM) by the perception that such
studies are boring and by a lack of self-efficacy. One approach towards
increasing engagement with STEM is through the use of robotics in ed-
ucation, both in formal instruction and through informal activities such
as competitions. There is a consensus that such activities are “fun” but
there is almost no research on whether there is any educational advantage
to robotics activities. We are investigating the extent to which partici-
pation in robotics education activities influence the attitudes of students
towards STEM and their intentions concerning STEM studies in the fu-
ture. The research framework and methodology is the theory of planned
behavior (TPB), which claims that attitudes engender intentions, which
in turn cause behavior. TPB is based upon questionnaires that are con-
structed based upon observations and interviews. The analysis of the
answers from 106 questionnaires showed that the attitudes and the sub-
jective norms were not as high as we expected, but the results for the
subjective norms are of particular importance, because they show that
students can be motivated by the respect and support they receive from
their teachers and parents. The scores for the intentions predictor were
very high, which implies that the students are like to choose to study
STEM in the future.

Keywords: robotics, theory of planned behavior.

1 Introduction

Many factors discourage students from studying science, technology, engineer-
ing, mathematics (STEM). Some believe, incorrectly, that most jobs are being
outsourced [9]. More importantly, working in STEM is perceived as boring and
monotonous, only appropriate for nerds [11]. This perception functions as a se-
rious deterrent to female students [17].

Attitudes concerning STEM are formed as early as middle school [13]; there-
fore, if one hopes to influence students attitudes it must be done early. This is a

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 22–31, 2015.
DOI: 10.1007/978-3-319-25396-1_3

Robotics–Is the Investment Worthwhile? 23

justification for teaching subjects such as computer science (CS) to high-school stu-
dents and even tomiddle-school students.One approach is to use kinesthetic activi-
ties, for example,ComputerScienceUnplugged (http://csunplugged.org/).An-
other is to useprogramming environmentsdesigned for young students [15]: Scratch
(http://scratch.mit.edu/) and Alice (http://www.alice.org/).

There is a third approach that has become very popular: teaching with robotics.
This became feasiblewith the appearance ofLEGOMindstorms in1998.TheFIRST
LEGO League (FLL) conducts worldwide robotics challenges with 16762 teams
participating in 2010 (http://www.firstlegoleague.org/).

Recent advances have made robotics even more accessible. The Institute for
Personal Robots in Education at the Georgia Institute of Technology and Bryn
Mawr College (http://roboteducation.org/) combined an off-the-shelf robot
(the Scribbler) with a circuit board that added sensors and Bluetooth commu-
nication. There is a textbook that accompanies the robot and its software [16].
Similar educational robots are the Finch developed at Carnegie Mellon Uni-
versity (http://www.finchrobot.com/) and the Thymio-II developed at the
École Polytechnique Fédérale de Lausanne (https://www.thymio.org/). Com-
pared with kinesthetic activities and visual programming environments, robotics
has the additional advantage that students can learn a variety of STEM subjects
in this context, not just computing.

Young people enjoy working with robots and they are proud of their achieve-
ments. The question we are asking is whether the result of engaging in robotics
transcends fun and leads to significant positive changes in their attitudes to-
wards STEM and in their intentions to continue studying STEM. It is essential
to answer this question because of the massive investment of time, money and
effort in robotics, an investment that can be justified only if research shows that
the above goals are achieved.

2 Background

2.1 Research on Young Students Learning CS

Research on attracting young students to CS has been performed using the
Alice visual programming environment. Adams described a CS summer camp for
middle-school students that increased their willingness to engage with computing
technology [3]. Similar results were reported by Kelleher [14].

Taub, Ben-Ari & Armoni [21] found that—although students enjoy the CS
Unplugged activities—there was little effect on their attitudes towards CS nor
on their intentions to pursue CS. Meerbaum-Salant, Armoni & Ben-Ari [20],
investigated the Scratch visual programming environment. They showed that
middle-school students can successfully learn concepts of CS, but that the learn-
ing is sub-optimal unless the teacher is knowledgeable in the subject matter
and actively engages in guiding the students. In subsequent research [8], they
showed that middle-school students who learned Scratch found it easy to learn
professional programming languages (Java and C#) in high school.

http://csunplugged.org/
http://scratch.mit.edu/
http://www.alice.org/
http://www.firstlegoleague.org/
http://roboteducation.org/
http://www.finchrobot.com/
https://www.thymio.org/

24 R. Ben-Bassat Levy and M. Ben-Ari

2.2 Robotics

The literature on learning through robotics is quite extensive. A few represen-
tative collections are: the double issue of the ACM Journal of Educational Re-
sources in Computing on robotics [1,2] and the book edited by Druin & Hendler
[12]. Unfortunately, most of this work is anecdotal.

Verner & Ahlgren [22] held robotics contests and examined the content knowl-
edge of the students following the contests. They found that students at all lev-
els (middle school, high school and university) obtained relatively low scores on
a test that evaluated their knowledge of the various subject areas relevant to
robotics. Nevertheless, students reported progress in understanding content and
in improving learning skills.

Anderson et al. [6] used robotics labs to augment a first-year university course
in CS. They were particularly interested in lowering the intimidation felt by
novices in CS courses and in increasing interest in majoring in the subject. The
results of their surveys were mixed and only partially significant, with some stu-
dents showing increased interest and lower intimidation, while others displayed
decreased interest and higher intimidation.

Three recent research projects investigated students’ motivation to learn CS
in the context of robotics activities.

Markham & King [18] taught a CS1 course with one section using the Scrib-
bler robot and the other a control group. Using surveys, they found that the
robotics group devoted more effort when compared with non-robotics classes;
they claimed that this extra effort implies increased intrinsic motivation.

Apiola et al. [7] used LEGO Mindstorms in a voluntary university course.
The researchers interviewed students and determined that they found working
with robots fun and exciting, but also challenging and frustrating. However,
the lack of a traditional support structure proved detrimental to the students’
achievements.

The study by McGill [19] on increasing motivation through the use of robotics
is more relevant because it was done with students in a CS0 course who did
not intend to specialize in CS. She found that the use of the Scribbler robots
improved students attitudes towards programming, but had little effect on other
measures such as confidence.

2.3 The Research in Light of Previous Work

Our research significantly extends existing work in several aspects:

– We investigate attitudes towards STEM in general and not just towards CS
or robotics.

– Our research methodology goes beyond measuring attitudes and looks into
the intentions that are engendered by the attitudes. This is important be-
cause it is intentions that directly affect future behavior.

– By carrying out the research in middle schools, we are checking the effect of
robotics at critical ages where students may not have made firm decisions as
to their future.

Robotics–Is the Investment Worthwhile? 25

3 Description of the Research

3.1 Research Question

To what extent does participation in robotics activities influence the atti-
tudes of students towards STEM and their intentions concerning STEM
studies in the future?

We conjecture that participation in robotics activities will positively influence
students’ attitudes and their intention to study STEM. If this conjecture is veri-
fied, it would provide a research-based justification for the extensive investment
in robotics in education.

3.2 Population

The research is being carried out in the context of two robotics activities. The
first population is middle-school students participating in the FIRST LEGO
League competition. These activities are extracurricular and the participants
are self-selected. The second population is middle-school students participating
in a new program of the Ministry of Education [23]. This program is part of
the school curriculum and the participants are selected by the teachers and
principals. Therefore, these students are likely to display a more diverse set of
attitudes and intentions.

3.3 Research Framework

The research is based on the theory of planned behavior (TPB) [5]. This is
both a theoretical research framework from social psychology and a quantitative
methodology. TPB predicts that behavior results from intentions, which in turn
are formed from attitudes towards the behavior, in this case, choosing to study
STEM subjects in the future. TPB claims that three variables—attitudes, sub-
jective norms and perceived behavior control—predict the intention to perform
a behavior. We now give definitions of the predictors that appear in the model:

Behavior Behavior is an observed human action that is a response to a given
situation. In TPB, behavior is a function of intentions and perceptions of
behavioral control.

Intention Intention is an indication of a person’s readiness to perform a given
behavior and is considered to be the immediate antecedent of behavior. TPB
does not predict behavior only according to intentions; these are combined
with attitudes, subjective norms, and perceived behavior control.

Attitude towards a behavior Attitude towards a behavior is the degree to
which the performance of the behavior is positively or negatively valued.
This evaluation of the behavior is assumed to have two components which
work together: (1) beliefs about the consequences of the behavior (behavioral
beliefs), and (2) the corresponding positive or negative judgments about each
of these consequences (outcome evaluations).

26 R. Ben-Bassat Levy and M. Ben-Ari

Subjective norms about the behavior Subjective norms are a person’s es-
timate of the social pressure to perform or not to perform the target behav-
ior. The subjective norms contain two connected elements: (1) the beliefs
of other people that may be important to the person and how those other
people want the person to behave (normative beliefs), and (2) the positive
or negative evaluation of each belief (motivation to comply).

Perceived behavioral control Perceived behavioral control is the extent in
which a person feels that he can control the behavior. Perceived behavior
control has two aspects: (1) how much control does a person have on the
behavior (control beliefs), and (2) how confident a person feels about his
ability to behave in a certain way (influence of control beliefs).

We have used TPB within the context of educational technology [10] and it
proved very effective in understanding the causal links from attitudes to inten-
tions to behavior. TPB is particularly suited to this research project because it
is capable of uncovering fine distinctions and interesting phenomena that might
be overlooked by other methods.

3.4 Research Instruments and Data Analysis

The first year of the research program was devoted to field observations and in-
terviews. Data from these observations and interviews were analyzed to discover
issues that related to the different TPB predictors. We used the approach in [4]
to guide the formulation of questions regarding goal-directed behavior, focusing
on behavioral beliefs, normative beliefs, control beliefs and intentions. In addi-
tion, questions were formulated to investigate the strengths of the outcomes of
each of these constructs.

There were 44 questions that used a seven-point Likert scale (from “strongly
disagree” to “strongly agree”). Multiple questions were used to ensure reliabil-
ity. The association of a question with a construct was performed by the first
researcher and then validated by the second researcher; disagreements were dis-
cussed until a consensus was reached. We sent out more than 700 questionnaires
and have so far received the answers from about 350, of which we analyzed 106.
The large number of responses should lead to significant results.

The questionnaire can be viewed at http://goo.gl/forms/xu8NuDLLtI.
The analysis was performed according to the methods of TPB. For each of

the predictors—attitudes, perceived behavior control, intentions—the analysis
proceeded through the following steps: (a) the data were sorted in ascending
order and divided into quartiles; (b) each subject was ranked into one of the
quartiles according to his/her answers; (c) connections were sought among the
rankings; (d) conclusions about the students’ attitudes and intentions were then
inferred from these rankings.

http://goo.gl/forms/xu8NuDLLtI

Robotics–Is the Investment Worthwhile? 27

3.5 The Questionnaire

Here are some of the questions together with an explanation of their design:

Question 8 I believe that the process of trial-and-error (which I experience dur-
ing robotics classes) makes me feel like a real scientist. This question orig-
inated from students who expressed statements like “I am a scientist,” “I
am trying to solve the problem using the robot,” “I can make mistakes and
learn from them.” The question investigates behavioral belief.

Question 11 To be involved in science in the future will mean success for me. A
student who gives a high score on this question strengthens the significance of
the answer to question 8, and, conversely, a low score reduces the significance
of the answer.

Question 30 It is difficult for me to study in the afternoons, because I have
to take care of my brothers and sisters. This question originated from com-
plaints of students who could not continue participating in the robotics ac-
tivities because of commitments such as homework, other extracurricular ac-
tivities, and taking care of siblings. The question investigates the students’
control beliefs.

Question 15 Studying in the afternoons is difficult for me, so I don’t want to
learn robotics. This question checks the power of the control beliefs investi-
gated by question 30.

Question 22 The teachers at the school respect me more because I study robotics.
This question originated from students who remarked that they are better
respected since they began to study robotics. The question investigates nor-
mative beliefs.

Question 28 It is important to me what the teachers think of me. This question
measures the normative belief motivation to comply checked in question 22.

4 Results

From the observations and the interviews we found that most of the students
were enthusiastic towards robotics at the beginning of the year when the subject
was new. They carried out the assignments given by teachers and they collab-
orated on the construction of the robot. The FLL students collaborated more
than the students in the classroom because they had a concrete goal, while the
other students became bored. The robots in several classes did not function as
expected, which led to frustration. The interviews showed that the students felt
good when they received respect and support from the teachers and the staff at
the school, as well as from their parents. The interviews revealed a problem in
scheduling: robotics classes are usually given in the afternoon after all the other
students have gone home.

28 R. Ben-Bassat Levy and M. Ben-Ari

Each of the predictors was calculated according to the TPB framework: the
sum over all relevant questions of multiplication of the score of the answer and
its associated strength:

Attitudes = Behavioral beliefs × Outcome evaluation

Subjective norms = Normative beliefs× Motivation to comply

Perceived behavioral

control (PBC) = Control beliefs × Power of control belief

For example, for the attitudes, question 1 measured behavioral beliefs and
question 11 measured its outcome evaluation; therefore, the score for question 1
was multiplied by the score for question 11. Similarly, this was done for other
pairs of questions and the results added to obtain the measure of the attitudes.

We calculated the minimum and maximum possible scores, as well as the
average score calculated over all the 106 students:

Attitudes Subjective PBC Intentions

norms

Minimum score 9 9 12 3

Average score 243 241 184 17

Maximum score 441 441 294 21

The average score is roughly halfway between the minimum and maximum
scores. This is a disappointing result since we hoped to find much higher scores,
indicating high positive attitudes. On the other hand the results show that the
students do not possess negative attitudes, even though such attitudes were
sometimes expressed in the preliminary interviews.

In order to obtain a more fine-grained presentation of the results, we divided
the results into four quartiles and placed the students in those quartiles. The
advantage of quartiles over the average is that it enables a deeper analysis of the
each of the predictors.1

The following table shows the quartiles of each predictor:

Attitudes Subjective PBC Intentions

norms

First quartile 342-441 342-441 225-294 18-21

Second quartile 242-341 242-341 154-224 13-17

Third quartile 142-241 142-241 84-153 8-12

Fourth quartile 9-141 9-141 11-82 3-7

1 The division into quartiles is not an aspect of TPB as found in the literature; we
first used this technique in [10].

Robotics–Is the Investment Worthwhile? 29

and this table shows the number of students in each quartile:

Attitudes Subjective PBC Intentions

norms

First quartile 27 12 34 58

Second quartile 24 36 33 32

Third quartile 31 53 37 12

Fourth quartile 24 5 2 4

Total 106 106 106 106

– The students are roughly uniformly distributed in the quartiles for attitudes,
which is somewhat disappointing.

– Most of the students fall into the two middle quartiles for subjective norms,
which means that they can be influenced to choose STEM by the school and
home environments.

– The relatively high scores for perceived behavioral control mean that stu-
dents feel that they can control their future choices to study STEM.

– The scores for intentions are very high, indicating that they are likely to
choose STEM.

5 Discussion

The observations and interviews enabled us to construct a 44-item questionnaire
according to the TPB framework, as demonstrated by the examples in Sec-
tion 3.5. The observations and interviews revealed several aspects of students’
engagement in robotics activities (Section 4). While the attitudes and subjective
norms were not as high as we expected, the results for the subjective norms are
of particular importance, because they show that students can be motivated by
the respect and support they receive from their teachers and parents.

The high scores for intentions were compatible with a direct question asked
in personal questions that appeared before the TPB part of the questionnaire:

Do you intend to study a scientific subject (biology, chemistry, physics,
computer science) in high school? Yes / No

This strengthens our belief that robotics encourages intentions to choose STEM.

6 Conclusions

The theory of planned behavior proved to be a fruitful framework for research
into students’ engagement in robotics activities. We believe that a questionnaire
constructed according TPB and based upon field work is a better instrument
than a questionnaire based only upon the researchers’ intuition and experience.

Robotics activities are often justified on the claim that they motivate stu-
dents to pursue further studies in STEM subjects. Our results provide empirical
evidence that supports this claim.

30 R. Ben-Bassat Levy and M. Ben-Ari

References

1. ACM: Journal of Educational Resources in Computing 3(4) (2003)
2. ACM: Journal of Educational Resources in Computing 4(3) (2004)
3. Adams, J.C.: Alice, middle schoolers & the imaginary worlds camps. SIGCSE Bul-

letin 39(1), 307–311 (2007)
4. Ajzen, I., Madden, T.: Prediction of goal-directed behavior: Attitudes, intentions,

and perceived behavioral control. Journal of Experimental Social Psychology 22,
453–474 (1986)

5. Ajzen, I.: Perceived behavioral control, self-efficacy, locus of control, and the theory
of planned behavior. Journal of Applied Social Psychology 32(4), 665–683 (2002)

6. Anderson, M., McKenzie, A., Wellman, B., Brown, M., Vrbsky, S.: Affecting atti-
tudes in first-year computer science using syntax free robotics programming. ACM
Inroads 2(3), 51–57 (2006)

7. Apiola, M., Lattu, M., Pasanen, T.: Creativity and intrinsic motivation in com-
puter science education: experimenting with robots. In: 15th Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE 2010),
pp. 199–203 (2010)

8. Armoni, M., Meerbaum-Salant, O., Ben-Ari, M.: From Scratch to “real” program-
ming. ACM Transactions on Computing Education 14(4), article 25 (2015)

9. Aspray, W., Mayadas, F., Vardi, M.Y. (eds.): Globalization and Offshoring of Soft-
ware: A Report of the ACM Job Migration Task Force. ACM (2006),
http://www.acm.org/globalizationreport/ (last accessed on March 10, 2015)

10. Ben-Bassat, L.R., Ben-Ari, M.: Adapting and merging methodologies in doctoral
research. Computer Science Education 19(2), 51–67 (2009)

11. Carter, L.: Why students with an apparent aptitude for computer science don’t
choose to major in computer science. SIGCSE Bulletin 38(1), 27–31 (2006)

12. Druin, A., Hendler, J. (eds.): Robots for Kids: Exploring New Technologies for
Learning. Morgan Kaufmann (2000)

13. Gibbons, S.J., Hirsh, L.S., Kimmel, H., Rockland, R., Bloom, J.: Middle school
students attitudes to knowledge about engineering. In: International Conference
on Engineering Education, pp. 1–6 (2004)

14. Kelleher, C.: Motivating Programming: Using Storytelling to Make Computer Pro-
gramming Attractive to More Middle School Girls. Ph.D. dissertation, Carnegie
Mellon University (2006),
http://www.cs.cmu.edu/~caitlin/kelleherThesis_CSD.pdf (last accessed on
March 10, 2015)

15. Kelleher, C., Pausch, R.: Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Comput-
ing Surveys 37(2), 83–137 (2005)

16. Kumar, D.: Learning Computing with Robotics (2011),
http://cs.brynmawr.edu/~dkumar/Myro/Text/Fall2011PS2/PDF/LCR2011.pdf

(last accessed on March 10, 2015)
17. Margolis, J., Fisher, A.: Unlocking the Clubhouse: Women in Computing. MIT

Press (2003)
18. Markham, S., King, K.: Experiences, outcomes, and attitudinal influences. In: 15th

Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2010), pp. 204–208 (2010)

19. McGill, M.: Learning to program with personal robots: Influences on student mo-
tivation. ACM Transactions on Computing Education 12(1), article 4 (2012)

http://www.acm.org/globalizationreport/
http://www.cs.cmu.edu/~caitlin/kelleherThesis_CSD.pdf
http://cs.brynmawr.edu/~dkumar/Myro/Text/Fall2011PS2/PDF/LCR2011.pdf

Robotics–Is the Investment Worthwhile? 31

20. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Learning computer science con-
cepts with Scratch. Computer Science Education 23(3), 239–264 (2013)

21. Taub, R., Ben-Ari, M., Armoni, M.: The effect of CS Unplugged on middle-school
students views of CS. In: 14th Annual ACM SIGCSE Conference on Innovation
and Technology in Computer Science Education (ITiCSE 2009), pp. 99–103 (2009)

22. Verner, I., Ahlgren, D.: Robot contest as a laboratory for experiential engineering
education. ACM Journal on Educational Resources in Computing 4(2), 2–28 (2004)

23. Zur Barguri, I.: A new curriculum for junior-high in computer science. In: 17th
Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2012), pp. 204–208 (2012)

Dimensions of Programming Knowledge

Andreas Mühling, Peter Hubwieser, and Marc Berges

TUM School of Education
TU München

{andreas.muehling,peter.hubwieser,marc.berges}@tum.de

Abstract. Nowadays, learning and teaching outcomes are defined pre-
dominantly by target competencies. In order to assess learning outcomes,
properly defined and empirically validated competency models are re-
quired. For object-oriented programming, such models have not been
brought forward up to now. Aiming to develop a competency structure
and level model for this field, we have examined the structural knowledge
of programming novices to derive its potential dimensions. The results
suggest 6 dimensions. Additionally, we propose difficulty levels for two of
these dimensions based on the SOLO taxonomy. The empirical validation
of these dimensions and their levels is subject to further investigations.

1 Introduction

Traditionally, the desired learning outcomes of schools were defined and con-
trolled by the acquisition of certain knowledge elements or by the achievement
of predefined learning objectives. During the last decade, mainly stimulated by
the surprising results of the PISA (Programme for International Student Assess-
ment) studies [24], the focus of the outcomes of school education was shifted
more and more towards target competencies in many countries. In this context,
the term competency is usually understood in the sense of Weinert, who de-
fined it as “the cognitive abilities and skills possessed by or able to be learned
by individuals that enable them to solve particular problems, as well as the
motivational, volitional and social readiness and capacity to use the solutions
successfully and responsibly in variable situations”[36].

To align learning and teaching processes and measure their success, these tar-
get competencies have to be defined and structured properly by suitable empir-
ically validated competency models. For this purpose, different kinds of models
are used [13], which may focus on the structure, the different hierarchical levels
or the development of the relevant competencies [14]. Regarding the definition
and measurement of competencies, much groundbreaking work was done in the
context of the PISA studies (see e.g. [31], [24]).

For Computer Science Education, the development process of competency
models is just at its beginning. As far as we know, only one attempt has been
made until now that could cope with the standards of PISA [15], [18]. Yet, as
the scope of this project is very broad, it does not intend to provide sufficiently
detailed models of programming competencies. Thus our team has set its re-
search focus on the development of detailed competency structure models for

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 32–44, 2015.
DOI: 10.1007/978-3-319-25396-1_4

Dimensions of Programming Knowledge 33

programming. To keep things simple, we decided to start these investigations in
the field of object-oriented programming and restricted to programming novices.

Regardless the complex structure of competencies according to Weinert [36],
they remain ”cognitive abilities and skills”. Thus the development of competency
models has to start with the investigation of the relevant cognitive structures
[14], providing a skeleton. The position of a competency in structure models is
then defined by the location of its corresponding knowledge element. Based on
large sets of concept maps that had been gathered by our team over several
years in different programming courses, 6 potential dimensions of programming
knowledge were identified at the end [17]. Aiming to validate these knowledge
structures and find competency definitions, we are conducting qualitative in-
vestigations of assignments, tasks (see [27]), structured interviews and learning
diaries.

In this paper, we present the first results and discuss the relevance for our
intended competency model. In the next steps, we are going to construct and
validate items for the further investigation of the 6 dimensions. The outcomes
of the other activities will be presented in subsequent publications.

2 Background and Related Work

Basically, we aim to combine two different aspects of knowledge respectively
competencies in our model: structure and difficulty. To investigate the first as-
pect, we have analyzed large sets of concept maps. For the second, we propose
a scale that is inspired by the SOLO taxonomy of Biggs.

2.1 Concept Maps and Declarative Knowledge

Concept maps were invented in the 1970s as a tool to help structuring and
visualizing the responses of children in clinical interviews [20]. Later on, the use
of concept maps shifted from a specific technique for data analysis to a general
technique for learning, teaching, and assessing structural knowledge [21].

A concept map consists of labeled entities that represent a concept. Concepts
are defined as “perceived regularities or patterns in events or objects, or records
of events or objects, designated by a label” [20]. Two concepts that are linked by
a connection are forming the basis of a proposition. A proposition is composed of
the two concepts and the label of the connection itself. The technique of concept
mapping is fundamentally based on the ideas of Constructivism and meaningful
learning [23].

The subject-matter knowledge about programming resides in a part of the
long-term memory, called declarative memory [19], that can be described rather
succinctly: “Declarative memory is memory that is directly accessible to con-
scious recollection. It can be declared. It deals with the facts and data that are
acquired through learning” [34]. In consequence, a concept map can be regarded
as an externalization of declarative knowledge as it has been “declared” by the
concept mapper [28]. In general, the organization of concepts in memory is as-
sumed to be pivotal for the quality of a person’s knowledge [35]. Without a

34 A. Mühling, P. Hubwieser, and M. Berges

structured connection to others, a concept will not be kept in long term mem-
ory [33]. According to [28], “concept interrelatedness is an essential property of
knowledge‘”.

Literature points to the successful application of concept maps as a method
for assessing or evaluating students’ knowledge structures across many different
fields of study [22], [20]. In particular, it has been shown that assessments based
on concept mapping can differentiate between the knowledge of experts and
novices as well as between meaningful learning and rote-learning [7]. Concerning
the validity of concept map assessment tasks, the results found in literature are
generally positive [22], [26]. The reliability has been established, at least under
certain conditions, by several different studies [22]. In educational research about
computer science, concept maps have been used extensively, see e.g. [8], [12], [29].

2.2 The SOLO Taxonomy

In 1982, Biggs proposed his SOLO taxonomy, see Table 1. Based on the theory
of meaningful learning [4], it puts more emphasis on the learner and the actual
learning outcome, instead of the learning material [4]. In Table 1, Capacity “refers
to the amount of working memory, or attention span, that the different levels of
SOLO require” [4]. The relating operation “refers to the way in which the cue
and response interrelate” [4]. Additionally, there is an attribute of “Consistency
and closure”, referring to the felt need of the learner to come to a conclusion that
is consistent with the data and other possible conclusions [4], which increases
with the levels of the taxonomy.

Table 1. The levels of the SOLO taxonomy as described by [4]

SOLO Level Capacity Relating operation

Prestructural Minimal: cue and response
confused

Denial, tautology, transduc-
tion. Bound to specifics.

Unistructural Low: cue and one relevant da-
tum

Can “generalize” only in
terms of one aspect.

Multistructural Medium: cue and isolated rel-
evant data

Can “generalize” only in
terms of a few limited and
independent aspects.

Relational High: cue and relevant data
and interrelations

Induction: Can generalize
within given or experienced
context using related as-
pects.

Extended Abstract Maximal: cue and relevant
data and interrelations and
hypotheses

Deduction and induction.
Can generalize to situations
not experienced.

Regarding the application of the SOLO taxonomy in programming education,
Hawkins [10] proposed different programming patterns of novices that corre-

Dimensions of Programming Knowledge 35

spond to the categories of Biggs [4] for the exemplary task of drawing simple
shapes as circles or rectangles. He associated

1. Pre-structural Response: Immediate mode, commands are applied by trial
and error, until the result is acceptable,

2. Unistructural Response: Immediate mode, the commands are entered in a
planned and deliberated sequence,

3. Multistructural Response: Programming mode, structured sequences, and
4. Relational Response: Functions are defined and Control Structures are use.

Code is reused
5. Extended Abstract Response: Parametrized functions.

2.3 The Cognitive Structure of Programming

Since the first days of computer programming, scientists reason about the cor-
responding cognitive structures. At this place, we have to restrict ourselves to
the most relevant sources for our project.

In 1990, Ormerod partitioned the knowledge Schema of ”Programming Lan-
guage Components” into Data Structures (Arrays, Lists) and Looping Con-
structs (Recursion, Iteration) [25].

Complexity in object-oriented programming can increase due to more com-
plex methods or by adding classes and connections between them. Shao et al.
introduced in [32] a metric for programming based on cognitive weights of ba-
sic control structures (BCS). “The cognitive weight of software is the degree of
difficulty or relative time and effort required for comprehending a given piece of
software modelled by a number of BCSs” The metric counts the basic control
structures in source code. Misra et al. generalized the method to object-oriented
programming defining the complexity as the addition of the complexity of the
involved methods and objects [16].

In 2006 Bennedsen and Schulte introduced a theoretical base for measuring the
understanding of object interaction [2], which was revised in 2013 [3], describing
four hierarchical levels: Interaction with objects, Interaction on object structures
and Interaction on dynamic object structures.

3 The Educational Context

In the year 2004, the government of the German state of Bavaria introduced a
new compulsory subject of Computer Science (CS) in all its 400 Gymnasiums
(grammar schools) [11]. This subject was introduced simultaneously with the
reduction of the Bavarian Gymnasium from 9 to 8 grades. As a consequence, in
April 2011 two different age cohorts graduated simultaneously from the Bavarian
Gymnasium: the last age group of G9 and the first one from the new G8. The lat-
ter also represents the first cohort who had attended the new CS classes over 2-6
years. The goal of our study was to compare the declarative knowledge of these
two groups. Regarding the learning content that is relevant for our study, the CS
course is based on a “strictly objects first” approach. The courses start in grade

36 A. Mühling, P. Hubwieser, and M. Berges

6 with the introduction of the concepts object, attribute, method and class in the
context of vector graphics, followed by the concept of aggregation. Subsequently,
the students work with recursive aggregation, applied to file trees. In the next
step, the trees are generalized to graphs. At the end of grade 7, the students work
out their first programs, using a virtual robot. In the 9th grade, the students
learn to apply the concept of function, followed by (object-oriented) data mod-
eling. The students of grade 10 consolidate their object-oriented knowledge by
“real” object-oriented programming, designing object-, class- and state-models
and implementing them with a suitable object-oriented programming language,
which currently will be Java in most of the schools. Additionally, they learn to
apply the concepts of sub- and superclass, inheritance and polymorphism. In
the elective courses in grade 11, the object-oriented modeling and programming
concepts are extended by the recursive data structures List, Tree and Graph.
For more details about the this course see [11].

4 The Study

4.1 Design

We conducted a cross-sectional study among the beginning computer science
students at our university in the summer and winter term of 2011. We were
able to present our questionnaire to 590 of the about 700 freshmen. 338 of the
responses contained relevant information. The analysis was restricted to the 290
concept maps of the graduates from the Bavarian G8 or G9 school system(see
section above). For more details, see [17].

The participants were given a list of 40 concepts, which had been extracted
from the curriculum of the school subject semi-automatically by extracting
nouns, counting their frequency and then manually filtering the list. The re-
maining 40 concepts were: algorithm, array, assignment, association, attribute,
automaton, class, conditional statement, data, data structure, edges, flow, gram-
mar, graph, instruction cycle, list, loop, method, object, processor, program, pro-
gramming language, record, recursion, register machine, semantics, sequence,
state, state change, statement, subclass, superclass, syntax, table, tree, pointer,
variable, value, vertex, working memory.

First, the participants were asked to mark all concepts they were familiar
with and afterwards draw a concept map of those. Several different orderings for
the concept list were used in order to measure whether this has an effect on the
maps, but none was found. The students received a short written introduction on
concept mapping including an example map from Mathematics. The participants
were asked to label the propositions. The maps were produced with paper and
pencil. For the whole survey, the students were given 45 minutes time.

4.2 Data Analysis

The basic idea of the analysis was to create concept landscapes from sets of maps
[17]. These landscapes could then be analyzed in several ways. For this work,
only one method was used:

Dimensions of Programming Knowledge 37

1. Create a weighted graph from a set of concept maps - the edge weights reflect
the number of maps in which a given pair of concepts has been connected
by a proposition.

2. Use graph algorithms on this weighted graph - in our case community de-
tection using a Greedy algorithm [5]

3. Prepare the graph for qualitative, visual analysis by pruning edges. To this
end, the Pathfinder algorithm was used.

Pathfinder networks as described by Schvaneveldt are graph based represen-
tation of the similarity (or dissimilarity) of entities [30]. Originally, the data
that is represented consists of pairwise similarity ratings given by persons, usu-
ally using a numeric scale. The similarity ratings can be modeled as a weighted,
complete graph with each entity becoming a node and the weight of each edge
is the similarity value of the pair of incident entities of that edge. Such a repre-
sentation is called a “network” [30]. Schvaneveldt note that “[a]s psychological
models, networks entail the assumption that concepts and their relations can be
represented by a structure consisting of nodes (concepts) and links (relations).
Strength of relations are reflected by link weights and the intentional meaning
of a concept is determined by its connections to other concepts”. Algorithmic
methods can then be used to analyze such a network, or extract prominent fea-
tures. The Pathfinder algorithm is one such method and an alternative is, for
example, multi-dimensional scaling (MDS) developed by Kruskal [1].

As described by Dearholt & Schvaneveldt [6], a Pathfinder network is always
constructed from an existing, non-negative weight matrix, which represents a
weighted graph. The Pathfinder network is itself again a graph that is directed
if and only if the input graph was directed. It consists of the same nodes and
components as the input graph but of a subset of its edges, with their weights
preserved. The edges are chosen such that the final network provides a path of
minimal distance between each pair of nodes according to a special metric (called
Minkowski- or r-metric) that is dependent on a parameter r > 0. The weight of
a path consisting of edges e1, e2, · · · , ek with weights w1, w2, · · · , wk according to
the r-metric is defined as:

(wr
1 + wr

2 + ...+ wr
k)

1/r

For r = 1 the r-metric defaults to the sum of the single edge weights, for r = 2
it is the Euclidean distance and for r = ∞ the path weight is the maximum edge
weight along the path [6]. These three values are representing highly used metrics
and are called Manhattan distance, Euclidean distance, and Chebyshev distance
respectively [9].

Additionally, a Pathfinder networkwith n nodes is guaranteed to be q-triangular
for q ∈ {1, 2, ..., n − 1}. This means, that the weight of any edge (i, j) is less or
equal than the weights, according to the chosen r-metric, of any path between i
and j that is of length at most q [6]. In other words, when ignoring paths longer
than q, the triangle inequality holds for each pair of nodes in the graph. If q is set
to the maximal value of n− 1, the (regular) triangle inequality always holds.

38 A. Mühling, P. Hubwieser, and M. Berges

For our analysis, the maps were split into two groups according to the students’
prior education. G8 denotes the group of students who attended the compulsory
subject Informatics for at least four years and G9 denotes the group who didn’t
have a compulsory subject. The G8 group consists of 163 maps and the G9 group
of 127.

The first result was that G8 maps were denser. As a t-test of the number of
edges between two groups showed, the hypothesis ”the true difference in means
is 0” could be rejected with a confidence level of 99% (p = 0.0001).

To identify the prevalent structures, both sets of maps were transformed into a
concept landscapes and the Pathfinder networks with parameters q = 39 and r =
∞ were created for each landscape separately. Edges that were appearing in less
than 10% of the maps of each group were removed beforehand and unconnected
concepts were also removed. First, taking a look at the concepts that remained in
the Pathfinder networks, there were 31 for G8 and 26 for G9. The networks are
shown in Figure 1. All concepts appearing in the G9 networks are also appearing
in the G8 network, however, the G8 network contains the additional concepts:
list, recursion, semantics, state, and register machine.

Analyzing the communities in the Pathfinder networks using a a greedy al-
gorithm, both networks are partitioned into six communities. The concepts are
assigned to the communities as shown in Table 2.

Table 2. The communities identified within the Pathfinder network from the maps of
the G8 and G9 groups. The ordering of the communities for both groups is arbitrary,
but was chosen to allow comparing the groups more easily.

Community G8 G9

1 Data structure, Graph, Edges,
Nodes, List, Tree, Array, Recur-
sion

Data structure, Graph, Edges,
Nodes, Tree, Array

2 Data, Record, Table, Working
memory, Processor, Register ma-
chine

Data, Record, Table, Working
memory, Processor

3 Object, Attribute, Value, Variable Object, Attribute, Method, Algo-
rithm

4 Class, Method, Loop, Conditional
Statement

Class, Value, Variable, Loop, Con-
ditional Statement

5 Programming language, Syntax,
Semantics, Grammar

Programming language, Syntax,
Grammar

6 Statement, Program, Automaton,
State, Algorithm

Statement, Program, Automaton

4.3 Discussion

Taking together the Pathfinder networks of Figure 1 and the communities of
Table 2, the following differences can be observed.

Dimensions of Programming Knowledge 39

(a) G8

(b) G9

Fig. 1. The Pathfinder networks of students with compulsory school subject and of
students without.

40 A. Mühling, P. Hubwieser, and M. Berges

First of all, the G8 network is visibly more complex, because the maps of the
G8 groups are significantly denser. Furthermore, while it seems common among
all beginning students to value the concept program highly in their knowledge
structure, the most central concepts of class and data structure as opposed to
processor and data show a more object-oriented understanding of the G8 group,
while the G9 group seems to be more focused on the technical aspects and
computers themselves.

The network of the G8 group has a connection between recursion and tree,
which corresponds to the approach of introducing recursion based on object-
oriented recursive data structures, like lists and trees, chosen in the curriculum.
Another indicator for a more formal CS education in the G8 group: For their
network, there is the path programming language, syntax, grammar, semantics,
whereas the G9 group only has grammar and syntax connected to programming
language directly (semantics is missing completely).

There are some commonalities between the two groups: First, communities
1, 2, and 5 are nearly identical except for concepts missing the G9 network
altogether. Next, there is a clear grouping of concepts related to data structures
for both groups in the first community. Also, for both groups, the more database
oriented concepts (data, record, table) are grouped with processor and working
memory, placing them in a more technical and less abstract corner. In the same
vein, register machine is seemingly more related to a real processor than to
an abstract notion for beginning students. Finally, for both groups, automaton,
program and state are related; however, none of the object-oriented concepts are
put into that group, indicating a lack of understanding of the semantics of object
orientation.

5 Knowledge and Competencies

Apparently, the two target groups of our concept map survey have extremely
different educational backgrounds. While G8-students had 2-6 years of system-
atic CS education, the G9 students did not have any CS courses or eventually
only courses without any curriculum. This assumption justifies the idea to define
potential cognitive dimensions of programming knowledge by forming the pair-
wise intersection of the corresponding graph communities in Table 2. Using the
intersections - and therefore only a subset of the original concepts - leads to a
set of potential cognitive dimensions that may or may not be exhaustive for the
given domain. On the upside, what remains in our subset has strong empirical
backing.

Additionally, we have applied some interpretations in order to sharpen the
dimensions by omitting the following concepts: edges and nodes in dimension
1 as parts of the graph concept, record and table in dimension 2 as represen-
tation structures of data in working memory, class in dimension 4, because all
programs in purely object-oriented languages like Java are written as class def-
initions . Finally, in dimension 3, association was added despite its absence in
the communities. In summary, we propose the following potential cognitive di-
mensions of programming competency:

Dimensions of Programming Knowledge 41

Table 3. The proposed difficulty levels of programming competencies

Level Dimension 3 Dimension 4

1 Objects of only one class or of sev-
eral unrelated classes

Single statements or sequences of
statements

2 Objects of classes associated by 1:1
and 1:n associations

Single or sequentially arranged
control structures

3 Objects of classes associated by
m:n associations

Nested control structures

Questionable Super- or subclasses, parametrized
classes, recursive class structures
(e.g. compositum pattern)

Methods, functions and proce-
dures (MFP) without and with
parameters, recursive MFPs, type
parametrized MFPs

1. Data structure (graph, tree, array)
2. Machine (data, working memory, processor)
3. Objects static structure (object, attribute, association)
4. Algorithmic structure (loops, conditional statement)
5. Representation structure (programming language, syntax, semantics)
6. Execution structure: (statement, program, automaton)

Regarding the potential difficulty levels on these dimensions, we decided to
restrict our deliberations on the dimensions 3 and 4 for the moment, which seem
to be particularly relevant for object oriented programming in practice. Sug-
gested by the levels of the SOLO taxonomy (see above), we propose three levels
for each of these dimensions (see Table 3). Of course, the hierarchy of these levels
has still to be validated empirically. Additionally, for some other programming
concepts the corresponding level seems questionable. Once the hierarchy of the
levels 1-3 is proven, their difficulty has to be examined by suitable test items.
Thus, we have collected these concepts them in a category “questionable”. A
first survey on dimension 4 resulted in very promising outcomes, which will be
described soon in another paper.

6 Conclusion and Future Work

A look on our project outline shows that the definition and measurement of pro-
gramming competencies is a very complex and challenging task, which requires
many different research activities.

One of the first steps is the exploration of the cognitive structure of the con-
sidered competencies. Apparently, the evaluation of our concept mapping data
suggests 6 different dimensions of this cognitive structure. Yet, it has still to be
investigated by empirical means if these dimensions are representing separated
psychometric constructs indeed. For this purpose, as a next step, suitable sets of
items have to be constructed and validated (e.g. by expert interviews). Further-
more, these item sets have to be pretested, refined and finally applied in tests

42 A. Mühling, P. Hubwieser, and M. Berges

among some hundreds of test persons. By checking the homogeneity by means of
the Item Response Theory, it will hopefully turn out how programming knowl-
edge of novices is really structured. We have already undertaken the first step in
this direction by designing, testing and evaluating a set of items for dimension
4.

Additionally, these quantitative investigations have to be supported by qual-
itative work. For this purpose, we are collecting learning diaries, reports about
particular learning problems and many interviews from different target groups.
Furthermore, we are investigating more than thousand assignments from K-12
schools and universities [27]. We have already designed and pretested a set of
items for our proposed dimension 4 (see below) with very promising results,
which will be published soon.

At the end, we hope to be able to assemble the results of all these activities
to competency structure and level models that could form the starting point for
the construction of standardized tests for programming abilities.

References

1. Bartholomew, D.J., Steele, F., Moustaki, I., Galbraith, J.I.: Analysis of Multivari-
ate Social Science Data, 2nd edn. Chapman & Hall/CRC and CRC Press, Boca
Raton (2008)

2. Bennedsen, J., Schulte, C.: A competence model for object-interaction in introduc-
tory programming. In: 18th Workshop of the Psychology of Programming Interest
Group, vol. 18, pp. 215–229 (2006)

3. Bennedsen, J., Schulte, C.: Object interaction competence model v. 2.0. In: Learn-
ing and Teaching in Computing and Engineering, pp. 9–16. IEEE Press, Los Alami-
tos (2013)

4. Biggs, J.B., Collis, K.F.: Evaluating the quality of learning: The SOLO taxonomy;
structure of the observed learning outcome. Educational Psychology Series. Acad.
Pr., New York (1982)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Physical Review E 70(6), 066111 (2004)

6. Dearholt, D.W., Schvaneveldt, R.W.: Properties of pathfinder netowrks. In:
Schvaneveldt, R.W. (ed.) Pathfinder Associative Networks, pp. 1–30. Ablex Pub.
Corp., Norwood (1990)

7. Derbentseva, N., Safayeni, F., Cañas, A.J.: Concept maps: Experiments on dynamic
thinking. Journal of Research in Science Teaching 44(3), 448–465 (2007)

8. Gouli, E.: Concept Mapping in Didactics of Informatics. Assessment as a Tool
for Learning in Web-based and Adaptive Educational Environments. Ph.D. thesis,
National and Kapodistrian University of Athens, Athen (2007)

9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kauf-
mann series in data management systems, 2nd edn. Elsevier/Morgan Kaufmann,
Amsterdam (2010)

10. Hawkins, W., Hedberg, J.G.: Evaluating logo: Use of the solo taxonomy. Australian
Journal of Educational Technology 2(2), 103–109 (1986)

11. Hubwieser, P.: Computer science education in secondary schools – the introduction
of a new compulsory subject. Trans. Comput. Educ. 12(4), 16:1–16:41 (2012)

Dimensions of Programming Knowledge 43

12. Keppens, J., Hay, D.B.: Concept map assessment for teaching computer program-
ming. Computer Science Education 18(1), 31–42 (2008)

13. Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gruber, H., Prenzel, M., Reiss,
K., Riquarts, K., Rost, J., Tenorth, H.E., Vollmer, H.J.: The Development of Na-
tional Educational Standards: An Expertise. Bundesministerium für Bildungund
& Forschung, Berlin (2004)

14. Klieme, E., Hartig, J., Rauch, D.: The concept of competence in educational con-
texts. In: Hartig, J., Klieme, E., Leutner, D. (eds.) Assessment of Competencies in
Educational Contexts, pp. 3–22. Hogrefe & Huber Publishers, Toronto (2008)

15. Magenheim, J., Nelles, W., Rhode, T., Schaper, N.: Towards a methodical ap-
proach for an empirically proofed competency model. In: Hromkovič, J., Královič,
R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 124–135. Springer,
Heidelberg (2010)

16. Misra, S., Akman, I.: Measuring complexity of object oriented programs. In: Ger-
vasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.)
ICCSA 2008, Part II. LNCS, vol. 5073, pp. 652–667. Springer, Heidelberg (2008)

17. Mühling, A.M.: Investigating Knowledge Structures in Computer Science Educa-
tion. Ph.D. thesis, Technische Universität München, München (2014)

18. Neugebauer, J., Hubwieser, P., Magenheim, J., Ohrndorf, L., Schaper, N., Schubert,
S.: Measuring student competences in german upper secondary computer science
education. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp.
100–111. Springer, Heidelberg (2014)

19. Novak, J.D.: Meaningful learning: the essential factor for conceptual change in lim-
ited or inappropriate propositional hierarchies leading to empowerment of learners.
Science Education 86(4), 548–571 (2002)

20. Novak, J.D.: Learning, Creating, and Using Knowledge: Concept Maps as Facili-
tative Tools in Schools and Corporations, 2nd edn. Routledge, London (2010)

21. Novak, J.D., Cañas, A.J.: The theory underlying concept maps and how to con-
struct and use them: Technical report IHMC cmaptools 2006–01 rev. 01–2008
(2008)

22. Novak, J.D., Cañas, A.J.: The universality and ubiquitousness of concept maps.
In: Sánchez, J., Cañas, A.J., Novak, J.D. (eds.) Concept Maps: Making Learning
Meaningful, vol. 1, pp. 1–13. Universidad de Chile, Chile (2010)

23. Novak, J.D., Musonda, D.: A twelve-year longitudinal study of science concept
learning. American Educational Research Journal 28(1), 117–153 (1991)

24. OECD (ed.): PISA 2012 Results in Focus: What 15-year-olds know and what they
can do with what they know. OECD Publishing, Paris (2013)

25. Ormerod, T.: Human cognition and programming. In: Hoc, J.M., Green, T., Samur-
cay, R., Gilmore, D.J. (eds.) Psychology of Prgramming. Computers and People,
pp. 63–82. Academic Press, London (1990)

26. Rosas, S.R., Kane, M.: Quality and rigor of the concept mapping methodology: A
pooled study analysis. Evaluation and Program Planning 35(2), 236–245 (2012)

27. Ruf, A., Berges, M., Hubwieser, P.: Types of assignments for novice programmers.
In: Proceedings of the 8th Workshop in Primary and Secondary Computing Edu-
cation, WiPSE 2013, pp. 43–44. ACM, New York (2013)

28. Ruiz-Primo, M.A., Shavelson, R.J.: Problems and issues in the use of concept
maps in science assessment. Journal of Research in Science Teaching 33(6), 569–
600 (1996)

29. Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J.E., Thomas, L.,
Zander, C.: Student understanding of object-oriented programming as expressed
in concept maps. ACM Inroads 40(1), 332–336 (2008)

44 A. Mühling, P. Hubwieser, and M. Berges

30. Schvaneveldt, R.W., Durso, F.T., Dearholt, D.W.: Network structures in proximity
data. The Psychology of Learning and Motivation 24, 249–284 (1989)

31. Seidel, T., Prenzel, M.: Assessment in large-scale studies. In: Hartig, J., Klieme,
E., Leutner, D. (eds.) Assessment of Competencies in Educational Contexts, pp.
279–304. Hogrefe & Huber Publishers, Toronto (2008)

32. Shao, J., Wang, Y.: A new measure of software complexity based on cognitive
weights. Canadian Journal of Electrical and Computer Engineering 28(2), 69–74
(2003)

33. Sousa, D.A.: How the Brain Learns: A Multimedia Kit for Professional Develop-
ment, 3rd edn. Corwin Press, Thousand Oaks and Calif (2009)

34. Squire, L.R.: Memory and Brain. Oxford University Press, New York (1987)
35. Trumpower, D.L., Sharara, H., Goldsmith, T.E.: Specificity of structural assess-

ment of knowledge. The Journal of Technology, Learning and Assessment 8(5)
(2010)

36. Weinert, F.E.: Concept of competence: a conceptual clarification. In: Rychen, D.S.,
Salganik, L. (eds.) Defining and Selecting Key Competencies, pp. 45–65. Hogrefe
and Huber, Seattle (2001)

© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 45–56, 2015.
DOI: 10.1007/978-3-319-25396-1_5

Defining Proficiency Levels of High School Students in
Computer Science by an Empirical Task Analysis

Results of the MoKoM Project

Jonas Neugebauer1, Johannes Magenheim1,
Laura Ohrndorf2, Niclas Schaper1, and Sigrid Schubert2

1 University of Paderborn, D-33102 Paderborn, Germany
http://ddi.uni-paderborn.de

2 University of Siegen, D-57068 Siegen, Germany
http://www.die.informatik.uni-siegen.de

Abstract. In the last few years an interdisciplinary team of researchers in the
fields of organizational psychology and didactics of informatics have worked
together to develop an empirical sound competence structure model, a meas-
urement instrument and a competence level model. This is considered a relevant
step for the reliable assessment of competences and the development of compe-
tence based curricula to foster the recent outcome orientation of the German
educational system.

In this paper we publish the last component of our efforts: a model of profi-
ciency levels, derived from the results of a competence assessment with over
500 German students. We describe different approaches to define proficiency
levels and the process we used to derive them from our data. In the end, a de-
tailed overview of the four proficiency levels is given and supplemented with
exemplary tasks students should be able to solve on each.

Keywords. Competence Modeling, Proficiency Levels, Competence Level
Model, Secondary Education.

1 Motivation

In 2013 we published a domain-specific competence structure model called “Compe-
tence model for informatics modeling and system comprehension” [1], which will be
used to define educational standards and thereby contribute to the development of
curricula and the measurement of competences and learning outcomes in diverse edu-
cational settings. Based on the competence model, a measurement instrument was
created to assess competences of computer science students. This instrument was
applied in an assessment of over 800 students in German upper secondary education
(ages 16 to 19) to gather data for the evaluation of both the competence model and the
instrument itself. The data analysis was done using the Multidimensional Item Re-
sponse Theory (MIRT), a probabilistic test model. Based on these results, we con-
cluded our research by developing a model of different proficiency levels, which is

46 J. Neugebauer et al.

related to the competence structure model and further on will allow us to examine the
learning process of students in computer science education according to a competence
development model.

This article will present the results of the last research step of the MoKoM project:
the development of the competence level model, based on the analysis of difficulty
determining characteristics of the test tasks. First, we will shortly summarize the pre-
vious results of the research outlined above. Then, we will give an overview of the
theory behind proficiency levels, the ways they can be defined and the methods we
used in the end. The article will conclude with the description the of four proficiency
levels we derived from the data and supplement them with examples of tasks, which
are distinctive for each level.

2 MoKoM Background and Prior Results

The MoKoM project – funded by the German Research Foundation (DFG) – is an
interdisciplinary research project of psychologists and CSE-researchers to develop a
competence model for the two domains of ‘System Comprehension’ and ‘System
Development’. Competence models are a necessary foundation for the creation of
educational standards for individual subjects, a goal deemed necessary by the orienta-
tion of the German educational system towards competence based approaches in the
recent years [2]. Developing these models relies on empirical methods to assess the
required competences for important domains of a subject [1, 3].

The steps of the MoKoM project and the results of each phase are summarized in
this section: First we developed a competence model, then we created test items and
compiled them into a measurement instrument. The instrument was applied in an
assessment of computer science students in German higher secondary education and
the resulting responses were analyzed. Furthermore, an expert rating was conducted,
to separately assess criteria for the objectively expected difficulty of each test item.

2.1 The MoKoM Competence Model

The development of the competence structure model had two phases. First, a theory
based competence framework was derived from prominent curricula and syllabi, both
national and international. This led to a framework encompassing four dimensions:
Basic Competences, Informatics Views, Complexity and Non-Cognitive Competences
(see [2, 4, 5]).

The framework was refined by conducting 30 expert interviews and analyzing the
results by means of the Qualitative Content Analysis (see [4, 6]). This phase resulted
in a empirically refined competence model with five dimension: K1 System Applica-
tion, K2 System Comprehension, K3 System Development, K4 Dealing with Com-
plexity and K5 Non-Cognitive Competences [1]. Each dimension consists of compe-
tence components, which in turn consist of individual competence facets. In the next
step, test items for most of these facets were developed. The results were thoroughly
discussed in several publications.

 Defining Proficiency Levels of High School Students in Computer Science 47

2.2 Test Instrument and Assessment Results

The test instrument contains 74 unrelated items to cover the MoKoM competence
structure model [7]. Due to the large amount of items, the test instrument was not
applicable in a classroom setting with timeslots of 90 minutes. In order to adapt the
instrument to these demands, the items were divided into six booklets. The applica-
tion of such a design is possible due to the MIRT, which allows the calculated estima-
tion of student abilities in combination with the overall item difficulty [8]. Any sub-
ject has a certain probability to answer any item right or wrong. The difficulty of the
item and the ability level of the subject determine this probability. MIRT models (as
an extension of IRT models) assume, that multiple latent variables (one per dimen-
sion) cause the responses to a test [10]. IRT models allow the use of a matrix design
with different booklets that only represent a part (about three-fourths) of the item pool
of the competence test. The booklets were distributed to more than 800 computer
science students in German upper secondary schools and the analysis of the 583 re-
turned datasets allowed us to estimate the difficulty for each item. In 2014 we pub-
lished the assessment results [9].

The main goal of this step was to examine the dimensional structure of the compe-
tence model and the reliability of the measurement instrument. Several different
MIRT models, which assumed different dimensional structures of the test instrument,
were used to analyze the empirical data. Afterwards the results were compared to
assess the best fitting model. In our case the assumed complex competence structure
containing the cognitive dimensions K1 to K4 with the additional non-cognitive di-
mension K5 proved to be the MIRT model with the best fit indices.

2.3 Model of Relevant Difficulty Criteria and Expert Rating

In the next step, we compiled a model of potentially relevant difficulty determining
task characteristics from literature (e.g. from [11, 12] and [13]) and analyzed the
items concerning informatics specific difficulty facets. On this basis thirteen features
were identified and defined: addressed knowledge taxonomy level (KTL), cognitive
process dimensions (CP), cognitive combination- and differentiation capacities
(CCD), cognitive strain (CS), scope of tasks (necessary materials, reading effort and
under-standing) (ST), inner- vs. outer computational task formulation, aspects of de-
mands of computer science (IOC), number of components, level of connectedness
(NC), stand-alone vs. distributed system (SDS), level of human-computer-interaction
(HCI), (mathematical) combinatorial complexity (CC), level of the necessary under-
standing of systems of computer science (LUS), level of the necessary modelling
competence of computer science (LMC). Each characteristic had a different number
of facets (between 2 and 6) associated with it.

The measurement instrument was split into four parts of roughly equal size to keep
the amount of ratings at an acceptable extent. Each of the four instrument parts was
presented to two selected experts in the field of didactics of informatics, along with an
explanation of each feature and its rating levels. The experts were asked to answer
each item on their own, compare the solution with the given sample solution and then

48 J. Neugebauer et al.

rate the item for each of the
rating of the item difficulty
classification of the 74 item
characteristics.

To examine the relevanc
of the ratings on the diffic
mined through a linear regr
shrunk to a set of five with
are KTL, CCD, CP, LUS
processes used and results c

3 Derivation of Pr

Based on the results outline

3.1 Definition of Profic

Describing the abilities of a
as it might seem. A student
but this characteristic is on
by a function of the stude
probability to answer it corr
it is he or she answers any g
is very likely to answer the
has a high probability to so
tinuous scale, each student
her competences [15].

Fig. 1. Illustration of a continu
ty functions i1 and i2 and four s

To be able to consistentl
and description of proficien

e features. In addition, the experts had to give a subjec
y on a scale from one to ten. The rating process resulted
ms concerning each of the described difficulty determin

ce of the individual criteria on the item difficulty, the ef
culty estimates gained by means of the MIRT was de
ression analysis. This way the model of 13 criteria could
the most substantial influence on the item difficulty. Th
and LMC. A detailed discussion of the difficulty crite
can be found in [14].

roficiency Levels

ed above, a competence level model was developed.

ciency Levels

a student within the probabilistic test theory is not as e
ts ability is characterized by the items he or she can so

nly given as a probability. The item difficulty is descri
nt ability - the higher the students ability, the higher
rectly. In turn, for each student it is only known how lik
given item correctly. For example in figure 1, the studen
e item i1 correct and the item i2 wrong, whereas studen
olve both. Since students and items are arranged on a c
would have to be examined individually to evaluate hi

uous scale with two proficiency levels A and B, two item diffi
students s1 to s4.

ly assess and report competences of students, the definit
ncy levels is required. These levels divide the continu

tive
in a

ning

ffect
eter-
d be
hese
eria,

easy
lve,

ibed
the

kely
nt s3
nt s4
con-
s or

icul-

tion
uous

 Defining Proficiency Levels of High School Students in Computer Science 49

performance scale into discrete sections. This means that there are hard “cut-off” points,
at which a student will be at one or the other level. These points are essentially arbitrary,
though, since the probability of a student on level A (e.g. s2 in figure 1) to solve an item
(i2) might be only slightly smaller than that of a student at the lower end of level B (s3),
while one placed at the upper end of level B (s4) might have a much larger probability
than both. Nevertheless, the definition of well-explained proficiency levels helps to
understand the general distribution of competencies in the population and makes it easi-
er to communicate the level of competence-gain over time (see [16, 17]).

3.2 Methods for the Description of Proficiency Levels

To derive proficiency levels from the results of a competence assessment, the most
important aspect is the definition of thresholds or anchor points in the estimated abil-
ity that differentiate the individual proficiency levels. This method is called scale
anchoring [18]. Defining these anchors can be done a-priori according to a predefined
competence model, or post-hoc determined by the evaluated responses to a compe-
tence assessment. Large scale studies in the recent years like DESI [19], PISA [16] or
TIMSS [20] have used different approaches to set thresholds and describe the profi-
ciency levels.

There are multiple approaches to define anchor points that define the proficiency
levels. The most pragmatic method is the definition based on rational arguments
without an additional analysis of item characteristics. The thresholds can be set at
predefined values, like the project NEAP for example scaled their data to be between
0 and 500 and used the anchor points 200, 250, 300 and 350. Other reasonable ap-
proaches (e.g. based on distribution percentiles) are valid, too. Then, the items with
difficulty estimates close to one of the anchor points are chosen to describe each pro-
ficiency level. Usually items are selected if an adequate amount of examinees on a
level was able to answer them correctly and an equally adequate amount of examinees
on the level below the current one wasn’t (for more details see [18]).

Another way to identify anchor points is concerned with the analysis of item char-
acteristics to find striking items that suggest a change in the proficiency level, for
example by requiring the use of more advanced skills for the first time. Table 1 shows
three items (ij) with their respective difficulty estimate (ej), calculated from test re-
sponses by means of the MIRT, that illustrate this. Each item adds a previously miss-
ing criterion (Ck). Assuming each additional criterion increases the item complexity,
these three items could also indicate an increased competence requirement.

Table 1. Illustration of change in item criteria.

Item Estimate C1 C2 C3
i1 e1 1 0 0
i2 e2 1 1 0
i3 e3 1 1 1

50 J. Neugebauer et al.

In the TIMSS study, the anchor points were selected based on the requirements to
provide stable benchmark points for the international comparability over several years
of assessments. The approach for selecting anchored items was similar to the direct
anchoring method, but allowed for items to “almost anchor” by not fulfilling all an-
chor criteria completely. This was done to regard every item and not exclude those
that would not fit the criteria. The description of the individual levels was done by a
group of experts, who described the knowledge, understanding and skills each item
required and formulated descriptions for each proficiency level from them [20].

In the PISA study, the cut-off points were determined by analyzing the items and
following three principles: 1. The probability for a student to solve an item on the
level should be at least 50 percent, 2. the width of each level should be roughly the
same and 3. the probability to solve items of a higher / lower level should be higher /
lower than 50 percent respectively. To achieve this, the PISA items were analyzed to
describe how the proficiency requirements would increase. This was done by experts
who linked aspects of the PISA framework to each item and generated an item map
similar to table 1. By looking at the map they revealed patterns of criteria, which are
related to item difficulty and which could be associated with locations on the continu-
ous scale and thus describe proficiency levels [16].

3.3 Explorative Analysis of Results

To derive proficiency levels from the data gathered through the competence meas-
urement instrument and the expert ratings (see sections 2.2 and 2.3) we chose an ex-
plorative approach., which included several steps.

Table 2. List of items ordered by difficulty estimates with a consecutive numbering, an internal
item number, the internal item code, the estimate from the MIRT analysis, the difference in
difficulty to the preceding item and five difficulty criteria as rated by experts (ranging from 0 to
6 depending on the criterion).

 Item Label Estimate Diff KTL CCD CP LUS LMC
22 … … … …
23 54 C6.A4.C1 500,9133 6,111 2 2 2 1 1
24 55 C6.A4.C2 500,9133 0,000 3 3 4 2 1
25 41 C5.A5 501,2106 0,297 3 2 5 2 1
26 46 C6.A2.B 513,424 12,213 1 1 2 1 0
27 6 C1.A6.B 519,4936 6,070 2 1 2 1 1
28 31 C4.A6 520,8621 1,369 3 2 4 2 1
29 … … … …

As a preparation, we combined the results into an overview of all items that were
deemed of a high enough quality (based on the MIRT analysis of the responses) and
the corresponding expert ratings. The list was ordered by the empirical difficulty es-
timate. The estimates were transformed according to the PISA standard, with a mean
of 500 and standard deviation of 100. As a first approach, the expert ratings for each
item were examined to identify which criteria would change at what point. For exam-

 Defining Proficiency Levels of High School Students in Computer Science 51

ple whether a certain criterion wasn’t present for all items up to a certain difficulty,
but would appear on all items afterwards. This could indicate a change in proficiency
levels. Unfortunately, the changes in the expert ratings were not clear enough to be
interpreted as a change in proficiency. For example table 2 shows an excerpt from the
item list. Looking at the five last columns, it is hard to see any striking changes in the
ratings.

In a next step, the difficulty estimates were analyzed to reveal anchor points, where
the estimates would jump by a significant amount. Starting with a difference of 20,
we discovered several of such gaps. Unfortunately, most of these were located at the
top or bottom of the list. The four easiest and the four hardest items displayed a great
variance and inconsistencies concerning their difficulty. Defining every of these large
differences as individual levels would not be suitable, because only one or two items
would be available to describe the respective proficiency level.. It was decided to
assign these extreme items commonly into the lowest and highest proficiency level
respectively. By gradually decreasing the required difference in estimates, we identi-
fied five reasonable gaps with a minimum difference in difficulty of 12 points, which
could serve as anchor points for five proficiency levels. Table 2 shows such an anchor
point between row 25 and 26. Since the last level contained only five items with large
differences in the difficulty estimate, it was decided to combine the last two levels
into one to be able to describe it sufficiently. This decision was based on a close ex-
amination of all items in the highest two level in order to determine if the differences
in required skills to solve the items justify this step.

In the next step, the four proficiency levels A to D had to be described according to
the difficulty characteristics assigned to the items in each level. For this purpose, the
scale anchoring method requires the selection of appropriate items near the anchor
points, since those would be better suited to characterize the students’ competences on
this level (see section 3.2). To do so, we selected the six items adjacent to the anchor
points and again examined and compared the difficulty characteristics for the three
items on the lower level in contrast to those on the upper one. We hoped that changes
in the characteristics would become clearer due to the specific anchor points,. Though
this was possible for some of the levels, others were still hard to describe (e.g. the one
in table 2). To deal with this, all items on two adjacent levels were included in the
examination. By extracting commonalities between items on the same level and dif-
ferences to the next lower one, each level could be described.

As a last step, we extended our analysis to the items itself. By looking at the con-
tent of each item, the proficiency level descriptions were refined and extended by sets
of exemplary tasks a student on this level can be expected to solve.

4 Overview of Proficiency Levels

The proficiency levels were defined with increasing requirements from level A to
level D. The full descriptions are shown in table 3.

Level A requires a very basic knowledge and most often involves everyday
knowledge the students have gained through their prior experience with computer

52 J. Neugebauer et al.

systems. One example task on this level is asking the student to name three compo-
nents for input and two for output. That's undoubtedly a question one can answer
without deeper computer science knowledge. However a change of perspective from a
user, who simply uses these components, to a more technical view is required. Alt-
hough this doesn't seem to be challenging at first, especially younger students have
problems to describe the actual role and function of devices like a mouse (e.g. [21]).
This task is a good example of how everyday knowledge is transferred to the school
subject computer science and is enhanced by basic system comprehension.

Table 3. Descriptions of the four proficiency levels A to D.

Level Description:
A Learners are able to reproduce basic knowledge of informatics and use it to

describe simple decisions concerning modeling, that are embedded in con-
texts close to everyday life. They are capable of comparing their everyday
experiences to informatics systems

B Learners are able to understand and explain simple decisions concerning
modeling. They can illustrate functional interrelations of basic elements of
informatics in bigger systems, as long as they belong to known contexts and
are embedded in their everyday experience. Furthermore, they know basic
terms, concepts of informatics and processes of object orientation and can
explain them. Moreover, they can weigh up between these basic concepts
and processes on the basis of their everyday experiences. They can make
well-founded decisions and explain them with appropriate terminology. Ad-
ditionally, a structural approach allows them to identify related fundamental
ideas and concepts and to apply them in a given situation.

C Learners are able to apply methods, concepts and processes of informatics in
more complex contexts. They can weigh up different solution ideas and
choose the most appropriate one by systematically analyzing the situation
and understanding simple decisions of modeling. Moreover, they can devel-
op solutions for problems by combining knowledge of different fields of
informatics.
At this level, they are also able to use advanced concepts and processes of
object-oriented modeling and programming to analyze and modulate abstract
system sequences.

D Learners are able to apply their knowledge of fundamental ideas, concepts
and abilities deriving from different fields of informatics to more generic
problems and are able to explain the usage in abstract contexts. Moreover,
they are able to study extensive analysis and design documents in order to
understand new content. They are able to understand unknown terminology
by interpreting it in the context of the problem.
They can reflect on their (school) knowledge and are willing to expand their
knowledge on their own.

 Defining Proficiency Levels of High School Students in Computer Science 53

Level B broadens the contexts and requires the students to be able to deal with
more complex problem scenarios. This increasingly requires the identification and
comparison of CS concepts and how they interact. Additionally, the students are able
to use more precise terminology to describe systems. An example task on this level is
an adequate response to the following question about object-oriented programming:
"Describe the connection between a class and an object. Please use the possible class
and objects ‘teacher’, ‘Mr. Meyer’ and ‘Mr. Smith’.”

Table 4. Exemplary tasks on each proficiency level.

Level Example
A They are able to create simple status diagrams based on descriptions of the

functioning of systems close to everyday life. They can identify applications
for different user roles of an IS and name criteria to evaluate them, for exam-
ple criteria of software quality.
They are able to identify and name parts of the user interface of the IS (hard-
ware and software).
They can name advantages and disadvantages of distributed systems.

B They are able to name, understand and evaluate the quality of components
and functions of web applications.
They can implement and evaluate testing procedures for specifically prede-
termined program sections of selected parts of the system.
They are able to name advantages and disadvantages of object-oriented pro-
gramming languages and they can explain basic terms of object orientation
(classes, objects, …) by giving concrete examples.

C They are able to interpret and use definitions of requirements of systems to
make and justify decisions (e.g. creating test cases, identifying components,
…).
On the basis of concrete examples, they can explain advanced terms of object
orientation (inheritance, …) and use UML diagrams for object-oriented mod-
eling (e.g. they transform applications into sequence diagrams).
They are able to analyze systems with many components (e.g. booking sys-
tem of a travel agency, library management), to differentiate between their
functions and they can use their knowledge to solve problems (e.g. testing of
the robustness of the system, creating new components).

D They are able to work with APIs to use unknown classes within their imple-
mentation.
They are able to identify classes based on written descriptions and model
them as CRC cards.
They are able to describe definitions and characteristics of object-oriented
concepts on an abstract level.
They are able to identify and classify the phases of the waterfall model and
the fitting UML diagram types.

54 J. Neugebauer et al.

Similar to level A there still exists a connection to everyday life. However, it is
transferred to a higher level of computer science knowledge by applying knowledge
about ideas and concepts of informatics. Interestingly, this task is the easiest (regard-
ing the test results) subtask of several questions concerning object-oriented program-
ming. Especially two questions asking for the definition of "class" and "object" with-
out the additional connection to examples from a known context had a much higher
difficulty. This substantiates that it is a fundamental feature of this level, that tasks are
embedded in a context students know from their everyday life.

A main progress from level B to C is the ability to move away from everyday ex-
amples and apply the knowledge to more general scenarios. An example for this is a
task where a web-application for a travel agency including requirement definitions is
described. The students have to complete three given drafts for test cases to test each
of the requirements and three more to create unexpected cases that might produce an
error in the application when entered. Besides the required expert knowledge, the test-
taker now has to put him- or herself in the role of a professional software developer.
However, there is still a link to everyday knowledge since the software serves a pur-
pose students are familiar with (booking a holiday trip).

Level D is the highest proficiency level and therefore requires that students are
able to apply their knowledge in diverse situations and contexts and connect this
knowledge. One example is the modeling of CRC-cards based on the textual descrip-
tion of a problem situation. In this task, the students need to identify classes from the
text and extract their functions as well as connections among each other. This requires
factual knowledge about CRC cards and object oriented concepts on the one hand,
and on the other hand the ability to apply this rather abstract knowledge in a real
problem scenario and use structured approaches to extract relevant information from a
written description. Table 4 gives an overview of exemplary tasks, which students on
each level should be able to solve.

5 Conclusions

With this article and the upcoming publication of our book the last part of our re-
search efforts towards an empirical based competence model is completed. We were
able to substantiate the further development of competence-based curricula for (Ger-
man) computer science education. Furthermore, the MoKoM measurement instrument
and the proficiency levels allow the assessment of students’ competences in large
groups as well as the comparison of competence achievement over time. The descrip-
tion of the proficiency levels alongside the exemplary tasks should allow teachers to
get a sense of the competences their students have and how they can design their les-
sons to facilitate competence development.

However, like any research project, there are a lot of ways to continue our research
and follow up on our results:

• A measurement like ours can never be seen as a ‘final’ version. Though it may
have a stable and usable state, it is advisable to do further evaluations and revisions
of the test items, for a better fitting to the requirements. There are some items, that

 Defining Proficiency Levels of High School Students in Computer Science 55

proved to be inadequate for our assessments based on statistical reference values
(see [9]). Those items especially should be analyzed and reworked.

• Out competence model focuses on two domains: ‘System Comprehension’ and
‘System Modeling’. Our experiences with the development process of the model
could serve as a guideline to extend the model to further domains of computer sci-
ence education.

• Our measurement instrument (and future revisions) may be used to assess compe-
tences of computer science students on a large scale and over time, to assess the
current state of computer science education in Germany and identify areas to im-
prove upon.

• To foster competence centered learning environments, our proficiency levels
should be supplemented by specific learning scenarios, which aim to elevate stu-
dents with regard to the higher levels of the scale. These scenarios focus on the
processes required to process through the proficiency levels and form a compe-
tence development model that describes criteria how to assist the transition be-
tween levels.

• The existence of an empirical derived competence model and the results of other
empirical based CSE-research projects should encourage the revision of existing
standards for computer science education. We attempted a first step towards this
with the comparison of the German Informatics Standards to the MoKoM compe-
tence model in [22], but further discussion and development is required to obtain
satisfying results.

References

1. Linck, B., Ohrndorf, L., Schubert, S., Stechert, P., Magenheim, J., Nelles, W., Neugebauer,
J., Schaper, N.: Competence model for informatics modelling and system comprehension.
In: Proceedings of the 4th Global Engineering Education Conference, IEEE EDUCON
2013, Berlin, pp. 85–93 (2013)

2. Neumann, K., Fischer, H.E., Kauertz, A.: From Pisa To Educational Standards: The Im-
pact Of Large-Scale Assessments On Science Education In Germany. International Journal
of Science and Mathematics Education 8, 545–563 (2010)

3. Koeppen, K., Hartig, J., Klieme, E., Leutner, D.: Current Issues in Competence Modeling
and Assessment. Zeitschrift für Psychologie 216, 61–73 (2008)

4. Magenheim, J., Nelles, W., Rhode, T., Schaper, N., Schubert, S., Stechert, P.: Competen-
cies for informatics systems and modeling: results of qualitative content analysis of expert
interviews. In: Proceedings of the 1st Global Engineering Education Conference, Educon
2010, pp. 513–521. IEEE Computer Society, Madrid (2010)

5. Nelles, W., Rhode, T., Stechert, P.: Entwicklung eines Kompetenzrahmenmodells –
Informatisches Modellieren und Systemverständnis. Informatik-Spektrum 33, 45–53
(2009)

6. Lehner, L., Magenheim, J., Nelles, W., Rhode, T., Schaper, N., Schubert, S., Stechert, P.:
Informatics Systems and Modelling – Case Studies of Expert Interviews. In: Reynolds, N.,
Turcsányi-Szabó, M. (eds.) KCKS 2010. IFIP AICT, vol. 324, pp. 222–233. Springer,
Heidelberg (2010)

56 J. Neugebauer et al.

7. Rhode, T.: Entwicklung und Erprobung eines Instruments zur Messung informatischer
Modellierungskompetenz im fachdidaktischen Kontext (Doctoral dissertation). University
of Paderborn (2013)

8. Osteen, P.: An Introduction to Using Multidimensional Item Response Theory. Journal of
the Society for Social Work and Research 1, 66–82 (2010)

9. Neugebauer, J., Hubwieser, P., Magenheim, J., Ohrndorf, L., Schaper, N., Schubert, S.:
Measuring Student Competences in German Upper Secondary Computer Science Educa-
tion. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 100–111.
Springer, Heidelberg (2014)

10. Hartig, J., Magenheim, J., Höhler, J., Nelles, W., Rhode, T., Schaper, N., Schubert, S.,
Stechert, P.: Multidimensional IRT models for the assessment of competencies. Studies in
Educational Evaluation 35, 57–63 (2009)

11. Anderson, L.W., Krathwohl, D.R.: A Taxonomy for Learning, Teaching, and Assessing: A
Revision of Bloom’s Taxonomy of Educational Objectives. Addison Wesley Longman,
New York (2001)

12. Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunniff, D., Boucher
Owens, B., Stephenson, C., Verno, A.: CSTA K–12 Computer Science Standards. Com-
puter Science Teachers Association Association for Computing Machinery (2011)

13. Schaper, N., Ulbricht, T., Hochholdinger, S.: Zusammenhang von Anforderungsmerkmalen
und Schwierigkeitsparametern der MT21-Items. In: Blömeke, S., Kaiser, G., and Lehmann, R.
(eds.) Professionelle Kompetenz angehender Lehrerinnen und Lehrer: Wissen, Überzeugungen
und Lerngelegenheiten deutscher Mathematikstudierender und-referendare. Erste Ergebnisse
zur Wirksamkeit der Lehrerausbildung, pp. 453–480. Waxmann Verlag (2008)

14. Magenheim, J., Nelles, W., Neugebauer, J., Ohrndorf, L., Schaper, N., Schubert, S.: Expert
rating of competence levels in Upper Secondary Computer Science Education. In: Brinda,
T., Reynolds, N., and Romeike, R. (eds.) KEYCIT 2014 – Key Competencies in Informat-
ics and ICT, pp. 1–12 (2014).

15. Watermann, R., Klieme, E.: Reporting Results of Large-Scale Assessment in Psychologi-
cally and Educationally Meaningful Terms. European Journal of Psychological Assess-
ment 18, 190–203 (2002)

16. Organisation for Economic Co-operation and development: PISA 2003 Technical Report.
OECD (2005)

17. Hartig, J., Frey, A., Nold, G., Klieme, E.: An Application of Explanatory Item Response
Modeling for Model-Based Proficiency Scaling

18. Beaton, A.E., Allen, N.L.: Interpreting Scales Through Scale Anchoring. Journal of Educa-
tional and Behavioral Statistics 17, 191–204 (1992)

19. DESI-Konsortium [Hrsg]: Unterricht und Kompetenzerwerb in Deutsch und Englisch
Ergebnisse der DESI-Studie Weinheim ua: Beltz, pp. 34–54 (2008)

20. Martin, M.O., Mullis, I.V.S.: Overview of TIMSS 2003. In: Martin, M.O., Mullis, I.V.S.,
Chrostowski, S.J. (eds.) TIMSS 2003 Technical Report, pp. 3–20. Boston College, Chest-
nut Hill (2004)

21. Hammond, M., Rogers, P.: An investigation of children’s conceptualisation of computers
and how they work. Education and Information Technologies 12, 3–15 (2006)

22. Magenheim, J., Neugebauer, J., Stechert, P., Ohrndorf, L., Linck, B., Schubert, S., Nelles,
W., Schaper, N.: Competence Measurement and Informatics Standards in Secondary Edu-
cation. In: Diethelm, I., Mittermeir, R.T. (eds.) ISSEP 2013. LNCS, vol. 7780,
pp. 159–170. Springer, Heidelberg (2013)

Classification of Programming Tasks

According to Required Skills and
Knowledge Representation

Alexander Ruf, Marc Berges, and Peter Hubwieser

Technische Universität München, TUM School of Education
Arcisstr. 21, 80333 München, Germany

{alexander.ruf,berges,peter.hubwieser}@tum.de

Abstract. Tasks represent a central part of computer science lessons,
and aim to practice programming skills or to concrete abstract concepts
for example. We have investigated, which types of tasks are given to
novice programmers, typically. For that purpose, we have analyzed and
generalized tasks from textbooks and exercise sheets. The result is a list
of twelve task types classified according to required skills and knowledge
representation. In addition, we found that the task types differ very much
regarding their incidence. Finally, we tried to relate the three found forms
of knowledge representation to concepts of cognitive psychology.

Keywords: task, task type, programming task, programming, novice
programmer, classification, knowledge, knowledge representation, repre-
sentation mode, cognitive process, skill, cognitive psychology, computer
science education.

1 Introduction

Tasks play a key role in computer science education. Students perform tasks in
the classroom given to them as examples or exercises, at home as homework
or in tests to assess their performance. Teachers in turn create these tasks or
select tasks from a collection, correct the solutions of their students and use
the results to gain insight into how their courses are doing. Not surprisingly,
tasks have always been the subject of research projects. This paper deals with
the classification of tasks. Tasks can be classified by very different properties,
such as the difficulty, the purpose, the type or form (e.g. open or multiple choice
questions), or the context, to mention only some features. We try to classify tasks
according to their type. Moreover, we focus on programming tasks, provided to
novice programmers. The type of a task is defined by the skills required to solve
the task and forms of knowledge representation in the given problem and in the
expected solution, respectively. We will describe our method in detail in section
3. The task types we could identify are then presented in section 4. In addition,
we wanted to know, how much the task types that we found in the selected
sources differ in their incidence. These results are presented in section 5. And
finally, in section 6 we suggest a possible relation between the forms of knowledge
representation that we found in our tasks and concepts of cognitive psychology.

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 57–68, 2015.
DOI: 10.1007/978-3-319-25396-1_6

58 A. Ruf, M. Berges, and P. Hubwieser

2 Related Work

In a study on gender differences in preferring a specific type of assignment,
Wilson stated three categories of assignments (see [23]). The categories are ori-
ented on their field of application. Three types are declared that are typical
for CS1 textbooks: “Real-world” problems, games and mathematical problems.
The students of the investigation are asked to give their preferences on the
kind of assignment. Layman et al. describe in [17] the nature of programming
assignments. They categorize assignments of introductory CS1 and software en-
gineering courses of selected institutions into five categories. Besides a category
for assignments around “Karel the Robot” (see [18]), the programs are ordered
into games, programs with little practical context, programs with practical con-
text or programs with social relevance. Their findings showed that most of the
investigated assignments have no practical context. Another investigation of pro-
gramming projects gets along with the same purpose. Hansen [13] asked students
on their assessment concerning the niftiness of assignments. For analysis the as-
signments itself are categorized by topics of the underlying course materials.
This categorization is quite ambiguous and leads to several problems mentioned
by the author. The description and classification of programming tasks was even
done by Tharp in 1981 when there was a shift from learning syntax to teaching
the concepts behind CS. In [22] he defines categories by programming goals and
gives examples for each category.

Nielsen et al. built a taxonomy of questions in a two dimensional model.
One dimension is built by a list of question types, the other dimension contains
different information on the task like the top level of Blooms taxonomy or form
of the response.

In his doctoral thesis (see [7]) Brinda has examined task classes for object-
oriented modeling very comprehensively and completely and embedded them in a
larger context. In addition to the formation of classes, he established a connection
to taxonomies and investigated the context of tasks for object-oriented modeling.

Bower describes in [4] a taxonomy of task types in computing, deductively
derived from curricula and literature and verified by experts. Hazzan et al. in [14]
and Ragonis in [19], where she published the question types from [14] for the
olympiads in informatics, present deductively derived questions as a resource for
teachers.

In the context of the BRACElet project Sheard et al. have developed a clas-
sification scheme for examination questions; they presented it in [21]. In this
scheme, a distinction is made between six categories, e.g. “topics covered” or
“skills required to answer the question” (see also subsection 3.3).

3 Methodology

3.1 Sources for the Tasks

Before analyzing any tasks we have to get a list of sources. As in [20] already
described, the tasks analyzed should cover nearly all aspects concerning the

Classification of Programming Tasks 59

population that is addressed by the tasks (students or self-learning readers).
Besides that the kind of authors (e.g. teachers at school and university or authors
of textbooks) should be covered as well. Therefore we investigated three groups
of texts. Neither the groups nor the elements in the group are exhaustive. But
for reasons of coverage they are sufficient.

The first group contains secondary school textbooks in Bavaria. The compul-
sory subject is described in detail in [15]. All students learn the basic concepts
of object-orientation and programming in their first years at school (grade six
and seven). If they continue with the combination nature and technology they
have an introductory course into object-oriented programming in grade ten.
For this reason we include the books of these grades. For each of these grades
there are two different books that are used in school, so we have a total of four
books: [12], [5], [16], and [6].

From the university context, we selected the introductory course of our uni-
versity for practical reasons. Besides the lecture, every student (major and non-
major) must participate in a practical course on object-oriented programming.
The worksheets with the tasks are included in our analysis. Although the main
part of the freshmen at our university comes from Bavaria, the practical course
does not ask for any programming experiences.

In a paper on visualizing conceptual knowledge in texts (see [3], [2]), we did an
investigation of textbooks in introductory programming courses in national and
international universities. We counted the textbooks recommended in the courses
of the universities in the list and selected those which were not singleton. For
the recent investigation we chose the two books [10] and [11] from the resulting
list with the most concepts related to object-orientation (see [3]).

3.2 Selection of the Tasks

The chosen books contain a huge amount of tasks. Due to the fact that we only
want to analyze tasks for novice programmers, we concentrate on programming
tasks. Besides the different topics the tasks are related to, the length and scope
of the tasks is quite spreading. We include all tasks in our analysis that contain
any programming code either in the given problem or in the expected solution.
The extent of the programming code does not matter, starting with just a line
of code to the full program everything is included.

The sources referred to in subsection 3.1 use Java as their programming lan-
guage – with exception of the two textbooks of the grades 6/7, they work with
a German version of “Karel the robot” (see [18]), a programming environment
with a “mini language” (see [9]), designed specifically for young novice program-
mers. In accordance with the Bavarian curriculum for the 7th grade (see [15]) an
object-oriented programming approach is also adopted there. So, all of the tasks
in this paper have been developed for novice programmers who learn object-
oriented programming.

Often, a task in the sources consists of several parts. Since the partial tasks
very often differ in type we have treated and examined each subtask as an own
task in these cases.

60 A. Ruf, M. Berges, and P. Hubwieser

We have restricted ourselves to tasks for novice programmers, but two text-
books go far beyond, we had to restrict the content meaningfully. Since the
Bavarian curriculum for grade 10 reaches to the topics inheritance and polymor-
phism [15], we have included tasks from the two textbooks in our investigation
only up to these topics, too.

3.3 Classification of the Tasks

In a first study (see [20]), we captured what is given in the respective task and
what the student has to do to solve the task. Then we stripped both criteria
“given” and “to-do” from the context and formulated them in a generic way.
Two tasks were classified in the same category if they have basically the same
given and if the same is to do.

More complex tasks, which involved more than one “to-do” were divided into
corresponding parts and associated with multiple categories, i.e. an “atomic”
task was made from each “to-do”, which was then used for further investigation.

For each of these “atomic” tasks it can be distinguished between knowl-
edge and cognitive process dimension comparable with learning objectives as
suggested by Anderson and Krathwohl in their revised Bloom’s taxonomy [1].
Knowledge elements in tasks occur both in the given problem and in the ex-
pected solution whereas the cognitive process hides in the description of what is
to do (see Fig. 1).

Fig. 1. The roles of knowledge and cognitive process while solving a task

Classification of Programming Tasks 61

Of course number and type of knowledge elements differ very from task to
task, as well different cognitive processes run depending on the task. Seen in
this way it seems that these dimensions are inappropriate for our intention to
classify tasks. However, the tasks differ little in the form, in which the knowledge
is represented in the given problem and in the expected solution, respectively.
Also the already extracted “to-do”s vary little in the underlying skills, so in a
sense they can be regarded as a generic term or a “headline” for the various
cognitive processes, similar to the corresponding category in the classification
scheme for examination questions in [21].

So we read out the skills from the “to-do”s and deduced the forms of knowledge
representation in the given problem and in the expected solution, respectively,
from the “given” and the “to-do”s. After that we classified the tasks according to
the skills required to solve the task and the forms of knowledge representation.

The result is presented in the following section.

4 The Resulting Types

Overall 967 tasks, fulfilling the criteria of subsection 3.2, were found in the seven
sources referred to in subsection 3.1. From these 967 tasks 1098 “atomic” tasks as
described in subsection 3.3 resulted. Within these 1098 tasks we could identify
11 different types, however, one type splits in two different subtypes. What
exactly is hidden behind each type is explained below. The title therein specifies
the required skill and under the item “forms of knowledge representation” the
possible representation form(s) in the given problems are to the left of the arrow
and the possible representation form(s) in the expected solutions to the right.

4.1 Type 1a. “write code”

Forms of knowledge representation: Text → Code

Example: A worldwide operating business is involved in several companies and
subsidiaries. Each of these companies is divided in departments, which
again consists of several employees. Implement the involved classes.
(From [16], translated and adapted by the authors.)

Notes: The given problem is usually (more or less) openly formulated, how
much the problem is described in detail, however, varies considerably.
The context varies widely, too.

4.2 Type 1b. “write code”

Forms of knowledge representation: Diagram → Code

Example: Implement the given state diagram of a shaver. (From [16], translated
and adapted by the authors.)

Notes: The given diagram types can be very different, for example class dia-
gram, object diagram, state diagram, or sequence diagram.

62 A. Ruf, M. Berges, and P. Hubwieser

4.3 Type 2. “write code using the given code”

Forms of knowledge representation: Text and Code → Code

Example: Write a new method buildChessboard() using the given method
placeChessrow(). (From [12], translated and adapted by the au-
thors.)

Notes: In addition to a problem, comparable to that of type 1a, requirements
regarding the solution are made. These requirements specify e.g. the
use of given methods or classes.

4.4 Type 3. “adjust/extend/complete the given code”

Forms of knowledge representation: Text and Code → Code

Example: a) Following the HelloDate.java example, create a “hello, world” pro-
gram, that simply displays that statement.
b) Turn the DataOnly code fragment into a program that compiles
and run. (Both examples from [11].)

Notes: In some cases this type could be regarded as special case of type
2, because the transition from “write code using the given code” to
“extend the given code” is smooth, for example.

4.5 Type 4. “optimize the given code”

Forms of knowledge representation: Text and Code → Code

Example: Consider the points in the given solution at which it could be useful
to have random elements. Transfer your consideration to the program.
(From [6], translated and adapted by the authors.)

Notes: Note the difference to type 3. Usually there is only the solution to a
similar problem or to a part of the problem given, whereas here the
solution is matching to the given problem and has just to be optimized.
Further note, that not only the improvement of the code is meant but
the improvement of the solution with regard to the given problem.

4.6 Type 5. “debug the given code”

Forms of knowledge representation: Code (and Text) → Code (and Text)

Example: Identify and correct the errors in the following piece of code.

while (y < 10)

System.out.println(a);

--a;

}

(From [10].)

Classification of Programming Tasks 63

Notes: Often in this task type it is not given if the given code is correct or
not. In this case the student first has to decide if the given code is
correct or not and then has to correct it or give reasons for it. It is also
possible that multiple, often similar solutions are given, that all should
be checked for correctness. Also pure syntax corrections without any
reference to a “real” problem, as in the example above are possible.

4.7 Type 6. “set the right preconditions to the given code”

Forms of knowledge representation: Text and Code → Text

Example: Design a labyrinth (with at least one exit), from which Karel never
finds out using the given method searchExit(). (From [12], trans-
lated and adapted by the authors.)

Notes: As the example shows, says “the right preconditions” not always that
the program must terminate.

4.8 Type 7. “test the given code”

Forms of knowledge representation: Code → Code

Example: Test your implementation with a small example program. (From the
students’ worksheets, translated and adapted by the authors.)

Notes: Often, it is more precisely specified in these tasks, how the test should
be performed. These include, for example, information to the program
inputs or the objects that are to be created interactively. The program
code to be tested comes sometimes from previous programming tasks.

4.9 Type 8. “transform the given code”

Forms of knowledge representation: Code → Code

Example: Convert the following for loop to a while loop:

for (int x = 50; x > 0; x--)

{

System.out.println(" x = " + x);

}

(From [10].)

Notes: “Transform the given code” even contains the transformation into a
different programming language, including pseudo code.

4.10 Type 9. “trace/explain the given code”

Forms of knowledge representation: Code → Text

64 A. Ruf, M. Berges, and P. Hubwieser

Example: The following program shows an implementation of an algorithm for
the greatest common divisor of two numbers. Test the implementa-
tion by writing the execution of the method calls gcd(35, 20) and
gcd(35, -7) in a table.

public int gcd(int a, int b) {

while (a != b) {

if (a >= b) {

a = a ? b;

}

else {

b = b ? a;

}

} return a;

}

(From [16], translated and adapted by the authors.)

Notes: In this task type the student has to trace code execution mentally.
Often program inputs are given, too. The product of the mental code
execution can be very different, for example:

– Describe the algorithm, that underlies the program code, in own
words.

– Specify the program outputs / object states after the code execu-
tion.

– Create a tracing table.
– Specify the instanced objects during code execution.
– Document the given code.
– Specify how often a particular loop is executed.
– Explain the meaning of certain code elements.

4.11 Type 10. “specify a problem to the given code”

Forms of knowledge representation: Code → Text

Example: Consider to each of the given constructors a meaningful application.
(From [6], translated and adapted by the authors.)

Notes: Certainly more specifications can be made, for example to the context.
This task type is in some extend the inverse of type 1a.

4.12 Type 11. “draw a diagram to the given code”

Forms of knowledge representation: Code → Diagram

Classification of Programming Tasks 65

Example: Draw the control flow graph for the following MiniJava program:

int x, r, n;

r = 1; n = 1; x = read();

while (n < x) {

if (r % 1 == 0)

r = r * n;

else

r = r * (-n);

n = n + 1;

write(r);

}

(From the students’ worksheets, translated and adapted by the au-
thors.)

Notes: Of course the type of the diagram is specified closer in the respective
task. Examples of possible diagrams are similar to type 1b. This task
type is in some extend the inverse of type 1b.

5 Incidence of the Types

Considering Fig. 2, first of all it is striking, that the incidence of each type is
very different.

Fig. 2. Incidence of the types

66 A. Ruf, M. Berges, and P. Hubwieser

On the five types 1, 2, 3, 7, and 9 distribute more than 90%, while the four
types 4, 6, 8, and 10 constitute less than 2%. The single sources differ barely
from this impression.

More in-depth statistical analysis of the data obtained would lead too far at
this point. The objective of the analysis was actually only the identification of
the types. Sometimes, the transition from one type to another is smooth, e.g.
between the types 2 and 3. In this case the classification of a task can depend
on the previously edited tasks of the student, so that the type is not objectively
determinable.

Our results correspond very well with the results in [21]. “write code” pre-
dominates there in the category “skill required”, too. That “trace code” is found
more often there and “test code” less, this is probably because of the different
sources, in [21] only examination questions were examined.

6 Forms of Knowledge Representation in the Tasks

In all of the examined tasks only three different forms of knowledge representa-
tion occur: text, code, and diagram.

Between these three types various combinations and transitions are possible
as the description of the different types shows (see section 4). It is remarkable
that these three types may be associated with the three modes of representations
by J. Bruner [8], one of the founder of the cognitive psychology and a pioneer in
the research field of knowledge representation.

Bruner distinguishes between enactive, iconic, and symbolic representation.
The enactive representation is considered as action-based, the iconic representa-
tion as image-based, and the symbolic representation as language-based. There-
fore the knowledge representation form “text” can be seen as corresponding to
the symbolic representation, “diagram” as corresponding to the iconic represen-
tation, and “code” as corresponding to enactive – at least if the task is edited
on a computer.

Fig. 3. E-I-S principle: The three modes of representation corresponding to the three
forms of knowledge representation found in the tasks

Classification of Programming Tasks 67

According to Bruner, the transformation of knowledge from one form of rep-
resentation to another is for cognitive development particularly “valuable” (in-
termodal transfer). Such transitions take place in the types 1a, 1b, 9, 10, and 11
(see Fig. 3).

For a holistic learning experience the transitions between “text” and “dia-
gram” would have to occur in tasks, too. Since these tasks are purely modeling
tasks they were not considered in this paper (see subsection 3.2).

7 Conclusion and Future Work

First of all, we hope, that our list of task types helps teachers to vary the tasks
they use in their programming lessons. This list is fairly complete as the com-
parison with deductively derived types shows. For example, every type presented
in [4] or [14] is transferable to our classification, provided that it refers to pro-
gramming tasks.

Another point is that our investigation showed that the sources we have se-
lected vary little in their range of types in the offered tasks. We don’t think, that
the reason for this lies in our selection of the sources, rather the authors of the
tasks don’t exhaust the full diversity of the types. Maybe our list of task types
can help authors of textbooks to vary task types consciously.

For the future it would be interesting to investigate if it is possible to classify
the single task types into the revised Bloom’s taxonomy. Of course, no type
would be placed in only one cell of the scheme of Anderson and Krathwohl, but
maybe there would be cells containing more task types than other.

In order to measure the programming competencies of students, test tasks of
all possible types are required. Moreover, the classification of tasks is a prereq-
uisite to be able to compare different test tasks. So, our list can help to develop
such test tasks. But before programming competencies have to be identified.
And there task types could help, too. You see, tasks and their classification are
still challenging fields for research.

References

1. Anderson, L.W., Krathwohl, D.: A Taxonomy for Learning, Teaching, and Assess-
ing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman, New
York (2001)

2. Berges, M., Hubwieser, P.: Towards an overview map of object-oriented program-
ming and design. In: Proceedings of the 12th Koli Calling International Conference
on Computing Education Research, Koli Calling 2012, pp. 135–136. ACM, New
York (2012)

3. Berges, M., Hubwieser, P.: Concept specification maps: displaying content struc-
tures. In: Proceedings of the 18th ACM Conference on Innovation and Technol-
ogy in Computer Science Education, ITiCSE 2013, pp. 291–296. ACM, New York
(2013)

4. Bower, M.: A taxonomy of task types in computing. In: Proceedings of the 13th
Annual Conference on Innovation and Technology in Computer Science Education,
ITiCSE 2008, pp. 281–285. ACM, New York (2008)

68 A. Ruf, M. Berges, and P. Hubwieser

5. Brichzin, P., Freiberger, U., Reinold, K., Wiedemann, A.: Ikarus, Natur und Tech-
nik, Schwerpunkt Informatik 6/7, 2nd edn. Oldenbourg, München (2005)

6. Brichzin, P., Freiberger, U., Reinold, K., Wiedemann, A.: Informatik II, Objekto-
rientierte Modellierung. Oldenbourg, München, 1. Auflage (2008)

7. Brinda, T.: Didaktisches System für objektorientiertes Modellieren im Infor-
matikunterricht der Sekundarstufe II (Dissertation). Fachbereich Elektrotechnik
und Informatik, Universität Siegen (2004)

8. Bruner, J.S., Olver, R.R., Greenfield, P.M.: Studies in cognitive growth (1966)
9. Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., Miller, P.: Mini-

languages: a way to learn programming principles. Education and Information
Technologies 2(1), 65–83 (1997)

10. Deitel, P.J., Deitel, H.M.: Java: How to program, 9th edn. Prentice Hall, New
Jersey (2012)

11. Eckel, B.: Thinking in Java, 4th edn. Prentice Hall, New Jersey (2006)
12. Frey, E., Hubwieser, P., Winhard, F.: Informatik: Objekte, Strukturen, Algorith-

men, Schülerbuch - Jahrgangsstufen 6 und 7. Klett, Stuttgart (2004)
13. Hansen, S.A.: Analyzing programming projects. In: Proceedings of the 40th ACM

Technical Symposium on Computer Science Education, SIGCSE 2009, pp. 377–381.
ACM, New York (2009)

14. Hazzan, O., Lapidot, T., Ragonis, N.: Guide to teaching computer science: An
activity-based approach. Springer, New York (2011)

15. Hubwieser, P.: Computer science education in secondary schools - the introduction
of a new compulsory subject. Trans. Comput. Educ. 12(4), 16:1–16:41 (2012)

16. Hubwieser, P., Spohrer, M., Steinert, M., Voß, S.: Algorithmen, objektorientierte
Programmierung, Zustandsmodellierung, Schülerbuch - Jahrgangsstufe 10. Klett,
Stuttgart (2008)

17. Layman, L., Williams, L., Slaten, K.: Note to self: make assignments meaningful.
In: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education, SIGCSE 2007, pp. 459–463. ACM, New York (2007)

18. Pattis, R.E., Roberts, J., Stehlik, M.: Karel the robot: A gentle introduction to the
art of programming, 2nd edn. Wiley, New York (1995)

19. Ragonis, N.: Type of questions - The case of computer science. Olympiads in In-
formatics 6, 115–132 (2012)

20. Ruf, A., Berges, M., Hubwieser, P.: Types of assignments for novice programmers.
In: Proceedings of the 8th Workshop in Primary and Secondary Computing Edu-
cation, WiPSE 2013, pp. 43–44. ACM, New York (2013)

21. Sheard, J., Simon, C.A., Chinn, D., Laakso, M.-J., Clear, T., Raadt, M.: d.,
D’Souza, D., Harland, J., Lister, R., Philpott, A., Warburton, G.: Exploring pro-
gramming assessment instruments: a classification scheme for examination ques-
tions. In: Proceedings of the Seventh International Workshop on Computing Edu-
cation Research, ICER 2011, pp. 33–38. ACM, New York (2011)

22. Tharp, A.L.: Getting more oomph from programming exercises. In: Proceedings
of the Twelfth SIGCSE Technical Symposium on Computer Science Education,
SIGCSE 1981, pp. 91–95. ACM, New York (1981)

23. Wilson, B.C.: Gender differences in types of assignments preferred: implications for
computer science instruction. Journal of Educational Computing Research 34(3),
245–255 (2006)

Online vs Face-To-Face Engagement

of Computing Teachers for their Professional
Development Needs

Sue Sentance1 and Simon Humphreys2

1 King‘s College London, UK
sue.sentance@kcl.ac.uk

2 Computing At School, UK
simon.humphreys@computingatschool.org.uk

Abstract. After a period of intense activity in preparation for the tran-
sition, Computing has been implemented in the curriculum in England
for all children from ages 5-16. In this paper we investigate the aspects
of professional development that Computing teachers are utilising. We
conducted a survey of over 900 Computing teachers in England and use
the results to reflect on the benefits of face-to-face vs online communities
to support teachers. Our results show that teachers find the face-to-face
events and training to be useful, and that teachers in our community
are participating in many hours of professional development in order to
address their needs in content knowledge and pedagogical content knowl-
edge in Computing. Furthermore an online community is valuable in sup-
porting teachers who require resources, access to expertise and guidance
on curriculum issues in addition to face-to-face training, networking and
support.

Keywords: Computer science teacher education, teacher professional
development, computing education.

1 Introduction

Computing has now been implemented in the curriculum in England for all
children from ages 5 -16; the rationale and preparation for this was described in
[3,4]. The aims of the new curriculum are that all pupils:

– can understand and apply the fundamental principles and concepts of com-
puter science, including abstraction, logic, algorithms and data representa-
tion

– can analyse problems in computational terms, and have repeated practical
experience of writing computer programs in order to solve such problems

– can evaluate and apply information technology, including new or unfamiliar
technologies, analytically to solve problems

– are responsible, competent, confident and creative users of information and
communication technology [11]

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 69–81, 2015.
DOI: 10.1007/978-3-319-25396-1_7

70 S. Sentance and S. Humphreys

Children at all ages will be learning computational thinking skills, partly
through learning computer programming. The curriculum includes the following
strands:

– Algorithms and Programming
– Data
– Computers and Social Informatics
– Communication and Networking
– IT and Digital Literacy

The advantage for children of learning computational thinking in school from
aged 5 with a gradual introduction to computer programming over the period
of their whole schooling means that they will be able to consolidate and extend
their understanding of the principles of computing gradually, thus hopefully pre-
venting what Lister describes as “fragile knowledge” [19]. However this gradual
introduction to Computing is not possible for teachers, particularly secondary
teachers, who have to learn computer programming with some time pressure,
at a time when there are already many pressures on teachers in terms of their
workload.

This paper describes the results of a survey of over 900 Computing teachers
in England which has been compared with a survey of a similar number of
Computing teachers last year. The study is primarily focused on the type of
professional development (PD) activities teachers find useful and what they value
from a professional learning community specifically for Computing in schools.
We also reflect on the benefits of face-to-face vs online communities to support
the PD of these teachers. The purpose of our research was to identify what PD
activities Computing teachers are engaged in and find useful, and whether there
is any tendency to prefer online or face-to-face activities in the context of PD.

2 Professional Development of Computing Teachers

The move towards the inclusion of computer science in the school curriculum in
many countries has led to concerns about how teachers will manage this change
and how sufficient teachers can be found [8,27,24,25]. Teachers have a need for
new subject knowledge in computer science, but also importantly, they need to
gain confidence in their abilities to teach the new subject [27].

Computing is a domain in which teachers may feel isolated [16] and lack
confidence [27,25] or a sense of identity [23]. Professional development (PD) in
computer science education for teachers can take a number of forms. Training
as the primary or only aspect of PD has been criticised by a number of authors
[18,7,17], although subject-knowledge workshops for teachers may be one useful
form of Computing PD [13]. In New Zealand, preparing teachers for curriculum
change has led to the introduction of 2 to 3 day workshops which are followed
up with discussion groups with teachers working in clusters [27], exemplifying
a type of collaborative PD [7]. Goode describes the provision of workshops in
computer science and pedagogy and notes that these cause teachers to develop

Engagement of Computing Teachers 71

their own small networks of support. Morrison et al [22] adopted the originally
university-focused Disciplinary Commons approach [14] to be used with school
teachers, by providing monthly meetings to discuss issues of teaching and cur-
riculum over a period of a year. One substantial US study into PD across all sub-
jects suggests that key elements are: having ongoing training that is connected
to practice; focusing on specific curriculum content; and building of strong re-
lationships between teachers [10], and this is backed up by similar findings in
the UK [9]. In addition, the benefits of having frequent contact with a provider
was a highlighted by a large-scale synthesis of teachers’ professional learning in
New Zealand [28]. Work in England which relates to the current study is focus-
ing on a holistic model of CPD [26] including training, mentoring and support
with a community of practice, following such recommendations from generic PD
research.

3 Communities of Practice - Online and Offline

The community of practice (CoP) has been defined as a group of people who
“share a concern or a passion for something they do and learn how to do it better
as they interact regularly” [30]. Technology-enabled communities of practice [31]
can make effective online learning communities in the domain of education but
there is also value in face-to-face interaction [6], not least where people are
reticent to join discussions [12] and as such do not fully participate in the online
community. Online communities contain an “ecology of resources” [20] and have
been shown to have many benefits for teachers’ PD [29,21].

Online learning courses are not the same as online communities, and with
purely online training there are reported issues with retention [1,2]. Although
it has been reported that face-to-face interaction for adult learners has no ad-
vantage over blended learning [15], that is likely to be because the face-to-face
elements of blended learning allow relationships to be established, in compari-
son to purely online training opportunities, such as MOOCs in computer science.
Online learning courses may be better suited to certain domains: the “getting
stuck” element of computer programming means that it becomes easy to give up
when it becomes difficult [1]. Learning to be a competent computer programmer
is a long, slow process that can be difficult to fit in around the daily demands of
a busy timetable. Time out at a session locally can be easier to maintain than
an online course, and thus an online community that signposts face-to-face PD
becomes an option that has many advantages.

4 The Computing at School Community

Computing At School (CAS) is a grass-roots organisation in the UK which has
had a great influence on the emerging changes. CAS exists to provide leadership
and strategic guidance to all those involved in Computing education in schools
in the UK, with a significant but not exclusive focus on the computer science
theme within the wider Computing curriculum [4]. CAS has a particular focus

72 S. Sentance and S. Humphreys

on supporting teachers to deliver the new curriculum in the classroom, with
confidence and enthusiasm, through building local communities of practice.

The CAS community meets many of the criteria for a community of practice
in such that there is a clearly identifiable domain, knowledge and practice [30]
in common for teachers of Computing in a context of curriculum change. The
formation of regional hubs where teachers could meet after school, in local CoPs
with their peers, to share resources, receive training, try out lesson ideas and
discuss pedagogy with each other has been the centre point of all CAS activity.
In addition to face-to-face meetings happening all over the country, CAS has an
online community site that enables teachers to communicate with one another
and find out about face to face events [5]. This site has four features: news,
discussions, resources and event listings and is the primary place where face-
to-face events are advertised and promoted to teachers. Despite the fact that
the online site is seen as the centrepoint to many who join CAS, CAS is built
around the principles of local, face-to-face, support for teachers, as exemplified
by its supportive PD training programme, built on the concepts of mentoring,
peer-to-peer support, cascade of subject knowledge and accessible role models
[26]. The CAS site is growing on a daily basis with 18000 members at the time
of writing, as can be seen in Figure 1.

Fig. 1. CAS Membership from 2009-2015

In surveying members of CAS, particularly teachers, the questions our study
sought to address are:

1. What are Computing teachers doing to address their PD needs in Comput-
ing?

2. How many hours are Computing teachers spending on their PD?
3. To what extent are online and face-to-face activities valued by teachers?

Engagement of Computing Teachers 73

5 Methodology

For the purposes of this study we surveyed a large group of teachers at the
beginning of 2014 and then again in 2015 after the curriculum change had taken
place. We also have cross-checked our findings against 764 evaluations from the
face-to-face training events run locally by experienced teachers with Computing
At School. As part of our continual evaluation we also collect data about events
held ten weeks after the event . Other aspects of the evaluation process are
reported in [26].

The survey was advertised and promoted through the CAS organisation. The
vast majority of the 1949 respondents (92%) were members of CAS. For this
purpose we have extracted only the responses from teachers in England,which is
981 from the 2015 survey (with 864 from the previous year’s survey for compari-
son). The data were collected using an online tool then extracted into statistical
software for further analysis. Teachers gave consent for the data from the surveys
they complete to be used to find out more about the community and their en-
gagement with it. Teachers were also asked if they wish to take part in follow-up
interviews for more in-depth analysis.

6 Findings

In this section we report on the findings of our survey, contrasted where relevant
with the previous year’s survey.

6.1 Teacher Profile

In 2015, 65% of the teachers responding teach in secondary education (75% in the
2014 survey), with 31% teaching in a primary (ages 4-11) or middle (ages 7-13)
school (21% in the 2014 survey). 4% teach in institutions that only have students
aged 16 and over. For the rest of this paper we will ignore this latter group to
focus on teachers that teach children affected by the new Computing curriculum.
The teachers responding teach different amounts of Computing during an aver-
age week (see Figure 2). Since 2014 the number of hours teaching Computing
has increased; there is an increase of 7% in the number teaching more than 15
hours of Computing each week and 5% at 10-14 hours per week. This is due to
the introduction of the curriculum which was optional up to September 2014.
Primary teachers who are mostly generic teachers teach mostly 1-4 hours per
week (70%) whereas secondary teachers are more likely to be specialist teachers
with 53% at least 10 hours of Computing a week. However there is a small but
increasing number of primary and middle teachers who are becoming specialist
Computing teachers in their schools.

Teachers were asked how confident they were in their delivery of the Comput-
ing curriculum. The mean confidence of a primary teacher (of those answering
the survey) was 7.1 and the mean confidence of a secondary teacher answering
the survey was 6.8. Figure 3 shows the increase in confidence from 2014 to 2015

74 S. Sentance and S. Humphreys

Fig. 2. Hours a week teaching Computing

Fig. 3. How confident are you in your ability to teach Computing (1-10)?

with 48% of both secondary and primary/middle teachers reporting confidence
of 8 or more.

The next section describes teachers’ perception of their PD in Computing.

6.2 Professional Development (PD) in Computing

Teachers were asked which ONE aspect of PD in Computing is most valuable to
them. Figure 4 shows that the three most valuable aspects of PD for Computing
teachers across our whole sample are:

– Sharing of good practice (26%)
– Attending training events (22%)
– Trying out new ideas in the classroom (20%)

This was then analysed in relation to how confident teachers had previously
rated themselves. Teachers rating themselves at least 8 out of 10 are “confident”

Engagement of Computing Teachers 75

with teachers rating themselves 7 or less are “less confident”. We found that
for the less confident teachers more of them identified attending training events
(27.5%), followed by sharing of good practice (24.5%) and then being supported
by a colleague or Master Teacher (MT) (18%). Both groups of teachers also
valued the networking aspect of professional development activities (17.9% for
confident teachers and 12.5% less confident teachers saying it was the most
valuable aspect for them). A CAS Master Teacher is a teacher who is trained
and released from school to support other teachers [26].

Table 1. Teachers/hours on professional development (

No. hours on PD CAS MT training University PD MOOC Self-Study CAS Hub

2014

At least 1 hour 34.2 38.6 35.4 95.4 55.6
More than 6 hours 14.1 20.2 18.7 78.6 13.6
More then16 hours 5.5 11.8 9.3 59.1 2.4

2015

At least 1 hour 54.2 47.1 39.8 96.3 63.1
More than 6 hours 20.7 28.1 25.7 86.1 17.8
More than16 hours 5.2 17.1 11.6 67.2 3.2

Teachers were asked how many hours they had spent on PD in Computing.
Table 1 shows the increase from the 2014 to the 2015 survey. Obviously teachers
will on average have spent more time since the previous year’s survey but the
greatest increase is for the number of teachers who have attended at least one
Master Teacher’s session (face-to-face); this shows an increase of 20%. There
are a number of MOOCs now available for teachers learning computer science
subject knowledge - some of these are specifically for teachers. Some teachers
are utilising the MOOCs, and we were interesteed to find out whether they had
found them useful.

What the survey results show is that 78% of primary/middle teachers and
74% of secondary teachers said that they had found the CAS Master Teacher
training useful compared to 52% and 61% of those who attended MOOCs which
was a larger difference than in the previous year’s survey (see Figure 5). Overall
329 teachers out of 429 attending CAS Master Teacher training (76%) said it
was useful or very useful and another 98 saying that parts of it were useful.

Other types of face-to-face PD was also seen as useful with 70% saying that
university-provided PD was useful, 70% other CAS events, 68% other non-CAS
events and 70% the CAS Conference. Overall 60% teachers said that MOOCs
were useful or very useful PD, which was the lowest percentage of all the other
types of PD (which were all face-to-face).

76 S. Sentance and S. Humphreys

Fig. 4. What type of professional development is most valuable to you?

Fig. 5. Type of PD is useful/very useful by year/teacher type (% responses)

6.3 The CAS Community

Teachers were asked which ONE thing was most useful about CAS. The results
are shown in Table 2.

Overall the most popular aspect of the CAS community is the sharing of
teachers’ resources. Teachers voluntarily upload resources that they have devel-
oped for their classes for other teachers to share. However, the results differed
for different groups of teachers. Primary teachers most valued the guidance on
teaching the Computing curriculum (35%), whereas the secondary teachers most
valued the access to other teachers’ resources (35%). Certainly, overall, the most
popular aspect of CAS is the access to resources from those given (33%) . Some
teachers gave other valuable aspects:

“Through CAS I have made contacts with other organisations that are helping
me improve my ability to teach the computing curriculum”

Engagement of Computing Teachers 77

Table 2. Benefits to teachers of Computing At School

Single most important benefit of CAS (2015) Primary/Middle Secondary

Guidance on teaching the Computing curriculum 35% 25%
Access to others’ resources 26% 35%
Subject knowledge training 16% 14%
Access to others’ experiences 9% 14%
Meeting other supportive colleagues 5% 8%
Other 9% 3%

“Finding out how other people are addressing delivery and assessment of the
new computing curriculum”

We compared the confidence of teachers against what they most appreciated
about CAS. Less confident teachers were more likely than confident teachers to
indicate that the subject knowledge training was most valuable to them (24%
compared to 11%).

Fig. 6. Features of CAS ranked in order of value

Teachers were also asked to rank the aspects of Computing At School that
they valued. Figure 6 shows again that access to other resources are useful,
alongside discussions about approaches to teaching, particularly for secondary
teachers.

Teachers reported on how often they accessed aspects of the online community.
46% of members viewed the discussion sections of the community site at least
weekly (56% in 2014), 26% the events section at least weekly (33% in 2014), and
58% looked at the resources at least weekly (63% in 2014). This indicates that
regular accessing of the site has gone down in the previous year (although the
number of members has more than doubled).

78 S. Sentance and S. Humphreys

7 Discussion

The CAS model of PD is built on the belief that face-to-face interaction is
the preferred vehicle for supporting subject knowledge development [26]. This
is because teachers work in a face-to-face environment by the nature of their
role so are comfortable with this type of interaction, and because the potential
challenges of learning the subject mean that the confidence building elements of
face-to-face training are needed.

The results of this survey has highlighted the following:

– In the year between the two surveys, there has been an increased attendance
at face-to-face training.

– Teachers report face-to-face training to be more useful than MOOCs.
– Less confident Computing teachers report that the most valuable aspect of

PD is attending training events.
– Confident teachers most value the sharing of good practice and trying out

new ideas in the classroom as PD.

This implies that face-to-face learning is important to Computing teachers,
although the online community is also important. When taking feedback from
events (analysis of 764 forms), 99% of these teachers stated that face-to-face
interaction was an important or very important consideration when choosing
PD, with 95% also valuing local delivery of training. Darling-Hammond [10]
emphasise the importance of strong working relationships between teachers for
effective PD and this can be achieved by the kind of face-to-face interactions
that are facilitated through CAS.

The support amongst teachers for “trying out ideas in the classroom” also
encourages us with our current accreditation programme for teachers that is
focused partly around classroom investigations into pedagogical approaches ap-
propriate for teaching Computing1. This also relates to research that indicates
the importance of relating to practice [10,9].

The fact that teachers are accessing some of the features of the online commu-
nity less often may be due to the fact that there is, even in one year, more social
media available for teachers and an increasing number of websites and organi-
sations supporting Computing. The CAS membership has almost doubled in 12
months, with an ever increasing number of teachers grateful for the resources
that teachers freely share amongst themselves. The plethora of online resources
mean that it can be time consuming to even locate the appropriate help. Benda
et al give examples of students looking for resources posted by others rather
than contributing to discussions themselves [1]. Resources on CAS have a higher
viewing than discussion items; this seems feasible in a time when teachers are
increasingly busy and under pressure in all areas.

As Benda et al aptly describe, programming is hard and finding time to do this
online is very difficult [1]. Teachers who need subject knowledge development in
addition to the resource-sharing benefits of such a vibrant community need to

1 http://computingatschool.org.uk/certificate

http://computingatschool.org.uk/certificate

Engagement of Computing Teachers 79

be able to set aside clear blocks of time to do this and this can be more easily
achieved with a commitment to a local course. We suggest that the CAS Master
Teacher training and support offered within the CAS community provides both
the focus on curriculum content recommended by [10] and the close relationship
with a provider that is recommended in [28].

8 Conclusion

In this paper we have sought to describe how teachers are accessing and utilis-
ing PD in Computing. Our results show that teachers find the face-to-face and
locally delivered opportunities very useful, and that teachers in the community
are participating in many hours of PD in order to address their needs in con-
tent knowledge and pedagogical content knowledge in Computing. Furthermore
an online community is valuable in supporting teachers who require resources,
access to expertise and guidance on curriculum issues in addition to face-to-face
training, networking and support.

References

1. Benda, K., Bruckman, A., Guzdial, M.: When life and learning do not fit: Chal-
lenges of workload and communication in introductory computer science online.
Trans. Comput. Educ. 12(4), 15:1–15:38 (2012)

2. Boston, W., Diaz, S.R., Gibson, A.M., Ice, P., Richardson, J., Swan, K.: An explo-
ration of the relationship between indicators of the community of inquiry frame-
work and retention in online programs. Journal of Asynchronous Learning Net-
works 13(3), 67–83 (2009)

3. Brown, N.C.C., Kolling, M., Crick, T., Peyton-Jones, S., Humphreys, S., Sen-
tance, S.: Bringing Computer Science back into Schools: Lessons from the UK. In:
Proceedings of the 44th ACM Technical Symposium on Computer science Educa-
tion, SIGCSE 2013. ACM (2013)

4. Brown, N.C.C., Sentance, S., Crick, T., Humphreys, S.: Restart: The Resurgence
of Computer Science in UK Schools. ACM Transactions of Computing Education
14(2) (June 2014)

5. Brown, N.C.C., Kölling, M.: A tale of three sites: Resource and knowledge sharing
amongst computer science educators. In: Proceedings of the Ninth Annual Inter-
national ACM Conference on International Computing Education Research, ICER
2013, pp. 27–34. ACM, New York (2013)

6. Cooper, S., Grover, S., Simon, B.: Building a Virtual Community of Practice for
K-12 CS Teachers. Communications of the ACM 57(5), 39–41 (2014)

7. Cordingley, P.: The Impact of Collaborative CPD on Classroom Teaching and
Learning: Review: What Do Teacher Impact Data Tell Us about Collaborative
CPD? EPPI-Centre, Social Science Research Unit, Institute of Education, Univer-
sity of London (2005)

8. CSTA: Running on Empty. Tech. rep (2010), http://runningonempty.acm.org/

9. CUREE: Understanding what enables high-quality professional learning. Tech. rep.
Pearson (2013)

http://runningonempty.acm.org/

80 S. Sentance and S. Humphreys

10. Darling-Hammond, L., Wei, R.C., Andree, A., Richardson, N., Orphanos, S.: Pro-
fessional learning in the learning profession. National Staff Development Council,
Washington, DC (2009)

11. Department for Education: National Curriculum for England: Comput-
ing programme of study. Tech. rep., Department for Education (2013),
https://www.gov.uk/government/publications/national-curriculum-in-

england-computing-programmes-of-study/national-curriculum-in-england-

computing-programmes-of-study

12. Dron, J., Seidel, C., Litten, G.: Transactional distance in a blended learning envi-
ronment. Research in Learning Technology 12(2) (2004)

13. Ericson, B., Guzdial, M., Biggers, M.: A Model for Improving Secondary CS Edu-
cation. SIGCSE Bull. 37(1), 332–336 (2005)

14. Fincher, S., Tenenberg, J.: Warren’s question. In: Proceedings of the Third In-
ternational Workshop on Computing Education Research, ICER 2007, pp. 51–60.
ACM, New York (2007)

15. Fishman, B., Konstantopoulos, S., Kubitskey, B.W., Vath, R., Park, G., Johnson,
H., Edelson, D.C.: Comparing the impact of online and face-to-face professional
development in the context of curriculum implementation. Journal of Teacher Ed-
ucation 64(5), 426–438 (2013)

16. Goode, J.: If you build teachers, will students come? the role of teachers in broaden-
ing computer science learning for urban youth. Journal of Educational Computing
Research 36(1), 65–88 (2007)

17. Guskey, T.R., Yoon, K.S.: What works in Professional Development? The Leading
Edge (2009)

18. Kennedy, A.: Models of continuing professional development: a frame-
work for analysis. Journal of In-Service Education 31(2), 235–250 (2005),
http://www.tandfonline.com/doi/abs/10.1080/13674580500200277

19. Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., Mc-
Cartney, R., Moström, J.E., Sanders, K., Seppälä, O., Simon, B., Thomas, L.:
A multi-national study of reading and tracing skills in novice programmers. In:
Working Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education, ITiCSE-WGR 2004, pp. 119–150. ACM, New York (2004)

20. Luckin, R., Weatherby, K.: Online learning communities in context. International
Journal of Web Based Communities 8(4), 440–454 (2012)

21. Matzat, U.: Do blended virtual learning communities enhance teachers’ professional
development more than purely virtual ones? a large scale empirical comparison.
Computers & Education 60(1), 40–51 (2013)

22. Morrison, B.B., Ni, L., Guzdial, M.: Adapting the disciplinary commons model
for high school teachers: Improving recruitment, creating community. In: Proceed-
ings of the Ninth Annual International Conference on International Computing
Education Research, ICER 2012, pp. 47–54. ACM, New York (2012)

23. Ni, L., Guzdial, M.: Who Am I?: Understanding High School Computer Science
teachers’ professional identity. In: Proceedings of the 43rd ACM Technical Sym-
posium on Computer Science Education, SIGCSE 2012, pp. 499–504. ACM, New
York (2012)

24. Schulte, C., Hornung, M., Sentance, S., Dagiene, V., Jevsikova, T., Thota, N.,
Eckerdal, A., Peters, A.K.: Computer science at school/cs teacher education: Koli
working-group report on cs at school. In: Proceedings of the 12th Koli Calling
International Conference on Computing Education Research, Koli Calling 2012,
pp. 29–38. ACM, New York (2012)

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.tandfonline.com/doi/abs/10.1080/13674580500200277

Engagement of Computing Teachers 81

25. Sentance, S., Dorling, M., McNicol, A.: Computer science in secondary schools in
the uk: Ways to empower teachers. In: Diethelm, I., Mittermeir, R.T. (eds.) ISSEP
2013. LNCS, vol. 7780, pp. 15–30. Springer, Heidelberg (2013)

26. Sentance, S., Humphreys, S., Dorling, M.: The Network of Teaching Excellence in
Computer Science and Master Teachers. In: WIPSCE 2014 (Workshop in Primary
and Secondary Computing Education). ACM (2014)

27. Thompson, D., Bell, T.: Adoption of new Computer Science High School Stan-
dards by New Zealand teachers. In: Proceedings of the 44th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE 2013. ACM (2013)

28. Timperley, H.S., Parr, J.M., Bertanees, C.: Promoting professional inquiry for im-
proved outcomes for students in New Zealand. Professional Development in Edu-
cation 35(2), 227–245 (2009)

29. Tseng, F.C., Kuo, F.Y.: A study of social participation and knowledge sharing
in the teachers’ online professional community of practice. Computers & Educa-
tion 72, 37–47 (2014)

30. Wenger, E.: Communities of practice: A brief introduction. National Science Foun-
dation (US) (2011)

31. Wenger, E., White, N., Smith, J.D.: Digital habitats: Stewarding technology for
communities. CPsquare (2009)

© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 82–93, 2015.
DOI: 10.1007/978-3-319-25396-1_8

Programming in Scratch Using Inquiry-Based Approach

Jiří Vaníček

University of South Bohemia in České Budějovice, Czech Republic
vanicek@pf.jcu.cz

Abstract. Inquiry-based learning has recently become one of the much advo-
cated methodologies used especially in teaching of natural sciences. This of
course opens the question whether it is suitable also for teaching informatics, or
even more specifically for teaching programming in a didactical programming
environment. In action research conducted within teaching practice of pre-
service informatics teachers we tried to explore if any of the approaches and
types of activities used by these pre-service teachers correspond to the princi-
ples of inquiry-based learning. In the research we study how pre-service teach-
ers cope with these approaches to teaching, what contemporary pupils’ attitudes
to learning programming are, how this topic and the different activities used in
the lessons appeal to them and how this type of lessons is perceived by teachers
themselves – pre-service informatics teachers.

Keywords: teaching programming, lower secondary school, inquiry-based
learning, Scratch.

1 Inquiry-Based Learning and Programming Education

The world-wide trend of implementing areas from informatics into school curricula
and into teaching at lower school levels brought fruit in the Czech Republic last year
when the government adopted the Strategy of Digital Education 2020. This strategic
document lists three priority objectives, one of which is the development of pupils’
informatics thinking [1, p. 14]. Putting this government resolution into practice can be
expected to have impact on implementation of informatics curriculum into lower sec-
ondary education in a much greater extent than was usual.

For many years, teaching mathematics and natural sciences on primary and sec-
ondary schools have been based on inconvenient teaching methods based on mere
reproduction of knowledge, on instruction and tutorials that do not result in deeper
comprehension and do not develop thinking skills. Inquiry-based learning (IBL) is a
response to this situation. It is a method in which a pupil’s knowledge is constructed
through a system of questions and problem solving [2]. The pupil observes the world
around them and based on these observations proposes possible explanations to the
solved problem [3]. According to Papáček, a teacher becomes the knowledgeable
guide in problem solving and guides the pupil in a way that resembles the progress of
work in real research [2]. In correspondence to constructivist theories of learning the
pupils are active, solve problems, gain experience and are guided to the construction

 Programming in Scratch Using Inquiry-Based Approach 83

of a cognitive model of the observed phenomena. The pupil’s active and creative
position in the lesson is a necessary condition for successful learning [4].

Inquiry is the process in which we do not ask “What is it that we know?” but
“What are the things that we do not know and what questions can we ask about
them?” [5, p. 8] Baptist quotes the American mathematician Paul Halmos whose re-
quest was: “Don’t preach facts, stimulate acts.” [6, p. 7].

IBL approaches can be classified with respect to which part of the inquiry process
is undertaken by the teacher. Eastwell distinguishes between four types of inquiries:
confirmation, structured, guided and open researches.

─ Confirmation research – students are given the question and action (method), the
results are known in advance, the purpose is to verify a principle through pupils’
own experience.

─ Structured research – the teacher presents a question and the possible action
(method), based on their knowledge pupils determine the explanation of the studied
phenomenon.

─ Guided research – the teacher presents a research question but leaves the method
and solution up to the pupils.

─ Open research – pupils present a question, think of a method, conduct the research
and define the results [7].

The question to answer is how to employ inquiry-based approaches in teaching in-
formatics, namely in teaching programming (and to what extent the environment of
informatics can be used to teach a pupil in an inquiry-based way). How difficult is it
to implement the different stages of inquiry-based learning in teaching programming
without actually having to change the structure of the subject and the priorities of the
teaching goals? What elements should be accentuated and what tools should be used
to ensure that the learning process includes the main inquiry processes according to
Bell et al. [3]: Orienting and asking questions, Hypothesis generation, Planning, In-
vestigation, Analysis and interpretation, Model, Conclusion and evaluation, Commu-
nication and Prediction?

One of the significant learning theories that have influence on how programming is
taught is Papert’s constructionism. The theory of constructionism is based on the be-
lief that learning is more a process of (re)construction than transmission of knowledge
and opposes the so called instructionalism. According to this theory a learning process
is more efficient if it has the form of active construction of meaningful artefacts. “A
major constructionist method is to mix media in model construction and to translate
from one media, say, a mathematical function, into another media, say, words or dia-
grams.” [8]. Papert emphasises a pupil’s verbal communication and also the tools a
pupil creates and manipulates with while constructing knowledge. In the communica-
tion the pupil formulates ideas for the computer. Papert uses the term microworld to
refer to the subset of reality (or constructed reality) whose structure corresponds to the
given cognitive mechanisms of the learner, which provides an environment that can
work efficiently and allow the learner to practice selected substantial ideas or mental
skills [9].

84 J. Vaníček

1.1 Teaching Programming

Many Logo-like educational programming environments such as Scratch, NetLogo,
Imagine etc. are tools that support hypothesis generation, prediction, model, evalua-
tion. It can be presumed that a well-planned and conducted lesson in these environ-
ments based on constructionist methodologies will support pupils’ discovery and
experimenting, will guide them to formulation and verification of hypotheses, to their
evaluation and will help them discover causes through analyses of the behaviour of
the system. However, can these partial activities be put together to make one organic
whole turning “the pupil into a young inquirer”? Is informatics equally as rich an
environment for IBL as other natural sciences? A microworld with its low floor, high
ceilings and wide walls [10] can be expected to give pupils answers to questions that
have not even been worded but that can be tested in experiments if pupils learn to be
perceptive to these answers. Do didactical programming environments allow the pu-
pils to conduct “real” experiments similar to experiments in biology, physics and
chemistry with authentic artefacts and natural phenomena? Will pupils take the “arti-
ficial” computer environment where reality is simulated as sufficiently real to be will-
ing to inquire into it in the same way they would do in natural sciences? Can the topic
of programming support the orientation of IBL on the development of a learner with
scientific thinking without distracting attention from the main goal of the topic itself,
i.e. to develop a learner who has algorithmic thinking, who can grasp and solve a
problem, model a situation and then implement the model to a computer?

These questions are very difficult to answer. Bearing this in mind our goal was to
modify the standard teaching of programming to 15-year-old pupils by including
some IBL elements (some of these overlap with constructionist approaches) with
main objective laid in teaching programming.

We compared approaches to teaching programming used in Czech, Slovak and
several other textbooks and also methodological manuals for teaching programming
available on the internet [11]. Predominant in these textbooks and manuals are two
basic types of programming tasks:

─ short programming tasks (etudes), whose goal is to practice one particular skill or
item of knowledge

─ larger programming units (projects) whose goal is to create some larger work, i.e. a
computer game

Teaching through a series of several-minute long programming etudes always targets
at acquisition of one specific skill, is oriented on one specific item of knowledge. It is
often the case that the difficulty of these etudes grows gradually and results in a
deeper understanding of a concept. Motivation of these activities is very often weaker
than in case of larger projects. Pupils can easily check their result but the tasks do not
develop their creativity.

Teaching through larger programming units – the so called “projects”, e.g. creat-
ing a game, often has the form of a sequence of activities organized as a tutorial or a
problem task. The reason why the large project is divided into the subtasks is the
teacher’s struggle to ensure the extensive activity is concluded successfully and in due

 Programming in Scratch Using Inquiry-Based Approach 85

time. It is hard to combine the goal to teach a specific concept, procedure or method
with open-ended activities. These activities are highly motivating for pupils, are more
authentic but cannot target the development of one particular skill.

In the two ways of selecting types of problems, two different approaches to teach-
ing goals can be observed: in case of shorter programming etudes the approach is
intensive, focused on competences in the area of concepts, closer to traditional teach-
ing of mathematics, and the other is holistic, more open, emphasising creativity, fo-
cusing on product. We are fully aware that the term project for larger programming
units is not accurate as these projects are more a sequence of tasks leading to the crea-
tion of a product, a program, which is in some cases, e.g. in Imagine, called a project.

2 Project and Methodology

The descriptive case study [12] of teaching programming enriched by elements of
inquiry-based approach was conducted on one semester project of programming in the
environment Scratch [13] at a town lower secondary school in autumn 2014. The
teaching experiment was conducted with a group of 13 15-years-old pupils from an
ordinary lower secondary school, with an above average number of ICT lessons in its
School Education Programme (1 lesson a week in all the previous 3 grades). The cur-
riculum in the previous grades included no informatics, its focus was on user
approaches (e.g. Office, Internet and presentations, editing photographs, vector
graphics). The pupils were taught in traditional teaching schemas and had no former
experience with IBL elements in the area.

The teaching in the project was conducted by pre-service informatics teachers in
their final year of master studies. It was conducted as their compulsory teaching prac-
tice. The pre-service teachers took turns in teaching the lessons. The lesson plans
were prepared under supervision of the educator in charge of this teaching practice.
The lessons were planned more or less according to a syllabus created by comparing
the available teaching manuals for work with children programming environments
Scratch and Imagine. Attention was paid to inclusion of new programming structures,
elements and tools. In the initial lessons the pupils got acquainted with the environ-
ment. Then they were introduced to the properties of objects (e.g. costumes), cycles
and decisions, events and running actions, communication among objects, synchroni-
zation among threads, number variables. This took 15 lessons. The tasks and prob-
lems were taken from the internet Scratch Store and if they were modified, the
changes usually affected graphics or the story told in the activity.

The types of IBL used most frequently were confirmation and structured research.
In order to follow the principles of inquiry-based learning the teachers tried to plan
and conduct their lessons in such a way that they and their pupils would be working
on more complex problems allowing chaining to simpler tasks, creation of situations
in which it was possible to ask questions. These were for example simple games or
stories of characters. The teachers first had to divide these complex projects into par-
tial subtasks that were then given to the pupils for solution. Thus the pupils were

86 J. Vaníček

guided through a series of shorter tasks with intrinsic motivation to achieve the goal
of creating some more extensive work. The pupils were given the chance to experi-
ment but at the same time check the partial results and if needed to copy the correct
solution and thus could continue with solution of the next subtask.

The teaching experiment also included a pupils’ programming project Christmas
greeting. In the project it was entirely up to the pupils what the content would be.
Most of the work on the project was done outside of school. However, the key parts
of the project – introduction, conclusion and consultations on the project work took
place at school.

In this case study, the data were collected by the method of participant observation
and subsequent joint reflection on the lessons. This allowed us to observe both the
pupils’ attitudes and the pre-service teachers’ activity, in which tasks they were using
the selected IBL teaching strategy and how they were gradually building the syllabus.
Each lesson was followed by 1 hour of joint reflection on the observed lesson and
2 hours of planning of the following lesson with the help of the supervisor and the
class teacher. Another method of data collection was analysis of pupils’ work. In this
analysis we tried to discover not only how the pupils were proceeding but also how
their work was assessed by the pre-service teachers and what they were looking for in
the pupils’ work. Upon termination of the teaching experiment, a questionnaire was
administered to the pupils and structured interviews with were conducted the partici-
pating pre-service teachers.

3 Findings

This pilot project of teaching programming in didactical programming environments
with corresponding methodologies involves a number of elements of inquiry-based
learning on the condition that pupils are provided with enough space to communicate
and to solve (sub)tasks and problems. The major difference is in the goal of teaching
– in IBL the goal is inquiry-based approach resulting in acquiring new knowledge and
being able to apply it, whereas in programming the goal is making use of this type of
thinking or knowledge for making a product, i.e. a computer programme.

The idea on the background of this experiment was that in-service teachers who
would be beginners in teaching programming would act similarly to the participating
pre-service teachers. We studied what types of problems and tasks pre-service
teachers were selecting for their lessons and how successful they were in the lesson
planning process (we did not assess how successfully the lesson was then conducted).
The participating pre-service teachers found it easier to plan a lesson as a sequence of
programming etudes and to make a whole lesson plan from these activities. When
teaching programming through more extensive activities (“projects”) the teachers did
not even expect their pupils to be able to divide the complex problem into subtasks
and did this division for them. They were aware that this was hard work even for them
as teachers.

 Programming in Scratch Using Inquiry-Based Approach 87

3.1 Teachers’ Approaches and Mistakes

In the following part we present comments on some of the mistakes made by the pre-
service teachers.

Preference of Creation of Projects. The pre-service teachers often planned lessons
based on creation of a larger project; they found it more motivating for their pupils
and may be even for themselves. This proved to be problematic, especially as it
turned out that the projects very often required some knowledge the pupils did not
have and which was impossible to be taught because of time constraints and because
of the whole conception of the teaching. The teachers often solved this by presenting
the most difficult passage to the pupils in the form of a created code or by asking
them to copy it without actually clarifying the meaning (for example using cloning in
the currently programmed game). Time management proved to be very problematic; it
often happened that the project activities were not concluded within one lesson and
had to be finished in the following one. This disturbed the conception of the teaching
experiment; it had then to be finished by another pre-service teacher who, in conse-
quence, had less time to conduct their own lesson.

We presume the activity of a teacher who would be a beginner in teaching pro-
gramming, who would not have the needed methodological background and would
want their pupils to create a programmed product would be similar to the activities of
the pre-service teachers. The teacher’s ambition to “achieve something great” with
their pupils has effects on fulfilling the teaching goals; it can result in non-
conceptual teaching, in insufficient practice in the basics which may later result in a
lack of ability to program simpler tasks.

Too Long Code. Another frequent mistake in the lesson planning was that the teach-
ers proceeded to long multiline codes too quickly and the pupils found it hard to ori-
ent themselves in them. The teachers failed to see how to avoid these multiline codes,
e.g. by using more threads, communication among objects etc. Their own knowledge
of programming in different languages and the methodological course of program-
ming in Scratch did not help them overcome this problem.

Endless Loop. A typical mistake whose origin is in the environment Scratch itself is
the use of endless loop. Scratch offers this as a solution of simple programming tasks
for beginners. Activities using this structure are motivating and can make pupils at-
tracted to programming. However, both teachers and pupils found it difficult to get rid
of this bad habit at later stages and instead of using a simple cycle with a condition
they were creating endless loops with nested decision blocks and hard terminations of
the running code.

Bad Synchronization among Objects. Another problem that can happen in simple
object programming is bad synchronization which the programmer (and also the inex-
perienced teacher) fails to see. It becomes a source of problems the programmer (and
the teacher) is not able to find. They tend to blame the application for the mistake. Let
us illustrate this on an example we came across in our observations. In the “cat and
mouse game” the pupils defined that if the mouse bumped into the cat, 1 point would

88 J. Vaníček

be deduced from the score, the cat would meow and the mouse would jump to the
beginning of the page (fig. 3 on the left). The initial score was set as the number of
mice to be caught. However, bad synchronization of the commands for sending and
receiving the message with the command for the mouse to jump to the beginning of
the page resulted in a state when, before the cat finished saying “Meow”, the program
detected repeatedly that the mouse was touching the cat and made several deductions
from the score. Thus the score had been nulled already when the first mouse was
caught. This type of mistake in the code is very hard to detect for a beginner teacher.
The participating teachers did not manage to detect it in the situation.

Approaches to Pupils’ Assessment. The teachers were also expected to assess pu-
pils’ work. It was very interesting to observe how they do it. In general the teachers
were checking that the programme was running correctly. In case of projects they
were also sometimes assessing which of the taught programming elements and tech-
niques the pupils had used in their work (they tried to evaluate quantitatively whether
the pupils were using a cycle, message, decision, costumes etc.). In their assessment
they did not take into account whether a pupil used some original technique or ap-
proach or a witty solution by using some programming element in a non-traditional
way (e.g. removing matches from the table can be solved visually by hiding the
matches by interaction with each object of a match, or by changing a costume of a
heap of matches as one object, or by gradual covering of a matches in a row by an-
other object). The theme of the work or original ideas were not part of the assessment.
And if the teachers found the theme not meeting their idea of decorum, they did not
allow the author to present it among other successful projects even if it fulfilled all the
other criteria.

3.2 Pupils’ Reactions

Initial Hesitation and Very Slow Progress. In the first lesson the pupils were rather
hesitant and did not seem to be very enthusiastic about the idea of programming. This
was largely due to the fact that they were not able to orient themselves in the envi-
ronment and the type of mental activity that would be required from them. However,
about one third of them got really excited about programming thanks to the idea of
creating stories. These pupils were happy to work regularly on voluntary homework.
In consequence they were more confident during lessons, were more active and happy
to work on their own.

No significant progress in pupils’ knowledge could be observed after the first
8 lessons in the first 2 months. With a few exceptions the pupils were not able to
solve problems and tasks on their own, they did not remember the commands and
techniques of work, they were not able to discover which command or technique to
use in a given situation. Modification of work set for homework had usually only the
form of a change in the theme or background or costumes, but not of the script or
scenario. However, the pupils showed they were able to solve simple programming
tasks during an inserted lesson “Hour of Code” in which they were programming a set
of tasks of turtle graphics in the environment of the film Frozen [14]. Still we could

 Programming in Scratch Using Inquiry-Based Approach 89

observe certain helplessness of weaker pupils if they had arranged a sequence of
commands into the body of the cycle inappropriately and could not find a way to get
rid of the wrong script. They usually turned to the trial and error method without even
trying to be systematic (e.g. trying out all possibilities).

Our participant observation made us conclude that the pupils were not given suffi-
ciently varied programming tasks. They were given tasks based on creation of a code,
not on detection of a wrong code in which they would have to be looking for the
cause of a mistake. Also much more time would be needed for the pupils to master
even the very basics of programming.

Pupils’ Project. The most significant progress in the pupils’ knowledge could be
observed after having worked on a short project of creating an electronic Christmas
greeting with a theme of their own choice. The pupils had to take responsibility for
finishing the work, which might have been the main factor causing that after this pro-
ject was over and after a 3 week break the pupils grew more perceptive to explana-
tions, more able to work on their own and to justify. Still, with a few exceptions pro-
jects did not bring any original ideas (neither thematic, nor programming).

About one third of the pupils became interested in programming at the very begin-
ning of the teaching experiment. These pupils worked on programming also outside of
the classroom and were able to propose original ideas that they could make use of in
the lessons by varying the themes of the programming projects (e.g. the cat and
mouse game was modified into catching a football ball – Fig. 3 on the right). This
group of pupils realized that the nature of very different everyday activities had the
same structure in programming and could be modelled in the same way.

Fig. 1. The same game in two attires: a cat is chasing a mouse and football penalties. On the left
the taught version, on the right a pupil’s spontaneous modification.

Activities Appealing to Pupils. It turned out that successful were those activities in
which the pupils were not programming but creating scenarios and dialogues for
characters, in which they were drawing costumes, i.e. in which they were modifying
the story as a user but not modifying the programme itself as a programmer. If any
change in the code occurred, these were usually simple commands run by events,
linear stories, there were no cycles and decisions.

90 J. Vaníček

We tried to pinpoint which themes in tasks were most favourable for making pupils
gain new knowledge:

─ drawing of different costumes of the characters: modifying the theme of the activ-
ity but modifying the programming code as little as possible

─ variables: if they wanted to watch the score of the game
─ conditions: if they wanted to finish a game
─ messages: if they wanted to direct the dialogue between two or more characters

The pupils preferred making programmes with no cycles (there was a strong preference
for simply run actions in more threads or for endless loops – i.e. preference for simple
code). It is hard to say whether this is in consequence of unpreparedness of Scratch to
use the built-in loop counter (as is repcount in Imagine). This could only be answered if
the real cycle FOR was needed, which was not the case in the taught lessons.

3.3 IBL Activity: Programming a Game Played Against the Computer

The whole teaching experiment was concluded by an inquiry-based learning activity
in which the pupils were asked to program a game where the player would be playing
the computer. At first the pupils programmed a game for two players. Then they were
asked to discover the winning strategy and then implement the discovered rules into a
programme for the computer. For these ends we selected a simple board game Nim in
subtraction misére variant with one heap of the size of 13 based on removing matches
from the board [15]. The winning strategy in these games is based on reaching the so
called winning position (the strategy is described e.g. in [16]. The game offers a sim-
ple winning strategy and the pupils can program one player in such a way that he
cannot be beaten.

Another goal of this activity was to make pupils realize that the “intelligent com-
puter” must be programmed, i.e. that it is up to the pupils to think out the possible
moves for the computer and then program it. This means the computer was to be de-
mythologized through this activity (according to Schubert and Schwill one of the
important objectives of education is to show to pupils that a computer is only a ma-
chine that executes commands [17]).

The basic benefit of this activity for pupils was the search for the optimal winning
strategy. The pupils played each other in a game they had programmed themselves
and while trying to beat the opponent they were looking for the winning strategy,
asking questions, discussing, making conjectures and verifying them. The winning
strategy was discovered by 3 pupils within 15 minutes but it took them much longer
to realize that if there was an optimal strategy for one of the players, the opponent
could never win. They were trying it again and again.

Later, when the winning strategy was grasped by about one half of the pupils after
having discussed it with each other and trying it out in matches, the teacher encour-
aged the pupils to formulate how the computer should play (e.g. “it must always re-
move matches to four”) and to discover how to express this. The subsequent imple-
mentation into a code showed how similar the moves of the player and the computer
were (Fig. 2). Having finished the activity the best pupils wanted to find out how to
modify the game for a different number of matches.

 Programming in Scratch Using Inquiry-Based Approach 91

Fig. 2. Analogy between a player’s turn and a turn of a computer using an expression in the
Nim game

4 Pupils’ Perception of the Teaching Experiment

After the teaching experiment the pupils were given a questionnaire with both multi-
ple choice and open items which was meant to allow us to learn more about how they
felt and what they thought about programming.

Attitude towards Programming. 80 % of the pupils stated they were good at pro-
gramming. 20 % did not think it was of any benefit for them to have learned pro-
gramming unlike pupils in other schools. This negative attitude, however, did not
correlate with their success rate because all the pupils who stated they were not good
at programming claimed programming was beneficial for them. 80 % of the pupils
claimed they would like to continue programming.

We were curious how the course in programming changed the pupils’ attitude to
their prospective career. 30 % of the pupils explicitly stated they did not want to do
any programming in their future career. However, all of these pupils were good both
at mathematics and programming.

Teaching Method. The pupils were not able to evaluate the teaching method. We can
only guess what teaching method was popular among pupils from which activities the
pupils selected as their favourite. The pupils most enjoyed activities of creating a
game strategy and implementing it to the computer using IBL, and creation of games.
We did not get an answer to the question whether the pupils preferred teaching
through miniprojects or through a sequence of programming etudes.

Difficulty of Learning to Program. A part of the pupils found it most difficult on
programming that it required them to think (“what I found most difficult was when
we were assigned a task and we were meant to solve it on our own”, “to realize what
the thing should do in the programme and how to connect it in a logical way”), part of
the pupils spoke of the initial difficulties to get accustomed to the environment and
style of work (“before I got acquainted to it”). What they found most interesting on
programming was that “they could discover new things”, “find out how things work
in the computer” and also appreciated the pleasure of the author of an attractive piece
of work (a computer game).

92 J. Vaníček

The pupils’ answers also clearly showed that after the teaching experiment they
were still not able to tell what was and what was not programming. Some of the pu-
pils claimed they had had former experience with programming (setting parameters in
utilities controlling behaviour of OS or setting animations in 3D graphics).

5 Conclusion

The project of teaching the basics of programming enriched by IBL elements is close
to constructionism but has its limits.

5.1 Pupils

It took relatively long before the pupils were able to answer questions and to make
any inquiry. We are convinced that this was not caused by the novelty of the unknown
environment, as the pupils came across similar situations in different topics, but by
their brand new role in their relationship to the computer which they had to get used
to (e.g. when a programme was not working, the pupils often asked for the button
Undo).

It turned out that the pupils needed a lot of space and time to get used to the ways
of a programmer. At that period of time they needed to work with very simple code
with simple commands that they were able to vary in a non-programmer way (crea-
tion of graphics, search for stories and themes, but no changes in the code). As long as
the pupils tend to modify ready-made programmes in this way, it is probably too early
to proceed to more difficult parts of programming.

Our observations show that the selected approach of orientation on gradual crea-
tion of programming projects in stages does not make pupils want to program, i.e. to
write a code and to use control structures. However, it makes the pupils see how a
computer works.

5.2 Teachers

The experiment also showed that (pre-service) teachers feel much less confident in
teaching programming than in teaching how to use a computer, e.g. use of office ap-
plications. This lack of confidence was not so apparent when conducting the planned
lesson but in situations when they were asked for help by a pupil whose programme
did not work. It seems that detection of a mistake is a very advanced competence.
Therefore tasks and problems of this nature must be included in teaching the unit. At
the same time activities in which pre-service teachers learn to detect a pupil’s mistake
must become integral part of courses of didactics of programming in their under-
graduate studies.

Acknowledgment. The research was supported by the project GAJU 017/2013/S.

 Programming in Scratch Using Inquiry-Based Approach 93

References

1. MŠMT: Strategie digitálního vzdělávání (Strategy of Digital Education). Ministry of Edu-
cation, Praha (2014), http://www.msmt.cz/file/34429

2. Papáček, M.: Limity a šance zavádění badatelsky orientovaného vyučování přírodopisu a
biologie v České republice (Limits and Chance of Implementation of Inquiry-based Learn-
ing of Biology in the Czech Republic). In: Papáček, M. (ed.) Didaktika Biologie v České
Republice a Badatelsky Orientované Vyučování (DiBi 2010), pp. 129–135. Jihočeská uni-
verzita, České Budějovice (2010),
https://www.pf.jcu.cz/stru/katedry/bi/

3. Bell, T., Urhahne, D., Schanze, S., Ploetzner, R.: Collaborative inquiry learning: Models,
tools, and challenges [online]. International Journal of Science Education 32(3), 349–377
(2010), http://collablitreview.wikispaces.com/
file/view/collab+inquiry+learning.pdf

4. Hajduković Jandrić, G., Obadović, D.Ž., Stojanović, M., Rančić, I.: Impacts of the Imple-
mentation of the Problem-based Learning in Teaching Physics in Primary Schools. The
New Educational Review 25(3), 194–204 (2011),
http://www.educationalrev.us.edu.pl/vol/tner_3_2011.pdf

5. Baptist, P.: Towards new teaching in mathematics. In: Baptist, P., Raab, D. (eds.) Imple-
menting Inquiry in Mathematics Education, pp. 1–12. Universität Bayreuth, Bayreuth
(2012) ISBN 978-3-00-040752-9

6. Baptist, P.: Simplify mathematics education. Towards New Teaching in Mathematics 7
(2011) ISSN 2192-7596

7. Eastwell, P.: Letters: Inquiry Learning: Elements of Confusion and Frustration. The
American Biology Teacher 71(5), 263–264 (2009)

8. Clayson, J.: Constructionist approaches to creative learning, thinking and education: les-
sons for the 21st century. AUP Magazine, Paris (Fall 2010),
http://alumnionline.aup.edu/page.aspx?pid=666

9. Papert, S.: Mindstorms: children, computers, and powerful ideas. Basic Books, New York
(1980)

10. Guzdial, M.: Programming environments for novices. In: Fincher, S., Petre, M. (eds.)
Computer Science Education Research, pp. 127–154. Taylor & Francis, Abingdon (2004)

11. Krejsa, J.: Výuka základů programování v prostředí Scratch (Education of Basic Pro-
gramming in Scratch environment). University of South Bohemia, České Budějovice
(2014), http://theses.cz/id/b5f11x

12. Yin, R.K.: Case Study Research. Design and Methods, 5th edn. Sage Publication, Los An-
geles (2014)

13. Resnick, M., et al.: Scratch: Programming for all. Communications of the ACM 52(11)
(2009),
http://web.media.mit.edu/~mres/papers/Scratch-CACM-final.pdf

14. Code.org: Hour of code. Frozen. Programming online course. Code.org (2014),
http://studio.code.org/s/frozen

15. Köller, J.: Nim Game. Mathematische Basteleien (2000),
http://www.mathematische-basteleien.de/nimgame.html

16. Burján, V., Burjánová, L.: Matematické hry (Mathematical games). Pytagoras, Bratislava
(1991)

17. Schubert, S., Schwill, A.: Didaktik der Informatik. Spektrum Akademischer Verlag,
Heidelberg (2011)

Olympiad in Computer Science and Discrete

Mathematics

Athit Maytarattanakhon, Vasiliy Akimushkin, and Sergei Pozdniakov

Saint Petersburg Electrotechnical University “LETI”
5, Professora Popova str., Saint Petersburg, Russia

root@post.etu.spb.ru

http://eltech.ru

Abstract. Many ideas of theoretical computer science is not yet in-
cluded in the practice of school teaching. To test the methods of learn-
ing new ideas one can use the format of school Olympiads which form a
circle of ideas and objectives which can be included in the future general
curriculum.

The paper describes the experience of the Olympiad on theoretical
computer science and discrete mathematics. The Olympiad consist of
two rounds. The first round is held in a distant form but the second one
is held on the premises of universities. All the rounds are organized in an
electronic format and all the participants work with same manipulators
which simulates important concepts or ideas of subject area. Thus, to
the last round of Olympiad, all participants already will be acquainted
with new ideas of subject area and during the time limit can solve more
difficult problems.

As examples we discuss here tasks of DM&TI-2015. They are based on
five manipulators: Turing machines, regular expressions, graphs, Tarski
worlds (predicates and quantifiers) and logic circuits. The paper suggest
a technics for problems design and using of manipulators for solving
problems in computer science and discrete mathematics and technology
for semiautomatic processing of results. The Olympiad uses web services
that provide users feedback and interaction of authors and participants
with problems during preparing and holding of the Olympiad.

Keywords: olympiad, computer science, discrete mathematics, electronic
manipulator, CS competition.

1 Introduction

The importance of theoretical computer science ideas is recognized by the ped-
agogical society [1]. In Russia the importance of theoretical computer science in
2014 was supported by institutional decision to combine the mathematics and
computer science in one subject area [2,3].

Technics of prevenient introduction of new ideas through Olympiads has own
history in Russia. For example The First URSS Math Olympiad for Vocational
Schools, which was held in 1980, included two extra tours, which can be consid-
ered as a bridge between computer science and mathematics:

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 94–105, 2015.
DOI: 10.1007/978-3-319-25396-1_9

Olympiad in CS and DM 95

1. there was introduced an experimental tour to do simple research work with
physical phenomena model on a programmable calculator [4];

2. one of proposed problems required preintroduction of new ideas, so before
the Olympiads the popular lection for participants was given, which expand
the range of permissible problems [5].

The idea of using new knowledge from an area of computer science is ac-
tively used in the Bebras competition [6] and “Construct, Test, Explore” contest
(CTE) [7,8]. Also a view on computer science as experimental area is actively
develop [9], so an idea of using electronic manipulators to support education
in computer science are important too [10,11]. Automation of testing problems
solutions is widespread in the programming contests and now they held entirely
in electronic form [12].

Using of electronic manipulators to support problem’s solution in theoretical
computer science can be different: 1) visualizers allow to get acquainted with a
new idea, what provide the context for problems statements understanding; 2)
local manipulators which don’t fix student’s action, and so their actions will not
be considered as part of the solution (manipulators of such type are used in the
competition Bebras, as they do not require changing of interface for answer input
and give possibility to use traditional type of input - select one of four variants);
3) finally, there can be such an environments to support search of solution and
allow to analyze all the actions of the participant [13].

The Olympiad in theoretical computer science and discrete mathematics is
the next step in creationof Internet School in Theoretical Computer Science and
Discrete Mathematics at the Faculty of Computer Technology and informatics
St. Petersburg Electrotechnical University “LETI” (SPBGTU “LETI”). At the
first stage there was an implementation of basic algorithms on graphs manipula-
tors and providing students opportunities to work in three modes: 1) if student
choose demonstration mode a new graph will be generated and user get an op-
portunity to “sweep” algorithm step by step with the comment to each step; 2)
in tutoring mode student has the opportunity to “go” algorithm step by step,
the system does not allow to do the wrong moves and gives corrective comments
3) in testing mode the system does not check the correctness of each student
step, and checks the entire solution [14].

2 Analysis of CS Competition Organization

Competition Bebras passes during a short time (one lesson), usually in the class-
room under guidance of teacher in online mode. Preparation to the Bebras com-
petition is based on the work with the tasks of previous years using the comments
to the tasks appearing after finishing of competition.

Competition CTE passes during the week in offline mode. Generally the com-
petition begins in the classroom, where students begin to work with the research
subjects under the guidance of teachers. After 1–3 hours students were charged
interim solution, and then continue to work on the tasks at home, periodically

96 A. Maytarattanakhon, V. Akimushkin, and S. Pozdniakov

downloading files of improved solutions on the competition website. At the end
of competition week teacher gather students to make sure that no one forgot to
download the latest versions of solutions.

Programming team competition passes in several online elimination rounds.
During the first part of the allotted time after loading solution on Olympiad site
and its verification, an information about the verification results (is the solution
accepted or not) is disclose to all participants of the Olympiad, which thus can
monitor success of rivals and estimate the complexity of the remaining tasks
according to the results of other teams. The second part of the allotted time
passes after the “freezing” of results visualization, then every team does not
know successes of other teams in solving problems and get responses from the
system only with verifications their own solutions.

Olympiad in theoretical computer science and discretemathematics SPBGETU
“LETI” pass through three stages. All steps involve the use of same manipula-
tors. As to manipulators of season 2014–2015 there were used the following tools:
Turing machines, regular expressions, graphs, the world of Tarski (quantifiers and
predicates), logic circuits. The first stage of Olympiad is preparatory tour. At this
stage, participants work with the preparatory tasks and get tips on interim ac-
tion. Time to solve training problems are not limited. After the end of the tour,
participants get an analysis of tasks’s solutions. The second stage is a extramural
round which restricted by 3 hours. The round passes in online mode. Problems is
included in this round are not synonymous with training tasks but are formulated
in terms of the same manipulators, which already known by participants. The last
the third stage is internal round of the Olympiad. On this round participants are
invited to come to universities for last Olympiad tour. They get the same amount
of tasks and the same amount of time as on previous stage. At the same time,
tasks are substantially different from tasks of the previous stages, therefore the
preliminary stages are not prepare them to solve “such types” tasks, but give ac-
quaintance with manipulators and new theoretical concepts which will be used in
tasks. This give possibility to limit time of Olympiad by 3 hours.

3 Analysis of DM&TI-2015 Content

Tasks described below are based on the same concepts and manipulators that
problems for previous rounds. Therefore participants already got acquaintance
with concepts such as graph connectivity, planarity, graphs equality (isomor-
phism), regular expression, a Turing machine, quantifiers, and so on.

Participants are encouraged to first solve the problem without “stars”. They
get up to 3 points after solution of every such task. Other tasks (“with stars”)
can give up to 6 points. These tasks areconsidered as additional, that is, the
participant can solve those of them which are understandable and interesting
for him or her.

1. Graphs. The tasks is accompanied with manipulator, in which one can
construct graph and move its vertices to explore the graph on planarity (the
manipulator is constructed so that when moving the vertices they not coincided).

Olympiad in CS and DM 97

The presence of the manipulator saves students from reading of formal math
definition for connectivity and planarity (although there is a “help” button inside
every task).

1.1. There is a connected graph with 9 vertices, in each vertex converge two
edges (the degree of each vertex is equal to 2) and edges do not intersect. Add
to the graph as many new edges as possible so that the degree of all the vertices
remain equal, and graphs remains planar (i.e, the vertices can be moved so that
the edges do not intersect).

1.2*. Let f(n) be the maximal vertex degree of a connected regular planar
graph with n vertices (the regularity means that degrees of all vertices are equal).
Find and justify upper and lower bounds for f(n).

See solution for this task in the next section.
2. Combinatorics. There is manipulator attached, which allow to build

graphs. The concept of isomorphic graphs is formulated in “terms of the ma-
nipulator” and can easily be checked in practice.

2.1. There is a connected graph with 6 vertices and with exactly one 3-cycle.
Construct all different connected graphs with 6 vertices (”different” means non-
isomorphic graphs which can not be converted one into other by dragging ver-
tices) and with exactly one cycle (the cycle contain 3 vertices)?

2.2*. How many different (nonisomorphic) connected graphs having n vertices,
and exactly one cycle comprising n− 3 vertices exist?

3. Regular expressions + combinatorics. On the problem of the ma-
nipulator is attached, checks belonging to set of objects described by a regular
expression.

3.1. Construct a regular expression that describes correct formula in the math-
ematical sense, which comprised numbers ”2”, two operations (+ and *) and the
square brackets. It is prohibited to place ones brackets inside other brackets.

Examples of correct formulas: 2; 2+2∗2; [2+2+2]∗2+[2+2]; 2+2∗[2+2]+2; [2]
Examples of incorrect formulas: 22; [2 ∗ [2 + 2]]
Solution. One possible variant: (2(+|*)|([(2(+|*))ˆ2](+|*))ˆ(2|[(2(+|*))ˆ2])
3.2. How many formulas satisfying these rules contain exactly 11 characters

(you must count all different expressions, even if they give same results after
evaluation)?

4. Logic circuits. The task is based on the manipulator, in which student
can do logic circuit from the logic elements AND, OR, NOT (each signal can be
sent to the inputs of several elements).

4.1. Construct a logic circuit which take as inputs two figures a and b of binary
number ab output three figures c, d, e of binary number cde= ab +1.

Solution. e = NOT b; d = (NOT bAND a) OR (bANDNOT c); c = a AND b
4.2*. Find upper bounds for quantity of elements of the scheme which add 1

to a binary number with n figures.
Solution. Let a(n)a(n − 1).....a(0) + 1 = b(n+ 1)b(n)....b(0) p(0) = 1; b(k) =

a(k) + p(k) = (NOT a(k) AND p(k)) OR (a(k) AND NOT p(k)); p(k + 1) =
a(k) AND p(k)

Answer: 1 + (n− 1) ∗ 5 + 1 = 5n− 3

98 A. Maytarattanakhon, V. Akimushkin, and S. Pozdniakov

5. Definition of mathematical algorithm: the Turing machine. The
task is accompanied by amanipulator, which simulate Turing machine over the
alphabet 0; 1; a; b; , where symbol denotes “Empty” symbol.

5.1. Turing machine T1 copies string of binary digits by placing copy to the
right and separating it by symbol * from initial string (symbol * initially fill
all free tape cells). The machine head at the beginning and at the end of the
algorithm execution indicates the first unit from the left. Example, the string
111011 will be converted to the string 111011*111011.

Machine T2 subtract numbers in a unary system, herewith the second number
from the left is less or equal to the first number. The machine head at the
beginning and at the end of the algorithm execution indicates the first unit from
the left. Example, the string 11111*11 will be converted to the string 111.

T3 machine multiplies numbers in unary notation. Example, the string 111*11
will be converted to the string 111111.

All mentioned above Turing machines use auxiliary symbols a and b.
Combining these machines, construct a Turing machine T , which performs

operation A2 −B2 for two numbers (A > B) in an unary notation.
Example, the string 111011 will be converted to a string 11111.
Note. All states of machines T1, T2 and T3, except for the start and final

states are different.
5.2*. How many tape cells will be used (the used cells are those where machine

head writes down any symbol at least once) by Turing machine T if number A
consists of n units, and number B of m units?

6. Propositional logic and predicates. Work with manipulator
“Tarski world”. Using this manipulator one can verify statements for figures
standing on a rectangular chequered board; these statements use unary predi-
cates: “is red”, “is blue”; binary predicates “is side by side with”, “is on the left
from” (in the column located to the left), “is above” (in a row located above).

6.1 Write down logical expression that describes only those configurations in
which all the figures located on the same row, with red figures in the interior
and blue figures on the bounds.

Answer. ∀x∀y(¬(x is above y)) AND
∀x((x is red) ⇒ ∃y(x is side by side with y) AND (y is on the left from x) AND
∃y(x is side by side with y) AND (x is on the left from y)) AND
∀x((x is blue) ⇒ (∀y((x is side by side with y) ⇒
(y is on the left from x) AND (y is red)) OR
∀y((x is side by side with y) ⇒ (x is on the left from y) AND (y is red))))

6.2*. Try to shorten number of quantifiers in the resulting logical expression
and explain transformations.

4 Solution for the Task “Graphs”

To solve a task about graphs one should notice and formulate different graph
properties. So, for example, if the degree of each vertex is k, then by multiplying
the number of vertices V by k we get the number that is twice greater than the

Olympiad in CS and DM 99

number of edges E: kV = 2E. This formula demonstrates that there exist no
regular graphs with an odd number of vertices and an odd vertices degree.

The other important pattern is the Euler formula, it holds for planar graphs.
If we draw a square shaped graphs, we will have 4 vertices, 4 edges and two
parts in which this graph divides a plane. We will call this parts faces similarly
to the polyhedrons, that may be represented on plane with these graphs: V = 4,
E = 4, F = 2.

It is obvious that these numbers are dependent. How? If we draw a diagonal,
the number of vertices will not change, and the number of edges and faces will
increase by 1. If otherwise we add a vertex in the center of the square and connect
it with one of its vertices by the edge, then the number of edges will not change,
and a number of vertices and edges will increase by 1. So, one can notice that
the sum V +F and E increase similarly when new vertices and edges are added.
Thus the expression V − E + F = 2 is constant. Our example implies that this
constant is 2. The Euler equation: V − E + F = 2.

Using these consideration one can answer the task’s questions: Let us substi-
tute the first equation into the Euler’s equation, we will have 2V + 2F − kV =
4 ⇒ 2F = 4 + (k − 2)V .

Note that every face is surrounded with at least 3 edges, thus 3F ≤ 2V ,
because we may sum up a number of edges for each face and we will count every
edge twice.

Let us return to the inferred equation and use the new inequality: 12 + 3(k−
2)V ≤ 4E ⇒ 12 + 3(k − 2)V ≤ 2kV ⇒ 12 ≤ (2k − 3k + 6)V ⇒ 12 ≤ (6 − k)V .

This inequality can not hold for k ≥ 6, thus f(n) < 6. This estimation is
enough to answer the second question.

So, the maximal degree of a vertex in a connected regular planar graph is
always less than 6. It is obvious that regular planar graph of degree 2 may be
build for any number of vertices n.

It is not hard to design an algorithm to build regular planar graphs of degree
three with an even number of vertices. (Remember, that it is impossible to have
an odd number of vertices in this case). One should draw a regular n-gon. Then
connect two opposite vertices with an outside edge. All other vertexes fall into
pairs of symmetrical with respect to the axis defined by the first two vertexes.
They should also be connected by edges.

It is also possible to invent a way to build regular planar graphs of the degree
4. One can combine two regular n-gons to obtain a regular planar graph with 2n
vertices, this demonstrates that it is possible to build an even vertices regular
planar graph starting from 6 vertices. But now we will show a way to build a
graph for any n starting from 8. We begin with a left graph on the Fig 1, it has
8 vertices. Then each time we select a 4-sided face, there will always be one. We
add a vertex inside and connect it with four vertices. Then we remove two initial
edges of the face, see Fig 1.

It is impossible to have 5 vertices, because this will lead to a complete graph
of degree 5 that is not planar. (One may use the Euler equation to show that:

100 A. Maytarattanakhon, V. Akimushkin, and S. Pozdniakov

Fig. 1. Regular planar graphs with degree 4

V − E + F = 2, 5 − 10 + F = 2, thus F = 7. Remember, that 3F ≤ 2E, but
21 > 20).

It is also impossible to have 7 vertices. Let us show that. There should be
4 ∗ 7/2 = 14 edges in a graph. Thus, the number of faces is F = 2 − V + E =
2 − 7 + 14 = 9. So, each face has about 2 ∗ 14/9 ≈ 3, 11 edges. That means,
we have all faces with 3 edges and one face with 4 edges. Let us start with the
face with 4 edges, consider it is an outer face, then we may do a small search for
variants that demonstrates it is impossible to build a graph (Fig 2).

Fig. 2. Regular planar graphs with degree 4 and 7 vertices

Now we came to regular planar graphs of the degree 5. To demonstrate that
such graphs exist, consider the graph of the icosahedron (Fig. 3). It has 12
vertices.

It is possible to build such graphs for other number of vertices by modifying
the graph for an icosahedron. We do not know for what n such regular planar
graphs exist, and we will stop here, because this is already more than enough for
the problem. Let us only note that there is no such graph for 7 vertices, because
5 and 7 are odd.

Finally, we have that f(n) < 6 for all n, f(n) >= 4 for n >= 8. f(1) = 0,
f(2) = 1, f(3) = 2, f(4) = 3, f(5) = 3, f(6) = 4, f(7) = 2.

5 Technology of DM&TI Tasks Design

The technology of tasks design includes several successive stages.

Olympiad in CS and DM 101

Fig. 3. Icosahedron’s graph

Step 1. Select topic in computer science, which is considered as one of basic
for theoretical computer science or discrete mathematics. At the same time, the
topic should be accessible to be studied at the school level.

This does not take into consideration volume in which the theme was repre-
sented in the school. The knowledges will be justified by a format of Olympiad
which allows to enter the student into subject domain gradually: for the first
time new ideas were introduced on preparatory tour, next they repeated on ex-
tramural tour and finally on general tour, revealing the winner. All tours use the
same computer manipulators, and Olympiad tasks base on concepts simulated
by these manipulators.

Step 2. At this stage manipulators to support the participants activity must
be designed and embeded to Olympiad site. The role of these manipulators is
double. Firstly, they support student in theprocess of getting acquainted with the
tasks statements and help students to understand an essence of the challenges.
Secondly, the presence of the manipulator allows to explain the formal definitions
of new concepts using the metaphor of the manipulator: it shortens the tasks
statements.

Manipulator has several different functions:

– they are used as graphic illustrations of the tasks statements;
– they play the role of laboratory for experiments with math objects;
– they are used as interface to input solutions.

If the answer in the problem is the algorithm or expression that describes a
class of objects, then manipulator includes a tools to verify students conjectures
on the sets of examples as the participants have the opportunity to create new
examples.

102 A. Maytarattanakhon, V. Akimushkin, and S. Pozdniakov

Examples

1. Correctness of constructed Turing machine was checked on examples; in
addition to prepared examples, participants can enter any set of characters
on the machine tape and step by step check machine work;

2. Correctness of the constructed regular expressions is checked on two sets of
examples: first set contain correct strings, second - uncorrect ones. These
sets of examples broaden by the participant. When participant checkes new
regular expression, examples satisfying this expression will be highlighted.

3. The correctness of statements in the module ”Tarski worlds” is checked on
a set of configurations built by participants inside a graphics area of the
manipulator.

Step 3. At this stage constructive and theoretical parts of every task should
be formulated. The constructive part of the task is related to experimental work
with the manipulator. Methodological role of this part is to prepare the student
for more complex theoretical part of problem and to give an opportunity to
collect experimental material for further generalizations.

The constructive tasks are the main type of tasks for the extramural round of
the Olympiad. But for final round of the Olympiad theoretical problems become
main type. The solutions of theoretical tasks participants gives in free form
without using an automatic checking. The answer in theoretical tasks can be
represented as in electronic or traditional printed form.

Step 4. At this stage must be developed and implemented various forms of
feedback. On the first Olympiad tour (preparation tour) feedback can be done
in the form of a hint when student input incorrect or incomplete answer. During
the extramural tour going in real time a checking of partial solutions on some
parameters can play role of feedback, which helps participants to complement
or clarify solution.

Step 5. In this stage must be prepared all tutorial materials to demonstrate
solutions for participants after the end of previous round of the Olympiad and
serve as a means of preparing for the next round.

6 Technology of Manipulators Design

As mentioned above, the manipulator is essential part of methodological support
of the Olympiad.

Manipulators:

– allow to perform experiments in the process of task solving;
– provide an environment for constructive tasks which help participants to

quickly enter in the tasks topics;
– allow to formulate tasks statements by more clear language, based on the

manipulator environment without formal mathematical definitions;
– help to formulate hypotheses for answers to theoretical questions by general-

ization of experiments and solutions of constructive tasks;- provide feedback
in experiment progress;

– can be used as interface for inputting of solutions.

Olympiad in CS and DM 103

According to these aspects manipulator must provide the following opportu-
nities:

– play a role of visualizer and have an intuitive interface;
– give possibility to construct complete or partial solutions;
– verify solutions on the sets of examples;
– give feedback to correct wrong or incomplete solutions;
– save solutions being made during round of Olympiad.

Let’s now illustrate the manipulator device for tasks on logic circuits (Fig. 4).
Manipulator allows to construct any logic circuit from any number of given

elements with given number of inputs and outputs. In the proposed manipulator
to construct circuit we need to pull input or output of element to the desired
contact. The appearance of a red dot indicates the connection has occurred. To
remove the item, we drag it through the lower boundary of work area.

Manipulator allows the participant to verify the circuit at all possible input
sets. For this purpose we use buttons at the top of the work area to get next
binary set or go back. The signal flow through the wires is vizualized by color
of conductors.

Constructed circuit can be saved as a task solution.

Fig. 4. The manipulator device for tasks on logic circuits

7 The DM&TI-2015 Results

In extramural round of the Olympiad participated about 350 students, about half
of them took the opportunity to participate in preparation tour. Extramural tour
consisted only of constructive problems, three hours for many of them appear
to be not enough to find solutions for all six problems, so the internal round took

104 A. Maytarattanakhon, V. Akimushkin, and S. Pozdniakov

only 47 people. Participants of internal round are required to solve 6 constructive
problems with 3 points for each, and 6 theoretical problems with 6 points for
each (each theoretical task was based on corresponding constructive task). The
following rules were used for rewarding:

– participants with at least 24 points scores ought to be awarded a diploma of
1 degree,

– participants with scores from 18 to 23 points ought to be awarded a diploma
of 2 degree,

– participants with scores from 12 to 17 points ought to be awarded a diploma
of 3 degree. Results of DM&TI-2015: diplomas of first degree - 0, diplomas
of second degree - 2, diplomas of third degree - 7.

8 Conclusions

Analysis of all DM&TI-2015 rounds of the Olympiad result in following conclu-
sions:

1. Presence of manipulators in theoretical tasks allows to engage in solving
tasks those students, who still not possess the ability to work with problems
in formal-theoretical formulation. Constructive problems are solved by ten
times more participants than the theoretical ones.

2. Using of the same manipulators in different rounds of the Olympiad allow
participants to enter in a subject area gradually, prepare to solve theoretical
problems through experiments and solution of constructive tasks.

3. Constructive tasks on manipulators with logical circuits and logical state-
ments are used by teachers in the classroom and extra curricular activities
and assessed them as a help in the presentation of questions in theoret-
ical computer science. As to tasks in discrete mathematics, teachers give
ambiguous responses. For example graph conception some teachers are not
considered as a topic of computer science; some teachers suggested to find a
more practical tasks in discrete math.

References

1. Hromkovi, J.: Theoretische Informatik. Formale Sprachen, Berechenbarkeit, Kom-
plexittstheorie, Algorithmik, Kryptographie, 5th edn., 349 p. Vieweg+Teubner
(2014) ISBN: 978-3-6580-6432-7

2. FES: Secondary (full) general education. FGOS: Srednee (polnoe) obshhee obra-
zovanie, http://standart.edu.ru/catalog.aspx?CatalogId=4099

3. Pozdniakov, S., Gaisina, S.: New trend in Russian informatics curricula: inte-
gration of math and informatics. In: Local Proceedings of the 7th International
Conference on Informatics in Schools: Situation, Evolution and Perspectives,
pp. 91–100, http://www.issep2014.org/wp-content/uploads/2014/09/issepr

2014 proceedings book.pdf

http://standart.edu.ru/catalog.aspx?CatalogId=4099
http://www.issep2014.org/wp-content/uploads/2014/09/issep_2014_proceedings_book.pdf
http://www.issep2014.org/wp-content/uploads/2014/09/issep_2014_proceedings_book.pdf

Olympiad in CS and DM 105

4. Pozdnjakov, S.N., Fomin, S.V.: Pervaja Vsesojuznaja matematicheskaja olimpiada
uchashhihsja srednih proftehuchilishh (zadachi jeksperimental’nogo tura). zh.
Matematika v shkole, N2 (1986)

5. Bashmakov, M.I., Pozdnjakov, S.N.: Matematicheskie olimpiady v srednih profte-
huchilishhah. In: Prosveshhenie, M. (ed.) Biblioteka Uchitelja Matematiki.
Matemati-cheskie olimpiady (1988)

6. Carteli, A., Dagiene, V., Futschek, G.: Bebras Contest and Digital Competence
Assessment: Analysis of Frameworks. International Journal of Digital Literacy and
Digital Competence 1(1), 24–39 (2010) ISSN 1947–349-4

7. Pozdniakov, S., Posov, I., Pukhov, A., Tsvetkova, I.: Science Popularization by
Organizing Training Activities Within the Electronic Game Laboratories. Interna-
tional Journal of Digital Literacy and Digital Competence (IJDLDC) 3(2), 17–31
(2012)

8. Pozdnyakov, S., Posov, I., Akimushkin, V., Maytarattanakon, A.: The bridge from
science to school. In: 10th IFIP World Conference on Computers in Education,
WCCE 2013, Torun, July 2-5 (2013)

9. Tedre, M., Moisseinen, N.: Experiments in Computing: A Survey. The Scientific
World Journal 2014, Article ID 549398 (2014)

10. Naps, T.L., Rößling, G., Almstrum, V.L., Dann, W., Fleischer, R., Hundhausen,
C.D., Korhonen, A.: Lauri the role of visualization and engagement in computer
science education. ACM Sigcse Bulletin 35(2), 131–152 (2003)

11. Ilya, P., Sergei, P.: Implementation of virtual laboratories for a scientific dis-
tance game-competition for Schoolchildren. In: The 2013 International Conference
on Advanced ICT (Information and Communication Technology) for Education
(ICAICTE 2013), Hainan, China, September 20-22 (2013)

12. Contest Management System, https://github.com/cms-dev/cms
13. Akimushkin, V.A., Majtarattanakon, A., Pozdniakov, S.: Tehnologii avtomatizacii

raboty s issledovatel’skimi zadachami na primere zadachi Chasy-kalendar. Izvestija
SPbGJeTU LJeTI 4, 34–41 (2014)

14. Akimushkin, V., Korepina, I., Puhov, A.: Distance school in discrete mathematics:
learning algorithms on graphs. In: The 12th International Congress on Mathemat-
ical Education (ICME 2012), July 8-15. COEX, Seoul (2012)

https://github.com/cms-dev/cms

CS Unplugged: Experiences and Extensions

Irena Demšar1 and Janez Demšar2

1 Alojzij Šuštar Primary School, St. Stanislav Institution, Ljubljana
2 University of Ljubljana, Slovenia

Abstract. CS Unplugged is a set of activities for teaching CS concepts
without using computers. We translated it to Slovenian and used it in
different contexts, from the classroom and afterschool activity to summer
school to professional development courses. In the paper, we summarize
our adaptations, extensions and experiences.

1 Introduction

CS Unplugged (csunplugged.org) is a set of activities developed in mid-nineties
by Tim Bell, Ian Witten, and others. It builds on the premise that computer
science is not about computers (just as astronomy is not about telescopes) and
does not need to be taught with computers, which are often just distracting. As
the lack of skilled engineers, especially in the western hemisphere, is becoming
more and more acute, the school curricula are shifting from teaching basic lit-
eracy and use of technology back to teaching the CS concepts, which leads to a
deeper understanding of technology and, consequently, prepares pupils to even-
tually become its creators and not only consumers. With this paradigm shift,
CS Unplugged is gaining traction in many countries around the globe.

1.1 The Slovenian Translation

We translated the activities to Slovenian language (vidra.si). One of the au-
thors (ID) is a primary school teacher with 24 years of teaching experience, and
the other (JD) teaches at the Faculty of Computer Science.

Our translation is augmented by several new activities, and some original
activities are extended or renewed (e.g., finding a phone book in 2010s may
be difficult). Some changes were inspired by the material from MATHmaniaCS
(www.mathmaniacs.org), cs4fn (www.cs4fn.org), Chris Bishop’s Christmas lec-
tures (www.richannel.org/christmas-lectures/2008/2008-chris-bishop)
and similar. Some changes were influenced by the equipment and materials that
are typically found in (or missing from) Slovenian schools. Finally, we expanded
the explanation of the CS background in hope to also attract teachers with-
out much (or any) knowledge of computer science. We try to approach them –
and abate their fears – by presenting CS as a somewhat formalized everyday
reasoning.

We added more kinesthetic approaches and prepared alternative setups that
allow more activities to be performed outside. We emphasized the role playing

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 106–117, 2015.
DOI: 10.1007/978-3-319-25396-1_10

csunplugged.org
vidra.si
www.mathmaniacs.org
www.cs4fn.org
www.richannel.org/christmas-lectures/2008/2008-chris-bishop

CS Unplugged: Experiences and Extensions 107

aspect. For instance, in the original Deadlock activity the children pass fruits to
each other, while in our setup children themselves walk around, by which they
get more literally deadlocked. Another emphasized feature are puzzles, surprises
and magic tricks; these tickle the children’s brains. We sometimes stray from CS
towards pure mathematics or general problem solving.

We also shifted several activities towards gamification. We introduced com-
petitions as a form of motivation. These also promote team work and sometimes
require the group to organize. An example of such activity is the decoding of the
text written in binary. An even more interesting game is the already mentioned
adaptation of the deadlock activity, which allows for observing (and hopefully
improving) the social dynamic of groups.

1.2 Setup

We are gaining experience and getting new ideas by conducting these activities in
different contexts. We first started with a few activities in the classroom during
mathematics in the fourth grade. These included binary numbers and sorting
algorithms as well as some newly developed activities. In 2012/13, we led an
afterschool activity (at ID’s school) that covered most of the CS Unplugged
material. We are also in contact with another teacher who organized a similar
activity for pupils in the second grade (7-8 years). She adapted some activities
and did not cover the later, more algorithmic parts, but otherwise reports that
the activities were very popular among children.

In the summers of 2013 and 2014, the authors of the paper and a group of
around ten volunteers from the Faculty of Education and the Faculty of Com-
puter Science, University of Ljubljana, organized summer schools for children
from K4 to K6. Summer schools were free of charge (except for the small fee to
cover the meals). In the first year, the school was attended by 42 children and
in the second year we limited it to 30.

We also use parts of this material for other promotional events, like the Days
of computer science at the Technical Museum Bistra, promotional activities in
high schools, events at science festivals and similar.

Finally, we organize professional development courses for teachers, in which
the material is presented in the allotted time frame of 24 hours. We have also
prepared smaller-scale presentations and local conference workshops. The pre-
sentation is “hands-on”: teachers learn the activities in the role of the children,
after which we explain the computer science background and give some recom-
mendations and warnings regarding the execution of the activity.

2 Experiences and Adaptations

We shall review some activities performed in the contexts listed above. The
review is not systematic as we bias it more towards interesting new ideas and
anecdotes. We assume the reader’s familiarity with the CS Unplugged activities.

108 I. Demšar and J. Demšar

2.1 Binary Number Representation

Our first session begins with attracting the attention by asking the group about
the largest number that they can show with their hands – and we act surprised
when they answer 10. We promise to show them how to count to much more.
We then proceed with the cards with dots from the CS Unplugged activities.

We always continue the activity so that the attendees (children or adults)
make squats, either holding the cards or, later on, without them. We ask them
which number between 0 and 31 cannot be represented in such a way; the ques-
tion whether it is possible to represent all numbers the answer would be too
suggestive, while the which number formulation tricks the children as well as
adults into thinking.1 After some guessing – and trying these numbers out, al-
ways discovering that we can represent any number they suggest – they infer
that probably all numbers can be represented like this.

The obvious way to prove this is to count from 0 to 31 by making squats.
They realize that the person representing the lowest bit will get muscle fever
while the highest will not break a sweat. This can lead to discussion about odd
and even numbers. We discover an update rule (the lowest bit goes up and down,
while everybody else changes his position when his left neighbour goes down).

We continue this by pondering whether this also holds for higher numbers
and suggest adding five more bits to the existing five. The children are amused
to realize that the lowest bit would then need to make 512 squats instead of just
16. In the later activities, we often refer to this finding, as it is strongly related
to the exponential time complexity as well as, on the other side of the coin, the
logarithmic complexity of bisection.

We then learn to count to 31 with fingers of one hand, for amusement and for
later use. In the second session of the afterschool activity, one girl had a bandage
on her second finger due to sport injury. We asked her to show number 17. She
could not, which led to an interesting discussion about which number she can
show and which not. Throughout our session in afterschool activity, the lessons
often included a lot of mathematics, which was not the case in the summer
school. The reason may be that the former took place in the school and with
a smaller group of calmer children, while the latter took place during holidays
with a larger group of lively (and louder) children.

Making squats is also an excellent icebreaker when presenting the material to
adults.

In professional development courses, we emphasize that the purpose of the
activity is not to learn and practice the conversion between the binary and the
decimal representation, but to understand the essence of the binary system and
its use. The take-home message should be that the binary system is practical and
used in computers since it allows us to represent any number with a sequence
of two-state objects or events and that each additional bit doubles the range
(with important consequences for later discussion of time complexity). We find
parallels of these properties in the more familiar decimal system.

1 Another, even more conducive question (although it represents only the other side
of the same coin) is which number can be represented in two different ways.

CS Unplugged: Experiences and Extensions 109

2.2 Text Encoding and Decoding

To put storing the numbers in binary format to use, we next show how to encode
or transmit one-word messages by a sequence of two-state objects or events.
When we first tried it during the afterschool activity, the children wrote down a
four-letter word to one of the authors, who “transmitted” it to the other author
by singing a jazzy song similar to those in the “Modems Unplugged” activity.
We later expanded this and the puzzle about the trapped Tom into a larger
activity, in which one child in a group is given a four-letter word and has to
transmit it to other members of the group using the means we provide, such as a
set of black and white pieces of paper hung from a rope by clothespins, clapping
and thumbing, banging a smaller and a larger pot with a wooden spoon and, in
general, making noise in various (binary) ways.

We have encoded the first two paragraphs of Professor Branestawn stories
into 0s and 1s and put it onto 180 enumerated strips of paper, one word on
each. We split the children into four groups of ten children, gave each one set
of papers (thrown on the desk to shuffle them) and let them compete which
group will be the first to decode the entire text. We underestimated the effort
needed; the task required around one hour. Fortunately, we also underestimated
the children’s perseverance and the effect of gamification. When parents came
to pick them up, the children told them to wait until they are done decoding.

The task is a good example of how the binary system should not be taught,
i.e. by training the mechanical conversion back and forth. Yet it was instructive
for another reason. One group had two very bright children who soon learned to
read most of the letters by just looking at the binary code (e.g., they learned that
01010 was the letter I), yet the group finished the last due to poor organization.
Other groups pipelined the process and, in particular, organized the sorting. One
group, following a tip by one of the instructors, divide-and-conquered the task
of sorting the words by splitting them into three groups with numbers 1–60,
61–120 and 121–180, which they sorted by dedicating three team members to
this bottleneck of the decoding process. Another group wrote the numbers from
1 to 180 onto a few sheets of paper and instead of sorting the paper strips they
just wrote the decoded words beside the corresponding numbers – essentially
inventing a random-access data structure.

While the task missed the intended point, it has hit another one: the groups
applied some concepts from computer science, like pipelines, divide and conquer,
data structures with random write access to solving a real-world problem – which
is the essential purpose of teaching algorithmic thinking to general population.
They also learned that organization – the architecture of the system, in CS terms
– might matter more than speed of its parts.

We ourselves learned about the unbelievable persistence of children and the
power of gamification.

2.3 Error Correction

We usually introduce error correction by the magic trick suggested in the CS
Unplugged. In the summer school though, the activity was introduced by a

110 I. Demšar and J. Demšar

brilliant show by two world-famous telepaths. Some children bought it, while
others considered it a good trick. Children also challenged one of the authors
(JD) whether he too possesses any telepathic powers. This coincided with their
idea about turning two cards instead of just a single one, which makes the error
correction ambiguous. He confessed that he is not much of a telepath and was
not sure about how accurately he can do it. . . It turned out that the telepath, to
whom JD sent the information “did not hear well and could not decide between
two possible changes”.

The activity continues by teaching the children how to perform the trick and
practicing it with their schoolmates. In the afterschool activity, some children
posed interesting questions. The bottom right card corresponds to the parity
of the control row and, at the same time, the control column, so they were
interested if there can be a conflict between these two. One girl found an excellent
constructive proof that this cannot happen: she started with a matrix of 0 and
then said that whichever configuration we may want to set up, we can turn one
card at a time and, consequently, turn the corresponding cards in the control
row and column, and also the bottom right card. As no conflict can arise within
this operation, there can also be no conflict when we reach the desired setup.

Another question was whether we can control oddity instead of parity. We did
not know the answer and gave it in the next session. Creative children can easily
ask questions that a doctor of computer science has not considered before.

Unlike the original CS Unplugged activity, we do not continue with ISBN
codes, but with 13-digit EAN, which are now more common and also easier to
compute. We gave the children various item like boxes and wrappings instructed
them to compute the EAN checksums (across all 13-digits, including the con-
trol) without telling them what the result should look like. One of instructors
pretended to be specially skilled in fast calculation; he was able to check their
results in a bliss, rejecting the wrong ones (after trying again, children found he
was always right). He kept writing the correct ones on the blackboard, until the
children spotted the pattern, that is, that all correctly computed numbers are
divisible by ten. Note again the element of magic and gamification.

We rounded up the activity by explaining that, similarly to the cards in the
parity trick where the last card in a row or column does not contain any infor-
mation, bar code readers also use the last digit to verify the correctness of the
code.

If the time permits and the children are interested in mathematics, we show
how to verify whether the sum of two large numbers is correct by adding the
digits of the summands and the digits of the sum. Children often respond by
verifying whether the trick also works on “really large” (say 20-digit) numbers
(they apparently perceive a verification with large numbers to be more convinc-
ing). We explain the background as deeply as they want, which typically goes
up to showing why the sum of digits of a number gives the remainder of its
division by 9. This “trick” belongs more to math than to CS, yet it is related to
the main activity and the children find it useful (one child complained that the
math teacher should have told them about this).

CS Unplugged: Experiences and Extensions 111

2.4 Text Compression

We have shown the original version of the text compression activity to individual
children, who did like it and enjoyed constructing other sentences that compress
well. We have however found it difficult to demonstrate that the compressed text
indeed takes less space than the original; the compressed string BAN(2, 3) looks
larger than the original, BANANA.

Tim Bell told us that another author of CS Unplugged, Mike Fellows, used to
draw Huffman trees on the ground and let the children “decompress” messages.
We thus prepared a few dozens of roughly 20-character sentences and encoded
them using a Huffman tree, a Morse tree and a binary tree of depth 5 with letters
arranged from left to right. Each sentence is encoded by a sequence of letters L
and D (short for left and right in Slovenian). We draw one or two trees of each
kind on the ground and let the children decode messages by walking on them.

It is difficult to walk around while not losing track of the sequence at the
same time. Children themselves solved this by forming pairs, in which one child
is giving instructions (left and right) and the other is walking and shouting out
the letters when (s)he reaches a leaf. The obvious potential for quarreling made
the activity even more fun.

The limiting factor here is the physical size of the trees; smaller trees cannot
accommodate a large number of children, while larger trees may soon occupy too
much space. On several occasions we performed this activity indoors. Instead of
drawing the tree we used painter’s duct tape, which is cheap and can be removed
without leaving any marks. In the future, we are considering marking the tree
branches with ropes and tent pegs, which will allow for larger trees, possibly
on a hill, which would allow us to turn decoding into an exhausting running
competition. This may not directly result in a better understanding of text
compression at all, but it will add some sweat, mud and fun.

This activity and the error correction follow the text encoding; we justify
them by observing that communication, for instance by singing the high- and
low-pitch tones, is error prone and takes too much time, hence the need for error
correction and compression.

2.5 Programming Languages

We put the activity about programming languages before other algorithmic ac-
tivities in order to emphasize the importance of precise instructions. When we
later play with, for instance, sorting algorithms, we ask the children to exactly
describe the algorithm they discovered (or else we follow the instructions they
provide and misunderstand them wherever possible2).

Although the activity involves just drawing simple pictures, it was always
popular with children of different ages as well as teachers attending professional
development courses.

2 See http://youtu.be/QZL2esc8Hso from the Educational Robots for Absolute Be-
ginners CS4HS MOOC for an example.

http://youtu.be/QZL2esc8Hso

112 I. Demšar and J. Demšar

At the summer schools, we formed groups of four children in which one of
them was giving instructions to others. On other occasions, we kept a single
group and let a single person give instructions to all participants. The children
who follow instructions often grow impatient and believe that the instructions
are unnecessarily confusing, not realising the difficulty of the job. We came up
with the following twist: instead of showing the group the original picture after
they finish drawing, we invite the loudest heckler to do a better job. Their typical
first reaction is: “Oh, that! This is simple.” It often happened, though, that the
picture (s)he has initially drawn was also consistent with his (supposedly better)
instructions. We have sometimes re-drawn the same picture for four or five times
before showing the actual picture to the group.

We conclude with a discussion about programming languages. Especially when
working with older children and adults, we draw their attention to the vocabu-
lary: for some pictures they use terminology from geometry or general knowledge
(like “David’s star”). We note that different programming languages have dif-
ferent syntax reflecting their different intended uses.

We developed another activity related to programming languages. We pre-
pared cards for simple set of word transformations (removing and adding let-
ters, reversing words and similar).3 We show how to turn an apple into a sausage
(JABOLKO and KLOBASA in Slovenian). Then we distribute cards and assign
the participants a few transformation tasks.

We then introduce “computing machines” in the form of trees that represent
arithmetic expressions.4 We arrange the children in a tree. Leaves have a role
of an input, random input or a constant, and internal nodes perform operations
(addition, subtraction, multiplication) up until the root announces the result.

After some training we let the children construct a machine for computing
the perimeter of a rectangle. When trying this at school, children constructed a
machine that computed the perimeter as 2×a+2+ b, with the children “a” and
“b” having the role of measuring the longer and the shorter side. The machine
is incorrect (+ instead of ×), although the children wrote the correct formula
on the whiteboard. Instead of telling them, we used the “malfunctioning” device
to compute the perimeter of an A4-sheet of paper (3 by 2 dm). The result was
correct since 2×3+2+2 = 2×3+2×2.We then gave them one third of the paper
(2 by 1) to discover that the program, which works once, does not necessarily
work for all inputs. Initially they assumed that some participant made a wrong
calculation, then they checked the tree step by step until discovering the error.
Their accidental mistake led to an unplanned lesson about debugging, as well.

Months later, these children encountered tree-like representation of arithmetic
expressions during a regular mathematics class. Even those who are otherwise
underperforming grasped the concept without needing any special explanation.

3 Inspired in part by the task Text machine from the Beaver competition 2012; see
e.g. www.beaver-comp.org.uk/uploads/2/1/8/6/21861082/bcccontest2012.pdf.

4 Inspired by the activity All very logical (Chris Bishop, Christmas Lectures 2008),
www.rigb.org/christmaslectures08/html/activities/all-very-logical.pdf .

www.beaver-comp.org.uk/uploads/2/1/8/6/21861082/bcccontest2012.pdf
www.rigb.org/christmaslectures08/html/activities/all-very-logical.pdf

CS Unplugged: Experiences and Extensions 113

2.6 Bisection

We used the Battleship activity on a few occasions, but later replaced it with a
simpler and shorter one, which introduces bisection. Fifteen children are holding
hidden sheets of paper with numbers, and another child gets five candies. His
job is to find some given number. The children holding the numbers reveal the
number only if they are paid a candy. We try this exercise with numbers in
random order or with ordered ones. Children soon discover that their chances of
keeping any candy at all in the former case are slim, while in the case of sorted
numbers they easily discover the bisection algorithm.

We then relate bisection to the binary number representation. We play “guess
the number” so that one child thinks of a number and the instructor’s job is to
guess it. Instead of the usual “is your number ≥ 8”, we tell them to show the
number with their fingers, while hiding the hand under the desk. We then ask
about the state of each finger. This makes it clear that the number of questions
needed to guess any number equals the number of fingers needed to show it.

In discussion, we explain why asking about the thumb is the same as asking
whether the number is higher or equal to 16 (and so forth). Since we know –
from the activity about the binary numbers – that each additional digit allows
for doubling the range of numbers, the same holds for bisection: an extra candy
doubles the range of numbers, which, told from the other side, means that dou-
bling the number of children in the motivation example would require just a
single extra candy. To further emphasize the power of bisection, we note that
if they would mark a single atom in the visible universe, we would be able to
“guess the atom” in roughly 250 guesses (assuming that the children already
know about atoms).

While the notion of logarithmic time complexity can remain on the intuitive
level, the discussion during the afterschool activity went so deep that we gave
in and introduced the word “logarithm” to our vocabulary. We defined it as the
number of times we can divide a number by two before we get to 1 or less.

2.7 Sorting Algorithms

In the activity related to sorting algorithms we replaced film canisters by plastic
yogurt bottles, which are abundant in schools. Since they can hold more water,
the differences in weights are larger, and we can use imprecise scales made of a
plank with a nail glued at its middle.

When we tell the children to sort a set of bottles, they will almost always
discover selection sort (and, in rare cases, insertion sort).5 This is fortunate since
the number of comparisons, if performed correctly, is always equal. We find the
reason for this, derive a general rule and compute the number of comparisons
for different number of bottles to discover its quadratic behaviour. With older
children (K7 and above), we introduce a general formula n(n− 1)/2 and reason

5 While bubble sort is often discovered by programming beginners who try to invent
a sorting algorithm, its limitations are not natural when the objects are not stored
in cells (arrays). We never saw children discover it when sorting bottles on a desk.

114 I. Demšar and J. Demšar

about why the only important part is n2. We thus introduce the intuition behind
the asymptotic time complexity and the big-O notation.

After letting the children to (unsuccessfully) try to invent a faster algorithm,
we show them the first step of quicksort. We propose to split the bottles into
the lighter and the heavier than a randomly chosen bottle. (For a greater effect,
we cheat by remembering which bottle was in the center of the sorted sequence
before randomly shuffling them.) We put the reference bottle in between the
groups and note that the bottles are not ordered yet. At this point, the chil-
dren always suggested repeating the same procedure on both sides. The children
are therefore not afraid of recursion (in contrast to CS students). We let them
practice the algorithm and count the number of comparisons.

One girl asked us about the time complexity of quicksort. We told her that
the number of comparisons depends upon chance and computing the average is
difficult, but promised to explain the worst case later on. After a few seconds
she said: “Oh, I know, it’s the same as before.” (We did not measure the time
an average CS student would need to realize this on his or her own.)

We occasionally also try bubble sort. We use clothespins to attach numbers
to children’s shirts and we put them in a line. They then pass a stick from left
to right, and the two children holding a stick swap their places if the left one
has a lower number than the right.

Trying to show merge sort was a great failure. Showing a single step of merg-
ing two sorted runs into a single one works. Merge-sorting 16 children using a
parallel algorithm – the story is that we have 16 lanes merging into one, with 15
policemen directing the traffic – does not work due to traffic jams occurring in
the later merges. Unfortunately, we tried this for the first (and last time) with
not 16 but 40 children on a parking lot in a simmering hot summer afternoon.

2.8 Sorting Networks

We gamified the sorting networks activity. We split the children into groups
of six and give each child a number. Teams are marked with different colors.
Instead of walking across the network drawn on the ground, we use the trees in
the park as nodes. We marked them with numbers in no particular order. At
each tree we put the instructions to wait for the team mate (somebody with the
same color mark); after they both arrive, they compare their numbers and this
determines the tree to which each of them should run. The final nodes are on the
parking lots, one color-coded lot for each group. After the signal, the children
start running between the trees. When all member of the group arrive, we check
whether they are sorted correctly (which looks like magic); if they are not, the
whole groups has to start again.

The activity in this form does not teach them about sorting networks: it serves
as a fun game with a lot of running, but also makes them curious about how this
actually works. To satisfy the curiosity, we introduce them to sorting networks
which we draw on the ground in advance, let them construct their own networks
and so forth.

CS Unplugged: Experiences and Extensions 115

2.9 Deadlock

Deadlock is one of the favourite activities. We do not use the activity as proposed
in the CS Unplugged but its equivalent from MATHmaniaCS, in which we have
a graph with 9 nodes, 7 of which are colored with unique colors and 2 are empty.6

We form groups with 7 children. Every child in a group is marked by one of the
nodes’ colors. We put the children onto nodes in random configuration. They are
allowed to move between the connected nodes, but only if the destination node
is free. The goal is achieved when everybody reaches the node of his (her) color.

In the competition, they soon realize that they can only win as a team and
an individual member may need to sacrifice his achieved (sub)goal to let the
others reach theirs. After a few rounds, we spice it up by prohibiting any form
of communication. Next we constrain them by introducing a “token”: only the
person holding the token may move. The token can be passed arbitrarily between
the players, and they are allowed to communicate. Finally, they must solve the
tasks with the token and without communication. The token is already proposed
in MATHmaniaCS, and the no-communication rule is our idea that forces the
children to consider the needs of the others and give way to them without being
asked. Working in silence forces the group to come up with a common plan and
cooperate without being able to discuss it.

We once had a problematic boy who happened to have the color of the most
central node. After getting there, he refused to give way to others and the group
was unable to solve the task at all.

We tried the game during a gym class, first with girls and then with boys.
The girls planned and solved the task with ease. The boys, who have not seen
the approach of the girls, quarreled and moved randomly, until one of them took
the role of the leader and directed the others – without success until realizing
that he himself has to move from the central node to let the others pass.

Children like this game. Many teachers also found it interesting due to its
cooperative problem solving aspects. We also tried this game with a group of
children attending an (non-CS Unplugged) event for socially underprivileged
children. The result showed they were far less collaborative than other groups,
showing the effects of living in such social environment.

2.10 Algorithms on Graphs

We use the minimal spanning trees problem to stress the importance of giving
and following a formal algorithm description. Furthermore, we show how graphs
can provide a useful, cleaner abstraction of the data.

The aspect of a graph as an abstraction is even more evident in graph coloring
algorithms. For the initial motivation, we give the children the task of scheduling
afterschool activities. We find a solution without using any particular algorithm.
We then introduce the problem of map coloring and abstract the maps into
graphs. We return to the scheduling problem and show its solution using map

6 mathmaniacs.org/lessons/16-deadlock/index.html

mathmaniacs.org/lessons/16-deadlock/index.html

116 I. Demšar and J. Demšar

coloring. Finally, we show the relation between graph coloring and sudoku (we
use a 4-by-4 color sudoku). Our aim is to demonstrate how the same algorithm
can be used for solving multiple seemingly unrelated problems.

Before this activity, children already meet graphs for several times. Scheduling
is the first problem in which the nodes do not correspond to some physical places
but to more abstract concepts (afterschool activities). We did not feel that 10-12
year old children have any problems with this abstraction.

When discussing the dominating sets problem, we recapitulate the time com-
plexities, from bisection with logarithmic complexity, random search with linear
complexity, sorting with quadratic complexity to the NP-complete dominating
sets. We do not explicitly list graph coloring as an NP-complete problem since
the children find the task of graph coloring an easy one (while, of course, using
simple heuristics and guessing to find the optimal solution for a simple graph).
Dominating sets, on the other hand, are a clear example of a difficult task.

Graph algorithms conclude the arc from binary numbers and various encoding
and compression tasks, to giving instructions, to algorithms, to time complexity.
The remaining topics present two specific areas of computer science.

2.11 Cryptography

Cryptography is an interesting and popular subject. We expanded the related
activities to several hours, in which we show different cyphers, including the
Vigener cypher using a wheel that we designed for this purpose.7

We also use the Sharing secrets for short introductions to the essence of com-
puter science. The original activity suggests income as the personal detail that
we do not wish to reveal. This is does not work well most age groups. Instead,
we tell them they want to use an elevator so they have to work out their total
weight. Since we typically do this in presentations in highschools and for older
audiences, we try to involve girls or women, to play on the stereotypical premise
that they are not ready to reveal their weights. We spend plenty of time trying
to figure out the solution, so we can, in the end, after discovering it, present
the computer science as the art of finding solutions for seemingly unsolvable
problems.

2.12 Artificial Intelligence

The CS Unplugged activities related to artificial intelligence are focused on the
discussion about what does the term AI actually mean. The motivation for the
discussion is an “intelligent piece of paper” that never loses a game of tic-tac-toe.
We lead the children into saying that it is not the paper that is intelligent, but
the person who wrote it. They admit that a computer that would learn such a
strategy by itself would indeed be intelligent.

This naturally leads to an activity, which is not described at the CS Un-
plugged: the Sweet computer,8 originally by Martin Gardner, but inspired by

7 vidra.si/javna-gesla/Pripomoček za Cezarjevo in Vigenerjevo kodo.pdf
8 www.cs4fn.org/teachers/activities/sweetcomputer/

www.cs4fn.org/teachers/activities/sweetcomputer/

CS Unplugged: Experiences and Extensions 117

the AI pioneer Donald Michie. The children “construct” the computer and then
they play against it until the computer, which initially draws dumb moves at
random, becomes unbeatable.

Since this computer learns to play, it is, by their own definition, intelligent.
Even younger children become quite involved in discussions about why this still is
not a “real intelligence” and argue that the one who “programmed” the computer
to learn did the intelligent job. With adults, we conclude by the Searle’s Chinese
room argument and the Wittgestein’s Beetle in the box.

3 Conclusion

CS Unplugged is an excellent inspiration for teaching computer science concepts.
It can be used for children as young as 6, as well as for adults. Even the CS stu-
dents who already absolved the typical courses in algorithms and data structures
said that exposure to these activities and thinking about those concepts in real-
life-like scenarios have deepened their understanding of the subject.

Our adaptation adds even more kinesthetic learning and gamification. Both
are particularly important in the context of summer schools. Moreover, CS Un-
plugged is planned to be included in the elective subject “computer science” in
the 5th grade of primary schools, starting in 2015/16. The adaptation is aimed
particularly at teachers without a proper training in CS. While this may provide
a starting point for them, teaching concepts is much harder than teaching facts
and recipes like the conversion between binary and decimal number representa-
tion: it requires a broader and deeper knowledge of computer science, to allow
the instructor to answer questions and to let her or him be led by the children’s
interests and questions, which is the only way to turn the lesson into an inspiring
and captivating experience.

Three years ago, two very gifted 11-years old girls were not interested in
computers and refused to join the CS afterschool activity. We tricked them by
hijacking another afterschool activity and presented the CS Unplugged mate-
rial there. They enjoyed it and later participated in the summer school. Next
year, they attended activities based on Scratch and the summer school about
AppInventor. This year we have, upon their request, taught them Python. They
achieve excellent results at Bebras competition, they explain recursion to their
younger mates, read CS-related popular books and want to use PGP in their
e-mails. And they say they know what they wish to be when they grow up.

Acknowledgments. We would like to thank the students and children who
participated in organization of described events and thus helped shaping the ac-
tivities. Particular thanks to Teja Šavs who is the co-author of the new activities
described in section 2.5.

Computing at School in Sweden – Experiences from
Introducing Computer Science within Existing Subjects

Fredrik Heintz, Linda Mannila, Karin Nygårds, Peter Parnes, and Björn Regnell

Linköping U., Linköping U., Sjöstadsskolan Stockholm, Luleå U. of Tech., Lund U., Sweden
fredrik.heintz@liu.se, linda.mannila@abo.fi, karinnygards@gmail.com,

peter.parnes@ltu.se, bjorn.regnell@cs.lth.se

Abstract. Computing is no longer considered a subject area only relevant for a
narrow group of professionals, but rather as a vital part of general education that
should be available to all children and youth. Since making changes to national
curricula takes time, people are trying to find other ways of introducing children
and youth to computing. In Sweden, several current initiatives by researchers and
teachers aim at finding ways of working with computing within the current cur-
riculum. In this paper we present case studies based on a selection of these ini-
tiatives from four major regions in Sweden and based on these case studies we
present our ideas for how to move forward on introducing computational thinking
on a larger scale in Swedish education.

1 Introduction

Computing is no longer considered a subject area only relevant for a narrow group of
professionals, but rather as a vital part of general education that should be available to
all children and youth. The December 2014 issue of ACM Inroads featured a special
section on early computing education. The articles highlighted several questions related
to the when, what and how of introducing computing prior to university level [1].

In October 2014, the European Schoolnet published a report on the current status of
computing at schools in 20 European countries [15]. According to the report, a majority
of the countries are introducing computing (or programming) at primary and secondary
level, either as a subject on its own (e.g. England), in specific IT courses (e.g. Belgium
and Estonia) or as an interdisciplinary strand in other subjects (e.g. Italy and Finland). In
several countries, this work is, however, still in a very early phase, and generally there is
no clear consensus on what computing education at primary and secondary level should
entail or how it should be introduced into the education system.

Since making changes to national curricula takes time, people are trying to find other
ways of introducing children and youth to computing. In Sweden, several current initia-
tives by researchers and teachers aim at finding ways of working with computing within
the current curriculum. While focus in several countries is put on programming, we be-
lieve this to be too narrow focus. If you only focus on programming and code, you risk
missing out on general and useful skills such as dividing problems in smaller parts, solv-
ing problems in creative ways, finding patterns, thinking logically, designing algorithms,
working in a structured manner, making generalisations and finding models.

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 118–130, 2015.
DOI: 10.1007/978-3-319-25396-1_11

Computing at School in Sweden – Experiences from Introducing Computer Science 119

Similar to many others (e.g. [2,17]) we use the term "computational thinking", rather
than coding or programming, to refer to this set of skills and practices. Teachers already
engage in several of these practices in their teaching, even without knowing it [7]. By
making explicit what teachers already do, we can reduce the feelings of threat to teachers
who may feel that they need to learn a lot of new things, many of which can be perceived
as technically advanced.

The aim of this paper is to give an overview of some of these initiatives to give exam-
ples of how teachers can start working with computational thinking in their classroom,
without any official policies requiring them to do so. We start by giving a brief overview
of the Swedish school system and the current status of computing in K-12 education.
Next we present a set of national and regional initiatives. The paper is concluded by
some reflections on the current work as well as ideas for future directions.

2 Overview of Computing in Swedish Schools

The Swedish education system is divided into compulsory school (grades 1-9) followed
by upper secondary school (grades 10-12), which offers 12 vocational programmes and
6 programmes preparing for further studies. The national curriculum for compulsory
education does not include computing or programming. One of the programs of the gen-
eral education strand is focused on Technology (teknikprogrammet), which also includes
courses covering various aspects of computing. This means that only a limited number
of students take such courses at upper secondary school. All students do, however, get
to use technology, i.e. computers and applications, in their studies.

The situation in Sweden is hence similar to that of many other European countries,
where digital competence has come to be seen as something of a synonym for basic
digital literacy. Whereas an increasing number of countries are revising their curric-
ula and policy documents to also include computing aspects, Sweden has a rather new
curriculum, which most likely will not be updated within the near future.

In 2012, the Swedish government established a committee with the task of giving
recommendations and guidelines for how Sweden can – and should – benefit from the
digitalisation. In a report published in March 2014 [3], the committee emphasises the
need for an additional focus on digital competences in national curricula. One concrete
recommendation is for programming to be introduced as a cross-curricular element in
already existing subjects.

3 Bebras

Since computing has not traditionally been part of general education, other, more in-
formal, approaches have been introduced in order to cover the same ideas. Contests is
one example, where, for instance, programming competitions have been regularly ar-
ranged. These are, however, aimed at talented students and are as such not a suitable
channel for introducing computing to students at a larger scale. To mend the situation,
Bebras (beaver in Lithuanian) was initiated in Lithuania in 2004 as a contest suitable
for all children and youth aged 8-19, inviting them to work with motivating and playful
tasks related to computing and computational thinking. The contest is organised online

120 F. Heintz et al.

and participants are divided into five age groups (Mini, Benjamin, Cadet, Junior and
Senior). Over the years Bebras has grown into a large annually arranged international
contest, having about 900 000 participants from 35 countries in 2014.

Sweden has organised the contest twice in addition to a test round in 2012. In 2014
the contest had 18 problems in each category that should be solved in 40 minutes. In
2013 there were 15 problems in each category that should solved in 45 minutes. The
reason for the change was to use both the same problems and the same rules as Germany,
Lithuania and Finland in order to be able to compare the results between these countries.
Unfortunately we had to replace one of the German tasks since it had already been used
by Sweden and Finland earlier. Based on the results from the 2014 contest the best boys
and girls in each category was invited to Linköping University to participate in an onsite
final. The event was greatly appreciated by the participants even though they felt that
it was not necessary to have another contest, especially not those that had won their
categories since they could only do worse. In its short existence, the participation has
grown dramatically from 1869 in 2013 to 7059 in 2014. To our delight, the number of
girls participating has also increased from 37% in 2013 (695 out of 1869) to 44% in
2014 (3126 out of 7059). The detailed figures for 2014 can be found in Table 3.

Category Participants Teachers Schools Cities Boys Girls
Mini 1148 61 42 37 565 583

Benjamin 1499 54 51 41 767 732
Cadet 2045 62 60 43 1116 929
Junior 1701 39 37 31 924 777
Senior 666 22 22 20 561 105
TOTAL 7059 189 150 92 3933 3126

4 Activities in Linköping

Since 2013 the Department of Computer Science at Linköping University (IDA) has
been actively involved in supporting computational thinking at all levels of the education
system.

CoderDojo: To make programming available to as many people as possible, IDA has
been active in starting a voluntary programming club based on the international Coder-
Dojo concept (coderdojo.org). This is a fun and creative way of supporting kids be-
tween 7 and 17 in learning to program. The basic setup is to invite kids to learn to
program supported by mentors. A mentor is someone with some experience of pro-
gramming. The kids are given some hints on what they can do and then they use their
creativity to find their own way to learning programming with some nudges and help
from the mentors. It is not a class and we try to limit the similarities with school ac-
tivities. We have encouraged everyone to start with the Hour of Code (code.org) and
then explore programming through the use of Scratch [16], a visual programming lan-
guage from MIT. More advanced kids have started with JavaScript using CrunchZilla.
The first CoderDojo in Sweden was started in 2012 in Malmö. CoderDojo Linköping

coderdojo.org
code.org

Computing at School in Sweden – Experiences from Introducing Computer Science 121

has arranged CoderDojos every second week since January 2014, with about 20-30 kids
each time. Most kids are around 7-10 years old. Among those about 60% are boys and
40% girls. Among the older kids almost all are boys. In the spring of 2015 a national
organization, CoderDojo Sweden, was started which supports the growing number of
CoderDojos around Sweden. There are currently about 15 active CoderDojos in Swe-
den.

Pupil and TeacherWorkshops: To encourage schools that arrange local programming
profiles or have pupils that are interested in programmering IDA has arranged program-
mering a number of half-day workshops. These workshops usually start with an intro-
ductory lecture, followed by two lab exercises one involving programming the Nao hu-
manoid robot using the graphical programming language Choregraph and one involving
programming generative art in JavaScript, the workshop is concluded with a popular
science presentation of research in AI and robotics. We have arranged roughly 15 work-
shops the last 18 months. We have also arranged a number of workshops to educate and
inspire teachers to start using computational thinking in their classes. This also included
two special events, one for politicians in Linköping and one for the general public at the
big political event Almedalen.

Computational Thinking in Swedish Basic Education: is a project whose purpose is
to propose an approach to introducing computational thinking in Swedish basic educa-
tion and to develop teaching materials for introducingprinciples and practices from com-
puting as well as computational thinking in a variety of existing subjects (Swedish, Math,
Sciences, and Technology). The project involves both researchers at IDA and teachers
from Linköping schools and is funded by VINNOVA.

The aims of the project are to:

– write a scientific report on computational thinking and how it can be introduced in
Swedish schools,

– develop lesson plans and activities together with teachers, which can be used to
introduce computational thinking in different subjects,

– organise teacher training on computational thinking and related didactical aspects,
and

– empirically evaluate the lesson plans and activities together with pilot teachers.

As we see it, introducing computational thinking at lower levels of education calls
for a dialogue between teachers, teacher trainers and researchers in computer science
education. As researchers, we do not have enough insight into the everyday practice in
schools nor the long experience of teaching children and youth that teachers have. On
the other hand, since computing is not part of the curriculum, most teachers do not have
any background in computational thinking or programming, and hence need support
in order to understand what computational thinking is, why it is important, and how it
can be integrated in their teaching practice. Through the steps above, in particular the
three latter ones, we aim at building a model where teachers bring their own expertise in
terms of, for instance, subject knowledge and teaching experience, whereas researchers
in computer science education can show how principles and ideas from computing can

122 F. Heintz et al.

be used in a relevant way in various subjects. The goal is for the model to empower
teachers through a continuous dialogue and concrete collaboration.

Discussion. The experience from the project has so far been positive. Teachers appre-
ciate that we take their practice and their students’ learning (what is in it for them?) as
the starting point, not a given technology or tool (what can we do with x?), which is
commonly the case when talking about IT at schools. Based on our discussions with
teachers, computational thinking seems to be a more suitable concept to start with than
programming or computer science, which are considered both too technical and nar-
row. In the pilot study 10 teachers were involved. They participated in three half-day
workshops and did at least one activity related to computational thinking with com-
puters and one without (unplugged) in their classes. In the first workshop the concept
of computational thinking was introduced. In the second workshop concrete activities
in the teacher’s subjects were discussed and each teacher committed to performing one
activity with computers and one without. In the third and final workshop the teachers re-
ported their experience from running the activities. This showed that it was possible for
teachers from grade 2 to grade 9 to perform activities related to computational thinking
within their subjects with very limited training.

As a direct consequence of the project, IDA and the city of Linköping are discussing
ways to extend the collaboration and introduce computational thinking to a much wider
selection of schools.

5 Activities in Lund

Lund University is engaged in activities related to computing at school through its sci-
ence center [6]. The general goal of the science center is to reach out to pre-university
education and help to increase the interest in engineering education among the youth in
southern Sweden. The science center opened in September 2009 and has since then had
more than 166 000 visitors of all ages (as of January 2015). Visitors during weekdays
range from school groups to company events and training. The center also takes book-
ings for a variety of different events and celebrations. It is open to the public on weekends
and school holidays, when everyone is invited to try out interactive experiments, attend
a show, or see an exhibition.

Before 2012, our science center experiments focused on areas such as physics, chem-
istry, and electronics, but the area of computer science was lacking, and to fill this gap,
a project called ”Programming for Everybody” (subsequently denoted PfE) started in
2012 funded by the Engineering faculty and hosted by the science center at Lund Uni-
versity with project members from the department of Computer Science. The main goals
of the PfE project are to: (1) develop programming experiments for visitors with partic-
ular focus on groups visits from schools, and (2) to develop teacher training so that
pre-university schools for all ages can help young learners to discover the excitement
and importance of computer programming.

Development of an Open Pedagogical Concept. Within the PfE project, a pedagogical
concept for teaching programming is developed. The concept is targeting young learners
of age 7 and upwards as well as their school teachers, with the only pre-requisite of being

Computing at School in Sweden – Experiences from Introducing Computer Science 123

the ability to read from a computer screen and use a keyboard and mouse. When selecting
a platform for the pedagogical concept, including language and integrated development
environment, these criteria were stipulated:

1. The platform should be free to install, available as open source, and run on Linux,
Windows and Mac.

2. The user interface should be available in Swedish, and the programing language
should allow Swedish identifiers in the code.

3. The platform should offer ’real-world coding’, i.e. it should be based on a mod-
ern and professionally used programming language that provides access to general-
purpose code libraries.

Based on these criteria, the programming environment Kojo [4] and the programming
language Scala [9] was chosen. Both Kojo and Scala are free and open source. The Kojo
project is lead by Lalit Pant at Kogics in India [13] and the Scala project is lead by Prof.
Martin Odersky at EPFL in Switzerland [14]. Prof. Björn Regnell at Lund University has
contributed with translations of Kojo’s turtle graphics API and graphical user interface
to Swedish, as well as software development, testing, and project sponsoring.

The PfE pedagogical concept includes a series of programming challenges [12] that
cover a progression of programmingconcepts including sequential execution, repetition,
abstraction, parametrized abstraction, and nested abstractions. The PfE challenges have
been iteratively developed based on feedback from kids and teachers.1

The PfE programmingchallenges are rooted in a contructionist approach [10] through
a Swedish turtle graphics API in Scala. The initial challenges are based on reading and
tweaking a given, worked example with a code snippet and hints, to enable learners to
quickly grasp syntax as well as concepts, in line with suggestions that worked examples
may (according to cognitive load theory) be effective in learning how to program [5].

ProgrammingActivities for Science Centre Visitors. Since the PfE project started, we
have had more than 10000 young learners have experienced our programming experi-
ments, based on the PfE challenges with Kojo and Scala. The visits are mainly school
classes that try out different experiments in the science centre, where programming is
one station. The school classes are divided into smaller groups of around 10 students,
often working in pairs to solve the PfE programming challenges [12], while one or two
instructors are providing guidance. School class group session range from 20 to 45 min-
utes and focus on drawing pictures with turtle graphics, while learning about sequence,
repetition and abstraction using procedures without and with parameters.

Programming Education for Teachers. More than 100 teachers have passed our pro-
gramming courses comprising 2-3 half-days with assignments in between, to try out
programming in class using Scala and Kojo. The teachers learn programming with the
help of the PfE programming challenges, which they then try in their classes with young
learners. Teachers then share their experiences with each other, including new challenges
that they develop in relation to their subject curricula.

1 The challenges are available with a Creative Commons Attribution-NonCommercial-
ShareAlike licence [12].

124 F. Heintz et al.

Discussion. Teachers that attend our courses are teaching different subjects at primary
school, ranging from maths and science to language and sports, but also practical skills
such as needle- and woodwork. Many teachers that attend our courses are at first un-
certain if they will manage to run a programming class within their subject, but when
they experience how their students engage in the challenges and with enthusiasm dis-
cover the playfulness and joy involved in creating software, many change their mind and
see the opportunities. A major opportunity for the future is to create an active network
of primary school teachers to enable sharing and inter-scholar learning of how to inte-
grate programming in the existing curricula. The teachers that have taken our courses
at the LTH Science Centre realize the potential, but they want more subject-specific
study material and also assessment models so that the student learning outcome from
programming projects can be assessed in relation to the learning goals of their subject.

6 Activities in Luleå

Starting in 2013 a collaboration between Luleå University of Technology, LTU and The
Municipality of Luleå 2 started around how to increase awareness of computational
thinking and digital literacy in Luleå’s schools. The collaboration started informally and
was made more formal when fundingwas secured during 2014 for several projects. It was
early identified that no single solution would be enough to inspire and educate the more
than around 1900 teachers and principals but rather that several different activities had
to be organised and implemented. It was also identified that the best approach was to test
different activities to see which were the most appreciated. The activities organised in-
clude Pedagogical Pubs with TeachMeet, Open Educational Workshops, Programming
inspiration and Making in Schools.

Pedagogical Pubs with TeachMeet: In an effort to inspire teachers and allow teachers
to share their ideas, thoughts and progress several Pedagogical Pubs with TeachMeet
were held during 2014 where invited speakers presented various topics related to ICT in
Schools and followed by very short fire talks by teachers that wanted to share what they
had done in their classrooms. Each of these gatherings had around 80-120 participants
and they were open to the general public as well including teacher students from the
university.

Open Educational Workshops – CS4HS Luleå 2014: The Open Educational Work-
shops were supported by Google via their CS4HS program during 2014. The goal of
these workshops was to give teachers and principals a chance to meet and learn more
about Computer Science and how it can be applied in grades 1-12. The workshops were
focussed on giving concrete hands-on work with various tools including graphical pro-
gramming like Scratch and Blockly via Hour of Code, testing electronics like Arduino
and doing some more advanced Javascript programming. 5 workshops were held of
which the first 4 were with computers while the final one was unplugged where the
participants discussed how to apply their new knowledge in the classroom and also in-
cluded a specific discussion on how to better include young females.

2 Many of the efforts described here were organised together with principal Agneta Hedenström
from the Luleå Schools Antnäs and Måttsund.

Computing at School in Sweden – Experiences from Introducing Computer Science 125

The workshops were held free of charge and over 80 persons applied of which 35
participants were selected based on geographical location as well as teaching level. The
goal was to get a good mix between schools and teacher levels. The participants showed
a real interest and really wanted to learn and also learn how to apply their skills in their
classrooms and it was very rewarding to see how they immediately applied them the
after the workshop was held.

Programming Inspiration – EU Code Week, Hour of Code and School Visits: Dur-
ing the autumn of 2014 two separate events around programming in schools were held.
In October the EU Code Week was held and in Luleå 9 separate events were held (out of
90 in Sweden) where students got to try Scratch primarily at grades 2-6. The EU Code
Week was held all over EU at the same time with more than 3000 events during one
week. During December 2014 the global Hour of Code week was held and in Luleå the
efforts were focussed to December 9 when with the help of volunteers we were able to
reach more than 1000 students via more than 50 separate programming hours where stu-
dents got to try the Hour of Code learning environment or Scratch. Besides these larger
organised events a number of schools visits were held where programming and making
was presented to students at various levels in the school system.

Making in Schools – Luleå Makerspace and the Skaepiedidh Project: Another ap-
proach has been through Making in schools where the students have gotten to test vari-
ous technologies. This has mostly been done through collaboration with the Luleå Mak-
erspace which is a non-profit organization with the goal to promote ICT and technology
interest to persons of all ages. It was early identified that the teachers only needed a small
amount of pushing in the right direction to get started with making and programming in
school, but at the same it was hard to get a scalable solution as much relied on personal
contact to inspire them. Thus, the Skaepiedidh project was created between LTU and
the Luleå Municipality with national funding from VINNOVA with the goal to create
an online system for doing the inspiration online where teachers could exchange recipes
for making and programming in schools, comment on these recipes, remix them and
spread their implementations further. More thoughts on Making in schools can be found
in [11].

Discussion. The various efforts presented here have been very appreciated by those par-
ticipating which is shown via that the teachers actually get started with computational
thinking in schools as well as that they want more help and more inspiration. The Luleå
Model is a combination of several different efforts as to reach as many as possible no
single effort is enough. At the same time it has been identified that only a smaller por-
tion of the 1900 teachers and principals are reached and some of the schools are not
present at all and thus in turn a large portion of students are not reached unless a more
formal mandate by the government and/or the schools leaders is made. During 2015, the
efforts will continue but with more of a focus trying new things as well as influencing
politicians and school leaders through local and national efforts. Several workshops and
a larger educational conference is planned as well with the goal to spread good examples
and get people to meet and talk and learn from each other as we foresee peer learning as
one of the most important parts of this campaign.

126 F. Heintz et al.

7 Activities in Stockholm

The Stockholm region is a large area, with over two million inhabitants, which makes
collaboration around topics, like computational thinking, challenging to coordinate.
Within the region, some municipalities have been more progressive about getting their
teachers to start using computational thinking in the classroom, even though still in small
scale. During 2014 computing and programming became popular buzzwords. Conse-
quently, programming has been introduced at several schools in the region by passionate
teachers. In February 2015, people representing the City of Stockholm, the Stockholm
Chambers of Commerce and the company Spotify, wrote an article in Dagens Nyheter
about a larger effort to set up pilot schools to teach programming in elementary schools
in Stockholm. This is now under preparation. Teachers and principals from schools al-
ready working with computational thinking, are consulted to find best practice in the
implementation to all 265 schools within the City of Stockholm. This is so far the largest
intervention in Sweden and will be of big importance as an example for the rest of the
country.

Programming Inspiration – EU Code Week, Hour of code: During the 2014 Eu-
ropean code week, Academedia, the largest group of independent schools in Sweden,
had students from all secondary schools teach 5th graders about programming. At least
20 schools within the Stockholm area participated. The documentation of participants
haven’t been that precisely. This is something to improve this coming year. As a total 10
schools within the area have reported participation during Hour of Code in December.

Organizations:

– Coder Dojo was the first code initiative in Stockholm in 2012. Two days a week,
CoderDojo offers open programming sessions for kids, at a library in the city center,
free of charge and there is no need to bring a computer.

– The National Computer Society, Dataföreningen, has organized several events for
children and also teachers and other adults interested in coding with Scratch. The
goal is to use the members of the society as mentors to the teachers who want to try
coding in class. Dataföreningen also has RaspberryPis to bring to schools if they
don’t have enough computers. There are two networks within Dataföreningen, one
for anyone interested in contributing to children learning more about programming,
and one for teachers.

– Kosmosklubben, an NGO offering 10 different programming courses every week
and 9 classes of robotics. There is also a special program for high school girls from
suburbs, to get them more interested in code and IT.

– Kids Hack Day, is an after school program, where kids can pay to participate in
coding and maker activities. They have had three groups during the semester. The
cost is rather high but includes all kinds of maker supplies.

– Kodcentrum: Is a non-profit organization based in Stockholm offering children and
youth hands-on experience in programming through an after school program. This is
in contrast to CoderDojo more like a course were the children follow a prepared ma-
terial during a whole semester. Kodcentrum has activities in Göteborg, Linköping,
Stockholm, Sundbyberg, Umeå and Uppsala.

Computing at School in Sweden – Experiences from Introducing Computer Science 127

TekniskaMuseet (Museum of Technology), organizes children’s hack sever times dur-
ing the year. They have both courses for beginners and more advanced programmers.
Tha hack club uses Scratch, but the museum also offers robot programming with LEGO
Mindstorms. In September a new part of the museum will open, called the Mega mind,
with one maker space and one coding space.

Initiatives for girls: To try to get more girls interested in engineering and IT, separate
groups are more and more popular. Here are some initiatives.

– Geek Girl Mini, an after school program for girls in 5th grade. Two schools in Stock-
holm has been involved. One in an upper middle class-area and one in an all immi-
grant area. The second group was the largest and most of the 21 girls showed up
every time, even on holidays. It was a big success.

– Girls Code, after school program at Mälarhöjden for girls in grades 7-9.
– Tech Girl, an initiative from the company Valtech. Two groups of girls in 6th grade

have been taught programming in scratch for one semester each. Volunteers from
Valtech have been running the workshops.

– MakerTjej, an organization with a mission to get more girls into the maker move-
ment.

– Tjejhack, an organization with a mission to get more girls into the gaming business
and also to change the rather raw climate in the gaming community.

– Teklafestivalen, a festival about music and tech, organized by the Royal Institute
of Technology and the artist Robyn. The evens was a huge success, with over 2000
applications for the 200 tickets. The participants were chosen to get a variation in age
and geographic background. Companies as Valtech, Google and Spotify arranged
workshops during the day. Hopefully the event will be annual.

Teacherhack: Since programming is not part of the national curriculum, a group of
teachers started to search for ways to integrate different aspects of computational think-
ing and computing in every subject within the current curriculum.On the website teacher-
hack.com there are texts explaining all 20 subjects in the curriculum from a digital as-
pect, over 30 different lessons and comments from around 30 teachers representing dif-
ferent subjects. The website is not yet officially launched, but already it has some 200
visitors each day. The goal is for Teacherhack to become a valuable resource for teachers
wanting to include computational thinking and programming in their classrooms.

Sjöstadsskolan: At Sjöstadsskolan in Stockholm, programming has been taught since
February 2013. During the first year, programming was introduced only to 50 students
in 5th grade, but 2014-2015 all 800 students, including preschoolers (from 3 years old)
have tried programming or computational thinking in some form.

– Preschool (3-6 years): Bee-Bots for creating simple programs after step-by-step in-
structions.

– 1st grade: Various games for understanding code ”unplugged”. iPad apps, such as
BeeBot and Kodable. Code.org.

– 2nd grade: Games for understanding binary code and the Internet. Bee-Bot pro-
gramming. Participated in Bebras.

128 F. Heintz et al.

– 3rd grade: Code.org and creating mazes for the BeeBot using paper, pen and ruler.
– 4th grade: Investigatinggeometry through the programmingenvironmentKojo. Con-

structing real-life computer games in the school yard.
– 5th grade: Participating in a study on teaching Cartesian coordinates, comparing

traditional instruction to introducing coordinates using Kojo. Participated in Bebras.
– 6th grade: Students already had 1.5 years of programmingexperience.Programming

as an extracurricular activity.
– 7th grade: Code.org. Participated in Bebras.
– 8th grade: Code.org. Students learned how to use block based programming for cre-

ating visualizations in biology. LEGO Mindstorms were used in Technology class.
– 9th grade: Code.org.
– Special need school: Two students (aged 6 and 16) with severe autism have been

practicing with BeeBot.

Research: Sjöstadsskolan has conducted three pilot studies about programming in school.
The first pilot study was conducted on introducing computational thinking through pro-
gramming in a Swedish course [8]. The initial motivation was to investigate the use
of programming when teaching 4th graders (9-10 year olds) how to write instructions
and reflections in an authentic way. The children were given assignments to be solved
in pairs or small groups. A shared blog was used to distribute the results, which also
made it possible to discuss and compare solutions. The same methodology was used in
the 5th grade as well (10-11 year olds), then including more aspects of computational
thinking. The second study was conducted with computational thinking as a separate
subject. The conclusion was that the students found it fun and interesting, but not as
part of the rest of the school day. The transfer from computing to the other lessons,
just didn’t happen. The third study, done in cooperation with Stockholm University and
City of Stockholm department of education, was focused on using programming as a
tool in teaching math. The study focused on Cartesian coordinates and the result will
be presented at a conference for teacher’s research in November 2015.

Discussion: Based on the initial pilot study and discussions afterwards we identified
several ways in which computational thinking can be used in language courses. First,
programming languages are also languages, sharing for instance the notion of grammar
(syntax) and meaning (semantics); hence these can be discussed in traditional language
courses. Moreover, computational thinking concepts can be introduced in a natural way
when talking about languages. For instance, abstraction through nouns and verbs etc.,
problem decomposition through a grammar that breaks down the problem of describ-
ing classes of sentences into smaller problems; patterns through rules in a grammar;
programming languages used for implementing rules in a grammar; introduction of al-
gorithms and instructions through conditions, loops and iteration used in, for instance,
storytelling. The second study implies that it’s not for the best to teach computational
thinking as a separate subject. To better use the transfer effect, we should integrate it in
other subjects. The result from study number three, are yet not presented, but it seems to
be a reasonable idea to use a program environment like Kojo, to teach Cartesian coordi-
nates. As the capital and the largest city in Sweden, the path that the City of Stockholm
will choose, will probably be of big importance for the implementation of computational
thinking in schools.

Computing at School in Sweden – Experiences from Introducing Computer Science 129

8 Lessons Learned and Ways Forward

All the initiatives described above show that computational thinking and programming
can be introduced and support learning at lower levels of education, although such el-
ements are not part of the curriculum. There is nothing in the national curriculum that
prevents schools and teachers from working with computational thinking, but also noth-
ing that encourages them to do so. Since schools and teachers are already under a lot of
pressure from many directions, few do anything. Those that do, however do very good
things. In order for these initiatives to spread and become commonplace throughout the
nation, there is a need for a national initiative to introduce computational thinking in the
school system. There are indications that such initiatives might be coming.

Another major challenge is teacher training. Teacher education programmes do not
commonly include computing or computational thinking in their curriculum and conse-
quently pre-service and in-service teachers lack insight and skills in these areas. We are
therefore actively seeking a dialogue with the universities providing teacher education,
but so far they have showed little interest. This calls for a dialogue between teachers,
teacher trainers and researchers in computer science education.

Based on our current activities and lessons learned, we are currently working towards
the following goals:

1. Establishing the term "Datalogiskt tänkande" as the Swedish term for computational
thinking, implying the general skill set that can be trained through programmingand
that can be used in an interdisciplinary way throughout the curriculum.

2. Engaging as many schools as possible in Bebras, in order to stimulate the interest
for computational thinking.

3. Supporting informal activities such as CoderDojos,and Maker Spaces which play
an important role in giving students hands-on experience with, for instance, pro-
gramming.

4. Collaborating with municipalities wanting to introdue or at least test computational
thinking at a larger scale.

5. Supporting teachers in developing concrete example activities and lesson plans on
introducing different aspects of computational thinking in a variety of subjects.

6. Designing concrete suggestions for professional development for teachers on com-
putational thinking, for instance, in the form of a nation-wide MOOC supported by
local study groups.

7. Engaging in continuous discussions with teacher education programmes in order
to introduce at least one compulsory course on computational thinking for all pre-
service teachers.

8. Developing suitable means for assessing computational thinking, for instance based
on Bebras activities.

We have in this paper only reported activities that we are directly involved, but there
are several other initiatives in Sweden that focus on the introduction of programming
and computer science to young learners. Given the awakening interest from politicians
and education developers, we believe that computational thinking soon will play a more
prominent role in Swedish pre-university education.

130 F. Heintz et al.

References

1. ACM Inroads (December 2014)
2. Barr, V., Stephenson, C.: Bringing computational thinking to k–12: What is involved and what

is the role of the computer science education community. ACM Inroads 2(1), 48–54 (2011)
3. Digitaliseringskommissionen. En digital agenda i människans tjänst - en ljusnande framtid

kan bli vår (2014)
4. Kojo home page, http://www.kogics.net/kojo
5. Lister, R.: After the gold rush: Toward sustainable scholarship in computing. In: Proceedings

of the Tenth Conference on Australasian Computing Education, ACE 2008, vol. 78, pp. 3–17.
Australian Computer Society, Inc. (2008)

6. Lund University Science Center home page, http://www.vattenhallen.lth.se/
7. Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., Settle, A.:

Computational thinking in k-9 education. In: Proceedings of the Working Group Reports
of the 2014 on Innovation & Technology in Computer Science Education Conference,
ITiCSE-WGR 2014, pp. 1–29. ACM, New York (2014)

8. Nygårds, K., Mannila, L., Heintz, F.: Computational thinking in teaching Swedish in the mid-
dle school. In: ICED 2014: Educational Development in a Changing World (June 2014)

9. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov, N.,
Schinz, M., Stenman, E., Zenger, M.: An overview of the Scala programming language. Tech-
nical Report, IC/2004/64, EPFL Lausanne, Switzerland (2004)

10. Papert, S.: Mindstorms: Children, computers, and powerful ideas (1980)
11. Parnes, P.: Skapande och skaparkultur som drivkraft för kreativt lärande i skolan (February

2015)
12. Björn, R. (ed.): Programming Challenges,

http://fileadmin.cs.lth.se/cs/Personal/BjornRegnell/uppdrag.pdf
13. Regnell, B., Pant, L.: Teaching programming to young learners using scala and kojo. In: LTHs

Pedagogiska Inspirationskonferens, vol. 8, p. 4. Lund University (2014)
14. Scala home page, http://scala-lang.org/
15. European Schoolnet. Computing our future. computer programming and coding - priorities,

school curricula and initiatives across europe (October 2014)
16. Scratch home page, http://scratch.mit.edu/
17. Wing, J.M.: Computational thinking. Communications of the ACM 49(3), 33–35 (2006)

http://www.kogics.net/kojo
http://www.vattenhallen.lth.se/
http://fileadmin.cs.lth.se/cs/Personal/BjornRegnell/uppdrag.pdf
http://scala-lang.org/
http://scratch.mit.edu/

© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 131–140, 2015.
DOI: 10.1007/978-3-319-25396-1_12

A Snapshot of the First Implementation of Bebras
International Informatics Contest in Turkey

Filiz Kalelioğlu1, Yasemin Gülbahar2, and Orçun Madran3

1 Başkent University, Department of Computer Education and Instructional Technologies,
Ankara, Turkey

filizk@baskent.edu.tr
2 Ankara University, Department of Informatics, Ankara, Turkey

gulbahar@ankara.edu.tr
3 Hacettepe University, Department of Information Management, Ankara, Turkey

omadran@hacettepe.edu.tr

Abstract. Computing was perceived as an essential skill for computer scientists,
engineers, mathematicians and those from similar disciplines. Today, to the
contrary, people of most ages are expected to possess basic computing skills in
parallel with the requirements of up-to-date technological tools. To equip students
with the necessary skills, computer science courses need to be delivered
compulsorily, or at least delivered as a part of another course for almost all age
groups and levels. Besides delivering these courses, awareness of this valuable
skill is also essential, and for this aim, Olympiads or contests are now held in
many countries. Bebras International Contest is one such organisation. In
December 2014, Turkey also participated in this contest with 1,788 elementary
students from different cities. This paper examines the student performance of the
2014 Bilge Kunduz (the Turkish term for Bebras) International Informatics
Contest and explores coordinators’ perceptions about the contest. Based on the
student performance and overall success, the average score in Turkey was 65.01
(where scores varied between 0 and 135). According to the perceptions of
coordinators, it can be said that the contest was favoured by all coordinators, but
that some enhancements to the contest platform are needed.

Keywords: country report, Bebras contest, students’ performance, coordinator
perceptions.

1 Introduction

Since its first invention, computing was perceived as an essential skill for computer
scientists, engineers, mathematicians and those from similar disciplines. Today, to the
contrary, people of almost all ages are expected to possess basic computing skills, in
parallel with the requirements of up-to-date technological tools. Thus, the discipline
of informatics is gaining popularity and the teaching of it also becoming more
important since people are expected to solve real life problems, think critically and
computationally, be creative, make decisions and be aware of technological tools and
concepts as digital citizens [1, 2].

132 F. Kalelioğlu, Y. Gülbahar, and O. Madran

For our students to be equipped with the necessary skills, computer science
courses need to be delivered compulsorily, or at least delivered as a part of another
course for almost all age groups and levels. Besides delivering these courses, it is
important to make the public aware of Informatics, not only as a technology, but also
as the science to educate them and improve their experience with technology.
Organising an informatics contest is one way of achieving this goal, hence in 2014,
Turkey participated in the Bebras International Informatics Contest.

Having been held in different countries since 2004, Bilge Kunduz (the Turkish
term for Bebras) International Informatics Contest was organised in Turkey for the
first time in 2014. The competition will continue to be held in November each year.
This research study has been conducted to reveal the process and experiences of this
first pilot implementation in Turkey.

2 Method

This research is a case study composed of quantitative and qualitative measures since
it is specific for a country. Case study is an in-depth exploration of a bounded system
such as activity, event, process, or individuals based on extensive data [3]. The case
for this study is the implementation of Bebras international informatics contest in
Turkey. Hence, all aspects of the contest have tried to be investigated, both from the
perspectives of students and school coordinators. This research study seeks answers to
the following research questions:

1. What was the overall success of the students?
2. What was the success according to the degree of difficulty of the questions?
3. What was the success according to the sub-fields?
4. What were the detailed item analyses of each question?
5. What were the thoughts of the school coordinators in terms of application of the

contest?

a. What do they think about the Bilge Kunduz International Informatics Contest?
b. What were the reactions of their students about the competition process?
c. What were the problems faced during the competition process?
d. What do they think about Moodle platform which hosted the competition?
e. What do they think about the Bilge Kunduz tasks presented in the

competition?
f. What are their suggestions to improve the effectiveness of the competition?

2.1 Participants

Schools & Students

Bilge Kunduz International Informatics Contest was carried out as a pilot in the cities of
Ankara, Izmir, Erzurum, Samsun, Adana, Muğla, Istanbul and Çanakkale in the 3rd
week of December, 2014. A total of 57 schools participated in the contest on a voluntary
basis, with the support of 12 provincial coordinators, and 1,788 students successfully
competed in the contest. Of the 57 schools that participated in the contest, 31 (54.39%)

 A Snapshot of the First Implementation of Bebras International Informatics 133

were public schools and 26 (45.61%) were private schools. In addition to the pilot cities,
Aksaray, Niğde, Tekirdağ and Sivas also participated in the contest.

School Coordinators

In order to better understand the contest and to understand the problems they faced,
opinions of the school coordinators (as opposed to the provincial coordinators) were
gathered regarding their experiences as coordinators and about the process of the
competition. Eight open-ended questions were given to the coordinators, with
responses received from 20 of them. The professional teaching experience of the
coordinators ranged from one to 13 years.

2.2 Context and Procedure

Questions for the Bilge Kunduz International Informatics Contest were selected from
questions prepared in a workshop by representatives from more than 30 countries.
According to the procedure, questions are prepared according to predetermined
criteria [4]. Then, each country selects questions from two separate question pools
(compulsory questions and suggested questions), and implements them after
translating into the preferred language. The selection process is very important, and
questions must be chosen according to sub-domains within the scope of informatics.
Moreover, [5] explain the sub-domains as in table 1.

Table 1. The sub-domains of the tasks

Sub-domains Explanations
INF Information comprehension, representation (symbolic,

numerical, visual), coding, encryption

ALG Algorithmic thinking including programming aspects

USE Using computer systems (e.g. search engines, email,
spreadsheets, etc.) General principles, but no specific systems

STRUC Structures, patterns and arrangements, combinatorics, discrete
structures (graphs, etc.)

PUZ Puzzles, logical puzzles, games (Mastermind, Minesweeper,
etc.)

SOC ICT and society, social, ethical, cultural, international, legal
issues

Problems must be chosen in order to include all sub-fields. Questions should be

interesting for the students, should motivate learning, and should allow students to
demonstrate their knowledge and skills. In this context, the contest was carried out by
selecting five easy, five medium and five hard questions, including various sub-
domains, from the international question pool. Subdomains of selected questions and
the questions are shown in the table 2.

134 F. Kalelioğlu, Y. Gülbahar, and O. Madran

Table 2. Subdomains of selected questions

 ALG INF STRUC PUZ SOC USE
Easy1 3 2 - - - 1
Medium2 3 2 2 2 - -
Hard3 4 2 1 3 - -

1 Non-ordered stars, Phone keyboard, Ice cream, Lost in a City and Assemble the Fish
2 Abacus, Truchet, Family Tree, Broken Clock and Stairs Robot Snake
3 Cutting down trees, Bridges¸ Price of a gift, Truth and Bagels

2.3 Data Collection and Analysis

Data needed to undertake detailed analysis about the questions and the student’s
success were gathered from the platform upon which the contest was carried out
(Moodle). To obtain coordinators’ perceptions, an online questionnaire composed of
seven questions was sent out via e-mail. The first part was analysed quantitatively
based on descriptive statistical measures, whereas the open-ended questions were
analysed through content analysis. Moreover, significant ideas and statements by
some of the participants are included as quotations to illustrate the findings.

3 Results

3.1 Overall Success

The graph below shows the overall success in percentage terms of the 1,788 fifth and
sixth grade students who participated in the contest. No students answered all
questions correctly. Students remained in the contest from between two minutes and
45 minutes.

Fig. 1. Percentage of questions answered correctly

56

13

61 61

30 30

86

46
56 53

65

48

26

74

48

0
10
20
30
40
50
60
70
80
90

100

Percentage of questions answered correctly

 A Snapshot of the First Implementation of Bebras International Informatics 135

The scores varied between 0 and 135. The average score was 65.01 and standard
deviation was found to be 26.05. The overall success of students in terms of scores
achieved (the highest score being 129) are shown in the following graph.

Fig. 2. The overall success of students

3.2 Success According to the Degree of Difficulty of Questions

Success based on the degree of question difficulty is shown in the table 3. As
expected, students’ success decreased as questions get more difficult.

Table 3. Success based on the degree of question difficulty

Easy 60.50%
Medium 48.38%
Hard 41.81%

3.3 Success According to the Sub-Fields

As seen, the sub-field where students were the most successful is algorithmic
thinking. Appropriate ways and methods will continue to be investigated in order to
improve other sub-fields.

Scores Achieved

Num
ber
of

Parti
cipan

ts

136 F. Kalelioğlu, Y. Gülbahar, and O. Madran

Table 4. Success based on the degree of question difficulty

Sub-field Number of
questions

Average
score

ALG 10 40.88

INF 6 27.74

PUZ 5 19.89

STRUC 3 13.17

USE 1 3.93

3.4 Item Analysis

Detailed analysis of each question is shown in the table 5.

Table 5. Detailed analysis of each question

Fa
ci

lit
y

In
de

x

St
d.

 D
ev

R
an

do
m

 g
ue

ss
 sc

or
e

In
te

nd
ed

 w
ei

gh
t

Ef
fe

ct
iv

e
w

ei
gh

t

D
is

cr
im

in
at

io
n

in
de

x

D
is

cr
im

in
at

iv
e

ef
fic

ie
nc

y

1. Abacus 55.80% 49.68% 25.00% 7.00% 7.96% 37.04% 46.24%
2. Cutting down trees 13.21% 33.87% 25.00% 9.00% 3.63% -3.95% -5.90%
3. Price of a gift 61.30% 48.72% 25.00% 9.00% 8.58% 25.20% 32.09%
4. Broken Clock 61.63% 48.64% 25.00% 7.00% 7.66% 34.13% 43.55%
5. Non-ordered stars 29.71% 45.71% 25.00% 4.00% 4.87% 21.37% 27.04%
6. Truth 30.15% 45.90% 25.00% 9.00% 8.80% 32.67% 41.86%
7. Ice cream 86.01% 34.70% 25.00% 4.00% 4.56% 28.98% 49.19%
8. Truchet 45.64% 49.82% 25.00% 7.00% 7.74% 33.56% 41.20%
9. Bridges 55.80% 49.68% 25.00% 9.00% 9.53% 36.09% 45.03%
10. Stairs Robot Snake 52.92% 49.93% 25.00% 7.00% 7.88% 35.40% 43.81%
11. Assemble the Fish 65.41% 47.58% 25.00% 4.00% 5.10% 22.77% 29.52%
12. Bagels 48.53% 49.99% 25.00% 9.00% 7.74% 13.91% 16.86%
13. Family Tree 25.99% 43.87% 25.00% 7.00% 4.49% 3.33% 4.25%
14. Phone keyboard 73.96% 43.90% 25.00% 4.00% 5.71% 36.18% 50.55%
15. Lost in a City 47.75% 49.96% 25.00% 4.00% 5.78% 30.16% 36.83%

3.5 Perceptions on Bebras International Informatics Contest

All coordinators were positive about the Bebras Contest. Their perceptions were
grouped under two themes, namely: “the purpose and quality of the contest” and
“Bebras tasks”. Related to the purpose and quality of the contest, it was obvious that
the contest was perceived as adding value to the national course on the topic of “ICT
and Software”, supporting students learning by entertainment. On this topic, one
coordinator said “We were happy that we have a contest about informatics” whereas
another stated “It is a very useful contest, especially for disseminating the national

 A Snapshot of the First Implementation of Bebras International Informatics 137

course and revealing the necessity of teaching algorithms. It was the first attempt
where the leading role belongs to the ICT course”.

While another coordinator explained “I think that this was a good activity which
motivated students. It may turn to Olympiads and became the prestigious indicator for
our course” and another added “It was a quite different experience for our students.
Different from all the assessment approaches, it was difficult, but a very entertaining
activity”. Most coordinators expressed praise and hopes for dissemination across all age
groups. About this idea one coordinator said “I wish this contest could be administered
at the national level for all schools”. Some coordinators expressed satisfaction of their
first experience in an electronic environment and with having the contest as Internet-
based. One of them revealed “We were very excited to take part in an Internet-based
contest. Most of my students are asking when the next contest will be”.

In terms of “Bebras tasks”, the main perception was the task features of teaching
while entertaining. One coordinator said “Tasks can support cognitive development of
students and can also enhance their numerical and verbal logic.” And another stated
that “I observed the positive impact of the contest on my students. I believe that tasks
can support students’ ways of dealing with real-life problems”. They also underlined
the quality of the tasks, so that students should need to take care and apply practical
intelligence to solve them. One of the coordinators concluded that “The contest is a
successful attempt for students to develop their algorithmic and cognitive thinking
skills”. Hence, it could be stated that the contest is favoured by all coordinators.

3.6 Feedback about the Contest Process

Most of the coordinators stated that students liked, valued and were motivated about
the contest. One coordinator said “At first, students were surprised by the logical
patterns in the questions, but then they started to like solving the tasks”. Most of the
coordinators stated that students were impatient to see their scores and kept asking
about the announcement date for results. One coordinator said “The first thing they
asked about was the gift they would get at the end of the contest. There should be
something for encouragement at this age. They found the tasks easy, but they could
not match the topics with our ICT course”.

Although very few in number, some coordinators stated that some students found
the questions very difficult, there was a lack of time and for these reasons, they
became bored. Some students were expecting their names to be announced on their
school website due to their success, whereas some stated that there should be a
threshold for receiving a certificate. For this reason, in future, sponsors could be
found to provide small gifts for those who were in the top five or so. This issue can be
dealt with next year.

3.7 Obstacles Faced during the Contest

Some students had some technical problems during the contest. Among the obstacles
mentioned by the coordinators, there were: Internet connection problems; login
problems; issues of being in such a contest for the first time with different types of

138 F. Kalelioğlu, Y. Gülbahar, and O. Madran

tasks; having out-of-date computers; lacking adequate time to complete questions;
and having heard quite late about the announcement of the contest. One coordinator
said that “Students were anxious since this contest was their first online experience”,
and another coordinator added “The main obstacle was 5th grades not familiar with
algorithmic logic”. In general, there were no real problems, apart from some minor
regional issues reported as obstacles.

3.8 Perceptions about the Online Platform

A widely known and used open source learning management system – Moodle – was
used to administer the contest. Most of the coordinators stated that they liked the
system and found it easy to use. The system was found to have no technical problems,
and was simple and successful. One of the coordinators stated “It was easy to login;
the interface was clear and navigation was easy for managing the contest for the
students”. However, some coordinators said that the interface should be changed and
that there should be a special template for the contest. On this topic, one coordinator
said that a more entertaining interface could be used for younger age groups, and
another added that the interface is suitable for adults and should be simplified visually
for lower age groups. Thus, the online platform could be enhanced in terms of
interface and some aspects of usage in order to fulfil the expectations of coordinators.

3.9 Perceptions about Bebras Tasks

Most coordinators were positive about the Bebras tasks. Some of these ideas are
presented below:

• “Tasks were highly qualified and their level was appropriate for the age
groups.”

• “Although they had difficulties with some questions, tasks were suitable and
very logical.”

• “Questions were really good and addressed thinking skills.”
• “Students used logic to find solutions and this was very useful for my

students.”
• “The students were not used to these kinds of questions, but it should be this

way.”
• “The questions have the capability to widen the scope of my students.”

Moreover, some coordinators criticised the difficulty level of tasks; they stated that
there were some inappropriately categorised items in terms of difficulty levels. One
coordinator criticised asking the same questions to both the 5th and 6th grades, stating
that “questions should differ for each grade”. Yet another coordinator expressed
his/her wish of having “more questions where the task content addresses real life
problems”. In general, tasks were favoured and there were no serious complaints.

 A Snapshot of the First Implementation of Bebras International Informatics 139

3.10 Suggestions for Improving the Contest

Suggestions made by coordinators emerged under four main themes, namely: the
quality of tasks, announcement of the contest, duration of the contest, and
improvements to the system. About the quality of tasks, several coordinators
suggested that different grades should be set different tasks, but the majority were
happy with the current situation. It was obvious that the announcement of the contest
should be made earlier; this was due to bureaucratic slowness in delivering formal
messages to the schools. Although a few students could not manage their time and
had difficulty, this was however from just a negligible percentage. As a last point, the
interface could be adapted to be made more appropriate for different age groups.
Therefore, earlier announcement and improvements in the system should be done
before next years’ administration of the contest.

4 Conclusion

The purpose of this report was to examine the student performance of the Bilge
Kunduz International Informatics Contest held on 15-19 December, 2014, and to
explore coordinators perceptions about the contest. Based on the student performance
and overall success graphs, it can be said that the students were successful, with an
average score of 65.01 (scores varied between 0 and 135). As questions became more
difficult, the students’ success decreased. Results can be regarded as successful
because of the quality and level of difficulty of the questions, as well as the
requirements for algorithmic skills to solve them. Detailed item analysis shows that
"Family Tree”, “Cutting down trees” and “Bagels” questions have particularly low
discrimination index. This means that high-performing students would not select the
correct answer any more than low-performing students. These items should be revised
and statements should be re-examined.

According to the perceptions of coordinators, it can be said that the contest was
favoured by all coordinators, but they suggested that next year some gifts could be
awarded to those in the top five. They were very few problems faced during the
contest, but there could be some enhancements made to the platform the contest is
delivered on in terms of some features and the interface. Tasks were also generally
favoured by coordinators, but they also underlined the importance of early
announcement of the contest.

Although this contest is an attempt to disseminate awareness about informatics,
most coordinators insisted to be grouped according to their schools’ success at the
national level. In general, there is a common understanding about national contests
held in Turkey, which groups students or schools according to their success and
provides awards to the top three or so. This may be why most schools just entered
their best achievers in the contest. Efforts to access all students will continue, but we
are also trying to emphasise other non-traditional approaches.

Another point that arose from both coordinators and researchers was disagreement
about the level of difficulty of the questions. This phenomenon can be considered a
cultural difference, or maybe due to the content delivered by the ICT course. This

140 F. Kalelioğlu, Y. Gülbahar, and O. Madran

problem can be resolved by proposing Bebras tasks and participating in the related
workshops.

In summary, it was decided to improve the contest platform and interface based on
the suggestions of coordinators. In this way, coordinators should be able to better
understand the success level of their students and also to be able to access some
detailed reports. In addition, next year more age groups will be invited to the contest.

References

1. ISTE. : ISTE Standards for Students. http://www.iste.org/docs/pdfs/20-14_ISTE_
Standards-s_PDF.pdf (2007).

2. NRC. : A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and
Core Ideas. Washington, D.C.: The National Academies Press (2011).

3. Creswell, J. W. : Qualitative inquiry and research design: Choosing among five approaches
(2nd ed.). Thousand Oaks, CA: Sage (2007).

4. Vanicek, J. : Bebras Informatics Contest: Criteria for Good Tasks Revised. In: Gülbahar,
Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 17-28 (2014).

5. Dagienė, V., Futschek, G. : Bebras International Contest on Informatics and Computer
Literacy: Criteria for Good Tasks. Informatics Education - Supporting Computational
Thinking. Lecture Notes in Computer Science, vol. 5090, pp. 19-30 (2008).

Introducing a New Computer Science

Curriculum for All School Levels in Poland

Maciej M. Sys�lo1,2 and Anna Beata Kwiatkowska1

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University
Chopin str. 12/18, 87-100 Toruń, Poland
syslo@mat.umk.pl, aba@mat.umk.pl

2 Faculty of Mathematics and Computer Science, University of Wroc�law
F. Joliot-Curie str. 15, 50-383 Wroc�law, Poland

syslo@ii.uni.wroc.pl

Abstract. The first regular informatics lessons in schools in Poland
were organised in the second half of the 1960’. Some of them were de-
voted to programming a mainframe computer (in Wroc�law) and some to
theoretical models of computers and computations (in Warsaw). Then,
for more than last 30 years of formal informatics education in Poland we
have been very successful in keeping informatics (as computer science)
as a stand-alone subject and in shaping its curriculum according to high
standards of the discipline. In this paper, in Section 1 we first discuss
terminology related to computers in education and then report on early
history of informatics education in Poland. In Section 2, the present
curriculum of informatics subjects is described in details together with
some comments on using computational thinking in its implementation.
Then, as the main contribution of this paper we introduce in Section 3 a
new computer science curriculum for all school levels in Poland. To this
end, the existing curricula of informatics subjects have been remodeled,
extended (e.g. by adding programming to each level), and unified accord-
ing to the five Unified aims of learning computing. The new curriculum
benefits very much from our prior curricula and experience. Finally we
discuss some implementation details, supporting activities, and the road
map for a successful introduction of the curriculum to all schools.

Keywords: education, informatics, computer science, algorithmic
thinking, computational thinking, programming.

1 Introduction

1.1 Terminology

In education, as in the most of other disciplines and areas of computer ap-
plications, the terms: computer science, computing, IT (Information Technol-
ogy), ICT (Information and Communication Technology), and informatics usu-
ally bear popular understanding of the discipline related to computers and also
to the wide range of technologies. The meaning of these terms in education is
formally defined based on the context of their use in the curriculum statements.

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 141–154, 2015.
DOI: 10.1007/978-3-319-25396-1_13

142 M.M. Sys�lo and A.B. Kwiatkowska

The first regular lessons related to ‘computers’ were held in Poland in the
second half of the 1960’ when the terms ‘computer’ and ‘informatics’ had not
been used yet and a computer was a ‘mathematical machine’, see [19].

In the first informatics syllabus for schools (PTI, 1985) the school subject was
called Elements of informatics.

The first national curriculum appeared in the second half of the 1990’. It
contained curricula for informatics subjects and the term ‘information technol-
ogy’ appeared for the first time as “the combination of informatics technology
with other, related technologies, specifically communication technology” (UN-
ESCO/IFIP). Moreover, computers and information technology appeared as ed-
ucational technology in the curricula of some other subjects. At that time a new
term was coined and became popular – ‘informatics education’ which embraces
stand-alone informatics subjects and the use of technology in other subjects.

A word on ‘computing’ is in place here. In the IEEE/ACM Computing Cur-
riculum 2001 this term embraced ‘computer science’, ‘software engineering’, ‘in-
formation systems’, ‘information technology’. Since then, computing has changed
dramatically and its scope has broadened so much that it is not a single disci-
pline. However it is used in [6] as ‘computing education’ in a similar sense we
use ‘informatics education’. This term is also used in the National Curriculum in
England (2014) [4] and it covers both areas, computer science and information
and communication technology: “The core of computing is computer science ...
Computing also ensures that pupils become digitally literate – able to use, and
express themselves and develop their ideas through information and communi-
cation technology”. In Poland, the term ‘computing’ has no official counterpart
– ‘informatics’ is used for almost everything what is related to computers. How-
ever the educational circles popularize the term ‘computational thinking’, its
meaning and importance for the future education of our students, since it has
appeared in [23], see also [15].

Recently, when working on a new core curriculum for computer science, to dis-
tinguish between any use of computers within informatics education and classes
on rigorous computer science we have introduced a term ‘computer science ed-
ucation’, although school subjects are still called informatics, see Section 3.

Concluding comments on computer terminology in education in Poland to-
day: ‘informatics education’ refers to any use of computers, informatics, and
information and communication technology in other non-informatics subjects as
educational tools and methods, and ‘computer science education’ refers to rigor-
ous learning and teaching of computer science and it also contributes to general
informatics education.

1.2 Early History of Computers in Education in Poland

Two initiatives addressed to high school students appeared in two academic
centers in Poland, in Wroc�law and in Warsaw in the 1960’ – see [19] for details.

In 1964/1965, academic teachers from the University of Wroc�law initiated
informatics classes in two high schools and the subject was called Numerical
methods and programming. High school students were writing programs in Algol

CS Curriculum in Poland 143

60 for numerical calculations during school hours and then ran them on the
Elliott 803 computer (made in the UK) installed at the University.

On the other hand in Warsaw, the informatics lessons, which started in 1970,
were run in two university mathematics classes in high schools and were devoted
mainly to some theoretical foundations of informatics – models of computers and
computations. Other initiatives born in Warsaw in the 1970’ were: an informatics
syllabus for schools and in-service courses for mathematics teachers on teaching
informatics in high schools. In the second half of the 1970’, informatics was
taught in about 1000 high schools in Poland.

It is worth mentioning that the first informatics lessons in schools in Poland
were initiated by leading mathematicians and computer scientists of their time
working in academic institutions. Teachers and instructors in schools and stu-
dents involved in the first informatics classes admit today a great concern and
engagement of the initiators of those first classes – professors Stefan Paszkowski
in Wroc�law and Hanna Szmuszkowicz and Zdzis�law Pawlak in Warsaw.

The first informatics syllabus was proposed by the Polish Informatics Soci-
ety (PTI) and then approved by the Ministry of Education in 1985. The school
subject was called Elements of informatics. The curriculum covered the top-
ics related to the use of microcomputer applications (for text editing, creating
graphics and sounds, building tables and simple databases, making simulations)
and elements of structural programming using Logo mainly for drawing pictures
and operations on lists of characters.

For the next 10 years (micro)computers were mainly used in teaching infor-
matics as a stand-alone subject and only occasionally they were used for support-
ing teaching and learning other subjects. Then the development of user-friendly
human-computer interfaces and the Internet begun to influence the way com-
puters were used in schools. In the mid 1990’, the term ‘information technology’,
as ‘informatics for all students’, was accepted by the education policy makers in
Poland. The emphasis in education has moved from computer science to infor-
mation technology, from constructing computer solutions to using ready-made
tools, from computer science for some students to information technology for all.
In [15] we demonstrated however that learning information technology can en-
hance algorithmic and computational thinking skills in solving with computers
problems which arise in various school subjects and other areas.

In the beginning of this century, the national core curriculum contained the
following compulsory subjects: informatics (in 4-6 grades in primary school –
2 hours per week for one year or 1 hour per week for two years), informatics
(in middle school – 2 hours per week for one year or 1 hour per week for two
years), information technology (in high school – 2 hours per week for one year),
and an elective subject informatics (in high schools – 3 hours per week for two
years). students could also take an external final examination (matura in Polish)
in informatics.

In our approach to informatics education we make a general assumption that
informatics (= computer science) deals mainly with creating ‘new products’ re-
lated to computers (such as hardware, computer tools, programs and software,

144 M.M. Sys�lo and A.B. Kwiatkowska

algorithms, concepts, theories, etc.) and information technology is mainly us-
ing ‘informatics (computer related) products’. Although this distinction does
not define either informatics or information technology, it is very useful in de-
scribing the scope and methodology of learning and teaching both subjects. It
is quite important for students’ achievement that information technology, espe-
cially its sophisticated tools, may be also used to create highly innovative and
involved computer products. However, their novelty and ingenuity contribute to
the discipline to which they belong, rather than to computer science.

Regarding information technology [9], [10] we convince our students to elab-
orate her/his style of working with information. Application software programs,
such as editors (text and graphics), spreadsheets, presentation programs, usu-
ally have several options which support a user in improving her/his style (e.g.,
styles, templates, wizards, etc.). Elements of style are also very important when
working with information on the Internet, and in searching, publishing and com-
municating on the web.

In teaching informatics (computer science), an algorithmic problem solving
approach is suggested for the systematic development of a computer solution for
a problem, which covers the entire process of designing and implementing the so-
lution. This methodology is aimed at generating good solutions, characterised by
three fundamental properties: readability (the solution is understandable to any-
one who is familiar with the problem domain and computer tools used), correct-
ness (the solution satisfies the problem specification), and efficiency (the solution
doesn’t waste computing resources, such as time and space). The methodology
consists of six stages: (1) Analysis of a problem situation. (2) Development of a
specification of the problem. (3) Designing a computer solution of the problem.
(4) Coding. (5) Testing a computer solution. (6) Presentation and discussion,
see [15] for details. These 6 stages of the algorithmic approach are functionally
very similar to the stages in the operational definition of computational thinking,
developed recently, see [7], [17].

2 Informatics Education in Poland Today

2.1 Informatics Education

For a long time formal education in Poland started at the age of 7, which has
recently been lowered to 6. Since 1999 the school system at the primary and
secondary levels has consisted of three stages:

– primary school – 0-6 grades (age 6 to 13);
– middle school (in Polish: gimnazjum) – 7-9 grades (age 13 to 16);
– high school – 10-12 grades (to 13 in vocational schools) – (age 16 to 19).

We describe here in more details the present curriculum of stand-alone infor-
matics subjects approved at the end of 2008 and introduced to primary schools
(1-3) and to middle schools in 2008 and to primary schools (4-6) and to high
schools in 2012. The new curriculum described in Section 3 is in some parts ex-
tension and modification of the present curriculum statements towards replacing

CS Curriculum in Poland 145

activities within information technology by learning rigorous computer science,
including programming.

Primary Schools
In primary schools a stand-alone informatics subject is now called computer
activities and runs through grades 1 to 6. In grades 1-3, computer activities
are supposed to be fully integrated with other activities like reading, writing,
calculating, drawing, playing etc. At the next stages of education students are
expected to use computers as tools supporting learning of various subjects and
disciplines, formal, non-formal, and incidental in school and at home

Computer activities in grades 4-6 lay down solid knowledge and skills within
information and communication technology to be used at the next levels.

Middle Schools
Informatics in middle schools is taught for at least 2 hours per week for one year
or one hour per week for two years. The curriculum contains a section on algo-
rithmics, algorithmic thinking and solving problems with computers. Although
programming is not included in the curriculum, an introduction to Logo or to
another programming language is a popular practice in some schools. Within
algorithmics, students are expected to be able to: explain what an algorithm is,
provide a formal description (specification) of a simple problem situation and
propose an algorithm for its solution; use spreadsheets to solve simple algorith-
mic problems (e.g. the change making problem); describe, how to find an element
in an ordered or an unordered sequence of elements; use a simple sorting algo-
rithm (e.g. by counting); run some algorithms on a computer – either writing a
program, using a spreadsheets or running an education software.

Informatics in middle schools is supposed to introduce basic elements of in-
formatics, as computer science, important for at least two reasons: as a starting
point for informatics education of all students in high schools and as a pre-
orientation for those students who might be interested in choosing a high school
which offers a specialization in computer science.

The implementation of the curriculum of informatics in middle schools has
some undesirable features – most of the teachers admit that they have no time
to cover algorithmic topics. However the truth is that the teachers are afraid of
these topics since they are not enough confident in their algorithmic knowledge
and skills to touch algorithmics with students who quite often have some expe-
rience in programming and running their own programs.

High Schools
In the present curriculum for high schools information technology disappeared as
a stand-alone subject and informatics has been introduced in its place, for at least
1 hour per week for one year. In this way, informatics for all students in middle
schools has been extended to high schools. This new subject is a continuation
of informatics from middle school in the area of problem solving and decision
making with a computer by applying algorithmic approach and also may serve

146 M.M. Sys�lo and A.B. Kwiatkowska

as a pre-orientation, intended to prepare students for their choice of future study
(e.g. informatics as an elective subject), career and jobs in computing related
disciplines and areas.

Informatics (understood as a rigorous computer science) remains in high
schools as an elective subject and is taught only in some schools 3 hours per week
for two years. Students may also take an external final examination (matura in
Polish) in informatics.

2.2 Computational Thinking

Since the first informatics lessons in Polish schools in the mid 1960’, algorith-
mic thinking has been the main approach for problem solving and systematic
development of computer solutions of problems coming mostly from computer
science and its applications.

A much wider view on computing competencies has been proposed by Jean-
nette Wing in her seminal paper on computational thinking [23]. Earlier, one
of the EU directives suggested that traditional skills for everyone known as the
3Rs (i.e. reading, writing and arithmetic) should be extended to 3R+TI by
adding skills in applying information technology. Wing has taken this step fur-
ther by extending algorithmic thinking and fluency with information technology
to competencies for all learners which can be used across disciplines as a com-
puting methodology for solving problems and improve understanding of the role
of computing in the modern society. Moreover, computational thinking may also
“inspire the public’s interest in the intellectual adventure of the field of com-
puter science” [23] and as a result may also encourage and motivate students to
consider a future career in computer science related disciplines.

Computational thinking includes a range of mental tools that reflect the
breadth of computer science, for example, reduction and decomposition of a
complex problem in order to solve it efficiently, approximation when an exact
solution is beyond the reach of the computer, recursion as a method of inductive
thinking and its computer implementation, representation and modelling some
aspects of a problem to make it tractable, and heuristic reasoning to develop a
solution of intractable problems.

One can observe the influence of computational thinking on other disciplines.
On the other hand, computer scientists’ interest in other disciplines is driven by
their belief that other scientists can benefit from computational thinking. For
instance, in mathematics, as formulated by R.W. Hamming in 1959, “the purpose
of computing is insight, not numbers” – note, there were only a few computers
in 1959. In [21] we suggest how to extend and enrich traditional topics in school
mathematics by applying computational thinking to obtain solutions which are
supported by the power of computer science as a discipline and computers as
computing tools. Moreover, our approach to deal with topics in mathematics
with computational thinking and computing tools contributes to constructionist
learning, to learning by doing and making meaningful objects in the real world
– here computer solutions. Mental tools used for this purpose include: data

CS Curriculum in Poland 147

representations, reductive thinking, approximation of numerical and intractable
problems, recursive and logarithmic thinking, heuristics.

We have adopted computational thinking (see [15]) as the main learning and
teaching methodology for information technology as a school subject when it
was compulsory for all high school students. A similar approach has been also
used in some outreach activities [16] aimed at a better preparation of school
students for their future decisions to study informatics related disciplines and to
encourage them to consider a future career in computing.

The main difference between using information technology and thinking com-
putationally is in going beyond using information technology tools and informa-
tion towards creating tools and information. It reminds our distinction between
informatics (as creation of programs, computers, theories, etc.) and informa-
tion technology (as applying informatics tools), see Sections 1.2. The creation
of tools (e.g. programs) and new information requires thinking processes about
how to use abstraction and manipulate data and many other computer science
and computing concepts, ideas, and mental tools of computational thinking.

3 A New Computer Science Curriculum

In this Section we report on an initiative1 to revise the curricula of informatics
subjects (decribed briefly in Section 2) in the Polish National Curriculum so that
computer science education will cover all school levels in K-12. Fortunately our
job was only to redefine the structure and content of the subject curricula since
informatics subjects already cover all school levels in the present curriculum.

In the last decade, several national initiatives have been taken to provide
relevant computer science education in schools, for instance in UK [4] and USA
[6] – on all levels of K-12 education, and in Denmark [3] and New Zealand [2]
only in high schools. Our proposal benefits from these and other initiatives as
well as from general considerations such as in [22] and in [12].

In Subsection 3.1 we shortly discuss motivations for our initiative,
Subsection 3.2 describes the developed computer science curriculum, and finally
in Section 3.3 we comment on some aspects of the new curriculum and activities
which will support its implementation in schools.

In what follows when ‘informatics’ is used it stands for ‘computer science’.

3.1 Is Computer Science Education in Crisis?

In the 1980’-1990’ computer science was confused with computer programming
and, as a result, there was a strong opposition among education policy makers
and parents to teaching computer science. They argued that only a few high
school graduates would choose a career as a programmer. Even today, many

1 The initiative has been developed by the Council for Informatization of Education,
the Ministry of National Education. The authors are members of this Council.

148 M.M. Sys�lo and A.B. Kwiatkowska

people, among them also teachers and academics, do not consider computer sci-
ence as an independent science and, therefore, as an independent school subject.
Most of them confuse computer science and information technology.

Informatics education in school has not cleared up the myths about computer
science and it is again confused with computer programming which has recently
become easy accessible even for novice programmers. Students can easily access
high-level tools for designing and producing complex applications without any
knowledge of fundamentals, such as logic, discrete mathematics, programming
methodology, or computability.

Since most students are fluent in using computers to play, search the web
and communicate they have no interest in pursuing computer science as a career
choice. One of the goals of computer science education should be to motivate
students to go ‘beyond the screen’ and investigate how computers work and how
software is designed so they can create their own solutions. Computer science
lessons should prepare students for further study instead of leaving them satisfied
with the knowledge and skills they have already learned.

The society needs a continuous inflow of good students to be educated and
trained as professional specialists for computer related jobs in order to sustain
the development and achievements that are necessary to meet the expectations
of the information society and its citizens.

The White Paper by the CSTA [13] lists a number of challenges and require-
ments that must be met if we want to succeed in improving computer science
education – our new curriculum has been designed to meet these challenges:

– students should acquire a broad overview of the field of computer science;

– instruction should focus on problem solving and algorithmic (computational)
thinking;

– computer science should be taught independently of specific application soft-
ware, programming languages, and environments;

– computer science should be taught using real-world problem situations;

– computer science education should provide a solid background for the pro-
fessional use of computers in other disciplines.

3.2 The New Computer Science Curriculum

The new computer science curriculum benefits very much from our experi-
ence in teaching informatics in schools for more than 30 years (see Sections 1
and 2). In particular, it takes from the present curriculum the hours assigned
to informatics subjects and unifies the names of all stand-alone informatics sub-
jects as informatics. Therefore, according to the new curriculum, informatics is
a compulsory subject in primary schools (1-6 grades, 1 hour a week for 6 years),
middle schools (7-9 grades, 1 hour a week for two years), and high schools (10
grade, 1 hour a week). Moreover, informatics is also an elective subject in high
schools (11-12 grades, 3 hours a week for two years) and high school students may
graduate in informatics taking the final examination (pl. matura) in informatics.

CS Curriculum in Poland 149

We have been very lucky that the present curriculum already includes infor-
matics subjects on each education level and we have only had to modify and
extend their curricula. The same applies to the hours of instruction. Needless
to say that otherwise it would be very difficult to impossible to convince the
education authorities that the national curriculum needs such changes in the
area which is not of the highest priority on the official agenda, unfortunately.

The new computer science curriculum begins with an introduction explaining
the importance of computer science for our society in general and for our school
students in particular (see Section 3.1 for some general comments). Then follow
the curricula for each level of education. Each curricula consists of three parts:

– Second part is the same in all curricula. It includes Unified aims which
define five knowledge areas in the form of general requirements – see below.

– First part is a description of Purpose of study, formulated adequately to
the school level.

– The third part consists of detailedAttainment targets. The targets grouped
according to their aims define the content of each aim adequately to the
school level. Thus learning objectives are defined that identify the specific
computer science concepts and skills students should learn and achieve in a
spiral fashion through the four levels of their education.

The Unified aims are as follows:

1. Understanding and analysis of problems – logical and abstract thinking;
algorithmic thinking, algorithms and representation of information;

2. Programing and problem solving by using computers and other digital de-
vices – designing and programming algorithms; organizing, searching and
sharing information; utilizing computer applications;

3. Using computers, digital devices, and computer networks – principles of func-
tioning of computers, digital devices, and computer networks; performing
calculations and executing programs;

4. Developing social competences – communication and cooperation, in partic-
ular in virtual environments; project based learning; taking various roles in
group projects.

5. Observing law and security principles and regulations – respecting privacy
of personal information, intellectual property, data security, netiquette, and
social norms; positive and negative impact of technology on culture, social
life and security.

Two very important comments regarding the new computer science curricu-
lum are in order. Although any curriculum defines the aims and targets to be
included in any school syllabus, the curricula for particular school levels in the
new curriculum contain some optional attainment targets which can be freely
added to a subject syllabus or assigned only to a group of students. This is
a novelty in our national curriculum and leaves some room for personalized
learning of gifted students as well as students who have particular interests

150 M.M. Sys�lo and A.B. Kwiatkowska

in specific areas of computer science and its applications (such as mathematics,
science, arts).

Personalization in the new curriculum is a means to encourage and motivate
students to make personal choices of a range of computer science topics and
areas in middle and high schools what may lead them towards computer science
specialization in the next steps of education and in professional career. Person-
alization is aimed at increasing students’ interests in learning then in studying
computer science as a discipline, or at least in better understanding how com-
puters and their tools work and can be used in solving problems which may
occur in various areas.

Another facet of personalization is a curriculum of compulsory informatics in
vocational high schools for computer, electronic, and electric technicians which
is fully devoted to learning computer programming.

It should be noted, that as in the UK curriculum [4], our curriculum recognises
the value of computer science as the underlying academic discipline and expects
students to understand and use the basic concepts and principles of computer
science, analyse and solve problems computationally, programming their solu-
tion, on one side (see Unified aims No 1 and 2), and on the other side, students
are still expected to apply information technology and to be competent, cre-
ative, and responsible users of technology in other school subjects, disciplines,
and areas of computer applications (see Unified aims No 2 and 5).

3.3 Implementation Comments, Supporting Activities

Role of Programming. From one hand, A. Perlis wrote in 1962 that everyone
should learn to program and Mark Prensky declared a few years ago that “The
True 21st Century Literacy Is Programming”. From the other hand, we should
avoid ‘the equation’: computer science = programming which is accused of killing
interest in computer science among school students in 1990’. Not all students
will become professional programmers but writing own programs, individually
or in a group, they practice creative and computational thinking, and gain skills
of the digital era useful for professional and personal life. They should also get
some experience in programming other digital instruments, such as toys, robots,
vending machines.

Traditionally, a programming language is a language of computer science in
a sense that it is a tool for expressing algorithms and communicate them to
computers and also to other programmers. However, we should remember that
“informatics should be taught independently of specific application software and
programming languages and environments”, [13].

In [15] and [17] we have extended the meaning of the terms ‘program’ and ‘pro-
gramming’ to see them in a wider context of using computers to solve problems
which are not necessarily algorithmic in nature and introducing all students to
computational thinking. There are plenty of opportunities to communicate with
a computer by means of programs which are created by other programs, not
necessarily writing own programs. The following objects are computer programs:
spreadsheet, data base, interactive and dynamic presentation, website, and also

CS Curriculum in Poland 151

documents and graphics and they can be used to ‘program’ a computer. This
meaning of programming with no use of a programming language has a psycho-
logical advantage over programming in the traditional sense since the majority
of students and their parents consider learning a programming language as the
first step to a computer science career, but our goal is only to expose all students
to computational thinking. In general, computational thinking is not equivalent
to thinking process which leads to computer programming.

The above comments put programming in a right position in computer science
education in schools – it is not the only way to communicate with computers and
to use them for problem solving. However computer programming can enhance
students’ problem solving skills in a constructivist way by constructing programs
as ‘real objects’ and then use them in learning by doing (solving problems,
making experiments with data, verifying hypothesis, proving statements).

Implementing the curriculum we advise to use programming language for
visual programming with novice programmers in primary schools and then to
switch for textual language in middle and high schools. No particular language
is recommended – the choice is left to teachers and students.

Computer Science Unplugged. Computer science unplugged (CS Unplugged)
activities introduce children2 to fundamental computing concepts and do not re-
quire a computer, see [5]. Such activities promote creativity, problem solving
skills, and cooperation in groups.

We have extended this approach by introducing some computer activities and
integrating them with what children are doing and used it at a children’s uni-
versity to introduce very young students to some concepts in computer science,
see [20]. Children work in a number of environments which consist of two stages:
first they are engaged in cooperative games and puzzles that use concrete objects
(like in CS unplugged), and then they move to computational thinking about
the objects and about the concepts they are learning. In this way we introduce
our young students to such computer science concepts as: calculations using
mechanical tools, complexity issues (the Tower of Hanoi, Fibonacci numbers,
and binary search), and graph models (of real world situations). Our approach
contributes to constructionist learning, to learning by doing and making mean-
ingful objects in the real world, computational models of real-world situations.
Our learning environments are extensions of ‘unplugged’ ones by encouraging
children to purposely and properly use computers for certain activities.

Integration of Computer Science with Other Subjects. We have reviewed
the curricula for all other school subject on all school levels and all topics (at-
tainment targets) which are appropriate for augmenting by including and using
computer science concepts, skills, and mental tools, have been annotated with

2 The first author of this paper used the CS Unplugged approach in 1970’ when intro-
ducing the concept of a stable marriage or pairing (due to Lloyd Shapley, the Nobel
Prize winner in Economics in 2012) to university students by ‘playing’ the algorithm
with groups of students.

152 M.M. Sys�lo and A.B. Kwiatkowska

comments how to apply computational thinking to enhance knowledge and skills
in the other subjects. We expect a cooperation with teachers of other subjects
in implementing our ideas how to integrate computer science with other areas.

Teacher Preparation: Standards, Training, and Evaluation. Preparation
of teachers is a crucial factor for the success of introducing the new computer
science curriculum to classrooms. The computer science education standards for
teacher preparation, which are similar to the ISTE standards [11], have been
developed. This standards are operational and include what teachers should be
able to do to inspire, motivate and engage students and to promote students’
ability to learn effectively. Moreover, the new standards focus also on teachers’
engagement in professional development – candidate teachers may come from
various pedagogical and subject areas and they may need personalized profes-
sional development and training, see [8].

We have also developed a certification procedure, which evaluates in the class-
room teacher’s preparation for effective and successful managing of learning com-
puter science by her/his students. This procedure is similar to that proposed in
[18] for preparation of any teacher to use information technology in the class-
room. It is worth to mention that the main purpose of evaluation of teacher’s
work is to help and support her/him in better preparation for teaching computer
science. We are glad to find out that our approach to teachers’ certification has
many elements in common with the teacher evaluation and improvement system
discussed and proposed in the Measures of Effective Teaching Project supported
by the Bill and Melinda Gates Foundation.

Outreach Activities. Various outreach initiatives and activities in the area of
computer science education are organized in Poland nationwide or locally. They
range from formal and informal lectures, courses, and workshops run by public or
private institutions. Such activities contribute to school education by increasing
motivation and preparation of school students for their future decisions to study
computer science or related fields and become computer specialists. Informatics
+ was one of such projects (see [16]). More than 15 000 students from five regions
of Poland took part in this project during 3 years. The project Informatyka + was
awarded The Best Practices in Education Award by Informatics Europe in 2013
in “recognition of outstanding European educational initiative that improves the
quality of informatics teaching and the attractiveness of the discipline.”

Extracurricular activities of students, such as described here and below, pro-
mote computer science concepts, involving mainly mental tools of computational
thinking. Such activities contribute to formal computer science education as well
as to broaden informal and incidental learning.

Competitions. Competitions are typical outreach activities, they are usu-
ally run by institutions external to schools. These educational events require
knowledge and skills exceeding what is taught in schools. They engage and de-
velop skills necessary in the future professional activities such as: constant self-
development, self-discipline, hunger for knowledge, ability to work in a team.

CS Curriculum in Poland 153

Olympiads in Informatics, which in fact are competitions in algorithmics and
programming, attract most skillful students. However, the Bebras competition
[1] promotes interest in computer science as well as in information and com-
munication technologies to all school students of all grades. Bebras tasks are
on concepts coming from information comprehension, logical and algorithmic
thinking, games and puzzles, graphical representations of notions and objects,
computer and software functions, etc. They aim at developing computational
thinking in the contexts coming from various areas and school subjects.

3.4 The Road Map

The new computer science curriculum as described in Section 3.2 has been ac-
cepted by the Ministry of National Education and has been made available to
teachers and schools in July 2015. Formally it will be included in the National
Curriculum, what needs the Parliament approval, in 2016. In the meantime
teachers will take part in various in-service courses on how to develop school
syllabi based on the new curriculum and to develop educational materials for
their instruction and for students. On the other hand, we expect that computer
science departments at tertiary institutions will offer continuous in-service train-
ing for teachers, partly in the form of blended learning, based on the preparation
standards for teachers, see [18].

References

1. Bebras competition, http://bebras.org/
2. Bell, T.: Establishing a Nationwide CS Curriculum in New Zealand High Schools.

Comm. ACM 57(2), 28-30 (2014)
3. Caspersen, M.E., Nowack, P.: Computational Thinking and Practice - A Generic

Approach to Computing in Danish High Schools. In: Carbone, A., Whalley, J.
(eds.) CRPIT, vol. 136, pp. 137-143. ACS (2013)

4. http://computingatschool.org.uk/

5. Cortina, T.J.: Reaching a Broader Population of Students through “Unplugged”
Activities. Comm. ACM 58(3), 25–27 (2015)

6. CSTA: K -12 Computer Science Standards (2011),
http://csta.acm.org/Research/sub/CSTAResearch.html

7. CSTA: Computational Thinking Task Force,
http://csta.acm.org/Curriculum/sub/CompThinking.html

8. Gal-Ezer, J., Stephenson, C.: Computer Science Teacher Preparation is Critical.
ACM Inroads 1(1), 61–66 (2010)

9. Gurbiel, E., Hardt-Olejniczak, G., Ko�lczyk, E., Krupicka, H., Sys�lo, M.M.: Infor-
matics. Textbook for middle school. WSiP, Warszawa (2009) (in Polish)

10. Gurbiel, E., Hardt-Olejniczak, G., Ko�lczyk, E., Krupicka, H., Sys�lo, M.M.: Infor-
matyka to podstawa. Textbook for all students in high school. WSiP, Warszawa
(2012)

11. ISTE, http://www.iste.org
12. Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C.,

Wildeman, B.: Infusing Computational Thinking into the Middle- and High-School
Curriculum. In: ITiCSE 2012, Haifa, Israel, pp. 22–27 (2012)

http://bebras.org/
http://computingatschool.org.uk/
http://csta.acm.org/Research/sub/CSTAResearch.html
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://www.iste.org

154 M.M. Sys�lo and A.B. Kwiatkowska

13. Stephenson, C., Gal-Ezer, J., Haberman, B., Verno, A.: The New Education Im-
perative: Improving High School Computer Science Education, Final Report of
the CSTA Curriculum Improvement Task Force, CSTA. ACM (February 2005),
http://csta.acm.org/Publications/White_Paper07_06.pdf

14. Sys�lo, M.M., Kwiatkowska, A.B.: Informatics Versus Information Technology –
How Much Informatics Is Needed to Use Information Technology – A School Per-
spective. In: Mittermeir, R.T. (ed.) ISSEP 2005. LNCS, vol. 3422, pp. 178–188.
Springer, Heidelberg (2005)

15. Sys�lo, M.M., Kwiatkowska, A.B.: The Challenging Face of Informatics Education
in Poland. In: Mittermeir, R.T., Sys�lo, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090,
pp. 1–18. Springer, Heidelberg (2008)

16. Sys�lo, M.M.: Outreach to Prospective Informatics Students. In: Kalaš, I.,
Mittermeir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 56–70. Springer, Heidel-
berg (2011)

17. Sys�lo, M.M., Kwiatkowska, A.B.: Informatics for All High School Students. In:
Diethelm, I., Mittermeir, R.T. (eds.) ISSEP 2013. LNCS, vol. 7780, pp. 43–56.
Springer, Heidelberg (2013)

18. Syso, M.M., Kwiatkowska A.B.: E-Teacher Standards and Certificates. In:
Reynolds, N., Webb, M. (eds.) Learning while we are connected. WCCE 2013,
vol. 2, pp. 145-151. UMK Toruñ (2013)

19. Sys�lo, M.M.: The First 25 Years of Computers in Education in Poland: 1965-1990.
In: Tatnall, A., Davey, B. (eds.) History of Computers in Education. IFIP AICT,
vol. 424, pp. 266–290. Springer, Heidelberg (2014)

20. Sys�lo, M.M., Kwiatkowska, A.B.: Playing with Computing at a Children’s
University. In: WiPSCE 2014, Berlin, Germany, pp. 104–107. ACM (2014)

21. Sys�lo, M.M., Kwiatkowska, A.B.: Learning Mathematics supported by computa-
tional thinking, In: Futschek, G., Kynigos, C. (eds.) Constructionism and Creativ-
ity, pp. 258–268. Österreichische Computer Gesellschaft, Vienna (2014)

22. Webb, M.: Considerations for the Design of Computing Curricula. In: Brinda, T.,
Reynolds, N., Romeike, R. (eds.) KEYCIT 2014, Berlin, pp. 163–173 (2014)

23. Wing, J.M.: Computational thinking. Comm. ACM 49, 33–35 (2006)

http://csta.acm.org/Publications/White_Paper07_06.pdf

Analyzing the Twitter Data Stream Using the

Snap! Learning Environment

Andreas Grillenberger and Ralf Romeike

Friedrich–Alexander–Universität Erlangen–Nürnberg (FAU)
Department of computer science, Computing Education Research Group

Martensstraße 3, 91058 Erlangen, Germany
{andreas.grillenberger,ralf.romeike}@fau.de

Abstract. In the last few years, tremendous changes have occurred in
the field data management, especially in the context of big data. Not only
approaches for data analysis have changed, but also real–time data analy-
ses gain in importance and support decision–making in various contexts.
One of the most exciting approaches for processing and analyzing large
amounts of data in nearly real–time are data stream systems.

In this paper, we will demonstrate how such developments in CS can
be introduced in CS education by using data stream systems as an exam-
ple. We will discuss these systems from a CS education point of view and
describe an approach for carrying out data stream analysis by using the
Twitter stream as data source. Also, we will show how the programming
tool Snap! can be extended for supporting teaching in this context.

Keywords: Big Data, Data Management, Data Stream Systems,
Twitter, Real–Time Data Analyses, CS Education.

1 Introduction

In modern computer science, a major challenge is to process and analyze large
amounts of data. Such data analyses are central to big data—a topic that is
frequently being discussed nowadays, not only in CS and in the economy, but
also in politics, society and daily life. Especially, the impact of real–time data
analyses is increasing tremendously. At the same time, data analyses are hard to
notice at all in everyday life, but will become even more important with emerging
technologies, like the Internet of Things or Cyper-Physical Systems, as they will
provide many additional data and use cases.

While discussions on data are often focused on storing large amounts of them,
for example generated by early data retention projects or intelligence agencies,
this aspect is a minor challenge today. Instead, the main difficulty is to process
and analyze these growing amounts of data. This leads to a new view on data
processing: while traditional data analyses are especially focused on relatively
static data, typically stored in a database, today data are rather dynamically
changing. Also, traditionally it was sufficient to generate results eventually after
capturing the data, but today’s analyses are often focused on immediate reac-
tions, like in a tsunami warning system based on seismic sensors. However, CS

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 155–164, 2015.
DOI: 10.1007/978-3-319-25396-1_14

156 A. Grillenberger and R. Romeike

education in this context mainly focuses on storing data in a proper way, often
using databases and the relational data model as example, while the aspect of
analyzing data is typically left out or only considered marginally (cf. [4]).

In the context of such developments, CS education is confronted with the
challenge of keeping track with them and incorporating the basic principles into
teaching. However, the complexity of such topics makes this a difficult task. An
example is big data: despite its relevance for the student’s daily life (cf. [6]), this
topic is highly complex and hence appears difficult to include in teaching. In this
paper we will discuss one of the emerging approaches for handling big data, data
stream systems, concerning the new view it brings to data management, as well
as its main working principles. Thereafter, we will describe an example of how to
introduce this topic in teaching and how to arrange teaching in this context in
a student–oriented way using active learning, while also fostering competencies
that can be used for overcoming today’s flood of information. Additionally, by
using Snap! [7] as an example, we will show how an universal programming
tool can be extended in order to support teaching of the principles of such new
developments.

2 Data Stream Systems

2.1 Function of Data Stream Systems

In modern information systems, the challenge of handling large amounts of data
in nearly real–time is becoming increasingly important. While data are typi-
cally stored and processed using Database Management Systems (DBMS), this
approach is being challenged by increasingly large amounts of varying data in
short time–spans (big data), because traditional approaches can hardly fulfill
modern requirements like real–time analyses. Instead, they are designed for use
cases in which immediate reactions are not required, such as analyzing business
data. But when direct reactions are essential, immediate processing of data is
inevitable, e. g. when measuring high values of tectonic movements in a tsunami
warning system. While in some cases this challenge might be overcome by ac-
celerating data processing using more powerful machines, this cannot solve the
problem in general. A fundamental question in this context is: “Why do we store
all the data?“ In modern data management, one approach to address this prob-
lem is not to store all the data but only the uncommon ones which have a higher
self–information, while presuming that if nothing was stored, everything was as
usual. Coming back to the tsunami warning system, it does not make sense to
save values of nearly no tectonic movement. While the traditional approach tries
to gather as much data as possible on an object/model in order to enable any
desired further analysis of them (cf. fig. 1), the approach of data stream systems
(DSS) is only suitable when there is a clear analysis goal and when criteria can
be defined before starting the analysis: they analyze a data stream by filter-
ing out the relevant data on–the–fly (cf. fig. 2). In an analogy, we can describe
the database approach as a hamster who collects food on stock, while DSS are
characterized by a bear who catches fishes only when he is hungry.

Analyzing the Twitter Data Stream Using the Snap! Learning Environment 157

Data

Queries Results

Data-
base

Fig. 1. Function of a database system

Queries
Stream of Data

Results

Fig. 2. Function of a data stream system

The main working principle of data stream systems is to execute queries on
“[. . .] a real–time, continuous, ordered (explicitly by time stamp or implicitly
by arrival time) sequence of items” [3], called data stream, instead of one–time
queries on stored data. A basic assumption is that when data are arriving in a
specified order, each new datum adds new information to the previously received
ones or revises them. In consequence, a main characteristic of DSS is that they
also produce a continuous stream of results instead of occasional results only
when executing a query.

Both, DBMS and DSS, are generally suitable for processing large amounts of
data, but they are optimized for different tasks: as databases store all the data
for a longer period of time, it is possible to analyze them for correlations or
patterns in the data, even such that were unexpected. Such analyses are sum-
marized under the term data mining: “the process of discovering interesting and
useful patterns and relationships in large volumes of data” [1]. Instead, digging
for hidden information without having concrete criteria is not possible using
DSS, because the analysis criteria must be defined before the data arrive. For
combining the advantages of both systems—immediate reactions, but also long–
time availability of all data—using a combination of both types is a promising
approach.

2.2 Usage Examples of Data Stream Systems

A typical domain of DSS is monitoring data streams for defined events/criteria.
In the following, we will characterize the use of these systems by describing
Twitter analysis as example, but most of the described characteristics can also
be found when considering other services. While social media play an important
role for most students today, they are also a rich data source, e. g. for predicting
upcoming trends or for product marketing. We decided for using Twitter as ex-
ample, as up to 6,000 tweets are posted per second [8] and can be easily accessed
using the Twitter API. With each tweet containing not only up to 140 characters
as message, but also about 150 additional attributes [2] (e. g. unique ID, author,
followers, time stamp, geographical origination, language, information on the

158 A. Grillenberger and R. Romeike

profile page of the author), Twitter is a rich information source.1 When only
considering the tweet text (assuming on average 70 characters) and storing it
in UTF–8 encoding, this makes about 200 bytes per tweet, in combination with
the metadata, a conservative estimation would be around 500 bytes per tweet,
which means 3MB per second or 259.2GB per day. With these large amounts of
data, and especially metadata, various interesting and meaningful analyses can
be done: analyzing trends, like Twitter does directly on its start page, reviewing
the success of newly released products (even grouped by countries, for example)
or generating accurate election forecasts (e. g. [9]). A concrete example is prod-
uct marketing: when releasing a new product, a typical task is to analyze its
success. While such analyses can deliver important results on how to improve
the next product, another important aspect is to react to discussions on it. So,
an exemplary task is to find regions in which the product needs to be advertised
more intensively in order to ensure better success.

Incoming Stream Saved previous page
content

Extract web
page content

If different: return arg. #1
Else: return nothing

Result Stream

DSS

Fig. 3. Data flow of a continu-
ous query for monitoring website
changes

Another example for data stream analyses is
monitoring of sensors or services like websites.
Especially, website monitoring is also highly
versatile: e. g. periodically checking if a website
is online or offline, monitoring its performance
or checking if the price of an item in an on-
line shop has changed. In all these examples,
the data source is a continuous stream of data,
of which most of the data are not interesting,
but the really interesting values can be filtered
out efficiently by defining appropriate criteria.
A suitable way for depicting the data flow of
such analyses is using data flow diagrams. In
fig. 3, we depicted such a diagram for monitor-
ing changes on a website.

2.3 Principles of Data Stream Analyses in Daily Life

The same principle that was used in the previously described examples is also
present in everyone’s daily life, as they describe the monitoring of data sources,
something that everyone does regularly: before refueling our car, we monitor
the gasoline price and react as soon as we recognize a cheap price, and when
buying goods, we watch the price and buy them when they are on sale. Also,
we can use sensors to capture information that is not originally available dig-
itally. This is the case for various innovations in home automation: measuring
sunlight for automatically controlling the window shades or measuring temper-
ature for controlling the heater. Even when working in the garden, there are
various monitoring aspects, like pouring water on the flowers or the lawn only

1 A complete overview of which metadata a tweet contained in 2010 can be found at
http://online.wsj.com/public/resources/documents/TweetMetadata.pdf (last
checked: 2015-07-20, created by Raffi Krikorian)

http://online.wsj.com/public/resources/documents/TweetMetadata.pdf

Analyzing the Twitter Data Stream Using the Snap! Learning Environment 159

if they are becoming too dry. Systems that are used for the automation of such
tasks are often referred to as Cyber–Physical Systems (CPS): they perceive their
environment using complex sensor structures, react to changes, influence their
environment and also communicate with other systems. Such systems do not
only enable everyone to monitor and to control their own environment, but they
also create new information sources by providing almost every item with its
own digital identity—one of the main principles of the Internet of Things. This
paradigm change in the relationship between physical and virtual objects and
practices illustrates the importance of competencies that are needed to cope
with the new requirements arising therefrom. Supporting the formation of such
competencies is an important task of CS education, which also requires some
fundamental knowledge on the basic working principles of such systems.

3 Using Snap! for Twitter Analysis

For CS education, introducing modern approaches like DSS into teaching is a
complex task. In particular, topics like big data also cause changes in the rel-
evance of various other concepts, set new emphases and require new examples
(cf. [5]). On the other hand, incorporating such topics into teaching enables stu-
dents to recognize the broadness of CS as well as the chances of using modern CS
methods. In this sense, DSS are prototypical for the characteristics of modern
data management, e. g. the difference between data and information, the value
of data and metadata, standardized data interchange formats, and data analysis
methods. With DSS as example, we will illustrate how CS education can support
understanding the basic working principles of such modern developments and the
acquisition of competencies in this context. For understanding the principles of
DSS, students need to be able to use such a system by themselves in order to en-
sure student–oriented teaching and facilitate active learning. So, in the following
we want to demonstrate, how the principles of these systems can be taught using
an easy–to–use data stream analysis tool. As typical professional data stream
systems are too complex for discovering the main working principles without
having in–depth knowledge on the software, we decided to implement a school–
focused working example of a DSS based on the easy–to–use programming tool
Snap! . In the following we will first describe how this universal programming en-
vironment can be used for demonstrating the principles of DSS, in this example
using the Twitter stream as data source. Thereafter, we will present the central
aspects of our implementation. Our main reason for choosing Twitter is that
it offers large amounts of data in an easily accessible way: there are two APIs
(one for discrete data, one for streaming data)2, which are opening up various
possibilities. For the described use, mainly the streaming API is of interest: it
provides three different endpoints, which means three different data streams.
In this example we will access the so–called “filter–stream”, which in our tests
provided about 16 tweets per second, each enriched with location metadata.

2 The Twitter APIs are described in detail at
https://dev.twitter.com/overview/documentation (last checked: 2015-07-20)

https://dev.twitter.com/overview/documentation

160 A. Grillenberger and R. Romeike

3.1 Possibilities and Usage

Some examples for analyses that can be done using the Twitter data at school
are coming from the previously mentioned context product marketing. For do-
ing such analyses, we need to access the tweet’s text, its geographical location,
perhaps hashtags (if provided), retweets or likes and so on. All these information
are provided by the Twitter stream, so we only need to make them accessible
in Snap! . Therefore, we implemented various blocks for accessing and processing
the Twitter data. In the following, we will present a more detailed view on these
blocks, while technical details will follow in section 3.2.

Fig. 4. Implementation of the “get
next full tweet” block

Fig. 5. Implementation of the “read
attribute from tweet” block

Fig. 6. Implementation of the “for
each tweet” block

The “get next full tweet” block (fig. 4)
reads the next tweet from the helper via
a HTTP request and returns all attributes
as JSON formatted string. If no value is
returned by the helper, it likely means that
the helper is not running.

The “read attribute from tweet” block
(fig. 5) typically gets one tweet in JSON
format as argument, which it processes via
a simple JavaScript function, which parses
the JSON string and returns the requested
attribute.

The “for each tweet do” C–shaped block
(fig. 6) is implemented using a forever loop,
in which it reads the next tweet, determines
if its text has at least one character and
then executes the given lambda function
(which is in the user–view represented as all
blocks inside the C–shape), with the JSON
formatted tweet as input.

Using these blocks, students can perform
various analyses on tweets, for example
by keyword, language, countries, length of
tweet, hashtags or the color of the author’s
profile page. Because only getting numer-
ical and textual results is not a very mo-
tivating and interesting outcome, we also
implemented a block for showing the lo-
cation of tweets on a map. As most sim-
ple example, in fig. 7, we have depicted all
tweets that arrived during a time frame of
5minutes on a map without doing any ad-
ditional steps. Another visualization that we have implemented, in particular for
doing simple statistical analyses, is a bar chart that can be generated out of a list
of integer values. In fig. 8, we depicted another simple example: determining the
language of the tweet and generating a chart showing the relative frequency of

Analyzing the Twitter Data Stream Using the Snap! Learning Environment 161

Fig. 7. Map visualization of tweets.
Map: c©2011 Strebe, CC BY–SA 3.0

Fig. 8. Bar chart showing the amount of
tweets in different languages.

the languages English, German, Spanish, French, Japanese as well as all others.
These visualizations and analysis blocks can be used by students to do analyses
depending on their own interests, for example they could analyze which country
likes which colors most (determined by the author’s profile background color),
where a current topic seems to be most discussed or which country favors which
stars.

A concrete example for an analysis task in the context of product marketing
that can be done at school using our tool is measuring the spread of products
in different countries. So, students can e. g. analyze how much the smartphone
platforms Android, iOS and Windows as well as their environment are discussed
by doing a keyword analysis. By mapping three sets of keywords for these three
categories in different colors, the students can get a good overview. However,
deeper insights are only possible by using the bar chart and, for example, by
restricting the counted tweets to specific countries or regions.

3.2 Realization and Technical Aspects

For implementing the described functions in Snap! , we have chosen an approach
that can also be transferred to other data sources (like RSS feeds, website data or
sensor data). As both, our approach and Snap! in general, can be used, adopted
and extended in a versatile way, in this section we will describe essential details
of the implementation that are also relevant for further extensions, using other
data analysis approaches and for connecting to other data sources, as well as for
transferring our extension to other programming environments. In addition, we
will clarify the limitations of our implementation of which the teacher should be
aware when using this tool.

As Twitter offers various options for accessing its rich data sources, the first
decision was which one to use. We are using the streaming API, which provides
three different data streams: the whole stream of data, the so–called fire hose,
which is only accessible with special permissions, the sample stream providing

162 A. Grillenberger and R. Romeike

a 1% sample of all tweets (about 10 to 15 tweets per second in our tests) as
well as the filter stream which lets the user define some criteria (like geolocation
or keywords) and returned about 12 to 16 tweets per second. So, not only the
slightly higher amount of tweets let us choose the filter API, but especially the
fact that we could restrict the results to only tweets containing location data.

After this decision, when implementing our tool we were faced a main chal-
lenge: directly connecting from Snap! to Twitter it not possible because of secu-
rity measures for preventing cross–site scripting attacks in all typical browsers.
Hence, we implemented a helper app which acts as proxy between Snap! and
Twitter and forwards all tweets to Snap! in a suitable way (JSON format). On
the one side, the helper app connects to Twitter using its streaming API, on the
other side it offers Snap! the ability to connect to it by running a small web server
and allowing Snap! access to it3. In Snap!, all functions are implemented using
custom blocks and the provided Javascript block, but without modifying the
Snap! source code. So, these blocks can be used in the official Snap! installation
after importing them.

As a consequence of using a helper application, our implementation cannot
fully preserve the data stream character: while there is a typical data stream
between Twitter and the helper app, as it is only requested once and then con-
tinuously filled by Twitter until the connection ends, we cannot send the data
from the helper app to Snap! . So, the “get next full tweet” block breaks up the
stream character by requesting every single item on its own. However, as this
behavior is hidden from the students, this is only a minor restriction. Also, in
order to imitate the stream character as good as possible, we do not cache tweets
in the helper app, but instead discard them if there is no incoming request from
Snap! in the short time until a new tweet is being received, so if it is not being
processed in time. Nevertheless, teachers using this Snap! extension should be
aware of this restriction in order to avoid building up misconceptions.

The helper app can also be used with other programming languages and en-
vironments that support HTTP requests and parsing text as well as the JSON
format, as it provides a universal REST interface and uses JSON for data inter-
change. So, transferring our solution to e. g. Scratch or AppInventor is possible.

4 Summary

Data stream systems involve various important aspects of CS and in particular
of data management. As shown in chapter 2, DSS do not only implement an
effective yet easy to understand approach for handling large amounts of data,
but they can also serve as an example for data flow modeling, show the principles
of real–time data processing and point out the necessity for defined interfaces and
exchange formats between systems. Discussing the principles of DSS at school
can hence not only show some important principles of CS, but in CS teaching,

3 This technique is known as cross–origin resource sharing (CORS): the target sites
allows remote access to its resources by setting a special HTTP header.

Analyzing the Twitter Data Stream Using the Snap! Learning Environment 163

it also helps with understanding topics of current interest, like the chances and
risks of data analyses.

With the growing importance of data analysis and the large amounts of data
that are being generated today, understanding the fundamental concepts and
principles in this field becomes increasingly important for handling own data
and for understanding common topics in the modern information–driven society.
DSS can help students understanding popular data analysis and discussions on
data–driven topics, but they also help recognizing the threats accompanying
these possibilities. The described tool also gives them the chance to carry out
own basic data stream analyses based on the Twitter feed without the need
to understand the Twitter API and without possessing in–depth programming
skills. Also, this example of analyzing the Twitter data stream can be transferred
to many other examples related to the students’ daily life: there is only a slight
difference to analyzing RSS feeds or other data sources instead of the Twitter
stream. As many use cases of DSS are focused on monitoring, this topic addresses
another perspective on CS, as students can relate this to their own activities and
understand how to automate tasks by using such systems. So, they can also take
advantage of this, e. g. by transferring this knowledge to use cases like analyzing
the prices of a concrete flight and alerting you when a defined limit is exceeded.

Additionally, incorporating aspects of modern data management into teach-
ing can also foster the formation of various key competencies that are needed
for handling own data in an appropriate and responsible way: for example, in
the context of DSS, students need to make decisions on whether to store data
in a temporary or permanent way, “understand the purpose of metadata” and
“combine data in order to gather new information” [6]. In particular, with the
described Twitter analyses, students would also be able to recognize the value
of metadata, as most analyses would be relatively meaningless when only con-
sidering the tweet text but none of the additional information like the location.

Data stream systems can hence function as an example for involving the on-
going developments and emerging topics of CS into CS education. While current
CS curricula do not or only marginally cover such topics, in future the relevance
of modern data management topics in CS education is likely to increase: for ex-
ample, in the context of the web, networking, protocols and so on. In addition,
this article demonstrates that considering common tools of CS education from
a broader view and using them in a wider context is a promising approach: in
this case, the programming environment Snap! could easily be extended to cover
aspects of data management and data analysis and to clearly show the main
working principles of data stream systems.

References

1. Data Mining. Encyclopdia Britannica, http://www.britannica.com/EBchecked/
topic/1056150/data-mining

http://www.britannica.com/EBchecked/topic/1056150/data-mining
http://www.britannica.com/EBchecked/topic/1056150/data-mining

164 A. Grillenberger and R. Romeike

2. Dwoskin, E.: In a Single Tweet, as Many Pieces of Metadata as There
Are Characters. The Washington Journal (2014), http://blogs.wsj.com/

digits/2014/06/06/in-a-single-tweet-as-many-pieces-of-metadata-as-

there-are-characters

3. Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries
over data streams. In: Proceedings of the 29th International Conference on Very
Large Data Bases, VLDB 2003, vol. 29, pp. 500–511. VLDB Endowment (2003)

4. Grillenberger, A., Romeike, R.: A comparison of the field data management and its
representation in secondary CS curricula. In: Proceedings of WiPSCE 2014. ACM,
Berlin (2014)

5. Grillenberger, A., Romeike, R.: Big data – challenges for computer science educa-
tion. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 29–40.
Springer, Heidelberg (2014)

6. Grillenberger, A., Romeike, R.: Teaching data management: key competencies and
opportunities. In: Brinda, T., Reynolds, N., Romeike, R. (eds.) KEYCIT 2014 - Key
Competencies in Informatics and ICT. Universitätsverlag Potsdam, Commentarii
informaticae didacticae (2014)

7. Harvey, B., Mönig, J.: Snap! Reference Manual (2014),
http://snap.berkeley.edu/SnapManual.pdf

8. Krikorian, R.: New Tweets per second record, and how (2013),
https://blog.twitter.com/node/2845

9. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections
with twitter: what 140 characters reveal about political sentiment. In: Proceedings
of the Fourth International AAAI Conference on Weblogs and Social Media. The
AAAI Press, Menlo Park (2010)

http://blogs.wsj.com/digits/2014/06/06/in-a-single-tweet-as-many-pieces-of-metadata-as-there-are-characters
http://blogs.wsj.com/digits/2014/06/06/in-a-single-tweet-as-many-pieces-of-metadata-as-there-are-characters
http://blogs.wsj.com/digits/2014/06/06/in-a-single-tweet-as-many-pieces-of-metadata-as-there-are-characters
http://snap.berkeley.edu/SnapManual.pdf
https://blog.twitter.com/node/2845

Is Coding the Way to Go?

Violetta Lonati, Dario Malchiodi, Mattia Monga, and Anna Morpurgo�

Università degli Studi di Milano, Milan, Italy
http://aladdin.di.unimi.it

Abstract. Recently, several actions aimed at introducing informatics
concepts to young students have been proposed. Among these, the “Hour
of Code” initiative addresses a wide audience in several countries world-
wide, with the goal of giving everyone the opportunity to learn computer
science. This paper compares Hour of Code with an alternative, yet sim-
ilar, approach which we believe is more effective in exposing pupils to
the scientific value of the informatics discipline.

1 Introduction

Programming is at the core of informatics. This is occasionally forgotten in
academic circles, but the importance of programming in the intellectual enter-
prise of computer science becomes evident if one looks at the tag cloud gen-
erated by the motivations for the ACM Turing Award winners1 (see Fig. 1).

Fig. 1. Tag cloud for ACM Turing
award motivations

Thus, introducing pupils to informatics
through programming is a good opportunity
to let them bite a real taste of the disci-
pline [9,1]. Certainly this approach represents
a better alternative to just exposing the stu-
dents of primary and secondary schools to
the use of computer applications, an unfor-
tunate choice which impacted negatively on
computer science education [15]. Driven by
this belief, when in 2011 we decided to or-
ganize computer science enrichment programs
for secondary schools using the algomotricity methodology [8], we designed some
activities precisely focusing on programming, and in particular concerning the
problem of guiding an automaton (a “robot”: a long standing approach in the
teaching of programming [12]) through a simple maze. Since 2013 these activi-
ties have consolidated into a short workshop [5] that met the interest of several
schools in our town (about 50 classes have participated in two years). We directly
conducted the first workshops, and specifically trained some young instructors
to conduct them once they were well-established. To assess the outcome of the

� The authors would like to thank the ‘Istituto Comprensivo Ilaria Alpi’, prof. Martina
Palazzolo, and all the tutors that helped in conducting the workshops.

1 Data taken from http://amturing.acm.org/alphabetical.cfm.

c© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 165–174, 2015.
DOI: 10.1007/978-3-319-25396-1_15

http://aladdin.di.unimi.it
http://amturing.acm.org/alphabetical.cfm

166 V. Lonati et al.

workshops we collected several materials, including interviews with some teach-
ers, questionnaires filled out by pupils, recordings from focus groups. Henceforth
this workshop will be referred to as AlMa (from “Algomotricity and Mazes”).
AlMa is based on mazes, as is the starting example of the “Hour of Code” [11,16],
an initiative launched in the US with a strong political endorsement (even Pres-
ident B. Obama wrote a line of Javascript to support it). The mission of the
Hour of Code is “every student in every school should have the opportunity
to learn computer science”2. Hour of Code’s introductory proposal (HoC for
short) is to capture the students with about an hour of coding games. Once
students are motivated by HoC, the learning platform can be used (by teachers,
but also by students alone) to start looking at more sophisticated computer sci-
ence concepts and to foster a computational thinking approach. The HoC coding
games are exceptionally appealing, featuring amusing characters and fascinating
graphics. The platform is based on Blockly [6], a graphical programming envi-
ronment inspired by Scratch [14]. The HoC website attracted a lot of interest
(it claims more than 100 million completions of hours of code) and some pos-
itive reports have been recently published [10]. HoC quickly spread to several
(180) countries; in Italy HoC is localized as “Programma il futuro” (“Program
the future”, http://programmailfuturo.it/) and it is driven by the Italian
Ministry of Education, Universities and Research. The apparent similarities be-
tween AlMa and HoC have forced us to reflect deeply on their differences, and
since HoC certainly has a much wider impact than AlMa, we feel the urge to
warn the community about what we perceive as a risk to direct pupils, again,
towards the wrong target. We believe HoC is a very good intuition and a step
that marks an important change of direction in the popularization of computer
science; it is perfectly suited to attract pupils, to show them how fun informatics
can be, to introduce them to coding. However, if the high-level goal is to show
the actual essence and methodology of informatics, and to make students feel
its scientific nature [7], then HoC can be misleading. Thus, in this paper we will
describe AlMa in depth, comparing it with HoC, and we discuss what we believe
is working better in our offer. The work is organized as follows: Sect. 2 describes
AlMa and Sect. 3 illustrates the assessment of its outcome. Sect. 4 is devoted to
comparing AlMa and HoC.

2 The Algomotricity Maze Workshop (AlMa)

AlMa was offered within a wider set of workhops for pupils from 10 to 17 years
old. About 50 classes have participated from the end of 2012, from several schools
within the Milan District; AlMa was also occasionally proposed in other towns.

Goals. AlMa was developed having in mind the goal of showing the actual essence
and methodology of computer science, with the final objective of capturing stu-
dents to the challenges of a fascinating science, driving them to the the scientific
nature of informatics [7]. The discipline is introduced in terms of activities focus-
ing on the key themes of processing, automation and information, and promoting

2 http://code.org

http://programmailfuturo.it/
http://code.org

Is Coding the Way to Go? 167

the use of some of the methods involved in computer science. From a more tech-
nical point of view, AlMa is meant as an introduction to the core of computer
programming. Here, the syntactic issues are not the primary concern; instead,
the activities are meant to help develop competences related to problem solving,
computational thinking, exploratory analysis and scientific research.

Learning methodology. We designed AlMa according to a strategy we call al-
gomotricity [8,3,4,5], since the activities focus on algorithmic concepts through
motoric activities, and thus imply a mix of tangible and abstract object manip-
ulations. Algomotricity starts “unplugged” [2] and ends with a computer-based
phase to close the loop with pupils’ previous acquaintance with applications [13].
This approach gives all participants the opportunity of exploring an informatics
concept quite freely and lets them implicitly use the tools of scientific discovery,
i.e., formulating hypotheses to be validated by means of experiments. To foster
discussion and peer-learning, all activities are performed by groups of pupils.

Description of the activities. AlMa first focuses on the task of verbally guid-
ing a blindfolded person (a “human robot”) through a simple path. Working in
groups, pupils have to agree on the sequence of statements that a driver gives to
a human robot. Initially they are allowed to freely interact with the robot, then
they are requested to propose a very limited set of primitives to be written each
on a sticky note, and to compose them into a program to be executed by the
robot. Precisely, they are requested to use at most four different instructions:
the constraint is enforced with sticky notes of four different colors at most, and
by the requirement that, each time one of a certain color is used, it should al-
ways carry the same instruction. Also, they have the possibility of exploiting
three basic control structures besides sequence (if, repeat-until, repeat-n-times).
Groups may try their solutions as they wish and, when they are ready (nor-
mally after 30-45 minutes, depending on the pupils’ age and motivation), each
group is asked to execute its own program. After pupils have checked that their
program allows the robot to correctly carry out the task, the conductor may
decide to swap some programs, so that a program is executed by the robot of
another group. This allows the instructor to emphasize the ambiguity of some
instructions or the dependency of programs on special features of the robot (e.g.,
step/foot size). In the last phase, which lasts between 20 and 40 minutes, stu-
dents are given computers and a slightly modified version of Scratch. They are
requested to write programs that guide Aladdin3’s lamp sprite through mazes
of increasing complexity, see Fig. 2. The effect of some commands is illustrated
by the conductor: the teacher refers to the first maze in order to show how to
use the move n steps and the turn clockwise x degrees blocks; moreover
she or he explains that the “walls” of the mazes are just black regions of the
picture: the lamp can walk on them, but a correct solution is one in which this
does not happen. Since the full Scratch platform could be confusing for someone
who sees it for the first time (and needs to master it in half an hour), our version
reduces the available blocks yet maintaining a rich spectrum of possibilities, so

3 Aladdin is the name of our group: http://aladdin.di.unimi.it

http://aladdin.di.unimi.it

168 V. Lonati et al.

that the students can focus on the motion and control ones. We also provide just
one sensing block: color c1 is touching color c2, given with the hint that
the lamp has the front in red and the exits have a distinct color, and we briefly
explain how the sensor can be used to detect the exit. During the computer
part, any working solution is accepted. To promote the use of control structures,
a simple competition is proposed: the number of motion blocks used by each
team (the lower the better) is recorded on the blackboard.

3 Assessment

To assess the outcome of AlMa, we collected the following materials and analyzed
them in the spirit of grounded theory: (1) field notes written during the obser-
vation of some classes taking part in the workshop; (2) questionnaires filled out
by pupils; (3) three focus groups with pupils; (4) interviews with some teach-
ers. The assessment process involved 150 pupils and their teachers; all pupils
attended the same suburban public school, who promoted the participation of
all its 6th-grade classes to AlMa. Each of them filled out the questionnaires; the
focus groups involved representative pupils from most of such classes.

Questionnaires. Pupils were asked to answer three open questions. (1) What did
you like of the workshop? (2) What didn’t you like of the workshop? (3) Is there
something you feel you have discovered during the workshop?

We analyzed the answers and identified some recurring themes and strong
concepts. Pupils claim to like: the fact that the workshop is both amusing and
complicated/clever/challenging/engaging; the fact they have created/built some-
thing. They feel they have discovered: the importance of thinking/designing/-
figuring in one mind’s what to do before doing it; the need for precision; that
computers and other automatic devices do not work alone, but follow commands;
that computer science is not only using computers; that informatics is a science;
that informatics may be fun. It is worth noticing that such concepts emerged
from all classes quite uniformly, thus they can be considered well-representative
of the content and methodology of the AlMa proposal, and not depending on
the different conductors or tutors who guided the workshops. We selected the
most representative sentences from the questionnaires.
Thinking, designing, mind (answers to question 3) – “To think before doing
otherwise you can make mistakes.” – “You need to elaborate and set up your
mind properly before acting.” – “To plan the work in your mind.”
Amusing and... complicated, clever, engaging (answers to question 1) – “Very
amusing and complex.” – “We played, but at the same time we reasoned.”
Precision (answers to question 3) – “You have to be precise.” – “Technological
devices need very precise commands, in order to work properly.”
Create, build (answers to question 1) – “When we had ‘created’ the maze.”
– “The part in which we had to ‘build’ a maze.”

Focus groups. We proposed as discussion topics the main themes and concepts
arising from the previous analysis. In order to activate the discussion, the selected

Is Coding the Way to Go? 169

sentences above were handed out and read aloud with the participants. During
the discussion most themes were recognized by all the participants. Everybody
agreed on the importance of precision to avoid errors and/or risks for the robot,
both during the execution of instructions, and when defining the instructions
themselves (e.g., how many steps, which turning angle). We registered a unani-
mous agreement also on the need for reasoning before doing; in the discussions
pupils repeatedly used verbs like thinking, processing, preparing, foreseeing, un-
derstanding, solving, schematizing, agreeing; or terms like problem and logic; or
expressions like organizing, ordering, putting together, referred to both ideas and
instructions (in the form of sticky notes or Scratch blocks). They confirmed that
the tasks they had to carry out were fun and difficult at the same time, and
stressed the fact that the challenge was part of the amusement, because “solv-
ing complex tasks is rewarding”. However, when asked whether tackling with
complex tasks is always amusing, they all clearly gave a negative answer (“I’m
willing to use my brain, if the situation is enjoyable.”), and pointed out that in
this case the activities were fun per se. Words like playing or game were used to
describe the activities, but someone felt such terms too reductive: “it was not
child’s play”, “it was educational”. Not everyone acknowledged that during the
workshop a creative/building process took place. However, some pupils could
establish links: to build is seen as a synonym for to combine, or to put together,
hence this verb is associated with the process of combining sticky notes or blocks
in Scratch; inventing the actions to write on the sticky notes was experienced
as a creative process; for someone, even though the path was prearranged, but
groups had to create the solution to go through it. Another topic proposed dur-
ing the discussion is the perceived relationship between the workshop and the
subjects taught in school. The concept of precision was immediately associated
with technical drawing and mathematics; geometry was associated with the mea-
sure of length (number of steps of the robots) and turn angles. No spontaneous
reference to science emerged. After the moderator suggested some hints, how-
ever, all pupils easily associated what happened during the workshop with the
typical observation-hypothesis-prediction-testing-analysis cycle of the scientific
method, and in particular with the concept of experiment. They told about sev-
eral episodes when they made a hypothesis (for instance about how many steps
were needed), designed a program/experiment, executed/tested it, and verified
the correctness of their hypothesis. They also recalled that, when the experiment
failed, they reviewed the hypothesis according to its outcome, and started the
process anew: “the robot went too far, let’s try with fewer steps!” And “when
something goes wrong, you often discover something new that you didn’t imag-
ine before” (e.g., one is concerned about the number of steps, but finds out that
also the turn angle is wrong). Such an approach was also used to choose among
ideas proposed by different members of a group: some were tried and failed,
while other survived to the experiment and were accepted in the final solution.

170 V. Lonati et al.

4 AlMa vs HoC

AlMa and HoC are apparently very similar. Indeed: (1) AlMa and HoC share the
same high level goal: expose to informatics a variety of pupils (not necessarily
involved in a computing curriculum), attract them through playful activities,
and let them discover how fun and rewarding working with information sciences
might be; (2) both are designed as a first, short, experience (“an hour” or so:
AlMa lasts normally an hour and a half), possibly unrelated to a more structured
study of the discipline; (3) AlMa and Hoc are conceived around the same theme:
the problem of guiding an automaton through a simple maze. While similar (in
fact Fig. 2(h) and Fig. 2(c) represent virtually the same maze), the context in
which the tasks are proposed is rather different.

4.1 Algorithm, Program, and Code

To better illustrate the difference between AlMa and HoC, we discuss three terms
that are sometimes informally used as synonyms. However their differences, while
subtle, are crucial when one has to decide which one has the most potential to
attract the creative energies of pupils to our discipline.

Algorithm is possibly the most noble term, with a long tradition (and several
formal definitions that here we explicitly ignore): an algorithm is an effective pro-
cedure to reach, in finite time, a goal4. The key point is its effectiveness, a notion
that could be clarified only by modern mathematics (Church and Turing above
all): Euclid, Fibonacci, and al-Khwārizmı̄ described their famous algorithms on
the assumption that their atomic steps were feasible and sensible. A program
is usually defined as an algorithm written in a programming language. In other
words, in the post-Church/Turing/Von Neumann era a program is a procedure
described in terms of the primitives provided by a specific interpreter. As the
latter introduces specific syntax and semantics, converting an algorithm into a
program can be a complex and creative task, a task largely independent from
that of getting to an algorithm solving a specific problem. The recent parlance
introduced a third term: code. What is then the difference with respect to a
program? The word itself suggests a further reduction in the degrees of freedom,
a constrained bijection between the procedure one has in mind and its machine
implementation. In fact, this word seems well suited when one wants to em-
phasize the technological context of a program. Coding and programming are
sometimes used as synonyms; we surely acknowledge that programming includes
a coding activity, but we believe it entails, in general, a more complex endeavor.

4.2 The Hour of Code (HoC)

HoC was launched in 2013 as an activity planned in the Computer Science Edu-
cation Week, in collaboration with big names of the software industry (Microsoft,

4 One of the most rewarding activities we propose to teachers in our seminars on the
didactic of informatics is the discussion of the notion of algorithm: we propose several
procedures (cooking recipes, driving directions,. . .) and we ask why they are or are
not actual algorithms.

Is Coding the Way to Go? 171

Google, Apple, Bill Gates, Mark Zuckerberg,. . .)[11]. Its claimed goal is to “in-
troduce computer programming to all students, to remove the veil of mystery
that surrounds the field” [16], by also increasing the participation of women and
other underrepresented students to computer science. Although the main HoC
offer is based on an online activity, it does exist also in an “unplugged” version.
Surprisingly, the unplugged alternative is rather different from the interactive
one5 is rather different: it proposes different tasks focusing more on method-
ological issues than on coding. To go beyond the first introductory hour, the
code.org web site proposes also a 20-hour curriculum, with a mix of online and
unplugged activities. In fact, it serves a lot of captivating videos and teaching
resources, mostly about programming, based on Blockly and Javascript. In this
paper, however, we focus only on the introductory part, intended to capture the
interest of a vast audience of students who were never exposed to the fascination
of the discipline. Moreover, the one hour format makes it comparable with AlMa
which has similar goals of letting students meet computer science for the first
time. The online HoC is entirely driven by the interactive puzzles: twenty mazes
are proposed with increasing difficulties and by changing the constraints and the
degrees of freedom of the “robot”. The progression is the following (a sample of
mazes is illustrated in Fig. 2(f)–(i)): Mazes 1–5: the students must code the so-
lution by using the three blocks move forward, turn left, turn right;Mazes
6–9: a block repeat n times is added; Maze 9: the solution has to follow a
constraint, given as a grey block which cannot be moved away;Maze 10: a block
repeat until at exit is added (and the repeat n times is removed);Mazes
11–13: the solution has to use the repeat until at exit block, since it must
contain no more than four blocks; Maze 14: a block if path to the right is
added: it must be used correctly in a predefined scaffolding of four grey blocks;
Maze 15: the block if path to the right has to be composed to meet the
requirement of a solution with less than five blocks; Mazes 16–17: the solution
should use as few blocks as possible (available: move forward, turn left, turn
right, repeat until at exit, if path to the right); Mazes 18–19: the
block if path to the right has now also an ‘else’ branch; Maze 20: in a
predefined scaffolding of three grey blocks two selections are nested: the puzzle
can be solved by choosing the appropriate statement to be put in the resulting
three branches. Besides the constraints described above, it is also worth noting
that each puzzle gives the solver just the subset of blocks useful to each quiz,
although the subset is not necessarily minimal: for example, the turn block has
a parameter right or left, but the player always has two blocks, one with the
parameter set to right and one with the parameter set to left.

4.3 Differences

Problem solving or coding a predefined solution? Solving a problem is always a
complex task: one has to distinguish the relevant pieces of information among
irrelevant parts and build a model apt to reason about the solution. If a problem

5 http://studio.code.org/s/20-hour/stage/3/puzzle/1

http://studio.code.org/s/20-hour/stage/3/puzzle/1

172 V. Lonati et al.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 2. Mazes used in AlMA ((a)–(e)) and in HoC, taken from http://studio.

code.org: maze 3 (f), maze 8 (g), maze 12 (h), and maze 19 (i).

is given without noise, or already abstracted in a specific model, it is probably
better considered as an exercise in a specific solving technique. In HoC, solutions
are predefined (an easy trick to enable simple automatic checking) and almost
suggested by the platform itself: the mazes are given within a grid, the robot
moves with grid oriented steps, the number of blocks needed is given as a hint.
Thus, the solver is left with the exercise of coding a solution by choosing the
right blocks. When the solution is found, the system rewards the solver with a
message giving the number of lines of code written so far (“Congratulations! You
just wrote 5 lines of code! All-time total: 6 lines of code. Even top universities
teach block-based coding (e.g., Berkeley, Harvard). But under the hood, the blocks
you have assembled can also be shown in JavaScript, the world’s most widely used
coding language” [JavaScript version of the code follows].) Besides noting that
most software engineers would agree that the number of “lines” is a misleading
metrics, incidentally, it is worth noting that the generated Javascript code reveals
some unfortunate design choices: for example, the turn block can be used to turn
left or right by changing its variable part; instead, the generated code uses two
different functions (turnLeft() and turnRight()), partially breaking the block
metaphor and suggesting a questionable programming practice.

AlMa, instead, proposes little real problems. Students need to “formalize”
them, they must find their own way to a solution, not just code a predefined
one. Thus, the activity works on the interplay between algorithms and programs.
When the pupils drive a blindfolded mate with a finite number of instructions,
they reason on what is effective and feasible: and the power of the interpreter is
in a large part a choice they explicitly do. Moreover, after the pupils themselves
have checked that their program solves the task, when they compare it with
others’ programs, they discover that some of the assumptions they have made are
not valid in the slightly different context of the other teams’ settings. Comparing
HoC to AlMa, a teacher said: “It lacks the first part which provides the link to
reality, to the difficulties of a real problem with its complexities and all its
possibilities. Problem solving is the skill to reason computationally.”

http://studio.code.org
http://studio.code.org

Is Coding the Way to Go? 173

A riddle or a creative process? In most cases, the solution of HoC puzzles
is unique, and the students must aim at guessing it. On the contrary, in AlMa
any working solution is accepted. Pupils find out very soon how many different
ways there are to accomplish the same goal, a first step in understanding that
a program has also non-functional properties one might care of. At first, it may
seem that students are left alone with Scratch in an intimidating free space of
possibilities with just few clues to find their solutions, but the computer game
comes after an even more open motoric part in which, however, they invented
their instructions. What we found is that, after such a step, Scratch’s blocks are
a quite natural thing to use, and pupils can start trying to find the most similar
ones to the commands they conceived in their sticky notes solution.

To be driven or to explore? AlMa aims at giving the students a meaningful
problem to be explored in a suitably open context. We provide just a few re-
strictions designed to support their own inquiry. HoC proposes puzzles whose
text mentions enough constraints to rule out all the solutions that do not use
the intended blocks, especially when new blocks are introduced. In an interview,
a teacher who had tried HoC and AlMa said: “HoC is very constrained, guided,
it is more a nice tutorial to the visual framework and the use of blocks, than an
actual opportunity for a problem solving activity”. While the unplugged version
of HoC advertises computational thinking as its main goal, the interactive HoC
offers very few chances for exploring it. A teacher who proposed AlMa to her
pupils last year (6th grade), this year invited them to participate to HoC and she
reported they were facilitated a lot by they previous experience with AlMa: “the
algomotricity experience introduced pupils to computational thinking, if they
hadn’t done it I should have figured out some introductory activity before pre-
senting them the HoC proposal”. The open-ended activities proposed in AlMa,
indeed, encourage the participants to formulate original ideas. Moreover, the
team setting forces the pupils to convince the other mates that their proposals
work correctly: they need to describe them properly and devise a way to show
the correctness of their hypotheses. Thus pupils happen to put into practice and
experience the scientific method, even though they usually are unaware of this
fact. Such an approach is not particularly useful when solving HoC mazes, where
an easier (and faster) trial-and-error strategy is generally effective enough.

4.4 Discussion

All in all, if the final objective is to capture students to the challenges of a fas-
cinating science, we believe HoC risks to give an incorrect first impression, only
slightly different from the instrumental view so common in the teaching of infor-
matics based on tools and computer applications. With the HoC approach, the
scientific nature of informatics is not fully conveyed. Maybe it will be recognized
later, if the pupils decide to go beyond the excitation of moving amusing char-
acters. But if we want to show the actual essence and methodology of computer
science, why not let pupils enjoy discovering informatics from the beginning?

174 V. Lonati et al.

References

1. Armoni, M., Meerbaum-Salant, O., Ben-Ari, M.: From Scratch to “real” program-
ming. ACM Transactions on Computing Education (TOCE) 14(4), 25 (2015)

2. Bell, T., Rosamond, F., Casey, N.: Computer science unplugged and related
projects in math and computer science popularization. In: Bodlaender, H.L.,
Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revo-
lution and Beyond. LNCS, vol. 7370, pp. 398–456. Springer, Heidelberg (2012)

3. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M.:
Exploring the processing of formatted texts by a kynesthetic approach. In: Proc.
of the 7th WiPSCE 2012, pp. 143–144. ACM, New York (2012)

4. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M.:
What you see is what you have in mind: constructing mental models for format-
ted text processing. In: Proceedings of ISSEP 2013, pp. 139–147. No. 6 in Com-
mentarii informaticae didacticae, Universitätsverlag Potsdam (February 2013),
http://opus.kobv.de/ubp/volltexte/2013/6368/pdf/cid06.pdf

5. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M.,
Zecca, L.: Extracurricular activities for improving the perception of informatics
in secondary schools. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS,
vol. 8730, pp. 161–172. Springer, Heidelberg (2014)

6. Google: Blockly (2011), https://developers.google.com/blockly
7. Hromkovič, J.: Contributing to general education by teaching informatics. In:

Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 25–37. Springer,
Heidelberg (2006)

8. Lonati, V., Monga, M., Morpurgo, A., Torelli, M.: What’s the fun in informatics?
working to capture children and teachers into the pleasure of computing. In: Kalaš,
I., Mittermeir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 213–224. Springer,
Heidelberg (2011)

9. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Learning computer science
concepts with Scratch. Computer Science Education 23(3), 239–264 (2013),
http://dx.doi.org/10.1080/08993408.2013.832022

10. Nikou, S.A., Economides, A.A.: Measuring student motivation during “the hour of
codeTM” activities. In: Proc. of the 2014 IEEE 14th Int. Conf. on Advanced Learn-
ing Echnologies, ICALT 2014, pp. 744–745. IEEE Computer Society, Washington,
DC (2014), http://dx.doi.org/10.1109/ICALT.2014.218

11. Partovi, H., Sahami, M.: The hour of code is coming! SIGCSE Bull. 45(4), 5 (2013),
http://doi.acm.org/10.1145/2553042.2553045

12. Pattis, R.E.: Karel the Robot: A Gentle Introduction to the Art of Programming,
1st edn. John Wiley & Sons Inc., New York (1981)

13. Taub, R., Armoni, M., Ben-Ari, M.: CS unplugged and middle-school stu-
dents’ views, attitudes, and intentions regarding CS. TOCE 12(2), 8 (2012),
http://doi.acm.org/10.1145/2160547.2160551

14. Team, M.: Scratch (2003), https://scratch.mit.edu
15. The Royal Society: Shut down or restart (January 2012),

http://royalsociety.org/education/policy/computing-in-schools/report/

16. Wilson, C.: Hour of code-a record year for computer science. ACM Inroads 6(1),
22–22 (2015), http://doi.acm.org/10.1145/2723168

http://opus.kobv.de/ubp/volltexte/2013/6368/pdf/cid06.pdf
https://developers.google.com/blockly
http://dx.doi.org/10.1080/08993408.2013.832022
http://dx.doi.org/10.1109/ICALT.2014.218
http://doi.acm.org/10.1145/2553042.2553045
http://doi.acm.org/10.1145/2160547.2160551
https://scratch.mit.edu
http://royalsociety.org/education/policy/computing-in-schools/report/
http://doi.acm.org/10.1145/2723168

© Springer International Publishing Switzerland 2015
A. Brodnik and J. Vahrenhold (Eds.): ISSEP 2015, LNCS 9378, pp. 175–182, 2015.
DOI: 10.1007/978-3-319-25396-1_16

Visual Literacy in Introductory Informatics Problems

Françoise Tort1 and Béatrice Drot-Delange2

1 STEF Research Laboratory, Ecole Normale Supérieure de Cachan, France
francoise.tort@ens-cachan.fr

2 Université Clermont Auvergne, Université Blaise Pascal, EA 4281, ACTé, France
beatrice.drot-delange@univ-bpclermont.fr

Abstract. The aim of our research work is to understand reasoning activities of
students when they solve Bebras tasks, and especially how they use the dia-
grams in the solving process. We first need to classify them. This paper gives
first results of an ongoing work, of characterization of task according to (i) the
types of diagrams and interactive artifacts given in statement and (ii) the way
they are explicitly involved in solving process by textual statements of
problems.

Keywords: visual literacy, diagrams, problem solving, contest, informatics.

1 Introduction

The Bebras International Contest on Informatics and Computer Literacy addresses
pupils grade 5 to 13 with the aim to get them and their teachers interested in typical
informatics problems. During a week, in several schools of several countries, pupils
try to solve short informatics problems, displayed in the form of online interactive
questions.

Problems are designed to meet the dual objective: (1) to introduce the participants
to concepts and methods that are typical to computer science and (2) to be within the
reach of young pupils who have not any teaching in this area. The second aim could
be split into: to be comprehensible without any knowledge in computer science and,
on the other hand, to be funny and attractive [2]. Thus, Bebras tasks are not designed
to assess knowledge or skills learnt at school, nor to measure well-defined compe-
tences but to make pupils discover and explore problems that need algorithm skills,
use of specific data representation, etc.

Solving a Bebras task requires reading abilities specific to the written content of a
problem statement and abilities in the use of interactive artifacts. In the French con-
tests, very few tasks have neither diagram nor structured data presentation and a ma-
jority has several. Moreover, many tasks are like small games in which the interaction
schema is used to explore data, change the diagram, or execute a program. Manipula-
tion of diagram and artifact is an important part of the solving process. It is about
“Transliteracy”, as it crosses media, information and computing literacy. The research

176 F. Tort and B. Drot-Delange

work, we have engaged since one year in the framework of the TRANSLIT project1,
aims to study the way students solve the problems. We have conducted a qualitative
analysis of French Bebras task statements to investigate the type of diagrams and
interactive artifacts used, and the way they are explicitly involved in solving process
in textual statements.

Section 2 presents research works about images in educational resources, and espe-
cially in problem solving that have guided this work. Section 3 presents our method-
ology, based on qualitative analysis, using Nvivo. Section 4 details coding rules ap-
propriate to characterize use of diagrams and interactive artifacts in the Bebras tasks,
and the result of this coding on the French tasks. Last section discusses results and
draws perspectives for this work.

2 Roles of Diagrams in Problem Solving

Julo [5] identifies various processes involved in the construction of the representation
of a problem. The first step is interpreting and selecting the information that charac-
terizes the problem. A second step is the structuring of the initial representation. The
last one is the operationalization process that allows the action. Research in science
teaching and learning, especially in mathematics [8] shows that visualizations play a
role in the building of a representation of the problem (mental images). They play a
role also in operationalization, by the manipulations they allow (diagrammatic and
spatial representations). What about Bebras tasks?

In [10], the authors have examined pictures in a corpus of 300 Bebras tasks from
Slovak contest. They aim at relating informatics concepts at the core of the task to the
picture given in the statements, in order to help Bebras tasks’ authors to decide of the
usefulness of a picture in a task. They characterize pictures according to: their com-
munication function, their content (computer science concepts, user application, prob-
lem setup), and their type. The ‘function’ characterization is based on the taxonomy
of illustration summarized by [1] decorative, representational, organizational, trans-
formational, and interpretational. Indeed, this taxonomy gives a good theoretical
framework to make recommendations to designers, but it is not appropriate to focus
on the activity of the pupils.

In the domain of mathematic learning, Mottet [6] deal with problems where the
image is the base of pupils’ solving activity. According to him, effect on learning are
not directly linked to images but to the activity performed by the pupil on/with it. He
defines ‘image situations’ as problem solving situations where ‘the image are not only
to be looked at but imply observable productions, verbal, graphical or even practical
productions” (p.19). The three main categories of activities on/with images are: read-
ing (and understanding) the image, modifying it, drawing one.

Resolving a Bebras problem involves information obtained through more than one
medium, like diagrams or/and artifacts. In [4] cited by [7], the authors distinguish

1 TRANSLIT is a research project funded by the French government. One of its aims is to

understand what competences in fields of media, information and computing constitute a
“transliteracy”.

 Visual Literacy in Introductory Informatics Problems 177

scientific diagrams into three categories: iconic, schematic, and charts and graphs,
depending on the relationship to the object or situation depicted, in terms of degree of
iconicity and abstraction. In all cases, the interpretation of diagrams requires to know
the reading conventions, not to fail in solving the problem.

Research has shown the benefits of using diagrams in problem solving. In [8] the
author notes that, “in problem-solving situations, when texts are available for compar-
ison, diagrams seem to provide more efficient and enhanced analyses that could also
significantly reduce cognitive effort” (p. 212). The limits lie in the familiarity with
this type of representation and knowledge of conventions (diagram literacy). The
context also determines what and how we see diagrams. Research done about under-
standing of graphs [3] shows that it depends on numerous factors among which visual
characteristics of the graphs but also viewers’ prior expertise like graphical literacy
skills, explanatory and reasoning skills, familiarity with the content [9], etc.

Bebras tasks are based on underlying concepts and methods that pupils are sup-
posed not to have learnt at formal school. Moreover, diagrams and interactive artifacts
are not familiar to pupils. We wonder how much relationships between text, artifacts
and diagrams help the student to solve problems, despite the difficulties potentially
generated by underlying computer science concepts.

3 Method: Qualitative Analysis of Problem Statements

We conducted a qualitative analysis of the composition of Bebras problem statements
in order to characterize all information explicitly given to the reader that could help
him solving the problem. We analyzed two points: the types of diagrams and artifacts
and their role in the solving activity assigned by the textual statement.

In an exploratory approach, we conducted an inductive coding using NVivo 10
[11]. First, over reading problem statements, we annotated images and portions of text
according to their contribution to the above questions using a “code”2. If such a con-
tribution had already been coded, we reused the same code, if not we created a new
one. We looped over problem statements in order to define more and more precisely
the codes. The result was a list of documented codes. Given this list, another re-
searcher applied it to the same corpus of tasks (this time in a deductive way). We
compared our results and made adjustments in the definition of codes and coding
rules in order to match both coding outcomes. In the same time, we grouped codes
onto dimensions, and in each dimension, onto sub dimensions. It results in a categori-
zation that can be compared to those described in the literature.

We coded the 90 problems of French Bebras contests from 2012 to 2014.

4 Coding Rules for Bebras Contest Task Diagrams

The qualitative analysis of Bebras Tasks described in the previous section has brought
out three characterization dimensions. This section detailed each dimension, for a full
overview see Table 1 in next paragraph.

2 The term "node" is used in NVIVO.

178 F. Tort and B. Drot-Delange

4.1 Dimension A: Type of Diagrams

This dimension characterizes the type of diagrams used in the problem statement. It
points out degree of iconicity, of complexity and of standardization of diagrams. The
free coding gave about twenty codes, grouped into three sub-dimensions, inspired by
well-known categorizations of diagrams [4][7] and data representations.

“network graph” - (2014-SP-02)

“process diagram” - (2012-SK-02)

“composition of icons” - (2012-AT-10)

“grid” - (2013-FR-05)

Fig. 1. Examples of diagrams and their coding in dimension A

Iconic Diagrams: description of concrete objects in which spatial relationships in the
diagram are isomorphic to those in the referent object. It covers drawing, screenshot
and icons. Icons are simplified drawing that represented real objects by highlighting
some of their properties (color, direction, form, parts, etc.). Some objects are compo-
sitions of items that are depicted by icons.

Schematic Diagrams: abstract diagrams that simplify complex situations by provid-
ing a concise depiction of their abstract structure. In this category, we distinguished:
network graphs and trees, grids, maps, diagrams depicting process. Some diagram
may be a mix of different types of diagram: some grids contain small icons in cells,
some graphs have icons as nodes, some graphs have background drawing, etc. This is
not coded explicitly, but gives several codes for the same diagram.

Table and Text Lists: structured presentation of textual information. This covers
data tables and lists of keywords, labels or short groups of words.

 Visual Literacy in Introductory Informatics Problems 179

4.2 Dimension B: References to Diagrams and Artifacts in Texts

This dimension codes the way the textual statement makes an explicit reference to
diagrams and artifacts. We got six codes that we classified into two sub-dimensions:

Text Reference to Diagrams: how does the text refer to the diagram? It may give a
complete or partial legend: a description of the system symbol used; diagram symbols
are designated and linked to the referent objects. It may give instruction explaining
how to read the diagram, often with an example; or it may give general description of
what the diagram represents.

Legend: “On the diagram, each person is depicted by a circle, persons who know
each other are linked by a stroke” (2013-FR-12)
Reading instruction: “Starting at the two wheels at the top, one goes down along the
lines, either right or left, to know which elements can be selected and combined.”
(2012-AT-10)
General description: The drawing below shows a room in which are placed mirrors
(2014-FR-05) (The diagram is a grid, some cells contain a slash symbol that depicts
the mirrors)

Fig. 2. Examples of portions of text with their coding in dimension B1.

Text Reference to Artifacts: how does the text make a reference to the interactive
artifact? It gives instruction on how to interact on the artifact, where to click and how
or it gives some general advice on how to use the artifact to solve the problem, like
“you can try several times”.

4.3 Dimension C: Relationship between Diagrams and the Type of Answer

This dimension codes the relationship between diagrams and the form and type of the
expected answer. It is linked to the type of the artifact used to answer. It brings out the
nature of the solving activity, by the manipulation of diagrams. The inductive coding
has given a dozen free codes, finally reduced to six, grouped into three sub dimen-
sions, corresponding to the types of activities on images proposed in [6].

Diagram Reading: The answer may consist in choosing an element part of a given
diagram, via a checkbox list displaying symbols depicting diagram parts. The answer
may consist in choosing a diagram among several in a checkbox list. A diagram may
be displayed as a model to be reproduced or obtained by an artifact. The given dia-
gram may not be alterable, but the answer needs to read, interpret and understand it.

Diagram Modification: The answer may consist in a program animating a diagram
given in the statement; the program may be written in a simple language in an input
text area, or it may be given using visual language. The answer may require modify-
ing a diagram by changing the displaying of its elements; by clicking on areas of the
diagram, or by using action buttons.

180 F. Tort and B. Drot-D

Diagram Creation: In orde
dimension, corresponding t
coding the tasks belongs to

The answer consists in fil
with colors.

“modify” (2013-

Fig. 3. Examp

4.4 Results: Diagrams

This section describes the r
ble 1). Most include diagram
majority of diagrams are sc
to be solved. Most of those
in computer science: graph
states of objects) or structu
grams from ‘modeling lang
Bebras tasks nor screensho
about graph theory and algo
software.

Another frequent type of
highlight on some of their
They are useful for compar
with rules. They offer a rep
ent object, but some charac
(for example, a small triang
oriented). In this sense, thos
A schematic diagram uses
schematic diagrams use a s
spect a standard representa
diagram is not always give
bol system is part of the pr
representation and decide if

Delange

er to cover the three activity types of [6] we added this s
to the design of a new image. But none of the free co
this category.

ling the pieces
.
FR-01)

The beads move in the maze when
executing the commands listed in the

drag and drop list.
“animate” (2014-FR-08)

ples of diagrams and their coding in dimension C

in Bebras Tasks

result of the coding of the 90 French Bebras tasks (see
ms in problem statement (only 3 over the 90 have none)

chematic and give an abstract representation of the prob
e schematic diagrams are conventional representations u
, tree, grid and also diagrams showing processes (chang
ural relationship between objects. However, standard
guages’ in software engineering are not present in Fre
ots of software interface. Indeed, a lot of Bebras tasks
orithm on graphs and very few are about use of applicat

f diagram is icon and drawing. Icons represent objects
r properties by using a visual code for properties valu
rison of object properties and checking of their complia
presentation were the student can easily recognize the re
cteristics are highlighted sometimes in an arbitrary man
gle depicts a robot and highlight the direction in which
se icons are closed to schematic representation.
arbitrary symbol system of representation and well-kno
standard one. In Bebras tasks, few schematic diagrams
ation. Yet, a legend or an explanation of how to read
en in the problem statement. The interpretation of the sy
roblem. Indeed, it is usual, in computer science, to cho
f they fit the data and help to solve the problem.

sub-
odes

Ta-
). A
lem

used
ging
dia-

ench
are

tion

and
ues.

ance
efer-
nner
it is

own
s re-

the
ym-
oose

 Visual Literacy in Introductory Informatics Problems 181

Table 1. Result of the coding of the 90 French Bebras Tasks (a task may be coded several
times)

A.Types of Diagrams
Iconic (47 tasks) Drawing, Screenshot, Icons, …
Schematic (55 tasks) Graph or tree (19 tasks), Grid or map (16 tasks), Process

Diagram (16 tasks),
Table and text lists Table and Text lists (12 tasks)
B. References to Diagrams and Artifacts in Text
to Diagrams Legend (17 tasks), Reading Instruction, General descrip-

tion (29 tasks)
to Artifacts How-to use instruction (38 tasks), General advice (13

tasks)
C. Link between Diagrams and answer
Reading

Choose an element (15 tasks), Select a diagram, Replicate
a diagram, Think on

Modification Animate, Modify (31 tasks)
Creation (0 task)

In a majority of French Bebras tasks, interactive artifacts are not simple form

fields. It is a complex artifact with many clickable areas in the diagram, drag and drop
list of icons or short texts, input text for entering parameters or program text and exe-
cute buttons, a result-display area. In one-third of the tasks, the answer consists in
modifying a diagram given in the statement, either by clicking on it or by a less direct
mean where a click in one area impacts another area. In some cases, the modification
gives information useful to solve the problem. Most of the time, the text explains how
to use it (where to click or drag and drop), but not how it works and not how to solve
the problem with it. It means that understanding the interface of the artifact is not part
of the challenge and should not be an obstacle. In contrast, understanding the behavior
of the system (the algorithm beside) is part of the problem.

In Bebras task, diagrams and artifacts have a central role in the statement: they
may be an input of the solving process, or its final product. Understanding and inter-
preting diagrams are at the core of the solving process, whatever the answer requires:
a direct manipulation, or a mental process. In this sense, Bebras tasks are ‘image situ-
ation’ as defined in [6], where ‘situation’ means statement for a problem solving.
Most of diagrams in Bebras offer heuristic tools that help student make hypothesis
about how to search for the solution.

Are the students familiar with the diagrams and the interactive artifact used in
Bebras task? We don’t think so. Trees are manipulated by pupils at primary school,
but only in specific situations, like genealogical trees. Graphs are not part of the cur-
ricula. Conventional schematic diagrams are used in technology lessons. The issue is
to understand how much manipulations of diagrams help them to understand the prob-
lems and to find ways to operationalize the resolution.

182 F. Tort and B. Drot-Delange

5 Perspectives: Next Steps

This paper presents the very first stage of a work in progress. Next steps deal with the
observation of students resolving Bebras tasks. We already collected screen video
captures and audio of 30 high school students saying aloud what they were doing or
having in mind when solving Bebras tasks. The characterization of the role of dia-
grams and interactive artifacts in problem solving will help us to question and inter-
pret the observations. To investigate the process by which pupils use the artifact in
relationship to what they aim to do will certainly be fruitful. Are they an obstacle or a
help during the solving process? We will look carefully to the diagrams students draw
themselves on paper, and try to characterize them in relationship with our coding
system. We also plan to complete the characterization by taking into account other
dimensions such as the computer science domains, notions and methods.

References

1. Carney, R.N., Levin, J.R.: Pictorial illustrations still improve students’ learning from text.
Educ. Psychol. Rev. 14, 5–26 (2002).

2. Dagiene, V., Futschek, G.: Bebras international contest on informatics and computer lite-
racy: Criteria for good tasks. In Informatics Education-Supporting Computational Thin-
king - LNCS 5090, 19–30. Springer (2008).

3. Glazer, N.: Challenges with Graph Interpretation: A Review of the Literature. Studies in
Science Education. 47(2), 183–210 (2011).

4. Hegarty, M., Carpenter, P. A., & Just, M. A. Diagrams in the comprehension of scientific
texts. In R. Barr, M. L. Kamil, P. Mosenthal, & P. D. Pearson (Eds.), Handbook of reading
research. 2, 641-668. NY, NY: Longman (1991)

5. Julo, J.: Représentation des problèmes et réussite en mathématiques. Un apport de la psy-
chologie cognitive à l’enseignement. Presse universitaire de Renne.(1995)

6. Mottet, G.: Les situations-images : Une approche fonctionnelle de l’imagerie dans les ap-
prentissages scientifiques à l’école élémentaire. Aster, 22. (1996).

7. Novick, L.R.: The Importance of Both Diagrammatic Conventions and Domain-Specific
Knowledge for Diagram Literacy in Science: The Hierarchy as an Illustrative Case. In D.
Barker-Plummer, R. Cox, & N. Swoboda (Éd.), Diagrammatic representation and infe-
rence, 1–11. Springer Berlin Heidelberg (2006).

8. Rivera, F.D.: Toward a Visually-Oriented School Mathematics Curriculum: Research,
Theory, Practice, and Issues. Springer Science & Business Media (2011).

9. Shah, P., Hoeffner, J.: Review of graph comprehension research: Implications for instruc-
tion. Educational Psychology Review. 14(1), 47–69 (2002).

10. Tomcsányiová, M., Kabátová, M.: Categorization of Pictures in Tasks of the Bebras Con-
test. In: Diethelm, I. and Mittermeir, R.T. (eds.) Informatics in Schools. Sustainable In-
formatics Education for Pupils of all Ages. LNCS 7780, 184–195. Springer Berlin Heidel-
berg (2013).

11. Welsh, E.: Dealing with Data: Using NVivo in the Qualitative Data Analysis Process. Fo-
rum Qualitative Sozialforschung / Forum: Qualitative Social Research. 3(2). (2002).

Author Index

Akimushkin, Vasiliy 94

Bell, Tim 1
Ben-Ari, Mordechai (Moti) 22
Berges, Marc 32, 57

Demšar, Irena 106
Demšar, Janez 106
Drot-Delange, Béatrice 175

Grillenberger, Andreas 155
Gülbahar, Yasemin 131

Heintz, Fredrik 118
Hubwieser, Peter 32, 57
Humphreys, Simon 69

Kalelioğlu, Filiz 131
Knobelsdorf, Maria 12
Kwiatkowska, Anna Beata 141

Levy, Ronit Ben-Bassat 22
Lonati, Violetta 165

Madran, Orçun 131
Magenheim, Johannes 45
Malchiodi, Dario 165

Mannila, Linda 118
Maytarattanakhon, Athit 94
Monga, Mattia 165
Morpurgo, Anna 165
Mühling, Andreas 32

Neugebauer, Jonas 45
Nyg̊ards, Karin 118

Ohrndorf, Laura 45

Parnes, Peter 118
Pozdniakov, Sergei 94

Regnell, Björn 118
Romeike, Ralf 155
Ruf, Alexander 57

Schaper, Niclas 45
Schubert, Sigrid 45
Sentance, Sue 69
Sys�lo, Maciej M. 141

Tort, Françoise 175

Vańıček, Jǐŕı 82

	Preface
	Organization
	Contents
	Surprising Computer Science
	1 Introduction
	2 The Secret Code
	3 Communicating the Magic
	4 Paradoxes and Surprises
	5 The Dark Side of Magic
	6 Conclusion

	The Theory Behind Theory - Computer ScienceEducation Research Through the Lenses of SituatedLearning
	1 Introduction
	2 Theoretical Framework
	3 Enculturation into Theory of Computation Community
	4 Conclusion and Outlook

	Robotics Activities–Is the Investment Worthwhile?
	1 Introduction
	2 Background
	2.1 Research on Young Students Learning CS
	2.2 Robotics
	2.3 The Research in Light of Previous Work

	3 Description of the Research
	3.1 Research Question
	3.2 Population
	3.3 Research Framework
	3.4 Research Instruments and Data Analysis
	3.5 The Questionnaire

	4 Results
	5 Discussion
	6 Conclusions

	Dimensions of Programming Knowledge
	1 Introduction
	2 Background and Related Work
	2.1 Concept Maps and Declarative Knowledge
	2.2 The SOLO Taxonomy
	2.3 The Cognitive Structure of Programming

	3 The Educational Context
	4 The Study
	4.1 Design
	4.2 Data Analysis
	4.3 Discussion

	5 Knowledge and Competencies
	6 Conclusion and Future Work

	Defining Proficiency Levels of High School Students inComputer Science by an Empirical Task Analysis
	1 Motivation
	2 MoKoM Background and Prior Results
	4 Overview of Proficiency Levels
	5 Conclusions

	Classification of Programming Tasks According to Required Skills and Knowledge Representation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Sources for the Tasks
	3.2 Selection of the Tasks
	3.3 Classification of the Tasks

	4 The Resulting Types
	4.1 Type 1a. ``write code''
	4.2 Type 1b. ``write code''
	4.3 Type 2. ``write code using the given code''
	4.4 Type 3. ``adjust/extend/complete the given code''
	4.5 Type 4. ``optimize the given code''
	4.6 Type 5. ``debug the given code''
	4.7 Type 6. ``set the right preconditions to the given code''
	4.8 Type 7. ``test the given code''
	4.9 Type 8. ``transform the given code''
	4.10 Type 9. ``trace/explain the given code''
	4.11 Type 10. ``specify a problem to the given code''
	4.12 Type 11. ``draw a diagram to the given code''

	5 Incidence of the Types
	6 Forms of Knowledge Representation in the Tasks
	7 Conclusion and Future Work

	Online vs Face-To-Face Engagement of Computing Teachers for their Professional Development Needs
	1 Introduction
	2 Professional Development of Computing Teachers
	3 Communities of Practice - Online and Offline
	4 The Computing at School Community
	5 Methodology
	6 Findings
	6.1 Teacher Profile
	6.2 Professional Development (PD) in Computing
	6.3 The CAS Community

	7 Discussion
	8 Conclusion

	Programming in Scratch Using Inquiry-Based Approach
	1 Inquiry-Based Learning and Programming Education
	2 Project and Methodology
	3 Findings
	4 Pupils’ Perception of the Teaching Experiment
	5 Conclusion

	Olympiad in Computer Science and Discrete Mathematics
	1 Introduction
	2 Analysis of CS Competition Organization
	3 Analysis of DM&TI-2015 Content
	4 Solution for the Task ``Graphs''
	5 Technology of DM&TI Tasks Design
	6 Technology of Manipulators Design
	7 The DM&TI-2015 Results
	8 Conclusions

	CS Unplugged: Experiences and Extensions
	1 Introduction
	1.1 The Slovenian Translation
	1.2 Setup

	2 Experiences and Adaptations
	2.1 Binary Number Representation
	2.2 Text Encoding and Decoding
	2.3 Error Correction
	2.4 Text Compression
	2.5 Programming Languages
	2.6 Bisection
	2.7 Sorting Algorithms
	2.8 Sorting Networks
	2.9 Deadlock
	2.10 Algorithms on Graphs
	2.11 Cryptography
	2.12 Artificial Intelligence

	3 Conclusion

	Computing at School in Sweden – Experiences from Introducing Computer Science within Existing Subjects
	1 Introduction
	2 Overview of Computing in Swedish Schools
	3 Bebras
	4 Activities in Linköping
	5 Activities in Lund
	6 Activities in Luleå
	7 Activities in Stockholm
	8 Lessons Learned and Ways Forward

	Introducing a New Computer Science Curriculum for All School Levels in Poland
	Introduction
	Terminology
	Early History of Computers in Education in Poland

	Informatics Education in Poland Today
	Informatics Education
	Computational Thinking

	A New Computer Science Curriculum
	Is Computer Science Education in Crisis?
	The New Computer Science Curriculum
	Implementation Comments, Supporting Activities
	The Road Map

	Analyzing the Twitter Data Stream Using the Snap! Learning Environment
	1 Introduction
	2 Data Stream Systems
	2.1 Function of Data Stream Systems
	2.2 Usage Examples of Data Stream Systems
	2.3 Principles of Data Stream Analyses in Daily Life

	3 Using Snap! for Twitter Analysis
	3.1 Possibilities and Usage
	3.2 Realization and Technical Aspects

	4 Summary

	Is Coding the Way to Go?
	1 Introduction
	2 The Algomotricity Maze Workshop (AlMa)
	3 Assessment
	4 AlMa vs HoC
	4.1 Algorithm, Program, and Code
	4.2 The Hour of Code (HoC)
	4.3 Differences
	4.4 Discussion

	Visual Literacy in Introductory Informatics Problems
	1 Introduction
	2 Roles of Diagrams in Problem Solving
	3 Method: Qualitative Analysis of Problem Statements
	4 Coding Rules for Bebras Contest Task Diagrams
	5 Perspectives: Next Steps
	References

	Author Index

