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Abstract. In this paper, the H∞ optimal control for a class of
continuous-time nonlinear systems is investigated using event-triggered
method. First, the H∞ optimal control problem is formulated as a two-
player zero-sum differential game. Then, an adaptive triggering condition
is derived for the closed loop system with an event-triggered control pol-
icy and a time-triggered disturbance policy. For implementation purpose,
the event-triggered concurrent learning algorithm is proposed, where only
one critic neural network is required. Finally, an illustrated example is
provided to demonstrate the effectiveness of the proposed scheme.

1 Introduction

From the perspective of minmax optimization problem, the H∞ control prob-
lem can be formulated as a two-player zero-sum differential game [1]. In or-
der to obtain a controller that minimizes a cost function in the presence of
worst-case disturbances, ones need to find the Nash equilibrium solution by
solving the Hamilton-Jacobi-Isaacs (HJI) equation. Several reinforcement learn-
ing (RL) methods [2–4] have been successfully applied to solve the HJI equation
for discrete-time systems [5] and continuous-time systems [6, 7].

Due to the capability of computation efficiency, event-triggered control method
has been integrated with the RL approach recently [8,9]. In the event-triggered
control method, the controller is updated based on a new sampled state only
when an event is triggered at event-triggering instants. This can reduce the
communication between the plant and the controller significantly. In [10], an op-
timal adaptive event-triggered control algorithm was implemented based on an
actor-critic structure for continuous-time nonlinear systems. On the other hand,
the concurrent learning technique, which can relax the traditional persistency of
excitation (PE) condition, was proposed for an uncertain system in [11]. In [12],
a related idea called experience replay was adopted in Integral reinforcement
learning (IRL) algorithm for constrained-input nonlinear systems.

To the best of our knowledge, there are no results on event-triggered H∞
control of nonlinear system via concurrent learning. This is the motivation of our
research. In this paper, the H∞ control problem is described as a two-player zero-
sum differential game and an online event-triggered concurrent learning (ETCL)
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algorithm is proposed to approximate the optimal control policy. Simulation
results show the effectiveness of the proposed scheme.

2 Problem Statement

Consider the following nonlinear system with external disturbance:

ẋ(t) = f(x) + g(x)u(t) + k(x)w(t) , (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, w ∈ Rq is
the nonlinear perturbation with w(t) ∈ L2(0,∞). f(·) ∈ Rn, g(·) ∈ Rn×m and
k(·) ∈ Rn×q are smooth nonlinear dynamics. Assume that f(x)+ g(x)u+ k(x)w
is Lipschitz continuous on a compact set Ω ⊆ Rn with f(0) = 0. Let x(0) = x0

be the initial state. Assume that w(0) = 0, so that x = 0 is an equilibrium of
system (1). It is assumed that the system (1) is controllable.

Here, we introduce a sampled-data system that is characterized by a mono-
tonically increasing sequence of event-triggering instants {λj}∞j=0, where λj is
the jth consecutive sampling instant with λj < λj+1. Define the event-trigger
error between the current state x(t) and the sampled state x̂j as follows

ej(t) = x̂j − x(t), ∀t ∈ [λj , λj+1) . (2)

In the event-triggered control mechanism, the event-triggering condition is de-
termined by the event-trigger error and a state-dependent threshold. When the
event-triggering condition is not satisfied at t = λj , we say an event is triggered.
Then, the system state is sampled that resets the event-trigger error ej(t) to
zero, and the controller υ(x̂j) is updated based on the new sampled state. Note
that υ(x̂j) is a function of the event-based state vector. The obtained control se-
quence {υ(x̂j)}∞j=0 becomes a continuous-time input signal υ(t) = {υ(x̂j , t)}∞j=0

after using a zero-order hold (ZOH). In order to simplify the expression, we use
υ(x̂j) to represent υ(x̂j , t) for t ∈ [λj , λj+1) in the following presentation.

Similar to the traditional H∞ problem, our primary objective is to find a
sequence of control inputs {υ(x̂j)}∞j=0, which for some prescribed γ > 0, renders

J(x0, υ(x̂j), w) =
∑

U
j
[λj ,λj+1)=[0,∞)

∫ λj+1

λj

r(x, υ(x̂j), w)dt (3)

nonpositive for all w(t) ∈ L2[0,∞) and x(0) = 0, where utility r(x, υ(x̂j), w) =
xTQx+υT (x̂j)Rυ(x̂j)−γ2‖w(t)‖2, Q and R are symmetric and positive definite
matrices, and γ ≥ γ∗ ≥ 0. Here, γ∗ is the smallest γ such that the system (1) is
stabilized. The quantity γ∗ is known as the H-infinity gain.

3 Event-Triggered Optimal Controller Design

In this section, the H∞ control problem is formulated as a two-player zero-sum
differential game, where the control input u is a minimizing player while the
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disturbance w is a maximizing one. It is well known that the solution of H∞
control problem is the zero-sum game theoretic saddle point (u∗, w∗), where u∗

and w∗ are the optimal control and the worst-case disturbance.
In the time-triggered case, the value function is generally defined as

V (u,w) =

∫ ∞

t

(
xTQx+ uTRu− γ2‖w‖2) dτ . (4)

The corresponding nonlinear zero-sum Bellman equation is

r(x, u, w) + (∇V )T (f(x) + g(x)u + k(x)w) = 0 , (5)

where ∇V = ∂V (x)/∂x is the partial derivative of the value function with respect
to the state. Then, the two-player zero-sum game has a unique solution if a
saddle point (u∗, w∗) exists, that is if the Nash condition holds

min
u

max
w

V (u,w) = max
w

min
u

V (u,w) . (6)

Define the Hamiltonian of the time-triggered problem

H(x,∇V, u, w) = (∇V )T (f + gu+ kw) + xTQx+ uTRu− γ2‖w‖2 . (7)

Then the associated HJI equation can be written as

min
u

max
w

H(x,∇V ∗, u, w) = 0 , (8)

where the optimal value function V ∗ is the solution to the HJI equation. The
associated control and disturbance policies are given as follows:

u∗(t) = −1

2
R−1gT (x)∇V ∗ . (9)

w∗(t) =
1

2γ2
kT (x)∇V ∗ . (10)

In the event-triggered case, the control input is updated based on the sampled-
state information x̂j instead of the real state x(t). Hence, (9) becomes

υ∗(x̂j) = −1

2
R−1gT (x̂j)∇V ∗(x̂j), ∀t ∈ [λj , λj+1) , (11)

where ∇V ∗(x̂j) = ∂V ∗(x̂j)/∂x(t). By using (10) and (11), the event-triggered HJI
equation can be written as

(∇V ∗)T f(x) + xTQx− 1

2
(∇V ∗)T g(x)R−1gT (x̂j)∇V ∗(x̂j)

+
1

4
(∇V ∗(x̂j))

T g(x̂j)R
−1gT (x̂j)∇V ∗(x̂j) +

1

4γ2
(∇V ∗)Tk(x)kT (x)∇V ∗ = 0 .

(12)
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Assumption 1. The controller u(x) is Lipschitz continuous with respect to the
event-trigger error,

‖u(x(t))− u(x̂j)‖ = ‖u(x(t))− u(x(t) + ej(t))‖ ≤ L‖ej(t)‖ , (13)

where L is a positive real constant and u(x̂j) = υ(x̂j).

Theorem 1. Suppose that V ∗(x) is the solution of the event-triggered HJI equa-
tion (12). For ∀t ∈ [λj , λj+1), j = 0, ...,∞, the disturbance policy and control pol-
icy are given by (10) and (11), respectively. If the triggering condition is defined
as follows

‖ej(t)‖2 ≤ eT =
(1− β2)

L2‖s‖2 θ(Q)‖x‖2

+
1

L2
‖υ(x̂j)‖2 − γ2

L2‖s‖2 ‖w(t)‖
2 ,

(14)

where eT is the threshold, θ(Q) is the minimal eigenvalue of Q, β ∈ (0, 1) is a
designed sample frequency parameter and sT s = R. Then the closed-loop system
(1) is asymptotically stable.

Remark 1: The event-trigger instants {λj}∞j=0 is determined by the triggering
condition (14). Based on the event-triggered mechanism, an event is generated
by the violation of the triggering condition. Note that this method can reduce
the communication between the controller and the plant effectively. On the other
hand, the sample frequency can be adjusted by the designed parameter β in the
triggering condition (14). When β is close to 1 one samples more frequently
whereas when β is close to zero, the sampling periods become longer.

4 Online Neuro-Optimal Control Scheme

In this section, an online event-triggered concurrent learning (ETCL) algorithm
is proposed, where only one critic neural network is required.

According to the Weierstrass high-order approximation theorem, the value
function based on NN can be written as

V (x) = WT
c φ(x) + ε , (15)

where Wc ∈ RN and φ(x) ∈ RN are the critic NN ideal weights and activation
function vector, with N the number of hidden neurons, and ε ∈ R the critic NN
approximation error.

The derivative of (15) with respect to x can be given by

∇V (x) = ∇φT (x)Wc +∇ε . (16)

Then, the zero-sum Bellman equation (5) can be rewritten as

xTQx+υT (x̂j)Rυ(x̂j)−γ2‖w(t)‖2+WT
c ∇φ(f(x)+g(x)υ(x̂j)+k(x)w(t)) = εH ,

(17)
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where the residual error is εH = −(∇ε)T (f(x) + g(x)υ(x̂j) + k(x)w(t)). Under
the Lipschitz assumption on the system dynamics, the residual error is bounded
locally. It is shown in [7] that this error converges uniformly to zero as the
number of hidden-layer units increases. That is, there exists εHmax > 0 such
that ‖εH‖ ≤ εHmax.

Let Ŵc be the estimation of the unknown ideal weight vector Wc. The actual
output of critic NN can be presented as

V̂ (x) = ŴT
c φ(x) . (18)

Accordingly, the time-triggered disturbance policy (10) and event-triggered con-
trol policy (11) can be approximated by

ŵ(t) =
1

2γ2
kT (x)φT (x)Ŵc . (19)

υ̂(x̂j) = −1

2
R−1gT (x̂j)φ

T (x̂j)Ŵc(x̂j) . (20)

where Ŵc(x̂j) is the event-based estimation of ideal weight Wc. Then the closed-
loop system dynamics (1) can now be written as

ẋ = f(x) + g(x)υ̂(x̂j) + k(x)ŵ(t), t ≥ 0 . (21)

The approximate Hamilton function is

Ŵ T
c ∇φ(x)f + xTQx− 1

2
Ŵ T

c ∇φ(x)g(x)R−1gT (x̂j)∇φT (x̂j)Ŵc(x̂j) +
1
4
Ŵ T

c (x̂j)×
∇φ(x̂j)g(x̂j)R

−1gT (x̂j)∇φT (x̂j)Ŵc(x̂j) +
1

4γ2 Ŵ
T
c ∇φ(x)k(x)kT (x)∇φT (x)Ŵc = e .

(22)

where e is a residual equation error.
Based on concurrent learning, the critic NN’ weights can be updated by

recorded data concurrently with current data. Define the residual equation error
at time tk as

e(tk) = r (tk) + ŴT
c (t)σk . (23)

where r(tk) = xT (tk)Qx(tk) + υ̂T (x̂j)Rυ̂(x̂j) − γ2‖ŵ(t)‖2, σk = ∇φ(x(tk))
(f(x(tk))+g(x(tk))υ̂(x̂j)+k(x(tk))ŵ(t))) are stored data at time tk ∈ [λj , λj+1),
k ∈ {1, ..., p}, j = 0, 1...,∞, and p is the number of stored samples.

Condition 1: Let M = [σ1, ..., σp] be the recorded data corresponding to the
critic NN’s weights. Then M contains as many linearly independent elements as
the number of corresponding critic NN’s hidden neurons, i.e., rank(M) = N .

To derive the minimum value of e, it is desired to choose Ŵc to minimize
the corresponding squared residual error E = 1

2e
T e. Considering the concurrent

learning, we develop a novel weight update law for the critic NN

˙̂
Wc = −ασ

(
σT Ŵc(t) + r(x, υ̂(x̂j), ŵ(t))

)
− α

p∑

k=1

σk

(
σT
k Ŵc(t) + r(tk)

)
. (24)

where σ = ∇φ(x) (f(x) + g(x)υ(x̂j) + k(x)w), σk is defined in (23), k ∈ {1, ..., p}
denote the index of a stored data point, and α > 0 denote the learning rate.
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Remark 2: The online algorithm presented in this paper dose not rely on
traditional PE condition which is difficult to check online. According to [11], the
second term in (24) can be utilised to relax the PE condition with Condition 1.

By defining the weight estimation error of the critic NN as W̃c = Wc − Ŵc

and taking the time derivative one has

˙̃Wc = −ασ
(
σT W̃c − εH

)
− α

p∑

k=1

σk

(
σT
k W̃c − εH(tk)

)
. (25)

Assumption 2. a. The critic NN activation function and its gradient are
bounded, i.e., ‖ φ(x) ‖≤ φM and ‖ ∇φ(x) ‖≤ ∇φM , with φM , ∇φM being
positive constants.

b. The system dynamics g(x) and k(x) are upper bounded by positive constants
such that ‖g(x)‖ ≤ gM and ‖k(x)‖ ≤ kM .

Theorem 2. Consider the nonlinear two-player zero-sum game (1) with the
critic neural network (18), the time-triggered disturbance policy (19) and the
event-triggered control policy (20). The tuning law based on concurrent learning
technique for the continuous-time critic neural network is given by (24). Then
the system is asymptotically stable and the critic weight estimation error is guar-
anteed to be Uniformaly Ultimately Bounded (UUB) if the adaptive triggering
condition

‖ej(t)‖2 ≤(1− β2)

L2‖s‖2 θ(Q)‖x‖2 + 1

4L2‖R‖2 ‖g
T (x̂j)φ

T (x̂j)

× Ŵc(x̂j)‖2 − 1

4γ2L2‖s‖2 ‖k
T (x)φT (x)Ŵc(t)‖2

(26)

and the following inequality are satisfied

‖W̃c‖ >

√
a2

∑p+1
k=1 ε

2
Hmax

4(a− 1) (θ(M) +
∑p

k=1 θ(Mk))

Δ
= BM (27)

for the critic network and a > 1.

Remark 3: Note that the triggering condition (26) is adaptive, because the
threshold is designed as function of the system state vector and the critic NN
weight estimates. The controller is adjusted with events.

Then we give the structure diagram of the online ETCL algorithm for two-
player zero-sum game in Fig. 1.

5 Simulation

Consider the continuous-time F16 aircraft plant [7]:

ẋ =

⎡

⎣
−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

⎤

⎦x+

⎡

⎣
0
0
1

⎤

⎦u+

⎡

⎣
1
0
0

⎤

⎦w
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Nonlinear 
System

Critic 
Network

x t
Trigger 

Mechanism(26)
ˆ jx

Control       
Policy (20)

Disturbance 
Policy (19)

Record
State Data

Eq.(24)

ˆ jx

ZOH

w t

ˆ ,jx t

V̂

V̂

ˆˆ
jxV

Fig. 1. Structure diagram of the ETCL algorithm for two-player ZS game
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Fig. 2. (a) Evolution of system states. (b) Convergence of the critic parameters.
(c) Triggering threshold eT and ‖ej(t)‖2. (d) Sampling period.

Let Q and R be identity matrices with approximate dimensions, and γ = 5.
Choose the critic NN activation function as φ(x) = [x2

1 x1x2 x1x3 x2
2 x2x3 x2

3]
T .

According to [8], the ideal values of the NN weights are Wc = [1.6573 2.7908 −
0.3322 1.6573 − 0.3608 0.4370]T . Select the initial state as x0 = [1,−1, 1]T ,
and α = 15, p = 10, L = 3, β = 0.8. During the learning process, a probing
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noise is added to the control input and disturbance for the first 400s. Fig. 2(a)
presents the evolution of the system states. Fig. 2(b) shows the convergence
of the critic parameters. After 100s the critic parameters converged to Ŵc =
[1.6563 2.7788 − 0.3389 1.6490 − 0.3615 0.4354]T which are nearly the ideal
values above. In Fig. 2(c), one can see that the event-trigger error converges
to zero as the states converge to zero. The sampling period during the event-
triggered learning process for the control policy is provided in Fig. 2(d). In
particular, the event-triggered controller uses 1055 samples of the state while the
time-triggered controller uses 50000 samples, which means the event-triggered
method improved the learning process.

Select a disturbance signal with t0 = 5 as

w (t) =

{
8e−(t−t0) cos (t− t0) , t ≥ t0
0, t < t0

(28)

Fig. 3 shows the system state trajectories and the event-triggered control in-
put with the H∞ event-triggered controller. These simulation results verify the
effectiveness of the developed control approach.
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Fig. 3. (a) Closed-loop system states. (b) Event-triggered control input

6 Conclusion

In this paper, we propose an online ETCL algorithm to solve the HJI equation of
H∞ control problem for nonlinear system. The H∞ control problem is described
as a two-player zero-sum game, where the control is a minimizing player and the
disturbance is a maximizing one. With an event-triggered control policy and a
time-triggered disturbance policy, the online ETCL algorithm is presented. For
implementation purpose, only one critic NN is used to approximate the value
function, the optimal control and disturbance policies. Furthermore, a novel critic
tuning law based on concurrent learning technique is given, which can relax the
traditional PE condition. In our future work, we will develop an online ETCL
algorithm for the unknown two-player zero-sum game system.
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