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Abstract. An adaptive neural network control approach is proposed for a class 
of stochastic nonlinear strict-feedback systems with unknown nonlinear func-
tion in this paper. Only one NN (neural network) approximator is used to tackle 
unknown nonlinear functions at the last step and only one actual control law 
and one adaptive law are contained in the designed controller. This approach 
simplifies the controller design and alleviates the computational burden. The 
Lyapunov Stability analysis given in this paper shows that the control law can 
guarantee the solution of the closed-loop system uniformly ultimate 
boundedness (UUB) in probability. The simulation example is given to illus-
trate the effectiveness of the proposed approach. 

Keywords: adaptive control, neural networks, stochastic nonlinear strict-
feedback system. 

1 Introduction 

Backstepping technique has been a powerful method for synthesizing adaptive con-
trollers for deterministic strict-feedback nonlinear systems, and some useful control 
schemes have been developed [1-3]. However, little attention has been paid to the 
stabilization problem for the stochastic nonlinear systems until recently. Efforts to-
ward stabilization of stochastic nonlinear systems have been initiated in the work of 
Florchinger [4]. By employing the quadratic Lyapunov functions and the Itô differen-
tiation rule Deng and Krstić[5] gave a backstepping design for stochastic strict-
feedback system with the form of quartic Lyapunov function. 

As well known, both neural network (NN) and fuzzy logic system (FLS) have been 
found to be particularly useful for controlling nonlinear systems with nonlinearly 
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parameterized uncertainties. The main advantage is that the unknown nonlinear  
functions can be approximated by the neural networks [6-8]. For simplifying the 
complexity of control design and alleviating the computation burden, numerous con-
trol approaches have been developed. For instance, Chen [9] and Li [10] introduced 
the adaptive neural network control schemes to the output-feedback stochastic nonlin-
ear strict-feedback systems, and only an NN to compensate for all upper bounding 
functions depending on the system output. A novel direct adaptive neural network 
controller was proposed to control a class of stochastic system with completely un-
known nonlinear functions in [11]. For the purpose of solving the problem of the ex-
plosion of neural network learning parameters, Yang et al. first solved the problem in 
their pioneering work [12], where the so-called “minimal learning parameter (MLP)” 
algorithm containing much less online adaptive parameters were constructed by fu-
sion of traditional backstepping technique and radial-basis-function (RBF) NNs. By 
combining dynamic surface control (DSC) and MLP techniques, Li et al in [13] first 
proposed an algorithm which can simultaneously solve both problems of the explo-
sion of learning parameters and the explosion of computation complexity. However, 
many approximators are still used to construct virtual control laws and actual control 
law and all the virtual control law also must be actually implemented in the process of 
controller design. In order to eliminate the complexity growing problem and deduce 
the computation burden mentioned above completely, Sun et al. proposed a new 
adaptive control design approach to handle the problems mentioned above [14], only 
one NN is used to approximate the lumped unknown function of the system.  

Motivated by the aforementioned discussion, in this paper, a single neural network 
approximation based adaptive control approach is presented for the strict-feedback 
stochastic nonlinear systems. The main contributions lie in the following: (i) only one 
NN is used to deal with those unknown system functions, those virtual control law are 
not necessary to be actually implemented in the process of control design; (ii) there is 
only one adaptive law proposed in this paper, which make the computational burden 
significantly alleviated and the control scheme more easily implemented in practical 
applications. 

2 Preliminaries and Problem Formulation 

Consider an n-dimensional stochastic nonlinear system 

 ( ) ( )dx f x dt x dwψ= +                           (1) 

where nx R∈  is the system state, w is an r-dimensional standard Brownian motion 
defined on the complete probability space ( )F PΩ， ，  with Ω  be a sample space, 

F  being a σ -field. ( ) : n nf x R R→ , ( ) : n n rx R Rψ ×→ are locally Lipschitz. 

In this paper, the following RBF NN will be used to approximate any unknown 
continuous function ( )h Z ，namely ( ) ( )T

nnh Z W S Z= , where q
ZZ R∈ Ω ⊂ is the 

input vector with q  being the input dimension of neural networks, 
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1 2[ ]T l
lW w w w R= ∈， ， ，  is the weight vector, 1l > is the neural networks node 

number, and [ ]1( ) ( ) ( )
T

lS Z s Z s Z= ， ，  means the basis function vector, ( )is Z  is 

the Gaussian function of the form 2
is ( ) exp ( ) ( )T

i iZ z zμ μ ς⎡ ⎤= − − −⎣ ⎦ , 1,2, ,i l= , 

where 1; 2[ , , , ]T
i i i iqμ μ μ μ= is the center of the receptive field and 0ς > are the 

width of the basis function. 
It has been proven that neural network can approximate any continuous function 

over a compact set q
Z RΩ ⊂ to arbitrary any accuracy such as 

*( ) ( ) ( )Th Z W S Z Zδ= + , where *W is the ideal constant weight vector and ( )Zδ  

denotes the approximation error and satisfies ( )Zδ ε≤ . 

Assumption 1 [15]. There exist constants mb and Mb such that for1 i n≤ ≤ , i
ix R∀ ∈ , 

( )0 m i i Mb g x b< ≤ ≤ < ∞ .  

Assumption 2. The desired trajectory signal ( )dy t  is continuous and bounded, and 

its time derivatives up to the nth  order are also continuous and bounded. 

Lemma 1 [16]. Consider the stochastic system (1). If there exists a positive definite, 
radially unbounded, twice continuously differentiable Lyapunov function 

: nV R R® , and constants 0 0a > , 0 0³g , such that 

0 0( ) ( )LV x a V x≤ − + g                             (2) 

Then, the system has a unique solution almost surely, and the system is bounded in 
probability. 

Consider the following stochastic nonlinear strict-feedback system 

 
1

1

( ( ) ( )) ( )

( ( ) ( )) ( )
i i i i i i i

n n n n n n

dx g x x f x dt x dw

dx g x u f x dt x dw

y x

ψ
ψ

+= + +⎧
⎪ = + +⎨
⎪ =⎩

        (3) 

where [ ]1

T n
nx x x R= ∈， ， ， u R∈ and y R∈ are the state variable，the control 

input, and the system output respectively, [ ]1

T i
i ix x x R= ∈， ， , ( )if ⋅ , 

( ) : i
ig R R⋅ → and ( ) : , ( 1, , )i r

i R R i nψ ⋅ → =  are unknown smooth nonlinear func-

tions with (0) 0if = , ( ) ( )0 0 1i i nψ = ≤ ≤ ( )1,2, ,i n= . 

3 Controller Design 

Step 1: Define the first error surface as 1 1 dz x y= − , where dy  is the desired trajecto-

ry. Its differential is 

 ( ) ( ) ( )1 1 1 2 1 1 1 1ddz g x x f x y dt x dwψ= + − +⎡ ⎤⎣ ⎦  (4) 
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Define the virtual controller 2α  as follows 

 2 1 1 1 1( , , )d dk z F x y yα = − −                              (5)  

where 1 0k >  is a positive real design constant, ( )1 1, ,d dF x y y is an unknown smooth 

function in the following form  

( ) ( ) ( ) ( ) 42
1 1 1 1 1 1 1

1 1

1 3
, ,

4d d dF x y y f x y l z x
g x

ϕ−⎡ ⎤= − +⎢ ⎥⎣ ⎦
              (6) 

where ( ) ( )1 1x xϕ ψ=  . Define the second error surface as 2 2 2z x α= − . Then, we 

have 

( ) ( )*
2 2 1 1 1 1, ,d d d dz x y k x y F x y y= − + − +                                 (7) 

where ( ) ( )*
1 1 1 1, , , ,d d d d dF x y y F x y y y= + . 

Step i  (2 1)i n≤ ≤ − : A similar procedure is recursively employed for each 

step i , from the former step, it can be obtained that 
( )( ) ( )( )1 1 1( 1) *

1 1 1
1

, , , ,
i j ii

i i d j j i j d i i d d d
j

z x y k k k x y F x y y y
− − −−

+ − −
=

= − + − +∑          (8) 

where 
( )( ) ( )( ) ( )( ) ( )1 2 1 1* *

1 1 2 1, , , , , , , , , , , ,i i i i
i i d d d i i i d d d i i d d d dF x y y y k F x y y y F x y y y y− − − −
− − − −= + +

             (9) 
The differential of 2z is 

( )
( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( )( )

( )
( ) ( )

1*
1 1

1 1
1

1

1 1 1
1

1*
1

1
1

, , , ,

           

, , , ,
           

j
i i i d d d

i i i i j j j j j
j j

ii j
i i d j j i j j j j j d

j

j
i i i d d d j

d i ij
j

d

F x y y y
dz g x x g x x f x

x

f x y k k k g x x f x y

F x y y y
y x dw

y
ϕ

−
− −

+ +
=

−

+ − +
=

−
−

−=

⎡ ∂
⎢= + +∑
⎢ ∂
⎣

+ − + + −∑

⎤∂
⎥+ +∑
⎥∂
⎦

       (10) 

where 

 ( ) ( ) ( )
( )( )

( ) ( )
1*

1 1

1 1 1
1 1

, , , , j
i i i i d d d

i i i i j j i j j j jj
j j

d

F x y y y
x x k k k x x

y
ϕ ψ ψ ψ

−
− −

+ − −= =

∂
= + +∑ ∑

∂
  

The virtual control law 1iα + is chosen as follows: 
( )( )1 , , , , i

i i i i i d d dk z F x y y yα + = − −                       (11) 

where ik  is a positive real design constant, ( )( ), , , , i
i i d d dF x y y y is an unknown 

smooth function in the following form 
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( )( ) ( )

( )( ) ( ) ( )( )
1*

1 1 1

1
1

, , , ,1
, , , ,

j
i i i d d di

i i d d d j j j j j
ji i j

F x y y y
F x y y y g x x f x

g x x

−
− − −

+
=

⎡ ∂
⎢= +∑
⎢ ∂
⎣

 

( ) ( ) ( ) ( ) ( )( )
( )( )

( )
( ) ( )

1

1 1 1
1

1*
1 1 42

1
1

                                 

, , , , 3
                                 

4

ii j
i i d j j i j j j j j d

j

j
i i i d d d j

d i i i ij
j

d

f x y k k k g x x f x y

F x y y y
y l z x

y
ϕ

−

+ − +
=

−
− − −

−=

+ − + + −∑

⎤∂
⎥+ +∑
⎥∂
⎦

(12) 

Define the ( )1i + th error surface as 1 1 1i i iz x α+ + += − , Substituting 1iα +  into 1iz + , it 

can be obtained that 
( )( ) ( )( )1( ) *

1 1 1
1

, , , ,
i j ii

i i d j j i j d i i d d d
j

z x y k k k x y F x y y y−
+ + +

=
= − + − +∑          (13) 

where ( )( )* , , , , i
i i d d dF x y y y is also an unknown function in the following form 

( )( ) ( )( ) ( )( ) ( )1* *
1 1, , , , , , , , , , , ,i i i i

i i d d d i i i d d d i i d d d dF x y y y k F x y y y F x y y y y−
− −= + +  (14)  

Step n: The differential of nz  is 

( ) ( )
( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( )( )

( )
( ) ( )

1*
1 1

1
1

1

1 1 1
1

1*
1

1
1

, , , ,

           

, , , ,
           

j
n n i d d d

n n n n n j j j j j
j j

nn j
d j j n j j j j j d

j

j
n n i d d d j

d n nj
j

d

F x y y y
dz g x u f x g x x f x

x

y k k k g x x f x y

F x y y y
y x dw

y
ϕ

−
− −

+
=

−

+ − +
=

−
−

−=

⎡ ∂
⎢= + + +∑
⎢ ∂
⎣

− + + −∑

⎤∂
⎥+ +∑
⎥∂
⎦

(15) 

where 

( ) ( ) ( )
( )( )

( ) ( )
1*

1 1

1 1 1
1 1

, , , , j
n n n i d d d

n n n n j j n j j j nj
j j

d

F x y y y
x x k k k x x

y
ϕ ψ ψ ψ

−
− −

+ − −= =

∂
= + +∑ ∑

∂
 

Chose the desired control law as  

( )( ) ( )( )1 1* ( 1) *
1 1

1
, , , ,

n j nn
n n d j j n j d n n d d d

j
u k x y k k k x y F x y y y

− −−
+ −

=

⎡ ⎤= − − + − −∑⎢ ⎥⎣ ⎦
   (16) 

where
( )( ) ( )( ) ( )( ) ( )1* *

1 1, , , , , , , , , , , ,n n n n
n n d d d n n n d d d n n d d d dF x y y y k F x y y y F x y y y y−

− −= + + is 

an unknown smooth function. Where nk  is a positive real design constant, 
( )( ), , , , n

n n d d dF x y y y is an unknown smooth function in the following form 
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( )( ) ( )

( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1*
1 1 1

1
1

1

1 1 1
1

, , , ,1
, , , ,

                                  

j
n n n d d dn

n n d d d j j j j j
jn n j

nn j
n n d j j n j j j j j d

j

F x y y y
F x y y y g x x f x

g x x

f x y k k k g x x f x y

−
− − −

+
=

−

+ − +
=

⎡ ∂
⎢= +∑
⎢ ∂
⎣

+ − + + −∑  

( )( )
( )

( ) ( )
1*

1 1 42

1
1

, , , , 3
                                 

4

j
n n n d d d j

d n n n nj
j

d

F x y y y
y l z x

y
ϕ

−
− − −

−=

⎤∂
⎥+ +∑
⎥∂
⎦

   (17) 

Since function ( )( )* , , , , n
n n d d dF x y y y is unknown, an RBF neural network can be 

used to approximate it. That is  

( )( ) ( )( )* *, , , , , , , ,n nT
n n d d d n d d dF x y y y W S x y y y ε= +            (18) 

Then the actual control law u is chosen as follows: 

( )( ) ( )( )1 1( 1)
1 1

1

ˆ , , , ,
n j nn T

n n d j j n j d n d d d
j

u k x y k k k x y W S x y y y
− −−

+ −
=

⎡ ⎤= − − + − −∑⎢ ⎥⎣ ⎦
   (19) 

whereŴ  is the estimation of *W and is updated as follows: 

( )( )( )3
1

ˆ ˆ, , , , n
n d d dW z S x y y y Wγ= Γ −                    (20) 

with a constant matrix 0TΓ = Γ > , and a real scalar 0γ > . 

4 Stability Analysis 

Theorem 1. Consider the system (3), and the above closed-loop systems, according to 
lemma 1, for any initial condition satisfying 

 4 1
1 0

1
(0)

2
Tn

i iz W W M−
=

⎧ ⎫Π = + Γ <∑⎨ ⎬
⎩ ⎭

                (21) 

 where 0M  is any positive constant, then there exist the control parameters ik , Γ and 

γ such that all the signals in the closed-loop system are UUB in forth moment. More-

over, the ultimate boundedness of the above closed-loop signals can be tuned arbitrar-
ily small by choosing suitable design parameters.  

 
Proof: Consider the following Lyapunov function candidate 

 4 1

1

1 1

4 2

n
T

i
i

V z W W−

=
= + Γ∑                       (22)  

According to the Itô’s differential rules and Young inequality, together with equations 
(19) and (20), the differential of the above functionV  can be found as follows  
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( )

4 1 24 4 *3
1 1

2

4
44 2 43

1

3 3 3 1 1 1

4 4 4 4 2 2

3 3 1 3 1 1
          1

4 4 4 4 4 4

n
T

m i m M i
i

n

n m M i i M M
i

LV k b z k b b z W W W

k b b z l b b

χ γ

χ ϖ ε

−

=

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞≤ − − − − − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦
⎡ ⎤⎛ ⎞

− − − − + + + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑  (23) 

where ( )( ), , , , n
n d d dS x y y y χ≤ [17], W ϖ≤ .  

Choosing the positive constants as 

4

3
1 1

1

4

3

3 3

4 4

3 1
      2, , 1

4 4

3 3 1

4 4 4

m

i m M

n n m M

c k b

c k b b i n

c k b b

χ

χ

⎧ ⎛ ⎞⎪ = − −⎜ ⎟
⎝ ⎠⎪

⎪⎪ ⎛ ⎞= − − = −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ ⎛ ⎞
⎪ = − − −⎜ ⎟
⎪ ⎝ ⎠⎩

                   (24) 

Define a positive constant { }0 min 4 ,ia c r= . It follows from Equation (27) that 

LV aV D≤ − +                                  (25) 

where  

( )2 4* 2 4

1

1 3 1 1
1

2 4 4 4

n

i M M
i

D W l b bϖ ε
=

= + + + + +∑                (26) 

From Equation (25) we can clearly observe that the first term is negative definite and 
the second term D is a positive constant. 

Furthermore, it follows from (25) that 

[ ] ( )0( ) (0) a t tD D
E V t V e

a a
− −⎛ ⎞≤ − +⎜ ⎟

⎝ ⎠
                     (27) 

According to lemma 2 the above analysis on the closed-loop system means that all the 
signals in the system (3) are UUB in the sense of probability. Furthermore, for 

any 1 0D aζ > , there exists a constant 0T > , such that ( )1 1z t ζ≤  for all 0t t T≥ + . 

Since 0D a  can be made arbitrarily small if the design parameters are chosen ap-

propriately, thus, for any given 1ζ , one has ( )1 1limt z t ζ→∞ ≤ . That is to say, by ad-

justing the design parameters, the tracking error can be made arbitrarily small.  
The proof is thus completed.                □ 

5 Simulation Example 

Consider the following third-order stochastic nonlinear system 
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( )
( )

( )( )

1

2
3

2 3
1 1 2 1 1 1

0.52
2 2 3 2 1 2

3 2 3 1 2 3 1

1

1 sin

1 cos

3 cos 3

x

x

dx x x x x x dw

dx x x x e x x dw

dx x x u x x x x e dw

y x

−

−

⎧ = + + +
⎪
⎪ = + + +⎪
⎨
⎪ = + + +
⎪

=⎪⎩

                                (28)   

Based on the adaptive NN controller design proposed in section 3, the true control  
law are designed and the adaptive law. In applied mathematics, the Wiener  
process can be described as the integral form of Gauss white noise, which has  
two main parameters, i.e., mean and variance. We choose the neuron's center and 
variance as { }5,5−  { }5,5× − { }5,5× − { }5,5× − { }5,5× − and 1 respectively. If we 

chose the desired trajectory sin( )dy t= , the suitable parameters were chosen 

as 1 35k = , 2 2.5k = , 3 100k = , 0.05Γ = , 100γ = , The initial conditions are given 

by 1 2 3[ (0), (0), (0)] [0.8,0.4,0.5]T Tx x x = and the initial weight vector ˆ (0) 0.5W = .The 

simulation results are shown in Figs.1~4. 

 

    
    Fig. 1. The output y , the reference signal dy          Fig.2. The control input u  

 

 
         Fig.3. The state of 2x and 3x                   Fig.4. The adaptive law Ŵ  
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6 Conclusion 

In this paper, An adaptive NN controller has been proposed for a class of stochastic 
nonlinear strict-feedback systems. Using the proposed technique we can alleviate the 
computational burden and simplify the designed controller. Only one neural network 
is used to compensate the lumped unknown function at the last step. The closed-loop 
system has been proved UUB. The effectiveness of the proposed approach has been 
verified by the simulation example. 
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