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Abstract. In this paper, a novel Q-learning based policy iteration adaptive dy-
namic programming (ADP) algorithm is developed to solve the optimal control
problems for discrete-time nonlinear systems. The idea is to use a policy iteration
ADP technique to construct the iterative control law which stabilizes the system
and simultaneously minimizes the iterative () function. Convergence property is
analyzed to show that the iterative ) function is monotonically non-increasing
and converges to the solution of the optimality equation. Finally, simulation re-
sults are presented to show the performance of the developed algorithm.
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1 Introduction

Characterized by strong abilities of self-learning and adaptivity, adaptive dynamic pro-
gramming (ADP), proposed by Werbos [25,26], has demonstrated powerful capability
to find the optimal control policy by solving the Hamilton-Jacobi-Bellman (HIB) equa-
tion forward-in-time and becomes an important brain-like intelligent optimal control
method for nonlinear systems [4, 6-9, 12, 17,23]. Policy and value iterations are basic
iterative algorithms in ADP. Value iteration algorithm was proposed in [3]. In [2], the
convergence of value iteration was proven. Policy iteration algorithms for optimal con-
trol of continuous-time (CT) systems were given in [1]. In [5], policy iteration algorithm
for discrete-time nonlinear systems was developed. For many traditional iterative ADP
algorithms, they require to build the model of nonlinear systems and then perform the
ADP algorithms to derive an improved control policy [11, 16,18-22,24,27,28]. In con-
trast, (Q-learning, proposed by Watkins [14, 15], is a typical data-based ADP algorithm.
In [10], @-learning was named action-dependent heuristic dynamic programming (AD-
HDP). For @-learning algorithms, Q functions are used instead of value functions in
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the traditional iterative ADP algorithms. Q functions depend on both system state and
control, which means that they already include the information about the system and the
utility function. Hence, it is easier to compute control policies from ) functions than the
traditional performance index functions. Because of this merit, ()-learning algorithms
are preferred to unknown and model-free systems to obtain the optimal control.

In this paper, inspired by [5], a novel Q)-learning based policy iteration ADP algo-
rithm is developed for discrete-time nonlinear systems. First, the procedure of the Q-
learning based policy iteration ADP algorithm is described. Next, property analysis of
the ()-learning based policy iteration ADP algorithm is established. It is proven that the
iterative () functions will monotonically non-increasing and converges to the optimal
solution of the HJB equation. Finally, simulation results will illustrate the effectiveness
of the developed algorithm.

The rest of this paper is organized as follows. In Section 2, the problem formulation
is presented. In Section 3, the properties of the developed Q-learning based policy it-
eration ADP algorithm will be proven in this section. In Section 4, numerical results
are presented to demonstrate the effectiveness of the developed algorithm. Finally, in
Section 5, the conclusion is drawn.

2 Problem Formulation

In this paper, we will study the following discrete-time nonlinear system
Th+1 :F(xk,uk), k:O,l,Q,..‘, (1)

where z, € R"™ is the state vector and ug € R is the control vector. Let xy be the
initial state and F'(zy,uy) be the system function. Let u;, = {ug, ur+1,...} be an
arbitrary sequence of controls from & to co. The performance index function for state
xo under the control sequence uy = {uo, u1, ... } is defined as

I (o, up) = Uk, up), 2)
k=0

where U (zy, ug) > 0, for xy, ux # 0, is the utility function. The goal of this paper is
to find an optimal control scheme which stabilizes the system (1) and simultaneously
minimizes the performance index function (2). For convenience of analysis, results of
this paper are based on the following assumptions.

Assumption 1. System (1) is controllable and the function F(xy, uy) is Lipschitz con-
tinuous for Ty, ug.

Assumption 2. The system state x, = 0 is an equilibrium state of system (1) under the
control uy, = 0, i.e., F(0,0) = 0.

Assumption 3. The feedback control vy, = u(xy) satisfies up, = u(xy) = 0 for
T = 0.

Assumption 4. The utility function U (x, uy,) is a continuous positive definite function
of xx, and uy.
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Define the control sequence set as 80, = {uy: up = (Up,Ups1,...), Vg €
R™ 4 =0,1,... } Then, for a control sequence u,;, € I, the optimal performance
index function is defined as

J*(xk):muin{J(xk,uk): Uy, Gilk}. 3)
According to [14] and [15], the optimal @) function satisfies the ()-Bellman equation
Q" (wr, ur) =U(k, uk) +71};1+I} Q" (Th41, Uk+1)- 4
The optimal performance index function satisfies
J*(2x) = min Q" (zx, ur). S
The optimal control law w*(xy,) can be expressed as
u(zg) = argrr&in Q" (zk, uk). (6)

From (5), we know that if we obtain the optimal @ function Q*(z,uy), then the
optimal control law u*(z},) and the optimal performance index function J*(zj) can be
obtained. However, the optimal @) function Q*(x, uy) is generally an unknown and
non-analytic function, which cannot be obtained directly by (4). Hence, a discrete-time
@ learning algorithm is developed in [15] to solve for the @) function iteratively.

3 Discrete-Time Policy Iteration ADP Algorithm
Based on (Q-Learning

In this section, the (Q-learning based policy iteration ADP algorithm will be developed
to obtain the optimal controller for discrete-time nonlinear systems. Convergence and
optimality proofs will also be given to show that the iterative () function will converge
to the optimum.

3.1 Derivation of the Discrete-Time Policy Iteration ADP Algorithm
Based on Q-Learning

In the developed policy iteration algorithm, the () function and control law are updated
by iterations, with the iteration index ¢ increasing from 0 to infinity. Let vg(z)) be an
arbitrary admissible control law [5]. For ¢ = 0, let Qo (x, ux) be the initial iterative Q)
function constructed by vo(xy), i.e

Qo(zk,vo(xk)) ZU karjaUO l'kJrJ)) N
7=0

Thus, initial iterative () function satisfies the following generalized (J-Bellman equation

Qo(zr, ur) = U(xr, ur) + Qo(Trr1,vo(Trt1))- (®)



46 Q. Wei and D. Liu

Then, the iterative control law is computed by

v (o) = argmin Qo (xx, ug)- )]
Ug
Fori =1,2,.. ., let Q;(zk, ur) be the iterative () function constructed by v;(x,), which
satisfies the following generalized (Q-Bellman equation
Qi(wr, ur) = Uz, ur) + Qi(Trr1,vi(Try1)), (10)

and the iterative control law is updated by

vit1 (k) = argrr&in Qi(xr, ur). (11)

3.2 Properties of the Policy Iteration Based Deterministic Q-Learning
Algorithm

For the policy iteration algorithm of discrete-time nonlinear systems [5], it shows that
the iterative value function is monotonically non-increasing and converges to the opti-
mum. In this subsection, inspired by [5], we will show that the iterative () function will
also be monotonically non-increasing and converges to its optimum.

Theorem 1. Fori = 0,1,..., let Q;(xy,ur) and v;(xk) be obtained by (8)—(11). If
Assumptions 1-4 hold, then the iterative Q function Q;(xk,uy) is monotonically non-
increasing and converges to the optimal Q) function Q*(xy, uy), as i — oo, i.e.,

i}r& Qi(l'kauk) = Q*(xkauk)a (12)

2

which satisfies the optimal QQ-Bellman equation (4).

Proof. The statement can be proven in two steps.
1) Show that the iterative Q function Q;(xy,uy) is monotonically non-increasing as i
increases, i.e.,

Qit1(Tr, ur) < Qi(wk, ug). (13)
According to (11), we have
Qi(zr, vit1(2x)) = min Qi(zk, uk) < Qilzr, vi(wk)). (14)
Fori =0, 1,..., define a new iterative ) function Q;1(xy, ux) as
Qit1(xp,uk) = U(zk, up) + Qi(Tk+1, Vit1 (Tht1))s (15)

where v;11(xp+1) is obtained by (11). According to (14), we can obtain

Qit1(xr,ur) = Uk, up) + Qi(@r41, Vit1 (Trt1))

(@, ur) + min Qi (g1, Urt1)
Uk+1

(

IA

T, ur) + Qi(Trg1, vi(Try1))

U
U
Qi(xr, ug). (16)
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Now we prove inequality (13) by mathematical induction. For¢ = 0,1,.. ., as

Qi(Trr1,vi(wry1)) — Qi(Tr, vi(Tk))

<0, a7

we have v;(zy,) is a stable control. Thus, we have zxr = 0 for N/ — co. According to
Assumptions 1-4, we have v;1(zxa7) = v;i(za) = 0, which obtains

Qir1(xa, vig1(zn)) = Qigr(2nr, vig1(2n)) = Qi(anr, vi(zAr)) = 0, (18)
and

Qir1(zn-1,un—1) = Qiy1(vn—1,unv—1) = Qi(rn—1,un—1) = U(TA—1,Un-1)-
(19)

Let k = N — 2. According to (11),

Qir1(zn—2,un—2) = U(zn_2,un—2) + Qiy1(zn—1,vip1(TA 1))
=U(zn—2,un—2) + Qi(xn—1,vit1(TA-1))
= Qiv1(rn—2,un—2)
< Qi(rn—2,un—2). (20)

So, the conclusion holds for k = A/ —2. Assume that the conclusion holds for k = £+1,
£=0,1,....For k = ¢ we can get

Qit1(ze,ue) = Uz, ue) + Qi1 (Teg1, vip1 (Te41))

U(we,ue) + Qi(Te41, vigr (Te41))

= Qit1(e, ue)

< Qi(we, up). 21)

IN

Hence, we can obtain that for « = 0,1, ..., the inequality (13) holds, for z, ug. The
proof of mathematical induction is completed.

As Q;(xy, ug) is a non-increasing and lower bounded sequence, i.e., Q;(xy, ug) >
0, the limit of the iterative ) function Q; (xx, u) exists as i — oo, i.e.,

Qoo (i, ug) = }g& Qi(zk, uk). (22)

2) Show that the limit of the iterative Q) function Q;(xy,uy) satisfies the optimal
Q-Bellman equation, as i — oc.
According to (21), we can obtain

Qoo (Th, ur) = zliglo Qit1(xr, ur) < Qiv1(xh, ur) < Qit1(xk)

= U(xk, ur) + Qi(Trt1, vit1(Trr1))
= Ul(xp,ur) + ngin Qi(Tht1, Ukt1)- (23)
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Letting ¢ — oo, we obtain
Qoo (@, ur) < Uk, ur) + ff,fin Qoo (Tht1, Ukt1)- (24)
+1

Let ¢ > 0 be an arbitrary positive number. There exists a positive integer p such that

Qp(xr, ur) — ¢ < Qoo(wr, ur) < Qp(Tr, up). (25)
Hence, we can get
Qoo(, ur) > Qplxr, ur) — ¢
= U(wg, ur) + Qp(Trs1,vp(Trs1)) — ¢
> Uk, ur) + Qoo (Thr1, vp(Trr1)) — €

> Uz, ug) + g}irr} Qoo(Th+1, Uk+1) (26)
Since ( is arbitrary, we have
Qoo(wr,ug) > Uz, ug) + gﬂr} Qoo (Th1, Uk11)- (27)
Combining (24) and (27), we obtain
Qoo(wr, ug) = Uz, up) + gﬂr} Qoo (Tht1, Uk11)- (28)

According to the definition of the optimal () function in (4), we have Qo (zk, ug) =
Q*(xk, ur). The proof is completed.

4 Simulation Study

We now examine the performance of the developed policy iteration algorithm in a non-
linear torsional pendulum system [13]. The dynamics of the pendulum is as follows

T1(k+1) | _ 0.1z + 1k 0

|:.’1?2Ek+1§ :| o |:—049 sin(xlk) — 0.1fd372k + xgk:| . |:01:| Uk (29)
where f; = 0.2 is the rotary inertia and frictional factor. Let the initial state be xg =
[1, —1]T. The utility function is expressed as U (xg, uy) = xf Qxy, + ul Ruy, where
@ = I, R = I and I denotes the identity matrix with suitable dimensions. Choose
the critic and action networks as back propagation (BP) networks with the structures
of 3-12—1 and 2-12-1, respectively. We randomly choose p = 20000 training data to
implement the developed algorithm to obtain the optimal control law. For each itera-
tion step, the critic network and the action network are trained for 1000 steps using the
learning rate of o, = 3, = 0.01 so that the neural network training error becomes less
than 10~°. Implementing the developed Q-learning based policy iteration adaptive dy-
namic programming algorithm for ¢ = 25 iterations to reach the computation precision
€ = 0.01. The plots of the iterative function Q;(z, v;(xx)) are shown in Fig. 1.

For nonlinear system (29), the iterative () function is monotonically non-increasing
and converges to its optimum by the ()-learning based policy iteration ADP algorithm.
The corresponding iterative trajectories of system states and controls are shown in Figs.
2 and 3, respectively.
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Fig. 3. The iterative control trajectories
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Fig. 4. The optimal state and control trajectories
From Figs. 2 and 3, we can see that the iterative system states and controls are both

convergent to their optimal ones. The nonlinear system (29) can be stabilized under an
arbitrary iterative control law v;(zy), where the stability properties of the developed
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(Q-learning based policy iteration ADP algorithm can be verified. The optimal states
and control trajectories are shown in Fig. 4.

5

Conclusions

In this paper, an effective policy iteration adaptive dynamic programming algorithm
based on (Q-learning is developed to solve optimal control problems for infinite horizon
discrete-time nonlinear systems. The iterative @@ functions is proven to be monotoni-
cally non-increasing and converges to the optimum as the iteration index increases to
infinity. Finally, simulation results are presented to illustrate the performance of the
developed algorithm.
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