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Abstract. In this paper, the finite-time control problem for Markov
systems with partly known transition probabilities and polytopic uncer-
tainties is investigated. The main result provided is a sufficient conditions
for finite-time stabilization via state feedback controller, and a simpler
case without controller is also considered, based on switched quadratic
Lyapunov function approach. All conditions are shown in the form of
LMIs. An illustrative example is presented to demonstrate the result.
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1 Introduction

Markov systems are modelled by a set of systems with the transitions between
models governed by a Markov chain which takes values in a finite system set. The
systems’ evolutions in systems are determined by the transition probabilities. As
pointed out in [1], the complete knowledge of the transition probabilities may be
hard to measure. Therefore, it is of great importance to consider partly known
transition probabilities. Some results are researched for Markov jump systems
with partly known transition probabilities [2,3,4,5,6,7].

Finite-time stability means once we fix a time interval, its states does not
exceed a certain bound over the time interval. In some cases, large values of
the state are not acceptable [8]. The concept of finite-time stability has been
revisited in the light of linear matrix inequalities and Lyapunov function theory
[9,10,11,12,13,14,15]. To the best of our knowledge, the finite-time control for
Markov jump systems with partly known transition probabilities has not been
fully investigated yet.

Motivated by the above discussions, in this paper, the problem that the finite-
time control for Markov jump systems with partly known transition probabilities
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and time-varying polytopic uncertainties is investigated. Based on the switched
quadratic Lyapunov function approach, a state feedback controller is designed.
Further more, a corollary is given based on the main result, which is the suffi-
cient condition for the simpler case of finite-time stability.

The superscript ‘T’ stands for matrix transposition, E(·) stands for the math-
ematical expectation. In symmetric block matrices or long matrix expressions,
we use ∗ as an ellipsis for the terms that are introduced by symmetry. A matrix
P > 0 (≥ 0) means P is a symmetric positive (semi-positive) definite matrix.

2 Problem Statement and Preliminaries

Consider the following discrete-time Markov jump linear system:

x(k + 1) = A(r(k), λ)x(k) +B(r(k), λ)u(k) (1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input vector.
{r(k), k ≥ 0} is a discrete-time Markov chain,which takes values in a finite set
χ = {1, 2, . . . , N} with a transition probabilities matrix Λ = {πij}, for r(k) =
i, r(k+1) = j, one has Pr(r(k+1) = j|r(k) = i) = πij , where πij ≥ 0, ∀i, j ∈ χ,

and
∑N

j=1 πij = 1. N > 1 is the number of subsystems, and we use (Ai(λ), Bi(λ))
denotes the ith system when r(k) = i. The transition probabilities of the jumping
process {r(k), k ≥ 0} are assumed to be partially known. ∀i ∈ χ, we denote

χi
K = {j : πij is known} χi

UK = {j : πij is unknown} . (2)

The matrices of each subsystem have polytopic uncertain parameters. It is
assumed that ,at each instant of time k, (Ai(λ), Bi(λ)) ∈ Ri, where Ri is a
given convex bounded polyhedral domain described by

Ri = { (Ai(λ), Bi(λ)) =

s∑

m=1

λm(Ai,m, Bi,m) ;

s∑

m=1

λm = 1, λm ≥ 0} i ∈ χ ,

(3)
where (Ai,m, Bi,m) denotes the mth vertex in the ith mode, s means the total
number of vertices.

In this paper we derive a state feedback controller of the formu(k) = Ki(λ)x(k),
such that the Markov jump linear systems (1) is finite-time stabilizable. In partic-
ular we have the following definition and lemma.

Definition 1 (Finite-Time Stability [15]). The discrete-time linear system
(1) (setting u(k) = 0) is said to be finite-time stable with respect to (δx, ε, R,N0),
where R is a positive-definite matrix, 0 < δx < ε, if

E(xT (0)Rx(0)) ≤ δ2x ⇒ E(xT (k)Rx(k)) < ε2 ∀k ∈ N0 . (4)

Remark 1. Systems that are Lyapunov asymptotically stable may not be finite-
time stable. And the system (1) is said to be finite-time stabilizable if there
exists a state feedback controller in the form of u(k) = Ki(λ)x(k).
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Lemma 1 (Schur Complement). The linear matrix inequality

S =

[
S11 S12

ST
12 S22

]

< 0,

where S11 = ST
11 and S22 = ST

22 are equivalent to

S11 < 0, S22 − ST
12S

−1
11 S12 < 0 . (5)

3 Main Result

We consider the state feedback controller with the following structure:

u(k) = Ki(λ)x(k) (6)

Theorem 1. The Markov jump linear systems (1) is finite-time stabilizable with
respect to (δx, ε, R,N0) if there exist a scalar γ ≥ 1, positive scalars φ1, φ2,
matrices Si,m > 0 , matrices Ui,m ∀i ∈ χ, 1 ≤ m < n ≤ s and ∀(i, j) ∈ (χ× χ)
matrices

Ωi,j
m,n =

[
X i,j

m,n Y i,j
m,n

W i,j
m,n Zi,j

m,n

]

j ∈ χi
UK , Ξi,j

m,n =

[
Di,j

m,n Ei,j
m,n

F i,j
m,n Gi,j

m,n

]

j ∈ χi
K ,

satisfying ∀(i, j) ∈ χ× χ, (1 ≤ m < n ≤ s)

[−Sj,m − Sj,n −X i,j
m,n − (X i,j

m,n)
T SUK

∗ ν

]

≤ 0, j ∈ χi
UK , (7)

[−Si
K,m − Si

K,n −Di,j
m,n − (Di,j

m,n)
T SK

∗ κ

]

≤ 0, j ∈ χi
K (8)

Ωi,j =

⎡

⎢
⎢
⎢
⎣

Ωi,j
1 Ωi,j

1,2 · · · Ωi,j
1,s

∗ Ωi,j
2 · · · Ωi,j

2,s
...

...
. . .

...
∗ ∗ · · · Ωi,j

s

⎤

⎥
⎥
⎥
⎦
< 0 j ∈ χi

UK , (9)

Ξi,j =

⎡

⎢
⎢
⎢
⎣

Ξi,j
1 Ξi,j

1,2 · · · Ξi,j
1,s

∗ Ξi,j
2 · · · Ξi,j

2,s
...

...
. . .

...
∗ ∗ · · · Ξi,j

s

⎤

⎥
⎥
⎥
⎦
< 0 j ∈ χi

K , (10)

φ1R < Si,m < φ2R , (11)

φ2δ
2
x < ε2φ1/γ

N0 , (12)

where
ν = −γSi,m − γSi,n − Zi,j

m,n − (Zi,j
m,n)

T ,
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κ = (−γ
∑

j∈χi
K

πij)(Si,m + Si,n)−Gi,j
m,n − (Gi,j

m,n)
T , Si

K,n = (
∑

j∈χi
K

πij)Sj,n,

Ωi,j
m =

[−Sj,m Ai,mSi,m +Bi,mUi,m

∗ −γSi,m

]

j ∈ χi
UK ,

Ξi,j
m =

[
−Si

K,m (
∑

j∈χi
K
πij)(Ai,mSi,m +Bi,mUi,m)

∗ −(
∑

j∈χi
K
πij)γSi,m

]

j ∈ χi
K ,

SK = (
∑

j∈χi
K

πij)(Ai,nSi,m +Ai,mSi,n +Bi,nUi,m +Bi,mUi,n)

−Ei,j
m,n − (F i,j

m,n)
T , j ∈ χi

K ,

SUK = Ai,nSi,m +Ai,mSi,n +Bi,nUi,m +Bi,mUi,n − Y i,j
m,n − (W i,j

m,n)
T , j ∈ χi

UK .

Furthermore, the state feedback controller can be represented as

Ki(λ) = Ui(λ)Si(λ)
−1.

Proof. We choose the Lyapunov function V (x(k)) = x(k)TPi(λ)x(k), and as-
sume that E(xT (0)Rx(0)) ≤ δ2x. Then we have

E(V (x(k + 1)))− γE(V (x(k))) = E{x(k)T [Ãi(λ)
TPj(λ)Ãi(λ) − γPi(λ)]x(k)} ,

where Ãi(λ) = Ai(λ)+Bi(λ)Ki(λ), and the case i = j denotes that the switched

system is described by the ith system Ãi(λ), and the case i �= j denotes that the
system is being at the switching times from i to j. If

Ãi(λ)
TPj(λ)Ãi(λ)− γPi(λ) < 0 ∀(i, j) ∈ (χ× χ) , (13)

then we can obtain E(V (x(k))) < γkE(V (x(0))) .

Letting Si,m = P−1
i,m, S̃i,m = R

−1/2
m Si,mR

−1/2
m , λsup = sup{λmax(Pi,m)} and

λinf = inf{λmin(Pi,m)} ,we get

γkE(V (x(0))) ≤ γk(1/λinf )E(x(0)TRx(0)) ≤ γN0(1/λinf )δ
2
x ,

E(V (x(k))) = E(x(k)TΣs
m=1λmPi,mx(k)) ≥ (1/λsup)E(x(k)TRx(k)) , (14)

where R =
∑s

m=1 λmRm, λmax(Pi,m) and λmin(Pi,m) mean the maximum and
minimum eigenvalues. From (11), we can determine φ1 ≤ λinf , φ2 ≥ λsup.

According to the above relations, we obtain

E(x(k)TRx(k)) < φ2/φ1δ
2
xγ

N0 . (15)

From (12), the finite-time stability of system (1) is guaranteed. So what we next
do is to prove (13) holds.
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By Lemma 1, multiplying both sides by diag (P−1
j (λ), P−1

i (λ)), changing the
matrix variables with

Si(λ) = P−1
i (λ), Ui(λ) = Ki(λ)P

−1
i (λ) , (16)

and according to (3), multiplying by λm, λn ≥ 0 summing up to s, we have

Ψ = (
∑

j∈χi
UK

πij +
∑

j∈χi
K

πij)Ψ = (
∑

j∈χi
UK

πij)(
s∑

m=1

λ2
m

[−Sj,m Ai,mSi,m +Bi,mUi,m

∗ −γSi,m

]

+

s−1∑

m=1

s∑

n=m+1

λmλn

{[−Sj,m Ai,mSi,n +Bi,mUi,n

∗ −γSi,n

]
+

[−Sj,n Ai,nSi,m +Bi,nUi,m

∗ −γSi,m

]}
)

+
s∑

m=1

λ2
m

[
−Si

K,m (
∑

j∈χi
K
πij)(Ai,mSi,m +Bi,mUi,m)

∗ −γ(
∑

j∈χi
K
πij)Si,m

]

+
s−1∑

m=1

s∑

n=m+1

λmλn{
[
−Si

K,m (
∑

j∈χi
K
πij)(Ai,mSi,n +Bi,mUi,n)

∗ −γ(
∑

j∈χi
K
πij)Si,n

]

+

[
−Si

K,n (
∑

j∈χi
K
πij)(Ai,nSi,m +Bi,nUi,m)

∗ −γ(
∑

j∈χi
K
πij)Si,m

]
} . (17)

From (7),(8), we get

Ψ ≤ ηTΩi,jη + ηTΞi,jη ,

where η = [λ1I λ2I · · · λsI]
T . Therefore, Ψ < 0.

Conditions similar to those of Theorem 1 can be obtained for the case without
controller.

Corollary 1. The system x(k + 1) = A(r(k), λ)x(k) is finite-time stable with
respect to (δx, ε, R,N0) if there exist a scalar γ ≥ 1, matrices Pi,m > 0 ∀i ∈
χ, 1 ≤ m < n ≤ s and ∀(i, j) ∈ (χ× χ) matrices

Ωi,j
m,n =

[
X i,j

m,n Y i,j
m,n

W i,j
m,n Zi,j

m,n

]

j ∈ χi
UK , Ξi,j

m,n =

[
Di,j

m,n Ei,j
m,n

F i,j
m,n Gi,j

m,n

]

j ∈ χi
K ,

satisfying ∀(i, j) ∈ χ× χ, (1 ≤ m < n ≤ s)

[−Pj,m − Pj,n −X i,j
m,n − (X i,j

m,n)
T SUK

∗ ν

]

≤ 0, j ∈ χi
UK , (18)

[−P i
K,m − P i

K,n −Di,j
m,n − (Di,j

m,n)
T SK

∗ κ

]

≤ 0, j ∈ χi
K , (19)

φ1R < Pi,m < φ2R , (20)
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Ωi,j =

⎡

⎢
⎢
⎢
⎣

Ωi,j
1 Ωi,j

1,2 · · · Ωi,j
1,s

∗ Ωi,j
2 · · · Ωi,j

2,s
...

...
. . .

...
∗ ∗ · · · Ωi,j

s

⎤

⎥
⎥
⎥
⎦
< 0 j ∈ χi

UK , (21)

Ξi,j =

⎡

⎢
⎢
⎢
⎣

Ξi,j
1 Ξi,j

1,2 · · · Ξi,j
1,s

∗ Ξi,j
2 · · · Ξi,j

2,s
...

...
. . .

...
∗ ∗ · · · Ξi,j

s

⎤

⎥
⎥
⎥
⎦
< 0 j ∈ χi

K , (22)

where

SK = P i
K,mAi,n + P i

K,nAi,m − Ei,j
m,n − (F i,j

m,n)
T ,

SUK = Pj,mAi,n + Pj,nAi,m − Y i,j
m,n − (W i,j

m,n)
T ,

ν = −γPi,m − γPi,n − Zi,j
m,n − (Zi,j

m,n)
T ,

Ωi,j
m =

[−Pj,n Pj,nAi,m

∗ −γPi,m

]

j ∈ χi
UK ,

Ξi,j
m =

[−P i
K,n P i

K,nAi,m

∗ −(
∑

j∈χi
K
πij)γPi,m

]

j ∈ χi
K ,

P i
K,n =

∑

j∈χi
K

πijPj,n, κ = (−γ
∑

j∈χi
K

πi,j)(Pi,m + Pi,n)−Gi,j
m,n − (Gi,j

m,n)
T .

4 Illustrative Example

Consider the system (1) , there are two vertices in each subsystem:

A11 =

[
1.413 −0.652
0.280 −0.605

]

, A12 =

[−0.475 0.013
0.871 0.187

]

,

B11 =

[
0.243 −0.351
1.286 0.92

]

, B12 =

[−1.618 0.172
−0.406 −2.418

]

,

A21 =

[−1.350 −0.814
1.524 −1.217

]

, A22 =

[
0.016 −1.383
0.020 −0.474

]

,

B21 =

[
0.165 −1.642
−0.111 1.364

]

, B22 =

[−1.585 −0.447
−2.630 0.724

]

,

A31 =

[
0.121 0.736
−1.496 −0.73

]

, A32 =

[
1.179 0.176
0.399 −0.196

]

,

B31 =

[
0.572 0.663
−0.428 −0.985

]

, B32 =

[−1.305 −0.236
−0.461 0.910

]

.
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The partly known transition probability matrix is given as follow:

⎡

⎣
0.6 ? ?
? ? 0.5
? 0.2 ?

⎤

⎦ .

According to Theorem 1, we assume R = I, N0 = 31, φ2 = 1, δ2x = 0.05, ε =
8, γ = 1.04. It can be seen from the figures that the system (1) with the controller
u(k) = Ki(λ)x(k) meets the specified requirement, whereKi(λ) = Ui(λ)Si(λ)

−1.
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Fig. 1. The switching signal.
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Fig. 2. The state response of system.

5 Conclusion

In this paper, the problem of finite-time stabilization for Markov jump linear
systems with partly known transition probabilities and time-varying polytopic
uncertainties has been studied. By using the switched quadratic Lyapunov func-
tion, all the conditions are established in the form of LMIs. At last, the main
result has been demonstrated through an illustrative example.
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