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Preface

This volume of Lecture Notes in Computer Science constitutes the proceedings
of the 12th International Symposium of Neural Networks (ISNN 2015) held dur-
ing October 15–18, 2015, in Jeju, Korea. During the last 11 years, this annual
symposium has become a well-recognized conference in the community of neural
networks. This year the symposium was held for the first time outside China, in
Jeju, a very beautiful city in Korea. As usual, it achieved great success.

During the last “winter” of neural network research, ISNN was among only
a few conferences focusing on theories and applications of neural networks. We
never gave up our research because we believe that neural networks are very
useful. Now we are witnessing the revival of neural networks. In this context,
ISNN 2015 aimed at providing an open academic forum for researchers, engineers,
and students to celebrate the spring of neural networks, to discuss the emerging
areas and challenges, and to exchange their fantastic ideas. It encouraged open
discussion, disagreement, criticism, and debate, and we think this is the right
way to push the field forward.

This year, we received 97 submissions from about 188 authors in 19 countries
and regions (Australia, Austria, China, Finland, France, Germany, Hong Kong,
India, Iran, Macao, Malaysia, New Zealand, Pakistan, Qatar, Sri Lanka, Thai-
land, The Republic of Korea, Tunisia, USA). Based on the rigorous peer-reviews
by the Program Committee members and reviewers, 55 high-quality papers were
selected for publication in the LNCS proceedings. These papers cover many
topics of neural network-related research including intelligent control, neurody-
namic analysis, memristive neurodynamics, computer vision, signal processing,
machine learning, optimization etc.

Many organizations and volunteers made great contributions toward the suc-
cess of this symposium. We would like to express our sincere gratitude to The
Chinese University of Hong Kong, Pusan National University, Korean Institute
of Intelligent Systems, International Neural Network Society, IEEE Computa-
tional Intelligence Society, and Asia Pacific Neural Network Assembly for their
technical co-sponsorship. We would also like to sincerely thank all the committee
members for all their great efforts and time in organizing the symposium. Special
thanks go to the Program Committee members and reviewers whose insightful
reviews and timely feedback ensured the high quality of the accepted papers
and the smooth flow of the symposium. We would also like to thank Springer for
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their cooperation in publishing the proceedings in the prestigious Lecture Notes
in Computer Science series. Finally, we would like to thank all the speakers,
authors, and participants for their support.

August 2015 Xiaolin Hu
Yousheng Xia
Yunong Zhang
Dongbin Zhao
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A Novel T-S Fuzzy Model Based Adaptive

Synchronization Control Scheme
for Nonlinear Large-Scale Systems

with Uncertainties and Time-Delay

He Jiang and Dongsheng Yang

College of Information Science and Engineering, Northeastern University, Shenyang,
China, 110819

Abstract. In this paper, a novel T-S fuzzy model based adaptive syn-
chronization scheme for nonlinear large-scale systems with uncertainties
and time-delay is proposed. Based on the universal approximation prop-
erty of T-S fuzzy model, a nonlinear large-scale system is established and
fuzzy adaptive controllers are designed under Parallel Distributed Com-
pensation (PDC) for overcoming the unknown uncertainties in systems
and the time-delay in communication. Furthermore, under some certain
condition, this synchronization scheme can be transformed into pinning
synchronization control, which will indeed save much resource. Finally,
a numerical simulation example is taken to show the effectiveness of the
proposed adaptive synchronization scheme.

Keywords: nonlinear large-scale systems, uncertainties, time-delay,
T-S fuzzy model, adaptive synchronization, pinning control.

1 Introduction

Synchronization of complex systems is a kind of typical basic motions and col-
lective behaviors in nature, which has attracted much attention of researchers
from different disciplines, such as mathematics, engineering science and so on
[1,2,3,4]. Synchronization problems for complex systems with diverse types of
time-delays were discussed by [5,6]. [7,8] proposed two different pinning control
approaches for inner synchronization problems, and [9] designed a novel pin-
ning synchronization scheme for outer synchronization problems by using scalar
signals.

In recent years, researchers started to use fuzzy models to study the synchro-
nization of complex systems. Mukhija et al.[10] studied a class of fuzzy complex
systems with time-delay, and proposed a new synchronization criteria. Mah-
davi et al.[11] designed an adaptive pulse controller for synchronization of fuzzy
complex systems, and proposed a new method to choose suitable nodes to be
controlled. However, both two researches need to calculate a huge amount of lin-
ear matrix inequalities (LMIs), which will increase the complexity of obtaining
the solution of control laws.

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 3–10, 2015.
DOI: 10.1007/978-3-319-25393-0_1
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In this paper, a novel adaptive synchronization scheme for fuzzy large-scale
systems with time-delay and uncertainties will be proposed and the decentralize
adaptive controllers herein will be designed under Parallel Distributed Com-
pensation (PDC). The proposed adaptive method successfully circumvents the
LMI-based approaches in the previous works [10,11] and decreases the amount
of computation. Furthermore, the nonlinear coupled large-scale systems via T-S
fuzzy model with time-delay and uncertainties are taken into the consideration
in contrast to the works of [8] and [9] with linearly diffusive couplings, which
will make great sense in the practical industrial applications.

2 Background and Preliminaries

In this section, the model of nonlinear large-scale systems with uncertainties
and time-delay will be presented based on T-S fuzzy model, and several lemmas
which are necessary for derivation and convergence proof will be given.

2.1 Nonlinear Large-Scale Systems with Uncertainties and
Time-Delay via T-S Fuzzy Model

Consider a nonlinear large-scale system consisting of J T-S fuzzy subsystems,
which can be acquired by the extended approach of [12], as below
⎧
⎪⎪⎨

⎪⎪⎩

Ifξi1 is M l
i1 and · · · and ξigi is M

l
igi

,

Then ẋi(t) = (Al
i +ΔAl

i)xi(t) +
J∑

j=1,j �=i

(Cl
ij +ΔCl

ij)xj (t− d) + ui(t),

i = 1, 2, · · · , J, l = 1, 2, · · · , ri.
(1)

where xi(t) ∈ Rn is the state of ith subsystem; ξi(t) = [ξi1(t), ξi2(t), · · · , ξigi (t)]T
is the ith subsystem antecedent variables; M l

iq(q = 1, 2, · · · , gi) is the fuzzy set;

Al
i is the system matrix with its uncertainty matrix ΔAl

i and Cl
ij is the coupling

matrix between the ith subsystem and the jth subsystem with its uncertainty
matrix ΔCl

ij under the lth fuzzy rule, respectively; d is the constant parameter
of time-delay in the communication; ui(t) is the control input of ith subsystem.

After applying product inference engine, singleton fuzzification and center
average defuzzification to (1), it can be rewritten as

ẋi(t) =

ri∑

l=1

hl
i(ξi(t))

⎡

⎣(Al
i +ΔAl

i)xi(t) +

J∑

j=1,j �=i

(Cl
ij +ΔCl

ij)xj(t− d) + ui(t)

⎤

⎦

(2)

where

βl
i(ξi(t)) =

gi∏

q=1

M l
iq(ξiq(t)), h

l
i(ξi(t)) =

βl
i(ξi(t))∑ri

l=1 β
l
i(ξi(t))

,

ri∑

l=1

hl
i(ξi(t)) = 1,

hl
i(ξi(t)) is the membership function of the ith subsystem under the lth fuzzy

rule.
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2.2 Mathematical Preliminaries

Lemma 1[13]: For any matrix Q ∈ Rn×n, any constant ε > 0, any positive
definite matrix P ∈ Rn×n, and for all ζ ∈ Rm, η ∈ Rn, one can obtain

2ζTQη ≤ εζTQP−1QT ζ + ε−1ηTPη.

Lemma 2[14]: For the given suitable dimension matrices N , F and G, if F
satisfies FTF ≤ I, where I represents suitable dimension identity matrix, then
for any constant ε > 0, one can obtain

NFG+GTFTNT ≤ εNNT + ε−1GTG.

Lemma 3[15]: For any vector x ∈ Rn, if Q ∈ Rn×nis a symmetric matrix and
P ∈ Rn×n is a positive definite matrix, then one can obtain

λmin(P
−1Q)xTPx ≤ xTQx ≤ λmax(P

−1Q)xTPx.

where λmin(P
−1Q) and λmax(P

−1Q) denote the minimum and maximum eigen-
values of the matrix P−1Q respectively.

3 Fuzzy Adaptive Synchronization for a Nonlinear
Large-Scale System with Uncertainties and Time-Delay

In Section 2.1, the fuzzy model of nonlinear large-scale system has been estab-
lished. Here a novel adaptive control protocol will be utilized to achieve the
synchronization of the fuzzy system (2).

Let S(t) = (sT (t), sT (t), · · · , sT (t))T ∈ Rn×J and S(t−d) = (sT (t−d), sT (t−
d), · · · , sT (t−d))T ∈ Rn×J be synchronous solution of the controlled system (2),
and note that s(t) ∈ Rn and s(t− d) ∈ Rn can be the equilibrium point of every
subsystem[8]. It is obvious that s(t) and s(t − d) are both n-dimension zero
vectors, for there exist a common equilibrium point at origin. Hence, the error
vectors can be defined as

{
ei(t) = xi(t)− s(t)
ei(t− d) = xi(t− d)− s(t− d), i = 1, 2, · · · , J (3)

According to (2) and (3), the error systems can be described by

ėi(t) =

ri∑

l=1

hl
i(ξi(t))

⎡

⎣(Al
i +ΔAl

i)ei(t) +

J∑

j=1,j �=i

(Cl
ij +ΔCl

ij)ej(t− d) + ui(t)

⎤

⎦

(4)

where �Al
i = N l

iF
l
iG

l
i and �Cl

ij = N l
ijF

l
ijG

l
ij denote uncertainty parameter

matrices, whereN l
i , G

l
i,N

l
ij andGl

ij are known matrices, F l
i and F l

ij are unknown

matrices, which satisfy F l
i
T
F l
i ≤ I, F l

ij
T
F l
ij ≤ I (i = 1, 2, · · · , J, j = 1, 2, · · · , J
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i �= j, l = 1, 2, · · · , ri); ui(t) ∈ Rn (i = 1, 2, · · · , J) is the adaptive control input,
which will be designed later.

To realize the synchronization of the nonlinear large-scale system (2), the
controller ui should guide the error vectors (3) to converge to zero as t goes to
infinity, i.e., lim

t→∞ ‖ei(t)‖ = 0, i = 1, 2, · · · , J .
By using PDC technique, the adaptive synchronization controllers can be

designed as follows:

⎧
⎨

⎩

ui(t) = −
ri∑

m=1
hm
i (ξi(t))p

m
i ei(t)

ṗmi = kmi hm
i (ξi(t)) ‖ei(t)‖22 , 1 ≤ i ≤ J,m = 1, 2, · · · , ri.

(5)

where kmi are any positive constants. Thus, the error systems (4) can be rewritten
as follows:

ėi(t) =

ri∑

l=1

ri∑

m=1

hl
i(ξiq(t))h

m
i (ξiq(t))

[
(Al

i +ΔAl
i)ei(t) +

J∑

j=1,j �=i

(Cl
ij +ΔCl

ij)×

ej(t− d)− pmi ei(t)] (6)

Definition 1:Let �̃1 = εliN
l
i (N

l
i )

T + (εli)
−1(Gl

i)
TGl

i, Δ̃2 =
J∑

j=1,j �=i

[
N l

ij

×(N l
ij)

T
+ Cl

ij(C
l
ij)

T
]
, �̃3 =

J∑

j=1,j �=i

(Gl
ij)

T (Gl
ij) + (J − 1)Ii, where εli is any

positive constant; Si is a symmetric positive definite matrix satisfying Si > �̃3.

Let λl
imax be the maximum eigenvalues of the matrix

Al
i+(Al

i)
T+�̃1+�̃2+Si

2 . Let
k be any positive constant satisfying k > λl

imax.

Theorem 1: If there exists a symmetric positive definite matrix Si satisfying
Si > �̃3, then the error systems (4) can be asymptotically stable under the
controllers (5), i.e., this nonlinear large-scale system with uncertainties and time-
delay (2) can be asymptotically synchronized by the proposed fuzzy adaptive
controllers (5).

Proof. Construct a Lyapunov candidate as follows:

V (t) = V1(t) + V2(t) + V3(t) (7)

where

V1(t) =
1

2

J∑

i=1

eTi (t)ei(t), V2(t) =
1

2

J∑

i=1

∫ t

t−d

eTi (τ)Siei(τ)dτ,

V3(t) =
1

2

J∑

i=1

ri∑

m=1

(pmi − k)2

kmi
.
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By using Lemma 1, one can obtain

V̇ (t) ≤
J∑

i=1

ri∑

l=1

ri∑

m=1

hl
i(ξi(t))h

m
i (ξi(t))×

{

eTi (t)

[
(Al

i +ΔAl
i)

T
+ (Al

i +ΔAl
i)

2

+

J∑

j=1,j �=i

[
(N l

ij)(N
l
ij)

T
+ (Cl

ij)(C
l
ij)

T
]
+ Si

2

⎤

⎥
⎥
⎥
⎦
ei(t)− keTi (t)ei(t)

+eTi (t− d)

⎡

⎢
⎢
⎢
⎣

J∑

j=1,j �=i

(Gl
ij)

T
(Gl

ij) + (J − 1)Ii − Si

2

⎤

⎥
⎥
⎥
⎦
ei(t− d)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(8)

By using Lemma 2 to simplify uncertainty terms in (9), it can be expressed as
below

V̇ (t) ≤
J∑

i=1

ri∑

l=1

ri∑

m=1

hl
i(ξi(t))h

m
i (ξi(t))×

{

eTi (t)

[
(Al

i)
T
+Al

i + εliN
l
i (N

l
i )

T
+ (εli)

−1
(Gl

i)
T
Gl

i

2

+

J∑

j=1,j �=i

[
(N l

ij)(N
l
ij)

T
+ (Cl

ij)(C
l
ij)

T
]
+ Si

2

⎤

⎥
⎥
⎥
⎦
ei(t)− keTi (t)ei(t)

+eTi (t− d)

⎡

⎢
⎢
⎢
⎣

J∑

j=1,j �=i

(Gl
ij)

T
(Gl

ij) + (J − 1)Ii − Si

2

⎤

⎥
⎥
⎥
⎦
ei(t− d)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9)

By using Lemma 3, one finally has

V̇ (t) ≤
J∑

i=1

ri∑

l=1

ri∑

m=1

hl
i(ξi(t))h

m
i (ξiq(t))×

[
ei(t)

ei(t− d)

]T
⎡

⎣
(λl

imax − k) 0

0

J∑

j=1,j �=i
(Gl

ij)
T
(Gl

ij )+(J−1)Ii−Si

2

⎤

⎦
[

ei(t)
ei(t− d)

]
< 0

(10)
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According to (10), it follows that ei(t) → 0 as t → 0,(i = 1, 2, · · · , J). That
is, the nonlinear large-scale system with uncertainties and time-delay (2) can
be asymptotically synchronized under the adaptive controllers (5). The proof is
completed.

Remark 1: For a subsystem i, if there exists λl
imax < 0 ,(l = 1, 2, · · · , ri), then

this subsystem does not need control input ui, i.e., ui = 0. That is, for J sub-
systems in the large-scale system, maybe only N(N < J) controllers are needed.
Thus, this adaptive synchronization scheme can be transformed to a pinning
adaptive synchronization scheme under some certain conditions. This will save
much resource, and be very economical for the real engineering applications.

4 Numerical Simulation

In this section, a numerical simulation example will be taken to verify the effec-
tiveness of the proposed adaptive synchronization scheme. Consider a nonlinear
coupling system consisting of three subsystems as follows:

A1
1 =

[
7/3 −5/3
−1 −1

]

, C1
12 =

[−2/3 1/3
1 0

]

, C1
13 =

[
4/3 −2/3
−1 0

]

,

A1
2 =

[−7/6 −1/6
−5/3 10/3

]

, C1
21 =

[
5/6 −1/6
−2/3 4/3

]

, C1
23 =

[
5/6 −19/6
4/3 −2/3

]

,

A1
3 =

[
8/3 2/3
−2/3 1/3

]

, C1
31 =

[−4/3 −1/3
−2/3 10/3

]

, C1
32 =

[−1/3 2/3
−5/3 −2/3

]

.

A2
1 =

[
23/5 −9/5
−2 −1

]

, C2
12 =

[−2/5 1/5
2 0

]

, C2
13 =

[
8/5 −4/5
−1 0

]

,

A2
2 =

[−39/5 7/5
−9/5 22/5

]

, C2
21 =

[
6/5 7/5
−4/5 12/5

]

, C2
23 =

[
6/5 −28/5
16/5 −8/5

]

,

A2
3 =

[
71/15 7/15
−32/15 −41/15

]

, C2
31 =

[−19/15 −8/15
−32/15 −176/15

]

,

C2
32 =

[ −4/15 7/15
−47/15 −64/15

]

.

The uncertainty term parameters are chosen as below:

N1
i =

[
0.11 0.32
0.21 0.12

]

, N2
i =

[
0.13 0.36
0.24 0.08

]

, N1
ij =

[
0.27 0.05
0.13 0.28

]

,

N2
ij =

[
0.28 0.35
0.23 0.68

]

, G1
i =

[
1.1 1.3
2.1 1.2

]

, G2
i =

[
1.4 1.6
2.7 1.1

]

,

G1
ij =

[
3.1 2.4
1.1 1.7

]

, G2
ij =

[
3.6 2.1
1.3 1.4

]

, i = 1, 2, 3, j = 1, 2, 3, i �= j.

Let x1(0) =
[
1 0

]T
, x2(0) =

[
0 1

]T
, x3(0) =

[
1 1

]T
be the initial values and

d = 0.5 be the time-delay constant.
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Fig.1. The curves of synchronization errors.

The membership functions are chosen as

h1
i (xi1(t)) =

1 + cos(xi1(t))

2
, h2

i (xi1(t)) =
1− cos(xi1(t))

2
, i = 1, 2, 3.

The simulation results are shown in Fig.1. It is obvious that the synchroniza-
tion errors rapidly converge to zero, and finally the whole nonlinear large-scale
system achieves synchronization.

5 Conclusion

Based on T-S fuzzy model, a novel adaptive synchronization control scheme for
nonlinear large-scale systems with uncertainties and time-delay has been pre-
sented in this paper. Unlike other fuzzy synchronization methods[10,11], the
proposed scheme circumvents to calculate huge amounts of LMIs and decreases
the complexity of getting the solution. Furthermore, under some certain condi-
tions, this scheme can be transformed to the pinning adaptive synchronization
control, which will save much resource. Compared with the researches on the
general complex networks in [8,9], this paper takes the nonlinear large-scale sys-
tems with uncertainties and time-delay into consideration, which will be very
useful and practical for the real engineering applications.
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in University, China(NCET-12-0106) and the Basic Scientific Research Funding
of Northeastern University(N130504004).
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Abstract. In this paper, the finite-time control problem for Markov
systems with partly known transition probabilities and polytopic uncer-
tainties is investigated. The main result provided is a sufficient conditions
for finite-time stabilization via state feedback controller, and a simpler
case without controller is also considered, based on switched quadratic
Lyapunov function approach. All conditions are shown in the form of
LMIs. An illustrative example is presented to demonstrate the result.

Keywords: finite-time stabilization, Markov systems, polytopic uncer-
tainties, partly known transition probabilities, linear matrix inequalities.

1 Introduction

Markov systems are modelled by a set of systems with the transitions between
models governed by a Markov chain which takes values in a finite system set. The
systems’ evolutions in systems are determined by the transition probabilities. As
pointed out in [1], the complete knowledge of the transition probabilities may be
hard to measure. Therefore, it is of great importance to consider partly known
transition probabilities. Some results are researched for Markov jump systems
with partly known transition probabilities [2,3,4,5,6,7].

Finite-time stability means once we fix a time interval, its states does not
exceed a certain bound over the time interval. In some cases, large values of
the state are not acceptable [8]. The concept of finite-time stability has been
revisited in the light of linear matrix inequalities and Lyapunov function theory
[9,10,11,12,13,14,15]. To the best of our knowledge, the finite-time control for
Markov jump systems with partly known transition probabilities has not been
fully investigated yet.

Motivated by the above discussions, in this paper, the problem that the finite-
time control for Markov jump systems with partly known transition probabilities

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 11–18, 2015.
DOI: 10.1007/978-3-319-25393-0_2
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and time-varying polytopic uncertainties is investigated. Based on the switched
quadratic Lyapunov function approach, a state feedback controller is designed.
Further more, a corollary is given based on the main result, which is the suffi-
cient condition for the simpler case of finite-time stability.

The superscript ‘T’ stands for matrix transposition, E(·) stands for the math-
ematical expectation. In symmetric block matrices or long matrix expressions,
we use ∗ as an ellipsis for the terms that are introduced by symmetry. A matrix
P > 0 (≥ 0) means P is a symmetric positive (semi-positive) definite matrix.

2 Problem Statement and Preliminaries

Consider the following discrete-time Markov jump linear system:

x(k + 1) = A(r(k), λ)x(k) +B(r(k), λ)u(k) (1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input vector.
{r(k), k ≥ 0} is a discrete-time Markov chain,which takes values in a finite set
χ = {1, 2, . . . , N} with a transition probabilities matrix Λ = {πij}, for r(k) =
i, r(k+1) = j, one has Pr(r(k+1) = j|r(k) = i) = πij , where πij ≥ 0, ∀i, j ∈ χ,

and
∑N

j=1 πij = 1. N > 1 is the number of subsystems, and we use (Ai(λ), Bi(λ))
denotes the ith system when r(k) = i. The transition probabilities of the jumping
process {r(k), k ≥ 0} are assumed to be partially known. ∀i ∈ χ, we denote

χi
K = {j : πij is known} χi

UK = {j : πij is unknown} . (2)

The matrices of each subsystem have polytopic uncertain parameters. It is
assumed that ,at each instant of time k, (Ai(λ), Bi(λ)) ∈ Ri, where Ri is a
given convex bounded polyhedral domain described by

Ri = { (Ai(λ), Bi(λ)) =

s∑

m=1

λm(Ai,m, Bi,m) ;

s∑

m=1

λm = 1, λm ≥ 0} i ∈ χ ,

(3)
where (Ai,m, Bi,m) denotes the mth vertex in the ith mode, s means the total
number of vertices.

In this paper we derive a state feedback controller of the formu(k) = Ki(λ)x(k),
such that the Markov jump linear systems (1) is finite-time stabilizable. In partic-
ular we have the following definition and lemma.

Definition 1 (Finite-Time Stability [15]). The discrete-time linear system
(1) (setting u(k) = 0) is said to be finite-time stable with respect to (δx, ε, R,N0),
where R is a positive-definite matrix, 0 < δx < ε, if

E(xT (0)Rx(0)) ≤ δ2x ⇒ E(xT (k)Rx(k)) < ε2 ∀k ∈ N0 . (4)

Remark 1. Systems that are Lyapunov asymptotically stable may not be finite-
time stable. And the system (1) is said to be finite-time stabilizable if there
exists a state feedback controller in the form of u(k) = Ki(λ)x(k).
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Lemma 1 (Schur Complement). The linear matrix inequality

S =

[
S11 S12

ST
12 S22

]

< 0,

where S11 = ST
11 and S22 = ST

22 are equivalent to

S11 < 0, S22 − ST
12S

−1
11 S12 < 0 . (5)

3 Main Result

We consider the state feedback controller with the following structure:

u(k) = Ki(λ)x(k) (6)

Theorem 1. The Markov jump linear systems (1) is finite-time stabilizable with
respect to (δx, ε, R,N0) if there exist a scalar γ ≥ 1, positive scalars φ1, φ2,
matrices Si,m > 0 , matrices Ui,m ∀i ∈ χ, 1 ≤ m < n ≤ s and ∀(i, j) ∈ (χ× χ)
matrices

Ωi,j
m,n =

[
X i,j

m,n Y i,j
m,n

W i,j
m,n Zi,j

m,n

]

j ∈ χi
UK , Ξi,j

m,n =

[
Di,j

m,n Ei,j
m,n

F i,j
m,n Gi,j

m,n

]

j ∈ χi
K ,

satisfying ∀(i, j) ∈ χ× χ, (1 ≤ m < n ≤ s)

[−Sj,m − Sj,n −X i,j
m,n − (X i,j

m,n)
T SUK

∗ ν

]

≤ 0, j ∈ χi
UK , (7)

[−Si
K,m − Si

K,n −Di,j
m,n − (Di,j

m,n)
T SK

∗ κ

]

≤ 0, j ∈ χi
K (8)

Ωi,j =

⎡

⎢
⎢
⎢
⎣

Ωi,j
1 Ωi,j

1,2 · · · Ωi,j
1,s

∗ Ωi,j
2 · · · Ωi,j

2,s
...

...
. . .

...
∗ ∗ · · · Ωi,j

s

⎤

⎥
⎥
⎥
⎦
< 0 j ∈ χi

UK , (9)

Ξi,j =

⎡

⎢
⎢
⎢
⎣

Ξi,j
1 Ξi,j

1,2 · · · Ξi,j
1,s

∗ Ξi,j
2 · · · Ξi,j

2,s
...

...
. . .

...
∗ ∗ · · · Ξi,j

s

⎤

⎥
⎥
⎥
⎦
< 0 j ∈ χi

K , (10)

φ1R < Si,m < φ2R , (11)

φ2δ
2
x < ε2φ1/γ

N0 , (12)

where
ν = −γSi,m − γSi,n − Zi,j

m,n − (Zi,j
m,n)

T ,
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κ = (−γ
∑

j∈χi
K

πij)(Si,m + Si,n)−Gi,j
m,n − (Gi,j

m,n)
T , Si

K,n = (
∑

j∈χi
K

πij)Sj,n,

Ωi,j
m =

[−Sj,m Ai,mSi,m +Bi,mUi,m

∗ −γSi,m

]

j ∈ χi
UK ,

Ξi,j
m =

[
−Si

K,m (
∑

j∈χi
K
πij)(Ai,mSi,m +Bi,mUi,m)

∗ −(
∑

j∈χi
K
πij)γSi,m

]

j ∈ χi
K ,

SK = (
∑

j∈χi
K

πij)(Ai,nSi,m +Ai,mSi,n +Bi,nUi,m +Bi,mUi,n)

−Ei,j
m,n − (F i,j

m,n)
T , j ∈ χi

K ,

SUK = Ai,nSi,m +Ai,mSi,n +Bi,nUi,m +Bi,mUi,n − Y i,j
m,n − (W i,j

m,n)
T , j ∈ χi

UK .

Furthermore, the state feedback controller can be represented as

Ki(λ) = Ui(λ)Si(λ)
−1.

Proof. We choose the Lyapunov function V (x(k)) = x(k)TPi(λ)x(k), and as-
sume that E(xT (0)Rx(0)) ≤ δ2x. Then we have

E(V (x(k + 1)))− γE(V (x(k))) = E{x(k)T [Ãi(λ)
TPj(λ)Ãi(λ) − γPi(λ)]x(k)} ,

where Ãi(λ) = Ai(λ)+Bi(λ)Ki(λ), and the case i = j denotes that the switched

system is described by the ith system Ãi(λ), and the case i �= j denotes that the
system is being at the switching times from i to j. If

Ãi(λ)
TPj(λ)Ãi(λ)− γPi(λ) < 0 ∀(i, j) ∈ (χ× χ) , (13)

then we can obtain E(V (x(k))) < γkE(V (x(0))) .

Letting Si,m = P−1
i,m, S̃i,m = R

−1/2
m Si,mR

−1/2
m , λsup = sup{λmax(Pi,m)} and

λinf = inf{λmin(Pi,m)} ,we get

γkE(V (x(0))) ≤ γk(1/λinf )E(x(0)TRx(0)) ≤ γN0(1/λinf )δ
2
x ,

E(V (x(k))) = E(x(k)TΣs
m=1λmPi,mx(k)) ≥ (1/λsup)E(x(k)TRx(k)) , (14)

where R =
∑s

m=1 λmRm, λmax(Pi,m) and λmin(Pi,m) mean the maximum and
minimum eigenvalues. From (11), we can determine φ1 ≤ λinf , φ2 ≥ λsup.

According to the above relations, we obtain

E(x(k)TRx(k)) < φ2/φ1δ
2
xγ

N0 . (15)

From (12), the finite-time stability of system (1) is guaranteed. So what we next
do is to prove (13) holds.
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By Lemma 1, multiplying both sides by diag (P−1
j (λ), P−1

i (λ)), changing the
matrix variables with

Si(λ) = P−1
i (λ), Ui(λ) = Ki(λ)P

−1
i (λ) , (16)

and according to (3), multiplying by λm, λn ≥ 0 summing up to s, we have

Ψ = (
∑

j∈χi
UK

πij +
∑

j∈χi
K

πij)Ψ = (
∑

j∈χi
UK

πij)(
s∑

m=1

λ2
m

[−Sj,m Ai,mSi,m +Bi,mUi,m

∗ −γSi,m

]

+

s−1∑

m=1

s∑

n=m+1

λmλn

{[−Sj,m Ai,mSi,n +Bi,mUi,n

∗ −γSi,n

]
+

[−Sj,n Ai,nSi,m +Bi,nUi,m

∗ −γSi,m

]}
)

+
s∑

m=1

λ2
m

[
−Si

K,m (
∑

j∈χi
K
πij)(Ai,mSi,m +Bi,mUi,m)

∗ −γ(
∑

j∈χi
K
πij)Si,m

]

+
s−1∑

m=1

s∑

n=m+1

λmλn{
[
−Si

K,m (
∑

j∈χi
K
πij)(Ai,mSi,n +Bi,mUi,n)

∗ −γ(
∑

j∈χi
K
πij)Si,n

]

+

[
−Si

K,n (
∑

j∈χi
K
πij)(Ai,nSi,m +Bi,nUi,m)

∗ −γ(
∑

j∈χi
K
πij)Si,m

]
} . (17)

From (7),(8), we get

Ψ ≤ ηTΩi,jη + ηTΞi,jη ,

where η = [λ1I λ2I · · · λsI]
T . Therefore, Ψ < 0.

Conditions similar to those of Theorem 1 can be obtained for the case without
controller.

Corollary 1. The system x(k + 1) = A(r(k), λ)x(k) is finite-time stable with
respect to (δx, ε, R,N0) if there exist a scalar γ ≥ 1, matrices Pi,m > 0 ∀i ∈
χ, 1 ≤ m < n ≤ s and ∀(i, j) ∈ (χ× χ) matrices

Ωi,j
m,n =

[
X i,j

m,n Y i,j
m,n

W i,j
m,n Zi,j

m,n

]

j ∈ χi
UK , Ξi,j

m,n =

[
Di,j

m,n Ei,j
m,n

F i,j
m,n Gi,j

m,n

]

j ∈ χi
K ,

satisfying ∀(i, j) ∈ χ× χ, (1 ≤ m < n ≤ s)

[−Pj,m − Pj,n −X i,j
m,n − (X i,j

m,n)
T SUK

∗ ν

]

≤ 0, j ∈ χi
UK , (18)

[−P i
K,m − P i

K,n −Di,j
m,n − (Di,j

m,n)
T SK

∗ κ

]

≤ 0, j ∈ χi
K , (19)

φ1R < Pi,m < φ2R , (20)
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Ωi,j =

⎡

⎢
⎢
⎢
⎣

Ωi,j
1 Ωi,j

1,2 · · · Ωi,j
1,s

∗ Ωi,j
2 · · · Ωi,j

2,s
...

...
. . .

...
∗ ∗ · · · Ωi,j

s

⎤

⎥
⎥
⎥
⎦
< 0 j ∈ χi

UK , (21)

Ξi,j =

⎡

⎢
⎢
⎢
⎣

Ξi,j
1 Ξi,j

1,2 · · · Ξi,j
1,s

∗ Ξi,j
2 · · · Ξi,j

2,s
...

...
. . .

...
∗ ∗ · · · Ξi,j

s

⎤

⎥
⎥
⎥
⎦
< 0 j ∈ χi

K , (22)

where

SK = P i
K,mAi,n + P i

K,nAi,m − Ei,j
m,n − (F i,j

m,n)
T ,

SUK = Pj,mAi,n + Pj,nAi,m − Y i,j
m,n − (W i,j

m,n)
T ,

ν = −γPi,m − γPi,n − Zi,j
m,n − (Zi,j

m,n)
T ,

Ωi,j
m =

[−Pj,n Pj,nAi,m

∗ −γPi,m

]

j ∈ χi
UK ,

Ξi,j
m =

[−P i
K,n P i

K,nAi,m

∗ −(
∑

j∈χi
K
πij)γPi,m

]

j ∈ χi
K ,

P i
K,n =

∑

j∈χi
K

πijPj,n, κ = (−γ
∑

j∈χi
K

πi,j)(Pi,m + Pi,n)−Gi,j
m,n − (Gi,j

m,n)
T .

4 Illustrative Example

Consider the system (1) , there are two vertices in each subsystem:

A11 =

[
1.413 −0.652
0.280 −0.605

]

, A12 =

[−0.475 0.013
0.871 0.187

]

,

B11 =

[
0.243 −0.351
1.286 0.92

]

, B12 =

[−1.618 0.172
−0.406 −2.418

]

,

A21 =

[−1.350 −0.814
1.524 −1.217

]

, A22 =

[
0.016 −1.383
0.020 −0.474

]

,

B21 =

[
0.165 −1.642
−0.111 1.364

]

, B22 =

[−1.585 −0.447
−2.630 0.724

]

,

A31 =

[
0.121 0.736
−1.496 −0.73

]

, A32 =

[
1.179 0.176
0.399 −0.196

]

,

B31 =

[
0.572 0.663
−0.428 −0.985

]

, B32 =

[−1.305 −0.236
−0.461 0.910

]

.
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The partly known transition probability matrix is given as follow:

⎡

⎣
0.6 ? ?
? ? 0.5
? 0.2 ?

⎤

⎦ .

According to Theorem 1, we assume R = I, N0 = 31, φ2 = 1, δ2x = 0.05, ε =
8, γ = 1.04. It can be seen from the figures that the system (1) with the controller
u(k) = Ki(λ)x(k) meets the specified requirement, whereKi(λ) = Ui(λ)Si(λ)

−1.

0 5 10 15 20 25 30

1

2

3

Time

S
ub

sy
st

em

Fig. 1. The switching signal.
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Fig. 2. The state response of system.

5 Conclusion

In this paper, the problem of finite-time stabilization for Markov jump linear
systems with partly known transition probabilities and time-varying polytopic
uncertainties has been studied. By using the switched quadratic Lyapunov func-
tion, all the conditions are established in the form of LMIs. At last, the main
result has been demonstrated through an illustrative example.
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Abstract. In this paper, the hybrid function projective synchronization of 
unknown Cohen-Grossberg neural networks with time delays and noise 
perturbation is investigated. A hybrid control scheme combining open-loop 
control and adaptive feedback control is designed to guarantee that the drive 
and response networks can be synchronized up to a scaling function matrix with 
parameter identification by utilizing the LaSalle-type invariance principle for 
stochastic differential equations. Finally, the corresponding numerical 
simulations are carried out to demonstrate the validity of the presented 
synchronization method. 

Keywords: synchronization, Cohen-Grossberg neural network, delays, noise 
perturbation. 

1 Introduction  

In the past few decades, various types of artificial neural networks have been widely 
applied in many areas such as image processing, pattern recognition, optimization 
problems and so on [1-3]. Among these, the Cohen-Grossberg neural network 
model[4], has been recognized to be one of the most popular and typical neural 
network models, and some other models such as Hopfield neural networks, cellular 
neural networks, and recurrent neural networks are special cases of this model.  

Chaos synchronization has been well studied because of its potential applications 
[5-6]. Moreover, it has been shown that neural networks can exhibit complicated 
behaviors with strange chaotic attractors. Therefore the synchronization of chaotic 
neural networks[7,8], especially the Cohen-Grosssberg neural networks, has received 
considerable attention and has been extensively investigated. By using adaptive 
control and linear feedback, Zhu and Cao realized the complete synchronization of 
chaotic Cohen-Crossberg neural networks with mixed time delays [9]. Without 
solving any linear matrix inequality, the author investigated the adaptive 
synchronization of different Cohen-Grossberg chaotic neural networks [10]. Shi and 
Zhu studied the adaptive synchronization problem of Cohen–Grossberg neural 
networks [11]. 

However, most of recent work above on the synchronization of chaotic Cohen-
Grossberg networks has been restricted to the less general synchronization scheme as 
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complete synchronization, adaptive synchronization, etc. Function projective  
synchronization which is characterized by drive and response systems that can be 
synchronized up to a scaling function instead of a constant, is the extension of 
projective synchronization [12-13]. Because the unpredictability of the scaling 
function can additionally enhance the security of communication [14], function 
projective synchronization of neural networks is necessary to probe into. In [15-16], 
the authors investigated the function projective synchronization of some simple neural 
network models. In hybrid function projective synchronization, the drive and response 
systems could be synchronized to a desired scaling function matrix, which means the 
different variables in a node system could be synchronized to different scaling 
functions. However, to the best of our knowledge, there are very few or even no 
results on the function projective synchronization of Cohen-Grossberg neural 
networks, not mention the hybrid function projective synchronization.  

Noise is ubiquitous in the real systems [17-18]. Therefore the effect of noise on 
synchronization has been well studied by many researchers. In addition, most of the 
work on the synchronization of chaotic Cohen-Grossberg neural networks assumes 
that the chaotic systems’ parameters are known in advance. But in many practical 
situations, the values of some system’s parameters cannot be exactly known 
beforehand [11-12]. Motivated by the above discussions, in this paper, we are 
concerned with the hybrid function projective synchronization of unknown Cohen-
Grossberg neural networks with time delays and noise perturbation.  

2 Model Description and Preliminaries 

Consider the delayed Cohen-Grossberg neural network which can be called drive 
system and expressed as follows: 

   (1) 

where is the state vector associated with  

neurons. are amplification functions. 

 are appropriately behaved functions such 

that the solutions of model (1) remain bounded. , are the 

connection weight matrix and the delayed connection weight matrix respectively. 

denotes a constant external input vector. and  represent the 

neuron activation functions and , 

, 

where represents the transmission delay.  For the drive system (1), the 
unknown response system with noise perturbation and time delay is given as follows:   

   (2) 

( ) ( ( ))[ ( ( )) ( ( ) ( ( )) + ]dx t D x t x t Bf x t Cg x t - J dtΛ τ= − − −

1 2( ) [ ( ), ( ), , ( )]T n
nx t x t x t x t R= ∈… n

1 2( ( )) [ ( ( )), ( ( )), , ( ( ))]nD x t diag d x t d x t d x t= …

1 1 2 2( ( )) [ ( ( )), ( ( )), , ( ( ))]n nx t x t x t x tΛ α α α= …
( )ij n nB b ×= ( )ij n nC c ×=

[ ]1 2, , ,
T

nJ J J J= … f g

1 1 2 2( ( )) [ ( ( )), ( ( )), , ( ( ))]T n
n nf x t f x t f x t f x t R= ∈…

1 1 2 2( ( )) [ ( ( )), ( ( )), , ( ( ))]T n
n ng x t g x t g x t g x t Rτ τ τ τ− = − − − ∈…

0τ >

{ }ˆˆ( ) ( ( ))[ ( ( )) ( ( )) ( ( )) + ]

( ( ) ( ) ( ), ( ) ( ) ( ))

dy t D y t y t Bf y t Cg y t J U dt

H t, y t M t x t y t M t x t dW

Λ τ

τ τ τ

= − − − − +

+ − − − − −
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where , .  is 

the n-dimensional Brownian motion, is 

called the noise intensity matrix, is a scaling 

function matrix, and is a controller vector. 

Definition 1. (HFPS) For the drive Cohen-Grossberg neural network (1) and the 
response Cohen-Grossberg neural network (2), it is said that they are hybrid function 
projective synchronized, if there exists a continuously differentiable scaling function 
matrix such that . 

Remark 1. If the scaling functions are taken as the nonzero constants or , 

the synchronization problem will be turned to the projective synchronization, the 
complete synchronization or the anti-synchronization. 

To proceed, the following assumptions and lemmas are given. 

Assumption 1. There exist positive constants , such that , 

for all , .  

Assumption 2. For any there exists a positive constant , such that 

for all , and .x 

Assumption 3. For any  there exist constants and such 

that for all , and . 

Assumption 4. For the noise intensity function matrix , there exists two 

positive constants , such that, holds 

for all . Moreover . 

In order to get our main results in the next section, some necessary concepts and a 
lemma about stochastic differential equations [19] are provided in advance. Consider 
the following n-dimensional stochastic differential delay equation:

 It is known that there exists a 

unique solution on  with initial data . Moreover, both 

 and are locally bounded in  and uniformly bounded in . For 

each , we define an operator  from to  by 

   (3) 

where .  

Lemma 1. (Invariance principle [20]) Assume that there are functions
, and  such that 

, 

ˆˆ ,B B B C C C= + Δ = + Δ ( ) , ( )ij n n ij n nB b C c× ×Δ = Δ Δ = Δ [ ]1 2, , ,
T

nW W W W= …

[ ]1 2( , , ) ( , , ), ( , , ), , ( , , )
T

nH t u v h t u v h t u v h t u v= …

1 2( ) ( ( ), ( ), , ( ))nM t diag m t m t m t= …
[ ]1 2, , , nU u u u= …

( )M t lim ( ) lim ( ) ( ) ( ) 0
t t

e t y t M t x t
→∞ →∞

= − =

( )im t ,iθ 1 1−

, 0i id N > 0 ( )i id x d≤ ≤
( ) ( )i i id y d mx N y mx− ≤ − , ,x y m R∈ ( 1,2, , )i n= …

1, 2, , ,i n= … 0ir >
( ) ( ) ( ) ( )i i i i

i

d y y d mx mx
r

y mx

α α−
≥

−
, ,x y m R∈ y mx≠

1, 2, , ,i n= … 0f
iL > 0g

iL >
( ) ( ) ( ) ( )

0 , 0f gi i i i
i i

f y f mx g y g mx
L L

y mx y mx

− −
≤ ≤   ≤ ≤

− −
, ,x y m R∈ y mx≠

( , , )H t x y

1p 2p 1 2[ ( , , ) ( , , )] ,T T Ttrace H t x y H t x y p x x p y y≤ +
( , , ) n nt x y R R R+∈ × × ( ,0,0) 0H t ≡

( ) ( ( ), ( ), ) ( ( ), ( ), ) ( ).dx t f x t x t t dt x t x t t dW tτ σ τ= − + −
( , )x t ξ 0t ≥

0
([ ,0], )b n

FC Rξ τ∈ −

( , , )f x y t ( , , )x y tσ ( , )x y t
2,1( ; )nV C R R R+ +∈ × LV n nR R R+× × R

2/ / 1/ 2 [ ( / ) ]T
i jLV V t V x f trace V x xσ σ= ∂ ∂ + ∂ ∂ ⋅ + ∂ ∂ ∂

1/ ( / , , / )nV z V z V z∂ ∂ = ∂ ∂ ∂ ∂…

2,1( ; )nV C R R R+ +∈ × 1( , )L R Rβ + +∈ 1 2, ( , )nC R Rω ω +∈

1 2( , , ) ( ) ( ) ( ), ( , , ) n nLV x y t t x y x y t R R Rβ ω ω +≤ − + ∈ × ×
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, 

and , then, for every ,  a.s. 

Lemma 2. ([9]) For any vectors and positive definite matrix , the 

following matrix inequality holds :  

3 Main Results 

In this section, hybrid function projective synchronization between networks (1) and 
(2) is investigated, and the main results are given in the following theorem. 

By defining the synchronization error as , one can drive the 

error system as 

   (4) 

where . 

The hybrid controller and parameter update law are designed as follows: 

   (5) 

   (6) 

where is an adaptive controller and are open-loop controllers.   

Thus, under the control input (5), the error system (4) turns out to be the following one 

   (7) 

Theorem 1. Under the Assumption A1-A4, the drive neural network (1) and the 
response neural network (2) can achieve hybrid function projective synchronization 
under the control scheme (5) and (6). 

Proof  Consider the following Lyapunov-Krasovskii function candidate:          

1 2( , ) ( , ), ( , ) nx t x t x t R Rω ω τ +≥ +      ∈ ×

0
lim inf ( , )
x t

V x t
→∞ ≤ ≤∞

= ∞
0
([ ,0], )b n

FC Rξ τ∈ − lim ( ; ) 0
x

x t ξ
→∞

=

, nx y R∈ n nG R ×∈
12 T T Tx y x Gx y G y−≤ +

( ) ( ) ( ) ( )e t y t M t x t= −

ˆ( ) [ ( ( ( )) ( ( )) ( ) ( ( )) ( ( ))) ( ( )) ( ( ))

ˆ( ) ( ( )) ( ( )) ( ( )) ( ( )) ( ) ( ( )) ( ( ))

[ ( ( )) ( ) ( ( ))] ( ) ( ) ] ( ( ) ( ))

de t D y t y t M t D x t x t D y t Bf y t

M t D x t Bf x t D y t Cg y t M t D x t Cg x t

D y t M t D x t J M t x t U dt + H t,e t ,e t dW

Λ Λ

τ τ
τ

= − − +

− + − − −
− − − + −
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where  is a positive definite matrix. 

Computing  along the trajectory of error system (7), we have 

   (9) 

where . 

According to Assumption1, it follows that 
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where , . 

Referring to the above calculation, it can be seen that for a sufficiently large 
positive constant , the following inequality holds: . 

Moreover, . From lemma 1, we have , a.s. 

4 Illustrative Examples 

In this section, one illustrative example and its simulation are presented to 
demonstrate the effectiveness of the obtained theoretical results. 

Consider the system (1) and system (2) with the following parameters: 
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.  

The drive neural network with above coefficients exhibits a chaotic behavior as 

shown in Fig. 1, with initial values . The noise perturbation is  

   (13) 

Let the initial conditions of the unknown parameters and feedback strength as
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generality we choose the scaling function . 
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numerical simulations clearly verify the effectiveness and feasibility of the proposed 
hybrid control method.       
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Fig. 1. Chaotic attractor of the drive neural network 

         

Fig. 2. Time evolution of synchronization errors Fig. 3. Variation of unknown parameters 

5 Conclusions 

In this paper, we have dealt with the hybrid function projective synchronization 
problem for unknown Cohen-Grossberg neural networks with time delays and noise 
perturbation. Based on the LaSalle-type invariance principle for stochastic differential 
equations, a hybrid control scheme combining open-loop control and linear feedback 
control is designed, which can be easily generalized to other simple neural network 
models. Finally, numerical simulations are provided to show the effectiveness of the 
main result. 
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Abstract. In this brief, a neural dynamic surface control algorithm is
proposed for three-phase pulse width modulation voltage source rectifier
with the parametric variations. Neural networks are employed to ap-
proximate the uncertainties, including the parametric variations and the
unknown load-resistance. The actual control laws are derived by using
the dynamic surface control method. Furthermore, a linear tracking dif-
ferentiator is introduced to replace the first-order filter to calculate the
derivative of the virtual control law. Thus, the peaking phenomenon of
the filter is suppressed during the initial phase. The system stability is
analyzed by using the Lyapunov theory. Simulation results are provided
to validate the efficacy of the proposed controller.

Keywords: PWM rectifier, dynamic surface control, neural network,
linear tracking differentiator.

1 Introduction

In recent years, three-phase pulse width modulation (PWM) voltage source rec-
tifier has been widely used in industrial applications such as uninterruptible
power supply systems, static synchronous compensator, active power filter, and
renewable energies. Their attractive features are low harmonic distortion of the
utility currents, bi-directional power flow, and controllable power factor [1].

Various control strategies of three-phase PWM voltage source rectifier have
been proposed during the past few years, including the phase and amplitude
control [2], direct power control (DPC) [3], model predictive control [4], and
voltage-oriented control (VOC) [5] methods. As one of the most popular meth-
ods, the VOC can indirectly control the active and reactive powers by controlling
the input d-q axis currents. Thus, the dynamic and static performance of power
control is affected by the performance of the internal current controller [6]. In
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the previous study, the proportional integral (PI) controller has been commonly
used into the inner current loop since it is convenient to be implemented. How-
ever, the main drawback of the PI regulator is that it strongly depends on the
operating point and has weak robust to the parametric variations. In [7], a non-
linear adaptive backstepping approach is applied to three-phase PWM AC-DC
converter, which has achieved a good tracking performance. However, the para-
metric variations are not considered. In practice, it is difficult to obtain the
precise parameters of three-phase PWM voltage source rectifier [8]. Moreover,
the parameters are influenced by the environment and operation condition. For
example, the resistance and the capacitor may vary with the temperature, and
the inductance may vary with the magnetic saturation. On the other hand, a
drawback of the backstepping control technique is the problem of “explosion of
complexity”, which is caused by the repeated differentiations of the virtual con-
trol law. In [9], a dynamic surface control (DSC) method is proposed to solve
the above algebraic loop problem by introducing a first-order filter in each step
of the controller design procedure. Further, neural network (NN) control [10]
and fuzzy control [11] are incorporated into the DSC to approximate the system
uncertainties. However, the initial value of the virtual control law may not be
available in applications. Thus, the derivative of the virtual control law calcu-
lated by the first-order filter would inevitably produce a setpoint jump during the
initial phase, which is known as the peaking phenomenon. The system stability
would be affected if the peaking phenomenon is serious.

In this paper, a neural dynamic surface control (NDSC) strategy is proposed
for three-phase PWM voltage source rectifier. In the general synchronously ro-
tating reference frame, the dynamic model of three-phase PWM voltage source
rectifier is derived by considering the parametric variations. Neural networks
(NNs) are applied to approximate the uncertainties, including the parametric
variations and the unknown load-resistance. The actual control laws are derived
by using the DSC method. As the peaking phenomenon affects the system sta-
bility, the first-order filter is replaced by a linear tracking differentiator (LTD).
Thus, the peaking phenomenon of the filter is suppressed during the initial phase.
Lyapunov analysis demonstrates that all signals in the closed-loop system are
uniformly ultimately bounded, and the tracking errors of the output voltage and
the q axis current can converge to a small neighborhood of the origin. Simulation
results are provided to validate the efficacy of the proposed controller.

2 Dynamic Model of the Rrectifier Under Study

Fig. 1 represents the topology of three-phase PWM voltage source rectifier. ea,
eb, ec are the supply power sources; ia, ib, ic are the input currents; ua, ub, uc

are the rectifier input voltages; udc is the DC-link output voltage; L and R are
the line inductance and resistance; C and RL are the DC-link capacitor and
load-resistance. As the d axis is oriented in the direction of the supply voltage
vector, the dynamic model of the rectifier under study can be described by
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⎧
⎪⎨

⎪⎩

dudc
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2C′udc
id + δdc
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diq
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where id and iq are the input currents in d-q axis; ud and uq are the rectifier input
voltages in d-q axis; ω is the synchronous angular speed; Em is the amplitude
of the supply voltage; δdc, δd, δq are the system uncertainties; L

′
and C

′
are the

measurement values of the line inductance and DC-link capacitor, L = L
′
+ΔL,

C = C
′
+ΔC.
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Fig. 1. Three-phase PWM voltage source rectifier.

3 NDSC for PWM Rectifier

3.1 Controller Design

The control objective is to make the output voltage track the reference output
voltage. Meanwhile, the q axis input current must be forced to be zero to achieve
unity power factor. The design procedure is elaborated in three steps as follows.

Step 1: Define the first surface error as

S1 = udc − udcr, (3)

where udcr is the reference output voltage.
The time derivative of S1 is given by

Ṡ1 =
3Em

2C ′udc
id + δdc. (4)
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According to the Stone Weierstrass approximation theorem, there exists an
ideal weight W1 such that δdc can be represented by an NN as

δdc = WT
1 h(ūdc) + ε1, (5)

where h(·) is a known activation function; ūdc is the normalized value of udc; ε1
is the function reconstruction error satisfying |ε1| ≤ ε∗1 with ε∗1 being a positive
constant; ||W1|| ≤ W ∗

1 with W ∗
1 being a positive constant.

Choose a virtual control law i∗d as follows

i∗d =
2C

′
udc

3Em
(−k1S1 − ŴT

1 h(ūdc)), (6)

where k1 is a positive constant to be designed; Ŵ1 is the estimation of W1, the
update law for Ŵ1 is given by

˙̂
W 1 = r1(h(ūdc)S1 − β1Ŵ1), (7)

where r1, β1 are two positive constants to be designed.
Step 2: Define the second surface error as

S2 = id − i∗d. (8)

The time derivative of S2 is given by

Ṡ2 = ωiq +
1

L′ (Em − ud) + δd − i̇∗d. (9)

The derivative of the virtual control law i∗d can be obtained by using the
following LTD.

{
ẋ1 = x2,
ẋ2 = −τ1(x1 − i∗d)− τ2x2,

(10)

where x1, x2 are the estimations of i∗d and i̇∗d; τ1, τ2 are two positive constants
to be designed.

There exists an ideal weight W2 such that δd can be represented by an NN as

δd = WT
2 h(̄id, īq) + ε2, (11)

where īd, īq are the normalized values of id and iq; |ε2| ≤ ε∗2 with ε∗2 being a
positive constant; ||W2|| ≤ W ∗

2 with W ∗
2 being a positive constant.

Select the actual control law u∗
d as

u∗
d = Em + L

′
(k2S2 + ωiq + ŴT

2 h(̄id, īq)− x2), (12)

where k2 is a positive constant to be designed; Ŵ2 is the estimation of W2, the
update law for Ŵ2 is given by

˙̂
W 2 = r2(h(̄id, īq)S2 − β2Ŵ2), (13)
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where r2 , β2 are two positive constants to be designed.
Step 3: Define the third surface error as

S3 = iq. (14)

The time derivative of S3 is given by

Ṡ3 = −ωid − 1

L′ uq + δq. (15)

There exists an ideal weight W3 such that δq can be represented by an NN as

δq = WT
3 h(̄id, īq) + ε3, (16)

where |ε3| ≤ ε∗3 with ε∗3 being a positive constant; ||W3|| ≤ W ∗
3 with W ∗

3 being
a positive constant.

Select the actual control law u∗
q as

u∗
q = L

′
(k3S3 − ωid + ŴT

3 h(̄id, īq)), (17)

where k3 is a positive constant to be designed; Ŵ3 is the estimation of W3, the
update law for Ŵ3 is given by

˙̂
W 3 = r3(h(̄id, īq)S3 − β3Ŵ3), (18)

where r3, β3 are two positive constants to be designed.
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Fig. 2. The block diagram of the proposed control system.
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Table 1. Parameter values

Supply’s voltage (phase to phase) and frequency 200V(rms), 50Hz
Line’s inductance and resistance 2mH, 0.1Ω
DC-link capacitor 5000μF

Table 2. Control design constants

k1 100 k2 1 ∗ 103 k3 1 ∗ 103
r1 1.1 ∗ 104 r2 3 ∗ 104 r3 3 ∗ 104
β1 9 ∗ 10−6 β2 3.3 ∗ 10−7 β3 3.3 ∗ 10−7

τ1 400 τ2 30

L
′

2 ∗ 10−3 C
′

5 ∗ 10−3

3.2 Stability Analysis

Theorem 1: Consider the closed-loop system consisting of the system (1), (2)
with the virtual control law (6), the actual control laws (12), (17), the NNs (7),
(13), (18), and the LTD (10). All signals in the closed-loop system are uniformly
ultimately bounded, and the tracking errors of the output voltage and the q axis
current can converge to a small neighborhood of the origin.

Proof. Omitted here due to the limited space.

4 Simulation Results and Analysis

In this section, the computer simulations are conducted in order to validate the
feasibility and effectiveness of the proposed method. The block diagram of the
proposed control system is shown in Fig. 2. A phase locked loop (PLL) is applied
to obtain Em, ω and θ (the angle of the supply voltage vector). The system
parameters and design constants are given in Tables 1 and 2, respectively.

The reference output voltage is 330V. At the beginning, the system operates
with no-load. The initial value of the output voltage is 283V, which is the three-
phase uncontrolled rectifier voltage value. A 150Ω resistance is connected to the
DC-link at 1s. To evaluate the robustness of the proposed control strategy, the
system parameters are adjusted by increasing R and C to 0.3Ω and 5100μF, and
decreasing L to 0.1mH at 2s. The proposed strategy is compared with the PI
regulator strategy.

Fig. 3(a) illustrates the the output voltage responses. Compared with the clas-
sical PI regulator strategy, the proposed strategy has faster response and less
overshoot. As the load variation, the drop voltage and recovery time obtained
by the NDSC are smaller and faster. Moreover, the proposed controller has good
robustness to the parametric variations. The fluctuations caused by the para-
metric variations remain almost negligible. Fig. 3(b) shows the supply voltage
and the input current of phase-A. The supply voltage and the input current
are in phase, which means that the proposed system operates at unity power
factor. The estimated values of δdc, δd, δq are shown in Fig. 3(c)-(e). The NNs
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Fig. 3. The simulation results.

can approximate the uncertainties quickly and accurately. Fig. 3(f) shows the
derivatives of the virtual control law obtained by the LTD and the first-order
filter. It can be noticed that the peaking phenomenon of the filter is suppressed
by using the LTD, which can ensure the system stability during the initial phase.

5 Conclusions

In this paper, a NDSC algorithm is proposed for three-phase PWM voltage
source rectifier with the parametric variations. The simulation results validate
the better performances of the NDSC controller compared with the classical PI
regulator. In the future, the challenge will be to reduce the overshoot of the
output voltage during the initial phase.
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Abstract. In this paper, a terminal reaching law based sliding mode control 
(SMC) method for load frequency control (LFC) is investigated in intercon-
nected power systems in the presence of wind turbines and generation rate con-
straint (GRC). Neural networks are adopted to compensate the entire uncertain-
ties. Simulation results show the validity and robustness of the presented method. 

Keywords: load frequency control, terminal reaching law, neural network. 

1 Introduction 

Load frequency control (LFC) is the most effective way to guarantee the stable opera-
tion of power systems [1]. Sliding mode control (SMC) invented by V.I. Utkin [2] is 
considered as a highly efficient design tool for the LFC problem. For the applications in 
[3, 4], only conventional power sources have been taken into account. Nowadays, wind 
power is a power generation way with most promise. However, the randomness and the 
intermittency of wind plant pose a critical challenge to real-time stability and balancing 
of power systems [5]. Therefore, the increasing penetration of wind generation in 
power systems calls for more and more attentions to the LFC problem for the power 
systems with nonconventional generation systems [6]. 

Power systems are complicated nonlinear systems [7]. Neural networks (NNs) are 
able to suppress the nonlinearities and uncertainties with the function approximation 
[8]. It has been proved that the governor dead band (GDB) nonlinearity can be ap-
proximated and compensated by NNs [4]. Further research is needed in processing the 
generation rate constraint (GRC) nonlinearity by NNs for the LFC problem. 

2 System Configuration 

2.1 Load Frequency Control System 

Fig. 1 is the block diagram of the ith control area in a multi-area power system. Va-
riables ∆Pgi(t), ∆Xgi(t), ∆fi(t) and ∆Ptie,i(t) are the incremental changes of generator 
output, governor valve position, frequency and tie-line active power. ACEi is area 
control error. ∆PLi(t) is load disturbance, ∆Pci(t) is control input. ∆Ei(t) is the integral of 
ACEi(t) and KEi is the integral gain. Tgi, Tti and Tpi are the time constants of governor, 
turbine and electric system governor. Bi=1⁄Ri+1⁄Kpi is the frequency bias factor where 
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Ri is adjustment deviation coefficient and Kpi is electric system gain. Tij is the syn-
chronizing power coefficient between area i and area j, i=1,…, N and N is the number of 
areas. 

Define xi (t)=[∆Xgi (t), ∆Pgi (t), ∆fi (t), ∆Ptie,i (t), ∆Ei (t)]
T. ui(t)=∆Pci(t) is control input, 

∆Pdi(t)=[∆PLi(t),
1

( )
N

ij j
j
j i

T f t
=
≠

Δ∑ ]T is disturbance vector. Then, the system model (1) can be 

deduced and employed for the LFC design of the ith control area. And for a nominal 
system, the detailed expressions of the matrixes Ai, Bi and Fi can be obtained from [9]. 

 ( ) ( ) ( ) ( )i i i i i i dix t A x t B u t F P t= + + Δ  (1) 

 

Fig. 1. Dynamic model of the ith control area with GRC 

 

Fig. 2. Structure of a DFIG based wind turbine 

2.2 Simplified Wind Turbine Model 

Fig. 2 is the simplified model of the doubly-fed induction generator (DFIG) [9]. Vqr(t) 
and iqr(t) are the q-axis components of the rotor voltage and the rotor current. w(t) is the 
rotational speed, Tm(t) is the mechanical power, Ht is the equivalent inertia constant, 
Pe(t) is the active power. X2=1⁄Rr, X3=Lm ⁄Lss, T1=L0 ⁄(wsRs), L0=Lrr+Lm

2 ⁄Lss, and 
Lss=Ls+Lm, Lrr=Lr+Lm, here Lm is the magnetizing inductance, Rr and Rs are the rotor and 
stator resistances, Lr and Ls are the rotor and stator leakage inductances, Lrr and Lss are 
the rotor and stator self-inductances, ws is the synchronous speed. 

Define xwi(t)=[∆Xgi(t), ∆Pgi(t), ∆fi(t), ∆Ptie,i(t), ∆iqr,i(t), ∆wi(t), ∆Ei(t)]
T, ui(t) = 

[∆Pci(t), ∆Vqr,i(t)]
T and ∆Pdi(t)=[∆PLi(t), 

1

( )
N

ij j
j
j i

T f t
=
≠

Δ∑ , ∆Tmi(t)]
T. Then, the following 
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state space equation can be deduced. (2) will be employed for the LFC design for wind 
turbines. The details about Awi, Bwi and Fwi are available in [9]. 

 ( ) ( ) ( ) ( )wi wi wi wi wi wi wdix t A x t B u t F P t= + + Δ  (2) 

2.3 Analysis about Nonlinearities 

The GRC nonlinearity limits the rate of the generating power change. And (3) formu-
lates the constraint relationship. 

 

1
( )

1
( ) ( ) | ( ) |

1
( )

gi

gi
gi

gi

dt t
T

P t t dt t
T

dt t
T

δ σ δ

σ σ δ

δ σ δ

⎧
− < −⎪

⎪
⎪Δ = <⎨
⎪
⎪ >⎪
⎩

∫

∫

∫

 (3) 

Here σ(t) = ΔXgi(t)–ΔPgi(t) and δ>0 is the maximum output of GRC. Models (1) and (2) 
can be described uniformly as (4) concerning the GRC nonlinearity. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t A A x t B B u t F F P t tφ′ ′ ′= + Δ + + Δ + + Δ Δ +  (4) 

In (4), ϕ(t) indicates the uncertainties due to GRC. A′ , B′  and F ′ stand for the no-
minal constant matrices which can be obtained from Fig. 1 and Fig. 2. ΔAx(t), ΔBu(t) 
and ΔFΔP(t) denote the parameter uncertainties and the modelling errors. 

3 Control Design 

3.1 Design of Terminal Reaching Law based Sliding Mode Control 

Assumption 1: 0|| ( ) ||d t d≤ , here || ||⋅  denotes Euclidean norm, 0d  is constant but 

unknown and d(t) satisfies 

 ( ) ( ) ( ) ( ) ( ) ( )d t F P t Ax t Bu t F P t tφ′= Δ + Δ + Δ + Δ Δ +  (5) 

The switching surface s(t) is designed to satisfy s(t) = Cx(t) where C is the switching 
gain matrix. In order to make the system reach the sliding surface in a finite time, the 
terminal reaching law is adopted as 

 / 1( ) ( ) || ( ) || ( )q ps t s t s t s tα β −= − −  (6) 

In (6), α and β are both positive constants, p and q (q<p<2q) are positive odd numbers. 
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When the system trajectories reach the predefined sliding surface s(t) and keep a 
sliding motion thereafter, there is ( ) ( ) 0s t s t= = . Then the control law based on the 

terminal reaching law can be deduced as 

 1 / 1
0( ) ( ) [ ( ) || ( ) || ( ) ( ) || || sgn( ( ))]q pu t CB s t s t s t CAx t C d s tα β− −= − + + +  (7) 

3.2 Design of Radial Basis Function (RBF) Neural Networks 

RBF neural networks can be employed to adaptively learn the upper bound of system 
uncertainties according to the characteristics of NNs. 

For the LFC problem, the system state vector x(t) is picked up as the network input. 
The boundary value of the system uncertainties is the network output y calculated by 

 0
ˆ ˆ( , ) ( )y d x h xω ωΤ= =  (8) 

where ω̂  is the connection weight and h(x) is the Gaussian function vector defined 
by 

 
2

2

|| ||
( ) exp

2
p

p
p

x c
h x

b

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
1,2,3...,p l=  (9) 

In (9), cp is the center vector of the pst neuron and bp is the width of the pst neuron. 
Adopting the RBF approximation technology, the control law (7) becomes 

 1 / 1
0

ˆ( ) ( ) [ ( ) || ( ) || ( ) ( ) || || sgn( ( ))]q pu t CB s t s t s t CAx t C d s tα β− −= − + + +  (10) 

3.3 Stability Analysis 

Assumption 2: 0 1| ( ) | ( )h x d xω ε ε∗Τ − = < , ω∗ is the optimal weight vector of NNs. 

Assumption 3: 0 0 1|| ||d d ε ε− > >  

Adopt adaptive algorithm to adjust weights online with Assumptions 1, 2 and 3 holding 
true. Adopt the update law of the network weight vector satisfying 

 1ˆ || || || || ( )s C h xω ξ= ⋅  (11) 

where ξ = ||C||(ε0−ε1)>0 is constant. 
Define Lyapunov candidate function as the following equation 

 11 1

2 2
s s ξ ω ωΤ − Τ= +V    (12) 

where ˆω ω ω∗= − . The inequality 0 1 0| ( ) | ( || ||)x d dε ε ε− − < −  exists according to 

Assumptions 2 and 3. Differentiate V with respect to time t and the derivative of V can 
be formulated by 
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Because α>0, β>0 and ξ>0, 0≥V  and 0<V  can be seen from (12) and (13). The con-
trol law (10) can drive the system to the sliding stage and remain on the sliding surface. 

4 Simulation Results 

Consider a two-area interconnected power system. Each control area has a 400 
MVA-scale conventional generating unit with GRC in Fig. 1 and a 400 MVA-scale 
wind turbine in Fig. 2. The parameters are given in Tables 1 and 2. In addition, Xm is the 
magnetizing reactance. The integral gains are selected as KE1=KE2=1. 

Considering the conventional power units, C=[1 2 3 4 5]T, adopt the RBF NNs with 
5-6-1 structures, select the initial weight vectors as [0.1 0.1 0.1 0.1 0.1 0.1]T and the 
widths of the Gaussian function vectors as [0.2 0.2 0.2 0.2 0.2 0.2]T. For wind turbines, 
C=[1.1 2.2 3.3 3.4 2.5 2.6 1.1; 1.1 2.2 3.3 3.7 2.1 3.3 1.1]T. The RBF NNs have 7-8-1 
structures. The initial weight vectors are [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]T and b=[0.2 0.2 
0.2 0.2 0.2 0.2 0.2 0.2]T. All the centers of the four networks take random numbers 
between -1 and 1. Other parameters are α =10, β =2; p=5, q=3; ε0r = 0.002, ε1r = 0.001. 

In order to verify the effectiveness of the proposed control method, ∆PL1 =∆PL2 =1% 
pu and ∆Tm1 =∆Tm2 =1% pu are applied to the system at t = 5s simultaneously. It can be 
seen from Fig. 3 that the ∆f and ACE are damped to zero with small oscillations. These 
results embody the performances against load disturbance and wind power fluctuation 
of the designed terminal reaching law based SMC scheme. From the comparisons in 
Fig. 3, the performances of the frequency regulation with RBF NNs (blue curves) is 
superior to those without RBF NNs (red curves) in term of settling time. From Fig. 4, 
the control inputs of the load frequency control system with RBF NNs are much 
smoother while those without RBF NNs chatter severely. It can thus be seen the de-
signed RBF NNs effectively reduce chattering and improve response speed. Moreover, 
the outputs of the RBF NNs are illustrated in Fig. 5 reflecting their convergences. 

Table 1. Parameters and data of two control areas 

Area D 
(pu/Hz) 

2H 
(pu.s) 

R 
(Hz/pu) 

Tg 

(s) 
Tt 

(s) Tij B 

Area1 0.015 0.1667 3.00 0.08 0.40 0.2 0.425 
Area2 0.016 0.2017 2.73 0.06 0.44 0.2 0.425 

Table 2. Wind turbine parameters at 247 MW operating point 

Rr(pu) Rs(pu) Xlr(pu) Xls(pu) Xm(pu) Ht(pu) 
0.00552 0.00491 0.1 0.09273 3.9654 4.5 
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Fig. 3. Simulation results of the considered power system with and without RBF NNs. a frequency 
deviation ∆f1; b frequency deviation ∆f2; c area control error ACE1; d area control error ACE2 

 

Fig. 4. Simulation results of control inputs. a without RBF NNs; b with RBF NNs 

 

Fig. 5. Simulation results of RBF network outputs. a in area1; b in area 2 
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5 Conclusions 

A terminal reaching law based sliding mode control method for the LFC problem is 
proposed in this article. The scheme is implemented in an interconnected power system 
with GRC and wind turbines. Moreover, RBF NNs are adopted to compensate and 
approximate the system uncertainties. The simulation results have validated the de-
sirable frequency regulation performance against the system uncertainties, the GRC 
nonlinearity and wind power fluctuation. Compared with the SMC only, the superior-
ity of the improved NNs-based sliding mode controllers has been illustrated. 

Acknowledgements. This work is supported by the Fundamental Research Funds for 
the Central Universities under grant No.2015MS29. 

References 

1. Hajian, M., Foroud, A.A., Abdoos, A.A.: New Automated Power Quality Recognition 
System for Online/offline Monitoring. Neurocomputing 128, 389–406 (2014) 

2. Utkin, V.I.: Sliding Modes in Control and Optimization, 2nd edn. Springer, Berlin (1992) 
3. Mi, Y., Fu, Y., Wang, C.S., Wang, P.: Decentralized Sliding Mode Load Frequency Control 

for Multi-Area Power Systems. IEEE T. Power Syst. 28, 4301–4309 (2013) 
4. Qian, D.W., Zhao, D.B., Yi, J.Q., Liu, X.J.: Neural Sliding-Mode Load Frequency Con-

troller Design of Power Systems. Neural Comput. Appl. 22, 279–286 (2013) 
5. Li, X., Cao, J., Du, D.: Probabilistic Optimal Power Flow for Power Systems Considering 

Wind Uncertainty and Load Correlation. Neurocomputing 148, 240–247 (2015) 
6. Das, D.C., Sinha, N., Roy, A.K.: Automatic Generation Control of an Organic Rankine 

Cycle Solar-Thermal/Wind-Diesel Hybrid Energy System. Energy Technology 2, 721–731 
(2014) 

7. Bevrani, H.: Robust Power System Control. Springer, New York (2009) 
8. Cheng, L., Hou, Z.G., Tan, M.: Adaptive Neural Network Tracking Control for Manipula-

tors with Uncertain Kinematics, Dynamics and Actuator Model. Automatica 45, 2312–2318 
(2009) 

9. Mohamed, T.H., Morel, J., Bevrani, H., Hiyama, T.: Model Predictive Based Load Fre-
quency Control Design Concerning Wind Turbines. Int. J. Elec. Power 43, 859–867 (2012) 



A New Discrete-Time Iterative Adaptive Dynamic
Programming Algorithm Based onQ-Learning�

Qinglai Wei1 and Derong Liu2

1 The State Key Laboratory of Management and Control for Complex Systems
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

qinglai.wei@ia.ac.cn
2 School of Automation and Electrical Engineering, University of Science and Technology

Beijing, Beijing 100083, China
derong@ustb.edu.cn

Abstract. In this paper, a novel Q-learning based policy iteration adaptive dy-
namic programming (ADP) algorithm is developed to solve the optimal control
problems for discrete-time nonlinear systems. The idea is to use a policy iteration
ADP technique to construct the iterative control law which stabilizes the system
and simultaneously minimizes the iterative Q function. Convergence property is
analyzed to show that the iterative Q function is monotonically non-increasing
and converges to the solution of the optimality equation. Finally, simulation re-
sults are presented to show the performance of the developed algorithm.

Keywords: Adaptive critic designs, adaptive dynamic programming, approxi-
mate dynamic programming, Q-learning, policy iteration, neural networks, non-
linear systems, optimal control.

1 Introduction

Characterized by strong abilities of self-learning and adaptivity, adaptive dynamic pro-
gramming (ADP), proposed by Werbos [25, 26], has demonstrated powerful capability
to find the optimal control policy by solving the Hamilton-Jacobi-Bellman (HJB) equa-
tion forward-in-time and becomes an important brain-like intelligent optimal control
method for nonlinear systems [4, 6–9, 12, 17, 23]. Policy and value iterations are basic
iterative algorithms in ADP. Value iteration algorithm was proposed in [3]. In [2], the
convergence of value iteration was proven. Policy iteration algorithms for optimal con-
trol of continuous-time (CT) systems were given in [1]. In [5], policy iteration algorithm
for discrete-time nonlinear systems was developed. For many traditional iterative ADP
algorithms, they require to build the model of nonlinear systems and then perform the
ADP algorithms to derive an improved control policy [11,16,18–22,24,27,28]. In con-
trast, Q-learning, proposed by Watkins [14,15], is a typical data-based ADP algorithm.
In [10],Q-learning was named action-dependent heuristic dynamic programming (AD-
HDP). For Q-learning algorithms, Q functions are used instead of value functions in
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the traditional iterative ADP algorithms. Q functions depend on both system state and
control, which means that they already include the information about the system and the
utility function. Hence, it is easier to compute control policies fromQ functions than the
traditional performance index functions. Because of this merit, Q-learning algorithms
are preferred to unknown and model-free systems to obtain the optimal control.

In this paper, inspired by [5], a novel Q-learning based policy iteration ADP algo-
rithm is developed for discrete-time nonlinear systems. First, the procedure of the Q-
learning based policy iteration ADP algorithm is described. Next, property analysis of
theQ-learning based policy iteration ADP algorithm is established. It is proven that the
iterative Q functions will monotonically non-increasing and converges to the optimal
solution of the HJB equation. Finally, simulation results will illustrate the effectiveness
of the developed algorithm.

The rest of this paper is organized as follows. In Section 2, the problem formulation
is presented. In Section 3, the properties of the developed Q-learning based policy it-
eration ADP algorithm will be proven in this section. In Section 4, numerical results
are presented to demonstrate the effectiveness of the developed algorithm. Finally, in
Section 5, the conclusion is drawn.

2 Problem Formulation

In this paper, we will study the following discrete-time nonlinear system

xk+1 = F (xk, uk), k = 0, 1, 2, . . . , (1)

where xk ∈ R
n is the state vector and uk ∈ R

m is the control vector. Let x0 be the
initial state and F (xk, uk) be the system function. Let uk = {uk, uk+1, . . . } be an
arbitrary sequence of controls from k to ∞. The performance index function for state
x0 under the control sequence u0 = {u0, u1, . . . } is defined as

J(x0, u0) =

∞∑

k=0

U(xk, uk), (2)

where U(xk, uk) > 0, for xk, uk �= 0, is the utility function. The goal of this paper is
to find an optimal control scheme which stabilizes the system (1) and simultaneously
minimizes the performance index function (2). For convenience of analysis, results of
this paper are based on the following assumptions.

Assumption 1. System (1) is controllable and the function F (xk, uk) is Lipschitz con-
tinuous for xk, uk.

Assumption 2. The system state xk = 0 is an equilibrium state of system (1) under the
control uk = 0, i.e., F (0, 0) = 0.

Assumption 3. The feedback control uk = u(xk) satisfies uk = u(xk) = 0 for
xk = 0.

Assumption 4. The utility functionU(xk, uk) is a continuous positive definite function
of xk and uk.
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Define the control sequence set as Uk =
{
uk : uk = (uk, uk+1, . . .), ∀uk+i ∈

R
m, i = 0, 1, . . .

}
. Then, for a control sequence uk ∈ Uk, the optimal performance

index function is defined as

J∗(xk) = min
uk

{
J(xk, uk) : uk ∈ Uk

}
. (3)

According to [14] and [15], the optimal Q function satisfies the Q-Bellman equation

Q∗(xk, uk) =U(xk, uk) + min
uk+1

Q∗(xk+1, uk+1). (4)

The optimal performance index function satisfies

J∗(xk) = min
uk

Q∗(xk, uk). (5)

The optimal control law u∗(xk) can be expressed as

u∗(xk) = argmin
uk

Q∗(xk, uk). (6)

From (5), we know that if we obtain the optimal Q function Q∗(xk, uk), then the
optimal control law u∗(xk) and the optimal performance index function J∗(xk) can be
obtained. However, the optimal Q function Q∗(xk, uk) is generally an unknown and
non-analytic function, which cannot be obtained directly by (4). Hence, a discrete-time
Q learning algorithm is developed in [15] to solve for the Q function iteratively.

3 Discrete-Time Policy Iteration ADP Algorithm
Based onQ-Learning

In this section, the Q-learning based policy iteration ADP algorithm will be developed
to obtain the optimal controller for discrete-time nonlinear systems. Convergence and
optimality proofs will also be given to show that the iterative Q function will converge
to the optimum.

3.1 Derivation of the Discrete-Time Policy Iteration ADP Algorithm
Based onQ-Learning

In the developed policy iteration algorithm, the Q function and control law are updated
by iterations, with the iteration index i increasing from 0 to infinity. Let v0(xk) be an
arbitrary admissible control law [5]. For i = 0, let Q0(xk, uk) be the initial iterative Q
function constructed by v0(xk), i.e.,

Q0(xk, v0(xk)) =

∞∑

j=0

U(xk+j , v0(xk+j)). (7)

Thus, initial iterativeQ function satisfies the following generalizedQ-Bellman equation

Q0(xk, uk) = U(xk, uk) +Q0(xk+1, v0(xk+1)). (8)
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Then, the iterative control law is computed by

v1(xk) = argmin
uk

Q0(xk, uk). (9)

For i = 1, 2, . . ., letQi(xk, uk) be the iterativeQ function constructed by vi(xk), which
satisfies the following generalizedQ-Bellman equation

Qi(xk, uk) = U(xk, uk) +Qi(xk+1, vi(xk+1)), (10)

and the iterative control law is updated by

vi+1(xk) = argmin
uk

Qi(xk, uk). (11)

3.2 Properties of the Policy Iteration Based Deterministic Q-Learning
Algorithm

For the policy iteration algorithm of discrete-time nonlinear systems [5], it shows that
the iterative value function is monotonically non-increasing and converges to the opti-
mum. In this subsection, inspired by [5], we will show that the iterativeQ function will
also be monotonically non-increasing and converges to its optimum.

Theorem 1. For i = 0, 1, . . ., let Qi(xk, uk) and vi(xk) be obtained by (8)–(11). If
Assumptions 1–4 hold, then the iterative Q function Qi(xk, uk) is monotonically non-
increasing and converges to the optimalQ functionQ∗(xk, uk), as i → ∞, i.e.,

lim
i→∞

Qi(xk, uk) = Q∗(xk, uk), (12)

which satisfies the optimalQ-Bellman equation (4).

Proof. The statement can be proven in two steps.
1) Show that the iterative Q function Qi(xk, uk) is monotonically non-increasing as i
increases, i.e.,

Qi+1(xk, uk) ≤ Qi(xk, uk). (13)

According to (11), we have

Qi(xk, vi+1(xk)) = min
uk

Qi(xk, uk) ≤ Qi(xk, vi(xk)). (14)

For i = 0, 1, . . ., define a new iterative Q functionQi+1(xk, uk) as

Qi+1(xk, uk) = U(xk, uk) +Qi(xk+1, vi+1(xk+1)), (15)

where vi+1(xk+1) is obtained by (11). According to (14), we can obtain

Qi+1(xk, uk) = U(xk, uk) +Qi(xk+1, vi+1(xk+1))

= U(xk, uk) + min
uk+1

Qi(xk+1, uk+1)

≤ U(xk, uk) +Qi(xk+1, vi(xk+1))

= Qi(xk, uk). (16)
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Now we prove inequality (13) by mathematical induction. For i = 0, 1, . . ., as

Qi(xk+1, vi(xk+1))−Qi(xk, vi(xk))

= −U(xk, vi(xk))

< 0, (17)

we have vi(xk) is a stable control. Thus, we have xN = 0 for N → ∞. According to
Assumptions 1–4, we have vi+1(xN ) = vi(xN ) = 0, which obtains

Qi+1(xN , vi+1(xN )) = Qi+1(xN , vi+1(xN )) = Qi(xN , vi(xN )) = 0, (18)

and

Qi+1(xN−1, uN−1) = Qi+1(xN−1, uN−1) = Qi(xN−1, uN−1) = U(xN−1, uN−1).
(19)

Let k = N − 2. According to (11),

Qi+1(xN−2, uN−2) = U(xN−2, uN−2) +Qi+1(xN−1, vi+1(xN−1))

= U(xN−2, uN−2) +Qi(xN−1, vi+1(xN−1))

= Qi+1(xN−2, uN−2)

≤ Qi(xN−2, uN−2). (20)

So, the conclusion holds for k = N−2. Assume that the conclusion holds for k = �+1,
� = 0, 1, . . .. For k = � we can get

Qi+1(x�, u�) = U(x�, u�) +Qi+1(x�+1, vi+1(x�+1))

≤ U(x�, u�) +Qi(x�+1, vi+1(x�+1))

= Qi+1(x�, u�)

≤ Qi(x�, u�). (21)

Hence, we can obtain that for i = 0, 1, . . ., the inequality (13) holds, for xk, uk. The
proof of mathematical induction is completed.

As Qi(xk, uk) is a non-increasing and lower bounded sequence, i.e., Qi(xk, uk) ≥
0, the limit of the iterativeQ functionQi(xk, uk) exists as i → ∞, i.e.,

Q∞(xk, uk) = lim
i→∞

Qi(xk, uk). (22)

2) Show that the limit of the iterative Q function Qi(xk, uk) satisfies the optimal
Q-Bellman equation, as i → ∞.

According to (21), we can obtain

Q∞(xk, uk) = lim
i→∞

Qi+1(xk, uk) ≤ Qi+1(xk, uk) ≤ Qi+1(xk)

= U(xk, uk) +Qi(xk+1, vi+1(xk+1))

= U(xk, uk) + min
uk

Qi(xk+1, uk+1). (23)
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Letting i → ∞, we obtain

Q∞(xk, uk) ≤ U(xk, uk) + min
uk+1

Q∞(xk+1, uk+1). (24)

Let ζ > 0 be an arbitrary positive number. There exists a positive integer p such that

Qp(xk, uk)− ζ ≤ Q∞(xk, uk) ≤ Qp(xk, uk). (25)

Hence, we can get

Q∞(xk, uk) ≥ Qp(xk, uk)− ζ

= U(xk, uk) +Qp(xk+1, vp(xk+1))− ζ

≥ U(xk, uk) +Q∞(xk+1, vp(xk+1))− ζ

≥ U(xk, uk) + min
uk+1

Q∞(xk+1, uk+1)− ζ. (26)

Since ζ is arbitrary, we have

Q∞(xk, uk) ≥ U(xk, uk) + min
uk+1

Q∞(xk+1, uk+1). (27)

Combining (24) and (27), we obtain

Q∞(xk, uk) = U(xk, uk) + min
uk+1

Q∞(xk+1, uk+1). (28)

According to the definition of the optimalQ function in (4), we haveQ∞(xk, uk) =
Q∗(xk, uk). The proof is completed.

4 Simulation Study

We now examine the performance of the developed policy iteration algorithm in a non-
linear torsional pendulum system [13]. The dynamics of the pendulum is as follows

[
x1(k+1)

x2(k+1)

]

=

[
0.1x2k + x1k

−0.49 sin(x1k)− 0.1fdx2k + x2k

]

+

[
0
0.1

]

uk, (29)

where fd = 0.2 is the rotary inertia and frictional factor. Let the initial state be x0 =
[1,−1]T . The utility function is expressed as U(xk, uk) = xT

k Qxk + uT
kRuk, where

Q = I , R = I and I denotes the identity matrix with suitable dimensions. Choose
the critic and action networks as back propagation (BP) networks with the structures
of 3–12–1 and 2–12–1, respectively. We randomly choose p = 20000 training data to
implement the developed algorithm to obtain the optimal control law. For each itera-
tion step, the critic network and the action network are trained for 1000 steps using the
learning rate of αc = βa = 0.01 so that the neural network training error becomes less
than 10−5. Implementing the developedQ-learning based policy iteration adaptive dy-
namic programming algorithm for i = 25 iterations to reach the computation precision
ε = 0.01. The plots of the iterative functionQi(xk, vi(xk)) are shown in Fig. 1.

For nonlinear system (29), the iterative Q function is monotonically non-increasing
and converges to its optimum by the Q-learning based policy iteration ADP algorithm.
The corresponding iterative trajectories of system states and controls are shown in Figs.
2 and 3, respectively.
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Fig. 1. The plots of the iterativeQ function
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Fig. 2. The iterative state trajectories
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Fig. 3. The iterative control trajectories
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Fig. 4. The optimal state and control trajectories

From Figs. 2 and 3, we can see that the iterative system states and controls are both
convergent to their optimal ones. The nonlinear system (29) can be stabilized under an
arbitrary iterative control law vi(xk), where the stability properties of the developed
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Q-learning based policy iteration ADP algorithm can be verified. The optimal states
and control trajectories are shown in Fig. 4.

5 Conclusions

In this paper, an effective policy iteration adaptive dynamic programming algorithm
based onQ-learning is developed to solve optimal control problems for infinite horizon
discrete-time nonlinear systems. The iterative Q functions is proven to be monotoni-
cally non-increasing and converges to the optimum as the iteration index increases to
infinity. Finally, simulation results are presented to illustrate the performance of the
developed algorithm.
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Abstract. An adaptive neural network control approach is proposed for a class 
of stochastic nonlinear strict-feedback systems with unknown nonlinear func-
tion in this paper. Only one NN (neural network) approximator is used to tackle 
unknown nonlinear functions at the last step and only one actual control law 
and one adaptive law are contained in the designed controller. This approach 
simplifies the controller design and alleviates the computational burden. The 
Lyapunov Stability analysis given in this paper shows that the control law can 
guarantee the solution of the closed-loop system uniformly ultimate 
boundedness (UUB) in probability. The simulation example is given to illus-
trate the effectiveness of the proposed approach. 

Keywords: adaptive control, neural networks, stochastic nonlinear strict-
feedback system. 

1 Introduction 

Backstepping technique has been a powerful method for synthesizing adaptive con-
trollers for deterministic strict-feedback nonlinear systems, and some useful control 
schemes have been developed [1-3]. However, little attention has been paid to the 
stabilization problem for the stochastic nonlinear systems until recently. Efforts to-
ward stabilization of stochastic nonlinear systems have been initiated in the work of 
Florchinger [4]. By employing the quadratic Lyapunov functions and the Itô differen-
tiation rule Deng and Krstić[5] gave a backstepping design for stochastic strict-
feedback system with the form of quartic Lyapunov function. 

As well known, both neural network (NN) and fuzzy logic system (FLS) have been 
found to be particularly useful for controlling nonlinear systems with nonlinearly 
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parameterized uncertainties. The main advantage is that the unknown nonlinear  
functions can be approximated by the neural networks [6-8]. For simplifying the 
complexity of control design and alleviating the computation burden, numerous con-
trol approaches have been developed. For instance, Chen [9] and Li [10] introduced 
the adaptive neural network control schemes to the output-feedback stochastic nonlin-
ear strict-feedback systems, and only an NN to compensate for all upper bounding 
functions depending on the system output. A novel direct adaptive neural network 
controller was proposed to control a class of stochastic system with completely un-
known nonlinear functions in [11]. For the purpose of solving the problem of the ex-
plosion of neural network learning parameters, Yang et al. first solved the problem in 
their pioneering work [12], where the so-called “minimal learning parameter (MLP)” 
algorithm containing much less online adaptive parameters were constructed by fu-
sion of traditional backstepping technique and radial-basis-function (RBF) NNs. By 
combining dynamic surface control (DSC) and MLP techniques, Li et al in [13] first 
proposed an algorithm which can simultaneously solve both problems of the explo-
sion of learning parameters and the explosion of computation complexity. However, 
many approximators are still used to construct virtual control laws and actual control 
law and all the virtual control law also must be actually implemented in the process of 
controller design. In order to eliminate the complexity growing problem and deduce 
the computation burden mentioned above completely, Sun et al. proposed a new 
adaptive control design approach to handle the problems mentioned above [14], only 
one NN is used to approximate the lumped unknown function of the system.  

Motivated by the aforementioned discussion, in this paper, a single neural network 
approximation based adaptive control approach is presented for the strict-feedback 
stochastic nonlinear systems. The main contributions lie in the following: (i) only one 
NN is used to deal with those unknown system functions, those virtual control law are 
not necessary to be actually implemented in the process of control design; (ii) there is 
only one adaptive law proposed in this paper, which make the computational burden 
significantly alleviated and the control scheme more easily implemented in practical 
applications. 

2 Preliminaries and Problem Formulation 

Consider an n-dimensional stochastic nonlinear system 

 ( ) ( )dx f x dt x dwψ= +                           (1) 

where nx R∈  is the system state, w is an r-dimensional standard Brownian motion 
defined on the complete probability space ( )F PΩ， ，  with Ω  be a sample space, 

F  being a σ -field. ( ) : n nf x R R→ , ( ) : n n rx R Rψ ×→ are locally Lipschitz. 

In this paper, the following RBF NN will be used to approximate any unknown 
continuous function ( )h Z ，namely ( ) ( )T

nnh Z W S Z= , where q
ZZ R∈ Ω ⊂ is the 

input vector with q  being the input dimension of neural networks, 
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1 2[ ]T l
lW w w w R= ∈， ， ，  is the weight vector, 1l > is the neural networks node 

number, and [ ]1( ) ( ) ( )
T

lS Z s Z s Z= ， ，  means the basis function vector, ( )is Z  is 

the Gaussian function of the form 2
is ( ) exp ( ) ( )T

i iZ z zμ μ ς⎡ ⎤= − − −⎣ ⎦ , 1,2, ,i l= , 

where 1; 2[ , , , ]T
i i i iqμ μ μ μ= is the center of the receptive field and 0ς > are the 

width of the basis function. 
It has been proven that neural network can approximate any continuous function 

over a compact set q
Z RΩ ⊂ to arbitrary any accuracy such as 

*( ) ( ) ( )Th Z W S Z Zδ= + , where *W is the ideal constant weight vector and ( )Zδ  

denotes the approximation error and satisfies ( )Zδ ε≤ . 

Assumption 1 [15]. There exist constants mb and Mb such that for1 i n≤ ≤ , i
ix R∀ ∈ , 

( )0 m i i Mb g x b< ≤ ≤ < ∞ .  

Assumption 2. The desired trajectory signal ( )dy t  is continuous and bounded, and 

its time derivatives up to the nth  order are also continuous and bounded. 

Lemma 1 [16]. Consider the stochastic system (1). If there exists a positive definite, 
radially unbounded, twice continuously differentiable Lyapunov function 

: nV R R® , and constants 0 0a > , 0 0³g , such that 

0 0( ) ( )LV x a V x≤ − + g                             (2) 

Then, the system has a unique solution almost surely, and the system is bounded in 
probability. 

Consider the following stochastic nonlinear strict-feedback system 

 
1

1

( ( ) ( )) ( )

( ( ) ( )) ( )
i i i i i i i

n n n n n n

dx g x x f x dt x dw

dx g x u f x dt x dw

y x

ψ
ψ

+= + +⎧
⎪ = + +⎨
⎪ =⎩

        (3) 

where [ ]1

T n
nx x x R= ∈， ， ， u R∈ and y R∈ are the state variable，the control 

input, and the system output respectively, [ ]1

T i
i ix x x R= ∈， ， , ( )if ⋅ , 

( ) : i
ig R R⋅ → and ( ) : , ( 1, , )i r

i R R i nψ ⋅ → =  are unknown smooth nonlinear func-

tions with (0) 0if = , ( ) ( )0 0 1i i nψ = ≤ ≤ ( )1,2, ,i n= . 

3 Controller Design 

Step 1: Define the first error surface as 1 1 dz x y= − , where dy  is the desired trajecto-

ry. Its differential is 

 ( ) ( ) ( )1 1 1 2 1 1 1 1ddz g x x f x y dt x dwψ= + − +⎡ ⎤⎣ ⎦  (4) 
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Define the virtual controller 2α  as follows 

 2 1 1 1 1( , , )d dk z F x y yα = − −                              (5)  

where 1 0k >  is a positive real design constant, ( )1 1, ,d dF x y y is an unknown smooth 

function in the following form  

( ) ( ) ( ) ( ) 42
1 1 1 1 1 1 1

1 1

1 3
, ,

4d d dF x y y f x y l z x
g x

ϕ−⎡ ⎤= − +⎢ ⎥⎣ ⎦
              (6) 

where ( ) ( )1 1x xϕ ψ=  . Define the second error surface as 2 2 2z x α= − . Then, we 

have 

( ) ( )*
2 2 1 1 1 1, ,d d d dz x y k x y F x y y= − + − +                                 (7) 

where ( ) ( )*
1 1 1 1, , , ,d d d d dF x y y F x y y y= + . 

Step i  (2 1)i n≤ ≤ − : A similar procedure is recursively employed for each 

step i , from the former step, it can be obtained that 
( )( ) ( )( )1 1 1( 1) *

1 1 1
1

, , , ,
i j ii

i i d j j i j d i i d d d
j

z x y k k k x y F x y y y
− − −−

+ − −
=

= − + − +∑          (8) 

where 
( )( ) ( )( ) ( )( ) ( )1 2 1 1* *

1 1 2 1, , , , , , , , , , , ,i i i i
i i d d d i i i d d d i i d d d dF x y y y k F x y y y F x y y y y− − − −
− − − −= + +

             (9) 
The differential of 2z is 

( )
( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( )( )

( )
( ) ( )

1*
1 1

1 1
1

1

1 1 1
1

1*
1

1
1

, , , ,

           

, , , ,
           

j
i i i d d d

i i i i j j j j j
j j

ii j
i i d j j i j j j j j d

j

j
i i i d d d j

d i ij
j

d

F x y y y
dz g x x g x x f x

x

f x y k k k g x x f x y

F x y y y
y x dw

y
ϕ

−
− −

+ +
=

−

+ − +
=

−
−

−=

⎡ ∂
⎢= + +∑
⎢ ∂
⎣

+ − + + −∑

⎤∂
⎥+ +∑
⎥∂
⎦

       (10) 

where 

 ( ) ( ) ( )
( )( )

( ) ( )
1*

1 1

1 1 1
1 1

, , , , j
i i i i d d d

i i i i j j i j j j jj
j j

d

F x y y y
x x k k k x x

y
ϕ ψ ψ ψ

−
− −

+ − −= =

∂
= + +∑ ∑

∂
  

The virtual control law 1iα + is chosen as follows: 
( )( )1 , , , , i

i i i i i d d dk z F x y y yα + = − −                       (11) 

where ik  is a positive real design constant, ( )( ), , , , i
i i d d dF x y y y is an unknown 

smooth function in the following form 
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j

d

f x y k k k g x x f x y

F x y y y
y l z x

y
ϕ

−

+ − +
=

−
− − −

−=

+ − + + −∑

⎤∂
⎥+ +∑
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⎦

(12) 

Define the ( )1i + th error surface as 1 1 1i i iz x α+ + += − , Substituting 1iα +  into 1iz + , it 

can be obtained that 
( )( ) ( )( )1( ) *

1 1 1
1

, , , ,
i j ii

i i d j j i j d i i d d d
j

z x y k k k x y F x y y y−
+ + +

=
= − + − +∑          (13) 

where ( )( )* , , , , i
i i d d dF x y y y is also an unknown function in the following form 

( )( ) ( )( ) ( )( ) ( )1* *
1 1, , , , , , , , , , , ,i i i i

i i d d d i i i d d d i i d d d dF x y y y k F x y y y F x y y y y−
− −= + +  (14)  

Step n: The differential of nz  is 

( ) ( )
( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( )( )

( )
( ) ( )
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1 1

1
1

1

1 1 1
1
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n n i d d d

n n n n n j j j j j
j j

nn j
d j j n j j j j j d

j

j
n n i d d d j

d n nj
j

d

F x y y y
dz g x u f x g x x f x

x

y k k k g x x f x y

F x y y y
y x dw

y
ϕ

−
− −

+
=

−

+ − +
=

−
−

−=

⎡ ∂
⎢= + + +∑
⎢ ∂
⎣

− + + −∑

⎤∂
⎥+ +∑
⎥∂
⎦

(15) 

where 

( ) ( ) ( )
( )( )

( ) ( )
1*

1 1

1 1 1
1 1

, , , , j
n n n i d d d

n n n n j j n j j j nj
j j

d

F x y y y
x x k k k x x

y
ϕ ψ ψ ψ

−
− −

+ − −= =

∂
= + +∑ ∑

∂
 

Chose the desired control law as  

( )( ) ( )( )1 1* ( 1) *
1 1

1
, , , ,

n j nn
n n d j j n j d n n d d d

j
u k x y k k k x y F x y y y

− −−
+ −

=

⎡ ⎤= − − + − −∑⎢ ⎥⎣ ⎦
   (16) 

where
( )( ) ( )( ) ( )( ) ( )1* *

1 1, , , , , , , , , , , ,n n n n
n n d d d n n n d d d n n d d d dF x y y y k F x y y y F x y y y y−

− −= + + is 

an unknown smooth function. Where nk  is a positive real design constant, 
( )( ), , , , n

n n d d dF x y y y is an unknown smooth function in the following form 
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   (17) 

Since function ( )( )* , , , , n
n n d d dF x y y y is unknown, an RBF neural network can be 

used to approximate it. That is  

( )( ) ( )( )* *, , , , , , , ,n nT
n n d d d n d d dF x y y y W S x y y y ε= +            (18) 

Then the actual control law u is chosen as follows: 

( )( ) ( )( )1 1( 1)
1 1

1

ˆ , , , ,
n j nn T

n n d j j n j d n d d d
j

u k x y k k k x y W S x y y y
− −−

+ −
=

⎡ ⎤= − − + − −∑⎢ ⎥⎣ ⎦
   (19) 

whereŴ  is the estimation of *W and is updated as follows: 

( )( )( )3
1

ˆ ˆ, , , , n
n d d dW z S x y y y Wγ= Γ −                    (20) 

with a constant matrix 0TΓ = Γ > , and a real scalar 0γ > . 

4 Stability Analysis 

Theorem 1. Consider the system (3), and the above closed-loop systems, according to 
lemma 1, for any initial condition satisfying 

 4 1
1 0

1
(0)

2
Tn

i iz W W M−
=

⎧ ⎫Π = + Γ <∑⎨ ⎬
⎩ ⎭

                (21) 

 where 0M  is any positive constant, then there exist the control parameters ik , Γ and 

γ such that all the signals in the closed-loop system are UUB in forth moment. More-

over, the ultimate boundedness of the above closed-loop signals can be tuned arbitrar-
ily small by choosing suitable design parameters.  

 
Proof: Consider the following Lyapunov function candidate 

 4 1

1

1 1

4 2

n
T

i
i

V z W W−

=
= + Γ∑                       (22)  

According to the Itô’s differential rules and Young inequality, together with equations 
(19) and (20), the differential of the above functionV  can be found as follows  
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where ( )( ), , , , n
n d d dS x y y y χ≤ [17], W ϖ≤ .  

Choosing the positive constants as 

4

3
1 1

1

4

3

3 3

4 4

3 1
      2, , 1

4 4

3 3 1

4 4 4

m

i m M

n n m M

c k b

c k b b i n

c k b b

χ

χ

⎧ ⎛ ⎞⎪ = − −⎜ ⎟
⎝ ⎠⎪

⎪⎪ ⎛ ⎞= − − = −⎨ ⎜ ⎟
⎝ ⎠⎪
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                   (24) 

Define a positive constant { }0 min 4 ,ia c r= . It follows from Equation (27) that 

LV aV D≤ − +                                  (25) 

where  

( )2 4* 2 4

1

1 3 1 1
1

2 4 4 4

n

i M M
i

D W l b bϖ ε
=

= + + + + +∑                (26) 

From Equation (25) we can clearly observe that the first term is negative definite and 
the second term D is a positive constant. 

Furthermore, it follows from (25) that 

[ ] ( )0( ) (0) a t tD D
E V t V e

a a
− −⎛ ⎞≤ − +⎜ ⎟

⎝ ⎠
                     (27) 

According to lemma 2 the above analysis on the closed-loop system means that all the 
signals in the system (3) are UUB in the sense of probability. Furthermore, for 

any 1 0D aζ > , there exists a constant 0T > , such that ( )1 1z t ζ≤  for all 0t t T≥ + . 

Since 0D a  can be made arbitrarily small if the design parameters are chosen ap-

propriately, thus, for any given 1ζ , one has ( )1 1limt z t ζ→∞ ≤ . That is to say, by ad-

justing the design parameters, the tracking error can be made arbitrarily small.  
The proof is thus completed.                □ 

5 Simulation Example 

Consider the following third-order stochastic nonlinear system 
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( )
( )

( )( )
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3

2 3
1 1 2 1 1 1

0.52
2 2 3 2 1 2

3 2 3 1 2 3 1

1

1 sin

1 cos

3 cos 3

x

x

dx x x x x x dw

dx x x x e x x dw

dx x x u x x x x e dw

y x

−

−

⎧ = + + +
⎪
⎪ = + + +⎪
⎨
⎪ = + + +
⎪

=⎪⎩

                                (28)   

Based on the adaptive NN controller design proposed in section 3, the true control  
law are designed and the adaptive law. In applied mathematics, the Wiener  
process can be described as the integral form of Gauss white noise, which has  
two main parameters, i.e., mean and variance. We choose the neuron's center and 
variance as { }5,5−  { }5,5× − { }5,5× − { }5,5× − { }5,5× − and 1 respectively. If we 

chose the desired trajectory sin( )dy t= , the suitable parameters were chosen 

as 1 35k = , 2 2.5k = , 3 100k = , 0.05Γ = , 100γ = , The initial conditions are given 

by 1 2 3[ (0), (0), (0)] [0.8,0.4,0.5]T Tx x x = and the initial weight vector ˆ (0) 0.5W = .The 

simulation results are shown in Figs.1~4. 

 

    
    Fig. 1. The output y , the reference signal dy          Fig.2. The control input u  

 

 
         Fig.3. The state of 2x and 3x                   Fig.4. The adaptive law Ŵ  
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6 Conclusion 

In this paper, An adaptive NN controller has been proposed for a class of stochastic 
nonlinear strict-feedback systems. Using the proposed technique we can alleviate the 
computational burden and simplify the designed controller. Only one neural network 
is used to compensate the lumped unknown function at the last step. The closed-loop 
system has been proved UUB. The effectiveness of the proposed approach has been 
verified by the simulation example. 
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Abstract. In this paper, the H∞ optimal control for a class of
continuous-time nonlinear systems is investigated using event-triggered
method. First, the H∞ optimal control problem is formulated as a two-
player zero-sum differential game. Then, an adaptive triggering condition
is derived for the closed loop system with an event-triggered control pol-
icy and a time-triggered disturbance policy. For implementation purpose,
the event-triggered concurrent learning algorithm is proposed, where only
one critic neural network is required. Finally, an illustrated example is
provided to demonstrate the effectiveness of the proposed scheme.

1 Introduction

From the perspective of minmax optimization problem, the H∞ control prob-
lem can be formulated as a two-player zero-sum differential game [1]. In or-
der to obtain a controller that minimizes a cost function in the presence of
worst-case disturbances, ones need to find the Nash equilibrium solution by
solving the Hamilton-Jacobi-Isaacs (HJI) equation. Several reinforcement learn-
ing (RL) methods [2–4] have been successfully applied to solve the HJI equation
for discrete-time systems [5] and continuous-time systems [6, 7].

Due to the capability of computation efficiency, event-triggered control method
has been integrated with the RL approach recently [8,9]. In the event-triggered
control method, the controller is updated based on a new sampled state only
when an event is triggered at event-triggering instants. This can reduce the
communication between the plant and the controller significantly. In [10], an op-
timal adaptive event-triggered control algorithm was implemented based on an
actor-critic structure for continuous-time nonlinear systems. On the other hand,
the concurrent learning technique, which can relax the traditional persistency of
excitation (PE) condition, was proposed for an uncertain system in [11]. In [12],
a related idea called experience replay was adopted in Integral reinforcement
learning (IRL) algorithm for constrained-input nonlinear systems.

To the best of our knowledge, there are no results on event-triggered H∞
control of nonlinear system via concurrent learning. This is the motivation of our
research. In this paper, the H∞ control problem is described as a two-player zero-
sum differential game and an online event-triggered concurrent learning (ETCL)

� Corresponding author.

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 62–70, 2015.
DOI: 10.1007/978-3-319-25393-0�8
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algorithm is proposed to approximate the optimal control policy. Simulation
results show the effectiveness of the proposed scheme.

2 Problem Statement

Consider the following nonlinear system with external disturbance:

ẋ(t) = f(x) + g(x)u(t) + k(x)w(t) , (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, w ∈ Rq is
the nonlinear perturbation with w(t) ∈ L2(0,∞). f(·) ∈ Rn, g(·) ∈ Rn×m and
k(·) ∈ Rn×q are smooth nonlinear dynamics. Assume that f(x)+ g(x)u+ k(x)w
is Lipschitz continuous on a compact set Ω ⊆ Rn with f(0) = 0. Let x(0) = x0

be the initial state. Assume that w(0) = 0, so that x = 0 is an equilibrium of
system (1). It is assumed that the system (1) is controllable.

Here, we introduce a sampled-data system that is characterized by a mono-
tonically increasing sequence of event-triggering instants {λj}∞j=0, where λj is
the jth consecutive sampling instant with λj < λj+1. Define the event-trigger
error between the current state x(t) and the sampled state x̂j as follows

ej(t) = x̂j − x(t), ∀t ∈ [λj , λj+1) . (2)

In the event-triggered control mechanism, the event-triggering condition is de-
termined by the event-trigger error and a state-dependent threshold. When the
event-triggering condition is not satisfied at t = λj , we say an event is triggered.
Then, the system state is sampled that resets the event-trigger error ej(t) to
zero, and the controller υ(x̂j) is updated based on the new sampled state. Note
that υ(x̂j) is a function of the event-based state vector. The obtained control se-
quence {υ(x̂j)}∞j=0 becomes a continuous-time input signal υ(t) = {υ(x̂j , t)}∞j=0

after using a zero-order hold (ZOH). In order to simplify the expression, we use
υ(x̂j) to represent υ(x̂j , t) for t ∈ [λj , λj+1) in the following presentation.

Similar to the traditional H∞ problem, our primary objective is to find a
sequence of control inputs {υ(x̂j)}∞j=0, which for some prescribed γ > 0, renders

J(x0, υ(x̂j), w) =
∑

U
j
[λj ,λj+1)=[0,∞)

∫ λj+1

λj

r(x, υ(x̂j), w)dt (3)

nonpositive for all w(t) ∈ L2[0,∞) and x(0) = 0, where utility r(x, υ(x̂j), w) =
xTQx+υT (x̂j)Rυ(x̂j)−γ2‖w(t)‖2, Q and R are symmetric and positive definite
matrices, and γ ≥ γ∗ ≥ 0. Here, γ∗ is the smallest γ such that the system (1) is
stabilized. The quantity γ∗ is known as the H-infinity gain.

3 Event-Triggered Optimal Controller Design

In this section, the H∞ control problem is formulated as a two-player zero-sum
differential game, where the control input u is a minimizing player while the
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disturbance w is a maximizing one. It is well known that the solution of H∞
control problem is the zero-sum game theoretic saddle point (u∗, w∗), where u∗

and w∗ are the optimal control and the worst-case disturbance.
In the time-triggered case, the value function is generally defined as

V (u,w) =

∫ ∞

t

(
xTQx+ uTRu− γ2‖w‖2) dτ . (4)

The corresponding nonlinear zero-sum Bellman equation is

r(x, u, w) + (∇V )T (f(x) + g(x)u + k(x)w) = 0 , (5)

where ∇V = ∂V (x)/∂x is the partial derivative of the value function with respect
to the state. Then, the two-player zero-sum game has a unique solution if a
saddle point (u∗, w∗) exists, that is if the Nash condition holds

min
u

max
w

V (u,w) = max
w

min
u

V (u,w) . (6)

Define the Hamiltonian of the time-triggered problem

H(x,∇V, u, w) = (∇V )T (f + gu+ kw) + xTQx+ uTRu− γ2‖w‖2 . (7)

Then the associated HJI equation can be written as

min
u

max
w

H(x,∇V ∗, u, w) = 0 , (8)

where the optimal value function V ∗ is the solution to the HJI equation. The
associated control and disturbance policies are given as follows:

u∗(t) = −1

2
R−1gT (x)∇V ∗ . (9)

w∗(t) =
1

2γ2
kT (x)∇V ∗ . (10)

In the event-triggered case, the control input is updated based on the sampled-
state information x̂j instead of the real state x(t). Hence, (9) becomes

υ∗(x̂j) = −1

2
R−1gT (x̂j)∇V ∗(x̂j), ∀t ∈ [λj , λj+1) , (11)

where ∇V ∗(x̂j) = ∂V ∗(x̂j)/∂x(t). By using (10) and (11), the event-triggered HJI
equation can be written as

(∇V ∗)T f(x) + xTQx− 1

2
(∇V ∗)T g(x)R−1gT (x̂j)∇V ∗(x̂j)

+
1

4
(∇V ∗(x̂j))

T g(x̂j)R
−1gT (x̂j)∇V ∗(x̂j) +

1

4γ2
(∇V ∗)Tk(x)kT (x)∇V ∗ = 0 .

(12)
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Assumption 1. The controller u(x) is Lipschitz continuous with respect to the
event-trigger error,

‖u(x(t))− u(x̂j)‖ = ‖u(x(t))− u(x(t) + ej(t))‖ ≤ L‖ej(t)‖ , (13)

where L is a positive real constant and u(x̂j) = υ(x̂j).

Theorem 1. Suppose that V ∗(x) is the solution of the event-triggered HJI equa-
tion (12). For ∀t ∈ [λj , λj+1), j = 0, ...,∞, the disturbance policy and control pol-
icy are given by (10) and (11), respectively. If the triggering condition is defined
as follows

‖ej(t)‖2 ≤ eT =
(1− β2)

L2‖s‖2 θ(Q)‖x‖2

+
1

L2
‖υ(x̂j)‖2 − γ2

L2‖s‖2 ‖w(t)‖
2 ,

(14)

where eT is the threshold, θ(Q) is the minimal eigenvalue of Q, β ∈ (0, 1) is a
designed sample frequency parameter and sT s = R. Then the closed-loop system
(1) is asymptotically stable.

Remark 1: The event-trigger instants {λj}∞j=0 is determined by the triggering
condition (14). Based on the event-triggered mechanism, an event is generated
by the violation of the triggering condition. Note that this method can reduce
the communication between the controller and the plant effectively. On the other
hand, the sample frequency can be adjusted by the designed parameter β in the
triggering condition (14). When β is close to 1 one samples more frequently
whereas when β is close to zero, the sampling periods become longer.

4 Online Neuro-Optimal Control Scheme

In this section, an online event-triggered concurrent learning (ETCL) algorithm
is proposed, where only one critic neural network is required.

According to the Weierstrass high-order approximation theorem, the value
function based on NN can be written as

V (x) = WT
c φ(x) + ε , (15)

where Wc ∈ RN and φ(x) ∈ RN are the critic NN ideal weights and activation
function vector, with N the number of hidden neurons, and ε ∈ R the critic NN
approximation error.

The derivative of (15) with respect to x can be given by

∇V (x) = ∇φT (x)Wc +∇ε . (16)

Then, the zero-sum Bellman equation (5) can be rewritten as

xTQx+υT (x̂j)Rυ(x̂j)−γ2‖w(t)‖2+WT
c ∇φ(f(x)+g(x)υ(x̂j)+k(x)w(t)) = εH ,

(17)
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where the residual error is εH = −(∇ε)T (f(x) + g(x)υ(x̂j) + k(x)w(t)). Under
the Lipschitz assumption on the system dynamics, the residual error is bounded
locally. It is shown in [7] that this error converges uniformly to zero as the
number of hidden-layer units increases. That is, there exists εHmax > 0 such
that ‖εH‖ ≤ εHmax.

Let Ŵc be the estimation of the unknown ideal weight vector Wc. The actual
output of critic NN can be presented as

V̂ (x) = ŴT
c φ(x) . (18)

Accordingly, the time-triggered disturbance policy (10) and event-triggered con-
trol policy (11) can be approximated by

ŵ(t) =
1

2γ2
kT (x)φT (x)Ŵc . (19)

υ̂(x̂j) = −1

2
R−1gT (x̂j)φ

T (x̂j)Ŵc(x̂j) . (20)

where Ŵc(x̂j) is the event-based estimation of ideal weight Wc. Then the closed-
loop system dynamics (1) can now be written as

ẋ = f(x) + g(x)υ̂(x̂j) + k(x)ŵ(t), t ≥ 0 . (21)

The approximate Hamilton function is

Ŵ T
c ∇φ(x)f + xTQx− 1

2
Ŵ T

c ∇φ(x)g(x)R−1gT (x̂j)∇φT (x̂j)Ŵc(x̂j) +
1
4
Ŵ T

c (x̂j)×
∇φ(x̂j)g(x̂j)R

−1gT (x̂j)∇φT (x̂j)Ŵc(x̂j) +
1

4γ2 Ŵ
T
c ∇φ(x)k(x)kT (x)∇φT (x)Ŵc = e .

(22)

where e is a residual equation error.
Based on concurrent learning, the critic NN’ weights can be updated by

recorded data concurrently with current data. Define the residual equation error
at time tk as

e(tk) = r (tk) + ŴT
c (t)σk . (23)

where r(tk) = xT (tk)Qx(tk) + υ̂T (x̂j)Rυ̂(x̂j) − γ2‖ŵ(t)‖2, σk = ∇φ(x(tk))
(f(x(tk))+g(x(tk))υ̂(x̂j)+k(x(tk))ŵ(t))) are stored data at time tk ∈ [λj , λj+1),
k ∈ {1, ..., p}, j = 0, 1...,∞, and p is the number of stored samples.

Condition 1: Let M = [σ1, ..., σp] be the recorded data corresponding to the
critic NN’s weights. Then M contains as many linearly independent elements as
the number of corresponding critic NN’s hidden neurons, i.e., rank(M) = N .

To derive the minimum value of e, it is desired to choose Ŵc to minimize
the corresponding squared residual error E = 1

2e
T e. Considering the concurrent

learning, we develop a novel weight update law for the critic NN

˙̂
Wc = −ασ

(
σT Ŵc(t) + r(x, υ̂(x̂j), ŵ(t))

)
− α

p∑

k=1

σk

(
σT
k Ŵc(t) + r(tk)

)
. (24)

where σ = ∇φ(x) (f(x) + g(x)υ(x̂j) + k(x)w), σk is defined in (23), k ∈ {1, ..., p}
denote the index of a stored data point, and α > 0 denote the learning rate.
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Remark 2: The online algorithm presented in this paper dose not rely on
traditional PE condition which is difficult to check online. According to [11], the
second term in (24) can be utilised to relax the PE condition with Condition 1.

By defining the weight estimation error of the critic NN as W̃c = Wc − Ŵc

and taking the time derivative one has

˙̃Wc = −ασ
(
σT W̃c − εH

)
− α

p∑

k=1

σk

(
σT
k W̃c − εH(tk)

)
. (25)

Assumption 2. a. The critic NN activation function and its gradient are
bounded, i.e., ‖ φ(x) ‖≤ φM and ‖ ∇φ(x) ‖≤ ∇φM , with φM , ∇φM being
positive constants.

b. The system dynamics g(x) and k(x) are upper bounded by positive constants
such that ‖g(x)‖ ≤ gM and ‖k(x)‖ ≤ kM .

Theorem 2. Consider the nonlinear two-player zero-sum game (1) with the
critic neural network (18), the time-triggered disturbance policy (19) and the
event-triggered control policy (20). The tuning law based on concurrent learning
technique for the continuous-time critic neural network is given by (24). Then
the system is asymptotically stable and the critic weight estimation error is guar-
anteed to be Uniformaly Ultimately Bounded (UUB) if the adaptive triggering
condition

‖ej(t)‖2 ≤(1− β2)

L2‖s‖2 θ(Q)‖x‖2 + 1

4L2‖R‖2 ‖g
T (x̂j)φ

T (x̂j)

× Ŵc(x̂j)‖2 − 1

4γ2L2‖s‖2 ‖k
T (x)φT (x)Ŵc(t)‖2

(26)

and the following inequality are satisfied

‖W̃c‖ >

√

a2
∑p+1

k=1 ε
2
Hmax

4(a− 1) (θ(M) +
∑p

k=1 θ(Mk))

Δ
= BM (27)

for the critic network and a > 1.

Remark 3: Note that the triggering condition (26) is adaptive, because the
threshold is designed as function of the system state vector and the critic NN
weight estimates. The controller is adjusted with events.

Then we give the structure diagram of the online ETCL algorithm for two-
player zero-sum game in Fig. 1.

5 Simulation

Consider the continuous-time F16 aircraft plant [7]:

ẋ =

⎡

⎣
−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

⎤

⎦x+

⎡

⎣
0
0
1

⎤

⎦u+

⎡

⎣
1
0
0

⎤

⎦w
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Nonlinear 
System
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Network

x t
Trigger 

Mechanism(26)
ˆ jx
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Policy (20)

Disturbance 
Policy (19)

Record
State Data

Eq.(24)

ˆ jx

ZOH

w t

ˆ ,jx t

V̂

V̂

ˆˆ
jxV

Fig. 1. Structure diagram of the ETCL algorithm for two-player ZS game
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Fig. 2. (a) Evolution of system states. (b) Convergence of the critic parameters.
(c) Triggering threshold eT and ‖ej(t)‖2. (d) Sampling period.

Let Q and R be identity matrices with approximate dimensions, and γ = 5.
Choose the critic NN activation function as φ(x) = [x2

1 x1x2 x1x3 x2
2 x2x3 x2

3]
T .

According to [8], the ideal values of the NN weights are Wc = [1.6573 2.7908 −
0.3322 1.6573 − 0.3608 0.4370]T . Select the initial state as x0 = [1,−1, 1]T ,
and α = 15, p = 10, L = 3, β = 0.8. During the learning process, a probing
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noise is added to the control input and disturbance for the first 400s. Fig. 2(a)
presents the evolution of the system states. Fig. 2(b) shows the convergence
of the critic parameters. After 100s the critic parameters converged to Ŵc =
[1.6563 2.7788 − 0.3389 1.6490 − 0.3615 0.4354]T which are nearly the ideal
values above. In Fig. 2(c), one can see that the event-trigger error converges
to zero as the states converge to zero. The sampling period during the event-
triggered learning process for the control policy is provided in Fig. 2(d). In
particular, the event-triggered controller uses 1055 samples of the state while the
time-triggered controller uses 50000 samples, which means the event-triggered
method improved the learning process.

Select a disturbance signal with t0 = 5 as

w (t) =

{
8e−(t−t0) cos (t− t0) , t ≥ t0
0, t < t0

(28)

Fig. 3 shows the system state trajectories and the event-triggered control in-
put with the H∞ event-triggered controller. These simulation results verify the
effectiveness of the developed control approach.
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Fig. 3. (a) Closed-loop system states. (b) Event-triggered control input

6 Conclusion

In this paper, we propose an online ETCL algorithm to solve the HJI equation of
H∞ control problem for nonlinear system. The H∞ control problem is described
as a two-player zero-sum game, where the control is a minimizing player and the
disturbance is a maximizing one. With an event-triggered control policy and a
time-triggered disturbance policy, the online ETCL algorithm is presented. For
implementation purpose, only one critic NN is used to approximate the value
function, the optimal control and disturbance policies. Furthermore, a novel critic
tuning law based on concurrent learning technique is given, which can relax the
traditional PE condition. In our future work, we will develop an online ETCL
algorithm for the unknown two-player zero-sum game system.
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Abstract. In this paper, an observer-based adaptive control scheme for
a class of nonlinear systems with parametric uncertainties is proposed.
The adaptive observers using parameter estimates ensure the identifica-
tion errors of system states are convergent to zero, and force the parame-
ter estimates approach to the true values especially if the observer gains
are selected large enough. By combining the Lyapunov synthesis with
backstepping framework, the global asymptotical stability and bounded
signals of the resulting closed-loop system can be ensured. A numerical
example is employed to demonstrate the effectiveness of the proposed
adaptive control scheme.

Keywords: Adaptive Control, Uncertain Nonlinear Systems, Unknown
Dynamics, Nonlinear Observer.

1 Introduction

Adaptive control of nonlinear systems with uncertainties and/or unknown dy-
namics has always been a challenging issue in the field of control community. In
the early stage, the feedback linearization technique plays a significant role in the
control of nonlinear systems which are feedback linearizable, and thereby leading
to an iterative design called backstepping [1]. Instead of the feedback cancella-
tion, a domination approach, called adding a power integrator [2], is developed to
stabilize nonlinear systems which are unnecessarily feedback linearizable. In this
context, the development of backstepping-based and adding-a-power-integrator-
based techniques provides powerful tools for control synthesis of nonlinear sys-
tems excluding uncertainties and unknown dynamics. It should be noted that
the foregoing methods require exact knowledge of system dynamics or bounding
functions of homogeneous conditions.

However, it is impossible to acquire exact model dynamics of any nonlinear
system. In this context, uncertainties and unknown dynamics need to be allowed
in the controller design for nonlinear systems. Actually, system uncertainties
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and/or unknown dynamics are usually assumed to be linearly or nonlinearly
parameterized, and even totally unknown continuous functions.

For linearly parameterized uncertainties, unknown parameters are updated by
various adaptive laws derived from Lyapunov approach. It should be noted that
the adaptation of parameters towards the true values would be stopped once the
system states are stabilized, and cannot ensure the convergence of estimate error
to the origin. Under some restrictions, nonlinearly parameterized problems can
be transformed into linearly parameterized cases which can be solved by vari-
ous backstepping-based or adding-a-power-integrator-based frameworks together
with adaptive laws for unknown parameters [3]. To be specific, a parameter sepa-
ration principle is proposed to realize smooth [4] and nonsmooth [5] solutions for
adaptive control of nonlinear systems with nonlinearly parameterized dynamics.
However, the centralized parameter would inevitably suffer from conservative
upper bound, and thereby resulting in high-gain feedback control signals. Al-
though a universal adaptive control scheme for a triangular system satisfying
linear growth condition is proposed in [6], a monotone non-decreasing function
is required to significantly suppress the unknown growth rate, and thereby al-
ways leading to conservatively large control signals and non-zero estimate errors
of unknown constant.

If uncertainties are considered as totally unknown nonlinear functions, linear-
in-parameter or nonlinear-in-parameter approximators, e.g. fuzzy logic systems
[7,8], fuzzy/neural networks [9,10,11,12], are usually used to identify unknown
dynamics by employing linear or nonlinear parameters with adaptive laws. In
this context, the foregoing case would fall into linearly or nonlinearly parame-
terized dynamics together with approximation residuals. It still suffers from the
deficiency that the convergence of adaptive parameters to the origin can not be
guaranteed, and only uniformly ultimately bounded regulation or tracking errors
can be obtained.

In this paper, auxiliary observers of system states are designed by employ-
ing adaptive parameters, and are incorporated into adaptive controller synthesis
for a class of nonlinear systems with parameterized uncertainties. In this con-
text, estimate errors of system states can render the convergence of parameter
estimates approach to the true values especially if observer gains are selected
large enough. By using the Lyapunov approach, global asymptotical stability
and bounded signals of the resulting closed-loop system can be guaranteed.

2 Problem Formulation

We consider a class of nonlinear system with parameterized unknown dynamics
as follows:

ẋi = xi+1 + θθθTi fi(x1, · · · , xi), i = 1, 2, · · · , n
y = x1 (1)

where x = [x1, · · · , xn]
T ∈ R

n are the states, u � xn+1 ∈ R is the control input,
fi(·) = [fi,1, · · · , fi,si ]T ∈ R

si is a vector of any continuous nonlinearities, and
θθθi = [θi,1, · · · , θi,si ]T ∈ R

si is a vector of unknown constant parameters.



Adaptive Control of a Class of Nonlinear Systems 73

Remark 1. In the nonlinear system (1), unknown dynamics are assumed to be
parameterized by θθθTi fi(x1, · · · , xi). Actually, this point is reasonable in practice
since unknown dynamics and/or uncertainties can be decomposed into a set of
weighted basis nonlinearities. Moreover, from the viewpoint of approximation
theory, any continuous function can be approximated by a polynomial with high
enough order to any accuracy.

Remark 2. For nonlinear systems with unknown dynamics and/or uncertainties

like system (1), there still exists an open issue that parameter estimates θ̂θθi are
unnecessarily convergent to the true values θθθi although the output y = x1 is
stabilized to the origin.

Example 1. Considering a simple nonlinear system as follows:

ẋ = u+ θx2 (2)

where θ is an unknown parameter. A traditional adaptive controller can be
obtained as follows:

u = −x− θ̂x2 (3)

˙̂
θ = x3 (4)

and can stabilize x to the origin. However, the parameter estimate θ̂ would be
denied to update as x = 0.

Since unknown parameters θθθi ∈ R
si can be any real values, we straightfor-

wardly make a minor assumption on basis nonlinearities fi(x1, · · · , xi) ∈ R
si as

follows:

Assumption 1. In the nonlinear system (1), basis nonlinearities fi(x1, · · · , xi),
i = 1, 2, · · · , n satisfy

{
fi,ji(xi) > 0, ∀ xi ∈ R

i \ 0
fi,ji(xi) = 0, xi = 0

ji = 1, 2, · · · , si (5)

where xi = [x1, · · · , xi]
T .

In this context, our objective in this paper is to design a novel adaptive control
law for the system (1) such that not only the system (1) can be stabilized but

also parameter estimates θ̂θθi are able to converge to the true values.

3 Main Result

In this section, we present the main result on designing an adaptive controller
with parameter estimates converging to the true values for system (1) and cor-
responding stability analysis of the closed-loop system.
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Fig. 1. Block diagram of the observer-based adaptive backstepping.

3.1 Adaptive Controller Design

By recursively combining adaptive observers of system states with backstepping
technique, an adaptive controller shown in Fig. 1 for the nonlinear system (1) is
explicitly designed as follows.

Step 1: Consider the system (1) with dimension n = 1 and design an observer
of state x1 as follows:

˙̂x1 = x2 + θ̂θθ
T

1 f1(x1) + kT
1 f1(x1) (x1 − x̂1) (6)

where k1 = [k1,1, · · · , k1,s1 ]T , k1,j1 > 0 and θ̂θθ1 ∈ R
s1 is the estimate of θθθ1.

Let ξ1 = x1, x̃1 = x1 − x̂1 and θ̃θθ1 = θθθ1 − θ̂θθ1, we have

ξ̇1 = x2 + (θ̃θθ1 + θ̂θθ1)
T f1(x1) (7)

Choose the virtual control (VC) x∗
2 as follows:

x∗
2 = −λ1ξ1 − θ̂θθ

T

1 f1(x1) (8)

with the adaptive law (AL) for θ̂θθ1 given by

˙̂
θθθ1 = γ1 (ξ1 + x̃1) f1(x1) (9)

where λ1 > 0, γ1 > 0 are user-defined parameters, and the observer error (OE)
x̃1 is determined by

˙̃x1 = (θ̃θθ
T

1 − kT
1 x̃1)f1(x1) (10)

˙̃
θθθ1 = −γ1 (ξ1 + x̃1) f1(x1) (11)

where ξ1 = x1.
Step i (2 ≤ i ≤ n− 1): Consider the observer of state xi as follows:

˙̂xi = xi+1 + θ̂θθ
T

i fi(x1, · · · , xi) + kT
i fi(x1, · · · , xi) (xi − x̂i) (12)

where ki = [ki,1, · · · , ki,si ]T , ki,ji > 0 and θ̂θθi ∈ R
si is the estimate of θθθi.
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Let ξi = xi − x∗
i , x̃i = xi − x̂i and θ̃θθi = θθθi − θ̂θθi, we have

ξ̇i = xi+1 + (θ̃θθi + θ̂θθi)
T fi(x1, · · · , xi)− ẋ∗

i (13)

Choose the virtual control (VC) x∗
i+1 as follows:

x∗
i+1 = −ξi−1 − λiξi − θ̂θθ

T

i fi(x1, · · · , xi) + ẋ∗
i (14)

with the adaptive law (AL) for θ̂θθi given by

˙̂
θθθi = γi (ξi + x̃i) fi(x1, · · · , xi) (15)

where λi > 0, γi > 0 are user-defined parameters, and the observer error (OE)
x̃i is determined by

˙̃xi = (θ̃θθ
T

i − kT
i x̃i)fi(x1, · · · , xi) (16)

˙̃
θθθi = −γi (ξi + x̃i) fi(x1, · · · , xi) (17)

where ξi = xi − x∗
i .

Step n: Consider the observer of state xn as follows:

˙̂xn = u+ θ̂θθ
T

n fn(x1, · · · , xn) + kT
n fn(x1, · · · , xn) (xn − x̂n) (18)

where kn = [kn,1, · · · , kn,sn ]T , kn,jn > 0 and θ̂θθn ∈ R
sn is the estimate of θθθn.

Let ξn = xn − x∗
n, x̃n = xn − x̂n and θ̃θθn = θθθn − θ̂θθn, we have

ξ̇n = u+ (θ̃θθn + θ̂θθn)
T fn(x1, · · · , xn)− ẋ∗

n (19)

Choose the final control u as follows:

u = −ξn−1 − λnξn − θ̂θθ
T

n fn(x1, · · · , xn) + ẋ∗
n (20)

with the adaptive law (AL) for θ̂θθn given by

˙̂
θθθn = γn (ξn + x̃n) fn(x1, · · · , xn) (21)

where λn > 0, γn > 0 are user-defined parameters, and the observer error (OE)
x̃n is determined by

˙̃xn = (θ̃θθ
T

n − kT
n x̃n)fn(x1, · · · , xn) (22)

˙̃
θθθn = −γn (ξn + x̃n) fn(x1, · · · , xn) (23)

where ξn = xn − x∗
n.
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Fig. 2. Block diagram of observer error dynamics in (31) and (32).

3.2 Stability Analysis

The key result for stability analysis of the resulting closed-loop system is stated
here.

Theorem 1. Consider the nonlinear system (1) under Assumption 1, together
with the state observers (6), (12) and (18), the adaptive controller (20) and
adaptive laws (9), (15) and (21) driven by (10)–(11), (16)–(17) and (22)–(23)
respectively, then ξi and x̃i, i = 1, 2, · · · , n globally asymptotically converge to

zero, and θ̂θθi can also converge to the true value θθθi if ki is large enough.

Proof. Substituting (14) into (13) yields

ξ̇i = −ξi−1 − λiξi + ξi+1 + θ̃θθ
T

i fi(x1, · · · , xi) (24)

where ξ0 = 0 and ξn+1 = 0.
Together with error dynamics in (16) and (17), we consider the following

Lyapunov candidate:

V =
1

2

n∑

i=1

(
ξ2i + x̃2

i + γ−1
i θ̃θθ

T

i θ̃θθi

)
(25)

Differentiating V along error dynamics in (24), (16) and (17) yeilds

V̇ =

n∑

i=1

ξi

(
−ξi−1 − λiξi + ξi+1 + θ̃θθ

T

i fi(x1, · · · , xi)
)

+

n∑

i=1

x̃i(θ̃θθ
T

i − kT
i x̃i)fi(x1, · · · , xi)

+
n∑

i=1

θ̃θθ
T

i (ξi + x̃i) fi(x1, · · · , xi)

=−
n∑

i=1

λiξ
2
i −

n∑

i=1

x̃2
ik

T
i fi(x1, · · · , xi) (26)

By Assumption 1, we have

V̇ ≤ −α

2

n∑

i=1

(
ξ2i + x̃2

i

)
(27)
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where α = mini

{
λi,k

T
i fi(·)

}
. It implies that ξi and x̃i, i = 1, 2, · · · , n globally

asymptotically converge to zero. Namely, the closed-loop system is globally sta-
bilized and observer errors approach to zero. Together with (17), we have the

estimate error θ̃θθi is bounded and converge to a constant.
Moreover, by (16), we have

˙̃xi = −kT
i fi(x1, · · · , xi)x̃i + θ̃θθ

T

i fi(x1, · · · , xi) (28)

Since ˙̃xi, x̃i → 0 as t → +∞, there exists a time instant T such that

˙̃xi(t) �≡ 0, and x̃i(t) �≡ 0, ∀ t ∈ [0, T ] (29)

Together with (28), we have

fi(t) �≡ 0, and θ̃θθi(t)− x̃i(t)ki �≡ 0, ∀ t ∈ [0, T ] (30)

It implies that xi(t) �≡ 0, i.e. system states have not been stabilized. In this
context, error dynamics consisting of (16) and (17) can be rewritten as follows:

˙̃xi = −kT
i fix̃i + θ̃θθ

T

i fi (31)

˙̃
θθθi = −γifix̃i − γifiξi (32)

with ξi being the external input, and the foregoing system (31) and (32) can be

depicted in Fig. 2, from which we can see that θ̃θθi would be updated to drive ˙̃xi

towards zero. Once ˙̃xi converge to zero, x̃i would keep at the origin. Since fi can

not be zero before x̃i is stabilized, we have θ̃θθi → x̃iki as t → ∞, and thereby

θ̃θθi → 0 and
˙̃
θθθi → 0 as t → ∞. Together with (32), it implies that ξi → 0 and

fi → 0, which yields system state stabilization.

As a consequence, the convergence of ξi and xi induces that of x̃i and θ̃θθi, and

thereby contributing to the convergence of θ̂θθi to the true value θθθi.
It should be noted that if ki is selected large enough, x̃i would converge even

faster to zero before fi vanishes.
This concludes the proof.

Remark 3. Unlike previous adaptive controllers, the observer errors x̃i are in-
corporated into adaptive laws (15) for parameter estimates θ̂i, i = 1, 2, · · · , n,
and thereby contributing to a real adaptive control scheme with adaptive pa-
rameters almost converging to the true values in addition to closed-loop system
stabilization.

4 Illustrative Example

In order to demonstrate the effectiveness of the proposed observer-based adaptive
control scheme, we consider the following numerical example:

ẋ1 = x2 + θ11
(
2x2

1 + 3 sin2 x1

)
+ θ12

(
x4
1 + 2 sin2 x1

)

ẋ2 = u+ θ21
(
(x1 + 3x2)

2 + sin2(x1 − x2)
)
+ θ22x

2
2 (33)
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Fig. 3. System state x1 and estimate x̂1.
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Fig. 6. Adaptive parameters θ̂11, θ̂12, θ̂21 and θ̂22.

The control law is defined as follows:

u =− x1 − λ2

(
x2 + λ1x1 + θ̂θθ

T

1 f1

)
− θ̂θθ

T

2 f2

− λ1ẋ1 − ˙̂
θθθ
T

1 f1 − θ̂θθ
T

1 ḟ1 (34)

where

˙̂
θθθ2 =γ2

(
x2 + λ1x1 + θ̂θθ

T

1 f1 + x̃2

)
f2 (35)

˙̂
θθθ1 =γ1 (x1 + x̃1) f1 (36)

with x̃1 = x1 − x̂1, x̃2 = x2 − x̂2, and design the observer as follows:

˙̂x1 = x2 + θ̂θθ
T

1 f1(x1) + kT
1 f1(x1) (x1 − x̂1)

˙̂x2 = u+ θ̂θθ
T

2 f2(x1, x2) + kT
2 f2(x1, x2) (x2 − x̂2) (37)

and the user-defined parameters are chosen as follows: k1 = [30, 20]T , k1 =
[10, 20]T , λ1 = 5, λ2 = 3, γ1 = 1.3 and γ2 = 5. The initial conditions are set

as x1(0) = 1, x2(0) = −1, θ̂θθ1 = θ̂θθ2 = 0, and x̂1 = x̂2 = 0. The true values of
unknown parameters are assumed as θθθ1 = [0.9, 0.5]T and θθθ2 = [−1, 0.2]T .

Simulation results are shown in Figs. 3–6, from which we can see that sys-
tem states can be rapidly stabilized in addition that the designed observers are
able to accurately identify system states. Due to the rapid update of adaptive

parameters θ̂θθ1 and θ̂θθ2, the resulting control input u shown in Fig. 20 might
oscillate at the beginning of the control action. Significantly, as shown in Fig. 6,
adaptive parameters θ̂11, θ̂12, θ̂21 and θ̂22 can eventually estimate corresponding
true values of θ11, θ12, θ21 and θ22 respectively, since the system stabilization
can be triggered by the incorporated state observers which are able to render
the parameter adaptation not slower than state convergence.
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5 Conclusions

In this paper, an observer-based adaptive control scheme for a class of nonlinear
systems in the presence of parameterized unknown dynamics is proposed. Adap-
tive parameters are embedded into the designed system state observers whereby
the estimate errors of system states can guarantee the adaptation of parameter
identification till the estimates approach to the true values. Moreover, the result-
ing closed-loop system stability and bounded signals are also eventually ensured.
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Abstract. The H∞ control problem is considered for linear parabolic
partial differential equation (PDE) systems with completely unknown
system dynamics. We propose a model-free policy iteration (PI) method
for learning the H∞ control policy by using measured system data with-
out system model information. First, a finite-dimensional system of ordi-
nary differential equation (ODE) is derived, which accurately describes
the dominant dynamics of the parabolic PDE system. Based on the
finite-dimensional ODE model, the H∞ control problem is reformulated,
which is theoretically equivalent to solving an algebraic Riccati equation
(ARE). To solve the ARE without system model information, we pro-
pose a least-square based model-free PI approach by using real system
data. Finally, the simulation results demonstrate the effectiveness of the
developed model-free PI method.

Keywords: Parabolic PDE systems, H∞ control, model-free, policy
iteration, algebraic Riccati equation.

1 Introduction

The control of parabolic partial differential equation (PDE) systems has at-
tracted wide attention in recent years [1–7]. The main feature of parabolic PDEs
is that the eigenspectrum of their spatial differential operator can be partitioned
into a finite-dimensional slow one and an infinite-dimensional stable fast com-
plement. This motivates applying the reduce-then-design methods for their con-
trol synthesis. Model reduction techniques are initially employed for deriving a
finite-dimensional system of ordinary differential equation (ODE), which are sub-
sequently used as the basis for the design of the finite-dimensional controllers.
Following this framework, a lot of meaningful works have been reported. For
example, nonlinear Galerkin’s method and the concept of approximate inertial
manifold were used to derive a lower-order ODE model [1], which was further
used for the synthesis of finite-dimensional nonlinear feedback controllers that
enforce stability and output tracking in the closed-loop PDE system. In [2],

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 81–90, 2015.
DOI: 10.1007/978-3-319-25393-0_10
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Xu et al. considered a class of bilinear parabolic PDE systems and suggested
a sequential linear quadratic regulator approach based on an iterative scheme.
Neuro-dynamic programming was proposed to solve the optimal control prob-
lem of highly dissipative PDE systems [7]. H∞ fuzzy control methods [5,6] were
also used to nonlinear parabolic PDE systems when external disturbances exist.
It is noted that most of these approaches are model-based that require the full
knowledge of the mathematical system models.

Over the past few decades, reinforcement learning (RL) have been success-
fully introduced to solve optimal and H∞ control problems of ODE systems.
It is known that the H∞ control problem of ODE systems can be converted
to solve the Hamilton-Jacobi-Isaacs equation (HJIE) [8, 9], which is an alge-
braic Riccati equation (ARE) for linear systems [10]. To solve the HJIE or the
ARE, some important works have been developed, such as, synchronous policy
iteration method [11], iterative methods [12,13], simultaneous policy update al-
gorithms [14–16] and off-policy RL [17]. Based on the iterative method in [13],
Vrabie and Lewis [18] suggested a policy iteration (PI) approach for learning the
solution of ARE online. These approaches are either completely model-based
that require the full system models, or partially model-based that need system
dynamics in part. In contrast, Al-Tamimi et al. [19] proposed a model-free Q-
learning algorithm for the discrete H∞ control problem. Recently, two attractive
PI methods have been suggested respectively in [20] and [21], to find adaptive
optimal controllers for continuous-time linear systems with completely unknown
system dynamics. However, RL approaches are rarely studied for solving the
control problems of PDE system till present and only a few works have been re-
ported [22–24]. In [22,23], PI and heuristic dynamic programming were employed
to solve the optimal control problem of partially unknown linear hyperbolic PDE
systems. To the best of our knowledge, the data-based H∞ control problem of
completely unknown parabolic PDE systems has not yet been addressed with
RL, which motivates the present study.

2 Problem Description

We consider the following linear continuous-time parabolic PDE systems:

⎧
⎪⎨

⎪⎩

∂y(z, t)

∂t
=

∂2y(z, t)

∂z2
+A1(z)y(z, t) +B1(z)w(t) +B2(z)u(t)

yh(t) =

∫ z2

z1

H(z)y(z, t)dz
(1)

subjected to the mixed-type boundary conditions

{
M1y(z1, t) +N1∂y(z1, t)/∂z1 = d1
M2y(z2, t) +N2∂y(z2, t)/∂z2 = d2

(2)

and the initial condition

y(z, 0) = y0(z) (3)
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where z ∈ [z1, z2] ⊂ R is the spatial coordinate, t ∈ [0,∞) is the temporal coor-
dinate, y(z, t) = [y1(z, t) ... yn(z, t)]

T ∈ R
n is the state, u(t) ∈ R

p is the manip-
ulated input, yh(z, t) = [yh,1(z, t) ... yh,m(z, t)]T ∈ R

m is the objective output,
w(t) ∈ L2([0,∞),Rp) is the exogenous disturbance. A1(z) , B1(z) and B2(z) are
unknown sufficiently smooth matrix functions of appropriate dimensions, B1(z)
and B2(z) describe how disturbance and control actions are distributed in spa-
tial domains respectively, H(z) is a given sufficiently smooth matrix function of
appropriate dimension and y0(z) is a smooth vector function representing the
initial state profile.

For convenience, we denote y(·, t) � y(z, t) and M(·) � M(z) , z ∈ [z1, z2].
The H∞ control problem under consideration is to find a state feedback control
law such that the PDE system (1)-(3) is asymptotically stable in the L2-norm
sense, i.e., ‖y(·, t)‖2 → 0 when t → 0, and has L2-gain less than or equal to γ,
that is, ∫ ∞

0

(‖yh(z, t)‖2 + ‖u(t)‖2R
)
dt ≤ γ2

∫ ∞

0

‖w(t)‖2dt (4)

for all w(t) ∈ L2([0,∞],Rq), R > 0 and γ > 0 is some prescribed level of distur-
bance attenuation.

3 Model-Free PI Method for H∞ Control Design

In this section, a model-free PI method is developed for solving the H∞ control
problem in Section 2. Firstly, the H∞ control problem is reformulated based on
the finite-dimensional ODE system. Subsequently, a model-free PI approach is
proposed and its implementation is based on a least-square scheme.

3.1 Finite-Dimensional Problem Reformulation

To proceed with the presentation of the SP technique, define the linear parabolic
spatial differential operator (SDO) A of the PDE system (1)-(3) as

Aφ(z) � ∂2φ(z)

∂z2
(5)

where φ(z) is a smooth vector function on [z1, z2] that satisfies the boundary
condition (2). The standard eigenvalue problem is defined as:

Aφi(z) = λiφi(z) (6)

where λi ∈ R denotes the ith eigenvalue and φi(z) is its orthogonal eigenfunction;
the eigenspectrum of A, σ(A) is defined as the set of all eigenvalues of A, i.e.,
σ(A) � {λ1, λ2, ...}.

One important feature of parabolic PDE systems is that the eigenspectrum of
its spatial differential operator (SDO) can be partitioned into a finite-dimensional
slow one σs(A) � {λ1, ..., λN} and an infinite-dimensional stable fast com-
plement σf (A) � {λN+1, λN+2, ...}. Accordingly, the eigenfunctions of A can
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also be divided into two parts, i.e., Φs(z) � [φ1(z), · · · , φN (z)]T and Φf (z) �
[φN+1(z), · · · , φ∞(z)]T .

To simplify the notation, we consider the PDE system (1)-(3) with n = 1
without loss of generality. Assume that the PDE state y(z, t) can be represented
as an infinite weighted sum of the eigenspectrum, i.e.,

y(z, t) =

∞∑

i=1

xi(t)φi(z) (7)

where xi(t) is a time-varying coefficient named the mode of the PDE system. By
taking inner product with Φs(z) on both sides of PDE system (1)-(3), we obtain
the following finite-dimensional ODE system:

{
ẋ(t) = Ax(t) +B1w(t) + B2u(t) x(0) = x0

yhs(t) = Hsx(t)
(8)

where

x(t) � 〈y(·, t), Φs(·)〉 = [x1(t) ... xN (t)]T (9)

A � diag(σs(A)) +
〈
A1(·), Φs(·)

〉
, B1 �

〈
B1(·), Φs(·)

〉
, B2 �

〈
B2(·), Φs(·)

〉
,

Hs �
∫ z2
z1

H(z)ΦT
s (z)dz and x0 � 〈y0(·), Φs(·)〉. It is noted that the matrices A,

B1 and B2 are unknown for the matrix functions A1 , B1 and B2 are unknown
in the original PDE system (1)-(3). Accordingly, the L2 disturbance attenuation
criterion (4) can be given by

∫ ∞

0

(‖x(t)‖2Qs
+ ‖u(t)‖2R

)
dt � γ2

s

∫ ∞

0

‖w(t)‖2dt (10)

where Qs � HT
s Hs and γs is a given positive constant satisfying 0 < γs < γ.

Then, the H∞ control problem can be reformulated as: Considering the PDE
system (1)-(3), design a state feedback control based on the finite-dimensional
ODE system (9) and the L2-gain performance (10).

3.2 Model-Free PI Method

If matrices A, B1 and B2 are known, the H∞ control problem of the ODE model
(9) with L2-gain performance (10), can be transformed to solve the following
ARE [10]

ATP + PA+Qs + γ−2
s PB1B

T
1 P − PB2R

−1BT
2 P = 0 (11)

for P � 0. Then, the H∞ control policy u∗ and worst disturbance w∗ are given
as

u∗(t) = K∗
ux(t) (12)

w∗(t) = K∗
wx(t) (13)
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with

K∗
u � −R−1BT

2 P (14)

K∗
w � γ−2

s BT
1 P. (15)

Obviously, the H∞ control policy (12) depends on the solution of the ARE
(11). Lanzon and Feng et al. [13] proposed a model-based iterative method,
which solves a series of the following H2-ARE

[Ã(i)]TZ(i+1) + Z(i+1)Ã(i) − Z(i+1)B2R
−1BT

2 Z
(i+1) + F2(P

(i)) = 0 (16)

for Z(i+1), where
Ã(i) � A+B1K

(i)
w +B2K

(i)
u (17)

with

K(i)
u � −R−1BT

2 P
(i) (18)

K(i)
w � γ−2

s BT
1 P

(i). (19)

Then, update P (i+1) with

P (i+1) � P (i) + Z(i+1). (20)

As mentioned in [13], F2(P
(i)) �= γ−2

s Z(i)B1B
T
1 Z

(i) is a “negative semidefinite
quadratic term”. The Kleinman’s method [25] was then used to solve the H2-
ARE (16) by solving a sequence of Lyapunov matrix equations (LMEs). Thus,
we can derive the following algorithm for solving the ARE (11).

Algorithm 1. Model-based iterative method for ARE

� Step 1: Select P (0) such that Ã(0) is Hurwitz, and let i = 0;
� Step 2: Let Z(i+1,0) = 0 and j = 0; Compute P (i+1,j) with P (i+1,j) =

P (i) + Z(i+1,j);
� Step 3: Solve the following LME for Z(i+1,j+1):

[Ã(i,j)]TZ(i+1,j+1) + Z(i+1,j+1)Ã(i,j) − Z(i+1,j+1)B2R
−1BT

2 Z
(i+1,j+1)

+F2(P
(i)) = 0 (21)

where

Ã(i,j) � Ã(i) −B2R
−1BT

2 Z
(i+1,j) = A+B1K

(i)
w +B2K

(i+1,j)
u

with
K(i+1,j)

u � −R−1BT
2 P

(i+1,j).

� Step 4: Set j = j + 1. If Z(i+1,j) is convergent w.r.t (with respect to) j, go
to Step 5, else go to Step 3.
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� Step 5: Set Z(i+1) = Z(i+1,j), compute P (i+1) with (20) and let i = i + 1.
If Z(i+1) is convergent w.r.t i, stop and use P (i) as the solution of the ARE
(11), else go to Step 2 and continue. �

By completing the square, the LME (21) can be equivalently rewritten as

[Ã(i,j)]TP (i+1,j+1) + P (i+1,j+1)Ã(i,j) +Q(i,j) = 0 (22)

where

Q(i,j) � Qs − γ−2
s P (i)B1B

T
1 P

(i) + P (i+1,j)B2R
−1BT

2 P
(i+1,j)

= Qs − γ2
s (K

(i)
w )TK(i)

w + (K(i+1,j)
u )TRK(i+1,j)

u .

Note that Algorithm 1 still requires the model of A, B1 and B2. To avoid
using system model, we propose a model-free PI approach. Rewrite the finite-
dimensional ODE system (8) as

ẋ = Ã(i,j)x+B1(w −K(i)
w x) +B2(u−K(i+1,j)

u x). (23)

By using (22) and (23), we have that

xT (t+
t)P (i+1,j+1)x(t+
t)− xT (t)P (i+1,j+1)x(t)

=

∫ t+�t

t

d[xT (τ)P (i+1,j+1)x(τ)]

= 2

∫ t+�t

t

ẋT (τ)P (i+1,j+1)x(τ)dτ

= −
∫ t+�t

t

xT (τ)Q(i,j)x(τ)dτ

+ 2

∫ t+�t

t

γ2
s [w(τ) −K(i)

w x(τ)]TK(i+1,j+1)
w x(τ)dτ

− 2

∫ t+�t

t

[u(τ) −K(i+1,j)
u x(τ)]TK(i+1,j+1)

u x(τ)dτ (24)

where K
(i+1,j+1)
w � γ−2

s BT
1 P

(i+1,j+1).
Note that the system matrices A, B1 and B2 are not involved in the equation

(24). Thus, replacing (21) with (24) in Algorithm 1 generates the model-free PI
method.

3.3 Implementation

To solve the equation (24) for unknown matrices P (i+1,j+1), K
(i+1,j+1)
w and

K
(i+1,j+1)
u , we develop a least-square scheme, which is similar with that in [16,

20, 26]. To avoid repetition, we give the least-square scheme directly as follows:

θ(i+1,j+1) = [(X(i+1,j))TX(i+1,j)]TX(i+1,j)η(i,j) (25)
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where θ(i+1,j+1) � [(p(i+1,j+1))T vec((K
(i+1,j+1)
w )T ) vec((K

(i+1,j+1)
u )T )]T is

the unknown parameter vector,X(i+1,j) � [Π −2γ2
sIxw+2γ2

sIxx(In⊗K
(i)T
w )

2Ixu(In ⊗ R) − 2Ixx(In ⊗K
(i+1,j)T
u R)] and η(i,j) � −Ixxvec(Q

(i,j)). The nota-
tions Π , Ixx, Ixu and Ixw are given by Π � [δxx(0) δxx(1) · · · δxx(L − 1)]T ,
Ixx � [ρxx(0) ρxx(1) · · · ρxx(L − 1)]T , Ixu � [ρxu(0) ρxu(1) · · · ρxu(L − 1)]T

and Ixw � [ρxw(0) ρxw(1) · · · ρxw(L − 1)]T ,where δxx(k)x � (tk+1) − x(tk),

δxx(k) �
∫ tk+1

tk
x(τ) ⊗ x(τ)dτ , δxw(k) �

∫ tk+1

tk
x(τ) ⊗ w(τ)dτ and δxu(k) �

∫ tk+1

tk
x(τ) ⊗ u(τ)dτ , with tk = k 
 t, (k = 0, 1, ..., L) and L be a positive in-

teger.
Based on Algorithm 1 and the parameter update rule (25), the following

implementation procedure for model-free PI method is obtained.

Algorithm 2. Implementation procedure for model-free PI method

� Step 1: Select initial gain matrices K
(0)
u and K

(0)
w such that Ã(0) is Hurwitz;

Let i = 0;
� Step 2: Collect system data from real PDE system for computing Π , Ixx,

Ixu and Ixw;

� Step 3: Let K
(i+1,0)
u = K

(i)
u and j = 0;

� Step 4: Compute θ(i+1,j+1) with (25);

� Step 5: If σ(K
(i+1,j+1)
u −K

(i+1,j)
u ) � ζu (ζu is a small positive real number),

let K
(i+1)
u = K

(i+1,j+1)
u and go to Step 6, else j = j+1 and go back to Step

4;

� Step 6: If σ(K
(i+1,j+1)
w −K

(i)
w ) � ζw (ζw is a small positive real number), let

K
(i+1)
w = K

(i+1,j+1)
w , terminate algorithm and use K

(i)
u as the H∞ control

gain, else i = i+ 1 and go back to Step 3. �

Fig. 1. State profile y(z, t) of the closed-loop PDE system.
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4 Simulation Studies

To verify the developed model-free PI method, we consider the following linear
parabolic PDE system:

⎧
⎪⎨

⎪⎩

∂y(z, t)

∂t
=

∂2y(z, t)

∂z2
+ a1(z)y(z, t) + b1(z)w(t) + b2(z)u(t)

yh(t) =

∫ z2

z1

y(z, t)dz
(26)

subjected to the Dirichlet boundary conditions

y(0, t) = y(π, t) = 0 (27)

and the initial condition

y0(z) = 0.2 sin(z) + 0.3 sin(2z) + 0.5 sin(3z) (28)

where y is the PDE state, z ∈ [0, π]. The parameters are given as a1(z) =
3 cos(z)+3, b1 = [H(z−0.8π)−H(z−0.9π)] and b2 = [H(z−0.4π)−H(z−0.5π)],
where H(·) is the standard Heaviside function. The weighting matrix R in (4) is
given as R = 1. The parameter γs in (10) is given as γs = 3 , then γ > 3 for the
L2-gain performance (4).

To verify the effectiveness of the developed model-free PI method, we firstly
consider the PDE system model (26)-(28) is known. It is noted that its eigen-
value problem (6) of the SDO can be solved analytically and its solution is
of the form λi = −i2, φi(z) =

√
2/π sin(iz), i = 1, 2, .... Taking Φs(z) �

[φ1(z) φ2(z) φ3(z)]
T , the finite-dimensional ODE system (8) is given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) =

⎡

⎣
2 1.5 0
1.5 −1 1.5
0 1.5 −6

⎤

⎦x(t) +

⎡

⎣
0.8167
−1.4366
1.7160

⎤

⎦w(t) +

⎡

⎣
1.7746
0.5610
−1.5389

⎤

⎦u(t)

x(0) = [1.7725 2.6587 4.4311]T

(29)

Then, use the MATLAB command CARE to solve the associated ARE (11), we
obtain its solution as

P =

⎡

⎣
1.7089 0.7533 0.1762
0.7533 0.7955 0.1872
0.1762 0.1872 0.1872

⎤

⎦ (30)

From (14) and (15), the true control and worst disturbance gains are given as

K∗
u = [−3.1839 − 1.4950 − 0.2237] (31)

K∗
w = [0.0684 − 0.0229 0.0101]. (32)

Next, we use the developed model-free PI method (i.e., Algorithm 2) to solve

theH∞ control problem without using the system model. SelectK
(0)
u = [−20 −

10 30] and K
(0)
w = [0 0 0]. Let parameters ζu = 10−5 and ζu = 10−7. It can

be found that Ku, Kw and P approach to their true values at 16th, 5th and 16th

steps, respectively. By using the convergent H∞ control gain Ku for simulation
on the closed-loop PDE system (26)-(28), Fig. 1 shows the state profile.
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5 Conclusions

A model-free PI method has been developed in this paper for solving the data-
based H∞ control problem of linear parabolic PDE systems with completely
unknown system dynamics. Firstly, the finite-dimensional ODE system is de-
rived, which was used as the basis for H∞ controller design by solving an ARE.
Subsequently, a least square-based model-free PI approach is proposed to solve
the ARE by using collected system data instead of mathematical model. Fi-
nally, simulation studies were conducted and the achieved results demonstrate
the effectiveness of the developed method.
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Abstract. In this paper, intermittent control scheme is adopted to investigate 
the exponential synchronization of complex delayed dynamical networks with 
uncertain parameters. Based on Lyapunov function method and mathematical 
analysis technique, some novel and useful criteria for exponential synchroniza-
tion are established. Finally, two numerical simulations are given to illustrate 
the effectiveness and correctness of the derived theoretical results. 

Keywords: exponential synchronization, intermittent control, time-varying  
delay, uncertain parameters, complex dynamical networks. 

1 Introduction  

During the last two decades, the investigation on complex networks has attracted a 
great deal of attentions due to its potential applications in various fields, such as 
communication, physics, biological, networks and engineering science, and so on 
[1,2]. The ubiquity of complex networks has naturally resulted in a range of important 
research problems on the networks structure facilitating and constraining the networks 
dynamical behaviours. In particular, more attention has been focused on synchroniza-
tion and control problems of complex dynamical networks. There  are  many  
widely  effective control  schemes  including adaptive control [3,4], feedback  
control [5,6], intermittent  control [7,8] and  impulsive control [9,10] which have 
been adopted to drive the networks to achieve synchronization. 

As we know, controlling all the nodes of complex dynamical networks, especially 
those coupled with large number of nodes, is hard to implement and high-cost. To 
reduce the number of controlled node, pining control, in which controllers are only 
applied to a small fraction of networks node, has been proposed. In recent years, 
many results about pinning control and synchronization of complex networks have 
been proposed. In [11], Cai et al. investigated the synchronization of complex dynam-
ical networks by pinning periodically intermittent control. However, in the real world, 
the external disturbance, parameter fluctuation and parameter uncertainties which can 

                                                           
* Corresponding author. 
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make the synchronization more difficult to realize due to measure errors or may de-
stroy the networks stability are unavoidable. 

Motivated by the above discussions, what we are going to investigate in our 
present study is whether the exponential synchronization can be achieved in complex 
networks with parameter uncertainties. In order to achieve the exponential synchroni-
zation via intermittent control, intermittent controllers are designed. By using the 
Lyapunov function method, we derived some novel and less conservative exponential 
synchronization criteria. Finally, two numerical examples are provided to show the 
effectiveness of the proposed method. 

2 Model and Preliminaries 

In this paper, we consider delayed complex dynamical networks consisting of N iden-
tical nodes with linearly diffusive couplings. The dynamic behaviors of nodes in the 
presence of uncertain parameters is described as 

( ) ( ( )) ( ) ( ( )) ( )( ) ( ) ( )( )
( ) ( )

1 2
1 1

+ , 0,

, 0, 1,2,3,......, N.

N N

i i i ij j ij j
j j

x t A A t x t B B t f x t c x t d x t t t

x t t t i

τ

ϕ τ
= =

= + Δ + + Δ Γ + Γ − >

= − ≤ ≤ =

∑ ∑

    (1) 

where xi(t)=[xi1(t), xi2(t), ..., xin(t)]
T∈Rn is the state vector of  the i-th node  at time t, 

f: R×Rn→Rn  is a continuously vector-valued function, the time delay τ(t) may be 
unknown but is bounded by a known constant. A, B are the nominal constant matrix, 
∆A(t) and ∆B(t) denote the uncertain parameters Г1, Г2 are the inner connecting ma-
trix, the coupling matrix C=(cij)n×n and D=(dij)n×n represent the topological structure of 
the whole networks, if there is a connection from node i to node j(i≠j), cij≠0 and dij≠0, 
otherwise cij=0, dij=0. 

Based on the former research, we propose a general complex networks consisting 
of  N dynamic nodes with parameters as the response networks: 

 ( ) ( ( )) ( ) ( ( )) ( )( ) ( ) ( )( )1 2
1 1

+ ( ),
N N

i i i ij j ij j i
j j

y t A A t y t B B t f y t c y t d y t t u tτ
= =

= + Δ + + Δ Γ + Γ − +∑ ∑  (2) 

where yi(t)=[yi1(t), yi2(t),..., yin(t)]
T ∈Rn is the state vector of the i-th node. In order to 

achieve synchronization between the drive and response systems, intermittent control-
lers are added to all nodes of networks (1). Here, the intermittent controller ui(t) is 
designed as follows: 

 ( ) ( )(y ( ) ( )) 1, 2,..., ,i i i iu t k t t x t i N= − − =  (3) 

where ki(t) is the intermittent feedback control gain defined as follows: 

 , ( )
( ) 1,2,..., ,

0, ( + ) ( 1)
i

i

k nT t n θ T
k t i

n θT t n
N

T

≤ < +⎧
= =⎨ ≤ ≤ +⎩

 (4) 

where ki>0 is a positive constant, T>0 is the control period, θ is control rate and n=0, 
1, 2, 3,.... 



 Exponential Synchronization of Complex Delayed Dynamical Networks 93 

According to the control law (4), the error dynamical system can be derived as 

 

( ) ( ( )) ( ) ( ( )) ( )( ) ( )( )( ) ( )

( )( )

( ) ( ( )) ( ) ( ( )) ( )( ) ( )( )( ) ( )

( )( ) ( ) ( )

1
1

2
1

1
1

2
1

+

, ( ) ,

+

, ( ) ( 1) ,

N

i i i i ij j
j

N

ij j
j

N

i i i i ij j
j

N

ij j i i
j

e t A A t e t B B t f y t f x t c e t

d e t t nT t n T

e t A A t e t B B t f y t f x t c e t

d e t t k t e t n T t n T

τ θ

τ θ

=

=

=

=

= + Δ + + Δ − Γ

+ Γ − ≤ < +

= + Δ + + Δ − Γ

+ Γ − − + ≤ ≤ +

∑

∑

∑

∑

 (5) 

Assumption 1. For any x(t), y(t)∈Rn, there exists a positive constant L>0 such that 
║f(y(t))-f(x(t))║≤L║y((t))-x((t))║. The norm ║·║of a variable is defined as 
║x║=(xTx)1/2. 
 
Assumption 2. The parametric uncertainties ∆A(t) and ∆B(t) are in the form of 
[∆A(t),∆B(t)]=EH(t)[G1,G2], where E and Gi (i=1, 2) are known real constant matrices 
with appropriate dimensions, and the unknown real time-varying matrix H(t) satisfies 
the following condition: HT(t)H(t)≤I. 
 
Lemma 1. [12] Suppose that function y(t) is continuous and non-negative when t∈[-
τ,∞) and satisfies the following conditions: 

 ( )

( )

1 2

3 4

( ) ( ) sup , ( ) ,

( ) ( ) sup , ( ) ( 1) ,

t s t

t s t

y t y t y s nT t n T

y t y t y s n T t n T

τ

τ

γ γ θ

γ γ θ

− ≤ ≤

− ≤ ≤

⎧ ⎛ ⎞≤ − + ≤ < +⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ ≤ + + ≤ ≤ +⎜ ⎟⎪ ⎝ ⎠⎩

 (6) 

where
1 2 3 4, , , , 0 1γ γ γ γ θ< <  are constants and n=0, 1, 2,…, if 

1 3 0δ γ γ= + > , *
1 2 4max{ , } 0,γ γ γ γ> = > and ( )1 0η λ δ θ= − − > ,then

( ) ( )
0

sup exp{ }, 0
s

y t y s t t
τ

η
− ≤ ≤

⎛ ⎞≤ − ≥⎜ ⎟
⎝ ⎠

, where 0λ > is the only positive solution of the equa-

tion *
1 exp{ } 0λ γ γ λτ− + = . 

3 Main Result 

In this section, μmin is defined as the minimum eigenvalue of the matrix (Г1+Г1
T)/2. 

We assume that μmin ≠ 0 and ║Г1║=μ>0. Let ˆ ˆ ˆ( ) / 2sC C CΤ= +  where Ĉ is a modified 

matrix of C via replacing the diagonal elements Cii by (μmin /μ)Cii. We note that gener-
ally Ĉ not possessing the property of zero row sums. In addition, the eigenvalues of C 

do not have a appropriate relationship with those of Ĉ for the general matrix C. 
Let

2P D= ⊗ Γ where ⊗ stands for the kronecker product. For realizing globally expo-

nential synchronization, the suitable ki(t)(i=1, 2, ..., N), θ and T  need to be designed 
in the following discussions. 
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Theorem 1. Suppose that Assumption 1 holds. If there exist positive constants β1, β2 , 
β3 and ki(i=1, 2, 3, ..., N) such that the following conditions hold: 

(i) 
m 1ax

1
( ) ,) 0
2

ˆ ( n
sC P kQ IPλμ βΤ −+ + ≤+  

 (ii) 
ma3 1 x

ˆ ( )
2

0,( )
1s

nC PP IQ λμ β β Τ+ − − − ≤  

(iii) 
11 2 0,β− <  

(iv) ( )32 1 0,η λ β θ= − − >  

where Q=A+L(B+EET+G2
TG2)+EET+G1

TG1 and λ>0 is the unique positive solution of 
the equation –2β1+λ+exp{λτ}=0, then the drive system (1) and the response system 
(2) can achieve globally exponential synchronization. 
 
Proof. Construct the candidate Lyapunov function as follows: 

 
1

1 1
( ) ( ) ( ) ( ) ( ),

2 2

N

i i
i

V t e t e t e t e tΤ Τ

=

= = ∑  (7) 

Calculating the derivative of V(t) along the trajectories of system (5). 
When ( )nT t n Tθ≤ < + , for n=0, 1, 2,… 

 ( ( )) ( ) ( ( )) ( )( ) ( )( )( )

( ) ( )( )1 2
1 1 1

1

1

1

( ) ( ) ( )

( ) ( )+ ,

i i i

N N N

N N

i i
i

N

ij j ij j
i j

i

i i
j i

A A t e t B B t f y t f x t

c

V t e

e t d e

t e t

e t t te t τ

Τ Τ

= =

Τ Τ

= = = =

+ Δ + + Δ −

Γ + Γ

=

−∑∑

∑

∑

∑

∑

 (8) 

and when ( ) ( 1)n T t n Tθ+ ≤ ≤ + , for n=0, 1, 2,… 

 ( ( )) ( ) ( ( )) ( )( ) ( )( )( )

( ) ( )( ) ( )1 2
1 1 1

1 1

1 1

( ) ( ) ( )

( ) ( ) ( ) ( )+ ,

N N

i i i

N N N N

ij j ij j i
i j i j

i i
i i

N

i i i i
i

A A t e t B B t f y t f x t

c e t d e

V t e t e t

e t e t t t e tk t e tτ

Τ Τ

= =

Τ

= =

Τ Τ

== =

+ Δ + + Δ −

Γ + Γ − −

=∑ ∑

∑ ∑∑ ∑∑

 (9) 

By Assumptions 1 and 2 and Lemma 1, we have the following two inequations: 

 ( ) ( ) 1
1 1

1 1
1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),

N N

i i i i
i i

N N

i i i i
i i

e t e t e t EH t G e t

e t EE e t e t G G e

A

t

tΤ Τ

= =

Τ Τ Τ Τ

= =

=

≤ +

Δ∑ ∑

∑ ∑

 (10) 
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and 

 ( ) ( )( ) ( )( )( ) ( )

( )
1 1

2 2
1

( ) ( ) ( )

( ) ( ),

N N

i i i
i i

N

i i
i

i iB t f y t f x t Be t e t e t

e t L EE G G e t

t LΤ Τ

= =
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=

Δ − ≤

≤ +

Δ∑ ∑

∑

 (11) 

Using expressions (8)–(11) and performing more detailed calculations, we obtain: 
when ( )nT t n Tθ≤ < + , for n=0, 1, 2,... 

 

max

max 1

1 1

1

1ˆ( ) ( ) ( ) ) ( )+ ( )( ) ( )+ ( ( )) ( ( ))
2

1
(
2

1
(
2

( ) ( ( ) ( sup (

1ˆ( ) ( ) ) ( ) ( ) ( )+ ( ( )) ( ( ))

) ))

2

2 ( 2
t s

n n

s
n

t

V t e t Q PP k I e t ue t C I e t e t t e t t

e t Q uC P

V V V V

P k I e t e t e t e t t e t t

t t t t s
τ

λ τ τ

β τ τλ

β τ

β

β
− ≤

Τ Τ Τ Τ

Τ Τ Τ Τ

≤

⎛ ⎞≤ + − ⊗ − −⎜ ⎟
⎝ ⎠
⎛ ⎞= + + + − − −−

+ ≤ +

⎜ ⎟
⎝ ⎠

≤ − − − ,

 (12) 

and when ( ) ( 1)n T t n Tθ+ ≤ < + , for n=0,1,2,... 

 

( )
( ) ( )

max

ma3 1

3 1

3 3

x

1 1

1
(
2

1

1ˆ( ) ( ) ) ( )+ ( )( ) ( )+ ( ( )) ( ( ))
2

ˆ( ) ( )) ( )(
2

2 ( 2 su

1
( ) ( ) ( ( )) ( ( ))

2
( ) ( )) p( ) (

t s t

n n

s
n

V t e t Q PP I e t ue t C I e t e t t e t t

e t Q uC PP I e t

e t e t e t t e t t

V t t t V tV
τ

τ τ

β β

β β τ τ

β β τ β

λ

β

λ

Τ Τ Τ Τ

Τ Τ

Τ Τ
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 (13) 

From the above equation, we have 

 
0

( ) sup ( ) exp( ), 0,
s

V t V s t t
τ

η
− ≤ ≤

⎛ ⎞≤ − ≥⎜ ⎟
⎝ ⎠

 (14) 

Hence, the zero solution of the error dynamical system (5) is globally exponential-
ly stable, the proof of Theorem 1 is completed. 

In the following, we will discuss how to achieve synchronization by using simple 
date and selecting appropriate parameters. According to Theorem 1, letting 

 
0 ma m axx ax m

ˆ 1
( (( ) ) ),

2
sm Q u C PPλ λλ Τ= + +  

and selecting β3=m0+β1>0, β2=
1

2
. Then condition (ii) in Theorem 1 holds. 

Corollary 1. If there exists a positive
1 2β β> and ki being sufficiently large such that 
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where
maxmax ( )

1

2
)( Pq Q Pλλ Τ+= , and λ>0 is the unique positive solution of the func-

tion equation -2β1+λ+2β2exp{λτ}=0, Therefore, the controlled delayed networks (1) 
with uncertain parameters can be globally exponentially synchronized. 

Corollary 2. Assume that β1 is given as β1
*>β2, and ki being sufficiently large 

 max

*

*
1

1

*
1
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ˆ ) ,
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(
i 1 ,)
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<
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if the above conditions (i) , (ii) hold, the controlled dynamical networks (1) with un-
certain parameters can be globally exponentially synchronized. 

4 Numerical Example 

In order to verify and demonstrate the effectiveness of the proposed approach clearly, 
in this section, we show that the networks with ten nodes described by 

 ( ) ( ( )) ( ) ( ( )) ( )( ) ( ) ( )( )
10 10

1 2
1 1

+ , 1,2,...,10.i i i ij j ij j
j j

x t A A t x t B B t f x t c x t d x t t iτ
= =

= + Δ + + Δ Γ + Γ − =∑ ∑  (15) 

where x(t) = (x1(t), x2(t), x3 (t))
T∈R3 is the state vector, 

10 10( )ijC c ×=  and 
10 10( )ijD d ×=  

are configuration coupling matrices. 
Example 1. We consider the following Lorenz system: 

 2 1 1

1 1 3 2 2

3 1 2 3

( )

( , ),

a x x x

x cx x x x A x Bf t x

bx x x x

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − − = +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

 

where a=10, b=8/3, c=28, Thus 28.0176, 1.A Bα β= = = =  

Here we assume that ( ) ( ) 0A t B tΔ = Δ = , ( )
1

t

t

eτ t
e

=
+

, 0 ( ) 1tτ< < . the initial 

values are chosen as xi(0)=(0.3+0.1i, 0.3+0.1i, 0.3+0.1i)T, yi(0)=(2.0+0.7i, 2.0+0.7i, 
2.0+0.7i)T (i, j=1, 2,…, 10). In this numerical simulation, We fix the inner coupling 
matrix Γ1=Γ2=diag(1, 1, 1), and let L=1, T=0.7. Fig.1 shows the synchronization error 
system is globally stable, and the numerical result means that the exponential syn-
chronization of the two complex networks can be achieved. 

 
Example 2. When [∆A(t), ∆B(t)]=EH(t)[G1, G2] with E=diag{0.2, 0.04, 0.5}, H(t) = 
(sin(t))I, G1=−0.4I, and G2=0.3I. In this example, we consider the matrix  A=− I, 
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is a nonlinear function. In this example, Fig. 2 describes the synchronization errors 
eij(t) (i=1, 2,…, 10, j=1, 2, 3), which turn to zero as time goes. it is easy to see that the 
uncertain complex dynamic networks (1) via intermittent control can achieve globally 
exponentially synchronization. 
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Fig. 1. Synchronization errors for ∆A(t)= ∆B(t)=0 of example 1 
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Fig. 2. Synchronization errors for ∆A(t)≠0, ∆B(t)≠0 of example 2 

5 Conclusions 

In this letter, a detailed analysis is presented for the exponential synchronization  
of complex delayed dynamical networks with uncertain parameters. Some useful  
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exponential synchronization criteria for the uncertain complex networks are obtained 
via utilizing the Lyapunov method and Lipschitz condition. The result shows that the 
intermittent control remains valid for exponential synchronization even if there exits 
uncertain parameters in complex dynamical networks. Finally, two numerical simula-
tions have been presented to demonstrate the effectiveness of the theoretical results. 
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Abstract. With the superiority of owning more degrees of freedom than
ordinary robot manipulators, redundant robot manipulators have gotten
much attention in recent years. In order to control the trajectory of the
robot end-effector with a desired velocity, it is very popular to apply the
inverse kinematics approaches, such as pseudo-inverse scheme. However,
calculating the inverse of Jacobian matrix requires a lot of time. Thus
base on gradient neural dynamics (GND), an inverse-free scheme is pro-
posed at the joint-velocity level. The scheme is named G1 type as it uses
GND once. In addition, two path tracking simulations based on five-link
and six-link redundant robot manipulators illustrate the efficiency and
the accuracy of the proposed scheme. What is more, the physical realiz-
ability of G1 type scheme is also verified by a physical experiment based
on the six-link planar redundant robot manipulator hardware system.

Keywords: redundant robot manipulators, control, inverse-free scheme,
gradient neural dynamics, path tracking.

1 Introduction

In recent years, there have been numerous investigations of robot manipulators
[1,2,3,4], especially the redundant robot manipulators. Compared with the ordi-
nary robot manipulators, the redundant one has more degrees of freedom than
necessary for position and orientation. It is worth noting that this characteristic
improves the kinematic and the dynamic performance of the robot manipulator
such as increasing dexterity, avoiding obstacles and singularities, and optimizing
joint velocity, which makes redundant manipulators widely applied in the field
of robotic manipulator control [5]. As one of the central issues in robot control,
path tracking refers to making the end-effector move as expected by controlling
the joints of robot manipulators. When the end-effector moves in a desired speed,
it is often called path tracking control in the velocity level, which can fit in with

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 99–108, 2015.
DOI: 10.1007/978-3-319-25393-0_12
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the needs of the operators well with two advantages [6,7]. One is that the high
velocity can economize the execution time while the other one is that the low
velocity can enhance the objective precision [8]. So the control in the velocity
level is particularly suited to the tasks well for machining operations, such as
cutting and milling [9].

Robot kinematics which studies the relationships between joint space and
cartesian space, is an very effective way to control the robot manipulator and
attracts numberous researchers to study [10,11,12]. The velocities of all joints
play a decisive role in realizing the desired speed of the end-effector. So the
most fundamental problem is how to use the kinematic equations to calculate
the homologous joint velocities, which is also called inverse kinematics. How-
ever, because most kinematic equations involve complex (inverse) trigonometric
functions, the inverse kinematics mapping has no closed-form solutions for most
manipulators and animation figures [13]. Conventionally, most of researchers ex-
ploit pseudo-inverse approaches to obtain a simple general-form solution [14,15].
However, these approaches not only need expensive time in calculating the in-
verse of Jacobian matrix, but also require the Jacobian matrix to be of full
rank which may be away from the reality. Thus various approaches have been
proposed, investigated and developed to avoid the calculation of the inverse of
Jacobian matrix, such as the quadratic programming method [16].

Gradient neural dynamics (GND) [17,18] is a significant neural dynamicmethod
which attracts many researchers to investigate and develop it. Now GND method
is proved to be useful and effective, and it is widely acknowledged in scientific and
engineering field, thus generalizing such a GND method has become the primary
work [16,19,20,21,22]. In this paper, based on the advantage of GND method that
it can help find a minimum of a nonnegative objective function effectively, we pro-
pose and investigate a scheme named G1 type for path tracking in the redundant
robot manipulator at the joint-velocity level. Besides, in the framework of Zhang-
gradient (ZG)method, G1 type scheme is a special Z0G1 situation which only uses
the GND method once. The ZG method is an effective method built by combin-
ing Zhang neural dynamics and GND to solve the tracking-control and singularity
problems [23,24].

The rest of this paper is organized into the following sections. The inverse
scheme formulation is presented in Section 2. In Section 3, the G1 type scheme
is proposed and analyzed for the redundant robot manipulators at the joint-
velocity level. Section 4 illustrates the effectiveness and the accuracy through
two simulations, and Section 5 further illustrates the effectiveness and physical
realizability of G1 type scheme based on a six-link planar redundant robot ma-
nipulator hardware system. Finally, Section 6 concludes the whole work with
final remarks. Before ending this introductory section, the main contributions of
this paper are listed as follows.

1) By exploiting the GND method, a G1 type scheme in an inverse-free manner
is proposed and investigated at the joint-velocity level.

2) The proposed G1 type scheme can solve the inverse kinematics problem
effectively but avoid calculating the inverse of Jacobian matrix.
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3) The path-tracking simulations and the physical experiment are conducted
to further illustrate the effectiveness, the high accuracy and the physical
realizability of the G1 type scheme.

2 Inverse Scheme Formulation

For a redundant robot manipulator with n joints, the end-effector pose (or po-
sition in this paper) vector r ∈ R

m can be described by the following equation:

r = f(θ), (1)

where θ ∈ R
n refers to the variables (or angles in this paper) of the n joints, and

f(·) is a differentiable nonlinear function with a known structure and parameters
for a given manipulator. Then by differentiating (1), the end-effector velocity is

ṙ = J θ̇, (2)

where ṙ ∈ R
m refers to the end-effector velocity, and θ̇ ∈ R

n refers to the
velocities of all joints. Note that J ∈ R

m×n is the Jacobian matrix defined as
J = ∂f(θ)/∂θ. According to (2), for tracking the desired path rd ∈ R

m via
the desired speed ṙd ∈ R

m, the velocities of all joints can be obtained by the
following equation if J is a square matrix and of full rank:

θ̇ = J−1ṙd, (3)

If J is rectangular, the velocities of joints may be computed by the following
equation of generalized inverse [6]:

θ̇ = J+ṙd, (4)

where J+ denotes the pseudoinverse of Jacobian matrix J . Note that, the so-
lution obtained by using (4) is a least square solution. However, the inverse
scheme theoretically requires the Jacobian matrix to be of full rank, which, in a
real world application, may be unavailable sometimes in practice. What is more,
the expensive calculating time of Jacobian matrix is also not suited in industry.

3 G1 Type Scheme Formulation

In this section, we generalize the GND method to obtain an inverse-free scheme
at the joint-velocity level. By following the GND method, the design procedure
of such an inverse-free scheme can be presented detailedly in the following steps.

Firstly, to monitor and control the process of solving the time-varying inverse
kinematics problem of redundant manipulators, we define a scalar-valued norm-
based energy function according to (1):

E = ‖rd − f(θ)‖22/2, (5)
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where ‖ · ‖2 denotes the two-norm of a vector.
Secondly, a computational rule is designed to evolve along a descent direction

of this energy function until the minimum point is reached. The typical descent
direction is the negative gradient of E, i.e.,

−∂E/∂θ = JT(rd − f(θ)). (6)

Then we combine the aforementioned negative gradient (6) and the following
GND design formula [17,18]:

θ̇ = −α∂E/∂θ, (7)

where the design parameter α > 0 is used to scale the convergence rate of the
GND method.

Finally, we thus have the following generalized G1 type scheme for solving the
time-varying inverse kinematics problem of redundant robot manipulators:

θ̇ = αJT(rd − f(θ)). (8)

Evidently, the above scheme (8) does not require the Jacobian inversion appear-
ing in (3) and (4). Besides, since scheme (8) is obtained by applying the GND
method only once, it is named G1 type (or Z0G1 type in the ZG framework).

4 Simulations

In this section, the corresponding path-tracking simulations (square path track-
ing and “Z” path tracking) are performed on five-link and six-link redundant
robot manipulators respectively to illustrate the effectiveness and the accuracy
of the proposed G1 type scheme. Note that, when we apply such a scheme to
solving the time-varying inverse kinematics problem in an inverse-free manner,
the design parameter α = 105 is used throughout this section. For visualized
reading, two error functions are defined as follows:

εX = rdX − pX,

εY = rdY − pY,
(9)

where rdX and rdY refer to the desired positions in the X direction and the Y di-
rection respectively, and pX and pY refer to the actual positions in the X direction
and the Y direction respectively. Accordingly, ε̇dX represents the velocity error in
the X direction, while ε̇dY represents the velocity error in the Y direction.

4.1 Square Path Tracking

In this first example, G1 type scheme (8) is applied to tracking a square path
via a desired velocity. The side length of the square path is 0.8 m, and the path
tracking is simulated on a five-link redundant robot manipulator, with an initial
state θ(0) being [π/3, π/3, π/2,−π/4, π/4]T rad. The corresponding simulation
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ṙdX
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Fig. 1. Simulation results of the five-link redundant robot manipulator tracking the
given square path synthesized by G1 type scheme (8).

results are shown in Fig. 1, which illustrate the effectiveness and high accuracy of
the proposed G1 type scheme (8) for solving the time-varying inverse kinematics
of robot manipulators.

Specifically, the results can be seen from Fig. 1(a) and Fig. 1(b), from which
we can see how the manipulator tracks the desired path with five joints. It is
easily found that the actual end-effector trajectory coincides with the desired
square path. Besides, Fig. 1(c) and Fig. 1(d) show us more details about the
trajectory. That is, Fig. 1(c) presents the desired path and the actual trajectory,
which illustrates the effectiveness and the accuracy intuitively. The correspond-
ing errors shown in Fig. 1(d) are all less than 1 × 10−5 m. This implies that
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Fig. 2. Simulation results of the six-link redundant robot manipulator tracking the
given “Z” path synthesized by G1 type scheme (8).

the five-link robot manipulator completes the given square-path tracking task
well. In addition, the desired velocities and the corresponding velocity errors are
shown in Fig. 1(e) and Fig. 1(f). We see that the velocity errors are less than
4× 10−3 m/s, validating the high accuracy of such an inverse-free type scheme.

4.2 “Z” Path Tracking

In this (second) example, G1 type scheme (8) is applied to tracking another path
task, i.e., a “Z” path task with the side length being 0.8 m. The corresponding
simulation results based on a six-link redundant robot manipulator are shown
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(a) Hardware system (b) Manipulator-joint structure

Fig. 3. The hardware system of the six-link planar redundant robot manipulator with
its structure planform.

in Fig. 2, where an initial state θ(0) is selected as [π/4, π/4, π/4, π/4, π/4, π/4]T

rad. These results illustrate once more the effectiveness and the high accuracy of
the proposed G1 type scheme (8) for solving the time-varying inverse kinematics
of robot manipulators.

Specifically, the results can be seen from Fig. 2(a) and Fig. 2(b), from which we
can see how the manipulator tracks the desired path with six joints. It is easily
found that the actual end-effector trajectory coincides well with the desired
“Z” path. Especially, Fig. 2(c) and Fig. 2(d) show us more details about the
actual trajectory and corresponding errors. These imply that the six-link robot
manipulator completes the given “Z” path tracking task well. Besides, the desired
velocities and the corresponding velocity errors are shown in Fig. 2(e) and Fig.
2(f). We can find that any directional velocity error is less than 5× 10−3 m/s,
which validates the high accuracy of such an inverse-free type scheme.

5 Physical Experiment

To verify the physical realizability of the proposed G1 type scheme (8), a six-link
planar redundant robot manipulator hardware system is developed, investigated
and shown. The whole manipulator system is mainly composed of a robot ma-
nipulator, a control cabinet and a host computer. Specifically, Fig. 3(a) shows
this planar robot hardware system, and Fig. 3(b) depicts its manipulator-joint
structure including a base and an end-effector.

For this experiment, in order to verify the proposed G1 type scheme (8) at the
joint-velocity level, the end-effector is expected to move along a “Z” path with the
length of 4.5 cm and an initial state θ(0) = [π/12, π/12, π/12, π/12, π/12, π/12]T
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(a) Snapshots of task execution

(b) Measurement of experimental result

Fig. 4. The “Z” path tracking experiment of the six-link redundant redundant robot
manipulator synthesized by G1 type scheme (8) at the joint-velocity level.

rad, and the design parameter α is also set as 105. The task execution can be seen
from Fig. 4, i.e., the end-effector of the manipulator moves smoothly and draws a
“Z” path precisely. Besides, the video of the process takes 24 seconds. Thus, this
experiment illustrates well that the proposed G1 type scheme (8) is effective on
the redundant robot manipulator’s inverse-free redundancy resolution (or say,
motion planning and control).

6 Conclusion

In this paper, to solve the time-varying inverse kinematics problem for redun-
dant robot manipulators with high efficiency and high accuracy, a special type
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of inverse-free scheme named G1 type scheme has been proposed and investi-
gated at the joint-velocity level. This scheme can avoid the Jacobian inversion in
traditional pseudo-inverse methods which not only costs expensive calculating
time but also encounters many difficulties in practice. Besides, the correspond-
ing path-tracking simulations have been performed on five-link and six-link re-
dundant robot manipulators using such an inverse-free scheme. The simulation
results have illustrated the effectiveness and the accuracy of the aforementioned
scheme for solving the time-varying inverse kinematics problem of redundant
robot manipulators in an inverse-free manner. In addition, the physical realiz-
ability of G1 type scheme has been verified further based on a six-link planar
redundant robot manipulator hardware system. In the future, the scheme may
be applied in the 3 dimensional case or even with kinematics uncertainties.
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Abstract. This paper presents a closed-loop trajectory tracking controller for an 
Unmanned Underwater Vehicle(UUV) with five degrees of freedom. A back-
stepping control (BSC) methodology combined with Lyapunov theorem is 
adopted to design the controller of trajectory tracking. Then an online-tuning 
fuzzy neural network (FNN) framework is chosen to inherit the conventional 
BSC law. Moreover, the adaptive parameters tuning laws are derived in the 
sense of Lyapunov stability theorem and projection algorithm to ensure the 
network convergence as well as stable control performance. Finally, the simula-
tion results on UUV verify that an excellent performance of the proposed con-
troller can be obtained. 

Keywords: trajectory tracking controller, Unmanned Underwater Vehicle 
(UUV), backstepping control (BSC), fuzzy neural network (FNN). 

1 Introduction 

The UUV is widely used in risky missions such as underwater exploration, oceanic 
observations, military applications, etc., [1]. Considering the UUV spatial kinematics 
model which is complex and highly coupled nonlinear system, it presents a challeng-
ing control problem to establish an appropriate mathematical model for the design of 
a model-based control system. So the high performance tracking control method of 
the UUV is being studied. 

The current trend of control approaches focuses on integrating conventional track-
ing control techniques such as adaptive control and backstepping control(BSC) [2]. 
However, the stability of backstepping control system will be damaged while a sud-
den tracking error happens. R. Fierro and F. L. Lewis [3] utilized a backstepping con-
trol method for nonholonomic mobile robot. Based on these conventional control 
methods, some intelligent schemes such as fuzzy theory and neural network are wide-
ly used to improve the performance of classical controllers in various aspects in order 
to solve the defects of traditional control techniques. A neural network (NN) has an 
inherent ability to learn and approximate a nonlinear function, which is utilized in 
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UUV controller [4] and even to prevent actuator saturation without prior knowledge 
of system parameters. S.Cong and Y.Liang [5] utilized a neural network to compen-
sate for unstructured uncertainties in order to improve the robustness of the control 
system. Recently, the concept of incorporating fuzzy logic into an NN has grown into 
a popular research topic [6] because the integrated fuzzy neural network (FNN) sys-
tem possesses the merits of both fuzzy systems and NNs. The fuzzy logic is employed 
in UUV controllers to provide human logical-thinking capabilities for achieving better 
control performance [7]. But how to establish some suitable fuzzy rules and guarantee 
system stability is also a challenging problem to be solved [8], [9]. The notion of ro-
bustness has been a core subject in intelligent strategies for UUV trajectory tracking 
control. Chen et al. [10] considered an adaptive fuzzy control for a class of nonlinear 
systems by using fuzzy logic systems. Ning Wang, and Meng Joo Er [11], [12] uti-
lized self-constructing adaptive robust fuzzy neural control and adaptive robust online 
constructive fuzzy control to improve the robustness of the uncertainties and unknown 
disturbances system.  

In this paper, the strategy of trajectory tracking is established by using fuzzy neural 
network (FNN) to approximate the conventional backstepping control. Furthermore, 
an adaptive control is designed combining with the Lyapunov functions and projec-
tion algorithm. The stability of the control system and the efficiency of this controller 
can be guaranteed as the simulation results showed. 

2 UUV Dynamic Model 

In this paper, the UUV model has the following characteristics. 

1) Treat the actual situation of the UUV in underwater movement as the rigid body 
moving in the fluid. 

2) Ignore the rolling impact on three dimensional motion of UUV based on the in-
side structure of ballast water tank in unmanned underwater vehicle. 

3) Treat the actual shape of the unmanned underwater vehicle as spheroidicity. 
4) The propulsion system of the unmanned underwater vehicle consists of five 

thrusters, i.e., a main thruster, a left bow horizontal thruster, a right stern horizontal 
thruster, a down vertical thruster located at the right side of bow and a up vertical 
thruster located at the left side of stern, so that the motion control, i.e., surge, sway, 
heave, pitch and yaw, can be realized. 

The relationship of the velocity and angular velocity of the UUV in geodetic coor-
dinate system and moving coordinate system can be expressed in the following form: 

  ( )J vη η=                                   (1) 

where η=[x, y, z, θ, ψ]T is the position and direction vector in geodetic coordinate 
system; v=[u, v, w, q, r]T is the velocity and angular velocity vector in moving coordi-
nate system; J(η) is the rotation matrix from the moving coordinate system to geodet-
ic coordinate system.  
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Based on the Newton-Euler kinematical equation, the five degree of freedom 
(DOF) nonlinear dynamic equations of motion in moving coordinate system can be 
conveniently expressed as [13] 

( ) ( ) ( )Mv C v v D v v g fη τ+ + + = +                       (2) 

where M=MRB+MA is system inertia matrix (including added mass); 
C(v)=CRB(v)+CA(v) is Coriolis-centripetal matrix(including added mass); D(v) is 
damping matrix; g(η) is vector of gravitational/ buoyancy forces; τ is vector of control 
inputs; f  is vector of environmental disturbances(wind, waves and currents). 

Simultaneous equations (1) (2), the five DOF kinetic equation in geodetic coordi-
nate system can be expressed as 

 * * * *M C D g f+ + = ++η η η τ                           (3) 

where * 1 * 1 1 * 1 *; ( ) ; ;M MJ C C MJ J J D DJ g g− − − −= = − = =  

3 Trajectory Tracking Controller 

3.1 Backstepping Control 

The first step: Define a tracking error vector and its derivative as 1z = −η ηr and

1z = −η ηr .Where ηr and rη are reference trajectory vector and velocity vector in 

geodetic coordinate system, respectively. The term ( )η t can be viewed as a first vir-

tual control input. Define the first stabilizing function as 1 1 1k z= − +α ηr , where  

k1 ∈ R5×5 is a positive-definite diagonal matrix.  
The first Lyapunov function is chosen as 

T1
1 1 12V z z=                                         (4) 

Define 2 1z = −η α ; the derivative of 1V can be represented as 

T T T T
1 1 1 2 1 1 2 1 1 1( ) ( )V z z z z z z k z= − = + − = −η η α ηr r            (5) 

The second step: The derivative of z2 can be written as  

    * 1 * 1 * 1 * * 1 * * 1 *
2 1z M M f M C M D M g− − − − −= + − − − −τ η η α        (6) 

The BSC law is assumed as the follow form 

 1 T T * * * *
BSC 2 1 b 2 2 1 2f sgn( )k z z k C D g M z−= − − + − + + −τ η η α       (7) 

The second Lyapunov function is chosen as 

   T1
2 1 2 2 22

*V V z k M z= +                                  (8) 

where k2∈R5×5 is a positive-definite diagonal matrix.  
The derivative of V2 can be represented via (5) (7) (8) as 
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T * T T T T T
2 1 2 2 2 1 1 1 2 2 2 2 2 b 2 2

T T
1 1 1 2 2 2

[f sgn( ) ]
0

V V z k M z z k z z k z z k z k f
z k z z k z

= + = − − − −
    ≤ − − ≤        

(9)
 

Thereby, it confirms that the vectors 1z , 2z converge to zero asymptotically if the 

condition of b1
f≤f holds. 

3.2 Fuzzy-Neural-Network-Inherited Backstepping Control 

An FNNIBSC system for UUV trajectory tracking is shown in Fig. 1. Moreover, a 
four-layer FNN framework is shown in Fig. 2. 
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Fig. 1. Framework of the FNNIBSC system        Fig. 2. Structure of the four-layer FNN 

Each layer of the Structure of the four-layer FNN will be introduced as follows. 
1) The input vector 1 ( 1, ... , )iz i n=   of the input layer is tracking error vector. 

2) The membership layer represents the input values with the following Gaussian 
membership functions: 

2 2
1exp[ ( ) ( ) ]= − −j i i j

i i iz mμ σ                         (10) 

where j
im and ( 1, 1, )j

i pii n j Nσ =  ... , ; =  ... ,  are the mean and standard deviation of the 

Gaussian function in the jth term of the ith input variable zi to the node, respectively. 
3) The rule layer implements the fuzzy inference mechanism. The output of this 

layer is described as follows 

1
1

( )
n

j i
k i

i
l zμ

=
= ∏                               (11) 

where lk (k=1,…, Ny) represents the kth output of this layer. 
4) The output vector of the output layer is expressed as 

1

yN
e

e k k
k

y w l
=

= ∑                               (12) 

where ye (e=1,…, No) represents the eth output of this layer. It can be rewritten in the 
following vector form 
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T
1 2 1[ ] ( , , , )

oN IBFNy y y=       ⋅ ⋅ ⋅   = ≡τ τ σWl z W m                 (13) 

1 1 1
1 2

1
2 2 2

21 2

1 2

w
w

W

w

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

y

y

o o o
o

y

N

N

N N N
N

N

w w w

w w w

w w w

                       (14) 

  T
1 2[ ]l =          

yNl l l                             (15) 

1 1[ ]
y

i i i
i Nw w w=          w                            (16) 

To show the effectiveness of the proposed FNNIBSC system, the FNN structure 
has 5, 15, 243 and 5 neurons at the input, membership, rule and output layers, respec-
tively. It can be regarded that the associated fuzzy sets with the Gaussian function for 
each input signal are divided into negative small, zero, positive small. That is, n = 5, 

Npi = 3(i=1,…, n),
1

243
n

y pi
i

N N
=

= ∏ = and No = 5. 

The optimal FNNIBSC learning the conventional BSC can be written as follow 
* * * * * *

1( , , , )BSC IBFNτ τ σ ε ε= + = +z W m W l                   (17) 

where ε is a minimum reconstructed-error vector; and W*, m*, σ* are optimal parame-
ters of W, m, σ in the FNN, respectively. 

The control law of the FNNIBSC scheme will be taken as the following form 

1
ˆˆ ˆˆˆ ˆ( , , , )IBFNτ τ σ= =z W m Wl                          (18) 

where ˆ ˆ,W m and σ̂ are some estimates of the optimal parameters, as provided by 
tuning algorithms to be introduced later. Subtracting (18) from (17), an approximation 
error is defined as 

  * * *ˆˆ ˆˆ W l Wl Wl Wl= − = + − = + +τ τ τ ε εBSC IBFN            (19) 

where * * ˆˆ ,= −  = −W W W l l l . A Taylor series expansion is utilized to transform the 

membership functions into partially linear form. Where l can be rewritten as 

nvσ σ= + +ml l m l o                         (20) 

where * ˆm m m= − , * ˆσ σ σ= − ; *m and *σ are the optimal parameters of m and σ
,respectively; m̂ and σ̂ are the estimates of *m and *σ ,respectively. nvo is a vector of 

higher order terms; 1 2 T 243 15

ˆ
[ ]m m m m

m m
l R

∂∂ ∂ ×
∂ ∂ ∂

=
=    ∈N y

ll l and 1 2 T 243 15

ˆ
[ ]l R

∂∂ ∂ ×
∂ ∂ ∂

=
=    ∈N y

ll l
σ σ σ σ

σ σ
; 

simultaneous equations (19) (20), it is revealed that  
* * ˆ ˆ ˆˆ ˆ ˆ( )( )

ˆ ˆ ˆ
m nv

m

W l Wl W W l l m l o Wl

Wl Wl m Wl y

= + − = + + + + + −
′= + + +

σ

σ

τ ε σ ε
σ

       (21) 

where *
nvσ σ ε′ = + + +my Wl m Wl W o . 

Theorem: For the five DOF kinetic equation of UUV that are represented by (3), 
the FNNIBSC law is designed as (18), and the corresponding adaptation laws for the 
estimates of the optimal parameters in the FNN are designed as (22)-(24) so that all 
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the tracking error states(z1 and z2) converge to zero as time tends to infinity. Then, the 
stability of the proposed controller can be proved by the Lyapunov theorem. 

T
1 2 2 2 2

2T T
1 2 2 1 2 2 2 2

ˆ ˆˆ ˆ ˆif ( b or b and 0  (22a)
ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆif b and 0 (22b)T

l w w w l
w

l l w w w w w l

−                 < )  ( =   ≥ )                         
=

− +           ( =   < )                  

i i i i
i w i w i

i i i i i i i
i i i i w i

a z k z k

a z k a z k z k

⎧⎪
⎨
⎪⎩

T

2

T T T
2 2 2 m m 2 2

T T T T T
2 2 2 2 2 2 m 2 2

ˆ ˆ

ˆ

ˆ ˆˆ ˆ ˆ( ) if ( b or b and 0 (23a)

ˆ
ˆ ˆ ˆˆ ˆ( ) ( )         if b and 0 (23b)

m m

m m m

mm

m

z k Wl m m z k Wl m

m
z k Wl z k Wl m z k Wl m

⎧−                < )  ( =   ≥ )                       
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= ⎨− + ( =   < )                 ⎪
⎩
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a a
 

T

2

T T T
3 2 2 2 2

T T T T T
3 2 2 3 2 2 2 2

ˆ ˆ

ˆ

ˆ ˆˆ ˆ ˆ( ) if ( b or b and 0 (24a)

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) if b and 0 (24b)

z k Wl z k Wl

z k Wl z k Wl z k Wl

σ σ

σ

⎧−                < )  ( =   ≥ )                     
⎪
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⎩
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a a

σ σ

σ σ σ
σσ
σ

σ σ σ
σ

σ σ
 

where 2 ( 1, ... ,5)iz i =   is the element of the vector 2z ; 2
ik is the diagonal element of the 

matrix k2; i denotes the Euclidean norm; a1, a2 and a3 are positive learning rates; bw, 

bm and bσ are given positive parameter bounds; ˆ iw is the estimate of *
iw ; *

iw is the 

optimal parameter vector of wi. 
Proof: The Lyapunov function is chosen as 

1 2 3

T T T T T1 1 1 1 1
1 1 2 2 22 2 2 2 2tr( )V z z z k Mz WW m m= + + + + σ σa a a                (25) 

Subtracting (7) (21) into (6), one can obtain 
* 1 * * 1 * * 1 * * 1 * 1

2 1
* 1 1 T T

2 2 1 b 2 2

( )
ˆ ˆ ˆ[ f sgn( ) ]m

z M C M D M g M f M

M Wl Wl m Wl z k z z k f

− − − − −

− −

= − − − + + − −
= − + + + + + +

BSC

nσ

η η τ τ α
σ

          
(26)

 

where the uncertainty term n ′= −f y f is also assumed to be bounded by b1
fn <f . 

Differentiating (25) and using (26), it is concluded that 

1 2 3

1 2

3

T T * T T T1 1 1
1 1 2 2 2

T T T T1 1
2 2 2 2

T T T T T T T1
2 2 2 2 b 2 2 1 1 1 2 2 2

T T T
2 2 b 2 2

ˆ ˆ ˆtr( )

ˆˆ ˆˆ[ tr( ) ] ( )
ˆˆ( ) [f sgn( ) ]

[f sgn( ) ]

m

n

V z z z k M z WW m m

WW z k Wl m z k Wl m

z k Wl z k z k f z k z z k z

V V V z k z k fσ

= + − − −

= − + − + −
+ − + − −

= − − − − + −

a a a

a a

a

w m n

σ

σ σ

σ σ
T T
1 1 1 2 2 2 (27)z k z z k z−                    

 

where
T T T

1 2 3

ˆtr ( ) T T Tˆ ˆ
2 2 2 2 2 2

ˆ ˆ ˆ, ( ) , ( )WW m
mV z k Wl V z k Wl m V z k Wlσ= + = + = +σ

σ σw ma a a
. 

If the adaptation law for the output weight in the FNN is designed as (22), thenVw

can be expressed as follows. 
By (22a) 

  
T

1

ˆtr ( ) T T
2 2 2 2 2 21

ˆ ˆ ˆ[ ] 0WWV z k Wl w l z k Wl
=

= + = − + =Σ
n

i i
w ia i

z k                    (28) 
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By (22b) 
TT

2
1

ˆ ˆ ˆtr ( ) T T
2 2 2 2 2 2ˆ1

2T
2 21

ˆ ˆ ˆ[ ] ( )

ˆˆ ˆ ˆ( )

w wWW

w
V z k Wl w l I z k Wl

w w w w l

=

=

= + = − − +

     =

Σ

Σ

i i

i

n
i i

w ia i

n
i i

i i i ii

z k

z k
              

(29)
 

The condition
2 22T * *1

2
ˆ ˆ ˆ( ) 0w w w w w w= − − − <i i i i i i will hold if the correspond-

ing situations are w
ˆ bi =w and 2 2

ˆˆ 0i i
iz k <w l are met because of *

wbw <i .As a result 

from (28) and (29), one can draw a conclusion that 0V ≥w . 

If the adaptation law for the means of Gaussian functions in the FNN is designed as 
in (23), thenVm can be expressed as follows. 

By (23a) 
T T

2 2 2
ˆˆ( ) 0m a= + =mV m z k Wl m                    (30) 

By (23b) 
T

T
2 2 2

ˆˆ ˆ
ˆ

m
m mV z k Wl m
m

=m                         (31) 

The condition
2 22T * * *1

2
ˆ ˆ ˆ ˆ( ) ( ) 0m m m m m m m− = − − − < will hold if the corres-

ponding situations *
mb=m and T

2 2
ˆ ˆ 0mz k Wl m < are met, because of *

mbm < . As a 

result from (30) and (31), one can draw a conclusion that Vm≥0. According to the 
method of proving that Vm≥0, it is easy to draw a conclusion that Vσ≥0. 

By combining all terms together, V can be analyzed as follow 

T T T T T
2 2 b 1 1 1 2 2 2 1 1 1 2 2 211

(f ) 0nV z k f z k z z k z z k z z k z≤ − − − − ≤ − − ≤          (32) 

It is noted that the design of the FNN to approximate the BSC law in this paper is 
just to use the intelligent ability of the FNN without the requirement of system infor-
mation and auxiliary compensated control for maintaining the robust characteristic of 
the BSC law. It also confirms that the state variables of trajectory tracking error will 
converge to zero asymptotically. 

4 Simulation Studies 

A set of precise UUV trajectory tracking simulation experiment is designed to verify 
the correctness and robustness of space trajectory tracking controller. The system 
parameters of UUV are given as 

2 2390kg 305 67 305 67 20 200 200=  = ⋅  = ⋅  = − = −  = −y z u v wm , I . kg m , I . kg m , X ,Y , Z

200 200 49 12 311 52 311 52 87 63= − = − = − = − = − = −q r u v w qM ,N ,X . ,Y . ,Z . ,M .

87 63= −rN . .  
The planning trajectories of simulation and the initial position and direction are 

given as 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

sin 0 02t cos 0 01t sin 0 01t cos 0 01t

cos 0 01t sin 0 01t 2cos 0 02t sin 0 01t

1 0 1 1 0 8 1 1 5 1 0 01 1 0 01

θ ψ
θ ψ

=  =  = +

= − +  = −

= −  =  =  = −  =

d d d

d d

x . , y . , z . . .

. . , . . .

x . , y . , z . , . , . .

 

The parameters of FNNIBSC controller are given as 

1 diag[3.3,50,60,100,100]k = , 2 diag[406,150,100,650,650]k = ,a1=1, a2=0.1, a3=0.2. 

The tracking performance in three-dimensional space with BSC controller and 
FNNIBSC controller are shown as Fig. 3 and Fig.4, respectively. The tracking results 
of Y axis with BSC controller and FNNIBSC controller are shown as Figs. 5 and 6, 
respectively, and the tracking errors of η with BSC controller and FNNIBSC control-
ler are shown as Figs. 7 and 8, respectively. 

From Figs. 3-8, one can see that both BSC system and the FNNIBSC system can 
track the desired trajectory. Although the actual initial conditions are different from 
those of reference trajectory, the FNNIBSC system can approach the reference trajec-
tory with a rapid transient response from Figs. 3-6. As can be seen from Figs. 7 and 8, 
one can see that the tracking errors of FNNIBSC system are much smaller than those 
of BSC system. Therefore, the correctness and effectiveness can be demonstrated and 
it is concluded that the FNNIBSC system can track the reference trajectory with a 
high steady-state accuracy. 
 

 

Fig. 3. Curves of UUV trajectory tracking in 
three-dimensional space with BSC 

Fig. 4. Curves of UUV trajectory tracking in 
three-dimensional space with FNNIBSC 

 

 

Fig. 5. Curves of UUV trajectory tracking for 
y with BSC 

Fig. 6. Curves of UUV trajectory tracking for 
y with FNNIBSC 
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Fig. 7. Curves of UUV trajectory tracking 
error for X-axis, Y-axis, Z-axis, pitch and yaw 
with BSC 

Fig. 8. Curves of UUV trajectory tracking 
error for X-axis, Y-axis, Z-axis, pitch and yaw 
with FNNIBSC 

5 Conclusion 

In this paper, an adaptive FNN control approach is proposed to approximate the con-
ventional backstepping control. By using the corresponding adaptation laws, the esti-
mates of the optimal parameters of the FNN can be retrieved by the online training 
methodology. The FNNIBSC method is proved to provide a robust tracking perfor-
mance of UUV. The correctness and the effectiveness of the proposed FNNIBSC 
scheme are also confirmed by the simulation results compared with BSC system. 
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A New Sampled-Data State Estimator

for Neural Networks of Neutral-Type
with Time-Varying Delays�

Xianyun Xu, Changchun Yang, Manfeng Hu, Yongqing Yang, and Li Li

School of Science, Jiangnan University, Wuxi 214122, PR China

Abstract. This paper is concerned with the sampled-data state esti-
mation problem for neural networks of neutral-type with time-varying
delays. A new state estimator was designed based on the sampled mea-
surements. The sufficient condition for the existence of state estimator is
derived by using the Lyapunov functional method. A numerical example
is given to show the effectiveness of the proposed estimator.

Keywords: state estimation, sampled measurements, neutral-type,
neural network, delay.

1 Introduction

Neural networks have received much attention in the past decades due to their
extensive applications in signal processing, pattern classification, optimization
and associative memory[1,2,3]. It is known that time delays often occur due
to the finite switching speeds of the amplifiers or the finite signal propagation
time. So, the delayed neural networks have been considered as viable network
models[4,5,6,7,8]. In applications, the neuron states are not often fully available
from the network outputs, the neuron state estimation problem becomes precur-
sor and was widely studied. For example, Liu et al. studied H∞ state estima-
tion of static neural networks with time-varying delays[9]. The state estimation
was investigated for nonlinear networked control systems with limited capacity
channel in [10]. For some Markovian jumping systems, the robust state estima-
tion and exponential state estimation were discussed[11,12]. The state estimator
was designed for discrete-time neural networks and fuzzy neural networks in
[13,14,15,16]. In addition, Liu et al. investigated state estimation for the com-
plex networked systems with randomly occurring nonlinearities and randomly
missing measurements[17]. Park et al. discussed the state estimation problems of
neural networks with neutral-type delay and interval time-varying delays[22,23].

Recently, with the development of computer hardware technology, the
sampled-data state estimations have received constant attentions both from aca-
demic research and industrial application. Via the output sampled measurement,

� This work was jointly supported by the National Natural Science Foundation of
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state estimation of the neuron needs less information from the network out-
puts, which can lead to the reduction of the network communication burden.
Some sampled-data state estimator have been designed for Markovian jumping
neural networks[18,21]. Using discontinuous Lyapunov functional approach, the
sampled-data state estimation of some neural networks were investigated[19,20].
To the best of our knowledge, state estimators were usually designed as the
same formation with the estimated system. Moreover, it is still scarce on the
results that the sampled-data state estimators were designed based on partial
information of the estimated systems.

Motivated by the previous discussion, the purpose of this paper is to inves-
tigate the sampled-data state estimation problem for delayed neural networks
of neutral-type. The main contributions of this paper are twofold. First, a new
sampled-data state estimator is designed based on the partial information of the
neural networks. Second, The estimator gain matrix can be obtained by solving
the linear matrix inequalities.

The organization of the paper is as follows: in section 2, the problem is formu-
lated and some lemmas are introduced. In section 3, some sufficient conditions
are given to guarantee the existence of the sampled-data estimator. An examples
is given to exemplify the usefulness of our theoretical results in section 4. And
in the last section: section 5, we give some conclusions.

2 Problem Formulation

Consider the following neural networks with neutral time-varying delay:

ẋ(t) = −Ax(t) +W0f(x(t)) +W1g(x(t− τ(t))) + V ẋ(t− d(t)),
y(t) = Cx(t),

(1)

where τ(t) > 0 and d(t) > 0, correspond to finite speed of axonal signal trans-
mission delay satisfying the following:

0 < τ(t) ≤ τ̄ , τ̇ (t) ≤ μ,

0 < d(t) ≤ d̄, ḋ(t) ≤ dD < 1.

Assumption 1. The neuron activation function f(·), g(·) satisfy :

[f(x)− U1x]
T
[f(x)− U2x] ≤ 0,

[g(x)− U3x]
T
[g(x)− U4x] ≤ 0,

(2)

The aim of this paper is to propose a new estimation algorithm to observe the
neuron states from the available network sampling output. The measurement
output is sampled as follows:

ȳ(t) = Cx(tk), t ∈ [tk, tk+1), (3)

where ȳ(t) ∈ R
m is the actual output, and tk denotes the sampling instant

satisfying lim
k→∞

tk = ∞.
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Based on the available sampled measurement ȳ(t), the state estimator is
adopted:

˙̂x(t) = −Ax̂(t) + V ˙̂x(t− d(t)) +K[ȳ(t)− ŷ(t)],
ŷ(t) = Cx̂(t),

(4)

Assumption 2. For k ≥ 0, there exists a positive constant h̄ such that the
sampling instant tk satisfies tk+1 − tk ≤ h̄ .

Define the error vector to be e(t) = x(t)−x̂(t). Let h(t) = t−tk, tk ≤ t < tk+1,
the error dynamical system can be expressed by:

ė(t) = −Ae(t) + V ė(t− d(t)) +W0f(x(t)) +W1g(x(t− τ (t)))−K [Cx(tk)− Cx̂(t)]
= − [A+KC] e(t) + V ė(t− d(t)) +W0f(x(t)) +W1g(x(t− τ (t)))

+KCx(t)−KCx(t− h(t)).
(5)

From (1) and (5), we have the following augmented system:

˙̄e(t) = Āē(t) + B̄ē(t− h(t)) + V̄ ˙̄e(t− d(t)) + W̄0f(Hē(t)) + W̄1g(Hē(t− τ (t))), (6)

where

ē(t) =

[
x(t)
e(t)

]

, Ā =

[−A 0
KC −(A+KC)

]

, B̄ =

[
0 0

−KC 0

]

,

V̄ =

[
V 0
0 V

]

, W̄0 =

[
W0

W0

]

, W̄1 =

[
W1

W1

]

, H =
[
I 0

]
.

The following lemmas will be used in deriving the main results.

Lemma 1. ([21]) (Schur Completement) Given constant matrices Ω1, Ω2, and
Ω3, where Ω1 = ΩT

1 and Ω2 > 0, then

Ω1 +ΩT
3 Ω

−1
2 Ω3 < 0, (7)

if and only if

[
Ω1 ΩT

3

Ω3 −Ω2

]

< 0. (8)

Lemma 2. ([22]) (Jensen’s inequality) For any constant matrix Q ∈ R
n×n, Q =

QT > 0, scalar b > 0, and vector function x : [0, b] → R
n, one has

− ∫ b

0
xT (s)Qx(s)ds ≤ − 1

b

[∫ b

0
x(s)ds

]T
Q
[∫ b

0
x(s)ds

]
.

3 Main Results

In this section, we derive a delay-dependent criterion for exponential stability of
the error system (6) by the Lyapunov method.
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Theorem 1. For given matrices Ui (i = 1, 2, 3, 4) and ρ, the error system (6) is
exponentially stable if there exist matrices P = diag{P11, P22} > 0, Q1 > 0, Q2 >
0, Q3 > 0, Z1 > 0, Z2 > 0, Z3 > 0, Y and scalars λ1 > 0, λ2 > 0 such that Υ > 0
and

Σ =

[
Σ1 ΣT

2 P
−2ρP + ρ2Υ

]

< 0, (9)

where

Σ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ11 PB̄ + 1
h̄
Z1 0 Λ14 0 PV̄ PW̄0 − λ1N1 PW̄1

− 2
h̄
Z1

1
h̄
Z1 0 0 0 0 0

∗ −Q1 − 1
h̄
Z1 0 0 0 0 0

∗ ∗ Λ44
1
τ̄ Z2 0 0 −λ2N2

∗ ∗ ∗ −Q2 − 1
τ̄ Z2 0 0 0

∗ ∗ ∗ ∗ −(1 − dD)R 0 0
∗ ∗ ∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ ∗ ∗ −λ2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Σ2 =
[
Ā B̄ 0 0 0 V̄ W̄0 W̄1

]
,

Υ = R+ h̄Z1 + τ̄Z2 + τ̄Z3,
Λ11 = PĀ+ ĀTP +Q1 +Q2 +Q3 − 1

τ̄ [Z2 + (1− μ)Z3]− 1
h̄
Z1 − λ1M1,

Λ14 = 1
τ̄ [Z2 + (1− μ)Z3],

Λ44 = − 1
τ̄ [Z2 + (1− μ)Z3]− 1

τ̄Z2 − (1 − μ)Q3 − λ2M2,

M1 =
HT UT

1 U2H+HT UT
2 U1H

2 , M2 =
HTUT

3 U4H+HT UT
4 U3H

2 ,

N1 = −HTUT
1 +HT UT

2

2 , N2 = −HTUT
3 +HT UT

4

2 .
Furthermore, if the LMIs given above are solvable, the desired estimator param-
eters are given as K = P−1

22 X.

Proof. Consider the following Lyapunov functional:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (10)

where

V1(t) = ēT (t)P ē(t),

V2(t) =
∫ t

t−h̄
ēT (s)Q1 ē(s)ds +

∫ t

t−τ̄
ēT (s)Q2ē(s)ds +

∫ t

t−τ(t)
ēT (s)Q3 ē(s)ds,

V3(t) =
∫

t

t−d(t)
˙̄eT (s)R ˙̄e(s)ds,

V4(t) =
∫ 0

−h̄

∫ t

t+θ
˙̄eT (s)Z1 ˙̄e(s)dsdθ +

∫ 0

−τ̄

∫ t

t+θ
˙̄eT (s)Z2 ˙̄e(s)dsdθ +

∫ 0

−τ(t)

∫ t

t+θ
˙̄eT (s)Z3 ˙̄e(s)dsdθ.

Calculate the derivative of Vi (i = 1, 2, 3, 4) along the trajectories of the
system (6), we have

V̇1(t) = 2ēT (t)P [Āē(t)+B̄ē(t−h(t))+V̄ ˙̄e(t−d(t))+W̄0f(Hē(t))+W̄1g(Hē(t−h(t)))],
(11)

V̇2(t) ≤ ēT (t) [Q1 +Q2 +Q3] ē(t)− ēT (t− ēT (t− τ̄ )Q2ē(t− τ̄ )
− h̄)Q1ē(t− h̄)− (1− μ)ēT (t− τ(t))Q3 ē(t− τ(t))

(12)
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V̇3(t) ≤ ˙̄e
T
(t)R ˙̄e(t)− (1 − dD) ˙̄e

T
(t− d(t))R ˙̄e(t− d(t)), (13)

V̇4(t) ≤ ˙̄eT (t)
[
h̄Z1 + τ̄Z2 + τ̄Z3

]
˙̄e(t) − ∫

t
t−h̄

˙̄eT (s)Z1 ˙̄e(s)ds − ∫
t
t−τ̄

˙̄eT (s)Z2 ˙̄e(s)ds

− (1 − μ)
∫

t
t−τ(t)

˙̄eT (s)Z3 ˙̄e(s)ds.
(14)

By Lemma 2, we can obtain

− ∫ t
t−h̄

˙̄eT (s)Z1 ˙̄e(s)ds ≤ − 1
h̄
[ē(t) − ē(t − h(t))]T Z1 [ē(t) − ē(t − h(t))]

− 1
h̄

[
ē(t − h(t))− ē(t − h̄)

]T Z1

[
ē(t − h(t)) − ē(t − h̄)

]
,

(15)

− ∫ t
t−τ̄

˙̄eT (s)Z2 ˙̄e(s)ds − (1 − μ)
∫ t
t−τ(t)

˙̄eT (s)Z3 ˙̄e(s)ds

≤ − 1
τ̄ [ē(t) − ē(t − τ(t))]T [Z2 + (1 − μ)Z3] [ē(t) − ē(t − τ(t))]

− 1
τ̄ [ē(t − τ(t))− ē(t − τ̄)]T Z2 [ē(t − τ(t))− ē(t − τ̄)] .

(16)

Note that (2) implies

[
ē(t)

f(Hē(t))

]T [
M1 N1

I

] [
ē(t)

f(Hē(t))

]

≤ 0, (17)

[
ē(t− τ(t))

g(Hē(t− τ(t)))

]T [
M2 N2

I

] [
ē(t− τ(t))

g(Hē(t− τ(t)))

]

≤ 0, (18)

where M1,M2, N1 and N2 are defined in Theorem 1.
Therefore, for any scalars λ1 > 0 and λ2 > 0, and introducing the new variable

P22K = Y , after some matrix manipulations together with (11)—(18), we have

V̇ (t) =
4∑

i=1

V̇i(t)

≤ ēT (t)
[
PĀ + ĀTP + Q1 + Q2 + Q3 − 1

τ̄ [Z2 + (1 − μ)Z3] − 1
h̄
Z1

]
ē(t)

+ 2ēT (t)
[
PB̄ + 1

h̄
Z1

]
ē(t − h(t)) − ēT (t − h(t))

[
2
h̄
Z1

]
ē(t − h(t))

+ 2ēT (t)
[
PW̄0

]
f(Hē(t)) + 2ēT (t)

[
PW̄1

]
g(Hē(t − τ(t)))

+ 2ē(t)
[
1
τ̄ [Z2 + (1 − μ)Z3]

]
ē(t − τ(t)) + 2ēT (t)

[
PV̄

]
˙̄e(t − d(t)))

− ˙̄eT (t − d(t)) [(1 − dD)R] ˙̄e(t − d(t)) + 2ēT (t − h(t))
[

1
h̄
Z1

]
ē(t − h̄)

− ēT (t − h̄)
[
Q1 + 1

h̄
Z1

]
ē(t − h̄) + 2ēT (t − τ(t))

[
1
τ̄ Z2

]
ē(t − τ̄)

− ēT (t − τ(t))
[
1
τ̄ [Z2 + (1 − μ)Z3] +

1
τ̄ Z2 + (1 − μ)Q3

]
ē(t − τ(t))

− ēT (t − τ̄)
[
Q2 + 1

τ̄ Z2

]
ē(t − τ̄) + ˙̄eT (t)

[
R + h̄Z1 + τ̄Z2 + τ̄Z3

]
˙̄e(t)

− λ1

[
ē(t)

f(Hē(t))

]T [
M1 N1

I

] [
ē(t)

f(Hē(t))

]

− λ2

[
ē(t − τ(t))

g(Hē(t − τ(t)))

]T [
M2 N2

I

] [
ē(t − τ(t))

g(Hē(t − τ(t)))

]

= ξT (t)
[
Σ1 + ΣT

2 ΥΣ2

]
ξ(t),

(19)

Using the fact −PΥ−1P ≤ −2ρP +ρ2R resulted from (P − ρΥ )Υ−1 (P − ρΥ )
≥ 0, it is clear that LMIs (9) can guarantee the following inequality:

[
Σ1 ΣT

2 P
−PΥ−1P

]

< 0. (20)
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Pre- and post multiplying diag{I, I, I, I, I, I, I, I, ΥP−1} and diag{I, I, I, I,
I, I, I, I, P−1Υ}, respectively, we have

[
Σ1 ΣT

2 Υ
−Υ

]

< 0. (21)

By Lemma 1, the inequality (21) is equivalent to the inequality Σ1+ΣT
2 ΥΣ2 < 0.

This implies that the error dynamic (6) is exponentially stable by the Lyapunov
theory. This completes the proof of the theorem.

4 Simulation Example

In this section, a numerical example with simulation results is employed to
demonstrated the effectiveness of the proposed method.

Example 1. Consider the neural networks of neutral-type (1) with the following
parameters:

A =

[
1.5 0
0 1.2

]

, W0 =

[
0.3 −0.2
−0.2 0.3

]

, W1 =

[
0.3 0.3
0.3 0.3

]

,

V =

[
0.3 0.1
0.1 0.3

]

, U1 =

[−0.2 0
0.3 0.85

]

, U2 =

[−0.5 0
0.3 0.3

]

,

U3 =

[
0.5 0
−0.3 −0.3

]

, U4 =

[
0.2 0
−0.3 −0.85

]

, C = [0.7 0.8] ,

f(x) = 0.5tanh(x), g(x(t− h(t))) = tanh(0.4 ∗ x(t− h(t))),
h(t) = 0.14(1− sin(t)), d(t) = 0.45(1− sin(t)), τ̄ = 0.36.

From the parameters above, for given ρ = 25, The conditions of Theorem 1 can
be satisfied by using Matlab LMI Toolbox. Let x(0) = [−0.36 − 0.35]T , x̂(0) =
[0.45 0.54]T . The simulation results are displayed in Fig.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t[sec]

S
ta

te
 e

st
im

at
io

n

 

 
x

1
(t)

\hat{x}_1(t)
x

2
(t)

\hat{x}_2(t)

Fig.1: The true state x(t) and its estimate x̂(t).

5 Conclusions

In this paper, we studied the sampled-data state estimation problem for de-
layed neural networks of neutral-type. By using a delayed-input approach, the
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sampling period is converted equivalently into a bounded time-varying delay.
Based on the available sampled measurement, we construct the state estimator
by utilizing partial information of the neural networks. By employing a suitable
Lyapunov functional, and combining with Jensen integral inequality, a sufficient
condition for the existence of state estimator is derived in terms of linear ma-
trix inequalities (LMIs). Finally, a illustrative example is exploited to show the
effectiveness of the proposed method.
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Abstract. In this paper, we investigate the exponential lag synchro-
nization of delayed Cohen-Grossberg neural networks with discontinuous
activation functions. By employing the analysis technique and theory of
the differential equations with discontinuous right-hand side, some novel
lag synchronization criteria have been obtained. Finally, an example is
given to illustrate the effectiveness of the obtained results.

Keywords: Cohen-Grossberg neural network, Exponential lag synchro-
nization, Discontinuous, Time-delay.

1 Introduction and Preliminaries

In the past few years, many considerable efforts have been devoted to investigate
the neural network system with discontinuous activation functions due to the
fact that neural networks with discontinuous (or non-Lipschitz, or nonsmooth)
neuron activations, have been found useful to address a number of interesting
engineering tasks, such as dry friction, impacting machines, systems oscillating
under the effect of an earthquake, power circuits, switching in electronic circuits,
linear complementarity systems, and many others [1-3].

Since Pecora and Carrol [4] first proposed a method to synchronize two identi-
cal systems with different initial values, the problem of synchronization in chaotic
systems has been extensively investigated over the past few decades owing to
their potential applications in many engineering areas, ranging from secure com-
munications to modeling brain activity, even to optimization of nonlinear system
performance [5]. Meanwhile, a number of methods have been developed for the
synchronization of chaotic systems which include complete synchronization [6],
lag synchronization [7], impulsive synchronization [8], phase synchronization [9],
projective synchronization [10], function projective synchronization [11], etc.

On the other hand, it has been shown that the complete synchronization of
chaos is practically impossible in the remote communication systems due to finite
transmission speed of signals or memory effects. For example, in the telephone
communication system, the voice one hears on the receiver side at time t+σ is the
voice from the transmitter side at time t. Hence, it is reasonable to require one

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 129–137, 2015.
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neural network to synchronize the other neural network at a constant time lag
[12]. Lag synchronization appears as a coincidence of shifted-in-time states of two
systems y(t) → x(t− σ), t → ∞, with a propagation delay σ > 0 [13, 14]. Also,
compared with complete synchronization, lag synchronization may be a more
appropriate technique to clearly indicate the fragile nature of neuron systems.
Thus, it is of great importance to study lag synchronization of discontinuous
neural networks, but till now, there are very few or even no published results in
this research area.

Motivated by above analysis, in this paper, we consider the exponential lag
synchronization of following delayed Cohen-Grossberg neural networks (CGNNs)
model with discontinuous activation functions

ẋi(t) = ai(xi(t))
[
− dixi(t) +

n∑

j=1

bijfj(xj(t)) +

n∑

j=1

cijfj (xj(t− τj)) + Ii

]
, (1)

where i ∈ I � {1, 2, · · · , n}, n ≥ 2 denotes the number of neurons in the neural
network; ai(xi(t)) represents an amplification function, di > 0 represents the
rate with which the ith neuron will reset its potential to the resting state when
disconnected from the network and external inputs, fj(xj(t)) is the activation
function, τj ≥ 0 corresponds to the transmission delay. Concerning coefficients
bij and cij denote the synaptic connection weights, and Ii denotes the external
bias on the ith unit.

Throughout this paper, for the model (1), we introduce the following assump-
tions

A1 : ai ∈ C(R,R+) and there exist positive constants ai and ai such that

ai ≤ ai(u) ≤ ai, for all u ∈ R, i ∈ I .

A2 : For each i, fi(·) is continuous on R expect a countable set of isolate points
ρki , where there exist finite right and left limits f+

i (ρik) and f−
i (ρik), respectively.

Moreover, fi has a finite number of discontinuous points on any compact interval
of R.

A3 : For each i, there exist a nonnegative constants Li and Ni such that

sup
ξi∈K[fi(u)],γi∈K[fi(v)]

|ξi − γi| ≤ Li|u− v|+Ni, u, v ∈ R,

where K[fi(s)] =
[
min{f−

i (s), f+
i (s)},max{f−

i (s), f+
i (s)}] for s ∈ R.

Let τ = maxj∈I {τj} and C = C([−τ, 0],Rn) denotes the Banach space
of all continuous functions mapping [−τ, 0] into R

n with the norm ‖ϕ‖c =
sup−τ≤s≤0 ‖ϕ(s)‖. If for L ∈ (0,+∞], x(t) : [−τ, L) → R

n is continuous, then
xt ∈ C is defined by xt(θ) = x(t+ θ), θ ∈ [−τ, 0] for any t ∈ [0, L).

Definition 1. For the system ẋ(t) = f(t, xt), where xt(·) denotes the history of
the state from time t−τ , up to the present time t; ẋ(t) denotes the time derivative
of x and f : R × C → R

n is measurable and essentially locally bounded. Then,
the Flippov set-valued map F (t, xt) : R× C → 2R

n

is defined as follows:

F(t, xt) =
⋂

r>0

⋂

μ(N)=0

K[f(B(xt, r)\N)],
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where K[E] is the closure of the convex hull of set E; intersection is taken over
all sets N of Lebesgue measure zero and over all r > 0; B(xt, r) := {x∗

t :
‖x∗

t − xt‖c ≤ r}, and μ(N) is Lebesgue measure of set N .

Definition 2. A function x : [0, L) → R
n, L ∈ (0,+∞], is called a state solution

of (1) on [0, L) if

(i) x is absolutely continuous on [0, L);
(ii) there exists a measurable function γ = (γ1, γ2, ..., γn)

T : [0, L) → R
n such

that γ(t) ∈ K[f(x(t))] for a.a.t ∈ [0, L) and

ẋi(t) = ai(xi(t))
[
− dixi(t) +

n∑

j=1

bijγj(t) +

n∑

j=1

cijγj(t− τj) + Ii

]
. (2)

Any function γ satisfying (2) is called an output solution associated to the
state x. With this definition it turns out that the state x is a solution of (1.1)
in the sense of Fillipov since it satisfies

ẋi(t) ∈ ai(xi(t))
[
− dixi(t) +

n∑

j=1

bijK[fj(xj(t))] +

n∑

j=1

cijK[fj(xj(t− τj))] + Ii

]
.

(3)

Definition 3. (IVP) For a continuous function ϕ(θ) = (ϕ1(θ), · · · , ϕn(θ))
T and

a measurable function φ(θ) = (φ1(θ), · · · , φn(θ))
T ∈ K[f(ϕ(θ))] for a.a. θ ∈

[−τ, 0], a continuous functions x(t) = x(t, ϕ, φ) = (x1(t), · · · , xn(t))
T associated

with a measurable function γ(t) = (γ1(t), · · · , γn(t))T is said to be a solution
of the Cauchy problem for system (3) on [−τ, L) (L > 0 might be +∞) with
initial condition [ϕ(θ), ψ(θ)], θ ∈ [−τ, 0], if x(t) is absolutely continuous on any
compact interval of [0, L), and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = ai(xi(t))
[− dixi(t) +

n∑

j=1

bijγj(t) +

n∑

j=1

cijγj(t− τj) + Ii
]
, a.a. t ∈ [0, L),

γj(t) ∈ K[fj(xj(t))], a.a. t ∈ [0, L),

xi(θ) = ϕi(θ), θ ∈ [−τ, 0]

γi(θ) = ψi(θ), ψi(θ) ∈ K[fi(ϕi(θ)], a.a. θ ∈ [−τ, 0].
(4)

Remark 1. Suppose that the conditions A1 −A3 are satisfied, then the growth
condition (8) in Theorem 1 in [15] holds. Therefore, any IVP for (1) has at least
one solution x on [0,+∞).

Consider the neural network model (1) as the driver system, the controlled
response system can be described as follows:

ẏi(t) = ai(xi(t))
[
− diyi(t) +

n∑

j=1

bijfj(yj(t)) +
n∑

j=1

cijfj (xj(t− τj))+ Ii

]
+ ui(t),

(5)
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for i ∈ I and t ≥ σ ≥ 0, yi denote the state of the slave system, ui(t) is the
discontinuous state-feedback controller given by

ui(t) = −αi(yi(t)− xi(t− σ)) − kisign(yi(t)− xi(t− σ)), i ∈ I , (6)

where αi and ki are positive constants determined in later.
According to Definition 3 and Remark 1, we can obtain the initial value prob-

lem (IVP) of response system (5) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏi(t) = ai(yi(t))
[− diyi(t) +

n∑

j=1

bijγ
∗
j (t) +

n∑

j=1

cijγ
∗
j (t− τj) + Ii

]
+ u∗

i (t),

for a.a. t ∈ [σ,+∞),

γ∗
j (t) ∈ K[fj(yj(t))], a.a. t ∈ [σ,+∞),

yi(θ) = φi
σ(θ), φi

σ(θ) = φi(θ + σ), θ ∈ [−τ, 0],

γ∗
i (θ) = ξi(θ), ξi(θ) ∈ K[fi(φi(θ)], a.a. θ ∈ [−τ + σ, σ].

(7)

where
u∗
i (t) ∈ K[ui(t)] = −αi(yi(t)− xi(t− σ))− kiϑi(t)

with

ϑi(t) = K[sign(yi(t)− xi(t− σ))] =

⎧
⎪⎨

⎪⎩

−1 if yi(t)− xi(t− σ) < 0,

[−1, 1] if yi(t)− xi(t− σ) = 0,

1 if yi(t)− xi(t− σ) > 0.

(8)

Definition 4. Drive-response systems (1) and (5) are said to be exponentially lag
synchronized, if there exist M ≥ 1 and λ > 0 such that

‖y(t)− x(t− σ)‖ ≤ M‖φσ − ϕ‖ce−λ(t−σ)

for any t ≥ σ. Here λ is called the degree of exponential lag synchronization.

2 Main Results

In this section, we consider the global exponential lag synchronization of delayed
CGNNs with discontinuous activations by using discontinuous state-feedback con-
troller. Based on extended Filippov-framework and some analytic techniques, we pro-
pose a series of new criteria for synchronization which are different from those of the
existing literature.

Theorem 1. Let A1 − A3 hold. If the control strengths αi and ki of (6) satisfy the
following inequalities

Γi =− (di +
αi

āi
− b+ii) +

n∑

j=1,j �=i

|bij |Lj +

n∑

j=1

|cij |Lj < 0,

Υi =b+iiNi +
n∑

j=1,j �=i

|bij |Nj +
n∑

j=1

|cij |Nj − ki
āi

< 0, i ∈ I ,

(9)

where b+ii = max{0, bii}. Then then drive-response systems (1) and (5) are exponentially
lag synchronized under the controller (6).
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Proof. Suppose ϕ, φσ ∈ C and let [x(t), γ(t)] and [y(t), γ∗(t)] are solutions of systems
(1) and (5) with different initial values [ϕ,ψ] and [φσ, ξ], respectively, where ψ ∈
K[f(ϕ(s))], ξ ∈ K[f(φσ(s))], and φσ(s) = φ(σ + s) for all s ∈ [−τ, 0]. Further, let
ei(t) = yi(t) − xi(t − σ) be the synchronization error between the states of the drive
system (1) and the response system (3), and set

ēi(t) =

∣∣∣∣∣

∫ yi(t)

xi(t−σ)

ds

ai(s)

∣∣∣∣∣ . (10)

Then from A1, we have

1

āi
|ei(t)| ≤ ēi(t) ≤ 1

ai

|ei(t)|. (11)

Thus from Lemma 2.4 in [1], for t ≥ σ, we have

dēi(t)

dt
=∂

∣∣∣∣∣

∫ yi(t)

xi(t−σ)

ds

ai(s)

∣∣∣∣∣

{
ẏi(t)

ai(xi(t))
− ẋi(t− σ)

ai(xi(t− σ))

}

=υi(t)
{
− diei(t) +

n∑

j=1

bijηj(t) +
n∑

j=1

cijηj(t− τj)− αiei(t) + kiϑi(t)

ai(yi(t))

}
.

(12)

where ηj(t) = γ∗
j (t) − γ(t − σ), ηj(t − τj) = γ∗

j (t − τj) − γ(t − τj − σ), υi(t) =

sign{∫ yi(t)

xi(t−σ)
ds

ai(s)
} = sign[yi(t) − xi(t− σ)] = sign(ei(t)), if ei(t) �= 0; while υi(t) can

be arbitrarily chosen in [−1, 1], if ei(t) = 0. In particular, we choose υi(t) as follows

υi(t) =

⎧
⎪⎨

⎪⎩

0, if ei(t) = 0 and ηi(t) = 0,

sign(ηi(t)), if ei(t) = 0 and ηi(t) �= 0,

sign(ei(t)), if ei(t) �= 0.

(13)

Thus, we have

υi(t)ei(t) = |ei(t)|, υi(t)ηi(t) = |ηi(t)|.

Constructing a Lyapunov functional V (t) by

V (t) =
n∑

i=1

ēi(t)e
λ(t−σ) +

n∑

i=1

n∑

j=1

|cij |
∫ t

t−τj

|ηj(s)|eλ(s+τj−σ)ds. (14)
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In view of the chain rule in Lemma 2.4 in [1], calculate the time derivative of V (t)
along the solutions of systems (1) and (5) along the sense of Eqs. (4) and (7), then for
a.a. t ≥ σ we have

dV (t)

dt
=

n∑

i=1

λēi(t)e
λ(t−σ) +

n∑

i=1

υi(t)
{
− diei(t) +

n∑

j=1

bijηj(t) +
n∑

j=1

cijηj(t − τj)

−αiei(t) + kiϑi(t)

ai(yi(t))

}
eλ(t−σ) +

n∑

i=1

n∑

j=1

eλ(t−σ)
{
|cij ||ηj(t)|eλτj − |cij ||ηj(t− τj)|

}

≤
n∑

i=1

{
− (di +

αi

āi
− λ

ai
|)|ei(t)| + b+ii |ηi(t)|+

n∑

j=1,j �=i

|bij ||ηj(t)| − ki

āi

}
eλ(t−σ)

+
n∑

i=1

n∑

j=1

|cij ||ηj(t)|eλ(t+τj−σ)
}

≤
n∑

i=1

{
(
λ

ai
− di − αi

āi
+ b+ii)|ei(t)| + b+iiNi +

n∑

j=1,j �=i

|bij |[Lj |ej(t)| +Nj ]
}
eλ(t−σ)

−ki

āi
eλ(t−σ) +

n∑

i=1

n∑

j=1

|cij |[Lj|ej(t)| +Nj ]e
λ(t+τj−σ)

≤ max
i∈I

{
(
λ

ai
− di − αi

āi
+ b+ii) +

n∑

j=1,j �=i

|bij |Lj +
n∑

j=1

|cij |Lje
λτj

} n∑

i=1

|ei(t)|eλ(t−σ)

+
n∑

i=1

{
b+iiNi +

n∑

j=1,j �=i

|bij |Nj +
n∑

j=1

|cij|Nje
λτj − ki

āi

}
.

From (9), for a small enough λ, we can obtain that

(
λ

ai
− di − αi

āi
+ b+ii) +

n∑

j=1,j �=i

|bij |Lj +

n∑

j=1

|cij |Lje
λτj < 0,

b+iiNi +
n∑

j=1,j �=i

|bij |Nj +
n∑

j=1

|cij |Nje
λτj − ki

āi
< 0.

(15)

Thus we have
dV (t)

dt
≤ 0,

which, together with (12) and (14), leads to

eλ(t−σ)
n∑

i=1

ēi(t) ≤ V (t) ≤ V (σ), (16)

where

V (σ) ≤
n∑

i=1

[(
1

ai

+
n∑

j=1

|cij |Ljτje
τj

)
‖φσ − ϕ‖c +

n∑

j=1

|cij |Njτje
τj

]
� N∗.

Then there exists a positive constant M∗ such that

N∗ ≤ M∗‖φσ − ϕ‖c. (17)

Thus we obtain that the following inequality holds.

n∑

i=1

1

āi
|ei(t)| ≤

n∑

i=1

ēi(t) ≤ M∗‖φσ − ϕ‖ce−λ(t−σ).
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That is

‖y(t)− xi(t− σ)‖ =
n∑

i=1

|ei(t)| ≤ M‖φσ − ϕ‖ce−λ(t−σ), (18)

where M = (M∗)max1≤i≤n āi. The proof of Theorem 2 is completed. �	

3 Numerical Simulations

For n = 2, consider the following discontinuous CGNNs

ẋi(t) = ai(xi(t))
[− dixi(t) +

2∑

j=1

bijfj(xj(t)) +

2∑

j=1

cijfj(xj(t− τj))
]
, (19)

where i = 1, 2, f1(u) = f2(u) = tanh(u) − 0.06sign(x), d1 = 1.1, d2 = 1.2, b11 = 2,
b12 = −0.08, b21 = −5, b22 = 4, c11 = −1.5, c12 = −0.1, c21 = −0.2, c22 = −4 and
a1(u) = 0.8 + 0.1/(1 + u2), a2(u) = 0.8− 0.1/(1 + u2), τ1 = τ2 = 1.

Obviously, 0.8 ≤ a1(u) ≤ 0.9 0.7 ≤ a2(u) ≤ 0.8, thus a1 = 0.8, a2 = 0.7 , ā1 = 0.9
and ā2 = 0.8.

The numerical simulation of system (19) with the initial values x1(s) = 0.4 and
x2(s) = −0.9 for s ∈ [−1, 0] is represented in Fig. 1, which shows that system (19) has
a chaotic attractor.

In the following, we consider the lag synchronization of drive system (19) and re-
sponse system described by

ẏi(t) = ai(yi(t))
[− diyi(t) +

2∑

j=1

bijfj(yj(t)) +
2∑

j=1

cijfj(yj(t− τij))
]
+ ui(t), (20)

for t ≥ σ and i = 1, 2, where ai, di, bij , cij , fj and τj are the same as defined in
system (22) and ui(t) is given by (6).
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Fig. 1. The chaotic attractor of system
(19).
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Fig. 2. The evaluation of lag synchroniza-
tion error ei.

By choosing α1 = 2.4, α2 = 9.7 and k1 = 0.22, k2 = 0.64, then by simple compu-
tation, we obtain that L1 = L2 = 1, N1 = N2 = 0.06, Γ1 = −0.0867, Γ2 = −0.1250,
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Υ1 = −0.0236 and Υ2 = −0.0080. Thus, all the conditions of Theorem 1 are satis-
fied, hence the drive-response systems (19) and (20) are exponentially lag synchro-
nized under the controller (6) and above parameters. Taking σ = 3 and denoting
ei(t) = yi(t)− xi(t− σ), the time evolution of synchronization errors between systems
(19) and (20) are given in Figs. 2 .

4 Conclusion

In this paper, we study the exponential lag synchronization of delayed CGNNs with
discontinuous activation functions. By employing the analysis technique and theory of
the differential equations with discontinuous right-hand side, some novel lag synchro-
nization criteria have been obtained. Finally, an example is given to demonstrate the
effectiveness of the proposed synchronization method.
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Abstract. This paper is concerned with globally exponential stability
in the mean square of stochastic static neural networks with Markovian
switching and time delay. Firstly, the mathematical model of this kind of
recurrent neural networks is established by taking information latching
and noise disturbance into consideration. Then, a stability condition,
which is dependent on both time delay and system mode, is presented in
terms of linear matrix inequalities. Based on it, the maximum value of
the exponential decay rate can be efficiently found by solving a convex
optimization problem.

Keywords: Static neural networks, stability, time delay, Markovian
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1 Introduction

According to the basic variables adopted in the modeling process, recurrent
neural networks can be classified into local field neural networks and static neural
networks [12]. In general, only when some strict preconditions are satisfied, the
two kinds of recurrent neural networks are equivalent. While, a practical example
was presented in [6] to verify that these preconditions were not always met.
It means that the stability conditions for local field neural networks are not
applicable to static neural networks. On the other hand, comparing with local
field neural networks, much less attention has been paid to static neural networks.
This motivates the study of static neural networks.

It is well known that the information latching phenomenon is frequently en-
countered in recurrent neural networks. One of promising ways to resolve it is
to extract a finite state representation from the considered neural network [11].
In practice, the switching between the finite states can be well modeled by in-
troducing a Markov chain. As a result, the so-called stochastic recurrent neural
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networks with Markovian switching are proposed. Recently, the stability anal-
ysis of this kind of recurrent neural networks has become an active research
topic. Many excellent stability conditions have been reported in the literature
(see, e.g., [3,4,9]). In [9], the authors discussed the stochastic stability for a class
of discrete-time neural networks with Markovian switching and time-varying
delays. The parameter uncertainties were also taken into account. In [4], the
stochastic stability analysis problem was studied for neutral-type neural net-
works with Markovian jumping parameters and mode-dependent mixed delays.

It should be pointed out that the above-mentioned results are on local field
neural networks with Markovian switching. As discussed before, these criteria
can not be applied to judge the stability of stochastic static neural networks.
Recently, the authors initially considered the H∞ filter design in [8] for de-
layed static neural networks with Markovian jumping parameters. By employ-
ing Wirtinger inequality [7], a design criterion was provided and formulated
by means of linear matrix inequalities (LMIs). In [10], the stochastic stability
was investigated for stochastic Markovian jumping static neural networks with
asynchronous mode-dependent delays. To our knowledge, stochastic stability of
delayed static neural networks with Markovian switching has not yet been fully
investigated. This motivates the current study.

In this paper, our attention focuses on the stability analysis of a class of
stochastic delayed static neural networks with Markovian jumping parameters.
By constructing a suitable stochastic Lyapunov functional with a tripe integral
term, a delay and mode dependent condition is derived under which the con-
sidered neural network is globally exponentially stable in the mean square. One
of the advantages of our result lies in that the maximum allowable value of the
exponential decay rate can be easily obtained by solving a convex optimization
problem subject to some LMI-based constraints.

The notations used in this paper are the same as those in [3].

2 Mathematical Model and Problem Formulation

It is known that a delayed static neural network with n neurons can be repre-
sented by

ẋ(t) = −Ax(t) + f(Wx(t− τ) + J) (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ R

n is the state vector, W = [wij ]n×n

is a connection weight matrix with wij being the connection weight between
neurons j and i, A = diag{a1, a2, . . . , an} is a diagonal matrix with positive
entries ai (i = 1, 2, . . . , n), f(x) = [f1(x1), f2(x2), . . . , fn(xn)]

T is an activation
function, J is an external input, and τ is a constant time delay.

In this study, the activation function f(·) is supposed to be bounded and
globally Lipschitz continuous. That is, for each k ∈ {1, 2, . . . , n} and any a, b ∈ R,
there exists a Lipschitz constant Lk such that

|fk(a)− fk(b)| ≤ Lk|a− b|. (2)
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By Brouwer’s fixed point theorem, when the activation function f(·) is con-
tinuous and bounded, the delayed static neural network (1) has at least one
equilibrium point. Especially, in some practical applications (e.g., combinatorial
optimization and associated memory, etc), it is required that the designed neural
network has a unique and stable equilibrium point. Without loss of generality,
it is assumed that x∗ = [x∗

1, x
∗
2, . . . , x

∗
n]

T is an equilibrium point of (1) (that is,
x∗ satisfies −Ax∗ + f(Wx∗ + J) = 0). For stability analysis, it is necessary to
transform the equilibrium point x∗ to the origin. This can be easily achieved by
making a transformation u(t) = x(t)− x∗. Then, (1) can be rewritten as

u̇(t) = −Au(t) + g(Wu(t− τ)) (3)

with g(Wu(t− τ)) = f(Wx(t− τ) + J)− f(Wx∗ + J).
When both the environmental noise and information latching phenomenon

are taking into account in (3), the so-called stochastic delayed static neural
networks with Markovian switching can be established. The mathematical model
of this kind of recurrent neural networks is expressed by a stochastic functional
differential equation

du(t) =
[
−A(r(t))u(t) + g(W (r(t))u(t − τ))

]
dt

+h
(
u(t), u(t− τ), t, r(t)

)
dw(t) (4)

where w(t) is an m-dimension Browian motion defined on a probability space
(Ω,F ,P), r(t), independent of w(t), is a Markov chain whose value is taken from

a finite set N = {1, 2, . . . , N}, and h
(
u(t), u(t−τ), t, r(t)

)
: Rn×R

n×R
+×N →

R
n×m is a noise disturbance.
It is assumed that the transition probability matrix Π = [πij ]N×N of r(t) is

given by

Pr{rt+h = j|rt = i} =

{
πijh+ o(h), i �= j
1 + πiih+ o(h), i = j

where h > 0, limh→0+ o(h)/h = 0, πij ≥ 0 for j �= i is the transition rate from
mode i at time t to mode j at time t+ h, and for each i ∈ N ,

πii = −
N∑

j=1,j �=i

πij .

For simplicity, for each r(t) = i ∈ N , matrix M(r(t)) is denoted by Mi. For
examples, A(r(t)) and W (r(t)) in (4) are respectively written as Ai and Wi. In
addition, for each r(t) = i ∈ N , the noise disturbance is supposed to satisfy

Trace(hT (u(t), u(t− τ), t, i)h(u(t), u(t− τ), t, i))

≤
[

u(t)
u(t− τ)

]T [
X1i X2i

XT
2i X3i

] [
u(t)

u(t− τ)

]

, (5)
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with

[
X1i X2i

XT
2i X3i

]

> 0.

To ensure the existence and uniqueness of solution of (4), it is required that
h(u(t), u(t − τ), t, i) is locally Lipschitz continuous and linearly increasing. In
this situation, for any initial value ψ ∈ Cb

F0
([−τ, 0];Rn) and initial mode r0 ∈ N ,

(4) has a unique continuous solution u(t;ψ).

Definition 1. For any initial condition ψ ∈ Cb
F0

([−τ, 0];Rn) and initial mode
r0 ∈ N , the solution u(t;ψ) of (4) is said to be mean square globally exponentially
stable if there are positive scalars α > 1 and λ > 0 such that

E|x(t;ψ)|2 ≤ αe−λt
E‖ψ‖2.

Here, λ is the decay rate, and is used to characterize the transient process of the
underlying system.

3 Mean Square Exponential Stability Criterion

In this section, a delay and mode dependent condition is presented by means
of LMIs to check mean square globally exponential stability of the stochastic
delayed static neural network with Markovian switching (4).

Theorem 1. For given scalars τ > 0 and λ > 0, the stochastic delayed static
neural network (4) is globally exponentially stable in the mean square with a
decay rate λ if there are real scalars αi > 0, βi > 0 and real matrices Pi >
0, Qi > 0, Ri > 0, S > 0, X1i > 0, X2i, X3i > 0 such that the LMIs

Pi ≤ βiI, (6)

eλτ
N∑

j=1

πijQj ≤ Ri, (7)

eλτ
N∑

j=1

πijRj ≤ S, (8)

[
X1i X2i

XT
2i X3i

]

> 0, (9)

⎡

⎢
⎢
⎣

Φi βiX2i Pi 0
βiX

T
2i −Qi + βiX3i 0 αiW

T
i L

PT
i 0 −αiI 0
0 αiL

TWi 0 −αiI

⎤

⎥
⎥
⎦ < 0, (10)

are held for any i = 1, 2, . . . , N , where

Φi = λPi − PiAi −AT
i Pi + βiX1i +

N∑

j=1

πijPj

+eλτQi +
eλτ − 1

λ
Ri +

eλτ − λτ − 1

λ2
S,

L = diag{L1, L2, . . . , Ln}.
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Proof. Since fk(·) satisfies (2) and g(Wiu(t−τ)) = f(Wix(t−τ)+J)−f(Wix
∗+

J), one has

gT (Wiu(t− τ))g(Wiu(t− τ)) =

n∑

k=1

|gk(W k
i u(t− τ))|2

≤
n∑

k=1

L2
k|W k

i u(t− τ)|2

= uT (t− τ)WT
i L2Wiu(t− τ), (11)

where W k
i is the k-th row of the matrix Wi. Then, for any scalar αi > 0,

αig
T (Wiu(t− τ))g(Wiu(t− τ)) ≤ αiu

T (t− τ)WT
i L2Wiu(t− τ). (12)

It follows from (6) that

Trace(hT (u(t), u(t− τ), t, i)Pih(u(t), u(t− τ), t, i))

≤ βiTrace(h
T (u(t), u(t− τ), t, i)h(u(t), u(t− τ), t, i))

≤ βi

[
u(t)

u(t− τ)

]T [
X1i X2i

XT
2i X3i

] [
u(t)

u(t− τ)

]

. (13)

For λ > 0 and Ri > 0, it is obvious that

eλt
∫ t

t−τ

uT (s)Riu(s)ds ≥
∫ t

t−τ

eλsuT (s)Riu(s)ds. (14)

Then, by noting (7), it yields

N∑

j=1

πij

∫ t

t−τ

eλ(s+τ)uT (s)Qju(s)ds− eλt
∫ t

t−τ

uT (s)Riu(s)ds

≤
∫ t

t−τ

eλsuT (s)
(
eλτ

N∑

j=1

πijQj

)
u(s)ds−

∫ t

t−τ

eλsuT (s)Riu(s)ds

≤ 0. (15)

Similarly, one can also verify from (8) that

N∑

j=1

πij

∫ 0

−τ

∫ t

t+θ

eλ(s−θ)uT (s)Rju(s)dsdθ

−eλt
∫ 0

−τ

∫ t

t+θ

uT (s)Su(s)dsdθ ≤ 0. (16)

In addition, by the well-known Schur complement [1], it is known that the LMI
(10) is equivalent to

Ωi =

⎡

⎣
Φi βiX2i Pi

βiX
T
2i Ψi 0

PT
i 0 −αiI

⎤

⎦ < 0 (17)
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with Ψi = −Qi + βiX3i + αiW
T
i L2Wi.

To show the mean square exponential stability of (4), for each i ∈ N , we
consider a stochastic Lyapunov functional

V (t, ut, i) = eλtuT (t)Piu(t) +

∫ t

t−τ

eλ(s+τ)uT (s)Qiu(s)ds

+

∫ 0

−τ

∫ t

t+θ

eλ(s−θ)uT (s)Riu(s)dsdθ

+

∫ 0

−τ

∫ 0

θ

∫ t

t+δ

eλ(s−δ)uT (s)Su(s)dsdδdθ. (18)

By calculating the infinitesimal operator L of V (t, ut, i), one gets

LV (t, ut, i) = λeλtuT (t)Piu(t) + 2eλtuT (t)Pi

[
−Aiu(t) + g(Wiu(t− τ))

]

+eλtTrace

(

hT
(
u(t), u(t− τ), t, i

)
Pih

(
u(t), u(t− τ), t, i

)
)

+eλtuT (t)

(
N∑

j=1

πijPj

)

u(t) + eλ(t+τ)uT (t)Qiu(t)

−eλtuT (t− τ)Qiu(t− τ) +

N∑

j=1

πij

∫ t

t−τ

eλ(s+τ)uT (s)Qju(s)ds

+
eλτ − 1

λ
eλtuT (t)Riu(t)− eλt

∫ t

t−τ

uT (s)Riu(s)ds

+

N∑

j=1

πij

∫ 0

−τ

∫ t

t+θ

eλ(s−θ)uT (s)Rju(s)dsdθ

+
eλτ − λτ − 1

λ2
eλtuT (t)Su(t) + eλt

∫ 0

−τ

∫ t

t+θ

uT (s)Su(s)dsdθ.

(19)

Let ξi(t) =
[
uT (t), uT (t − τ), gT (Wiu(t− τ))

]T
. By combining (12), (13), (15),

(16) and (19) together, one can deduce from (17) that for any nonzero ξi(t),

LV (t, ut, i) ≤ ξTi (t)Ωiξi(t) < 0. (20)

Now, by the generalized Itô’s formula and (20), one can have

EV (t, ut, r(t)) ≤ EV (0, ψ, r0). (21)

On the other hand, it immediately derives from (18) that

EV (t, ut, r(t)) ≥ min
i∈N

{λmin(Pi)}eλtE|u(t)|2. (22)
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This together with (21) gives

E|u(t)|2 ≤ 1

mini∈N {λmin(Pi)}e
−λt

EV (0, φ, r0). (23)

Let

μ = max
i∈N

{λmax(Pi)}+ eλτ − 1

λ
max
i∈N

{λmax(Qi)}

+
eλτ − λτ − 1

λ2
max
i∈N

{λmax(Ri)}

+
1

λ3

(
eλτ − λ2τ2/2− λτ − 1

)
λmax(S).

It is not difficult to deduce that

EV (0, φ, r0) ≤ μE‖ψ‖2. (24)

Therefore, one has

E|u(t)|2 ≤ μ

mini∈N {λmin(Pi)}e
−λt

E‖φ‖2. (25)

According to Definition 1, the stochastic delayed static neural network with
Markovian switching (4) is mean square globally exponentially stable with a
decay rate λ. This completes the proof.

Remark 1. In Theorem 1, a sufficient condition guaranteeing mean square ex-
ponential stability of the stochastic delayed static neural network (4) is derived
in terms of LMIs. It can be found that the Lyapunov matrices Pi, Qi and Ri

are dependent on system mode i. That is, distinct Pi, Qi and Ri can be chosen
for different modes. In this circumstance, the choice of these Lyapunov matrices
in Theorem 1 is of high flexibility. It is thus believed that Theorem 1 presents
a less conservative stability condition. Of course, with more computation, the
conservatism of Theorem 1 can be further reduced by employing the delay par-
tition technique, free-weighting matrices based approach and Wirtinger integral
inequality. This can be easily obtained by following the similar lines in [2,5,7].

Remark 2. It is easily shown that the functions eλτ , eλτ−1
λ and eλτ−λτ−1

λ are
strictly monotonically increasing with respect to the decay rate λ. It means that
the left-hand sides of the LMIs (7), (8) and (10) are also strictly monotonically
increasing with respect to λ. As a result, the maximum value of the decay rate λ
allowed by Theorem 1 can be efficiently obtained by solving the LMIs (6)-(10).

Remark 3. Comparing with the most recent work [10], there are two advantages
for our result. One is that more Lyapunov matrices are mode-dependent in our
approach. Specifically, besides Pi and Qi, Ri in the double integral term is also
mode-dependent. The other is that the exponential decay rate can be easily found
by Theorem 1, which was not addressed in [10].
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Remark 4. As seen in Section II, the time delay considered in this study is
constant. In fact, it is not difficult to extend our approach to handle time-varying
and/or mode-dependent delays. Furthermore, one can also discuss the case that
the information of the transition probability matrix Π is partially known.

4 Conclusion

In this paper, the globally exponential stability in the mean square has been
studied for a class of stochastic static neural networks with Markovian switching
and time delay. By constructing a suitable stochastic Lyapunov functional with
a triple integral term, a stability condition has been derived by means of a set
of LMIs. It has been shown that the established LMIs are strictly monotonically
increasing with respect to the decay rate. Therefore, the maximum allowable
value of the decay rate can be efficiently calculated such that the transient
process of the underlying recurrent neural network is explicitly described.
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Abstract. In this paper, we are concerned with the robust multistability and mul-
tiperiodicity of delayed neural networks. A set of sufficient conditions ensuring
the coexistence of 2n periodic solutions and their local stability are presented.
And the attraction basin of each periodic solution can be enlarged by rigorous
analysis.
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1 Introduction

Neural networks have been extensively studied in recent years due to their potential
applications in classification, associative memory, parallel computation and other fields.
As a prerequisite, the theoretical studies on the dynamical properties of neural networks
are of great importance and have attracted considerable research attentions.

Recently, Refs. [1]-[4] studied the stability, periodic oscillations and other dynamical
behaviors of neural networks, and some sufficient conditions ensuring the global stabil-
ity of these systems were derived. On the other hand, in an earlier paper [2], the authors
have reported that some one-neuron neural network model can have three equilibrium
points, two of them are locally stable, and one is unstable. Furthermore, it is also pointed
out that the n-neuron neural networks may exhibit more than one equilibrium point or
periodic solution, which is called as multistability or multiperiodicity of systems, see
[5]-[10]. Note that the parameter fluctuation in neural network implementation on very
large scale integration chips is unavoidable, which may lead to some deviations in the
values of system parameters. In this case, it is of great importance to reveal the robust
stability of the systems with respect to the uncertainties in the design and applications
of neural networks [3].

Consider the neural networks described by the following equations

dxi(t)

dt
= −di(t)xi(t) +

n∑

j=1

aij(t)gj(xj(t)) +
n∑

j=1

bij(t)gj(xj(t− τij(t))) + Ii(t),

i = 1, · · · , n, (1)
where xi(t) represents the state of the i-th neuron at time t; di(t) > 0 denotes the rate
with which the i-th unit will reset its potential to the resting state in isolation when

c© Springer International Publishing Switzerland 2015
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disconnected from the network and external inputs at time t; aij(t), bij(t) correspond
to the connection weight and the delayed connection weight, respectively; τij(t) ≥ 0
denotes the transmission delay; gj(·) is the activation function; and Ii(t) stands for the
external input at time t.

Here, we make the following assumptions:
Assumption 1. Suppose that di(t), aij(t), bij(t), τij(t), Ii(t), i, j = 1, · · · , n, are all
continuous periodic functions with period ω > 0.
Assumption 2. Suppose that there exist constants pi < 0 < qi, mi < 0 < Mi, i =
1, · · · , n, such that

gi(x) =

⎧
⎪⎨

⎪⎩

mi −∞ < x < pi,
Mi−mi

qi−pi
(x− pi) +mi pi ≤ x ≤ qi,

Mi qi < x < +∞.

(2)

Assumption 3. Suppose that, for all t ∈ [0, ω], there hold that

0 < di ≤ di(t) ≤ d̄i, aij ≤ aij(t) ≤ āij , bij ≤ bij(t) ≤ b̄ij , Ii ≤ Ii(t) ≤ Īi.

Consider the system (1) with initial state x(θ) = φ(θ), for θ ∈ [−τ̄ , 0], where τ̄ =
max
t∈[0,ω]

{max
i,j

τij(t)}, φ(θ) = [φ1(θ), · · · , φn(θ)]
T , and φi ∈ C([−τ̄ , 0]), i = 1, . . . , n.

In the following, we will explore the robust multistability and multiperiodicity of the
system and the attraction basin of each periodic orbit under Assumptions 1-3.

2 Main Results

Theorem 1. Under Assumptions 1-3, if there hold that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d̄ipi + aiimi +
∑

j �=i

max(aijmj , aijMj, āijmj , āijMj)

+
n∑

j=1

max(bijmj , bijMj, b̄ijmj , b̄ijMj) + Īi < 0,

−d̄iqi + aiiMi +
∑

j �=i

min(aijmj , aijMj , āijmj , āijMj)

+
n∑

j=1

min(bijmj , bijMj, b̄ijmj , b̄ijMj) + Ii > 0,

(3)

i, j = 1, · · · , n, then for all di(t), aij(t), bij(t), Ii(t), there are 2n periodic solutions of
system (1), and each of them is locally exponentially stable.
Proof. Pick a subset region of Rn arbitrarily such as

Ω1 =
∏

k∈N1

(−∞, pk]×
∏

k∈N2

[qk,+∞),

whereN1, N2 are subsets of {1, 2, · · · , n}, andN1

⋃
N2 = {1, 2, · · · , n},N1

⋂
N2 =

∅. In the following, we will study the existence, uniqueness of periodic solution and its
local stability in Ω1.
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First, we claim that Ω1 is invariant with respect to the solution with initial state in
it. That is, if φ(θ) ∈ Ω1, θ ∈ [−τ̄ , 0], then the solution x(t) (t ≥ 0) of the dynamical
system (1) will stay in Ω1. In fact, if for some t1 > 0, for some index i, such that
x(t) ∈ Ω1 for t ≤ t1 while xi(t1) = pi or xi(t1) = qi , then, we have

dxi(t)

dt

∣
∣
∣
t=t1

= −di(t1)pi + aii(t1)mi +
∑

j �=i

aij(t1)gj(xj(t1))

+

n∑

j=1

bij(t1)gj(xj(t1 − τij(t1))) + Ii(t1)

≤ −di(t1)pi + aii(t1)mi +
∑

j �=i

max(aij(t1)mj , aij(t1)Mj)

+
n∑

j=1

max(bij(t1)mj , bij(t1)Mj) + Ii(t1)

≤ −d̄ipi + aiimi +
∑

j �=i

max(aijmj , aijMj, āijmj , āijMj)

+

n∑

j=1

max(bijmj , bijMj , b̄ijmj , b̄ijMj) + Īi < 0, (4)

dxi(t)

dt

∣
∣
∣
t=t1

= −di(t1)qi + aii(t1)Mi +
∑

j �=i

aij(t1)gj(xj(t1))

+

n∑

j=1

bij(t1)gj(xj(t1 − τij(t1))) + Ii(t1)

≥ −di(t1)qi + aii(t1)Mi +
∑

j �=i

min(aij(t1)mj , aij(t1)Mj)

+

n∑

j=1

min(bij(t1)mj , bij(t1)Mj) + Ii(t1)

≥ −d̄iqi + aiiMi +
∑

j �=i

min(aijmj , aijMj , āijmj , āijMj)

+
n∑

j=1

min(bijmj , bijMj, b̄ijmj , b̄ijMj) + Ii > 0, (5)

which implies the solution x(t) will never go out of Ω1 for all t > 0.
Then, we are to show that the solution x(t) of system (1) with initial state φ(θ) ∈

Ω1, θ ∈ [−τ̄ , 0], is bounded.
In fact, if we denote

Ei = d−1
i

[ n∑

j=1

max(aijmj , aijMj , āijmj , āijMj)
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+

n∑

j=1

max(bijmj , bijMj, b̄ijmj , b̄ijMj) + max(Ii, Īi) + 1
]
,

for i = 1, · · · , n, and suppose that there exist t2 > 0 and some index i such that
|xi(t2)| ≥ Ei, then, we have

d|xi(t)|
dt

∣
∣
∣
t=t2

= −di(t2)|xi(t2)|+ sign{xi(t2)}
{ n∑

j=1

aij(t2)gj(xj(t2))

+

n∑

j=1

bij(t2)gj(xj(t2 − τij(t2))) + Ii(t2)
}

≤ −diEi +
n∑

j=1

max(aijmj , aijMj , āijmj , āijMj)

+
n∑

j=1

max(bijmj , bijMj , b̄ijmj, b̄ijMj) + max(I i, Īi) < 0, (6)

which follows that |xi(t)| is bounded by Ei, i = 1, · · · , n.
Now, define Ω̃ = Ω1

⋂{x : |xi| ≤ Ei} and a map T on Ω̃ such that

T : φ(θ) → x(θ + ω, φ)

where x(t) = x(t, φ) is the solution of the system (1) with the initial state xi(θ) =
φi(θ), for θ ∈ [−τ̄ , 0] and i = 1, · · · , n.

From the analysis above, we know that T Ω̃ ⊂ Ω̃. By Brouwers fixed point theorem,
there exists φ∗ ∈ Ω̃ such that Tφ∗ = φ∗. Hence x(t, φ∗) = x(t, Tφ∗), i.e.,

x(t, φ∗) = x(t+ ω, φ∗), (7)

which is an ω-periodic solution of the system (1), denoted as x∗(t).
Next, we will address the local stability of x∗(t). Due to the positive invariance of

Ω1, we can rewrite the solution x(t) with initial state φ(θ) ∈ Ω1, θ ∈ [−τ̄ , 0] as

dxi(t)

dt
= −di(t)xi(t)+

n∑

j∈N1

(aij(t)+bij(t))mj+

n∑

j∈N2

(aij(t)+bij(t))Mj+Ii(t). (8)

Denote u(t) = x(t) − x∗(t), then, we have

d|ui(t)|
dt

= −di(t)|ui(t)| ≤ −di|ui(t)|, (9)

which implies that x∗(t) is exponentially stable in Ω1, so that it is unique meanwhile.
Therefore, we get that there exists a unique periodic solution in Ω1 and it is locally

exponentially stable. On the other hand, it is easy to see that there are 2n Ω1-type
subsets of Rn in all, so the same method can be applied and the same result can be
derived. To sum up, there are 2n periodic solutions of system (1) under conditions (3),
and each of them is locally exponentially stable. �
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Remark 1. From Theorem 1, we can see that the system (1) is multistable for all
di(t), aij(t), bij(t), Ii(t) with Assumption 3, that is, the system is robust multistable.

Corollary 1. Let di(t) = di, aij(t) = aij , bij(t) = bij , τij(t) = τij , Ii(t) = Ii.
Then, under Assumption 2 and condition (3), for all 0 < di ≤ di ≤ d̄i, aij ≤ aij ≤
āij , bij ≤ bij ≤ b̄ij , Ii ≤ Ii ≤ Īi, the system (1) is robust multistable.

Theorem 2. Suppose that Assumptions 1-3 and (3) hold for i, j = 1, · · · , n. Denote

Γi � sup
t

{
−
∫ t

0

e−
∫

s
0
(−di(u)+aii(u)li)du

(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds
}
, (10)

Ψi � inf
t

{
−
∫ t

0

e−
∫ s
0
(−di(u)+aii(u)li)du

(∑

j �=i

max(aij(s)mj , aij(s)Mj)

+

n∑

j=1

max(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds
}
, (11)

where li = Mi−mi

qi−pi
, ci = mi − pi(Mi−mi)

qi−pi
. Then, for the solution x(t):

(i) if Γi < xi(0) < qi, then, xi(t) will go into [qi,+∞) when t is big enough;
(ii) if pi < xi(0) < Ψi, then, xi(t) will go into (−∞, pi] when t is big enough.

Proof. Firstly, we show that pi < Ψi, Γi < qi.
In fact, from condition (3), we can easily find a positive constant ε small enough that

−di(t)pi + aii(t)lipi +
∑

j �=i

max(aij(t)mj , aij(t)Mj)

+

n∑

j=1

max(bij(t)mj , bij(t)Mj) + aii(t)ci + Ii(t) < −ε < 0,

−di(t)qi + aii(t)liqi +
∑

j �=i

min(aij(t)mj , aij(t)Mj)

+

n∑

j=1

min(bij(t)mj , bij(t)Mj) + aii(t)ci + Ii(t) > ε > 0,

which obviously imply that −di(t) + aii(t)li > 0 for all t ∈ [0, ω].
Denote αi � sup

t∈[0,ω]

(−di(t) + aii(t)li), βi � inf
t∈[0,ω]

(−di(t) + aii(t)li), and for any

t > 0, denote t = nω + t0, where n is an integer, t0 ∈ [0, ω), it holds that
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−
∫

t

0

e−
∫ s
0 (−di(u)+aii(u)li)du

(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

= −
n∑

k=1

∫ kω

(k−1)ω

e
− ∫ s

0 (−di(u)+aii(u)li)du
(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

−
∫

nω+t0

nω

e−
∫ s
0 (−di(u)+aii(u)li)du

(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

= −
n∑

k=1

∫ ω

0

e
− ∫ s+(k−1)ω

0
(−di(u)+aii(u)li)du

(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

−
∫

t0

0

e−
∫ s+nω
0 (−di(u)+aii(u)li)du

(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

= −
n∑

k=1

e
−(k−1)

∫ω
0 (−di(u)+aii(u)li)du

∫ ω

0

e
− ∫ s

0 (−di(u)+aii(u)li)du
(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

−e−n
∫ω
0 (−di(u)+aii(u)li)du

∫
t0

0

e−
∫ s
0 (−di(u)+aii(u)li)du

(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

≤
n∑

k=1

e
−(k−1)

∫ω
0 (−di(u)+aii(u)li)du

∫ ω

0

e
− ∫ s

0 (−di(u)+aii(u)li)du
(
(−di(u) + aii(u)li)qi − ε

)
ds

+e−n
∫ω
0 (−di(u)+aii(u)li)du

∫
t0

0

e−
∫ s
0 (−di(u)+aii(u)li)du

(
(−di(u) + aii(u)li)qi − ε

)
ds

= qi

n∑

k=1

e−(k−1)
∫ω
0 (−di(u)+aii(u)li)du(1 − e−

∫ω
0 (−di(u)+aii(u)li)du)

+qie
−n

∫ω
0 (−di(u)+aii(u)li)du(1 − e−

∫ t0
0

(−di(u)+aii(u)li)du)

−ε

n∑

k=1

e−(k−1)
∫ω
0 (−di(u)+aii(u)li)du

∫ ω

0

e−
∫ s
0 (−di(u)+aii(u)li)duds

−εe
−n

∫ω
0 (−di(u)+aii(u)li)du

∫ t0

0

e
− ∫ s

0 (−di(u)+aii(u)li)duds

≤ qi − (1 − e−αiω)ε

αi

.
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So we know that

sup
t
{−

∫ t

0
e−

∫ s
0 (−di(u)+aii(u)li)du

(∑

j �=i

min(aij (s)mj , aij(s)Mj) + aii(s)ci + Ii(s)
)
ds}

≤ qi − (1− e−αiω)ε

αi
< qi, i.e., Γi < qi.

Similarly, we can get that Ψi > pi, i = 1, · · · , n.
Then, consider the solution x(t) with initial states φ(θ), θ ∈ [−τ̄ , 0]. If for some i, it

holds Γi < xi(0) < qi, then we claim that xi(t) will go into the interval [qi,+∞). In
fact, when it stays in (pi, qi), there holds

dxi(t)

dt
= −di(t)xi(t) + aii(t)lixi(t) +

∑

j �=i

aij(t)g(xj(t)) +

n∑

j=1

bij(t)g(xj(t− τij(t)))

+aii(t)ci + Ii(t)

≥ (−di(t) + aii(t)li)xi(t) +
∑

j �=i

min(aij(t)mj, aij(t)Mj)

+
n∑

j=1

min(bij(t)mj , bij(t)Mj) + aii(t)ci + Ii(t),

which follows that

xi(t) ≥ e
∫ t
0 (−di(u)+aii(u)li)du

{
xi(0) +

∫
t

0

e−
∫ s
0 (−di(u)+aii(u)li)du

(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

}

≥ eβit
{
xi(0) +

∫ t

0

e−
∫ s
0 (−di(u)+aii(u)li)du

(∑

j �=i

min(aij(s)mj , aij(s)Mj)

+

n∑

j=1

min(bij(s)mj , bij(s)Mj) + aii(s)ci + Ii(s)
)
ds

}

Hence, xi(t) will exceed qi when t is big enough. Then, by the proof of Theorem 1, we
know that xi(t) will stays in [qi,+∞) afterwards. Similar proof can be applied to the
case Ψi < xi(0) < pi and get the conclusion. �
Remark 2. From Theorem 2, we can see that the attraction basin of each periodic solu-
tion can be extended to (Γi,+∞) or (−∞, Ψi), from [qi,+∞) or (−∞, pi] in previous
literatures, respectively.

3 Conclusions

In this paper, the robust multistability and multiperiodicity of neural networks are ad-
dressed. Under some mild conditions, the coexistence of 2n periodic solution and their
local stability are established. Furthermore, the attraction basin of each periodic solu-
tion can be enlarged from the subset it locates.
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Abstract. A novel memristor-based hyperchaotic system is proposed and studied 
in this paper. The memristor is nonlinear memory element intrinsically, which 
has the potential application for generating complex dynamics in nonlinear cir-
cuit to reduce system power consumption and circuit size. As the non-linear part 
of a system, the HP memristor is introduced to a four-dimensional system. 
Chaotic attractors, Lyapunov exponent spectrum, Lyapunov dimension, power 
spectrum, Poincaré map and bifurcation with respect to various circuit parameter, 
are considered and observed, which together demonstrate the rich chaotic dy-
namical behaviors of the system. Finally, the circuit in SPICE are designed for 
the proposed memristive hyperchaotic system. The SPICE experimental results 
are consistent with the numerical simulation results, which verifies the feasibility 
of the memristor hyperchaotic system. 

Keywords: memristor, hyperchaotic system, dynamics behavior, circuit im-
plementation. 

1 Introduction 

The concept of memristor was proposed by Leon O. Chua in 1971 firstly [1]. Stan 
Williams and his team at HP lab fabricated a solid state implementation of the me-
mristor in 2008, which cemented its place as the fourth circuit element [2-4] and gar-
nered extensive interest from both academic and industrial communities immediately. 

Chaos is a very interesting complex nonlinear phenomenon, which has been studied 
intensively in the last four decades within science, mathematics and engineering 
communities. Theoretical design and circuit implementation of various chaotic gene-
rators have been a key focus of nonlinear science. Due to the nonlinearity of memristor 
element, memristor-based circuits can generate a chaotic signal easily. The first me-
mristor-based chaotic circuit was proposed by Itoh and Chua [5]. In their paper, they 
used a piecewise linear nonlinear memristor to replace Chua's diode in Chua's  
oscillator, based on Chua’s circuit, they put forward several memristor-based chaotic 
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oscillation circuits. Recently, lots of research efforts on memristive chaotic circuits 
have been reported [6-8].  

This paper investigates a new hyperchaotic system based on HP memristor. Section 
2 introduces the memristor chaotic system, calculates the Lyapunov exponent spec-
trum, Lyapunov dimension and power spectrum, and further analyzes the parameter of 
chaotic attractor and bifurcation diagram. Section 3 presents a basic analog circuit 
realization of the memristive hyperchaotic system, and simulates the chaotic attractor 
of the circuit by SPICE. Finally, conclusions are drawn in section 4.  

2 The Memristor as Nonlinear Part in a Hyperchaotic System  

2.1 A New Memristor Hyperchaotic System 

Firstly, we take the following hyperchaotic system based on memristor into consideration. 

 

2 4

,

,

,

1 10 ( | |).

x ay

y w bx

z xy cz

w z f x

=⎧
⎪ = −⎪
⎨ = −⎪
⎪ = − + −⎩

                          (1) 

where x, y, z and w are the states of the system; a, b and c are parameters. The 
function f(-|x|) codifies the charge of the memristor [7,8], precisely expressed as fol-
lows: 
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       (2) 

 
Where, 

( ) ( ) ( )2 2 2
1 2

(0) / 2 (0) 2 , ON OFF v ON
OFF low OFF

R R u R
c R M k R M k k

D
ϕ

−
= − − = − =，

 
x is the flux through the memristor; ROFF=20kΩ, RON=100Ω, M(0)= 16kΩ, D =10nm, 

uv =10-14m2s-1v-1, and we choose the initial conditions (x, y, z, w) = (0,1,0,0). 

2.2 Hyperchaotic Attractors Incorporating with a Memristor 

The parameter values of the system which can yield chaotic dynamics are a=5, b=10, 
c=7. A three-dimensional and three two-dimensional attractors are generated by means 
of numerical integration, which is illustrated in Fig.1. 
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Fig. 1. Various projections of the chaotic attractor codified by system (1). 

2.3 Dynamical Behaviors of the System 

Typical time-domain waveforms for the four dynamical states, namely x(t), y(t), z(t) and 
w(t) are illustrated in Fig.2. As we can see, they are non-cyclical, and have the unique state 
transferring behavior so that the jump behavior can increase the complexity of chaos.The 
power spectrum of memristive hyperchaotic system is shown in Fig.3. 

A basic dynamical behavior is further explored by calculating its Poincaré diagram. 
The Poincaré section of the system is given in Fig.4. We can draw the conclusion that 
the system has extremely rich dynamics because the section shows a continuous curve. 

 

 

Fig. 2. Time-domain wave form of each state 
variable. 

Fig. 3. Power spectrum  

The existence of dynamic behavior in the system can be observed from whether the 
largest Lyapunov exponent is larger than zero; the larger the exponent, the more evi-
dent chaotic characteristics will be, as well as the higher degree of chaos. In order to 
present the chaotic motion state more intuitively, the system’s Lyapunov exponent 
spectrum, varying with time, is drawn in Fig.5, which indicates that the chaotic cha-
racteristic is obvious. 

Take t=2000 in numerical simulation, the Lyapunov exponent are λ1= 0.4080,  
λ2= 0.1601, λ3=0.001, λ4= -0.8893. Obviously, the first two exponents are larger than 
zero, the third exponent can be equal to zero in the range of allowable error, and the last 
exponent is less than zero. So we can conclude the attractor is in the hyperchaos state. 
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Fig. 4. Poincaré map with x=0 Fig. 5. Lyapunov exponents  

 

Fig. 6. Bifurcation diagram and maximum Lyapunov exponent spectrum with the changes of a. 

The Lyapunov dimension is defined by: 
S

1

λ λ +

= + j

j

D j                            (5) 

Where 

S S
1

1
1 1

0, 0λ λ
= = +

+
= =

= ≥ = ≤∑ ∑
i j i j

j i j i
i i

                        (6) 

and j is a integer that satisfies the above principle. 
The four Lyapunov exponents show that j is equal to 3 here. The Lyapunov dimen-

sion of the system (1) is Dλ=3+(λ1+λ2+λ3)/|λ4|≈3.6388, namely Dλ>3, which indicates 
the attractor has a type of complex structure. 

Next, bifurcation theory has investigated the topic that bears on chaotic dynamics 
intensively. In the memristive circuit, a bifurcation of a dynamical system is a qualita-
tive change in its dynamics produced by varying parameters, and the general state of 
the ensuing series of mutation processes, such as period-doubling route to chaos road. 
Fig.6 shows the bifurcation diagram generated by system (1), with the corresponding 
Lyapunov exponent spectrum shown on the bottom. Choose the parameter a as the 
bifurcation parameter in the range(2, 8). The bifurcation diagram shows that there are 
many real numbers a for the solution of memristive hyperchaotic system. 
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By comparison, it can be observed that the bifurcation diagram coincides with the 
spectrum of the Lyapunov exponents well. When a <4.2, the system has no positive 
Lyapunov exponents, thus it is in single cycle. With the increasing value of a, the first 
and second Lyapunov exponents begin to increase, and are more than zero, while the 
third Lyapunov exponent decreases to less than zero. The above analysis shows that the 
system is in the hyperchaotic state. 

From the phase trajectory, time-domain waveform, Power spectrum, Poincaré map, 
Lyapunov exponent and dimension, and the bifurcation diagram with the change of 
parameters, we can conclude that the system is a hyperchaotic system. 

So far, several numerical calculations and simulations have demonstrated the basic 
dynamical behaviors of memristive system. However, more likely scenarios are worthy 
of further study in the future. In the next section, the memristive hyperchaotic circuit is 
designed and realized based on OrCAD. 

3 Analog Implementation of Memristive Hyperchaotic Attractor 

In order to validate hyperchaotic behaviors of the system (1), a circuit is designed, 
which consists of four analog operation circuits, and the voltages at the nodes are la-
beled as vx,vy,vz and vw corresponding to the states of system (1). The circuit is com-
posed of the memristor, diodes, capacitors, resistors, multiplier and operational  
amplifiers. SPICE memristor simulation model have been built [3]. The operational 
amplifiers are all LM675 type, which are powered with VCC = +30V and VEE = −
30V. And the circuit [7,8] is shown in Fig.7. Voltage node Vx, Vy and Vz of the 
SPICE circuit represent state variables x, y and z of the chaotic system. 

 

Fig. 7. Analog SPICE implementation of the memristive hyperchaotic system. 
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The operational amplifiers U1 and U2 are used to achieve the following formula: 

3 3

2 1 1 1 2 1

1
x y y

R R
v v dt v dt

R R C R R C
= − − =∫ ∫                    (7) 

Or equivalently, 

3

1 2 1
x y

R
v v

R R C
=                            (8) 

Compare with system (1) and set R1 = 1ΜΩ, R2 = 1kΩ, R3 = 5kΩC1 = 1μF, then lead to 
a=R3/R1R2C1=5, namely, 

5x yv v=                             (9) 

.
 

The operational amplifiers U3 and U4 are reverse amplifiers while U5 is realized as 
an integrator. The following holds: 

5 8 8

4 6 9 2 7 9 2
y x w

R R R
v v v

R R R C R R C
= − +                     (10) 

Set R4 = 1kΩ, R5 = 10kΩ, R6 = R7 = R8 = 1kΩ, R9 = 1MΩ and C2= 1μF, then lead to 
b=R5R8/R4R6R9C2=10, the equation (10) becomes: 

10y x wv v v= − +                           (11) 

Similarly available: 
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That is: 
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Set R10 = 70kΩ, R11 = 10kΩ, R12 =7kΩ, R13 = 100kΩ and C3= 1μF, then lead to 
c=R12/R11R13C3=7, the equation (13) becomes: 

7z x y zv v v v= ⋅ −                        (14) 

The operational amplifiers U9 and U10 are utilized to implement the abso-
lute value circuit: 
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When R16 = R18 = R19 = R22 =1kΩ, R17 = R20 =500Ω, the output voltage of U10 is 
vU10=|vx|, and the output voltage of U11 is vU11=-(R24/R23) |vx|. Set R23 = R24 = 1kΩ, 
and it becomes vU11=-|vx|. The voltage vU11 is the input to flux terminal of the 
flux-controlled memristor’s SPICE model. The charge terminal of the memristor is 
connected with operational amplifiers U13. The memristor can implement the function 
f(·) in system(2). The memristor parameters are RON =100Ω, ROFF =20kΩ, M (0) 
=16kΩ, D =10nm and μV =10-14m2s-1V-1.  

The operational amplifiers U13 and U14 are rephrase amplifiers whose gain are all 
set to 100. After a two-stage amplification, the charge of the memristor is amplified 
by 10000 times. Set R25 = R27 =100Ω, R26= R28 = 10kΩ, we can get: 

26 28
14

25 27

( ) 10000 ( )U

R R
v f x f x

R R
= − = −                     (16) 

The operational amplifier U12 is to achieve an inverse ratio. While operational am-
plifiers U15 and U16 are applied as an adder and an integrator, we get: 

35
12

34
U z z

R
v v v

R
= − ⋅                                (17) 

32 32 32
15 14 12 1

29 30 31
U U U

R R R
v v v v

R R R
= − − −                           (18) 

32 32 32
16 15 14 12 1

33 4 33 4 29 30 31

1 1
( )w U U U U

R R R
v v v dt v v v dt

R C R C R R R
= =− =− − − −∫ ∫                  (19) 

Or equivalently, 

32 32 32
16 14 12 1

29 33 4 30 33 4 31 33 4
w U U U

R R R
v v v v v

R R C R R C R R C
= = + +                 (20) 

Substitute vU12, vU14 and v1=1v, we can yield: 

 26 28 32 32 35 32
16

25 27 29 33 4 30 33 34 4 31 33 4

( )w U z z

R R R R R R
v v f x v v

R R R R C R R R C R R C
= = − − ⋅ +              (21) 

Set R25 = R27 = 100Ω, R26 = R28 =10kΩ, R29 = R30 = R31 = R32=1kΩ, R33 =1000kΩ, R34 = 
R35=20kΩ and C4 = 1μF, we get: 

1 10000 ( )w z zv v v f x= − ⋅ + −                   (22) 

The SPICE simulation time interval ranges from 0 sec to 500 sec and the maximum 
step size is set to 0.001 second. Fig.8 shows the t-z time domain graph, x-y, y-z and z-w 
phase diagram of the analog realization of the chaotic memristive system by SPICE. A 
comparison between Fig.2, Fig.1 and Fig.8 reveals a good qualitative agreement be-
tween numeric (Fig.2, Fig.1). 
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(a)                                  (b) 

 
    (c)                                  (d) 

Fig. 8. SPICE simulated results of the state variables (a) t-z. Phase diagrams of (b) x-y, (c) y-z, (d) 
z-w. 

4 Conclusion 

The memristor is the latest component, which has the unique properties of not only 
nanoscale size, low power consumption, but also special components, and can be 
achieved by using a common electronic device. So it has high value in the fields of 
chaos circuit confidential communications and information encryption, and electronic 
measurement. This paper presents a novel hyperchaotic system based on HP memris-
tor. A series of computer simulations have been performed, including the Lyapunov 
exponent spectrum, Lyapunov dimension, Power spectrum, bifurcation diagram, which 
verified the complex chaotic dynamics of the new memristive system. In addition, an 
analog circuit of the memristive hyperchaotic system has been presented by SPICE 
simulations. The use of memristors assures that the proposed memristive hyperchaotic 
system has higher perspective than other common chaotic systems. 
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Abstract. This letter uses image overlay technique on memristor cross-
bar array (MCA) structure for image storing. Different programming
circuits with time slot techniques are designed for the MCA consisting
of the nonlinear HP memristor (HPMCA) and the MCA composed of
the piece-wise linear threshold memristor (TMCA). The experiment re-
sults indicate that the HPMCA has a better performance, the TMCA
is more practical in the industrial implementation. As a conclusion, the
MCA made up of the memristor with both the nonlinear drift boundary
property and the threshold property is preferred for image overlay.

Keywords: Memristor, CMOS Unit, Time Slot, Image Overlay.

1 Introduction

Memristor is a nano scale device that has an ability to remember its history via
the modulation of the memristance[1, 2]. Memristor-based systems have been
applied in many practical fields such as artificial neural network [3–6], image
processing[7–9], and neuromorphic circuits [10, 11]. However its properties are
greatly affected by the fabricating material and fabricating process[12]. A lot
of mathematical models are proposed to describe the behavior of memristors
[11, 13–15], two most classic ones are the HP memristor (HPM) model [14] and
the threshold model (TM)[11]. The dynamic of the HPM is described as:

rm (t) = roff + (ron − roff )x (t) , x ∈ (0, 1) , (1)

ẋ (t) = −μvron

D2 i (t) f (x) = li (t) f (x) , l = −μvron/D
2, (2)

where rm is the memristance, roff is the maximum memristance, ron is the
minimum memristance. x, corresponding to the memristance according to eq.(1),
is the position of the drift boundary. D is the length of the device, μv is the drift
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factor, and i is the current through the memristor, f (x) is the window function.
The HPM has an advantage in describing the nonlinear behavior of memristor
due to the existence of the window function, but it does not capture the threshold
characteristic of memristor. The TM can make up for the deficiency [11]:

ṙm (t) = (βvm + 0.5 (α− β) [|vm + vt| − |vm − vt|]) θ (rm/ron − 1) θ (1− rm/roff) ,
(3)

where θ (·) is the step function that promises the memristance changing between
ron and roff , α and β are the variation rates of memristance at |vm| ≤ vt
and |vm| > vt respectively, vm is the voltage dropping on memristor, vt is the
threshold voltage.

One valuable application of memristor is to serve as the memory device
[6, 16, 17]. However with the increasing storage levels, it’s getting more dif-
ficult to program the memristor into the expected value. In [18], the colorful
image is stored in the MCAs by direct pulse signal, but it didn’t build the cir-
cuit protecting solutions for the nano scale environment. In [16], a functional
hybrid MCA/CMOS system is succeed in storing binary images, and achieved
a ten-level color image storing by connecting different resistor in series. But the
half selected memristors (memristors share the same row line or column line with
the selected memristors) will enlarge the series resistor in the real circuit, and
lead to a large noise. Besides, the inconvenience of changing the series resistors
makes it difficult to program the large scale MCA. In this letter, we choose the
controlled pulse circuits, which is ease of integration, to grogram the MCAs, and
designed the time slot based circuit to protect the circuit, further combined the
image overlay technique in the writing algorithm, to decrease the noise caused by
the sneak path(the unexpected circuits)[19]. This method is tested on different
MCAS (here are the HPMCA and the TMCA) and especially performs well on
the linear processing HPMCA. The experiment results indicate that the crossbar
array consisting of nonlinear memristor with threshold property will be the best
choice for the image storing by this method.

2 Memristor Crossbar Array for Image Overlay

A MCA comprises two sets of conductive parallel wires intersecting each other
perpendicularly. The intersections (or crosspoints) are separated by memristor.
The memristance has an counterpart with the pixel value. For binary images, the
memristance is divided into the high part and the low part, which correspond
to “1” and “0” respectively. For 8-bit gray images, the memristance is divided
into 256 intervals to indicate 256 gray levels.

Here we take the MCA in Fig.1(a) for image storing. Set the row wire as
the positive electrode, and the column wire as the negative electrode. Different
programming circuits are designed for different MCAs, the HMCA in Fig.1(b)
and the TMCA in Fig.1(d). Each row connected to a selecting circuit for selecting
the writing row, each column connected to a CMOS unit for programming the
memristor. The MCA is operated row by row, so for one image, the more rows
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it has, the more time it needs. The number of the CMOS unit is the same with
the column, and thus the decrease of the columns will lead to the decrease of the
CMOS units. Note that the function of the row and the column can be reversed.
Due to the single selected row, each CMOS unit processes one memristor each
time. When reading the stored image, a read voltage is applied to the selected
row, and other unselected rows are connected to ground. When storing the image,
different signals are applied in the selected row and unselected rows. Thus, the
image reading and image writing can be distinguished by signals.

(a) (b)

(c) (d)

Fig. 1. A new structure combined the memristor crossbar arrays with CMOS units for
image storing.

The CMOS unit is the most complex part of the system. It mainly includes the
Analog To Digital Converter (ADC), pulse generator, and the micro-controller
as shown in Fig.1(c). It receives the input pixel signal pin and obtains the input
pixel value. At the mean time, it obtains the memristance rm through the reading
current ipix, and gets the stored pixel value through a floor function pm = �ipix�.
In the next step, the CMOS unit codes the pulse signal vb in the column by the
image overlay technique, and programs the MCA to the mean value between the
input image and the stored image. According to the image overlay theory, the
more time one image is programmed, the higher storing accuracy it will get. That
is Δrm (n) = (f (pin)− rm)/(n+ 1), f (pin) is the corresponding memristance
of the input pixel, n is the programming times, n + 1 means that the initial
memristance is caculated, and it is obvious that lim

n→∞Δrm (n) = 0.
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In the following we will present the detail programming operations of the
HPMCA and the TMCA. Fig.1(b) exhibits the programming structure of the
HPMCA. The CMOS unit in each column programs the memristor every 2T s,
T is one slot time of the pulse signal. The first time slot with a zero amplitude
voltage is designed for reading. The second is used for writing, and the amplitude
is calculated according to the mean error between the input pixel value and the
stored pixel value. Row switch mux is used for selecting the target row. In the
selected row, a read voltage signal vr is always applied, and all the unselected
rows are grounded. The final voltage vm dropping on each memristor in each time
slot is clear marked in the MCA. The parameters of the memristor model in the

HPMCA are set as: f (x) =1−
[
(x− 0.5)

2
+ 0.75

]p
[13], D = 10nm, μv = e −

14m2s−1v−1, ron = 0.1kΩ, roff = 1.6kΩ, p = 20. The read voltage is vr = 0.1V,
T = 0.01s. For computing convenience, turn the nonlinear HP memristor model
into a computable model by assuming f (x) = 1. However, due to f (x) ≤ 1 in
the physical memristor, the feedback voltage should be larger than the calculated
result. We twice the calculated value to make sure the memristance can change
enough or more than Δrm. This is the linearizing process of the HP memristor.
So here the programming pulse signal vb in the column is:

vb (n) = Δrm(Δrm + 2rm (n))/(lT (ron − roff )). (4)

The programing operation of the HPMCA is theoretically practical, in the
real nano scale circuit, the unselected nano-scale memristor will be affected by
the electric field, and the system would be destroyed by the sneak path. For
protecting the circuit, the threshold property of memristor should be utilized.
The programming structure of the TMCA is shown in Fig.1(d). Each column
pulse signal has three time slots: the reading slot(RS) for reading memristance,
the positive slot(PS) for increasing memristance, and the negative slot(NS) for
decreasing memristance (if consider the effect of reading voltage, a fourth time
slot can be added as a negative reading voltage slot, here we ignore it). Each time
slot has a different voltage polarity, a zero voltage is coded in the RS, a negative
voltage is coded in the PS to increase memristance, and a positive voltage is
coded in the NS to decrease memristance. The selected and unselected rows are
also coded with different voltage signals as shown in Fig.1(d). In the selected
row, the signal in the RS is vr, in the PS is vt, in the NS is −vt. In the unselected
row, the signal in the RS is 0V, in the PS is −vt, in the NS is vt. The separated
signal in each row or column is below the threshold, but the combination of
the row and the column signals will keep the voltage dropping on the selected
memristors above the threshold while others are below the threshold, and that
means the selected memristors are programmed while the unselected memristors
are protected. This is also clearly proved by the marked voltage vm in each time
slot for each memristor in the TMCA in Fig.1(d).

For suppressing the sneak path, a two-transistor structure is added in each
row and column as shown in the inset of Fig.1(d). In the positive time slot,
the transistors VccP in the rows and the VccN in the columns are activated for
passing the positive current. In the negative time slot, the transistors VccN in
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the rows and the VccP in the columns are activated for passing the negative
current. All four transistors in the selected row and column are activated in the
reading slot. And in other cases, all transistors are inactivated. In this way, the
sneak path is largely restrained.

The operation of the CMOS unit in the TMCA is similar with the HPMCA,
but the period of the CMOS unit is 3T s. The parameters of the TM are set as:
α = 0 , β = 1275kΩ/(V · s), vt = 2V, ron = 0.1kΩ,roff = 25.7kΩ. Each interval
is 100Ω. The threshold voltage is the read voltage. The backward pulse vb can
be observed by

vb = −Δrm/βT . (5)

3 Simulation on the Image Storing

In this section, simulink and numerical simulations are taken to present the
storing process. Because of the limitation of condition, the memristor and the
CMOS unit are emulated by the MATLAB. Take three memristors in the first
row of the MCA in Fig.1 as the selected memristors. Train each memristor in
the selected row 20 times and the input pixel value sequences is:

⎡

⎢
⎣

255 0 255 0 255 0 255 0 255 0 255 0 255 0 255 0 255 0 255 0

76 12 25 211 178 82 244 9 113 98 196 204 48 126 115 166 182 194 71 175

108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108

⎤

⎥
⎦

T

For the comparison, set the three initial memristances in TMCA as M11 =
100ohm, M12 = 7700ohm, M13 is random, and in HPMCA, M12 = 4838ohm,
M11, M13 is random (Mij means the memristor in the i-th row and j-th column).
From Fig.2(a)and 2(b), it is easy to find that all the memristances are conver-
gent to the mean values, but different values of the HPMCA and the TMCA is
convergent to. The TMCA is completely matching with the mean values, but
the HPMCA is not. Turn memristance of M12 into the corresponding pixel value
as shown in Fig.2(c), it is obvious that the TMCA is highly consistent with the
calculated results but the HPMCA is always slightly fluctuated (sometimes the
error is as high as 34 gray levels). The error of the HPMCA comes from the
linearized calculation of the HPM, and this error can be reduced by increasing
the writing operation. Both in the HPMCA and the TMCA, the stored pixel in
M13 gets closer to 108 along with the increasing writing times. But the M13 in
the HPMCA convergents to 107 more quickly than the TMCA. These phenom-
ena not only verify the effectiveness of the noise reduction function of the image
overlay technique, but also indicate that the image overlay technique is more
effective for the memristor with a complex nonlinear behavior. In Fig. 2(d), the
time slot character of the pulse signal is clear exhibited, and in different time
slot, voltage with different amplitude is also generated in the CMOS unit. Be-
cause of the time slot character, a high requirement for time control and device
accuracy is need in the industry implementation. Thus the CMOS unit is a big
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Fig. 2. The simulation of the system. (a) The memristance curves of the HPMCA. (b)
The memristance curves of the TMCA. (c) The comparison between input pixels, the
stored pixels and the calculated results of M12 (d) The column pulse signals in the
CMOS unit for M12 in the TMCS.

challenge in the implementation of this system, and a further optimization is
still need.

Fig. 3 is the numerical simulation result of the image storing in the MCA with
a random initial memristance. Fig.3(a) is the image to be stored, Fig.3(d) is the
image transformed from the initial memristances in the HPMCA, Fig.3(b) and
3(e) is the image stored in the HPMCA and the TMCA after programming 5
times. We can see that the image stored in HPMCA is obvious better than the
image in TMCA. Fig.3(c) and 3(f) are the error between Fig. 3(a) and Fig. 3(b)
and Fig. 3(e). The error is mapping into a gray image, the lighter the color is,
the larger the error is. The maximum error in the HPMCA and the TMCA are
68 (only one pixel) and 37 gray levels respectively, and the rate of pixel which
has an error over 5 gray levels is 0.07% and 40.22%. The numerical simulation
results further confirmed that the programming method proposed in this letter
has a better image storing performance for the HPMCA.

However different from the image storing performance, the circuit designed
for the TMCA is more practical in the industry. Considering the advantage of
each MCA, a physical memristor combined the complex nonlinear drift bound-
ary behavior and the threshold character [12] should be taken in the physical
implementation. Thus, in the physical MCA, the programming circuit for the
TMCA would be adopted, but a good image storing effect like the HPMCA
would be gotten.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The storing for gray image.(a) The origin image.(b) The stored image in the
HPMCA after programing. (c) The error in the HPMCA.(d) The initial image in the
MCAs. (e) The stored image in the TMCA after programing. (f) The error in the
TMCA.

4 Conclusions

Different programing operations are designed for the reading and writing of the
crossbar arrays consisting of the HP memristor and the threshold memristor. The
time slot based on-chip pulse and the image overlay technique are introduced
in the CMOS units to control the programming of memristor. The new method
has a better noise tolerance ability for image storing in the HPMCA. Both the
simulink and numerical simulations demonstrate the efficiency of this system in
the image storing.
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Abstract. In this paper, we study the global exponential stability in
Lagrange sense for memristor-based neural networks (MBNNs) with
time-varying delays. Based on the nonsmooth analysis and differential
inclusion theory, matrix measure technique is employed to establish some
succinct criteria which ensure the Lagrange stability of the considered
memristive model. In addition, the new proposed criteria are very easy to
verify, and they also enrich and improve the earlier publications. Finally,
two example are given to demonstrate the validity of the results.

Keywords: Memristor-based Neural Networks, Lagrange Stability, Ma-
trix Measure.

1 Introduction

Memristive neurodynamic systems have received considerable attention over the
last few years. Memristor-based neural networks (MBNNs) have demonstrated
high efficiency in numerous applications, and it would be an interesting and im-
portant research topic in many fields [1–9]. Differently from traditional neural
systems [10, 11, 15], MBNNs are characterized by state-dependent nonlinear sys-
tem families [3, 5]. Such system family can reveal coexisting solutions, jumped,
transient chaos of rich and complex nonlinear behaviors [1]. Thus, it is more dif-
ficient to analyze the dynamic of memristor-based system than the traditional
ones.

Recently, many researchers focus on the global asymptotic or exponential sta-
bility for MBNNs with a unique equilibrium point or unique periodic orbit [6, 9].
In many applications, however, monostable neural networks have been found
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computationally restrictive and multistable dynamics are essential to handle im-
portant neural computations desired [2, 12]. Unlike Lyapunov stability, Lagrange
stability refers to the stability of the total system, rather than the stability of
equilibria. A Lagrange stable system may have multistable property because the
Lagrange stability is considered on the basis of the boundedness of solutions and
the existence of global attractive sets. Also, with regard to Lagrange stability,
outside the global attractive sets, there is no equilibrium point, periodic state,
almost periodic state, or chaos attractor [1, 2, 12, 13]. So, it is a significative and
important work to study the Lagrange stability of MBNNs.

Motivated by the above discussions, in this paper, we shall consider the La-
grange stability of MBNNs. The dynamic analysis here adopts theories of differ-
ential inclusions and set-valued maps to handle MBNNs with discontinuous right-
hand side. The activation functions in this paper are assumed to be bounded.
By utilizing matrix measure technique, some new criteria which ensure the la-
grange stability of the considered MBNNs are derived. The global exponential
attractive sets can be directly derived from the parameters of the MBNNs, and
the stability criteria are very easily verified.

Throughout this paper, Rn is the n-dimensional Euclidean space. co[P ] de-
notes the closure of the convex hull of set P , and co[a, b] denotes the closure
of the convex hull generated by numbers a and b. a+ij = max{a∗ij , a∗∗ij }, a−ij =

min{a∗ij, a∗∗ij }, b+ij = max{b∗ij , b∗∗ij }, b−ij = min{b∗ij, b∗∗ij }. aij = max{|a∗ij |, |a∗∗ij |},
bij = max{|b∗ij |, |b∗∗ij |}, A = (aij)n×n, B = (bij)n×n. For a given constant T > 0,
CT is defined as the subset σ ∈ T : ||σ|| ≤ T. Let C be the set of all nonnegative
functionals K : C → [0,+∞), mapping bounded sets in C into bounded sets in
[0,+∞). For any initial condition ϕ ∈ C, the solution of the considered system
that starts from the initial condition ϕ will be denoted by x(t;ϕ).

2 Problem Formulation and Preliminaries

Consider the following MBNNs with time-varying delay:

ẋ(t) =− Cx(t) +A(x(t))f(x(t)) +B(x(t− τ(t)))g(x(t − τ(t))) + I(t), (1)

where x(t) = (x1(t), x2(t), · · · , xn(t))
T denotes the state variable of neurons;

I(t) = (I1(t), I2(t), · · · , In(t))T is the external inputs satisfying |Ii(t)| ≤ Ii; τ(t)
denotes system delay satisfying 0 ≤ τ(t) ≤ τ ; f(x(t)) = (f1(x1(t)), f2(x2(t)) · · · ,
fn(xn(t)))

T and g(x(t− τ(t))) = (g1(x1(t− τ(t))), g2(x2(t− τ(t))) · · · , gn(xn(t−
τ(t))))T denote the continuous activation functions; C = diag(c1, c2, · · · , cn) is
a diagonal matrix with positive entries; A(x(t)) = (aij(xj(t)))n×n and B(x(t −
τ(t))) = (bij(xj(t− τ(t))))n×n are the memristive synaptic weight matrices with

aij(xj(t)) =

{
a∗ij , |xj(t)| ≤ Xj ,
a∗∗ij , |xj(t)| > Xj ,

bij(xj(t− τ(t))) =

{
b∗ij , |xj(t− τ(t))| ≤ Xj ,
b∗∗ij , |xj(t− τ(t))| > Xj ,

in which switching jumps Xj > 0, ci > 0, a∗ij , a
∗∗
ij , b

∗
ij , b

∗∗
ij are constants.
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Throughout this paper, we assume that the activation functions fi(s) and
gi(s) are continuous and bounded, i.e., there exist positive constants Fi and Gi

such that

|fi(s)| ≤ Fi, |gi(s)| ≤ Gi, ∀s ∈ R, i = 1, 2, · · · , n. (2)

Notice that the system (1) is differential equation with discontinuous right-
hand sides, and based on the theories of set-valued maps and differential inclu-
sions, if x(t) is the solution of (1) in the sense of Filippov, then

ẋ(t) ∈ − Cx(t) + co[A(x(t))]f(x(t)) + co[B(x(t − τ(t)))]g(x(t − τ(t))) + I(t),
(3)

where co[A(x(t))] = (co(aij(xj(t))))n×n, co[B(x(t − τ(t)))] = (co(bij(xj(t −
τ(t)))))n×n, with

co[aij(xj(t))] =

⎧
⎨

⎩

a∗ij , |xj(t)| < Xj ,[
a−ij , a

+
ij

]
, |xj(t)| = Xj ,

a∗∗ij , |xj(t)| > Xj ,

co[bij(xj(t− τ(t)))] =

⎧
⎨

⎩

b∗ij , |xj(t− τ(t))| < Xj ,[
b−ij , b

+
ij

]
, |xj(t− τ(t))| = Xj ,

b∗∗ij , |xj(t− τ(t))| > Xj .

or equivalently, there exist measurable functions Â(t) ∈ co[A(x(t))] and B̂(t) ∈
co[B(x(t − τ(t)))], such that

ẋ(t) =− Cx(t) + Â(t)f(x(t)) + B̂(t)g(x(t − τ(t))) + I(t) . (4)

Now we define some concepts and lemmas that are needed later.

Definition 1. [1] The trajectory of MBNN (1) is said to be uniformly stable in
Lagrange sense (or uniformly bounded), if for any H > 0, there exists a constant
K = K(H) > 0 such that |x(t;ϕ)| < K for all ϕ ∈ CH and t ≥ 0.

Definition 2. [1] If there exist a radially unbounded and positive definite func-
tion V (x), a functional K ∈ C, positive constants � and α, such that for any
solution x(t) = x(t;ϕ) of MBNN (1),V (x(t)) > �, t ≥ 0, implies

V (x(t)) − � ≤ K(ϕ)exp{−αt},

then the trajectory of MBNN (1) is said to be globally exponentially attractive
with respect to V, and the compact set Ω := x ∈ Rn|V (x) ≤ � is called to be a
globally exponentially attractive set of MBNN (1).

Definition 3. [1] The trajectory of MBNN (1) is called globally exponentially
stable in Lagrange sense, if it is both uniformly stable in Lagrange sense and
globally exponentially attractive.
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Definition 4. [14] Suppose A = (aij)n×n is a real matrix, then the matrix
measure of A is defined as

μp(A) = lim
h→0+

‖I + hA‖p − 1

h

where I is a n × n identity matrix, p = 1, 2,∞, and ‖ · ‖p is the corresponding
induced matrix norm.

When the matrix norm ‖A‖1 = maxj

∑n
i=1 |aij |, ‖A‖2 =

√
λmax(ATA),

A∞ = maxi

∑n
j=1 |aij |, we can obtain the matrix measure μ1(A) = maxj{ajj +

∑n
i=1,i�=j |aij |}, μ2(A) =

1
2λmax(A

T +A), μ∞(A) = maxi{aii +
∑n

j=1,j �=i |aij |}.
Lemma 1. [12] Let G ∈ C([t0,+∞), R), and there exist positive constants κ1

and κ2 such that D+G(t) ≤ −κ1G(t) + κ2, t ≥ t0, then

G(t)− κ2

κ1
≤

(

G(t0)− κ2

κ1

)

exp{−κ1(t− t0)}, t ≥ t0 .

In particular, if G(t) ≥ κ2/κ1, t ≥ t0, then G(t) exponentially approaches κ2/κ1

as t increases.

3 Main Results

Theorem 1. Assume that the activation functions f(·) and g(·) satisfy con-
dition (2), then the trajectory of MBNN (1) is globally exponentially stable in
Lagrange sense. In addition, there exists a matrix measure μp(·)(p = 1, 2,∞)
such that global exponential attractive sets Ωp(p = 1, 2,∞) of MBNN (1) can be
estimated as follows:

Ωp =

{

x ∈ Rn|‖x‖p ≤ Mp

Lc

}

, p = 1, 2,∞ . (5)

where Mp = ‖A‖pF + ‖B‖p‖G + ‖I‖p, Lc = −μ(−C), F = maxi=1,2,··· ,n{Fi},
G = maxi=1,2,··· ,n{Gi}.
Proof. We first prove that the trajectory of MBNN (1) is uniformly stable in
Lagrange sense.

Consider the following function:

V (x(t)) = ‖x(t)‖p. (6)
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Evaluating the upper right Dini derivative of V along the trajectory of (3) or
(4) gives

D+V (x(t)) = lim
h→0+

‖x(t+ h)‖p − ‖x(t)‖p
h

= lim
h→0+

‖x(t) + hẋ(t) + o(h)‖p − ‖x(t)‖p
h

∈ lim
h→0+

1

h

{
‖x(t) + h[−Cx(t) + co[A(x(t))]f(x(t))

+ co[B(x(t− τ (t)))]g(x(t− τ (t))) + I(t)] + o(h)‖p − ‖x(t)‖p
}

= lim
h→0+

1

h

{
‖x(t) + h[−Cx(t) + Â(t)f(x(t))

+ B̂(t)g(x(t− τ (t))) + I(t)] + o(h)‖p − ‖x(t)‖p
}

≤ lim
h→0+

‖I + h(−C)‖p − 1

h
‖x(t)‖p

+ ‖Â(t)f(x(t))‖p + ‖B̂(t)g(x(t− τ (t)))‖p + ‖I(t)‖p
≤μp(−C)‖x(t)‖p + ‖Â(t)f(x(t))‖p + ‖B̂(t)g(x(t− τ (t)))‖p + ‖I(t)‖p .

(7)

Notice that the boundedness of activation functions, and |Ii(t)| ≤ Ii. One can
obtain from the above inequality that

D+V (x(t)) ≤μp(−C)‖x(t)‖p + ‖A‖p‖f(x(t))‖p + ‖B‖p‖g(x(t− τ (t)))‖p + ‖I(t)‖p
≤μp(−C)‖x(t)‖p + ‖A‖pF + ‖B‖p‖G + ‖I‖p
=− LcV (x(t)) +Mp . (8)

where Lc = −μp(−C), Mp = ‖A‖pF + ‖B‖p‖G+ ‖I‖p.
By Lemma.1, we have

V (x(t)) − Mp

Lc
≤

[

V (x(0)) − Mp

Lc

]

exp{−Lct}, t ≥ 0 . (9)

Then

‖x(t)‖p−Mp

Lc
≤

[

‖x(0)‖p − Mp

Lc

]

exp{−Lct} ≤
[

‖x(0)‖p − Mp

Lc

]

.

This means ‖x(t)‖p ≤ ‖x(0)‖p. This immediately implies the uniform bound-
edness of the solutions of MBNN (1). Hence, the trajectory of MBNN (1) is
uniformly stable in Lagrange sense.

In addition, noticing that V (x(t)) − Mp

Lc
≤ V (x(0)) := K(ϕ), then K ∈ C,

and from (9) it implies that

V (x(t)) − Mp

Lc
≤ K(ϕ) exp{−Lct}, t ≥ 0 . (10)

Through Definition 2, MBNN (1) is globally exponentially attractive and Ωp

is a globally exponentially attractive set. This proves the global exponential sta-
bility in Lagrange sense of the trajectory of MBNN (1). The proof is completed.
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When gi = 0(i = 1, 2, · · · , n), system (1) changes into:

ẋ(t) =− Cx(t) +A(x(t))f(x(t)) + I(t), (11)

Corollary 1. Assume that the activation function g(·) satisfies condition (2),
then the trajectory of network (11) is globally exponentially stable in Lagrange
sense. In addition, there exists a matrix measure μp(·)(p = 1, 2,∞) such that
global exponential attractive sets Ωp(p = 1, 2,∞) of MBNN (1) can be estimated
as follows:

Ωp =

{

x ∈ Rn|‖x‖p ≤ M̃p

Lc

}

, p = 1, 2,∞ .

where M̃p = ‖A‖p‖F + ‖I‖p, Lc = −μ(−C), G = maxi=1,2,··· ,n{Gi}.
System (1) includes a special case of MBNNs as follows:

ẋ(t) =− Cx(t) +B(x(t− τ(t)))g(x(t − τ(t))) + I(t), (12)

Corollary 2. Assume that the activation function g(·) satisfies condition (2),
then the trajectory of network (12) is globally exponentially stable in Lagrange
sense. In addition, there exists a matrix measure μp(·)(p = 1, 2,∞) such that
global exponential attractive sets Ωp(p = 1, 2,∞) of MBNN (1) can be estimated
as follows:

Ωp =

{

x ∈ Rn|‖x‖p ≤ M̂p

Lc

}

, p = 1, 2,∞ .

where M̂p = ‖B‖p‖G+ ‖I‖p, Lc = −μ(−C), G = maxi=1,2,··· ,n{Gi}.
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Fig. 1. Transient behaviors of network (13) with 20 initial values.
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4 Examples

Example 1. Consider a two-neuron memristor-based neural network model

{
ẋ1(t) = −x1(t) + a11(x1(t))f(x1(t)) + a12(x2(t))f(x2(t))− sin(t),
ẋ2(t) = −0.9x2(t) + a21(x1(t))f(x1(t)) + a22(x2(t))f(x2(t)) + sin(t),

(13)

where f(s) = tanh(s), and

a11(x1(t)) =

{
0.1, |x1(t)| ≤ 1,
−0.1, |x1(t)| > 1,

a12(x2(t)) =

{
2, |x2(t)| ≤ 1,
−2, |x2(t)| > 1,

a21(x1(t)) =

{−2, |x1(t)| ≤ 1,
2, |x1(t)| > 1,

a22(x2(t)) =

{
0.1, |x2(t)| ≤ 1,
−0.1, |x2(t)| > 1.

Obviously, the activation function is bounded with F = 1. By briefly calculat-
ing, we obtain Lc = −μ(−C) = 0.9 M1 = M2 = M∞ = 3.1, then the global
exponential attractive sets can be estimated as follows:

Ωp = {x ∈ R2|‖x‖p ≤ 3.4444}, p = 1, 2,+∞ .

The simulation result of network (13) with 20 initial values is shown in Fig. 1.

Example 2. Consider Ikeda-type oscillator with memristor characteristics

ẋ(t) = −cx(t) + b(x(t− τ(t)))sin(x(t − τ(t))) (14)

where τ(t) = et/(1 + et), c = 1 and b(x(t− τ(t))) =

{−1.3, |x1(t)| ≤ 0.8,
1.3, |x1(t)| > 0.8.

From calculating the parameter Mp = 1.3 and Lc = −μp(−c) = 1. Then we
can obtain the global exponential attractive sets as

Ωp = {x ∈ R|‖x‖p ≤ 1.3}, p = 1, 2,+∞ .

5 Conclusion

In this paper, under the framework of Filippovs solution, and by using the ma-
trix measure technique, we obtained some new testable criteria to ensure the
lagrange stability for MBNNs. The theoretical results have shown that, under
the bounded activation functions, the considered model are always globally ex-
ponentially stable in Lagrange sense. Moreover, the global exponential attractive
sets can be effectively estimated by our proposed method.
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Abstract. In this paper, a general class of non-monotonic piecewise
linear activation functions is introduced and then the coexistence and
dynamical behaviors of multiple equilibrium points are studied for a class
of memristive neural networks (MNNs). It is proven that under some
conditions, such n-neuron MNNs can have 5n equilibrium points located
in �n, and 3n of them are locally exponentially stable, by means of fixed
point theorem, nonsmooth analysis theory and rigorous mathematical
analysis. The investigation shows that the neural networks with non-
monotonic piecewise linear activation functions introduced in this paper
can have greater storage capacity than the ones with Mexican-hat-type
activation function.

Keywords: Memristive neural networks, Multistability, Non-monotonic
piecewise linear activation functions.

1 Introduction

Multistability is necessary whenever neural networks are used for implementing
an associative memory or for solving other asks in real time in the field of com-
binatorial optimization, pattern recognition, image processing, and so on. As
a result, multistability of conventional recurrent neural networks has attracted
considerable attention from many researchers over the last decade [1–4]. It has
been well recognized that multistability analysis of neural networks critically
depends upon the type of activation functions. However, most of the activation
functions employed in multistability analysis are restricted in sigmoidal activa-
tion functions, nondecreasing saturated activation functions, and piecewise linear
activation functions, which share the common feature that they are all mono-
tonically increasing. Recently, [5] introduced a class of non-monotonic piecewise
linear activation function which is called Mexican-hat-type activation function,
and investigated the issue of multistability for Hopfield neural networks.

With the inspiration from Mexican-hat-type activation function and in order
to increase the storage capacity of neural networks, in this paper, another class
of continuous non-monotonic piecewise linear activation functions is introduced
as follows (see Fig. 1):

c© Springer International Publishing Switzerland 2015
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fi(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mi, −∞ < x < pi,
li,1 x+ ci,1, pi ≤ x ≤ ri,
li,2 x+ ci,2, ri < x < qi,
li,3 x+ ci,3, qi ≤ x ≤ si,
Mi, si < x < +∞,

(1)

where pi, ri, qi, si, mi, Mi, li,1, li,2, li,3, ci,1, ci,2, ci,3 are constants with
−∞ < pi < ri < qi < si < +∞, li,1 > 0, li,2 < 0, li,3 > 0, mi = fi(qi)
and Mi > fi(ri), i = 1, 2, · · · , n. It is easy to see that the activation func-
tions fi is Lipschitz continuous, i.e., ∀x, y ∈ �, there exists positive number
ρi = max{|li,1|, |li,2|, |li,3|} such that

|fi(x) − fi(y)| ≤ ρi|x− y|.

Memristor (an abbreviation for memory and resistor), as the fourth funda-
mental two-terminal circuit element, was first postulated by L. O. Chua [6]. It
is well known that the memristor exhibits the feature of pinched hysteresis just
as the neurons in the human brain have. Because of this important feature, the
memristor can remember its past dynamic history. By replacing the resistors with
memristors in conventional neural networks, a new memristive neural networks
(MNNs) can be constructed. The great potential for exploiting MNNs will help
us build a brain-like neural computer to implement the synapses of biological
brains. As a prerequisite, the dynamical analysis of MNNs plays an important
role in the design of practical memristive neural networks model. During the last
few years there has been an increasing research interest in mono-stability analysis
and synchronization control of MNNs [7–11]. However, to the best of the authors’
knowledge, the multistability of MNNs is seldom considered. It should be pointed
out that MNNs are totally different from conventional recurrent neural networks,
since MNNs are state-dependent switching systems which are discontinuous dy-
namical systems, while conventional recurrent neural networks are continuous
dynamical systems. Therefore, the research on multistability of MNNs is more
complicated and challenging.

Motivated by the above discussions, our main objective in this paper is to
study the multistability of MNNs with activation functions (1). More precisely,
the main contributions of this paper lie in the following aspects. Firstly, under
the framework of Filippov’s solution, we present sufficient condition under which
the n-neuron MNNs with activation functions (1) can have 5n equilibrium points
located in �n, by applying the known fixed point theorem. Secondly, based on rig-
orous mathematical analysis and the theories of set-valued maps and differential
inclusions, we analyze the dynamical behaviors of MNNs with activation func-
tions (1), and show that the addressed MNNs can have 5n equilibrium points,
and 3n of them are locally exponentially stable. Thirdly, compared with the
neural networks with Mexican-hat-type activation function, the MNNs with ac-
tivation functions (1) have both more total equilibrium points and more locally
stable equilibrium points.
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Fig. 1. The configuration of non-monotonic piecewise linear activation functions (1).

2 Model Description and Preliminaries

2.1 Model

In this paper, we consider a class of memristor-based neural networks as follows:

dxi(t)

dt
= −di xi(t) +

n∑

j=1

aij (xj(t)) fj(xj(t)) + Ii, i = 1, 2, · · · , n, (2)

where

aij(xj(t)) =

{
a∗ij , |xj(t)| ≤ Tj,
a∗∗ij , |xj(t)| > Tj,

in which switching jumps Tj > 0, di > 0, a∗ij , a
∗∗
ij (i, j = 1, 2, · · · , n) are all

constant numbers, Ii is an external constant input, fj(·) is the activation function
defined in (1).

2.2 Notations

Throughout this paper, solutions of all the systems considered in the following
are intended in Filippov’s sense. ẋ(t) denotes the derivative of x(t). Let āij =
max{a∗ij , a∗∗ij }, aij = min{a∗ij , a∗∗ij }. Given a set Ω ⊂ �, co[Ω] denotes the closure
of the convex hull of Ω. Thus, we have

co [aij(xj(t))] =

⎧
⎨

⎩

a∗ij , |xj(t)| < Tj ,
[aij , āij ], |xj(t)| = Tj ,
a∗∗ij , |xj(t)| > Tj .

�n can be divided into 5n regions as
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Ω =

{
n∏

i=1

(−∞, pi)
δ
(i)
1 × [pi, ri]

δ
(i)
2 × (ri, qi)

δ
(i)
3 × [qi, si]

δ
(i)
4 × (si,+∞)δ

(i)
5 ,

(δ
(i)
1 , δ

(i)
2 , δ

(i)
3 , δ

(i)
4 , δ

(i)
5 ) = (1, 0, 0, 0, 0) or (0, 1, 0, 0, 0) or (0, 0, 1, 0, 0)

or (0, 0, 0, 1, 0) or (0, 0, 0, 0, 1)

}

.

2.3 Properties and Definitions

By the theories of differential inclusions and set-valued maps [12, 13], the
memristor-based neural networks (2) can be written as the following differential
inclusion:

dxi(t)

dt
∈ − di xi(t) +

n∑

j=1

co [aij (xj(t))] fj(xj(t)) + Ii, for a.e. t ≥ 0, (3)

or equivalently, there exist âij ∈ co [aij (xj(t))] (i, j = 1, 2, · · · , n) such that

dxi(t)

dt
=− di xi(t) +

n∑

j=1

âij fj(xj(t)) + Ii, for a.e. t ≥ 0, i = 1, 2, · · · , n. (4)

Definition 1. A function x(t) = (x1(t), · · · , xn(t))
T is a solution of (2) in the

sense of Filippov, if x(t) is an absolutely continuous function on any compact
interval of [0,+∞) and satisfies the differential inclusion (3).

Definition 2. An equilibrium point of (2) is a constant vector x∗ ∈ �n that
satisfies

0 ∈ − di x
∗
i +

n∑

j=1

co[aij(x
∗
j )] fj(x

∗
j ) + Ii, i = 1, 2, · · · , n, (5)

or equivalently, for i, j = 1, 2, · · · , n, there exist âij ∈ co[aij(x
∗
j )] such that

−di x
∗
i +

n∑

j=1

âij fj(x
∗
j ) + Ii = 0, i = 1, 2, · · · , n. (6)

Lemma 1. Assume that activation functions fj are Lipschitz continuous on �
with Lipschitz constants ρj > 0. If fj(±Tj) = 0 (j = 1, 2, · · · , n), then

|co[aij(xj(t))]fj(xj(t))− co[aij(yj(t))]fj(yj(t))| ≤ Aij ρj |xj(t)− yj(t)| (7)

hold for i, j = 1, 2, · · · , n, where Aij = max{|a∗ij |, |a∗∗ij |}.
It is obvious that the set-valued map

xi(t) � −di xi(t) +

n∑

j=1

co [aij (xj(t))] fj(xj(t)) + Ii

has nonempty compact convex values. Furthermore, it is upper-semicontinuous.
Thus, the local existence of a solution x(t) with initial condition x(0) can be
guaranteed from [12]. Moreover, since the activation functions fj are bounded
and Lipschitz continuous, the local solution x(t) can be extended to the interval
[0,+∞).
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3 Main Results

In this section, the multistability of MNNs (2) with activation functions (1) is
investigated. First of all, we give the following theorem on the coexistence of
multiple equilibrium points for MNNs (2) by applying the known fixed point
theorem under the framework of Filippov’s solution.

Theorem 1. If the following conditions hold for all i = 1, 2, · · · , n:

− di pi +max {aiiui, āiiui}+
n∑

j �=i,j=1

max
{
aijuj , aijvj , āijuj, āijvj

}

+ Ii < 0, (8)

− di ri +min {aiifi(ri), āiifi(ri)} +
n∑

j �=i,j=1

min
{
aijuj , aijvj , āijuj, āijvj

}

+ Ii > 0, (9)

− di si +min {aiivi, āiivi}+
n∑

j �=i,j=1

min
{
aijuj, aijvj , āijuj , āijvj

}

+ Ii > 0, (10)

then MNNs (2) with activation functions (1) can have 5n equilibrium points
located in �n.

Proof. Arbitrarily pick a region from Ω as

Ω̃ =
∏

i∈N1

(−∞, pi)×
∏

i∈N2

[pi, ri]×
∏

i∈N3

(ri, qi)×
∏

i∈N4

[qi, si]×
∏

i∈N5

(si,+∞) ⊂ Ω,

where Ni (i = 1, 2, 3, 4, 5) are subsets of {1, 2, · · · , n}, and
⋃5

i=1 Ni =
{1, 2, · · · , n}, Ni ∩Nj = ∅(i �= j, i, j = 1, 2, 3, 4, 5). We will show that MNNs (2)

with activation functions (1) have an equilibrium point located in Ω̃.

For any point (x1, x2, · · · , xn)
T ∈ Ω̃, fix x1, · · · , xi−1, xi+1, · · · , xn except for

xi, and define

Fi(x) =− di x+ âii fi(x) +

n∑

j �=i,j=1

âij fj(xj) + Ii, i = 1, 2, · · · , n, (11)

where âij (i, j = 1, 2, · · · , n) are the constants defined in (6). Then there are five
possible cases for us to discuss.
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Case 1. i ∈ N1. Note that uj ≤ fj ≤ vj and aij ≤ âij ≤ āij , from (8) and
(11), we have

Fi(pi) =− di pi + âii ui +

n∑

j �=i,j=1

âij fj(xj) + Ii

≤− di pi +max {aii ui, āii ui}+
n∑

j �=i,j=1

max
{
aij uj , aij vj , āij uj , āij vj

}

+ Ii

<0,

then due to the continuity of Fi(x) and limx→−∞ Fi(x) = +∞, we can find an
x̄i ∈ (−∞, pi) such that Fi(x̄i) = 0.

Case 2. i ∈ N2. From (9) and (11), we get

Fi(ri) ≥− di ri +min {aii fi(ri), āii fi(ri)}

+

n∑

j �=i,j=1

min
{
aij uj, aij vj , āij uj, āij vj

}
+ Ii

>0,

Then we can find an x̄i ∈ (pi, ri) such that Fi(x̄i) = 0, due to Fi(pi) < 0.
Case 3. i ∈ N3. Note that fi(qi) = ui and pi < qi, it follows from (8) and (11)

that

Fi(qi) < Fi(pi) < 0.

Then we can find an x̄i ∈ (ri, qi) such that Fi(x̄i) = 0, in view of Fi(ri) > 0.
Case 4. i ∈ N4. By virtue of fi(si) = vi, (10) and (11), we obtain

Fi(si) ≥− di si +min {aii vi, āii vi}

+

n∑

j �=i,j=1

min
{
aij uj , aij vj , āij uj , āij vj

}
+ Ii

>0.

Then we can find an x̄i ∈ (qi, si) such that Fi(x̄i) = 0, because of Fi(qi) < 0.
Case 5. i ∈ N5. Note that Fi(si) > 0 and limx→+∞ Fi(x) = −∞, we can also

find an x̄i ∈ (si,+∞) such that Fi(x̄i) = 0.

Define a map H : Ω̃ → Ω̃ by H(x1, x2, · · · , xn) = (x̄1, x̄2, · · · , x̄n). It is clear
that the map is continuous. By Brouwer’s fixed point theorem, there exists one
fixed point x∗ = (x∗

1, · · · , x∗
n) of H in Ω̃, which is also the equilibrium point of

MNNs (2) in Ω̃. As �n is divided into 5n parts, by arbitrariness of Ω̃, MNNs
(2) with activation functions (1) can have 5n equilibrium points located in �n.
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Denote

Φ =

{
n∏

i=1

(−∞, pi]
δ
(i)
1 × [ri, qi]

δ
(i)
2 × [si,+∞)δ

(i)
3 ,

(δ
(i)
1 , δ

(i)
2 , δ

(i)
3 ) = (1, 0, 0) or (0, 1, 0) or (0, 0, 1)

}

.

It is easy to see that Φ is composed of 3n regions. We are now ready to analyze
the dynamical behavior of the solution x(t) with initial condition x(0) ∈ Φ.
Theorem 2. Assume that fi(±Ti) = 0 (i = 1, 2, · · · , n) and (8)-(10) hold. Fur-
thermore, if there are positive constants ξ1, ξ2, · · · , ξn such that

−di ξi +

n∑

j=1

ξj Aij |lj,2| < 0 (12)

hold for all i = 1, 2, · · · , n, where Aij = max{|a∗ij |, |a∗∗ij |}, then MNNs (2) with
activation functions (1) can have 5n equilibrium points, and 3n of which are
locally exponentially stable.

Proof. First of all, according to Theorem 1, the coexistence of 5n equilibrium
points for MNNs (2) can be guaranteed under the conditions of Theorem 2.
In the following, we will prove the local stability of the 3n equilibrium points
located in Φ in two steps.

Step I. Arbitrarily pick a region from Φ as

Φ̃ =
∏

i∈N1

(−∞, pi]×
∏

i∈N3

[ri, qi]×
∏

i∈N5

[si,+∞) ⊂ Φ,

where N1, N3, N5 are subsets of {1, 2, · · · , n}, and N1∪N3∪N5 = {1, 2, · · · , n},
Ni∩Nj = ∅ (i �= j, i, j = 1, 3, 5). Let x(t) be a solution of MNNs (2) with initial

condition x(0) ∈ Φ̃. Then we claim that x(t) would stay in Φ̃ for all t ≥ 0. If this
is not true, then there are three possible cases to discuss.

Case 1. There exists some i ∈ N1 and t∗ ≥ 0 such that xi(t
∗) = pi, ẋi(t

∗) >
0, xi(t) ≤ pi for 0 ≤ t ≤ t∗. Then it follows from (4), (8) and the definition of fi
that

ẋi(t
∗) =− di xi(t

∗) + âii fi(xi(t
∗)) +

n∑

j �=i,j=1

âij fj(xj(t
∗)) + Ii

≤− di pi +max {aiiui, āiiui}+
n∑

j �=i,j=1

max
{
aijuj , aijvj , āijuj , āijvj

}
+ Ii

<0,

which is a contradiction.
Case 2. There exists some i ∈ N3 and t∗ ≥ 0 such that either xi(t

∗) =
ri, ẋi(t

∗) < 0, xi(t) ∈ [ri, qi] for 0 ≤ t ≤ t∗ or xi(t
∗) = qi, ẋi(t

∗) > 0, xi(t) ∈
[ri, qi] for 0 ≤ t ≤ t∗. For the first case, we derive from (4), (9) that
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ẋi(t
∗) ≥− di ri +min {aii fi(ri), āii fi(ri)}

+

n∑

j �=i,j=1

min
{
aij uj , aij vj , āij uj , āij vj

}
+ Ii

>0,

which is a contradiction. The second case can be proved similarly.
Case 3. There exists some i ∈ N5 and t∗ ≥ 0 such that xi(t

∗) = si, ẋi(t
∗) <

0, xi(t) ≥ si for 0 ≤ t ≤ t∗. Then we get

ẋi(t
∗) ≥− di si +min {aiivi, āiivi}+

n∑

j �=i,j=1

min
{
aijuj , aijvj , āijuj , āijvj

}
+ Ii,

>0,

which contradicts ẋi(t
∗) < 0.

From the above three cases, we know that the solution x(t) will never escape

from Φ̃ for all t ≥ 0. That is, Φ̃ is positively invariant with respect to the solution
x(t) with initial state x(0) ∈ Φ̃.

Step II. We will prove that the equilibrium point x∗ of MNNs (2) in Φ̃ is
locally stable. From (12), there exists a positive constant ε small enough such
that

(−di + ε) ξi +

n∑

j=1

ξj Aij |lj,2| < 0. (13)

Let yi(t) = xi(t) − x∗
i . By the theories of set-valued maps and differential

inclusions, (3) and (5), we can get that

ẏi(t) ∈− di yi(t) +

n∑

j=1

{
co[aij(xj(t))]fj(xj(t))− co[aij(x

∗
j )]fj(x

∗
j )
}
. (14)

Note that when u = (u1, u2, · · · , un)
T ∈ Φ̃, fj(uj) is Lipschitz continuous with

Lipschitz constant |lj,2|. So it follows from Lemma 1 that

|co[aij(xj(t))]fj(xj(t))− co[aij(x
∗
j )]fj(x

∗
j )| ≤ Aij |lj,2| |yj(t)|. (15)

Define zi(t) = eεt yi(t) and

M(t) = sup
s≤t

(

max
1≤i≤n

(
ξ−1
i |zi(s)|

)
)

, t ≥ 0. (16)

In the following, we claim that M(t) is bounded. More precisely, for all t ≥ 0,
we have M(t) = M(0).
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In fact, for any t0 ≥ 0, there are two cases:
Case 1. max1≤i≤n

(
ξ−1
i |zi(t0)|

)
< M(t0). In this case, there exists a δ > 0

such that max1≤i≤n

(
ξ−1
i |zi(t)|

)
< M(t0) for t ∈ (t0, t0 + δ).

Case 2. max1≤i≤n

(
ξ−1
i |zi(t0)|

)
= M(t0). In this case, let it0 = it0(t0) be such

an index that
ξ−1
it0

|zit0 (t0)| = max
1≤i≤n

(
ξ−1
i |zi(t0)|

)
.

By using (13), (14) and (15) , we derive that

d|zit0 (t)|
dt

∣
∣
∣
∣
t=t0

=sign
(
zit0 (t0)

)
εeεt0yit0 (t0) + sign

(
zit0 (t0)

)
eεt0 ẏit0 (t0)

≤ (−dit0 + ε
) |zit0 (t0)|+

n∑

j=1

Ait0 j
|lj,2| |zj(t0)|

≤
⎡

⎣
(−dit0 + ε

)
ξit0 +

n∑

j=1

ξj Ait0 j
|lj,2|

⎤

⎦M(t0)

≤0.

Then, there exists a δ1 > 0 such that M(t) = M(t0) for t ∈ (t0, t0 + δ1).
Therefore, from Case 1-Case 2, we can conclude that M(t) = M(0) for all

t ≥ 0, which implies that

max
1≤i≤n

(
ξ−1
i |zi(t)|

) ≤ M(0),

then we can get

|yi(t)| ≤ M e−εt, t ≥ 0, i = 1, 2, · · · , n, (17)

where M = M(0)max1≤i≤n{ξi}. That is, x∗ is locally exponentially stable in Φ̃.

Because Φ̃ ⊂ Φ is chosen arbitrarily, we conclude that in each subset of Φ,
there is a locally exponentially stable equilibrium point. Therefore, MNNs (2)
have 3n locally exponentially stable equilibrium points.

Remark 1. As reported in [5], under some conditions, conventional recurrent
neural networks with Mexican-hat-type activation function have at most 3n equi-
librium points and at most 2n locally stable equilibrium points. Compared with
the result in [5], it can be seen from Theorem 2 that MNNs (2) with activation
functions (1) now have both more total equilibrium points and more locally sta-
ble equilibrium points. This clearly shows that neural networks with activation
functions (1) can have greater storage capacity than the ones with Mexican-hat-
type activation function.

4 Conclusions

Under the framework of Filippov’s solution, the issue of multistability has been
studied in this paper for a class of MNNs with non-monotonic piecewise lin-
ear activation functions. Some new sufficient conditions have been presented to
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ensure the coexistence of 5n equilibrium points and the local stability of 3n equi-
librium points. The obtained results have demonstrated that the non-monotonic
activation functions introduced in this paper play a significant role in increasing
the storage capacity of neural networks.

Acknowledgements. This work was supported by the National Natural Sci-
ence Foundation of China under Grant 61203300, the Specialized Research Fund
for the Doctoral Program of Higher Education under Grant 20120092120029,
the Natural Science Foundation of Jiangsu Province of China under Grant
BK2012319, and the China Postdoctoral Science Foundation funded project un-
der Grant 2012M511177.

References

1. Kaslik, E., Sivasundaram, S.: Impulsive Hybrid Discrete-Time Hopfield Neural Net-
works with Delays and Multistability Analysis. Neural Networks 24, 370–377 (2011)

2. Nie, X., Cao, J.: Multistability of Second-Order Competitive Neural Networks with
Nondecreasing Saturated Activation Functions. IEEE Trans. Neural Networks 22,
1694–1708 (2011)

3. Marco, M., Forti, M., Grazzini, M., Pancioni, L.: Limit Set Dichotomy and Mul-
tistability for A Class of Cooperative Neural Networks with Delays. IEEE Trans.
Neural Networks and Learning Systems 23, 1473–1485 (2012)

4. Huang, Z., Raffoul, Y., Cheng, C.: Scale-Limited Activating Sets and Multiperiod-
icity for Threshold Networks on Time Scales. IEEE Trans. Cybernetics 44, 488–499
(2014)

5. Wang, L., Chen, T.: Multistability of Neural Networks with Mexican-Hat-Type
Activation Functions. IEEE Trans. Neural Networks and Learning Systems 23,
1816–1826 (2012)

6. Chua, L.: Memristor-The Missing Circuit Element. IEEE Trans. Circuit Theory 18,
507–519 (1971)

7. Wu, A., Zeng, Z.: Exponential Stabilization of Memristive Neural Networks with
Time Delays. IEEE Trans. Neural Networks and Learning Systems 23, 1919–1929
(2012)

8. Zhang, G., Shen, Y.: New Algebraic Criteria for Synchronization Stability of
Chaotic Memristive Neural Networks with Time-Varying Delays. IEEE Trans. Neu-
ral Networks and Learning Systems 24, 1701–1707 (2013)

9. Wen, S., Bao, G., Zeng, Z., Chen, Y., Huang, T.: Global Exponential Synchroniza-
tion of Memristor-Based Recurrent Neural Networks with Time-Varying Delays.
Neural Networks 48, 195–203 (2013)

10. Chandrasekar, A., Rakkiyappan, R., Cao, J., Lakshmanan, S.: Synchronization of
Memristor-Based Recurrent Neural Networks with Two Delay Components based
on Second-Order Reciprocally Convex Approach. Neural Networks 57, 79–93 (2014)

11. Chen, J., Zeng, Z., Jiang, P.: Global Mittag-Leffler Stability and Synchronization
of Memristor-Based Fractional-Order Neural Networks. Neural Networks 51, 1–8
(2014)

12. Filippov, A.: Differential Equations with Discontinuous Right-hand Sides. Kluwer,
Boston (1988)

13. Clarke, F., Ledyaev, Y., Stem, R., Wolenski, R.: Nonsmooth Analysis and Control
Theory. Springer, New York (1998)



Global Exponential Anti-synchronization

of Coupled Memristive Chaotic Neural Networks
with Time-Varying Delays

Zheng Yan, Shuzhan Bi, and Xijun Xue

Shannon Lab, Huawei Technologies Co., Ltd., Beijing, China
yanzheng@huawei.com

Abstract. This paper investigates the problem of global exponential
anti-synchronization of a class of memristive chaotic neural networks
with time-varying delays. First, a memrsitive neural network is mod-
eled. Then, considering the state-dependent properties of the memristor,
a new fuzzy model employing parallel distributed compensation (PDC)
provides a new way to analyze the complicated memristive neural net-
works with only two subsystems. And the controller is dependent on
the output of the system in the case of packed circuits. An illustrative
example is also presented to show the effectiveness of the results.

1 Introduction

Through the classical von Neumann bottleneck of conventional digital comput-
ers, the sequential processing of fetch, decode, and execution of instructions has
resulted in less efficient machines as their eco-systems have grown to be in-
creasingly complex [1]. In order to emulate the brain functionality of animals
like a spider, mouse, and cat [2, 3], modern digital computers dissipate a vast
amount of energies. For example, to perform certain cortical simulations at the
cat scale even at 83 times slower firing rate, a super computer equipped with
147456 CPUs and 144 TBs of main memory, has to be employed by the IBM
team [2]. On the other hand, the human brain contains more than 100 billion
neurons and each neuron has more than 20000 synapses. Efficient circuit imple-
mentation of synapses, therefore, is very essential to build a brain-like machine.
However, Since shrinking the current transistor size is very difficult, introducing
a more efficient approach is critical for further development of neural network
implementations.

In 2008, a successful fabrication of a very compact and non-volatile nano scale
memory called the memristor has been announced by the Williams group [4].
It was postulated by Chua [5] as the fourth basic circuit elements in electrical
circuits, which is based on the nonlinear characteristics of charge and flux. By
supplying a voltage or current to the memristor, its resistance can be altered
and stored when the applied voltage is gone. [6]. In this way, the memristor
remembers information. Several examples of successful multichip networks of
spiking neurons have been recently proposed [7–9]; however there are still a

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 192–201, 2015.
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number of practical problems that hinder the development of truly large-scale,
distributed, massively parallel networks of very large scale integration (VLSI)
neurons, such as how to set the weight of individual synapses in the network.
It is well-known that changing the synaptic connections between neurons are
widely believed to contribute to memory storage, and the activity-dependent
development of neural networks. These changes are thought to occur through
correlated-based, or Hebbian plasticity.

Meanwhile, it is obvious that neural networks have been widely studied in
recent years with the immense application prospective [10–14]. Many applica-
tions have been developed in different areas such as combinatorial optimization,
knowledge acquisition and pattern recognition. Recently, the problem of anti-
synchronization of coupled neural networks which is one of hot research fields of
complex networks has been a challenging issue due to its potential application
such as information science, biological systems and so on [15–19].

However, to the best of the author’s knowledge, the research on global ex-
ponential anti-synchronization of coupled memristive neural networks is still an
open problem that deserves further investigation. To shorten sup gap, we in-
vestigate the problem of global exponential anti-synchronization for a class of
memristive neural networks with time-varying delays. The main contributions
of this paper can be summarized as follows: (i) Based on the circuits design, the
model of MNNs is established; (ii) a fuzzy model of memristive neural networks
is employed to give a new way to analyze the complicated MNNs with only two
subsystems; (iii) a sufficient condition is derived to make the anti-synchronization
error system exponentially stable.

2 Problem Formulation

By Kirchoff’s current law, the equation of the i-th subsystem of the memristive
neural network is presented as follows:

ẋi(t) = − di(xi(t))xi(t) +

n∑

j=1

aijfj(xj(t))

+

n∑

j=1

bijfj(xj(t− τj(t))) + si, (1)

where

aij =
signij
CiRfij

, bij =
signij
CiRgij

, si =
Ii
Ci

,

di(xi(t)) =
1

Ci

[ n∑

j=1

( 1

Rfij
+

1

Rgij

)
+Wi(xi(t))

]

=

{
d1i, xi(t) ≤ 0;
d2i, xi(t) > 0.
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Then

ẋ(t) = −D(x(t))x(t) +Af(x(t)) +Bf(x(t− τ(t))) + s, (2)

where

D(x(t)) = diag{d1(x1(t)), d2(x2(t)), . . . , dn(xn(t))},
A = [aij ]n×n, B = [bij ]n×n, s = (s1, s2, . . . , sn)

T ,

f(x(t)) =
(
f1(x1(t)), · · · , fn(xn(t))

)T

,

f(x(t− τ(t))) =
(
f1(x1(t− τ1(t))), · · · , fn(xn(t− τn(t)))

)T

.

To solve the problem about nonlinear control, fuzzy logic has attracted much
attention as a powerful tool. Among various kinds of fuzzy methods, the Takagi-
Sugeno fuzzy systems are widely accepted as a useful tool for design and analysis
of fuzzy control system [20–23]. Then, the memristive neural network (1) can be
exactly represented by the fuzzy model as follows:

Rule 1: IF xi(t) is N1i, THEN

ẋi(t) = − d1ixi(t) +

n∑

j=1

aijfj(xj(t))

+

n∑

j=1

bijfj(xj(t− τj(t))) + si,

Rule 2: IF xi(t) is N2i, THEN

ẋi(t) = − d2ixi(t) +

n∑

j=1

aijfj(xj(t))

+

n∑

j=1

bijfj(xj(t− τj(t))) + si,

where N1i is xi(t) ≤ 0, N2i is xi(t) > 0. With a center-average defuzzier, the
over fuzzy system is represented as

ẋi(t) = −
2∑

l=1

ηli(t)dlixi(t) +

n∑

j=1

aijfj(xj(t))

+

n∑

j=1

bijfj(xj(t− τj(t))) + si, (3)

where

η1i(t) =

{
1, xi(t) ≤ 0,
0, xi(t) > 0,

η2i(t) =

{
0, xi(t) ≤ 0,
1, xi(t) > 0.
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Therefore, system (3) can be represented by

ẋ(t) = −
2∑

l=1

Πl(t)Dlx(t) +Af(x(t))

+Bf(x(t − τ(t))) + s, (4)

where Πl(t) = diag{ηl1(t), · · · , ηln(t)}, and
∑2

l=1 ηli(t) = 1, i = 1, · · · , n, l =
1, 2, and

Dl = diag{dl1, dl2, . . . , dln}.

3 Preliminaries

Denote u = (u1, · · · , un)
T , |u| as the absolute-value vector; i.e., |u| =

(|u1|, |u2|, ..., |un|)T , ||x||p as the p-norm of the vector x with p, 1 ≤ p < ∞.
||x||∞ = maxi∈{1,2,··· ,n} |xi| is the vector infinity norm. Denote ||D||p as the
p-norm of the matrix D with p. Denote C as the set of continuous functions.

And the following assumptions will be needed throughout the paper:

A1. For i ∈ {1, 2, · · · , n}, the activation function fi is Lipschitz continuous; and
∀r1, r2 ∈ R, there exists real number κi such that

0 ≤ fi(r1)− fi(r2)

r1 − r2
≤ κi.

A2. For i ∈ {1, 2, · · · , n}, τi(t) satisfies

0 ≤ τi(t) ≤ τ̄i, τ̇i(t) ≤ μi.

In this paper, we consider system (4) as the master system, and through elec-
tronic inductors, the values of memristor will be presented in the corresponding
slave system, then the slave system is given as:

ẏ(t) = −
2∑

l=1

Πl(t)Dly(t) +Af(y(t))

+Bf(y(t− τ(t))) + s+ u(t), t ≥ 0, (5)

where y(t) = (y1(t), y2(t), · · · , yn(t))T , u(t) = (u1(t), u2(t), · · · , un(t))
T is the

control input that will be designed. The initial conditions of system (5) is in the
form of y(t) = Φ(t) ∈ C([−τ̄ , 0],Rn), τ̄ = max1≤i≤n{τ̄i}.

In order to derive sufficient conditions for the global exponential anti-
synchronization of system (4) with system (5), we will need the following lemmas.
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Lemma 1 [24]. It is given any real matrices X,Z, P of appropriate dimensions
and a scalar ε0 > 0, where P > 0. Then the following inequality holds:

XTZ + ZTX ≤ ε0X
TPX + ε−1

0 ZTP−1Z.

In particular, if X and Z are vectors, XTZ ≤ 1
2 (X

TX + ZTZ).

4 Main Results

As anti-synchronization has been applied in many real applications, the error
system can be obtained as

ė(t) = −
2∑

l=1

Πl(t)Dle(t) +AΦ(e(t))

+BΦ(e(t− τ(t))) + u(t). (6)

where e(t) = (e1(t), e2(t), · · · , en(t))T , is the anti-synchronization error, and
ei(t) = xi(t) + yi(t). And the output functions with/without delays are

Φ(e(t))

= (Φ1(e1(t)), · · · , Φn(en(t)))

= f(e(t)− y(t)) + f(y(t)),

Φ(e(t− τ(t)))

= (Φ1(e1(t− τ1(t))), · · · , Φn(en(t− τn(t))))
T

= f(e(t− τ(t)) − y(t− τ(t))) + f(y(t− τ(t))).

As this paper aims to design an output controller

u(t) = KΦ(e(t)). (7)

where K = (kij)n×n is a constant gain matrix to be determined to anti-
synchronize the drive and response systems, Φ(e(t)) is the output function with-
out delays.

With controller (7), the error system (6) is transformed into

ė(t) = −
2∑

l=1

Πl(t)Dle(t) + ÂΦ(e(t)) +BΦ(e(t− τ(t))), (8)

where Â = (aij)n×n = (aij + kij)n×n.
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Theorem 1. Assume the conditions in Theorem 1 hold, then the drive system
(4) is globally exponentially anti-synchronized with the response system (5).

Proof. Let λ = min
1≤l≤2

{λmin{Dl}}. Obviously, V (t) which is defined in Theorem

1 is a positive definite and radially unbounded Lyapunov functional. A positive
number ε > 0 is chosen to satisfy

εα− λα+ 2ε||LQ||+ 2ετ̄eετ̄ ||L2R|| < 0. (9)

It follows that

d

dt
{eεtV (T )} = eεt(εV (t) + V̇ (t))

≤
2∑

l=1

Πl(t)e
εt

(

ε
(α

2
eT (t)e(t) + 2

n∑

i=1

qi

∫ ei(t)

0

Φi(s)ds

+

n∑

i=1

∫ t

t−τi(t)

Φ2
i (ei(s))rids

)
− αλ

2
eT (t)e(t)

)

≤ 1

2

2∑

l=1

Πl(t)e
εt

(

εαeT (t)e(t)− αλeT (t)e(t)

+ 4ε
n∑

i=1

qi

∫ ei(t)

0

Φi(s)ds

)

+ εeεt
n∑

i=1

∫ t

t−τi(t)

Φ2
i (ei(s))rids.

Since

n∑

i=1

qi

∫ ei(t)

0

Φi(s)ds ≤
n∑

i=1

qi

∫ ei(t)

0

κisds ≤ 1

2
eT (t)LQe(t),

we can get

d

dt
(eεtV (t)) ≤ 1

2
eεt

(
εα− λα + 2ε||LQ||

)
eT (t)e(t)

+ εeεt
n∑

i=1

∫ t

t−τi(t)

Φ2
i (ei(s))rids. (10)

Estimating the second term on the right-hand side of (10) by changing the
integrals, we can get
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ε

∫ s

0

eεt
n∑

i=1

∫ t

t−τi(t)

Φ2
i (ei(ς))ridςdt

≤ ε
n∑

i=1

∫ s

−τ̄

∫ min{ς+τ̄ ,s}

max{ς,0}
eεtdtΦ2

i (ei(ς))ridς

≤ ε

n∑

i=1

∫ s

−τ̄

( ∫ ς+τ̄

ς

eεtdt
)
Φ2
i (ei(ς))ridς

≤ ε

n∑

i=1

∫ s

−τ̄

τ̄ eε(ς+τ̄)Φ2
i (ei(ς))ridς

≤ ε

n∑

i=1

∫ s

−τ̄

τ̄ eε(ς+τ̄)e2i (ς)κ
2
i ridς

≤ ετ̄eετ̄ ||L2R||
∫ s

−τ̄

eεςeT (ς)e(ς)dς

≤ ετ̄eετ̄ ||L2R||
(∫ 0

−τ̄

eεςeT (ς)e(ς)dς

+

∫ s

0

eεςeT (ς)e(ς)dς
)
. (11)

From (9), (10) and (11),

eεsV (s)− V (0)

≤ 1

2

(
εα− λα+ 2ε||LQ||+ 2ετ̄eετ̄ ||L2R||

)

×
∫ s

0

eεteT (t)e(t)dt+ ετ̄ eετ̄ ||L2R||
∫ 0

−τ̄

eεteT (t)e(t)dt

≤
(
ετ̄ ||L2R||

∫ 0

−τ̄

eεtdt
)
||ψ||2 ≡ H1||ψ||2.

Thus,

V (t) ≤
(
V (0) +H1||ψ||2

)
e−εt, ∀t > 0, (12)

where

V (0) ≤ 1

2

(
β + 2||QL||+ 2τ̄ ||L2R||

)
||ψ||2 ≡ H2||ψ||2.

It follows from (11) and (12) that

α

2
eT (t)e(t) ≤ V (t) ≤ (H1 +H2)||ψ||2e−εt, ∀t > 0.
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Thus, we have

||e(t)|| ≤
√

2

α
(H1 +H2)||ψ||e− ε

2 t, (13)

which implies the anti-synchronization error system (8) is globally exponentially
stable. This completes the proof.

5 Illustrative Example

In order to show the effectiveness of the obtained results, an illustrative example
is given as follows:

Example 1. Consider memristive system (4) in Example 1. As

λ = min
l=1,2

{λmin{Dl}} = 0.9.

Obviously, there exists a positive definite diagonal matrix Q = diag{0.5, 0.5}
such that

� = −Â,

to make

Πl = − 2λQL−1 − �+ 2||Q||||B||2I

= K +

[
2.5 10
0.1 2.5

]

< 0,

then, the anti-synchronization error system (8) can achieve global exponential
stability. To simulate the obtained result, let

K =

[−3.5 −10
−0.1 −3.5

]

.

Set the initial states of slave system (5) is [3.5 − 0.7]. The state and error
trajectories of master system and slave system, are presented in Fig. 1, which
illustrate the effectiveness of the obtained results.
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Fig. 1. State and error trajectories of master system (4) and slave system (5).
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6 Conclusions

This paper investigated the global exponential anti-synchronization problem of
coupled chaotic memristive neural networks with time-varying delays via the
output function controller. A new scheme of memristive neural networks is de-
signed, corresponding dynamics equation is set up, and take the PDC fuzzy
strategy to analyze this system. A numerical example is presented to show the
effectiveness of the obtained results.
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Abstract. In this paper, we develop an interactive Non-negative Ma-
trix Factorization method for representative action video discovery. The
original video is first evenly segmented into some short clips and the bag-
of-words model is used to describe each clip. Then a temporal consistent
Non-negative Matrix Factorization model is used for clustering and ac-
tion segmentation. Since the clustering and segmentation results may not
satisfy the user’s intention, two extra human operations: MERGE and
ADD are developed to permit user to improve the results. The newly de-
veloped interactive Non-negative Matrix Factorization method can there-
fore generate personalized results. Experimental results on the public
Weizman dataset demonstrate that our approach is able to improve the
action discovery and segmentation results.

Keywords: Interactive action summarization, Non-negative Matrix Fac-
torization, video analysis.

1 Introduction

There has been a lot of interests in developing practical systems to automatically
understand video data. Of the many related tasks, discovering representative
actions from video clip is of considerable practical importance. Such algorithms
could automatically extract representative actions within streaming or archival
video and therefore significantly improve the efficiency of video understanding.

In Ref.[6], a Bayesian non-parametric model of sequential data is adopted to
allow completely unsupervised activity discovery. The authors claim that this
work need not predefine the relevant behaviors or even their numbers, as both
of them are learned directly from data. However, such a method admits the
following disadvantages: (1)Due to the complexity of non-parametric Beyasian
method, its time burden is rather huge; (2) The number of behaviors, although
need not to be determined by the user, is still sensitive to some parameters of
the algorithm (especially, the Dirichlet prior parameter). That is to day, the
task of determining the number of behavior does not diminish, but is replaced

c© Springer International Publishing Switzerland 2015
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by another task to determine a more uninterpreted parameter. (3) The inference
algorithm may introduce randomness. This leads to inconsistent results from
multiple runs when the human factor is incorporated in to the loop. Such a
problem was pointed by Ref.[3]. In Ref.[1], a relevance feedback strategy is pro-
posed to help action search and localization in video database. All of the above
work do not consider how to use the human-machine interface to enhance the
action discovery performance. Recently, Ref.[7] addresses this problem for image
clustering by introducing some human operation, and Ref.[3] used interactive
non-negative matrix method for document topic discovery. To the best of the
knowledge of the authors, there is no related work to solve video action discovery
using human operation. This motivates us to solve this problem. The main task
of this work is to discover the action categories within a video sequence, and
identify such actions in this video sequence. The main contributions are summa-
rized as follows: (1)We develop an interactive non-negative matrix factorization
method for representative video action discovery. (2)We design two human op-
erations: ADD and MERGER to realize the relevance feedback and enhance the
video summarization performance. (3)We develop a practical software system
and perform extensive experimental validations for the proposed method.

The rest of this paper is organized as follows: Section 2 is about the video
representation. In section 3 we give a detailed introduction about the proposed
method and Section 4 presents the experimental results.

2 Video Representation

The first-of-all task to analyze a video is to transform it into some suitable
structured form. In this work, we follow the popular Bag-of-Words framework
which was successfully utilized many action analysis work. To this end, we use
Spatio-Temporal Interest Points (STIPs) to detect interest points and obtain
Histogram-Of-Gradients (HOG) and Histogram-Of-Optical flow (HOF) descrip-
tors. The obtained default descriptors is of d = 162 dimensions. We evenly divide
to original video into segments which length is T frames. The parameter T is
specified by the users. It should ensure the action consistency within each seg-
ment. In this work, we select T = 24 frames,which means about one second.
These segments, which are denoted as P1,P2, · · · ,PN , represent the basic units
of the actions. The final action summary should include such segments. The
value N is obtained by the ceil of the whole frame numbers divided by T .

To give a formal representation of the segments, we first cluster all of the de-
scriptors in this video into K clusters.The parameterK is also a meta-parameter
which is specified by the users. A larger K will give better accuracy, but will also
slow down the summarization period. In this work we empirically set it as 128.
The obtained K cluster centers are regarded as code-words. Then each descrip-
tor is mapped to the nearest code-word and each segment can be represented
as a K-dimensional BoW histogram[1]. We therefore can represent the whole
video as {y1,y2, · · · ,yN}, where yi is the K-dimensional BoW histogram for
the i-th segment. After this period, each video can be represented as a matrix
Y = [y1,y2, · · · ,yN ] ∈ RK×N .
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3 Non-negative Matrix Factorization for Video Action
Discovery

3.1 Basic Non-negative Matrix Factorization

Given the matrix Y ∈ RK×N which includes the low-level action information
of the original video, where N is the number of examples in the video. We
then face the problem of how to extract the representative action clips from
the matrix Y and then project each column to the corresponding representative
action clip, providing the action segmentation results. A representative method
is the popular Non-negative Matrix Factorization (NMF) in Ref.[2], which solves
the following optimization problem:

min
U,V

||Y −UV||2F s.t. U ≥ 0, V ≥ 0 (1)

where U ∈ RK×r and V ∈ Rr×N are two non-negative matrices. The term-topic
matrix U uncovers the latent topic structure of the actions and r is usually set
by the users and chosen to be smaller than K or N .

Once the solutions of U and V are obtained, we can subsequently infer the
topic presentations of segments, namely the topic-segment matrix V by pro-
jecting the segments into the latent topic space. Such a model was originally
proposed in Ref.[3] and then was used in many fields such as document cluster-
ing and image clustering. However, in our work, since we deal with continuous
video, the temporal consistence should be encouraged to reflect the continuity
of action. Therefore the model is modified as

min
U,V

||Y −UV||2F + β

N−1∑

i=1

||Vi+1 −Vi||2F

s.t. U ≥ 0, V ≥ 0

(2)

where β is a parameter to encourage the temporal consistency term, and Vi

represents the i-th column of V.
After obtaining the solutions U and V, we can easily obtain the discovered

representative actions and the temporal action segmentation results. The details
are described as follows. For U, each column Ui ∈ RK corresponds a repre-

sentative action clip. By searching i∗ = argmin
j∈[1,N ]

UT
i yj

||Ui||2·||yj||2 , we can use the

the video clip Pi∗ as the corresponding representative action clip. On the other
hand, we use the column Vj ∈ Rr for j = 1, 2, · · · , N to determine the cluster
assignment of the j-th video clip and therefore realize the action segmentation.
Concretely speaking, we search the maximum element in the vector Vj and use
the corresponding index as the clustering assignment results.

3.2 Interactive Non-negative Matrix Factorization

In Ref.[3], some interesting interaction operation, such as key-words operations
are used for interactive topic discovery or refinement. Such operations cannot
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been exploited in the video scenarios. The main reason is that for document
clustering, the dictionary atom is the conventional words (such as dog, apple,
play, eat, and so on.) which have the semantic meanings, so we can use the
keyword distribution of each topic to realize the visualization. However, it is
impossible to construct such a dictionary for a video. In our case, the dictionary
is learning using K-means clustering algorithm and therefore the words do not
have any semantic meaning. As a result, the key-words based operation defined
in Ref.[3] cannot be used. Due to the same reason, such a visualization manner
is not suitable in our case. To this end, we developed two interaction operations:
ADD and MERGE for the visualized video action discovery.

MERGE Operation. The merge operation tries to solve the problem that
some similar video segments may be clustered into different topics. This is un-
avoidable due to at least two reasons: (1) The semantic gap between the human
understanding and the adopted BoW model which is based on low-level feature
descriptor. (2) The results are not consistent to the user’s intention.

Fig. 1. MERGE operation Fig. 2. ADD operation

To solve this problem, we permit the user to click the visualization action
boxes and click the button merge to tell the computer that some segments should
be merged into the same topic in the next iteration. This interaction also pro-
vides very important supervised information that we can exploit to enhance our
model. In fact, the visualization of actions are shown as the video segments
Pt1 ,Pt2 , · · · ,Ptr . Without loss of generalization, we denote the selected merge
segments as Pi and Pj , then we add this pair into a set M = M∪{(i, j)}, then
we solve the following optimization problem in the next iteration:

min
U,V

||Y −UV||2F + β

N−1∑

i=1

||Vi+1 −Vi||2F + γ
∑

(i,j)∈M
||Vi −Vj ||2F

s.t. U ≥ 0, V ≥ 0.

(3)

The main characteristic of this model is the third term which encourages the
i-th and j -th segments to share the similar topic pattern, and γ is a trade-off
parameter. Please note that the pair set M is set to empty for the first iteration.
During iteration procure, once M is added with some pair elements, it always
play roles in the subsequent iterations.

ADD Operation. Though the above model can successfully discover most of
the representative actions from the video, it is still possible that some important
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action clips cannot be discovered automatically. To this end, a candidate list
of new action clips should be presented to the user for performing the ADD
operation. Such a list should be short and representative. Ideally, it should con-
tain only the actions which are not included in the list of the discovered topical
actions. That is to say, it should not be well reconstructed by the discovered
representative actions. Based on the above discussion, we design a performance
index to evaluate the novelty of each action clip. To this end, for each video
segments, we define its confidence about the topic assignment. We regard V̄i

as the L1 normalized i-th column of V, and then adopt its entropy function

as En(Vi) = −
r∑

j=1

V̄i(j) log V̄i(j). Obviously, when there is only one element

of Vi is nonzero and equal to one, then the entropy is zero and the confidence
score is maximum. On the other hand, when all the elements of Vi are equal
to 1/r, then the entropy is equal to log2r and the confidence score is minimum.
Therefore, it is very convenient to adopt the entropy to select the most uncertain
video segments for the operation ADD. In this work, we sort the entropies (in
descending order) of all video segments which are not visualized and not deleted
in the former stages, and then select the top Na segments for visualization in
a specifically design region and the user can browse them in a short time and
then select some ones to add in the next iterations. The number Na should not
be too large, otherwise the user will be strongly confused. In this paper, it is set
to 5. That is to say, at each iteration stage, we provide 5 most uncertain video
segments for the user for possible ADD operation.

Once some action of which representation is yi is selected to be added, then
we should increase the number of r by one in the next operation and make some
adjustments. Concretely speaking, we augment the topic matrix as Ū = [U yi] ∈
RN×(r+1). The optimization problem then becomes:

min
V

||Y − ŪV||2F + β
N−1∑

i=1

||Vi+1 −Vi||2F + γ
∑

(i,j)∈M
||Vi −Vj ||2F , s.t. V ≥ 0

(4)
Note that in the above model, Ū is known and only V should be calculated.

3.3 Optimization Method

All of the model in (2), (3) and (4) can be efficiently solve by the regularized NMF
method proposed in Ref.[4]. To this end, we should construct a nearest neighbor
graph to encode the consistency information of the data points. Consider a graph
with vertices where each vertex corresponds to a data point. Define the edge
weight matrix W ∈ RN×N as follows:

Wij =

⎧
⎨

⎩

β,
γ,
0,

if |i− j| = 1
if {i, j} ∈ M and |i− j| �= 1

otherwise.
(5)

Define a diagonal matrix D, whose entries are column sums of W, i.e., Dii =∑N
j=1 Wij . Then the reformulated optimization problem leads to the two new

following update rules[4]:
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Uij ← Uij

(
YVT

)

ij

(UVVT )ij
,Vij ← Vij

(
UTV +VW

)

ij

(UTUV +VD)ij
(6)

where the subscript ij represents the i, j-th element in the corresponding matrix.
The detailed algorithm flow and analysis can be found in [4].

4 Performance Evaluation

4.1 Dataset

We use the well-knownWeizman database[5] of 90 low-resolution video sequences
showing 9 different people, each performing 10 natural actions such as run, walk,
skip, jack, jump, pjump, side, wave2, wave1 and bend. To evaluate the perfor-
mance of our interactive method, we have created a ”stitched” version of the
weizman dataset into uninterrupted sequences. Each sequence depicts a single
person performing 10 actions for a total duration of approximately 700 frames.

How to evaluate our approach is still an open problem. Generally, if ground
truth is available, many evaluation metrics are available for clustering, such as
purity, and normalized mutual information. To this end, the ground truth for
each video is established manually based on the exact actions in every single
sequence.

4.2 Operation Process

Figure 3 illustrates the two operations. In some cases, similar actions may be
extracted. Such case often occurs when the number r is set to a large value.
The operation MERGE allows us to merge the similar actions selected by the
user when he press the merge button, which is shown in Figure 3(a). On the
other hand, we need to find as more actions in the whole video sequence as pos-
sible. Figure 3(b) demonstrates the process of this operation. Users select the
new actions from the list of candidate actions. By pressing the add button, the
selected actions are added into the clustering results. Note that when perform-
ing either ADD or MERGE operations, we modify the model to produce the
expecting clustering performance according to users’ operations and the action
segmentation result is demonstrated along the time axis in different color bars.

4.3 Performance Evaluation on the Interactive Interaction

To evaluate the action segmentation results in each iteration, we adopt the purity
and NMI indices which are popular in the community of clustering. Purity[8] is
a simple and transparent evaluation measure. To compute purity, each cluster is
assigned to the class which is most frequent in the cluster, and then the accuracy
of this assignment is measured by counting the number of correctly assigned seg-
ments and dividing by N which is the total number of the whole video segments.
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(a) MERGE Operation (b) ADD Operation

Fig. 3. Demonstrations of MERGE and ADD operation

(a) Curves of purity

(b) Curves of NMI

Fig. 4. Clustering performance of purity and NMI.

Denote the ground-truch action clustering results as Ω = {ω1, ω2, . . . , ωg} and
C = {c1, c2, . . . , cr} as the practical clustering results, then the purity is de-
fined as Purity (Ω,C) = 1

N

∑

k

max
j

|ωk ∩ cj |. Since high purity value is easy

to achieve when the number of clusters is large and particularly, purity is 1 if
each segment gets its own cluster. Thus we cannot use purity only to trade off
the quality of the clustering against the number of clusters. Normalized mutual
information(NMI)[8] is confident to make this tradeoff and can be information-

theoretically interpreted NMI (Ω,C) = I(Ω;C)
[H(Ω)+H(C)]/2 , where I is the mutual

information and H(·) represents the entropy.
Using these two evaluation metrics, we conduct experiments with Weizman

dataset and there are 3 different users involved in this process. They make their
adjustments to obtain the willing performance which is to find as more actions
as possible during the whole process. By setting the different initial value of the
number of clusters( r ranges from 4 to 8), we compute the average accuracy of
the 9 video sequence. Figure 4 illustrates the clustering performance using our
interactive method. We can see that the clustering performance can be signif-
icantly improved by adopting manual interactive adjustments. Note that when
r = 8, the accuracy declined. Because when the number of cluster r is getting
large, users have to compromise to the higher possibility of exploiting same ac-
tions so that they need to merge the very several actions, which results in the
phenomenon that fewer number of actions leads to lower accuracy rate.
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5 Conclusion and Future Work

This paper proposed an interactive method to detect representative actions
within streaming or archival video. Incorporated with user’s intention, expecting
results have been obtained. However, there still exists a lot work to be further
investigated. Firstly, we wish to extend the work on single video to video sets and
discover more sensible behavior patterns for the end users; Secondly, we hope to
develop more flexible interface and more high-level knowledge of the human can
be incorporated in to the model. Finally, we wish to discover the hierarchical
structure of the action in the video in a coarse-to-fine manner.
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Project for Basic Research of China under Grant 2013CB329403; and in part
by the Tsinghua University Initiative Scientific Research Program under Grant
20131089295.
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Abstract. In this paper, a new method for image texture representation
is proposed, which represents image content using a 49 dimensional fea-
ture vector through calculating the variation of texture direction and the
intensity of texture. In addition, the texture feature is grouped into a fea-
ture set with some other image texture representation methods, and then
a new online feature selection method with a novel discrimination crite-
rion is presented. We test the discriminating ability of every feature in the
feature set utilizing the discrimination criterion, and select the optimal fea-
ture subset, which expresses image content in an even better fashion. The
results of the computer simulation experiments show that the proposed
feature extraction and feature selection method can represent image con-
tent effectively, and improve the retrieval precision visibly.

Keywords: Image retrieval, texture direction feature, online feature se-
lection, discrimination criterion.

1 Introduction

With the development of computer technology, a mass of multimedia information
grows out of Internet. We can get these datum on the Internet, but at the
meanwhile, it becomes harder and harder for us to find useful information. In
order to obtain datum that users are concerned about, content based image
retrieval (CBIR) becomes a research focus in the field of computer vision. In
tradition, image retrieval systems fulfill image indexing via keywords annotation,
but it needs a good deal of manual operation, and keywords annotation depends
much on people who label the images, there may be different understanding
of the same image among different people. Compared with text-based image
retrieval (TBIR), CBIR system extracts image visual features automatically.

For the past few years, researchers present many feature extraction methods.
Liu et al. build micro-structure descriptor (MSD) [1] according the similarity
of edge direction and statistic characteristic of color feature, so it blends color,
texture, shape and spatial information together. Yang et al. describe image con-
tent with 4-5 kinds of prominent colors, and extracts dominant color descriptor
(DCD) [2]. Balasubramani et al. extract edge histogram descriptor (EHD) [3]
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via calculating edge distribution of an image block with different edge operators.
Young et al. calculate block difference of inverse probabilities (BDIP) and block
variation of local correlation coefficients (BVLC) [4] on an image block, and then
get the corresponding texture feature.

The feature selection technology basically narrows the semantic gap by select-
ing a feature subset. Feature selection methods are classified into Filter-based
feature selection [5] and Wrapper-based feature selection [6]. The evaluation cri-
terion of Filter-based feature selection is determined by properties of the data
itself, so it is independent of learning algorithm. The frequently-used Filter-
based feature selection algorithms are Relief algorithm [7] and Mitra algorithm
[8]. Wrapper-based feature selection evaluates the performance of feature sub-
set using learning algorithms, and then chooses the feature subset with higher
precision rate.

Fig. 1. Image Retrieval System Based on Feature Extraction and Selection.

In this paper, a new image retrieval method is proposed by means of combin-
ing feature extraction and selection. First, we compute the direction variation
and intensity of pixel values in an image block, which is divided into different
texture patterns. Two image blocks in neighborhood make up a pattern pair, we
obtain the Texture Direction Descriptor by counting the number of the pattern
pairs. Then, Texture Direction Descriptor constitutes an image feature set with
other image features. Test the discriminating ability of every feature utilizing a
discrimination criterion [8][9], and select the optimal feature subset with the best
discriminating ability. The system chart of the proposed image retrieval system
is shown in Fig. 1.

The outline of the paper is as follows. Section 2 presents the feature extrac-
tion approach in detail. Section 3 proposes the online feature selection method.
Section 4 provides the results of experiments. Conclusions are given in Section
5 at the end of the paper.
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2 Texture Direction Feature

In this paper, we propose a new texture feature extraction method. Methods
for texture feature extraction generally obtain the texture image first, and then
make a statistical analysis of the texture image. Different from previous methods,
the proposed method calculates the variation of texture direction and intensity
on original image directly.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2. Patterns of texture direction.

There are connections among pixels of an image, those with the most closely
connections are the adjacent pixels, which compose the neighborhood. Image
texture can be expressed by the variation of the pixels in neighborhood. Scan the
pixels on a 2×2 image block according to the changing of gray value in ascending
order, an image block is classified into one kind of patterns in Fig. 2.(a)-(f). If
there are equivalent pixels on the image block, define it as non-direction pattern,
as shown in Fig. 2.(g). Fig. 3. shows two examples of these patterns. Although
the patterns discussed above contain the texture information of an image, we
can’t realize image retrieval yet. In order to extract the effective texture feature,
take a 4×4 image block, which can be divided into four 2×2 subblock in further.
A 2×2 subblock forms a neighborhood with the adjacent 2×2 subblock. As there
are 7 kinds of patterns, there are 49 kinds of pattern pairs. Record the pattern
pairs as Pair(j, k), define

Pati = Pair(j, k) i = 1, 2, · · · , 49;
j = 1, 2, · · · , 7; k = 1, 2, · · · , 7 (1)

Count the number of occurrences of pattern pairs, which is defined as the
probabilities of emerged texture direction, namely
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Fig. 3. Pattern examples.

Tdi =
Pati

49∑

i=1

Pati

i = 1, 2, · · · , 49 (2)

Td is the 49-dimension Texture direction descriptor (TDD), which is consisted
by Tdi, i = 1, 2, · · · , 49.

TDD is provided with invariance of translation, rotation, zoom, but it just
considers the variance of gray direction only, not the variance of gray intensity,
so we represent texture intensity by the mean gray value of pattern pairs. When
the ith kind of pattern pair appears, record the two image blocks as Gi(j), the
texture intensity is defined by the gray intensity of different pattern pairs, namely

Tii =
1

Pati

Pati∑

j=1

Gi(j) i = 1, 2, · · · , 49 (3)

In Formula (3), Pati is the number of occurrences of the ith pattern pair.
Tii, i = 1, 2, · · · , 49 constitutes the 49-dimension texture intensity descriptor
(TID) Ti.

3 Online Feature Selection

In this section, a method of feature selection with discrimination criterion (FSDC)
is presented. The problem that must be tackled in online learning is that how to
find out the more representative features. Compared with other machine learn-
ing problems, online learning in CBIR system should give out the results at a
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high rate of speed. In addition, the size of the training set must be small due
to the curse of dimensionality. We propose a novel feature selection criterion,
which is based on the similarity among different training samples. We just need
a small scale of training samples, and the time consumed during training is low,
so the proposed method is suitable for online learning in CBIR system.

Denote Fx = [f1(x), · · · , fk(x), · · · , fd(x)]T as the d-dimensional feature vector
of image x , the relevant image set is D = {xD

i , i = 1, · · · , p}, and the irrelevant
image set is I = {xI

j , j = 1, · · · , q}, the label of relevant images and irrelevant im-

ages is y(xD
i ) = 1, y(xI

j ) = −1 respectively, Dk and Ik represents the projection
of D and I along with the kthCdimensional feature, as given below.

{
Dk = {fk(xD

1 ), · · · , fk(xD
i ), · · · , fk(xD

p )}
Ik = {fk(xI

1), · · · , fk(xI
j ), · · · , fk(xI

q)} (4)

The relation between x andD, I isRk,Uk respectively, as shown in Formula (5).

⎧
⎪⎪⎨

⎪⎪⎩

Rk =
p∑

i=1

(fk(x) − fk(x
D
i ))

2
, k = 1, 2, · · · , d

Uk =
q∑

j=1

(fk(x) − fk(x
I
j ))

2
, k = 1, 2, · · · , d

(5)

The discriminating ability of each feature, otherwise known as the discrimi-
nation criterion

Ak = Rk/Uk, k = 1, 2, · · · , d (6)

Realign Ak in ascending order as Ãk, and select the headmost features ac-
cording to Ãk of size B. Estimate the category of each sample, as given below.

{
ŷ(xi) = 1ifDIFi ≤ Thr
ŷ(xi) = −1ifDIFi > Thr

(7)

DIFi and Thr is given in Formula (8) and (9).

DIFi =

B∑

k=1

(fk(x) − fk(xi))
2
, i = 1, 2, · · · , p+ q (8)

Thr =
B∑

k=1

(Rk + Uk)/(p+ q) (9)

Training error is

φ =

p+q∑

i=1

|y(xi)− ŷ(xi)|
(2 ∗ (p+ q))

(10)

where y(xi) is the actual category of each training sample ŷ(xi) is the estimated
category of each training sample. The training error of feature subset Si, i =
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1, 2, · · · , B is φB on the training dataset, select the optimal feature subset by
minimizing φB, the dimension of the optimal feature subset is

B̂ = argmin
B

φB (11)

the possible value of B̂ is 1, 2, · · · , d.

4 Experimental Results

In this section, we evaluate the effectiveness of the proposed feature extraction
and feature selection method. First, we describe the image databases. Thereafter,
we present the results of an evaluation showing how similar images can be found,
and how retrieval precision can be improved visibly.

4.1 Experimental Dataset

For this research, we conduct the experiments on two image databases. The
first image database Wang (http://www.ist.psu.edu/docs/related/shtml)
contains about 11000 images. The second image database Caltech101
(http://www.vision.caltech.edu/Image_Datasets/Caltech101/) contains
101 categories of images. The number of images in each category ranges from 33
to 800. By using our feature extraction and selection method, we can select the
optimal feature subset that best discriminate among different classes of images,
and search the images which are similar to the query.

4.2 Recall versus Precision

To evaluate the effectiveness of feature extraction and feature selection method,
we compare the proposed method with MSD and BDIP&BVLC on dataset of
images Wang and Caltech101. Fig. 4. illustrates two results on image database
Wang, and Fig. 5.(a) is the comparison of recall and precision for the three meth-
ods, it can be perceived from Fig. 5(a), the proposed method outperforms the

(a) Buses (b) Flowers

Fig. 4. Examples of the results.

http://www.ist. psu.edu/docs/related/shtml
http://www.vision. caltech.edu/Image_Datasets/Caltech101/
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other two methods. Texture Direction Descriptor makes up a Dim dimensional
feature set with MSD, DCD and EHD, selects a feature subset with Q dimension
from the feature set, where Q = 10, 20, 30, · · · , Dim. The feature subset with the
highest precision rate is selected as the optimal feature subset. Experimental re-
sults show that precision rate reaches the highest when the dimension of feature
subset is 80. Fig. 5.(b) is a curve of recall and precision for texture direction
feature and proposed online feature selection method, it can be perceived from
Fig. 5.(b) that retrieval efficiency is significantly improved after dealing with the
proposed online feature selection method.

(a) BDIP&BVLC, MSD and TDD

(b) FSDC and TDD

Fig. 5. Comparison of recall versus precision.
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Table 1. ARR and ANMRR

ARR ANMRR

BDIP&BVLC 0.8168 0.2132
MSD 0.8436 0.1963
TDD 0.8784 0.1739
FSDC 0.9250 0.1437

4.3 ARR and ANMRR

In order to verify the effectiveness of texture direction feature and online feature
selection method in further, we adopt Average Retrieval Rate (ARR) [10] and
Average Normalized Modified Retrieval Rank (ANMRR) [10] to evaluate the
experimental results on image database Wang and Caltech101. The larger the
ARR is, and the smaller the draw a conclusion from Table 1 that the efficiency
of texture direction feature is higher than MSD and BDIP&BVLC, and the
efficiency is further improved using the proposed online feature selection method.

5 Conclusions

In this paper, a new image feature extraction method is proposed. Then, the
proposed texture direction feature constitutes a feature set with other low level
visual features. We select the optimal feature subset from the feature set ap-
plying a novel discrimination criterion during online feature selection step. The
results of the computer simulation experiments on universal databases indicate
that the texture direction feature could seek out the relevant images effectively,
and the semantic gap is further narrowed by combining online feature selec-
tion technology. The proposed texture feature in this paper has translation and
scale invariance but not has rotation invariance, we will focus on the rotation
invariance in the future work.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China under Grant 61071208.
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Abstract. Face parsing is a basic task in face image analysis. It amounts
to labeling each pixel with appropriate facial parts such as eyes and
nose. In the paper, we present a interlinked convolutional neural network
(iCNN) for solving this problem in an end-to-end fashion. It consists of
multiple convolutional neural networks (CNNs) taking input in differ-
ent scales. A special interlinking layer is designed to allow the CNNs
to exchange information, enabling them to integrate local and contex-
tual information efficiently. The hallmark of iCNN is the extensive use
of downsampling and upsampling in the interlinking layers, while tra-
ditional CNNs usually uses downsampling only. A two-stage pipeline is
proposed for face parsing and both stages use iCNN. The first stage lo-
calizes facial parts in the size-reduced image and the second stage labels
the pixels in the identified facial parts in the original image. On a bench-
mark dataset we have obtained better results than the state-of-the-art
methods.

Keywords: Convolutional neural network, face parsing, deep learning,
scene labeling.

1 Introduction

The task of image parsing (or scene labeling) is to label each pixel in an im-
age to different classes, e.g., person, sky, street and so on [1]. This task is very
challenging as it implies jointly solving detection, segmentation and recognition
problems [1]. In recent years, many deep learning methods have been proposed
for solving this problem including recursive neural network [2], multiscale convo-
lutional neural network (CNN) [3] and recurrent CNN [4]. To label a pixel with
an appropriate category, we must take into account the information of its sur-
rounding pixels, because isolated pixels do not exhibit any category information.
To make use of the context, deep learning models usually integrate multiscale in-
formation of the input. Farabet et al. [3] extract multi-scale features from image
pyramid using CNN. Pinheiro et al. [4] solve the problem using recurrent CNN,
where the coarser image is processed by a CNN first, then the CNN repeatedly
takes its own output and the finer image as the joint input and proceeds. Socher

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 222–231, 2015.
DOI: 10.1007/978-3-319-25393-0_25
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3-319-25393-0 56_
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et al. [2] exploit structure of information using trees. They extract features from
superpixels using CNN, combine nearby superpixels with same category recur-
sively.

As a special case of image parsing, face parsing amounts to labeling each
pixel with eye, nose, mouth and so on. It is a basic task in face image analysis.
Compared with general image parsing, it is simpler since facial parts are regular
and highly structured. Nevertheless, it is still challenging since facial parts are
deformable. For this task, landmark extraction is a common practice. But most
landmark points are not well-defined and it is difficult to encode uncertainty
in landmarks like nose ridge [5]. Segmentation-based methods seem to be more
promising [5][6].

In the paper, we present a deep learning method for face parsing. Inspired by
the models for general image parsing [3][4], we use multiple CNNs for processing
different scales of the image. To allow the CNNs exchange information, an in-
terlinking layer is designed, which concatenates the feature maps of neighboring
CNNs in the previous layer together after downsampling or upsampling. For this
reason, the proposed model is called interlinked CNN or iCNN for short. The
idea of interlinking multiple CNNs is partially inspired by [7] where multiple
classifiers are interlinked.

Experiments on a pixel-by-pixel [5] labeling version of the Helen dataset [8]
demonstrate the effectiveness of iCNN compared with existing models.

2 iCNN

The overall structure of the proposed iCNN is illustrated in Fig. 1. Roughly
speaking, it consists of several traditional CNN in parallel, which accept input
in different scales, respectively. These CNNs are labeled CNN-1, CNN-2, ... in
the order of decreasing scale. The hallmark of the iCNN is that the parallel
CNNs interact with each other. From left to right in Fig. 1, the iCNN consists
of alternating convolutional layers and interlinking layers, as well as an output
layer, which are described as follows.

2.1 Convolutional Layers

The convolutional layers are the same as in the traditional CNN, where local

connections and weight sharing are used. For a weight kernel w
(l)
uvkq , the output

of a unit at (i, j) in the l-th layer is

y
(l)
ijq = f

(
C∑

k=1

P1∑
u=1

P2∑
v=1

w
(l)
uvkqy

(l−1)
i+u,j+v,k + b(l)

)
(1)

where P1 and P2 denote the size of the weight kernel in the feature map, C
denotes the number of channels in the (l − 1)-th layer, b(l) denotes the bias in
the l-th layer, and f(·) is the activation function. Throughout the paper, tanh

function is used as the activation function. If we use Q kernels w
(l)
uvkq , that is,
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q = 1, . . . , Q, then a total number of Q feature maps (the q-th feature map

consists of y
(l)
ijq for all i, j) will be obtained in the l-th layer.

The operation in the bracket in (1) can be implemented by tensor convolution.
The surrounding of feature maps in the (l − 1)-th layer are padded with zeroes
such that after convolution and activation the resulting feature maps in the l-th
layer has the same size in the first two dimensions as the feature maps in the
(l − 1)-th layer.

2.2 Interlinking Layers

In conventional CNN [9][10], there are downsampling layers which perform local
max pooling or average pooling. They can realize shift invariance, which is im-
portant for pattern recognition. Downsampling reduces the size of feature maps.
This is not a problem for pattern recognition (instead it is preferred because
it reduces the computational burden in subsequent layers), but becomes prob-
lematic for scene parsing if an end-to-end model is desired. The output of an
end-to-end model should have the same size as the input image in the first two
dimensions because we have to label every pixel. Considering this requirement,
we do not perform downsampling in the first CNN (top row in Fig. 1). The other
CNNs (other rows in Fig. 1) process the input in smaller scales, and we do not
perform downsampling in their own previous feature maps, either (black dashed
arrows in Fig. 1).

These parallel CNNs process different scales of the input, which contain dif-
ferent levels of fine to coarse information. To let each CNN utilize multi-scale
information, a special layer is designed. Consider CNN-k. In this layer, the fea-
ture maps from its own previous layer and those from the previous layer of
CNN-(k − 1) and CNN-(k + 1) are concatenated. But the three types of fea-
ture maps cannot be concatenated directly because they have different sizes in
the first two dimensions: those from CNN-(k − 1) are larger than those from
CNN-k and those from CNN-(k + 1) are smaller than those from CNN-k. Our
strategy is to downsample those from CNN-(k − 1) and upsample those from
CNN-(k+1) such that they have the same size as those from CNN-k in the first
two dimensions. Max pooling is used for downsampling and nearest neighbor
interpolation is used for upsampling. By performing downsampling/upsampling
and then concatenation, we have interlinked the parallel CNNs.

2.3 Output Integration

It has been seen that after either the convolutional layer or interlinking layer,
the size of the feature maps of each CNN in the first two dimensions do not
change. Only CNN-1’s feature maps have the same size as the output tensor in
the first two dimensions. To utilize the information of other CNNs, we perform
the following steps for k = 4, 3, 2 in sequel:

1. upsample CNN-k’s final feature maps to match the size of CNN-(k − 1)’s
feature maps in the first two dimensions,
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2. concatenate these feature maps with those from CNN-(k − 1), and
3. perform convolution and nonlinear transformation using (1) to obtain a

bunch of CNN-(k − 1)’s final feature maps.

After these operations, an additional convolutional layer without nonlinear trans-
formation is used in CNN-1 with L feature maps, where L denotes the number
of different labels. See Fig. 1 for illustration.

2.4 Output Layer

Only CNN-1 has a softmax layer in the end, which output the labels of each
pixel. The output is a 3D tensor with the first two dimensions corresponding to
the input image and the third dimension corresponding to the labels. At each
location of the pixel, the one-hot representation is used for labels, that is, there is
only one element equal to one and others equal to zero along the third dimension.

2.5 Training

The cross-entropy function is used as the loss function. Same as other CNNs,
any minimization technique can be used. Stochastic gradient descend is used in
this project.

2.6 Parameter Setting

For this particular application, the input image has a size of either 64 × 64 or
80 × 80. There are two stages in the proposed face parsing pipeline where in
the first stage the entire image is resized (downsampling) to 64× 64 and in the
second stage 64× 64 and 80× 80 patches are extracted in the original image to
cover the eye/nose/eyebrow and the mouth, respectively. See the next section
for details. For RGB images, the input has three channels. The input image is
then downsampled to 1/2, 1/4 and 1/8 size using a 2 × 2 mean pooling. In all
convolutional layers and all CNNs, the size of the receptive field is set to 5× 5
(the first two dimensions) except in the last convolutional layer of CNN-1 (the
black dotted arrow) where 9× 9 is used.

3 Face Parsing with iCNNs

Usually a face image for parsing is large, e.g., the images of Helen dataset [8]
for this task are of the size 256 × 256 [5]. If we input such large images to the
proposed iCNN, both training and testing are slow. To speed up the process we
separate the face parsing procedure into two stages, and both stages use iCNN.
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3.1 Stage 1: Facial Parts Localization

The goal of this stage is to localize the facial parts including the eyes, nose
and so on with iCNN. Note that we do not label the Face Skin part in this
project, since it has a large area, which is unsuitable for the proposed iCNN to
process. The input image is preprocessed by subtracting the mean and dividing
the norm. The input image as well as its label map is resized to 64× 64 in the
first two dimensions (both the input image and the output map are 3D tensors)
by downsampling. The output tensor has 9 channels corresponding to the label
maps of background, left eyebrow, left eye, right eyebrow, right eye, nose, upper
lip, inner mouth and lower lip, respectively (Fig. 2). Except the first label map
(background), each median axis of the label map is calculated, and scaled back
to original image to obtain the estimation of the part location. For mouth related
parts (upper lips, inner mouth, lower lips), a shared median axis is calculated.
For the first five parts, 64×64 patches are extracted from the original input face
image. For mouth-related parts, a 80× 80 patch is extracted.

64x64 RGB 
image

iCNN

64x64 RGB Patches 80x80 RGB Patch

iCNNMap results to 
original image

Fig. 2. The pipeline for face parsing. In the first stage, the entire image is resized to
64×64 with aspect ratio kept. It is input to an iCNN and obtain ten label maps where
the first is the background and the others are facial components. The median point
of each component except the two lips and in-mouth is calculated. Since the lips and
in-mouth are processed together, these three parts are first merged together and then
a joint median point is calculated. A 64× 64 or 80× 80 patch is extracted around the
median point. In the second stage, with mirroring operation (right eye and eyebrows
flipped), six small parts are processed by four iCNNs to get exact segmentation at the
pixel level. Best viewed in color.
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3.2 Stage 2: Fine Labeling

In the previous stage, we have extracted the five 64×64 patches and one 80×80
patch from the original image. Then we use four iCNNs to predict the labels of
the pixels in each patch (Fig. 2). The four iCNNs are used for predicting eye-
brows, eyes, nose, and mouth components, respectively. Note that one iCNN is
used for predicting both left eyebrow and right eyebrow. Since the left eyebrow
and right eyebrow are symmetric, during training the image patches of right eye-
brows are flipped and combined with image patches of left eyebrows. Therefore
this iCNN has only one label map in the output. In testing, the predicted label
maps of right eyebrows are flipped back. Similarly, one iCNN is used for predict-
ing both left eye and right eye. The iCNN for the nose has only one label map
in the output and the iCNN for the mouth components has three label maps.

4 Experiments

4.1 Dataset

The Helen dataset [8] is used for evaluation of the proposed model, which has
2330 face images with dense sampled, manually-annotated contours around the
eyes, eyebrows, nose, outer lips, inner lips and jawline. It is originally designed
as a landmark detection benchmark database. Smith et al. [5] provides a resized
and roughly aligned pixel-level ground truth data to benchmark the face parsing
problem. It generates ground truth eye, eyebrow, nose, inside mouth, upper lip
and lower lip segments automatically by using the manually-annotated contours
as segment boundaries. Some examples of Helen are shown in Fig. 3, where the
first line is the original database images with annotations, and second line is the
processed pixel-based labeling for parsing.

Fig. 3. Example images (top) and corresponding labels (bottom) of the Helen dataset.
Best viewed in color.

We use the same training, testing and validation partition as in [5]. The dense
annotated data is separated into 3 parts: 2000 images for training, 230 images for
validation, and 100 images for testing. The validation set is used to test whether
model is converged.
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4.2 Training and Testing

We train the iCNNs in stages 1 and 2 separately. For stage 1, the entire training
images, as well as the corresponding ground truth label maps, are resized to
64 × 64 with aspect ratio kept. For stage 2, the training data are 64 × 64 or
80×80 patches extracted from the original 256×256 training images (see Section
3.1). The corresponding ground truth label maps are extracted from the original
256× 256 ground truth label maps.

Stochastic gradient descent is used as the training algorithm. Since the number
of images is small compared to number of parameters, to prevent overfitting
and enhance our model, data argumentation is used. During stochastic gradient
descent, a random 15◦ rotation, 0.9∼1.1x scaling, and −10∼10 pixels shifting in
each direction are applied to each input every time when it enters the model.

In Stage 2, by visualizing the feature maps, we find that in the last convolu-
tional layer of CNN-1 among the L feature maps there is a feature map, denote
dy B, corresponding to the background part. We find that modulating this fea-
ture map by βB + β0 can enhance the prediction accuracy. For each facial part,
β and β0 are obtained by maximizing the F-measure [5] on the validation set
using the L-BFGS-B algorithm offered by SciPy, an open-source software.

For testing, each image undergoes stages 1 and 2 in sequel. Only the predicted
labels in stage 2 are used for evaluation of the results.

All codes are written in Theano [11] and Pylearn2 [12].

4.3 Results

The evaluation metric is the F-measure used in [5]. From Table 1, it is seen that
for most facial parts, iCNNs obtain the highest scores. Note that in our training
data, the labels of Face Skin area are not used. As we can see in the table, this
area is usually a high-score term for most methods, and omitting it will in no way
enhance the overall performance of iCNNs. Even though, iCNNs achieves higher
overall score than existing models. Some example labeling results are shown in
Fig. 4 along with the results obtained in [5].

Table 1. Comparison with other models (F-Measure)

Model Eye Eyebrow Nose In mouth Upper lip Lower lip Mouth (all) Face Skin Overall

[13] 0.533 n/a n/a 0.425 0.472 0.455 0.687 n/a n/a
[14] 0.679 0.598 0.890 0.600 0.579 0.579 0.769 n/a 0.733
[15] 0.770 0.640 0.843 0.601 0.650 0.618 0.742 0.886 0.738
[16] 0.743 0.681 0.889 0.545 0.568 0.599 0.789 n/a 0.746
[5] 0.785 0.722 0.922 0.713 0.651 0.700 0.857 0.882 0.804

iCNNs 0.778 0.863 0.920 0.777 0.824 0.808 0.889 n/a 0.845
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Fig. 4. Labeling results on several example images obtained using the method in [5]
(top) and the proposed method in this paper (middle). The bottom shows the ground
truth labels. Best viewed in color.

5 Concluding Remarks

We propose an interlinked CNN (iCNN), where multiple CNNs process different
levels of details of the input, respectively. Compared with traditional CNNs it
features interlinked layers which not only allow the information flow from fine
level to coarse level but also allow the information flow from coarse level to flow
to the fine level. For face parsing, a two-stage pipeline is designed based on the
proposed iCNN. In the first stage an iCNN is used for facial part localization,
and in the second stage four iCNN are used for pixel labeling. The pipeline does
not involve any feature extraction step and can predict labels from raw pixels.
Experimental results have validated the effectiveness of the proposed method.

Though this paper focuses on face parsing, the proposed iCNN is not restricted
to this particular application. It may be useful for other computer vision appli-
cations such as general image parsing and object detection.
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Abstract. The problem of tag completion is to learn the missing tags
of an image. In this paper, we propose to learn a tag scoring vector for
each image by local linear learning. A local linear function is used in
the neighborhood of each image to predict the tag scoring vectors of its
neighboring images. We construct a unified objective function for the
learning of both tag scoring vectors and local linear function parame-
ters. In the objective, we impose the learned tag scoring vectors to be
consistent with the known associations to the tags of each image, and
also minimize the prediction error of each local linear function, while
reducing the complexity of each local function. The objective function
is optimized by an alternate optimization strategy and gradient descent
methods in an iterative algorithm. We compare the proposed algorithm
against different state-of-the-art tag completion methods, and the results
show its advantages.

Keywords: Image tagging, Tag completion, Local learning, Gradient
descent.

1 Introduction

Recently, social network has been a popular tool to share images. When a so-
cial network user uploads an image, the image is usually associated with a tag/
keyword which is used to describe the semantic content of this image. The tags
provided by the users are usually incomplete. Zhang et al. designed and im-
plemented a fast motion detection mechanism for multimedia data on mobile
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and embedded environment [25]. Recently, the problem image tag completion is
proposed in the computer vision and machine learning communities to learn the
missing tags of images [22,11,10,1,23]. This problem is defined as the problem of
complete the missing elements of a tag vector of a given image automatically.

In this paper, we investigate the problem of image tag completion, and pro-
posed a novel and effective algorithm for this problem based on local linear
learning. We propose a novel and effective tag completion method. Instead of
completing the missing tag association elements of each image, we introduce a
tag scoring vector to indicate the scores of assigning the image to the tags in a
given tag set. We propose to study the tag scoring vector learning problem in the
neighborhood of each image. For each image in the neighborhood, we propose to
learn a linear function to predict a tag scoring vector from a visual feature vector
of its corresponding image feature. We propose to minimize the perdition error
measure by the squared �2 norm distance over each neighborhood, and also min-
imize the squared �2 norm of the linear function parameters. Besides the local
linear learning, we also proposed to regularize the learning of tag scoring vectors
by the available tags of each image. We construct a unified objective function
to learn both the tag scoring vectors and the local linear functions. We develop
an iterative algorithm to optimize the proposed problem. In each iteration of
this algorithm, we update the tag scoring vectors and the local linear function
parameters alternately.

This rest parts of paper are organized as follows: in section 2, we introduced
the proposed method. In section 3, we evaluate the proposed methods on some
benchmark data sets. In section 4, the paper is concluded with future works.

2 Proposed Method

We assume that we have a data set of n images, and their visual feature vec-
tors are xi|ni=1, where xi ∈ R

d is the d-dimensional feature vector of the i-th
image. We also assume that we have a set of m unique tags, and a tag vec-
tor t̂i = [t̂i1, · · · , t̂im]� ∈ {+1,−1}m for the i-th image xi, where t̂ij = +1
if the j-th tag is assigned to the i-th image, and −1, otherwise. In real-world
applications, the tag vector of an image xi is usually incomplete, i.e., some ele-
ments of t̂i are missing. We define a vector vi = [vi1, · · · , vim] ∈ {1, 0}m, where
vij = 1 if t̂ij is available, and 0 if t̂ij is missing. We propose to learn a tag scoring
vector ti = [ti1, · · · , tim] ∈ R

m, where tij is the score of assigning the j-th tag
to the i-th image.

The set of the κ nearest neighbor of each image xi is denoted as Ni, and we
assume that the tag scoring vector tj of a image xj ∈ Ni can be predicted from
its visual feature vector xj using a local linear function fi(xj),

tj ← fi(xj) = Wixj , ∀ j : xj ∈ Ni, (1)

where Wi ∈ R
m×d is the parameter of the local linear function. To learn the

tag scoring vector and the local function parameters, we propose the following
minimization problem,
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min
ti|ni=1,Wi|ni=1

⎧
⎨

⎩
g(ti|ni=1,Wi|ni=1) =

n∑

i=1

⎛

⎝
∑

j:xj∈Ni

‖tj −Wixj‖22 + α‖Wi‖22

+ β(ti − t̂i)
�diag(vi)(ti − t̂i)

)} (2)

where α and β are tradeoff parameters. The objective function g(ti|ni=1,Wi|ni=1)
in (2) is a summarization of three terms over all the images in the data set. The
first term,

∑
j:xj∈Ni

‖tj −Wixj‖22, is the prediction error term of the local linear

predictor over the neighborhood of each image. The second, ‖Wi‖22, is to reduce
the complexity of the local linear predictor. The last term, (ti−t̂i)

�diag(vi)(ti−
t̂i), is a regularization term to regularize the learning of tag scoring vectors by
the incomplete tag vectors, so that the available tags are respected. To optimize
the minimization problem in (2), we propose to use the alternate optimization
strategy [4,12] in an iterative algorithm.

– Optimization of ti|ni=1 In each iteration, we optimize ti|ni=1 one by one,
and the minimization of (2) with respect to ti can be achieved with the
following gradient descent update rule,

tnewi = toldi − η∇tig(tj |nj=1,Wi|ni=1)|ti=toldi
, (3)

where ∇tig(tj |nj=1,Wi|ni=1) is the sub-gradient function of g(tj |nj=1,Wi|ni=1),
with respect to ti,

∇tig(tj |nj=1,Wi|ni=1) = 2
∑

k:xi∈Nk

(ti −Wkxi) + 2βdiag(vi)(ti − t̂i), (4)

and η is the descent step.
– Optimization of Wi|ni=1 In each iteration, we also optimized Wi|ni=1 one

by one. When Wi is optimized, Wj |j �=i are fixed. Gradient descent method
is also employed to update Wi to minimize the objective in (2),

Wnew
i = W old

i − η∇Wig(ti|ni=1,Wi|ni=1)|Wi=Wold
i

, (5)

where ∇Wig(ti|ni=1,Wi|ni=1) is the sub-gradient function with respect to Wi,

∇Wig(ti|ni=1,Wi|ni=1) = 2
∑

j:xj∈Ni

(tj −Wixj)x
�
j + 2βWi. (6)

3 Experiments

3.1 Setup

In the experiments, we used two publicly accessed image-tag data sets, which are
Corel5k data set [30,5,14] and IAPR TC12 data set [31,9,30]. In the Corel5k data
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set, there are 4,918 images, and 260 tages. We extract density feature, Harris
shift feature, Harris Hue feature, RGB color feature, and HSV color feature as
visual features for each image. Moreover, we remove 40% of the elements of
the tag vectors to make the incomplete image tag vectors. In the IAPR TC12
data set, there are 19,062 images, and 291 tags. We also remove 40% elements
of the tag elements to construct the incomplete tag vectors. To evaluate the
tag completion performances, we used the recall-precision curve as performance
measure. We also use mean average precision (MAP) as a single performance
measure.

3.2 Results

We compared the proposed method to several state-of-the-art tag completion
methods, including tag matrix completion (TMC) [22], linear sparse reconstruc-
tions (LSR) [10], tag completion by noisy matrix recovery (TCMR)[1], and tag
completion via NMF (TC-NMF) [23]. The experimental result on two data sets
are given in Fig. 1 and Fig. 2. From these figures, we can see that the proposed
method LocTC performs best. Its recall-precision curve is closer to the top-right
corner than any other methods, and its MAP is also higher than MAPs of other
methods.
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Fig. 1. Results of comparison to state-of-the-art methods on Corel5k data set

In this section, we will study the sensitivity of the proposed algorithm to the
two parameters, α and β. The curves of α and β on different data sets are given
in Fig. 3 and Fig. 4. From these figures, we can see that the performances are
stable to different valuse of both α and β.
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Fig. 2. Results of comparison to state-of-the-art methods on IAPR TC12 data set
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Fig. 3. Parameter sensitivity curve on Corel5k data set.
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Fig. 4. Parameter sensitivity curve on IAPR TC12 data set.
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4 Conclusion and Future Works

In this paper, we study the problem of tag completion, and proposed a novel
algorithm for this problem. We proposed to learn the tags of images in the
neighborhood of each image. A local linear function is designed to predict the
tag scoring vectors of images in each neighborhood, and the prediction function
parameter is learned jointly with the tag scoring vectors. The proposed method
is compared to state-of-the-art tag completion algorithms, and the results show
that the proposed algorithm outperforms the compared methods. In the future,
we will study how to incorporate these connections into our model and learn
more effective tags. In this paper, we used one single local function for each
neighborhood, and in the future, we will use more than than regularization
to regularized the learning of tags [15,16], such as usage of wavelet functions to
construct the local function [13]. Moreover, correntropy can also be considered as
a alternative loss function to construct the local learning problem [17,24,6,34]. In
the future, we also plan to extend the proposed algorithm for completion of tags
of large scale image data set by using high performance computing technology
[36,21,28,29,32,33,2,25,8,35,7,18,20,19], and completion of tags of gene/protein
functions of bioinformatics problems [3,26,27,3].
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Abstract. Haarlike feature has achieved great success in detecting frontal hu-
man faces, but fewer attentions have been paid to the other objects such as pe-
destrian. The reason of the low detection rate for Haarlike feature is attributed 
to the usage in a naive way. In this paper, we have revisited Haarlike feature for 
object detection especially focus on pedestrians, but use it in a different way 
which is applied based on multiple channel maps instead of raw pixels and ob-
tains a significant improvement. Furthermore, we have proposed an improved 
Haarlike feature that embeds statistical information from the training data 
which is based on the linear discriminative analysis criterion. The proposed fea-
ture works with the classical Gentle Boosting algorithm which is effective in 
training, and also running at real-time speed. Experiments based on INIRA da-
taset demonstrate that our proposed method is easy to implement and achieves 
the performance comparable to the state-of-the-arts. 

Keywords: human detection, multiple channel maps, statistical information. 

1 Introduction 

Pedestrian detection has grasped much attention both from computer vision fields 
which is a nice delegate for generic object detection, and also has been considered as 
an important application in industrial field that can be applied to video surveillance, 
automated driver system and sports athlete evaluation. Pedestrian detection in unlim-
ited environment is a very challenge task, for the sake of articulation, occlusion, illu-
mination and view-changing, etc. 

There’re a large amount of papers published in the last decades, which focus on 
looking for light-weight discriminative feature or modeling its articulation as a de-
formable part model, etc. These attempts have lifted the accuracy from the 45% FPPI 
to 15% on the INRIA dataset with 0.1 FPPI in the last ten years. The running speed is 
also greatly improved with 20 fps on the 480x640 image which has far surpassed the 
classical methods. The most notable work is the HOG feature[1], which is almost 
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used in any object detection system. Another breakthrough is due to the proposal of 
integral channel feature[2], which is simple to compute, fast running in application 
and most importantly achieves the state-of-the-arts results.  

There are many excellent reviews[3, 4] which nearly refers to all of the methods 
for pedestrian detection in the last decades. In this paper, we will only remind of some 
latest publication which is related to our proposed methods. Piotr [2], etc, have de-
signed a detector which is based on integral channel features and trained with boost-
ing algorithm. This detector can achieve a real-time running speed of 20 fps. Moreo-
ver, other researchers make use of the GPU and other cues in video to further improve 
the running speed with 100fps[5]. More recently, informed Haarlike feature[6] is 
proposed which generate a set of template from human parts instead of exhaustive 
sampling like traditional Haarlike features, and is very effective to calculate. 

In this paper, we have revisited the Haarlike feature which is applied to multiple 
channel maps and work with the boosting algorithm that can greatly improve the ac-
curacy of detector. Furthermore, due to the recent attempt of our earlier studies, we 
embed the statistical information from the training data into the Haarlike feature, 
which further increase the discriminative ability of the feature. Our method is faster to 
train which is less than 1 hour and also achieves real-time running speed of 20 fps for 
the 640x480 resolution image. Furthermore, the accuracy is comparable to the state-
of-the-arts. 

The rest paper is organized as follows: section 2 introduces the related work which 
our work based on. Section 3 describes our proposed SHF features in detail. Section 4 
covers the experiment results and analysis and section 5 concludes this paper. 

 

Fig. 1. Different channel of the input image 

2 Related Works 

2.1 Multiple Channel Maps 

The ICF feature [11] models the feature C of image I as a channel generation func-

tion W , so the feature of image I  can be represented as ( )i iC I=W , where
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{ }, 1, 2,...,i i nW= W = .  iC  is the thi  feature for image I, iW is the thi  channel 

generation function. The channel generation function can be linear, such as gray-level 
image of original image I or nonlinear, such as gradient image. Each channel repre-
sents a different feature space which derived from original image. Fig. 1 shows the 
common channels of the original image which reflect different aspects of input image. 
For example, the gradient image of different angle can reflect the direction which is 
similar to the Gabor filter, the canny image can represent the edge of human and dif-
ferent color space can reflect the color consistency in clothes, etc. The different chan-
nel is heterogeneous with each other, so extracting multiple channels is a procedure to 
obtain different information from a simple image. 

2.2 Haarlike Feature (HF) 

Haarlike feature is first proposed by C. Papageorgiou[7], who use them for object 
detection.  It becomes popular when it combines with adaboost algorithm to realize 
fast face detection[8]. The HF is very similar to Garbor filter which can be used to 
detect lines with different orientation. The feature is calculated by sum up pixels in 
white area, and then substrate to the corresponding dark area. The formulation is 
shown in Eq. (1) 

1

n T
haar i ii
f wa

=
= =å w a                               (1) 

Where iw , ia is the weight and sum of pixel values for each sub-region in these 

rectangles. n is the number of sub-regions.  
The traditional way of using HF for object detection is to apply them simply to the 

raw pixel image. Although it is effective for rigid object such as faces, the perfor-
mance deteriorates greatly when applies to the non-rigid object such as humans. In 
this paper, we have revisited Haarlike feature and applied them on the multiple chan-
nel maps and found that the performance is greatly improved. The exact analysis of 
this method will be postponed to the experimental section. 

3 Statistical Haarlike Feature (SHF) 

Due to the success of learning statistic information from the training data [9, 10], we 
also try to embed the distribution of positive and negative samples into the HF. If we 
look into the formula of Eq.(1), we can find that, the HF is similar to a image filter 
applied on the image with the size equals to the width and height of sub-region in 
each rectangle which corresponding to the HF. In this paper, we make use of the line-
ar discriminative analysis to learn the weight which aims to get the optimal weight 
that have the largest intra-class invariance and smallest inter-class invariance. The 
formulation is shown in Eq.(2). 
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T
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opt T
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w S w

w S w
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                                 (2) 

Where wS and bS  is the within-class scatter matrix and between-class scatter ma-

trix. The solution to the Eq. (2) can be obtained with the closed form
* 1

1 2( )ww S m m-= - . The 1m  and 2m are the mean of the positive and negative 

samples in the area of the specific HF respectively. For example, in Fig. 2(b), the 1m
is a three dimensional vector with each element represents the mean value of the pix-
els in the left, middle and right area of this HF for all the positive training samples. 

 

Fig. 2. The difference between HF and SHF on the second channel of LUV color space 

The difference between HF and SHF is illustrated in Fig.2 (b-c). Fig.2 (a) shows 
the background image, which is the average of the second channel of LUV color 
space for the positive samples. The default weight of traditional HF is [1,-1, 1], but 
our learned weight equals [-0.2, 0.8,-0.2] on this specific HF. From Fig.2(c), we can 
get some intuition from this phenomenon that the brighter area of head is very dis-
criminative, which need to be put on more weights.  

The procedure of our proposed detector is shown in Fig.3. We can see that, it’s 
very similar to the traditional boosting-based object detection framework, besides 
that, more information is embedded from the training data. The calculation of SHF 
feature can be implemented as an image filter, which can be very efficient to calcu-
late. The procedure of our proposed method is described as follows. Firstly, the mul-
tiple channel maps are generated from the training set, which is similar to produce the 
integral channel feature (step 1, Fig.3).  Secondly, each channel map is shrunk to one 
quarter of its original size which is similar to ACF[11](step 2, Fig.3). The second step 
is quite important, because it can reduce the side-effect from the image noise and 
misalignment. Thirdly, the SHF is calculated on the shrunk channel maps, which gen-
erates the final training data that fed into the Gentle boosting algorithm for feature 
selection. It’s worth to mention that, the SHF learned for each HF in the feature pool 
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is based on the Eq. (2) (step 3, Fig.3). The final detector is trained for four rounds, 
and in each round, hard negatives are mined to improve the performance of the  
detector. 

 

Fig. 3. Procedure of our proposed human detector 

4 Experiments 

4.1 Experiment Setting 

In order to validate the effectiveness of our proposed method, we conduct a set of 
experiments on INRIA dataset. In the following experiments, we make use of gentle 
boosting algorithm with LUT as weak classifiers. The number of bins for LUT is set 
to 256. The final detector is trained 4 times, the final classifier comprise of 2048 weak 
classifiers. The training data comprise of 4912 positive samples which jittered from 
the original 614 positive annotations. These positives together with 5000 negatives 
which is initially random sampled, that fed to the boosting algorithm. For the boot-
strap step, another 5000 hard negatives is mined which is prepared for the following 
round. The number of weak classifier in each round is 32, 128, 512 and 2048 respec-
tively. 

4.2 Comparison with HF and SHF 

The first three feature selected by the boosting algorithm is shown in Fig. 4. The top 
three images are based on the HF, and the bottom ones belong to the SHF. The num-
ber in the top left corner of each image means the index of channels, the rectangle box 
in each window is the position of the feature. The real number in each sub-region of 
rectangle represents the weight for each box. For the HF, the real value in each sub-
region is used to multiple the sum of values in this area, whereas, for the SHF, each 
pixel is multiple with the weight separately. 
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Fig. 4. Selected HF and SHF on different channel maps 

We have noticed that, image gradient magnitude is a very discriminative channel, 
as both the learning algorithms choose it as its first feature; we also find that channels 
with gradient orientation of 120 degree is very discriminative, and the most discrimi-
native area is focusing on the shoulder part, middle part and feet part of human. An-
other important channel is the L-part in the LUV color space, which mainly considers 
the coherence of color in some specific area. 

4.3 Comparisons with State-of-the-Arts Algorithms 

In this section, we have compared our proposed method with many other state-of-the-
arts. The evaluation code is downloaded from piotr’s toolbox which is available 
online. The state-of-the-arts methods include the ACF[11], ICF[2](ChnFtrs) and 
OICF[10] which is most close to our method. Other methods are also compared such 
as ConvNet[12], DPM[13](LatentSVM-V2), besides that, two baseline method(VJ[8] 
and HOG[1]) are also included. The comparison result is shown in Fig. 5, we can see 
that HF applied on the multiple channel maps instead of raw pixels can greatly  
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decrease the miss rate, approximately to 47.87%. This significant improvement indi-
cates that multiple channel maps can distill much more discriminative information 
from the data and that is why it works. The second observation from Fig.5 is that 
learning statistic information can further improve the discriminative ability of the HF, 
about 4.5% increase of the detection rate. We also compare our method with the re-
cently published OICF[10], which is comparable with each other, the gap is less than 
1%.  It is also worth mention that, both of OICF and SHF outperforms the ConvNet 
[12], which is based on the convolution neural network. 

 

Fig. 5. Experiment comparison on INRIA dataset 

4.4 Runtime Comparison 

Our detector is implemented with Matlab 2014b and visual studio 2010 on HP work-
station ZBook 17 (8 core CPU I7-4700MQ, 2.4GHZ, 32G). It takes less than 0.5 
hours to train a four-stage detector and the running speed for a 640x480 image can 
reach 20 frames per second. The comparison of HF and our proposed SHF is shown 
in Tab.1. We can see that our proposed detector is slightly faster than the original HF. 
This is due to the higher discriminative ability which needs fewer amounts of features 
to exclude most of the negative patches. 

Table 1.  

Name speed(fps) for 640x480 image 
HF 18  
Our proposed(SHF) 20 
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5 Conclusion 

In this paper, we first have revisited the Haarlike feature which applied to the multiple 
channel maps instead of raw pixels of the image. Then we proposed an improved 
statistical Haarlike feature, which embeds the statistic information from the training 
data.  Our proposed method is very effective to build a high performance human 
detector. Experiments based on INRIA dataset shows that our proposed method can 
get comparable performance with state-of-the-arts and also run at real-time speed for 
640x480 images. 
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Abstract. Computer vision methods can benefit wood processing industry. We 
propose a method to detect wood surface quality and classify wood samples in-
to sound and defective classes. Gray level histogram statistical features and 
gray level co-occurrence matrix (GLCM) texture features are extracted from 
wood surface images and combined for classification. A half circle template is 
proposed to generate GLCM, avoiding calculating distances at each pixel every 
time and speeding up the algorithm greatly. The proposed approach uses more 
pixel information than traditional four-angle method, resulting in a significantly 
higher classification accuracy. Moreover the running time demonstrates our al-
gorithm is efficient and suitable for real-time applications. 

Keywords: Wood Surface Detection, Texture Image Classification, Gray Level 
Histogram Statistics, Gray Level Co-occurrence Matrix. 

1 Introduction 

In wood processing industry, detecting and classifying wood surface quality are very 
important processes. Traditionally these processes are carried out manually by human 
inspection, which are tiring and low efficient in long working time. Computer vision 
methods can bring dramatic changes to this with higher efficiency and less labor forc-
es. Several works give comprehensive studies on this topic from algorithms to practi-
cal applications[1, 2]. 

Wood surface quality inspection is carried out according to surface defects such as 
knots, cracks, wood grains, tree rings, spots, dark areas, contrast changes, textures, 
and so on. The surface defects are loosely separated into two types: One is local tex-
tural irregularities and the other is global deviation of color and texture[3]. Wood 
surfaces with defects present typical texture features. There are a variety of techniques 
for discriminating textures, and they are generally divided into four categories: statis-
tical approaches, geometrical/structural approaches, signal processing/filter based 
approaches, model based approaches[3, 4].  
                                                           
* Corresponding author. 
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From the feature extraction perspective, different approaches have been applied. Color 
histogram percentile features are extracted for knot detection[1]. The coefficients of a 
two-dimensional discrete wavelet transform are used to extract knots features through a 
cluster-based approach[5]. Gray level co-occurrence matrix (GLCM)[6] and Local binary 
patterns (LBP)[4] and their combination methods are used to detect wood knots[7, 8] or 
to classify different wood species based on wood grains[2]. In a way, most of the texture 
descriptors[9] and surface defect detection techniques[3, 10] can be applied to wood 
surface inspection. Gray level co-occurrence matrix is one of the most widely used meth-
ods in texture analysis. It has been widely applied to biomedical image analysis[11], 
synthetic aperture radar (SAR) image analysis[12], and industry detection[13]. Recently, 
many extensions to GLCM emerge[14, 15]. 

From the classification perspective, self-organizing map (SOM)[1, 7] , k-NN clas-
sifier[8] and neural network classifier[2, 5] are used in different wood surface inspec-
tion experiments. Support Vector Machine (SVM)[16] is also viable in this task. 

Most of above researches are based on defective wood samples. As is different 
from these, in this paper, we detect wood surface in only one species without knowing 
the surface quality in advance. We don’t consider detailed detects types, and just clas-
sify samples into two classes of sound and defective ones. Fig.1 shows some wood 
surface example images that need to be detected and classified. 

We extract gray level histogram statistical features and gray level co-occurrence ma-
trix texture features from the wood surface images simultaneously. The former is used to 
capture global gray level changes, and the latter is used to capture both global textures 
and local detects. The combination of these features can increase classification accuracy. 

Conventionally, gray level co-occurrence matrix method is computed at four an-
gles (0°, 45°, 90,° 135°)[6, 14], so four co-occurrence matrices need to be generated 
at each angle. Maria Petrou proposed a circle template method to compute GLCM[9]. 
In this method, only one matrix is generated, and the template covers more image 
details. In order to reduce repeat pixel pairs counting[9], we propose to use half circle 
template instead. This half template increase our algorithm running speed greatly. 

After feature extraction, we use SVM and k-NN to test classification performance 
in a supervised manner. 

  
Sound Wood Surface 

  
 

  
Defective Wood Surface 

Fig. 1. Example of wood surface images 
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The remainder of this paper is organized as follows. In Sect. 2, we introduce gray 
level histogram statistical features and GLCM texture features. In Sect. 3, we describe 
our half circle template method to compute GLCM. In Sect. 4, we introduce our ex-
perimental setup with specific steps. In Sect. 5, we present results of classification 
accuracy and run time. Finally, we present our conclusions in Sect. 6. 

2 Feature Extraction 

We extract both gray level features using histogram statistics and texture features 
using gray level co-occurrence matrix. 

2.1 Gray Level Histogram Features 

We can calculate the image histogram features using the six classical statistical fea-
tures[17]: mean ( ) , variance ( ) , skewness ( ) , kurtosis ( ) , histogram ener-
gy( ), histogram entropy( ). 

2.2 Texture Features 

Gray level co-occurrence matrix (GLCM) is a powerful descriptor to extract texture 
features, which represents the joint distribution of gray level pairs of neighboring 
pixels. The rotationally invariant co-occurrence matrix is constructed with all pairs of 
pixels at a fixed distance  from each other. It is written as[9]: ( , ) = ∑ ∑ ∑ − ( , ) − ( , ) + ̂̂               (1) 

where ̂ is the unit vector pointing in a chosen direction, ( , ) is the gray value 
of pixel ( , ), ( , ) + ̂  is the gray value of another pixel that is at distance  
from pixel ( , ) and at the orientation indicated by unit vector ̂, and ( , ) is 
the total number of pairs of pixels at distance  from each other identified in the 
image, such that the first one has gray value  and the second has gray value  
( , ∈ 0, − 1 ).  is gray level number of original image, and we can reduce the 
separate gray levels number to  by ( , ) = ( , ) × ( − 1)                         (2) 

Then, normalized the co-occurrence matrix by dividing all its elements by the total 
number of pairs of pixels considered. The normalized matrix is a joint probability 
density function: ( , ) = ( , )∑ ∑ ( , )                           (3) 

Based on ( , ), we can compute the following statistical measures as texture 
features[9]: 
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• GLCM energy = ∑ ∑ ( , )                          (4) 

• GLCM entropy = − ∑ ∑ ( , ) log ( , )             (5) 

• Contrast = ( ) ∑ ∑ ( − ) ( , )             (6) 

• Correlation = ∑ ∑ ( , )
                      (7) 

where = ∑ ∑ ( , )                       (8) = ∑ ∑ ( , )                        (9) = ∑ ( − ) ∑ ( , )                (10) = ∑ − ∑ ( , )                (11) 

• Homogeneity = ∑ ∑ ( , )| |                            (12) 

More than ten statistical measures can be computed from co-occurrence matrix[6], 
but we just used the common five features above in this paper. 

3 Half Circle GLCM Template 

Maria Petrou proposes a circle template method to compute GLCM[9]. The circle is 
defined as the locus of points at a fixed distance  from the center. Assume the cen-
ter point to be at coordinate position (0,0), the circle template is discrete points 
which have the most approximated distances of . Fig 2 shows the templates of dis-
tances from 1 to 4. 

Using the template we scan the image line by line from left to right. We can see 
that when the new template center moves to the old circle’s right coordinate, the old 
center becomes  the  new  circle’s  left  coordinate[9].  Thus we count the same 
pair twice. In order to reduce the repeats, we propose to use half circle, as is shown in 
Fig. 3. 

In half circle template, we calculate the coordinate codes in advance. The coordi-
nates of distance from 1 to 4 are listed in Table 1.  
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         = 1     = 2            = 3           = 4 

Fig. 2. Circle template 

       
         = 1       = 2       = 3            = 4 

Fig. 3. Half circle template 

Table 1. Half circle coordinate codes 

Distance d =1 d =2 d =3 d =4 

Coordinate 

(-1,1), (-2,1), (-3,1),(-2,2), (-4,1),(-4,2), 
(0,1), (-1,2), (-1,3),(0,3), (-3,2),(-3,3), 
(1,1), (0,2), (1,3),(2,2), (-2,3),(-2,4), 

(1,0) (1,2), (3,1),(3,0) (-1,4),(0,4), 
  (2,1), (1,4),(2,4), 
  (2,0) (2,3),(3,3), 
    (3,2),(4,2), 
      (4,1),(4,0) 

4 Experimental Setup 

All experiments are carried out on computer of Intel Core i3-2120 3.30GHz CPU, 
2GB RAM and 32-bit Windows XP SP3 system. All algorithms are implemented 
using C++ in Microsoft Visual Studio 2010. 

Our database contains 414 wood samples[18], half of which is sound samples and 
another half part is defective. We select 100 samples in each class as the training 
samples, and the left 214 samples are used for testing. We conduct the experiment in 
the following steps: 

• Step 1 
We extract both gray level histogram features and GLCM features in the th image 

to form a feature vector = , , ⋯ , , = , , , , , , , , , ,      (13) 
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• Step 2 
Normalized feature vector . Let  represents all the th components in feature 

vector  of training samples. = , , ⋯ ,                                    (14) = 1,2, ⋯ 11, and = 200 for the training samples in our experiment. In order to 
eliminate noise in data, we let max  represents the largest but three value in , and min  represents the smallest but three value in . Reset all the values in  larger than max  to max , and all the values smaller than min  to min . The normalized value is =                                     (15) 

All the feature elements in training sample have been normalized to 0,1 . Normal-
ize test sample feature vectors using (15) in the same way. The normalized feature 
vector is = , , ⋯ , ,                            (16) 

• Step 3 
Center the normalized feature vector. Let ̂  represents all the th components in 

normalized feature vector  of training samples. ̂ = , , ⋯ ,                                (17) 

Let  represents the mean of ̂ . = 1,2, ⋯ 11, = 200 for the training sam-
ples. We can compute the centered feature vector for both training samples and test 
samples. = , , ⋯ , , = − , − , ⋯ , − , −  (18) 

• Step 4 
After normalizing and centering the feature vectors, SVM and k-NN classifier are 

used for classification. SVM classifier is constructed using LIBSVM[16] with default 
nonlinear kernel of radial base function. We train the SVM model using training sam-
ples and then classify the testing samples using the trained model. 

k-NN classifier is constructed using KD-tree searching method in ALGLIB[19]. = 10 in the classifier and we use distance-weighted voting method to determine the 
class. 

5 Experiment Result 

5.1 Calculate GLCM 

We display gray level co-occurrence matrix corresponding to wood surface images of 
Fig. 1. in Fig. 4. GLCM is computed using half circle template. We use 256 gray lev-
els, so the matrices size is 256 by 256. 
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From Table 6, we can see that in order to get a better classification using half circle 
template, our GLCM algorithm just costs about 90 milliseconds at distance 8. We 
haven’t found works that give detailed GLCM run time. In work [2], author says their 
total algorithm using GLCM costs about 300 seconds, which is really a long time. 
Compared with this, our algorithm runs in a flash, and is suitable for real-time  
applications. 

Table 2. Classification using only gray level features 

Feature Number Classifier Classification accuracy 

6 
Gray Level (GL) 

SVM 0.775701 

k-NN 0.724299 

Table 3. Classification accuracy of GLCM and combination method using half circle template 

Feature 
number 

Classifier 
Classification accuracy at different GLCM distances 

5 6 7 8 

5 
(GLCM) 

SVM 0.775701 0.785047 0.785047 0.775701 
k-NN 0.747664 0.761682 0.757009 0.752336 

5+6 
(GLCM+GL) 

SVM 0.85514 0.850467 0.850467 0.873832 
k-NN 0.841121 0.836449 0.831776 0.831776 

Feature 
number 

Classifier 
Classification accuracy at different GLCM distances 

9 10 11 12 
5 

(GLCM) 
SVM 0.78972 0.785047 0.785047 0.794393 
k-NN 0.771028 0.771028 0.771028 0.761682 

5+6 
(GLCM+GL) 

SVM 0.869159 0.869159 0.85514 0.85514 
k-NN 0.831776 0.831776 0.836449 0.831776 

Table 4. Classification accuracy of GLCM and combination method using circle template 

Feature 
number 

Classifier 
Classification accuracy at different GLCM distances 

5 6 7 8 

5 
(GLCM) 

SVM 0.775701 0.785047 0.785047 0.775701 
k-NN 0.747664 0.761682 0.757009 0.752336 

5+6 
(GLCM+GL) 

SVM 0.85514 0.850467 0.850467 0.873832 

k-NN 0.841121 0.836449 0.831776 0.831776 

Table 5. Classification accuracy of GLCM and combination method using four angles method 

Feature 
number 

Classifier 
Classification accuracy at different GLCM distances 

5 6 7 8 

5, PCA 
(GLCM) 

SVM 0.799065 0.771028 0.780374 0.780374 
k-NN 0.742991 0.757009 0.771028 0.775701 

11, PCA 
(GLCM+GL) 

SVM 0.85514 0.85514 0.841121 0.85514 
k-NN 0.799065 0.799065 0.808411 0.813084 
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Table 6. GLCM run time using different templates 

Half circle 
Template 
time (ms) 

Distance 5 6 7 8 
Matrix generation time 45.2126 66.0531 67.2126 80.715 
Feature computing time 9.33333 8.36232 9.19324 9.04831 
Total time 54.5459 74.4155 76.4058 89.7633 

Circle 
Template 
time (ms) 

Distance 5 6 7 8 

Matrix generation time 89.6667 127.961 131.309 157.802 
Feature computing time 7.97585 7.67633 7.51691 8.05314 
Total time 97.6425 135.638 138.826 165.855 

Four angles 
time (ms) 

Distance 5 6 7 8 
Matrix generation time 20.1014 20.5604 20.3478 20.2464 
Feature computing time 33.2126 33.5362 32.8696 32.9227 
Total time 53.314 54.0966 53.2174 53.1691 

5.5 GLCM Run Time 

In Table 6, we record the average GLCM algorithm run time with details including 
matrix generation time, feature computing time and the total GLCM time. 

We can see that as the distance increases, the matrix generation time for half circle 
and circle increases, because the templates have more coordinates. But the feature 
computing time has little change, because no matter what the template is, matrix size 
is fixed at 256 by 256. In four angles case, neither of matrix generation time and fea-
ture computing time changes much, because both coordinate number and matrix size 
are fixed. As there are four matrices, the feature computing time is nearly four times 
of half circle and circle case. In a word, the matrix generation time is decided by the 
coordinate number in template, and the feature computing time is decided by matrix 
number and size. 

6 Conclusion 

In this paper, we propose a wood surface quality detection and two-class classification 
method. We extract gray level histogram statistics features and gray level co-
occurrence matrix (GLCM) texture features respectively from wood images. Using 
combination of the two types of features, both global gray level and texture features 
and local defect features are captured, and classification accuracy is increased much 
higher than using them separately. We propose to use a half circle template to com-
pute GLCM, which covers more image texture details than traditional four angles 
method and can also improve classification accuracy. The template contains many 
coordinates at a certain distance avoiding computing distances at each pixel every 
time, so the algorithm is speeded up dramatically. We analyze the influences of dif-
ferent features, different distances and different templates on classification accuracy 
and run time. All of our algorithms are implemented using C++. The results show that 
our method costs just several tens of milliseconds, and is quite suitable for real-time 
applications. 
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Abstract. A robust satellite image classification is the fundamental step
for aerial image understanding. However current methods with hand-
crafted features and conventional classifiers have limited performance. In
this paper we introduced convolutional neural network (CNN) method
into this problem. Two approaches, including using conventional classifier
with CNN features and direct classification with trained CNN models,
are investigated with experiments. Our method achieved 97.4% accuracy
on 5-fold cross-validation test of the UCMERCED LULC dataset, which
is 8% higher than state-of-the-art methods.

1 Introduction

The satellite image analysis has received great interest from both the academic
and industrial communities. However, the classification and understanding of
the aerial scenes admits many technical challenges such as the diversified classes
and obscure image details. To tackle these problems, many modern machine
learning methods have been developed to address the aerial scenes classification.
A detailed survey can be found in [5].

On the other hand, some deep learning methods, such as auto-encoder, con-
volutionary neural networks (CNN) and others, have been extensively studied in
image classification, speech recognition and machine learning[1,2,3]. All of the
successful applications show that stack generalization plays important roles in
the machine intelligence. However, to the best knowledge of the authors, the
deep learning method has never been used in the classification of aerial scenes.
This motivates us to perform experimental validations on the problem.

In this paper, we perform extensive experiments to show that a well-trained
CNN can get very surprisingly high recognition accuracy on public available
aerial scene dataset. Currently the best accuracy is about 90%, while our method
can achieve accuracy of 97%. The rest of this paper is organized as follows:
Section 2 gives a brief introduction about CNN. Section 3 presents the details
about the classification and Section 4 shows the experimental results.

2 Brief Introduction on CNN

Convolutional neural network (or CNN) is a widely used model for image and
video recognition, which features a feed-forward artificial neural network where

c© Springer International Publishing Switzerland 2015
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...

Fig. 1. An exemplary architecture of CNN

the individual neurons are tiled in such a way that they respond to overlapping
regions in the visual field. Compared to other image classification algorithms,
convolutional neural networks use relatively little pre-processing, as it can learn
the filters that in traditional algorithms were hand-engineered. The lack of a
dependence on prior-knowledge and the existence of difficult to design hand-
engineered features is a major advantage for CNNs.

Figure 1 shows the typical architecture of a CNN network. It consists of
multiple layers of small neurons which look at small portions of the input image,
called receptive fields. The results of these collections are then tiled so that they
overlap to obtain a better representation of the original image. Each neuron
consists of a convolution operation with weightsW k and bias bk and an activation
operation f(·). Then the feature of the k-th neuron hk is obtained by

hk
ij = f((W k ∗ x)ij + bk)

where x is the output feature map of the previous layer. Between the convo-
lutional layers exists local or global pooling layers, which combine the outputs
of neuron clusters. When the convolutional and pooling layers are enough to
fully cover the whole image region, they are connected to MLP (multilayer per-
ceptron) layers and optionally softmax classification layers. The MLP layers
produce a high dimensional vector which can be served as a compact feature of
the image, while the softmax layer directly outputs the classification result of
the input image. The network is optimized by backpropagation and stochastic
gradient descent. It takes a ‘mini-batch’ of samples each time, compute the gra-
dient ∇L(W ), and obtain the update value Vt+1 and updated weights Wt+1 at
iteration t+ 1 given the previous weight update Vt and current weights Wt:

Vt+1 = μVt − α∇L(Wt)

Wt+1 = Wt + Vt+1

where the learning rate α is the weight of the negative gradient and momentum
μ is the weight of the previous update[4]. Thanks to the computational power of
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modern GPU, the network is able to learn from millions of images and achieves
outstanding performance on various vision problems.

3 CNN-Based Geographic Image Classification

Previous work on geographic image classification[7,5,6,8] shows that color, tex-
ture and local structures are good discriminative features. It turns out that these
information can be well captured by a convolutional neural network, thus it’s
reasonable to believe that the problem of geographic image classification can be
tackled with CNN. Furthermore, despite of the difference on image domains, we
argue that the CNN model trained on common images can be helpful on our
problem, since the size of a typical dataset for CNN training, e.g. ImageNet[9]
is by far larger than the geographic image dataset we have at hand and the neu-
ral network will be able to learn enough discriminative features from common
images which are also effective on geographic images.

We propose two approaches of geographic image classification using CNN.
The first one is to use a off-the-shelf CNN model to extract high dimensional
features of geographic images followed by a traditional classifier e.g. SVM. The
other approach is to retrain a CNN model using geographic images based on
a pretrained model, the process named ‘finetuning’, and use the new network
directly for classification. We will not train a whole new model mainly because we
lack the massive amount of training images. While the first method can be very
easily applied as it doesn’t need any training of neural networks, an adaptation
of CNN models trained on common images to the target image domain will
hopefully yield better performance. Thus both approaches are investigated in
this work.

3.1 Classification Without CNN Retraining

Following the settings of other works, we constrained all the training and testing
data to the LULC dataset[5], which contains 2100 land use images of 21 different
classes. We used the CNN deep learning framework Caffe as our experiment
platform[10], which provides an efficient implementation of deep learning and
several off-the-shelf CNN models. The experiment is conducted as follows: high
dimensional features of all the 2100 images in the Features of all the images in
LULC dataset are extracted with a pretrained model, then part of the images
are used to train a classifier while the rest serve as testing data. The training
and testing split follows the form of a 5-fold cross validation.

There are three trained models provided by Caffe which we used for our classi-
fication problem: AlexNet[2], GoogLeNet[11] and CaffeNet which is an improved
version of AlexNet. All three models are trained on the ImageNet dataset, gener-
ating features of which dimension ranges from 1024 to 4096. As for the classifiers,
we tested SVM, KNN classifier and random forest. As the combinations of model
and classifier are rather large, we conduct the experiment in two steps. First we
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try different classifiers on one of the trained models, then we use the best clas-
sifier setting to test other CNN models. Final result is reported as the average
accuracy of cross validation on the best model/classifier combination.

3.2 Classification with CNN Retraining

In this experiment, we will train a CNN model using a trained model and im-
ages from the training set. We use CaffeNet as the model to finetune on, which
is originally trained on the 1000-class ImageNet images. Instead of using the
4096-dimension features as we did in the previous experiment, this time we will
use the softmax classification output. The only modification we make to the
CaffeNet is to change the 1000-class softmax layer to a 21-class softmax layer
corresponding to the LULC dataset, enabling the network to learn more discrim-
inative features and a 21-class classifier for the LULC dataset. Before training
begins, the parameters of every layer except the softmax layer are set to be
identical as the trained CaffeNet model, while the softmax layer parameters are
initiated randomly. Then the network is trained keeping the learning rate of pre-
vious layers smaller than that of the softmax layer, in order to learn the classifier
and ‘finetune’ the convolution layers simultaneously.

We follow the same 5-fold cross validation setting as in the previous experi-
ment. That means only 1680 images can be used to train the CNN model, which
is far from enough for a typical deep learning scenario. Thus we extended the
training set by flipping and rotating every image to form 7 new images, resulting
in a training set 8 times the size to the original. This operation is reasonable for
the LULC dataset because content of the photo taken from an aircraft is almost
always invariant to flipping and rotation.
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Fig. 2. Training with or without finetune

Due to the small training set, the network only took about 2 hours to con-
volve on a TITAN BLACK GPU. Testing error after the network convolves is
lower than the error rate without retraining CNN. In order to confirm that the
improvement is gained from the finetuned CNN instead of from the softmax
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classification layer alone, we ran the training process again, keeping everything
the same except for fixing the parameters in the convolution layers, which is
equivalently training a softmax classifier only. Curves for the training process
are shown in Figure 2, which reveal that only training the classifier leads to a
faster convolving speed but lower performance. This can be explained by the
fact that fewer tunable parameters leads to less learning capacity. Through this
experiment, the effect of finetuning the CNN network is also confirmed.

We trained 5 networks in total, each tested on the corresponding 20% testing
set and collected the result afterwards. Typically CNN networks are not tested
using cross validation, but we did so in order to make a fair comparison.

4 Experiment Results

In this section we report the results of the experiments on the LULC dataset.
For every setting accuracies of the 5 cross validation test and average accuracy
are reported. First we tested classification on the pre-trained ImageNet CNN
features. Accuracy of different classifiers on the same CNN model CaffeNet is
shown in Table 1. The best classifier, SVM achieved 94.3% overall accuracy.
Fixing the classifier, we tested performance on different CNN models. Table 2
gives the result, showing that the accuracy of CaffeNet is slightly higher than
other two models. The experiments show that the CNN network can produce
discriminative features good enough to handle the geographic image classification
problem, even if the network is not trained on this particular domain.

Table 1. Test result of different classifiers on CaffeNet

Setting Cross validation accuracy Overall

SVM 0.94 0.95 0.95 0.95 0.92 0.943
KNN Classifier 0.82 0.83 0.85 0.82 0.82 0.829
Random forest 0.89 0.90 0.91 0.88 0.88 0.895

Table 2. Test result of different models on SVM

Model Cross validation accuracy Overall

CaffeNet 0.94 0.95 0.95 0.95 0.92 0.943
AlexNet 0.93 0.94 0.9 0.95 0.92 0.940

GoogLeNet 0.91 0.93 0.95 0.93 0.91 0.923

Table 3. Test result of classification with new CNN models

Cross validation accuracy Overall

1.00 0.95 0.96 0.96 0.97 0.974
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Fig. 3. Confusion matrix of 21 classes
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Fig. 4. Comparison with previously reported accuracies

For the finetuned network based on CaffeNet, the result is summarized in
Table 3. Overall accuracy of the 5-fold cross validation is 97.4%, when trained
on augmented images from part of the LULC dataset. The confusion matrix of
the testset is shown in Figure 3. Figure 4 shows the comparison with previously
reported accuracies[6]. Time consumption for classifying one image is ∼60ms on
an Intel Xeon 2.8GHz CPU.

The statistics of the accuracy for every class is shown in Figure 5, calculated
from all the tests of the cross validation. Compared with accuracies of other
works, the CNN network is particularly good at capturing textures (e.g. cha-
parral) and structures (e.g. intersection), thanks to the learned filters and multi
scale pooling.
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To explore the limitation and potential improvement, some misclassification
samples are shown in Figure 6. Some errors are due to large variation of cer-
tain classes, e.g. a few patches of ‘beach’ class are very similar to ‘agriculture’,
however other patches from different angle or scale can never be mistaken as
‘agriculture’. This implies that for a practical geographic image classification
system, it’s necessary to consider neighboring patches to correctly classify hard
patches occasionally occurred. One patch of ‘tennis court’ is classified as residen-
tial, as there are indeed many buildings around. This suggests that the current
network still needs more training samples or training time to capture partic-
ular object like a tennis court. There are also classes containing complicated
structures with subtle difference, like ‘mobile home park’, ‘dense residential’ and
‘building’, which might only be better distinguished if given much more training
samples.

5 Conclusion

In this work we applied convolutional neural network to aerial image classifi-
cation problem through two different approaches, and achieved the accuracy of
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97.4%, much higher than previous state-of-the-art. Notice that all the training
data we used was constrained within the LULC dataset. Analysis of the result
showed that the performance may be further improved if given more training
data. For future works we plan to extend the problem to aerial scene detection
and understanding, and apply state-of-the-art methods of object detection based
on CNN, hoping to achieve better performance.
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Abstract. Based on the different strength of synaptic connections be-
tween actual neurons, this paper proposes a novel heterogeneous PCNN
(HPCNN) algorithm to quantize images. HPCNN is constructed with
traditional pulse coupled neural network (PCNN) models, which has dif-
ferent parameters corresponding to different image regions. It puts pix-
els of different gray levels to be classified broadly into two categories:
the background regional ones and the object regional ones. Moreover,
HPCNN also satisfies human visual characteristics (HVS). The param-
eters of HPCNN model are calculated automatically according to these
categories and quantized results will be optimal and more suitable for
human to observe. At the same time, the experimental results show the
validity and efficiency of our proposed quantization method.

Keywords: PCNN, HPCNN, quantization, HVS.

1 Introduction

Pulse coupled neural networks (PCNN) model is a improved version of Echorn’s
cortical model described in in ref [1], which is inspired by mammalian primary
visual cortex neurons. And in this paper, a new kind of heterogeneous pulse
coupled neural networks model (HPCNN) is suggested, which is constructed
with traditional pulse coupled neural network (PCNN) models having different
parameters corresponding to different image regions.

Most reported researches in image processing field including PCNN have gen-
erally emphasized homogeneous architectures of artificial neural networks. How-
ever, the nervous system in real world exhibits great heterogeneity in both its
constructing elements and its patterns of interconnection [2]. In most cases,
PCNN model of image analysis is set globally with the same parameters. Actu-
ally, the parameter setting of neural networks should be different accordingly.
This paper puts different pixels (namely different neurons) of gray levels to be
classified broadly into two categories: the background regional ones and the ob-
ject regional ones. The same PCNN parameter setting is applied to the same
region. In other words, the same category of neurons are set up with the same
PCNN parameters.

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 269–278, 2015.
DOI: 10.1007/978-3-319-25393-0_30
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The concept of heterogeneous PCNN is firstly proposed in this work and it
has focused on quantization. While most traditional quantization methods such
as clustering algorithm [3], fuzzy algorithm [4], μ-law algorithm [5] and uniform
algorithm only pay attention to the statistic property, but don’t take the rela-
tionship between the quantization quality and human visual characteristics into
account. In our previous work in ref [6], a novel quantization method with PCNN
model was proposed, whose parameters were set globally. But the method only
emphasized on homogeneous architecture of PCNN but not on heterogeneous
one. Therefore, an improved HPCNN quantization algorithm is suggested here.

2 Heterogeneous PCNN Properties and Application

2.1 Heterogeneous Neural Network

Artificial neural networks are computational models inspired by animals’ nervous
systems. An artificial neuron is a mathematical model whose components are
analogous to the components of actual neuron [7]. Generally, artificial neural
networks can be described as follow:

Dataset D consists of N samples (xp, yp), where xp is input, yp is output and
p = 1, 2..., N . The task of neural network learning is to draw a function f from
the dataset D which satisfies formula yp = f(xp) [8].

The neural network S is composed of M neurons s1, s2, ..., sM . The weight
of each neuron is wi (i = 1, 2...,M), where wi ≥ 0 and

∑N
i=1 wi = 1. To input

xp, the i-th member of the network output is fi(xp). So the output of neural
network S with input xp is as follow:

f(xp) =
∑M

i=1
wifi(xp) (1)

In practice, the element structure of each neuron and the synaptic connection
strength between them are different. There are two different kinds of hetero-
geneous neural networks. One is defined by the difference in structure and the
other in paraments. If the neuronal structure is different in actual neuron, the
neural models do not share the same expression correspondingly, that is to say
the function fi is different. And if the synaptic connection strength is different,
parameters of the same kind of neural model are not the same correspondingly.
The later kind of heterogeneous neural network with different parameters is
taken advantage in the following HPCNN.

2.2 Basic PCNN Model

PCNN is a kind of artificial neural network which does not need pre-training and
learning compared with traditional network [9]. Echorn’s cortical model is a bio-
inspired neural network developed in light of synchronous dynamics of neuronal
activity in cat visual cortex [10,11]. A simplified neuron model of the PCNN is
showed in Fig. 1, which consists of three parts, the input module, the nonlinear
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Fig. 1. A simplified neuron Model of the PCNN.

modulation module, and the pulse generating module. It can be described as the
following equations [12,13]:

Fi,j [n] = Ii,j (2)

Li,j [n] = e−αLLi,j [n− 1] + VL

∑

k,l

Wi,j,k,lYk,l [n− 1] (3)

Ui,j [n] = Fi,j [n] (1 + βLi,j [n]) (4)

Ei,j [n] = e−αEEi,j [n− 1] + VEYi,j [n− 1] (5)

Yi,j [n] =

{
1,
0,

Ui,j [n] > Ei,j [n]
else

(6)

where I is the input signal, F and L stand for feedback input and linking in-
put of the neuron associated with neighborhood neurons which locate at (k, l)
through synaptic weights Wi,j,k,l. Additionally, the feeding input F receives an
input image I, which is normalized to gray intensity in advance. F and L are
then modulated through linking strength β to yield internal activity U which
is compared with the dynamic threshold E of the previous iteration to judge
whether neuron fires (Yij[n] = 1) or not (Yij[n] = 0). The parameter αE is the
exponential decay coefficient of internal activity and VE is the amplitude of E.

2.3 Heterogeneous PCNN and the Relation with HVS

In traditional image analysis, we take on PCNN models with the same param-
eters which can also be called homogeneous PCNN models. In practice, each
neuron in the network corresponds to one pixel of an image and the parameters
for each PCNN model should be different. It is obviously inaccurate to take on
homogeneous PCNN models to perform quantization.

We selected a unified PCNN model, namely the function fi is the same. Due to
the synaptic connection strength between neurons is not all the same clearly, the
parameters of each PCNN model are different. However, these five parameters
(VL, αL, W , β and αE) are considered the same in traditional applications.
In this paper, we distinguish the differences of parameters based on different
gray levels and employ HPCNN algorithm with different parameters to perform
quantization.
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We define the similarity measure of heterogeneous PCNN models u and v as
Su,v. Let N be a nominal space denoting the parameters (VL, αL, W , β and αE)
of PCNN model and u, v ∈ N [14].

Su,v =

{
1,
0,

if u = v
if u �= v

(7)

If Su,v equals 0, the two PCNN models are heterogeneous, otherwise they are
homogeneous.

We put different gray levels of pixels to be classified broadly into two cate-
gories: the background region and the object region. The same PCNN parameter
setting is applied to the same region. It can be seen that the neurons in the same
region are homogeneous while neurons in different regions are heterogeneous.

Human visual system (HVS) is an unique optical imaging system [15], whose
characteristics can be theoretically described by the Web-Fechner-Law: Given
different luminance value, the rate (ΔI) of minimum brightness incrementΔSmin

that human eyes can percept and ambient brightness S is a constant:

ΔI = ΔS/S (8)

Equation (8) can be changed to :

I = KInS + r (9)

From the equations (2)-(6), we can find the firing moment of neurons as follow
[16]:

n(m) = 1 +
1

αE
ln

VE

cSij
+m

1

αE
ln

cSij + VE

c′Sij
,m = 0, 1, ..., N (10)

Time matrix is defined to be a matrix recording the first time when each neuron
fires. Then it equals the first two parts of (10) if the m equals 0 and can be
expressed as

Tij [n] = 1 +
1

αE
ln

VE

cSij
(11)

After transformation by substituting (11) into (9)

Iij = KlnSij + r = K(αE − αETij + ln(VE/c)) + r (12)

A contrastive analysis of (9) and (12) can educe that the relation of time
matrix Tij and input stimulus Sij is in accordance with that of the subjective
brightness I and the objective brightness S. If we take time matrix as subjective
response of human visual system and take input stimulus as objective bright-
ness, we can see they all present logarithm relevant. HPCNN is consisted of
PCNN models with different parameter setting in different regions. Therefore,
this ensures HPCNN is also endowed with human visual characteristics.
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3 Adaptive Region Related Heterogeneous Image
Quantization Method

3.1 Automatic Parameter Setting

It’s well known that the parameter setting of PCNN is complicated due to its
dependency on the different gray layers, the large number of PCNN parameters
and the interactions among them. The static property parameters VL, αL and
β are set here referring to [17,18]. While dynamic property parameters αE and
VE will be automatically set as the following steps.

The parameter αE is the exponential decay coefficient of internal activity
which yields a direct effect on quantization layers. αE must be small enough to
ensure dynamic threshold attenuates gradually. In this way, adjacent grayscales
can be distinguished by different firing moment. In most cases, it is supposed
that E[0] = Imax, then

E [1] = e−αEE [0] = Imax ∗ e−αE

E [2] = e−αEE [1] = Imax ∗ e−2αE

· · · (13)

E [k] = Imax ∗ e−kαE

In order to make sure the minimum grey value of quantization layer k will be
fired, let

E [k] = Imax ∗ e−kαE = Imin (14)

and then

αE =
lnImax − ln(Imin + 0.05)

k
(15)

Where lnImin is changed to ln(Imin+0.05) because that Imin should not be zero.
k denotes the quantization layer and can be set on demand in quantization.

The parameter VE is the amplitude of E. In line with firing properties of
PCNN model, the pixel will be fired if its internal activity U > E and the
output of Y is assigned to 1 while the pixel’s dynamic threshold E is set to
VE so that it will never be fired again. Theoretically, the value of VE should
be infinitely great. In practice, the value 200 is great enough to ensure that the
neurons would be fired only once and it’s set as

VE = 200 (16)

Taking these, automatic parameter setting method is realized.

3.2 Quantization Algorithm

The flow diagram of the adaptive region related HPCNN quantization algorithm
is showed in Fig. 2(a), which can be described as follows:

Step 1 : Subdivide the input image into background region B and object region
O with PCNN segmentation.
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Fig. 2. (a) Workflow of HPCNN algorithm. (b) Workflow of PCNN algorithm

Step 2 : Initialize parameters of HPCNN by getting standard deviation σ and
optimal histogram threshold S′ in different regions, setting the iteration number
(namely the layers of quantization) and then calculating the dynamic property
parameters.

Step 3 : The neurons of HPCNN will be fired in region B and region O accord-
ing to synchronous dynamics of neuronal activity, respectively. And then the
output of function Y is recorded until all the neurons have been fired in both
regions.

Step 4 : Judge whether all the neurons in region B and region O have been
fired and then output the time matrix TB and TO. And the time matrix T can
be calculated

T = TB + TO (17)

According to (12), the quantized image (Yout) can be obtained by reversing the
time matrix as

Yout = −T (18)

Step 5 : Denoise image by mean filter to refrain pulse noises [19].
For comparison, the flow diagram of traditional PCNN algorithm [6] is shown

in Fig. 2(b).
In Step 1, we use cross-entropy and Shannon entropy as criterion to perform

segmentation [20,21]. The parameters of PCNN segmentation are set referring
to [17]. Segmentation results of Cameraman (C) and Lena (L) show as Fig. 3.
As the HPCNN algorithm depends on the result of the segmentation, this step
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is very critical. And PCNN has been proved to have stable performance due to
its synchronous-pulsed feature [22].

(a) (b) (c) (d)

Fig. 3. Segmentation contrast. (a) Cameraman. (b) Cameraman after segmentation.
(c) Lena. (d) Lena after segmentation.

Paraments of PCNN algorithm and HPCNN algorithm are listed in Table 1
and Table 2, respectively.

4 Experiment and Analysis

4.1 Experiment

To test and verify the effect of the proposed algorithm, a group of experiments are
carried out rigorously on natural gray images from the standard image library.
Two other quantization algorithms, μ-Law algorithm [5] and traditional PCNN
algorithm [6], are used for comparison of the performances.

Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Entropy
and Compression Ratio (CR) in (19) are employed as evaluation indexes to
evaluate the proposed algorithm quantitatively, and the results are displayed in
Table 3 and Table 4 for Cameraman and Lena, where μ, P and H denote μ-
Law, PCNN and HPCNN quantization algorithm, respectively. In addition, the
processed images of Cameraman are shown in Fig. 4. The convergence time of
PCNN is about 16.54s and that of HCPNN is about 15.06s on matlab7.11.0 and
the hardware system platform is Inter(R) Core(TM) i3 CPUM330 @ 2.13GHz4G
RAM with Windows 7.

CR =
D (Y )

D (I)
(19)

where I (·) denotes the original image, Y (·) denotes the quantized image and
function D (·) denotes the image bits.

Table 1. Parameters of PCNN.

Input Image VL VE αL αE β

Cameraman 1 200 0.6118 0.0558 0.3125
Lena 1 200 0.7310 0.1754 0.0330
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Table 2. Parameters of HPCNN.

Input Image VL VE αL αE β

Cameraman
O 1 200 1.5439 0.0372 0.8333
B 1 200 0.5741 0.0462 0.3604

Lena
O 1 200 1.0768 0.0399 0.2268
B 1 200 0.6475 0.046 0.2931

Table 3. Quantization results on Cameraman.

Layer 16 32 64 96 128 200

CR(μ) 27.33% 33.30% 39.40% 42.40% 44.80% 46.90%
CR(P) 48.11% 56.61% 69.62% 77.97% 83.06% 87.51%
CR(H) 29.36% 37.66% 53.38% 57.95% 64.87% 73.72%
Entropy(μ) 1.6313 1.9896 2.4698 2.721 2.923 3.1657
Entropy(P) 2.7587 3.7149 4.6541 5.2247 5.6671 6.2978
Entropy(H) 2.0051 2.1375 3.1649 3.7770 4.1831 4.8103
MSE(μ) 0.1184 0.1149 0.1123 0.1114 0.1111 0.1106
MSE(P) 0.0807 0.0679 0.0641 0.0628 0.0612 0.0603
MSE(H) 0.0954 0.0692 0.0594 0.0443 0.0513 0.0521
PSNR(μ) 57.3981 57.5272 57.6268 57.6615 57.675 57.6937
PSNR(P) 59.0639 59.8136 60.0591 60.1517 60.2638 60.3205
PSNR(H) 58.3357 59.7280 60.3903 61.6676 61.0320 60.9591

Table 4. Quantization results on Lena.

Layer 16 32 64 96 128 200

CR(μ) 25.27% 35.85% 43.63% 45.46% 46.41% 47.08%
CR(P) 29.38% 47.80% 68.02% 78.41% 85.39% 93.35%
CR(H) 19.08% 29.34% 50.29% 59.47% 68.78% 80.63%
Entropy(μ) 1.4022 1.9658 2.4643 2.7155 2.9156 3.1751
Entropy(P) 2.0603 2.9962 3.9463 4.5248 4.9335 5.5797
Entropy(H) 1.3231 2.1159 3.0667 3.6158 4.0194 4.6471
MSE(μ) 0.5962 0.5711 0.5612 0.557 0.552 0.5508
MSE(P) 0.0279 0.0359 0.0085 0.011 0.0126 0.0128
MSE(H) 0.0154 0.0222 0.0076 0.0093 0.0105 0.011
PSNR(μ) 50.3768 50.5633 50.64 50.6722 50.711 50.72
PSNR(P) 69.7192 68.6191 74.887 73.7413 73.1567 73.096
PSNR(H) 72.2852 70.7014 75.3522 74.4903 73.9709 73.7395

4.2 Analysis and Discussion

In Table 3 and Table 4, MSE shows that the HPCNN algorithm processes with
smaller deviation than traditional PCNN and μ-Law algorithm at most layers.
PSNR shows the proposed algorithm bears best robustness from quantization
layer 64 to layer 200. The entropy represents the average bits number of grayscale
layers. It is obvious that HPCNN algorithm extracts less information because of
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(a) (b) (c) (d) (e) (f)

Fig. 4. Figures (a)∼(f) are different quantization layers from 16 to 200 quantized by
μ-Law, PCNN and HPCNN algorithm from top to bottom, respectively.

the better compression performances than PCNN algorithm. Moreover, CR is an
important index to measure whether the algorithm achieves better compression
performance and the results show it does when compared with traditional PCNN
algorithm. However, the quantized images of μ-Law algorithm as showed in Fig. 4
tend to be brighter and it brings down the image quality subjectively. While the
traditional PCNN algorithm and HPCNN algorithm both satisfy human visual
characteristics and the quantized images are more suitable for human to observe.

5 Conclusion

An adaptive image quantization method with HPCNN is proposed in this pa-
per. HPCNN which satisfies human visual characteristics is adopted to quantize
images. According to the experiment analysis and discussion above, we can intu-
itively see that the HPCNN algorithm is very suitable for performing quantiza-
tion. In addition, our experimental results show that the proposed algorithm is
qualified with smaller deviation and better robustness with higher compression
ratio. As each neuron is corresponding to a pixel and they are heterogeneous
to others with different gray levels, it is not fine enough to classify the neurons
into just two categories for natural scence image. So it need to be classified
finer. These existing problems in the method still need to be resolved in the next
exploration.
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Abstract. Image fusion algorithm is a key technology to eliminate noise
through combining each image with different weight. Recently, conver-
gence and convergence speed are two exiting problems which attract
more and more attention. In this paper, we originally propose a image fu-
sion algorithm based on neural network. Firstly, the linearly constrained
least square(LCLS) model which can deal with image fusion problem is
introduced. In addition, in order to handle LCLS model, we adopt the
penalty function technique to construct a neural network. The proposed
algorithm has a simpler structure and faster convergence speed. Lastly,
simulation results show this fusion algorithm which has great ability to
remove different noise.

Keywords: LCLS, Neural network, Image fusion algorithm, Penalty
function.

1 Introduction

Image fusion is a process by combining more than one source images from dif-
ferent modalities or instruments into a single image with more information. The
successful fusion is of great importance in a lot of applications, such as biometric,
multi-media signal and remote sensing and so on. In the pixel level fusion, some
generic requirement can be imposed on the fusion results: Irrelevant features and
noise should be suppressed to a maximum extent in the fused image; All relevant
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information contained in the source images should be preserved as much as pos-
sible; The fusion process should not introduce any artifacts or inconsistencies,
which can distract or mislead the observer, or any subsequent image processing
steps.

For the sake of overcoming such iteration, difficulty and the regularization
methods have been proposed and widely researched [1] and [2]. The regulariza-
tion method can be fast implemented by the efficient use of FFT and effectively
implemented by real-time image processing based on neural networks [3]−[4].
On the other hand, choosing a proper regularization parameter is an important
problem of the regularization method for a good image estimate. Several popular
methods for choosing the optimal regularization parameter have been developed
in [4]−[6], and [7]. Although the optimal regularization solution can lead to a
perfect image estimate, only approximate optimal regularization parameters are
available in practice since the noise variance needs compute. Because the reg-
ularization solution is very sensitive to the chosen regularization parameter, a
good image estimate is still not guaranteed. Also, in a number of applications,
the contaminating noise is usually non-Gaussian such as the uniform, the Lapla-
cian, or a combination of them. For example, in blind-image identification, image
models’ parameters are always unknown [8] and [9]. For such a consideration, a
robust entropic method was developed by the optimal selection of the regulariza-
tion parameter [10]. An iterative method based on the high-order statistics was
presented by [11], where two key parameters including the optimal regularization
parameter need to be estimated.

In this paper, we introduce a new method which can deal with image fusion
called the linearly constrained least squares (LCLS). We use recurrent neural
network to implement the LCLS solution. Although some neural network meth-
ods have been proposed for data fusion in the literature [12], [14], these neural
network approaches are difficult to obtain a good fusion solution and their im-
plementations are also quite complex. The proposed algorithm has a simpler
structure and faster convergence speed. Lastly, simulation results show this fu-
sion algorithm which has great ability to remove different noise.

This paper is organized as follows. In Section 2, the LCLS method for im-
age fusion is introduced. In Section 3, a neural network algorithm based on
penalty function technique for the LCLS solutions is developed. In Section 4,
the convergence property of the proposed neural network algorithm is estab-
lished. Simulation is displayed in Section 5.

2 Problem Formulation and Model Description

In this section, we introduce image fusion model based on LCLS method and
briefly describe its properties. Consider a multisensor system with K (K ≥ 2)
sensors. Let the kth sensor measurement be expressed as[13]

Xk(t) = aks(t) + nk(t), (k = 1, ...,K; t = 1, ..., N)
where ak is a scaling coefficient, N is the number of sensor measurements, s(t)
denotes the image signal, and nk represents the additive Gaussian noise at the
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kth sensor with zero mean. Moreover, s(t) and nk are mutually independent
random processes. Using matrix and vector notations, the above representation
can be written as

x(t) = as(t) + n(t)

where a = [a1, ..., aK ]T , x(t) = [x1(t), ..., xK(t)]T , and n(t) = [n1(t), ..., nK(t)]T .
The main goal of data fusion is to find an optimal fusion operator w ∈ �Kso
that the uncertainty of the fused information is minimized. According to [13],
LCLS method is formulated as the following constrained optimization problem:

min f(w) = wTRw

s.t. aTw = 1. (1)

Where R = 1
N

N∑

t=1
x(t)x(t)T .

Actually, the mod |w| is depending on system’s output power, so model (1)
is changed :

min f(w) = wTRw

s.t. aTw = 1,

v ≤ w ≤ u. (2)

v and u are maximum output power and minimum output power respectfully.

Lemma 1. [17] x∗ is a solution to V I(U,Ω) if and only if x∗ satisfied

PΩ(x
∗ − αU(x∗)) = x∗. (3)

In equation (3) α is any positive constant, U is the gradient of the objective func-
tion in non-constraint programming and PΩ :�n → Ω is a projection operator
which enforces vector ξ in feasible region Ω and defined by

PΩ(ξ) = argmin
η∈Ω

||ξ − η||. (4)

3 Neural Fusion Algorithm

Lemma 2. If objective function and constraints of model (1) are continuously
differentiable in feasible region, and for any c > 0, wTRw+ c‖aTw− 1‖2 exists
a local minimum point w∗, then:

inf{wTRw|w ∈ Ω ∩B(w∗, δ)} =

lim
c→∞ inf{wTRw+ c‖aTw− 1‖2|w ∈ B(w∗, δ)}. (5)
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We define B(w∗, δ) = {w ∈ �n | || w∗ −w ‖< δ}, δ > 0. That is to say, if
coefficient c is large enough, like result in [18], we can easily know the solution
of wTRw+ c‖aTw− 1‖2 is a local solution for (2).

According to Lemma 1 and Lemma 2, we construct a recurrent neural network
based on penalty technology as follows:

ẇ = PΩ(w−	(wTRw+ c‖aTw− 1‖2))−w. (6)

Theorem 1. [12] If model (2) is a continuous convex optimization problem, the
equilibria of equation (6) must be one of the KKT points and it is always stable
in equilibria set.

Remark 1. That is to say, if (2) is a convex optimization problem, and penalty
factor c is enough large, (6) will find the solution of (2).

Fig. 1. A block diagram of the neural data fusion algorithm

Fig. 2. Architecture of the continuous-time neural network in (6)

Figure 1 shows that how neural network (6) is embedded in a image fusion
system. In order to embody architecture of (6) clearly, Figure 2 describes it in
detail.
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4 Simulation Results

In this section, we apply the proposed neural fusion algorithm to image fusion.
Our platform is Matlab 2012b.

Firstly, we need to chose a colorful picture as original image, we need to
produce noisy images by adding K different noises on the clear image, just like
Figure 3. As everyone knows, each colorful image has three channel, namely, red
channel, green channel and blue channel. And then, we add Gauss white noise
with standard deviation 0.8 on every channel. Figure 7 shows the image after
adding noise. Similarly, we add salt and pepper noise on original image just like
Figure 9 shows. In order to verify the algorithm’s performance, we use (6) to
deal with image fusion under different number of sensors. In simulation, v sets
to 0, u sets to 1.

Fig. 3. Clock full-color image
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Fig. 4. The convergence process of red
channel under 5 sensors

According to the results, we can easily conclude that more sensors can reap
better fusion result. Compared with Figure 7, Figure 8 shows superior fusion
result, meanwhile, Figure 9 and Figure 10 also describe the same conclusion.
Figure 3 to Figure 5 state algorithm can convergent to optimal solution on every
channel respectively.

Just as Figure 9 shows, salt pepper noise with standard deviation 0.8 is also
added to original image. Simulation result shows great performance of algorithm.

In order to evaluate quality of fusion image, we introduce principle of mean
error which is defined as follows:

E =
1

MN

M∑

i=1

N∑

j=1

[R(i, j)− F (i, j)]2 (7)
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Fig. 5. The convergence process of green
channel under 5 sensors
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Fig. 6. The convergence process of blue
channel under 5 sensors

Fig. 7. Clock image with Gaussian noise Fig. 8. The fusion image using 100 sen-
sors with Gaussian noise

Fig. 9. Clock image with salt pepper noise Fig. 10. The fusion image using 100
sensors with salt pepper noise
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Where M and N are row pixels number and column pixel’s number. R(i,j) is
original image pixel and F(i,j) is fusion image pixel. Obviously, the higher E the
lower fusion quality.

Table 1. Comparison of different channels’ mean error with Gaussian noise

precision: 103 5 sen. 10 sen. 50 sen. 100 sen.
Red channel 4.586 3.095 1.766 1.104
Green channel 5.104 3.578 2.074 1.266
Blue channel 5.606 4.162 2.536 2.266

Table 2. Comparison of different channels’ mean error with salt pepper noise

precision: 103 5 sen. 10 sen. 50 sen. 100 sen.
Red channel 6.461 4.961 3.445 2.787
Green channel 7.543 5.957 4.575 3.745
Blue channel 8.695 7.071 5.841 5.307

Obviously, from Table 1 and Table 2 we can see that fusion quality is revelent
to sensors number, more sensors correspond to clearer fusion image in face of
different noise.

5 Conclusion

This paper proposes an image fusion algorithm based on neural network. Due
to the penalty function technique and the use of differential equation, this al-
gorithm has properties of high efficiency, simple structure, strong operability.
In the aspect of theory, the convergence of the algorithm is guaranteed.A new
fusion algorithm can effectively reduce the image noise. The simulation results
verify the effectiveness of the algorithm.
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Abstract. In this paper, a novel singing voice/music separation method
is proposed based on the non-negative tensor factorization (NTF) and re-
peat pattern extraction technique (REPET) to separate the mixture into
an audio signal and a background music. Our system consists of three
stages. Firstly, we use the NTF to decompose the mixture into different
components, and similarity detection is applied to distinguish the compo-
nents from each other, in order to classify the components into two classes
as the voice including voice/periodic music and the block music/voice;
next we utilize the REPET to extract the background music one step
further for the two classes, and the final background music is estimated
by adding the two backgrounds together, the left is added together as
the singing voice; finally the music spectrum and the voice spectrum are
filtered by harmonic filter and percussive filter respectively. To improve
the performance further, wiener filter is used to separate the voice and
music. Our method can improve the separation performance compared
with the other state-of-the-art methods on the MIR-1K dataset.

Keywords: NTF, REPET, Source Separation, Median Filter, Unsuper-
vised Signal Processing.

1 Introduction

Single channel blind source separation (SCBSS) has been developed in recent
years. Tengtrairat et al. used the AR model to construct a pseudo-stereo hy-
brid model to achieve the SCBSS, which could separate multiple sources, but
the sources must have self-similarity [1]. Diamantaras et al. [2–5] addressed the
problem of binary source separation, which used the Taylor expansion and the
biased sources to convert the nonlinear mixed to linear mixed. Song et al. con-
verted the SCBSS problem to a layer by layer separation problem [6].

Singing voice/music separation has attracted more and more attention and
widely been used. Such as the automatic synchronization, identification between
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music and lyrics [7, 8], singer identification [9], Kara OK, audio remixing and
so on. However, the existing methods can not separate the singing voice and
background music well, there is so much interference between the background
music and the singing voice.

In recent years, singing voice/music separation has made some progress. Rafii
et al. used the beat spectrum or the similarity matrix to identify the periodic
or the self-similarity in the music, followed by the median filter to extract the
background music [10, 11]. Antoine et al. proposed a method based on a general
kernel regression framework, which utilized the backfitting algorithm to combine
some methods in the way of kernels to achieve the singing voice/music separation
[12].

There are some other methods extracting the pitch contours in the mixture
to model the singing voice. Li et al. [13]used the pitch detection algorithm to
estimate the pitch contours, then constructed the time frequency(T-F) mask
through the pitch information to extract the singing voice and separate it from
the background music. Hsu et al. also applied the pitch to extract the singing
voice, at the same time estimated the background music [14].

Durrieu et al. used a source-filter model to estimate the singing voice and
the non-negative matrix factorization (NMF) to approximate the background
music, by using a iteration algorithm to estimate the corresponding parameters
[15]. Huang et al. proposed a called robust principal component analysis (RPCA)
method, which utilized a convex optimization algorithm to decompose the mixed
power spectrum matrix, regarding the background music as a low rank matrix
and the singing voice power spectrum matrix as a sparse matrix [16].

In this paper, The non-negative tensor factorization (NTF) is applied to the
singing voice/music separation, which decomposes the mixed signals into mul-
tiple components. Then we use the similarity detection to distinguish the voice
components and the music components, followed by the repeat pattern extrac-
tion technique (REPET) to extract the background music further. After that the
extracted backgrounds are added together as a new music estimation, while the
left is summed up as a new singing voice estimation. Finally the post-processing
techniques are used to improve the separation results, which we call a harmonic
filter and percussive filter. The experiment shows a relatively good result among
the comparable methods.

The rest of the article is organized as follows: In Section 2 we present the NTF
and the similarity detection; next the REPET techniques and the post-processing
techniques are introduced, which utilize the harmonic filter, percussive filter and
wiener filter to enhance the source separation further more. In Section 3, we
evaluate our method on the MIR-1K database, and compare the background
music and the singing voice at the same time with the other three state-of-the-
art methods. In Section 4 we conclude this article in the end.

2 The Proposed Method

The NTF can decompose the mixed spectrum into a series of basic spectrums.
However, the voice sepctrum and the music one can not always be separated well,
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that is to say, they are composed of several basic components, if the voice compo-
nents the music components can be distinguished from each other through some
methods, then the singing voice and background music will be separated through
simply adding the corresponding components up together. Unfortunately, there
is no effective methods that can distinguish the voice components from the mu-
sic one, and we don’t know the number of basic components. The REPET can
extract the similar frames along time because the music has a certain periodic
tempo, and the singing voice can be extracted much less when the REPET is
used on the components from the NTF, because the REPET uses the median
filter to extract the background music with the assumption that the singing
voice is sparse in the time-frequency domain, which can improve the separation
results. Therefore, a method based on the REPET and the NTF is proposed to
achieve the singing voice/music separation.

This section presents the proposed method based on the NTF and the REPET.
The system diagram is depicted as Fig. 1. The NTF is applied to decompose the
mixture into different components as the first step and followed by the REPET
to extract the background music of every components. The median filter and the
wiener filter are in the end to improve the separation results further.

Non-negative 
TF

Input
X

REPET-
SIM

REPET-
SIM

Background

Voice

Percussive 
Filter

Harmonic 
Filter

Wiener 
Filter

Music

Voice

Fig. 1. System Diagram.

2.1 Non-negative Tensor Factorization

Audio signals construct the tensor through the time domain, frequency domain
and the channels, actually it is the expansion of the signal amplitude spectrum
on the channels. For a monaural signal in the mixed dual channel signals, we
apply the short time fourier transform (STFT) to the mixture to get the time-
frequency (T-F) spectrum Spec ∈ CF×T×I . And then we can obtain the am-
plitude spectrum AmpSpec ∈ RF×T×I from the T-F spectrum Spec through
modulo operation.

For a three order amplitude spectrum tensor AmpSpec. F represents the
identification ability of the frequency domain. T represents the time domain in
the way of frames. I denotes the number of channels, I = 1 denotes the monau-
ral, and I = 2 denotes the dual channels. In this article, we decompose the three
order tensor into the sum of a series of weighted matrices, each weighted matrix
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represents a component spectrum Vi, which is shown in Fig. 2, the formula in
which is depicted as:

AmpSpec ≈
N∑

i=1

QiVi =

N∑

i=1

ComSpeci (1)

Vi = Wfi �Hit (2)

where Qi is the gain of the corresponding component matrix Vi, ComSpeci
is the component amplitude spectrum, N is the component numbers. Here IS
convergence criteria is applied to the NTF.

Fig. 2. Non-negative tensor factorization.

Each component spectrum corresponds to a signal in the time domain. When
we apply the NTF to the amplitude spectrum, and the phase information is lost.
Fortunately human ears are not sensitive to the phase information. So the sources
are reconstructed through the wiener filter and the mixed T-F spectrum Spec.
Finally we use the inverse short time fourier transform (ISTFT) to retrieve the
signal in the time domain.

AmpSpeci =
ComSpeci

N∑

i=1

ComSpeci

�AmpSpec (3)

Speci =
AmpSpeci
AmpSpec

� Spec =
ComSpeci

N∑

i=1

ComSpeci

� Spec (4)

where � denotes the element-wise product. Division is the same. To be noticed,
we use the phase information of the mixed signal to construct the source signal.
It is not consistent to the phase of the practical signal, just a approximate
estimation.
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2.2 The Similarity Detection

The correlation coefficient is widely used to measure the correlation between
two signals. Here the correlation coefficient is utilized to classify the component
signals into two categories named as voice and music. Denote si as a time-domain
component signal, x as a single channel mixture. Our evaluation criterion is
defined as follow:

corr(s,x) =

M∑

i=1

sixi

√
M∑

i=1

si2
M∑

i=1

xi
2

(5)

If the correlation coefficient is bigger than 0.5, we assume the component
includes voice or periodic music. On the contrary, we treat it as a voice/music
block. Through the simple similarity detection algorithm, the period music and
the block music are divided. However, the block voice is divided into the music
by mistake though it belongs to voice, so we need to apply REPET to both of
the two categories.

2.3 The Repeat Pattern Extraction Technique

Singing voice and background music still disturb each other in the signals recov-
ered from NTF. The main reason is that the background music does not have
good periodicity. In other words, music signal is not a base signal, the same
reason for the singing voice. So we utilize the REPET [12,13] to the two signals
and post-processing to improve the separation results. Then the extracted back-
ground music is added up together as the final music estimation and the rest is
summed up as the final voice estimation.

REPET-SIM is thus a generalization of REPET, an effective approach for
separating the repeating background music from the non-repeating singing voice
in a mixture, by identifying the repeating elements and smoothing of the non-
repeating elements. In particular, REPET-SIM used a similarity matrix to iden-
tify the similar frames in the mixed spectrum, the following is the median filter
to smooth out the non-repeating frames. The similarity matrix could identify
the similar frames but not the fixed period.

2.4 Post-processing

There are always percussive elements in the music and harmonic elements in
the singing voice. The percussive elements have self-similarity in the frequency
domain, and the harmonic elements are self-similar in the time domain. Using
these two prior knowledge, we use the median filter as a post-processing on the
voice spectrum AmpSpecvoice named as harmonic filter and music spectrum
AmpSpecmusic named as percussive filter. To be more specific, it is the median
filter [17]. On the voice spectrum across the time frames the median filter is
utilized to enhance the harmonic elements and suppress the percussive elements;
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percussive filter is applied on the music spectrum along a frame to enhance the
percussive elements and suppress the harmonic elements.

Median filter is widely used in the image denoising, especially for removing
the salt and pepper noise. Given an input vector x(n), then y(n) is the output
of a median filter with length l, where l defines the order of the filter. Thus the
median filter can be defined as:

y(n) = median{x(n− k : n+ k), k = floor(l/2)} (6)

For the special amplitude spectrum AmpSpec, denoting the ith time frame
as AmpSpeci and the hth frequency slice as AmpSpech; for each time frame
AmpSpeci, AmpSpecmusic can be obtained from the percussive filter, for each
frequency slice, using the harmonic filter we can get the AmpSpecvoice:

AmpSpecmusic = M{AmpSpeci, lperc} (7)

AmpSpecvoice = M{AmpSpech, lharm} (8)

where M represents the median filter. Apply the wiener filter to the filtered voice
spectrum and the music spectrum as the follows:

AmpSpecvoice =
AmpSpecvoice

AmpSpecvoice +AmpSpecmusic
�AmpSpec (9)

AmpSpecmusic =
AmpSpecmusic

AmpSpecvoice +AmpSpecmusic
�AmpSpec (10)

The voice and the music spectrum soft mask are calculating through dividing
the mixed spectrum respectively:

Maskmusic =
AmpSpecmusic

AmpSpec
=

AmpSpecmusic

AmpSpecvoice +AmpSpecmusic
(11)

Maskvoice =
AmpSpecvoice
AmpSpec

=
AmpSpecvoice

AmpSpecvoice +AmpSpecmusic
(12)

Using the soft mask to multiply the mixed complex spectrum Spec will get
the voice complex spectrum and the music complex spectrum. We use the ISTFT
to reconstruct the singing voice and the background music in the end.

3 Evaluation

Experiments are measured on the MIR-1K dataset, including 1000 Chinese song
clips, wav format 16kHz sampling rate. Background music and the singing voice
are recorded in the left and right channel respectively. We create a set of 1000
mixtures by simply summing up the left and right channel into a monaural
mixture for each song clip.
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BSS Eval toolbox [20] is widely used to quantify the quality of the separation
between a source and its estimation in BSS field. Source to interference ratio
(SIR), sources to artifacts ratio (SAR), and signal to distortion ratio (SDR) are
included [19]. We choose these metrics because they are widely used in the source
separation evaluation.

In Durrieu’s analysis, the window and the step size is 1024 and 512 samples
respectively, and the number of iteration is set to 30, the same as [18]. As for
the REPET-SIM, Hamming windows of 1024 samples and a step size of 512
samples are used. The minimal threshold between similar frames is set to 0, the
minimal distance between consecutive frames to 0.1s, and the maximal number
of repeating frames to 50 [11,18].

In our experiment, the window size of 512 samples is used, and the step size is
512 samples. The component’s number is 2. The parameters of REPET-SIM are
the same as the comparative method[11]. In the post-processing stage, we use a
17-order lharm harmonic filter and a 21-order lperc percussive filter[17]. Wiener
filter is in the end which makes the sum of singing voice and music equal to the
mixture.

Fig. 3 ∼ 5 depicts the distribution of SDR, SIR and SAR [19] respectively.
The SDR represents the ratio of two sources, the SIR indicts the interferences
betweeen sources and the SAR implies the artifact’s deviation from the algorithm
itself. In Fig. 3 ∼ 5, the left represents singing voice and the right denotes
background music. The comparative methods include the Durrieu’s, RPCA and
REPET-SIM. Fig. 3 ∼ 5 shows the average values of the 1000 clips, which is
representative, the higher the better.
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Fig. 3. Bar of the distribution for the SDR (dB).

Fig. 3 depicts the distribution of SDR, and it shows that our proposed method
makes much better than the other comparative methods in background music.
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Our method achieves about 1dB higher than the REPET and almost 2dB more
than the other two methods. For singing voice our method is close to the results
of Durrieu’s but higher than the other two methods about 0.6 ∼ 0.8dB. The
SDR is the overall evaluation of source separation. As can be seen from SDR,
our method achieves better results than the comparative methods.

Focusing on the SIR in Fig. 4, our proposed method achieves better results
than the other comparative methods in music, about 0.7dB higher than the
REPET and 2.0 ∼ 3.0dB higher than the other two. However, our method
is much lower than the Durrieu’s in singing voice, but higher than the other
two methods. This is related to the music/voice measures trade-off which can
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commonly be seen in singing voice/music separation. In other words, our pro-
posed method is close to the comparative methods in SIR.

From Fig. 5, we can be see that our proposed method is better than the
other state-of-the-art methods, an average increase about 0.4dB ∼ 0.5dB in the
background music, and the singing voice is slightly higher than the REPET
but much higher than the other two, especially the Durrieu’s, which shows that
our proposed method has fewer artifacts compared with the other methods in
the estimations. In other words, our method improves the background music
much more compared with the other methods, at the same time the singing
voice achieves a little bit increase. On the whole, our proposed method realizes
a relatively good result.

4 Conclusion

In this paper, we propose a new singing voice/music method based on the NTF
and REPET. Our system consists of three stages. The NTF decomposes both
the mixture and the sources into many components at the same time in the
first stage, which can reduce the voice extracted by the REPET in the following
stage; the harmonic filter, the percussive filter and the wiener filter can improve
our performance further more in the end. The proposed method can improve
the separation performance in the experiment on the MIR-1K dataset. Our later
work will focus on the identification methods for the components.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China under Grant 61071208.
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Abstract. Cervical vertebrae are important ramus communican that connect 
human body and the corpus. Muscles around cervical vertebrae such as deep 
cervical flexor and sternocleidomastoid muscle do key role to control chronicle 
neck pain thus monitoring such muscles near cervical vertebrae is important. In 
this paper, we propose a method to detect and analyze cervical vertebrae and re-
lated muscles automatically with fuzzy ART clustering from ultrasonography. 
The experiment verifies that our approach is consistent with human medical ex-
perts’ decision to locate key measuring point for muscle analysis and successful 
in detecting cervical vertebrae accurately. 

Keywords: Cervical Vertebrae, Fuzzy ART, Muscle Analysis, Ultrasonogra-
phy, Deep Cervical Flexor. 

1 Introduction 

Neck pain is very common complaint affecting up to 70% of individuals at some 
point of their lives [1]. Clinical neck pain is associated with impairment of muscle 
performance and the functional impairments associated with neck pain and the cause-
effect relationships between neck pain and motor control are well investigated [2]. 
Antevertebral deep cervical flexor (DCF) muscles such as longus coli and longus 
capitis do key role to stabilize cervical articulations and to preserve the lordotic 
curvature of the spine [3] and sternocleidomastoid muscle (SCM) is related with the 
rotation of the neck [4]. Strengthening of these muscles is important to treat the 
patients with neck pain provoked by various pathologies of cervical spine [5]. 

Using ultrasound image in muscle analysis is appropriate for its non-invasive, 
inexpensive, real time responses [6]. However, its limitations are often pointed out that 
sonographic images are dependent on the qualities of equipment and skills of expertise 
thus the diagnosis often misleads to subjective judgment [7]. Thus, we need an automatic 
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image segmentation and identification tool for anatomical landmarks that can eliminate 
such subjectivity in the image analysis [8]. 

Unfortunately, there is almost no directly related research for such an automatic 
neck pain related muscle extractor/ analyzer by computer vision yet. A recent study 
tried to give an automatic segmentation of cervical vertebrae from X-rays [9] but not 
related to muscles of our interests. Our concern is to detect and extract muscles such 
as sternocleidomastoid and longus capitis/colli in conjunction with cervical vertebrae 
automatically from ultrasonography and measuring the thickness for further medical 
analysis [10, 11]. All three vision based approaches aim to locate measuring key point 
accurately to avoid manual subjective key point setting for muscle analysis. 

Previously we applied simple average binarization and contour analysis algorithm 
to extract SCM and related objects [10] but for the rehabilitation purposes, locating 
cervical vertebrae and related DCF are more important and difficult due to low 
brightness contrast among objects. In our previous study [11], we applied fuzzy sigma 
binarization to overcome low brightness contrast by its adaptive thresholding 
characteristic. However, it does not consider the average brightness nor 
morphological characteristics of cervical vertebrae thus its performance is not stable 
especially when it forms the thickness measuring key points. 

In this paper, we propose a fuzzy ART clustering [12] approach to find the key 
points accurately in detecting cervical vertebrae. With such a clustering approach and 
subsequent smearing technology to restore lost information, our software is more 
consistent with human medical experts’ opinions in detecting cervical vertebrae and 
locating key points. 

2 Overall Procedure for Automatic Cervical Vertebrae 
Analyzer  

Obtained digital image follows DICOM (Digital imaging and Communications in 
medicine) standard format. In the main region of interest (ROI) part of the image as 
shown in Figure 1, there will be a blood vessel and two muscles are located above and 
below the vessel. The muscle above blood vessel is the sternocleidomastoid and the 
muscle below the blood vessel is the deep cervical flexors (DCF). Its lower part has 
irregular curve due to the border line of cervical vertebrae. 

 

Fig. 1. ROI of ultrasound image 
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Then, from the lower boundary lines of DCF, we apply upper/under search to find 
a candidate region for cervical vertebra as shown in Figure 4. 

  

(a) Lower Boundary (b) Candidate Area 

Fig. 4. Cervical Vertebra Candidate Area 

From the image shown as Fig. 4(b), we apply Fuzzy ART algorithm to make 
clusters to form cervical vertebrae. After fuzzy clustering, we apply quantization and 
labeling process to extract target objects. Fuzzy ART [12] is a powerful self-
organizing pattern clustering algorithm but it needs to be modified and tuned with 
respect to the area of applications.  

In our adoption of Fuzzy ART, we tuned the original algorithm as following; 
Original Fuzzy ART may have maximum output vector less than 1 due to the 

disagreement between input vector and weight vector and that can cause inaccurate 
similarity test. Thus we set the weight of output vector to make the maximum value  
as 1. 

When the winner node is chosen, the algorithm decides if a new cluster is 
initialized with similarity testing. In our adoption, if the similarity is acknowledged, 
we control the learning rate and connection weights dynamically so that the learning 
rate decreases if the winning rate increases. The learning rate is computed as 
following; 
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where β denotes the learning rate and fj* denotes the number of updates to the winner 
node. 

Our adoption of Fuzzy ART can be summarized as Figure 5. 
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Fig. 5. Modified Fuzzy ART 

ART clustering is shown as Figure 6.  

 

Fig. 6. The Effect of Fuzzy ART 
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Fig. 7. After Labeling Procedure 
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As shown in formula (2), the circle rate C is defined as 1 if the object is a perfect 
circle and it becomes more than 1 if the object is complex since the circumference (P) 
becomes larger. A is the area of the region in this formula. The extension rate (E) 
denotes the rate of the difference between the width and the height divided by the 
height for the minimum quadrangle that includes the object. E becomes 0 when the 
quadrangle is a square (or a circle of course). Any non-zero E represents the direction 
and the degree of unbalance of the object thus it helps to figure out the noise to be 
removed. 

The effect of noise removal is shown as Figure 8. 

 

⇩ 

 

Fig. 8. Noise Removed 

The resultant image may have lost information during the noise removal process. 
The horizontal smearing process is applied to compensate such information loss to 
obtain the final output image for extracting cervical vertebrae. 

4 Experiment and Conclusion 

The proposed method is implemented with C++ under Microsoft Visual Studio 2010 
on the IBM-compatible PC with Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz and 
4GB RAM. The experiment uses fifty two 800 x 600 size DICOM format images. 

The accuracy of the method or the utility of the automatic vision based cervical 
vertebrae analyzer can be measured by the agreement rate of locating thickness 
measuring key points with human expert – physical therapists. In order to avoid 
human subjectivity, our ground truths of measuring points are obtained by two 
physical therapists’ agreements. As described in Table 1, the proposed system showed 
92.3% agreement rate with multiple human experts’ agreements. 
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Table 1. Muscle Thickness Measuring Key Points Extraction 

 Proposed Method 

Key Points 48/52 ( 92.3 % ) 

In our proposed method, key point is set to be the lowest point of the first cervical 
vertebrae object and the range of measurement is within 1 cm left and right of that 
key point. The thickness of the DCF muscle is then computed as the average length of 
vertical lines within that measuring range. 

In our previous attempt [11], we used fuzzy sigma binarization instead of fuzzy 
ART of the proposed method. Also, the proposed method utilizes morphological 
information of cervical vertebrae in noise removal process. Figure 9 shows the 
difference of the proposed method and previous attempt [11]. 

 

  

(a) Extracting Cervical Vertebrae [11] (b) Extracting Cervical Vertebrae-Proposed 

  

(a) Key Points [11] (b) Key Point (Proposed) 

Fig. 9. Performance Comparison 
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Abstract. The adaptive Fourier decomposition (AFD) is a greedy iter-
ative signal decomposition algorithm in the viewpoint of energy. Instead
of using a fixed basis for decomposition, AFD uses an adaptive basis to
achieve efficient energy extraction. In the conventional searching method,
a new basis is searched from a large dictionary at every decomposition
level. This usually results in a slow searching speed. To improve the
efficiency, a fast searching method based on Nelder-Mead algorithm is
proposed in this paper. The AFD with the proposed searching method
is applied for electrocardiography (ECG) signals in which the selection
ranges of four key parameters in the proposed searching method are de-
termined based on simulation results of an artificial ECG signal. The
simulation results of real ECG data shows that the computational time
of the AFD based on the proposed searching method is just half of that
based on the conventional searching method with similar reconstruction
error.

Keywords: adaptive Fourier decomposition (AFD), Nelder-Mead algo-
rithm, electrocardiography (ECG) signal.

1 Introduction

The adaptive Fourier decomposition (AFD) is a novel signal decomposition al-
gorithm introduced by Qian et al [1,2,3]. It is based on the sequential extraction
of energy starting from the high-energy mode to the low-energy mode [4]. The
AFD can be considered as one kind of matching pursuit algorithm that is a type
of sparse approximation based on a dictionary. For the classical Fourier decom-
position, the simple sinusoidal basis function is applied as dictionary. Although
the computational complexity of the classical Fourier decomposition is low, its
energy extraction is not efficient since its basis cannot match signals adaptively
[5]. The AFD overcomes such drawback by using the rational orthogonal system,
{Bn}∞n=1, as its basis where

Bn(e
jt) =

√

1− |an|2
1− anejt

n−1∏

k=1

ejt − ak
1− akejt

, (1)
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Fig. 1. Dictionary of an in the conventional searching method

an ∈ D (n = 1, 2, · · · ), D = {z ∈ C : |z| < 1}, and C is the complex plane [1].
Bn is determined by the sequence of an [6]. In every decomposition level, a new
value of an is searched in D to make sure that the decomposition achieves a high
converging rate [1]. The crucial rule of this searching process is the maximal
projection principle asserting that, for any Gn ∈ H2, there exists an ∈ D such
that

an = arg max
{∣
∣
〈
Gn, e{an}

〉∣
∣2 , : an ∈ D

}
(2)

where Gn is the reduced remainder, and e{an} is the evaluator at an [1]. By
defining

D(an) =
∣
∣
〈
Gn, e{an}

〉∣
∣2 , (3)

the basis selecting problem in every decomposition level of AFD can be formu-
lated as follows:

maximize D(an) =
∣
∣
〈
Gn, e{an}

〉∣
∣2 , (4)

subject to |an| ≤ 1.

Since the formula D(an) is highly nonlinear and very complex, how to solve
such optimization problem efficiently becomes the key problem of the AFD.
Until now, only one simple searching method is implemented [7,8]. It is based
on an discrete dictionary containing finite possible points of an as shown in Fig.
1. In every decomposition level, all points of an in this searching dictionary are
verified one by one in order to find an that satisfies (4) [7]. In other words, for the
conventional searching method, the higher density of the searching dictionary is,
the more accurate the solution of (4) is but the longer the computational time is.
Therefore, the overall performance of the AFD involves such trade-off between
the accuracy and the computational time.

In order to increase the efficiency of the basis searching process in the AFD,
a fast basis searching process of AFD is presented in this paper. It is based on
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the Nelder-Mead algorithm that is one of the best known numerical algorithm
for optimization problems [9]. Since it does not require derivative information,
it is very suitable for solving (4) [10]. However, the Nelder-Mead algorithm is
only able to find the local minimum point which is close to the given initial
points. Therefore, the contrast function D(an) is reformed to change the original
maximization problem to the minimization problem. Moreover, in order to make
sure the solution obtained from the Nelder-Mead algorithm is close to the global
minimum point, suitable initial points of the Nelder-Mead algorithm are searched
from a dictionary containing random available an points.

In the following parts, the Nelder-Mead algorithm is introduced first. Then,
the fast basis searching method based on the Nelder-Mead algorithm is proposed.
To verify the proposed searching method, the AFD with the proposed searching
method is applied to artificial and real ECG signals. Selection ranges of four key
parameters in the proposed searching method are determined based on simula-
tion results of an artificial ECG signal. Based on the determined selection ranges,
simulation results of real ECG data from the MIT-BIH Arrhythmia Database
[14,15] shows that the computational time of the AFD based on the proposed
searching method is only half of that based on the conventional searching method
with similar reconstruction error.

2 Nelder-Mead Algorithm

The Nelder-Mead algorithm is one of the best known simplex method for finding
local minimum of a function devised by Nelder and Mead [11]. For two variables,
this method is a pattern search that compares function values at three vertices
of a triangle [10]. In every searching step, based on the initial triangle, the worst
vertex where the function value is largest is replaced with a new vertex [10].
Then, the new triangle is formed as the initial triangle for the next searching
step.

To illustrate the Nelder-Mead algorithm, suppose that f(x, y) is a function
of two parameters x and y that is to be minimized. The Nelder-Mead solve this
optimization problem based on following steps.

In the first step, the initial triangle BGW is established based on the given
three points:Vk = (xk, yk), k = 1, 2, 3. The function value of f(x, y) is evaluated
at each of three points: zk = f(xk, yk) for k = 1, 2, 3. Suppose that z1 ≤ z2 ≤ z3.
Then, B = (x1, y1) denotes the best vertex, G = (x2, y2) denotes the good
vertex, and W = (x3, y3) denotes the worst vertex [10].

In the second step, since the construction process needs the midpoint of the
line segment joining B and G, this midpoint needs to be evaluated by

M =
B+G

2
. (5)

In the final step, the worst vertex is updated. The decision logic is shown
below. A reflected point R defined as (6) is needed to be tested. If the function
value at R is smaller than the function value at W, then the correct direction
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should be moved toward the minimum [10]. In addition, the extended point E
defined as (7) should be tested [10]. If the function value at E is less than the
function value at R, then the better vertex than R is found [10].

R = 2M−W (6)

E = 2R−M (7)

If the function values at R and W are same, the contracted point C defined
as (8) or (9) should be tested [10]. If the function value at C is not less than
the value at W, the points G and W should be shrunk toward B. The point G
is replaced by M [10]. The point W is replaced with S which is defined as (10)
[10].

C1 =
W +M

2
(8)

C2 =
M+R

2
(9)

S =
B+W

2
(10)

In the Nelder-Mead algorithm, only function values are required to be evalu-
ated in every step. The derivative of original function is not required. Therefore,
the Nelder-Mead algorithm is easy to be implemented and suitable for the op-
timization problem of AFD shown in (4). However, it is only for finding local
minimum of a function. How to adopt it to find the global maximum of (3)
becomes the key problem.

3 Fast Basis Searching Method

The fast basis searching method is to find an which can achieve (4) efficiently
by using the Nelder-Mead algorithm. Since the Nelder-Mead algorithm is for
minimization problems, the original maximization problem shown in (4) should
be represented as the minimization problem. From (3), it can be seen that the
function value of D(an) is always a non-negative number. Therefore, finding
the global maximum of D(an) is equivalent to finding the global minimum of
−D(an). Moreover, since an is determined by its magnitude ρan and phase αan ,
the contrast function D(an) can be represented as

Y (ρan , αan) = −
∣
∣
∣

〈
Gn, e{ρan ejαan }

〉∣
∣
∣ . (11)

Based on the new contrast function Y (ρan , αan), the basis selecting problem can
be reformulated as follows:

minimize Y (ρan , αan) = −
∣
∣
∣

〈
Gn, e{ρan ejαan }

〉∣
∣
∣ (12)

subject to |ρan | ≤ 1,
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Algorithm 1. AFD based on proposed fast basis searching method

Input:
y(t): ECG signal;
Ndecom: Maximum decomposition level;
Nrand: Total number of random points in the searching dictionary of initial points;
Rmin: Minimum radius of outer circle;
ρd and αd: Distances of three initial points of Nelder-Mead algorithm.

1: Initialize a1 = 0 and N = 1;
2: G1 ← y(t) + jH{y(t)};
3: ea1 ← B1 ←

√
1−|a1|2

1−a1ejt
;

4: Generate u containing Nrand random numbers based on the standard uniform dis-
tribution on (0, 1);

5: Generate searching dictionary A of initial points containing Nrand points in which
(ρank, αank) follows (13);

6: while N ≤ Ndecom do

7: GN+1 ← (
GN (t)− 〈

GN , e{aN}
〉
e{aN}

)
1−aN ejt

ejt−aN
;

8: Find the point that contains the maximum value of (3) inA denoting as (ρ1, α1);
9: Apply Nelder-Mead method to find the point that contain minimum value of

(11) by using (ρ1, α1), (ρ1 + ρd, α1) and (ρ1, α1 + αd) as initial points. Denote the
obtained point as (ρan(max), αan(max));

10: aN+1 ← ρan(max)e
jαan(max) ;

11: BN+1 ←
√

1−|aN+1|2
1−aN+1e

jt
ejt−aN√
1−|aN |2

BN ;

12: FN+1 ←
〈
GN+1, e{aN+1}

〉
BN+1;

13: N ← N + 1;
14: end while
15: yr ← Re

{∑N
n=1 Fn

}
;

Output:
yr: reconstructed signal;
Fn: decomposition composition at n decomposition level where n = 1, 2, 3, · · · , N .

which can be applied for the Nelder-Mead algorithm.
To make sure that the Nelder-Mead algorithm can obtain the global minimum

instead of local minimum, initial points should be selected around the target
global minimum point. In order to find such suitable points, in the proposed
searching method, a searching dictionary containing random possible points is
established. This process of searching initial points is similar to the conventional
basis searching process of AFD. All points in the searching dictionary is veri-
fied one by one. The point which contains the minimum value of Y (ρan , αan) is
applied to be the first initial point (ρ1, α1). Another two initial points can be
selected around the first initial point such that (ρ1 + ρd, α1) and (ρ1, α1 + αd)
where ρd and αd are two small numbers. It should be noticed that the number
of points in the searching dictionary is not required to be very large since the
initial points are not required to be the accurate optimization solution. More-
over, according to [12], for ECG signals, the optimization solution points of an’s
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normally are distributed in an outer circle. Therefore, the searching space of
the initial points can be reduced to the outer circle {(ρan , αan)|Rmin ≤ ρan < 1}
for ECG signals where Rmin denotes the minimum radius of the outer circle.
From the searching process, it can be seen that the searching dictionary is very
important in order to find suitable initial points. All points in the outer cir-
cle should have equivalent probability to be selected into the searching dictio-
nary. Suppose that the random points in the searching dictionary are defined as
{(ρan1, αan1), (ρan2, αan2), · · · , (ρanNrand

, αanNrand
)} where Nrand denotes the to-

tal number of random points, and u is an array of random numbers in (0, 1) with
uniformly distribution. To make sure that these random points are distributed
in the outer circle uniformly, they should satisfy

(ρank, αank) =

(

2πuk,
√

(1−R2
min)uk

)

. (13)

where (ρank, αank) and uk denote the k-th random point in the searching dic-
tionary and the k-th number in u.

After obtaining three initial points, the Nelder-Mead algorithm is able to be
applied for (12). The detailed process of the AFD based on the proposed fast
basis searching method is shown in Algorithm 1 where H{·} denotes the Hilbert
transform which is used to transfer the original ECG signal to its analytical
representation following the requirement of AFD [13].

4 Simulation Results and Discussions

In order to determine suitable selection ranges of parametersNrand, Rmin, ρd and
αd shown in Algorithm 1, simulations of an artificial ECG signal are performed.
Based on the obtained suitable selection ranges, the proposed searching method
is evaluated by real ECG data from the MIT-BIH Arrhythmia Database [14,15]
and compared with the conventional searching method. Two parameters are con-
sidered to evaluate the searching performances. One is the reconstruction error
at 100 decomposition level which shows whether the decomposition components
obtained by the searching method can express the original signal. It is defined
as the ratio of the energy of reconstructed signal by using first 100 decomposi-
tion components to the energy of the original ECG signal. Another one is the
computational time which indicates the efficiency of the searching method. The
following simulations are completed in MATLAB 2014a. The system platform is
Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz with 12GB RAM.

4.1 Parameters Determination

There are total four parameters Nrand, Rmin, ρd and αd that can affect searching
results in the proposed fast searching method. Nrand and Rmin are related to the
process of generating random points in the searching dictionary of initial points.
ρd and αd are related to the performance of Nelder-Mead algorithm. In this part,
an artificial ECG signal is applied for simulations. It is based on the nonlinear
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dynamic model proposed in [16]. The sampling frequency is 256Hz. The heart
rate is 60 beats per minutes.

Nrand and Rmin are determined first. To make sure the convergence of the
Nelder-Mead algorithm, ρd and αd are all set as small numbers such that ρd =
0.0005 and αd = 0.004. Nrand is evaluated from 100 to 2000. Rmin is evaluated
from 0 to 0.95. For every pair of Nrand and Rmin, 100 simulations are carried
out to calculate mean results. Fig. 2 shows simulation results of different Nrand’s
and Rmin’s. It can be seen that the reconstruction error at 100 decomposition
level is all smaller than 0.001. In other words, no matter what values Nrand and
Rmin are, the decomposition components are all able to represent the original
signal. Fig. 2(b) shows computational time of different Nrand’s and Rmin’s. It
can be seen that the computational time increases when Nrand increases, which
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proposed searching method at 100 decomposition level
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Fig. 5. Comparison between computational time of conventional searching method and
proposed searching method

is due to that all points in the searching dictionary of initial points should be
evaluated one by one in order to find suitable initial points. Combining these
two simulation results, it is better to select Nrand from 500 to 1000 and select
Rmin from 0 to 0.4 to make sure that the computational time and reconstruction
error are all low at the same time.

By setting Nrand and Rmin as 600 and 0.1 separately, parameters ρd and αd

are evaluated. ρd and αd are all evaluated from 1× 10−6 to 1× 10−3. For every
pair of ρd and αd, 100 simulations are carried out to calculate mean results.
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Fig. 3 shows simulation results of different αd and ρd. From Fig. 3(a) and Fig.
3(b), it can be seen that reconstruction error and computational time are almost
same for different values of ρd and αd. However, there still are little differences.
In order to obtain low reconstruction error and low computational time at the
same time, it is better to select αd from 1× 10−4 to 5× 10−4 and select ρd from
3× 10−4 to 1× 10−3.

4.2 Comparison between Proposed Searching Method
and Conventional Searching Method

After determining selection ranges of parameters Nrand, Rmin, ρd and αd, the
decomposition performances of proposed searching method are evaluated by real
ECG data from the MIT-BIH Arrhythmia Database and compared with conven-
tional searching method. In order to make sure that the conventional searching
method can obtain the solution that is close to the accurate optimization solution
of (4), 7705 points are considered in its searching dictionary. For the proposed
fast searching method, parameters Nrand, Rmin, ρd and αd are set as 800, 0.1,
5× 10−4 and 3× 10−4 separately. Fig. 4 shows the comparison of reconstruction
error at 100 decomposition level for 19 different records. It can be seen that
they are all small and almost same. Therefore, the decomposition components
obtained from these two different searching methods are all able to represent
the original signals. Fig. 5 shows the comparison of computational time. For all
records, the computational time of the proposed searching method is almost half
of the computational time of the conventional searching method. In other words,
the proposed searching method is faster than the conventional searching method
significantly.

5 Conclusion

A fast basis searching method of AFD based on the Nelder-Mead algorithm
is proposed for ECG signals. In order to adopt the Nelder-Mead algorithm to
the AFD, the original maximization problem for searching basis in the AFD
is reformulated to the minimization problem. Moreover, a random searching
dictionary is established for ECG signals to find suitable initial points of the
Nelder-Mead algorithm. Based on simulation results of the artificial ECG signal,
selection ranges of four key parameters Nrand, Rmin, ρd and αd in the proposed
fast searching method are determined. The simulation results of real ECG data
shows that the computational time of the AFD based on the proposed searching
method is just half of that based on the conventional searching method with
similar reconstruction error.
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Abstract. Among the EEG-based BCIs, SSVEP-based BCIs have gained much 
attention due to the advantages of relatively high information transfer rate (ITR) 
and short calibration time. Although in SSVEP-based BCIs the frequency 
recognition methods using multiple channels EEG signals may provide better 
accuracy, using single channel would be preferable in a practical scenario since 
it can make the system simple and easy-to-use. To this goal, we propose a new 
single channel method based on wavelet-independent component analysis 
(WICA) in the SSVEP-based BCI, in which wavelet transform (WT) is applied 
to decompose a single channel signal into several wavelet components and then 
independent component analysis (ICA) is applied to separate the independent 
sources from the wavelet components. Experimental results show that most of 
the time the recognition accuracy of the proposed single channel method is 
higher than the conventional single channel method, power spectrum (PS)  
method. 

Keywords: wavelet-independent component analysis (WICA), SSVEP, fre-
quency recognition, BCI. 

1 Introduction 

A brain-computer interface (BCI) is a system that translates human intentions into 
command and control signals, providing a direct communication between a human or 
animal brain and an external device. Most modern BCIs rely on non-invasive scalp 
electroencephalogram (EEG) measurements which are easy to implement. In EEG-
based BCI systems, three types of signals including event-related 
desynchronization/synchronization (ERD/ERS), P300 and steady-state visual evoked 
potential (SSVEP) are most commonly used [1-2].  

SSVEP is a continuous brain response evoked over occipital scalp areas with the 
same frequency as rapidly repetitive visual stimulus [3]. According to this mecha-
nism, SSVEP-based BCI systems use multiple visual stimuli that flicker at different 
frequencies simultaneously while the participants are required to focus on the stimu-
lus they intend to select, which elicits the corresponding stimulation frequency in the 
EEG [4]. Due to its less calibration time and higher information transfer rate (ITR), 
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and small number of electrodes compared to other types of BCIs, SSVEP-based BCI 
has been increasingly studied in recent years [2]. A key step is to recognize the fre-
quency of SSVEPs, for which a number of frequency recognition methods using ei-
ther multiple channel or single channel EEG signals have been proposed in the litera-
ture. Multichannel detection methods such as canonical correlation analysis (CCA), 
independent component analysis (ICA) and minimum energy combination (MEC) 
make use of multiple channel EEG signals and channel covariance information which 
may achieve a high signal-to-noise ratio (SNR) [1,5,6]. However, using multiple 
channels may not only lead to less comfortable and inconvenient user experience but 
also increase the complexity of implementation in a real BCI system. In contrast, 
using single channel methods reduce the complexity of the implementation. One of 
the most widely-used single channel methods is the power spectrum (PS) method in 
which fast Fourier transform (FFT) is applied to estimate the power spectrum of the 
single channel EEG signals. Among all the frequency components in the evoked EEG 
spectrum that are the same as the stimulus frequencies, the one with maximum power 
determines the button that the user intends to select [4]. The PS method is simple, but 
unfortunately, it is sensitive to noise [4].  

This paper proposes a new frequency recognition method for single channel based 
on wavelet-independent component analysis (WICA). In this method, wavelet trans-
form (WT) is applied to decompose a single channel signal into several wavelet com-
ponents and then independent component analysis (ICA) is applied to separate the 
independent sources from the wavelet components. The proposed frequency recogni-
tion method is verified by real SSVEP signals and compared with the PS method. 
From experimental results, the recognition accuracy of the proposed method is higher 
than that of the PS method most of the times. 

2 Wavelet-Independent Component Analysis 

The wavelet-independent component analysis (WICA) is a combined technique of the 
wavelet transform (WT) and the independent component analysis (ICA) for separat-
ing independent sources from the observation obtained from a single channel [7]. 

ICA is one kind of blind source separation (BSS) algorithms which aims to recover 
a set of unknown mutually independent source signals from their observed mixtures 
without knowledge of the mixing coefficients [8]. Suppose that there are N observed 

mixtures [ ]1 2( ) ( ), ( ), ..., ( ) T
Nt x t x t x t=x which can be modeled as 

 ( ) ( )t tx As=  (1) 

where source signals [ ]1 2( ) ( ), ( ), ..., ( ) T
Mt s t s t s t=s are assumed to be independent, 

and A is an N M×  unknown full column-rank mixing matrix [8]. The BSS  
algorithm is to estimate the unknown A and ( )ts  from measurements ( )tx . The goal 

of ICA is to determine an M N×  demixing matrix W , with M output signals 

 ( ) ( ) ( ) ( )t t t ty Wx WAs PDs= = =  (2) 
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where MM ×∈P R is a permutation matrix, and M M×∈D R  is a diagonal scaling 
matrix [8]. Then, the source signals are recovered up to scaling and permutation. It is 
well known that ICA cannot be applied for single channel data analysis directly be-
cause the number of observed mixtures should not be less than the number of sources 
[7]. For single channel data analysis, in [7] WT is proposed to generate the multiple 
components from the single channel data for ICA. 

WT performs a type of time-frequency transforms, which overcomes the limita-
tions in time and frequency resolution occurring with the classical Fourier transform 
and its variants [9]. WT is one of the leading techniques for processing non-stationary 
signals, and thus is well suited for EEG signals which are non-stationary [10]. For the 
classical discrete WT (DWT), the signal ( )f t  is represented as 

 
1

( ) ( 2 ) ( 2 )
J

k

jR R j
R jk

j
k

R

f t c t k d t kφ ψ −
−

=

−= − + −∑ ∑  (3) 

where ( )j tφ  and ( )j tψ present appropriate dilations and translations of the scaling 

functions ( )tφ and the mother wavelet ( )tψ which are defined as 

 / 2 / 2( ) 2 (2  and ( ) 2 ( )) 2j j j j
j jt tt tφ φ ψ ψ= =  (4) 

for integer j [9]. However, the coefficient sequences of the classical DWT are deci-

mated at each decomposition level [9]. In other words, decomposition components 
contain different signal lengths of different decomposition levels. Such sets of signals 
are not suitable as inputs of ICA. Therefore, in the proposed SSVEP-BCI frequency 
recognition method, the stationary wavelet transform (SWT) is applied. In SWT, the 
filters at each decomposition level are modified by padding them out with zeros in-
stead of decimating coefficient sequences in order to keep sequences at each new 
decomposition level have same length as the original sequences [9].  

For WICA, by combining WT and ICA together, the limitation of ICA that it can-
not be applied to single channel signal is overcame.  

3 SSVEP Frequency Recognition Method Based on WICA 

3.1 EEG Recordings 

The EEG signals applied for examples were recorded from Oz channel (according to 
the international 10-20 system) and the ground was located at forehead while the ref-
erence was at the left mastoids. Circuit impedance was kept below 10 kΩ. The signals 
were amplified by a g.tec amplifier, g.USBamp (Guger Technologies, Graz, Austria) 
with a sampling rate at 600 Hz and filtered by a band-pass filter (0.5~30Hz) and a  
50 Hz notch filter to avoid the baseline drift, high frequency noise and powerline 
interference. 
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3.2 Frequency Recognition Method Based on WICA 

ICA is an effective technique used for EEG signals denoising and extraction in a 
number of studies [10, 11]. However, the ICA algorithm is not able to be applied 
directly to the frequency recognition of SSVEP-based BCIs when only a single chan-
nel is available. In other words, the input of ICA must be a matrix instead of a vector. 
To overcome this limitation, it is necessary to construct the input matrix of ICA using 
WT for decomposition. The combination of WT and ICA is called WICA technique. 

Assume that x(t) is the EEG signal recorded from a single channel, fstimulus is the re-
al stimulus frequency of x(t), and there are a group of reference signals r1(t), 
r2(t),…,rN(t) with N different stimulus frequencies f1, f2,…, fN.  

                      

1 1

2 2

3 3

( ) sin(2 )

( ) sin(2 )
1 2

( ) sin(2 ) , , ,...,
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( ) sin(2 )
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                 (5) 

where T is the number of sampling points and Fs is the sampling rate. 

 

Fig. 1. Example of the SWT decomposition results (M=4) 

The procedure of proposed method follows three main steps. First of all, SWT is 
applied to x(t) for the wavelet decomposition specifically with mother wavelet symlet 
at decomposition level M in this study. Both the approximation and detail components  
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Fig. 2. Example of the output ICs from WICA (M=4) 

 

Fig. 3. Flow chart of frequency determination from ICs 

in each level of SWT are generated so that M approximation components and M detail 
components can be obtained in total. Fig. 1 illustrates the wavelet decomposed com-
ponents (M=4). The M decomposed approximation components are selected to form 

an M T×  input matrix 1 2( ) [ ( ), ( ), ..., ( )]TMt x t x t x tx = of ICA while the detail com-

ponents are eliminated.  
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Then in the second step, the FastICA algorithm [12] is applied to ( )tx in order to 

find out the M T× matrix 1 2( ) [ ( ), ( ), ..., ( )]TMt y t y t y ty = of independent compo-

nents (ICs). Fig.2 illustrates the ICs obtained from ICA (M=4). 
Selection of desired frequency among M ICs is done in the final step as shown in 

Fig.3. Pearson product-moment correlation (PPMC) is performed pairwise between M 
ICs and N reference signals r1(t), r2(t),…,rN(t) to form an M N× correlation coeffi-
cient matrix. The correlation coefficients ,i jρ are calculated by  

               

[ ]

[ ]{ } [ ] { },
2 22 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i j i j

i j

i i j j

E y t r t E y t E r t

E y t E y t E r t E r t
ρ

⎡ ⎤ ⎡ ⎤⋅ − ⋅⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

 (6) 

where i = 1, 2,…, M, and j = 1, 2,…, N. Thus, the correlation coefficient matrix can 

be represented as ( )ij M Nρ ρ ×= . The maximal correlation coefficient maxρ in this 

matrix can be found out and the corresponding frequency fj out of N stimulus frequen-
cies f1, f2,…, fN is recognized as the  frequency of SSVEP fs. 

4 Experimental Study 

4.1 Experimental Settings 

An SSVEP-based BCI system was designed and offline analyses performed in this 
study. A rectangle flickered at a certain frequency as the visual stimuli displayed in an 
LCD monitor (ViewSonic 22”, refresh rate 120 Hz, 1680×1050 pixel resolution). The 
system contained 10 stimulus frequencies including 15, 13.3333, 12, 10.9091, 10, 
9.2308, 8.5714, 8, 7.5 and 7.0588 Hz. EEG signals were recorded and preprocessed 
with the same settings as the previous part. 

26 subjects (aged from 21 to 30 years old) with normal or corrected-to-normal vi-
sion participated in this study in total of 5 sessions. The subjects were seated comfort-
able in front of the monitor with a distance of around 60 cm and they were asked to 
gaze at the flashing rectangle. In each session, all the subjects carried out 10 runs 
corresponding to 10 target frequencies and each run lasted for 4 s. The protocol was 
in accordance with the Declaration of Helsinki and approved by the Research Ethics 
Committee (University of Macau). 

4.2 Results and Discussion 

The recorded EEG signals were analyzed using different time window lengths ranging 
from 1 to 4 s and the EEG data were preprocessed by band-pass filtering between 6-
20 Hz. The recognition accuracy was calculated as the evaluation index of the per-
formance of the proposed method and the recognition accuracies of the PS method 
were also presented for comparison. Let fs be the frequency determined by the recog-
nition algorithms and let fstimulus be the real stimulus frequency of a segment of signal. 
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In one segment, if fs equals to fstimulus, this segment is considered as the correct recog-
nized segment. Then the recognition accuracy can be defined as 

 correct

total

Recognition Accuracy 100%
N

N
= ×  (7) 

where Ncorrect is the number of correct recognized segments, and Ntotal is the number of 
total segments. 

Table 1. Comparison of recognition accuracies between PS and WICA method with different 
window lengths 

Subject 

Window Length (L) 

L = 1 s L  = 2 s L = 3 s L = 4 s 

PS WICA PS WICA PS WICA PS WICA 

S1 67% 70% 82% 86% 83% 90% 82% 94% 

S2 60% 54% 81% 81% 81% 81% 88% 89% 

S3 29% 37% 41% 52% 49% 55% 48% 60% 

S4 64% 65% 81% 87% 91% 93% 92% 96% 

S5 67% 69% 77% 85% 79% 89% 80% 91% 

S6 23% 21% 29% 29% 34% 30% 36% 37% 

S7 26% 20% 36% 39% 41% 49% 36% 55% 

S8 31% 36% 43% 47% 52% 54% 58% 51% 

S9 56% 60% 77% 80% 81% 82% 80% 88% 

S10 51% 54% 67% 70% 67% 75% 70% 73% 

S11 25% 29% 17% 28% 17% 44% 30% 43% 

S12 29% 30% 37% 40% 37% 52% 42% 63% 

S13 27% 28% 31% 42% 33% 47% 26% 51% 

S14 24% 25% 23% 36% 24% 42% 22% 53% 

S15 26% 27% 29% 41% 29% 44% 30% 53% 

S16 28% 31% 40% 51% 51% 63% 52% 62% 

S17 19% 22% 17% 27% 20% 36% 20% 40% 

S18 48% 46% 70% 77% 79% 88% 82% 85% 

S19 30% 23% 33% 33% 43% 49% 36% 46% 

S20 41% 38% 60% 63% 62% 65% 68% 72% 

S21 41% 41% 61% 61% 68% 70% 72% 80% 

S22 35% 38% 47% 52% 49% 63% 54% 66% 

S23 35% 36% 48% 56% 51% 68% 58% 68% 

S24 30% 31% 42% 49% 49% 60% 50% 67% 

S25 25% 23% 34% 39% 39% 41% 36% 34% 

S26 19% 18% 18% 23% 19% 32% 26% 36% 

Mean 36.52% 37.42% 46.95% 52.89% 51.13% 60.06% 52.85% 63.60% 
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The accuracies of the frequency recognition using WICA and PS method with dif-
ferent time window lengths are shown in Table 1. The mean recognition accuracies of 
the PS method were found to be 36.52%, 46.95%, 51.13% and 52.85% in the time 
windows from 1 to 4 s respectively, while the mean accuracies of proposed WICA 
method were 37.42%, 52.89%, 60.06% and 63.60% in the time windows from 1 to 4 s 
respectively. When the lengths of time windows were the same, the accuracies of the 
proposed method were higher than that of the PS method most of the times. And the 
mean accuracy of the proposed method was on average 6.7% higher than that of the 
PS method in the same time windows. This indicates that in terms of the recognition 
accuracy, the proposed method has a better performance than PS method does. Alt-
hough the accuracies of both methods increased as the lengths of time windows in-
creased, the difference of the average accuracies between these two methods in-
creased from 1% to 11%. This indicates that the improvement of recognition accuracy 
of the proposed method is more notable in longer time windows. 

The proposed frequency recognition method can perform better than the traditional 
PS method mainly due to the noisy reduction of the WICA [11]. In the WICA, only 
approximation components of SWT are applied as the inputs of ICA, while the detail 
components that mainly contain high frequency noise are eliminated. Moreover, after 
the ICA, the IC containing maximal correlation coefficient is selected, which removes 
ICs that mainly contain noise. In order to compare the SNRs of the EEG signals after 
applying the proposed method and the PS method, the SNR of SSVEP signals is de-
fined as 

( )
2

1

stimulus

( )
f

f f

n X f
SNR

X f
=

⋅
=

∑

 (8) 

where X(f) is the amplitude spectrum ranged from f1=6 Hz to f2=20 Hz calculated by 
FFT, and n is the number of points of X(f) from f1 to f2.  

Based on real EEG signal analyzing results, the averaged SNRs of signals after ap-
plying the proposed method are 3.748±1.335 while the averaged SNRs of signals after 
applying the PS method are only 3.078±1.227. It can be seen that applying the pro-
posed method can achieve higher SNRs which means that the proposed method is less 
sensitive to noise than the PS method. As a consequence, it is reasonable that the pro-
posed method can obtain higher recognition accuracy than the traditional PS method. 

However, it is worth noting that in a few cases, the recognition accuracy of the 
proposed method is worse than that of the PS method. In the future work, the reason 
should be further explored. 

5 Conclusion 

In this study, a single channel frequency recognition method based on WICA is pro-
posed for SSVEP-based BCIs. The proposed method utilizes WT to decompose the 
single channel EEG signals into several wavelet components and approximation com-
ponents are selected to form the input matrix of ICA. Then ICA is applied to separate 
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the ICs from the selected wavelet components. PPMC is performed between ICs and 
reference signals to build a correlation coefficients matrix. The maximal correlation 
coefficient can be found out and the corresponding frequency of reference signal is 
recognized as the frequency of SSVEP consequently. Experiment results on 26 sub-
jects demonstrated that the proposed method based on WICA can achieve higher 
recognition accuracy than the PS method most of the times.  

Future study may focus on the comparison between the proposed method and typi-
cal multichannel methods. 
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Abstract. The mixture of Gaussian processes (MGP) is a powerful statistical
learning model for regression and prediction and the EM algorithm is an ef-
fective method for its parameter learning or estimation. However, the feasible
EM algorithms for MGPs are certain approximations of the real EM algorithm
since Q-function cannot be computed efficiently in this situation. To overcome
this problem, we propose an MCMC based EM algorithm for MGPs where Q-
function is alternatively estimated on a set of simulated samples via the Markov
Chain Monte Carlo (MCMC) method. It is demonstrated by the experiments on
both the synthetic and real-world datasets that our proposed MCMC based EM
algorithm is more effective than the other three EM algorithms for MGPs.

Keywords: Mixture of Gaussian processes, EM algorithm, Classification,
Multimodality, Prediction.

1 Introduction

Gaussian Process (GP) is a powerful statistical learning model in machine learning and
pattern recognition [1]. However, a single GP model could not deal with the multi-
modality dataset. Then, Tresp [2] suggested a Mixture of Gaussian Processes (MGP) to
model a general multimodality dataset. In fact, it takes a similar architecture of mixture
of experts (ME). In the MGP model, there are a number of GPs being mixed together.

For the parameter learning of MGP, there are generally two kinds of approaches: (a).
The EM algorithms [2-8]; (b). The MCMCmethods [9-12]. Obviously, EM algorithm is
a widely used method to deal with the multimodality dataset, but the time complexity of
the EM algorithm for MGPs is of exponential order. Actually, it is that the computation
of Q-function must be over all the possible values of the latent variables and is therefore
of exponential order. Then, certain simplifications or approximations of EM algorithm
were established, such as the hard-cut EM algorithm [3], the LOOCV EM algorithm [4]
and the variational EM algorithm [5-8]. On the other hand, the MCMCmethods need to
estimate all the latent variables as well as the parameters on different sets of simulated
samples via the MCMC methods. In fact, they are very time consuming, especially for
the high dimensional and complicated cases.

In this paper, we propose an MCMC based EM algorithm for MGPs in which Q-
function is estimated on a set of simulated samples of latent variables via the MCMC
method. In this way, the MCMC sampling is utilized to simplify the computation of

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 327–334, 2015.
DOI: 10.1007/978-3-319-25393-0_36
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Q-function and thus the EM algorithm becomes feasible and efficient for prediction
and classification. It is demonstrated by the experiments on three synthetic and real
datasets that our proposed MCMC based EM algorithm is feasible and effective and
even outperform three other current EM algorithms on prediction.

The remainder of this paper is organized as follows. GP model and MGP model are
reviewed in Section 2. In Section 3, we propose the MCMC based EM algorithm for
MGPs. The experimental results are contained in Section 4. Finally, we make a brief
conclusion in Section 5.

2 The GP and MGPModels

In this section, we revisit the GP and MGP models and make a review on related works.

2.1 The GP Model

y (x) ∈ R is a stochastic process, where x ∈ RP. For arbitrary N ∈ Z+ and arbi-
trary dataset X = {xn| n = 1 ∼ N} , the definition of the Gaussian process is given
as follows. If

[
y (x1) , ..., y (xN)

]T is subject to a N-dimensional Gaussian distribution
N
{
[m (x1) , ...,m (xN)]T ,C (X,X;θ)

}
, then y (x) is said to follow a Gaussian process,

where m (x) is a mean function and C (X,X;θ) =
[
C
(
xn, x j;θ

)∣∣∣∣ n, j = 1 ∼ N
]
repre-

sents a N × N kernel matrix in which C (x, x̃;θ) is a kernel function [1]. The GP model
is written as

y (x) ∼ GP [m (x) ,C (x, x̃;θ)] . (1)

Here, we assume the mean function m (x) ≡ 0 for simplify and utilize the kernel
function

C (x, x̃;θ) = θP+1 exp

⎡
⎢⎢⎢⎢⎢⎢⎣−

1
2

P∑

p=1

θp
(
xp − x̃p

)2
⎤
⎥⎥⎥⎥⎥⎥⎦ + θP+2δ (x − x̃) ,

where δ (x) is the Kronecker delta function, θ = [θ1, ..., θP+2], x = [x1, ..., xP]T and
x̃ = [x̃1, ..., x̃P]T .

2.2 The MGP Model

To deal with the multimodality dataset, Tresp [2] extended the GP model to an MGP
model where a number of components are involved and each component fulfills a GP
model.

The sample set is denoted as D = { (xn, yn)| n = 1 ∼ N} . Suppose that there are K
components and the stochastic process of the k-th component, yk (x) , is subject to a GP
model defined in Eq. (1):

yk (x) ∼ GP [0,C (x, x̃;θk)] , (2)

where k = 1 ∼ K.
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We give the details of the MGP model, which consists of three distributions.
a) The association among components is introduced by an unknown indicator variable
znk, i.e., if the n-th sample belongs to the k-th component, znk = 1; otherwise, znk = 0.
znk is subject to

P (znk = 1) = πk,

where
∑K

k=1 πk = 1.
b) Given the indicator variables, the input variable xn is subject to a Gaussian distribu-
tion

xn
∣∣∣(znk = 1) ∼ N

(
μk,Σk

)
.

c) yk (x) is given by Eq. (2).

3 The MCMC Based EM Algorithm for MGPs

In this section, we establish an MCMC based EM algorithm for MGPs and present a
prediction method for the MGP model.

3.1 Algorithm Design

In the MCMC based EM algorithm, the indicator variable znk are treated as latent vari-
able and Z̃(r) =

{
z(ri)nk

∣∣∣ n = 1 ∼ N, k = 1 ∼ K, i = 1 ∼ I(r)
}
is a set of simulated samples

of indicator variables, where r is the current number of iterations in EM algorithm
and I(r) is the number of simulated samples in the r-th iteration. Denote the parameter
set Θ =

{
πk,μk,Σk,θk

∣∣∣ k = 1 ∼ K
}
. Then the detail of MCMC based EM algorithm is

given by the following four steps.
a) Calculate the indicator variables by k-means cluster and initialize the parametersΘ(0)

by Maximum Likelihood Estimate. Set r = 1.
b) E-step: draw the simulated samples of indicator variables Z̃(r) by Gibbs sampling.
c) M-step: calculate Θ(r) by maximizing Q̂-function.
d) If the relative variation of Q̂-function is less than the threshold, stop; otherwise, set
r ← r + 1 and return to b).

Details of E-step: we used Gibbs sampling method to draw the simulated samples.
Denote an indicator variable set Z−n =

{
z jk
∣∣∣ j � n; k = 1 ∼ K

}
. Then the posterior prob-

ability of the n-th indicator variable utilized in Gibbs sampling is

P (znk = 1|Z−n,D,Θ) = P (znk = 1; Z−n,D|Θ)
∑K

j=1 P
(
zn j = 1; Z−n,D

∣∣∣Θ
) ,

where P (znk = 1; Z−n,D|Θ) ∝ πk p (xn|μk,Σk
)
p
(
y+n,k
∣∣∣X+n,k,θk

)/
p
(
y−n,k
∣∣∣X−n,k,θk

)
,

y−n,k =
[
y j
∣∣∣ z jk = 1 and j � n

]
and y+n,k =

[
y j
∣∣∣ z jk = 1 or j = n

]
are vectors of y j, and

X−n,k and X+n,k are the same meaning as y−n,k and y+n,k, respectively.
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Details of M-step: Q̂-function, a Monte Carlo estimator of Q-function, is given by

Q̂
(
Θ, Z̃(r)

)
=

1
I(r)

I(r)∑

i=1

K∑

k=1

⎧
⎪⎪⎨
⎪⎪⎩

N∑

n=1

z(ri)nk

[
ln πk + ln p

(
xn|μk,Σk

)]
+ ln p

(
y(ri)k

∣∣∣X(ri)
k ,θk

)
⎫
⎪⎪⎬
⎪⎪⎭
,

where yk =
[
yn| znk = 1, n = 1 ∼ N

]
is a vector of yn and Xk is the same meaning as yk.

We calculate the π(r)k by Lagrange’s method of multipliers and compute μ(r)
k and Σ(r)k

by taking the derivatives to be zero

π(r)k =
N(r)
k

∑K
k=1 N

(r)
k

, μ(r)
k =

1

N(r)
k

I(r)∑

i=1

N∑

n=1

z(ri)nk xn,

Σ
(r)
k =

1

N(r)
k

I(r)∑

i=1

N∑

n=1

z(ri)nk

(
xn − μ(r)

k

) (
xn − μ(r)

k

)T
,

where N(r)
k =

∑I(r)
i=1
∑N

n=1 z
(ri)
nk . The parameter θ(r)

k is computed by gradient method [4].

3.2 On Prediction

The purpose of prediction is to predict the output at a new input x∗. After the parameters
Θ and simulated samples of indicator variables Z̃ are estimated by the MCMC based
EM algorithm, we calculate

αk = p
(
z∗k = 1

∣∣∣ x∗, Θ̂
)
=

π̂k p
(
x∗
∣∣∣μ̂k, Σ̂k

)

∑K
k=1 π̂k p

(
x∗
∣∣∣μ̂k, Σ̂k

) ,

where z∗k denotes the indicator variable of the point to be predicted.
If the point to be predicted belongs to the k-th component, the predictive output and

its variance with the i-th simulated sample of indicator variables are given by

ŷ(i)k = C
(
x∗, X̂(i)

k ; θ̂k

)
C
(
X̂(i)

k , X̂
(i)
k ; θ̂k

)−1
ŷ(i)k ,

δ̂(i)k = C
(
x∗, x∗; θ̂k

)
− C
(
x∗, X̂(i)

k ; θ̂k

)
C
(
X̂(i)

k , X̂
(i)
k ; θ̂k

)−1
C
(
x∗, X̂(i)

k ; θ̂k

)T
,

where C
(
x∗, X̂k; θ̂k

)
=

[
C
(
x∗, xn; θ̂k

)∣∣∣∣ znk = 1, n = 1 ∼ N
]
represents a row vector of

C
(
x∗, xn; θ̂k

)
. Therefore, the overall predictive output and its variance are obtained.

ŷ =
1

Ĩ

Ĩ∑

i=1

K∑

k=1

αkŷ
(i)
k , δ̂ =

1

Ĩ

Ĩ∑

i=1

K∑

k=1

αk

[
δ̂(i)k +

(
ŷ(i)k
)2] − ŷ2,

where Ĩ is the number of simulated samples.
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Fig. 1. (a) The plot of a simulated dataset: blue points are test samples, red line is prediction and
shaded area is its 95% confidence band (b) The values of Q̂-function with the iterations of the
MCMC based EM algorithm

Table 1. The true value (TV), estimated value (EV) and relative error (RE) of the parameters for
the simulated dataset

πk μk Σk θk

g = 1
TV 0.3333 2.5000 1.4414 [0.5000, 0.1000, 0.0025]
EV 0.3281 2.5683 1.4980 [0.4676, 0.0578, 0.0026]
RE 1.6% 2.7% 3.9% [6.5%, 42.2%, 4.0%]

g = 2
TV 0.3333 10.0000 5.7937 [1.0000, 0.2500, 0.0025]
EV 0.3320 9.8433 5.7716 [1.1483, 0.2175, 0.0020]
RE 0.4% 1.6% 0.4% [14.8%, 13.0%, 20.0%]

g = 3
TV 0.3333 18.0000 2.0598 [0.2000, 0.0500, 0.0025]
EV 0.3398 17.8143 2.0349 [0.2437, 0.0303, 0.0028]
RE 2.0% 1.0% 1.2% [21.9%, 39.4%, 12.0%]

4 Experimental Results

In this section, we conduct the experiments of the MCMC based EM algorithm on a
simulated dataset generated from an MGPmodel, a toy dataset given in [4] and a motor-
cycle dataset given in [9] and also make certain comparison with the other competitive
EM algorithms.

4.1 On the Simulated Dataset

We conduct an experiment on the simulated dataset generated by an MGP model of
1-dimensional input without sigular points. There are 192 training samples and 192 test
samples of three components, i.e., K = 3. In fig.1(a), the test samples and prediction
results are illustrated and we show the values of Q̂-function with the iteration of our EM
algorithm in Fig.1(b). It can be seen that the MCMC based EM algorithm is effective
since the value of Q̂-function always increases with the iteration. The indicator variables
is calculated by maximum posterior probability criterion and the average classification
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Fig. 2. The plot of a toy dataset: blue points are test samples, red line is prediction and shaded
area is its 95% confidence band

accuracy rate is 98.9%. The estimations of the parameters are shown in Table 1 and
we could observe that all relative errors are small expect the θk. The MGP model is
effective on prediction with imprecise θk and the root mean square error (RMSE) of the
prediction on test samples is 0.0653.

4.2 On Toy and Motorcycle Datasets

We compare MCMC based EM algorithm with hard-cut EM algorithm [3], LOOCV
EM algorithm [4] and variational EM algorithm [4] on a toy dataset and a motorcycle
dataset, respectively.

Table 2. The RMSEs of the predictions with the four algorithms on the two datasets

Toy dataset Motorcycle dataset
MCMC based EM algorithm 13.94 24.20

Hard-cut EM algorithm 16.81 25.31
LOOCV EM algorithm 16.94 25.85
Variational EM algorithm 16.91 29.69
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Fig. 3. The plot of motorcycle dataset: blue points are 133 samples, red line is prediction and
shaded area is its 95% confidence band

The toy dataset [4] is a simulated dataset generated from four functions, i.e.,

f1 (x) = 0.25x2 − 40 +√7ε, x ∼ U (0, 15) ,

f2 (x) = −0.0625 (x − 18)2 + 0.5x + 20 +
√
7ε, x ∼ U (35, 60) ,

f3 (x) = 0.008 (x − 60)3 − 70 +√4ε, x ∼ U (45, 80) ,

f4 (x) = − sin (x) − 6 +
√
2ε, x ∼ U (80, 100) ,

(3)

where ε ∼ N (0, 1) . We generate 50 training samples and 50 test samples from each
function in Eq. (3) and utilize an MGP model with four components to learn this model.
Themotorcycle dataset [7] is a real world dataset, where 133 points of three components
are observed by accelerometer readings. The predictions of four algorithms on the two
datasets are shown in Fig. 2 and Fig. 3, respectively. The 200 blue points in Fig.2 are
all test points and the blue points in Fig.3 are 100 training points and 33 test points.
The predictions of MCMC based EM algorithm are better than those of the other three
algorithms. The RMSEs of prediction are shown in Table 2 and the RMSEs of MCMC
based EM algorithm are smaller than those of the other three algorithms on the two
datasets.
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5 Conclusions

We have established anMCMC based EM algorithm for mixtures of Gaussian processes
in which Q-function is estimated on a set of simulated samples of latent variables via the
Gibbs sampling, a special MCMC method. By this MCMC sampling, the computation
of Q-function becomes feasible and efficient. The simulation experiments demonstrate
that our proposedMCMC based EM algorithm is feasible and effective on classification
and prediction.Moreover, the experiments on a toy dataset and a motorcycle dataset fur-
ther demonstrate that our proposed algorithm outperforms the hard-cut EM algorithm,
the LOOCV EM algorithm and the variational EM algorithm on prediction.

Acknowledgement. This work is supported by the National Science Foundation of
China under Grant 61171138.
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Abstract. For the learning of mixtures of Gaussian processes, model se-
lection is an important but difficult problem. In this paper, we develop an
automatic model selection algorithm for mixtures of Gaussian processes
in the light of the reversible jump Markov chain Monte Carlo frame-
work for Gaussian mixtures. In this way, the component number and
the parameters are updated according the five types of random moves
and model selection can be made automatically. The key idea is that the
moves of component splitting or merging preserve the zeroth, first and
second moments of the components so that the covariance parameters of
the new components can be related to the origin ones. It is demonstrated
by the simulation experiments that this automatic model selection algo-
rithm is feasible and effective.

Keywords: Mixtures of Gaussian processes, Reversible jump MCMC,
Model selection, Regression, Split and merge moves.

1 Introduction

As a powerful statistical learning tool, Gaussian Process (GP) is widely used in
machine learning and pattern recognition [1]. Since a single GP model cannot
deal with the multimodality dataset, the Mixture of Gaussian Processes (MGP)
[2] have been developed to model a general multimodality dataset. Obviously,
MGP can also overcome a major disadvantage of the Gaussian process modeling
that calculating the inversion of an N ×N covariance matrix requires the time
complexity of O(N3) for a training dataset with N points. Structurally, Shi et
al. [3],[4] considered MGP as a hierarchical model and fit the data in two levels.
Moreover, they proposed the hybrid Markove Chain Monte-Carlo algorithm to
train the covariance parameters and then to utilize BIC to determine the number
K of GP components in the mixture. However, BIC is not so effective for the
model selection on the mixtures of Gaussian processes.

On the other hand, Green [5] proposed the reversible jump Markov chain
Monte Carlo (RJMCMC) framework to determine the dimension of parameters
through the Markov chain Monte Carlo simulation. Later on, according to this
theory, Richardson and Green [6] developed a RJMCMC approach to decide the
number of actual components in the Gaussian mixture. Although this approach
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is effective for Gaussian mixtures, its idea can also used to design the learning
algorithm for MGPs and solve the model selection problem in this case. However,
the structure of the likelihood function of MGP is quite different from that of
Gaussian mixture so that the split and merge moves in the algorithm cannot be
implemented directly.

In this paper, we develop an automatic model selection algorithm for MGPs
in the light of the RJMCMC framework by making the split and merge moves
feasible and effective. As we find, the difficulty in the split moves focuses on
that the overall dispersion should keep relatively constant when a covariance
matrix is split into two matrices. In order to solve this difficulty, we can keep the
first two moments of the components to be same during a split or merge move.
By mathematics analysis, we find that once the sampling interval is set small
enough, these moments remains almost constant. In this way, our automatic
model selection algorithm can be constructed effectively. It is demonstrated by
simulation experiments that this automatic model selection algorithm is feasible
and effective in the same way as the RJMCMC algorithm for Gaussian mixtures.

The rest of the paper is organised as follows. In Section 2, we revisit the
mixture of Gaussian processes and give the Bayesian forms of the priors of the
parameters. Section 3 presents the automatic model selection algorithm with five
move types. Simulation experiments are conducted in Section 4. We conclude
briefly in Section 5.

2 The Hierarchical Mixtures of Gaussian Processes

2.1 The Basic Model

For clarity, we consider MGP as the hierarchical mixture of Gaussian processes
described Shi et al. [3]. Clearly, it tries to model a large dataset with groups of
repeated measurements. Actually, the lower-level model fits the measurements in
the same group, while the higher-level model tries to describe the heterogeneity
among different groups. For example, the dataset used in [4] is a set of repeated
standing-up trajectories corresponding to different paraplegic patients. For this
case, the lower-level model fitted those standing-up trajectories of paraplegic pa-
tients in the same type, while the higher-level model described the heterogeneity
among different types of paraplegic patients.

Mathematically, in the higher-level model, we let {(xmn, ymn),m = 1, · · · ,M}
be M curves belong to a number K of Gaussian processes, which can represent
all the points on the training curves. The mixture model can be given by

ym ∼
K∑

k=1

πkGP (θk). (1)

In the lower-level model, each curve is assumed to be a function fm(·) plus a
white noise, that is,

ymn = fm(xmn) + εmn,

where εmn ∼ N (0, σ2
k). The m-th curve follows a Gaussian process if any finite

subsequence or subset of the curve, say Dm = {Xm,Y m} = {(xmn, ymn), n =
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1, · · · , Nm}, follows a Gaussian distribution if Y m ∼ N (0,Σ(Xm,Xm; θk)),
where

Σ(xmi, xmj ; θk) = C(xmi, xmj ; θk) + σ2
kδij ,

where

C(xmi, xmj ; θk) = vk exp

(

−1

2
wk(xmi − xmj)

2

)

.

So, all the covariance parameters are θk = (wk, vk, σ
2
k).

For a test input x∗, if we assume it is on the m-th curve, and the m-th curve
is belong to the k-th component, i.e., Gaussian process, the mean and variance
of its prediction can be obtained as follows:

E[fm(x∗)|Dm] = σT (x∗)Σ−1(Xm,Xm; θk)Y m;

V ar[fm(x∗|Dm)] = C(x∗, x∗)− σT (x∗)Σ−1(Xm,Xm; θk)σ(x
∗),

where σ(x∗) = (C(x∗, xm,1), · · · , C(x∗, xm,Nm))T .
For the parameter learning of this hierarchical mixture model of Gaussian

process, we introduce the latent variables zm as follows:

fm(Xm)|zm = k ∼ GP (θk),

and assume the mixing form of Eq.(1).

2.2 The Priors and its Bayesian Form

In the hierarchical mixtures of Gaussian processes, we adopt the forms of the
priors as given in [4], that is,

wk ∼ IΓ (
1

2
,
1

2
), vk ∼ LN (−1, 12), σ2

k ∼ LN (−3, 32), k = 1, · · · ,K
where IΓ represents the inverse gamma distribution, and

(π1, · · · , πK) ∼ Dir(1, · · · , 1).
In the Bayesian analysis, the priors are as important as the posteriors and

likelihood function. Supposing that Θ = (θ1, . . . , θK), π = (π1, . . . , πK), D is
the set of training data, we then have

(i) The posterior of the parameters:

p(Θ,π|D) ∝ p(Θ,π)L(D|Θ,π);

(ii) The likelihood of the mixture model:

L(D|Θ,π) =

M∏

m=1

K∑

k=1

πkN (ym|0,Σk(xm));

(iii) The prior distribution:

p(Θ,π) = p(π)
K∏

k=1

p(θk).

In the next section, we will sample parameters from p(Θ,π|D).
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3 The Markov Chain Monte Carlo Algorithm for the
Hierarchical Mixtures of Gaussian Processes

In this section, we construct the Markov Chain Monte Carlo (MCMC) algorithm
for the hierarchical mixtures of Gaussian processes in a similar way as the MCMC
algorithm for Gaussian mixtures in [6]. Actually, the mathematical framework
of our MCMC algorithm keeps the same, including a number of moves of the
components or their parameters with time, but the components become Gaussian
processes.

3.1 The Move Types

In [6], six types of moves were used. But here, since the adopted priors have
no hyperparameters, there is no need for updating the hyperparameters. So,
remaining five types of moves can be given as follows:

(a) π = (π1, · · · , πK);
(b) Θ = (θ1, · · · , θK), where θk = (wk, vk, σ

2
k);

(c) z = (z1, · · · , zM );
(d) Split or merge;
(e) Remove empty components.

For clarity, we refer to one process of implementing these five moves completely
as a sweep, being set as the basic step of the MCMC algorithm.

3.2 The Moves with the Component Number Fixed

The moves with fixed component number include the first three steps(a)(b)(c)
in section 3.1. For this part, we adopt the algorithm in [4]:

For π and z, we use Gibbs sampling:

(i) sample zm from (zm = k|D,Θ,π) ∝ πkp(ym|θk),m = 1, · · · ,M, k =
1, · · · ,K

(ii) sample π from (π1, · · · , πK)|z ∼ Dir(1 + c1, · · · , 1 + cK)

Here, ck represents the element number in the set {m = 1, · · · ,M |zm = k} and
Dir(·) represents Dirichlet distribution.

And for Θ, we sample it from its posterior:

p(Θ|D, z) ∝
K∏

k=1

p(θk|Dm, z)

Then, the posterior of θk, k = 1, · · · ,K are independent with each other and we
can sample each θk separately. Here we adopt Hybrid Monte Carlo or Hamil-
tonian Monte Carlo to sample θk. Actually, this sampling method used to be
adopted to simulate a physical system where a puck moves up and down along
with a smooth surface and the total energy remains constant. However, in our ap-
plication, we restate the potential energy as E(θk) = − log p(θk|Dm, z) and the
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kinetic energy as: K(φk) =
1
2

∑
φ2
k,i, φk,i ∼ N (0, 1),φk = (φk,1, φk,2, φk,3). Then

the total energy of the hamiltonian system for θk is H(θk,φk) = E(θk)+K(φk).
For the convenience of calculation, we split H(θk,φk) as follows:

H(q, p) = − 1

2

∑

m∈{zm=k}
log p(ym|θk)

︸ ︷︷ ︸
U0
2

+ [− log p(θk) + K(φk)]
︸ ︷︷ ︸

U1

− 1

2

∑

m∈{zm=k}
log p(ym|θk)

︸ ︷︷ ︸
U0
2

thus the sample update step is:

(i) From the current state (θk,φk), we use a leapfrog step with step size ε to
calculate the new state (θ∗

k,φ
∗
k):

φ∗
k = φk −

ε

2

∂U0

∂θk
(θk)

θ∗
k = θk + εφ∗

k

φ∗
k = φ∗

k −
ε

2

∂U1

∂θk
(θ∗

k,φ
∗
k)

φ∗
k = φ∗

k −
ε

2

∂U0

∂θk
(θ∗

k)

(ii) Then new current state is:

(θ∗
k,φ

∗
k) =

{
(θ∗

k,φ
∗
k) prob = min(1, exp(−H(θ∗

k,φ
∗
k) +H(θk,φk)))

(θk,−φk) otherwise

(iii) Finally, generate νk,i ∼ N (0, 1), and update φk as: φ∗
k = αφ∗

k+
√
1− α2νk.

In addition, according to the advise in [7], we set ε = 0.5N
−1/2
m , α = 0.95.

For k = 1, · · · ,K, by repeating (i)(ii)(iii) n = 20 times, we finish one sweep of
step(b). Note that wk, vk, σ

2
k > 0, through the analysis of the method of handling

constraints in [8], we reject the current state when wk, vk, σ
2
k < 0

3.3 The Moves with the Component Number Changed

The moves with the component number changed include the last two steps(d)(e).
For move(e), all the components whose πk < 1% are considered to be empty
components and we delete them directly.

The Detailed Balance Framework. For move(d), we construct a detailed
balance framework for the move with the component number changed so that
the covariance parameters of the new components can be related to the original
ones. The key to success is that the first two moments remain almost constant.
For convenience we shall denote the splitted component as k∗th component and
the two new components as k1, k2.

(I) Actually, for the zeroth moment of ym, by simple mathematics calculation

we find it is
∑K

k=1 πk, thus keeping the zeroth moment constant means
πk∗ = πk1 + πk2 .

(II) In the case of the first moment, it is 0 since we assume that the Gaussian
process is zero mean. Thus its first moment always keep constant.
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(III) However, the secondmoment is somewhat complicated and it is
∑K

k=1 πkΣk.
Then keeping the second moment constant means πk∗Σk∗ = πk1Σk1 +
πk2Σk2 .
(i) For the diagonal entry, let i = j, then we get a balance formula:

πk∗(vk∗ + σ2
k∗) = πk1(vk1 + σ2

k1
) + πk2(vk2 + σ2

k2
)

(ii) For the off diagonal entry, let i �= j, we have:

πk∗(vk∗ exp

(

−wk∗(xi − xj)
2

2

)

) = πk1(vk1 exp

(

−wk1(xi − xj)
2

2

)

)

+ πk2 (vk2 exp

(

−wk2(xi − xj)
2

2

)

) (2)

For convenience, denote Eq.(2) as a function of (xi − xj)
2:

f(x) := πk∗(vk∗ exp
(
−wk∗

2
x
)
)− πk1(vk1 exp

(
−wk1

2
x
)
)

− πk2(vk2 exp
(
−wk2

2
x
)
) ≡ 0 (3)

In fact, f(x) is exponential decreasing aboutx andx is in {ε2, 22ε2, · · · ,
N2

mε2}, thus we can conclude that when x gets the minimum ε2, f(x)
reaches the maximum. Therefore, in order to keep f(x) ≈ 0 we just
need keep f(ε2) ≈ 0. Do Taylor’s expansion of f(x) at x = 0 and
denote the n-th term as an for convenience. What surprise us is that
when x = ε2 and if ε is small enough, an will be monotonic decreas-
ing, then a0 will be the largest term and a1 will be the second largest
term. Therefore just let a0, a1 be zero, the second moment will keep
almost constant.

Then, we have got our detailed balance framework:
πk∗ = πk1 + πk2 (4a)

πk∗σ2
k∗ = πk1σ

2
k1

+ πk2σ
2
k2

(4b)

πk∗vk∗ = πk1vk1 + πk2vk2 (4c)

πk∗vk∗wk∗ = πk1vk1wk1 + πk2vk2wk2 (4d)

The Merge and Split Formula. For merge move, we can use Eq.(4) to merge
two components, so Eq.(4) is also our merge formula. For split move, reversible
jump in [5] is needed. According to the theory above, 4 dimensions random
variable u = (u1, u2, u3, u4) need to be generated to decide these new parame-
ters: ui ∼ Beta(2, 2), i = 1, · · · , 4. By combining these random parameters, the
balance formula Eq.(4) and the reversible jump theory, we can write the split
formula as:

πk1 = u1πk∗ , πk2 = (1− u1)πk∗ , u1 ∈ (0, 1) (5a)

σ2
k1

= u2σ
2
k∗

πk∗

πk1

, σ2
k2

= (1− u2)σ
2
k∗

πk∗

πk2

, u2 ∈ (0, 1) (5b)

vk1 = u3vk∗
πk∗

πk1

, vk2 = (1− u3)v
k∗
0

πk∗

πk2

, u3 ∈ (0, 1) (5c)

wk1 =
1− u4

u3
wk∗ , wk2 =

u4

1− u3
wk∗ , u4 ∈ (0, 1) (5d)



Automatic Model Selection of the Mixtures of Gaussian Processes 341

It is easy to validate that split formula Eq.(5) matches with merge formula
Eq.(4).

The split and merge move is a Markov birth-death chain, and we set the split
probability and merge probability as bk, dk = 1 − bk respectively, depending on
k: d1 = 0, bkmax = 0, bk = dk = 0.5, ∀k = 2, · · · , kmax − 1, where kmax is the
maximum component number that we set according to individual cases. Then
based on the acceptance probability formula of reversible jump move in [5] the
acceptance ratio for a split move is min(1, A) and a merge move is min(1, A−1)
where

A =

M∏

m=1

l(Y m|θk+1)

l(Y m|θk)
× dk+1

bk
× p(θk+1)

p(θk)
︸ ︷︷ ︸

T1

× 1

Beta(u|θk+1, θk)
︸ ︷︷ ︸

T2

×
∣
∣
∣
∣
∂θk+1

∂(θk,u)

∣
∣
∣
∣

︸ ︷︷ ︸
T3

Here, k∗, k1, k2 are chosen randomly from the K components.

4 Experimental Results

Our experiments are conducted on a set of simulated data generated from a mix-
ture of three Gaussian processes with θ1 = (1.0, 0.2, 0.0025), θ2 = (0.5, 1.0, 0.001),
θ3 = (10, 0.2, 0.0005), respectively, each with 3 curves. The data points are with
t = −4 : 0.08 : 4, being equally spaced. We have two kinds of prediction, type
I prediction: choosing half data randomly from each of the 9 curves as training
data, the rest as test data; type II prediction: generating a new curve from the
first GP, choosing half data randomly on this curve as known data, using this
half and training parameters from the type I prediction to simulate the other un-
known half data. In the later two subsections, the two type of prediction is used
to verify the component number fixed algorithm and the component number
varied algorithm for regression and model selection. For both of the two algo-
rithms, we run them for 20000 sweep. Here we discard the first 10000 iterations
and select one sample from each 200 iterations, in order to have approximately
independent draws.

4.1 The Component Number Fixed

First, we fix k = 3, and use only the moves with the component number fixed for
training. The log-likelihood tends to stabilize after about 1700 iteration. Table
(1) presents the predictions. We will compare it with the component number
varied result in the next subsection.

4.2 The Component Number Varied

Then we use our component number varied method to train and predict the same
curves as before. Fig.(1) is p(k < j|D), k = 1, · · · , 6, from which we can conclude
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Table 1. RMSE and correlation coefficient(r) between true and predicted responses

Training data:half data on the first 9 curves
model: fixed component number of GP mixture regression model
Test data RMSE r
the first GP 0.2329 0.9485
the second GP 0.3612 0.8520
the third GP 0.2266 0.9024
the 10th curve 0.2037 0.7566

Training data:half data on the first 9 curves
model: varied component number of GP mixture regression model
Test data RMSE r
the first GP 0.0602 0.9900
the second GP 0.0253 0.9982
the third GP 0.0645 0.9867
the 10th curve 0.0493 0.9820

Fig. 1. p(k < j|D), j = 1, · · · , 6 for 40000 iterations

Table 2. posterior of k for Gaussian process mixture model

curve number p(k|D) proportion (%) of moves accepted
split merge

9 p(1)=0.0001 p(2) = 0.0563 p(3)=0.3811 14 2
p(4)=0.3677 p(5) = 0.1558

∑
k≥6 p(k) = 0.0391

that the algorithm has converged after about 10000 iteration. Additionally, we
also present the posterior of k for mixtures of Gaussian processes in Table (2).
From this table, we can conclude this model favors 3 − 4 components. In this
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Fig. 2. predict curve with the component number varied method on 9 curves, the solid
line represent the real value, and the dash line represents the predict line with 95%
confidence interval

Fig. 3. the deviance of the kernel smooth density posterior of k

part, we initially add the birth and death moves in [6] to the algorithm in order
to increase the opportunities for split and merge thus to speed up convergence
of Markov chain, but finally it doesn’t work, and we delete this type move.

The final predict results are presented in Fig.(2). We can see that predict
curves almost overlap with the true curves. For type II prediction, the 95%
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confidence interval is quite small. RMSE and correlation coefficient are in Table
(1). The RMSE is about one tenth of that for the component number fixed case
and the correlation coefficient ≥ 0.9800 which is also improved.

In addition, we analyze the deviance of the kernel smooth density of posterior
of k –−2 ∗ log p(k|D) in Fig.(3). Since the deviance of k = 2 separate with k = 3
and from k = 3 to k = 6 the deviances are overlapping together, we can conclude
that k = 3 can represent most information of train data.

Increasing the curve number to 30 and even to 90, we find that it does not
improve the RMSE and correlation coefficient obviously. Therefore, this become
a burden to waste time but of no use for improving algorithm accuracy and is
unnecessary.

5 Conclusion

We have developed an automatic model selection algorithm for mixtures of Gaus-
sian processes in the light of the reversible jump Markov chain Monte Carlo
framework for Gaussian mixtures. The split and merge moves of Gaussian pro-
cesses in the iteration keep the first two moments constant. In this way, the au-
tomatic model selection algorithm makes it possible to do the Bayesian analysis
of both parameter estimation and model selection for the mixtures of Gaussian
processes. Moreover, it is demonstrated that this developed algorithm is feasible
and outperform the the hybrid MCMC algorithm.

Acknowledgments. This work was supported by the National Science Foun-
dation of China under Grant 61171138.
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Abstract. The Mixture of Gaussian Processes (MGP) is a powerful statistical 
learning framework in machine learning. For the learning of MGP on a given 
dataset, it is necessary to solve the model selection problem, i.e., to determine 
the number  of actual GP components in the mixture. However, the current 
learning algorithms for MGPs cannot solve this problem effectively. In this pa-
per, we propose an effective model selection criterion, called the Synchronously 
Balancing or SB criterion for MGPs. It is demonstrated by the experimental re-
sults that this SB criterion is feasible and even outperforms two classical crite-
rions: AIC and BIC, for model selection on MGPs. Moreover, it is found that 
there exists a feasible interval of the penalty coefficient for correct model  
selection.  

Keywords: Mixture of Gaussian processes, Model selection, EM algorithm,  
Parameter learning, Likelihood. 

1 Introduction 

The Gaussian Process (GP) model is a powerful tool for machine learning. However, 
it has two limitations. Firstly, it can only fit a single modality dataset. Secondly, for 
the GP model, the learning algorithm has a large computational complexity ( )[1], where  is the number of training samples. In order to solve these issues, 
Tresp [2] proposed the mixture of Gaussian processes (MGP) in 2000. From then on, 
various MGP models have been proposed and can be classified into two main forms: 
the conditional models [2-5] and the generative models [1, 6]. Here, we adopt the 
generative model since it can infer missing inputs from outputs [7]. In fact, with dif-
ferent number of GP components, the MGP model may lead to quite different expe-
rimental results for regression and classification. So, it is critical to know the true 
number of GP components in the mixture or dataset and thus to get the reasonable 
result. That is, we must determine the number  of GP components in the mixture for 
the parameter learning, which is referred to as the model selection problem for the 
learning of the mixture. 

                                                           
* Corresponding author. 
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For model selection, there are some classical criterions like AIC [8], BIC [9], etc., 
which have been demonstrated effectively for Gaussian Mixtures. However, for 
MGPs, these criterions do not fit well. In order to solve this model selection problem, 
we try to improve AIC, BIC criterion and propose a new and effective model selec-
tion criterion for model selection on MGPs, called the Synchronously Balancing or 
SB criterion.  

For parameter learning, EM algorithm is an effective way for finite mixtures [10]. 
However, for the MGP model, the approximations in the implementation of E-step or 
M-step must be made since it cannot be computed efficiently yet. Among these ap-
proximation versions of the EM algorithm for MGPs, we adopt the recently proposed 
hard-cut EM algorithm [11]. However, the EM algorithm has the local maxima prob-
lem. To solve this problem, we further implement the SMEM algorithm [12] after the 
convergence of the hard-cut EM algorithm. 

The rest of the paper is organized as follows. Section 2 introduces the GP and 
MGP models. Section 3 presents the SB criterion and gives the model selection 
framework. In Section 4, we test the SB criterion on three synthetic datasets and com-
pare it with AIC, BIC. Moreover, we apply our SB criterion on an artificial toy data-
set to select the number of actual components. Finally, we make a brief conclusion in 
Section 5. 

2 The GP and MGP Models  

2.1 The GP Model 

Given a dataset consisting of  samples = , = ( , ): = 1,2, ⋯ , , 
where  is a -dimensional input vector, and  is an output, a GP model is ma-
thematically defined as follows: 

 ~ ( ), ( , )  (1) 

where 

 ( ) = ( ), ( ), ⋯ , ( )  (2) 

 ( , ) = , ×  (3) 

denote the mean vector and covariance matrix, respectively. As in most cases, we can 
set ( ) = , and adopt the squared exponential (SE) covariance function [13]: 

 , | = − − + ( = ) (4) 

where = , ,  denotes the parameters of the GP model. Therefore, the log-
likelihood function of the outputs can be derived as follows: 

 log ( | , ) = log | , ( , | )  (5) 
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and we can obtain the estimation of these parameters via maximum likelihood estima-
tion (MLE), that is 

 = | , ( , | )  (6) 

2.2 The MGP Model 

An MGP model is comprised of multiple Gaussian Process components, and in each 
component, the corresponding outputs are subject to a certain Gaussian Process. 
These Gaussian Processes have different parameters and are independent. 

For our generative MGP model, the samples are partitioned into the GP compo-
nents with the following probability 

 ( = ) = ;   = 1,2, ⋯ ,  . .   = 1,2, ⋯ ,  (7) 

where =  means that the -th sample belongs to the -th GP component. 
Given the partition of the samples, each input  is subject to a Gaussian distribu-

tion, that is 

 ( | = )~ ( , );   = 1,2, ⋯ ,  . .   = 1,2, ⋯ ,  (8) 

Denote = | = , = | =  and = | =  as the indexes, 
inputs and outputs of the samples in the -th GP component, respectively. Given , 
the corresponding outputs  is subject to the GP given by Eq.(2) with the parame-
ters = , , , and these GP components are independent. 

In summary, Eqs. (1), (7), (8) completely define the generative MGP model. Based 
on the definition, the log-likelihood function is derived as follows: log ( | , , ) = ∑ ∑ + ( | , )∈ + ( |0, )  (9) 

where =  and  = ,  denote the whole set of parameters for 
outputs and inputs, respectively. 

3 The SB Criterion and Model Selection Framework 

3.1 The SB Criterion 

The objective functions of the AIC and BIC criterion can both be expressed as fol-
lows: 

 = log −  (10) 

where 0 denotes the penalty coefficient, log  and  denote 
the log-likelihood function and penalty term, respectively. For AIC criterion, = 1 
and  = , where  denotes the number of parameters in each compo-
nent, and   denotes the number of components. For BIC criterion, = 0.5 and = log , where  denotes the number of samples. These two criterions 
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work effectively for Gaussian Mixture Model. However, for the MGP model, the 
change of  with  is too small in comparison with that of log , 
so that the selected value of  tends to be large. In order to solve this problem, we 
try to improve these two criterions to make the changes of the log-likelihood and the 
penalty term synchronously balanced and construct the following effective criterion: 

 = log − log   (11) 

Compared with AIC and BIC, such a penalty has a much larger variation with  so 
that the log-likelihood and penalty are more balanced.   

3.2 Model Selection with SB Criterion 

Our proposed model selection framework combines the advantages of the SB crite-
rion, the hard-cut EM algorithm [11], and the SMEM algorithm [12]. More specifical-
ly, for some values of , we train the MGP model with hard-cut EM algorithm, up-
date the estimated parameters via SMEM algorithm to avoid local maxima, and then 
select the best value of  according to the SB criterion. 

Before establishing our framework for model selection, we first introduce the hard-
cut EM algorithm as well as the SMEM algorithm used in this framework. 

The Hard-Cut EM Algorithm and the SMEM Algorithm. The main idea of the 
hard-cut EM algorithm is to partition the samples into the corresponding GP compo-
nents according to the maximum a posterior (MAP) criterion in E-step, that is 

 = ( | , ) ( |0, + ) (12) 

With the known partition, the parameters of each GP component are estimated via 
MLE respectively in M-step, i.e. 

 = ∑ ( = ), = ∑ ( )∑ ( ) , = ∑ ( )( )( )∑ ( )  (13) 

and  is learnt by Eq. (6). 
     In the SMEM algorithm, merge and split operations are implemented after the 
convergence of EM iterations in order to avoid local maxima.  

For convenience, we denote  

 = ( = | , ) = ( | , ) | ,∑ ( | , ) | ,  (14) 

as the posterior probability of the -th sample belonging to the -th GP component 
obtained from EM iterations, and denote = ( , , ⋯ , ). When 

 and  are almost equal, we can merge the -th and the -th GP compo-
nents into one component. So, we define the merge criterion as the similarity between 

 and : 

 ( , ) = ,  (15) 
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where ·  denotes the Euclidean vector norm, and we can merge the two GP com-
ponents with the largest ( , ).  

  After the merge operation, we attempt to split each GP component into two GP 
components, called the -th and the -th components, and estimate and 

 by minimizing ( , ). Then, we only accept the split of the -th 
GP component which leads to the smallest minimum ( , ). 

The Model Selection Framework. Denote the set of candidate values of  as 

 = |  (16) 

For each element  from the set , we learn the MGP model with  components 
via the hard-cut EM algorithm and SMEM algorithm in turn to get the maximum 
likelihood: 

Step 1  Initialization: Set  = 1 , = −  and initialize the parameters ,  in the MGP model. 
Step 2  Parameter Learning: 

At phase , we perform the hard-cut EM algorithm with the initial parameters , . After convergence, we obtain the estimated parameters , , and 
the corresponding log-likelihood function . If , then set =

. 
Then, implement the SMEM algorithm [12] with the initial parameters , , 

and we can obtain the updated parameters , , and the corresponding log-
likelihood . If , then set = . 
Step 3  Set = + 1, if = , terminate and output ; otherwise, 
return to Step2. 

After the learning process above, we have obtained the maximum log-likelihood 
, for each  from the candidate set . Then according to the SB criterion, we 

obtain the appropriate number of GP components as follows: 

 = ∈ − log  (17) 

4 Simulation Experiments 

In order to test the effectiveness and accuracy of our proposed SB criterion for model 
selection, we generate three typical synthetic datasets from the MGP model, and then 
apply the SB criterion to these datasets with various values of penalty coefficient  
and compare the SB criterion with two classical model selection criterions, AIC and 
BIC, on the large synthetic dataset. Moreover, we carry out the same experiment on 
an artificial toy dataset. Finally, by summarizing these experimental results, we obtain 
an appropriate empirical interval for  that leads to reliable model selection. 
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4.1 On Three Typical Synthetic Datasets of MGP 

Three synthetic datasets are generated from the MGP models with different sizes. For 
the small synthetic dataset, there are 939 samples and 5 GP components, as shown in 
Fig.1. The medium synthetic dataset has 2400 samples and 8 GP components, as plot-
ted in Fig.2. The large synthetic dataset has 10000 samples and 10 GP components, as 
plotted in Fig.3. 

 

Fig. 1. The small synthetic dataset  Fig. 2. The medium synthetic dataset 

 

Fig. 3. The large synthetic dataset 

Then, we apply the model selection framework above to these synthetic datasets with 
some δ ∈ (0,3). The candidate sets for the small, medium and large datasets are = 2,3, ⋯ ,10 , = 3,4, ⋯ ,13  and = 5,6, ⋯ ,15 , respectively. We repeat the 
experiment 18 times on the small dataset and 15 times on the medium and large data-
sets. For each value of δ, the number of experiments where the estimated value of  
does not equal to the true value is shown in Figs.4-6 for the three datasets, respectively. 

It can be seen from Figs. 4-6 that our proposed model selection framework selects 
the correct value of  with very high probability when the penalty coefficient δ lies 
in a suitable interval, whereas the error increases when δ gets away from this inter-
val, since appropriate value of δ ensures the balance between the log-likelihood and 
the penalty. The suitable intervals are (1.0,1.8), (1.3,2.2) and (1.10,1.75) for the 
small, medium and large datasets, respectively. Particularly, with the best value of δ, 
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our proposed model selection framework based on the SB criterion gives correct re-
sult for all the 15 times on both the medium and the large synthetic dataset, whereas 
the large dataset has heavy overlaps among the GP components that makes model 
selection even more difficult, which firmly demonstrates the strong ability of our 
proposed model selection framework.  

 

Fig. 4. Model selection result on the small 
synthetic dataset 

Fig. 5. Model selection result on the me-
dium synthetic dataset 

 

Fig. 6. Model selection result on the large synthetic dataset 

4.2 Experimental Results with AIC and BIC Criterion 

To compare our proposed SB criterion with two classical criterions, AIC and BIC, we 
also apply AIC and BIC criterions to the three synthetic datasets above. Figs.7 & 8 
show the objective functions of AIC and BIC criterions against the value of  on the 
large synthetic dataset, respectively. From Figs.7 & 8, it can be seen that these two 
criterions prefer to select the maximum value of  from the candidate set, since the 
log-likelihood is dramatically increasing with  for MGP models whereas the penal-
ty is relatively stable, so that the objective functions also increase with . In contrast, 
due to the synchronous balance between the log-likelihood and the penalty, our pro-
posed SB criterion significantly outperforms the AIC and BIC criterion on the syn-
thetic dataset. 
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Fig. 7. The model selection result with AIC criterion on the large synthetic dataset 

 

Fig. 8. The model selection result with BIC criterion on the large synthetic dataset 
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4.3 On an Artificial Toy Dataset 

The artificial toy dataset is used to test some MGP models since it is highly multi-
modal [6, 7, 11, 14]. The dataset consists of four groups, and each group is generated 
from a continuous function with different levels of Gaussian noise. In our experiment, 
we generate 200 samples for each group, as shown in Fig.9. Then, we apply the SB 
criterion and repeat the experiment 25 times with the candidate set = 2,3, ⋯ ,10 . 
For some values of δ, the number of experiments where the estimated value of 4(the true number of components) is shown in Fig.10. It can be observed from 
Fig. 10. that the SB criterion makes mistakes only twice among the 25 times, which 
means it can select the true number of components with very high probability, when δ comes from (1.25,2.15), whereas the performance becomes poorer when δ gets 
too large or too small, as also shown in the experiments on the synthetic datasets 
above. Since the Toy dataset does not come from MGP models and is more similar to 
a real dataset, our proposed model selection framework also demonstrates potential 
applicability. 

 

         Fig. 9. The toy dataset        Fig. 10. Model selection result on toy dataset 

4.4 Experimental Conclusion and Penalty Coefficient Choice 

It can be summarized from the experimental results above that the performance of our 
proposed model selection framework heavily relies on the penalty coefficient δ. With 
a suitable value of δ, our model selection framework works well on both the synthet-
ic datasets and the toy dataset. Besides, the appropriate intervals for δ in these expe-
riments are close to each other and the intersection of these intervals is (1.3,1.7), 
which leads to the correct value of  with very high probability. Therefore, (1.3,1.7) can be an empirical interval of δ for model selection on a new dataset. 

5 Conclusion 

We have established an effective criterion for model selection of the MGP model, 
where the log-likelihood and the penalty are much more synchronously balanced in 



354 L. Zhao, Z. Chen, and J. Ma 

comparison with classical criterions like AIC and BIC. From the experimental results, 
it can be demonstrated that when the penalty coefficient is within a certain feasible 
interval, like (1.3,1.7), our proposed SB criterion can obtain the true number of GP 
components with very high probability, and significantly outperforms AIC and BIC. 
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Abstract. A new algorithm for single hidden layer feedforward neural networks 
(SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed 
and the algorithm derivation is given in the paper. The algorithm can decide 
both the NNs parameters and the neuron number of hidden layer(s) during train-
ing while providing extreme fast learning speed. It will provide a practical way 
to develop NNs. The simulation results of function approximation showed that 
the algorithm is effective and feasible with good accuracy and adaptability.  

Keywords: Neural network, orthogonal basis extreme learning, function  
approximation.  

1 Introduction 

The neural network (NN) is one of the popular intelligent data analysis methods and a 
robust way to solve some complex issues with uncertainties and stochastic systems. It 
is widely used in many areas, such as finance and banking, economics, business, im-
age processing, bionomics, internetworking, engineering, et al. The two biggest chal-
lenges of NNs are: how to construct hidden layer(s) or how to decide neuron numbers 
of hidden layer(s), how to increase the NN learning speed which enables them to meet 
the challenges of dynamic learning. 

For determining the hidden node number some algorithms that construct a NN dynami-
cally have been proposed. The most well known constructive algorithms are dynamic 
node creation (DNC), the cascade correlation (CC) algorithm, feedforward NN construc-
tion (FNNC) algorithm and weight freezing based constructive algorithm. 

Huang and Wang discussed a hybrid NN model for rainfall-runoff forecasting based 
on a Genetic Algorithm (GA). The GA was employed to select the lag period of a time 
series for NN inputs and the structure of the first NN. Then the first NN is connected to 
the second NN and the BP algorithm is used to train the second NN [1]. The method 
optimized the inputs but made a more complex NN in both the structure and the algo-
rithm. Actually one NN is good enough to achieve the required function. Zhang and Li 
provided a Gegenbauer orthogonal basis NN and its weights direct determination me-
thod [2]. It is approved to be a fast way for training a single-input and single-output 
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(SISO) NN. But it still left the NN structure and the multi-input or multi-output 
(MIMO) issues as open questions. 

Guang-Bin Huang proposed an Extreme Learning Machine (ELM) learning algo-
rithm in 2006 [3]. In theory, this algorithm tends to provide the best generalization 
performance at extremely fast learning speed. It directly calculates a generalized in-
verse of the hidden layer output matrix H by using distinct samples. Huang proved 
that the single hidden layer feedforward neural networks (SLFN) with arbitrarily as-
signed input weights and hidden layer biases and with almost all nonzero activation 
functions can universally approximate any continuous functions on any compact input 
sets [4]. ELM has been successfully applied to a number of real world applications. 
However the issue regarding the design of ELM network architecture remains open. 
In some cases it may not be easy to calculate the inverse of H, especially when the 
samples are very large with some repeat sample values. The distinct samples may not 
fully represent the real stochastic system. 

In this paper, an Orthogonal Basis Extreme Learning (OBEL) algorithm is put for-
warded for the solution of above problems. The algorithm derivation is given in the 
paper. During the training the algorithm can decide both the NNs parameters and the 
neuron number of hidden layer(s). It has extreme fast learning speed, good accuracy 
and adaptability. It will provide a practical way to develop NNs. The OBEL algorithm 
is tested in three functions approximation, single or multiple inputs. The simulation 
results of function approximation showed that the algorithm is effective and feasible. 

2 OBEL Algorithm 

2.1 Approximation Problem of SLFN 

For a multi-input x = [x1 ,…, xr]
T ∈ and multi-output y = [y1,…, ym]T ∈  (MIMO) 

SLFN with n hidden nodes, its input/output (I/O) relationship can be mathematically 
modeled as:  = ( ) =  ∑ ( , )                            (1) 

Here, ( , ) is the activation function of the ith hidden node. = , , … , T is the weight vector connecting the ith hidden node and the 
input nodes. = , , … , T is the weight vector connecting the ith hidden 
node and output nodes. 

For N samples {(xj, ydj), j = 1, … , N} with modelling error δ means that ∑ − = , i.e., = ∑ ( , ) +  ,     j =1, …, N                    (2) 

The above N equations can be written compactly as: = Ψ( , ) +                                (3) 
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Where 

= × ,  = × ,  =  ,                     (4a) 

Ψ( , ) = ( , ) … ( , )…( , ) … ( , )                    (4b) 

If we select the norm cost function ( , ) = − Ψ( , )                             (5) 

The NN learning algorithm is to find ω* and θ* such that , = argmin ( , )                             (6) 

2.2 Minimum Norm Least-Squares Solution of SLFN 

According to the ELM method, randomly assigns the input weight ω, then (3) can be 
rewritten as a general linear system = Ψ  ,   0                                (7) 

The θ* is the minimum norm least-squares solution of (7) if Ψ − = min Ψ −                          (8) 

and  = Ψ                         (9) 

Here Ψ  is the Moore-Penrose generalized inverse of the matrix Ψ. This can be 
proved as follows. 

Let’s split Y into two parts, Y1 and Y2. In which Y1 is the range of Ψ, Y2 is its ortho-
gonal complement.  = +  ,  = ΨΨ ∈ R(Ψ),  =I−ΨΨ† ∈ R(Ψ)  

From Ψ − ∈ R(Ψ), there is Ψ − = Ψ − + (− )                         = Ψ − +  
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If and only if θ is the solution of Ψθ = Y1= ΨΨ†Y, then θ = Ψ†Y is the least-squares 
solution of (7). 

The complementary solution of (7) is the particular solution (9), plus the kernel or 
nullspace of Ψ. 

 (Ψ) = (Ψ Ψ)                              = ( − Ψ Ψ)                              = ( − Ψ Ψ) : ∈  

The complementary solution of (7) is = Ψ + ( − Ψ Ψ) : ∈  

Because Ψ Ψ + ( − Ψ Ψ)  

        = Ψ + − Ψ Ψ ,    ( − Ψ Ψ) 0 

There for (9) is the minimum norm least-squares solution of (7).  

2.3 OBEL Algorithm 

However sometimes it may not be easy to calculate out Ψ , especially when the sam-
ples are very large. Let us set the hidden layer activation function ( ) as an ortho-
gonal polynomial. For N samples {(xj, ydj), j = 1, … , N} and the kth input, there are 
[5], [6]: =  (1), (2), … , ( )                        (10) =  (1) , (2) , … , ( )                  (11) Ψ =  (1) , (2) , … , ( )               (12a) Ψ =  (1) (1) , … , ( ) ( )              (12b) 

The following norm and inner product are introduced: =  ∑ ( ( )) /                         (13a) , Ψ  =  ∑ ( ) ( ( ))                  (13b) 

The cost function is defined as the norm square of learning errors, namely 

 ( ) =  = ∑ −  ( )                   

 =  ∑ −  ∑ ( ( ))        (14) 
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Here t is the learning iteration number. Obviously the NN learning is searching the 
optimal square approximation of f(x). The linear transfer functions are employed for 
the input layer and output layer neurons. The orthogonal basis activation function is 
used for the hidden layer.  

Let = 0, i.e., ∑ −  ∑ ( ) · ∑ ( )     ∑ ∑ ( ) − ( ( )) ∑ ( ) = 0         (15) 

The ith equation in (15) is as follows: ∑ ( ) − ( ( )) · ( ) = 0  

The optimal solution of  is = ∑ ( ( )) ( )∑ ( ) ( ) = ,,                    (16) 

For simplifying the NN structure and the algorithm, an output fk is built for each 
input xk. The total output with weighted coefficients dk is defined in (17). Here dk is 
calculated by the least square method. 

                = ∑ = ∑ ∑                       (17) 

Let 1=kjω , the recursion formulas are shown in (18), Here k=1, … ,r; i=1, … ,n; 

t is the iteration number and t=0, 1, ….  ( ) = 0,  ( ) = 1,   = − ,   = 0,   =           (18a) 

 ( ) = ,, ,     = ,( ) , ( ) ,    
 ψ( ) ( ) = − ( ) ( ) − ( ) ( )              (18b) 

 = ,,                                   (18c) 

 ( ) = ∑ ( )                           (18d) 

 = − ( ),     ( ) =                      (18e) 

Here Jk(t) in (18e) is decreasing which demonstrated by Zhang [7], i.e. ( )( ) and ( + 1) ( ). Therefore Jk(t) can be calculated to a required precision 
and ek can converge at the global minimum. 

For a dynamic learning algorithm, let’s consider a single sample. The cost function 
defined in (14) is shown as (19). 

 ( ) = = − ∑ ( )                    (19) 
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The recursion formulas (18b) and (18c) can be modified to the scalar inner product 
which is shown in (20) and (21). 

 ( ) = ,,  ,     = ,( ) , ( )                       (20) 

 = ,,                                     (21) 

The OBEL algorithm can use any orthogonal polynomial as the activation function.  

3 OBEL-Based Function Approximation 

In this section, the OBEL algorithm is used to approximate the following functions: 
Single input function: 

 ( ) = sin ( ),   ∈ (0, 2 )                            (22) 

Bessel function: 

 + + ( − ) = 0, ∈ 0, 10                         (23) 

Two input function:    

 = cos( ) sin( ) ,   ∈ −2, 2 , ∈ −2, 2                     (24) 

The training set and the testing set are created respectively where inputs are un-
iformly randomly distributed on the interval shown as (22-24).  

In the simulations the standard orthogonal polynomials are employed as the hidden 
activation functions. According to (18) to (21) and OBEL algorithm, the hidden neu-
ron number will automatically increase during learning. To prevent the over large NN 
structure, a limitation of 20 hidden neuron numbers is set. The training will be 
stopped when hidden nodes exceeding the limitation. 

The Levenberg-Marquardt (LM) algorithm is used as a comparison method. The 
LM algorithm is often the fastest back-propagation (BP) algorithm in the MATLAB 
toolbox, and is highly recommended as a first-choice supervised algorithm, al-
though it does require more memory than other algorithms. For comparing the both 
algorithm at the same accuracy level, the LM training epochs is set to 1000 and the 
LM training goal is set to 0.001. The activation functions of LM hidden layer are 
sigmoid functions.  

All the simulations for the OBEL and LM algorithms are carried out in the follow-
ing environment: 

a) PC Processor: Intel® Core™ i5 CPU 750 @ 2.67GHz; 
b) RAM: 4.00 GB (3.25 GB usable); 
c) System: Windows 7 Home Premium SP1 32-bit; 
d) Software: MATLAB R2009b (Version 7.9.0.529) 32-bit;   
The simulation results of function approximation by using OBEL and LM algo-

rithms are shown as Fig. 1 to Fig. 8. In Fig. 1 to Fig.4 the red line is the target, blue 
line is the approximation, and green line is approximating error. 
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Fig. 1. OBEL results of (22) Fig. 2. LM results of (22) 

 
Fig. 3. OBEL results of (23) Fig. 4. LM results of (23) 

Fig. 5. OBEL output surface of (24) Fig. 6. LM output surface of (24) 
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Fig. 7. OBEL error surface of (24) Fig. 8. LM error surface of (24) 

The simulation performances are shown in Table 1 to Table 3. The green numbers 
mean better performances. The red numbers mean huge differences or important indi-
cators. 

For single input NN (see Table 1 and Table 2), the learning speed of proposed 
OBEL algorithm is more than 60 times faster than the LM algorithm for (22) and 
(23). The accuracy of OBEL algorithm is higher than LM algorithm. The mean errors 
of the both OBEL and LM algorithms are very close. 

Table 1. Performance of Training (22) 

Performance OBEL LM |LM/OBEL| 
sample No. 1000 1000 1 
hidden nodes 20 20 1 
training time 
(seconds) 

0.021562 1.492055 69.1984 

accuracy 0.0139 0.0287 2.0647 

max error 0.0205 0.1596 7.7854 

min error -0.0244 -0.0236 0.9672 

mean error -8.4889e-4 0.0069 8.1283 

max |error| 0.0244 0.1596 6.5410 

min |error| 2.8889e-5 2.8863e-5 0.9991 

mean |error| 0.0126 0.0140 1.1111 

For a two inputs NN (see Table 3), the learning speed of proposed OBEL algo-
rithm is more than 80 times faster than the LM algorithm for (24). The accuracy of 
OBEL algorithm is higher than LM algorithm. The mean error of OBEL algorithm is 
much better than LM algorithm. But the mean of the absolute error values for both 
OBEL and LM algorithms are very close. 
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Table 2. Performance of Training (23) 

Performance OBEL LM |LM/OBEL| 
sample No.     1000      1000      1 
hidden nodes 20 20      1 
training time 
(seconds) 

0.021023 1.351731 64.2977 

accuracy 0.0178 0.0234 1.3146 

max error 0.0257 0.0280 1.0895 

min error -0.0779 -0.1446 1.8562 

mean error 0.0031 -0.0025 0.8065 

max |error| 0.0779 0.1446 1.8562 

min |error| 8.1861e-5 6.4180e-5 0.7840 

mean |error| 0.0147 0.0139 0.9456 

Table 3. Performance of Training (24) 

Performance OBEL LM |LM/OBEL| 
sample No. 41×41 41×41 1 
hidden nodes 20 20 1 
training time 
(seconds) 

0.018131 1.536473 84.7429 

accuracy 0.0290 0.0315 1.0862 

max error 0.1599 0.1329 0.8311 

min error -0.1599 -0.1024 0.6404 

mean error -8.5467e-18 -0.0015 1.7551e+014 

max |error| 0.1599 0.1329 0.8311 

min |error| 2.3964e-19 1.6385e-6 6.8373e+012 

mean |error| 0.0194 0.0177 0.9124 

 

The simulation results showed that the OBEL algorithm is an extreme fast and 
feasible method with good accuracy. It can be used as a dynamic learning algorithm 
for both single input and multiple inputs NNs.  

4 Conclusion 

In this paper, an OBEL algorithm is developed and the algorithm derivation is given. 
During training the algorithm can decide both the NNs parameters and the NN struc-
ture, i.e. the neuron number of hidden layer. The OBEL algorithm may be used for 
dynamic learning. 

The OBEL algorithm is applied to three functions approximation for both single 
input and multiple inputs situation. The simulation of LM algorithm is given for com-
paring the OBEL algorithm. The LM algorithm is often the fastest BP algorithm in the 
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MATLAB toolbox. The OBEL algorithm is more than 60 times faster than the LM 
algorithm. The errors of the both OBEL and LM algorithms are very close. 

The simulation results showed that the OBEL algorithm has extreme fast learning 
speed, good accuracy and adaptability. It may provide a practical way to develop 
NNs. It may exhibit extensive applicability [5], [6]. However the current OBEL algo-
rithm is sensitive to initial input values which will be improved in future study. 
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Abstract. Text clustering is an important research topic in data mining. Many 
text clustering methods have been proposed and obtained satisfactory results. 
Information Bottleneck algorithm, which is based on information loss, can 
measure complicated relationship between variables. It is taken as one of the 
most informative text clustering methods and has been applied widely in practi-
cal. With the development of information technology, the scale of text  
becomes larger and larger. Classical information bottleneck based clustering 
method will be out of work to process large-scale dataset because of expensive 
computational cost. For dealing with large scale text clustering problem, a novel 
clustering method based on MapReduce is proposed. In the method, dataset is 
divided into sub datasets and deployed to different computational nodes. Each 
computational node will only process sub dataset. The computational cost can 
be reduced markedly. The efficiency of the method is illustrated with a practical  
text clustering problem. 

Keywords: Text clustering, Large Scale, MapReduce, Information Bottleneck, 
Feature selection 

1 Introduction 

Text Clustering is an unsupervised technique, which groups a collection of documents 
into a set of clusters, where documents within a cluster share a high level of homoge-
neity while different clusters exhibit a high level of heterogeneity of information [1]. 
It has become one of important contents in text mining. In the last decades, many 
methods have been introduced for text clustering, such as K-means, Clique algorithm, 
Self Organizing Map (SOM), Information Bottleneck (IB) algorithm and so on[2-4]. 
Information Bottleneck algorithm, which is based on information loss, can measure 
complicated relationship between variables. It is taken as one of the most informative 
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text clustering methods and has been applied widely in practice. With the develop-
ment of information technology, the scale of text dataset becomes larger and larger. 
Classical information bottleneck based clustering method will be out of work to pro-
cess large-scale dataset because of expensive computational cost. Efficient parallel 
algorithms and implementation techniques are the key to meeting the scalability and 
performance requirements entailed in such large scale data mining analyses. Many 
parallel algorithms are implemented using different parallelization techniques such as 
threads, MPI, MapReduce, and mash-up or workflow technologies yielding different 
performance and usability characteristics [5]. MapReduce is a cloud technology de-
veloped from the data analysis model of the information retrieval field. The 
MapReduce architecture in Hadoop doesn’t support iterative Map and Reduce tasks, 
which is required in many data mining algorithms. Iterative MapReduce architecture 
software is developed, such as Twister and Spark. Iterative MapReduce supports not 
only non-iterative MapReduce applications but also an iterative MapReduce pro-
gramming model [6-7]. Some clustering methods based on MapReduce were pro-
posed, such as k-means, EM, Dirichlet Process Clustering and so on [8]. But the com-
plicated clustering methods are not realized in MapReduce model. In this paper, a 
novel parallel text clustering method based on parallel IB is proposed to deal with 
large scale text clustering problems.  

The general procedure of text processing is summarized as feature extraction, text 
representation, clustering process and cluster interpretation. Most textual information 
is available in the form of natural language. Some text feature selection methods have 
been developed, such as Document Frequency (DF), Term Contribution (TC), Term 
variance quality (TVQ) and Term Variance (TV) [9-10]. These unsupervised methods 
can filter unimportant features efficiently. In this paper, DF and TC are used to select 
text feature for clustering. 

After extracting features, the document collection should be represented using a 
suitable numerical model in order to be processed by a clustering algorithm. To the 
best of our knowledge, Vector Space Model (VSM) is the most popular method in 
representing documents. Tf-idf is taken as the most commonly used feature to repre-
sent a text document. In this paper, Tf-idf is used as the feature of a document. It is 
used to generate document VSM. Parallel IB based on MapReduce is used to cluster 
the text documents. A paractical text clutering example is analyzed with the proposed 
method in the end. 

2 Feature Selection 

Commonly used feature selection methods DF and TC are introduced as follows. 
They are used to filter unimportant features in clustering.  

2.1 Document Frequency (DF) 

Document frequency is the number of documents in which a term occurs in a dataset. 
It is the simplest criterion for term selection and easily scales to a large dataset with 
linear computation complexity. A basic assumption of this method is that terms appear 
in minority documents are not important or will not influence the clustering efficiency. 
It is a simple but effective feature selection method for text categorization.  
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2.2 Term Contribution (TC) 

TF-IDF synthetically considers the frequency of a term in a document and the docu-
ment frequency of the term. It believes that if a term appears in too many documents, 
it's too common and not important for clustering. So Inverse Document Frequency is 
considered. A common form of TF-IDF is:  , = ,∑ , log | |: ∈                        (1) 

The result of text clustering is highly dependent on the documents similarity. So 
the contribution of a term can be viewed as its contribution to the documents' similari-
ty. The contribution of a term in a dataset is defined as its overall contribution to the 
documents' similarities.  ( ) = ∑ ( , ) × ( , ), ∩                     (2) 

2.3 Feature Representation  

Tf-idf will be used to generate VSM of document. In the calculation of information 
loss, VSM should be represented with probability value. So the value of f t , d  is 
normalized as follows. 

 , = ,∑ ( , )       (3) 

3 Iterative MapReduce Model 

The computational cost of mutual information of large scale dataset is expensive. 
Parallel feature selection is the efficient means to solve it. Different MapReduce mod-
el will lead to different operation performance. Twister is an iterative MapReduce 
model that is efficient in dealing with most machine learning methods. Twister’s pro-
gramming model can be described as in figure 1. 

 
Fig. 1. Twister’s programming model 
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4 Parallel IB Clustering 

Classical clustering method based on information bottleneck theory has been applied 
to many application fields. The clustering method is introduced as follows. 

4.1 IB Principle 

The IB clustering method states that among all the possible clusters of a given object 
set when the number of clusters is fixed, the desired clustering is the one that mini-
mizes the loss of mutual information between the objects and the features extracted 
from them. Let  ( , )  be a joint distribution on the “object” space   and the 
“feature” space  . According to the IB principle we seek a clustering   such that 
the information loss ; = ( ; ) − ( : )   is minimized. ;  is the 
mutual information between   and   ; = ∑ ( ) ( | ), log ( | )( )               (4) 

The loss of the mutual information between  and  caused by the clustering   
can be calculated as follows.                ( , ) = ( ; ) − ; =∑ ( , , )log ( | )( ), , − ∑ ( , , )log ( | )( ), , = ( ( , )|| ( | )     (5) 

Let   and   be two clusters of symbols. The information loss due to the 
merging is 

 ( , ) = ( ; ) + ( ; ) − ( , ; )              (6) 

Standard information theory operation reveals  ( , ) = ∑ ( ) ( | ) ( | )( | ∪ ), ,               (7) 

where ( ) = | |/| |, | | denotes the cardinality of , | | denotes the cardinal-
ity of object space ,  ( ∪ ) = | ∪ |/| |. 

It assumes that the two clusters are independent when the probability distribution is 
combined. The combined probability of the two clusters is ( | ∪ ) = ∑ | || ∪ | ( | ),                                          (8) 

The minimization problem can be approximated with a greedy algorithm. The al-
gorithm is based on a bottom-up merging procedure. The algorithm starts with the 
trivial clustering where each cluster consists of a single data vector. In each step, the 
two clusters with minimum information loss are merged. The method is suitable to 
both sample clustering and feature clustering. The clustering procedure based on IB is 
shown in figure 2.  
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(3) In the last level, dataset are combined into one group. Operate IB clustering on 
the dataset. In the clustering procedure, the number of centers is set . After calcula-
tion, we can obtain the final cluster centers = , , ⋯ , . 

(4) According to the final clustering center, we can calculate the clustering results 
through calculating the distance between each data and each center. In the calculation, 
the distance between each record and centers is measured with information loss.  

5 Example  

For illustrating the efficiency of the proposed method, a large scale text clustering 
example is analyzed in this section. 

5.1 Data Source 

Department of science and technology will collect thousands of project proposals 
every year. Proposal evaluation is an important task. How to assign a project proposal 
to a proper expert is a significant problem. Firstly, the project proposals should be 
clustered. Similar project proposals are put together and assigned to same experts. 
Traditionally, the projects proposals are assigned according to the keywords. It will 
render mismatch between proposals and experts. Proposal clustering based on pro-
posal content can improve the reasonability of project evaluation. Clustering the pro-
ject proposal manually is a burdensome task. We will use the proposed parallel text 
clustering method to realize the clustering. We collect 958 project proposal samples in 
this example. These samples are clustered according to experts’ classification manual-
ly according to the whole proposals’ content. All those projects are divided into 5 
clusters. The example is analyzed in Shandong cloud computing center. Each node 
installs Ubuntu Linux OS. The processor is 3GHz Intel Xeon with 8GB RAM. 

5.2 Text Feature Selection 

We use ICTCLAS tool to operate Chinese segmentation. After segmentation, we get 
32535 terms in total. Each document can be taken as a 32535 vector. We apply DF 
and TC feature selection methods to the high dimension document vector. The thresh-
old value of DF is set 10. After filtering, 3240 terms are left. We apply TC method on 
the left terms. The threshold value is set 0.04. We obtain 1890 terms finally. We use 
the 1890 terms to realize text clustering.  

5.3 Text Clustering 

We apply the parallel text clustering method to the dataset. In the clustering, the ratio 
value  between the initial size of sub dataset and the clusters is set 0.3. The final 
cluster number is determined with the introduced method in section 3. In this example, 
the number of clusters is determined 12. The clustering results are shown as in table 1. 
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Table 1. Clustering results based on different computational nodes 

Number of computational 
nodes 

Computational time Clustering precision 

1 294.04 90.2 
2 172.12 89.68 
4 126.33 89.45 
8 143.42 89.12 

For comparison, we use k-means clustering method to realize the clustering 
problem. The number of centers is set 5 and the initial center is selected randomly 
from the initial dataset. The clustering is operated on one computational node. 
The clustering result is shown as in table 2. 

Table 2. Clustering results based on different computational nodes 

Number of computational 
nodes 

Computational time Clustering precision 

1 74.32 83.21 
2 39.36 82.98 
4 20.68 82.64 

5.4 Result Comparison 

From above analysis results we can find that the clustering method based on Infor-
mation bottleneck is better than classic clustering method. It is more suitable to be 
used to process text mining problems. But the computational cost of IB is higher than 
classic clustering method. MapReduce technique can improve the computation speed 
markedly. But the computational speed is not improved linearly. The increase of com-
putational node will lead to the increase of computational layer, which will increase 
the computational time. At the same time, the data transfer from previous layer to next 
layer will cost time. So the number of computational node should be determined 
properly according to practical problem. 

6 Conclusions 

Large scale text clustering becomes more and more important in current society. More 
and more application areas require text clustering. Clustering based on MapReduce 
program model is the development trend of large scale dataset clustering problems. 
The parallel clustering methods proposed in this paper can deal with large scale text 
clustering problems efficiently. The clustering precision based on MapReduce will not 
affected markedly by the number of computational node. The clustering result is bet-
ter than other classic clustering method.  
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Abstract. In this paper, we study the problem of using contextual data
points of a data point for its classification problem. We propose to rep-
resent a data point as the sparse linear reconstruction of its context,
and learn the sparse context to gather with a linear classifier in a su-
pervised way to increase its discriminative ability. We proposed a novel
formulation for context learning, by modeling the learning of context
reconstruction coefficients and classifier in a unified objective. In this
objective, the reconstruction error is minimized and the coefficient spar-
sity is encouraged. Moreover, the hinge loss of the classifier is minimized
and the complexity of the classifier is reduced. This objective is opti-
mized by an alternative strategy in an iterative algorithm. Experiments
on three benchmark data set show its advantage over state-of-the-art
context-based data representation and classification methods.

Keywords: Pattern classification, Context learning, Nearest neighbors,
and Sparse regularization.

1 Introduction

Pattern classification is a major problem in machine learning research [32,5,6,13].
The two most important topics of pattern classification are data representation
and classifier learning. Zhang et al. proposed an efficient multi-model classifier
for large scale Bio-sequence localization prediction [36]. Zhang et al. developed
and optimized association rule mining algorithms and implemented them on
paralleled micro-architectural platforms [39,38]. Most data representation and
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classification methods are based on single data point. When one data point is
considered for representation and classification, all other data points are ignored.
However, the other data points other than the data point under consideration,
which are called contextual data points, may play important roles in its rep-
resentation and classification. It is necessary to explore the contexts of data
points when they are represented and/or classified. In this paper, we investigate
the problem of learning effective representation of a data point from its con-
text guided by its class label, and proposed a novel supervised context learning
method using sparse regularization and linear classifier learning formulation.

We propose a novel method to explore the context of a data point, and use
it to represent it. We use its k nearest neighbors as its context, and try to
reconstruct it by the data points in its context. The reconstruction errors are
imposed to be spares. Moreover, the reconstruction result is used as the new
representation of this data point. We apply a linear function to predict its class
label from the sparse reconstruction of its context. The motivation of this con-
tribution is that for each data point, only a few data points in its context is of
the same class as itself. To find the critical contextual data points, we proposed
to learn the classifier together with she sparse context. We mode this problem
as a minimization problem. In this problem, the context reconstruction error,
reconstruction sparsity, classification error, and classifier complexity are mini-
mized simultaneously. We also problem a novel iterative algorithm to solve this
minimization problem. We first reformulate it as ist Lagrange formula, and the
use an alterative optimization method to solve it.

This paper is organized as follows. In section 2, we introduce the proposed
method. In section 3, we evaluate the proposed method experimentally. In section
4, this paper is concluded with future works.

2 Proposed Method

We consider a binary classification problem, and a training set of n data points
are given as {(xi, yi)}ni=1, where xi ∈ R

d is a d-dimensional feature vector of
the i-th data point, and yi ∈ {+1,−1} is the class label of the i-th point. To
learn from the context of the i-th data point, we find its k nearest neighbors
and denote them as {xij}kj=1, where xij is the j-th nearest neighbor of the i-th

point. They are further organized as a d× k matrix Xi = [xi1, · · · ,xik] ∈ Rd×k,
where the j-th column is xij . We represent xi by linearly reconstructing it from
its contextual points as

xi ≈ x̂i =

k∑

j=1

xijvij = Xivi (1)

where x̂i is its reconstruction, and vij is the reconstruction coefficient of the j-th
nearest neighbor. vi = [vi1, · · · , vik]� ∈ R

k is the reconstruction coefficient vec-
tor of the i-th data point. The reconstruction coefficient vectors of all the train-
ing points are organized in reconstruction coefficient matrix V = [v1, · · · ,vn] ∈
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R
k×n, with its i-th column as vi. To solve the reconstruction coefficient vectors,

we propose the following minimization problem,

min
V

{

β

n∑

i=1

‖xi −Xivi‖22 + γ

n∑

i=1

‖vi‖1
}

, (2)

where β and γ are trade-off parameters. In the objective of this problem, the
first term is to minimize the reconstruction error measured by a squared �2 norm
penalty between xi and Xivi, and the second term is a �1 norm penalty to the
contextual reconstruction coefficient vector vi.

We design a classifier to classify the i-th data point,

f(x̂i) = w�x̂i = w�Xivi (3)

where w ∈ R
d is the classifier parameter vector. The following optimization

problem is proposed to learn w,

min
w,V,ξ

{
1

2
‖w‖22 + α

n∑

i=1

ξi

}

s.t. 1− yi
(
w�Xiv

) ≤ ξi, ξi ≥ 0, i = 1, · · · , n,
(4)

where 1
2‖w‖22 is the the squared �2 norm regularization term to reduce the com-

plexity of the classifier, ξi is the slack variable for the hinge loss of the i-th
training point, ξ = [ξ1, · · · , ξn]� and α is a tradeoff parameter.

The overall optimization problem is obtained by combining the problems in
both (2) and (4) as

min
w,V,ξ

{
1

2
‖w‖22 + α

n∑

i=1

ξi + β

n∑

i=1

‖xi −Xivi‖22 + γ

n∑

i=1

‖vi‖1
}

s.t. 1− yi
(
w�Xiv

) ≤ ξi, ξi ≥ 0, i = 1, · · · , n.
(5)

According to the dual theory of optimization, the following dual optimization
problem is obtained,

max
δ,ε

min
w,V,ξ

{
1

2
‖w‖22 + α

n∑

i=1

ξi + β

n∑

i=1

‖xi −Xivi‖22 + γ

n∑

i=1

‖vi‖1

+

n∑

i=1

δi
(
1− yi

(
w�Xivi

)− ξi
)−

n∑

i=1

εiξi

}

,

s.t. δ ≥ 0, ε ≥ 0,

(6)
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where δ = [δ1, · · · , δn]�, and ε = [ε1, · · · , εn]� are Lagrange multipliers. By
setting the partial derivative of L with regard to w and ξi to zeros, we have

w =

n∑

i=1

δiyiXivi.

α− δi = εi

⇒ α ≥ δi.

(7)

We substitute (7) to (6)to eliminate w and δ,

max
δ

min
V

⎧
⎨

⎩
−1

2

n∑

i,j=1

δiδjyiyjv
�
i X

�
i Xjvj + β

n∑

i=1

‖xi −Xivi‖22

+γ

n∑

i=1

‖vi‖1 +
n∑

i=1

δi

}

s.t. α ≥ δ ≥ 0.

(8)

where α = [α, · · · , α]� is a n dimensional vector of all α elements. We solve
this problem with the alternate optimization strategy. In each iteration of an
iterative algorithm, we fix δ first to solve V , and then fix V to solve δ.

Solving V When δ is fixed and only V is considered, we solve vi|ni=1 one by
one, (8) is further reduced to

min
vi

⎧
⎨

⎩
−1

2

n∑

i,j=1

δiδjyiyjv
�
i X

�
i Xjvj + β‖xi −Xivi‖22 + γ‖vi‖1

⎫
⎬

⎭
. (9)

This problem could be solved efficiently by the modified feature-sign search
algorithm proposed by Gao et al. [2].

Solving δ When V is fixed and only δ is considered, the problem in (8) is
reduced to

max
δ

⎧
⎨

⎩
−1

2

n∑

i,j=1

δiδjyiyjv
�
i X

�
i Xjvj +

n∑

i=1

δi

⎫
⎬

⎭

s.t. α ≥ δ ≥ 0.

(10)

This problem is a typical constrained quadratic programming (QP) problem,
and it can be solved efficiently by the active set algorithm.

3 Experiments

In this section, we evaluate the proposed supervised sparse context learning
(SSCL) algorithm on several benchmark data sets.
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3.1 Experiment Setup

In the experiments, we used three date sets, which are introduced as follows:

– MANET loss data set: The packet losses of the receiver in mobile Ad hoc
networks (MANET) can be classified into three types, which are wireless
random errors caused losses, the route change losses induced by node mo-
bility and network congestion. We collect 381 data points for the congestion
loss, 458 for the route change loss, and 516 data points for the wireless error
loss for this data set. Thus in the data set, there are 1355 data points in
total. To extract the feature vector each data point, we calculate 12 features
from each data point as in [1], and concatenate them to form a vector.

– Twitter data set: The second data set is a Twitter data set. The target
of this data set is to predict the gender of the twitter user, male or female,
given one of his/her Twitter massage. We collected 53,971 twitter massages
in total, and among them there are 28,012 messages sent by male users, and
25,959 messages sent by female users. To extract features from each Twitter
message, we extract Term features, linguistic features, and medium diversity
features as gender-specific features as in [8].

– Arrhythmia data set: The third data set is publicly available at http://arc
hive.ics.uci.edu/ml/datasets/Arrhythmia. In this data set, there are 452 data
points, and they belongs to 16 different classes. Each data point has a feature
vector of 279 features.
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Fig. 1. Boxplots of prediction accuracy of different context-based algorithms.
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Fig. 2. Parameter sensitivity curves.
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To conduct the experiments, we used the 10-fold cross validation.

3.2 Experimental Results

Since the proposed algorithm is a context-based classification and sparse repre-
sentation method, we compared the proposed algorithm to three popular context-
based classifiers, and one context-based sparse representation method. The three
context-based classifiers are traditional k-nearest neighbor classifier (KNN),
sparse representation based classification (SRBC) [26],and Laplacian support
vector machine (LSVM) [11]. The context-based sparse representation method
is Gao et al.’s Laplacian sparse coding (LSC) [3]. The boxplots of the 10-fold
cross validation of the compared algorithms are given in figure 1. From the
figures, we can see that the proposed method SSCL outperforms all the other
methods on all three data sets. The second best method is SRBC, which also
uses sparse context to represent the data point. This is a strong evidence that
learning a supervised sparse context is critical for classification problem.

Sensitivity to Parameters. In the proposed formulation, there are three
tradeoff parameters, α, β, and γ. We plot the curve of mean prediction ac-
curacies against different values of parameters, and show them in figure 2. From
figure 2(a) and 2(b), we can see the accuracy is stable to the parameter α and β.
From figure 2(c), we can see a larger γ leads to better classification performances.

4 Conclusion and Future Works

In this paper, we study the problem of using context to represent and classify data
points. We propose to use a sparse linear combination of the data points in the
context of a data point to represent itself. Moreover, to increase the discrimina-
tive ability of the new representation, we develop an supervised method to learn
the sparse context by learning it and a classifier together in an unified optimiza-
tion framework. Experiments on three benchmark data sets show its advantage
over state-of-the-art context-based data representation and classification meth-
ods. In the future, we will extend the proposed method to applications of infor-
mation security [33,27,30,29,28,31,34], bioinformatics [25,24,23,12,15,14,7,37,7],
computer vision [16,17], and big data analysis using high performance computing
[43,18,9,35,4,41,40,39,38,35,10,42,21,20,43,19,22].
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Abstract. In this paper, a novel K-means evolving spiking neural network (K-
ESNN) model for clustering problems has been presented. K-means has been 
utilised to improve the original ESNN model. This model enhances the flexibil-
ity of the ESNN algorithm in producing better solutions to overcoming the dis-
advantages of K-means. Several standard data sets from UCI machine learning 
are used for evaluating the performance of this model. It has been found that the 
K-ESNN provides competitive results in clustering accuracy and speed perfor-
mance measures compared to the standard K-means. More discussion is provid-
ed to prove the effectiveness of the new model in clustering problems.  

Keywords: Clustering, Evolving Spiking Neural Networks, K-ESNN,  
K-means, Spiking Neural Network. 

1 Introduction  

The evolving spiking neural network (ESNN) has been used widely in recent re-
search. The ESNN has several advantages [1], including being a simple, efficient 
neural model and trained by a fast one-pass learning algorithm. The evolving nature 
of the model can be updated whenever new data becomes accessible with no require-
ment to retrain earlier existing samples [2]. However, the ESNN model has not yet 
been investigated as a clustering method. For this reason, a novel integrated method is 
proposed to determine the effectiveness of the ESNN in clustering.  

Several clustering techniques can be utilised to enhance the ESNN performance out-
put and reduce the consuming time. However, the K-means, proposed by several re-
searchers across different disciplines like [3], has been considered as one of the most 
popular techniques used in data mining [4]. Many research studies have been proposed 
due its simplicity and efficiency in various fields [5, 6]. The algorithm begins to initiate 
the K object to be the centroid object by chance. After that, the Euclidean distance  
equation is used to test each object compared to the K object. The cluster technique is 
concerned with grouping objects into classes of similar objects called clusters.  
                                                           
* Corresponding author. 
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There are many challenges in dealing with clustering techniques, such as the choice of 
the number of clusters. Consequently, any incorrect choice of the number of clusters 
yields bad clustering results. Additionally, these algorithms suffer from inadequate accu-
racy when the data set contains clusters with noise and outliers. Based on [7], the greatest 
challenge with K-means is how to overcome the disadvantages of K-means, such as the 
poor performance and the sensitivity to outliers by proposing new variants. 

Hence, this research aims to find such clusters where the similarity of objects with-
in individual clusters is high, while the similarity of objects from different clusters is 
low by enhancing ESNN training using K-means. The remaining sections of this pa-
per are formed as follows: sections 2 and 3 explain the related works and methodolo-
gy used in this paper, respectively, while section 4 elucidates the experimental results; 
finally, section 5 presents the conclusion and future works.    

2 Related Works 

The original K-means algorithm has been utilised in many different ways [8, 9]. Some 
historical issues related to the well-known K-means algorithm in cluster analysis can 
be found in [10]. However, the K-means has some shortcomings, i.e. the difficulty to 
predict K-values and different initial partitions can result in different final clusters 
[11]. The K-means clustering algorithm flowchart is shown in Fig. 1.  

 
Fig. 1. K-means clustering algorithm flowchart 
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Many researchers have modified the K-means algorithm in different aspects [12]. 
A solution for better results could be instead of integrating all the requirements into a 
single algorithm, trying to build a combination of clustering algorithms[13]. Up to 
now, no studies have been found that investigate the capabilities of combining K-
means with the ESNN for clustering purposes. The ESNN was being tested only for 
classification purposes [14-17]. 

3 The Proposed Method K-ESNN  

In this hybrid method, K-means enhances ESNN learning by classifying a given data 
set through a definite number of clusters ( K clusters). The key idea is to identify K 
centroids, one for each cluster. These centroids are supposed to be positioned in a 
proper manner because different locations produce different outcomes. Consequently, 
the best alternative is to set them far away from each other. After that, each point 
belonging to a given data set should be associated with the nearest centroid. This pro-
cess must be repeated until no point is pending. As a result of this process, it might be 
observed that the K centroids change their position stepwise until no more changes 
are done. Finally, this algorithm works toward minimising the objective function, 
which is, in this case, the squared error function. The objective function is as follows: 

( ) 2

1 1

k n
j

i j
j i

F x z
= =

= −∑∑  (1)

where ( ) 2j
i jx z−  is the selected distance measure between a data instance point 

( )j
ix  and the cluster centre, and jz  is an indicator of the distance of the n data points 

from their respective cluster centres. The detailed algorithm of the K-ESNN is as 
follows in Algorithm 1. 

Algorithm 1. Pseudo-code of the K-ESNN 

1. Encode input pattern into firing time of pre-synaptic neuron f 

2. Establish neuron repository R 

3. Determine ESNN parameters C = [0,1], Mod = [0,1] and Sim= [0,1] 

4. for all input sample e related to the same output class do 

5. Determine weight for all pre-synaptic neurons where: 

           

( )order f
ewf Mod=

 

6. Calculate 
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7. Obtain the value of PSP threshold  max ( )*PSP e Cθ =  

8. if the trained weight vector <= Sim of trained weight in R then 

9. Merge weight and threshold value with the most similar neuron 

10.          
( ) *

1

w new w T
w

T

+=
+

 

11.          
( ) *

1

new T

T

θ θθ +=
+

 

12. where T is number of mergers before 

13. else 

14. Add new neuron to output neuron repository R 

15. end if 
16. end for (repeat for all instances for other output class) 
17. Initiate the K object to be a centroid object by chance. 
18. Allocate each object to the nearby group, which is related to the closest 

centroid. 
19. Recalculate the locations of the K centroids. 
20. Repeat Steps 18 and 19 until the centroids stop moving.  

 
The process starts by initialising the parameters of the ESNN model modulation 

factor (Mod), similarity parameter (Sim), threshold parameter (C) and fitness func-
tion. Moreover, the pre-synaptic neurons of the ESNN model have been discussed in 
depth in [18, 19]. The selected values for each data set are indicated in Table 1. 

Table 1. Selected values of parameters and pre-synaptic neurons in ESNN 

 

Parameter 
Normal 

Range 

Hepatitis 

data set 

Wine 

data set 

BTX 

data set 

Appendicitis 

data set 

Mod 0-1 0.9 0.9 0.9 0.9 

Sim 0-1 0.1 0.1 0.1 0.1 

Threshold 0.5 - 0.9 0.9 0.3 0.45 0.75 

Pre-Synaptic 

Neurons 
10-25 15 20 25 20 
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Besides, it is essential to initialise the number of K points, which belong to the 
clustering process. In this study, K has been set to be 2 clusters. After that, the ESNN 
model process is run until achieving the output spikes for each instance.  

The ESNN model stands on two principles: possibility of the establishment of new 
classes and the merging of similarities. The encoding method, which is used for the 
ESNN, is the population, as explained in [20]. The population distributes a single 
input value to multiple input neurons, denoted as M. Each input neuron holds a firing 
time as input spikes. The firing times are calculated, which represent the input neuron 
e using the intersection of the Gaussian function. The centre is calculated using (2) 
and the width is computed using (3) with the variable interval of [Emin, Emax]. The 
parameter β controls the width of each Gaussian receptive field. 

R=Emin + (2*e-3)/2*(Emax - Emin) / (M-2). (2)

σ = 1/β (Emax - Emin) / (M-2) where 1≤β≤2 (3)

The model, which was proposed by Thorpe [21] is similar to the Fast Integrate and 
Fire Model used in this paper. Thorpe’s model shows that the earliest spikes received 
by a neuron will get a better weight depending on the later spikes. When the Post-
Synaptic Potential (PSP) exceeds the threshold value, it will fire and become disabled. 
The computation of PSP of neuron e is presented in (4): 

( )
0

*
{ order f

e

fired
elsee wfe ModU = ∑  (4)

Where Wfe is the weight of the pre-synaptic neuron f; Mode is a parameter called 
modulation factor with an interval of [0, 1] and order (f) represents the rank of the 
spike emitted by the neuron. The order (f) starts with 0 if it spikes first among all pre-
synaptic neurons and increases according to the firing time. In the One-pass Learning 
algorithm, each training sample creates a new output neuron. Then, all spike point 
value locations are updated based on associating them to the group that has the closest 
centroid. Finally, the process of recalculating the positions of K centroids and the 
positions of spikes is repeated until the stopping criteria is met, which is when the 
centroids no longer move. The proposed method is evaluated by using several stand-
ard data sets which are listed in Table 2 and were downloaded from the machine 
learning benchmark repository (http://www.ics.uci.edu/~mlearn/MLRepository.html).   

Table 2.   Summary of data sets which used in this study 

Data set Features Instances 

Hepatitis 19 155 

Wine 13 178 

BTX 3 63 

Appendicitis 7 106 
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4 Results and Discussion 

This section presents the results of the proposed method compared to the standard K-
means. The experiments are conducted using hepatitis, wine, BTX and appendicitis 
data sets. The results of the comparison have been analysed based on their clustering 
performances and speeds. Table 3 shows the results of the comparison of the K-
ESNN and K-means for all chosen data sets in both accuracy and speed performance. 
As  can be seen, the accuracy of the K-ESNN for the hepatitis, wine, BTX and 
appendecitis data sets is 90.32%, 84.09%, 80.95% and 72.73%, respectively, while it 
is 83.55%, 56.82%, 66.67% and 45.45% in K-means As illustrated in Fig. 2, the test-
ing clustering accuracy values signify that the K-ESNN resulted in a better perfor-
mance compared to K-means for all data sets.  

Table 3. Results of clustering of chosen data sets 

The data set Algorithm 

Clustering performance 

Accuracy Time (second) 

Hepatitis 
K-means 83.55% 0.112 

K-ESNN 90.32% 0.052 

Wine 
K-means 56.82% 0.091 

K-ESNN 84.09% 0.073 

BTX 
K-means 66.67% 0.064 

K-ESNN 80.95% 0.007 

Appendicitis 
K-means 45.45% 0.064 

K-ESNN 72.73% 0.042 

 
Table 3 shows the results of the clustering of both models corresponding to these 

data sets. The clustering performance was tested for both models using the hepatitis, 
wine, BTX and appendicitis data sets. The best performance of accuracy in the K-
ESNN is 90.32% for the hepatitis data set, whereas the best performance of accuracy 
in K-means is 83.55% for the hepatitis data set. The poorest performance of accuracy 
in the K-ESNN is clearly in the appendicitis data set, as shown below in Fig. 2.  
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Fig. 2. Comparison between K-ESNN and K-means in terms of clustering accuracy 

In addition, the most important advantage found in this comparison is the speed 
performance. The results of the K-ESNN are 0.052, 0.073, 0.007 and 0.042 seconds 
for the hepatitis, wine, BTX and appendicitis data sets, respectively, which means it is 
faster than K-means. There are many factors leading the K-ESNN to be faster than K-
means, such as the ESNN nature which makes the clustering faster than the standard 
K-means. 

5 Conclusion and Future Works 

In this paper, a novel K-ESNN method was proposed to investigate the capabilities of 
the ESNN model to be used as a clustering method. A comparative study has been 
conducted between the K-ESNN and standard K-means to show the performance 
improvement of the K-ESNN. The accuracy and the speed of K-ESNN gave better 
results compared to the K-means. More experiments and comparisons are also another 
approach that can be applied. Moreover, enhancing the proposed K-ESNN method 
may be a good trend for exploration to obtain more results. Finally, increasing the 
performance and decreasing the time is an advisable direction to apply the multi-
objective optimisation algorithms.  

Acknowledgement. This research is supported and funded by Ministry of Education, 
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Abstract. Individuals in large groups respond to the movements and positions of 
their neighbors by following a set of interaction rules. These rules are central to 
understanding the mechanisms of collective motion. However, whether 
individuals actually use these rules to guide their movements remains untested. 
Here we show that the real-time movements of individual fish can be directly 
predicted from their neighbors’ motion. We train a recurrent neural network to 
predict the trajectories of individual fish from input signals. The inputs are 
projected to the recurrent network as time series representing the movements and 
positions of neighboring fish. By comparing the data output from the model with 
the target fish’s trajectory, we provide direct evidence that individuals guide their 
movements via interaction rules. Because the error between the model output and 
actual trajectory changes when the fish perceive a noxious contaminant, the 
model is potentially applicable to water quality monitoring. 

Keywords: Fish Behavior, Recurrent Neural Network, Force Learning, Water 
Quality Monitoring. 

1 Introduction 

Many fish species tend to gather in shoals or schools. A fish shoal can be identified as a 
spatial aggregation of independently moving fish that are loosely connected to the 
group, with no mutual attraction between individuals [1]. Shoaling is a complex social 
behavior that increases the individual fitness of each fish when foraging for food or 
avoiding prey [2-5]. Synchronous movement of multiple individuals in a group 
typically leads to collective motion of the fish shoal. Many models attempt to explain 
how collective motion emerges from interactions among individual fish. In these 
models, the fish respond to the positions of their neighbors through short-range 
repulsion and longer-range attraction rules [6-9]. Yet it remains to be seen whether an 
individual fish’s movement can be predicted online using its neighbors’ positions and 
movements. 

                                                           
* Corresponding author. 
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In this study, we attempt to predict the motion of the target fish by constructing a 
movement trajectories reservoir of the target’s neighbors using a recurrent neural 
network. The network receives the trajectories of the target’s neighbors as inputs. The 
neurons within the recurrent network are randomly and sparsely connected. The 
connections can be either excitatory or inhibitory. The connections within the reservoir 
are fixed. The movement trajectory of the target fish is predicted by a recursive least 
squares rule that shapes the readout from the recurrent network [10].  

By comparing the prediction errors of the model in untreated water with those in 
chemically treated water, we might obtain early warning signals of water quality 
deterioration. We first train the model to generate the trajectory of the target fish, and 
obtain a threshold (mean training error) between the output and the target fish in 
untreated water. The model is then applied to treated water, and if the error in the 
trajectory exceeds the threshold for 10 or more consecutive seconds, an alarm is 
generated. The test chemical is glyphosate, which is commonly used in agriculture and 
industry. We find that glyphosate increases the prediction error relative to controls. 

2 Materials and Methods 

2.1 Test Subjects 

The test subjects were 120 adult crucian carp (Carassius auratus) obtained from a pet 
supplier in Hangzhou, China. Crucian carp, belonging to the family Cyprinidae 
(Telestei), is widely distributed on the Eurasian continent[11]. To easily segment the 
swimming test fish from their background, we selected only red crucian carp with 
3–5-cm body length. The video was captured by a camera positioned 45 cm above the 
test tank (Fig. 1a). The test fish can swim naturally in the test tank (26 cm wide × 33 cm 
long × 3.5 cm high; water volume ~3 L). The image frames in the video were converted 
to gray scale and inverted. A fish was identified by applying an edge-detection 
algorithm to the thresholded image (Fig. 1d). The position of the identified fish was 
then tracked at every frame [12]. The trajectory (Fig. 1c) of the fish i tracked through T 
seconds is given as follows: = ( , , ( , ), … , ( , ) . 

In this expression, (xi
t, y

i
t) represents the coordinates of the centroid of fish i at time t. 

The average speed in each trial was 121 cm/min. The coordinate origin was set to the 
lower left corner of the test tank. The x and y coordinates in pixels were converted to cm 
using a conversion ratio determined by measuring the distance (in pixels) between two 
corners of the tank. To remove any small spurious changes in position, we also 
smoothed the coordinates by a Savitzky–Golay smoothing filter with a 6-frame span. 
The raw videos were processed using custom software written in C++ using the 
OpenCV library, and all statistical analyses were performed using Matlab2014a. 

2.2 The Recurrent Neural Model 

The model consists of three interconnected layers: the input layer (IL), the recurrent 
neural layer (RNL) and the output layer (OL) (Fig. 1b). The IL contains input units that 
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determine the coordinates of each fish. The IL units project to the RNL units through 
the input synaptic vector WIL. The connective values in the WIL are randomly drawn 
from a standard Gaussian distribution N(0, 0.5).  

The RNL is a recurrent network with dynamics described by = − + ∑ + ∑ IL + , (1)

where ri (i = 1, ..., N) represents the activity of unit i in the RNL, and ri is a function of 
the activation variable xi; specifically, ri = tanh(xi). The RNL size N and the time 
constant τ are set to 1000 and 10 ms, respectively. The connectivity between the RNL 
neurons is represented by a sparse N × N matrix WRNL, with nonzero initial values 

randomly obtained from Gaussian distribution (0, ), where g = 1.5 is the synaptic 

strength scaling coefficient, and p = 0.1 is the connection probability among the units. 
The noise current Inoise is an N × 1 random vector drawn from a Gaussian distribution 
N(0, 10-6).  

The activities of the RNL units are pooled by the two-unit OL. The activities of the 
two OL units are determined by 

= , = 1, 2. (2)

     
               a)                                                  b) 

      
                       c)                                          d) 

Fig. 1. a) The experimental arena. b) Schematic of the model. c) Tracking of three individual fish 
in 0.5 min. The three lines represent the trajectories of the three fish, respectively. d) The contour 
and the centroid of each fish. 

Centroids of fish
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2.3 Learning Rule 

The connectivity between the RNL and OL units is represented by the vector . 
Initially, the weights are randomly assigned with a uniform distribution. The output 
weight is then updated during the training process as follows: 

( ) = ( − 1) − ( ) ( ) ( ) . (3)

In Eq. (3), e(t) is the error signal, defined as 

 ( ) = ( − 1) ( ) − ( ) , (4)

where f(t) is the target function of the output unit. Pi is a square matrix that estimates the 
inverse of the correlation matrix of the presynaptic inputs to unit i, and is updated by ( ) = ( − 1) − ( − 1) ( ) ( ) ( − 1)1 + ( ) ( − 1) ( ) .  (5)

The prediction results were compared by the average root-mean-square (RMS).  

3 Results 

We first obtained the trajectories of three fish and randomly selected one of them as the 
target fish. By adjusting the synaptic weights on the output unit, we could train the 
output unit to generate the desired trajectory of the target fish based on its neighbors’ 
trajectories (Fig.2a, b). The model was trained in 10 trials, each lasting for 60 minutes. 
According to first-order reduced and controlled error (FORCE) learning [13], the 
weights of the readout connections changed rapidly, immediately driving the output 
toward the target trajectory. To evaluate the success of the training, we computed the 
magnitude of the readout weight vector (Fig. 2c), which reaches a set of static weights 
that eventually generate the target trajectory without requiring further modification. 
The learning nearly converges after approximately 15 minutes in each trial. 

      
a)                         b) 

Fig. 2. a) and b) Trajectories of the model’s output unit and the target fish throughout the first 
10 min after a training trial. c) Length of the readout weight vector |w| after training. d) The 
RMS error in the network output for training and testing process, respectively. 
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c)                         d) 

Fig. 2. (Continued) 

The model was tested in 20 independent testing trials (three test fish per trial) without 
altering the output weights. The output trajectory was compared with the target fish 
trajectory. The testing success was evaluated by the RMS in the average of the test 
trials. As shown in Fig. 2d, the output unit accurately predicted the trajectory of the 
target fish from the trajectories of its neighbors. We also tested the consistency of the 
prediction in larger groups of four and five fish. The RMSs were not significantly 
different (F(2, 57) = 1.67, p = 0.1969) among 3, 4 and 5 fish groups. These results 
indicate that an individual fish in the group chooses its movements and positions based 
on its neighbors’ trajectories. 

For shoals of four fish, we compared the RMSs of a target fish responding to the 
trajectories of its two and three nearest neighbors. As shown in Fig. 3a, the average 
RMSs for the two and three nearest-neighbor inputs were 3.8253 cm and 5.4330 cm, 
respectively. These differences were statistically significant (F(1,38) = 27.45; p = 
6.27e-6). In addition, for shoals of five fish (Fig. 3b), the average RMS statistically 
differed between inputting the trajectories of the nearest two and four fish (F(1,38) = 
66.69; p = 6.90e-10). These results indicate that the target fish computes its likely 
response to each of its nearest neighbors. 

 
a)                                       b) 

Fig. 3. a) Average RMSs of predictions after testing, based on the trajectories of a) 2 or 3 nearest 
neighbors in trials of 5 test fish, and b) 2 or 4 nearest neighbors in trials of 6 test fish. All data 
were acquired from 20 trials, each lasting for 60 minutes. Data are presented as means ± SEM; 
***p < 0.001. 
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Having demonstrated that individual fish respond to their neighbors’ movements, we 
then predicted the trajectory of fish exposed to toxic chemicals. As shown in Fig. 4, 
exposure to glyphosate exerted significant effects on the RMS of the test fish (F(1,18) = 
37.08; p = 9.38e-6). The RMS during glyphosate exposure was almost twice that in the 
control tests. We also examined the RMS of the trajectories in consecutive 5-min time 
blocks. Again, the RMS significantly increased when the target fish were exposed to 
glyphosate, but not significantly affected by the exposure time (p > 0.5). Because the 
error between the model output and the target fish trajectory is sensitive to the 
environmental conditions, the model is potentially applicable to water quality 
monitoring.  

 

 
a)                                       b) 

Fig. 4. a) Average RMSs under control conditions and during exposure to 0.15 mg/L CGL. b) 
Time-course of average RMSs in 5-min time blocks. Glyphosate (0.15 mg/L) was added at 0 min, 
and continued for 60 min. Prior to exposure, the fish swam for 30 min in control water. The data 
are those of Fig.4.a, presented as the means ± SEM; ***p < 0.001. 

4 Discussion 

We examined the interactions among shoaling fish by a reverse engineering strategy. 
Using a recurrent neural network, the strategy predicts the trajectories of individual fish 
from the movements of their neighbors. The connection within the recurrent neural 
network is fixed and task-independent. The information is encoded by the network 
dynamics. The output trajectory depends on an appropriate readout mechanism in the 
recurrent network dynamics. The model is trained by a learning method based on the 
recursive least squares rule, which is implemented in the FORCE algorithm [13]. 
FORCE learning rapidly reduces the magnitude of the difference between the actual 
and desired outputs. It retains its small value while seeking and eventually finding an 
accurate set of fixed readout weights requiring no further modification. Thus, we 
propose that the recurrent neural network is a very useful tool for modeling the 
trajectories of individual fish. 

We also realized that complex collective animal behaviors can emerge from the 
interactions among individuals, and need not be explicitly coded as a global template. 
The main interaction rules are the spatial configurations of individuals and the 
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distributions of particular variables such as speed, polarization, tuning rate and 
effective force [6, 7]. Nonetheless, whether individuals actually employ these 
interaction rules to guide their movements has not been previously supported by 
evidence. Here we show that the real-time movements of individual fish are directly 
predictable from the motions of their neighbors. Our results indicate that the target fish 
computes its likely response to each of its nearest neighbors. However, our model 
neglects environmental information and the motion trajectory of the target fish. 
Previous studies have shown that walls [6] and the target fish’s trajectory [14] affect the 
acceleration and turning behavior of fish. Therefore, the effects of environmental 
information on fish responses and itself trajectory of the target fish should be identified 
in future study.  

Previous experiments and models have shown that social interactions are dominated 
by the nearest neighbor [6, 9]. Integrating smaller quantities of information may be an 
affordable strategy for fish (which possess small brains), because responding to more 
neighbors will likely incur significant costs in integrating positional information. 
Furthermore, shoal cohesion is reflected in the correspondence between the speeds and 
headings of the test fish and those of their nearest neighbors [15]. Consistent with these 
findings, the nearest neighbors dominated social interactions in our present study. 
However, whereas some marine species form larger pelagic shoals, the crucian carp in 
our study form relatively small shoals. Therefore, whether our findings extend to other 
fish species also requires investigation in future work. 

Although the test fish behaved differently as individuals, their shoaling behavior was 
stable during the control test in untreated water. Test fish typically maintained a 
distance of nearly one body length from their nearest neighbors. Conversely, exposure 
to different concentrations of glyphosate induces erratic swimming [16]. Such 
abnormal behavior contraindicates the use of glyphosate near aquatic environments. 
The findings indicate that when fish perceive a noxious contaminant, they avoid the 
area containing the chemical and reduce their shoaling behavior. Because the shoal is 
diminished under chemical exposure, the error between the model output and the target 
fish trajectory increases. The increased error signal is a useful indicator of water 
quality. Indeed, further exposure tests using various test chemicals over longer 
monitoring periods could enhance the generality of the proposed method in water 
quality monitoring. 
 
Acknowledgments. This work is supported by the National Natural Science 
Foundation of China (61272310). 
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Abstract. Reliable and accurate short-term wind speed forecasting is
of great importance for secure power system operations. In this study,
a novel two-step method to construct a multi-model ensemble, which
consists of linear regression, multi-layer perceptrons and support vec-
tor machines, is proposed. The ensemble members first compete with
each other in a number of training rounds, and the one with the best
forecasting accuracy in each round is recorded. Then, after all the train-
ing rounds, the occurrence frequency of each member is calculated and
used as the weight to form the final multi-model ensemble. The effective-
ness of the proposed multi-model ensemble has been assessed on the real
datasets collected from three wind farms in China. The experimental re-
sults indicate that the proposed ensemble is capable of providing better
performance than the single predictive models composing it.

Keywords: Wind speed forecasting, Model combination, Ensemble,
Linear regression, Multi-layer perceptron, Support vector machine.

1 Introduction

Wind energy has been under large-scale development around the world in the
last decade. However, a number of challenges in power system operations and
planning have been posed, mainly due to the stochastic and intermittent nature
of wind speed. One of the possible approaches to address these challenges is to
improve the accuracy of wind speed and wind power forecasting [1].

A number of predictive models have been proposed and applied to the fore-
casting of wind speed. These models can be generally divided into two main
groups: physical models and statistical models. Physical models usually employ
the geographic and geomorphic conditions as inputs to predict the future wind
speed. They are generally good at long-term forecasting and have been success-
fully applied in large-scale area weather prediction [2]. In contrast, statistical
models just use previous historical data to realize the model construction, and
they often do well in short-term forecasting. Among the conventional statistical
models, the time series models are most widely used in practice [3,4]. In addi-
tion, with the development of artificial intelligence techniques, many intelligent

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 398–406, 2015.
DOI: 10.1007/978-3-319-25393-0_44
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models have also been widely adopted for wind speed prediction, including fuzzy
logic (FL) [5], artificial neural networks (ANNs) [6,7], support vector machines
(SVM) [8,9], etc.

Recently, a large number of studies can be found in the literature about ensem-
ble (or combined) forecasting models, which combine different predictive models
together to attain better performance. In general, these ensemble models tackle
the forecasting task in two steps, with the first step being to make predictions
using multiple plausible models, and the second step being to combine all the gen-
erated forecasts into a single one according to some weighting strategy. However,
in most studies, an ensemble for wind prediction usually consists of predictive
models taken from one single class, e.g. neural networks [10] or support vector
machines [11]. Moreover, the commonly used combination strategy is weighted
average or weighted median [12]. In this paper, a novel multi-model ensemble is
proposed to combine wind speed forecasts from different kinds of models. The
development of the proposed ensemble includes two main steps. The first step
consists of testing and recording models from different model classes. For this
purpose, both linear (linear regression) and non-linear (multi-layer perceptron
and support vector machine) models are utilized. In the second step, the fore-
casts yielded by the ensemble members are combined according to their prior
performance to produce the final estimate of the wind speed. The experimental
assessment of the proposed method is carried out on the basis of three real wind
speed datasets.

The remainder of the paper is organized as follows. Section 2 briefly describes
the ensemble members (single forecasting models) used in the study. Section
3 illustrates the proposed multi-model ensemble. The experimental results are
presented and discussed in Section 4. Finally, Section 5 draws the conclusion of
this work.

2 Single Forecasting Models

2.1 Linear Regression

Linear regression (LR) is a model for expressing the linear dependence of a
response variable on several explanatory variables [13]. It has the form

y = w0 +

d∑

i=1

wixi = wTx (1)

where w0 and wi are unknown model coefficients. In this study, the response
variable y in Eq. 1 is yt, and the explanatory variable xi is yt−i. In such case,
the LR model can also be considered as an autoregressive (AR) model.
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2.2 Multi-layer Perceptron

Multi-layer perceptron (MLP) is a feedforward neural network, which consists of
an input layer, a hidden layer, and an output layer [14]. With d input neurons,
m hidden neurons, the output of one hidden neuron is

zj = g(

d∑

i=0

wi,jxi) (2)

where g is a sigmoid function, wi,j is the weight from input neuron i to hidden
neuron j, xi is the ith input and x0 is always 1. The final output of the MLP is

y =

m∑

j=1

vjzj + b (3)

where vj is the weight from hidden neuron j to the output neuron and b is the
bias. Initially, all the weights and biases are assigned with small random values,
and then updated according to a learning algorithm. The Levenberg-Marquardt
training algorithm [15] is adopted in this study.

2.3 Support Vector Machine

The basic idea of SVM for regression is to map the input data into a high
dimensional feature space via a non-linear function and to perform a linear
regression in this feature space [16]. The regression is calculated by minimizing
the following risk function

R[f ] =
1

2
‖w‖2 + 1

2
C

N∑

i=1

L(yi, f(xi)) (4)

where C is the regularization parameter and L(yi, f(xi)) is the ε-insensitive loss
function, which is defined as

L(yi, f(xi)) =

{
|yi − f(xi)| − ε |yi − f(xi)| ≥ ε

0 otherwise
(5)

where ε controls the width of the error margin allowed. By introducing the
Lagrange multipliers αi, α

∗
i , the final form of function f(x) is

f(x) =

N∑

i=1

(αi − α∗
i )k(xi,xj) + b (6)

where k is a kernel function. In this study, the radial basis function (RBF) is
selected as the kernel function for SVM model and it is defined as

K(xi,xj) = e−γ‖xi−xj‖2

(7)

where ‖·‖ denotes the 2-norm and γ is an adjustable parameter to determine the
RBF kernel width.
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3 The Proposed Ensemble Method

First, in order to obtain the training examples (input-output pairs) from the
original wind speed time series, it is necessary to determine the model order
(i.e. the number of previous observations used as inputs). Then, all the train-
ing examples are randomly permuted K times to obtain K training sets with
different orders of examples, where the first 80% of each training set is used as
a learning set and the last 20% is used as a validation set. After that, several
training rounds are conducted on these different learning sets and validation
sets. Specifically, a set of different types of models are built using the learning
set and the one that produces the best forecasting performance on the validation
set is recorded. Note that the input-output pairs used in each round for model
construction and evaluation are different. This procedure can be regarded as a
variant of K-fold cross validation. Moreover, in order to introduce diversity to
the final ensemble, heterogeneous models are considered, including LR, MLPs
and SVMs.

Suppose that the ensemble consists of m candidate members, after repeating
the training rounds K times, the occurrence counts of each member, which is
the number of being the best forecasting model, ti(i = 1, 2, ...,m) is recorded.
This occurrence counts is used to calculate the weight (occurrence frequency)
for each member in the multi-model ensemble. After determining the weights,
all the training examples are utilized to retrain the ensemble members. Finally,
the output for a given unknown test sample x is generated by model fusion as

f(x) = w1f1(x) + w2f2(x) + ...+ wmfm(x) (8)

where wi(i = 1, 2, ...,m) is the weight, which is calculated as the occurrence
counts of the corresponding model fi(i = 1, 2, ...,m) dividing by the total number
of the training rounds, i.e.

wi =
ti
K

(9)

The multi-model ensemble is trained for one-step ahead prediction. For the case
of multi-step ahead prediction, the iterative forecasting method is adopted.

4 Experimental Procedure and Results

4.1 Wind Data

The wind speed data used in this study are hourly mean observations collected
from three wind farms in China. These measurements were recorded from April
1, 2012 to April 30, 2012. The three wind sites are located in different provinces
of China: Jiangsu, Ningxia and Yunnan, respectively. Fig. 1 shows the three
hourly wind speed time series, each consisting of 720 data points in total. Each
dataset is partitioned into two parts: the first 600 samplings for training and
the remaining 120 samplings for testing. In order to assess the performance
of the proposed multi-model ensemble quantitatively, three error metrics: root
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mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE), are employed, which are defined as follows:

RMSE =

√
√
√
√
√

N∑

i=1

(yi − ŷi)2

N
(10)

MAE =
1

N

N∑

i=1

|yi − ŷi| (11)

MAPE =
1

N

N∑

i=1

∣
∣
∣
∣
yi − ŷi)

yi

∣
∣
∣
∣× 100% (12)

where N is the testing sample size, yi and ŷi are the observed and predicted
values at time period i, respectively.
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Fig. 1. The hourly mean wind speed data in: (a) Jiangsu, (b) Ningxia, and (c) Yunnan

4.2 Single Model Training

The hyperparameters in MLP and SVM is determined by 5-fold cross validation.
Specifically, all the training examples are first divided into 5 roughly equal parts.
For each k = 1, 2, ..., 5, the model is built using the other 4 parts, and the
error is computed by the kth part. The cross validation error for a specific
hyperparameter (or hyperparameter combination) is obtained by averaging over
5. The above procedure is repeated for different values of hyperparameters (or
hyperparameter combinations) and the one that generates the smallest error is
selected. After choosing the hyperparameters, all the training data are utilized
to estimate the model coefficients.
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4.3 Multi-model Ensemble Training

In this paper, the candidate models which constitute the multi-model ensemble
are: (1) LR, (2) MLP, with one hidden layer and the number of neurons in the
hidden layer varies from 1 to 10 with an increment of one (totally 10 MLPs), (3)
SVM, with ε ∈ {0, 0.01, 0.1} and γ ∈ {2−2, 2−1, 20, 21, 22} (totally 15 SVMs).
Note that the regularization parameter C is fixed according to [17]. As a result,
26 candidate models are built and assessed in each training round and the one
that produces the minimum error on the validation set is recorded. The number
of training rounds is set to 50.

4.4 Comparison of Prediction Results

For purpose of comparison, Bayesian information criterion (BIC) is used to de-
termine the model order, such that all the models compared have the same
training examples for model construction. In this paper, the values of model
order for all the three wind speed time series are 2 according to BIC. The pre-
diction results of test set in Jiangsu produced by the best single models (LR,
MLP and SVM) and the proposed multi-model ensemble are provided in Fig. 2.
It can be seen that no single model could keep the best forecasting performance
for all the prediction horizons. Meanwhile, there is also no optimal single model
at a given forecasting horizon in terms of all the error measures. However, when
comparing the performance of the component models with that of the proposed
multi-model ensemble, it can be found that the multi-model ensemble has better
or the closest accuracy to the optimal component model in terms of any metrics
and any prediction horizons. Specifically, in terms of MAE, the multi-model en-
semble has the best performance from 1-step to 6-step ahead prediction. And in
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Fig. 2. The results of model comparison in Jiangsu.
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Fig. 3. The results of model comparison in Ningxia.
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Fig. 4. The results of model comparison in Yunnan.

terms of RMSE and MAPE, it is either the best or the second best predictive
model for all the forecasting horizons.

Fig. 3 shows the forecasting results of test set in Ningxia.
Similarly, it can also be observed that none of the component models is su-

perior to others in terms of RMSE, MAE and MAPE for all the prediction
horizons. But the proposed multi-model ensemble can always manage to achieve
a forecasting performance better than or close to that of the best component
model. Specifically, in this forecasting case, in terms of RMSE, the multi-model
ensemble has the best accuracy from 1-step to 6-step ahead prediction. And in
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terms of MAE and MAPE, it is either the best or the second best predictive
model for all the forecasting horizons.

Fig. 4 presents the prediction results of test set in Yunnan. Again, it can
be found that the performance of the proposed multi-model ensemble is always
better than or close to that of the best component model. And in this forecasting
case, the superiority of the proposed ensemble is more significant as in terms of
RMSE and MAE, it generates the smallest values for all the forecasting horizons.

5 Conclusion

In this paper, a novel multi-model ensemble for short-term wind speed pre-
diction is presented. The ensemble consists of three different types of models,
including linear regression, multi-layer perceptrons and support vector machines.
These models with different hyperparameters are tested in a number of training
rounds to determine their weights in the final ensemble. Based on the wind speed
datasets from three wind farms in China, it is found that by applying the pro-
posed method, the forecasting performance is better than or close to that of the
optimal component model in terms of RMSE, MAE and MAPE for both one-
step and multi-step ahead predictions. Thus, the proposed multi-model ensemble
provides an effective way to solve the model selection problem in short-term wind
speed prediction.
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Abstract. Orthogonal frequency division multiplexing (OFDM) introduces 
large peak power of transmitted signals in time, which can result in significant 
signal distortion in the presence of nonlinear amplifiers. Partial transmit 
sequence (PTS) are well-known techniques for peak-power reduction in 
OFDM.  However, the exhaustive search of phase factors in conventional PTS 
causes high computational complexity. In this paper, we present a suboptimal 
strategy for combining partial transmitted sequences that achieve good balance 
between computational complexity and power control performance. The 
simulation results show that the proposed algorithm can not only reduces the 
PAPR significantly, but also decreases the computational complexity 

Keywords: OFDM, Peak Power, PAPR, PTS. 

1 Introduction 

Orthogonal frequency-division multiplexing (OFDM) has been standardized in many 
wireless applications with high-speed data transmission due to its various advantages 
such as high spectral efficiency and robustness to channel fading [1].Hence, this 
transmission technique has been proposed in various wireless communication standards 
such as digital audio and video broadcasting, asymmetric-digital-subscriber-line 
modems, and wireless local-area-networks systems, such as the IEEE 802.11 and IEEE 
802.16. Additionally, OFDM is being considered for future broadband applications [2]. 

Due to the large number of subcarriers, OFDM systems have a large dynamic 
signal range with a very high peak-to-average power ratio (PAPR). As a result, 
several proposals have been suggested and studied in the literature. For instance, we 
find clipping with filtering, block coding, optimization with tone reservation (TR), 
selected mapping, partial transmit sequence (PTS) and others [3-5]. Among these 
methods, PTS scheme is the most efficient approach and a distortionless scheme for 
PAPR reduction by optimally combining signal subblocks [6-8]. In PTS, the 
transmitted signal is made to have low PAPR by optimally combining signal 
subblocks, which introduce additional complexity but provide improved PAPR 
statistics with little cost in efficiency. To address the computational complexity, many 
suboptimal PTS techniques have been developed. The iterative flipping PTS (IPTS) in 
[9] has computational complexity linearly proportional to the number of subblocks.  
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In this paper, a suboptimal approach based on heuristic optimization is proposed to 
obtain better PAPR reduction performance with less complexity compared with the 
conventional PTS scheme. The rest of this paper is organized as follows. Section 2 
defines PAPR of OFDM signals, and PTS algorithm is showed in this study. Section 3 
shows how the problem of PAPR reduction be formulated as an optimization problem 
for OFDM systems, and suboptimal algorithm is proposed. The performance of the 
proposed algorithm is evaluated through computer simulations in section 4. Finally, 
Section 5 summarizes and concludes the paper. 

2 OFDM Systems and PTS Technique 

With OFDM modulation, a block of N  data symbols (one OFDM symbol) 
{ , 0,1, , 1}nX n N= ⋅⋅⋅ −  will be transmitted in parallel such that each modulates a 

different subcarrier from a set n{ , 0,1, , 1}f n N= ⋅⋅⋅ − . The N  subcarriers are 

orthogonal, i.e. nf n f= Δ , where 1/f NTΔ =  and T is the symbol period. The 

complex envelope of the transmitted OFDM signal is given as 

1
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The PAPR of the transmitted OFDM signal of (1) is defined as 
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where E[·] denotes the expected value. Then, the complementary cumulative 
distribution function (CCDF), is the probability that the PAPR of an OFDM symbol 
exceeds the given threshold 0PAPR , which can be expressed as       

0CCDF Pr(PAPR PAPR )= >                            (3) 

In a typical OFDM system with PTS technique to reduce the PAPR, the input data 
block X  is partitioned into M disjoint subblocks, which are represented by the 

vectors  
( ) ( ) ( )( )
0 1 1{ }

m m mm
NX X X X −= ⋅⋅ ⋅ , therefore 

 
1

( )

0
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m

X X
−

=

=          ∑                         (4) 

then the subblocks ( )mX are transformed into time-domain partial transmit sequences 
by IFFTs. These partial sequences are independently rotated by phase factors 

2
0,1, 1, { | }mj k

m m k WWb e θ πθ = ⋅⋅⋅ −=   ∈ . The object is to optimally combine the M subblocks to 

obtain the OFDM signals with the lowest PAPR  
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Assuming that there are W phase angles to be allowed, thus there are 
MD W= alternative representations for an OFDM symbol. The block diagram of the 

PTS technique is shown in Fig.1. 
Cimini and Sollenberger’s iterative PTS (IPTS) technique is developed as a sub-

optimum technique for PTS. The IPTS technique only use binary phase factors, which 
reduces the search complexity significantly, but there is some gap between its PAPR 
performance and that of the ordinary PTS technique. 

 

Fig. 1. Block diagram of the PTS technique  

3 Suboptimal PTS Algorithm 

The searching sequences of PTS can be formulated as a combinatorial optimization 
problem. Then, an Ant colony-annealing search based PTS algorithm, is proposed to 
achieve better PAPR reduction with low complexity. 

3.1 Mathematics Model of PTS Algorithm 

The optimization problem of PTS, which is trying to find the aggregate of phase 
factors vector mb  to yield the OFDM signals with the minimum PAPR, can be 

considered as the combinatorial optimization problem. In other words, the objective 
function (6) is to minimize the PAPR of the transmitted OFDM signals. Constraint (7) 
ensures the phase factors to be a finite set of values 0 2 (0 1)m m Mθ π≤ <  ≤ ≤ −  
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To minimize 
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Subject to (7)  

1{ }mj Mb e θ − =                            (7) 

where 2
0,1, 1{ | }k

m k WW
πθ = ⋅⋅⋅ − ∈ .  

3.2 Ant Colony Algorithm (ACA) 

Ant colony algorithm (ACA) is a heuristic algorithm [10]. Supposing m is the number 
of ant colony. ijτ  is the residual amount of information in the sub road. When 0t = , 

various concentrations of pheromone on the path are equal, ( )0ij Cτ = ( C is the 

constant). All the ants have been placed to the distribution node. In the course of  
the campaign, ant ( )1,2, ,k k m=  chooses the moving direction according to the 

amount of information on the various paths. k
ijP  is the probability that ant k moves 

from node i to node j . 
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The natural ant colony is different from the artificial ant that has a memory 
function. Set ( )1, 2, ,ktabu k m=  was utilized to record the current traversed nodes 

and dynamically adjusted by the process of evolution. ijη is the heuristic function, 

which denotes the expectation of ant transferred from node i to node j . 

( )1,2, ,kallow k m= ⋅⋅⋅  denotes the nodes allow to be accessed of ant k. As time 

progresses, the element declining until empty, it means that all nodes have access to 
finished.α  is the pheromone importance factor, the larger of the value, pheromone 
concentration play a greater role in metastasis. β is the heuristic function importance 

factor, the larger the value, heuristic function play a  greater role in metastasis.  
As time goes on, the previous pheromone left gradually decays. After the 

completion of a cycle, the pheromone was adjusted according to equation 9. 
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ρ denotes pheromone evaporation degree. Where, ( )1ij tτ + is the amount of 

pheromone on the path, ijτΔ is the pheromone increment of this cycle path. 

Ant cycle system model through the use of the whole path information (the total 
length of the path) calculate the degree of pheromone release. In ant cycle system 
model, the formula is show as equation 10. 

( )/ , ,

0 ,
kk

ij

Q L if ant k travel i j in the circle

others
τ

     ⎧
Δ = ⎨

⎩
           (10) 

3.3 Simulated Annealing (SA) 

Simulated annealing algorithm (SA) is a kind of heuristic random optimum algorithm 
[11]. It attempts to avoid being trapped in a local optimum by sometimes allowing the 
temporal acceptance of inferior solutions. The acceptance or rejection of an inferior 
solution is probabilistically determined by Metropolis and repeats sampling process 
with the temperature declining and finally gains the problem’s global optimal 
solution. 

The steps of the SA algorithm are illustrated as follow. 

a) Initial solution: Select a initial state, the main control parameters need to be set are 
cooling rate k , the initial temperature 0T , the end temperature endT  and each iteration 

times M . 
Generation a new solution: Perturb the current state ω  randomly to generate a new 
solution 'ω . 

Metropolis criterion: Calculate the increment ( ) ( )'f f fω ωΔ = − , ( )f ω is the 

evaluation function. 

( )exp / , 0

, 01

f T f
P

f

⎧ −Δ Δ <⎪= ⎨ Δ ≥⎪⎩
                      (11) 

If 0fΔ < , accept the new path with probability 1, else accept the new path with 
probability P . 

Cooling: Gradually reduce the temperature T by cooling rate i.e.T k T= ∗ , make 
sure let the 0T → , if endT T<  then output the optimal solution, the program would 
be terminated.  

3.4 Hybrid Algorithm ACA-SA 

ACA-SA algorithm using ant colony algorithm to achieve precise searching local 
optima, and the global optimal judgment based on simulated annealing. The flowchart 
of hybrid algorithm is show in Figure 2.  

As above mentioned, the steps, in which the ACA-SA is presented for searching 
the optimal combination of phase factors in PTS algorithm. Initially, the phase factors  
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and ACA-SA algorithm parameters are specified. Using randomly generated initial 
phase factors, the efficiency of the PAPR reduction is determined by means of the 
ACA-SA algorithm.  

Initialization parameters

According to the probability for each ant moves to the next 
vertex to complete a cycle

Initialization temperature

Perturbations generate new 
solution

Calculating the difference between 
the objective function values

Metropolis criterion Replace the optimal solution

By update equation modified 
pheromone strength

Current temperature cooling

The difference is less 
than zero

The maximum 
number of iterations?

Output the best 
solution

End

Y

endT T<

Y

Y

Y

N

N

N

Start

 

Fig. 2. The flowchart of hybrid algorithm 

4 Simulation Results 

In this section, we present some simulations to demonstrate the performance of the 
PTS technique based on  ant colony-simulated annealing (ACA-SA) search 
algorithm. We assume that random QAM modulated OFDM symbols were generated 
with 256N =  subcarriers. The transmitted signal is oversampled by a factor of L = 4. 
Some results of the CCDF are simulated for the OFDM system, in which M=16 
subblocks employing random partition and the phase factors vector b in 
{ 1, 1}M+ − uniformly distributed random variable are used for PTS. Ant colony size 

(the number of ants) is set to 50m = , pheromone importance factor 6α = , heuristic 
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function importance factor 7β = . pheromone evaporation factor 0.1ρ = , pheromone 

total release 50Q = , cooling rate 0.95k = , the initial temperature 0 20T = , end 

temperature 0.1^ 5endT = , iteration times _ 20iter num = . 

The curves labeled by “PTS” are obtained by Monte Carlo searching with full 
enumeration of MW phase factors, the curves labeled by “IPTS” are obtained by 
iterative searching of M phase factors with the Iterative PTS technique, and the curves 
labeled by “ACA-SA” are obtained by the proposed technique.  

In Fig.3, It is shown that when 4
0Pr(PAPR>PAPR ) 10−= , the 0PAPR of the 

original OFDM is 11.5dB, PTS is 9.4dB with exhaustive searching number 
162 65536= , while ACA-SA is 10.5dB with iteration number _ 20iter num = . 

Therefore, ACA-SA technique can offer good PAPR reduction with low complexity. 
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Fig. 3. PAPR reduction performance (PTS vs ACA-SA) 

The performance of Iterative PTS (IPTS) algorithm is compared with ACA-SA in 
Fig. 4. When 4

0Pr(PAPR>PAPR ) 10−= , the PAPR0 of the original OFDM is 11.8dB, 
IPTS is 10.6dB with iterative searching number 16, PTS is 8.9dB with exhaustive 
searching number 162 65536= , while ACA-SA is 9.6dB with search number 

_ 20iter num = . It is evident that the ACA-SA can provide the better performance of 
PAPR reduction than that of IPTS while keeping similar low complexity. 
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Fig.4. PAPR reduction performance (PTS, IPTS vs ACA-SA) 

5 Conclusions 

PTS is an efficient method to reduce the PAPR of OFDM system, but its high 
computational complexity is the main obstacle to application. In this paper, we 
presented a ACA-SA method to search the optimal set of phase factors of all 
subcarriers for the PTS technique in order to obtain good tradeoff between 
computational complexity and PAPR performance for OFDM signals. As compared 
to the conventional PTS and IPTS scheme, the simulation results showed that the 
performance of the proposed method can not only achieved relative good PAPR 
reduction but also enjoyed complexity advantages. 
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Abstract. This paper presents new results on neurodynamic optimiza-
tion approach to solve bilevel linear programming problems (BLPPs)
with linear inequality constraints. A sub-gradient recurrent neural net-
work is proposed for solving the BLPPs. It is proved that the state
convergence time period is finite and can be quantitatively estimated.
Compared with existing recurrent neural networks for BLPPs, the pro-
posed neural network does not have any design parameter and can solve
the BLPPs in finite time. Some numerical examples are introduced to
show the effectiveness of the proposed neural network.

Keywords: Bilevel linear programming problem, sub-gradient recurrent
neural network, convergence in finite time.

1 Introduction

The well-known bilevel programming problems (BPPs) have received increasing
attention since their important applications in various aspects (see [5]). However,
the BPPs have been proved to be NP-hard, and their formulation has inherent
difficulties even with respect to the notion of a solution ([2]). Even the simplest
model in bilevel programming, i.e., the linear bilevel program, is strongly NP-
hard. Hence, it is a challenge for us to find an effective approach to solve such
NP-hard problem.

Recently, many researchers derived serval numerical algorithms to solve the
BPPs (see [8,13,18]). In [8], an augmented Lagrangian multiplier method was
applied to solve a smoothed nonlinear program to obtain an approximate opti-
mal solution of the nonlinear bilevel programming problems. In [13], using the
merit function technique, Muu et al. proposed a branch-and-bound algorithm for
finding a global optimal solution to the bilevel convex quadratic problem. Wan
et al. in [18] proposed a novel evolutionary distribution algorithm for solving a
special class of nonlinear bilevel programming problems.

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 418–425, 2015.
DOI: 10.1007/978-3-319-25393-0_46
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However, the conventional numerical algorithm is usually less effective for
BPPs, especially for large-scale BPPs. That is because the computing time of
the conventional numerical algorithm greatly depends on the dimension and
the structure of BPPs. Then, one possible and promising approach to solve
BPPs in real time is to employ recurrent neural networks based on circuit im-
plementation [4]. Since the seminal work in [9], recurrent neural networks for
the BPPs and their engineering applications have been widely investigated (see
[6,7,11,17]). For example, in [17], Shih etc proposed a recurrent neural network
to solve the BPPs based on the approach proposed by Hopfield and Tank [9].
Meanwhile, by introducing a changed perturbed Fischer-Burmeister function,
the authors in [11] proposed neural network to get the approximate optimal so-
lution of the nonlinear BPPs. He et al. in [6] proposed a neural network to solve
convex quadratic bilevel programming problems (CQBPPs), which is modeled
by a nonautonomous differential inclusion. In [6,7,11], it was all shown that the
equilibrium points sequence of the proposed neural networks can approximately
converge to an optimal solution of CQBPP under certain conditions. However,
they didn’t prove the stability of the equilibrium point. It was only proved that
the cluster point set of the state of the proposed neural network belongs to its
equilibrium point set. It is well known that convergence in finite time for neural
networks plays an important role in optimization. That is because in most of
case we would like to obtain the accurate optimal solutions only in finite time.
And convergence in finite time is of special interest for designing real-time neural
optimization solvers. Neural networks with finite-time convergence has been in-
vestigated extensively in the literature ([14]). However, as far as we know, there
are few literatures concerning neural networks with finite-time convergence for
solving bilevel programming problems.

Motivated by above works, in this paper, we will propose a sub-gradient recur-
rent neural network to solve bilevel linear programming problems. The structure
of this paper is outlined as follows. In section II, we present some related prelim-
inaries. In section III and IV, we introduce bilevel linear programming problems
and the related sub-gradient recurrent neural network. In section V, we present
several numerical simulations to show the effectiveness of our results. Finally,
the main conclusions drawn in the paper are summarized.

2 Preliminaries

Here, we present some definitions and properties, which are needed in the re-
mainder of this paper. We refer readers to [1] for more thorough discussions.

A function f : Rn → R is said to be regular at x, if for all v ∈ R
n, the usual

one-sided directional derivative f ′(x; v) exists and

f ′(x; v) = lim sup
y→x0,t↓0

f(y + tv)− f(y)

t
.

Let f : Rn → R be a convex function. For any x ∈ R
n, the subdifferential

of f at x is defined as ∂f(x) = {ξ ∈ R
n : f(x)− f(y) ≤ 〈ξ, x− y〉, ∀y ∈ R

n}.
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We next introduce two important set-valued maps k and h, which are the
subdifferential of functions |t| and t+ = max{t, 0},

k(t) = ∂|t| =
⎧
⎨

⎩

1 t > 0;
− 1 t < 0;

[−1, 1] t = 0.
h(t) = ∂t+ =

⎧
⎨

⎩

1 t > 0;
0 t < 0;

[0, 1] t = 0.
(1)

Regular function has a very important property (i.e. chain rule), which has
been used in many papers (see [15]).

Lemma 1. (Chain rule ) If V (x) : Rn → R is regular and x(t) : [0,+∞) →
R

n is absolutely continuous on any compact interval of [0,+∞), then x(t) and
V (x(t)) : [0,+∞) → R are differentiable, and

V̇ (x(t)) = 〈ξ, ẋ(t)〉, ∀ξ ∈ ∂V (x(t)),

for a.e. t ∈ [0,+∞).

3 Bilevel Linear Programming Problem

In this paper, we will study the following bilevel linear programming problems
(BLPP),

(UP )min
x,y

F (x, y) = cT1 x+ dT1 y

s.t. A1x+B1y ≤ b1,

(LP )

{
y ∈ argmin

y
f(x, y) = cT2 x+ dT2 y

s.t. A2x+B2y ≤ b2

(2)

where c1, c2 ∈ R
n, d1, d2 ∈ R

m, A1 ∈ R
p×n, B1 ∈ R

p×m, A2 ∈ R
q×n, B2 ∈

R
q×m, b1 ∈ R

p, b2 ∈ R
q. The term (UP) above is called upper level problem

and (LP) above is called lower level problem, and correspondingly the terms
x, y in (2) are the upper level variable and the lower level variable respectively.
Throughout the rest of the paper, we make the following assumptions:

Assumption 1. The constraint region of the BLPP (2)

S = {(xT , yT ) : A1x+B1y ≤ b1, A2x+B2y ≤ b2}

is nonempty and compact.

Based on the assumption 1, the BLPP (2) has at least an optimal solution.
According to the Karush-Kuhn-Tucker (KKT) Theorem, BLPP (2) can be de-
generated to the following form,

min
x,y

F (x, y) = cT1 x+ dT1 y

s.t. A1x+B1y ≤ b1, A2x+B2y ≤ b2, d2 +BT
2 μ = 0,

− μT (A2x+B2y − b2) = 0, − μ ≤ 0,

(3)
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where μ ∈ R
q is a parameter. In general, the problem (3) is one element of special

classes of mathematical programming problems called mathematical programs
with equilibrium constraints (MPECs). MPECs are special classes of non-linear
programming problems with equilibrium conditions in the constraints, and are
inherently ill-posed (see [12,16]). We next introduce the following assumption,

Assumption 2. The matrix B2 is invertible and (BT
2 )

−1d2 ≤ 0.

Based on the above assumption 2 and by (3), we have that μ = −(BT
2 )

−1d2.
For convenience, we suppose

z = (xT , yT )T , C = (cT1 , d
T
1 )

T , A =

(
A1 B1

A2 B2

)

,

b = (bT1 , b
T
2 )

T , B = (dT2 B
−1
2 A2, d

T
2 ), d = dT2 B

−1
2 b2.

(4)

Hence, the problem (3) can be expressed as the following simple form,

minCT z
s.t. Az ≤ b, Bz = d.

(5)

Then, according to Theorem 1 in [3], the following lemma holds.

Lemma 2. z is an optimal solution of the linear programming problem (5) if
and only if there exist λ ∈ R

p+q and ν ∈ R
1 such that

C −ATλ−BT ν = 0, Az ≤ b, λ ≤ 0, λT (Az − b) = 0, Bz = d. (6)

From (6), one has ATλ = C − BT ν and λTAz = λT b, which implies that
(C −BT ν)T z = λT b. Combing with (6), we have CT z − νT d = λT b. Hence,

Lemma 3. z is an optimal solution of the linear programming problem (5) if
and only if there exist λ ∈ R

p+q and ν ∈ R
1 such that

C −ATλ−BT ν = 0, Az ≤ b,
CT z − νTd = λT b, λ ≤ 0, Bz = d.

(7)

4 Recurrent Neural Network for BLPP (2)

In this section, based on Lemma 3, we will propose one recurrent neural network
for solving BLPP (2) in finite time. For convenience, we let X := (zT , λT , νT )T ,
and construct an energy function as follows,

E(X) := ‖C −ATλ−BT ν‖1 + ‖(Az − b)+‖1
+ ‖λ+‖1 + |CT z − νT d− λT b|+ ‖Bz − d‖1, (8)

where λ+ = (λ+
1 , ..., λ

+
p+q)

T and t+ = max{t, 0}.
Lemma 4. E(X) ≥ 0, and E(X) is a convex function. E(X) = 0 if and only if
X := (zT , λT , νT )T is a KKT point of the linear programming problem (5).
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After simple calculation, we have

∂E(X) =

⎛

⎝
ATH(Az − b) +CK(CT z − νT d− λT b) +BTK(Bz − d)
−AK(C −ATλ−BT ν) +H(λ)− bK(CT z − νTd− λT b)
−BK(C − ATλ−BT ν)− dK(CT z − νTd− λT b)

⎞

⎠ (9)

where K(u) = (k(u1), ..., k(uN ))T , H(v) = (h(v1), ..., h(vM ))T with appropriate
dimension N and M . Here, k, h are defined in (1).

Based on the above results, we propose a sub-gradient recurrent neural net-
work to solve the BLPP (2), with the following dynamical equations

d

dt
X(t) ∈ −ε∂E(X(t)), (10)

where ε is a positive constant.

Theorem 1. (x∗T , y∗T )T is an optimal solution of the BLPP (2) if and only if
there exist λ∗ ∈ R

p+q and ν∗ ∈ R
1 such that X∗ := (x∗T , y∗T , λ∗T , ν∗T )T is an

equilibrium point of recurrent neural network (10).

Proof. Suppose that z∗ = (x∗T , y∗T )T is an optimal solution of the BLPP (2).
From Lemma 3 and Lemma 4, there exist λ∗ ∈ R

p+q and ν∗ ∈ R
1 such that

E(z∗, λ∗, ν∗) = 0. Hence, by the non-negativity of E, X∗ := (z∗T , λ∗T , ν∗T ) is
a global minimal point of E. Then, 0 ∈ ∂E(X∗). That is, X∗ is an equilibrium
point of recurrent neural network (10).

Conversely, let X∗ := (x∗T , y∗T , λ∗T , ν∗T )T be an equilibrium point of recur-
rent neural network (10). From the definition of the subdifferential in Prelimi-
nary, we have E(X∗) − E(X) ≤ 0, for any X . By the assumption 1 and lemma
4, it is clear that z∗ = (x∗T , y∗T )T is an optimal solution of the BLPP (2).

In this paper, we let M be the equilibrium set of neural network (10), i.e.,
M = {X : 0 ∈ ∂E(X)}. According to the assumption 1, the set M is nonempty.
By m(∂E(X)), we denote the element of ∂E(X) with smallest norm, i.e.,
m(∂E(X)) ∈ ∂E(X) and ‖m(∂E(X))‖ = min{‖η‖ : η ∈ ∂E(X)}.
Lemma 5.

M0 := inf
X/∈M

‖m(∂E(X))‖ > 0 (11)

Proof. Firstly, K and H in (9) have finite values, since k, h defined in (1) only
take a finite number of different values. Hence, ∂E(X) in (9) takes a finite number
of different values. Similarly, m(∂E(X)) also takes a finite number of different
values. Without loss of generality, we assume that the values of ‖m(∂E(X))‖
are,

0,M1,M2, ...,MN .

On the other hand, if X /∈ M, we have ‖m(∂E(X))‖ �= 0. Therefore,

inf
X/∈M

‖m(∂E(X))‖ = min{M1,M2, ...,MN} > 0.
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Theorem 2. For any initial point X0, the state X(t) of neural network (10) is
convergent to an equilibrium point of neural network (10) in finite time.

Proof. Let

T =
E(X(0))

εM2
0

. (12)

If X(t) /∈ M for t ∈ [0, T ), by lemma 5, ‖m(∂E(X(t)))‖ ≥ M0, for a.e. t ∈ [0, T ).
Hence, by chain rule (i.e., Lemma 1), we have

d
dtE(X(t)) = −ε‖m(∂E(X(t)))‖2 ≤ −εM2

0 , (13)

for a.e. t ∈ [0, T ). Integrating above inequality between 0 and T , we have
E(X(T )) ≤ E(X(0)) − εM2

0T = 0, which implies that E(X(T )) = 0 by the
positivity of E. Then, from Lemma 4 and Theorem 1, X(T ) is an equilibrium
point of neural network (10). In this case, we suppose

Y (t) =

{
X(t), if t ∈ [0, T )
X(T ), if t ≥ T

(14)

It is obvious that Y (t) is a state of neural network (10) with initial point Y (0) =
X0. Then, by the uniqueness of the solution of neural network (10),

X(t) = Y (t), for all t ≥ 0.

Hence, the state X(t) is convergent to the equilibrium point X(T ) at time T .
On the other hand, if there exists t0 ∈ [0, T ) such that X(t0) ∈ M. It is clear

that X(t0) is an equilibrium point of neural network (10). Similarly, we obtain
that X(t) is convergent to the equilibrium point X(t0) at time t0.

5 Comparisons and Numerical Examples

Example 1: Consider a bi-level optimization problem as follows [19]

(UP )min
x,y

F (x, y) = 2x− 11y

s.t. x− 2y ≤ 4, 2x− y ≤ 24,
3x+ 4y ≤ 96, x+ 7y ≤ 126,
− 4x+ 5y ≤ 65, x+ 4y ≤ 8,

(LP )

{
y ∈ argmin

y
f(x, y) = x+ 3y

s.t. 2x− y ≤ 24

(15)

Fig. 1 depicts the transient behaviors of the bi-level optimization problem
from any initial states. The optimal solution [x, y]T of (15) is [17.455, 10.909]T .
The constraints are active. Simulation results have shown the globally finite time
convergent property of the proposed model.
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Fig. 1. Transient behaviors of state variables of linear bi-level optimization problem in
Example 1.

Example 2: Consider a supply chain model discussed in [10] with two distri-
bution centers and one assembly factory. This study assumes that distribution
centers belong to the upper level, while assembly factories are the lower level.
the corresponding model can be formulated as the following bi-level optimization
problem:

(UP )min
x,y

F (x, y) = 135y1 + 195y2

s.t. x1 + x2 ≥ 50, 0 ≤ x1 ≤ 30
0 ≤ x2 ≤ 20, y1, y2 ≥ 0

(LP )

{
y ∈ argmax

y
f = −40x1 − 50x2 + 100y1 + 150y2

s.t. y1 ≤ x1, y2 ≤ x2

(16)

Fig. 2 depicts the transient behaviors of the bi-level optimization problem from
any initial states. The optimal solution is x = [20, 30]T , y = [20, 30]T . This
application has shown great potential of the proposed method in economic and
management optimization problems.
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Fig. 2. Transient behaviors of state variables of linear bi-level optimization problem in
Example 2.
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A Nonlinear Neural Network’s Stability Analysis
and Its kWTA Application
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Abstract. In this paper, the stability of a novel nonlinear neural network solving
linear programming problems is studied. We prove that this nonlinear neural net-
work is stable in the sense of Lyapunov under certain conditions. Inspired by the
study of this neural network, we propose a novel neural system to solving the k-
winners-take-all (kWTA) problem. Numerical simulations demonstrate that the
effectiveness and good performance of our new kWTA neural network.

Keywords: Nonlinear Neural Network, Lyapunov Stability, Linear Programming,
kWTA.

1 Introduction

Linear programming (LP) studies the optimization of the linear objective function sat-
isfying linear equality or linear inequality constraints. It has been successfully applied
to various fields such as transportation [1], energy [2], telecommunication [3], and
manufacturing [4]. The linear programming method was first developed by Leonid
Kantorovich in 1939. Traditional methods to solve LP problems include George B.
Dantzig’s the simplex method, John Von Neumann’s theory of duality, Narendra Kar-
markar’s new interior-point method etc. In 1986, Hopfield and Tank in their paper [5]
proposed a new approach to solve LP problems by using recurrent neural networks. The
main advantage of this method is that it can be implemented by using analog electronic
circuits, possibly on a VLSI (very large-scale integration) circuit, which can operate
in parallel. With comparison to traditional approaches which may involve an iterative
process and require long computational time, this model can potentially provide an op-
timal solution in real time. After their pioneer work [5] [6], numerous neural network
models have been proposed to tackle LP problems. Kennedy and Chua [7] developed
a neural network for solving nonlinear programming problems based on Karush-Kuhn-
Tucker (KKT) optimal conditions. By using a penalty parameter it’s solution usually
can approximates the optimal solution. Unfortunately it is same as the exact solution
only when the penalty parameter is very large. Later Maa and Shanblatt [8] extend this
penalty based method by using a two-phase model and ensure that the model converges
to the optimal solution. However, their model is more complex and still requires care-
ful parameter selection. To overcome these drawbacks, Xia [9] proposed a primal and

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 426–435, 2015.
DOI: 10.1007/978-3-319-25393-0_47
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dual model to solving this problem. For other approaches, Zhang [10] invented a la-
grangian neural network based on the theory of lagrangian multipliers. In this model
slack variables are introduced as new variables to cope with inequality constraints, this
may result in high dimensional problem thus require more computation. Unlike previ-
ous approaches using a fixed parameter, Wang etc. [11] used a time-variant temperature
to design a deterministic annealing neural network to solve the linear programs. In In-
ternational Symposium on Mathematical Programming, 2000, Nguyen [12] presents a
novel recurrent neural network model to solve linear optimization problem. Compared
with Xia’s model, Nguyen’s model not only retains the advantages of Xia’s model but
also has a more intuitive economic interpretation and much faster convergence. More
details on this neural network is given in Section II. The most attractive thing for this
model is its high convergence speed. However, the author did not give the stability
analysis of his proposed neural network system. More recently Nguyen’s approach has
been adopted and extended in [13]– [15]. This paper will study the stability of Nguyen’s
model and prove that under certain conditions this neural network is stable in the sense
of Lyapunov. For the background and details of neural networks, we refer to [16]– [25].
The rest of this paper is organized as follows: Section II gives a detailed description of
Nguyen’s model and some comments on this model. Section III presents the main result
on the stability of Nguyen’s dynamical neural network. Section IV applies the idea of
this new model to solve the kWTA problem. In the end, Section V gives a summary of
this paper and points out some future research directions.

2 Model Description

Consider a linear programming problem with the following standard form:

Find x which maximizes : bTx (1)

with the constraints : Ax ≤ c,x ≥ 0

where x and b ∈ R
n, A ∈ R

m×n, and c ∈ R
m.

The dual problem of (1) is

Find y which minimizes : cTy (2)

with the constraints : ATy ≥ b,y ≥ 0.

In the paper [12], the author proposed a new recurrent network for solving the above
linear programming problem based on a nonlinear dynamic system which is described
by

{
ẋ = b−AT (y + kẏ),x ≥ 0, (3a)

ẏ = −c+A(x+ kẋ),y ≥ 0, (3b)

where ẋ and ẏ are used to denote the derivatives of x and y with respect to the
time variable t, i.e., dx

dt , dy
dt respectively, k is a positive real number. Nguyen’s neural
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network consists of two layers of neurons, i.e., primal neurons and dual neurons. The
outputs from one layer are the inputs to the other layer. The inputs of the primal neurons
are composed of the dual neuron’s outputs and their derivatives, while the inputs of the
dual neurons are composed of the primal neuron’s outputs and their derivatives. Due
to the involvement of these derivatives, Nguyen’s neural network model is a nonlinear
dynamic system. This feature enables the system to handle large discrete time steps
without becoming unstable and thus lead to high convergence rate. As for the complex-
ity, Nguyen’s network entails about n+m adders and 2n ·m multipliers which is only
about half of Xia’s neural network [9].

The main property of the neural system described by (3a) and (3b) is stated in the
following theorem [12]:

Theorem 1: If the neural network whose dynamics is described by the differential
equations (3a) and (3b) converges to a stable state, then the convergence will be the
optimal solutions for the LP problem (1) and its dual problem (2).

In [12] the author uses the Euler method to solving the dynamic systems (3a) and
(3b). Some experiments show that system has high convergence rate. For an example
with 5 variables and 4 constraints, Nguyen’s model converges to the exact solution only
after about 1000 iterations, while Xia’s model requires about 200,000 iterations to get
the same solution.

3 Stability Analysis

Theorem 2: If the matrix AAT or ATA is non-singular and k > 0, then the neural
network described by (3a) and (3b) is asymptotic stable.

Proof. The dynamic system equations (3a) and (3b) can be rewritten as
(

I kAT

−kA I

)(
ẋ
ẏ

)

=

(
0 −AT

A 0

)(
x
y

)

+

(
b
−c

)

,

where I is the identity matrix. Multiplying

(
I −kAT

kA I

)

to both sides of the above

equation, we have

(
I+ k2ATA 0

0 I+ k2AAT

)(
ẋ
ẏ

)
=

(
I −kAT

kA I

)(
0 −AT

A 0

)(
x
y

)
+

(
b− kATc
kAb− c

)
.

It’s obvious that the matrix

(
I+ k2ATA 0

0 I+ k2AAT

)

is positive definite, there-

fore we only need to consider the eigenvalues of the matrix

(
I −kAT

kA I

)(
0 −AT

A 0

)

in order to study the stability of the dynamic system defined by the Equations (3a) and
(3b). Let

M =

(
0 −AT

A 0

)

,

then we have
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(
I −kAT

kA I

)(
0 −AT

A 0

)

= (I+ kM)M.

Now we would like to study the properties of the eigenvalues of the matrix (I+kM)M.
Supposeλ be an eigenvalue of (I+kM)Mwith the corresponding non-zero eigenvector
V , by the definition of eigenvector, we get

(I+ kM)V = λV.

Multiplying both sides of the above equation by V
T

, we obtain

V̄T (I+ kM)V = λV
T
V.

We use an overline z to denote the complex conjugate of z here and hence after. Without

loss of generality we may assume that V
T
V = 1, thus we have

λ = V
T
(I+ kM)MV = V

T
MV+ kV

T
M2V.

For the first term in of the last equation, since M = M and MT = −M, we have

V
T
MV

T

= (VTMV)T = V
T
MTV = −V

T
MV. Thus we conclude that the real

part of the entity V
T
MV is equal to 0. For the second term in the last equation, since

V
T
M2V

T

= (VTM2V)T = V
T
M2V, we claim that the item kV

T
M2V is a real

number.
Note that

M2 =

(
0 −AT

A 0

)(
0 −AT

A 0

)

=

(−ATA 0
0 −AAT

)

.

If ATA or AAT is non-singular (note that rank(ATA) = rank(AAT )), we con-

clude that the matrixM2 is negative positive and the real part ofV
T
(I+kM)V is nega-

tive. Thus we have proved all the eigenvalues of the matrix

(
I −kAT

kA I

)(
0 −AT

A 0

)

have negative real parts and the dynamic system defined by (3a) and (3b) is asymptotic
stable. Moreover the convergence rate of this neural dynamic system is proportional to
the constant coefficient k.

4 KWTA Application

Winner-take-all (WTA) is an operation that seeks the maximum item of multiple input
signals. Such operation has been successfully applied to various fields such as asso-
ciative memories [26], cooperative models of binocular stereos [27] and feature selec-
tion [28]. K-winners-take-all (KWTA) is an extension of Winner-take-all operation in
the sense that it selects the k (1 ≤ k < n) largest input signals from the n total inputs in-
stead just the maximum one. In the recent decades, many kinds of neural networks have
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been designed to solve the kWTA problem such as the primal and dual network [29],
the dual network [30] and the linear programming based neural network [31]. The main
research direction is how to improve the convergence speed and simplify the the archi-
tecture complexity.

Mathematically, kWTA can be modelled as a function as follows:

xi = f(ui) =

{
1 if ui ∈ {k largest elements of u},
0 otherwise.

for i = 1, 2, . . . n, where u ∈ R
n and k ∈ {1, 2, . . . , n−1}. The function can be further

written by the following binary integer program:

Minimize −uTx,
subject to : eTx = k,

xi ∈ {0, 1}, i = 1, 2, . . . , n,
(4)

where u = [u1, u2, . . . , un]
T , e = [1, 1, . . . , 1]T ∈ R

n, x = [x1, x2, . . . , xn]
T ∈ R

n

and k is a positive integer less than n.
In order to solve this program using the dynamic system approach, we extend it to the

continuous case under some conditions. Towards such objective, we give the following
theorem:

Theorem 3: The integer programming problem (4) is equivalent to the following
linear programming problem if the kth largest element of u is strictly larger than the
(k + 1)th largest element of u

Minimize −uTx,
subject to : eTx = k,

xi ∈ [0, 1], i = 1, 2, . . . , n.
(5)

Proof. Without loss of generality, we assume that u1, u2, . . . , uk are the k largest el-
ements and u1 ≥ u2 ≥ . . . ≥ uk, then the optimal solution of the problem (4) is
x1 = x2 = . . . = xk = 1 and xk+1 = xk+2 = . . . = xn = 0. To prove this solution
is also the optimal solution to problem (5). First, we use the constraint

∑n
i=1 xi = k to

solve xk+1 in terms of x1, . . . , xk, xk+2, . . . , xn, giving xk = k−∑
i�=k+1 uixi. Then

we use this relationship to substitute for xk+1 in the objective function, saying

−uTx = −kuk+1 +

k∑

i=1

(−ui + uk+1)xi +

n∑

i=k+2

(−ui + uk+1)xi.

Since the coefficients of x1, x2, . . . , xk are negative and the coefficients of xk+2, xk+3,
. . . , xn are nonnegative in the objective function, we conclude that the solution of the
minimizing problem (5) is u1 = u2 = . . . = uk = 1.

We remark that the Theorem 1 on the equivalence of (4) and (5) presented in [31] is not
correct in general.

The lagrangian function of this minimization problem (5) can be written as

L(x, y, z) = −uTx− y(eTx− k)− zT (−Ix+ e), (6)
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where z ∈ R
n
+ = {z ∈ R

n|z ≥ 0} and y ∈ R are Lagrangian multipliers. According to
the Karush-Kuhn-Tucker (KKT) conditions [32] [33], x� is a solution of (5) if and only
if there exist y� ∈ R

m, z� ∈ R
p
+ so that (x�, y�, z�) satisfies the following conditions:

−u− y�e+ z� ≥ 0,

x�T
(−uT − y�e+ z�

)
= 0,

k − eTx� = 0

−e+ Ix� ≤ 0,

z�T (−e+ Ix�) = 0. (7)

We propose a recurrent neural network for solving the primal and dual problem as
follows:

⎧
⎪⎨

⎪⎩

ẋ = u+ (y + λẏ)e− (z + λż),x ≥ 0, (8a)

ẏ = k − eT(x + λẋ), (8b)

ż = (x+ λẋ) + e, z ≥ 0, (8c)

where λ is a positive constant. The architecture of the proposed neural network model
is shown in Fig. 1.

e

k

e

dx
dt

dy
dt

dz
dt

x

y
z

e

Fig. 1. Block diagram of the neural network (8a, 8b, and 8c)

The proposed neural network consists of two layers of neurons, i.e., primal neurons
and dual neurons. The outputs from one layer are the inputs to the other layer. The inputs
of the primal neurons are composed of the dual neuron’s outputs and their derivatives,
while the inputs of the dual neurons are composed of the primal neuron’s outputs and
their derivatives. Due to the involvement of these derivatives, this neural network model
is a nonlinear dynamic system. The convergence property of the system is stated by the
following theorem.
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Theorem 4: If the neural network whose dynamics guided by the differential equations
(8a, 8b, and 8c) converges to a steady state (x�, y�, z�), then x� will be the optimal
solution of the primal LP problem (5) and the Lagrangian multipliers y� and z� the
optimal solution of the dual of the LP problem.

Proof. Let xi be the ith component of x, then the equation (8a) can be written as

dxi

dt
= {u+ (y + λẏ)e− (z+ λż)}i if xi > 0, (9)

dxi

dt
= max{{u+ (y + λẏ)e− (z+ λż)}i, 0} if xi = 0. (10)

Note that (10) is to ensure that x will bounded from below by 0. Let x�, y� and z� be
the limit of x(t), y(t) and z(t) respectively. In other words

lim
t→∞x(t) = x�, (11)

lim
t→∞ y(t) = y�, (12)

lim
t→∞ z(t) = z�. (13)

By the definition of convergence, we have dx�

dt = 0, dy�

dt = 0 and dz�

dt = 0. From Eqns.
(9) and (10) we conclude that

0 = {u+ y�e− z�}i if x�
i > 0, (14)

0 = max{{u+ y�e− z�}i, 0} if x�
i = 0. (15)

In other words:

(u+ y�e− z�))i ≤ 0, (16)

x�
i (u+ y�e− z�)i = 0, (17)

or

−u− y�e+ z� ≥ 0, (18)

x�T
(−uT − y�e+ z�

)
= 0. (19)

Similarly, from Eqns. (8b) and (8c), we have:

k − eTx� = 0, (20)

−e+ Ix� ≤ 0, (21)

z�T (−e+ Ix�) = 0. (22)

By KKT conditions in (7) and conditions provided in (19-22) we have shown that x� and
(y�, z�) are the optimal solutions for the problem (5) and its dual problem respectively.
This completes the proof of the theorem.
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Fig. 2. Convergence of the kWTA network in Example 1
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Fig. 3. Convergence of the kWTA network in Example 2

To demonstrate the behavior and properties of the proposed nonlinear neural network
model, we consider two examples with n = 5 and k = 3. All the simulations are
conducted with MATLAB 12c. We use the Euler method to solve the neural system of
ordinary differential equations (8a, 8b, and 8c). In the first example, the inputs are set
to be ui = i (i = 1, 2, 3, 4, 5). The transient trajectories of x is shown on the left side
in Fig. 2. It is obvious that the steady state is [0, 0, 1, 1, 1]T . This means that our neural
network successfully identifies three largest elements, i.e., u3, u4 and u5. Furthermore
this experiment demonstrates that our neural system converges very fast and goes to
the equilibrium point after about 200 iterations. In comparison, it takes more than 1000
iterations to reach the steady output using the neural network ( [31]) as shown on the
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right side in Fig. 2. For the second example with inputs ui = 10 ∗ sin(2π ∗ (0.3 +
0.2 ∗ (i − 1))) (i = 1, 2, 3, 4, 5), the simulation result depicted in Fig. 3 shows that the
proposed kWTA network also can quickly identify the largest three values.

5 Conclusions

The stability of a novel nonlinear neural network solving LP problems is analyzed.
We proved that this nonlinear neural network is stable in the sense of Lyapunov under
some conditions. Moreover, we apply this idea to propose a new neural network for
solving the kWTA problem. Numerical simulations show that the effectiveness and
good performance of our new neural system. In the future, we would like to apply the
proposed neural network to solving the assignment problem [34] [35] and maximum
flow problem [36] [37], extend the nonlinear model to convex programming and more
general optimization problems.
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2. Matousek, J., Gärtner, B.: Understanding and Using Linear Programming. Springer (2006)
3. Gass, S.I.: Linear Programming: Methods and Applications, 5th edn. Dover Publications

(2010)
4. Sultan, A.: Linear Programming: An Introduction With Applications, 2nd edn. CreateSpace

Independent Publishing Platform (2011)
5. Tank, D.W., Hopfield, J.J.: Simple neural optimization networks: An A/D converter, signal

decision circuit, and a linear programming circuit. IEEE Transactions on Circuits and Sys-
tems 33(5), 533–541 (1986)

6. Hopfield, J.J., Tank, D.W.: Computing with neural circuits: A model. Science 233, 625–633
(1986)

7. Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming. IEEE Transactions
on Circuits and Systems 35(5), 554–562 (1988)

8. Maa, C.Y., Schanblatt, M.A.: A two-phase optimization neural network. IEEE Transactions
on Neural Network 3(6), 1003–1009 (1992)

9. Xia, Y.: A new neural network for solving linear programming problems and its application.
IEEE Transactions on Neural Networks 7(2), 525–529 (1996)

10. Zhang, S., Constantinides, A.G.: Lagrange programming neural networks. IEEE Transac-
tions on Circuits and Systems II 39(7), 441–452 (1992)

11. Wang, J.: A deterministic annealing neural network for convex programming. Neural Net-
works 5(4), 962–971 (1994)

12. Nguyen, K.V.: A Nonlinear Neural Network for Solving Linear Programming Problems. In:
International Symposium on Mathematical Programming, ISMP 2000, Atlanta, GA, USA
(2000)

13. Suresh, S., Mani, V., Omkar, S.N., Kim, H.J.: Parallel Video Processing Using Divisible Load
Scheduling Paradigm. Journal of Broadcast Engineering 10(1), 83–102 (2005)

14. Senthilnath, J., Omkar, S.N., Mani, V., Katti, A.R.: Cooperative communication of UAV to
perform multi-task using nature inspired techniques. In: IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA), pp. 45–50 (2013)



A Nonlinear Neural Network’s Stability Analysis and Its kWTA Application 435

15. Yan, Y.: A New Nonlinear Neural Network for Solving QP Problems. In: Zeng, Z., Li, Y.,
King, I. (eds.) ISNN 2014. LNCS, vol. 8866, pp. 347–357. Springer, Heidelberg (2014)

16. Taylor, J.G.: Mathematical Approaches to Neural Networks. North-Holland (1993)
17. Harvey, R.L.: Neural Network Principles. Prentice Hall (1994)
18. Veelenturf, L.: Analysis and Applications of Artifical Neural Networks. Prentice Hall (1995)
19. Rojas, R., Feldman, J.: Neural Networks A Systematic Introduction. Springer (1996)
20. Mehrotra, K., Mohan, C.K., Ranka, S.: Elements of Artificial Neural Networks. MIT Press

(1997)
21. Haykin, S.: Neural Networks A Comprehensive Foundation, 2nd edn. Prentice Hall (1998)
22. Michel, A., Liu, D.: Qualitative Analysis and Synthesis of Recurrent Neural Networks. CRC

Press (2001)
23. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. Martin Hagan (2002)
24. Gurney, K.: An Introduction to Neural Networks. CRC Press (2003)
25. Graupe, D.: Principles of Artificial Neural Networks, 2nd edn. World Scientific Pub. Co. Inc.

(2007)
26. Krogh, A., Hertz, J., Palmer, R.G.: Introduction to the Theory of Neural Computation.

Addison-Wesley, Redwook (1991)
27. Marr, D., Poggio, T.: Cooperative computation of stereo disparity. Science 195, 283–328

(1977)
28. Yuille, A.L., Geiger, D.: The Handbook of Brain Theory and Neural Networks. MIT Press

(2002)
29. Xia, Y., Feng, G., Wang, J.: A primal-dual neural network for online resolving constrained

kinematic redundancy in robot motion control. IEEE Transactions on Systems, Man and
Cybernetics 35(1), 54–64 (2005)

30. Xia, Y., Wang, J.: A general projection neural network for solving monotone variational in-
equalities and related optimization problems. IEEE Transactions on Neural Networks 15(2),
318–328 (2004)

31. Gu, S., Wang, J.: A K-Winners-Take-All Neural Network Based on Linear Programming For-
mulation. In: Proceedings of International Joint Conference on Neural Networks, Orlando,
Florida, USA (2007)

32. Boyd, S., Vandenbeghe, L.: Convex Optimization. Cambridge University Press (2004)
33. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.

Prentice-Hall (1989)
34. Wang, J.: Analogue neural network for solving the assignment problem. Electronics Let-

ters 28(11), 1047–1050 (1992)
35. Hu, X., Wang, J.: Solving the assignment problem with the improved dual neural network.

In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011, Part I. LNCS,
vol. 6675, pp. 547–556. Springer, Heidelberg (2011)

36. Effati, S., Ranjbar, M.: Neural network models for solving the maximum flow problem. Ap-
plications and Applied Mathematics 3(3), 149–162 (2008)

37. Nazemi, A., Omidi, F.: A capable neural network model for solving the maximum flow prob-
lem. Journal of Computational and Applied Mathematics 236(14), 3498–3513 (2012)



Continuous-Time Multi-agent Network

for Distributed Least Absolute Deviation�

Qingshan Liu1, Yan Zhao2, and Long Cheng3

1 School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China

qsliu@hust.edu.cn
2 Department of Basic Courses, Wannan Medical College,

Wuhu 241000, Anhui, China
3 State Key Lab. of Management and Control for Complex Systems,

Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China

Abstract. This paper presents a continuous-time multi-agent network
for distributed least absolute deviation (DLAD). The objective function
of the DLAD problem is a sum of many least absolute deviation func-
tions. In the multi-agent network, each agent connects with its neighbors
locally and they cooperate to obtain the optimal solutions with consen-
sus. The proposed multi-agent network is in fact a collective system with
each agent being considered as a recurrent neural network. Simulation re-
sults on a numerical example are presented to illustrate the effectiveness
and characteristics of the proposed distributed optimization method.

Keywords: Distributed least absolute deviation, multi-agent network,
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1 Introduction

Least absolute deviation (LAD) or L1-norm criterion provides in many applica-
tions in science and engineering, including signal and image processing, system
identification, parameter estimation, source localization and regression [1,2]. Re-
cently, the increasing interest in performing distributed optimization based on
multi-agent systems has raised wide investigations in the literature (e.g., see
[3,4,5] and references therein). The goal of distributed optimization is to mini-
mize a sum of local objective functions, which can be used to perform large-scale
optimization problems in the distributed manner. For distributed optimization,
most of the works build on consensus algorithms which are described by discrete-
time dynamics to search for optimal solutions [3,6]. Moreover, a few recent works
on continuous-time dynamics for distributed optimization are presented [5,7].
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More recently, researchers are especially interested in the dynamical behavior
analysis of multi-agent networks, including consensus, cooperation, and compe-
tition (e.g., see [8,9,10] and references therein).

Since 1980s, neurodynamic optimization based on continuous-time recurrent
neural networks are widely investigated [11,12,13,14,15,16,17,18]. Among them,
Tank and Hopfield [11] proposed a neurodynamic optimization approach for lin-
ear programming. Kennedy and Chua [12] presented a recurrent neural network
for nonlinear optimization. From then on, the research on this topic has been
well developed and numerous neural network models have been designed for op-
timization. The recurrent neural networks seek the optimal solutions in parallel.
In general, the collective recurrent neural networks, which each neural network
connects with its neighbors, can be considered as a multi-agent network.

In this paper, we are concerned with design of continuous-time multi-agent
network for solving the LAD problems based on distributed optimization. In the
literature, for LAD problems, either convergence speed of the algorithms is slow,
or the network parameters have to be adjusted. If the LAD problem is solved
with distributed optimization, we can design some parallel algorithms to solve
the problems with efficiency. Moreover, the projection method for neurodynamic
optimization [13,18,19] is used to perform the L1-norm, which corresponds to a
continuous piecewise-linear activation function. Compared with the subgradient
method for nonsmooth optimization [6,20], the continuous activation function
can take faster convergence rate for distributed optimization.

2 Problem Formulation and Multi-agent Network
Modeling

We consider the distributed least absolute deviation as the following optimization
problem:

minimize
m∑

i=1

‖Cix− di‖1,

subject to x ∈
m⋂

i=1

Ωi,
(1)

where x ∈ R
n, Ci ∈ R

pi×n and di ∈ R
pi , and Ωi ⊆ R

n is a closed convex set,
which is assumed to be a hyper-box or hyper-sphere.

Assume that the network is consisted of m agents with connected undirected
graph, denoted by G. Each agent is assigned a local least absolute deviation
function ‖Cix − di‖1 and constraint set Ωi (i = 1, 2, . . . ,m). The objective for
the network is to cooperatively solve the LAD problem with consensus.

Let xi ∈ R
n (i = 1, 2, . . . ,m) denotes the estimate of agent i about the value

of the solution to problem (1), X = (x1, x2, · · · , xm) ∈ R
n×m to be a matrix

with column vector xi (i = 1, 2, . . . ,m), and x̃ = vec(X) ∈ R
mn to be the

vectorization of matrix X which converts X into a column vector obtained by
stacking the columns of X on top of one another. Then the following lemma is
derived directly.
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Lemma 1. [5] Let Lm ∈ R
m×m be the Laplacian matrix of connected graph

G and L = Lm ⊗ I ∈ R
mn×mn, where ⊗ is the Kronecker product and I is

n-dimensional identity matrix. The problem (1) is equivalent to the following
optimization problem:

minimize ‖Cx̃− d‖1,
subject to Lx̃ = 0, x̃ ∈ Ω,

(2)

where C is the block diagonal matrix of C1, C2 to Cm (i.e., C = diag{C1, C2, . . . ,
Cm}), d = ((d1)

T , (d2)
T , . . . , (dm)T )T and Ω =

∏m
i=1 Ωi defined by the Cartesian

product.

In (1), let p = p1 + p2 + · · ·+ pm. Then C ∈ R
p×mn and d ∈ R

p in (2). Next,
a necessary and sufficient condition for the optimal solutions to problem (2) is
described as follows.

Theorem 1. x̃∗ ∈ R
mn is an optimal solution to problem (2) if and only if

there exist ỹ∗ ∈ R
p and z̃∗ ∈ R

mn such that (x̃∗, ỹ∗, z̃∗) satisfies
⎧
⎨

⎩

x̃∗ = φ(x̃∗ − CT ỹ∗ − Lz̃∗),
ỹ∗ = g(ỹ∗ + Cx̃∗ − d),
Lx̃∗ = 0,

(3)

where φ and g are projection operators from R
n to Ω and R

p to [−1, 1]p respec-
tively.

Proof: The proof is similar to that of Theorem 1 in [7].
According to (3), the continuous-time multi-agent network is proposed as the

following differential equations (i = 1, 2, . . . ,m):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxi

dt
= 2{−xi + φi[xi − CT

i g̃i −
m∑

j=1,j �=i

aij(xi + zi − xj − zj)]},
dyi
dt

= −yi + gi(yi + Cixi − di),

dzi
dt

= xi,

(4)

where g̃i = gi(yi + Cixi − di) and aij is the connection weight between agents i
and j in the network.

The multi-agent network (4) can be equivalently written as the following com-
pact form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx̃

dt
= 2{−x̃+ φ[x̃− CT g(ỹ + Cx̃− d)− L(x̃+ z̃)]},

dỹ

dt
= −ỹ + g(ỹ + Cx̃− d),

dz̃

dt
= x.

(5)
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3 Consensus Analysis

In this section, the consensus of the multi-agent network in (5) (or (4)) is ana-
lyzed using the Lyapunov method.

First, the projection operators in (3) have the following property.

Lemma 2. [21] The following inequality holds:

[u− φ(u)]T [φ(u)− v] ≥ 0, ∀ u ∈ R
n, v ∈ Ω.

Next, the convergence of the system in (5) (or (4)) is presented as follows.

Theorem 2. The state vector x̃ of the multi-agent network (5) (or (4)) is glob-
ally convergent to an optimal solution to problem (2).

Proof: Let x̃∗ ∈ R
mn be an optimal solution to problem (2). According to

Theorem 1, there exist ỹ∗ ∈ R
p and z̃∗ ∈ R

mn such that the equations in (3)
hold.

Consider the following Lyapunov function

V (x̃, ỹ, z̃) = ϕ(x̃, ỹ, z̃)− ϕ(x̃∗, ỹ∗, z̃∗)− [x̃− x̃∗]T [CT g(ỹ∗ + Cx̃∗ − d)

+Lz̃∗]− (ỹ − ỹ∗)T g(ỹ∗ + Cx̃∗ − d)− (z̃ − z̃∗)TLz̃∗

+
1

2

[‖x̃− x̃∗‖2 + ‖ỹ − ỹ∗‖2 + (z̃ − z̃∗)TL(z̃ − z̃∗)
]
, (6)

where ϕ(x̃, ỹ, z̃) = ψ(ỹ + Cx̃− d) + (x̃ + z̃)TL(x̃+ z̃)/2. Here, ψ is defined as

ψ(ỹ + Cx̃ − d) =

p∑

j=1

ψ(ỹj + Cj x̃− dj),

with ψ(ỹj + Cj x̃− dj) as follows (j = 1, 2, . . . , p)

ψ(ỹj + Cj x̃− dj) =

⎧
⎪⎨

⎪⎩

ỹj + Cj x̃− dj , ỹj + Cj x̃− dj > 1,

(ỹj + Cj x̃− dj)
2/2, ỹj + Cj x̃− dj ∈ [−1, 1],

−(ỹj + Cj x̃− dj), ỹj + Cj x̃− dj < −1,

where Cj , ỹj and dj are the jth rows of C, ỹ and d respectively. From the formula
of ψ(·), we get that ψ(·) is convex and differentiable with ∇ψ(·) = g(·).

Then we have

∇ϕ(x̃, ỹ, z̃) =

⎛

⎝
CT g(ỹ + Cx̃ − d) + L(x̃+ z̃)

g(ỹ + Cx̃ − d)
L(x̃+ z̃)

⎞

⎠ .

The gradient of V (x̃, ỹ, z̃) is

∇V (x̃, ỹ, z̃) =

⎛

⎝
CT g̃ + L(x̃+ z̃)− CT g̃∗ − Lz̃∗ + x̃− x̃∗

g̃ − g̃∗ + ỹ − ỹ∗

2L(z̃ − z̃∗) + Lx̃

⎞

⎠ ,

where g̃ = g(ỹ + Cx̃− d) and g̃∗ = g(ỹ∗ + Cx̃∗ − d).
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According to the chain rule, the derivative of V (x̃, ỹ, z̃) along the solution of
system (5) is

V̇ (x̃(t), ỹ(t), z̃(t))

= ∇x̃V (x̃, ỹ, z̃)T
(
dx̃

dt

)

+∇ỹV (x̃, ỹ, z̃)T
(
dỹ

dt

)

+∇z̃V (x̃, ỹ, z̃)T
(
dz̃

dt

)

.

Then

V̇ (x̃(t), ỹ(t), z̃(t)) = 2[CT g̃ + L(x̃+ z̃)− CT g̃∗ − Lz̃∗ + x̃− x̃∗]T [−x̃+ φ̃]

+(g̃ − g̃∗ + ỹ − ỹ∗)T (−ỹ + g̃) + [2L(z̃ − z̃∗) + Lx̃]T x̃,

where φ̃ = φ[x̃ − CT g(ỹ + Cx̃− d)− L(x̃+ z̃)].
We next prove the following equality regarding the argument of the right hand

side of the previous equation

2[CT g̃ + L(x̃+ z̃)− CT g̃∗ − Lz̃∗ + x̃− x̃∗]T [−x̃+ φ̃]

+(g̃ − g̃∗ + ỹ − ỹ∗)T (−ỹ + g̃) + [2L(z̃ − z̃∗) + Lx̃]T x̃

= 2[CT g̃ + L(x̃+ z̃)− CT g̃∗ − Lz̃∗ + x̃− x̃∗]T [φ̃− x̃∗]
+2[CT g̃ + L(x̃+ z̃)− CT g̃∗ − Lz̃∗ + x̃− x̃∗]T [x̃∗ − x̃]

+(g̃ − g̃∗ + ỹ − ỹ∗)T (−ỹ + g̃) + 2[L(z̃ − z̃∗)]T x̃+ x̃TLx̃.

Let J1 = 2[CT g̃+L(x̃+ z̃)−CT g̃∗−Lz̃∗+ x̃− x̃∗]T [φ̃− x̃∗], J2 = 2[L(x̃+ z̃)−
Lz̃∗+ x̃− x̃∗]T [x̃∗− x̃]+2[L(z̃− z̃∗)]T x̃+ x̃TLx̃, and J3 = 2(CT g̃−CT g̃∗)T (x̃∗−
x̃) + (g̃ − g̃∗ + ỹ − ỹ∗)T (−ỹ + g̃).

Then

V̇ (x̃(t), ỹ(t), z̃(t)) = J1 + J2 + J3. (7)

For J1, we have

J1 = −2[x̃− CT g̃ − L(x̃+ z̃)− φ̃]T [φ̃− x̃∗]− 2(CT g̃∗ + Lz̃∗)T (φ̃− x̃∗)
+2(x̃− φ̃+ x̃− x̃∗)T (φ̃− x̃+ x̃− x̃∗)

= −2[x̃− CT g̃ − L(x̃+ z̃)− φ̃]T [φ̃− x̃∗]− 2(CT g̃∗ + Lz̃∗)T (φ̃− x̃∗)
−2‖x̃− φ̃‖2 + 2‖x̃− x̃∗‖2.

In Lemma 2, let u = x̃ − CT g̃ − L(x̃ + z̃) and v = x̃∗, then [x̃ − CT g̃ −
L(x̃ + z̃) − φ̃]T [φ̃ − x̃∗] ≥ 0. Since x̃∗ is an optimal solution to problem (2),
we have (CT g̃∗ + Lz̃∗)T (φ̃ − x̃∗) ≥ 0 due to g̃∗ = ỹ∗ and φ̃ ∈ Ω. Then J1 ≤
−2‖x̃− φ̃‖2 + 2‖x̃− x̃∗‖2.

For J2, we have

J2 = 2[L(x̃+ z̃)− Lz̃∗ + x̃− x̃∗]T [x̃∗ − x̃] + 2[L(z̃ − z̃∗)]T x̃+ x̃TLx̃

= 2[L(x̃+ z̃)− Lz̃∗]T [x̃∗ − x̃] + 2(x̃− x̃∗)T (x̃∗ − x̃)

+2[L(z̃ − z̃∗)]T x̃+ x̃TLx̃

= 2(x̃− x̃∗)T (x̃∗ − x̃)− x̃TLx̃,
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where the last equality holds since Lx̃∗ = 0.
For J3, from (3) we have g̃∗ = ỹ∗, then

J3 = 2(CT g̃ − CT g̃∗)T (x̃∗ − x̃) + (g̃ − g̃∗ + ỹ − ỹ∗)T (−ỹ + g̃)

= 2(g̃ − ỹ∗)T (Cx̃∗ − Cx̃) + (g̃ + ỹ − 2ỹ∗)T (−ỹ + g̃)

= 2(g̃ − ỹ∗)T (Cx̃∗ − Cx̃)− (ỹ − g̃)T (ỹ − g̃) + 2(g̃ − ỹ∗)T (−ỹ + g̃)

= −‖ỹ − g̃‖2 − 2(g̃ − ỹ∗)T (ỹ − g̃ + Cx̃− Cx̃∗)
= −‖ỹ − g̃‖2 − 2(g̃ − ỹ∗)T (ỹ + Cx̃− d− g̃)− 2(g̃ − ỹ∗)T (d− Cx̃∗).

In Lemma 2, let u = ỹ+Cx̃−d and v = ỹ∗, then (ỹ+Cx̃−d− g̃)T (g̃− ỹ∗) ≥ 0.
According to (3), since ỹ∗ = g(ỹ∗ + Cx̃∗ − d), then ỹ∗ satisfies the following
variational inequality

(ỹ − ỹ∗)T (−Cx̃∗ + d) ≥ 0, ∀ỹ ∈ [−1, 1]p,

which follows (g̃− ỹ∗)T (d−Cx̃∗) ≥ 0 due to g̃ ∈ [−1, 1]p. Then J3 ≤ −‖ỹ− g̃‖2.
Consequently, we have

J1 + J2 + J3 ≤ −2‖x̃− φ̃‖2 − ‖ỹ − g̃‖2 − x̃TLx̃.

Combining with (7), it derives that

V̇ (x̃(t), ỹ(t), z̃(t)) ≤ −2‖x̃− φ̃‖2 − ‖ỹ − g̃‖2 − x̃TLx̃. (8)

Since the remainder of the proof is similar to that of Theorem 2 in [7], it is
omitted here.

On one hand, according to Lemma 1, if the undirected graph G is connected,
the optimization problems in (1) and (2) are equivalent. On the other hand,
the state vectors xi(t) (i = 1, 2, . . . ,m) of the multi-agent network are globally
convergent to an optimal solution to problem (2). Consequently, the state vectors
xi(t) (i = 1, 2, . . . ,m) can reach consensus at an optimal solution to problem (1)
if the undirected graph of the multi-agent network is connected.

4 An Illustrative Example

In the following, the proposed multi-agent network is utilized to solve an LAD
problem based on distributed optimization to show its performance and charac-
teristics.
Example. Consider the following L1-minimization problem:

minimize ‖Ax− b‖1,
subject to −1 ≤ xl ≤ 1, l = 1, 2, 3,

where

A =

⎛

⎝
1 3 1 1 0
−1 1 −2 3 4
1 −1 4 3 6

⎞

⎠

T

, b =
(
1 2 − 1 1 − 1

)T
.
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Since the objective function ‖Ax − b‖1 is a sum of Aix − bi (i = 1, 2, . . . , 5),
where Ai and bi are the ith rows of A and b respectively, we use a five-agent
network with the circular connectivity to solve this problem. The agent i is
allocated the objective function |Aix−bi|. The connection weight between agents
i and j is set as 1 if they are connected and 0 otherwise. The transient behaviors
of the five agents on state vector x are shown in Fig. 1, which shows that the
multi-agent network reaches a consensus with respect to x at the optimal solution
x∗ = (0.5106, 0.1809,−0.2872)T.
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Fig. 1. Consensus of the state vector x of the multi-agent network for solving the
problem in the example.

5 Concluding Remarks

This paper presents a continuous-time multi-agent network described by a col-
lective dynamic system for distributed least absolute deviation. It is proven that
the multi-agent network reaches consensus at the optimal solutions if the graph
of the network is undirected and connected. Numerical example is elaborated to
show the effectiveness and performance of the proposed method.
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Abstract. In this paper, online solution of complex-valued systems of
linear equations is investigated in the complex domain. Different from the
conventional real-valued neural network, which is only designed for real-
valued linear equations solving, a fully complex-valued gradient neural
network (GNN) is developed for online complex-valued systems of linear
equations. The advantages of the proposed complex-valued GNN model
decrease the unnecessary complexities in theoretical analysis, real-time
computation and related applications. In addition, the theoretical anal-
ysis of the fully complex-valued GNN model is presented. Finally, sim-
ulative results substantiate the effectiveness of the fully complex-valued
GNN model for online solution of the complex-valued systems of linear
equations in the complex domain.

Keywords: complex domain, simulation verification, complex-valued
linear system, neural network.

1 Introduction

Complex-valued systems of linear equations arise in many important science and
engineering applications [1,2,3], such as in neuro-fuzzy inference system (e.g.,
[4]), in human action recognition (e.g., [5]), blind signal extraction (e.g., [6]),
and in the numerical solution of (stiff) systems of ordinary differential equations
using implicit Runge-Kutta methods.

In mathematics, the problem of complex-valued systems of linear equations
can be generally formulated as

Az(t) = b ∈ C
n, (1)

where z(t) ∈ C
n is an unknown complex-valued vector to be obtained, complex

matrix A ∈ C
n×n and complex vector b ∈ C

n are complex-valued coefficients of
(1). For convenience, let z∗ ∈ C

n denote the theoretical solution of (1).
Note that, in most of past literatures on online solution of complex-valued

systems of linear equations [7,8,9,10], complex matrix coefficient A ∈ C
n×n and

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 444–451, 2015.
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complex vector coefficient b ∈ C
n are often divided into their real and imaginary

parts, and then processed respectively. Specifically, complex-valued matrix A ∈
C

n×n is treated as the combination of its real and imaginary parts, and complex-
valued vector b ∈ C

n is also treated as the combination of its real and imaginary
parts, i.e., A = Are + jAim and b = bre + jbim with j =

√−1 denoting an
imaginary unit [also z(t) = zre(t) + jzim(t)]. Therefore, complex-valued linear
equation system (1) is equivalent to the following one:

[Are + jAim][zre(t) + jzim(t)] = bre + jbim, (2)

where Are ∈ R
n×n, Aim ∈ R

n×n, zre ∈ R
n, zim ∈ R

n, bre ∈ R
n and bim ∈ R

n.
In addition, since the real and imaginary parts of the left-side and right-side

of equation (2) always equal, according to the conventional processing method
[11], the following real-valued systems of linear equation can be derived from
equation (2) as {

Arezre(t)−Aimzim(t) = bre ∈ R
n,

Arezim(t) +Aimzre(t) = bim ∈ R
n,

which is equivalently expressed in a compact matrix-vector form as
[
Are −Aim

Aim Are

] [
zre(t)
zim(t)

]

=

[
bre
bim

]

∈ R
2n. (3)

For presentation simplification, matrix B ∈ R
2n×2n, vectors x(t) ∈ R

2n and
d ∈ R

2n are used to denote the above variables; i.e.,

B =

[
Are −Aim

Aim Are

]

, x(t) =

[
zre(t)
zim(t)

]

, d =

[
bre
bim

]

.

Therefore, solving the complex-valued linear system problem is equivalently con-
verted to the following real-valued linear system problem solving:

Bx(t) = d ∈ R
2n. (4)

Then, most of the reported methods [12,13,14,15] for solving real-valued sys-
tem of linear equation can be applied to online solution of the complex-valued
linear equation system (1). However, the corresponding vector space dimension
and computation complexity have increased one times for the equivalent real-
valued linear system (4) solving, as compared with the complex-valued linear
equation system (1) solving. In this paper, a fully complex-valued gradient neural
network (GNN) is developed for online solution of complex-valued linear equa-
tion directly. This method does not require a equivalent conversion and directly
solves the complex-valued linear system problem. More importantly, the fully
complex-valued gradient neural network decreases the unnecessary complexities
in theoretical analysis, real-time computation, and related applications.

2 Fully Complex-Valued GNN Model

In conventional design processing, when applied to online solution of complex-
valued systems of linear equations, complex matrix coefficient A ∈ C

n×n and
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complex vector coefficient b ∈ C
n are often divided into their real and imaginary

parts, and treated separately in the real domain. However, the fully complex-
valued gradient neural network (GNN) is based on the original complex-valued
linear equation system (1) instead of a equivalent real-valued linear equation
system (4). In addition, the fully complex-valued GNN model needs not such
a conversion process. Specifically, the design procedure of fully complex-valued
GNN model can be presented as follows.

First, the following the scalar-valued nonnegative energy function is defined
(which is based on the original complex-valued linear equation system):

ε(t) = ‖Az(t)− b‖22/2. (5)

Then, according to the gradient-based design method used in the real domain
[12,13,14], a complex-valued gradient algorithm is designed to evolve along a
negative gradient descent direction of this energy function until the minimum
point can be reached. Obviously, the negative gradient of this energy function
can be derived as follows:

−∂‖Ax(t)− b‖22/2
∂z(t)

= −AH(Az(t)− b). (6)

Third, by using the above negative gradient, we can construct the following
fully complex-valued GNN model for online solution of the complex-valued linear
equation system (1):

ż(t) = −γAH(Az(t)− b), (7)

where design parameter γ > 0 is used to scale the convergence rate of the fully
complex-valued GNN model, and complex state vector z(t) ∈ C

n, starting from
initial state z(0) ∈ C

n, corresponds to the theoretical solution z∗] ∈ C
n of (1).

2.1 Convergence Analysis

It is worth pointing out that convergence performance is of primary importance
for a neural-network model to be successfully used [16,17,18,19,20]. Thus, in this
subsection, we investigate the convergence performance of the fully complex-
valued GNN model (7), which is presented through the following theorem.

Theorem 1. Consider the complex-valued system of linear equation (1). Start-
ing from any initial state z(0) ∈ C

n, complex state solution z(t) of the fully
complex-valued GNN model (7) converges exponentially to the theoretical solu-
tion z∗ of (1). Besides, the exponential convergence rate is the product of the
minimum eigenvalue α of AHA and the value of γ.

Proof: Let z̃(t) = z(t) − z∗ denote the difference between the complex state
solution z(t) generated by the fully complex-valued GNN model (7) and the
theoretical solution z∗ of linear equation system (1). Then, we have

z(t) = z̃(t) + z∗ ∈ C
n×n and ż(t) = ˙̃z(t) ∈ C

n×n.
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Substituting the above two equations to (7); and in view of equation Az∗−b = 0,
we further obtain:

˙̃z(t) = −γAHAz̃(t). (8)

Thus, we can define a Lyapunov function candidate v(t) as below:

v(t) = ‖Az̃(t)‖22/2 = (Az̃(t))H(Az̃(t))/2 � 0.

Obviously, such a Lyapunov function is positive definite, because v(t) > 0 for
any z̃(t) �= 0, and v(t) = 0 only for z̃(t) = 0.

In addition, its time derivative can be derived as below:

v̇(t) =
dv

dt
= (Az̃(t))H(A ˙̃z(t)) = −γ‖AHAz̃(t)‖22 � 0, (9)

which guarantees the final negative-definiteness of v̇(t). In other words, v̇(t) < 0
for any z̃(t) �= 0, and v̇(t) = 0 only for z̃(t) = 0. Besides, we also have v(t) → +∞,
when ‖z̃‖ → +∞. According to Lyapunov theory [12,13,14], complex vector z̃
globally asymptotically converges to zero. On the other hand, due to z̃(t) =
z(t) − z∗, we have the following equivalent result: complex state vector z(t) is
globally asymptotically convergent to the theoretical solution z∗.

Furthermore, given α > 0 as the minimum eigenvalue of AHA, from the above
equation, we can obtain:

v̇(t) = −γ‖AHAz̃(t)‖22
= −γ(Az̃(t))HAAHAz̃(t)

� −αγ(Az̃(t))HAz̃(t)

= −αγ‖Az̃(t)‖22
= −2αγv(t).

(10)

In view of equation (10), we can further obtain its analytic solution:

v(t) � v(0) exp(−2αγt).

Moreover, v(t) = (Az̃(t))HAz̃(t)/2 � αz̃(t)Hz̃(t)/2 = α‖z̃(t)‖22/2, and v(0) =
‖Az̃(0)‖22/2 � ‖A‖22‖z̃(0)‖22/2. Therefore,

α‖z̃(t)‖22/2 � v(t) � v(0) exp(−2αγt),

which can be further simplified as

‖z̃(t)‖2 = ‖z(t)− z∗‖2 � ‖A‖2‖z̃(0)‖2
√
α/2

exp(−αγt).

Obviously, as t → ∞, z(t) → z∗ exponentially with rate αγ, which implies that,
starting from any randomly-generated initial complex state matrix z(0), complex
state matrix z(t) of the fully complex-valued GNN model (7) converges globally
and exponentially to the theoretical solution z∗ of (1) with rate αγ > 0. The
proof is thus complete. �
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Fig. 1. Transient behavior of z(t) synthesized by the fully complex-valued GNN model
(7) starting with a randomly-generated initial state.

3 Illustrative Verification

In the above section, the fully complex-valued GNN model (7) has been pre-
sented for computing online complex-valued linear system (1). In this section,
one illustrative example is presented and the corresponding computer-simulation
results are provided for substantiating the efficacy of the fully complex-valued
GNN model (7).

Without loss of generality, let us consider the following complex-valued Van-
dermonde matrix:

A =

⎡

⎢
⎢
⎣

−0.7597 + 0.6503j −0.8391− 0.5440j 0.2837− 0.9589j 1.0000
0.7597 + 0.6503j −0.8391 + 0.5440j −0.2837− 0.9589j 1.0000
0.7597− 0.6503j −0.8391− 0.5440j −0.2837+ 0.9589j 1.0000

0− 1.0000j −1.0000 0 + 1.0000j 1.0000

⎤

⎥
⎥
⎦ .

and a randomly-generated vector:

b =
[
1.0000, 0.2837 + 0.9589j, 0.2837− 0.9589j, 0

]T
.
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Fig. 2. Transient behavior of the residual error ‖Az(t) − b‖2 synthesized by the fully
complex-valued GNN model (7) with γ = 20 and γ = 200.

To verify the effectiveness of the fully complex-valued GNN model (7), the
theoretical solution z∗ of the above complex-valued linear equation system is
directly given out below:

z∗ =
[−0.4683− 0.2545j, 1.2425+ 0.3239j,−0.6126+ 0.0112j, 1.5082+ 0.4683j

]

First, starting from a randomly-generated initial complex vector z(0) ∈ C
4,

the fully complex-valued GNN model (7) is applied to computing the above
complex-valued linear system under the conditions of design parameter γ = 20.
The computing results in MATLAB are shown in Figs. 1 and 2. From Fig. 1, we
can see that each element of complex vector z(t) ∈ C

4 synthesized by the fully
complex-valued GNN model (7) converges to a certain numerical value after a
short time. As compared with the theoretical solution given in the above, these
numerical values are exactly the theoretical solutions of complex-valued linear
system (1). Simulative results demonstrate that the fully complex-valued GNN
model (7) is effective on solving the complex-valued systems of linear equations.

Besides, Fig. 2(a) gives the corresponding transient behavior of the residual
error ‖Az(t) − b‖2 under the same conditions (i.e., the same initial value and
the same design parameter γ). As observed from Fig. 2(a), the residual error
‖Az(t)− b‖2 of the above complex-valued linear system synthesized by the fully
complex-valued GNN model (7) converges to zero after about 1.2 s. This result
also means that the solution of the fully complex-valued GNN model (7) can fit
with the theoretical solution of the above complex-valued linear system very well.
It is worth pointing out that, as shown in Fig. 2(b), the convergence speed of the
fully complex-valued GNN model (7) can be accelerated with time. Specifically,
the convergence time of the fully complex-valued GNN model (7) is shortened
from 1.2 s to 0.12 s when the value of design parameter γ increases from 20 to
200. In summary, we can draw a conclusion from the above simulation results
that the fully complex-valued GNN model (7) is effective on computing online
complex-valued systems of linear equations.
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4 Conclusions

In this paper, a fully complex-valued gradient neural network (GNN) is pre-
sented and investigated for computing online complex-valued systems of linear
equations in the complex domain. The fully complex-valued GNN model needs
not convert the complex-valued linear system into the double-complexity real-
valued linear system, and can solves directly complex-valued systems of linear
equations. In addition, both theoretical discussions and simulative results sub-
stantiate the effectiveness of the fully complex-valued GNN model for computing
online the complex-valued systems of linear equations in the complex domain.
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Abstract. Sparse representation in sensory cortex has been well verified and its 
capability of yielding response properties of single neurons is also 
demonstrated. In order to improve sparse representation to be more neurally 
plausible, we reconsider several response properties of single neurons, 
especially the cross orientation suppression and surround suppression. A new 
sparse representation model using intracellular and extracellular neural 
mechanisms is presented. Simulation results of the presented model explain 
physiological observations very well. 

Keywords: Sparse representation, cross orientation suppression, surround 
suppression, membrane current. 

1 Introduction 

Sparse representation by neuronal populations in primary visual cortex has been 
heavily investigated during the last decades. Recently, many response properties of 
single neurons are reported to be well simulated by sparse representation [1-3], giving 
insight into the unified understanding of the response properties of both neuronal 
populations and single neurons. For further study in this area, some response 
properties of single neurons need to be reconsidered, especially those related to lateral 
inhibition. The reason is that the functional importance of lateral inhibition in neural 
processing has been well documented in previous studies [4, 5]. In this paper, two 
well-known phenomena which are closely related to lateral inhibition, the cross 
orientation suppression and surround suppression, are taken into account. 

In cross orientation suppression, simple cell responses to the preferred orientation 
are suppressed by a superimposed orthogonal stimulus. It was thought that lateral 
inhibition from neurons preferring different orientations is responsible for the 
occurrence of this phenomenon. But measurements with intracellular recordings show 
that synaptic inhibition is primarily tuned to similar orientations [6]. In fact, the 
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orthogonal stimulus decreases instead of increasing the cortical inhibition [7]. Cross 
orientation suppression occurs very fast with a latency almost identical to that of the 
feedforward excitation [8], indicating that cross orientation suppression may originate 
in the excitatory input. A purely feedforward model with the contrast saturation and 
rectification in LGN neuron responses has revealed to be able to account for a lot of 
properties of cross orientation suppression [9, 10]. But this model predicts the loss of 
cross orientation suppression at low contrasts, which is in contrast to the case of 
neuronal populations [11]. 

Another phenomenon relating to cortical inhibition is surround suppression where the 
presence of stimuli in the non-classical receptive field of cortical neurons can suppress 
their spiking responses. Different from cross orientation suppression, the latency of 
surround suppression is much longer than the onset of the center response [8]. This 
cannot be explained by subcortical mechanisms. Cortical inhibition increased by the 
surround stimulus provides a possible explanation for this effect. But intracellular 
recordings observe a similar decrease in both synaptic excitation and inhibition in 
surround suppression [12] as that in cross orientation suppression. But in another 
research, increasing the stimulus width did increase the membrane potential [13]. 

In summary, we notice that cortical inhibition is found to be reduced with cortical 
excitation in both cross orientation and surround suppression by intracellular studies. 
Moreover, the conflicting observations between intracellular and extracellular 
recordings have been reported on orientation selectivity besides surround suppression. 
Intracellular recordings found that excitation and inhibition have similar tuning for 
orientation [6], but extracellular recordings suggest that intracortical inhibition is 
more broadly tuned than excitation [14]. One possible explanation for these paradoxes 
could be that intracellular and extracellular mechanisms perform different roles in 
neural information processing. Based on these analyses, this paper presents our new 
sparse representation model constructed with intracellular and extracellular 
mechanisms. 

2 The Sparse Representation Model 

As pointed out by Olshausen and Field [15], there were only two global objectives 
need to be optimized for sparse representation, that the representation is sparse and 
that the representation error is small. Sparse representation using l0-norm constraint 
can be expressed as 

( ){ }2

0
minE x Wy yα= − + ,                (1) 

where x is the input signal, W is a matrix whose ith column is the basis vector wi, y is 
a vector of coefficients, and α  is the trade-off. There are plenty of methods have 
been proposed for solving this problem. In iterative thresholding algorithms (ITA), 
the input vector is approximated iteratively while the representation is made sparser  
by a thresholding mechanism at each iteration step [16-18]. The main calculation step 
in such methods is typical, which is given as follows: 

 ( )( 1) ( ) ( )T Ty n y n W x W Wy nμ+ = + − .  (2) 
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where μ  is the step length. The main purpose of this equation is to minimize the 

representation error. This step together with a thresholding process, which cuts off the 
small outputs and makes the representation sparser, can yield sparse representation of 
the input signal. 

The implementation of the Eq. (2) in neural systems could be realized by 
extracellular mechanisms of cortical excitation and inhibition. That is, feedforward 

excitation TW x  is suppressed by the cortical inhibition ( )TW Wy n , where TW W  

is the lateral inhibitory coefficient matrix. These extra excitation and inhibition are 
integrated to establish the extra environment of cortical neurons. Let v denote the 
integral of feedforward excitation and lateral inhibition (without the self-inhibition) of 
a cortical neuron. Thus 

 ( ) ( )T Tv W x W W I y n= − − .  (3) 

As pointed out above, this external integration is responsible for the minimization of 
the representation error.  

We suppose that the external integration v will elicit excitatory membrane current 

I + , and inhibitory membrane current I − . Both of these membrane currents, I +  

and I − , are defined to be positive. Then the internal state u I I+ −= −  is a function 

of the external integration: ( )u f v= . As for the relationship between u and v, we 

introduce the generalized tanh-function as follows: when the external integration v is 
zero, the excitatory and inhibitory membrane currents are balanced, that is, 

0I I I+ −= =  where 0I  is a constant satisfying 00 1I< < ; while when 0v ≠ , 

the membrane currents are calculated by 
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,  (4) 

where 0I  is named the zero state parameter and ( )0 01 I Iα = − . Especially, when 

0 1/ 2I = , we have 1α =  and tanh( )u I I v+ −= − = . Thus, the generalized 

tanh-function ( )u f v=  is given by 

 ( )( ) gtanh , 0
v v

v v v v

e e
f v v

e e e e
α

α α

−

− −= = − >
+ +

.  (5) 

This function is a sigmoid function (see Fig. 1a). The relationship between v and 

, ,u I I+ −  is shown in Fig. 1b. The excitatory membrane current I +  is positively 

related to the external integration v while the inhibitory membrane current I −  is just 
the opposite.  



458 J. Liu and C. Zeng 

 
Fig 1. Sketch showing the relationship between the internal state u, the excitatory membrane 

current I +
, the inhibitory membrane current I −

 and the external integration v. 

We assume that the spike response y of cortical neurons is modulated to match the 
internal state. The acceleration of this modulation is proportional to the difference 
between the internal state and the spike response. In summarize, the presented sparse 
representation model using intracellular and extracellular mechanisms, named 
Intracellular and Extracellular Mechanisms based Sparse Representation (IEM-SR), is 
given as follows  

 

( )
( )=gtanh

( ), 0

T Tv W x W W I y

u I I v

y u y uμ

+ −

⎧ = − −
⎪⎪ = −⎨
⎪Δ = − >⎪⎩

.  (6) 

When this process converges, y=u=gtan(v). In the special case where 1α =  and the 

magnitude of v is small enough, we have gtanh( )u v v= ≈ . The schematic diagram 

of the presented model is shown in Fig. 2. 

Feedforward excitation

Lateral 

inhibition

I+ I-

Lateral 

inhibition

Neuron

y

 
Fig. 2. Schematic diagram of the neuron response model. External integration of feedforward 
excitationand lateral inhibition elicits membrane currents. The excitatory membrane current 

I +
 and the inhibitory membrane current I −

 set up the internal state of the neuron. The spike 
response y is modulated to match the internal state. 
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3 Experiments 

We validate the IEM-SR model by simulating several well-known response properties 
of single neurons, including cross orientation suppression within CRF, and surround 
suppression from nCRF, and also the sharp and contrast invariant orientation tuning. 
The visual stimuli and Gabor-like connection weights are generated using the same 
code published by Spratling [19]. A family of 32 Gabor functions covering 8 

orientations and 4 phases is used as the connection weights { }iw , which are 

normalized to unit length. The DoG filtered visual stimulus x is subject to a saturating 
nonlinearity: 
 ' tanh(2 )x xπ= .  (7) 

Both the visual stimuli { }'x  and the Gabor functions are then processed to be non-

negative to generate x and W.  

During the simulation, we found the zero state parameter 0I  has a close 

relationship with the neuronal activity level. For orientation-tuning experiments, we 

assume 0I  is proportional to the feedforward excitation. That is, 0I  is given by 

iw xλ  where λ  is a constant.  

 
Fig. 3. Orientation tunings of feedforward excitation, integration and spike response. The spike 
response matches the integration very well when the latter is positive. Feedforward excitation is 
sensitive to a wide range of stimuli and exhibits less orientation selectivity than the spike 
response. 

A comparison between orientation tunings of feedforward excitation, integration 
and spike response of an activated output neuron is shown in the Fig. 3. As we see, 
the neuron will respond to the full range of orientations and have a much broader 
tuning width without lateral inhibition. This is consistent with that the tuning width of 
cortical excitation is broader than that of the spike response [20]. The sharp 
orientation selectivity of the spike responses can be reduced by blocking cortical 
inhibition [21].  
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Fig. 4. Illustration of the contrast invariance of orientation selectivity. The tuning with remains 
unchanged with increasing stimulus contrast. 

 

Fig. 5. Illustration of cross orientation suppression using stimuli with different orientation and 
contrast. From top to bottom and left to right, the contrasts of the two components of the 
superimposed stimulus are: 1, 1; 0.1, 0.1; 1, 0.5; 1, 0.2. The suppression effect is still 
observable at low contrasts. 

It has been suggested that the orientation selectivity of simple cells originates 
purely from the excitatory convergence of LGN afferents. According to this theory, 
the tuning width of orientation selectivity should be widened with increasing contrast 
of stimuli, which on the contrary was not observed in experiments [22]. This 
phenomenon is known as the contrast invariance of orientation selectivity. The 
simulation result given by the presented model is shown in Fig. 4. 
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Cross orientation suppression was thought to be responsible for contrast invariance 
of orientation selectivity [14, 23]. But intracellular recording observations rule out 
this hypothesis. Although a purely feedforward model can account for many response 
properties of cross orientation suppression, it failed to predict the suppression at low 
contrasts [11]. In fact, non-negative data processing of LGN input is enough to 
explain this disagreement. The simulating results are shown in Fig. 5. 

 
Fig. 6. Contrast dependent size tuning of surround suppression. The optimal size of the tuning 
curve is the one that elicits the peak response.The optimal sizes at low contrasts are larger than 
those at high contrasts. 

To simulate the contrast dependent size tuning of surround suppression [24], only 
the Gabor function with the same orientation as the center stimulus is used for the 
simplicity of computation. This is reasonable because surround suppression is 
narrowly tuned to the preferred orientation. As shown in Fig. 6, the optimal stimulus 
sizes at high contrasts are smaller than those at low contrasts.  
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Abstract. Some load balancing algorithms in heterogeneous wireless networks 
can not consider the problems arising from the admission control of new service 
and service transfer of heavy load networks. To solve these problems, we 
propose a load balancing algorithm based on neural networks. This algorithm is 
used to conduct prediction through network load rate and achieve the network 
admission of new service by combining an admission control optimization 
algorithm. Moreover, by analyzing network performance, some services of 
heavy load network are transferred to overlay light load network. The 
simulation results indicate that our algorithm can well realize the load balancing 
of heterogeneous wireless network and provide high resource utilization. 

Keywords: Heterogeneous wireless network, Load balancing, Admission 
control, Blocking probability. 

1 Introduction 

With the rapid development of mobile communication technology, a large amount of 
wireless networks are available. Although these networks provide varying types of 
communication ways and network access manners, many information isolated islands 
are likely to be produced if they fail to effectively realize interconnection and 
intercommunication. Therefore they cannot offer the communication services of 
ensuring end-to-end QoS, which greatly reduce integrate utility of networks and 
customersÊ service experiences. In this context, heterogeneous integrated wireless 
networks have been the developing trend of communication network [1-2]. For the 
integrated wireless networks have to fully use the complementarity between networks, 
and efficiently utilize limited wireless network resources, wireless resource 
management (RSM) has been a key research. As a key technology of RSM, load 
balancing algorithms are proposed, which can effectively promote resources 
utilization, increase network volume, and reduce network block probability [3-5]. 

In this paper, an IASA load balancing mechanism to maximize the joint utility of 
integrated heterogeneous networks is proposed, which performs load status 
monitoring and evaluation for access gateways and heterogeneous networks [6]. 
According to the characteristics of heterogeneous networks and user demand for 



464 X. Song et al. 

 

seamlessly connection, an adaptive vertical handoff algorithm based on compensation 
time is proposed [7] Jiao et al. propose a quality of service (QoS) aware load-
balancing algorithm for efficient network resources dispatching in heterogeneous 
wireless networks. The proposed algorithm based on the characteristics of different 
wireless services defines a utility function for each terminal to represent its QoS 
experience and a utility function for each radio access network to represent its load 
level [8]. An optimized algorithm based on vertical handoff (VHO) prediction 
approach in heterogeneous wireless networks is proposed, which defines objective 
function considering received signal strength, user equipment velocity, load and cost 
per user bandwidth [9]. An adaptive threshold load balancing scheme provides a two-
sage load balancing strategy. It makes call and assign to UMTS and WLAN in a 
proper probability based on assigning services and dynamic network changes [10]. 

In this paper, the load balancing algorithm is presented, which can rationally 
arrange service admission into candidate network by predicating the load rate of each 
network and use optimization control strategy of service admission. To decrease 
vertical handoff times and improve the load balancing level of the system, our 
algorithm uses an assisted dynamic load transfer (ADLT) algorithm to set reasonable 
load transfer amount. The simulation results indicate the algorithm can significantly 
improve the system performances. 

2 Load Balancing Algorithm 

2.1 Load Predication   

We use the radial basis function neural network (RBFNN) to obtain load predication. 

Data preprocessing is conducted to make up the drawback of RBFNN in convergence 

speed. Then, RBFNN is used to predicate the load rate of each network.  

The RBFNN is a special three-layered feed-forward network, which consists of the 

input layer, the output layer, and the hidden layer as shown in Fig. 1. In the hidden 

layer, the nonlinear functions that perform this transformation are usually taken to be 

Gaussian functions of appropriately chosen means and variances.  

 

 

 

 

 

 

 

 
 Fig. 1. Architecture of a RBFNN 
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The weights from the hidden layer to the output layer are identified by following a 

supervised learning procedure. Assume that the input layer, the hidden layer, and the 

output layer have , ,N L M nodes respectively. The network output vector is given by 
2

2

( )

,

1

exp ( 1, , )l

x c lL

m l m

l

m Mσω
−

=

= =∑u                     (1) 

where 1 2[ , , , ]Nx x x=x  is the input vector to the network, ( )c l and 2
lσ  are mean 

and standard deviation of the l  Gaussian function, ,{ , 1, , ; 1, , }l m l L m Mω = =  is 

the weight from the m  node in the output layer to the l  node in the hidden layer. 

Training samples are divided into L  classes by K  learning algorithm, ( )c l  is the 

l  clustering center vector, and 2
lσ  is the average distance to the first few nearest 

neighbors of the means of the other Gaussian functions. 

In mutual information based data selection algorithm (MIDS), a minimum 

redundancy- maximum relevance (MRMR) principle is used in the selection of 

variables. By using the principle, each variable selected can carry more high value 

information which is not contained in other variables as less as possibly. Moreover, 

the condition of output maximum relevance can be satisfied. RBFNN is trained by 

taking the variables selected via MIDS as input data. Then, trained data can be further 

used to predict load rate of wireless networks. 

2.2 The Optimization Model of Admission Control 

Assuming that there are m  candidate admission networks, the residual bandwidth 

resource for each candidate network denotes jC . ={1, 2,..., }j m . If there are n  new 

services to be accessed, the bandwidth resource for each new service is ib , 

 ={1,2,..., }i n . While the objective of the admission control of new service is to 

reasonably allocate n  services into m  candidate admission network. The 

optimization of admission control is [11]: 
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where ( )loadR j  is the load rate of each candidate admission network and obtained by 

using load predication, while ijx  is the case when thi  service is accessed into thj  

wireless network jr . When service is  is accessed into jr , we have 1ijx = , 

otherwise, 0ijx = . The solution to equation (2) is n m×  0/1 matrix. 

2.3 The Solution Based on Genetic Algorithm 

(1) Genetic coding 

In this research, the chromosome coding used in the optimization model of admission 

control is binary encoding. The solution of the model is encoded into a binary 

sequence. By spatially converting the solution space X  in equation (2), we obtain 

[ ]11 1 12 2 1, , , , , , , ,n n m nmx x x x x x′ =X                (3) 

(2) Fitness function 

When encoding based on above steps, the adaptability function of the optimization 

model for admission control is defined  

( ) ( )( ) ( ) ( ) ( )
1 1 1

n m n

i j i
i j i

F G f S R T
= = =

= + + +∑ ∑ ∑X X X X X         (4) 

where ( )( )G f X  is objective function of the model 

( )( ) ( )
1

1
G f

fξ
=

+
X

X
                                (5) 

( )iS X  is a penalty function when thi  service iS  is simultaneously accessed into 

multiple candidate networks and presented as 
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( )jR X  is a penalty function when the resources which are occupied by the new 

service loaded are not satisfied the certain constraint  

( ) 1 1

1
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( )iT X  is a penalty function when new service is blocked.  
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(3) Genetic operation 

Basic genetic algorithm consists of three operators: selection, crossover and mutation. 

The strategies for the operators are illustrated as follows. 

1) Selection 

The selection strategy is based on the applicability proportion. The probability that 

individual i  is selected  

       

1

i
i N

i
i

F
p

F
=

=
∑

                                      (9) 

where iF  applicability value of individual i , and N  is individual number of 

population. 

2) Crossover 

A consistent crossover method with probability of Pcro is used. By setting screen 

series, it is determined that chromosome of substring individual needs to inherit the 

chromosomes corresponding to the individuals in two main strings.  The screen 

sequence is a 0/1 sequence which has an equivalent length to individual coding series 

and can be generated randomly.  

3) Mutation 

In this research, site mutation is utilized. The crossover probability Pcro is in the range 

from 0.65 to 0.85. The mutation probability Pmut is 0.01~0.2. The two probabilities 

usually accelerate the convergence speed by using ways such as dynamic value and 

stepwise decrease. 

Through steps above-mentioned, the optimal matrix obtained is the solution X  of 

the optimization model for admission networks in this research. By solving xij in the 

matrix, the relationship of new service and network admission can be acquired.  

2.4 Assisted Dynamic Load Transfer (ADLT) Based on the Utility Function 

According to load characteristics, iB  is total amount of network ir . For the load 

rate of
 ir , it is assumed that ir  is loaded thK  RT services and L  NRT services, 

and the bandwidth resources occupied by the thk  RT services and thl  NRT 

services are ( )RTB k  and ( )NRTB l  respectively. The load rate of ir  is therefore 

expressed as 

( )
( ) ( )

1 1
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In addition to ensuring that dynamic blocking probability of service is in an 

allowable range, the service quality degree of RT service endowed by ir : ( )RTG i  is 

   ( )
lg

,
lg

1,

i
i Max

MaxRT

i Max

P
P P

PG i

P P

⎧ >⎪= ⎨
⎪ ≤⎩

                         (11) 

This research merges the requirements of network load rate and ensuring degree of 

QoS in RT service by using a geometric mean method. Moreover, the utility function 

of ir  in RT service is defined  

  ( ) ( )( ) ( )1RT load RTU i R i G i= −                           (12) 

Similarly, the utility function of ir  in NRT service is defined  

( ) ( )( ) ( )1NRT load NRTU i R i G i= −                            (13) 

where ( )NRTG i  is ensuring degree of QoS in NRT service.  

In order to fulfill consistence analysis, utility functions of different types of 

services are converged. Firstly, the functions of ( )RTU i  and ( )NRTU i  are 

standardized to obtain ( )'
RTU i  and ( )'

NRTU i .  

The triangle module operator is applied to enhance the characteristics of similar 

information and harmonicity of contradiction information. Through converging 

varying utility functions, comprehensive utility function of network ( )U i  is obtained 

[12] 

( ) ( ) ( )
( )( ) ( )( )1 1 1

RT NRT

RT NRT

U i U i
U i

U i U i

′ ′∗
=

′ ′− − −
                         (14) 

By analysis of comprehensive utility level of each network in heterogeneous 

integrated networks, the highest comprehensive performance level ir  and lowest 

comprehensive performance level jr  are obtained. 

The load amount ji∇  which is transferred from heavy load network to light load 

network is presented as: 

( )( ) ( )( )( )min ,ji H load i load H jR i C R j Cη β η β∇ = − + − +            (15) 

where Hη is transfer trigger threshold, and Mη is reference threshold. 
In load transfer process, the proposed algorithm uses aided load transfer factor β  to 

decrease the load rate of heavy load network to a reasonable range. Thus, the 
probability of service handoff can be reduced through rationally control of load 
transfer amount. In this paper, the operated load transfer service is marked. In 
following process, the services without marks are given first priority in selection. 
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3 Simulation Results 

To validate the performance of the proposed algorithm, the model is constructed and 

overlaid by four networks: WCDMA, TD-LTE, WiMAX and McWiLL. The load rate 

( )loadR j  of each network at initial status is predicted by using MIDS algorithm. New 

services arrive randomly based on Poisson distribution. The other parameters are shown 

in Table 1.  

Table 1. Setting of simulating parameters 

Items Parameters 

Network number M 10 

Network coverage way Overlay 

Network capacity (Mbps) 50-100 

Predicted network load rate 0.01-1.00 

Bandwidth required by RT service (Kbps) 64 

Bandwidth required by NRT service (Kbps) 5 

Arrival rate of RT service (call/s) 0.1-1.0 

Arrival rate of NRT service  1-10 

Average service time 90-110 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
The average blocking probabilities using three algorithms with the increasing 

average arrival rate of RT service are shown in Fig 2. With the increase of average 
arrival rate of RT service, the algorithm without load balancing techniques, leads to 
the increase of the blocking probability. By using the proposed algorithm, the 
blocking probability is lowest. With the increase of arrival rate, the blocking 
probability decreases more apparently.  

Fig. 2. Average blocking probability of RT service 
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The average transmission time of NRT service is demonstrated in Fig 3. As the 
average arrival rate of NRT service increases, the average transmission time of NRT 
service increases. In contrast, the average transmission time for NRT service using the 
proposed algorithm is obviously less than that of MLB. This results show that the 
admission control by using load prediction can acquire better performance. 

 
 

 
 
 
 
 

 
 
 
 

 

 

 

 
The proposed algorithm is compared with existing MLB [13] to verify its 

performance. The network model simulated consists of 20N =  overlaid networks 
from three types of networks: WiMax, WLAN and LTE. Load prediction algorithm is 
used as the admission control strategy of new service. Average service time of the 
service distributes subjecting to the index μ.The resources occupied by single RT 
service and NRT service are shown in Table 2.  

Table 2. Setting of service parameters 

Items Parameters 

Bandwidth required by RT  

service (Kbps) 64 

Bandwidth required by NRT 

service (Kbps) 5 

Arrival rate of RT service (call/s) 0.1-1.0 

Arrival rate of NRT  

service (call/s) 1-10 

Average service time of service(s) 90-110 

 
The resources occupied by single RT service and NRT service are shown in  

Table 2. The average blocking probabilities of three algorithms are shown in Fig 4. In 
the case of small amount of services, each network is endowed with sufficient 

Fig. 3. Average transfer time of NRT service
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network resources, which showing little block. In this context, the average blocking 
probability of service approximates to 0. With increasing services, available network 
resources decrease gradually, which leading to rising blocking probability of new 
service. As the service amount of MLB algorithm is more than 80, the average 
blocking probability increases sharply. In our algorithm, to avoid the occurrence of 
frequent handoff of service, this research uses load prediction method to effectively 
alleviate the status of heavy load network through accurate analysis of the 
comprehensive performance of target networks and aided dynamic load transfer. The 
services transferred are marked. This can well decrease the block resulting from 
frequent handoff of service, ensure QoS of handoff, and greatly reduce the average 
blocking probability.  

 

 

 

 

 

 

 

 

 

 

 

4 Conclusions 

PTS is an efficient method to reduce the PAPR of OFDM system, but its high 
computational complexity is the main obstacle to application. In this paper, we 
presented a ACA-SA method to search the optimal set of phase factors of all 
subcarriers for the PTS technique in order to obtain good tradeoff between 
computational complexity and PAPR performance for OFDM signals. As compared 
to the conventional PTS and IPTS scheme, the simulation results showed that the 
performance of the proposed method can not only achieved relative good PAPR 
reduction but also enjoyed complexity advantages. 
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Abstract. In this paper, kinds of network applications are first ana-
lyzed, and some simple and effective features from the package headers
of network flows are then generated by using the method of time window.
What is more, three kinds of machine learning algorithms, which are sup-
port vector machine (SVM), back propagation (BP) neural network and
BP neural network optimized by particle swarm optimization (PSO), are
developed respectively for training and identification of network traffic.
The experimental results show that traffic identification based on SVM
can not only quickly generate classifier model, but also reach the accu-
racy of more than 98% under the condition of small sample. Moreover,
the method proposed by this paper can measure and identify Internet
traffic at any time and meet the needs of identifying real-time multi-
application.

Keywords: network traffic identification, machine learning, SVM, BP
neural network, PSO.

1 Introduction

In recent years, various peer to peer network (P2P) applications are emerging
along with the developing and maturing of P2P technology such as BT download,
thunderbolt and Emule etc. These applications result in insufficient bandwidth,
and network congestion, which degraded seriously Quality of Experience (QoE)
and Quality of Service (QoS) of the networks. The identification of network
traffic plays an important role for both network operators and service providers
to improve QoS and QoE. So, the research of the network traffic identification
has an attract attention in both the academic and application fields. The key
problem in Network Traffic Identification is how to rapidly process large amounts
of data and how to correctly identify a variety of network application.

There exist four categories of methods for network traffic identification, i.e.,
port mapping based, deep packet inspection based, flow recognition behavior

� This work was supported by the Science and Technology Plan of Suzhou
(SYG201443) and the Research Fund for the Doctoral Program of Higher Education
(20130131110029).

c© Springer International Publishing Switzerland 2015
X. Hu et al. (Eds.): ISNN 2015, LNCS 9377, pp. 473–480, 2015.
DOI: 10.1007/978-3-319-25393-0_52

qiaomh1@chinaunicom.cn
xiaohu2000777@163.com


474 M. Qiao et al.

based and machine learning based method [1]. (1) The port mapping based traf-
fic identification methods are simple and efficient, which are capable of real-time
identification of network applications. However, with a large number of random
ports, the network address translation (NAT) and widely using of agent tech-
nology [2], this method is rapid failed [3]. (2) The deep packet inspection based
traffic identification methods are easy to implement [4,5], which the recognition
accuracy rate is much higher than the port mapping based method. (3) The
behavior characteristics based traffic identification is applied by observing the
traffic how to connect and interact in the network protocol layer [6,7]. (4) Traffic
identification methods by machine learning apply data mine ability of machine
learning algorithms in [8], which extract potential, effective and implied features
from huge and the complex data of network flows. As in ref. [9], 248 traffic
features were put forward by Andrew Moore cooperated with others.

In this paper, the time window method proposed is applied to acquire concise
and effective features from package head of the network flow data for various ap-
plication types in the network. Three machine learning algorithms, supporting
vector machine (SVM), back propagation (BP) neural network and the particle
swarm optimization (PSO) combined with BP neural network are provided to
train and recognize network traffic respectively. The comparison of experimen-
tal results show that, traffic identification method based on SVM can not only
quickly model to construct classifiers, but also can achieve the recognition rate
above 98% in the case of small scale sample.

2 Types of Network Traffic Feature Analysis and
Identification Procedure Design

Without loss of generality for the traffic identification, we focus on 6 kinds of
network applications which have larger bandwidth requirements. Table 1 shows
the 6 kinds of network applications needed to be identified and the corresponding
test cases.

Table 1. Network application types

No. Types of network applications Test cases

1 P2P Multimedia or Download Storm player, Xunlei Thunder

2 Non-P2P Multimedia or Download YouTubeVideo, Local Download

3 WWW(Web Browsing) Sogou, IE Browsing

4 Online Games(Client) Demi-Gods and Semi-Devils (online clientgame)

5 Video Calling/Conference QQ Video

6 File Sharing(LAN) QQ file transmitting and sharing

2.1 The Features of Network Traffic

(1) Time Window Method
Define the time slot as 1 second. The real time network flow captured in 1 second
is simply counted. We obtain the variation of the network flow within a time
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window τ = n and up to n = 15 seconds. The flow is divided into stability
region and the peak region traffic according to flow mean in the time window.
The detailed description of the time window is in [10]. We can get the basic data
such as number and length of packages in every second of this window. With
that, we can analyze the stability and explosive in the time window τ .

(2) Network Flow Characteristics
With the six kinds of network applications in Table 1, eleven network flow
characteristics[10] are generated and selected from the time window. Those char-
acteristics can be defined as uplink or downlink which is determined by terms of
the source address of the data packet. Assume an intranet as the local, and the
external Internet as the remote. If the source address is the local IP, the data
flow is considered to be uplink, i.e. data is uploaded. On the other side, if the
source address is the remote IP, the data flow is regarded as downlink, and the
data is downloaded.

2.2 Design of Network Traffic Identification Process

According to the application types and features selected from the identification,
the network flow identification scheme based on machine learning can be divided
into two processes, i.e., off-line training and on-line real-time classification. The
designed overall architecture of network traffic identification is shown in Figure 1.

Capture data flow
from network in

real time

Initial statistics of
data flow
information

Algorithm chosen
for sample
trainling

Classifying
and

identifying
feature of
samples

Results

Labeling
category of
applications

Flow sampling, feature
generation and analysis

Machine learning
classification, and
identification

Results of
classification

Machine learning,
online real time
classification

Machine learning,
offline training

Feature
generating

Feature
selection

sampling Feature class
Synchronous

Rules
updatingbound

Model
updating

Fig. 1. The designed overall architecture of network traffic identification

(1) The Off-Line Training
Owing to the heavy computing burden and time consuming of machine learn-
ing, the training process is offline. The detailed steps of offline training show
as following. Firstly, data packet are captured from the network route. Then,
data packets are initially analyzed (e.g., counting numbers of packets, comput-
ing packet, etc.). Thirdly, extracting reasonable and stable sample from a large
number of data obtained. Fourthly, label categories of the application are labeled.
Fifthly, a variety of features of the sample data are generated, and effective and
reasonable features are selected. Finally, the appropriate machine learning algo-
rithm is used to train the eigenvalues of the sample, to generate classification
rules and build the classifier model.
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(2) Real-Time and Online Classifying
Traffic identification is performed online, and data packets are captured through
the time window in real-time. When network application type of flow has been
rapidly identified, the results will be feedbacked. The specific steps of real-time
classification of online are as following: Firstly, capture data packet from the
network route in real time by making use of capture software (such as Libpcap
function library under Linux system). Secondly, analyze the data packet simply
(e.g., numbers and lengths of the packets). Thirdly, synchronize the effective
feature types from training synchronization module selection, and generate the
associated eigenvalues. Fifthly, update the classification rule from the training
module and classification model, classify and identify the eigenvalues of the sam-
ple. Finally, feedback recognition results.

3 Algorithms for Network Traffic Identification

Network traffic identification technologies are developing the classification and
feature extraction algorithms along their development. On the basis of a variety
of network applications, the recognition accuracy, complexity and real-time re-
quirements, we select the three kinds of machine learning algorithm, which are
SVM, BP neural network, BP neural network combined with PSO optimization,
to analyze and identify the network traffic.

3.1 Nonlinear Multiple Value Classification Based on SVM

The main idea of SVM is to establish a classification hyper plane based on
the samples in the region and to maximize the isolation edge between the pos-
itive and negative [11]. The hyper plane is as the decision criterion. Suppose
there are n samples in a space; xi ∈ Rd(i = 1, 2, · · · , n) are d dimensional in-
put vectors;yi ∈ {+1,−1}(i = 1, 2, · · · , n) is expected output. ”+1” and ”-1”
represent results of the two class identifier, respectively.

The problem of SVM classification for two classes can be expressed in an
objective function with constraints as a linear formula (1). The optimal decision
function can be obtained by the formula (2).

min
α

1
2

n∑

i=1

n∑

j=1

yiyjαiαj(xi · xj)−
n∑

i=1

αi

s.t.
n∑

i=1

yiαi = 0,

αi ≥ 0 , i = 1, · · · , n.

(1)

f(x) = sgn{(ω · x) + b} = sgn{
n∑

i=1

αiyi(xi · x) + b} (2)

Where, the weight vector ω is adjustable, b is offset of the hyperplane, and αi

are Lagrange multipliers
For the case of network traffic linear non separable, on one hand, slack vari-

ables may be introduced in the constraint conditions of classification hyper plane;
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on the other hand the nonlinear problem in the original space can be transformed
into a linear problem in high dimensional space through the nonlinear kernel
function, then solve the optimal hyperplane in a higher dimensional space. With
the idea above introducedthe SVM objective function, constraint condition and
the optimal decision functions of nonlinear classification problems for two classes
can be summarized as follows:

min
α

1
2

n∑

i=1

n∑

j=1

yiyjαiαjK(xi,xj)−
n∑

i=1

αi

s.t.
n∑

i=1

yiαi = 0,

0 ≤ αi ≤ C , i = 1, · · · , n.

(3)

f(x) = sgn{
n∑

i=1

αiyiK(xi,x) + b} (4)

Where, C is the penalty parameter, K(xi,xj) is a kernel function. In gener-
ally, radial basis function is chosen as the kernel function. Duality and convex
programming are used for the solution of the optimization problem, and the
detail description can be found in [10].

The classic SVM is a simple two value classifier, which can only identify
two kinds of network application type. However, network traffic identification is
a typical multi-classification problem, so the structure of multiple value SVM
nonlinear classifiers can be established through optimal hyperplane method of
between any of two categories (One-Against-One).

Fig. 2. Traffic identification by 3 layers BP neural networks

3.2 Nonlinear Multiple Flows Classification Based on BP Neural
Network

It has been proved theoretically by Hornik that the BP neural network of three
layers can be adjusted by the number of the hidden layer nodes and connection
weights to approximate any nonlinear function with any precision [12]. Therefore,
BP neural network of three layers has satisfied the network traffic identification
problem of nonlinear multivariate classification.

In Figure 2, the input x = [x1, x2, · · · , xi, · · · , xn−1, xn]
T is feature of net-

work flow, x = [x1, x2, · · · , xi, · · · , xn−1, xn]
T is numerical results for the hidden
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layer. And the output o = [o1, o2, · · · , ok, · · · , ol] is the number of network ap-
plication types. The suitable weight matrix V = [V1,V2, · · · ,Vj , · · · ,Vm] and
W = [W1,W2, · · · ,Wk, · · · ,Wl] are obtained by constantly training samples
with gradient descent and error back propagation algorithm in the BP neural
networks.

The number of hidden layer nodes is obtained by training samples under the
condition of the recognition accuracy. With the number of nodes, a reliable BP
neural network model can be determined.

3.3 Traffic Identification Based on BP Neural Network with PSO
Optimization (BP-PSO)

The adjustment of connecting weights in BP neural network is based on error
gradient. Local optimum is taken for every adjustment. Therefore the decision
that the training process is going to get into the local minima or entering the
global minimum mainly depends on the initial weights of BP neural network.
If the initialization of weights are determined randomly, then it is difficult to
predict the error convergence results of BP network. In this regard, the PSO
algorithm is a stochastic global optimization technique [13,14] which searches
BP neural network weight appropriate initialization, the training process of BP
network can more easily get into the global minimum.The iterative process of
each time is shown in update formula (5) and formula (6). Where, the velocity
Vi and position Xi of itself are updated through individual extremum Pi and
population global extremum Pg.

Vk+1
i = ωVk

i + c1r1(P
k
i −Xk

i ) + c2r2(P
k
g −Xk

i ) (5)

Xk+1
i = Xk

i +Vk+1
i (6)

Where, ω is the inertia weight, k is the particle number; c1 and c2 are training
constant; and r1 and r2 are random number distributions between [0, 1]. In
general, the position and velocity of a particle are set limits to [−Xmax, Xmax]
and [−Vmax, Vmax] in order to prevent particle population searching disordered.
At the same time, this can also prevent the transfer function of the BP neural
network into the saturated zone.

Through the optimizing of the initial weights by PSO algorithm, the BP neural
network in training process can get into the global minimum. So, the BP neural
network based on PSO optimization can accurately identify all kinds of network
applications in the traffic identification.

4 Results and Analysis of Network Traffic Identification

Using the window time method, network flows are sampled in different time seg-
ment when 6 kinds of typical network applications are running stably. 4 groups
of samples are obtained. Each group of samples has 6 kinds of network appli-
cation types and each network application types have 100 samples, so 4 sample
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sets consist of 2400 samples. Respectively 60, 120, 240, 480, 960 and 1920 sam-
ples were randomly selected as the training set, the remain rest corresponding
samples are as a test set.

As usual, the True Positives (TP)[15] as the accurate rate is adopted as the
effectiveness evaluation of network traffic identification methods.

Fig. 3. Identification accuracy TP comparison of SVM, standard BP and BP-PSO

In Figure 3, according to the 6 network applications, three kinds of algorithms,
SVM, BP and BP-PSO, are used respectively for traffic identification. Through
the comparative analysis, the accuracy of TP recognition of three algorithms
will grow with the increase in the number of training samples; both SVM and
BP-PSO are better than that of standard BP, contributed to the high and stable
accuracy, especially the identification accuracy of SVM algorithm in the case of
small sample remains above 98%.

5 Conclusions

The limitations and defects of existing traffic identification methods based on
port mapping, deep packet inspection and behavioral characteristics are ana-
lyzed. Real time Multi-Application Network Traffic Identification method Based
on Machine Learning is proposed. To achieve the requirements of real-time net-
work traffic identification, the method uses time window only from the network
flow data of packet head to get the simple and effective features. The training
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and recognition are performed respectively through SVM, BP neural network
and BP neural network optimized by PSO and machine learning algorithms.
The implementation process is simple for network flow. The characteristics of
network flows can be extracted while the traffic is being identified. Compara-
tive experimental results show that the identify process and results can meet
the requirements of real-time multiple uses. Future work is aimed to improve
constantly the rationality and validity of ”time window” feature extraction for
the unique characteristics of network application, and to make the network flow
identification methods based on SVM more stable and more robust.
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Abstract. Indeed, countermeasures, as well as computer viruses, could
spread in the network. This paper aims to investigate the effect of propa-
gation of countermeasures on viral spread. For the purpose, a new virus-
antivirus spreading model is proposed. The global asymptotic stability of
the virus-free equilibrium is proved when the threshold is below the unity,
and the existence of the viral equilibrium is shown when the threshold
exceeds the unity. The influences of different model parameters on the
threshold are also analyzed. Numerical simulations imply that the prop-
agation of countermeasures contributes to the suppress of viruses, which
is consistent with the fact.

Keywords: computer virus, countermeasures, virus-antivirus spreading
model, equilibrium, global asymptotic stability

1 Introduction

As is known to all, computer virus has brought huge damage to human society.
Thus, it is crucially important to find effective strategies to contain the spread
of viruses. Based on the intriguing analogy between computer viruses and their
biological counterparts, multifarious epidemic models of computer viruses, rang-
ing from conventional models such as SIS models [1,2], SIR models[3,4], SIRS
models [5,6], SLBS models [7,8], SIC models [9,10], to unconventional models
such as delayed models [11,12,13], impulsive models [7,14], stochastic models
[7,15] and the network-based models [16] have been proposed.

To examine the CMC strategy put forward by Chen and Carley [17], Zhu et al
[9] proposed a mixing propagation model of computer viruses and countermea-
sures. The SIC model, however, ignores the marked difference between latent
computers and breaking-out computers. To overcome the defect, this paper pro-
posed an SLBC model (see Figure 1). This model is proved to have a virus-free
equilibrium when the threshold is below the unity and a viral equilibrium when
the threshold exceeds the unity. Numerical simulations imply that the propaga-
tion of countermeasures is conducive to inhibiting the prevalence of computer
viruses.

The rest of the paper is organized as follows. Section 2 elaborates the new
model. Section 3 proves the global stability of the virus-free equilibrium and the
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existence of the viral equilibrium. Numerical simulations are displayed in Section
4. Section 5 summarizes the work.
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Fig. 1. The state transition diagram of the new model.

2 Model Formulation

For the purpose of modeling, the following hypotheses are imposed.

(H1) All external computers are susceptible.
(H2) External computers enter the Internet at constant rate b.
(H3) Internal computers leave the Internet at constant rate μ.
(H4) Every latent computer breaks out with constant probability α.
(H5) Due to possible contacts with latent (resp. breaking-out) computers, at

time t every susceptible computer gets infected with probability β1(L+B).
(H6) Every susceptible, latent or breaking-out computer acquires countermea-

sures with constant probability β2C.
(H7) Due to system reinstallation, every infected computer becomes susceptible

with constant probability γ1.
(H8) Every computer equipped with countermeasures loses immunity with con-

stant probability γ2.

From this collection of hypotheses, one can obtain the following differential
equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ = b− μS + γ1(L+B) + γ2C − β1(L +B)S − β2SC ,

L̇ = β1(L+B)S − γ1L− μL− αL− β2LC ,

Ḃ = αL− γ1B − μB − β2BC ,

Ċ = β2(S + L+B)C − μC − γ2C .

(1)
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where S, L, B represent, at time t, the average numbers of susceptible, latent,
breaking-out computers, respectively, and C represents uninfected computers
that have temporary immunity.

The basic reproduction number, R0, is defined as the average number of sus-
ceptible computers that are infected by a single infected computer during its life
span. From the above model, one can derive the basic reproduction number R0

as

R0 =
β1(N

∗ − C∗)
γ1 + μ+ β2C

∗ .

Let N = S + L +B + C,N∗ = b
μ , C

∗ = N∗ − μ+ γ2
β2

. Then, system (1) can be

written as the following limiting system [18]:
⎧
⎪⎨

⎪⎩

L̇ = −β1(L+B)2 + [β1(N
∗ − C∗)− (γ1 + α+ μ+ β2C

∗)]L
+β1(N

∗ − C∗)B ,

Ḃ = αL− (γ1 + μ)B − β2BC∗ .

(2)

Bellow we mainly consider the existence and global stability of the equilibrium
points in regard to the positively invariant region: Ω = {(L,B) ∈ R2

+ : L+B ≤
N∗} .

3 Theoretical Analysis

In this section, the dynamical properties of system (2) would be studied.

3.1 The Virus-Free Equilibrium

It is obvious that system (2) always has a virus-free equilibrium E0(0, 0), i.e.
L = B = 0. Next, we would show its global stability.

Theorem 1. E0(0, 0) is locally asymptotically stable with respect to Ω when
R0 < 1.

Proof 1. For the linearized system of system (2) at E0, the corresponding Ja-
cobian matrix is

JE0 =

(
k1 − α k1 − k2

α k2

)

,

where

k1 = β1(N
∗ − C∗)− (γ1 + μ+ β2C

∗), k2 = −(γ1 + μ+ β2C
∗) .

The characteristic equation of JE0 is

(λ− k1)[λ− (k2 − α)] = 0 ,

whose roots are
λ1 = k1 , λ2 = k2 − α .

Clearly, all of the roots are negative. The claimed result follows from the Lya-
punov theorem[19].
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Fig. 2. Time plots of S, L, B, C for a common system with three different initial
conditions when R0 < 1.

We are ready to study the global stability of E0.

Theorem 2. E0(0, 0) is globally asymptotically stable with respect to Ω when
R0 < 1.

Proof 2. Define D(L,B) = 1/L. Let

f1(L,B) = −β1(L+B)2+[β1(N
∗−C∗)−(γ1+α+μ+β2C

∗)]L+β1(N
∗−C∗)B ,

f2(L,B) = αL− (γ1 + μ)B − β2BC∗ .

Then

∂(Df1)

∂L
+

∂(Df2)

∂B
= −β1 − β1B(N∗ − C∗ −B)

L2 − γ1 + μ+ β2C
∗

L
< 0 .

By the Bendixson-Dulac criterion [19], system (2) admits no periodic orbit that
lies in the interior of Ω.

Now, consider an arbitrary point (L,B) on ∂Ω. There are three possibilities
which are displayed as follows.

(1) 0 < L < N∗ , B = 0 . Then dB/dt|(L,B) = αL > 0 ,

(2) 0 < B < N∗ , L = 0 . Then dL/dt|(L,B) = β1B(N∗ − C∗ −B) > 0 ,

(3) L + B = N∗ , L �= 0 , B �= 0 . Then d(L + B)/dt|(L,B) = −(β1C
∗ +

β2C
∗+γ1+μ)N∗ < 0 . Taking into account the smoothness of all orbits, system

(2) has no periodic orbit that passes through a point on ∂Ω.
Hence, the claimed result follows from the generalized Poincaré−Bendixson

theorem [19].
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Remark 1. Theorem 2 implies that computer viruses would disappear eventu-
ally. Figure 2 verify the result.

3.2 The Viral Equilibrium

When R0 > 1, it’s easy to verify that system (2) has a unique viral equilibrium
E∗(L∗, B∗), i.e. L∗ +B∗ > 0, where

L∗ =
(R0 − 1)(γ1 + μ+ β2C

∗)2

β1(γ1 + α+ μ+ β2C
∗)

, B∗ =
αL∗

γ1 + μ+ β2C
∗ .

Next, let us consider the local stability of E∗.
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Fig. 3. Time plots of S, L, B, C for a common system with three different initial
conditions when R0 > 1.

Theorem 3. E∗ is locally asymptotically stable with respect to Ω when R0 > 1.

Proof 3. For the linearized system of system (2) at E∗, the corresponding Ja-
cobian matrix is

JE∗ =

(−k1 − α −k1 − k2
α k2

)

,

where

k1 = β1(N
∗ − C∗)− (γ1 + μ+ β2C

∗) , k2 = −(γ1 + μ+ β2C
∗) .

The characteristic equation of JE∗ is

(λ− (−k1))[λ− (k2 − α)] = 0 ,



486 B. Liu and C. Li

whose roots are
λ1 = −k1 , λ2 = k2 − α .

Obviously, all of the roots are negative. The claimed result follows from the Lya-
punov theorem[19].

Remark 2. Figure 3 implies that E∗ is probably globally asymptotically stable
with respect to Ω when R0 > 1.
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Fig. 4. The effect of propagation of countermeasures on viral spread when R0 < 1.

4 Further Discussions

Some numerical simulations are conducted in this section. From Figure 4-5, it
is concluded that the CMC strategy is effective in eradicating viruses. What’s
more, The effects of model parameters on R0 are as follows.

∂(R0)

∂(β1)
> 0 ,

∂(R0)

∂(γ1)
< 0 ,

∂(R0)

∂(β2)
< 0 ,

∂(R0)

∂(b)
< 0 ,

∂(R0)

∂(γ2)
=

μβ1(γ1 + μ+ β2C
∗) + β1(N

∗ − C∗)
(γ1 + μ+ β2C

∗)2
> 0 ,

∂(R0)

∂(μ)
=

β1μ
2(γ1 + μ+ β2C

∗) + bβ1β
2
2(N

∗ − C∗)
β2μ

2(γ1 + μ+ β2C
∗)2

> 0 .

Clearly, R0 is decreasing with γ1, and β2, respectively, and is increasing with
β1. Thus, some effective measures are presented below. (1) Update the antivirus
software timely, (2) Reinstall the operating system when necessary, (3) Do not
click the unknown links.
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Fig. 5. The effect of propagation of countermeasures on viral spread when R0 > 1.

5 Conclusions

A new virus-antivirus spreading model has been proposed in this paper. This
model has a virus-free equilibrium which is globally asymptotically stable when
the threshold is below the unity and a viral equilibrium when the threshold
exceeds the unity. Numerical simulations imply that the propagation of coun-
termeasures conduces to the containment of viruses. On this basis, some useful
advice has been posed.
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Abstract. A huge increase in the number of mobile malware brings a
serious threat to Internet security, as the adoption rate of mobile de-
vice is soaring, especially Android device. A variety of researches have
been developed to defense malware, but the mobile device users contin-
uously suffer private information leak or economic losses from malware.
Recently, a large number of methods have been proposed based on static
or dynamic features analysis combining with machine learning methods,
which are considered effective to detect malware on mobile device. In this
paper, we propose an effective framework to detect malware on Android
device based on feature extraction and neural network calssifier. In this
framework, we take use of static features to represent malware and utilize
extreme learning machine (ELM) algorithm to learn the neural network.
We first extract features from the malware, and then utilize three differ-
ent feature extraction methods including principal component analysis
(PCA), Karhunen-Loève transform (KLT) and independent component
analysis (ICA) to transform the feature matrix into new feature spaces
and generate three new feature matrixes. For each feature matrix, we
construct En base classifiers by using ELM. Finally, we utilize Stacking
method to combine the results. Experimental results suggest that the
proposed framework is effective in detecting malware on Android device.

Keywords: Feature extraction, Android malware detection, ELM, Stack-
ing method.

1 Introduction

Malware torments Internet users persistently, which is one of the major threats
on the Internet. The popularity of smart phones prompt explosive growth of
malware, especially on the Android platform. Malware is short for malicious
software, which is secretly inserted into a system by using the system vulner-
abilities for sensitive information or financial gain. Reported by Lookout [1]
malware grew substantially in the U.S, and malware on android platform have
increased in 2014 by 75% compared with the year 2013.

As the popularity of Android malware has led to enormous security problems,
many researchers and security organizations have dedicated to detecting mal-
ware on Android platform. Machine learning is considered as an effective tool in

c© Springer International Publishing Switzerland 2015
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malware detection. Machine learning methods make use of the features extracted
from the malware to find patterns as well as relations among them. The features
used in machine learning methods are usually extracted by static analysis [2,3]
or dynamic analysis [4,5]. Static analysis takes use of the the source code of the
malware to generate the features, which need not perform an executable file. On
the contrary, dynamic analysis generates the features in the process of perform-
ing the executable file. However, because of the resource constraints, it is not
straight forward to analyze and capture suspicious information on mobile device
[6].

In order improve the detection accuracy and investigate classification prop-
erties of the static features in different feature spaces, we propose a new frame-
work to detect malware on Android platform. In this framework, we first extract
Dalvik instructions from the source code, and then three different feature extrac-
tion methods are utilized to transform the feature to three new feature matrix.
Then, we construct EN base classifier for each feature matrix by ELM. Finally,
ELM is also utilized to combine the results. In summary, our main contributions
in this paper are as follows:

- This research carries out an effective framework to detect malware for An-
droid device.

- This research utilizes three different feature extracion methods to transform
the original features into new feature spaces, and employs all the transformed
features to construct ensemble learning model.

- This research introduces ELM to malware detection on Android platform,
which is an effective and high accuracy algorithm to learn the neural network
classifier.

The remainder of this paper is organized as follows. Section 2 gives the related
works of malware detection on Android platform. Section 3 describes the pro-
posed framework and reviews theoretical backgrounds about PCA, KLT, ICA for
feature extraction, ELM algorithm for learning the neural networks and Stacking
for base classifiers combination. Section 4 tests the performance of the proposed
framework for malware detection on Android platform. Finally, section 5 con-
cludes the paper.

2 Relative Works

Currently, a great quantity of machine learning methods have been used in mal-
ware detection for Android device. Zhao et al. [5] proposed a framework based
on software behavior signature by utilizing Support Vector Machine(SVM) clas-
sifier. They applied different famous malware to evaluate the proposed detection
framework and obtained the best results of 93.33% true positive rate and 3.7%
false positive rate. Sahs et al. [7] extracted a list of requested permissions from
the APK file by using the open source project ‘Androguard’, and constracuted
the detection model by using SVM. They obtained low false negative rate, but
suffered high positive rate.
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Bayesian classifier is also often used to construct the malware detection model.
Yerima et al. [8] analyzed static code and extracted features from the APK files
by implementing a Java-based Android package profiling tool. They constructed
API call detector, Linux system commands detector and permissions detector.
They extracted 58 properties to train the detection model by using Bayesian
classifier. Their experiments obtained the best results of 90.6% true positive
rate and 6.3% false positive rate. Sharma et al. [9] detected malware combining
API calls with permissions, and constructed the detection model by using Naive
Bayes classifier and k-Nearest Neighbour(kNN) classifier. They first extracted
APT calls and permissions from the malware and then made use of correlation
based feature selection and information gain method to select features. They
obtained the result that kNN classifier achieved higher accuracy than Naive
Bayesian classifier combining with both of above mentioned feature selection
methods. However, Naive Bayes performed better in terms of true positive rate.

Aafer et al. [10] extracted a combination of API, package and parameter level
information features, and compared four different classifiers including ID3, C4.5,
kNN and SVM. They concluded that kNN was the best performing model, which
generated the best accuracy above 99% and obtained false positive rate 2.2%.
Wu et al. [11] utilized requested permissions and Intent messages passing to
be the features, and regarded components (Activity, Service, Receiver) as entry
points drilling down for tracing API Calls related to permissions. They employed
k-means algorithm to enhance the malware modeling capability. Then, they im-
plemented kNN algorithm to classify the application as benign or malicious.
They generated the accuracy of 97.87%, but encountered 87.39% recall.

Barrera [12] extracted 119 permission requests from a real-world dataset of
1,100 applications, and then employed Self-Organizing Map (SOM) algorithm
to support component planes analysis, which can provide interesting usage pat-
terns. Yu et al. [13] developed malware detection method based on neural net-
works. They systematically compared the permission requests from application
requests trained by feedforward neural networks and system calls trained by re-
current neural networks to capture the behavior of applications. Mas’ud et al.
[14] evaluated five sets of feature selection combining with five different machine
learning classifiers including NB, kNN, Decision Tree (J48), Multi-Layer Percep-
tron (MLP) and Random Forest (RF). Their research took system calls as the
features, and the experiment results showed that MLP combining with feature
selection generated the best performance.

Ozdemir et al. [15] implemented an ensemble learning approach for Android
malware detection. They first separately extracted static features including na-
tive API calls and Dalvik Byte API calls, and dynamic features. Then, they
took use of feature selection to select the most informative features. They took
different classifier as the base learner to train the static and dynamic data sets,
results of these base learners were combined in the scope of ensemble learning,
and they obtained the best accuracy of 97.33%. Sheen et al. [16] implemented
a detecting malware system on Android platform by using ensemble learning
model based static features. They first extracted API calls and permissions
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requested from APK file to create the feature sets, and then utilized a filter
for feature selection. They trained on an ensemble of classifiers using a collabo-
rative approach for arriving at the final decision, and achieved the true positive
rate of 98.9% and recall of 98.8%. Kang et al. [17] proposed a method to classify
malware family by using Random Forest, which was based on Dalvik Bytecode.

The above mentioned researches took static features or dynamic features to
detect malware based on machine learning. Feature selection is employed in
some literatures to select best subset for high performance, and machine learn-
ing methods are implemented to construct detection model. In this paper, we
follow mainstream researches and propose a novel framework to detect malware
on Android platform, which is based on feature extraction methods and ELM
algorithm.

3 Framework and Theoretical Backgrounds

In this section, we first give the framework of the proposed malware detection
system for Android device. Then, we introduce theoretical backgrounds about
feature extraction, and describe the ELM algorithm for learning neural network.
Finally, we briefly describe the Stacking method for ensemble learning.

3.1 Framework Description

The framework of our malware detection system for Android device is summa-
rized in Fig. 1. Basically, the system first utilizes Dalvik instructions extractor
to extract Dalvik instructions from the collected samples including malware .apk
and normal .apk files. Then, the original features are transformed into new fea-
ture spaces by using three different feature extraction methods, and three feature
matrixes are obtained. For each feature matrix, we randomly select sub-set sam-
ples En time to train base classifiers using ELM algorithm. Finally, Stacking
method is utilized to combine the results of base classifiers. The main compo-
nents of the framework are described below.

- Dalvik instructions extraction module: An APK is the Android package,
which is a compressed ‘ZIP’ bundle of files typically consisting of Android-
Manifest.xml and classes.dex. The classes.dex file holds the complete byte-
code to be interpreted by Dalvik VM [8]. This module unpackes the APK
file and decompiles the classes.dex file to extract Dalvik instructions.

- Feature extraction module: This module utilizes PCA, KLT and ICA to
transform the original feature matrix into new feature spaces. Three feature
matrixes are generated from this module.

- Ensemble learning module: This module select sub-set En times to generate
En classifiers for each feature matrix. ELM is taken as the base classifier.

- Decision module: This module employs Stacking method to combine the
result of each classifier, and ELM is also taken as the classifier.
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Fig. 1. Framework of malware detection system for Android device

3.2 Feature Selection Methods

PCA. PCA is defined as a linear projection that transforms the original high-
dimensional features into lower-dimensional features. In the processing of pro-
jection, the variance of the projected data is maximized [18]. Denote a set of
N samples X = {X1, X2, . . . , XN}, where Xi = [Xi(1), Xi(2), . . . , Xi(d)]

T ∈ R
d

and d is the number of features. PCA linearly transforms each sample Xi into a
new one yi ∈ R

d [19],
yi = UTXi (1)

where U is a d × d orthogonal matrix. The i-th column ui of U is the i-th
eigenvector of the sample covariance matrix,

C =
1

d

d∑

i=1

XiXi
T (2)

In summery, PCA first calculates the covariance matrix of X, and denotes it
as S. Then, calculate eigenvalues and eigenvectors of S, and denote them as
λ1, λ2, . . . , λd and u1, u2, . . . , ud. Finally, we can calculate the new feature by
using equation(1).

KLT. KLT can be considered as the generalized PCA. In PCA, the generation
matrix is the covariance matrix of original feature matrix X . KLT can take other
matrixes as the generation matrix. This paper takes the malware detection as
a classification problem. Therefore, we take the inter-class scatter matrix as the
generation matrix, which could make the samples more easier to be distinguished
in the new feature space,

Sw =
L∑

i=1

PiE[(X − m̄i)(X − m̄i)
T ] (3)

where L is number of classes, which is equal to 2 in this research, Pi is the
probability of i-th class and m̄i is the mean of the i-th class. Then, we calcu-
late eigenvalues and eigenvectors of Sw, and denote them as λ1, λ2, . . . , λd and
u1, u2, . . . , ud. Finally, we can calculate the new feature by using equation(1).
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ICA. ICA [20] is a technique to extract independent components from original
features. A ICA model can be written as,

X = As (4)

where X is the feature matrix, which denote as linear mixtures, A is an full-rank
matrix, called the mixing matrix, and s is the independent component data
matrix. The main goal of ICA is to estimate s,

ŝ = UX (5)

where U is un-mixing matrix. In this paper, we utilize FastICA [21] algorithm to
estimate s. FastICA [21] algorithm takes maximizing the negentropy of s as the
criterion to estimate s, which is approximated via the bellow contrast function
[19],

JG(ui) = [E{G(uT
i Xi)} − E{G(ν)}]2 (6)

where ui is a d dimensional vector, comprising one of the rows of matrix U . ν is
a standardized Gaussian variable. G is non-quadratic function. The commonly
used functions for G are G1(s) = 1

γ1
logcosh(γ1s), G2(s) = − 1

γ2
exp(−γ2s

2/2)

and G3(s) =
1
4s

4 , where γ1 (1 <= γ1 <= 2) and γ2 (γ2 ≈ 1) are parameters.
Then, ui can be estimated by maximizing JG(ui),

u+
i = E{Xig(u

T
i Xi)} − E{g′(uiXi)}ui (7)

u∗
i =

u+
i

‖u+
i ‖

(8)

where u∗
i is a new estimated value of ui, g and g′ are respectively the first and

second derivatives of G. Based on the maximal negentropy principal, the matrix
U can be computed by maximizing the sum of one-unit contrast function and
taking into account the constraint of decorrelation [21].

3.3 Neural Networks for Classification

This research employs neural networks as the classifier, and takes the idea that
some parameters are considered as random values to train the single feed-forward
neural networks. This idea for training neural networks is original from Schmidt
et al.[22]. Then, Huang et al.[23] proposed ELM and elaborated this idea to
handle classification problems[24]. ELM is based on least square to train the
networks [23]. ELM first randomly assigns for input weights and biases, and
analytically determines the output weights of the SLFNs [23]. The steps of ELM
to learn neural networks for malware are as follows.

- In the learning step, randomly choose the hidden node parameters and com-
putes the output of the jth hidden neuron,

hij = g(wjxi + bj) i = 1, 2, 3, . . . , N ; j = 1, 2, 3, . . . ,K (9)
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where wj = [wj1, wj2, . . . , wjn]
T is the weight vector connecting the jth

hidden neuron and the input data xi, xi = [xi1, xi2, . . . , xin]
T is the ith

sample with n features, bj denotes the bias of the jth hidden neuron, N
denotes total number of input samples, K is the number of hidden neuron
and g is the activation function.
The hidden layer output matrix is denoted asH, and H =

{
hij

}
. The weight

vector β̂ connects the hidden and output neurons,

β̂ = H†T (10)

where H† denotes the Moore-Penrose generalized inverse operation of H, T
is the class label, and T = [t1, t2, , . . . , tN ]

T
.

- In the detection steps: the class label TUnlabelled of given unlabeled software
is generated by,

TUnlabelled = HUnlabelledβ̂ (11)

where HUnlabelled can be calculated by formula (9).

3.4 Stacking for Combination

Stacking is a technique to combining classifiers by learning [25]. Stacking consists
of two levels which are base learner as level-0 and stacking model learner as level-
1. Base learner utilizes a set of base classifiers to learn from data set. The outputs
of each of the classifier are collected to create a new data set, which is taken as
the input of the stacking model learner(level-1). The labels of the original data
set are still regarded as the labels of new data set.

4 Experiments

4.1 Experimental Setup

This research constructs experiments to evaluate the proposed framework. In the
experiment, malware samples are collected from Android Malware GenomePro-
ject [26], and normal samples are downloaded from Google Play and Androidon-
line [27]. To evaluate the performance of proposed approach, we employ the
evaluation metrics of accuracy and F-measure. Accuracy measures the percent-
age of correctly classified malwares and normal ones. F-measure is the harmonic
mean of precision and recall. Formulas are as follows,

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

F −measure =
2 ∗ PR

P +R
(13)

where TP is the number of correctly classified malwares, FN is the number of
malwares that are misclassified as normal ones, FP is the number of normal ones
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that are misclassified as malwares, and TN is the number of correctly classified
normal ones. P = TP/(TP + FP ) is precision and R = TP/(TP + FN) is
recall.

The Dalvik instructions module is carried out in JAVA. Feature extraction
module, Ensemble classification module and Decision module are carried out in
MATLAB 2012b environment running in Intel Core2 CPU clocked at 2.89 GHz
with 1.8GB RAM. ELM code is download from Huang ’s homepage [28].

4.2 Experiment Results

We construct this experiment to evaluate our proposed framework. We perform
ELM, ELM with PCA, ELM with KLT, ELM with ICA, Stacking without fea-
ture extraction as comparisions. We randomly select 80% samples as the traning
date, and the other 20% samples are taken as testing data. For PCA and KLT,
we set the number of feature from 5 to 230 to select the highest accuracy. When
the number is 50 and 45, PCA and KLT separately reach maximum accuracy
value. We set the iteration times to be 1000 in ICA. From the 78th independent
component, the iteration will not converge. Therefore, we take 77 independent
components to be the features in ICA. As the input weights and biases are ran-
domly assigned, we perform 100 simulations for each combinations. The average
values of accuracy and F-measure are given in table 1.

Table 1. Experiment results

Classifier Accuracy F-measure

ELM 93.56 ±1.07 93.43
ELM+PCA 92.10 ±1.21 93.81
ELM+KLT 93.79 ±0.93 90.73
ELM+ICA 93.55 ±1.02 92.94
Stacking(without feature extraction) 95.11 ±0.99 93.58

Stacking(with feature extraction) 97.52 ±0.87 97.52

It is shown that the F-measure of ELM with PCA is slight higher than single
ELM, but the accuracy of former is lower than latter. The accuracy of ELM with
KLT is lower than ELM, but the f-measure is higher. ELM with ICA generates
slight lower results whether in terms of accuracy or f-measure. Stacking without
feature extraction generates higher accuracy and f-measure than single ELM,
which indicates ensemble learning performs better than single ELM. Stacking
with feature extraction outperforms other combinations, which indicates our
proposed framework is effective to improve the malware detection results for
Android device.

5 Conclusions

The proliferation of malware on Android devices critically influences network
security. In this paper, we propose a new framework of malware detection by
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employing feature extraction and machine learning. We implement PCA, KLT
and ICA to transform the feature matrix of Dalvik instructions into different
feature spaces and generate three new feature matrixes, and construct detection
on original feature matrix and new feature matrixes by employing ELM-based
ensemble learning. The experiments show that the proposed framework performs
well and improve the accuracy and f-measure of malware detection for Android
devices.
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Abstract. In modeling, prediction and control applications, the single-input-
rule-modules (SIRMs) connected fuzzy inference method can efficiently tackle 
the rule explosion problem that conventional fuzzy systems always face. In this 
paper, to improve the learning performance of the SIRMs method, a neural 
structure is presented. Then, based on the least square method, a novel parame-
ter learning algorithm is proposed for the optimization of the SIRMs connected 
neural-fuzzy system. Further, the proposed neural-fuzzy system is applied to the 
cooling and heating loads prediction which is a popular multi-variable problem 
in the research domain of intelligent buildings. Simulation and comparison re-
sults are also given to demonstrate the effectiveness and superiority of the pro-
posed method. 

Keywords: data-driven optimization, single input rule module, least square 
method, fuzzy system, cooling and heating loads. 

1 Introduction 

For some complex systems or processes, it is quite difficult to obtain their mechanism 
models. However, such systems or processes can generate large amount of data every 
day. Nowadays, data driven methods which study how to use such data to realize the 
modeling, optimization and control, are attracting more and more attentions [1-4]. As 
the fuzzy system has universal approximation ability and can easily combine our ex-
perience knowledge into the constructed model, it is a powerful tool for the data driv-
en modeling, optimization and control [5].  

On the other aspect, when we construct the data driven fuzzy systems, we usually 
face the rule explosion problem as the complex systems or processes often have large 
number of variables. There are two popular ways to overcome the rule explosion 
problem in conventional fuzzy systems. The first way is to use the hierarchical struc-
ture, which is named the hierarchical fuzzy system [6-8], while the other one is to 
utilize the single input rule modules (SIRMs) connected structure, which is called 
SIRMs connected fuzzy system [9-14].  

The SIRMs connected fuzzy system  (SIRM-FS) is firstly proposed by J. Yi, et al. 
[9-14] to tackle the rule explosion problem and to simplify the design process of 
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fuzzy controllers. In the SIRM-FS, we first construct a SIRM for each input variable, 
and then we obtain the final output through weighting the outputs of different SIRMs. 
In the SIRM-FS, the number of fuzzy rules is linearly increased with the increase of 
input variables. So, the number of fuzzy rules can be greatly reduced. Due to its sim-
ple structure, the SIRM-FS has been wildly applied to various domains, such as stabi-
lization control of different kinds of inverted pendulums [9-13], the anti-swing and 
positioning control of the overhead traveling crane [14]. In recent years, H. Seki, et al. 
[15] have extended this method to the functional one, and we have extended this 
method to the type-2 fuzzy case [16]. Also, some fundamental properties of the 
SIRM-FSs have been explored, for example, the relationships between the SIRM-FSs 
and other types of fuzzy systems (e.g. Takagi-Sugeno fuzzy systems) [16-18], the 
continuity, monotonicity and stability of the SIRM-FSs [19-22]. In order to utilize the 
SIRM-FSs as the modeling or prediction tools, in [23-25], some parameter learning 
algorithms have been proposed and applied to the nonlinear function identification, 
medical diagnosis and the thermal comfort prediction. However, all these parameter 
learning algorithms are based on the steepest descent methods which have some limi-
tations, e.g. low convergence speed, local optimization, etc.     

In order to improve the learning performance of the SIRMs method, in this study, 
we present a neural structure for the SIRM-FSs. Then, to accomplish the parameter 
learning of the neural-fuzzy system, we propose a novel parameter training algorithm 
based on the least square method which has fast convergence speed and can find 
global optimal solutions. Further, we apply the proposed neural-fuzzy system to the 
cooling and heating loads prediction problem. The cooling and heating loads are in-
fluenced by eight factors including relative compactness, surface area, wall area, roof 
area, overall height, orientation, glazing area, glazing area distribution etc. [26]. So, it 
is quite difficult to construct conventional fuzzy models for them. Simulation results 
show that the proposed method is effective. And, comparisons with other methods 
demonstrate that the proposed method has its superiorities. 

2 SIRMs Connected Neural-Fuzzy System 

In this Section, we will first introduce the SIRM-FSs, and then present the SIRMs 
connected neural-fuzzy system. 

2.1 SIRMs Connected Fuzzy System 

The fuzzy system with n  inputs and one output is considered here. It can be easily 
extended to the multi-input-multi-output case. 

A SIRM-FS with n input variables 1 2, ,..., nx x x  is composed of n SIRMs. The 

SIRMs for input variables 1 2, ,..., nx x x can be expressed as [9-14] 

{ }
1

: :
i

i i i

i

mj j j
i i i i i j

R if xS A thIRM i en f c
=

− = =                (1) 
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where kj
kA is the antecedent fuzzy set of rule kj in SIRM-k. And, kj

kc is a crisp value 

of the consequent part of rule kj in SIRM-k and can be seen as the center of the con-

sequent fuzzy set of rule kj . In this study, the triangular membership function (MF) is 

adopted for the fuzzy set kj
kA . 

A SIRM can be seen as a single-input-single-output fuzzy system [9-14]. Suppose 
that, in each SIRM, the singleton fuzzifier, the product inference engine and the 
weighted average defuzzifier are used. Then the fuzzy inference output of SIRM-k 
can be computed as [9-14] 

1

1

1,2,.
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( )
( )

.., .

k k
jkk k
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jkk k

m j
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k k m
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μ
=
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==
∑
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                (2) 

Finally, the output of the SIRM-FS can be calculated as [9-14] 

1

( ) ( ),
n

k k k
k

y X f xω
=

=∑                          (3) 

where kω  is the importance degree of SIRM-k, and 1 2( , , , )nX x x x= . The im-

portance degrees can express the different roles of the input variables on system per-
formance . 

2.2 SIRMs Connected Neural-Fuzzy System 

Corresponding to the SIRM-FS, the structure of the SIRMs connected neural-fuzzy 
system is depicted in Fig. 1. The SIRMs connected neural-fuzzy system consists of 
four layers. The first layer is the input layer. The second layer is the membership 
function layer which is used to compute the firing strength of each rule in all SIRMs. 
The third layer is SIRMs layer. This layer is utilized to compute the output of every 
SIRM through combing the firing strength and the weights between layer 2 and layer 
3. The fourth layer is the output layer. This layer is used to calculate the final output 
through combing the outputs of layer 3 and the weights between layer 3 and layer 4. 
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Fig. 1. Structure of the SIRMs connected neural-fuzzy system 
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The final output of this SIRMs connected neural-fuzzy system can be calculate as 

1
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                     (4) 

From (3) and (4), the final output result ( )y X can be given in a vector form as: 

T

1

( ) ( ) ( )
n

k k k
k

y X f x F X Wω
=

= =∑                       (5) 

where [ ]T

1 1 2 2( ) ( ), ( ), , ( )n nF X f x f x f x= is the inference output vector of all SIRMs, 

and [ ]T

1 2, , , nW ω ω ω= is a n-by-1 vector of the weights between layer 3 and layer 4. 

From (4), the final output result ( )y X can also be given in another vector form as 

1 T

1
1

( )
( ) ( )

( )

k k
jkk k

k

jkk k

m j
n k kj A

k m
k kj A

x c
y X X C

x

μ
ω ϕ

μ
=

=
=

= =
∑

∑
∑

             (6) 

where 11 1 1 T
1 1[ , , , , , , , , , , ]k nm mm

k k n nc c c c c cC = … is a vector of the weights between 

layer 2 and layer 3, and ( )Xϕ  can be computed as 
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 (7) 

From (5) and (6), we can observe that the output of the SIRMs connected neural-
fuzzy system is linear with respect to the weights between layer 3 and layer 4 (im-
portance degrees) and the weights between layer 2 and layer 3 (the consequent parts 
of the rules in all SIRMs). 

3 Parameter Learning of SIRMs Connected Neural-Fuzzy 
System 

In order to obtain satisfactory performance, the parameters of the SIRMs connected 
neural-fuzzy system should be optimized. In the SIRMs connected neural-fuzzy sys-
tem, the parameters include the centers and widths of the fuzzy sets in layer 2, the 
weights between layer 3 and layer 4, and the weights between layer 2 and layer 3. As 
the fuzzy sets in the antecedent parts of fuzzy rules can be manually obtained, in this 
section, we focus on optimizing the weights between layer 3 and layer 4 and the 
weights between layer 2 and layer 3 using the data driven method. 
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Suppose that there are N input–output data points 

1 2( , ) ( , , , , )t t t t t t
nX y x x x y= 1, ,t N= . And, the training criteria is chosen to mini-

mize the following squared error function: 

( )2

1

( , , )
N

t t

t

E y X W C y
=

= −∑                         (8) 

where ( )ty X is the inference output value by the SIRMs connected neural-fuzzy  

system. 
From (5) and (8), we can derive that  

( ) ( ) ( )2 T 2T 0 0 0

2
1

( )
N

t t
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E F X W y W Y W Y W Y
=

= − = Γ − Γ − = Γ −∑          (9) 

where 1 T0 2, , , Ny y yY ⎡ ⎤= ⎣ ⎦ , and
 

T1 2( ), ( ), , ( )NF X F X F X⎡ ⎤Γ = ⎣ ⎦ . 

Similarly, from (6) and (8), we can obtain that  

( ) ( ) ( )2 T 2T 0 0 0

2
1

( )
N

t

t

E X C y C Y C Y C Yϕ
=

= − = Φ − Φ − = Φ −∑          (10) 

where
T1 2( ), ( ), , ( )NX X Xϕ ϕ ϕ⎡ ⎤Φ = ⎣ ⎦ . 

The data-driven optimization of the SIRMs connected neural-fuzzy system can be 
realized by solving the following problem: 

( )2

,
1

min ( , , ) .
N

t t

W C
t

y X W C y
=

−∑                  (11) 

To solve this optimization problem, we propose the following training algorithm 
which is also shown in Fig. 2. 

• Step 1: Set the maximum iterative epoch and the training accuracy. And, randomly 
initialize the parameter vector C between layer 2 and layer 3. 

• Step 2: Compute the matrix Γ . And then, solve the optimization problem 
20

2
min

W
W YΓ − . This is a least square problem [27]. The best value of W can be 

obtained as 0W Y+= Γ ,  where +Γ is a generalized MP inverse matrix of Γ . 
• Step 3: Compute the matrix Φ . And then, solve the optimization problem 

20

2
min

C
C YΦ − . This is also a least square problem [27]. The best value of C can 

be obtained as 0C Y+= Φ ,  where +Φ is a generalized MP inverse matrix of Φ . 
• Step 4: If the iterative epoch number is arrived or the training accuracy is satisfied, 

then stop; otherwise, go to Step 2. 
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Fig. 2. The least square method based learning algorithm 

4 Cooling and Heating Loads Prediction 

In this section, we will apply the proposed SIRMs connected neural-fuzzy system and 
its learning algorithm to the cooling and heating loads prediction. Also, comparisons 
with linear regression method and BP neural networks are made to show the superi-
ority of the proposed method. 

4.1 Problem Description and Prediction Model Design  

Accurate cooling load (CL) and heating load (HL) predictions are necessary to opti-
mize building designs and set appropriate heating and cooling equipments’ specifica-
tions. However, it is not an easy task to construct the accurate CL and HL prediction 
models as they are affected by many factors, such as the relative compactness, the 
surface area, the wall area, the roof area, the overall height, the orientation, the glaz-
ing area, and the glazing area distribution [26]. In [26], Xifara and Tsanas have col-
lected the CL and HL data. We can use such data to construct the data driven models 
for the CL and HL prediction. Totally, 768 data pairs are generated in [26]. Each data 
pair has eight input variables including the relative compactness, the surface area, the 
wall area, the roof area, the overall height, the orientation, the glazing area, and the 
glazing area distribution, and two output variables including the CL and HL. The 
number of the input variables is large. So, it is suitable to choose the SIRMs connect-
ed fuzzy method. 

In this study, we firstly project the input parts of the 768 data pairs into [-1, 1] 
through the following formula: 

min
2 1

max min

j j
j i i

i j j
i i

x x
x

x x

−= −
−

                      (12) 

where 1, ,8,i = and 1, ,768j = . 

   We randomly choose 700 data pairs to train the SIRMs connected neural-fuzzy 
system, while the left 68 data pairs are used to test the constructed model. In the 
SIRMs connected neural-fuzzy system, each SIRM has five rules, i.e. five fuzzy sets 
are used to partition each input domain. Hence, there are totally 40 (5*8) fuzzy rules, 
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and 48 parameters in C and W are needed to be trained. The initial values of the 
weights between layer 2 and layer 3 are randomly generated.  
   For comparison, the BP neural network (BPNN) and the multi-variable linear 
regression (LR) method are also adopted to predict the CL and HL. The BPNN has 
three layers and totally 27 nodes with 161 parameters to be trained. In this study, the 
maximum learning iteration number of the BPNN is set to be 1000. 

To compare the performances of the three models, the root-mean-square error 
(RMSE) as follows is chosen as the comparison index  

( )2

1

( )
T

t t

t

RMSE y X y T
=

= −∑                    (13) 

where T is the number of the training data or testing data, ( )ty X is the predicted 

value from the models – the SIRMs connected neural-fuzzy system, the BP neural 
network and the linear regressor. 

4.2 Simulation Results and Comparisons 

The above simulation process was run ten rounds. The training and testing RMSE 
values and their means and standard deviations (Std.) of the three methods for CL and 
HL are listed in Table 1.  

From this table, we can observe that the SIRMs connected neural-fuzzy system 
with the proposed training method can give satisfactory performance. Compared with 
the LR method and the BP neural network method, the performance of the SIRMs 
connected neural-fuzzy system is much better, although the BP neural network have 
more parameters than the SIRMs connected neural-fuzzy system (161 vs. 48). 

Table 1. Comparisons of the three models for CL and HL 

  Methods 1 2 3 4 5 mean Std. 

 
 
 

Cooling 
load 

Training 

LR 3.2189 3.2338 3.2490 3.1942 3.2295 3.2251 0.0204 

BP 2.4133 2.0656 2.4706 2.5653 2.0880 2.3206 0.2292 

SIRM 1.7038 1.7146 1.7275 1.6948 1.7113 1.7104 0.0122 

Testing 

LR 3.3534 3.2065 3.0409 3.5890 3.2416 3.2863 0.2029 

BP 2.7486 2.3653 2.4100 2.6980 2.2693 2.4982 0.2124 

SIRM 1.8054 1.6982 1.5459 1.9011 1.7270 1.7355 0.1320 

Heating 
load 

Training 

LR 2.9766 2.9150 2.9860 2.9775 2.9456 2.9601 0.0295 

BP 1.6719 1.5338 2.0399 1.5468 1.4396 1.6464 0.2350 

SIRM 1.0063 1.0125 1.0118 1.0087 1.0184 1.0115 0.0045 

Testing 

LR 2.7603 3.3736 2.6504 2.7349 3.0652 2.9169 0.2997 

BP 1.4290 2.0568 1.8092 1.5045 1.5791 1.6757 0.2562 

SIRM 1.0414 0.9766 0.9872 1.0170 0.9119 0.9868 0.0490 
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In this application, the conventional fuzzy system is not suitable to be selected to 
predict the CL and HL. The reason for this is that this application has 8 input varia-
bles which will make the number of fuzzy rules of the conventional fuzzy system be 
so huge that it is difficult to generate the fuzzy rules and train their parameters. 

5 Conclusion  

In this study, to enhance the learning ability of the SIRMs connected fuzzy system, a 
neural structure has been presented. From its input-output mapping, it can be ob-
served that the output of the SIRMs connected neural-fuzzy system is linear with 
respect to its parameters including the consequent parameters of fuzzy rules in all 
SIRMs and the importance degrees. To optimize such parameters, a least square 
method based learning algorithm has been proposed. This algorithm can efficiently 
overcome the drawbacks of the steepest descent method based learning algorithms. 
The proposed method has also been verified by the cooling and heating loads predic-
tion problem. In the future, we will theoretically study the approximation ability of 
the SIRMs method and explore how to improve its approximation and generalization 
abilities. 
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