
Chapter 4
Multiple Curve Extensions of Libor Market
Models (LMM)

This chapter deals with multiple curve models on a discrete tenor in the spirit of
the Libor market models (LMM) and, somewhat differently from the previous two
Chaps. 2 and 3, we present here basically just an overview of the major existing
approaches.

The Libor market models that were originated by Miltersen et al. (1997) and
Brace et al. (1997), were later further developed in several works by Mercurio and
co-authors, as well as authors related to them. Consequently these authors were also
among the first ones to extend the LMMs to a multi-curve setting. Starting from
papers like Morini (2009) and Bianchetti (2010), where the latter uses the analogy
with cross-currency modeling to develop a two-curve interest rate model, a series
of papers have appeared extending the LMMs to a multi-curve setting, among them
Mercurio (2009, 2010a, b, c), Mercurio and Xie (2012) and Ametrano and Bianchetti
(2013). This series of papers, in particular Mercurio (2010a) and Mercurio and Xie
(2012), which include the developments contained in previous papers authored/
co-authored by Mercurio, form the first approach of which we give an overview
in Sect. 4.1. We do not, however, enter into the details of the pricing formulas and the
calibration examples, for which we therefore refer to the original papers. Related to
the papers by Mercurio (2010a) and Mercurio and Xie (2012) is the paper Ametrano
and Bianchetti (2013), where the authors deal in particular with the bootstrapping
of various multiple-tenor yield curves, thereby considering essentially only linear
interest rate derivatives; here too we simply refer to the original paper.

The other approach, that is alternative to the one just mentioned and that proposes
a further theoretical development, is the one in Grbac et al. (2014) which concerns
an affine Libor model with multiple curves. A description of this further approach is
presented in Sect. 4.2.

The above papers concern mainly “clean valuation” approaches. A more compre-
hensive, multi-currency, multi-curve approach has been initiated in Fujii et al. (2010,
2011), see also Piterbarg (2010). In parallel, Henrard has developed a more practi-
cally oriented approach, for which we refer to his recent book Henrard (2014) that
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116 4 Multiple Curve Extensions of Libor Market Models (LMM)

synthesizes his previous production, but it is not exactly in the context of an LMM
that is our main concern in this chapter. On the other hand Henrard has considered,
see e.g. Henrard (2010), multiplicative spreads as example of a form of spreads that
are alternative to the additive spreads considered in the above papers and that may
turn out to be advantageous in some situations. Multiplicative spreads form also the
basis of the approach presented in the paper Cuchiero et al. (2015). Section4.3 con-
tains a brief overview of the approach in Henrard (2010), as well as that in Cuchiero
et al. (2015).

4.1 Multi-curve Extended LMM

Asmentioned above, this section is essentially a synthesis of work done byMercurio
and related authors and partly also by Ametrano and Bianchetti (2013).

The classical Libor market models are based on the joint evolution of consecutive
forward Libor rates corresponding to a given tenor structure. We recall from the
discussion in Chap.1 that in the classical setup the Libor rate L(t; T , S)was assumed
to coincide with the corresponding forward OIS rate F(t; T , S), but this assumption
is no longer valid after the crisis.

Recalling the definition of the forward OIS rate in (1.16),

F(t; T , S) = EQS {F(T; T , S) | Ft} = 1

S − T

(
p(t, T)

p(t, S)
− 1

)
(4.1)

notice that this rate is directly related to the OIS bond prices p(t, T), namely to the
discount curve and so the first issue concerns the proper modeling of the discount
curve, which occasionally we shall also denote by pD(t, T). Notice, furthermore, that
the discount curve intervenes also in other situations, for example we have that

(i) Swap rates can be represented as linear combinations of forward Libor rates,
which are referred to as FRA rates in Mercurio (2010a), with coefficients that
depend solely on the discount curve (cf. 1.28).

(ii) Pricing measures correspond to numéraires given by portfolios of OIS bonds
and affect thus the drift correction in a measure change.

As already discussed in Chap. 1, a general choice of the discount curve is the OIS
curve and we shall do so here as well. This choice is supported by various arguments
(recall also Sect. 1.3.1). In particular, collaterals in cash are revalued daily at a rate
equal or close to the overnight rate. Note, however, that collaterals can be based
also on bonds or other assets, such as foreign currency. In the latter case appropriate
adjustments have to be performed for the remuneration rate (see Fujii et al. 2010).
The OIS curve is commonly accepted as discount curve and for possible situations,
such as in exotics or different currencies, where different discounting is adopted, it
can still be considered as a good proxy of the risk-free rate.
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Remark 4.1 In this chapter the standing assumption will be that the OIS bonds are
tradable assets, see for example Mercurio (2010a) and the comments in Sect. 1.3.1.
Note that in the spirit of the Libor market models we do not assume the existence
of the OIS short rate r derived from the OIS bond prices and the related martingale
measureQ as in the previous chapters, but insteadwework directly under the forward
measures using the OIS bonds as numéraires.

Since the forward rate F(t; T , S) can also be considered as the fair fixed rate
at time t ≤ T of a forward rate agreement, where the floating rate received at S is
F(T; T , S), we shall call F(t; T , S) the forward OIS curve (recall that in practice it
can be stripped from OIS swap rates; see also the middle part of Remark 1.2).

Concerning the Libor rates, in the work by Mercurio and related authors an FRA
rate is considered that is given as the fair fixed rate at t ≤ T to be exchanged at time
S for the Libor rate L(T; T , S), namely such that this swap has zero value at t ≤ T .
Denoting by QS the S-forward measure with numéraire p(t, S), the FRA rate is then
given by

FRA(t; T , S) = EQS {L(T; T , S) | Ft} (4.2)

where EQS
denotes expectation with respect to QS . This definition, that corresponds

to the forward Libor rate L(t; T , S) as in Definition 1.2, has the following advantages

(i) The rates FRA(t; T , S) coincide with the corresponding spot Libor rates at their
reset times; they can thus generate any payoff depending on the Libor rates.

(ii) The rates FRA(t; T , S) are martingales under the corresponding forward mea-
sures.

(iii) The fact that swap rates can be written as linear combinations of FRA rates with
coefficients depending solely on the discount curve is convenient for bootstrap-
ping purposes (see Mercurio 2010a).

In the sequel we shall continue consistently using the name forward Libor rates,
keeping in mind that these are by definition the same as the FRA rates fromMercurio
(2010a).

4.1.1 Description of the Model

According to a practice followed in the post-crisis setting, the forward Libor rate is
mostly viewed as a sum of the forward OIS rate plus a basis/spread (thereby thinking
of this basis as a factor driving the Libors in conjunction with the OIS curve). In
line with this practice, in the more recent work of Mercurio and related authors an
additive spread between the Libor and the OIS curves is considered.

We startwith some notation keeping it in linewith the above-mentioned papers.As
in Sect. 1.3, for given a tenor x, let T x = {0 ≤ Tx

0 < · · · < Tx
Mx

} be a tenor structure
compatible with x and denote by δx

k the year fraction of the length of the generic
kth interval (Tx

k−1, Tx
k ]. Denote by p(t, Tx

k ) the price of the OIS bond maturing at Tx
k

(discount curve) and set (see (1.16) or (4.1))
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Fx
k (t) := F(t; Tx

k−1, Tx
k ) = 1

δx
k

[
p(t, Tx

k−1)

p(t, Tx
k )

− 1

]
(4.3)

Furthermore, as mentioned at the end of the previous subsection, since the FRA rates,
as given in (4.2), were introduced in relation to the FRAs with the underlying Libor
rates, set

Lx
k(t) := FRA(t; Tx

k−1, Tx
k ) (4.4)

and call Lx
k(t) the forward Libor rate.

Notice that the FRA rates as introduced in (4.2) correspond to what is called a
standard (or text-book) FRA. This has to be contrasted with the so-called “market
FRA”, cf. Remark 1.3, which differ from the standard ones in that the payment is
made at the beginning of the reference interval, discounted by the corresponding
Libor rate. Hence, taking T = Tx

k−1, S = Tx
k for a generic k, one has

PmFRA(Tx
k−1; Tx

k−1, Tx
k , R, 1) = δx

k (L(Tx
k−1; Tx

k−1, Tx
k ) − R)

1 + δx
k L(Tx

k−1; Tx
k−1, Tx

k )
(4.5)

implying that (see Appendix A in Mercurio 2010b), at t < Tx
k−1 one has,

RmFRA(t; Tx
k−1, Tx

k ) = 1

δx
k

⎡
⎣ 1

EQTx
k−1
{

1
1+δx

k L(T x
k−1;T x

k−1,T
x
k )

| Ft

} − 1

⎤
⎦ (4.6)

As recalled in Remark 1.3, Mercurio (2010b) (see also Ametrano and Bianchetti
2013) points out that the difference in the values PmFRA(Tx

k−1; Tx
k−1, Tx

k , R, 1) and
PFRA(Tx

k−1; Tx
k−1, Tx

k , R, 1) is generally small, so that one can limit oneself to standard
FRA rates also for what concerns a possible bootstrapping from market FRA rates.

As already mentioned, following the practice to build Libor curves at a spread
over the OIS curve, Mercurio and the related authors consider additive spreads that
can now be defined as

Sx
k (t) := Lx

k(t) − Fx
k (t) (4.7)

Additive spreads have the advantage that, since Lx
k and Fx

k are martingales under QT x
k ,

so is also Sx
k . To model their dynamics under QT x

k one thus needs to specify only the
volatility and correlation structure.

Having now the three quantitiesLx
k (t), Fx

k (t), Sx
k (t), we need to introduce dynamics

for them. Given the relationship (4.7), we need only the joint dynamics of two of
the three quantities, which then induces the dynamics also for the third one. The aim
thereby should be to achieve model tractability in view of interest rate derivative
pricing, as well as a convenient setup for calibration and bootstrapping. In Mercurio
(2010a, b) the author chooses to jointly model Fx

k (t) and Sx
k (t) that has as main

advantage the direct modeling of the spread allowing thus to model its dynamics
so that it remains positive. Such a choice is made also in Fujii et al. (2011). Notice

http://dx.doi.org/10.1007/978-3-319-25385-5_1
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furthermore that when, as required for a multi-curve setup, one has to model multiple
tenors simultaneously, i.e. Fxi

k (t) and Sxi
k (t) for different values xi of the tenor x, one

has to properly account for possible no-arbitrage relations that have to hold across
different time intervals. To this effect notice that only forwardOIS rateswith different
tenors are constrained by no-arbitrage relations; the associated spreads are relatively
free to move independently from one another. Given this freedom, one may try to
derive models that preserve the tractability of the single tenor case, especially in view
of pricing optional derivatives in closed form. In this sense, in Mercurio (2010a, b)
an approach is presented by choosing the dynamics of the OIS rates and related
spreads so that they are similar for all considered tenors. Furthermore, as the title in
Mercurio and Xie (2012) puts it, the spread should by all means be stochastic. In fact,
a relatively simple approach would be to elect a given forward OIS curve as reference
curve and model all other curves at a deterministic spread over the reference curve.
However, this is in contrast with the empirical evidence (see Figs. 1.3 (left) and 1.4)
and furthermore, with a deterministic basis, the Libor-OIS swaption price would in
some situations, e.g. OTM swaptions, turn out to be zero. Although the impact of
a stochastic basis on the pricing of exotic products is difficult to assess a priori, in
Mercurio and Xie (2012) it is shown that also with a suitably modeled stochastic
basis one may achieve very good tractability.

4.1.2 Model Specifications

We mention here specific models considered in Mercurio (2010b) and Mercurio and
Xie (2012) where, in line with the classical LMMs, log-normal and shifted log-
normal models are considered, but with stochastic volatility in form of Heston or
SABR.

For themulti-curve setup consider now, as in Sect. 1.3, different possible tenor val-
ues x1 < x2 < · · · < xn and the associated tenor structures T xi = {0 ≤ Txi

0 < · · · <

Txi
Mxi

}, thereby assuming that T xn ⊂ T xn−1 ⊂ · · · ⊂ T x1 ⊆ T .

Denote then by Lxi
k (t), Fxi

k (t), Sxi
k (t) the corresponding relevant quantities and let

δxi
k be the year fraction of Txi

k − Txi
k−1.

Starting from the forward OIS rates, in Mercurio (2010b) these are modeled
according to the following shifted-type dynamics

dFxi
k (t) = σxi

k (t)V F(t)

[
1

δxi
k

+ Fxi
k (t)

]
dZF,xi

k (t) (4.8)

where σxi
k are deterministic functions and ZF,xi

k are Wiener processes under the for-

ward measures QT
xi
k , for all k = 1, . . . , Mxi . The process V F(t) is a common factor

process with V F(0) = 1 and independent of all ZF,xi
k . As mentioned previously, the

Fxi
k have to satisfy no-arbitrage consistency conditions and in Mercurio (2010b) it is

shown that they are given by

http://dx.doi.org/10.1007/978-3-319-25385-5_1
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σxi
k (t) =

ik∑
j=ik−1+1

σx1
j (t) (4.9)

namely the volatility coefficient σxi
k of Fxi

k has to be equal to the sum of the volatility
coefficients σx1

j of the ratesFx1
j for j ∈ {ik−1 + 1, ik−1 + 2, . . . , ik}. Here j correspond

to the indices of the tenor datesTxi
k−1 = Tx1

ik−1
< Tx1

ik−1+1 < · · · < Tx1
ik

= Txi
k of the tenor

structure T x1 falling between the dates Txi
k−1 and Txi

k of the tenor structure T xi .
Coming now to the Libor-OIS spreads, Mercurio and Xie (2012) start from the

following general model
Sxi

k (t) = φxi
k (Fxi

k (t), Xxi
k (t)) (4.10)

where Xxi
k are factor processes and the functions φxi

k have to be chosen so that Sxi
k are

martingales under QT
xi
k . In particular, in Mercurio and Xie (2012) the functions φxi

k
are chosen to be affine functions with the advantage that the parameters in the affine
specification can be explained in terms of correlations between OIS rates and basis
spreads, as well as in terms of their variances. If also the forward OIS rates follow a
convenient model, then caplets and swaptions can be priced in semi-closed form.

As for the factor processes Xxi
k , things can be simplified without too much loss of

flexibility by taking them to be independent of k, i.e. Xxi
k (t) = Xxi(t), for all k, with

Xxi(t) following a log-normal model. If, then, the OIS rate is, say, of the G1++ form
(i.e. one-factor Hull andWhite (1990) model with deterministic shift to be calibrated
to the initial term structure), with the affine model choice for φxi

k one obtains semi-
analytic pricing formulas for caplets and swaptions in the sense that what is required
is a one-dimensional integration of a closed-form function of the Black-Scholes type
(see Mercurio and Xie 2012 for the case of a swaption).

Remaining always with the Libor-OIS spreads, Mercurio (2010b) assumes more
specifically a model of the form

Sxi
k (t) = Sxi

k (0) Mxi(t) , k = 1, . . . , Mxi (4.11)

where, analogously to the previous case where Xxi
k (t) = Xxi(t), also Mxi remains the

same for all k and is defined by the following SABR-type process

⎧⎨
⎩

dMxi(t) = (Mxi(t))β
xi V xi(t) dZxi(t)

dV xi(t) = εxi V xi(t) dW xi(t)
(4.12)

with βxi ∈ (0, 1], εxi > 0 and where Zxi and W xi are Wiener processes with respect
to each forward measure QT

xi
k , independent of the Wiener processes ZF,xi

k in (4.8),
but which may be correlated, i.e. dZxi dW xi = ρxi dt with ρxi ∈ [−1, 1]. This model
allows for convenient caplet and, in some particular cases, swaption pricing (see
Mercurio 2010b). The fact that the rates and the spreads with different tenors xi

follow the same type of dynamics, leads to similar pricing formulas for caps and
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swaptions even if they are based on different tenors. This is particularly convenient
for simultaneous option pricing across different tenors, as well as for calibration.

4.2 Affine Libor Models with Multiple Curves

In this section we present the model developed in Grbac et al. (2014), which is
also a discrete-tenor model and is based on affine driving processes. This modeling
approach has first been proposed in Keller-Ressel et al. (2013) in the single-curve
case and further extended in Grbac et al. (2014) to the multiple curve setup. Themain
advantage of this framework is its ability to ensure positive interest rates and spreads
by construction, and at the same time, produce semi-analytic caplet and swaption
pricing formulas. In contrast to Mercurio (2010b), the OIS rates Fx

k and the Libor
rates Lx

k are chosen as modeling quantities, which ensures straightforward pricing
of caplets and at the same time the positivity of spreads Sx

k can be easily obtained.
These features are due to a specific model construction, which relies on a family
of parametrized martingales greater or equal to one and increasing with respect to
the parameter. When such martingales are taken as building blocks of the model,
as we shall see below, the positivity of interest rates and spreads follows simply by
construction. The second important point is that affine processes are chosen as driving
processes for this family of martingales, thus guaranteeing analytic tractability of the
model and, consequently, semi-analytic pricing formulas for non-linear derivatives
based on Fourier transform methods.

4.2.1 The Driving Process and Its Properties

In this section we shall fix the probability space and the driving process that we are
going to work with. For sake of simplicity, we choose to work with affine diffusions
in order to present the model in a concise and simple manner. Another reason is
that affine diffusions were already used as driving processes in Chap.2 and, hence,
we can rely on the technical preliminaries from that chapter. Since the model con-
struction requires a positive affine process as a driving process, this boils down to
multidimensional CIR processes. However, we emphasize that the original paper of
Grbac et al. (2014) is not limited to this class and the model is based on general
positive affine processes allowing for jumps as well. This is especially important in
view of model calibration, where the additional flexibility coming from the jumps is
exploited to ensure a better fit to market data.

Let (Ω,F ,F, P) denote a complete stochastic basis, where F = (Ft)t∈[0,T ] and
T denotes some finite time horizon. Consider a stochastic processX = (X1, . . . , Xd),
where each component Xi solves the SDE

http://dx.doi.org/10.1007/978-3-319-25385-5_2
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dXi
t = (ai − biXi

t )dt + σi
√

Xi
t dwi

t (4.13)

withwi aWiener process such that allWiener processeswi, i = 1, . . . , d, aremutually
independent. The coefficients ai, bi and σi are positive and ai ≥ (σi)2

2 .
Denote

IT := {u = (u1, . . . , ud) ∈ R
d : Ex

{
e〈u,XT 〉} < ∞}

where Ex denotes the expectation conditional on X0 = x. Note that this is a multi-
dimensional analog of the set IT defined in (2.12). Then according to Lemma 2.2,
the conditional moment generating function of XT has the following exponentially
affine form:

E
{
exp〈u, XT 〉∣∣Ft

} = exp
(
Au(T − t) + 〈Bu(T − t), Xt〉

)
(4.14)

for all u ∈ R
d+ ∩ IT and 0 ≤ t ≤ T . Here Au(T − t) and Bu(T − t) are obtained by

applying Lemma 2.2 to each component Xi of X and using independence. This yields

Au(T − t) =
d∑

i=1

Au,i(T − t), Bu(T − t) = (Bu,1(T − t), . . . , Bu,d(T − t))

where, for each i = 1, . . . , d, Au,i(T − t) and Bu,i(T − t) correspond to A(t, T) =
A(T − t) and −B(t, T) = −B(T − t) in Lemma 2.2 applied to the process Xi with
γ = 0 and K = −u. In Eq. (4.14) 〈·, ·〉 denotes the inner product on R

d .
An essential ingredient in affine Libor models, as we shall see in the next sub-

section, is the construction of parametrized martingales which are greater than or
equal to one and increasing in this parameter, see the review paper by Papapantoleon
(2010). The following two lemmas, taken fromGrbac et al. (2014) and Keller-Ressel
et al. (2013), summarize the main ideas and properties on which the construction
will be based.

Lemma 4.1 Consider the affine process X defined above and let u ∈ R
d+ ∩ IT . Then

the process Mu = (Mu
t )t∈[0,T ] with

Mu
t = E

{
e〈u,XT 〉|Ft

} = exp
(
Au(T − t) + 〈Bu(T − t), Xt〉

)
(4.15)

is a P-martingale, greater than or equal to one, and the mapping u �→ Mu
t is increas-

ing, for every t ∈ [0, T ].
In the lemma below inequalities involving vectors are interpreted componentwise.

Lemma 4.2 The functions Au(t) and Bu(t) in (4.14) satisfy the following:

1. A0(t) = B0(t) = 0 for all t ∈ [0, T ].
2. For each t ∈ [0, T ], the functions IT 
 u �→ Au(t) and IT 
 u �→ Bu(t) are

(componentwise) convex.

http://dx.doi.org/10.1007/978-3-319-25385-5_2
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3. u �→ Au(t) and u �→ Bu(t) are order-preserving: let (t, u), (t, v) ∈ [0, T ] × IT ,
with u ≤ v. Then

Au(t) ≤ Av(t) and Bu(t) ≤ Bv(t) (4.16)

4. u �→ Bu(t) is strictlyorder-preserving: let (t, u), (t, v) ∈ [0, T ] × IT , with u < v.
Then Bu(t) < Bv(t).

4.2.2 The Model

Consider again the tenor structures introduced in Sect. 1.3 and used in Sect. 4.1.2,
T xn ⊂ T xn−1 ⊂ · · · ⊂ T x1 ⊆ T , where T xi = {0 ≤ Txi

0 < · · · < Txi
Mxi

}, for each

i = 1, . . . , n, and where δxi
k denotes the year fraction of Txi

k − Txi
k−1. Recall that we

assume that all Txi
Mxi

coincide and denote by TM the common terminal date for all
tenor structures. As earlier, denote byX := {x1, . . . , xn} the set of all tenors and for
each tenor x ∈ X , let K x := {1, 2, . . . , Mx} denote the collection of all subscripts
related to the tenor structure T x. In the sequel we shall assume for ease of notation
that each tenor structure is equidistant, i.e. δxi

k = δxi .
As earlier, we consider the OIS curve as discount curve. We denote by p(t, T) the

discount factor, i.e. the price of the OIS bond at time t for maturity T .
Moreover, let QTM denote the terminal forward measure, i.e. the martingale mea-

sure associated with the numéraire p(·, TM), which is supposed to be given. The
corresponding expectation is denoted by ETM . Then, we introduce forward measures
QT x

k associated to the numéraires p(·, Tx
k ) for every tenor x and k ∈ K x. The corre-

sponding expectation is denoted by ET x
k . The forward measures QT x

k are equivalent
to QTM , and defined in the usual way via

dQT x
k

dQTM

∣∣∣
Ft

= p(0, TM)

p(0, Tx
k )

p(t, Tx
k )

p(t, TM)
(4.17)

As seen in Sect. 4.1, the mainmodeling objects in the multiple curve LMM setting
are the forward OIS ratesFx

k , the forward Libor rates Lx
k and the spreads Sx

k . Recalling
again Mercurio (2010b), a good model for the dynamic evolution of the forward OIS
and forwardLibor rates, and thus also of their spread, should satisfy certain conditions
which stem from economic reasoning, arbitrage requirements and the definitions of
these rates. Grbac et al. (2014) formulate these conditions as model requirements:

(M1) Fx
k (t) ≥ 0 and Fx

k ∈ M (QT x
k ), for all x ∈ X , k ∈ K x, t ∈ [0, Tx

k−1].
(M2) Lx

k(t) ≥ 0 and Lx
k ∈ M (QT x

k ), for all x ∈ X , k ∈ K x, t ∈ [0, Tx
k−1].

(M3) Sx
k(t) ≥ 0 and Sx

k ∈ M (QT x
k ), for all x ∈ X , k ∈ K x, t ∈ [0, Tx

k−1].
HereM (QT x

k ) denotes the set of QT x
k -martingales.

http://dx.doi.org/10.1007/978-3-319-25385-5_1
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The model presented in the sequel satisfies the above conditions by construc-
tion, while producing tractable dynamics for all three processes under all forward
measures. The approach was first introduced by Keller-Ressel et al. (2013) and then
extended to the multiple curve setup by Grbac et al. (2014). The first step is the
construction of two families of parametrized QTM -martingales driven by the process
X defined in the previous subsection, which is assumed to be affine under the mea-
sure QTM .

More precisely, assume that the process X starts at the canonical value
1 = (1, . . . , 1) and assume that two sequences of vectors (uk)k∈N and (vk)k∈N
in R

d+ ∩ IT are given. Then one constructs two families of parametrized QTM -
martingales following the method described in Lemma 4.1 by setting

Muk
t = exp

(
Auk (TM − t) + 〈Buk (TM − t), Xt〉

)
(4.18)

and
Mvk

t = exp
(
Avk (TM − t) + 〈Bvk (TM − t), Xt〉

)
(4.19)

By Lemma 4.1, Muk
t ≥ 1 and Mvk

t ≥ 1, for all k. Note, moreover, that the ordering
of parameters uk and vk carries over to the martingales related to them; for example,
if uk−1 ≥ uk , then Muk−1

t ≥ Muk
t for all t ≥ 0. Such families of martingales are then

used to model the forward OIS and Libor rates.
Let us fix an arbitrary tenor x and the associated tenor structure T x. We begin by

presenting the model for the OIS rates. This model is completely analogous to the
single-curve model introduced by Keller-Ressel et al. (2013). In the first step, one
notices that

1 + δxFx
k (t) = p(t, Tx

k−1)

p(t, Tx
k )

=
p(t,T x

k−1)

p(t,TM )

p(t,T x
k )

p(t,TM )

(4.20)

where the forward price process p(·,T x
k )

p(·,TM )
is a QTM -martingale for any k ∈ K x. There-

fore, to model the OIS rates Fx
k , one begins by postulating the dynamics of each

forward price process p(·,T x
k )

p(·,TM )
:

p(t, Tx
k )

p(t, TM)
= M

ux
k

t , k ∈ K x, t ≤ Tx
k (4.21)

where ux
k ∈ R

d+ ∩ IT is some vector. The second step follows from (4.20) and (4.21),
namely

1 + δxFx
k (t) = M

ux
k−1

t

M
ux

k
t

(4.22)
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and we note that this process is a QT x
k -martingale since Mux

k−1 is a QTM -martingale
and Mux

k = p(·,T x
k )

p(·,TM )
is the density process for the measure change from QTM to QT x

k

up to a normalizing constant; compare with (4.17). Finally, the third step relies on the
observation that, if the vectors ux

k are chosen to be (componentwise) decreasing with
respect to k, i.e. ux

k−1 ≥ ux
k , it follows Mux

k−1 ≥ Mux
k and therefore 1 + δxFx

k (t) ≥ 1,
or equivalently Fx

k (t) ≥ 0.
Now on top of the model for the OIS rates, it remains to suitably specify the

dynamics of the Libor rates Lx
k in order to completely specify the multiple curve

model. To do so, a similar idea can be used. More precisely, one postulates that

1 + δxLx
k(t) = M

vx
k−1

t

M
ux

k
t

(4.23)

for every k = 2, . . . , Mx and t ∈ [0, Tx
k−1] and where vx

k−1 ∈ R
d+ ∩ IT is some vec-

tor. Hence, the process 1 + δxLx
k is a QT x

k -martingale by exactly the same arguments
as above. In addition, if vx

k−1 ≥ ux
k , then Mvx

k−1 ≥ Mux
k and 1 + δxLx

k(t) ≥ 1, or equiv-
alently Lx

k(t) ≥ 0.
This procedure presents the main modeling idea. The questions that still have to

be answered are, if such sequences of vectors (ux
k) and (vx

k) can be found for any given
initial term structure of the forward OIS and the forward Libor rates. Moreover, in
case of an affirmative answer, do these sequences possess the desired monotonicity
properties?The following proposition,which summarizes the results shownbyGrbac
et al. (2014), describes themain properties of themodel and explains how to construct
it from a given initial term structure of OIS and Libor rates.

Proposition 4.1 Consider the finest tenor structure T , let p(0, Tl), l ∈ K , be the
initial term structure of non-negative OIS bond prices and assume that

p(0, T1) ≥ · · · ≥ p(0, TM)

Moreover, for a fixed tenor x and the corresponding tenor structure T x, let Lx
k(0),

k ∈ K x, be the initial term structure of non-negative forward Libor rates and assume
that for every k ∈ K x

Lx
k(0) ≥ 1

δx

(
p(0, Tx

k−1)

p(0, Tx
k )

− 1

)
= Fx

k (0) (4.24)

Then the following statements are true:

1. There exists a decreasing sequence u0 ≥ u1 ≥ · · · ≥ uM = 0 in R
d+ ∩ IT , such

that

Mul
0 = p(0, Tl)

p(0, TM)
for all l ∈ K (4.25)

Furthermore, for each k ∈ K x, we set
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ux
k := ul (4.26)

where l ∈ K is such that Tl = Tx
k .

2. There exists a sequence vx
0, vx

2, . . . , vx
Mx

= 0 in R
d+ ∩ IT , such that vx

k ≥ ux
k and

M
vx

k
0 = (1 + δxLx

k+1(0))M
ux

k+1
0 , for all k = 0, 1, . . . , Mx − 1 (4.27)

3. If X is one-dimensional, the sequences (ux
k)k∈K x and (vx

k)k∈K x are unique.
4. If all initial forward OIS rates and initial spreads are positive, then the sequence

(ux
k) is strictly decreasing and vx

k > ux
k, for all k = 0, 1, . . . , Mx − 1.

Therefore, from the model construction it follows immediately:

1. Fx
k and Lx

k are QT x
k -martingales, for every k ∈ K x.

2. Lx
k(t) ≥ Fx

k (t) ≥ 0, for every k ∈ K x and t ∈ [0, Tx
k−1].

Remark 4.2 The results of Proposition 4.1 confirm that, for given initial term struc-
tures, the affine Libor model with multiple curves can theoretically be constructed
by choosing sequences (ux

k) and (vx
k) as described above. Regarding the practical

implementation of the model, one notices that when the driving process is multidi-
mensional (which will typically be the case in applications), the vector parameters
(ux

k) and (vx
k) are not unique and it seems that there is no canonical choice for them.

This in turn gives a freedom to devise special cases of the model by pre-choosing
various suitable structures for these sequences and then fitting the initial structures.
One such example is a factor model with common and idiosyncratic components
for each OIS and Libor rate, which is presented in Sect. 8 of Grbac et al. (2014)
and where this is achieved by setting some components of (ux

k) and (vx
k) to zero or

mutually equal in order to exclude the effect of certain components of the driving
process on each specific rate.

Remark 4.3 Themultiple curve affine Libor model is constructed under the terminal
forward measure QTM . Grbac et al. (2014) show that the model structure is preserved
under different forward measures. More precisely, the process X remains an affine
process, although its ‘characteristics’ become time-dependent, under any forward
measure other than QTM . The affine property plays a crucial role in the derivation of
tractable pricing formulas for interest rate derivatives in the next subsection. Note,
furthermore, that the multiple curve affine LIBORmodel fulfills requirements (M1)–
(M3), which are consistent with the typical market observations of nonnegative inter-
est rates and spreads. However, a phenomenon of negative values of various interest
rates has been continually observed in the Europeanmarkets starting from the second
half of 2014 and thus, it is worthwhile mentioning that also negative interest rates can
be easily accommodated in this setup by considering, for example, affine processes
on Rd instead of Rd+ or ‘shifted’ positive affine processes where supp(X) ∈ [a,∞)d

with a < 0. A specification of the multiple curve affine Libor model allowing for
negative rates and positive spreads is presented in Sect. 4.1 of that paper.
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Remark 4.4 (Connection to Libor market models) Having amodel of this Sect. 4.2 in
which the dynamics of the OIS and the Libor rates are given by (4.22) and (4.23), it is
natural to look for a possible relationship between this model and the multiple curve
Libor market models of Sect. 4.1. This relationship has been established in Grbac
et al. (2014).More precisely, starting from (4.22) and the definition of themartingales
Mux

k given in (4.18), as well as the definition of the process X in (4.13), and using
Itô’s formula and some algebraic manipulations, one arrives at the dynamics of the
OIS rate Fx

k under the forward measure QT x
k

dFx
k (t)

Fx
k (t)

= Γ T
x,k(t) dwx,k

t (4.28)

with the volatility structure Γx,k = (Γ 1
x,k, . . . , Γ

d
x,k) ∈ R

d+ provided by

Γ i
x,k(t) := 1 + δxFx

k (t)

δxFx
k (t)

(
Bux

k−1,i(TM − t) − Bux
k ,i(TM − t)

)√
Xi

t σi (4.29)

and the QT x
k -Wiener process wx,k = (wx,k,1, . . . , wx,k,d) given by

wx,k,i := wi −
Mx∑

l=k+1

∫ ·

0

δxFx
l (t)

1 + δxFx
l (t)

Γ i
x,l(t) dt

= wi −
Mx∑

l=k+1

∫ ·

0

(
Bux

l−1,i(TM − t) − Bux
l ,i(TM − t)

)√
Xi

t σi dt. (4.30)

Note from (4.29) that the volatility structure is determined by σi and by the driving
process itself via Bux

k−1,i(TM − t) and Bux
k ,i(TM − t), and also that there is a built-in

shift in the model by construction. Furthermore, we notice that the dynamics of the
OIS rates in Eq. (4.28) correspond to (4.8) in the Libor market model of Sect. 4.1.

In complete analogy, starting from the dynamics of the Libor rates in (4.23) and
introducing the volatility structure Λx,k = (Λ1

x,k, . . . , Λ
d
x,k) ∈ R

d+

Λi
x,k(t) := 1 + δxLx

k(t)

δxLx
k(t)

(
Bvx

k−1,i(TM − t)−Bux
k ,i(TM − t)

)√
Xi

t σi (4.31)

one obtains for Lx
k the followingQT x

k -dynamics in the spirit of the Libormarket model

dLx
k(t)

Lx
k(t)

= ΛT
x,k(t) dwx,k

t (4.32)

where wx,k is the QT x
k -Wiener process given above.
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4.2.3 Pricing in the Multiple Curve Affine Libor Model

Thanks to its tractability under all forward measures, the multiple curve affine Libor
model allows for semi-analytical pricing of interest rate derivatives.Belowwepresent
themain results fromGrbac et al. (2014) and refer to the paper for details. In particular,
the valuation of caplets based onFourier transformmethods is of the same complexity
as the valuation of caplets in the single-curve affine Libor model. In order to obtain
semi-closed pricing formulas for swaptions, Grbac et al. (2014)make use of the linear
boundary approximation proposed bySingleton andUmantsev (2002) combinedwith
Fourier transform methods.

Let us begin by considering linear derivatives, namely interest rate swaps and basis
swaps. We use the definitions and the notation from Sects. 1.4.3 and 1.4.5, assuming
for simplicity that the nominal is N = 1. Since the modeling objects in the multiple
curve affine Libor model are directly the forward Libor rates, it is straightforward
to conclude that the time-t value of the interest rate swap on the tenor structure T x

with fixed rate denoted by R is given by

PSw(t;T x, R) = δx
Mx∑

k=1

p(t, Tx
k )
(
Lx

k(t) − R
)

and the fair swap rate R(t;T x) is therefore

R(t;T x) =
∑Mx

k=1 p(t, Tx
k )Lx

k(t)∑Mx
k=1 p(t, Tx

k )
(4.33)

Similarly, the time-t value of the basis swap defined on the tenor structures T x1 and
T x2 with spread S is expressed as

PBSw(t;T x1 ,T x2) =
Mx1∑
i=1

δx1p(t, Tx1
i )Lx1

i (t) −
Mx2∑
j=1

δx2p(t, Tx2
j )
(
Lx2

j (t) + S
)

(4.34)

The fair basis swap spread SBSw(t;T x1 ,T x2) is thus given by

SBSw(t;T x1 ,T x2) =
∑Mx1

i=1 δx1p(t, Tx1
i )Lx1

i (t) −∑Mx2
j=1 δx2p(t, Tx2

j )Lx2
j (t)∑Mx2

j=1 δx2p(t, Tx2
j )

(4.35)

Passing now to non-linear derivatives, their pricing is based on the affine property
of the driving process under all forward measures and an application of Fourier
transform methods for option pricing. The Fourier transform methods for option
pricing were discussed already in Chap.3.

http://dx.doi.org/10.1007/978-3-319-25385-5_1
http://dx.doi.org/10.1007/978-3-319-25385-5_1
http://dx.doi.org/10.1007/978-3-319-25385-5_3
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Let us first consider a caplet, as defined in Sect. 1.4.6. A straightforward applica-
tion of the Fourier transform method yields the following pricing formula, which is
proved in Proposition 6.1 in Grbac et al. (2014).

Proposition 4.2 Consider a tenor x and a caplet with strike K and with payoff
δx(Lx

k(T
x
k−1) − K)+ at time T x

k . Its time-0 price is given by

PCpl(0; Tx
k , K) = p(0, Tx

k )

2π

∫
R

K1−R+iw
x

ΘW x
k−1

(R − iw)

(R − iw)(R − 1 − iw)
dw (4.36)

for any R ∈ (1,∞) ∩ I x
k , Kx := 1 + δxK and where

I x
k = {z ∈ R : (1 − z)Bux

k (TM − Tx
k−1) + zBvx

k−1(TM − Tx
k−1) ∈ IT

}
(4.37)

The random variable W x
k−1 is defined as

W x
k−1 = log

(
M

vx
k−1

T x
k−1

/M
ux

k
T x

k−1

)

= Avx
k−1(TM − Tx

k−1) − Aux
k (TM − Tx

k−1)

+ 〈Bvx
k−1(TM − Tx

k−1) − Bux
k (TM − Tx

k−1), XT x
k−1

〉
=: A + 〈B, XT x

k−1
〉 (4.38)

with the moment generating function ΘW x
k−1

under the measure QT x
k given by

ΘW x
k−1

(z) = ET x
k
{
ezW x

k−1
} = ET x

k
{
exp

(
z(A + 〈B, XT x

k−1
〉))}

which is known explicitly thanks to the affine property of the model.

Note that the pricing formula (4.36) has an arbitraryR ∈ (1,∞) ∩ I x
k on the right-

hand side. Theoretically, the value of the right-hand side does not depend on the
specific choice of R. However, different choices of R may affect the efficiency of
the numerical implementation.

Regarding swaption pricing in the affine multiple curve Libor model, let us con-
sider a swaption as defined in Sect. 1.4.7. The time-0 price of a swaptionwith exercise
date Tx

0 and swap rate R, written on an underlying swap with tenor structure T x, is
given by

PSwn(0; Tx
0 ,T

x, R) = p(0, Tx
0 ) EQTx

0
{(

PSw(Tx
0 ;T x, R)

)+}

where PSw(Tx
0 ;T x, R) is the price of the underlying swap at time Tx

0 which can be
expressed as follows

http://dx.doi.org/10.1007/978-3-319-25385-5_1
http://dx.doi.org/10.1007/978-3-319-25385-5_1
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PSw(Tx
0 ;T x, R) = δx

Mx∑
k=1

p(Tx
0 , Tx

k )(Lx
k(T

x
0 ) − R) =

Mx∑
k=1

M
vx

k−1

T x
0

M
ux
0

T x
0

−
Mx∑

k=1

Rx

M
ux

k
T x
0

M
ux
0

T x
0

where Rx := 1 + δxR. Here we have used (4.20), (4.22) and the telescopic product
to obtain

p(Tx
0 , Tx

k ) = p(Tx
0 , Tx

k )

p(Tx
0 , Tx

k−1)
· · · p(Tx

0 , Tx
1 )

p(Tx
0 , Tx

0 )
= M

ux
k

T x
0

M
ux
0

T x
0

(4.39)

and Eq. (4.23) for Lx
k(T

x
0 ). Therefore, for the swaption price we have

PSwn(0; Tx
0 ,T

x, R) = p(0, Tx
0 ) EQTx

0

⎧⎨
⎩
⎛
⎝ Mx∑

k=1

M
vx

k−1

T x
0

M
ux
0

T x
0

−
Mx∑

k=1

Rx

M
ux

k
T x
0

M
ux
0

T x
0

⎞
⎠

+⎫⎬
⎭

= p(0, TM) EQTM

⎧⎨
⎩
(

Mx∑
k=1

M
vx

k−1

T x
0

−
Mx∑

k=1

RxM
ux

k
T x
0

)+⎫⎬
⎭ (4.40)

where the second equality follows by a measure change from QT x
0 to QTM , cf. (4.17).

Evaluating the above expectation is a computationally demanding task, due to
the high-dimensionality of the problem. However, in order to arrive at semi-closed
pricing formulas based on the affine property of the model and the Fourier transform
methods, an efficient and accurate linear boundary approximation developed in Sin-
gleton and Umantsev (2002) can be used. Numerical results for this approximation
are reported in Grbac et al. (2014) and below we describe the method and cite the
main result.

Firstly, one defines the probability measures Q
T x

k , for every k ∈ K x, by the
Radon–Nikodym density

dQ
T x

k

dQTM

∣∣∣
Ft

= M
vx

k
t

M
vx

k
0

(4.41)

The process X, defined by its components in (4.13), is a time-inhomogeneous affine

process under every Q
T x

k , which can be shown exactly in the same way as for the

forward measures QT x
k . The expectation with respect to the measure Q

T x
k will be

denoted by E
T x

k below.
Next, starting from the second equality in (4.40) and using the definitions of

martingales Mux
k and Mvx

k−1 given in (4.18) and (4.19), one defines the function f :
R

d+ → R by
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f (y) =
Mx∑
i=1

exp
(
Avx

i−1(TM − Tx
0 ) + 〈Bvx

i−1(TM − Tx
0 ), y〉)

−
Mx∑
i=1

Rx exp
(
Aux

i (TM − Tx
0 ) + 〈Bux

i (TM − Tx
0 ), y〉) (4.42)

This function determines the exercise boundary for the price of the swaption. Since
the characteristic function of f (XT x

0
) cannot be computed explicitly, the method of

Singleton and Umantsev (2002) is used and f is approximated by a linear function.
More precisely, one has

f (XT x
0
) ≈ f̃ (XT x

0
) := C + 〈D, XT x

0
〉 (4.43)

where the constants C andD are determined according to the linear regression proce-
dure described in Singleton and Umantsev (2002, pp. 432–434). The line 〈D, XT x

0
〉 =

−C approximates the exercise boundary, hence C,D are strike-dependent. Let �(z)
denote the imaginary part of a complex number z ∈ C. Now, we have the following
result.

Proposition 4.3 Assume that C,D are determined by the approximation (4.43). The
price of the swaption with swap rate R, option maturity T x

0 , on a swap with tenor
structure T x, is approximated by

PSwn(0; Tx
0 ,T

x, K) ≈ p(0, TM)

Mx∑
i=1

M
vx

i−1
0

[
1

2
+ 1

π

∫ ∞

0

�(ξ̃x
i−1(z)

)
z

dz

]

− Rx

Mx∑
i=1

p(0, Tx
i )

[
1

2
+ 1

π

∫ ∞

0

�(ζ̃x
i (z)

)
z

dz

]
(4.44)

where ζ̃x
i and ξ̃x

i approximate the characteristic functions

ζx
i (z) := ET x

i
{
exp

(
izf (XT x

0
)
)}

and ξx
i (z) := E

T x
i
{
exp

(
izf (XT x

0
)
)}

and are given by

ζ̃x
i (z) := ET x

i
{
exp

(
iz̃f (XT x

0
)
)}

= exp
(
izC + ABux

i (TM−T x
0 )+izD(Tx

0 ) − ABux
i (TM−T x

0 )(Tx
0 )

+ 〈
BBux

i (TM−T x
0 )+izD(Tx

0 ) − BBux
i (TM−T x

0 )(Tx
0 ), X0

〉)
(4.45)

ξ̃x
i (z) := E

T x
i
{
exp

(
iz̃f (XT x

0
)
)}

= exp
(
izC + ABvx

i (TM−T x
0 )+izD(Tx

0 ) − ABvx
i (TM−T x

0 )(Tx
0 )

+ 〈
BBvx

i (TM−T x
0 )+izD(Tx

0 ) − BBvx
i (TM−T x

0 )(Tx
0 ), X0

〉)
(4.46)
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Remark 4.5 Note that an approximate pricing formula for the price of a basis swap-
tion defined in Remark 1.10 can be derived as well. For details we refer to Grbac
et al. (2014).

Remark 4.6 (Calibration) Another important remark regarding the multiple curve
affine model is its flexibility to calibrate to option market data. A specification of
the model based on the CIR driving processes with jumps proves to fit very well the
caplet data, simultaneously for multiple tenors. Since this issue is beyond the scope
of this book, we refer the interested reader to Grbac et al. (2014) for all the details.

4.3 Multiplicative Spread Models

In this section we give an overview of the modeling approaches based on multiplica-
tive spreads. The idea to consider themultiplicative spreads has been first proposed in
Henrard (2007, 2010), see also the recent book Henrard (2014). The same choice for
the modeling quantities has been made in the recent paper by Cuchiero et al. (2015).
Recall from (1.36) of Sect. 1.4.4 (noting that F(t; T , T + Δ) = ROIS(t; T , T + Δ))
that the multiplicative forward Libor-OIS spreads are defined as

Σ(t; T , T + Δ) = 1 + ΔL(t; T , T + Δ)

1 + ΔF(t; T , T + Δ)
(4.47)

where as usual

L(t; T , T + Δ) = EQT+Δ {L(T; T , T + Δ) | Ft}

denotes the forward Libor rate (FRA rate) and the forward OIS rates are defined via
relation (see (1.16))

1 + ΔF(t; T , T + Δ) = p(t, T)

p(t, T + Δ)

Note that the notation Σ(t; T , T + Δ) in (4.47) corresponds to the notation SΔ(t, T)

in Cuchiero et al. (2015). As Henrard (2014) and Cuchiero et al. (2015) point out, the
choice of multiplicative spreads as modeling quantities instead of the forward Libor
rates is made for the convenience of modeling. Empirical findings on the positivity
and monotonicity of the additive spreads with respect to the tenor Δ motivate one
to model directly the spreads instead of the forward Libor rates in order to access
more easily those two features, cf. also the comments in Sect. 4.1. Passing from the
additive to the multiplicative spreads still serves the same purpose, while allowing
for more analytical tractability in the model. Moreover, as noticed by Cuchiero et al.
(2015), the multiplicative spreads are related to the forward exchange rates when the

http://dx.doi.org/10.1007/978-3-319-25385-5_1
http://dx.doi.org/10.1007/978-3-319-25385-5_1
http://dx.doi.org/10.1007/978-3-319-25385-5_1
http://dx.doi.org/10.1007/978-3-319-25385-5_1
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multiple curve market is considered in a foreign exchange analogy (see Sect. 3.3.1.2,
Remark 3.8).

In the work of Henrard, expressions for the prices of various interest rate deriva-
tives in terms of the multiplicative spreads have been developed. For the dynamics
of the spreads, Henrard introduces some assumptions that, from a modeling point of
view, appear to be rather restrictive. The assumptions are, in particular: the spreads
are supposed to be independent from the forward OIS rates F(t; T , T + Δ), and for
tractable pricing of optional derivatives, an assumption of the spreads being constant
for each maturity is introduced in addition. As stated in Sect. 7.3 of Henrard (2014),
this has the advantage of allowing to determine the price of any instrument in the
post-crisis setting by directly applying the corresponding pre-crisis formula (in the
case of optional derivatives one has only to scale the strike). To model the OIS bond
price dynamics Henrard (2010) considers an HJM 1-factor Gaussian framework; cf.
Sect. 2 therein.

The framework proposed in Cuchiero et al. (2015), that we shall describe in more
detail below, allows for more modeling flexibility and, in fact, it can be shown that
many of the existing modeling approaches can be recovered from their setting. To
this effect the authors develop a general semimartingale HJM framework for the
multiple curve term structure, which is inspired by Kallsen and Krühner (2013).
Their approach is situated in between the HJM and the LMM approaches and in this
sense is similar to the approach taken in Sect. 3.2. Concerning the model choice for
the dynamics of the spreads, the affine specification of the framework by Cuchiero
et al. (2015) can also be seen as a possible extension to continuous tenors of the
model from Sect. 4.2 (see Remark 4.8).

Let us now give an overview of the framework proposed by Cuchiero et al. (2015).
The modeling quantities are the OIS bonds p(t, T) and the multiplicative spreads
Σ(t; T , T + Δ). They consider a finite number of tenors denoted by Δ1, . . . , Δm

(corresponding to tenors from 1day to 12 months). The framework allows to repro-
duce main features of the multiplicative spreads observed in the market (see (4.49)):

Σ(t; T , T + Δi) ≥ 1 and Σ(t; T , T + Δi) ≥ Σ(t; T , T + Δj), for Δi ≥ Δj

The first property is equivalent to the positivity of additive spreads and the second one
is the monotonicity with respect to the tenor. Moreover, the definition (4.47) of the
spreadΣ(t; T , T + Δi) implies that it has to be aQT -martingale because the forward
Libor rate 1 + ΔL(·; T , T + Δ) is aQT+Δ-martingale and dQT

dQT+Δ |Ft = 1+ΔF(t;T ,T+Δ)

1+ΔF(0;T ,T+Δ)

by (1.15) and (1.16).
As stated above, to develop their framework, Cuchiero et al. (2015) make use of

the classical HJM setup presented in the philosophy of Kallsen and Krühner (2013).
The main idea behind this approach is to identify “canonical” assets which are the
underlyings for the assets of interest and then obtain a convenient parametrization (a
“codebook” as referred to inKallsen andKrühner 2013) of the related term structures.
In order to do so, one first specifies simple elementarymodels for the term structure of
the canonical assets to understand the general relations that have to hold between the

http://dx.doi.org/10.1007/978-3-319-25385-5_3
http://dx.doi.org/10.1007/978-3-319-25385-5_3
http://dx.doi.org/10.1007/978-3-319-25385-5_3
http://dx.doi.org/10.1007/978-3-319-25385-5_1
http://dx.doi.org/10.1007/978-3-319-25385-5_1
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fundamentalmodeling quantities and thus obtains the codebooks; then one prescribes
a stochastic evolution for the codebooks, which has to satisfy certain consistency
conditions. Let us illustrate this approach on the first fundamental quantities in the
framework of Cuchiero et al. (2015), which are the OIS bonds p(t, T) (a similar
procedure is then repeated for the second fundamental modeling quantities, i.e. the
multiplicative spreads). The underlying canonical asset for the OIS bonds is the OIS
short rate r. The idea is thus to exploit the connection of the OIS bond prices and the
OIS bank account Bt = exp(

∫ t
0 rsds), supposing firstly that r is a deterministic short

rate. This yields the relation rT = − ∂
∂T log(p(t, T)), which is the codebook for the

bond prices. Now, sincemarket data indicate that− ∂
∂T log(p(t, T)) evolves randomly

over time, this leads to instantaneous forward rates ft(T) = − ∂
∂T log(p(t, T)), for

which then a stochastic model is specified. Setting for the instantaneous forward rate
ft(T) = − ∂

∂T log(p(t, T)) = −ηt(T) and Zt = − logBt = − ∫ t
0 rsds for the short rate

r, Cuchiero et al. (2015) specify an HJM OIS bond price model given by a quintuple
(Z, η0,α,σ, X) such that

p(t, T)

Bt
= eZt+

∫ T
t ηt(u)du

with

ηt(T) = η0(T) +
∫ t

0
αs(T)ds +

∫ t

0
σs(T)dXs (4.48)

where (X, Z) is a general multidimensional semimartingale with absolutely con-
tinuous characteristics (Itô semimartingale) and the processes α and σ satisfy the
implicit measurability and integrability conditions, together with a suitable HJM
drift condition to ensure absence of arbitrage in the OIS bonds. This in particular
yields

p(t, T)

Bt
= E

{
eZT | Ft

}

Similarly, for the multiplicative spreadΣ(t; T , T + Δi), passing via a suitable code-
book, Cuchiero et al. (2015) again obtain an HJM-type model given by a quintuple
(Zi, ηi

0,α
i,σi, X) such that

Σ(t; T , T + Δi) = eZi
t +
∫ T

t ηi
t (u)du

with ηi having a dynamics similar to (4.48) with corresponding αi and σi, which
satisfy a drift condition ensuring theQT -martingale property ofΣ(·; T , T + Δi). The
quantity Zi

t = log(Σ(t; t, t + Δi)) can be seen as the log-spot spread and −ηi
t(T) =

− ∂
∂T log(Σ(t; T , T + Δi)) as the forward spread rate, by analogy to the OIS bond

price model. The martingale property of Σ(·; T , T + Δi) yields

Σ(t; T , T + Δi) = EQT
{

eZi
T | Ft

}
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In order to specify the model further, the semimartingales Zi are assumed to be
of the following form

Zi
t = e〈ui,Yt〉

with a common n-dimensional Itô semimartingale Y for all i, and u1, . . . , um given
vectors inRn. A common driving process Y for all tenorsΔi is a choice which allows
to capture the interdependencies between the spreads associated to different tenors.
The vectors ui enable one to implement easily the ordered spreads 1 ≤ Σ(t; T , T +
Δ1) ≤ · · · ≤ Σ(t; T , T + Δm).More precisely, onewould have to consider a process
Y taking values in some cone C ⊂ R

n and vectors ui ∈ C∗ such that 0 ≺ u1 ≺ · · · ≺
um, where C∗ denotes the dual cone of C with the order relation ≺. This then easily
implies

1 ≤ Σ(t; T , T + Δi) = EQT
{

e〈ui,YT 〉
∣∣∣Ft

}
≤ EQT

{
e〈uj,YT 〉

∣∣∣Ft

}
= Σ(t; T , T + Δj)

(4.49)
for Δi < Δj.

Remark 4.7 Making use of relation (4.47), the payoffs of all linear and optional
interest rate derivatives can be expressed as functions of the OIS bond prices p(t, T)

and the multiplicative spreadsΣ(t; T , T + Δi), cf. Cuchiero et al. (2015) for explicit
expressions in the general framework. The prices of linear derivatives can thus easily
be expressed in terms of these modeling quantities.

Regarding optional derivatives, to obtain a tractable specification of the general
framework, Cuchiero et al. (2015) suggest the class of affine processes as driving
processes, which allows convenient pricing by standard techniques resorting to the
Fourier transform.

Remark 4.8 Even though the approach proposed by Cuchiero et al. (2015) can be
situated in the HJM framework, its affine specification can also be regarded as a
continuous tenor extension of the affine Libor model from Sect. 4.2 with the differ-
ence that the quantities modeled here are not the forward Libor rates, but rather the
multiplicative spreads which in this case are given by

Σ(t; T , T + Δi) = Mv(T ,Δi)
t

Mu(T)
t

where u(·) and v(·,Δi) are mappings from [0, T ] toRd . Similarly to Sect. 4.2, impos-
ing conditions on these mappings allows to ensure positivity and monotonicity of
the spreads in the model.
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