Chapter 7
The CRaZy Calcium Cycle

Eduardo A. Espeso

Abstract Calcium is an essential cation for a cell. This cation participates in
the regulation of numerous processes in either prokaryotes or eukaryotes, from
bacteria to humans. Saccharomyces cerevisiae has served as a model organism
to understand calcium homeostasis and calcium-dependent signaling in fungi. In
this chapter it will be reviewed known and predicted transport mechanisms that
mediate calcium homeostasis in the yeast. How and when calcium enters the
cell, how and where it is stored, when is reutilized, and finally secreted to the
environment to close the cycle. As a second messenger, maintenance of a controlled
free intracellular calcium concentration is important for mediating transcriptional
regulation. Many environmental stimuli modify the concentration of cytoplasmic
free calcium generating the “calcium signal”. This is sensed and transduced through
the calmodulin/calcineurin pathway to a transcription factor, named calcineurin-
responsive zinc finger, CRZ, also known as “crazy”, to mediate transcriptional
regulation of a large number of genes of diverse pathways including a negative
feedback regulation of the calcium homeostasis system.
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7.1 A Model of Calcium Regulation in Yeasts

In higher eukaryotes entry of calcium in the cell starts concatenated signaling events
some of them are of enormous importance in animals such as initiation of the
heartbeat or the synapses between neurons. In the budding yeast calcium mediates
adaptation to a variety of stimuli such as the presence of mating pheromones (lida
et al. 1990), a damage to endoplasmic reticulum (Bonilla and Cunningham 2003),
and different ambient stresses like salinity, alkaline pH or high osmolarity [reviewed
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Fig. 7.1 Main transport elements of calcium in S. cerevisiae. The chart depicts the relationships
between calcium transporters and their preferential locations in the cell. In the text can be found a
detailed description of these components

in Cunningham 2005]. A general model for calcium homeostasis is depicted in
Fig. 7.1 and the elements participating in this process will be reviewed in this
chapter.

Essentially, calcium enters the cell through different transport mechanisms
generating an increase of cytosolic free calcium concentration. A feedback control
system enables an stable concentration of calcium in cytoplasm of 50-200 nM
(Aiello et al. 2002; Dunn et al. 1994; Miseta et al. 1999). The elevation of
calcium levels in the cytoplasm sequentially activates the calcium binding proteins
calmodulin (CaM) and the serine/threonine phosphatase calciuneurin, which is
composed of the Cnal/Cnb1 or Cmp2/Cnb1 heterodimer. An important final effector
for regulation of transcription is the transcription factor Crz1 a target of calcineurin.
Dephosphorylation of Crzl by calcineurin activity causes its immediate entry in
the nucleus. Nuclear Crzl regulates the transcription of a range of genes. Among
these Crz1-dependent genes are those encoding for calcium pumps Pmr1 and Pmcl.
These two calcium transporters play a key role in regulating cytoplasmic calcium
by either pumping calcium to the ER and Golgi, PMRI1, or to the vacuole, PMCI.
In addition to the previous transport mechanism, calcium is stored in the vacuole
through the activity of the Ca’>*/HT exchanger Vcx1. In the vacuole, calcium
associates with polyphosphates constituting the “non-reusable” stock of calcium.
However a low level of vacuolar calcium remains free and it can be transported back
to the cytoplasm via the specific channel Yvcl. Release of calcium from the internal
stores it is tightly regulated and occurs in response a number of stimuli. Calcium in
the ER and Golgi may preferentially follow a secretion process depleting the cell of
this cation. In a way, calcium exocytosis closes the cycle of calcium in the yeast.
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7.2 How Calcium Enters the Cell?

Since calcium is a basic element of cell signaling it is expected that specific transport
mechanisms functionally located at the plasma membrane (PM) mediate the influx
of this cation. Three different mechanisms of transport have been postulated for
Ca?* entry (Fig. 7.1). To date, the only identified transport mechanism is a calcium
channel based on two components shown to be responsible of calcium entry in
the cell (Courchesne and Ozturk 2003; Locke et al. 2000). Midlp and Cchlp are
proteins of the PM that are thought to assemble into a calcium channel (Paidhungat
and Garrett 1997), however evidence also suggests that they may function indepen-
dently (Locke et al. 2000). Cchl, for calcium channel homologue, was primarily
identified as a Ca®>* channel homologue due to its sequence similarity to the
pore-forming subunit (a1) of a plasma membrane, voltage-gated, calcium channel
from higher eukaryotes (Paidhungat and Garrett 1997). Cchlp is a large protein of
2039 amino acids with 22-24 predicted transmembrane domains (TMHMM, http://
www.yeastgenome.org/locus/S000003449/protein) organized into four hydrophobic
repeats (Paidhungat and Garrett 1997).

Midl, from Mating pheromone-Induced Death, was identified in a screen for
mutants deficient in survival after mating differentiation and in calcium uptake
(lida et al. 1994). Later, Midl was classified as a stretch-activated channel, with
similarities to higher eukaryotes SA-Cat channels (Kanzaki et al. 1999). Midl is
a 548 amino acid protein with four hydrophobic regions (named H1 to H4) and
two cysteine rich regions (C1 and C2) (see PFAM entry PF12929). In addition to
a plasma membrane localization, Midl was found to be also present in ER as a
200-kDa oligomer by covalent cystein bounding (Yoshimura et al. 2004), probably
through the cysteine rich regions. The role of hydrophobic regions in cellular
distribution of Midl was established, being H1 to H3 required for PM and ER
localization and H1 alone for PM localization in response to mating pheromone
(Ozeki-Miyawaki et al. 2005).

Importantly, midIA cchiA double mutants are indistinguishable of single
mutants, this and physiological data early suggested that Midl and Cchl might
be actually components of a single yeast Ca>* channel (Paidhungat and Garrett
1997). Both proteins together could act as a voltage-gated Ca>* channel (VGCC)
becoming activated in response to depolarization (Catterall 2000; Cui et al. 2009a).
The presence of mating pheromone or depletion of manganese from the medium
(Paidhungat and Garrett 1997), depletion of calcium from the ER (Bonilla et al.
2002), medium alkalinisation (Viladevall et al. 2004), and cold, osmotic or saline
stresses (Matsumoto et al. 2002; Peiter et al. 2005; Viladevall et al. 2004), are among
others, signals that trigger calcium entry in the cell through the Mid1/Cchl VGCC.
Of importance to understand how calcium entry is regulated, is the fact that absence
of either or both components of yeast VGCC does not completely perturb calcium
homeostasis. Based on calcium resistance/tolerance experiments and mathematical
models another two transport systems have been postulated (Cui and Kaandorp
2006). These have not been identified so far in S. cerevisiae, these transporters or
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pumps have been termed as transporter X and transporter M. Activities of these
Ca®" influx transporters are modulated by extracellular Mg?™ and the possible
identity of these transporters is speculated below.

Finally, it is interesting to note that as important as those mechanisms present
in the yeast are those mechanisms which are absent. Different studies have shown
the absence of calcium ATPases of the SERCA family at the plasma membrane
(reviewed in Cunningham 2005), as well as the mechanism that directly couples
entry of calcium through the PM towards the ER. In animal cells, the store-operated
calcium channels (SOCs) allows replenishment of the ER when becomes depleted
of calcium by the action of resident calcium ATPases (Zhou et al. 2010a, b). This
is a mechanism that ensures the adequate level of exchangeable pool of calcium in
animal cells, but lacking these systems in S. cerevisiae entry of calcium through the
PM is the major bottle neck for appropriate storage of intracellular calcium. Thus it
is important to understand how calcium is kept into the yeast cell.

7.3 How Calcium is Stored in a Fungal Cell?

Under certain ambient conditions, a massive entry of calcium in the cell occurs and
this represents a major stress for the yeast. Excessive free calcium is toxic because it
may interact with numerous proteins or oligomolecules (ie. polyphosphate-derived
compounds such as NTPs) in the cytoplasm. To prevent deleterious effects, the
excess of calcium is rapidly eliminated by the activity of different Ca>* pumps and
exchangers and cytosolic Ca’>* is maintained at very low concentration, ranging
50-200 nM (see Cui et al. 2009b and references therein). In fact, there are two
major mechanisms in this process of calcium sequestration (Fig. 7.1). Calcium can
be either stored in the vacuoles or in secretory compartments of ER and Golgi. Most
researchers identify the vacuole as the main organelle for storage and sink, and the
compartmentalization of Ca>* in the ER/Golgi revealed a pathway for depleting and
recycling intracellular calcium (reviewed in Cui et al. 2009a).

For vacuolar storage of Ca’>t two principal transporters have been identified;
the P-type ATPase Pmcl pump (Cunningham and Fink 1994a, b) and the cal-
cium/hydrogen exchanger, Vcx1 (Cunningham and Fink 1996; Miseta et al. 1999).

Pmcl is a 1173 amino acid calcium ATPase. Three highly conserved domains
among fungal and higher eukaryote Pmcl homologues, the E1-E2 ATPase
(PF00122), the haloacid dehalogenase-like hydrolase motif (PF00702) and the
C-terminal ATPase domain (PF00689). Notably, these motifs are shared with other
P-type ATPases, such as the Nat/Li™ pumps Ena (Enal, 2 and 5), the plasma
membrane proton pump (H*-ATPase), the proton-potassium pump (H*,K*-
ATPase), and the calcium ATPase PMRI.

Since absence of Pmcl1 activity is required for tolerance to elevated extracellular
calcium levels, it is not surprising that expression of PMCI is up-regulated when
intracellular calcium levels elevate (Marchi et al. 1999). Loss of Pmcl function
reduces the amount of non-exchangeable calcium in vacuole, however inactivation
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of calcineurin restores calcium sequestration in the vacuole of a null pmcl mutant
(Cunningham and Fink 1994b). The explanation for this phenotype is that tolerance
of null pmcl mutants to calcium is dependent on the activity of Vcx1 which, on the
other hand, it is dependent on calcineurin activity (Cunningham and Fink 1996).

Vex1, named as vacuolar HT/Ca®>* exchanger (Cunningham and Fink 1996), is
also known as HUM1, for “high copy number undoes manganese”. Mutations in
HUMI were identified because conferred sensitivity to Mn?" and this phenotype
was exacerbated in hypofunctional calcineurin mutants (Pozos et al. 1996). Vcx1
shares similarities to other cation exchangers, among them are those involved in the
antiport of Na™, K* with HT (Nhx1 and Vnx1) located the vacuole or prevacuolar
compartment/vesicles (Nhx1) (Cagnac et al. 2010). Despite the similarity of Vnx1p
to other members of the CAX (calcium exchanger) family of transporters, Vnx1lp
is unable to mediate Ca®" transport but is a low affinity Na*/H' and K*/H*
antiporter (Cagnac et al. 2007).

Biochemical data using purified vacuoles and vacuole membrane vesicles have
evidenced that Ca®>* transport activity of Pmc1 and Vcx1, more dramatically for the
latter, depends on the pH gradient. Calcium uptake is promoted when the interior
of these compartments is acid and lost when alkaline. This optimal acidification of
vacuoles is maintained by the vacuolar HT V-ATPase activity (Dunn et al. 1994)
and mutations in subunits of this ATPase strongly reduced tolerance to calcium (see
below).

In 1994 it was discovered that the main reservoirs of intracellular calcium were
vacuoles and ER/Golgi (Fig. 7.1). Pmcl1 in the vacuole and a second calcium P-
type ATPAse at the ER/Golgi, Pmrl, were essential for viability of S. cerevisiae
(Cunningham and Fink 1994a). Pmrl is a high affinity calcium pump. Initially, it
was located to the vacuoles but subcellular fractionation studies located to ER and
Golgi vesicles (Cunningham and Fink 1994a; Sorin et al. 1997; Strayle et al. 1999).
In fact, Pmrl is a P-type Ca>*/Mn?* ATPase (Antebi and Fink 1992; Rudolph et al.
1989) and the transport of either cation can be specifically modified by affecting
distinct amino acids, D778A and Q783A, both locating in transmembrane segment
M6 (Mandal et al. 2000). Important for the Pmr1 functionality is the presence of
a EF hand like motif at the N-terminal region of this pump (Wei et al. 1999).
Mutations in this domain change the affinity of the protein for Ca®>*, Mn?*, or
both.

Pmrl activity is essential for growth of a double pmcl vexI mutant. The activity
of both P-type Ca>* ATPases Pmrl and Pmcl, and the antiporter Vcx1 are key in
maintaining the low cytosolic free calcium concentration which is needed to avoid
inappropriate calcineurin activation and other effects due to the presence of this
cation (Cunningham and Fink 1994a). Deletion of PMRI causes the elevation of
cytoplasmic levels of free calcium and a massive accumulation within vacuoles
(Halachmi and Eilam 1996). In fact, a deletion of PMCI and PMRI is a lethal
genetic combination, leading to elevation of calcium levels, hyper-activation of
calcineurin, and subsequent inactivation of Vcx1 antiporter. Transport activity
of Vcxl1 is inhibited by calcineurin, possibly in a post-translational mechanism
(Cunningham and Fink 1996). Since Ren2 is a negative regulator of calcineurin
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(see below), it participates in the regulation of Vcx1 (Kingsbury and Cunningham
2000), which in turn involves the activity of Crzl, that modulates transcription of
this calcineurin regulator (Mehta et al. 2009). Expression of Pmc1 is dependent on
the transcription factor Crz1 (Matheos et al. 1997; Stathopoulos and Cyert 1997),
but also activity of Pmcl is regulated. In a screen for negative regulators of Pmcl,
the Nyv1 protein, a vacuolar v-SNARE, was found to inhibit the calcium transport
activity of Pmcl1 in the vacuole membrane, without affecting its expression levels
(Takita et al. 2001).

In contrast to Vcxl and Pmcl, Pmrlp activity is not postranscriptionally
modulated by calcium binding proteins. Pmrl apparently lacks the calmodulin
binding domain at the C-terminus present in other plasma membrane Ca>* ATPases
(PMCAs). However, importance of transport of calcium and manganese to ER
extends beyond being an storage for these cations and different studies evidence
the role of Pmrl in the proper functioning of ER, as for the normal secretion of
proteins, protein maturation and/or degradation (Durr et al. 1998).

7.4 Efflux of Calcium from Internal Stores and Its Recycling

In addition to calcium entry in the cell, a second source for this cation is the return
to cytoplasm from the internal stores. Only part of this intracellular calcium, about
10 % of the total, can be released back to the cytoplasm and it is designated as the
“exchangeable” pool of calcium (reviewed in Cunningham and Fink 1994a).

7.4.1 Release of Calcium from Vacuoles

In vacuoles calcium is present in two forms: a free and a non-usable pool. The latter
is designated as “non-exchangeable” since calcium is associated to polyphosphates.
The concentration of free calcium in vacuoles is at the micromolar range (30 WM)
meanwhile the total calcium was estimated at the millimolar range (2 mM) (Dunn
et al. 1994). However, this reduced free-calcium pool can be returned to the cyto-
plasm when required. In the yeast vacuole it was identified a ion channel responsible
for efflux of vacuolar calcium to the cytoplasm. This activity was designated as
the yeast vacuolar conductance and the YVCI gene (yeast vacuolar channel 1) was
identified (Palmer et al. 2001). Yvcl is a 675 amino acid protein containing six
transmembrane domains and is solely detected in vacuolar membranes. This specific
localization in S. cerevisiae contrasts with that shown by members of the same
family of transporters in higher eukaryotes which locate at the plasma membrane
(reviewed in Cunningham 2005). Yvcl, is a calcium-activated cation channel of
the transient receptor protein family (Denis and Cyert 2002; Palmer et al. 2001).
When yeast cells need the activity of this mechano-sensitive Ca>* channel? In the
case of a severe hypertonic shock, the vacuolar free Ca’* can be released into the
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cytosol through the activity of the Yvcl. This calcium release serves to stimulate the
calmodulin/calcineurin network and activates Crz1, thus enabling the transcriptional
response to this stress.

7.4.2 Calcium Release from ER and Golgi; the Exocytic
Pathway

The absence genes coding for inositol tri-phosphate (IP3) receptors and ryanodine
receptors, RyR, in the yeast genome, and in general all fungal genomes (reviewed
in Cunningham 2005), clearly indicates that the role of ER and Golgi compartments
in calcium homeostasis is different in fungal cells. Since calcium is stored in the ER
and Golgi by the activity of PMR1 ATPases, and release seems not to be immediate
because other calcium transporters for this activity are unknown a mayor role of
exocytosis is proposed to liberate this compartment of any excess in calcium. In
this way, it has been measured that when the calcium concentrations in Golgi and
ER exceed their resting levels of 300 WM (Pinton et al. 1998) and 10 uM (Aiello
et al. 2002; Strayle et al. 1999), respectively, the calcium in ER and Golgi will be
secreted along with the canonical secretory pathways. Most importantly, calcium
and manganese, both transported by the Pmr1 ATPase, are necessary for the proper
processing and trafficking of peptides and proteins through the secretory pathway.
While Mn?* has a role in protein glycosylation, Ca®>* is required for normal protein
sorting (Durr et al. 1998). As for calcium, the excess of manganese is eliminated via
Golgi and the secretory vesicles (Culotta et al. 2005). Hence, exocytosis is a major
mechanism to largely reduce the intracellular, compartmentalized, pool of calcium,
and other cations, but increasing the extracellular content of these ions, becoming
available for a re-start of calcium transport and signaling.

7.5 Calcium Signaling

S. cerevisiae grows in a wide range of extracellular concentrations of calcium. Yeast
cells are able to adapt to large and rapid modifications in environmental calcium,
ranging from a low concentration of 1 pM to more than 100 mM (Anraku et al.
1991). Part of this adaptation process relies on the activation of a signaling cascade
leading to the modification of the gene expression pattern (Fig. 7.2).

Upon elevation of extracellular levels of calcium a massive influx of this cation
occurs in the yeast. For the free calcium now existing in the cytoplasm, one of
the targets is the small and essential protein calmodulin, Cmd1 (reviewed in Cyert
2001; see Fig. 7.2a). Calmodulin has 4 EF-hand moieties (Davis et al. 1986). Each
EF-hand is able to bind a Ca%t atom, but in the case of S. cerevisiae Cmdl1 the
fourth EF-hand is divergent and most likely is not able to bind calcium (Starovasnik
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Fig. 7.2 Calcium signaling cascade in S. cerevisiae. (a) the calmodulin/calcineurin cascade
towards activation of the transcription factor Crzl. The protein phosphatase calcineurin dephos-
phorylates this transcription factor leading to its transcriptional activation. Among Crzl targets are
the genes PMR1 and PMCI, coding for the P-type ATPases, and (b) calcineurin regulators RCN2
and RCN1. Modulation of calcineurin activity by Rcn2 and Renl alters signaling of Crzl and the
negative effect of this phosphatase on Vex1 activity

et al. 1993). Calmodulin has many roles in the yeast cell which can be classified
into calcium independent and dependent functions (Davis et al. 1986). Among the
calcium-dependent roles is to activate the protein phosphatase 2B calcineurin (see
Fig. 7.2a). In S. cerevisiae calcineurin is composed of a catalytic subunit, the A
subunit encoded by either CMP2 or CNAI isoforms (Cyert et al. 1991), and the
regulatory, B, subunit encoded by CNBI (Cyert and Thorner 1992). Activity of
Cnbl, and subsequently of the calcineurin, is modulated by the a-arrestin Alyl
(O’Donnell et al. 2013) and through myristoylation (Connolly and Kingsbury 2012)
in response to a reduction in calcium signal.

The calcineurin phosphatase may have numerous targets. However, these are
directly recognized through a short motif namely the calcineurin docking domain
(Rodriguez et al. 2009; Roy et al. 2007). An important target of calcineurin is
the Crzl transcription factor (Stathopoulos and Cyert 1997). Crzl is a three zinc-
finger, two classical Cys2His2 fingers and a non-canonical CysCysHisCys finger,
transcription factor that is inactivated and activated in a cyclic, pulsatile dynamic,
phosphorylation/dephosphorylation process in the cell (Dalal et al. 2014). Crzl
mediates in yeast tolerance to high concentrations of different cations, alkalinity
and other types of stresses (reviewed in Cyert 2003).
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Calcineurin modulates the activity of Crzl, at least, regulating its nuclei-
cytoplasmic trafficking (Stathopoulos-Gerontides et al. 1999). Crzl is mainly
cytoplasmic when in a phosphorylated state. A nuclear export signal (NES) becomes
activated and recognized by the exportin MsnSp (Boustany and Cyert 2002).
After calcineurin dependent dephosphorylation, in response to an elevation of the
cytoplasmic concentration of calcium, the nuclear import signal is dephosphorylated
as is the NES. A nuclear transporter Nmd5 (karyopherin Kap119) recognizes and
translocates this dephosphorylated form of Crzl in nucleus following a general
nuclear transport process through the pores located at the nuclear envelope (Poli-
zotto and Cyert 2001). A recent work has shown that Crz1 may enter nucleus in a
stochastic mode. This is a response to a brief calcium dependent stimulus that, in
a non coordinated mode among cells, promote temporal accumulation of Crzl and
other transcription factors into the nucleus (Dalal et al. 2014). This mechanism is
proposed as the basis to provide a fast response to ambient stress signals. However,
following our case of an elevation of cytosolic calcium levels, this network of
calcium binding proteins and de-phosphorylation process activates the nuclear entry
of Crzl in all cells in a culture.

In the nucleus Crzl will bind to precise DNA sequences known as CDRE:s,
calcineurin-dependent regulatory elements, present in the promoter of genes under
its regulation (Mendizabal et al. 2001; Stathopoulos and Cyert 1997). Among these
genes are PMR1 and PMCI1 (for review, see Cyert 2001) and Crzl has a positive
role on their expression levels (Fig. 7.2a). Thus, Crzl is responsible for a rise
in the levels of Pmrl and Pmcl pumps that would locate at the ER/Golgi and
vacuoles, respectively. This effect was early noted by (Beeler et al. 1994; Dunn
et al. 1994) when found that a rise in the cytosolic calcium concentration increased
the non-exchangeable pool of Ca?™. Mutants lacking PMC1 grow poorly in calcium
stress conditions, although growth can be restored by overexpression of PMRI or
VCX1. This reflects the importance of calcium sequestration in tolerance to elevated
concentrations of extracellular of calcium (Cunningham 2005; Cunningham and
Fink 1994b). Therefore, the activity and an adequate level of expression of these
pumps have a direct effect on depleting cytosol of calcium causing the attenuation
of calcineurin-dependent signaling.

Crzl activity also influences calcineurin function. Expression of calcineurin
regulators RCN1 (regulator of calcineurin) and RCN2 are positively modulated by
Crzl (Fig. 7.2b). Ren2 is a negative regulator but Renl could act as a positive and
negative modulator of calcineurin (Kingsbury and Cunningham 2000; Mehta et al.
2009). Modulation of the phosphorylation levels of Rcn proteins by homologues the
glycogen synthase 3 kinase, Gsk3, is the mechanism to activate or inactivate these
calcineurin regulators (Hilioti et al. 2004).

A reduction of calcineurin activity has two major consequences in calcium home-
ostasis. Firstly, the negative effect on Vcx1 activity is reduced and activity of this
antiporter is restored, with an immediate consequence in lowering calcium levels
in the cytoplasm (Fig. 7.2b). Secondly, a low calcineurin activity will consequently
reduce the dephosphorylation process of Crzl, and the kinase activities acting on
this TF will restore the pool of inactive Crzl in the cell. HRR25 encodes for a
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casein kinase I with multiple roles in the cell (Hoekstra et al. 1991; Mehlgarten
and Schaffrath 2003), among them Hrr25 opposes to the activity of calcineurin on
the posttranslational modification of Crz1 (Kafadar et al. 2003). Other kinases (see
below) may act on restoring phosphorylated levels of Crz1, rendering a cytoplasmic
and, thus, inactive form of this TF.

In summary, calcium homeostasis relies on a meticulous regulatory system that
senses, transduces and transcriptionally responds to provide with tools (transporters)
to “clean” the excess of calcium, and with regulators to modulate and attenuate
signal transduction. Survival of cells to calcium stress not only depends on these
specific elements but other players are accessory in some ambient conditions and
mutant backgrounds of need to sustain yeast’s health.

7.6 Other Protein Activities Involved in Calcium
Homeostasis

In 1986, Ohya and collaborators published their work on characterizing recessive
mutations affecting growth in the presence of high calcium concentration in the
media. Eighteen genes, designated as cls (calcium sensitive mutants) were identified
and many of them showed to be necessary for maintaining the structure of function
of the vacuole (Ohya et al. 1986). Among these are genes coding for subunits
of the vacuolar proton ATPase. cls mutations were isolated in different subunits
of the heterocomplex VMA, the vacuolar proton ATPase, constituting the type
IV cls mutants. Among these are Vma3, Vmal, Vmall, Vmal3 as parts of the
ATPase, and Vmal2 the assembly factor (Ohya et al. 1986; Tanida et al. 1996 and
references therein). The role of Vma complex is to provide the correct amount
of protons at the vacuole to allow exchange with Ca>* via Vex1 activity. In this
screen it was found mutations in other two genes of interest, csg/ and csg2. CSG2
encodes a endoplasmic reticulum membrane protein; required for mannosylation of
inositolphosphorylceramide and for growth at high calcium concentrations; protein
abundance increases in response to DNA replication stress (Tanida et al. 1996). Csg2
protein is a transmembrane protein, located in the ER. Biochemical and functional
studies indicated that Cls2/Csg2 is necessary for mobilization of non-exchangeable
pool of calcium distinct from that of the vacuole and plays an important role in
calcium tolerance in the yeast, and would cooperate in stimulating the activity of
calcineurin (Tanida et al. 1996). It is interesting to note that Csg2 could fulfill
the role of ER-calcium efflux transporters from higher eukaryotes (IP3 receptors
and RyR), however this might be an specific mechanism of S. cerevisiae since
orthologues for Csg2 are not found in other fungi. CSG1 (also known as SURI,
suppressor of rvsI61 and rvsI67 mutations, (Beeler et al. 1997)) encodes for
a mannosylinositol phosphorylceramide synthase catalytic subunit, and forms a
complex with regulatory subunit Csg2 at the ER (Desfarges et al. 1993). Notably,
the study of membrane composition, specially the synthesis of sphingolipids and
related molecules has discovered a novel role in calcium homeostasis via influx of
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calcium from the ER to the cytoplasm (Birchwood et al. 2001; Desfarges et al. 1993;
Dickson and Lester 2002). Also related with the composition of membranes and
specifically in aminophospholipids organisation are the type IV of P-type ATPases,
constituted by aminophospholipid translocases APTs or flippases. Of importance
in maintaining calcium homeostasis are Drs2 (Ripmaster et al. 1993) and Neol
(Prezant et al. 1996). These flippases are located in late Golgi and are important for
proper constitution of plasma membrane and exocytosis. Also the P-type ATPase,
type V, is SPFI(YELO31), located to the ER and required for calcium homeostasis.
Absence of both Spfl and Pmr1 function greatly elevate cytoplasmic calcium levels
(Cronin et al. 2002). Reinforcing the importance of ER, Golgi and vacuoles in the
overall calcium managing in the yeast cell is the participation of proteins located
in these compartments, for example, Gdtl, is a transmembrane protein involved in
calcium and pH homeostasis in yeast and higher eukaryotes. It localizes to the cis-
and medial-Golgi apparatus, but the GFP-fusion protein localizes to the vacuole.
The exact role of this protein is unknown, but possibly related to glycosylation
since deficiency in its human homologue TMEM165, a human gene which causes
congenital disorders of glycosylation (Demaegd et al. 2013). At the vacuole also
locate Cccl (Cross-Complements Ca®" phenotype of csgl), this is a vacuolar
Fe?T/Mn>™ transporter that also may participate in the respiration process (Fu et al.
1994; Lapinskas et al. 1996), and ECM27 and YDL206W genes coding for two
members of the CAX (cation exchangers) family of vacuolar transporters, closely
related to Vex1 and Vnx1,

Finally, it is worth to mention the only mutation found causing the need of
large amounts of extracellular calcium for survival, the call/-I mutation (Ohya
et al. 1984). This mutation locates in CDC43 gene, that encodes for a B-subunit
of geranylgeranyltransferase type I, which catalyzes geranylgeranylation to the
cysteine residue in proteins containing a C-terminal CaaX sequence ending in Leu
or Phe. In addition to this novel role in calcium homeostasis, the substrates under its
regulation are important for morphogenesis (Adams et al. 1990).

As for the latter, the precise role in calcium homeostasis of many of these
proteins remains obscure and needs clarification. Some of them open new venues
for understanding how calcium is regulated and associated factors and mechanisms
that modulate calcium storage and managing. However proteins are not the only
new regulatory elements found, but other cations and macromolecules are known to
participate in calcium homeostasis.

7.7 The Role of Magnesium in Regulating the Calcium
Response

Cui and collaborators (2009a) discovered that the calcium sensitivity displayed by a
pmcl mutant was dependent not only on the concentration of extracellular calcium
but on the composition of medium. Further analyses revealed that this suppressing
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factor was the presence of variable concentrations of magnesium in media. In this
way, increasing concentrations of Mg?* elevated the ICsq to calcium toxicity of a
pmcl mutant but also modified sensitivity to calcium caused by the combination of
double or triple pmrl, vexI and/or calcineurin (cnbl) mutations.

Furthermore, this study indicated the existence of a Mg?*-inhibited calcium
transport system located at the PM. Calcium toxicity displayed by a yvcl cchl pmcl
vexI quadruple mutant was suppressed by addition of magnesium to the medium.
In fact, a mathematical modeling of calcium transport across the PM predicted the
presence of at least two transport systems, in addition to that integrated by Mid1
and Cchl, in the plasma membrane. Only in this way it could be accommodated the
experimental data of calcium sensitivities in a variety of single and double mutants
involving pumps and channels, and measurements intracellular levels of calcium.
Magnesium will have a major role in regulating, at least one of these calcium
transport systems. These authors conclude that transporter M is regulated by Mg>™*
and transporter X respond to a hypertonic calcium shock (see also Fig. 7.1).

One of the most abundant divalent cations in cells is magnesium. Mg
participates acting a counterion in stabilizing many macromolecules such as RNA
and DNA or single nucleotides (i.e. ATP). It also mediates in important catalytic
processes and in stabilizing large molecules or membranes (see Wiesenberger et al.
2007 and references there in). Cellular concentrations of Mg?™ are in the millimolar
range (from 15 to 20 mM), about three orders of magnitude lower than those of Ca>*
(100-200 nM). In mammals, entry of Mg>* in the cell is an electrogenic process
requiring a negative charge at the inner side of the PM and the activity of two
transporters (TRPM6 and TRPM?7) (Schlingmann and Gudermann 2005; Schmitz
et al. 2003), or by members of a heterogeneous protein family, designated as CorA
homologues, and found in lower and high eukaryotes (plants and animals), allowing
grow or development even in the presence of very low concentrations of magnesium.
In yeast, Mrs2 and Alrl are orthologues of CorA.

Mg?™ enters the cell through the activity of two members of the CorA family
of transporters, Alrl and Alr2 (Graschopf et al. 2001; Macdiarmid and Gardner
1998). These are the metal ion transporter superfamily, MIT. Alrl and Alr2 may
form oligomeric transporter at the plasma membrane constituting a high affinity
Mg?" uptake system (Wachek et al. 2006). Mg>* can be stored in two subcellular
compartments, the mitochondria, vacuole and ER/Golgi. For the first store the
activity of two transporters located in the inner membrane of mitochondria are
needed, Mrs2 and Lpel0. Mg>™" is stored in the trans-golgi, and possibly in the
vacuole by the activity of a Mg?t/H™ antiporters (Pisat et al. 2009); (Borrelly
et al. 2001). Storage of magnesium in the vacuole requires the activity of the
vacuolar proton-ATPase, and for Mg?™t efflux it is required the Mrs2 transporter,
also belonging to the MIT superfamily (Pisat et al. 2009).

Important for understanding calcium homeostasis were the results of a RNA
profile analysis of changes in expression dependent on Mg>" depletion. These
showed the intimate relationship between magnesium and calcium homeosta-
sis (Wiesenberger et al. 2007). A reduction in external Mg?" upregulated the

2+
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ENAI, encoding the P-type ATPase sodium pump, and PHOS89, encoding a
sodium/phosphate cotransporter, which are also upregulated under calcium and
alkaline pH stress. In that work they demonstrated that Mg?™ starvation caused
an increase in cytoplasmic calcium. A rise in cytosolic free calcium activated the
calmodulin/calcineurin network, which led to the activation of Crz1 TF. ENA1 and
PHOS89 are among the genes regulated by Crz1 (Hu et al. 2007; Mendizabal et al.
2001).

How Mg?* also influences calcium homeostasis? Immediately from what has
been exposed before, a negative role in calcium efflux through the PM is expected,
causing a reduction in the intracellular pool of Ca?*. To this effect, an elevation
of intracellular Mg?t will reduce the release of calcium from the internal stores.
But a third effect is also predictable, based on the capacity of EF-hands to bind
Mg?" in addition to Ca** (see review Grabarek 2011). Calmodulin and other
EF-hand containing proteins, such as the regulatory subunit of calcineurin, may
bind Mg?* rendering an alternative conformation to that originated by calcium,
in fact magnesium helps to release calcium from these proteins allowing the pass
from the holo-enzyme to the apo-enzyme state (Grabarek 2011). Thus, Mg?* will
directly affect the functionality of the calmodulin/calcineurin network, attenuating
calcium signaling. Altogether, an excess of Mg?™ will cause a reduction on calcium
signaling and probably increase tolerance to this cation, meanwhile low extracellular
levels of Mg?™ increase calcium signaling (Wiesenberger et al. 2007).

7.8 Role of Inorganic Phosphate in Calcium Homeostasis

The property of inorganic phosphate or polyphosphates in chelating cations is
fundamental to understand calcium and magnesium homeostasis. Actually calcium
and phosphate homeostasis have major importance in vertebrates since it is crucial
in bone formation, among other cellular and tissue specific processes (Shaker and
Deftos 2000).

In the yeast, the presence of polyphosphates in vacuoles is the basis for the
immobilization of calcium. In this way, the capacity to maintain the vacuolar Ca>*
concentration up to 2 mM is a result of Ca’>" binding to vacuolar polyphosphate
(Dunn et al. 1994). However, Ca?>" can be completely released from isolated vac-
uoles or from whole cells using the ionophores A23187 or ionomycin, suggesting
that the non-exchangeable pool of Ca>™ is soluble (Cunningham and Fink 1994a).

The conserved pathway governing phosphate homeostasis in yeast is composed
of the PHO genes (reviewed in Tomar and Sinha 2014). Interestingly there is well
established interconnection between calcium- and phosphate-dependent regulation,
for example at the level of the Crzl transcription factor. As cited before, Crzl
up-regulates PHOS89 in response to calcium stress or alkalinization, and, in the
absence of calcium stress, among the cyclin-dependent kinase Pho85 targets is the
transcription factor Crzlp (Sopko et al. 2000).
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7.9 Concluding Remarks and Future Prospects

Numerous elements have been described in this chapter participating in transport,
signaling and storage of a principal messenger in cells, the calcium ion. Along years,
S. cerevisiae has served as a model to understand how cells deal with a messenger
that is essential but lethal at the same time. Most of the principal elements are
well known, and many functional analyses have been performed to understand the
molecular and biochemical mechanisms involved, e.g. the calmodulin/calcineurin
pathway and its fungal effector Crzl. S. cerevisiae has served as a model to study
calcium homeostasis in other fungi, and in some cases particular variations are
found, specially in how Crz homologues are signalized and the transcriptional
function of this TF. But a general mechanism underlies in almost all cellular systems
under study, from bacteria to human cells, and for that the budding yeast has largely
provided with basic and elemental findings to understand this complex homeostatic
system. Future research lines will provide with a more detailed view of the exocytic
process of calcium and the interrelationships among different ions and ambient
stress signals to modulate and generate a coordinated response.
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